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Résumé: Cette these est consacrée au pro-
gramme de Langlands modulo p pour GLs.

Dans la premiere partie, j’étudie la dimen-
sion de Gelfand—Kirillov des représentations 7w
provenant de la cohomologie modulo p des
courbes de Shimura. Soit p un nombre pre-
mier et F' un corps de nombres totalement
réel non ramifié en des places divisant p. Soit
7 : Gal(F/F) — GLy(F,) une représentation
galoisienne modulaire qui satisfait 'hypothese
de Taylor-Wiles et quelques hypotheses tech-
niques de généricité. Pour v une place fixée
de F' divisant p, on montre que de nombreuses
représentations lisses admissibles de GLa(F)
sur Fp associées a T dans les espaces pro-
pres de Hecke correspondants de la cohomolo-
gie modulo p ont une dimension de Gelfand—
Kirillov [F, : Qp]. Ceci s’appuie sur et étend
les travaux de Breuil-Herzig-Hu-Morra-Schraen
dans [BHH"23] et de Hu-Wang dans [HW22],
en donnant une preuve unifiée pour tous les cas
(7 semisimple ou non a v).

Dans la deuxieme partie, jétudie les
(¢, Of)-modules étales Dj(m) associés aux
représentations m provenant de la cohomologie

modulo p des courbes de Shimura. Soit K une
extension finie non ramifiée de Q, et F une ex-
tension finie de IF,. Pour 7 une représentation
lisse admissible de GLy(K) sur F satisfaisant
certaines propriétés de multiplicité un, je calcule
le rang du (¢, O )-module étale D 4(7) associé
défini dans [BHH™D|, ce qui étend les résultats
de [BHH™D| et [BHH (.

Dans la troisieme partie,
propriétés de compatibilité locale-global
des (¢,0F)-modules Dy(mw). Pour 7 une
représentation réductible quelconque de dimen-
sion 2 de Gal(K/K) sur F, je calcule explicite-
ment le (¢, O )-module étale DY (p) défini dans
[BHH"c]. Ensuite, soit 7 une représentation
lisse admissible de GLa(K) sur F apparaissant
dans certains espaces propres de Hecke de la
cohomologie modulo p et p sa représentation
sous-jacente de dimension 2 de Gal(K/K) sur
F. En supposant que p est maximalement non-
scindée, je montre sous certaines hypotheses de
généricité que le (p, O )-module étale D4(m)
défini dans [BHHTD| est isomorphe a D% (p).
Ceci étend les résultats de [BHH c|, ou p était
supposé semisimple.

j’étudie les
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Abstract: This thesis is devoted to the mod p
Langlands program for GLs.

In the first part, I study the Gelfand-
Kirillov dimension of the representations 7 com-
ing from the mod p cohomology of Shimura
curves. Let p be a prime number and F' a totally
real number field unramified at places above p.
Let 7 : Gal(F/F) — GLy(F,) be a modular
Galois representation that satisfies the Taylor—
Wiles hypothesis and some technical genericity
assumptions. For v a fixed place of F' above p,
we prove that many of the admissible smooth
representations of GLa(F),) over F, associated
to 7 in the corresponding Hecke-eigenspaces of
the mod p cohomology have Gelfand—Kirillov di-
mension [F, : Qp]. This builds on and extends
the work of Breuil-Herzig-Hu-Morra-Schraen in
[BHH"23| and Hu-Wang in [HW22], giving a
unified proof in all cases (T either semisimple or
not at v).

In the second part, I study the étale
(¢, Of)-modules D4(m) associated to the rep-
resentations 7w coming from the mod p cohomol-
ogy of Shimura curves and compute there ranks.

Let K be a finite unramified extension of Q,
and F a finite extension of IF,. For 7w an ad-
missible smooth representation of GLg(K) over
F satisfying certain multiplicity-one properties,
we compute the rank of the associated étale
(¢, 0% )-module D 4(r) defined in [BHH D), ex-
tending the results of [BHH™b] and [BHH c].

In the third part, I study the local-global
compatibility properties of the étale (¢, O)-
modules D4(w). For p any reducible two-
dimensional representation of Gal(K/K) over
F, we compute explicitly the associated étale
(¢, 0%)-module D?(p) defined in [BHHT(].
Then we let m be an admissible smooth repre-
sentation of GLy(K') over F occurring in some
Hecke eigenspaces of the mod p cohomology and
p be its underlying two-dimensional represen-
tation of Gal(K/K) over F. Assuming that p
is maximally non-split, we prove under some
genericity assumption that the associated étale
(¢, OF)-module D4(m) defined in [BHHTD) is
isomorphic to D%(p). This extends the re-
sults of [BHH c|, where p was assumed to be
semisimple.
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Chapter 1

Introduction générale

1.1 La correspondance hypothétique de Langlands modulo p
pour GLs

Soit p un nombre premier et K une extension finie de Q). Le programme de Langlands
modulo p pour GLg, initié par Breuil dans [Bre03], demande une correspondance possible entre
certaines représentations modulo p lisses admissibles de GLo(K) et des représentations modulo
p continues de dimension 2 du groupe de Galois Gal(K /K).

Le cas K = Q, est bien compris par les travaux de Breuil, Colmez, Emerton, Kisin,
Paskunas, etc. On liste les deux propriétés suivantes de la correspondance de Langlands modulo

p pour GL2(Qy).

e Colmez ([CollQ]) a construit un foncteur (connu comme le foncteur de Colmez) de la
catégorie des représentations modulo p admissibles de longueur finie de GL2(Q,) vers la
catégorie des représentations modulo p continues de dimension finie de Gal(@p /Qp), en
utilisant la catégorie de Fontaine des (g, I')-modules ([Fon90]) comme étape intermédiaire.
Cela donne une fagon functorielle de réaliser la correspondance de Langlands modulo p

pour GL2(Q,).

e Emerton ([Emell]) a montré que la correspondance de Langlands modulo p pour GL2(Q,)
satisfait la compatibilité local-global, dans le sens qu’elle peut étre réalisée dans le H' des
(tours de) courbes modulaires.

Cependant, lorsque K # Q,, la situation devient beaucoup plus compliquée. Par exemple,
il y a beaucoup plus de représentations supersingulieres modulo p de GLo(K), et on n’a pas
de classification de ces représentations ([BP12]). De plus, elles ne sont pas de présentation
finie ([Sch15],[Wu21]), et il est impossible (jusqu’a présent) de décrire explicitement 'une de ces
représentations. Motivés par le résultat de compatibilité local-global pour GL2(Q)) ([Emell]),
on s’intéresse aux représentations modulo p de GLy(K) provenant de la cohomologie des courbes
de Shimura.

On présente le cadre global. Soit F' un corps de nombres totalement réel qui est inerte en
p (pour des raisons de simplicité dans cette introduction). Soit D une algebre de quaternions
de centre F' qui est scindée en p et en exactement une place infinie. Pour chaque sous-groupe
ouvert compact U C (D ®p AYF)* ol AP est I'ensemble des adeles finis de F', on note Xy
la courbe de Shimura projective lisse associée sur F. Soit F une extension finie suffisamment
grande de F,,, qui est considérée comme le corps de coefficients a partir de maintenant. On note

K%Y F), la complétion de F en p et f o [K : Qp]. Soit Ok l'anneau des entiers de K et F, le

1



corps résiduel de K (donc ¢ = p/). On fixe un sous-groupe ouvert compact U? C (D x rARP)*
On considere alors la représentation lisse admissible suivante de GLy(K) sur F:

déf ;. — -
= lim Homg, 75/ ) (7, Heo(Xvvw,, <p FLF)) (1.1)
U,

p

~

ou la limite inductive est prise sur les sous-groupes ouverts compacts U, C (D xp K)* =
GL2(K), et 7 : Gal(F/F) — GLo(F) est une représentation continue absolument irréductible
telle que m # 0.

L’une des attentes du programme de Langlands modulo p est que la représentation m comme
en peut étre utilisée pour réaliser une correspondance de Langlands modulo p pour GLy(K).
Plus précisément, on a l’espoir suivant.

Espoir 1.1.1. Pour m comme en , il existe un entier d > 1 dépendant de 7 et UP tel que

TET (F\Gal(?/K))@d :

Ici, pour p une représentation modulo p continue de dimension 2 de Gal(K/K), on note 7(p)
la représentation modulo p hypothétique admissible de GLo(K) lui correspondant.

Par conséquent, I'une des questions clés du programme de Langlands modulo p est de com-
prendre la représentation m de GLy(K) en . En choisissant soigneusement le sous-groupe
ouvert compact UP C (D xp A7P)*, on suppose que l'on est dans la situation de “multiplicité
un” au sens que d = 1 dans I’Espoir [L.1.1] ce qui est le premier cas a considérer. Pour des
raisons de simplicité, on fait cette hypothese a partir de maintenant dans cette introduction
(sauf indication contraire).

Lorsque F' = Q et D = M>(Q), la représentation = de GL2(Q,) en est bien com-
prise par [Emell], et I'Espoir est vrai. Cependant, dés que K # Q,, cette question
devient particulierement difficile. Pour l'instant, on ne connait qu’un tout petit morceau de la
représentation m. Le but de ma these est de mieux comprendre la représentation 7 en suivant
la voie des résultats récents de Breuil-Herzig-Hu-Morra-Schraen ([ BHH™23],|[BHH"b|,[BHH c|)

et de montrer que certaines propriétés de m ne dépendent que de la restriction 7, def 7| Gal(K/K)"
Le comportement de 7 est différent lorsque 7, est semisimple ou non. Plusieurs résultats de
[BHHT23|, [BHHTD], et [BHH c| ne traitent que du cas ol 7, est semisimple, et le cas non-
semisimple est beaucoup plus délicat que le cas semisimple. Le theme de ma these est de
généraliser ces résultats & tous les 7, (y compris les 7, non-semisimples), pour lesquels on a
besoin d’arguments plus élaborés en théorie des représentations.

1.2 Apercu de quelques résultats antérieurs

On commence par un apercu de quelques résultats antérieurs sur la représentation = comme
en , qui ont pour but commun de déterminer certains sous-espaces invariants de dimension
finie de la restriction de m & GL2(Ok ) et de prouver qu’ils ne dépendent que de 7.

La premiere étape vers la compréhension de la représentation 7 est d’étudier son GLa(Ok)-
socle socqr, (o) T, qui est une somme directe de poids de Serre de GLa(IF,), c’est-a-dire de
représentations absolument irréductibles de GLa(F,) sur F. Ces poids de Serre sont prédits par
[BDJ10]. Ceci est considéré comme la partie poids de la conjecture de Serre, généralisant la
conjecture de Serre originale ([Ser87]) et est maintenant un théoreme. A partir de maintenant,
on suppose que p > 5 et que T Gal(F/F(YT)) est absolument irréductible.

2



Théoréme 1.2.1 ([EGSI5],[GLS1H]). Soit © comme en (1.1). Supposons que T, est générique
au sens de [BP12, Def. 11.7]. On a alors

SOCGLy(0x) T = @ o,
ceW (ry)

ot W(F;,/) est 'ensemble des poids de Serre de FX défini dans [BD.J10, §3]. En particulier,
SOCQL,(0x) T Ne dépend que de Tp.

L’étape suivante consiste & étudier la représentation 751 de GLo(Ox) ott K “ +
pMa(Ofk), qui contient SOCQL,(O)) T comme sous-représentation.

Théoréme 1.2.2 ([LMS22],[HW1S],[Lel9]). Soit m comme en (1.1). Supposons que T, est
générique au sens de [BP12, Def. 11.7]. On a alors

ot Do(T,) est une représentation explicite (de dimension finie) de GLa(F,) sur F construite par

Breuil-Paskunas ([BP12, §13]). En particulier, 71 ne dépend que de 7.

Un diagramme D est une représentation Dy de GL2(Of) telle que Dé<1 = Dy avec un

i I & a0i i Lo déf M14pOk Ok
automorphisme Il sur D,', dont le carré agit par un scalaire non nul, ou I; = pOr 14p0x ) ©

GL2(Ok) est le sous-groupe de pro-p-Iwahori. Supposons que 7, est générique au sens de [BP12,
Def. 11.7]. Alors Breuil et Pasktunas ont construit une famille de diagrammes attachés a 7, telle
que Do = Do(7).

Puisque la représentation m comme en a un caractere central, on obtient un diagramme
D(r) avec Dy = 751 et II donné par 'action de (g (1)) En particulier, puisque II normalise Iy
et T oul def (p%i gf ) C GL2(Ok) est le sous-groupe d’Iwahori, il envoie un caractére x de

K
I & sa conjugaison x*® par la matrice (2 (1)) Par le Théoreme m D(m) est isomorphe & 'un
des diagrammes attachés a 7, définis par Breuil et Pasktunas. On a le raffinement suivant du
Théoréme qui distingue un diagramme unique D dans la famille ci-dessus, sous réserve
d’une condition de compatibilité local-global lorsque 7, est suffisamment générique.

Théoréme 1.2.3 ([DL21]). Soit T comme en . Supposons que T, est suffisamment générique
(voir [DL21, §1] pour une signification précise). Alors le diagramme D(m) ne dépend que de Tp.

L’un des principaux outils communs a la preuve du Théoreme du Théoreme(l.2.2[et du
Théoréme est le foncteur de patché défini par Emerton-Gee-Savitt ([EGS15]) en s’appuyant
sur les travaux de Taylor et Wiles ([TW95]), et de Kisin ([Kis09]). II s’agit d’un foncteur exact
M de représentations continues de GL2(Of) sur des W (FF)-modules de type fini vers des Roo-
modules de type fini avec des propriétés supplémentaires, ou Ro, est 'anneau de déformation
patché et est isomorphe & un anneau de séries formelles sur 'anneau de déformations cadrées
universel de ?;f dans notre cas (voir [EGS15|] pour un énoncé précis). Ce foncteur nous permet
de transférer des énoncés du coté de GLy vers le coté Galois. Une fois que I'on a suffisamment
d’informations sur les anneaux de déformations galoisiennes, on est en mesure d’utiliser la
philosophie de Breuil-Mézard ([EGI14]) pour déduire des propriétés du co6té GLy. On verra des
exemples de ce type d’argument au § ci-dessous.

3



1.3 La dimension de Gelfand—Kirillov de 7«

Le premier résultat concerne la dimension de Gelfand—Kirillov de m comme en (|1.1]), qui
mesure la croissance de la dimension des sous-espaces invariants de 7 sous les sous-groupes de
congruence principaux. Plus précisément, On définit la dimension de Gelfand—Kirillov de 7
(voir [EP20]) comme I'unique entier dimgr,, k) () tel qu'il existe a < b dans R satisfaisant

dimﬁr(ﬂ' K”)

p'r‘b dimGL2 (K) (7‘(‘)

a <b

pour tout n > 1, ou K, | + p" M2 (Ok) pour n > 1.

Théoréme 1.3.1 (Theorem [3.1.1). Soit m# comme en . Supposons que T, est suffisamment
générique (voir la condition (iv) au §[3.1] pour une signification précise). On a alors

dimgr, (k) (m) = f-

Le Théoreme est démontré par [BHHT 23] lorsque 7, est semisimple et démontré par
[HW22] lorsque 7, est non-semisimple en utilisant une méthode différente. D’une part, la
méthode de [HW22] ne fonctionne que dans le cas non-semisimple. D’autre part, il s’avere que
la méthode de [BHH™23| peut étre généralisée au cas non-semisimple, ce qui n’avait pas été
remarqué auparavant. On adapte la méthode de [BHH™ 23| au cas non-semisimple. Cela fournit
une preuve uniforme du Théoreme [1.3.1]

La preuve du Théoreme implique le calcul de nouveaux cas d’anneaux de déformations
galoisiennes, ce qui nous permet d’utiliser davantage le foncteur de patché et donc d’aller au-dela
de 751 comme dans le Théoréme On donne un apergu de la preuve du Théoreme
en suivant de pres [BHH™23, §1] et indique ce qui doit étre changé dans le cas non-semisimple.
Soit 1 ¥ p%; gi
et mg, l'idéal maximal de lalgebre d’Iwasawa F[K;/Z;]. On note encore mg, l'idéal de
F[GL2(Ok)/Z1] engendré par mpg, sous linclusion naturelle F[K,/Z;] — F[GL2(Ok)/Zi]
lorsqu’il n’y a pas de confusion possible. Par les arguments cruciaux de Gee et Newton dans
[GN20, Appendix A], on sait que dimgp,(x)(7) > f pour m comme en (1.1)). Afin d’obtenir la
borne supérieure sur dimgp, (i) (), on doit appliquer le théoréme de théorie des représentations
suivant & 7 comme en . Il s’agit d’un cas particulier de [BHHT23, Thm. 6.4.7] lorsque 7,
est semisimple, et d’une conséquence de [HW22l, Prop. 4.20] et [BHH" 23, Prop. 6.4.6] lorsque
Tp est non-semisimple. On renvoie au Theorem ci-dessous pour un énoncé plus général,
qui s’applique & 7 pas nécessairement dans la situation de “multiplicité un”.

C GL2(Ok) le sous-groupe d’Iwahori. Soit Z; le centre de K

Théoréme 1.3.2 (Theorem [3.5.3)). Soit ™ une représentation lisse admissible de GLa(K) sur
F avec un caractére central. Supposons que

(i) on asocgr, (o) (T) = GBUEW(FX) o;
(ii) pour chaque o € W(?X), on a [W[m%(IHGLg(OK) co]l =1;
(ili) on a wt = Do(7))" comme représentations de I.

Alors dimgr, gy (7) < f. Ici, W[m%ﬁ] est l’ensemble des éléments de 7 (considéré comme un

module sur F[K1/Z1]) annihilés par w3 , et [x[m J|aro (o) © 0] est la multiplicité de o dans
la semisimplification de w[m%ﬁ] en tant que représentations de GLa(Ok).
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On doit alors montrer que la représentation 7 en ([1.1)) satisfait les conditions du Théoréme

Les conditions (i) et (iii) découlent du Théoreme et du Théoreme et on se

concentre donc sur la condition (ii) du Théoréme 1.3.2} Puisque I'on a dimp Homgy,,(0,) (0, 7) =
1 pour o € W(7,) par la condition (i), il suffit de montrer que

dimp Homgy, (0, (Projro,m) <1 Ve € W(7)), (1.2)

on T ¥ F[GL2(Ok)/Z1]/m%,, et Projz o est Ienveloppe projective de o dans la catégorie des

I-modules.

On note M le foncteur de patché comme au § D’apres la construction de M, pour
toute représentation V' de GL2(Ok) de dimension finie sur I, on a

Homp (M (V) /Moo, F) = Homgr,, (0, (V, ), (1.3)
oll My, est I'idéal maximal de Ro. En combinant (1.2]) et (|1.3), il suffit de montrer que
My (Projz o) est un Roo-module cyclique Vo € W (7). (1.4)

On fixe 0 € W(?X ). Pour montrer 1D pour o, on releve le I-module Projzo sur F
en caractéristique zéro suivant [BHH23| §7.3] afin que 1'on puisse utiliser les propriétés de

compatibilité local-global de M. On note P, def ProjGL2(]Fq) o 'enveloppe projective de o
dans la catégorie des F|GLy(F,)]-modules et note P, le O[GL2(F,)]-module projectif relevant

P,. On fixe un plongement og : F; < F et note o def 000! pour j € Z, ot ¢ : x — P est le
Frobenius arithmétique sur F,. On note encore o; le plongement correspondant O — W (F).
Pour 0 < j < f — 1, on définit la représentation de GLy(Of) sur W (F)

Ry & (Sym®> W(F)? @ det )Y @y By,

ou “(j)” signifie que GL2(Of) agit via le plongement o : O — W (F). Pour chaque j, il existe
un isomorphisme

Ryj/pR2j = P, ® P+ & P, -
J J

pour certains poids de Serre aj et o, , ce qui induit une injection

Lj - P, — RQJ‘/pRQJ’.
On définit alors un GL2(Of )-réseau Ry ; dans Ry j[1/p] par

déf

RIQJ =P, XRQ,j/p RQJ‘ = {3: S RQ’]‘ : (:c mOdpRQJ‘) c Lj(Pa)}.

On note L_; & P,. Pour 0 < Jj < f—1, on définit un GL2(Ok)-réseau L; dans L_1[1/p] &
(D= R2,[1/p)) par

I gt (ZE, (xj’)OSj’Sj) ceL 1P (@;/:ORQJ‘) : ($j/ modpRg,j/) = ($ HlOdpol)
’ via 1; 1 L_y/pL_1 = Roy/pRay V0 < j' <’

ce qui revient a définir
Lj = Lj,1 Xp, Rl27j (15)

pour 0 < j < f—1. On aalors Ly_1/pLy_1 = Projzo. Par I'exactitude de M, il suffit de
montrer que le Ro-module My, (Ly_1) est cyclique.
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Par [Lel9, Thm. 4.9], on sait que le Ry -module M (P,) est cyclique. Par [BHHT23,
Thm. 8.3.4], on sait que le R -module MOO(R’QJ-) est cyclique pour chaque 0 < j < f—1
lorsque 7, est semisimple. La preuve de [BHH23, Thm. 8.3.4] utilise les techniques standard
de dévissage comme dans [EGSI5| §10] et [Lel9, Lemma 4.5], et peut étre facilement généralisée
a tous les 7,. On peut alors utiliser et la cyclicité de Moo (Py) et Moo(R2 ;) pour montrer
que Mo (L¢_1) est cyclique par induction.

Pour simplifier, on ne parle que de la premiere étape de I'induction. Par l'exactitude de
My, on a I'égalité de R,.-modules

Moo (Lo) = Mos(Po) X pry(py) Moo (R p)- (1.6)

On sait déja que chaque terme sur la droite de ([1.6)) est cyclique. Pour montrer que My (Lg)
est cyclique, il suffit de montrer que

Anng_ (Mw(Py)) = Anng (Mw(Py)) + Anng (Moo(Rhy)). (1.7)

Chaque terme de (1.7)) a une interprétation comme un certain anneau de déformations ga-

loisiennes. On note Ryv I'anneau de déformations cadrées universel de F;,/. Pour 7 un type

inertiel modéré, on note f,lv’o)’T (resp. Rgv’*l)o’T) le quotient maximal réduit, plat sur O de
p P

RFZ qui paramétrise les déformations potentiellement cristallines de ?;/ de type inertiel T et de
poids de Hodge-Tate paralleles (1,0) (resp.poids de Hodge-Tate (2,—1) dans le plongement
oo : K — W(F)[1/p] et (1,0) ailleurs). On note

pl0) S Ker(Rey — R™T);
P
7(.2’71)0 (ﬁf KGT(R;\/ —» RE%’il)D’T)_
P Tp

Par un certain détour (voir [BHH™23, §1] pour plus de détails), pour montrer ((1.7) on est réduit
a la preuve de la propriété subtile de (non-)congruence suivante.

Théoréme 1.3.3 (Proposition [3.4.3.3). On a

p € Nrpl? 4 p( e,
ot T parcourt les types inertiels modérés tels que o est un facteur de Jordan—Holder dans la
semisimplification modulo p de o(7) (ici o(T) est la représentation lisse irréductible de GLa(Ok)
associée par Henniart o T dans Uappendice de [BMO02]), et 1o est un type inertiel modéré tel
que 'ensemble des constituants irréductibles de la semisimplification modulo p de o(1y) contient
Vensemble W (7)) (qui existe).

Lorsque 7, est semisimple, le Théoreme est démontré dans [BHHT23, Prop. 4.3.3]
par un calcul explicite des anneaux de déformations potentiellement cristallines en utilisant
la machinerie des modules de Kisin, qui a d’abord été suggéré par Breuil, puis développé par
[Kis06] et [LLHLMIS]. Nous généralisons le calcul des anneaux de déformations potentiellement
cristallines au cas non-semisimple. Ceci complete la preuve du Théoréme

Comme sous-produit de la preuve du Théoréme [I.3.1] on peut déterminer la structure de
la m%ﬁ—torsion de la représentation m en , qui est une généralisation du Théoreme
C’est un cas particulier de [BHHT23, Thm. 1.9] lorsque 7, est semisimple, et est démontré
dans [HW22, Thm. 1.4] lorsque 7, n’est pas semisimple. On renvoie au Théoréme (ii)
ci-dessous pour un énoncé plus général, qui s’applique a 7 pas nécessairement dans la situation
de “multiplicité un”.



Théoréme 1.3.4 (Theorem [3.6.3.1ii)). Soit @ comme en (1.1). Supposons que T, est suff-
isamment générique (comme dans le Théoréme . On a alors

Tr[m%ﬁ] = DO(F;)/)v

ot 50(F;)/) est une représentation explicite (de dimension finie) de T sur F définie dans [HW22,
§4]. En particulier, W[m%ﬁ] ne dépend que de Tp.

Comme étape intermédiaire pour montrer le Théoréeme on déduit également une pro-

priété importante du module gradué associé du dual 7V det Homp(7,F) pour 7 comme en
, ce qui généralise le résultat de [BHHT 23| ol T, était supposé semisimple (cette propriété
est également démontrée par [HW22] lorsque 7, n’est pas semisimple en utilisant une méthode
différente). Cela conduit & une sous-catégorie abélienne de la catégorie des représentations lisses
admissibles de GL2(K) qui posseéde des propriétés de finitude agréables et qui sera introduite
au § [L.4] ci-dessous. On note my, 'idéal maximal de 'algebre d’Iwasawa F[I;/Z;].

Théoréeme 1.3.5. Soit m comme en . Supposons que T, est suffisamment générique
(comme dans le Théoréme. Alors le module gradué 8y, 7w sur lalgébre graduée 8, F[11/Z1]
est annihilé par un idéal a deux cotés explicite J, et 'anneau quotient gry, F[11/Z1]/J est com-
mutatif et est isomorphe a

F[y07 2055 Yf-1, Zf*l]/<y0207 s 7Z/f712f—1)-

1.4 Le foncteur 7 — Dy(7)

En utilisant le Théoréme Breuil-Herzig-Hu-Morra-Schraen ([BHH'c|) a construit un
foncteur exact D4 d’une certaine sous-catégorie de la catégorie des représentations lisses ad-
missibles de GLy(K) sur F a la catégorie des modules multivariables (¢, (’)[X(), qui est une
généralisation du foncteur de Colmez ([Coll0]). La question fondamentale est alors de déterminer
la structure de D4 (7) pour m comme en , ce qui peut étre utilisée pour déduire des pro-
priétés de .

On rappelle tout d’abord la définition de I'anneau A, qui est un analogue en plusieurs
variables de F((X)). On note Ny « (5 le) C GL2(Ok). Pour 0 < j < f — 1, on définit

Y @ (o ) err,

aGF;

ol [a] € O est le reléve de Teichmiiller de a € F;X. On a alors F[No] = F[Yp,...,Y;1]. On
définit )
AL FINo] [1/ (Yo Y1)

ou la complétion se fait par rapport a la topologie (Yp,...,Ys_1)-adique sur F[No]. II existe
une action F-linéaire de O sur F[Ny] donnée par multiplication sur Ny = Ok, et une action
F-linéaire de Frobenius ¢ sur F[Ny] donnée par multiplication par p sur Ny = Ok. Ces deux
actions s’étendent canoniquement par continuité en des actions F-linéaires continues de ¢ et
Ojc qui commutent sur A. Un (¢, O )-module étale sur A est par définition un A-module libre
de type fini muni d’un Frobenius semi-linéaire ¢ et d’une action semi-linéaire continue de Oy
commutant avec @ telle que I'image de ¢ engendre tout.

Pour 7 une représentation lisse admissible de GLg(K) sur F avec caractere central, on
considere 7" comme un F[I;/Z;]-module de type fini et on le munit de la topologie my,-adique.
On définit

Da(m) € F[No][1/ (Yo - - Y5—1)|@rpnops
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ol la complétion se fait par rapport & la topologie produit tensoriel. L’action de Oj; sur Vv

donnée par f +— fo (&9) (pour a € OF) s’étend par continuité & D(r), et Paction de ¢ sur
7" donnée par f + fo ({)’ ?) induit une application A-linéaire continue

ﬁ:DA(Tr)—>A®%ADA(7T). (1.8)

On note C la catégorie abélienne des représentations lisses admissibles m de GLa2(K) sur F avec
des caracteres centraux tels que le module gradué 8y, 7V est annihilé par J"* pour quelque
n € N (voir le Théoréme [1.3.5). Pour 7 dans C, D4(m) est un A-module libre de type fini par
[BHH™bl Cor. 3.1.2.9] et [BHH ¢, Remark. 2.6.2]. Si de plus 3 est un isomorphisme, alors son
inverse 87! = id ®¢p fait de Da(7) un (p, O )-module étale. En particulier, lorsque K = Q,,
la construction ci-dessus récupere le foncteur de Colmez ([Coll0]). Notre résultat principal est
le suivant.

Théoréme 1.4.1 (Theorem4.1.1)). Soit T comme en . Supposons que T, est suffisamment
générique (voir la condition (v) au §[5.1] pour une signification précise). Alors w est dans C, f3
dans (@ est un isomorphisme et

rank 4 Dy (7)) = 2.

Par le Théoreme on sait que 7 est dans C. Par [BHH'b, Thm. 3.3.2.3], on sait
que rang 4 D (7) < 2/. Le Théoreme est démontré par [BHH" ¢, Thm. 3.1.3] lorsque
7p est semisimple. Nous généralisons la preuve de [BHH¢] au cas non-semisimple, ce qui est
sérieusement plus délicat.

La preuve du Théoreme se fait par une construction explicite d’'une A-base du (¢, O%)-
module étale dual Hom4(D4(7), A) pour m comme en (1.1)). Comme dans [BHH ¢, (87)], il
existe une injection A-linéaire canonique

pis : Homa(Da(7), A) = Hom§" (D 4(7),F). (1.9)

Pour i = (ig,...,if-1) € Z];O, on note ||z]| wf Zj-:(} ij et on écrit Y pour H;;é Y;J € F[No].
On a alors la proposition suivante.

Proposition 1.4.2 ([BHH d]). Soit 7 comme en (1.1)).

(i) L’ensemble Homg*™ (Da(w),F) peut étre identifié a l'ensemble des (7);cqs avec x; € T et

(a) YEx; =z, pour tout i € ZT et k € ZJ;O;
(b) il existe d € Z tel que z; € 7r[m%”+d+1] pour tout i € Z (ot W[mjil] 4y sij<0).
(i) Un élément (x;);czs € Hom§™ (D a(w),F) est dans Uimage de i, comme en si et
seulement s’il satisfait la condition de finitude suivante :
{ZEZf cxy # 0, ||| :M} est fini VM € Z.

On va définir 2/ éléments z; = (274)iezr € Homf™(D4(m),F) indexées par les sous-
ensembles J C J def {0,1,..., f — 1}. On montre ensuite que les z; pour J C J sont dans
I'image de p, et forment une A-base de Hom4(D4(7), A). On donne un apercu de la construc-
tion dans le cas ou T, est maximalement non-scindée (ou de facon équivalente, |W(7,)| = 1)
pour plus de simplicité.



Etape 1. On définit = ;¢ pour tout J C J.

En prenant d = 0 dans la Proposition m(l)(b), on voit que x50 € 7' pour tout J C J.
D’apres le Théoreme on sait que /1 est une somme directe de 2/ caracteres distincts de
I, qui peuvent étre paramétrés par les sous-ensembles J C J. On fait le choix d’un vecteur
propre g € 7' pour I'action de I pour chaque J C J.

Etape 2. On définit 2 pour tout J C J.
Par le Théoreme|1.2.2lon a 751 22 Dy(7Y), qui est explicitement connu et contient 7! comme
»),d P
sous-espace. Pour chaque J C J on définit z;; comme I'unique vecteur propre dans 751 pour

l'action de ([FO‘ZX ] [FOX]
q

) satisfaisant
(Yo Y1) wyp =2

Etape 3. On définit = ;; pour tout J C J et i € Zt.
Tout d’abord, en utilisant la Proposition M(i)(a), pour J C J et i € ZI tel que ij < f
pour tout j € J on définit

déf g
2y = Y,y

Pour J C J, on définit J + 1 «f {(j +1mod f) € J :j € J}. On définit § : Z/ — Zf par

5(2); o ijp1 8510 < j < f—2et 0(i)p o ip. En utilisant la relation entre les éléments

Tyf € 7K1 on peut étendre la définition de x Ji a tous les i € 77 de maniére inductive en
utilisant la relation suivante

0
(‘81)37J+1,1: E ET BRI+ 1 ps (i) 4"
J'Cy

ou g5 € {1}, pyp € F sont certaines constantes qui dépendant du choix de x;9, et ou

QJ’J/ c 7T vérifie —1 < c}-l"]/ < 2p pour tout j € J. On renvoie au Théoreme 4.6.4] ci-dessous

pour une définition précise des éléments x;; qui fonctionne pour tout 7.

Etape 4. On montre que chaque x; satisfait la condition de finitude de la Proposition m
qui garantit que =y se trouve dans I'image de p. comme en . Une fois que 'on a montré
que zy € Homa(D4(m), A) pour tout J, il n’est pas difficile de conclure que les z; pour J C J
forment une A-base de Homu (D (), A). Ceci termine la preuve du Théoréme [1.4.1]

En analysant plus en détail la structure des sous-modules de 751 (pour 7 comme en (1.1))
et les z 7, on peut montrer la généralisation suivante du Théoreme [1.4.1

Théoréme 1.4.3 (Theorem [4.1.2)). Soit m comme en . Supposons que T, est suffisamment
générique (comme dans le Théoréme . Alors pour w1 une sous-représentation de m, on a

)

rang, Da(m) = [JH(x{") 0 W (")

1

o JH(T({Q) est l’ensemble des facteurs de Jordan—Hélder de 7['{( en tant que représentation de

GL2(Ok), et p* est la semisimplification de p.



Comme une application du Théorémea la compréhension de 7 en , on montre que 7
est engendrée par un nombre fini de vecteurs en tant que représentation de GLo(K), généralisant
le résultat de [BHHTb| ou 7, était supposé semisimple (ce résultat de génération finie est
également démontré par [HW22] lorsque 7, n’est pas semisimple en utilisant une méthode
completement différente).

Théoréme 1.4.4 (Corollary|4.11.3). Soit m comme en . Supposons que T, est suffisamment
générique (comme dans le Théoréme . Alors, en tant que représentation de GLa(K), 7
est engendrée par Do(T)).

On remarque qu l'on ignore si m est de longueur finie en tant que représentation de GLo(K).
Notons le point important suivant, le Théoréme [1.4.3| est essentiel pour montrer que 7 est de

longueur finie (dans le cas non-semisimple) dans un travail en cours de Breuil-Herzig-Hu-Morra-
Schraen (|[BHHal).

1.5 Le foncteur 7, — D%(T,)

Outre le rang de D 4(m), Breuil-Herzig-Hu-Morra-Schraen ([BHH c|) donne une description
conjecturale de D 4(m) comme (p, O )-module étale pour 7 comme en (1.1). La construction
utilise le (¢, O )-module de Lubin-Tate (voir [KR09]) associé & 7, comme étape intermédiaire,
ce qui peut étre rendu assez explicite. On donne un exemple du (¢, (’)lx()—module de Lubin-Tate
Dk (7)) lorsque 7, est suffisamment générique. On renvoie au § pour la description explicite
de Dk (7)) pour 7, réductible arbitraire (de dimension 2), et on renvoie & [BHH" ¢, Lemma 2.1.6]
lorsque 7, est irréductible.

Exemple 1.5.1. Supposons que 7, est réductible et suffisamment générique comme en .
Alors le (¢,0F)-module de Lubin-Tate D (Tp) associé a T, peut étre décrit explicitement
comme suit (a € O ):

f—1
Dk (Tp) = HODK,oj(Fp)
]:
Dio,(Ty) = F(Tko)el’ @ F(Txe,)el”
pleg ™ ) = (e o) Mat(o)
aleg” €)= (e ef’) Mat(at)),

ot Tk »; est une variable de Lubin—Tate appropriée, les indices j étant considérés modulo f,

—(g—1)h;
Mat (o)) = O‘J'TK,;]]- T Bidj
0 Bj

pour aj,B; € F*, d; € F,0< h; <p—1, et
Mat(al)) € I + My (TH L FITH 1) |

ce qui détermine de fagcon unique Mat(a(j)).
Lorsque 7, est suffisamment générique (comme dans I’Exemple [1.5.1]), on définit
_\ déf - x
A0<5<f-1 Y
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avec les actions canoniques de ¢ et O, ou le plongement F((T [q(_olj ) — A envoie T f(_glj sur

©(Y;)/Y; € A. 1l S'agit d'un (¢, OF)-module étale sur A de rang 2/. Le résultat principal est
le suivant, qui généralise le Théoreme [1.4.1

Théoréme 1.5.2 (Theorem [5.1.1)). Soit m comme en . Supposons que T, est mazimale-
ment non-scindée (ou de maniére équivalente, |W(Tp)| = 1) et suffisamment générique (voir la
condition (v) au § pour une signification précise). On a alors un isomorphisme de (¢, OF)-
modules étales

Da(r) = DS (r,(1)),

ot Tp(1) est le tordu de Tate de 7. En particulier, D () ne dépend que de 7).

Le Théoreme est démontré par [BHH ¢ lorsque 7, est semisimple. En utilisant la
description explicite de D% (7,) dans I'exemple et , ainsi que les résultats sur D 4(7)
(voir §1.4] et , on est réduit au calcul de certaines constantes apparaissant sur le diagramme
(rlt — 7K1) (voir ci-dessus le Théoreme pour ces diagrammes). Lorsque 7, est maxi-
malement non-scindée (et suffisamment générique), ces constantes sont calculées par [BD14] en
termes du module de Fontaine-Laffaille associé a 7, ([FL82]). On remarque que notre méthode
devrait s’appliquer a W (7,) arbitraire une fois que 'on aura calculé les constantes correspon-
dantes apparaissant sur le diagramme (7!t < 751) (voir le Théoreme .

La définition de D (7)) dans (1.10) présente 'inconvénient que le plongement F ((qu(_o_lj ) —

A ne commute pas a I'action de Q. Par conséquent, cette définition ne fonctionne que pour 7,
suffisamment générique, ott le (p, O )-module de Lubin-Tate Dg (7)) a une forme relativement
simple comme dans ’exemple et il existe une action canonique de O} commutant avec
'action de ¢. Pour 7, général, il ne peut y avoir d’action de O} sur D% (Tp) commutant avec
Iaction de ¢ si on définit encore D (7)) comme en .

Pour résoudre ce probleme, Breuil-Herzig-Hu-Morra-Schraen (|[BHH  ¢]) donne une définition
plus conceptuelle du (¢, O )-module étale D (F,,) en utilisant des espaces perfectoides, que I'on
rappelle brievement. Par les résultats de [Far20] et [FF18], il existe un isomorphisme naturel
K*-équivariant (ou p agit comme ¢ sur chaque Y})

m e F[Yy P YT S FTYET L TP 1A (f copies de T, ).
déf

olt Tk, est la variable de Lubin-Tate, A = {(k;) € (K*)7,[]; k; = 1} et le groupe symétrique
S permute les Tk 4,. Par conséquent, m induit un morphisme

dét o0 oo\ XFf dét oo oo
ms Xpr © Spa (F(T2),FIT{T) ™ = Xoy © spa (FIvg ™, Y1)

ou on utilise le raccourci Spa(R) pour le spectre adique Spa(R, R). Il existe un sous-ensemble
ouvert perfectoide affinoide U = Spa(As, A%) € X0, , oit A est le perfectisé-complété de A.
De plus, la restriction m : m™(U) — U est un A x & s-torseur pro-étale. Pour 7, arbitraire,
en prenant le produit tensoriel extérieur du (¢/, O5)-module de Lubin-Tate associé D 4, (Tp)
avec lui-méme, on obtient un fibré (K*)/ x & s-équivariant sur Xz, donc sur m~1(U) par
restriction. En utilisant la descente pro-étale ([SW20]), on obtient un fibré K*-équivariant sur
U = Spa(Ax, AS). En prenant les sections globales et en utilisant un résultat de descente
pour le Frobenius, on obtient finalement un (¢, O%)-module étale sur A. On obtient donc un
foncteur 7, — D% (7,). En particulier, cela donne une définition de D% (,,) pour 7, arbitraire.
On conjecture alors que cette définition fonctorielle de D%(7,) est la bonne.
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Conjecture 1.5.3 ([BHH'¢|). Soit m comme en . On a un isomorphisme de (o, O )-
modules étale (pour 7) arbitraire).

Da(m) = DF(7p(1)).
En particulier, Da(m) ne dépend que de Tp.

Le théoréme suivant donne une description explicite de D% (7,) pour T, arbitraire (A dimen-
sion 2), généralisant le résultat de [BHH c| ou 7, était supposé semisimple. En particulier, avec
le Théoréme cela montre la conjecture lorsque 7, est maximalement non-scindée et
suffisamment générique (le cas semisimple étant traité par [BHH™c]).

Théoréme 1.5.4 (Theorem [5.5.10). (i) Supposons queT, est suffisamment générique (comme
dans lexemple|1.5.1). Alors la définition perfectoide de D%(Fp) coincide avec la définition

dans (1.10) (donnée par la recette Tg(’_olj — o(Y;)/Y;).

(ii) Pour 7, arbitraires (4 dimension 2), on a une description explicite de D% (Tp,). Voir le
Théoréme |5.5.100 pour plus de détails. En particulier, la recette T[q{,_alj — o(Y;)/Y; ne
fonctionne plus, et la recette correcte implique au moins ©(Y;)/Y; et o(Yj—1)/Yj-1.

Enfin, on remarque que les preuves du Théoreme [1.5.2]et du Théoreme [1.5.4] sont tres calcu-
latoires. Il existera peut-étre un jour des preuves plus conceptuelles qui éviteront les hypotheses
de généricité sur 7, et les calculs techniques, prouvant ainsi completement la conjecture m
C’est une direction possible de recherche pour le futur.
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Chapter 2

General Introduction

2.1 The hypothetical mod p Langlands correspondence for GL,

Let p be a prime number and K be a finite extension of Q,. The mod p Langlands pro-
gram for GLg, initiated by Breuil in [Bre03], asks for a possible correspondence between certain
admissible smooth mod p representations of GL2(K') and continuous 2-dimensional mod p rep-
resentations of the Galois group Gal(K /K).

The case K = Q, is well-understood by the work of Breuil, Colmez, Emerton, Kisin,

Pasktinas, etc. We list the following two properties of the mod p Langlands correspondence
for GL2(Qp).

e Colmez ([Coll0]) constructed a functor (known as the Colmez’s functor) from the category
of admissible finite length mod p representations of GL2(Q)) to the category of finite-
dimensional continuous mod p representations of Gal(@p /Qp), using Fontaine’s category
of (¢, I')-modules ([Fon90]) as an intermediate step. This gives a functorial way to realize
the mod p Langlands correspondence for GL2(Q)).

e Emerton ([Emell]) proved that the mod p Langlands correspondence for GLy(Q)) satisfies
the local-global compatibility, in the sense that it can be realized in the H! of (towers of)
modular curves.

However, when K # Q,, the situation becomes much more complicated. For example,
there are many more supersingular mod p representations of GLo(K), and we don’t have a
classification of these representations ([BP12]). Moreover, they are not of finite presentation
([Sch15],[Wu21]), and it is impossible (so far) to write down explicitly one of these represen-
tations. Motivated by the local-global compatibility result for GL2(Q,) ([Emelll), we are
interested in the mod p representations of GLy(K) coming from the cohomology of Shimura
curves.

We introduce the global setup. Let F' be a totally real number field that is inert at p (for
simplicity in this introduction). Let D be a quaternion algebra with center F' which is split at
p and at exactly one infinite place. For each compact open subgroup U C (D ®p A%)* where
A% is the set of finite adeles of F', we denote by X the associated smooth projective Shimura

curve over F'. Let F be a sufficiently large finite extension of I,,, which is considered as the

coefficient field from now on. We denote K F), the completion of F' at p and f def (K : Q.

Let Ok be the ring of integers of K and F, be the residue field of K (hence ¢ = pl). We
fix a compact open subgroup UP C (D xp A%P)*. Then we consider the following admissible
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smooth representation of GLa(K) over F:

7 % lim Hom, )y (7 HA(Xuru, < FLF)). (2.1)
Up
where the inductive limit runs over compact open subgroups U, C (D xp K)* = GLy(K), and
7: Gal(F/F) — GLy(F) is a continuous absolutely irreducible representation such that 7 # 0.

One of the expectations of the mod p Langlands program is that the representation 7 as in
can be used to realize a mod p Langlands correspondence for GLa(K'). More precisely, one
has the following hope.

Hope 2.1.1. For 7 as in , there exists an integer d > 1 depending on T and UP such that

T=r (ﬂeal(?/K)>®d~

Here for p a continuous 2-dimensional mod p representation of Gal(K/K), we denote by m(p)
the conjectural admissible smooth mod p representation of GLa(K) corresponding to it.

Hence, one of the key questions in the mod p Langlands program is to understand the
GLy(K)-representation 7 as in . By choosing the compact open subgroup UP C (D xp
AOFO’p )* carefully, we assume that we are in a “multiplicity one” situation in the sense that d = 1
in Hope [2.1.1] which is the first case to consider. For simplicity, we make this assumption from
now on in this introduction (unless stated otherwise).

When F' = Q and D = M>(Q), the representation 7 of GL2(Q)) as in is well-understood
by [Emell], and Hope is true. However, as soon as K # Q,, this question becomes
particularly difficult. At this moment we only know a very small piece of the representation
m. The aim of my thesis is to understand more about the representation 7w following the path
of the recent results of Breuil-Herzig-Hu-Morra-Schraen ([BHH™23|,|BHHb|,[BHH c|) and to

show that some properties of m only depend on the restriction 7, def 7| Cal(K/K)" The behavior
of 7 is different when 7, is semisimple or not. Several results of [BHH"23], [BHH"b|, and
[BHH"¢| only deal with the case when 7, is semisimple, and the non-semisimple case is much
more delicate than the semisimple case. The theme of my thesis is to generalize these results
to all 7, (including non-semisimple 7,), where we need more elaborate representation-theoretic
arguments.

2.2 Overview of some previous results

We begin with an overview of some previous results on the representation 7 as in ,
which have the common aim of determining certain finite-dimensional invariant subspaces of
the restriction of 7 to GL2(Of) and to prove that they only depend on 7).

The first step towards the understanding of the representation 7 is to study its GLa(Of)-
socle socgr,(0,) T, Which is a direct sum of Serre weights of GLa(IF,), i.e. absolutely irreducible
representations of GLg(F,) over F. These Serre weights are predicted by [BDJ10]. This is
thought of as the weight part of Serre’s conjecture, generalizing the original Serre’s conjecture
([Sex87]), and is now a theorem. From now on, we assume that p > 5 and T Gal(F/F(YT)) 18
absolutely irreducible.

Theorem 2.2.1 ([EGSI15],[GLS15]). Let 7 be as in (2.1). Assume that T is generic in the
sense of [BP12, Def. 11.7]. Then we have

SOCGLy(0x) T = @ o,
ceW (ry)
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where W (7)) is the set of Serre weights of 7)) defined in [BD.J10, §3]. In particular, socGr, (o) T
only depends on Tp.

The next step is to study the GLy(Ox)-representation 71 where K def pMa(Ok),
which contains socqr,o,) 7 as a subrepresentation.

Theorem 2.2.2 ([LMS22],[HW1S8],[Lel9]). Let w be as in (2.1). Assume that T is generic in
the sense of [BP12, Def. 11.7]. Then we have

7TK1 = DO(F;)/)7

where Do(Ty) is an explicit (finite-dimensional) representation of GLa(Fy) over F constructed
by Breuil-Paskunas ([BP12, §13]). In particular, 7% only depends on 7.

We say that a diagram D is a GLg(Of)-representation Dy such that Dé(l = Dy to-

: : def
gether with an automorphism II on D(I)1 whose square acts by a nonzero scalar, where I; =

1+p(9K OK
pOr  1+pOk

sense of [BP12], Def. 11.7], then Breuil and Paskunas constructed a family of diagrams attached
to 7 such that Dy = Do(7y).
Since the representation 7 as in (2.1) has a central character, one obtains a diagram D(m)

with Dy = 71 and II given by the action of (2 (1)) In particular, since IT normalizes I; and

) C GL2(Ok) is the pro-p-Iwahori subgroup. Assume that 7, is generic in the

X
I where T & <p(?9K gf) C GL2(Ok) is the Iwahori subgroup, it maps an I-character x to
K Yk

its conjugation x*® by the matrix (2 é) By Theorem D(m) is isomorphic to one of the
diagrams attached to 7, defined by Breuil and Pasktinas. One has the following refinement
of Theorem which singles out a unique diagram D in the above family, subject to a

local-global compatibility condition when 7, is sufficiently generic.

Theorem 2.2.3 ([DL21]). Let 7 be as in (2.1). Assume that T, is sufficiently generic (see
[DL21), §1] for a precise meaning). Then the diagram D(m) only depends on 7.

One of the common main tools of the proof of Theorem [2.2.1] Theorem [2.2.2] and Theorem
is the patching functor defined by Emerton-Gee-Savitt (JEGS15]) building on the work of
Taylor and Wiles ([TW95]), and of Kisin ([Kis09]). It is an exact functor M., from continuous
representations of GLy(Of) over finite type W (F)-modules to finite type Ro-modules with
additional properties, where R, is the patched deformation ring and is isomorphic to a power
series ring over the universal framed deformation ring of F;,/ in our case (see [EGS15| for a
precise statement). This functor enables us to transfer statements from the GLg side to the
Galois side. Once we have enough information on the Galois deformation rings, we are able to
use the Breuil-Mézard philosophy ([EG14]) to deduce properties on the GLo side. We will see
examples of this kind of argument in below.

2.3 The Gelfand—Kirillov dimension of 7«

The first result is about the Gelfand—Kirillov dimension of 7 as in , which measures the
growth of the dimension of the invariant subspaces of m under principal congruence subgroups.
More precisely, we define the Gelfand—Kirillov dimension of 7 (see [EP20]) to be the unique
integer dimqr,, (k) () such that there exists a < b in R satisfying

dimp (757

p’l’b dimGLQ (K) (7'(')

<b
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for all n > 1, where K, def 4 + p" Ma(Ok) for n > 1.

Theorem 2.3.1 (Theorem [3.1.1)). Let w be as in . Assume that T, is sufficiently generic
(see condition (iv) in §3.1] for a precise meaning). Then we have

dimgr, (i) (7) = f.

Theorem [2.3.1]is proved by [BHH'23] when 7, is semisimple and proved by [HW22] when 7,
is non-semisimple using a different method. On one hand, the method of [HW22] only works in
the non-semisimple case. On the other hand, it turns out that the method of [BHH™ 23| can be
generalized to the non-semisimple case, and this was not noticed before. We adapt the method
of [BHHT 23| to the non-semisimple case. This provides a uniform proof of Theorem m

The proof of Theorem [2.3.1] involves the computation of new cases of Galois deformation
rings, which enables us to make further use of the patching functor and hence go beyond 7% as
in Theorem We give an overview of the proof of Theorem following closely [BHH ™23,
§1] and indicate what needs to be changed in the non-semisimple case.

Let Z; be the center of K7 and mg, be the maximal ideal of the Iwasawa algebra F[K;/Z1].
We still denote by mg, the ideal of F[GL2(Ok)/Z1] generated by mg, under the natural in-
clusion F[K;/Z1] — F[GL2(Ok)/Z1] when there is no possible confusion. By the crucial
arguments of Gee and Newton in [GN20, Appendix A], we know that dimgp,x)(7) > f for w
as in . In order to get the upper bound on dimgr, (k) (), we need to apply the following
representation-theoretic theorem to 7 as in . This is a special case of [BHH'23, Thm. 6.4.7]
when 7, is semisimple, and is a consequence of [HW22, Prop. 4.20] and [BHH"23| Prop. 6.4.6]
when 7, is non-semisimple. We refer to Theorem below for a more general statement,
which applies to 7 not necessarily in the “multiplicity one” situation.

Theorem 2.3.2 (Theorem [3.5.3). Let m be an admissible smooth representation of GLa(K)
over F with a central character. Assume that

(i) we have socqr, (o) (T) = GBUEW(?X) o;
(ii) for each o € W(T)), we have [w[m% ]|cr,(0x) : 0] = 1;
(ili) we have 7' = Do(7))™* as I-representations.

Then dimgr, k) (7) < f. Here, 7['[111%(1] is the set of elements of m (viewed as a module over
F[K1/Z1]) annihilated by m%ﬁ, and [W[m%q”GLQ(OK) : 0] is the multiplicity of o in the semisim-
plification of w[m% | as GLy(Ok)-representations.

Then we need to show that the representation 7 as in satisfies the conditions of Theorem
The conditions (i) and (iii) follow from Theorem and Theorem hence we will
focus on the condition (ii) of Theorem Since we have dimp Homgr, o, (0,7) = 1 for
o € W(7,) by the condition (i), it suffices to show that

dimp Homgr,, (0, (Projro,m) <1Vo € W(r), (2.2)

where I' & ]F[[GLQ(OK)/Z]_]]/T“%{I, and Projg o is the projective envelope of o in the category

of T-modules.
We let M., be the patching functor as in From the construction of M., for any
finite-dimensional representation V' of GL2(Ok) over F, we have

Homp (Moo (V) /Moo, F) = Homgr, 0, (V, ), (2.3)
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where my, is the maximal ideal of R,. Combining (2.2)) and ([2.3)), it suffices to show that
My (Projz o) is a cyclic Roo-module Vo € W (7). (2.4)

We fix o € W(7,). To prove for o, we lift the [-module Projy o over [ to characteristic
zero following [BHH™ 23| §7.3] so that we can use local-global compatibility properties of M.
We let P, & Projgr,(r,) o be the projective envelope of o in the category of F[GLa(Fg)|-modules
and let P, be the projective O[GL2(F,)]-module lifting P,. We fix an embedding o¢ : F; — F
and let o; def oo o for j € Z, where ¢ : z + P is the arithmetic Frobenius on F,. We still

denote by o; the corresponding embedding Og — W/(F). For 0 < j < f — 1, we define the
GL2(Ok)-representation over W (IF)

Rg,j dZEf (Sym2 W(F)Q ® det_l )(J) ®W(]F) ﬁg,

where “(j)” means that GL2(Ok) acts via the embedding o; : O — W(F). For each j there
is an isomorphism
Ry j/pRoj = P ® P+ © P -
J J

for some Serre weights a;-“ and o, which induces an inclusion
Lj: P, — RQJ‘/])RQJ.
Then we define a GLa(Ok )-lattice Ry ; in Ry j[1/p] by

def

Ré,j = Po Xp,p Rojj = {z € Ry : (xmodpRy ;) € t;(Py)}.

We let Ly & P,. For 0 < Jj < f—1, we define a GLo(Ok)-lattice L; in L_1[1/p] ®

(@?zo Ry ;[1/p]) by

def (I‘, (J;‘j/)ogjlgj) € L_1 D (®;’:0R2J) : (Jjj/ HlOdpRQJ-/) = (m HlOdpL_l)
via ¢ L_y/pL_4 — RQJ//pRQJ/ Vo< <y ’

which is equivalent to defining
Lj = Lj—l Xp, Rlzyj (25)

for 0 < j < f—1. Then we have Ly _1/pLy_1 = Proji 0. By the exactness of M, it suffices to
show that the R.o-module M, (Ly_1) is cyclic.

By [Lel9, Thm. 4.9], we know that the Ro-module M. (P,) is cyclic. By [BHHT23,
Thm. 8.3.4], we know that the Ro-module My (Rj ;) is cyclic for each 0 < j < f —1 when
7p is semisimple. The proof of [BHH'23, Thm. 8.3.4] uses the standard dévissage techniques
as in [EGSI5, §10] and [Lel9, Lemma 4.5], and can be easily generalized to all 7,. Then one
can use and the cyclicity of Muo(P,) and My, (R ;) to prove that Moo(Ly—1) is cyclic by
induction.

For simplicity, we only talk about the first step of the induction. By the exactness of M,
we have the equality of R..-modules

Moo(Lo) = Moo (Fy) X Moo (P,) Moo( /2,0)~ (2.6)

We already know that each term on the RHS of ([2.6)) is cyclic. To prove that M (L) is cyclic,
it suffices to show that

Anng_ (Mw(P,)) = Anng (Mw(P,)) + Anng (Moo(Rh)). (2.7)

17



Each term of 1’ has an interpretation as a certain Galois deformation ring. We let RFX

be the universal framed deformation ring of FZ . For 7 a tame inertial type, we let RSV’O)J

p
(resp. %’71)0’7) be the maximal reduced, O-flat quotient of RFX that parametrizes potentially

crystalline lifts of ?Z of inertial type 7 and parallel Hodge—Tate weights (1,0) (resp. Hodge-Tate
weights (2, —1) in the embedding oy : K — W(F)[1/p] and (1,0) elsewhere). We let

pL,0) def Ker(Rry — Rélv,o)ﬁ);
p

p(—Lo def Ker(Rpy — R&%’_I)O’T).
p

By some detour (see [BHH™23, §1] for more details), to prove (2.7)) we are reduced to the proof
of the following subtle (non-)congruence property.

Theorem 2.3.3 (Proposition [3.4.3.3). We have

p € Nept0 +pQte,
where T runs over the tame inertial types such that o is a Jordan—Hdélder factor in the mod
p semisimplification of o(7) (here o(7) is the irreducible smooth representation of GLa2(Ok)
associated by Henniart to T in the appendiz to [BMO02]), and 1y is any tame inertial type such
that the set of irreducible constituents of the mod p semisimplification of o(7y) contains the set

W(r)) (which exists).

When 7, is semisimple, Theorem is proved in [BHHT23, Prop. 4.3.3] by an explicit
computation of potentially crystalline deformation rings using the machinery of Kisin modules,
which was first suggested by Breuil and then developed by [Kis06] and [LLHLMIS|. We gener-
alize the computation of potentially crystalline deformation rings to the non-semisimple case.
This completes the proof of Theorem [2.3.1

As a byproduct of the proof of Theorem we can determine the structure of the m%ﬁ—
torsion part of the representation 7 in , which is a generalization of Theorem This is
a special case of [BHH'23, Thm. 1.9] when 7, is semisimple, and is proved in [HW22, Thm. 1.4]
when 7, is non-semisimple. We refer to Theorem (ii) below for a more general statement,
which applies to 7w not necessarily in the “multiplicity one” situation.

Theorem 2.3.4 (Theorem [3.6.3.1fii)). Let w be as in (2.1). Assume that T is sufficiently

generic (as in Theorem . Then we have
2 1 D(7
m[mi, ] = Do(ry),

where 150(?;,/) is an explicit (finite-dimensional) representation off over F defined in [HW22,
§4]. In particular, W[m%ﬁ] only depends on 7.

As an intermediate step to prove Theorem [2.3.1] we also deduce an important property of
R

the associated graded module of the dual 7" def Homp (7, F) for 7 as in (2.1)), which generalizes
the result of [BHHT23| where 7, was assumed to be semisimple (this property is also proved
by [HW22] when 7, is non-semisimple using a different method). This leads to an abelian
subcategory of the category of admissible smooth representations of GLy(K) that has desirable
finiteness properties and will be introduced in below. We denote by my, the maximal ideal
of the Iwasawa algebra F[I;/Z].
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Theorem 2.3.5. Let 7w be as in . Assume that T is sufficiently generic (as in Theorem
2.3.1). Then the graded module 8, 7V over the graded algebra 8oy, F[11/Z1] is annihilated
by an explicit two-sided ideal .J, and the quotient ring gry,, F[11/Z1]/J is commutative and is
isomorphic to

]F[y(b 20y Yf-1, Zf—l]/(ZJOZO; s >yf—1zf—1)'

2.4 The functor m — D ()

Using Theorem [2.3.5 Breuil-Herzig-Hu-Morra-Schraen ([BHHTc]) constructed an exact
functor D4 from a nice subcategory of the category of admissible smooth representations of
GLa(K) over F to the category of multivariable (¢, O )-modules, which is a generalization of
the Colmez’s functor (|Coll0]). Then the basic question is to determine the structure of D4(7)
for m as in , which can be used to deduce properties of .

First we recall the definition of the ring A, which is a multivariable analog of F((X)). We

= ((1) O1K) C GL2(Ok). For 0 < j < f —1, we define

let Ny =
Y @ (o 1) erm,

a€lFy

where [a] € Oy is the Teichmiiller lift of a € F,\. Then we have F[No] = F[Yp,...,Y;1]. We
define
AL FNo] [1/(Yo - Yy)]",

where the completion is with respect to the (Yp,...,Ys_;)-adic topology on F[Ny]. There is an
F-linear action of O on F[Ny] given by multiplication on Ny = Ok, and an F-linear Frobenius
¢ on F[Ny] given by multiplication by p on Ny = Og. They extend canonically by continuity
to commuting continuous F-linear actions of ¢ and O on A. Then an étale (¢, O )-module
over A is by definition a finite free A-module endowed with a semi-linear Frobenius ¢ and a
commuting continuous semi-linear action of O such that the image of ¢ generates everything.

For 7 an admissible smooth representation of GLo(K) over F with central character, we
view 7 as a finitely generated F[[;/Z;]-module and endow it with the my,-adic topology. We

define ot
o ~
Da(m) = FNoI[1/(Yo -+ Yy-1)]®png 7
where the completion is with respect to the tensor product topology. The Ox-action on 7
given by f i fo(&9) (for a € OF) extends by continuity to D4 (7), and the t-action on 7

given by f+— fo (ZO’ (1)) induces a continuous A-linear map

IBZDA(W)—>A®%A DA(W). (2.8)

\%
%

We let C be the abelian category of admissible smooth representations m of GL2(K) over F with
central characters such that the graded module &y, 7V is annihilated by J" for some n € Z>
(see Theorem [2.3.5)). For 7 in C, D 4() is a finite free A-module by [BHHTD, Cor. 3.1.2.9] and
[BHH' ¢, Remark. 2.6.2]. If moreover 3 is an isomorphism, then its inverse 7! = id ®¢ makes
Da(r) an étale (¢, Of)-module. In particular, when K = Q, the above construction recovers
the Colmez’s functor ([Coll0]). Our main result is the following.

Theorem 2.4.1 (Theorem . Let w be as in . Assume that 7, s sufficiently generic
(see condition (v) in §5.1] for a precise meaning). Then w is in C, 8 in (2.8) is an isomorphism
and

rank 4 D 4 (m) =2/,
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By Theorem we know that 7 is in C. By [BHHTb, Thm. 3.3.2.3] we know that
ranky D4 (m) < 27. Theorem is proved by [BHH"¢, Thm. 3.1.3] when 7, is semisimple.
We generalize the proof of [BHH c| to the non-semisimple case, which is seriously more delicate.

The proof of Theorem is by an explicit construction of an A-basis of the dual étale
(¢, Ox)-module Homa(Da(m), A) for m as in (2.1). As in [BHHTc, (87)], there is a canonical
A-linear injection

s : Homa(Da(7), A) — Hom§™ (D (7), F). (2.9)

For i = (ig,...,if-1) € ZJ;O, we set ||i| aof Zf;l i; and we write Y for Hf;(} sz] € F[No].
Then we have the following proposition.

Proposition 2.4.2 ([BHH d]). Let 7 be as in (2.1)).

(i) The set Homg*™ (Da(w),F) can be identified with the set of sequences ()7 with x; € T
and

(a) YEa; = a;  for alli € ZF and k € Zéo;
(b) there exists d € Z such that z; € w[m%'lwﬂ] for all i € Z1 (where W[m?l] def if
Jj<0).

(i) A sequence (;);czs € Homg*™ (Da(w),F) lies in the image of ji, as in if and only
if it satisfies the following finiteness condition:

{1€Zf:xi7é0,||1” :M} is finite V.M € Z.

We are going to define 27 sequences z; = (274)iezs € Hom§™ (D4(m),F) indexed by the

subsets J C J def {0,1,..., f —1}. Then we prove that the sequences xz; for J C 7 lie in the
image of p, and form an A-basis of Hom4(D (), A). We give an overview of the construction
in the case 7, is maximally non-split (or equivalently, |W (7,)| = 1) for simplicity.

Step 1. We define x ;¢ for all J C J.

By letting d = 0 in Proposition [2.4.2i)(b), we see that z;9 € 7/t for all J C J. From
Theorem we know that 't is a direct sum of 2/ distinct I-characters, which can be
parametrized by the subsets J C J. We fix a choice of a nonzero I-eigencharacter x50 € 7!t
for each J C 7.

Step 2. We define Tgf forall J C J.

By Theorem we have 751 22 Do (7)), which is explicitly known and contains 7/t as a
subset. Hence it is natural to enlarge our sequences a little bit by constructing suitable elements
of 751 subject to the conditions in Proposition More precisely, for each J C J we define

X
[Fq] 0 )-eigencharacter in 751 satisfying

x5 to be the unique ( 0 [FX]

ijH»TJi: ovjieJg
Yo--- Y1) ws5 =250

Step 3. We define 27, for all J C J and ¢ € 7!,
First, using Proposition (i)(a), for J C J and i € Z/ such that i; < f for all j € J we
define
T déf Xi_zl‘{]’f.
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For J C J, we define J +1 % {(j+1modf) € J :j e J}. We define § : Z/ — Z/ by

3(2); def ij41 if 0 < j < f—2and 6(i)p—1 def ip. Using the relation between the elements

Ty € 751 we are able to extend the definition of x Ji toall i € 7! inductively using the
relation

0 _
(8 1) Lj+1,i = E EL]/ILLJ+1,JI$J/7P6(Z‘)+CJ7J/7
J'cJ o

where e; € {£1}, s v € F are certain constants depending on the choice of x5, and ' ent

satisfies —1 < c;-]“], < 2p for all j € J. We refer to Theorem |4.6.4] below for a precise definition

of the sequences x; which works for all 7,,.

Step 4. We prove that each sequence x; satisfies the finiteness condition in Proposition

which guarantees that it lies in the image of u, as in (2.9). Once we prove that
xy € Homy(Dy(m),A) for all J, it is not difficult to conclude that they form an A-basis of
Hom (D 4(m), A). This completes the proof of Theorem

By analyzing the submodule structure of 751 (for 7 as in (2.1))) and the sequences z; in
more details, we can prove the following generalization of Theorem [2.4.1

Theorem 2.4.3 (Theorem [4.1.2)). Let w be as in . Assume that T, is sufficiently generic
(as in Theorem m Then for w1 a subrepresentation of w, we have

ranky Da(m1) = ‘JH(w{ﬁ) N W ()

9

where JH(7rf<1) is the set of Jordan—Hdélder factors of 71'{<1 as a GLa(Ok)-representation, and
0% is the semisimplification of p.

As one application of Theorem to the understanding of 7 as in , we prove that 7
is finitely generated as a GLy(K)-representation, generalizing the result of [BHH™D] where 7,
was assumed to be semisimple (this finite generation result is also proved by [HW22] when 7,
is non-semisimple using a completely different method).

Theorem 2.4.4 (Corollary 4.11.3). Let w be as in . Assume that 7, is sufficiently generic
(as in Theorem W Then as a GLa(K)-representation, 7 is generated by DO(FZ).

Moreover, we remark that a priori we do not know that 7 is of finite length as a GLy(K)-
representation. Most importantly, Theorem [2.4.3]is crucially needed to prove that 7 is of finite
length (in the non-semisimple case) in a forthcoming work of Breuil-Herzig-Hu-Morra-Schraen
([BHH™al).

2.5 The functor 7, — D%(7,)

Besides the rank of D 4(r), Breuil-Herzig-Hu-Morra-Schraen (|[BHH"¢|) gives a conjectural
description of D4(m) as an étale (p, O )-module for 7 as in (2.1). The construction uses the
Lubin-Tate (¢, O%)-module (see [KR09J]) associated to 7, as an intermediate step, which can
be made quite explicit. We give an example of the Lubin-Tate (¢, O )-module Dg (7)) when

Q

7p is sufficiently generic. We refer to §5.2| for the explicit description of D (7,) for arbitrary
(2-dimensional) reducible 7, and refer to [BHH" ¢, Lemma 2.1.6] when 7, is irreducible.
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Example 2.5.1. We assume that T}, is reducible and sufficiently generic as in . Then
the Lubin—Tate (¢, OF)-module D (7)) associated to T can be described explicitly as follows
(a € OF):

4 f 1
Dk (7p) = H Dk 0 (Tp)
Dk o, (Tp) = ((TKo-j))eo S F(Tk.o;)er ¥
(p(e(()J+1) (J+1)) _ (e(() 1 )Mat(go(]))
a(el (9) (J)) = (el () ())Mat( (4),

\

where Ty 5, is a suitable Lubin—Tate variable, the indices j are understood modulo f,

—(g—1)h;
Mat (W) = O‘J'TK,gj T Bjd;
0 Bj

for suitable a;, B, e F*, d; € F, 0 < h; <p—1, and
JrPj J J
Mat(a(j)) EIQ—|—M2<Tq I]F[[Tq 1]])

which uniquely determines Mat(a?)).

When 7, is sufficiently generic (as in Example [2.5.1), we define

_ def _ x
D%(Tp) = ® <A ®IE‘((T§(_01‘)) DK,O’j (Tp)[Fq ]> (2.10)
A0<j<f-1 o

with canonical actions of ¢ and Oj, where the embedding F ((Tq_1 ) — A sends qu{_alj to

©(Y;)/Y; € A. This is an étale (¢, O )-module over A of rank 2f Our main result is the
follovvlng, which generalizes Theorem m

Theorem 2.5.2 (Theorem [5.1.1)). Let w be as in . Assume that 7y is mazximally non-split
(or equivalently, |W (7p)| = 1) and sufficiently generic (see condition (v) in for a precise
meaning). Then we have an isomorphism of étale (¢, OF)-modules

Da(m) = DE(7p(1)),
where T, (1) is the Tate twist of Tp,. In particular, Da(m) only depends on 7).

Theorem lm is proved by [BHHTc|] when 7, is semisimple. Using the explicit description
of D (7)) in Example m and (2.10)), together with the results on D4 (7) (see and §4), we
are reduced to the computation of some constants coming from the diagram (77t — 751) (see
above Theorem for diagrams). When 7, is maximally non-split (and sufficiently generic),
these constants are computed by [BD14] in terms of the Fontaine-Laffaille module associated
to 7p ([FL82]). We remark that our method should apply to arbitrary W (7,) once we compute
the corresponding constants coming from the diagram (7’7t < 7%1) in general (see Theorem
2.2.3).

The definition of DY (7,) in (2.10)) has the drawback that the embedding F(T%, ! )) — A does

not respect the action of Oj. As a result, this definition only works for 7, sufﬁc1ently generic,
where the Lubin-Tate (¢, O )-module Dg (7)) has a relatively simple form as in Example 2.5.1
and there exists a canonical action of O commuting with the action of ¢. For general 7, there
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could be no action of O% on DY(7,) commuting with the action of ¢ if we still define D% (7,)
as in .

To solve this problem, Breuil- Herzig—Hu—Morra—SChraen (IBHHT¢|) gives a more conceptual
definition of the étale (¢, O )-module D% (7,) using perfectoid spaces, which we briefly recall.
By the results of [Far20] and [FF18|, there is a natural K *-equivariant isomorphism (where p
acts as ¢ on each Yj)

1 v 1/p> 7! :
m e FYy P YT S FITYET L TP 1S (f copies of Tro),
where Tk, is the Lubin-Tate variable, A def (ki) € (K*)/,T]; ki = 1} and the symmetric
group & permutes the Tk ,,. Hence m induces a map

e o0 > xpf e
m s Xpr © Spa (F(T),FILITT) ™ = Xoy @ spa (FIvy ™, v/ 1)

where we use the shorthand Spa(R) for the adic spectrum Spa(R, R). There is an affinoid
perfectoid open subset U = Spa(As, A%) € X0, , where Ay is the completed perfection of A.
Moreover, the restriction m : m~*(U) — U is a pro-étale A x G-torsor. For arbitrary 7, by
taking the self exterior tensor product of the associated Lubin-Tate (¢!, O)-module D 4, (7p),
we get a (K*)/ x & p-equivariant vector bundle on X7, hence on m 1(U) by restriction. Using
pro-étale descent ([SW20]), we get a K *-equivariant vector bundle on U = Spa(As, AS).
Taking global sections and using Frobenius descent, we finally get an étale (¢, O )-module over
A. Hence we get a functor 7), — DS % (Tp). In particular, this gives the definition of D A( 7p) for
arbitrary 7,. Then it is conjectured that this functorial definition of D%’ (Tp) is the correct one.

Conjecture 2.5.3 ([BHHc|). Let 7 be as in . We have an isomorphism of étale (¢, O )-
modules (for arbitrary 7,)

Da(m) = D (7p(1)).

In particular, Da(m) only depends on Tp.

The following theorem gives an explicit description of DY (7,) for arbitrary (2-dimensional)
Tp, generalizing the result of [BHH ¢ where T, was assumed to be semisimple. In particular,
together with Theorem this proves Conjecture when 7, is maximally non-split and
sufficiently generic (the semisimple case being treated by [BHH c|).

Theorem 2.5.4 (Theorem [5.5.10). (i) Assume that T, is semisimple, or non-semisimple and
sufficiently generic (as in Ezample|2.5.1). Then the perfectoid definition of D% (T,) coin-
cides with the definition in (2.10) (given by the recipe T[q{_alj = p(Y;)/Y;).

(ii) For arbitrary (2-dimensional) Tp, we have an explicit description of D% (Tp). See Theorem

5.5.10 for details. In particular, the recipe qu(_glj — ¢(Y;)/Y; no longer works, and the

correct recipe involves at least p(Y;)/Y; and p(Yj—1)/Y;-1.

Finally, we remark that the proof of Theorem[2.5.2]and Theorem [2.5.4]is very computational.
There may exist a more conceptual proof one day, which will hopefully avoid the genericity
assumptions on 7, and the technical computations, hence completely proving Conjecture
This is a possible direction in the future.
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Chapter 3

On the mod p cohomology for GL-

3.1 Introduction

Let p be a prime number. The mod p Langlands correspondence for GL2(Q)) is completely
known by the work of [Bre03], [Coll0], etc. However, the situation becomes much more com-
plicated when we consider GLa(L) for L a nontrivial finite extension of Q,,. For example, there
are many more irreducible admissible smooth representations of GLa(L) over F, and we don’t
have a classification of these representations ([BP12]).

Motivated by the local-global compatibility results of Emerton ([Emell]), we study the
representations of GLa(L) that come from geometry and hope that these representations can
realize a mod p Langlands correspondence for GLo(L).

We begin with the global setup following [BHH"23]. Let F be a totally real number field
which is unramified at places above p. Let D be a quaternion algebra with center F' which
is split at places above p and at exactly one infinite place. Let F be a sufficiently large finite
extension of IF,,, which is considered as the coefficient field. For each compact open subgroup

V oof (D ®pr A¥)™, we denote by Xy the associated smooth projective Shimura curve over F.

Let v be a fixed place of F' above p. Let F, be the completion of F' at v and f def [Fy : Qp]. We

define an admissible smooth representation of GLa(F,) over F of the form

r lim Homy /oy (7 Hy (Xvey, x5 FLF)), (3.1)
Vy
where V"V is a fixed compact open subgroup of (D ®@p AR"")*, the inductive limit runs over
compact open subgroups V,, of GLy(F,), and 7 : Gal(F/F) — GL2(F) is a continuous absolutely
irreducible representation such that 7 # 0.
One of the aims of the mod p Langlands program is to understand these representations.
In the case F' = Q and D = M»(Q), the representations 7 of GL2(Q,) are well-understood
by [Emell] and they realize a local mod p Langlands correspondence for GL2(Q,). However
as soon as F, # Qp, the representations m of GLa(F,) are far from being known, though
there have been several results on various invariant subspaces attached to these representations
7w ([EGS15], [Lel9], etc.). In this work, we go one step further and show that under some
genericity assumptions the Gelfand—Kirillov dimension of 7 equals to f.
To state the main theorem, we recall the Gelfand-Kirillov dimension (see [BHH™23| Intro-

duction]). Let K ) + pM>(OpF,) € GL2(OF,) and Z; be the center of K;. Let F[K;/Z;] be
the Iwasawa algebra of K;/Z;. We define the Gelfand—Kirillov dimension of 7 to be

. def . . i
dimey, () (7) % 3f — min {z € Zo : Extlye, /2, (" FIK1/Z1]) # 0} ,
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where 7V % Homg(7,F) is the algebraic dual of .

Let I, be the inertia subgroup of F,. Let k' be the quadratic extension of the residue field
of F, and fix an embedding k¥’ < F. Let w be the corresponding Serre’s fundamental character
of level f’ for f' € {f,2f}. We make the following assumptions on 7:

(i) 7le, (o, 18 absolutely irreducible;

(ii) for w tp such that either D or 7 ramifies, the framed deformation ring Ry, of 7 o

T|Gal(F. 1,y OVer the Witt vectors W(FF) is formally smooth;
(iii) for w|p, 7|1z, is generic in the sense of [BP12] §11];
(iv) 7|1, is of one of the following forms up to twist:

S ()P
(a) [“r * | with 12 <r; < p — 15,
0 1

125 trj+1)p? 0

0 wg; Yo ()P

>
Wy s .
(b) with 13 <rg <p—-14 and 12 <r; < p— 15 for
1> 0.
Our main result is the following.

Theorem 3.1.1 (Corollary [3.6.3.1| (iv)). Keep all the above assumptions on F,D,F. Let V' =
[z Vo with Viy = GL2(OR, ) if neither D nor T ramifies at w, and Viy € 1+ pMz(Op,) if
w | p and w#v. Then for w as in we have dimgr, (r,)(7) = f.

Theorem is proved by [BHH"23, Thm. 1.1] when 7 is semisimple at v and is proved
by [AW22, Thm. 1.1] in the “minimal” case (i.e. 7 = 72 (7), see [HIW22] Introduction]) when 7
is non-semisimple at v. So the new case of Theorem [3.1.1] is that we allow arbitrary 7 when 7
is non-semisimple at v. On one hand, the method of [HW22] only works in the non-semisimple
case. On the other hand, it turns out that the method of [BHHT 23] can be generalized to the
non-semisimple case, and this was not noticed before. We adapt the method of [BHHT23| to
the non-semisimple case and give a uniform proof of Theorem As an intermediate step,
[BHH™23| gives an explicit computation of some potentially crystalline deformation rings using
the machinery of Kisin modules developed in [Kis06] and [LLHLMI8] when 7, is semisimple. We
generalize the computation of potentially crystalline deformation rings to the non-semisimple
case, see Theorem [3.4.2.1| and Theorem

Organization of the chapter

In we recall the preliminary notions and results on algebraic groups, tame inertial types,
and extension graphs. In §3.3] we recall the machinery of Kisin modules. In §3.4] we use the
machinery of Kisin modules to compute explicitly some potentially crystalline deformation rings.
In §3.5] we recall the notion of the Gelfand—Kirillov dimension, then recall a result that gives
an upper bound for the Gelfand-Kirillov dimensions of some admissible smooth representations

of GLa(F) over F. In we combine all the previous results and prove Theorem

Notation

If F' is any field, we denote by Gr & Gal(F/F) the absolute Galois group of F, where
F is a separable closure of F. If F is a local field, let Ir C G be the inertia subgroup and
Wr C G be the Weil group. We normalize Artin’s reciprocity map Arty : F* = Wliib so that
uniformizers are sent to geometric Frobenius elements, which are elements of G that induce
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the geometric Frobenius map on the residue field of F'. If F' is a number field and v is a place
of F', then we write F;, for the completion of F' with respect to the place v, and if v is a finite
place we write Op, for the ring of integers of F,, Frob, for an arbitrary geometric Frobenius
element at v and k, for the residue field of Of,. We also denote by A% the set of finite adeles
of F. If F is a perfect field in characteristic p, we denote W (F') the ring of Witt vectors of F'.
For z € F, we denote by [z] € W(F') the Techmiiller lift of z.

We fix an algebraic closure Q of Q. All number fields are considered as subfields of Q. For
each prime number /, we fix an algebraic closure Q, of Q; as well as an embedding Q — Q,.
All finite extensions of Q, are considered as subfields of Q.

Let p be a prime number. We write € : Gg, — Z,; for the cyclotomic character, w its mod p
reduction and w the Teichmiiller lift of w. We normalize the Hodge—Tate weights so that € has
Hodge—Tate weight 1.

We let E be a finite extension of Q, with ring of integers O, uniformizer @ and residue field
F. We always assume that E is large enough.

We let K be an unramified extension of QQ, of degree f with ring of integers Ok and residue

field k. We fix an embedding og : £ — F and we let o; def 00 0 @), where ¢ : & — 2P is the
arithmetic Frobenius on k. We still use o; to denote the corresponding embedding K — E.

We have an identification of 7 % Hom(k, F) with Hom(K, E) and with {0, ..., f — 1} given by
o < j. We also identify J with the quotient Z/fZ in an evident way so that the addition and
subtraction in J are modulo f.

If G is a group and V is a representation of G on a finite-dimensional E-vector space, we
denote by V the semisimplification of a G-stable O-lattice in V. If V is a representation of
G on a finite-dimensional vector space, we let JH(V') denote the set of Jordan—Hoélder factors
of V. If o is an irreducible representation of G, we let [V : o] be the multiplicity of o in the
semisimplification of V.

For each commutative ring A and (z1,...,z,) € A", we write Diag(xi,...,x,) for the
diagonal matrix in M,,(A) whose i-th diagonal entry is x;. If y € Z" and = € A, then we write

x# for the diagonal matrix Diag(z#1,... z#) € M, (A). If M € GL,(A) and N € M, (A) we

define Ad(M)(N) W MNM If s € Sp is a permutation, we let $§ denote the associated

permutation matrix, which we also denote by s when there is no possible confusion. We let
sgn(s) € {£1} be the signature of s.

If h: A — B is a ring homomorphism and M is an A-module, we define the B-module

he(M) < M o4 B.

3.2 Preliminaries

In this section, we give the preliminary notions and results that we will use. We follow
closely [BHH™23, §2].

3.2.1 Group theoretic preliminaries

In this subsection, we review some notions related to algebraic groups that we will use.

We consider the algebraic group GL,, defined over Z. Let T' C GL,, be the diagonal maximal
torus and Z C GL,, be the center. We write R (resp. RY) for the set of roots (resp. coroots)
of (GL,,T) and W for its Weyl group with longest element . Let RT™ C R be the subset

of positive roots with respect to the upper triangular Borel. We identify the set of characters

X*(T) e Hom(T', G,,) with Z"™ in the standard way.
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Example 3.2.1.1. If n = 2, then W = Sy, tv is the nontrivial element of So and Rt = {a},
where o € X*(T) corresponds to (1,—1) € Z2.

Let G be the algebraic group (Res@K sz, GLin /OK) Xz, O with diagonal maximal torus T
and center Z. We write R (resp. R") for the set of roots (resp. coroots) of (G,T), W for its
Weyl group and R C R for the subset of positive roots with respect to the upper triangular
Borel. There is a natural isomorphism G = [] 7 GLn o induced by the ring homomorphism
Ok ®z, O & O7 defined by z ® y — (0;(2)y)jes. One has similar isomorphisms for T, Z,
R, RY, W, R" and the character group X*(T). There is an action of W on X*(T) which is
compatible with this isomorphism.

Under the identification of X*(T) = @7 X*(T) with (Z")/ as above, for each u € X*(T) we
can write p = (pj)o<j<f—1 With p; = (pj1,...,pjn) € Z". Moreover, if (a1,...,a,) € Z" we
write (aq, ..., ay) to denote the element of X*(T") whose corresponding tuple equals (a1, ..., a,)
at each place j € J. For j € J we let n; € (Z") be (n—1,...,1,0) in the j-th coordinate and

0 otherwise. We let n e >jesmi = (n=1,...,1,0). There is an automorphism 7 on X*(I)
defined by 7(pn); = pj—1.

Example 3.2.1.2. Ifn =2, let aj € X*(T) be (1,—1) in the j-th coordinate and 0 otherwise.
Then we have Rt = {aj :j € J}.

Let Ar € X*(T') be the root lattice of G. Let X7 (I') € X*(T) be the set of dominant
weights, i.e. the set of weights A € X*(T) satisfying (A, ") > 0 for all « € R". Let X;(T) C
X (T) be the subset of p-restricted weights, i.e. the set of weights A € X*(T') satisfying
0 < (\aY) < p—1 for all simple roots a € R'. Let Xreg(T) € X1(T) be the subset of
weights A € X*(T) satisfying 0 < (\,a") < p — 1 for all simple roots a € R". Finally, let
XO(T) C X,eg(T) be the subset of weights A € X*(T) satisfying (A, a") = 0 for all simple roots
a€RT.

The lowest alcove is defined as

Co¥NeX (T)@zR:0< A+n,a") <pVae R}

Given N > 0 and pu € C, we say that u is N-deep in Cy if N < (u+n,a") < p— N for all
a € R*. Thus the existence of an N-deep weight in C,, implies p > 2N + 2.

Example 3.2.1.3. When n =2, we have

Ar={Ne @) N1+ Xp=0VjeT};
X1(@) = {re @) a2 N2 Vie T}
X(0) = {re @) 0< N - Na<p-1VjeT);
Xieg(T) = {)\e (Z3 0< A1~ Na<p—1V ej};
XT) = {re @) Na = N2 VieT)s
Co={re®) :-1<xi-Na<p-1YjeT},

and A € Cq is N-deep if and only if N < X\j1 —XNj2o <p—2—N foralljcJ.

Given w € W, we write w; to denote its j-th component via the identification W = HJ w.
There is an automorphism 7 on W defined by m(w); = w;j_1.
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Let W, = Ar x W (resp. W X*(T) x W) be the affine Weyl group (resp. extended affine
Weyl group) of G. We denote by t) the image of A € X*(T) in W. Hence an element of W can
be written as (w, )\) = wt)\ with w € W and A € X*(T'), and the multiplication of W is given
by

(w1, A1) - (w2, A2) = (wlwz,wgl()\l) + A2).

We identify W with (Z"™ x S,)7 (the action of S, on Z" is given by (s(a)); = Ag-1(3))-
We have the p-dot action ofﬁ on X*(T') defined as follows: if w = wt,, € E and p € X*(T)
then we define

~ def
W p = w(p+n+pr) —n. (3.2)

We let €2 be the stabilizer of the lowest alcove C|) in E, then one easily checks that E =W, .
Concretely, when n = 2, € is the subgroup of w generated by X°(T) and {1, mt(_LO)}f.

The choice of the lowest alcove C, endows W, with a Bruhat order by viewing W, as a
Coxeter group generated by the walls of the alcove C (see [Jan03, 11.6.3]). We denote this
order by <. It induces a partial order < on E by defining w,w < ww' in W, xQ = E if and
only if w, < @/, in W, and w = ' in Q. We denote by Ev the group E, endowed with the
Bruhat order induced by the choice of the antidominant base alcove, i.e.

Y NeXx M oR: —p< A+n,0) <0Vae R}

There is an anti-isomorphism

=l

(3.3)

1 e
SIS

S

defined by ((st.)*); & bup o Sp- L _; such that w; < w; in W if and only if W5 < @} in W

(ILLHLIY, Lemma 2.1.3]).
Given A € X*(T), we define

def

Adm" (ty) = {w € W tw < ty(y) for some w € E} (3.4)

to be the A-admissible set with respect to the Bruhat order defined above on Ev.
Example 3.2.1.4. Let n =2. We have

~ 5V < .
Admv(t(g,;)) = {w eW :w; € {tp1), Wt 1),taz} Vi€ j} ;

~ 5V~
Adm\/(t@’g)) = {w eW w; € {t(gyo), mt(370),t(271),mt(271), (1,2)» mt(l 2) 03 } V] S ._7}
We will only use the Bruhat order induced by the choice of the antidominant base alcove.

—~ —~V
From now on, we use W to mean W for simplicity. Finally we remark that we can consider
W as a subgroup of GL,, (F((v)))f by the injective homomorphism

W < GL,, (F(v))’

_ (3.5)
St'u — (.éjv'uj)j.
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3.2.2 Tame inertial types

In this subsection, we review the combinatorial description of tame inertial types.

An inertial type of K is a representation 7 : [x — GL, (@p) with open kernel that can be
extended to Gx. An inertial type is said tame if it factors through the tame inertial quotient.
When n = 2, by a result of Henniart (see the appendix to [BM02]), given an inertial type
7 : Ix — GL2(Q,), we can associate to it a smooth irreducible GLa(Of)-representation o(7)
over Q,, normalized as in [BM02, §2.1.1], and we may realize 7 and o(7) as representations over
E if F is large enough.

Now we fix a pair (s,u) € W x X*(I). We recall how to associate to it a tame inertial
type. We write s = (so,...,5¢—1) with s; € S, and p = (po,...,pp—1) with p; € Z". Let
Sy def 508f_15f_2+-+51 € Sp. Let v € Z be the order of s, in S,. Let K’ be the unramified
extension of K of degree r and let &’ be its residue field. Fix an embedding oy, : ' < F extending
oo and let o7, 50 . Let f’ L f. We have an identification of J’ © Hom(%',F) with
Hom(K', E) and with {0,..., f' — 1} given by ¢”, < j'. We also identify it with the quotient
Z/f'Z in an evident way so that the addition and subtraction in J’ are modulo f’. Under this
identification, the restriction of an embedding ¥’ < FF to k corresponds to the natural projection

Z/f'Z—Z/fZ. 1f j’ € J" and j € J is the image of j' under this projection, we set s/ def s,
def def

g =y and 0y = ;.
We define the tame fundamental character wy : I — F* as the composition

Art;ﬁ « 1% o y
Ik =Ig —— O > k7 — F”.

We also let Wy : Ix — O denote the Teichmiiller lift of wy. We define a’(sy 0 € (z™)!" by

def _ — .
a/(s,u)g = 51 182 Lo ijl(:uj’ + nj’) € Zn’ 0< ]/ < f/ —1
. / =k 1 .
In particular, we have Qg ) gk = 57 X ) j for0<j<f—1land 0<k<r-—1. We also
define
-1
def i
= Za/(s,u),ipl SN/
i=0
-1
1(5") def / n
As) = Z ®s,), J'+l/p ez o<y < f -
i'=0
In particular, we have a = 0 a (,1 0 pf k. The following combinatorial description of tame

inertial types comes from [LLHL19 Def. 2. 2.1], which is based on [Her09, (6.15)].
Definition 3.2.2.1. Let (s,p) € W x X*(T). We define
n 7(0) n st (0) pfk

def Ay k=02 k
T(s, 0+ 1) = @wf/( “) Z@wf/ 7

This is a tame inertial type (i.e.can be extended to G ), and we write 7(s, u + n) for its
reduction modulo w. The following two definitions come from [LLHLI19, Def. 2.2.5].

: Iix = GL,(0%). (3.6)

Definition 3.2.2.2. Let 7 be a tame inertial type and N € Z>p.
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(i) We say that T is N-generic if there is an isomorphism 7 = 7(s,\ + 1) for some s € W
and some X\ € X*(T') which is N-deep in alcove C,.

(ii) A lowest alcove presentation of T is a pair (s,p) € W x Cy such that 7 = 7(s, u +n)
(which by definition exists exactly when T is 0-generic).

Definition 3.2.2.3. Let p : Gx — GLo(F) be a Galois representation and let N € Z>o. Let
%1, denote the restriction to Ix of the semisimplification of p. We say that p is N-generic
if |1 =2 7(s, 1) for some s € W and p—n € X*(T) which is N-deep in alcove Cy.

Then we introduce the orientation s/, € (S,)!" of a’(s ,) 3 in [LLHLI19, Remark 3.2.3],

which is defined by

S/ /dﬁf51_1<92_1"'5;/1__‘/a Ogjlgf/_l (37)

for0 <j< f—1and 0 <k <r—1. By definition,
1(5")
END)
has leading term a(s 1. f—1 J,p L if € X*(T) is 0-deep in alcove Cp, then the element

(Spe)~ H(a (iju))) € X*(T) = Z" is dominant for each 0 < 5/ < f'—1. We will use the orientation

in §3.3

In particular, we have s/ kf = T Sor,j

we have (s, ) (e Qg ) f—1—j ) ,Uf/ 1—j* + Mf—1—j. Since the p-adic expansion of a

Example 3.2.2.4. Let n =2. Let s = (sg,1,...,1) € W with so € Sz and p = (pj); € X*(T)
with pj = (rj +mj,m;) € Z*. Then we have

Qo= (rj+1+mymy) €22, 0<j < f—1;

j=0

o _ (5 5
a® = [ S (rj +1+my)p, Zm]]ﬂ €72

We have the following two cases.

(i) If so=1, then s, =1, f'=f, s..=(1,...,1), and we have
Sy I
(s, p+n) = (“f J 00 (1)) ® w7 &

(i) If so =w, then s, =w, f'=2f, s.. =(1,...,1,w,...,w), and we have

ZJ =0 (TJ +1)p7

~ 0 5y
7(37M+n> = “af

~pfzg 0(7"J+1)P] o “s
War

In both cases, T(s,u+n) is N-generic if N <r; <p—2— N for all j.

0

3.2.3 Extension graph

In this subsection, we review the description of the extension graph for GLy. Then we use
it to describe certain sets of Serre weights.

Recall that a Serre weight of GL,,(k) is an isomorphism class of an (absolutely) irreducible
representation of GL,, (k) over F. By [GHSIS8| Lemma 9.2.4], for each A € X (ZT) we can associate
to it a Serre weight F'(\) of GLy(k), which induces a bijection

F:X(T)/(p—m)X°(T) = {Serre weights of GL,,(k)} (3.8)

(see §3.2.1| for m). We say that a Serre weight o is regular if 0 = F()\) with A € X, (T), cf.
[Her09, Def. 6.1].
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Example 3.2.3.1. When n =2, let A = (\;); € X1(T) with \j = (A\j1,\j2) € Z?, we have
FO) = @ ((Ssm1- K2 0y det#) ., ).

Moreover, F(X) is reqular if and only if A is 0-deep in alcove Cy if and only if 0 < X\j1 — Aja <
p— 2.

In the rest of this section we let n = 2. Consider the algebraic group G’ def (Resk JF, SLa /k) QF,
F. Let T1 be its maximal torus consisting of diagonal matrices of determinant 1. The corre-
sponding root lattice is identified with Agr. Its weight lattice is denoted by Ay and we have
Aw = X*(T)/X°(T), which is identified with Z/ by the isomorphism [(aj,b;);] — (a; — bj);.

Fix w € X*(T). Since E = W, x Q, there is a unique element @ € QNt_ 1 \W, in
E (see for t). We also define w,, € W to be the image of @ in W under the projection
W — W,

Now we fix p € X*(T). Following [LLHLM20, §2.1], we define the extension graph
associated to p by

A‘vadéf{wEAW:OS (fi+w,a’)y<p—1, YVae R},

where 71 is the image of p in Ay. We define a map

£, X*(T) —» X*(T)/(p — m)X°(T)

WHLT)'(,U,—FW),

where “” is the p-dot action defined in (3.2)). This map factors through X*(T)/X°(T) = Aw,
and restricts to a map

b, AleV — Xreg(T)/(p — W)XO(I)-
Remark 3.2.3.2. If we compose t,, with the bijection @
F:X5(T)/(p—7m)XT) = {Serre weights of GLa(k)},

then the resulting map w — F(t,(w)) gives a bijection between AY;, and the set of regular Serre
weights of GLa(k) with central character p|z (see [LLHLMZ20, Prop. 2.1.4]).

Example 3.2.3.3. In terms of the identification Ay = Z! the map t, can be described as
follows: We may assume that j has the form (r;,0); € X*(T'), because for arbitrary p € X*(T')
one can use the formula t,,,(w) — €, (W) =@ - (p+v) —@-p = w,(v) = v (forve X°(T))
to reduce to the computation for this form. Write w = (w;); = (2n; + 6;); € A}y, with n; € Z,
d; € {0,1}, then a representative of t,(w) in Xieg(L) is then given by

. S —m 81 =0
(tu(w)); = (rj - 05 =) ?f JH (3.9)
(—nj—l,rj—l—nj—l—dj—p—l—l) Zf5j+1:1.
Moreover, by Example|3.2.3.1| and (@ one can compute that
f—1
F(t,(w)) = <Symri k2 @0, IE‘) ®r det®®@),
j=0
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where
o {?”j + wj if 2| wjp
!l =

p—2—r;—w; if2{wji,
J J t J+ (3.10)

Finally we recall the “change of origin” formula for the map t,.

Lemma 3.2.3.4 ([LMS22], Prop. 2.5). Let p € X*(T'), w € A}}, and X € X*(T) be such that
t,(w) = A mod(p — m)X°T). Then t\(w') = t, (w3 (W) +w) for all W' € A}. Equivalently,
tu (W) =ty (wo (W' —w)).

Remark 3.2.3.5. Keep the assumptions of Lemma|3.2.3.4} If we write w = (ao,...,ar—1) and
W' = (bo,...,by_1) with a;,b; € Z, then we have

Jj=0

F1

tr(bo, - - ,bf_l) =t (Z (aj + (—1)aj+1bj)77j> ;
F-1

tu(bo, e ,bf_l) =t (Z:()((—l)aj+1 (b] — aj))nj> .
j=

3.3 Kisin modules

In this section, we review the machinery of Kisin modules that are used to compute the
Galois deformation rings. We follow closely [LLHLMIS]|,[LLHL19],[LLHLM20],[LLHLM23] as
well as [BHHT23, §3].

3.3.1 Kisin modules with tame descent data

In this subsection, we review the notion of Kisin modules with descent data and some related
objects.

Throughout this section we fix a 1-generic tame inertial type 7 : Ix — GL,(O) of K and a
lowest alcove presentation (s, i) for 7 (hence p is 0-deep in alcove Cy by [LLHL19, Prop. 2.2.15]).
We keep the notation of for example, s, = spsy_157_2---51 € Sy, 7 is the order of s,
K’ is the unramified extension of K of degree r with residue field & and f’ = fr. We also define

; def f
e =p -1
Fix an ¢/-th root 7/ & (—p)'/¢ € Q, of —p. Let L' &f K'(r") and E(u) e (W) +p=v+p

be the minimal polynomial of 7/ over K’, where we define v e (u)¢. Let A’ o Gal(L'/K") C

A Gal(L'/K). We define a group homomorphism wy : A’ — W(K)*, g+ g(n')/n'. Tt i

independent of the choice of 7" and satisfies o) 0wy = Wy,
Let R be a p-adically complete Noetherian local O-algebra with maximal ideal mp. We

define ot
GL’,R é

W (kN [u']&z,R = (W (k') @z, R)[v].

The ring &1/ g has a A-action defined as follows: For each g € A', g(u') = (wr(g) ® 1)u’ and
g acts trivially on W (k') ®z, R. Let o € Gal(L'/Q,) be the lift of the arithmetic Frobenius
on W (k') which fixes 7/. Then of € A maps to a generator of A/A’ = Gal(K'/K) and we
define its action on &7/ g by letting it act trivially on R and u’ and act as the f-th power of
the arithmetic Frobenius on W (k). In particular, we have

(&1.8) """ = (W(k) ®2, R) [v].
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There is also a Frobenius endomorphism ¢ : &1/ p — &1/ g, which is W(k')-semilinear, R-
linear, and p(u’) = (/). The Frobenius endomorphism and the A-action commute with each

other. For each &1/ r-module 9 we define the R[u/]-module 90" o OW (k)@s, R0, T
—J
then we have a decomposition 9t = P e omG",

Definition 3.3.1.1 ([LLHLMIS], Def. 2.4). Let h € Z>o and 7, R as above. A Kisin module
over R with height in [0, h] and type T is a triple (M, pon, {G}gen), such that

(i) 9 is a finitely generated projective module over S/ p;
(ii) the Frobenius map ¢on : ¢* (M) — M is an injective Sy p-linear map whose cokernel is
killed by E(u')";
(iii) for each g € A, g : M — M is a g-semilinear map satisfying

(a) the induced map g* : g*(IM) geid, M is a S g-linear isomorphism for all g € A;
(b) Goh = gh for all g,h € A;
(c) Godm = dmop*(g) on @*(M) for all g € A;

(iv) for each 0 < j' < f'—1, we have

MU ju'mU) =~ 7V 90 R (3.11)

as A -representations over R, where 1" def Homp (7, Q) is the algebraic dual of .

Morphisms of Kisin modules over R with height in [0, h] and type 7 are defined in the natural
way and we denote by Y%7 (R) the category of Kisin modules over R with height in [0, h] and
type 7. We often omit the additional data and just write 9 € YIOR7(R).

We define 7/ : I = I = GL,(O). Tt is a tame inertial type on K’. We define the category
YI0M™ (R) of Kisin modules over R with height in [0, k] and type 7/ by replacing A by A’ in
Definition B.3.1.11

Recall that o € Gal(L'/Q),) is the lift of the arithmetic Frobenius on W (k') which fixes 7’.

Let (7/)?" denote the composition of 7 (which factors through A’) and the automorphism g
/ npd
g*" on A/. For each M € YIOhT (R), we define its Frobenius twist (o/)*(9) € YI0AL(7)" (R)

as follows: (o/)*(9M) L on @w (k),0+ W (K'), the Frobenius map is
* * ~ * * (a7)* (o) *
Doy 9" ((07)7 (M) 3 (o) (7 () T2 (o) (am),

and the A’-action is

—~ %

0 (oo (97" () 5 (07 (@ () T (o e (om),

using that ¢ — ¢g? is an automorphism on A’. By definition, a Kisin module 9t € Y0/ ™ (R)
lies in Y7 (R) if and only if its A’-action extends to a A-action. By [LLHLMIS, Prop. 6.6],
this is equivalent to the datum of an isomorphism woy : (of)*(901) = 9M, such that the r-fold
composite of

om Z2mEL (5 F ) (o) % m
is the identity on 9. Note that the first map identifies 9U") with ((Uf)*(‘;m))(j%f)‘

Definition 3.3.1.2 ([LLHLM?20], Def. 3.1.6). Let 9 € YIOM7(R). An eigenbasis of 9 is
a collection 8 = (BY))jicqr, where BU) = (f(] ),...,féj )) is an R[u']-basis of MU such

that A" acts on fi(j/) as Xi_l, where x; def w;, " (see for the notation), and satisfies
m((o7)*(89)) = B for each j' € T'.
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Since R is assumed to be local, by (3.11)) and the fact that A’ has order prime to p, eigenbases
always exist.

Let M € YIOMT(R). Under the decomposition M= Djcr MU, the Frobenius map
¢om decomposes into R[u]-linear maps ¢£()§t) : *(MU)) — MU+, The following definition
combines [LLHLMIS8| Def. 2.11] and [LLHLMI8| Prop. 2.13].

Definition 3.3.1.3. Let M € YIOM7™(R) with eigenbasis 3. For each j' € J', the matrix
C{%Zﬂ € M,,(R[u']) of o with respect to 8 is defined by the formula

)

o) <¢*(ﬁ<j'>)) — Ul
and the matriz Agg{)ﬂ € M,,(R[v]) is defined by the formula

’ 1 (5" +1)

A= ()57 ()

By the paragraph after [LLHLM23, Remark 5.1.7] the matrix Ag{)ﬁ is upper triangular
modulo v and only depends on j'mod f.
To end this subsection, we introduce the Kisin modules with more strict height conditions.

These conditions are related to the Hodge—Tate weights of Galois representations. The following
definition comes from [CLI18, §5] (see also [LLHLMIS|, Prop. 4.18] for a special case).

Definition 3.3.1.4. Let A = (A\j1,...,A\jn)j € X1(T) be a dominant weight such that \j; €
{0,...,h} forall0 < j < f—1,1<1i <n. We define a subcategory Y <> (R) of YOI-7(R)
whose objects consist of Kisin modules MM € Y[O’h}’T(R) such that all i by i minors of Az()gt),ﬁ with
respect to a fived eigenbasis B of M are divisible by (v —I—p)Z?ﬂl/\j»"H*k forie{l,...,n—1}
and det(Agggﬁ) € R[w]* (v + p)=r=1ik. In this case, we say that M has height < \. This
definition does not depend on the choice of the eigenbasis for 9.

For simplicity, we also write Y <127 (R) to denote Y =Q1-2n)7(R) for \; € Z (see
§3.2.1| for the notation).
3.3.2 Gauge bases

In this subsection, we review the notion of gauge bases introduced in [LLHLMIS] and w-
gauge bases introduced in [LLHLM23]. They have the property that the corresponding matrices

Agt) P of the Frobenius maps defined in Definition |3.3.1.3 have standard forms.

Definition 3.3.2.1 ([LLHLMIS], Def. 2.22). Let 9 € Y07 (F) and @ = (w;); € W. Write
Z(F) for the Iwahori subgroup of GLy, (F[[v]]) consisting of matrices which are upper triangular
modulo v. We say that M has shape w if for any choice of eigenbasis B the equality
I(IF)A%{EI(F) = Z(F)w,;Z(F)
holds in GLy, (F((v))) for each 0 < j < f — 1, where we regard w; as an element of GLy, (F((v)))
()

by . This notion is independent of B. We also say that the matriz Aﬁ,ﬁ has shape w;.

The following proposition is a restatement of [CL18, Prop. 5.4].
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Proposition 3.3.2.2. Let 9 € Y/7(F) and X = (\j1,...,\jn); € X2(T) be a dominant
weight such that Aj; € {0,...,h} for all j,i. Then M has shape w € W for some w € Adm" (ty)
(see for the notation), if and only if M € YN (F).

The property of having a fixed shape is not an open condition, as we will see in Example
3.3.2.6| Instead, we will use the notion of w-gauge following [LLHLM23]. For simplicity of
notation, the following definition is slightly different from [LLHLM23| Def. 5.2.6].

Definition 3.3.2.3. Let M € YOMT(R) and @ = (@;); € W. Write @; = s;t,, with s; € W
and v; € X*(T'). We say that MM has w-gauge if it has an eigenbasis 5 such that

(i) Agggﬁ(v +p)Yi é;l € GL, (R [lerpD is lower triangular modulo lerp ;

(ii) Agl)ﬁ(v +p)~" € GL, (R {ﬁb is upper triangular modulo -

foreach 0 < j < f—1. Such a 3 is called a w-gauge basis. We also say that the matrix Aggﬁ
has w;-gauge.

Remark 3.3.2.4. If A € M,, (R[v]) has Z-gauge, where Z = st,, with s € W and v € X*(T),
then its (i,j)-entry Ai; has the form

5o Vji—0i>—0i<s(j) N
e > ¢ije(v + p)

k=0

with cijr € R and cy;) € R*, and it satisfies det(A) € R*(v + p)®. Here, if P is a

3505 (4)>j
statement, then we define dp def if P is true and dp <t otherwise.
Remark 3.3.2.5. Let M € YIOMT(F). If O has shape @, then it has w-gauge ([LLHLM?23,

Remark 5.2.5]). In general, M has a unique shape, but it could have w-gauge for many choices
of w.

Example 3.3.2.6. Let n = 2. Let o, € F*, and a € F. We list the gauges and shapes of
some matrices in GLy (F(v))) that will be considered in §3.4)

Figure 3.1: Gauges and shapes of some matrices

Matrix One choice of gauge Shape
av? 0
(av2 Bv) b(2,1)-gauge t2,1)
0 ﬁ'l) mt(271) ifa=0
(av2 av> w0t (5,1)-gauge ten ifa#0
av 0
< 0 5112> t(1,2)-gauge t(1,2)

av

shape t(5.1) for a # 0. To check this, we may assume that a = 3 =1, then it follows from the

equality
0 v\ [—at a b\ [v? 0\ /1 0O
v2 oav) T\ 0 1 0 v)\v a/’
The following Proposition comes from [LLHLM23| Prop. 5.2.7] which is a generalization of
[LLHLM18, Thm. 4.1] and [LLHLMIS8, Thm. 4.16].

FEverything follows directly from the definitions, except the fact that the matrix (022 A ”) has
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Proposition 3.3.2.7. Let pu be (h + 1)-deep in Cy, M € YR (R and @ € w. Suppose that
M/wM € YIO'7(R/wR) has W-gauge, then M has W-gauge. Moreover its W-gauge basis 3 is
unique up to scaling by the group

{(tj,)j,ejl c Tj'(R)‘tj/ =t for j' = k' mod f} =~ T(R).

3.3.3 Etale p-modules

In this subsection, we review the relation between Kisin modules and Galois representations.

We fix a compatible system (py), of p-power roots of (—p) in @p and define K, def

Unen K (pn)- Let Og i (resp. Og¢ 1) be the p-adic completion of W (k)[v][1/v] (vesp. W (k)[w'][1/u]).
It has a Frobenius endomorphism ¢ extending the arithmetic Frobenius on W (k) (resp. W (k')
and such that p(v) = vP (resp. p(u') = (v')P). Let R be a complete Noetherian local O-algebra.
The completed tensor product (see [Dee0l} Def. 1.2.1]) Og x®z, R (resp. (’)g,AL/@sz) is natu-
rally equipped with a Frobenius endomorphism ¢. Moreover, the ring O¢ 1/®z, R is naturally
equipped with a A-action such that (Og’ L’®ZPR ' O¢, K@)Z,,R- The following definition
comes from [Fon90], generalized by [Dee01] for a version with coefficients.

)*

Definition 3.3.3.1. An étale p-module over O&K&’ZZPR is a pair (M, dpm), such that

(i) M is a finitely generated projective (’757K(§)ZPR—module;
(i) dpm : M — M is p-semilinear and the image of ¢prq generates M as an (’)gg@sz—
module.

Morphisms of étale ¢-modules over Og, K@)ZPR are defined in the natural way and we denote
by ® Mod®(R) the category of étale p-modules over O, K@)ZPR. We often omit ¢ and just
write M € ® Mod®(R).

Similar to Kisin modules, an étale p-module M decomposes as M = P e M) where each
MU is a finite free module over the p-adic completion (R[v][1/v])" of the ring R[v][1/v]. The

Frobenius map ¢gy decomposes into R-linear maps gbi%) : MU — MUHD which are semilinear
with respect to v — vP.
There is a natural inclusion &7 g — Og, L/(EAQZPR and we define a functor

er : YORT(R) — & Mod®(R)
. A=1 (3.12)
M — (f)ﬁ ®GL’,R (OS,L’@)ZPR)) .

Note that it doesn’t use the lowest alcove presentation of 7.

Proposition 3.3.3.2 ([LLHLM20], Prop. 3.2.1). Let M € YIOM™(R) and B an eigenbasis of
M. Let M def e-(M). Then there exists an 057K®ZPR—basis f of M such that the matrixz of

ng\j/% with respect to § is given by
ARy $j5 T € GLy ((RI(1/0)")

where “x” is defined in and Az(gt),ﬁ is viewed as an element of GL,, ((R[v][1/v])") under
the natural inclusion R[v] — (R[v][1/v])".

37



Let Repg, (R) denote the category of finite free R-modules with continuous R-linear rep-
resentations of Gx_. By a result of Fontaine ([Fon90]), generalized by [Dee01] for a version
with coefficients, there is an exact anti-equivalence of categories

i : ®Mod®(R) = Repg,._ (R). (3.13)

Composing it with €,, we get a functor
. %
Tj - YOMT(R) 5 & Mod® (R) — Repg,._(R). (3.14)

Proposition 3.3.3.3 ([LLHL19], Prop. 3.2.18). Assume that 7 is (h+1)-generic. Let M, M €
YIORLT(F). If T3, (ON) = T, (V) as Gy, -representations over F, then M = NV in YL (F).

3.4 Galois deformation rings

In this section, we compute some potentially crystalline Galois deformation rings explicitly.
The semisimple case is already known by [BHH'23| §4]. We combine the method of [BHH™23,
§4] and [Lel9l §3] to deal with the non-semisimple case.

3.4.1 Setup

In this subsection, we determine the tame inertial types that we will use.
Throughout this section we fix a 2-dimensional Galois representation p : Gx — GL2(IF) such
that p*|r, = 7(s, u), where

(i) sj # 1 (hence s; = tv) if and only if j = 0 and p is irreducible;
(ii) w —mnis N-deep in C; with N > 12.

We need N to be large in order to deal with the error term coming from the monodromy
condition (see (3.27)) below). Twisting p by a power of wy if necessary, we furthermore assume
that p; = (rj +2,1) € Z* with N <r; +1 < p— N for all j so that (see Example (3.2.2.4)

926 (rj+1)p?
wr Rw if p is reducible,
0 1
Pl = S0 try+1)p 0 (3.15)
w
2f ol S (1) ®w if p is irreducible.
0 W f J=0t

Then we associate to p a tuple of f elements (ao,...,ar 1) € F/ and describe the set W (p)
of Serre weights of p in terms of these elements. By (3.13) there exists an étale ¢-module M
over k((v)) ®p, F such that Vi (M) = p|g,_ . Recall from §3.3.3| that we have a decomposition

M= Dcr MY with MY = F((v))egj) @ F((v))egj). We separate the following two cases.

(i) If pisreducible, by [Lel9, Prop. 3.1] we can take the Frobenius maps qﬁ% MY Ry
to have the form

S0 () G+

O (ef”) = aporoguri1= 2 (e T 4 ajey ™)
3) = B-1-jve

M
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for some o, 3; € F* and a; € F. In other words, the matrices of the Frobenius maps gb%)
in the basis {(egj), egj))j} are given by

ajap_q- 0"t B (3.16)

. T2
Mat (gL 77) = ( o5 0 > .

Notice that whether a; equals 0 or not is unchanged when we rescale the basis. From now
on, we fix a choice of o, 8; and a;. In particular, this gives a tuple (ao,...,ar_1) € Ff.

(ii) If p is irreducible, by [Lel9, Prop. 3.1] we can take the Frobenius maps qﬁ%) : ﬂ(]) —
H(HI) to have the form

i t2
o’ 0 if £ 0,
0 ij
0 —A.
BJ“) ifj=0
0

o Tit2
OZJU J

Mat (¢ "77) = (3.17)

for some «a, f; € F*. In this case we define a; = 0 for all j.

In particular, we see that p is semisimple if and only if (ag,...,ar—1) = (0,...,0).

Recall that for p : Gxg — GLy(F) a Galois representation, we have a set W (p) of Serre
weights of p defined in [BDJI10, §3] which only depends on p|;,. In both cases, by |Lel9,
Prop. 3.2] it can be described by

W(p) = {F(t‘ufn(bo, R ,bf_l)) : bj S {O,Sgn(sj)} if ar1-;=0 and bj =0 if af—1—j #0},
(3.18)
see for the notation.
Then we introduce the following 3/ tame inertial types that are needed in the computation
of Galois deformation rings. Given an arbitrary

w € Adm" (t(21)) = {t21); mt(2,1),t(1,2)}f

(see Example [3.2.1.4), we write w* = t,w for some unique (w,v) € W x X*(T) (see (3.3) for
“%7). Then we define the tame inertial type

T@ 3 T(sw™t, p— sw(v)) (3.19)
with lowest alcove presentation (s(7), u(7)) def (sw™!, p— sw™'(v) — ). In particular, 75 is
(N — 1)-generic.

Explicitly, s(1); = wj_l
(7)o = wy . Also we have

except when j = 0 and p is irreducible, in which case we have

(Tja 0) if (tl/j wy, Sj) S {(t(2,1)7 1)7 (t(2,1)m7 m)v (t(1,2)7 m)}7

‘ (3.20)
(T'j +1, _1) if (tl/jwj7 S]) S {(t(2,1)7 m)7 (t(2,l)m7 1)7 (t(1,2)7 1)}

M(T>j+77j—{

The following lemma tells us whether a tame inertial type contains a given Serre weight of p.

Lemma 3.4.1.1. There is a unique injection 6 : W (p) — {t@l), t(]_,Q)}f such that for o € W(p)
and w € Adm" (t( 1)) we have

o€ JH (m @ (Ni/k, 0 det)) = (@; # 0(0); Vj). (3.21)
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Proof. The proof is almost the same as [BHH™23, Lemma 4.1.2] except that we replace all
the bijections by injections, since a non-semisimple p has less Serre weights then a semisimple
one. O

Remark 3.4.1.2. By the proof of [BHH" 23, Lemma 4.1.2], the map 0 of Lemma |3.4.1.1] is
defined in the following way: If o = F(t,—y(bo,...,bf—1)) as in , then we define

t if b; =0,
0(0)f-1-5 = {t(m) . b]-
(2,1) if bj # 0.

Moreover, still by the proof of [BHHT 23, Lemma 4.1.2], the 27 tame inertial types T3 appearing
in are all the tame inertial types that contain a given Serre weight o of p.

Let o be a Serre weight of p. We define the set of tame inertial types that contain o:

def

X(o) < { € Adm"(ty)) : aGJH( (7a) ©F (Ni/r, odet))} (3.22)

By Lemma we have

X(o)=A{we Admv(t(;l)) cwj #6(0); Vit
We also define the set of tame inertial types that contain at least one Serre weight of p:
def

X(p) & {weAdm (tn) : JH (( () ®F (Nyp, odet)) } U X
ceW(p)

We describe this set explicitly. Let (a;); be the chosen elements of F associated to p. If
af—1—j = 0, then b; can be either 0 or sgn(s;) by (3.18)), and wf_;_; can be any one of

the elements of Admv(t(m)) = {t2,1), Wt2,1),t(1,2)} by Lemma [3.4.1.1| and Remark (3.4.1.2, If
af_1-j # 0, then b; has to be 0 by (3.18), and wy_1_; € {t(21),Wt(21)} by Lemma |3.4.1.1 and
Remark |3.4.1.2l To conclude, we have

X(ﬁ) = {QE = Admv(t(;l)) : wf_l_j 75 t(172) if af_l_j 7’5 0} . (3.23)
These are all the tame inertial types that we need.

Lemma 3.4.1.3. Let w € X (p). Up to isomorphism there exists a unique Kisin module M €
y=@Dme(F) C Y<G07a(F) such that Ti(9) = Plak., (see for T7,).

Proof. We concentrate on the case that p is reducible. The irreducible case is similar and can also
be treated as in [BHH"23, Lemma 4.1.1]. Define a Kisin module 9 over F of type 75 by imposing

the matrices of the partial Frobenius maps to be AU/ ~17) = Mat(d)(f - j))v W(m)i+m) (1) 5,

where Mat(gbs\]; - J)) € My(F[v]) is the matrix in (3.16)), and s(7), u(7) are computed in ((3.20).
Explicitly, we have the three cases:

(i) w15 =tpq), then s(7); = 1 and u(7); +n; = (r4,0). We have

A(flj):< it 0 ) <“” 0) :( at 0 >
ajap_1-jv" T B 0 1 ajaf_i1_jv°  Bjv

It has shape t( 1) by Example |3.3.2.6
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(ii) If wy_1_j = wt(y 1), then s(7); = w and p(7); +n; = (r; +1,—1). We have

AU=1-5) _ v T2 0 v~ 0\ /0 1\ [/ 0 Qv
T \ojapo_ it B 0 v)\1 0)  \Bjv?* ajap_1_jv/)°

It has shape wt ) if ay_1_; = 0, and shape (31 if ay_1—; # 0 by Example
(iii) If wy_1-j = t(1,9), then s(7); = 1 and u(7); +n; = (r; +1,—1). In this case, we must
have ay_;1_; = 0 by (3.23), hence

AF-1-9) — (ajvTj+2 0 > (U—(Tj—i-l) O) _ <ajv 02) '
0 ij 0 v 0 ﬁjv

It has shape t(; 9y by Example |3.3.2.6

In all cases, we see that the matrix AU/=1=7) belongs to My (F[v]) and has shape contained in
Adm" (t(51)) for all j, hence M € Yy <=@D.ma(F) € Y307 (F) by Proposition More-
over, we remark that 91 has w-gauge by Example Now by Proposition |3.3.3.2 the
matrices of the Frobenius maps of the associated étale ¢-module e, (M) (see (3.12)) with
respect to some basis f is given by

Matf(gb(f_l_j)) - A(f—l—j)S(T);lvu(T)frnj_ (3.24)
This is the same matrix as in (3.16)), hence T}, (9) = Plok.. -

The uniqueness of M follows from Proposition [3.3.3.3) since M has height in [0,2], 75 is
(N — 1)-generic and N — 1 > 3. O

Remark 3.4.1.4. For general w € Adm"(t(y 1)), there could be some j, such that Wy_i_j =
t2) and ag1—5 # 0 (this can happen only when p is non-semisimple). In this case, the
above construction giwes a matriz AY=179) of shape iy 9) which belongs to Admv(t(&o)) —
Adm" (t(2,1)) (see Example , s0 there is still a Kisin module 9 € Y=G0.7a () such that

T, (M) = bl , which is unique up to isomorphism using Proposition and N —1> 4.

3.4.2 Single-type Galois deformation rings

In this subsection, we combine all the above preliminaries and compute the single-type
deformation rings following [BHH™ 23| Prop. 4.2.1] (which deals with the semisimple case).
Let p and (ag,...,a;—1) € F/ an f-tuple be as in Fix w € X(p) (see ) and
let 74 be as in . We compute the Galois deformation ring of p for a single-type 75 and
Hodge—Tate weights < (3,0) (meaning Hodge—Tate weights (3,0) or (2,1) at each embedding).
E

Let M € Y=ZD:7a(F) such that T,(9) = Pla.. (see Lemma . By the proof of

Lemma |3.4.1.3 the associated matrix Z(j) of 9 with respect to some eigenbasis 3 is of the

form:

*(7),,2
€1 v 0 . o
*(j)
AU —T, 2 ﬁ if wy_1_; = wt (91, (3.25)
21 Y 29 U
dﬁj)v 0 o B
0 ee? i =tag):




Here we use the notation of Tables Each element with “*” (e.g. elgj)) belongs to F*.
The element dgjl) (resp. d%)) equals 0 if af_1_; = 0, and belongs to F* if ay_;_; # 0.

Let Rﬁg(&o),m denote the maximal reduced, O-flat quotient of the universal framed deforma-
tion ring RﬁD that parametrizes potentially crystalline lifts of p of Hodge-Tate weights < (3,0)
in each embedding and tame inertial type 7 (its existence follows from [Kis08]). For each dom-
inant character A € X7 (T), let RiTw denote the maximal reduced, O-flat quotient of RD that
parametrizes potentlally crystalhne lifts of p of Hodge-Tate weights A; in the j-th embeddlng
for all j and tame inertial type 75.

The following result is a generalization of [BHH™23, Prop. 4.2.1] (where p was assumed to
be semisimple).

Theorem 3.4.2.1. Let w € X(p). We have an isomorphism
RECOTIIX, . Xog] (RW/ZIU)> [Yi,....Y4], (3.26)
j

where RTo & @O,OSjgf—lR(j)’ and where the rings RY) and the ideals IV) of R™@ are found

in Tables . The irreducible components of Spec R*( 073 e gwen by Spec RJ v where
A= ()\) € {(3,0),(2,1)}. More precisely, via the zsomorphzsm , for any choice of
A= (\) € {(3,0),(2,1)} the kernel of the natural surjectwn Rz (30 T”[[Xl,.. , Xop] —
R%’m [X1,...,Xof] is generated by the pmme ideal Zf L pU)Ar-1- of R™@ , where the ideals
pl)As-1- of R™@ are found in Tables 3.9

Moreover, the special fiber of each Spec Rﬁ’f’Z 15 reduced.

Proof. We follow the proof of [BHH'23, Prop. 4.2.1] and use without comment the notation of
loc. cit.

By (3.25) and Example |3.3.2.6| the eigenbasis 5 of 9 is a w-gauge basis in the sense of
Definition [3.3.2.3] We modify the definition of D%(%O)’T (R) appearing in the proof of [BHH™ 23,

Prop. 4.2.1] by requiring 5 to be a w-gauge basis instead of a gauge basis. Then by Remark

3.3.2.4, for any lift (Dﬁ B,7) € 7(7 ) "(R) the corresponding matrices A/ ~177) are given in row

1 of Tables |3 where the entrles c(ljl), c%), .. are in R satisfying AU =1=9) mod mp equals
AU Here we remark that the matrix AF=1-9 in row 1 of Table has tot(3 1)-gauge but
has shape ¢ 1) if ay_1-; # 0.

Row 2 of Tables are obtained from row 1 by applying Proposition

Let RY) be the power series ring in row 3 of Tables Its variables cq1, ... come from the

coefficients of the matrices A ~179) in row 1 of Tables[3.1/13.3] The condition that 9t has height

< (3,0) (see Definition , or equivalently the determinant condition appearing in Remark

3.3.2.4 is given by det AU=177) € R* (v 4 p)3. This gives the ideal 1U)=(30) in row 4 of Tables

Then the argument of [LLHLMIS, Thm. 4.17] shows that the deformation problem
< 3 0 ,T

7; is represented by the maximal reduced O-flat quotient of ®O70§ i< f_lR(j) /1 (4),=(3,0),

As in the proof of [BHH"23, Prop. 4.2.1], the monodromy condition given by |[BHHT23,
Prop. 3.1.9] is equivalent to

(&)

viA(f*I*J') _ AU=1=9) a¥) 0 (U+p)3(A(f,1,j)),1 +O@EN 3 =0
v=—p d’U O O
(3.27)
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forall0<t<1,0<j < f—1. Here a¥) ¢ Z(p) is as in the proof of [BHH™23, Prop. 4.2.1] and
O(pN =371 is certain unspecified element of p =3¢ My(R). Then the entries of the matrices
given by the left-hand side of give the ideal IU)V of R™ which are given in row 5 of
Tables We remark that row 5 of Table is not computed directly, but is computed
using the fact that the matrix AV =179 of Table can be conjugated to that of Table by
the matrix (93).

We have a similar diagram as (5.9) of [LLHLMIS8]. The vertical map labelled “f.s.” in
loc.cit. now corresponds to forgetting the w-gauge basis on the Kisin modules, and is still
formally smooth by Proposition which is a generalization of [LLHLMI8, Thm. 4.1]

and [LLHLMIS, Thm. 4.16]. Let RS%7™Y
<(3,0),7 (4),<(3,0) L 1(5),V 7
RESOT )Y (10 +10):V). Then the argument of [LLHLMIS, Thm. 5.12] and [LLHLMIS,

Cor. 5.13] goes through and gives an isomorphism

be the maximal reduced and O-flat quotient of

<(3,0), ~ p<(3,0),m.V
Rﬁ_( )T[[levXQf]]:RﬁSB)T [[Yi)aYll]]
The rest of the proof and the computations are completely analogous to those of [BHH™23,
Prop. 4.2.1] (see Remark [3.4.2.2 below). Here we notice that the equation (25) in [BHH™23,
Prop. 4.2.1] is guaranteed by our assumption on w. Finally, the proof of the last statement is

completely analogous to that of [BHH"23, Cor. 4.2.6]. O

Remark 3.4.2.2. The Tables —Table are very similar to those of [BHH" 23, §/]. The
main difference is that here the element day (resp. dag) of Table (resp. Table is a unit
in RY) if and only if ar_1—; # 0.

3.4.3 Multi-type Galois deformation rings

In this subsection we compute the multi-type deformation rings following [BHH™ 23| Prop. 4.3.1]
(which deals with the semisimple case).

Let p and (ag,...,ar_1) € F/ be asin §3.4.1, For o € W (p), let R§(3’0)’0 denote the maximal
reduced, O-flat quotient of R%' that parametrizes potentially crystalline lifts of p of Hodge—Tate
weights < (3,0) in each embedding and tame inertial type 7 with 7 € X (o), where X (o) is as

in (3.22). By Lemma [3.4.1.1f and Remark [3.4.1.2) we see that Spec Rﬁg(&o),a

of Uﬁex(a) Spec R§(3,0)7m[1/p] inside Spec RE. Also, we denote w, def O(o) € {t(zvl),t(m)}f,
where 6 is defined in Lemma 3.4.1.]
We define a bijection i : Admv(t(;l)) — {1,2,3}f by letting i(w) be the f-tuple given by

is the flat closure

1 lf QE] == t(?,l)
2 lf &}J] — mt(271)
3 lf TZJ - t(1,2)'

They will be the indices of ideals.
The following result is a generalization of [BHH23, Prop. 4.3.1] (where p was assumed to
be semisimple).

Theorem 3.4.3.1. We have an isomorphism
<(3,0), ~ j
=COx, X2 s () Y1 | LYl (3.28)
weX (o) J

43



where S % @O’Oggfls@, and where the ring SU) and the ideals Ig) of S are as in Table

if (Wo)f-1-j = t(1,2), whereas the ring SU) and the ideals Ig) of S are as in Table if
(Wo)f-1-j = t(2,1)- The irreducible components of Spec R§(3’0)’U
A=) €{(3,0),2 D} and w e X(0).

More precisely, via the isomorphism , for any choice of X = ()\;) € {(3,0), (2, 1)}f and
w € X (o) the kernel of the natural surjection Rﬁg(g,o),g[[Xh o, Xog] = R%’m [X1,..., Xof] s

generated by the prime ideal Zf ép(z) Af=1-g of S, where the ideals pg)’Af_l_j of S are found

in Tables[3.4] and [3.5,

Proof. We follow the proof of [BHH™23, Prop. 4.3.1] and use without comment the notation of
loc.cit. The main difference in the non-semisimple case is that we need to modify the definition
of the map v of loc.cit. and to prove the Claim 1 of loc.cit. in this case.

Recall from and that there exist 5%), (5(J ) € F* and (5(2) € IF, such that

are given by Spec R%’m, where

()
Mat(el ') = @gzéégsfwa
where 1/ =3 pi—(1,1) = (r; +1,0). Note that 5%) = 0 if and only if af 1 —j = 0. In particular,
if p is reducible nonsplit, there exists at least one 5 € 7, such that 5 # 0. In this case we
fix one such j and denote it jo. Let [5( )] [5%1)] € O* and [(5532)] € O be the Teichmuller lifts of
89) 6 € F* and 6Y) € F.
Let § & S/ ﬂweX(a Zj Ig). We consider the étale ¢-module M over O 5 given by

: ()
(w+p)(109] + 219) + i) 4 iz

((U +p)d§1) + ) 5 5;11,#3

1
W+p) (0] +29) + ) @+ p)((05] +25) + i) +

v

Mat(qb(f 1 J))

in a suitable basis, where bgji) ©o if (Wo)f-1-5 = t(1,2) and b%) = 0if (Wy)f-1-5 =tz In

particular, we see that M ®¢ F = M.

Fix an F-basis qp of Vi (M) = Plak.. - We demand moreover that vp 1, vr2 span G-

stable lines in case p is reducible split. Fix an S-basis v of Vi (M) lifting g Denote S[Y] &

S[Y1,Ys,Ys,Ys]. Then the Gk -representation Vi (M®R5S[Y]) = Vi (M)&5S[Y] over S[Y]
together with the basis (1 + <§2 %) )(7® 1) give rise to a homomorphism )y : R%G — S[Y].
Koo
We extend 1y to a homomorphism 1 : R%G [X', X"] — S[Y] as follows:
Koo
x’lkgj) if 0 <j< f—1orpisirreducible;
’QZJ(X]/-) =N if j = f — 1 and p is reducible split;

375]20) if j = f — 1 and 7 is reducible nonsplit;

SXT) = ) f0<j< f-1;
Y, ifj=f-1

Claim. The map 1 : Rg‘c [X', X"] — S[Y] is surjective.
Koo

Now we prove the Claim following the proof of Claim 1 in [BHH'23, Prop. 4.3.1] (which
treats the semisimple case).

44



~ We check that ¢ is injective on reduced tangent vectors, i.e. on Fle]/(e 2)-points: Let tq :
S[Y] — F — F[e]/(?) be the zero vector, where the first map maps all the variables of S
and the variables Y; to 0. Fix one continuous homomorphism ¢ : S[Y] — F[e]/(¢?) such that

to =tgo. The goal is to prove that t = tg.

Abusing notation, we write t(bl(k)) b(j ) for some b%) € F on the right, and similarly

() = &P, t(dggj) edd (2 = mgg if (i,k) = (2,1) or (1,2), t(a¥)) = e2¥), and

t(Y;) = ey;. Since t o 1) = ty o1, evaluating on the variables X’ and X” we deduce that

wEQ)—xg]l)—Ofor0§j<f—1, ys =0, and

33(1]; D_o if p is irreducible; (3.29)
y1 =20 if p is split reducible;
%) =0 if p is nonsplit reducible.

Moreover, by the definition of ¥y and using t o @) = ty o v, there is an isomorphism

A Mg ®gpyy Flel/ (€%) = Mgy @spyy., Flel/(€7) (3.30)

of étale p-modules over Fe]/(¢2) which induces the identity of M modulo € and such that V()
sends the basis (1+e (¥ 42))(y®1) to ¥ ® 1 on the corresponding Gk__-representations over
Fle]/(€2). In particular, the isomorphism A is realized by the change of basis (i.e. ¢-conjugation)
by a matrix of the form

1+ EMf_l_j S GLZ(Og,F[E}/(EQ))v

for some My_1_; € Ma(Ogr) = My (F((v))). In other words,

592) 0 —1 K
(1+eMj) 50 s | %Y i(1—ep(M;))
2 | (3.31)
N I T
Frgntr ara SR R R

where we have divided by v, and j is considered in Z/fZ as usual.
First we show that the matrix M; € My (F[v]) for each j. Let k; € Z be minimal such that

ki M ;€ My (F[[vﬂ) The equation 1' is equivalent to

(69 0\
1 —ep(M;) =vHis; s0) s0) (1—eM;_)

29 091
'<5§]2)+(€§x§2)+<6(32)v G) - G) E(d((]; _1<+>C( v i )8'_1”“9-
835 (255 +cgpvt) 031 +e(xg) +esyv™! + by v2) )

Recall that u; = (rj +1,0), hence multiplying the right-hand side by v"i 1. pki-1 . p? makes it
v-integral. Considering the left-hand side, it follows that pk; < k;j 1 +7;+3 <k;j_1+p—1by
genericity. This implies p(max; k;) < (max; kj)+p—1, so max; k; < 1, meaning M; € M (F[v])
for all j.

Comparing the coefficients of ¢ in and multiplying on the right by v H 55, we get

59 o\ (69 o\ . -
M1 <5b2'> 50 st g ) 55 Ve My)e s
22 21 22 21

x%) +C(J) —1'_’_ b%)v_Q dg'l) -1 —i—cﬁ)v_?
méz) + cgjz)zf1 x(]l) + cgjl)v + bgjl)fzf2

(3.32)
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From now on we assume that p is reducible; the case for p irreducible is similar and is

contained in the proof of [BHHT23, Prop. 4.3.1]. In particular, we have s; = 1 for all j. If we

3 @) :
write M; = (mll Mz ) with ml(i) € F[v] and expand equation (3.32)), we get

(49) (J)

( iy o) + iy Vo >5§]1>>

50+ mig ok iy

( G) () 5§2)g<)(>m i) Gy <O Gl <+ )1 gp(m({%) () ) (3.33)
83 22 ‘P(mn )+ 5231 v~ (it (ngl ) 522 UT’H%D(mu )+ 521 (m2]2 )
_ (x%Q) + c%)v_l + bgé)v_2 dgl)v_ + cgjl)v_2 )

29 4 Py 2D 4 Dot 4 )2

Compare the (1,1), (1,2), (2, 2)-entries. Since M is v-integral, we deduce that c(]) = b%) =0,

dﬁ) = cgl) =0, and c(]) = b(]) =0 for all j.
Compare the (2, 1) entries. Since the first term of the left-hand side is v-integral and the

right-hand side times v is integral, we deduce that v=" @(mgjl)) is v-integral (recall that (5%? €

[F*). Since r; > 1, we get v | m(le) in IE‘[[U]] Since p — (rj + 1) > 0 by genericity, it follows that
the left-hand side of the (2, 1)-entry of (3 is v-integral, hence céJQ) =0 for all j.

Compare the (1,2)-entries again. Now we have the equality m(] 1)551) = (5(3) "itlo(m (j))
for all j. Comparing the order of v and using 5&1) 5(] ) € F* for all j, we easily deduce that

m$%) = 0 for all ;.

Now the equation (3.33)) becomes

1
<(') (-1 (4) 5%)(1)&]1 )_ép')( g)))(') (7) @) ¢, G 1)0 (7) >
51J2 ] + 522 (mzjz - @(mljl )) - 5231 U_(rj+1)80(m2j1 ) 52]1 ( J go(m2]2 ))

-(4 ?>)
552]2 5“2]1

Specializing the equation 1) at v = 0 and using that v | mgjl) in Flv] and p — (r; +1) > 1,
we get

(3.34)

1
51 (miy ™ —mi)],_ = 23,

0y (mgy ) —mi))],_o = 23, (3.35)
s bl o =)
By (3.29)), x%) =0for 0 < j < f—1, hence ml]1 ‘v:O does not depend on j and we denote
it my1. By (3.35)) again, it follows that ng D —o. Similarly, xéji) =0for0<j< f—1hby

3.29)), hence méé)}vzo does not depend on j and we denote it maos. As previously, it follows

that =5, Y = 0.
G) . .
If p is reducible split, then 622 = 0 for all j, hence by the second equation of (3.35]), we get
:cng) =0 for all j.
: : —anli (Jo) _ . :
If p is reducible non-split, we know by 1} that x5,” = 0, hence by the second equation
of (3.35)), we get mq1; = may since 55]20)

of (3.35)) again, we get 3:5]2) =0 for all j.

€ F* by our choice of jy. Then by the second equation

46



As a result, the right-hand side of (3.32) vanishes and we conclude that (My_1_;); €
End, mod(M). Denote this endomorphism by &. Since the isomorphism 1) satisfies

(14 V() [(1—1—5 <y1 Z)) (7®1)} =y®1,

Y3

it follows that Vi (&) = — (¥} 42 ) with respect to the basis yp. Moreover, we have

End, mod(M) = Endg,__ (lk..) = Endg, (p)

by [BHH"23, Lemma 3.2.8].

If 5 is non-split reducible, then Endy med(M) = F. As ys = 0 we conclude from the formula
for V3. (§) that y; = 0 for all 4.

If p is split reducible, then End‘p_mod(ﬂ) = F x F. By our condition that vyr 1, yr2 each
span G _ -stable lines, we conclude that y2 = y3 = 0. Using we also have y; = y4 = 0.

We have shown that ¢ = ¢y, completing the proof of the Claim.

The rest of the proof and the computations are completely analogous to that of [BHH™23,
Prop. 4.3.1] (see Remark below) using Theorem As in the proof of Claim 2 of
loc.cit., one can identify the étale p-modules between the tables via the change of variables
given by the following.

Figure 3.2: Change of variables between the tables

Table |3.1| | e]; di1 11 do1 | c12 | o1 | d3p | 22
Table 3.4 | diy | c12 —pdiy | biz —pcig | dao | din | c2 | d3y | e

Table (3.3 dTl C11 d12 C12 Co1 632 d22 Co29
Table 3.5 dT2 C12 d11 C11 d22 d;l Co1 — pd§1 b21 — pca1

O]

Remark 3.4.3.2. The Tables and are very similar to those of [BHH' 23, §4]. The main
difference is that here the element doo of Table is a unit in RY) if and only if ap_1—; #0.

The following result is a generalization of [BHH™23, Prop. 4.3.3] (where p was assumed to
be semisimple).

Proposition 3.4.3.3. Keep the assumption of Theorem [3.4.3.1, Fiz 0 < j < f—1 and
w € X(o) such that i(w)s_1-; = 2.
(4),(3,0)

If (Wg)f—1-j = t(1,2), then we have p € qgj)’(z’l) N qgj)’@’l) +p5 , where
j def .
q§’)’(2’1) = (b12 — pci, c11, c12 — pdis, 21, €22, d11)
; di1d
qé”’@’” ' (b1g, e11, 12, 21, 22, il iz +p].
diods,

Here we omit the superscripts (j) for readability and we consider these as ideals of S.

If (Wg) p—1-j = t(2,1), then we have p € qgj)’@’l) N qgj)’@’l) + pg)’(?”o)

o d11d22
qgj)( ) <b217011,012,c217022’ d¥od +p>,
12%21

, where

7),(2,1) def
qé ),(2,1) def (bo1 — pca1, €11, C12, C21 — pdsy, Ca2, d22) -

47



Proof. The proof is purely computational and is completely analogous to that of ﬂm,

Prop. 4.3.3] (see Remark [3.4.3.2)). O
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s - . (-1 et 0
Table 3.1: wf_l_j = t(2,1) ie. A == (d;’UQ d;Qv)

AF=1-5) ((” +p)%ef; + (v +p)din + e c12 )
1)((1) +p)d21 + CQ]) (’U +p)d§2 + c29
p-module at the o ((v+p)efy + (v +p)dis + ) C12 —p (vt 0
(f — 1 — j)-th embedding (v+p)da1 + c21 (v+p)dsy +co2) I 0 1
R Oleir, di1, 231, €12, €1, 21, Co2, Tho ]

€11€22 + pCiacai,
),<(3,0 . * .
16):=(3.0) dy1c02 — c12€21 + c11d59 + peiadan,

* %
e11¢22 + di1dsy — c12da

(a1 — 1)diico + arci1dyy + p(diidsy + 2€31ca2) + O(p™74),
cazlarery + pdyr) + O(p™=3),

c12((ar — 1)diy + 2pei;) + O(pN ™),

crz(arerr + pdip) + O(p™ =3,

1OV
(a1 — 1)earcas — p((ar — 3)darcaz + (a1 + D)eardsy) + O(pN ™),
p((a1 — 1)earcan + p(darcas — eandy)) + O(pN7?),
(a1 — 1)c1ze1 + c1dsy — p((a1 — 3)cizdar + diidsy) + o),
p((a1 — Dcraear + cr1dy + peradar) + O(p" %)
c12da1 N_8
di + (a1 _2)7d* +O(p ),
22
c1od
co2 — (a1 — 1) 162* L oM ®),
11
‘ _ B 2
I(]-) déf ([(]')>V T ](j),g(B,O))p—sat o1 + (al 1)((11 2) 012*(d2*1) + O(pN—é%)7
ai €71d3,
c1od; a1 — 1)%(ay — 2) ci2d _
L 12*21(( 1—1)%(a; — 2) 12 i1*P>+O(PN ),
d3, ai ef1d5,
c1od;
(cr2 + 00" ) (2 = V(e = DZETE — 2+ 06N )
e11d5,
P21 19 + (e + O(pN~%))
p(@)-3.0) 10) + ((a1 —1)(ar - 2)Ci2dzl ot O(pN—S))
ei1ds,

Here a1 € Z(p) and a1 = 7<s;1(,uj) — (2, 1),04]V> = —sgn(sj)(r; + 1) + 1 (mod p). For
readability we write a1, ¢;i, etc. instead of a§j>7 cgi), etc. Also note that x7; def ey — a},

def —F def —
xhy = di, — [di,] and o1 = d21 — [do1].
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~ . (f-1-4) 0 diy
Table 3.2: wy_;_; = ot (s 1y i.c. A - ( d;iv) )

*
ds,v

Alf=1-3)

( (1) +p)d11 + c11 (U er)dTQ + C12>
v((v+p)ds; +co1) (v +p)das + 22

p-module at the
(f — 1 — j)-th embedding

(v +p)d’{2 + c12 %((U +p)di1 + 011) o1 it
(v + p)daz + 22 (v+p)dsy + cn J 0 1

RU) Oleir, dit, c12, %75, c21, T3, €22, T22]
dirdoa — (c12d3; + digear) + pdiadsy,
16)=630) c12¢21 — di1ca2 — c11da — p(crady; + digcar),
C11C22 + pc12ca1
(ag — 1)d11ca2 + ageridan + p(diidag — 2djacon + pdiadsy) +O(pN 1),
asciieo + p(diicas + pdigear) + O 3),
(a2 + D)enidiy + (ag — dierz + 0N ),
azericiz + p(dicia — cridly) + O(pN73),
10v (a2 — 1)earcas — p((az — 3)d5yca2 + (az + 1)eardaz) + O(p™ ),

p((az — 1)earcon + p(dsicoz — ca1da2)) + o(p"N=3),

(ag — 1)ciaco1 + cr1dag — p((a2 —3)c12d3; + (a2 — 1)djgc21
+ diidas + pdiadsy) + o™,

p((a2 — D)crzcar + cridag + peradsy) + O(p™N ~2)

10 % (1) 4 0).=(3.0))p-sat

 (dnd B
en (= 1) (G152 4) + 0¥,
12021
dy1d
o~ andiy (G 1) + O,
diyds,
az(ag — 1) di1da N-8
d
ci1 + o1 (dT2d§1+p +O0(p™ %),
az(az — 1) (d11d22 ) N_8
C22 — 2| oo TP FOW %),
-2 diads,

d11da22 N-8 ) ( as(az —1)  diidaa N_8 )
— +p+O(p —— +p+O(p
<d12d21 ( ) (a2 —2)(az + 1) dijyds, ( )

P21 10) 4 <dildi2 +p+ 0(pN‘8))
d12d21
) 0+ (( as(ag —1)  dudy +p+0(pzv78))

az — 2)(az + 1) diyds,

Here as € Z(p) and as =

—<msj_l(uj) — (2, 1),0(3/) =sgn(s;)(r; +1) +1 (mod p). For

readability we write a2, c;k, etc. instead of agj>7 0%)7 etc. Also note that

s def

— ef — ef
oty = dfy — [di,), @5, d5y — [d3,] and a2 ' dao — [daa).
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e _ . —=(f-1-5) _ [d]jv 0
Table 3.3: wf_l_j = t(1’2), 1.e. A = < ]8' 6;2112)‘

AU—1-3)

((v +p)di; + e

(v+p)dia + c12 )

vea1 (v+p)2eby + (v + p)daz + 20

p-module at the
(f =1 = j)-th embedding

(v+p)dj; + en
vC21

((v+p)di2 + c12)
2

1
v
%((v +p)2esy + (v +p)dao + 022>

B Ole11, #7y, €12, dag, €21, Ca2, d2a, T3]
C11C22 + PC12€21,
I(j)YS(?)yO) 011d22 — C192C21 + d>{1622 + pd126217
c11e5y + didaz — dizea
ageridys + (ag — 1)djyeas — p(diydaz + 2¢11¢5,) + O(pN ™),
ci1((az — 1)caz — pdas) + o3,
ca1(agdaz — 2pesy) + O(pN 1),
ViO2D% €21 ((st —1)cag — pd22) + O(pN_‘%)7

aszc11€12 — p

((03 +2)ci1di2 + (a3 — 2)d§{1012) + 0N,

plazcriciz — pleindiz — dfpc12)) + o™ ?),
azciacar — dijcan — p((az + 2)dizear — diydao) + O(p" 1),

p(ascizca — diycag — pdizear) + O(p

N73)

10 € (161 4 16),<63.0) yp-sat

C
doz — (a3 +1) 1(;* oY)
11
c11 + as%cm +0(p"N®),
)
az(az + 1) (dy2)%ca1 N_8
C12 as — 1 dilegz + O(p )a
diac az)?(az + 1) digc _
gy 12*21<( 3)%(a3 + 1) 12621 —p) oMY,
diy az—1 diie5,
_ diac _
(e + 0™ ) (as(ea + DG — 204 0 )
11622

p@2D) 19 + (e21 + O(pN)
p(0)30) 10) + <a3(a3 Lo o O(pN*8)>
dje3,

Here ag € Z(;y and a3 = —<3j_l(ﬂj) - (1, 2),043/) = —sgn(s;)(r; +1) — 1 (mod p). For

readability we write a3, ¢;k, etc. instead of a

(3j), cz%), etc. Also, z7, def d}, — [d},] and

def — . . .
T3y = €55 — [632]. Note that we necessarily have ay_1_; = 0 in this case.
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Table 3.4: Multi-type: (wy)s—1-j = t(1,2), S0 Wy_1_j = t(21) and 1ty ;).

Multi-type ¢-module at (v+p)diy + c12 + b}—f %((v + p)di1 + c11) 1 ot 0
the (f — 1 — j)-embedding (v+ p)daa + 22 (v+p)ds; + ca i 0 1
SG) Oleit, din, biz, c12, T3, €21, T51, €22, T22]
c11 + pdiy,
d
c1o2 — p(fb + (a1 - 2) 21* 2 + O( N_S),
21
di1d
c21 — (a1 — 1) 1;* 2 4 o),
, 12
19 (@), =1 —1)(a1 — 2) di1(da2)?
5 W) p_1-j - (a1 —1)(a1 —2) 11*( 23) O,
a1 diad3y
dirdas (a1 — 1)%(a1 — 2) d11da2 N_8
bi2 — pci2 — —; ( — — P +FO0(@" "),
dsy ay diydsy
dy1da2

(diy + O(p" %)) ((a1 “1)(a1 - 2) o+ O(pN*S))

*
d12d21

b2,
di1d
ca1 + (a2 — 1)d3, (dild? +p> +0(p"®),
12021
diid
err — andiy (T2 1 p) 4+ 06 )
) diydsy
I, i(w)p ;=2 as(az — 1) <d11d22 ) N_8
+ d + 0] ,
c1 a1 &iods, p)+O0@(@ %)
az(ag — 1) <d11d22 > N-8
20 — d + +0 ,
22 4y — 2 s, p (p )
dy1da2 N_8 >< az(az —1)  dirda N_8 >
+p+0 +p+0
<dT2d31 b (v ) (a2 —2)(az + 1) dfyds, g (v )
PO @)y =1 1)+ (dn + 0N )
630 o~ () ag(az —1)  dida N-s >
- , (W) =1 X+ +p+0
Po™ s U gt P+ (S a7+ 00"
| B ) (dud
pfﬂj)’(m)’ (W) f-1-5 =2 Ig) + <d’1ﬂldi2 +p+ O(PNJ))
12091
()30 o~ () ag(ag —1)  didy N—8>
- , (W), =2 Ix’ + +p+0
Po™ A0 (@ S 700
For readability we write a;, ¢;, etc. instead of al(-j), CEQ, etc. Also note that

xi, def di, — [dis], x5, def d5, — [d3,] and 22 def d2g — [da2]. Note that the constants ay

and a2 and the O(p™V ~#) tails coming from Tables (by the change of variables in
Figure[3.2) depend on the whole f-tuple @ € X (o).
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Table 3.5: Multi-type: (wy);—1-j = t(2,1), S0 Wy_1_j = Wt(91) and t( 9).

Multi-type ¢-module at
the (f — 1 — j)-embedding

((U +p)diy + c12
(1} + p)dzz + C22

%((v—l—p)dll +011) >571 <Ur_7'+1 0>
J

(v+p)dy; + o1 + 22 0 1

S)

Oleit, dir, 12, Ty, bat, €21, 51, €22, T22]

ba1,

Cco1 + (az

*
C12 — a2d12<

« [ di1daz
-1
i (e +

d11da2
diyds,

p> +OpNY),

+p> LoV,

19 (@) =2 as(ag — 1), (did
& j 2(asz 11d22 N_8
+ d +p)+0 7
o az+1 < T2d5, p) )
az(az — 1) di1das N_g
— d 0]
2 az —2 <dT2d§1 ) +OWT,

(

d11da2 N_g
— tp+O0(@ )
diyds,

az(az —1)  diidae
(az —2)(az + 1) dfyds,

+p+ 0(pN’8)>

o2 + pdaa,
dy1d
oot = pdy; — (as + 1) =522 + O™ %),
12
di1d
c12 + ag 1;* 24 oM ®),
21
az(as + 1) (d11)%dao N_8
11 — +0 ,
11 as— 1 di,ds, )
di1das [ (a3)?(as + 1) di1dao N_8
ba1 — pca1 — —; ( e — D FOM@ ),
di, az—1 diyds,
_ di1d _
(22 + O ) (aa(ea + DI — 254047 ))
12021

| N ). (dud

PPN i(@) gy =2 1+ <d§d; I O(pNig))
OECXNS G) az(ag —1)  duda N-8
f =2 1Y o)

Po s 1@t P+ (S a7+ OO

i) =3 19 + (doa + O(pV %))

pI O @)y =3 19 + (ag(ag + 1) — 2p + O(pN*8)>

For readability we write a;, c;, etc. instead of a9 ) ete. Also, x74 def diy — [d7s],

def —
* gy * *
a3, = di; —[d3;] and @22

i o Cik o

def . . .
=< dos. Note that we necessarily have ay_1_; = 0 in this case.

Also note that the constants as and ag and the O(p™ ~8) tails coming from Tables 3.3
(by the change of variables in Figure [3.2) depend on the whole f-tuple w € X (o).
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3.5 Gelfand—Kirillov dimension and representations of GL,

In this section, we recall a criterion that gives an upper bound for the Gelfand—Kirillov
dimension of certain admissible smooth representations of GLy(K) over F. This criterion is
given in [BHH" 23| §6] and is used in the semisimple case. It works in the non-semisimple case
as well by the result of [HW22, §4].

We introduce some notation. Let I C GLy(Ofg ) be the subgroup of upper triangular matrices

modulo p. Let I1 C I be its maximal pro-p subgroup, which is the subgroup of upper unipotent

matrices modulo p. Let K; def g4 pM32(Ok) C GL2(Ok) be the first congruence subgroup.

Let Z be the center of GLy(K) and let Z; © Z A Ky. Let mpg, denote the unique maximal

ideal of the Iwasawa algebra F[K;/Z;1]. The ideal of F[GL2(Ok)/Z1] generated by mg, under

the natural inclusion F[K;/Z1] — F[GL2(Ok)/Z1] is also denoted by mg, when there is no

possible confusion. We denote I' o GLy(k) and T o FHGLQ(OK)/Zl]]/m%(I.

Let p: Gk — GLa(FF) be as in §3.4.1] (see (3.15)). Recall that [HW22,§4.1] constructs a
finite dimensional representation Dy(p) of (the non-commutative ring) I" over F (generalizing
the constructions of [BP12, §13]) characterized by the following properties:

(1) SOCE D(](ﬁ) = @UEW(E) g,
(ii) for each o € W(p), we have [Do(p) : o] = 1,
(iii) Dy(p) is maximal with respect to properties (i) and (ii).
We have a decomposition of [-representations Do(p) = @ cEW (3) 13070(5), where each 13070@)

satisfies socg ﬁoyo(ﬁ) = 5. We have Do(p)X = Dy(p), which is the representation of I over F

defined in [BP12, §13]. We also define the I-representation D1 (p) o Do(p)™ = Do(p)".

The following proposition comes from [HW22, Thm. 4.6].
Proposition 3.5.1. The representation ﬁo(ﬁ) off over F is multiplicity-free.

One can describe explicitly the structure of each lN)O,U(ﬁ), where o € W(p). We use the

notation of §3.2.3] Let A € X1(T) be such that o = F(\). By (3.18) and Lemma [3.2.3.4] there

exist a subset J5, C {0,..., f — 1} and elements €; € {£1} for each j € J5, such that
W(p) = {F(tx(bo,...,by_1)) : bj € {0,e;}if j € o and b; =01if j & J55}. (3.36)

Then by the same argument as in [BP12) Prop. 13.4] together with [HW22] Lemma 4.8], [HW22]
Cor. 2.35] and the translation formula (3.10), the multiplicity-free representation Do (p) has
Jordan—Holder factors

~ f—1 )
JH(Do»(p)) = {Ua def F(tx(ao,...,ar_1)) 1 a; € Z, sgn(a;) #¢; for j € S50, > {V‘;J} < 1}
j=0
(3.37)

and its submodule structure is determined as follows: the unique subrepresentation of INJO,U(E)
with cosocle o, has constituents o3, for all b such that each b; is between 0 and a;. Here for
x € R, we denote by [z] the largest integer which is smaller than or equal to x.

The following proposition comes from [BHH"23, Cor. 6.3.13.(i)] where the assumption that

p is semisimple is not used in the proof of loc.cit.

Proposition 3.5.2. Fiz m, € Z>q for each 0 € W(p). There exists a unique (up to isomor-
phism) finite dimensional representation V of T over F such that

Mo

(i) socgV = ®06W(ﬁ) o,
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(i) for each o € W(p), we have [V : o] = m,,
(iii) V' is maximal with respect to properties (i) and (ii).

Proof. We use the same argument as in the proof of [BHH"23, Cor. 6.3.13(i)]. In particular,
we can take V' to be @,z Do, (p)™- O

Now we give a generalization of [BHH™23, Thm. 6.4.7] where p was assumed to be semisim-
ple. This gives an upper bound for the Gelfand-Kirillov dimension dimgp,,x)(7) of some ad-
missible smooth representations 7 of GLy(K) over F. We refer to [BHH23, §5] for the notion
of the Gelfand—Kirillov dimension.

Theorem 3.5.3. Let w be an admissible smooth representation of GLa(K) over F with a central
character. Assume that:

(i) we have JH(socgr,(0,)(T)) = W(p) up to multiplicity,
(ii) for each o € W(p), we have [r[m¥ Jlar.(ox) : 0] = [s0CGL,(0x) T : 0],
(iii) we have JH(r™') = JH(D1(p)) up to multiplicity (as I-representations).

Then dimGL2 (K) (7T) < f

Proof. The proof is analogous to that of [BHH"23, Thm. 6.4.7]. For p not necessarily semisim-
ple, the condition (a) of [BHH23, §6.4] is guaranteed by Proposition The condition (b)
of loc.cit. is guaranteed by Proposition and . Finally the condition (c) of loc.cit. is
a consequence of [BHH™ 23, Lemma 6.4.3]. O

3.6 Global applications

In this section, we use the machinery of patching functors introduced by [EGSI5| to prove
the main global results: Theorem [3.6.3.1, We follow closely [BHH™23, §8] which deals with the

semisimple case.

3.6.1 Patching functors

In this subsection, we recall the global setting following [BHH™23, §8.1], to which we refer
the reader for more references and details.

We assume p > 5 and E unramified, so that O = W (F).

We fix F' a totally real number field in which p is unramified. We denote by S, the set of
places of F' above p. We refer to for the notation Of, Fy,, Of,, Frob,, and A%. We fix a
place v € S,

We fix D a quaternion algebra with center I’ which is split at places above p and at exactly
one infinite place (called the indefinite case) or at no infinite places (called the definite case).
In the indefinite case we assume that (D, F) # (GLg2,Q) since our main theorem is already

known in this case. We denote by Sp the set of finite places where D ramifies. We fix a maximal

order Op of D and isomorphisms (Op),, — Ma(OF,) for w ¢ Sp, where (Op )4, def Op®0,0F,.

We fix 7 : Gp — GL2(F) a continuous representation and set 7, def ?’Gpw- Let S7 be the
set of finite places where 7 ramifies. We assume that

() 7le, (ur, 18 absolutely irreducible;
(ii) for each w € (Sp U Sr) \ Sp, the universal framed deformation ring Ry, of 7, over W (IF)
is formally smooth over W (IF);
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(iii) for each w € Sy, 7y, is generic in the sense of [BP12, Def. 11.7]. In particular we have
Sp c S?;
(iv) 7y (equivalently 7,/) is one of the following forms up to twist:

>0 (rj+1)pd §
(a) Tolrm, = | “F with 12 <r; <p—15,
0 1

F=1 (0 1 1) pd
w2zf]:o (rj+1)p 0

s 2 1)pd
0 wng]:O(T] )p

p — 15 for ¢ > 0, where f o [Fy 0 Qp);

I

(b) Tolry, with 13 = o = p=Mand 125 70 =

Assume first that we are in the indefinite case, for each compact open subgroup V < (D®@pA%)*
let Xy be the associated smooth projective algebraic Shimura curve over F' (see e.g. [BD14,
§3.1] and the references therein). We assume moreover that

(v) there exists V such that
Homg,, (7, Hy(Xv xp F,F)) #0. (3.38)
We let ¢ : G — W(F)* be the Teichmiiller lift of wdet 7 and set 4, = ¢|g, .

Exactly as in [BHH™23, §8.1], we fix a finite place w1, a finite set of places S, a compact open
subgroup U =[], Uw C [[,,(Op)s € (D®pAY)* which in particular satisfies U,, = GL2(Op,)
for each w € S, a tame inertial type 7, such that JH(o(7,)V) = JH(o(7Y)) contains exactly
one Serre weight in W (7)) for each w € S, \ {v}, and a GL2(Op, )-invariant lattice o%(7,/) in
o(7y) = o(1y)Y for each w € S, \ {v}.

Then as in [EGSI5, §6] we can define a patching functor My, from the category of continuous
representations o, of U, = GL2(OF,) on finite type W (F)-modules with central character 1/1|I_Flv o

Artp, |O; to the category of finite type Rso-modules, where

Roo = R [X1,..., X,]

for some integer g. Here R;f: is the framed deformation ring of 7, with fixed determinant e~ !4),,.
We denote by my the maximal ideal of R and for w € S, \ {v} let oy, be the unique Serre
weight in W (7)) that appears in JH(o(7/)). We have
— v
Moo(av)/moo = HOmUU/% <0v, HOmUv/V'u (®w€Sp\{v} Ow, HOmGF (7, Hgt(XV X F,F))))

(3.39)

forany V =[] Vi € (D®@pAY)* such that V,, = Uy, if w ¢ S, and Vi, € 1+pMy(Op, ) normal

in GL2(OF,) if w € S), and for any representation o, of GL2(Op,) over W (F) on which V,, acts
trivially. Moreover, we have My (0y,) # 0 if and only if JH(7,) N W (7)) # 0.

The definite case is analogous to the indefinite one. In this case, the space
Homg,. (7, H,(Xv xp F,F))
in (3.38)) is replaced by S(V,F)[m], where
def

S(V,F) = {f:D*\ (DerA¥)*/V = F}

and m is generated by T, — Sy, Tr(7(Froby)), Norm(w) — S,,det(7(Frob,,)) for w ¢ S U {w;}
such that V,, = (Op),, with T, Sy acting on S(V,IF) (via right translation on functions)
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respectively by V' (7“(']1“ (1)) V.,V (wow Ow) V', where w,, is any uniformizer in F,. Then, 1D is
replaced by

\Y,
Moo(Uv)/moo = HOIIIUU/VU (UU, HOHIUv/Vv (®wESp\{v} Tw, S(V, IF) [m])) . (3.40)

3.6.2 Freeness for projective envelopes

In this subsection, we prove the freeness of some patched modules following [BHH™23,
§8.2,§8.3] (which deals with the semisimple case). The main result is Proposition [3.6.2.4

We keep the notation of WithNK def F, and let k, be the residue field of F,. In
particular we have I' = GLy(k,) and I' = F[GL2(OF,)/Z1]/m%,. For o a Serre weight, we

let P, def Projr o be the projective envelope of o in the category of F[I']-modules, P, be the
projective O[I'l-module lifting P, and Projz o be the projective envelope of o in the category
of I-modules.

Let My, be the patching functor defined in If Ais a ring and M is an A-module,
we define the scheme-theoretic support of M to be the quotient A/ Anng(M). For each 7
a tame inertial type and X = (a;,b;); € X*(T') with a; > b; for each j, we define

A7 def AT
ROOT — ROO ®R7¥ RFI\,/ ,

where R;\’VT parametrizes potentially crystalline lifts of 7Y of Hodge-Tate weights (a;, b;) in the
j-th embedding o; : F,, — E and inertial type 7. When a; = a and b; = b for all j we write
Rgg‘;b)ﬂ—‘

The following proposition is a generalization of [BHH™ 23, Prop. 8.2.3] (where 7, was assumed
to be semisimple).

Proposition 3.6.2.1. There exists an integer r > 1 such that

(i) for all o, € W(T))) the module My (0,) is free of rank r over its scheme-theoretic support,
which is formally smooth over IF.

(ii) for all tame inertial type T such that JH(o (7)) "W (T))) # 0 and all GL2(OF,)-invariant
W (F)-lattices c°(7) in o (1) with irreducible cosocle, the module My, (°(7)) is free of rank

r over its scheme-theoretic support R&’O)’T, which s a domain.

Proof. The proof is analogous to the one of [BHH'23, Thm. 8.2.3]. In the case |J| = 2 (see
the fourth paragraph of the proof of loc.cit.), we used the “connectedness” of W (7,/) by non-
split extensions to deduce that My (o) has the same rank over its scheme-theoretic support

for 0 € W (7). In general the Serre weights in W (7)) can still be “connected” by non-split
extensions by (3.18)) and [BHH'23, Lemma 2.4.6]. O

Lemma 3.6.2.2. Let A be a ring which is p-torsion free and M be an A-module which can be
generated by d elements for some d > 1. If M[%] is free of rank d over A[%L then M is free of
rank d over A.

Proof. We have a surjective map of A-modules f : A%? — M. By [Mat89, Thm. 2.4, f is an
isomorphism after inverting p. Hence f is also injective since A is p-torsion free. O

The following proposition is a generalization of [BHH™ 23| Prop. 8.2.6] (where T, was assumed
to be semisimple).
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Proposition 3.6.2.3. Let r be the integer as in Proposition [3.6.2.1, If o, € W(7)), then
Moo (Py,) is free of rank r over Roo/ Ny pr, where T runs over all tame inertial types such that

oy € JH(o (7)) and p; is the prime ideal Ker(Ry — R&’O)’T) of Roo

Proof. The strategy of the proof is very close to the one of [Lel9, Thm. 4.9] which treats the
case r = 1. We freely use the notation from loc.cit.

First we show that M (R,/ Filé R,,) is free of rank r over its scheme-theoretic support (see
[Lel9, Lemma 4.3]), where R, is the same as P, and FilZ R, is a certain submodule of R,
defined in [LMS22| §3]. The argument of [Lel9, Lemma 4.3] gives a tame inertial type 7 and a
GLo(Op, )-invariant W (F)-lattice 0°(7) in o(7) such that

Moo (R,/ Filg Ry,) = Moo (5°(1)/ 1ad? 5% (7)),

where 5°(7) is the reduction modulo p of ¢°(7) and rad?7(r) L rad (rad3°(7)) is the radical
of the radical of 7°(7) as an F[GLy(OF,)]-module. By the notation of the proof of [BHH'23|
Prop. 8.2.3] based on [EGS15, §10.1], the representation a°(7)/rad® 7 (7) has the form 77 for
some capped interval Jy C {0,..., f — 1}. Hence My (5°(7)/rad*5°(7)) is free of rank r over
its scheme-theoretic support by the proof of [BHH"23| Prop. 8.2.3].

Next we show that if I C S is such that |I N {:l:w(i)}‘ + ‘Sg N {:l:w(")}‘ = 1 for each
0 <i< f—1, then My (]5; 1) is free of rank r over its scheme-theoretic support, which

is Reo @R, RJ’I (see [Lel9, Prop. 4.6, Prop. 4.7]). Here S = {£w" }0<z‘§f—1 whose subsets
parametrize the Serre weights that appear in R, p is the same as 7 S" is a subset of S
satisfying W(p) = {o,[J C S5}, R is the same as P, R#I is a certain quotlent of Rm Ty is
the set of tame inertial types that appear as subquotients in the I'-representation Ru, 7[1/p] over
E and Rg"’l is the maximal reduced O-flat quotient of R; parametrizing potentially crystalline
framed deformations of p of Hodge-Tate weights (1,0) at each embedding and inertial type in
Ts,r. In fact, the argument of [Lel9l Prop. 4.6] shows that M (Ru 1) is minimally generated by
r elements, and the argument of [Lel9, Prop. 4.7] shows that M (R ,.,7) has scheme-theoretic

O'I

support Reo @R, R, which is p-torsion free. Moreover, by exactness of M., we have

My (Run)[1/p) = @ Moo(o®(r))[1/p]

TETG I

for any choices of GLa (O, )-stable W (F)-lattices 0°(7) C o (7). In particular, we can take o(7)
to have irreducible cosocle (see [EGS15, Lemma 4.1.1]). By Proposition|3.6.2.1and the fact that
the supports of M, (0°(7))[1/p] are pairwise disjoint for 7 € T, , it follows that My ( ., 1) [1/p]

is free of rank r over (R ®r, Rﬁ“)[l/p]. We deduce from Lemma [3.6.2.2] that MOO(R% ) is
free is rank r over its scheme-theoretic support, which is Roc ®r, R;"’I.

Then we show that if I C S is such that |[I N {:tw(i)}‘ + |Sg N {:tw(i)}‘ < 1 for each
0 <i< f—1, then My (R, 1) is free of rank r over its scheme-theoretic support, which is

Roo @R, R;"’I (see [Lel9, Thm. 4.9]). The proof is completely analogous to that of [Lel9,
Thm. 4.9].
In particular if we take I = ) so that we have Ru 0= Ru = Pg , we get that Mo (P ) is free

of rank r over its scheme-theoretic support, which is Roo ®r, Rﬁ . Moreover, by the Chinese
remainder theorem we have

(Reo @r, Ry ") [1/0] 2 €D (Roo/pr)[1/p] 2 (Roo/ N 01 [1/2],

T
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where 7 runs over all tame inertial types such that o, € JH(o(7)). Since both R./p, and
Rg’o)’T are p-torsion free O-algebras, we deduce that

Roo ®R§ R%ﬂgyw = ROO/ Nr pr.
Finally, each p; is a prime ideal because Ry, /pr = R&’O)’T is a domain by [EGS15, Thm. 7.2.1].
O

Now we recall from [BHHT23, §7.3] the construction of a GLy(Op,)-representation R over
W (F) such that R/pR = Projz 0.

We define L_4 def P,, and Ry ; def (Sym2 W(F)? @ detfl)(j) Qw (F) P, for each j =
0,...,f — 1, where “(j)” means that the matrices of GLy(Op,) act via the j-th embedding
oj: O, < W(F). For each j there is an isomorphism (see [BHH™23, (55)])

Ry j/pRyj = Fo, ® Py , @ Py _ (3.41)
J J
for some Serre weights o+ and o,-. The isomorphism |i induces an inclusion
J

J

L Pm, — RQVj/pRQVj.

As in the paragraph before [BHH"23, Lem. 8.3.2], we define a GLa(OF, )-lattice R} ; in Rz ;[1/p]
by

def

RIQJ = ng XRz,j/p Rz,j = {:c € Rgvj : (:L’ mOdpRz,j) € Lj(RO"U)}'

We also define a GLo(Op, )-lattice L; in L_1[1/p] @ (@;,:0 Ry ;[1/p]) by

def (m, (xj’)OSj’Sj) € L_1 D (@g/ZORQJ‘) : (xj/ InOdpRQJ/) = (x mOdpL_l)
via Lt Lfl/pol — RZ,j’/pRZ,j’ Vo< j, < ] ’

which is equivalent to defining
Lj = Lj,1 XPO’/U R/Q,j

for each 0 < j < f — 1 (see [BHET23, (8)]). We define R % L;_,. Tt satisfies R/pR = Projz o,
(see [BHH™23, Cor. 7.3.4]).

Let r be the integer as in Proposition [3.6.2.1] The following proposition is a generaliza-
tion of [BHH'23, Thm. 8.3.4], [BHH"23, Thm. 8.3.9], [BHH"23, Cor. 8.3.10] and [BHH"23,
Thm. 8.3.11] (where 7, was assumed to be semisimple).

Proposition 3.6.2.4. (i) For each 0 < j < f — 1, the module M(Ry ;) is free of rank r

over R/ Ny pr, where T runs over all tame inertial types such that o, € JH(o(7)) and
pr is the prime ideal Ker(Rs — Rg{_l)j’T) of R, where (2,—1); is (2,—1) in the j-th
embedding o : F, — E and (1,0) elsewhere.

(ii) The module M (R) is free of rank r over Roo /N 79,7, where T runs over all tame inertial

types such that o, € JH(o (7)), X = (Aj)o<j<f—1 Tuns over the Hodge-Tate weights such
that A\j € {(1,0),(2,—1)} for all j and py - is the prime ideal ker(Ro — RYXT) of Reo. In
particular, we have dimp Moo (R) /Moo = 7.
(iii) The surjection Projso, — 0, induces an isomorphism of nonzero finite-dimensional IF-
vector spaces
M ( Projg av)/moo 5 Moo(0p) /Mo
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Proof. The proof of (i) is analogous to the one of [BHH'23, Thm. 8.3.4]. All the arguments
concerning the set of Serre weights W (7)) go through in the general case because we always
have W (7y) C W((FY)*) (see (3.18)). We also replace [BHHT23, Prop. 8.2.6] by Proposition
3.6.2.3] Finally each p; is a prime ideal by Theorem [3.4.2.1

The proof of (ii) is analogous to the one of [BHH 23, Thm. 8.3.9] using the same comment

on W(7))) together with Proposition [3.6.2.3 Proposition [3.4.3.3and (i).
Finally, (iii) is a direct consequence of Proposition [3.6.2.1] (i) and (ii). O

3.6.3 Global results

In this subsection, we state and prove the main global results following [BHH™'23| §8.4],
(which deals with the semisimple case).

Let F, D, 7, ¢, S and U = [[, Uy C (D ®p A¥)* be as in For each w € S, \ {v},
we fix a Serre weight o, € W(7,,). We consider the following admissible smooth representation

7" of GLa(F,) over F with central character @71 = w H(det7,) L

! def hgl HOmUv/Vv <®w65p\{v} Ow, HOInGF (?, Hgt (XV”VU X p F, F))) in the indefinite case,
Vo

o et hﬂHomUv/Vu (®w65p\{v} Ow, S(V'Vy, F)[m]) in the definite case,
W

with V” = [],, Vi as in (3.39) or yie Vi =Uyp ifw ¢ S, and Vi, €1+ pMa(Op,)
is normal in GL2(Op,) if w € Sp,. Recall that we defined the Gelfand-Kirillov dimension

dimGL2(Fv)(7r) in
The following theorem is a generalization of [BHH"23, Thm. 8.4.1], [BHH"23, Thm. 8.4.2],
[BHH"23, Cor. 8.4.4] and [BHH"23| Cor. 8.4.6], where 7, was assumed to be semisimple.

Theorem 3.6.3.1. (i) We have dimgr,(p,)(7) = [Fy : Q).
(ii) There is an integer r > 1 such that

mmi,] = (Do(7y)) ™",

where ZNDO(FX) 1s defined in . In particular, each irreducible constituent of W[m%ﬁ] has
multiplicity r.

(iii) Let z : Rs — O be any homomorphism of local W (F)-algebras, where O is the ring of
integers of a finite extension E' of E, and set

V(x) def Hom®™ (Mo ®p. . O, E'),

where My is the big patched module over Ry with an Ro-linear action of GLa(F,) defined
in [CEGT16, §2.8] and also mentioned in the proof of [BHH"23, Thm. 8.4.1]. Then
V(z) is a monzero admissible unitary Banach representation of GLo(F,) over E' with a
GLy(F,)-invariant unit ball (given by Hom%™ (Mo ®@p. o O, 0")) lifting m @ F', where
F’ is the residue field of O'.

(iv) For any compact open subgroup

VY = H (Op)e H Vw C H(OD);;

wgSpUSF we(SpUSF)\{v} wF#v

such that Vi, C 14 pMa(Op,) is normal in GLy(OF,) for w € S,\{v} and such that
m # 0, where

- def lim Hom;, (7, H,(Xvyvy, xp F,F)) in the indefinite case,
Vi
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9 ligS(V“VU, F)[m] in the definite case,
Vo

we have dimgr, (g, (7) = [Fy : Qp].

Proof. The proof of (i) is analogous to the one of [BHHT23, Thm. 8.4.1]. We use Theorem [3.5.3
for the upper bound of the Gelfand—Kirillov dimension. The condition (ii) in Theorem [3.5.3
is guaranteed by Proposition [3.6.2.4] (iii), and the conditions (i) and (iii) in Theorem [3.5.3 are
satisfied as in the proof of [BHH'23, Thm. 8.4.1].

The proof of (i) is completely analogous to the one of [BHHT23, Thm 8.4.2] using Propo-
sition (iii) and Proposition [3.5.1]

The proof of (iii) is completely analogous to the one of [BHH 23, Cor. 8.4.4] using (i).

Finally, the proof of (iv) is completely analogous to that of Cor 8.4.6] using
(1). O
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Chapter 4

On the rank of the multivariable
(¢, O )-modules associated to mod p
representations of GLy(K)

4.1 Introduction

Let p be a prime number. The mod p Langlands correspondence for GL2(Q,) is completely
known by the work of Breuil, Colmez, Emerton, etc. In particular, Colmez ([Col10]) constructed
a functor from the category of admissible finite length mod p representations of GL2(Q)) to the
category of finite-dimensional continuous mod p representations of Gal(@p /Qp), using Fontaine’s
category of (¢,I')-modules ([Fon90]) as an intermediate step. This gives a functorial way to
realize the mod p Langlands correspondence for GL2(Q,).

However, the situation becomes much more complicated when we consider GLo(K) for K a
nontrivial finite extension of @QQ,. For example, there are many more supersingular representa-
tions of GLo(K) ([BP12]) and we don’t have a classification of these representations. Moreover,
they are not of finite presentation ([Sch15],[Wu21]), and it is impossible so far to write down
explicitly one of these representations. Motivated by the local-global compatibility result of
Emerton ([Emell]) for GL2(Q)), we are particularly interested in the mod p representations m
of GLy(K) coming from the cohomology of towers of Shimura curves.

In [BHH™D], Breuil-Herzig-Hu-Morra-Schraen constructed an exact functor D4 from a nice
subcategory of the category of admissible smooth mod p representations of GLa(K) to the
category of multivariable (¢, O )-modules. Then the key question is to determine the structure
of Dy () for w as above, which can be used to deduce properties of 7.

We recall the construction of the functor D4. We let K be a finite unramified extension of
Qp of degree f > 1 with ring of integers Oy and residue field F, (hence ¢ = p/). Let F be a

large enough finite extension of F), and fix an embedding o¢ : F; — F. We let Ny def ( (1) le ) C

GLa(Ok). Then we have F[No] = F[Y,.... Y_1] with ¥; € 5 og(a) ¥’ ((1] [‘;l) € F[Ny]
for 0 < j < f —1, where [a] € O is the Techmiiller lift of a € F\. We let A be the completion
of F[No][1/(Yo - - - Yy_1)] with respect to the (Yp,...,Y;_1)-adic topology on F[Ny]. There is an
F-linear action of O on F[Ny] given by multiplication on Ny = Ok, and an F-linear Frobenius
¢ on F[Ng] given by multiplication by p on Ny = Og. They extend canonically by continuity
to commuting continuous F-linear actions of ¢ and O on A. Then an étale (¢, O%)-module
over A is by definition a finite free A-module endowed with a semi-linear Frobenius ¢ and a
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commuting continuous semi-linear action of O such that the image of ¢ generates everything.
For 7 an admissible smooth representation of GLo(K) over F with central character, we let

7V be its F-linear dual, which is a finitely generated F[I;]-module and is endowed with the

1+pOx Ok
POk 14+pOk

F[11]. We define Da(7) to be the completion of F[No[[1/(Yo - Y1) @,y 7" with respect to
the tensor product topology. The Oj-action on 7 given by f — fo(&9) (for a € O ) extends
by continuity to D (), and the v-action on wV given by f + f o (75 ) induces a continuous
A-linear map

my,-adic topology, where I f ( ) C GL2(Ok) and my, is the maximal ideal of

0
1
0
1

IBZDA(W)%AQ@%A DA(W). (4.1)

Let C be the abelian category of admissible smooth representations 7 of GLa(K) over F with
central characters such that gr (D4 (7)) is a finitely generated gr(A)-module. Then for 7 in C,
D () is a finite free A-module (see [BHH'D, Cor. 3.1.2.9] and [BHH" ¢, Remark. 2.6.2]). If
moreover (3 is an isomorphism, then its inverse 37! = id ®¢ makes D4(7) an étale (i, Ox)-
module.

Let p : GL2(K) — GL2(F) be a continuous representation of the following form up to twist:

2920 (rj+1)p?
Pl = [ Y *) with2f +1<7r;<p-3-2fV0<j<f—1, (4.2)
0 1
where wy : Ix — F* is the fundamental character of level f (associated to og). If f =1, we
assume moreover that ro > 4. In particular, we have p > 4f + 4.
Let 7 be a smooth representation of GLy(K) over F which satisfies

(i) 751 = Dy(p) as K* GLa(Of)-representations, where Dg(p) is the representation of
GL3(F,) defined in [BP12, §13] and is viewed as a representation of GL2(Ok) by infla-
tion, and K* acts on Dg(p) by the character det(p)w ™!, where w is the mod p cyclotomic
character (in particular, 7 is admissible and has a central character);

(i) for any character x : I — F* appearing in m[my,] = 7"1, we have [x[m} ] : x] = 1, where
W[m?l] is the set of elements of 7 annihilated by m?l, and [W[m?jl] : x| is the multiplicity of

X in the semisimplification of w[m} ] as I-representations.

In particular, (i) and (ii) are satisfied for those 7 coming from the cohomology of towers of
Shimura curves in a “multiplicity-one” situation (|[BHH'23],[Wan23]). Our main result is the
following;:

Theorem 4.1.1. Suppose that p and © are as above. Then w is in C, 5 in 18 an 1Somor-
phism and
rank 4 Dy (m) = 2.

By [BHH™b, Remark 3.3.2.6(ii)] we know that 7 is in C. By [BHH™b, Thm. 3.3.2.1] and
localization we know that rank 4 D4 (m) < 27. Theorem is proved by [BHH ¢, Thm. 3.1.3]
when p is semisimple. We generalize the method of [BHH™c| to the non-semisimple case, which
is seriously more delicate.

The proof of Theorem is by an explicit construction of an A-basis of the dual étale
(¢, O%)-module Homy(D4(m), A). As in [BHH ¢, (87)], there is a canonical A-linear injection

s, : Homa (D a(7), A) < Hom& (D 4 (r), F).

We will construct 2f projective systems (z Jk)k>0 of elements of 7 indexed by subsets of J C
{0,1,...,f =1} with 5, € w[mlzfﬂ]. By [BHH" ¢, Prop. 3.2.3], each projective system z; can
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be regarded as an element of Hom{™ (D 4(7),F). Then we prove that each z; satisfies a crucial

finiteness condition (see Theorem [4.8.5)), which guarantees that it lies in the image of .. Once
we prove that x; € Homy(D(7), A) for all J, it is not difficult to conclude that they form an
A-basis of Hom 4 (D 4(7), A).

We also prove the following generalization of Theorem which is crucially needed to
prove that 7 is of finite length (in the non-semisimple case) in [BHH  al.

Theorem 4.1.2 (Theorem [4.11.2)). Suppose that p and © are as above. Then for m a subrep-
resentation of w, we have

rankg Da(m1) = ‘JH(?T{Q) NW(p*)|,

where JH(W{Q) is the set of Jordan—Hélder factors of 7rf<1 as a GLao(Ok)-representation, p* is
the semisimplification of p, and W (p™) is the set of Serre weights of p** defined in [BDJ10, §3].

Organization of the chapter

In § we review the notion of the extension graph and recall some results of [BP12,
§2] that are needed in the proof of Theorem and Theorem In § we explicitly
construct some projective systems of elements of 7 and study their basic properties. In partic-
ular, we prove the crucial finiteness condition in In we use these projective systems
to construct an explicit basis of D4 (7). In we finish the proof of Theorem We also
compute the actions of ¢ and O on Dy(7). In we finish the proof of Theorem m
Finally, in we give the pictures of some finite-dimensional GLa(Of )-subrepresentations
of .

Notation

Let p be a prime. We fix an algebraic closure @p of Q. Let K C @p be the unramified

extension of Q, of degree f > 1 with ring of integers Ok and residue field F, (hence ¢ = ).

We denote by Gk o Gal(Q,/K) the absolute Galois group of K and Ix C Gk the inertia

subgroup. Let IF be a large enough finite extension of IF,,. Fix an embedding og : F; — F and

let o; def oo o’ for j € Z, where ¢ : x — 2P is the arithmetic Frobenius on F,. We identify

J def Hom(F,,F) with {0,1,..., f — 1}, which is also identified with Z/fZ so that the addition

and subtraction in J are modulo f. For a € Ok, we denote by @ € I, its reduction modulo p.
For a € F,, we also view it as an element of IF via oy.

For F a perfect ring of characteristic p, we denote by W (F) the ring of Witt vectors of F'.
For z € F, we denote by [z] € W(F) its Techmiiller lift.

def ox 0 . def 1+pO @
Let I = <p(9[;( O}i) C GLy(Ok) be the Iwahori subgroup, I; = ( ;(%KK 1+p’(§K) C

GL2(Ok) be the pro-p Iwahori subgroup, K defy +pM2(Ok) C GL2(Ok) be the first congru-

ence subgroup, Ny def ((1) le) and H def ([Fg] [FOX] )
q

For P a statement, we let dp 4f 1 if P is true and & P def 0 otherwise.

Throughout this chapter, we let 5 : Gg — GL3(F) be as in (4.2) and 7 be a smooth
representation of GLa(K) over F satisfying the conditions (i),(ii) before Theorem Since
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twisting m by a character does not change the rank of D 4(7), we assume moreover that p is of

the following form:
E (r +1)p?
p | Yy = un() * , (4.3)
0 un()
where ¢ € F*, un(§) : Gxg — F* is the unramified character sending geometric Frobenius
elements to &, and wy : Gxg — I is the extension to Gk of the fundamental character of level

[ (associate to og) such that ws(g) is the reduction modulo p of g(pf)/ps € pg—1(K *) for all
g € G and for any choice of a (¢ — 1)-th root py of —p. In particular, p acts trivially on 7 (by
the condition (i) for ).

4.2 Combinatorics of Serre weights

In this section, we review the notion of the extension graph following [BHH™23].

We write i for an element (i, ...,i;_1) € Z/. For a € Z, we denote a e (ay...,a) € Z7.
For each j € J, we define ¢; € € Z7 to be 1 in the j-th coordinate, and 0 otherwise. For J C 7,

we define ¢/ € Z/ by e def jeg. We say that ¢ < ¢ if i; < z for all j. We define the left shift
§: 75 — 7J by 6(i); f ij+1. We define

X1 C {2 €7 00— N <p- 1)

Xreg(T) « {O‘l M) €ZH 1 0< A - )y Sg—z};

[N
—n

XOUT) S (A, 2) € 222 A =

——

Let 7 : 72/ — Z2f be defined as 7(A;, Ao) 2 (5(A,), 6(Xs))-
A Serre weight of GLy(F,) is an absolutely irreducible representation of GLy(FF,) over F.
For A = (A1, A\y) € X1(T), we define

f—1
P @ (s ) 7).
=0

We also denote it by (A; — Ay) @ det?2. This induces a bijection
F:X1(T)/(p—n)X%T) > {Serre weights of GLa(F,)}.

We say that a Serre weight o is regular if o = F()\) with A\ € X,eg(T).
For A = (), ) € Z?f, we define the character x, : I — F* by

(o 0 @@,

pc d

f-1.
where a,d € O and b,c € O. Here, for x € F and i € 7/ we define zi & 22 =0 4P Ip
particular, if A € X (), then y, is the I-character acting on F/(A\)’1. We also denote x for its

restriction to H. For each j € J we define «; &t (ej, —e;) € Z*/, and for each i € Z/ we define

i def Z = 0 ijo € 72f. We also denote a; and ot the corresponding characters Xa; and Xqi
When there is no possible confusion. Concretely, we have

(e )
pc d .
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For u = (HP H2) € Z*/ | we define the extension graph associated to u by
def
A%é{bezf:ogﬁl—ﬁ2+bgg—2}. (4.4)
As in [BHHT23, p.16], there is a map
by Ay = Xoeg(T)/(p — m) X (D),

such that the map b — F(t,(b)) gives a bijection between Afj, and the set of regular Serre

weights of GLa(IF,) with central character x|z, where Z = F is the center of GLa(IF,).

We let p, e (r,0) € Z*/ with r = (rg,...,74—1) and 7; as in ([£2). For b € Z/ such that

—r <b<p—2—r, we denote o} def F(tuL(Q)). For p as in (4.3), we let J; C J be as in [Brel4
(17)]. Then by [Brel4, Prop. A.3] and [BHH"23, (14)] we have

_ b =0 if j ¢ J,
Ww_{%'éeﬂu}ﬁ;ei}' (45)

In particular, p is semisimple if and only if J5; = J. For each J C 7, we define o dof 0,0 with
0 ifje¢J
€

JE1 ifjed jHl¢Torjed jrled je T, (4.6)
-1 ifjed, j+1ed, j¢ I

o
n

a

In particular, for J C .J; we have o7 = 0,s. Then as a special case of [BHH"23, (14)], we have
o= (s)® dett” with

r; ifj¢J j+1¢J
i+ 1 ifjed j+1¢J
] oy ¢ jH1ed (4.7)

p—1—r; ifjed j+1leld j¢ Js
p—3—r; ifjed j+1elJ, je g

0 ifjeJd j+1¢J

t}]d;f -1 ifjed j+1¢J (48)

ri+1 ifjéJ j+ledJorjed, j+1leld je;

i ifjed j+1led j¢ Js
We let xs def X\, With Ay def (§J + t‘],t‘]). Then y s is the I-character acting on 0'{11. For each
I-character y, we denote by x® its conjugation by the matrix (2 (1))
Lemma 4.2.1. For each J C J, we have X.]Oét] = X(r,0)-
Proof. By definition, we have y o’ =y, with

A=Ay +al = (" + 1)+ (7, —t) = (57 + 27,0,

Since o = (s7) ®det!” has the same central character as op = (r), we deduce that a2’ 2" = g~

for all a € IF;, which completes the proof.
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For J C J and k € Z, we define J + k © {j+k:je J}. Then we define the semisimple

part of J, the non-semisimple part of J and the shifting index of J to be respectively
T TN T, SSEINS=J\J, P InJ )N, CTE. (49)

In particular, if p is semisimple, then J* = .J and J™° = () for all J. We also remark that the
sh

set J%" for each J C J is defined in such a way that the I-character x Joz?J is independent of

J5. This will play a role in Theorem below. By (4.2), we have from (4.7) and (4.9)

Lemma 4.2.2. Let J,J' C J satisfying (J — 1) = (J')*®. Then for each j € (JAJ') — 1, we
have

20jc(snyymss + (P — 2= 87) + Sjeqns = s .
Here we recall that JAJ (JN\NJTH)U "\ J).

Proof. We assume that j+ 1€ J and j+1¢ J'. Otherwise we have j+1¢ Jand j+1 € J,
and the proof is similar. We separate the following cases.

If € Jand j € J', then the LHS equals 2(5]-@?4—(;0—2— (p—3—rj+25jgjﬁ)) +0=r;+1,
which equals the RHS.

Ifj € Jand j ¢ J', then the LHS equals 0+(p—2—(p—3—1;+23;¢; ) +1 =1 +2—25;¢; .
Hence it suffices to show that j ¢ J5. Indeed, if j € J5, then j € (J —1)% = (J')* C J’, which
is a contradiction.

If j ¢ Jand j € J', then the LHS equals 0+ (p—2— (p—2—r;)) + 1 = r; + 1, which equals
the RHS.

If j ¢ Jand j ¢ J', then the LHS equals 0+ (p —2 — (p — 2 — r;j)) + 0 = r;, which equals
the RHS. ]

Lemma 4.2.3. Let J C J and b € ZI such that —(Q(i —e/ h) +l) <b< Z(i—i-QJSh). Then
we have F(ty, (b)) = o4 with aj = (=1)%+1€7(b; + &) + 20jcysn for all j € J. In particular,

(i) we have o jss = F(t)\J(—b)) with bj = djemss for all j € J;
(ii) we have o(j_1)s = F(t,\‘](—b)) with bj = 6;c ya(j—1)= for all j € T ;
(iii) for each J' C J, we have oy = F(ty,(—b)) with

o _ {Gies + Sep(-)Pmieiar if j ¢
T\ Gres = djer) (CDRE i j ey

Proof. The assumption on b implies that F'(ty, (b)) is well-defined. By (4.6) and a case-by-case
examination we have
aj = 8jes(—1)%1€7 425, Vj € J.

Then by [BHH"23, Lemma 2.4.4] applied to u = p, and w = b, we deduce that
aj :aj+(—1)aj+1b] = (5jeJ(_1)6j+leJ +26]€J<h) +(_1)6j+16ij == (_1)6j+leJ (b] +5]€J)+25]€J<h
(i). For each j € J, we have

(—1)6j+16‘](—($j€]nss + 5j€J) + 26-€Jsh = (—1)6j+leJ6j€Jss + 26j+1ej($j€]ss
J

= ((=1)%+<7 + 26 11¢7)6jess = Sje .
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This proves (i) since ¢/~ = ¢’™.

(ii). Since a/~V™ = ¢(/=D” it suffices to show that

(—1)%5+1€7 (=8 e ga(g—1ys + Ojer) + 26 e gon = Oje(g—1)s-

If j € (J —1)%, then the LHS equals —(—0;¢; + djes) +2djes = dj¢5 + djes = 1, which equals
the RHS. If j ¢ (J — 1)*, then the LHS equals (—1)%+1€7(=§;c; + §jc;) + 0 = 0, which equals
the RHS.

(iii). If j € J5, then we have

bj = Sjes — (1)’ 7017 (af = 20;c g ) = Gjeg — (=1)+1€7 (§je o (—1) 15 = 0)
= bjcs + Ojep (—1)T AT
If j € J5, then we have
bj = djes — (—1)%1<7 (a] = 28;¢ y) = Gjes — (1)< (Sjc 1 — 26je1j11¢)
= 0jes (14205165 (—1)%11€7) — (=1)%501€7 85 o = (S5 — Gjesr) (—1)%+1e7.

This completes the proof. O

4.3 The principal series

In this section, we recall some results of [BP12] §2].

For j € J, we define
def i (1 [a]
Y; = E a? (0 1) € F[No].

aEF;

Then we have F[No] = F[Yp,...,Y;_1]. For i = (ig,...,ig_1) € Zf, we set ||| € Y/7) 4; and
we write Y for H;:Ol lej . We recall the following results of [BHH™b, Lemma 3.2.2.1].

Lemma 4.3.1. For j € J and pi,p2 € F*, we have in F[Ny]

q7
(i) YJP (8(1)) = (‘8[1)) Yjt1;

(ii) (“61} [520 Y, = (m,u;l)ijj ([‘Bﬂ [52}). In particular, if V is a representation of I and

v e VH=X then for 1> 0, we have Yiv e y H=xa"

Let A = (A1,2) € X1(T) such that 1 < A; — Ay <p—2. Let fo,..., fy—1,¢ be the elements

of IndS™2(©%) (y3) defined as in [BPIZ, §2]. For 0 <i < p—1 we let i = S/ =1i.p/. Then by
I A 'l 7=0 °J

definition and [BHH" b, Lemma 3.2.2.5(ii)] we have

fi if0<i<qg—-2

fo—1—fo ifi=q—1 (4.11)

(-n/ [fnlij!
=0

rri(ge- |

The following lemma is a restatement of some results of [BP12, §2].

Lemma 4.3.2. (i) The GLo(Ok)-representation Ind?LQ(OK)(xj) 1s multiplicity-free with con-

subset {j : bjy1 = 1} in the parametrization of [BP12, §2].
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(ii) The elements {XE(? $)o:0<k<p—1,¢} form a basis of Ind?LQ(OK)(Xi). Moreover,

¢ has H-eigencharacter x3 and Yk (08) ¢ has H-eigencharacter ao k= Xjaﬁ_k.

(iii) Let T be the constituent ofInd?LQ(OK)(Xi) corresponding to J C J as in (i) and denote by

Q(x3,J) the unique quotient of Ind?LQ(OK)(Xj) with socle T (see [BP12, Thm. 2.4(iv)]).
(a) If J =10, then the following H -eigenvectors

(YD eip-1- 04 —2) <k <p- 1LY N2 (0 g+ a0}

with x = (—1)I2+(=1) (H;;Ol()\u—)\g,j)!)_l € T form a basis of T inside Q(x3,0) =
Indy ) ().

(b) If J # 0, then the following H -eigenvectors

Y01y 0<ki<p—2—(M;—A2j) +dj-1es ifjed
T Ly = dey) F0ies Sk <p—1 ifi¢J

map to a basis of T inside Q(x3,J).

Proof. The first statement of (i) is [BHH"23, Lemma 6.2.1(i)], and the second statement of (i)
follows from the proof of [BHH"23, Lemma 6.2.1(i)]. (ii) and (iii) are restatements of [BP12]
Lemma 2.5] and [BP12, Lemma 2.7] using (4.11]). O

4.4 On certain H-eigenvectors in Dy(p)

In this section, we construct some elements of Dg(p), which is identified with 751 from now
on (see condition (i) above Theorem |4.1.1)). The main result is Proposition They will be
the first step in constructing elements of D4 (7).

Lemma 4.4.1. (i) The GLo(Ok)-representation Do(p) is multiplicity-free with constituents

o bje{-1,01}  ifj¢ s
JH(Do(p)) = {Ub- bj. €{-1,0,1,2} ifje J; }

Moreover, there is a decomposition of GLa(Of )-representations Do(p) = ©c.r,Do.o;(P)
such that for each J C J5, Doy, (p) has socle 05 = 0,5 and has constituents

bj e {-1,0,1} ifj¢ J;
JH(Doo, () =< oy: bj € {-1,0}  ifjeJ;\J §. (4.12)
b € {1,2} ifieJ

(ii) The I-representation Do(p)™* is a direct sum of distinct I-characters. For each J C J,
XJj occurs as a direct summand.

(iii) For each J C J, the character xj appears in the component Dy o, (p), and the character
X appears in the component Dog ;s (p).

Proof. (i). For 0 € W(p) and 7 an arbitrary Serre weight, we let ¢(o,7) € Z>o U {o0} be as in
[BP12, §12]. Hence, £(0,7) < oo if and only if 7 is a constituent of Injgy,, g,y o, in which case it
measures the distance between o and 7 in terms of the extension graph A}, (see (4.4)). If we
write 0 = 0 = 0,4 for some J C J; (see ), then by [BHH'23, Lemma 6.2.1(ii)] we deduce
that ¢(oy,7) < oo if and only if 7 = F(t/\_,(b)) for some b € Z7 such that —1 < b < 1. By
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[BHH™23, Lemma 2.4.4], this holds if and only if 7 = o3, with —1 < b — e’ <1, in which case
we have (o, 7) = |{j : bj # djes}| by [BP12l, Cor. 4.11].

For 7 a Serre weight, we let £(p, T) o ming ey ) £(0, 7) € Z>oU{oo}. Then by the previous
paragraph we deduce that £(p,7) < oo if and only if 7 = F(t, (b)) for some b € Zf such that
-1 <b; <1ifj¢ Jsand =1 <b; <2of j € Js Inthis case, we have {(p,7) = {(o,7) if
and only if o0 = 0 () with J(7) def {j € J5:b; > 1}, and 7 is a constituent of Do, . (p) by
Proposition [BP12, Prop. 13.4]. Hence for each J C J5, Dy, (p) has constituents 7 as above
such that J(7) = J, which agrees with (£.12). The other assertions then follow from [BP12]
Prop. 13.4] and [BP12, Cor. 13.5].

(ii). By [BP12, Lemma 14.1], the I-representation Dy(p)" is a direct sum of distinct I-
characters. By the proof of [BP12, Cor. 13.6], it suffices to find I-characters y such that
oo € JH (Ind?Lz(OK) x*). Then we conclude using [Brel4, Prop. 4.2] and (4.7).

(iii). The first assertion is clear since o lies in the component Dy 4 .. (p) by (£.12). To prove
the second assertion, we follow the notation of [BP12, §15]. In particular, we let S,§~, 8T C J
be the subsets associated to p** and o ;. By definition we have S = J, S~ = ST = (), hence by
[BP12, Lemma 15.2] applied to p*® and o, we deduce that E(ﬁs, a‘[}s]) = E(ag]q , U‘[}S]). Then by

[BP12, Lemma 15.3] applied to p and 059] we deduce that E(ﬁ, at[f}) = E(U(J_l)ss, O"[]S]) (note that
the Serre weight o™** in the statement of [BP12, Lemma 15.3] is our 0.1,), which completes the
proof using [BP12, Prop. 13.4]. O

For each J C J we fix a choice of 0 # v; € Do(p)* with I-character x 7, which is unique up
to scalar by Lemma [4.4.1](ii). The following proposition shows the existence of certain shifts of
the elements v;. We will apply (g [1)) to these elements in order to go beyond Dy (p).

Proposition 4.4.2. Let J C J and i € ZF such that 0 < i < i—g‘]Sh (see for J*%). Then
there exists a unique H-eigenvector y € Do(p) satisfying

(i) vy =0vjeJ;
(i) Yy = v.

—1

Moreover, y has H-eigencharacter x ja~t. The GLa(Ok)-subrepresentation of Dy(p) generated
by y lies in Dg jss(p) and has constituents oy, with

bj = djes(= djes=) i j &I
b € {0,(=1)%+1er} qf j € J, i, =0 (4.13)
bj € {-1,0,1} if j €I85, ;> 0.

We denote this element y by Y "‘v;.

Proof. For each y € Dy(p) satisfying (i) and (ii), by Lemma [4.3.1)ii) the I-representation

generated by vy is an I/ Kj-representation with socle x; and cosocle y ya~%, and has constituents

ysa~ ¥ with 0 < ¢ < i, each occurring with multiplicity 1. By [BHHT23, Lemma 6.1.3], such
a representation is unique up to isomorphism, and we denote it by W’. To prove the existence
and uniqueness of such y, it suffices to show that there is a unique (up to scalar) I-equivariant
injection W’ < Dg(p). Since W’ is indecomposable with I-socle x 7, which appears in Dg 5 . (P)
by Lemma [4.4.1](iii), any such injection factors through Dy s . (p).

Claim 1. The GLy(Of)-representation V' & Ind?LQ(OK )(W’ ) is multiplicity-free and o s €
JH(V').
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Proof. By [BP12] Lemma 2.2], Ind?LZ(OK) (XJO[_Z/) and Ind?Lz(OK) (XJoz_il)s have the same

constituents. Since twisting y.; by o corresponds to shifting by —2¢’ in the extension graph, it
follows from Lemma (i), [BHH™23, Remark 2.4.5(ii)] and 1} that Ind?LQ(OK) (xsa")is

multiplicity-free and has constituents F(tAJ(—b)) with 2/ < b < 2" + 1. Hence the GLa(Ok)-

representation V' is multiplicity-free and has constituents F (t,\‘](—b)) with 0 < b < 27 + 1.

By Lemma (1) and taking b; = dje ms we deduce that oy € JH (Ind?LQ(OK)(XJ))

JH(V).

N

It follows from Claim 1 that there is a unique (up to scalar) GLg(Ofk)-equivariant map
f V! = Injgr,r,) 0s=. We denote by V" the image of f.

Claim 2. The GLy(Of)-representation V" has constituents oy, for b as in (4.13).

Proof. We let 7,7’ be constituents of V' such that 7 = F(ty,(=b)) and 7/ = F(ty, (b + ¢j,))
0<e<1 Ifgj =1, then both 7 and 7’ are constituents of Ind?LQ(OK)(XJa_Q). We deduce
from [BP12, Thm. 2.4] that V"’ has a length 2 subquotient with socle 7 and cosocle 7’. If ¢, = 0,
then we deduce from [HW22, Lemma 3.8] (with j = jo, x = xya™¢, J(7) = {j : €j41 = 0},
J(7") = J(7)\{jo—1}) that V' has a length 2 subquotient with socle 7" and cosocle 7. Moreover,
these are all possible non-split length 2 subquotients of vV’ by [BHH"23, Lemma 2.4.6].

Then we use the notation of [LLHLM20, §4.1.1]. We make JH(V’) into a directed graph
by letting o € JH(V’) point to o’ € JH(V') if V' has a length 2 subquotient with socle ¢’ and
cosocle o. By construction, V" is a quotient of V'’ with socle oss. It follows from the dual
version of [LLHLM?20, Prop. 4.1.1] that the constituents of V" are those o € JH(V') which
admit a path towards o s = F(ty,(—e’"")). From the structure of JH(V’) we deduce that V"
has constituents F(ty,(—b)) with

by =0 if j ¢ Jnss
b €{0,1}  ifje s i;=0
b € {0,1,2} if j € J%S, i > 0.

Then we conclude (4.13]) by Lemma with a case-by-case examination. O

It follows from Claim 2 and (4.12)) that f factors through Dy, . (p). Then by Frobenius
reciprocity, we have

dimp Homj (W’, Do o s (ﬁ)h) = dimp Homgr, o) (V’, Dy 5 s (ﬁ)) =1.

To complete the proof, it remains to show that any nonzero I-equivariant map W’ — Dy .. (p)
is injective. Since W’ has I-socle Y, it suffices to show that the image of y s is nonzero. By

Frobenius reciprocity, it suffices to show that the image of the subrepresentation Ind?LQ(OK )(X J)

of V' under f is nonzero. This follows from the fact that both Ind?L2(0K )(x) and V" contain

oyss as a constituent, and V’ is multiplicity-free. O

Remark 4.4.3. When J; # 0, there are more I -invariants than these vy for J C J. However,
Proposition does not hold for the I-invariants other than these v.
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4.5 The relations between H-eigenvectors

In this section, we study various GLa (O )-subrepresentations of 7 generated by the elements

Y “%v; defined in Proposition The main results are Proposition and Proposition
Then we study the relations between the vectors vy for J C J. The main results are

Proposition [4.5.11| and Proposition [4.5.13] We refer to §4.12] for the pictures of some of these
GL2(Ok)-subrepresentations of 7 when f = 2.

Recall that we have defined Q(x3,J) for A = (A;,Ay) € X (T) such that 1 < A\ — )y <
p—2and J C J in Lemma W(iii). The following lemma is a generalization of [BHHTh
Lemma 3.2.3.3] (where p was assumed to be semisimple).

Lemma 4.5.1. Let J C J and i € Z such that 0 < i < f —gJSh.
(i) The GLo(Ok)-subrepresentation <GL2((’)K) (g (1)) X_Z’UJ> of m is multiplicity-free with so-
cle o(j_1)ss = 041y and cosocle oo with
cj = (=1)%+147 (205 + 1+ 871y — Sjeqa(i—1y=) Vi€ JT. (4.14)

(ii) We have
(612(00) (1) ¥ ) /| 3 (612000 (35) 1)

~Q(xjob{j:j+1€ JA(J—1)%, ij41 =0}). (4.15)

(iii) Let m € Z/ with each m; between dje(s—1)= and c;j (as in ). Then there is a unique
subrepresentation I(U(J_l)ss, Um) of <GL2((’)K) (g (1]) X_%J> with cosocle oy,. In particu-
lar <GL2((9K) (g ?) X_Z’UJ> = I(U(J,l)ss, ag). Moreover, I(U(J,l)ss, O’m) has constituents
op with each b; between djc(y_1)s and mj, and we have

dimﬁr HOIIlGLQ(@K) (I(O’(’],l)ss, O'm) s 7T) =1 (4.16)

Proof. (i). We follow closely the proof of [BHH¥D, Lemma 3.2.3.3]. The vectors ¥ ~‘v; and

Y %4, are defined in Proposition 4.4.2L We let W' (resp. W) be the I-subrepresentation of =

generated by Y v, (resp. (5 §)Y ‘vy) and V o Ind?LQ(OK ) (W). In particular, W' is the same

representation as in the proof of Proposition By the proof of [BHH"b, Lemma 3.2.3.3],
we have:

(a) V is multiplicity-free as a GLa(Ok )-representation with constituents F (ty,(—b)) for 0 <
b < 2i+1 (they are well-defined by (4.10)));
(b) For each 0 < b < 2i + 1, the unique subrepresentation of V with cosocle F(ty,(—b)) has

Ind?LZ(OK) (X?]ai/) has constituents F(tAJ(—b)) with 27 < b < 2¢'+1, and the constituent
F(ty,(=b)) of Ind?LQ(OK)(Xf}af) corresponds to the subset {j: bj;1 is odd} C J (see
Lemma |4.3.2(1)).

The I-equivariant inclusion W’ < Dy(p) in the proof of Proposition induces an I-

equivariant inclusion W — 7 by applying (25). By Frobenius reciprocity, this induces a

GL2(Ok)-equivariant map V' — 7 with image
V & (GLy(Ok) (§8) Y or) = (GLa(Ox) (§9) Y Hos) S
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In particular, it follows from (b) that the cosocle of V is F(ty,(—(2i + 1))) = o, with

(_1)6j+1€J( _ (2@] + 1) -+ 5j€J) =+ 26j€JSh
= (=1)%41¢7 (20 + 1 = Gjeg + 2(=1)%+1¢7 6, yun)
= (—1)%+1¢s (205 + 14+ djer-1) — djesn—1)=),

Cj

where the first equality follows from Lemma and the last equality is elementary (for
example, one can separate the cases j € (J —1)* and j ¢ (J — 1)%).

Claim. We have W (p) N JH(V) C JH(Ind{™(@) (%)),

Proof. Tt suffices to show that for each o € W(p), we have 0 = F(ty,(—b)) for some b < 1.
We check it for oy, and the other cases are similar. By Lemma (with a = 0), we get
bj = (—1)%+1€7 (26 jon) + Gjeg. If j ¢ J, then bj = §jey < 1. If j € J™, then bj = -2+ 1 =
—1. O

Recall that socqr,o,) ™ = @er(ﬁ) 0. Assume that o is in the socle of V, then we have
oeW(p)NnJH(V)CJH (Ind?LZ(OK)(XSJ)) by the claim above. Moreover, the image of the sub-

representation Ind?Lz(OK ) (x3) of V in  lies in Do(p), hence lies in the component Do 5 ,_, . (p)
by Lemma [4.4.1{(iii) and Frobenius reciprocity, which implies that o must be o(;_1)s, the only
Serre weight of p appearing in Do 5 (p). Since V is multiplicity-free by (a), we deduce that

Pr J—1)ss
V' is the unique quotient of V' with socle o y_1yss.

(ii). By Lemma (ii), we have o(j_1ys = F(t)\J(—QJA(J*USS)), hence V has constituents
F(tAJ(—Q)) with djeja(—1)ss < bj < 2i5+ 1 for all j (or equivalently, o}, with each b; between

dje(s—1)= and ¢; by Lemma4.2.3). By (c), the LHS of (4.15)) is the quotient of Ind?LQ(OK) (Xf,ai)

whose constituents are F(t,(—b)) with max(6;eja(—1)s2i;) < bj < 2i; + 1, hence it has

irreducible socle F(ty,(—a)) with a; = max(d;eja(s—1)=,2i;) by (b). Since a; is odd if and
only if i; = 0 and j € JA(J — 1), it follows from (c) that the constituent F(ty,(—a)) of

Ind?LQ(OK) (x%at) corresponds to the subset {j:j+1€ JA(J —1)%, ;41 = 0}.

(iii). Since oy, is a constituent of the multiplicity-free representation V' by the previous
paragraph, there is a unique subrepresentation of V' with cosocle o,,, which moreover has
constituents as in the statement by (b). We denote it by I (0( J—1)s am). By the last paragraph
of the proof of (i), any constituent of I(o(y_1)s,0m) Which is also an element of W (p) must
appear in Doﬁg(‘]_l)ss (p), hence has to be o(j—1)- Together with the fact that socqr,o,) ™ =
Goew (p) 0, we deduce that

1 < dimy Homgy,, (o) (I(U(J_l)ss, O‘m),ﬂ') < dimp Homgr,,(0y) (O-(J_l)ss,ﬂ-) =1,
which completes the proof. O

Remark 4.5.2. For A = (A, )y) € X1(D), i € ZL such that 2i +1 < A — Ay < p—2 and
J' C T, we let W' be the I-representation as in the proof of Proposition [f.4.4 with x; replaced
by xx, and we denote by Q(Xi,xjai, J’) the unique quotient of the GLo(Ok )-representation
Ind?LQ(OK) ((g (1)) W') whose socle is the constituent of Ind?LQ@K)(Xj) corresponding to J'.
Then the proof of Lemma shows that (GLy(Ox) (B N Y tos) = Q(xY, 5ok, (JA(J —
1)) —1).
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Corollary 4.5.3. For each J C J5, we have (see Lemma|4.5.1\(iii) for the notation)

DO,O’J (ﬁ) = Z I(0J70§J+§J’) = Z I(UQ(J’)SS7Ug(J’)SS_i_éJ’)?
(J/)ss:J (J/)ss:J

’ . 1 def
where e” € {1} with 53-7 o (—1)%¢7 .
Proof. For each J' C J such that (J')* = J, by applying Lemma [4.5.1f1),(iii) with (J,i) there
being (J' + 1, f — Q(JIH)S}‘), we deduce that I(O'J,O'GJ 8J/) is well-defined. Then the result
follows from Lemma (i), [BP12, Prop. 13.4] and . O

The following proposition is a generalization of [BHH™D, Lemma 3.2.3.1] (where p was
assumed to be semisimple), which gives a first example of the relations between the vectors
vy € Do(p) and is a special case of Proposition [4.5.11| below.

Proposition 4.5.4. For J C J, there exists a unique element piyj_qys € F* such that

S(J_l)ss

; ~1
H Y; J H ijp (g ?) vy = /,LJ’(Jfl)sst(Jfl)ss. (4.17)
jH1eJA(J—1)ss GHIETA(J—1)ss
Proof. By Lemma i) and its proof, we have (GL2(Ok) (2 V) vs) = Q (x5, (JA(J —1)%) —
1) such that (2 (1)) vy corresponds to the image of ¢ € Ind?LQ(OK )(XSJ) (see above l} for
@) in Q(XSJ, (JA(J — 1)) — 1), and the socle is o(;_1)s which corresponds to the subset
ss GL2(Ok) /. s . .
(JA(J —1)*) —1 for Ind; (x%) (see Lemma i)). By Lemma applied to J and
J'=(J—=1)*% for j € JA(J —1)® — 1 we have
J-1)s
(p—2—5)) 4 6 1e@a—1)=)-1 = 85- "
Then by Lemma M(iii) applied to A = \; (and recall that x; = xx, with Ay = (s’ +¢7,¢7)),
the LHS of (4.17) is nonzero in o(;_;)s and is the unique (up to scalar) H-eigenvector in o(_q)s
killed by all Y;. It follows that the LHS of (4.17) is a nonzero Ij-invariant of o(;_1yss, hence is
a scalar multiple of v(j_qyss. O

For J,J' C J, we define t’(J') € Z by

() E p—1— ]+ 5160 (4.18)
where s}l is defined in 1’ In particular, by 1} we have
1<t/(J); <p—1=2(f—0jcm) Vi€ T. (4.19)

The following proposition is a generalization of [BHH'h, Lemma 3.2.3.4] (where p was assumed
to be semisimple).

Proposition 4.5.5. Let J C 7, jo € J and i € Zf such that 0 < i < /- g’Sh and ijo+1 = 0.
Suppose that jo+ 1 € JA(J —1)%. Then for each J' C J such that jo ¢ J', we have

H ijjﬂ"(J’)j (20) (Y tvy) =0 if J'# 0;
j¢J | (4.20)

v TLYP 0 (39) (i) =0 vi' e i =,
JgJ’!
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Proof. The proof is analogous to the one of [BHH" bl Lemma 3.2.3.4]. First we deal with the case

J' # (. We denote by B the LHS of (4.20]). Assume on the contrary that B # 0, then by Lemma
. 2ii4+p—1—sd+6. /
4.3.1((ii), B is an H-eigenvector with H-eigencharacter x def XJOFZ[H]-%J, ozjzﬁp ey ].

To deduce a contradiction, we prove that the H-character x does not occur in <GL2 (Ok) (g (1]) Y J>.

By Lemma @.5.1(ii), it suffices to show that the H-character y does not occur in Vj def

Q(x5al, Jy) for 0 < ' < 4, where Jy © {:7+1€ JAW - 1)%i;, = 0}. Note that

Jo € Jy for all 0 §71’ §71 by ;Lssumption.
We have yjo % = Xy —a’ (see for the notation). Then by Lemm@ W(i),(ii),(iii)(b)
applied to A = A\; — ot , the H-eigencharacters that occur in Vi are x jalak (coming from

the element Y% (g (1)) (X_i/v J)), where

{0 <kj<p—2-(s] —2i) + 5 1c it j€Jo (4.21)

p—1— (s =2i)) +dj1es <kj <p—1 ifj¢Jo

for Jo 2 Jy. In particular, we have jo € Jo.
Assume y = yya ¢ ok for some i/, k as above, then from the definition of y we have

j¢J’
and thus
f-1 f-1
Y @ij+p—1—s]+8 e =Y (i — P =) ki) mod (¢-1),
jeJ’ 7=0 7=0

or equivalently,

f-1
S i+ +p—1—5 + 0 1es)p’ = Y (i —i))p' =D kip’ mod (¢—1).  (4.22)

j¢J’ jeJ’ j=0

Then we define integers n; € Z for all j € J. For ji ¢ J' (such j; exists since J' # (), we
let w e {0,...,f — 1} (depending on ji) such that j; +1,...,71 +w e J and j1 +w+1¢ J
(sow=0if j1 +1¢ J). We define n; for j =ji1 +1,...,j1 +w + 1 as follows:

(i) I ij 4w =4}, 4, forall 1 <w' < w (which is automatic if w = 0), then we let 7; 10 for
allj=n+1,....0+w+1;

(i) Otherwise, we let wy € {1,...,w} be minimal such that ij, tu, # i, 4., then we let
0 ifj=5+1,....51 +wo—1 (and wo # 1)
TN
n; def J P j =7 +wo (4.23)

p—1 ifj=j4+wo+1,...,51 +w (and wy # w)
1 ifj=j 4w+l

In particular, we have
Jitw+1

> mip’ =0 mod (¢—1). (4.24)

Jj=j1+1
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When we vary ji ¢ J', we get the definition of n; for all j € J.
By adding (4.24) to (4.22)) for all j; ¢ J', we get

f—1
S (i+if+p—1=s]+61er+n)p' + Y (nj— (i —i5))p) = k;p’ mod (g—1). (4.25)
jeJ’ jeJ’ §=0

Claim 1. Each coefficient of the LHS of (4.25)) is between 0 and p — 1, not all equal to 0 and
not all equal to p — 1.

Proof. First we prove that each coefficient of the LHS of (4.25) is between 0 and p — 1. By
(4.10) we have
1<p—1-s/ <p—2-=2(f — ;e ) (4.26)

We remark that the first inequality of is weaker than , and is needed to prove
Remark [1.5.6] If j ¢ J', then using 0 < 4;,¢} < f — ;e yon, 6j-1e0 € {0,1} and 7; € {~1,0}
since j ¢ J', we deduce from that 0 < (i; +1} —i—p—l—sj—i—&j_ley—knj) <p-1.1IfjeJ,
by the definition of 7; and a case-by-case examination, we deduce that 0 < n; — (i; — z;) <p-—1.

Next we prove that the coefficients of the LHS of are not all equal to 0. Otherwise,
by the previous paragraph we must in particular have n; = —1 for all j ¢ J’. By the definition
of n; for j ¢ J' (that is, for j = j1 +w+ 1 in ), there exists j € J' such that n; = p,
which implies 7; — (i; — z;/) >0 since p>4f+4 by, a contradiction.

Finally we prove that the coefficients of the LHS of (4.25]) are not all equal to p—1. Otherwise,
by the first paragraph we must have n; = 0 for all j ¢ J'. By the definition of n; for j ¢ J', we
must have 7; = 0 for all j € J, hence 7; — (i; — i;) cannot be p — 1. This implies .J' = (), which
is a contradiction. O

It follows from Claim 1 that the equation (4.25]) has solution

b = {ij +i+p—1- s]+8j_1ep + 1 i) ¢ (27)
n; — (45 — i) it jelJ.
Claim 2. We have jo—1¢ J and jo — 1 € Jp.
Proof. Since jo ¢ J' and jy € Jy, by (4.21) and (4.27) we have
kjo = ijo + iy +p—1— 8% + Gjgres +Mjp <P —2— 55 + 205 + Sjo-1¢4p- (4.28)

By the definition of n;, if jo — 1 ¢ J', then n;, = 0 since jo ¢ J', and thus n;, = —1 implies
jo—1 € J. In particular, we have d;,_1c; + nj, > 0. Then we deduce from (4.28) that

ijo +1 <4 +djo—1e4y, which implies ij, = i’ and jo — 1 € Jo since @, < ij,.
Then by (4.21]) we have
Kjom1 <P —2 = (s5,_1 — 285, 1) + 0jg—2ey <P — 1 — 85,1 + 205 1. (4.29)

Suppose that jo — 1 € J', then by (4.28) and using ij, = 4, and jo — 1 € Jo, we must have
Njo = —1. Then by (4.23) we have 7;,—1 > p — 1, which implies kj,—1 > p — 1 — (ij,—1 — @, _;)
by 1j Combining with 1) we deduce that 53-10_1 < ijo—1 + i;o_l < 2(f — 0 y_1e4en) since

<1< f— e™, which contradicts 1) Thus we have jo— 1 ¢ J'. O
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Since Claim 2 proves that jo — 1 ¢ J' and jo — 1 € Jy assuming jo ¢ J' and jo € Jp, we can
continue this process and finally deduce that J' = (), which is a contradiction.

Next we deal with the case J' = (). As in the case J’ # (), in view of the second equation in
) . . 2ij+p—1—8+06,_1cp
4.20)) it suffices to show that the H-eigencharacter y def XJaj/a_l[HjﬁéJ, ozjlj P ey ]

does not occur in <GL2((9K) (8 (1)) X_%J>. Then the equation 1) becomes

f—1 f—1
Y i+ +p—1—s]+08—y)p' => k;p’ mod (q—1), (4.30)
j=0 j=0

where the term §;—;; comes from a;. We claim that each (i; + 23 +p—-1- 33-] + 0j=j) is
between 1 and p — 1 and not all equal to p — 1. Indeed, if f > 2, then it suffices to show that
1<y —|—z'; +p—1—s3] < p-2forall j € J, which follows from 1) and 0 < <3< i—gJSh.
If f =1, then by assumption we have iy = i, = 0 and J = (otherwise JA(J — 1)% = (),
hence by we have 2 Sio—i—i{)—l—p—l—sg—i—éj:j/ :p—sg <p-—3.

Then it follows from that kj =i;+;+p—1—s/ + 8, for all j € J. Since jo ¢ J'
and jo € Jy, a similar process as Claim 2 implies that jo— 1 € Jy,jo—2 € Jo,...,5 € Jp. Then
by using j' € Jo, we have kj =iy + i, +p — s‘j-]/ <p-—2-— s‘j]/ + 22';., +0j1_1¢,, which is
impossible since z';-, <ij. m

Remark 4.5.6. Let A = (A, \y) € X1(D), i € ZL, such that 2i +1 < A — Xy < p— 2, and
J,J' C J. Assume that there exists jo € J such that jo € J, jo ¢ J and ij,41 = 0. We
consider the H-character

Y déf X)\(,Yii H aiij—i_p_l_(Alyj_’\ij)—’_&j—lEJ’ '
i¢J’
Then the same proof as in Proposition shows that (see Remark for the notation):

(i) If J' # 0, then the H-character x does not occur in Q(Xi, Xiozi, J) ;
(ii) If J' =0, then the H-character xaj does not occur in Q(Xi,xjal, J) forall 7 € J.

For J,J' C J and i € Z/ such thatfgjgi—gﬁh, we define m = m(i, J,J') € Z/ by

def . .
mj = (=158 (20 + Gje 1y — Sjegai—1ys + 0j—1er). (4.31)

In particular, if 2i; — d;cja(s—1)s + dj—1es0 > 0 for all j, then by Lemma iii), o is a
constituent of <GL2((’)K) (g (1)) X‘ivﬁ.

Lemma 4.5.7. Let J,J' C J satisfying (J—1)* = (J')*, and let m = m(e/")"™ J, (JAJ') -
1). Then we have
my = Sjen(—)5res Vje 7.

Proof. For j € J, by definition we have
mj = (=1)°7187 (26c gy + Oje(—1y= — Oje a1y + Sjesar) -
If j ¢ J5, then we have

mj = (—1)%+127 (25, g0 + 0 — Sjeg + djesn)

= (=1)%+1#7 (26;c s0jerr — Sje + (Bjes + Sjen — 28jes8jey)) = Gjep(—1) %187,
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If j € Jp, then the assumption (J — 1) = (J')* implies that j € J — 1 if and only if j € J',
hence we have

mj = (=1)%+1¢7 (0 + §jes1 — Sjesa(i-1) + djesnr)

= (—1)%+1¢7 (8 — Sjeanr + bjesnr) = Gjey(—1)0+187.
This completes the proof. ]
The following proposition is a generalization of Proposition

Proposition 4.5.8. Let J,J ' C 7,1 € 77 such that 0 < i < i—gJSh and m =m(i, J,J'). We
. J AW .
denote B Y [Hﬂ] ijﬁt 7 )]] (b [1)) (Y y) €.

(1) If 2i5 — djcin(i—1)= + 6j-1e0’ <0 for some j, then

B=0 if JA£0D
YyB=0VjeJ ifJ =0.

(i) If 2i; — djesa(—1)ss + dj—1esr > 0 for all j, then (see Lemma|{.5.1|(iii) for the notation)

BEI(O’(J,l)ss,O'm) ij/#@
}/j/B S I(O'(J_l)ss,o'm) VJ/ S j Zf Jl = @

Proof. We assume that J’ # (). The proof for the case J' = () is exactly the same.

(i). Suppose that 2i; — 6jcsa(s—1)s + dj—1e,s < 0 for some j, then we must have i; = 0,
jeJA(J—1)*and j—1¢ J. Hence B = 0 by Proposition applied to (z, J, J') as above
and jo =7 — 1.

(ii). Suppose that 2i; —d;csa(s—1)= +0j-1es7 > 0 for all j. By Lemma iii) and Remark

452 we have
(GL2(Ok) (B9) Y sy = I(0( -1y, 06) = QX5 x50 (JA( — 1)) — 1)

with bj = (=1)%+1€7(2ij + §jc(j -1y + 1 — djesa(s-1y=) for j € J. Since bj = mj if and only
if j—1 € J, to prove B € I(U(J_l)ss,am), it suffices to show that for each jy € J such that
jo—1 ¢ J', the image of B in the unique quotient @ of <GL2(OK) (8 (1)) X71UJ> with socle

Te(I=1%\lio} 4, e, is zero.

By Lemma}4.3.2{(i), we have @ = Q(XSJQ;{)O ,x5at, J") with J” def (JA(T=1)*)—1)U{jo—
1}. Since (i — 7j,€j0)jo = 0, jo— 1 ¢ J' and jo — 1 € J”, it follows from Remark (with
A=A Ja;OZjO, i replaced with i — ij e, and jo replaced with jo — 1) that the H-eigencharacter

of B does not occur in @), hence B maps to zero in Q. O

The following proposition studies the overlaps between different GLo (O )-subrepresentations
<GL2((’)K) (g [1)) Y J> of m. This phenomenon is new in the non-semisimple case.

Proposition 4.5.9. Let J C J and i € 75 such that 0<s1< i — gJSh. Let jo € J such that
Jjo+1e (J—1" and ijo+1 = 0. Let J' C J such that jo € J if jo+1 € J and jo ¢ J' if
jo+1¢J. WeletJ" def J A{jo + 1} and let i’ € ZT be such that i =i if j # jo+2 and

PO
o2 = Gjo+2 — Ojor1gsr + 0joyae(s—1)s- Then we have
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v Ty (59) (v i)
Jj&J’

Jo+1

Ky (J—1)ss Sjo+1¢s 2i+¢7\ o +2}(J7); 0 < —i!
= Y. ° Y./ P (Y on gore )7 (4.32)
HI\{Go+2},(J—1)% jg, ’ (0 1) \ort2)

where g j—1yss and Ly gjo21,(J—1)s are defined in Proposition|4.5.4}, and we let Y 'UJ\{]O+2} def

0 if i <0 for some j € J.

Note that the assumption jo + 1 € (J — 1)™ implies ((J \ {jo +2}) — 1)* = (J — 1)
hence pp (jo423,(7— 1) 1s defined in Proposition We claim that i' < f — e(‘]\{jf“L2})sh
which implies that Y v Njo+2y 18 well-defined by Proposmon Indeed, if j # jo + 2 or

j=jo+2¢ (J—1)%, then we have
i <ij < f = djesn < f = dje(ngorap™
If jo+2 € (J — 1), then the assumption jo + 1 € (J — 1)™° implies jo + 2 € J and thus
jo+ 2 € J%", hence we have
ora < ljo2 T 1< f =0 poeym + 1= f = f =8 toc(n{jor2p

We denote by By (resp. Bs) the element on the LHS (resp. RHS) of (4.32). In order to prove
Proposition we need the following lemma.

Lemma 4.5.10. Keep the assumptions of Proposition[{.5.9.

(i) Letm def m(z J J’) and m' m(i', J\ {jo+2},J") (see ). Then we have m = m/
and mj,+1 =

(ii) We have (see for t7(J"))
2ij +t/(J'); = 205 + NI i A Go+ s
2ijo41+ 7 (T )jo1 = Tjor1 + 15 (4.33)
21y + N = p— 1 =y

(iii) We let ¢,c € ZF such that

, —1)s
¢j = pij+1 + 0 1esA(7— 1)>s8( )

+ 85 agrap—1ys(P = 1) = 8igr (265 +17(J);) = dj=jor18jo 1143

, J-1ys
& = il + Oje(\Gor2pa—1y=sy

+ 8j1¢(Nor2)A(I—1)= (P — 1) = Gjgm (22'} + t‘]\{j°+2}(<f")j) — Oj=jo+10jo+1¢-
Then we have ¢ = ¢'.

(iv) If moreover 2i; — djcya(s—1)s + 0j—1eg7 = 0 for all j € T, then we have ¢ = ¢ > 0 and
YEB) = YEBy. In particular, By and Bo have the same H -eigencharacter.

Proof. (i). If j # jo+2 or f =1, then by definition we have m; = m} and mj,+1 =mj ., = 0.
If j =jo+2and f > 2, using jo+ 1 € (J —1)"° (which implies jo+2 € J) and jo + 3 # jo + 2,
we have

(_1)5j0+3eJm;.O+2 = (- ]_)6J0+3¢J\{J0+2}m 42
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= 26542 T Sjorac((M\ Lo +2) -1 ~ Gio+26(\ o+ 2D AN Lo+ 2)) 1) T Djo+1€07
=2 (ijor2 — Ojp41¢0 + Ojor2e(s—1)=) + Gjgroe(s—1)= — Ojgrac(I—1)= + Ojor1¢s
= 2ijo+2 — Ojor1¢s T 2050 42e(T—1)s

= 2ijo+2 — L+ 0jor1es + Gjoqae(g—1)ss + 1 — 0jgyog(s—1ys

= 2ijo42 + 0jo12e(1-1) — Ojor2esA(I-1) + Ojot1e

= (_1)5j0+3¢ij0+2’

hence Mmoo = M) .
(ii). We prove the case j = jo+ 2 and f > 2, the other cases being similar and simpler. We
also assume that jo + 3 € J, the case jo + 3 ¢ J being similar. Then using (4.7]), we have

. ; . J\{jo+2
21‘/]'04'_2 + tJ\{]U+2}(J//)jO+2 — 27/‘,7,04_2 +p _ 1 _ Sjo\_'{_JQO+ } + 6j0+1€]”

=2 (ijot+2 = Ojgr1gs + Ojor2es;) + 10— 1= (0= 2= jo42) + Gjgrrgy
= 20jp42 — 5jo+1¢J’ +p—1-— (p —1—=7jyt2 — 26j0+2€Jﬁ) +1
= 2ijor2 TP — 1= 8740+ Sjos1er
= 2ijoy2 +t7(J)jor2-
(iii). By (4.33)) we have c; = ¢, for j # jo + 1, so it remains to prove that cjo+1 = cj ;. We

assume that jo + 2 € (J — 1), the case jo + 2 ¢ (J — 1)* being similar. Then using (4.7)) and
(4.33)) we have

or1 = P (lGorz = Gjosagr +1) + (0 =2 = 7jo11) + 0 = Sjor1es (P — 1 = 1jot1) — Gjot1gs
=D (ijo+2 - 5jo+1¢J/ + 1) -1+ 5j0+1¢J/ (p—1—rj41) — 5jo+1¢J
= pijor2 + 0+ (p—1) = 0jor1gs (Tjor1 + 1) = Gjo 4187 = Cjot1-

(iv). If j € J', then by the definition of ¢; and using ;41 > 0, we have

cyzmm{ékﬂfp—l}—lzu

where the last inequality follows from (4.10)).
If j ¢ J', then the assumption 24,41 — djp1esA(I—1) T 0jesr > 0 implies that either ij41 > 1
or j+1¢ JA(J —1)%. By the definition of ¢; and using ;41 > 0, we have if j # jo + 1

¢j > min {p,p — 1} — (2ij + tJ(J/)j) >0,

where the last inequality follows from andi < f—e”’ . By the definition of ¢j,41 and using
ijo+1 = 0 (hence jo+1 ¢ JA(J —1)*) and (4.33), we have cjo41 > (p—1) = (Fjoe1 +1)—1>0,
where the last inequality follows from .

By the definition of ¢ and since ¢ > 0, we have

(J—1)s8
_ i 53 -1 0 —i
yep =yeo | [ v [T ')y
JH1ETA(T—1)ss JHIETA(J—1)ss
s;J—l)SS p—1 0
= H Y; H Y; (5Y) vs = b -1y v(r—1ys=,
jH1eJA(J—1)5 JH1gJA(J 1)

81



where the second equality follows from Lemma M(l) and the last equality follows from Propo-
sition applied to J. Similarly, we have (recall that ((J \ {jo + 2}) — 1)* = (J — 1)¥)

S(J—l)ss

c c Fog,(J—1)ss j p—1 0
YEBy =Y* By = Y, Y (1) vndiora
K\ {Go+2},(J—1)ss j+EJ/// ! jJ};IJ”’ ’ 01 70

= K (J-1)ssV(J-1)ss,

where J" & (J\{jo+2})A(J—1)* and the last equality follows from Proposition applied
to J \ {jo + 2}. In particular, we deduce from Lemma [4.3.1ii) that B; and By have the same
H-eigencharacter. O

Proof of Proposition[{.5.9. As in the proof of Proposition the H-eigencharacters that
occur in <GL2(OK) (8 (1)) Xﬁivﬁ are those in Q(Xé}aiu, Jz’”) for 0 < " < i (where Jy def {j:
j+1eJA(J —1)%, i7 , =0}), which are xsa Y o~k where

{o <kj <p—2—(s{ =2+ 61 itjeJo (4.34)

p—1—(s]=2)+ 6 1e5, <kj<p—1 ifj¢Jy

for Jo 2 J;». By Lemma W(iii), unless Jo =0 and kj =p—1— (33] — 247) for all j, the H-
eigencharacter in |i comes from the element Y% (75 ?) (X‘iﬁv J) S <GL2((9 K) (7; ?) X‘iﬁv J>.
Suppose that 2i; — §jcya(j—1)s + dj—1c < 0 for some j. By Lemma 4.5.10(i) and using

((J\ {jo+2}) — 1) = (J — 1)*, we have

20 — 8je (M o+ 2 A\ Go+2))—1)= + Fj—1en <0

for the same j. Then by Proposition [4.5.8(i) applied to (4,J,J') and (¢/,J \ {jo + 2}, J") we
deduce that By = By = 0 (if ¢ # 0 then By = 0 by definition), which proves (4.32)). So in the

rest of the proof we assume that 2i; — ;e ja(7—1)s + dj—1c5 > 0 for all j, which implies that

20 — 8je(N\ o+ 2D AN Go+2})—1)= + Fj—1e7 > 0

for all j. In particular, this implies ¢/ > 0. Then by Proposition M(u) applied to (i,J, J")
and (i, J\ {jo+2},J”) we deduce that By, By € I(0(j_1ys,0m) = I(0(j_1)ss, o) (see Lemma
4.5.10(1)), which is a subrepresentation of (GL2(Ox) (4 9) Y ;) and of (GL2(Ok) (b 9 Xﬁi/'l]]\{j0+2}>.

(i). We suppose that jo + 1 € J, hence jo € J'. In this case, we claim that it suffices to

prove (4.32)) for J' = 7, that is (using (4.33)))

—i K (J—1)ss —1-r;j it
(§7) (7%s) = MJ\{joJ(rQ} (?I—l)ss Yj};“ ") (Z : UJ\{J'0+2}> ’ (4.35)

where z; =14, if j # jo + 2 and i;0+2 = ijo+2 + 0jo12e(J—1)s- Indeed, once (]m[) is proved, we
multiply both sides of (4.35]) by HJSEJ’ y2att’ (s g jo+1 € J', then using (4.33) we obtain
for J'. If jo+1 ¢ J, then using together with Lemma mm applied to j = jo+1
we obtain for J'.

Then we prove . Since By, By € I(U J-1 ss,O'm) - <GL2((’)K) (g?)zﬂ'vﬁ have
common H-eigencharacter yja =t (see Lemma (iv)), it suffices to show that the H-
eigencharacter x o™t only appears once in <GL2((’)K) (g (1)) Y J>, which implies B; = Bs
by Lemma (4.5.10(iv). Since jo + 1 € J, the assumptions jo + 1 € (J — 1) and ij,41 = 0
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imply that jo € Jy for all ¢’ as in (4.34). In particular, we have jo € Jy. As in the proof of
Proposition the equation (4.22)) then becomes

f-1 f—1
= (=i’ = kjp! mod (¢—1), (4.36)
j=0 J=0

which is congruent to z l o (p—1—(i5 —i))p’ modulo (¢ —1). If i; # if for some j, then we
must have kj, =p—1— (ZJO — i3 ). Since jo € Jo, by (4.34) we have

kjozp_l_(ijo_ )<p—2_( _22//)_'_5]0 16J0<p_1_( _21//)

Hence 33-]0 <ijy+ij, < 2(f =08 cyen), which contradicts (4.10). Therefore, we must have i; = i

for all j and the LHS of (4.36)) equals 0. Since jo € Jo, by (4.34) and (4.10) we have kj, < p—1.
It follows from (4.36]) that k; = 0 for all j.

(ii) We suppose that jo + 1 ¢ J (which implies f > 2), hence jo ¢ J'. We prove (4.32)) by
the following steps.

Step 1. We prove (4.32)) for J' = 7\ {jo}-
Using (4.33)), it is enough to prove that

2ij,+p—s] s KT, (J—1)ss 2ijo+p—sy) p—1-Tjo 41 —/
y, o0 (00) (yiy,) = — 2 v, Ry T (59) (Y oGy ) -
Jo (0 1) ( ) B\ Got2h (T L 20 Jo+1 (0 1) - \{jo+2}
(4.37)

where @} = 4; if j # jo + 2 and @ 5 = ijo1+2 + Jj,12e(s—1)=- Since ZJOH =i, 41 = 0, by Lemma

—2i
4.3.1(i) applied to j = jo and Proposition [4.4.2 if we apply Y 70 to either side of (4.37

we get zero. Moreover, By, By € I( (J 1)ss,am) - <GL2((’)K)( )Y ’UJ> have common

21J0+p s]
Jo
that up to scalar there exists a unique H-eigenvector C' & <GL2 (Ok) ( )Y Ly J> satisfying

_Z 0

H-eigencharacter x o XJo (see Lemma [4.5.10(iv)). Hence it suffices to show

J
onjo ]OC = 0 with H-eigencharacter y, which implies By = By by Lemma [4.5.10|(iv).
As in the proof of Proposition [4.5.5] (in the case J' = J \ { jo} with the same definition of
n;), for each i such that 0 < i” < i, the equation x = xj« —i" ok has at most one solution for

k as in (4.34]), which is given by (see (4.27) and since jo— 1 € J')

k]o_ljo+7' +p- '0+77j0
kj =m; — (i; — i) if j # Jo.

(4.38)

Tt follows from (4.34) that C is a linear combination of the elements ¢’ % Yk (P 0) (X_illvj) €
<GL2((9K) (g (1)) Yy ’UJ> with distinct ¢ such that 0 < ¢’ < z and k as in (4. 38 , each of which
has nonzero image in the quotient @ of <GL2 (Ok) ( ) > isomorphic to Q(Xf]ai”, Jzu)
(see Lemma [4.5.1(ii)). o

We claim that for i” # i, the element szjo_2%0’ € <GL2((9K) (g?)xﬂl”vﬁ also has
nonzero image in @ = Q(X‘f]aiﬁ, Ji»). Then we deduce from Lemma (ii) that the coefficients
of C" with i # 4 in the linear combination for C must be zero, which concludes the proof of
(14.37)).

Then we prove the claim. We let Jy be the subset corresponding to the H-eigencharacter
of ' =Yk (g ?) (X_i//vj) in . Suppose that jo € Jyp. Then by Claim 2 in the proof of
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Proposition we deduce from jy € Jp and jo ¢ J' that jo— 1 ¢ J’, which is a contradiction
since J' = J\{jo}. Hence we must have jo ¢ Jy. By the definition of 7; in the case J' = J\{jo}
(see ([£.23)), we have either nj, = —1 or n;, = 0. Moreover, if 7;, = 0, then the definition of
7n; implies that i = zj for all j # jg, hence z < ij, since 7" # i. In particular, in either case

we deduce from that kj, < 2ij, +p — J hence (s 85, — 21jy) + kj, < p—1. Then using

Jo’

I 9,
jo ¢ Jo, the H-eigencharacter of szm 00 still appears in (4.34) (with the corresponding 3"

and Jy unchanged), hence has nonzero image in @ = Q(ijaf s Jir )

Step 2. We prove (4.32)) for all J’ such that jo ¢ J' and jo— 1 € J'.
ST e AN
We multiply both sides of (4.37) by 5/}0+1[Hj¢J'u{j0} YJ%H 7 )J]. Since jo — 1 € J', we
deduce that tJ(J’)jO is the same as in Step 1. If jo +1 € .J’, then using |i we obtain 1)
for J'. If jo+ 1 ¢ J', then using (4.33]) together with Lemma [4.3.1(i) applied to j = jo + 1 we

obtain (4.32)) for J'.

Step 3. We prove (4.32)) for all J’ such that jo ¢ J and jo—1 ¢ J'.

. J AW
We multiply both sides of (4.37) by Y41 [TLigsupe Yoo 7). Similarly to Step 2 but

using jo—1 ¢ J', we get Y, B1 = Y}, B2. Moreover, By, By € I( T(J—1)%5 Um) C <GL2(0K) (8(1])X_%J>
2zj+p 1—sy +(5 IEJ/]

have H-eigencharacter y def X Jaj0+1a_i[]_[ A . Hence it suffices to show
that there is no nonzero H-eigenvector C € [ (O‘( J—1)ss,0m) With H-eigencharacter yx satisfying
Y;,C = 0, which implies By — By = O

As in the proof of Proposition 5, the equation y = yya ™% ok is equivalent to the con-
gruence relation (compare with ({ -

-1

PN (Gl 18]+ 81en)p = Y (6~ =D kjp mod (¢ — 1), (4.39)
jeJ’ jeJ j=0

where the term p/°+! comes from ajo+1- Then by a similar argument as in the proof of Propo-

sition :4.5.5|7 for each i’ such that 0 < 7" < i the equation (4.39) has at most one solution for k
as in (4.34), which satisfies (compare with (4.27)) and note that jo — 1 ¢ J')

kjo =i + i +p—1— sk +n
for some n € {0,—1} and k # 2" + p — 1 — s’. In particular, using (4.10) we deduce that

kj, < p—2. It follows from (4.34) that C' is a linear combination of the elements C’ &
YE ({)’ (1)) (Y_z ’UJ) € <GL2((9K) ({)’ (1)) X_;“’UJ> with distinct 7 such that 0 < " <3 and k such
that kj, < p—2, each of which has nonzero image in the quotient () of <GL2((’)K) (g (1)) X_ZHUJ>
isomorphic to Q(ijozi", Jy») (see Lemma (11))

We let Jo be the subset corresponding to the H-eigencharacter of ¢’ = Y& (p 0) ( y % ’UJ)
in and claim that jo ¢ Jo. Since mj,+1 = 0, any constltuent 04 of I(U(J 1)5, Om
satisfies aj,+1 = 0. If we write 0, = F(t,\J(b)) then by Lemma we have 0 = aj,41 =
(—1)%0%2€7 (bjo 11 + Gjp416) + 20, 1o Since jo+ 1 & J, we deduce that bj,+1 = 0, which is
even. Since C € I(0(j_1)s,0m) we deduce from Lemma m(l) applied to A = Ay — of” that
Jo & Jo-

Since jo ¢ Jo and kj, < p — 2, the H-eigencharacter of Y;,C’ still appears in (4.34) (with
the corresponding i and Jy unchanged), hence has nonzero image in ¢ = Q(X‘f]o/”ﬂu. Since
we ask Y;,C' = 0, it follows that the coefficient of each C” in the linear combination for C' must
be zero, which completes the proof. O
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The following Proposition is a generalization of Proposition and gives more relations
between the vectors v; € Dy(p).

Proposition 4.5.11. Let J,.J" C J such that (J')* # J (i.e.(J', J5) # (T,0)) and satisfying

(J _ 1)ss _ (J/)ss (4 40)
(J/)nss C (J _ 1)HSSA(J/ _ 1)nss‘ ’

Then there exists a unique element py y € F*, such that
sJ’ -1 (JnJ’ynss
[T v II 7' e """ )= (4.41)
j+1eJAJ’ JH1¢JAT’

78(‘]0.]/)1155 i i L.
where Y ¢ vy 18 defined in Proposition .

Proof. If f = 1, then the assumption implies J' = (J — 1)* and (J N J)™ = (), and the
proposition is already proved in Proposition Hence in the rest of the proof we assume
that f > 2. We denote by B the LHS of (4.41)).

Claim 1. The element B is nonzero and has H-eigencharacter x j.

e(JmJl)nss

Proof. By Lemma |4.5.1(ii), the representation (GL2(Of) (g )Yy ¢
Q isomorphic to Qx5 E J”’) ith J" ((JA(J = 1)*)\ (JNJ")") — 1. By the proof
of Lemma 1} @ has constituents F(ty,(—b)) with

max (5j€JA(J—1)SS7 2(Sje(JmJl)nss) S bj S 25jE(JﬁJ/)nSS + 1 (442)

v J> has a quotient

We claim that o/ 1s a constituent of @ and corresponds to the subset J” = def (JAJ') =1 for
IndGL2(OK) (X?]QQ(JQJ) ) (

F(tAJ(—Q)) with

see Lemma {4.3.2(1)). Indeed, by Lemma [4.2.3(iii), we have oy =

4.43
(0jes = Gjer) (1)%+1e7 if j € Jp. )

We need to check that b; satisfies (4.42]). We assume that j ¢ J5, the case j € J; being similar.
By (4.40), we have j € J' implies j + 1 € JAJ'. Hence we have 5jeJ/(—1)51+1¢JAJ’ = ey, and
(@42

b = {5JeJ + Sjep (—1)0miesar if j ¢ J;

from (4.42)) it suffices to show that
max (§je, 20 cins) < djes + 6jer < 28jcny + 1,

which is easy. Then we prove the second assertion. By Lemma m(l) applied to A = Ay —
el , it suffices to show that bj = 20;¢(jnyrymss + 1 if and only if j € JAJ'. Once again we
assume that j ¢ J5, and the case j € J5 is similar. Then it suffices to show that dje; 4+ djcy =
20jcjn + 1 if and only if j € JAJ', which is easy.
By Lemma for j € J” we have (p— 2 — (s‘J] — 20;e(nrymss)) + Oj—1egn = s . Then

by Lemma (iii) applied to A\ = \j — aet/n

(JnJhHnss . . . . .
Q()@,Ozﬁ ,J" ) is a nonzero Ii-invariant of o j. In particular, B is nonzero and has H-
eigencharacter y . O

, we deduce that the image of B in Q =

Claim 2. The element B is Kj-invariant.
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Proof. First we claim that m(g(‘]ml)nss, J, J”) =a’ (see for m and for QJ,). Indeed,
using Lemma it suffices to show that 6jeJ/(—1)5J‘+1¢J = a}-]’ for j € J. If j € Jp, then
the assumption (J — 1)* = (J')* implies that j € J — 1 if and only if j € J’, hence we have
(5j€J/(—1)5j+1¢J = 5j6p(—1)6j¢l’ = d;ec 7, which equals a}-]/ by . If j ¢ J5, then j € J' implies
j+1 € JAJ by the second formula of , hence we have ;¢ (—1)%+1¢7 = (SjGJ/(—l)éjJrleJ’,

which equals a;-] " by 1'
By Proposition |4.5.8(ii) applied to i = e/"/)" and with .J’ there being .J”, we deduce that

26 / nss+tJ(J//)' _(JnJlynss .
}/j/ H Yj TEn ’ (g (1)) <K c UJ) € I(U(Jfl)ssﬂo-(]') - DO,U(]?l)SS (p)
JH1dTAT
(4.44)
for all 3/ € J, where the last inclusion follows from the fact that o is a constituent of
Do,y (p) (which follows from Lemma4.4.1(iii) and ) Since 57" > 1 and 20 (gnrymss +

t7(J"); <p—2forall j by (4.10), (4.19) and f > 2, multiplying (4.44) by a suitable power of
Y, we deduce that B € Do, (p), hence is K;-invariant. O

Claim 3. We have Y; B = 0 for all jo € J.

Proof. (i). Suppose that jo + 1 ¢ JAJ and jo+ 1 ¢ (J N J)*S. By Proposition we
have Yj, 1 (ng(mﬂ)m vy)
Y;,B = 0.

(ii). Suppose that jo + 1 € JAJ', which equals JA((J')SA(J)™5) = (JA(J')*™)A(J")"s.
Hence for each j € JAJ', we have either j € JA(J')*, j & (J')™ or j & JA(J')S, j € (J)™,
and in the latter case we have j +1 € JAJ by . In particular, since (J')™ # J, there
exists 0 < w < f — 1 such that j ¢ JA(J)®, j € (J)™s for j = jo+ 1,...,j0 + w and
Jo+w+1e JAJ)S, jo+w+1¢ (J)™s.

By we have jo+w+1 € JA(J")*® = JA(J — 1)*. Then by proposition applied
to i = /™)™ jy replaced by jo + w and J’ replaced by J{ — 1 with J/ def (JAJ) N\ {jo +
1,...,j0 + w+ 1}, and possibly multiplying by Yjy+w+1, we have

= 0. Hence it follows from Lemma |4.3.1(i) applied to j = jo that

20 ! nss+p*1*S"]+5v " /\nss
je(JInJ’) Fi jeJ 0 _(JNnJ")
Virsr | ] Y, L (=" ) =0

Jj+1¢Jy

Since 20jc(jnyyms +p — 1 — 53] + 5jeJ{’ < p-—1 for all j by || to prove that Y; B = 0, it
suffices (from the formula of B) to show that
7+ 0jjo = 20jensrymss + P — L= 8] + 6ie(AIN Lot jotwi1} T Si=jotwtl

for j+ 1€ (JAJ)\ J{, that is j = jo, ..., jo +w. This follows from Lemmawith J,J as
above noting that j = jo +w+ 1 and j € {jo,...,jo +w} imply that j = jo and w = f — 1.

(iii). Suppose that jo + 1 € (J N J’)"%, then by Lemma [4.3.1[i) applied to j = jo and using
jo+1¢ JAJ', we have

J/ /\nss ;
vs=| I v° I v an @ T ) wa)
j+1eJAJ’ JH1g(JAT)U{jo+1}

As in (ii) (with the difference that jo + 1 ¢ JAJ'), there exists 1 < w < f — 1 such that
J& JAT)S, je (J)for j=jo+2,...,Jo+wand jo+w+1e€ JA(J)S, jo+w+1 ¢ (J)™s.
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By (4.40) we have jo +w + 1 € JA(J)*® = JA(J — 1)*. Then by proposition [4.5.5]
applied to i = /M) \io+1} 4y replaced by jo 4+ w and J' replaced by J§ — 1 with JJ = dof
(JAT)\ {jo+2,...,j0 +w—+1}) U{jo + 1}, we have

26 n : +p—1— J+6 nss

H v FEINIBSS\ (g +1} TP 78 T05¢ 50 (pO) (Y TN o+ 1 J) =0.
j 01

JH1ETY

Since 20 ¢ ynss\{jo+1} TP — 1= 8; +5J€Ju <p-—1forall j by (4 , to prove that Y B = 0,
1-

comparing with ) it suffices to show that

s7 = 28jcnp\gos1) +P = 1= 8]+ 8ie(IAIN Lo+ 2ot wr 1)U +1)

for j+1 € (JAJ')\ JY, that is j = jo+1, ..., jo +w. This follows from Lemma with J, J’'
as above. O

From Claim 2 and Claim 3, we deduce that B is Ij-invariant. Since B 75 0 has H-
eigencharacter yy by Claim 1 and since Dg(p)”* is multiplicity-free by Lemma, i), we
conclude that B is a scalar multiple of v, which completes the proof. O

Remark 4.5.12. For J C J, we define the right boundary of J by 8J < {je J:j+1¢ J}.
Then the second formula in s equivalent to

(aJ/)nss C (J o 1)nss C ((J/ \ 8J/)c)nss.

If J5 = 0, then we define x , o uaézgflfﬁ (p (1)) vy so that Y xy . = vy by (4.17) applied to
J = (. This agrees with the definition of xg, given in Theorem below, see (4.123) below.
Then we have the following complement of Proposition which together with Proposition
gives all possible relations between the vectors vy € Dy(p).

Proposition 4.5.13. Assume that J; = 0. Then for ) # J C J, there exists a unique element
wrg € F* such that

H Yjpflfrj (16 (1)) Vg = Wi gvg + RieTe

where p ;g is defined in Proposition |{.5.4}

Proof. By Lemmal4.5. 1(ii) and its proof, the isomorphism Ind 2(0K) =~ (GLy(Ok) (B ) v)
identifies the element ¢ in §4.3| with ( )v@, which is a scalar multlple of vy since x7 = X
when J; = (). Hence by Lemma [4.3.2(iii) (a) applied to A = Ap, any nonzero element in the
I- cosocle of oy is a linear combination of vz and xp, with nonzero coefficients.

By Lemma M( ),(ii) and its proof, the representation <GL2((9K) (b Ny =2Q(x5,J-1)
has socle oy, and identifies (0 ! ) vy with the element ¢ in Since J # (), we deduce from

Lemma [4.3.2(iii)(b) applied to A = A; that the element B CLef [HJ+1¢J yP ] (75(1)) vy is

nonzero and lies in the I-cosocle of oy, hence B = uj7v7 + ,um:z:@,z for some ,uJ,j,,uf,’@ e F~*
by the previous paragraph. Finally, by applying Y™ to B and recalling that Y"v 7 = 0 since vy
is [1-invariant, we deduce from Proposition (with J5 = J = 0) that ;) = p. O
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Example 4.5.14. Some examples for f =3 and J; = 0:

royvp—1y p—1
NG

(57) vay = pyayovo;
Y()ro+1yvlpfly2}772fr2 (

(

(

) vy = 11y {0}V 0}
) vy = H{1},{0,2)V{0,2)
) V{1} = HK{1},{0,1,2}Y{0,1,2} + H{1},020,(ro,r1,m2)

pO0
01
pO0
01
Yvoro—i-I}/lp—Q—rlY;—l—TQ ;8(1)
11— 11—
Ylp T1Y2P T2 8(1)
-1
YOOYTT Y52 (§1) vioay = Hoay.0;
+1 -1 -1 0 -1 .
YOy (8Y) (% vgoy) = moayqoy oy
_9_
Yoovr =y T (8Y) vioay = mpoay(2yviey
1rp—1— _
YOy (5)) (Y o) = ko)1 2)
11—
YPTT(6Y) voay = H01),401.2) 00,12} T £40,1}.070,(ro.m1.r)
Lemma 4.5.15. Let Jl, JQ, Jg, J4 - j such that the paz’rs (Jl, Jg), (Jl, J4), (JQ, J3), (JQ, J4)
satisfy the assumptions of either Proposition |4.5.11 or Proposition (here we say that

(J, J') satisfies the assumption of Proposition |4.5.15 if Jz =0, J # 0 and J = J). Then we
have

Ky, Js3 _ HJs,J3 (4 46)
fhgs Moy

where each term of is defined in either Proposition |4.5.11 or Proposition |4.5.15,

Proof. First we suppose that J; = 0 and Jy = J. If J3 = 7, then is clear. If J3 # J,
then by the proof of Proposition and using that the I-cosocle of oy has dimension 1 over
IF, the ratio juz.7/psp does not depend on J, hence we can replace Jy = J by Jy = 0.

From now on, we assume that all the pairs (Ji,J3), (J1, Ja), (J2, J3), (J2, Js) satisfy the
assumptions of Proposition In particular, we have (J; —1)% = (Jo — 1)* = J§¥ = J.
Using that

-1
Hdigs _ i Js <MJ1-,J4>
K, Jy K, Jss \ HJ;, J§
for i = 1,2 with each term defined in Proposition we may assume that Jy, = J® C J5.

Then using Remark[4.5.12] the assumption (4.40) for the pairs (J1, J3), (J1, Ja), (J2, J3), (J2, J4)
is equivalent to

(0J3)"S L Jy C J; — 1 C ((J3\ 0J5)°)™ U Jy (4.47)

for i = 1,2. By choosing a sequence J°, J', ... J" C J for some r > 0 such that J° = Ji,
J"' = JQ, |JiAJ1;1| =1for1l S ) § r and

(0J5)" U Jy CJ' = 1C ((J3\ 0Js5))"™ L Jy

for 0 < < r, it suffices to prove the proposition with Jy, Jo as in (4.47)) such that (J; — 1) =
(Jo — 1) U {jo + 1} for some jo € J. In particular, we have jo +1 € (J; — 1)™ (since
(i =1)¥=(J2—1)* =Jy) and jo + 1 ¢ J.

(i). Suppose that jo € J; — 1. By Proposition |4.5.11| applied to (J1, J3), we have

J3 nss
Sj p—1 0 —e(J1NJ3) .
| | ij | | ij (g 1) (X € VJy ) = KJy,J3VJ3- (4'48)
Jj+1eJ1AJ3 JH1¢J1AJ3
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Since jo+ 1 € Jy and jo + 1 ¢ (J1 N J3)™° (since jo + 1 ¢ J3), by Proposition applied to
(i, J,J") = (g(‘lm‘h)nss, J1, j) with jo as above together with 1) (and note that (J; — 1)* =
J1), we have

(;8 (1)) (Y (710 73) UJ1> _ Hnda szjrll—rjoﬂ (18(1)) (X—;‘/UJQ) (4.49)
s, Jy

with
/ def J1NJ2)0ss
( tnJs) + 5Jo+26J4eJ0+2

( (JQﬂJg)nSS + 5

JoNJg )nss
jo+2e 035> €jo+2) + Gjo+2e 5 o k2 = el NI

5J'0+26J3€j0+27 (4-50)

where the second equality uses Ji \ J2 = {jo + 2} and J5* = Js. We assume that jo + 2 € J3,
the case jo + 2 ¢ J3 being similar. Since jo + 1 ¢ J3, we have s}-]g’ﬂ =p—2—"rj41 by li
Combining (4.48) and (4.49)), we have

J3
gy 8 p—1 p—1="jp+1 0 —i
Hor, I3V = H Y; H Y; Y (5 1) Y™ vy,
Wy, J J J
27 jH1eiAd; JH1¢ 1A T3
J.
— T v [T v | vy o (20) (v
s J J jo+1 “jo+1 01/ \& Y
2,J4 . .
’ JH1eJ2AJ3 j+1¢J2AJ3
J3 n
St T ovr L G (e )
J J
Hlads \jnienam ~  jrignad, |
_ Ha,Js
— MJy,J3VJ3,
Wy, Js

where the second equality uses jo +2 € Ji, jo+2 ¢ Ja, jo+ 2 € J3 (hence jo+ 2 ¢ J1AJ3
and jo + 2 € JoAJ3) and s7°. | = p — 2 — 1jy41, the third equality follows from Lemma (1)
applied to j = jo+1 and (]ZIE_S_O using jo+2 € Js, and the last equality follows from Proposition
applied to (Ja,J3). Therefore, we have jug, s, = (fJ, g4/ 1o, J0) s, J5, Which completes
the proof.

(ii). Suppose that jo ¢ J; — 1 (which implies f > 2). Similar to (i), by Proposition [4.5.9]
applied to (i, J,J') = (Q(Jm‘]i”)nss, Ji, I\ {jo}) with jo as above together with @D, we have

J1

on+1Y26]0€(J1”3)nss+p % 0} (79) (Y "0y)

J1
_ MJl,J4 26]0€(J1V‘IJ3)HSS+p 5 p717Tj0+1 p0 —q!
 Ha Yot Yy " | Yo (51) (Y vngioray )
2,J4
SJ3 1
JaNJg)"ss ) ) ; J p—17 -
where i’ = e )™ 4 §jo+2e5€j0+2- We claim that [Hj+leJ1AJ3 V' 1jvienarn Y |isa

J1
nss+

multiple of on+1Y Pioc (AP . Indeed, since 3] 1 > Land 26 ¢ (g, ny)mss +p— sjl <p-1

by (4.10 - the clalm follows from the fact that jo+1 ¢ Ji, jo+1 ¢ J3 (hence jo+1 ¢ J;AJ3) and

jo+ 1 # jo. Once we have the claim, we can argue exactly as in (i) to conclude the proof. [

To end this section, we extend the definition of p; 5 to all J,J' C J such that (J —1)% =
(J')* as follows:

| def P()SU@) )LL) (J5, J') # (0, T)
K (JNssu(o.J!)nss +1,(J")ss
def uw,@/(ﬁ(J,)J I if J;=10 o
Ko7 = — — =
K
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(and p5,7 as in Proposition [4.5.13|if J; = () and J # (), where each term on the RHS of (4.51))

are defined in either Proposition or Proposition Then the equation holds
for arbitrary Ji, Ja,J3,Js € J such that (J; — 1)% = (Jo — 1) = J5* = JJ®. In particular,
for J,J' such that (J — 1) = (J' — 1)%, the quantity v /p v does not depend on J” for
(J")*® = (J —1)* and we denote it by 7./ . Similarly, for .J, J such that J% = (J')%, the
quantity fiy» y/pgr g does not depend on J” for (J” —1)% = J* and we denote it by 1/t -

4.6 Projective systems in 7w

In this section, we define certain projective systems x;; of elements of 7 indexed by J C J
and i € Zf, see Theorem m They will give rise to a basis of the A-module D4 (7). The
definition of these elements is much more involved than in the semisimple case (compared with
[BHH ¢, (104)]).

The following quantities will appear in the definition of these elements in Theorem [£.6.4]

Definition 4.6.1. Let J C 7.
(i) We define r’ € ZJ by

0 ifjé¢d, j+1¢J
o | =1 fied j+1dJ
g 4 yieh jtlg (452)
ri+1 ifjé¢d, j+1eld
Tj ifjed, j+1ed
(ii) We define ¢’ € Z/ by
p—1  ifjEd j1¢J
c i+ 1 fjied, j+1¢J
gl e jrld (453)
p—2—r; ifj¢d j+1ed
0 ified, j+1leld
(iii) We define e; € {£1} by (see Remark[4.5.19 for 0.J)
def (*1)f_1 Zf Jﬁ = @, J=J
e = nss 4.54
7 {(—1)|(J\8J) | otherwise. (4.54)
Remark 4.6.2. (i) By definition, for all J C J and j € J we have
r{ = 0j1es(rj + 1) = Sje; (4.55)
C}-] = j¢J(p—2—Tj) +5j+1¢J(T'j + 1). (4.56)

(ii) The definition of ¢’ is a variant of [BHH ¢, (95)] (where p was assumed to be semisimple).
Also, by we have 0 < ¢’ < p— L

Lemma 4.6.3. (i) For J C J, we have t’ =1’ + el (see for t’ and for J8).
(i) For Ji,Jo C J such that Jy N Jo =0, we have r/1Y2 = pJi 4172,
(iii) For J C J, we have o’ = o=’ "' =2
(iv) Let JJ C J C J and J" o J'A(J —1). Let c e pe! N1 4 f- N\ Let
8 €{0,1}. Then for all j € J we have (see fort7(J"))

¢j = 0j > Ojg v [2(5j6(J’+1)ﬂJ - 5je(J’+1)Sh) + tJlH(JH)j] + 0=
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(v) Let J'C J C J. Then for all j € J we have

4 J\J’
c}] frj\ = c}-] +djens (@ —1—1j).
Proof. (i). This follows directly from the definition.
(ii). This follows immediately from (4.55)).
(iii). By (4.55) and (4.56]) we have

C‘j] +T§] — 7"3~]+1 = (6]¢J(p_ 1-— 7’]) + 5j+1§§J(rj + 1) — 5]¢J)
+ (0j+1es(r; +1) = djeg) — (Gjes(rj +1) = §j-1e7)
= Pdjgs — (957 + Gjes) (rj + 1)
+ (0j41¢0 + Gj1ea) (rj + 1) = (8¢5 + Gjes) + 0j-1es
=pdjg; —1+0j_1e5 =Pdj¢ej —0j_1¢7-
Hence we have
o T g d 1 _ _
ot = [Tl IT o' =TJesnn ]I 5" =1,
jgd  j-1¢J j¢d Jj—1¢J

which proves (iii).
(iv). We assume that j ¢ J”, the case j € J” being similar and simpler. By definition we
have

2(5je(J’+1)mJ - 5je(J'+1)Sh) + (tJ/H(JH)j + 5J"=(7)) + 53'
< 2(8jerr1yng = Sje(rynm) +(p—1— 5}'],+1 +1) +1
< 2(8e(r4nns — i) +p—1— (2(f = Gjeppnyn) + 14+ 0p=1) +1+1
=p—2f+20jcyying —0p=1 <p—2f+2—-05=1 <p— [,
where the second inequality follows from (4.10). Since j ¢ J”, we have either j € J' N (J — 1),

orjé¢J and j ¢ J— 1. We give the proof when j € J' N (J — 1), the other case being similar.
By the definition of ¢, (4.53) and (4.52) we have

L _pro—i-0 ifj+1eJ
T pH ) = f—(rj 1) ifj+1¢T
:p_fa

which proves (iv).
(v). By (4.55)) and (4.56|) we have

LV
¢f - Tj\ —cf = (g0 (p—1=75) +8jagp(rj + 1) = i) = (S31en0(rj + 1) = Sje )

— (050 (0 =1 =15) + 0jp1g5(rj +1) — 1)
= (85¢00 = 05¢5) (0 =1 = 75) + (8j31¢0 — Ojr1ens — Sjy1¢s) (rj +1)
= (e — e — 0jgs)
= djeny(p—1—1j).
This proves (v). O

Theorem 4.6.4. There exists a unique family of elements {xu JC J,i € Zf} of ™ satisfying
the following properties:
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sh

i) For each J C J, we have xj 5 = X_(i_g] Jvy (defined in Proposition |4.4.2).
S
(ii) For each J C J,i € Zf and k € Zéo, we have XEL]&- =T k-
iii) For each J C J and i € Zf, we have (see Proposition|4.5.11) and (4.51) for pyi1.p
+ b

0 — § '
(8 1) TJ+1,i = EJ’/JJJ-&-l,J/xJ/7p5(i)+§J+zJ\J’-
Jsng/gJ

Remark 4.6.5. The extra term gJSh m (z) has the advantage that the constants ¢! and r’
in Theorem |4.6.4)(iii) work for arbitrary Jg.

Remark 4.6.6. Let 0 < k < f. Assume that Theorem is true for |J| < k. Then by
Theorem (z’z’),(z’z’z’), forall|J|<k,i€Z/ and l € Z];O we have

14 0 _
Y- (g 1) TI+1i = Z ETHI+1,T g1 b5 (i) 47 +rI\T' —p° (4.57)
JsSCJICJ

Moreover, the LHS and each term of the summation in e H -eigenvectors with common

sh )
H -eigencharacter XJOégJ =i see the proof of Corollary below.

Example 4.6.7. Some examples for f =3 and J; = 0:
(8 (1)) LY, (i0,i1,i2) — H0,0L0,(pi1+p—1,pis+p—1,pio+p—1)3
(10) (1)) {1}, (Goyi1,i2) = H{1},{0} {0}, (pir+ro+1,piz+p—1,pio+p—2—r2)
+ H{1},0T0,(pir+ro,piz+p—1,pio+p—1)5
(8 (1)) LL1,2},(i0,01,i2) — —H{1,2},{0,1}%{0,1},(pi1,piz+r1+1,pio+p—2—72)
+ {12} {1} T{1},(pi1—1,pig+r1+1,pig+p—1)
+ H{1,2},{0}T{0}, (pir+ro+1,pia+r1,pio+p—2—r2)
+ 1{1,2},0T0,(piy+ro,piz+r1,pio+p—1)-

The proof of Theorem will occupy the current and the next sections.

Proof of Theorem[{.6.J. We define the elements x;; € 7 by increasing induction on |J| and on

sh

max; ij. For each J C J, we let z def X_(f_EJ )'UJ, which is defined in Proposition 4.4.2

Then for each ¢ < f, we define x;; def yi-iy J,f- By Proposition 4.4.2 for i < f we have

_(i_gJSh) TS Jsh
;= {OY vy dfize (4.58)

otherwise.
Then we let |J| = k for 0 < k < f and max;i; = m > f. Assume that z;; is defined for
|J| <k—1andallic Z/, and for |J| = k and max;i; < m — 1. We write ¢ = pd(¢') +c¢d -4
for the unique @/, ¢ € Z/ such that 0 < £ < p — 1. Then we claim that max; z; < max;i; = m.
Indeed, for each j we have

o= —c/+0)/p<(m=0+(p—1))/p<m/p+1<m, (4.59)
where the last inequality uses m > f > 1. Then we define x;; by the formula
def
EJHTH+1,JT J5 = Xﬁ (8 ?) Tyy14 — Z EJHTH1,TE g1 p\I' (4.60)

Jsng/;J

where each term on the RHS of (4.60) is defined by the induction hypothesis (hence a priori
(4.60) holds for all J C J and i € 71 such that max;i; > f).
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Lemma 4.6.8. Let 0 < k < f. Assume that Theorem is true for |J| < k—1. If
holds for |J| = k and i = f, then Theorem is true for |J| = k.

Proof. By 1) Theorem (ii) is true for all J C J and i < f. Then we let J C J such
that |.J| = k. We define ¢/ € Z/ by

p—1—f fjgJ, j+1¢J
C,Jdéf ri+1—f ifjed j+1¢J (4.61)

/ p—2-rj—f ifj¢J j+1elJ

p—f ifjed j+1eld

In particular, by 1D we have 0 < ¢/ < p—1, and by (4.61) and (4.53|) we have
f=ps("V) £ d - (4.62)
Since (4.60) holds for J as above and i = f by assumption, using (4.62) we have
1 J
ETHI+1,JT ], f = Y< (g (1)) T j41,eINI+1) — Z €J/ILLJ+17J/:L‘J/7]¢'+£J\J/. (4.63)
Jsngl;J B

For each i < f, we write i = pd (') + ¢/ — ¢ asin 1’ In particular, comparing with (4.62)
we have i/ < ¢/"/+1). By Lemma [4.3.1(i) and Theorem [4.6.4(ii) (applied with (J,i,k) there
replaced by (J +1,e/NUHY IN(I+L) _ 1”) and using e/"/+D < f) we deduce that

s 1 J
Y [V (39) g onirin] = V(D) s (464

Since Theorem [4.6.4(ii) is true for |J| < k — 1, by applying Y/~ to and using we
deduce that 1) is true for J as above and i < f, hence for all i € 71 by definition.

Then we use increasing induction on max; i; to prove that Theorem [4.6.4(ii) is true (for J
as above, which satisfies |J| = k). We already know that Theorem W(n) is true for i < f.
Then for each i € Z/ and k € Z’;O, if we write i — k = pd (i) + ¢’ — £ for the unique i", ¢ € Z/
such that 0 < ¢ < p — 1, then we have

k _ vk 14 0
Y e psp020:, =YY" | Y- (’5 1) Tj414 — Z ETHIT+1L,TE g1 4 d\J!
Jsng/;CéJ
4 0
=Y (’5 1) Tyy14" — E EJHIFLTT g1 oy d\J!
Jsng(%J

=EJHI+1,JT Ji—k,

where the first and the third equality follow from , and the second equality follows in a
similar way as using the induction hypothesis. This shows that Y&z ;; = x5, .

Finally, by taking ¢ such that £ = 0 in , we conclude that Theorem M(iii) is true
(for J as above). O

Assume that Theorem is true for |J| < k — 1. By Lemma |4.6.8} it suffices to prove
that (4.60) is true for |J| =k and i = f. For J C 7, we denote (see (4.61) for ')

def ' J 0 'J 0 _(IN(JH1))nss
2y =Y (BY) @y gy =Y (BY) (X € vjy1) €
def (4.65)
wy = Z SJ’HJ+1,J’1:J/7i+£J\J’ €.
Jsng/gJ
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Then by (4.63), it is equivalent to proving that for |J| = k we have

(f—e’™)

2y —wy = ey, = ey, Y "L vy (4.66)

Lemma 4.6.9. Let 0 < k < f. Assume that Theorem is true for |J| < k —1. Then for
|J| = k, we have zj,wy € Do(p).

Proof (i). First we prove that z; € Dy(p). Let @ def e (In(r+) Jy def JA(J — 1) and
o m(i,J + 1,J7) (see ) By Lemma m applied with (J,J') there replaced by
R . o 5. o . . .y .o
= §ic = ) 5.
(J +1,J), we have m; = 0jc;(—1)%¢#/ jes for all j € J. Then by Proposition M(u)
applied to (i,J + 1, J7), we have for all j' € J

dy_g 2+t T . —_

VoA | T YA 00 (20) (i) € 100 005) = {000 wp=) € Doy ()
J¢y

where the last inclusion follows from Corollary To prove that z; € Dy(p), it suffices to

show that for all j € J we have

> oy gy (2Z + tJ+1(J”) ) + 5J//

This is a consequence of Lemma m(lv) applied with J' = J and § = 0, and (4.62]).

(ii). Next we prove that wy € Dy(p). To do this, we prove by increasing induction on
|J'| that z , S\ € Dy(p) for each J' such that J* C J' C J (which implies (J')* = J*).

Let i & U +DNT _ o(F+DT — (4100 (usmg (J)S = J%), JJ = o J'A(J — 1) and

m m(i, J +1,JY) (see ) By Proposition 1i) applied to (i, J'+ 1, J}), we have for
all ' € J

[ ;. 4 Yy 1
Y-,JQ =0 H Yj213+tJ LT (g (1)) (X_lUJ’—H) c [(J(J,)Ss,gm)_ (4.67)

J
JEJy
By Lemma applied with (J, J') there replaced by (J'+ 1, J), we have m; = jEJ(—l)‘SjeJ’
for all j € J. Then a case-by-case examination using J% C J’ C J shows that m; — dje(grys
equals 0 if j € J; and equals d;c7(—1 )5J¢J’ if j ¢ J5. Hence by Corollary we deduce that
I(o(ys,0m) € Do (s (P)-
We let ¢ € Zf be as in Lemma (iv). On one hand, since X_%J/H =Ty (400 by

(4:58), multiplying (4.67) by a suitable power of Y and using Lemma [4.6.3|(iv) (with § = 0) we
deduce that

0 —
Ye(hy) T g4 (I +1)ng € Dy(p).
On the other hand, since |J’| < k—1 by assumption, by (4.57)) applied to J’ and using (J')* = J*
we have
0 _
V() @ prpretrnns = Y ESBIHLITE ju (p(e" + 00 ) e 2T\ )

JssCJ"CJ!

= ) eI (e
JssCJ"CJ! JH7(£ VTS )

= E EJRT 41, g g d\I'
JssCJnC. ! =
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where the second equality follows from the definition of ¢ and the last equality follows from
Lemma [4.6.3(ii). By the induction hypothesis, we have g papna” € Dy(p) for all J= C J" G

J'. Tt follows that x J

Farn\a' € Dy(p), which completes the proof. O

By Lemma and Lemma [4.7.10| below with a case-by-case examination, we have (see
(4.54]) for e7)

y /e

f (27 —wy)=0VjeJ;

sh
Yie" (z)—wy) = vy

Then (4.66) is a consequence of Lemma and Proposition This proves the existence
of the family {x;; : J C J,i € Zt }. Finally, the uniqueness is clear from the construction. This

completes the proof of Theorem [4.6.4] (assuming Lemma and Lemma 4.7.10)). O
Corollary 4.6.10. Let J C J and i € Z7. Then (assuming Theorem H acts on x;;

o (see for XJ)-

Proof. By Lemma and Lemma {4.6.3(1), for each J C J we have

(possibly zero) by the character x';a™t, where x/; def X ok

7"]
X7 = X(r,0)- (4.68)

We prove the result by increasing induction on |J| and max;i;. If ¢ < f, then the claim
follows from and Proposition Next we assume that max;i; > f and write i =
pd(i') + ¢! — £ for the unique i/, € Z/ such that 0 < £ < p — 1. In particular, we have
max; z; < max;i; (see . By the induction hypothesis and Lemma m(ii), H acts on
vt (g (1)) T j41, by the character

rd—r T _ps(i')+e i

/ —i'+e 1 —pS(i+L _ 1 ot =T —ps(+e o —
XJj+1¢% - ’—XJ+10‘p(’)*—XJ0< = XJg& - p(’)’—XJa )

where the second equality follows from (4.68) and the third equality follows from Lemma
4.6.3(iii). By the induction hypothesis, for each J' such that J* C J' G J, H acts on z ;,

I\
by the character
X{],Ofiff’w _ Xf]aiJfﬁJ —i—r/\ X{]Oéii,
where the first equality follows from (4.68)) and the second equality follows from Lemma ii).
Hence we deduce from 1) that H acts on x;; by the character Xf,ofi. O

4.7 Some vanishing results

In this section, we prove that certain elements in the projective systems {:U Ji:dJ CT, i€ zt }
are zero, see Lemma [£.7.1] Proposition [4.7.4 and Corollary We then use these vanishing

results to deduce Lemma and Lemma which finish the proof of Theorem

Lemma 4.7.1. Let 0 < k < f. Assume that Theorem is true for |J| < k. Let J C J
with |J| < k, jo € J and i € ZT. Suppose that jo & J, jo +1 ¢ J and ij, < 0. Then we have
(EL]&' =0.

Proof. We prove the result by increasing induction on |J| < k and on max;i; (the base case
being |.J| = —1, which is automatic). We let J C J such that |J| < k and i € Z/. If i < f, then
the lemma follows directly from 1} If max; i; > f, then we write i = pd (i) +c/*t1 —¢ for the
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unique ', ¢ € Zf such that 0 < ¢ < p — 1. In particular, we have max; z; < max; i (see (4.59)).
Since i, < 0 and eIt =p—1by 1) we have i;o 41 <0, hence by the induction hypothesis

Jo

on max; i; we deduce that 2 ;. » = 0. For each J' & J, by (4.52)) we have iy, —i—r;{)\‘]/ =i, <0,
hence by the induction hypothesis on |J| we deduce that z i = 0 for J ; J. Then by
(4.60) we conclude that x;; = 0. ]

To prove more vanishing results, we need some variants of [BHH'c, Lemma 3.4.2] and
[BHH ¢l Lemma 3.4.4] (where p was assumed to be semisimple). Since there could be overlaps
between different GL2(Of )-subrepresentations (GL2(Ok) (4 %)Y tv;) of m (see Proposition
, we need to be more precise about the region where the elements x;; vanish. This
motivates the following somewhat technical definition.

Definition 4.7.2. Let J C J.

(i) Let j € J and x € Z. We write x = 2n+ 0 withn € Z and 6 € {0,1}. Then we define
def

t}’(x) = np-+ 1) ((5j+1¢J(7“j + 1) + (5]‘_:,_167(}9 -1 rj)).
1) Letn € Z/. Suppose that there exists jo € such that
i) L zl. S hat th sts jo € J such th

(a‘) Njo+1 = 0;
(b) 1<n; <2f =bjes ifj#Jo+1,
then we define a”’ (n) € ZJ by
o’ (n); % t7 (njor1) =0 if j = jo and jo € J*

= tj(njﬂ) —n; otherwise.

Lemma 4.7.3. Let J C J, n € Zf and jo € J as in Definition (m) Let J' C J such that
jo+1¢ J\J'. Suppose that either jo & J* or J® U {jo + 1} C J', then we have (see §4.4 for
QJ\J’)

a’(n) + 1N = a? (n+e\).

Proof. Since jo+1 ¢ J\ J', we have (@-1—@‘]\‘]/)
we also have for j # jo + 1

jo+1 = Mo+l T djo+1es\s7 = 0. By definition,

1<nj <nj+djeny < (2f —djes) + djeny =2f — djer-

Hence QJI (ﬂ + QJ\J/) is well-defined.
First we suppose that jo ¢ J*". We need to prove that for each j € J we have

J\J’

t](nj1) —nj+75 " =t (njs1 + 41e00) — (05 + 0jens).

Since 7’;.7\]/ = djp1en\s (15 + 1) = dje g by (4.55), it suffices to show that for each j € J we
have

t(nje1) + 0 paen s (ry + 1) =t (i1 + 8 1en0). (4.69)
We fix j € J and write njy1 = 2n+§ with n € Z and § € {0,1}. If 6 = 0, then we have (as
ditienOjrier =0)

t7 (N1 + 0jrens) =m0+ Sjen (654140 (r; + 1) + 8j1e0(p — 1 = 15))
=np+ 0 1en\ (rj +1)
= t}](njﬂ) + 8 1ens(rj +1).
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If § = 1, then we have

t}'](njﬂ) + 6 pens(rj +1) =np+ 6115 +1) + dj11es(p — 1 —75) + djp1en s (rj + 1)
=np+ 10 (rj + 1) +6j11es(p — 1 —15);
t‘gjl (nja1+ 0j1ens) =np+8j41¢0(rj + 1) + 0jp1es(p— 1 — 1)
+0ip1ens (0j41¢0 (0 — 1 —715) + 84160 (rj + 1))
=np+01¢y(rj +1) +0jp1es(p—1—715) + 6 01en (P —1—71y)
=np+0j1¢5(r; +1) + dj11es(p — 1 —15).

Then it remains to show that a”(n);, + r‘-]\‘]/ =a’ @+QJ\J/ . when jy € J*h and Jss U

Jo jo jo
{jo+ 1} € J' C J. By assumption we have jo € (J')*", hence by definition we have a”(n);, =
a’ (n+ QJ\J/)J.O = 0. By assumption we also have jo,jo + 1 € J', hence jo,jo+1 ¢ J\ J' and

rj‘]o\‘]/ = 0 by (4.52)). This completes the proof. [

Proposition 4.7.4. Let 0 < k < f. Suppose that Theorem is true for |J| < k. Let
J C J with |J| < k. Letn € ZJ and jo € J be as in Definition (z'i). Then we have

LJal(n)—ejo1 =

Proof. If f =1, then we have a’(0) — 1 = —1, and the proposition follows directly from (4.58].
Hence in the rest of the proof we assume that f > 2, and we prove the result by increasing
induction on |J|. We let i € Z/ and J’ C J be the unique pair such that

nj = 2i; — 0jes1+ 0jg 5 + j—1er (4.70)
for all j € J. In particular, we have i < i since nj < 2f —djey forall j € J.

Claim 1. We let ¢ def

i — e+ Then we have for all jieJ
n; = 2i;» — 5j€(J+1)AJss + 5j¢Jnss + 5j—1EJ" (4.71)
Indeed, this follows from (4.70]) and the following computation:

- 2(sj€(J+1)sh - jE(JJrI)AJss + 5j¢Jnss
= —20jes+10jesss — (Gjesr1 + djers — 20jer110jes) + (8¢5 — djes)
= —0jej+1 + 6j§§]-

Claim 2: We let ¢ € Z/ such that (see (4.18)) for t/+1(J");)
¢j = pijp1 +c] — Gjep (285 + 7). (4.72)

If either jo ¢ J" or jo € J’, then we have

ci>al(n);—1 ifj=jo+1, jo+1€J andjo+1¢J
J ) (4.73)
c; > a’(n); otherwise.
Proof. Indeed, by (4.7)) and a case-by-case examination we have
27,; + tJJrl(J/)j =2ij+p—1-— (S;H_l + 26j€(J+1)sh) + (Sj_lejl (4.74)

=2i; + 5j¢J(P -1- Tj) + 5j€J(7"j +1) — 5jeJ+1 + 5j—1eJ’-
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If j € J’, then by definition and a case-by-case examination we have

tj (nj1) = 15 (2541 = Gjes + Ojags +1) = 15 (26511 + Gjgs + Ojags)

, (4.75)
=pijr1+ 0550 — 1 —71j) + j11¢s(r5 +1).
Combining (4.56), (4.74) and (4.75) we deduce that
¢j —al(n)j =nj = 8ig1 > —8i—jyr jos1¢Js
unless when j = jo and jo € J%, in which case we have c¢;, — a’(n);, = —0jo¢g = 0. If

j ¢ J', then by assumption we have either j # jo or jo ¢ J*. By definition and a case-by-case
examination we have

t}‘](”jJrl) = t}'](ziﬂl —bjes +011¢5) = Pijr1 — Sjes(rj + 1) + 641¢(r5 +1). (4.76)
Combining (4.56)), (4.70)), (4.74) and (4.76) we deduce that ¢; = a”(n);. O

Using the decomposition
J= (I (T +1)°) U (((J+DATS) U ™) U (J + 1), (4.77)

we separate the proof into the following four cases.

(a). Suppose that jo ¢ J and jo + 1 ¢ J (which implies jo ¢ J*"). Since njy+1 = 0 and
nj, > 0 by assumption (recall that f > 2), we have (a”(n) — ejo+1) —nj, —0 < 0. Then we
deduce from Lemma that @ 5,7 ()

jo
—€jo+1

(b). Suppose that jo + 1 € (J + 1)AJ* and jo + 1 ¢ J"5 (which implies jo ¢ J*"). Using
(4.71), we deduce from nj,1 = 0 that 4% ; = 0 and jo ¢ J', and deduce from i < f that
0<i'<f- e+D™ | By Proposition [4.5.5 applied to (¢,J +1,J") with jo as above, we have

5 2" +tTHL(J"); i
vt [ T1 Y 1 (X ten) =0 (4.78)
JgJ

P /
Multiplying (4.78) by onjﬁilg‘] when J’ # () and using (4.58)), we deduce that

Ly / 24 +tI (T
jot+1¢J J J pO0 L
Y I l Y; (0 1 ) Zjt1,4=0.
J¢J’

Then by (4.57)) we have (see (4.72]) for ¢)

E ENMT+1,, T J
) J \J1_§.
JSCHCI (et do+1ET g1

) =0 (4.79)

By we have ¢ > a’(n) — jor1eTN\I o+l = a’(n) — djo+1eJ'€jo+1. Moreover, for each
J1 € J such that J% C J; C J, we have jo +1 ¢ J \ Jy (since jo +1 ¢ J"), hence by
Lemma @ (recall that jo ¢ J) we have a”(n) + r/\/t = o/t (@ + g‘]\‘h). In particular,
multiplying @D by a suitable power of ¥ and using Theorem ii) (applied to Jj such
that J* C J; C J) we deduce that

Z SHPI+LIT gy 071 (nte?\ 1) —ejg 11 T
JCJCJ
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By the induction hypothesis, we have x; (nte/\1)—e; 11 = 0 for all J5 C J; ; J, hence we

J0

conclude that T Jal (n)—ejor1 —

(c). Suppose that jo + 1 € J". Using @ , we deduce from nj 41 = 0 that i;'o+1 =0,
and jo € J' if and only if jo+1 € J + 1. Then we deduce from and ¢ < f that
0<i < f— e+ By Proposition applied to (¢/,J +1,J') with jo as above, we have
(see the end of for g, «/ 1 )

355 24" +tTH1(J"); y
Jo&J J J p0 —1
Yot | | Y; (59) (Z ”JH)
i¢J’!
_ Kitie 3 Sigs H 20/ +4(7H V021 () 5

. Y.’ p0 X_i//v . -~ ’
F(I+1)\{jo+23} % Jo+1 ¢ J (0 1)( (J+D\{Jo })

where i < i' — 5, L1 peiora + Ojoracseiora and J” E JALjo +1}. As in (b), using (4.58),
([4.57) and jo + 1 ¢ J*, we deduce that

E ENHT+1,, T I\NJ
YT e\ =65 g reo 41
JSCILCJ ( Jjo¢J o )

= Z EJQIU«JJrl,szJQ’(§,+Z(J\{j0+1})\J276j0¢Jej0+1)a (4.80)
JsC I CI\{jo+1}

where c is defined in (4.72) and ¢; = pz;’fH - CJ\{JOH} 8¢ (2] + tHING0+2E (7)) with

g def i +§((J+1)\{j0+2})5h =4 +§(J+1)Sh

— Ojo+2eJ%€jp+2

o J+1)sh _
=1 +§( - jo+1eJ/ €jo+2 = L — 5jo+1eJ'€jo+2~

Claim 3: We have ¢/ = ¢ + rlio+1},

Proof. By (4 we have ¢; = ¢} for j # jo and j # jo + 1. If j = jo, then by (4.33) and (4.53)

we deduce that c - Cjy = c;]\{JOH} c‘-]0 =rj, + 1. If j = jo + 1, we assume that jo +2 € J,

the case jo +2 ¢ J being similar. Then by (4.33)) and (4.53)) we deduce that

o1 = Plijor2 = Gjorrgs) + (P — 2 = Tjor1) — Gjgrres (p — 1 — Tjot1)
= Pijo+2 = Ojot1¢7 (Tjo+1 + 1) = (Gjor1¢r — 1+ 0jgr1es)(p — 1 —7j41) — 1
= Pijot2 = Ojor1gs (Tjo+1 +1) =1 = cjo1 — 1.

The claim then follows from (4.52]). O

By Lemma (ii), for each Jo C J\ {jo+ 1} we have p{0+1} 4 p(Mio+ 1DV — ¢\ 2 hence
the RHS of cancels with the terms in the LHS of for the Jj such that jo +1 ¢ J.
Since jo+1 € J, and jo € J' whenever jo € J**, by (4.73) we have ¢ > a”(n). Moreover, for each
J1 C J such that J¥U{jo+1} C J1 C J, by Lemmawe have QJ(Q)—i—ﬁJ\Jl =ah (@—i—g‘]\‘h).
Then multiplying by a suitable power of Y and using Theorem m(u) we deduce that

Z ERPTHALAT Jy 091 (nhe\ I )—ejp 41 = O
J=ULjo+ 1} CT
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By the induction hypothesis, we have z; .7, (1 en\)  =0forall J*U {jo+1} C N & J,

—€jo+
hence we conclude that x Jat (n)—ejo11 =
(d). Suppose that jo +1 € (J + 1)*". By 1} we have i;'0+1 = —1 and jg € J', hence

xj41, = 0 by (4.58)). Then by (4.57)), we have

_ 0 R
0=(B9)2rs1i= Y ERMITLAT ), pisio) e 1o\ (4.81)
FeCHCT

By (4.73) we have pi(i) + ¢/ > ¢ > a’(n) — ejo+1. Moreover, for each J; C J such that
J% C Jy C J, by assumption we have jo + 1 € (J + 1)*" C J% C J;. Then as in (c), we deduce

from (4.81]), Lemma and Theorem [4.6.4(ii) that

Z CLHIHLNT 671 (n+e?\ 1) —ejo 11
JC I CJ

By the induction hypothesis, we have x; (el \ 1) —ej 11 = 0 for all J5 C J; ;Cé J, hence we
= - = 0

conclude that T 1) (n)—ejg i1 = 0. 0

Example 4.7.5. Some examples for f =3, J; =0 and J = {0,1}:

g (~1r1,p—2-12) = TI(~1p—1p—3-r2) = LI (=21 p-1) = Ty (~2p-1,p-2) = 0;
L J(p—2—r0,—1,p—2—12) — LJ,(p—3—7r0,—1,p—1) = LJ(p—1,-2,p—2—13) = LJ,(p—2,—2,p—1) — 07

TJ (p—2—r0,r1,—1) = LI (p—1,r1—1,-1) = L (p—2—ro,p—1,—-2) = LJ,(p—1,p—2,—2) = 0.

Corollary 4.7.6. Let 0 < k < f. Suppose that Theorem is true for |J| < k —1. Let
J,JC T with |J| <k and J®* CJ G JCJ. Let jo € J such that jo+1¢ J\ J'. Then we

have x|, (

=0.
, KJ\J,+£_(f+1_5jOEJSh)ej0)

Proof. If f =1, then the assumption is never satisfied. Hence in the rest of the proof we assume
that f > 2. We let n € Z7 such that Njo+1 = 0, njo =1+, and n; = 2 for j # jo, jo + 1.
In particular, n satisfies the conditions in Definition [4.7.2[(ii) for J’ and jo. Since |J'| <k —1
by assumption, we deduce from Proposition lﬂ' applied to J' and jo that x Ja" (n)

Then the result follows Theorem [4.6.4(ii) (applied to J') and the Claim below.

—€jp+1

Claim. We have
a’ (n) — ejor1 >N + J—(f+1=6jcmn)ej.

Proof. If either j # jo,jo — 1, or j = jo — 1 and jo € J \ J’, then we have nj;; = 2. Hence
J’ J’
a’ (n); = Oj=jo+1 =15 (2) = nj — dj=jo+1
>p-2-1>(p-2-2f)+f>2r+1+f>r]" +f,

where the third inequality follows from (4.2)) and the last inequality follows from (4.52)).

If j =jo—1and jo ¢ J\J, then we have nj, =1, and erO\JI <0 by (4.52)). Hence
a” (1) jo—1 = Gjo—1=jor1 =t _1(1) = njo—1 — 8jo—1=;
L)jo—1 Jjo—1=jo+1 Jo—1 jo—1 Jjo—1=jo+1

> (8jogr (Tjo—1 +1) + jperr(p — 1 = 1jp—1)) =2 -1

>@2f+2)-32f =l 4 f,
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where the second inequality follows from (4.2)).
Finally, we let j = jo. Since jo+1 ¢ J\ J, by (4.52) we have ]\ = —&; c j\yr. It jo ¢ J*,
then we have (using nj,4+1 = 0)

/ / J\J'
a’ (n)jo — Ojo=jo+1 = t}']o (0) = njy = —nj, = _5jo€J\J/ 1= rjo\ +f=(f+1).

!

If jo € J, then J* C J* C J implies jo € J', hence jo ¢ J \ J', which implies 7" = 0.
Then we have
! (n)jo — Gjo=jo+1 =0 = TJO + f—=17

which completes the proof. ]

a

Then we list some consequences of Lemma and Corollary In particular, we prove
Lemma and Lemma [£.7.10 which finish the proof of Theorem The following lemma,
will be needed in the proof of Lemma [£.7.8 and Lemma

Lemma 4.7.7. Let J,J' C J such that J*U (0J)** G J' C J (see Remark|4.5.12 for 0.J) and
JS £ J. Then we have

J! Jgsh_ g/
¢’ +(p-1e’ —r p0 .
Y (0 1 ) L jrg1,e(rsh41) = 0. (4.82)

Proof. Our assumption implies f > 2. By Lemma ( ), the LHS of (4.82]) is well-defined
(since ¢/ > 0) and it suffices to show that

1—
H Y/ (B @ i = 0. (4.83)

We let § % ¢/ +1 _ (D™ 154 # 0, then by (4.58) we have i grehn = 0, which proves

. From now on we assume that 4 > 0, which implies (J’ 4 1)" C J%® + 1. Then we claim
that

(J)"n (J* —1) =0. (4.84)

Otherwise, there exists j; € (J')"* such that j; +1 € J* = (J')*, which implies j;1 + 1 €
(J' 4 1)h C gt 4 1. Hence j; € J*%, which is a contradiction since j; ¢ J5.

Since J"® #£ J by assumption, we divide J™° into a disjoint union of intervals not adjacent
to each other. Since (9.J)"* G (J')™* C J"*° by assumption, we choose an interval I as above
such that (J'\ 8J)* NI # () and denote by jg the right boundary of I. Since jg +1¢ J by
construction, we have either jo+ 1 € J% = (J')*, which implies jo ¢ J' by (4.84), or jo+1 ¢ J,
which implies jo € (9J)™° C J'. In particular, in both cases we have jj §é (J’ \ 0J)™% and
Jo+1le(J +1)A(J)>.

(a). First we suppose that jo + 1 ¢ J, which implies jo € (9J)* C J. We let 1 <
w < f —1 be minimal such that jo —w € (J'\ 9J)™°. By the construction of I we have
Jo—w,jo—w+1,....50 € J®™ and jo—w+1,...,50—1 ¢ J. Then by (4.7) we have if w > 2

p—2—r; ifj=jo

s/ =<, ifj=jo—w+2,...,50—1 (and w > 3) (4.85)
Tj—l—l ifj:jo—w—i-l,
ands‘]H—p—l—rjo it w=1.
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Then we let J” % J\{jo—w+1,...,j0}. Foreach j=jo—w+1,...,j0+ 1 we have
j — 1 & J; by construction, hence j ¢ J" 4+ 1, which implies i; < 0 and hence i; = 0 (since
i >0). Then by (4.18) and (4.85)) we have

2ij + 7T (J"); =p—1— s/ + 6 1em
41 if § = jo
p—1—r; ifj=jo—w+1,...,50—1 (and w > 2).
By Proposition applied to (i, J" + 1, J") with jy as above and using (4.58)), we have

Jo—1

rjot+1 p—1—r; p 0 o
on H YJ (0 1) IJ/+1,§<JSh+1) =0.
Jj=jo—w+1

Since jo—w+1,...,j0—1 € J\J', to prove 1' it is enough to show that 63-10 +(p—1)d;,eym >
j, + 1, which follows from (4.53)) since jo € J and jo + 1 ¢ J.

(b). Then we suppose that jo+ 1 € J% = (J')*, which implies jo ¢ J'. We use the same

definition of w, J” as in (a). In particular, we still have jo — w,jo —w + 1,...,j0 € J™ and
jo—w+1,...,50—1¢ J. Then by (4.7) and (4.18]) we have

SJI+1: T] ifj:jo_w+2,...7jo

J ri+1l ifj=jo—w+1

and 2i; + tJ/H(J”)j =p—1—r;forj=jo—w+1,...,j. By Proposition applied to
(i, J'+1,J") with jo as above and using (4.58)), we have

Jo
p—1-r; p0 _
H Y; (0 1) L grg1,e(sh41) = 0.
Jj=jo—w+1

Since jo —w +1,...,jo € J \ J', this completes the proof of (4.83]). O

The following lemma gives some examples of elements in the projective systems defined in
Theorem and will be needed in the proof of Lemma

Lemma 4.7.8. Let 0 < k < f. Suppose that Theorem is true for |J| < k — 1. Let
J,J' C T such that |J| <k and J* C J' g J.

(i) If J™° #£ J, then we have (see the end of for s g/ s, g)

O, Zf J/ ;é JSS 1 (8J)nss
EJ/SCJ,,zJ\J/_i_ngh = (—1)|(J,\8J)HSS‘5*7’JJ,UJ’ Zf J’ 2 JSS (&])HSS.

(i) If J" =T (i.e.(J,J5) = (T,0), which implies k = f) and J' # 0, then we have

(_1)\J’|+1 Hox,J V).

EJT g1 a\J =
Jr Hox g7

Proof. (i). We let J™* # J and separate the following cases:
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(a). Suppose that J' 2 J* U (8J)™5. Since J' D J*, we have J 2 9J. Then we let
jo € 0J (ie.jo € J and jo+ 1 ¢ J) and jo ¢ J'. This implies jo € J\ J and jo+1¢ J\ J',

hence rj‘]o\‘] = —1 by (4.52)). We also have jo ¢ J*". Then we deduce from Lemma |4.7.1 that

xJ,,rJ\JlJrerh - 0

(b). Suppose that J*LI(9.J)** C J' S J. We use increasing induction on | J" \ (J* L (0.J)™*)
which equals [(J'\ 0J)"5|.

First we assume that J' = J% U (0J)™°. By Proposition |4.5.11| applied to (J' 4+ 1,J), we
have

)

s! _ (I 1)ng)nss
Wyr41,70 = H Y;? H Yy e <X € UJ’+1)
e i
IS gk (4.86)
s IR P
= H Yy H Yjp (57) Zss1ens
| 7€Jo Ji¢Jo

where the second equality follows from (4.58]) and

Jo & (S +DAT) = 1= JAWJ = 1) = (JU@T)")A((J — 1)® U (J — 1)™)

= (JAW =) U ((0N)AJ —1)™ = (JAWJ —1)Tu (Ju(J —1))™
T (1) 0T+ 1 = () 0 U (1) 0 ()
=((J+)nI*)u((J+)nJ®) =T +1)nJ=(J'n(J-1)) +1

Wewrite§€ZfWithsjd§fstifjng andsjdéfp—lifjgéJo.

Claim. We have
pet 4 ¢ — s =\ T (4.87)

Proof. Fix j € J. We assume that j € Jj, the case j ¢ J; being similar. In particular, we have
j € J'if and only if j € J, which implies

Pjen—1— djegn = (P — 1)8jein(—1)- (4.88)

Since j € J' if and only if j € J, and j € Jp if and only if j € JA(J — 1), by (4.52), (4.53) and
(4.7) with a case-by-case examination we have
J\J'
Tj\ = djr1ens(rj +1);

4

¢ = 8¢5 (0 —2=15) + 8jpagp(rj +1) = Gjgs(0 = 2 = 1j) + 85 1g5(rj + 1); (4.89)
sj=0;g7(p—2—7j) +041¢s(r; + 1)+ (p — 1)djcin—1)-

Combining (4.88) and (4.89) we get (4.87). O

By (4.57) applied to J’ + 1 and using (J)* = J*, we deduce from (4.86|) that

K41,V = Z 6J~MJ/+1,J~33J,,(

pelt=1ted 4rI N —s)
JSS C Jl/ C Jl

— E EJ”,U’J’-FI,J"xJn (TJ\‘],+T‘7,\‘7//+€JSh)
JssCJrcy’ T\ - N
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= E EJ///LJ/+1,J//JJJ,,7TJ\J//+erh y
JssCJ"CJ! - -

where the second equality follows from (4.87) and the last equality follows from Lemma[4.6.3(ii).
We know from (a) that x ,, s, o =0for J*= CJ " J', hence we conclude that

I I LT T g1 \g! g gash = HJ' 41,0V 5

which proves (i) when J' = J% U (0.J)".

Next we assume that J% U (9J)"* & J' G J. By Lemma (4.57) applied to J' + 1 and
using (J')% = J%, we have

g’ 1 Jsh_ J\J/ 0

0 = XQ +(p )Q r (g 1) xJ,Jrl,g(JSthl)

= > SIHTHLITE jur (perst 10 1IN — (o 4 (p=1)e " I\ ) )
JssCJC.J!

= E 5J”/~LJ’+1,J”xJ//7TJ\J”+eJSh7
JsSC J"CJ! - -

where the last equality follows from Lemma W(u) We know from (a) that  , s~
for J” 2 J*= U (8J)™", hence we have

n=20

+e’*

Z EJLT 1,0 T g1 I\ 4 gash = 0. (4.90)
Jssu(aj)nsng//gJ/

By the induction hypothesis, we have for J* L (0J)" C J" & J'

(=)l Bed (4.91)

EJNIT 4, J\J" Jsh =
J!" +e M*,JN

Moreover, if we denote m &f |(J'\ 0J)"%5|, then (by the definition of i, j/ps j») we have

Z (_1)|(J”\6J)HSS‘MMJ’+1 g = Z (_1)\(]”\8])nss| Wt
Jssu(aJ)nsnglng/ Fo, J1" _(Jll\a])nssg(J/\aJ)nss

fm—1
ifm m
=21 <l>] st = (=0 i

=0

(4.92)
Combining (4.90)), (4.91) and (4.92)), we conclude that

! nss lU/*’J
(=1)I7"\07) 'ﬁ”J

EJ/xJ,er\J/Jrerh == 5
which proves (i).

(ii). Let (J,J5) = (J,0) and 0 # J' # J, which implies J** = (J')* = (. We prove the
result by increasing induction on |J'|. By Proposition 4.5.13| applied to J’ + 1, we have

p—1-7; 0
Ky 41,7VT + By 41,0T0,r = H Yj ’ (8 1) VJjr+1
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= EJ”:U’J/-i-l J//x J/Jrl J/\J//
E J 5. —1—r
JnCg ( o igJ! (® Tj))j

= E €J”MJ’+1,J”"L‘J//’(QJ+KJ\J’+£J’\J”)
JICJ!

= > eI
JNCJ! B

where the second equality follows from 7) applied to J' + 1 and = he third equality

Q
follows from Lemma.6.3{(v), and the last equahty uses Lemma ( i) and ¢ 0 (see (4.53))).
4.52

Since r = 7 by (4.52)), we deduce that

BILgvg = Y EJULI I g (4.93)
0£J"CJ!

By the induction hypothesis, we have for §) # J" G J'

7" 1% R
e g pnan = (=)L (4.94)
= Hos g

Moreover, we have (by the definition of 7/ pts )

Z (-1 )IJ//H-IN JMJ’-H = — Z (_1)|J1/| ity
®7£J//gjl Hos, gt _@#J”;Jl
[17]1-1 ‘ |J’| /
- Z (_1)z< i > pyrg = (1+ (-1l l)NJ’+1,J~
i=1

] (4.95)

Combining (4.93)),(4.94) and (4.95)), we conclude that
J'|+1 BT
EJ’$J/7£J\J’ = (_1)| |+ MTJ/,U

which proves (ii). O

The following two lemmas complete the proof of Theorem [4.6.4

Lemma 4.7.9. Let 0 < k < f. Suppose that Theorem is true for |J| < k —1. Then for
|J| <k, we have (see forwy)

E g1 1L , of 1 +1 c Jnss
jJ;+1 6JO€JSth _ JSSQJ’QZJ\{jO-;-l} JHI+1,T Jl,(z.l\J +f—(f+1— 5]0€th)e]0) f Jo
0 if jo+1 & J
) 0 Zf Jnss — (aJ)nss
Xf—QJ wy = (_1)‘(J\BJ)HSSHl,LLJ_._LJ’UJ if Jnss 7& (6J>n55 and JPsS ?é J

(L4 (=D)H pygvs + prozg, if J™5=J7.

Proof. (i). We prove the first equality. By definition and Theorem [4.6.4(ii) (applied to J’ such
that J* C J' S J, which implies |J'| <k — 1), we have

Yf+1 6J0€J5hw o

= E 7/ 1 .
Jo J Z J T+, J/’(EJ\J/Jri,(erlféj E‘]Sh)ejo)
JSSQJ’;J 0
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By Corollary |4.7.6, we have T, ( ) =0ifJ*CJ CJand jo+1¢ J\J.

EJ\J’+i_(f+1—§jOEJsh)€jO

Then we easily conclude.

(ii). We prove the second equality. First we suppose that J"° ## 7. Then by Theorem
[4.6.4(ii) (applied to J' such that J** C J' G J) and Lemma [4.7.§[i) we have

Yite w; = Z EJIIHLIE g1 i\ o st = Z (—1)I(TNI) [g41,00)
Jsng/;J Jssu(aJ)nsng/gJ
_ 0 if JBss — (aJ)nss
(_1)|(J\8J)nss|+1/,bj+17jvj if Joss £ (8J>HSS,

where the last equality follows as in (4.92]). Next we suppose that J" = 7, or equivalently
(J, J5) = (J,0), which implies J* = J*! = () and J+1 = J. Then by Theorem 4.6.4(ii) (applied
to J' # J) and Lemma [£.7.§](ii) we have

J/
Yiwg = Z EJIT,JE g1 p\a' = W7 0T0,r + Z (DY g gvg
JET 0£J£T

= (1+ (D )uggvs +ngpzo,,
where the last equality follows as in (4.95). O

Lemma 4.7.10. Let 0 < k < f. Suppose that Theorem is true for |J| < k—1. Then for
|J| <k, we have

e T , if jo+1eJ"
ijgﬂ_%”h 2y = Jssg/g\{joﬂ} TITELTE 31 (V4 f~(F41-6 o )eso) /70
0 if jo+1 ¢ J%
i [LJ+1,JV.], if JU = (9J)"®
XiféJ 2y = 0’ Zf Jmss 7& (aj)nss and Jrss 75 J

pg, vy + pyexey, of J©=J7,

where zj is defined in .
Proof. (i) We prove the first equality. We recall from (4.65) that

Y p0 e PO _Q(JM(JJrl))nss
z) =Y (0 1) Tjp1,eno+n =Y (0 1) \

v J+1) . (4.96)
Using the decomposition (4.77)), we separate the proof into the following five cases.

(a). Suppose that jo ¢ J and jo+1 ¢ J, which implies jo ¢ J*". Since jo+1 ¢ (Jﬂ(J+1))nSS,
by Lemma [4.3.1](i) applied to jo and Proposition we have

}/f; (107(1)) (X_E(JO(J+1))HSSUJ+1) _o. (497)

Since c;‘g =p—1—fby () we deduce from (]4.96[) and (]4.97[) that Yj];HzJ =0.
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(b). Suppose that jo + 1 € (J + 1), which implies jo + 1 ¢ (J N (J 4+ 1)), In particular,
the equality l’ still holds as in (a). Since c% =p—f by l’ we deduce from 1) and

TT°6.
4.97) that Y, <" z5 =0,

(c). Suppose that jo +1 € (J + 1)AJ* and jo + 1 ¢ J™°, which implies f > 2 and
jo € JA(J —1). In particular, we have jo ¢ J*. By (4.7) we have

rit 8 1es) — 0 ifj ¢ J
551 = 20je(an(+nym = b + Sim1e) o
(p —1- T’j — j*1¢J — 26j€(]+1)ss) — 25j€(]+1)nss if ¥ € J
_ it di—1eIA(I-1) ifj¢J
p—3—Tj+5j,1€JA(J,1) lf] e J.

We let § 2 e(INI+D))"™ apq g7 &< (JA(J = 1)) \ {jo}- In particular, we have iy = 0. Then
by (4.18), for j # jo we have

8j¢0m (215 + 7)) = iga7 (20e(an(+iyms +p—1— SEHl +ormer)
p—1-rj=0j=jr1 Hj¢J j+1¢J
= Q7+ 2— 0j—jot1 ifjed jrleld

0 otherwise,

(4.98)

and 2ij, +t7TH(J");, equals p—1—1; if jo & J (which implies jo 41 € J), and equals r; + 2 if
jo € J (which implies jo+1 ¢ J). In particular, by (4.61) we have 2i;, +t/+1(J");, = f+1+c’.
By Proposition applied to (i, J + 1, J") with jo as above, taking j' = jo + 1 in (4.20)
(s "
when J” = () and multiplying Y]O‘L_f * when jo + 1 ¢ J', we deduce that

fH14c 1, 19 »
on 3o H Yjp rj H YjT] (g (1)) (X LU.]Jrl) =0. (4.99)
JgJi+1¢J jedj+1ed

Comparing (14.96[) and 44.99[), to prove YjJSHZJ = 0, it is enough to show that

—1—r; ifjed j+1¢J

A P ifjed j+1lel,
which follows directly from (4.61)) and (4.2)).

(d). Suppose that jo ¢ J and jo + 1 € J™°, which implies f > 2 and jo € JA(J —1). In
particular, we have jo ¢ J5". We let § % N+ ang g7 (JA(J-1))\{jo}. In particular,
we have ij,11 = 0. As in (c), the equality (4.98) still holds and we have 2ij, + t/T1(J");, =

f+1+ c%. We denote

def p—1—r; r;+2
29 I vt I vrterm
j+1éJ,j+2¢J j+led,j+2ed

Then by Proposition applied to (i, J + 1, J") with jy as above, using (4.33)) and together
with Lemma [4.3.1]i) applied to jo + 1 if moreover jo + 1 ¢ J”, we have
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' J i
Vi, 2 (59) (o)

HJ+1,% p—1—r; fH14c »
= my;'o-ﬂ Jo+1 [Y}O—H}/jo JOZ:| (g (1]) (X - T)(J+1)\{j0+2}) , (4.101)
0 ok

where 7’ déf;’—i— 0jo+2es5€jo+2. Then using (4.100) together with c;fgﬂ > 1 by (4.61)) and 1}
we deduce from (4.96]) and (4.101)) that

i S HJ+1,x 1l P—1=Tjgr1 /7 0 o
Yio ZJ—W[on Vo O (89) (Y o) - (4102)
0 )k

Since we have
i+ Q((J+1)\{jo+2})5h — i+ Q(JH)Sh — gJﬁ(JJrl)

)

by (4.58) we have Y L v 14 1)\ (jo42} = T(s11)\(jo+2}. 0 +0 - Then by (4.57) applied to J\{jo+1}
and i = /"D and using jo + 1 ¢ J*5, we deduce from (4.102) that

1 HJ+1,x
YJ'J;JF A= Z H(T+D)\{jo+2}, 0 LT e(J') | = Z HJ4+1,J' T 37 e(J7)
HOFING0H2b | jesc S\ (io+1) TS CI'CI\{Go+1}

with ¢(J') € Zf such that

o(J); = Poj+iesn(+1) + C}']\{jOH} + T]('J\{jOH})\J - C;‘J — (P =1 =7jo41)dj=jot1 — (f +1)d=y

— N L NGV T (1 )6+ f = (F 4 Doy

= TJ(»J\{jOJrl})\JI + T}jOJrl} +f=(f+ 1)5j:jo

=N = (f + D=,

where the second equality follows from (4.62)), the third equality follows from Lemma v)
applied to J' = J\ {jo + 1}, and the last equality follows from Lemma m(u) This proves
the desired formula.

(e). Suppose that jo € J and jo+ 1 € J™5. We let i def (I \fo+1} | I particular,
we have ij,41 = 0. Then by Proposition applied to (¢, J + 1, J) with jo as above together
with (4.33)), we have

i P41, ~1-r, i
(51) (Y o) = miﬂiﬁ T (E) (X *“(J+1)\{jo+2}> ) (4.103)

where ¢/ défz—i— 0jo+2eJ5€j+2. Since c;‘g =p— f by (4.61), we deduce from (4.96) that

f+1-6. sh 1J _ _ ) .
Jo€J _ c +(f+1 d. Jsh p)e]() p 0 -
Y =Y (67) X *vr4)

I g -~ N y
B WH.’* [Y'p | oty €T e p)%} (51) (X_l U(J+1)\{jo+2})
K (I+1)\{jo+2},*

HJ+1 % FH1=6, Cysh p—1—rj 41 ,J} 0 .
= 7 |y 0 y! dotlyc p (Y i ' ) 7
F(J+1)\{jo+2} { 70 Jo+1 (0 1) (J+D\{jo+2}

where the first and the third equalities follow from Lemma M(l) applied to jg, the second
equality follows from (4.103)), and 7" def i + ejy4+1 is the same as the ¢’ in (4.102) by definition.
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Then the rest of the proof is completely analogous to the one of (d), replacing f+1 by f+1—
5 ; sh .
Jjo€J

(ii). We prove the second equality. By (4.96]) we have

sh sh
f—e’ _yf-el+7 (po
Y= 1 =21= (0 1) T y41,eIN(I+D)
_ vl (p-1)e™ 0 e(JN(J+1))255 41
=y temen (59 (v T g1 004D (4.104)
_ vyl -1’ (po
=Y (0 7) L 41 esh+1)) (4.105)

where the second equality follows from and Lemma M(l), and the last equality follows
from and the equality (J N (J+1))\ ((JN(J=1))"5+1) = J5h +1.

Suppose that J™* = (9J)™S, or equivalently (J Nn(J— 1))nss = (). Then using and
, a case-by-case examination shows that

ah 7 if j € JA(J —1
¢t p-net =1 IEIA Y
p—1 ifj¢ JA(J—1).

—e(IN(IH1))"°

vj11 by (4.58]). Then by Proposition |4.5.11f applied

We also have z ;. ,snp+1) =Y

sh
to (J +1,J), we deduce from (4.104) that Xifgj 2y = [j41,JV].
Suppose that J™° # (9J)™ and J™° # 7, which implies J*U(9J)"® & J. Then by Lemma
sh
4.7.7 applied to (J,J) and using 7’ = 0 by (4.52), we deduce from (4.105) that yi—<" ., =o.
Suppose that J™° = 7, or equivalently (J,J5) = (J,0), which implies J +1 = J and
J®® = ). Then by Proposition 4.5.13| applied to J and using ¢/ = 0 by (4.53), we deduce from

sh
4.105|) that Xf_g] 2] = Qg Juj + kT -

4.8 The finiteness condition

In this section, we prove the crucial finiteness condition for the family of elements (x;);
of Theorem to give rise to a basis of D (). The main result is Theorem [4.8.5]
The following lemma will be crucial for the induction arguments in Proposition [4.8.2] and

Proposition [£.8:4]
Lemma 4.8.1. Let J C J andi € Z/. Suppose that zy; = 0 for all |J'| < |J|. Then we have
Z 1.po(i)+e’ = 0-
Proof. We use increasing induction on |J|. By Theorem W(iii) we have
0=(§D)Tusri= D ElmIrLITp et 1\
JsSCJ/ICJ
By the induction hypothesis, for all J’ ; J we have x j, po(i)+el = 0. Since ¢/ > ¢/ + r/\/'

by Lemma4.6.3(v), we deduce from Theorem W(u) that @5, 5oy = 0 for all J G
Hence we conclude that z 547 = 0. O

Proposition 4.8.2. Leti € Z/ satisfying
) Jill < 7

(ii) i; < =1 for some j € J.
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Then we have x5; =0 for all J C J.

Proof. If f = 1, then we conclude using (4.58)). From now on we assume that f > 2. We use
increasing induction on max; i;. If i < f, then the lemma follows from (4.58). Then we assume
that max;i; > f and let Jy C J. We write i = pd(7) + ¢’ — ¢ for the unique #/,¢ € Z such
that 0 < £ < p — 1. In particular, we have max; 23 < max;i; (see ) Since ¢’0 > 0 by
(4.53]), we also have

111 = (Il = Nl +11ll) /p < (f =0+ (p = 1) f)/p = f.

Suppose that z; < 0 for some j. Then by the induction hypothesis, we have z ;;; = 0 for all
J C J (in particular, for all |J| < |Jo|). Since pé(i') + ¢’® > i, we deduce from Lemma m
and Theorem [4.6.4[(ii) that x,; = 0.

Suppose that z; > 0 for all j, which implies i; > —(p—1) for all j. Since ||i|| < f, we deduce
that i; < (f —1)(p — 1) + f for all j. We write minji; = —m/ with 1 < m/ < p —1 and fix
Jo € J such that ij, = —m/. Then we let n € 7 with Njo+1 = 0, nj = m’ for j # jo + 1 if
1<m/<2f—-2,andnj =2f—1forj#jo+1if 2f —1 <m/ < p—1. In particular, n satisfies
the conditions in Definition ii) for Jy and jy. By Proposition applied to Jy and jg we
have z; , = 0. Then the result follows from Theorem W(u) and the Claim below.

J0(n)—ejo+1

Claim. We have a”(n) — ej,+1 > i.

Proof. We assume that 1 < m’ < 2f — 2, the case 2f — 1 < m/ < p — 1 being similar. Since
li|| < f and i; > —m/ for all j, we deduce that i; < (f —1)m’ + f for all j. Hence it suffices to

show that
a’o(n)j, = —m’
a’(n)j — dj=jo1 > (f = D)m’ + fif j # jo.
By Definition (ii), we have a”0(n);, = 0> —m' if jo € J§&, and a”°(n);, = tj(?(O)—njO =
—m/ (since nj 41 = 0) if jo & J§2. For j # jo, by definition we have
a®(n)j = Sj=jor1 = t1°(m') = nj — 8jzjor
= pIm/ /2] + Oopns (0412 (rj + 1) + Sj11e5(p — 1 —15)) — (0 + Gj—jo+1)
> (4f +4)[m' /2] + g (2f +2) — 1
=@2f+2)m' —1=fm' + fm' +2m —1)> (f —1)m’ + f,
where the first inequality uses (4.2) and p > 4f + 4, and the last inequality uses m’ > 1. Here

for z € R, we denote by [x] the largest integer which is smaller than or equal to x. This proves
the claim. O

Corollary 4.8.3. Let J C J, i € ZJ and k € ZL,.

G) If ||E| > ||| — |J*"], then we have Xﬁxﬁ =0.
(ii) If |k|| = ||i|| — | 7| and YEx;; # 0, then we have k —i—e'".

Proof. By Theorem [4.6.4{ii) we have XEZE(}&‘ = x4 with £ def i — k. In both cases, we have
4| < f since |JP| < f. If £ > 0, then we have £ < f, and the result follows from 1) If
£ # 0, then the result follows from Proposition m O

Proposition 4.8.4. Let m € Z>p and i € 7t satisfying
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@) el <p™+f—1;
(ii) i; < —p™ for some j € J.

Then we have x5; =0 for all J C J.

Proof. We prove the result by increasing induction on m. For m = 0, this is exactly Proposition
Then we let m > 1 and fix J C J. We write i = pd(i') 4+ ¢’ — £ for the unique i, ¢ € Z1
such that 0 < /£ < p—1 and fix jo € J such that i;, < —p™. Since ¢/ >0 by 1) we have

1= (el = "+ 1ell) /o < (@™ + F = 1) =0+ (e =) f) /p=p"""+ [ — 1/p,

which implies ||#']| < p™~ !+ f — 1. We also have

Gyer = (G50 = ™+ 430) [P < (=™ =04+ (0= 1) /p = =™ + (0 = 1)/p,
which implies 7 ,; < —p™~!. By the induction hypothesis, we have x5 ; = 0 for all J' C J.
Since pd(i') + ¢’ > i, we conclude from Lemma and Theorem |4.6.4{ii) that x;; =0. [

Theorem 4.8.5 (Finiteness condition). For J C J and M € Z, the set {i € 75y #0,i) = M}
is finite.

Proof. We choose m large enough such that p™ + f —1 > M. If ¢;, < —p™ for some jg, then
by Proposition [f.8.4] we have x;; = 0. Otherwise, we have i; > —p™ for all j. Together with
the restriction ||i|] = M, this set is finite. O

4.9 An explicit basis of Homy(D4(7), A)

In this section, we construct an explicit basis of Hom (D (7), A). In particular, we prove
that D4 (m) has rank 2/, see Theorem :4.9.5

First we recall the definition of the ring A and the A-module Dy4(w). We let my, be the
maximal ideal of F[Np]. Then we have F[No] = F[Yy,...,Y;_1] and my, = (Yo,...,Yr—1).

def T~ 7

Consider the multiplicative subset S e {(Yo---Yj_1)" :n >0} of F[No]. Then A = F[Ny]s
is the completion of the localization F[Ny]s with respect to the my,-adic filtration

1 kf—
F, (F[No]s) = U mmj\{) "
o (Yo Yy

where my o F[No] if m < 0. We denote by F,A (n € Z) the induced filtration on A and

endow A with the associated topology ([LvO96, §1.3]). There is an F-linear action of Oj
on F[Ny] given by multiplication on Ny = Ok, and an F-linear Frobenius ¢ on F[Ny] given
by multiplication by p on Ny =2 Og. They extend canonically by continuity to commuting
continuous F-linear actions of ¢ and Oy on A which satisfies (for each j € )

o(Y;) = Yﬂh

: y (4.106)
[a](Yj) =a” Y Va e F;.

We let 7V be the F-linear dual of 7, which is a finitely generated F[I; ]-module and is endowed
with the my,-adic topology, where my, is the maximal ideal of F[I;]. We define D4(7) to be the
completion of F[Ny]s QF[No] 7" with respect to the tensor product topology. The Ojc-action on
m¥ given by f— fo(&9) (for a € OF) extends by continuity to D 4(m), and the 1-action on 7V
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given by f — fo(2?) induces a continuous A-linear map 8 : Da(7) — A®, 4D (). Moreover,
Dy(7) is a finite free A-module by [BHHTb, Remark 3.3.2.6(ii)], [BHH"b, Cor. 3.1.2.9] and
[BHH" ¢, Remark. 2.6.2].

Then we recall some constructions in [BHH ¢, §3]. As in [BHH"c, (87)], there exists an
injective A-linear map

s : Homa(Da(7), A) < Hom™ (D 4(7), F). (4.107)

By [BHH'c, Prop. 3.2.3], Hom{™ (D 4(), F) is identified with the set of sequences (zx)x>0 with
zp € mand

(i) Yia, = a5y for all k > 1;
(i) there exists d € Z such that zj € 77[m£k+d+1] for all £ > 0 (where W[m%] def ) if 7 <0),

and the A-module structure on Hom§™™ (D 4(7),F) is given as follows: for a € A and z =
(x)k>0 € Hom§P™ (D4 (1), F), we have a(x) = (yx)r>0 with

yr = (Y Ea)z, (4.108)

for £ > 0. See [BHH"c, Remark 3.8.2] for the explanation of . We are going to
construct 2/ elements of Hom§™" (D 4(r), F) using the elements {x;; : J C J,i € Z/} in 7 (see
Theorem . Then we prove that they lie in the image of u,, and give rise to an A-basis of
Hom (D (), A).

Let Z1 =21+ pOgk be the center of I;. Since w has a central character, Z; acts trivially on
7. We still denote by my, the maximal ideal of F[I;/Z;] when there is no possible confusion.
For 0 <j < f—1, we view Y; as an element of F[/;/Z;] and we define

7% 3 A (p[lk} ?) € F[1,/74].

AEFy

Since Z; commutes with each other, for i € ZJ;O we write Z¢ for Hf;é Z;-". For0<j < f—1,
we denote by y;, z; € gr(F[/1/Z:1]) (the graded ring for the my -adic filtration) the associated
elements of Y;, Z; € F[I1/Z1]. We define the gr(F[I;/Z;])-module

gr(m) € @ alm)/x[m]].
n>0

By the proof of [BHH'23, Cor. 5.3.5] and the assumptions on 7 (see above Theorem {4.1.1)) and
taking F-linear dual, the gr(F[I;/Z:])-module gr(7) is annihilated by the ideal (y;z;, z;y;; 0 <

j < f—1), hence becomes a graded module over R % gr(F[1/Z1])/(yizj, zjy5; 0 < j < f—1),
which is a commutative ring, isomorphic to Fly;, z;]/(y;2;; 0 < j < f — 1) with y;, z; of degree
—1 (see [BHH"23, Thm. 5.3.4]). For v € 7, as in [BHH ¢, §3.5] we define

def .
deg(v) = min{n > —1:v € W[m?jl]} €ZL>_.

We denote gr(v) € W[m(}fg(v)ﬂ]/w[m(}lfg(v)] C gr(m) if v # 0 and gr(v) = 0 if v = 0 the associated
graded element of v.

Lemma 4.9.1. Let v € m with deg(v) =d > 0.
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(i) For j € J, we have deg(Y;jv) < deg(v) — 1. If moreover d > 0, then the equality holds if
and only if yj gr(v) = gr(Yjv) # 0 in gr(w). Similar statements hold for Z;.
(ii) There exists a,b € Z];O satisfying ||a|| + ||b|| = d such that 0 # Y2Z% € 1.
(iii) We have deg ((9V)v) <pd+ (p—1)f.

Proof. (i). This follows from the fact that y;, z; € R has degree —1.

(ii). If d = 0, then the statement is trivial, so we let d > 0. Since yo,...,yf—1,20,.-.,2f-1
form an FF-basis of the degree —1 part of R, which equals my, /mi, there exists one of them,
say yj, such that y; gr(v) # 0 (otherwise, gr(v) is annihilated by my, /mj in gr(r), so mpv C
w[mcllfl], iev € W[mﬁl], a contradiction). By (i), we have deg(Yjv) = d—1. If d -1 > 0,
continue this process to Yjv € m and so on.

In particular, there exist Wy,...,Wq € {Yy,...,Yr_1,Z0,...,Zs_1} such that W ---Wyv €
7 has degree 0 and wy - - - wg gr(v) # 0 in gr(w), where w; € R is the associated graded element
of W for 1 <i < d. Welet W{,..., W} be a permutation of W1y, ..., Wy such that W{--- W} is
of the form Y272 as in the statement. Since R is commutative, we have w} - - - w/,gr(v) # 0 in
gr(m). As a consequence, Wi ---W}v # 0 and has degree zero by (i), hence belongs to al,

(iii). By (ii), it suffices to show that Y2zb (p YYv=0foralla,be ZJ;O such that ||a||+ || >
pd+ (p—1)f + 1. We write a = pc + £ for the unique ¢ > 0 and 0 < £ < p — 1. One easily
checks that Z; (¥ %) = (b %) Zf_l for all j € J. Together with Lemma W(l), we have

yezh (10)y=ylyre (29) Py, — vt (29) yo7(9) zpd ),
Since deg(v) = d, using (i) it suffices to show that ||§71(c)|| + ||[pd(b)| > d. Indeed, we have

1571+ lp3 )] = llell + bl = (llall — ll€l)/p + plb]
> (llall = (o = 1) f)/p+ ploll = (lall + o]l = (p = 1)f)/p = (pd +1)/p > d,

which completes the proof. O
Recall that we have constructed x;; € m for J C J and ¢ € 77 in Theorem m

Lemma 4.9.2. Let J C J and i € Zf such that i > gJSh (see for QJSh and note that
sh
le”™ || = [T%"]).

(i) If zjgr(xy;) = 0 for all j € J, then we have deg(z;;) = ||i|| — |J"].
(ii) If deg(zs;) > ||| — |J5"|, then there exists jo € J such that deg(2 jjte,,) > deg(wy;) + 2.

Proof. (i). By the second paragraph of the proof of [BHH" ¢, Prop. 3.5.1], there exists a € ZJ;O
such that 0 # Y%z;,; € 7/t and deg(z,;) = ||a||. By Theorem M(u) and (4.60), we have

Xi_g’Shl’J&' =Ty gn =g # 0, hence |a|| = deg(z;) > ||i|| — |J*"| by Lemma |4.9.1(i). Then
by Corollary (i),(ii), we must have a = i — e/, hence deg(z ;) = |li|| — |51

(ii). By (i), there exists jo € J such that zj, gr(z;) # 0. Since Yjozjite; = 27, by Theorem
4.6.4(ii), we have deg(2ite; ) > deg(z,;)+1 by Lemma Im‘(l) Assume on the contrary that
deg(zjite,,) = deg(zy;) + 1, then by Lemma M(l) we have yj, gr(zi+e;,) = gr(z,;), hence
ZjoYjo BL(T Jite;,) = 2jo 8¥(23) # 0. This is a contradiction since zj,yj, = 0 in R. O

Lemma 4.9.3. For J C J and i € Z/ such that i < i—i—l, we have v 5; € i

Proof. By Theorem (ii), it suffices to show that x4+ € i,
Recall that ¢/ € Z/ is defined in 1} which satisfies 1 < ¢/ < p—1 by li By the

proof of Lemma except that we apply Lemma iv) with = 1 instead of § = 0, we

have
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: 1
(1) YT (BY) @ ys ernien € 78 /
(ii) Ty ptari\s € 751 for each J' C J such that J* C J' G J (see (4.52) for N,

Moreover, by (4.62)) we have (see (4.53) for ¢”)

i+l :pé(gjﬁ(J-"-l)) +QJ _ (QIJ _l)

Hence we deduce from 1) (with i = f+1) that x541 € ko, O

The following proposition is a generalization of [BHH ¢, Prop. 3.5.1] (where p was assumed
to be semisimple).

Proposition 4.9.4. For J C J and i € Z/, we have deg (z;;) < ||il| — |J*"|. If moreover
i>e’™, then we have deg (zgs) = |lil| = |1

Proof. First we make the following observation. Let J C J and m > 1. Assume that deg(zj;) =
1i]| = |J*8| for all /™ < i < m, then we have deg(v,;) < [|i] - |J%| for all i < m. Indeed,
by Theorem (11) we have z7; = Y™ tx;,,, hence deg(zs;) < (|m| — [J*]) — |m —i|| =
||| — |J*"| by Lemma ( ). In particular, we only need to prove the result for i > e’ o

We prove the result by increasing induction on |J| and on max;i;. For J C J and i € Z/
such that QJSh <i< f+1, by Lemma@we have Zjzj; = 0 for all j € J, hence z; gr(z;) =0
for all j € J. By Lemma M(l) we deduce that deg(zz;) = ||i|| — /"]

Then we let 0 < k< f —1 and m > f + 1. Assume that the result is true for

(a) |J]<k—1andiecZf,
(b) |J| =k and max;i; < m,

we prove the result for |J| = k and i > e’ 7" such that max;i; = m+ 1.
Claim. For J C J such that |J| = k and i € Z/ such that max;i; < pm, we have

deg(z ) < |lifl + (p— 1) f.

Proof. We write i = pd(i') + ¢/ — £ for the unique ', £ € Z7 such that 0 < ¢ < p —1 (see ([

for ¢’). Then we claim that max; i i’ <'m. Indeed, for each j we have

= —c/+6)/p<(pm—0+(p—1))/p<m+1,

hence 4/, ; < m. Since |J +1| = |J| = k, by (b) we have deg(x ;1) < [|l&']| —[(J + D <17
Then by Lemma [4.9.11),(iii) we have

deg (Y*(51) $J+1,g/) < plld |+ (p=1)F = 12l = lill = e’ |+ (p=1)f < lli +(p—1)f, (4.109)

where the last inequality uses ¢/ > 0. For J' C J such that J* C J' S J, by (a) we have (see

- for r‘]\‘]

deg (21 5, o) < lill + [l2"N ) = ()P < Jlill + (0 = 1), (4.110)

where the last inequality uses 7“;-]\‘]/ <p-—1forall jeJ by 1) Combining (4.60)), (4.109)
and (4.110]), we deduce that deg(z;) < ||i]|+ (p—1)f. O
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Assume on the contrary that deg(z;, ;1)) > [ )| — | Jgh |+ 1 for some | Jo| = k and i) > e

51) = m+1. By Lemmal4.9.2(ii), there exists i(?) = i) 4-¢;, for some j; € J such

that deg (z;, ;) > i) = [Jsh |+ 3 = [|i®]| — |Jg"| 4 2. Moreover, we have max; i§2) <m+2.
Similarly, there exists i® = i(?) +-¢;, for some jo € J such that deg (mJM@)) > ||li®] — | Jgh|+3,
such that max; ig-(p_l)m) < pm and

such that max; i

which moreover satisfies max; ;" < m + 3. Continue this process, there exists i(e=1m) ¢ 7f
deg (2 5, ;(-vm) > [{ @™ = [T + (p = Dm.
By the Claim above, we also have
deg (25, j-vm) < [[{ @™+ (p - 1)f.

This is a contradiction since m > f + 1 and |J§"| < f < p — 2 by (4.2). O

For J C J, we define the sequence x5 = (zsx)k>0 by Zjk def x ), which is defined in
_ | 7sh
Theorem (4.6.4, Since x ;) € ﬂ[mlzf 7 ‘H} for all & > 0 by Proposition 4.9.4] we have x; €
Hom§*™ (D 4(7),F). Then we have the following generalization of [BHHc, Thm. 3.7.1] (where

p was assumed to be semisimple).

Theorem 4.9.5. The sequences {xj:J C J} are contained in the image of the injection
ps - Homy (D a(7), A) — Hom§™™ (D 4(7),F)
and form an A-basis of Homy (D (1), A). In particular, DA(r) is a free A-module of rank 2.

Proof. We follow closely the proof of [BHH ¢, Thm. 3.7.1] and use without comment the nota-
tion of loc.cit..
First, the proof of loc.cit. using Theorem m shows that each z; € Hom§{™ (D4 (7),F)

comes from an element of Hom (D 4(7), A), and we still denote it by x ;.

def
/ / /
For each J C J, we define another sequence 2, = (:L‘J7k)k20 by Tie = Tppperh In

sh
particular, we have 2/, , = v by (4.58)). By (4.108)) we have 2/, = X_gJ x 7, which implies that

sh
2, € Homg*™ (D a(7),F) and comes from an element of Homa(Da(r), A) (recall y¢ e A),

and we still denote it by z;.
sh
Since Y¢" is invertible in A, it suffices to show that {«/;,J C J} form an A-basis of

Homy (D a(m), A). As in the proof of loc.cit., it suffices to show that the elements {gr(z’;) : J C
J} form a gr A-basis of Homg, 4(gr Da(m),gr A).

Since 7t = Dg(p)!* is multiplicity-free by Lemma @(u) (see the assumptions on m above
Theorem , there exist unique I-eigenvectors v* € (71)Y = gry(nV) for J C J such that
(v,v%) = dj=p. As in the proof of [BHH ¢, Lemma 3.7.2], we know that grD4(m) is a free
gr A-module, and that there exists a surjection of gr A-modules

P er A grDa(n), (4.111)
JCT

sending the standard basis element indexed by J on the left to the image of v in gr D(m)
(still denoted v%). To complete the proof, it is enough to show that (gr(z/)),v%,) = 6=yt
in gr A for all J,J’ C J, which implies that the surjection is an isomorphism. The
argument here is completely analogous to that of [BHH ¢, Thm. 3.7.1], using Corollary
and Proposition O
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4.10 The actions of ¢ and O on Homy(D4(m), A)(1)

In this section, we finish the proof of Theorem [I.1.Il We also compute the actions of ¢
and O on Hom4(D4(7), A)(1). The main results are Proposition and Corollary [4.10.5
Here the O%-action is much more technical to compute explicitly than in the semisimple case
(see |BHH" ¢, Prop. 3.8.3]). Instead, we give a congruence relation which uniquely determines
the Oj-action.

By definition, D4(m) is a finite free (¢, O )-module over A in the sense of [BHHTb)
Def. 3.1.2.1]. Then the construction of [BHH ¢, §3.2] makes Homa(Da(7), A)(1) a (¢, OF)-
module, which is étale if and only if 3 as in is an isomorphism. Here for D a (¢, O )-module
over A, we write D(1) to be D with the action of ¢ unchanged and the action of a € O} multi-
plied by Ny, /g, (@). Then by [BHH ¢, Lemma 3.8.1(ii)] and [BHH ¢, (114)], under the injection
the actions of ¢ and O} on Hom(Da(m), A)(1) can be expressed in terms of sequences
as follows:

i) for k > 0 and pf > k, we have
(i) p
(p(xs)e = (1) 1yPit (P9) 25 (4.112)
ii) for a € O}, k>0 and ¢ >}, 0, we have
K

14
(aes)) = 24X

(69) e (4.113)

We denote by Mat(y) and Mat(a) (a € O ) the matrices of the actions of ¢ and O on
Homy (D4 (), A)(1) with respect to the basis {x;: J C J} of Theorem whose rows and
columns are indexed by the subsets of 7. For J, J' C J such that (J — 1)% = (J)*, we let

def f

v = (D) e, (4.114)

where € is defined in (4.54) and g v is defined in (4.51)). Then by definition and the sentence
after (4.51)), for Jy, Jo, J3, Js € J such that (J; —1)% = (Jo — 1)* = J§% = J§° we have

Y, Js _ VJa,J3
Y1, J4 VJ2,J4

We define % for J% = (J')* in a similar way as %
*,J *,J

Proposition 4.10.1. (i) We have (see for ¢ and for r/\')

Mat () yr. 741 = Yrpr Y EHND g s
' 0 otherwise.

c

(ii) For a € [F;], Mat(a) is a diagonal matriz with Mat(a) s ;s = ar’ .
Proof. (i). Let J C J. For k > 0 and pl > k, by (4.112) and (4.57)) we have

_ 0 _
(el = (CDTYPEE@E D asme= Y, (-1 1EJ’“J+1’J'3:J’,(p£+gJ+£J\J’—(p£—E))
JssCJCJ

= E : VIALI L 1 oI 4\ k°
JSSQJ/QJ
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Then using (4.108) one easily checks that

LUJ+1 E YJI+1, 7Y
JssCJ/ICJ

which proves (i).

(ii). Let J € J and a € [F;]. By Corollary [4.6.10| we have

(89w = ((29 i et Tl
01 J,z—XJ((01))a Tji=a Tji=a Tji=a LJi

where the second equality follows from (4.68]), the third equality follows from (4.52)), and the
last equality follows from Lemma |4.6.3{(ii). Then for k£ > 0, by (4.113)) we have

a(Y®)
XE

where the second equality follows from (4.106). Using (4.108), we conclude that a(z;) =
a=’ (x,), which proves (ii). O

(a(zs)k =

7k . JC_k‘ . JC
(8D ayp=1a" (az *xJ,k) =a" zj,

Proof of Theorem[{.1.1. By Theorem 7 is in C and D(n) has rank 2f. Moreover, by
Proposition [4.10.1{(i) we have Mat(¢) € GLgs(A), hence Hom4(Da(r), A) is an étale (¢, Ok)-
module over A, which implies that £ as in (4.1]) is an isomorphism. ]

Then we are going to describe the O-action. The following two lemmas are needed in the
proof of Proposition below.

Lemma 4.10.2. Let a € A, A € F* and s € Z/ such that a = \Y2p,(a). If s = (¢ — 1)t for
somet € Z7 and A\ = 1, then we have a € FY ~!. Otherwise, we have a = 0.

Proof. Let m > 0 be large enough such that ¢ is a multiple of |F| and \™ = 1. In particular,
@y acts as x 27" on A. By iteration, we have a?" = Y~ ((¢"=D/(e=D)sq  Suppose that

a # 0. Since A is an integral domain, we have a" 1 = y-(a"=D/a=D)s Iy particular, we
have a € A, hence we can write a = ¢Y “ta; with ¢ € F¥, t € Zf and a; € 1 + F_;A. Then
we deduce that ap=1and (¢ —1)t=((¢"™—1)/(q— 1))§, which implies s = (¢ — 1)t, and we
necessarily have A = 1. O

Fora € A and k = Y_1" k' € Z[p] with m € Z>¢ and k; € Z for all 0 < i < m, we define

m

o Hapi(aki) € A*.
i=0

This makes A* a Z[p]-module. By completeness, 1+ F_1A is a Z)[¢]-module, where Z, is
the localization of Z with respect to the prime ideal (p).

Lemma 4.10.3. Let J,J' C J, A\j €e F* and 1 < hj <p—2 for all j € J. Consider the map
9 - (A[qul)f s (A[qu})f

(ai)ieJH<ai—/\[ 1 Y~ CE b Y, Rl m] @(am)) :
Jj— eJ

eJ\J' j—ieJ\J

(i) If J' # J, then 6(a) = 0 implies a = 0.
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(ii) If J'=J and A\; = 1 for all i, then 6(a) = 0 implies a = p for some pu € F.

(iii) If J' = J\ {jo} for some jo € J and 0 # b € ((FoA\ F-1A)N A[F;])f, then the equation
0(a) = b has no solution.

(iv) If J' S J and b; € Fip yrj1-p)A N AF] for all i, then the equation 0(a) = b has at most
one solution. If moreover 1 < h; < p—1— f for all j, then there is a unique solution
which moreover satisfies a; = b; mod Fipi1y1—pA for all i.

e 121 :
Proof. (i). We write A %ef H{:_OI \; and h() > hjyipt for all j € J. If (a) = 0, then by
i=0

iteration we have ag = \Y*¢,(ap), where

§§f2:mm%_mfﬂ_§:mm%_mfﬂ¢g (4.115)
jeJJ\J' jeJN\J

Claim. Suppose that s = (g — 1)t for some ¢ € Z/. Then we have |t;| < p—1for all j € J and
0#t#+(p—1).
Proof. Since 0 < h9) < (p—2)(1+p+---+p/~1) for all j € J, we deduce from (4.115) that

|tj,g(19—2)(1+p+---er-’”*l)(m-l,):(p—2)(p+1)<p7
qg—1 p—1

hence [t;j| <p—1for all j € J. We also deduce from (4.115]) that

p—2)1+p+-+pHp-1)f
qg—1

which implies ¢ # £(p — 1). O

el < & e

By Lemma [4.10.2| the only possible nonzero solution for ag in A is a scalar multiple of Y ¢,
which is not fixed by [F ] since —(p—1) <t <p—1andt# 0. Hence ap = 0, and we conclude
that a; = 0 for all 3.

(ii). If 8(a) = 0, then by iteration we have ag = p4(ap). By Lemma [4.10.2) we deduce that
ap = p € F, hence a; = pu for all 4.

(iii). In this case, the equation #(a) = b becomes

For 0 # a € A, we say that a has degree m if a € F_;, A\ F_(,,11)A. We also define deg(0) e .

In particular, a nonzero scalar has degree zero, and ¢ multiplies the degree by p (see (4.106))).
We choose iy € J such that b;, # 0 (hence deg(b;,) = 0) and let i = ig in (4.116|). Since the

degree of Y;;{EZ) io1=¢) is not a multiple of p, the two terms of the RHS of (4.116)) have different

degrees. Comparing the degrees of both sides of (4.116)), we deduce that deg (a;,) < 0.
Then we let i =ip — 1 in (4.116)). Since deg (a;,) < 0, we have

hjotin—1(1— .
deg (onj-ﬁ(-)jogll( SD)‘p(aio)> = pdeg(aio) —(p— 1)hj0+i0*1 < mln{deg(aio)v 0}.
Comparing the degrees of both sides of (4.116)), we deduce that deg (a;,—1) < deg (a;,).
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Then we let i = ig — 2 in (4.116]) and continue this process. We finally deduce that
deg(aq,) = deg(ai,—r) < deg(ai,—f4+1) < -+ < deg(ai-1) < deg(ay),

which is a contradiction.

(iv). By (i), the equation #(a) = b has at most one solution. If moreover 1 <h; <p—-1—f
for all j € J, since b; € F|p\ ji(1—p)A for all i € J, we have for all i € J

deg (((id —9)@))1) = deg ()\Z- | '1—([]\(] thj(lsa)] ¢(bi+1)>
Jj—i€ !

> pdeg(bit1) — [T\ J'|(p—1)(p —1 = f)
> max {(f +1)(p — 1), deg(bi1) + 1}.

Hence the series -
a def b+ Z (id 9
k=1

converges in (A[IFQX ])f , gives a solution of the equation and satisfies the required congruence
relation. O

Let @ € GLys(A) be the diagonal matrix with Qs = YT " for J C J. Then the matrices
Mat(p)’, Mat(a)’ (¢ € OF) with respect to the new basis {x” &y (xg) : J C J} of
Hom (D 4(7), A)(1) are given by Mat(p) = @ Mat(p)p(Q)~! and Mat( ) = Q Mat(a)a(Q) .

Proposition 4.10.4. (i) We have

Mat ()’ Ve [P e e e
at(p) 41 = i¢J
0 otherwise.

(ii) For a € [Fy], we have Mat(a)’ = I.
(iii) Assume that J; # J. Up to twist by a continuous character O — F*, there exists a
unique Ojc-action on Homa (D4 (7), A)(1) which satisfies (ii) and commutes with ¢ as in
(i). Moreover, the matriz Mat(a)" (a € O ) satisfies for J,J C J
(a) Mat(a )J'J*OZleg—J
(b) Mat(a )J,JEF‘J\J/Kl —p) AidfJ CJ.
(iv) Assume that J; = J. Up to diagonal matrices B € GLys (F) such that Bjj = Bjy1,7+1
for all J C J, there exists a unique O -action on Homa(D4(w), A)(1) which satisfies (ii)
and commutes with ¢ as in (i). Moreover, the matriz Mat(a)’ is diagonal for all a € Oj.

Proof. (i). We have Mat(y )J, g1 = Q. Mat(p) yr, 7410(Q 1, 7+1)" 1. Hence we deduce from
Proposition [4.10.1{(i) that Mat( )y 741 # 0 if and only if J** C J" C J, in which case we have

, (I o (nd L\ (J+1)¢\ —1 I _ T _ps(r(T+DE
Mat(p)y ji1 =YY" " Y (e'+r )w(Xﬁ ) =Y polz )

?

where the last equality follows from Lemma [4.6.3(ii) and (4.106). By (4.55)) and (4.56)) we have

c J c
r] = e —prl = (8112 (ri + 1) = je) — (Gj20(p — 2= 15) + 811100 (r + 1))

— (3417 (rj41 + 1) — )
=0¢s(rj +1) = 6;11¢s (p(rjs1 + 1)),
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which proves the required formula for Mat(¢)’;, ;. using (4.106).

(ii). Let a € [F]. We deduce from Proposition 4.10.1{(ii) and (4.106)) that Mat(a)" is a
diagonal matrix with

— JC _pJ° Je\ —1
Mat(a)y ; = Qs Mat(a)ssa(Qyy) ' =YY" @ a(Y™ )" =1.

(iii) and (iv). For simplicity, we denote by P, the matrix Mat(y)" and we let P, € GLys(A)
(a € OF) be the matrices for the O-action. Since [Fy] fixes the basis {27 : J € J} by (ii), it
also fixes the matrices P,. By the commutativity of the actions of ¢ and O, we have

P,a(P,) = P, o(P,). (4.117)

Since (P,)y.j+1 # 0 if and only if J* C J' C J by (i), comparing the (J',J + 1)-entries of
(4.117) we get

ST (P yralPy) i = 3 (Pp) gt g 419(Pa) 41,741 (4.118)
JssCJ"CJ J(JMYsSC I C
Claim 1. For j € J we let P, ; def fh(])(l P01 4 g pA, where f, ; def v Y/a( 7)€

def

14 Fi1_pA and b)) = Z{:_()l hj+ip as in the proof of Lemma [4.10.3| with h; rj + 1. For
def

JCJ welet Py j = ij P,j; € 1+ F1_,A. In particular, P, s is fixed by [Fx]. Then for all
J C J, we have

Paya(Pp)ygv1 = (Pp)ss19(Pagi1)-

Proof. By (i) and by definition, it suffices to show that for all j € J we have

Pa,j a (}/j(rj"'l)(l_@)) _ }/}(Tj+1)(1_@)<p(Pa7j+l)'

Since p(Yj41) = Yjp by (4.106]), it suffices to show that for all j € J we have

fh(?')/(l—q) a(YT‘jJrl) Tg+1fph(J+1)/(1 Q)
a,j J

which follows from the equality phU+) — hl) = (g — 1)(r; +1). O
We define Q, € GLys(A) by (Qa)s.5 = (Po) s 7P, ] 7> which is fixed by [F]. Then it suffices

to prove the uniqueness for Q,. Dividing the LHS of (4.118 m by P, ya(Py)sj+1 € A* and the
RHS of (4 m 4.118) by (Py) s, +19¢(Pa,s41) € A* using Claim 1 and (i), we get

Z ,Y*J//(Qa J’ J" H P,j

JsCJrCJ T, jeJ\J"

" ’ hi(1— —h;i(1—
_ 3 LT v T v e@Qa) g |- (4119)

J//:(J//)sng/gJ/l Py‘]—"_l"] ]EJ\JN jejll\J

120



(a). We assume that J" ¢ J. We use increasing induction on |.J| — |.J’| (which ranges from
—f to f) to show that (Q,),,; = 0. By the induction hypothesis, we have (Qq) v = 0 if
J"G J, and (Qq)yry1,541 = 0 if J” 2 J'. Hence it follows from (4.119) that

YJ 41,0 h;(1— —h;(1—
(Qa) g = = H Y, 3(1=%) H Y, 5(17¢) ©(Qa)gr+1,7+41- (4.120)
YJI+1,J
’ jeJ\J' jeJN\J

A similar equality holds replacing (J',J) with (J' +4,J + i) (for all i € J), hence it follows
from Lemma [4.10.3|(1) (with A; = v 4iq1,074i/Vitit1,0+4) that (Qq) 7 = 0.
In the case J; = J, which implies J* = J for all J C 7, the equation (4.119)) is the same as

(4.120)). Then as in the previous paragraph, we deduce from Lemma {4.10.3((i) that (Qq)..; =0
for all J" # J.

(b). We assume that J' = J. Then by a similar argument, the equation (4.120)) still holds

and becomes (Qq)s.J = ¢(Qa)J+1,7+1. By Lemma [4.10.3((ii), we deduce that (Qg)..; = &, for
some &, ; € F* (nonzero since @), is invertible), and we have &, j = &, 7+1. In particular, this

completes the proof of (iv).

Claim 2. If J; # J, then {, ; does not depend on J.

Proof. 1t suffices to show that &, ; = &,y for all J, J such that J' = J \ {jo} for some jy € J.
Since (Qq)r.; =0 for J' ¢ J, we deduce from (4.119) that
Y, J’ VI +1,0" 3 e (1—) Ve, J’
(Qa)r,s + 5joezJMTJ§“’J’Pa’jO N WYJJO P(Qa) 41,741+ 5jo¢JﬁfyTJ§a,J-
A similar equality holds replacing (J', J) with (J' +i,J + i) (hence jj is replaced with jg + 7).
For each i € 7, we let

def VY, J +i (

Ve, i
bi = 0jorig. Eagti = EagrriPajori) = Ojovigs, (€a,7 — Ea,5 Pajo+i) -

Suppose on the contrary that &, ; # &,,5. Since P, ; € 1+ F1_,A for all j, we deduce that

b € (FoA\ F_1A) N AFd] for all i, and not all equal to 0 since Js # J. Then by Lemma
4.10.3(1ii) (with N\; = Vyrpit1,0/44/VI+i+1,7+i) we deduce a contradiction. O

(c). In the rest of the proof we assume that J; # J. Since &, s does not depend on J by
Claim 2, we denote it by &,. Since (Qq)y .y = 0 for all J* ¢ J by (a), the assignment a — &,
defines a continuous character of Oy with values in F*. By considering ¢, 1 P,, we may assume
that ¢ =1 for all @ € Oj. To finish the proof of (iii), we use increasing induction on |J \ J'|
to show that for J’ C J there is a unique choice of (Qq).s, which moreover satisfies

2 11 (1-P,;) mod F A it J DU
=t . (F+1)0-p) =
(QQ)J/J = ojed\J!
0 mod F, A i B IS
od Lr+n-pa 1 :

Since (Qq)s.7 = & = 1 by (b) and assumption, the case J' = J is true. Then we assume that

J'G J. Since (Qq)r,g = 0 for J' € J by (a), (4.119) gives

> 12 Qe TT Pos

J'UJssCJ"CJ Ve, J AV L
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— VI +1,J hi(1—)
B 2 Nl [T v" ©(Qa)yry1,y41|, (4.121)

J//:(J//)SSQJ/QJNQ‘] ]EJ\J”
which implies that
YJ'+1,J hj(1—
(Qa) g — LT Y| 9(@Qa)yrs1,41 = bo, (4.122)
YI+1,J | . ,
JjeJ\J
where b() déf b071 — 5072 with
def 7]”4»17]’ h:(l1—
bo1 = > ——= 11 v ) o Qa) g |
J”(J”)SSQJ/;JHQJ ’7J+17‘] ]GJ\JN

b072 def Z Vo, J! (Qa)leJN H Pa,j

sugscmgy | T JEINT”

By the induction hypothesis together with 1 — P, ; € F1_pA and hj <p—1— f (by ),
each term in the summation of by lies in F{y;1)1—p)A unless the term for J” = J, which
appears if and only if J" D J*=. If J' 2 J*, then we have by, € F+1)(1—p)A. Moreover, for
each J” such that J' U J* C J” & J, we have J 2 J* = (J"”)*®. Hence by the induction
hypothesis, we deduce that boo € F(;41)(1-p)A4, hence by € F(yi1)1-pA. If J' D J*, then by
the induction hypothesis we have

bo=bos — bz ==L~ S | TT (R [ Py

Ve, J JICIST Y, Vx,J! JeJNJ’ eI
Y,

_ I (C-Pj)+Puy)— > I a-Py) I[ Pus
’Y*,J jEJ\JI J/QJ//;J jeJ//\J/ jEJ\J”
Ve, J!

== ]I (= Puy) (mod FinapA).

T e

In particular, we have by € F|p\ jr|(1-p)A since 1 — P, ; € F1_pA for all j. For i € J, we define b;
in a similar way as by replacing (J', J) with (J'+14, J+1), and a similar equality as holds
replacing (J', J) with (J' +i,J + i) and by with b;. Then we deduce from Lemma [4.10.3]iv)
(with \j = vpr4it1,07+i/Vi+i+1,7+4) that there is a unique solution of (Qg). s, which satisfies

(Qa).r,y = bo mod Fy 1)) 4.

This completes the proof. O

Finally, we can determine the O%-action on Homy (D4 (7), A)(1). In the semisimple case,
this is computed explicitly in [BHH ¢, Prop. 3.8.3].

Corollary 4.10.5. If J; # J, then the O -action on Homa(Da(r), A)(1) is the unique one
in Proposition |4.10.4\(iii) which satisfies Mat(a)fLJ €l+ Fi_pA forallae O and J C J.
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Proof. By the proof of Proposition (iii) there exists a continuous character £ : O — F*
such that for all a € Of and J C J we have Mat(a)’; ; = §(a)Py,y with Py € 1—|—F1 PA.
To prove that £ is trivial, it suffices to show that Mat(a )(Z) g € 1+ Fi_pA. Using the change of
basis matrix @ which is diagonal, it suffices to show that Mat(a); 0,0 € a"(14+ F1_pA). Hence it
is enough to prove that a(zy) € a™(1 + F1_pA)xy.

We claim that for all i € Z/, we have

=ty Y2 t-1- LB vy (4.123)

for any n > 0 such that p" —1 — i > 0. Indeed, by Proposition with J = (), we have
yr (b 9)vg = pggvy, hence using Lemma (1) the RHS of (4.123)) does not depend on
n. By (4.58) and (4.66) with J = 0, we deduce that (4.123)) is true for i = f. Moreover,
using Lemma [4.3.1{(i) one easily checks that the RHS of (4.123) satisfies Theorem [4.6.4((ii), (iii)
for J = 0. Hence by the uniqueness of zy; (see Theorem [4.6.4] and its proof) we deduce that

(4.123) is true for all i € Z7.
In particular, zy,; has the same expression as in the semisimple case, see [BHH ¢, (103)].
Then we conclude by the explicit computation for the semisimple case, see [BHH ¢, Prop. 3.8.3].
]

Remark 4.10.6. If J; = J, then similar to the proof of Corollary[{.10.5 and using the ea-
plicit computation in [BHH+C Prop. 3.8.3] for all J, one can show that the O -action on
Homy (Da(w), A)(1) is the unique one in Proposition |4.10./) M(w) which satisfies Mat(a); ; €

1+F1_pAforalla€(’) and J C J.

4.11 On the subrepresentations of =

In this section, we finish the proof of Theorem see Theorem This theorem is
crucially needed to prove that 7 is of finite length in the non-semisimple case in [BHH al. As
a corollary, we prove that 7 is generated by Dy(p) under the assumption that 7V is essentially
self-dual of grade 2f in the sense of [BHH'b, (176)], see Corollary which gives another
proof of [HW22, Thm. 1.6] (but under a stronger genericity condition).

Lemma 4.11.1. Let m be a subrepresentation of w. Then there exists a set S of subsets of J
which is stable under J — J — 1, and is moreover stable under taking subsets if J; # J, such

that
JH( HNW(p® {O’J JES}

JH(7T1 ={op, € JH(Do(p)) : {j : b; > 1} € S},

where p* is the semisimplification of p, o, and e’ are defined in and see Lemma (z)
for JH (Dy(p)).

Proof. We recall from Corollary that for each J C J we have ¢/ € {£1}/ with 5‘]1 =
(—1)%¢7. We also recall from 1' that o5 = 0. for J C J5.

(4.124)

Claim 1. If o € JH(T({Q) for some J C J, then 71{(1 contains I(UE(J_l)ss,JQ(J_1>SS+§J,1) and
I(0gsss, 0405, .) (see Lemma iii) for the notation).

Proof. We prove the claim by increasing induction on |J|. Fix J C J and assume that o.s €
JH(71). Since 7" is a GLy(Ox)-subrepresentation of 71 = Dy(5) and 0p1 € JH (Do, (P))
by Lemma (i), we deduce from Corollary that 71'{{1 contains I(O'QJSS,O'QJ), which is
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a subrepresentation of [ (O'EJSS,O'QJSS_;'_?]) by Lemma M(iii). In particular, for each J' C J
such that J%* C J' G J, we have o, € JH(T('{( ). Then by the induction hypothesis and using
(J')s = J*=, we deduce that Wf(l contains I (angs N J/). In particular, by Lemma M(iii),

JH(71) contains all o, with

bj =0bjeyss  ifj ¢ IO
b €{0,—1} ifje s j¢.J
b€ {0,1} ifje s jel.

By varying J' such that J* C J' & J and using o.s € JH(x K1), we deduce that JH(7l")
contains o3 with

b= bjepm  ifj g JU

by € {~1,0,1} if j € Jo.

Hence we have Y 1, € us K1 by Proposition m
By Lemma [4.5.1f),(iii), we have

<GL2 OK) (8 (1)) Xﬁlv‘]> I( Oe(J— 1)SS,UE(J 1)ss 4 ) C 1 (4125)

with ¢; = (—1)5ﬂ'+1¢J (3 — 0jeJA(J-1 ss) Since 53] 1— = (— 1) it1¢ and 3 — djeja(g—1)s = 1, we
deduce from (4.125)) and Corollary 3[ that

I( O o(I=1)58 5 T g(J—1)s5 4 o — 1) CmN ok = 7TK1 (4.126)

which proves the first part of the claim.

By Lemma iii) and 1) we have 0,71 € JH( Kl) Continuing the above process
with J replaced with J — 1 and so on, we deduce that m] K1 contains I(O’ (J=)% 5 O g(J=i)% | g 1)
for all ¢ > 0. In particular, taking : = f, the second part of the claim follows from the fact that
J—f=J. O

Claim 2. Suppose that J; # J. If 0. € JH(’/Tf(l) for some J C J, then o, € JH(T({Q) for
all J' C J. B

Proof. Without loss of generality, we may assume that |J \ J’| = 1 and write J \ J' = {jo}

for some jo € J. Since J; # J, by replacing (J,J', jo) with (J + i, J" 4+ 4,jo + ¢) for some

0<¢< f—1 using Clalm 1, we may assume that jo ¢ J5, which implies J* C J’ C J. Then

we have oy € JH( 1) by the first paragraph of the proof of Claim 1. O
We let S def {J Cc J: Oes € JH(m } Then by Claim 1 and Claim 2, S is stable

under J — J — 1, and is moreover stable under taking subsets if J; # J. By ., we have

W (p*) = {0, : J € J}, hence the first formula of follows from the definition of S.
Then by Claim 1, we have

7‘('/ cgle(o'ngs’o'ngs_,’_éJ) C’T(‘l 1 CT('Kl _DO( ) (4127)
JeSs
Since JH(n') = {0, € JH(Dy(p)) : {j : b; > 1} € S} by Lemma 4.5.11 iii), to prove the second
formula of m, it suffices to show that the first inclusion in (4.127)) is an equality.

Suppose on the contrary that the first inclusion in (4.127) is strict, then there exists o}, €
71 C Dy(p) such that J def {j :b; > 1} ¢ S. By Corollary 4.5.3] 7! must contain
I (aeJ(st,aQ), which contains 0., as a constituent by Lemma (4.5.1{(iii). This contradicts the
definition of S. OJ
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Theorem 4.11.2. Let m; be a subrepresentation of w. Then we have
rankyg D(m) = ‘JH(T({Q) NW(p*)].

Proof. Recall from Theorem that Hom 4 (D (7), A) has rank 2/ with A-basis {z;: J C J},
where x; is defined before Theorem [£.9.5] Let S be the set of subsets of J in Lemma [4.11.1] It
suffices to show that {z;: J € S} form an A-basis of Homa(D(m1), A) — Homa(Da(7), A).

First we prove that x; is an element of Hom (D 4(71), A) for all J € S. By Proposition
forall J € Sand0<i< f—e’ Sh, the element Y ~*v; € Dy(p) lies in the subrepresentation
of Do(p) with constituents oy, for b as in . Hence we have Y v € 7rf{ Lforall J € S
and 0 < i < f—¢’ - by the second equality in , which implies that z;; € m for all
JeSandi< f by . Since S is stable under J — J — 1, and is moreover stable under
taking subsets if J; # J, using , an increasing induction on |J| and on max; i; shows that
xy; € m forall J € SandieZl (if J; =7 then we have J* = J for all J C J and we only
use increasing induction on max;i;). By the definition of z; and Proposition we have
ry € Hom{™ (D 4(m),F) for all J € S. Then as in the proof of we deduce from Theorem
[4.8.5] that z; € Homa(Da(m1), A) for all J € S.

Next we prove that any element of Hom (D4 (1), A) is an A-linear combination of x; for
J € S. Suppose on the contrary that > " ajz;, € Homa(Da(m1), A) for J; ¢ S distinct and
aj, € A\ {0}. We let Jy be a maximal (under inclusion) element among those J; such that
deg(ay,) —|0J;| is minimal for 1 < i < m (see the proof of Lemma [4.10.3[(iii) for the definition of
the degree and see Remark for 0.J;). Up to rescaling > ;" as,x 5, by a suitable \Y* € A%
with A € F* and s € Z/, we may assume that

Jo\dJo

ajp =Y ¢ + (terms of degree > —|.Jp \ 8Jo| and not in IFX_QJO\&JO), (4.128)

which has degree —|Jy \ 0Jp|, hence we have deg(az,) — |0.Jy| = —|Jo|. Then by the assumption
on Jy, we have

{deg(aJi) > —|Jo| + 103 + 1= —(|J: \ 0Ji| = [Ji \ Jo| = 1) if J; 2 Jo (4.129)

deg(a]i) > —’J()| + ‘aJZ| >—f if J; ;_b Jo.

We define the following GL2 (O )-subrepresentation of Dy(p) (see Corollary [4.5.3)):

Z I(O'eJSS’O'erS_"_eJ) if Jﬁ?éj
vodef Jo2n S
> I(ogs,005,.0) = @ Doo,(p) if J5=J,
J#Jo J#Jo

By Lemma [4.5.1{(iii), V' has constituents op, with {j : b; > 1} 2 Joif J; # J, and {j : b; > 1} #
Jo if J5 = J. In particular, since Jy ¢ S and S is stable under taking subsets if J; # J, we
deduce from the second equality in (4.124]) that ﬂf(l cV.

Claim. We have the following properties:

(i) If J 2 Jp and ||| < f, then z;; € V.
(i) If J 2 Jo and ||i]| < [T\ 0J| = |J\ Jo| — 1, then z;; € V.
(ili) If J = Jo and ||i|| < |Jo \ 0Jo|, then we have x;; € V if i # el0\0Jo and Ty i0\ody €
Do(p) \ V.
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Proof. (i). By 1' we may assume that i > QJSh, in which case we have x;; = Zﬂ',v] €
Do(p) with ' ' i — ¢’ which is defined in Proposition [4.4.2[ since 0 < ¢ < f — /™. We
let o, € JH (Do(p)) be an arbitrary constituent of the GLy(Of)-subrepresentation of Dy(p)
generated by x ;. Then by (4.13)) we have

{j:o;>1ycuu{je™: >0 u{j:je(8)":i;=0}
=J\{je(\aJ)"*: i =0} CJ

(4.130)

In particular, if J 2 Jy, then we deduce from (4.130) that {j : b; > 1} 2 Jy, hence oy is a
constituent of V', which proves that x;; € V.

(ii). By (4.130)), we also have
G5y = 1] < 11— [{5 € (TN 0Iy™ + 5 = 0} < |7 = ([T \00)™| = [7]l),  (4.131)

where the second inequality becomes an equality if and only if i’ = e’ for some J; C (J\9.J)",

which is equivalent to i = e”2 for some J" C Jy C J\ 9J. If ||i|| < |J\ 8J| —|J\ Jo| — 1, which

implies [|¢'[| < [(J\0.J)™3|—|J\ Jo|—1, then we deduce from that [{j : b; > 1}] < |Jo|—1,

which implies {j : b; > 1} 2 Jy, hence o} is a constituent of V, which proves that z;; € V.
(iii). Suppose that J = Jy and [|i|| < |Jo \ 0Jp|. Then by we have

{7 : 05 > 1} < |Jol = (1(Jo \ 8J0)™| = 1'[1) = |Jol = (|Jo \ 80| — llill) < |Jol,

and at least one inequality is strict if i # €70\ in which case we have {j:b; >1} 2 Jo,

hence oy, is a constituent of V. This proves z,; € V if |Ji| < |Jo\ 0Jo| and i # efo\070.

Finally, the GL2(Of )-subrepresentation of Dy(p) generated by X‘QUO\@JO)HSS v, has o, as a

constituent by (4.13)), hence it follows from (4.58)) and the description of the constituents of V'
that T g Jo\oJy = X*Q(Jo\aJo) vy € Do(ﬁ) \ V. O

Using (4.107)), we identify > | aj,xy, € Homa(Da(m), A) as (2)k>0 € Hom§™™ (D 4(m),F),
which is a sequence of elements of m;. By writing each aj, € A as an infinite sum of monomials

in Y together with (4.128) and (4.129), we deduce from (4.108)), [BHH" ¢, Remark 3.8.2] and

the definition of z;, that the zeroth term zq of the sequence > ", as,x s, is a linear combination
of x;; satisfying the assumptions of (i),(ii),(iii) of the claim above and with exactly one of the
terms equals x ; _1\04,, hence is an element of Dy(p) \ V. By definition, we also have 2 € 1,
hence zp € m N Dy(p) = 71{( ! C V, which is a contradiction. O

Corollary 4.11.3. Assume moreover that " is essentially self-dual of grade 2f in the sense

of [BHH" b, (176)]. Then as a GLy(K)-representation, m is generated by Dy(p).

Proof. We use the notation of [BHH™b, Prop. 3.3.5.3]. By Theorem and the proof of
[BHH™D, Prop. 3.3.5.3(i)], we deduce that dimg(x) Dy (') = my,(7"") for any subquotient 7’
of 7. By Theorem and [BHHD, Remark 3.3.5.4(ii)], we deduce that D (n") # 0 for x/
a subrepresentation of m. Then the proof of [BHH™D, Prop. 3.3.5.3(iii)] shows that D/ (r’) # 0

for 7' a quotient of 7, see [BHH™h, Remark 3.3.5.4(i)]. Then we can conclude as in the proof
of [BHH'b, Thm. 3.3.5.5]. O

4.12 Some pictures for f=2

Z
o3
—o
I~
o
=
1%
S
=
N
=
N
%
<

We give some pictures of the representations (GLo(O -
1) (see for the notation) when f = 2, J, =0, p = 17, 719 = 6, 1y = 9 and i = 1.
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Let J be 0,{0},{1},{0,1} in figures respectively. In each picture, the whole
representation is Q(Xf], X‘f]ai, 0), the shadow part is the kernel of the surjection Q(x?, XSJa%, 0) —
(GL2(Og) (b %)Y v;) and the remaining part is the representation (GLa(Ox) (5 )Yty C

w. Each square is a principal series Ind L2(Ox )(X S 1/) for some 0 <4’ < 1. Each rectangle is a
Serre weight which is a constituent of the corresponding principal series, and the rectangle on
the right bottom is the socle. We list all the Serre weights in Dy(p). Each lattice point is an
H-eigencharacter, except that at each intersection point of two rectangles, it is a double point,
each belongs to one of the rectangles. See Lemma [4.3.2((ii), (111) for a justification of the picture.
operator Yy acts as going one step to the right, and the operator Y] acts as going one step to
the bottom. Hence, each lattice point is of the form Y& (0 1) Y~y g for some 0 <k <p—1and
0 <4’ <1, except at the double point, where one needs to make a modification, see M(lii)(a).
By Proposition m each lattice pomt in the shadow equals zero (a priori, it is only zero in the
subquotient of (GL2(Ok) ( ) Y 'v;) which is the principal series containing it quotlented by
the shadow part). Moreover, the overlaps of different representations (GL2(Og) (B )Y Lug)
are studied in Proposition [4.5.9
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Chapter 5

Lubin—Tate and multivariable
(¢, O )-modules in dimension 2

5.1 Introduction

Let p be a prime number. The mod p Langlands correspondence for GL2(Q,) is completely
known by the work of Breuil, Colmez, Emerton, etc. In particular, Colmez ([Col10]) constructed
a functor from the category of admissible finite length mod p representations of GL2(Q)) to the
category of finite-dimensional continuous mod p representations of Gal(@p /Qp), using Fontaine’s
category of (¢,I')-modules ([Fon90]) as an intermediate step. This gives a functorial way to
realize the mod p Langlands correspondence for GL2(Q,).

However, the situation becomes much more complicated when we consider GLa(K) for K a
nontrivial finite extension of @Q,. For example, there are many more supersingular representa-
tions of GLg(K) ([BP12]) and we don’t have a classification of these representations. Motivated
by the local-global compatibility result of Emerton ([Emell]) for GL2(Q)), we are particularly
interested in the mod p representations 7 of GLa(K') coming from the cohomology of towers of
Shimura curves.

We introduce the global setup following [BHH c|. Let F be a totally real number field
that is unramified at places above p. Let D be a quaternion algebra with center F' which is
split at places above p and at exactly one infinite place. For each compact open subgroup
U C (D ®p AY) where AY is the set of finite adeles of F', we denote by Xy the associated
smooth projective algebraic Shimura curve over F'.

Let I be a sufficiently large finite extension of IF,,. We fix an absolutely irreducible continuous
representation 7 : Gal(F/F) — GLy(F). For w a finite place of F, we write 7, e ?’Gal(fw/Fw)'
We let Sp be the set of finite places where D ramifies, S7 be the set of finite places where 7
ramifies, and \S;, the set of places above p. We fix a place v € S, and write K def F,. We assume
that

(i) p = 5, TlgaF/r(ya) 18 absolutely irreducible and the image of 7(Gal(F/F(v/1))) in
PGLy(F) is not isomorphic to As;
(ii) 7. is generic in the sense of [BP12, Def. 11.7] for w € Sp;
(iii) 7y is non-scalar for w € Sp.

Then there is a so-called “local factor” defined in [BD14, §3.3] and [EGS15) §6.5] as follows:

o Homyv (MU, HOIHGal(F/F) (?a @Hét(XV xp F, F))) [m], (5.1)
\%
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where the inductive limit runs over the compact open subgroups V' C (D ®@p A%)*, and we

refer to [BD14] §3.3] and [EGS15, §6.5] for the definitions of the compact open subgroup U¥ C
(D@rAR")*, the (finite-dimensional) irreducible smooth representation M of UV over F, and
the maximal ideal m’ in a certain Hecke algebra.

In [BHH D], Breuil-Herzig-Hu-Morra-Schraen attached to 7 an étale (¢, O )-module D 4 ()

over A, which we briefly recall as follows. We write f o [Fy : Qp). We let F; be the residue field
of F, (hence ¢ = p/) and fix an embedding og : F, < F. Then we have F[Ox] = F[Yy,...,Y; 1]

with Y; & ZGGF; oo(a) " by € F[Ok] for 0 < j < f — 1, where [a] € O is the Techmiiller
lift of @ € F;¥ and J|, is the corresponding element in F[Ox]. We let A be the completion of
FlOk][1/(Yo---Yy—1)] with respect to the (Yp,...,Y;_1)-adic topology. There is an F-linear
action of Oy on F[Ok] given by multiplication on O, and an F-linear Frobenius ¢ on F[Ok]
given by multiplication by p on Og. They extend canonically by continuity to commuting
continuous F-linear actions of ¢ and O on A. Then an étale (¢, O )-module over A is by
definition a finite free A-module endowed with a semi-linear Frobenius ¢ and a commuting
continuous semi-linear action of O such that the image of ¢ generates everything.

For 7 as in (5.1)), we let 7V be its F-linear dual, which is a finitely generated F[I;]-module and

is endowed with the my -adic topology, where I; = (1;;(%?:‘ If;@K) C GL2(Ok) and my, is the

maximal ideal of F[/1]. We define D 4(r) to be the completion of F[Ok][1/(Yo - Y;_1)] ®r[o,]
7wV with respect to the tensor product topology, where we view 7" as an F[Og]-module via
F[Ok] = F[(; %<)] € F[L1]. The Oj-action on 7* given by f ~— fo (g{) (for a € OF)
extends by continuity to D4(r), and the v-action on 7 given by f +— fo (#9) induces a
continuous A-linear isomorphism 3 : Dy (7) = A ®, 4 Da(m) (Theorem . In particular,
the inverse 37! = id ®p makes D(m) an étale (p, O )-module ([BHH'DH, Cor. 3.1.2.9] and
[BHH ¢, Remark. 2.6.2]).

In [BHH " ¢|, Breuil-Herzig-Hu-Morra-Schraen also gave a conjectural description of D 4(7) in
terms of 7,. They constructed a functor D% from the category of finite-dimensional continuous
representations of Gal(F,/F,) over F to the category of étale (p, O )-modules over A, using
the category of Lubin-Tate (¢, O )-modules as an intermediate step. We refer to for
the precise definition. Then they conjectured that D () is isomorphic to DY (7,,(1)) as étale
(¢, Of)-modules over A, where 7,,(1) is the Tate twist of 7,,. We compute explicitly the structure
of the étale (¢, OF)-module D% (7, (1)) in Theorem extending the results of [BHH™¢]
where 7, was assumed to be semisimple.

We assume moreover that

(iv) the framed deformation ring Ry, of 7,, over the Witt vectors W (F) is formally smooth
for w € (Sp U Sr) \ Sp;
(v) Ty is of the following form up to twist:

S0 (1)
FU|IF1, ~ Wy *1 with max{12,2f + 1} <r; < p—max{15,2f + 3} Vj,
0 1

where I, C Gal(F,/F,) is the decomposition group.
Our main result is the following:

Theorem 5.1.1. Let w be as in (5.1) and keep all the assumptions on T. Assume moreover
that |W(7y)| = 1, where W (7,) is the set of Serre weights of 7, defined in [BDJI10, §3]. Then
we have an isomorphism of étale (¢, O )-modules

Da(m) = DY (7y(1))-
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Theorem is proved by [BHH"c, Thm. 3.1.3] when 7, is semisimple. Using the explicit
computation of DY (7,(1)) in Theorem and the results of §4| on Dy (7), we are reduced
to the computation of some constants coming from the diagram (7t < 751) in the sense of
[DL21]. When |W(7,)| = 1 (i.e.7, is maximally non-split), these constants are computed by
[BD14] in terms of the Fontaine—Laffaille module associated to 7, ([FL82]). We remark that our
method should apply to arbitrary W (7,) once we compute the corresponding constants coming
from the diagram (7/t < 751) in general.

The proof of Theorem [5.1.1] is very computational. There may exist a more conceptual
proof one day, which will hopefully avoid the genericity assumptions on 7, and the technical
computations, but such proof is not known so far.

Organization of the chapter

In and we give an explicit parametrization of the Lubin-Tate (¢, O )-modules
and the cyclotomic (¢, Ly )-modules associated to reducible two-dimensional representations of
Gal(K/K). In §5.4, we construct explicitly some étale (¢, OF)-modules over A that will be

Q

needed in where we compute explicitly the associated étale (¢, O )-module D%’ (p) for p
an arbitrary reducible two-dimensional representation of Gal(K/K) over F in Theorem
Finally, in we combine all the previous results and the results of §4| and [BD14] to finish
the proof of Theorem [5.1.1

Notation

Let p be an odd prime. We fix an algebraic closure @p of Q. Let K C @p be the unramified
extension of Q, of degree f > 1 with ring of integers O and residue field F, (hence ¢ = ).

We denote by Gx def Gal(@p /K) the absolute Galois group of K and Ix C G the inertia
subgroup. Let F be a large enough finite extension of F,. Fix an embedding oq : F; < F and

let o def oo o @l for j € Z, where ¢ : z — 2P is the arithmetic Frobenius on F,. We identify

g Hom(F,, F) with {0,1,..., f — 1}, which is also identified with Z/fZ so that the addition

and subtraction in J are modulo f. For a € Ok, we denote by @ € F, its reduction modulo p.
For a € Iy, we also view it as an element of F via oyg.

For F' a perfect ring of characteristic p, we denote by W (F') the ring of Witt vectors of F'.
For z € F, we denote by [z] € W(F) its Techmiiller lift.

def ox 0 . def [ 14p0O (@)
Let I = <p(9[;( Og) C GLy(Ok) be the Iwahori subgroup, I; = ( ;@KK 1+p[((9K> -

GL2(Ok) be the pro-p Iwahori subgroup, K3 def 4 +pM2(Ok) € GL2(Ok) be the first congru-

ence subgroup, Ny def ( (1) OIK ) and H % ([Fg ] [FOX] )
q

For P a statement, we let dp 41 if P is true and & P 2f ) otherwise.

Throughout this chapter, we let p: Gg — GL2(F) be of the following form:

- (w?ug(ko) un(*m>’ (5.2)

where 0 < h < q—2, \g, \; € FX, for £ € F* we denote by un(§) : Gg — F* the unramified
character sending geometric Frobenius elements to £, and wy : Gg — F is the extension to
Gk of the fundamental character of level f (associate to o) such that ws(g) is the reduction
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modulo p of g(pf)/ps € pg—1(K ) for all g € Gk and for any choice of a (¢ — 1)-th root py of
_p.

Then we can write h = Z{:_Olpjhj with 0 <h; <p—1for 0 <j < f—1in a unique way.
We extend the definition of h; to all j € Z by the relation h;i s = h; for all j € Z. For j > 0,

we set

[h]] def hg + ph1 + -+ +pjhj.

In particular, we have [h|f_1 = h. We also define [h]_; 0 and [h]—2 def —hys_1/p, hence

[h]ﬁf—h—i—q[h] for all j > —2.

We define h’ = h]+1 for j€ Z and B = dof Z p7h’ Z p7h]+1 Then we define [A'];
forj>—2ina ‘similar way.

5.2 Lubin-Tate (¢, Oy )-modules

In this section, we give an explicit parametrization of the Lubin-Tate (¢, O )-modules
corresponding to p as in (5.2)). The main result is Theorem

Let Gpr be the unique (up to isomorphism) Lubin-Tate formal Ox-module over O asso-
ciated to the uniformizer p. We choose the formal variable Tk of Gyt so that the logarithm
([Lan90, §8.6]) is given by the power series Y, p‘”Tf(n. For a € Ok we have power series
aLT(TK) € alyx + TIQ(OK[[TKH-

As in [BHH™ ¢, §2.1], there is a continuous F-linear endomorphism ¢ of F ®p, Fq (T )) which
is the p-th power map on F, and satisfies ¢(Tx) = T}, and a continuous F @, F,-linear action
(commuting with ¢) of O on F®p, F,(Tx)) satistying a(Tk) = apr(Tk) for a € O, where we
still denote by arr(Tk) € Fy[Tk] the reduction modulo p of arr(Tk) € Or[Tk]. Then there
is a covariant exact equivalence of categories compatible with tensor products between the
category of finite-dimensional continuous representations of Gal(K /K) over F and the category
of étale (¢, O )-modules over F @, Fy(Tk)).

For Dy an étale p-module over F ®p, Fy((Tk)), the isomorphism

F @r, Fq(Tk) = F(Tko0) X F(Tk01) % - X F(Tk05_,)

. . (5.3)
(Zn>> oochK = ( Zn>>—oo)‘00(cn)TK,ao)7 SRR (Zn>>—oo)‘af*1(cn)TK,af_1))

induces a decomposition
DK — DK,U() X oo X DKJf—r

For each 0 <i < f—1, the functor Di — D 5, induces an equivalence of categories between the
category of étale (o, Ok )- modules over F®p, Fy((Tk)) and the category of étale (¢4, O )-modules
over F(Tk,,)). Here ¢q & gof , and F((Tk 4, )) is endowed with an F-linear endomorphism ¢,
such that ¢,(Tke,) = T[q(m7 and a continuous F-linear action (commuting with ¢q) of O
such that a(Tk,e,) = aur(Tk,e,) for a € O, where arr(Tr,;) € F[Tk,,] is the image of
ayr(Tk) € Fy[Tk] in F[Tk »,] via the embedding o; : F; — F.

For p a finite-dimensional continuous representation of Gal(K/K) over F, we denote by
D (p) the associated étale (¢, O )-module over F ®p, Fy(Tx)), and for each 0 <7 < f —1 we
denote by Dk, (p) the associated étale (g, OF)- module over F(Tke,))-

For a € Oy, we set

FE G T Ja(Ty) € 1+ TxF[Tk].

We still denote by fIT its image in F(Tk o)) via 0o when there is no possible confusion.
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Any (continuous) character of Gx over F is of the form w;} un(A) for 0 < h < ¢ —2 and
A € F*. By [BHH"c, Lemma 2.1.8], the corresponding étale (¢q, O )-module Dk, (wf un()\))
can be described as follows (a € Oj):

Dioy (Whun(\) = F((Trkop)e
eqle) = ATK(ﬁO e (5.4)
ale) = (fE)e

Lemma 5.2.1. We have fXT =1 fora € [Fy]. More generally, we have for a € O

-1 — f— - f-1 — f-1 _
e ) R i
where cq € Fy is the reduction modulo p of (1 —a?™1)/p € Ok.
Proof. By [Lan90, Lemma 8.6.2] we have equality in O [Tk]
o0 n o0 n
CLLT(TK)q Tq
P D D (5:5)
n=0 p n=0 p

In particular, for a € [F;] we have arr(Tk) = aTf, which implies fET = 1. Then the com-
mutativity of the actions of O and [F o] implies that apr(Tx) € aTK( + T Loy [T 1]]) for
a € OF, and we write in O [T% ]

CLLT(TK) =alk <1 + Zxa Kq L) > (56)
1=1
for z,(i) € Og. Then by (5.5) we have
2p ! q—17g—1 2p/ ! q g—1
. ~1)i a T T —1)(2 f*l_;'_l)
1+ 2o (i)TY 1)2—1—7[( 1+ x =1+ £ mod T P .
R B o
(5.7)
Comparing the coeﬂicients of qu(_l, we get 24(1) = (1 — a?!)/p. Also, each term of the
expansion (1 + Zl 1 1xa(z)TI((q_l)l)q has the form
2pf—1 -1,
H ra(iyN TV (5.8)

no nzpf 1

. f=1
w1th0§ni§qandzf£0 n; = q.

Claim. For the terms in (5.8]) such that ) °; pl_lini < 2pf =11, we have v, (q!/(no! - - - ngyr-1!)) >
2 except in the following two cases:

(a) ng = q and n; = 0 for 7 # 0, in which case the term in (5.8)) is 1;
(b) ng = (p— Dp/~', ny = p/~! and n; = 0 for 4 > 1, in which case the term in (5.8) is

I=1(g=1)p7 !
P
Ty

congruent to pz,(1) modulo p?.
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Proof. Recall that vy(n!) = (n — Sp(n))/(p — 1), where S,(n) is the sum of the digits in the
p-adic expansion of n. Hence we have

opf-1

q! 1
= Sy(ni) | =1
Up (nO!"'n2pf1!> p—1 ,Z; p(nz)

If v, (q!/(no! - - - n2pf71!)) < 1, then we have Zfﬁﬁ_lsp(m) < p, which implies that each n; must

be a multiple of p/ =1, hence (a) and (b) are the only possibilities since Zfﬁ i_lz’ni <2pf~1 1.
Moreover, we have by Lucas theorem

1 q _(pf—l

p (- Dpl Dl \pit -1

> =1 modp,

_ _ f—1
hence the term in 1' in case (b) is congruent to p:pa(l)pf 1Tl((q DP modulo 2. O

By the claim above and (5.7), for 1 < i < 2p/~! we have z,(i) € pOk except possibly in
the following two cases:

(1) 2a(1) = (1= a?™h)/p;
(it) zo(p’ 1 +1) = —a% L2, (1)P " = —2,(1)?""" modp.

Then by reducing ([5.6)) modulo p we have
(FE7) ™ = aun(T)/@Tx) € 1+ e Tt — &~ g Ve g VOr g, ety
which completes the proof. ]

Remark 5.2.2. The map O — Fy, a — cq is a group homomorphism and satisfies:

(i) Ifa € [Fy], then c, = 0.
(ii) If a =1+ pb for some b € O, then c, = b.

Since a(Tk o) = @1k o, for a € [Fy] by Lemma |5.2.1} we have F(Tk 4, )) [Fa] = IF((TIq{UlO ).

Then for p as in 1) we have D 5, (p) = F(Tk.00)) Op(ra! ) Dk o0 (9)Fa ], where D o, (p)Fe]
500
has the following form (using (5.4)), and a € OF):

Doy (@il = F(TE . Neo ® F(TH ) Dex
@qleo e1) = (eo e1) Mat(p,)
a(ep e1) = (ep e1) Mat(a)
with 1)
MNT " A\ D
Mat = K 00
a (Soq) 0 A
LT\h
Mat(a) = (fa") E“)
0 1

for some D € IF((T;’(T;O ) and E, € F((Tz%]flo )

Definition 5.2.3. Let 0 < h < ¢ — 2 and M, N1 € F*. We define WYL t0 be the set of

equivalence classes of tuples [B] = (D, (Ea)aeofx{) such that
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(i) D e F(T{ ), Ea € F(T} ) for all a € O, and the map O} — F(T} ), a > Eq is
continuous;
(i) Eap = Ea+ (f)" a(Ey) for all a,b € OF;
(i) (id—AoA T @ 00) (Ba) = (id — (F57)" a) (D) for all a € OF;
(iv) two tuples (D, (Ea)anf{) and (D' (E’)aeox) are equivalent if and only if there exists
beF(TF,,) such that

D'=D+ (id —/\OAIITIQ((;Z;l)h@q) (b)
E = E, + (id— ( aLT)ha) (b) YaeOL.
It has a natural structure of an F-vector space.

By the definition of W'T and the equivalence of categories p +— Di o (p), there is an
isomorphism of F-vector spaces

WET o FExt! (DK,UO (un(M1)), Di.or (w? un()\o))) ~ H1 (GK,IF(w]} un()\o)\l_l))> , (5.9)
where Ext! is defined in the category of étale (4, OF)-modules over F(Tk,q,)). For each

[B] € WL we denote by D([B]) the corresponding étale (4, O )-module over F((Tk o))
Note that D([B]) = D(A[B]) as étale (g, O )-modules over F((Tk q,)) for A € F*.

Lemma 5.2.4. Let 0 < h < q— 2.
(i) Fori> —1 and a € Oy, we have
(ia— (/)" a) (1e V1) € T FITE ]
(ii) Fori> —1 and a € O, we have
(id— (#7)" ) (78 DD € (g — 1)l T g R
(iii) Fori > f—1 such that hy =1 and a € O, we have
(id— (757)" a) (Tl DI @ gty b i e g Rt
Proof. For s € Z and a € O, by definition we have
(id— (f;T)ha) (TI;,(;IU_I)S> _ TI;,(OC']()_I)S (1 B (f;JT)thfl)S) ' (5.10)

(i). Take s = [h];. Since h+ (¢—1)[h]; = [h];+f—[h]; is a multiple of p"™! and p*! > [h];+1,
we deduce from (5.10) and Lemma that

: 1 D[Ali )p 1 -1 -1
(id = ()" a) (755 M) € Tl VU (T RIT ) € T BT -
(ii). Take s = [R]; + p'T!. We have
h+ (g = D([R)i + ") = [Rlivg — [Bli + ap™" = p™* € (R — Dp™ + p" 2L
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Then using p'*! > [h]; + 1, we deduce from (5.10)) and Lemma that

. h —(g—1)([h];+p*t?t
(ld _ (fLT) a) (TK(;]() )([R]i+p ))
e TR V™) (b, — 1) TP | 2o 0 gt )

K,o0

i+l —(g—1)[h]; -1 -1
C (hiy1 —1)ch TK(q e +TI(1<,00F[[T%JO]]'

00
(iii). Take s = [h]; + p**1=/. We have
ht (g = D([Rli + 9 7) = [lipy — (B + 9 = p € p™ 4 pitiz,

Then we deduce from ([5.10) and Lemma that

(id o ( ;JT)h a) (Tg;q(:l)([h]ﬂrp“‘l—f))

4 pyitl—f i —1)pittl-f f— @ !
& TR (_ ithla 0 T}gmj)“’ Lpit-

—1)(2 f— 1+1 i+1—f -1

i+l —(g—1)[h]; 1)[h];— 1 1
C - Tl Tf{aom%ao]]

where the first inclusion uses p > 3 (hence pf > 2pf—14 1), and the second inclusion uses h; = 1
(hence [h]; = [h]i—1 +p* < 2p"). O

Definition 5.2.5. Let 0 < h < g—2, A, A1 € F* and 0 < j < f—1. We define DF*, DEY, DET €
IF‘((TI‘J(_;O)) as follows:

(i) If hj #0, we define

def (g—1)[h];—
pir o

If hj =0, we let 0 <r < f—1 such that hj;1 = -+ = hjir, =1 and hjyrq1 # 1, then we
define

LT def -1
Dj — )\0)\1 KO'()

fHi+r+1 +it+1
7@ D (e tp™ )+ (Rjprs1 — 1) ZTK q=1) ([l p4j4itp’ )]
=0

(@D (hta((hlj—1+p! (p+p?+-4p"H)))

- )\0)\1 KO'O

(hjirs1 — ZTKq D) (h+q([h]j—1+p? ((p+p*+-+p%)) p”i“))]_

() Fh=1+p+---+p/~1 and \o\[' = 1, we define

f-1
LT de def T VRl pria4p) _ N o (a= 1) (bptept ™ 4 2p p pep )
tr K K,o0
=0

Otherwise (i.e. either h# 1+p+ -+ +p/=t or \gAT! # 1), we define DEY )
(iii) If h =0 and )\0)\1_1 =1, we define DXI' = def . Otherwise, we define DEF ety

Corollary 5.2.6. Let 0 < h < q—2 and Ag, A1 € F*.
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(i) Forall0<j < f—1 andaec O, we have
. 1 1
(id— (£7)" a) (DIT) € Tf: L FITE: )
(i) Ifh=1+p+---+p/t (md)\g)\ =1, then for all a € O, we have

(id= (F27)" a) (DET) € (1 =T34 VM, ) (e g DO tr ) o g ),

00
Proof. This follows from Lemma Note that for ¢ such that h; = 0 we have [h]; = [h];—1. O

Lemma 5.2.7. Let 0 < h < g — 2 and \g, A1 € F*.

(i) For anyy € Tq_1 T3, 1]] the equation (id —AoAT 1T_(q_l)hc,oq)( )=y has a unique so-
lution in TIq(T;OIF[[TIq( 010]] given by the convergent series v = ()\0)\ KUO ~Lh <pq) (y).
(ii) For any y € F((T]q(;())), the equation (id —AoA;! Koo )(x) y has at most one
solution in IF((T?(_;O ) unless h =0 and MA7* = 1.
(iii) We let

y= Za, Ty baha®i)) Zb Tl 0ha) chTKUO D (5.11)
k=0

with m,n > —1,t >0, a;,bj,cxy €F, apm #0, b, #0, ¢ #0 and t ¢ h+qZ. If m,n <t,
then the equation (id —AoAy lTK(gO l)hgoq)(x) =y has no solution in F(T} UIO ).
Proof. (i). The proof is similar to that of Lemma below using h < ¢ — 1. We omit the

details.
(ii). It suffices to show that the equality

pa(2) = Ay T e (5.12)

for z € F((Tf(_[jo)) implies = 0 unless » = 0 and M\gA\; ! = 1.

First we assume that h # 0. If z # 0, we assume that the lowest degree term of z has degree
(g—1)s for s € Z, then the lowest degree on both sides of (5.12) are (¢—1)gs and (¢—1)(s+h),
which cannot be equal since 0 < h < ¢ — 1. Hence we must have x = 0.

Next we assume that h = 0 and )\0)\1_1 # 1. We let m > 0 be large enough so that
(AoAT")™ =1 and ¢™ > |F|, then ¢} acts as x — 27" on F((Tg{;o)), and by 1' we have
zd" = ¢y (x) =z, hence z € F. Since MA[t # 1, by lb again we conclude that z = 0.

(iii). Suppose that (id —AQ)\IITI;(go_l)thq) (x) =y for z € F((T;’(,_;O ). Then we have

t
(=200 0, ) (2) = D2 e V%, (5.13)
k=0
where
def h
2+ (0™ Zal A Yy 1)\12aZTK(fO D) s 1Alzb Tyl
=0 7=0

and ¢ € F, and we have ¢, = ¢; # 0 since m,n < t.
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We write z = cST[;(g(;l)S + (terms with degree > —(q — 1)s). Since the RHS of (5.13) does

not lie in Tf{_al F [[Tf(_g1 ], we must have s > 0 (since h < ¢ — 1), hence the lowest degree term of
0 »00

the LHS of (5.13) has degree —(¢ — 1)(h + gs). However, the lowest degree term of the RHS of

(5.13) has degree —(q — 1)t, which does not lie in —(¢ — 1)(h 4+ ¢Z) by assumption. This is a

contradiction. O

Proposition 5.2.8. Let 0 < h < g— 2 and Ay, \1 € F*.

(i) For all0 < j < f—1, the tuple (D, (Ea)aeolx() with

D  =Di"
o =B (10N 8V, ) (- (5" o) (D)
= Z ()‘0)‘1 K(go D 90(1) [(id_ (fz%T)ha> (D%T)]

defines an element of WYY, We denote it by [BJLT].
(i) Ifh=1+p+---+p/~1 and )\0)\1_1 =1, then the tuple (D, (Ea)ae(’)f() with

(D =Df"
e plf = -1
Ba =Bl S (=T 0e,) (- (13) o) (OF)

f=1__ _(g— f— f—1 n .
— ITK,(go D(+pt-4p/ ™) | Z (TK(go D(14pt-tp )¢q> [(1d— (f5T) a) (DET)

<1d TK(;]O 1) (14p+- +pf ) )(Cp Ty go 1)(1+p+~~~+pf_2)):|

defines an element of WYT. We denote it by [BLT]. Otherwise, we define EtI;j; &ty for
all a € O} and [BET) % [0] in W,

(iii) If h =0 and M7 =1, then the tuple (D, (Eq) ez ) with

D =DiI'=1
E, = ELtT ¥y

un,a

defines an element of W'T. We denote it by [BLT]. Otherwise, we define Ef;;ra L) for
all a € OF and [BLY] = & [0] in WET,

Proof. (iii) is direct. For (i) and (ii), each E, is well-defined by Corollary and Lemma
5.2.7|(i), and condltlon (ii) in Definition is guaranteed by the uniqueness of solution in

Lemma [5.2.7] - O

Remark 5.2.9. Suppose that h = 0 and Ao)\fl =1. For0<j < f—1, we let [B;] be the
element of WYT defined by the tuple (D, (Ea)aeolx{) with D = 0 and E, = ¢& . Then we have
[Bj] = —[Bj}] for 0 <j < f—2 and [Bj_1] = —[B§"] in W

Theorem 5.2.10. Let 0 < h < ¢ —2 and \g, \1 € F*.

(i) If h=0 and /\0)\1_1 =1, then {[B(];T], R [B%T [BLT] } form a basis of WET.
(i) Ifh=14+p+---+p/~! and )\0/\1_1 =1, then { [BET) ,...,[BLTI], [BET] } form a basis of
WLT,
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(iii) In the remaining cases, {[B§"], ..., [B;:Tl]} form a basis of WL,

Remark 5.2.11. If h = 1+p+ -+ p/~! and AoA! = 1, then {[B"],..., [B;:Tl]} form a
basis of the subspace of WY which corresponds to peu ramifiées representations under (5.9)).

Proof of Theorem[5.2.10, By , we have dimp W' = dimp H! (GK,]F((JJ? un(Ao)\fl))) =f
except the cases (h =0, \oA\;' = 1) and (h=1+p+---+p/71 MNA[ ' = 1), in which case the
dimension is f 4+ 1. So it is enough to show that the elements of W as in the statements are
F-linearly independent (using Definition [5.2.3iv)).

iif). Suppose that 37~} ¢, [BYT] = [0] in WLT. By definition, there exists b € F((T% *
j=0 “1 P K00
such that

f—1

. — —(gq—=1)h

<1d XA T goq) 6)="2 ¢;DIT. (5.14)
‘]:

Step 1. Assuming h # 0, we prove that ¢; = 0 for all j such that h; = 0.

By symmetry (since one can replace Dy », with D », if necessary, see the proof of Corollary
below), it is enough to prove that cf_o = 0 assuming hy_o = 0 (which implies f > 2
since h # 0). Suppose on the contrary that cy_o # 0.

For each 0 < j < f — 1 such that h; =0, we let 0 < r < f — 1 be the corresponding integer
in Definition (1) Since hy_o = 0, we have r < f —2if j=f—-landr+j < f—3if
0<;<f-3

o If j+7r> f—1, then we have
() pjir + 2T = 1t gh 4+ @ (B jryp + T <t gh + @ (R + 27 7).
o If j+r < f—2, then we have
(] g + 27 = bt q (Bl + 2777 < Bt (B2 07,
e If 0 < i <rsuchthat j+i> f— 1, then we have (since r # f —1if j = f — 1)
(W) pajri + 9T = bt q([R]j4 + P 7T ) < bt q([Blag—2 + 7).

e If 0 < i <7 such that j +4 < f — 2, then we have [h]p4;1i + p' T < [Rlop—o +p/ 71,

with equality holds if and only if j +¢ = f — 2, which implies j = f — 2 and ¢ = 0 since
r+3<f-310<;<f-3.

In particular, by the definition of DJLT together with cy_o # 0 and [h]f—o < [h]af—o (since
h # 0), the RHS of (5.14) has the form (5.11)) with ¢t = [h]os—2 + p/ ! and m,n < t. Then we
deduce a contradiction by Lemma [5.2.7(iii).

Step 2. Assuming h # 0, we prove that ¢; = 0 for all j.

By Step 1, we already know that c¢; = 0 for all 0 < j < f — 1 such that h; = 0. Suppose on
the contrary that ¢; # 0 for some j. We let jo be the largest integer in {0,1,..., f — 1} such
that hj, # 0. Then we have [h]j,—1 ¢ h + qZ. By the definition of D}“T (in the case h; # 0)
the RHS of has the form with m =n = —1 and t = [h]j,—1. Then we deduce a
contradiction by Lemma [5.2.7](iii).

Step 3. Assuming h = 0 (hence Ao)\fl # 1 by assumption), we prove that ¢; = 0 for all j.
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By definition we have D}T = )\0)\71 _(q_l)pHHl — )\OAflT_(go_l)ij forall0 < j < f—1.

Then by replacing b with b + ()\ I — 1)Cf 1+ Z] —0Cj K(go D7 5.14)), the RHS of

5.14) becomes Z; 3c;T @~V with ch = (Ag"\ — 1)ey—q and = (1- XoAT e for
< j < f—1. Suppose on the contrary that ¢; # 0 for some j. We let jo be the largest
integer in {0,1,...,f—1} such that ¢} # 0 (which exists since MoA; ! # 1). Then we deduce a

contradiction by Lemma (111) Wlth m=mn=—1and t = plo.

(i). Let h = 0 and MAA;' = 1. Suppose that cu,[BLT] + Z] 0 c][BLT] = [0] in WET,

By Proposition (iii) and Remark the element cun[BET] 4+ 277 =0 cj[ T ¢ W is

represented by the tuple (D, (Ea)ae(’);() with

j—1

D =cun
f-1 _
E, =-—cych - Z;le cic

Since Im(id —p,) N F = {0}, we deduce from Definition [5.2.3(iv) that ¢y, = 0. Since the

characters cq,ch, .. ., ch " are linearly independent (using for example Remark |5 (11)) and
since Ker(id —¢,) = F, we deduce from Definition [5.2.3] - iv) that ¢; = 0 for all j.

(ii). Let h=1+p+---+p/~" and \gA[' = 1. Suppose that ¢, [BET] + Z; 0 Cj [BjLT] = [0]
in WXL If ¢, = 0, then the proof of (iii) shows that ¢; = 0 for all j, which proves (ii). If ¢ty # 0,
then by the definition of DET and DLT (in the case hj # 0), and since [h]f4;—1 +p' & h+ ¢Z

for all 0 < i < f — 1, the sum ¢, DEL + ZJ -0 CJDLT has the form (5.11) with m =n = —1 and
t = [h]ay—2 +p/ 1. Then we deduce a contradiction by Lemma [5.2.7(iii). O

5.3 Cyclotomic (p,Z,)-modules

In this section, we give an explicit parametrization of the cyclotomic (¢, Ly )-modules corre-
sponding to p as in (compare with the parametrization of [CD11] where we use a different
variable). The main result is Theorem [5.3.9

We choose the formal variable T' of the formal group G,, so that the logarithm [Lan90
§8.6] is given by the power series > °  p~"T P". For a € 7, we have power series acyc(T) €
aT + T*Z,[T].

As in there is a continuous F-linear endomorphism ¢ of F ®, F,(7")) which is the p-th
power map on F, and satisfies ¢(7') = T?, and a continuous F ®p, Fy-linear action (commuting
with ) of Z) on F @, Fy(T)) satisfying a(T) = acyc(T) for a € Z, where we still denote
by acye(T) € Fy[T] the reduction modulo p of acyc(T) € Zp[T]. Then there is a covariant
exact equivalence of categories compatible with tensor products between the category of finite-
dimensional continuous representations of Gal(K/K) over F and the category of étale (¢, ZX)-
modules over F ®@p, Fy((T).

Using a decomposition analogous to , for each 0 < ¢ < f — 1 there is an equivalence
D ~ D,, between the category of étale (¢, Z, )-modules over F ®p, F,((T) and the category

of étale (pg,Z, )-modules over F((T,,)). Here ¢, def ¢/, and F((T,,) is endowed with an F-
linear endomorphism ¢, such that ¢,(T5,) = T4,, and a continuous F-linear action commuting
with ¢, such that a(T,) = acyc(Ts,;) for a € Z;, where acyc(T,,) € F[T5,] is the image of
acye(T) € Fy[T] in F[T,,] via the embedding o; : IF — F.
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For p a finite-dimensional continuous representation of Gal(K/K) over F, we denote by
D(p) the associated étale (p,Z,)-modules over F ®p, F,(T)), and for each 0 <7 < f — 1 we
denote by Dg,(p) the associated étale (4, Z, )-modules over F((7,)).

For a € Z), we set

Fove Y ar/a(T) € 1 + TF[T].

We still denote by fg°° its image in F((T,,)) via og when there is no possible confusion. Then
for 0 < h < q—2and A € F¥, the étale (¢4, Z,; )-module Dy, (w? un(\)) can be described as
follows (see for example [Brelll, Prop. 3.5] where we use a different variable, a € Z; and see

below for h'):
Doy (wiun(X) = F(Ty)e

Pq(e) = AT,Te (5.15)

—13/
ale) = ()",
=14/
where ( fgyc)%h is well-defined since fq°° € 1+ TF[T] and %h’ € Zp.
Lemma 5.3.1. We have fi°° =1 for all a € [F]. More generally, we have for a € Z,
(f)t e 1 4 cyerr—t — covep2p=1) 4 p3p-DF[TP-1],

where ¢’ ¢ € Fy, is the reduction modulo p of (1 —aP~t)/p € Z,.
Proof. This is a special case of Lemma by taking f = 1. O

Since a(Ty,) = Ly, for a € [FX] by Lemma we have (T, )7 ] = F((T2 ). Then for
pasin 1) we have Do (p) = F((To,)) ©p(qz-1)) Doy () F21, where Dy, (p)F?] has the following
o0

form (using (5.15), and a € Z)):

Doy (p)F?) = F(TE " eo & F(Th e
@qleo e1) = (eo e1) Mat(p,)
aleg e1) = (ep 1) Mat(a)
with
AT P V" AD
Mat - 0
a (‘Pq) 0 A
cyc Z_;}h’ E
Mat(a) = (fa™) a
0 1

for some D € F(T?% ") and E, € F(T% ™).

Definition 5.3.2. Let 0 < h < q— 2, Ao, A1 € F* and see below for h'. We define W
to be the set of equivalence classes of tuples [B] = (D, (Ea)aezg) such that

(i) D € F(TE™), E, e F(T%™Y) for all a € 7y, and the map 7, — F(T2 M), a v Eq is
continuous;
—14/
(i) Eap = Ea+ ()" a(By) for all a,b € 7}
(ii1) (id—AoA TV 0,) (Ba) = (id — (€)1 a)(D) for all a € Z;
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(iv) two tuples (D, (Ea)aez;) and (D’ (E’)aezx) are equivalent if and only if there exists
be F(TE ) such that

D'=D+ <id —)\ox\l_lTa_O(p_l)hlapq> (b)
El, = E, + (id- (foveyimih’ a)(b) Vaez;.
It has a natural structure of an F-vector space.
As in there is an isomorphism of F-vector spaces
W = Ext! (DUO (un(A)), Doy (" un()\g))) ~ ! (GK, F(w) un()\g/\l_l))> : (5.16)

where Ext! is defined in the category of étale (¢, Z, )-modules over F((T;,)). For each [B] €
W we denote by D([B]) the corresponding étale (g, Z, )-module over F((T5,)). Note that
D([B]) = D(A[B]) as étale (pg, Z, )-modules over F((T5,)) for A € F*.

Lemma 5.3.3. Let 0 < h < g — 2 and see below for h'.
(i) Fori> —1 and a € Z,, we have
(id— fFovey =it o) (T, e~V € T2 R ).
(ii) Fori> —1 and a € Z,;, we have
(id = () =" a) (TR0 € (g = )T 0 g TR,
(iii) Fori >0 such that hi =1 and a € Z), we have
(id —( fgyC)g—jh' a) (TJ_O(p_1)([h'],-+pi)) € —cver (P DI %gych)(Pfl)[h/]i—l PRI
Proof. ¥or s € Z and a € Z,;, by definition we have
(id— (fgyc)%h’ a) (T;O(pq)s) _ Tao(p 1)s ( (f57°) :i(h’Jr(qfl)S))' (5.17)

(i). Take s = [I];. Smceg—i(h’ (= D)) = =2 (Wi s — W) € p+IZ, and pi*! >

[W]; + 1, we deduce from and Lemma that
(id - (fgyc)%h/ a) (Ta—o(p—l)[h’]i) c TU—O(p—l)[h’]i (T%‘l)piHF[[Tg’;l]]) C Tgo—lF[[Tgo—l]]_
(ii). Take s = [h']; + p'T!. We have
Pt (W4 (g = DM +ph) = B1 (W]aw s =W li+ap™ =p™) € (i — D™ +p" 122,
Using p'™! > [#']; + 1, we deduce from (5.17) and Lemma that

(1 Fovey it ) (T D0+
e T N (1, T I 4 72 )

(=}

C (hlyy — 1)@, P=DIW L pr=ip[re-1].
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(iii). Take s = [W']; + p*. We have
1 (0 (0= D+ ) = 557 (Wheas = s+ ap' =) € =" + 02,
Then we deduce from and Lemma that
(id _(forey i a) (T(;)<p—1)<[h'1i+pi>>
c Tg:)(pfl)([h’}ﬂrpi) (—cZyCT(S{)’*l)pi + cgychépfl)p" + Tgépfl)piF[[Tg(;lD
c— ngcT;O(pq)[h']i n cgycTa—O(p—l)[h’]i—l + Tg’;lF[[ngl]],
where the first inclusion use p > 3, and the second inclusion uses h} = 1. O

Definition 5.3.4. Let 0 < h < q—2, A\, \1 € F*,0< 5 < f—1 and see below (nforh’
We define chyc DI DI e F(TP) as follows:

(i) If b # 0, we define

peve &t go(” DI
fifZ; =0, welet 0 <r < f—1suchthat h,y =---=hi,, =1andh, #1, then we
efine

cyc def D([W]jpr+pI Tt (-1 W) jitpi T
D]y e T — (=)W ]j4r+p’ )+( 1~ )ZTUO(P YW i+’ ™)

i=0
(i n. j 2 ... r+1 r (i . j 2., 7 7
:Tao(p D([W]j—1+p? (p+p*++p ))+( ;+T+1_1)ZT00(p DR )j=142 (o9 +-+p")+p")
i=0
Qi) Ifh=1+p+---+p/~ ! and )\0)\1_1 =1, we define
f =
c cde (p— pi—1 i
4 ZT (p=1)([']i+p") ZTUO(p D(1+p+-4p' = 42p")
i=0

Otherwise (i.e. either h # 1+ p+ -+ +pf=1 or NA[t # 1), we define DY = =)
(iit) If h =0 and AoA{" = 1, we define Dy defy Otherwise, we define Dy déf

Corollary 5.3.5. Let 0 < h < g —2, Ay, M1 € F* and see below for i'.
(i) Forall0<j < f—1anda€Z), we have
(id— (72) " a) (D5*) € T2, RT3, 1],
(i) Ifh=1+p+---+p/t and)\o)\l =1, then for all a € Z,, we have
(id — (f&°) a) (D) € ¥ (1 — T D) + TP R[TP Y.

Proof. This follows from Lemma [5.3.3] Note that for i such that h; = 0 we have [h]; = [h];_1,
and in (ii) we have £ Py = 1. O

Lemma 5.3.6. Let 0 < h < q—2, A\, \1 € F* and see below for h'.
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(i) For anyy € Tgo_llﬁ‘[[Tgo_l]] the equation (id— AO)\_lTaop D )(w) =y has a unique so-
lution in T% "F[T% '], given by the convergent series & = oo (o] 1T00 el ©q)" (y).

(i) For any y € F((TE ™), the equation (id —XoAT 1T00(p DK goq)(a:) = y has at most one
solution in F((T? ) unless h = 0 and )\0)\1_1 =1

Proof. The proof is similar to that of Lemma [5 We omit the details. O
Proposition 5.3.7. Let 0 < h < g —2, A\g, A\1 € F* and see below for 1.

i) For all0 < j < f—1, the tuple (D, (E, x ) with
a€ly

D =D
E. =B (id —AOAflT;}p‘”%q)*l [(1d— () = a) (D) |

& —(p—1)n’ n . cycy E=Lh cyc
=% (AT 0,) [ (1a - (8 a) (D5)
defines an element of W°. We denote it by [B Cyc]
(i) fh=1+p+--+p/~L and AoA{' = 1, then the tuple (D, (Ea)aez;) with

D =D¥
By = B (01 00,)  [( (7879 (03]

=+ 3 (Tl V)" [ ~(2790) (D) = (1~ 7"

defines an element of W¢. We denote it by [B;)"]. Otherwise, we define Etcry(; ) for

all a € Zyy and [B Cyc] e [0] in We,
(iii) Ifh =0 and MA[ =1, then the tuple (D, (Ea)an;) with

D =D =
E, =E3.®0 Yaez;

defines an element of W¢. We denote it by [Bun]. Otherwise, we define Egnq def for

all a € 7 and [BE] % [0] in Weve,

Proof. (iii) is direct. For (i) and (ii), each E, is well-defined by Corollary and Lemma
5.3.6{(1), and condition (ii) of Definition is guaranteed by the uniqueness of solution in

Lemma [5.3.6(1), (ii). O

Remark 5.3.8. Suppose that h = 0 and /\0)\1_1 = 1. Welet [B] be the element of W<€ defined by
the tuple (D, (Ea)aez;) with D =0 and E, = ¢7’°. Then we have [B] = —([By"]+- -+ [B;?fl])
in We,

Theorem 5.3.9. Let 0 < h < q—2 and Mg, \; € F*.

(i) If h =0 and MoA; " =1, then {[B5], [Bjcfyc1 Bi]} form a basis of We.
(i) Ifh=1+p+---+p/ and )\0)\1 =1, then {[B“] ,...,[B;yfl] [BY]} form a basis of
weve,
(iii) In the remaining cases, {[By‘],.. ., [B;y_cl]} form a basis of WY©.
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Proof. The proof is similar to that of Theorem [5.2.10f We omit the details. If p > 5, one can

also conclude from Theorem [5.2.10| using Corollary [5.5.12| below. O
Remark 5.3.10. If h=1+p+---+p/~! and \A\[' = 1, then {[By), -, [BYS]} form a

basis of the subspace of W which corresponds to peu ramifiées representations under (5.16)).

5.4 Etale (¢, 0))-modules over A

In this section, we give an explicit construction of some étale (¢, O )-modules over A of
rank 2 that will be needed in The main construction is Proposition [5.4.7, We also give a
comparison between some of these étale (¢, O )-modules that are constructed using different
systems of variables, see Proposition [5.4.8

First we recall the definition of the ring A. Let mp, be the maximal ideal of the Iwasawa
algebra F[Ok]. For j € J, we define

def _nJ
Y; € ) a o) € moy \mp,,

aeF;

where d,) € F[Ok] corresponds to [a] € Ok. Then we have F[Ok] = F[Yo,...,Y; 1] and
mo, = (Yp,...,Yr_1). Consider the multiplicative subset S def {(Yo--- Y1) :n >0} of

def A~ 7

F[Ok]. Then A = F[Ok]s is the completion of the localization F[Ok]s with respect to the
mo,-adic filtration

1 kf—n
F, (F[Ok]s) = U mmo{,{ ,
k>0 10 f-1

where mg; o F[Ok] if m < 0. We denote by F,A (n € Z) the induced filtration on A and
endow A with the associated topology ([LvO96, §1.3]). There is an F-linear action of O on
F[Ok] given by multiplication, and an F-linear Frobenius ¢ on F[Ok] given by multiplication

by p. They extend canonically by continuity to commuting continuous F-linear actions of ¢ and
O on A which satisfies (for each j € J)

¢(}3) ::Y?il;

[a](Y;) = apjyj VaeFx. (5.18)

Then we introduce another system of variables for F[Ok] following [BHH'¢|. For R a
perfectoid F-algebra, we denote by R° the subring of power-bounded elements in R and by
R°° C R° the subset of topologically nilpotent elements. We let BT (R) be the Fréchet K-
algebra defined as the completion of W (R°)[1/p] for the family of norms |- |, for 0 < p <1
given by | Zn>>_oo[mn]p”‘p af sup,ez{|zn|p™}. Then as in [BHH ¢, p.27], there exist elements
Xo,..., X1 € F[Ok] satistying F[Ok] = F[Xo,...,Xs_1] and such that for any perfectoid
F-algebra R we have an isomorphism of K-vector spaces

Hom{®™, (F[K], R) = HomS, (F[Ok], R) = B*(R)#—"’

F-alg
1 (5.19)

(Xi ;€ ].'%"O)(KK]L1 > Z Z[zfﬁ*"”]pﬁnf’
o i=0 nez
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where F[K] is the mo,-adic completion of F[K] ®@pjo,] F[Ok] and K acts on F[K] by multi-
plication. By [BHH ¢, (41)] we have (for 0 <i < f —1)

o(X;) = Xf ik

la](X;) = o' X; Va € FY, (5.20)

where we extend the definition of X; to all ¢ € Z by the relation X;, r = Xj.
By considering the [F]-action in (5.18)) and (5.20 - see [BHH" ¢, (55)]), for each 0 <14 < f—1
there exists p; € F* such that

Y; = ;i X; + (degree > 2 in the variables X;) and Y; € 1; X;(1 + F1_,A). (5.21)

In particular, for each i we have Yil*@/Xilﬂp € 1+F_,A. Here,fora € A and k=Y 1" kip' €
Z[p] with m € Zsq and k; € Z for all 0 < i < m, we write a” def [T, ¢i(a*i) € AX. This makes
A* a Z[p]-module. Moreover, 1+ F_; A is a Zj,[p]-module by completeness.
For a € O and 0 < j < f — 1, we set:
def _pJ
faj = @ Xj/a(Xj) € 1+ Fi_pA;
Fao; LAY /a(Y;) € 14 F_pA.

As in [BHH'd, (25)], for 0 < h < ¢ — 2 and XA € F* we define the étale (¢4, O )-module
D 4., (w;} un(A)) over A as follows (a € OF):

DAJO(w}Lun()\)) = Ae

oq(e) = AXU9)e (5.22)
a(e) _ fi(ol—w/(l—q)e_

Using (5 , we get an isomorphic étale (¢q, O )-module over A if we replace Xy by Yy (and
thus fa,O by fa,ao)

Definition 5.4.1. Let 0 < h < ¢—2 and Mg, \1 € F*. We define WX to be the set of equivalence
classes of tuples [B] = (D, (Ea)ae(’)f() such that

(i) De A, E, € A for all a € OF, and the map O — A, a — E, is continuous;

(ii) Eu = Eq —l—fh(l #)/(1=9) a(Ey) for all a,b € OF;

(iii) (1d Ao X h(1=¢) ©q)(Eq) = (id — f 1=¢)/(1=q) a)(D) for all a € OF;

(iv) two tuples (D, (Ea)aeo§) and (D’ (E’)aeox) are equivalent if and only if there exists
b e A such that

D' =D+ <id —onl—lxh(l‘@%) (b)
E;:Ea+( — i)/ (=a) )(b) Ya € OF.

It has a natural structure of an F-vector space.
We define WY in a similar way replacing Xo by Yp.

By the definition of WX, there is an isomorphism of F-vector spaces
WX >~ Ext! (DAJO (un(A1)), Da o, (w? un()\o))) ,
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where Ext! is defined in the category of étale (o4, O})-modules over A. For [B] = (D, (E,) anIX() €

WX, we denote by D([B]) the corresponding étale (¢4, O )-module over A. It has an A-basis
with respect to which the matrices of the actions of ¢, and O have the form (using 1'

X9 D
0 A

h(1-¢)/(1—q)
Mat(a) = Ja li“) Vae OF.

Mat(pq) =

0

Note that D([B]) = D(A[B]) as étale (¢4, O )-modules over A for A € F*.
We denote by Ao the completed perfection of A (see [BHH ¢l Lemma 2.4.2(i)]).

Lemma 5.4.2. Let 0 < j < f — 1. We have fo; = fao; =1 for all a € [Fy]. More generally
we have for a € O

J—1

folel+d! XS =& XETIXET + By 4

e €14 Y &YV 4 By g,

. (5.23)
a J J

where ¢, 1s as in Lemmal5.2.1].
Proof. Recall that we have F[Ok] = F[Xo,...,X;1] = F[Yy,...,Y_1] with maximal ideal
m@K = (Xo, e ,Xf_l) = (}/0, ey Yf_l).

If a € [F], then we have fo; = fao, =1 forall 0 <j < f —1 by (5.18) and (5.20).
If a = 1+ p?b for some b € Ok. Then for each 2z € Ok, we have (recall that 0, € F[Ox]

corresponds to x)
a(82) = Siponye = 00 + (B2 — 1)80 = 0o+ (14 (8 — 1)7°)6, € 6, + mby .
From this we deduce that (for all 0 < j < f —1)

a(X;) € X;(1+ Fl_p2A);
a(Y;) e Y;(1+ Fl_pQA).

Hence the lemma holds (since p?> — 1 > 3p — 3 and ¢, = 0 for a = 1 + p?b).

It remains to prove the lemma for a = 1+ p[u] with p € F. We refer to [FF'18, §1.10.2] for
the definition of the ring of Witt bi-vectors BW (A« ). Since the isomorphism (5.19) respects
the Oj-actions, we have equality in B+(Aoo)¢q:pf (which equals BW (Auo)¥e=P" by [FF18|
Prop. 4.2.1)):

f-1 f-1
>SS laxr T =a SN ket
1=0 n€Z 1=0 n€Z
f-1 , f-1 ,
=SS T 30N uxt T (524
1=0 n€Z =0 n€Z
f-1 . . 4
- (™) + L X2 ) e,
1=0 n€Z

where the last equality follows from a reindexation.
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For n € Z>¢, we let Sy, € Zlag, .. .,an, bo, . ..,by] be the additional law of the Witt vectors,

given inductively by the equalities in Z[ag, . .., an, by, - .., by]
n . s
szai gt Zp’bp Zplsf . (5.25)
=0 =0

By [FF18, §1.10.2], the additional law in the ring of Witt bi-vectors BW is given by

Sl S0 =S

1EZL €7 €L
def ;. .
where ¢; = lim,, o0 i €Z[ ..., a4, ...,b] with
def
Cin = S Oufnﬂufn+lw"ﬂ“7m4n7mfn+lw"7m)EEZR”*HM"NM7MAH7“'amm

In particular, for ¢ € Z we have

Cio = a; + b, € Z[ai, bi];

-y (5.26)
¢ig = a; +bi — Z Qaf:fbf_l € Zla;—1,ai, bi—1,bi].
s=1 p
Moreover, for i € Z and n > 0, we have in Z[a;—p—1,...,0;,bi—p—1,...,b;]
77« V2N 4 ¢
Zp & ”H'Z + ZP bf n+l ZP Cf n—l—Zﬂ’ (527)
’I’L+1 t1-e TL+1 1 n+1 o
p" £p" ¢ p"
Zp ANV Zp O ny1)+ Zp G (1) (5.28)

Considering (5.28)) — p - (5.27) and using ¢;_(n41) = @i—(n41) + bi(nt1), We get

. n+1
+ o7

pn+1 . p n+1 L n+1—~
@; i—(n+1) — (@i-(nt1) + bie (1)) + Zp ( i—(n41)+0,0 Cf—(n+1)+é,e—1> :

i—(n+1)

Hence we have

1 n+1 n+1
Cint1 — Cin = L af_(nﬂ) + bf_(nﬂ) - (aif(nﬂ) + bi*(nﬂ))

n+l 14 cpn+lff
_ZP< —(n+1)+6,0 if(n+1)+£,271> :

From ((5.29)) and using induction on n, we deduce that for i € Z and n > 1,

pn+1

(5.29)

e cach term of ¢; 41 — ¢, involves both the variable ay, for some k& <4 and the variable b,
for some ¢ < i;

e the minimal degree (in the variables ay, by for k < i) of each term of ¢; 41 — ¢y is at
least 2p — 1, and tends to infinity as n tends to oc.
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In particular, using (5.26|) we have

p—1 (p)
¢ =a; +b; — p sbf + (deg > 2p—1 5.30
SE . 1+ ( ) ( )

where each term of (deg > 2p — 1) involves both the variable aj, for some k < ¢ and the variable
be for some £ < 4, and has degree at least 2p — 1. Then combining ([5.24)), (5.25)) and (5.30)), we
conclude that (for a =1+ p[p] and 0 < j < f—1)

L
a(X;) EXj—i-,upJ Z 3) Xy ( P 1X§’ 2) + (deg > 3p —2)
s=1

=X+ uP X;.”_l Xp 1 XP 4 (deg > 3p—2)
C X; <1+uij}" 1_ij XX FygA).

which proves the first formula in (5.23)).
Next we turn to the variables Y}, still with a = 1+ p[u] for some € [F].
Claim. We have §; € 1 =Yg —--- = Yy_1 + mg,  in F[Ok] = F[Yp, ..., Yy _1].

Proof. Recall that Y; def ZAeFX AP 5[)\] € F[Ok] for 0 < j < f —1. On one hand, we have

q—2 q
Z Z )\zdp\] = Z [Z ] 5[)\ =1-4, € mog, (531)

i=0 AeFy, AeF, Li=0

where we use the convention that 0° def g On the other hand, for each 0 < ¢ < g — 2, if we
write ¢ = Zf:_é i;p’ with 0 <i; < p—1, then by [BHH b, Lemma 3.2.2.5(i)] we have in F[Ox]

i f=1 f-1 p—1—i; p
Z Aoy = H it T1Y; 7 modmy, . (5.32)
A€F, J=0
Combining (]5.31[) and (|5.32D, we deduce that 6y € 1 —aogYy — - —ap_1Yr_1 + m%,)K in F[Ok]
with aj = (=) (p—=2)! (p— 1)) =1inFforall 0 < j < f—1. O

For each 0 < j < f — 1, by the claim above we have (for a = 1 + p[u])

a(Y5) = D0 NS = D A8 [mAl(6)

AEFY AEFS
€ Z )\_pJ(SW . [u/\] ((1 — Y() — s = Yf,1 —i—m%K)p)

AEFy

_pJ 2

= > Ao [k (1 —%p—"'—qu) +mg,

A€Fy

f-1
j j i+1

= AP = >0 ST AT oY +mE (by (B18))

AeFy =0 \eFy
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f-1
i+1 i+l _ g 2
b D A D DR RAE
i=0 AEFY

If f =1, then by (j5.32)) we have

Z /\pilé[)\] = Z 5[/\] = Yop_l —1 modm%K.
AEF) AeFy

If f > 1, then by (5.32)), we deduce that

1 —1+mg, ifi=j—1 modf
i+1_ i —
DN eV 4 ml,  ifi=j—2 modf

AEFY

mlé otherwise.
K

In both cases, we conclude that
j i1y ,p—1 2
a(Y) €Yy + @' YE — i T YT 4w

Using (5.18) and the commutativity of the actions of a and [Fy] on A, we deduce that each
term in mOpK of 1' has degree congruent to 1 modulo p — 1, hence we have (for a = 1+ p[u])

(5.33)

o o B
a(Y;) € Y; (1 + ,upjy;,‘p 1_ (¥’ chp 11654111 i F3—3pA) ,
which proves the second formula in ([5.23]).

Lemma 5.4.3. Let 0 < h < q— 2.

(i) Fori> —1 and a € Oy, we have

(id _fggl—w)/(l—Q)a> (X(gh]i(l—w)> € Fy_,A.
(ii) Fori> —1 and a € OF, we have
( fh(l )/ )a> (X(()[h]i—p”l)(l—w)xf”l(1—90)) € Fy_pA.
(iii) Fori > —1 and a € O, we have

(id _f%l—cp)/(l—q)a> (Xé[hh+p"+1)(1—e0)) e (hist — 1)Cgi+1X([)h]i(1—<P

(iv) Fori >0 such that hy =1 and a € O, we have
(1d fh(l ¢)/(1-q) )(X([)h]i(l—w)xf"(l—w)) c_ Z+1X[h](

Proof. (i). By definition we have

(d f 1—¢)/(1— q)a)( (g]i(lﬂp))

_ X([)hh(l—w (1 _ f(h+(q—1)[h]i)(l—so)/(l—q))

) + Flpr.

®) + CJ;iX([)h]i—l(l—S@) + Fl—pA-

a,0

c X([)hh(l—w (1 _ 5;)“217(1—90))
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C X([)hh(liip)F(l_p)piJrlA C Flpr,

where the second inclusion follows from Lemma [5.4.2
(ii). By definition we have

( fh(l ©)/(1—q) >(X(()[h]i*pi"'l)(lf@)XfiH(1*@))

a,0

Bli—pit1)(1— i+101_ het-(g—1) ([h];—p+1)) (1— o) a—pitl(1_
:)((()[] P @)X{? (1-¢) (1—f( +(g—=1)([pli—p* 1)) (1—)/(1 Q)fa,f (1 @))

c X([h]i—pi+1)(1—<ﬂ)Xfi+l(1—<P) (1 _ fplglzp(l—so)f—pi“(l—w))

a,l

z+1)(

i+101_
X([h]’ Lp)Xf a so)F(lfp)pi-HA - Fl—pA7

where the second inclusion follows from Lemma [5.4.2
(iii). By definition we have

. i+1 _
( fa (1=¢)/(1—q) )(X(()[h]z+p ) SD)>
_ X0 (1 e 00/ 0-0)

& x{r =0 (1 f(%ﬂ(hi+1—1)+p”22p)(1—<ﬂ)>

z+1

. i+1 _ _
c xgrame) ((hz‘+1 Deg R Jr1{72(1710)101*“4)
C (higr — 1) xIM) Ly A

where the second inclusion follows from Lemma [5.4.2]
(iv). By definition we have

(d f 1—¢)/(1~q) )(X([)h]i(l—w)Xpi(l—so))

= X[HO=9 xP (19 (1 e DI/ 10 opi-o))

a,0
GX[h}z’(l*S@)Xpi(l ®) ( prlZp(l f;{’i(lf@))
C xPIUmOXP U (L™ P L a x PPy a)
c - xh=e) o x P (e) L gy A

where the second inclusion follows from Lemma and uses p > 3 (hence p"*l(p — 1) >
3p'(p — 1)), and the last inclusion uses h; = 1. O

Definition 5.4.4. Let0 < h < ¢g—2, Mg, \1 € F* and0 < 5 < f—1. We deﬁneDX D’X , DX, DX ¢
A as follows:

(i) If hj #0, we define

?

pX & x im0

If hj =0, we let 0 <r < f —1 such that hj; 1 = -+ = hji = 1 and hjirq41 # 1, then we
define

of L pirLy (- r (1 i
D}X d: Xé[h]]Jr +p? )1 sa)""(hj—i-'r—l—l_l) ZX(gh]J+ (1 SD)XI{)J (1-¢)

i=0
_ X(()[h]j—l-i-Pj(P+P2+"'+PT+1))(1—<P)_|_(hj+r+1_1)ZX(()[h]j—l-i-Pj(P+P2+"'+Pi))(1—<P)X?j+i(1*90).
i=0
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(ii) We define _
D;X def Xé[h]j—l—zﬂ)(1—s0)Xff(1*e0).

(iii) Ifh=1+p+---+p/~1 and )\0)\1_1 =1, we define
def [hi(1=¢) 30" (1=¢) Lpte4p') (1=p) x P (1— 28
DY < ZX Xt ZX Xt
=0 =0

Otherwise (i.e. either h #1+p+---+pf~1 or )\0)\ # 1), we define D = defy,
(iv) If h =0 and MoA[' = 1, we define DX, = def Otherwise, we define DX = def

Corollary 5.4.5. Let 0 < h < g —2 and g, A\1 € F*.
(i) Forall0<j<f—1andaec O, we have
(id _fh(l—so)/(l—q)a> (DX) € Fi_pA;
( — i) )a) (DY) € Fi_pA.
(i) Ifh=1+p+---+p/~1 and )\0)\1_1 =1, then for all a € O3, we have
(id—f2672"4 %) (DY) € 0 (1= X5"77) + iy
Proof. This follows from Lemmal5.4.3] Note that for i such that h; = 0 we have [h]; = [h];—1. O
Lemma 5.4.6. Let 0 < h < ¢ —2 and Ao, \1 € F*.

(i) For any y € F1_,A, the equation (id 7)\0)\171)(3(17@)%1) (z) =y has a unique solution in
Fi_,A, given by the convergent series x =y (Ao)\leg(lﬂp)goq)n(y).

(ii) For any y € A, the equation (id —Ao)\l_ng(lﬂp)cpq) () = y has at most one solution in
A unless h =0 and AoA;' = 1.

Proof. The proof is similar to that of Lemma We omit the details. O
Proposition 5.4.7. Let 0 < h < q— 2 and Mo, \; € F*.
(i) For all0 < j < f—1, the tuple (D, (Ea)aeolx() with
D =Df
def h -1 h
Ea _EX (d )\0)\ 1X (1-¢ )Soq) [( f (1-¢)/(1—q) )(‘DJX)]
— )\OA—IXh(l_W)(p id — fa ©)/(1— Q) DX
> (oarxg )" (-4 )(ﬂ}

defines an element of WX. We denote it by [B]X]
(ii) For all0 < j < f —1, the tuple (D, (Ea)ae(’)lx() with

D =Dy
E, =pX% (id—AOAl—ng(l*“’)goq)_ [( fa )/(1=a) )(D;-X)}
= & (bon x5 y) " (g ) (07%)]
defines an element of WX . We denote it by [B;X].
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(ili) Ifh=1+p+---+p/~ and M =1, then the tuple (D, (Ea)aw;() with

D = Dgf
E, = Et?lfa def (d Xh(l )%>71 [( fh(l 0)/ )a> (DSS)]
=c, +n§0 (XO - )@q>n [(id _fZ(Ol—so /(1—q) ) (DX) — ¢, (1 B h(l w))}

defines an element of WX. We denote it by [B{Y]. Otherwise, we define E tra o for all

a € OF and [B{] df [0] in WX,
(iv) If h =10 and Ao)\fl =1, then the tuple (D, (Ea)ae(’)f() with

D =DX =1
E, — X def0

un,a

defines an element of WX. We denote it by [By]. Otherwise, we define Euna L) for

all a € OF and B = e [0] in WX,

Proof. (iv) is direct. For (i), (ii) and (iii), each Ej, is well-defined by Corollary and Lemma
5.4.6/1), and condition (ii) in Definition is guaranteed by the uniqueness of solution in

Lemma [5.4.6{1), (ii). O

By Lemma we can give similar definitions for the variables Y; instead of X;. We have
the following partial comparison result:
Proposition 5.4.8. Suppose that co,...,cr_1,¢, . c’f 1»Cun € F such that ¢; =0 if hj =0,
then we have an isomorphism of étale (¢4, OF)- modules over A:

J=0 J=0 J=0

D (JchCj B+ ECS [B*] + Cun[B{ii]> =D <f21 1B + Z G187 ] + cun[BY}> :

Proof. Let eff, e be an A-basis of D(ZJ 0 Gl JX] +Z; é ;[B’X] + cun[Biy]) with respect to

which the matrices of the actions of ¢, and O have the form

)\OX(};(l*%D) )\1DX

Matf(@q) = 0 A
h(1—¢)/(1—q) X
Mat’ (@) = Ja 0 Ela Vae OF,

where

f-1
def
DX = Y ¢;Df + z DX + cun DY,
j—O

d f
EX = Z G BEX, + Z GER + emBy, . Vae Ok,
= =

Let e}, e} be an A-basis of D( Zj 0 GBI+ Zf o c B ] + cun[By]) with respect to which

the matrices of the actions of ¢, and O have the form

)\0}/011(1*90) )\1DY

0 A1
h(l-¢)/(1=9)  py
Mat}(a) = [""" la Vae OF,

Matﬁ(soq) =

0
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where
D def f§ 1 D! f§ 1 ! D’} D}
Y _jocj j+j Ocj i + cunyn

Vae Op.

] )a un,a

y et iy Y Y
Ea = Z CjEj,a + Z BT+ cun &
=0 =0

To prove the proposition, it is enough to find a change of basis formula (e} el ) = (ef e)Q
for some @ = <b8° 2?1) € I + My(Fy_,A) such that Q™' Mat? (p,)0,(Q) = Mat} (¢,), or
equivalently

(5501 _550150151_11> )\ng(lﬂp) A\ DX (wq(boo) @q(bm)) _ )xoYOh(k(P) MDY
0 by 0 M 0 @ubin)) 0 M)

(5.34)
Then the Oj-actions also agree by Lemma MO) using EX,EY € Fy_,A.

Comparing the (2,2)-entries of (5.34)), we have b1; = 1.
Comparing the (1,1)-entries of 1) we need to solve goq(boo)bgol = (Yolfw/Xé*w)h. So
we can take bgg = (Yol_"g/Xol_“’)h/(q_1 , which makes sense since Y, ¥/X, ¥ € 1+ F1_,A by

(5.21).
Comparing the (1,2)-entries of ([5.34), we need to solve

bod Mo X o P oq(bor) + bog M DX g (bi1) — b borbr Mg (bin) = MDY .

Replacing bgg, b11 by their previous values, we get

- L oh(le i\ /a1
(id =202 15", ) (bon) = DX = DY vy 79 /x)7%) . (5.35)

Then we deduce from Lemma [5.4.6|(i) and the claim below that there is a unique solution of
bo1 € F1—pA, which completes the proof.

Claim. Then RHS of (5.35)) is in F1_,A.
Proof. For each 0 < j < f — 1 such that h; # 0, we have

1— 1— h/(g—1)
D D} (3 /x%)

(gh}jfl(lﬂp) _ Yb[h}jfl(lfﬂo) (Yol—sO/Xé—so

_ x [P 0=9) [1 _ (Yol—tp /X1

)h/(q—l)

)[h}jﬁh/(q—l)}

C1— PZ
c X([]hb—l(l ®) |:1 - (Yvol—SO/Xé_Sﬁ) p:|
C X([]h]jil(l_(p)F(l_p)ij C Flpr.

For each 0 < j < f — 1, we have

_ _o\ M (a—1)
oy (v ey

—pI)(1— j ) (1— i h/(g—1
= x {110 xp 0o _ y B p -0y pi-g) (yioe i) /(a=1)
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i) (1— j hlj—1—p’+h/(g—1 J
= xm g oa [1 (o) (e )
R i1 77, J
e XX 1 (e ) ()
g X(g[h]j71_pj)(l_W)ij(1_@)F(1—p)pjA g Flpr'

Moreover, we have
_ _o\ M/ (a—1) _ _,\ M/ (a=1)
DX — DY, (YOl e w) - pX [1 - (yol 2/x} W> ! } € Fi_pA.

Then the claim follows since ¢; = 0 if h; = 0. O

Remark 5.4.9. In general, we do not know how to write D([BJX]) (in the case h; = 0) and
D([BgY]) in terms of elements of WY .

5.5 The étale (¢, Ox)-module D% (p)

In this section, we recall the definition of the functor p — D% (p) defined in [BHH¢] and
give an explicit computation of D% (p) for all reducible two-dimensional p when p > 5. As a
corollary, we give the comparison between the Lubin-Tate (¢, O} )-modules and the cyclotomic
(o, Ly )-modules corresponding to p as in when p > 5, see Corollary

Recall that A is the completed perfection of A. The actions of ¢ and O on A extends
naturally to Ay, and A% becomes a Q,[p]-module.

Proposition 5.5.1 ([BHH¢|, Cor. 2.6.6). The functor D — As, @4 D induces an equivalence
of categories between the category of étale (pq, O )-modules over A and the category of étale
(g, (’)IX()—modules over Aso, which is rank-preserving and compatible with tensor products.

As in [BHH"d], we let

+1/po
A el ot/ T ' .
o = F(Tn D | = A<i<f-1).

Tko
There is an F-linear Frobenius ¢ on AL given by (for each 0 <4 < f —1)

o(Tk i) = Tk, i+1, (5.36)

def

where we use the convention that Tk f = T} ,. There is also an (O} )/ -action on AL, commuting

with goq(d:ef ¢!) given by (a; € OF)
(a0, - ap-1)(Tki) = ai(Tk i),

where (’)[X( acts on each variable Tk ; in the same way as they act on T, in :

For 0 <i < f—1and a € OF, we define j;j(a) € (K*)/ to be a in the i-th coordinate
and 1 otherwise. There is an inclusion ¢; : F(Tx 4, )) < AL, defined by Tk s, + Tk,i, which
commutes with ¢,4, and the action of a € Of on F((Tk,,) is identified with the action of
ji(a) on AL_. In particular, we regard F((Tk s,)) as a subfield of AL  via the inclusion ¢y. By
[BHH" ¢, Prop. 2.4.4], we can also regard A as a subring of A’_, which is compatible with ¢,
and the action of a € Oy on Ay is identified with the action of (a,1,...,1) on AL . Moreover,
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if we denote Aq df Ker ((O§)f — (’)IX() the kernel of the multiplication map, then we have
Ay = (AL)A" (see the paragraph before [BHHd, Thm. 2.5.1]).

For p a finite-dimensional continuous representation of Gal(K /K) over F and 0 <4 < f — 1,
we define

i def N\ A
DY (p) = (A/ ®1i F(Tx ) DK,ao(p)> :

We endow it with a ¢g-action given by ¢, = ¢4 ® ¢4, and an O -action such that a € O acts
by ji(a) ® a. By the result of [BHHT |, these actions are well-defined and make DE\ZQ (p) an
étale (g, Of)-module over A,. Moreover, there is an isomorphism

¢i: DY () 3 DYV (p)

given by ¢;(z ®v) et plr)@vifi< f—1, and ¢i(z @) def o(x) ® pq(v) if i = f — 1. Finally,
we define the étale (p, O )-module over Aq,

_\ d
D%_(p < XD

—

where the p-action is given by ¢(vo @ - ® vy_1) o Gr-1(vr—1) ® gpo(vo) @ -+ @ Pp_a(vy_2),
and the Oj-action is the diagonal action.

By the equivalence of categories in Proposition [5.5.1] up to isomorphism there are unique
étale (¢q, O )-modules DX) (p) for 0 <i < f—1 and D%(p) over A such that

A 4 DY () = DY (7):
A ©4 DE(p) = DY_(p).
Lemma 5.5.2. There exists a unique element u € Tr o(1 + (AL)°°) C AL such that:

() ul™ ' =X e AC A C AL

(ii) for any (ag,...,ar_1) € A1, we have (ao, ...,ar_1)(u) = aou, hence
(ao, ... az- 1)(“TK o) = LT“TI;Ov
(iii) for any a € O, we have (a,1,...,1)(u) = afé’lo_@)/(q_l)u, hence

(a,1,..., ) (uTh) = fFEE Dt

(iv) pq(u) = uf.
Proof. (1),(ii),(iii) follow from [BHHMS3, Lemma 2.9.2] and (iv) follows from [BHHMS3, Re-

mark 2.9.4]. O
Lemma 5.5.3. There is a unique multiplicative norm | - | on AL inducing the topology of AL,
such that |Tk ol = p~L. It also satisfies:

(1) |Tkil=p7® forall0<i<f—1;

(i) [o(z)| = [=F Vo € AL;

(iif) for any (ag,...,ar-1) € (O%)T, we have |(ag,...,ar_1)(z)| = |z| Vo € AL

(iv) |X;| = |Yi] = p~ o420 for all 0 < i < f — 1. In particular, for any = € F1_,A, we
have |z| < p~(a=1),
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Proof. Recall that the desired norm on Agx_, is the unique multiplicative extension to A’ of the
Gauss norm on the ring IF‘((TK70))<TK7¢/TIP<170, 1<i< f— 1> with Tk ¢-adic topology such that
= p~! (see [BHH ¢, Lemma 2.4.7(iii)] and the proof of [BHH ¢/ Lemma 2.4.2(iii)]). In
particular, for 0 <1 < f — 1 we have |Tk ;| = |TK7Z-/TIp(i70| . |TK’0|pi — p~?', which proves (i).

The assignment Hx|| |<p( )| is a multiplicative norm on A/ inducing the topology of
A’ such that | Tk || = p~?. By uniqueness we get |¢(z)| = |x\p Vo € AL, which proves
(ii). Similarly, for any (ag,...,ar—1) € (O)7, the assignment ||z’ & |(ao,...,ap—1)(x)| is a
multiplicative norm on A’ inducing the topology of AL such that ||Tk | = p~!. By uniqueness
we get |(ag,...,ap_1)(x)| = |z| Yo € AL, which proves (iii).

Then we prove (iv). Recall from [BHH"c, (63)] that we have Xy = TKO “Tr p—1(1 4 wo)

for some |wo| < 1. Then we deduce from (i) that |Xo| = |Txo- - Tk 1| = p~HPt- +p'7) By

the proof of [BHHT ¢, Lemma 2.4.2(iii)], we have | X;| = | Xo| = p~(+pt+p’~ ) forl1 <i< f—1.

Finally, we deduce from (5.21)) that |V;| = |X;| = p~ P+ for 0 <i < f — 1. O
For r € Rs, we denote B(r) = { €Al :|z| <p~"} and B°(r def {zed:|z|<p"}.

Lemma 5.5.4. We have the following relations in AL,

(i) We have

f-1 - f
Xll—ﬁﬂ c Z()leﬁ(l—q D) _TIq{,_Ol <‘ZTK(11 q 1)) —I-B(( );217 2))

i=1

C %Tgp(l_q_l) + B(%) c T [1 + B(%)] .

(i) Let u € AL, be as in Lemma([5.5.9, then we have

f
Wiy € 1+ Ticg (.ET . ”) 4Bl ¢y p(leie=)

i=1

Proof. Recall from the proof of [BHH ¢, Lemma 2.9.2] (especially the second formula before
[BHH"cl (63)]) that the element

f—1

S el TSI — 3 S € W (5.37)
n=0

i=0 n>0 n>0 i=0

satisfies |z;| < p~¢ for all 7 > 0, and the proof of loc.cit. shows that we can take ¢ = ¢ — 1. In
particular, we have
|zo| = [Tk Tk, p—1 — Xo| <p~°

hence

Xo € Tro Tk jt [1 + B (c—(1+p+- : -—G—pf_l))} : (5.38)

By a direct computation in the ring of Witt vectors, we have from ([5.37)

p—1 P
-1
|z1| = ZTKO Ty — X7 — Z (;)(TK,O T )PP (= X) P < pe

s=1
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pt o —(1-q7") = (%) s X s/p o
XU e T Tiogpa |3 T - ) 1+ (=) |+ B
=0 s=1
(5.39)

S 0 s

CTko Tk ZTK,Z- - Z =2 (=1)* [14+B°()]
=0 s=1 p
f-1 »

CTwo Tryp | Y Ty & +B(C) (5.40)
=0

with ¢ % (c —Q+p+---+pf *1)) /p, where the second inclusion follows from (/5.38)), and

the last inclusion uses Zﬁ;i pt ({Z ) (—=1)®* =0 (since p > 3 is odd). Applying ¢ to 1} using
(5.36) and Lemma [5.5.3(i),(ii), we get

Xo € TK’(] . ~TK7f_1 . (5.41)

f_l _(1_,—1
1+Tf(;)1 <2TK721 g )> + B°(pd4+q—1)
1=

Then we put (5.41)) into (5.39). Since ¢ > 14+p+---+p/~1 + ¢, we get

-t =l (p f=1 (a=1)/p s
-1 —(1-¢7Y) (%) 4 . .
XY € Twor T |2 Ty " =2 (_1)5<1+ 2 co-emy + 8 <C/+qp)>]
=0 =

= P i=1"K,
= bzl f=1 ma-1)/p
—(1—¢) () T 22
CTro Tk -1 ZTK’i ) _ ?(_1)3 1+ 322 (1K2—1)/p + B((q )(217 )) 7
=0 s=1 = i

where the last inclusion uses (¢ — 1)(2p — 2)/p? < ¢ + (¢ — 1)/p. Using 3P~} p O (-1)*=0
and Z’;i pH(7)(—1)*s =1 (since p > 3 is odd), we get

-1
X{) ETK70-~TK,f_1 »

Fo1 - f—1 _
> T e ( ST ”/”) + 5 (”())] (5:42)
i=0 i=1

f_l —1
—(1— —1)(p—1
CTko- Tk, f—1 goTK’(i LR B((q;#) (5.43)
CTwa T 770 |1+ g(lamLe-b (5.44)
= 1K0 K. f-2tKg 1 P2 . .
Applying ¢ to (5.44) using ([5.36) and Lemma i), we get
—1 _ o
Xo=o(X{ )€Tko Tks {1 + B(i(q Dp(p U)} : (5.45)

Dividing (5.42) by (5.45) and then raising to the p-th power, we get
f-1 1 f-1 —1
1= —p(1- -1 —(1- —1)(2p—2
xlve ZOTK@( q )_TIq{,O (ZITK(Z g )) +B(%)7
i= i=

which proves (i).
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Dividing (5.43) by (5.45)) and then applying ¢, we get
f=1 1
1 —(g-1) - —1)(2p—1
Xi P e T 4 P '+ gl (5.46)
By the definition of u (see the lines below [BHH ¢, (64)]) and using (5.46)), we get
1 def

- 1 g1
“TK,O = (X?f / ngo

=1 -
C1+TE, (ZTKf;q 1>) + B((q—l)ﬁﬂ) ’
i=1

)1/(q—1) >1+qZp

1—pmg—1
e (x37°TH,

which proves (ii). O
Lemma 5.5.5. We have the following equalities of operators on AL :

(i) fora € O and h € Z, we have

(T[;,%qil)hgoq) o <( (I;T)h (a,1,..., 1)) = (( é‘T)h (a,1,..., 1)) o <TI;7(6171)hcpq> ;

(ii) for (ao,...,ar—1) € A1 and h € Z, we have

(T§7%]_1)h<pq> o ((f(foT)h (ag, - - ,af_l)) = (( ;;P)h (agy .-, af_1)> o (T§7%]_l)h<pq> ;

(iii) for h € Z, we have
(T8 ea) o (uTic) ™) = (WTich) X0

Proof. All the equalities are direct calculations, (i) and (ii) using the definition of fLT, and
(iii) using Lemma [5.5.2(i),(iv). We omit the details. Here we recall that we identify Tk q, €
F(Tk o)) with Ti g € AL via the inclusion . O

Lemma 5.5.6. Let 0 < h < q—2 and Ao, \1 € FX. Then for any y € AL with |y| < p~", the

h

equation (id —AOAIITIE%J_I)hgpq)(m) =y has a unique solution x € AL with |x| < p™", given

by the convergent series x =Y 7 (AOAIITI;((;]_I)hgpq)n(y).

Proof. For any x € AL, we have (by Lemma |5.5.3(i),(ii)) }AO)\flTI;%_l)h(pq(x)‘ = |z|7pla—Dh,
In particular, if |z| < p~™" and = # 0, then we have ’Ao)\flTI;((;ﬁl)hgpq(a:)‘ < |x|. If &1, 29 € AL
such that [a1], |z2| < p~" and (id —oAT T\ 0g) (21) = (id MM TV 0,) (22), then

we have |z1 —xo| = ‘Ao)\l_lTI;(g_l)hgoq(ajl —xg)}, which implies 1 = xo. This proves uniqueness.

k. one easily checks that the element z o Yoo ()\oAl_lT[;(Oq*l)hgoq)n(y)

converges, and satisfies (id _)\OAl—ng(g—l)h

Then given |y| < p~
pq) (@) =y and |z| = |y| < p~". O
Definition 5.5.7. Let 0 < h<q—2 and 0 < j < f —1. We define Hj € Z as follows:

(i) If hj—1 #p— 1, we define H; def .
def

(ii) If hj—1 =p—1 and h; # 0, we define H; = h;.
(ili) If hjo1 =p—1 and h; =0, we let 0 < r < f —1 such that hji1 = -+ = hjp, = 1 and
hjtry1 # 1, then we define H; def hjiry1 — 1.
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Definition 5.5.8. Let p be as in . Suppose that (see Theorem [5.2.10)
= LT LT
DKJO(ﬁ) =D ZCJ[B ]+Ctr[Btr ]+CUH[Bun]
J=0

for some co, ..., cp_1,Cir,cun € F, then we define (see Proposition for the notation)

Diao(d) ¥ D (Zc]([ X+ H;(B, ])+ctr[Bg’§]+cun[B§§]>,

where we use the convention that [B'Y] = dof XA [B’X | in WX, This is an étale (pq, OF)-

module of rank 2 over A and is well-defined up to zsomorphz’sm.

Lemma 5.5.9. Let0< h<qg—2and0<j< f—1.

(i) If hj—1 # p—1, then we have (¢ —1)((p — 1)p’ " = [h];—1) > h.
(ii) We have p/ — [h]j—1 —p*~/ > h.

Proof. (i). If j > 1, then using h;_1 # p — 1 we have
(@=D(p—1p " = [hlj-1) 2q—1>h. (5.47)
If j = 0, then using h;_; # p — 1 we have (since [h]_; = 0)
(a=D((p-1p " =) =@-Dp-1/p>E-1p" ' =1>h  (548)
(ii). If [h]j—1 # (p— 1)(L+p+--- +p'~1), then we have
(q=D@ =B =P ) >q—1>h

If [hj—1 = (p—1)(1+p+ - +p 1), then we can’t have hj = hj41 = - = hp1 =p—1
(otherwise h = g — 1), so we get

(@=D@ =W —pP )2 (@-D0-p ) >q-1-p > h.
This completes the proof. ]

Theorem 5.5.10. Suppose that p > 5, then for p as in , we have an isomorphism of étale
(g, OF)-modules over A:

0) /= ~ _
DY (7) = Dao,(p).
Proof. By Proposition [5.5.1] it suffices to show that

Ay
Ao ®4 D4y (p) = (A OF(Tk ) P00 (ﬁ)) : (5.49)

Let efT, el be an F(Tk 4, ))-basis of Dy o, (p) with respect to which the matrices of the
actions of ¢, and O have the form

AT (g=1D)h A, DET

MatK(cpq) = KOUO /\1
LT\’ LT
E
Matg(a) = <( “0) (1’ ) Vae Op,
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where

DLT def

Z DLT + CtrDtr + CunDLT
7=0
LT  def = LT LT LT X
Ea = Z CjEj,a + CtI‘Etra + CunEuna Vae OK
=0
and Oj; have the form

Let ef ,ei* be an A-basis of D4 ,(p) with respect to which the matrices of the actions of ¢,

h(1—¢) X
Ao X A D
Mat 4 = 0
(SDq) 0 Al
h(1—=¢)/(1—q) EX
Mata(a) = Jao “ Vae O
0 1
where
px N (DX + H;DX,) + e DY + cun D3
i=0
ot 1
EX = Z

(EX + HEX, ) + e EX

tra T cunEggha Vae O;{.
To prove (5.49)), it is enough to find a change of basis formula
Q= (bgo 2 ) € GLy

' (e er) =
(AL,), such that
() Q! Matic(i,)4(Q)

(e5T el Q for some
= Mat s(pq);
(i) @ ! Matg(a)a(Q) = Mata(a) Va € OF;
(iii) the basis (ef ef) = (efT el1)Q is fixed by (ag,...,ar—1) ¥ (ag,...,ar—1) € Ay.
More concretely, we are going to solve the equation
< 1

boo b001b01b111> /\oTK(q DA A\ DV (‘Pq(boo) Sﬁq(bm)): )\ng(l_<p) A\ DX
0 b1_11 0 A 0 Soq(bll) 0 A ’
(5.50)
and then check that the following equalities hold
<b0—01 ~boo b01b11> (faLT)h ELT ((a,l,...,l)(bog) (a,l,...,l)(b01)>
0 byt 0 1 0 (a,1,...,1)(b11)
h(1=¢)/(1=q) X
=<f“’0 0 Ef) Vaec O

(5.51)
<b0_01 _ba()lb(ilbl_f) (( (i)T)h E&E) ((ao, oyar_1)(boo) (ao, .- ,afl)(b01)>
0 b 0 1 0 ag,---,ar_1)(b
11 (a0 f-1)(bn) (5.52)
10
= <O 1) V(ao,...,af_l) ISWAN|
Comparing the (2,2)-entries of (5.50), we can take bj; = 1. Then the equalities of the
(2,2)-entries of (5.51) and ([5.52) are clear.
Comparing the (1,1)-entries of (5.50)), we need to solve ¢,(boo)byy = Ty
Lemma |5.5.2((i),(iv) we can take bgy = (uT_

(q Dh g(l—@) By

)7h. Then the equalities of the (1,1)-entries of
(5.51)) and (5.52)) follow directly from Lemma ii), (iii).
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Comparing the (1,2)-entries of (5.50), we need to solve

b&ol/\oTE,(S]_l)h%(%l) + byg M D" g (b11) — byg bo1biy Mg (b11) = MDY,

Replacing bgg, b11 by their previous values, we get:
(id —AOAl—lTI;fg*“%q) (bo1) = Do1 & DM — (uTh) "D, (5.53)

Without loss of generality, we may assume that one of cp,...,cy_1, ¢y, cun is 1 and the others
are 0. We separate the following cases:

Case 1: c¢j=1forsome0<j<f—1,h;j#0andh;_1 #p— 1.
By definition, we have

Doy = DT — (uTI;%)*hD]X
DIk _ (uTlg}O)‘hX(Eh]H“‘“’)

— T (q 1)[h]1 1 |:1 o (UT[;]O)_(h+(q_1)[h}j—l):|

c T];f(;]fl)[h]]fl [1 _ [1 _{_B((q*l)l)(pfl))r? }

c eV g (¢—1D)(p—1)p" 1) C B°(h), (5.54)
K,0

where the third equality uses Lemma [5.5.2)(i), the first inclusion follows from Lemma [5.5.4[(ii),
and the last inclusion follows from Lemma - By Lemma we take bg; € AL to be
the unique solution of (5.53)) satisfying |bo1| < p~"

Then we check the equality of the (1,2)-entries of ((5.51)) for the previous values of by, bo1, b11,
or equivalently (for a € O)

h —1\—h
(£27)" (a1, 1) (bor) + E5T —bor = (uT ) Ex - (5.55)
By Lemma- (iii),(iv) and ¢—1 > h, each term of (5.55| - has norm < p~", hence by Lemma

5.5.6[ it suffices to check the equality after applying the operator (1d )\0)\ 7(61 Dh q). We
have

(id _)\O)\l—lTI;(q—l)h )((fLT)h(ajlj... 1)(501))

() (L D) (A TR, (o) (by Lemma E5(0)
= (/)" (@, 1,...,1) (D' - 1;10 "D¥)  (by B5)
h(

= ( F)ha(DLT) fap P ‘”( Tich) "a(DY);  (by Lemma [p5.3iii))
(id —AoAl—lT[;fg‘l)hcpq> (EXT) = DLT — (fE0)" o(DLT);  (by Proposition [F.2.8(i))
(id —)\OAfle;,(Sﬁl)h@q> (bor) = D' — (“TE,%)_hDX¥ (by (6-53))
(id—AoAIIT;E%]_”h% (uTE,lo)*th)

= (uTich) " (1 =20AT' X0, ) (BY)  (by Lemma E5Hii))

= (UTI;}O) (DX - fh(l_(p)/(l_Q)a(DXD . (by Proposition |5.4.7|(1))

a,0
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Hence the equality ((5.55)) holds.

Finally, we check the equality of the (1,2)-entries of (5.52)) for the previous values of by, bo1, b11,
or equivalently (for (ao,...,ar_1) € Aq)

h
(fan )" @0y ag-1)(bo1) + Eaq — bo1 = 0. (5.56)

By Lemma [5.5.3{(i),(iii) and ¢ — 1 > h, each term of ([5.56) has norm < p~", hence by Lemma
5.5.6[ it suffices to check the equality after applying the operator (id —)\0)\1_1T I;,(g_l)hgoq). We
have

<id —AoAfng,(g_l)h%) <( JfoT)h (ao, . .. ,af,l)(bm))
= (f5Y" (ag, ... ay_1) <DLT — (uTyh) DX ) (by Lemma [5.5.5(i))
= ( &T)h ap(DMT) — (uT[;’lo)thX. (by Lemma [5.5.2(ii))
Here we recall that DX € A, hence is invariant under A;. We also have
(id —Ao)\l_lT[;’%kl)hch (E;J;T) = DU — ( iJOT)h ag(DY1); (by Proposition [5.2.8(1))
(id —onfngf(;]‘”hcpq) (bo1) = D" — (uTch) "DX. (by (5:53))
Hence the equality holds.

In the remaining cases, we will prove that
Doy € (id —Ao)\flTI;((;ﬁl)hgpq) (b) + B°(h) (5.57)

for certain b € A’ . By Lemma there is a unique choice of by € b+ B°(h) C A/ satisfying
(5.53]). Then one can check the equalities of the (1,2)-entries of ([5.51)) and (5.52)) as in Case 1.

Case 2: c¢j=1forsome0<j<f—1,hj#0and hj_1 =p— 1
We have

(uT[}}O) —hX([)h]jfl(lfw) _ T};(éﬁl)[hbfl (“lelo) —(h+(g—=1)[h]j-1)
f-1

1_’_qu(7—01 (ZT[;’(il_ql)> _’_B((q_l)z(?p_l))
i=1

1=

(-1 R
—(g=1)[R];_1
€ The o /M ]

K0

o , Cyved (2 e , .
| I S
C T};%{*l)[hbfl - th;gol)(p] [hlj-1) (ZTKﬁJ(l q 1)) + Bo(q—l), (558)
where the first equality uses Lemma [5.5.2[(i), the first inclusion follows from Lemma [5.5.4[(ii),
and the last inclusion uses 2p/ — 2p’~1 — [h];_1 > 1. We also have
() X0 0

— T;;fg_l)([h]j—z—pj”) (uTI}b) —(h+(q—1)([h]jfz—pj*1))ij‘1(lfsa)
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K,i

=0

. j —_— p]
c T}(gal)(ﬂ_l—[h]j—z) [1 I B((q—l)p(p—l)ﬂp]Z [fZlT—p(l—ql) T B((q—l)(P—1)>]

— 1) (i =1—[hl. =1 -1 . )
gTI((q,Ol)(p] [R]j—2) %TKf(l q )—i-B((q—l)(p]*l—p]*Q))

_ T f—1 i
ng(gol)(P] (A1) (;}TKﬁj(l q 1)) + B°(¢—1), (5.59)

where the first equality uses Lemma [5.5.2|1), the first inclusion follows from Lemma [5.5.4(1),(ii),
and the last inclusion uses h;j_1 = p — 1 (hence p? =1 — [h]j_o = p’ — [h]j_1, and p?~+ — p/=2 +
(P~ = [h]j—2) = (0 = [h]j-1) + (=" = p/7?) > 1). Combining (5.58) and (5.59), we get

T};’((;I_l)[h]j_l B (uTIE}O) —h (X([)h]j—l + thé[h}j—Q_pj71)(1—§9)ij_1(17‘9)) (5 60)
€ _h V@ a2 | po gy po |
it K,0 -1 € B,

where the last inclusion follows from Lemma [5.5.9(ii) and h < ¢ — 1. In particular, for j > 1 we
have |Do1| < p~", which proves (5.57) (with b= 0).

Next we assume that j = 0, so that hy_; = p— 1. Recall that [B"X]
Then the difference of Dy; and the LHS of (5.60) is

ENABR ] in WX

ho (UTI;,IO) —h [Ao/\l_lXé[h]fﬂ—Pf_l)(l—W)X;fffl(1—<p) _ Xa(l_w)Xf—l(l_w)}
= —hg (uTI;}O)"‘ (id XA XSL“*“’)W) [ X{;(w) Xf—l(l—ea)}
= (102X Tl ) [ho (i) 7 ),

where the first equality uses hy_1 = p—1 (hence [h];_o— p/~1 = h—q), and the second equality
uses Lemmal[5.5.5(iii). This proves (5:57) (with b= —ho(uTjh) "Xy 7P X7 (179)),

Case 3: cj=1forsome0<j<f—1,hj=0andh;_1 #p— 1L

Let 0 <r < f —1such that hji1 = -+ = hjy, =1 and hjq,41 # 1. We have
(uTp) _hXé[h]j+T+pj”+1)(1—w) — T;v(oq_l)([h}ﬂﬁp"”“) (uTIle)—(h+(q—1)([h]j+r+pj““))
K J4rt f-1 -1 P (=hyrga) P
c T[;((;]_l)([ lj+r+p ) 1_|_qu(,*01 (;TI;,(EI_(I )> —|—B<(q1);2p1))]
—(q=1)([h)j 4 rtpi 7 f=L plgone i o
C Ty~ b [1—<hj+r+1—1> T e + BT -2 )
= K.l

N

(q— . jtrt1 SR ST e SN NES Y
TK% D([A]j+r+p? )_(hj+r+1_1)TK’((;1 1)[h]J+r<ZTK’IZ (1—q )) _{_BO(q_l)7

(5.61)

where the first equality uses Lemma [5.5.2(i), the first inclusion follows from Lemma [5.5.4{(ii),
and the last inclusion uses hji, = 1 and p > 5 (hence 2p/ "1 — 2p7 7 — ([R] 4, + p/ 7L > 1).
For 0 <4 < r, we have

(UTI;}O) —hX([)h]j+i(1—<P)ij+i(1*<P) _ TI;,(SI_l)[h]jH (Ulelo) —(’H-(q—l)[h]jﬂ)X{}Hi(lﬂP)
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J+i
—(q=1)[R] e _ _ pititly _ -1 f - _ _ P
€ Ty~ [1+B<7(q - ”ﬂ ZTK’; ) > Tlf_‘;(llJrB((q Lz 2>)

gD [ttty AT T b o jticl
€ Tk ; OTK,e —glepgﬂ(l =7 + B((a— D2p T =2 h) |,
= =11k,

(5.62)
where the first equality uses Lemma [5.5.2(i), and the first inclusion follows from Lemma
5.5.4(1),(ii).

If 1 <i<r, then using hjy; = 1, hj1i—1 € {0,1} and p > 5 (hence [h]j+i — p' ™ = [h]j+i—1
and 2p7 Tt — 2pI =1 — )50, > 1) we deduce from ((5.62)) that

(uTI;%) —hX[h]jH(l—w)XPHi(l*@)

7 —(y— L f_l N Y
ETK(q D[ h]]+l<ZTKP]+ +1(1 q 1)) 7TK7((;1 DVZ]]JM_I(ZTKZJJF (I—q 1)> +BO(Q71)

(5.63)
If i = 0, then using h; = 0 (hence [h]; = [h]j—1 and 2p’ — 2p'~! — [h]; > 1) we deduce from

(5-62) that

(UTI;}O) _hX([)h]j(l_‘P)ij(lf‘P)

_ ETYAC RIS f=r
c TK((;I DI <ZTKP]+1 )) _T[(gol)(pj (A1) (Z;TKZJO q 1)) +Bo<q_1)

(5.64)

Since hj_1 # p — 1 by assumption, we deduce from ((5.64)), Lemma [5.5.3(i) and Lemma [5.5.9(i)
that

(uTyh) " a0 9 x P 070 ¢ o= Dlvs (ZT At 1)> + B°(h). (5.65)

Combining (5.62)), (5.63) (with 1 <4 <r) and (5.65), we get

(uTih) "D¥ € D' + B°(h) (5.66)
with
e +r+1 r —(g— o pjtitl—f
D/ d_f T (q 1)([h}]+r+pj ) + (hj+7’+l o 1) Z TK7(0q D([Alj4:+p ) (567)
=0

By the definition of DY, we deduce from (5.66) that D1 € (id —Ao)\l_lT[;’(g_l)h@q)(—D/) +
B°(h), which proves (/5.57)).

Case 4: cj=1forsome0<j<f—-1 hj=0and hj_; =p—1.
Let 0 < r < f —1 such that hj;1 = --- = hjy, = 1 and hjyr41 # 1. For simplicity, we
assume that j > 1. The case j = 0 can be treated as in Case 2. Combining (5.62)), (5.63) (with

1<i<r), (5.64) and (5.59)), we get (for D" as in (5.67))
—1\—h — 1) (pI—=[h];_q—pi—f o o
(WTh) " (DX + (hjprr — 1)DX) € D' 4 T VW im0 4 g1y € D' 4 Bo(),

where the last inclusion follows from Lemma [5.5.9(ii) and h < ¢ — 1. This proves (5.57)) (with
b= —D') as in Case 3.
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Case 5: h=1+p+---+p/71 A\ ' =1and ¢, = 1.
Since h; = 1 for all j, the relation (5.63) still holds for j =0 and 0 <7 < f — 1, from which
we deduce that

(uTg}othff:w 1 (zx“ﬂ 0 0= W)

1 i
q Dnl; T p1+1( 1) T (q DI T ‘171)
(ZO K/ Z KK

g (m )z

+ B°(h)

I
]
Q
s}
+
M%
sl

g1 f=2 il —f
ZTK )+ ZTK,((;I 1)([h]l+p+ ) _i_D{_;rT +Bo(h),
/=0

which proves (5.57)).

Case 6: h =0, )\0)\1_1 =1and ¢y, = 1.

This case is easy, because we can simply take Q = <b80 2;’1) =(§9)- O

Remark 5.5.11. By [BHH' ¢, Cor. 2.6.7], the functor p — fo)(ﬁ) is compatible with ten-
sor products. Since we have Dﬁ?) (w]]} un(\)) = Dy, (w;} un(\)) for all h € Z and A € F* by
(BHH" ¢, Thm. 2.9.5] and since any reducible 2-dimensional mod p representation of Gk is

isomorphic to p as in up to twist, we know DY )( ) for all 2-dimensional mod p represen-
tations p of Gx (the irreduczble case being treated in [BHH' d, Thm. 2.9.5]) when p > 5.

As a corollary of Theorem |5.5.10} we give the comparison between the LubinfTate (g, OF)-
modules and the cyclotomic (¢q, Ly )-modules corresponding to p as in

Corollary 5.5.12. Suppose thatp > 5. Letp be as in . Suppose that (see Theorem|5.2.10)

f-1
D)0 (Sl )+ ol
]7
for some co,...,cp_1,Cur,cun € F, then we have (see Definition for Hj; and see Theorem
f-1
Dy, (p) = D (z & (1B + Hy(B5YS]) + cul BY) + cun [B§¥ﬂ> .
§=0

Here we use the convention that (B[] %ef AoAT [B;iy_cl] and [B%5] e AoAT [B;iy_z]

Proof. Recall from the proof of [BHH ¢, Prop. 2.8.1] that the canonical inclusion
B*(R)*= — B*(R)%="

for any perfectoid F-algebra R induces a map Zz, — Zo, of perfectoid spaces over F, which is
induced by the map

—o0

tr: As = F(TP )
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coming from the trace map F[K] 5 F[Q,] = F[T?™], where T is the variable in i By
the definition of 7' and X; (0 < i < f — 1), we have the relation in BT (F(T? ~))) which is
analogous to [BHH ¢, (62)]:

NP I W I

nel neZ =0

Hence we deduce that
tr(X;) =T V0<i<f-1 (5.68)

Suppose that

f-1
DK,OO(?) =D <Z Gy [BLT] + Ctr[B{? ]+ Cun[Btlfg]>
7=0

for some cg,...,cf_1, Ctr, cun € F. By Theorem [5.5.10, we have

O p) = (zw X4 1>+ctr[355]+cunwm).

Then by [BHH ¢, Prop. 2.8.1], [BHH" ¢, Remark 2.8.2] (comparing (5.4) and (5.15) - and (/5.68
we deduce that

Doy, (p) = (m (15 Cych]+H[BCY”])+Ctr[B§ryC1+cun[Bgm>,

where [B]C.yc’h] is defined in the same way as [B}”°], replacing i’ by h for =1 < j < f —1. In
particular, the corollary is true for f = 1.

To prove the corollary for f > 2, without loss of generality we may assume that one of
€05 -+ Cf—1,Ctr, Cun 18 1 and the others are 0. We separate the following cases:

Case 1: ¢;=1forsome0<j5<f—1.
Consider the following étale (¢, Z, )-module over F @r, F;(T) (a € Z;):

f=1 f-1 i
D = 1 Do, =TT (F(T)e) @ F(T)e}”)
plef ™ ey = (el ef”) Mat (o))
alef) el) = (e, el”) Mat(a))

(here we view i as an element of Z/f7Z) with

) —(p—1)hit1 .
(1) — a; T Bid;
where
LoitiAs-2 1 i
Oli _= I3 =
No ifi=f—2 N ifi=f -2
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1 ifi=j—1modf and h; #0
T~ =D+ +4p™H) 4 (hjrry1 — 1) i T—(@=1)((p+p*+-+p")+p")

J— =0

di = ifi=j—1modf, hj =0, hjjr == hjrr =1 and hjrsr # 1
H; ifi=j5—2mod f
0 ifiZj—1,j—2modf,

and the ZX-action is the unique one which commutes with ¢ and satisfies Mat(a)® € I +
Mat (TP~ 'F[T?~']) for all i. Then by computing the actions pq = ¢ o--- oy (f-fold) on Dy,
and Dy, one can check that

12

D ([chc h] +H; [chc h]>

(1B + B,1B5Y5]) -

12

Daffl(ﬁ);

O'fl

D
Dy, =D

IZ

as étale (¢q, Z, )-modules over F((T)), which completes the proof.

Case 2: h=1+p+---+p/71 AA\[' =1and ¢, = 1.
The proof is similar to Case 1 by taking d; = T20-D forall 0 < i < f — 1.

Case 3: h=0, )\0)\1_1 =1and ¢y, = 1.
The proof is similar to Case 1 by taking dg =1and d; =0 for 1 <¢ < f — 1. 0

5.6 The main theorem on Dy(7)

In this section, we recall the results of §4| on D4(7) and finish the proof of Theorem
To do this, we need to prove that certain constants appearing on D4 (7) and on D% (p) match,

see Proposition [5.6.3]
We let p: Gg — GLa(F) be of the following form:

z;‘ o (rj+1)p?
5 ( 7 un(e) * ) (5.69)
0 un(¢71)

with{ e F*,0<r; <p—-3for0<j < f—1andr; #0 for some j. Up to enlarging IF, we fix
an f-th root {/€ € F* of £. By Theorem [5.2.10{(iii) (with h; = 7; + 1, Ag = € and \; = €71,
the Lubin-Tate (¢, O )-module Dk (p) associated to p has the following form (a € Oj):

f-1 -1 A
Dk(p) = TI Drey®) =TI (F(Tko,)el) & F(Tico,)el?)
(1) (G+1) = o) o (5.70)
pleg “ex ) = (eg er )Mat(pV))
aley i) (eg” ef’)) Mat(at),
where (1) .
. q i - -
Mat(pW)) = (V Ko Ve _‘f3> (5.71)
0 3

for some d; € F and Mat(a¥)) € I + M (Tq ! ]F[[Tq_glj ]) which uniquely determines Mat(a(?).
By Theorem|[5.5.10 Proposmon and the assumption on p, the étale (p, O )-module D% (p)
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is obtained from ®f  Dg o, (p) by the recipe T[q(_l, — ©(Y;)/Y;. Hence, if we consider the

A-basis {eJ = ® 5J€J}JCJ for D% (p), the corresponding matrix Mat(yp) € GLys(A) (with
its rows and columns indexed by the subsets of J) for the p-action is given by

Vjg1,g! H Y (rj+1)(1=¢) if J, - J
Mat (), s+1 = i¢J (5.72)
0 if J' g J,

where vy def {/g"’c' 171 Hje(J_l)\J, d; for J' C J—1. Also, the corresponding matrices for the
O -action satisfy Mat(a) € Ios + Mys(F1_pA) for all a € Op.
We also describe the Fontaine-Laffaille module associated to p (see [FL82]).

Lemma 5.6.1. The Fontaine—Laffaille module F L(p) associated to p has the following form:

,

=1 f=1 . ,
FL(p) = [l FL,,(p) = I1 <F6(()])@IF€§J)>
=0 =0
Fil'! FLy,(p) = Fef (5.73)
¢T3+1+1(€§)]+1)) _ %_I(egj) d]+1€(]))
elef™) = e,

where d; € F* is as in )

Proof. Let T be the variable in In particular, the uniformizer is p, hence Z,[T] = Z,[X]
where X is the usual variable corresponding to the formal group law (1+ X )P — 1. By Corollary
5.5.12{ and ([5.70), the cyclotomic (¢, Z,)-module D(p) associated to p has the following form
(a€Zy):

pE = T (F(T)e) e F(T,)e)
. . ]: . . .
pleg ™) ) = (ef) ) Mat(p1))
aleg ef’) (e ef”) Mat(al?))
where r1)( .
Mat(go(j)) — {/ETUJ- P a {/> d{-l—l
0 V€
for the same d; as in 1} and Mat(a()) € I + M, (TZ,’]._IIE‘[[T(?]._I]]) which uniquely determines
Mat (a()).

Let @ & o(T)/T € TP~ +p(1+TZ,[T]), where ¢ acts on Z,[T] as peyc. Since aeye(T) = aT

for a € [F;], the commutativity of the action of a € Z, with [F)] implies that acy.(T) €
aT (1+ TP~ 1Z,[TP~1]). Then we let

Ao E T 0" (Q/acye(Q)) € 1+ TP 12, [TP71].
>0

We construct a Wach module (see e.g. [CD11} §2.4]) over W(F) ®z, Ok [T] of the form (a € Z)):

=1 gl ‘
v MY =T] (W(IF)[[T]] ¥ & W (F)[T]e §])>
. §=0 J=0
p(ef ™D eT) = () D)) Mat(p1))
a(egj) (])) (eéj) ggj))l\/[at(a(]))



with
oy g o)
Mt (w/al[dm]czwﬂ 2

()
A P, 0
Mat(al)) = (p;ﬂEgﬂ 1) ,

where P & H{:_ol O (Ag)ri+it1tl € 14 TP=17Z, [TP~1], and EY € TP=17,[T?P~1] is the unique
solution for the system of equations (j € J)

BY) — [{/2PQ 1 Vp(BY ) = [y (B9) ' -1).
To prove uniqueness, up to dividing p we may assume that p ¢ (E(S] ) _ E;(j ) ) for some j, then we
reduce modulo p and compare the degrees in T'. The existence of the solution follows as in the
proof of Lemma4.10.3(iv). Then one can check that M is a Wach module over W (F) ®z, Ok [T7]

such that M ®z, 7] F(T)) is the dual étale (¢, Ok )-module of D(p).
We give M a filtration defined by

Fill M ¥ {2 € M : p(z) € Q'M]}.
Then for f(T),g(T) € Z,[T], we have
FMed) + g(T)eV) e Fill MU) =
(D) (1871 Qe ™ = [{/& ) Q el ™) + o(g(T)[/Eef ™ € QMU
If i <0, this is automatic. If 1 < i < r; + 1, then we need Q%|¢(g(T)), which is equivalent to

T'lg(T). If i > rj + 1, then we need Q' "+ V|p(f(T)) and Q'|(g(T)), which is equivalent to
Ti*(TjJrl)‘f(T) and Ti|g(T). To summarize, we have

W (F)[T]e & W (F)[T]e} if i >0
Fil! MY = L w(F)[T]el @ T'W (F)[T]e} if1<i<rj+1

=AW (F)[T]e) @ T'W () [T]e) if i > r; + 1.
Then the “module filtré” over W (F) associated to M in [Wac97, Thm. 3] is of the form:

( f—l

M/TM - 1] (W@)egﬂ ® W(F)e§j>)
j=0
Fil L (MO /TMm0)y = Feéj)
11 - . .
somﬁ(y(fg ) = [V 1<)eé” — [d11)ef”)
{ pley™) = [V
Its reduction modulo p is the Fontaine-Laffaille module in (5.73]), which is also the Fontaine—
Laffaille module of p by [Wac97, Thm. 1’]. This completes the proof. O

Then we recall some results on D4 () following Keep the notation of We let 7 be
as in (5.1)) with 7 satisfying the assumptions (i)-(v) above Theorem[5.1.1] By [DL2I, Thm. 1.1]
we have 751 = Dy (7)) as K* GLa(Og)-representations, where Do(7)) is the representation of
GL2(F,) defined in [BP12, §13] and is viewed as a representation of GL2(Ok) by inflation, and
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K> acts on Do(TY) by the character det(7) )w™!, where w is the mod p cyclotomic character.
Since 12 < r; < p—15 for all j, the proof of Theorem [3.6.3.1(i) shows that 7 satisfies (i), (i), (iii)
of Theorem hence satisfies the conditions (a),(b),(c) of [BHH'23, §6.4]. By [BHH'23,

Prop. 6.4.6] we deduce that [r[m? 1 x] =1 for any character x : I — F* appearing in 7TIl

where my, is the maximal ideal of ]F[[I 1], w[m? ] is the set of elements of 7 annihilated by m3 ,
and [ [m? | : x] is the multiplicity of x in the semisimplification of Tr[mI | as I-representations.

In particular, 7 satisfies the conditions (i),(ii) above Theorem with p = 7,/. Twisting p
and 7 using [BHH" ¢, Lemma 2.9.7] and [BHH ¢, Lemma 3.1.1], we may assume that p is as in
(5.69) with max{12,2f + 1} <r; < p—max{15,2f + 3} for all j. In particular, p acts trivially
on .

From now on, we assume that [W(p)| = 1, which is equivalent to J; = () by [Breld,

Prop. A.3], where J; C J is the subset defined in [Brel4, (17)]. In particular, by [Brel4l (18)]
with e/ = e&fﬁ]), i = eéfﬁ]), aj = /€, B = Y€ and pj = dgpi—; for all j € J in [Breld,
(16)], we deduce that d; € F* for all j € J (see (5.71) for d;). We denote oy ef SOCGLy (O ) T

We write i for an element (i,...,i;—1) € Z/, and we write Y for Hf;& szj € A. For

J C J, we define e/ € Z by edef jed. Wesaythat;’ﬁg"ifijSi;forallj. For each J C 7,
we define s”/, r/ ezl by
Tjs ifj¢d, j+1¢J
1, tjed j+1¢J
ardntl, HIChi1e (5.74
p—2—-rj ifj¢J j+1leld
(p— 11—y ifjed j+1elJ,;
0, ¢ jr1¢J
-1, ifjed j+1¢J
rf < Hjehi+1¢ (5.75)
ri+1, ifjé¢d j+1ed
r;, ifjed j+lel

We define the character XJ I — F* by (pc d) — (d)ﬁJﬂJ (8)2“’. Here, for € F and i € Z/
we define o & 2550 9P We identify 751 with Dg(p). Then by the proof of Lemma (ii)
we have 7/t = Dy(p)"* = P Jcg XJ as I-representations. For each J C J we fix a choice of

0 # vy € Do(p)"* with I-character y s, which is unique up to scalar. We recall the following
results of §4i ’ in the case J; =

Proposition 5.6.2. (i) (Proposition Let J C J andi € Z7 such that 0 <i < f. Then

there exists a unique H -eigenvector Y vy € Dy(p) satisfying
(a) Y (Y hy) =0 Vi€ T;
(b) YE(Y tvy) = vy
(ii) (Pmposz'tz’on Let J,J" C J such that J' # J and J'+1 C JAJ' = def (J\JHU(J'\J).

Then there exists a unique element pyy € F*, such that

Iy Iy 69 (™) = p

JH1eJAT GJH1gJAT

(ili) (Proposition |4.5.15) We write g, ey ,ualYpflfr ({)’(1)) vy so that Y'xy, = vy by (ii).
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Then for O # J C J, there exists a unique element pj 7 € F* such that

1-
H Yp o (b 0) V] = 1y gvg + 11 0%,
Jr1¢d
where 79 is defined in (ii).
(iv) (Lemma Let Jy,Jo, J3, Jy € J. Then we have

/’LJ17J3 — /'LJ27J3 (5 76)
Ky, Jy Kz, Jy

whenever all of them are defined in either (ii) or (iii).

We extend the definition of p 7 to arbitrary J,J" C J by the formula

def
{MJ 7= e g/ e i T # T
o = topng g /i

(and 7 as in Proposition [5.6.2(iii) for J # (). Then the equation holds for arbitrary
Ji, 2, J3, Jy € J. By Theoremand the construction of [BHH ¢, §3.2], Hom(D4(7), A)(1)
is an étale (¢, OF)-module over A of rank 2/. Here for D a (p, O} )-module over A, we
write D(1) to be D with the action of ¢ unchanged and the action of a € Oy multiplied
by N, /r,(a). Moreover, by Proposition (i),(iii) and Corollary there is an A-basis
of Hom4(Da(m), A)(1) such that

(i) the corresponding matrix Mat(p)" € GLys(A) for the p-action is given by

Vi1 11 Y(TJ‘H)(l ®) it J CJ
Mat () 41 = igJ (5.77)
0 it J ¢ J,
where 7y e (=1)/~Yeyipyp with g, e (—=)OU=DIif ] £ T and Ej ( /=1
(ii) the corresponding matrices Mat(a)’ for the Of-action satisfy Mat(a)’; ; € 1 + Fi— pA for
all a € Oy and J C 7, which uniquely determines Mat(a)'.

We also extend the definition of v j» (see (5.71)) to all J,J" C J by the formula

[Je|=|J] g] o
def ‘l— j¢J’
vyg = '{/g )
Il d
J+1gJ
where d; € F* is as in (5.71]). Then it is easy to check that ) holds for v j/, and that
dj
Vo [Jel=|J] j¢Jj+1e]
—_— e et 5.78
Vje Q)I/ch /(/ H dj ( )
jeJj+1¢J

Proposition 5. 6 3. Keep the assumptions of m and assume that |W(p)| = 1. Then for J C J
we have (see (5.77)) for vy andey)

v I |J¢|=1J] ¢JH de
J,0 f,l J,0 jé¢J,j+1e
— 0 = (-1 €Jje—r {/ - . (5.79)
Yy 87Vd,Je Hge gh, Je II d;
jeJj+1¢J
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Proof. The first equality follows directly from the definition. Then we prove the second equality.
Since the LHS of is unchanged when we rescale the basis (vy)jc7 and since yje is the
conjugation of y; by the matrix (2 (1]) we may assume that ( ) vy = vye for all J (note that
p acts trivially on 7).

First we compute ju;p/p15c 9. We apply [BDI4, Thm. 1.1] with J replaced by J — 1 and
v =vy. Together with [BHH"b, Lemma 3.2.2.5(i)], we get

I == TT Y7 T Y27 (B9) vy

j+leJd jHied j1¢J

=2(J D) ] e—1=m)t T Y7 T Y2 (B9) vae, (5.80)

j+1igJ j+l¢J  j+led

where z(J—1) is computed by [BD14, Thm. 1.2] with ay, o, = /£, Buo; = Y€ and Tyo; = —d;
by Lemma By Proposition [5.6.2)(ii) applied to (J, () and (J¢,0), we deduce from ([5.80))

that

p H¢ (p—1—r))
J.0 jt+1eJ
— =x(J -1
PEEa A y g g
jH1eJd
—dj)(r; + 1) T (=1)7T !
_{/glJ‘z\*lJleeJﬁJ Jj+1eJd
[T (=dj)(r;+1)| I (=1)tte!
JH+1¢Jjed j+1¢J

ot | T (1) + D
j¢Jj+1ed

_ _%IJCHJ\ LEJ,HleJ(

: (5.81)
[T (=1)rthn! [T (=17 (r;+1)d;
i j+1¢J JESjH1¢]
where the second equality follows from [BDI4, Thm. 1.2] and
(p=1=r)) " = (=)'l modpV0O<r<p-—1 (5.82)

Next we compute p je for J # 0. By Lemma [4.5.1](ii) and its proof (with J; = @), there is
a GL2(Of)-equivariant surjection (see §4.3 for the element ¢ € IndGLQ(OK )( %))

Ind7 > (x) - (GLa(Ok) (§1) va)

which is not an isomorphism when J # (), hence it maps the socle of IndGi L2(Ox )(X‘f]) to zero.

By definition, it is elementary to check that (—1)s"+” = (—1)ZJC (see (5.74) for s7 and |D
for 7). Then we deduce from Lemma M(iii)(a) that

XB—l—g’ (8 (1)) vy + (_1)f—1(_1)L]C [H (SJJ)'] vje = 0. (5.83)



By Proposition W(u) applied to (J, J¢), we deduce from ([5.83)) that

[ [I (—1)”7“3'!” [T =1)%(r+1)!

° =t jedj+ied ¢ Jjt1ed
pyge = (=) T/ [HO(Sf)!] = Al . (5.84)
" [ [1 (—1)”“%‘!] [ IT 1)@ +1)!
j&Jj+1¢J jEJj+1¢J

where the second equality follows from (5.74)), (5.75) and ((5.82)). Combining (5.81) and (5.84)),
we get

d.;

j
K |JA(J—1)]+1 |Je|=1J]j¢ T j+1e
N jglitle]
e pILT, Je =1 ve II 4
jedjrigd

By definition, it is elementary to check that (—1)7~'eje = (—=1)/N=DI+1 for J £ (. This
proves the proposition for J # 0.

It remains to prove the proposition for J = (). By 1) we have pg/(pg ot0,7) = u}lj,
hence it suffices to show that p7 7 = ¢~1. We let

-1
f—1

y & yplor (20 4 1)/~ (—1)r [HOrj!] vy €T (5.85)

j:

By Lemma m(iii)(a), both the elements y and (29) vy = (§}) vy are nonzero and lie in the
I-cosocle of oy = socqr,(o,) T, hence they are equal up to a scalar. By Proposition W(u)
applied to (0,0) and since vy € 7!t, we have Yy = pg gvy. By Proposition W(iii) applied to
J = J, we have (see Proposition W(iii) for xy,.)

YE(§))vg = pag¥ g + g Y w0, = 17,00, (5.86)
where the second equality uses v € 7/t. Then we deduce from Yy = g gvg and l) that
(5%)vs = (ng0/100)y, hence we have

-1

170 170 _ =l
1y gvg + irerer = (59) vy = ==y = pg g, + == (1) (=D | TIrt| v,
K0 Mo 0 j=0

where the first equality follows from Proposition m(iii) applied to J = J and the last equality
follows from ({5.85)), which implies that

-1
K70 - = -
nag = B -y [H rj!] =&
Ho,0 j=0
where the last equality follows from ([5.81)) applied to J = J. This completes the proof. O
Finally, we need the following lemma.

Lemma 5.6.4. Let B € My (F) with nonzero entries whose rows and columns are indezed by
the subsets of J and satisfies By, j, /By, 1y = Biy,i5/Bo.gs for all Ji,Ja,J3,Js C J. Then up
to conjugation by diagonal matrices, B is uniquely determined by the quantities

By }
_ b . (5.87)
{ BJcﬂ)BJﬂ]c Jgj
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Proof. First, it is easy to check that conjugation by a diagonal matrix does not change these
quantities. Next, given such a matrix B, after conjugation we may assume that B ;g = 1 for all
J # (. Then By is determined by letting J = J in , and the rest of the entries of B are
determined by the formula (for J’ # ()

Bjg Buyo \ ' Bg
BJ7J/ — B(J/)C’J/ : — ( ( ) :

B(J/)CJZ) BJ/’@B(J/)C’J/ BJ’,@ ’

This completes the proof. O

Suppose that the matrices (v, ) and (v, ) are conjugated by the diagonal matrix @, then
the matrices ('yJ,J/(SJ/gJ,l) and (I/J,Jléjxgj,l) are also conjugated by Q.

Proof of Theorem [5.1.1, We prove that Da(m) = D% (p"(1)) as étale (¢, Oy )-modules over
A. Since Dg(p¥) is dual to Dg(p) as étale (¢, Oj)-modules, by definition and the equiv-
alence of categories [BHH ¢, Thm. 2.5.1] and Proposition there is a perfect pairing
D% (p)x DY (p") — A which is equivariant for the actions of ¢ and O};. Hence it suffices to show
that Homa(Da(r), A) = D% (p(—1)) = DT (p)(—1), or equivalently, Hom4(Da(r), A)(1) =
D% (p). By Proposition |4.10.4(iii) and Corollary it suffices to compare the matrices
Mat(p) (see (5.72)) and Mat(p)’ (see (5.77)). Then by Lemma it suffices to show that
Y50/ (Vgepvage) = vyg/Wye gvg.ge) for all J C J. This is a consequence of and Proposi-
tion O
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