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Abstract

Through nutrient delivery, waste clearance, and adaptation to changes of the metabolic de-

mand, the brain microcirculation supports the wide range of tasks performed by neural cells.

For that purpose, vascular networks ensure proximity to all cells in the brain through an

efficient spatial organization that encompasses a wide range of scales. Such networks include

capillaries, i.e., the smallest vessels (1-10 µm in diameter), which are fed and drained by the

arterial and venular trees (10-100 µm and over in diameter), respectively. Due to its critical

role in brain homeostasis, the cerebral microvascular system is intricately linked to various

pathologies, spanning from stroke to neurodegenerative diseases. In some cases, microvascular

dysfunction is even the primary cause.

In recent decades, a multitude of advanced imaging techniques have surfaced that enable

accurate depictions of microvascular anatomy in the brain. These techniques also provide

valuable data on blood flow dynamics and molecular transport. Theoretical models on the

transport of molecules have been developed in parallel to interpret and expand the insights

provided by these imaging methods. Such models have shown that fine scale features taking

place at the cellular scale, notably large perivascular concentration gradients, significantly

impact molecular transport. However, capturing these features using conventional numerical

tools proves prohibitively expensive. As a result, their applicability is generally constrained

to a mere handful of vessels, which is not enough to examine the non-local properties of

microvascular networks that drive molecular transport. Numerous alternative approaches

have emerged, including in other fields (e.g. geosciences) to address analogous challenges

associated with the underlying mathematical structure of transport processes in embedded

networks.

In this thesis, we first review these existing approaches to adapt the most relevant features

to our specific problem. In doing so, we develop a multiscale model that optimally tackles

the spatial constraints of the molecular transport problem in the brain microcirculation. This

results in an operator splitting approach firmly rooted in a sound mathematical foundation

based on Green’s third identity. This aids in the precise assessment of the underlying as-

sumptions in 2D configurations (Chapter 3). Beyond this theoretical analysis of the modeling

assumptions, we perform thorough testing through numerical experimentation, which enables

us to evaluate the magnitude of errors introduced by the multiscale model, therefore providing

a precise estimation of the model’s accuracy. Subsequently, we extend the multiscale model

to 3D configurations enabling the simulation of large microvascular networks, with more than

18000 vessels (Chapter 4).

The multiscale model developed in this thesis allows to increase substantially the scope of

molecular transport simulations in the brain microcirculation, simplifying the problem signi-

ficantly while preserving a non-linear description of metabolic consumption in neural cells.

vii
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This, in turn, will enable future investigations of the non-local properties of the microvascula-

ture that were not accessible previously. In particular, coupled to an intravascular transport

model that better represents the non-linear binding of oxygen to hemoglobin, it will provide

a new research tool to further investigate the emergence of hypoxia in Alzheimer’s disease.

It may also provide a basis to account for temporal dynamics, then offering a window into

neurovascular coupling. Overall, the multiscale model addresses the bottleneck of spatial

constraints posed by the microvasculature, thus bridging the gap between the description of

transport at the microscale and at the scale of microvascular networks.



Résumé

Grâce à l’apport de nutriments, à l’élimination des déchets et à l’adaptation aux changements

de la demande métabolique, la microcirculation cérébrale soutient l’ensemble des tâches ac-

complies par les cellules neuronales. À cette fin, l’organisation spatiale du réseau vasculaire,

s’étendant sur différentes échelles, assure la proximité de chaque cellule avec un vaisseau ca-

pillaire. Ces vaisseaux, avec des diamètres de 1 à 10 µm, sont alimentés et drainés par les

arbres artériolaires et veineux (10-100 µm et plus en diamètre). En raison de son rôle crucial

dans l’homéostasie cérébrale, le système microvasculaire cérébral est intimement lié à diverses

pathologies, de l’accident vasculaire cérébral aux maladies neurodégénératives, parfois en tant

que cause principale.

Au cours des dernières années, de nombreuses techniques d’imagerie avancée ont émergé

qui permettent de décrire avec précision l’anatomie microvasculaire cérébrale. Ces techniques

fournissent également des données précieuses sur la dynamique du flux sanguin et le transport

moléculaire. Des modèles théoriques du transport moléculaire ont été développés en paral-

lèle afin d’interpréter et d’élargir les connaissances fournies par ces méthodes d’imagerie. Ces

modèles ont montré que les forts gradients de concentration périvasculaire, qui s’établissent à

l’échelle cellulaire, ont un impact significatif sur le transport moléculaire. La prise en compte

de ces gradients à l’aide d’outils numériques conventionnels représente un coût inabordable.

Par conséquent, leur applicabilité est généralement limitée à quelques vaisseaux, ce qui est

insuffisant pour examiner les propriétés non locales des réseaux microvasculaires qui déter-

minent le transport moléculaire. De nombreuses approches alternatives ont été développées,

y compris dans d’autres domaines (par exemple les géosciences), pour relever des défis ana-

logues associés à la structure mathématique sous-jacente des processus de transport autour

de réseaux multi-échelles.

Dans cette thèse, nous faisons d’abord le point sur ces approches existantes afin d’en adapter

les ingrédients les plus pertinents à notre problème spécifique. Ainsi, nous développons un

modèle multi-échelle qui répond de manière optimale aux contraintes spatiales du problème de

transport moléculaire dans la microcirculation cérébrale. Pour cela, nous mettons en œuvre

une approche de séparation des opérateurs dont la formulation est basée sur la troisième

identité de Green. Cette base mathématique solide facilite l’évaluation précise des hypothèses

sous-jacentes dans des configurations 2D (chapitre 3). Au-delà de cette analyse théorique,

nous réalisons des tests numériques exhaustifs pour estimer l’erreur introduite par le modèle

multi-échelle, fournissant une évaluation rigoureuse de sa précision. Par la suite, nous étendons

le modèle multi-échelle à des configurations 3D permettant la simulation de grands réseaux

microvasculaires, avec plus de 18000 vaisseaux (chapitre 4).

Le modèle multi-échelle développé dans cette thèse améliore considérablement la capacité

de simulation de transport moléculaire dans la microcirculation cérébrale, en simplifiant le
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problème tout en préservant une description non linéaire de la consommation métabolique

dans les cellules neuronales. Ceci ouvre la voie à l’étude des propriétés non locales de la

microvasculature, auparavant inaccessibles. En particulier, couplé à un modèle de transport

intravasculaire plus fidèle à la liaison non linéaire de l’oxygène à l’hémoglobine, il fournira

un nouvel outil de recherche pour étudier l’émergence de régions hypoxiques dans la maladie

d’Alzheimer. Il pourra également servir de base pour décrire la dynamique temporelle du

transport, en lien avec le couplage neurovasculaire. Ainsi, ce modèle multi-échelle surmonte

les contraintes spatiales de la microvasculature, en comblant le fossé entre la description du

transport à l’échelle microscopique et celle des réseaux microvasculaires.
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Chapter 1

Introduction

The microcirculation is comprised of the small vessels that irrigate the organs 1. The brain

possesses minimal energy reserves, making the neurons and glia reliant on the microvascu-

lature to supply nutrients [1–3]. This continuous dependence on the blood flow of nutrients

likely plays a significant role in shaping the structural arrangement of the microvasculature

[4]. These requirements have led to the development of a captivating network of vessels span-

ning various scales, ensuring nourishment to every cell in the irrigated tissue. Nevertheless,

due to these reasons, the well-being of the brain is closely tied to vascular health, an aspect

that has been somewhat overshadowed by neuronal research in the investigation of various

forms of dementia like Alzheimer’s disease (AD) [5].

Beyond its primary role in delivering nutrients, the brain microcirculation performs a myriad

of essential functions. It dynamically modulates cerebral blood flow (CBF) and cerebral blood

volume (CBV), plays a role in temperature regulation, maintains ionic balance, plays a role

in the maintenance of the blood brain barrier (BBB) 2, among other crucial tasks. Thus, the

microcirculation emerges as an intricate and remarkably complex system that orchestrates a

diverse array of functions essential for a healthy brain [6]. Given its importance, the micro-

circulatory system exhibits redundancies to ensure reliability and robustness. In short, the

many tasks fulfilled by the cerebral microcirculation underscores its crucial contribution to

sustaining the proper functioning of the central nervous system (CNS).

Additionally, metabolic activity in the brain varies widely in both space and time, necessi-

tating the microvasculature to dynamically adjust to surges in oxygen demand in real-time.

This phenomenon is referred to as neurovascular coupling (NVC). Despite its widespread ap-

plication in various imaging methods, the precise linkage between blood perfusion and neural

activity remains incomplete [2; 7]. Nevertheless, strong assumptions about the quantitative

relationships between blood flow, oxygen exchanges, and metabolic activity are often used

in many imaging techniques [8] that constitute a cornerstone of cognitive research [9]. The

ongoing exploration of neurovascular coupling demands an improved understanding of the

physiological mechanisms that govern the intricate interplay among blood flow, metabolic

activity, and neuronal function [10; 11]. This presents an opportunity for theoretical and nu-

merical models to bridge the gap between observed physiological responses and the present

1. A specific definition of what is considered ”small vessels” is provided in Section 1.1 where we delve into
the detailed anatomy of the vasculature

2. the barrier between blood and parenchyma created by the endothelial lining of the vessels and other
structures discussed in Section 1.2.3

1



2 CHAPTER 1. INTRODUCTION

understanding of the underlying mechanisms. Particularly when dealing with the dynamics

of molecular transport.

1.1 A multiscale overview of the microvasculature

While the terms ”microcirculation” and ”microvasculature” are commonly used interchan-

geably, we acknowledge an important distinction : the microvasculature specifically refers to

blood vessels, while the microcirculation comprises fluid mechanical aspects, including blood

flow and molecular exchanges with the surrounding tissue.

At the most basic level, we can categorize the small vessels into arterioles, venules, and

capillaries. Arterioles and venules have a similar hierarchical quasi-fractal structure [12]. Much

like the branches of a tree, the largest vessels that stem from the heart progressively branch

into smaller vessels (figure 1.1C and 1.1D), until the capillaries where they form a space-

filling mesh. This mesh, often called the capillary bed connects the terminal branches of the

arterio-venular trees (figure 1.1D). In a healthy brain, there are no anastomoses that connect

the arterial to the venular trees, thus ensuring that the oxygenated blood needed to feed the

tissue flows through the capillaries.

Arterioles serve as the primary sites for blood flow regulation, as their thicker walls incorporate

smooth muscle cells that govern their diameter, thus influencing the hemodynamic resistance.

Meanwhile, the majority of cerebral blood volume remains within the capillaries. In contrast,

venules assume a more passive role, primarily serving as conduits for deoxygenated blood

drainage from the capillary bed [4; 13].

The capillary bed, consisting of the smallest and most abundant blood vessels, is responsible

for ensuring proper supply of oxygen, nutrients, and other molecules to every cell in the brain

tissue (neurons and glial cells). This remarkable efficiency is facilitated by its thin walls and

expansive surface area. Arterioles also contribute to the molecular exchanges [4; 13] as they

carry the oxygenated blood from the heart. However, the extent of their contribution remains

a subject of debate, primarily due to the lack of accurate models capable of quantifying these

molecular exchanges [14].

Various classifications methods exist to differentiate between arterioles or venules and ca-

pillaries. It is generally accepted that the capillaries comprise the vessels with diameter of

d ≈ 10µm and below, although more sophisticated characterization methods exist based on

the vessel resistance for instance [16]. We do not delve into the specificities of these classifi-

cation methods in this thesis, given the early nature of our exploration into the theoretical

modeling of molecular transport. According to [6], the arteriolar and capillary side of the

cortical angioarchitecture is structured as follows :

— First tier, the pial arteries that cover the surface of the cortex, as shown in Fig. 1.1A.

They form a 2 dimensional pial network that connects the 3 large arteries that supply

the brain (the anterior, middle and posterior cerebral arteries), with the penetrating

arteries.

— Second tier, the penetrating intracortical arterioles that connect the network of pial

arteries with the sub-surface circulation, as illustrated in 1.1B. These arterioles have

been identified as the bottlenecks of the cerebral microcirculation [17], as the entire mi-

crocirculatory system is endowed with redundancies to safeguard neuronal nourishment

against occlusions or microstrokes, except for the penetrating arterioles and venules.



1.1. A MULTISCALE OVERVIEW OF THE MICROVASCULATURE 3

A

B

C

D

Figure 1.1 – Terminology and notations for parenchyma and vessel spaces. Panel A : The pial arteries
(red) and veins (black) each forming a 2D network covering the surface of the cortex [15]. Panel B :
Representation of the penetrating arterioles and veins that stem from the pial network [6]. Panel C :
Computer representation of an venular tree in the human cortex that includes 4 branching orders
[16]. Panel D : This same venular tree with its interconnected capillary bed and upstreamed arteriole.
Image obtained through confocal laser microscopy [16].

— Third tier, the sub-surface microcirculation, as shown in grey in Fig.1.1B. As penetra-

ting arterioles descend into the cortex, they gradually ramify into pre-capillary arterioles

that, in turn, feed into the subsurface capillary network. This capillary network is fully

three-dimensional. All cerebral blood flow must pass through this network in order to

exit the brain, as there are no direct arteriole to venule anastomoses in the healthy

brain. The capillary bed offers the largest surface area for the molecular exchanges to

take place [18].

The venular network, responsible for draining the blood that reaches the subsurface micro-

circulation, mirrors the structural traits of the arterial network but with inverted direction

of blood flow. Here, the sub-surface venules feed the penetrating venules, culminating in the

two-dimensional surface network on the brain’s cortical surface (see Fig. 1.1B). In essence, the

emerging network exhibits the characteristics of a redundant two-dimensional cortical net-

work (the pial arteries and veins) linked to a three-dimensional, space-filling capillary mesh

through the penetrating arterioles and venules. This network serves as a resilient source of

nourishment for the neurons and glia in the cortex, with the exception of the penetrating arte-

rioles and venules, where circulation is more delicate and prone to ischemia due to occlusions

[6]. In summary, the microcirculation forms an extensive network of approximately twelve

billion vessels [19] which can be classified as arterioles or venules that have a quasi-fractal

structure [12], and the capillaries, which collectively form the capillary bed. This space filling
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network offers the largest hemodynamic resistance [20] and ensures proper oxygen delivery

to every cell in the tissue.

1.2 Beyond the microvasculature : brain compartments involved in

molecular transport

We have presented the cortical microcvasculatre as the intricate network of vessels responsible

for nourishing the neurons and glia within the cortex. This Section is now dedicated to three

components of interests in the brain cortex that have different permeabilities to oxygen : the

parenchyma, the microvasculature and the BBB.

Let us illustrate the role of these components by qualitatively describing the journey of an

oxygen molecule beginning its path from the left ventricle of the heart through the aorta. It

traverses successive arterial bifurcations until it reaches the pial arteries, as detailed in Sec-

tion 1.1. Subsequently, the molecule enters the cortex via the penetrating arterioles, which

are oriented perpendicular to the cortex (Fig. 1.1B). At this point, the molecule either re-

mains within the microvasculaure and it continues to flow until drained downstream by a

venular tree, or it diffuses into the brain parenchyma through the BBB. Should the molecule

successfully cross the BBB, it will either be metabolized within the parenchyma or drained

by re-crossing the BBB to reach the bloodstream or via the glymphatic system.

Throughout this journey, we emphasize four essential transport processes : advection-dispersion

within the vessels, diffusion across the BBB and diffusion-reaction within the parenchyma.

In the subsequent paragraphs, we offer a concise overview of each process without delving

into the specific theoretical and numerical modeling frameworks. These frameworks will be

the primary focus of the upcoming Chapter.

1.2.1 Parenchyma

The term ”parenchyma” commonly refers to an organ’s functional cells. In the brain, it en-

compasses neurons responsible for transmitting and processing electrical signals, as well as

glial cells that provide essential support to neurons. In this thesis, our focus lies on molecular

transport at a scale beyond individual cells. Consequently, we broaden the parenchyma’s defi-

nition to encompass the entire extravascular space—comprising the brain tissue not occupied

by blood, i.e., 97% of the brain volume [21]. Approximately 80% of this extravascular space is

occupied by neurons and glial cells, the extracellular space (ECS, comprising between 5 and

20% of brain volume [22]), and other minor compartments like the perivascular spaces. The

cellular structures within the parenchyma are extensively studied for their role in chemical

and electrical communication, thought processing, memory storage, and more. The neurons

produce the electrical signals responsible for the characteristic communication of the central

nervous system. The glial cells, that include astrocytes, microglia, oligodendrocytes and epen-

dymal cells, perform a great multitude of support functions that include structural support,

electrical insulation, maintaining homeostasis, controlling blood flow, and many others. The

ECS serves as a reservoir of ions and therefore plays an important role for non synaptic cell

to cell communication, K+- and glutamate- buffering during neuronal signaling, and cellular

nutrient uptake [23]. In this thesis, however, we shift our attention away from individual

extravascular structures that have minimal impact on molecular transport and focus on the

overall transport properties of the parenchyma.
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Small non-polar molecules diffuse freely through the parenchyma due to their ability to cross

the lipid bilayer that encloses the cells, other larger and polar molecules diffuse through the

tortuous paths of the ECS. Any movement of molecules at the scale of the cells arises from the

random movement of the individual molecules. This implies that large gradients are needed in

order to move significant quantities of oxygen to the neurons [24]. Robust nutrient delivery is

ensured by the space filling capillary bed of the brain that places a capillary no further than

50 µm away from any point of parenchyma [24–26]. It has even been hypothesized that each

neuron has a capillary for nourishment [27]. The development of such a network highlights

the important role of the microcirculation to ensure nutrient delivery. Thus, availability of

nutrients within the parenchyma is closely linked to capillary health.

1.2.2 Microcirculation

Central to the molecular transport in the human body lies the vasculature due to its capacity

to move molecules within blood through a pressure gradient provided by the heart. The

blood circulation establishes a direct connection among all the organs in the body, providing

a pathway for communication through chemical signalling molecules (e.g., neurotransmitters,

hormones) or for transport of nutrients and waste, thus irrigating every organ within our

body. This blood circulation guarantees a continuous supply of oxygenated blood to the

brain. Specifically, the oxygen molecule binds to the hemoglobin contained within the RBCs

and also remains dissolved in the blood plasma, creating concentration gradients that lead to

dispersion within the vessels. Although advection is the dominant transport mechanism, it’s

important to note that significant radial concentration gradients have been observed across

a wide range of physiological conditions [14]. Therefore, advection and dispersion are the

transport processes present within the vessels of the microcirculation.

Due to locality of the tasks within the brain, the microvasculature has to adapt dynamically

to local surges in metabolic activity. The microvessels, notably arterioles and capillaries that

are the main sites of exchange of nutrients to the brain parenchyma [4; 13], are in constant

communication with the neurons and glia of the brain to provide this dynamic adaptation.

This communication is made possible by the BBB, a structure exclusive to the brain that

protects the brain parenchyma from toxic molecules and provides a via of communication

between neurons, glia and the vasculature.

1.2.3 Blood brain barrier

The BBB is a unique and intricate structure that contributes to the distinct biochemical

environment of the brain. Functioning as a highly selective semipermeable membrane, it

partitions the circulating blood from what we denominate as brain parenchyma ; it effectively

blocks 98% of small molecules and virtually all big molecules [28]. This selectivity is achieved

through the closely arranged endothelial cells within brain capillaries, creating a barrier that

limits the transit of molecules and ions from the bloodstream into the brain tissue [29].

Furthermore, the BBB, depicted in Figure 2A, consists of several distinct components working

in concert to tightly regulate the exchange of substances between the bloodstream and the

brain parenchyma. It commences with a layer of endothelial cells enveloping the inner lining of

capillaries throughout the body. These endothelial cells are interconnected by tight junctions,

which serve as robust barriers, allowing only essential nutrients and molecules to diffuse into

the brain parenchyma. Beyond this selective filtering function, endothelial cells also perform

a multitude of other roles, including immune response regulation, chemical signaling, and
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Figure 1.2 – The multicellular structure of the blood-brain-barrier (BBB and the neurovascular unit
(NVC). The core structures comprising the NVU (Panel A) are the glial cells, notably astrocytes and
microglia, the neurons, the pericytes and the endothelial cells. The endothelial cells envelope the vessel
lumen through tight junctions that neatly seal the blood. Pericytes and astrocytes end-feet extend
along the outer vessel wall and perform important tasks of communication allowing the dynamic
addaptation of the vessels to metabolic demands. Panel A shows the main structures involved in the
NVU, and Panel B shows the tasks managed by the communication between the vascular structures
and the neurons and glia. Panel C shows a common pathway of BBB dysfunction caused by the
accumulation of toxic waste characteristic of AD.

control of blood vessel tone.

In addition to endothelial cells, pericytes (as shown in Figure 2A) constitute specialized cells

within the BBB. They contribute significantly to functions such as regulating blood flow,

promoting angiogenesis, and maintaining vessel stability, among other critical roles [30]. Ad-

ditionally, there exists a region known as the Virchow-Robin space between the endothelium

and the astrocyte end-feet. These fluid-filled compartments encircle the vessels and play a

crucial role in waste clearance through a mechanism referred to as the glymphatic system,

[31]. Astrocytes and glial end-feet are also integral components of the BBB, playing essential

roles within the neurovascular unit (NVU), which we will discuss further in the following

Section.

Transport across the BBB is a complex process, often requiring active transport mechanisms

that consume energy in the form adenosine triphosphate (ATP), particularly for larger mo-

lecules like glucose and polar molecules such as sodium (Na+), chloride (Cl−) and potassium

(K+). In contrast, smaller non-polar molecules like oxygen (O2) and carbon dioxide (CO2)

can passively diffuse through the BBB, facilitated by concentration gradients between the

bloodstream and brain tissue.

The concentration gradient across the vessel wall is created by the inflow of oxygenated blood
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through the arterial circulation and the consumption of oxygen within the brain parenchyma.

This gradient drives the diffusion of oxygen and other small molecules across the vessel wall,

enabling exchanges between the bloodstream and the surrounding tissue. Importantly, capil-

laries represent the primary site for oxygen exchange due to their large surface area available

for vessel-tissue molecular exchanges [18] and their thin walls, which enhance diffusivity.

1.2.4 The neurovascular unit

The vasculature within the brain maintains a close developmental, structural, and functional

relationship with the surrounding parenchyma, collectively forming a crucial functional do-

main known as the neurovascular unit (NVU) [9; 32]. Given the brain’s limited energy reserves,

the NVU is a dynamic system where the parenchyma, BBB, and vasculature collaborate in

harmony to adapt to varying metabolic demands. This intricate coordination occurs at the

smallest functional level of the brain, where these three components communicate through

chemical signaling to regulate crucial processes such as blood flow and molecular exchanges

(see Figure 1.2A and B).

The phenomenon of adjusting local blood perfusion in response to changes in neuronal activity

is known as neurovascular coupling (NVC). Unraveling the mechanisms underlying NVC is a

thriving area of research [2; 29; 33; 34]. Together, the NVU and NVC exemplify the intricate

interplay between the structural and functional elements of the brain. This collaborative effort

ensures the brain’s metabolic demands are adequately met, facilitating efficient cognitive

processes and overall brain health.

Nevertheless, many aspects of the communication between neurons and blood vessels, as

well as the mechanisms governing local hemodynamic changes, remain unknown [9; 32]. For

example, the phenomenon of local blood flow increasing to a degree that surpasses metabolic

requirements is widely acknowledged, yet the reasons for this overcompensation are not fully

understood [35]. Theoretical and numerical modeling approaches that delve into the intricate

interplay between blood flow and metabolic activity hold significant potential in shedding

light on these aspects of the NVU.

1.3 Exploring clinical and research questions linked to the brain mi-

crocirculation

Thus far, we have presented the structural intricacies of the brain microcirculation and un-

derscored its significance in relation to brain health. Also, we have highlighted the main

transport processes relevant to the brain microcirculation. In this Section, we explore key

areas where advances in numerical and theoretical models of transport within the micro-

circulation can effectively address existing research limitations and establish connections to

address clinical inquiries. We begin by outlining the current state of some widely used imaging

methods in Section 1.3.1 and subsequently, in Section 1.3.2, we explore distinct pathologies

where hypotheses suggest that hypoxia and impairment of the transport capacities within

the microcirculation may contribute to the progression of the disease.

1.3.1 Imaging methods

In the last decades, numerous techniques have emerged in the field of brain imaging that aid

in the exploration of both the micro- and macroscopic aspects of brain structure and function.
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These methods come in different sizes, so to speak, catering to the multiscale nature of the

microcirculation. We deem the microscopic scale as the phenomena with a characteristic

length similar to the diameter of a capillary, or O(10 µm), whereas the macroscopic scale

represents vessel networks of the order of tens of thousands, or O(1 mm3). The mesoscopic

scale is everything that lies in between of the two.

On the microscopic end, there are imaging techniques like multiphoton microscopy [3; 6]

that allow to zoom in and explore the finer details within tiny brain sections with extremely

high resolution (see Fig. 1.1D for an example of the image of a venular tree using confocal

microscopy [16]). These methods aid in our comprehension of cellular interactions and the

intricate functioning of the tiniest vessels. These small vessels are primarily responsible for

communicating with neurons, thereby offering a unique perspective into the inner workings

of the NVU, which therefore provides valuable insights into the microscale processes that

underpin brain function. On the macroscopic end, we find clinical approaches like magnetic

resonance imaging (MRI), positron emission tomography (PET) imaging that offer a broader

view, capturing larger brain areas and providing a sense of average quantities, but lack the

spatial resolution, and therefore, do not include the intricate details of the angioarchitecture

at the capillary level. In this Section, we delve into some relevant imaging techniques at the

microscale and macroscale.

Microscopic scale

Multiphoton scanning microscopy [3; 36] is a form of fluorescence microscopy that relies on

the simultaneous absorption of multiple low-energy photons to excite fluorescent molecules

that permits the spatio-temporal investigation of hemodynamics and oxygen concentration

at very high resolutions. It has enabled an exceptional exploration of the cortical micro-

circulation [2; 7; 17; 37–40]. It allows for in vivo mapping of the microvascular anatomy

with unprecedented cortical penetration (see Fig. 1.3). We can observe in Fig. 1.3 how in

the same experiment Mächler et al. [41], could obtain very accurate representations of the

vascular anatomy sufficiently deep to map the vasculature of the first four cortical layers.

Even more interesting, in Fig. 1.3D and E, we observe the photon count and its associated

oxygen concentration profile around a penetrating arterioles. It is reasonable to assume that,

when coupled with robust theoretical methods, multiphoton microscopy has the potential

to unravel useful insights regarding oxygen transport and consumption, thereby providing

important quantitative data regarding the NVU and neurometabolic coupling. Nevertheless,

the spatial extent of observation is limited with multiphoton microscopy, so that, due to the

interconnected nature of the microvascular network, they implicitly provide incomplete data.

Ligh sheet microscopy recently emerged as an alternative that allows the acquisition of much

larger volumes [42], but only post mortem. Overall, these tools offer a powerful window into

the microvascular anatomy. Nevertheless, they are difficult to interpret without a suitable

numerical and theoretical framework of the transport processes that occur in the brain

Perfusion imaging and hemodynamically-based functional imaging techniques

The brain performs and extremely diverse array of functions, from maintaining basic human

function in the hypothalamus, to stimulating muscle contraction. The capacity to perform

many different tasks is possible due to the ability to locally activate specific regions. There

is therefore a huge incentive in enabling the measure of this local activity in the brain ;

that is the field of perfusion and hemdynamically-based functional imaging techniques at the
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Figure 1.3 – Schematic of the obtainment of oxygen concentration data using multiphoton scanning
microscopy. Panels A and B show the schematic of the measure data and the selection of a target
arteriole that is, as much as possible, perpendicular to the plane of view. Panel C shows the obtained
anatomical data for each cortical depth highlighting the position of the penetrating arteriole. Panels
D and E show the photon count and its associated oxygen concentration field. Modified figure from
[41].

macroscopic level i.e., resolution O(1 mm3).

At the macroscopic level, several neuroimaging techniques are available to study brain func-

tion, including blood oxygenation-dependent functional magnetic resonance imaging (BOLD

fMRI), positron emission tomography (PET), diffusion-weighted imaging (DWI), single-photon

emission computerized tomography (SPECT), Doppler optical coherence tomography (OCT),

arterial spin labeling (ASL), and more. These modalities provide insights into various aspects,

such as angioarchitecture, blood perfusion, oxygen exchange, and more, across large volumes

of tissue. Among these techniques, two stand out due to their relevance and effectiveness in

quantifying changes in blood flow and molecular exchange : PET and BOLD fMRI. Both

PET and BOLD fMRI rely on the use of tracers, albeit with different approaches. BOLD

fMRI measures changes in the hemoglobin content of blood, while PET involves the injection

of an exogenous radioactive tracer, making it a more invasive technique.

From a hemodynamic perspective, PET directly measures the average quantity of an exo-

genous radioactive tracer. This allows for the deduction of various physiological parameters,

such as metabolism (if using radioactive glucose as tracer) or blood flow. In contrast, the

BOLD signal relies on the principle of neurometabolic coupling, where an increase in brain

metabolic activity triggers an overcompensation in blood flow [35; 45–47]. In essence, neuro-

metabolic coupling relies on the expected shift from oxygenated to deoxygenated hemoglobin

in regions with heightened metabolic activity. However, it’s worth noting that neither of

these techniques directly measures neuronal activity ; instead, they are often used as proxies,

especially the BOLD signal.

Furthermore, neurometabolic coupling, which links changes in neuronal activity to metabo-

lic demands via the NVU [48; 49], presents challenges. The relationship between metabolic

activity and neural activation remains unclear, partly due to energy-consuming inhibitory

synaptic connections [35; 45; 50]. Consequently, there is a strong limitation to the interpre-
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Figure 1.4 – Neurovascular and neurometabolic coupling as the underlying mechanisms for the
BOLD signal and other fMRI modalities. The origin of the functional signals including BOLD and
ASL fMRI have their roots in the increase in blood flow (neuro-vascular coupling) and increase in
oxygen metabolism (neuro-metabolic coupling) that occurs when neuronal activity increases. Panel
A shows an illustration of the shape of the different quantities following a neuronal stimulus [10].
Panel B show the origin of the overcompensation of the vascular system with increased blood flow and
oxygen delivery to the activated cortical regions and their associated imaging modalities [43]. Panel
C illustrates an example of the BOLD signal for a sensory stimulus (row on top) and visual stimulus
(row on bottom) [44].

tability of the BOLD signal. To address this limitation, the field of ”calibrated fMRI” has

emerged, aiming to provide models describing this neurovascular relationship [48]. Currently,

the information gained from functional imaging is often constrained not by engineering limi-

tations but by our limited understanding of neurovascular coupling [50].

Therefore, no existing model comprehensively captures the precise microscale physics that

occur in these processes. Additionally, neither PET nor BOLD fMRI adequately considers

the intricacies of the microvasculature within the cortex. To bridge the gap between the

spatial resolution of the BOLD signal (approximately 1 mm3 for clinical scanners operating

at 1-1.5 Teslas) and the transport processes occurring at the capillary level, a more accurate

understanding of microscale physics and vascular anatomy is required. Thus, theoretical and

numerical models are crucial for bridging the gap between metabolic activity in the brain

parenchyma and the vascular response and to accurately quantify the transport phenomena

in the microcirculation.
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1.3.2 Vascular mechanism of neurodegeneration : Alzheimer’s disease and vascular

mediated dementia

Alzheimer’s disease (AD) stands as a prominent form of dementia, characterized by the pa-

thological buildup of amyloid-β plaques and tau tangles within the brain parenchyma. In

particular, amyloid plaques are believed to be the main cause of cognitive impairment in AD

since they are neurotoxic, interfere with synaptic connections and produce an inflammatory

response [51]. The accumulation of this metabolic waste is closely related to vascular dysfunc-

tion [52; 53] though it is unclear whether vascular dysfunction is the precursor to amyloid-β

accumulation or vice versa. Undoubtedly, vascular dysfunction is highly correlated with AD

[5; 54–56], and it is estimated that more than half of AD cases could be prevented by control

of cardiovascular factors [57].

Figure 1.5 – Two hit hypothesis vascular hypothesis for AD. Schematic of hypothesized underlying
causes of the development of AD through vascular dysfunction. It is hypothesized that vascular risks
converge to either BBB dysfunction, mild hypoperfusion (oligaemia), or both to cause an increase of
amyloid-β accumulation in the brain parenchyma, or to be independent causes of neuronal dysfunction
and injury [29]

.

While AD is the most common dementia diagnosis, vascular contributions to cognitive impair-

ment remain important independent causes or contributors of dementia [56]. These vascular

factors encompass conditions such as atherosclerosis, arteriosclerosis, microinfarcts, and silent

strokes, all of which are associated with an increased risk of dementia [55]. Moreover, more

than half of the cases of AD include mixed pathologies, with amyloid-β and vascular disease

being the most frequent combination. For this reason, the contribution of vascular factors

and their underlying mechanisms remains an intense areas of research [5; 29; 55]. However,

the molecular and cellular mechanisms for the development of the disease process for each

risk factor remain unclear. Nevertheless, vascular factors may all converge toward a common

final disease pathway that involves chronic hypoperfusion-hypoxia, and/or amyloid-β and

tau accumulation [29], see Fig. 1.5. These shared pathways accelerate the onset of neuronal

dysfunction and neurodegeneration, and in the worst cases, dementia.

Furthermore, both BBB dysfunction and mild hypoperfusion (termed oligaemia in Fig. 1.5)
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tend to occur together, potentially intensifying the accumulation of amyloid-β in the paren-

chyma. The break down of the BBB is often associated with capillary rarefraction, leading

to decreased capillary density, which ultimately results in hypoperfusion and hypoxia, parti-

cularly in vulnerable regions like the hippocampus [7] or the white matter [5]. Additionally,

hypoperfusion has been shown to induce endothelial dysfunction, perpetuating a harmful

cycle of hypoxia and BBB breakdown [58].

To sum up, the impact of vascular dysfunction in the development of neurodegenerative di-

seases is clear. From being the earliest biomarker of neurodegeneration in humans [59], to

being considered as the main underlying cause of the disease [5; 27; 32; 49; 60]. The me-

chanistic nature of neurodegeneration due to vascular factors primarily affects the transport

processes facilitated by the vascular system. Notably, these include BBB dysfunction caused

by hypoxia [5; 58], hypoperfusion caused by decrease of capillary density [61–63] and impaired

waste clearance associated with increased BBB permeability [32; 49]

Despite substantial progress in understanding vascular factors contributing to various types of

dementia, there is a lack of comprehensive theoretical models that allow careful investigation

of the progression of the disease. Considering also the wide range of pathologies that arise

from the malfunctioning or deterioration of the microcirculation (specific to the brain in

this case, e.g., AD, hypo- and hypertension, etc. [11; 64; 65]), clearly there is a need for a

deeper understanding of the underlying microvascular structure and its implications on CBF,

nutrient transport, and waste disposal.

1.4 Objectives of the present work and general strategy

Understanding and modeling the transport of molecules in the brain is a crucial step in the

interpretation of imaging data at the microscale [7; 36; 41; 66], and at the macroscale [33; 35].

It also plays an important role in the understanding of neurovascular coupling [9; 34] and the

progression of multiple diseases such as AD [67] or vascular mediated dementiae [55; 68]. In

particular, the transport of oxygen is of great importance due to its direct link with oxida-

tive metabolism and hypoxia. However, beyond the structural patterns that govern the brain

microvasculature, we have limited knowledge of the mechanisms controlling oxygen delivery

to the brain parenchyma [50]. Moreover, the multiscale architecture of the microvasculature

challenges the integration of information across various scales due to non-local network effects

[69] leading to other non-local properties such as the heterogeneous capillary oxygen distri-

bution [4]. Overall, these properties hinder the extrapolation of studies with a low number of

vessels to the larger landscape of the brain microcirculation.

In this thesis, we thus undertake the development of an efficient, simple and accurate mul-

tiscale molecular transport model applicable to large volumes of cortical tissue. Our primary

goal revolves around the application of established physical laws governing solute transport

through advanced numerical techniques, all aimed at addressing the specific challenges arising

from the intricate nature of brain microcirculation. That way, attempting to shed light on the

complex transport phenomena occurring in the brain cortex. In simpler terms, we aim at crea-

ting a comprehensive numerical model that enhances our understanding of how oxygen moves

within the brain’s cortex without the extreme computational requirements characteristic of

this system.

The primary objective of this PhD thesis is thus to develop a numerical approach that can be

used on large microvascular datasets. This approach will aid in the interpretation of images
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acquired through the aforementioned microscopic and macroscopic imaging techniques. Such a

model would serve as a strong asset in generating physics-informed interpretations to decipher

signals like BOLD. Additionally, it would shed light on the interaction between vessels and

parenchyma, which is also needed in order to provide a physics-based approach to interpret

the data garnered through microscopic imaging modalities such as multiphoton microscopy

[4; 36; 41]. Additionally, it can improve our understanding of the development of diseases like

AD and other types of vascular dementiae.

The main idea developed in this thesis, is to use mathematical techniques to reduce the

complexity of the numerical resolution of the molecular transport problem. The challenges

of the problem arise as a consequence of the apparently chaotic brain microvasculature and

the rapid variation of vessel sizes within the same region. In the next Chapter, we will thus

explore the current techniques to model blood flow and molecular transport in the brain

microcirculation. An extensive overview is done of the numerical and mathematical techniques

aiming at reducing the complexity of similar problems from a wide range of subjects, from

geoscience engineering, to more similar fields such as blood flow in tumours. We will extend

this exploration to highlight the relevant mathematical techniques employed in each subject,

and then develop a multiscale model tailored to the brain microcirculation.
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Chapter 2

Current methods for modeling blood

flow and molecular transport

In the previous Chapter, we underscored the increasing demand for the development of large-

scale models for molecular transport. This Chapter is dedicated to examining the challenges

inherent in such models, along with the existing strategies documented in the literature. We

place particular emphasis on the various techniques employed to simplify the resolution of

the governing equations. Our objective is to identify key components that can enhance the

capabilities of molecular transport models. This focus aligns with the central aim of this

thesis : to reduce the complexity of molecular transport modeling, resulting in smaller and

less dense matrix systems for faster and more resource-efficient problem-solving. Based on

the strategy determined through this review, we will detail the model formulations in 2D and

3D in Chapters 3 and 4, respectively.

In Section 2.1, we introduce the concept of representing the vascular system as a connected

graph, a widely adopted approach for the structured and intuitive analysis of network connec-

tivity and flow characteristics. In Section 2.2, we briefly discuss the modeling techniques used

to derive velocity fields within the vessels. Section 2.3 introduces the fundamental equations

governing molecular transport. Finally, in Section 2.4, we delve into the prevalent models

employed to solve these equations within the microcirculation and analogous systems.

2.1 Graph representation of the microvasculature

The vasculature is generally represented as a graph composed of interconnected vertices and

edges [1–4], as illustrated in Fig. 2.1. In this representation, each edge corresponds to a vessel

with an associated diameter d, and length l ; the vertices represent the junctions between

vessels. As shown in Fig. 2.1, each edge connects two vertices. We therefore denote each edge

by the vertices it connects ; for instance, d2,3 represents the diameter of the edge connecting the

inner vertex 2 with the boundary vertex 3 in Fig. 2.1. For the sake of simplicity, let us consider

the diameter of each edge is constant, although it is worth noting that variability may be

simply included by introducing the curvilinear abscissa s along each vessel and defining d(s).
The simplicity of graphs makes them a widespread method in the field of microcirculation.

They represent the topology of networks in a concise manner, allowing us to extract a wide

range of quantitative data.

Such a graph representation has been thoroughly used in network models of blood flow

21



22CHAPTER 2. CURRENT METHODS FOR MODELING MOLECULAR TRANSPORT

Figure 2.1 – Example of the graph representation of an arterial tree. The edges are represented
as straight lines joined by vertices. The inner vertices are represented in green, while the boundary
vertices are in blue.

and molecular transport associated to reduced-order models of flow and advection-diffusion-

reaction that are applied to each edge.

2.2 Modeling blood flow in microvascular networks

Transport models are crucially dependent on the properties of the media considered. The

diffusivity of oxygen in both blood and the parenchyma is commonly approximated to that in

water [5–11]. Conversely, estimating the advective properties of the microcirculation through

experimentation remains difficult, which has prompted the development of a multitude of

blood flow models [2; 8; 12–15]. It is important to underscore that flow models offering insights

into the characteristics of the cortical microcirculation [16; 17] are immensely valuable in their

own right. In particular, these models are considerably simpler than molecular transport

models and can simulate larger cortical volumes [3]. Nevertheless, a blood flow map is a

prerequisite for any molecular transport model as the flow problem is independent from the

transport problem but not the other way around. In this context, we consider the flow model

to be a pre-processing step, as our primary focus is on the transport model itself.

In this Section, we detail the challenges arising when modeling blood flow in the microcir-

culation and briefly discuss the strategy adopted to obtain the velocity distribution in our

networks.

2.2.1 Blood rheology at the scale of single vessels

Human blood primarily consists of two main components : red blood cells (RBCs) and their

suspending fluid, called plasma, constituting approximately 40-45% and 55-60% of the blood

volume, respectively 1. Plasma is an acqueous solution containing ions (e.g., Na+, Cl−), pro-

teins and other solutes, including oxygen.

RBCs are specialized oxygen carriers containing hemoglobin, a protein with high affinity to

oxygen molecules. In the context of fluid dynamics, plasma behaves as a Newtonian fluid

[12]. RBCs on the other hand are bound by the lipid bilayer characteristic of human cells.

Consequently, RBCs are the primary contributor to the non linear behaviour of blood. In

larger vessels whose diameter is much larger than the size of a single RBC (approximately

1. The volume fraction of RBCs in blood is commonly referred to as the systemic hematocrit.
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Figure 2.2 – Schmetatics of the red blood cell structuration in microvessels that contribute to the
non-linear behaviour of blood. Panel A displays the features contributing to the phase separation
effect i.e., the non proportional distribution of red blood cells at diverging bifurcations. Panel B
illustrates the blunted velocity profile contributing to the F̊ahræus effect i.e., relative decrease of the
tube hematocrit in comparison with the discharge hematocrit. Panel C shows the non-linear curves
traced from experiments that illustrate the dependence of apparent blood viscosity on vessel diameter
and hematocrit. Panels A and B come from [18], and Panel C from [19].

8µm [18]), blood can be approximated as homogeneous solution behaving as a Newtonian

fluid where RBCs act as solutes [2; 8; 12; 20–23].

In contrast, when dealing with smaller vessels, the two-phase nature of blood must be consi-

dered. Here, blood exhibits a semi-solid state due to the non-negligible size of RBCs and it

organizes itself by increasing the concentration of RBCs towards the center of the vessel (see

Fig. 2.2A and B). This is caused by the interactions between RBCs and the vessel walls,

which give rise to a cell-depleted layer, the so called cell-free layer around the vessel walls.

This spatial structuration of RBCs contributes to several non-linear effects characteristic of

blood flow in small vessels, as illustrated in Figure 2.2A. This, and other phenomena caused

by the two phase nature of the blood influence the velocity profile found within vessels (see

Fig. 2.2B), which causes a difference between the tube hematocrit (HT ), i.e., the volume

fraction of RBCs within a vessel, and the discharge hematocrit (HD), i.e., the fraction of

RBCs delivered by the flow of the vessel.

In the small vessels, i.e., the vessels where the RBC-free layer is not negligible relative to

the vessel diameter, the blood’s behavior deviates from that of a simple Newtonian fluid and

accounting for the interactions between RBCs and the vessel walls is essential. The non-linear

phenomena caused by the two-phase nature of blood in small vessels include :

— F̊ahræus effect : relative decrease of the tube hematocrit by comparison with discharge

hematocrit. This effect is caused by the greater concentration of RBCs at the center of

the vessel where the velocity is greater. Fig. 2.2B illustrates how the blunted velocity
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profile inside the vessels in combination with the existence of the cell-free layer produces

a higher proportion of RBCs leaving the vessel than contained within.

— F̊ahræus-Lindqvist effect : dependence of the apparent blood viscosity upon the vessel

diameter and the hematocrit that occurs in small vessels due to the vessel wall-to-

RBCs interactions. Fig. 2.2C shows the dependence of relative apparent viscosity with

diameter for several values of discharge hematocrit. For larger vessels (diameter well

above 10 µm) the relationship is rather linear, which is clearly not the case for smaller

vessels with diameter around 10 µm.

— The phase separation effect : non-proportional distribution of hematocrit at diverging

bifurcations as a direct consequence of the existence of the cell free layer and the discrete

nature of the RBCs. For example, on the higher side of Fig. 2.2A, we can observe a

plasma channel. It occurs when a small vessel divides and, due to the existence of the

cell-free layer, one vessel receives a disproportionately larger amount of RBCs than the

other, which constitutes a clear example of the phase separation effect.

The F̊ahræus and F̊ahræus-Lindqvist effects impact directly the flow field due to their capa-

city to modify the apparent viscosity of blood. On the other hand, the phase-separation effect

strongly influences the distribution of RBCs in the capillaries, which has a strong influence

on oxgyen transport since RBCs are specialized oxygen carriers [20; 24]. We note that the

relationship between the apparent viscosity of blood, the hematocrit and the vessel diameter

is a complicated one and an active area of research, as well as the prediction of partitioning

of RBCs after bifurcations [12; 24–30]. One of the most widely used expression of the appa-

rent viscosity µapp has been obtained by combining experimental measurements in vitro and

inverse modeling of blood flow for human blood in vivo [12] and is given by :

µapp = µp

[
1 + (µ0.45 − 1) (1 − HD)C − 1

(1 − 0.45)C − 1 ·
(

d

d − 1.1

)2]( d

d − 1.1

)2
(2.1)

where C is a coefficient describing the dependence upon discharge hematocrit

C = (0.8 + e−0.075d)
(

−1 + 1
1 + 10−11d12

)
+ 1

1 + 10−11d12 (2.2)

and µ0.45 represents the apparent viscosity representative of a blood vessel with 45% in RBC

flow (HD = 0.45). The curve in Fig. 2.2C is parametrized by the following expression :

µ0.45 = 6e−0.085d + 3.2 − 2.44e0.06d0.645
(2.3)

Moreover, the varying sizes of blood vessels give rise to a diversity of flow patterns. For

instance, the aorta exhibits turbulent and pulsatile flow, while the capillaries maintain a

continuous and laminar flow. We concentrate on laminar flow due to its prevalence within

the microcirculation. Our approach to obtain a velocity map within each vessel of the micro-

circulation begins with a graph that depicts the vasculature (see Fig. 2.1). The blood flow Q

(m3 s−1) in each vessel is directly proportional to the pressure difference (mmHg) between

the vertices.

Qβγ = Gβγ(Pβ − Pγ) (2.4)
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where the initial and end vertices are given by the sub-indices β and γ respectively, P re-

presents the pressure at each vertex (mmHg) and G is the conductance (m3 s−1 mmHg−1)

defined as :

Gβγ =
πd4

βγ

128µapp
βγ lβγ

(2.5)

In conclusion, this Section has introduced a reduced-order model (ROM) that leverages em-

pirical laws to calculate blood viscosity to establish a relationship between the pressure decay

and flow within circular conduits. By doing so, we significantly simplify the computational

complexity associated with direct numerical modeling of the 3D Stokes equations for laminar

flow within a single vessel. This type of strategy is a recurring theme in this thesis since it

allows for larger simulations than previously possible, as exemplified by the single-vessel flow

model presented in this Section. Furthermore, this methodology extends to a network model,

as discussed in the next Section.

2.2.2 Network models

A vascular network is a complex, interconnected system of blood vessels that transport blood

throughout the body. Graph representations of the network are used to aid in the modeling

tasks. Within a single vessel, the equations presented in the previous Section are used to

model the blood flow taking into account the non-linearities arising due to the F̊ahræus

and the F̊ahræus-Lindqvist effects. Additionally, on each inner vertex of the network (green

vertices in Fig. 2.1), mass conservation is imposed

∑
γ∈Nβ

Qβγ = 0 (2.6)

where Nβ represents the set of vertices connected to γ. Equation 2.6 constructs the full system

provided pressure or flow condition are given at each boundary vertex and the discharge

hematocrit is known in each vessel. The network approach provides a sparse matrix with a

narrow bandwidth due to the low connectivity of vascular networks, which constitutes an ideal

structure for linear solvers. Besides mass conservation at each bifurcation, there is the need

to predict the hematocrit within each daughter branch, which, due to the phase separation

effect, constitutes a challenging task. It is important to note that the hematocrit heavily

influences the apparent viscosity of blood as shown in equation 2.3. Detailing the intricacies

of the phase separation effect, however, lie outside of the scope of this thesis. We note that,

for the obtaining of the flow field we use the iterative approach described in detail in [31].

Moving forward, we focus on the main objective of this thesis : modeling solute transport.

In Section 2.3, we expand upon the notions of molecular transport discussed in the previous

Chapter by introducing the underlying theoretical framework that will be used as the bases

for the model developed in subsequent Chapters.

2.3 The physics of molecular transport

In this Section, we revisit the transport phenomena introduced in the previous Chapter to

expand upon the underlying physical principles and present the theoretical models employed
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in the literature. We recall that the focus of this thesis lies in modeling large microvascular

networks while preserving the microscale dynamics that constitute a crucial component of an

accurate numerical model [6]. For that reason, we avoid modeling phenomena at the cellular

level (e.g., explicitly modeling the geometry of each cell such as neurons (Fig. 2.3C) or RBCs,

and instead use effective descriptions of the media considered. Thus, we model blood and

parenchyma as continuous media [5; 6; 8; 15; 32–35] corresponding to a description of the

associated phenomena at the mesoscale (Fig. 2.3B). In this continuum description, blood and

parenchyma are each represented as binary solvent/solute mixtures which allows to leverage

available theoretical models [5; 9; 11; 33; 36] to bridge the gap between the mesoscopic and

microscopic scales.

A B C

Figure 2.3 – Different scales of interest in the brain microcirculation. Panel A : the macroscopic scale
where the larger vessels (with semi-fractal architecture) are shown in black and the smaller capillary
vessels in red. Panel B : the mesoscopic scale which represents the focus of this thesis. It involves
already a considerable amount of vessels so it is considered the scale of microvascular networks. Panel
C : the microscopic scale where RBCs (not shown) and cells in the parenchyma (shown in grey)
represent important structures at this scale. Figures taken from [3].

The modeling strategy consists in a two compartment description where the intra and extra-

vascular transport are coupled via the diffusion of solutes through the permeable blood brain

barrier (BBB), which yields a coupled blood-parenchyma transport problem. As illustrated

in Fig. 2.4. In the following Sections, we introduce the transport equations governing the

transport processes at the mesoscale.

Advection-dispersion

Diffusion-reaction

s
r

u -D∇ϕ (molecular flux)

ϕ (concentration)

q (vessel-tissue 
    exchanges)

Cv

Figure 2.4 – Schematics representing the main transport phenomena in the brain. On the left, the
two compartment description is illustrated : advection-dispersion coupled to diffusion-reaction. On the
right, we show the large perivascular concentration gradients caused by the vessel tissue exchanges.



2.3. THE PHYSICS OF MOLECULAR TRANSPORT 27

2.3.1 Intravascular advection-dispersion

Within blood vessels, bulk flow is driven by the pressure difference between arteries and veins

(see equation 2.4). As blood is a fluid, diffusive transport also plays a role, quantified by

Fick’s law. Thus, conservation at the microscale can be expressed as follows :

∂Cv

∂t
= ∇ · (−UCv + Dv∇Cv) (2.7)

where Cv represents the intravascular concentration field (mol m−3), U represents the velocity

vector field of blood (m s−1) , and Dv is the effective diffusion coefficient (m2 s−1) of the solute

in blood. The blunted velocity profile appearing in vessels (illustrated in Fig. 2.2B and Fig.

2.4) combined with radial diffusion generates dispersion and enhanced mixing [33; 37; 38].

Direct numerical resolution of these phenomena, i.e., resolution of equation 2.7 in 3D in

the vessels, is cumbersome and expensive. For that reason, ROMs are often used in order

to simplify the resolution of the problem, similarly as in Section 2.2.1 for the blood flow

problem 2. The reduced order version of the intravascular transport problem is presented in

Section 4.2.10.

2.3.2 Extravascular diffusion and consumption

The brain parenchyma is composed of densely packed glial cells (mostly microglia and as-

trocytes) and neurons with interstitial fluid in between. Nicholson [11] and Holter et al. [36]

showed how the movement of molecules in this medium can be approximated by a molecular

diffusion process with an effective diffusion coefficient. Moreover, the metabolic consumption

is a highly complex process that requires multiple intermediate reactions. Therefore, at the

scale we are working with, Michaelis-Menten kinetics is commonly used to estimate the me-

tabolism of oxygen [6; 9; 39–41] and glucose [42]. Both diffusion and metabolic reaction can

be integrated within the mass conservation equation in the parenchyma yielding :

∂ϕ

∂t
= ∇ · (Dp∇ϕ) − M

ϕ

ϕ + K
(2.8)

where the first term in the right-hand side models diffusive transport and the second represents

the metabolic consumption modeled through Michaelis-Menten kinetics. The concentration

field is given by ϕ (mol m−3), Dp represents the effective diffusion coefficient (m2 s−1) in

the parenchyma, M is the maximum reaction rate (mol m−3 s−1), and K is the value of the

concentration (mol m−3) for which the reaction speed is half its maximum.

It is worth noting that the diffusion term in equation (equation 2.8) effectively models the

random walk of molecules at a macroscopic level, which results in a molecular flux from

higher to lower concentration zones. Moreover, equation 2.8 offers an upscaled view of the

estravascular space where Dp represents an effective diffusion coefficient in the parenchyma.

Such view is well supported in the literature [6; 8; 11; 32; 34; 36]. This exemplifies how

upscaling methods are a powerful tool in fluid mechanics to model fluid flow and solute

transport since they constitute a theoretical framework that allows a considerable reduction

2. Although we did not include the original set of equations in the text in the interest of readability, the
blood flow models originate from the Stokes equations in cylindrical tubes that are later reduced to obtain the
formulation discussed in Section 2.2.1.
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in complexity in the modeling strategy by incorporating the microscale dynamics into a

macroscale equation exemplified in equation 2.8.

2.3.3 Diffusion through the blood brain barrier

We model the BBB as an infinitesimally thin membrane where no sorption takes place and

that is permeable to some solutes. As discussed in the previous Chapter, these solutes include

small non-polar molecules e.g., oxygen and carbon dioxide, and some big molecules driven by

active transport through dedicated channels e.g., glucose and proteins. Due to the no sorption

condition, we assume mass balance across the BBB in the following manner :

−n · (Dv∇Cv) = −n · (Dp∇ϕ) (2.9)

where n is the unit normal pointing inward toward the parenchyma (see Fig. 2.4). Further-

more, there is a jump in concentration across the BBB controled by its permeability to the

given solute

−n · (Dp∇ϕ) = Km(Cv − ϕ) on ∂Ωβ (2.10)

that effectively couples the intravascular concentration field (Cv) to the concentration field in

the parenchyma (ϕ). Equation 2.10 represents a Robin boundary condition since it effectively

relates the molecular flux (Dp∇ϕ) to the concentration (ϕ) at the boundary created by the

vessel wall (∂Ωβ). The molecular flux is proportional to the jump in concentration [43], and

controlled by the selective diffusive permeability Km (m s−1) of the BBB to the particular

solute. For the case of oxygen, for which the BBB is fully permeable, we can estimate the

value of the permeability as

Km = DB

ϵ
(2.11)

where DB is the diffusion coefficient of oxygen in the endothelial tissue of the vessel wall,

and ϵ represents its thickness (m) [33]. In the limit cases, when Km = 0, the vessel wall

is impermeable, blocking solutes from crossing and effectively uncoupling intra- and extra-

vascular transport. When Km = ∞, the vessel wall effectively poses no barrier to diffusion,

which, according to equation 2.10, is equivalent to imposing continuity of concentration across

the blood-parenchyma boundary.

2.4 Current approaches for modeling molecular transport

Solving the above equations coupled in spatial domains that correspond to a collection of

vessels (Fig. 2.4) is highly challenging for conventional numerical methods. First, blood vessels

are slender (i.e., high aspect ratio) structures, which pose a challenge requiring a mesh of

characteristic size smaller than the smallest dimension. Second, these slender objects are

embedded in a three-dimensional volume that also needs to be meshed (excluding the vessels).

Consequently, the direct numerical resolution of equations 2.7 - 2.10 is prohibitively expensive.

The use of ROMs is a prevalent practice when dealing with microcirculatory dynamics given

the large size of microvascular networks and the above mentioned challenges. An example of

ROM includes the network approach represented in Section 2.2, wherein the Stokes equation

governing blood flow within vessels is simplified into a linear relationship between pressure
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difference and flow. Such techniques allow for a considerable decrease of computational com-

plexity while preserving the accuracy of the original physical model.

From this point onward, we focus on the steady state version of equations 2.7-2.8, where

the temporal derivative is null. In fact, the complexity of the transport problem mostly

stems from the great size of the microvasculature, its intricate organization and its multiscale

nature. Therefore, the challenge in modeling large networks lies in the spatial complexity of

the problem, which is the focus of this thesis.

2.4.1 Intravascular transport

In an effort to reduce the complicated task of modelling 3D vascular flow and transport inside

the slender cortical vessels (equation 2.7), radial transport inside the vessels is commonly

neglected and the intravascular problem is thereby reduced to a 1D ordinary differential

equation (ODE) [6; 8; 32; 34; 35; 44; 45]. This formulation arises naturally when working

with a graph representation of the vascular system (see Fig. 2.1) and eliminates the need of a

3D mesh of the vessels, which, as mentioned previously, requires a substantial computational

effort.

In the present work, we use a generalization of this formulation which accounts for the radial

gradients of molecular concentration and enhanced mixing through Taylor’s dispersion [38].

Taylor’s dispersion was indeed found important in a significant proportion of capillaries [37].

To our knowledge, only [33] includes dispersion into the transport equation, although only

rigorously demonstrated for weakly coupled regimes (high Peclet number in the vessel and

high Damköhler number in the tissue 3), corresponding to the following reduced-order model

(ROM) for steady-state intravascular transport

Ueff
∂⟨Cv⟩(s)

∂s
− Deff

∂2⟨Cv⟩(s)
∂s2 + 4q(s)

πd2 = 0 on Λ (2.12)

where s represents the intravascular abscisa as illustrated in Fig. 2.4, Λ represents the to-

pological space containing the vessel centerlines (Λ ⊂ R), ⟨·⟩ is the cross-sectional average

operator

⟨·⟩ = 4
πd2

¨
λ(s)

· dS (2.13)

and q(s) represents the vessel-tissue exchanges (mol m−1 s−1) given by the line integral

molecular flux through the vessel wall, defined as :

q(s) = Keff (⟨Cv⟩(s) − ϕ(s)) (2.14)

The effective transport coefficients for advection, diffusion, and permeability Ueff , Deff and

Keff respectively, depend on the velocity, the velocity profile, and the diffusive permeability

of the vessel wall and are given in [33]. Furthermore, the operator · represents the averaging

over the circumference of the vessel :

· = 1
πd

ˆ
∂λ(s)

· dl (2.15)

3. The Peclet and Damköhler numbers refer to the non dimensional numbers quantifying the velocity within
the vessel and the tissue consumption within the tissue. For a further description of these quantities see [33]



30CHAPTER 2. CURRENT METHODS FOR MODELING MOLECULAR TRANSPORT

It is noteworthy how the diffusive permeability of the BBB yields a term (Keff ) that is for-

mally identical to a reaction term (see equations 2.12 and 2.14). This equivalence arises from

simplifying intravascular transport into a 1D equation. In our model, molecular exchanges are

incorporated as a reaction term. Consequently, we refer to our effective intravascular equation

as one that encompasses advection, diffusion, and reaction transport processes.

In short, this ROM allows to model intravascular transport with a 1D effective advection-

dispersion-reaction equation (equation 2.12). This effective equation accounts for the radial

gradients of concentration that have an important impact on vessel-tissue exchanges for phy-

siological values of the BBB diffusive permeability [33].

2.4.2 Current approaches for extravascular transport

The use of a graph representation for the vascular network, along with simplified blood flow

and molecular transport equations, greatly simplifies intravascular problem. However, these

methods do not address the complexity of the extravascular transport problem, which remains

the main challenge in modeling large microvascular networks.

Due to the large aspect ratio of the vessels, large concentration gradients build up around them

to drive diffusive transport deep into the parenchyma (see Fig. 2.3). When using conventional

numerical methods for the extravascular transport, a fine mesh would be needed in order to

capture these rapid variations around the vessels. This implicates the use of meshes where

the location of the vessels is explicitly taken into account (i.e., conforming/body-fitted mesh

illustrated in Fig. 2.5A). If not (i.e., non-corfoming mesh used as illustrated in Fig. 2.5B),

then additional ingredients should be included to represent the microscale dynamics at subgrid

scale. Such approach has not been yet used in the brain, thus the detailed modeling strategies

used in other fields could be leveraged for that purpose. Particularly, we focus on flow in porous

media and in fractured reservoirs [46–48] due to the similarities of these problems with ours.

A B

Figure 2.5 – Conforming fine grid with 1288 elements and coarse cartesian grid with 25 elements.
Panel A : conforming mesh i.e., mesh that surrounds and accomodates the circular source that is
representative of a fine-grid configuration. Panel B : coarse cartesian grid that disregards the precise
location of the circular source and is representative of models that employ some type of coupling
scheme.

In the following Sections, we thus discuss the advantages and shortcomings of other ap-

proaches that might be used to model solute transport in the brain microcirculation in order

to state the specific requirements of a large scale model which are introduced in Section 2.5.

In particular, in Section 2.4.2, we introduce the problem of flow in porous media due to its si-

milar underlying mathematical structure to the molecular transport problem. We discuss how

the pressure gradients building up around the fractures or wells are akin to the concentration

gradients that appear around the vessels in the parenchyma. Then, in Sections 2.4.2 - 2.4.2,
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we discuss the strategies found in the literature that tackle the same or similar problems in

an efficient manner and that might be conducive to our goal of accurately modeling transport

in large microvascular networks. Finally in Section 2.5, we discuss the necessary requirements

of a multiscale model and how different ingredients of the strategies introduced here can be

leveraged.

Mathematical form of single phase, uncompressible flow in porous media

The mathematical resemblance of Darcy’s law for flow in a porous medium and Fick’s law of

diffusion provide a link with the many similar problems that have been tackled for years in

reservoir engineering, geosciences, and many others. In reservoirs, when certain characteristics

are present (e.g., semi-periodicity of the pore network, newtonian fluid, large-scale mechanical

equilibrium), the Stokes equations of flow at the pore scale (equivalent to the microscale in

our case, as displayed in Fig. 2.2C) can be averaged to obtain an upscaled description in

terms of the large-scale pressure [49] through Darcy’s equation

∇ · (KD∇P ) = 0 (2.16)

where KD represents the hydraulic conductivity tensor (m mmHg−1 s−1) and P denotes the

large-scale average pressure (mmHg). For simplicity, we consider an isotropic and homoge-

neous porous medium that allows to write K as an scalar parameter. It is worth noting that

despite the entirely different physical processes governing flow in porous media compared

to steady state diffusion-reaction in the parenchyma, their underlying mathematical formula-

tions are remarkably similar. In fact, if we consider metabolic consumption to be null (M = 0)
in the parenchyma, the steady state diffusion problem in the parenchyma reads

∇ · (Dp∇ϕ) = 0 (2.17)

Due to the large aspect ratio of blood vessels, a common strategy employed consists of repre-

senting the vessels in the microcirculation as line sources of solute in the parenchyma

∇ · (Dp∇ϕ) + qδΛ = 0 (2.18)

where q represents the molecular exchanges between vessels and parenchyma (see equa-

tions 2.12 and 2.14), and δΛ, which is a delta function, restricts the flux q to the centerlines

of the network given the following property

˚
Ω

fδΛdx =
ˆ

Λ
fdl ∀f (2.19)

Similarly, in oil reservoirs, a notable challenge is the modeling of wells due to the scale

difference between well diameters and the size of the reservoir. Analogous to equation 2.18,

these wells are often modeled as line source terms in the mass conservation equation [46; 47;

50; 51]

∇ · (KD∇P ) + qwδw = 0 (2.20)

where qw is the fluid flux provided by the well (m s−1) constrained to the centerline of the well

δw,. This flux is proportional to the difference in pressure between the well and the reservoir.
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It’s important to distinguish between the sizes of the different systems. For instance, a well

typically has a diameter ranging from 10 to 100 cm, whereas a reservoir can extend over several

kilometers. On the other hand, the diameter of blood vessels in microcirculation varies from

5-10 µm in capillaries to 10-20 µm in penetrating arterioles, while in the context of solute

transport simulations in microcirculation, it’s common to work with volumes smaller than

1 mm3 [6; 34; 52]. Consequently, the difference in scale between wells and oil reservoirs is

more significant compared to the scale difference between blood vessels and the surrounding

tissue. This implies that simplifications such as modeling as line sources may be applicable

in reservoir modeling but may not necessarily hold true in the microcirculation.

Our interest is using coarse meshes in order to 1) introduce few unknowns in the parenchyma

and 2) avoid using the more complicated unstructured meshing procedures that adapt to the

network geometry such as the one shown in Fig. 2.5A. Due to the proximity between vessels

and the different spatial scales present in brain networks, separation of scales between the

transport phenomena at the vessel scale and that of the network is not possible. Nevertheless,

blood vessels remain slender structures embedded in a diffusive matrix (parenchyma), where

similar modeling difficulties arise due to the large gradients arising around the vessels, simi-

larly to the large gradients of pressure arising in the vicinity of the well in an oil reservoir.

The modeling strategy of including the vessels as line sources (equation 2.18) allows us to

focus on the modeling strategies that can be leveraged from the reservoir modeling literature

[46–48; 51; 53] that deal with the modeling of the large near source gradients of the scalar

field i.e., concentration or pressure.

Thus, in the following Sections, we explore various approaches from the literature that ad-

dress solute transport challenges in microcirculation and related problems, such as fluid flow

in reservoirs. The focus lies in the resolution of the extravascular problem, modeled via equa-

tion 2.18. Therefore, when discussing the matrix structure obtained, we focus on the transport

problem in the prenchyma, while not dealing with the coupling with intravascular transport

(equation 2.12) for now. We present these approaches in descending order of fidelity to the

fine-scale features. We begin in Section 2.4.2, where the original tubular geometry of blood

vessels is preserved. Subsequently, we introduce different models that employ the simplified

delta formulation introduced earlier in this Section. Finally, our review of approaches ends in

Section 2.4.2, where we examine models that permit the coarsest meshes of the parenchyma,

which constitute the most significant reductions in computational costs.

Fine-grid models - original network geometry

To perform direct numerical simulations of the problem, it is essential to employ a mesh that

conforms to or is body-fitted to the network’s geometry. This is exemplified in the work by

Fang et al. [54], whose mesh is equivalent to that in Fig. 2.6A. The primary challenge of

this approach lies in mesh generation. It necessitates a fine-grid to accurately represent the

network’s geometry, leading to a substantial increase in the number of unknowns owing to the

required fine resolution, while the resolution of the problem in an unstructured grid with FE is

straight forward [55]. Nevertheless, the unstructured grid produces a sparse but disorganized

matrix depicted in the left panel of Fig. 2.6A. This, and the great size of the mesh needed

even for a few vessels renders this approach unpractical for large networks. Essentially, this

represents a brute force approach where the complicated perivascular dynamics are tackled by

increasing the numerical resolution around the sources, as in [54]. Due to the 3D nature of the

resolution of transport in both compartments we denote this approach as a 3D intravascular
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- 3D extravascular (3DIV-3DEV) coupled transport model.

Figure 2.6 – Illustrations of two fine grid approaches conforming to the geometry of the vascular
system. Panel A : unstructured mesh in the same spirit of [54]. Both the extravascular and the
intravascular meshes conform to the cylindrical geometry of the vessels, while the endothelium is
represented by the interface between the two domains. On the left side, the density profile of the
resulting matrix associated with the linear problem in the parenchyma is shown. Panel B : structured
cartesian (”voxelized”) mesh not conforming to the geometry of the vessels. The mesh size is small
enough to capture the endothelium represented in white. Cartesian meshes of this type combined with
a FV discretization of the diffusion problem provide a sparse and structured matrix shown on the left
side of the panel. Figure taken from [35]

Another fine-grid strategy involves the use of a cartesian grid so small that it can accom-

modate the smallest geometrical structures taking place in the vascular system [35; 56], as

illustrated in Fig. 2.6B. This approach avoids the cumbersome body-fitted meshing procedure

by increasing even more the resolution of the grid. The increase in the size of the system is

somewhat compensated by the resulting sparse matrix with diagonal structure and narrow

bandwidth shown in Fig. 2.6B. However, the fact that the grid needs to be of characteristic

size of the same order as the vessel wall (approximately 1 µm), renders it impractical for

large networks. Any greater mesh size than the smallest details of the vessel wall would mis-

represent the endothelial wall, and therefore, would provide an inaccurate estimation of the

vessel-tissue exchanges. Thus, due to size constraints, this approach is also impractical for

large vascular networks.

Fine-grid models - simplified network geometry

We now discuss the models that take advantage of the delta formulation in equation 2.18 to

represent the vessels as a network of infinitesimally thin lines. Following the same convention

as in Section 2.4.2, these approaches fall under the 1DIV-3DEV models.

One notable feature of these models is their treatment of vessels as lines without explicitly
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modeling microscale dynamics around them. Instead, they rely on local refinement strate-

gies focused on the line sources, as detailed in [57]. This approach offers distinct advantages.

The resulting matrices are exceptionally sparse, aligning well with conventional Finite Ele-

ment (FE) or finite volume (FV) schemes, which efficiently handle elliptic equations, e.g.,

(equation 2.18). Additionally, accommodating non-linearities and different types of boundary

conditions (BCs) is straightforward.

However, a drawback emerges from the necessity of local refinement and unstructured me-

shing (see Fig. 2.7). This leads to larger system sizes that are not scalable. Additionally, the

unstructured mesh does not provide a banded matrix, but rather a sparse but unstructured

matrix similar to the depiction in Fig. 2.6A. Inherently, this approach goes against our pri-

mary goal of modeling large microvascular networks due to the great amount of unknowns

produced by locally refined meshes.

Figure 2.7 – Illustration of a graded mesh around the a vessel reduced to an infinitesimally thin
line. On the left : the 3D domain Ω ⊂ R3 and the embedded line Λ ⊂ R. On the right : cross-section
of the graded mesh around the embedded line. Figure taken from [58].

Semi-analytical models

By semi-analytical models, we refer to models based on a Green’s function approach [6; 32],

which are prevalent in the field oxygen transport in the brain cortex [23; 59–64]. The strategy

consists in reducing the vascular system to a collection of point sources distributed along the

vessels’ centerlines. The extravascular concentration field is thus reconstructed by summing

the impulse response (i.e., fundamental solution or Green’s function) of the non-reactive mass

transport equation (equation 2.8 with M = 0). The approach is inherently linear, as it relies on

the summation of independent impulse responses, making it particularly suitable for scenarios

with either negligible or constant metabolic consumption. These methods are referred to as

’semi-analytical’ because they reconstruct the spatial dynamics of the concentration field using

the fundamental solution, i.e., Green’s function, which comprises a sum of analytical functions.

Nevertheless, due to the complex organization of the vascular system, the vascular network

needs to be meshed, introducing some numerical ingredients, notably the discretization of the

vascular system.

Moreover, the inevitable challenge for Green’s function type approaches is the satisfaction

of the boundary conditions, which is the most computationally intensive part [52]. These

semi-analytical methods belong to a a larger class of boundary integral methods (e.g., the

boundary element method), in which the idea is to avoid a volume mesh of the domain

by meshing only the boundaries. That way, the satisfaction of the boundary conditions can

be achieved by finding the bounded Green’s function, i.e., finding an impulse response that
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both satisfy the non-reactive mass conservation equation and the boundary conditions (the

bounded Green’s function of the problem) as in[6; 18; 52], or by also meshing the boundary

of the parenchyma as commonly done in the boundary element method [55; 65] and using the

free-space fundamental solution, which is easier to obtain.

The main advantage of Green’s function methods is the lack of a volume mesh of the paren-

chyma, which results in a great decrease in the size of the matrix system while maintaining

accuracy regarding the perivascular dynamics due to their analytical nature. This decrease in

size comes at the expense of severely increasing the density of the matrix system. In conven-

tional finite element or finite volume, generally, the matrices obtained are quite sparse due

to the locality of the methods. Conversely, due to the infinite support of the fundamental

solution, semi-analytical methods provide a matrix with no null values. This prevents paral-

lelization and effectively renders the method not scalable. The lack of a sparse matrix system

also challenges the resolution via iterative linear solvers. Additionally, the lack of a volume

mesh reduces severely the size of the system, but prevents the inclusion of a reaction term

via conventinal means, i.e., since there is no volume mesh, a reaction term is not straight

forward to include. In Secomb et al., [6], they deal with the issue of non-linear metabolism

in the parenchyma by homogeneously distributing a set of point sinks of mass throughout

the parenchyma. Thereby, effectively negating the computational gain obtained by the lack

of volume mesh. Overall, the aforementioned drawbacks render these approaches impractical

for physiological configurations due to computational constraints.

Analytical coupling models

By analytical coupling models, we refer to those often used in reservoir modeling to include

the highly conductive well [47; 48; 51; 66] when separation of scales is present (e.g., well/vessel

much smaller than reservoir/parenchyma). These models originate from the Peaceman well

model [46] which we reference often throughout this text. The shared characteristic among

these is the use of an analytical solution for the near well pressure gradients (equivalent

to our perivascular concentration gradients) to couple the scalar field inside the well to the

coarse numerical solution of the much larger reservoir. In reservoir simulations, the scalar

field is often the pressure. Due to the similar underlying mathematical structure of both

problems (equations 2.18 and 2.20), similar numerical challenges arise, notably the modeling

of large gradients around the sources. For that reason, many coupling methods would remain

mostly unchanged when applied to the brain microcirculation. The main advantage of these

methods is that they allow a coarse, cartesian mesh. A coarse mesh signifies fewer unknowns

and cartesian signifies no need for a meshing algorithm and a structured sparse and diagonal

matrix (see Fig. 2.6A).

A direct extension of these methods appears in [3] where they propose a hybrid approach

that combines an explicit network model of flow as the one introduced in Section 2.2 with an

upscaled description of the blood flow in the capillary bed through a Darcy-type law, which we

denote as hybrid model. The influence of the arterio-venular trees appears as point sources of

flux in the upscaled description of the capillary bed in a very similar manner as in equation

2.18. This is a challenging configuration where large gradients occur in the vicinity of the

lower dimensional source. In Peyrounette et al. [3], the pressure field is modeled analytically

in the neighbouring cells shown in blue and yellow in Fig. 2.8B. However, in this case, the

separation of scales is not clear, i.e., the size of the vessels is not negligible compared to the

size of the tissue. Therefore, the model necessitates of an additional treatment than traditional



36CHAPTER 2. CURRENT METHODS FOR MODELING MOLECULAR TRANSPORT

well models.

A B

Figure 2.8 – Example of analytical coupling schemes from [3]. Panel A : In blue and red the analytical
coupling used for the point source of mass. Due to the lack of separations of scales a linear decay is
added to the spherical decay characteristic of a point source of flux in 3D. Panel B : the colored cells
(blue and yellow) illustrate the ones whose value is computed by the analytical coupling.

Another recent development of coupling models includes [67], where the delta distribution

appearing in the mass conservation equation in the parenchyma (see equation 2.18) is spread

into a cylinder of larger volume than the original vessel. The shape of the scalar field within the

cylinder is computed a-priori (similarly to the linear-spherical profile shown in Fig 2.8A). This

strategy allows to solve a secondary system that does not have such large gradients around

the vessels due to the spreading and is more easily applied to the brain microcirculation

due to the independence between the vessel position and the coupling scheme. However, this

analytical approach necessitates strong assumptions that are usually not satisfied in the brain

microcirculation, such as the lack of superposition of the cylinders that spread the source.

This represents the main drawback of the a-priori computed perivascular field : these models

require to compute a-priori the shape of the field around the sources that is usually acquired

via a single source simulation or analytical solution. Evidently, this does not hold up in high

density configuration due to the interactions between multiple nearby sources.

Overall, analytical coupling methods offer a flexible approach to include microscale dyna-

mics into a larger structured mesh, which significantly reduces the meshing procedure, and

therefore, the computational complexity of the problem. Thus, they allow an inexpensive

solution to multiscale problems as long as scale separation is satisfied. The main disadvan-

tage of these methods is the independence of each coupling function, that is, each microscale

feature (e.g., line source representing a well in a reservoir, point source representing the end

of the arterio-venular tree), is equipped with an analytical coupling function that normally

resembles the fundamental solution of the problem. This poses a problem when the density

of the lower dimensional sources is high, as it is in the brain microcirculation. Independent

coupling functions do not account for interactions with nearby sources, which is expected to

introduce errors in the solution when sources lie close together. Additionally, these methods

generally lack flexibility regarding the support of the analytical coupling (e.g. yellow and blue

regions in Fig. 2.8), which effectively locks the resolution of the coarse grid to a given value

that must remain unchanged regardless of other constraints of the problem.
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Coarse-grid models

In this Section, we encompass all models that use a coarse grid (as in Section 2.4.2) but do not

use an analytical coupling model to relate the vascular concentration with the neighbouring

cells in the 3D mesh. A clear example of such models is [8] where a coarse unstructured mesh

is used together with a 1D simplification of the vascular system. This model does not use an

analytical coupling scheme (Section 2.4.2), nor local mesh refinement (2.4.2 and 2.4.2) around

the capillaries to accurately quantify the microscale dynamics. Therefore, we do not consider

it as a plausible strategy since it does not model the perivascular gradients, thus neglecting

the microscale dynamics.

Other approaches use a operator splitting framework [68–71] where a simpler problem is sol-

ved, generally using the semi-analytical methods discussed in Section 2.4.2, whose solution

captures the perivascular concentration gradients. This analytical solution is then subtracted

from the original problem with the goal of writing a new (third) problem. This third problem

lacks the large gradients around the sources (since they are explicitly modeled by the analyti-

cal solution) and, therefore, can be solved numerically without the need for mesh refinement

around the sources. The two solutions are then added to obtain a final concentration field.

The need for mesh refinement is eliminated by subtracting the impact of the vessels on the

overall concentration field, and the costly computation of the bounded fundamental solution

(i.e., main drawback of the models in Section 2.4.2) is avoided as well.

However, since they are using the semi-analytical methods, there remains the challenge to

deal with the non-local nature of the fundamental solution. Due to its infinite support, the

problem remains highly coupled, which challenges parallelization and scalability of the ap-

proach. Nevertheless, these methods provide a good foundation due to the combination of the

flexibility of semi-analytical methods (independence of network geometry) with the efficiency

of analytical coupling methods.

Another operator splitting approach is the multiscale finite volume method (MSFV) [72;

73], which represents a versatile and efficient technique for tackling multiscale problems.

Specifically, the MSFV method calculates microscale dynamics by solving a smaller numerical

model beforehand of the dynamics around the sources/sinks. This eliminates the need for

implementing a localization strategy, as microscale dynamics are modeled through a bounded

numerical problem resolved in a pre-processing step. The key aspect of this approach is the

coupling of a microscale solution around the sources with the coarse-grid FV discretization

of the domain. In the subsequent Chapters, we draw inspiration from the MSFV method

to establish a connection between coarse grid discretization and the microscale depiction of

perivascular dynamics.

2.5 Strategy adopted

As presented in this Chapter, different types of ROMs exist that contribute to an important

computational gain due to the associated reduction of the number of unknowns. We presen-

ted them in ascending order of computational efficiency, i.e., reduction in the quantity of

unknowns, as well as the density of each associated matrix that dictates the ease to solve the

linear system as well as the possibility of parallelization.

In the following Chapters, we aim at developing a multiscale model that expands upon the

advantages of the models discussed in this Chapter. We now focus on the problem of interest
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in this thesis : diffusion-reaction problem in the brain parenchyma coupled to advection-

dispersion-reaction problem inside the vessels. In order to properly address the challenges fa-

ced by the specific configurations that arise in the microcirculation, in the next Section 2.5.1,

we first discuss the characteristics required from an efficient numerical model for solute trans-

port. Then, in Section 2.5.2, we discuss the strategy adopted to tackle the complex problem

of solute transport in the brain microcirculation.

2.5.1 Characteristics of an efficient numerical model

The high density and amount of blood vessels generates a lack of scale separation between

vessels and the parenchyma that remains a challenge for numerical methods. Our objective

is to leverage the ingredients of the existing methods of Section 2.4 to develop a viable

approach for modeling solute transport in the brain microcirculation. Below, we summarize

our requirements for a multiscale model that bridges the micro and mesoscale and allows for

the simulation of large microvascular networks

— Accuracy : concentration gradients drive extravascular transport [9; 11; 36; 74]. There-

fore, an accurate approach must include the microscale spatial dynamics that take place

around the capillaries. There will inevitably be errors associated with the modeling as-

sumptions employed to reduce the size of the problem. For instance, the aforementioned

models, with the exception of the direct numerical simulation of Section 2.4.2, all in-

troduce simplifications of the geometry of the vessels to either cylindrical shapes or to

thin lines. In the interest of accuracy, we use the approach introduced in Section 2.4.2

as reference solution for extravascular transport due to the accurate representation of

the vascular network.

— Scalability : while representing microscale dynamics, the model must be applicable to

large microvascular networks. This implies an intrinsic local nature of the numerical ap-

proach. Thus, we avoid the semi-analytical methods of Section 2.4.2 since they produce

a fully coupled system where each source (i.e., vessel) depends on the molecular flux

supplied by all the other vessels in the domain. Fine-grid models also pose a problem

for scalability due to the need of a refined mesh around the sources. This results in

rapid increase of the size of the problem when modeling larger volumes, explaining why

such models generally remain within the range of around 100 vessels [34; 54; 58].

— Theoretical simplicity and conservativeness : One of the goals of this research includes

direct application to imaging methods and to answer clinical questions. That implies the

approaches described here must be tractable for non-mathematicians. We therefore prio-

ritize the FV discretization scheme of the equations over FE due to its greater simplicity

and similar accuracy. The FV discretization establishes a direct connection between phy-

sical quantities, such as molecular fluxes, and the discrete equations for each unknown.

This results in a numerical scheme that is more intuitive and easier to comprehend,

as it bridges the gap between physics and numerical computations. Furthermore, FV

schemes enable the straightforward implementation of advective transport, which is va-

luable when modeling various media, such as tumors [75; 76]. Importantly, FV schemes

are intrinsically conservative, which may not always be the case with FE methods.

For these reasons, FV schemes are widely employed, particularly in microcirculation

problems. [3; 8; 35; 44; 56]
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2.5.2 Strategy of a multiscale model for solute transport modeling in the brain

microcirculation

As discussed in Section 4.2.10, Berg et al., [33] introduced an effective intravascular transport

model with one dimensional support. Due to the great reduction in complexity offered by

a 1D model and the accuracy in modeling intravascular radial concentration gradients, we

employ this approach to model the intravascular advection-dispersion-reaction.

For the parenchyma, the available solutions are more varied. We avoid the fine-grid methods

(Sections 2.4.2 and 2.4.2) due to the large volume meshes used. Additionally, these methods

lack the scalability necessary to model large microvascular networks. On the other hand,

semi-analytical methods provide a theoretical framework that reduces substantially the size

of the system through the use of the fundamental solution of the problem. However, they too

lack scalability due to their fully coupled nature. We suggest to take advantage of the theo-

retical framework of Green’s functions to obtain an analytical description of the perivascular

gradients that is later coupled to a coarse cartesian mesh. That way, we can take advantage

of the approaches in Section 2.4.2, i.e., coarse cartesian meshes that are not computationally

expensive but allows conventional treatment of the boundary conditions and the reaction

terms in the parenchyma.

In order to develop such a multiscale model that also satisfies the requirements cited in

the previous Section, there are multiple features that do not yet exist in the literature. For

instance, a localization scheme that couples an analytical description of the concentration

field with the coarse mesh, or the integration of the non linear reaction term together with

the analytical description of the perivascular gradients. Thus, in Chapters 3 and 4, we focus

on the development of a multiscale model with these characteristics for 0DIV-2DEV and

1DIV-3DEV, respectively.

Therefore, we suggest to use the Green’s function framework to design the analytical coupling

between the network and a coarse mesh broadly leveraging the flux based formulation similarly

to the MSFV developed in [72]. In particular, in the next Chapter, we develop the groundwork

of the model through a 2D equivalent problem. A closely related problem was previously

addressed using the MSFV approach in Wolfsteiner et al. [73]. Due to the explicit numerical

computation of the gradients around the sources, the models based on the MSFV [72] offer

an ideal balance between accuracy and computational complexity. Nevertheless, due to the

the high vascular density in our case, a direct application of the MSFV would reduce to a

fine-grid solution in the same spirit as the models discussed in Section 2.4.2. In the following

Chapters, we propose a model that conserves the advantages of the MSFV while removing

the pre-processing step by including many of the tools provided by the Green’s function

approaches.
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Boas, and Timothy W Secomb. Simulation of oxygen transport and estimation of tissue

perfusion in extensive microvascular networks : Application to cerebral cortex. Journal

of Cerebral Blood Flow & Metabolism, 41(3) :656–669, March 2021.



2.6. REFERENCES 45

[64] Gang Liu, Feilim Mac Gabhann, and Aleksander S. Popel. Effects of Fiber Type and

Size on the Heterogeneity of Oxygen Distribution in Exercising Skeletal Muscle. PLoS

ONE, 7(9) :e44375, September 2012. 34

[65] Costas Pozrikidis and Joel H. Ferziger. Introduction to Theoretical and Computational

Fluid Dynamics. Physics Today, 50(9) :72–74, September 1997. 35

[66] D.W. Peaceman. A New Method for Representing Multiple Wells With Arbitrary Rates

in Numerical Reservoir Simulation. SPE Reservoir Engineering, 10(04) :253–258, No-

vember 1995. 35

[67] Timo Koch, Rainer Helmig, and Martin Schneider. A new and consistent well model for

one-phase flow in anisotropic porous media using a distributed source model. Journal of

Computational Physics, 410 :109369, June 2020. 36

[68] L. C. Woods. The relaxation treatment of singular points in Poisson’s equation. The

Quarterly Journal of Mechanics and Applied Mathematics, 6(2) :163–185, 1953. 37

[69] F. Drechsler, C.H. Wolters, T. Dierkes, H. Si, and L. Grasedyck. A full subtraction

approach for finite element method based source analysis using constrained Delaunay

tetrahedralisation. NeuroImage, 46(4) :1055–1065, July 2009.

[70] Ingeborg G. Gjerde, Kundan Kumar, and Jan M. Nordbotten. A Singularity Removal

Method for Coupled 1D-3D Flow Models. Technical Report arXiv :1812.03055, arXiv,

August 2019. arXiv :1812.03055 [cs, math] type : article.

[71] Ingeborg G. Gjerde, Kundan Kumar, and Jan M. Nordbotten. A singularity removal

method for coupled 1D–3D flow models. Computational Geosciences, 24(2) :443–457,

April 2020. 37

[72] P. Jenny, S. H. Lee, and H. A. Tchelepi. Adaptive Multiscale Finite-Volume Method for

Multiphase Flow and Transport in Porous Media. Multiscale Modeling & Simulation,

3(1) :50–64, January 2005. 37, 39

[73] Christian Wolfsteiner, Seong H. Lee, and Hamdi A. Tchelepi. Well Modeling in the

Multiscale Finite Volume Method for Subsurface Flow Simulation. Multiscale Modeling

& Simulation, 5(3) :900–917, January 2006. 37, 39

[74] T.W. Secomb, R. Hsu, N.B. Beamer, and B.M. Coull. Theoretical Simulation of Oxygen

Transport to Brain by Networks of Microvessels : Effects of Oxygen Supply and Demand

on Tissue Hypoxia. Microcirculation, 7(4) :237–247, August 2000. 38

[75] C. Pozrikidis and J.M. Davis. Blood Flow Through Capillary Networks. In Transport in

Biological Media, pages 213–252. Elsevier, 2013. 38

[76] Rebecca J. Shipley and S. Jonathan Chapman. Multiscale Modelling of Fluid and Drug

Transport in Vascular Tumours. Bulletin of Mathematical Biology, 72(6) :1464–1491,

August 2010. 38



46CHAPTER 2. CURRENT METHODS FOR MODELING MOLECULAR TRANSPORT



Chapter 3

Oxygen transport in the parenchyma :

2D configuration

As we have seen in the previous Chapter, the problem of solute transport in the brain mi-

crocirculation is highly challenging. In particular, coupled transport between the intra- and

extra-vascular compartments (i.e., microcirculation and parenchyma) presents significant dif-

ficulties because different modeling strategies are employed in each system. Furthermore, the

hierarchical architecture and high vessel density in the brain tissue prevent the application

of multiscale methods commonly used in other fields, such as well models [1; 2], or direct

extension of flow models in the microcirculation [3; 4].

To advance our understanding of solute transport in brain microcirculation, it is essential to

integrate the microscale dynamics into a mesoscale model capable of efficiently handling a

large number of vessels. Notably, these microscale dynamics involve large perivascular concen-

tration gradients around vessels that play a crucial role in oxygen delivery [5; 6]. However,

accurate numerical modeling of these gradients is challenging because it requires either fine-

grid models [7; 8], which are computationally expensive, or semi-analytical models [9; 10],

which lack scalability.

In this chapter, we thus focus on transport in the parenchyma, aiming to establish the foun-

dation for a multiscale solute transport model tailored to microcirculation. With the ultimate

goal of developing a 1DIV-3DEV model, we lay the mathematical foundation through 0DIV-

2DEV configurations in order to systematically test the limits of the modeling framework.

This allows us to maintain the readability of the development and to establish the groundwork

for the subsequent chapter. Our primary focus is to accurately quantifying the perivascular

concentration gradients in an efficient manner, a significant challenge in the modeling of

molecular transport, and a central aspect when interpreting experimental oxygenation data

[11; 12]. Additionally, we emphasize the validation of assumptions made to ensure precise es-

timations of oxygen delivery and consumption, even as we simplify computational complexity.

We conduct various tests to assess errors resulting from deviations from ideal configurations,

providing a thorough evaluation of accuracy before applying the model to realistic microvas-

cular scenarios.

The following section reproduces a manuscript submitted to PLOS Computational Biology.

3.1 Coarse grid approach for oxygen transport
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Abstract

Recent progresses in intravital imaging have enabled highly-resolved measurements of
periarteriolar oxygen gradients (POGs) within the brain parenchyma. POGs are
increasingly used as proxies to estimate the local baseline oxygen consumption, which is
a hallmark of cell activity. However, the oxygen profile around a given arteriole arises
from an interplay between oxygen consumption and delivery, not only by this arteriole
but also by distant capillaries. Integrating such interactions across scales while
accounting for the complex architecture of the microvascular network remains a
challenge from a modelling perspective. This limits our ability to interpret the
experimental oxygen maps and constitutes a key bottleneck toward the inverse
determination of metabolic rates of oxygen.

We revisit the problem of parenchymal oxygen transport and metabolism and
introduce a simple, conservative, accurate and scalable direct numerical method going
beyond canonical Krogh-type models and their associated geometrical simplifications.
We focus on a two-dimensional formulation, and introduce the concepts needed to
combine an operator-splitting and a Green’s function approach. Oxygen concentration
is decomposed into a slowly-varying contribution, discretized by Finite Volumes over a
coarse cartesian grid, and a rapidly-varying contribution, approximated analytically in
grid-cells surrounding each vessel.

Starting with simple test cases, we thoroughly analyze the resulting errors by
comparison with highly-resolved simulations of the original transport problem, showing
considerable improvement of the computational-cost/accuracy balance compared to
previous work. We then demonstrate the model ability to flexibly generate synthetic
data reproducing the spatial dynamics of oxygen in the brain parenchyma, with
sub-grid resolution. Based on these synthetic data, we show that capillaries distant from
the arteriole cannot be overlooked when interpreting POGs, thus reconciling recent
measurements of POGs across cortical layers with the fundamental idea that variations
of vascular density within the depth of the cortex may reveal underlying differences in
neuronal organization and metabolic load.
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Author summary

The cerebral microvascular network is the logistics system that provides energy to brain
cells at the right time and place. Blood flow and oxygen can now be observed
dynamically in living rodents, which transformed our knowledge of the system and its
role in ageing and disease. However, oxygen concentration at a given location is the
result of a subtle balance between local cellular consumption, supply by neighboring
vessels and their interconnections to distant ones. Thus, measurements are difficult to
interpret without integrating this multi-scale component, which requires advanced
computational models. This hinders our ability to bridge the gap between experiments
in rodents and clinical applications in humans.

In this work, we focus on oxygen transport between vessels, leveraging recent
advances in multi-scale modelling and their mathematical foundations. By this way, we
formulate for the first time a simple, conservative, accurate and scalable computational
model for cerebral oxygen across scales, that is able to integrate the spatially
heterogenous distribution of vessels. We illustrate how this model, combined to imaging,
will pave the way towards better estimates of oxygen consumption, a hallmark of neural
activity that cannot be directly measured.

1 Introduction 1

Due to its highly specialized function, the brain is one of the organs with the highest 2

basal energy demand. With essentially no substantial energy reserves, it is thus 3

extremely vulnerable to sudden interruptions in oxygen and nutrients delivery by the 4

blood, which can induce neuronal death within minutes with devastating consequences, 5

e.g., for stroke victims [1]. It is also highly sensitive to chronic cerebral hypoperfusion, 6

which can lead to progressive neurodegeneration and cognitive decline, not only in 7

hypoperfusion dementia [2] but also, as increasingly accepted, in Alzheimer’s 8

disease [3–6]. However, despite its critical role in the transition between health and 9

disease, many aspects of oxygen transport and metabolism in the brain remain poorly 10

understood. 11

This motivated the development of high-resolution brain imaging techniques [7]. 12

Together with the increased sophistication of experimental protocols, which enabled the 13

brain of living rodents to be studied in various conditions including sleep, resting and 14

awake states, these provide an unprecedented window on microvascular dynamics (e.g. 15

diameters, red blood cell velocities, blood and tissue oxygenation, neural activity) [7–10]. 16

However, due to the intrinsically heterogeneous and non-local nature of network 17

flows [11–13], the results obtained in different conditions have been difficult to interpret. 18

As we shall see next, this contributed to casting doubt on previously accepted ideas, 19

including the fundamental idea that both structure and function of the brain 20

microcirculation are subservient to cerebral metabolic demand. 21

With regard to brain function, the physiological role of neurovascular coupling, i.e. 22

local surges in blood flow driven by increased neuronal activity (also referred to as 23

functional hyperamia), has been questioned. On the one hand, even the baseline level of 24

blood flow is indeed globally sufficient to supply oxygen to neurons with elevated levels 25

of activity [12]. On the other hand, in the words of Drew [12], “low-flow regions are an 26

inescapable consequence of the architecture of the cerebral vasculature” and “cannot be 27

removed by functional hyperemia”. In fact, “increases in blood flow – whether local or 28

global – will serve only to move the location of the low-blood-flow regions, not eliminate 29

them [13]”. 30

With regard to structure, the local variations of vascular density have been believed 31

for decades to reveal underlying differences in neuronal organization and metabolic 32
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load [14–16], as a result of cerebral angiogenesis being driven by their oxygen 33

requirements [17–19]. Recent breakthroughs in brain-wide vascular network imaging 34

and reconstruction in rodents, associated to scaling analyses, support this vision at the 35

scale of the whole brain [20]. However, detailed measurements of periarteriolar oxygen 36

profiles across cortical layers in awake mice, associated with estimates of the 37

corresponding cerebral metabolic rate of oxygen, recently suggested that baseline 38

oxygen consumption may decrease with cortical depth, from Layer I to Layer IV [10], in 39

contrast to the known increase of capillary density [20,21]. 40

Solving these apparent contradictions requires the development of models integrating 41

the non-local nature of microvascular blood flow [11,13,22], which account for the 42

complex architecture of brain microvascular networks but simplify or neglect transport 43

and metabolism within the tissue, with models of oxygen dynamics going beyond the 44

geometrical oversimplifications associated to Krogh-type analytical 45

descriptions [10,23–28]. 46

However, the computational cost of simulating oxygen transport and consumption in 47

the brain parenchyma by standard numerical methods, such as finite volume or finite 48

element methods, is prohibitive. In fact, they imply to finely mesh the extravascular 49

tissue so as to resolve the strong oxygen concentration gradients building up in the 50

vicinity of each vessel (e.g. [29]), not to mention the technical challenge of automatically 51

meshing its complex three-dimensional volume. A popular alternative, specifically 52

designed to solve oxygen transport in the microcirculation, formulates the problem 53

using Green’s functions [30–34]. The non-local nature of this formulation allows the 54

description of concentration gradients around microvessels while circumventing the need 55

for meshing the intricate geometry of the extravascular space. However, it generally 56

relies on the infinite domain form of the Green’s function, making difficult the 57

application of boundary conditions at the limits of the tissue domain (e.g. periodic 58

boundary conditions). Additionally, oxygen metabolism exhibits non-linear 59

behavior [23,35], which is challenging to describe using Green’s function and generally 60

requires additional meshing [30, 36]. This, coupled with the non-local formulation at the 61

core of the approach, requires the creation of large and dense matrices that are 62

computationally costly to invert. Therefore, solving oxygen transport whether using 63

standard methods or the Green’s function approach limits the size of the regions that 64

can be considered and hinders the potential of such methods to be used in inverse 65

problems, where measured spatial oxygen dynamics are used to deduce local metabolic 66

rate constants or permeability coefficients, which requires to run the direct problem 67

many times. In the latter case, the spatial resolution of the solver is much higher than 68

that of the measurements, which requires averaging of the numerical results, deviating 69

from an optimal allocation of computational resources. 70

Such challenges have been bypassed by introducing dual mesh techniques, where the 71

extravascular domain is coarsely meshed independently of microvessel locations [37], or 72

by simplifying the mesh structure, e.g. based on cartesian grids, to approximate the 73

extravascular domain [38]. These approaches decrease the computational cost, but do 74

not leverage recent progresses in other fields, where analytical solutions to similar 75

problems (analogous form of equations with same underlying mathematical structure) 76

could be used to capture the smallest features of the extravascular oxygen field 77

(perivascular gradients). This would circumvent the need of mesh refinement around the 78

sources. In geosciences (well or fractured reservoir modelling), for example, coupling 79

models are often used where analytical functions help provide a relationship between 80

the highly conductive slender structures (commonly modeled as 1D sources) and the 3D 81

simulation domain [39–45]. In particular, in operator-splitting approaches [46–48], the 82

scalar field (concentration, pressure, heat, etc.) is decomposed into a slowly varying 83

contribution and a rapidly varying contribution. The former can be solved numerically 84

May 6, 2024 3/33



over a coarse cartesian mesh, while the later can be approximated analytically, thus 85

enabling a precise estimation of exchanges at the vessel-tissue interface as well as an a 86

posteriori highly-resolved reconstruction of the concentration field in each mesh cell. 87

The goal of the present paper is to revisit the problem of oxygen transport and 88

metabolism in the brain parenchyma to introduce a simple, scalable and accurate 89

numerical method for its direct resolution. By simplicity, we mean the ability to use 90

cartesian mesh cells independent of vessel locations, thus avoiding meshing the 91

extravascular space, as well as the ability to impose various boundary conditions at the 92

outer limits of the computational domain. By scalability, we refer to a mathematical 93

formulation of the problem at the core of which is a low-bandwidth linear system of 94

equations, so that the numerical resolution can be fully and efficiently parallelized. By 95

accuracy, we mean the ability to control the numerical errors even in the case of a 96

coarse mesh. Here, we present the associated concepts in two dimensions (Section 2), so 97

as to increase the readability of the mathematical developments. This also permits to 98

exploit current commercial finite element solvers, which enable to obtain reference 99

solutions of the initial boundary value problem. This enables to carefully study how the 100

underlying simplifications translate into numerical errors in idealized test cases that 101

sequentially challenge these assumptions (Section 3). We then show how this model 102

helps understanding the recent counter-intuitive experimental results on cortical 103

oxygenation and metabolism [10,24,26] (Section 4). Finally, we discuss how this novel 104

approach compares to previous work and how it will provide the groundwork for 105

computationally affordable oxygen transport and metabolic simulations, fully coupled 106

with intravascular transport in large microvascular networks. 107

2 Model and Methods 108

We first focus on the diffusive transport of oxygen in the brain parenchyma, i.e. the 109

brain tissue except for blood vessels, denoted Ωσ in Fig 1A, for which we present the 110

general three-dimensional formulation in Section 2.1. We then restrict ourselves to a 2D 111

configuration, where vessels are reduced to a collection of circular sources, as 112

schematized in Fig 1B. This enables to maintain the readability of the mathematical 113

developments, introduced from Section 2.2 onwards, without significant loss of 114

generality. We finally consider oxygen consumption in Section 2.4. 115

2.1 Diffusive transport in the brain parenchyma 116

Following [22,29,49,50], oxygen transport in the brain parenchyma is modeled through
the following boundary-value problem (BVP):





∇2ϕ = 0 in Ωσ (1a)

−n · (D∇ϕ) = Km(Cv|Rj ,θ − ϕ|Rj ,θ) on ∂Ωβ,j ∀j ∈ E(Ω) (1b)

ϕ = ϕD on ∂Ω (1c)

where spatial domains Ω, ∂Ω and ∂Ωβ,j and outer normal n are defined in Fig 1 and 117

ϕ [mol ·m−3] and D [m2 · s−1] are the molar concentration field and the diffusion 118

coefficient in the parenchyma, Cv [mol ·m−3] is the intravascular molar concentration, 119

Km [m · s−1] is the diffusive permeability of the vessel wall and Rj [m] the radius of 120

vessel j ∈ E(Ω). E(Ω) is the set of all vessels located in the domain, so that the total 121

number of sources (S) is equal to the number of vessels, i.e., to the cardinality of E(Ω) 122

(S = Card(E(Ω))). In the example displayed in Fig 1A, E(Ω) = {1, 2} and S = 2. To 123

keep the developments as simple as possible, we present the model with Dirichlet 124

boundary conditions (BCs) (Eq. 1c), but our approach is readily available using 125
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Tessellation

V1
V2

V3
V4

A B C

Ωσ

Ωσ

Ω:= Ωβ ⋃ Ωσ 

∂Ωβ,2
∂Ωβ

∂Ωβ,1

∂Ω

Ωσ
∂Ωβ,2

∂Ωβ,1

∂Ω

Fig 1. Terminology and notations for parenchyma and vessel spaces. Panel A
represents a 3D region Ω of the brain tissue, which includes the parenchyma Ωσ and the
vessel space Ωβ . The external boundary is denoted by ∂Ω, the vessel walls by ∂Ωβ , the
vessels center-lines by Λ, the curvilinear coordinate system for the vessels by (s, r, θ) and
the outer normal to the vessel walls by n. Panel B illustrates a 2D geometry, as used in
the present paper to establish the modeling framework in Section 2, with two sources.
The source walls are denoted by ∂Ωβ,1 and ∂Ωβ,2. Panel C displays one example of a
tesselation of space Ωσ into 4 sub-spaces Vk for k = {1, 2, 3, 4}. Here, only two
sub-spaces contain sources, i.e., E(V1) = E(V4) = ∅, E(V2) = {2}, and E(V3) = {1}.

Neumann and Periodic BCs as shown in the Results Section. Moreover, we 126

follow [29,36] and formulate the problem in terms of molar concentration, while most 127

authors in the field use oxygen partial pressures [30,37,51,52]. Partial pressures are 128

indeed only strictly defined for a gas in a mixture of gases. The concept of partial 129

pressure of oxygen in blood implicitly refers to gas-liquid equilibrium and can be 130

manipulated in the case of a system at constant temperature and total pressure. Thus, 131

we prefer to adopt in this paper a more general description of a multicomponent liquid 132

mixture based on concentrations, as illustrated for instance in [53]. This can be 133

accurately applied to any thermodynamic conditions, and offers a more versatile 134

description of gas-liquid equilibrium, avoiding problems when, for instance in free-diving 135

or high altitude, Henry’s law coefficient is pressure dependent. 136

Due to the large aspect ratio of vessels and their low density in the tissue space, we 137

neglect the azimuthal variations of the concentration field around the vessel walls so 138

that Eq. 1b simplifies to: 139

−n · (D∇ϕ) =
qj(s)

2πRj
on ∂Ωβ,j (2)

where qj(s) [mol ·m−1 · s−1] is the integral molecular flux per unit length through the 140

vessel wall at curvilinear abscissa s, defined as [22]: 141

qj(s) = Keff (⟨Cv(s)⟩j − ϕj(s)) (3)

Here, ⟨Cv(s)⟩ is the cross-section averaged intravascular concentration: 142

⟨Cv(s)⟩j =
1

πR2
j

∫∫

Ωβ,j

Cv(s, r, θ)dS (4)

ϕj is the perimeter-averaged extravascular concentration: 143

ϕj(s) =
1

2πRj

∫

∂Ωβ,j

ϕ(s,Rj , θ)dl (5)

Finally, Keff [m2 · s−1] can be deduced from the adimensional effective reaction rate 144

that accounts for the impact of intravascular concentration gradients on the overall flux 145

May 6, 2024 5/33



at the vessel wall: Keff = 8π
Dβ

1+
4Dβ

KmRj

, where Dβ is the diffusion coefficient in blood 146

and Km [m · s−1] is the diffusive permeability of the vessel wall, as established for weak 147

vessel-tissue couplings in [22]. This enables the use of the cross-section average 148

intravascular concentration in Eq. 3. 149

Thus, the previous BVP simplifies into:




∇2ϕ = 0 in Ωσ (6a)

−n · (D∇ϕ) =
qj(s)

2πRj
on ∂Ωβ (6b)

ϕ = ϕD on ∂Ω (6c)

together with Eqs. 3-5 which are needed to estimate qj(s) in Eq. 6b. Of course, a 150

transport model in the intravascular network [22] is also needed to define Cv(s), hence 151

qj , so that the developments in the present work focus on transport in the parenchyma 152

and its coupling with the embedded intravascular network. 153

From now on, we restrict ourselves to a 2D configuration so that we can eliminate s 154

from Eqs. 3-5 and 6b. As we shall see in Section 5, the 2D problem allows us to focus 155

on radial transport, which provides the high perivascular concentration gradients and 156

therefore poses the greatest challenge for the development of numerical approaches. 157

2.2 Operator-splitting 158

Getting inspiration from a large body of literature about mixed-dimensional problems, 159

from well or fractured reservoir modelling in geosciences [39,41,54,55] to multi-scale 160

finite volume or operator-splitting methods in applied mathematics [45,48,56–58], we 161

rewrite the previous BVP (Eqs. 6) by decomposing the concentration field into a slowly 162

varying contribution s and a rapidly varying contribution r: 163

ϕ(x) = s(x) + r(x) (7)

so that r will account for the large near-source concentration gradients while s will 164

account for the slower contributions of the domain boundary and the sources located 165

further away. 166

We further introduce a tesselation F of space Ωσ into F sub-spaces Vk, so that 167

Ωσ :=
⋃

k∈F Vk as schematized Fig 1C. The rationale for this will be apparent in 168

Section 2.3.2, where we present the specific analytical expression chosen for the rapid 169

term, with a localization strategy that maintains conformity with the finite volume (FV) 170

mesh introduced to discretize the equations in Section 2.3. 171

For now, let us decompose r and s as sums of functions which must be 172

continuous-by-part on tesselation F: 173

r(x) =
∑

k∈F

rk(x) with rk(x) = 0 ∀x /∈ Vk (8a)

174

s(x) =
∑

k∈F

sk(x) with sk(x) = 0 ∀x /∈ Vk (8b)

and let us define rk as any function that satisfies:




∇2rk = 0 in Vk (9a)

−n · (D∇rk) =
qj

2πRj
on ∂Ωβ,j ∀j ∈ E(Vk) (9b)

where E(Vk) is the set of sources located inside Vk. This general definition ensures that 175

rk accounts a minima for the rapid contribution of all sources within Vk. This, in turn, 176

ensures the regularity of sk within Vk. 177
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Substituting Eqs. 7 - 9 in Eq. 6 yields a BVP for each sk: 178





∇2sk = 0 in Vk (10a)

n ·∇sk = 0 on ∂Ωβ (10b)

sk = ϕD − rk on ∂Ω (10c)

These BVPs will be at the basis for the numerical finite-volume resolution of s on a 179

coarse mesh in the next Section. For that purpose, we also need to close the problem 10 180

by imposing continuity of concentrations ϕ and fluxes at the interfaces between any 181

contiguous sub-spaces Vk and Vm of F: 182

{
n · (∇ϕ)

∣∣
∂Vk,m

= n · (∇ϕ)
∣∣
∂Vm,k

(11a)

ϕ
∣∣
∂Vk,m

= ϕ
∣∣
∂Vm,k

(11b)

where ∂Vk,m = ∂Vm,k is the interface between these contiguous sub-spaces. 183

Using Eqs. 7 and 8 to substitute for ϕ, and reorganizing, we obtain: 184

{
n · (∇sk −∇sm)

∣∣
∂Vk,m

= n · (∇rm −∇rk)
∣∣
∂Vk,m

(12a)

(sk − sm)
∣∣
∂Vk,m

= (rm − rk)
∣∣
∂Vk,m

(12b)

Therefore, the final BVP for each sk is: 185





∇2sk = 0 in Vk (13a)

n ·∇sk = 0 on ∂Ωβ (13b)

sk = ϕD − rk on ∂Ω (13c)

n ·∇sk = 0 on ∂Ωβ (13d)

n · (∇sk −∇sm)
∣∣
∂Vk,m

= n · (∇rm −∇rk)
∣∣
∂Vk,m

(13e)

(sk − sm)
∣∣
∂Vk,m

= (rm − rk)
∣∣
∂Vk,m

(13f)

186

where rkwill be given as analytic functions of variables qj in Section 2.3.2 and sk 187

will be obtained numerically. Such a set of BVPs could typically be further discretized 188

and solved by domain decomposition methods [56]. Here however, the strong 189

perivascular gradients are accounted for by the rapid term. To minimize the number of 190

unknowns, we introduce in the next Section a FV discretization where a single grid-cell 191

is associated to each sub-space Vk of tessellation F. 192

2.3 Assembly of a system of discrete algebraic equations 193

For that purpose, we set tessellation F to match a cartesian grid of cell side-length 194

h = |∂Vk,m|, where m is a direct neighbour of k (i.e m ∈ Nk) with: 195

Nk := {n, s, e, w} (14)

as defined in Fig 2. 196

From this point forward, we use symbol ˜ to represent the discrete average values of 197

a field on each FV cell k. Noteworthy, for harmonic functions such as s(x), from 198

Gauss’s harmonic function theorem [59], if we neglect the small volume occupied by the 199
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Vk

Ve

n

A B

Fig 2. Terminology and notations for the FV discretization (A) and sub-grid
interpolation (B). Panel A displays the current cell k of the cartesian mesh in green
and its direct neighbours Nk = {n, s, e, w} in blue. s̃k is the value of the slow term at
the center of cell k. The dummy variables s̃k,e and s̃e,k represent the values of the slow
term on both sides of the interface ∂Vk,e. Generally, s̃k,e ̸= s̃e,k due to the jump
introduced by Eqs. 12. Panel B displays the dual mesh used for sub-scale interpolation
in red. This dual mesh is constructed by joining the centers of the FV grid. Its cells are
denoted by numbers (0, 1, 2 and 3).

vasculature (≈ 3% [60]), this average value can be approximated at second-order by the 200

value at the cell’s center. 201

Therefore, the unknowns of the system are the values of the slow term at the center 202

of each FV cell s̃k, and the vessel-tissue flux for each source qj . These are represented 203

by two vectors of discrete variables s = {s̃1, s̃2, s̃3, ..., s̃F } and q = {q1, q2, q3, ..., qS}, 204

respectively. 205

2.3.1 FV discretization for the slow term 206

The gradient of the slow term is approximated by the Two Point Flux Approximation 207

(TPFA): 208

(D∇sk(x) · n)
∣∣∣∣
∂Vk,m

≈ D
s̃k,m − s̃k

h/2
(15)

where h is the size of the FV cell face h = |∂Vk,m| and s̃k,m are dummy variables, to be 209

eliminated by substitution from the final system, which represent the values of the slow 210

term on interfaces ∂Vk,m. 211

Additionally, we use the classic FV formulation by integrating Eq. 13a over each FV 212

cell k (see Section A in S1 Methods for more detail). This yields: 213

−4s̃k +
∑

m∈Nk

s̃k,m = 0 (16)

The discrete versions of boundary conditions 13e and 13f are:





D
s̃k,m − s̃k

h/2
−D

s̃m − s̃m,k

h/2
=

1

h

∫

∂Vk,m

n · (D∇rm(x)−D∇rk(x))dl (17a)

s̃k,m − s̃m,k =
1

h

∫

∂Vk,m

(rm − rk)dl (17b)

From the above equations, we can express the dummy variables s̃k,m as follows: 214

s̃k,m =
s̃k + s̃m

2
+

Jk,m
2

(18)
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with: 215

Jk,m =
1

2

∫

∂Vk,m

n · (∇rm −∇rk)dl +
1

h

∫

∂Vk,m

(rm − rk)dl (19)

where Jk,m is a function of the sources q as we shall see in Section 2.3.2, and it accounts 216

for the discontinuities of the rapid term across the interfaces of the FV. We can express 217

equation 16 as a function of the unknowns of the system: 218

−4s̃k +
∑

m∈Nk

(
s̃m + Jk,m

)
= 0 (20)

where s̃k and s̃m are found under the vector s. 219

Moreover, if the current mesh cell k belongs to a boundary, the boundary 220

condition 10c is used instead of 17, yielding: 221

s̃k,∂Ω = ϕD − rk,∂Ω if ∂Vk,∂Ω ∈ ∂Ω (21)

Therefore, the discretized version of BVP 13 can be assembled from Eqs. 20 and 21 222

into an algebraic system with as many equations as grid-cells: 223

A · s+ J = b∂Ω (22)

where matrix A contains the classic diffusion stencil, and the vector J contains the 224

values of J given by Eq. 19. Therefore, for each row k, A contains one diagonal value 225

and 4 off-diagonal values associated to its neighbours, while the vector b∂Ω contains the 226

entries relevant to enforce the BCs 21. 227

We have constructed a system of algebraic equations that enforces mass balance of 228

the concentration field in each FV cell through Eq. 20. To go further, we must specify 229

the choice of the rapid term that will allow the the entries of J to be deduced 230

from Eq. 19. We note r could be obtained numerically as in [56,57], or approximated 231

analytically based on the Green’s function formulation, as detailed in the next Section. 232

2.3.2 Potential-based localized formulation for the rapid term r 233

We first recall that, as written in Section 2.2, rk must be harmonic functions that 234

satisfy Eqs. 9 for all k, ensuring to consider, a minima, the rapid contribution of all 235

sources within Vk. 236

Straightforward analytical approximations for rk in 2D are therefore: 237

rk =
∑

j∈E(V̂k)

Pj (23)

where V̂k represents any extension of Vk, i.e. any region of space containing Vk, and Pj 238

is the single-source potential associated to source j. 239

According to potential theory [61–63], Pj can be written as (see Section B in S1 240

Methods): 241

Pj =




ϕj +

qj
2πD

ln
( Rj

||x− xj ||
)

if ||x− xj || > Rj

ϕj if ||x− xj || ≤ Rj

(24)

With this explicit definition of the potentials, the expression of the rapid term 242

(Eq. 23) only depends on the vessel-tissue exchanges (q) and on the position ||x− xj ||, 243

so that rk = rk(q;x). From this expression of the rapid term, now we have an explicit 244

definition of J from Eq. 22 as a function of the vessel-tissue exchanges q. We can thus 245

assemble the discrete system of equations with s and q as follows: 246
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A · s+ B · q = b∂Ω (25)

Noteworthy, rk strictly fulfills the constraints corresponding to Eqs. 9 if and only if 247

there is a single source i in V̂k, for which xi ∈ Vk. Any additional source j in V̂k induces 248

a perturbation εqi,j : 249

εqi,j = −n · (D∇Pj)
∣∣
∂Ωβ,i

(26)

of the normal flux around source i (see Section C in S1 Methods), which is not 250

accounted for in the model. However, the integral contribution of these errors is null so 251

the model remains conservative (Section C in S1 Methods). The impact of this 252

perturbation will be examined in the Results Section 3.3. 253

Inspired by our previous work in [64], we set V̂k to correspond to a finite number n2
254

of cells in the finite-volume mesh, with n ≥ 3 to avoid a special treatment for sources 255

lying on the interface between two mesh cells. 256

By this way, n sets up the characteristic size of the region in which we account for 257

the contribution of nearby sources to rk, while the contribution of sources outside V̂k is 258

only implicitly treated through sk, as illustrated in Fig 3. Thus, increasing n leads to a 259

better approximation of the concentration field (see Section 2.3.4), but at the same time 260

increases the density of matrix B in Eq. 25. In the limit case where V̂k = Ω, we would 261

obtain an element-wise non-zero B, leading to a non-sparse system similar to [30,51, 65] 262

where the boundary integrals of the classic Green’s function formulation are estimated 263

by s. Since the goal here is to obtain a sparse linear system, V̂ (V̂ ⊂ Ω) is chosen to be 264

small in comparison to the domain of computation, but large enough to include the near 265

source gradients. 266

The estimation of the single source potential based on the Green’s integral 267

formulation has a natural extension to 3D. The circular sources that appear in the 2D 268

model provide a simple formulation to the potential since the double layer potential is 269

null (see Section B in S1 Methods). In contrast, an open cylinder provides a non-null 270

value for the double layer integral resulting in a second potential in Eq. 24 [51] which 271

accounts for the axial variations. The rest of the developments presented in Section 2.3, 272

including FV discretization and localization of the slow term, can be simply 273

extrapolated to 3D. 274

2.3.3 Sub-grid reconstruction to estimate vessel-tissue exchanges (q) 275

The vessel-tissue exchanges are governed by Eq. 3, which in 2D translates into: 276

qj = Keff (⟨Cv⟩j − ϕj) (27)

for each source j ∈ E(Ω). In 3D, this equation should be coupled to an intravascular 277

transport problem that introduces a discrete 1D description of average intravascular 278

concentrations along vessel centerlines [22] as additional unknowns (see e.g. [45, 66]). In 279

our 2D case, however, sources are disconnected, so that the values of ⟨Cv⟩j are provided 280

as boundary conditions. The average wall concentration is given by: 281

ϕj =
1

2πRj

∮

∂Ωβ,j

ϕ(x)dl (28)

However, the numerical model only provides an approximation of the concentration 282

field at the grid-cell centers xk: 283

ϕ̃k = s̃k + rk(q,xk) (29)

and, from Eq. 21, at the boundary nodes. 284
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In gray: rapid term (analytical expression)
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Fig 3. Localization strategy illustrated for two sources with neighbourhood
V̂k of size 3x3 grid-cells (i.e., n = 3). Panel A: Cells where the rapid term accounts
for source 1 and source 2 are displayed in blue and green respectively, with
superposition in cells h and k, so that rw = P1 ∀w ∈ {a, b, c, d, e, f,m}, rw = P2

∀w ∈ {g, p, q, r, t, u, v} and rw = P1 + P2 ∀w ∈ {h, k}; cells lying further from sources 1
and 2 are displayed in white. In these cells, rw = 0; Panel B: Flux balance for all cells
highlighted in dark blue in panel A. Green arrows represent the contributions of slow
terms while grey arrows those of rapid terms. The latter may exhibit jumps, e.g. at
interfaces Vkm and Vnm due to the localization-induced discontinuities in the rapid term.
Panel C: Concentration field decomposition (Eq. 7) along the x-axis crossing the center
of source 2 (dashed axis in Panel A). We show in red the fine-grid reconstructed
solution through Eq. 30, in green the coarse-grid slow term and in grey the rapid term.

To estimate ϕj from Eq. 28, we must reconstruct the concentration field everywhere 285

in Ωσ. For that purpose, we interpolate the slow term from its values at xk and xk,∂Ω 286

using a classical set of linear shape functions γi associated to these points, as defined in 287

Section D in S1 Methods. We also introduce a extended rapid term rc
i bridging the 288

discontinuities across the interfaces of the FV cells ∂Vk,m∀k ∈ F&m ∈ Nk, as detailed 289

in Section D in S1 Methods. The resulting interpolation function Iϕ reads: 290

Iϕ(s,q;x) =
∑

i∈T

γi(x)(s̃i + rc
i (q;x)) (30)

where T represents the set of FV grid-cell centers xk and of boundary nodes xk,∂Ω. 291

Since both sk and rk are harmonic functions in Vk, the average needed to estimate 292

ϕj in Eq. 28 can be deduced from Gauss’s harmonic function theorem, yielding 293

ϕj = Iϕ(s,q;xj) so that Eq. 27 becomes: 294

qj = Keff (⟨Cv⟩j −Iϕ(s,q;xj)) (31)

We can now assemble Eq. 31 into a discrete linear system of S equations with s and 295

q as vectors of unknowns: 296

C · s+D · q = b∂Ωβ
(32)
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Noteworthy, the interpolation function Iϕ uses the nearby sources as well as the four 297

nearest FV unknowns of the mesh grid (see Section D in S1 Methods). Therefore, 298

matrix C is sparse, with 4 non-zero entries per line, while the density of matrix D 299

depends on the size of V̂ . Additionally, vector b∂Ωβ
contains the values of intravascular 300

concentrations (⟨Cv⟩j) treated here as boundary conditions. 301

2.3.4 Full discrete system and error induced by localization 302

The full discrete system is therefore: 303

{
A · s+ B · q = b∂Ω

C · s+D · q = b∂Ωβ

(33)

with a total of F + S unknowns, F = Card(F) being the total number of FV grid-cells 304

and S the number of sources. This general form is independent of the specific choice 305

made for the size of extensions V̂k used to define rk as linear combinations of potentials 306

based on the Green’s formulation. This size, however, strongly influences the densities 307

of matrices B and D. Nevertheless, matrices A and C always remain sparse since A is 308

the classic FV diffusion matrix with only 5 non-zero terms per line and C only depends 309

on the interpolation function Iϕ, resulting in 4 non-zero elements per line. 310

Of course, the global error resulting from approximating BVP 13 by the above 311

system depends on the size of V̂k. This global error εV̂ induced by the localization 312

strategy can be estimated by considering the neglected contribution of sources outside 313

of V̂k to the concentration field (
∑

j /∈E(V̂k)
Pj). 314

The error associated to FV methods is commonly given by [44]: 315

εFV < C0h
2 (34)

where C0 is bounded by the norm of the second derivative of the estimated field. Using 316

Eq. 24 and considering that the minimal distance between a source in Vk and one 317

outside V̂k is of order (n− 1)h/2, we get an upper-bound of εV̂ : 318

εV̂ ≤
∑

j /∈V̂k

4qj
2πD(n− 1)2h2

O(h2) (35)

Simplifying, we obtain: 319

εV̂ <
∑

j /∈V̂k

4qj
2πD(n− 1)2

O(1) (36)

Therefore the localization error εV̂ is expected to decrease with n2, i.e., εV̂ ∝ 1

(n− 1)2
. 320

2.4 Metabolism 321

Now that we have introduced the concepts and formulation for the non-reactive problem 322

(BVP 6), we introduce tissue consumption, that we model by a Michaelis-Menten 323

reaction kinetic [67]. In the resulting reactive problem, Eq. 6a is thus substituted by the 324

following non-linear PDE: 325

D∇2ϕ = M
ϕ

ϕ+K
in Ωσ (37)

where M [mol·m−3 · s−1] is the maximal cerebral metabolic rate of oxygen, often 326

denoted CMRO2,max, and K [mol · m−3] represents the concentration where 327

consumption is half of its maximum, often denoted EC50 for O2 activating oxidative 328
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phosphorylation [68]. The boundary conditions on ∂Vk given in Eqs. 13c - 13f remain 329

unchanged. We consider D and M homogeneous to rewrite the PDE 13a 330

D∇2sk −M

(
1− K

K + ϕ

)
= 0 for x ∈ Vk (38)

The new discrete system is: 331

{
A · s+ B · q+ Smetab = b∂Ω

C · s+D · q = b∂Ωβ

(39)

where Smetab is a vector containing the integral contributions of the metabolism per 332

FV cell: 333

Smetab = −





M(1−
∫
V1

( K

K + s̃1 + r1(x)

)
dV )

M(1−
∫
V2

( K

K + s̃2 + r2(x)

)
dV )

M(1−
∫
V3

( K

K + s̃3 + r3(x)

)
dV )

...

M(1−
∫
VF

( K

K + s̃F + rF (x)

)
dV )





(40)

2.5 Numerical implementation 334

The problem is assembled and solved using an in house code written in Python. Due to 335

the large reduction in size allowed by the multiscale model presented, the libraries scipy 336

and numpy for solving linear problems are adequate for the 2D simulations and test 337

cases. An extension to 3D is possible under careful consideration and optimization of 338

the code. 339

The integrals in Eq. 19 and 40 are evaluated using the second order accurate 340

Simpson’s rule of integration [59]. Furthermore, the non-linear system assembled in 341

Eq. 39 is classically solved through an iterative Newton-Raphson method (see Section E 342

in S1 Methods). 343

2.6 Summary of model assumptions 344

Before examining the robustness, consistency and limitations of the above model in 345

Section 3, we recall the two main assumptions introduced in the developments: 346

• Assumption 1: We considered that the concentration field could be split into a 347

rapid and a slow component (r and s, respectively). In practice, we thus 348

considered the scale of variations of s to be much larger than the size of the coarse 349

grid h, so that the slow field could be accurately evaluated using Eq. 20. Recalling 350

that the slow term accounts for the contribution of the domain boundaries and of 351

the sources located outside of V̂ (Section 2.2), this assumption should break down 352

in the following cases: 353

– Case 1.1 : when h is not sufficiently small compared to the scale of variation 354

driven by the boundary conditions, i.e., in simple cases, the size of the 355

computational domain; 356

– Case 1.2 : when a source lies near the domain outer boundaries ∂Ω; 357
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– Case 1.3 : when the neighbourhood V̂ is too small to accommodate 358

accurately for the potentials arising from nearby sources. 359

• Assumption 2: We neglected the azimuthal variations of concentration around 360

each source (ϕ|∂Ωj
≈ ϕj). As a result of Eq. 6b, we thus neglected the azimuthal 361

variations of flux around the source’s walls. This assumption is crucial to write 362

the potential for a single source based on Eq. 24. Noteworthy, in contrast to 363

Krogh-type models [10], these azimuthal variations are neglected only locally on 364

the source walls. We expect this assumption to break down in the following cases: 365

– Case 2.1 : when two or more sources are lying close together, that is, when 366

the density of sources becomes locally too large; 367

– Case 2.2 : when a source lies near ∂Ω. 368

In the next Section, we use idealized test cases of increasing complexity that help 369

decouple the impact of these different sources of errors and clarify the associated size 370

constraints. 371

3 Results: error estimation 372

In this Section, we first consider test cases involving a single source (Section 3.1) and a 373

single dipole, i.e., the combination of a single source and a single sink (Section 3.2). 374

Then, in Section 3.3, we turn to multiple sources and sinks. Noteworthy, we generically 375

designate by ”source” any vessel j whose concentration is greater than the local tissue 376

concentration, i.e., for which the resulting flux qj will be positive. In the same way, we 377

use ”sink” for any vessel j whose concentration is lower than the local tissue 378

concentration, i.e., for which the resulting flux qj will be negative. This enables 379

”diffusional shunts” in the parenchyma, which have been evidenced experimentally 380

between arterioles and venules [69], to be considered. 381

Thus, for all simulations we assign ⟨Cv⟩j = ϕmax to all sources and ⟨Cv⟩j = 0 to all 382

sinks, where ϕmax represents the oxygen concentration in penetrating arterioles at the 383

inlet of the brain cortex. We also use a diffusion coefficient 384

D = 2× 10−5cm2 · s−1 [25, 30,70], an effective permeability for the capillaries of 385

Keff = 2× 10−5cm2 · s−1 [29, 30] and a maximum metabolic consumption of 386

M = 2.4µmol · cm−3 · min−1 which falls within physiological range (see Table 1). 387

Moreover, for all test cases considered in this Section, we purposely put ourselves in 388

Case 1.1 above by considering relatively small domains of side L = 240µm, i.e., only 50 389

times larger than the source/sink radii (R = 4.8µm). In doing so, we aim at providing 390

reasonable estimates for the upper bounds of the numerical errors. 391

Errors are estimated by comparison with a fine mesh finite element (FE) solution of 392

the original BVP (Eqs. 1 for the linear problem or Eq. 37 for the non-linear problem) 393

without any additional modeling assumptions, in the same spirit as [29]. This reference 394

FE solution, ϕref , was obtained with COMSOL Multiphysics using a triangular mesh 395

fine enough to accommodate the contours of the circular sources, to handle the 396

azimuthal variations of the concentration field around the sources and to ensure 397

convergence in the estimation of qref , obtained by integrating the normal derivative of 398

ϕref along the vessel wall. 399

We define the following metrics to compare our multiscale model with this reference 400

solution. The local errors on the vessel-tissue exchanges for each source (qj) are given 401

by: 402

εjq =
|qj − qj,ref |

qj,ref
(41)
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Variable Value Units References

Microvascular parameters

RPA 20 µm [10]

Rcap 4.8 µm [10]

Rcyl 100 µm [10]

Capillary length density [0.8, 1.2] m ·mm−3 [20]

ϕmax 137 nmol · cm−3 from [9,34,71]

Tissue transport and consumption

D 2× 10−5 cm2 · s−1 [25, 30,70]

Keff 2× 10−5 cm2 · s−1 [29, 30]

α 1.39× 10−3 mol ·m−3 ·mmHg−1 [24, 28]

K ∼ ϕmax/10 from [23,30]

M [0, 2.4] µmol · cm−3 ·min−1 [10, 23,29]

Table 1. Parameter values. Radii R: see Fig 7; ϕmax: oxygen concentration in
penetrating arterioles at the inlet of the brain cortex; D: diffusion coefficient in the
parenchyma; Keff : effective diffusive permeability of the capillary walls; α: oxygen
solubility in water at atmospheric pressure; M : maximum metabolic rate of oxygen; K:
concentration where consumption is half of its maximum.

and the local errors on the concentration field at the center of each grid-cell are given by: 403

εkϕ =
|ϕ̃k − ϕk,ref |

ϕk,ref
(42)

where ϕ̃k is given by Eq. 29. We then define the global errors as the average of the local 404

errors: 405

εgϕ =
1

F

∑

k∈[1,F ]

εkϕ (43)

and: 406

εgq =
1

S

∑

j∈[1,S]

εjq (44)

where where F is the number of discrete grid-cells in the cartesian mesh and S is the 407

total number of sources, i.e., S = Card(E(Ω)). 408

We consider the error on vessel-tissue exchanges (εgq) as the main metric to assess 409

the model’s accuracy, since proper estimation of qj ’s relies on an accurate evaluation of 410

the microscale dynamics and provides crucial information on oxygen exchanged between 411

blood and tissue. The error on the concentration field serves as a secondary metric, 412

offering valuable insights into the interactions between sources. 413

We compare these errors with the errors resulting from a coarse-grid FV approach 414

without multiscale coupling, in the same spirit as [37]. Such an approach solves the 415

simplified BVP (Eqs. 6 for the linear problem or Eq. 37 for the non-linear problem) by 416

approximating the average concentration on the vessel wall (ϕj) by the value of the 417

concentration field in the nearest FV cell k (ϕj = ϕ̃k for Ωβ,j ∈ Vk). As a result, the 418

exchange term is given by 419

qj = Keff (⟨Cv⟩j − ϕ̃k) (45)

where k is the grid-cell containing source j. This coupling condition is not a multiscale 420

coupling condition, as it doesn’t integrate any description of the near source 421
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concentration gradients that could compensate for the scale gap with the coarse-grid for 422

the estimation of qj . At its core, it assumes a well-mixed concentration within each 423

mesh cell, i.e., it neglects the effect of concentration gradients near sources when using a 424

coarse grid, generating significant errors in the estimation of qj (see Figs 4-6). On the 425

one hand, increasing mesh discretizations can solve this issue and allow to 426

(asymptotically) recover the influence of such gradients [38], with the significant 427

trade-off of increased computational cost. On the other hand, including a multiscale 428

component by reconstructing analytically the local concentration near sources as done 429

in Section 2, allows to capture the influence of the gradients whilst allowing to use a 430

coarse-grid discretization of the tissue space. The FV solution with resolution matching 431

that of the coarse-grid is thus useful to illustrate the interest of the multiscale coupling 432

at the core of the developments presented in Section 2. 433

For the sake of comparison, the following conventions are used in all figure legends in 434

this Section: 435

• Blue lines are used for the present multiscale method while red ones are used for 436

the coarse-grid FV model. 437

• Continuous lines are used for the linear, non-reactive model (Eqs. 33) while 438

discontinuous ones are used when metabolism is considered, i.e. reactive model 439

(Eqs. 39). 440

• Square markers are used to display the global errors on the vessel-tissue exchanges 441

while triangular ones are used to display errors on the concentration field. 442

3.1 Single source 443

In this Section, we focus on single source configurations, where we first assess the 444

dependence of numerical errors on mesh size, in the case of coarse meshes (Case 1.1 ). 445

We thus consider grid-cell sizes (h) varying from 20µm to 80µm, i.e. larger than the 446

source radius and not so small compared to the domain side. In this case, we don’t need 447

to consider potentials arising from other sources (Eq. 26), thus drawing emphasis away 448

from the size n of the neighborhood V̂ since its purpose is to control the cross influence 449

among sources. We therefore opt for an approximately constant size of V̂ relative to the 450

radius of the source R, fixed to 30R. This corresponds to n = 3 in a 5x5 grid, as 451

displayed in Fig 4A. The exact size of V̂ may slightly vary according to the 452

discretization size h used, as V̂ consists of a discrete number of grid-cells. 453

Figure 4B illustrates the error evolution with respect to grid-cell size h for a single 454

source, located at the center of the computational domain, and for a combination of 455

boundary conditions (Dirichlet, Neuman, Periodic), as displayed in Fig 4A. Our 456

multiscale model demonstrates remarkable accuracy, achieving global errors below 1% 457

for both flux (q) and concentration (ϕ) estimates even with the coarser grids. 458

Furthermore, these errors are about one order of magnitude smaller than those of the 459

coarse-grid FV approach, since the later lacks a coupling scheme to bridge the scale gap 460

between the source and the coarse-grid. Moreover, the multiscale model errors decrease 461

monotonously with decreasing grid size. In contrast, the coarse-grid FV approach 462

displays a minimum for grid-cells sizes of about 5R, as expected from the Peaceman 463

well model [39]. This model bridges the scale gap between the source and the 464

coarse-grid scale as commonly done in geosciences, by relating the value of the scalar 465

field inside the source to the grid via the following flux relationship: 466

q =
Keff (Cv − ϕ̃k)

1 +
Keff

2πD
ln(

R

0.2h
)
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Fig 4. Error estimation for a single source: impact of discretization and
boundary effects. A: schematics of the configuration under study, highlighting the
detail of the boundary conditions. The domain size is L = 240µm, the source radius is
R = 4.8µm, and the neighbourhood size is (30R)2, i.e., n = 3 for a 5x5 grid (h/L=0.2);
B: evolution of global errors as a function of grid size for the linear and non-linear
problems, and for both the multiscale and the coarse-grid FV model (see legend); C:
schematics of the boundary test, for which we use a mesh size h/L = 0.2, i.e., a 5x5
grid; D: evolution of global errors as a function of d, from d = 0 where the source is in
contact with the no-flux boundary, to d = 1.2h where the source lies in the contiguous
grid-cell. The dashed vertical line illustrates the limit of the boundary cell.

When the radius of the source is a fifth of the side length of the grid-cell, the 467

denominator in the above equation is equal to one, and the FV solution (Eq. 45) 468

provides the same solution as the Peaceman well model. This occurs at the local 469

minimum observed in Fig 4B, i.e. at approximately h/L = 0.1. The coarse-grid FV 470

approach still exhibits errors between 10−2 and 10−1 for the smallest grid size 471

considered in this study (h ∼ 4R). 472

In contrast, a good balance between mesh-size and accuracy is achieved by the 473

multiscale approach for the 5x5 grid (h/L = 0.2) with n = 3 (see Fig 4A), with errors 474

on fluxes below 1% for both the linear and non-linear models (see Fig 4B). These 475

parameters will thus be used next except as stated otherwise. 476

Because the source is located at the center of grid-cell Vk, the discrete value of the 477

slow term in this grid cell s̃k approximates well the local value of the slow term at 478

source center s(xk), so that the concentration ϕ̃k = r(xk) + s̃k directly enables the 479

vessel-tissue exchanges to be evaluated using Eq. 27. However, this introduces 480

inaccuracies when the source moves away from a grid-cell center, as illustrated in Fig A 481

in S1 Figures, with errors εgq up to 2.1% when the source is lying on a grid-cell corner. 482

The interpolation scheme introduced in Section 2.3.3 reduces this errors to under 0.3% 483

(Fig A in S1 Figures). 484
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We now worsen the deviation from Assumption 1 by reducing the distance d 485

between the source and the no-flux boundary (Cases 1.2 and 2.2 ), as illustrated in 486

Fig 4C. Errors reach up to ≈ 10% when the source is in contact with the zero-flux 487

boundary condition (d = 0), see Fig 4D. They decrease rapidly with increasing d, with 488

εq < 2% as soon as there is half a grid-cell distance to the boundary. In contrast, the 489

FV solution errors stay consistently around 10% even when the source belongs to a 490

non-boundary grid-cell (d/h > 1), except for a minimum for d/h ∼ 0.7. Similar to the 491

Peaceman well model [39], the local minimum is likely obtained when the logarithmic 492

decrease of the source potential is close to the discrete approximation of its gradient 493

from values at the FV cell’s center. 494

Overall, the single source test-cases highlight how coupling the analytical rapid term 495

to the coarse-grid FV discretization of the slow term improves the numerical resolution 496

of oxygen transport and metabolism within the tissue space. Importantly, these 497

test-cases have been designed to push the limits of the corresponding underlying 498

assumptions, by choosing small computational domains. Given the results shown in 499

Fig 4, we expect to rarely find ourselves in conditions where ε ≥ 1%. 500

3.2 Single dipole 501

We now test the performance of the multiscale model for a single dipole, i.e., a single 502

source (⟨Cv⟩2/ϕmax = 1) and sink (⟨Cv⟩1 = 0). When these are placed close together in 503

the same FV cell, we find ourselves in Case 2.1, and Assumption 2 in Section 2.6 breaks 504

down. In this case, models that don’t integrate an analytical description of interactions 505

among sources [37,72] fail to capture the source to sink interactions. With increasing 506

separation distance d between the source and sink, Assumption 2 is recovered but, 507

depending on the size of V̂ , the deviation from Assumption 1 may increase (Case 1.3 ). 508

Thus, the dipole situation focuses on the interplay between source separation distance d 509

and neighborhood size n and enables to compare the behavior of the model when the 510

source and sink respective neighbourhoods overlap. 511

The local errors (equations 41 and 42) on the vessel-tissue exchanges are shown on 512

Fig 5A as a function of the separation distance d, for the two neighborhood sizes 513

presented in Panel B (n=3) and C (n = 5). In Panel D, we also show the reconstruction 514

of the concentration field for n = 3 and d = 60R using the interpolation function Iϕ. 515

This reconstruction closely approaches the FE reference solution obtained for a dense 516

mesh of over 2, 000 grid cells (Fig B in S1 Figures), i.e, about 100 times the number of 517

cells (5x5) needed to solve for the coarse-grid solution. 518

When the source and sink both lie in the same grid-cell, i.e., when d/R is below 40, 519

the behavior of these local errors becomes similar whatever the neighbourhood size, 520

since the cross-influence between their potentials is then calculated analytically by the 521

rapid term. When there is no overlap between the two neighbourhoods (e.g. in Fig 5B 522

and for d/R above 40 in the small neighborhood case, dark blue lines in Fig 5A), the 523

errors increase significantly, reaching the upper-bound estimate of errors induced by 524

localized formulation of the rapid term (Section 2.3.2), as evaluated by Eq. 36. In 525

contrast, for a larger neighborhood size (light blue lines in Fig 5A and 5C), the errors 526

quickly reach a plateau for an increasing separation distance d, consistent with the error 527

obtained for a single source with similar discretization (h/L = 0.2 in Fig 4B). This 528

underpins the residual error as the result of the coarse-grid resolution of the slow term 529

and not of potential localization. 530

3.3 Multiple sources 531

We have shown how errors primarily build up when a source lies in the vicinity of a 532

no-flux boundary (Fig 4B), and in lesser extent when two sources lie close to each other 533
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Fig 5. Error estimation for a single dipole: interplay between source/sink
separation distance and neighborhood size. A: evolution of the local errors on
vessel-tissue exchanges for the source (filled symbols) and for the sink (empty symbols)
as a function of distance d between source and sink; B: schematics of the
smaller-neighborhood configuration (n = 3); C: schematics of the large-neighborhood
configuration (n = 5); D: reconstruction of the sub-grid concentration field for the case
n = 3 and d = 60 ·R. The value of the concentration (ϕ) is non-dimensionalized by the
value of the intravascular concentration in the source. The dashed vertical line in Panel
A illustrates the transition between a situation where, for n = 3, the intersection of the
source and sink neighborhoods contains both of them to a situation where the source
and sink lie outside each other’s neighborhood.
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Fig 6. Error estimations for a realistic source distribution. A: synthetic
capillary bed generated by the method of [60] with cutting plane highlighted in blue;
B: intersections of each capillary vessel in A with the cutting plane (red dots) and

coarse cartesian grid (dashed lines); C: coarse-grid solution for the concentration field ϕ̃
with metabolic consumption; D: sub-grid reconstruction of ϕ using Iϕ from
Section 2.3.3. E: global errors on vessel-tissue exchanges estimations for a grid size
h = L/16, therefore 256 FV cells in total. The curve κ

(n−1)2 with κ = 0.1 is represented

by the dashed black line; F: evolution of the errors in the estimation of the vessel-tissue
exchanges and the concentration field with decreasing mesh cell size and with n chosen
so that the size of V̂ is approximately 3L/5 = 30R.
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(Fig 5A), respectively. Both situations may arise frequently within the cortex, e.g., close 534

to vessel bifurcations, where three vessel are connected in a single point. 535

Here, we thus consider a more realistic distribution of sources, obtained using a 536

synthetic network that reproduces the structural and functional properties of cortical 537

capillary beds, following [60] (Fig 6A). Briefly, we take a cross-section of such a network 538

and map its intersections with each vessel (Fig 6A). We thus obtain a realistic map of 539

source distribution, for which S = 17 (Fig 6B). We randomly assign one third of vessels 540

to be sources and two third of vessels to be sinks, with periodic boundary conditions. 541

In Fig 6C and 6D, we show the coarse-grid concentration field and its reconstruction, 542

respectively, for a 8x8 grid (h/L=0.125 and h/Rcap = 6.25) and n = 5. These clearly 543

show that the model formulation enables enforcing the periodic boundary conditions for 544

the reconstructed, highly-resolved, concentration field, as efficiently as the reference FE 545

approach (Fig B in S1 Figures), even if periodicity at the boundaries doesn’t propagate 546

to the scale of the coarse-grid. Furthermore, the evolution of errors with neighbourhood 547

size n (Fig 6E), follows the 1/n2 scaling predicted by Eq. 36, up to n = 5. For larger 548

values of n, a plateau is reached, the value of which (∼ 1%) corresponds to the residual 549

error associated to deviations from Assumption 2, as shown in Sections 3.1 and 3.2. As 550

a result, neither considering finer grid-cells nor increasing the neighborhood size n 551

further reduce this residual errors (see Fig 6F and 6E, respectively). 552

Furthermore, we note that the numerical errors are only marginally affected when 553

oxygen consumption is taken into consideration (dashed lines in Fig 6E and 6F), 554

showing the robustness of our approach. 555

In contrast, errors corresponding to the coarse-grid FV model lie consistently one 556

order of magnitude above than the one resulting from the multiscale approach. 557

4 Results: Periarteriolar oxygen concentration 558

gradients 559

Now that we have shown the ability of our model to efficiently solve for the oxygen 560

concentration field, including around vessels where gradients are the strongest, we turn 561

to its exploitation in the context of brain metabolism. We specifically ask if variations 562

of the radial peri-arteriolar concentration profiles that were recently measured across 563

cortical layers in awake mice [10] could result from the layer-specific (laminar) increase 564

of capillary density with cortical depth rather than from variations of baseline oxygen 565

consumption. 566

For that purpose, we consider the typical case of a single penetrating arteriole (PA) 567

and its surrounding tissue, as illustrated in Fig 7A. To account for the capillary-free 568

space that encircles the PA, we include a cylindrical tissue region devoid of capillaries, 569

with typical radius of 100 µm [10,24]. Further away, we generate a random spatial 570

distribution of sources with densities approximately matching the capillary density in 571

cortical layer II (Table 2). We deduce the equivalent 2D source density (E2DSD) by 572

using synthetic capillary networks similar to Section 3.3. We then create a randomized 573

but statistically homogeneous distribution of sources following [60,73]. We assign 574

concentrations at the outer walls of the PA and capillaries, by using an asymptotically 575

large value of Keff and following experimental measurements in layer II [8]. For the 576

capillaries, we assign a random distribution of normalized concentrations at capillary 577

walls ∂Ωβ,j , drawn from a Gaussian distribution with mean ϕcap = 0.45ϕPA and 578

standard deviation σ = 0.1ϕPA, approximately corresponding to experimental 579

measurements in layer II (Table 2). We also impose periodic boundary conditions on 580

the limit of the domain to mimic the larger cortical space. Finally, the maximum 581

metabolic rate of oxygen is chosen to be M = 2.4µmol · cm−3 ·min−1 (Table 1), an 582
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Fig 7. Effect of capillary density and intravascular concentration on radial
periarteriolar concentration profiles. A: sketch of simulated configuration, with a
random and homogeneous capillary bed for r > Rcyl and a capillary-free region around
the central PA. The cartesian grid of size 20x20 matches that of experimental sampling
used in [10]. B: corresponding coarse-grid partial pressure deduced by linear
transformation from the concentration field using the solubility of oxygen in brain
tissue [10,30,37]. Capillary density and concentration correspond to layer II (Table 2)
and M = 2.4µmol · cm−3 ·min−1. Note that all simulations (panels B, D, E, F) use the
same value of M and n = 10; C: example of an experimentally sampled oxygen partial
pressure field around a PA at 100µm under cortical surface, i.e. at the interface between
layer I and II; D: estimated metabolic consumption deduced from Panel B; E: radial
concentration profiles predicted in layers I to IV, each obtained by averaging the results
of 30 simulations; Inset: result obtained when only variations of the capillary density
are considered; F: resulting spatial average of the tissue concentration for r > Rcyl, as a
function of capillary density for four values of the average capillary intravascular
concentration (ϕcap/ϕPA from 0.4 to 0.55) corresponding to the four layers in Table 2;
the black dots represent the resulting spatial average of the tissue concentration for
r > Rcyl for the four different layers, i.e., varying both capillary density and
concentration. The black dashed line represents the associated linear fit

(
〈

ϕ
ϕPA

|r>Rcyl

〉
= 1.12 · 10−3 · CLD− 0.118).
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intermediate value within the physiological range. Other transport parameters used to 583

solve the non-linear problem (Eqs. 39 and 40) are deduced from reference values in the 584

literature (Table 1). 585

A typical realization of the resulting coarse-grid concentration field, converted to 586

partial pressure (PO2) using the solubility of oxygen in brain tissue [10,30,37], is 587

displayed in Fig 7B for a 20x20 grid (h ∼ 20µm). This matches the experimental 588

sampling used in [10] and results in a very good qualitative agreement with the field 589

measured in a 100µm-deep plane perpendicular to a PA (see Fig 7C, data acquired 590

following [10]). This field can be used to deduce the sub-grid concentration dynamics 591

by interpolation (Eq. 30, see e.g. Figs C and D in S1 Figures), as well as the local 592

cerebral metabolic rate of oxygen (CMRO2, see Eq. 40 and Fig 7D). Interestingly, the 593

cerebral metabolic rate of oxygen exhibits ∼ ±10% variations in the outer region 594

(around capillaries) and up to ∼ ±20% in the periarteriolar region, in contrast to the 595

common assumption of a spatial homogeneity [10,23,24,74]. 596

Moreover, the above results can be post-processed to deduce the azimuthal average 597

of the normalized concentration around the PA, as displayed in Fig 7E as a function of 598

the radial distance r to the PA center. In this figure, the plain orange line corresponds 599

to the mean over 30 realizations of source distributions for layer II, while the faint 600

orange areas shows the associated standard deviation. This radial concentration 601

dynamics exhibits three regimes (Fig 7E): 1/ a constant value for r ≤ RPA, i.e. within 602

the PA, consistent with the source potential (Eq. 24); 2/ a fast decrease for 603

RPA ≤ r ≤∼ 0.8Rcyl corresponding to the inner part of the region devoid of capillaries 604

around the PA (see Fig 7A) and 3/ a re-increase followed by a slowly-varying region for 605

larger values of r. The presence of a local minima, which can also be observed in the 606

measurements (Fig 7C and Fig E in S1 Figures, dashed lines) suggests that the outer 607

region of the capillary-free cylinder is both fed by the PA and the capillary bed. 608

Next, as the capillary density approximately increases linearly with depth in the 609

cortex from layer I to layer IV [20], we increased the source density from 250 to 610

475 mm−2 (Table 2). This results in an increase in size of regions with high oxygen 611

concentration around capillaries (see panel B vs. A in Fig C in S1 Figures) and 612

therefore 1/ in a slight decrease of the steepness of radial periarteriolar PO2 gradients 613

averaged over 30 realizations and 2/ in a slight increase of the partial pressure in the 614

plateau region (r ≥ Rcyl), see inset in Fig 7E. This increase can be quantified by 615

plotting the spatial average ⟨PO2/PO2,Art⟩r≥rCyl
(see isocolor variations in Fig 7F). 616

Increases of the average intravascular PO2 within the capillary bed (Table 2), which 617

can be speculated based on depth-resolved experimental measurements of vascular 618

oxygen within the cortex [9], result in a higher increase in size of regions with high 619

oxygen concentration around capillaries (see panel C vs. A in Fig C in S1 Figures) and 620

thus to higher increase of ⟨PO2/PO2,Art⟩r≥RCyl
(i.e. black dashed line vs. colored 621

dashed lines in Fig 7F). 622

Combined together, the increase in capillary density and intravascular PO2 that has 623

been reported experimentally from layer I to layer IV in the cortex of living rodents 624

leads to an even faster decrease of the perivascular concentration gradient (Fig 7E). This 625

results in a faster increase of ⟨ϕ/ϕ2,PA⟩r≥RCyl
from layer I to layer IV, see black dots in 626

Fig 7F. For a constant value of M , this yields an increasing metabolic rate of oxygen 627

from layer I to layer IV (panel D vs. A in Fig C in S1 Figures), consistent with the 628

increased density of mitochondrial cytochrome oxidase through these layers [10,75,76]. 629

Noteworthy, similar results have been obtained for different values of the maximal 630

metabolic rate of oxygen M within the physiological range (Table 1), as illustrated in 631

Fig D in S1 Figures. The only notable difference is that the amplitude of the dip in the 632

radial concentration profile decreases with decreasing values of M (Fig E in S1 Figures). 633

For the set of parameters representative of layers I and II, this leads to a monotonous 634
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decrease of the average radial concentration followed by a region with nearly constant 635

oxygen concentration, similar to experimental measurements reported in [10,24], as soon 636

as M ≤ 1.2µmol · cm−3 ·min−1 (Fig E in S1 Figures). As a result, the oxygen dynamics 637

in the close vicinity of the arteriole (r < Rcyl/2) may be highly similar in different 638

cortical layers for different values of M (e.g. M = 2.4µmol · cm−3 ·min−1 in layer IV, 639

see red line in Fig 7E vs. M = 1.6µmol · cm−3 ·min−1 in layer I, see blue dashed-dotted 640

line in Fig E in S1 Figures.) 641

Altogether, the present model suggests that laminar variations of the capillary 642

density may be sufficient to explain the differences in periarteriolar radial oxygen 643

profiles measured at different depths within the cortex [10], without any variation of the 644

maximal cerebral metabolic rate of oxygen M . If laminar variations of intravascular 645

capillary PO2 are also considered, the predicted differences are even larger than the 646

experimental ones. This demonstrates the interplay between metabolic consumption, 647

capillary density and intravascular availability of oxygen in the capillary bed to 648

determine the radial oxygen gradient in the vicinity of PAs. This makes it difficult to 649

consider the steepness of the radial periarteriolar oxygen profile as a surrogate for the 650

baseline oxygen consumption, with the potential to reconcile recent experimental 651

measurements with the idea that laminar variations of capillary density could reveal 652

underlying differences in metabolic load. 653

Layer CLD E2DSD Depth PO2,PA PO2,cap ϕcap/ϕPA

[mmm−3] [mm−2] [µm] [mmHg] [mmHg]

I 0.8 250 [0-100] 99 (= ϕmax/α) 39 0.4

II 0.94 325 [100-200] 92 42 0.45

III 1.08 400 [200-300] 87 44 0.5

IV 1.2 475 [300-400] 85 47 0.55

Table 2. Layer-specific (laminar) variations of capillary density and average
intravascular capillary PO2. The capillary length density (CLD) and depth of the
corresponding layers are approximated from data in [20]. The equivalent
two-dimensional source density (E2DSD) is deduced using synthetic capillary networks
from [60] (Fig 6A). The ratio between arteriole and capillary concentration is
approximated from data in [9].

5 Discussion 654

In this paper, we revisited the problem of oxygen transport and metabolism in the brain 655

parenchyma, with the goal to introduce a simple, scalable and accurate numerical 656

method for its direct resolution. Getting inspiration from previous work on blood flow 657

and oxygen transport in the brain [22, 30, 45, 64] and on mixed-dimensional problems in 658

applied mathematics for geosciences [39,56,57] and biology [48], we applied the notion 659

of operator-splitting, which allowed us to describe the oxygen concentration field in the 660

parenchyma as the sum of a slow and a fast varying contributions. The slow 661

contribution was treated using a classic finite volume approach on a coarse grid, while 662

the fast contribution was described using Green’s functions that allowed to analytically 663

capture the sub-grid perivascular concentration gradients. This made it possible to 664

locally bridge the scale gap between sources and the coarse-grid with higher flexibility 665

than [39,41] regarding the position of the sources within the coarse grid-cells, including 666

multiple sources within a single grid-cell, the proximity of the boundaries, and the 667

control of the matrix sparsity thanks to the the size of the neighbourhood (V̂ ). 668

Similarly to singularity removal approaches [45, 48, 57], this also made it possible to mix 669
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the dimensionality reduction of the Green’s functions approaches [30,32,51] with the 670

versatility of FV methods [56,57,72]. Moreover, solving for a slowly varying background 671

concentration field, thanks to a change of variable, offers a huge advantage with respect 672

to the Green’s functions resolution since it allows for a localization of the source 673

potentials, thereby providing a much sparser system. In addition, this enable the use of 674

a much coarser mesh that reduces considerably the size of the system compared to FV 675

or FE methods, but without loss of precision thanks to the sub-grid reconstruction of 676

the concentration field (Figs 5D and 6D). This, in turn allows the addition of non linear 677

volume terms (metabolism) without significant loss of accuracy (Figs 4B, 4D and 6E). 678

To provide rigorous but still intelligible mathematical developments, we focused on a 679

two-dimensional version of the problem (Section 2). In this way, we were able to 680

introduce the localization scheme enabling us to control the bandwidth of the associated 681

linear system of equations, by manipulating the size of the region over which the 682

interactions with nearby vessels are accounted for analytically (scalability). We 683

demonstrated the existence of an optimal size for this region, above which the errors 684

induced by localization are smaller than those induced by deviations from local 685

azimuthal symmetry of the concentration field around each vessel (see Fig 6E). This 686

emphasizes the importance of comparing the results of any simplified model for oxygen 687

transport in the brain parenchyma with a reference solution that is able to fully resolve 688

these deviations. This is neither the case if only single vessels with Krogh-type 689

configurations are considered for validation, as in [10,23,27,37], or if the discrete version 690

of the problem is compared to the corresponding continuous version (i.e., comparing the 691

solution of Eqs. 33 to the solution of Eqs. 6 instead of Eqs. 1), as in [58,66,72,77]. To 692

our knowledge, such comparisons had never been performed before in this context. 693

Crucially, they enabled to provide careful estimates of the numerical errors associated to 694

the use of coarse meshes, demonstrating the unprecedented balance between reduction 695

of problem size and minimization of errors associated to our method, compared to 696

previous strategies in the literature (accuracy). With this regard, it is worth insisting 697

that we designed test cases that enabled the origins of errors to be understood by 698

purposefully choosing configurations with deviations from the model underlying 699

assumptions (Section 3). Thus, all errors provide upper-bounds of the errors expected 700

when considering larger, physiological-like problems. Moreover, the mathematical 701

groundwork provided by the Green’s function framework (Section B in S1 Methods) 702

permitted to trace back the source of errors to specific modeling assumptions, which in 703

turn offers a rationale for choosing the model parameters, including discretization and 704

neighborhood size. Finally, the method makes use of a cartesian mesh independent of 705

vessel locations, thereby belonging to the class of mesh-less approaches [38]. In contrast 706

with the widespread semi-analytical methods [30,32,34,51,65] that require 707

computationally intensive Fourier transforms to enforce conventional boundary 708

conditions such as Neumann and Dirichlet [30], it also shows remarkable versatility with 709

regard to the boundary conditions that can be handled (simplicity). 710

Of course, the two-dimensional version of the problem we considered doesn’t enable 711

coupling oxygen transport in the parenchyma with oxygen transport in blood vessels, 712

because intersecting the vascular network with a plane yields disconnected vascular 713

sources, as schematized in Fig 1. Thus, in the present work, intravascular 714

concentrations have been treated as inputs, while in a three-dimensional version they 715

should be treated as unknowns, with additional blocks in the final system accounting for 716

intravascular transport, as highlighted in [45,52,66]. Together with previous work by 717

our group that focused on revisiting intravascular transport [22], these will provide the 718

foundations for an extension to three dimensions. The fact that the integrated potential 719

arising from a circular source can be written analytically (Eq. 24 and Section B in S1 720

Methods) is a peculiar characteristic of the 2D model. In 3D, additional errors may 721
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arise due to the approximations needed to estimate the potential of a small cylindrical 722

element used to discretize the vascular networks, that will require careful evaluation in 723

the spirit of [78,79]. 724

However, considering two-dimensional situations already offers the opportunity to 725

investigate important physiological questions, as illustrated in Section 4. Thanks to the 726

computational efficiency of our method, we were able to easily generate the large 727

number of synthetic data (600 simulations per layer and 30 measurements per 728

simulation) needed to incorporate statistical information about the capillary bed 729

available in the literature [9,20]. By this way, we shed new light on the interpretation of 730

experimentally measured variations of periarteriolar oxygen profiles [10] in the context 731

of laminar variations of capillary density and their relationships with baseline cerebral 732

metabolic load. Due to the non-local nature of blood flow, understanding the measured 733

variations of average intravascular concentration with depth will require a fully coupled 734

three-dimensional analysis of oxygen exchange in the brain. In this regard, it is worth 735

noting that the matrix assembly process only depends on the location of vessels in the 736

considered domain and of the size of grid-cells and neighbourhood V̂ , and requires to be 737

performed only once when the structure of the vascular network is known. Besides 738

parametric analyses, this will pave the way for the inverse modelling of brain 739

metabolism from three-dimensional oxygen measurements. Inverse modelling indeed 740

requires fast and precise forward model resolutions, overcoming the geometric 741

simplifications of the Krogh cylinder type, which are at the basis of all current work 742

that aims at measuring the cerebral metabolic rate of oxygen [10,24,26]. 743

744

6 Conclusion 745

We developed a multi-scale model describing the spatial dynamics of oxygen transport 746

in the brain that is simple, conservative, accurate and scalable. Our strategy was to 747

consider that the oxygen concentration in the parenchyma is the result of a balance 748

between contributions at local (cell metabolism, delivery by neighbouring arteriole) and 749

larger (capillary bed) spatial scales. This allowed us to split the oxygen concentration 750

field into a slow and a fast varying terms, underlying the separation of scales between 751

local and distant contributions. Doing so allowed us to combine a coarse-grid approach 752

for the slow-varying term to a Green’s function approach for the fast-varying terms. 753

This resulted in a computationally efficient model that was able to capture precisely 754

gradients of concentration around microvessels and to describe boundary condition with 755

flexibility (Dirichlet, Neumann, and periodic) along with the non-linear metabolic 756

activity by the cells. 757

We then compared our model with reference solutions of the oxygen transport 758

problem in scenarios of increasing complexity. We showed that our model was able to 759

maintain small errors, even in scenario where the separation of scales was challenged or 760

when azimuthal variations of flux were no longer negligible, demonstrating the 761

robustness of the model. 762

While the present multi-scale model focused on two-dimensional problems, it has 763

been designed to be easily extended to three-dimensional problems by adapting the 764

expression for the source potential and by including an intravascular description of 765

oxygen transport, both of which being available in the literature (see e.g. [22, 30,45]). 766

Despite this limitation, we showed that the model was already capable of generating 767

synthetic data reproducing the heterogeneous distribution of oxygen in the brain 768

parenchyma. Doing so, we showed that periarteriolar gradients were the result of the 769

balance between local cellular oxygen consumptionand supply by not only the 770

neighbouring arteriole but also distant capillaries, thus reconciling recent measurements 771
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of periarteriolar oxygen gradients across cortical layers with the fundamental idea that 772

variations of vascular density within the depth of the cortex may reveal underlying 773

differences in neuronal organization. 774
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Simulation of oxygen transport and estimation of tissue perfusion in extensive
microvascular networks: Application to cerebral cortex. Journal of Cerebral Blood
Flow and Metabolism. 2021;41(3):656–669. doi:10.1177/0271678X20927100.

34. Xue Y, Georgakopoulou T, van der Wijk AE, Józsa TI, van Bavel E, Payne SJ.
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75. Santuy A, Turégano-L’opez M, Rodŕıguez JR, Alonso-Nanclares L, DeFelipe J,
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A Multiscale Finite Volume formulation

In the Finite Volume (FV) method, the main ideas are as follows:

1. Discretization: We divide the domain Ωσ into a set of control volumes F where
the variable are estimated at the geometrical center (node) of each control volume.

2. Flux approximation: We approximate the fluxes as a function of the nodal
values to obtain a system involving only concentrations

3. Closure of the system: we impose flux and concentration continuity at each of
the FV cell’s interfaces

We begin by integrating the PDE 13a (see main text) over the control volume given
by Vk: ∫∫

Vk

∇2sk(x)dS = 0 ∀k ∈ F (46)

Recalling that Vk have been introduced in Section 2.3.2 to provide a tessellation of
the parenchyma Ωσ, we obtain, by applying the divergence theorem:

∑

m∈Nk

∫

∂Vk,m

(∇sk · n)dl +
∑

j∈E(Vk)

∮

∂Ωβ,j

(∇sk · n)dl = 0 ∀k ∈ F (47)

The second integral term in the left hand side of Eq. 47 is always null due to the
boundary condition 13c. Using the TPFA (Eq. 15) to estimate the slow term gradients
and the mid-point rule to evaluate the integrals, we obtain:

−4s̃k +
∑

m∈Nk

s̃k,m = 0 (48)

with
Nk := {n, s, e, w} (49)

Since the goal is to obtain a system of equations with one value of the slow term for
each FV cell, we need to remove the dummy variables of the slow term (i.e. s̃k,m and
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s̃m,k) at the interfaces of the FV cells. For that purpose, we use the local boundary
conditions on each FV cell (Eqs 13d and 13e), which are rewritten below for ease of
reading





D
s̃k,m − s̃k

h/2
−D

s̃m − s̃m,k

h/2
=

1

h

∫

∂Vk,m

n · (D∇rm(x)−D∇rk(x))dl (50a)

s̃k,m − s̃m,k =
1

h

∫

∂Vk,m

(rm − rk)dl (50b)

We isolate s̃m,k in Eq. 50b and substitute it into Eq. 50 to obtain

s̃k,m =
s̃k + s̃m

2
+

Jk,m
2

(51)

where

Jk,m =
1

2

∫

∂Vk,m

n · (∇rm −∇rk)dl +
1

h

∫

∂Vk,m

(rm − rk)dl (52)

Recalling that rk and rm are analytical functions of q, we have written a system
where the only unknowns are the values of the slow term in the FV grid (s) and the
vessel-tissue exchanges (q). Therefore, Eq. 16 results in

−4s̃k +
∑

m∈Nk

(
s̃m + Jk,m

)
= 0 (53)

where Jk,m = Jk,m(q) since it only depends on the rapid term for each cell.
It is worth noting how Eq. 53 can be evaluated independently of the specific form of

the rapid term. Additionally, the term Jk,m is only evaluated at the interfaces of the
cells Vk and Vm. This results in a more efficient and convenient formulation that allows
for a flexible construction of the rapid term (see Section B) and a more efficient
assembly of the system of equations compared to other models that impose a finite
support to their respective analytical term [1,2].

B Analytical derivation of potentials

To obtain Green’s second identity, we multiply the concentration field in the
parenchyma (ϕ) by a scalar field φ and apply the divergence theorem:

∫

Ωσ

φ∇2ϕ− ϕ∇2φdV = −
∮

∂Ωσ

(φ∇ϕ− ϕ∇φ) · ndS (54)

where n follows the same convention as in figure 1 and represents the normal pointing
inward to the domain Ωσ, and ∂Ωσ includes all the boundaries of the parenchyma
(including the vascular walls) since ∂Ωσ := ∂Ωβ

⋃
∂Ω.

We can obtain the Green’s third identity by substituting the scalar field φ in
equation 54 by the fundamental solution for the Laplace equation

G(x;x∗) =
1

2πD
ln
( a

||x− x∗||
)

(55)

where a is a constant of integration. This yields

D∇2G(x;x∗) = −δ(x− x∗) in Ω (56)
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From equations 54 and 55,we obtain:

ϕ(x) =

∮

∂Ωσ

(ϕ(x∗)∇G(x,x∗) · n(x∗)−G(x,x∗)∇ϕ(x∗) · n(x∗))dS(x∗) (57)

which provides a description of the concentration field ϕ(x) through a superposition of a
double layer potential and a single layer potential given as the first and second part of
the integral, respectively. Note that here, the free space Green’s function is used instead
of the Green’s function of the first or second kind due to the difficulty to calculate the
later one. Practically, the approach used here is in line with the boundary element
method literature [3–5]. Besides, we can decompose the integrals into a contribution
from the external boundary ∂Ω and the vascular boundary ∂Ωβ

ϕ =

∮

∂Ω

(ϕ∇G · n−G∇ϕ · n)dl +
∮

∂Ωβ

(ϕ∇G · n−G∇ϕ · n)dl (58)

where the integral over the boundary ∂Ω is expected to behave very regularly through
space [2, 6–8] (Assumption 1 in Section 2.6).

We now neglect the azimuthal variations of concentration around the sources
(Assumption 2 in Section 2.6). In 2D, this allows to strongly simplify the above
expression since ∇ϕ · n and ϕ can be taken out of the integral. Then, the Green’s
function is integrated analytically over the source surface ∂Ωβ,j

∮

∂Ωβ,j

G(x;x∗)dx∗ =




Rj ln

( Rj

||x− xj ||
)
+K1 if ||x− xj || > Rj

K1 if ||x− xj || ≤ Rj

(59)

where xj is the center of the circular source (Ωβ,j) and K1 is a constant arising from
the integration. Furthermore, due to the simplified Robin boundary condition (Eq. 2)
we know that, on the outer surface of the source,

−n · (∇ϕ) =
qj

2πRjD
(60)

Therefore, we obtain a non-integral expression for the single layer potential of each
source as a function of the vessel-tissue exchanges (qj)

−
∮

∂Ωβ,j

(G(x;x∗)∇ϕ(x∗)) · n(x∗)dx∗ =
qj

2πD
ln
( Rj

||x− xj ||
)
+K1 for x ∈ Ωσ (61)

For convenience we set K1 = ϕj so the potential always stays positive. Furthermore,
since the sources in a 2D simulation are closed surfaces, the double layer potential is:

∮

∂Ωβ,j

(∇G(x;x∗) · n(x∗))dx∗ = 0 ∀x /∈ Ωβ,j (62)

Thus, Eq. 58 simplifies to:

ϕ(x) =

∮

∂Ω

(ϕ∇G · n−G∇ϕ · n)dl +
∑

j∈E(Ω)

Pj (63)

with

Pj = ϕj +
qj

2πD
ln
( Rj

||x− xj ||
)

if ||x− xj || > Rj ∀x ∈ Ωσ (64)

We now make the link between the Green’s formulation and the field splitting
introduced in Section 2.2. When the neighbourhood of influence of each source is the
whole domain (V̂k = Ω ∀k ∈ F)
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ϕ(x) = s(x) +
∑

j∈E(Ω)

(
ϕj +

qj
2πD

ln
( Rj

||x− xj ||
))

(65)

Therefore,

s(x) =

∮

∂Ω

(ϕ∇G · n−G∇ϕ · n)dl (66)

demonstrating that the slow term carries the contribution of the boundary conditions.
We can reduce the size of V̂ to localize the potentials and increase the sparseness of

the system, as the slow term then compensates for the contribution of sources lying
further away. Essentially, when we decrease the size of V̂ , we rely on the low gradients
of the potentials far away from the sources to be accommodated by the slow term. In
other words, when we decrease the size of V̂ , the number of sources modeled
analytically decreases and the gradient of the slow term increases (see Section 2.3.4 for

an estimation of the numerical errors as a function of the the size of V̂ , n). Nevertheless,
the slow term behaves very regularly under most circumstances [1, 6, 9].

C Model conservativeness

Due to the approximated form for the source potentials given in Eq. 24, Eq. 9b is not
satisfied point-wise when multiple sources lie close together. For ease of readability we
recall the definition of the rapid term (Eq. 9):





∇2rk = 0 in Ωσ (67a)

−n · (D∇rk) =
qj

2πRj
on ∂Ωβ,j ∀j ∈ E(Vk) (67b)

where rk is composed by the linear sum of the sources potentials in the
neighbhourhood (see Section 2.3.2 and B):

rk =
∑

j∈E(V̂k)

Pj (68)

and the potential for each source is given by

Pj =




ϕj +

qj
2πD

ln
( Rj

||x− xj ||
)

if ||x− xj || > Rj

ϕj if ||x− xj || ≤ Rj

(69)

As a result of the choice of Pj , when two sources lie close together, Eq. 67b is not
strictly satisfied anymore. To illustrate this, let us suppose there are two sources in the
domain, both lying within the same mesh cell k i.e.E(Ω) = E(Vk) = {1, 2},. The rapid
term reads

rk = P1 + P2 (70)

We then evaluate Eq. 67b





−n · (D∇rk)|∂Ωβ1
=

q1
2πRj

+ εq2,1(x; q2) (71a)

−n · (D∇rk)|∂Ωβ2
=

q2
2πRj

+ εq1,2(x; q1) (71b)

where εi,j is the error caused by the potential of source i on source j, which stays
undefined since we have not specified the position of each source. We can generalize the
case for multiple sources:
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−n · (D∇rk) =
qi

2πRi
+

∑

j∈E(V̂k),j ̸=i

εqi,j on ∂Ωβ,i ∀i ∈ E(Vk) (72)

and
−n · (D∇sk) =

∑

j∈E(V̂k),j ̸=i

εqi,j on ∂Ωβ,i ∀i ∈ E(Vk) (73)

However, as Pj are harmonic functions (Eq. 24), applying the divergence theorem we
see that the integral contribution of these perturbations around source i is null

∮

∂Ωβ,i

εqi,jdl = 0 for i ̸= j (74)

ensuring that the model remains conservative. Therefore, we can conclude that Eq. 9
may not be satisfied point-wise, but the integral contribution of the associted error is
null.

D Sub-grid interpolation of the concentration field

The purpose of the interpolation scheme is two-fold. Firstly, we need to estimate the
wall concentration ϕ to evaluate Eq. 3, and secondly, we aim at providing a sub-grid
reconstruction of the concentration field from the values obtained at the grid nodes

ϕ̃k = s̃k + rk(xk) ∀k ∈ T (75)

where T represents the set of all grid nodes F plus the boundary nodes, and xk

represents the position of each node. We want to preserve the logarithmic nature of the
source potentials, therefore we define a dual neighbourhood V̂ d that defines the sources
whose potentials are reconstructed analytically. We use linear shape functions to
interpolate the node values of the slow term. Since there are discontinuities across the
mesh cell faces, a correction term Ci is added to preserve continuity of the interpolated
field. We thus obtain:

Iϕ(x) =
∑

i∈T

γi(x)(s̃i + Ci) +
∑

j∈E(V̂ d)

Pj(x) (76)

where Iϕ is the interpolation function and γi are the classic linear shape functions for a
square element [5].

The choice of V̂ d is arbitrary. In our case, we choose the union of the
neighbourhoods (V̂ ) of all FV cells involved in the interpolation. Therefore, following
the convention in Fig. 2, inside the red shaded space, we suggest:

V̂ d =
⋃

i∈{k,e,s,se}
V̂i (77)

To estimate the correction Ci, we impose the constraint that:

Iϕ(xk) = ϕ̃k ∀k ∈ T (78)

We further use Eqs. 78, 75 and 76 to solve for Ci:

Ci = −
∑

j∈E(V̂ d)

δjiPj(xi) (79)
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where

δji =

{
0 if j ∈ V̂i

1 else
(80)

For ease of readability, we group all the potential terms into a extended rapid term:

rc
i (x) =

∑

j∈E(V̂ d)

(Pj(x)− δjiPj(xi)) (81)

to finally obtain the interpolation function

Iϕ(x) =
∑

i∈T

γi(x)(s̃i + rc
i (x)) (82)

E Metabolism

As written in section 2.4, the integrals inside vector Smetab are evaluated using the
Simpson’s rule of integration

Smetab =





M

D

(
1− SiV1

( ϕ0

ϕ0 + s̃1 + r1(x)

))

M

D

(
1− SiV2

( ϕ0

ϕ0 + s̃2 + r2(x)

))

M

D

(
1− SiV2

( ϕ0

ϕ0 + s̃3 + r3(x)

))

...
M

D

(
1− SiVF

( ϕ0

ϕ0 + s̃F + rF (x)

))





(83)

where Si refers to the second order accurate Simpson’s rule of integration. We have
the following system of equations for the iterative system

J(sn,qn)

{
∆s

∆q

}
= −

[
A B

C E

]
·
{
sn

qn

}
−
{

b∂Ω

b∂Ωβ

}
(84)

where each new iteration is given by

{
sn+1

qn+1

}
=

{
sn

qn

}
+

{
∆s

∆q

}
(85)

and the Jacobian is calculated as

J(sn,qn) =

[
A B

C E

]
+



∂Smetab

∂sn
∂Smetab

∂qn

0 0


 (86)

[
∂Smetab

∂sn

]

k,m

=




0 if k ̸= m

−M

D
SiVk

( ϕ0

(ϕ0 + s̃k + rk(x))2

)
) if k = m

(87)

[
∂Smetab

∂qn

]

k,j

=




0 if j /∈ E(V̂k)

−M

D
SiVk

(
1

2πRj
ln
( Rj

||x− xj ||
) ϕ0

(ϕ0 + s̃k + rk(x))2

)
if j ∈ E(V̂k)

(88)
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The initial guess for the iterative system is the solution for the linear system with no
metabolism

[
A B

C E

]
·
{
s0

q0

}
=

{
b1

b2

}
(89)
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Fig S1. Flux rate errors are displayed for the off-centering of a source
withing a FV cell. A: schematics of the test-case where the center of the source is
moved throughout the grid contained in the upper right corner of the center cell. B and
C: error on the vessel-tissue exchanges (q) with interpolation (Iϕ) in Panel B and
without in Panel C. The asymmetry of errors is due to the set of boundary conditions
imposed at the limits of the computational domain (see Panel A).
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Fig S2. Fine mesh finite element (FE) reference concentration field (ϕref)
obtained with COMSOL Multiphysics for the original non-reactive BVP
(eqs. ??). For the single dipole configuration, 2278 mesh elements have been used
(upper panel), while 9468 elements have been used for the multiple source configurations
(lower panel).
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Fig S3. Sub-grid reconstructions of the concentration field (upper) and local
cerebral metabolic rate MC/(K + C) (lower) for varying capillary densities
and oxygenations. M=2.4 µmol

cm3min . A: CLD=0.8 mmm−3 and ϕcap/ϕPA=0.4; B:
CLD=1.2 mmm−3 and ϕcap/ϕPA=0.4; C: CLD=0.8 mmm−3 and ϕcap/ϕPA=0.55; D:
CLD=1.2 mmm−3 and ϕcap/ϕPA=0.55. To facilitate comparison, panels with same
CLD present the same realization of source/sink locations.
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Fig S4. Sub-grid reconstructions of the concentration field (upper) and local
cerebral metabolic rate MC/(K + C) (lower) for varying values of the
maximal cerebral rate of oxygen M . Layer I: CLD=0.8 mmm−3 and
ϕcap/ϕPA=0.4; Layer II: CLD=0.94 mmm−3 and ϕcap/ϕPA=0.45; A and B:

M=0.8 µmol
cm3min ; C and D: M=2.4 µmol

cm3min . To facilitate comparison, panels with same
CLD present the same realization of source/sink locations.
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Fig S5. Radial concentration profiles predicted in layer I and layer II (thin
continuous lines) together with experimental values obtained from
post-processing the data in Fig. ??C (bold dashed line). The predicted profiles
are obtained by averaging the results of 30 simulations for parameters for layer I (left)
and layer II (right) as given in Table ??, respectively, and for four physiologically
realistic values of M (see legend in right panel). The experimental measurement were
made 100µm under the cortical surface, i.e., at the interface between layer I and II.
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Supplementary methods

S.1 Multiscale Finite Volume formulation

In the Finite Volume (FV) method, the main ideas are as follows:

1. Discretization: We divide the domain Ωσ into a set of control volumes F where
the variable are estimated at the geometrical center (node) of each control volume.

2. Flux approximation: We approximate the fluxes as a function of the nodal
values to obtain a system involving only concentrations

3. Closure of the system: we impose flux and concentration continuity at each of
the FV cell’s interfaces

We begin by integrating the PDE ?? over the control volume given by Vk:

∫∫

Vk

∇2sk(x)dS = 0 ∀k ∈ F (1)

Recalling that Vk have been introduced in Section ?? to provide a tessellation of the
parenchyma Ωσ, we obtain, by applying the divergence theorem:

∑

m∈Nk

∫

∂Vk,m

(∇sk · n)dl +
∑

j∈E(Vk)

∮

∂Ωβ,j

(∇sk · n)dl = 0 ∀k ∈ F (2)

The second integral term in the left hand side of Eq. 2 is always null due to the
boundary condition ??. Using the TPFA (Eq. ??) to estimate the slow term gradients
and the mid-point rule to evaluate the integrals, we obtain:

−4s̃k +
∑

m∈Nk

s̃k,m = 0 (3)

with
Nk := {n, s, e, w} (4)

Since the goal is to obtain a system of equations with one value of the slow term for
each FV cell, we need to remove the dummy variables of the slow term (i.e. s̃k,m and
s̃m,k) at the interfaces of the FV cells. For that purpose, we use the local boundary
conditions on each FV cell (Eqs ??d and ??e), which are rewritten below for ease of
reading





D
s̃k,m − s̃k

h/2
−D

s̃m − s̃m,k

h/2
=

1

h

∫

∂Vk,m

n · (D∇rm(x)−D∇rk(x))dl (5a)

s̃k,m − s̃m,k =
1

h

∫

∂Vk,m

(rm − rk)dl (5b)

We isolate s̃m,k in Eq. 5b and substitute it into Eq. 5 to obtain

s̃k,m =
s̃k + s̃m

2
+

Jk,m
2

(59)

where

Jk,m =
1

2

∫

∂Vk,m

n · (∇rm −∇rk)dl +
1

h

∫

∂Vk,m

(rm − rk)dl (60)
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Recalling that rk and rm are analytical functions of q, we have written a system
where the only unknowns are the values of the slow term in the FV grid (s) and the
vessel-tissue exchanges (q). Therefore, Eq. ?? results in

−4s̃k +
∑

m∈Nk

(
s̃m + Jk,m

)
= 0 (61)

where Jk,m = Jk,m(q) since it only depends on the rapid term for each cell.
It is worth noting how Eq. 61 can be evaluated independently of the specific form of

the rapid term. Additionally, the term Jk,m is only evaluated at the interfaces of the
cells Vk and Vm. This results in a more efficient and convenient formulation that allows
for a flexible construction of the rapid term (see Section S.2) and a more efficient
assembly of the system of equations compared to other models that impose a finite
support to their respective analytical term [1,2].

S.2 Analytical derivation of potentials

To obtain Green’s second identity, we multiply the concentration field in the
parenchyma (ϕ) by a scalar field φ and apply the divergence theorem:

∫

Ωσ

φ∇2ϕ− ϕ∇2φdV = −
∮

∂Ωσ

(φ∇ϕ− ϕ∇φ) · ndS (62)

where n follows the same convention as in figure ?? and represents the normal pointing
inward to the domain Ωσ, and ∂Ωσ includes all the boundaries of the parenchyma
(including the vascular walls) since ∂Ωσ := ∂Ωβ

⋃
∂Ω.

We can obtain the Green’s third identity by substituting the scalar field φ in
equation 62 by the fundamental solution for the Laplace equation

G(x;x∗) =
1

2πD
ln
( a

||x− x∗||
)

(63)

where a is a constant of integration. This yields

D∇2G(x;x∗) = −δ(x− x∗) in Ω (64)

From equations 62 and 63 1, we obtain:

ϕ(x) =

∮

∂Ωσ

(ϕ(x∗)∇G(x,x∗) · n(x∗)−G(x,x∗)∇ϕ(x∗) · n(x∗))dS(x∗) (65)

which provides a description of the concentration field ϕ(x) through a superposition of a
double layer potential and a single layer potential given as the first and second part of
the integral, respectively. Besides, we can decompose the integrals into a contribution
from the external boundary ∂Ω and the vascular boundary ∂Ωβ

ϕ =

∮

∂Ω

(ϕ∇G · n−G∇ϕ · n)dl +
∮

∂Ωβ

(ϕ∇G · n−G∇ϕ · n)dl (66)

where the integral over the boundary ∂Ω is expected to behave very regularly through
space [2, 6–8] (Assumption 1 in Section ??).

We now neglect the azimuthal variations of concentration around the sources
(Assumption 2 in Section ??). In 2D, this allows to strongly simplify the above

1Here the free space Green’s function is used instead of the Green’s function of the first or second
kind due to the difficulty to calculate the later one. Practically, the approach used here is in line with
the boundary element method literature [3–5]
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expression since ∇ϕ · n and ϕ can be taken out of the integral. Then, the Green’s
function is integrated analytically over the source surface ∂Ωβ,j

∮

∂Ωβ,j

G(x;x∗)dx∗ =




Rj ln

( Rj

||x− xj ||
)
+K1 if ||x− xj || > Rj

K1 if ||x− xj || ≤ Rj

(67)

where xj is the center of the circular source (Ωβ,j) and K1 is a constant arising from
the integration. Furthermore, due to the simplified Robin boundary condition (Eq. ??)
we know that, on the outer surface of the source,

−n · (∇ϕ) =
qj

2πRjD
(68)

Therefore, we obtain a non-integral expression for the single layer potential of each
source as a function of the vessel-tissue exchanges (qj)

−
∮

∂Ωβ,j

(G(x;x∗)∇ϕ(x∗)) · n(x∗)dx∗ =
qj

2πD
ln
( Rj

||x− xj ||
)
+K1 for x ∈ Ωσ (69)

For convenience we set K1 = ϕj so the potential always stays positive. Furthermore,
since the sources in a 2D simulation are closed surfaces, the double layer potential is:

∮

∂Ωβ,j

(∇G(x;x∗) · n(x∗))dx∗ = 0 ∀x /∈ Ωβ,j (70)

Thus, Eq. 66 simplifies to:

ϕ(x) =

∮

∂Ω

(ϕ∇G · n−G∇ϕ · n)dl +
∑

j∈E(Ω)

Pj (71)

with

Pj = ϕj +
qj

2πD
ln
( Rj

||x− xj ||
)

if ||x− xj || > Rj ∀x ∈ Ωσ (72)

We now make the link between the Green’s formulation and the field splitting
introduced in Section ??. When the neighbourhood of influence of each source is the
whole domain (V̂k = Ω ∀k ∈ F)

ϕ(x) = s(x) +
∑

j∈E(Ω)

(
ϕj +

qj
2πD

ln
( Rj

||x− xj ||
))

(73)

Therefore,

s(x) =

∮

∂Ω

(ϕ∇G · n−G∇ϕ · n)dl (74)

demonstrating that the slow term carries the contribution of the boundary conditions.
We can reduce the size of V̂ to localize the potentials and increase the sparseness of

the system, as the slow term then compensates for the contribution of sources lying
further away. Essentially, when we decrease the size of V̂ , we rely on the low gradients
of the potentials far away from the sources to be accommodated by the slow term. In
other words, when we decrease the size of V̂ , the number of sources modeled
analytically decreases and the gradient of the slow term increases (see Section ?? for an

estimation of the numerical errors as a function of the the size of V̂ , n). Nevertheless,
the slow term behaves very regularly under most circumstances [1, 6, 9].
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S.3 Model conservativeness

Due to the approximated form for the source potentials given in Eq. ??, Eq. ??b is not
satisfied point-wise when multiple sources lie close together. For ease of readability we
recall the definition of the rapid term (Eq. ??):





∇2rk = 0 in Ωσ (75a)

−n · (D∇rk) =
qj

2πRj
on ∂Ωβ,j ∀j ∈ E(Vk) (75b)

where rk is composed by the linear sum of the sources potentials in the
neighbhourhood (see Section ?? and S.2)

rk =
∑

j∈E(V̂k)

Pj (68)

and the potential for each source is given by

Pj =




ϕj +

qj
2πD

ln
( Rj

||x− xj ||
)

if ||x− xj || > Rj

ϕj if ||x− xj || ≤ Rj

(69)

As a result of the choice of Pj , when two sources lie close together, Eq. 75b is not
strictly satisfied anymore. To illustrate this, let us suppose there are two sources in the
domain, both lying within the same mesh cell k i.e.E(Ω) = E(Vk) = {1, 2},. The rapid
term reads

rk = P1 + P2 (70)

We then evaluate Eq. 75b





−n · (D∇rk)|∂Ωβ1
=

q1
2πRj

+ εq2,1(x; q2) (71a)

−n · (D∇rk)|∂Ωβ2
=

q2
2πRj

+ εq1,2(x; q1) (71b)

where εi,j is the error caused by the potential of source i on source j, which stays
undefined since we have not specified the position of each source. We can generalize the
case for multiple sources:

−n · (D∇rk) =
qi

2πRi
+

∑

j∈E(V̂k),j ̸=i

εqi,j on ∂Ωβ,i ∀i ∈ E(Vk) (68)

and
−n · (D∇sk) =

∑

j∈E(V̂k),j ̸=i

εqi,j on ∂Ωβ,i ∀i ∈ E(Vk) (69)

However, as Pj are harmonic functions (Eq. ??), applying the divergence theorem we
see that the integral contribution of these perturbations around source i is null

∮

∂Ωβ,i

εqi,jdl = 0 for i ̸= j (70)

ensuring that the model remains conservative. Therefore, we can conclude that Eq. ??
may not be satisfied point-wise, but the integral contribution of the associted error is
null.
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S.4 Sub-grid interpolation of the concentration field

The purpose of the interpolation scheme is two-fold. Firstly, we need to estimate the
wall concentration ϕ to evaluate Eq. ??, and secondly, we aim at providing a sub-grid
reconstruction of the concentration field from the values obtained at the grid nodes

ϕ̃k = s̃k + rk(xk) ∀k ∈ T (71)

where T represents the set of all grid nodes F plus the boundary nodes, and xk

represents the position of each node. We want to preserve the logarithmic nature of the
source potentials, therefore we define a dual neighbourhood V̂ d that defines the sources
whose potentials are reconstructed analytically. We use linear shape functions to
interpolate the node values of the slow term. Since there are discontinuities across the
mesh cell faces, a correction term Ci is added to preserve continuity of the interpolated
field. We thus obtain:

Iϕ(x) =
∑

i∈T

γi(x)(s̃i + Ci) +
∑

j∈E(V̂ d)

Pj(x) (72)

where Iϕ is the interpolation function and γi are the classic linear shape functions for a
square element [5].

The choice of V̂ d is arbitrary. In our case, we choose the union of the
neighbourhoods (V̂ ) of all FV cells involved in the interpolation. Therefore, following
the convention in figure ??, inside the red shaded space, we suggest:

V̂ d =
⋃

i∈{k,e,s,se}
V̂i (73)

To estimate the correction Ci, we impose the constraint that:

Iϕ(xk) = ϕ̃k ∀k ∈ T (74)

We further use Eqs. 74, 71 and 72 to solve for Ci:

Ci = −
∑

j∈E(V̂ d)

δjiPj(xi) (75)

where

δji =

{
0 if j ∈ V̂i

1 else
(76)

For ease of readability, we group all the potential terms into a extended rapid term:

rc
i (x) =

∑

j∈E(V̂ d)

(Pj(x)− δjiPj(xi)) (77)

to finally obtain the interpolation function

Iϕ(x) =
∑

i∈T

γi(x)(s̃i + rc
i (x)) (78)

S.5 Metabolism

As written in section ??, the integrals inside vector Smetab are evaluated using the
Simpson’s rule of integration
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Smetab =





M

D

(
1− SiV1

( ϕ0

ϕ0 + s̃1 + r1(x)

))

M

D

(
1− SiV2

( ϕ0

ϕ0 + s̃2 + r2(x)

))

M

D

(
1− SiV2

( ϕ0

ϕ0 + s̃3 + r3(x)

))

...
M

D

(
1− SiVF

( ϕ0

ϕ0 + s̃F + rF (x)

))





(79)

where Si refers to the second order accurate Simpson’s rule of integration. We have
the following system of equations for the iterative system

J(sn,qn)

{
∆s

∆q

}
= −

[
A B

C E

]
·
{
sn

qn

}
−
{

b∂Ω

b∂Ωβ

}
(80)

where each new iteration is given by

{
sn+1

qn+1

}
=

{
sn

qn

}
+

{
∆s

∆q

}
(81)

and the Jacobian is calculated as

J(sn,qn) =

[
A B

C E

]
+



∂Smetab

∂sn
∂Smetab

∂qn

0 0


 (82)

[
∂Smetab

∂sn

]

k,m

=




0 if k ̸= m

−M

D
SiVk

( ϕ0

(ϕ0 + s̃k + rk(x))2

)
) if k = m

(83)

[
∂Smetab

∂qn

]

k,j

=




0 if j /∈ E(V̂k)

−M

D
SiVk

(
1

2πRj
ln
( Rj

||x− xj ||
) ϕ0

(ϕ0 + s̃k + rk(x))2

)
if j ∈ E(V̂k)

(84)
The initial guess for the iterative system is the solution for the linear system with no

metabolism

[
A B

C E

]
·
{
s0

q0

}
=

{
b1

b2

}
(85)
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3.2. DISCUSSION 101

3.2 Discussion in the context of multiscale modeling of oxygen trans-

port

In this chapter, we have established the foundation of a multiscale model designed to ac-

curately and efficiently capture perivascular gradients and non-linear metabolic reactions in

the brain parenchyma. Our particular focus was on integrating an analytical description of

microscale dynamics into a structured cartesian mesh, significantly reducing the system’s size

compared to models with similar levels of detail. We introduced a 0DIV - 2DEV model to

comprehensively test the underlying hypotheses of our multiscale approach. Leveraging the

efficient integration of multiple sources and sinks in a 2D configuration, we applied this mul-

tiscale model to assist in interpreting tissue oxygenation data acquired through multiphoton

microscopy [12; 13]. This enhanced efficiency indeed enabled us to reduce the computational

cost of directly modeling the oxygen concentration field around a penetrating arteriole, faci-

litating the testing of various configurations to achieve a representation of the average radial

concentration profile around penetrating arterioles that matches experimental data.

Furthermore, the 2D configuration allowed us to isolate the impact of radial concentration

gradients around the vessels without needing to consider the three-dimensional architecture of

the microvascular network or axial transport along the vessels’ axis. As a result, we thoroughly

analyzed and validated the most challenging aspect of solute transport in the microcircula-

tion, i.e., perivascular concentration gradients, within the operator splitting framework. This

analysis paves the way for extending the multiscale model to 1DIV-3DEV configurations, with

a precise estimation of the errors introduced by the analytical-numerical framework proposed

in this chapter for describing radial transport. Therefore, in the next chapter, we expand this

multiscale model to include the third dimension, introducing new challenges related to the

coupling with intravascular transport, network discretization, and the evaluation of source

potentials within a given discretization.
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[12] Philipp Mächler, Natalie Fomin-Thunemann, Martin Thunemann, Marte Julie Sætra,
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Chapter 4

Oxygen transport in the parenchyma :

3D configuration

In this Chapter, we propose a strategy to efficiently solve the 1DIV-3DEV coupled mass

transport problem as is described in Chapter 2, with the goal to model large microvascular

networks. The development and the results from the previous 0DIV-2DEV formulation of

the same problem (Chapter 3) will resurface often throughout the Chapter to alleviate the

technical developments since many aspects of the numerical approach remain unchanged. The

first main difference between the 0DIV-2DEV and 1DIV-3DEV configurations is the inclusion

of intravascular transport, which in the 0DIV-2DEV model was irrelevant due to the sources

not being connected among them. The other main difference between the two models is the

estimation of the potentials that make up the rapid term, which will comprise the bulk of the

new content presented in this Chapter (Sections 4.2.3-4.2.6).

In Section 4.1, we set up the problem with the operator splitting approach that already

proved useful in modeling the large gradients caused by the vascular sources, thereby strongly

reducing the computational requirements for the resolution of the problem. Subsequently, in

Section 4.2, we show the developments to obtain an efficient system of discrete algebraic

equations associated to the coupled molecular transport problem. Finally, in Section 3, we

apply the model to a single vessel in order to compare the results with a reference solution

and validate the model, and afterward, we test large networks encompassing multiple vessels.
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Ωσ

Ω:= Ωβ ⋃ Ωσ 

Ωβ  

∂Ωβ

∂Ω

Figure 4.1 – Terminology and notations for parenchyma and vessel spaces in the 3D configuration.
We show a 3D region Ω of brain tissue, which includes the parenchyma Ωσ and the vascular space Ωβ .
The external boundary is denoted by ∂Ω, the vessel walls denoted by ∂Ωβ , the vessels’ center-lines
by Λ, the curvilinear coordinate system for the vessels by (s, r, θ), and the normal n to the boundary
(∂Ωβ) pointing toward the parenchyma. The new terms introduced exclusively to handle 3D networks
include λ(s) that denotes the vessel cross-section, and ∂λ(s) that denotes its circumference.

4.1 Problem formulation

Similar to the previous Chapter, we present an operator splitting approach based on the

boundary integral equation (BIE), which is derived using the method of Green’s functions. In

this Section, we apply the operator splitting framework to reframe the extravascular boundary

value problem (BVP) for the concentration field. The resulting BVP, after reformulation in

terms of a slow term, can be effectively solved using a coarse mesh. As demonstrated in

the previous Chapter, the accuracy of the coarse grid resolution is tightly connected to the

definition of the rapid term, which we explore in detail in Section 4.2.

Moving on to Section 4.1.1, we define the two coupled intravascular and extravascular pro-

blems, using the formulations for the intravascular transport introduced in Chapter 2. In

Section 4.1.2, we briefly describe the model used to obtain the velocity field in microvascular

networks that is needed to deduce the effective properties of the intravascular transport. Fi-

nally, in Section 4.1.3, we replicate the same development as the previous Chapter to propose

a BVP for the slow term.

4.1.1 Coupled Transport Problem

We consider a region of tissue Ω ⊂ R3 that comprises the parenchyma Ωσ ⊂ R3 and the

vascular compartment Ωβ ⊂ R3, as shown in Fig. 4.1. We consider diffusion as the main

driving mechanism for transport in the parenchyma [1–4]. Accordingly, the BVP with respect

to the concentration ϕ in the parenchyma reads :
∇2ϕ = 0 in Ωσ (4.1a)

−n · (D∇ϕ) = q(s)
2πR(s) on ∂Ωβ,j ∀j ∈ E(Ω) (4.1b)

ϕ = ϕD on ∂ΩD (4.1c)

where ϕ [molm−3] represents the molar extravascular concentration, D [m2 s−1] represents the

diffusion coefficient in the parenchyma assumed to be homogeneous and isotropic, and R(s)
represents the radius of the vessel at the curvilinear abscissa s along the vessel network, as
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illustrated in Fig. 4.1. Transport in the parenchyma is coupled to the intravascular compart-

ment by the diffusive flux traversing the vessel wall, which we denominate the vessel-tissue

exchanges q(s) [molm−1 s−1].

q(s) = Keff (⟨Cv⟩(s) − ϕ(s)) (4.2)

where Keff [m2 s−1] represents the effective permeability of the vessel wall. We estimate the

vessel wall concentration ϕ as the average concentration ϕ over the circumference ∂λ(s) :

ϕ(s) = 1
2πR(s)

ˆ
∂λ(s)

ϕ(x)dx (4.3)

and the average intravascular concentration ⟨Cv⟩ as the average over the vessel cross-section

λ(s) :

⟨Cv⟩(s) = 1
πR(s)2

¨
λ(s)

ϕ(x)dx (4.4)

which constitutes the assumption of local axisymmetry made in the previous Chapter. Equa-

tion 4.3 results in neglecting locally the tangential gradients in the normal derivative (i.e.,

molecular flux) of the parenchymal concentration (see equations 4.1b and 4.2). However,

thanks to the multiple source simulations shown in the previous Chapter, we concluded that

this axisymmetry condition provides very low errors (under 1% for the estimation of q) on the

estimation of the radial flow even in configurations lacking symmetry around the sources. We

remind the reader how the previous Chapter served as the foundation for the development

introduced here. The thorough testing provided done for the 0DIV-2DEV configurations pro-

vides the groundwork that now furnishes us with the upper bound estimate of the errors

generated by the axisymmetry hypothesis.

Moreover, for the intravascular transport i.e., 1DIV, we use a 1D effective equation that reads

[5],


Ueff

∂⟨Cv⟩(s)
∂s

− Deff
∂2⟨Cv⟩(s)

∂s2 + q(s)
πR(s)2 = 0 on Λ (4.5a)

⟨Cv⟩(s) = CD on ΛD (4.5b)

∂⟨Cv⟩(s)
∂s

= N on ΛN (4.5c)

where ΛD and ΛN represent the inlets and outlets of the network where the Dirichlet CD,

or Neumann N boundary conditons (BCs) are imposed, respectively. The effective transport

coefficients, i.e., Ueff [m s−1], Deff [m2 s−1], and Keff [m2 s−1], account for the coupling bet-

ween the radial gradients of concentration and the radial gradients of velocity when diffusion

is possible through the vessel wall. These coefficients thus provide a generalization of Taylor’s

dispersion, and match with the corresponding coefficients when the diffusive permeability of

the vessel wall is null. In the limit case of weak couplings (see [5] for more details), their

expression is given in A.1. Here, building up on Berg et al. [5], we assume that, even out-

side of this regime, these expression provide a better and more general approximation of

intravascular transport than the usual well-mixed model [6–10].
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4.1.2 Flow model

Here, we revisit the flow model used to obtain the velocity map in the vascular network. For a

deeper explanation we suggest to revisit Section 2.2 and [11]. The effective velocity parameter

in equation 4.5a is strongly dependent on the flow field in the intravascular compartment.

Blood flow in the vessels is considered to be uncoupled from the transport problem due to the

low permeability of the Blood Brain Barrier (BBB), thus, it can be computed beforehand. We

estimate the blood flow through a vessel by a linear relationship with the pressure difference

between the initial Pβ and final Pγ vertices.

πR2⟨U⟩βγ = Gβγ(Pβ − Pγ) (4.6)

where ⟨U⟩ represents the average cross-sectional velocity andG is the vessel conductance that

is calculated using the following relationship

Gβγ = πR4

8µappl
(4.7)

where µapp is the apparent viscosity, R is the radius of the vessel, and l represents the

curvilinear length of the vessel. Writing equation 4.6 for each vessel with known pressure or

flow rates at the network boundary leads to a sparse linear system, the solution of which is

later used to calculate the effective coefficients of the intravascular transport equation. This

is known as the network approach and it is widely used in the literature [5–8; 11; 12]

4.1.3 Field Splitting

Based on similar arguments as in the previous Chapter, we expect strong concentration

gradients to build up in the vicinity of the vessels that we aim to capture through a rapid

term that is defined analytically. The remaining slow background field is solved numerically.

Therefore, we split the concentration field into two contributions :

ϕ(x) = s(x) + r(x) (4.8)

The developments to obtain a BVP for the slow term is identical to the 0DIV-2DEV case.

For ease of reading, we repeat here the crucial steps. We divide the domain of computation Ω
into a set F of F volumes that represent the volumes created by the cartesian grid used for

the finite volume (FV) discretization. The slow and rapid terms are composed of continuous

functions over each volume Vk ⊂ F

r(x) =
∑
k∈F

rk(x) with rk(x) = 0 ∀x /∈ Vk (4.9a)

s(x) =
∑
k∈F

sk(x) with sk(x) = 0 ∀x /∈ Vk (4.9b)

Furthermore, we define the rapid term as a harmonic function inside each Vk that quantifies

the gradients caused by the vessel tissue exchanges.
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∇2rk = 0 in Vk (4.10a)

−n · (D∇rk) = q(s)
2πR(s) on ∂Ωβ,j ∀j ∈ E(Vk) (4.10b)

which results in the following BVP for each sk :



∇2sk = 0 in Vk (4.11a)

sk = ϕD − rk on ∂Ω (4.11b)

n · ∇sk = 0 on ∂Ωβ (4.11c)

n · (∇sk − ∇sm)
∣∣
∂Vk,m

= n · (∇rm − ∇rk)
∣∣
∂Vk,m

(4.11d)

(sk − sm)
∣∣
∂Vk,m

= (rm − rk)
∣∣
∂Vk,m

(4.11e)

Therefore, the fully coupled system is composed, firstly, by the mass conservation equation

in the parenchyma (equation 4.11), which arises from applying the splitting to equation 4.1 ;

secondly, by the vessel tissue exchanges calculated through equation 4.2 ; and lastly, by the

mass conservation in the intravascular compartment, equation 4.5. We thus obtain a system

of 3 coupled systems of equations as opposed to two in the previous Chapter due to the

addition of the intravascular transport problem. For ease of reading, the full coupled BVP is

illustrated in Box 1 :

Box 1



∇2sk = 0 in Vk (4.12a)

sk = ϕD − rk on ∂Ω (4.12b)

n · ∇sk = 0 on ∂Ωβ (4.12c)

n · (∇sk − ∇sm)
∣∣
∂Vk,m

= n · (∇rm − ∇rk)
∣∣
∂Vk,m

(4.12d)

(sk − sm)
∣∣
∂Vk,m

= (rm − rk)
∣∣
∂Vk,m

(4.12e)


Ueff

∂⟨Cv⟩(s)
∂s

− Deff
∂2⟨Cv⟩(s)

∂s2 + q(s)
πR(s)2 = 0 on Λ (4.13a)

⟨Cv⟩(s) = CD on ΛD (4.13b)

∂⟨Cv⟩(s)
∂s

= N on ΛN (4.13c)

q(s) = Keff (⟨Cv⟩(s) − ϕ(s)) (4.14)

4.2 Assembly of the system of discrete algebraic equations

We follow the same paradigm as in the previous Chapter where we assemble each equation

of the linear system in a different block of the matrix associated. In this case, one block of

matrices is added to represent the intravascular transport problem. We show a preview of

the final structure of the numerical model in Fig. 4.2, where the first line of matrices (A B 0)
models mass transport in the parenchyma (discrete version of the system of equations 4.12) ;
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the second line (D E F) models the vessel tissue exchanges (discrete version of equation 4.14) ;

lastly, the third line (0 H I) models the intravascular transport where the matrix I contains
the discrete advection diffusion transport part of the system of equations 4.13 and H contains

the reaction part (molecular flux leaving the vessel).

Mass conservation in 
parenchyma

Boundary conditions 
on exterior boundary

Boundary conditions on 
inlets and outlets of the 
vascular compartment

1D advection - 
diffusion matrix

3D Diffusion 
matrix Jk,m matrix

Vessel - tissue 
exchanges

Mass conservation in the 
vascular compartment

Figure 4.2 – Schematics of the final coupled linear system in matrix form.

Fig. 4.2 represents the discrete version of the coupled boundary value problem (BVP) made

up by the intra and extra vascular transport problems introduced in the previous Section.

The rest of this Section deals with the assembly of the individual linear blocks illustrated in

Fig. 4.2 and proceeds as follows : in Section 4.2.1, we deal with the numerical model for the

intravascular transport problem, i.e., the discrete version of the system of equations 4.13 and

the third line in Fig. 4.2. In Section 4.2.2, we deal with the assembly of the extravascular

diffusion problem, i.e., the discrete version of the system of equations 4.12 and the first line

in Fig. 4.2. The rest of the Section tackles the challenge of obtaining a compact formulation

for the source potentials (rapid term).

4.2.1 Finite volume discretization of the intravascular transport problem

We discretize the vascular domain into a set S of open cylinders denominated by the subindex

j, i.e., j ∈ S and
⋃

j∈S ∂Ωβ,j = ∂Ωβ, where ∂Ωβ,j denotes the surface of an open cylinder with

fixed radius and length given by Rj and hΛ,j respectively. In the same way, each cylinder is

associated with a centerline Λj where
⋃

j∈S Λj = Λ, and ||Λj || = hΛ,j . Accordingly, the

discretization size of the vascular system is represented by the length of the cylinders hΛ,j .

We integrate equation 4.13a to obtain a mass balance over each cylinder, which reduces to :

πR2
j

ˆ
Λj

(
Ueff

∂⟨Cv⟩(s)
∂s

− Deff
∂2⟨Cv⟩(s)

∂s2 + q(s)
πR2

j

)
ds = 0 (4.15)

We further approximate the derivative of the concentration using the Two Point Flux Ap-

proximation (TPFA) for the gradients and use an upwind scheme for the advective term to

obtain the following discrete PDE for intravascular transport :

Ueff,j(Cv,j − Cv,j−1) + Deff,j

(
−Cv,j−1 + 2Cv,j − Cv,j−1

hΛ,j

)
+ qj

hΛ,j

πR2
j

= 0 (4.16)

where Cv,j , Cv,j−1, Cv,j+1 are the concentrations of the current, upstream and downstream

cylinders, respectively. Ueff,j and Deff,j are the effective advection and diffusion coefficients

for the current cylinder, and qj represents the average molecular flux exchanged through the

surface ∂Ωβ,j
1 . Thus far, we have discretized the flow and transport problems in the vascular

1. Following the notation illustrated in Fig. 4.1, ∂Ωβ,j represents the surface (i.e., BBB) of the open cylinder
j.
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compartment ; in the next Section, we deal with its coupled counterpart in the parenchyma.

4.2.2 FV discretization of the slow term

This Section focuses on the discrete version of the mass conservation problem in the paren-

chyma. Following the same strategy as the previous Chapter, we mesh the whole domain

of computation Ω with a cartesian mesh, where we use the finite volume (FV) method to

discretize the slow field equations (system of equations 4.12). We integrate over each control

volume Vk and apply the TPFA to approximate the cell-to-cell fluxes. Thus, we obtain the

following discretization of the PDE (equation 4.12a)

hΩ
∑

m∈Nk

(
s̃m − s̃k + Jk,m

)
= 0 (4.17)

For simplicity, we assume each FV cell is a cube, where hΩ represents the side length of a

single FV cell. Furthermore, the source term induced by the discontinuity of the rapid field

across the FV cells interface is given by :

Jk,m = 1
2h

¨
∂Vk,m

n · (∇rm − ∇rk)dS + 1
h2

¨
∂Vk,m

(rm − rk)dS (4.18)

As in the previous Chapter, Jk,m bridges the discontinuity created by the finite support (i.e.,

V̂ ) of each source’s potential. Essentially, Jk,m can be considered as a source term appearing at

the FV cell’s interfaces that ensures equation 4.17 actually models mass conservation within

each FV cell.

4.2.3 Green’s function method and the bounary integral equation

The operator splitting framework is built on the idea that the rapid term accurately represents

the perivascular concentration gradients. To acheive that, we represent the rapid term as a

sum of source potentials.

rk =
∑

j∈E(V̂k)

Pj ∀j ∈ E(V̂k) (4.19)

One of the fundamental differences with the 0DIV-2DEV model is the estimation of the source

potentials Pj that make up the rapid term. As mentioned previously, the 0DIV-2DEV model

is considerably simpler than its 1DIV-3DEV counterpart since the estimation of each source

potential (in 2D) can be done exactly, which allows to isolate the impact of the other modeling

assumptions (e.g., assumption of axisymmetry of the flux field around each source). However,

in the 1DIV-3DEV case, the estimation of the potential arising from an open cylinder cannot

be estimated with an exact analytical expression, thus approximations are usually employed

[6; 10; 13–16].

Through Green’s third identity [17–19], we obtain the following boundary integral equation

(BIE)

ϕ(x) =
˛

∂Ωσ

(ϕ(x∗)∇G(x, x∗) · n(x∗) − G(x, x∗)∇ϕ(x∗) · n(x∗))dS(x∗) (4.20)

where G represents the free space Green’s function, i.e., the fundamental solution

D∇2G(x; x∗) = −δ(x − x∗) in Ω (4.21)
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with

G(x; x∗) = 1
4πD||x − x∗||

(4.22)

which represents the concentration field created by an infinitely small source of mass in an

infinite domain. We note that when the evaluation point x approaches the pole x∗, the Green’s

function exhibits a singularity.

Equation 4.20 provides the concentration field in the parenchyma as the potential arising

from a series of infinitesimally small sources (G) and dipoles (∇G · n) distributed over the

boundary of the parenchyma. Moreover, we divide the boundary of the parenchyma ∂Ωσ into

the boundary with the vascular domain ∂Ωβ and the rest ∂Ω. Skipping the variable x and

x∗ for readability, we have

ϕ =
ˆ

∂Ω
(ϕ∇G · n − G∇ϕ · n)dS +

ˆ
∂Ωβ

(ϕ∇G · n − G∇ϕ · n)dS (4.23)

The numerical approach developed here is rooted on the classic boundary element method

(BEM). The underlying concept involves constructing a BVP for unknown quantities situated

at the boundary, utilizing the boundary integral equation (BIE) as depicted in equation 4.23.

The crucial difference with the conventional BEM [19–22] lies in the fact that the first in-

tegral over the contour of the domain ∂Ω (first integral on the right hand side (RHS) of

equation 4.23) is considered within the slow field, as shown in the previous Chapter. The slow

behavior of the contribution of the first integral is well understood [17; 18; 23], and consi-

dering the uncertain nature of boundary conditions within the brain microcirculation, the

operator splitting framework offers a means to estimate this uncertain contribution through

a coarsely resolved mesh for the slow term. The appropriate behaviour expected of the slow

term nevertheless depends on the accurate estimation of the source potentials, i.e., the accu-

rate estimation of the second integral of the RHS of equation 4.23. If achieved, this approach

provides a unprecedented flexibility in evaluating the contribution of the boundary conditions,

i.e., first integral in the RHS of equation 4.23.

To obtain a generic evaluation of the BIE for any vascular geometry we perform the following

three steps (modified from Pozrikidis [20]) :

1. Divide the boundary (∂Ωβ
2) into discrete boundary elements, and approximate the

boundary integrals by summing integrals across these components.

2. Write the discrete version of the BIE, i.e., introduce approximations for the unknown

functions over the boundary.

3. Approximate integration of the single- and double-layer potential over the boundary

elements and compute the discrete BIE to obtain a discrete equation for each element.

4. Implement the discrete system of equations arising from the BIE into the splitting

framework.

2. We reiterate that in this case, the boundary corresponds to the vessel wall ∂Ωβ , whereas in the classic
BEM, the boundary consists of the whole boundary of the parenchyma ∂Ωσ := ∂Ωβ

⋃
∂Ω. This elucidates

the great advantage of the operator splitting where it allows to treat only the vessel wall ∂Ωβ in classic
BEM fashion, while the integral over the exterior boundary ∂Ω (first integral in the RHS of equation 4.23) is
evaluated via a coarse-grid FV approach for the slow term
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The three steps cited above are often referenced throughout the Chapter to elucidate how far

along the assembly of the problem we find ourselves. In the first step, we refer to the boun-

dary created by the vascular wall, i.e., ∂Ωβ, since the boundary integral over the exterior

boundary i.e., ∂Ω, is included in the slow term. The first step results in spatial discretization

of the vascular wall, which was the topic of Section 4.2.1, where we modeled the vascular

compartment as a series of open cylinders with constant radius. The second step consists of

estimating the boundary values on such cylinders. For that purpose, we take advantage of

the BIE (equation 4.23) and we choose the simplest implementation that consists of approxi-

mating both boundary distributions with constant functions over each element : ϕj and qj .

Thus, we estimate the potential arising from each individual boundary element (i.e., cylinder)

as follows

Pj(x) = ϕj

¨
∂Ωβ,j

G(x; x∗) · n(x∗)dS(x∗) + qj

2πRj

¨
∂Ωβ,j

∇G(x; x∗)dS(x∗) (4.24)

Introducing Gj and Hj as the single and double layer influence coefficients, respectively :

Gj(x) =
¨

∂Ωβ,j

G(x; x∗)dS(x∗) (4.25)

Hj(x) =
¨

∂Ωβ,j

∇G(x; x∗) · n(x∗)dS(x∗) (4.26)

we get

Pj(x) = qj

2πRj
Gj(x) + ϕjHj(x) (4.27)

The coefficients Gj and Hj allow to define the potentials everywhere in the parenchyma Ωσ

provided that the values of the concentration (ϕ) and its normal derivative (q) over the vessel

wall are known. Their estimation represents the biggest difference between the 1DIV-3DEV

and 0DIV-2DEV models. The estimation of the surface integrals in equations 4.25 and 4.26 is

indeed challenging, but it proves to be crucial for the accuracy of the model and this challenge

becomes the central focus of the subsequent Section 4.2.4.

Before going further, let us take a step back and unify the potential formulation presented in

this Section with the operator splitting framework of the previous Section. Equations 4.8 and

4.9 express the concentration field as a composite of rapid and slow potentials. Via equations

4.19 and 4.27, we defined the rapid potential as a sum of single and double layer potentials

originating from nearby sources. Thus, we represented the concentration field as a sum of

potentials in the following manner :

ϕ(x) =
∑

j∈E(V̂k)

(
qj

2πRj
Gj(x) + ϕjHj(x)

)
+ s(x) ∀x ∈ Vk (4.28)

where s represents the contribution of far away sources and the integrals over the outer

domain (∂Ω) in the same spirit as in the previous Chapter. Equation 4.28 represents the

operator splitting version of the BIE. Furthermore, the potential-based formulation equips us

with the formal definition of the slow term ; from equation 4.28 and Green’s third identity
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(equation 4.20) we indeed obtain :

s(x) =
∑

j /∈E(V̂k)

(
qj

2πRj
Gj(x) + ϕjHj(x)

)
+
ˆ

∂Ω
(ϕ∇G · n − G∇ϕ · n)dS ∀x ∈ Vk (4.29)

which, thanks to the results of the previous Chapter, we know that s is a slowly varying field

everywhere in Ω, even in small domains of computation (where the boundary conditions have

a greater influence over the field and provide a more rapidly varying slow term). We have

now written a boundary integral equation that describes the concentration field anywhere in

the parenchyma. Provided the boundary values over the cylinders, and the slow field, we can

fully reconstruct the concentration field in the parenchyma using equation 4.28. Thus, the

goal resides in setting up a system to solve for the boundary values, since we have already

set up the mass balance equation that solves for the slow term values on the FV grid in

equation 4.17.

4.2.4 Green’s function method for the estimation of the potentials

Having defined the discrete BIE (equation 4.28), we now focus on the evaluation of the single

and double layer coefficients (equations 4.25 and 4.26). The potential of any given cylinder j

(equation 4.25) is commonly approximated as a the potential created by an equivalent point

source placed on the barycenter of the cylinder, which effectively reduces the vascular domain

as a collection of point sources located on the centerline of the vessels, as commonly done in

the literature [6; 10; 13; 24], which reduces equation 4.25 to

Gpoint
i (x) = 2πRihΛ,iG(x, xi) (4.30)

where xi represents the barycenter of the cylinder i where the point source is located. This

effectively approximates the integral in equation 4.25 via the midpoint rule. Substituting

equation A.27 into equation 4.30 yields

Gpoint
i (x) =

RihΛ,i

2d(x) (4.31)

where d(x) represents the distance between the point source xi and the evaluation point x

di(x) = ||x − xi|| (4.32)

Another viable approximation consists of reducing the cylinder to a line source, as in [25]

Gline
i (x) = 2πRi

ˆ
Λi

G(x, xi)ds (4.33)

The integral on the right hand side can be evaluated analytically (see Section A.2). Therefore,

we write :

Gline
i (x) = Ri

2 ln

(
max(di−1/2, di+1/2) + hΛ,i/2 + ⟨xi − x, τ ⟩
min(di−1/2, di+1/2) − hΛ,i/2 + ⟨xi − x, τ ⟩

)
(4.34)

where di−1/2 and di+1/2 represent the distances to the initial and final points of the centerline
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of the cylinder.

Line sources offer virtually no improvement of accuracy compared to point sources (see figure

4.3A), we use them regardless since they do not add any considerable complexity to the code.

Therefore, we use the line approximation to estimate the integral of the single layer coefficient

in equation 4.25.
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0.5 Point source

Line source
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A B
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1.4
Exact

Line source

Figure 4.3 – Estimation of the single layer influence coefficient using point, line and exact formu-
lation. Panel A shows the single layer potential over the centerpoint of the vessel calculated through
the exact formulation, and the two approximations (line and point) which are essentially superposed.
Panel B shows the same plot but comparing the exact estimation and the line approximation.

Furthermore, these same approximation, substituted in equation 4.28, lead to a null value of

the double layer potential, due to the collapse of the cylinder into lower dimensional objects.

Thus, we have

H line
i = Hpoint

i = 0 in Ω (4.35)

These approximations for the coefficients in the discrete BIE are easy to evaluate anywhere

in the parenchyma without the need to perform any type of integration.

These simplifications are often used in the literature for the computation of the single layer

potential [6; 10; 16; 24]. As detailed above, they are introduced by the geometrical simpli-

fications that decrease the complexity of the necessary computations to evaluate the BIE

(equation 4.28). In contrast, in the previous Chapter, the integral over each source wall could

be evaluated analytically, and the double potential was null. Therefore, no approximations

where introduced regarding the layer potentials. The innacuracies introduced by the geome-

trical simplifications (illustrated in Fig. 4.3) are the topic of the next Section 4.2.5.

4.2.5 Analyzing Approximations : Understanding Their Impact on Potentials

We have completed the first two steps of four needed to obtain a system of algebraic equa-

tions as highlighted in Section 4.2.3. First, we represented the vasculature as an ensemble

of cylinders (Section 4.2.3). Second, we approximated the boundary fields (concentration

and flux over the vascular wall) with constant functions over each element (Section 4.2.4),

which resulted in the discrete version of the BIE given in equation 4.28. Now, we focus on
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the approximations of the potentials i.e., line and point approximations, to understand the

magnitude of the errors introduced (especially near the pole of the Green’s function).

The potentials intervene in the mass conservation equation in the parenchyma via the source

terms Jk,m in the mass balance equation 4.17. The source potential is defined in equation

4.27, which, using the line approximation, results in :

P line
i (x) = qi

2πRi
Gline

i (x) (4.36)

We remind that the sum of the potentials from individual sources constitutes the rapid term

rk =
∑

i∈E(V̂k)

Pi ∀i ∈ E(V̂k) (4.37)

where V̂k represents an extension to Vk that guarantees the sufficient smoothness of s. We also

remind (see Chapter 3) the fact that V̂k is greater in size than Vk so that the kernels of the

integrals in Jk,m in equation 4.18 are non-null only for sources that lie far away from the given

interface (∂Vk,m). The reasoning behind this result lies in the fact that, in the integral kernels

of equation 4.18, the contributions from the sources in V̂m and V̂k are subtracted from each

other. Therefore, the only sources that will provide a non-null contribution are the sources j ∈
(E(V̂k)\E(V̂m))

⋃
(E(V̂m)\E(V̂k)), which, by definition, all lie far away from ∂Vk,m. This fact

has important implications because we can safely assume that the point/line approximation

(equations 4.31 and 4.34) will be accurately integrated for the mass conservation equation

given that the evaluation surfaces of the rapid term always lie far away from the source.

Additionally, the same argument can be made for neglecting the double layer potential 3. We

note that the model remains conservative as long as the source’s potentials are of harmonic

functions in the parenchyma.

Additionally, the potentials intervene in the vessel tissue exchanges where we need to evaluate

the average extravascular concentration over the source to estimate the exchange flux :

qj = Keff,j(⟨Cv⟩j − ϕj) (4.38)

where we recall that qj is the average molecular flux exchanged through the wall (equa-

tion 4.14), ⟨Cv⟩j is the average intravascular concentration inside the cylinder (equation 4.4),

and ϕj represents the average extravascular wall concentration (equation 4.3), which now,

applying the operator splitting framework yields :

ϕj = 1
|∂Ωβ,j |

¨
∂Ωβ,j

 ∑
i∈E(V̂k)

(
qi

2πRi
Gi(x) + ϕiHi(x)

)
+ s(x)

 dS ∀j ∈ E(Vk) (4.39)

Let us recall Fig. 4.2 where we showed the structure of the discrete linear system ; the rapid

term is involved in matrices B and E. The matrix B represents the portion of mass conserva-

tion in the parenchyma containing the computation of the source terms Jk,m. As previously

stated, the kernels of those integrals contain only remote sources, with the distance depending

3. The double layer potential decays faster than the single layer potential. We can safely assume the value
of the double layer potential to remain fairly constant on any mesh cell interface that lies sufficiently far from
the source.
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on the size of V̂ . In contrast, in matrix E we estimate the average value of the rapid term

over the vessel wall (i.e., the integral of Gj and Hj in equation 4.39) for each cylinder which

represents the discrete version of equation 4.2. In this case, replacing Gi and Hi in equa-

tion 4.39 by the line approximation will introduce errors due to the fact that the evaluation

point (x ∈ ∂Ωβ,j) does not necessarily lie far away from the original cylinder ∂Ωβ,i. This

deviation is illustrated in Fig. 4.3 around the center of the vessel (around L/2). Therefore,

we must consider the possibility that the double layer potential might not be negligible and

the line approximation might fail since they are evaluated very near the surface of the source

(thus, very near the singularity). The task now consists of providing appropriate estimations

for the single and double layer coefficients that do not require brute-force evaluation of the

integrals in equations 4.25 and 4.26 but render the model accurate when estimating the boun-

dary values at the vessel wall. Particularly, we focus on the cases when the evaluation point

lies closest to the cylinder, which is especially true when evaluating the self-influence i.e.,

the integral of the coefficients Gi and Hi over the surface of the same cylinder ∂Ωβ,i, which

corresponds with the peak in Fig. 4.3 where the line and exact formulation differ the most.

This constitutes the main topic of the next Section.

4.2.6 Self-influence coefficients

The objective of this Section is to provide an estimation of the layer potentials coefficients

(equations 4.25 and 4.26) in order to evaluate equation 4.39 accurately. First, let us define

the average values over the cylinder j of the slow term (sj), the single layer potential of

cylinder i (Gij), and the double layer potential of cylinder i (Hij), to render equation 4.39

more readable

sj = 1
|∂Ωβ,j |

¨
∂Ωβ,j

s(x)dS (4.40)

Gij = 1
|∂Ωβ,j |

¨
∂Ωβ,j

(¨
∂Ωβ,i

G(x; x∗)dS(x∗)
)

dS(x) (4.41)

Hij = 1
|∂Ωβ,j |

¨
∂Ωβ,j

(¨
∂Ωβ,i

∇G(x; x∗) · n(x∗)dS(x∗)
)

dS(x) (4.42)

hΛ

i-1 i+1i

Gi-1,i and Hi-1,i Gi+1,i and Hi+1,i

Gi,i and Hi,i

Figure 4.4 – Schematic of the influence coefficients. In a hypothetical vessel discretized into 3 cylin-
ders with IDs i − 1,i and i + 1, we show all the influence coefficients acting over the cylinder i.

The single and double layer potentials have an influence over the whole parenchyma, notably,

they are relevant only over the closest points due to the rapid decay of the Green’s function and

its normal derivative. For instance, in the case shown in Fig. 4.4, the larger value corresponds

to the coefficients Gii and Hii, due to its greater proximity from the evaluation point to the

pole. We denote them as self-influence coefficients.

Equations 4.40-4.49 allow us to rewrite the average vessel wall concentration for any cylinder
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j (equation 4.39) in a concise manner

ϕj =
∑

i∈E(V̂k)

(
qi

2πRi
Gij + ϕiHij

)
+ sj (4.43)

To clarify even further, let us substitute equation 4.43 into equation 4.38 to obtain an explicit

expression of qj :

qi = 1(
1 − Hii

Keff,i
− Gii

2πRi

)
(1 − Hii)⟨Cv⟩i + si −

∑
j∈E(V̂k)

i ̸=j

(
qj

2πRj
Gji + ϕjHji

) (4.44)

where Gii and Hii are commonly called the self-influence coefficients and they involve the

integration of the Green’s function and its normal derivative over their poles (equations 4.47

and 4.49 when i = j). The self-influence coefficient is expected to behave quite differently

from the approximated forms since the later exhibit no singularity.

Let us focus on the single layer potential, and only a couple of separated cylinders i and j

as illustrated in Fig. 4.4, i.e., let us consider the cross-influence single layer coefficient (Gij).

We first deal with the average over the current cylinder, i.e., integral over ∂Ωβ,j . Due to

the harmonic properties of the Green’s function and the high aspect ratio of the vessels in

the brain microcirculation, we estimate the average over the cylinder wall as the value at its

barycenter 4 :

Gij ≈
¨

∂Ωβ,i

G(x; xj)dS(x∗) (4.45)

And using the line approximation :

Gij ≈ Gline
i (xj) (4.46)

where xj represents the barycenter of the cylinder j. equation 4.45 represents the exact form

of the cross-influence coefficient (granted we estimated the average over the open cylinder

equal to the average value of an equivalent closed cylinder), and equation 4.46 represents the

line approximation of the cross-influence coefficient.

We note that in this Section, we are dealing with the estimation of the first integral in

equations 4.41 and 4.49 (over ∂Ωβ,i, the source cylinder), whereas in Section 4.2.4 we were

approximating the second integral over ∂Ωj (the cylinder over which the influence of i is

estimated). Clearly, the integral over ∂Ωβ,i constitutes the main challenge since it includes

integrating over the singularity.

It is clear now that, when we deal with the self-influence coefficient, i.e., i = j, strong

4. We approximate the average value of the single layer potential over the open cylinder as equal to the
average value over a close cylinder. This renders the evaluation of any harmonic function over the cylinders
straight-forward. The Gauss theorem dictates that the average of a harmonic function over a closed surface
equals the value of the harmonic function at the barycenter of the closed surface.
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deviations occur when using the approximate forms (defined by equation 4.46) since the

exact form integrates over the pole of the Green’s function and in the approximate forms we

do not (see Fig. 4.3B). This results in a strong deviation for the self influence coefficients Gii

as shown in Fig. 4.3. For that reason, we use the line approximation for the cross influence

coefficients, and we preserve the surface integral for the self influence, which can be evaluated

analytically for straight cylinders.

Gij =


Gline

i (xj) if i ̸= j

1
|∂Ωβ,i|

¨
∂Ωβ,i

(¨
∂Ωβ,i

G(x; x∗)dS(x∗)
)

dS(x) if i = j
(4.47)

This fully defines the single layer potential of a source anywhere in the parenchyma. Regarding

the double layer potential, due to the very rapid decay to zero of the double layer potential,

we estimate it analytically for the cylinders that lie within the same vessel, and neglect it for

the rest.

Hij = 1
|∂Ωβ,j |

¨
∂Ωβ,j

(¨
∂Ωβ,i

∇G(x; x∗) · n(x∗)dS(x∗)
)

dS(x) (4.48)

when i and j belong to the same vessel. equation 4.48 can be evaluated analytically as long

as both cylinders share a centerline, i.e., the vessel is not tortuous. The integrals in equations

4.47 and 4.48 have a singularity when integrating over the pole. The one on equation 4.47 is

weakly singular and can be evaluated with a change in coordinates, and the one on 4.48 is a

diverging singularity and is evaluated as a Cauchy principal value integral [19; 20] :

Hij = 1
|∂Ωβ,j |

¨ P V

∂Ωβ,j

(¨
∂Ωβ,i

∇G(x; x∗) · n(x∗)dS(x∗)
)

dS(x) + 0.5 (4.49)

For an explanation of the evaluation of equations 4.47 and4.49 see Section A.3. We now have

all the ingredients to evaluate the boundary fields ϕ as a function of the unknowns of the

system, i.e., s, q, ⟨Cv⟩. We have successfully completed the third step in the application of

the BEM to the current problem.

4.2.7 Sub-grid reconstruction to estimate vessel-tissue exchanges

In the previous Chapter, we showed how thanks to the rapid term and the TPFA, we were

able to very accurately estimate the concentration gradients on the FV cells’ interfaces,

which rendered the extravascular model accurate, conservative, and permitted a coarse grid

discretization. Nevertheless, we underline that a point-wise estimation of the concentration

field anywhere in the parenchyma lacks accuracy since the FV formulation provides a single

value of the slow term per grid cell. As a result, we could expect an accurate prediction of the

average concentration within a single FV cell, but not an accurate point-wise estimation of the

concentration field on the vessel walls, which posed a problem regarding the accuracy of the

vessel tissue exchanges (equations 4.43 and 4.44). In this Section, we follow the same strategy

as the previous Chapter to provide an interpolation scheme that allows us to reconstruct the

concentration field anywhere in Ω based on the values of the slow term in the coarse grid. We

then use the interpolated value to precisely assess the vessel tissue exchanges from equations

4.43 and
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The FV scheme provides a second order accurate estimation of the slow field s [26] at the

cells’ centers. Thus, following the standard FV formulation [18; 26; 27], we approximate the

value on the cell’s center as its average value over the given grid cell. Therefore, we can write

the concentration on the cell center :

ϕ̃k = s̃k + rk(xk) ∀k ∈ T (4.50)

To interpolate the value of the concentration field on every point x of Ω, we define the set of

the closest all FV cell centers (T(x)). We thus have

Iϕ(x) =
∑

i∈T(x)
γi(x)(s̃i + Ci) +

∑
j∈V̂ d

Pj(x) (4.51)

where γi represents the Q1 element in 3 dimensions that equals 1 on the center of FV cell i

and zero on all the other cells i.e., providing bilinear interpolation of the values at the cells’

centers, and Ci is a correction term that will be introduced subsequently. We define the dual

neighbourhood V̂d as a combination of the neighbourhoods of the 8 relevant FV cells in T(x)

V̂ d =
⋃

i∈T(x)
V̂i (4.52)

In equation 4.51, we added the correction term Ci to bridge the discontinuities created by

the localization scheme, i.e., the finite size of V̂ , in the specific case where V̂ = Ω we would

have Ci = 0 ∀i ∈ F. With these definitions, we are equipped with the tools to calculate Ci.

For that purpose, we first set the interpolation to be equal to the cell center concentration :

Iϕ(xk) = ϕ̃k ∀k ∈ T (4.53)

Then, to estimate Ci we use equations 4.50-4.53, and the definition of the rapid term 4.37,

to obtain :

Ci = −
∑

j∈E(V̂ d)

δjiPj(xi) (4.54)

where

δji =

 0 if j ∈ V̂i

1 else
(4.55)

For ease of reading, we define the corrected rapid term that considers the sources in the dual

neighbourhood

rc
i (x) =

∑
j∈E(V̂ d)

(Pj(x) − δjiPj(xi)) (4.56)
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to finally obtain the interpolation function

Iϕ(x) =
∑
i∈T

γi(x)(s̃i + rc
i (x)) (4.57)

Therefore, equations 4.39 can be rewritten as

ϕi ≈ Iϕ(xi) =
∑
i∈T

γi(x)

s̃i +
∑

j∈E(V̂ d(x))

(Pj(x) − δjiPj(xi))

 (4.58)

which provides an interpolation function capable of reconstructing the concentration field

anywhere in the parenchyma and takes advantage of both the regular nature of the slow

term and the analytical description of the potentials. We recall that each source’s potential

is determined the estimation of the single layer and double layer potentials (equation 4.27).

4.2.8 Metabolic Consumption

In the previous Chapter, we showed how to iteratively solve the extravascular transport pro-

blem to include the non-linear metabolic consumption estimated through Michaelis-Menten

kinetics. The underlying structure of the mass conservation problem formulation in the 2D

and 3D models is virtually the same. However, in this Chapter, for simplicity, we model

metabolic consumption as proportional to the concentration to preserve the linearity of the

problem. We include the metabolic sink in the mass conservation equation 4.1a that results

∇2ϕ − M

D
ϕ = 0 in Ωσ (4.59)

Subsequently, we apply the operator splitting framework (equation 4.11a) to obtain

∇2sk − M

D
(sk + rk) = 0 in Vk (4.60)

After discretizing, this leads to

hΩ
∑

m∈Nk

(
s̃m − s̃k + Jk,m

)
− M

D
s̃k − M

D
r̃k = 0 (4.61)

where r̃k represents the averaged rapid term over a FV cell given by :

r̃k ≈
˚

Vk

rk(x) (4.62)

4.2.9 Assembly of the system

The BEM provides an ideal framework that allows us to model the vascular system as sources

of solute embedded in the parenchyma. In this framework, we can trace back every term in

our formulation to Green’s third identity. For this reason, we can estimate the errors by

comparing the approximations introduced in the model with the exact formulation given

by the BIE in equation 4.23. Furthermore, we can also trace back the physical meaning of

the slow and rapid terms to the BIE, thus providing the mathematical groundwork for a
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continuous reconstruction of the concentration field in the parenchyma (Section 4.2.7), which

is often missing in other coarse-grid models [7; 11; 28].

The numerical model developed in this Chapter shares several characteristics with the 2D

model, such as the splitting of the concentration field and the localization approach. However,

the most notable difference between the two lies in the estimation of the source potentials.

This difference arises due to the necessary geometrical simplifications associated with the 3D

geometry.

In this Section, we sum up the development carried out to obtain a system of discrete algebraic

equations for the coupled 1DIV-3DEV problem (Box 1), and we write given system is matrix

form. Firstly, we solve the extravascular problem by enforcing mass conservation (described

by the BVP in equations 4.11) through the discrete formulation given by equations 4.17 and

4.18. The mass conservation in the parenchyma is discretized via FV yielding :

hΩ
∑

m∈Nk

(
s̃m − s̃k + Jk,m

)
= 0 (4.63)

with the source terms given by

Jk,m = 1
2h

¨
∂Vk,m

n · (∇rm − ∇rk)dS + 1
h2

¨
∂Vk,m

(rm − rk)dS (4.64)

and the rapid term defined by

rk =
∑

j∈E(V̂k)

Pj ∀j ∈ E(V̂k) (4.65)

Second, we model the vessel tissue exchanges, where we introduce the interpolation scheme

used to estimate the wall concentration (equation 4.58) inside the linear relationship that

quantifies the exchanges (equation 4.38) and using the definition of the sources’ potentials

(equation 4.27) :

qj

Keff,j
− ⟨Cv⟩j = −

∑
i∈T(xj)

γi(xj)
[
s̃i +

∑
k∈E(V̂ d(xi))

[(
qk

(
Gkj

2πRk
− Hkj

Keffk

)
+ ⟨Cv⟩jHkj

)

− δji

(
qk

(
Gk(xi)
2πRk

− Hk(xi)
Keffk

)
+ ⟨Cv⟩jHkj

)]]
(4.66)

This provides the vessel tissue exchanges for a given cylinder j as a function of the unknowns

of the system (qj and ⟨Cv⟩j). Moreover, the estimation of the layer potentials are given by :

Gij =


Gline

i (xj) if i ̸= j

1
|∂Ωβ,i|

¨
∂Ωβ,i

(¨
∂Ωβ,i

G(x; x∗)dS(x∗)
)

dS(x) if i = j
(4.67)

Hij = 1
|∂Ωβ,j |

¨ P V

∂Ωβ,j

(¨
∂Ωβ,i

∇G(x; x∗) · n(x∗)dS(x∗)
)

dS(x) + 0.5 (4.68)
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Finally, the discrete intravascular transport PDE :

Uj(Cv,j − Cv,j−1) + Dj

(−Cv,j−1 + 2Cv,j − Cv,j−1
h

)
+ qj

hΛ,j

πR2
j

= 0 (4.69)

providing a fully coupled formulation between the intravascular and extravascular transport.

We have now fully defined the discrete coupled problem and is assembled in matrix form as

follows :

The full discrete system is therefore
A · s + B · q + C · Cv = b∂Ω (4.70a)

D · s + E · q + F · Cv = 0 (4.70b)

H · q + I · Cv = b∂Ωβ
(4.70c)

The matrix C represents the contribution of the double layer potential to the rapid term in

the mass conservation equation. The double layer potential under physiological conditions is

negligible even at short distances (studied in Section 4.3.1), consequently its influence on the

final system (matrix C) is neglected [6; 10]. Therefore, the matrix associated with the linear

system reads

L =

A B 0
D E F
0 H I

 (4.71)

and the full linear system is

L ·


s

q
Cv

 =


b∂Ω

0
b∂Ωβ

 (4.72)

as schematized in Fig. 4.2.

To summarize the approach developed in this Chapter : we base our developments in the

BEM where the transport problem is modeled via a BIE. We discretize the BIE and use the

operator splitting framework to localize the influence of the layer potentials and to estimate

the integral over the exterior boundary ∂Ω. The localization scheme results in jumps across

the FV mesh cells’ interfaces ; this poses problems when interpolating the concentration field

in the parenchyma, therefore, we designed an interpolation scheme that adds a correction

term to bridge such discontinuities. Finally, we assembled the mass conservation equations

in both compartments with the vessel-tissue exchange equation to obtain the matrix of the

coupled linear system.

4.2.10 Numerical implementation

The multiscale model is coded from scratch in Python due to its flexibility in object-oriented

programming. The library Numba [29] for scientific computations allows to translate the

python code to machine code, thereby severely accelerating the assembly of the system which

currently represents the main bottleneck of the model. Additionally, we choose among the

large variety of numerical solvers available in the Scipy library [30] for the resolution of linear
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systems. Particularly, we use the GMRES iterative method for the simulations including

networks, and the standard direct linear solver for single vessel simulations.

The Green’s portion of the model i.e., the rapid term, is non-local, meaning that the influence

of a single source needs to be calculated far away from its location. That distance depends on

the size of V̂ . The larger V̂ the greater the accuracy (as shown in the previous Chapter), but

the longer the assembly time. This process is greatly accelerated using the library Numba.

In this Section, we analyze the computational requirements when assembling and solving the

system to provide an estimation of the capabilities of the model and a deeper perspective

on the numerical efficiency of the model. First, we discuss the assembly of each of the three

equations of the linear system (each of the three lines in equations 4.70 and 4.71).

Mass conservation equation

The first line of equations 4.70a represents the matrix version of the mass conservation within

each FV cell, which is given by the discrete equation 4.17 where the term Jk,m bridges the

discontinuities of the rapid term across FV cells. This formulation allows to localize the source

potentials (i.e., the rapid term), thereby providing a sparse model. The localization approach

based on the size of V̂ dictates on how many interfaces (∂Vk,m) the term Jk,m is relevant

(see explanation in Section 4.2.5). Thus, we can estimate the complexity of the assembly of

matrix B as the total number of non-null entries P in the matrix

PB = O(F6n2ρh3
Ω) (4.73)

where ρ represents the density of sources per volume (m−3), and we remind that F is the

total number of FV cells of the cartesian grid, n is the side length (in discrete FV cells) of

the neighbourhood V̂ and hΩ is the side length of the cube made by a FV cell.

The computation of A is simpler since each line contains the conventional diffusion stencil in

three dimensions, therefore it requires one computation for each FV cell (O(F )), which pales

in comparison with equation 4.73. Furthermore, the code is implemented in Python, so we

take advantage of vectorized calculations to further accelerate the assembly of A.

Vessel-tissue exchanges

The source-to-source interactions contribute to a significant amount of computational com-

plexity in the assembly of the matrix version of the vessel-tissue exchanges (second line of

the linear system in equation 4.70). For any two sources that lie within each others neigh-

bourhood (V̂ ), the source-to-source interactions need to be accounted for, which, due to the

great vascular density in the brain, constitute one of the main bottlenecks in the assembly of

the linear system. In a similar manner as in the previous Section, we can estimate the amount

of computations needed

PEF = O(8S(n + 1)3ρh3
Ω) (4.74)

where we remind that S represents the total amount of sources, i.e., discrete cylinders in the

domain of computation. Furthermore, the matrix D contains the bilinear interpolation of the

values at each FV cell (see Section 4.2.7), i.e., the estimation shape functions γi for the Q1



4.3. RESULTS 123

element that is used, this yields the following amount of computations for the matrix D

PD = O(8S) (4.75)

that corresponds to the eight non-null shape functions (from each of the eight nearest FV

cells), for each source in the problem.

Intravascular transport

Similarly to the assembly of A, the assembly of the discrete intravascular transport problem

(third line in equations 4.70 and 4.71) is not computationally expensive due to the local

nature of the FV scheme used. We estimate the amount of computations as the same order

of magnitude as the amount of sources in the domain of computation

PI = O(S) (4.76)

It is clear now how the majority of computing time is spent in the assembly of the matrices D,

E and F. Overall, these estimations allow to know a-priori the assembly time of any simulation

and allow to compare the improvements offered by the multiscale model with respect to others

in the literature.

4.2.11 Solution of the numerical system

The operator splitting approach introduced in this Chapter results in a strongly coupled

system, i.e., the discrete equations are assembled in a single matrix (equation 4.71) that

simultaneously contains the intravascular and extravascular problems. We can simplify the

problem by writing it only in terms slow term s and Cv. The matrix H can be easily inverted

since it is diagonal (see equation 4.69), which allows us to write the vessel-tissue exchanges

as a function of the intravascular concentration field :

q = H−1(b∂Ωβ
− I · Cv) (4.77)

Therefore, the matrix associated to the full linear system as a function of the concentrations

yields :

L̃ =
[

A −BH−1I
D F − EH−1I

]
(4.78)

and the full linear system is given by

L̃ ·
{

s

Cv

}
=
{

b∂Ω − BH−1b∂Ωβ

−EH−1b∂Ωβ

}
(4.79)

4.3 Results

In this Section, our attention is directed towards evaluating the accuracy of the 1DIV-3DEV

multiscale model introduced in this Chapter, specifically those features exclusive to the 3D

model that were not explored in the previous Chapter, i.e., computation of the source po-

tentials. It’s worth reminding that the intention behind the 2D simulations presented in the
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previous Chapter served to 1) propose an operator splitting framework applicable to brain

microcirculation, and 2) examine limit cases and establish an upper estimation of the fra-

mework’s potential errors. Now that the ranges wherein the multiscale model is applicable

and the errors introduced are clear, our focus shifts to the new 3D features. We recall the

fact that the 0DIV-2DEV cases enabled an assessment of the framework’s effectiveness in

computing the radial diffusive fluxes, which constitute the main challenge of the molecular

transport models in the brain, and the main reason why Green’s functions approaches are

popular for these types of problems [6; 9; 10; 13; 24; 31]. Consequently, in this Section our

focus swifts towards axial transport as it constitutes the innovation of the Chapter. In short,

the previous Chapter focused on evaluating the numerical strategy adopted, including ope-

rator splitting, localization, the local axisymmetry hypothesis, and addressing the slow term

through a coarse grid. Meanwhile, this Chapter delves into the challenging estimation of the

rapid term in a novel way.

In Section 4.3.1, we study the errors associated to the multiscale model and evaluate the

influence of the approximations used for the influence coefficients (equations 4.67 and 4.68).

Subsequently, in Section 4.3.2, we use synthetically generated networks mimicking the struc-

ture and function of the capillary bed to serve as a demonstration case for large microvascular

networks. Here, for validation purposes, we implemented a finely meshed finite element (FE)

model using COMSOL for a single vessel in the same spirit as [32]. Due to the difficulty of

solving the coupled 1DIV-3DEV model, we opt for solving them separately in the valida-

tion stage. That is, we impose the concentration profile inside the vessel and evaluate the

resulting parenchymal field, or we impose a the value of the vessel wall concentration in the

parenchyma and evaluate the resulting cross-sectional average concentration within the ves-

sels. This permits the use of commercial software (COMSOL) for meshing and computation

without the need to develop a new fine grid model.

4.3.1 Single vessel

In this Section, we focus on the validation of the new 1DIV-3DEV multiscale model intro-

duced in this Chapter. We use the aforementioned validation procedure where, to validate

the extravascular field, we use a finely meshed model of the parenchyma and impose the

intravascular concentration profile as a boundary condition. On the other hand, to validate

the intravascular model (i.e., the FV method applied to the intravascular compartment used

to assemble matrices H and I), we use analytical solution of the 1D transport equation.

For all the simulations in this Section with the multiscale model, we used a 3D coarse grid

discretization of grid cell size hΩ = L/5 where L represents the length of a single vessel.

First, we assess the approximation of the single layer potential via equation 4.67. We de-

sign a case where three straight vessels share a centerline and have constant intravascular

concentration (see Fig. 4.5A). That way, we achieve the following : the double layer potential

is null so we can focus on the single layer potential. Moreover, we set the permeability of

the first and last vessels to zero (grey lines along the vessel wall in Fig. 4.5A) to minimize

boundary effects. We also set the metabolic consumption to zero, with Dirichlet boundary

conditions on the faces parallel to the vessels set to ϕ = 0 in order to guarantee rapid decay of

the concentration field around the vessels mimicking the microcirculation. We set Neumann

boundary conditions on the faces perpendicular to the vessels with ∇nϕ = 0. Fig. 4.5B shows

three cross-sections of the extravascular concentration field. This configuration allows to iso-

late the estimation of the single layer potential to compare the improvements achieved by
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Figure 4.5 – Impact of the approximation of the self-influence coefficient. Panel A shows the sche-
matic of the solved problem ; we assemble three vessels where the first and last have null permeability
to avoid boundary effects, and only the middle one exchanges with the parenchyma. Panel B shows
the contour plots of the concentration field. Panels C and D show the errors in the estimation of the
exchanges via the exact formulation and the line approximation, respectively, for multiple discretiza-
tions, and multiple aspect ratios. Panel E contains the legend for the aspect ratios (α). In panels D
and E, the continuous lines represent the most common aspect ratios applicable for a model of the
brain microcirculation, and the blue shaded areas represent the reasonable discretizations used for
large scale simulations. Panel E shows the difference in the vessel-tissue exchanges (for the middle
vessel), between the COMSOL reference solution, the exact estimation, and the line approximation

for a case with 20 discrete cylinders per vessel and an aspect ratio of 20 (
R

L
= 20).
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the cylinder approximation for the self-influence coefficient (equation 4.67) when compared

with the conventional line approximation (equation 4.34) often used in 1DIV-3DEV models

[16; 25].

Lv Lvz z

Figure 4.6 – Assessment of equation 4.16 for the intravascular transport. Comparison of the nume-
rical resolution for different discretizations of the vessel. Left panel shows the solution for the problem
with no reaction i.e., Da = 0. Right panel shows the solution for the same Peclet number (Pe = 4)
and a fixed reaction rate Da = 15.9.

Furthermore, we test multiple vessel aspect ratios given by α = R/L, and multiple vessel dis-

cretizations given by the amount of cylinders per vessel L/hΛ. In Fig. 4.5C, we can appreciate

how the line approximation for the single layer (equation 4.34) converges toward errors of

the order of 10−1 regardless of the aspect ratio of the vessel. We remind the reader the errors

obtained in the previous Chapter using no coupling condition are of the smae order of ma-

gnitude. Therefore, we can conclude that neglecting the volume of the vessel in a multiscale

model based on the Green’s functions results in errors of similar magnitude as neglecting the

perivascular gradients all together. Thus, the line approximation (equation 4.34) introduces

important errors due to its failure to accurately evaluate the single layer potential near the

pole as illustrated in Fig. 4.3.

In contrast, in Fig. 4.5D, we can appreciate the better estimation achieved when using the

cylinder approximation (equation 4.67), especially for reasonable values of the vessel discre-

tization 5 (shaded in blue in panels C and D). Furthermore, in Fig. 4.5E, we can appreciate

the difference in the estimation of the vessel tissue exchanges (q) for a reasonable choice of

discretization size (L/hΛ=20) and aspect ratio (α = 20) for both, the cylinder approximation

(equation 4.67), and the line approximation (equation 4.34). We obtain remarkable accuracy

for the cylinder approximation, whereas the line approximation commonly used in literature

provides an overestimation of the concentration at the vessel wall, thus underestimating the

value of the vessel-tissue exchanges.

We now focus on the intravascular transport equation. The conventional FV method is used

for the assembly of 1D transport. We therefore use the intravascular simulations to assess the

error introduced by the model with different discretization sizes. We use a single vessel and

impose Dirichlet BCs ϕ = 1 on the inlet, and ϕ = 0 on the outlet. We show a specific example

for values for Peclet (Pe = U · L

D
) and Damköhler (Da = Keff · L

D · Rv
). Fig. 4.6 shows the nice

agreement between the solution obtained with equation 4.16 and the analytical solution.

We now shift the focus to the double layer potential. We come back to the three vessel

5. With reasonable values we mean the discretizatios that can be used in large microvascular network
simulations. Only a model that is accurate for discretizations L/hΛ < 20 and aspect ratios α < 50 can be
applicable to the brain microcirculation.
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Figure 4.7 – Analysis of the influence of the double layer potential for an aspect ratio α = 20.
Panel A shows the contour plot of the concentration field. Panel B shows the comparison between the
formulation developed in this paper and the reference solution for the vessel tissue exchanges. Panel
C and D show the impact of neglecting the dipoles for multiple values of the vessel wall permeability,

where k = Keff

2πRD
. The plots show the quantities for the middle vessel of the three, which is the only

one that has non-null vessel wall permeability.

framework of Fig. 4.5A, but this time we set a variable intravascular concentration profile to

ensure a non-null double layer potential. In Fig. 4.7B, we fix the intravascular concentration

to decay linearly along the center vessel from ϕ = 1 at the inlet to ϕ = 0 at the outlet.

Furthermore, we show the convergence of the numerical model using different discretizations

confirming the proper estimation of the double layer potential. The results highlight that the

model results in low errors for reasonable discretizations (e.g., L/hΛ = 10).

We have now assessed the accuracy of the double layer potential via equation 4.68. Now the

task consists in assessing the relevancy of the double layer potential in our simulations. Fig.

4.7C and D compare the results of the fully coupled model with (straight lines) and without

(dotted lines) the double layer in the potential estimation. The parameters of the simulation

include, L/hΛ = 10, ϕ = 0 at the inlet and ∇nϕ = 0 at the outlet and only the middle

vessel is permeable to avoid boundary effects. Furthermore, we test a wide range of vessel

permeabilities around the physiological range, which for a small capillary would fall around

k = 1 i.e., green line, since it was found to have the greatest impact over the magnitude of

the double layer potential [10]. We can observe the low impact of the double layer potential

on the accuracy of the solution, even for very large values of the vessel wall permeability as

predicted by Pozrikidis and Farrow [10]. Therefore, in the rest of the manuscript, we neglect

the influence of the double layer potential due to its low impact on the results and lack of an

acceptable estimation for non-straight vessels.
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4.3.2 Synthetic Networks

Once assessed the accuracy of the newly developed concepts, we step foot into the multiple

vessel models that constitute the main objective of this thesis. We now focus on the task of

assessing the capabilities of the multiscale model regarding the scale of the networks that can

be tackled. Subsequently, we provide an assessment of the improvements our model can offer

with respect to the ones developed in the literature.

Firstly, we generate a synthetic network that mimics the properties of the capillary bed [33] to

produces a cube of tissue containing 558 vessels of 10 µm in diameter. The side length of the

cube of tissue is 300µm, and the vessels have an average length of approximately 60µm. We

set periodic BCs on the parenchyma and Dirichlet BCs on the network inlets and Neumann

on the outlets. For each inlet of the vessels the concentration is set to its maximum (ϕ = 1)
mimicking oxygenated incoming blood, and ∇nϕ = 0 on the outlets [34]. Additionally, we set

a constant metabolic rate throughout the parenchyma of 2 µmolcm−2s−1.

Furthermore, we obtain the velocity field by imposing a gradient of pressure along the z-

axis, that provides a velocity field within the ranges found in the brain microcirculation [5].

The resulting concentration fields are shown in Fig. 4.8, where we can appreciate the radial

oxygen gradients around the capillaries. The vascular system was discretized with an average

cylinder size of hΛ,j = 6µm, which resulted in approximately 6000 sources in the model, where

the bifurcations were handled as detailed in Section A.4 to avoid the over estimation of the

surface created by the intersection of three cylinders. The cartesian grid included 5 × 5 × 5
cells, and n = 3, which results in hΩ = 60µm and ||V̂ || = 180 × 180 × 180µm3. The assembly

and resolution of the problem took around 4 minutes for the compilation of the code 6, the

assembly of the problem and the resolution of the linear system with a Dell laptop using an

intel Core i7 processor and 16 Gb of RAM.

Figure 4.8 – Contour plot of the concentration field in both compartments for a synthetic capillary
network with 556 vessels The concentration field in the parenchyma and in the vessels is shown. And
two different views are shown of the same simulation. The concentration field in the parenchyma is
given through three cross-sections, and the concentration field in the vessels is provided by the coloring
of the graph which represents the averaged concentration for each vessel.

The simulation shown in Fig. 4.8 provides a test for the multiscale model allowing to quali-

tatively assess the radial concentration gradients around the capillaries. However, one cannot

6. Normally, Python codes do not need compilation. In this case, we used the Numba library to accelerate
the assembly of the system. Essentially, Numba translates certain functions to machine code which requires a
compilation. This does not offer time advantages for small networks, but it is crucial for large ones.
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appreciate large scale effects such as the decay in concentration caused by the deoxygena-

tion of blood flowing through the network. For that, we increase the size of the simulation

domain to 1µm3 which includes 18000 vessels as shown in Fig. 4.9. We impose the same

BCs on the network and on the parenchyma as in the previous simulation in Fig. 4.8. The

problem is solved with a mesh of 15x15x15 and n = 3 which results in hΩ = 66.6µm and

||V̂ || = 200x200x200µm3. The assembly of the matrix system took approximately 9 hours to

complete and the resolution of the linear system using the GMRES algorithm took around

30 minutes with a Dell laptop using an intel Core i7 processor and 16 Gb of RAM.

Figure 4.9 – Contour plot of the concentration field in both compartments for a synthetic capillary
network with 18000 vessels Left panel shows the average vessel concentration superposed to two
cross-sections of the reconstructed concentration in the parenchyma. Right panel shows the same two
cross-sections of the reconstructed concentration field in the parenchyma

4.4 Discussion

We have introduced a multiscale model for molecular transport in the brain microcirculation

based on a operator splitting approach combined with a Green’s function formulation that

allows an accurate estimation of the challenging perivascular concentration gradients. The

improvements of this model are apparent when solving a large network of 18000 capillaries in

under 30 minutes with a single processor while using a 3D mesh containing just 2700 cells. For

comparison, the FE model used as reference for the single vessel simulation used a mesh of the

parenchyma of over 4 ·105 elements (solved using COMSOL Multiphysics) shown in Fig. A.4.

Furthermore, the accuracy of the model is evaluated with the single vessel simulations that

demonstrates that the newly introduced single layer potential computation reduces the errors

an order of magnitude when compared with the conventional line approximation used in

Gjerde et al. [16; 25].

Moreover, we confirmed the low impact of the double layer potential even for very high

values of the vessel wall permeability. This allows to severely simplify the computation of

the source potentials, thus the rapid term, and the overall assembly of the linear problem.

In this Chapter, we focused on axial transport which required a new framework for the

computation of the potentials that make up the rapid term since we assessed the accuracy of
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the multiscale model regarding radial transport in the previous Chapter with the 0DIV-2DEV

simulations. We followed the same validation procedure by using a reference solution of the

original physical problem in the same spirit as [32]. To our knowledge, we are the first to

perform the validation using the original physical problem, i.e., using the real volume of the

vessel and no assumed symmetry around the capillary wall. This step by step development

allowed us to test the underlying assumptions of the model (e.g., constant value of the wall

concentration on each cylinder’s wall, low magnitude of the gradients of the slow term), thus

enabling us to confidently apply the multiscale model to large networks (Fig. 4.8 and 4.9)

with a good estimate of the errors committed.

When compared with the semi-analytical models based on the Green’s function formulation

[6; 10; 13; 14], the multiscale model provides an efficient way to simplify the computation of

the bounded Green’s function by the use of the operator splitting approach. This strongly

reduces the assembly time of the problem since the computation of the bounded Green’s

function constitutes the most expensive computation of the semi-analytical methods [13].

Furthermore, the localization procedure allows for a sparse system, which severely reduces

the resolution time of the linear system. Additionally, the use of a 3D grid allows for straight

forward computation of metabolic consumption in the parenchyma without the need to modify

the fundamental solution of the problem (equation A.27).

With respect the fine-grid FE simulations [8; 35; 36] and many others, our approach differs

significantly. With fine-grid models, the lack of a coupling scheme allows for a local formu-

lation that permits a more accurate estimation of the metabolic term and also allows the

easier inclusion of other non-linearities such as the oxygen dissociation from the blood [8].

Nevertheless, the fine refinement required around the vessels increases the computational re-

quirements substantially, to the point that simulations as the ones shown here (O(10000)

vessels) would be impossible without substantial loss of accuracy. Furthermore, the line ap-

proximation has been shown here to be highly inaccurate ; such inaccuracy depends strongly

on the analytical function used to interpolate the values of the source over the coarse grid.

No information can be extrapolated from the results shown in Fig. 4.5 to these FE schemes

other than the cases where they use logarithmic shape functions for their elements. However,

caution is advised when using such geometrical approximations since the volume of the vessels

in the microcirculation is small, but non negligible.

The closest performance reduction is achieved by the coarse grid models employing some type

of analytical coupling scheme model the perivascular concentration gradients [16; 25; 28; 37].

Such models can be applied to large microvascular networks bridging the gap between the

sources and the coarse grid. In the case of well models [38–40], the main drawback is the

considerable increase in source density and chaotic structure of the microcirculation when

compared to oil and water reservoirs. We estimate that the pre-processing step to compute

the coupling models and the interaction between sources in a microvascular network in using

such models would render the pre-processing stem unfeasible for large networks.

Flexible coupling models such as the one used by [28] offer a useful alternative. However the

smoothing operator needed for localizing the source potentials produces the background field

to be faster varying, thus requiring further discretization of the 3D mesh, which increases

considerably the size of the system (a volume mesh increases size with a complexity of N3,

where N represents the refinement of the mesh). Additionally, the model in [28] succeeds in

spreading and incorporating the delta singularity of a vessel source into the grid. However,

such an approach cannot handle interactions between multiple sources unless treated indivi-
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dually, which either introduces errors in the model, or increases severely the pre-processing

step in the same way as well models.

Lastly, we discuss the operator splitting models proposed in [15; 16; 39; 41]. Such models deal

with the sources as infinitesimally thin lines, which introduces strong errors comparable to a

lack of coupling model all together as shown in Fig. 4.5. Furthermore, similarly to [39; 41], but

differently to [16; 25], we introduced a FV foundation to the resolution of the slow term. This

allows the localization of the potentials via the rapid terms (equation 4.18) to be computed

at the interfaces. This severely reduces the computation requirements of the assembly of the

problem as discussed in Section 4.2.10. Currently, this is the bottleneck of the simulations

where the assembly of the problem shown in Fig. 4.9 takes over 20 times longer than the

resolution of the linear system, totalling at around 10 hours. We estimate that a model not

based on a FV approach would increase this computation time by an order of magnitude.

The resolution time of the linear system is not the only roadblock in obtaining efficient large

scale models of the brain microcirculation. Due to the great size of microvascular networks,

the assembly of the linear model (matrix L in equation 4.71) requires serious computational

time, especially in models such as the one developed in this Chapter. The foundation on

the Green’s function formulation has great advantages such as better accuracy than other

coupling models, or the possibility to provide a reconstruction based on the actual solution

of the BVP. On the other hand, it requires the computation of source-to-source interactions

(matrices E and F) and a great amount of fluxes (matrix B). Out of the 9 hours that took

the assembly of the biggest network shown in Fig. 4.9, the majority (around 6 hours), was

spent on the computation of the cell to cell fluxes of matrix B.

Other coarse mesh modeling approaches differ in their ability to reduce the size and density

of the system, capture microscale dynamics and offer an overall improvement in performance

compared to semi-analytical [6; 24] or fine scale methods. Koch et al. [42] implemented an

analytical kernel to couple the sources from the vasculature to the containing mesh cell, which

can be considered as another generalization of the Peaceman well model for any geometry

[40; 43]. This approach captures perivascular gradients similarly to our model, but requires

a much finer extravascular mesh to avoid large errors in the coupling term. Gjerde et al. [16]

incorporated the microscale dynamics into the extravascular mesh using a kernel based on the

free space Green’s function. However, their non-localized problem does not offer performance

improvements compared to traditional semi-analytical methods [10; 13] beyond the explicit

treatment of boundary conditions. Moreover, the localized model [25] relies on a modification

of the free-space Green’s function, which yields source terms in the coarse mesh that must

be explicitly calculated for each source. For very large networks, the estimation of these

source terms becomes exceedingly large. In contrast, our model does not modify the free-

space Green’s function which leads into Jk,m in equation 4.18. This reduces the computation

of the source terms by several orders of magnitude and significantly increases the sparseness

of the system. Other coarse mesh approaches such as Linninger et al. [7] and Hartung et al.

[44] struggle capturing microscale dynamics due to the lack of an analytical coupling strategy.

Overall, to our knowledge, the multiscale model introduced in this Chapter offers the greatest

reduction in computational complexity for the problem of 1DIV-3DEV in the brain micro-

circulation. In the previous Chapter, we focused on the development of an operator splitting

approach that serves as the foundation of a local, coarse-grid numerical scheme, while in this

Chapter, we focused on the accurate estimation of the sources’ potentials. We showed how the

estimation of the sources’ potentials can be done basing the numerical model on the BIE ob-
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tain via Green’s third identity. This allows to obtain an accurate estimation of the potentials

and avoid introducing errors by using other common forms for the rapid term as shown in

Fig. 4.5E. We also tested the impact of the double layer potential on the simulations relevant

for the brain microcirculation, obtaining a negligible impact which allowed us to neglect its

computation. In the next Chapter, we discuss thoroughly the challenges addressed by the

multiscale model, its place within the literature, and the future perspectives.

Certainly, here’s an improved version of your concluding paragraph :

In summary, the multiscale model introduced in this Chapter represents a significant break-

through in addressing the computational complexity associated with the 1DIV-3DEV problem

in brain microcirculation. In the previous Chapter, our focus was on the development of an

operator splitting approach that forms the cornerstone of a localized, coarse-grid numerical

scheme. In contrast, in this Chapter, we shift the attention towards the precise estimation of

source potentials. We demonstrated the efficacy of estimating these potentials by rooting the

numerical model within the BIE derived from Green’s third identity. This approach ensures

accurate potential estimation and minimizes errors that may arise from alternative forms of

the rapid term, as illustrated in Fig. 4.5E. Additionally, we conducted comprehensive tests

on the influence of the double layer potential on brain microcirculation simulations, revealing

a negligible impact that justifies its exclusion from computation.

In the upcoming Chapter, we will delve into a detailed explanation of the challenges addressed

by our multiscale model, its place within the existing literature, and our vision for future

research prospects.
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Chapter 5

General conclusions and perspectives

Modeling solute transport in the brain microcirculation is a crucial step in order to improve

our understanding of the development of multiple diseases such as AD and vascular mediated

dementias [1–5]. Particularly, large scale models of oxygen transort and consumption can

shed light on the emergence of hypoxic regions in the brain, considering the impact of non-

local effects [6] that are not captured by theoretical models [7; 8]. In the context of imaging

techniques centered around oxygen delivery and the estimation of oxidative metabolism at

the macroscopic scale [9–11], or at the microscopic scale [12–15] there is a clear need for

integrating the theoretical principles that govern the movement of molecules across scales in

order to provide clear interpretation of experimental data and improve the understanding of

multiple physiological principles such as neurovascular coupling [4; 16].

Thus, the problem of solute transport in the brain microcirculation has been a long standing

challenge with notable contributions in the last decades [12; 17–21]. However, due to the

complex geometry of the vascular system, solving the transport equations for solutes that

cross the blood brain barrier (BBB) proves difficult, and current accurate models remain

only applicable to small networks [12; 19; 22–24]. In this thesis, we tackled the complex

problem of accurately modeling the microscale dynamics while simultaneously solving the

solute transport problem in large vascular networks, i.e., several thousand vessels.

For that purpose, we have developed a multiscale method that combines analytical ap-

proaches, based on Green’s third identity, with numerical approaches such as the multiscale

finite volume method (MSFV). The main idea is to leverage the boundary integral equation

(BIE) to provide an analytical description of the microscale dynamics in the neighbourhood

of the vessel. By also tailoring the numerical model to integrate the analytical description, we

achieve a remarkable decrease in the computational cost when compared with models with a

similar level of detail. Specifically, in the case of the 0DIV (intravascular)-2DEV (extravas-

cular) and 1DIV-3DEV configurations, the fine-grid finite element (FE) solution results in

a matrix problem that is two to three orders of magnitude larger. This increased efficiency

effectively bridges the spatial scale gap between transport dynamics at the capillary scale

and large microvascular networks, a significant step toward enabling whole-brain simulations.

Nonetheless, challenges remain, including the incorporation of temporal dynamics and the

development of an exchange law that more accurately represents molecular dynamics within

red blood cells (RBCs). In this Chapter, our primary focus is on the challenges addressed by

the multiscale model and the improvements it offers within the paradigm of solute transport

models (Section 5.1). Subsequently, we explore potential future research directions and exten-
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sions of our current model (Section 5.2) based on the operator splitting framework introduced

in Chapter 3.

5.1 General conclusions

In this Section, we assess the performance and novelty of the multiscale model, and discuss

the extent to which the research objectives are met. To this end, we begin by revisiting the

primary challenges that hindered accurate simulations at the microvascular network scale,

as detailed in Section 5.1.1. Subsequently, in Section 5.1.2, we provide a concise overview

of the key features of our multiscale model and offer rationale for the main assumptions

made throughout the development in Chapter 3. We also discuss the place of the obtained

multiscale model within the landscape of solute transport models in the literature.

5.1.1 Challenges

The main issue hindering progress in the development of numerical models of the brain

microcirculation is the challenging task of integrating microscale phenomena in models of large

volumes as discussed throughout this thesis. This stems from the complex and convoluted

geometry of the brain’s vascular system. This intricate network prevents simplification of

the governing equations through conventional upscaling methods, making it exceptionally

challenging to devise a comprehensive solution. Therefore, our focus centered on efficiently

solving large networks of vessels, as detailed in Chapter 4. In doing so, we focused on the

following challenges which we consider to be the main roadblocks :

— Accurate estimation of perivascular gradients. These gradients play a crucial role in

driving extravascular transport, and any inaccuracies in their quantification can result

in significant errors, as illustrated in Chapter 3, Figs. 4-6. The rapid fluctuations in

concentration fields near blood vessels create complex configurations that are often

difficult to address using traditional numerical methods.

— Multiscale nature and high density of the cerebral microcirculation. The previous chal-

lenge becomes even more pronounced when dealing with the seemingly chaotic and

densely packed microvascular networks. The high spatial density of these microvessels

often renders certain approaches, such as the analytical coupling models (discussed in

Section 2.4.2), impractical due to the complex interactions between individual vessels.

Also, these configurations often render fine-grid models (discussed in Section 2.4.2 and

2.4.2) very computationally expensive, thus not applicable to large microvascular net-

works.

— Inclusion of non-linear metabolic consumption. The non-linear Michaelis-Menten ex-

pression introduces important complications in some of the models often applied to

the brain such as the ones based on the Green’s function of the problem due to their

inherent linear nature.

— Lack of a reference solution. The solute transport literature for the brain microcircula-

tion lacks of a gold standard model. This severely complicates the validation procedure

especially when attempting a comparison with existing models. We perform the vali-

dation using a fine-grid FE model in the same spirit as [12], as it provides the highest

fidelity to the original problem.
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Although not exhaustive, the list above summarizes the main barriers towards large scale mo-

dels of molecular transport in microvascular networks. Failure to tackle one of these challenges

would result in an incomplete model. For instance, failure to include the non-linear metabolic

consumption would provide a model that might be interesting for bridging the scale gap, but

would not be useful with regards to the main applications cited in Chapter 1, i.e., study of the

development of AD, aid in the understanding of neurovascular and neurometabolic coupling,

etc. Next, in Section 5.1.2 we discuss the characteristics of the multiscale model developed in

this thesis in relation to the above mentioned challenges.

5.1.2 A new multiscale model

In this thesis, we proposed a novel model that leverages the developments in multiple re-

search fields into the cerebral microcirculation. The combination of the MSFV method with

the Green’s function approaches (i.e., semi-analytical approaches) allows the development of a

sparse and efficient method that includes a novel localization scheme for the source potentials

inspired by that of Jenny et al. [25]. The finite volume (FV) discretization forms the founda-

tion of our method, enabling us to address the slow term and localize potentials using a coarse

cartesian grid. Additionally, our use of Green’s functions allows us to analytically compute

source potentials, offering a significant time-saving advantage compared to other methods

that rely on numerical computations (e.g., MSFV [26]). The substantial computational gain

obtained by the multiscale method stems from the following :

— Analytical computation of the source potentials through a Green’s function framework.

Green’s third identity is leveraged to obtain an explicit description of the rapid and

slow terms characteristic of the operator splitting approach. This provides an analytical

expression for the source potentials that strongly simplifies the computation of the rapid

term.

— Strong coupling between analytical and numerical parts via the interface fluxes of the

FV method. The simple formulation of the FV method allows to couple the analytical

approach for the computation of the rapid term with the coarse grid numerical solution

for the slow term. This, in turn, allows an efficient localization of the source potentials,

which is needed to obtain a sparse system, while preserving the conservative nature of

the FV method.

— Coarse grid computation of the boundary conditions. Commonly, the primary challenge

of semi-analytical methods based on the Green’s function approach is the satisfaction of

the boundary conditions. This can be achieved by either using the bounded fundamental

solution or by choosing a numerical approach such as the boundary element method.

When dealing with the brain microcirculation, the former is widespread [18; 19; 27–

29]. In this case, the computation of the bounded fundamental solution constitutes the

most computationally demanding calculation of the model [17]. Our multiscale model

avoids this all together by using a coarse grid contributing to a small proportion of

the computational resources needed for the solution of the problem (the majority of

unknowns come from the 1D mesh of the vascular system).

— Cartesian grid. The cartesian grid serves a dual purpose : it facilitates the precise

fulfillment of the boundary conditions, it also offers a structured framework for incor-

porating non-linear volume reaction terms within the parenchyma. In contrast, purely

semi-analytical methods encounter significant challenges when dealing with non-linear

reactions in the parenchyma because they do not utilize the operator splitting frame-
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Figure 5.1 – Approximative assessment of the accuracy and computational efficiency of the published
models for molecular transport in the brain microcirculation. The most popular models used in the
molecular transport in the brain microcirculation are compared with each other. Those in the upper
right corner represents an ideal balance of accuracy and computational efficiency. The following models
are included in the assessment [12; 17–20; 22–24; 26; 30–38]

work and, as a result, do not use a volume mesh. In their work, Secomb et al. [19]

addressed this issue by introducing point sinks of mass whose intensity depend on the

surrounding concentration field. This approach effectively introduces as many unknowns

into the system as a cartesian grid, while providing an approximation of the volumic

sink term associated with metabolism through a concentrated point sink, which is not

ideal.

It is worth noting that the choice of a coarse cartesian grid and the simplified calculation of

the source potentials through the assumption of local axisymmetry introduces slight errors

around 1% as shown in Chapters 3 and 4. These choices are made deliberately to maximize the

reduction in computational complexity while introducing minimal errors in the process, i.e.,

excellent balance between accuracy and computational efficiency (Fig. 5.1). This results in a

remarkable reduction in calculation time, where the coupled intra- extra- vascular problem

in a volume containing 18.000 vessels took 30 minutes to solve with a Dell laptop using an

intel Core i7 processor and the conventional Scipy library of linear solvers. Evaluating the

computational efficiency and accuracy of previous models for comparison purposes is not

easy. However, based on the underlying assumptions of the available models, we provide in

Fig. 5.1 the landscape of the different approaches to the solute transport problem in the brain

microcirculation.

In the upper left corner of the model spectrum in Fig. 5.1, we find the model proposed

by Fang et al. [12], which makes minimal modeling assumptions, thus, provides the highest

fidelity to the miscrovascular geometry and transport processes. While this model yields

the most accurate results, it is also expected to be the most time-consuming due to its

complicated meshing procedure and great quantity of unknowns. Consequently, it serves as the

reference solution for validation in this thesis used in Chapter 3 and 4. Moving towards models

with lower accuracy, we encounter the fine-grid models with simplified network geometry 1.

Their accuracy and complexity depend significantly on factors such as mesh type (e.g., non-

1. Simplified network geometry refers to the representation of the network within the parenchyma. Some
authors choose to reduce the vascular network to a collection of line sources, thus reducing the complexity of
the mesh of the parenhcyma
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structured, cartesian) and size. For instance, Possenti et al. [24] uses a fine mesh for volumes

containing under one hundred vessels. On the opposite end spectrum, we find Linninger et al.

[20], who perform coarse grid simulations without meticulous consideration of perivascular

concentration gradients. This approach is estimated to introduce larger errors, approximately

around 10%, as discussed in Chapter 3 where it was used as comparison. Slightly more efficient

models include the voxelized method by [31; 39] and semi-analytical models [17–19; 32]. The

former can provide high accuracy provided extremely refined meshes, even capturing fine

details such as the epithelial wall around vessels. The latter, as discussed extensively in this

thesis, performs accurately and efficiently for linear problems. However, their scalability is

limited due to their non-local nature, the time-consuming computations required for boundary

conditions, and challenges in incorporating non-linear phenomena within the parenchyma

The models discussed above employ diverse strategies to address the complex task of evalua-

ting vessel wall concentration in the parenchyma, utilizing either fully numerical [12; 24] or

analytical [19] approaches. However, several approaches combine these two different strategies

to handle rapid near-source gradients analytically and the slower background field numeri-

cally. Such strategies are denoted as ”analytical coupling models and extensions” in Fig. 5.1,

which have evolved considerably over the past 45 years. Although there are clear distinc-

tions between subsurface reservoirs and brain microcirculation, some core principles can be

adapted to propose new strategies. For instance, Koch et al. [40] uses an analytical kernel

to spread the slender mass source generated by vessels, thereby regularizing the concentra-

tion field and reducing the reliance on highly refined irregular meshes. However, due to the

approximate nature of the kernel and framework characteristics, this model still necessitates

a fine mesh of comparable size to capillaries’ diameters, limiting its computational efficiency

while maintaining relatively high accuracy.

Alternatively, an operator splitting approach is demonstrated in Gjerde et al. [22; 41], which

achieves a similar reduction in system size as our multiscale model. Key distinctions include

the computation of the self-influence coefficient, the localization scheme, and the incorpora-

tion of metabolic consumption. It is worth noting that their vessel geometry simplification

introduces potential errors of approximately 10%, similar to the error introduced by neglec-

ting perivascular concentration gradients entirely (see Fig. 4.5). Moreover, their localization

technique relies on a smoothing function that converges to zero at a distance far from the

source, necessitating the calculation of a source term in every element within the source’s

vicinity. This approach leads to substantial assembly time within the microcirculation. Ad-

ditionally, the model lacks an inclusion of metabolic consumption terms in its formulation.

For those reasons, we expect it to provide lower accuracy than our multiscale model while

offering also lower computational efficiency.

Lastly, we include the dual continuum models [21] that provide an upscaled description of the

transport equations. This results in a two equation model that can be solved in a coarse grid of

similar size as the one used for the slow term in the multiscale model. However, as previously

mentioned, the upscaling required for the two equation model necessitates the existence of

a representative elementary volume (REV) of the microvasculature, which generally, cannot

be found. We discuss this further in Section 5.2.2 where we suggest a hybrid approach (in

blue in Fig. 5.1), that will combine the multiscale model for regions where an REV cannot

be found, with an upscaled model for the more homogeneous and quasi-periodic regions of

the microvasculature, in the same spirit as [37].
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5.2 Perspectives

This thesis focused on the intricate spatial constraints imposed by the brain’s angioarchi-

tecture. Our primary objective was to establish a versatile framework capable of facilitating

large-scale, efficient simulations. The development of our multiscale model holds promise for

diverse applications, ranging from investigating the progression of hypoxia in diseased brain

tissue to analyzing experimental data concerning tissue oxygenation. However, it’s important

to acknowledge that the model’s development involved certain assumptions that may not be

necessarily accurate at a physiological level. In this Section, we first suggest some modifica-

tions to include in the multiscale model framework to render it more realistic (Section 5.2.1).

Then, we suggest two extensions to the multiscale model (Section 5.2.2).

5.2.1 Extensions to the multiscale model

In this Section, we explore two fundamental assumptions of the multiscale model and propose

a logical evolution to better capture the intricacies of molecular exchanges within physiolo-

gical processes. Throughout this thesis, we have primarily operated under the assumption

of steady-state conditions. The primary obstacle stemmed from the complex spatial arran-

gements, which posed challenges for applying numerical methods to solve large networks.

Consequently, we simplified the problem by neglecting temporal dynamics, as they were com-

paratively simpler contrasted with the spatial complexities. In this Section, we briefly explore

the challenges arising when incorporating temporal dynamics and suggest potential strategies

to address these challenges.

Another fundamental assumption is that blood is treated as a continuous medium in which

oxygen is dissolved. However, as discussed in Section 2.2, blood is primarily consists of red

blood cells (RBCs) and plasma. In Section 5.2.1, we discuss some existing modeling strategies

to include the interplay between the oxygen molecules and the hemoglobin protein inside

RBCs. Finally, Section 5.2.1 focuses on other molecules that cannot freely diffuse within the

parenchyma, and we discuss the incorporation of non-isotropic diffusion within the multiscale

model.

Temporal variations

In Chapters 3 and 4, we have mainly focused on studying the transport problem in steady-

state configurations. However, it’s important to consider time-related variations, especially

in the context of functional imaging, e.g., BOLD fMRI. This becomes particularly significant

when examining neurovascular or neurometabolic coupling, as different time scales come into

play. To address these temporal aspects, we suggest continuing to utilize the conventional uns-

teady FV approach, a well-established method in computational fluid dynamics for handling

steady and unsteady problems [42; 43]. However, when it comes to the rapid term (i.e., sour-

ces’ potentials), some adjustments are necessary. This is because the fundamental solution

(i.e., the Green’s function) employed in our multiscale model solves the steady-state Poisson’s

equation. To accommodate temporal variations, we need to update the source potentials by

incorporating the unsteady fundamental solution.

The unsteady Green’s function Gu(x − x∗, t − t∗) represents the concentration at a point

x and time t resulting from an instantaneous point source at point x∗ and time t∗, or the

solution to
∂Gu

∂t
− D∇2Gu = δ(x − x∗)δ(t − t∗) (5.1)
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where δ denotes the dirac delta function. The fundamental solution reads

Gu(x − x∗, t − t∗) = (4πD(t − t∗))−3/2exp

[
−||x − x∗||2

4D(t − t∗)

]
(5.2)

The rapid term can now be computed in the same way as in Chapters 3 and 4. We recall

that the rapid term is composed of the individual source potentials (Pj) that are computed

through integration of the fundamental solution along the wall of the open cylinder (∂Ωβ,j)

Pj(x) = −
ˆ t

0

¨
∂Ωβ,j

(Gu(x − x∗, t − t∗)∇ϕ(x∗) · n) dx∗dt∗ (5.3)

The source potentials can be integrated into the numerical framework in the same manner as

described in Chapters 3 and 4. Utilizing a time-stepping approach is suitable for these compu-

tations. The localization of the source potentials, as introduced in Chapter 3, eliminates the

need to store numerous time steps (as required by the first integral in equation 5.3). However,

a new challenge arises in calculating the influence coefficients, as equation 5.2 significantly

differs from the fundamental solution for the Poisson equation (equation A.27). Neverthe-

less, the localization framework, based on the underlying FV scheme, remains unchanged.

Therefore, to incorporate temporal variations, the primary challenge involve computing the

source potentials using the unsteady fundamental solution and implementing a time-stepping

procedure.

Vessel - tissue oxygen exchange

The multiscale approach considered in this thesis focuses on bridging the gap between the

capillary scale and spatial scale of larger microvascular networks. Nevertheless, there are phe-

nomena at the cellular level that we considered in an upscaled manner. For instance, diffusion

in the parenchyma represents the upscaled description of the random walk of molecules, which

is the topic of next Section. Another important phenomenon at the cellular level is the bin-

ding of oxygen with the hemoglobin contained inside the RBCs. As mentioned in Section 2.2,

oxygen is available in the blood as dissolved oxygen (Cplasma) and hemoglobin-bound oxygen

(CRBC), i.e., oxygen actively binds to the hemoglobin molecule inside the RBCs. The total

oxygen concentration is the addition of the two :

Cv = Cplasma + CRBC (5.4)

Given the scope of our research, the molecular interactions inside the RBCs were not explicitly

considered, and blood was modeled as a continuum. Nevertheless, the hemoglobin-oxygen

interactions manifest themselves in a non linear relationship between oxygen saturation within

the RBCs and concentration, given by Hill’s law :

S(Cb) = Cn
b

Cn
b + Cn

50
(5.5)

where C50 is the concentration at 50% saturation, n is a constant commonly taken as n = 0.55
for oxygen and hemoglobin [19; 20; 24; 44] and S represents the saturation of oxygen in

RBCs. Furthermore, the effective solubility of oxygen in blood to relate the partial pressure
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to concentration is given by :

αeff = (1 − HD)αplasma + HDαRBC (5.6)

where αRBC and αplasma are the solubility of oxygen in RBCs and in plasma respectively,

and HD is the discharge hematocrit.

The incorporation of this phenomenon introduces a non-linear relationship (as shown in

equation 5.5) that must be integrated into the model. This non-linear behavior specifically

impacts the equation related to vessel-tissue exchanges, found in the second line of equation

4.71, where Hill’s equation plays a crucial role in accurately estimating intravascular oxygen

concentrations. While the overall problem assembly remains largely unchanged, its resolution

will now need an iterative process tailored to addressing this new non-linearity. Especially,

when combined with the non-linear estimation of metabolic consumption. Testing is essential

to determine whether a strongly coupled resolution within a single matrix (as demonstrated

in Chapters 3 and 4) is the optimal approach or if an iterative procedure, where intravascular

and extravascular problems are addressed separately, would be more suitable.

Non-isotropic diffusion

We have assumed through the development of the model the diffusivity of the solute to be

isotropic within the parenchyma. This may hold true for small molecules such as oxygen or

carbon dioxide, but not for other larger molecules (e.g., glucose, proteins) or charged ions (e.g.,

Na+, Ca2+). The molecules that penetrate the BBB but cannot cross the lipid bilayer that

encloses the cells diffuse through the extra-cellular space (ECS). Hindered diffusion through

tortuous channels arises often in porous media. Commonly, the pore equations (in this case

the diffusion within the micropores created by the extracellular space (ECS)) are upscaled

and an effective diffusion tensor is obtained

Deff =

Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

 (5.7)

which permits the modeling of diffusion at the scale of large porous regions (as we have done

with the multiscale model) while accounting for the microscale tortuosity. Complexifying the

diffusion properties of the parenchyma does not interfere with the structure of the code.

The final assembly of the problem, i.e., equation 4.71, does not have to include substantial

changes besides the computation of A and B that needs to accommodate the anisotropy of

the diffusion tensor. Moreover, FV schemes already exists that include anisotropy [42].

Furthermore, if the effective diffusion tensor is spatially homogeneous, we propose following

the approach outlined in Chapter 2, where the development for obtaining the boundary va-

lue problem (BVP) for the slow term remains unaltered. However, when dealing with the

FV discretization of the problem, it’s crucial to consider the anisotropic diffusivity, as is

commonly done in existing FV schemes as noted in [42]. When we account for the tortuous

geometry of the extracellular matrix, it is unlikely that the diffusivity tensor remains spatially

homogeneous. In such cases, the fundamental solution may not exist. Therefore, we propose

adopting a similar approach to that suggested in [34], where the potentials (i.e., the funda-

mental solution) are computed using an average diffusivity value for the surrounding tissue.



5.2. PERSPECTIVES 145

Consequently, the slow term will need to compensate for the approximation made by using

this average diffusivity, leading to modifications in the computation of A and B in equation

4.71. If the heterogeneity of diffusivity is significant, the compensation required by the slow

term may be substantial, resulting in a more rapidly varying slow field. To maintain accuracy

in such cases, a finer mesh may be necessary.

5.2.2 Future directions

The multiscale model achieves remarkable computational efficiency when solving the so-

lute transport problem in the microcirculation. We managed to solve the primary spatial

constraints through a localized scheme that provides a sparse matrix associated to the cou-

pled linear problem. Nevertheless, we recall that the coarse mesh used in our simulations

remains of an approximate size 50 × 50 × 50 µm3. That would require billions of unknowns

for entirely meshing the whole brain. Considering the 1D mesh used for the intravascular

transport problem is commonly larger than the 3D mesh due to the high density of sources,

whole brain simulations remain inaccessible, especially if human configurations are to be

achieved. In this Section, we first suggest a line of research that builds upon the multiscale

model and has the potential to provide an approach that renders full brain solute transport

simulations feasible (Section 5.2.2). We then suggest a physics based estimation of metabolic

consumption from experimental oxygen concentration data (Section 5.2.2). And finally, we

discuss the implementation of our multiscale model within an high performance computing

(HPC) framework (Section 5.2.2)

Coupling with upscaled equations for the capillary bed

A common strategy in multiscale problems is to treat the system as a continuous medium

whose effective properties can be calculated. The procedure to obtain the effective properties

of the medium is called upscaling and it is meant to obtain a set of macroscopic equations

in which the effect at smaller scales are represented. This method requires partial differential

equations to be solved on a REV of the microscopic scale. The computation of an REV requires

the satisfaction of certain regularity conditions such as homogeneity and quasi-periodicity,

which are satisfied in the capillary bed [21; 37; 45].

Upscaling techniques are highly efficient strategies that involve representing the medium,

e.g., the capillary bed [37], as a continuum. This approach is frequently employed for various

solutes within the parenchyma, akin to the upscaling of the tortuous paths in the extracellular

space (ECS) within the parenchyma as discussed in Section 5.2.1. They are also often used

to upscale the flow equations in a porous medium where Darcy’s law is applied instead of

solving the detailed Stokes equations within the microstructure [37; 46; 47].

In contrast, the arterio-venular trees that feed and drain the capillary bed exhibit continuous

variations of scale that severely challenge the computation of an REV. Due to this limitation,

one approach to simulating large microvascular volumes involves upscaling the transport

equations within the capillary bed while maintaining an explicit description of the arterio-

venular trees using the current multiscale model. A similar strategy was employed for flow

equations in [37], where the network model introduced in Chapter 2 was used to simulate

blood flow in the arterio-venular trees, while an upscaled description of flow through Darcy’s

law was applied to simulate flow in the capillary bed.

The extension of the solute transport equations is considerably more challenging than the
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blood flow equations. In a healthy brain, blood remains within the vessels, which requires a

one equation description of flow. When modeling transport however, as elucidated throughout

this thesis, we have two media, blood and parenchyma, coupled together. Therefore, local

upscaling of the transport equations in the capillary bed and surrounding parenchyma results

in a non-equilibrium two equation upscaled description as discussed in [48]. The general form

of the continuous equations are [49] :

εβ∂t⟨Cv⟩β + (εβ⟨u⟩β − uββ) · ∇⟨Cv⟩β − uβσ · ∇⟨ϕ⟩σ

= ∇ · (Dββ · ⟨Cv⟩β) + ∇ · (Dβσ · ⟨ϕ⟩σ) + τm(⟨ϕ⟩σ − ⟨Cv⟩β) + εβSβ (5.8a)

εσ∂t⟨ϕ⟩σ − uσσ · ∇⟨ϕ⟩σ − uσβ · ∇⟨Cv⟩β

= ∇ · (Dσσ · ⟨ϕ⟩σ) + ∇ · (Dσβ · ⟨Cv⟩β) − τm(⟨ϕ⟩σ − ⟨Cv⟩β) + εσSσ (5.8b)

where σ and β represent the parenchyma and blood respectively, ⟨·⟩ represents the averaging
operator within the REV 2, Dij represent effective diffusion tensors, τm represents an exchange

coefficient that is strongly dependent on the vessel wall permeability, ε represents the porosity

of each media, S represent sources or sinks of mass and uij are effective velocity vectors.

Once we have obtained an upscaled description of the transport equations within the capillary

bed, we face the challenge of coupling the explicit model of the arterio-venular trees with this

upscaled description. In the work by Peyrounette et al. [37], the transition between the semi-

fractal arteriolar and venular trees with the space-filling capillary bed is represented a small

volumic source of flow in the upscaled flow equations for the capillary bed.

In a similar manner, we suggest to treat this transition points between the arteriolar or venular

trees and the capillary bed as coupling points. These coupling points represent sources or

sinks of mass in the upscaled equation for the blood compartment (denoted by the term Sβ

in equation 5.8a). We suggest adopting a strategy similar to that in Peyrounette et al. [37] to

bridge the scale gap between the 1D intravascular transport to the 3D upscaled description

provided by equation 5.8.

Additionally, there is the added challenge of coupling the upscaled description of transport

in the parenchyma (equation 5.8b) with the explicit description of transport in the arterio-

venular trees. To address this, an operator splitting similar to the one introduced in this

thesis can be implemented to avoid the need for fine meshing in the numerical solution of

equation 5.8b around the relevant vessels.

In summary, the operator splitting framework introduced in this thesis serves as the foun-

dation for the extension to an upscaled description of mass transport within the capillary

bed. The Green’s function approach helps quantify the microscale dynamics, such as source

terms arising from the explicit description of the arterio-venular trees or large perivascular

gradients arising in the upscale description of tissue transport (equation 5.8b). On the other

hand, the numerical resolution slow term aids in the determining boundary conditions, loca-

lizing the sources’s potentials, quantifying volume reaction (i.e., metabolism) and assessing

volume exchange terms (i.e., exchange terms τm(⟨ϕ⟩σ − ⟨Cv⟩β) in equations 5.8).

2. different from the cross-sectional average operator used throughout this thesis for the blood concentration
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Inverse problem

In Chapter 3, we developed the foundation of the multiscale problem by coupling the Green’s

function approach with a FV model for the parenchyma. The main goal of this coupling is to

decrease the complexity of the 3D mesh by permitting the use of a cartesian, non-conforming

mesh. A secondary advantage of this model is the localization of the potentials thanks to the

flux formulation of the FV discretization. This particular resolution provides a concentration

field in a cartesian grid that shows uncanny resemblance to the experimental measurements

of oxygen concentration around arterioles, which prompted the application of the multiscale

model for synthetic data generation to analyze the experimental data. In short, the specific

knowledge of the concentration gradients arising around the penetrating arteriole, combined

with the coarse grid cartesian mesh provides an ideal research tool for the evaluation of

experimental data of cortical oxygenation.

It is common to find one- or two- parameter models used to fit a curve to the data obtained

with two-photon microscopy [14; 15; 50]. The fitting consists in an optimization procedure of

the parameters of a function resembling the perivascular concentration gradients around an

arteriole. Then, the fitted parameters are used to deduce the metabolic consumption within

the parenchyma. The fitting of a one variable (distance from the arteriole) function to a 2D

grid of concentration data obtained from a 3D vascular network necessitates strong modeling

assumptions that may not represent the actual transport dynamics. Thus, we suggest to leve-

rage the formulation of the multiscale model, which pays careful attention to the perivascular

gradients and to the metabolic consumption.

We suggest to extend the 2D model developed in Chapter 3 to generate an inverse model that

takes the coarse grid concentration field as input and outputs the constant of the Michaelis-

Menten consumption term. Evidently, since there are more equations than grid cells, we need

to make some modeling assumptions, notably related to the capillary bed and the boundary

conditions. Nevertheless, this strategy promises to predict a more physiological metabolic

consumption that allows a more sophisticated consideration of the capillary bed and the

reaction field.

Parallel implementation of the multiscale model

Throughout the development of the multiscale model, our primary objective has been to

provide a highly efficient numerical scheme suitable for large microvascular networks. This

is exemplified by the implementation of a novel and efficient localization scheme for the

sources’ potentials, the analytical computation of these potentials, and many other careful

considerations that result in a highly sparse and local matrix system (equation 4.71).

One notable achievement is the localization scheme, which provides a framework that enables

control over the expansion of source-to-source and source-to-grid interactions. This attribute

makes the multiscale model well-suited for HPC through parallelization, potentially increasing

the scope of solute transport simulations by an order of magnitude.

The problem assembly, currently the most time-consuming task, is readily parallelizable due

to the independence of each equation from the rest. Additionally, the resolution of the linear

system, expected to consume more time as the size increases, can potentially benefit from the

separation of Intravascular (IV) and Extravascular (EV) systems within the matrix formula-

tion. To this end, we propose utilizing an iterative technique, such as Picard’s method [51],

to further enhance the performance of conventional linear solvers.
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Annexe A

Annexes

A.1 Effective coefficients

In this section we focus on the development of an analytical expression for the effective

coefficients of intravascular transport for the limit case of weak couplings, with a flow profile

parametrized via a one parameter model.

The explicit expression of Ueff , Deff and Keff can be derived for a generic polynomial

expression of the velocity profile. The following corresponds to the development in Berg et al.

[1] to obtain the analytical expressions. We consider the following polynomial approximation

for the velocity profile :

U∗ =
i=N∑
i=0

wi

(
r

2α

)i

(A.1)

with wi chosen so that ⟨U∗⟩ = 1, and α is the aspect ratio of the vessel given by α = R/L.

The effective velocity varies linearly with the Péclet as dictated by the following expression

[1] :

Ueff = Pe(1 + U+) (A.2)

where U+ represents an apparent overspeed defined by :

U+ = − 42αDam

2αDam + 4
∑

i

wi
i

(i + 2)(i + 4) + 2(2αDam)2

(2αDam + 4)2

∑
i

wi

(
i2 + 2i + 8

(i + 2)(i + 4)(i + 6)

)
(A.3)

We proceed similarly for the effective diffusion, the analytical expression is the following :

Deff = 1 + (2αPe)2

Pe2
c

(A.4)

where 2αPe represents the radial Péclet number and Pec is a critical Péclet number defined

I
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by :

Pe−2
c = −2

∑
i

∑
j

wiwj

(i + 2)(j + 2)

(
j

(i + 4)(i + j + 4) − j

4(j + 4)

)

− 22αDam

2αDam + 4
∑

i

∑
j

wiwj

(i + 2)(j + 2)(j + 4)

( 2(j + 2)
i + j + 6 −

j + 4
i + j + 4 − 2j

i + 4 + (j + 2)2

2(j + 6)

)

+ 2(2αDam)2

(2αDam + 4)2

∑
i

∑
j

wiwj(j2 + 2j + 8)i
4(i + 2)(i + 4)(j + 2)(j + 4)(j + 6)

Finally, the effective reaction rate is :

Keff = 16α−1Dam

ϵDam + 4 (A.5)

which does not depend on the velocity profile and monotonically increases with the membrane

Damköhler number.

A.2 Integration for the line approximation

Figure A.1 – Plot of the segment over which the Green’s function is integrated with the terminology
used on the left. On the right, the contour plot of the final integration. The plot is artificially modified
to remove the singularities on the points shown in equation A.23

On equation 1 we have the parametrization of the segment given by y

y = c + τs (A.6)

where a is the initial point of the segment, and τ represents the unitary vector parallel to

the segment (τ = b−a
||b−a||)
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The vessel coordinate is given by s :

s ∈ [−L/2, L/2] (A.7)

The distance from any random point in space x to another point on the segment is given by

the variable d :

d(s) = ||x − y(s)|| (A.8)

Manipulating the description of the distance so to work with scalar variables :

d(s) = ||x − c − τs||

d(s) =
√

||rc||2 − 2⟨rc, τ ⟩s + s2

where || · || represents the norm of a vector, and ⟨·, ·⟩ represents the scalar product between

two vectors. For simplicity, let us define the scalar product between rc and τ as h :

h = ⟨rc, τ ⟩ (A.9)

Therefore, the integral is written as :

I =
ˆ L/2

−L/2

1
4π

1
d(s)ds (A.10)

I =
ˆ L/2

−L/2

1
4π

1√
||rc||2 − 2hs + s2 ds (A.11)

The following change of variable is implemented to simplify the denominator :

t + s = d (A.12)

elevating each side to square power yields

d2 = t2 + 2ts + s2 (A.13)

and substituting into the value of d

||rc||2 − 2hs + s2 = t2 + 2ts + s2 (A.14)

Equation A.2 is manipulated to make s explicit and subsequently substitute in A.11

||rc||2 − t2 = 2s(t + h) (A.15)

s = ||rc||2 − t2

2(t + h) (A.16)
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The same process is done for the differential :

ds

dt
= 1

2
(−2t(t + h) − (||ra

2|| − t2)
(t + h)2

)
(A.17)

ds

dt
= −1

2
( t2 + 2th + ||ra

2||
(t + h)2

)
(A.18)

Substituting both inside A.11 :

I(t) = 1
4π

ˆ 1
d(s)ds = 1

4π

ˆ 1
t + ||ra||2−t2

2(t+h)

(
− 1

2
t2 + 2th + ||ra||2

(t + h)2

)
dt (A.19)

I = 1
4π

ˆ
− 1

t + h
dt = − 1

4π
ln(|t + h|) (A.20)

Undoing the change of variable

I = − 1
4π

ln(|d(s) − s + h|)
∣∣∣L/2

−L/2
(A.21)

Including the limits in the results and substituting A.9, we obtain the final expression for A.11

I = − 1
4π

ln
( ||ra|| + L/2 + ⟨rc, τ ⟩

||rb|| − L/2 + ⟨rc, τ ⟩

)
(A.22)

Equation A.2 is not properly defined everywhere, since for the points z such that :

⟨z, τ ⟩ = ||z|| & ⟨z, τ ⟩ < ⟨c, τ ⟩ − L/2 (A.23)

since the numerator inside the logarithm of equation A.2 becomes zero for such points.

A.3 Integration of the single and double layer coefficients

The purpose of this section is to evaluate the coefficients appearing in the potential arising

from an open cylinder in an accurate manner near the singularity. We recall the expression

for the potential of a cylinder i over another cylinder j

Pij = qi

2πRi
Gij + ϕHij (A.24)

where Gij and Hij represent the average value over the surface of the cylinder j of the single

layer and double layer coefficients respectively. We focus on the self-influence coefficients since

they pose the difficulty due to the presence of a singularity in both the single layer and the

double layer coefficients.
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A.3.1 Single layer potential

First, we remind that the single layer potential arising from a single cylinder (equation 4.25)

is given by :

Gi =
¨

∂Ωβ,i

G(x, x∗)dx (A.25)

which cannot be evaluated analytically. In this Section, the focus lies over the self-influence

coefficient due to the larger errors committed when using geometrical approximations. Let us

suppose we are evaluating the value of the self-influence single layer coefficient for a cylinder

i (Gii), as illustrated in Fig. A.3.1. The strategy is to evaluate the integral over the abscisa

coordinate numerically, and the integral over the cross-section analytically.

n
x

x*

Δs

||x-x*||

hλ

hλ

= +
u

v

A

B

θ

φ

x

y

z

hΛ

C

Figure A.2 – Schematics used for the evaluation of the self-influence coefficients. Panel A : illustration
of the cylinder whose self-influence coefficients we are interested in calculating. The two variables of
integration x and x∗ are illustrated. The separation between the two can be given by a cylindrical
coordinate system (∆s, θ). Both points x and x∗ lie on the surface of the cylinder (∂Ωβ). Panel
B : schematic of the technique used to evaluate the integrals near the singularity. A small square
containing the pole is subtracted from the cross-section (whose width is given by hλ), in order to
evaluate the integral easily. The angle of the subtracted square (φ) can be calculated as a function
of the radius R and the width of the cross-section hλ. The integral over the pole over the flat square
can be approximated for both the single and double layer coefficients and the integral over the (non-
singular) remaining surface can be evaluated since it constitutes an incomplete elliptic integral.

The integral of the single layer potential over a single (infinitely thin) cross-section constitutes

a complete elliptic integral. We denote the integral of the single layer potential of a thin cross-

section over a point of the same cylinder (x) as :
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Ĝ(∆s) =
ˆ

∂λ(s)
G(x, x∗)dx (A.26)

where G is the fundamental solution repeated here for ease of reading

G(x; x∗) = 1
4πD||x − x∗||

(A.27)

Equation A.26 allows to evaluate numerically the full integral using the mid-point rule.

Gii =
∆s=hΛ/2∑

∆s=−hΛ/2
Ĝ(∆s)hλ (A.28)

where hλ is a virtual thickness for the numerical integration, and hΛ is the total width of

the cylinder, i.e., discretization size of the intravascular problem. This results in an elliptic

integral of the first kind when x and x∗ lie on the surface of the same cylinder, which is the

focus here.

In order to write Ĝ as a two variable function, we follow the terminology of Fig. A.3.1 and

we write
C2

4 + R2
(

cos
θ

2

)2
= R2 (A.29)

which results in

C(θ) = (4R2
(

sin
θ

2

)2
)1/2 (A.30)

We can now write the distance between the evaluation point and the pole of the fundamental

solution as a function of θ and ∆s.

||x − x∗|| = (∆s2 + 4R2sin2 θ

2)1/2 ∀ θ ∈ (0, 2π] (A.31)

Then, substituting, we obtain the analytical form of Ĝ(∆s)

Ĝ(∆s) =
ˆ

∂λ(s)

1
4π||x − x∗||

= R

4π

ˆ 2π

0

1(
∆s2 + 4R2sin2 θ

2)
)1/2 dθ (A.32)

which can be simplified to the following elliptic integral 1 :

Ĝ(∆s) = k

2π

(ˆ π/2

0

dα

(1 − k2sin2α)

)
(A.33)

Then, we substitute into equation A.28 to obtain the expression for the computation of the

self-influence coefficient

1. We have used the following trigonometric identity sin2 θ

2 = 1 − sin2
(

θ + π

2

)
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Gii =
∆s=hΛ/2∑

∆s=−hΛ/2

(
k

2π

(ˆ π/2

0

dα

(1 − k2sin2α)

))
(A.34)

where k =
(

∆s2

4R2 + 1
)−1/2

, and α represents a change of variable used to write the elliptic

integral in standard form α = θ + π

2

A.3.2 Double layer potential

For the self-influence for the double layer potential, we proceed similarly as for the single

layer potential.

Hi =
¨

∂Ωβ,i

∇nG(x, x∗)dx (A.35)

which cannot be evaluated analytically. Let us suppose we are evaluating the value of the self-

influence single layer coefficient for a cylinder i (Hii), as illustrated in Fig. A.3.1. Similarly,

we use Ĥ to evaluate the integral over the cross-section ∂λ

Ĥ(∆s) =
ˆ

∂λ(s)
∇nG(x, x∗)dx (A.36)

where

∇nG(x, x∗)dx = (x − x∗) · n
4πD||x − x∗||3

(A.37)

In the same manner as with the single layer potential. We split the integral into two : The

integral over the cross-section (Ĥ) that can be evaluated efficiently, and the integral along

the cylinder’s axis.

Hii =
∆s=hΛ/2∑

∆s=−hΛ/2
Ĥ(∆s)hλ (A.38)

Using the terminology shown in Fig.A.3.1, and some algebraic manipulation, we arrive to the

final expression for Ĥ

Ĥ(∆s) = R

4π

ˆ 2π

0

R(1 − cos(θ))
[∆s2 + (2Rsin θ

2)2]3/2 dθ (A.39)

A.3.3 Evaluation of the singularity when ∆s = 0

Both expressions for the single and double layer potentials exhibit a singularity when ∆s = 0,
i.e., the functions Ĝ and Ĥ must be integrated over the poles. According to the terminology

of Fig. A.3.1, we subtract a square from the cross-section containing the singularity :

Ĝ(0) = hλR

ˆ 2π

0
Gdθ = hλR

ˆ 2π−φ/2

φ/2
Gdθ + hλR

ˆ φ/2

−φ/2
Gdθ (A.40)

and

Ĥ(0) = hλR

ˆ 2π

0
∇nGdθ = hλR

ˆ 2π−φ/2

φ/2
∇nGdθ + hλR

ˆ φ/2

−φ/2
∇nGdθ (A.41)
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where the subtracted angle φ can be calculated

φ = 2sin−1
(

hλ

2R

)
(A.42)

The discretization size for the numerical integration along the axis hλ is assumed to be very

small. For that reasonm we can safely assume the square is a flat surface. That allows to

consider the singular integral, i.e., second integral of the right hand side of equation A.41 to

be zero. ˆ φ/2

−φ/2
∇nGdθ = 0 (A.43)

with coincides with the estimations found in the literature [2–4]. On the other hand, for the

single layer potential, this singularity can be evaluated using a simple change of coordinate

system, using a cartesian coordinates centered on the square as illustrated in Fig. A.3.1B.

Ĝ(0) = hλR

ˆ 2π

0

1
4π||x − x∗(θ)||dθ ≈ hλR

ˆ 2π−φ/2

φ/2

1
4π||x − x∗(θ)||dθ+

ˆ hλ/2

−hλ/2

ˆ hλ/2

−hλ/2

1
4π (u2 + v2)dudv

(A.44)

{
u

v

}
=
{

ρ cosα

ρ sinα

}
(A.45)

ˆ hλ/2

−hλ/2

ˆ hλ/2

−hλ/2

1
4π (u2 + v2)dudv = 8

ˆ π/4

0

ˆ r(α)

0

1
4π

dρdα (A.46)

r(α) = hλ

2 cos(α) (A.47)

ˆ hλ/2

−hλ/2

ˆ hλ/2

−hλ/2

1
4π (u2 + v2)dudv = hλ

π

ˆ π/4

0

dα

cos α
= 0.28hΛ (A.48)

ˆ 1
cos α

dα = ln

(
sinα

2 + cosα
2

sinα
2 − cosα

2

)
+ constant (A.49)

A.4 Treatment of the bifurcations

In Section 4.2.6, we have ensured the approximation of the cylinders’ potentials remain accu-

rate even for the self-influence coefficients which are challenging to approximate. This entails

taking into account the volume occupied by the vessels, which poses challenges when several

vessels intersect, such as in bifurcations. In Fig. A.3, we show an illustration of a bifurca-

tion reconstructed using a graph of the network. For simplicity, we assume the diameters of

the vessels remain constant, although including variability does not change the rationel for

the accomodation of the bifurcations. Without special treatment, the bifurcation geometry

overestimates the surface area of the contact between cylinders and parenchyma. For that

reason, in bifurcations we follow a strategy similar to Berg [5]. As illustrated in Fig. A.3, the

cylinder of the smallest vessel out of the three is uncoupled from the parenchyma. That is,

Keff,j = 0 for the smallest cylinder out of the three intersecting. This method allows us to
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d1

d2

d
3

Coupled cylinders

Uncoupled cylinders

Figure A.3 –

approach the real value of the intersection between the three cylinders without systematically

overestimating the contact surface as other 1DIV-3DEV methods do [6–9], which introduces

important errors [10].

A.5 Example of the fine-grid finite element mesh used for validation

Figure A.4 – Fine-grid used for the FE validation with over 4 · 105 elements
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