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Graduate School : Mathématiques
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Résumé: Cette thèse est consacrée au pro-
gramme de Langlands modulo p pour GL2.

Dans la première partie, j’étudie la dimen-
sion de Gelfand–Kirillov des représentations π
provenant de la cohomologie modulo p des
courbes de Shimura. Soit p un nombre pre-
mier et F un corps de nombres totalement
réel non ramifié en des places divisant p. Soit
r : Gal(F/F ) → GL2(Fp) une représentation
galoisienne modulaire qui satisfait l’hypothèse
de Taylor–Wiles et quelques hypothèses tech-
niques de généricité. Pour v une place fixée
de F divisant p, on montre que de nombreuses
représentations lisses admissibles de GL2(Fv)
sur Fp associées à r dans les espaces pro-
pres de Hecke correspondants de la cohomolo-
gie modulo p ont une dimension de Gelfand–
Kirillov [Fv : Qp]. Ceci s’appuie sur et étend
les travaux de Breuil-Herzig-Hu-Morra-Schraen
dans [BHH+23] et de Hu-Wang dans [HW22],
en donnant une preuve unifiée pour tous les cas
(r semisimple ou non à v).

Dans la deuxième partie, j’étudie les
(φ,O×

K)-modules étales DA(π) associés aux
représentations π provenant de la cohomologie

modulo p des courbes de Shimura. Soit K une
extension finie non ramifiée de Qp et F une ex-
tension finie de Fp. Pour π une représentation
lisse admissible de GL2(K) sur F satisfaisant
certaines propriétés de multiplicité un, je calcule
le rang du (φ,O×

K)-module étale DA(π) associé
défini dans [BHH+b], ce qui étend les résultats
de [BHH+b] et [BHH+c].

Dans la troisième partie, j’étudie les
propriétés de compatibilité locale-global
des (φ,O×

K)-modules DA(π). Pour ρ une
représentation réductible quelconque de dimen-
sion 2 de Gal(K/K) sur F, je calcule explicite-
ment le (φ,O×

K)-module étale D⊗
A(ρ) défini dans

[BHH+c]. Ensuite, soit π une représentation
lisse admissible de GL2(K) sur F apparaissant
dans certains espaces propres de Hecke de la
cohomologie modulo p et ρ sa représentation
sous-jacente de dimension 2 de Gal(K/K) sur
F. En supposant que ρ est maximalement non-
scindée, je montre sous certaines hypothèses de
généricité que le (φ,O×

K)-module étale DA(π)
défini dans [BHH+b] est isomorphe à D⊗

A(ρ).
Ceci étend les résultats de [BHH+c], où ρ était
supposé semisimple.
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Abstract: This thesis is devoted to the mod p
Langlands program for GL2.

In the first part, I study the Gelfand–
Kirillov dimension of the representations π com-
ing from the mod p cohomology of Shimura
curves. Let p be a prime number and F a totally
real number field unramified at places above p.
Let r : Gal(F/F ) → GL2(Fp) be a modular
Galois representation that satisfies the Taylor–
Wiles hypothesis and some technical genericity
assumptions. For v a fixed place of F above p,
we prove that many of the admissible smooth
representations of GL2(Fv) over Fp associated
to r in the corresponding Hecke-eigenspaces of
the mod p cohomology have Gelfand–Kirillov di-
mension [Fv : Qp]. This builds on and extends
the work of Breuil-Herzig-Hu-Morra-Schraen in
[BHH+23] and Hu-Wang in [HW22], giving a
unified proof in all cases (r either semisimple or
not at v).

In the second part, I study the étale
(φ,O×

K)-modules DA(π) associated to the rep-
resentations π coming from the mod p cohomol-
ogy of Shimura curves and compute there ranks.

Let K be a finite unramified extension of Qp

and F a finite extension of Fp. For π an ad-
missible smooth representation of GL2(K) over
F satisfying certain multiplicity-one properties,
we compute the rank of the associated étale
(φ,O×

K)-module DA(π) defined in [BHH+b], ex-
tending the results of [BHH+b] and [BHH+c].

In the third part, I study the local-global
compatibility properties of the étale (φ,O×

K)-
modules DA(π). For ρ any reducible two-
dimensional representation of Gal(K/K) over
F, we compute explicitly the associated étale
(φ,O×

K)-module D⊗
A(ρ) defined in [BHH+c].

Then we let π be an admissible smooth repre-
sentation of GL2(K) over F occurring in some
Hecke eigenspaces of the mod p cohomology and
ρ be its underlying two-dimensional represen-
tation of Gal(K/K) over F. Assuming that ρ
is maximally non-split, we prove under some
genericity assumption that the associated étale
(φ,O×

K)-module DA(π) defined in [BHH+b] is
isomorphic to D⊗

A(ρ). This extends the re-
sults of [BHH+c], where ρ was assumed to be
semisimple.
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Chapter 1

Introduction générale

1.1 La correspondance hypothétique de Langlands modulo p
pour GL2

Soit p un nombre premier et K une extension finie de Qp. Le programme de Langlands
modulo p pour GL2, initié par Breuil dans [Bre03], demande une correspondance possible entre
certaines représentations modulo p lisses admissibles de GL2(K) et des représentations modulo
p continues de dimension 2 du groupe de Galois Gal(K/K).

Le cas K = Qp est bien compris par les travaux de Breuil, Colmez, Emerton, Kisin,
Paškūnas, etc. On liste les deux propriétés suivantes de la correspondance de Langlands modulo
p pour GL2(Qp).

• Colmez ([Col10]) a construit un foncteur (connu comme le foncteur de Colmez) de la
catégorie des représentations modulo p admissibles de longueur finie de GL2(Qp) vers la
catégorie des représentations modulo p continues de dimension finie de Gal(Qp/Qp), en
utilisant la catégorie de Fontaine des (φ,Γ)-modules ([Fon90]) comme étape intermédiaire.
Cela donne une façon functorielle de réaliser la correspondance de Langlands modulo p
pour GL2(Qp).

• Emerton ([Eme11]) a montré que la correspondance de Langlands modulo p pour GL2(Qp)
satisfait la compatibilité local-global, dans le sens qu’elle peut être réalisée dans le H1 des
(tours de) courbes modulaires.

Cependant, lorsque K ̸= Qp, la situation devient beaucoup plus compliquée. Par exemple,
il y a beaucoup plus de représentations supersingulières modulo p de GL2(K), et on n’a pas
de classification de ces représentations ([BP12]). De plus, elles ne sont pas de présentation
finie ([Sch15],[Wu21]), et il est impossible (jusqu’à présent) de décrire explicitement l’une de ces
représentations. Motivés par le résultat de compatibilité local-global pour GL2(Qp) ([Eme11]),
on s’intéresse aux représentations modulo p de GL2(K) provenant de la cohomologie des courbes
de Shimura.

On présente le cadre global. Soit F un corps de nombres totalement réel qui est inerte en
p (pour des raisons de simplicité dans cette introduction). Soit D une algèbre de quaternions
de centre F qui est scindée en p et en exactement une place infinie. Pour chaque sous-groupe
ouvert compact U ⊆ (D ⊗F A∞

F )× où A∞
F est l’ensemble des adèles finis de F , on note XU

la courbe de Shimura projective lisse associée sur F . Soit F une extension finie suffisamment
grande de Fp, qui est considérée comme le corps de coefficients à partir de maintenant. On note

K
déf
= Fp la complétion de F en p et f

déf
= [K : Qp]. Soit OK l’anneau des entiers de K et Fq le

1



corps résiduel de K (donc q = pf ). On fixe un sous-groupe ouvert compact Up ⊆ (D×F A∞,p
F )×.

On considère alors la représentation lisse admissible suivante de GL2(K) sur F:

π
déf
= lim−→

Up

HomGal(F/F )

(
r,H1

ét(XUpUp ×F F ,F)
)
, (1.1)

où la limite inductive est prise sur les sous-groupes ouverts compacts Up ⊆ (D ×F K)× ∼=
GL2(K), et r : Gal(F/F ) → GL2(F) est une représentation continue absolument irréductible
telle que π ̸= 0.

L’une des attentes du programme de Langlands modulo p est que la représentation π comme
en (1.1) peut être utilisée pour réaliser une correspondance de Langlands modulo p pour GL2(K).
Plus précisément, on a l’espoir suivant.

Espoir 1.1.1. Pour π comme en (1.1), il existe un entier d ≥ 1 dépendant de r et Up tel que

π ∼= π
(
r|Gal(K/K)

)⊕d
.

Ici, pour ρ une représentation modulo p continue de dimension 2 de Gal(K/K), on note π(ρ)
la représentation modulo p hypothétique admissible de GL2(K) lui correspondant.

Par conséquent, l’une des questions clés du programme de Langlands modulo p est de com-
prendre la représentation π de GL2(K) en (1.1). En choisissant soigneusement le sous-groupe
ouvert compact Up ⊆ (D×F A∞,p

F )×, on suppose que l’on est dans la situation de “multiplicité
un” au sens que d = 1 dans l’Espoir 1.1.1, ce qui est le premier cas à considérer. Pour des
raisons de simplicité, on fait cette hypothèse à partir de maintenant dans cette introduction
(sauf indication contraire).

Lorsque F = Q et D = M2(Q), la représentation π de GL2(Qp) en (1.1) est bien com-
prise par [Eme11], et l’Espoir 1.1.1 est vrai. Cependant, dès que K ̸= Qp, cette question
devient particulièrement difficile. Pour l’instant, on ne connâıt qu’un tout petit morceau de la
représentation π. Le but de ma thèse est de mieux comprendre la représentation π en suivant
la voie des résultats récents de Breuil-Herzig-Hu-Morra-Schraen ([BHH+23],[BHH+b],[BHH+c])

et de montrer que certaines propriétés de π ne dépendent que de la restriction rp
déf
= r|Gal(K/K).

Le comportement de π est différent lorsque rp est semisimple ou non. Plusieurs résultats de
[BHH+23], [BHH+b], et [BHH+c] ne traitent que du cas où rp est semisimple, et le cas non-
semisimple est beaucoup plus délicat que le cas semisimple. Le thème de ma thèse est de
généraliser ces résultats à tous les rp (y compris les rp non-semisimples), pour lesquels on a
besoin d’arguments plus élaborés en théorie des représentations.

1.2 Aperçu de quelques résultats antérieurs

On commence par un aperçu de quelques résultats antérieurs sur la représentation π comme
en (1.1), qui ont pour but commun de déterminer certains sous-espaces invariants de dimension
finie de la restriction de π à GL2(OK) et de prouver qu’ils ne dépendent que de rp.

La première étape vers la compréhension de la représentation π est d’étudier son GL2(OK)-
socle socGL2(OK) π, qui est une somme directe de poids de Serre de GL2(Fq), c’est-à-dire de
représentations absolument irréductibles de GL2(Fq) sur F. Ces poids de Serre sont prédits par
[BDJ10]. Ceci est considéré comme la partie poids de la conjecture de Serre, généralisant la
conjecture de Serre originale ([Ser87]) et est maintenant un théorème. A partir de maintenant,
on suppose que p > 5 et que rGal(F/F ( p√1)) est absolument irréductible.

2



Théorème 1.2.1 ([EGS15],[GLS15]). Soit π comme en (1.1). Supposons que rp est générique
au sens de [BP12, Def. 11.7]. On a alors

socGL2(OK) π ∼=
⊕

σ∈W (r∨p )

σ,

où W (r∨p ) est l’ensemble des poids de Serre de r∨p défini dans [BDJ10, §3]. En particulier,
socGL2(OK) π ne dépend que de rp.

L’étape suivante consiste à étudier la représentation πK1 de GL2(OK) où K1
déf
= 1 +

pM2(OK), qui contient socGL2(OK) π comme sous-représentation.

Théorème 1.2.2 ([LMS22],[HW18],[Le19]). Soit π comme en (1.1). Supposons que rp est
générique au sens de [BP12, Def. 11.7]. On a alors

πK1 ∼= D0(r
∨
p ),

où D0(r
∨
p ) est une représentation explicite (de dimension finie) de GL2(Fq) sur F construite par

Breuil-Paškūnas ([BP12, §13]). En particulier, πK1 ne dépend que de rp.

Un diagramme D est une représentation D0 de GL2(OK) telle que DK1
0 = D0 avec un

automorphisme Π surDI1
0 , dont le carré agit par un scalaire non nul, où I1

déf
=
(

1+pOK OK
pOK 1+pOK

)
⊆

GL2(OK) est le sous-groupe de pro-p-Iwahori. Supposons que rp est générique au sens de [BP12,
Def. 11.7]. Alors Breuil et Paškūnas ont construit une famille de diagrammes attachés à rp telle
que D0 = D0(r

∨
p ).

Puisque la représentation π comme en (1.1) a un caractère central, on obtient un diagramme
D(π) avec D0 = πK1 et Π donné par l’action de

(
0 1
p 0

)
. En particulier, puisque Π normalise I1

et I où I
def
=

(
O×

K OK

pOK O×
K

)
⊆ GL2(OK) est le sous-groupe d’Iwahori, il envoie un caractère χ de

I à sa conjugaison χs par la matrice
(
0 1
p 0

)
. Par le Théorème 1.2.2, D(π) est isomorphe à l’un

des diagrammes attachés à rp définis par Breuil et Paškūnas. On a le raffinement suivant du
Théorème 1.2.2, qui distingue un diagramme unique D dans la famille ci-dessus, sous réserve
d’une condition de compatibilité local-global lorsque rp est suffisamment générique.

Théorème 1.2.3 ([DL21]). Soit π comme en (1.1). Supposons que rp est suffisamment générique
(voir [DL21, §1] pour une signification précise). Alors le diagramme D(π) ne dépend que de rp.

L’un des principaux outils communs à la preuve du Théorème 1.2.1, du Théorème 1.2.2 et du
Théorème 1.2.3 est le foncteur de patché défini par Emerton-Gee-Savitt ([EGS15]) en s’appuyant
sur les travaux de Taylor et Wiles ([TW95]), et de Kisin ([Kis09]). Il s’agit d’un foncteur exact
M∞ de représentations continues de GL2(OK) sur des W (F)-modules de type fini vers des R∞-
modules de type fini avec des propriétés supplémentaires, où R∞ est l’anneau de déformation
patché et est isomorphe à un anneau de séries formelles sur l’anneau de déformations cadrées
universel de r∨p dans notre cas (voir [EGS15] pour un énoncé précis). Ce foncteur nous permet
de transférer des énoncés du côté de GL2 vers le côté Galois. Une fois que l’on a suffisamment
d’informations sur les anneaux de déformations galoisiennes, on est en mesure d’utiliser la
philosophie de Breuil-Mézard ([EG14]) pour déduire des propriétés du côté GL2. On verra des
exemples de ce type d’argument au § 1.3 ci-dessous.
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1.3 La dimension de Gelfand–Kirillov de π

Le premier résultat concerne la dimension de Gelfand–Kirillov de π comme en (1.1), qui
mesure la croissance de la dimension des sous-espaces invariants de π sous les sous-groupes de
congruence principaux. Plus précisément, On définit la dimension de Gelfand–Kirillov de π
(voir [EP20]) comme l’unique entier dimGL2(K)(π) tel qu’il existe a ≤ b dans R>0 satisfaisant

a ≤ dimF(π
Kn)

pndimGL2(K)(π)
≤ b

pour tout n ≥ 1, où Kn
déf
= 1 + pnM2(OK) pour n ≥ 1.

Théorème 1.3.1 (Theorem 3.1.1). Soit π comme en (1.1). Supposons que rp est suffisamment
générique (voir la condition (iv) au § 3.1 pour une signification précise). On a alors

dimGL2(K)(π) = f.

Le Théorème 1.3.1 est démontré par [BHH+23] lorsque rp est semisimple et démontré par
[HW22] lorsque rp est non-semisimple en utilisant une méthode différente. D’une part, la
méthode de [HW22] ne fonctionne que dans le cas non-semisimple. D’autre part, il s’avère que
la méthode de [BHH+23] peut être généralisée au cas non-semisimple, ce qui n’avait pas été
remarqué auparavant. On adapte la méthode de [BHH+23] au cas non-semisimple. Cela fournit
une preuve uniforme du Théorème 1.3.1.

La preuve du Théorème 1.3.1 implique le calcul de nouveaux cas d’anneaux de déformations
galoisiennes, ce qui nous permet d’utiliser davantage le foncteur de patché et donc d’aller au-delà
de πK1 comme dans le Théorème 1.2.2. On donne un aperçu de la preuve du Théorème 1.3.1
en suivant de près [BHH+23, §1] et indique ce qui doit être changé dans le cas non-semisimple.

Soit I
déf
=

(
O×

K OK

pOK O×
K

)
⊆ GL2(OK) le sous-groupe d’Iwahori. Soit Z1 le centre de K1

et mK1 l’idéal maximal de l’algèbre d’Iwasawa F[[K1/Z1]]. On note encore mK1 l’idéal de
F[[GL2(OK)/Z1]] engendré par mK1 sous l’inclusion naturelle F[[K1/Z1]] ↪→ F[[GL2(OK)/Z1]]
lorsqu’il n’y a pas de confusion possible. Par les arguments cruciaux de Gee et Newton dans
[GN20, Appendix A], on sait que dimGL2(K)(π) ≥ f pour π comme en (1.1). Afin d’obtenir la
borne supérieure sur dimGL2(K)(π), on doit appliquer le théorème de théorie des représentations
suivant à π comme en (1.1). Il s’agit d’un cas particulier de [BHH+23, Thm. 6.4.7] lorsque rp
est semisimple, et d’une conséquence de [HW22, Prop. 4.20] et [BHH+23, Prop. 6.4.6] lorsque
rp est non-semisimple. On renvoie au Theorem 3.5.3 ci-dessous pour un énoncé plus général,
qui s’applique à π pas nécessairement dans la situation de “multiplicité un”.

Théorème 1.3.2 (Theorem 3.5.3). Soit π une représentation lisse admissible de GL2(K) sur
F avec un caractère central. Supposons que

(i) on a socGL2(OK)(π) ∼=
⊕

σ∈W (r∨p )
σ;

(ii) pour chaque σ ∈W (r∨p ), on a [π[m2
K1

]|GL2(OK) : σ] = 1;

(iii) on a πI1 ∼= D0(r
∨
p )
I1 comme représentations de I.

Alors dimGL2(K)(π) ≤ f . Ici, π[m2
K1

] est l’ensemble des éléments de π (considéré comme un
module sur F[[K1/Z1]]) annihilés par m2

K1
, et [π[m2

K1
]|GL2(OK) : σ] est la multiplicité de σ dans

la semisimplification de π[m2
K1

] en tant que représentations de GL2(OK).
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On doit alors montrer que la représentation π en (1.1) satisfait les conditions du Théorème
1.3.2. Les conditions (i) et (iii) découlent du Théorème 1.2.1 et du Théorème 1.2.2, et on se
concentre donc sur la condition (ii) du Théorème 1.3.2. Puisque l’on a dimFHomGL2(OK)(σ, π) =
1 pour σ ∈W (r∨p ) par la condition (i), il suffit de montrer que

dimFHomGL2(OK)(ProjΓ̃ σ, π) ≤ 1 ∀σ ∈W (r∨p ), (1.2)

où Γ̃
déf
= F[[GL2(OK)/Z1]]/m

2
K1

, et Proj
Γ̃
σ est l’enveloppe projective de σ dans la catégorie des

Γ̃-modules.
On note M∞ le foncteur de patché comme au § 1.2. D’après la construction de M∞, pour

toute représentation V de GL2(OK) de dimension finie sur F, on a

HomF(M∞(V )/m∞,F) ∼= HomGL2(OK)(V, π), (1.3)

où m∞ est l’idéal maximal de R∞. En combinant (1.2) et (1.3), il suffit de montrer que

M∞(Proj
Γ̃
σ) est un R∞-module cyclique ∀σ ∈W (r∨p ). (1.4)

On fixe σ ∈ W (r∨p ). Pour montrer (1.4) pour σ, on relève le Γ̃-module Proj
Γ̃
σ sur F

en caractéristique zéro suivant [BHH+23, §7.3] afin que l’on puisse utiliser les propriétés de

compatibilité local-global de M∞. On note Pσ
déf
= ProjGL2(Fq) σ l’enveloppe projective de σ

dans la catégorie des F[GL2(Fq)]-modules et note P̃σ le O[GL2(Fq)]-module projectif relevant

Pσ. On fixe un plongement σ0 : Fq ↪→ F et note σj
déf
= σ0 ◦ φj pour j ∈ Z, où φ : x 7→ xp est le

Frobenius arithmétique sur Fq. On note encore σj le plongement correspondant OK ↪→ W (F).
Pour 0 ≤ j ≤ f − 1, on définit la représentation de GL2(OK) sur W (F)

R2,j
déf
=
(
Sym2W (F)2 ⊗ det−1

)(j) ⊗W (F) P̃σ,

où “(j)” signifie que GL2(OK) agit via le plongement σj : OK ↪→W (F). Pour chaque j, il existe
un isomorphisme

R2,j/pR2,j
∼= Pσ ⊕ Pσ+

j
⊕ Pσ−

j

pour certains poids de Serre σ+j et σ−j , ce qui induit une injection

ιj : Pσ ↪→ R2,j/pR2,j .

On définit alors un GL2(OK)-réseau R′
2,j dans R2,j [1/p] par

R′
2,j

déf
= Pσ ×R2,j/p R2,j = {x ∈ R2,j : (xmod pR2,j) ∈ ιj(Pσ)}.

On note L−1
déf
= P̃σ. Pour 0 ≤ j ≤ f − 1, on définit un GL2(OK)-réseau Lj dans L−1[1/p] ⊕(⊕j

j′=0R2,j [1/p]
)
par

Lj
déf
=

{(
x, (xj′)0≤j′≤j

)
∈ L−1 ⊕ (⊕j

j′=0R2,j) : (xj′ mod pR2,j′) = (xmod pL−1)

via ιj′ : L−1/pL−1 ↪→ R2,j′/pR2,j′ ∀ 0 ≤ j′ ≤ j

}
,

ce qui revient à définir
Lj = Lj−1 ×Pσ R

′
2,j (1.5)

pour 0 ≤ j ≤ f − 1. On a alors Lf−1/pLf−1
∼= Proj

Γ̃
σ. Par l’exactitude de M∞, il suffit de

montrer que le R∞-module M∞(Lf−1) est cyclique.
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Par [Le19, Thm. 4.9], on sait que le R∞-module M∞(P̃σ) est cyclique. Par [BHH+23,
Thm. 8.3.4], on sait que le R∞-module M∞(R′

2,j) est cyclique pour chaque 0 ≤ j ≤ f − 1
lorsque rp est semisimple. La preuve de [BHH+23, Thm. 8.3.4] utilise les techniques standard
de dévissage comme dans [EGS15, §10] et [Le19, Lemma 4.5], et peut être facilement généralisée
à tous les rp. On peut alors utiliser (1.5) et la cyclicité de M∞(P̃σ) et M∞(R′

2,j) pour montrer
que M∞(Lf−1) est cyclique par induction.

Pour simplifier, on ne parle que de la première étape de l’induction. Par l’exactitude de
M∞, on a l’égalité de R∞-modules

M∞(L0) =M∞(P̃σ)×M∞(Pσ) M∞(R′
2,0). (1.6)

On sait déjà que chaque terme sur la droite de (1.6) est cyclique. Pour montrer que M∞(L0)
est cyclique, il suffit de montrer que

AnnR∞

(
M∞(Pσ)

)
= AnnR∞

(
M∞(P̃σ)

)
+AnnR∞

(
M∞(R′

2,0)
)
. (1.7)

Chaque terme de (1.7) a une interprétation comme un certain anneau de déformations ga-
loisiennes. On note Rr∨p l’anneau de déformations cadrées universel de r∨p . Pour τ un type

inertiel modéré, on note R
(1,0),τ
r∨p

(resp.R
(2,−1)0,τ
r∨p

) le quotient maximal réduit, plat sur O de

Rr∨p qui paramétrise les déformations potentiellement cristallines de r∨p de type inertiel τ et de

poids de Hodge–Tate parallèles (1, 0) (resp. poids de Hodge–Tate (2,−1) dans le plongement
σ0 : K ↪→W (F)[1/p] et (1, 0) ailleurs). On note

p(1,0)τ
déf
= Ker(Rr∨p ↠ R

(1,0),τ
r∨p

);

p(2,−1)0
τ

déf
= Ker(Rr∨p ↠ R

(2,−1)0,τ
r∨p

).

Par un certain détour (voir [BHH+23, §1] pour plus de détails), pour montrer (1.7) on est réduit
à la preuve de la propriété subtile de (non-)congruence suivante.

Théorème 1.3.3 (Proposition 3.4.3.3). On a

p ∈ ∩τp(1,0)τ + p(2,−1)0
τ0 ,

où τ parcourt les types inertiels modérés tels que σ est un facteur de Jordan–Hölder dans la
semisimplification modulo p de σ(τ) (ici σ(τ) est la représentation lisse irréductible de GL2(OK)
associée par Henniart à τ dans l’appendice de [BM02]), et τ0 est un type inertiel modéré tel
que l’ensemble des constituants irréductibles de la semisimplification modulo p de σ(τ0) contient
l’ensemble W (r∨p ) (qui existe).

Lorsque rp est semisimple, le Théorème 1.3.3 est démontré dans [BHH+23, Prop. 4.3.3]
par un calcul explicite des anneaux de déformations potentiellement cristallines en utilisant
la machinerie des modules de Kisin, qui a d’abord été suggéré par Breuil, puis développé par
[Kis06] et [LLHLM18]. Nous généralisons le calcul des anneaux de déformations potentiellement
cristallines au cas non-semisimple. Ceci complète la preuve du Théorème 1.3.1.

Comme sous-produit de la preuve du Théorème 1.3.1, on peut déterminer la structure de
la m2

K1
-torsion de la représentation π en (1.1), qui est une généralisation du Théorème 1.2.2.

C’est un cas particulier de [BHH+23, Thm. 1.9] lorsque rp est semisimple, et est démontré
dans [HW22, Thm. 1.4] lorsque rp n’est pas semisimple. On renvoie au Théorème 3.6.3.1(ii)
ci-dessous pour un énoncé plus général, qui s’applique à π pas nécessairement dans la situation
de “multiplicité un”.
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Théorème 1.3.4 (Theorem 3.6.3.1(ii)). Soit π comme en (1.1). Supposons que rp est suff-
isamment générique (comme dans le Théorème 1.3.1). On a alors

π[m2
K1

] ∼= D̃0(r
∨
p ),

où D̃0(r
∨
p ) est une représentation explicite (de dimension finie) de Γ̃ sur F définie dans [HW22,

§4]. En particulier, π[m2
K1

] ne dépend que de rp.

Comme étape intermédiaire pour montrer le Théorème 1.3.1, on déduit également une pro-

priété importante du module gradué associé du dual π∨
déf
= HomF(π,F) pour π comme en

(1.1), ce qui généralise le résultat de [BHH+23] où rp était supposé semisimple (cette propriété
est également démontrée par [HW22] lorsque rp n’est pas semisimple en utilisant une méthode
différente). Cela conduit à une sous-catégorie abélienne de la catégorie des représentations lisses
admissibles de GL2(K) qui possède des propriétés de finitude agréables et qui sera introduite
au § 1.4 ci-dessous. On note mI1 l’idéal maximal de l’algèbre d’Iwasawa F[[I1/Z1]].

Théorème 1.3.5. Soit π comme en (1.1). Supposons que rp est suffisamment générique
(comme dans le Théorème 1.3.1). Alors le module gradué grmI1

π∨ sur l’algèbre graduée grmI1
F[[I1/Z1]]

est annihilé par un idéal à deux côtés explicite J , et l’anneau quotient grmI1
F[[I1/Z1]]/J est com-

mutatif et est isomorphe à

F[y0, z0, . . . , yf−1, zf−1]/(y0z0, . . . , yf−1zf−1).

1.4 Le foncteur π 7→ DA(π)

En utilisant le Théorème 1.3.5, Breuil-Herzig-Hu-Morra-Schraen ([BHH+c]) a construit un
foncteur exact DA d’une certaine sous-catégorie de la catégorie des représentations lisses ad-
missibles de GL2(K) sur F à la catégorie des modules multivariables (φ,O×

K), qui est une
généralisation du foncteur de Colmez ([Col10]). La question fondamentale est alors de déterminer
la structure de DA(π) pour π comme en (1.1), ce qui peut être utilisée pour déduire des pro-
priétés de π.

On rappelle tout d’abord la définition de l’anneau A, qui est un analogue en plusieurs

variables de F((X)). On note N0
déf
=
(
1 OK
0 1

)
⊆ GL2(OK). Pour 0 ≤ j ≤ f − 1, on définit

Yj
déf
=
∑
a∈F×

q

σ0(a)
−pj
(
1 [a]
0 1

)
∈ F[[N0]],

où [a] ∈ O×
K est le reléve de Teichmüller de a ∈ F×

q . On a alors F[[N0]] = F[[Y0, . . . , Yf−1]]. On
définit

A
déf
= F[[N0]] [1/(Y0 · · ·Yf−1)]

∧ ,

où la complétion se fait par rapport à la topologie (Y0, . . . , Yf−1)-adique sur F[[N0]]. Il existe
une action F-linéaire de O×

K sur F[[N0]] donnée par multiplication sur N0
∼= OK , et une action

F-linéaire de Frobenius φ sur F[[N0]] donnée par multiplication par p sur N0
∼= OK . Ces deux

actions s’étendent canoniquement par continuité en des actions F-linéaires continues de φ et
O×
K qui commutent sur A. Un (φ,O×

K)-module étale sur A est par définition un A-module libre
de type fini muni d’un Frobenius semi-linéaire φ et d’une action semi-linéaire continue de O×

K

commutant avec φ telle que l’image de φ engendre tout.
Pour π une représentation lisse admissible de GL2(K) sur F avec caractère central, on

considère π∨ comme un F[[I1/Z1]]-module de type fini et on le munit de la topologie mI1-adique.
On définit

DA(π)
déf
= F[[N0]][1/(Y0 · · ·Yf−1)]⊗̂F[[N0]]π

∨,
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où la complétion se fait par rapport à la topologie produit tensoriel. L’action de O×
K sur π∨

donnée par f 7→ f ◦ ( a 0
0 1 ) (pour a ∈ O×

K) s’étend par continuité à DA(π), et l’action de ψ sur
π∨ donnée par f 7→ f ◦

(
p 0
0 1

)
induit une application A-linéaire continue

β : DA(π) → A⊗φ,A DA(π). (1.8)

On note C la catégorie abélienne des représentations lisses admissibles π de GL2(K) sur F avec
des caractères centraux tels que le module gradué grmI1

π∨ est annihilé par Jn pour quelque

n ∈ N (voir le Théorème 1.3.5). Pour π dans C, DA(π) est un A-module libre de type fini par
[BHH+b, Cor. 3.1.2.9] et [BHH+c, Remark. 2.6.2]. Si de plus β est un isomorphisme, alors son
inverse β−1 = id⊗φ fait de DA(π) un (φ,O×

K)-module étale. En particulier, lorsque K = Qp,
la construction ci-dessus récupère le foncteur de Colmez ([Col10]). Notre résultat principal est
le suivant.

Théorème 1.4.1 (Theorem 4.1.1). Soit π comme en (1.1). Supposons que rp est suffisamment
générique (voir la condition (v) au § 5.1 pour une signification précise). Alors π est dans C, β
dans (1.8) est un isomorphisme et

rankADA(π) = 2f .

Par le Théorème 1.3.5, on sait que π est dans C. Par [BHH+b, Thm. 3.3.2.3], on sait
que rangADA(π) ≤ 2f . Le Théorème 1.4.1 est démontré par [BHH+c, Thm. 3.1.3] lorsque
rp est semisimple. Nous généralisons la preuve de [BHH+c] au cas non-semisimple, ce qui est
sérieusement plus délicat.

La preuve du Théorème 1.4.1 se fait par une construction explicite d’une A-base du (φ,O×
K)-

module étale dual HomA(DA(π), A) pour π comme en (1.1). Comme dans [BHH+c, (87)], il
existe une injection A-linéaire canonique

µ∗ : HomA(DA(π), A) ↪→ Homcont
F (DA(π),F). (1.9)

Pour i = (i0, . . . , if−1) ∈ Zf≥0, on note ∥i∥ déf
=
∑f−1

j=0 ij et on écrit Y i pour
∏f−1
j=0 Y

ij
j ∈ F[[N0]].

On a alors la proposition suivante.

Proposition 1.4.2 ([BHH+c]). Soit π comme en (1.1).

(i) L’ensemble Homcont
F (DA(π),F) peut être identifié à l’ensemble des (xi)i∈Zf avec xi ∈ π et

(a) Y kxi = xi−k pour tout i ∈ Zf et k ∈ Zf≥0;

(b) il existe d ∈ Z tel que xi ∈ π[m
∥i∥+d+1
I1

] pour tout i ∈ Zf (où π[mj
I1
]
déf
= 0 si j ≤ 0).

(ii) Un élément (xi)i∈Zf ∈ Homcont
F (DA(π),F) est dans l’image de µ∗ comme en (1.9) si et

seulement s’il satisfait la condition de finitude suivante :{
i ∈ Zf : xi ̸= 0, ∥i∥ =M

}
est fini ∀M ∈ Z.

On va définir 2f éléments xJ = (xJ,i)i∈Zf ∈ Homcont
F (DA(π),F) indexées par les sous-

ensembles J ⊆ J déf
= {0, 1, . . . , f − 1}. On montre ensuite que les xJ pour J ⊆ J sont dans

l’image de µ∗ et forment une A-base de HomA(DA(π), A). On donne un aperçu de la construc-
tion dans le cas où rp est maximalement non-scindée (ou de façon équivalente, |W (rp)| = 1)
pour plus de simplicité.
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Étape 1. On définit xJ,0 pour tout J ⊆ J .

En prenant d = 0 dans la Proposition 1.4.2(i)(b), on voit que xJ,0 ∈ πI1 pour tout J ⊆ J .
D’après le Théorème 1.2.2, on sait que πI1 est une somme directe de 2f caractères distincts de
I, qui peuvent être paramétrés par les sous-ensembles J ⊆ J . On fait le choix d’un vecteur
propre xJ,0 ∈ πI1 pour l’action de I pour chaque J ⊆ J .

Etape 2. On définit xJ,f pour tout J ⊆ J .

Par le Théorème 1.2.2 on a πK1 ∼= D0(r
∨
p ), qui est explicitement connu et contient πI1 comme

sous-espace. Pour chaque J ⊆ J on définit xJ,f comme l’unique vecteur propre dans πK1 pour

l’action de
(

[F×
q ] 0

0 [F×
q ]

)
satisfaisant

{
Y f+1
j xJ,f = 0 ∀ j ∈ J

(Y0 · · ·Yf−1)
fxJ,f = xJ,0.

Etape 3. On définit xJ,i pour tout J ⊆ J et i ∈ Zf .
Tout d’abord, en utilisant la Proposition 1.4.2(i)(a), pour J ⊆ J et i ∈ Zf tel que ij ≤ f

pour tout j ∈ J on définit

xJ,i
déf
= Y f−ixJ,f .

Pour J ⊆ J , on définit J + 1
déf
= {(j + 1mod f) ∈ J : j ∈ J}. On définit δ : Zf → Zf par

δ(i)j
déf
= ij+1 si 0 ≤ j ≤ f − 2 et δ(i)f−1

déf
= i0. En utilisant la relation entre les éléments

xJ,f ∈ πK1 , on peut étendre la définition de xJ,i à tous les i ∈ Zf de manière inductive en
utilisant la relation suivante(

p 0
0 1

)
xJ+1,i =

∑
J ′⊆J

εJ ′µJ+1,J ′xJ ′,pδ(i)+cJ,J′ ,

où εJ ∈ {±1}, µJ,J ′ ∈ F sont certaines constantes qui dépendant du choix de xJ,0, et où

cJ,J
′ ∈ Zf vérifie −1 ≤ cJ,J

′

j ≤ 2p pour tout j ∈ J . On renvoie au Théorème 4.6.4 ci-dessous
pour une définition précise des éléments xJ,i qui fonctionne pour tout rp.

Étape 4. On montre que chaque xJ satisfait la condition de finitude de la Proposition 1.4.2,
qui garantit que xJ se trouve dans l’image de µ∗ comme en (1.9). Une fois que l’on a montré
que xJ ∈ HomA(DA(π), A) pour tout J , il n’est pas difficile de conclure que les xJ pour J ⊆ J
forment une A-base de HomA(DA(π), A). Ceci termine la preuve du Théorème 1.4.1.

En analysant plus en détail la structure des sous-modules de πK1 (pour π comme en (1.1))
et les xJ , on peut montrer la généralisation suivante du Théorème 1.4.1.

Théorème 1.4.3 (Theorem 4.1.2). Soit π comme en (1.1). Supposons que rp est suffisamment
générique (comme dans le Théorème 1.4.1). Alors pour π1 une sous-représentation de π, on a

rangADA(π1) =
∣∣∣JH(πK1

1 ) ∩W (ρss)
∣∣∣ ,

où JH(πK1
1 ) est l’ensemble des facteurs de Jordan–Hölder de πK1

1 en tant que représentation de
GL2(OK), et ρss est la semisimplification de ρ.
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Comme une application du Théorème 1.4.3 à la compréhension de π en (1.1), on montre que π
est engendrée par un nombre fini de vecteurs en tant que représentation de GL2(K), généralisant
le résultat de [BHH+b] où rp était supposé semisimple (ce résultat de génération finie est
également démontré par [HW22] lorsque rp n’est pas semisimple en utilisant une méthode
complètement différente).

Théorème 1.4.4 (Corollary 4.11.3). Soit π comme en (1.1). Supposons que rp est suffisamment
générique (comme dans le Théorème 1.4.1). Alors, en tant que représentation de GL2(K), π
est engendrée par D0(r

∨
p ).

On remarque qu l’on ignore si π est de longueur finie en tant que représentation de GL2(K).
Notons le point important suivant, le Théorème 1.4.3 est essentiel pour montrer que π est de
longueur finie (dans le cas non-semisimple) dans un travail en cours de Breuil-Herzig-Hu-Morra-
Schraen ([BHH+a]).

1.5 Le foncteur rp 7→ D⊗
A(rp)

Outre le rang de DA(π), Breuil-Herzig-Hu-Morra-Schraen ([BHH+c]) donne une description
conjecturale de DA(π) comme (φ,O×

K)-module étale pour π comme en (1.1). La construction
utilise le (φ,O×

K)-module de Lubin–Tate (voir [KR09]) associé à rp comme étape intermédiaire,
ce qui peut être rendu assez explicite. On donne un exemple du (φ,O×

K)-module de Lubin-Tate
DK(rp) lorsque rp est suffisamment générique. On renvoie au § 5.2 pour la description explicite
de DK(rp) pour rp réductible arbitraire (de dimension 2), et on renvoie à [BHH+c, Lemma 2.1.6]
lorsque rp est irréductible.

Exemple 1.5.1. Supposons que rp est réductible et suffisamment générique comme en (5.69).
Alors le (φ,O×

K)-module de Lubin–Tate DK(rp) associé à rp peut être décrit explicitement
comme suit (a ∈ O×

K):
DK(rp) =

f−1∏
j=0

DK,σj (rp)

DK,σj (rp) = F((TK,σj ))e
(j)
0 ⊕ F((TK,σj ))e

(j)
1

φ(e
(j+1)
0 e

(j+1)
1 ) = (e

(j)
0 e

(j)
1 )Mat(φ(j))

a(e
(j)
0 e

(j)
1 ) = (e

(j)
0 e

(j)
1 )Mat(a(j)),

où TK,σj est une variable de Lubin–Tate appropriée, les indices j étant considérés modulo f ,

Mat(φ(j)) =

(
αjT

−(q−1)hj
K,σj

βjdj

0 βj

)

pour αj , βj ∈ F×, dj ∈ F, 0 ≤ hj ≤ p− 1, et

Mat(a(j)) ∈ I2 +M2

(
T q−1
K,σj

F[[T q−1
K,σj

]]
)
,

ce qui détermine de façon unique Mat(a(j)).

Lorsque rp est suffisamment générique (comme dans l’Exemple 1.5.1), on définit

D⊗
A(rp)

déf
=

⊗
A,0≤j≤f−1

(
A⊗F((T q−1

K,σj
))
DK,σj (rp)

[F×
q ]

)
(1.10)
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avec les actions canoniques de φ et O×
K , où le plongement F((T q−1

K,σj
)) ↪→ A envoie T q−1

K,σj
sur

φ(Yj)/Yj ∈ A. Il s’agit d’un (φ,O×
K)-module étale sur A de rang 2f . Le résultat principal est

le suivant, qui généralise le Théorème 1.4.1.

Théorème 1.5.2 (Theorem 5.1.1). Soit π comme en (1.1). Supposons que rp est maximale-
ment non-scindée (ou de manière équivalente, |W (rp)| = 1) et suffisamment générique (voir la
condition (v) au § 5.1 pour une signification précise). On a alors un isomorphisme de (φ,O×

K)-
modules étales

DA(π) ∼= D⊗
A(rp(1)),

où rp(1) est le tordu de Tate de rp. En particulier, DA(π) ne dépend que de rp.

Le Théorème 1.5.2 est démontré par [BHH+c] lorsque rp est semisimple. En utilisant la
description explicite de D⊗

A(rp) dans l’exemple 1.5.1 et (1.10), ainsi que les résultats sur DA(π)
(voir §1.4 et §4), on est réduit au calcul de certaines constantes apparaissant sur le diagramme
(πI1 ↪→ πK1) (voir ci-dessus le Théorème 1.2.3 pour ces diagrammes). Lorsque rp est maxi-
malement non-scindée (et suffisamment générique), ces constantes sont calculées par [BD14] en
termes du module de Fontaine–Laffaille associé à rp ([FL82]). On remarque que notre méthode
devrait s’appliquer à W (rp) arbitraire une fois que l’on aura calculé les constantes correspon-
dantes apparaissant sur le diagramme (πI1 ↪→ πK1) (voir le Théorème 1.2.3).

La définition de D⊗
A(rp) dans (1.10) présente l’inconvénient que le plongement F((T q−1

K,σj
)) ↪→

A ne commute pas à l’action de O×
K . Par conséquent, cette définition ne fonctionne que pour rp

suffisamment générique, où le (φ,O×
K)-module de Lubin-Tate DK(rp) a une forme relativement

simple comme dans l’exemple 1.5.1, et il existe une action canonique de O×
K commutant avec

l’action de φ. Pour rp général, il ne peut y avoir d’action de O×
K sur D⊗

A(rp) commutant avec
l’action de φ si on définit encore D⊗

A(rp) comme en (1.10).

Pour résoudre ce problème, Breuil-Herzig-Hu-Morra-Schraen ([BHH+c]) donne une définition
plus conceptuelle du (φ,O×

K)-module étale D⊗
A(rp) en utilisant des espaces perfectöıdes, que l’on

rappelle brièvement. Par les résultats de [Far20] et [FF18], il existe un isomorphisme naturel
K×-équivariant (où p agit comme φ sur chaque Yj)

m : F[[Y 1/p∞

0 , . . . , Y
1/p∞

f−1 ]]
∼→ F[[T 1/p∞

K,σ0
, . . . , T

1/p∞

K,σ0
]]∆⋊Sf (f copies de TK,σ0),

où TK,σ0 est la variable de Lubin–Tate, ∆
déf
=
{
(ki) ∈ (K×)f ,

∏
i ki = 1

}
et le groupe symétrique

Sf permute les TK,σ0 . Par conséquent, m induit un morphisme

m : XLT
déf
= Spa

(
F((T 1/p∞

K,σ0
)),F[[T 1/p∞

K,σ0
]]
)×Ff

→ XOK

déf
= Spa

(
F[[Y 1/p∞

0 , . . . , Y
1/p∞

f−1 ]]
)
,

où on utilise le raccourci Spa(R) pour le spectre adique Spa(R,R). Il existe un sous-ensemble
ouvert perfectöıde affinöıde U ∼= Spa(A∞, A

◦
∞) ⊆ XOK

, où A∞ est le perfectisé-complété de A.
De plus, la restriction m : m−1(U) → U est un ∆ ⋊ Sf -torseur pro-étale. Pour rp arbitraire,
en prenant le produit tensoriel extérieur du (φf ,O×

K)-module de Lubin-Tate associé DK,σ0(rp)
avec lui-même, on obtient un fibré (K×)f ⋊ Sf -équivariant sur XLT , donc sur m−1(U) par
restriction. En utilisant la descente pro-étale ([SW20]), on obtient un fibré K×-équivariant sur
U ∼= Spa(A∞, A

◦
∞). En prenant les sections globales et en utilisant un résultat de descente

pour le Frobenius, on obtient finalement un (φ,O×
K)-module étale sur A. On obtient donc un

foncteur rp 7→ D⊗
A(rp). En particulier, cela donne une définition de D⊗

A(rp) pour rp arbitraire.
On conjecture alors que cette définition fonctorielle de D⊗

A(rp) est la bonne.
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Conjecture 1.5.3 ([BHH+c]). Soit π comme en (1.1). On a un isomorphisme de (φ,O×
K)-

modules étale (pour rp arbitraire).

DA(π) ∼= D⊗
A(rp(1)).

En particulier, DA(π) ne dépend que de rp.

Le théorème suivant donne une description explicite de D⊗
A(rp) pour rp arbitraire (à dimen-

sion 2), généralisant le résultat de [BHH+c] où rp était supposé semisimple. En particulier, avec
le Théorème 1.5.2, cela montre la conjecture 1.5.3 lorsque rp est maximalement non-scindée et
suffisamment générique (le cas semisimple étant traité par [BHH+c]).

Théorème 1.5.4 (Theorem 5.5.10). (i) Supposons que rp est suffisamment générique (comme
dans l’exemple 1.5.1). Alors la définition perfectöıde de D⊗

A(rp) cöıncide avec la définition

dans (1.10) (donnée par la recette T q−1
K,σj

7→ φ(Yj)/Yj).

(ii) Pour rp arbitraires (à dimension 2), on a une description explicite de D⊗
A(rp). Voir le

Théorème 5.5.10 pour plus de détails. En particulier, la recette T q−1
K,σj

7→ φ(Yj)/Yj ne

fonctionne plus, et la recette correcte implique au moins φ(Yj)/Yj et φ(Yj−1)/Yj−1.

Enfin, on remarque que les preuves du Théorème 1.5.2 et du Théorème 1.5.4 sont très calcu-
latoires. Il existera peut-être un jour des preuves plus conceptuelles qui éviteront les hypothèses
de généricité sur rp et les calculs techniques, prouvant ainsi complètement la conjecture 1.5.3.
C’est une direction possible de recherche pour le futur.
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Chapter 2

General Introduction

2.1 The hypothetical mod p Langlands correspondence for GL2

Let p be a prime number and K be a finite extension of Qp. The mod p Langlands pro-
gram for GL2, initiated by Breuil in [Bre03], asks for a possible correspondence between certain
admissible smooth mod p representations of GL2(K) and continuous 2-dimensional mod p rep-
resentations of the Galois group Gal(K/K).

The case K = Qp is well-understood by the work of Breuil, Colmez, Emerton, Kisin,
Paškūnas, etc. We list the following two properties of the mod p Langlands correspondence
for GL2(Qp).

• Colmez ([Col10]) constructed a functor (known as the Colmez’s functor) from the category
of admissible finite length mod p representations of GL2(Qp) to the category of finite-
dimensional continuous mod p representations of Gal(Qp/Qp), using Fontaine’s category
of (φ,Γ)-modules ([Fon90]) as an intermediate step. This gives a functorial way to realize
the mod p Langlands correspondence for GL2(Qp).

• Emerton ([Eme11]) proved that the mod p Langlands correspondence for GL2(Qp) satisfies
the local-global compatibility, in the sense that it can be realized in the H1 of (towers of)
modular curves.

However, when K ̸= Qp, the situation becomes much more complicated. For example,
there are many more supersingular mod p representations of GL2(K), and we don’t have a
classification of these representations ([BP12]). Moreover, they are not of finite presentation
([Sch15],[Wu21]), and it is impossible (so far) to write down explicitly one of these represen-
tations. Motivated by the local-global compatibility result for GL2(Qp) ([Eme11]), we are
interested in the mod p representations of GL2(K) coming from the cohomology of Shimura
curves.

We introduce the global setup. Let F be a totally real number field that is inert at p (for
simplicity in this introduction). Let D be a quaternion algebra with center F which is split at
p and at exactly one infinite place. For each compact open subgroup U ⊆ (D ⊗F A∞

F )× where
A∞
F is the set of finite adèles of F , we denote by XU the associated smooth projective Shimura

curve over F . Let F be a sufficiently large finite extension of Fp, which is considered as the

coefficient field from now on. We denote K
def
= Fp the completion of F at p and f

def
= [K : Qp].

Let OK be the ring of integers of K and Fq be the residue field of K (hence q = pf ). We
fix a compact open subgroup Up ⊆ (D ×F A∞,p

F )×. Then we consider the following admissible
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smooth representation of GL2(K) over F:

π
def
= lim−→

Up

HomGal(F/F )

(
r,H1

ét(XUpUp ×F F ,F)
)
, (2.1)

where the inductive limit runs over compact open subgroups Up ⊆ (D×F K)× ∼= GL2(K), and
r : Gal(F/F ) → GL2(F) is a continuous absolutely irreducible representation such that π ̸= 0.

One of the expectations of the mod p Langlands program is that the representation π as in
(2.1) can be used to realize a mod p Langlands correspondence for GL2(K). More precisely, one
has the following hope.

Hope 2.1.1. For π as in (2.1), there exists an integer d ≥ 1 depending on r and Up such that

π ∼= π
(
r|Gal(K/K)

)⊕d
.

Here for ρ a continuous 2-dimensional mod p representation of Gal(K/K), we denote by π(ρ)
the conjectural admissible smooth mod p representation of GL2(K) corresponding to it.

Hence, one of the key questions in the mod p Langlands program is to understand the
GL2(K)-representation π as in (2.1). By choosing the compact open subgroup Up ⊆ (D ×F

A∞,p
F )× carefully, we assume that we are in a “multiplicity one” situation in the sense that d = 1

in Hope 2.1.1, which is the first case to consider. For simplicity, we make this assumption from
now on in this introduction (unless stated otherwise).

When F = Q andD =M2(Q), the representation π of GL2(Qp) as in (2.1) is well-understood
by [Eme11], and Hope 2.1.1 is true. However, as soon as K ̸= Qp, this question becomes
particularly difficult. At this moment we only know a very small piece of the representation
π. The aim of my thesis is to understand more about the representation π following the path
of the recent results of Breuil-Herzig-Hu-Morra-Schraen ([BHH+23],[BHH+b],[BHH+c]) and to

show that some properties of π only depend on the restriction rp
def
= r|Gal(K/K). The behavior

of π is different when rp is semisimple or not. Several results of [BHH+23], [BHH+b], and
[BHH+c] only deal with the case when rp is semisimple, and the non-semisimple case is much
more delicate than the semisimple case. The theme of my thesis is to generalize these results
to all rp (including non-semisimple rp), where we need more elaborate representation-theoretic
arguments.

2.2 Overview of some previous results

We begin with an overview of some previous results on the representation π as in (2.1),
which have the common aim of determining certain finite-dimensional invariant subspaces of
the restriction of π to GL2(OK) and to prove that they only depend on rp.

The first step towards the understanding of the representation π is to study its GL2(OK)-
socle socGL2(OK) π, which is a direct sum of Serre weights of GL2(Fq), i.e. absolutely irreducible
representations of GL2(Fq) over F. These Serre weights are predicted by [BDJ10]. This is
thought of as the weight part of Serre’s conjecture, generalizing the original Serre’s conjecture
([Ser87]), and is now a theorem. From now on, we assume that p > 5 and rGal(F/F ( p√1)) is
absolutely irreducible.

Theorem 2.2.1 ([EGS15],[GLS15]). Let π be as in (2.1). Assume that rp is generic in the
sense of [BP12, Def. 11.7]. Then we have

socGL2(OK) π ∼=
⊕

σ∈W (r∨p )

σ,
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whereW (r∨p ) is the set of Serre weights of r
∨
p defined in [BDJ10, §3]. In particular, socGL2(OK) π

only depends on rp.

The next step is to study the GL2(OK)-representation πK1 where K1
def
= 1 + pM2(OK),

which contains socGL2(OK) π as a subrepresentation.

Theorem 2.2.2 ([LMS22],[HW18],[Le19]). Let π be as in (2.1). Assume that rp is generic in
the sense of [BP12, Def. 11.7]. Then we have

πK1 ∼= D0(r
∨
p ),

where D0(r
∨
p ) is an explicit (finite-dimensional) representation of GL2(Fq) over F constructed

by Breuil-Paškūnas ([BP12, §13]). In particular, πK1 only depends on rp.

We say that a diagram D is a GL2(OK)-representation D0 such that DK1
0 = D0 to-

gether with an automorphism Π on DI1
0 whose square acts by a nonzero scalar, where I1

def
=(

1+pOK OK
pOK 1+pOK

)
⊆ GL2(OK) is the pro-p-Iwahori subgroup. Assume that rp is generic in the

sense of [BP12, Def. 11.7], then Breuil and Paškūnas constructed a family of diagrams attached
to rp such that D0 = D0(r

∨
p ).

Since the representation π as in (2.1) has a central character, one obtains a diagram D(π)
with D0 = πK1 and Π given by the action of

(
0 1
p 0

)
. In particular, since Π normalizes I1 and

I where I
def
=

(
O×

K OK

pOK O×
K

)
⊆ GL2(OK) is the Iwahori subgroup, it maps an I-character χ to

its conjugation χs by the matrix
(
0 1
p 0

)
. By Theorem 2.2.2, D(π) is isomorphic to one of the

diagrams attached to rp defined by Breuil and Paškūnas. One has the following refinement
of Theorem 2.2.2, which singles out a unique diagram D in the above family, subject to a
local-global compatibility condition when rp is sufficiently generic.

Theorem 2.2.3 ([DL21]). Let π be as in (2.1). Assume that rp is sufficiently generic (see
[DL21, §1] for a precise meaning). Then the diagram D(π) only depends on rp.

One of the common main tools of the proof of Theorem 2.2.1, Theorem 2.2.2 and Theorem
2.2.3 is the patching functor defined by Emerton-Gee-Savitt ([EGS15]) building on the work of
Taylor and Wiles ([TW95]), and of Kisin ([Kis09]). It is an exact functor M∞ from continuous
representations of GL2(OK) over finite type W (F)-modules to finite type R∞-modules with
additional properties, where R∞ is the patched deformation ring and is isomorphic to a power
series ring over the universal framed deformation ring of r∨p in our case (see [EGS15] for a
precise statement). This functor enables us to transfer statements from the GL2 side to the
Galois side. Once we have enough information on the Galois deformation rings, we are able to
use the Breuil-Mézard philosophy ([EG14]) to deduce properties on the GL2 side. We will see
examples of this kind of argument in §2.3 below.

2.3 The Gelfand–Kirillov dimension of π

The first result is about the Gelfand–Kirillov dimension of π as in (2.1), which measures the
growth of the dimension of the invariant subspaces of π under principal congruence subgroups.
More precisely, we define the Gelfand–Kirillov dimension of π (see [EP20]) to be the unique
integer dimGL2(K)(π) such that there exists a ≤ b in R>0 satisfying

a ≤ dimF(π
Kn)

pndimGL2(K)(π)
≤ b
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for all n ≥ 1, where Kn
def
= 1 + pnM2(OK) for n ≥ 1.

Theorem 2.3.1 (Theorem 3.1.1). Let π be as in (2.1). Assume that rp is sufficiently generic
(see condition (iv) in §3.1 for a precise meaning). Then we have

dimGL2(K)(π) = f.

Theorem 2.3.1 is proved by [BHH+23] when rp is semisimple and proved by [HW22] when rp
is non-semisimple using a different method. On one hand, the method of [HW22] only works in
the non-semisimple case. On the other hand, it turns out that the method of [BHH+23] can be
generalized to the non-semisimple case, and this was not noticed before. We adapt the method
of [BHH+23] to the non-semisimple case. This provides a uniform proof of Theorem 2.3.1.

The proof of Theorem 2.3.1 involves the computation of new cases of Galois deformation
rings, which enables us to make further use of the patching functor and hence go beyond πK1 as
in Theorem 2.2.2. We give an overview of the proof of Theorem 2.3.1 following closely [BHH+23,
§1] and indicate what needs to be changed in the non-semisimple case.

Let Z1 be the center of K1 and mK1 be the maximal ideal of the Iwasawa algebra F[[K1/Z1]].
We still denote by mK1 the ideal of F[[GL2(OK)/Z1]] generated by mK1 under the natural in-
clusion F[[K1/Z1]] ↪→ F[[GL2(OK)/Z1]] when there is no possible confusion. By the crucial
arguments of Gee and Newton in [GN20, Appendix A], we know that dimGL2(K)(π) ≥ f for π
as in (2.1). In order to get the upper bound on dimGL2(K)(π), we need to apply the following
representation-theoretic theorem to π as in (2.1). This is a special case of [BHH+23, Thm. 6.4.7]
when rp is semisimple, and is a consequence of [HW22, Prop. 4.20] and [BHH+23, Prop. 6.4.6]
when rp is non-semisimple. We refer to Theorem 3.5.3 below for a more general statement,
which applies to π not necessarily in the “multiplicity one” situation.

Theorem 2.3.2 (Theorem 3.5.3). Let π be an admissible smooth representation of GL2(K)
over F with a central character. Assume that

(i) we have socGL2(OK)(π) ∼=
⊕

σ∈W (r∨p )
σ;

(ii) for each σ ∈W (r∨p ), we have [π[m2
K1

]|GL2(OK) : σ] = 1;

(iii) we have πI1 ∼= D0(r
∨
p )
I1 as I-representations.

Then dimGL2(K)(π) ≤ f . Here, π[m2
K1

] is the set of elements of π (viewed as a module over
F[[K1/Z1]]) annihilated by m2

K1
, and [π[m2

K1
]|GL2(OK) : σ] is the multiplicity of σ in the semisim-

plification of π[m2
K1

] as GL2(OK)-representations.

Then we need to show that the representation π as in (2.1) satisfies the conditions of Theorem
2.3.2. The conditions (i) and (iii) follow from Theorem 2.2.1 and Theorem 2.2.2, hence we will
focus on the condition (ii) of Theorem 2.3.2. Since we have dimFHomGL2(OK)(σ, π) = 1 for
σ ∈W (r∨p ) by the condition (i), it suffices to show that

dimFHomGL2(OK)(ProjΓ̃ σ, π) ≤ 1 ∀σ ∈W (r∨p ), (2.2)

where Γ̃
def
= F[[GL2(OK)/Z1]]/m

2
K1

, and Proj
Γ̃
σ is the projective envelope of σ in the category

of Γ̃-modules.
We let M∞ be the patching functor as in §2.2. From the construction of M∞, for any

finite-dimensional representation V of GL2(OK) over F, we have

HomF(M∞(V )/m∞,F) ∼= HomGL2(OK)(V, π), (2.3)
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where m∞ is the maximal ideal of R∞. Combining (2.2) and (2.3), it suffices to show that

M∞(Proj
Γ̃
σ) is a cyclic R∞-module ∀σ ∈W (r∨p ). (2.4)

We fix σ ∈W (r∨p ). To prove (2.4) for σ, we lift the Γ̃-module Proj
Γ̃
σ over F to characteristic

zero following [BHH+23, §7.3] so that we can use local-global compatibility properties of M∞.

We let Pσ
def
= ProjGL2(Fq) σ be the projective envelope of σ in the category of F[GL2(Fq)]-modules

and let P̃σ be the projective O[GL2(Fq)]-module lifting Pσ. We fix an embedding σ0 : Fq ↪→ F
and let σj

def
= σ0 ◦ φj for j ∈ Z, where φ : x 7→ xp is the arithmetic Frobenius on Fq. We still

denote by σj the corresponding embedding OK ↪→ W (F). For 0 ≤ j ≤ f − 1, we define the
GL2(OK)-representation over W (F)

R2,j
def
=
(
Sym2W (F)2 ⊗ det−1

)(j) ⊗W (F) P̃σ,

where “(j)” means that GL2(OK) acts via the embedding σj : OK ↪→ W (F). For each j there
is an isomorphism

R2,j/pR2,j
∼= Pσ ⊕ Pσ+

j
⊕ Pσ−

j

for some Serre weights σ+j and σ−j , which induces an inclusion

ιj : Pσ ↪→ R2,j/pR2,j .

Then we define a GL2(OK)-lattice R′
2,j in R2,j [1/p] by

R′
2,j

def
= Pσ ×R2,j/p R2,j = {x ∈ R2,j : (xmod pR2,j) ∈ ιj(Pσ)}.

We let L−1
def
= P̃σ. For 0 ≤ j ≤ f − 1, we define a GL2(OK)-lattice Lj in L−1[1/p] ⊕(⊕j

j′=0R2,j [1/p]
)
by

Lj
def
=

{(
x, (xj′)0≤j′≤j

)
∈ L−1 ⊕ (⊕j

j′=0R2,j) : (xj′ mod pR2,j′) = (xmod pL−1)

via ιj′ : L−1/pL−1 ↪→ R2,j′/pR2,j′ ∀ 0 ≤ j′ ≤ j

}
,

which is equivalent to defining
Lj = Lj−1 ×Pσ R

′
2,j (2.5)

for 0 ≤ j ≤ f − 1. Then we have Lf−1/pLf−1
∼= Proj

Γ̃
σ. By the exactness of M∞, it suffices to

show that the R∞-module M∞(Lf−1) is cyclic.

By [Le19, Thm. 4.9], we know that the R∞-module M∞(P̃σ) is cyclic. By [BHH+23,
Thm. 8.3.4], we know that the R∞-module M∞(R′

2,j) is cyclic for each 0 ≤ j ≤ f − 1 when
rp is semisimple. The proof of [BHH+23, Thm. 8.3.4] uses the standard dévissage techniques
as in [EGS15, §10] and [Le19, Lemma 4.5], and can be easily generalized to all rp. Then one

can use (2.5) and the cyclicity of M∞(P̃σ) and M∞(R′
2,j) to prove that M∞(Lf−1) is cyclic by

induction.
For simplicity, we only talk about the first step of the induction. By the exactness of M∞,

we have the equality of R∞-modules

M∞(L0) =M∞(P̃σ)×M∞(Pσ) M∞(R′
2,0). (2.6)

We already know that each term on the RHS of (2.6) is cyclic. To prove that M∞(L0) is cyclic,
it suffices to show that

AnnR∞

(
M∞(Pσ)

)
= AnnR∞

(
M∞(P̃σ)

)
+AnnR∞

(
M∞(R′

2,0)
)
. (2.7)
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Each term of (2.7) has an interpretation as a certain Galois deformation ring. We let Rr∨p

be the universal framed deformation ring of r∨p . For τ a tame inertial type, we let R
(1,0),τ
r∨p

(resp.R
(2,−1)0,τ
r∨p

) be the maximal reduced, O-flat quotient of Rr∨p that parametrizes potentially

crystalline lifts of r∨p of inertial type τ and parallel Hodge–Tate weights (1, 0) (resp.Hodge–Tate
weights (2,−1) in the embedding σ0 : K ↪→W (F)[1/p] and (1, 0) elsewhere). We let

p(1,0)τ
def
= Ker(Rr∨p ↠ R

(1,0),τ
r∨p

);

p(2,−1)0
τ

def
= Ker(Rr∨p ↠ R

(2,−1)0,τ
r∨p

).

By some detour (see [BHH+23, §1] for more details), to prove (2.7) we are reduced to the proof
of the following subtle (non-)congruence property.

Theorem 2.3.3 (Proposition 3.4.3.3). We have

p ∈ ∩τp(1,0)τ + p(2,−1)0
τ0 ,

where τ runs over the tame inertial types such that σ is a Jordan–Hölder factor in the mod
p semisimplification of σ(τ) (here σ(τ) is the irreducible smooth representation of GL2(OK)
associated by Henniart to τ in the appendix to [BM02]), and τ0 is any tame inertial type such
that the set of irreducible constituents of the mod p semisimplification of σ(τ0) contains the set
W (r∨p ) (which exists).

When rp is semisimple, Theorem 2.3.3 is proved in [BHH+23, Prop. 4.3.3] by an explicit
computation of potentially crystalline deformation rings using the machinery of Kisin modules,
which was first suggested by Breuil and then developed by [Kis06] and [LLHLM18]. We gener-
alize the computation of potentially crystalline deformation rings to the non-semisimple case.
This completes the proof of Theorem 2.3.1.

As a byproduct of the proof of Theorem 2.3.1, we can determine the structure of the m2
K1

-
torsion part of the representation π in (2.1), which is a generalization of Theorem 2.2.2. This is
a special case of [BHH+23, Thm. 1.9] when rp is semisimple, and is proved in [HW22, Thm. 1.4]
when rp is non-semisimple. We refer to Theorem 3.6.3.1(ii) below for a more general statement,
which applies to π not necessarily in the “multiplicity one” situation.

Theorem 2.3.4 (Theorem 3.6.3.1(ii)). Let π be as in (2.1). Assume that rp is sufficiently
generic (as in Theorem 2.3.1). Then we have

π[m2
K1

] ∼= D̃0(r
∨
p ),

where D̃0(r
∨
p ) is an explicit (finite-dimensional) representation of Γ̃ over F defined in [HW22,

§4]. In particular, π[m2
K1

] only depends on rp.

As an intermediate step to prove Theorem 2.3.1, we also deduce an important property of

the associated graded module of the dual π∨
def
= HomF(π,F) for π as in (2.1), which generalizes

the result of [BHH+23] where rp was assumed to be semisimple (this property is also proved
by [HW22] when rp is non-semisimple using a different method). This leads to an abelian
subcategory of the category of admissible smooth representations of GL2(K) that has desirable
finiteness properties and will be introduced in §2.4 below. We denote by mI1 the maximal ideal
of the Iwasawa algebra F[[I1/Z1]].
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Theorem 2.3.5. Let π be as in (2.1). Assume that rp is sufficiently generic (as in Theorem
2.3.1). Then the graded module grmI1

π∨ over the graded algebra grmI1
F[[I1/Z1]] is annihilated

by an explicit two-sided ideal J , and the quotient ring grmI1
F[[I1/Z1]]/J is commutative and is

isomorphic to
F[y0, z0, . . . , yf−1, zf−1]/(y0z0, . . . , yf−1zf−1).

2.4 The functor π 7→ DA(π)

Using Theorem 2.3.5, Breuil-Herzig-Hu-Morra-Schraen ([BHH+c]) constructed an exact
functor DA from a nice subcategory of the category of admissible smooth representations of
GL2(K) over F to the category of multivariable (φ,O×

K)-modules, which is a generalization of
the Colmez’s functor ([Col10]). Then the basic question is to determine the structure of DA(π)
for π as in (2.1), which can be used to deduce properties of π.

First we recall the definition of the ring A, which is a multivariable analog of F((X)). We

let N0
def
=
(
1 OK
0 1

)
⊆ GL2(OK). For 0 ≤ j ≤ f − 1, we define

Yj
def
=
∑
a∈F×

q

σ0(a)
−pj
(
1 [a]
0 1

)
∈ F[[N0]],

where [a] ∈ O×
K is the Teichmüller lift of a ∈ F×

q . Then we have F[[N0]] = F[[Y0, . . . , Yf−1]]. We
define

A
def
= F[[N0]] [1/(Y0 · · ·Yf−1)]

∧ ,

where the completion is with respect to the (Y0, . . . , Yf−1)-adic topology on F[[N0]]. There is an
F-linear action of O×

K on F[[N0]] given by multiplication on N0
∼= OK , and an F-linear Frobenius

φ on F[[N0]] given by multiplication by p on N0
∼= OK . They extend canonically by continuity

to commuting continuous F-linear actions of φ and O×
K on A. Then an étale (φ,O×

K)-module
over A is by definition a finite free A-module endowed with a semi-linear Frobenius φ and a
commuting continuous semi-linear action of O×

K such that the image of φ generates everything.
For π an admissible smooth representation of GL2(K) over F with central character, we

view π∨ as a finitely generated F[[I1/Z1]]-module and endow it with the mI1-adic topology. We
define

DA(π)
def
= F[[N0]][1/(Y0 · · ·Yf−1)]⊗̂F[[N0]]π

∨,

where the completion is with respect to the tensor product topology. The O×
K-action on π∨

given by f 7→ f ◦ ( a 0
0 1 ) (for a ∈ O×

K) extends by continuity to DA(π), and the ψ-action on π∨

given by f 7→ f ◦
(
p 0
0 1

)
induces a continuous A-linear map

β : DA(π) → A⊗φ,A DA(π). (2.8)

We let C be the abelian category of admissible smooth representations π of GL2(K) over F with
central characters such that the graded module grmI1

π∨ is annihilated by Jn for some n ∈ Z≥0

(see Theorem 2.3.5). For π in C, DA(π) is a finite free A-module by [BHH+b, Cor. 3.1.2.9] and
[BHH+c, Remark. 2.6.2]. If moreover β is an isomorphism, then its inverse β−1 = id⊗φ makes
DA(π) an étale (φ,O×

K)-module. In particular, when K = Qp the above construction recovers
the Colmez’s functor ([Col10]). Our main result is the following.

Theorem 2.4.1 (Theorem 4.1.1). Let π be as in (2.1). Assume that rp is sufficiently generic
(see condition (v) in §5.1 for a precise meaning). Then π is in C, β in (2.8) is an isomorphism
and

rankADA(π) = 2f .
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By Theorem 2.3.5, we know that π is in C. By [BHH+b, Thm. 3.3.2.3] we know that
rankADA(π) ≤ 2f . Theorem 2.4.1 is proved by [BHH+c, Thm. 3.1.3] when rp is semisimple.
We generalize the proof of [BHH+c] to the non-semisimple case, which is seriously more delicate.

The proof of Theorem 2.4.1 is by an explicit construction of an A-basis of the dual étale
(φ,O×

K)-module HomA(DA(π), A) for π as in (2.1). As in [BHH+c, (87)], there is a canonical
A-linear injection

µ∗ : HomA(DA(π), A) ↪→ Homcont
F (DA(π),F). (2.9)

For i = (i0, . . . , if−1) ∈ Zf≥0, we set ∥i∥ def
=
∑f−1

j=0 ij and we write Y i for
∏f−1
j=0 Y

ij
j ∈ F[[N0]].

Then we have the following proposition.

Proposition 2.4.2 ([BHH+c]). Let π be as in (2.1).

(i) The set Homcont
F (DA(π),F) can be identified with the set of sequences (xi)i∈Zf with xi ∈ π

and

(a) Y kxi = xi−k for all i ∈ Zf and k ∈ Zf≥0;

(b) there exists d ∈ Z such that xi ∈ π[m
∥i∥+d+1
I1

] for all i ∈ Zf (where π[mj
I1
]
def
= 0 if

j ≤ 0).

(ii) A sequence (xi)i∈Zf ∈ Homcont
F (DA(π),F) lies in the image of µ∗ as in (2.9) if and only

if it satisfies the following finiteness condition:{
i ∈ Zf : xi ̸= 0, ∥i∥ =M

}
is finite ∀M ∈ Z.

We are going to define 2f sequences xJ = (xJ,i)i∈Zf ∈ Homcont
F (DA(π),F) indexed by the

subsets J ⊆ J def
= {0, 1, . . . , f − 1}. Then we prove that the sequences xJ for J ⊆ J lie in the

image of µ∗ and form an A-basis of HomA(DA(π), A). We give an overview of the construction
in the case rp is maximally non-split (or equivalently, |W (rp)| = 1) for simplicity.

Step 1. We define xJ,0 for all J ⊆ J .
By letting d = 0 in Proposition 2.4.2(i)(b), we see that xJ,0 ∈ πI1 for all J ⊆ J . From

Theorem 2.2.2 we know that πI1 is a direct sum of 2f distinct I-characters, which can be
parametrized by the subsets J ⊆ J . We fix a choice of a nonzero I-eigencharacter xJ,0 ∈ πI1

for each J ⊆ J .

Step 2. We define xJ,f for all J ⊆ J .

By Theorem 2.2.2 we have πK1 ∼= D0(r
∨
p ), which is explicitly known and contains πI1 as a

subset. Hence it is natural to enlarge our sequences a little bit by constructing suitable elements
of πK1 subject to the conditions in Proposition 2.4.2. More precisely, for each J ⊆ J we define

xJ,f to be the unique
(

[F×
q ] 0

0 [F×
q ]

)
-eigencharacter in πK1 satisfying{
Y f+1
j xJ,f = 0 ∀ j ∈ J

(Y0 · · ·Yf−1)
fxJ,f = xJ,0.

Step 3. We define xJ,i for all J ⊆ J and i ∈ Zf .
First, using Proposition 2.4.2(i)(a), for J ⊆ J and i ∈ Zf such that ij ≤ f for all j ∈ J we

define
xJ,i

def
= Y f−ixJ,f .
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For J ⊆ J , we define J + 1
def
= {(j + 1mod f) ∈ J : j ∈ J}. We define δ : Zf → Zf by

δ(i)j
def
= ij+1 if 0 ≤ j ≤ f − 2 and δ(i)f−1

def
= i0. Using the relation between the elements

xJ,f ∈ πK1 , we are able to extend the definition of xJ,i to all i ∈ Zf inductively using the
relation (

p 0
0 1

)
xJ+1,i =

∑
J ′⊆J

εJ ′µJ+1,J ′xJ ′,pδ(i)+cJ,J′ ,

where εJ ∈ {±1}, µJ,J ′ ∈ F are certain constants depending on the choice of xJ,0, and c
J,J ′ ∈ Zf

satisfies −1 ≤ cJ,J
′

j ≤ 2p for all j ∈ J . We refer to Theorem 4.6.4 below for a precise definition
of the sequences xJ which works for all rp.

Step 4. We prove that each sequence xJ satisfies the finiteness condition in Proposition
2.4.2, which guarantees that it lies in the image of µ∗ as in (2.9). Once we prove that
xJ ∈ HomA(DA(π), A) for all J , it is not difficult to conclude that they form an A-basis of
HomA(DA(π), A). This completes the proof of Theorem 2.4.1.

By analyzing the submodule structure of πK1 (for π as in (2.1)) and the sequences xJ in
more details, we can prove the following generalization of Theorem 2.4.1.

Theorem 2.4.3 (Theorem 4.1.2). Let π be as in (2.1). Assume that rp is sufficiently generic
(as in Theorem 2.4.1). Then for π1 a subrepresentation of π, we have

rankADA(π1) =
∣∣∣JH(πK1

1 ) ∩W (ρss)
∣∣∣ ,

where JH(πK1
1 ) is the set of Jordan–Hölder factors of πK1

1 as a GL2(OK)-representation, and
ρss is the semisimplification of ρ.

As one application of Theorem 2.4.3 to the understanding of π as in (2.1), we prove that π
is finitely generated as a GL2(K)-representation, generalizing the result of [BHH+b] where rp
was assumed to be semisimple (this finite generation result is also proved by [HW22] when rp
is non-semisimple using a completely different method).

Theorem 2.4.4 (Corollary 4.11.3). Let π be as in (2.1). Assume that rp is sufficiently generic
(as in Theorem 2.4.1). Then as a GL2(K)-representation, π is generated by D0(r

∨
p ).

Moreover, we remark that a priori we do not know that π is of finite length as a GL2(K)-
representation. Most importantly, Theorem 2.4.3 is crucially needed to prove that π is of finite
length (in the non-semisimple case) in a forthcoming work of Breuil-Herzig-Hu-Morra-Schraen
([BHH+a]).

2.5 The functor rp 7→ D⊗
A(rp)

Besides the rank of DA(π), Breuil-Herzig-Hu-Morra-Schraen ([BHH+c]) gives a conjectural
description of DA(π) as an étale (φ,O×

K)-module for π as in (2.1). The construction uses the
Lubin–Tate (φ,O×

K)-module (see [KR09]) associated to rp as an intermediate step, which can
be made quite explicit. We give an example of the Lubin–Tate (φ,O×

K)-module DK(rp) when
rp is sufficiently generic. We refer to §5.2 for the explicit description of DK(rp) for arbitrary
(2-dimensional) reducible rp, and refer to [BHH+c, Lemma 2.1.6] when rp is irreducible.
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Example 2.5.1. We assume that rp is reducible and sufficiently generic as in (5.69). Then
the Lubin–Tate (φ,O×

K)-module DK(rp) associated to rp can be described explicitly as follows
(a ∈ O×

K): 
DK(rp) =

f−1∏
j=0

DK,σj (rp)

DK,σj (rp) = F((TK,σj ))e
(j)
0 ⊕ F((TK,σj ))e

(j)
1

φ(e
(j+1)
0 e

(j+1)
1 ) = (e

(j)
0 e

(j)
1 )Mat(φ(j))

a(e
(j)
0 e

(j)
1 ) = (e

(j)
0 e

(j)
1 )Mat(a(j)),

where TK,σj is a suitable Lubin–Tate variable, the indices j are understood modulo f ,

Mat(φ(j)) =

(
αjT

−(q−1)hj
K,σj

βjdj

0 βj

)

for suitable αj , βj ∈ F×, dj ∈ F, 0 ≤ hj ≤ p− 1, and

Mat(a(j)) ∈ I2 +M2

(
T q−1
K,σj

F[[T q−1
K,σj

]]
)

which uniquely determines Mat(a(j)).

When rp is sufficiently generic (as in Example 2.5.1), we define

D⊗
A(rp)

def
=

⊗
A,0≤j≤f−1

(
A⊗F((T q−1

K,σj
))
DK,σj (rp)

[F×
q ]

)
(2.10)

with canonical actions of φ and O×
K , where the embedding F((T q−1

K,σj
)) ↪→ A sends T q−1

K,σj
to

φ(Yj)/Yj ∈ A. This is an étale (φ,O×
K)-module over A of rank 2f . Our main result is the

following, which generalizes Theorem 2.4.1.

Theorem 2.5.2 (Theorem 5.1.1). Let π be as in (2.1). Assume that rp is maximally non-split
(or equivalently, |W (rp)| = 1) and sufficiently generic (see condition (v) in §5.1 for a precise
meaning). Then we have an isomorphism of étale (φ,O×

K)-modules

DA(π) ∼= D⊗
A(rp(1)),

where rp(1) is the Tate twist of rp. In particular, DA(π) only depends on rp.

Theorem 2.5.2 is proved by [BHH+c] when rp is semisimple. Using the explicit description
of D⊗

A(rp) in Example 2.5.1 and (2.10), together with the results on DA(π) (see §2.4 and §4), we
are reduced to the computation of some constants coming from the diagram (πI1 ↪→ πK1) (see
above Theorem 2.2.3 for diagrams). When rp is maximally non-split (and sufficiently generic),
these constants are computed by [BD14] in terms of the Fontaine–Laffaille module associated
to rp ([FL82]). We remark that our method should apply to arbitrary W (rp) once we compute
the corresponding constants coming from the diagram (πI1 ↪→ πK1) in general (see Theorem
2.2.3).

The definition ofD⊗
A(rp) in (2.10) has the drawback that the embedding F((T q−1

K,σj
)) ↪→ A does

not respect the action of O×
K . As a result, this definition only works for rp sufficiently generic,

where the Lubin–Tate (φ,O×
K)-module DK(rp) has a relatively simple form as in Example 2.5.1,

and there exists a canonical action of O×
K commuting with the action of φ. For general rp, there
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could be no action of O×
K on D⊗

A(rp) commuting with the action of φ if we still define D⊗
A(rp)

as in (2.10).
To solve this problem, Breuil-Herzig-Hu-Morra-Schraen ([BHH+c]) gives a more conceptual

definition of the étale (φ,O×
K)-module D⊗

A(rp) using perfectoid spaces, which we briefly recall.
By the results of [Far20] and [FF18], there is a natural K×-equivariant isomorphism (where p
acts as φ on each Yj)

m : F[[Y 1/p∞

0 , . . . , Y
1/p∞

f−1 ]]
∼→ F[[T 1/p∞

K,σ0
, . . . , T

1/p∞

K,σ0
]]∆⋊Sf (f copies of TK,σ0),

where TK,σ0 is the Lubin–Tate variable, ∆
def
=
{
(ki) ∈ (K×)f ,

∏
i ki = 1

}
and the symmetric

group Sf permutes the TK,σ0 . Hence m induces a map

m : XLT
def
= Spa

(
F((T 1/p∞

K,σ0
)),F[[T 1/p∞

K,σ0
]]
)×Ff

→ XOK

def
= Spa

(
F[[Y 1/p∞

0 , . . . , Y
1/p∞

f−1 ]]
)
,

where we use the shorthand Spa(R) for the adic spectrum Spa(R,R). There is an affinoid
perfectoid open subset U ∼= Spa(A∞, A

◦
∞) ⊆ XOK

, where A∞ is the completed perfection of A.
Moreover, the restriction m : m−1(U) → U is a pro-étale ∆ ⋊Sf -torsor. For arbitrary rp, by
taking the self exterior tensor product of the associated Lubin–Tate (φf ,O×

K)-moduleDK,σ0(rp),
we get a (K×)f ⋊Sf -equivariant vector bundle on XLT , hence on m

−1(U) by restriction. Using
pro-étale descent ([SW20]), we get a K×-equivariant vector bundle on U ∼= Spa(A∞, A

◦
∞).

Taking global sections and using Frobenius descent, we finally get an étale (φ,O×
K)-module over

A. Hence we get a functor rp 7→ D⊗
A(rp). In particular, this gives the definition of D⊗

A(rp) for
arbitrary rp. Then it is conjectured that this functorial definition of D⊗

A(rp) is the correct one.

Conjecture 2.5.3 ([BHH+c]). Let π be as in (2.1). We have an isomorphism of étale (φ,O×
K)-

modules (for arbitrary rp)
DA(π) ∼= D⊗

A(rp(1)).

In particular, DA(π) only depends on rp.

The following theorem gives an explicit description of D⊗
A(rp) for arbitrary (2-dimensional)

rp, generalizing the result of [BHH+c] where rp was assumed to be semisimple. In particular,
together with Theorem 2.5.2 this proves Conjecture 2.5.3 when rp is maximally non-split and
sufficiently generic (the semisimple case being treated by [BHH+c]).

Theorem 2.5.4 (Theorem 5.5.10). (i) Assume that rp is semisimple, or non-semisimple and
sufficiently generic (as in Example 2.5.1). Then the perfectoid definition of D⊗

A(rp) coin-

cides with the definition in (2.10) (given by the recipe T q−1
K,σj

7→ φ(Yj)/Yj).

(ii) For arbitrary (2-dimensional) rp, we have an explicit description of D⊗
A(rp). See Theorem

5.5.10 for details. In particular, the recipe T q−1
K,σj

7→ φ(Yj)/Yj no longer works, and the

correct recipe involves at least φ(Yj)/Yj and φ(Yj−1)/Yj−1.

Finally, we remark that the proof of Theorem 2.5.2 and Theorem 2.5.4 is very computational.
There may exist a more conceptual proof one day, which will hopefully avoid the genericity
assumptions on rp and the technical computations, hence completely proving Conjecture 2.5.3.
This is a possible direction in the future.
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Chapter 3

On the mod p cohomology for GL2

3.1 Introduction

Let p be a prime number. The mod p Langlands correspondence for GL2(Qp) is completely
known by the work of [Bre03], [Col10], etc. However, the situation becomes much more com-
plicated when we consider GL2(L) for L a nontrivial finite extension of Qp. For example, there
are many more irreducible admissible smooth representations of GL2(L) over Fp and we don’t
have a classification of these representations ([BP12]).

Motivated by the local-global compatibility results of Emerton ([Eme11]), we study the
representations of GL2(L) that come from geometry and hope that these representations can
realize a mod p Langlands correspondence for GL2(L).

We begin with the global setup following [BHH+23]. Let F be a totally real number field
which is unramified at places above p. Let D be a quaternion algebra with center F which
is split at places above p and at exactly one infinite place. Let F be a sufficiently large finite
extension of Fp, which is considered as the coefficient field. For each compact open subgroup
V of (D ⊗F A∞

F )×, we denote by XV the associated smooth projective Shimura curve over F .

Let v be a fixed place of F above p. Let Fv be the completion of F at v and f
def
= [Fv : Qp]. We

define an admissible smooth representation of GL2(Fv) over F of the form

π
def
= lim

−→
Vv

HomGal(F/F )

(
r,H1

ét(XV vVv ×F F ,F)
)
, (3.1)

where V v is a fixed compact open subgroup of (D ⊗F A∞,v
F )×, the inductive limit runs over

compact open subgroups Vv of GL2(Fv), and r : Gal(F/F ) → GL2(F) is a continuous absolutely
irreducible representation such that π ̸= 0.

One of the aims of the mod p Langlands program is to understand these representations.
In the case F = Q and D = M2(Q), the representations π of GL2(Qp) are well-understood
by [Eme11] and they realize a local mod p Langlands correspondence for GL2(Qp). However
as soon as Fv ̸= Qp, the representations π of GL2(Fv) are far from being known, though
there have been several results on various invariant subspaces attached to these representations
π ([EGS15], [Le19], etc.). In this work, we go one step further and show that under some
genericity assumptions the Gelfand–Kirillov dimension of π equals to f .

To state the main theorem, we recall the Gelfand–Kirillov dimension (see [BHH+23, Intro-

duction]). Let K1
def
= 1+ pM2(OFv) ⊆ GL2(OFv) and Z1 be the center of K1. Let F[[K1/Z1]] be

the Iwasawa algebra of K1/Z1. We define the Gelfand–Kirillov dimension of π to be

dimGL2(Fv)(π)
def
= 3f −min

{
i ∈ Z≥0 : Ext

i
F[[K1/Z1]]

(π∨,F[[K1/Z1]]) ̸= 0
}
,
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where π∨
def
= HomF(π,F) is the algebraic dual of π.

Let IFv be the inertia subgroup of Fv. Let k
′ be the quadratic extension of the residue field

of Fv and fix an embedding k′ ↪→ F. Let ωf ′ be the corresponding Serre’s fundamental character
of level f ′ for f ′ ∈ {f, 2f}. We make the following assumptions on r:

(i) r|GF (p
√

1)
is absolutely irreducible;

(ii) for w ∤ p such that either D or r ramifies, the framed deformation ring Rrw of rw
def
=

r|Gal(Fw/Fw) over the Witt vectors W (F) is formally smooth;

(iii) for w |p, r|IFw
is generic in the sense of [BP12, §11];

(iv) r|IFv
is of one of the following forms up to twist:

(a)

(
ω
∑f−1

j=0 (rj+1)pj

f ∗
0 1

)
with 12 ≤ ri ≤ p− 15,

(b)

ω∑f−1
j=0 (rj+1)pj

2f 0

0 ω
pf

∑f−1
j=0 (rj+1)pj

2f

 with 13 ≤ r0 ≤ p − 14 and 12 ≤ ri ≤ p − 15 for

i > 0.

Our main result is the following.

Theorem 3.1.1 (Corollary 3.6.3.1 (iv)). Keep all the above assumptions on F,D, r. Let V v =∏
w ̸=v Vw with Vw = GL2(OFw) if neither D nor r ramifies at w, and Vw ⊆ 1 + pM2(OFw) if

w | p and w ̸= v. Then for π as in (3.1) we have dimGL2(Fv)(π) = f .

Theorem 3.1.1 is proved by [BHH+23, Thm. 1.1] when r is semisimple at v and is proved
by [HW22, Thm. 1.1] in the “minimal” case (i.e. π = πDv (r), see [HW22, Introduction]) when r
is non-semisimple at v. So the new case of Theorem 3.1.1 is that we allow arbitrary π when r
is non-semisimple at v. On one hand, the method of [HW22] only works in the non-semisimple
case. On the other hand, it turns out that the method of [BHH+23] can be generalized to the
non-semisimple case, and this was not noticed before. We adapt the method of [BHH+23] to
the non-semisimple case and give a uniform proof of Theorem 3.1.1. As an intermediate step,
[BHH+23] gives an explicit computation of some potentially crystalline deformation rings using
the machinery of Kisin modules developed in [Kis06] and [LLHLM18] when rv is semisimple. We
generalize the computation of potentially crystalline deformation rings to the non-semisimple
case, see Theorem 3.4.2.1 and Theorem 3.4.3.1.

Organization of the chapter

In §3.2, we recall the preliminary notions and results on algebraic groups, tame inertial types,
and extension graphs. In §3.3, we recall the machinery of Kisin modules. In §3.4, we use the
machinery of Kisin modules to compute explicitly some potentially crystalline deformation rings.
In §3.5, we recall the notion of the Gelfand–Kirillov dimension, then recall a result that gives
an upper bound for the Gelfand-Kirillov dimensions of some admissible smooth representations
of GL2(Fv) over F. In §3.6 we combine all the previous results and prove Theorem 3.1.1.

Notation

If F is any field, we denote by GF
def
= Gal(F/F ) the absolute Galois group of F , where

F is a separable closure of F . If F is a local field, let IF ⊆ GF be the inertia subgroup and
WF ⊆ GF be the Weil group. We normalize Artin’s reciprocity map ArtF : F× ∼→W ab

F so that
uniformizers are sent to geometric Frobenius elements, which are elements of GF that induce

26



the geometric Frobenius map on the residue field of F . If F is a number field and v is a place
of F , then we write Fv for the completion of F with respect to the place v, and if v is a finite
place we write OFv for the ring of integers of Fv, Frobv for an arbitrary geometric Frobenius
element at v and kv for the residue field of OFv . We also denote by A∞

F the set of finite adèles
of F . If F is a perfect field in characteristic p, we denote W (F ) the ring of Witt vectors of F .
For x ∈ F , we denote by [x] ∈W (F ) the Techmüller lift of x.

We fix an algebraic closure Q of Q. All number fields are considered as subfields of Q. For
each prime number ℓ, we fix an algebraic closure Qℓ of Qℓ as well as an embedding Q ↪→ Qℓ.
All finite extensions of Qℓ are considered as subfields of Qℓ.

Let p be a prime number. We write ε : GQp → Z×
p for the cyclotomic character, ω its mod p

reduction and ω̃ the Teichmüller lift of ω. We normalize the Hodge–Tate weights so that ε has
Hodge–Tate weight 1.

We let E be a finite extension of Qp with ring of integers O, uniformizer ϖ and residue field
F. We always assume that E is large enough.

We let K be an unramified extension of Qp of degree f with ring of integers OK and residue

field k. We fix an embedding σ0 : k ↪→ F and we let σj
def
= σ0 ◦ φj , where φ : x 7→ xp is the

arithmetic Frobenius on k. We still use σj to denote the corresponding embedding K ↪→ E.

We have an identification of J def
= Hom(k,F) with Hom(K,E) and with {0, . . . , f − 1} given by

σj ↔ j. We also identify J with the quotient Z/fZ in an evident way so that the addition and
subtraction in J are modulo f .

If G is a group and V is a representation of G on a finite-dimensional E-vector space, we
denote by V the semisimplification of a G-stable O-lattice in V . If V is a representation of
G on a finite-dimensional vector space, we let JH(V ) denote the set of Jordan–Hölder factors
of V . If σ is an irreducible representation of G, we let [V : σ] be the multiplicity of σ in the
semisimplification of V .

For each commutative ring A and (x1, . . . , xn) ∈ An, we write Diag(x1, . . . , xn) for the
diagonal matrix in Mn(A) whose i-th diagonal entry is xi. If µ ∈ Zn and x ∈ A, then we write
xµ for the diagonal matrix Diag(xµ1 , . . . , xµn) ∈ Mn(A). If M ∈ GLn(A) and N ∈ Mn(A) we

define Ad(M)(N)
def
= MNM−1. If s ∈ Sn is a permutation, we let ṡ denote the associated

permutation matrix, which we also denote by s when there is no possible confusion. We let
sgn(s) ∈ {±1} be the signature of s.

If h : A → B is a ring homomorphism and M is an A-module, we define the B-module

h∗(M)
def
= M ⊗A B.

3.2 Preliminaries

In this section, we give the preliminary notions and results that we will use. We follow
closely [BHH+23, §2].

3.2.1 Group theoretic preliminaries

In this subsection, we review some notions related to algebraic groups that we will use.

We consider the algebraic group GLn defined over Z. Let T ⊆ GLn be the diagonal maximal
torus and Z ⊆ GLn be the center. We write R (resp. R∨) for the set of roots (resp. coroots)
of (GLn, T ) and W for its Weyl group with longest element w. Let R+ ⊆ R be the subset
of positive roots with respect to the upper triangular Borel. We identify the set of characters

X∗(T )
def
= Hom(T,Gm) with Zn in the standard way.
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Example 3.2.1.1. If n = 2, then W = S2, w is the nontrivial element of S2 and R+ = {α},
where α ∈ X∗(T ) corresponds to (1,−1) ∈ Z2.

Let G be the algebraic group
(
ResOK/Zp

GLn/OK

)
×Zp O with diagonal maximal torus T

and center Z. We write R (resp. R∨) for the set of roots (resp. coroots) of (G,T ), W for its
Weyl group and R+ ⊆ R for the subset of positive roots with respect to the upper triangular
Borel. There is a natural isomorphism G ∼=

∏
J GLn/O induced by the ring homomorphism

OK ⊗Zp O ∼= OJ defined by x ⊗ y 7→ (σj(x)y)j∈J . One has similar isomorphisms for T , Z,
R, R∨, W,R+ and the character group X∗(T ). There is an action of W on X∗(T ) which is
compatible with this isomorphism.

Under the identification of X∗(T ) ∼= ⊕JX
∗(T ) with (Zn)f as above, for each µ ∈ X∗(T ) we

can write µ = (µj)0≤j≤f−1 with µj = (µj,1, . . . , µj,n) ∈ Zn. Moreover, if (a1, . . . , an) ∈ Zn we
write (a1, . . . , an) to denote the element of X∗(T ) whose corresponding tuple equals (a1, . . . , an)
at each place j ∈ J . For j ∈ J we let ηj ∈ (Zn)f be (n− 1, . . . , 1, 0) in the j-th coordinate and

0 otherwise. We let η
def
=
∑

j∈J ηj = (n− 1, . . . , 1, 0). There is an automorphism π on X∗(T )
defined by π(µ)j = µj−1.

Example 3.2.1.2. If n = 2, let αj ∈ X∗(T ) be (1,−1) in the j-th coordinate and 0 otherwise.
Then we have R+ = {αj : j ∈ J }.

Let ΛR ⊆ X∗(T ) be the root lattice of G. Let X∗
+(T ) ⊆ X∗(T ) be the set of dominant

weights, i.e. the set of weights λ ∈ X∗(T ) satisfying ⟨λ, α∨⟩ ≥ 0 for all α ∈ R+. Let X1(T ) ⊆
X∗

+(T ) be the subset of p-restricted weights, i.e. the set of weights λ ∈ X∗(T ) satisfying
0 ≤ ⟨λ, α∨⟩ ≤ p − 1 for all simple roots α ∈ R+. Let Xreg(T ) ⊆ X1(T ) be the subset of
weights λ ∈ X∗(T ) satisfying 0 ≤ ⟨λ, α∨⟩ < p − 1 for all simple roots α ∈ R+. Finally, let
X0(T ) ⊆ Xreg(T ) be the subset of weights λ ∈ X∗(T ) satisfying ⟨λ, α∨⟩ = 0 for all simple roots
α ∈ R+.

The lowest alcove is defined as

C0
def
= {λ ∈ X∗(T )⊗Z R : 0 < ⟨λ+ η, α∨⟩ < p ∀α ∈ R+}.

Given N ≥ 0 and µ ∈ C0 we say that µ is N-deep in C0 if N < ⟨µ + η, α∨⟩ < p − N for all
α ∈ R+. Thus the existence of an N -deep weight in C0 implies p ≥ 2N + 2.

Example 3.2.1.3. When n = 2, we have

ΛR =
{
λ ∈ (Z2)f : λj,1 + λj,2 = 0 ∀ j ∈ J

}
;

X∗
+(T ) =

{
λ ∈ (Z2)f : λj,1 ≥ λj,2 ∀ j ∈ J

}
;

X1(T ) =
{
λ ∈ (Z2)f : 0 ≤ λj,1 − λj,2 ≤ p− 1 ∀ j ∈ J

}
;

Xreg(T ) =
{
λ ∈ (Z2)f : 0 ≤ λj,1 − λj,2 < p− 1 ∀ j ∈ J

}
;

X0(T ) =
{
λ ∈ (Z2)f : λj,1 = λj,2 ∀ j ∈ J

}
;

C0 =
{
λ ∈ (R2)f : −1 < λj,1 − λj,2 < p− 1 ∀ j ∈ J

}
,

and λ ∈ C0 is N -deep if and only if N ≤ λj,1 − λj,2 ≤ p− 2−N for all j ∈ J .

Given w ∈W , we write wj to denote its j-th component via the identification W ∼=
∏

J W .
There is an automorphism π on W defined by π(w)j = wj−1.
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Let W a
∼= ΛR⋊W (resp. W̃ ∼= X∗(T )⋊W ) be the affine Weyl group (resp. extended affine

Weyl group) of G. We denote by tλ the image of λ ∈ X∗(T ) in W̃ . Hence an element of W̃ can

be written as (w, λ)
def
= wtλ with w ∈ W and λ ∈ X∗(T ), and the multiplication of W̃ is given

by

(w1, λ1) · (w2, λ2) = (w1w2, w
−1
2 (λ1) + λ2).

We identify W̃ with (Zn ⋊ Sn)
f (the action of Sn on Zn is given by (s(a))i = as−1(i)).

We have the p-dot action of W̃ onX∗(T ) defined as follows: if w̃ = wtν ∈ W̃ and µ ∈ X∗(T )
then we define

w̃ · µ def
= w(µ+ η + pν)− η. (3.2)

We let Ω be the stabilizer of the lowest alcove C0 in W̃ , then one easily checks that W̃ =W a⋊Ω.

Concretely, when n = 2, Ω is the subgroup of W̃ generated by X0(T ) and
{
1,wt(−1,0)

}f
.

The choice of the lowest alcove C0 endows W a with a Bruhat order by viewing W a as a
Coxeter group generated by the walls of the alcove C0 (see [Jan03, II.6.3]). We denote this

order by ≤. It induces a partial order ≤ on W̃ by defining w̃aω ≤ w̃′
aω

′ in W a ⋊Ω = W̃ if and

only if w̃a ≤ w̃′
a in W a and ω = ω′ in Ω. We denote by W̃

∨
the group W̃ , endowed with the

Bruhat order induced by the choice of the antidominant base alcove, i.e.

C∨
0

def
= {λ ∈ X∗(T )⊗ R : −p < ⟨λ+ η, α∨⟩ < 0 ∀α ∈ R+}.

There is an anti-isomorphism

W̃
∨ ∼→ W̃

w̃ 7→ w̃∗ (3.3)

defined by ((stµ)
∗)j

def
= tµf−1−j

s−1
f−1−j such that w̃1 ≤ w̃2 in W̃

∨
if and only if w̃∗

2 ≤ w̃∗
1 in W̃

([LLHL19, Lemma 2.1.3]).

Given λ ∈ X∗(T ), we define

Adm∨(tλ)
def
=
{
w̃ ∈ W̃

∨
: w̃ ≤ tw(λ) for some w ∈W

}
(3.4)

to be the λ-admissible set with respect to the Bruhat order defined above on W̃
∨
.

Example 3.2.1.4. Let n = 2. We have

Adm∨(t(2,1)) =
{
w̃ ∈ W̃

∨
: w̃j ∈ {t(2,1),wt(2,1), t(1,2)} ∀ j ∈ J

}
;

Adm∨(t(3,0)) =
{
w̃ ∈ W̃

∨
: w̃j ∈ {t(3,0),wt(3,0), t(2,1),wt(2,1), t(1,2),wt(1,2), t(0,3)} ∀ j ∈ J

}
.

We will only use the Bruhat order induced by the choice of the antidominant base alcove.

From now on, we use W̃ to mean W̃
∨
for simplicity. Finally we remark that we can consider

W̃ as a subgroup of GLn
(
F((v))

)f
by the injective homomorphism

W̃ ↪→ GLn
(
F((v))

)f
stµ 7→ (ṡjv

µj )j .
(3.5)
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3.2.2 Tame inertial types

In this subsection, we review the combinatorial description of tame inertial types.

An inertial type of K is a representation τ : IK → GLn(Qp) with open kernel that can be
extended to GK . An inertial type is said tame if it factors through the tame inertial quotient.
When n = 2, by a result of Henniart (see the appendix to [BM02]), given an inertial type
τ : IK → GL2(Qp), we can associate to it a smooth irreducible GL2(OK)-representation σ(τ)

over Qp, normalized as in [BM02, §2.1.1], and we may realize τ and σ(τ) as representations over
E if E is large enough.

Now we fix a pair (s, µ) ∈ W × X∗(T ). We recall how to associate to it a tame inertial
type. We write s = (s0, . . . , sf−1) with sj ∈ Sn and µ = (µ0, . . . , µf−1) with µj ∈ Zn. Let

sτ
def
= s0sf−1sf−2 · · · s1 ∈ Sn. Let r ∈ Z be the order of sτ in Sn. Let K ′ be the unramified

extension ofK of degree r and let k′ be its residue field. Fix an embedding σ′0 : k
′ ↪→ F extending

σ0 and let σ′j′
def
= σ0 ◦ φj

′
. Let f ′

def
= rf . We have an identification of J ′ def

= Hom(k′,F) with
Hom(K ′, E) and with {0, . . . , f ′ − 1} given by σ′j′ ↔ j′. We also identify it with the quotient
Z/f ′Z in an evident way so that the addition and subtraction in J ′ are modulo f ′. Under this
identification, the restriction of an embedding k′ ↪→ F to k corresponds to the natural projection

Z/f ′Z ↠ Z/fZ. If j′ ∈ J ′ and j ∈ J is the image of j′ under this projection, we set sj′
def
= sj ,

µj′
def
= µj and ηj′

def
= ηj .

We define the tame fundamental character ωf ′ : IK → F× as the composition

IK = IK′
Art−1

K′−−−−→ O×
K′ ↠ k′

× σ′
0

↪−→ F×.

We also let ω̃f ′ : IK → O× denote the Teichmüller lift of ωf ′ . We define α′
(s,µ) ∈ (Zn)f ′ by

α′
(s,µ),j′

def
= s−1

1 s−1
2 · · · s−1

j′ (µj′ + ηj′) ∈ Zn, 0 ≤ j′ ≤ f ′ − 1.

In particular, we have α′
(s,µ),j+kf = s−kτ α′

(s,µ),j for 0 ≤ j ≤ f − 1 and 0 ≤ k ≤ r − 1. We also
define

a(0)
def
=

f−1∑
i=0

α′
(s,µ),i p

i ∈ Zn;

a
′ (j′)
(s,µ)

def
=

f ′−1∑
i′=0

α′
(s,µ),−j′+i′ p

i′ ∈ Zn, 0 ≤ j′ ≤ f ′ − 1.

In particular, we have a
′ (0)
(s,µ),i =

∑r−1
k=0 a

(0)

skτ (i)
pfk. The following combinatorial description of tame

inertial types comes from [LLHL19, Def. 2.2.1], which is based on [Her09, (6.15)].

Definition 3.2.2.1. Let (s, µ) ∈W ×X∗(T ). We define

τ(s, µ+ η)
def
=

n⊕
i=1

ω̃
a
′ (0)
(s,µ),i

f ′ =
n⊕
i=1

ω̃

∑r−1
k=0 a

(0)

skτ (i)
pfk

f ′ : IK → GLn(O×). (3.6)

This is a tame inertial type (i.e. can be extended to GK), and we write τ(s, µ + η) for its
reduction modulo ϖ. The following two definitions come from [LLHL19, Def. 2.2.5].

Definition 3.2.2.2. Let τ be a tame inertial type and N ∈ Z≥0.
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(i) We say that τ is N-generic if there is an isomorphism τ ∼= τ(s, λ+ η) for some s ∈ W
and some λ ∈ X∗(T ) which is N -deep in alcove C0.

(ii) A lowest alcove presentation of τ is a pair (s, µ) ∈W × C0 such that τ ∼= τ(s, µ+ η)
(which by definition exists exactly when τ is 0-generic).

Definition 3.2.2.3. Let ρ : GK → GL2(F) be a Galois representation and let N ∈ Z≥0. Let
ρss|IK denote the restriction to IK of the semisimplification of ρ. We say that ρ is N-generic
if ρss|IK ∼= τ(s, µ) for some s ∈W and µ− η ∈ X∗(T ) which is N -deep in alcove C0.

Then we introduce the orientation s′or ∈ (Sn)
f ′ of α′

(s,µ) as in [LLHL19, Remark 3.2.3],
which is defined by

s′or,j′
def
= s−1

1 s−1
2 · · · s−1

f ′−1−j′ , 0 ≤ j′ ≤ f ′ − 1. (3.7)

In particular, we have s′or,j+kf = skτs
′
or,j for 0 ≤ j ≤ f − 1 and 0 ≤ k ≤ r − 1. By definition,

we have (s′or,j′)
−1
(
α′

(s,µ),f ′−1−j′
)
= µf ′−1−j′ + ηf ′−1−j′ . Since the p-adic expansion of a

′ (j′)
(s,µ)

has leading term α′
(s,µ),f ′−1−j′ p

f ′−1, if µ ∈ X∗(T ) is 0-deep in alcove C0, then the element

(s′or,j′)
−1
(
a
′ (j′)
(s,µ)

)
∈ X∗(T ) ∼= Zn is dominant for each 0 ≤ j′ ≤ f ′−1. We will use the orientation

in §3.3.

Example 3.2.2.4. Let n = 2. Let s = (s0, 1, . . . , 1) ∈ W with s0 ∈ S2 and µ = (µj)j ∈ X∗(T )
with µj = (rj +mj ,mj) ∈ Z2. Then we have

α′
(s,µ),j = (rj + 1 +mj ,mj) ∈ Z2, 0 ≤ j ≤ f − 1;

a(0) =

(
f−1∑
j=0

(rj + 1 +mj)p
j ,
f−1∑
j=0

mjp
j

)
∈ Z2.

We have the following two cases.

(i) If s0 = 1, then sτ = 1, f ′ = f , s′or = (1, . . . , 1), and we have

τ(s, µ+ η) ∼=

(
ω̃
∑f−1

j=0 (rj+1)pj

f 0

0 1

)
⊗ ω̃

∑f−1
j=0 mjp

j

f ;

(ii) If s0 = w, then sτ = w, f ′ = 2f , s′or = (1, . . . , 1,w, . . . ,w), and we have

τ(s, µ+ η) ∼=

ω̃∑f−1
j=0 (rj+1)pj

2f 0

0 ω̃
pf

∑f−1
j=0 (rj+1)pj

2f

⊗ ω̃
∑f−1

j=0 mjp
j

f .

In both cases, τ(s, µ+ η) is N -generic if N ≤ rj ≤ p− 2−N for all j.

3.2.3 Extension graph

In this subsection, we review the description of the extension graph for GL2. Then we use
it to describe certain sets of Serre weights.

Recall that a Serre weight of GLn(k) is an isomorphism class of an (absolutely) irreducible
representation of GLn(k) over F. By [GHS18, Lemma 9.2.4], for each λ ∈ X1(T ) we can associate
to it a Serre weight F (λ) of GLn(k), which induces a bijection

F : X1(T )/(p− π)X0(T )
∼→ {Serre weights of GLn(k)} (3.8)

(see §3.2.1 for π). We say that a Serre weight σ is regular if σ ∼= F (λ) with λ ∈ Xreg(T ), cf.
[Her09, Def. 6.1].
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Example 3.2.3.1. When n = 2, let λ = (λj)j ∈ X1(T ) with λj = (λj,1, λj,2) ∈ Z2, we have

F (λ) =

f−1⊗
j=0

((
Symλj,1−λj,2 k2 ⊗k det

λj,2
)
⊗k,σj F

)
.

Moreover, F (λ) is regular if and only if λ is 0-deep in alcove C0 if and only if 0 ≤ λj,1 − λj,2 ≤
p− 2.

In the rest of this section we let n = 2. Consider the algebraic groupG′ def=
(
Resk/Fp

SL2/k

)
⊗Fp

F. Let T1 be its maximal torus consisting of diagonal matrices of determinant 1. The corre-
sponding root lattice is identified with ΛR. Its weight lattice is denoted by ΛW and we have
ΛW ∼= X∗(T )/X0(T ), which is identified with Zf by the isomorphism [(aj , bj)j ] 7→ (aj − bj)j .

Fix ω ∈ X∗(T ). Since W̃ = W a ⋊ Ω, there is a unique element ω̃ ∈ Ω ∩ t−π−1(ω)W a in

W̃ (see §3.2.1 for t). We also define wω ∈ W to be the image of ω̃ in W under the projection

W̃ ↠W .

Now we fix µ ∈ X∗(T ). Following [LLHLM20, §2.1], we define the extension graph
associated to µ by

ΛµW
def
= {ω ∈ ΛW : 0 ≤ ⟨µ+ ω, α∨⟩ < p− 1, ∀α ∈ R+},

where µ is the image of µ in ΛW . We define a map

t′µ : X∗(T ) → X∗(T )/(p− π)X0(T )

ω 7→ ω̃ · (µ+ ω),

where “·” is the p-dot action defined in (3.2). This map factors through X∗(T )/X0(T ) = ΛW ,
and restricts to a map

tµ : ΛµW → Xreg(T )/(p− π)X0(T ).

Remark 3.2.3.2. If we compose tµ with the bijection (3.8)

F : X∗
1 (T )/(p− π)X0(T )

∼→ {Serre weights of GL2(k)},

then the resulting map ω 7→ F (tµ(ω)) gives a bijection between ΛµW and the set of regular Serre
weights of GL2(k) with central character µ|Z (see [LLHLM20, Prop. 2.1.4]).

Example 3.2.3.3. In terms of the identification ΛW ∼= Zf the map tµ can be described as
follows: We may assume that µ has the form (rj , 0)j ∈ X∗(T ), because for arbitrary µ ∈ X∗(T )
one can use the formula t′µ+ν(ω) − t′µ(ω) = ω̃ · (µ + ν) − ω̃ · µ = wω(ν) = ν (for ν ∈ X0(T ))
to reduce to the computation for this form. Write ω = (ωj)j = (2nj + δj)j ∈ ΛµW with nj ∈ Z,
δj ∈ {0, 1}, then a representative of tµ(w) in Xreg(T ) is then given by

(tµ(ω))j =

{
(rj + nj + δj ,−nj) if δj+1 = 0

(−nj − 1, rj + nj + δj − p+ 1) if δj+1 = 1.
(3.9)

Moreover, by Example 3.2.3.1 and (3.9) one can compute that

F (tµ(ω)) =

f−1⊗
j=0

(
Symr′j k2 ⊗k,σj F

)⊗F det
e(ω),
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where

r′j =

{
rj + ωj if 2 | ωj+1

p− 2− rj − ωj if 2 ∤ ωj+1,

e(ω) =
1

2

(
δ0(p

f − 1) +
f−1∑
j=0

(rj − r′j)p
j

)
.

(3.10)

Finally we recall the “change of origin” formula for the map tµ.

Lemma 3.2.3.4 ([LMS22], Prop. 2.5). Let µ ∈ X∗(T ), ω ∈ ΛµW and λ ∈ X∗(T ) be such that
tµ(ω) ≡ λ mod(p − π)X0(T ). Then tλ(ω

′) = tµ(w
−1
ω (ω′) + ω) for all ω′ ∈ ΛλW . Equivalently,

tµ(ω
′) = tλ(wω(ω

′ − ω)).

Remark 3.2.3.5. Keep the assumptions of Lemma 3.2.3.4. If we write ω = (a0, . . . , af−1) and
ω′ = (b0, . . . , bf−1) with aj , bj ∈ Z, then we have

tλ(b0, . . . , bf−1) = tµ

(
f−1∑
j=0

(
aj + (−1)aj+1bj

)
ηj

)
;

tµ(b0, . . . , bf−1) = tλ

(
f−1∑
j=0

(
(−1)aj+1(bj − aj)

)
ηj

)
.

3.3 Kisin modules

In this section, we review the machinery of Kisin modules that are used to compute the
Galois deformation rings. We follow closely [LLHLM18],[LLHL19],[LLHLM20],[LLHLM23] as
well as [BHH+23, §3].

3.3.1 Kisin modules with tame descent data

In this subsection, we review the notion of Kisin modules with descent data and some related
objects.

Throughout this section we fix a 1-generic tame inertial type τ : IK → GLn(O) of K and a
lowest alcove presentation (s, µ) for τ (hence µ is 0-deep in alcove C0 by [LLHL19, Prop. 2.2.15]).
We keep the notation of §3.2.2, for example, sτ = s0sf−1sf−2 · · · s1 ∈ Sn, r is the order of sτ ,
K ′ is the unramified extension of K of degree r with residue field k′ and f ′ = fr. We also define

e′
def
= pf

′ − 1.

Fix an e′-th root π′
def
= (−p)1/e′ ∈ Qp of −p. Let L′ def= K ′(π′) and E(u′)

def
= (u′)e

′
+p = v+p

be the minimal polynomial of π′ over K ′, where we define v
def
= (u′)e

′
. Let ∆′ def= Gal(L′/K ′) ⊆

∆
def
= Gal(L′/K). We define a group homomorphism ωπ′ : ∆′ → W (k′)×, g 7→ g(π′)/π′. It is

independent of the choice of π′ and satisfies σ′0 ◦ ωπ′ = ω̃f ′ .
Let R be a p-adically complete Noetherian local O-algebra with maximal ideal mR. We

define
SL′,R

def
= W (k′)[[u′]]⊗̂ZpR =

(
W (k′)⊗Zp R

)
[[u′]].

The ring SL′,R has a ∆-action defined as follows: For each g ∈ ∆′, g(u′) = (ωπ′(g) ⊗ 1)u′ and
g acts trivially on W (k′) ⊗Zp R. Let σ ∈ Gal(L′/Qp) be the lift of the arithmetic Frobenius
on W (k′) which fixes π′. Then σf ∈ ∆ maps to a generator of ∆/∆′ ∼= Gal(K ′/K) and we
define its action on SL′,R by letting it act trivially on R and u′ and act as the f -th power of
the arithmetic Frobenius on W (k′). In particular, we have(

SL′,R

)∆=1
=
(
W (k)⊗Zp R

)
[[v]].
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There is also a Frobenius endomorphism φ : SL′,R → SL′,R, which is W (k′)-semilinear, R-
linear, and φ(u′) = (u′)p. The Frobenius endomorphism and the ∆-action commute with each

other. For each SL′,R-module M we define the R[[u′]]-module M(j′) def
= M ⊗W (k′)⊗ZpR,σ

′
−j′

R,

then we have a decomposition M ∼=
⊕

j′∈J ′ M(j′).

Definition 3.3.1.1 ([LLHLM18], Def. 2.4). Let h ∈ Z≥0 and τ , R as above. A Kisin module
over R with height in [0, h] and type τ is a triple (M, ϕM, {ĝ}g∈∆), such that

(i) M is a finitely generated projective module over SL′,R;
(ii) the Frobenius map ϕM : φ∗(M) → M is an injective SL′,R-linear map whose cokernel is

killed by E(u′)h;
(iii) for each g ∈ ∆, ĝ : M → M is a g-semilinear map satisfying

(a) the induced map ĝ∗ : g∗(M)
ĝ⊗id−−−→ M is a SL′,R-linear isomorphism for all g ∈ ∆;

(b) ĝ ◦ ĥ = ĝh for all g, h ∈ ∆;
(c) ĝ ◦ ϕM = ϕM ◦ φ∗(ĝ) on φ∗(M) for all g ∈ ∆;

(iv) for each 0 ≤ j′ ≤ f ′ − 1, we have

M(j′)/u′M(j′) ∼= τ∨ ⊗O R (3.11)

as ∆′-representations over R, where τ∨
def
= HomO(τ,O) is the algebraic dual of τ .

Morphisms of Kisin modules over R with height in [0, h] and type τ are defined in the natural
way and we denote by Y [0,h],τ (R) the category of Kisin modules over R with height in [0, h] and
type τ . We often omit the additional data and just write M ∈ Y [0,h],τ (R).

We define τ ′ : IK′ = IK
τ−→ GLn(O). It is a tame inertial type on K ′. We define the category

Y [0,h],τ ′(R) of Kisin modules over R with height in [0, h] and type τ ′ by replacing ∆ by ∆′ in
Definition 3.3.1.1.

Recall that σ ∈ Gal(L′/Qp) is the lift of the arithmetic Frobenius on W (k′) which fixes π′.

Let (τ ′)p
f
denote the composition of τ ′ (which factors through ∆′) and the automorphism g 7→

gp
f
on ∆′. For each M ∈ Y [0,h],τ ′(R), we define its Frobenius twist (σf )∗(M) ∈ Y [0,h],(τ ′)p

f

(R)

as follows: (σf )∗(M)
def
= M⊗W (k′),σf W (k′), the Frobenius map is

ϕ(σf )∗(M) : φ
∗
(
(σf )∗(M)

)
∼→ (σf )∗ (φ∗(M))

(σf )∗(ϕM)−−−−−−→ (σf )∗(M),

and the ∆′-action is

ĝpf
∗
(σf )∗(M) : (ĝ

pf )∗
(
(σf )∗(M)

)
∼→ (σf )∗ (ĝ∗(M))

(σf )∗(ĝ∗)−−−−−−→ (σf )∗(M),

using that g 7→ gp
f
is an automorphism on ∆′. By definition, a Kisin module M ∈ Y [0,h],τ ′(R)

lies in Y [0,h],τ (R) if and only if its ∆′-action extends to a ∆-action. By [LLHLM18, Prop. 6.6],
this is equivalent to the datum of an isomorphism ιM : (σf )∗(M) ∼= M, such that the r-fold
composite of

M
m7→m⊗1−−−−−→ (σf )∗(M)

ιM−−→∼= M

is the identity on M. Note that the first map identifies M(j′) with
(
(σf )∗(M)

)(j′+f)
.

Definition 3.3.1.2 ([LLHLM20], Def. 3.1.6). Let M ∈ Y [0,h],τ (R). An eigenbasis of M is

a collection β = (β(j
′))j′∈J ′, where β(j

′) = (f
(j′)
1 , . . . , f

(j′)
n ) is an R[[u′]]-basis of M(j′) such

that ∆′ acts on f
(j′)
i as χ−1

i , where χi
def
= ω̃

a
′ (0)
(s,µ),i

f ′ (see (3.6) for the notation), and satisfies

ιM
(
(σf )∗(β(j

′))
)
= β(j

′+f) for each j′ ∈ J ′.

34



Since R is assumed to be local, by (3.11) and the fact that ∆′ has order prime to p, eigenbases
always exist.

Let M ∈ Y [0,h],τ (R). Under the decomposition M ∼=
⊕

j′∈J ′ M(j′), the Frobenius map

ϕM decomposes into R[[u′]]-linear maps ϕ
(j′)
M : φ∗(M(j′)) → M(j′+1). The following definition

combines [LLHLM18, Def. 2.11] and [LLHLM18, Prop. 2.13].

Definition 3.3.1.3. Let M ∈ Y [0,h],τ (R) with eigenbasis β. For each j′ ∈ J ′, the matrix

C
(j′)
M,β ∈ Mn(R[[u

′]]) of ϕM with respect to β is defined by the formula

ϕ
(j′)
M

(
φ∗(β(j

′))
)
= β(j

′+1)C
(j′)
M,β,

and the matrix A
(j′)
M,β ∈ Mn(R[[v]]) is defined by the formula

A
(j′)
M,β = Ad

(
(ṡ′or,j′+1)

−1(u′)
−a

′ (j′+1)
(s,µ)

)(
C

(j′)
M,β

)
.

By the paragraph after [LLHLM23, Remark 5.1.7] the matrix A
(j′)
M,β is upper triangular

modulo v and only depends on j′mod f .

To end this subsection, we introduce the Kisin modules with more strict height conditions.
These conditions are related to the Hodge–Tate weights of Galois representations. The following
definition comes from [CL18, §5] (see also [LLHLM18, Prop. 4.18] for a special case).

Definition 3.3.1.4. Let λ = (λj,1, . . . , λj,n)j ∈ X∗
+(T ) be a dominant weight such that λj,i ∈

{0, . . . , h} for all 0 ≤ j ≤ f − 1, 1 ≤ i ≤ n. We define a subcategory Y ≤λ,τ (R) of Y [0,h],τ (R)

whose objects consist of Kisin modules M ∈ Y [0,h],τ (R) such that all i by i minors of A
(j)
M,β with

respect to a fixed eigenbasis β of M are divisible by (v + p)
∑i

k=1 λj,n+1−k for i ∈ {1, . . . , n − 1}
and det(A

(j)
M,β) ∈ R[[v]]×(v + p)

∑n
k=1 λj,k . In this case, we say that M has height ≤ λ. This

definition does not depend on the choice of the eigenbasis for M.

For simplicity, we also write Y ≤(λ1,...,λn),τ (R) to denote Y ≤(λ1,...,λn),τ (R) for λi ∈ Z (see
§3.2.1 for the notation).

3.3.2 Gauge bases

In this subsection, we review the notion of gauge bases introduced in [LLHLM18] and w̃-
gauge bases introduced in [LLHLM23]. They have the property that the corresponding matrices

A
(j)
M,β of the Frobenius maps defined in Definition 3.3.1.3 have standard forms.

Definition 3.3.2.1 ([LLHLM18], Def. 2.22). Let M ∈ Y [0,h],τ (F) and w̃ = (w̃j)j ∈ W̃ . Write
I(F) for the Iwahori subgroup of GLn

(
F[[v]]

)
consisting of matrices which are upper triangular

modulo v. We say that M has shape w̃ if for any choice of eigenbasis β the equality

I(F)A(j)

M,β
I(F) = I(F)w̃jI(F)

holds in GLn
(
F((v))

)
for each 0 ≤ j ≤ f − 1, where we regard w̃j as an element of GLn

(
F((v))

)
by (3.5). This notion is independent of β. We also say that the matrix A

(j)

M,β
has shape w̃j.

The following proposition is a restatement of [CL18, Prop. 5.4].
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Proposition 3.3.2.2. Let M ∈ Y [0,h],τ (F) and λ = (λj,1, . . . , λj,n)j ∈ X∗
+(T ) be a dominant

weight such that λj,i ∈ {0, . . . , h} for all j, i. Then M has shape w̃ ∈ W̃ for some w̃ ∈ Adm∨(tλ)
(see (3.4) for the notation), if and only if M ∈ Y ≤λ,τ (F).

The property of having a fixed shape is not an open condition, as we will see in Example
3.3.2.6. Instead, we will use the notion of w̃-gauge following [LLHLM23]. For simplicity of
notation, the following definition is slightly different from [LLHLM23, Def. 5.2.6].

Definition 3.3.2.3. Let M ∈ Y [0,h],τ (R) and w̃ = (w̃j)j ∈ W̃ . Write w̃j = sjtνj with sj ∈ W
and νj ∈ X∗(T ). We say that M has w̃-gauge if it has an eigenbasis β such that

(i) A
(j)
M,β(v + p)−νj ṡ−1

j ∈ GLn

(
R
[

1
v+p

])
is lower triangular modulo 1

v+p ;

(ii) A
(j)
M,β(v + p)−νj ∈ GLn

(
R
[

1
v+p

])
is upper triangular modulo v

v+p

for each 0 ≤ j ≤ f − 1. Such a β is called a w̃-gauge basis. We also say that the matrix A
(j)
M,β

has w̃j-gauge.

Remark 3.3.2.4. If A ∈ Mn

(
R[[v]]

)
has z̃-gauge, where z̃ = stν with s ∈ W and ν ∈ X∗(T ),

then its (i, j)-entry Aij has the form

vδi>j

(
νj−δi>j−δi<s(j)∑

k=0

cij,k(v + p)k

)

with cij,k ∈ R and cs(j)j,νj−δs(j)>j
∈ R×, and it satisfies det(A) ∈ R×(v + p)3. Here, if P is a

statement, then we define δP
def
= 1 if P is true and δP

def
= 0 otherwise.

Remark 3.3.2.5. Let M ∈ Y [0,h],τ (F). If M has shape w̃, then it has w̃-gauge ([LLHLM23,
Remark 5.2.5]). In general, M has a unique shape, but it could have w̃-gauge for many choices
of w̃.

Example 3.3.2.6. Let n = 2. Let α, β ∈ F×, and a ∈ F. We list the gauges and shapes of
some matrices in GLn

(
F((v))

)
that will be considered in §3.4.

Figure 3.1: Gauges and shapes of some matrices

Matrix One choice of gauge Shape(
αv2 0
av2 βv

)
t(2,1)-gauge t(2,1)(

0 βv
αv2 av

)
wt(2,1)-gauge

wt(2,1) if a = 0

t(2,1) if a ̸= 0(
αv 0
0 βv2

)
t(1,2)-gauge t(1,2)

Everything follows directly from the definitions, except the fact that the matrix
(

0 βv
αv2 av

)
has

shape t(2,1) for a ̸= 0. To check this, we may assume that α = β = 1, then it follows from the
equality (

0 v
v2 av

)
=

(
−a−1 a−1

0 1

)(
v2 0
0 v

)(
1 0
v a

)
.

The following Proposition comes from [LLHLM23, Prop. 5.2.7] which is a generalization of
[LLHLM18, Thm. 4.1] and [LLHLM18, Thm. 4.16].
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Proposition 3.3.2.7. Let µ be (h+ 1)-deep in C0, M ∈ Y [0,h],τ (R) and w̃ ∈ W̃ . Suppose that

M/ϖM ∈ Y [0,h],τ (R/ϖR) has w̃-gauge, then M has w̃-gauge. Moreover its w̃-gauge basis β is
unique up to scaling by the group{

(tj′)j′∈J ′ ∈ TJ ′
(R)
∣∣tj′ = tk′ for j

′ ≡ k′mod f
}
∼= T (R).

3.3.3 Étale φ-modules

In this subsection, we review the relation between Kisin modules and Galois representations.

We fix a compatible system (pn)n of p-power roots of (−p) in Qp and define K∞
def
=⋃

n∈NK(pn). LetOE,K (resp.OE,L′) be the p-adic completion ofW (k)[[v]][1/v] (resp.W (k)[[u′]][1/u′]).
It has a Frobenius endomorphism φ extending the arithmetic Frobenius on W (k) (resp. W (k′))
and such that φ(v) = vp (resp. φ(u′) = (u′)p). Let R be a complete Noetherian local O-algebra.
The completed tensor product (see [Dee01, Def. 1.2.1]) OE,K⊗̂ZpR (resp. OE,L′⊗̂ZpR) is natu-
rally equipped with a Frobenius endomorphism φ. Moreover, the ring OE,L′⊗̂ZpR is naturally

equipped with a ∆-action such that
(
OE,L′⊗̂ZpR

)∆=1
= OE,K⊗̂ZpR. The following definition

comes from [Fon90], generalized by [Dee01] for a version with coefficients.

Definition 3.3.3.1. An étale φ-module over OE,K⊗̂ZpR is a pair (M, ϕM), such that

(i) M is a finitely generated projective OE,K⊗̂ZpR-module;
(ii) ϕM : M → M is φ-semilinear and the image of ϕM generates M as an OE,K⊗̂ZpR-

module.

Morphisms of étale φ-modules over OE,K⊗̂ZpR are defined in the natural way and we denote

by ΦModét(R) the category of étale φ-modules over OE,K⊗̂ZpR. We often omit ϕM and just

write M ∈ ΦModét(R).

Similar to Kisin modules, an étale φ-moduleM decomposes asM ∼=
⊕

j∈J M(j), where each

M(j) is a finite free module over the p-adic completion (R[[v]][1/v])∧ of the ring R[[v]][1/v]. The

Frobenius map ϕM decomposes into R-linear maps ϕ
(j)
M : M(j) → M(j+1) which are semilinear

with respect to v 7→ vp.

There is a natural inclusion SL′,R ↪→ OE,L′⊗̂ZpR and we define a functor

ετ : Y [0,h],τ (R) → ΦModét(R)

M 7→
(
M⊗SL′,R (OE,L′⊗̂ZpR)

)∆=1
.

(3.12)

Note that it doesn’t use the lowest alcove presentation of τ .

Proposition 3.3.3.2 ([LLHLM20], Prop. 3.2.1). Let M ∈ Y [0,h],τ (R) and β an eigenbasis of

M. Let M def
= ετ (M). Then there exists an OE,K⊗̂ZpR-basis f of M such that the matrix of

ϕ
(j)
M with respect to f is given by

A
(j)
M,β s

∗
jv
µ∗j+η

∗
j ∈ GLn

(
(R[[v]][1/v])∧

)
,

where “ ∗ ” is defined in (3.3) and A
(j)
M,β is viewed as an element of GLn

(
(R[[v]][1/v])∧

)
under

the natural inclusion R[[v]] ↪→ (R[[v]][1/v])∧.
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Let RepGK∞
(R) denote the category of finite free R-modules with continuous R-linear rep-

resentations of GK∞ . By a result of Fontaine ([Fon90]), generalized by [Dee01] for a version
with coefficients, there is an exact anti-equivalence of categories

V∗
K : ΦModét(R)

∼→ RepGK∞
(R). (3.13)

Composing it with ετ , we get a functor

T ∗
dd : Y

[0,h],τ (R)
ετ−→ ΦModét(R)

V∗
K−−→∼= RepGK∞

(R). (3.14)

Proposition 3.3.3.3 ([LLHL19], Prop. 3.2.18). Assume that τ is (h+1)-generic. Let M,M′ ∈
Y [0,h],τ (F). If T ∗

dd(M) ∼= T ∗
dd(M

′) as GK∞-representations over F, then M ∼= M′ in Y [0,h],τ (F).

3.4 Galois deformation rings

In this section, we compute some potentially crystalline Galois deformation rings explicitly.
The semisimple case is already known by [BHH+23, §4]. We combine the method of [BHH+23,
§4] and [Le19, §3] to deal with the non-semisimple case.

3.4.1 Setup

In this subsection, we determine the tame inertial types that we will use.

Throughout this section we fix a 2-dimensional Galois representation ρ : GK → GL2(F) such
that ρss|IK ∼= τ(s, µ), where

(i) sj ̸= 1 (hence sj = w) if and only if j = 0 and ρ is irreducible;
(ii) µ− η is N -deep in C0 with N ≥ 12.

We need N to be large in order to deal with the error term coming from the monodromy
condition (see (3.27) below). Twisting ρ by a power of ωf if necessary, we furthermore assume
that µj = (rj + 2, 1) ∈ Z2 with N < rj + 1 < p−N for all j so that (see Example 3.2.2.4)

ρ|IK ∼=



ω∑f−1
j=0 (rj+1)pj

f ∗
0 1

⊗ ω if ρ is reducible,ω∑f−1
j=0 (rj+1)pj

2f 0

0 ω
pf

∑f−1
j=0 (rj+1)pj

2f

⊗ ω if ρ is irreducible.

(3.15)

Then we associate to ρ a tuple of f elements (a0, . . . , af−1) ∈ Ff and describe the set W (ρ)
of Serre weights of ρ in terms of these elements. By (3.13) there exists an étale φ-module M
over k((v))⊗Fp F such that V∗

K(M) ∼= ρ|GK∞ . Recall from §3.3.3 that we have a decomposition

M ∼=
⊕

j∈J M(j)
with M(j)

= F((v))e(j)1 ⊕ F((v))e(j)2 . We separate the following two cases.

(i) If ρ is reducible, by [Le19, Prop. 3.1] we can take the Frobenius maps ϕ
(j)

M : M(j) → M(j+1)

to have the form {
ϕ
(j)

M(e
(j)
1 ) = αf−1−jv

rf−1−j+2(e
(j+1)
1 + aje

(j+1)
2 )

ϕ
(j)

M(e
(j)
2 ) = βf−1−jve

(j+1)
2
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for some αj , βj ∈ F× and aj ∈ F. In other words, the matrices of the Frobenius maps ϕ
(j)

M
in the basis

{
(e

(j)
1 , e

(j)
2 )j

}
are given by

Mat(ϕ
(f−1−j)
M ) =

(
αjv

rj+2 0
αjaf−1−jv

rj+2 βjv

)
. (3.16)

Notice that whether aj equals 0 or not is unchanged when we rescale the basis. From now
on, we fix a choice of αj , βj and aj . In particular, this gives a tuple (a0, . . . , af−1) ∈ Ff .

(ii) If ρ is irreducible, by [Le19, Prop. 3.1] we can take the Frobenius maps ϕ
(j)

M : M(j) →

M(j+1)
to have the form

Mat(ϕ
(f−1−j)
M ) =



(
αjv

rj+2 0

0 βjv

)
if j ̸= 0,(

0 −βjv
αjv

rj+2 0

)
if j = 0

(3.17)

for some αj , βj ∈ F×. In this case we define aj = 0 for all j.

In particular, we see that ρ is semisimple if and only if (a0, . . . , af−1) = (0, . . . , 0).
Recall that for ρ : GK → GL2(F) a Galois representation, we have a set W (ρ) of Serre

weights of ρ defined in [BDJ10, §3] which only depends on ρ|IK . In both cases, by [Le19,
Prop. 3.2] it can be described by

W (ρ) = {F (tµ−η(b0, . . . , bf−1)) : bj ∈ {0, sgn(sj)} if af−1−j = 0 and bj = 0 if af−1−j ̸= 0} ,
(3.18)

see §3.2.3 for the notation.
Then we introduce the following 3f tame inertial types that are needed in the computation

of Galois deformation rings. Given an arbitrary

w̃ ∈ Adm∨(t(2,1)) =
{
t(2,1),wt(2,1), t(1,2)

}f
(see Example 3.2.1.4), we write w̃∗ = tνw for some unique (w, ν) ∈ W × X∗(T ) (see (3.3) for
“ ∗ ”). Then we define the tame inertial type

τw̃
def
= τ(sw−1, µ− sw−1(ν)) (3.19)

with lowest alcove presentation (s(τ), µ(τ))
def
=
(
sw−1, µ − sw−1(ν) − η

)
. In particular, τw̃ is

(N − 1)-generic.
Explicitly, s(τ)j = w−1

j except when j = 0 and ρ is irreducible, in which case we have

s(τ)0 = ww−1
0 . Also we have

µ(τ)j + ηj =

{
(rj , 0) if (tνjwj , sj) ∈ {(t(2,1), 1), (t(2,1)w,w), (t(1,2),w)},
(rj + 1,−1) if (tνjwj , sj) ∈ {(t(2,1),w), (t(2,1)w, 1), (t(1,2), 1)}.

(3.20)

The following lemma tells us whether a tame inertial type contains a given Serre weight of ρ.

Lemma 3.4.1.1. There is a unique injection θ :W (ρ) ↪→
{
t(2,1), t(1,2)

}f
such that for σ ∈W (ρ)

and w̃ ∈ Adm∨(t(2,1)) we have

σ ∈ JH
(
σ(τw̃)⊗F (Nk/Fp

◦ det)
)
⇐⇒ (w̃j ̸= θ(σ)j ∀ j) . (3.21)
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Proof. The proof is almost the same as [BHH+23, Lemma 4.1.2] except that we replace all
the bijections by injections, since a non-semisimple ρ has less Serre weights then a semisimple
one.

Remark 3.4.1.2. By the proof of [BHH+23, Lemma 4.1.2], the map θ of Lemma 3.4.1.1 is
defined in the following way: If σ = F (tµ−η(b0, . . . , bf−1)) as in (3.18), then we define

θ(σ)f−1−j =

{
t(1,2) if bj = 0,

t(2,1) if bj ̸= 0.

Moreover, still by the proof of [BHH+23, Lemma 4.1.2], the 2f tame inertial types τw̃ appearing
in (3.21) are all the tame inertial types that contain a given Serre weight σ of ρ.

Let σ be a Serre weight of ρ. We define the set of tame inertial types that contain σ:

X(σ)
def
=
{
w̃ ∈ Adm∨(t(2,1)) : σ ∈ JH

(
σ(τw̃)⊗F (Nk/Fp

◦ det)
)}

. (3.22)

By Lemma 3.4.1.1 we have

X(σ) = {w̃ ∈ Adm∨(t(2,1)) : w̃j ̸= θ(σ)j ∀ j}.

We also define the set of tame inertial types that contain at least one Serre weight of ρ:

X(ρ)
def
=
{
w̃ ∈ Adm∨(t(2,1)) : JH

(
(σ(τ)⊗F (Nk|Fp

◦ det)
)
∩W (ρ) ̸= ∅

}
=

⋃
σ∈W (ρ)

X(σ).

We describe this set explicitly. Let (aj)j be the chosen elements of F associated to ρ. If
af−1−j = 0, then bj can be either 0 or sgn(sj) by (3.18), and w̃f−1−j can be any one of
the elements of Adm∨(t(2,1)) = {t(2,1),wt(2,1), t(1,2)} by Lemma 3.4.1.1 and Remark 3.4.1.2. If
af−1−j ̸= 0, then bj has to be 0 by (3.18), and w̃f−1−j ∈ {t(2,1),wt(2,1)} by Lemma 3.4.1.1 and
Remark 3.4.1.2. To conclude, we have

X(ρ) =
{
w̃ ∈ Adm∨(t(2,1)) : w̃f−1−j ̸= t(1,2) if af−1−j ̸= 0

}
. (3.23)

These are all the tame inertial types that we need.

Lemma 3.4.1.3. Let w̃ ∈ X(ρ). Up to isomorphism there exists a unique Kisin module M ∈
Y ≤(2,1),τw̃(F) ⊆ Y ≤(3,0),τw̃(F) such that T ∗

dd(M) ∼= ρ|GK∞ (see (3.14) for T ∗
dd).

Proof. We concentrate on the case that ρ is reducible. The irreducible case is similar and can also
be treated as in [BHH+23, Lemma 4.1.1]. Define a Kisin moduleM over F of type τw̃ by imposing

the matrices of the partial Frobenius maps to be A(f−1−j) = Mat(ϕ
(f−1−j)
M )v−(µ(τ)j+ηj)s(τ)j ,

where Mat(ϕ
(f−1−j)
M ) ∈ M2(F[[v]]) is the matrix in (3.16), and s(τ), µ(τ) are computed in (3.20).

Explicitly, we have the three cases:

(i) If w̃f−1−j = t(2,1), then s(τ)j = 1 and µ(τ)j + ηj = (rj , 0). We have

A(f−1−j) =

(
αjv

rj+2 0
αjaf−1−jv

rj+2 βjv

)(
v−rj 0
0 1

)
=

(
αjv

2 0
αjaf−1−jv

2 βjv

)
.

It has shape t(2,1) by Example 3.3.2.6.
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(ii) If w̃f−1−j = wt(2,1), then s(τ)j = w and µ(τ)j + ηj = (rj + 1,−1). We have

A(f−1−j) =

(
αjv

rj+2 0
αjaf−1−jv

rj+2 βjv

)(
v−(rj+1) 0

0 v

)(
0 1
1 0

)
=

(
0 αjv

βjv
2 αjaf−1−jv

)
.

It has shape wt(2,1) if af−1−j = 0, and shape t(2,1) if af−1−j ̸= 0 by Example 3.3.2.6.
(iii) If w̃f−1−j = t(1,2), then s(τ)j = 1 and µ(τ)j + ηj = (rj + 1,−1). In this case, we must

have af−1−j = 0 by (3.23), hence

A(f−1−j) =

(
αjv

rj+2 0
0 βjv

)(
v−(rj+1) 0

0 v

)
=

(
αjv 0
0 βjv

2

)
.

It has shape t(1,2) by Example 3.3.2.6.

In all cases, we see that the matrix A(f−1−j) belongs to M2

(
F[[v]]

)
and has shape contained in

Adm∨(t(2,1)) for all j, hence M ∈ Y ≤(2,1),τw̃(F) ⊆ Y ≤(3,0),τw̃(F) by Proposition 3.3.2.2. More-

over, we remark that M has w̃-gauge by Example 3.3.2.6. Now by Proposition 3.3.3.2, the
matrices of the Frobenius maps of the associated étale φ-module ετw̃(M) (see (3.12)) with
respect to some basis f is given by

Matf(ϕ
(f−1−j)) = A(f−1−j)s(τ)−1

j vµ(τ)j+ηj . (3.24)

This is the same matrix as in (3.16), hence T ∗
dd(M) ∼= ρ|GK∞ .

The uniqueness of M follows from Proposition 3.3.3.3, since M has height in [0, 2], τw̃ is
(N − 1)-generic and N − 1 ≥ 3.

Remark 3.4.1.4. For general w̃ ∈ Adm∨(t(2,1)), there could be some j, such that w̃f−1−j =
t(1,2) and af−1−j ̸= 0 (this can happen only when ρ is non-semisimple). In this case, the

above construction gives a matrix A(f−1−j) of shape wt(1,2) which belongs to Adm∨(t(3,0)) −
Adm∨(t(2,1)) (see Example 3.2.1.4), so there is still a Kisin module M ∈ Y ≤(3,0),τw̃(F) such that

T ∗
dd(M) ∼= ρ|GK∞ , which is unique up to isomorphism using Proposition 3.3.3.3 and N − 1 ≥ 4.

3.4.2 Single-type Galois deformation rings

In this subsection, we combine all the above preliminaries and compute the single-type
deformation rings following [BHH+23, Prop. 4.2.1] (which deals with the semisimple case).

Let ρ and (a0, . . . , af−1) ∈ Ff an f -tuple be as in §3.4.1. Fix w̃ ∈ X(ρ) (see (3.23)) and
let τw̃ be as in (3.19). We compute the Galois deformation ring of ρ for a single-type τw̃ and
Hodge–Tate weights ≤ (3, 0) (meaning Hodge–Tate weights (3, 0) or (2, 1) at each embedding).

Let M ∈ Y ≤(2,1),τw̃(F) such that T ∗
dd(M) ∼= ρ|GK∞ (see Lemma 3.4.1.3). By the proof of

Lemma 3.4.1.3, the associated matrix A
(j)

of M with respect to some eigenbasis β is of the
form:

A
(f−1−j)

=



e∗(j)11 v2 0

d
(j)
21 v

2 d
∗(j)
22 v

 if w̃f−1−j = t(2,1), 0 d
∗(j)
12 v

d
∗(j)
21 v2 d

(j)
22 v

 if w̃f−1−j = wt(2,1),d∗(j)11 v 0

0 e
∗(j)
22 v2

 if w̃f−1−j = t(1,2).

(3.25)
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Here we use the notation of Tables 3.1-3.3. Each element with “ ∗ ” (e.g. e
∗(j)
11 ) belongs to F×.

The element d
(j)
21 (resp. d

(j)
22 ) equals 0 if af−1−j = 0, and belongs to F× if af−1−j ̸= 0.

Let R
≤(3,0),τw̃
ρ denote the maximal reduced, O-flat quotient of the universal framed deforma-

tion ring R□
ρ that parametrizes potentially crystalline lifts of ρ of Hodge–Tate weights ≤ (3, 0)

in each embedding and tame inertial type τw̃ (its existence follows from [Kis08]). For each dom-

inant character λ ∈ X∗
+(T ), let R

λ,τw̃
ρ denote the maximal reduced, O-flat quotient of R□

ρ that
parametrizes potentially crystalline lifts of ρ of Hodge–Tate weights λj in the j-th embedding
for all j and tame inertial type τw̃.

The following result is a generalization of [BHH+23, Prop. 4.2.1] (where ρ was assumed to
be semisimple).

Theorem 3.4.2.1. Let w̃ ∈ X(ρ). We have an isomorphism

R
≤(3,0),τw̃
ρ [[X1, . . . , X2f ]] ∼=

(
Rτw̃

/∑
j
I(j)

)
[[Y1, . . . , Y4]], (3.26)

where Rτw̃
def
=
⊗̂

O,0≤j≤f−1R
(j), and where the rings R(j) and the ideals I(j) of Rτw̃ are found

in Tables 3.1-3.3. The irreducible components of SpecR
≤(3,0),τw̃
ρ are given by SpecRλ,τw̃ρ , where

λ = (λj) ∈ {(3, 0), (2, 1)}f . More precisely, via the isomorphism (3.26), for any choice of

λ = (λj) ∈ {(3, 0), (2, 1)}f the kernel of the natural surjection R
≤(3,0),τw̃
ρ [[X1, . . . , X2f ]] ↠

Rλ,τw̃ρ [[X1, . . . , X2f ]] is generated by the prime ideal
∑f−1

j=0 p
(j),λf−1−j of Rτw̃ , where the ideals

p(j),λf−1−j of Rτw̃ are found in Tables 3.1-3.3.

Moreover, the special fiber of each SpecRλ,τw̃ρ is reduced.

Proof. We follow the proof of [BHH+23, Prop. 4.2.1] and use without comment the notation of
loc.cit.

By (3.25) and Example 3.3.2.6 the eigenbasis β of M is a w̃-gauge basis in the sense of

Definition 3.3.2.3. We modify the definition of D
≤(3,0),τ

M,β
(R) appearing in the proof of [BHH+23,

Prop. 4.2.1] by requiring β to be a w̃-gauge basis instead of a gauge basis. Then by Remark

3.3.2.4, for any lift (M, β, ȷ) ∈ D
≤(3,0),τ

M,β
(R) the corresponding matrices A(f−1−j) are given in row

1 of Tables 3.1-3.3, where the entries c
(j)
11 , c

(j)
12 , . . . are in R satisfying A(f−1−j)modmR equals

A
(f−1−j)

. Here we remark that the matrix A(f−1−j) in row 1 of Table 3.2 has wt(2,1)-gauge but
has shape t(2,1) if af−1−j ̸= 0.

Row 2 of Tables 3.1-3.3 are obtained from row 1 by applying Proposition 3.3.3.2.

Let R(j) be the power series ring in row 3 of Tables 3.1-3.3. Its variables c11, . . . come from the
coefficients of the matrices A(f−1−j) in row 1 of Tables 3.1-3.3. The condition that M has height
≤ (3, 0) (see Definition 3.3.1.4), or equivalently the determinant condition appearing in Remark
3.3.2.4, is given by detA(f−1−j) ∈ R×(v + p)3. This gives the ideal I(j),≤(3,0) in row 4 of Tables
3.1-3.3. Then the argument of [LLHLM18, Thm. 4.17] shows that the deformation problem

D
≤(3,0),τ

M,β
is represented by the maximal reduced O-flat quotient of

⊗̂
O,0≤j≤f−1R

(j)/I(j),≤(3,0).

As in the proof of [BHH+23, Prop. 4.2.1], the monodromy condition given by [BHH+23,
Prop. 3.1.9] is equivalent to(

d

dv

)t ∣∣∣
v=−p

{[
v
d

dv
A(f−1−j) −A(f−1−j)

(
a(j) 0
0 0

)]
(v + p)3(A(f−1−j))−1

}
+O(pN−3−t) = 0

(3.27)
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for all 0 ≤ t ≤ 1, 0 ≤ j ≤ f −1. Here a(j) ∈ Z(p) is as in the proof of [BHH+23, Prop. 4.2.1] and

O(pN−3−t) is certain unspecified element of pN−3−tM2(R). Then the entries of the matrices
given by the left-hand side of (3.27) give the ideal I(j),∇ of Rτw̃ which are given in row 5 of
Tables 3.1-3.3. We remark that row 5 of Table 3.3 is not computed directly, but is computed
using the fact that the matrix A(f−1−j) of Table 3.3 can be conjugated to that of Table 3.1 by
the matrix ( 0 1

v 0 ).
We have a similar diagram as (5.9) of [LLHLM18]. The vertical map labelled “f.s.” in

loc.cit. now corresponds to forgetting the w̃-gauge basis on the Kisin modules, and is still
formally smooth by Proposition 3.3.2.7 which is a generalization of [LLHLM18, Thm. 4.1]

and [LLHLM18, Thm. 4.16]. Let R
≤(3,0),τ,∇
M,β

be the maximal reduced and O-flat quotient of

R
≤(3,0),τ

M,β
/
∑

j(I
(j),≤(3,0)+I(j),∇). Then the argument of [LLHLM18, Thm. 5.12] and [LLHLM18,

Cor. 5.13] goes through and gives an isomorphism

R
≤(3,0),τ
ρ [[X1, . . . , X2f ]] ∼= R

≤(3,0),τ,∇
M,β

[[Y1, . . . , Y4]].

The rest of the proof and the computations are completely analogous to those of [BHH+23,
Prop. 4.2.1] (see Remark 3.4.2.2 below). Here we notice that the equation (25) in [BHH+23,
Prop. 4.2.1] is guaranteed by our assumption on w̃. Finally, the proof of the last statement is
completely analogous to that of [BHH+23, Cor. 4.2.6].

Remark 3.4.2.2. The Tables 3.1-Table 3.3 are very similar to those of [BHH+23, §4]. The
main difference is that here the element d21 (resp. d22) of Table 3.1 (resp. Table 3.2) is a unit
in R(j) if and only if af−1−j ̸= 0.

3.4.3 Multi-type Galois deformation rings

In this subsection we compute the multi-type deformation rings following [BHH+23, Prop. 4.3.1]
(which deals with the semisimple case).

Let ρ and (a0, . . . , af−1) ∈ Ff be as in §3.4.1. For σ ∈W (ρ), let R
≤(3,0),σ
ρ denote the maximal

reduced, O-flat quotient of R□
ρ that parametrizes potentially crystalline lifts of ρ of Hodge–Tate

weights ≤ (3, 0) in each embedding and tame inertial type τ with τ ∈ X(σ), where X(σ) is as

in (3.22). By Lemma 3.4.1.1 and Remark 3.4.1.2, we see that SpecR
≤(3,0),σ
ρ is the flat closure

of
⋃
w̃∈X(σ) SpecR

≤(3,0),τw̃
ρ [1/p] inside SpecR□

ρ . Also, we denote w̃σ
def
= θ(σ) ∈

{
t(2,1), t(1,2)

}f
,

where θ is defined in Lemma 3.4.1.1.
We define a bijection i : Adm∨(t(2,1)) → {1, 2, 3}f by letting i(w̃) be the f -tuple given by

i(w̃)j
def
=


1 if w̃j = t(2,1)

2 if w̃j = wt(2,1)

3 if w̃j = t(1,2).

They will be the indices of ideals.
The following result is a generalization of [BHH+23, Prop. 4.3.1] (where ρ was assumed to

be semisimple).

Theorem 3.4.3.1. We have an isomorphism

R
≤(3,0),σ
ρ [[X1, . . . , X2f ]] ∼=

S/ ⋂
w̃∈X(σ)

∑
j

I
(j)
w̃

 [[Y1, . . . , Y4]], (3.28)
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where S
def
=
⊗̂

O,0≤j≤f−1S
(j), and where the ring S(j) and the ideals I

(j)
w̃ of S are as in Table

3.4 if (w̃σ)f−1−j = t(1,2), whereas the ring S(j) and the ideals I
(j)
w̃ of S are as in Table 3.5 if

(w̃σ)f−1−j = t(2,1). The irreducible components of SpecR
≤(3,0),σ
ρ are given by SpecRλ,τw̃ρ , where

λ = (λj) ∈ {(3, 0), (2, 1)}f and w̃ ∈ X(σ).

More precisely, via the isomorphism (3.28), for any choice of λ = (λj) ∈ {(3, 0), (2, 1)}f and

w̃ ∈ X(σ) the kernel of the natural surjection R
≤(3,0),σ
ρ [[X1, . . . , X2f ]] ↠ Rλ,τw̃ρ [[X1, . . . , X2f ]] is

generated by the prime ideal
∑f−1

j=0 p
(j),λf−1−j

w̃ of S, where the ideals p
(j),λf−1−j

w̃ of S are found
in Tables 3.4 and 3.5.

Proof. We follow the proof of [BHH+23, Prop. 4.3.1] and use without comment the notation of
loc.cit. The main difference in the non-semisimple case is that we need to modify the definition
of the map ψ of loc.cit. and to prove the Claim 1 of loc.cit. in this case.

Recall from (3.16) and (3.17) that there exist δ
(j)
12 , δ

(j)
21 ∈ F× and δ

(j)
22 ∈ F, such that

Mat(ϕ
(f−1−j)
M ) =

(
δ
(j)
12 v 0

δ
(j)
22 v δ

(j)
21 v

)
s−1
j vµ

′
j

where µ′j
def
= µj − (1, 1) = (rj +1, 0). Note that δ

(j)
22 = 0 if and only if af−1−j = 0. In particular,

if ρ is reducible nonsplit, there exists at least one j ∈ J , such that δ
(j)
22 ̸= 0. In this case we

fix one such j and denote it j0. Let [δ
(j)
12 ], [δ

(j)
21 ] ∈ O× and [δ

(j)
22 ] ∈ O be the Teichmuller lifts of

δ
(j)
12 , δ

(j)
21 ∈ F× and δ

(j)
22 ∈ F.

Let S
def
= S/

⋂
w̃∈X(σ)

∑
j I

(j)
w̃ . We consider the étale φ-module M over OE,S given by

Mat(ϕ
(f−1−j)
M ) =

(v + p)
(
[δ

(j)
12 ] + x

∗(j)
12

)
+ c

(j)
12 +

b
(j)
12
v

1
v

(
(v + p)d

(j)
11 + c

(j)
11

)
(v + p)

(
[δ

(j)
22 ] + x

(j)
22

)
+ c

(j)
22 (v + p)

(
[δ

(j)
21 ] + x

∗(j)
21

)
+ c

(j)
21 +

b
(j)
21
v

 s−1
j vµ

′
j

in a suitable basis, where b
(j)
21

def
= 0 if (w̃σ)f−1−j = t(1,2) and b

(j)
12

def
= 0 if (w̃σ)f−1−j = t(2,1). In

particular, we see that M⊗S F ∼= M.
Fix an F-basis γF of V∗

K(M) ∼= ρ|GK∞ . We demand moreover that γF,1, γF,2 span GK∞-

stable lines in case ρ is reducible split. Fix an S-basis γ of V∗
K(M) lifting γF. Denote S[[Y ]]

def
=

S[[Y1, Y2, Y3, Y4]]. Then the GK∞-representation V∗
K

(
M⊗̂SS[[Y ]]

) ∼= V∗
K(M)⊗̂SS[[Y ]] over S[[Y ]]

together with the basis
(
1+
(
Y1 Y2
Y3 Y4

) )
(γ⊗1) give rise to a homomorphism ψ0 : R

□
ρ|GK∞

→ S[[Y ]].

We extend ψ0 to a homomorphism ψ : R□
ρ|GK∞

[[X ′, X ′′]] → S[[Y ]] as follows:

ψ(X ′
j) =


x
∗(j)
12 if 0 ≤ j < f − 1 or ρ is irreducible;

Y1 if j = f − 1 and ρ is reducible split;

x
(j0)
22 if j = f − 1 and ρ is reducible nonsplit;

ψ(X ′′
j ) =

{
x
∗(j)
21 if 0 ≤ j < f − 1;

Y4 if j = f − 1.

Claim. The map ψ : R□
ρ|GK∞

[[X ′, X ′′]] → S[[Y ]] is surjective.

Now we prove the Claim following the proof of Claim 1 in [BHH+23, Prop. 4.3.1] (which
treats the semisimple case).
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We check that ψ is injective on reduced tangent vectors, i.e. on F[ε]/(ε2)-points: Let t0 :
S[[Y ]] → F → F[ε]/(ε2) be the zero vector, where the first map maps all the variables of S
and the variables Yi to 0. Fix one continuous homomorphism t : S[[Y ]] → F[ε]/(ε2) such that
t ◦ ψ = t0 ◦ ψ. The goal is to prove that t = t0.

Abusing notation, we write t(b
(j)
ik ) = εb

(j)
ik for some b

(j)
ik ∈ F on the right, and similarly

t(c
(j)
ik ) = εc

(j)
ik , t(d

(j)
ik ) = εd

(j)
ik , t(x

∗(j)
ik ) = εx

(j)
ik if (i, k) = (2, 1) or (1, 2), t(x

(j)
22 ) = εx

(j)
22 , and

t(Yi) = εyi. Since t ◦ ψ = t0 ◦ ψ, evaluating on the variables X ′ and X ′′ we deduce that

x
(j)
12 = x

(j)
21 = 0 for 0 ≤ j < f − 1, y4 = 0, and

x
(f−1)
12 = 0 if ρ is irreducible;

y1 = 0 if ρ is split reducible;

x
(j0)
22 = 0 if ρ is nonsplit reducible.

(3.29)

Moreover, by the definition of ψ0 and using t ◦ ψ = t0 ◦ ψ, there is an isomorphism

λ : MS[[Y ]]⊗̂S[[Y ]],tF[ε]/(ε
2)

∼→ MS[[Y ]]⊗̂S[[Y ]],t0
F[ε]/(ε2) (3.30)

of étale φ-modules over F[ε]/(ε2) which induces the identity ofMmodulo ε and such that V∗
K(λ)

sends the basis
(
1 + ε ( y1 y2y3 y4 )

)
(γ ⊗ 1) to γ ⊗ 1 on the corresponding GK∞-representations over

F[ε]/(ε2). In particular, the isomorphism λ is realized by the change of basis (i.e. φ-conjugation)
by a matrix of the form

1 + εMf−1−j ∈ GL2(OE,F[ε]/(ε2)),

for some Mf−1−j ∈ M2(OE,F) = M2

(
F((v))

)
. In other words,

(1 + εMj−1)

(
δ
(j)
12 0

δ
(j)
22 δ

(j)
21

)
s−1
j vµ

′
j (1− εφ(Mj))

=

(
δ
(j)
12 + ε(x

(j)
12 + c

(j)
12 v

−1 + b
(j)
12 v

−2) ε(d
(j)
11 v

−1 + c
(j)
11 v

−2)

δ
(j)
22 + ε(x

(j)
22 + c

(j)
22 v

−1) δ
(j)
21 + ε(x

(j)
21 + c

(j)
21 v

−1 + b
(j)
21 v

−2)

)
s−1
j vµ

′
j ,

(3.31)

where we have divided by v, and j is considered in Z/fZ as usual.
First we show that the matrix Mj ∈ M2

(
F[[v]]

)
for each j. Let kj ∈ Z be minimal such that

vkjMj ∈ M2

(
F[[v]]

)
. The equation (3.31) is equivalent to

1− εφ(Mj) = v−µ
′
jsj

(
δ
(j)
12 0

δ
(j)
22 δ

(j)
21

)−1

(1− εMj−1)

·

(
δ
(j)
12 + ε(x

(j)
12 + c

(j)
12 v

−1 + b
(j)
12 v

−2) ε(d
(j)
11 v

−1 + c
(j)
11 v

−2)

δ
(j)
22 + ε(x

(j)
22 + c

(j)
22 v

−1) δ
(j)
21 + ε(x

(j)
21 + c

(j)
21 v

−1 + b
(j)
21 v

−2)

)
s−1
j vµ

′
j .

Recall that µ′j = (rj + 1, 0), hence multiplying the right-hand side by vrj+1 · vkj−1 · v2 makes it
v-integral. Considering the left-hand side, it follows that pkj ≤ kj−1 + rj + 3 < kj−1 + p− 1 by
genericity. This implies p(maxj kj) < (maxj kj)+p−1, so maxj kj < 1, meaningMj ∈ M2

(
F[[v]]

)
for all j.

Comparing the coefficients of ε in (3.31) and multiplying on the right by v−µ
′
jsj , we get

Mj−1

(
δ
(j)
12 0

δ
(j)
22 δ

(j)
21

)
−

(
δ
(j)
12 0

δ
(j)
22 δ

(j)
21

)
s−1
j vµ

′
jφ(Mj)v

−µ′jsj

=

(
x
(j)
12 + c

(j)
12 v

−1 + b
(j)
12 v

−2 d
(j)
11 v

−1 + c
(j)
11 v

−2

x
(j)
22 + c

(j)
22 v

−1 x
(j)
21 + c

(j)
21 v

−1 + b
(j)
21 v

−2

)
.

(3.32)
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From now on we assume that ρ is reducible; the case for ρ irreducible is similar and is
contained in the proof of [BHH+23, Prop. 4.3.1]. In particular, we have sj = 1 for all j. If we

write Mj =

(
m

(j)
11 m

(j)
12

m
(j)
21 m

(j)
22

)
with m

(j)
ik ∈ F[[v]] and expand equation (3.32), we get

(
m

(j−1)
11 δ

(j)
12 +m

(j−1)
12 δ

(j)
22 m

(j−1)
12 δ

(j)
21

m
(j−1)
21 δ

(j)
12 +m

(j−1)
22 δ

(j)
22 m

(j−1)
22 δ

(j)
21

)

−

(
δ
(j)
12 φ(m

(j)
11 ) δ

(j)
12 v

rj+1φ(m
(j)
12 )

δ
(j)
22 φ(m

(j)
11 ) + δ

(j)
21 v

−(rj+1)φ(m
(j)
21 ) δ

(j)
22 v

rj+1φ(m
(j)
12 ) + δ

(j)
21 φ(m

(j)
22 )

)

=

(
x
(j)
12 + c

(j)
12 v

−1 + b
(j)
12 v

−2 d
(j)
11 v

−1 + c
(j)
11 v

−2

x
(j)
22 + c

(j)
22 v

−1 x
(j)
21 + c

(j)
21 v

−1 + b
(j)
21 v

−2

)
.

(3.33)

Compare the (1, 1), (1, 2), (2, 2)-entries. SinceM is v-integral, we deduce that c
(j)
12 = b

(j)
12 = 0,

d
(j)
11 = c

(j)
11 = 0, and c

(j)
21 = b

(j)
21 = 0 for all j.

Compare the (2, 1)-entries. Since the first term of the left-hand side is v-integral and the

right-hand side times v is integral, we deduce that v−rjφ(m
(j)
21 ) is v-integral (recall that δ

(j)
21 ∈

F×). Since rj ≥ 1, we get v | m(j)
21 in F[[v]]. Since p− (rj + 1) ≥ 0 by genericity, it follows that

the left-hand side of the (2, 1)-entry of (3.33) is v-integral, hence c
(j)
22 = 0 for all j.

Compare the (1, 2)-entries again. Now we have the equality m
(j−1)
12 δ

(j)
21 = δ

(j)
12 v

rj+1φ(m
(j)
12 )

for all j. Comparing the order of v and using δ
(j)
21 , δ

(j)
21 ∈ F× for all j, we easily deduce that

m
(j)
12 = 0 for all j.
Now the equation (3.33) becomes(

δ
(j)
12

(
m

(j−1)
11 − φ(m

(j)
11 )
)

0

δ
(j)
12 m

(j−1)
21 + δ

(j)
22

(
m

(j−1)
22 − φ(m

(j)
11 )
)
− δ

(j)
21 v

−(rj+1)φ(m
(j)
21 ) δ

(j)
21

(
m

(j−1)
22 − φ(m

(j)
22 )
))

=

(
x
(j)
12 0

x
(j)
22 x

(j)
21

)
.

(3.34)

Specializing the equation (3.34) at v = 0 and using that v | m(j)
21 in F[[v]] and p − (rj + 1) ≥ 1,

we get 
δ
(j)
12 (m

(j−1)
11 −m

(j)
11 )
∣∣
v=0

= x
(j)
12 ,

δ
(j)
22 (m

(j−1)
22 −m

(j)
11 )
∣∣
v=0

= x
(j)
22 ,

δ
(j)
21 (m

(j−1)
22 −m

(j)
22 )
∣∣
v=0

= x
(j)
21 .

(3.35)

By (3.29), x
(j)
12 = 0 for 0 ≤ j < f − 1, hence m

(j)
11

∣∣
v=0

does not depend on j and we denote

it m11. By (3.35) again, it follows that x
(f−1)
12 = 0. Similarly, x

(j)
21 = 0 for 0 ≤ j < f − 1 by

(3.29), hence m
(j)
22

∣∣
v=0

does not depend on j and we denote it m22. As previously, it follows

that x
(f−1)
21 = 0.

If ρ is reducible split, then δ
(j)
22 = 0 for all j, hence by the second equation of (3.35), we get

x
(j)
22 = 0 for all j.

If ρ is reducible non-split, we know by (3.29) that x
(j0)
22 = 0, hence by the second equation

of (3.35), we get m11 = m22 since δ
(j0)
22 ∈ F× by our choice of j0. Then by the second equation

of (3.35) again, we get x
(j)
22 = 0 for all j.
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As a result, the right-hand side of (3.32) vanishes and we conclude that (Mf−1−j)j ∈
Endφ-mod(M). Denote this endomorphism by ξ. Since the isomorphism (3.30) satisfies(

1 + εV∗
K(ξ)

) [(
1 + ε

(
y1 y2
y3 y4

))
(γ ⊗ 1)

]
= γ ⊗ 1,

it follows that V∗
K(ξ) = − ( y1 y2y3 y4 ) with respect to the basis γF. Moreover, we have

Endφ-mod(M) ∼= EndGK∞ (ρ|K∞) ∼= EndGK
(ρ)

by [BHH+23, Lemma 3.2.8].
If ρ is non-split reducible, then Endφ-mod(M) = F. As y4 = 0 we conclude from the formula

for V∗
K(ξ) that yi = 0 for all i.

If ρ is split reducible, then Endφ-mod(M) ∼= F × F. By our condition that γF,1, γF,2 each
span GK∞-stable lines, we conclude that y2 = y3 = 0. Using (3.29) we also have y1 = y4 = 0.

We have shown that t = t0, completing the proof of the Claim.

The rest of the proof and the computations are completely analogous to that of [BHH+23,
Prop. 4.3.1] (see Remark 3.4.3.2 below) using Theorem 3.4.2.1. As in the proof of Claim 2 of
loc.cit., one can identify the étale φ-modules between the tables via the change of variables
given by the following.

Figure 3.2: Change of variables between the tables

Table 3.1 e∗11 d11 c11 d21 c12 c21 d∗22 c22
Table 3.4 d∗12 c12 − pd∗12 b12 − pc12 d22 d11 c22 d∗21 c21

Table 3.3 d∗11 c11 d12 c12 c21 e∗22 d22 c22
Table 3.5 d∗12 c12 d11 c11 d22 d∗21 c21 − pd∗21 b21 − pc21

Remark 3.4.3.2. The Tables 3.4 and 3.5 are very similar to those of [BHH+23, §4]. The main
difference is that here the element d22 of Table 3.4 is a unit in R(j) if and only if af−1−j ̸= 0.

The following result is a generalization of [BHH+23, Prop. 4.3.3] (where ρ was assumed to
be semisimple).

Proposition 3.4.3.3. Keep the assumption of Theorem 3.4.3.1. Fix 0 ≤ j ≤ f − 1 and
w̃ ∈ X(σ) such that i(w̃)f−1−j = 2.

If (w̃σ)f−1−j = t(1,2), then we have p ∈ q
(j),(2,1)
1 ∩ q

(j),(2,1)
2 + p

(j),(3,0)
w̃ , where

q
(j),(2,1)
1

def
= (b12 − pc12, c11, c12 − pd∗12, c21, c22, d11) ,

q
(j),(2,1)
2

def
=

(
b12, c11, c12, c21, c22,

d11d22
d∗12d

∗
21

+ p

)
.

Here we omit the superscripts (j) for readability and we consider these as ideals of S.

If (w̃σ)f−1−j = t(2,1), then we have p ∈ q
(j),(2,1)
2 ∩ q

(j),(2,1)
3 + p

(j),(3,0)
w̃ , where

q
(j),(2,1)
2

def
=

(
b21, c11, c12, c21, c22,

d11d22
d∗12d

∗
21

+ p

)
,

q
(j),(2,1)
3

def
= (b21 − pc21, c11, c12, c21 − pd∗21, c22, d22) .
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Proof. The proof is purely computational and is completely analogous to that of [BHH+23,
Prop. 4.3.3] (see Remark 3.4.3.2).
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Table 3.1: w̃f−1−j = t(2,1) i.e. A
(f−1−j)

=

(
e∗11v

2 0

d21v
2 d∗22v

)
.

A(f−1−j)
(
(v + p)2e∗11 + (v + p)d11 + c11 c12

v((v + p)d21 + c21) (v + p)d∗22 + c22

)

φ-module at the
(

1
v

(
(v + p)2e∗11 + (v + p)d11 + c11

)
c12

(v + p)d21 + c21 (v + p)d∗22 + c22

)
s−1
j

(
vrj+1 0
0 1

)
(f − 1− j)-th embedding

R(j) O[[c11, d11, x
∗
11, c12, c21, x21, c22, x

∗
22]]

I(j),≤(3,0)

c11c22 + pc12c21,

d11c22 − c12c21 + c11d
∗
22 + pc12d21,

e∗11c22 + d11d
∗
22 − c12d21

I(j),∇

(a1 − 1)d11c22 + a1c11d
∗
22 + p(d11d

∗
22 + 2e∗11c22) +O(pN−4),

c22(a1c11 + pd11) +O(pN−3),

c12((a1 − 1)d11 + 2pe∗11) +O(pN−4),

c12(a1c11 + pd11) +O(pN−3),

(a1 − 1)c21c22 − p
(
(a1 − 3)d21c22 + (a1 + 1)c21d

∗
22

)
+O(pN−4),

p
(
(a1 − 1)c21c22 + p(d21c22 − c21d

∗
22)
)
+O(pN−3),

(a1 − 1)c12c21 + c11d
∗
22 − p

(
(a1 − 3)c12d21 + d11d

∗
22

)
+O(pN−4),

p
(
(a1 − 1)c12c21 + c11d

∗
22 + pc12d21

)
+O(pN−3)

I(j)
def
= (I(j),∇ + I(j),≤(3,0))p-sat

d11 + (a1 − 2)
c12d21
d∗22

+O(pN−8),

c22 − (a1 − 1)
c12d21
e∗11

+O(pN−8),

c21 +
(a1 − 1)(a1 − 2)

a1

c12(d21)
2

e∗11d
∗
22

+O(pN−8),

c11 −
c12d21
d∗22

(
(a1 − 1)2(a1 − 2)

a1

c12d21
e∗11d

∗
22

− p

)
+O(pN−8),(

c12 +O(pN−8)
)(

(a1 − 1)(a1 − 2)
c12d21
e∗11d

∗
22

− 2p+O(pN−8)
)

p(j),(2,1) I(j) +
(
c12 +O(pN−8)

)

p(j),(3,0) I(j) +
(
(a1 − 1)(a1 − 2)

c12d21
e∗11d

∗
22

− 2p+O(pN−8)
)

Here a1 ∈ Z(p) and a1 ≡ −⟨s−1
j (µj)− (2, 1), α∨

j ⟩ ≡ − sgn(sj)(rj + 1) + 1 (mod p). For

readability we write a1, cik, etc. instead of a
(j)
1 , c

(j)
ik , etc. Also note that x∗11

def
= e∗11 − [e∗11],

x∗22
def
= d∗22 − [d∗22] and x21

def
= d21 − [d21].
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Table 3.2: w̃f−1−j = wt(2,1) i.e. A
(f−1−j)

=

(
0 d∗12v

d∗21v
2 d22v

)
.

A(f−1−j)
(

(v + p)d11 + c11 (v + p)d∗12 + c12
v((v + p)d∗21 + c21) (v + p)d22 + c22

)

φ-module at the
(
(v + p)d∗12 + c12

1
v

(
(v + p)d11 + c11

)
(v + p)d22 + c22 (v + p)d∗21 + c21

)
s−1
j

(
vrj+1 0
0 1

)
(f − 1− j)-th embedding

R(j) O[[c11, d11, c12, x
∗
12, c21, x

∗
21, c22, x22]]

I(j),≤(3,0)

d11d22 − (c12d
∗
21 + d∗12c21) + pd∗12d

∗
21,

c12c21 − d11c22 − c11d22 − p(c12d
∗
21 + d∗12c21),

c11c22 + pc12c21

I(j),∇

(a2 − 1)d11c22 + a2c11d22 + p(d11d22 − 2d∗12c21 + pd∗12d
∗
21) +O(pN−4),

a2c11c22 + p(d11c22 + pd∗12c21) +O(pN−3),

(a2 + 1)c11d
∗
12 + (a2 − 1)d11c12 +O(pN−4),

a2c11c12 + p(d11c12 − c11d
∗
12) +O(pN−3),

(a2 − 1)c21c22 − p
(
(a2 − 3)d∗21c22 + (a2 + 1)c21d22

)
+O(pN−4),

p
(
(a2 − 1)c21c22 + p(d∗21c22 − c21d22)

)
+O(pN−3),

(a2 − 1)c12c21 + c11d22 − p
(
(a2 − 3)c12d

∗
21 + (a2 − 1)d∗12c21

+ d11d22 + pd∗12d
∗
21

)
+O(pN−4),

p
(
(a2 − 1)c12c21 + c11d22 + pc12d

∗
21

)
+O(pN−3)

I(j)
def
= (I(j),∇ + I(j),≤(3,0))p-sat

c21 + (a2 − 1)d∗21

(
d11d22
d∗12d

∗
21

+ p

)
+O(pN−8),

c12 − a2d
∗
12

(
d11d22
d∗12d

∗
21

+ p

)
+O(pN−8),

c11 +
a2(a2 − 1)

a2 + 1
d11

(
d11d22
d∗12d

∗
21

+ p

)
+O(pN−8),

c22 −
a2(a2 − 1)

a2 − 2
d22

(
d11d22
d∗12d

∗
21

+ p

)
+O(pN−8),(

d11d22
d∗12d

∗
21

+ p+O(pN−8)

)(
a2(a2 − 1)

(a2 − 2)(a2 + 1)

d11d22
d∗12d

∗
21

+ p+O(pN−8)

)

p(j),(2,1) I(j) +

(
d11d22
d∗12d

∗
21

+ p+O(pN−8)

)

p(j),(3,0) I(j) +

(
a2(a2 − 1)

(a2 − 2)(a2 + 1)

d11d22
d∗12d

∗
21

+ p+O(pN−8)

)

Here a2 ∈ Z(p) and a2 ≡ −⟨ws−1
j (µj)− (2, 1), α∨

j ⟩ ≡ sgn(sj)(rj + 1) + 1 (mod p). For

readability we write a2, cik, etc. instead of a
(j)
2 , c

(j)
ik , etc. Also note that

x∗12
def
= d∗12 − [d∗12], x

∗
21

def
= d∗21 − [d∗21] and x22

def
= d22 − [d22].
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Table 3.3: w̃f−1−j = t(1,2), i.e. A
(f−1−j)

=

(
d∗11v 0

0 e∗22v
2

)
.

A(f−1−j)
(
(v + p)d∗11 + c11 (v + p)d12 + c12

vc21 (v + p)2e∗22 + (v + p)d22 + c22

)

φ-module at the
(
(v + p)d∗11 + c11

1
v

(
(v + p)d12 + c12

)
vc21

1
v

(
(v + p)2e∗22 + (v + p)d22 + c22

)) s−1
j

(
vrj+1 0
0 1

)
(f − 1− j)-th embedding

R(j) O[[c11, x
∗
11, c12, d12, c21, c22, d22, x

∗
22]]

I(j),≤(3,0)

c11c22 + pc12c21,

c11d22 − c12c21 + d∗11c22 + pd12c21,

c11e
∗
22 + d∗11d22 − d12c21

I(j),∇

a3c11d22 + (a3 − 1)d∗11c22 − p(d∗11d22 + 2c11e
∗
22) +O(pN−4),

c11
(
(a3 − 1)c22 − pd22

)
+O(pN−3),

c21(a3d22 − 2pe∗22) +O(pN−4),

c21
(
(a3 − 1)c22 − pd22

)
+O(pN−3),

a3c11c12 − p
(
(a3 + 2)c11d12 + (a3 − 2)d∗11c12

)
+O(pN−4),

p
(
a3c11c12 − p(c11d12 − d∗11c12)

)
+O(pN−3),

a3c12c21 − d∗11c22 − p
(
(a3 + 2)d12c21 − d∗11d22

)
+O(pN−4),

p
(
a3c12c21 − d∗11c22 − pd12c21

)
+O(pN−3)

I(j)
def
= (I(j),∇ + I(j),≤(3,0))p-sat

d22 − (a3 + 1)
d12c21
d∗11

+O(pN−8),

c11 + a3
d12c21
e∗22

+O(pN−8),

c12 −
a3(a3 + 1)

a3 − 1

(d12)
2c21

d∗11e
∗
22

+O(pN−8),

c22 −
d12c21
d∗11

(
(a3)

2(a3 + 1)

a3 − 1

d12c21
d∗11e

∗
22

− p

)
+O(pN−8),

(
c21 +O(pN−8)

)(
a3(a3 + 1)

d12c21
d∗11e

∗
22

− 2p+O(pN−8)

)

p(j),(2,1) I(j) +
(
c21 +O(pN−8)

)

p(j),(3,0) I(j) +

(
a3(a3 + 1)

d12c21
d∗11e

∗
22

− 2p+O(pN−8)

)

Here a3 ∈ Z(p) and a3 ≡ −⟨s−1
j (µj)− (1, 2), α∨

j ⟩ ≡ − sgn(sj)(rj + 1)− 1 (mod p). For

readability we write a3, cik, etc. instead of a
(j)
3 , c

(j)
ik , etc. Also, x∗11

def
= d∗11 − [d∗11] and

x∗22
def
= e∗22 − [e∗22]. Note that we necessarily have af−1−j = 0 in this case.
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Table 3.4: Multi-type: (w̃σ)f−1−j = t(1,2), so w̃f−1−j = t(2,1) and wt(2,1).

Multi-type φ-module at
(
(v + p)d∗12 + c12 +

b12
v

1
v

(
(v + p)d11 + c11

)
(v + p)d22 + c22 (v + p)d∗21 + c21

)
s−1
j

(
vrj+1 0
0 1

)
the (f − 1− j)-embedding

S(j) O[[c11, d11, b12, c12, x
∗
12, c21, x

∗
21, c22, x22]]

I
(j)
w̃ , i(w̃)f−1−j = 1

c11 + pd11,

c12 − pd∗12 + (a1 − 2)
d11d22
d∗21

+O(pN−8),

c21 − (a1 − 1)
d11d22
d∗12

+O(pN−8),

c22 +
(a1 − 1)(a1 − 2)

a1

d11(d22)
2

d∗12d
∗
21

+O(pN−8),

b12 − pc12 −
d11d22
d∗21

(
(a1 − 1)2(a1 − 2)

a1

d11d22
d∗12d

∗
21

− p

)
+O(pN−8),(

d11 +O(pN−8)
)(

(a1 − 1)(a1 − 2)
d11d22
d∗12d

∗
21

− 2p+O(pN−8)
)

I
(j)
w̃ , i(w̃)f−1−j = 2

b12,

c21 + (a2 − 1)d∗21

(
d11d22
d∗12d

∗
21

+ p

)
+O(pN−8),

c12 − a2d
∗
12

(
d11d22
d∗12d

∗
21

+ p

)
+O(pN−8),

c11 +
a2(a2 − 1)

a2 + 1
d11

(
d11d22
d∗12d

∗
21

+ p

)
+O(pN−8),

c22 −
a2(a2 − 1)

a2 − 2
d22

(
d11d22
d∗12d

∗
21

+ p

)
+O(pN−8),(

d11d22
d∗12d

∗
21

+ p+O(pN−8)

)(
a2(a2 − 1)

(a2 − 2)(a2 + 1)

d11d22
d∗12d

∗
21

+ p+O(pN−8)

)

p
(j),(2,1)
w̃ , i(w̃)f−1−j = 1 I

(j)
w̃ +

(
d11 +O(pN−8)

)

p
(j),(3,0)
w̃ , i(w̃)f−1−j = 1 I

(j)
w̃ +

(
a2(a2 − 1)

(a2 − 2)(a2 + 1)

d11d22
d∗12d

∗
21

+ p+O(pN−8)

)

p
(j),(2,1)
w̃ , i(w̃)f−1−j = 2 I

(j)
w̃ +

(
d11d22
d∗12d

∗
21

+ p+O(pN−8)

)

p
(j),(3,0)
w̃ , i(w̃)f−1−j = 2 I

(j)
w̃ +

(
a2(a2 − 1)

(a2 − 2)(a2 + 1)

d11d22
d∗12d

∗
21

+ p+O(pN−8)

)

For readability we write ai, cik, etc. instead of a
(j)
i , c

(j)
ik , etc. Also note that

x∗12
def
= d∗12 − [d∗12], x

∗
21

def
= d∗21 − [d∗21] and x22

def
= d22 − [d22]. Note that the constants a1

and a2 and the O(pN−8) tails coming from Tables 3.1-3.2 (by the change of variables in
Figure 3.2) depend on the whole f -tuple w̃ ∈ X(σ).

52



Table 3.5: Multi-type: (w̃σ)f−1−j = t(2,1), so w̃f−1−j = wt(2,1) and t(1,2).

Multi-type φ-module at
(
(v + p)d∗12 + c12

1
v

(
(v + p)d11 + c11

)
(v + p)d22 + c22 (v + p)d∗21 + c21 +

b21
v

)
s−1
j

(
vrj+1 0
0 1

)
the (f − 1− j)-embedding

S(j) O[[c11, d11, c12, x
∗
12, b21, c21, x

∗
21, c22, x22]]

I
(j)
w̃ , i(w̃)f−1−j = 2

b21,

c21 + (a2 − 1)d∗21

(
d11d22
d∗12d

∗
21

+ p

)
+O(pN−8),

c12 − a2d
∗
12

(
d11d22
d∗12d

∗
21

+ p

)
+O(pN−8),

c11 +
a2(a2 − 1)

a2 + 1
d11

(
d11d22
d∗12d

∗
21

+ p

)
+O(pN−8),

c22 −
a2(a2 − 1)

a2 − 2
d22

(
d11d22
d∗12d

∗
21

+ p

)
+O(pN−8),(

d11d22
d∗12d

∗
21

+ p+O(pN−8)

)(
a2(a2 − 1)

(a2 − 2)(a2 + 1)

d11d22
d∗12d

∗
21

+ p+O(pN−8)

)

I
(j)
w̃ , i(w̃)f−1−j = 3

c22 + pd22,

c21 − pd∗21 − (a3 + 1)
d11d22
d∗12

+O(pN−8),

c12 + a3
d11d22
d∗21

+O(pN−8),

c11 −
a3(a3 + 1)

a3 − 1

(d11)
2d22

d∗12d
∗
21

+O(pN−8),

b21 − pc21 −
d11d22
d∗12

(
(a3)

2(a3 + 1)

a3 − 1

d11d22
d∗12d

∗
21

− p

)
+O(pN−8),

(
d22 +O(pN−8)

)(
a3(a3 + 1)

d11d22
d∗12d

∗
21

− 2p+O(pN−8)

)

p
(j),(2,1)
w̃ , i(w̃)f−1−j = 2 I

(j)
w̃ +

(
d11d22
d∗12d

∗
21

+ p+O(pN−8)

)

p
(j),(3,0)
w̃ , i(w̃)f−1−j = 2 I

(j)
w̃ +

(
a2(a2 − 1)

(a2 − 2)(a2 + 1)

d11d22
d∗12d

∗
21

+ p+O(pN−8)

)

p
(j),(2,1)
w̃ , i(w̃)f−1−j = 3 I

(j)
w̃ +

(
d22 +O(pN−8)

)

p
(j),(3,0)
w̃ , i(w̃)f−1−j = 3 I

(j)
w̃ +

(
a3(a3 + 1)d11d22d∗12d

∗
21

− 2p+O(pN−8)

)

For readability we write ai, cik, etc. instead of a
(j)
i , c

(j)
ik , etc. Also, x∗12

def
= d∗12 − [d∗12],

x∗21
def
= d∗21 − [d∗21] and x22

def
= d22. Note that we necessarily have af−1−j = 0 in this case.

Also note that the constants a2 and a3 and the O(pN−8) tails coming from Tables 3.2-3.3
(by the change of variables in Figure 3.2) depend on the whole f -tuple w̃ ∈ X(σ).
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3.5 Gelfand–Kirillov dimension and representations of GL2

In this section, we recall a criterion that gives an upper bound for the Gelfand–Kirillov
dimension of certain admissible smooth representations of GL2(K) over F. This criterion is
given in [BHH+23, §6] and is used in the semisimple case. It works in the non-semisimple case
as well by the result of [HW22, §4].

We introduce some notation. Let I ⊆ GL2(OK) be the subgroup of upper triangular matrices
modulo p. Let I1 ⊆ I be its maximal pro-p subgroup, which is the subgroup of upper unipotent

matrices modulo p. Let K1
def
= 1 + pM2(OK) ⊆ GL2(OK) be the first congruence subgroup.

Let Z be the center of GL2(K) and let Z1
def
= Z ∩ K1. Let mK1 denote the unique maximal

ideal of the Iwasawa algebra F[[K1/Z1]]. The ideal of F[[GL2(OK)/Z1]] generated by mK1 under
the natural inclusion F[[K1/Z1]] ↪→ F[[GL2(OK)/Z1]] is also denoted by mK1 when there is no

possible confusion. We denote Γ
def
= GL2(k) and Γ̃

def
= F[[GL2(OK)/Z1]]/m

2
K1

.
Let ρ : GK → GL2(F) be as in §3.4.1 (see (3.15)). Recall that [HW22, §4.1] constructs a

finite dimensional representation D̃0(ρ) of (the non-commutative ring) Γ̃ over F (generalizing
the constructions of [BP12, §13]) characterized by the following properties:

(i) soc
Γ̃
D̃0(ρ) =

⊕
σ∈W (ρ) σ,

(ii) for each σ ∈W (ρ), we have [D̃0(ρ) : σ] = 1,
(iii) D̃0(ρ) is maximal with respect to properties (i) and (ii).

We have a decomposition of Γ̃-representations D̃0(ρ) =
⊕

σ∈W (ρ) D̃0,σ(ρ), where each D̃0,σ(ρ)

satisfies soc
Γ̃
D̃0,σ(ρ) = σ. We have D̃0(ρ)

K1 ∼= D0(ρ), which is the representation of Γ over F
defined in [BP12, §13]. We also define the I-representation D1(ρ)

def
= D0(ρ)

I1 = D̃0(ρ)
I1 .

The following proposition comes from [HW22, Thm. 4.6].

Proposition 3.5.1. The representation D̃0(ρ) of Γ̃ over F is multiplicity-free.

One can describe explicitly the structure of each D̃0,σ(ρ), where σ ∈ W (ρ). We use the
notation of §3.2.3. Let λ ∈ X1(T ) be such that σ ∼= F (λ). By (3.18) and Lemma 3.2.3.4 there
exist a subset Jρ,σ ⊆ {0, . . . , f − 1} and elements εj ∈ {±1} for each j ∈ Jρ,σ, such that

W (ρ) = {F (tλ(b0, . . . , bf−1)) : bj ∈ {0, εj} if j ∈ Jρ,σ and bj = 0 if j /∈ Jρ,σ} . (3.36)

Then by the same argument as in [BP12, Prop. 13.4] together with [HW22, Lemma 4.8], [HW22,
Cor. 2.35] and the translation formula (3.10), the multiplicity-free representation D̃0,σ(ρ) has
Jordan–Hölder factors

JH(D̃0,σ(ρ)) =

{
σa

def
= F (tλ(a0, . . . , af−1)) : aj ∈ Z, sgn(aj) ̸= εj for j ∈ Jρ,σ,

f−1∑
j=0

[
|aj |
2

]
≤ 1

}
(3.37)

and its submodule structure is determined as follows: the unique subrepresentation of D̃0,σ(ρ)
with cosocle σa has constituents σb for all b such that each bj is between 0 and aj . Here for
x ∈ R, we denote by [x] the largest integer which is smaller than or equal to x.

The following proposition comes from [BHH+23, Cor. 6.3.13.(i)] where the assumption that
ρ is semisimple is not used in the proof of loc.cit.

Proposition 3.5.2. Fix mσ ∈ Z≥0 for each σ ∈ W (ρ). There exists a unique (up to isomor-

phism) finite dimensional representation V of Γ̃ over F such that

(i) soc
Γ̃
V =

⊕
σ∈W (ρ) σ

mσ ,
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(ii) for each σ ∈W (ρ), we have [V : σ] = mσ,
(iii) V is maximal with respect to properties (i) and (ii).

Proof. We use the same argument as in the proof of [BHH+23, Cor. 6.3.13(i)]. In particular,
we can take V to be

⊕
σ∈W (ρ) D̃0,σ(ρ)

mσ .

Now we give a generalization of [BHH+23, Thm. 6.4.7] where ρ was assumed to be semisim-
ple. This gives an upper bound for the Gelfand–Kirillov dimension dimGL2(K)(π) of some ad-
missible smooth representations π of GL2(K) over F. We refer to [BHH+23, §5] for the notion
of the Gelfand–Kirillov dimension.

Theorem 3.5.3. Let π be an admissible smooth representation of GL2(K) over F with a central
character. Assume that:

(i) we have JH(socGL2(OK)(π)) =W (ρ) up to multiplicity,
(ii) for each σ ∈W (ρ), we have [π[m2

K1
]|GL2(OK) : σ] = [socGL2(OK) π : σ],

(iii) we have JH(πI1) = JH(D1(ρ)) up to multiplicity (as I-representations).

Then dimGL2(K)(π) ≤ f .

Proof. The proof is analogous to that of [BHH+23, Thm. 6.4.7]. For ρ not necessarily semisim-
ple, the condition (a) of [BHH+23, §6.4] is guaranteed by Proposition 3.5.2. The condition (b)
of loc.cit. is guaranteed by Proposition 3.5.1 and (3.37). Finally the condition (c) of loc.cit. is
a consequence of [BHH+23, Lemma 6.4.3].

3.6 Global applications

In this section, we use the machinery of patching functors introduced by [EGS15] to prove
the main global results: Theorem 3.6.3.1. We follow closely [BHH+23, §8] which deals with the
semisimple case.

3.6.1 Patching functors

In this subsection, we recall the global setting following [BHH+23, §8.1], to which we refer
the reader for more references and details.

We assume p > 5 and E unramified, so that O =W (F).
We fix F a totally real number field in which p is unramified. We denote by Sp the set of

places of F above p. We refer to §3.1 for the notation OF , Fw, OFw , Frobw and A∞
F . We fix a

place v ∈ Sp.

We fix D a quaternion algebra with center F which is split at places above p and at exactly
one infinite place (called the indefinite case) or at no infinite places (called the definite case).
In the indefinite case we assume that (D,F ) ̸= (GL2,Q) since our main theorem is already
known in this case. We denote by SD the set of finite places where D ramifies. We fix a maximal

orderOD ofD and isomorphisms (OD)w
∼→ M2(OFw) for w /∈ SD, where (OD)w

def
= OD⊗OF

OFw .

We fix r : GF → GL2(F) a continuous representation and set rw
def
= r|GFw

. Let Sr be the
set of finite places where r ramifies. We assume that

(i) r|GF ( p√1)
is absolutely irreducible;

(ii) for each w ∈ (SD ∪ Sr) \ Sp, the universal framed deformation ring Rrw of rw over W (F)
is formally smooth over W (F);
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(iii) for each w ∈ Sp, rw is generic in the sense of [BP12, Def. 11.7]. In particular we have
Sp ⊆ Sr;

(iv) rv (equivalently r∨v ) is one of the following forms up to twist:

(a) rv|IFv
∼=

(
ω
∑f−1

j=0 (rj+1)pj

f ∗
0 1

)
with 12 ≤ ri ≤ p− 15,

(b) rv|IFv
∼=

ω∑f−1
j=0 (rj+1)pj

2f 0

0 ω
pf

∑f−1
j=0 (rj+1)pj

2f

 with 13 ≤ r0 ≤ p − 14 and 12 ≤ ri ≤

p− 15 for i > 0, where f
def
= [Fv : Qp];

Assume first that we are in the indefinite case, for each compact open subgroup V ≤ (D⊗FA∞
F )×

let XV be the associated smooth projective algebraic Shimura curve over F (see e.g. [BD14,
§3.1] and the references therein). We assume moreover that

(v) there exists V such that

HomGF

(
r,H1

ét(XV ×F F ,F)
)
̸= 0. (3.38)

We let ψ : GF →W (F)× be the Teichmüller lift of ω det r and set ψw
def
= ψ|GFw

.
Exactly as in [BHH+23, §8.1], we fix a finite place w1, a finite set of places S, a compact open

subgroup U =
∏
w Uw ⊆

∏
w(OD)

×
w ⊆ (D⊗FA∞

F )× which in particular satisfies Uw ∼= GL2(OFw)

for each w ∈ Sp, a tame inertial type τw such that JH(σ(τw)∨) = JH(σ(τ∨w )) contains exactly
one Serre weight in W (r∨w) for each w ∈ Sp \ {v}, and a GL2(OFw)-invariant lattice σ

0(τ∨w ) in
σ(τ∨w ) = σ(τw)

∨ for each w ∈ Sp \ {v}.
Then as in [EGS15, §6] we can define a patching functorM∞ from the category of continuous

representations σv of Uv ∼= GL2(OFv) on finite typeW (F)-modules with central character ψ|−1
IFv

◦
ArtFv |O×

Fv
to the category of finite type R∞-modules, where

R∞ ∼= Rψv

rv
[[X1, . . . , Xg]]

for some integer g. Here Rψv

rv
is the framed deformation ring of rv with fixed determinant ε−1ψv.

We denote by m∞ the maximal ideal of R∞ and for w ∈ Sp \ {v} let σw be the unique Serre

weight in W (r∨w) that appears in JH(σ(τ∨w )). We have

M∞(σv)/m∞ ∼= HomUv/Vv

(
σv,HomUv/V v

(
⊗w∈Sp\{v} σw,HomGF

(
r,H1

ét(XV ×F F ,F)
)))∨
(3.39)

for any V =
∏
Vw ⊆ (D⊗F A∞

F )× such that Vw = Uw if w /∈ Sp and Vw ⊆ 1+pM2(OFw) normal
in GL2(OFw) if w ∈ Sp, and for any representation σv of GL2(OFv) over W (F) on which Vv acts
trivially. Moreover, we have M∞(σv) ̸= 0 if and only if JH(σv) ∩W (r∨v ) ̸= ∅.

The definite case is analogous to the indefinite one. In this case, the space

HomGF

(
r,H1

ét(XV ×F F ,F)
)

in (3.38) is replaced by S(V,F)[m], where

S(V,F) def
= {f : D× \ (D ⊗F A∞

F )×/V → F}

and m is generated by Tw − SwTr(r(Frobw)),Norm(w) − Swdet(r(Frobw)) for w /∈ S ∪ {w1}
such that Vw = (OD)

×
w , with Tw, Sw acting on S(V,F) (via right translation on functions)
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respectively by V
(
ϖw 0
0 1

)
V , V

(
ϖw 0
0 ϖw

)
V , where ϖw is any uniformizer in Fw. Then, (3.39) is

replaced by

M∞(σv)/m∞ ∼= HomUv/Vv

(
σv,HomUv/V v

(
⊗w∈Sp\{v} σw, S(V,F)[m]

))∨
. (3.40)

3.6.2 Freeness for projective envelopes

In this subsection, we prove the freeness of some patched modules following [BHH+23,
§8.2, §8.3] (which deals with the semisimple case). The main result is Proposition 3.6.2.4.

We keep the notation of §3.5 with K
def
= Fv and let kv be the residue field of Fv. In

particular we have Γ = GL2(kv) and Γ̃ = F[[GL2(OFv)/Z1]]/m
2
K1
. For σ a Serre weight, we

let Pσ
def
= ProjΓ σ be the projective envelope of σ in the category of F[Γ]-modules, P̃σ be the

projective O[Γ]-module lifting Pσ and Proj
Γ̃
σ be the projective envelope of σ in the category

of Γ̃-modules.

Let M∞ be the patching functor defined in §3.6.1. If A is a ring and M is an A-module,
we define the scheme-theoretic support of M to be the quotient A/AnnA(M). For each τ
a tame inertial type and λ = (aj , bj)j ∈ X∗(T ) with aj > bj for each j, we define

Rλ,τ∞
def
= R∞ ⊗Rr∨v

Rλ,τ
r∨v
,

where Rλ,τ
r∨v

parametrizes potentially crystalline lifts of r∨v of Hodge–Tate weights (aj , bj) in the

j-th embedding σj : Fv ↪→ E and inertial type τ . When aj = a and bj = b for all j we write

R
(a,b),τ
∞ .

The following proposition is a generalization of [BHH+23, Prop. 8.2.3] (where rv was assumed
to be semisimple).

Proposition 3.6.2.1. There exists an integer r ≥ 1 such that

(i) for all σv ∈W (r∨v ) the module M∞(σv) is free of rank r over its scheme-theoretic support,
which is formally smooth over F.

(ii) for all tame inertial type τ such that JH(σ(τ)) ∩W (r∨v ) ̸= ∅ and all GL2(OFv)-invariant
W (F)-lattices σ0(τ) in σ(τ) with irreducible cosocle, the module M∞(σ0(τ)) is free of rank

r over its scheme-theoretic support R
(1,0),τ
∞ , which is a domain.

Proof. The proof is analogous to the one of [BHH+23, Thm. 8.2.3]. In the case |J | = 2 (see
the fourth paragraph of the proof of loc.cit.), we used the “connectedness” of W (r∨v ) by non-
split extensions to deduce that M∞(σ) has the same rank over its scheme-theoretic support
for σ ∈ W (r∨v ). In general the Serre weights in W (r∨v ) can still be “connected” by non-split
extensions by (3.18) and [BHH+23, Lemma 2.4.6].

Lemma 3.6.2.2. Let A be a ring which is p-torsion free and M be an A-module which can be
generated by d elements for some d ≥ 1. If M [1p ] is free of rank d over A[1p ], then M is free of
rank d over A.

Proof. We have a surjective map of A-modules f : A⊕d ↠ M . By [Mat89, Thm. 2.4], f is an
isomorphism after inverting p. Hence f is also injective since A is p-torsion free.

The following proposition is a generalization of [BHH+23, Prop. 8.2.6] (where rv was assumed
to be semisimple).

57



Proposition 3.6.2.3. Let r be the integer as in Proposition 3.6.2.1. If σv ∈ W (r∨v ), then
M∞(P̃σv) is free of rank r over R∞/ ∩τ pτ , where τ runs over all tame inertial types such that

σv ∈ JH(σ(τ)) and pτ is the prime ideal Ker(R∞ ↠ R
(1,0),τ
∞ ) of R∞.

Proof. The strategy of the proof is very close to the one of [Le19, Thm. 4.9] which treats the
case r = 1. We freely use the notation from loc.cit.

First we show that M∞(Rµ/Fil
2
⊗Rµ) is free of rank r over its scheme-theoretic support (see

[Le19, Lemma 4.3]), where Rµ is the same as Pσv and Fil2⊗Rµ is a certain submodule of Rµ
defined in [LMS22, §3]. The argument of [Le19, Lemma 4.3] gives a tame inertial type τ and a
GL2(OFv)-invariant W (F)-lattice σ0(τ) in σ(τ) such that

M∞(Rµ/Fil
2
⊗Rµ)

∼=M∞
(
σ0(τ)/ rad2 σ0(τ)

)
,

where σ0(τ) is the reduction modulo p of σ0(τ) and rad2 σ0(τ)
def
= rad

(
radσ0(τ)

)
is the radical

of the radical of σ0(τ) as an F[GL2(OFv)]-module. By the notation of the proof of [BHH+23,
Prop. 8.2.3] based on [EGS15, §10.1], the representation σ0(τ)/ rad2 σ0(τ) has the form σJ0 for
some capped interval J0 ⊆ {0, . . . , f − 1}. Hence M∞

(
σ0(τ)/ rad2 σ0(τ)

)
is free of rank r over

its scheme-theoretic support by the proof of [BHH+23, Prop. 8.2.3].
Next we show that if I ⊆ S is such that

∣∣I ∩ {±ω(i)}
∣∣ + ∣∣Sσρ ∩ {±ω(i)}

∣∣ = 1 for each

0 ≤ i ≤ f − 1, then M∞(R̃µ,I) is free of rank r over its scheme-theoretic support, which

is R∞ ⊗Rρ R
Tσ,I
ρ (see [Le19, Prop. 4.6, Prop. 4.7]). Here S = {±ω(i)}0≤i≤f−1 whose subsets

parametrize the Serre weights that appear in Rµ, ρ is the same as r∨v , S
σ
ρ is a subset of S

satisfying W (ρ) = {σJ |J ⊂ Sσρ }, R̃µ is the same as P̃σv , R̃µ,I is a certain quotient of R̃µ, Tσ,I is

the set of tame inertial types that appear as subquotients in the Γ-representation R̃µ,I [1/p] over

E and R
Tσ,I
ρ is the maximal reduced O-flat quotient of Rρ parametrizing potentially crystalline

framed deformations of ρ of Hodge–Tate weights (1, 0) at each embedding and inertial type in
Tσ,I . In fact, the argument of [Le19, Prop. 4.6] shows that M∞(R̃µ,I) is minimally generated by

r elements, and the argument of [Le19, Prop. 4.7] shows that M∞(R̃µ,I) has scheme-theoretic

support R∞ ⊗Rρ R
Tσ,I
ρ which is p-torsion free. Moreover, by exactness of M∞ we have

M∞
(
R̃µ,I

)
[1/p] ∼=

⊕
τ∈Tσ,I

M∞(σ0(τ))[1/p]

for any choices of GL2(OFv)-stableW (F)-lattices σ0(τ) ⊂ σ(τ). In particular, we can take σ0(τ)
to have irreducible cosocle (see [EGS15, Lemma 4.1.1]). By Proposition 3.6.2.1 and the fact that
the supports ofM∞(σ0(τ))[1/p] are pairwise disjoint for τ ∈ Tσ,I , it follows thatM∞

(
R̃µ,I

)
[1/p]

is free of rank r over
(
R∞ ⊗Rρ R

Tσ,I
ρ

)
[1/p]. We deduce from Lemma 3.6.2.2 that M∞(R̃µ,I) is

free is rank r over its scheme-theoretic support, which is R∞ ⊗Rρ R
Tσ,I
ρ .

Then we show that if I ⊆ S is such that
∣∣I ∩ {±ω(i)}

∣∣ + ∣∣Sσρ ∩ {±ω(i)}
∣∣ ≤ 1 for each

0 ≤ i ≤ f − 1, then M∞(R̃µ,I) is free of rank r over its scheme-theoretic support, which is

R∞ ⊗Rρ R
Tσ,I
ρ (see [Le19, Thm. 4.9]). The proof is completely analogous to that of [Le19,

Thm. 4.9].
In particular if we take I = ∅ so that we have R̃µ,∅ = R̃µ = P̃σv , we get thatM∞(P̃σv) is free

of rank r over its scheme-theoretic support, which is R∞ ⊗Rρ R
Tσ,∅
ρ . Moreover, by the Chinese

remainder theorem we have(
R∞ ⊗Rρ R

Tσ,∅
ρ

)
[1/p] ∼=

⊕
τ

(
R∞/pτ

)
[1/p] ∼=

(
R∞/ ∩τ pτ

)
[1/p],

58



where τ runs over all tame inertial types such that σv ∈ JH(σ(τ)). Since both R∞/pτ and

R
(1,0),τ
∞ are p-torsion free O-algebras, we deduce that

R∞ ⊗Rρ R
Tσ,∅
ρ

∼= R∞/ ∩τ pτ .

Finally, each pτ is a prime ideal because R∞/pτ = R
(1,0),τ
∞ is a domain by [EGS15, Thm. 7.2.1].

Now we recall from [BHH+23, §7.3] the construction of a GL2(OFv)-representation R over
W (F) such that R/pR ∼= Proj

Γ̃
σv.

We define L−1
def
= P̃σv and R2,j

def
=
(
Sym2W (F)2 ⊗ det−1

)(j) ⊗W (F) P̃σv for each j =
0, . . . , f − 1, where “(j)” means that the matrices of GL2(OFv) act via the j-th embedding
σj : OFv ↪→W (F). For each j there is an isomorphism (see [BHH+23, (55)])

R2,j/pR2,j
∼= Pσv ⊕ Pσ

v+
j

⊕ Pσ
v−
j

(3.41)

for some Serre weights σv+j
and σv−j

. The isomorphism (3.41) induces an inclusion

ιj : Pσv ↪→ R2,j/pR2,j .

As in the paragraph before [BHH+23, Lem. 8.3.2], we define a GL2(OFv)-lattice R
′
2,j in R2,j [1/p]

by

R′
2,j

def
= Pσv ×R2,j/p R2,j = {x ∈ R2,j : (xmod pR2,j) ∈ ιj(Rσv)}.

We also define a GL2(OFv)-lattice Lj in L−1[1/p]⊕
(⊕j

j′=0R2,j [1/p]
)
by

Lj
def
=

{
(x, (xj′)0≤j′≤j) ∈ L−1 ⊕ (⊕j

j′=0R2,j) : (xj′ mod pR2,j′) = (xmod pL−1)

via ιj′ : L−1/pL−1 ↪→ R2,j′/pR2,j′ ∀ 0 ≤ j′ ≤ j

}
,

which is equivalent to defining

Lj = Lj−1 ×Pσv
R′

2,j

for each 0 ≤ j ≤ f − 1 (see [BHH+23, (8)]). We define R
def
= Lf−1. It satisfies R/pR ∼= Proj

Γ̃
σv

(see [BHH+23, Cor. 7.3.4]).

Let r be the integer as in Proposition 3.6.2.1. The following proposition is a generaliza-
tion of [BHH+23, Thm. 8.3.4], [BHH+23, Thm. 8.3.9], [BHH+23, Cor. 8.3.10] and [BHH+23,
Thm. 8.3.11] (where rv was assumed to be semisimple).

Proposition 3.6.2.4. (i) For each 0 ≤ j ≤ f − 1, the module M∞(R′
2,j) is free of rank r

over R∞/ ∩τ pτ , where τ runs over all tame inertial types such that σv ∈ JH(σ(τ)) and

pτ is the prime ideal Ker(R∞ ↠ R
(2,−1)j ,τ
∞ ) of R∞, where (2,−1)j is (2,−1) in the j-th

embedding σj : Fv ↪→ E and (1, 0) elsewhere.
(ii) The moduleM∞(R) is free of rank r over R∞/∩λ,τ pλ,τ , where τ runs over all tame inertial

types such that σv ∈ JH(σ(τ)), λ = (λj)0≤j≤f−1 runs over the Hodge–Tate weights such

that λj ∈ {(1, 0), (2,−1)} for all j and pλ,τ is the prime ideal ker(R∞ ↠ Rλ,τ∞ ) of R∞. In
particular, we have dimFM∞(R)/m∞ = r.

(iii) The surjection Proj
Γ̃
σv ↠ σv induces an isomorphism of nonzero finite-dimensional F-

vector spaces

M∞
(
Proj

Γ̃
σv
)
/m∞

∼→M∞(σv)/m∞.
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Proof. The proof of (i) is analogous to the one of [BHH+23, Thm. 8.3.4]. All the arguments
concerning the set of Serre weights W (r∨v ) go through in the general case because we always
have W (r∨v ) ⊆ W ((r∨v )

ss) (see (3.18)). We also replace [BHH+23, Prop. 8.2.6] by Proposition
3.6.2.3. Finally each pτ is a prime ideal by Theorem 3.4.2.1.

The proof of (ii) is analogous to the one of [BHH+23, Thm. 8.3.9] using the same comment
on W (r∨v ) together with Proposition 3.6.2.3, Proposition 3.4.3.3 and (i).

Finally, (iii) is a direct consequence of Proposition 3.6.2.1, (i) and (ii).

3.6.3 Global results

In this subsection, we state and prove the main global results following [BHH+23, §8.4],
(which deals with the semisimple case).

Let F , D, r, ψ, S and U =
∏
w Uw ⊆ (D ⊗F A∞

F )× be as in §3.6.1. For each w ∈ Sp \ {v},
we fix a Serre weight σw ∈W (r∨w). We consider the following admissible smooth representation

π′ of GL2(Fv) over F with central character ψ
−1

= ω−1(det rv)
−1:

π′
def
= lim−→

Vv

HomUv/V v

(
⊗w∈Sp\{v} σw,HomGF

(
r,H1

ét(XV vVv ×F F ,F)
))

in the indefinite case,

π′
def
= lim−→

Vv

HomUv/V v

(
⊗w∈Sp\{v} σw, S(V

vVv,F)[m]
)

in the definite case,

with V v =
∏
w ̸=v Vw as in (3.39) or (3.40), i.e. Vw = Uw if w /∈ Sp and Vw ⊆ 1 + pM2(OFw)

is normal in GL2(OFw) if w ∈ Sp. Recall that we defined the Gelfand–Kirillov dimension
dimGL2(Fv)(π) in §3.5.

The following theorem is a generalization of [BHH+23, Thm. 8.4.1], [BHH+23, Thm. 8.4.2],
[BHH+23, Cor. 8.4.4] and [BHH+23, Cor. 8.4.6], where rv was assumed to be semisimple.

Theorem 3.6.3.1. (i) We have dimGL2(Fv)(π) = [Fv : Qp].
(ii) There is an integer r ≥ 1 such that

π[m2
K1

] ∼=
(
D̃0(r

∨
v )
)⊕r

,

where D̃0(r
∨
v ) is defined in §3.5. In particular, each irreducible constituent of π[m2

K1
] has

multiplicity r.
(iii) Let x : R∞ → O′ be any homomorphism of local W (F)-algebras, where O′ is the ring of

integers of a finite extension E′ of E, and set

V (x)
def
= Homcont

O′
(
M∞ ⊗R∞,x O′, E′),

where M∞ is the big patched module over R∞ with an R∞-linear action of GL2(Fv) defined
in [CEG+16, §2.8] and also mentioned in the proof of [BHH+23, Thm. 8.4.1]. Then
V (x) is a nonzero admissible unitary Banach representation of GL2(Fv) over E′ with a
GL2(Fv)-invariant unit ball (given by Homcont

O′
(
M∞ ⊗R∞,x O′,O′)) lifting π ⊗F F′, where

F′ is the residue field of O′.
(iv) For any compact open subgroup

V v =
∏

w/∈SD∪Sr

(OD)
×
w

∏
w∈(SD∪Sr)\{v}

Vw ⊆
∏
w ̸=v

(OD)
×
w

such that Vw ⊆ 1 + pM2(OFw) is normal in GL2(OFw) for w ∈ Sp\{v} and such that
π ̸= 0, where

π
def
= lim−→

Vv

HomGF

(
r,H1

ét(XV vVv ×F F ,F)
)
in the indefinite case,
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π
def
= lim−→

Vv

S(V vVv,F)[m] in the definite case,

we have dimGL2(Fv)(π) = [Fv : Qp].

Proof. The proof of (i) is analogous to the one of [BHH+23, Thm. 8.4.1]. We use Theorem 3.5.3
for the upper bound of the Gelfand–Kirillov dimension. The condition (ii) in Theorem 3.5.3
is guaranteed by Proposition 3.6.2.4 (iii), and the conditions (i) and (iii) in Theorem 3.5.3 are
satisfied as in the proof of [BHH+23, Thm. 8.4.1].

The proof of (ii) is completely analogous to the one of [BHH+23, Thm 8.4.2] using Propo-
sition 3.6.2.4 (iii) and Proposition 3.5.1.

The proof of (iii) is completely analogous to the one of [BHH+23, Cor. 8.4.4] using (i).
Finally, the proof of (iv) is completely analogous to that of [BHH+23, Cor 8.4.6] using

(i).
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Chapter 4

On the rank of the multivariable
(φ,O×

K)-modules associated to mod p
representations of GL2(K)

4.1 Introduction

Let p be a prime number. The mod p Langlands correspondence for GL2(Qp) is completely
known by the work of Breuil, Colmez, Emerton, etc. In particular, Colmez ([Col10]) constructed
a functor from the category of admissible finite length mod p representations of GL2(Qp) to the
category of finite-dimensional continuous mod p representations of Gal(Qp/Qp), using Fontaine’s
category of (φ,Γ)-modules ([Fon90]) as an intermediate step. This gives a functorial way to
realize the mod p Langlands correspondence for GL2(Qp).

However, the situation becomes much more complicated when we consider GL2(K) for K a
nontrivial finite extension of Qp. For example, there are many more supersingular representa-
tions of GL2(K) ([BP12]) and we don’t have a classification of these representations. Moreover,
they are not of finite presentation ([Sch15],[Wu21]), and it is impossible so far to write down
explicitly one of these representations. Motivated by the local-global compatibility result of
Emerton ([Eme11]) for GL2(Qp), we are particularly interested in the mod p representations π
of GL2(K) coming from the cohomology of towers of Shimura curves.

In [BHH+b], Breuil-Herzig-Hu-Morra-Schraen constructed an exact functor DA from a nice
subcategory of the category of admissible smooth mod p representations of GL2(K) to the
category of multivariable (φ,O×

K)-modules. Then the key question is to determine the structure
of DA(π) for π as above, which can be used to deduce properties of π.

We recall the construction of the functor DA. We let K be a finite unramified extension of
Qp of degree f ≥ 1 with ring of integers OK and residue field Fq (hence q = pf ). Let F be a

large enough finite extension of Fp and fix an embedding σ0 : Fq ↪→ F. We let N0
def
=
(
1 OK
0 1

)
⊆

GL2(OK). Then we have F[[N0]] = F[[Y0, . . . , Yf−1]] with Yj
def
=
∑

a∈F×
q
σ0(a)

−pj
(

1 [a]
0 1

)
∈ F[[N0]]

for 0 ≤ j ≤ f − 1, where [a] ∈ O×
K is the Techmüller lift of a ∈ F×

q . We let A be the completion
of F[[N0]][1/(Y0 · · ·Yf−1)] with respect to the (Y0, . . . , Yf−1)-adic topology on F[[N0]]. There is an
F-linear action of O×

K on F[[N0]] given by multiplication on N0
∼= OK , and an F-linear Frobenius

φ on F[[N0]] given by multiplication by p on N0
∼= OK . They extend canonically by continuity

to commuting continuous F-linear actions of φ and O×
K on A. Then an étale (φ,O×

K)-module
over A is by definition a finite free A-module endowed with a semi-linear Frobenius φ and a
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commuting continuous semi-linear action of O×
K such that the image of φ generates everything.

For π an admissible smooth representation of GL2(K) over F with central character, we let
π∨ be its F-linear dual, which is a finitely generated F[[I1]]-module and is endowed with the

mI1-adic topology, where I1
def
=
(

1+pOK OK
pOK 1+pOK

)
⊆ GL2(OK) and mI1 is the maximal ideal of

F[[I1]]. We define DA(π) to be the completion of F[[N0]][1/(Y0 · · ·Yf−1)]⊗F[[N0]]π
∨ with respect to

the tensor product topology. The O×
K-action on π∨ given by f 7→ f ◦ ( a 0

0 1 ) (for a ∈ O×
K) extends

by continuity to DA(π), and the ψ-action on π∨ given by f 7→ f ◦
(
p 0
0 1

)
induces a continuous

A-linear map
β : DA(π) → A⊗φ,A DA(π). (4.1)

Let C be the abelian category of admissible smooth representations π of GL2(K) over F with
central characters such that gr (DA(π)) is a finitely generated gr(A)-module. Then for π in C,
DA(π) is a finite free A-module (see [BHH+b, Cor. 3.1.2.9] and [BHH+c, Remark. 2.6.2]). If
moreover β is an isomorphism, then its inverse β−1 = id⊗φ makes DA(π) an étale (φ,O×

K)-
module.

Let ρ : GL2(K) → GL2(F) be a continuous representation of the following form up to twist:

ρ|IK ∼=

(
ω
∑f−1

j=0 (rj+1)pj

f ∗
0 1

)
with 2f + 1 ≤ rj ≤ p− 3− 2f ∀ 0 ≤ j ≤ f − 1, (4.2)

where ωf : IK → F× is the fundamental character of level f (associated to σ0). If f = 1, we
assume moreover that r0 ≥ 4. In particular, we have p ≥ 4f + 4.

Let π be a smooth representation of GL2(K) over F which satisfies

(i) πK1 ∼= D0(ρ) as K×GL2(OK)-representations, where D0(ρ) is the representation of
GL2(Fq) defined in [BP12, §13] and is viewed as a representation of GL2(OK) by infla-
tion, and K× acts on D0(ρ) by the character det(ρ)ω−1, where ω is the mod p cyclotomic
character (in particular, π is admissible and has a central character);

(ii) for any character χ : I → F× appearing in π[mI1 ] = πI1 , we have [π[m3
I1
] : χ] = 1, where

π[m3
I1
] is the set of elements of π annihilated by m3

I1
, and [π[m3

I1
] : χ] is the multiplicity of

χ in the semisimplification of π[m3
I1
] as I-representations.

In particular, (i) and (ii) are satisfied for those π coming from the cohomology of towers of
Shimura curves in a “multiplicity-one” situation ([BHH+23],[Wan23]). Our main result is the
following:

Theorem 4.1.1. Suppose that ρ and π are as above. Then π is in C, β in (4.1) is an isomor-
phism and

rankADA(π) = 2f .

By [BHH+b, Remark 3.3.2.6(ii)] we know that π is in C. By [BHH+b, Thm. 3.3.2.1] and
localization we know that rankADA(π) ≤ 2f . Theorem 4.1.1 is proved by [BHH+c, Thm. 3.1.3]
when ρ is semisimple. We generalize the method of [BHH+c] to the non-semisimple case, which
is seriously more delicate.

The proof of Theorem 4.1.1 is by an explicit construction of an A-basis of the dual étale
(φ,O×

K)-module HomA(DA(π), A). As in [BHH+c, (87)], there is a canonical A-linear injection

µ∗ : HomA(DA(π), A) ↪→ Homcont
F (DA(π),F).

We will construct 2f projective systems (xJ,k)k≥0 of elements of π indexed by subsets of J ⊆
{0, 1, . . . , f − 1} with xJ,k ∈ π[mkf+1

I1
]. By [BHH+c, Prop. 3.2.3], each projective system xJ can
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be regarded as an element of Homcont
F (DA(π),F). Then we prove that each xJ satisfies a crucial

finiteness condition (see Theorem 4.8.5), which guarantees that it lies in the image of µ∗. Once
we prove that xJ ∈ HomA(DA(π), A) for all J , it is not difficult to conclude that they form an
A-basis of HomA(DA(π), A).

We also prove the following generalization of Theorem 4.1.1, which is crucially needed to
prove that π is of finite length (in the non-semisimple case) in [BHH+a].

Theorem 4.1.2 (Theorem 4.11.2). Suppose that ρ and π are as above. Then for π1 a subrep-
resentation of π, we have

rankADA(π1) =
∣∣∣JH(πK1

1 ) ∩W (ρss)
∣∣∣ ,

where JH(πK1
1 ) is the set of Jordan–Hölder factors of πK1

1 as a GL2(OK)-representation, ρss is
the semisimplification of ρ, and W (ρss) is the set of Serre weights of ρss defined in [BDJ10, §3].

Organization of the chapter

In §§4.2-4.3, we review the notion of the extension graph and recall some results of [BP12,
§2] that are needed in the proof of Theorem 4.1.1 and Theorem 4.1.2. In §§4.4-4.8, we explicitly
construct some projective systems of elements of π and study their basic properties. In partic-
ular, we prove the crucial finiteness condition in §4.8. In §4.9, we use these projective systems
to construct an explicit basis of DA(π). In §4.10, we finish the proof of Theorem 4.1.1. We also
compute the actions of φ and O×

K on DA(π). In §4.11, we finish the proof of Theorem 4.1.2.
Finally, in §4.12, we give the pictures of some finite-dimensional GL2(OK)-subrepresentations
of π.

Notation

Let p be a prime. We fix an algebraic closure Qp of Qp. Let K ⊆ Qp be the unramified
extension of Qp of degree f ≥ 1 with ring of integers OK and residue field Fq (hence q = pf ).

We denote by GK
def
= Gal(Qp/K) the absolute Galois group of K and IK ⊆ GK the inertia

subgroup. Let F be a large enough finite extension of Fp. Fix an embedding σ0 : Fq ↪→ F and

let σj
def
= σ0 ◦ φj for j ∈ Z, where φ : x 7→ xp is the arithmetic Frobenius on Fq. We identify

J def
= Hom(Fq,F) with {0, 1, . . . , f − 1}, which is also identified with Z/fZ so that the addition

and subtraction in J are modulo f . For a ∈ OK , we denote by a ∈ Fq its reduction modulo p.
For a ∈ Fq, we also view it as an element of F via σ0.

For F a perfect ring of characteristic p, we denote by W (F ) the ring of Witt vectors of F .
For x ∈ F , we denote by [x] ∈W (F ) its Techmüller lift.

Let I
def
=

(
O×

K OK

pOK O×
K

)
⊆ GL2(OK) be the Iwahori subgroup, I1

def
=
(

1+pOK OK
pOK 1+pOK

)
⊆

GL2(OK) be the pro-p Iwahori subgroup, K1
def
= 1+ pM2(OK) ⊆ GL2(OK) be the first congru-

ence subgroup, N0
def
=
(
1 OK
0 1

)
and H

def
=
(

[F×
q ] 0

0 [F×
q ]

)
.

For P a statement, we let δP
def
= 1 if P is true and δP

def
= 0 otherwise.

Throughout this chapter, we let ρ : GK → GL2(F) be as in (4.2) and π be a smooth
representation of GL2(K) over F satisfying the conditions (i),(ii) before Theorem 4.1.1. Since
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twisting π by a character does not change the rank of DA(π), we assume moreover that ρ is of
the following form:

ρ ∼=

(
ω
∑f−1

j=0 (rj+1)pj

f un(ξ) ∗
0 un(ξ−1)

)
, (4.3)

where ξ ∈ F×, un(ξ) : GK → F× is the unramified character sending geometric Frobenius
elements to ξ, and ωf : GK → F is the extension to GK of the fundamental character of level

f (associate to σ0) such that ωf (g) is the reduction modulo p of g(pf )/pf ∈ µq−1(K
×
) for all

g ∈ GK and for any choice of a (q− 1)-th root pf of −p. In particular, p acts trivially on π (by
the condition (i) for π).

4.2 Combinatorics of Serre weights

In this section, we review the notion of the extension graph following [BHH+23].

We write i for an element (i0, . . . , if−1) ∈ Zf . For a ∈ Z, we denote a
def
= (a, . . . , a) ∈ Zf .

For each j ∈ J , we define ej ∈ Zf to be 1 in the j-th coordinate, and 0 otherwise. For J ⊆ J ,

we define eJ ∈ Zf by eJj
def
= δj∈J . We say that i ≤ i′ if ij ≤ i′j for all j. We define the left shift

δ : Zf → Zf by δ(i)j
def
= ij+1. We define

X1(T )
def
=
{
(λ1, λ2) ∈ Z2f : 0 ≤ λ1 − λ2 ≤ p− 1

}
;

Xreg(T )
def
=
{
(λ1, λ2) ∈ Z2f : 0 ≤ λ1 − λ2 ≤ p− 2

}
;

X0(T )
def
=
{
(λ1, λ2) ∈ Z2f : λ1 = λ2

}
.

Let π : Z2f → Z2f be defined as π(λ1, λ2)
def
=
(
δ(λ1), δ(λ2)

)
.

A Serre weight of GL2(Fq) is an absolutely irreducible representation of GL2(Fq) over F.
For λ = (λ1, λ2) ∈ X1(T ), we define

F (λ)
def
=

f−1⊗
j=0

((
Symλ1,j−λ2,j F2

q ⊗Fq det
λ2,j
)
⊗Fq ,σj F

)
.

We also denote it by (λ1 − λ2)⊗ detλ2 . This induces a bijection

F : X1(T )/(p− π)X0(T )
∼→ {Serre weights of GL2(Fq)}.

We say that a Serre weight σ is regular if σ ∼= F (λ) with λ ∈ Xreg(T ).
For λ = (λ1, λ2) ∈ Z2f , we define the character χλ : I → F× by(

a b
pc d

)
7→ (a)λ1(d)λ2 ,

where a, d ∈ O×
K and b, c ∈ OK . Here, for x ∈ F and i ∈ Zf we define xi

def
= x

∑f−1
j=0 ijp

j

. In
particular, if λ ∈ X1(T ), then χλ is the I-character acting on F (λ)I1 . We also denote χλ for its

restriction to H. For each j ∈ J we define αj
def
= (ej ,−ej) ∈ Z2f , and for each i ∈ Zf we define

αi
def
=
∑f−1

j=0 ijαj ∈ Z2f . We also denote αj and αi the corresponding characters χαj and χαi

when there is no possible confusion. Concretely, we have

αi
((

a b
pc d

))
=
(
ad

−1
)∑f−1

j=0 ijp
j

.
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For µ = (µ
1
, µ

2
) ∈ Z2f , we define the extension graph associated to µ by

ΛµW
def
=
{
b ∈ Zf : 0 ≤ µ

1
− µ

2
+ b ≤ p− 2

}
. (4.4)

As in [BHH+23, p.16], there is a map

tµ : ΛµW → Xreg(T )/(p− π)X0(T ),

such that the map b 7→ F (tµ(b)) gives a bijection between ΛµW and the set of regular Serre
weights of GL2(Fq) with central character χµ|Z , where Z ∼= F×

q is the center of GL2(Fq).
We let µr

def
= (r, 0) ∈ Z2f with r = (r0, . . . , rf−1) and rj as in (4.2). For b ∈ Zf such that

−r ≤ b ≤ p− 2− r, we denote σb
def
= F

(
tµr(b)

)
. For ρ as in (4.3), we let Jρ ⊆ J be as in [Bre14,

(17)]. Then by [Bre14, Prop. A.3] and [BHH+23, (14)] we have

W (ρ) =

{
σb :

bj = 0 if j /∈ Jρ
bj ∈ {0, 1} if j ∈ Jρ

}
. (4.5)

In particular, ρ is semisimple if and only if Jρ = J . For each J ⊆ J , we define σJ
def
= σaJ with

aJj
def
=


0 if j /∈ J

1 if j ∈ J, j + 1 /∈ J or j ∈ J, j + 1 ∈ J, j ∈ Jρ

−1 if j ∈ J, j + 1 ∈ J, j /∈ Jρ.

(4.6)

In particular, for J ⊆ Jρ we have σJ = σeJ . Then as a special case of [BHH+23, (14)], we have

σJ = (sJ)⊗ dett
J
with

sJj
def
=



rj if j /∈ J, j + 1 /∈ J

rj + 1 if j ∈ J, j + 1 /∈ J

p− 2− rj if j /∈ J, j + 1 ∈ J

p− 1− rj if j ∈ J, j + 1 ∈ J, j /∈ Jρ

p− 3− rj if j ∈ J, j + 1 ∈ J, j ∈ Jρ;

(4.7)

tJj
def
=


0 if j /∈ J, j + 1 /∈ J

−1 if j ∈ J, j + 1 /∈ J

rj + 1 if j /∈ J, j + 1 ∈ J or j ∈ J, j + 1 ∈ J, j ∈ Jρ

rj if j ∈ J, j + 1 ∈ J, j /∈ Jρ.

(4.8)

We let χJ
def
= χλJ with λJ

def
= (sJ + tJ , tJ). Then χJ is the I-character acting on σI1J . For each

I-character χ, we denote by χs its conjugation by the matrix
(
0 1
p 0

)
.

Lemma 4.2.1. For each J ⊆ J , we have χJα
tJ = χ(r,0).

Proof. By definition, we have χJα
tJ = χλ with

λ = λJ + αt
J
= (sJ + tJ , tJ) + (tJ ,−tJ) = (sJ + 2tJ , 0).

Since σJ = (sJ)⊗dett
J
has the same central character as σ∅ = (r), we deduce that as

J+2tJ = ar

for all a ∈ Fq, which completes the proof.
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For J ⊆ J and k ∈ Z, we define J + k
def
= {j + k : j ∈ J}. Then we define the semisimple

part of J , the non-semisimple part of J and the shifting index of J to be respectively

J ss def
= J ∩ Jρ, Jnss def

= J \ Jρ = J \ J ss, J sh def
= J ∩ (J − 1) ∩ Jρ ⊆ J ss. (4.9)

In particular, if ρ is semisimple, then J ss = J and Jnss = ∅ for all J . We also remark that the

set J sh for each J ⊆ J is defined in such a way that the I-character χJα
eJ

sh

is independent of
Jρ. This will play a role in Theorem 4.6.4 below. By (4.2), we have from (4.7) and (4.9)

2(f − δj∈Jsh) + 1 ≤ 2(f − δj∈Jsh) + 1 + δf=1 ≤ sJj ≤ p− 2− 2(f + δj∈Jsh) ∀ j ∈ J . (4.10)

Lemma 4.2.2. Let J, J ′ ⊆ J satisfying (J − 1)ss = (J ′)ss. Then for each j ∈ (J∆J ′) − 1, we
have

2δj∈(J∩J ′)nss + (p− 2− sJj ) + δj∈J∆J ′ = sJ
′
j .

Here we recall that J∆J ′ def= (J \ J ′) ⊔ (J ′ \ J).

Proof. We assume that j + 1 ∈ J and j + 1 /∈ J ′. Otherwise we have j + 1 /∈ J and j + 1 ∈ J ′,
and the proof is similar. We separate the following cases.

If j ∈ J and j ∈ J ′, then the LHS equals 2δj /∈Jρ +(p− 2− (p− 3− rj +2δj /∈Jρ))+0 = rj +1,
which equals the RHS.

If j ∈ J and j /∈ J ′, then the LHS equals 0+(p−2−(p−3−rj+2δj /∈Jρ))+1 = rj+2−2δj /∈Jρ .
Hence it suffices to show that j /∈ Jρ. Indeed, if j ∈ Jρ, then j ∈ (J − 1)ss = (J ′)ss ⊆ J ′, which
is a contradiction.

If j /∈ J and j ∈ J ′, then the LHS equals 0+ (p− 2− (p− 2− rj))+1 = rj +1, which equals
the RHS.

If j /∈ J and j /∈ J ′, then the LHS equals 0 + (p − 2 − (p − 2 − rj)) + 0 = rj , which equals
the RHS.

Lemma 4.2.3. Let J ⊆ J and b ∈ Zf such that −
(
2(f − eJ

sh
) + 1

)
≤ b ≤ 2(f + eJ

sh
). Then

we have F
(
tλJ (b)

)
= σa with aj = (−1)δj+1∈J (bj + δj∈J) + 2δj∈Jsh for all j ∈ J . In particular,

(i) we have σJss = F
(
tλJ (−b)

)
with bj = δj∈Jnss for all j ∈ J ;

(ii) we have σ(J−1)ss = F
(
tλJ (−b)

)
with bj = δj∈J∆(J−1)ss for all j ∈ J ;

(iii) for each J ′ ⊆ J , we have σJ ′ = F
(
tλJ (−b)

)
with

bj =

{
δj∈J + δj∈J ′(−1)δj+1/∈J∆J′ if j /∈ Jρ(
δj∈J − δj /∈J ′

)
(−1)δj+1∈J if j ∈ Jρ.

Proof. The assumption on b implies that F (tλJ (b)) is well-defined. By (4.6) and a case-by-case
examination we have

aJj = δj∈J(−1)δj+1∈J + 2δj∈Jsh ∀ j ∈ J .

Then by [BHH+23, Lemma 2.4.4] applied to µ = µr and ω = b, we deduce that

aj=a
J
j +(−1)a

J
j+1bj=

(
δj∈J(−1)δj+1∈J +2δj∈Jsh

)
+(−1)δj+1∈J bj=(−1)δj+1∈J (bj+δj∈J)+2δj∈Jsh .

(i). For each j ∈ J , we have

(−1)δj+1∈J (−δj∈Jnss + δj∈J) + 2δj∈Jsh = (−1)δj+1∈J δj∈Jss + 2δj+1∈Jδj∈Jss

=
(
(−1)δj+1∈J + 2δj+1∈J

)
δj∈Jss = δj∈Jss .
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This proves (i) since aJ
ss
= eJ

ss
.

(ii). Since a(J−1)ss = e(J−1)ss , it suffices to show that

(−1)δj+1∈J (−δj∈J∆(J−1)ss + δj∈J) + 2δj∈Jsh = δj∈(J−1)ss .

If j ∈ (J − 1)ss, then the LHS equals −(−δj /∈J + δj∈J) + 2δj∈J = δj /∈J + δj∈J = 1, which equals
the RHS. If j /∈ (J − 1)ss, then the LHS equals (−1)δj+1∈J (−δj∈J + δj∈J) + 0 = 0, which equals
the RHS.

(iii). If j /∈ Jρ, then we have

bj = δj∈J − (−1)δj+1∈J
(
aJ

′
j − 2δj∈Jsh

)
= δj∈J − (−1)δj+1∈J

(
δj∈J ′(−1)δj+1∈J′ − 0

)
= δj∈J + δj∈J ′(−1)j+1/∈J∆J ′

.

If j ∈ Jρ, then we have

bj = δj∈J − (−1)δj+1∈J
(
aJ

′
j − 2δj∈Jsh

)
= δj∈J − (−1)δj+1∈J

(
δj∈J ′ − 2δj∈J,j+1∈J

)
= δj∈J

(
1 + 2δj+1∈J(−1)δj+1∈J

)
− (−1)δj+1∈J δj∈J ′ =

(
δj∈J − δj∈J ′

)
(−1)δj+1∈J .

This completes the proof.

4.3 The principal series

In this section, we recall some results of [BP12, §2].
For j ∈ J , we define

Yj
def
=
∑
a∈F×

q

a−p
j

(
1 [a]
0 1

)
∈ F[[N0]].

Then we have F[[N0]] = F[[Y0, . . . , Yf−1]]. For i = (i0, . . . , if−1) ∈ Zf , we set ∥i∥ def
=
∑f−1

j=0 ij and

we write Y i for
∏f−1
j=0 Y

ij
j . We recall the following results of [BHH+b, Lemma 3.2.2.1].

Lemma 4.3.1. For j ∈ J and µ1, µ2 ∈ F×
q , we have in F[[N0]]

(i) Y p
j

(
p 0
0 1

)
=
(
p 0
0 1

)
Yj+1;

(ii)
(

[µ1] 0
0 [µ2]

)
Yj = (µ1µ

−1
2 )p

j
Yj

(
[µ1] 0
0 [µ2]

)
. In particular, if V is a representation of I and

v ∈ V H=χ, then for i ≥ 0, we have Y iv ∈ V H=χαi
.

Let λ = (λ1, λ2) ∈ X1(T ) such that 1 ≤ λ1 − λ2 ≤ p− 2. Let f0, . . . , fq−1, ϕ be the elements

of Ind
GL2(OK)
I (χsλ) defined as in [BP12, §2]. For 0 ≤ i ≤ p − 1 we let i

def
=
∑f−1

j=0 ijp
j . Then by

definition and [BHH+b, Lemma 3.2.2.5(ii)] we have

(−1)f−1

[
f−1∏
j=0

ij !

]
Y p−1−i ( 0 1

1 0 )ϕ =

{
fi if 0 ≤ i ≤ q − 2

fq−1 − f0 if i = q − 1.
(4.11)

The following lemma is a restatement of some results of [BP12, §2].

Lemma 4.3.2. (i) The GL2(OK)-representation Ind
GL2(OK)
I (χsλ) is multiplicity-free with con-

stituents {F (tλ(−b)) : 0 ≤ b ≤ 1}. Moreover, the constituent F
(
tλ(−b)

)
corresponds to the

subset {j : bj+1 = 1} in the parametrization of [BP12, §2].
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(ii) The elements
{
Y k ( 0 1

1 0 )ϕ : 0 ≤ k ≤ p− 1, ϕ
}
form a basis of Ind

GL2(OK)
I (χsλ). Moreover,

ϕ has H-eigencharacter χsλ and Y k ( 0 1
1 0 )ϕ has H-eigencharacter χλα

−k = χsλα
r−k.

(iii) Let τ be the constituent of Ind
GL2(OK)
I (χsλ) corresponding to J ⊆ J as in (i) and denote by

Q(χsλ, J) the unique quotient of Ind
GL2(OK)
I (χsλ) with socle τ (see [BP12, Thm. 2.4(iv)]).

(a) If J = ∅, then the following H-eigenvectors{
Y k ( 0 1

1 0 )ϕ : p− 1− (λ1 − λ2) < k ≤ p− 1, Y p−1−(λ1−λ2) ( 0 1
1 0 )ϕ+ xϕ

}
with x = (−1)∥λ1∥+(f−1)

(∏f−1
j=0 (λ1,j−λ2,j)!

)−1 ∈ F×
q form a basis of τ inside Q(χsλ, ∅) =

Ind
GL2(OK)
I (χsλ).

(b) If J ̸= ∅, then the following H-eigenvectors{
Y k ( 0 1

1 0 )ϕ :
0 ≤ kj ≤ p− 2− (λ1,j − λ2,j) + δj−1∈J if j ∈ J

p− 1− (λ1,j − λ2,j) + δj−1∈J ≤ kj ≤ p− 1 if j /∈ J

}

map to a basis of τ inside Q(χsλ, J).

Proof. The first statement of (i) is [BHH+23, Lemma 6.2.1(i)], and the second statement of (i)
follows from the proof of [BHH+23, Lemma 6.2.1(i)]. (ii) and (iii) are restatements of [BP12,
Lemma 2.5] and [BP12, Lemma 2.7] using (4.11).

4.4 On certain H-eigenvectors in D0(ρ)

In this section, we construct some elements of D0(ρ), which is identified with πK1 from now
on (see condition (i) above Theorem 4.1.1). The main result is Proposition 4.4.2. They will be
the first step in constructing elements of DA(π).

Lemma 4.4.1. (i) The GL2(OK)-representation D0(ρ) is multiplicity-free with constituents

JH(D0(ρ)) =

{
σb :

bj ∈ {−1, 0, 1} if j /∈ Jρ
bj ∈ {−1, 0, 1, 2} if j ∈ Jρ

}
.

Moreover, there is a decomposition of GL2(OK)-representations D0(ρ) = ⊕J⊆JρD0,σJ (ρ)
such that for each J ⊆ Jρ, D0,σJ (ρ) has socle σJ = σeJ and has constituents

JH(D0,σJ (ρ)) =

σb :
bj ∈ {−1, 0, 1} if j /∈ Jρ
bj ∈ {−1, 0} if j ∈ Jρ \ J
bj ∈ {1, 2} if j ∈ J

 . (4.12)

(ii) The I-representation D0(ρ)
I1 is a direct sum of distinct I-characters. For each J ⊆ J ,

χJ occurs as a direct summand.
(iii) For each J ⊆ J , the character χJ appears in the component D0,σJss (ρ), and the character

χsJ appears in the component D0,σ(J−1)ss
(ρ).

Proof. (i). For σ ∈ W (ρ) and τ an arbitrary Serre weight, we let ℓ(σ, τ) ∈ Z≥0 ∪ {∞} be as in
[BP12, §12]. Hence, ℓ(σ, τ) <∞ if and only if τ is a constituent of InjGL2(Fq) σ, in which case it
measures the distance between σ and τ in terms of the extension graph ΛµW (see (4.4)). If we
write σ = σJ = σeJ for some J ⊆ Jρ (see (4.5)), then by [BHH+23, Lemma 6.2.1(ii)] we deduce

that ℓ(σJ , τ) < ∞ if and only if τ = F
(
tλJ (b)

)
for some b ∈ Zf such that −1 ≤ b ≤ 1. By
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[BHH+23, Lemma 2.4.4], this holds if and only if τ = σb with −1 ≤ b − eJ ≤ 1, in which case
we have ℓ(σJ , τ) = |{j : bj ̸= δj∈J}| by [BP12, Cor. 4.11].

For τ a Serre weight, we let ℓ(ρ, τ)
def
= minσ∈W (ρ) ℓ(σ, τ) ∈ Z≥0∪{∞}. Then by the previous

paragraph we deduce that ℓ(ρ, τ) < ∞ if and only if τ = F
(
tλJ (b)

)
for some b ∈ Zf such that

−1 ≤ bj ≤ 1 if j /∈ Jρ and −1 ≤ bj ≤ 2 of j ∈ Jρ. In this case, we have ℓ(ρ, τ) = ℓ(σ, τ) if

and only if σ = σJ(τ) with J(τ)
def
= {j ∈ Jρ : bj ≥ 1}, and τ is a constituent of D0,σJ(τ)

(ρ) by
Proposition [BP12, Prop. 13.4]. Hence for each J ⊆ Jρ, D0,σJ (ρ) has constituents τ as above
such that J(τ) = J , which agrees with (4.12). The other assertions then follow from [BP12,
Prop. 13.4] and [BP12, Cor. 13.5].

(ii). By [BP12, Lemma 14.1], the I-representation D0(ρ)
I1 is a direct sum of distinct I-

characters. By the proof of [BP12, Cor. 13.6], it suffices to find I-characters χ such that

σ0 ∈ JH
(
Ind

GL2(OK)
I χs

)
. Then we conclude using [Bre14, Prop. 4.2] and (4.7).

(iii). The first assertion is clear since σJ lies in the component D0,σJss (ρ) by (4.12). To prove
the second assertion, we follow the notation of [BP12, §15]. In particular, we let S,S−,S+ ⊆ J
be the subsets associated to ρss and σJ . By definition we have S = J , S− = S+ = ∅, hence by

[BP12, Lemma 15.2] applied to ρss and σJ , we deduce that ℓ
(
ρss, σ

[s]
J

)
= ℓ
(
σeJ−1 , σ

[s]
J

)
. Then by

[BP12, Lemma 15.3] applied to ρ and σ
[s]
J we deduce that ℓ

(
ρ, σ

[s]
J

)
= ℓ
(
σ(J−1)ss , σ

[s]
J

)
(note that

the Serre weight σmax in the statement of [BP12, Lemma 15.3] is our σJρ), which completes the
proof using [BP12, Prop. 13.4].

For each J ⊆ J we fix a choice of 0 ̸= vJ ∈ D0(ρ)
I1 with I-character χJ , which is unique up

to scalar by Lemma 4.4.1(ii). The following proposition shows the existence of certain shifts of
the elements vJ . We will apply

(
p 0
0 1

)
to these elements in order to go beyond D0(ρ).

Proposition 4.4.2. Let J ⊆ J and i ∈ Zf such that 0 ≤ i ≤ f −eJsh
(see (4.9) for J sh). Then

there exists a unique H-eigenvector y ∈ D0(ρ) satisfying

(i) Y
ij+1
j y = 0 ∀ j ∈ J ;

(ii) Y iy = vJ .

Moreover, y has H-eigencharacter χJα
−i. The GL2(OK)-subrepresentation of D0(ρ) generated

by y lies in D0,Jss(ρ) and has constituents σb with
bj = δj∈J(= δj∈Jss) if j /∈ Jnss

bj ∈ {0, (−1)δj+1∈J} if j ∈ Jnss, ij = 0

bj ∈ {−1, 0, 1} if j ∈ Jnss, ij > 0.

(4.13)

We denote this element y by Y −ivJ .

Proof. For each y ∈ D0(ρ) satisfying (i) and (ii), by Lemma 4.3.1(ii) the I-representation
generated by y is an I/K1-representation with socle χJ and cosocle χJα

−i, and has constituents
χJα

−i′ with 0 ≤ i′ ≤ i, each occurring with multiplicity 1. By [BHH+23, Lemma 6.1.3], such
a representation is unique up to isomorphism, and we denote it by W ′. To prove the existence
and uniqueness of such y, it suffices to show that there is a unique (up to scalar) I-equivariant
injectionW ′ ↪→ D0(ρ). SinceW

′ is indecomposable with I-socle χJ , which appears in D0,σJss (ρ)
by Lemma 4.4.1(iii), any such injection factors through D0,σJss (ρ).

Claim 1. The GL2(OK)-representation V ′ def
= Ind

GL2(OK)
I (W ′) is multiplicity-free and σJss ∈

JH(V ′).
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Proof. By [BP12, Lemma 2.2], Ind
GL2(OK)
I

(
χJα

−i′) and Ind
GL2(OK)
I

(
χJα

−i′)s have the same

constituents. Since twisting χJ by α−i′ corresponds to shifting by −2i′ in the extension graph, it

follows from Lemma 4.3.2(i), [BHH+23, Remark 2.4.5(ii)] and (4.10) that Ind
GL2(OK)
I

(
χJα

−i′) is
multiplicity-free and has constituents F

(
tλJ (−b)

)
with 2i′ ≤ b ≤ 2i′ + 1. Hence the GL2(OK)-

representation V ′ is multiplicity-free and has constituents F
(
tλJ (−b)

)
with 0 ≤ b ≤ 2i + 1.

By Lemma 4.2.3(i) and taking bj = δj∈Jnss we deduce that σJss ∈ JH
(
Ind

GL2(OK)
I (χJ)

)
⊆

JH(V ′).

It follows from Claim 1 that there is a unique (up to scalar) GL2(OK)-equivariant map
f : V ′ → InjGL2(Fq) σJss . We denote by V ′′ the image of f .

Claim 2. The GL2(OK)-representation V ′′ has constituents σb for b as in (4.13).

Proof. We let τ ,τ ′ be constituents of V ′ such that τ = F
(
tλJ (−b)

)
and τ ′ = F

(
tλJ (−b + ej0)

)
with 0 < b ≤ 2i + 1, j0 ∈ J and bj0 ̸= 0. We write b = 2c + ε with 0 ≤ c ≤ i and

0 ≤ ε ≤ 1. If εj0 = 1, then both τ and τ ′ are constituents of Ind
GL2(OK)
I (χJα

−c). We deduce
from [BP12, Thm. 2.4] that V ′ has a length 2 subquotient with socle τ and cosocle τ ′. If εj0 = 0,
then we deduce from [HW22, Lemma 3.8] (with j = j0, χ = χJα

−c, J(τ) = {j : εj+1 = 0},
J(τ ′) = J(τ)\{j0−1}) that V ′ has a length 2 subquotient with socle τ ′ and cosocle τ . Moreover,
these are all possible non-split length 2 subquotients of V ′ by [BHH+23, Lemma 2.4.6].

Then we use the notation of [LLHLM20, §4.1.1]. We make JH(V ′) into a directed graph
by letting σ ∈ JH(V ′) point to σ′ ∈ JH(V ′) if V ′ has a length 2 subquotient with socle σ′ and
cosocle σ. By construction, V ′′ is a quotient of V ′ with socle σJss . It follows from the dual
version of [LLHLM20, Prop. 4.1.1] that the constituents of V ′′ are those σ ∈ JH(V ′) which
admit a path towards σJss = F

(
tλJ (−eJ

nss
)
)
. From the structure of JH(V ′) we deduce that V ′′

has constituents F
(
tλJ (−b)

)
with


bj = 0 if j /∈ Jnss

bj ∈ {0, 1} if j ∈ Jnss, ij = 0

bj ∈ {0, 1, 2} if j ∈ Jnss, ij > 0.

Then we conclude (4.13) by Lemma 4.2.3 with a case-by-case examination.

It follows from Claim 2 and (4.12) that f factors through D0,σJss (ρ). Then by Frobenius
reciprocity, we have

dimFHomI

(
W ′, D0,σJss (ρ)|I

)
= dimFHomGL2(OK)

(
V ′, D0,σJss (ρ)

)
= 1.

To complete the proof, it remains to show that any nonzero I-equivariant map W ′ → D0,σJss (ρ)
is injective. Since W ′ has I-socle χJ , it suffices to show that the image of χJ is nonzero. By

Frobenius reciprocity, it suffices to show that the image of the subrepresentation Ind
GL2(OK)
I (χJ)

of V ′ under f is nonzero. This follows from the fact that both Ind
GL2(OK)
I (χJ) and V

′′ contain
σJss as a constituent, and V ′ is multiplicity-free.

Remark 4.4.3. When Jρ ̸= ∅, there are more I1-invariants than these vJ for J ⊆ J . However,
Proposition 4.4.2 does not hold for the I1-invariants other than these vJ .
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4.5 The relations between H-eigenvectors

In this section, we study various GL2(OK)-subrepresentations of π generated by the elements
Y −ivJ defined in Proposition 4.4.2. The main results are Proposition 4.5.5 and Proposition
4.5.9. Then we study the relations between the vectors vJ for J ⊆ J . The main results are
Proposition 4.5.11 and Proposition 4.5.13. We refer to §4.12 for the pictures of some of these
GL2(OK)-subrepresentations of π when f = 2.

Recall that we have defined Q(χsλ, J) for λ = (λ1, λ2) ∈ X1(T ) such that 1 ≤ λ1 − λ2 ≤
p − 2 and J ⊆ J in Lemma 4.3.2(iii). The following lemma is a generalization of [BHH+b,
Lemma 3.2.3.3] (where ρ was assumed to be semisimple).

Lemma 4.5.1. Let J ⊆ J and i ∈ Zf such that 0 ≤ i ≤ f − eJ
sh
.

(i) The GL2(OK)-subrepresentation
〈
GL2(OK)

(
p 0
0 1

)
Y −ivJ

〉
of π is multiplicity-free with so-

cle σ(J−1)ss = σe(J−1)ss and cosocle σc with

cj = (−1)δj+1/∈J
(
2ij + 1 + δj∈(J−1)ss − δj∈J∆(J−1)ss

)
∀ j ∈ J . (4.14)

(ii) We have〈
GL2(OK)

(
p 0
0 1

)
Y −ivJ

〉/ ∑
0≤i′<i

〈
GL2(OK)

(
p 0
0 1

)
Y −i′vJ

〉
∼= Q

(
χsJα

i, {j : j + 1 ∈ J∆(J − 1)ss, ij+1 = 0}
)
. (4.15)

(iii) Let m ∈ Zf with each mj between δj∈(J−1)ss and cj (as in (4.14)). Then there is a unique

subrepresentation I
(
σ(J−1)ss , σm

)
of
〈
GL2(OK)

(
p 0
0 1

)
Y −ivJ

〉
with cosocle σm. In particu-

lar
〈
GL2(OK)

(
p 0
0 1

)
Y −ivJ

〉
= I

(
σ(J−1)ss , σc

)
. Moreover, I

(
σ(J−1)ss , σm

)
has constituents

σb with each bj between δj∈(J−1)ss and mj, and we have

dimFHomGL2(OK)

(
I
(
σ(J−1)ss , σm

)
, π
)
= 1. (4.16)

Proof. (i). We follow closely the proof of [BHH+b, Lemma 3.2.3.3]. The vectors Y −ivJ and
Y −i′vJ are defined in Proposition 4.4.2. We let W ′ (resp.W ) be the I-subrepresentation of π

generated by Y −ivJ (resp.
(
0 1
p 0

)
Y −ivJ) and V

def
= Ind

GL2(OK)
I (W ). In particular,W ′ is the same

representation as in the proof of Proposition 4.4.2. By the proof of [BHH+b, Lemma 3.2.3.3],
we have:

(a) V is multiplicity-free as a GL2(OK)-representation with constituents F
(
tλJ (−b)

)
for 0 ≤

b ≤ 2i+ 1 (they are well-defined by (4.10));
(b) For each 0 ≤ b ≤ 2i + 1, the unique subrepresentation of V with cosocle F

(
tλJ (−b)

)
has

constituents F
(
tλJ (−a)

)
for 0 ≤ a ≤ b;

(c) V has a filtration with subquotients Ind
GL2(OK)
I

(
χsJα

i′
)
for 0 ≤ i′ ≤ i. Each subquotient

Ind
GL2(OK)
I

(
χsJα

i′
)
has constituents F

(
tλJ (−b)

)
with 2i′ ≤ b ≤ 2i′+1, and the constituent

F
(
tλJ (−b)

)
of Ind

GL2(OK)
I

(
χsJα

i′
)
corresponds to the subset {j : bj+1 is odd} ⊆ J (see

Lemma 4.3.2(i)).

The I-equivariant inclusion W ′ ↪→ D0(ρ) in the proof of Proposition 4.4.2 induces an I-
equivariant inclusion W ↪→ π by applying

(
0 1
p 0

)
. By Frobenius reciprocity, this induces a

GL2(OK)-equivariant map V → π with image

V
def
=
〈
GL2(OK)

(
0 1
p 0

)
Y −ivJ

〉
=
〈
GL2(OK)

(
p 0
0 1

)
Y −ivJ

〉
⊆ π.
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In particular, it follows from (b) that the cosocle of V is F
(
tλJ (−(2i+ 1))

)
= σc with

cj = (−1)δj+1∈J
(
− (2ij + 1) + δj∈J

)
+ 2δj∈Jsh

= (−1)δj+1/∈J
(
2ij + 1− δj∈J + 2(−1)δj+1/∈J δj∈Jsh

)
= (−1)δj+1/∈J

(
2ij + 1 + δj∈(J−1)ss − δj∈J∆(J−1)ss

)
,

where the first equality follows from Lemma 4.2.3 and the last equality is elementary (for
example, one can separate the cases j ∈ (J − 1)ss and j /∈ (J − 1)ss).

Claim. We have W (ρ) ∩ JH(V ) ⊆ JH
(
Ind

GL2(OK)
I (χsJ)

)
.

Proof. It suffices to show that for each σ ∈ W (ρ), we have σ = F
(
tλJ (−b)

)
for some b ≤ 1.

We check it for σ∅, and the other cases are similar. By Lemma 4.2.3 (with a = 0), we get
bj = (−1)δj+1∈J

(
2δj∈Jsh

)
+ δj∈J . If j /∈ J sh, then bj = δj∈J ≤ 1. If j ∈ J sh, then bj = −2 + 1 =

−1.

Recall that socGL2(OK) π =
⊕

σ∈W (ρ) σ. Assume that σ is in the socle of V , then we have

σ ∈W (ρ)∩ JH(V ) ⊆ JH
(
Ind

GL2(OK)
I (χsJ)

)
by the claim above. Moreover, the image of the sub-

representation Ind
GL2(OK)
I (χsJ) of V in π lies in D0(ρ), hence lies in the component D0,σ(J−1)ss

(ρ)
by Lemma 4.4.1(iii) and Frobenius reciprocity, which implies that σ must be σ(J−1)ss , the only
Serre weight of ρ appearing in D0,σ(J−1)ss

(ρ). Since V is multiplicity-free by (a), we deduce that

V is the unique quotient of V with socle σ(J−1)ss .

(ii). By Lemma 4.2.3(ii), we have σ(J−1)ss = F
(
tλJ (−eJ∆(J−1)ss)

)
, hence V has constituents

F
(
tλJ (−b)

)
with δj∈J∆(J−1)ss ≤ bj ≤ 2ij + 1 for all j (or equivalently, σb with each bj between

δj∈(J−1)ss and cj by Lemma 4.2.3). By (c), the LHS of (4.15) is the quotient of Ind
GL2(OK)
I

(
χsJα

i
)

whose constituents are F
(
tλJ (−b)

)
with max(δj∈J∆(J−1)ss , 2ij) ≤ bj ≤ 2ij + 1, hence it has

irreducible socle F
(
tλJ (−a)

)
with aj = max(δj∈J∆(J−1)ss , 2ij) by (b). Since aj is odd if and

only if ij = 0 and j ∈ J∆(J − 1)ss, it follows from (c) that the constituent F
(
tλJ (−a)

)
of

Ind
GL2(OK)
I

(
χsJα

i
)
corresponds to the subset {j : j + 1 ∈ J∆(J − 1)ss, ij+1 = 0}.

(iii). Since σm is a constituent of the multiplicity-free representation V by the previous
paragraph, there is a unique subrepresentation of V with cosocle σm, which moreover has
constituents as in the statement by (b). We denote it by I

(
σ(J−1)ss , σm

)
. By the last paragraph

of the proof of (i), any constituent of I
(
σ(J−1)ss , σm

)
which is also an element of W (ρ) must

appear in D0,σ(J−1)ss
(ρ), hence has to be σ(J−1)ss . Together with the fact that socGL2(OK) π =

⊕σ∈W (ρ)σ, we deduce that

1 ≤ dimFHomGL2(OK)

(
I
(
σ(J−1)ss , σm

)
, π
)
≤ dimFHomGL2(OK)

(
σ(J−1)ss , π

)
= 1,

which completes the proof.

Remark 4.5.2. For λ = (λ1, λ2) ∈ X1(T ), i ∈ Zf≥0 such that 2i + 1 ≤ λ1 − λ2 ≤ p − 2 and
J ′ ⊆ J , we let W ′ be the I-representation as in the proof of Proposition 4.4.2 with χJ replaced
by χλ, and we denote by Q

(
χsλ, χ

s
λα

i, J ′) the unique quotient of the GL2(OK)-representation

Ind
GL2(OK)
I

((
0 1
p 0

)
W ′) whose socle is the constituent of Ind

GL2(OK)
I (χsλ) corresponding to J ′.

Then the proof of Lemma 4.5.1 shows that
〈
GL2(OK)

(
p 0
0 1

)
Y −ivJ

〉 ∼= Q
(
χsJ , χ

s
Jα

i, (J∆(J −
1)ss)− 1

)
.
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Corollary 4.5.3. For each J ⊆ Jρ, we have (see Lemma 4.5.1(iii) for the notation)

D0,σJ (ρ) =
∑

(J ′)ss=J

I
(
σJ , σeJ+εJ′

)
=

∑
(J ′)ss=J

I
(
σe(J′)ss , σe(J′)ss+εJ′

)
,

where εJ
′ ∈ {±1}f with εJ

′
j

def
= (−1)δj /∈J′ .

Proof. For each J ′ ⊆ J such that (J ′)ss = J , by applying Lemma 4.5.1(i),(iii) with (J, i) there

being (J ′ + 1, f − e(J
′+1)sh), we deduce that I

(
σJ , σeJ+εJ′

)
is well-defined. Then the result

follows from Lemma 4.4.1(i), [BP12, Prop. 13.4] and (4.16).

The following proposition is a generalization of [BHH+b, Lemma 3.2.3.1] (where ρ was
assumed to be semisimple), which gives a first example of the relations between the vectors
vJ ∈ D0(ρ) and is a special case of Proposition 4.5.11 below.

Proposition 4.5.4. For J ⊆ J , there exists a unique element µJ,(J−1)ss ∈ F× such that ∏
j+1∈J∆(J−1)ss

Y
s
(J−1)ss

j

j

∏
j+1/∈J∆(J−1)ss

Y p−1
j

( p 0
0 1

)
vJ = µJ,(J−1)ssv(J−1)ss . (4.17)

Proof. By Lemma 4.5.1(ii) and its proof, we have
〈
GL2(OK)

(
p 0
0 1

)
vJ
〉 ∼= Q

(
χsJ , (J∆(J−1)ss)−

1
)
such that

(
0 1
p 0

)
vJ corresponds to the image of ϕ ∈ Ind

GL2(OK)
I (χsJ) (see above (4.11) for

ϕ) in Q
(
χsJ , (J∆(J − 1)ss) − 1

)
, and the socle is σ(J−1)ss which corresponds to the subset

(J∆(J − 1)ss)− 1 for Ind
GL2(OK)
I (χsJ) (see Lemma 4.3.2(i)). By Lemma 4.2.2 applied to J and

J ′ = (J − 1)ss, for j ∈ J∆(J − 1)ss − 1 we have

(p− 2− sJj ) + δj−1∈(J∆(J−1)ss)−1 = s
(J−1)ss

j .

Then by Lemma 4.3.2(iii) applied to λ = λJ (and recall that χJ = χλJ with λJ = (sJ + tJ , tJ)),
the LHS of (4.17) is nonzero in σ(J−1)ss and is the unique (up to scalar) H-eigenvector in σ(J−1)ss

killed by all Yj . It follows that the LHS of (4.17) is a nonzero I1-invariant of σ(J−1)ss , hence is
a scalar multiple of v(J−1)ss .

For J, J ′ ⊆ J , we define tJ(J ′) ∈ Zf by

tJ(J ′)j
def
= p− 1− sJj + δj−1∈J ′ , (4.18)

where sJj is defined in (4.7). In particular, by (4.10) we have

1 ≤ tJ(J ′)j ≤ p− 1− 2(f − δj∈Jsh) ∀ j ∈ J . (4.19)

The following proposition is a generalization of [BHH+b, Lemma 3.2.3.4] (where ρ was assumed
to be semisimple).

Proposition 4.5.5. Let J ⊆ J , j0 ∈ J and i ∈ Zf such that 0 ≤ i ≤ f − eJ
sh

and ij0+1 = 0.
Suppose that j0 + 1 ∈ J∆(J − 1)ss. Then for each J ′ ⊆ J such that j0 /∈ J ′, we have∏

j /∈J ′

Y
2ij+t

J (J ′)j
j

( p 0
0 1

) (
Y −ivJ

)
= 0 if J ′ ̸= ∅;

Yj′ ∏
j /∈J ′

Y
2ij+t

J (J ′)j
j

( p 0
0 1

) (
Y −ivJ

)
= 0 ∀ j′ ∈ J if J ′ = ∅.

(4.20)
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Proof. The proof is analogous to the one of [BHH+b, Lemma 3.2.3.4]. First we deal with the case
J ′ ̸= ∅. We denote by B the LHS of (4.20). Assume on the contrary that B ̸= 0, then by Lemma

4.3.1(ii), B is an H-eigenvector with H-eigencharacter χ
def
= χJα

−i[∏
j /∈J ′ α

2ij+p−1−sJj +δj−1∈J′
j

]
.

To deduce a contradiction, we prove that theH-character χ does not occur in
〈
GL2(OK)

(
p 0
0 1

)
Y −ivJ

〉
.

By Lemma 4.5.1(ii), it suffices to show that the H-character χ does not occur in Vi′
def
=

Q
(
χsJα

i′ , Ji′
)
for 0 ≤ i′ ≤ i, where Ji′

def
= {j : j + 1 ∈ J∆(J − 1)ss, i′j+1 = 0}. Note that

j0 ∈ Ji′ for all 0 ≤ i′ ≤ i by assumption.

We have χJα
−i′ = χλJ−αi′ (see §4.2 for the notation). Then by Lemma 4.3.2(i),(ii),(iii)(b)

applied to λ = λJ − αi
′
, the H-eigencharacters that occur in Vi′ are χJα

−i′α−k (coming from

the element Y k
(
p 0
0 1

) (
Y −i′vJ

)
), where{

0 ≤ kj ≤ p− 2− (sJj − 2i′j) + δj−1∈J0 if j ∈ J0

p− 1− (sJj − 2i′j) + δj−1∈J0 ≤ kj ≤ p− 1 if j /∈ J0
(4.21)

for J0 ⊇ Ji′ . In particular, we have j0 ∈ J0.

Assume χ = χJα
−i′αk for some i′, k as above, then from the definition of χ we have

α−i

[ ∏
j /∈J ′

α
2ij+p−1−sJj +δj−1∈J′
j

]
= α−i′αk,

and thus

∑
j /∈J ′

(2ij + p− 1− sJj + δj−1∈J ′)pj −
f−1∑
j=0

(ij − i′j)p
j ≡

f−1∑
j=0

kjp
j mod (q − 1),

or equivalently,

∑
j /∈J ′

(ij + i′j + p− 1− sJj + δj−1∈J ′)pj −
∑
j∈J ′

(ij − i′j)p
j ≡

f−1∑
j=0

kjp
j mod (q − 1). (4.22)

Then we define integers ηj ∈ Z for all j ∈ J . For j1 /∈ J ′ (such j1 exists since J ′ ̸= ∅), we
let w ∈ {0, . . . , f − 1} (depending on j1) such that j1 + 1, . . . , j1 + w ∈ J ′ and j1 + w + 1 /∈ J ′

(so w = 0 if j1 + 1 /∈ J ′). We define ηj for j = j1 + 1, . . . , j1 + w + 1 as follows:

(i) If ij1+w′ = i′j1+w′ for all 1 ≤ w′ ≤ w (which is automatic if w = 0), then we let ηj
def
= 0 for

all j = j1 + 1, . . . , j1 + w + 1;
(ii) Otherwise, we let w0 ∈ {1, . . . , w} be minimal such that ij1+w0 ̸= i′j1+w0

, then we let

ηj
def
=


0 if j = j1 + 1, . . . , j1 + w0 − 1 (and w0 ̸= 1)

p if j = j1 + w0

p− 1 if j = j1 + w0 + 1, . . . , j1 + w (and w0 ̸= w)

−1 if j = j1 + w + 1.

(4.23)

In particular, we have
j1+w+1∑
j=j1+1

ηjp
j ≡ 0 mod (q − 1). (4.24)
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When we vary j1 /∈ J ′, we get the definition of ηj for all j ∈ J .

By adding (4.24) to (4.22) for all j1 /∈ J ′, we get

∑
j /∈J ′

(
ij+ i

′
j+p−1−sJj + δj−1∈J ′ +ηj

)
pj+

∑
j∈J ′

(
ηj− (ij− i′j)

)
pj ≡

f−1∑
j=0

kjp
j mod (q−1). (4.25)

Claim 1. Each coefficient of the LHS of (4.25) is between 0 and p − 1, not all equal to 0 and
not all equal to p− 1.

Proof. First we prove that each coefficient of the LHS of (4.25) is between 0 and p − 1. By
(4.10) we have

1 ≤ p− 1− sJj ≤ p− 2− 2(f − δj∈Jsh). (4.26)

We remark that the first inequality of (4.26) is weaker than (4.10), and is needed to prove
Remark 4.5.6. If j /∈ J ′, then using 0 ≤ ij , i

′
j ≤ f − δj∈Jsh , δj−1∈J ′ ∈ {0, 1} and ηj ∈ {−1, 0}

since j /∈ J ′, we deduce from (4.26) that 0 ≤ (ij+ i
′
j+p−1−sJj +δj−1∈J ′ +ηj) ≤ p−1. If j ∈ J ′,

by the definition of ηj and a case-by-case examination, we deduce that 0 ≤ ηj− (ij− i′j) ≤ p−1.

Next we prove that the coefficients of the LHS of (4.25) are not all equal to 0. Otherwise,
by the previous paragraph we must in particular have ηj = −1 for all j /∈ J ′. By the definition
of ηj for j /∈ J ′ (that is, for j = j1 + w + 1 in (4.23)), there exists j′ ∈ J ′ such that ηj′ = p,
which implies ηj′ − (ij′ − i′j′) > 0 since p ≥ 4f + 4 by (4.2), a contradiction.

Finally we prove that the coefficients of the LHS of (4.25) are not all equal to p−1. Otherwise,
by the first paragraph we must have ηj = 0 for all j /∈ J ′. By the definition of ηj for j /∈ J ′, we
must have ηj = 0 for all j ∈ J , hence ηj − (ij − i′j) cannot be p− 1. This implies J ′ = ∅, which
is a contradiction.

It follows from Claim 1 that the equation (4.25) has solution

kj =

{
ij + i′j + p− 1− sJj + δj−1∈J ′ + ηj if j /∈ J ′

ηj − (ij − i′j) if j ∈ J ′.
(4.27)

Claim 2. We have j0 − 1 /∈ J ′ and j0 − 1 ∈ J0.

Proof. Since j0 /∈ J ′ and j0 ∈ J0, by (4.21) and (4.27) we have

kj0 = ij0 + i′j0 + p− 1− sJj0 + δj0−1∈J ′ + ηj0 ≤ p− 2− sJj0 + 2i′j0 + δj0−1∈J0 . (4.28)

By the definition of ηj , if j0 − 1 /∈ J ′, then ηj0 = 0 since j0 /∈ J ′, and thus ηj0 = −1 implies
j0 − 1 ∈ J ′. In particular, we have δj0−1∈J ′ + ηj0 ≥ 0. Then we deduce from (4.28) that
ij0 + 1 ≤ i′j0 + δj0−1∈J0 , which implies ij0 = i′j0 and j0 − 1 ∈ J0 since i′j0 ≤ ij0 .

Then by (4.21) we have

kj0−1 ≤ p− 2− (sJj0−1 − 2i′j0−1) + δj0−2∈J0 ≤ p− 1− sJj0−1 + 2i′j0−1. (4.29)

Suppose that j0 − 1 ∈ J ′, then by (4.28) and using ij0 = i′j0 and j0 − 1 ∈ J0, we must have
ηj0 = −1. Then by (4.23) we have ηj0−1 ≥ p− 1, which implies kj0−1 ≥ p− 1− (ij0−1 − i′j0−1)

by (4.27). Combining with (4.29) we deduce that sJj0−1 ≤ ij0−1 + i′j0−1 ≤ 2(f − δj0−1∈Jsh) since

i′ ≤ i ≤ f − eJ
sh
, which contradicts (4.10). Thus we have j0 − 1 /∈ J ′.
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Since Claim 2 proves that j0 − 1 /∈ J ′ and j0 − 1 ∈ J0 assuming j0 /∈ J ′ and j0 ∈ J0, we can
continue this process and finally deduce that J ′ = ∅, which is a contradiction.

Next we deal with the case J ′ = ∅. As in the case J ′ ̸= ∅, in view of the second equation in

(4.20) it suffices to show that the H-eigencharacter χ
def
= χJαj′α

−i[∏
j /∈J ′ α

2ij+p−1−sJj +δj−1∈J′
j

]
does not occur in

〈
GL2(OK)

(
p 0
0 1

)
Y −ivJ

〉
. Then the equation (4.22) becomes

f−1∑
j=0

(ij + i′j + p− 1− sJj + δj=j′)p
j ≡

f−1∑
j=0

kjp
j mod (q − 1), (4.30)

where the term δj=j′ comes from αj′ . We claim that each (ij + i′j + p − 1 − sJj + δj=j′) is
between 1 and p − 1 and not all equal to p − 1. Indeed, if f ≥ 2, then it suffices to show that
1 ≤ ij+ i

′
j+p−1−sJj ≤ p−2 for all j ∈ J , which follows from (4.26) and 0 ≤ i′ ≤ i ≤ f −eJsh

.

If f = 1, then by assumption we have i0 = i′0 = 0 and J sh = ∅ (otherwise J∆(J − 1)ss = ∅),
hence by (4.26) we have 2 ≤ i0 + i′0 + p− 1− sJ0 + δj=j′ = p− sJ0 ≤ p− 3.

Then it follows from (4.30) that kj = ij + i′j + p− 1− sJj + δj=j′ for all j ∈ J . Since j0 /∈ J ′

and j0 ∈ J0, a similar process as Claim 2 implies that j0− 1 ∈ J0, j0− 2 ∈ J0, . . . , j
′ ∈ J0. Then

by (4.21) using j′ ∈ J0, we have kj′ = ij′ + i′j′ + p− sJj′ ≤ p− 2− sJj′ + 2i′j′ + δj′−1∈J0 , which is
impossible since i′j′ ≤ ij′ .

Remark 4.5.6. Let λ = (λ1, λ2) ∈ X1(T ), i ∈ Zf≥0 such that 2i + 1 ≤ λ1 − λ2 ≤ p − 2, and
J, J ′ ⊆ J . Assume that there exists j0 ∈ J such that j0 ∈ J , j0 /∈ J ′ and ij0+1 = 0. We
consider the H-character

χ
def
= χλα

−i ∏
j /∈J ′

α
2ij+p−1−(λ1,j−λ2,j)+δj−1∈J′
j .

Then the same proof as in Proposition 4.5.5 shows that (see Remark 4.5.2 for the notation):

(i) If J ′ ̸= ∅, then the H-character χ does not occur in Q
(
χsλ, χ

s
λα

i, J
)
;

(ii) If J ′ = ∅, then the H-character χαj′ does not occur in Q
(
χsλ, χ

s
λα

i, J
)
for all j′ ∈ J .

For J, J ′ ⊆ J and i ∈ Zf such that 0 ≤ i ≤ f − eJ
sh
, we define m = m(i, J, J ′) ∈ Zf by

mj
def
= (−1)δj+1/∈J (2ij + δj∈(J−1)ss − δj∈J∆(J−1)ss + δj−1∈J ′). (4.31)

In particular, if 2ij − δj∈J∆(J−1)ss + δj−1∈J ′ ≥ 0 for all j, then by Lemma 4.5.1(iii), σm is a

constituent of
〈
GL2(OK)

(
p 0
0 1

)
Y −ivJ

〉
.

Lemma 4.5.7. Let J, J ′ ⊆ J satisfying (J−1)ss = (J ′)ss, and let m = m
(
e(J∩J

′)nss , J, (J∆J ′)−
1
)
. Then we have

mj = δj∈J ′(−1)δj+1/∈J ∀ j ∈ J .

Proof. For j ∈ J , by definition we have

mj = (−1)δj+1/∈J
(
2δj∈(J∩J ′)nss + δj∈(J−1)ss − δj∈J∆(J−1)ss + δj∈J∆J ′

)
.

If j /∈ Jρ, then we have

mj = (−1)δj+1/∈J
(
2δj∈J∩J ′ + 0− δj∈J + δj∈J∆J ′

)
= (−1)δj+1/∈J

(
2δj∈Jδj∈J ′ − δj∈J + (δj∈J + δj∈J ′ − 2δj∈Jδj∈J ′)

)
= δj∈J ′(−1)δj+1/∈J .
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If j ∈ Jρ, then the assumption (J − 1)ss = (J ′)ss implies that j ∈ J − 1 if and only if j ∈ J ′,
hence we have

mj = (−1)δj+1/∈J
(
0 + δj∈J−1 − δj∈J∆(J−1) + δj∈J∆J ′

)
= (−1)δj+1/∈J

(
δj∈J ′ − δj∈J∆J ′ + δj∈J∆J ′

)
= δj∈J ′(−1)δj+1/∈J .

This completes the proof.

The following proposition is a generalization of Proposition 4.5.5.

Proposition 4.5.8. Let J, J ′ ⊆ J , i ∈ Zf such that 0 ≤ i ≤ f − eJ
sh

and m = m(i, J, J ′). We

denote B
def
=
[∏

j /∈J ′ Y
2ij+t

J (J ′)j
j

] (
p 0
0 1

) (
Y −ivJ

)
∈ π.

(i) If 2ij − δj∈J∆(J−1)ss + δj−1∈J ′ < 0 for some j, then{
B = 0 if J ′ ̸= ∅
Yj′B = 0 ∀ j′ ∈ J if J ′ = ∅.

(ii) If 2ij − δj∈J∆(J−1)ss + δj−1∈J ′ ≥ 0 for all j, then (see Lemma 4.5.1(iii) for the notation){
B ∈ I

(
σ(J−1)ss , σm

)
if J ′ ̸= ∅

Yj′B ∈ I
(
σ(J−1)ss , σm

)
∀ j′ ∈ J if J ′ = ∅.

Proof. We assume that J ′ ̸= ∅. The proof for the case J ′ = ∅ is exactly the same.

(i). Suppose that 2ij − δj∈J∆(J−1)ss + δj−1∈J ′ < 0 for some j, then we must have ij = 0,
j ∈ J∆(J − 1)ss and j − 1 /∈ J ′. Hence B = 0 by Proposition 4.5.5 applied to (i, J, J ′) as above
and j0 = j − 1.

(ii). Suppose that 2ij−δj∈J∆(J−1)ss+δj−1∈J ′ ≥ 0 for all j. By Lemma 4.5.1(iii) and Remark
4.5.2, we have〈

GL2(OK)
(
p 0
0 1

)
Y −ivJ

〉
= I
(
σ(J−1)ss , σb

) ∼= Q
(
χsJ , χ

s
Jα

i, (J∆(J − 1)ss)− 1
)

with bj = (−1)δj+1/∈J (2ij + δj∈(J−1)ss + 1 − δj∈J∆(J−1)ss) for j ∈ J . Since bj = mj if and only
if j − 1 ∈ J ′, to prove B ∈ I

(
σ(J−1)ss , σm

)
, it suffices to show that for each j0 ∈ J such that

j0 − 1 /∈ J ′, the image of B in the unique quotient Q of
〈
GL2(OK)

(
p 0
0 1

)
Y −ivJ

〉
with socle

σe(J−1)ss\{j0}+bj0ej0
is zero.

By Lemma 4.3.2(i), we have Q ∼= Q
(
χsJα

ij0
j0
, χsJα

i, J ′′) with J ′′ def=
(
(J∆(J−1)ss)−1

)
∪{j0−

1}. Since (i − ij0ej0)j0 = 0, j0 − 1 /∈ J ′ and j0 − 1 ∈ J ′′, it follows from Remark 4.5.6 (with

λ = λJα
−ij0
j0

, i replaced with i − ij0ej0 and j0 replaced with j0 − 1) that the H-eigencharacter
of B does not occur in Q, hence B maps to zero in Q.

The following proposition studies the overlaps between different GL2(OK)-subrepresentations〈
GL2(OK)

(
p 0
0 1

)
Y −ivJ

〉
of π. This phenomenon is new in the non-semisimple case.

Proposition 4.5.9. Let J ⊆ J and i ∈ Zf such that 0 ≤ i ≤ f − eJ
sh
. Let j0 ∈ J such that

j0 + 1 ∈ (J − 1)nss and ij0+1 = 0. Let J ′ ⊆ J such that j0 ∈ J ′ if j0 + 1 ∈ J and j0 /∈ J ′ if

j0 + 1 /∈ J . We let J ′′ def
= J ′∆{j0 + 1} and let i′ ∈ Zf be such that i′j = ij if j ̸= j0 + 2 and

i′j0+2 = ij0+2 − δj0+1/∈J ′ + δj0+2∈(J−1)ss. Then we have
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Y
δj0+1/∈J

j0+1

∏
j /∈J ′

Y
2ij+t

J (J ′)j
j

( p 0
0 1

) (
Y −ivJ

)

=
µJ,(J−1)ss

µJ\{j0+2},(J−1)ss
Y
δj0+1/∈J

j0+1

∏
j /∈J ′′

Y
2i′j+t

J\{j0+2}(J ′′)j
j

( p 0
0 1

) (
Y −i′vJ\{j0+2}

)
, (4.32)

where µJ,(J−1)ss and µJ\{j0+2},(J−1)ss are defined in Proposition 4.5.4, and we let Y −i′vJ\{j0+2}
def
=

0 if i′j < 0 for some j ∈ J .

Note that the assumption j0 + 1 ∈ (J − 1)nss implies
(
(J \ {j0 + 2}) − 1

)ss
= (J − 1)ss,

hence µJ\{j0+2},(J−1)ss is defined in Proposition 4.5.4. We claim that i′ ≤ f − e(J\{j0+2})sh ,

which implies that Y −i′vJ\{j0+2} is well-defined by Proposition 4.4.2. Indeed, if j ̸= j0 + 2 or
j = j0 + 2 /∈ (J − 1)ss, then we have

i′j ≤ ij ≤ f − δj∈Jsh ≤ f − δj∈(J\{j0+2})sh .

If j0 + 2 ∈ (J − 1)ss, then the assumption j0 + 1 ∈ (J − 1)nss implies j0 + 2 ∈ J and thus
j0 + 2 ∈ J sh, hence we have

i′j0+2 ≤ ij0+2 + 1 ≤ f − δj0+2∈Jsh + 1 = f = f − δj0+2∈(J\{j0+2})sh .

We denote by B1 (resp.B2) the element on the LHS (resp.RHS) of (4.32). In order to prove
Proposition 4.5.9, we need the following lemma.

Lemma 4.5.10. Keep the assumptions of Proposition 4.5.9.

(i) Let m
def
= m(i, J, J ′) and m′ def= m(i′, J \ {j0 + 2}, J ′′) (see (4.31)). Then we have m = m′

and mj0+1 = m′
j0+1 = 0.

(ii) We have (see (4.18) for tJ(J ′))

2ij + tJ(J ′)j = 2i′j + tJ\{j0+2}(J ′′)j if j ̸= j0 + 1;

2ij0+1 + tJ(J ′)j0+1 = rj0+1 + 1;

2i′j0+1 + tJ\{j0+2}(J ′′)j0+1 = p− 1− rj0+1.

(4.33)

(iii) We let c, c′ ∈ Zf such that

cj = pij+1 + δj+1∈J∆(J−1)sss
(J−1)ss

j

+ δj+1/∈J∆(J−1)ss(p− 1)− δj /∈J ′
(
2ij + tJ(J ′)j

)
− δj=j0+1δj0+1/∈J ;

c′j = pi′j+1 + δj+1∈(J\{j0+2})∆(J−1)sss
(J−1)ss

j

+ δj+1/∈(J\{j0+2})∆(J−1)ss(p− 1)− δj /∈J ′′

(
2i′j + tJ\{j0+2}(J ′′)j

)
− δj=j0+1δj0+1/∈J .

Then we have c = c′.
(iv) If moreover 2ij − δj∈J∆(J−1)ss + δj−1∈J ′ ≥ 0 for all j ∈ J , then we have c = c′ ≥ 0 and

Y cB1 = Y cB2. In particular, B1 and B2 have the same H-eigencharacter.

Proof. (i). If j ̸= j0 +2 or f = 1, then by definition we have mj = m′
j and mj0+1 = m′

j0+1 = 0.
If j = j0 +2 and f ≥ 2, using j0 +1 ∈ (J − 1)nss (which implies j0 +2 ∈ J) and j0 +3 ̸= j0 +2,
we have

(−1)δj0+3/∈Jm′
j0+2 = (−1)δj0+3/∈J\{j0+2}m′

j0+2
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= 2i′j0+2 + δj0+2∈((J\{j0+2})−1)ss − δj0+2∈(J\{j0+2})∆((J\{j0+2})−1)ss + δj0+1∈J ′′

= 2
(
ij0+2 − δj0+1/∈J ′ + δj0+2∈(J−1)ss

)
+ δj0+2∈(J−1)ss − δj0+2∈(J−1)ss + δj0+1/∈J ′

= 2ij0+2 − δj0+1/∈J ′ + 2δj0+2∈(J−1)ss

= 2ij0+2 − 1 + δj0+1∈J ′ + δj0+2∈(J−1)ss + 1− δj0+2/∈(J−1)ss

= 2ij0+2 + δj0+2∈(J−1)ss − δj0+2∈J∆(J−1)ss + δj0+1∈J ′

= (−1)δj0+3/∈Jmj0+2,

hence mj0+2 = m′
j0+2.

(ii). We prove the case j = j0 + 2 and f ≥ 2, the other cases being similar and simpler. We
also assume that j0 + 3 ∈ J , the case j0 + 3 /∈ J being similar. Then using (4.7), we have

2i′j0+2 + tJ\{j0+2}(J ′′)j0+2 = 2i′j0+2 + p− 1− s
J\{j0+2}
j0+2 + δj0+1∈J ′′

= 2
(
ij0+2 − δj0+1/∈J ′ + δj0+2∈Jρ

)
+ p− 1− (p− 2− rj0+2) + δj0+1/∈J ′

= 2ij0+2 − δj0+1/∈J ′ + p− 1−
(
p− 1− rj0+2 − 2δj0+2∈Jρ

)
+ 1

= 2ij0+2 + p− 1− sJj0+2 + δj0+1∈J ′

= 2ij0+2 + tJ(J ′)j0+2.

(iii). By (4.33) we have cj = c′j for j ̸= j0 +1, so it remains to prove that cj0+1 = c′j0+1. We
assume that j0 + 2 ∈ (J − 1)ss, the case j0 + 2 /∈ (J − 1)ss being similar. Then using (4.7) and
(4.33) we have

c′j0+1 = p
(
ij0+2 − δj0+1/∈J ′ + 1

)
+ (p− 2− rj0+1) + 0− δj0+1∈J ′(p− 1− rj0+1)− δj0+1/∈J

= p
(
ij0+2 − δj0+1/∈J ′ + 1

)
− 1 + δj0+1/∈J ′(p− 1− rj0+1)− δj0+1/∈J

= pij0+2 + 0 + (p− 1)− δj0+1/∈J ′(rj0+1 + 1)− δj0+1/∈J = cj0+1.

(iv). If j ∈ J ′, then by the definition of cj and using ij+1 ≥ 0, we have

cj ≥ min
{
s
(J−1)ss

j , p− 1
}
− 1 ≥ 0,

where the last inequality follows from (4.10).

If j /∈ J ′, then the assumption 2ij+1−δj+1∈J∆(J−1)ss +δj∈J ′ ≥ 0 implies that either ij+1 ≥ 1
or j + 1 /∈ J∆(J − 1)ss. By the definition of cj and using ij+1 ≥ 0, we have if j ̸= j0 + 1

cj ≥ min
{
p, p− 1

}
−
(
2ij + tJ(J ′)j

)
≥ 0,

where the last inequality follows from (4.19) and i ≤ f−eJsh
. By the definition of cj0+1 and using

ij0+1 = 0 (hence j0+1 /∈ J∆(J − 1)ss) and (4.33), we have cj0+1 ≥ (p− 1)− (rj0+1+1)− 1 ≥ 0,
where the last inequality follows from (4.2).

By the definition of c and since c ≥ 0, we have

Y cB1 = Y pδ(i)

 ∏
j+1∈J∆(J−1)ss

Y
s
(J−1)ss

j

j

∏
j+1/∈J∆(J−1)ss

Y p−1
j

( p 0
0 1

) (
Y −ivJ

)

=

 ∏
j+1∈J∆(J−1)ss

Y
s
(J−1)ss

j

j

∏
j+1/∈J∆(J−1)ss

Y p−1
j

( p 0
0 1

)
vJ = µJ,(J−1)ssv(J−1)ss ,
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where the second equality follows from Lemma 4.3.1(i) and the last equality follows from Propo-
sition 4.5.4 applied to J . Similarly, we have (recall that ((J \ {j0 + 2})− 1)ss = (J − 1)ss)

Y cB2 = Y c′B2 =
µJ,(J−1)ss

µJ\{j0+2},(J−1)ss

 ∏
j+1∈J ′′′

Y
s
(J−1)ss

j

j

∏
j+1/∈J ′′′

Y p−1
j

( p 0
0 1

)
vJ\{j0+2}

= µJ,(J−1)ssv(J−1)ss ,

where J ′′′ def= (J \{j0+2})∆(J−1)ss and the last equality follows from Proposition 4.5.4 applied
to J \ {j0 + 2}. In particular, we deduce from Lemma 4.3.1(ii) that B1 and B2 have the same
H-eigencharacter.

Proof of Proposition 4.5.9. As in the proof of Proposition 4.5.5, the H-eigencharacters that

occur in
〈
GL2(OK)

(
p 0
0 1

)
Y −ivJ

〉
are those in Q

(
χsJα

i′′ , Ji′′
)
for 0 ≤ i′′ ≤ i (where Ji′′

def
= {j :

j + 1 ∈ J∆(J − 1)ss, i′′j+1 = 0}), which are χJα
−i′′α−k, where{

0 ≤ kj ≤ p− 2− (sJj − 2i′′j ) + δj−1∈J0 if j ∈ J0

p− 1− (sJj − 2i′′j ) + δj−1∈J0 ≤ kj ≤ p− 1 if j /∈ J0
(4.34)

for J0 ⊇ Ji′′ . By Lemma 4.3.2(iii), unless J0 = ∅ and kj = p − 1 − (sJj − 2i′′j ) for all j, the H-

eigencharacter in (4.34) comes from the element Y k
(
p 0
0 1

) (
Y −i′′vJ

)
∈
〈
GL2(OK)

(
p 0
0 1

)
Y −i′′vJ

〉
.

Suppose that 2ij − δj∈J∆(J−1)ss + δj−1∈J ′ < 0 for some j. By Lemma 4.5.10(i) and using(
(J \ {j0 + 2})− 1

)ss
= (J − 1)ss, we have

2i′j − δj∈(J\{j0+2})∆((J\{j0+2})−1)ss + δj−1∈J ′′ < 0

for the same j. Then by Proposition 4.5.8(i) applied to (i, J, J ′) and (i′, J \ {j0 + 2}, J ′′) we
deduce that B1 = B2 = 0 (if i′ ≱ 0 then B2 = 0 by definition), which proves (4.32). So in the
rest of the proof we assume that 2ij − δj∈J∆(J−1)ss + δj−1∈J ′ ≥ 0 for all j, which implies that

2i′j − δj∈(J\{j0+2})∆((J\{j0+2})−1)ss + δj−1∈J ′′ ≥ 0

for all j. In particular, this implies i′ ≥ 0. Then by Proposition 4.5.8(ii) applied to (i, J, J ′)
and (i′, J \{j0+2}, J ′′) we deduce that B1, B2 ∈ I

(
σ(J−1)ss , σm

)
= I
(
σ(J−1)ss , σm′

)
(see Lemma

4.5.10(i)), which is a subrepresentation of
〈
GL2(OK)

(
p 0
0 1

)
Y −ivJ

〉
and of

〈
GL2(OK)

(
p 0
0 1

)
Y −i′vJ\{j0+2}

〉
.

(i). We suppose that j0 + 1 ∈ J , hence j0 ∈ J ′. In this case, we claim that it suffices to
prove (4.32) for J ′ = J , that is (using (4.33))(

p 0
0 1

) (
Y −ivJ

)
=

µJ,(J−1)ss

µJ\{j0+2},(J−1)ss
Y
p−1−rj0+1

j0+1

(
p 0
0 1

) (
Y −i′vJ\{j0+2}

)
, (4.35)

where i′j = ij if j ̸= j0 + 2 and i′j0+2 = ij0+2 + δj0+2∈(J−1)ss . Indeed, once (4.35) is proved, we

multiply both sides of (4.35) by
∏
j /∈J ′ Y

2ij+t
J (J ′)j

j . If j0 + 1 ∈ J ′, then using (4.33) we obtain
(4.32) for J ′. If j0+1 /∈ J ′, then using (4.33) together with Lemma 4.3.1(i) applied to j = j0+1
we obtain (4.32) for J ′.

Then we prove (4.35). Since B1, B2 ∈ I
(
σ(J−1)ss , σm

)
⊆
〈
GL2(OK)

(
p 0
0 1

)
Y −ivJ

〉
have

common H-eigencharacter χJα
−i (see Lemma 4.5.10(iv)), it suffices to show that the H-

eigencharacter χJα
−i only appears once in

〈
GL2(OK)

(
p 0
0 1

)
Y −ivJ

〉
, which implies B1 = B2

by Lemma 4.5.10(iv). Since j0 + 1 ∈ J , the assumptions j0 + 1 ∈ (J − 1)nss and ij0+1 = 0
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imply that j0 ∈ Ji′′ for all i′′ as in (4.34). In particular, we have j0 ∈ J0. As in the proof of
Proposition 4.5.5, the equation (4.22) then becomes

−
f−1∑
j=0

(ij − i′′j )p
j ≡

f−1∑
j=0

kjp
j mod (q − 1), (4.36)

which is congruent to
∑f−1

j=0

(
p− 1− (ij − i′′j )

)
pj modulo (q − 1). If ij ̸= i′′j for some j, then we

must have kj0 = p− 1− (ij0 − i′′j0). Since j0 ∈ J0, by (4.34) we have

kj0 = p− 1− (ij0 − i′′j0) ≤ p− 2− (sJj0 − 2i′′j0) + δj0−1∈J0 ≤ p− 1− (sJj0 − 2i′′j0).

Hence sJj0 ≤ ij0 + i
′′
j0

≤ 2(f − δj0∈Jsh), which contradicts (4.10). Therefore, we must have ij = i′′j
for all j and the LHS of (4.36) equals 0. Since j0 ∈ J0, by (4.34) and (4.10) we have kj0 < p−1.
It follows from (4.36) that kj = 0 for all j.

(ii) We suppose that j0 + 1 /∈ J (which implies f ≥ 2), hence j0 /∈ J ′. We prove (4.32) by
the following steps.

Step 1. We prove (4.32) for J ′ = J \ {j0}.
Using (4.33), it is enough to prove that

Y
2ij0+p−s

J
j0

j0

(
p 0
0 1

) (
Y −ivJ

)
=

µJ,(J−1)ss

µJ\{j0+2},(J−1)ss

[
Y

2ij0+p−s
J
j0

j0
Y
p−1−rj0+1

j0+1

] (
p 0
0 1

) (
Y −i′vJ\{j0+2}

)
,

(4.37)
where i′j = ij if j ̸= j0 + 2 and i′j0+2 = ij0+2 + δj0+2∈(J−1)ss . Since ij0+1 = i′j0+1 = 0, by Lemma

4.3.1(i) applied to j = j0 and Proposition 4.4.2, if we apply Y
sJj0

−2ij0
j0

to either side of (4.37)

we get zero. Moreover, B1, B2 ∈ I
(
σ(J−1)ss , σm

)
⊆
〈
GL2(OK)

(
p 0
0 1

)
Y −ivJ

〉
have common

H-eigencharacter χ
def
= χJα

−iα
2ij0+p−s

J
j0

j0
(see Lemma 4.5.10(iv)). Hence it suffices to show

that up to scalar there exists a unique H-eigenvector C ∈
〈
GL2(OK)

(
p 0
0 1

)
Y −ivJ

〉
satisfying

Y
sJj0

−2ij0
j0

C = 0 with H-eigencharacter χ, which implies B1 = B2 by Lemma 4.5.10(iv).
As in the proof of Proposition 4.5.5 (in the case J ′ = J \ {j0} with the same definition of

ηj), for each i
′′ such that 0 ≤ i′′ ≤ i, the equation χ = χJα

−i′′αk has at most one solution for
k as in (4.34), which is given by (see (4.27) and since j0 − 1 ∈ J ′){

kj0 = ij0 + i′′j0 + p− sJj0 + ηj0
kj = ηj − (ij − i′′j ) if j ̸= j0.

(4.38)

It follows from (4.34) that C is a linear combination of the elements C ′ def= Y k
(
p 0
0 1

) (
Y −i′′vJ

)
∈〈

GL2(OK)
(
p 0
0 1

)
Y −i′′vJ

〉
with distinct i′′ such that 0 ≤ i′′ ≤ i and k as in (4.38), each of which

has nonzero image in the quotient Q of
〈
GL2(OK)

(
p 0
0 1

)
Y −i′′vJ

〉
isomorphic to Q

(
χsJα

i′′ , Ji′′
)

(see Lemma 4.5.1(ii)).

We claim that for i′′ ̸= i, the element Y
sJj0

−2ij0
j0

C ′ ∈
〈
GL2(OK)

(
p 0
0 1

)
Y −i′′vJ

〉
also has

nonzero image in Q ∼= Q
(
χsJα

i′′ , Ji′′
)
. Then we deduce from Lemma 4.5.1(ii) that the coefficients

of C ′ with i′′ ̸= i in the linear combination for C must be zero, which concludes the proof of
(4.37).

Then we prove the claim. We let J0 be the subset corresponding to the H-eigencharacter
of C ′ = Y k

(
p 0
0 1

) (
Y −i′′vJ

)
in (4.34). Suppose that j0 ∈ J0. Then by Claim 2 in the proof of
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Proposition 4.5.5, we deduce from j0 ∈ J0 and j0 /∈ J ′ that j0 − 1 /∈ J ′, which is a contradiction
since J ′ = J \{j0}. Hence we must have j0 /∈ J0. By the definition of ηj in the case J ′ = J \{j0}
(see (4.23)), we have either ηj0 = −1 or ηj0 = 0. Moreover, if ηj0 = 0, then the definition of
ηj implies that i′′j = ij for all j ̸= j0, hence i

′′
j0
< ij0 since i′′ ̸= i. In particular, in either case

we deduce from (4.38) that kj0 < 2ij0 + p − sJj0 , hence (sJj0 − 2ij0) + kj0 ≤ p − 1. Then using

j0 /∈ J0, the H-eigencharacter of Y
sJj0

−2ij0
j0

C ′ still appears in (4.34) (with the corresponding i′′

and J0 unchanged), hence has nonzero image in Q ∼= Q
(
χsJα

i′′ , Ji′′
)
.

Step 2. We prove (4.32) for all J ′ such that j0 /∈ J ′ and j0 − 1 ∈ J ′.

We multiply both sides of (4.37) by Yj0+1

[∏
j /∈J ′∪{j0} Y

2ij+t
J (J ′)j

j

]
. Since j0 − 1 ∈ J ′, we

deduce that tJ(J ′)j0 is the same as in Step 1. If j0 + 1 ∈ J ′, then using (4.33) we obtain (4.32)
for J ′. If j0 + 1 /∈ J ′, then using (4.33) together with Lemma 4.3.1(i) applied to j = j0 + 1 we
obtain (4.32) for J ′.

Step 3. We prove (4.32) for all J ′ such that j0 /∈ J ′ and j0 − 1 /∈ J ′.

We multiply both sides of (4.37) by Yj0+1

[∏
j /∈J ′∪{j0} Y

2ij+t
J (J ′)j

j

]
. Similarly to Step 2 but

using j0−1 /∈ J ′, we get Yj0B1 = Yj0B2. Moreover, B1, B2 ∈ I
(
σ(J−1)ss , σm

)
⊆
〈
GL2(OK)

(
p 0
0 1

)
Y −ivJ

〉
have H-eigencharacter χ

def
= χJαj0+1α

−i[∏
j /∈J ′ α

2ij+p−1−sJj +δj−1∈J′
j

]
. Hence it suffices to show

that there is no nonzero H-eigenvector C ∈ I(σ(J−1)ss , σm) with H-eigencharacter χ satisfying
Yj0C = 0, which implies B1 −B2 = 0.

As in the proof of Proposition 4.5.5, the equation χ = χJα
−i′′αk is equivalent to the con-

gruence relation (compare with (4.22))

pj0+1 +
∑
j /∈J ′

(
ij + i′′j + p− 1− sJj + δj−1∈J ′

)
pj −

∑
j∈J ′

(ij − i′′j )p
j ≡

f−1∑
j=0

kjp
j mod (q − 1), (4.39)

where the term pj0+1 comes from αj0+1. Then by a similar argument as in the proof of Propo-
sition 4.5.5, for each i′′ such that 0 ≤ i′′ ≤ i the equation (4.39) has at most one solution for k
as in (4.34), which satisfies (compare with (4.27) and note that j0 − 1 /∈ J ′)

kj0 = ij0 + i′′j0 + p− 1− sJj0 + η

for some η ∈ {0,−1} and k ̸= 2i′′ + p − 1 − sJ . In particular, using (4.10) we deduce that

kj0 ≤ p − 2. It follows from (4.34) that C is a linear combination of the elements C ′ def
=

Y k
(
p 0
0 1

) (
Y −i′′vJ

)
∈
〈
GL2(OK)

(
p 0
0 1

)
Y −i′′vJ

〉
with distinct i′′ such that 0 ≤ i′′ ≤ i and k such

that kj0 ≤ p−2, each of which has nonzero image in the quotient Q of
〈
GL2(OK)

(
p 0
0 1

)
Y −i′′vJ

〉
isomorphic to Q

(
χsJα

i′′ , Ji′′
)
(see Lemma 4.5.1(ii)).

We let J0 be the subset corresponding to the H-eigencharacter of C ′ = Y k
(
p 0
0 1

) (
Y −i′′vJ

)
in (4.34) and claim that j0 /∈ J0. Since mj0+1 = 0, any constituent σa of I

(
σ(J−1)ss , σm

)
satisfies aj0+1 = 0. If we write σa = F

(
tλJ (b)

)
, then by Lemma 4.2.3 we have 0 = aj0+1 =

(−1)δj0+2∈J (bj0+1 + δj0+1∈J) + 2δj0+1∈Jsh . Since j0 + 1 /∈ J , we deduce that bj0+1 = 0, which is

even. Since C ∈ I(σ(J−1)ss , σm) we deduce from Lemma 4.3.2(i) applied to λ = λJ − αi
′′
that

j0 /∈ J0.
Since j0 /∈ J0 and kj0 ≤ p − 2, the H-eigencharacter of Yj0C

′ still appears in (4.34) (with
the corresponding i′′ and J0 unchanged), hence has nonzero image in Q ∼= Q

(
χsJα

i′′ , Ji′′
)
. Since

we ask Yj0C = 0, it follows that the coefficient of each C ′ in the linear combination for C must
be zero, which completes the proof.
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The following Proposition is a generalization of Proposition 4.5.4 and gives more relations
between the vectors vJ ∈ D0(ρ).

Proposition 4.5.11. Let J, J ′ ⊆ J such that (J ′)nss ̸= J (i.e. (J ′, Jρ) ̸= (J , ∅)) and satisfying{
(J − 1)ss = (J ′)ss

(J ′)nss ⊆ (J − 1)nss∆(J ′ − 1)nss.
(4.40)

Then there exists a unique element µJ,J ′ ∈ F×, such that ∏
j+1∈J∆J ′

Y
sJ

′
j

j

∏
j+1/∈J∆J ′

Y p−1
j

( p 0
0 1

) (
Y −e(J∩J′)nss

vJ

)
= µJ,J ′vJ ′ , (4.41)

where Y −e(J∩J′)nss
vJ is defined in Proposition 4.4.2.

Proof. If f = 1, then the assumption implies J ′ = (J − 1)ss and (J ∩ J ′)nss = ∅, and the
proposition is already proved in Proposition 4.5.4. Hence in the rest of the proof we assume
that f ≥ 2. We denote by B the LHS of (4.41).

Claim 1. The element B is nonzero and has H-eigencharacter χJ ′ .

Proof. By Lemma 4.5.1(ii), the representation
〈
GL2(OK)

(
p 0
0 1

)
Y −e(J∩J′)nss

vJ
〉
has a quotient

Q isomorphic to Q
(
χsJα

e(J∩J′)nss
, J ′′′) with J ′′′ def=

(
(J∆(J − 1)ss)\ (J ∩J ′)nss

)
−1. By the proof

of Lemma 4.5.1, Q has constituents F
(
tλJ (−b)

)
with

max
(
δj∈J∆(J−1)ss , 2δj∈(J∩J ′)nss

)
≤ bj ≤ 2δj∈(J∩J ′)nss + 1. (4.42)

We claim that σJ ′ is a constituent of Q and corresponds to the subset J ′′ def= (J∆J ′)− 1 for

Ind
GL2(OK)
I

(
χsJα

e(J∩J′)nss)
(see Lemma 4.3.2(i)). Indeed, by Lemma 4.2.3(iii), we have σJ ′ =

F
(
tλJ (−b)

)
with

bj =

{
δj∈J + δj∈J ′(−1)δj+1/∈J∆J′ if j /∈ Jρ(
δj∈J − δj /∈J ′

)
(−1)δj+1∈J if j ∈ Jρ.

(4.43)

We need to check that bj satisfies (4.42). We assume that j /∈ Jρ, the case j ∈ Jρ being similar.
By (4.40), we have j ∈ J ′ implies j +1 ∈ J∆J ′. Hence we have δj∈J ′(−1)δj+1/∈J∆J′ = δj∈J ′ , and
from (4.42) it suffices to show that

max
(
δj∈J , 2δj∈J∩J ′

)
≤ δj∈J + δj∈J ′ ≤ 2δj∈J∩J ′ + 1,

which is easy. Then we prove the second assertion. By Lemma 4.3.2(i) applied to λ = λJ −
αe

(J∩J′)nss
, it suffices to show that bj = 2δj∈(J∩J ′)nss + 1 if and only if j ∈ J∆J ′. Once again we

assume that j /∈ Jρ, and the case j ∈ Jρ is similar. Then it suffices to show that δj∈J + δj∈J ′ =
2δj∈J∩J ′ + 1 if and only if j ∈ J∆J ′, which is easy.

By Lemma 4.2.2, for j ∈ J ′′ we have
(
p − 2 − (sJj − 2δj∈(J∩J ′)nss)

)
+ δj−1∈J ′′ = sJ

′
j . Then

by Lemma 4.3.2(iii) applied to λ = λJ − αe
(J∩J′)nss

, we deduce that the image of B in Q ∼=
Q
(
χsJα

e(J∩J′)nss
, J ′′′) is a nonzero I1-invariant of σJ ′ . In particular, B is nonzero and has H-

eigencharacter χJ ′ .

Claim 2. The element B is K1-invariant.
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Proof. First we claim that m
(
e(J∩J

′)nss , J, J ′′) = aJ
′
(see (4.31) for m and (4.6) for aJ

′
). Indeed,

using Lemma 4.5.7 it suffices to show that δj∈J ′(−1)δj+1/∈J = aJ
′
j for j ∈ J . If j ∈ Jρ, then

the assumption (J − 1)ss = (J ′)ss implies that j ∈ J − 1 if and only if j ∈ J ′, hence we have
δj∈J ′(−1)δj+1/∈J = δj∈J ′(−1)δj /∈J′ = δj∈J ′ , which equals aJ

′
j by (4.6). If j /∈ Jρ, then j ∈ J ′ implies

j+1 ∈ J∆J ′ by the second formula of (4.40), hence we have δj∈J ′(−1)δj+1/∈J = δj∈J ′(−1)δj+1∈J′ ,
which equals aJ

′
j by (4.6).

By Proposition 4.5.8(ii) applied to i = e(J∩J
′)nss and with J ′ there being J ′′, we deduce that

Yj′

 ∏
j+1/∈J∆J ′

Y
2δj∈(J∩J′)nss+t

J (J ′′)j
j

( p 0
0 1

) (
Y −e(J∩J′)nss

vJ

)
∈ I(σ(J−1)ss , σJ ′) ⊆ D0,σ(J−1)ss

(ρ)

(4.44)
for all j′ ∈ J , where the last inclusion follows from the fact that σJ ′ is a constituent of
D0,σ(J−1)ss

(ρ) (which follows from Lemma 4.4.1(iii) and (4.40)). Since sJ
′
j ≥ 1 and 2δj∈(J∩J ′)nss+

tJ(J ′′)j ≤ p− 2 for all j by (4.10), (4.19) and f ≥ 2, multiplying (4.44) by a suitable power of
Y , we deduce that B ∈ D0,σ(J−1)ss

(ρ), hence is K1-invariant.

Claim 3. We have Yj0B = 0 for all j0 ∈ J .

Proof. (i). Suppose that j0 + 1 /∈ J∆J ′ and j0 + 1 /∈ (J ∩ J ′)nss. By Proposition 4.4.2, we

have Yj0+1

(
Y −e(J∩J′)nss

vJ
)
= 0. Hence it follows from Lemma 4.3.1(i) applied to j = j0 that

Yj0B = 0.
(ii). Suppose that j0 + 1 ∈ J∆J ′, which equals J∆

(
(J ′)ss∆(J ′)nss

)
=
(
J∆(J ′)ss

)
∆(J ′)nss.

Hence for each j ∈ J∆J ′, we have either j ∈ J∆(J ′)ss, j /∈ (J ′)nss or j /∈ J∆(J ′)ss, j ∈ (J ′)nss,
and in the latter case we have j + 1 ∈ J∆J ′ by (4.40). In particular, since (J ′)nss ̸= J , there
exists 0 ≤ w ≤ f − 1 such that j /∈ J∆(J ′)ss, j ∈ (J ′)nss for j = j0 + 1, . . . , j0 + w and
j0 + w + 1 ∈ J∆(J ′)ss, j0 + w + 1 /∈ (J ′)nss.

By (4.40) we have j0 +w+ 1 ∈ J∆(J ′)ss = J∆(J − 1)ss. Then by proposition 4.5.5 applied

to i = e(J∩J
′)nss , j0 replaced by j0 + w and J ′ replaced by J ′′

1 − 1 with J ′′
1

def
= (J∆J ′) \ {j0 +

1, . . . , j0 + w + 1}, and possibly multiplying (4.20) by Yj0+w+1, we have

Yj0+w+1

 ∏
j+1/∈J ′′

1

Y
2δj∈(J∩J′)nss+p−1−sJj +δj∈J′′

1
j

( p 0
0 1

) (
Y −e(J∩J′)nss

vJ

)
= 0.

Since 2δj∈(J∩J ′)nss + p − 1 − sJj + δj∈J ′′
1
≤ p − 1 for all j by (4.10), to prove that Yj0B = 0, it

suffices (from the formula of B) to show that

sJ
′
j + δj=j0 = 2δj∈(J∩J ′)nss + p− 1− sJj + δj∈(J∆J ′)\{j0+1,...,j0+w+1} + δj=j0+w+1

for j + 1 ∈ (J∆J ′) \ J ′′
1 , that is j = j0, . . . , j0 +w. This follows from Lemma 4.2.2 with J, J ′ as

above noting that j = j0 + w + 1 and j ∈ {j0, . . . , j0 + w} imply that j = j0 and w = f − 1.
(iii). Suppose that j0 + 1 ∈ (J ∩ J ′)nss, then by Lemma 4.3.1(i) applied to j = j0 and using

j0 + 1 /∈ J∆J ′, we have

Yj0B =

 ∏
j+1∈J∆J ′

Y
sJ

′
j

j

∏
j+1/∈(J∆J ′)∪{j0+1}

Y p−1
j

( p 0
0 1

) (
Y −e(J∩J′)nss\{j0+1}

vJ

)
. (4.45)

As in (ii) (with the difference that j0 + 1 /∈ J∆J ′), there exists 1 ≤ w ≤ f − 1 such that
j /∈ J∆(J ′)ss, j ∈ (J ′)nss for j = j0+2, . . . , j0+w and j0+w+1 ∈ J∆(J ′)ss, j0+w+1 /∈ (J ′)nss.
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By (4.40) we have j0 + w + 1 ∈ J∆(J ′)ss = J∆(J − 1)ss. Then by proposition 4.5.5

applied to i = e(J∩J
′)nss\{j0+1}, j0 replaced by j0 + w and J ′ replaced by J ′′

2 − 1 with J ′′
2

def
=(

(J∆J ′) \ {j0 + 2, . . . , j0 + w + 1}
)
∪ {j0 + 1}, we have ∏

j+1/∈J ′′
2

Y
2δj∈(J∩J′)nss\{j0+1}+p−1−sJj +δj∈J′′

2
j

( p 0
0 1

) (
Y −e(J∩J′)nss\{j0+1}

vJ

)
= 0.

Since 2δj∈(J∩J ′)nss\{j0+1}+ p− 1− sJj + δj∈J ′′
2
≤ p− 1 for all j by (4.10), to prove that Yj0B = 0,

comparing with (4.45) it suffices to show that

sJ
′
j = 2δj∈(J∩J ′)nss\{j0+1} + p− 1− sJj + δj∈((J∆J ′)\{j0+2,...,j0+w+1})∪{j0+1}

for j+1 ∈ (J∆J ′) \J ′′
2 , that is j = j0+1, . . . , j0+w. This follows from Lemma 4.2.2 with J, J ′

as above.

From Claim 2 and Claim 3, we deduce that B is I1-invariant. Since B ̸= 0 has H-
eigencharacter χJ ′ by Claim 1 and since D0(ρ)

I1 is multiplicity-free by Lemma 4.4.1(ii), we
conclude that B is a scalar multiple of vJ ′ , which completes the proof.

Remark 4.5.12. For J ⊆ J , we define the right boundary of J by ∂J
def
= {j ∈ J : j + 1 /∈ J} .

Then the second formula in (4.40) is equivalent to

(∂J ′)nss ⊆ (J − 1)nss ⊆
(
(J ′ \ ∂J ′)c

)nss
.

If Jρ = ∅, then we define x∅,r
def
= µ−1

∅,∅Y
p−1−r ( p 0

0 1

)
v∅ so that Y rx∅,r = v∅ by (4.17) applied to

J = ∅. This agrees with the definition of x∅,r given in Theorem 4.6.4 below, see (4.123) below.
Then we have the following complement of Proposition 4.5.11 which together with Proposition
4.5.11 gives all possible relations between the vectors vJ ∈ D0(ρ).

Proposition 4.5.13. Assume that Jρ = ∅. Then for ∅ ≠ J ⊆ J , there exists a unique element
µJ,J ∈ F× such that  ∏

j+1/∈J

Y
p−1−rj
j

( p 0
0 1

)
vJ = µJ,J vJ + µJ,∅x∅,r,

where µJ,∅ is defined in Proposition 4.5.4.

Proof. By Lemma 4.5.1(ii) and its proof, the isomorphism Ind
GL2(OK)
I (χs∅)

∼=
〈
GL2(OK)

(
p 0
0 1

)
v∅
〉

identifies the element ϕ in §4.3 with
(
0 1
p 0

)
v∅, which is a scalar multiple of vJ since χJ = χs∅

when Jρ = ∅. Hence by Lemma 4.3.2(iii)(a) applied to λ = λ∅, any nonzero element in the
I-cosocle of σ∅ is a linear combination of vJ and x∅,r with nonzero coefficients.

By Lemma 4.5.1(i),(ii) and its proof, the representation
〈
GL2(OK)

(
p 0
0 1

)
vJ
〉 ∼= Q

(
χsJ , J−1

)
has socle σ∅, and identifies

(
0 1
p 0

)
vJ with the element ϕ in §4.3. Since J ̸= ∅, we deduce from

Lemma 4.3.2(iii)(b) applied to λ = λJ that the element B
def
=
[∏

j+1/∈J Y
p−1−rj
j

] (
p 0
0 1

)
vJ is

nonzero and lies in the I-cosocle of σ∅, hence B = µJ,J vJ + µ′J,∅x∅,r for some µJ,J , µ
′
J,∅ ∈ F×

by the previous paragraph. Finally, by applying Y r to B and recalling that Y rvJ = 0 since vJ
is I1-invariant, we deduce from Proposition 4.5.4 (with Jρ = J = ∅) that µ′J,∅ = µJ,∅.
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Example 4.5.14. Some examples for f = 3 and Jρ = ∅:

Y r0
0 Y p−1

1 Y p−1
2

(
p 0
0 1

)
v{1} = µ{1},∅v∅;

Y r0+1
0 Y p−1

1 Y p−2−r2
2

(
p 0
0 1

)
v{1} = µ{1},{0}v{0};

Y r0+1
0 Y p−2−r1

1 Y p−1−r2
2

(
p 0
0 1

)
v{1} = µ{1},{0,2}v{0,2};

Y p−1−r1
1 Y p−1−r2

2

(
p 0
0 1

)
v{1} = µ{1},{0,1,2}v{0,1,2} + µ{1},∅x∅,(r0,r1,r2).

Y r0
0 Y p−1

1 Y r2
2

(
p 0
0 1

)
v{0,1} = µ{0,1},∅v∅;

Y r0+1
0 Y p−1

1 Y p−1
2

(
p 0
0 1

) (
Y −1
0 v{0,1}

)
= µ{0,1},{0}v{0};

Y r0
0 Y p−2−r1

1 Y r2+1
2

(
p 0
0 1

)
v{0,1} = µ{0,1},{2}v{2};

Y p−1
0 Y p−1−r1

1 Y r2+1
2

(
p 0
0 1

) (
Y −1
1 v{0,1}

)
= µ{0,1},{1,2}v{1,2};

Y p−1−r1
1

(
p 0
0 1

)
v{0,1} = µ{0,1},{0,1,2}v{0,1,2} + µ{0,1},∅x∅,(r0,r1,r2).

Lemma 4.5.15. Let J1, J2, J3, J4 ⊆ J such that the pairs (J1, J3), (J1, J4), (J2, J3), (J2, J4)
satisfy the assumptions of either Proposition 4.5.11 or Proposition 4.5.13 (here we say that
(J, J ′) satisfies the assumption of Proposition 4.5.13 if Jρ = ∅, J ̸= ∅ and J ′ = J ). Then we
have

µJ1,J3
µJ1,J4

=
µJ2,J3
µJ2,J4

, (4.46)

where each term of (4.46) is defined in either Proposition 4.5.11 or Proposition 4.5.13.

Proof. First we suppose that Jρ = ∅ and J4 = J . If J3 = J , then (4.46) is clear. If J3 ̸= J ,
then by the proof of Proposition 4.5.13 and using that the I-cosocle of σ∅ has dimension 1 over
F, the ratio µJ,J /µJ,∅ does not depend on J , hence we can replace J4 = J by J4 = ∅.

From now on, we assume that all the pairs (J1, J3), (J1, J4), (J2, J3), (J2, J4) satisfy the
assumptions of Proposition 4.5.11. In particular, we have (J1 − 1)ss = (J2 − 1)ss = J ss

3 = J ss
4 .

Using that
µJi,J3
µJi,J4

=
µJ1,J3
µJi,Jss

4

(
µJi,J4
µJi,Jss

4

)−1

for i = 1, 2 with each term defined in Proposition 4.5.11, we may assume that J4 = J ss
4 ⊆ Jρ.

Then using Remark 4.5.12, the assumption (4.40) for the pairs (J1, J3), (J1, J4), (J2, J3), (J2, J4)
is equivalent to

(∂J3)
nss ⊔ J4 ⊆ Ji − 1 ⊆

(
(J3 \ ∂J3)c

)nss ⊔ J4 (4.47)

for i = 1, 2. By choosing a sequence J0, J1, . . . , Jr ⊆ J for some r ≥ 0 such that J0 = J1,
Jr = J2, |Ji∆Ji−1| = 1 for 1 ≤ i ≤ r and

(∂J3)
nss ⊔ J4 ⊆ J i − 1 ⊆

(
(J3 \ ∂J3)c

)nss ⊔ J4
for 0 ≤ i ≤ r, it suffices to prove the proposition with J1, J2 as in (4.47) such that (J1 − 1) =
(J2 − 1) ⊔ {j0 + 1} for some j0 ∈ J . In particular, we have j0 + 1 ∈ (J1 − 1)nss (since
(J1 − 1)ss = (J2 − 1)ss = J4) and j0 + 1 /∈ J3.

(i). Suppose that j0 ∈ J1 − 1. By Proposition 4.5.11 applied to (J1, J3), we have ∏
j+1∈J1∆J3

Y
s
J3
j

j

∏
j+1/∈J1∆J3

Y p−1
j

( p 0
0 1

) (
Y −e(J1∩J3)

nss

vJ1

)
= µJ1,J3vJ3 . (4.48)
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Since j0 + 1 ∈ J1 and j0 + 1 /∈ (J1 ∩ J3)nss (since j0 + 1 /∈ J3), by Proposition 4.5.9 applied to
(i, J, J ′) =

(
e(J1∩J3)

nss
, J1,J

)
with j0 as above together with (4.33) (and note that (J1 − 1)ss =

J4), we have (
p 0
0 1

) (
Y −e(J1∩J3)

nss

vJ1

)
=
µJ1,J4
µJ2,J4

Y
p−1−rj0+1

j0+1

(
p 0
0 1

) (
Y −i′vJ2

)
(4.49)

with

i′
def
= e(J1∩J3)

nss
+ δj0+2∈J4ej0+2

=
(
e(J2∩J3)

nss
+ δj0+2∈Jnss

3
ej0+2

)
+ δj0+2∈Jss

3
ej0+2 = e(J2∩J3)

nss
+ δj0+2∈J3ej0+2, (4.50)

where the second equality uses J1 \ J2 = {j0 + 2} and J ss
3 = J4. We assume that j0 + 2 ∈ J3,

the case j0 + 2 /∈ J3 being similar. Since j0 + 1 /∈ J3, we have sJ3j0+1 = p − 2 − rj0+1 by (4.7).
Combining (4.48) and (4.49), we have

µJ1,J3vJ3 =
µJ1,J4
µJ2,J4

 ∏
j+1∈J1∆J3

Y
s
J3
j

j

∏
j+1/∈J1∆J3

Y p−1
j

Y p−1−rj0+1

j0+1

(
p 0
0 1

) (
Y −i′vJ2

)

=
µJ1,J4
µJ2,J4

 ∏
j+1∈J2∆J3

Y
s
J3
j

j

∏
j+1/∈J2∆J3

Y p−1
j

Y rj0+1

j0+1 Y
p−1−rj0+1

j0+1

(
p 0
0 1

) (
Y −i′vJ2

)

=
µJ1,J4
µJ2,J4

 ∏
j+1∈J2∆J3

Y
s
J3
j

j

∏
j+1/∈J2∆J3

Y p−1
j

( p 0
0 1

) (
Y −e(J2∩J3)

nss

vJ2

)
=
µJ1,J4
µJ2,J4

µJ2,J3vJ3 ,

where the second equality uses j0 + 2 ∈ J1, j0 + 2 /∈ J2, j0 + 2 ∈ J3 (hence j0 + 2 /∈ J1∆J3
and j0 + 2 ∈ J2∆J3) and s

J3
j0+1 = p− 2− rj0+1, the third equality follows from Lemma 4.3.1(i)

applied to j = j0+1 and (4.50) using j0+2 ∈ J3, and the last equality follows from Proposition
4.5.11 applied to (J2, J3). Therefore, we have µJ1,J3 = (µJ1,J4/µJ2,J4)µJ2,J3 , which completes
the proof.

(ii). Suppose that j0 /∈ J1 − 1 (which implies f ≥ 2). Similar to (i), by Proposition 4.5.9
applied to (i, J, J ′) =

(
e(J1∩J3)

nss
, J1,J \ {j0}

)
with j0 as above together with (4.33), we have[

Yj0+1Y
2δj0∈(J1∩J3)

nss+p−sJ1j0
j0

] (
p 0
0 1

) (
Y −ivJ

)
=
µJ1,J4
µJ2,J4

[
Yj0+1Y

2δj0∈(J1∩J3)
nss+p−sJ1j0

j0

]
Y
p−1−rj0+1

j0+1

(
p 0
0 1

) (
Y −i′vJ\{j0+2}

)
,

where i′ = e(J2∩J3)
nss

+ δj0+2∈J3ej0+2. We claim that
[∏

j+1∈J1∆J3 Y
s
J3
j

j

∏
j+1/∈J1∆J3 Y

p−1
j

]
is a

multiple of Yj0+1Y
2δj0∈(J1∩J3)

nss+p−sJ1j0
j0

. Indeed, since sJ3j0+1 ≥ 1 and 2δj0∈(J1∩J3)nss+p−s
J1
j0

≤ p−1
by (4.10), the claim follows from the fact that j0+1 /∈ J1, j0+1 /∈ J3 (hence j0+1 /∈ J1∆J3) and
j0 + 1 ̸= j0. Once we have the claim, we can argue exactly as in (i) to conclude the proof.

To end this section, we extend the definition of µJ,J ′ to all J, J ′ ⊆ J such that (J − 1)ss =
(J ′)ss as follows: 

µJ,J ′
def
=

µ((J ′)ss⊔(∂J ′)nss)+1,J ′µJ,(J ′)ss

µ((J ′)ss⊔(∂J ′)nss)+1,(J ′)ss
if (Jρ, J

′) ̸= (∅,J )

µ∅,J
def
=

µ∅,∅µJ ,J

µJ,∅
if Jρ = ∅

(4.51)
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(and µJ,J as in Proposition 4.5.13 if Jρ = ∅ and J ̸= ∅), where each term on the RHS of (4.51)
are defined in either Proposition 4.5.11 or Proposition 4.5.13. Then the equation (4.46) holds
for arbitrary J1, J2, J3, J4 ⊆ J such that (J1 − 1)ss = (J2 − 1)ss = J ss

3 = J ss
4 . In particular,

for J, J ′ such that (J − 1)ss = (J ′ − 1)ss, the quantity µJ,J ′′/µJ ′,J ′′ does not depend on J ′′ for
(J ′′)ss = (J − 1)ss and we denote it by µJ,∗/µJ ′,∗. Similarly, for J, J ′ such that J ss = (J ′)ss, the
quantity µJ ′′,J/µJ ′′,J ′ does not depend on J ′′ for (J ′′−1)ss = J ss and we denote it by µ∗,J/µ∗,J ′ .

4.6 Projective systems in π

In this section, we define certain projective systems xJ,i of elements of π indexed by J ⊆ J
and i ∈ Zf , see Theorem 4.6.4. They will give rise to a basis of the A-module DA(π). The
definition of these elements is much more involved than in the semisimple case (compared with
[BHH+c, (104)]).

The following quantities will appear in the definition of these elements in Theorem 4.6.4.

Definition 4.6.1. Let J ⊆ J .

(i) We define rJ ∈ Zf by

rJj
def
=


0 if j /∈ J, j + 1 /∈ J

−1 if j ∈ J, j + 1 /∈ J

rj + 1 if j /∈ J, j + 1 ∈ J

rj if j ∈ J, j + 1 ∈ J.

(4.52)

(ii) We define cJ ∈ Zf by

cJj
def
=


p− 1 if j /∈ J, j + 1 /∈ J

rj + 1 if j ∈ J, j + 1 /∈ J

p− 2− rj if j /∈ J, j + 1 ∈ J

0 if j ∈ J, j + 1 ∈ J.

(4.53)

(iii) We define εJ ∈ {±1} by (see Remark 4.5.12 for ∂J)

εJ
def
=

{
(−1)f−1 if Jρ = ∅, J = J
(−1)|(J\∂J)

nss| otherwise.
(4.54)

Remark 4.6.2. (i) By definition, for all J ⊆ J and j ∈ J we have

rJj = δj+1∈J(rj + 1)− δj∈J ; (4.55)

cJj = δj /∈J(p− 2− rj) + δj+1/∈J(rj + 1). (4.56)

(ii) The definition of cJ is a variant of [BHH+c, (95)] (where ρ was assumed to be semisimple).
Also, by (4.2) we have 0 ≤ cJ ≤ p− 1.

Lemma 4.6.3. (i) For J ⊆ J , we have tJ = rJ + eJ
sh

(see (4.8) for tJ and (4.9) for J sh).
(ii) For J1, J2 ⊆ J such that J1 ∩ J2 = ∅, we have rJ1∪J2 = rJ1 + rJ2 .

(iii) For J ⊆ J , we have αc
J
= αr

J+1−rJ .

(iv) Let J ′ ⊆ J ⊆ J and J ′′ def
= J ′∆(J − 1). Let c

def
= peJ

′∩(J−1) + cJ
′ − f − rJ\J

′
. Let

δ ∈ {0, 1}f . Then for all j ∈ J we have (see (4.18) for tJ(J ′))

cj − δj ≥ δj /∈J ′′

[
2
(
δj∈(J ′+1)∩J − δj∈(J ′+1)sh

)
+ tJ

′+1(J ′′)j

]
+ δJ ′′=∅.
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(v) Let J ′ ⊆ J ⊆ J . Then for all j ∈ J we have

cJ
′
j − r

J\J ′

j = cJj + δj∈J\J ′(p− 1− rj).

Proof. (i). This follows directly from the definition.
(ii). This follows immediately from (4.55).
(iii). By (4.55) and (4.56) we have

cJj + rJj − rJ+1
j =

(
δj /∈J(p− 1− rj) + δj+1/∈J(rj + 1)− δj /∈J

)
+
(
δj+1∈J(rj + 1)− δj∈J

)
−
(
δj∈J(rj + 1)− δj−1∈J

)
= pδj /∈J −

(
δj /∈J + δj∈J

)
(rj + 1)

+
(
δj+1/∈J + δj+1∈J

)
(rj + 1)−

(
δj /∈J + δj∈J

)
+ δj−1∈J

= pδj /∈J − 1 + δj−1∈J = pδj /∈J − δj−1/∈J .

Hence we have

αc
J+rJ−rJ+1

=
∏
j /∈J

αpj
∏

j−1/∈J

α−1
j =

∏
j /∈J

αj+1

∏
j−1/∈J

α−1
j = 1,

which proves (iii).
(iv). We assume that j /∈ J ′′, the case j ∈ J ′′ being similar and simpler. By definition we

have

2
(
δj∈(J ′+1)∩J − δj∈(J ′+1)sh

)
+
(
tJ

′+1(J ′′)j + δJ ′′=∅
)
+ δj

≤ 2
(
δj∈(J ′+1)∩J − δj∈(J ′+1)sh

)
+
(
p− 1− sJ

′+1
j + 1

)
+ 1

≤ 2
(
δj∈(J ′+1)∩J − δj∈(J ′+1)sh

)
+ p− 1−

(
2(f − δj∈(J ′+1)sh) + 1 + δf=1

)
+ 1 + 1

= p− 2f + 2δj∈(J ′+1)∩J − δf=1 ≤ p− 2f + 2− δf=1 ≤ p− f,

where the second inequality follows from (4.10). Since j /∈ J ′′, we have either j ∈ J ′ ∩ (J − 1),
or j /∈ J ′ and j /∈ J − 1. We give the proof when j ∈ J ′ ∩ (J − 1), the other case being similar.
By the definition of c, (4.53) and (4.52) we have

cj =

{
p+ 0− f − 0 if j + 1 ∈ J ′

p+ (rj + 1)− f − (rj + 1) if j + 1 /∈ J ′

= p− f,

which proves (iv).
(v). By (4.55) and (4.56) we have

cJ
′
j − r

J\J ′

j − cJj =
(
δj /∈J ′(p− 1− rj) + δj+1/∈J ′(rj + 1)− δj /∈J ′

)
−
(
δj+1∈J\J ′(rj + 1)− δj∈J\J ′

)
−
(
δj /∈J(p− 1− rj) + δj+1/∈J(rj + 1)− δj /∈J

)
=
(
δj /∈J ′ − δj /∈J

)
(p− 1− rj) +

(
δj+1/∈J ′ − δj+1∈J\J ′ − δj+1/∈J

)
(rj + 1)

−
(
δj /∈J ′ − δj∈J\J ′ − δj /∈J

)
= δj∈J\J ′(p− 1− rj).

This proves (v).

Theorem 4.6.4. There exists a unique family of elements
{
xJ,i : J ⊆ J , i ∈ Zf

}
of π satisfying

the following properties:
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(i) For each J ⊆ J , we have xJ,f = Y −(f−eJsh
)vJ (defined in Proposition 4.4.2).

(ii) For each J ⊆ J , i ∈ Zf and k ∈ Zf≥0, we have Y kxJ,i = xJ,i−k.

(iii) For each J ⊆ J and i ∈ Zf , we have (see Proposition 4.5.11 and (4.51) for µJ+1,J ′)(
p 0
0 1

)
xJ+1,i =

∑
Jss⊆J ′⊆J

εJ ′µJ+1,J ′xJ ′,pδ(i)+cJ+rJ\J′ .

Remark 4.6.5. The extra term eJ
sh

in 4.6.4(i) has the advantage that the constants cJ and rJ

in Theorem 4.6.4(iii) work for arbitrary Jρ.

Remark 4.6.6. Let 0 ≤ k ≤ f . Assume that Theorem 4.6.4 is true for |J | ≤ k. Then by

Theorem 4.6.4(ii),(iii), for all |J | ≤ k, i ∈ Zf and ℓ ∈ Zf≥0 we have

Y ℓ
(
p 0
0 1

)
xJ+1,i =

∑
Jss⊆J ′⊆J

εJ ′µJ+1,J ′xJ ′,pδ(i)+cJ+rJ\J′−ℓ. (4.57)

Moreover, the LHS and each term of the summation in (4.57) are H-eigenvectors with common

H-eigencharacter χJα
eJ

sh
+ℓ−i, see the proof of Corollary 4.6.10 below.

Example 4.6.7. Some examples for f = 3 and Jρ = ∅:(
p 0
0 1

)
x∅,(i0,i1,i2) = µ∅,∅x∅,(pi1+p−1,pi2+p−1,pi0+p−1);(

p 0
0 1

)
x{1},(i0,i1,i2) = µ{1},{0}x{0},(pi1+r0+1,pi2+p−1,pi0+p−2−r2)

+ µ{1},∅x∅,(pi1+r0,pi2+p−1,pi0+p−1);(
p 0
0 1

)
x{1,2},(i0,i1,i2) = −µ{1,2},{0,1}x{0,1},(pi1,pi2+r1+1,pi0+p−2−r2)

+ µ{1,2},{1}x{1},(pi1−1,pi2+r1+1,pi0+p−1)

+ µ{1,2},{0}x{0},(pi1+r0+1,pi2+r1,pi0+p−2−r2)

+ µ{1,2},∅x∅,(pi1+r0,pi2+r1,pi0+p−1).

The proof of Theorem 4.6.4 will occupy the current and the next sections.

Proof of Theorem 4.6.4. We define the elements xJ,i ∈ π by increasing induction on |J | and on

maxj ij . For each J ⊆ J , we let xJ,f
def
= Y −(f−eJsh

)vJ , which is defined in Proposition 4.4.2.

Then for each i ≤ f , we define xJ,i
def
= Y f−ixJ,f . By Proposition 4.4.2, for i ≤ f we have

xJ,i =

{
Y −(i−eJsh

)vJ if i ≥ eJ
sh

0 otherwise.
(4.58)

Then we let |J | = k for 0 ≤ k ≤ f and maxj ij = m > f . Assume that xJ,i is defined for
|J | ≤ k − 1 and all i ∈ Zf , and for |J | = k and maxj ij ≤ m − 1. We write i = pδ(i′) + cJ − ℓ
for the unique i′, ℓ ∈ Zf such that 0 ≤ ℓ ≤ p − 1. Then we claim that maxj i

′
j < maxj ij = m.

Indeed, for each j we have

i′j+1 =
(
ij − cJj + ℓj

)
/p ≤

(
m− 0 + (p− 1)

)
/p < m/p+ 1 < m, (4.59)

where the last inequality uses m > f ≥ 1. Then we define xJ,i by the formula

εJµJ+1,JxJ,i
def
= Y ℓ

(
p 0
0 1

)
xJ+1,i′ −

∑
Jss⊆J ′⫋J

εJ ′µJ+1,J ′xJ ′,i+rJ\J′ , (4.60)

where each term on the RHS of (4.60) is defined by the induction hypothesis (hence a priori
(4.60) holds for all J ⊆ J and i ∈ Zf such that maxj ij > f).
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Lemma 4.6.8. Let 0 ≤ k ≤ f . Assume that Theorem 4.6.4 is true for |J | ≤ k − 1. If (4.60)
holds for |J | = k and i = f , then Theorem 4.6.4 is true for |J | = k.

Proof. By (4.58), Theorem 4.6.4(ii) is true for all J ⊆ J and i ≤ f . Then we let J ⊆ J such

that |J | = k. We define c′J ∈ Zf by

c′Jj
def
=


p− 1− f if j /∈ J, j + 1 /∈ J

rj + 1− f if j ∈ J, j + 1 /∈ J

p− 2− rj − f if j /∈ J, j + 1 ∈ J

p− f if j ∈ J, j + 1 ∈ J.

(4.61)

In particular, by (4.2) we have 0 ≤ c′J ≤ p− 1, and by (4.61) and (4.53) we have

f = pδ
(
eJ∩(J+1)

)
+ cJ − c′J . (4.62)

Since (4.60) holds for J as above and i = f by assumption, using (4.62) we have

εJµJ+1,JxJ,f = Y c′J
(
p 0
0 1

)
xJ+1,eJ∩(J+1) −

∑
Jss⊆J ′⫋J

εJ ′µJ+1,J ′xJ ′,f+rJ\J′ . (4.63)

For each i ≤ f , we write i = pδ(i′) + cJ − ℓ as in (4.60). In particular, comparing with (4.62)

we have i′ ≤ eJ∩(J+1). By Lemma 4.3.1(i) and Theorem 4.6.4(ii) (applied with (J, i, k) there
replaced by

(
J + 1, eJ∩(J+1), eJ∩(J+1) − i′

)
and using eJ∩(J+1) ≤ f) we deduce that

Y f−i
[
Y c′J

(
p 0
0 1

)
xJ+1,eJ∩(J+1)

]
= Y ℓ

(
p 0
0 1

)
xJ+1,i′ . (4.64)

Since Theorem 4.6.4(ii) is true for |J | ≤ k − 1, by applying Y f−i to (4.63) and using (4.64) we
deduce that (4.60) is true for J as above and i ≤ f , hence for all i ∈ Zf by definition.

Then we use increasing induction on maxj ij to prove that Theorem 4.6.4(ii) is true (for J
as above, which satisfies |J | = k). We already know that Theorem 4.6.4(ii) is true for i ≤ f .

Then for each i ∈ Zf and k ∈ Zf≥0, if we write i− k = pδ(i′′) + cJ − ℓ′ for the unique i′′, ℓ′ ∈ Zf
such that 0 ≤ ℓ′ ≤ p− 1, then we have

Y kεJµJ+1,JxJ,i = Y k

Y ℓ
(
p 0
0 1

)
xJ+1,i′ −

∑
Jss⊆J ′⫋J

εJ ′µJ+1,J ′xJ ′,i+rJ\J′


= Y ℓ′

(
p 0
0 1

)
xJ+1,i′′ −

∑
Jss⊆J ′⫋J

εJ ′µJ+1,J ′xJ ′,i−k+rJ\J′

= εJµJ+1,JxJ,i−k,

where the first and the third equality follow from (4.60), and the second equality follows in a
similar way as (4.64) using the induction hypothesis. This shows that Y kxJ,i = xJ,i−k.

Finally, by taking i such that ℓ = 0 in (4.60), we conclude that Theorem 4.6.4(iii) is true
(for J as above).

Assume that Theorem 4.6.4 is true for |J | ≤ k − 1. By Lemma 4.6.8, it suffices to prove
that (4.60) is true for |J | = k and i = f . For J ⊆ J , we denote (see (4.61) for c′J)

zJ
def
= Y c′J

(
p 0
0 1

)
xJ+1,eJ∩(J+1) = Y c′J

(
p 0
0 1

) (
Y −e(J∩(J+1))nss

vJ+1

)
∈ π;

wJ
def
=

∑
Jss⊆J ′⫋J

εJ ′µJ+1,J ′xJ ′,f+rJ\J′ ∈ π.
(4.65)
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Then by (4.63), it is equivalent to proving that for |J | = k we have

zJ − wJ = εJµJ+1,JxJ,f = εJµJ+1,JY
−(f−eJsh

)vJ . (4.66)

Lemma 4.6.9. Let 0 ≤ k ≤ f . Assume that Theorem 4.6.4 is true for |J | ≤ k − 1. Then for
|J | = k, we have zJ , wJ ∈ D0(ρ).

Proof. (i). First we prove that zJ ∈ D0(ρ). Let i
def
= e(J∩(J+1))nss , J ′′

1
def
= J∆(J − 1) and

m
def
= m(i, J + 1, J ′′

1 ) (see (4.31)). By Lemma 4.5.7 applied with (J, J ′) there replaced by
(J + 1, J), we have mj = δj∈J(−1)δj /∈J = δj∈J for all j ∈ J . Then by Proposition 4.5.8(ii)
applied to (i, J + 1, J ′′

1 ), we have for all j′ ∈ J

Y
δJ′′

1 =∅

j′

∏
j /∈J ′′

1

Y
2ij+t

J+1(J ′′
1 )j

j

( p 0
0 1

) (
Y −ivJ+1

)
∈ I
(
σJss , σeJ

)
= I
(
σJss , σeJss+eJnss

)
⊆ D0,σJss (ρ),

where the last inclusion follows from Corollary 4.5.3. To prove that zJ ∈ D0(ρ), it suffices to
show that for all j ∈ J we have

c′Jj ≥ δj /∈J ′′
1

(
2ij + tJ+1(J ′′

1 )j
)
+ δJ ′′

1 =∅.

This is a consequence of Lemma 4.6.3(iv) applied with J ′ = J and δ = 0, and (4.62).

(ii). Next we prove that wJ ∈ D0(ρ). To do this, we prove by increasing induction on
|J ′| that xJ ′,f+rJ\J′ ∈ D0(ρ) for each J ′ such that J ss ⊆ J ′ ⫋ J (which implies (J ′)ss = J ss).

Let i
def
= e(J

′+1)∩J − e(J
′+1)sh = e((J

′+1)∩J)nss (using (J ′)ss = J ss), J ′′
2

def
= J ′∆(J − 1) and

m
def
= m(i, J ′+1, J ′′

2 ) (see (4.31)). By Proposition 4.5.8(ii) applied to (i, J ′+1, J ′′
2 ), we have for

all j′ ∈ J

Y
δJ′′

2 =∅

j′

∏
j /∈J ′′

2

Y
2ij+t

J′+1(J ′′
2 )j

j

( p 0
0 1

) (
Y −ivJ ′+1

)
∈ I
(
σ(J ′)ss , σm

)
. (4.67)

By Lemma 4.5.7 applied with (J, J ′) there replaced by (J ′ + 1, J), we have mj = δj∈J(−1)δj /∈J′

for all j ∈ J . Then a case-by-case examination using J ss ⊆ J ′ ⊆ J shows that mj − δj∈(J ′)ss

equals 0 if j ∈ Jρ and equals δj∈J(−1)δj /∈J′ if j /∈ Jρ. Hence by Corollary 4.5.3 we deduce that
I
(
σ(J ′)ss , σm

)
⊆ D0,σ(J′)ss (ρ).

We let c ∈ Zf be as in Lemma 4.6.3(iv). On one hand, since Y −ivJ ′+1 = xJ ′+1,e(J
′+1)∩J by

(4.58), multiplying (4.67) by a suitable power of Y and using Lemma 4.6.3(iv) (with δ = 0) we
deduce that

Y c
(
p 0
0 1

)
xJ ′+1,e(J

′+1)∩J ∈ D0(ρ).

On the other hand, since |J ′| ≤ k−1 by assumption, by (4.57) applied to J ′ and using (J ′)ss = J ss

we have

Y c
(
p 0
0 1

)
xJ ′+1,e(J

′+1)∩J =
∑

Jss⊆J ′′⊆J ′

εJ ′′µJ ′+1,J ′′x
J ′′,
(
pδ(e(J

′+1)∩J )+cJ′+rJ′\J′′−c
)

=
∑

Jss⊆J ′′⊆J ′

εJ ′′µJ ′+1,J ′′x
J ′′,
(
rJ

′\J′′
+f+rJ\J′

)
=

∑
Jss⊆J ′′⊆J ′

εJ ′′µJ ′+1,J ′′xJ ′′,f+rJ\J′′ ,
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where the second equality follows from the definition of c and the last equality follows from
Lemma 4.6.3(ii). By the induction hypothesis, we have xJ ′′,f+rJ\J′′ ∈ D0(ρ) for all J

ss ⊆ J ′′ ⫋
J ′. It follows that xJ ′,f+rJ\J′ ∈ D0(ρ), which completes the proof.

By Lemma 4.7.9 and Lemma 4.7.10 below with a case-by-case examination, we have (see
(4.54) for εJ)

Y
f+1−δ

j∈Jsh

j (zJ − wJ) = 0 ∀ j ∈ J ;

Y f−eJsh

(zJ − wJ) = εJvJ .

Then (4.66) is a consequence of Lemma 4.6.9 and Proposition 4.4.2. This proves the existence
of the family {xJ,i : J ⊆ J , i ∈ Zf}. Finally, the uniqueness is clear from the construction. This
completes the proof of Theorem 4.6.4 (assuming Lemma 4.7.9 and Lemma 4.7.10).

Corollary 4.6.10. Let J ⊆ J and i ∈ Zf . Then (assuming Theorem 4.6.4) H acts on xJ,i

(possibly zero) by the character χ′
Jα

−i, where χ′
J

def
= χJα

eJ
sh

(see §4.2 for χJ).

Proof. By Lemma 4.2.1 and Lemma 4.6.3(i), for each J ⊆ J we have

χ′
Jα

rJ = χ(r,0). (4.68)

We prove the result by increasing induction on |J | and maxj ij . If i ≤ f , then the claim
follows from (4.58) and Proposition 4.4.2. Next we assume that maxj ij > f and write i =
pδ(i′) + cJ − ℓ for the unique i′, ℓ ∈ Zf such that 0 ≤ ℓ ≤ p − 1. In particular, we have
maxj i

′
j < maxj ij (see 4.59). By the induction hypothesis and Lemma 4.3.1(ii), H acts on

Y ℓ
(
p 0
0 1

)
xJ+1,i′ by the character

χ′
J+1α

−i′+ℓ = χ′
J+1α

−pδ(i′)+ℓ = χ′
Jα

rJ−rJ+1−pδ(i′)+ℓ = χ′
Jα

−cJ−pδ(i′)+ℓ = χ′
Jα

−i,

where the second equality follows from (4.68) and the third equality follows from Lemma
4.6.3(iii). By the induction hypothesis, for each J ′ such that J ss ⊆ J ′ ⫋ J , H acts on xJ ′,i+rJ\J′

by the character

χ′
J ′α−i−rJ\J′

= χ′
Jα

rJ−rJ′−i−rJ\J′
= χ′

Jα
−i,

where the first equality follows from (4.68) and the second equality follows from Lemma 4.6.3(ii).
Hence we deduce from (4.60) that H acts on xJ,i by the character χ′

Jα
−i.

4.7 Some vanishing results

In this section, we prove that certain elements in the projective systems
{
xJ,i : J ⊆ J , i ∈ Zf

}
are zero, see Lemma 4.7.1, Proposition 4.7.4 and Corollary 4.7.6. We then use these vanishing
results to deduce Lemma 4.7.9 and Lemma 4.7.10, which finish the proof of Theorem 4.6.4.

Lemma 4.7.1. Let 0 ≤ k ≤ f . Assume that Theorem 4.6.4 is true for |J | ≤ k. Let J ⊆ J
with |J | ≤ k, j0 ∈ J and i ∈ Zf . Suppose that j0 /∈ J , j0 + 1 /∈ J and ij0 < 0. Then we have
xJ,i = 0.

Proof. We prove the result by increasing induction on |J | ≤ k and on maxj ij (the base case
being |J | = −1, which is automatic). We let J ⊆ J such that |J | ≤ k and i ∈ Zf . If i ≤ f , then

the lemma follows directly from (4.58). If maxj ij > f , then we write i = pδ(i′)+cJ+1−ℓ for the
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unique i′, ℓ ∈ Zf such that 0 ≤ ℓ ≤ p− 1. In particular, we have maxj i
′
j < maxj ij (see (4.59)).

Since ij0 < 0 and cJ+1
j0

= p− 1 by (4.53), we have i′j0+1 < 0, hence by the induction hypothesis

on maxj ij we deduce that xJ+1,i′ = 0. For each J ′ ⫋ J , by (4.52) we have ij0 + r
J\J ′

j0
= ij0 < 0,

hence by the induction hypothesis on |J | we deduce that xJ ′,i+rJ\J′ = 0 for J ′ ⫋ J . Then by

(4.60) we conclude that xJ,i = 0.

To prove more vanishing results, we need some variants of [BHH+c, Lemma 3.4.2] and
[BHH+c, Lemma 3.4.4] (where ρ was assumed to be semisimple). Since there could be overlaps
between different GL2(OK)-subrepresentations

〈
GL2(OK)

(
p 0
0 1

)
Y −ivJ

〉
of π (see Proposition

4.5.9), we need to be more precise about the region where the elements xJ,i vanish. This
motivates the following somewhat technical definition.

Definition 4.7.2. Let J ⊆ J .

(i) Let j ∈ J and x ∈ Z. We write x = 2n + δ with n ∈ Z and δ ∈ {0, 1}. Then we define

tJj (x)
def
= np+ δ

(
δj+1/∈J(rj + 1) + δj+1∈J(p− 1− rj)

)
.

(ii) Let n ∈ Zf . Suppose that there exists j0 ∈ J such that

(a) nj0+1 = 0;
(b) 1 ≤ nj ≤ 2f − δj∈J if j ̸= j0 + 1,

then we define aJ(n) ∈ Zf by

aJ(n)j
def
=

{
tJj0(nj0+1) = 0 if j = j0 and j0 ∈ J sh

tJj (nj+1)− nj otherwise.

Lemma 4.7.3. Let J ⊆ J , n ∈ Zf and j0 ∈ J as in Definition 4.7.2(ii). Let J ′ ⊆ J such that
j0 + 1 /∈ J \ J ′. Suppose that either j0 /∈ J sh or J ss ∪ {j0 + 1} ⊆ J ′, then we have (see §4.2 for
eJ\J

′
)

aJ(n) + rJ\J
′
= aJ

′(
n+ eJ\J

′)
.

Proof. Since j0 + 1 /∈ J \ J ′, we have
(
n + eJ\J

′)
j0+1

= nj0+1 + δj0+1∈J\J ′ = 0. By definition,
we also have for j ̸= j0 + 1

1 ≤ nj ≤ nj + δj∈J\J ′ ≤ (2f − δj∈J) + δj∈J\J ′ = 2f − δj∈J ′ .

Hence aJ
′(
n+ eJ\J

′)
is well-defined.

First we suppose that j0 /∈ J sh. We need to prove that for each j ∈ J we have

tJj (nj+1)− nj + r
J\J ′

j = tJ
′
j

(
nj+1 + δj+1∈J\J ′

)
− (nj + δj∈J\J ′).

Since r
J\J ′

j = δj+1∈J\J ′(rj + 1) − δj∈J\J ′ by (4.55), it suffices to show that for each j ∈ J we
have

tJj (nj+1) + δj+1∈J\J ′(rj + 1) = tJ
′
j

(
nj+1 + δj+1∈J\J ′

)
. (4.69)

We fix j ∈ J and write nj+1 = 2n + δ with n ∈ Z and δ ∈ {0, 1}. If δ = 0, then we have (as
δj+1∈J\J ′δj+1∈J ′ = 0)

tJ
′
j

(
nj+1 + δj+1∈J\J ′

)
= np+ δj+1∈J\J ′

(
δj+1/∈J ′(rj + 1) + δj+1∈J ′(p− 1− rj)

)
= np+ δj+1∈J\J ′(rj + 1)

= tJj (nj+1) + δj+1∈J\J ′(rj + 1).
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If δ = 1, then we have

tJj (nj+1) + δj+1∈J\J ′(rj + 1) = np+ δj+1/∈J(rj + 1) + δj+1∈J(p− 1− rj) + δj+1∈J\J ′(rj + 1)

= np+ δj+1/∈J ′(rj + 1) + δj+1∈J(p− 1− rj);

tJ
′
j

(
nj+1 + δj+1∈J\J ′

)
= np+ δj+1/∈J ′(rj + 1) + δj+1∈J ′(p− 1− rj)

+ δj+1∈J\J ′
(
δj+1/∈J ′(p− 1− rj) + δj+1∈J ′(rj + 1)

)
= np+ δj+1/∈J ′(rj + 1) + δj+1∈J ′(p− 1− rj) + δj+1∈J\J ′(p− 1− rj)

= np+ δj+1/∈J ′(rj + 1) + δj+1∈J(p− 1− rj).

Then it remains to show that aJ(n)j0 + r
J\J ′

j0
= aJ

′(
n + eJ\J

′)
j0

when j0 ∈ J sh and J ss ∪
{j0 + 1} ⊆ J ′ ⊆ J . By assumption we have j0 ∈ (J ′)sh, hence by definition we have aJ(n)j0 =
aJ

′(
n+ eJ\J

′)
j0

= 0. By assumption we also have j0, j0 + 1 ∈ J ′, hence j0, j0 + 1 /∈ J \ J ′ and

r
J\J ′

j0
= 0 by (4.52). This completes the proof.

Proposition 4.7.4. Let 0 ≤ k ≤ f . Suppose that Theorem 4.6.4 is true for |J | ≤ k. Let
J ⊆ J with |J | ≤ k. Let n ∈ Zf and j0 ∈ J be as in Definition 4.7.2(ii). Then we have
xJ,aJ (n)−ej0+1

= 0.

Proof. If f = 1, then we have aJ(0)− 1 = −1, and the proposition follows directly from (4.58).
Hence in the rest of the proof we assume that f ≥ 2, and we prove the result by increasing
induction on |J |. We let i ∈ Zf and J ′ ⊆ J be the unique pair such that

nj = 2ij − δj∈J+1 + δj /∈J + δj−1∈J ′ (4.70)

for all j ∈ J . In particular, we have i ≤ f since nj ≤ 2f − δj∈J for all j ∈ J .

Claim 1. We let i′
def
= i− e(J+1)sh . Then we have for all j ∈ J

nj = 2i′j − δj∈(J+1)∆Jss + δj /∈Jnss + δj−1∈J ′ . (4.71)

Indeed, this follows from (4.70) and the following computation:

− 2δj∈(J+1)sh − δj∈(J+1)∆Jss + δj /∈Jnss

= −2δj∈J+1δj∈Jss −
(
δj∈J+1 + δj∈Jss − 2δj∈J+1δj∈Jss

)
+
(
δj /∈J − δj∈Jss

)
= −δj∈J+1 + δj /∈J .

Claim 2: We let c ∈ Zf such that (see (4.18) for tJ+1(J ′)j)

cj = pij+1 + cJj − δj /∈J ′
(
2i′j + tJ+1(J ′)j

)
. (4.72)

If either j0 /∈ J sh or j0 ∈ J ′, then we have{
cj ≥ aJ(n)j − 1 if j = j0 + 1, j0 + 1 ∈ J ′ and j0 + 1 /∈ J

cj ≥ aJ(n)j otherwise.
(4.73)

Proof. Indeed, by (4.7) and a case-by-case examination we have

2i′j + tJ+1(J ′)j = 2ij + p− 1−
(
sJ+1
j + 2δj∈(J+1)sh

)
+ δj−1∈J ′

= 2ij + δj /∈J(p− 1− rj) + δj∈J(rj + 1)− δj∈J+1 + δj−1∈J ′ .
(4.74)
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If j ∈ J ′, then by definition and a case-by-case examination we have

tJj (nj+1) = tJj
(
2ij+1 − δj∈J + δj+1/∈J + 1

)
= tJj

(
2ij+1 + δj /∈J + δj+1/∈J

)
= pij+1 + δj /∈J(p− 1− rj) + δj+1/∈J(rj + 1).

(4.75)

Combining (4.56), (4.74) and (4.75) we deduce that

cj − aJ(n)j = nj − δj /∈J ≥ −δj=j0+1,j0+1/∈J ,

unless when j = j0 and j0 ∈ J sh, in which case we have cj0 − aJ(n)j0 = −δj0 /∈J = 0. If
j /∈ J ′, then by assumption we have either j ̸= j0 or j0 /∈ J sh. By definition and a case-by-case
examination we have

tJj (nj+1) = tJj
(
2ij+1 − δj∈J + δj+1/∈J

)
= pij+1 − δj∈J(rj + 1) + δj+1/∈J(rj + 1). (4.76)

Combining (4.56), (4.70), (4.74) and (4.76) we deduce that cj = aJ(n)j .

Using the decomposition

J =
(
Jc ∩ (J + 1)c

)
⊔
((
(J + 1)∆J ss

)
∪ Jnss

)
⊔ (J + 1)sh, (4.77)

we separate the proof into the following four cases.

(a). Suppose that j0 /∈ J and j0 + 1 /∈ J (which implies j0 /∈ J sh). Since nj0+1 = 0 and
nj0 > 0 by assumption (recall that f ≥ 2), we have

(
aJ(n)− ej0+1

)
j0

= −nj0 − 0 < 0. Then we
deduce from Lemma 4.7.1 that xJ,aJ (n)−ej0+1

= 0.

(b). Suppose that j0 + 1 ∈ (J + 1)∆J ss and j0 + 1 /∈ Jnss (which implies j0 /∈ J sh). Using
(4.71), we deduce from nj0+1 = 0 that i′j0+1 = 0 and j0 /∈ J ′, and deduce from i ≤ f that

0 ≤ i′ ≤ f − e(J+1)sh . By Proposition 4.5.5 applied to
(
i′, J + 1, J ′) with j0 as above, we have

Y
δJ′=∅
j0+1

∏
j /∈J ′

Y
2i′j+t

J+1(J ′)j
j

( p 0
0 1

) (
Y −i′vJ+1

)
= 0. (4.78)

Multiplying (4.78) by Y
δj0+1/∈J′

j0+1 when J ′ ̸= ∅ and using (4.58), we deduce that

Y
δj0+1/∈J′

j0+1

∏
j /∈J ′

Y
2i′j+t

J+1(J ′)j
j

( p 0
0 1

)
xJ+1,i = 0.

Then by (4.57) we have (see (4.72) for c)∑
Jss⊆J1⊆J

εJ1µJ+1,J1xJ1,
(
c+rJ\J1−δj0+1/∈J′ej0+1

) = 0. (4.79)

By (4.73) we have c ≥ aJ(n) − δj0+1∈J ′\Jej0+1 ≥ aJ(n) − δj0+1∈J ′ej0+1. Moreover, for each
J1 ⊆ J such that J ss ⊆ J1 ⊆ J , we have j0 + 1 /∈ J \ J1 (since j0 + 1 /∈ Jnss), hence by
Lemma 4.7.3 (recall that j0 /∈ J sh) we have aJ(n) + rJ\J1 = aJ1

(
n + eJ\J1

)
. In particular,

multiplying (4.79) by a suitable power of Y and using Theorem 4.6.4(ii) (applied to J1 such
that J ss ⊆ J1 ⊆ J) we deduce that∑

Jss⊆J1⊆J
εJ1µJ+1,J1xJ1,aJ1 (n+eJ\J1 )−ej0+1

= 0.
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By the induction hypothesis, we have xJ1,aJ1 (n+eJ\J1 )−ej0+1
= 0 for all J ss ⊆ J1 ⫋ J , hence we

conclude that xJ,aJ (n)−ej0+1
= 0.

(c). Suppose that j0 + 1 ∈ Jnss. Using (4.71), we deduce from nj0+1 = 0 that i′j0+1 = 0,
and j0 ∈ J ′ if and only if j0 + 1 ∈ J + 1. Then we deduce from (4.71) and i ≤ f that

0 ≤ i′ ≤ f − e(J+1)sh . By Proposition 4.5.9 applied to
(
i′, J + 1, J ′) with j0 as above, we have

(see the end of §4.5 for µJ1,∗/µJ2,∗)

Y
δj0 /∈J

j0+1

∏
j /∈J ′

Y
2i′j+t

J+1(J ′)j
j

( p 0
0 1

) (
Y −i′vJ+1

)

=
µJ+1,∗

µ(J+1)\{j0+2},∗
Y
δj0 /∈J

j0+1

∏
j /∈J ′′

Y
2i′′j +t

(J+1)\{j0+2}(J ′′)j
j

( p 0
0 1

) (
Y −i′′v(J+1)\{j0+2}

)
,

where i′′
def
= i′ − δj0+1∈J ′ej0+2 + δj0+2∈Jssej0+2 and J ′′ def

= J ′∆{j0 + 1}. As in (b), using (4.58),
(4.57) and j0 + 1 /∈ J ss, we deduce that∑

Jss⊆J1⊆J
εJ1µJ+1,J1xJ1,

(
c+rJ\J1−δj0 /∈Jej0+1

)
=

∑
Jss⊆J2⊆J\{j0+1}

εJ2µJ+1,J2xJ2,
(
c′+r(J\{j0+1})\J2−δj0 /∈Jej0+1

), (4.80)

where c is defined in (4.72) and c′j
def
= pi′′′j+1 + c

J\{j0+1}
j − δj /∈J ′′

(
2i′′j + t(J+1)\{j0+2}(J ′′)j

)
with

i′′′
def
= i′′ + e((J+1)\{j0+2})sh = i′′ + e(J+1)sh − δj0+2∈Jssej0+2

= i′ + e(J+1)sh − δj0+1∈J ′ej0+2 = i− δj0+1∈J ′ej0+2.

Claim 3: We have c′ = c+ r{j0+1}.

Proof. By (4.33) we have cj = c′j for j ̸= j0 and j ̸= j0 + 1. If j = j0, then by (4.33) and (4.53)

we deduce that c′j0 − cj0 = c
J\{j0+1}
j0

− cJj0 = rj0 + 1. If j = j0 + 1, we assume that j0 + 2 ∈ J ,
the case j0 + 2 /∈ J being similar. Then by (4.33) and (4.53) we deduce that

c′j0+1 = p
(
ij0+2 − δj0+1/∈J ′

)
+ (p− 2− rj0+1)− δj0+1∈J ′(p− 1− rj0+1)

= pij0+2 − δj0+1/∈J ′(rj0+1 + 1)− (δj0+1/∈J ′ − 1 + δj0+1∈J ′)(p− 1− rj0+1)− 1

= pij0+2 − δj0+1/∈J ′(rj0+1 + 1)− 1 = cj0+1 − 1.

The claim then follows from (4.52).

By Lemma 4.6.3(ii), for each J2 ⊆ J \{j0+1} we have r{j0+1}+r(J\{j0+1})\J2 = rJ\J2 , hence
the RHS of (4.80) cancels with the terms in the LHS of (4.80) for the J1 such that j0 + 1 /∈ J1.
Since j0+1 ∈ J , and j0 ∈ J ′ whenever j0 ∈ J sh, by (4.73) we have c ≥ aJ(n). Moreover, for each
J1 ⊆ J such that J ss∪{j0+1} ⊆ J1 ⊆ J , by Lemma 4.7.3 we have aJ(n)+rJ\J1 = aJ1

(
n+eJ\J1

)
.

Then multiplying (4.80) by a suitable power of Y and using Theorem 4.6.4(ii) we deduce that∑
Jss∪{j0+1}⊆J1⊆J

εJ1µJ+1,J1xJ1,aJ1 (n+eJ\J1 )−ej0+1
= 0.
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By the induction hypothesis, we have xJ1,aJ1 (n+eJ\J1 )−ej0+1
= 0 for all J ss ∪ {j0 + 1} ⊆ J1 ⫋ J ,

hence we conclude that xJ,aJ (n)−ej0+1
= 0.

(d). Suppose that j0 + 1 ∈ (J + 1)sh. By (4.71) we have i′j0+1 = −1 and j0 ∈ J ′, hence
xJ+1,i = 0 by (4.58). Then by (4.57), we have

0 =
(
p 0
0 1

)
xJ+1,i =

∑
Jss⊆J1⊆J

εJ1µJ+1,J1xJ1,pδ(i)+cJ+rJ\J1 . (4.81)

By (4.73) we have pδ(i) + cJ ≥ c ≥ aJ(n) − ej0+1. Moreover, for each J1 ⊆ J such that
J ss ⊆ J1 ⊆ J , by assumption we have j0 + 1 ∈ (J + 1)sh ⊆ J ss ⊆ J1. Then as in (c), we deduce
from (4.81), Lemma 4.7.3 and Theorem 4.6.4(ii) that∑

Jss⊆J1⊆J
εJ1µJ+1,J1xJ1,aJ1 (n+eJ\J1 )−ej0+1

= 0.

By the induction hypothesis, we have xJ1,aJ1 (n+eJ\J1 )−ej0+1
= 0 for all J ss ⊆ J1 ⫋ J , hence we

conclude that xJ,aJ (n)−ej0+1
= 0.

Example 4.7.5. Some examples for f = 3, Jρ = ∅ and J = {0, 1}:

xJ,(−1,r1,p−2−r2) = xJ,(−1,p−1,p−3−r2) = xJ,(−2,r1,p−1) = xJ,(−2,p−1,p−2) = 0;

xJ,(p−2−r0,−1,p−2−r2) = xJ,(p−3−r0,−1,p−1) = xJ,(p−1,−2,p−2−r2) = xJ,(p−2,−2,p−1) = 0;

xJ,(p−2−r0,r1,−1) = xJ,(p−1,r1−1,−1) = xJ,(p−2−r0,p−1,−2) = xJ,(p−1,p−2,−2) = 0.

Corollary 4.7.6. Let 0 ≤ k ≤ f . Suppose that Theorem 4.6.4 is true for |J | ≤ k − 1. Let
J, J ′ ⊆ J with |J | ≤ k and J ss ⊆ J ′ ⫋ J ⊆ J . Let j0 ∈ J such that j0 + 1 /∈ J \ J ′. Then we
have x

J ′,
(
rJ\J′

+f−(f+1−δ
j0∈Jsh )ej0

) = 0.

Proof. If f = 1, then the assumption is never satisfied. Hence in the rest of the proof we assume
that f ≥ 2. We let n ∈ Zf such that nj0+1 = 0, nj0 = 1+ δj0∈J\J ′ and nj = 2 for j ̸= j0, j0 + 1.
In particular, n satisfies the conditions in Definition 4.7.2(ii) for J ′ and j0. Since |J ′| ≤ k − 1
by assumption, we deduce from Proposition 4.7.4 applied to J ′ and j0 that xJ ′,aJ′ (n)−ej0+1

= 0.

Then the result follows Theorem 4.6.4(ii) (applied to J ′) and the Claim below.

Claim. We have
aJ

′
(n)− ej0+1 ≥ rJ\J

′
+ f −

(
f + 1− δj0∈Jsh

)
ej0 .

Proof. If either j ̸= j0, j0 − 1, or j = j0 − 1 and j0 ∈ J \ J ′, then we have nj+1 = 2. Hence

aJ
′
(n)j − δj=j0+1 = tJ

′
j (2)− nj − δj=j0+1

≥ p− 2− 1 ≥ (p− 2− 2f) + f ≥ rj + 1 + f ≥ r
J\J ′

j + f,

where the third inequality follows from (4.2) and the last inequality follows from (4.52).

If j = j0 − 1 and j0 /∈ J \ J ′, then we have nj0 = 1, and r
J\J ′

j0
≤ 0 by (4.52). Hence

aJ
′
(n)j0−1 − δj0−1=j0+1 = tJ

′
j0−1(1)− nj0−1 − δj0−1=j0+1

≥
(
δj0 /∈J ′(rj0−1 + 1) + δj0∈J ′(p− 1− rj0−1)

)
− 2− 1

≥ (2f + 2)− 3 ≥ f ≥ r
J\J ′

j0−1 + f,
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where the second inequality follows from (4.2).

Finally, we let j = j0. Since j0+1 /∈ J \J ′, by (4.52) we have r
J\J ′

j0
= −δj0∈J\J ′ . If j0 /∈ J sh,

then we have (using nj0+1 = 0)

aJ
′
(n)j0 − δj0=j0+1 = tJ

′
j0 (0)− nj0 = −nj0 = −δj0∈J\J ′ − 1 = r

J\J ′

j0
+ f − (f + 1).

If j0 ∈ J sh, then J sh ⊆ J ss ⊆ J ′ implies j0 ∈ J ′, hence j0 /∈ J \ J ′, which implies r
J\J ′

j0
= 0.

Then we have
aJ

′
(n)j0 − δj0=j0+1 = 0 = r

J\J ′

j0
+ f − f,

which completes the proof.

Then we list some consequences of Lemma 4.7.1 and Corollary 4.7.6. In particular, we prove
Lemma 4.7.9 and Lemma 4.7.10 which finish the proof of Theorem 4.6.4. The following lemma
will be needed in the proof of Lemma 4.7.8 and Lemma 4.7.10.

Lemma 4.7.7. Let J, J ′ ⊆ J such that J ss ⊔ (∂J)nss ⫋ J ′ ⊆ J (see Remark 4.5.12 for ∂J) and
Jnss ̸= J . Then we have

Y cJ
′
+(p−1)eJ

sh−rJ\J′ (
p 0
0 1

)
x
J ′+1,e(J

sh+1) = 0. (4.82)

Proof. Our assumption implies f ≥ 2. By Lemma 4.6.3(v), the LHS of (4.82) is well-defined
(since cJ ≥ 0) and it suffices to show thatY cJ+(p−1)eJ

sh ∏
j∈J\J ′

Y
p−1−rj
j

( p 0
0 1

)
x
J ′+1,e(J

sh+1) = 0. (4.83)

We let i
def
= eJ

sh+1− e(J ′+1)sh . If i ≱ 0, then by (4.58) we have x
J ′+1,eJsh+1 = 0, which proves

(4.83). From now on we assume that i ≥ 0, which implies (J ′ + 1)sh ⊆ J sh + 1. Then we claim
that

(J ′)nss ∩
(
J ss − 1

)
= ∅. (4.84)

Otherwise, there exists j1 ∈ (J ′)nss such that j1 + 1 ∈ J ss = (J ′)ss, which implies j1 + 1 ∈
(J ′ + 1)sh ⊆ J sh + 1. Hence j1 ∈ J sh, which is a contradiction since j1 /∈ Jρ.

Since Jnss ̸= J by assumption, we divide Jnss into a disjoint union of intervals not adjacent
to each other. Since (∂J)nss ⫋ (J ′)nss ⊆ Jnss by assumption, we choose an interval I as above
such that (J ′ \ ∂J)nss ∩ I ̸= ∅ and denote by j0 the right boundary of I. Since j0 + 1 /∈ Jnss by
construction, we have either j0+1 ∈ J ss = (J ′)ss, which implies j0 /∈ J ′ by (4.84), or j0+1 /∈ J ,
which implies j0 ∈ (∂J)nss ⊆ J ′. In particular, in both cases we have j0 /∈ (J ′ \ ∂J)nss and
j0 + 1 ∈ (J ′ + 1)∆(J ′)ss.

(a). First we suppose that j0 + 1 /∈ J , which implies j0 ∈ (∂J)nss ⊆ J ′. We let 1 ≤
w ≤ f − 1 be minimal such that j0 − w ∈ (J ′ \ ∂J)nss. By the construction of I we have
j0 −w, j0 −w+1, . . . , j0 ∈ Jnss and j0 −w+1, . . . , j0 − 1 /∈ J ′. Then by (4.7) we have if w ≥ 2

sJ
′+1
j =


p− 2− rj if j = j0

rj if j = j0 − w + 2, . . . , j0 − 1 (and w ≥ 3)

rj + 1 if j = j0 − w + 1,

(4.85)

and sJ
′+1
j0

= p− 1− rj0 if w = 1.
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Then we let J ′′ def
= J \ {j0 − w + 1, . . . , j0}. For each j = j0 − w + 1, . . . , j0 + 1 we have

j − 1 /∈ Jρ by construction, hence j /∈ J sh + 1, which implies ij ≤ 0 and hence ij = 0 (since
i ≥ 0). Then by (4.18) and (4.85) we have

2ij + tJ
′+1(J ′′)j = p− 1− sJ

′+1
j + δj−1∈J ′′

=

{
rj + 1 if j = j0

p− 1− rj if j = j0 − w + 1, . . . , j0 − 1 (and w ≥ 2).

By Proposition 4.5.5 applied to (i, J ′ + 1, J ′′) with j0 as above and using (4.58), we haveY rj0+1

j0

j0−1∏
j=j0−w+1

Y
p−1−rj
j

( p 0
0 1

)
x
J ′+1,e(J

sh+1) = 0.

Since j0−w+1, . . . , j0−1 ∈ J \J ′, to prove (4.83) it is enough to show that cJj0+(p−1)δj0∈Jsh ≥
rj0 + 1, which follows from (4.53) since j0 ∈ J and j0 + 1 /∈ J .

(b). Then we suppose that j0 + 1 ∈ J ss = (J ′)ss, which implies j0 /∈ J ′. We use the same
definition of w, J ′′ as in (a). In particular, we still have j0 − w, j0 − w + 1, . . . , j0 ∈ Jnss and
j0 − w + 1, . . . , j0 − 1 /∈ J ′. Then by (4.7) and (4.18) we have

sJ
′+1
j =

{
rj if j = j0 − w + 2, . . . , j0

rj + 1 if j = j0 − w + 1

and 2ij + tJ
′+1(J ′′)j = p − 1 − rj for j = j0 − w + 1, . . . , j0. By Proposition 4.5.5 applied to

(i, J ′ + 1, J ′′) with j0 as above and using (4.58), we have j0∏
j=j0−w+1

Y
p−1−rj
j

( p 0
0 1

)
x
J ′+1,e(J

sh+1) = 0.

Since j0 − w + 1, . . . , j0 ∈ J \ J ′, this completes the proof of (4.83).

The following lemma gives some examples of elements in the projective systems defined in
Theorem 4.6.4 and will be needed in the proof of Lemma 4.7.9.

Lemma 4.7.8. Let 0 ≤ k ≤ f . Suppose that Theorem 4.6.4 is true for |J | ≤ k − 1. Let
J, J ′ ⊆ J such that |J | ≤ k and J ss ⊆ J ′ ⫋ J .

(i) If Jnss ̸= J , then we have (see the end of §4.5 for µ∗,J/µ∗,J ′)

εJ ′x
J ′,rJ\J′

+eJsh =

{
0, if J ′ ⊉ J ss ⊔ (∂J)nss

(−1)|(J
′\∂J)nss| µ∗,J

µ∗,J′
vJ , if J ′ ⊇ J ss ⊔ (∂J)nss.

(ii) If Jnss = J (i.e. (J, Jρ) = (J , ∅), which implies k = f) and J ′ ̸= ∅, then we have

εJ ′xJ ′,rJ\J′ = (−1)|J
′|+1 µ∗,J

µ∗,J ′
vJ .

Proof. (i). We let Jnss ̸= J and separate the following cases:
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(a). Suppose that J ′ ⊉ J ss ⊔ (∂J)nss. Since J ′ ⊇ J ss, we have J ′ ⊉ ∂J . Then we let
j0 ∈ ∂J (i.e. j0 ∈ J and j0 + 1 /∈ J) and j0 /∈ J ′. This implies j0 ∈ J \ J ′ and j0 + 1 /∈ J \ J ′,

hence r
J\J ′

j0
= −1 by (4.52). We also have j0 /∈ J sh. Then we deduce from Lemma 4.7.1 that

x
J ′,rJ\J′

+eJsh = 0.

(b). Suppose that J ss⊔(∂J)nss ⊆ J ′ ⫋ J . We use increasing induction on
∣∣J ′ \

(
J ss ⊔ (∂J)nss

)∣∣,
which equals |(J ′ \ ∂J)nss|.

First we assume that J ′ = J ss ⊔ (∂J)nss. By Proposition 4.5.11 applied to (J ′ + 1, J), we
have

µJ ′+1,JvJ =

∏
j∈J0

Y
sJj
j

∏
j /∈J0

Y p−1
j

( p 0
0 1

) (
Y −e((J′+1)∩J)nss

vJ ′+1

)

=

∏
j∈J0

Y
sJj
j

∏
j /∈J0

Y p−1
j

( p 0
0 1

)
xJ ′+1,eJ1 ,

(4.86)

where the second equality follows from (4.58) and

J0
def
=
(
(J ′ + 1)∆J

)
− 1 = J ′∆(J − 1) =

(
J ss ⊔ (∂J)nss

)
∆
(
(J − 1)ss ⊔ (J − 1)nss

)
=
(
J∆(J − 1)

)ss ⊔ ((∂J)∆(J − 1)
)nss

=
(
J∆(J − 1)

)ss ⊔ (J ∪ (J − 1)
)nss

;

J1
def
=
(
(J ′ + 1) ∩ J

)nss ⊔ (J ′ + 1)sh =
(
(J ′ + 1) ∩ Jnss

)
⊔
(
(J ′ + 1) ∩ (J ′)ss

)
=
(
(J ′ + 1) ∩ Jnss

)
⊔
(
(J ′ + 1) ∩ J ss

)
= (J ′ + 1) ∩ J =

(
J ′ ∩ (J − 1)

)
+ 1.

We write s ∈ Zf with sj
def
= sJj if j ∈ J0 and sj

def
= p− 1 if j /∈ J0.

Claim. We have

peJ1−1 + cJ
′ − s = rJ\J

′
+ eJ

sh
. (4.87)

Proof. Fix j ∈ J . We assume that j ∈ Jρ, the case j /∈ Jρ being similar. In particular, we have
j ∈ J ′ if and only if j ∈ J , which implies

pδj∈J1−1 − δj∈Jsh = (p− 1)δj∈J∩(J−1). (4.88)

Since j ∈ J ′ if and only if j ∈ J , and j ∈ J0 if and only if j ∈ J∆(J − 1), by (4.52), (4.53) and
(4.7) with a case-by-case examination we have

r
J\J ′

j = δj+1∈J\J ′(rj + 1);

cJ
′
j = δj /∈J ′(p− 2− rj) + δj+1/∈J ′(rj + 1) = δj /∈J(p− 2− rj) + δj+1/∈J ′(rj + 1);

sj = δj /∈J(p− 2− rj) + δj+1/∈J(rj + 1) + (p− 1)δj∈J∩(J−1).

(4.89)

Combining (4.88) and (4.89) we get (4.87).

By (4.57) applied to J ′ + 1 and using (J ′)ss = J ss, we deduce from (4.86) that

µJ ′+1,JvJ =
∑

Jss⊆J ′′⊆J ′

εJ ′′µJ ′+1,J ′′x
J ′′,
(
peJ1−1+cJ′+rJ′\J′′−s

)
=

∑
Jss⊆J ′′⊆J ′

εJ ′′µJ ′+1,J ′′x
J ′′,
(
rJ\J′

+rJ
′\J′′

+eJsh
)
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=
∑

Jss⊆J ′′⊆J ′

εJ ′′µJ ′+1,J ′′x
J ′′,rJ\J′′

+eJsh ,

where the second equality follows from (4.87) and the last equality follows from Lemma 4.6.3(ii).
We know from (a) that x

J ′′,rJ\J′′
+eJsh = 0 for J ss ⊆ J ′′ ⫋ J ′, hence we conclude that

εJ ′µJ ′+1,J ′x
J ′,rJ\J′

+eJsh = µJ ′+1,JvJ ,

which proves (i) when J ′ = J ss ⊔ (∂J)nss.

Next we assume that J ss ⊔ (∂J)nss ⫋ J ′ ⫋ J . By Lemma 4.7.7, (4.57) applied to J ′ + 1 and
using (J ′)ss = J ss, we have

0 = Y cJ
′
+(p−1)eJ

sh−rJ\J′ (
p 0
0 1

)
x
J ′+1,e(J

sh+1)

=
∑

Jss⊆J ′′⊆J ′

εJ ′′µJ ′+1,J ′′x
J ′′,
(
peJ

sh+cJ′+rJ′\J′′−
(
cJ′+(p−1)eJsh−rJ\J′

))
=

∑
Jss⊆J ′′⊆J ′

εJ ′′µJ ′+1,J ′′x
J ′′,rJ\J′′

+eJsh ,

where the last equality follows from Lemma 4.6.3(ii). We know from (a) that x
J ′′,rJ\J′′

+eJsh = 0

for J ′′ ⊉ J ss ⊔ (∂J)nss, hence we have∑
Jss⊔(∂J)nss⊆J ′′⊆J ′

εJ ′′µJ ′+1,J ′′x
J ′′,rJ\J′′

+eJsh = 0. (4.90)

By the induction hypothesis, we have for J ss ⊔ (∂J)nss ⊆ J ′′ ⫋ J ′

εJ ′′x
J ′′,rJ\J′′

+eJsh = (−1)|(J
′′\∂J)nss| µ∗,J

µ∗,J ′′
vJ . (4.91)

Moreover, if we denote m
def
= |(J ′ \ ∂J)nss|, then (by the definition of µ∗,J/µ∗,J ′′) we have

∑
Jss⊔(∂J)nss⊆J ′′⫋J ′

(−1)|(J
′′\∂J)nss| µ∗,J

µ∗,J ′′
µJ ′+1,J ′′ =

 ∑
(J ′′\∂J)nss⫋(J ′\∂J)nss

(−1)|(J
′′\∂J)nss|

µJ ′+1,J

=

[
m−1∑
i=0

(−1)i
(
m

i

)]
µJ ′+1,J = (−1)m+1µJ ′+1,J .

(4.92)
Combining (4.90), (4.91) and (4.92), we conclude that

εJ ′x
J ′,rJ\J′

+eJsh = (−1)|(J
′\∂J)nss| µ∗,J

µ∗,J ′
vJ ,

which proves (i).

(ii). Let (J, Jρ) = (J , ∅) and ∅ ̸= J ′ ̸= J , which implies J ss = (J ′)ss = ∅. We prove the
result by increasing induction on |J ′|. By Proposition 4.5.13 applied to J ′ + 1, we have

µJ ′+1,J vJ + µJ ′+1,∅x∅,r =

∏
j /∈J ′

Y
p−1−rj
j

( p 0
0 1

)
vJ ′+1
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=
∑
J ′′⊆J ′

εJ ′′µJ ′+1,J ′′x
J ′′,

(
cJ

′+1
j +r

J′\J′′
j −δj /∈J′ (p−1−rj)

)
j

=
∑
J ′′⊆J ′

εJ ′′µJ ′+1,J ′′x
J ′′,
(
cJ+rJ\J′

+rJ
′\J′′
)

=
∑
J ′′⊆J ′

εJ ′′µJ ′+1,J ′′xJ ′′,rJ\J′′ ,

where the second equality follows from (4.57) applied to J ′ + 1 and i = 0, the third equality
follows from Lemma 4.6.3(v), and the last equality uses Lemma 4.6.3(ii) and cJ = 0 (see (4.53)).
Since r = rJ by (4.52), we deduce that

µJ ′+1,J vJ =
∑

∅≠J ′′⊆J ′

εJ ′′µJ ′+1,J ′′xJ ′′,rJ\J′′ . (4.93)

By the induction hypothesis, we have for ∅ ≠ J ′′ ⫋ J ′

εJ ′′xJ ′′,rJ\J′′ = (−1)|J
′′|+1 µ∗,J

µ∗,J ′′
vJ . (4.94)

Moreover, we have (by the definition of µ∗,J/µ∗,J ′′)

∑
∅≠J ′′⫋J ′

(−1)|J
′′|+1 µ∗,J

µ∗,J ′′
µJ ′+1,J ′′ = −

 ∑
∅≠J ′′⫋J ′

(−1)|J
′′|

µJ ′+1,J

= −

|J ′|−1∑
i=1

(−1)i
(
|J ′|
i

)µJ ′+1,J =
(
1 + (−1)|J

′|)µJ ′+1,J .

(4.95)
Combining (4.93),(4.94) and (4.95), we conclude that

εJ ′xJ ′,rJ\J′ = (−1)|J
′|+1 µ∗,J

µ∗,J ′
vJ ,

which proves (ii).

The following two lemmas complete the proof of Theorem 4.6.4.

Lemma 4.7.9. Let 0 ≤ k ≤ f . Suppose that Theorem 4.6.4 is true for |J | ≤ k − 1. Then for
|J | ≤ k, we have (see (4.65) for wJ)

Y
f+1−δ

j0∈Jsh

j0
wJ =


∑

Jss⊆J ′⊆J\{j0+1}
εJ ′µJ+1,J ′x

J ′,
(
rJ\J′

+f−(f+1−δ
j0∈Jsh )ej0

) if j0 + 1 ∈ Jnss

0 if j0 + 1 /∈ Jnss;

Y f−eJsh

wJ =


0 if Jnss = (∂J)nss

(−1)|(J\∂J)
nss|+1µJ+1,JvJ if Jnss ̸= (∂J)nss and Jnss ̸= J(

1 + (−1)f
)
µJ,JvJ + µJ,∅x∅,r if Jnss = J .

Proof. (i). We prove the first equality. By definition and Theorem 4.6.4(ii) (applied to J ′ such
that J ss ⊆ J ′ ⫋ J , which implies |J ′| ≤ k − 1), we have

Y
f+1−δ

j0∈Jsh

j0
wJ =

∑
Jss⊆J ′⫋J

εJ ′µJ+1,J ′x
J ′,
(
rJ\J′

+f−(f+1−δ
j0∈Jsh )ej0

).
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By Corollary 4.7.6, we have x
J ′,
(
rJ\J′

+f−(f+1−δ
j0∈Jsh )ej0

) = 0 if J ss ⊆ J ′ ⊆ J and j0+1 /∈ J \J ′.

Then we easily conclude.

(ii). We prove the second equality. First we suppose that Jnss ̸= J . Then by Theorem
4.6.4(ii) (applied to J ′ such that J ss ⊆ J ′ ⫋ J) and Lemma 4.7.8(i) we have

Y f−eJsh

wJ =
∑

Jss⊆J ′⫋J

εJ ′µJ+1,J ′x
J ′,rJ\J′

+eJsh =

 ∑
Jss⊔(∂J)nss⊆J ′⫋J

(−1)|(J
′\∂J)nss|

µJ+1,JvJ

=

{
0 if Jnss = (∂J)nss

(−1)|(J\∂J)
nss|+1µJ+1,JvJ if Jnss ̸= (∂J)nss,

where the last equality follows as in (4.92). Next we suppose that Jnss = J , or equivalently
(J, Jρ) = (J , ∅), which implies J ss = J sh = ∅ and J+1 = J . Then by Theorem 4.6.4(ii) (applied
to J ′ ̸= J ) and Lemma 4.7.8(ii) we have

Y fwJ =
∑
J ′ ̸=J

εJ ′µJ ,J ′xJ ′,rJ\J′ = µJ ,∅x∅,r +

 ∑
∅≠J ′ ̸=J

(−1)|J
′|+1

µJ ,J vJ
=
(
1 + (−1)f

)
µJ ,J vJ + µJ ,∅x∅,r,

where the last equality follows as in (4.95).

Lemma 4.7.10. Let 0 ≤ k ≤ f . Suppose that Theorem 4.6.4 is true for |J | ≤ k − 1. Then for
|J | ≤ k, we have

Y
f+1−δ

j0∈Jsh

j0
zJ =


∑

Jss⊆J ′⊆J\{j0+1}
εJ ′µJ+1,J ′x

J ′,
(
rJ\J′

+f−(f+1−δ
j0∈Jsh )ej0

) if j0 + 1 ∈ Jnss

0 if j0 + 1 /∈ Jnss;

Y f−eJsh

zJ =


µJ+1,JvJ , if Jnss = (∂J)nss

0, if Jnss ̸= (∂J)nss and Jnss ̸= J
µJ,JvJ + µJ,∅x∅,r, if Jnss = J ,

where zJ is defined in (4.65).

Proof. (i) We prove the first equality. We recall from (4.65) that

zJ = Y c′J
(
p 0
0 1

)
xJ+1,eJ∩(J+1) = Y c′J

(
p 0
0 1

) (
Y −e(J∩(J+1))nss

vJ+1

)
. (4.96)

Using the decomposition (4.77), we separate the proof into the following five cases.

(a). Suppose that j0 /∈ J and j0+1 /∈ J , which implies j0 /∈ J sh. Since j0+1 /∈
(
J∩(J+1)

)nss
,

by Lemma 4.3.1(i) applied to j0 and Proposition 4.4.2 we have

Y p
j0

(
p 0
0 1

) (
Y −e(J∩(J+1))nss

vJ+1

)
= 0. (4.97)

Since c′Jj0 = p− 1− f by (4.61), we deduce from (4.96) and (4.97) that Y f+1
j0

zJ = 0.
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(b). Suppose that j0 + 1 ∈ (J + 1)sh, which implies j0 + 1 /∈
(
J ∩ (J + 1)

)nss
. In particular,

the equality (4.97) still holds as in (a). Since c′Jj0 = p− f by (4.61), we deduce from (4.96) and

(4.97) that Y
f+1−δ

j0∈Jsh

j0
zJ = 0.

(c). Suppose that j0 + 1 ∈ (J + 1)∆J ss and j0 + 1 /∈ Jnss, which implies f ≥ 2 and
j0 ∈ J∆(J − 1). In particular, we have j0 /∈ J sh. By (4.7) we have

sJ+1
j − 2δj∈(J∩(J+1))nss =

{(
rj + δj−1∈J

)
− 0 if j /∈ J(

p− 1− rj − δj−1/∈J − 2δj∈(J+1)ss
)
− 2δj∈(J+1)nss if j ∈ J

=

{
rj + δj−1∈J∆(J−1) if j /∈ J

p− 3− rj + δj−1∈J∆(J−1) if j ∈ J.

We let i
def
= e(J∩(J+1))nss and J ′′ def=

(
J∆(J − 1)

)
\ {j0}. In particular, we have ij0+1 = 0. Then

by (4.18), for j ̸= j0 we have

δj /∈J ′′
(
2ij + tJ+1(J ′′)j

)
= δj /∈J ′′

(
2δj∈(J∩(J+1))nss + p− 1− sJ+1

j + δj−1∈J ′′
)

=


p− 1− rj − δj=j0+1 if j /∈ J, j + 1 /∈ J

rj + 2− δj=j0+1 if j ∈ J, j + 1 ∈ J

0 otherwise,

(4.98)

and 2ij0 + tJ+1(J ′′)j0 equals p− 1− rj if j0 /∈ J (which implies j0 + 1 ∈ J), and equals rj + 2 if
j0 ∈ J (which implies j0+1 /∈ J). In particular, by (4.61) we have 2ij0+t

J+1(J ′′)j0 = f+1+c′Jj0 .
By Proposition 4.5.5 applied to (i, J + 1, J ′′) with j0 as above, taking j′ = j0 + 1 in (4.20)

when J ′′ = ∅ and multiplying Y
δJ′′ ̸=∅
j0+1 when j0 + 1 /∈ J ′, we deduce thatY f+1+c′Jj0

j0

∏
j /∈J,j+1/∈J

Y
p−1−rj
j

∏
j∈J,j+1∈J

Y
rj+2
j

( p 0
0 1

) (
Y −ivJ+1

)
= 0. (4.99)

Comparing (4.96) and (4.99), to prove Y f+1
j0

zJ = 0, it is enough to show that

c′Jj ≥

{
p− 1− rj if j /∈ J, j + 1 /∈ J

rj + 2 if j ∈ J, j + 1 ∈ J,
(4.100)

which follows directly from (4.61) and (4.2).

(d). Suppose that j0 /∈ J and j0 + 1 ∈ Jnss, which implies f ≥ 2 and j0 ∈ J∆(J − 1). In

particular, we have j0 /∈ J sh. We let i
def
= e(J∩(J+1))nss and J ′′ def=

(
J∆(J−1)

)
\{j0}. In particular,

we have ij0+1 = 0. As in (c), the equality (4.98) still holds and we have 2ij0 + tJ+1(J ′′)j0 =
f + 1 + c′Jj0 . We denote

Z
def
=

∏
j+1/∈J,j+2/∈J

Y
p−1−rj
j

∏
j+1∈J,j+2∈J

Y
rj+2
j ∈ F[[N0]].

Then by Proposition 4.5.9 applied to (i, J + 1, J ′′) with j0 as above, using (4.33) and together
with Lemma 4.3.1(i) applied to j0 + 1 if moreover j0 + 1 /∈ J ′′, we have
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[
Yj0+1Y

f+1+c′Jj0
j0

Z

] (
p 0
0 1

) (
Y −ivJ+1

)
=

µJ+1,∗
µ(J+1)\{j0+2},∗

Y
p−1−rj0+1

j0+1

[
Yj0+1Y

f+1+c′Jj0
j0

Z

] (
p 0
0 1

) (
Y −i′v(J+1)\{j0+2}

)
, (4.101)

where i′
def
= i+ δj0+2∈Jssej0+2. Then using (4.100) together with c′Jj0+1 ≥ 1 by (4.61) and (4.2),

we deduce from (4.96) and (4.101) that

Y f+1
j0

zJ =
µJ+1,∗

µ(J+1)\{j0+2},∗

[
Y f+1
j0

Y
p−1−rj0+1

j0+1 Y c′J
] (

p 0
0 1

) (
Y −i′v(J+1)\{j0+2}

)
. (4.102)

Since we have
i′ + e((J+1)\{j0+2})sh = i+ e(J+1)sh = eJ∩(J+1),

by (4.58) we have Y −i′v(J+1)\{j0+2} = x(J+1)\{j0+2},eJ∩(J+1) . Then by (4.57) applied to J\{j0+1}
and i = eJ∩(J+1), and using j0 + 1 /∈ J ss, we deduce from (4.102) that

Y f+1
j0

zJ=
µJ+1,∗

µ(J+1)\{j0+2},∗

 ∑
Jss⊆J ′⊆J\{j0+1}

µ(J+1)\{j0+2},J ′xJ ′,c(J ′)

= ∑
Jss⊆J ′⊆J\{j0+1}

µJ+1,J ′xJ ′,c(J ′)

with c(J ′) ∈ Zf such that

c(J ′)j = pδj+1∈J∩(J+1) + c
J\{j0+1}
j + r

(J\{j0+1})\J ′

j − c′Jj − (p− 1− rj0+1)δj=j0+1 − (f + 1)δj=j0

= c
J\{j0+1}
j + r

(J\{j0+1})\J ′

j − cJj − (p− 1− rj0+1)δj=j0+1 + f − (f + 1)δj=j0

= r
(J\{j0+1})\J ′

j + r
{j0+1}
j + f − (f + 1)δj=j0

= r
J\J ′

j + f − (f + 1)δj=j0 ,

where the second equality follows from (4.62), the third equality follows from Lemma 4.6.3(v)
applied to J ′ = J \ {j0 + 1}, and the last equality follows from Lemma 4.6.3(ii). This proves
the desired formula.

(e). Suppose that j0 ∈ J and j0 + 1 ∈ Jnss. We let i
def
= e(J∩(J+1))nss\{j0+1}. In particular,

we have ij0+1 = 0. Then by Proposition 4.5.9 applied to (i, J + 1,J ) with j0 as above together
with (4.33), we have(

p 0
0 1

) (
Y −ivJ+1

)
=

µJ+1,∗
µ(J+1)\{j0+2},∗

Y
p−1−rj0+1

j0+1

(
p 0
0 1

) (
Y −i′v(J+1)\{j0+2}

)
, (4.103)

where i′
def
= i+ δj0+2∈Jssej0+2. Since c

′J
j0

= p− f by (4.61), we deduce from (4.96) that

Y
f+1−δ

j0∈Jsh

j0
zJ = Y

c′J+(f+1−δ
j0∈Jsh−p)ej0

(
p 0
0 1

) (
Y −ivJ+1

)
=

µJ+1,∗
µ(J+1)\{j0+2},∗

[
Y
p−1−rj0+1

j0+1 Y
c′J+(f+1−δ

j0∈Jsh−p)ej0
] (

p 0
0 1

) (
Y −i′v(J+1)\{j0+2}

)
=

µJ+1,∗
µ(J+1)\{j0+2},∗

[
Y
f+1−δ

j0∈Jsh

j0
Y
p−1−rj0+1

j0+1 Y c′J
] (

p 0
0 1

) (
Y −i′′v(J+1)\{j0+2}

)
,

where the first and the third equalities follow from Lemma 4.3.1(i) applied to j0, the second

equality follows from (4.103), and i′′
def
= i′ + ej0+1 is the same as the i′ in (4.102) by definition.
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Then the rest of the proof is completely analogous to the one of (d), replacing f +1 by f +1−
δj0∈Jsh .

(ii). We prove the second equality. By (4.96) we have

Y f−eJsh

zJ = Y f−eJsh
+c′J

(
p 0
0 1

)
xJ+1,eJ∩(J+1)

= Y cJ+(p−1)eJ
sh (

p 0
0 1

) (
Y e(J∩(J+1))nss+1

xJ+1,eJ∩(J+1)

)
(4.104)

= Y cJ+(p−1)eJ
sh (

p 0
0 1

)
x
J+1,e(J

sh+1) , (4.105)

where the second equality follows from (4.62) and Lemma 4.3.1(i), and the last equality follows
from (4.58) and the equality

(
J ∩ (J + 1)

)
\
(
(J ∩ (J − 1))nss + 1

)
= J sh + 1.

Suppose that Jnss = (∂J)nss, or equivalently
(
J ∩ (J − 1)

)nss
= ∅. Then using (4.7) and

(4.53), a case-by-case examination shows that

cJ + (p− 1)eJ
sh

=

{
sJj if j ∈ J∆(J − 1)

p− 1 if j /∈ J∆(J − 1).

We also have xJ+1,eJ∩(J+1) = Y −e(J∩(J+1))nss

vJ+1 by (4.58). Then by Proposition 4.5.11 applied

to (J + 1, J), we deduce from (4.104) that Y f−eJsh

zJ = µJ+1,JvJ .
Suppose that Jnss ̸= (∂J)nss and Jnss ̸= J , which implies J ss⊔(∂J)nss ⫋ J . Then by Lemma

4.7.7 applied to (J, J) and using r∅ = 0 by (4.52), we deduce from (4.105) that Y f−eJsh

zJ = 0.
Suppose that Jnss = J , or equivalently (J, Jρ) = (J , ∅), which implies J + 1 = J and

J sh = ∅. Then by Proposition 4.5.13 applied to J and using cJ = 0 by (4.53), we deduce from

(4.105) that Y f−eJsh

zJ = µJ,JvJ + µJ,∅x∅,r.

4.8 The finiteness condition

In this section, we prove the crucial finiteness condition for the family of elements (xJ,i)J,i
of Theorem 4.6.4 to give rise to a basis of DA(π). The main result is Theorem 4.8.5.

The following lemma will be crucial for the induction arguments in Proposition 4.8.2 and
Proposition 4.8.4.

Lemma 4.8.1. Let J ⊆ J and i ∈ Zf . Suppose that xJ ′,i = 0 for all |J ′| ≤ |J |. Then we have
xJ,pδ(i)+cJ = 0.

Proof. We use increasing induction on |J |. By Theorem 4.6.4(iii) we have

0 =
(
p 0
0 1

)
xJ+1,i =

∑
Jss⊆J ′⊆J

εJ ′µJ+1,J ′xJ ′,pδ(i)+cJ+rJ\J′ .

By the induction hypothesis, for all J ′ ⫋ J we have xJ ′,pδ(i)+cJ′ = 0. Since cJ
′ ≥ cJ + rJ\J

′

by Lemma 4.6.3(v), we deduce from Theorem 4.6.4(ii) that xJ ′,pδ(i)+cJ+rJ\J′ = 0 for all J ′ ⫋ J .
Hence we conclude that xJ,pδ(i)+cJ = 0.

Proposition 4.8.2. Let i ∈ Zf satisfying

(i) ∥i∥ ≤ f ;
(ii) ij ≤ −1 for some j ∈ J .
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Then we have xJ,i = 0 for all J ⊆ J .

Proof. If f = 1, then we conclude using (4.58). From now on we assume that f ≥ 2. We use
increasing induction on maxj ij . If i ≤ f , then the lemma follows from (4.58). Then we assume

that maxj ij > f and let J0 ⊆ J . We write i = pδ(i′) + cJ0 − ℓ for the unique i′, ℓ ∈ Zf such
that 0 ≤ ℓ ≤ p − 1. In particular, we have maxj i

′
j < maxj ij (see (4.59)). Since cJ0 ≥ 0 by

(4.53), we also have

∥i′∥ =
(
∥i∥ − ∥cJ0∥+ ∥ℓ∥

)
/p ≤ (f − 0 + (p− 1)f)/p = f.

Suppose that i′j < 0 for some j. Then by the induction hypothesis, we have xJ,i′ = 0 for all

J ⊆ J (in particular, for all |J | ≤ |J0|). Since pδ(i′) + cJ0 ≥ i, we deduce from Lemma 4.8.1
and Theorem 4.6.4(ii) that xJ0,i = 0.

Suppose that i′j ≥ 0 for all j, which implies ij ≥ −(p−1) for all j. Since ∥i∥ ≤ f , we deduce
that ij ≤ (f − 1)(p − 1) + f for all j. We write minj ij = −m′ with 1 ≤ m′ ≤ p − 1 and fix
j0 ∈ J such that ij0 = −m′. Then we let n ∈ Zf with nj0+1 = 0, nj = m′ for j ̸= j0 + 1 if
1 ≤ m′ ≤ 2f − 2, and nj = 2f − 1 for j ̸= j0+1 if 2f − 1 ≤ m′ ≤ p− 1. In particular, n satisfies
the conditions in Definition 4.7.2(ii) for J0 and j0. By Proposition 4.7.4 applied to J0 and j0 we
have xJ0,aJ0 (n)−ej0+1

= 0. Then the result follows from Theorem 4.6.4(ii) and the Claim below.

Claim. We have aJ0(n)− ej0+1 ≥ i.

Proof. We assume that 1 ≤ m′ ≤ 2f − 2, the case 2f − 1 ≤ m′ ≤ p − 1 being similar. Since
∥i∥ ≤ f and ij ≥ −m′ for all j, we deduce that ij ≤ (f − 1)m′ + f for all j. Hence it suffices to
show that {

aJ0(n)j0 ≥ −m′

aJ0(n)j − δj=j0+1 ≥ (f − 1)m′ + f if j ̸= j0.

By Definition 4.7.2(ii), we have aJ0(n)j0 = 0 ≥ −m′ if j0 ∈ J sh
0 , and aJ0(n)j0 = tJ0j0 (0)−nj0 =

−m′ (since nj0+1 = 0) if j0 /∈ J sh
0 . For j ̸= j0, by definition we have

aJ0(n)j − δj=j0+1 = tJ0j (m′)− nj − δj=j0+1

= p[m′/2] + δ2∤m′
(
δj+1/∈J(rj + 1) + δj+1∈J(p− 1− rj)

)
− (nj + δj=j0+1)

≥ (4f + 4)[m′/2] + δ2∤m′(2f + 2)− 1

= (2f + 2)m′ − 1 = fm′ + fm′ + (2m′ − 1) > (f − 1)m′ + f,

where the first inequality uses (4.2) and p ≥ 4f + 4, and the last inequality uses m′ ≥ 1. Here
for x ∈ R, we denote by [x] the largest integer which is smaller than or equal to x. This proves
the claim.

Corollary 4.8.3. Let J ⊆ J , i ∈ Zf and k ∈ Zf≥0.

(i) If ∥k∥ > ∥i∥ − |J sh|, then we have Y kxJ,i = 0.

(ii) If ∥k∥ = ∥i∥ − |J sh| and Y kxJ,i ̸= 0, then we have k = i− eJ
sh
.

Proof. By Theorem 4.6.4(ii) we have Y kxJ,i = xJ,ℓ with ℓ
def
= i − k. In both cases, we have

∥ℓ∥ ≤ f since |J sh| ≤ f . If ℓ ≥ 0, then we have ℓ ≤ f , and the result follows from (4.58). If
ℓ ≱ 0, then the result follows from Proposition 4.8.2.

Proposition 4.8.4. Let m ∈ Z≥0 and i ∈ Zf satisfying

110



(i) ∥i∥ ≤ pm + f − 1;
(ii) ij ≤ −pm for some j ∈ J .

Then we have xJ,i = 0 for all J ⊆ J .

Proof. We prove the result by increasing induction on m. For m = 0, this is exactly Proposition
4.8.2. Then we let m ≥ 1 and fix J ⊆ J . We write i = pδ(i′) + cJ − ℓ for the unique i′, ℓ ∈ Zf
such that 0 ≤ ℓ ≤ p− 1 and fix j0 ∈ J such that ij0 ≤ −pm. Since cJ ≥ 0 by (4.53), we have

∥i′∥ =
(
∥i∥ − ∥cJ+1∥+ ∥ℓ∥

)
/p ≤

(
(pm + f − 1)− 0 + (p− 1)f

)
/p = pm−1 + f − 1/p,

which implies ∥i′∥ ≤ pm−1 + f − 1. We also have

i′j0+1 =
(
ij0 − cJ+1

j0
+ ℓj0

)
/p ≤

(
− pm − 0 + (p− 1)

)
/p = −pm−1 + (p− 1)/p,

which implies i′j0+1 ≤ −pm−1. By the induction hypothesis, we have xJ ′,i′ = 0 for all J ′ ⊆ J .

Since pδ(i′) + cJ ≥ i, we conclude from Lemma 4.8.1 and Theorem 4.6.4(ii) that xJ,i = 0.

Theorem 4.8.5 (Finiteness condition). For J ⊆ J andM ∈ Z, the set
{
i ∈ Zf : xJ,i ̸= 0, ∥i∥ =M

}
is finite.

Proof. We choose m large enough such that pm + f − 1 ≥ M . If ij0 ≤ −pm for some j0, then
by Proposition 4.8.4 we have xJ,i = 0. Otherwise, we have ij > −pm for all j. Together with
the restriction ∥i∥ =M , this set is finite.

4.9 An explicit basis of HomA(DA(π), A)

In this section, we construct an explicit basis of HomA(DA(π), A). In particular, we prove
that DA(π) has rank 2f , see Theorem 4.9.5.

First we recall the definition of the ring A and the A-module DA(π). We let mN0 be the
maximal ideal of F[[N0]]. Then we have F[[N0]] = F[[Y0, . . . , Yf−1]] and mN0 = (Y0, . . . , Yf−1).

Consider the multiplicative subset S
def
= {(Y0 · · ·Yf−1)

n : n ≥ 0} of F[[N0]]. Then A
def
= F̂[[N0]]S

is the completion of the localization F[[N0]]S with respect to the mN0-adic filtration

Fn (F[[N0]]S) =
⋃
k≥0

1

(Y0 · · ·Yf−1)k
mkf−n
N0

,

where mm
N0

def
= F[[N0]] if m ≤ 0. We denote by FnA (n ∈ Z) the induced filtration on A and

endow A with the associated topology ([LvO96, §1.3]). There is an F-linear action of O×
K

on F[[N0]] given by multiplication on N0
∼= OK , and an F-linear Frobenius φ on F[[N0]] given

by multiplication by p on N0
∼= OK . They extend canonically by continuity to commuting

continuous F-linear actions of φ and O×
K on A which satisfies (for each j ∈ J )

φ(Yj) = Y p
j−1;

[a](Yj) = ap
j
Yj ∀ a ∈ F×

q .
(4.106)

We let π∨ be the F-linear dual of π, which is a finitely generated F[[I1]]-module and is endowed
with the mI1-adic topology, where mI1 is the maximal ideal of F[[I1]]. We define DA(π) to be the
completion of F[[N0]]S⊗F[[N0]] π

∨ with respect to the tensor product topology. The O×
K-action on

π∨ given by f 7→ f ◦ ( a 0
0 1 ) (for a ∈ O×

K) extends by continuity to DA(π), and the ψ-action on π∨
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given by f 7→ f◦
(
p 0
0 1

)
induces a continuous A-linear map β : DA(π) → A⊗φ,ADA(π). Moreover,

DA(π) is a finite free A-module by [BHH+b, Remark 3.3.2.6(ii)], [BHH+b, Cor. 3.1.2.9] and
[BHH+c, Remark. 2.6.2].

Then we recall some constructions in [BHH+c, §3]. As in [BHH+c, (87)], there exists an
injective A-linear map

µ∗ : HomA(DA(π), A) ↪→ Homcont
F (DA(π),F). (4.107)

By [BHH+c, Prop. 3.2.3], Homcont
F (DA(π),F) is identified with the set of sequences (xk)k≥0 with

xk ∈ π and

(i) Y 1xk = xk−1 for all k ≥ 1;

(ii) there exists d ∈ Z such that xk ∈ π[mfk+d+1
I1

] for all k ≥ 0 (where π[mj
I1
]
def
= 0 if j ≤ 0),

and the A-module structure on Homcont
F (DA(π),F) is given as follows: for a ∈ A and x =

(xk)k≥0 ∈ Homcont
F (DA(π),F), we have a(x) = (yk)k≥0 with

yk = (Y ℓ−ka)xℓ (4.108)

for ℓ ≫k 0. See [BHH+c, Remark 3.8.2] for the explanation of (4.108). We are going to
construct 2f elements of Homcont

F (DA(π),F) using the elements
{
xJ,i : J ⊆ J , i ∈ Zf

}
in π (see

Theorem 4.6.4). Then we prove that they lie in the image of µ∗, and give rise to an A-basis of
HomA(DA(π), A).

Let Z1
∼= 1 + pOK be the center of I1. Since π has a central character, Z1 acts trivially on

π. We still denote by mI1 the maximal ideal of F[[I1/Z1]] when there is no possible confusion.
For 0 ≤ j ≤ f − 1, we view Yj as an element of F[[I1/Z1]] and we define

Zj
def
=
∑
λ∈F×

q

λ−p
j

(
1 0
p[λ] 1

)
∈ F[[I1/Z1]].

Since Zj commutes with each other, for i ∈ Zf≥0 we write Zi for
∏f−1
j=0 Z

ij
j . For 0 ≤ j ≤ f − 1,

we denote by yj , zj ∈ gr(F[[I1/Z1]]) (the graded ring for the mI1-adic filtration) the associated
elements of Yj , Zj ∈ F[[I1/Z1]]. We define the gr(F[[I1/Z1]])-module

gr(π)
def
=
⊕
n≥0

π[mn+1
I1

]/π[mn
I1 ].

By the proof of [BHH+23, Cor. 5.3.5] and the assumptions on π (see above Theorem 4.1.1) and
taking F-linear dual, the gr(F[[I1/Z1]])-module gr(π) is annihilated by the ideal (yjzj , zjyj ; 0 ≤
j ≤ f − 1), hence becomes a graded module over R

def
= gr(F[[I1/Z1]])/(yjzj , zjyj ; 0 ≤ j ≤ f − 1),

which is a commutative ring, isomorphic to F[yj , zj ]/(yjzj ; 0 ≤ j ≤ f − 1) with yj , zj of degree
−1 (see [BHH+23, Thm. 5.3.4]). For v ∈ π, as in [BHH+c, §3.5] we define

deg(v)
def
= min{n ≥ −1 : v ∈ π[mn+1

I1
]} ∈ Z≥−1.

We denote gr(v) ∈ π[m
deg(v)+1
I1

]/π[m
deg(v)
I1

] ⊆ gr(π) if v ̸= 0 and gr(v) = 0 if v = 0 the associated
graded element of v.

Lemma 4.9.1. Let v ∈ π with deg(v) = d ≥ 0.
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(i) For j ∈ J , we have deg(Yjv) ≤ deg(v) − 1. If moreover d > 0, then the equality holds if
and only if yj gr(v) = gr(Yjv) ̸= 0 in gr(π). Similar statements hold for Zj.

(ii) There exists a, b ∈ Zf≥0 satisfying ∥a∥+ ∥b∥ = d such that 0 ̸= Y aZbv ∈ πI1.

(iii) We have deg
((

p 0
0 1

)
v
)
≤ pd+ (p− 1)f .

Proof. (i). This follows from the fact that yj , zj ∈ R has degree −1.
(ii). If d = 0, then the statement is trivial, so we let d > 0. Since y0, . . . , yf−1, z0, . . . , zf−1

form an F-basis of the degree −1 part of R, which equals mI1/m
2
I1
, there exists one of them,

say yj , such that yj gr(v) ̸= 0 (otherwise, gr(v) is annihilated by mI1/m
2
I1

in gr(π), so mI1v ⊆
π[md−1

I1
], i.e. v ∈ π[md

I1
], a contradiction). By (i), we have deg(Yjv) = d − 1. If d − 1 > 0,

continue this process to Yjv ∈ π and so on.
In particular, there existW1, . . . ,Wd ∈ {Y0, . . . , Yf−1, Z0, . . . , Zf−1} such thatW1 · · ·Wd v ∈

π has degree 0 and w1 · · ·wd gr(v) ̸= 0 in gr(π), where wi ∈ R is the associated graded element
of Wi for 1 ≤ i ≤ d. We let W ′

1, . . . ,W
′
d be a permutation of W1, . . . ,Wd such that W ′

1 · · ·W ′
d is

of the form Y aZb as in the statement. Since R is commutative, we have w′
1 · · ·w′

d gr(v) ̸= 0 in
gr(π). As a consequence, W ′

1 · · ·W ′
d v ̸= 0 and has degree zero by (i), hence belongs to πI1 .

(iii). By (ii), it suffices to show that Y aZb
(
p 0
0 1

)
v = 0 for all a, b ∈ Zf≥0 such that ∥a∥+∥b∥ ≥

pd + (p − 1)f + 1. We write a = pc + ℓ for the unique c ≥ 0 and 0 ≤ ℓ ≤ p − 1. One easily

checks that Zj
(
p 0
0 1

)
=
(
p 0
0 1

)
Zpj−1 for all j ∈ J . Together with Lemma 4.3.1(i), we have

Y aZb
(
p 0
0 1

)
v = Y ℓY pc

(
p 0
0 1

)
Zpδ(b)v = Y ℓ

(
p 0
0 1

)
Y δ−1(c)Zpδ(b)v.

Since deg(v) = d, using (i) it suffices to show that ∥δ−1(c)∥+ ∥pδ(b)∥ > d. Indeed, we have

∥δ−1(c)∥+ ∥pδ(b)∥ = ∥c∥+ p∥b∥ = (∥a∥ − ∥ℓ∥)/p+ p∥b∥
≥ (∥a∥ − (p− 1)f)/p+ p∥b∥ ≥ (∥a∥+ ∥b∥ − (p− 1)f)/p ≥ (pd+ 1)/p > d,

which completes the proof.

Recall that we have constructed xJ,i ∈ π for J ⊆ J and i ∈ Zf in Theorem 4.6.4.

Lemma 4.9.2. Let J ⊆ J and i ∈ Zf such that i ≥ eJ
sh

(see §4.2 for eJ
sh

and note that

∥eJsh∥ = |J sh|).

(i) If zj gr(xJ,i) = 0 for all j ∈ J , then we have deg(xJ,i) = ∥i∥ − |J sh|.
(ii) If deg(xJ,i) > ∥i∥ − |J sh|, then there exists j0 ∈ J such that deg(xJ,i+ej0 ) ≥ deg(xJ,i) + 2.

Proof. (i). By the second paragraph of the proof of [BHH+c, Prop. 3.5.1], there exists a ∈ Zf≥0

such that 0 ̸= Y axJ,i ∈ πI1 and deg(xJ,i) = ∥a∥. By Theorem 4.6.4(ii) and (4.60), we have

Y i−eJsh

xJ,i = x
J,eJsh = vJ ̸= 0, hence ∥a∥ = deg(xJ,i) ≥ ∥i∥ − |J sh| by Lemma 4.9.1(i). Then

by Corollary 4.8.3(i),(ii), we must have a = i− eJ
sh
, hence deg(xJ,i) = ∥i∥ − |J sh|.

(ii). By (i), there exists j0 ∈ J such that zj0 gr(xJ,i) ̸= 0. Since Yj0xJ,i+ej0 = xJ,i by Theorem
4.6.4(ii), we have deg(xJ,i+ej0 ) ≥ deg(xJ,i)+1 by Lemma 4.9.1(i). Assume on the contrary that
deg(xJ,i+ej0 ) = deg(xJ,i) + 1, then by Lemma 4.9.1(i) we have yj0 gr(xJ,i+ej0 ) = gr(xJ,i), hence
zj0yj0 gr(xJ,i+ej0 ) = zj0 gr(xJ,i) ̸= 0. This is a contradiction since zj0yj0 = 0 in R.

Lemma 4.9.3. For J ⊆ J and i ∈ Zf such that i ≤ f + 1, we have xJ,i ∈ πK1.

Proof. By Theorem 4.6.4(ii), it suffices to show that xJ,f+1 ∈ πK1 .

Recall that c′J ∈ Zf is defined in (4.61), which satisfies 1 ≤ c′J ≤ p − 1 by (4.2). By the
proof of Lemma 4.6.9 except that we apply Lemma 4.6.3(iv) with δ = 1 instead of δ = 0, we
have
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(i) Y c′J−1
(
p 0
0 1

)
xJ+1,eJ∩(J+1) ∈ πK1 ;

(ii) xJ ′,f+1+rJ\J′ ∈ πK1 for each J ′ ⊆ J such that J ss ⊆ J ′ ⫋ J (see (4.52) for rJ\J
′
).

Moreover, by (4.62) we have (see (4.53) for cJ)

f + 1 = pδ
(
eJ∩(J+1)

)
+ cJ − (c′J − 1).

Hence we deduce from (4.60) (with i = f + 1) that xJ,f+1 ∈ πK1 .

The following proposition is a generalization of [BHH+c, Prop. 3.5.1] (where ρ was assumed
to be semisimple).

Proposition 4.9.4. For J ⊆ J and i ∈ Zf , we have deg
(
xJ,i
)
≤ ∥i∥ − |J sh|. If moreover

i ≥ eJ
sh
, then we have deg

(
xJ,i
)
= ∥i∥ − |J sh|.

Proof. First we make the following observation. Let J ⊆ J andm ≥ 1. Assume that deg(xJ,i) =

∥i∥ − |J sh| for all eJ
sh ≤ i ≤ m, then we have deg(xJ,i) ≤ ∥i∥ − |J sh| for all i ≤ m. Indeed,

by Theorem 4.6.4(ii) we have xJ,i = Y m−ixJ,m, hence deg(xJ,i) ≤ (∥m∥ − |J sh|) − ∥m − i∥ =

∥i∥ − |J sh| by Lemma 4.9.1(i). In particular, we only need to prove the result for i ≥ eJ
sh
.

We prove the result by increasing induction on |J | and on maxj ij . For J ⊆ J and i ∈ Zf

such that eJ
sh ≤ i ≤ f+1, by Lemma 4.9.3 we have ZjxJ,i = 0 for all j ∈ J , hence zj gr(xJ,i) = 0

for all j ∈ J . By Lemma 4.9.2(i) we deduce that deg(xJ,i) = ∥i∥ − |J sh|.
Then we let 0 ≤ k ≤ f − 1 and m ≥ f + 1. Assume that the result is true for

(a) |J | ≤ k − 1 and i ∈ Zf ;
(b) |J | = k and maxj ij ≤ m,

we prove the result for |J | = k and i ≥ eJ
sh

such that maxj ij = m+ 1.

Claim. For J ⊆ J such that |J | = k and i ∈ Zf such that maxj ij ≤ pm, we have

deg(xJ,i) ≤ ∥i∥+ (p− 1)f.

Proof. We write i = pδ(i′) + cJ − ℓ for the unique i′, ℓ ∈ Zf such that 0 ≤ ℓ ≤ p− 1 (see (4.53)

for cJ). Then we claim that maxj i
′
j ≤ m. Indeed, for each j we have

i′j+1 =
(
ij − cJj + ℓj

)
/p ≤

(
pm− 0 + (p− 1)

)
/p < m+ 1,

hence i′j+1 ≤ m. Since |J +1| = |J | = k, by (b) we have deg(xJ+1,i′) ≤ ∥i′∥− |(J +1)sh| ≤ ∥i′∥.
Then by Lemma 4.9.1(i),(iii) we have

deg
(
Y ℓ
(
p 0
0 1

)
xJ+1,i′

)
≤ p∥i′∥+(p−1)f −∥ℓ∥ = ∥i∥−∥cJ∥+(p−1)f ≤ ∥i∥+(p−1)f, (4.109)

where the last inequality uses cJ ≥ 0. For J ′ ⊆ J such that J ss ⊆ J ′ ⫋ J , by (a) we have (see
(4.52) for rJ\J

′
)

deg
(
xJ ′,i+rJ\J′

)
≤ ∥i∥+ ∥rJ\J ′∥ − |(J ′)sh| ≤ ∥i∥+ (p− 1)f, (4.110)

where the last inequality uses r
J\J ′

j ≤ p − 1 for all j ∈ J by (4.2). Combining (4.60), (4.109)
and (4.110), we deduce that deg(xJ,i) ≤ ∥i∥+ (p− 1)f .
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Assume on the contrary that deg(xJ0,i(1)) ≥ ∥i(1)∥−|J sh
0 |+1 for some |J0| = k and i(1) ≥ eJ

sh

such that maxj i
(1)
j = m+1. By Lemma 4.9.2(ii), there exists i(2) = i(1)+ej1 for some j1 ∈ J such

that deg
(
xJ0,i(2)

)
≥ ∥i(1)∥− |J sh

0 |+3 = ∥i(2)∥− |J sh
0 |+2. Moreover, we have maxj i

(2)
j ≤ m+2.

Similarly, there exists i(3) = i(2)+ej2 for some j2 ∈ J such that deg
(
xJ0,i(3)

)
≥ ∥i(3)∥−|J sh

0 |+3,

which moreover satisfies maxj i
(3)
j ≤ m + 3. Continue this process, there exists i((p−1)m) ∈ Zf

such that maxj i
((p−1)m)
j ≤ pm and

deg
(
xJ0,i((p−1)m)

)
≥ ∥i((p−1)m)∥ − |J sh

0 |+ (p− 1)m.

By the Claim above, we also have

deg
(
xJ0,i((p−1)m)

)
≤ ∥i((p−1)m)∥+ (p− 1)f.

This is a contradiction since m ≥ f + 1 and |J sh
0 | ≤ f ≤ p− 2 by (4.2).

For J ⊆ J , we define the sequence xJ = (xJ,k)k≥0 by xJ,k
def
= xJ,k, which is defined in

Theorem 4.6.4. Since xJ,k ∈ π
[
m
kf−|Jsh|+1
I1

]
for all k ≥ 0 by Proposition 4.9.4, we have xJ ∈

Homcont
F (DA(π),F). Then we have the following generalization of [BHH+c, Thm. 3.7.1] (where

ρ was assumed to be semisimple).

Theorem 4.9.5. The sequences {xJ : J ⊆ J} are contained in the image of the injection

µ∗ : HomA(DA(π), A) → Homcont
F (DA(π),F)

and form an A-basis of HomA(DA(π), A). In particular, DA(π) is a free A-module of rank 2f .

Proof. We follow closely the proof of [BHH+c, Thm. 3.7.1] and use without comment the nota-
tion of loc.cit..

First, the proof of loc.cit.using Theorem 4.8.5 shows that each xJ ∈ Homcont
F (DA(π),F)

comes from an element of HomA(DA(π), A), and we still denote it by xJ .

For each J ⊆ J , we define another sequence x′J =
(
x′J,k

)
k≥0

by x′J,k
def
= x

J,k+eJsh . In

particular, we have x′J,0 = vJ by (4.58). By (4.108) we have x′J = Y −eJsh

xJ , which implies that

x′J ∈ Homcont
F (DA(π),F) and comes from an element of HomA(DA(π), A) (recall Y −eJsh

∈ A),
and we still denote it by x′J .

Since Y −eJsh

is invertible in A, it suffices to show that {x′J , J ⊆ J } form an A-basis of
HomA(DA(π), A). As in the proof of loc.cit., it suffices to show that the elements {gr(x′J) : J ⊆
J } form a grA-basis of HomgrA(grDA(π), grA).

Since πI1 = D0(ρ)
I1 is multiplicity-free by Lemma 4.4.1(ii) (see the assumptions on π above

Theorem 4.1.1), there exist unique I-eigenvectors v∗J ∈ (πI1)∨ = gr0(π
∨) for J ⊆ J such that

⟨vJ , v∗J ′⟩ = δJ=J ′ . As in the proof of [BHH+c, Lemma 3.7.2], we know that grDA(π) is a free
grA-module, and that there exists a surjection of grA-modules⊕

J⊆J
grA↠ grDA(π), (4.111)

sending the standard basis element indexed by J on the left to the image of v∗J in grDA(π)
(still denoted v∗J). To complete the proof, it is enough to show that ⟨gr(x′J), v∗J ′⟩ = δJ=J ′y−1

in grA for all J, J ′ ⊆ J , which implies that the surjection (4.111) is an isomorphism. The
argument here is completely analogous to that of [BHH+c, Thm. 3.7.1], using Corollary 4.8.3
and Proposition 4.9.4.
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4.10 The actions of φ and O×
K on HomA(DA(π), A)(1)

In this section, we finish the proof of Theorem 4.1.1. We also compute the actions of φ
and O×

K on HomA(DA(π), A)(1). The main results are Proposition 4.10.4 and Corollary 4.10.5.
Here the O×

K-action is much more technical to compute explicitly than in the semisimple case
(see [BHH+c, Prop. 3.8.3]). Instead, we give a congruence relation which uniquely determines
the O×

K-action.
By definition, DA(π) is a finite free (ψ,O×

K)-module over A in the sense of [BHH+b,
Def. 3.1.2.1]. Then the construction of [BHH+c, §3.2] makes HomA(DA(π), A)(1) a (φ,O×

K)-
module, which is étale if and only if β as in (4.1) is an isomorphism. Here forD a (φ,O×

K)-module
over A, we write D(1) to be D with the action of φ unchanged and the action of a ∈ O×

K multi-
plied by NFq/Fp

(a). Then by [BHH+c, Lemma 3.8.1(ii)] and [BHH+c, (114)], under the injection

(4.107) the actions of φ and O×
K on HomA(DA(π), A)(1) can be expressed in terms of sequences

as follows:

(i) for k ≥ 0 and pℓ ≥ k, we have

(φ(xJ))k = (−1)f−1Y pℓ−k ( p 0
0 1

)
xJ,ℓ; (4.112)

(ii) for a ∈ O×
K , k ≥ 0 and ℓ≫k 0, we have

(a(xJ))k =
a(Y ℓ)

Y k
( a 0
0 1 )xJ,ℓ. (4.113)

We denote by Mat(φ) and Mat(a) (a ∈ O×
K) the matrices of the actions of φ and O×

K on
HomA(DA(π), A)(1) with respect to the basis {xJ : J ⊆ J} of Theorem 4.9.5, whose rows and
columns are indexed by the subsets of J . For J, J ′ ⊆ J such that (J − 1)ss = (J ′)ss, we let

γJ,J ′
def
= (−1)f−1εJ ′µJ,J ′ , (4.114)

where εJ ′ is defined in (4.54) and µJ,J ′ is defined in (4.51). Then by definition and the sentence
after (4.51), for J1, J2, J3, J4 ⊆ J such that (J1 − 1)ss = (J2 − 1)ss = J ss

3 = J ss
4 we have

γJ1,J3
γJ1,J4

=
γJ2,J3
γJ2,J4

.

We define
γ∗,J
γ∗,J′

for J ss = (J ′)ss in a similar way as
µ∗,J
µ∗,J′

.

Proposition 4.10.1. (i) We have (see (4.53) for cJ and (4.52) for rJ\J
′
)

Mat(φ)J ′,J+1 =

{
γJ+1,J ′Y −(cJ+rJ\J′

) if J ss ⊆ J ′ ⊆ J

0 otherwise.

(ii) For a ∈ [F×
q ], Mat(a) is a diagonal matrix with Mat(a)J,J = ar

Jc

.

Proof. (i). Let J ⊆ J . For k ≥ 0 and pℓ ≥ k, by (4.112) and (4.57) we have

(φ(xJ+1))k = (−1)f−1Y pℓ−k ( p 0
0 1

)
xJ+1,ℓ =

∑
Jss⊆J ′⊆J

(−1)f−1εJ ′µJ+1,J ′x
J ′,
(
pℓ+cJ+rJ\J′−(pℓ−k)

)
=

∑
Jss⊆J ′⊆J

γJ+1,J ′xJ ′,cJ+rJ\J′
+k.
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Then using (4.108) one easily checks that

φ(xJ+1) =
∑

Jss⊆J ′⊆J
γJ+1,J ′Y −(cJ+rJ\J′

)(xJ ′),

which proves (i).

(ii). Let J ⊆ J and a ∈ [F×
q ]. By Corollary 4.6.10 we have

( a 0
0 1 )xJ,i = χ′

J

(
( a 0
0 1 )

)
a−ixJ,i = ar−r

J−ixJ,i = ar
J−rJ−ixJ,i = ar

Jc−ixJ,i,

where the second equality follows from (4.68), the third equality follows from (4.52), and the
last equality follows from Lemma 4.6.3(ii). Then for k ≥ 0, by (4.113) we have

(a(xJ))k =
a
(
Y k
)

Y k
( a 0
0 1 )xJ,k = ak

(
ar

Jc−kxJ,k

)
= ar

Jc

xJ,k,

where the second equality follows from (4.106). Using (4.108), we conclude that a(xJ) =

ar
Jc

(xJ), which proves (ii).

Proof of Theorem 4.1.1. By Theorem 4.9.5, π is in C and DA(π) has rank 2f . Moreover, by
Proposition 4.10.1(i) we have Mat(φ) ∈ GL2f (A), hence HomA(DA(π), A) is an étale (φ,O×

K)-
module over A, which implies that β as in (4.1) is an isomorphism.

Then we are going to describe the O×
K-action. The following two lemmas are needed in the

proof of Proposition 4.10.4 below.

Lemma 4.10.2. Let a ∈ A, λ ∈ F× and s ∈ Zf such that a = λY sφq(a). If s = (q − 1)t for
some t ∈ Zf and λ = 1, then we have a ∈ FY −t. Otherwise, we have a = 0.

Proof. Let m > 0 be large enough such that qm is a multiple of |F| and λm = 1. In particular,
φmq acts as x 7→ xq

m
on A. By iteration, we have aq

m
= Y −((qm−1)/(q−1))sa. Suppose that

a ̸= 0. Since A is an integral domain, we have aq
m−1 = Y −((qm−1)/(q−1))s. In particular, we

have a ∈ A×, hence we can write a = cY −ta1 with c ∈ F×, t ∈ Zf and a1 ∈ 1 + F−1A. Then
we deduce that a1 = 1 and (qm − 1)t = ((qm − 1)/(q − 1))s, which implies s = (q − 1)t, and we
necessarily have λ = 1.

For a ∈ A× and k =
∑m

i=0 kiφ
i ∈ Z[φ] with m ∈ Z≥0 and ki ∈ Z for all 0 ≤ i ≤ m, we define

ak
def
=

m∏
i=0

φi(aki) ∈ A×.

This makes A× a Z[φ]-module. By completeness, 1 + F−1A is a Z(p)[φ]-module, where Z(p) is
the localization of Z with respect to the prime ideal (p).

Lemma 4.10.3. Let J, J ′ ⊆ J , λj ∈ F× and 1 ≤ hj ≤ p− 2 for all j ∈ J . Consider the map

θ :
(
A[F×

q ]
)f →

(
A[F×

q ]
)f

(ai)i∈J 7→

(
ai − λi

[ ∏
j−i∈J\J ′

Y
hj(1−φ)
j

∏
j−i∈J ′\J

Y
−hj(1−φ)
j

]
φ(ai+1)

)
i∈J

.

(i) If J ′ ̸= J , then θ(a) = 0 implies a = 0.
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(ii) If J ′ = J and λi = 1 for all i, then θ(a) = 0 implies a = µ for some µ ∈ F.
(iii) If J ′ = J \ {j0} for some j0 ∈ J and 0 ̸= b ∈

(
(F0A \ F−1A) ∩ A[F×

q ]
)f
, then the equation

θ(a) = b has no solution.

(iv) If J ′ ⫋ J and bi ∈ F|J\J ′|(1−p)A ∩ A[F×
q ] for all i, then the equation θ(a) = b has at most

one solution. If moreover 1 ≤ hj ≤ p − 1 − f for all j, then there is a unique solution
which moreover satisfies ai ≡ bi mod F(f+1)(1−p)A for all i.

Proof. (i). We write λ
def
=
∏f−1
i=0 λi and h(j)

def
=

f−1∑
i=0

hj+ip
i for all j ∈ J . If θ(a) = 0, then by

iteration we have a0 = λY sφq(a0), where

s
def
=

∑
j∈J\J ′

h(j)(ej − pej−1)−
∑

j∈J ′\J

h(j)(ej − pej−1) ̸= 0. (4.115)

Claim. Suppose that s = (q− 1)t for some t ∈ Zf . Then we have |tj | ≤ p− 1 for all j ∈ J and
0 ̸= t ̸= ±(p− 1).

Proof. Since 0 ≤ h(j) ≤ (p− 2)(1 + p+ · · ·+ pf−1) for all j ∈ J , we deduce from (4.115) that

|tj | ≤
(p− 2)(1 + p+ · · ·+ pf−1)(p+ 1)

q − 1
=

(p− 2)(p+ 1)

p− 1
< p,

hence |tj | ≤ p− 1 for all j ∈ J . We also deduce from (4.115) that

∣∣∥t∥∣∣ ≤ (p− 2)(1 + p+ · · ·+ pf−1)(p− 1)f

q − 1
= (p− 2)f,

which implies t ̸= ±(p− 1).

By Lemma 4.10.2, the only possible nonzero solution for a0 in A is a scalar multiple of Y −t,
which is not fixed by [F×

q ] since −(p− 1) < t < p− 1 and t ̸= 0. Hence a0 = 0, and we conclude
that ai = 0 for all i.

(ii). If θ(a) = 0, then by iteration we have a0 = φq(a0). By Lemma 4.10.2, we deduce that
a0 = µ ∈ F, hence ai = µ for all i.

(iii). In this case, the equation θ(a) = b becomes

ai = λiY
hj0+i(1−φ)
j0+i

φ(ai+1) + bi ∀ i ∈ J . (4.116)

For 0 ̸= a ∈ A, we say that a has degreem if a ∈ F−mA\F−(m+1)A. We also define deg(0)
def
= ∞.

In particular, a nonzero scalar has degree zero, and φ multiplies the degree by p (see (4.106)).
We choose i0 ∈ J such that bi0 ̸= 0 (hence deg(bi0) = 0) and let i = i0 in (4.116). Since the

degree of Y
hj0+i0

(1−φ)
j0+i0

is not a multiple of p, the two terms of the RHS of (4.116) have different
degrees. Comparing the degrees of both sides of (4.116), we deduce that deg (ai0) ≤ 0.

Then we let i = i0 − 1 in (4.116). Since deg (ai0) ≤ 0, we have

deg
(
Y
hj0+i0−1(1−φ)
j0+i0−1 φ(ai0)

)
= p deg(ai0)− (p− 1)hj0+i0−1 < min{deg(ai0), 0}.

Comparing the degrees of both sides of (4.116), we deduce that deg (ai0−1) < deg (ai0).
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Then we let i = i0 − 2 in (4.116) and continue this process. We finally deduce that

deg(ai0) = deg(ai0−f ) < deg(ai0−f+1) < · · · < deg(ai0−1) < deg(ai0),

which is a contradiction.

(iv). By (i), the equation θ(a) = b has at most one solution. If moreover 1 ≤ hj ≤ p− 1− f
for all j ∈ J , since bi ∈ F|J\J ′|(1−p)A for all i ∈ J , we have for all i ∈ J

deg
((
(id−θ)(b)

)
i

)
= deg

(
λi

[ ∏
j−i∈J\J ′

Y
hj(1−φ)
j

]
φ(bi+1)

)
≥ p deg(bi+1)− |J \ J ′|(p− 1)(p− 1− f)

≥ max {(f + 1)(p− 1), deg(bi+1) + 1} .

Hence the series

a
def
= b+

∞∑
k=1

(id−θ)k(b)

converges in
(
A[F×

q ]
)f
, gives a solution of the equation and satisfies the required congruence

relation.

Let Q ∈ GL2f (A) be the diagonal matrix with QJ,J = Y rJ
c

for J ⊆ J . Then the matrices

Mat(φ)′, Mat(a)′ (a ∈ O×
K) with respect to the new basis {x′′J

def
= Y −rJc

(xJ) : J ⊆ J } of
HomA(DA(π), A)(1) are given by Mat(φ)′ = QMat(φ)φ(Q)−1 and Mat(a)′ = QMat(a)a(Q)−1.

Proposition 4.10.4. (i) We have

Mat(φ)′J ′,J+1 =

γJ+1,J ′
∏
j /∈J

Y
(rj+1)(1−φ)
j if J ss ⊆ J ′ ⊆ J

0 otherwise.

(ii) For a ∈ [F×
q ], we have Mat(a)′ = I.

(iii) Assume that Jρ ̸= J . Up to twist by a continuous character O×
K → F×, there exists a

unique O×
K-action on HomA(DA(π), A)(1) which satisfies (ii) and commutes with φ as in

(i). Moreover, the matrix Mat(a)′ (a ∈ O×
K) satisfies for J, J ′ ⊆ J

(a) Mat(a)′J ′,J = 0 if J ′ ⊈ J ;
(b) Mat(a)′J ′,J ∈ F|J\J ′|(1−p)A if J ′ ⊆ J .

(iv) Assume that Jρ = J . Up to diagonal matrices B ∈ GL2f (F) such that BJ,J = BJ+1,J+1

for all J ⊆ J , there exists a unique O×
K-action on HomA(DA(π), A)(1) which satisfies (ii)

and commutes with φ as in (i). Moreover, the matrix Mat(a)′ is diagonal for all a ∈ O×
K .

Proof. (i). We have Mat(φ)′J ′,J+1 = QJ ′,J ′ Mat(φ)J ′,J+1φ(QJ+1,J+1)
−1. Hence we deduce from

Proposition 4.10.1(i) that Mat(φ)′J ′,J+1 ̸= 0 if and only if J ss ⊆ J ′ ⊆ J , in which case we have

Mat(φ)′J ′,J+1 = γJ+1,J ′Y r(J
′)c
Y −(cJ+rJ\J′

)φ
(
Y r(J+1)c)−1

= γJ+1,J ′Y rJ
c−cJ−pδ(r(J+1)c ),

where the last equality follows from Lemma 4.6.3(ii) and (4.106). By (4.55) and (4.56) we have

rJ
c

j − cJj − pr
(J+1)c

j+1 =
(
δj+1/∈J(rj + 1)− δj /∈J

)
−
(
δj /∈J(p− 2− rj) + δj+1/∈J(rj + 1)

)
− p
(
δj+1/∈J(rj+1 + 1)− δj /∈J

)
= δj /∈J(rj + 1)− δj+1/∈J

(
p(rj+1 + 1)

)
,
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which proves the required formula for Mat(φ)′J ′,J+1 using (4.106).

(ii). Let a ∈ [F×
q ]. We deduce from Proposition 4.10.1(ii) and (4.106) that Mat(a)′ is a

diagonal matrix with

Mat(a)′J,J = QJ,J Mat(a)J,Ja(QJ,J)
−1 = Y rJ

c

ar
Jc

a
(
Y rJ

c)−1
= 1.

(iii) and (iv). For simplicity, we denote by Pφ the matrix Mat(φ)′ and we let Pa ∈ GL2f (A)
(a ∈ O×

K) be the matrices for the O×
K-action. Since [F×

q ] fixes the basis {x′′J : J ⊆ J } by (ii), it

also fixes the matrices Pa. By the commutativity of the actions of φ and O×
K , we have

Pa a(Pφ) = Pφ φ(Pa). (4.117)

Since (Pφ)J ′,J+1 ̸= 0 if and only if J ss ⊆ J ′ ⊆ J by (i), comparing the (J ′, J + 1)-entries of
(4.117) we get∑

Jss⊆J ′′⊆J
(Pa)J ′,J ′′ a(Pφ)J ′′,J+1 =

∑
J ′′:(J ′′)ss⊆J ′⊆J ′′

(Pφ)J ′,J ′′+1φ(Pa)J ′′+1,J+1. (4.118)

Claim 1. For j ∈ J we let Pa,j
def
= f

h(j)(1−φ)/(1−q)
a,j ∈ 1 + F1−pA, where fa,j

def
= ap

j
Yj/a(Yj) ∈

1 + F1−pA and h(j) =
∑f−1

i=0 hj+ip
i as in the proof of Lemma 4.10.3 with hj

def
= rj + 1. For

J ⊆ J we let Pa,J
def
=
∏
j /∈J Pa,j ∈ 1 + F1−pA. In particular, Pa,J is fixed by [F×

q ]. Then for all
J ⊆ J , we have

Pa,J a(Pφ)J,J+1 = (Pφ)J,J+1φ(Pa,J+1).

Proof. By (i) and by definition, it suffices to show that for all j ∈ J we have

Pa,j a
(
Y

(rj+1)(1−φ)
j

)
= Y

(rj+1)(1−φ)
j φ(Pa,j+1).

Since φ(Yj+1) = Y p
j by (4.106), it suffices to show that for all j ∈ J we have

f
h(j)/(1−q)
a,j a

(
Y
rj+1
j

)
= Y

rj+1
j f

ph(j+1)/(1−q)
a,j ,

which follows from the equality ph(j+1) − h(j) = (q − 1)(rj + 1).

We define Qa ∈ GL2f (A) by (Qa)J ′,J = (Pa)J ′,JP
−1
a,J , which is fixed by [F×

q ]. Then it suffices

to prove the uniqueness for Qa. Dividing the LHS of (4.118) by Pa,J a(Pφ)J,J+1 ∈ A× and the
RHS of (4.118) by (Pφ)J,J+1φ(Pa,J+1) ∈ A× using Claim 1 and (i), we get

∑
Jss⊆J ′′⊆J

γ∗,J ′′

γ∗,J
(Qa)J ′,J ′′

∏
j∈J\J ′′

Pa,j


=

∑
J ′′:(J ′′)ss⊆J ′⊆J ′′

γJ ′′+1,J ′

γJ+1,J

 ∏
j∈J\J ′′

Y
hj(1−φ)
j

∏
j∈J ′′\J

Y
−hj(1−φ)
j

φ(Qa)J ′′+1,J+1

 . (4.119)
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(a). We assume that J ′ ⊈ J . We use increasing induction on |J | − |J ′| (which ranges from
−f to f) to show that (Qa)J ′,J = 0. By the induction hypothesis, we have (Qa)J ′,J ′′ = 0 if
J ′′ ⫋ J , and (Qa)J ′′+1,J+1 = 0 if J ′′ ⫌ J ′. Hence it follows from (4.119) that

(Qa)J ′,J =
γJ ′+1,J ′

γJ+1,J

 ∏
j∈J\J ′

Y
hj(1−φ)
j

∏
j∈J ′\J

Y
−hj(1−φ)
j

φ(Qa)J ′+1,J+1. (4.120)

A similar equality holds replacing (J ′, J) with (J ′ + i, J + i) (for all i ∈ J ), hence it follows
from Lemma 4.10.3(i) (with λi = γJ ′+i+1,J ′+i/γJ+i+1,J+i) that (Qa)J ′,J = 0.

In the case Jρ = J , which implies J ss = J for all J ⊆ J , the equation (4.119) is the same as
(4.120). Then as in the previous paragraph, we deduce from Lemma 4.10.3(i) that (Qa)J ′,J = 0
for all J ′ ̸= J .

(b). We assume that J ′ = J . Then by a similar argument, the equation (4.120) still holds
and becomes (Qa)J,J = φ(Qa)J+1,J+1. By Lemma 4.10.3(ii), we deduce that (Qa)J,J = ξa,J for
some ξa,J ∈ F× (nonzero since Qa is invertible), and we have ξa,J = ξa,J+1. In particular, this
completes the proof of (iv).

Claim 2. If Jρ ̸= J , then ξa,J does not depend on J .

Proof. It suffices to show that ξa,J = ξa,J ′ for all J, J ′ such that J ′ = J \ {j0} for some j0 ∈ J .
Since (Qa)J ′,J = 0 for J ′ ⊈ J , we deduce from (4.119) that

(Qa)J ′,J + δj0 /∈Jρ
γ∗,J ′

γ∗,J
ξa,J ′Pa,j0 =

γJ ′+1,J ′

γJ+1,J
Y
hj0 (1−φ)
j0

φ(Qa)J ′+1,J+1 + δj0 /∈Jρ
γ∗,J ′

γ∗,J
ξa,J .

A similar equality holds replacing (J ′, J) with (J ′ + i, J + i) (hence j0 is replaced with j0 + i).
For each i ∈ J , we let

bi
def
= δj0+i/∈Jρ

γ∗,J ′+i

γ∗,J+i

(
ξa,J+i − ξa,J ′+iPa,j0+i

)
= δj0+i/∈Jρ

γ∗,J ′+i

γ∗,J+i

(
ξa,J − ξa,J ′Pa,j0+i

)
.

Suppose on the contrary that ξa,J ̸= ξa,J ′ . Since Pa,j ∈ 1 + F1−pA for all j, we deduce that

bi ∈ (F0A \ F−1A) ∩ A[F×
q ] for all i, and not all equal to 0 since Jρ ̸= J . Then by Lemma

4.10.3(iii) (with λi = γJ ′+i+1,J ′+i/γJ+i+1,J+i) we deduce a contradiction.

(c). In the rest of the proof we assume that Jρ ̸= J . Since ξa,J does not depend on J by
Claim 2, we denote it by ξa. Since (Qa)J ′,J = 0 for all J ′ ⊈ J by (a), the assignment a 7→ ξa
defines a continuous character of O×

K with values in F×. By considering ξ−1
a Pa, we may assume

that ξa = 1 for all a ∈ O×
K . To finish the proof of (iii), we use increasing induction on |J \ J ′|

to show that for J ′ ⊆ J there is a unique choice of (Qa)J ′,J , which moreover satisfies

(Qa)J ′,J ≡


γ∗,J′
γ∗,J

∏
j∈J\J ′

(1− Pa,j) mod F(f+1)(1−p)A if J ′ ⊇ J ss

0 mod F(f+1)(1−p)A if J ′ ⊉ J ss.

Since (Qa)J,J = ξa = 1 by (b) and assumption, the case J ′ = J is true. Then we assume that
J ′ ⫋ J . Since (Qa)J ′,J = 0 for J ′ ⊈ J by (a), (4.119) gives

∑
J ′∪Jss⊆J ′′⊆J

γ∗,J ′′

γ∗,J
(Qa)J ′,J ′′

∏
j∈J\J ′′

Pa,j


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=
∑

J ′′:(J ′′)ss⊆J ′⊆J ′′⊆J

γJ ′′+1,J ′

γJ+1,J

 ∏
j∈J\J ′′

Y
hj(1−φ)
j

φ(Qa)J ′′+1,J+1

 , (4.121)

which implies that

(Qa)J ′,J −
γJ ′+1,J ′

γJ+1,J

 ∏
j∈J\J ′

Y
hj(1−φ)
j

φ(Qa)J ′+1,J+1 = b0, (4.122)

where b0
def
= b0,1 − b0,2 with

b0,1
def
=

∑
J ′′:(J ′′)ss⊆J ′⫋J ′′⊆J

γJ ′′+1,J ′

γJ+1,J

 ∏
j∈J\J ′′

Y
hj(1−φ)
j

φ(Qa)J ′′+1,J+1

 ;

b0,2
def
=

∑
J ′∪Jss⊆J ′′⫋J

γ∗,J ′′

γ∗,J
(Qa)J ′,J ′′

∏
j∈J\J ′′

Pa,j

 .
By the induction hypothesis together with 1− Pa,j ∈ F1−pA and hj ≤ p− 1− f (by (4.2)),

each term in the summation of b0,1 lies in F(f+1)(1−p)A unless the term for J ′′ = J , which
appears if and only if J ′ ⊇ J ss. If J ′ ⊉ J ss, then we have b0,1 ∈ F(f+1)(1−p)A. Moreover, for
each J ′′ such that J ′ ∪ J ss ⊆ J ′′ ⫋ J , we have J ′ ⊉ J ss = (J ′′)ss. Hence by the induction
hypothesis, we deduce that b0,2 ∈ F(f+1)(1−p)A, hence b0 ∈ F(f+1)(1−p)A. If J ′ ⊇ J ss, then by
the induction hypothesis we have

b0 = b0,1 − b0,2 ≡
γ∗,J ′

γ∗,J
−

∑
J ′⊆J ′′⫋J

γ∗,J ′′

γ∗,J

γ∗,J ′

γ∗,J ′′

∏
j∈J ′′\J ′

(1− Pa,j)
∏

j∈J\J ′′

Pa,j


=
γ∗,J ′

γ∗,J

 ∏
j∈J\J ′

(
(1− Pa,j) + Pa,j

)
−

∑
J ′⊆J ′′⫋J

 ∏
j∈J ′′\J ′

(1− Pa,j)
∏

j∈J\J ′′

Pa,j


=
γ∗,J ′

γ∗,J

∏
j∈J\J ′

(1− Pa,j)
(
mod F(f+1)(1−p)A

)
.

In particular, we have b0 ∈ F|J\J ′|(1−p)A since 1−Pa,j ∈ F1−pA for all j. For i ∈ J , we define bi
in a similar way as b0 replacing (J ′, J) with (J ′+ i, J+ i), and a similar equality as (4.122) holds
replacing (J ′, J) with (J ′ + i, J + i) and b0 with bi. Then we deduce from Lemma 4.10.3(iv)
(with λi = γJ ′+i+1,J ′+i/γJ+i+1,J+i) that there is a unique solution of (Qa)J ′,J , which satisfies

(Qa)J ′,J ≡ b0 modF(f+1)(1−p)A.

This completes the proof.

Finally, we can determine the O×
K-action on HomA(DA(π), A)(1). In the semisimple case,

this is computed explicitly in [BHH+c, Prop. 3.8.3].

Corollary 4.10.5. If Jρ ̸= J , then the O×
K-action on HomA(DA(π), A)(1) is the unique one

in Proposition 4.10.4(iii) which satisfies Mat(a)′J,J ∈ 1 + F1−pA for all a ∈ O×
K and J ⊆ J .
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Proof. By the proof of Proposition 4.10.4(iii), there exists a continuous character ξ : O×
K → F×

such that for all a ∈ O×
K and J ⊆ J we have Mat(a)′J,J = ξ(a)Pa,J with Pa,J ∈ 1 + F1−pA.

To prove that ξ is trivial, it suffices to show that Mat(a)′∅,∅ ∈ 1 + F1−pA. Using the change of
basis matrix Q which is diagonal, it suffices to show that Mat(a)∅,∅ ∈ ar(1 + F1−pA). Hence it
is enough to prove that a(x∅) ∈ ar(1 + F1−pA)x∅.

We claim that for all i ∈ Zf , we have

x∅,i = µ−n∅,∅Y
pn−1−i ( p 0

0 1

)n
v∅ (4.123)

for any n ≥ 0 such that pn − 1 − i ≥ 0. Indeed, by Proposition 4.5.4 with J = ∅, we have

Y p−1
(
p 0
0 1

)
v∅ = µ∅,∅v∅, hence using Lemma 4.3.1(i) the RHS of (4.123) does not depend on

n. By (4.58) and (4.66) with J = ∅, we deduce that (4.123) is true for i = f . Moreover,
using Lemma 4.3.1(i) one easily checks that the RHS of (4.123) satisfies Theorem 4.6.4(ii),(iii)
for J = ∅. Hence by the uniqueness of x∅,i (see Theorem 4.6.4 and its proof) we deduce that
(4.123) is true for all i ∈ Zf .

In particular, x∅,i has the same expression as in the semisimple case, see [BHH+c, (103)].
Then we conclude by the explicit computation for the semisimple case, see [BHH+c, Prop. 3.8.3].

Remark 4.10.6. If Jρ = J , then similar to the proof of Corollary 4.10.5 and using the ex-
plicit computation in [BHH+c, Prop. 3.8.3] for all J , one can show that the O×

K-action on
HomA(DA(π), A)(1) is the unique one in Proposition 4.10.4(iv) which satisfies Mat(a)′J,J ∈
1 + F1−pA for all a ∈ O×

K and J ⊆ J .

4.11 On the subrepresentations of π

In this section, we finish the proof of Theorem 4.1.2, see Theorem 4.11.2. This theorem is
crucially needed to prove that π is of finite length in the non-semisimple case in [BHH+a]. As
a corollary, we prove that π is generated by D0(ρ) under the assumption that π∨ is essentially
self-dual of grade 2f in the sense of [BHH+b, (176)], see Corollary 4.11.3, which gives another
proof of [HW22, Thm. 1.6] (but under a stronger genericity condition).

Lemma 4.11.1. Let π1 be a subrepresentation of π. Then there exists a set S of subsets of J
which is stable under J 7→ J − 1, and is moreover stable under taking subsets if Jρ ̸= J , such
that

JH(πK1
1 ) ∩W (ρss) =

{
σeJ : J ∈ S

}
;

JH(πK1
1 ) =

{
σb ∈ JH

(
D0(ρ)

)
: {j : bj ≥ 1} ∈ S

}
,

(4.124)

where ρss is the semisimplification of ρ, σb and e
J are defined in §4.2, and see Lemma 4.4.1(i)

for JH
(
D0(ρ)

)
.

Proof. We recall from Corollary 4.5.3 that for each J ⊆ J we have εJ ∈ {±1}f with εJj =

(−1)δj /∈J . We also recall from (4.6) that σJ = σeJ for J ⊆ Jρ.

Claim 1. If σeJ ∈ JH(πK1
1 ) for some J ⊆ J , then πK1

1 contains I
(
σe(J−1)ss , σe(J−1)ss+εJ−1

)
and

I
(
σeJss , σeJss+εJ

)
(see Lemma 4.5.1(iii) for the notation).

Proof. We prove the claim by increasing induction on |J |. Fix J ⊆ J and assume that σeJ ∈
JH(πK1

1 ). Since πK1
1 is a GL2(OK)-subrepresentation of πK1 = D0(ρ) and σeJ ∈ JH

(
D0,σJss (ρ)

)
by Lemma 4.4.1(i), we deduce from Corollary 4.5.3 that πK1

1 contains I
(
σeJss , σeJ

)
, which is
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a subrepresentation of I
(
σeJss , σeJss+εJ

)
by Lemma 4.5.1(iii). In particular, for each J ′ ⊆ J

such that J ss ⊆ J ′ ⫋ J , we have σeJ′ ∈ JH(πK1
1 ). Then by the induction hypothesis and using

(J ′)ss = J ss, we deduce that πK1
1 contains I

(
σeJss , σeJss+εJ′

)
. In particular, by Lemma 4.5.1(iii),

JH(πK1
1 ) contains all σb with 

bj = δj∈Jss if j /∈ Jnss

bj ∈ {0,−1} if j ∈ Jnss, j /∈ J ′

bj ∈ {0, 1} if j ∈ Jnss, j ∈ J ′.

By varying J ′ such that J ss ⊆ J ′ ⫋ J and using σeJ ∈ JH(πK1
1 ), we deduce that JH(πK1

1 )
contains σb with {

bj = δj∈Jss if j /∈ Jnss

bj ∈ {−1, 0, 1} if j ∈ Jnss.

Hence we have Y −1vJ ∈ πK1
1 by Proposition 4.4.2.

By Lemma 4.5.1(i),(iii), we have〈
GL2(OK)

(
p 0
0 1

)
Y −1vJ

〉
= I
(
σe(J−1)ss , σe(J−1)ss+c

)
⊆ π1 (4.125)

with cj = (−1)δj+1/∈J
(
3 − δj∈J∆(J−1)ss

)
. Since εJ−1

j = (−1)δj+1/∈J and 3 − δj∈J∆(J−1)ss ≥ 1, we
deduce from (4.125) and Corollary 4.5.3 that

I
(
σe(J−1)ss , σe(J−1)ss+εJ−1

)
⊆ π1 ∩ πK1 = πK1

1 , (4.126)

which proves the first part of the claim.
By Lemma 4.5.1(iii) and (4.126), we have σeJ−1 ∈ JH(πK1

1 ). Continuing the above process

with J replaced with J − 1 and so on, we deduce that πK1
1 contains I

(
σe(J−i)ss , σe(J−i)ss+εJ−i

)
for all i ≥ 0. In particular, taking i = f , the second part of the claim follows from the fact that
J − f = J .

Claim 2. Suppose that Jρ ̸= J . If σeJ ∈ JH(πK1
1 ) for some J ⊆ J , then σeJ′ ∈ JH(πK1

1 ) for

all J ′ ⊆ J .

Proof. Without loss of generality, we may assume that |J \ J ′| = 1 and write J \ J ′ = {j0}
for some j0 ∈ J . Since Jρ ̸= J , by replacing (J, J ′, j0) with (J + i, J ′ + i, j0 + i) for some
0 ≤ i ≤ f − 1 using Claim 1, we may assume that j0 /∈ Jρ, which implies J ss ⊆ J ′ ⫋ J . Then
we have σeJ′ ∈ JH(πK1

1 ) by the first paragraph of the proof of Claim 1.

We let S
def
=
{
J ⊆ J : σeJ ∈ JH(πK1

1 )
}
. Then by Claim 1 and Claim 2, S is stable

under J 7→ J − 1, and is moreover stable under taking subsets if Jρ ̸= J . By (4.5), we have
W (ρss) =

{
σeJ : J ⊆ J

}
, hence the first formula of (4.124) follows from the definition of S.

Then by Claim 1, we have

π′
def
=
∑
J∈S

I
(
σeJss , σeJss+εJ

)
⊆ πK1

1 ⊆ πK1 = D0(ρ). (4.127)

Since JH(π′) =
{
σb ∈ JH

(
D0(ρ)

)
: {j : bj ≥ 1} ∈ S

}
by Lemma 4.5.1(iii), to prove the second

formula of (4.124), it suffices to show that the first inclusion in (4.127) is an equality.
Suppose on the contrary that the first inclusion in (4.127) is strict, then there exists σb ∈

πK1
1 ⊆ D0(ρ) such that J0

def
= {j : bj ≥ 1} /∈ S. By Corollary 4.5.3, πK1

1 must contain
I
(
σ
eJ

ss
0
, σb
)
, which contains σeJ0 as a constituent by Lemma 4.5.1(iii). This contradicts the

definition of S.
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Theorem 4.11.2. Let π1 be a subrepresentation of π. Then we have

rankADA(π1) =
∣∣∣JH(πK1

1 ) ∩W (ρss)
∣∣∣ .

Proof. Recall from Theorem 4.9.5 that HomA(DA(π), A) has rank 2f with A-basis {xJ : J ⊆ J},
where xJ is defined before Theorem 4.9.5. Let S be the set of subsets of J in Lemma 4.11.1. It
suffices to show that {xJ : J ∈ S} form an A-basis of HomA(DA(π1), A) ↪→ HomA(DA(π), A).

First we prove that xJ is an element of HomA(DA(π1), A) for all J ∈ S. By Proposition

4.4.2, for all J ∈ S and 0 ≤ i ≤ f−eJsh
, the element Y −ivJ ∈ D0(ρ) lies in the subrepresentation

of D0(ρ) with constituents σb for b as in (4.13). Hence we have Y −ivJ ∈ πK1
1 for all J ∈ S

and 0 ≤ i ≤ f − eJ
sh

by the second equality in (4.124), which implies that xJ,i ∈ π1 for all
J ∈ S and i ≤ f by (4.58). Since S is stable under J 7→ J − 1, and is moreover stable under
taking subsets if Jρ ̸= J , using (4.60), an increasing induction on |J | and on maxj ij shows that
xJ,i ∈ π1 for all J ∈ S and i ∈ Zf (if Jρ = J then we have J ss = J for all J ⊆ J and we only
use increasing induction on maxj ij). By the definition of xJ and Proposition 4.9.4, we have
xJ ∈ Homcont

F (DA(π1),F) for all J ∈ S. Then as in the proof of 4.9.5, we deduce from Theorem
4.8.5 that xJ ∈ HomA(DA(π1), A) for all J ∈ S.

Next we prove that any element of HomA(DA(π1), A) is an A-linear combination of xJ for
J ∈ S. Suppose on the contrary that

∑m
i=1 aJixJi ∈ HomA(DA(π1), A) for Ji /∈ S distinct and

aJi ∈ A \ {0}. We let J0 be a maximal (under inclusion) element among those Ji such that
deg(aJi)−|∂Ji| is minimal for 1 ≤ i ≤ m (see the proof of Lemma 4.10.3(iii) for the definition of
the degree and see Remark 4.5.12 for ∂Ji). Up to rescaling

∑m
i=1 aJixJi by a suitable λY s ∈ A×

with λ ∈ F× and s ∈ Zf , we may assume that

aJ0 = Y −eJ0\∂J0 +
(
terms of degree ≥ −|J0 \ ∂J0| and not in FY −eJ0\∂J0), (4.128)

which has degree −|J0 \ ∂J0|, hence we have deg(aJ0)− |∂J0| = −|J0|. Then by the assumption
on J0, we have{

deg(aJi) ≥ −|J0|+ |∂Ji|+ 1 = −
(
|Ji \ ∂Ji| − |Ji \ J0| − 1

)
if Ji ⫌ J0

deg(aJi) ≥ −|J0|+ |∂Ji| ≥ −f if Ji ⊉ J0.
(4.129)

We define the following GL2(OK)-subrepresentation of D0(ρ) (see Corollary 4.5.3):

V
def
=


∑
J⊉J0

I
(
σeJss , σeJss+εJ

)
if Jρ ̸= J∑

J ̸=J0
I
(
σeJss , σeJss+εJ

)
=
⊕
J ̸=J0

D0,σJ (ρ) if Jρ = J ,

By Lemma 4.5.1(iii), V has constituents σb with {j : bj ≥ 1} ⊉ J0 if Jρ ̸= J , and {j : bj ≥ 1} ≠
J0 if Jρ = J . In particular, since J0 /∈ S and S is stable under taking subsets if Jρ ̸= J , we
deduce from the second equality in (4.124) that πK1

1 ⊆ V .

Claim. We have the following properties:

(i) If J ⊉ J0 and ∥i∥ ≤ f , then xJ,i ∈ V .
(ii) If J ⫌ J0 and ∥i∥ ≤ |J \ ∂J | − |J \ J0| − 1, then xJ,i ∈ V .
(iii) If J = J0 and ∥i∥ ≤ |J0 \ ∂J0|, then we have xJ,i ∈ V if i ̸= eJ0\∂J0 , and xJ,eJ0\∂J0 ∈

D0(ρ) \ V .
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Proof. (i). By (4.58), we may assume that i ≥ eJ
sh
, in which case we have xJ,i = Y −i′vJ ∈

D0(ρ) with i′
def
= i − eJ

sh
, which is defined in Proposition 4.4.2 since 0 ≤ i′ ≤ f − eJ

sh
. We

let σb ∈ JH
(
D0(ρ)

)
be an arbitrary constituent of the GL2(OK)-subrepresentation of D0(ρ)

generated by xJ,i. Then by (4.13) we have

{j : bj ≥ 1} ⊆ J ss ⊔
{
j ∈ Jnss : i′j > 0

}
⊔
{
j : j ∈ (∂J)nss : i′j = 0

}
= J \

{
j ∈ (J \ ∂J)nss : i′j = 0

}
⊆ J.

(4.130)

In particular, if J ⊉ J0, then we deduce from (4.130) that {j : bj ≥ 1} ⊉ J0, hence σb is a
constituent of V , which proves that xJ,i ∈ V .

(ii). By (4.130), we also have∣∣{j : bj ≥ 1}
∣∣ ≤ |J | −

∣∣{j ∈ (J \ ∂J)nss : i′j = 0
}∣∣ ≤ |J | −

(
|(J \ ∂J)nss| − ∥i′∥

)
, (4.131)

where the second inequality becomes an equality if and only if i′ = eJ1 for some J1 ⊆ (J \∂J)nss,
which is equivalent to i = eJ2 for some J sh ⊆ J2 ⊆ J \ ∂J . If ∥i∥ ≤ |J \ ∂J | − |J \ J0| − 1, which
implies ∥i′∥ ≤

∣∣(J\∂J)nss∣∣−|J\J0|−1, then we deduce from (4.131) that
∣∣{j : bj ≥ 1}

∣∣ ≤ |J0|−1,
which implies {j : bj ≥ 1} ⊉ J0, hence σb is a constituent of V , which proves that xJ,i ∈ V .

(iii). Suppose that J = J0 and ∥i∥ ≤ |J0 \ ∂J0|. Then by (4.131) we have∣∣{j : bj ≥ 1}
∣∣ ≤ |J0| −

(
|(J0 \ ∂J0)nss| − ∥i′∥

)
= |J0| −

(
|J0 \ ∂J0| − ∥i∥

)
≤ |J0|,

and at least one inequality is strict if i ̸= eJ0\∂J0 , in which case we have {j : bj ≥ 1} ⊉ J0,
hence σb is a constituent of V . This proves xJ0,i ∈ V if ∥i∥ ≤ |J0 \ ∂J0| and i ̸= eJ0\∂J0 .

Finally, the GL2(OK)-subrepresentation of D0(ρ) generated by Y −e(J0\∂J0)nssvJ0 has σeJ0 as a
constituent by (4.13), hence it follows from (4.58) and the description of the constituents of V

that xJ0,eJ0\∂J0 = Y −e(J0\∂J0)nssvJ0 ∈ D0(ρ) \ V .

Using (4.107), we identify
∑m

i=1 aJixJi ∈ HomA(DA(π1), A) as (zk)k≥0 ∈ Homcont
F (DA(π1),F),

which is a sequence of elements of π1. By writing each aJi ∈ A as an infinite sum of monomials
in Y together with (4.128) and (4.129), we deduce from (4.108), [BHH+c, Remark 3.8.2] and
the definition of xJi that the zeroth term z0 of the sequence

∑m
i=1 aJixJi is a linear combination

of xJ,i satisfying the assumptions of (i),(ii),(iii) of the claim above and with exactly one of the
terms equals xJ0,eJ0\∂J0 , hence is an element of D0(ρ) \ V . By definition, we also have z0 ∈ π1,

hence z0 ∈ π1 ∩D0(ρ) = πK1
1 ⊆ V , which is a contradiction.

Corollary 4.11.3. Assume moreover that π∨ is essentially self-dual of grade 2f in the sense
of [BHH+b, (176)]. Then as a GL2(K)-representation, π is generated by D0(ρ).

Proof. We use the notation of [BHH+b, Prop. 3.3.5.3]. By Theorem 4.1.1 and the proof of
[BHH+b, Prop. 3.3.5.3(i)], we deduce that dimF((X))D

∨
ξ (π

′) = mp0(π
′∨) for any subquotient π′

of π. By Theorem 4.11.2 and [BHH+b, Remark 3.3.5.4(ii)], we deduce that D∨
ξ (π

′) ̸= 0 for π′

a subrepresentation of π. Then the proof of [BHH+b, Prop. 3.3.5.3(iii)] shows that D∨
ξ (π

′) ̸= 0

for π′ a quotient of π, see [BHH+b, Remark 3.3.5.4(i)]. Then we can conclude as in the proof
of [BHH+b, Thm. 3.3.5.5].

4.12 Some pictures for f=2

We give some pictures of the representations ⟨GL2(OK)
(
p 0
0 1

)
Y −ivJ⟩ ∼= Q(χsJ , χ

s
Jα

i, J −
1) (see §4.5 for the notation) when f = 2, Jρ = ∅, p = 17, r0 = 6, r1 = 9 and i = 1.
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Let J be ∅,{0},{1},{0, 1} in figures 4.1,4.2,4.3,4.4 respectively. In each picture, the whole
representation is Q(χsJ , χ

s
Jα

i, ∅), the shadow part is the kernel of the surjection Q(χsJ , χ
s
Jα

i, ∅) ↠
⟨GL2(OK)

(
p 0
0 1

)
Y −ivJ⟩ and the remaining part is the representation ⟨GL2(OK)

(
p 0
0 1

)
Y −ivJ⟩ ⊆

π. Each square is a principal series Ind
GL2(OK)
I (χsJα

i′) for some 0 ≤ i′ ≤ 1. Each rectangle is a
Serre weight which is a constituent of the corresponding principal series, and the rectangle on
the right bottom is the socle. We list all the Serre weights in D0(ρ). Each lattice point is an
H-eigencharacter, except that at each intersection point of two rectangles, it is a double point,
each belongs to one of the rectangles. See Lemma 4.3.2(ii),(iii) for a justification of the picture.
The upper left corner of each square is the element

(
p 0
0 1

)
Y −i′vJ for some 0 ≤ i′ ≤ 1. The

operator Y0 acts as going one step to the right, and the operator Y1 acts as going one step to
the bottom. Hence, each lattice point is of the form Y k

(
p 0
0 1

)
Y −i′vJ for some 0 ≤ k ≤ p−1 and

0 ≤ i′ ≤ 1, except at the double point, where one needs to make a modification, see 4.3.2(iii)(a).
By Proposition 4.5.5, each lattice point in the shadow equals zero (a priori, it is only zero in the
subquotient of ⟨GL2(OK)

(
p 0
0 1

)
Y −ivJ⟩ which is the principal series containing it quotiented by

the shadow part). Moreover, the overlaps of different representations ⟨GL2(OK)
(
p 0
0 1

)
Y −ivJ⟩

are studied in Proposition 4.5.9.
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Figure 4.1: ⟨GL2(OK)
(
p 0
0 1

)
Y −1v∅⟩
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Figure 4.2: ⟨GL2(OK)
(
p 0
0 1

)
Y −1v{0}⟩
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Figure 4.3: ⟨GL2(OK)
(
p 0
0 1

)
Y −1v{1}⟩
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Figure 4.4: ⟨GL2(OK)
(
p 0
0 1

)
Y −1v{0,1}⟩
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Chapter 5

Lubin–Tate and multivariable
(φ,O×

K)-modules in dimension 2

5.1 Introduction

Let p be a prime number. The mod p Langlands correspondence for GL2(Qp) is completely
known by the work of Breuil, Colmez, Emerton, etc. In particular, Colmez ([Col10]) constructed
a functor from the category of admissible finite length mod p representations of GL2(Qp) to the
category of finite-dimensional continuous mod p representations of Gal(Qp/Qp), using Fontaine’s
category of (φ,Γ)-modules ([Fon90]) as an intermediate step. This gives a functorial way to
realize the mod p Langlands correspondence for GL2(Qp).

However, the situation becomes much more complicated when we consider GL2(K) for K a
nontrivial finite extension of Qp. For example, there are many more supersingular representa-
tions of GL2(K) ([BP12]) and we don’t have a classification of these representations. Motivated
by the local-global compatibility result of Emerton ([Eme11]) for GL2(Qp), we are particularly
interested in the mod p representations π of GL2(K) coming from the cohomology of towers of
Shimura curves.

We introduce the global setup following [BHH+c]. Let F be a totally real number field
that is unramified at places above p. Let D be a quaternion algebra with center F which is
split at places above p and at exactly one infinite place. For each compact open subgroup
U ⊆ (D ⊗F A∞

F ) where A∞
F is the set of finite adèles of F , we denote by XU the associated

smooth projective algebraic Shimura curve over F .
Let F be a sufficiently large finite extension of Fp. We fix an absolutely irreducible continuous

representation r : Gal(F/F ) → GL2(F). For w a finite place of F , we write rw
def
= r|Gal(Fw/Fw).

We let SD be the set of finite places where D ramifies, Sr be the set of finite places where r

ramifies, and Sp the set of places above p. We fix a place v ∈ Sp and write K
def
= Fv. We assume

that

(i) p ≥ 5, r|Gal(F/F ( p√1)) is absolutely irreducible and the image of r
(
Gal(F/F ( 5

√
1))
)
in

PGL2(F) is not isomorphic to A5;
(ii) rw is generic in the sense of [BP12, Def. 11.7] for w ∈ Sp;
(iii) rw is non-scalar for w ∈ SD.

Then there is a so-called “local factor” defined in [BD14, §3.3] and [EGS15, §6.5] as follows:

π
def
= HomUv

(
M

v
,HomGal(F/F )

(
r, lim−→

V

H1
ét(XV ×F F ,F)

))
[m′], (5.1)
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where the inductive limit runs over the compact open subgroups V ⊆ (D ⊗F A∞
F )×, and we

refer to [BD14, §3.3] and [EGS15, §6.5] for the definitions of the compact open subgroup Uv ⊆
(D⊗F A∞,v

F )×, the (finite-dimensional) irreducible smooth representationM
v
of Uv over F, and

the maximal ideal m′ in a certain Hecke algebra.

In [BHH+b], Breuil-Herzig-Hu-Morra-Schraen attached to π an étale (φ,O×
K)-module DA(π)

over A, which we briefly recall as follows. We write f
def
= [Fv : Qp]. We let Fq be the residue field

of Fv (hence q = pf ) and fix an embedding σ0 : Fq ↪→ F. Then we have F[[OK ]] = F[[Y0, . . . , Yf−1]]

with Yj
def
=
∑

a∈F×
q
σ0(a)

−pjδ[a] ∈ F[[OK ]] for 0 ≤ j ≤ f − 1, where [a] ∈ O×
K is the Techmüller

lift of a ∈ F×
q and δ[a] is the corresponding element in F[[OK ]]. We let A be the completion of

F[[OK ]][1/(Y0 · · ·Yf−1)] with respect to the (Y0, . . . , Yf−1)-adic topology. There is an F-linear
action of O×

K on F[[OK ]] given by multiplication on OK , and an F-linear Frobenius φ on F[[OK ]]
given by multiplication by p on OK . They extend canonically by continuity to commuting
continuous F-linear actions of φ and O×

K on A. Then an étale (φ,O×
K)-module over A is by

definition a finite free A-module endowed with a semi-linear Frobenius φ and a commuting
continuous semi-linear action of O×

K such that the image of φ generates everything.
For π as in (5.1), we let π∨ be its F-linear dual, which is a finitely generated F[[I1]]-module and

is endowed with the mI1-adic topology, where I1
def
=
(

1+pOK OK
pOK 1+pOK

)
⊆ GL2(OK) and mI1 is the

maximal ideal of F[[I1]]. We define DA(π) to be the completion of F[[OK ]][1/(Y0 · · ·Yf−1)]⊗F[[OK ]]

π∨ with respect to the tensor product topology, where we view π∨ as an F[[OK ]]-module via
F[[OK ]] ∼= F[[

(
1 OK
0 1

)
]] ⊆ F[[I1]]. The O×

K-action on π∨ given by f 7→ f ◦ ( a 0
0 1 ) (for a ∈ O×

K)
extends by continuity to DA(π), and the ψ-action on π∨ given by f 7→ f ◦

(
p 0
0 1

)
induces a

continuous A-linear isomorphism β : DA(π)
∼→ A ⊗φ,A DA(π) (Theorem 4.1.1). In particular,

the inverse β−1 = id⊗φ makes DA(π) an étale (φ,O×
K)-module ([BHH+b, Cor. 3.1.2.9] and

[BHH+c, Remark. 2.6.2]).
In [BHH+c], Breuil-Herzig-Hu-Morra-Schraen also gave a conjectural description ofDA(π) in

terms of rv. They constructed a functor D⊗
A from the category of finite-dimensional continuous

representations of Gal(F v/Fv) over F to the category of étale (φ,O×
K)-modules over A, using

the category of Lubin–Tate (φ,O×
K)-modules as an intermediate step. We refer to §5.5 for

the precise definition. Then they conjectured that DA(π) is isomorphic to D⊗
A(rv(1)) as étale

(φ,O×
K)-modules over A, where rv(1) is the Tate twist of rv. We compute explicitly the structure

of the étale (φ,O×
K)-module D⊗

A(rv(1)) in Theorem 5.5.10, extending the results of [BHH+c]
where rv was assumed to be semisimple.

We assume moreover that

(iv) the framed deformation ring Rrw of rw over the Witt vectors W (F) is formally smooth
for w ∈ (SD ∪ Sr) \ Sp;

(v) rv is of the following form up to twist:

rv|IFv
∼=

(
ω
∑f−1

j=0 (rj+1)pj

f ∗
0 1

)
with max{12, 2f + 1} ≤ rj ≤ p−max{15, 2f + 3} ∀ j,

where IFv ⊆ Gal(F v/Fv) is the decomposition group.

Our main result is the following:

Theorem 5.1.1. Let π be as in (5.1) and keep all the assumptions on r. Assume moreover
that |W (rv)| = 1, where W (rv) is the set of Serre weights of rv defined in [BDJ10, §3]. Then
we have an isomorphism of étale (φ,O×

K)-modules

DA(π) ∼= D⊗
A(rv(1)).
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Theorem 5.1.1 is proved by [BHH+c, Thm. 3.1.3] when rv is semisimple. Using the explicit
computation of D⊗

A(rv(1)) in Theorem 5.5.10 and the results of §4 on DA(π), we are reduced
to the computation of some constants coming from the diagram (πI1 ↪→ πK1) in the sense of
[DL21]. When |W (rv)| = 1 (i.e. rv is maximally non-split), these constants are computed by
[BD14] in terms of the Fontaine–Laffaille module associated to rv ([FL82]). We remark that our
method should apply to arbitrary W (rv) once we compute the corresponding constants coming
from the diagram (πI1 ↪→ πK1) in general.

The proof of Theorem 5.1.1 is very computational. There may exist a more conceptual
proof one day, which will hopefully avoid the genericity assumptions on rv and the technical
computations, but such proof is not known so far.

Organization of the chapter

In §5.2 and §5.3, we give an explicit parametrization of the Lubin–Tate (φ,O×
K)-modules

and the cyclotomic (φ,Z×
p )-modules associated to reducible two-dimensional representations of

Gal(K/K). In §5.4, we construct explicitly some étale (φ,O×
K)-modules over A that will be

needed in §5.5, where we compute explicitly the associated étale (φ,O×
K)-module D⊗

A(ρ) for ρ
an arbitrary reducible two-dimensional representation of Gal(K/K) over F in Theorem 5.5.10.
Finally, in §5.6, we combine all the previous results and the results of §4 and [BD14] to finish
the proof of Theorem 5.1.1.

Notation

Let p be an odd prime. We fix an algebraic closure Qp of Qp. Let K ⊆ Qp be the unramified
extension of Qp of degree f ≥ 1 with ring of integers OK and residue field Fq (hence q = pf ).

We denote by GK
def
= Gal(Qp/K) the absolute Galois group of K and IK ⊆ GK the inertia

subgroup. Let F be a large enough finite extension of Fp. Fix an embedding σ0 : Fq ↪→ F and

let σj
def
= σ0 ◦ φj for j ∈ Z, where φ : x 7→ xp is the arithmetic Frobenius on Fq. We identify

J def
= Hom(Fq,F) with {0, 1, . . . , f − 1}, which is also identified with Z/fZ so that the addition

and subtraction in J are modulo f . For a ∈ OK , we denote by a ∈ Fq its reduction modulo p.
For a ∈ Fq, we also view it as an element of F via σ0.

For F a perfect ring of characteristic p, we denote by W (F ) the ring of Witt vectors of F .
For x ∈ F , we denote by [x] ∈W (F ) its Techmüller lift.

Let I
def
=

(
O×

K OK

pOK O×
K

)
⊆ GL2(OK) be the Iwahori subgroup, I1

def
=
(

1+pOK OK
pOK 1+pOK

)
⊆

GL2(OK) be the pro-p Iwahori subgroup, K1
def
= 1+ pM2(OK) ⊆ GL2(OK) be the first congru-

ence subgroup, N0
def
=
(
1 OK
0 1

)
and H

def
=
(

[F×
q ] 0

0 [F×
q ]

)
.

For P a statement, we let δP
def
= 1 if P is true and δP

def
= 0 otherwise.

Throughout this chapter, we let ρ : GK → GL2(F) be of the following form:

ρ ∼=
(
ωhf un(λ0) ∗

0 un(λ1)

)
, (5.2)

where 0 ≤ h ≤ q − 2, λ0, λ1 ∈ F×, for ξ ∈ F× we denote by un(ξ) : GK → F× the unramified
character sending geometric Frobenius elements to ξ, and ωf : GK → F is the extension to
GK of the fundamental character of level f (associate to σ0) such that ωf (g) is the reduction
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modulo p of g(pf )/pf ∈ µq−1(K
×
) for all g ∈ GK and for any choice of a (q − 1)-th root pf of

−p.
Then we can write h =

∑f−1
i=0 p

jhj with 0 ≤ hj ≤ p − 1 for 0 ≤ j ≤ f − 1 in a unique way.
We extend the definition of hj to all j ∈ Z by the relation hj+f = hj for all j ∈ Z. For j ≥ 0,
we set

[h]j
def
= h0 + ph1 + · · ·+ pjhj .

In particular, we have [h]f−1 = h. We also define [h]−1
def
= 0 and [h]−2

def
= −hf−1/p, hence

[h]j+f = h+ q[h]j for all j ≥ −2.

We define h′j
def
= hj+1 for j ∈ Z and h′

def
=
∑f−1

i=0 p
jh′j =

∑f−1
i=0 p

jhj+1. Then we define [h′]j
for j ≥ −2 in a similar way.

5.2 Lubin–Tate (φ,O×
K)-modules

In this section, we give an explicit parametrization of the Lubin–Tate (φ,O×
K)-modules

corresponding to ρ as in (5.2). The main result is Theorem 5.2.10.

Let GLT be the unique (up to isomorphism) Lubin–Tate formal OK-module over OK asso-
ciated to the uniformizer p. We choose the formal variable TK of GLT so that the logarithm
([Lan90, §8.6]) is given by the power series

∑∞
n=0 p

−nT q
n

K . For a ∈ OK we have power series
aLT(TK) ∈ aTK + T 2

KOK [[TK ]].

As in [BHH+c, §2.1], there is a continuous F-linear endomorphism φ of F⊗Fp Fq((TK)) which
is the p-th power map on Fq and satisfies φ(TK) = T pK , and a continuous F⊗Fp Fq-linear action
(commuting with φ) of O×

K on F⊗Fp Fq((TK)) satisfying a(TK) = aLT(TK) for a ∈ O×
K , where we

still denote by aLT(TK) ∈ Fq[[TK ]] the reduction modulo p of aLT(TK) ∈ OK [[TK ]]. Then there
is a covariant exact equivalence of categories compatible with tensor products between the
category of finite-dimensional continuous representations of Gal(K/K) over F and the category
of étale (φ,O×

K)-modules over F⊗Fp Fq((TK)).

For DK an étale φ-module over F⊗Fp Fq((TK)), the isomorphism

F⊗Fp Fq((TK))
∼→ F((TK,σ0))× F((TK,σ1))× · · · × F((TK,σf−1

))

λ⊗ (
∑
n≫−∞cnT

n
K) 7→

(
(
∑
n≫−∞λσ0(cn)T

n
K,σ0), . . . , (

∑
n≫−∞λσf−1(cn)T

n
K,σf−1

)
) (5.3)

induces a decomposition

DK
∼→ DK,σ0 × · · · ×DK,σf−1

.

For each 0 ≤ i ≤ f−1, the functorDK 7→ DK,σi induces an equivalence of categories between the
category of étale (φ,O×

K)-modules over F⊗FpFq((TK)) and the category of étale (φq,O×
K)-modules

over F((TK,σi)). Here φq
def
= φf , and F((TK,σi)) is endowed with an F-linear endomorphism φq

such that φq(TK,σi) = T qK,σi , and a continuous F-linear action (commuting with φq) of O×
K

such that a(TK,σi) = aLT(TK,σi) for a ∈ O×
K , where aLT(TK,σi) ∈ F[[TK,σi ]] is the image of

aLT(TK) ∈ Fq[[TK ]] in F[[TK,σi ]] via the embedding σi : Fq ↪→ F.
For ρ a finite-dimensional continuous representation of Gal(K/K) over F, we denote by

DK(ρ) the associated étale (φ,O×
K)-module over F⊗Fp Fq((TK)), and for each 0 ≤ i ≤ f − 1 we

denote by DK,σi(ρ) the associated étale (φq,O×
K)-module over F((TK,σi)).

For a ∈ O×
K , we set

fLTa
def
= aTK/a(TK) ∈ 1 + TKF[[TK ]].

We still denote by fLTa its image in F((TK,σ0)) via σ0 when there is no possible confusion.
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Any (continuous) character of GK over F is of the form ωhf un(λ) for 0 ≤ h ≤ q − 2 and

λ ∈ F×. By [BHH+c, Lemma 2.1.8], the corresponding étale (φq,O×
K)-module DK,σ0

(
ωhf un(λ)

)
can be described as follows (a ∈ O×

K):
DK,σ0

(
ωhf un(λ)

)
= F((TK,σ0))e

φq(e) = λT
−(q−1)h
K,σ0

e

a(e) =
(
fLTa

)h
e.

(5.4)

Lemma 5.2.1. We have fLTa = 1 for a ∈ [F×
q ]. More generally, we have for a ∈ O×

K(
fLTa

)−1 ∈ 1 + caT
q−1
K − cp

f−1

a T
(q−1)(pf−1+1)
K + T

(q−1)(2pf−1+1)
K Fq[[T q−1

K ]],

where ca ∈ Fq is the reduction modulo p of (1− aq−1)/p ∈ OK .

Proof. By [Lan90, Lemma 8.6.2] we have equality in OK [[TK ]]

∞∑
n=0

aLT(TK)q
n

pn
= a

∞∑
n=0

T q
n

K

pn
. (5.5)

In particular, for a ∈ [F×
q ] we have aLT(TK) = aTK , which implies fLTa = 1. Then the com-

mutativity of the actions of O×
K and [F×

q ] implies that aLT(TK) ∈ aTK
(
1 + T q−1

K OK [[T q−1
K ]]

)
for

a ∈ O×
K , and we write in OK [[T q−1

K ]]

aLT(TK) = aTK

(
1 +

∞∑
i=1

xa(i)T
(q−1)i
K

)
(5.6)

for xa(i) ∈ OK . Then by (5.5) we have

1 +

2pf−1∑
i=1

xa(i)T
(q−1)i
K +

aq−1T q−1
K

p

1 +

2pf−1∑
i=1

xa(i)T
(q−1)i
K

q

≡ 1 +
T q−1
K

p
modT

(q−1)(2pf−1+1)
K .

(5.7)
Comparing the coefficients of T q−1

K , we get xa(1) = (1 − aq−1)/p. Also, each term of the

expansion
(
1 +

∑2pf−1

i=1 xa(i)T
(q−1)i
K

)q
has the form

q!

n0! · · ·n2pf−1 !

2pf−1∏
i=1

xa(i)
niT

(q−1)
∑2pf−1

i=1 ini

K (5.8)

with 0 ≤ ni ≤ q and
∑2pf−1

i=0 ni = q.

Claim. For the terms in (5.8) such that
∑2pf−1

i=1 ini ≤ 2pf−1−1, we have vp
(
q!/(n0! · · ·n2pf−1 !)

)
≥

2 except in the following two cases:

(a) n0 = q and ni = 0 for i ̸= 0, in which case the term in (5.8) is 1;
(b) n0 = (p − 1)pf−1, n1 = pf−1 and ni = 0 for i > 1, in which case the term in (5.8) is

congruent to pxa(1)
pf−1

T
(q−1)pf−1

K modulo p2.
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Proof. Recall that vp(n!) = (n − Sp(n))/(p − 1), where Sp(n) is the sum of the digits in the
p-adic expansion of n. Hence we have

vp

(
q!

n0! · · ·n2pf−1 !

)
=

1

p− 1

2pf−1∑
i=0

Sp(ni)

− 1

 .
If vp

(
q!/(n0! · · ·n2pf−1 !)

)
≤ 1, then we have

∑2pf−1

i=0 Sp(ni) ≤ p, which implies that each ni must

be a multiple of pf−1, hence (a) and (b) are the only possibilities since
∑2pf−1

i=1 ini ≤ 2pf−1 − 1.
Moreover, we have by Lucas theorem

1

p
· q!

((p− 1)pf−1)! (pf−1)!
=

(
pf − 1

pf−1 − 1

)
≡ 1 mod p,

hence the term in (5.8) in case (b) is congruent to pxa(1)
pf−1

T
(q−1)pf−1

K modulo p2.

By the claim above and (5.7), for 1 ≤ i ≤ 2pf−1 we have xa(i) ∈ pOK except possibly in
the following two cases:

(i) xa(1) = (1− aq−1)/p;

(ii) xa(p
f−1 + 1) ≡ −aq−1xa(1)

pf−1 ≡ −xa(1)p
f−1

mod p.

Then by reducing (5.6) modulo p we have(
fLTa

)−1
= aLT(TK)/(aTK) ∈ 1 + caT

q−1
K − cp

f−1

a T
(q−1)(pf−1+1)
K + T

(q−1)(2pf−1+1)
K Fq[[T q−1

K ]],

which completes the proof.

Remark 5.2.2. The map O×
K → Fq, a 7→ ca is a group homomorphism and satisfies:

(i) If a ∈ [F×
q ], then ca = 0.

(ii) If a = 1 + pb for some b ∈ OK , then ca = b.

Since a(TK,σ0) = aTK,σ0 for a ∈ [F×
q ] by Lemma 5.2.1, we have F((TK,σ0))[F

×
q ] = F((T q−1

K,σ0
)).

Then for ρ as in (5.2), we have DK,σ0(ρ)
∼= F((TK,σ0))⊗F((T q−1

K,σ0
))
DK,σ0(ρ)

[F×
q ], where DK,σ0(ρ)

[F×
q ]

has the following form (using (5.4), and a ∈ O×
K): DK,σ0(ρ)

[F×
q ] = F((T q−1

K,σ0
))e0 ⊕ F((T q−1

K,σ0
))e1

φq(e0 e1) = (e0 e1)Mat(φq)
a(e0 e1) = (e0 e1)Mat(a)

with 
Mat(φq) =

(
λ0T

−(q−1)h
K,σ0

λ1D

0 λ1

)

Mat(a) =

((
fLTa

)h
Ea

0 1

)
for some D ∈ F((T q−1

K,σ0
)) and Ea ∈ F((T q−1

K,σ0
)).

Definition 5.2.3. Let 0 ≤ h ≤ q − 2 and λ0, λ1 ∈ F×. We define WLT to be the set of
equivalence classes of tuples [B] =

(
D, (Ea)a∈O×

K

)
such that
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(i) D ∈ F((T q−1
K,σ0

)), Ea ∈ F((T q−1
K,σ0

)) for all a ∈ O×
K , and the map O×

K → F((T q−1
K,σ0

)), a 7→ Ea is
continuous;

(ii) Eab = Ea +
(
fLTa

)h
a(Eb) for all a, b ∈ O×

K ;

(iii)
(
id−λ0λ−1

1 T
−(q−1)h
K,σ0

φq
)
(Ea) =

(
id−

(
fLTa

)h
a
)
(D) for all a ∈ O×

K ;

(iv) two tuples
(
D, (Ea)a∈O×

K

)
and

(
D′, (E′

a)a∈O×
K

)
are equivalent if and only if there exists

b ∈ F((T q−1
K,σ0

)) such thatD
′ = D +

(
id−λ0λ−1

1 T
−(q−1)h
K,σ0

φq

)
(b)

E′
a = Ea +

(
id−

(
fLTa

)h
a
)
(b) ∀ a ∈ O×

K .

It has a natural structure of an F-vector space.

By the definition of WLT and the equivalence of categories ρ 7→ DK,σ0(ρ), there is an
isomorphism of F-vector spaces

WLT ∼= Ext1
(
DK,σ0

(
un(λ1)

)
, DK,σ0

(
ωhf un(λ0)

)) ∼= H1
(
GK ,F

(
ωhf un(λ0λ

−1
1 )
))
, (5.9)

where Ext1 is defined in the category of étale (φq,O×
K)-modules over F((TK,σ0)). For each

[B] ∈ WLT, we denote by D([B]) the corresponding étale (φq,O×
K)-module over F((TK,σ0)).

Note that D([B]) ∼= D(λ[B]) as étale (φq,O×
K)-modules over F((TK,σ0)) for λ ∈ F×.

Lemma 5.2.4. Let 0 ≤ h ≤ q − 2.

(i) For i ≥ −1 and a ∈ O×
K , we have(
id−

(
fLTa

)h
a
)(
T
−(q−1)[h]i
K,σ0

)
∈ T q−1

K,σ0
F[[T q−1

K,σ0
]].

(ii) For i ≥ −1 and a ∈ O×
K , we have(

id−
(
fLTa

)h
a
)(
T
−(q−1)([h]i+p

i+1)
K,σ0

)
∈ (hi+1 − 1)cp

i+1

a T
−(q−1)[h]i
K,σ0

+ T q−1
K,σ0

F[[T q−1
K,σ0

]].

(iii) For i ≥ f − 1 such that hi = 1 and a ∈ O×
K , we have(

id−
(
fLTa

)h
a
)(
T
−(q−1)([h]i+p

i+1−f )
K,σ0

)
∈ −cpi+1

a T
−(q−1)[h]i
K,σ0

+cp
i

a T
−(q−1)[h]i−1

K,σ0
+T q−1

K,σ0
F[[T q−1

K,σ0
]].

Proof. For s ∈ Z and a ∈ O×
K , by definition we have(

id−
(
fLTa

)h
a
)(
T
−(q−1)s
K,σ0

)
= T

−(q−1)s
K,σ0

(
1−

(
fLTa

)h+(q−1)s
)
. (5.10)

(i). Take s = [h]i. Since h+(q−1)[h]i = [h]i+f− [h]i is a multiple of pi+1 and pi+1 ≥ [h]i+1,
we deduce from (5.10) and Lemma 5.2.1 that(

id−
(
fLTa

)h
a
)(
T
−(q−1)[h]i
K,σ0

)
∈ T

−(q−1)[h]i
K,σ0

(
T
(q−1)pi+1

K,σ0
F[[T q−1

K,σ0
]]
)
⊆ T q−1

K,σ0
F[[T q−1

K,σ0
]].

(ii). Take s = [h]i + pi+1. We have

h+ (q − 1)([h]i + pi+1) = [h]i+f − [h]i + qpi+1 − pi+1 ∈ (hi+1 − 1)pi+1 + pi+2Z.
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Then using pi+1 ≥ [h]i + 1, we deduce from (5.10) and Lemma 5.2.1 that(
id−

(
fLTa

)h
a
)(
T
−(q−1)([h]i+p

i+1)
K,σ0

)
∈ T

−(q−1)([h]i+p
i+1)

K,σ0

(
(hi+1 − 1)cp

i+1

a T
(q−1)pi+1

K,σ0
+ T

2(q−1)pi+1

K,σ0
F[[T q−1

K,σ0
]]
)

⊆ (hi+1 − 1)cp
i+1

a T
−(q−1)[h]i
K,σ0

+ T q−1
K,σ0

F[[T q−1
K,σ0

]].

(iii). Take s = [h]i + pi+1−f . We have

h+ (q − 1)([h]i + pi+1−f ) = [h]i+f − [h]i + pi+1 − pi+1−f ∈ −pi+1−f + pi+1Z.

Then we deduce from (5.10) and Lemma 5.2.1 that(
id−

(
fLTa

)h
a
)(
T
−(q−1)([h]i+p

i+1−f )
K,σ0

)
∈ T

−(q−1)([h]i+p
i+1−f )

K,σ0

(
− cp

i+1

a T
(q−1)pi+1−f

K,σ0
+ cp

i

a T
(q−1)(pf−1+1)pi+1−f

K,σ0

+ T
(q−1)(2pf−1+1)pi+1−f

K,σ0
F[[T q−1

K,σ0
]]
)

⊆ −cpi+1

a T
−(q−1)[h]i
K,σ0

+ cp
i

a T
−(q−1)[h]i−1

K,σ0
+ T q−1

K,σ0
F[[T q−1

K,σ0
]],

where the first inclusion uses p ≥ 3 (hence pf ≥ 2pf−1+1), and the second inclusion uses hi = 1
(hence [h]i = [h]i−1 + pi < 2pi).

Definition 5.2.5. Let 0 ≤ h ≤ q−2, λ0, λ1 ∈ F× and 0 ≤ j ≤ f−1. We define DLT
j , DLT

tr , D
LT
un ∈

F((T q−1
K,σ0

)) as follows:

(i) If hj ̸= 0, we define

DLT
j

def
= T

−(q−1)[h]j−1

K,σ0
.

If hj = 0, we let 0 ≤ r ≤ f − 1 such that hj+1 = · · · = hj+r = 1 and hj+r+1 ̸= 1, then we
define

DLT
j

def
= λ0λ

−1
1

[
T
−(q−1)([h]f+j+r+p

f+j+r+1)
K,σ0

+ (hj+r+1 − 1)

r∑
i=0

T
−(q−1)([h]f+j+i+p

j+i+1)
K,σ0

]

= λ0λ
−1
1

[
T
−(q−1)(h+q([h]j−1+p

j(p+p2+···+pr+1)))
K,σ0

+ (hj+r+1 − 1)

r∑
i=0

T
−(q−1)(h+q([h]j−1+p

j((p+p2+···+pi))+pj+i+1))
K,σ0

]
.

(ii) If h = 1 + p+ · · ·+ pf−1 and λ0λ
−1
1 = 1, we define

DLT
tr

def
=

f−1∑
i=0

T
−(q−1)([h]f+i−1+p

i)
K,σ0

=

f−1∑
i=0

T
−(q−1)(1+p+···+pi−1+2pi+pi+1+···+pf+i−1)
K,σ0

.

Otherwise (i.e. either h ̸= 1 + p+ · · ·+ pf−1 or λ0λ
−1
1 ̸= 1), we define DLT

tr
def
= 0.

(iii) If h = 0 and λ0λ
−1
1 = 1, we define DLT

un
def
= 1. Otherwise, we define DLT

un
def
= 0.

Corollary 5.2.6. Let 0 ≤ h ≤ q − 2 and λ0, λ1 ∈ F×.
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(i) For all 0 ≤ j ≤ f − 1 and a ∈ O×
K , we have(

id−
(
fLTa

)h
a
)(
DLT
j

)
∈ T q−1

K,σ0
F[[T q−1

K,σ0
]].

(ii) If h = 1 + p+ · · ·+ pf−1 and λ0λ
−1
1 = 1, then for all a ∈ O×

K , we have(
id−

(
fLTa

)h
a
)(
DLT

tr

)
∈
(
id−T−(q−1)h

K,σ0
φq

)(
cp

f−1

a T
−(q−1)(1+p+···+pf−2)
K,σ0

)
+ T q−1

K,σ0
F[[T q−1

K,σ0
]].

Proof. This follows from Lemma 5.2.4. Note that for i such that hi = 0 we have [h]i = [h]i−1.

Lemma 5.2.7. Let 0 ≤ h ≤ q − 2 and λ0, λ1 ∈ F×.

(i) For any y ∈ T q−1
K,σ0

F[[T q−1
K,σ0

]], the equation
(
id−λ0λ−1

1 T
−(q−1)h
K,σ0

φq
)
(x) = y has a unique so-

lution in T q−1
K,σ0

F[[T q−1
K,σ0

]], given by the convergent series x =
∑∞

n=0

(
λ0λ

−1
1 T

−(q−1)h
K,σ0

φq
)n
(y).

(ii) For any y ∈ F((T q−1
K,σ0

)), the equation
(
id−λ0λ−1

1 T
−(q−1)h
K,σ0

φq
)
(x) = y has at most one

solution in F((T q−1
K,σ0

)) unless h = 0 and λ0λ
−1
1 = 1.

(iii) We let

y =

m∑
i=0

aiT
−(q−1)(h+qh+q2i))
K,σ0

+

n∑
j=0

bjT
−(q−1)(h+qj)
K,σ0

+

t∑
k=0

ckT
−(q−1)k
K,σ0

(5.11)

with m,n ≥ −1, t ≥ 0, ai, bj , ck ∈ F, am ̸= 0, bn ̸= 0, ct ̸= 0 and t /∈ h+ qZ. If m,n < t,

then the equation
(
id−λ0λ−1

1 T
−(q−1)h
K,σ0

φq
)
(x) = y has no solution in F((T q−1

K,σ0
)).

Proof. (i). The proof is similar to that of Lemma 5.5.6 below using h < q − 1. We omit the
details.

(ii). It suffices to show that the equality

φq(x) = λ−1
0 λ1T

(q−1)h
K,σ0

x (5.12)

for x ∈ F((T q−1
K,σ0

)) implies x = 0 unless h = 0 and λ0λ
−1
1 = 1.

First we assume that h ̸= 0. If x ̸= 0, we assume that the lowest degree term of x has degree
(q−1)s for s ∈ Z, then the lowest degree on both sides of (5.12) are (q−1)qs and (q−1)(s+h),
which cannot be equal since 0 < h < q − 1. Hence we must have x = 0.

Next we assume that h = 0 and λ0λ
−1
1 ̸= 1. We let m ≥ 0 be large enough so that

(λ0λ
−1
1 )m = 1 and qm ≥ |F|, then φmq acts as x 7→ xq

m
on F((T q−1

K,σ0
)), and by (5.12) we have

xq
m
= φmq (x) = x, hence x ∈ F. Since λ0λ−1

1 ̸= 1, by (5.12) again we conclude that x = 0.

(iii). Suppose that
(
id−λ0λ−1

1 T
−(q−1)h
K,σ0

φq
)
(x) = y for x ∈ F((T q−1

K,σ0
)). Then we have

(
id−λ0λ−1

1 T
−(q−1)h
K,σ0

φq

)
(z) =

t∑
k=0

c′kT
−(q−1)k
K,σ0

, (5.13)

where

z
def
= x+

(
λ−1
0 λ1

)2 m∑
i=0

aiT
−(q−1)i
K,σ0

+ λ−1
0 λ1

m∑
i=0

aiT
−(q−1)(h+qi)
K,σ0

+ λ−1
0 λ1

n∑
j=0

bjT
−(q−1)j
K,σ0

and c′k ∈ F, and we have c′t = ct ̸= 0 since m,n < t.

141



We write z = csT
−(q−1)s
K,σ0

+ (terms with degree > −(q − 1)s). Since the RHS of (5.13) does

not lie in T q−1
K,σ0

F[[T q−1
K,σ0

]], we must have s ≥ 0 (since h < q− 1), hence the lowest degree term of
the LHS of (5.13) has degree −(q − 1)(h+ qs). However, the lowest degree term of the RHS of
(5.13) has degree −(q − 1)t, which does not lie in −(q − 1)(h + qZ) by assumption. This is a
contradiction.

Proposition 5.2.8. Let 0 ≤ h ≤ q − 2 and λ0, λ1 ∈ F×.

(i) For all 0 ≤ j ≤ f − 1, the tuple
(
D, (Ea)a∈O×

K

)
with


D = DLT

j

Ea = ELT
j,a

def
=
(
id−λ0λ−1

1 T
−(q−1)h
K,σ0

φq

)−1 [(
id−

(
fLTa

)h
a
)(
DLT
j

)]
=

∞∑
n=0

(
λ0λ

−1
1 T

−(q−1)h
K,σ0

φq

)n [(
id−

(
fLTa

)h
a
)(
DLT
j

)]
defines an element of WLT. We denote it by [BLT

j ].

(ii) If h = 1 + p+ · · ·+ pf−1 and λ0λ
−1
1 = 1, then the tuple

(
D, (Ea)a∈O×

K

)
with



D = DLT
tr

Ea = ELT
tr,a

def
=
(
id−T−(q−1)(1+p+···+pf−1)

K,σ0
φq

)−1 [(
id−

(
fLTa

)
a
)(
DLT

tr

)]
= cp

f−1

a T
−(q−1)(1+p+···+pf−2)
K,σ0

+
∞∑
n=0

(
T
−(q−1)(1+p+···+pf−1)
K,σ0

φq

)n [ (
id−

(
fLTa

)
a
)(
DLT

tr

)
−
(
id−T−(q−1)(1+p+···+pf−1)

K,σ0
φq

)(
cp

f−1

a T
−(q−1)(1+p+···+pf−2)
K,σ0

) ]
defines an element of WLT. We denote it by [BLT

tr ]. Otherwise, we define ELT
tr,a

def
= 0 for

all a ∈ O×
K and [BLT

tr ]
def
= [0] in WLT.

(iii) If h = 0 and λ0λ
−1
1 = 1, then the tuple

(
D, (Ea)a∈O×

K

)
with{

D = DLT
un = 1

Ea = ELT
un,a

def
= 0

defines an element of WLT. We denote it by [BLT
un ]. Otherwise, we define ELT

un,a
def
= 0 for

all a ∈ O×
K and [BLT

un ]
def
= [0] in WLT.

Proof. (iii) is direct. For (i) and (ii), each Ea is well-defined by Corollary 5.2.6 and Lemma
5.2.7(i), and condition (ii) in Definition 5.2.3 is guaranteed by the uniqueness of solution in
Lemma 5.2.7(i),(ii).

Remark 5.2.9. Suppose that h = 0 and λ0λ
−1
1 = 1. For 0 ≤ j ≤ f − 1, we let [Bj ] be the

element of WLT defined by the tuple
(
D, (Ea)a∈O×

K

)
with D = 0 and Ea = cp

j

a . Then we have

[Bj ] = −[BLT
j+1] for 0 ≤ j ≤ f − 2 and [Bf−1] = −[BLT

0 ] in WLT.

Theorem 5.2.10. Let 0 ≤ h ≤ q − 2 and λ0, λ1 ∈ F×.

(i) If h = 0 and λ0λ
−1
1 = 1, then

{
[BLT

0 ], . . . , [BLT
f−1], [B

LT
un ]
}
form a basis of WLT.

(ii) If h = 1 + p+ · · ·+ pf−1 and λ0λ
−1
1 = 1, then

{
[BLT

0 ], . . . , [BLT
f−1], [B

LT
tr ]
}
form a basis of

WLT.
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(iii) In the remaining cases,
{
[BLT

0 ], . . . , [BLT
f−1]

}
form a basis of WLT.

Remark 5.2.11. If h = 1 + p + · · · + pf−1 and λ0λ
−1
1 = 1, then

{
[BLT

0 ], . . . , [BLT
f−1]

}
form a

basis of the subspace of WLT which corresponds to peu ramifiées representations under (5.9).

Proof of Theorem 5.2.10. By (5.9), we have dimFW
LT = dimFH

1
(
GK ,F

(
ωhf un(λ0λ

−1
1 )
))

= f

except the cases (h = 0, λ0λ
−1
1 = 1) and (h = 1+ p+ · · ·+ pf−1, λ0λ

−1
1 = 1), in which case the

dimension is f + 1. So it is enough to show that the elements of WLT as in the statements are
F-linearly independent (using Definition 5.2.3(iv)).

(iii). Suppose that
∑f−1

j=0 cj [B
LT
j ] = [0] in WLT. By definition, there exists b ∈ F((T q−1

K,σ0
))

such that (
id−λ0λ−1

1 T
−(q−1)h
K,σ0

φq

)
(b) =

f−1∑
j=0

cjD
LT
j . (5.14)

Step 1. Assuming h ̸= 0, we prove that cj = 0 for all j such that hj = 0.

By symmetry (since one can replace DK,σ0 with DK,σi if necessary, see the proof of Corollary
5.5.12 below), it is enough to prove that cf−2 = 0 assuming hf−2 = 0 (which implies f ≥ 2
since h ̸= 0). Suppose on the contrary that cf−2 ̸= 0.

For each 0 ≤ j ≤ f − 1 such that hj = 0, we let 0 ≤ r ≤ f − 1 be the corresponding integer
in Definition 5.2.5(i). Since hf−2 = 0, we have r ≤ f − 2 if j = f − 1 and r + j ≤ f − 3 if
0 ≤ j ≤ f − 3.

• If j + r ≥ f − 1, then we have

[h]f+j+r + pf+j+r+1 = h+ qh+ q2
(
[h]j+r−f + pj+r+1−f) ≤ h+ qh+ q2

(
[h]f−2 + pf−1

)
.

• If j + r ≤ f − 2, then we have

[h]f+j+r + pf+j+r+1 = h+ q
(
[h]j+r + pj+r+1

)
≤ h+ q

(
[h]f−2 + pf−1

)
.

• If 0 ≤ i ≤ r such that j + i ≥ f − 1, then we have (since r ̸= f − 1 if j = f − 1)

[h]f+j+i + pj+i+1 = h+ q
(
[h]j+i + pj+i+1−f) < h+ q

(
[h]2f−2 + pf−1

)
.

• If 0 ≤ i ≤ r such that j + i ≤ f − 2, then we have [h]f+j+i + pj+i+1 ≤ [h]2f−2 + pf−1,
with equality holds if and only if j + i = f − 2, which implies j = f − 2 and i = 0 since
r + j ≤ f − 3 if 0 ≤ j ≤ f − 3.

In particular, by the definition of DLT
j together with cf−2 ̸= 0 and [h]f−2 < [h]2f−2 (since

h ̸= 0), the RHS of (5.14) has the form (5.11) with t = [h]2f−2 + pf−1 and m,n < t. Then we
deduce a contradiction by Lemma 5.2.7(iii).

Step 2. Assuming h ̸= 0, we prove that cj = 0 for all j.

By Step 1, we already know that cj = 0 for all 0 ≤ j ≤ f − 1 such that hj = 0. Suppose on
the contrary that cj ̸= 0 for some j. We let j0 be the largest integer in {0, 1, . . . , f − 1} such
that hj0 ̸= 0. Then we have [h]j0−1 /∈ h + qZ. By the definition of DLT

j (in the case hj ̸= 0)
the RHS of (5.14) has the form (5.11) with m = n = −1 and t = [h]j0−1. Then we deduce a
contradiction by Lemma 5.2.7(iii).

Step 3. Assuming h = 0 (hence λ0λ
−1
1 ̸= 1 by assumption), we prove that cj = 0 for all j.
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By definition we have DLT
j = λ0λ

−1
1 T

−(q−1)pf+j+1

K,σ0
− λ0λ

−1
1 T

−(q−1)pj+1

K,σ0
for all 0 ≤ j ≤ f − 1.

Then by replacing b with b +
(
λ−1
0 λ1 − 1

)
cf−1 +

∑f−1
j=0 cjT

−(q−1)pj+1

K,σ0
in (5.14), the RHS of

(5.14) becomes
∑f−1

j=0 c
′
jT

−(q−1)pj

K,σ0
with c′0 =

(
λ−1
0 λ1 − 1

)
cf−1 and c′j =

(
1 − λ0λ

−1
1

)
cj−1 for

1 ≤ j ≤ f − 1. Suppose on the contrary that cj ̸= 0 for some j. We let j0 be the largest
integer in {0, 1, . . . , f − 1} such that c′j0 ̸= 0 (which exists since λ0λ

−1
1 ̸= 1). Then we deduce a

contradiction by Lemma 5.2.7(iii) with m = n = −1 and t = pj0 .

(i). Let h = 0 and λ0λ
−1
1 = 1. Suppose that cun[B

LT
un ] +

∑f−1
j=0 cj [B

LT
j ] = [0] in WLT.

By Proposition 5.2.8(iii) and Remark 5.2.9, the element cun[B
LT
un ] +

∑f−1
j=0 cj [B

LT
j ] ∈ WLT is

represented by the tuple
(
D, (Ea)a∈O×

K

)
with

{
D = cun

Ea = −c0cp
f−1

a −
∑f−1

j=1 cjc
pj−1

a .

Since Im(id−φq) ∩ F = {0}, we deduce from Definition 5.2.3(iv) that cun = 0. Since the

characters ca, c
p
a, . . . , c

pf−1

a are linearly independent (using for example Remark 5.2.2(ii)) and
since Ker(id−φq) = F, we deduce from Definition 5.2.3(iv) that cj = 0 for all j.

(ii). Let h = 1+ p+ · · ·+ pf−1 and λ0λ
−1
1 = 1. Suppose that ctr[B

LT
tr ] +

∑f−1
j=0 cj [B

LT
j ] = [0]

inWLT. If ctr = 0, then the proof of (iii) shows that cj = 0 for all j, which proves (ii). If ctr ̸= 0,
then by the definition of DLT

tr and DLT
j (in the case hj ̸= 0), and since [h]f+i−1 + pi /∈ h + qZ

for all 0 ≤ i ≤ f − 1, the sum ctrD
LT
tr +

∑f−1
j=0 cjD

LT
j has the form (5.11) with m = n = −1 and

t = [h]2f−2 + pf−1. Then we deduce a contradiction by Lemma 5.2.7(iii).

5.3 Cyclotomic (φ,Z×
p )-modules

In this section, we give an explicit parametrization of the cyclotomic (φ,Z×
p )-modules corre-

sponding to ρ as in (5.2) (compare with the parametrization of [CD11] where we use a different
variable). The main result is Theorem 5.3.9.

We choose the formal variable T of the formal group Gm so that the logarithm [Lan90,
§8.6] is given by the power series

∑∞
n=0 p

−nT p
n
. For a ∈ Zp we have power series acyc(T ) ∈

aT + T 2Zp[[T ]].
As in §5.2, there is a continuous F-linear endomorphism φ of F⊗Fp Fq((T )) which is the p-th

power map on Fq and satisfies φ(T ) = T p, and a continuous F⊗Fp Fq-linear action (commuting
with φ) of Z×

p on F ⊗Fp Fq((T )) satisfying a(T ) = acyc(T ) for a ∈ Z×
p , where we still denote

by acyc(T ) ∈ Fq[[T ]] the reduction modulo p of acyc(T ) ∈ Zp[[T ]]. Then there is a covariant
exact equivalence of categories compatible with tensor products between the category of finite-
dimensional continuous representations of Gal(K/K) over F and the category of étale (φ,Z×

p )-
modules over F⊗Fp Fq((T )).

Using a decomposition analogous to (5.3), for each 0 ≤ i ≤ f − 1 there is an equivalence
D 7→ Dσi between the category of étale (φ,Z×

p )-modules over F ⊗Fp Fq((T )) and the category

of étale (φq,Z×
p )-modules over F((Tσi)). Here φq

def
= φf , and F((Tσi)) is endowed with an F-

linear endomorphism φq such that φq(Tσi) = T qσi , and a continuous F-linear action commuting
with φq such that a(Tσi) = acyc(Tσi) for a ∈ Z×

p , where acyc(Tσi) ∈ F[[Tσi ]] is the image of
acyc(T ) ∈ Fq[[T ]] in F[[Tσi ]] via the embedding σi : Fq ↪→ F.
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For ρ a finite-dimensional continuous representation of Gal(K/K) over F, we denote by
D(ρ) the associated étale (φ,Z×

p )-modules over F ⊗Fp Fq((T )), and for each 0 ≤ i ≤ f − 1 we
denote by Dσi(ρ) the associated étale (φq,Z×

p )-modules over F((Tσi)).
For a ∈ Z×

p , we set

f cyca
def
= aT/a(T ) ∈ 1 + TF[[T ]].

We still denote by f cyca its image in F((Tσ0)) via σ0 when there is no possible confusion. Then
for 0 ≤ h ≤ q − 2 and λ ∈ F×, the étale (φq,Z×

p )-module Dσ0

(
ωhf un(λ)

)
can be described as

follows (see for example [Bre11, Prop. 3.5] where we use a different variable, a ∈ Z×
p and see

below (5.2) for h′): 
Dσ0(ω

h
f un(λ)) = F((Tσ0))e

φq(e) = λT
−(p−1)h′
σ0 e

a(e) = (f cyca )
p−1
q−1

h′
e,

(5.15)

where (f cyca )
p−1
q−1

h′
is well-defined since f cyca ∈ 1 + TF[[T ]] and p−1

q−1h
′ ∈ Zp.

Lemma 5.3.1. We have f cyca = 1 for all a ∈ [F×
p ]. More generally, we have for a ∈ Z×

p

(f cyca )−1 ∈ 1 + ccyca T p−1 − ccyca T 2(p−1) + T 3(p−1)F[[T p−1]],

where ccyca ∈ Fp is the reduction modulo p of (1− ap−1)/p ∈ Zp.

Proof. This is a special case of Lemma 5.2.1 by taking f = 1.

Since a(Tσ0) = aTσ0 for a ∈ [F×
p ] by Lemma 5.3.1, we have F((Tσ0))[F

×
p ] = F((T p−1

σ0 )). Then for

ρ as in (5.2), we have Dσ0(ρ)
∼= F((Tσ0))⊗F((T p−1

σ0
))
Dσ0(ρ)

[F×
p ], where Dσ0(ρ)

[F×
p ] has the following

form (using (5.15), and a ∈ Z×
p ): Dσ0(ρ)

[F×
p ] = F((T p−1

σ0 ))e0 ⊕ F((T p−1
σ0 ))e1

φq(e0 e1) = (e0 e1)Mat(φq)
a(e0 e1) = (e0 e1)Mat(a)

with 
Mat(φq) =

(
λ0T

−(p−1)h′
σ0 λ1D
0 λ1

)

Mat(a) =

(
(f cyca )

p−1
q−1

h′
Ea

0 1

)

for some D ∈ F((T p−1
σ0 )) and Ea ∈ F((T p−1

σ0 )).

Definition 5.3.2. Let 0 ≤ h ≤ q − 2, λ0, λ1 ∈ F× and see below (5.2) for h′. We define W cyc

to be the set of equivalence classes of tuples [B] =
(
D, (Ea)a∈Z×

p

)
such that

(i) D ∈ F((T p−1
σ0 )), Ea ∈ F((T p−1

σ0 )) for all a ∈ Z×
p , and the map Z×

p → F((T p−1
σ0 )), a 7→ Ea is

continuous;

(ii) Eab = Ea + (f cyca )
p−1
q−1

h′
a(Eb) for all a, b ∈ Z×

p ;

(iii)
(
id−λ0λ−1

1 T
−(p−1)h′
σ0 φq

)
(Ea) =

(
id− (f cyca )

p−1
q−1

h′
a
)
(D) for all a ∈ Z×

p ;
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(iv) two tuples
(
D, (Ea)a∈Z×

p

)
and

(
D′, (E′

a)a∈Z×
p

)
are equivalent if and only if there exists

b ∈ F((T p−1
σ0 )) such that

D′ = D +
(
id−λ0λ−1

1 T−(p−1)h′
σ0 φq

)
(b)

E′
a = Ea +

(
id− (f cyca )

p−1
q−1

h′
a
)
(b) ∀ a ∈ Z×

p .

It has a natural structure of an F-vector space.

As in §5.2, there is an isomorphism of F-vector spaces

W cyc ∼= Ext1
(
Dσ0

(
un(λ1)

)
, Dσ0

(
ωhf un(λ0)

)) ∼= H1
(
GK ,F

(
ωhf un(λ0λ

−1
1 )
))
, (5.16)

where Ext1 is defined in the category of étale (φq,Z×
p )-modules over F((Tσ0)). For each [B] ∈

W cyc, we denote by D([B]) the corresponding étale (φq,Z×
p )-module over F((Tσ0)). Note that

D([B]) ∼= D(λ[B]) as étale (φq,Z×
p )-modules over F((Tσ0)) for λ ∈ F×.

Lemma 5.3.3. Let 0 ≤ h ≤ q − 2 and see below (5.2) for h′.

(i) For i ≥ −1 and a ∈ Z×
p , we have(
id− (f cyca )

p−1
q−1

h′
a
)(
T−(p−1)[h′]i
σ0

)
∈ T p−1

σ0 F[[T p−1
σ0 ]].

(ii) For i ≥ −1 and a ∈ Z×
p , we have(

id− (f cyca )
p−1
q−1

h′
a
)(
T−(p−1)([h′]i+pi+1)
σ0

)
∈ (h′i+1 − 1)ccyca T−(p−1)[h′]i

σ0 + T p−1
σ0 F[[T p−1

σ0 ]].

(iii) For i ≥ 0 such that h′i = 1 and a ∈ Z×
p , we have(

id− (f cyca )
p−1
q−1

h′
a
)(
T−(p−1)([h′]i+pi)
σ0

)
∈ −ccyca T−(p−1)[h′]i

σ0 +ccyca T
−(p−1)[h′]i−1
σ0 +T p−1

σ0 F[[T p−1
σ0 ]].

Proof. For s ∈ Z and a ∈ Z×
p , by definition we have(

id− (f cyca )
p−1
q−1

h′
a
)(
T−(p−1)s
σ0

)
= T−(p−1)s

σ0

(
1− (f cyca )

p−1
q−1

(h′+(q−1)s)
)
. (5.17)

(i). Take s = [h′]i. Since p−1
q−1 (h

′ + (q − 1)[h′]i) =
p−1
q−1 ([h

′]i+f − [h′]i) ∈ pi+1Zp and pi+1 ≥
[h′]i + 1, we deduce from (5.17) and Lemma 5.3.1 that(

id− (f cyca )
p−1
q−1

h′
a
)(
T−(p−1)[h′]i
σ0

)
∈ T−(p−1)[h′]i

σ0

(
T (p−1)pi+1

σ0 F[[T p−1
σ0 ]]

)
⊆ T p−1

σ0 F[[T p−1
σ0 ]].

(ii). Take s = [h′]i + pi+1. We have

p−1
q−1

(
h′+(q − 1)([h′]i + pi+1)

)
= p−1

q−1

(
[h′]i+f−[h′]i+qp

i+1−pi+1
)
∈ (h′i+1−1)pi+1+pi+2Zp.

Using pi+1 ≥ [h′]i + 1, we deduce from (5.17) and Lemma 5.3.1 that(
id− (f cyca )

p−1
q−1

h′
a
)(
T−(p−1)([h′]i+pi+1)
σ0

)
∈ T−(p−1)([h′]i+pi+1)

σ0

(
(h′i+1 − 1)ccyca T (p−1)pi+1

σ0 + T 2(p−1)pi+1

σ0 F[[T p−1
σ0 ]]

)
⊆ (h′i+1 − 1)ccyca T−(p−1)[h′]i

σ0 + T p−1
σ0 F[[T p−1

σ0 ]].
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(iii). Take s = [h′]i + pi. We have

p−1
q−1

(
h′ + (q − 1)([h′]i + pi)

)
= p−1

q−1

(
[h′]i+f − [h′]i + qpi − pi

)
∈ −pi + pi+1Zp.

Then we deduce from (5.17) and Lemma 5.3.1 that(
id− (f cyca )

p−1
q−1

h′
a
)(
T−(p−1)([h′]i+pi)
σ0

)
∈ T−(p−1)([h′]i+pi)

σ0

(
−ccyca T (p−1)pi

σ0 + ccyca T 2(p−1)pi

σ0 + T 3(p−1)pi

σ0 F[[T p−1
σ0 ]]

)
⊆ −ccyca T−(p−1)[h′]i

σ0 + ccyca T
−(p−1)[h′]i−1
σ0 + T p−1

σ0 F[[T p−1
σ0 ]],

where the first inclusion use p ≥ 3, and the second inclusion uses h′i = 1.

Definition 5.3.4. Let 0 ≤ h ≤ q − 2, λ0, λ1 ∈ F×, 0 ≤ j ≤ f − 1 and see below (5.2) for h′.
We define Dcyc

j , Dcyc
tr , D

cyc
un ∈ F((T p−1

σ0 )) as follows:

(i) If h′j ̸= 0, we define

Dcyc
j

def
= T

−(p−1)[h′]j−1
σ0 .

If h′j = 0, we let 0 ≤ r ≤ f − 1 such that h′j+1 = · · · = h′j+r = 1 and h′j+r+1 ̸= 1, then we
define

Dcyc
j

def
= T

−(p−1)([h′]j+r+p
j+r+1)

σ0 +(h′j+r+1−1)
r∑
i=0

T
−(p−1)([h′]j+i+p

j+i)
σ0

= T
−(p−1)([h′]j−1+p

j(p+p2+···+pr+1))
σ0 +(h′j+r+1−1)

r∑
i=0

T
−(p−1)([h′]j−1+p

j((p+p2+···+pi)+pi))
σ0 .

(ii) If h = 1 + p+ · · ·+ pf−1 and λ0λ
−1
1 = 1, we define

Dcyc
tr

def
=

f−1∑
i=0

T−(p−1)([h′]i+pi)
σ0 =

f−1∑
i=0

T−(p−1)(1+p+···+pi−1+2pi)
σ0 .

Otherwise (i.e. either h ̸= 1 + p+ · · ·+ pf−1 or λ0λ
−1
1 ̸= 1), we define Dcyc

tr
def
= 0.

(iii) If h = 0 and λ0λ
−1
1 = 1, we define Dcyc

un
def
= 1. Otherwise, we define Dcyc

un
def
= 0.

Corollary 5.3.5. Let 0 ≤ h ≤ q − 2, λ0, λ1 ∈ F× and see below (5.2) for h′.

(i) For all 0 ≤ j ≤ f − 1 and a ∈ Z×
p , we have(

id− (f cyca )
p−1
q−1

h′
a
)(
Dcyc
j

)
∈ T p−1

σ0 F[[T p−1
σ0 ]].

(ii) If h = 1 + p+ · · ·+ pf−1 and λ0λ
−1
1 = 1, then for all a ∈ Z×

p , we have(
id− (f cyca ) a

)(
Dcyc

tr

)
∈ ccyca

(
1− T−(q−1)

σ0

)
+ T p−1

σ0 F[[T p−1
σ0 ]].

Proof. This follows from Lemma 5.3.3. Note that for i such that h′i = 0 we have [h]i = [h]i−1,
and in (ii) we have p−1

q−1h
′ = 1.

Lemma 5.3.6. Let 0 ≤ h ≤ q − 2, λ0, λ1 ∈ F× and see below (5.2) for h′.

147



(i) For any y ∈ T p−1
σ0 F[[T p−1

σ0 ]], the equation
(
id−λ0λ−1

1 T
−(p−1)h′
σ0 φq

)
(x) = y has a unique so-

lution in T p−1
σ0 F[[T p−1

σ0 ]], given by the convergent series x =
∑∞

n=0

(
λ0λ

−1
1 T

−(p−1)h′
σ0 φq

)n
(y).

(ii) For any y ∈ F((T p−1
σ0 )), the equation

(
id−λ0λ−1

1 T
−(p−1)h′
σ0 φq

)
(x) = y has at most one

solution in F((T p−1
σ0 )) unless h = 0 and λ0λ

−1
1 = 1.

Proof. The proof is similar to that of Lemma 5.2.7. We omit the details.

Proposition 5.3.7. Let 0 ≤ h ≤ q − 2, λ0, λ1 ∈ F× and see below (5.2) for h′.

(i) For all 0 ≤ j ≤ f − 1, the tuple
(
D, (Ea)a∈Z×

p

)
with


D = Dcyc

j

Ea = Ecyc
j,a

def
=
(
id−λ0λ−1

1 T
−(p−1)h′
σ0 φq

)−1 [(
id− (f cyca )

p−1
q−1

h′
a
)(
Dcyc
j

)]
=

∞∑
n=0

(
λ0λ

−1
1 T

−(p−1)h′
σ0 φq

)n [(
id− (f cyca )

p−1
q−1

h′
a
)(
Dcyc
j

)]
defines an element of W cyc. We denote it by [Bcyc

j ].

(ii) If h = 1 + p+ · · ·+ pf−1 and λ0λ
−1
1 = 1, then the tuple

(
D, (Ea)a∈Z×

p

)
with


D = Dcyc

tr

Ea = Ecyc
tr,a

def
=
(
id−T−(q−1)

σ0 φq

)−1 [(
id−(f cyca )a

)(
Dcyc

tr

)]
= ccyca +

∞∑
n=0

(
T
−(q−1)
σ0 φq

)n [(
id−(f cyca )a

)(
Dcyc

tr

)
− ccyca

(
1− T

−(q−1)
σ0

)]
defines an element of W cyc. We denote it by [Bcyc

tr ]. Otherwise, we define Ecyc
tr,a

def
= 0 for

all a ∈ Z×
p and [Bcyc

tr ]
def
= [0] in W cyc.

(iii) If h = 0 and λ0λ
−1
1 = 1, then the tuple

(
D, (Ea)a∈Z×

p

)
with{

D = Dcyc
un = 1

Ea = Ecyc
un,a

def
= 0 ∀ a ∈ Z×

p

defines an element of W cyc. We denote it by [Bcyc
un ]. Otherwise, we define Ecyc

un,a
def
= 0 for

all a ∈ Z×
p and [Bcyc

un ]
def
= [0] in W cyc.

Proof. (iii) is direct. For (i) and (ii), each Ea is well-defined by Corollary 5.3.5 and Lemma
5.3.6(i), and condition (ii) of Definition 5.3.2 is guaranteed by the uniqueness of solution in
Lemma 5.3.6(i),(ii).

Remark 5.3.8. Suppose that h = 0 and λ0λ
−1
1 = 1. We let [B] be the element ofW cyc defined by

the tuple
(
D, (Ea)a∈Z×

p

)
with D = 0 and Ea = ccyca . Then we have [B] = −

(
[Bcyc

0 ]+ · · ·+[Bcyc
f−1]

)
in W cyc.

Theorem 5.3.9. Let 0 ≤ h ≤ q − 2 and λ0, λ1 ∈ F×.

(i) If h = 0 and λ0λ
−1
1 = 1, then

{
[Bcyc

0 ], . . . , [Bcyc
f−1], [B

cyc
un ]
}
form a basis of W cyc.

(ii) If h = 1+ p+ · · ·+ pf−1 and λ0λ
−1
1 = 1, then

{
[Bcyc

0 ], . . . , [Bcyc
f−1], [B

cyc
tr ]
}
form a basis of

W cyc.
(iii) In the remaining cases,

{
[Bcyc

0 ], . . . , [Bcyc
f−1]

}
form a basis of W cyc.
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Proof. The proof is similar to that of Theorem 5.2.10. We omit the details. If p ≥ 5, one can
also conclude from Theorem 5.2.10 using Corollary 5.5.12 below.

Remark 5.3.10. If h = 1 + p + · · · + pf−1 and λ0λ
−1
1 = 1, then

{
[Bcyc

0 ], . . . , [Bcyc
f−1]

}
form a

basis of the subspace of W cyc which corresponds to peu ramifiées representations under (5.16).

5.4 Étale (φ,O×
K)-modules over A

In this section, we give an explicit construction of some étale (φ,O×
K)-modules over A of

rank 2 that will be needed in §5.5. The main construction is Proposition 5.4.7. We also give a
comparison between some of these étale (φ,O×

K)-modules that are constructed using different
systems of variables, see Proposition 5.4.8.

First we recall the definition of the ring A. Let mOK
be the maximal ideal of the Iwasawa

algebra F[[OK ]]. For j ∈ J , we define

Yj
def
=
∑
a∈F×

q

a−p
j
δ[a] ∈ mOK

\m2
OK

,

where δ[a] ∈ F[[OK ]] corresponds to [a] ∈ OK . Then we have F[[OK ]] = F[[Y0, . . . , Yf−1]] and

mOK
= (Y0, . . . , Yf−1). Consider the multiplicative subset S

def
= {(Y0 · · ·Yf−1)

n : n ≥ 0} of

F[[OK ]]. Then A
def
= ̂F[[OK ]]S is the completion of the localization F[[OK ]]S with respect to the

mOK
-adic filtration

Fn (F[[OK ]]S) =
⋃
k≥0

1

(Y0 · · ·Yf−1)k
mkf−n

OK
,

where mm
OK

def
= F[[OK ]] if m ≤ 0. We denote by FnA (n ∈ Z) the induced filtration on A and

endow A with the associated topology ([LvO96, §1.3]). There is an F-linear action of O×
K on

F[[OK ]] given by multiplication, and an F-linear Frobenius φ on F[[OK ]] given by multiplication
by p. They extend canonically by continuity to commuting continuous F-linear actions of φ and
O×
K on A which satisfies (for each j ∈ J )

φ(Yj) = Y p
j−1;

[a](Yj) = ap
j
Yj ∀ a ∈ F×

q .
(5.18)

Then we introduce another system of variables for F[[OK ]] following [BHH+c]. For R a
perfectoid F-algebra, we denote by R◦ the subring of power-bounded elements in R and by
R◦◦ ⊆ R◦ the subset of topologically nilpotent elements. We let B+(R) be the Fréchet K-
algebra defined as the completion of W (R◦)[1/p] for the family of norms | · |ρ for 0 ≤ ρ ≤ 1

given by
∣∣∑

n≫−∞[xn]p
n
∣∣
ρ

def
= supn∈Z{|xn|ρn}. Then as in [BHH+c, p.27], there exist elements

X0, . . . , Xf−1 ∈ F[[OK ]] satisfying F[[OK ]] = F[[X0, . . . , Xf−1]] and such that for any perfectoid
F-algebra R we have an isomorphism of K-vector spaces

Homcont
F- alg

(
F[[K]], R

)
= Homcont

F- alg
(
F[[OK ]], R

) ∼= B+(R)φq=pf

(
Xi 7→ xi ∈ R◦◦)

0≤i≤f−1
7→

f−1∑
i=0

∑
n∈Z

[xp
−i−nf

i ]pi+nf ,
(5.19)
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where F[[K]] is the mOK
-adic completion of F[K]⊗F[OK ] F[[OK ]] and K acts on F[[K]] by multi-

plication. By [BHH+c, (41)] we have (for 0 ≤ i ≤ f − 1)

φ(Xi) = Xp
i−1;

[a](Xi) = ap
i
Xi ∀ a ∈ F×

q ,
(5.20)

where we extend the definition of Xi to all i ∈ Z by the relation Xi+f = Xi.
By considering the [F×

q ]-action in (5.18) and (5.20) (see [BHH+c, (55)]), for each 0 ≤ i ≤ f−1
there exists µi ∈ F× such that

Yi = µiXi + (degree ≥ 2 in the variables Xi) and Yi ∈ µiXi(1 + F1−pA). (5.21)

In particular, for each i we have Y 1−φ
i /X1−φ

i ∈ 1+F1−pA. Here, for a ∈ A× and k =
∑m

i=0 kiφ
i ∈

Z[φ] with m ∈ Z≥0 and ki ∈ Z for all 0 ≤ i ≤ m, we write ak
def
=
∏m
i=0 φ

i(aki) ∈ A×. This makes
A× a Z[φ]-module. Moreover, 1 + F−1A is a Zp[φ]-module by completeness.

For a ∈ O×
K and 0 ≤ j ≤ f − 1, we set:

fa,j
def
= ap

j
Xj/a(Xj) ∈ 1 + F1−pA;

fa,σj
def
= ap

j
Yj/a(Yj) ∈ 1 + F1−pA.

As in [BHH+c, (25)], for 0 ≤ h ≤ q − 2 and λ ∈ F× we define the étale (φq,O×
K)-module

DA,σ0

(
ωhf un(λ)

)
over A as follows (a ∈ O×

K):
DA,σ0(ω

h
f un(λ)) = Ae

φq(e) = λX
h(1−φ)
0 e

a(e) = f
h(1−φ)/(1−q)
a,0 e.

(5.22)

Using (5.21), we get an isomorphic étale (φq,O×
K)-module over A if we replace X0 by Y0 (and

thus fa,0 by fa,σ0).

Definition 5.4.1. Let 0 ≤ h ≤ q−2 and λ0, λ1 ∈ F×. We defineWX to be the set of equivalence
classes of tuples [B] =

(
D, (Ea)a∈O×

K

)
such that

(i) D ∈ A, Ea ∈ A for all a ∈ O×
K , and the map O×

K → A, a 7→ Ea is continuous;

(ii) Eab = Ea + f
h(1−φ)/(1−q)
a,0 a(Eb) for all a, b ∈ O×

K ;

(iii)
(
id−λ0λ−1

1 X
h(1−φ)
0 φq

)
(Ea) =

(
id−fh(1−φ)/(1−q)a,0 a

)
(D) for all a ∈ O×

K ;

(iv) two tuples
(
D, (Ea)a∈O×

K

)
and

(
D′, (E′

a)a∈O×
K

)
are equivalent if and only if there exists

b ∈ A such that D
′ = D +

(
id−λ0λ−1

1 X
h(1−φ)
0 φq

)
(b)

E′
a = Ea +

(
id−fh(1−φ)/(1−q)a,0 a

)
(b) ∀ a ∈ O×

K .

It has a natural structure of an F-vector space.
We define W Y in a similar way replacing X0 by Y0.

By the definition of WX , there is an isomorphism of F-vector spaces

WX ∼= Ext1
(
DA,σ0

(
un(λ1)

)
, DA,σ0

(
ωhf un(λ0)

))
,
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where Ext1 is defined in the category of étale (φq,O×
K)-modules overA. For [B] =

(
D, (Ea)a∈O×

K

)
∈

WX , we denote by D([B]) the corresponding étale (φq,O×
K)-module over A. It has an A-basis

with respect to which the matrices of the actions of φq and O×
K have the form (using (5.22))

Mat(φq) =

(
λ0X

h(1−φ)
0 λ1D
0 λ1

)

Mat(a) =

(
f
h(1−φ)/(1−q)
a,0 Ea

0 1

)
∀ a ∈ O×

K .

Note that D([B]) ∼= D(λ[B]) as étale (φq,O×
K)-modules over A for λ ∈ F×.

We denote by A∞ the completed perfection of A (see [BHH+c, Lemma 2.4.2(i)]).

Lemma 5.4.2. Let 0 ≤ j ≤ f − 1. We have fa,j = fa,σj = 1 for all a ∈ [F×
q ]. More generally

we have for a ∈ O×
K

f−1
a,j ∈ 1 + cp

j

a X
φ−1
j − cp

j−1

a Xφ−1
j Xφ−1

j−1 + F3−3pA;

f−1
a,σj ∈ 1 + cp

j

a Y
φ−1
j − cp

j−1

a Y φ−1
j Y φ−1

j−1 + F3−3pA,
(5.23)

where ca is as in Lemma 5.2.1.

Proof. Recall that we have F[[OK ]] = F[[X0, . . . , Xf−1]] = F[[Y0, . . . , Yf−1]] with maximal ideal
mOK

= (X0, . . . , Xf−1) = (Y0, . . . , Yf−1).
If a ∈ [F×

q ], then we have fa,j = fa,σj = 1 for all 0 ≤ j ≤ f − 1 by (5.18) and (5.20).
If a = 1 + p2b for some b ∈ OK . Then for each x ∈ OK , we have (recall that δx ∈ F[[OK ]]

corresponds to x)

a(δx) = δ(1+p2b)x = δx + (δp2b − 1)δx = δx +
(
1 + (δb − 1)p

2)
δx ∈ δx +mp2

OK
.

From this we deduce that (for all 0 ≤ j ≤ f − 1)

a(Xj) ∈ Xj(1 + F1−p2A);

a(Yj) ∈ Yj(1 + F1−p2A).

Hence the lemma holds (since p2 − 1 ≥ 3p− 3 and ca = 0 for a = 1 + p2b).

It remains to prove the lemma for a = 1+ p[µ] with µ ∈ F×
q . We refer to [FF18, §1.10.2] for

the definition of the ring of Witt bi-vectors BW (A∞). Since the isomorphism (5.19) respects

the O×
K-actions, we have equality in B+(A∞)φq=pf (which equals BW (A∞)φq=pf by [FF18,

Prop. 4.2.1]):

f−1∑
i=0

∑
n∈Z

[a(Xi)
p−i−nf

]pi+nf = a

f−1∑
i=0

∑
n∈Z

[Xp−i−nf

i ]pi+nf

=

f−1∑
i=0

∑
n∈Z

[Xp−i−nf

i ]pi+nf +

f−1∑
i=0

∑
n∈Z

[µXp−i−nf

i ]pi+nf+1

=

f−1∑
i=0

∑
n∈Z

(
[Xp−i−nf

i ] + [(µp
i
Xp
i−1)

p−i−nf
]
)
pi+nf ,

(5.24)

where the last equality follows from a reindexation.
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For n ∈ Z≥0, we let Sn ∈ Z[a0, . . . , an, b0, . . . , bn] be the additional law of the Witt vectors,
given inductively by the equalities in Z[a0, . . . , an, b0, . . . , bn]

n∑
i=0

piap
n−i

i +
n∑
i=0

pibp
n−i

i =
n∑
i=0

piSp
n−i

i . (5.25)

By [FF18, §1.10.2], the additional law in the ring of Witt bi-vectors BW is given by∑
i∈Z

[ap
−i

i ]pi +
∑
i∈Z

[bp
−i

i ]pi =
∑
i∈Z

[cp
−i

i ]pi,

where ci
def
= limn→∞ ci,n ∈ Z[[ . . . , ai, . . . , bi]] with

ci,n
def
= Sn(ai−n, ai−n+1, . . . , ai, bi−n, bi−n+1, . . . , bi) ∈ Z[ai−n, . . . , ai, bi−n, . . . , bi].

In particular, for i ∈ Z we have

ci,0 = ai + bi ∈ Z[ai, bi];

ci,1 = ai + bi −
p−1∑
s=1

(
p
s

)
p
ap−si−1 b

s
i−1 ∈ Z[ai−1, ai, bi−1, bi].

(5.26)

Moreover, for i ∈ Z and n ≥ 0, we have in Z[ai−n−1, . . . , ai, bi−n−1, . . . , bi]

n∑
ℓ=0

pℓap
n−ℓ

i−n+ℓ +
n∑
ℓ=0

pℓbp
n−ℓ

i−n+ℓ =
n∑
ℓ=0

pℓcp
n−ℓ

i−n+ℓ,ℓ; (5.27)

n+1∑
ℓ=0

pℓap
n+1−ℓ

i−(n+1)+ℓ +

n+1∑
ℓ=0

pℓbp
n+1−ℓ

i−(n+1)+ℓ =

n+1∑
ℓ=0

pℓcp
n+1−ℓ

i−(n+1)+ℓ,ℓ. (5.28)

Considering (5.28)− p · (5.27) and using ci−(n+1) = ai−(n+1) + bi−(n+1), we get

ap
n+1

i−(n+1) + bp
n+1

i−(n+1) =
(
ai−(n+1) + bi−(n+1)

)pn+1

+

n+1∑
ℓ=1

pℓ
(
cp

n+1−ℓ

i−(n+1)+ℓ,ℓ − cp
n+1−ℓ

i−(n+1)+ℓ,ℓ−1

)
.

Hence we have

ci,n+1 − ci,n =
1

pn+1

[
ap

n+1

i−(n+1) + bp
n+1

i−(n+1) −
(
ai−(n+1) + bi−(n+1)

)pn+1

−
n∑
ℓ=1

pℓ
(
cp

n+1−ℓ

i−(n+1)+ℓ,ℓ − cp
n+1−ℓ

i−(n+1)+ℓ,ℓ−1

)]
.

(5.29)

From (5.29) and using induction on n, we deduce that for i ∈ Z and n ≥ 1,

• each term of ci,n+1 − ci,n involves both the variable ak for some k ≤ i and the variable bℓ
for some ℓ ≤ i;

• the minimal degree (in the variables ak, bk for k ≤ i) of each term of ci,n+1 − ci,n is at
least 2p− 1, and tends to infinity as n tends to ∞.
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In particular, using (5.26) we have

ci = ai + bi −
p−1∑
s=1

(
p
s

)
p
ap−si−1 b

s
i−1 + (deg ≥ 2p− 1) , (5.30)

where each term of (deg ≥ 2p− 1) involves both the variable ak for some k ≤ i and the variable
bℓ for some ℓ ≤ i, and has degree at least 2p− 1. Then combining (5.24), (5.25) and (5.30), we
conclude that (for a = 1 + p[µ] and 0 ≤ j ≤ f − 1)

a(Xj) ∈ Xj + µp
j
Xp
j−1 −

p−1∑
s=1

(
p
s

)
p
Xp−s
j−1

(
µp

j−1
Xp
j−2

)s
+ (deg ≥ 3p− 2)

= Xj + µp
j
Xp
j−1 − µp

j−1
Xp−1
j−1X

p
j−2 + (deg ≥ 3p− 2)

⊆ Xj

(
1 + µp

j
Xφ−1
j − µp

j−1
Xφ−1
j Xφ−1

j−1 + F3−3pA
)
,

which proves the first formula in (5.23).

Next we turn to the variables Yj , still with a = 1 + p[µ] for some µ ∈ [F×
q ].

Claim. We have δ1 ∈ 1− Y0 − · · · − Yf−1 +m2
OK

in F[[OK ]] = F[[Y0, . . . , Yf−1]].

Proof. Recall that Yj
def
=
∑

λ∈F×
q
λ−p

j
δ[λ] ∈ F[[OK ]] for 0 ≤ j ≤ f − 1. On one hand, we have

q−2∑
i=0

∑
λ∈Fq

λiδ[λ] =
∑
λ∈Fq

[
q−2∑
i=0

λi

]
δ[λ] = 1− δ1 ∈ mOK

, (5.31)

where we use the convention that 00
def
= 1. On the other hand, for each 0 ≤ i ≤ q − 2, if we

write i =
∑f−1

j=0 ijp
j with 0 ≤ ij ≤ p− 1, then by [BHH+b, Lemma 3.2.2.5(i)] we have in F[[OK ]]

∑
λ∈Fq

λiδ[λ] ≡ (−1)f−1

[
f−1∏
j=0

ij !

]
f−1∏
j=0

Y
p−1−ij
j modmp

OK
. (5.32)

Combining (5.31) and (5.32), we deduce that δ1 ∈ 1− a0Y0 − · · · − af−1Yf−1 +m2
OK

in F[[OK ]]

with aj = (−1)f−1(p− 2)! ((p− 1)!)f−1 = 1 in F for all 0 ≤ j ≤ f − 1.

For each 0 ≤ j ≤ f − 1, by the claim above we have (for a = 1 + p[µ])

a(Yj) =
∑
λ∈F×

q

λ−p
j
δ(1+p[µ])[λ] =

∑
λ∈F×

q

λ−p
j
δ[λ] · [µλ](δp)

∈
∑
λ∈F×

q

λ−p
j
δ[λ] · [µλ]

(
(1− Y0 − · · · − Yf−1 +m2

OK
)p
)

=
∑
λ∈F×

q

λ−p
j
δ[λ] · [µλ]

(
1− Y p

0 − · · · − Y p
f−1

)
+m2p

OK

=
∑
λ∈F×

q

λ−p
j
δ[λ] −

f−1∑
i=0

∑
λ∈F×

q

λ−p
j
δ[λ](µλ)

pi+1
Y p
i +m2p

OK
(by (5.18))
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= Yj −
f−1∑
i=0

µp
i+1

∑
λ∈F×

q

λp
i+1−pjδ[λ]

Y p
i +m2p

OK
.

If f = 1, then by (5.32) we have∑
λ∈F×

p

λp−1δ[λ] =
∑
λ∈F×

p

δ[λ] ≡ Y p−1
0 − 1 modmp

OK
.

If f > 1, then by (5.32), we deduce that

∑
λ∈F×

q

λp
i+1−pjδ[λ] ∈


−1 +mp

OK
if i ≡ j − 1 mod f

Y p−1
j−1 +mp

OK
if i ≡ j − 2 mod f

mp
OK

otherwise.

In both cases, we conclude that

a(Yj) ∈ Yj + µp
j
Y p
j−1 − µp

j−1
Y p−1
j−1 Y

p
j−2 +m2p

OK
. (5.33)

Using (5.18) and the commutativity of the actions of a and [F×
q ] on A, we deduce that each

term in m2p
OK

of (5.33) has degree congruent to 1 modulo p− 1, hence we have (for a = 1+ p[µ])

a(Yj) ∈ Yj

(
1 + µp

j
Y φ−1
j − µp

j−1
Y φ−1
j Y φ−1

j−1 + F3−3pA
)
,

which proves the second formula in (5.23).

Lemma 5.4.3. Let 0 ≤ h ≤ q − 2.

(i) For i ≥ −1 and a ∈ O×
K , we have(
id−fh(1−φ)/(1−q)a,0 a

)(
X

[h]i(1−φ)
0

)
∈ F1−pA.

(ii) For i ≥ −1 and a ∈ O×
K , we have(

id−fh(1−φ)/(1−q)a,0 a
)(
X

([h]i−pi+1)(1−φ)
0 X

pi+1(1−φ)
1

)
∈ F1−pA.

(iii) For i ≥ −1 and a ∈ O×
K , we have(

id−fh(1−φ)/(1−q)a,0 a
)(
X

([h]i+p
i+1)(1−φ)

0

)
∈ (hi+1 − 1)cp

i+1

a X
[h]i(1−φ)
0 + F1−pA.

(iv) For i ≥ 0 such that hi = 1 and a ∈ O×
K , we have(

id−fh(1−φ)/(1−q)a,0 a
)(
X

[h]i(1−φ)
0 X

pi(1−φ)
1

)
∈ −cpi+1

a X
[h]i(1−φ)
0 + cp

i

a X
[h]i−1(1−φ)
0 + F1−pA.

Proof. (i). By definition we have(
id−fh(1−φ)/(1−q)a,0 a

)(
X

[h]i(1−φ)
0

)
= X

[h]i(1−φ)
0

(
1− f

(h+(q−1)[h]i)(1−φ)/(1−q)
a,0

)
∈ X

[h]i(1−φ)
0

(
1− f

pi+1Zp(1−φ)
a,0

)
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⊆ X
[h]i(1−φ)
0 F(1−p)pi+1A ⊆ F1−pA,

where the second inclusion follows from Lemma 5.4.2.
(ii). By definition we have(

id−fh(1−φ)/(1−q)a,0 a
)(
X

([h]i−pi+1)(1−φ)
0 X

pi+1(1−φ)
1

)
= X

([h]i−pi+1)(1−φ)
0 X

pi+1(1−φ)
1

(
1− f

(h+(q−1)([h]i−pi+1))(1−φ)/(1−q)
a,0 f

−pi+1(1−φ)
a,1

)
∈ X

([h]i−pi+1)(1−φ)
0 X

pi+1(1−φ)
1

(
1− f

pi+1Zp(1−φ)
a,0 f

−pi+1(1−φ)
a,1

)
⊆ X

([h]i−pi+1)(1−φ)
0 X

pi+1(1−φ)
1 F(1−p)pi+1A ⊆ F1−pA,

where the second inclusion follows from Lemma 5.4.2.
(iii). By definition we have(

id−fh(1−φ)/(1−q)a,0 a
)(
X

([h]i+p
i+1)(1−φ)

0

)
= X

([h]i+p
i+1)(1−φ)

0

(
1− f

(h+(q−1)([h]i+p
i+1))(1−φ)/(1−q)

a,0

)
∈ X

([h]i+p
i+1)(1−φ)

0

(
1− f

(pi+1(hi+1−1)+pi+2Zp)(1−φ)
a,0

)
⊆ X

([h]i+p
i+1)(1−φ)

0

(
(hi+1 − 1)cp

i+1

a X
pi+1(φ−1)
0 + F2(1−p)pi+1A

)
⊆ (hi+1 − 1)cp

i+1

a X
[h]i(1−φ)
0 + F1−pA,

where the second inclusion follows from Lemma 5.4.2.
(iv). By definition we have(

id−fh(1−φ)/(1−q)a,0 a
)(
X

[h]i(1−φ)
0 X

pi(1−φ)
1

)
= X

[h]i(1−φ)
0 X

pi(1−φ)
1

(
1− f

(h+(q−1)[h]i)(1−φ)/(1−q)
a,0 f

−pi(1−φ)
a,1

)
∈ X

[h]i(1−φ)
0 X

pi(1−φ)
1

(
1− f

pi+1Zp(1−φ)
a,0 f

−pi(1−φ)
a,1

)
⊆ X

[h]i(1−φ)
0 X

pi(1−φ)
1

(
−cpi+1

a X
pi(φ−1)
1 + cp

i

a X
pi(φ−1)
1 X

pi(φ−1)
0 + F3(1−p)piA

)
⊆ −cpi+1

a X
[h]i(1−φ)
0 + cp

i

a X
[h]i−1(1−φ)
0 + F1−pA,

where the second inclusion follows from Lemma 5.4.2 and uses p ≥ 3 (hence pi+1(p − 1) ≥
3pi(p− 1)), and the last inclusion uses hi = 1.

Definition 5.4.4. Let 0 ≤ h ≤ q−2, λ0, λ1 ∈ F× and 0 ≤ j ≤ f−1. We define DX
j , D

′X
j , DX

tr , D
X
un ∈

A as follows:

(i) If hj ̸= 0, we define

DX
j

def
= X

[h]j−1(1−φ)
0 ;

If hj = 0, we let 0 ≤ r ≤ f − 1 such that hj+1 = · · · = hj+r = 1 and hj+r+1 ̸= 1, then we
define

DX
j

def
= X

([h]j+r+p
j+r+1)(1−φ)

0 +(hj+r+1−1)
r∑
i=0

X
[h]j+i(1−φ)
0 X

pj+i(1−φ)
1

= X
([h]j−1+p

j(p+p2+···+pr+1))(1−φ)
0 +(hj+r+1−1)

r∑
i=0

X
([h]j−1+p

j(p+p2+···+pi))(1−φ)
0 X

pj+i(1−φ)
1 .
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(ii) We define

D′X
j

def
= X

([h]j−1−pj)(1−φ)
0 X

pj(1−φ)
1 .

(iii) If h = 1 + p+ · · ·+ pf−1 and λ0λ
−1
1 = 1, we define

DX
tr

def
=

f−1∑
i=0

X
[h]i(1−φ)
0 X

pi(1−φ)
1 =

f−1∑
i=0

X
(1+p+···+pi)(1−φ)
0 X

pi(1−φ)
1 .

Otherwise (i.e. either h ̸= 1 + p+ · · ·+ pf−1 or λ0λ
−1
1 ̸= 1), we define DX

tr
def
= 0.

(iv) If h = 0 and λ0λ
−1
1 = 1, we define DX

un
def
= 1. Otherwise, we define DX

un
def
= 0.

Corollary 5.4.5. Let 0 ≤ h ≤ q − 2 and λ0, λ1 ∈ F×.

(i) For all 0 ≤ j ≤ f − 1 and a ∈ O×
K , we have(

id−fh(1−φ)/(1−q)a,0 a
)
(DX

j ) ∈ F1−pA;(
id−fh(1−φ)/(1−q)a,0 a

)
(D′X

j ) ∈ F1−pA.

(ii) If h = 1 + p+ · · ·+ pf−1 and λ0λ
−1
1 = 1, then for all a ∈ O×

K , we have(
id−fh(1−φ)/(1−q)a,0 a

)
(DX

tr ) ∈ ca

(
1−X

h(1−φ)
0

)
+ F1−pA.

Proof. This follows from Lemma 5.4.3. Note that for i such that hi = 0 we have [h]i = [h]i−1.

Lemma 5.4.6. Let 0 ≤ h ≤ q − 2 and λ0, λ1 ∈ F×.

(i) For any y ∈ F1−pA, the equation
(
id−λ0λ−1

1 X
h(1−φ)
0 φq

)
(x) = y has a unique solution in

F1−pA, given by the convergent series x =
∑∞

n=0

(
λ0λ

−1
1 X

h(1−φ)
0 φq

)n
(y).

(ii) For any y ∈ A, the equation
(
id−λ0λ−1

1 X
h(1−φ)
0 φq

)
(x) = y has at most one solution in

A unless h = 0 and λ0λ
−1
1 = 1.

Proof. The proof is similar to that of Lemma 5.2.7. We omit the details.

Proposition 5.4.7. Let 0 ≤ h ≤ q − 2 and λ0, λ1 ∈ F×.

(i) For all 0 ≤ j ≤ f − 1, the tuple
(
D, (Ea)a∈O×

K

)
with

D = DX
j

Ea = EXj,a
def
=
(
id−λ0λ−1

1 X
h(1−φ)
0 φq

)−1 [(
id−fh(1−φ)/(1−q)a,0 a

)
(DX

j )
]

=
∞∑
n=0

(
λ0λ

−1
1 X

h(1−φ)
0 φq

)n [(
id−fh(1−φ)/(1−q)a,0 a

)
(DX

j )
]

defines an element of WX . We denote it by [BX
j ].

(ii) For all 0 ≤ j ≤ f − 1, the tuple
(
D, (Ea)a∈O×

K

)
with

D = D′X
j

Ea = E′X
j,a

def
=
(
id−λ0λ−1

1 X
h(1−φ)
0 φq

)−1 [(
id−fh(1−φ)/(1−q)a,0 a

)
(D′X

j )
]

=
∞∑
n=0

(
λ0λ

−1
1 X

h(1−φ)
0 φq

)n [(
id−fh(1−φ)/(1−q)a,0 a

)
(D′X

j )
]

defines an element of WX . We denote it by [B′X
j ].
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(iii) If h = 1 + p+ · · ·+ pf−1 and λ0λ
−1
1 = 1, then the tuple

(
D, (Ea)a∈O×

K

)
with

D = DX
tr

Ea = EXtr,a
def
=
(
id−Xh(1−φ)

0 φq

)−1 [(
id−fh(1−φ)/(1−q)a,0 a

)
(DX

tr )
]

= ca +
∞∑
n=0

(
X
h(1−φ)
0 φq

)n [(
id−fh(1−φ)/(1−q)a,0 a

)
(DX

tr )− ca

(
1−X

h(1−φ)
0

)]
defines an element of WX . We denote it by [BX

tr ]. Otherwise, we define EXtr,a
def
= 0 for all

a ∈ O×
K and [BX

tr ]
def
= [0] in WX .

(iv) If h = 0 and λ0λ
−1
1 = 1, then the tuple

(
D, (Ea)a∈O×

K

)
with{

D = DX
un = 1

Ea = EXun,a
def
= 0

defines an element of WX . We denote it by [BX
un]. Otherwise, we define EXun,a

def
= 0 for

all a ∈ O×
K and [BX

un]
def
= [0] in WX .

Proof. (iv) is direct. For (i), (ii) and (iii), each Ea is well-defined by Corollary 5.4.5 and Lemma
5.4.6(i), and condition (ii) in Definition 5.4.1 is guaranteed by the uniqueness of solution in
Lemma 5.4.6(i),(ii).

By Lemma 5.4.2, we can give similar definitions for the variables Yi instead of Xi. We have
the following partial comparison result:

Proposition 5.4.8. Suppose that c0, . . . , cf−1, c
′
0, . . . , c

′
f−1, cun ∈ F such that cj = 0 if hj = 0,

then we have an isomorphism of étale (φq,O×
K)-modules over A:

D

(
f−1∑
j=0

cj [B
X
j ] +

f−1∑
j=0

c′j [B
′X
j ] + cun[B

X
un]

)
∼= D

(
f−1∑
j=0

cj [B
Y
j ] +

f−1∑
j=0

c′j [B
′Y
j ] + cun[B

Y
un]

)
.

Proof. Let eX0 , e
X
1 be an A-basis of D

(∑f−1
j=0 cj [B

X
j ]+

∑f−1
j=0 c

′
j [B

′X
j ]+ cun[B

X
un]
)
with respect to

which the matrices of the actions of φq and O×
K have the form

MatXA (φq) =

(
λ0X

h(1−φ)
0 λ1D

X

0 λ1

)

MatXA (a) =

(
f
h(1−φ)/(1−q)
a,0 EXa

0 1

)
∀ a ∈ O×

K ,

where 
DX def

=
f−1∑
j=0

cjD
X
j +

f−1∑
j=0

c′jD
′X
j + cunD

X
un

EXa
def
=

f−1∑
j=0

cjE
X
j,a +

f−1∑
j=0

c′jE
′X
j,a + cunE

X
un,a ∀ a ∈ O×

K .

Let eY0 , e
Y
1 be an A-basis of D

(∑f−1
j=0 cj [B

Y
j ] +

∑f−1
j=0 c

′
j [B

′Y
j ] + cun[B

Y
un]
)
with respect to which

the matrices of the actions of φq and O×
K have the form

MatYA(φq) =

(
λ0Y

h(1−φ)
0 λ1D

Y

0 λ1

)

MatYA(a) =

(
f
h(1−φ)/(1−q)
a,σ0 EYa

0 1

)
∀ a ∈ O×

K ,
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where 
DY def

=
f−1∑
j=0

cjD
Y
j +

f−1∑
j=0

c′jD
′Y
j + cunD

Y
un

EYa
def
=

f−1∑
j=0

cjE
Y
j,a +

f−1∑
j=0

c′jE
′Y
j,a + cunE

Y
un,a ∀ a ∈ O×

K .

To prove the proposition, it is enough to find a change of basis formula (eY0 eY1 ) = (eX0 eX1 )Q

for some Q =
(
b00 b01
0 b11

)
∈ I2 + M2(F1−pA) such that Q−1MatXA (φq)φq(Q) = MatYA(φq), or

equivalently(
b−1
00 −b−1

00 b01b
−1
11

0 b−1
11

)(
λ0X

h(1−φ)
0 λ1D

X

0 λ1

)(
φq(b00) φq(b01)

0 φq(b11)

)
=

(
λ0Y

h(1−φ)
0 λ1D

Y

0 λ1

)
.

(5.34)
Then the O×

K-actions also agree by Lemma 5.4.6(i) using EXa , E
Y
a ∈ F1−pA.

Comparing the (2,2)-entries of (5.34), we have b11 = 1.

Comparing the (1,1)-entries of (5.34), we need to solve φq(b00)b
−1
00 =

(
Y 1−φ
0 /X1−φ

0

)h
. So

we can take b00 =
(
Y 1−φ
0 /X1−φ

0

)h/(q−1)
, which makes sense since Y 1−φ

0 /X1−φ
0 ∈ 1 + F1−pA by

(5.21).
Comparing the (1,2)-entries of (5.34), we need to solve

b−1
00 λ0X

h(1−φ)
0 φq(b01) + b−1

00 λ1D
Xφq(b11)− b−1

00 b01b
−1
11 λ1φq(b11) = λ1D

Y .

Replacing b00, b11 by their previous values, we get(
id−λ0λ−1

1 X
h(1−φ)
0 φq

)
(b01) = DX −DY

(
Y 1−φ
0 /X1−φ

0

)h/(q−1)
. (5.35)

Then we deduce from Lemma 5.4.6(i) and the claim below that there is a unique solution of
b01 ∈ F1−pA, which completes the proof.

Claim. Then RHS of (5.35) is in F1−pA.

Proof. For each 0 ≤ j ≤ f − 1 such that hj ̸= 0, we have

DX
j −DY

j

(
Y 1−φ
0 /X1−φ

0

)h/(q−1)

= X
[h]j−1(1−φ)
0 − Y

[h]j−1(1−φ)
0

(
Y 1−φ
0 /X1−φ

0

)h/(q−1)

= X
[h]j−1(1−φ)
0

[
1−

(
Y 1−φ
0 /X1−φ

0

)[h]j−1+h/(q−1)
]

∈ X
[h]j−1(1−φ)
0

[
1−

(
Y 1−φ
0 /X1−φ

0

)pjZp
]

⊆ X
[h]j−1(1−φ)
0 F(1−p)pjA ⊆ F1−pA.

For each 0 ≤ j ≤ f − 1, we have

D′X
j −D′Y

j

(
Y 1−φ
0 /X1−φ

0

)h/(q−1)

= X
([h]j−1−pj)(1−φ)
0 X

pj(1−φ)
1 − Y

([h]j−1−pj)(1−φ)
0 Y pj(1−φ)

σ1

(
Y 1−φ
0 /X1−φ

0

)h/(q−1)
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= X
([h]j−1−pj)(1−φ)
0 X

pj(1−φ)
1

[
1−

(
Y 1−φ
0 /X1−φ

0

)[h]j−1−pj+h/(q−1) (
Y 1−φ
σ1 /X1−φ

1

)pj]
∈ X

([h]j−1−pj)(1−φ)
0 X

pj(1−φ)
1

[
1−

(
Y 1−φ
0 /X1−φ

0

)pjZp
(
Y 1−φ
σ1 /X1−φ

1

)pj]
⊆ X

([h]j−1−pj)(1−φ)
0 X

pj(1−φ)
1 F(1−p)pjA ⊆ F1−pA.

Moreover, we have

DX
un −DY

un

(
Y 1−φ
0 /X1−φ

0

)h/(q−1)
= DX

un

[
1−

(
Y 1−φ
0 /X1−φ

0

)h/(q−1)
]
∈ F1−pA.

Then the claim follows since cj = 0 if hj = 0.

Remark 5.4.9. In general, we do not know how to write D
(
[BX

j ]
)
(in the case hj = 0) and

D
(
[BX

tr ]
)
in terms of elements of W Y .

5.5 The étale (φ,O×
K)-module D⊗

A(ρ)

In this section, we recall the definition of the functor ρ 7→ D⊗
A(ρ) defined in [BHH+c] and

give an explicit computation of D⊗
A(ρ) for all reducible two-dimensional ρ when p ≥ 5. As a

corollary, we give the comparison between the Lubin–Tate (φ,O×
K)-modules and the cyclotomic

(φ,Z×
p )-modules corresponding to ρ as in (5.2) when p ≥ 5, see Corollary 5.5.12.

Recall that A∞ is the completed perfection of A. The actions of φ and O×
K on A extends

naturally to A∞, and A×
∞ becomes a Qp[φ]-module.

Proposition 5.5.1 ([BHH+c], Cor. 2.6.6). The functor D 7→ A∞ ⊗AD induces an equivalence
of categories between the category of étale (φq,O×

K)-modules over A and the category of étale
(φq,O×

K)-modules over A∞, which is rank-preserving and compatible with tensor products.

As in [BHH+c], we let

A′
∞

def
= F((T 1/p∞

K,0 ))

〈(
TK,i

T p
i

K,0

)±1/p∞

, 1 ≤ i ≤ f − 1

〉
.

There is an F-linear Frobenius φ on A′
∞ given by (for each 0 ≤ i ≤ f − 1)

φ(TK,i) = TK,i+1, (5.36)

where we use the convention that TK,f
def
= T qK,0. There is also an (O×

K)f -action on A′
∞ commuting

with φq(
def
= φf ) given by (ai ∈ O×

K)

(a0, . . . , af−1)(TK,i) = ai(TK,i),

where O×
K acts on each variable TK,i in the same way as they act on TK,σ0 in §5.2.

For 0 ≤ i ≤ f − 1 and a ∈ O×
K , we define ji(a) ∈ (K×)f to be a in the i-th coordinate

and 1 otherwise. There is an inclusion ιi : F((TK,σ0)) ↪→ A′
∞ defined by TK,σ0 7→ TK,i, which

commutes with φq, and the action of a ∈ O×
K on F((TK,σ0)) is identified with the action of

ji(a) on A′
∞. In particular, we regard F((TK,σ0)) as a subfield of A′

∞ via the inclusion ι0. By
[BHH+c, Prop. 2.4.4], we can also regard A∞ as a subring of A′

∞, which is compatible with φ,
and the action of a ∈ O×

K on A∞ is identified with the action of (a, 1, . . . , 1) on A′
∞. Moreover,
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if we denote ∆1
def
= Ker

(
(O×

K)f → O×
K

)
the kernel of the multiplication map, then we have

A∞ = (A′
∞)∆1 (see the paragraph before [BHH+c, Thm. 2.5.1]).

For ρ a finite-dimensional continuous representation of Gal(K/K) over F and 0 ≤ i ≤ f −1,
we define

D
(i)
A∞

(ρ)
def
=
(
A′

∞ ⊗ιi,F((TK,σ0
)) DK,σ0(ρ)

)∆1

.

We endow it with a φq-action given by φq = φq ⊗φq, and an O×
K-action such that a ∈ O×

K acts

by ji(a) ⊗ a. By the result of [BHH+c], these actions are well-defined and make D
(i)
A∞

(ρ) an

étale (φq,O×
K)-module over A∞. Moreover, there is an isomorphism

ϕi : D
(i)
A∞

(ρ)
∼→ D

(i+1)
A∞

(ρ)

given by ϕi(x⊗ v)
def
= φ(x)⊗ v if i < f − 1, and ϕi(x⊗ v)

def
= φ(x)⊗ φq(v) if i = f − 1. Finally,

we define the étale (φ,O×
K)-module over A∞:

D⊗
A∞

(ρ)
def
=

f−1⊗
i=0

D
(i)
A∞

(ρ),

where the φ-action is given by φ(v0 ⊗ · · · ⊗ vf−1)
def
= ϕf−1(vf−1) ⊗ ϕ0(v0) ⊗ · · · ⊗ ϕf−2(vf−2),

and the O×
K-action is the diagonal action.

By the equivalence of categories in Proposition 5.5.1, up to isomorphism there are unique

étale (φq,O×
K)-modules D

(i)
A (ρ) for 0 ≤ i ≤ f − 1 and D⊗

A(ρ) over A such that

A∞ ⊗A D
(i)
A (ρ) ∼= D

(i)
A∞

(ρ);

A∞ ⊗A D
⊗
A(ρ)

∼= D⊗
A∞

(ρ).

Lemma 5.5.2. There exists a unique element u ∈ TK,0(1 + (A′
∞)◦◦) ⊆ A′

∞ such that:

(i) uq−1 = Xφ−1
0 ∈ A ⊆ A∞ ⊆ A′

∞;
(ii) for any (a0, . . . , af−1) ∈ ∆1, we have (a0, . . . , af−1)(u) = a0u, hence

(a0, . . . , af−1)
(
uT−1

K,0

)
= fLTa0 uT

−1
K,0;

(iii) for any a ∈ O×
K , we have (a, 1, . . . , 1)(u) = af

(1−φ)/(q−1)
a,0 u, hence

(a, 1, . . . , 1)
(
uT−1

K,0

)
= fLTa f

(1−φ)/(q−1)
a,0 uT−1

K,0;

(iv) φq(u) = uq.

Proof. (i),(ii),(iii) follow from [BHHMS3, Lemma 2.9.2] and (iv) follows from [BHHMS3, Re-
mark 2.9.4].

Lemma 5.5.3. There is a unique multiplicative norm | · | on A′
∞ inducing the topology of A′

∞
such that |TK,0| = p−1. It also satisfies:

(i) |TK,i| = p−p
i
for all 0 ≤ i ≤ f − 1;

(ii) |φ(x)| = |x|p ∀x ∈ A′
∞;

(iii) for any (a0, . . . , af−1) ∈ (O×
K)f , we have |(a0, . . . , af−1)(x)| = |x| ∀x ∈ A′

∞;

(iv) |Xi| = |Yi| = p−(1+p+···+pf−1) for all 0 ≤ i ≤ f − 1. In particular, for any x ∈ F1−pA, we
have |x| ≤ p−(q−1).
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Proof. Recall that the desired norm on A′
∞ is the unique multiplicative extension to A′

∞ of the

Gauss norm on the ring F((TK,0))
〈
TK,i/T

pi

K,0, 1 ≤ i ≤ f − 1
〉
with TK,0-adic topology such that

|TK,0| = p−1 (see [BHH+c, Lemma 2.4.7(iii)] and the proof of [BHH+c, Lemma 2.4.2(iii)]). In

particular, for 0 ≤ i ≤ f − 1 we have |TK,i| = |TK,i/T p
i

K,0| · |TK,0|p
i
= p−p

i
, which proves (i).

The assignment ∥x∥ def
= |φ(x)| is a multiplicative norm on A′

∞ inducing the topology of
A′

∞ such that ∥TK,0∥ = p−p. By uniqueness we get |φ(x)| = |x|p ∀x ∈ A′
∞, which proves

(ii). Similarly, for any (a0, . . . , af−1) ∈ (O×
K)f , the assignment ∥x∥′ def

= |(a0, . . . , af−1)(x)| is a
multiplicative norm on A′

∞ inducing the topology of A′
∞ such that ∥TK,0∥ = p−1. By uniqueness

we get |(a0, . . . , af−1)(x)| = |x| ∀x ∈ A′
∞, which proves (iii).

Then we prove (iv). Recall from [BHH+c, (63)] that we have X0 = TK,0 · · ·TK,f−1(1 + w0)

for some |w0| < 1. Then we deduce from (i) that |X0| = |TK,0 · · ·TK,f−1| = p−(1+p+···+pf−1). By

the proof of [BHH+c, Lemma 2.4.2(iii)], we have |Xi| = |X0| = p−(1+p+···+pf−1) for 1 ≤ i ≤ f−1.

Finally, we deduce from (5.21) that |Yi| = |Xi| = p−(1+p+···+pf−1) for 0 ≤ i ≤ f − 1.

For r ∈ R>0, we denote B(r)
def
=
{
x ∈ A′

∞ : |x| ≤ p−r
}
and B◦(r)

def
=
{
x ∈ A′

∞ : |x| < p−r
}
.

Lemma 5.5.4. We have the following relations in A′
∞.

(i) We have

X1−φ
1 ∈

f−1∑
i=0

T
−p(1−q−1)
K,i − T q−1

K,0

(
f−1∑
i=1

T
−(1−q−1)
K,i

)
+B

(
(q−1)(2p−2)

p

)
⊆

f−1∑
i=0

T
−p(1−q−1)
K,i +B

(
(q−1)(p−1)

p

)
⊆ T

−p(1−q−1)
K,f−1

[
1 +B

(
(q−1)(p−1)

p

)]
.

(ii) Let u ∈ A′
∞ be as in Lemma 5.5.2, then we have

uT−1
K,0 ∈ 1 + T q−1

K,0

(
f−1∑
i=1

T
−(1−q−1)
K,i

)
+B

(
(q−1)(2p−1)

p

)
⊆ 1 +B

(
(q−1)(p−1)

p

)
.

Proof. Recall from the proof of [BHH+c, Lemma 2.9.2] (especially the second formula before
[BHH+c, (63)]) that the element

∞∑
n=0

[xn]p
n def
=

f−1∏
i=0

∑
n≥0

[T q
−n

K,i ]p
n −

∑
n≥0

f−1∑
i=0

[X−nf−i
i ]pnf+i ∈W ((A′

∞)◦) (5.37)

satisfies |xi| < p−c for all i ≥ 0, and the proof of loc.cit. shows that we can take c = q − 1. In
particular, we have

|x0| = |TK,0 · · ·TK,f−1 −X0| < p−c,

hence

X0 ∈ TK,0 · · ·TK,f−1

[
1 +B◦

(
c−(1+p+· · ·+pf−1)

)]
. (5.38)

By a direct computation in the ring of Witt vectors, we have from (5.37)

|x1| =

∣∣∣∣∣
f−1∑
i=0

TK,0 · · ·T q
−1

K,i · · ·TK,f−1 −Xp−1

1 −
p−1∑
s=1

(
p
s

)
p

(TK,0 · · ·TK,f−1)
(p−s)/p(−X0)

s/p

∣∣∣∣∣ < p−c,
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hence

Xp−1

1 ∈ TK,0 · · ·TK,f−1

[
f−1∑
i=0

T
−(1−q−1)
K,i −

p−1∑
s=1

(
p
s

)
p

(−1)s
[
1+
(

X0
TK,0···TK,f−1

−1
)]s/p]

+B◦(c)

(5.39)

⊆ TK,0 · · ·TK,f−1

[
f−1∑
i=0

T
−(1−q−1)
K,i −

p−1∑
s=1

(
p
s

)
p

(−1)s
[
1+B◦(c′)

]s]

⊆ TK,0 · · ·TK,f−1

[
f−1∑
i=0

T
−(1−q−1)
K,i +B◦(c′)

]
(5.40)

with c′
def
=
(
c − (1 + p + · · · + pf−1)

)
/p, where the second inclusion follows from (5.38), and

the last inclusion uses
∑p−1

s=1 p
−1
(
p
s

)
(−1)s = 0 (since p ≥ 3 is odd). Applying φ to (5.40) using

(5.36) and Lemma 5.5.3(i),(ii), we get

X0 ∈ TK,0 · · ·TK,f−1

[
1 + T q−1

K,0

(
f−1∑
i=1

T
−(1−q−1)
K,i

)
+B◦(pc′+q−1)

]
. (5.41)

Then we put (5.41) into (5.39). Since c > 1 + p+ · · ·+ pf−1 + c′, we get

Xp−1

1 ∈ TK,0 · · ·TK,f−1

[
f−1∑
i=0

T
−(1−q−1)
K,i −

p−1∑
s=1

(
p
s

)
p

(−1)s

(
1 +

f−1∑
i=1

T
(q−1)/p
K,0

T
(1−q−1)/p
K,i

+B◦
(
c′+ q−1

p

))s]

⊆ TK,0 · · ·TK,f−1

[
f−1∑
i=0

T
−(1−q−1)
K,i −

p−1∑
s=1

(
p
s

)
p

(−1)s

(
1 + s

f−1∑
i=1

T
(q−1)/p
K,0

T
(1−q−1)/p
K,i

+B
(
(q−1)(2p−2)

p2

))]
,

where the last inclusion uses (q − 1)(2p− 2)/p2 < c′ + (q − 1)/p. Using
∑p−1

s=1 p
−1
(
p
s

)
(−1)s = 0

and
∑p−1

s=1 p
−1
(
p
s

)
(−1)ss = 1 (since p ≥ 3 is odd), we get

Xp−1

1 ∈ TK,0 · · ·TK,f−1

[
f−1∑
i=0

T
−(1−q−1)
K,i − T

(q−1)/p
K,0

(
f−1∑
i=1

T
−(1−q−1)/p
K,i

)
+B

(
(q−1)(2p−2)

p2

)]
(5.42)

⊆ TK,0 · · ·TK,f−1

[
f−1∑
i=0

T
−(1−q−1)
K,i +B

(
(q−1)(p−1)

p2

)]
(5.43)

⊆ TK,0 · · ·TK,f−2T
q−1

K,f−1

[
1 +B

(
(q−1)(p−1)

p2

)]
. (5.44)

Applying φ to (5.44) using (5.36) and Lemma 5.5.3(ii), we get

X0 = φ(Xp−1

1 ) ∈ TK,0 · · ·TK,f−1

[
1 +B

(
(q−1)(p−1)

p

)]
. (5.45)

Dividing (5.42) by (5.45) and then raising to the p-th power, we get

X1−φ
1 ∈

f−1∑
i=0

T
−p(1−q−1)
K,i − T q−1

K,0

(
f−1∑
i=1

T
−(1−q−1)
K,i

)
+B

(
(q−1)(2p−2)

p

)
,

which proves (i).
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Dividing (5.43) by (5.45) and then applying φ, we get

X1−φ
0 ∈ T

−(q−1)
K,0 +

f−1∑
i=1

T
−(1−q−1)
K,i +B

(
(q−1)(2p−1)

p

)
. (5.46)

By the definition of u (see the lines below [BHH+c, (64)]) and using (5.46), we get

uT−1
K,0

def
=
(
Xφ−1

0 /T q−1
K,0

)1/(q−1)
∈
(
X1−φ

0 T q−1
K,0

)1+qZp

⊆ 1 + T q−1
K,0

(
f−1∑
i=1

T
−(1−q−1)
K,i

)
+B

(
(q−1)(2p−1)

p

)
,

which proves (ii).

Lemma 5.5.5. We have the following equalities of operators on A′
∞:

(i) for a ∈ O×
K and h ∈ Z, we have(

T
−(q−1)h
K,0 φq

)
◦
((
fLTa

)h
(a, 1, . . . , 1)

)
=
((
fLTa

)h
(a, 1, . . . , 1)

)
◦
(
T
−(q−1)h
K,0 φq

)
;

(ii) for (a0, . . . , af−1) ∈ ∆1 and h ∈ Z, we have(
T
−(q−1)h
K,0 φq

)
◦
((
fLTa0

)h
(a0, . . . , af−1)

)
=
((
fLTa0

)h
(a0, . . . , af−1)

)
◦
(
T
−(q−1)h
K,0 φq

)
;

(iii) for h ∈ Z, we have(
T
−(q−1)h
K,0 φq

)
◦
((
uT−1

K,0

)−h)
=
(
uT−1

K,0

)−h
X
h(1−φ)
0 φq.

Proof. All the equalities are direct calculations, (i) and (ii) using the definition of fLTa , and
(iii) using Lemma 5.5.2(i),(iv). We omit the details. Here we recall that we identify TK,σ0 ∈
F((TK,σ0)) with TK,0 ∈ A′

∞ via the inclusion ι0.

Lemma 5.5.6. Let 0 ≤ h ≤ q − 2 and λ0, λ1 ∈ F×. Then for any y ∈ A′
∞ with |y| < p−h, the

equation
(
id−λ0λ−1

1 T
−(q−1)h
K,0 φq

)
(x) = y has a unique solution x ∈ A′

∞ with |x| < p−h, given

by the convergent series x =
∑∞

n=0

(
λ0λ

−1
1 T

−(q−1)h
K,0 φq

)n
(y).

Proof. For any x ∈ A′
∞, we have (by Lemma 5.5.3(i),(ii))

∣∣λ0λ−1
1 T

−(q−1)h
K,0 φq(x)

∣∣ = |x|qp(q−1)h.

In particular, if |x| < p−h and x ̸= 0, then we have
∣∣λ0λ−1

1 T
−(q−1)h
K,0 φq(x)

∣∣ < |x|. If x1, x2 ∈ A′
∞

such that |x1|, |x2| < p−h and
(
id−λ0λ−1

1 T
−(q−1)h
K,0 φq

)
(x1) =

(
id−λ0λ−1

1 T
−(q−1)h
K,0 φq

)
(x2), then

we have |x1−x2| =
∣∣λ0λ−1

1 T
−(q−1)h
K,0 φq(x1−x2)

∣∣, which implies x1 = x2. This proves uniqueness.

Then given |y| < p−h, one easily checks that the element x
def
=
∑∞

n=0

(
λ0λ

−1
1 T

−(q−1)h
K,0 φq

)n
(y)

converges, and satisfies
(
id−λ0λ−1

1 T
−(q−1)h
K,0 φq

)
(x) = y and |x| = |y| < p−h.

Definition 5.5.7. Let 0 ≤ h ≤ q − 2 and 0 ≤ j ≤ f − 1. We define Hj ∈ Z as follows:

(i) If hj−1 ̸= p− 1, we define Hj
def
= 0.

(ii) If hj−1 = p− 1 and hj ̸= 0, we define Hj
def
= hj.

(iii) If hj−1 = p − 1 and hj = 0, we let 0 ≤ r ≤ f − 1 such that hj+1 = · · · = hj+r = 1 and

hj+r+1 ̸= 1, then we define Hj
def
= hj+r+1 − 1.
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Definition 5.5.8. Let ρ be as in (5.2). Suppose that (see Theorem 5.2.10)

DK,σ0(ρ)
∼= D

(
f−1∑
j=0

cj [B
LT
j ] + ctr[B

LT
tr ] + cun[B

LT
un ]

)

for some c0, . . . , cf−1, ctr, cun ∈ F, then we define (see Proposition 5.4.7 for the notation)

DA,σ0(ρ)
def
= D

(
f−1∑
j=0

cj
(
[BX

j ] +Hj [B
′X
j−1]

)
+ ctr[B

X
tr ] + cun[B

X
un]

)
,

where we use the convention that [B′X
−1]

def
= λ0λ

−1
1 [B′X

f−1] in WX . This is an étale (φq,O×
K)-

module of rank 2 over A and is well-defined up to isomorphism.

Lemma 5.5.9. Let 0 ≤ h ≤ q − 2 and 0 ≤ j ≤ f − 1.

(i) If hj−1 ̸= p− 1, then we have (q − 1)
(
(p− 1)pj−1 − [h]j−1

)
> h.

(ii) We have pj − [h]j−1 − pj−f > h.

Proof. (i). If j ≥ 1, then using hj−1 ̸= p− 1 we have

(q − 1)
(
(p− 1)pj−1 − [h]j−1

)
≥ q − 1 > h. (5.47)

If j = 0, then using hf−1 ̸= p− 1 we have (since [h]−1 = 0)

(q − 1)
(
(p− 1)pj−1 − [h]j−1

)
= (q − 1)(p− 1)/p > (p− 1)pf−1 − 1 ≥ h. (5.48)

(ii). If [h]j−1 ̸= (p− 1)(1 + p+ · · ·+ pj−1), then we have

(q − 1)(pj − [h]j−1 − pj−f ) > q − 1 > h;

If [h]j−1 = (p − 1)(1 + p + · · · + pj−1), then we can’t have hj = hj+1 = · · · = hf−1 = p − 1
(otherwise h = q − 1), so we get

(q − 1)(pj − [h]j−1 − pj−f ) ≥ (q − 1)(1− pj−f ) > q − 1− pj ≥ h.

This completes the proof.

Theorem 5.5.10. Suppose that p ≥ 5, then for ρ as in (5.2), we have an isomorphism of étale
(φq,O×

K)-modules over A:

D
(0)
A (ρ) ∼= DA,σ0(ρ).

Proof. By Proposition 5.5.1, it suffices to show that

A∞ ⊗A DA,σ0(ρ) =
(
A′

∞ ⊗F((TK,σ0
)) DK,σ0(ρ)

)∆1

. (5.49)

Let eLT0 , eLT1 be an F((TK,σ0))-basis of DK,σ0(ρ) with respect to which the matrices of the
actions of φq and O×

K have the form
MatK(φq) =

(
λ0T

−(q−1)h
K,σ0

λ1D
LT

0 λ1

)

MatK(a) =

((
fLTa

)h
ELT
a

0 1

)
∀ a ∈ O×

K ,
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where 
DLT def

=
f−1∑
j=0

cjD
LT
j + ctrD

LT
tr + cunD

LT
un

ELT
a

def
=

f−1∑
j=0

cjE
LT
j,a + ctrE

LT
tr,a + cunE

LT
un,a ∀ a ∈ O×

K .

Let eX0 , e
X
1 be an A-basis of DA,σ0(ρ) with respect to which the matrices of the actions of φq

and O×
K have the form

MatA(φq) =

(
λ0X

h(1−φ)
0 λ1D

X

0 λ1

)

MatA(a) =

(
f
h(1−φ)/(1−q)
a,0 EXa

0 1

)
∀ a ∈ O×

K

where 
DX def

=
f−1∑
j=0

cj

(
DX
j +HjD

′X
j−1

)
+ ctrD

X
tr + cunD

X
un

EXa
def
=

f−1∑
j=0

cj

(
EXj,a +HjE

′X
j−1,a

)
+ ctrE

X
tr,a + cunE

X
un,a ∀ a ∈ O×

K .

To prove (5.49), it is enough to find a change of basis formula (eX0 eX1 ) = (eLT0 eLT1 )Q for some

Q =
(
b00 b01
0 b11

)
∈ GL2 (A

′
∞), such that

(i) Q−1MatK(φq)φq(Q) = MatA(φq);
(ii) Q−1MatK(a)a(Q) = MatA(a) ∀ a ∈ O×

K ;
(iii) the basis (eX0 eX1 ) = (eLT0 eLT1 )Q is fixed by (a0, . . . , af−1) ∀ (a0, . . . , af−1) ∈ ∆1.

More concretely, we are going to solve the equation(
b−1
00 −b−1

00 b01b
−1
11

0 b−1
11

)(
λ0T

−(q−1)h
K,0 λ1D

LT

0 λ1

)(
φq(b00) φq(b01)

0 φq(b11)

)
=

(
λ0X

h(1−φ)
0 λ1D

X

0 λ1

)
,

(5.50)
and then check that the following equalities hold:(

b−1
00 −b−1

00 b01b
−1
11

0 b−1
11

)((
fLTa

)h
ELT
a

0 1

)(
(a, 1, . . . , 1)(b00) (a, 1, . . . , 1)(b01)

0 (a, 1, . . . , 1)(b11)

)

=

(
f
h(1−φ)/(1−q)
a,0 EXa

0 1

)
∀ a ∈ O×

K ;

(5.51)

(
b−1
00 −b−1

00 b01b
−1
11

0 b−1
11

)((
fLTa0

)h
ELT
a0

0 1

)(
(a0, . . . , af−1)(b00) (a0, . . . , af−1)(b01)

0 (a0, . . . , af−1)(b11)

)
=

(
1 0
0 1

)
∀ (a0, . . . , af−1) ∈ ∆1.

(5.52)

Comparing the (2,2)-entries of (5.50), we can take b11 = 1. Then the equalities of the
(2,2)-entries of (5.51) and (5.52) are clear.

Comparing the (1,1)-entries of (5.50), we need to solve φq(b00)b
−1
00 = T

(q−1)h
K,0 X

h(1−φ)
0 . By

Lemma 5.5.2(i),(iv) we can take b00 =
(
uT−1

K,0

)−h
. Then the equalities of the (1,1)-entries of

(5.51) and (5.52) follow directly from Lemma 5.5.2(ii),(iii).
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Comparing the (1,2)-entries of (5.50), we need to solve

b−1
00 λ0T

−(q−1)h
K,0 φq(b01) + b−1

00 λ1D
LTφq(b11)− b−1

00 b01b
−1
11 λ1φq(b11) = λ1D

X .

Replacing b00, b11 by their previous values, we get:(
id−λ0λ−1

1 T
−(q−1)h
K,0 φq

)
(b01) = D01

def
= DLT −

(
uT−1

K,0

)−h
DX . (5.53)

Without loss of generality, we may assume that one of c0, . . . , cf−1, ctr, cun is 1 and the others
are 0. We separate the following cases:

Case 1: cj = 1 for some 0 ≤ j ≤ f − 1, hj ̸= 0 and hj−1 ̸= p− 1.
By definition, we have

D01 = DLT
j −

(
uT−1

K,0

)−h
DX
j

= T
−(q−1)[h]j−1

K,0 −
(
uT−1

K,0

)−h
X

[h]j−1(1−φ)
0

= T
−(q−1)[h]j−1

K,0

[
1−

(
uT−1

K,0

)−(h+(q−1)[h]j−1)
]

∈ T
−(q−1)[h]j−1

K,0

[
1−

[
1 +B

(
(q−1)(p−1)

p

)]pjZ]
⊆ T

−(q−1)[h]j−1

K,0 B
(
(q−1)(p−1)pj−1

)
⊆ B◦(h), (5.54)

where the third equality uses Lemma 5.5.2(i), the first inclusion follows from Lemma 5.5.4(ii),
and the last inclusion follows from Lemma 5.5.9(i). By Lemma 5.5.6, we take b01 ∈ A′

∞ to be
the unique solution of (5.53) satisfying |b01| < p−h.

Then we check the equality of the (1,2)-entries of (5.51) for the previous values of b00, b01, b11,
or equivalently (for a ∈ O×

K)(
fLTa

)h
(a, 1, . . . , 1)(b01) + ELT

a − b01 =
(
uT−1

K,0

)−h
EXa . (5.55)

By Lemma 5.5.3(i),(iii),(iv) and q−1 > h, each term of (5.55) has norm < p−h, hence by Lemma

5.5.6 it suffices to check the equality after applying the operator
(
id−λ0λ−1

1 T
−(q−1)h
K,0 φq

)
. We

have(
id−λ0λ−1

1 T
−(q−1)h
K,0 φq

)((
fLTa

)h
(a, 1, . . . , 1)(b01)

)
=
(
fLTa

)h
(a, 1, . . . , 1)

(
id−λ0λ−1

1 T
−(q−1)h
K,0 φq

)
(b01) (by Lemma 5.5.5(i))

=
(
fLTa

)h
(a, 1, . . . , 1)

(
DLT −

(
uT−1

K,0

)−h
DX

)
(by (5.53))

=
(
fLTa

)h
a(DLT)− f

h(1−φ)/(1−q)
a,0

(
uT−1

K,0

)−h
a(DX); (by Lemma 5.5.2(iii))(

id−λ0λ−1
1 T

−(q−1)h
K,0 φq

)(
ELT
a

)
= DLT −

(
fLTa

)h
a(DLT); (by Proposition 5.2.8(i))(

id−λ0λ−1
1 T

−(q−1)h
K,0 φq

)
(b01) = DLT −

(
uT−1

K,0

)−h
DX ; (by (5.53))(

id−λ0λ−1
1 T

−(q−1)h
K,0 φq

)((
uT−1

K,0

)−h
EXa

)
=
(
uT−1

K,0

)−h (
id−λ0λ−1

1 X
h(1−φ)
0 φq

) (
EXa
)

(by Lemma 5.5.5(iii))

=
(
uT−1

K,0

)−h (
DX − f

h(1−φ)/(1−q)
a,0 a(DX)

)
. (by Proposition 5.4.7(i))
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Hence the equality (5.55) holds.

Finally, we check the equality of the (1,2)-entries of (5.52) for the previous values of b00, b01, b11,
or equivalently (for (a0, . . . , af−1) ∈ ∆1)(

fLTa0
)h

(a0, . . . , af−1)(b01) + Ea0 − b01 = 0. (5.56)

By Lemma 5.5.3(i),(iii) and q − 1 > h, each term of (5.56) has norm < p−h, hence by Lemma

5.5.6 it suffices to check the equality after applying the operator
(
id−λ0λ−1

1 T
−(q−1)h
K,0 φq

)
. We

have (
id−λ0λ−1

1 T
−(q−1)h
K,0 φq

)((
fLTa0

)h
(a0, . . . , af−1)(b01)

)
=
(
fLTa0

)h
(a0, . . . , af−1)

(
DLT −

(
uT−1

K,0

)−h
DX

)
(by Lemma 5.5.5(ii))

=
(
fLTa0

)h
a0(D

LT)−
(
uT−1

K,0

)−h
DX . (by Lemma 5.5.2(ii))

Here we recall that DX ∈ A, hence is invariant under ∆1. We also have(
id−λ0λ−1

1 T
−(q−1)h
K,0 φq

)(
ELT
a0

)
= DLT −

(
fLTa0

)h
a0(D

LT); (by Proposition 5.2.8(i))(
id−λ0λ−1

1 T
−(q−1)h
K,0 φq

)
(b01) = DLT −

(
uT−1

K,0

)−h
DX . (by (5.53))

Hence the equality (5.56) holds.

In the remaining cases, we will prove that

D01 ∈
(
id−λ0λ−1

1 T
−(q−1)h
K,0 φq

)
(b) +B◦(h) (5.57)

for certain b ∈ A′
∞. By Lemma 5.5.6 there is a unique choice of b01 ∈ b+B◦(h) ⊆ A′

∞ satisfying
(5.53). Then one can check the equalities of the (1,2)-entries of (5.51) and (5.52) as in Case 1.

Case 2: cj = 1 for some 0 ≤ j ≤ f − 1, hj ̸= 0 and hj−1 = p− 1.
We have(
uT−1

K,0

)−h
X

[h]j−1(1−φ)
0 = T

−(q−1)[h]j−1

K,0

(
uT−1

K,0

)−(h+(q−1)[h]j−1)

∈ T
−(q−1)[h]j−1

K,0

[
1 + T q−1

K,0

(
f−1∑
i=1

T
−(1−q−1)
K,i

)
+B

(
(q−1)(2p−1)

p

)]−pjhj+pj+1Z

⊆ T
−(q−1)[h]j−1

K,0

[
1− hjT

(q−1)pj

K,0

(
f−1∑
i=1

T
−pj(1−q−1)
K,i

)
+B

(
(q−1)(2pj−2pj−1)

)]

⊆ T
−(q−1)[h]j−1

K,0 − hjT
(q−1)(pj−[h]j−1)
K,0

(
f−1∑
i=1

T
−pj(1−q−1)
K,i

)
+B◦(q−1), (5.58)

where the first equality uses Lemma 5.5.2(i), the first inclusion follows from Lemma 5.5.4(ii),
and the last inclusion uses 2pj − 2pj−1 − [h]j−1 > 1. We also have(

uT−1
K,0

)−h
X

([h]j−2−pj−1)(1−φ)
0 X

pj−1(1−φ)
1

= T
−(q−1)([h]j−2−pj−1)
K,0

(
uT−1

K,0

)−(h+(q−1)([h]j−2−pj−1))X
pj−1(1−φ)
1
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∈ T
(q−1)(pj−1−[h]j−2)
K,0

[
1 +B

(
(q−1)(p−1)

p

)]pjZ [f−1∑
i=0

T
−p(1−q−1)
K,i +B

(
(q−1)(p−1)

p

)]pj−1

⊆ T
(q−1)(pj−1−[h]j−2)
K,0

[
f−1∑
i=0

T
−pj(1−q−1)
K,i +B

(
(q−1)(pj−1−pj−2)

)]

⊆ T
(q−1)(pj−[h]j−1)
K,0

(
f−1∑
i=0

T
−pj(1−q−1)
K,i

)
+B◦(q−1), (5.59)

where the first equality uses Lemma 5.5.2(i), the first inclusion follows from Lemma 5.5.4(i),(ii),
and the last inclusion uses hj−1 = p− 1 (hence pj−1 − [h]j−2 = pj − [h]j−1, and p

j−1 − pj−2 +
(pj−1 − [h]j−2) = (pj − [h]j−1) + (pj−1 − pj−2) > 1). Combining (5.58) and (5.59), we get

T
−(q−1)[h]j−1

K,0 −
(
uT−1

K,0

)−h (
X

[h]j−1

0 + hjX
([h]j−2−pj−1)(1−φ)
0 X

pj−1(1−φ)
1

)
∈ −hjT

(q−1)(pj−[h]j−1−pj−f )
K,0 +B◦(q−1) ⊆ B◦(h),

(5.60)

where the last inclusion follows from Lemma 5.5.9(ii) and h < q− 1. In particular, for j ≥ 1 we
have |D01| < p−h, which proves (5.57) (with b = 0).

Next we assume that j = 0, so that hf−1 = p−1. Recall that [B′X
−1]

def
= λ0λ

−1
1 [B′X

f−1] in W
X .

Then the difference of D01 and the LHS of (5.60) is

h0
(
uT−1

K,0

)−h [
λ0λ

−1
1 X

([h]f−2−pf−1)(1−φ)
0 X

pf−1(1−φ)
1 −X

−(1−φ)
0 X

p−1(1−φ)
1

]
= −h0

(
uT−1

K,0

)−h (
id−λ0λ−1

1 X
h(1−φ)
0 φq

) [
X

−(1−φ)
0 X

p−1(1−φ)
1

]
=
(
id−λ0λ−1

1 T
−(q−1)h
K,0 φq

) [
−h0

(
uT−1

K,0

)−h
X

−(1−φ)
0 X

p−1(1−φ)
1

]
,

where the first equality uses hf−1 = p−1 (hence [h]f−2−pf−1 = h−q), and the second equality

uses Lemma 5.5.5(iii). This proves (5.57) (with b = −h0
(
uT−1

K,0

)−h
X

−(1−φ)
0 X

p−1(1−φ)
1 ).

Case 3: cj = 1 for some 0 ≤ j ≤ f − 1, hj = 0 and hj−1 ̸= p− 1.
Let 0 ≤ r ≤ f − 1 such that hj+1 = · · · = hj+r = 1 and hj+r+1 ̸= 1. We have(

uT−1
K,0

)−h
X

([h]j+r+p
j+r+1)(1−φ)

0 = T
−(q−1)([h]j+r+p

j+r+1)
K,0

(
uT−1

K,0

)−(h+(q−1)([h]j+r+p
j+r+1))

∈ T
−(q−1)([h]j+r+p

j+r+1)
K,0

[
1+T q−1

K,0

(
f−1∑
ℓ=1

T
−(1−q−1)
K,ℓ

)
+B

(
(q−1)(2p−1)

p

)]pj+r+1(1−hj+r+1)+p
j+r+2Z

⊆ T
−(q−1)([h]j+r+p

j+r+1)
K,0

[
1−(hj+r+1−1)

f−1∑
ℓ=1

T
(q−1)pj+r+1

K,0

T
pj+r+1(1−q−1)
K,ℓ

+B
(
(q−1)(2pj+r+1−2pj+r)

)]

⊆ T
−(q−1)([h]j+r+p

j+r+1)
K,0 − (hj+r+1−1)T

−(q−1)[h]j+r

K,0

(
f−1∑
ℓ=1

T
−pj+r+1(1−q−1)
K,ℓ

)
+B◦(q−1),

(5.61)

where the first equality uses Lemma 5.5.2(i), the first inclusion follows from Lemma 5.5.4(ii),
and the last inclusion uses hj+r = 1 and p ≥ 5 (hence 2pj+r+1 − 2pj+r − ([h]j+r + pj+r+1) > 1).
For 0 ≤ i ≤ r, we have(
uT−1

K,0

)−h
X

[h]j+i(1−φ)
0 X

pj+i(1−φ)
1 = T

−(q−1)[h]j+i

K,0

(
uT−1

K,0

)−(h+(q−1)[h]j+i)X
pj+i(1−φ)
1
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∈ T
−(q−1)[h]j+i

K,0

[
1+B

(
(q−1)(p−1)

p

)]pj+i+1Z
[
f−1∑
ℓ=0

T
−p(1−q−1)
K,ℓ −

f−1∑
ℓ=1

T q−1
K,0

T 1−q−1

K,ℓ

+B
(
(q−1)(2p−2)

p

)]pj+i

⊆ T
−(q−1)[h]j+i

K,0

[
f−1∑
ℓ=0

T
−pj+i+1(1−q−1)
K,ℓ −

f−1∑
ℓ=1

T
(q−1)pj+i

K,0

T
pj+i(1−q−1)
K,ℓ

+B
(
(q−1)(2pj+i−2pj+i−1)

)]
,

(5.62)

where the first equality uses Lemma 5.5.2(i), and the first inclusion follows from Lemma
5.5.4(i),(ii).

If 1 ≤ i ≤ r, then using hj+i = 1, hj+i−1 ∈ {0, 1} and p ≥ 5 (hence [h]j+i − pj+i = [h]j+i−1

and 2pj+i − 2pj+i−1 − [h]j+i > 1) we deduce from (5.62) that(
uT−1

K,0

)−h
X

[h]j+i(1−φ)
0 X

pj+i(1−φ)
1

∈ T
−(q−1)[h]j+i

K,0

(
f−1∑
ℓ=0

T
−pj+i+1(1−q−1)
K,ℓ

)
− T

−(q−1)[h]j+i−1

K,0

(
f−1∑
ℓ=1

T
−pj+i(1−q−1)
K,ℓ

)
+B◦(q−1).

(5.63)
If i = 0, then using hj = 0 (hence [h]j = [h]j−1 and 2pj − 2pj−1 − [h]j > 1) we deduce from
(5.62) that(

uT−1
K,0

)−h
X

[h]j(1−φ)
0 X

pj(1−φ)
1

∈ T
−(q−1)[h]j
K,0

(
f−1∑
ℓ=0

T
−pj+1(1−q−1)
K,ℓ

)
− T

(q−1)(pj−[h]j−1)
K,0

(
f−1∑
ℓ=1

T
−pj(1−q−1)
K,ℓ

)
+B◦(q−1).

(5.64)
Since hj−1 ̸= p− 1 by assumption, we deduce from (5.64), Lemma 5.5.3(i) and Lemma 5.5.9(i)
that

(
uT−1

K,0

)−h
X

[h]j(1−φ)
0 X

pj(1−φ)
1 ∈ T

−(q−1)[h]j
K,0

(
f−1∑
ℓ=0

T
−pj+1(1−q−1)
K,ℓ

)
+B◦(h). (5.65)

Combining (5.62), (5.63) (with 1 ≤ i ≤ r) and (5.65), we get(
uT−1

K,0

)−h
DX
j ∈ D′ +B◦(h) (5.66)

with

D′ def= T
−(q−1)([h]j+r+p

j+r+1)
K,0 + (hj+r+1 − 1)

r∑
i=0

T
−(q−1)([h]j+i+p

j+i+1−f )
K,0 . (5.67)

By the definition of DLT
j , we deduce from (5.66) that D01 ∈

(
id−λ0λ−1

1 T
−(q−1)h
K,0 φq

)
(−D′) +

B◦(h), which proves (5.57).

Case 4: cj = 1 for some 0 ≤ j ≤ f − 1, hj = 0 and hj−1 = p− 1.
Let 0 ≤ r ≤ f − 1 such that hj+1 = · · · = hj+r = 1 and hj+r+1 ̸= 1. For simplicity, we

assume that j ≥ 1. The case j = 0 can be treated as in Case 2. Combining (5.62), (5.63) (with
1 ≤ i ≤ r), (5.64) and (5.59), we get (for D′ as in (5.67))(
uT−1

K,0

)−h (
DX
j + (hj+r+1 − 1)D′X

j

)
∈ D′ + T

(q−1)(pj−[h]j−1−pj−f )
K,0 +B◦(q−1) ⊆ D′ +B◦(h),

where the last inclusion follows from Lemma 5.5.9(ii) and h < q − 1. This proves (5.57) (with
b = −D′) as in Case 3.
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Case 5: h = 1 + p+ · · ·+ pf−1, λ0λ
−1
1 = 1 and ctr = 1.

Since hj = 1 for all j, the relation (5.63) still holds for j = 0 and 0 ≤ i ≤ f − 1, from which
we deduce that

(
uT−1

K,0

)−h
DX

tr =
(
uT−1

K,0

)−h(f−1∑
i=0

X
[h]i(1−φ)
0 X

pi(1−φ)
1

)

∈
f−1∑
i=0

[
T
−(q−1)[h]i
K,0

(
f−1∑
ℓ=0

T
−pi+1(1−q−1)
K,ℓ

)
− T

−(q−1)[h]i−1

K,0

(
f−1∑
ℓ=1

T
−pi(1−q−1)
K,ℓ

)]
+B◦(h)

= −
f−1∑
ℓ=1

T
−(1−q−1)
K,ℓ +

f−2∑
i=0

T
−(q−1)([h]i+p

i+1−f )
K,0 + T

−(q−1)h
K,0

(
f−1∑
ℓ=0

T
−pf (1−q−1)
K,ℓ

)
+B◦(h)

=
(
id−T−(q−1)h

K,0 φq

)[
−
f−1∑
ℓ=1

T
−(1−q−1)
K,ℓ +

f−2∑
ℓ=0

T
−(q−1)([h]i+p

i+1−f )
K,0

]
+DLT

tr +B◦(h),

which proves (5.57).

Case 6: h = 0, λ0λ
−1
1 = 1 and cun = 1.

This case is easy, because we can simply take Q =
(
b00 b01
0 b11

)
= ( 1 0

0 1 ).

Remark 5.5.11. By [BHH+c, Cor. 2.6.7], the functor ρ 7→ D
(0)
A (ρ) is compatible with ten-

sor products. Since we have D
(0)
A

(
ωhf un(λ)

) ∼= DA,σ0

(
ωhf un(λ)

)
for all h ∈ Z and λ ∈ F× by

[BHH+c, Thm. 2.9.5] and since any reducible 2-dimensional mod p representation of GK is

isomorphic to ρ as in (5.2) up to twist, we know D
(0)
A (ρ) for all 2-dimensional mod p represen-

tations ρ of GK (the irreducible case being treated in [BHH+c, Thm. 2.9.5]) when p ≥ 5.

As a corollary of Theorem 5.5.10, we give the comparison between the Lubin–Tate (φq,O×
K)-

modules and the cyclotomic (φq,Z×
p )-modules corresponding to ρ as in (5.2).

Corollary 5.5.12. Suppose that p ≥ 5. Let ρ be as in (5.2). Suppose that (see Theorem 5.2.10)

DK,σ0(ρ)
∼= D

(
f−1∑
j=0

cj [B
LT
j ] + ctr[B

LT
tr ] + cun[B

LT
un ]

)

for some c0, . . . , cf−1, ctr, cun ∈ F, then we have (see Definition 5.5.7 for Hj and see Theorem
5.3.9)

Dσ0(ρ)
∼= D

(
f−1∑
j=0

cj

(
[Bcyc

j−1] +Hj [B
cyc
j−2]

)
+ ctr[B

cyc
tr ] + cun[B

cyc
un ]

)
.

Here we use the convention that [Bcyc
−1 ]

def
= λ0λ

−1
1 [Bcyc

f−1] and [Bcyc
−2 ]

def
= λ0λ

−1
1 [Bcyc

f−2].

Proof. Recall from the proof of [BHH+c, Prop. 2.8.1] that the canonical inclusion

B+(R)φ=p ↪→ B+(R)φq=pf

for any perfectoid F-algebra R induces a map ZZp → ZOK
of perfectoid spaces over F, which is

induced by the map

tr : A∞ ↠ F((T p
−∞

))
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coming from the trace map F[[K]]
tr
↠ F[[Qp]] ∼= F[[T p∞ ]], where T is the variable in §5.3. By

the definition of T and Xi (0 ≤ i ≤ f − 1), we have the relation in B+
(
F((T p−∞

))
)
which is

analogous to [BHH+c, (62)]:

∑
n∈Z

[T p
−n

]pn =
∑
n∈Z

f−1∑
i=0

[tr(Xi)
p−nf−i

]pnf+i.

Hence we deduce that

tr(Xi) = T ∀ 0 ≤ i ≤ f − 1. (5.68)

Suppose that

DK,σ0(ρ)
∼= D

(
f−1∑
j=0

cj [B
LT
j ] + ctr[B

LT
tr ] + cun[B

LT
un ]

)
for some c0, . . . , cf−1, ctr, cun ∈ F. By Theorem 5.5.10, we have

D
(0)
A (ρ) ∼= D

(
f−1∑
j=0

cj
(
[BX

j ] +Hj [B
′X
j−1]

)
+ ctr[B

X
tr ] + cun[B

X
un]

)
.

Then by [BHH+c, Prop. 2.8.1], [BHH+c, Remark 2.8.2] (comparing (5.4) and (5.15)) and (5.68),
we deduce that

Dσf−1
(ρ) ∼= D

(
f−1∑
j=0

cj

(
[Bcyc,h

j ] +Hj [B
cyc,h
j−1 ]

)
+ ctr[B

cyc
tr ] + cun[B

cyc
un ]

)
,

where [Bcyc,h
j ] is defined in the same way as [Bcyc

j ], replacing h′ by h for −1 ≤ j ≤ f − 1. In
particular, the corollary is true for f = 1.

To prove the corollary for f ≥ 2, without loss of generality we may assume that one of
c0, . . . , cf−1, ctr, cun is 1 and the others are 0. We separate the following cases:

Case 1: cj = 1 for some 0 ≤ j ≤ f − 1.

Consider the following étale (φ,Z×
p )-module over F⊗Fp Fq((T )) (a ∈ Z×

p ):
D =

f−1∏
i=0

Dσi =
f−1∏
i=0

(
F((T ))e(i)0 ⊕ F((T ))e(i)1

)
φ(e

(i+1)
0 , e

(i+1)
1 ) = (e

(i)
0 , e

(i)
1 )Mat(φ)(i)

a(e
(i)
0 , e

(i)
1 ) = (e

(i)
0 , e

(i)
1 )Mat(a)(i)

(here we view i as an element of Z/fZ) with

Mat(φ)(i) =

(
αiT

−(p−1)hi+1 βidi
0 βi

)
,

where

αi =

{
1 if i ̸= f − 2

λ0 if i = f − 2;
βi =

{
1 if i ̸= f − 2

λ1 if i = f − 2;
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di =



1 if i ≡ j − 1mod f and hj ̸= 0

T−(p−1)(p+p2+···+pr+1) + (hj+r+1 − 1)
r∑
i=0

T−(p−1)((p+p2+···+pi)+pi)

if i ≡ j − 1mod f, hj = 0, hj+1 = · · · = hj+r = 1 and hj+r+1 ̸= 1
Hj if i ≡ j − 2mod f
0 if i ̸≡ j − 1, j − 2mod f,

and the Z×
p -action is the unique one which commutes with φ and satisfies Mat(a)(i) ∈ I2 +

Mat
(
T p−1F[[T p−1]]

)
for all i. Then by computing the actions φq = φ ◦ · · · ◦φ (f -fold) on Dσf−1

and Dσ0 one can check that

Dσf−1
∼= D

(
[Bcyc,h

j−1 ] +Hj [B
cyc,h
j−2 ]

)
∼= Dσf−1

(ρ);

Dσ0
∼= D

(
[Bcyc

j−1] +Hj [B
cyc
j−2]

)
.

as étale (φq,Z×
p )-modules over F((T )), which completes the proof.

Case 2: h = 1 + p+ · · ·+ pf−1, λ0λ
−1
1 = 1 and ctr = 1.

The proof is similar to Case 1 by taking di = T−2(p−1) for all 0 ≤ i ≤ f − 1.

Case 3: h = 0, λ0λ
−1
1 = 1 and cun = 1.

The proof is similar to Case 1 by taking d0 = 1 and di = 0 for 1 ≤ i ≤ f − 1.

5.6 The main theorem on DA(π)

In this section, we recall the results of §4 on DA(π) and finish the proof of Theorem 5.1.1.
To do this, we need to prove that certain constants appearing on DA(π) and on D⊗

A(ρ) match,
see Proposition 5.6.3.

We let ρ : GK → GL2(F) be of the following form:

ρ ∼=

(
ω
∑f−1

j=0 (rj+1)pj

f un(ξ) ∗
0 un(ξ−1)

)
(5.69)

with ξ ∈ F×, 0 ≤ rj ≤ p− 3 for 0 ≤ j ≤ f − 1 and rj ̸= 0 for some j. Up to enlarging F, we fix
an f -th root f

√
ξ ∈ F× of ξ. By Theorem 5.2.10(iii) (with hj = rj + 1, λ0 = ξ and λ1 = ξ−1),

the Lubin–Tate (φ,O×
K)-module DK(ρ) associated to ρ has the following form (a ∈ O×

K):


DK(ρ) =

f−1∏
j=0

DK,σj (ρ) =
f−1∏
j=0

(
F((TK,σj ))e

(j)
0 ⊕ F((TK,σj ))e

(j)
1

)
φ(e

(j+1)
0 e

(j+1)
1 ) = (e

(j)
0 e

(j)
1 )Mat(φ(j))

a(e
(j)
0 e

(j)
1 ) = (e

(j)
0 e

(j)
1 )Mat(a(j)),

(5.70)

where

Mat(φ(j)) =

(
f
√
ξ T

−(q−1)(rj+1)
K,σj

f
√
ξ
−1
dj

0 f
√
ξ
−1

)
(5.71)

for some dj ∈ F and Mat(a(j)) ∈ I2 +M2

(
T q−1
K,σj

F[[T q−1
K,σj

]]
)
which uniquely determines Mat(a(j)).

By Theorem 5.5.10, Proposition 5.4.8 and the assumption on ρ, the étale (φ,O×
K)-module D⊗

A(ρ)
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is obtained from
⊗f−1

i=0 DK,σj (ρ) by the recipe T q−1
K,σj

7→ φ(Yj)/Yj . Hence, if we consider the

A-basis
{
eJ

def
=
⊗f−1

j=0 e
(j)
δj∈J

}
J⊆J for D⊗

A(ρ), the corresponding matrix Mat(φ) ∈ GL2f (A) (with

its rows and columns indexed by the subsets of J ) for the φ-action is given by

Mat(φ)J ′,J+1 =

νJ+1,J ′
∏
j /∈J

Y
(rj+1)(1−φ)
j if J ′ ⊆ J

0 if J ′ ⊈ J,
(5.72)

where νJ,J ′
def
= f

√
ξ
|Jc|−|J |∏

j∈(J−1)\J ′ dj for J
′ ⊆ J −1. Also, the corresponding matrices for the

O×
K-action satisfy Mat(a) ∈ I2f +M2f (F1−pA) for all a ∈ O×

K .
We also describe the Fontaine–Laffaille module associated to ρ (see [FL82]).

Lemma 5.6.1. The Fontaine–Laffaille module FL(ρ) associated to ρ has the following form:
FL(ρ) =

f−1∏
j=0

FLσj (ρ) =
f−1∏
j=0

(
Fe(j)0 ⊕ Fe(j)1

)
Filrj+1 FLσj (ρ) = Fe(j)0

φrj+1+1(e
(j+1)
0 ) = f

√
ξ
−1

(e
(j)
0 − dj+1e

(j)
1 )

φ(e
(j+1)
1 ) = f

√
ξ e

(j)
1 ,

(5.73)

where dj ∈ F× is as in (5.71).

Proof. Let T be the variable in §5.3. In particular, the uniformizer is p, hence Zp[[T ]] = Zp[[X]]
where X is the usual variable corresponding to the formal group law (1+X)p−1. By Corollary
5.5.12 and (5.70), the cyclotomic (φ,Z×

p )-module D(ρ) associated to ρ has the following form
(a ∈ Z×

p ): 
D(ρ) =

f−1∏
j=0

(
F((Tσj ))e

(j)
0 ⊕ F((Tσj ))e

(j)
1

)
φ(e

(j+1)
0 e

(j+1)
1 ) = (e

(j)
0 e

(j)
1 )Mat(φ(j))

a(e
(j)
0 e

(j)
1 ) = (e

(j)
0 e

(j)
1 )Mat(a(j)),

where

Mat(φ(j)) =

(
f
√
ξ T

−(p−1)(rj+1+1)
σj

f
√
ξ
−1
dj+1

0 f
√
ξ
−1

)
for the same dj as in (5.71) and Mat(a(j)) ∈ I2 +M2(T

p−1
σj F[[T p−1

σj ]]) which uniquely determines

Mat(a(j)).

Let Q
def
= φ(T )/T ∈ T p−1+p(1+TZp[[T ]]), where φ acts on Zp[[T ]] as pcyc. Since acyc(T ) = aT

for a ∈ [F×
p ], the commutativity of the action of a ∈ Z×

p with [F×
p ] implies that acyc(T ) ∈

aT
(
1 + T p−1Zp[[T p−1]]

)
. Then we let

Λa
def
=
∏
i≥0

φ1+if (Q/acyc(Q)) ∈ 1 + T p−1Zp[[T p−1]].

We construct a Wach module (see e.g. [CD11, §2.4]) overW (F)⊗ZpOK [[T ]] of the form (a ∈ Z×
p ):

M =
f−1∏
j=0

M (j) =
f−1∏
j=0

(
W (F)[[T ]]e(j)0 ⊕W (F)[[T ]]e(j)1

)
φ(e

(j+1)
0 e

(j+1)
1 ) = (e

(j)
0 e

(j)
1 )Mat(φ(j))

a(e
(j)
0 e

(j)
1 ) = (e

(j)
0 e

(j)
1 )Mat(a(j))
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with 
Mat(φ(j)) =

(
[ f
√
ξ]−1Qrj+1+1 0

[ f
√
ξ]−1[dj+1]Q

rj+1+1 [ f
√
ξ]

)

Mat(a(j)) =

(
P

(j)
a 0

P
(j)
a E

(j)
a 1

)
,

where P
(j)
a

def
=
∏f−1
i=0 φ

i(Λa)
ri+j+1+1 ∈ 1+T p−1Zp[[T p−1]], and E

(j)
a ∈ T p−1Zp[[T p−1]] is the unique

solution for the system of equations (j ∈ J )

E(j)
a − [ f

√
ξ]2Q−(rj+1+1)φ(E(j+1)

a ) = [dj+1]
(
(P (j)

a )−1 − 1
)
.

To prove uniqueness, up to dividing p we may assume that p ∤ (E(j)
a −E′(j)

a ) for some j, then we
reduce modulo p and compare the degrees in T . The existence of the solution follows as in the
proof of Lemma 4.10.3(iv). Then one can check thatM is a Wach module overW (F)⊗ZpOK [[T ]]
such that M ⊗Zp[[T ]] F((T )) is the dual étale (φ,O×

K)-module of D(ρ).
We give M a filtration defined by

FiliM
def
= {x ∈M : φ(x) ∈ QiM}.

Then for f(T ), g(T ) ∈ Zp[[T ]], we have

f(T )e
(j)
0 + g(T )e

(j)
1 ∈ FiliM (j) ⇐⇒

φ(f(T ))
(
[ f
√
ξ]−1Qrj+1e

(j−1)
0 − [ f

√
ξ]−1[dj+1]Q

rj+1e
(j−1)
1

)
+ φ(g(T ))[ f

√
ξ]e

(j−1)
1 ∈ QiM (j−1).

If i ≤ 0, this is automatic. If 1 ≤ i ≤ rj + 1, then we need Qi|φ(g(T )), which is equivalent to
T i|g(T ). If i > rj + 1, then we need Qi−(rj+1)|φ(f(T )) and Qi|φ(g(T )), which is equivalent to
T i−(rj+1)|f(T ) and T i|g(T ). To summarize, we have

FiliM (j) =


W (F)[[T ]]e(j)0 ⊕W (F)[[T ]]e(j)1 if i ≥ 0

W (F)[[T ]]e(j)0 ⊕ T iW (F)[[T ]]e(j)1 if 1 ≤ i ≤ rj + 1

T i−(rj+1)W (F)[[T ]]e(j)0 ⊕ T iW (F)[[T ]]e(j)1 if i > rj + 1.

Then the “module filtré” over W (F) associated to M in [Wac97, Thm. 3] is of the form:
M/TM =

f−1∏
j=0

(
W (F)e(j)0 ⊕W (F)e(j)1

)
Filrj+1(M (j)/TM (j)) = Fe(j)0

φrj+1+1(e
(j+1)
0 ) = [ f

√
ξ]−1(e

(j)
0 − [dj+1]e

(j)
1 )

φ(e
(j+1)
1 ) = [ f

√
ξ] e

(j)
1 .

Its reduction modulo p is the Fontaine–Laffaille module in (5.73), which is also the Fontaine–
Laffaille module of ρ by [Wac97, Thm. 1’]. This completes the proof.

Then we recall some results on DA(π) following §4. Keep the notation of §5.1. We let π be
as in (5.1) with r satisfying the assumptions (i)-(v) above Theorem 5.1.1. By [DL21, Thm. 1.1]
we have πK1 = D0(r

∨
v ) as K

×GL2(OK)-representations, where D0(r
∨
v ) is the representation of

GL2(Fq) defined in [BP12, §13] and is viewed as a representation of GL2(OK) by inflation, and

174



K× acts on D0(r
∨
v ) by the character det(r∨v )ω

−1, where ω is the mod p cyclotomic character.
Since 12 ≤ rj ≤ p−15 for all j, the proof of Theorem 3.6.3.1(i) shows that π satisfies (i),(ii),(iii)
of Theorem 3.5.3, hence satisfies the conditions (a),(b),(c) of [BHH+23, §6.4]. By [BHH+23,
Prop. 6.4.6] we deduce that [π[m3

I1
] : χ] = 1 for any character χ : I → F× appearing in πI1 ,

where mI1 is the maximal ideal of F[[I1]], π[m3
I1
] is the set of elements of π annihilated by m3

I1
,

and [π[m3
I1
] : χ] is the multiplicity of χ in the semisimplification of π[m3

I1
] as I-representations.

In particular, π satisfies the conditions (i),(ii) above Theorem 4.1.1 with ρ = r∨v . Twisting ρ
and π using [BHH+c, Lemma 2.9.7] and [BHH+c, Lemma 3.1.1], we may assume that ρ is as in
(5.69) with max{12, 2f + 1} ≤ rj ≤ p−max{15, 2f + 3} for all j. In particular, p acts trivially
on π.

From now on, we assume that |W (ρ)| = 1, which is equivalent to Jρ = ∅ by [Bre14,
Prop. A.3], where Jρ ⊆ J is the subset defined in [Bre14, (17)]. In particular, by [Bre14, (18)]

with ej = e
(f−j)
1 , f j = e

(f−j)
0 , αj =

f
√
ξ, βj =

f
√
ξ
−1

and µj = df+1−j for all j ∈ J in [Bre14,

(16)], we deduce that dj ∈ F× for all j ∈ J (see (5.71) for dj). We denote σ∅
def
= socGL2(OK) π.

We write i for an element (i0, . . . , if−1) ∈ Zf , and we write Y i for
∏f−1
j=0 Y

ij
j ∈ A. For

J ⊆ J , we define eJ ∈ Zf by eJj
def
= δj∈J . We say that i ≤ i′ if ij ≤ i′j for all j. For each J ⊆ J ,

we define sJ , rJ ∈ Zf by

sJj
def
=


rj , if j /∈ J, j + 1 /∈ J

rj + 1, if j ∈ J, j + 1 /∈ J

p− 2− rj , if j /∈ J, j + 1 ∈ J

p− 1− rj , if j ∈ J, j + 1 ∈ J ;

(5.74)

rJj
def
=


0, if j /∈ J, j + 1 /∈ J

−1, if j ∈ J, j + 1 /∈ J

rj + 1, if j /∈ J, j + 1 ∈ J

rj , if j ∈ J, j + 1 ∈ J.

(5.75)

We define the character χJ : I → F× by
(
a b
pc d

)
7→ (a)s

J+rJ (d)r
J
. Here, for x ∈ F and i ∈ Zf

we define xi
def
= x

∑f−1
j=0 ijp

j

. We identify πK1 with D0(ρ). Then by the proof of Lemma 4.4.1(ii)
we have πI1 = D0(ρ)

I1 =
⊕

J⊆J χJ as I-representations. For each J ⊆ J we fix a choice of

0 ̸= vJ ∈ D0(ρ)
I1 with I-character χJ , which is unique up to scalar. We recall the following

results of §4 in the case Jρ = ∅.

Proposition 5.6.2. (i) (Proposition 4.4.2) Let J ⊆ J and i ∈ Zf such that 0 ≤ i ≤ f . Then

there exists a unique H-eigenvector Y −ivJ ∈ D0(ρ) satisfying

(a) Y
ij+1
j

(
Y −ivJ

)
= 0 ∀ j ∈ J ;

(b) Y i
(
Y −ivJ

)
= vJ .

(ii) (Proposition 4.5.11) Let J, J ′ ⊆ J such that J ′ ̸= J and J ′+1 ⊆ J∆J ′ def= (J\J ′)⊔(J ′\J).
Then there exists a unique element µJ,J ′ ∈ F×, such that ∏

j+1∈J∆J ′

Y
sJ

′
j

j

∏
j+1/∈J∆J ′

Y p−1
j

( p 0
0 1

) (
Y −eJ∩J′

vJ

)
= µJ,J ′vJ ′ .

(iii) (Proposition 4.5.13) We write x∅,r
def
= µ−1

∅,∅Y
p−1−r ( p 0

0 1

)
v∅ so that Y rx∅,r = v∅ by (ii).
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Then for ∅ ≠ J ⊆ J , there exists a unique element µJ,J ∈ F× such that∏
j+1/∈J

Y
p−1−rj
j

(
p 0
0 1

)
vJ = µJ,J vJ + µJ,∅x∅,r,

where µJ,∅ is defined in (ii).
(iv) (Lemma 4.5.15) Let J1, J2, J3, J4 ⊆ J . Then we have

µJ1,J3
µJ1,J4

=
µJ2,J3
µJ2,J4

(5.76)

whenever all of them are defined in either (ii) or (iii).

We extend the definition of µJ,J ′ to arbitrary J, J ′ ⊆ J by the formula{
µJ,J ′

def
= µ(J ′)c,J ′µJ,∅/µ(J ′)c,∅ if J ′ ̸= J ;

µ∅,J
def
= µ∅,∅µJ ,J /µJ,∅

(and µJ,J as in Proposition 5.6.2(iii) for J ̸= ∅). Then the equation (5.76) holds for arbitrary
J1, J2, J3, J4 ⊆ J . By Theorem 4.1.1 and the construction of [BHH+c, §3.2], HomA(DA(π), A)(1)
is an étale (φ,O×

K)-module over A of rank 2f . Here for D a (φ,O×
K)-module over A, we

write D(1) to be D with the action of φ unchanged and the action of a ∈ O×
K multiplied

by NFq/Fp
(a). Moreover, by Proposition 4.10.4(i),(iii) and Corollary 4.10.5 there is an A-basis

of HomA(DA(π), A)(1) such that

(i) the corresponding matrix Mat(φ)′ ∈ GL2f (A) for the φ-action is given by

Mat(φ)′J ′,J+1 =

γJ+1,J ′
∏
j /∈J

Y
(rj+1)(1−φ)
j if J ′ ⊆ J

0 if J ′ ⊈ J,
(5.77)

where γJ,J ′
def
= (−1)f−1εJ ′µJ,J ′ with εJ

def
= (−1)|J∩(J−1)| if J ̸= J and εJ

def
= (−1)f−1.

(ii) the corresponding matrices Mat(a)′ for the O×
K-action satisfy Mat(a)′J,J ∈ 1 + F1−pA for

all a ∈ O×
K and J ⊆ J , which uniquely determines Mat(a)′.

We also extend the definition of νJ,J ′ (see (5.71)) to all J, J ′ ⊆ J by the formula

νJ,J ′
def
= f
√
ξ
|Jc|−|J |

∏
j /∈J ′

dj∏
j+1/∈J

dj
,

where dj ∈ F× is as in (5.71). Then it is easy to check that (5.76) holds for νJ,J ′ , and that

νJ,∅
νJc,∅νJ,Jc

= f
√
ξ
|Jc|−|J |

∏
j /∈J,j+1∈J

dj∏
j∈J,j+1/∈J

dj
. (5.78)

Proposition 5.6.3. Keep the assumptions of π and assume that |W (ρ)| = 1. Then for J ⊆ J
we have (see (5.77) for γJ,J ′ and εJ)

γJ,∅
γJc,∅γJ,Jc

= (−1)f−1εJc
µJ,∅

µJc,∅µJ,Jc
= f
√
ξ
|Jc|−|J |

∏
j /∈J,j+1∈J

dj∏
j∈J,j+1/∈J

dj
. (5.79)
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Proof. The first equality follows directly from the definition. Then we prove the second equality.
Since the LHS of (5.79) is unchanged when we rescale the basis (vJ)J∈J and since χJc is the
conjugation of χJ by the matrix

(
0 1
p 0

)
, we may assume that

(
0 1
p 0

)
vJ = vJc for all J (note that

p acts trivially on π).

First we compute µJ,∅/µJc,∅. We apply [BD14, Thm. 1.1] with J replaced by J − 1 and
v = vJ . Together with [BHH+b, Lemma 3.2.2.5(i)], we get

(−1)f−1

 ∏
j+1∈J

(p− 1− rj)!
∏

j+1∈J
Y
rj
j

∏
j+1/∈J

Y p−1
j

( p 0
0 1

)
vJ

= x(J − 1)(−1)f−1

 ∏
j+1/∈J

(p− 1− rj)!
∏

j+1/∈J

Y
rj
j

∏
j+1∈J

Y p−1
j

( p 0
0 1

)
vJc , (5.80)

where x(J−1) is computed by [BD14, Thm. 1.2] with αv,σj =
f
√
ξ, βv,σj =

f
√
ξ
−1

and xv,σj = −dj
by Lemma 5.6.1. By Proposition 5.6.2(ii) applied to (J, ∅) and (Jc, ∅), we deduce from (5.80)
that

µJ,∅
µJc,∅

= x(J − 1)

∏
j+1/∈J

(p− 1− rj)!∏
j+1∈J

(p− 1− rj)!

=

− f
√
ξ
|Jc|−|J |

∏
j+1∈J,j /∈J

(−dj)(rj + 1)∏
j+1/∈J,j∈J

(−dj)(rj + 1)


∏

j+1∈J
(−1)rj+1rj !∏

j+1/∈J
(−1)rj+1rj !

= − f
√
ξ
|Jc|−|J |

[ ∏
j∈J,j+1∈J

(−1)rj+1rj !

][ ∏
j /∈J,j+1∈J

(−1)rj (rj + 1)!dj

]
[ ∏
j /∈J,j+1/∈J

(−1)rj+1rj !

][ ∏
j∈J,j+1/∈J

(−1)rj (rj + 1)!dj

] , (5.81)

where the second equality follows from [BD14, Thm. 1.2] and(
(p− 1− r)!

)−1 ≡ (−1)r+1r! mod p ∀ 0 ≤ r ≤ p− 1. (5.82)

Next we compute µJ,Jc for J ̸= ∅. By Lemma 4.5.1(ii) and its proof (with Jρ = ∅), there is

a GL2(OK)-equivariant surjection (see §4.3 for the element ϕ ∈ Ind
GL2(OK)
I (χsJ))

Ind
GL2(OK)
I (χsJ) ↠

〈
GL2(OK)

(
p 0
0 1

)
vJ
〉

ϕ 7→
(
0 1
p 0

)
vJ = vJc

which is not an isomorphism when J ̸= ∅, hence it maps the socle of Ind
GL2(OK)
I (χsJ) to zero.

By definition, it is elementary to check that (−1)s
J+rJ = (−1)r

Jc

(see (5.74) for sJ and (5.75)
for rJ). Then we deduce from Lemma 4.3.2(iii)(a) that

Y p−1−sJ ( p 0
0 1

)
vJ + (−1)f−1(−1)r

Jc

[
f−1∏
j=0

(sJj )!

]
vJc = 0. (5.83)
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By Proposition 5.6.2(ii) applied to (J, Jc), we deduce from (5.83) that

µJ,Jc = (−1)r
Jc

+1/

[
f−1∏
j=0

(sJj )!

]
=

[ ∏
j∈J,j+1∈J

(−1)rjrj !

][ ∏
j /∈J,j+1∈J

(−1)rj (rj + 1)!

]
[ ∏
j /∈J,j+1/∈J

(−1)rj+1rj !

][ ∏
j∈J,j+1/∈J

(−1)rj (rj + 1)!

] , (5.84)

where the second equality follows from (5.74), (5.75) and (5.82). Combining (5.81) and (5.84),
we get

µJ,∅
µJc,∅µJ,Jc

= (−1)|J∩(J−1)|+1 f
√
ξ
|Jc|−|J |

∏
j /∈J,j+1∈J

dj∏
j∈J,j+1/∈J

dj
.

By definition, it is elementary to check that (−1)f−1εJc = (−1)|J∩(J−1)|+1 for J ̸= ∅. This
proves the proposition for J ̸= ∅.

It remains to prove the proposition for J = ∅. By (5.76) we have µ∅,∅/(µJ ,∅µ∅,J ) = µ−1
J ,J ,

hence it suffices to show that µJ ,J = ξ−1. We let

y
def
= Y p−1−r ( p 0

0 1

)
v∅ + (−1)f−1(−1)r

[
f−1∏
j=0

rj !

]−1

vJ ∈ π. (5.85)

By Lemma 4.3.2(iii)(a), both the elements y and
(
p 0
0 1

)
vJ = ( 0 1

1 0 ) v∅ are nonzero and lie in the
I-cosocle of σ∅ = socGL2(OK) π, hence they are equal up to a scalar. By Proposition 5.6.2(ii)

applied to (∅, ∅) and since vJ ∈ πI1 , we have Y ry = µ∅,∅v∅. By Proposition 5.6.2(iii) applied to
J = J , we have (see Proposition 5.6.2(iii) for x∅,r)

Y r
(
p 0
0 1

)
vJ = µJ ,J Y

rvJ + µJ ,∅Y
rx∅,r = µJ ,∅v∅, (5.86)

where the second equality uses vJ ∈ πI1 . Then we deduce from Y ry = µ∅,∅v∅ and (5.86) that(
p 0
0 1

)
vJ = (µJ ,∅/µ∅,∅)y, hence we have

µJ ,J vJ + µJ ,∅x∅,r =
(
p 0
0 1

)
vJ =

µJ ,∅
µ∅,∅

y = µJ ,∅x∅,r +
µJ ,∅
µ∅,∅

(−1)f−1(−1)r

[
f−1∏
j=0

rj !

]−1

vJ ,

where the first equality follows from Proposition 5.6.2(iii) applied to J = J and the last equality
follows from (5.85), which implies that

µJ ,J =
µJ ,∅
µ∅,∅

(−1)f−1(−1)r

[
f−1∏
j=0

rj !

]−1

= ξ−1,

where the last equality follows from (5.81) applied to J = J . This completes the proof.

Finally, we need the following lemma.

Lemma 5.6.4. Let B ∈ M2f (F) with nonzero entries whose rows and columns are indexed by
the subsets of J and satisfies BJ1,J3/BJ1,J4 = BJ2,J3/BJ2,J4 for all J1, J2, J3, J4 ⊆ J . Then up
to conjugation by diagonal matrices, B is uniquely determined by the quantities{

BJ,∅
BJc,∅BJ,Jc

}
J⊆J

. (5.87)
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Proof. First, it is easy to check that conjugation by a diagonal matrix does not change these
quantities. Next, given such a matrix B, after conjugation we may assume that BJ,∅ = 1 for all
J ̸= ∅. Then B∅,∅ is determined by letting J = J in (5.87), and the rest of the entries of B are
determined by the formula (for J ′ ̸= ∅)

BJ,J ′ = B(J ′)c,J ′
BJ,∅
B(J ′)c,∅

=

(
B(J ′)c,∅

BJ ′,∅B(J ′)c,J ′

)−1 BJ,∅
BJ ′,∅

.

This completes the proof.

Suppose that the matrices (γJ,J ′) and (νJ,J ′) are conjugated by the diagonal matrix Q, then
the matrices

(
γJ,J ′δJ ′⊆J−1

)
and

(
νJ,J ′δJ ′⊆J−1

)
are also conjugated by Q.

Proof of Theorem 5.1.1. We prove that DA(π) ∼= D⊗
A(ρ

∨(1)) as étale (φ,O×
K)-modules over

A. Since DK(ρ∨) is dual to DK(ρ) as étale (φ,O×
K)-modules, by definition and the equiv-

alence of categories [BHH+c, Thm. 2.5.1] and Proposition 5.5.1, there is a perfect pairing
D⊗
A(ρ)×D

⊗
A(ρ

∨) → A which is equivariant for the actions of φ and O×
K . Hence it suffices to show

that HomA(DA(π), A) ∼= D⊗
A(ρ(−1)) ∼= D⊗

A(ρ)(−1), or equivalently, HomA(DA(π), A)(1) ∼=
D⊗
A(ρ). By Proposition 4.10.4(iii) and Corollary 4.10.5, it suffices to compare the matrices

Mat(φ) (see (5.72)) and Mat(φ)′ (see (5.77)). Then by Lemma 5.6.4 it suffices to show that
γJ,∅/(γJc,∅γJ,Jc) = νJ,∅/(νJc,∅νJ,Jc) for all J ⊆ J . This is a consequence of (5.78) and Proposi-
tion 5.6.3.
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