
HAL Id: tel-04643257
https://theses.hal.science/tel-04643257v1

Submitted on 10 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Combinatorics, homotopy, and embedding of operads
Paul Laubie

To cite this version:
Paul Laubie. Combinatorics, homotopy, and embedding of operads. Mathematics [math]. Université
de Strasbourg, 2024. English. �NNT : 2024STRAD008�. �tel-04643257�

https://theses.hal.science/tel-04643257v1
https://hal.archives-ouvertes.fr


UNIVERSITÉ DE STRASBOURG

ÉCOLE DOCTORAL MATHÉMATIQUES, SCIENCES DE L’INFORMATION ET DE
L’INGÉNIEUR – ED 269

INSTITUT DE RECHERCHE MATHÉMATIQUE AVANCÉE – IRMA

THÈSE présentée par :

Paul LAUBIE
soutenue le : 24 mai 2024

pour obtenir le grade de : DOCTEUR DE L’UNIVERSITÉ DE STRASBOURG

discipline : MATHÉMATIQUES

Combinatoire, homotopie et
plongement d’opérades

THÈSE dirigée par :
Vladimir DOTSENKO professeur, Université de Strasbourg

RAPPORT·EURS·RICES :
Thomas WILLWACHER professeur, ETH Zurich
Muriel LIVERNET professeur, Université Paris Cité

EXAMINAT·EURS·RICES :
Loïc FOISSY professeur, Université du Littoral Côte d’Opale
Frédéric CHAPOTON directeur de recherches, Université de Strasbourg



Combinatorics, Homotopy, and Embedding of operads

Combinatoire, homotopie et plongements d’opérades



2



Remerciements
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Les autres équipes ne sont pas en reste, je tiens à remercier Semyon Klevtsov d’avoir fait partie de
mon CSI et d’avoir endurer les deux heures de discussions qui en ont suivi. Je souhaite également
remercier Mauro Porta pour les discussions ∞-catégoriques que nous avons eues, et pour l’aide
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Abstract

Algebraic operads are a powerful algebraic tool that can be used to encode some variety of algebras
like Lie algebras or the more classical associative algebras. Furthermore, it turns out that algebraic
operads are themselves algebraic structures that behave like algebras. Indeed, a well known result
of operad theory is that operads are monoids in the category of species relatively to the plethysm.
The theory of species is a very fruitful tool of enumerative combinatorics generalizing the notion of
generating function, and the plethysm is the analog of the composition in this context. The same way
generating functions were a breakthrough in enumerative combinatorics, allowing one to work with a
single object, the generating function, instead of having to keep track of several objects, species allow
one to work with a single object, however rather than a generating function, it is a functor, thus
losing way less information. The fact that algebraic operads are algebras in the category of species
opens two paths to explore this theory of algebraic operads. Either a full combinatorial point of view
where every object has some very explicit combinatorial description, fully utilizing the underlying
category of species. Or one can also choose an algebraic point of view, generalizing homological
algebra and homotopical algebra to the operadic context. Of course, both approaches synergies very
well together. The combinatorial point of view gives explicit constructions and descriptions of the
objects, and tools to work with those combinatorial descriptions. In the other hand, algebraic point
of view is full of application in other areas of mathematics, like algebraic topology, rational homotopy,
etc... This thesis will focus on interaction between those two points of view, using a rather unusual
approach. Indeed, we will use homotopical tools, the operadic Koszul duality to derive combinatorial
information on the operads we are studying. We then use those to get combinatorial descriptions
allowing use to carry explicit computations. This thesis is divided in three parts. The first part is an
introduction to the theory of species. Then we give an introduction to the theory of algebraic operads,
and operadic Koszul duality. Finally, we compute some combinatorial descriptions of operads, and
apply those to prove a conjecture of Dotsenko on an embedding of the operad encoding the algebraic
structure on vector field of weak Frobenius manifolds.
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Introduction

In an attempt of the author to write an interesting story about combinatorics and algebra, with the
theory of algebraic operads as the main character, this manuscript is divided in three chapters. The
first two chapters are mainly introductory with a lot of recollections respectively on the theory of
combinatorial species, and on the theory of algebraic operads. The third chapter is the main part of
this manuscript, as it is the original work of the author. One of the main goal of this manuscript
was to be as self-contained as possible, however the appearance of a lot of category theory and
homological algebra made this goal almost impossible to achieve, at least in a reasonable number of
pages and amount of time. Background on category theory is assumed to be known by the reader, we
refer to the classics: the book of MacLane [63], and the book of Lawvere and Schanuel [54]. We would
also like to refer to the amazing book of Riehl [74], and the reader tired of reading can also refer to
the video of The Catsters [15]. Some elements of homological algebra with be used, however contrary
to category theory that will lead our intuition through the chapter, homological algebra, mostly
spectral sequences, will be used as a tool to prove some results. We do hope that the appearance of
spectral sequences will not scare the reader. Indeed, spectral sequences may seem very cryptic at a
first glance, however they are very powerful tools that can be used to prove a lot of results (plus
bonus point: they admit a categorical interpretation). We refer to the book of Weibel [79] for an
introduction to homological algebra, including spectral sequences. Enough about what is not in this
manuscript, let us now present what is in it.

First Chapter: Combinatorial Species The first chapter is all about combinatorics and
categories. It is an introduction to the theory of combinatorial species through category theory.
Combinatorial species were introduced by Joyal in 1981 [47], and proved to be a very powerful tool
in enumerative combinatorics mostly by its ability to translate functional equation to recurrence
relation, and conversely. The theory of species can be understood as a “categorification” of the
theory of generating functions, meaning that we replace the generating function by a “generating
functor”, thus losing way less information. This point of view of categorification will be guiding us
through the first chapter.

We will start by exposing a naive categorification of generating functions in the first section. Its
first subsection is a recollection on formal power series. To avoid radius of convergence issues, we
allow infinite coefficients using the convention that 0 · ∞ = 0, thus giving the following definition for
an ordinary generating function, denoted ogf for short:

Definition. An ogf is a map a : N→ N, the formal power is denoted
∑
n∈N a(n)x

n.

We then define the usual operations on ogf, namely the sum denoted +, the product (Cauchy
product) denoted ·, the Hadamard product denoted ⊙, the composition denoted ◦, and the derivative
denoted ′. In the next subsection we introduce naive species, that are not yet the species of Joyal,
but are a first step towards them.

Definition. A naive species is a functor S : N→ Set.

We then adapt the usual operations on ogf to the naive species, defining their sum denoted +,
product (Cauchy product) denoted ·, Hadamard product denoted ⊙, plethysm (which corresponds to

9



10 INTRODUCTION

the composition) denoted ◦, and derivative denoted ′. We then end the first section by adapting
our definitions to the multi-variate case, and showing an analog of the implicit function theorem on
naive species. Here, 2-sort naive species should be understood as “naive species in two variables”,
meaning that a 2-sort naive species H is a functor N2 → Set.

Theorem. Let H[X,Y ] be a 2-sort naive species in two variables X and Y such that:

H(0, 0) = ∅ and
∂H

∂Y
(0, 0) = ∅

Then there exists a unique naive species A such that:

A[X] = H[X,A[X]] and A(0) = ∅

The second section is about the actual theory of species. We start by addressing the issue of the
theory of naive species, and we define the combinatorial species in Subsection 1.2.1.

Definition. A species is a functor S : B → Set. Where B is the category of finite sets with the
bijections as morphisms.

We then generalize the operations we have defined of naive species to species in the next subsection.
Subsection 1.2.3 relate species to actions of the permutation groups Sn. We define the Schur functor
of a species.

Definition. Let S be a species. The Schur functor associated to S is the functor FS : Set→ Set
such that for any set X, FS(X) = ⊎n∈NS(n)×Sn X

n.

And we define the Taylor-Joyal expansion of any functor Set→ Set that associates to it a species.

Proposition. Let us denote by ̂ the Taylor-Joyal expansion. Let S be a species. Then we have:

F̂S = S

We then present an original (currently unpublished) work of the author in collaboration with
Agugliaro in Section 1.2.4. The main idea is to apply the formalism of the previous subsection to
functors Setop → Set where Setop is the opposite category of Set and to define the Joyal transform
of such a functor.

Definition. Let S be a species. The categorical L function associated to S is the contravariant
functor LS : Set→ Set such that for any set X, LS(X) = ⊎n∈N∗S(n)×Sn

Hom(X,n).

Then, we notice that the diagram of the product is the opposite of the diagram of the sum,
allowing us to define “partitions” relatively to the product instead of the sum:

Definition. Let A be a set, and let P and Q be two quotients of A, then we denote P ⋉Q = A when
A→ P ×Q is a bijection. We say that P ⋉Q is a direct product of A.
Let A be a set and k ∈ N, a quotientation of A of length k is a set P = {P1, . . . , Pk} such that
A = P1 ⋉ . . . ⋉Pk. We denote by P⋉kA the fact that P is a quotientation of A of length k.

These definitions allow us to define the Dirichlet convolution denoted ∗ and the arithmetic
plethysm denoted □ of two species. A straightforward generalization of the Taylor-Joyal transform
allows us to define the Joyal transform of a functor Setop → Set. Moreover, it allows us to associate a
Dirichlet series to a such functor, and with well-chosen functors, we can recover usual zeta functions,
namely the Riemann zeta function, the Hasse-Weil zeta functions, and the Artin-Mazur zeta functions.
We then end the section by a subsection explaining how to generalize the implicit function theorem
to species:
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Theorem. Let H[X,Y ] be a 2-sort species in two variables X and Y such that:

H(0, 0) = ∅ and
∂H

∂Y
(0, 0) = ∅

Then there exists a unique species A such that:

A[X] = H[X,A[X]] and A(0) = ∅

The third section takes full advantage of the categorical point of view of the theory of species.
In Subsection 1.3.1, we show two very natural ways to embed the category of naive species into
the category of species, defining the shuffle species and the ordered species, using the following
adjunctions:

NSpe Spe

FP

I

Orb⊣
⊣ ; NSpe Spe

Σ

U

⊣

Where FP is the fix point functor, I is the inclusion of naive species into species, Orb is the orbit
functor, Σ is the symmetrization functor, and U is the forgetful functor. In Subsection 1.3.2, we
show how to define species in other categories, defining linear species (that we should not confuse
with ordered species because of the inconstancy of the terminology in literature), topological species,
and in fact species in any category behaving well-enough.

The last section of the first chapter is about the application of the theory of species to certain
tree-like structures, namely the rooted trees, the rooted Greg trees, and the hyperforests (non-empty
sets of rooted hypertrees). We define rooted trees and rooted Greg trees in Subsection 1.4.1, and the
according species.

Definition. A rooted tree is a finite connected graph without cycle with a distinguished vertex called
the root.
A rooted Greg tree is a rooted tree where the vertices are either black or white such that:

• black vertices are undistinguished, and

• each black vertex has at least two children.

We then adapt those definitions to hypertrees in Subsection 1.4.2.

Definition. A rooted hypertree is a finite connected hypergraph without cycle with a distinguished
vertex called the root.

And we introduce three new combinatorial objects: First we introduce the tree shapes.

Definition. Let P be a partition of length k of A, a tree shape on P is a rooted hypertree structure
with k black vertices on A such that:

• the root is black,

• simple edges are only between a black vertex and a white vertex such that the black vertex is
bellow (closer to the root),

• hyperedges are only between a white vertex and several black vertices such that the white
vertex is bellow,

• for each p ∈ P , we have a black vertex such that p is the set of the white vertices connected to
it via simple edges.

We construct the tree shape of a rooted hypertree and show that it encodes the data we need to
be able to reconstruct a hypertree from its maximal subtrees. Using this insight, we introduce the
rooted Greg hypertrees and the reduced rooted Greg hypertrees generalizing both Greg trees and
hypertrees in two different ways.
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Definition. A rooted Greg hypertree is a rooted hypertree where the vertices are either black or
white such that:

• black vertices are undistinguished, and

• each black vertex has at least two children.

A reduced rooted Greg hypertree is a rooted hypertree where the vertices are either black or white
such that:

• black vertices are undistinguished,

• each black vertex has at least two children, and

• each black vertices do not admit any incoming hyperedge (edges connecting strictly more that
two vertices).

Second Chapter: Operads The second chapter is about algebraic operads. We start by consider-
ing set species (the combinatorial species we have defined in the first chapter), but we very quickly
switch to linear species to be able to do actual algebra.

The first section is dedicated to the tree monads. We start by recalling basic definition about
monoid and monads. Then each subsection is dedicated to a different tree monad. We start with
the symmetric tree monad for species denoted T , then the non-symmetric tree monad for ordered
species denotedT ns, and we end with the shuffle tree monad for shuffle species denotedT X.

In the second section, we define algebraic operads and the main tools we are going to use.
Subsection 2.2.1 is dedicated to the definition of the algebraic operads. More precisely, we give three
different definitions, and show that they are equivalent.

Definition.

• A symmetric algebraic operad, or operad for short, is an algebra over the tree monad T .

• Equivalently, an operad is a monoid in the category of species according to the plethysm.

• Equivalently, an operad is a species P ∈ Vect Spe together with a collection of maps ◦i and an
element ei ∈ P({i}) such that ◦i : P(A ⊔ {i}) ⊗ P(B) → P(A ⊔ B) satisfying the sequential
composition and parallel composition axioms, and ei ∈ P({i}) satisfying the unit axiom.

We take advantage of this subsection to state the point of view of the author on algebraic operads,
namely that they are some kind of algebras over very combinatorial objects, the linear species. In the
second subsection, we show how to give a presentation of an operad by generators and relations. We
then give example of operads defined by generators and relations in Subsection 2.2.3. We define the
Three Graces as they were named by Loday, the operads Ass, Com and Lie. We also define the so
called operadic butterfly, and (the nicest of all) the operad PreLie. As we do not yet have the tools
to study them, we continue by addressing the issue of canonical representative in operads defined by
generators and relations in Subsection 2.2.4. Thus we define operadic rewriting system (ORS) which
are slight generalizations of Gröbner bases or PBW bases since they only require a partial order on
the set of monomials.

Definition. An operadic rewriting system latter denoted ORS is a triple (S,X , R) where S is a
linear species, X is a shuffle set species such that U(S) = Span(X ), and R = (Rn)n∈N such that Rn
is a subset of T X{X}(n)×T (S)(n). We denote by R′ the set of rewritable monomials which are the
monomials admitting at least one rewriting rule in R.
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We define the usual monomials order on operads, namely the permutation order, the graded path
lexicographic order, and the quantum order. In the next subsection, we define modules on operads,
and state the following theorems allowing us to show freeness properties using convergent ORS. Let
(S,X , U) and (S ⊕R,X + Y, U ⊔ V ) be two convergent ORS admitting associated operads, and let
P and Q the associated operads. Then we have the following theorem.

Theorem (left freeness version). [25, Theorem 4] Assume that the root of the rewritable monomial
of V are elements of Y. Then Q is free as left P-module.

Theorem (right freeness version). [25, Theorem 4] Assume that the vertices such that each child is
a leaf, of the rewritable monomial of V are elements of Y. Then Q is free as right P-module.

Theorem. [31, Theorem 4.1] Let P be an operad generated by S, and X a basis of S satisfying the
following conditions:

• P admits a convergent ORS (S,X , U) decreasing along the reverse graded path lexicographic
ordering such that for each rewritable monomial, the smallest leaf is directly connected to the
root.

• P admits a convergent ORS (S,X , V ) such that each rewritable monomial is a left comb with
the smallest leaf and the second-smallest leaf directly connected to the same vertex.

Then P has the Nielsen-Schreier property.

The third section is about differential graded operads. In the first subsection, we explain the
Koszul sign rule and give example of applications and computations using this rule. In the next
subsection, we define the Bar and cobar construction on differential graded operads. Those are key
ingredients of operadic homological algebra. We unfortunately do not have the time to go further in
this deep and interesting theory. The last subsection is once again an unfortunately short introduction
to the operadic twisting. However, the full computation of the operadic twisting of PreLie is given is
the last chapter, namely in Subsection 3.1.2.

The last section of the second chapter is an introduction to the operadic Koszul duality. We
define the Koszul dual and the Koszul complex of a quadratic operad in the first subsection. In the
next subsection, we define the Koszul property, and we show a well known theorem of the operadic
Koszul theory for which the author did not find a reference in the literature, namely that an operad
admitting a quadratic convergent ORS is Koszul.

Theorem. The Koszul complex of an operad admitting a quadratic convergent ORS is acyclic.

In Subsection 2.4.3, we use the tools of operadic Koszul theory to study the operadic butterfly,
and answer negatively to a conjecture of Loday. In the penultimate subsection, we quickly discuss
the generating series of Koszul operads, and state a conjecture on the generating series of Koszul
operads with one generator of arity two.

Conjecture. Let P be a Koszul symmetric operad generated by one operation of arity two, then
the generating series of P is differential algebraic of order 1 over Z[x]. Equivalently, fP and f ′P are
algebraically dependent over Z[x].

Finally, we end the chapter by a (yet not published) work of the author classifying Koszul set
operads with one generator of arity two, proving the conjecture of the previous subsection in the
case of set operads.

Theorem. Let P be a Koszul set operad over one generator of arity two, then P is isomorphic to
one of the 11 following operads:

• Mag the magmatic operad and fP(x) = 1
2 (1−

√
1− 4x);
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• NAP the non-associative permutative operad and fP is the Euler’s tree function defined by

fP(x) =
∑
n∈N∗

nn−1

n! xn;

• CMag ◦ANil2 which is build from CMag and ANil2 with the relation [a.b, c] = 0, and fP(x) =
1−
√
1− 2x− x2;

• ANil2 ◦ CMag which is build from CMag and ANil2 with the relation [a, b].c = 0, and fP(x) =
2− x− 2

√
1− 2x;

• CMag#AMag which is the connected sum of CMag and AMag, and fP(x) = 2−x− 2
√
1− 2x;

• Ass the associative operad and fP(x) = x
1−x ;

• CMag#ANil2 which is the connected sum of CMag and ANil2, and fP(x) = 1−
√
1− 2x+ 1

2x
2;

• Perm the permutative operad and fP(x) = x exp(x);

• LieAdm! the Koszul dual of the Lie admissible operad and fP(x) = exp(x)− 1 + x2

2 ;

• CMag the commutative magmatic operad and fP(x) = (1−
√
1− 2x);

• Com the commutative operad and fP(x) = exp(x)− 1.

Corollary. The Hilbert series of a Koszul symmetric set operad generated by one operation of arity
two is differential algebraic of order 1 over Z[x].

Third Chapter: Combinatorial interpretations of operads The third chapter, except the
first section, is about the original work of the author. In Subsection 3.1.1, we recall the combinatorial
interpretation of PreLie as an operadic structure on the species of rooted trees due to Chapoton and
Livernet [19].

Theorem. [19, Theorem 1.9] The underlying species of the operad PreLie is the species of rooted
trees. Moreover, the operadic structure on the species of rooted trees is given by the insersion of a
rooted tree in another rooted tree.

And in the next subsection, we recall the combinatorial interpretation of the operadic twisting of
PreLie due to Dotsenko and Khoroshkin [28].

Proposition. [30, Subsection 6.7] Let T be a twisting rooted tree, then dTw(T ) is given by:

1. The sum of all possible ways to split a white vertex of T into a white vertex retaining the label
and a black vertex above it and to connect the incoming edges to one of the two vertices, up to
a sign.

2. The sum of all possible ways to split a white vertex of T into a white vertex retaining the label
and a black vertex bellow it and to connect the incoming edges to one of the two vertices, up to
a sign.

3. The sum of all possible ways to split a black vertex of T into two black vertices and to connect
the incoming edges to one of the two vertices, up to a sign.

4. The sum of all possible ways to graft an additional black leaf to T , taken with a minus sign.

5. Grafting T on top of a new black root, up to a sign.

Moreover, many terms cancel due to the signs. In particular, if T has more than one vertex, all
contributions from 4 and 5 get cancelled by contributions from 1, 2 and 3.

Which is used to show the following theorem:
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Theorem. [28, Theorem 5.1] The embedding of differential graded operads (Lie, 0) → TwPreLie
induces an isomorphism in the cohomology.

In the second section, we present a generalization of this work on rooted Greg trees. Namely, we
define the operad Greg which is an operadic structure on the species of rooted Greg trees. We then
show its Koszulness, and we relate it to the operadic twisting of PreLie.

Theorem. The operad Greg is generated in arity two and Koszul.

Theorem. The embedding of differential graded operads Greg−1 → TwPreLie induces an isomor-
phism in the cohomology.

In the next subsection, we deform this operad using a co-associative co-commutative coalgebra,
and we show that the coproduct of several copies of the operad PreLie fibered by the operad Lie can
be obtained this way.

Theorem. The operad
∨n+1

Lie PreLie is isomorphic to Greg(V,∆max) with:

∆max : ek 7→
∑

i,j|max(i,j)=k

ei ⊗ ej

In Subsection 3.2.3, we show that the coproduct of n+1 operads PreLie fibered by the operad Lie
is free over the coproduct of n operads PreLie fibered by the operad Lie as a left and right module,
and we explicitly compute the generators in the left module case.

Theorem. The left
∨n

Lie PreLie-module
∨n+1

Lie PreLie is isomorphic to:

n∨
Lie

PreLie ◦ T
(
T (n)

(CycLie)
)

with CycLie the underlying species of the cyclic operad Lie.

The next section is the generalization of the construction on rooted trees and rooted Greg trees
to the hyperforests. In Subsection 3.3.1, we generalize the construction of the operad PreLie as an
operadic structure on the species of rooted trees to hyperforests, and we show that we get the operad
ComPreLie.

Definition. [65, Definition 13] The operad ComPreLie is defined by:

T [x, x.(1 2), c]/⟨(x ◦1 x− x ◦2 x)− (x ◦1 x− x ◦2 x).(2 3),

x ◦1 c− (c ◦1 x).(2 3)− c ◦2 x, c ◦1 c− c ◦2 c⟩
where x and c are of arity two, and the action of S2 on c is c.(1 2) = c. The three relations should
be understood as the pre-Lie identity for x, the Leibniz rule, and the associativity of c.

Theorem. The underlying species of ComPreLie is the species of hyperforests.

As a side result, we show that it is Koszul.

Theorem. The operad ComPreLie is Koszul.

We adapt the generalization to the Greg hyperforests in the next subsection, and in the last
subsection, we do the same on reduced Greg hyperforest. We then end the chapter by our main
result. In Section 3.4, we prove a conjecture of Dotsenko on an embedding of the operad encoding
the algebraic structure on vector field of weak Frobenius manifolds. In the first subsection, we recall
the definition of the operads FMan encoding the algebraic structure on vector field of weak Frobenius
manifolds. Then in the last subsection, we fully use the fact that the operad Greg relate to the
operadic twisting of PreLie and we use similar techniques to the operadic twisting to show that
FMan embeds in ComPreLie, thus proving the conjecture of Dotsenko.

Theorem. The operad FMan embeds in ComPreLie.
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Chapitre 0

Introduction en français

Dans une tentative de l’aut·eur·rice de raconter une histoire intéressante entremêlant combinatoire et
algèbre, avec la théorie des opérades algébriques en personnage principal, ce manuscrit est divisé en
trois chapitres. Trois chapitres ? Vraiment ? Nous voici pourtant dans le chapitre 0, L’introduction
en français, alors qu’il y a encore les chapitres 1, 2 et 3 à venir. Il est en effet de coutume en
France (et en réalité obligatoire sauf exceptions) d’inclure une partie en français dans un manuscrit
de thèse rédigé en anglais. C’est donc ici que nous nous trouvons, au zéroième chapitre de ce manuscrit.

Revenons à notre histoire. Les deux premiers chapitres sont principalement introductifs. En effet,
nous rappelons dans le premier chapitre les notions de base de la théorie des espèces combinatoires
qui nous servira de base pour le second chapitre. Second chapitre dans lequel nous introduirons la
théorie des opérades algébriques, un outil algébrique puissant pour étudier les structures algébriques
non-nécessairement associatives. Enfin, le troisième chapitre est le cœur de ce manuscrit, puisqu’il
contient les résultats principaux de la thèse de l’aut·eur·rice. Un des buts principaux de ce manuscrit
était d’être le plus auto-contenu possible, c’est pourquoi nous avons inclus les deux premiers chapitres,
qui bien qu’il contiennent quelques résultats originaux, sont essentiellement des rappels. Cependant,
l’apparition de théorie des catégories et d’algèbre homologique a rendu cette tâche quasi-impossible,
ou tout du moins pas réalisable compte tenue des contraintes de de temps et de place. Ainsi nous
supposerons le lecteur familier avec la théorie des catégories et l’algèbre homologique, et nous ne
ferons malheureusement pas de rappels sur ces sujets (à moins qu’il existe par hasard un chapitre en
français que l’aut·eur·rice aurait l’obligation d’écrire et qui devrait avoir une taille minimale imposée,
au quel cas ce serait l’endroit idéal pour inclure de tels rappels ...).

Dans tous les cas, nous nous référons aux classiques. Pour la théorie des catégories, citons le livre
de MacLane [63] ainsi que celui de Lawvere et Schanuel [54]. Nous aimerions également mentionner
le fantastique livre de Riehl [74]. On pourra également se retrancher vers les vidéos de The Catsters
[15] une fois trop assommé par tant de lecture. Des éléments d’algèbre homologique seront utilisés
dans ce manuscrit, cependant contrairement à la théorie des catégories qui guidera notre intuition,
nous utiliserons l’algèbre homologique, et plus précisément les suites spectrales, comme un outil
technique. Nous espérons que l’apparition de ces suites spectrales n’effraiera personne. En effet, bien
qu’elles puissent parâıtre sibylline au premier abord, elles sont en réalité des outils très puissants, qui
de plus admettent une interprétation catégorique. Nous revoyons au livre de Weibel [79] pour une
introduction à l’algèbre homologique, incluant les suites spectrales.

Préliminaires catégorique Nous commençons par une très brève introduction à la théorie des
catégories.

Définition. Une catégorie C est donnée par :

17
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• une classe Ob(C) d’objets,

• pour tout X,Y ∈ Ob(C), un ensemble HomC(X,Y ) de flèches, appelés morphismes, de X vers
Y ,

• pour toutX,Y, Z ∈ Ob(C), une loi de composition ◦ : HomC(Y,Z)×HomC(X,Y )→ HomC(X,Z),

• pour tout X ∈ Ob(C), un élément idX ∈ HomC(X,X),

tels que :

• pour tout f : X → Y , g : Y → Z et h : Z →W , on a h ◦ (g ◦ f) = (h ◦ g) ◦ f ,

• pour tout X,Y ∈ Ob(C) et f : X → Y , on a f ◦ idX = idY ◦f = f .

Nous rappelons qu’un monöıde est la donnée d’un ensembleM , d’une loi de composition associative
et d’un élément neutre. Cela nous donne notre premier exemple de catégorie :

Exemple. Soit M un monöıde, alors nous notons BM la catégorie avec un seul objet ∗ et
HomBM (∗, ∗) = M , de sorte que la composition est donnée par la loi de composition de M et
l’identité est l’élément neutre de M .

Cet exemple permet une première interprétation de la notion de catégorie : une catégorie est
un monöıde ≪ayant plusieurs point base≫. Cependant, bien que les monöıdes soient des objets
fondamentaux en mathématiques (on rappelle que les groupes sont des monöıdes avec des inverses,
ou encore que les algèbres associatives unitaires sont des ≪monöıdes en espaces vectoriels≫), cela
n’explique pas l’intérêt de la notion de catégorie, ni la raison de son omniprésence en mathématiques.
Pour cela, nous devons nous tourner vers une autre interprétation de la notion de catégorie, à savoir
que les catégories sont une modélisation très simple et très basique d’une théorie mathématiques. En
effet, une catégorie est une collection d’objets, les objets d’intérêt de la théorie, et les flèches sont les
applications entre ces objets respectant la structure des objets.

Exemple. La catégorie Set a pour objets les ensembles et pour flèches les applications entre ces
ensembles. La composition est la composition d’applications, et l’identité est l’application identité.

On pourrait prendre peur devant le fait que la théorie Set est une ≪grosse≫ catégorie, c’est-à-dire
une catégorie telle que ses objets forment une classe propre et pas un ensemble, chose qui n’est pas
autorisée dans certaine théorie des ensembles comme ZFC. Il est possible d’éviter ces considérations
ensemblistes de plusieurs manières, nous nous permettrons de les ignorer entièrement. En effet, il
s’agit généralement de considérations purement techniques qui n’apportent pas grand chose à la
compréhension de la théorie des catégories, et qui sont bien souvent le reliquat d’un choix plus ou
moins judicieux de fondation des mathématiques. (L’aut·eur·rice souhaite en profiter pour rappeler que
ZFC n’est pas la panacée dans laquelle toutes les mathématiques doivent être écrites, et que d’autres
fondations des mathématiques existent, parfois plus adaptées à certaines théories mathématiques.)
L’un des aspects les plus intéressants de la théorie des catégories est que les (petites) catégories
forment une catégorie. Pour cela, nous devons définir les flèches entre catégories, appelées foncteurs.

Définition. Un foncteur F : C → D entre deux catégories C et D est donné par :

• une application F : Ob(C)→ Ob(D),

• pour tout X,Y ∈ Ob(C), une application FX,Y : HomC(X,Y )→ HomD(F (X), F (Y )),

tels que :

• pour tout X ∈ Ob(C), on a F (idX) = idF (X),

• pour tout f : X → Y , g : Y → Z, on a F (g ◦ f) = F (g) ◦ F (f).
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Les foncteurs donnent une façon de mettre en relation des théories mathématiques différentes.

Définition. Un foncteur F : C → D est pleinement fidèle si pour tout X,Y ∈ Ob(C), l’application
FX,Y est une bijection.

Si un foncteur F : C → D est pleinement fidèle, alors on peut voir C comme une sous-théorie
de D, voulant dire que la théorie encodée par C est la même que celle de D, mais restreinte à un
sous-ensemble des objets de D.
Exemple.

• Soit Mon la catégorie des monöıdes et des morphismes de monöıdes. Soit Grp la catégorie des
groupes et des morphismes de groupes. Alors comme un groupe est en particulier un monöıde,
il existe un foncteur Grp→ Mon. Ce foncteur est pleinement fidèle, et on peut voir Grp comme
une sous-théorie de Mon.

• Soit nuMon la catégorie des monöıdes non-nécessairement unitaires et des morphismes de
monöıdes. Alors, comme l’unité est unique dans un monöıde, il existe un foncteur Mon→ nuMon.
Ce foncteur n’est pas pleinement fidèle, en effet, soit ({0, 1},max), alors l’application constante
1 est un morphisme de monöıdes non-nécessairement unitaires, mais n’est pas un morphisme de
monöıdes unitaires.

L’aut·eur·rice tient à insister sur le dernier exemple qui montre que même si certaines structures
algébriques peuvent être vu comme des propriétés supplémentaires, ces deux points de vue sont en
réalité subtilement différents.
On pourrait näıvement définir la notion d’isomorphisme de catégorie de la façon suivante :

Définition. Soit F : C → D un foncteur. On dit que F est un isomorphisme de catégorie si :

• F : Ob(C)→ Ob(D) est une bijection,

• pour tout X,Y ∈ Ob(C), l’application FX,Y : HomC(X,Y ) → HomD(F (X), F (Y )) est une
bijection.

Cependant, cette notion à le défaut suivant : Supposons que nous travaillons sur, disons, la théorie
des groupes et que l’on note Grp la catégorie des groupes. Puis qu’il nous prenne la soudaine et
irrépressible envie d’adjoindre un nouvel objet à notre théorie, que l’on appellerait au hasard Aurélie
et qui soit isomorphe à Z/2Z. On pourrait noter Grp′ cette nouvelle catégorie. Alors, on aurait un
foncteur F : Grp→ Grp′ qui envoie tout groupe sur lui-même, qui ce ne serait pas un isomorphisme
de catégorie. Cette situation est absurde, donner un nouveau nom à un objet ne devrait pas changer
la théorie, cela montre que la notion d’isomorphisme de catégorie n’est pas la bonne.

Définition. Soit F : C → D un foncteur. On dit que F est une équivalence de catégories si :

• F est essentiellement surjectif, c’est-à-dire que pour tout Y ∈ Ob(D), il existe X ∈ Ob(C) tel
que F (X) est isomorphe à Y ,

• F est pleinement fidèle.

Cette notion d’équivalence de catégories est la bonne notion pour dire que deux catégories sont ≪les
mêmes≫. En effet, si F : C → D est une équivalence de catégorie, alors F admet un ≪quasi-inverse≫,
mais pour définir cette notion nous devons plonger un peu plus loin dans la théorie des catégories.

Définition. Soient F,G : C → D deux foncteurs. Un transformation naturelle η : F → G est donnée
par un morphisme ηX : F (X) → G(X) pour tout X ∈ Ob(C), tel que pour tout f : X → Y , le
diagramme suivant commute :

F (X) G(X)

F (Y ) G(Y )

ηX

F (f) G(f)

ηY

Cela veux dire que ηY ◦ F (f) = G(f) ◦ ηX .
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Nous venons de voir l’un des apports les plus important de la théorie des catégories : les diagrammes
commutatifs. Ces diagrammes permettent de représenter graphiquement des égalités entre flèches de
façon très compacte. De plus l’on peut remarquer :

Proposition. Soit Fun(C,D) la collection des foncteurs de C dans D, alors Fun(C,D) est une
catégorie, où les objets sont les foncteurs et les flèches sont les transformations naturelles.

En effet en théorie des catégories, les foncteurs forment une catégorie. On peut maintenant définir
la notion de quasi-inverse d’un foncteur.

Définition. Soient F : C → D et G : D → C deux foncteurs. On dit que F et G sont quasi-inverses
si F ◦G ≃ idD et G ◦ F ≃ idC dans les catégories Fun(D,D) et Fun(C, C) respectivement.

Nous remarquons un autre aspect de la théorie des catégories : la bonne notion n’est pas ≪être
égal≫, mais ≪être isomorphe≫. Donnons un exemple pour illustrer cela :

Définition. Soit C une catégorie, un objet initial est un objet I ∈ Ob(C) tel que pour tout X ∈ Ob(C),
il existe un unique morphisme I → X.

Exemple. Dans la catégorie Grp, l’objet initial est le groupe trivial.

On peut alors remarquer les phénomènes suivants :

Proposition. Soit C une catégorie, alors les objets initiaux de C sont uniques à isomorphisme près.

En effet, si I et I ′ sont deux objets initiaux de C, alors il existe un unique morphisme I → I ′ et
un unique morphisme I ′ → I. Ces deux morphismes sont inverses l’un de l’autre, et donc I et I ′ sont
isomorphes.

Proposition. Soit F : C → D une équivalence de catégories, alors F (I) est initial dans D si et
seulement si I est initial dans C.

Cela montre que les propriétés purement catégoriques sont conservées par les équivalences de
catégories. Cela indique que la notion d’équivalence de catégories est la bonne notion à considérer.

Une dernière notion importante que nous souhaitons introduire est celle d’adjonction. Avant cela
remarquons la chose suivante :

Définition. Soit C une catégorie, notons Cop la catégorie opposée à C où les objets sont les mêmes
que ceux de C et où les flèches sont inversées. C’est-à-dire :

• Ob(Cop) = Ob(C),

• HomCop(X,Y ) = HomC(Y,X),

• pour f ∈ HomCop(X,Y ) et g ∈ HomCop(Y, Z), on a g ◦Cop f = f ◦C g.
Alors Cop est effectivement une catégorie.

Nous pouvons maintenant définir la notion d’adjonction.

Définition. Soient F : C → D et G : D → C deux foncteurs. On dit que (F,G) est une adjonction
avec F l’adjoint à gauche de G et G l’adjoint à droite de F et l’on note F ⊣ G si pour tout X ∈ Ob(C)
et Y ∈ Ob(D), il existe une bijection naturelle :

ηX,Y : HomD(F (X), Y )→ HomC(X,G(Y ))

Dire que η est une bijection naturelle signifie que :

• η•,Y est un isomorphisme naturel entre les foncteurs HomD(F (•), Y ) et HomC(•, G(Y )) dans
Fun(C,Setop),
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• ηX,• est un isomorphisme naturel entre les foncteurs HomD(F (X), •) et HomC(X,G(•)) dans
Fun(D,Set).

Les adjonctions sont une notion très importante en théorie des catégories, et sont omniprésentes
en mathématiques. Nous nous arrêtons ici pour les préliminaires catégoriques car nous n’avons en
effet malheureusement pas le loisir de nous attarder plus longtemps sur ce sujet.

Premier chapitre : Espèces combinatoires. Ce premier chapitre est entièrement consacré à
la théorie des catégories et la combinatoire. Il s’agit d’un introduction à la théorie des espèces
combinatoires via la théorie des catégories. Les espèces combinatoires ont été introduites par
Joyal en 1981 [47], et se sont révélées être un outil extrêmement en combinatoire énumérative,
principalement grace à leur capacité à traduire équations fonctionnelles en construction récursive
d’objets combinatoires, et vice versa. La théorie des espèces combinatoires peut être comprise comme
une ≪catégorification≫ de la théorie des séries génératrices. Cela veut dire que l’on remplace la notion
de fonction génératrice par un ≪foncteur générateur≫, permettant de conserver plus d’informations.
C’est ce point de vue catégorique qui nous guidera tout au long du premier chapitre.

Nous commençons par une catégorification naive de la théorie des séries génératrices. Dans la
première sous-section, nous faisons des rappels sur les séries formelles. Afin d’éviter les problèmes
de convergence, nous nous restreignons à des séries formelles à coefficients dans N, en utilisant la
convention 0 · ∞ = 0.

Définition. Une série formelle ordinaire (ogf) est une application a : N→ N, notée
∑
n≥0 anx

n.

Nous définissons ensuite les opérations usuelles sur les séries formelles, à savoir l’addition notée +,
la multiplication (produit de Cauchy) notée ·, le produit d’Hadamard noté ⊙, la composition notée ◦
et la dérivation notée ′. Dans la sous-section suivante, nous introduisons les espèces näıves, qui ne
sont pas pas les espèces combinatoires telles qu’introduites par Joyal, mais qui sont un premier pas
vers celles-ci.

Définition. Une espèce näıve est un foncteur F : N→ Set.

Nous adaptons ensuite les opérations sur les séries formelles aux espèces näıves, définissant ainsi
leur somme notée +, leur produit noté ·, leur produit d’Hadamard noté ⊙, leur pléthysme (qui
correspond à la composition) notée ◦ et leur dérivation notée ′. Nous terminons cette première
section par la généralisation des espèces näıves au cas multivarié, montrant ainsi un analogue du
théorème des fonctions implicites pour les espèces. Ici, une espèce näıve 2-variée est un foncteur
H : N2 → Set.

Théorème. Soit H[X,Y ] une espèce näıve 2-variée dans les variables X et Y telle que :

H(0, 0) = ∅ et
∂H

∂Y
(0, 0) = ∅

Alors il existe une unique espèce näıve A telle que :

A[X] = H[X,A[X]] et A(0) = ∅

La seconde sous-section est consacrée à la théorie des espèces combinatoires de Joyal. Nous
commençons par aborder les défauts des espèces näıves, et nous définissons les espèces combinatoires
dans la sous-section 1.2.1.

Définition. Une espèce est un foncteur S : B→ Set. Où B est la catégorie des ensembles finis avec
les bijections comme morphismes.

Nous généralisons ensuite les opérations que nous avons définies pour les espèces näıves aux
espèces dans la sous-section suivante. La sous-section 1.2.3 relie les espèces aux actions des groupes
de permutations Sn. Nous y définissons également le foncteur de Schur d’une espèce.
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Définition. Soit S une espèce. Le foncteur de Schur associé à S est le foncteur FS : Set→ Set tel
que pour tout ensemble X, FS(X) = ⊎n∈NS(n)×Sn X

n.

Nous définissons le développement de Taylor-Joyal d’un foncteur Set→ Set qui par analogie avec
le développement de Taylor d’une fonction, associe à un foncteur une espèce.

Proposition. Notons ̂ le développement de Taylor-Joyal. Soit S une espèce. Alors nous avons :

F̂S = S

Nous présentons ensuite un travail original (actuellement non publié) de l’aut·eur·rice en collaboration
avec Agugliaro dans la section 1.2.4. L’idée principale est d’appliquer le formalisme de la sous-section
précédente à des foncteurs Setop → Set où Setop est la catégorie opposée de Set et de définir la
transformée de Joyal d’un tel foncteur.

Définition. Soit S une espèce. La fonction L catégorique associée à S est le foncteur contravariant
LS : Set→ Set tel que pour tout ensemble X, LS(X) = ⊎n∈NfrS(n)×Sn Hom(X,n).

Puis, nous remarquons que le diagramme du produit est l’opposé du diagramme de la somme,
nous permettant de définir des “partitions” relativement au produit au lieu de la somme :

Définition. Soit A un ensemble, et soit P et Q deux quotients de A. Nous notons alors P ⋉Q = A
lorsque A→ P ×Q est une bijection. Nous disons que P ⋉Q est un produit direct de A.
Soit A un ensemble et k ∈ N, une quotientation de A de longueur k est un ensemble P = {P1, . . . , Pk}
tel que A = P1 ⋉ . . . ⋉Pk. Nous notons P⋉kA le fait que P est une quotientation de A de longueur k.

Ces définitions nous permettent de définir la convolution de Dirichlet notée ∗ et le pléthysme
arithmétique noté □ de deux espèces. Une généralisation directe de la transformée de Taylor-Joyal
nous permet de définir la transformée de Joyal d’un foncteur Setop → Set. De plus cela nous permet
d’associer série de Dirichlet à un tel foncteur, et avec des foncteurs bien choisis, nous pouvons
retrouver les fonctions zêta usuelles, à savoir la fonction zêta de Riemann, les fonctions zêta de
Hasse-Weil, et les fonctions zêta d’Artin-Mazur. Nous terminons la section par une sous-section
expliquant comment généraliser le théorème des fonctions implicites aux espèces :

Théorème. Soit H[X,Y ] une espèce 2-variée dans les variables X et Y telle que :

H(0, 0) = ∅ et
∂H

∂Y
(0, 0) = ∅

Alors il existe une unique espèce A telle que :

A[X] = H[X,A[X]] et A(0) = ∅

La troisième section tire pleinement parti du point de vue catégorique de la théorie des espèces.
Dans la sous-section 1.3.1, nous montrons deux façons très naturelles de plonger la catégorie des
espèces näıves dans la catégorie des espèces, définissant les espèces de mélange et les espèces ordonnées,
en utilisant les adjonctions suivantes :

NSpe Spe

FP

I

Orb⊣
⊣ ; NSpe Spe

Σ

U

⊣

Où FP est le foncteur des points fixes, I est l’inclusion des espèces näıves dans les espèces, Orb
est le foncteur orbite, Σ est le foncteur de symétrisation, et U est le foncteur d’oubli. Dans la
sous-section 1.3.2, nous montrons comment définir des espèces dans d’autres catégories, définissant
les espèces linéaires (qu’il ne faut pas confondre avec les espèces ordonnées à cause de l’inconstance
de la terminologie dans la littérature), les espèces topologiques, et en fait les espèces à valeur dans
n’importe quelle catégorie se comportant suffisamment bien.
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La dernière section du premier chapitre est consacrée à l’application de la théorie des espèces
à certaines structures arboricole, à savoir les arbres enracinés, les arbres de Greg enracinés, et les
hyperforêts (ensembles non-vides d’hyperarbres enracinés). Nous définissons les arbres enracinés et
les arbres de Greg enracinés dans la sous-section 1.4.1, et les espèces correspondantes.

Définition. Un arbre enraciné est un graphe fini connexe sans cycle avec un sommet distingué
appelé la racine.
Un arbre de Greg enraciné est un arbre enraciné où les sommets sont soit noirs soit blancs tel que :

• les sommets noirs sont indistinguables, et

• les sommets noirs ont au moins deux enfants.

Nous adaptons ensuite ces définitions aux hyperarbres dans la sous-section 1.4.2.

Définition. Un hyperarbre est un hypergraphe fini connexe sans cycle avec un sommet distingué
appelé la racine.

Nous introduisons ensuite trois nouveaux objets combinatoires : tout d’abord les formes d’arbres.

Définition. Soit P une partition de longueur k de A, une forme d’arbre sur P est une structure
d’hyperarbre avec k sommets noirs sur A telle que :

• la racine est noire,

• les arrêtes simples sont entre un sommet noir et un sommet blanc tel que le sommet noir est en
dessous (plus proche de la racine),

• les hyperarrêtes sont entre un sommet blanc et plusieurs sommets noirs tel que le sommet blanc
est en dessous,

• pour chaque p ∈ P , il existe un sommet noir tel que p est l’ensemble des sommets blancs
connectés à ce sommet via des arrêtes simples.

Nous construisons ensuite la forme d’arbre d’un hyperarbre enraciné et montrons qu’elle encode
les données nécessaires pour reconstruire un hyperarbre à partir de ses sous-arbres maximaux. En
utilisant cette idée, nous introduisons les hyperarbres de Greg enracinés et les hyperarbres de Greg
enracinés réduits généralisant à la fois les arbres de Greg et les hyperarbres de deux manières
différentes.

Définition. Un hyperarbre de Greg enraciné est un hyperarbre enraciné où les sommets sont soit
noirs soit blancs tel que :

• les sommets noirs sont indistinguables, et

• les sommets noirs ont au moins deux enfants.

Un hyperarbre de Greg enraciné réduit est un hyperarbre de Greg enraciné où les sommets noirs
n’admettent pas d’hyperarrête entrante.

Deuxième chapitre : Opérades. Le deuxième chapitre est consacré aux opérades algébriques.
Nous commençons par considérer les espèces ensemblistes (les espèces combinatoires que nous avons
définies dans le premier chapitre), mais nous passons très rapidement aux espèces linéaires pour
pouvoir faire de l’algèbre.

La première section est dédiée aux monades d’arbres. Nous commençons par rappeler les définitions
de base sur les monöıdes et les monades. Ensuite, chaque sous-section est dédiée à une monade
d’arbres différente. Nous commençons par la monade d’arbres symétriques notée T pour les espèces,
puis la monade d’arbres non-symétriques notée T ns pour les espèces ordonnées, et nous terminons
par la monade d’arbres de mélange notée T X pour les espèces de mélange.
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La seconde section est dédiée aux opérades algébriques et aux outils principaux que nous allons
utiliser. La sous-section 2.2.1 est dédiée à la définition des opérades algébriques. Plus précisément,
nous donnons trois définitions différentes, et montrons qu’elles sont équivalentes.

Définition.

• Une opérade algébrique symétrique, ou de façon plus concise opérade, est une algèbre sur la
monade d’arbres T .

• De façon équivalente, une opérade est un monöıde dans la catégorie des espèces selon le
pléthysme.

• De façon équivalente, une opérade est une espèce P avec des opérations ◦i et des éléments
ei ∈ P({i}) tels que ◦i : P(A ⊔ {i}) ⊗ P(B) → P(A ⊔ B), et satisfaisant les axiomes de
composition séquentielle, de composition parallèle et d’unité.

Nous profitons de cette sous-section pour donner le point de vue de l’aut·eur·rice sur les opérades
algébriques, à savoir qu’elles sont une sorte d’algèbres sur des objets très combinatoires, les espèces
linéaires. Dans la seconde sous-section, nous montrons comment donner une présentation d’une
opérade par générateurs et relations. Nous donnons ensuite des exemples d’opérades définies par
générateurs et relations dans la sous-section 2.2.3. Nous définissons les Trois Grâces comme elles
ont été nommées par Loday, les opérades Ass, Com et Lie. Nous définissons également le papillon
opéradique, et (la plus belle de toutes) l’opérade PreLie. Comme nous n’avons pas encore les outils
pour les étudier, nous continuons en abordant la question des représentants canoniques dans les
opérades définies par générateurs et relations dans la sous-section 2.2.4. Nous définissons les systèmes
de réécriture opéradiques (ORS) qui sont des généralisations des bases de Gröbner ou des bases PBW
puisqu’ils ne nécessitent qu’un ordre partiel sur l’ensemble des monômes.

Définition. Un système de réécriture opéradiques noté ORS est un triplet (S,X , R) où S est une
espèce linéaire, X est une espèce de mélange ensembliste tel que U(S) = Span(X ), et R = (Rn)n∈N
tel que Rn est un sous-ensemble de T X{X}(n)× T (S)(n). Nous notons R′ l’ensemble des monômes
réécrivables, c’est-à-dire des monômes admettant au moins une règle de réécriture dans R.

Nous définissons les ordres monomial usuels sur les opérades, à savoir l’ordre par permutation,
l’ordre lexicographique gradué sur les chemins, et l’ordre quantique. Dans la sous-section suivante,
nous définissons les modules sur les opérades, et nous énonçons les théorèmes suivants nous permettant
de montrer des propriétés de liberté en utilisant des ORS convergents. Soient (S,X , U) et (S ⊕R,X +
Y, U ⊔ V ) deux ORS convergents admettant des opérades associées, notons P et Q les opérades
associées. Nous avons alors les théorèmes suivants.

Théorème (version libre à gauche). [25, Théoreme 4] Supposons que les racines des monômes
réécrivables de V sont des éléments de Y. Alors Q est libre en tant que module à gauche sur P.

Théorème (version libre à droite). [25, Théoreme 4] Supposons que les sommets tels que chaque
enfant est une feuille, des monômes réécrivables de V sont des éléments de Y. Alors Q est libre en
tant que module à droite sur P.

Théorème. [31, Théoreme 4.1] Soit P une opérade engendrée par S, et X une base de S satisfaisant
les conditions suivantes :

• P admet un ORS convergent (S,X , U) descendant le long de l’ordre lexicographique gradué sur
les chemins tels que pour chaque monôme réécrivable, la feuille d’étiquette la plus petite est
directement connectée à la racine.

• P admet un ORS convergent (S,X , V ) descendant le long de l’ordre lexicographique gradué sur
les chemins tels que pour chaque monôme réécrivable, la feuille d’étiquette la plus petite et la
deuxième plus petite sont directement connectées au même sommet.
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Alors P satisfait la propriété de Nielsen-Schreier.

La troisième section est consacrée aux opérades différentielles graduées. Dans la première sous-
section, nous expliquons la règle de signe de Koszul et donnons des exemples d’applications et de
calculs utilisant cette règle. Dans la sous-section suivante, nous définissons les constructions Bar et
Cobar sur les opérades différentielles graduées. Ce sont des ingrédients clés de l’algèbre homologique
opéradique. Nous n’avons malheureusement pas le temps d’aller plus loin dans cette théorie profonde
et intéressante. La dernière sous-section est une introduction malheureusement courte à la torsion
opéradique. Cependant, le calcul complet de la torsion opéradique de PreLie est donné dans le dernier
chapitre, à savoir dans la sous-section 3.1.2.

La dernière section du deuxième chapitre est une introduction à la dualité de Koszul opéradiques.
Nous définissons le dual de Koszul et le complexe de Koszul d’une opérade quadratique dans la
première sous-section. Dans la sous-section suivante, nous définissons la propriété de Koszul, et nous
montrons un théorème bien connu de la théorie de Koszul opéradiques pour lequel l’aut·eur·rice n’a
pas trouvé de référence dans la littérature, à savoir qu’une opérade admettant un ORS convergent
quadratique est Koszul.

Théorème. Le complexe de Koszul d’une opérade admettant un ORS convergent quadratique est
acyclique.

Dans la sous-section 2.4.3, nous utilisons les outils de la théorie de Koszul opéradiques pour étudier
le papillon opéradique, et répondons négativement à une conjecture de Loday. Dans la sous-section
suivante, nous discutons rapidement des séries génératrices des opérades de Koszul, et énonçons une
conjecture sur les séries génératrices des opérades Koszul engendrées par une opération d’arité deux.

Conjecture. Soit P une opérade symétrique Koszul engendrée par une opération d’arité deux, alors
la série génératrice de P est algébrique différentielle d’ordre 1 sur Z[x]. Autrement dit, fP et f ′P sont
algébriquement dépendants sur Z[x].

Enfin, nous terminons le chapitre par un travail original de l’aut·eur·rice classifiant les opérades
symétriques ensemblistes Koszul engendrées par une opération d’arité deux, prouvant la conjecture
de la sous-section précédente dans le cas des opérades ensemblistes.

Théorème. Soit P une opérade symétrique ensembliste Koszul engendrée par une opération d’arité
deux, alors P est isomorphe à l’une des 11 opérades suivantes :

• Mag l’opérade magmatique et fP(x) = 1
2 (1−

√
1− 4x) ;

• NAP l’opérade permutative non-associative et fP(x) =
∑
n∈Nfr

nn−1

n! xn ;

• CMag ◦ ANil2 qui est construite à partir de CMag et ANil2 avec la relation [a.b, c] = 0, et
fP(x) = 1−

√
1− 2x− x2 ;

• ANil2 ◦ CMag qui est construite à partir de CMag et ANil2 avec la relation [a, b].c = 0, et
fP(x) = 2− x− 2

√
1− 2x ;

• CMag#AMag qui est la somme connexe de CMag et AMag, et fP(x) = 2− x− 2
√
1− 2x ;

• Ass l’opérade associative et fP(x) = x
1−x ;

• CMag#ANil2 qui est la somme connexe de CMag et ANil2, et fP(x) = 1−
√
1− 2x+ 1

2x
2 ;

• Perm l’opérade permutative et fP(x) = x exp(x) ;

• LieAdm! le dual de Koszul de l’opérade Lie admissible et fP(x) = exp(x)− 1 + x2

2 ;

• CMag l’opérade magmatique commutative et fP(x) = 1−
√
1− 2x ;
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• Com l’opérade commutative et fP(x) = exp(x)− 1.

Corollaire. La série génératrice d’une opérade symétrique ensembliste Koszul engendrée par une
opération d’arité deux est algébrique différentielle d’ordre 1 sur Z[x]. Autrement dit, fP et f ′P sont
algébriquement dépendants sur Z[x].

Troisème chapitre : Interprétations combinatoires des opérades Le troisième chapitre, à
l’exception de la première section, est consacré au travail original de l’aut·eur·rice. Dans la sous-
section 3.1.1, nous rappelons l’interprétation combinatoire de PreLie en tant que structure opéradiques
sur les espèces d’arbres enracinés due à Chapoton et Livernet [19].

Théorème. [19, Théoreme 1.9] L’espèce sous-jacente de l’opérade PreLie est l’espèce des arbres
enracinés. De plus, la structure opéradiques sur l’espèce des arbres enracinés est donnée par l’insertion
d’un arbre enraciné dans un autre arbre enraciné.

Et dans la sous-section suivante, nous rappelons l’interprétation combinatoire du twisting
opéradiques de PreLie due à Dotsenko et Khoroshkin [28].

Proposition. [30, Sous-section 6.7] Soit T un arbre enraciné tordu, alors dTw(T ) est donné par :

1. La somme de toutes les façons possibles de diviser un sommet blanc de T en un sommet blanc
conservant l’étiquette et un sommet noir au-dessus et de connecter les arêtes entrantes à l’un
des deux sommets, au signe près.

2. La somme de toutes les façons possibles de diviser un sommet blanc de T en un sommet blanc
conservant l’étiquette et un sommet noir en dessous et de connecter les arêtes entrantes à l’un
des deux sommets, au signe près.

3. La somme de toutes les façons possibles de diviser un sommet noir de T en deux sommets noirs
et de connecter les arêtes entrantes à l’un des deux sommets, au signe près.

4. La somme de toutes les façons possibles de greffer une feuille noire supplémentaire à T , au
signe près.

5. Greffer T sur une nouvelle racine noire, au signe près.

De plus, de nombreux termes s’annulent en raison des signes. En particulier, si T a plus d’un sommet,
toutes les contributions de 4 et 5 sont annulées par les contributions de 1, 2 et 3.

Qui est utilisé pour montrer le théorème suivant :

Théorème. [28, Théoreme 5.1] Le plongement d’opérades différentielles graduées (Lie, 0) →
TwPreLie induit un isomorphisme en cohomologie.

Dans la deuxième section, nous présentons une généralisation de ce travail sur les arbres de Greg
enracinés. À savoir, nous définissons l’opérade Greg qui est une structure opéradiques sur l’espèces
d’arbres de Greg enracinés. Nous montrons ensuite sa Koszulité, et nous la relions à la torsion
opéradiques de PreLie.

Théorème. L’opérade Greg est engendrée en arité deux et est Koszul.

Théorème. Le plongement d’opérades différentielles graduées Greg−1 → TwPreLie induit un
isomorphisme en cohomologie.

Dans la sous-section suivante, nous déformons cette opérade en utilisant une coalgèbre co-
associative co-commutative, et nous montrons que le coproduit de plusieurs copies de l’opérade
PreLie fibré par l’opérade Lie peut être obtenu de cette manière.
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Théorème. L’opérade
∨n+1

Lie PreLie est isomorphe à Greg(V,∆max) avec :

∆max : ek 7→
∑

i,j|max(i,j)=k

ei ⊗ ej

Dans la sous-section 3.2.3, nous montrons que le coproduit de n+ 1 opérades PreLie fibré par
l’opérade Lie est libre sur le coproduit de n opérades PreLie fibré par l’opérade Lie en tant que
module à gauche et à droite, et nous calculons explicitement les générateurs dans le cas du module à
gauche.

Théorème. Le
∨n

Lie PreLie-module à gauche
∨n+1

Lie PreLie est isomorphe à :

n∨
Lie

PreLie ◦ T
(
T (n)

(CycLie)
)

avec CycLie l’espèce sous-jacente de l’opérade cyclique Lie.

La section suivante est la généralisation de la construction sur les arbres enracinés et les arbres
de Greg enracinés aux hyperforêts. Dans la sous-section 3.3.1, nous généralisons la construction de
l’opérade PreLie en tant que structure opéradiques sur les espèces d’arbres enracinés aux hyperforêts,
et nous montrons que nous obtenons l’opérade ComPreLie.

Définition. [65, Définition 13] L’opérade ComPreLie est définie par :

T [x, x.(1 2), c]/⟨(x ◦1 x− x ◦2 x)− (x ◦1 x− x ◦2 x).(2 3),

x ◦1 c− (c ◦1 x).(2 3)− c ◦2 x, c ◦1 c− c ◦2 c⟩

où x et c sont d’arité deux, et l’action de S2 sur c est c.(1 2) = c. Les trois relations doivent être
comprises comme l’identité pré-Lie pour x, la règle de Leibniz, et l’associativité de c.

Théorème. L’espèce sous-jacente de ComPreLie est l’espèce des hyperforêts.

Nous montrons ensuite que l’opérade ComPreLie est Koszul.

Théorème. L’opérade ComPreLie est Koszul.

Nous adaptons ensuite la généralisation aux hyperforêts de Greg dans la sous-section suivante.
Enfin dans la dernière sous-section, nous faisons de même pour les hyperforêts de Greg réduits. Nous
terminons le chapitre par notre résultat principal. Dans la section 3.4, nous prouvons une conjecture
de Dotsenko sur un plongement de l’opérade encodant la structure algébrique sur les champs de
vecteurs des variétés de Frobenius faibles. Dans la première sous-section, nous rappelons la définition
des opérades FMan encodant la structure algébrique sur les champs de vecteurs des variétés de
Frobenius faibles. Puis dans la dernière sous-section, nous utilisons pleinement le fait que l’opérade
Greg est liée à la torsion opéradiques de PreLie et nous utilisons des techniques similaires à la torsion
opéradiques pour montrer que FMan se plonge dans ComPreLie, prouvant ainsi la conjecture de
Dotsenko.

Théorème. L’opérade FMan se plonge dans ComPreLie.
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Chapter 1

Combinatorial Species

The theory of combinatorial species was historically introduced by A. Joyal in 1981 [47]. This
theory proved itself to very fruitful in enumerative combinatorics, notably because of its ability
to transform recursive definitions into differential equations. Indeed, enumerative combinatorics is
the area of mathematics dealing with enumeration of certain combinatorial patterns or structures.
Questions in this area can often be formulated the following way: “Let (An)n∈N be a sequence
a finite set arising from combinatorial considerations, what is the cardinality of An?”. The first
breakthrough in this area can be considered to be the introduction of generating function by A. De
Moivre in 1730 [21] allowing to consider one object, the generating function, instead of considering
each number separately. The main idea behind the theory of combinatorial species is to replace
the generating function by a functor, and thus allowing the functor to carry algebraic structures
of An that are ignored by the generating function. This point of view allows us to translate some
functional equations into combinatorial problems, or to define combinatorial structures by functional
equations with functors that we could call “functorial equations”. Because of this combinatorial
framework, combinatorial species were initially defined to be finite, however, we will occasionally
need to consider infinite species in this thesis, and thus we will define non-necessarily finite species.
This slight generalization of species was already considered by Joyal in 1986 [46] because of the tight
connection between species and Schur functors. Since species will be the basic building block we
will use throughout this entire manuscript, we will give an extensive introduction to the theory of
combinatorial species in this chapter. We will first define the category of species, then we will define
the classical operations on species and the compatibility relations between them. For the sake of
precision, we will give proof of the propositions and the theorems we state in this chapter, although
they can usually be found in the classical literature on species, see [7] and [1]. The proof we give may
seem too formal or abstract, however, first we believe that it is important to give precise definitions
of the basic objects we are going to use, and to give precise proofs of their basic properties, and
second, we want to emphasize the categorical nature of the theory of combinatorial species. Indeed,
in the next chapters, we will use species with value in a category different from the category of sets,
see discussion in Subsection 1.3.2. Most of this chapter is a recollection of the theory of combinatorial
species, we invite the interested reader to refer to the book of Bergeron, Labelle and Leroux [7], and
the book of Aguiar and Mahajan [1] for a more in depth study of this theory.

1.1 Naive categorification of generating functions

One of the point of view we want to emphasize in this manuscript is how considering “natural”
categorification of usual mathematical objects can lead to new interesting mathematical objects. The
theory of species is a good example of this point of view since it is the categorification of the theory
of generating functions. In this section, we start by recalling the theory of generating functions in a
quite algebraic point of view since we do not really want to deal with the convergence issues arising
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30 CHAPTER 1. COMBINATORIAL SPECIES

with formal power series. We will then “naively” categorify our definition of generating functions to
obtain the definition of naive species. The theory of naive species is not the theory we aim for, and it
should be seen as a “toy example” of categorification. However, we start with naive species because
it is a good warm-up for the theory of species.

1.1.1 Ordinary generating functions

As we stated above, the main idea behind the theory of combinatorial species is to replace a generating
function by a functor. Let us first recall the definition of a generating function and then try to
naively categorify it. Because we want generating functions to “count something”, we will consider
formal power series with integer coefficients, however, because it is convenient, we will allow infinite
coefficients. Let N = N ∪ {∞} with N the set of non-negative integers. We extend the sum on N to
N by setting n +∞ = ∞ for each n ∈ N, and the multiplication by 0 · ∞ = 0 and n · ∞ = ∞ for
each n ∈ N \ {0}. We use the convention that infinite sums of non-zero elements give ∞. Let x be a
formal variable.

Definition 1.1.1.1. An ordinary generating function, ogf for short, f =
∑
n∈N fnx

n is a formal

power series such that fn ∈ N. Since a power series is determined by its coefficients, we can identify
the set of ogf with the set of functions {N→ N}. Hence, an ogf is uniquely determined by a function
s : N→ N. An ogf f is finite if fn is finite for all n ∈ N. An ogf f is connected if f0 = 0, it is strongly
connected if f0 = f1 = 0. Let us define the following usual ogf:

• 0 the zero ogf such that all coefficients are 0,

• 1 the ogf such that the first coefficient is 1 and all the other coefficients are 0,

• x the ogf such that the second coefficient is 1 and all the other coefficients are 0,

• e the ogf such that all coefficients are 1.

We can see here why we allow infinite coefficients in the definition of an ogf f . Indeed, we need
φf to be defined on N and not only on N in order to avoid the problem of the radius of convergence
of the power series. This way, we can compose any two ogf f and g to obtain a new ogf f ◦ g without
having to impose any condition on the coefficients of f and g. However, we are anticipating a bit
here since we have not defined the composition of two ogf yet. Let us recall the natural operations
on ogf that we will need to categorify.

Definition 1.1.1.2. Let f =
∑
n∈N fnx

n and g =
∑
n∈N gnx

n be two ogf. We define the following
operations :

• the derivation f ′ =
∑
n∈N(n+ 1)fn+1x

n,

• the sum f + g =
∑
n∈N(fn + gn)x

n,

• the product f · g =
∑
n∈N

∑n
i=0 fign−ix

n,

• the Hadamard product f ⊙ g =
∑
n∈N fngnx

n,

• the composition f ◦ g =
∑
n∈N fng

n.

All those formulas are straightforward on the level of the coefficients except for the composition.
The composition of two power series is a bit more involved, and we will need to use the notion of
composition of an integer to give a formula on the level of the coefficients. Let us recall the definition
of a composition of an integer. The definition we are going to give is slightly different from the usual
one since we are allowing 0 to be a part of a composition of an integer.

Definition 1.1.1.3. Let n, k ∈ N, a composition of n of length k is λ = (λ1, . . . , λk) ∈ Nk such that∑k
i=1 λi = n. We denote by λ ⊨k n the fact that λ is a composition of n of length k.
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Let us show the following combinatorial lemma on composition that will be useful in the sequel.

Lemma 1.1.1.4. Let n, k ∈ N, we denote k the set {1, . . . , k}. Let us define:

U = {(m, γ, ν) | m ∈ N, γ ⊨m n, ν ⊨k m}
V = {

(
λ, (mi, µ

i)i∈k
)
| λ ⊨k n, ∀i ∈ k,mi ∈ N, µi ⊨mi λi}

Then there is a bijection between U and V .

Proof. The idea of the proof is depicted in Figure 1.1. Let us show it in a formal way, so it can be
latter categorified. For (m, γ, ν) ∈ U let us denote si =

∑i−1
l=1 νl. We define the following maps:

U → V

(m, γ, ν) 7→


 νi∑
j=1

γsi+j


j∈k

,
(
νi, (γsi+j)j∈mi

)
i∈k


V → U(

λ, (mi, µ
i)i∈k

)
7→
(

k∑
i=1

mi,
(
µ1
1, . . . , µ

1
m1
, . . . , µk1 , . . . , µ

k
mk

)
, (mi)i∈k

)
One can easily check that those maps are inverse of each other.

Figure 1.1: Bijection between U and V

µ1 µ2

λ

λ1 λ2

n

• • • • • •

• • • • • •
←→

γ

ν

n

m

• • • • • •

• • •

Proposition 1.1.1.5. Let f =
∑
n∈N fnx

n and g =
∑
n∈N gnx

n be two ogf, such that g is connected.
We have:

f ◦ g =
∑
n∈N

∑
k∈N

fk
∑
λ⊨kn

k∏
i=1

gλi
xn

Proof. A straightforward computation is enough to prove this formula:

f ◦ g =
∑
k∈N

fkg
k

=
∑
k∈N

fk

∑
j∈N

gjx
j

k

=
∑
k∈N

fk

 ∑
(λ1,...,λk)∈Nk

k∏
i=1

gλi
xλi


=
∑
n∈N

∑
k∈N

fk
∑
λ⊨kn

k∏
i=1

gλix
n



32 CHAPTER 1. COMBINATORIAL SPECIES

Moreover, we have the following compatibility between the operations defined on ogf, to be precise,
we have 19 different relations. To avoid unnecessary parentheses, we use the following order of
operations: the composition has the highest priority, then the Hadamard product, then the product,
then the sum, and finally the derivative. So for example we have:

(f ◦ g) · h = f ◦ g · h

Let us state the 19 different relations:

Proposition 1.1.1.6. Let f , g and h be three ogf, then the operations +, · and ⊙ are unitary,
commutative and associative, and the operation ◦ is unitary and associative (we assume g and/or h
connected when needed):

• f + 0 = f ,

• f + g = g + f ,

• (f + g) + h = f + (g + h),

• f · 1 = f ,

• f · g = g · f ,

• (f · g) · h = f · (g · h),
• f ⊙ e = f ,

• f ⊙ g = g ⊙ f ,

• (f ⊙ g)⊙ h = f ⊙ (g ⊙ h),

• f ◦ x = f ,

• x ◦ f = f ,

• (f ◦ g) ◦ h = f ◦ (g ◦ h),
They also satisfy the following distributivity relations:

• (f + g) · h = f · h+ g · h,

• (f + g)⊙ h = f ⊙ h+ g ⊙ h,

• (f + g) ◦ h = f ◦ h+ g ◦ h,

• (f · g) ◦ h = f ◦ h · g ◦ h,
And they satisfy the following compatibility relations with the derivative:

• (f + g)′ = f ′ + g′, • (f · g)′ = f ′ · g + f · g′, • (f ◦ g)′ = f ′ ◦ g · g′.

Proof. Since the composition is the most involved operation, let us show the associativity of the
composition. Let us reuse the notations U and V of Lemma 1.1.1.4 We have:

((f ◦ g) ◦ h)n =
∑
k∈N

fk
∑
ν⊨km

k∏
i=1

gνi
∑
γ⊨mn

m∏
j=1

hγj

=
∑
k∈N

fk
∑
U

k∏
i=1

gνi

m∏
j=1

hγj

=
∑
k∈N

fk
∑
V

k∏
i=1

gmi

m∏
j=1

hµi
j

=
∑
k∈N

fk
∑
λ⊨kn

k∏
i=1

∑
mi∈N

gmi

∑
µi⊨miλi

mi∏
j=1

hµi
j

= (f ◦ (g ◦ h))n

Let us show the compatibility relation between the composition and the derivative. Assume that we
have shown the compatibility relation between the product and the derivative, then by induction
we have (gk)′ = kgk−1g′ for any k ∈ N, and we can compute the n-th coefficient of each side of the
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equation: (
(gk)′

)
n
=
(
k(gk−1g′)

)
n

(n+ 1)
∑

λ⊨kn+1

k∏
i=1

gλi = k

n∑
j=0

 ∑
λ⊨k−1n−j

k−1∏
i=1

gλi

 (j + 1)gj+1

Let us now compute the n-th coefficient of (f ◦ g)′:

(f ◦ g)′n = (n+ 1)
∑
k∈N

fk
∑

λ⊨kn+1

k∏
i=1

gλi

=
∑
k∈N

fk

(n+ 1)
∑

λ⊨kn+1

k∏
i=1

gλi


=
∑
k∈N

fk

k n∑
j=0

 ∑
λ⊨k−1n−j

k−1∏
i=1

gλi

 (j + 1)gj+1


=

n∑
j=0

∑
k∈N

kfk
∑

λ⊨k−1n−j

k−1∏
i=1

gλi

 (j + 1)gj+1

=

n∑
j=0

∑
k∈N

(k + 1)fk+1

∑
λ⊨kn−j

k∏
i=1

gλi

 (j + 1)gj+1

= (f ′ ◦ g · g′)n
The other 17 relations are straightforward to prove. We hope that the kind reader will not hold
against us the fact that we will not prove them.

In those proofs, we have only used combinatorial arguments, without having to subtract coefficients
nor evaluate the ogf at any point. The 17 relations that we have stated without proving them can be
proven the same way, only reasoning on the level of the coefficients, and without any subtraction of
coefficients nor evaluation of the ogf at any point. This fact will allow us to categorify the operations
on ogf and the compatibility relations between them. Indeed, since we only used sums and products
of coefficients, we can replace the coefficients by sets, and the sums and products by disjoint unions
and products of sets.

1.1.2 Naive species

Now that we have introduced ogf, we can try to categorify them. We already pointed out that we
used N because we wanted the coefficients of the ogf to count something, hence to be the cardinal
of some sets. Let us try to directly replace these cardinal of sets by the sets themselves. We will
use the category of sets Set and the discrete category N which is the category with one object for
each n ∈ N and with only identity morphisms. As we pointed out previously, the fact that we only
used sum and products of coefficients in the definitions, the properties, and their proofs, allows us to
generalize them to the naive species setting without any problem.

Definition 1.1.2.1. Let NSpe be the functor category N→ Set. A naive species S is an object of
NSpe, it is a functor S : N→ Set, the naive species S is finite if each object of its essential image is
finite. The naive species S is strongly finite if it is finite, and if we have N ∈ N such that S(n) = ∅ for
each n > N . A naive species S is connected if S(0) = ∅, it is strongly connected if S(0) = S(1) = ∅.
A morphism of naive species is a morphism in NSpe, it is a natural transformation between two
functors S,R : N → Set. The category NSpe is the category of naive species. Let us define the
following usual naive species:
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• 0 the trivial species such that 0(n) = ∅ for each n ∈ N,

• 1 the empty set species such that 1(0) = {∗} and 1(n) = ∅ for each n ∈ N∗,

• X the singleton species such that X(1) = {∗} and X(n) = ∅ for each n ∈ N \ {1},

• set the naive set species such that set(n) = {∗} for each n ∈ N.

One should not to be afraid of the categorical definition of a naive species. Indeed, a quick
inspection of the definition shows that a naive species S is a very concrete object, it is a sequence of
sets (Sn)n∈N, and a morphism of naive species is a sequence of maps (fn : Sn → Tn)n∈N. The main
idea of giving such a categorical definition is to allow us to modify easily the definition replacing
either of the categories Set or N by another category, and to keep a very similar theory.

Definition 1.1.2.2. Let S be a naive species. The ogf fS associated to S is the formal power series

fS(t) =
∑
n∈N
|S(n)|xn,

with |S(n)| the cardinal (in N) of S(n). Two naive species S and R are equinumerous if fS = fR.

Proposition 1.1.2.3. Two isomorphic naive species are equinumerous. The converse is not true in
general but is true for finite naive species.

Proof. It is clear that two isomorphic naive species are equinumerous. Moreover, since finite sets
are in bijection if and only if they have the same cardinal (in N), if two finite naive species are
equinumerous, then one can find a bijection between the sets of each species, and thus the two species
are isomorphic.

This proposition shows that our categorification of the ogf is probably too naive, since it does not
allow us to distinguish between two finite equinumerous naive species. However, let us continue our
study of naive species, first as a warm-up, and second because we will need to use the category of
naive species at some point. Let us define the following operations on naive species.

Definition 1.1.2.4. Let S and R be two naive species. We define the following operations on naive
species:

• the derivative S ′ such that (S ′)(n) = (n+1)S(n+1) = S(n+1)⊎ · · · ⊎S(n+1) for each n ∈ N,

• the sum S +R such that (S +R)(n) = S(n) ⊎R(n) for each n ∈ N,

• the product (or Cauchy product) S · R such that (S · R)(n) = ⊎ni=0 S(n− i)×R(i) for each
n ∈ N,

• the Hadamard product S ⊙R such that (S ⊙R)(n) = S(n)×R(n) for each n ∈ N,

• if R is connected, the plethysm (or composition product) S ◦ R such that (S ◦ R)(n) =⊎
k∈N S(k)×

⊎
λ⊨kn

∏k
i=1R(λi) for each n ∈ N.

Here we use the notations ⊎ for the disjoint union of sets (the coproduct in Set), × for the cartesian
product of sets, and nA for A ⊎ · · · ⊎A with n copies of A.

Proposition 1.1.2.5. We have fS′ = (fS)′. Same for the sum fS+R = fS + fR, the product
fS·R = fS · fR, the Hadamard product fS⊙R = fS ⊙ fR and the plethysm fS◦R = fS ◦ fR.

Proof. Since |A⊎B| = |A|+ |B| and |A×B| = |A| · |B|, this follows directly from the definition.

We also have same 19 compatibility relations between the operations defined on naive species as
we had for ogf however, since we are now in the categorical framework, we do not get relations but
isomorphisms. Let us state them:
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Proposition 1.1.2.6. Let S, R and U be three naive species, then the operations +, · and ⊙ are
unitary symmetric monoidal structures, and the operation ◦ is unitary monoidal structure:

• S + 0 ≃ S,

• S +R ≃ R+ S,

• (S +R) + U ≃ S + (R+ U),

• S · 1 ≃ S,

• S · R ≃ R · S,

• (S · R) · U ≃ S · (R · U),

• S ⊙ set ≃ S,

• S ⊙R ≃ R⊙ S,

• (S ⊙R)⊙ U ≃ S ⊙ (R⊙ U),

• S ◦X ≃ S,

• X ◦ S ≃ S,

• (S ◦ R) ◦ U ≃ S ◦ (R ◦ U),
We also have the following distributivity morphism:

• (S +R) · U ≃ S · U +R · U ,

• (S +R)⊙ U ≃ S ⊙ U +R⊙ U ,

• (S +R) ◦ U ≃ S ◦ U +R ◦ U ,

• (S · R) ◦ U ≃ S ◦ U · R ◦ U ,
And the following morphisms when composing with the derivative:

• (S +R)′ ≃ S ′ +R′, • (S · R)′ ≃ S ′ · R+ S · R′, • (S ◦ R)′ ≃ S ′ ◦ R · R′.

Moreover, these isomorphisms are coherent with each other, meaning that “any diagram involving
only these isomorphisms commutes”. Because of this, we will write them as equality in the sequel.

Coherence conditions The situation is slightly more involved than the slogan “any diagram
involving only these isomorphisms commutes”, indeed, τ : A×A→ A×A the permutation of the
two coordinates is almost never the identity. A better setting to state coherence conditions is the
following one: Let us understand the coherence conditions between the cartesian product × and
the disjoint union ⊎ in the category Set. First let consider the cartesian product × and the disjoint
union ⊎ as functors, for example we have ⊎ : Set × Set → Set where Set × Set is the category of
pairs of sets. Then the isomorphisms we impose (associativity of ×, distributivity over ⊎ ...) are
natural isomorphisms between functors, and the coherence conditions state that any two chain of
compositions of such natural isomorphisms that have the same source and target should be equal.
This is a quite technical definition, and the discerning reader will see ∞-category theory rushing in.
Although coherence conditions are very important in category theory, we will leave it as it is, and
dodge the appearance of ∞-categories. The author want to apologize to the interested reader, as
the author do like ∞-category theory, however, the author already fell down too many rabbit holes
while writing this manuscript, and exploring coherence conditions through ∞-category theory would
be one too many. Let us go with “any diagram involving only these isomorphisms commutes” and
beware that it is not the whole story.

Proof. Replacing the sums by disjoint unions and the cartesian products by products in the proof of
Proposition 1.1.1.6 is enough to get the isomorphisms. The compatibility between the isomorphisms
is a direct consequence of the fact that the disjoint union and the product are compatible with each
other (i.e. that Set is a rig-category, see Definition 1.2.1.3).

Since sets a closed by products and disjoint unions, we can define a functor Set→ Set associated to
a naive species in a similar fashion as we can associate a function to a formal power series. Moreover,
in this categorical setting, the issue arising from the radius of convergence of formal power series
disappears.

Definition 1.1.2.7. Let S be a naive species. Let FS : Set → Set be the Schur functor of S
defined by FS(A) =

⊎
n∈N S(n)×An for each set A, and FS(φ) =

⊎
n∈N idS(n)×φn for each function

φ : A→ B.

Proposition 1.1.2.8. Let S and R be two naive species. We have FS◦R = FS ◦ FR.
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Proof. We have:

FS◦R(A) =
⊎
k∈N
S(k)×

⊎
j∈N
R(j)×Aj

k

=
⊎
n∈N

⊎
k∈N
S(k)×

⊎
λ⊨kn

k∏
i=1

R(λi)×An

= (FS ◦ FR)(A)

Same for FS◦R(φ) with φ : A→ B.

1.1.3 Multi-variate case

We have categorified the ogf, and we have defined the naive species. However, we will need multi-
variate case in the sequel. Because there are no major difficulties to go from the univariate and the
multi-variate case, we will only discuss the three new operations that appear in the multi-variate case.
namely, the partial derivative, the partial composition and the identification of variables which is not
as trivial as it may seem. First, let us define the multi-variate ogf. Let us fix the following notations:
Let k ∈ N and x1, . . . , xk be k variables. We denote x = (x1, . . . , xk) and for n = (n1, . . . , nk) ∈ Nk

we denote xn = xn1
1 . . . xnk

k , the same way, if i = (i1, . . . , ik) ∈ Nk, we denote in = in1
1 . . . ink

k . We will
denote y = (y1, . . . , yl) another tuple of formal variables, and z a single formal variable when needed.

Definition 1.1.3.1. A k-variate ogf , k-ogf for short, is a formal power series in k variables with
coefficients in N. Since a power series is determined by its coefficients, we can identify the set of k-ogf
with the set of functions {Nk → N}. Hence, an ogf is uniquely determined by a function s : Nk → N.
A k-ogf f is finite if fn is finite for all n ∈ Nk. A k-ogf f is connected if f0 = f(0,...,0) = 0.

The sum, the product and the Hadamard product of k-ogf are defined as for ogf. Let us define
the identification of variables, the partial derivative and the partial composition for k-ogf.

Definition 1.1.3.2. Let

f(x, y) = f(x1, . . . , xk, y1, . . . , yl) =
∑

(n,m)∈Nk+l

f(n,m)x
nym

be a (k+ l)-ogf, then we can identify the variables y1, . . . , yl to a single variable z and get the k+1-ogf
f(x1, . . . , xk, y = z) defined by:

f(x, y = z) = f(x1, . . . , xk, z, . . . , z) =
∑
n∈Nk

∑
m∈Nl

f(n,m)x
nz

∑l
i=1mi

Definition 1.1.3.3. Let f(x) = f(x1, . . . , xk) =
∑
n∈Nk fnx

n be a k-ogf, then we can define the

partial derivative of f with respect to the variable xi for i ∈ k, and get the k-ogf ∂f(x)∂xi
defined by:

∂f(x)

∂xi
=
∑
n∈Nk

nifnx
n1
1 . . . xni−1

i . . . xnk

k

Definition 1.1.3.4. Let f(x) = f(x1, . . . , xk) =
∑
n∈Nk fnx

n be a k-ogf, and g1, . . . , gk be respec-
tively l1-ogf up to lk-ogf, then we can define f(g) the composition of f with g1 up to gk. The
(l1 + · · ·+ lk)-ogf f(g) is defined by:

f(g) = f ◦ (g1, . . . , gk) =
∑
n∈Nk

fng
n1
1 . . . gnk

k
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Let i ∈ k and h = gi, then if gj = xj for j ̸= i then we write f ◦i h instead of f(g), and we call it the
partial composition of f with h in i.
Here one needs to be careful when composing ogf. Indeed, to get (l1 + · · ·+ lk) different variables,
we need to assume that the sets of variables of the gi are disjoint. To compose ogf with sets of
variables that are not disjoint, we need to rename the variables to make them disjoint, then compose
the multi-variate ogf, and finally identify the variables that need to be identified. In the case of ogf,
nothing subtle happens, however we rather address this issue here while it is still trivial.

The partial derivative and the partial composition satisfy similar properties as the derivative and
the composition for ogf. Let us only recall the chain rule. First we need to show the compatibility
relation between the partial derivative and the identification of variables.

Proposition 1.1.3.5. Let f(x, y) =
∑

(n,m)∈Nk+l f(n,m)x
nym be a (k+ l)-ogf and z a formal variable.

Then:

∂f(x, y = z)

∂z
=

l∑
i=1

∂f

∂yi
(x, y = z)

Proof. This is a straightforward computation:

∂f(x, y = z)

∂z
=
∑
n∈Nk

∑
m∈Nl

(
l∑
i=1

mi

)
f(n,m)x

nz(
∑l

i=1mi)−1

=

l∑
i=1

∑
n∈Nk

∑
m∈Nl

mif(n,m)x
nzm1 . . . zmi−1 . . . zml

=

 l∑
i=1

∑
n∈Nk

∑
m∈Nl

mif(n,m)x
nym1

1 . . . ymi−1
i . . . yml

l

 (x, y = z)

=

l∑
i=1

∂f

∂yi
(x, y = z)

Proposition 1.1.3.6. Let f be a k-ogf and g1, . . . , gk be l1 up to lk-ogf. Then:

∂(f(g))

∂xi
=

k∑
j=1

(
∂f

∂yj

)
(g)

∂gj
∂xi

Proof. This is the chain rule which is a more elaborate version of the case with k = 1 that we have
already proven in Proposition 1.1.1.6. First let us assume that the variables of the gj are disjoint,
and let gj be the only one where xi appears. Then from the same argument as in Proposition 1.1.1.6
we have:

∂(f(g))

∂xi
=

∂f

∂yj
(g)

∂gj
∂xi

If the variables of the gj are not disjoint, then we can always rename the variables to make them
disjoint, then compose the multi-variate ogf, and finally identify the variables that need to be
identified. The compatibility between the partial derivative and the identification of variables allow
us to conclude.

We can now define the naive multi-sort species and prove these two propositions. Let X =
(X1, . . . , Xk) be a k-tuple of formal variables, Y = (Y1, . . . , Yl) be an l-tuple of formal variables and Z
a single formal variable. We use the same notations as for k-ogf, except that variables are capitalized
in the case of multi-sort species.
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Definition 1.1.3.7. Let us consider Nk as the category with one object for each n ∈ Nk and with
only identity morphisms. Let NkSpe be the functor category Nk → Set. A naive k-sort species S is an
object of NkSpe, it is a functor S : Nk → Set, the naive k-sort species S is finite if each object of its
essential image is finite. A naive k-sort species S is connected if S(0) = S(0, . . . , 0) = ∅. A morphism
of naive k-sort species is a morphism in NkSpe, it is a natural transformation between two functors
S,R : Nk → Set. The category NkSpe is the category of naive k-sort species. If needed, we will
specify the formal variables of the naive k-sort species S in brackets and write S[X] = S[X1, . . . , Xk]
in order to be able to identify, derive or compose in a specific variable. One needs to be careful as it
is not the same convention as in [7].

Let us define the identification of variables, the partial derivative and the partial composition for
naive k-sort species.

Definition 1.1.3.8. Let S[X,Y ] = S[X1, . . . , Xk, Y1, . . . , Yl] be a (k + l)-sort naive species, then
we can identify the variables Y1, . . . , Yl to a single variable Z and get the k + 1-sort naive species
S[X1, . . . , Xk, Y = Z] defined by:

S[X,Y = Z](n,m) = S[X1, . . . , Xk, Z, . . . , Z](n,m) =
⊎
λ⊨lm

S[X,Y ](n, λ),

where n ∈ Nk and m ∈ N.

Definition 1.1.3.9. Let S[X] = S[X1, . . . , Xk] be a naive k-sort species, then we can define the
partial derivative of S with respect to the variable Xi for i ∈ k, and get the naive k-sort species
∂S[X]
∂Xi

defined by:

∂S[X]

∂Xi
(n) = (ni + 1)S[X](n1, . . . , ni + 1, . . . , nk)

Definition 1.1.3.10. Let S[X] = S[X1, . . . , Xk] be a naive k-sort species, and R1, . . . ,Rk be l1
up to lk-sort naive species, then we can define the composition of S[R] an (l1 + · · ·+ lk)-sort naive
species. Let n ∈ Nl1 × · · · × Nlk , then:

S[R](n) = S ◦ (R1, . . . ,Rk)(n) =
⊎

m∈Nk

S(m)×
⊎
λ⊨mn

k∏
i=1

mi∏
j=1

Ri(λ(i)j )

Here we denote λ ⊨m n to ease the notation, we should have written (λ(i) ⊨mi ni)
k
i=1 where ni is an

li-tuple and λ(i) is a length mi composition of an li-tuple. A length mi composition of an li-tuple is
an mi-tuple of li-tuples such that the sum of the li-tuples (coefficient by coefficient) is equal to the
li-tuple ni.
Let i ∈ k and U = Ri, then if Rj = Xj for j ̸= i then we write S ◦i U instead of S[R], and we call it
the partial composition of S with U in i.
Same as with ogf, one need to be careful when composing. Indeed, to get (l1 + · · ·+ lk) different
variables, we need to assume that the variables of the Ri are disjoint. When it is not the case, we
can always rename the variables to make them disjoint, then compose the multi-sort naive species,
and finally identify the variables that need to be identified.

We can now show the compatibility relation between the partial derivative and the identification
of variables, and the chain rule for naive k-sort species.

Proposition 1.1.3.11. Let S[X,Y ] be a (k + l)-sort naive species and Z a formal variable. Then:

∂S[X,Y = Z]

∂Z
=

l∑
i=1

∂S
∂Yi

(X,Y = Z)
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Proof. This is the same straightforward computation as with ogf but on the level of coefficients:

∂S[X,Y = Z]

∂Z
(n,m) = (m+ 1)S[X,Y = Z](n,m+ 1)

= (m+ 1)
∑

λ⊨l(m+1)

S[X,Y ](n, λ)

=
∑

λ⊨l(m+1)

l∑
i=1

λiS[X,Y ](n, λ)

=

l∑
i=1

∑
λ⊨lm

(λi + 1)S[X,Y ](n, λ1, . . . , λi + 1, . . . , λl)

=

l∑
i=1

∂S
∂Yi

(X,Y = Z)

Proposition 1.1.3.12. Let S be a naive k-sort species and R1, . . . , Rk be l1 up to lk-sort naive
species. Then:

∂(S[R])
∂Xi

=

k∑
j=1

(
∂S
∂Yj

)
[R]∂Rj

∂Xi

Proof. Same as with ogf, if we assume that the variables of the gj are disjoint, and let gj be the only
one where xi appears. Then from the same argument as in Proposition 1.1.2.6 we have:

∂(S[R])
∂Xi

=
∂S
∂Yj

[R] ∂Yj
∂Xi

If the variables of the Rj are not disjoint, then we can always rename the variables to make them
disjoint, then compose the multi-sort naive species, and finally identify the variables that need to be
identified. The compatibility between the partial derivative and the identification of variables allow
us to conclude.

The main reason to define multi-sort species is the implicit species theorem. Let us recall the
implicit function theorem:

Theorem 1.1.3.13 (Implicit function theorem (fixed point version)). Let h be a continuous differ-
entiable function in two variables x and y defined in a neighborhood of (0, 0) such that:

h(0, 0) = 0 and
∂h

∂y
(0, 0) = 0

Then there exists a neighborhood of 0 and a unique differentiable function a such that:

a(x) = h(x, a(x)) and a(0) = 0

The implicit species theorem is an analogous theorem on species

Theorem 1.1.3.14 (Implicit species theorem (naive species version)). Let H[X,Y ] be a 2-sort naive
species in two variables X and Y such that:

H(0, 0) = ∅ and
∂H

∂Y
(0, 0) = ∅

Then there exists a unique naive species A such that:

A[X] = H[X,A[X]] and A(0) = ∅
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Proof. First, let us notice that we have H[X,Y ](0, 1) = ∅ because of the second condition. Let us
now define the naive species A by induction. We define A(0) = ∅. Then we define A(n) for n ∈ N by
induction. Let n ∈ N, we assume that A(m) is defined for each m ∈ N such that m < n. We know
that we should have:

A(n) = H[X,A[X]](n)

=
⊎
i∈N

H[X,A[Y ]](i, n− i)

=
⊎
i∈N

⊎
k∈N

H[X,Y ](i, k)×
⊎

λ⊨k(n−i)

k∏
j=1

A(λj)

We may notice that A(n) only appears when i = 0 and k = 1, however since H[X,Y ](0, 1) = ∅, the
term where A(n) appears cancels. Hence, we can define:

A(n) =
⊎
i∈N

⊎
k∈N

H[X,Y ](i, k)×
⊎

λ⊨k(n−i)

k∏
j=1

A(λj)

We have defined A by induction, such that A(0) = ∅ and A(n) = H[X,A[X]](n). Moreover, we can
see from the induction that A is unique.

This theorem is the main tool that we will be using to define new species. However, naive species
are not the objects we will be working with. It is time to explain why we should change our definition
of species, and how we will do it.

1.2 Species

We have successfully categorified ogf. However, we have shown that two finite naive species are equal
if and only if their ogf are equal. So we have not gained much by categorifying ogf. Another issue is
that a lot of interesting power series are not ogf, for example the exponential function. Moreover,
when categorifying ogf, we only replaced N by its categorical analog Set and not N, which seems
to an arbitrary choice. Naive species are a very natural mathematical object as they are sequences
of sets, however, this is not what we were hoping for. To fix this, let us try to find the categorical
analog of N, that will hopefully allow us to define a more appealing notion of species. The discerning
reader may guess that we will succeed since the theory of species does exist, and they would be right.

1.2.1 Categorical analog of N and definition of a species

The set N viewed as a category is a very simple category. Indeed, it is a set, we do not have any
morphisms except the identity morphisms. Then, what are the distinctive features of N that we
used? Why did we use N and not any other set? Well the most naive thing that we can say about
integers is that we can add and multiply them together. Let us make this rather trivial observation
into a definition.

Definition 1.2.1.1. A (unitary) rig is a quintuple (A, 0, 1,+, ·) such that (A, 0,+) is a unitary
commutative monoid, (A, 1, ·) is a unitary monoid, and for any a, b, c ∈ A we have:

• (a+ b) · c = a · c+ b · c,

• a · (b+ c) = a · b+ a · c,

• 0 · a = a · 0 = 0.

A rig is commutative if the multiplication is commutative.
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The rather strange name of this algebraic structure “rig” is a play on words: a rig is a ring
without the negative elements. This definition allows us to characterize N in a very categorical way,
that competes very hard with some other characterizations of N to be the worse possible definition
of N. However, it is quite useful in our context.

Proposition 1.2.1.2. The set N (with the usual addition and multiplication) is a commutative rig.
Moreover, it is the initial object in the category of commutative rigs.

Let us categorify the definition of a rig:

Definition 1.2.1.3. A rig-category is a quintuple (C, 0, 1,⊕,⊗) such that (C, 0,⊕) is a symmetric
monoidal category, (C, 1,⊗) is a monoidal category, and for any A,B,C ∈ C we have:

• (A⊕B)⊗ C ≃ A⊗ C ⊕B ⊗ C,

• A⊗ (B ⊕ C) ≃ A⊗B ⊕A⊗ C,

• 0⊗A ≃ A⊗ 0 ≃ 0.

Moreover, those isomorphisms should be coherent with each other, meaning that “any diagram
involving only these isomorphisms commutes”.
A symmetric rig-category is a rig-category such that the monoidal structure (C, 1,⊗) is symmetric,
one need to be careful as it is not a property but an additional structure.

The coherence conditions of a rig-category are quite technical, see [48] and [51]. We will not state
them and refer the reader to Paragraph 1.1.2 for a more detailed discussion on coherence conditions.
We have already used the notion of rig-category in the previous chapter. Indeed, the category of sets
Set is a symmetric rig-category with the disjoint union and the cartesian product. It is from this fact
that we were able to show that the compatibility relations stated in Proposition 1.1.2.6 are coherent
with each other. We can now guess a categorical analog of N. Let B be the category of finite sets
such that the morphisms are the bijections.

Theorem 1.2.1.4 (Baez’ conjecture). For any symmetric rig-category C, there exists a unique
symmetric rig functor F : B→ C up to a unique natural isomorphism.

Informally, this theorem states that the category B is the 2-initial object in the 2-category of
symmetric rig-categories. One can make the remark that we have not defined the notion of 2-category,
indeed, the definition of a 2-category is quite technical, and we will not need it in the sequel. Moreover,
the 2-initial object is a notion that is not used in the sequel, and we will not need it either. We refer
to [33] for a proof of this result. The main point of this theorem is that B is the categorical analog of
N that we want to consider. With this in mind, we can now define the notion of species.

Definition 1.2.1.5. Let Spe be the functor category B→ Set. A species S is an object of Spe, it is
a functor S : B→ Set, the species S is finite if each object of its essential image is finite. The species
S is strongly finite if it is finite, and if we have N ∈ N such that S(n) = ∅ for each n > N . A species
S is connected if S(0) = ∅, it is strongly connected if S(0) = S(1) = ∅. A morphism of species is a
morphism in Spe, it is a natural transformation between two functors S,R : B→ Set. The category
Spe is the category of species. Let us define the following usual naive species:

• 0 the trivial species such that 0(A) = ∅ for each A ∈ B,

• 1 the empty set species such that 1(∅) = {∗} and 1(A) = ∅ for each A ̸= ∅,

• X the singleton species such that X(A) = {∗} if |A| = 1 and X(A) = ∅ if |A| ≠ 1,

• E the set species such that E(A) = {∗} for each A ∈ B,

• E≥k the at least k elements set species such that E≥k(A) = {∗} if |A| ≥ k and E≥k(A) = ∅ if
|A| < k,
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• E the element species such that E(A) = A for each A ∈ B,

• L the total order species such that L(A) = Bij(n,A) and L(σ) : f 7→ f ◦ σ for each A,B ∈ B
and σ : A→ B a bijection,

• L≥1 the total order on non-empty sets species such that L≥1(∅) = ∅ and L≥1(A) = Bij(n,A)
for A ̸= ∅, with L≥1(σ) : f 7→ f ◦ σ for each A,B ∈ B and σ : A→ B a bijection.

The name species come from “species of structure”, one can think about a species S as some
structure that can be put on a finite set A, and S(A) is the set of all possible S-structures on A.
Hence, the only “empty set structure” that can be put on a set A is A itself if A is empty, or none
if A is non-empty. The only “singleton structure” that can be put on a set A is A itself if A is a
singleton, or none if A is not a singleton. Same, the only “set structure” that can be put on a set A
is A itself. The “element structure” that can be put on a set A are the elements of A. Finally, the
“order structures” (that should be understood as linear order) are the linear orders of A. The zero
species 0 is the “impossible structure” such that no finite set can have a 0-structure.

Same as with naive species, let us give a down to earth definition of species and morphism of
species.

Definition 1.2.1.6. A symmetric sequence of sets is a sequence of sets (Sn)n∈N together with an
action of the symmetric group Sn on Sn for each n ∈ N. A morphism of symmetric sequences of
sets is a sequence of maps (fn)n∈N such that fn : Sn → Tn is an Sn-equivariant map for each n ∈ N.
The category of symmetric sequences of sets is denoted by S∗Set.

Proposition 1.2.1.7. There is an equivalence of categories Spe ≃ S∗Set.

Proof. Let S be the groupoid such that the objects are the sets n = {1, . . . , n} for n ∈ N and
HomS(n,m) = Sn if n = m and HomS(n,m) = ∅ otherwise. The category S∗Set is exactly the
category of functors S→ Set. Moreover, S is the skeleton of B and thus is equivalent to B. Hence,
S∗Set is equivalent to Spe, moreover the equivalence is given by the inclusion of S in B.

This proposition shows that a species S is entirely determined by the symmetric sequence
S = (S(n))n∈N of its values on the sets n = {1, . . . , n} for n ∈ N. And moreover, allows us to easily
switch between species and symmetric sequences.

1.2.2 Operations on species

We now would like to define the operations on species like we did on naive species, we would not
have any issue to do so for the derivative, the sum, the product and the Hadamard product since it
clear that the analog of the sum and the product in N are respectively the disjoint union and the
cartesian product in B. However, we have an issue to define the plethysm. Indeed, it is not clear
what is the analog of the composition of integers in B. We can start by noticing the following fact
about N and B. The category B is the maximal sub-groupoid of the category of finite sets with maps
as morphisms, and the category N is the maximal sub-groupoid of the category of finite ordered sets
with increasing maps as morphisms. Moreover, the data of λ ⊨k n is exactly the same as the data of
an increasing map f : k → n. This hint the fact that the analog of a composition of integers in B is a
partition of a set.

Definition 1.2.2.1. Let A be a finite set and k ∈ N. A partition of A of size k is a set P =
{P1, . . . , Pk} of subsets of A such that

⊔k
i=1 Pi = A. We denote P ⊢k A the fact that P is a partition

of A of size k.

Definition 1.2.2.2. Let A be a set with n element and k ∈ N. Let P ⊢k A and λ ⊨k n, we say that
P is of type λ if we can put a total order on P such that |Pi| = λi. We denote P ⊢λ A the fact that
P is of type λ.
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Lemma 1.2.2.3. Let λ ⊨k n and A be a set with n elements, then there are exactly n!
mλλ1!...λk!

non-empty partitions of A of size k of type λ, where:

mλ =

n∏
j=1

κj !

and κj is the number of part of size j in λ.

Proof. Let us put an order on A, we have n! way to do so. Then λ gives us a way to partition A into
k parts such that the first λ1 elements are in the first part, the next λ2 elements are in the second
part, and so on. This give us an ordered partition of A of size k such that each part of the partition
is order. To get a partition of A of size k, we need to forget the order of the elements inside each
part, this give us a factor of λi! for each i ∈ k. This gives us:

n!

λ1! . . . λk!

However, we have overcounted the partitions of A of type λ. Indeed, if we exchange two non-empty
parts of the same size in a partition of A of type λ, we get the same partition that we are currently
counting twice. Hence, we need to divide by the number of permutation of the non-empty parts of
the same size. This gives us a factor of mλ. The empty parts do not contribute to the overcounting
since exchanging two empty parts does not change the order we put on A at the beginning. This
gives us the desired result.

Lemma 1.2.2.4. Let P ⊢k n, then there are exactly k!
mP

composition λ of size k of n such that P is
of type λ, where:

mP =

n∏
j=0

κj !

and κj is the number of part of size j in P .

Proof. To get a composition of n into k parts such that P is of type λ, it suffices to put an order on
the parts of P . We have k! ways to do so. However, we have overcounted such compositions. Indeed,
if we exchange two parts of the same size in a composition, we get the same composition that we are
currently counting twice. Hence, we need to divide by the number of permutation of the parts of the
same size. This gives us a factor of mP . The empty parts does contribute to the overcounting.

We can now define the usual operations on species: the derivative, the sum, the product, the
Hadamard product, and the plethysm of species.

Definition 1.2.2.5. Let S and R be two species, let σ : A→ B be a bijection between two finite
sets A and B. Let us recall that we use the symbol ⊎ to denote the disjoint union of sets, that
should not be confused with ⊔ which is the usual union of sets in the particular case of disjoint sets.
We use the symbol × to denote the cartesian product of sets, if I ⊆ A we denote σ|I the bijection

σ|I : I → σ(I), and if P ⊢k A we denote σP : P → {σ(p) | p ∈ P} the bijection induced by σ. Let us
define the following operations on species:

• the derivative of S noted S ′ by:

S ′(A) = S(A ⊔ {A})
S ′(σ) = S(σ ⊔ {id}),

• the sum S +R by:

(S +R)(A) = S(A) ⊎R(A)
(S +R)(σ) = S(σ) ⊎R(σ);
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• the product (or Cauchy product) S · R by:

(S · R)(A) =
⊎

I⊔J=A
S(I)×R(J)

(S · R)(σ) =
⊎

I⊔J=A
S
(
σ|I
)
×R

(
σ|J
)
;

• the Hadamard product S ⊙R by:

(S ⊙R)(A) = S(A)×R(A)
(S ⊙R)(σ) = S(σ)×R(σ);

• if R is connected, the plethysm S ◦ R by:

(S ◦ R)(A) =
⊎
k∈N

⊎
P⊢kA

S(P )×
∏
p∈P
R(p)

(S ◦ R)(σ) =
⊎
k∈N

⊎
P⊢kA

S(σP )×
∏
p∈P
R
(
σ|p
)
.

Since morphisms in B are not trivial, we need to specify our construction on the level of morphisms.

With these definitions, an S ′-structure on a finite set A is an S-structure on A ⊔ {∗}. An
S +R-structure on a finite set A is either an S-structure or an R-structure on A. An S ·R-structure
on a finite set A is a pair (I, J) such that I ⊔ J = A with an S-structure on I and an R-structure on
J . An S ⊙R-structure on a finite set A is a pair (s, r) such that s is an S-structure on A and r is an
R-structure on A. Finally, an S ◦ R-structure on a finite set A is the data of a partition P ⊢k A
for some k with an S-structure on P and an R-structure on each p ∈ P . From the definition of the
plethysm, we can see that it bears a tree-like structure. Indeed, let t ∈ (S ◦ R)(A) then we have P a
partition of A, an element s ∈ S(P ) and a family of elements (rp)p∈P with rp ∈ R(p) such that:

t = (s; (rp)p∈P )

If we denote P = {p1, . . . , pk} and pi = {ai,1, . . . , ai,li}, we can depict t as follows:

· · ·

· · · · · ·

p1 pk

r1 rk

s

a1,1 a1,l1 ak,1 ak,lk

Let us define the formal power series associated to a species. The definitions we gave of the operations
on species will guide us to define the formal power series associated to a species. Indeed, if fS is the
formal power series associated to a species S, then we would like to have fS·R = fS · fR for example.
Let us compute the cardinal of (S · R)(n) in function of the cardinal of si = S(i) and rj = R(j) for
i, j ≤ n. We have:

|(S · R)(n)| =
∑

I⊔J=n
|S(I)| × |R(J)| =

∑
i+j=n

n!

i!j!
sirj

With the appearance of the factorials, we recognize exponential generating functions. Let us define
exponential generating functions.
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Definition 1.2.2.6. An exponential generating function, egf for short, f =
∑
n∈N

fn
n! x

n is a formal

power series such that fn ∈ N. Since a power series is determined by its coefficients, we can identify
the set of egf with the set of functions {N→ N}. Hence, an egf is uniquely determined by a function
s : N→ N. An egf f is finite if fn is finite for all n ∈ N. An ogf f is connected if f0 = 0, it is strongly
connected if f0 = f1 = 0. Let us define the following usual ogf:

• 0 the zero egf such that all coefficients are 0,

• 1 the egf such that the first coefficient is 1 and all the other coefficients are 0,

• x the egf such that the second coefficient is 1 and all the other coefficients are 0,

• exp the egf such that all coefficients are 1.

We use the same notation for the ogf 0, 1 and x as for the egf 0, 1 and x since they are the same
formal power series.

Let us define the appropriate operations on egf:

Definition 1.2.2.7. Let f =
∑
n∈N

fn
n! x

n and g =
∑
n∈N

gn
n! x

n be two egf. We define the following
operations on egf:

• the derivation f ′ =
∑
n∈N

fn+1

n! x
n,

• the sum f + g =
∑
n∈N

fn+gn
n! xn,

• the product f · g =
∑
n∈N

∑n
i=0

fign−i

n! xn,

• the exponential Hadamard product f � g =
∑
n∈N

fngn
n! x

n,

• the composition f ◦ g =
∑
n∈N

fn
n! g

n.

One need to be careful as the exponential Hadamard product does not coincide with the Hadamard
product of formal power series. The other operations coincide with the operations on formal power
series.

We can now define the formal power series associated to a species.

Definition 1.2.2.8. Let S be a species. The exponential generating function of S is the formal
power series:

fS(x) =
∑
n∈N

|S(n)|
n!

xn

Two species S and R are equinumerous if fS = fR.

Proposition 1.2.2.9. Two isomorphic species are equinumerous. The converse is not true in general,
even if the species are finite.

Proof. Since sets in bijection have the same cardinal, two isomorphic species are equinumerous. The
converse is not true in general, even if the species are finite. For example, let us consider the species
that associate to each set of cardinal n the left action of Sn on itself, and the species that associate to
each set of cardinal n the action by conjugation of Sn on itself. Those two species are equinumerous,
however they are not isomorphic.

We can check that the operations on species we defined are coherent with the operations on
formal power series.

Proposition 1.2.2.10. Let S and R be two finite species. Then fS′ = (fS)′, same for the sum
fS+R = fS + fR, the product fS·R = fSfR, and the Hadamard product fS⊙R = fS � fR. If R is
connected, we also have fS◦R = fS ◦ fR.
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Proof. All these properties are clear, expect for the plethysm. Let us compute:

fS ◦ fR(x) =
∑
k∈N

|S(k)|
k!

fR(x)k

=
∑
n∈N

∑
k∈N

|S(k)|
k!

∑
λ⊨kn

k∏
i=1

|R(λi)|
λi!

xn

=
∑
n∈N

∑
k∈N

|S(k)|
k!

∑
λ⊨kn

mλλ1! . . . λk!

n!

mP

k!

∑
P⊢λn

k∏
i=1

|R(λi)|
λi!

xn

=
∑
n∈N

∑
k∈N
|S(k)|

∑
λ⊨kn

1

n!

∑
P⊢λn

∏
p∈P
|R(p)|xn

=
∑
n∈N

∑
k∈N
|S(k)|

∑
P⊢kn

∏
p∈P
|R(p)|x

n

n!

= fS◦R(x)

We can notice that we had to use Lemma 1.2.2.3 and Lemma 1.2.2.4 to go from composition of
integers to partition of sets.

We can now verify the relations we would like to have between the operations on species. We
first need a categorified version of Lemma 1.1.1.4.

Lemma 1.2.2.11. Let A ∈ B and k ∈ N. Let us define:

U = {(m,Λ,Γ) | m ∈ N,Λ ⊢m A,Γ ⊢k Λ}
V = {

(
P, (mp, Qp)p∈P

)
| P ⊢k A,∀p ∈ P,mp ∈ N, Qp ⊢mp p}

Then there is a bijection between U and V .

Proof. A picture of the same kind of the one used in Lemma 1.1.1.4 can be used to understand the
situation. Let us write the explicit bijection:

U → V

(m,Λ,Γ) 7→

⊔
γ∈Γ

⊔
λ∈γ

λ

 , (|γ|, γ)γ∈Γ


V → U

(P, (mp, Qp)p∈P ) 7→

∑
p∈P

mp,
⊔
p∈P

Qp,
⊔
p∈P
{Qp}


We can check that those maps are inverse of each other.

Let check that the operations on species satisfy the same relations as the analog operations on
naive species.

Proposition 1.2.2.12. Let S, R and U be three species, then the operations +, · and ⊙ are unitary
symmetric monoidal structures, and the operation ◦ is unitary monoidal structure:
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• S + 0 ≃ S,

• S +R ≃ R+ S,

• (S +R) + U ≃ S + (R+ U),

• S · 1 ≃ S,

• S · R ≃ R · S,

• (S · R) · U ≃ S · (R · U),

• S ⊙ set ≃ S,

• S ⊙R ≃ R⊙ S,

• (S ⊙R)⊙ U ≃ S ⊙ (R⊙ U),

• S ◦X ≃ S,

• X ◦ S ≃ S,

• (S ◦ R) ◦ U ≃ S ◦ (R ◦ U),
We also have the following distributivity morphism:

• (S +R) · U ≃ S · U +R · U ,

• (S +R)⊙ U ≃ S ⊙ U +R⊙ U ,

• (S +R) ◦ U ≃ S ◦ U +R ◦ U ,

• (S · R) ◦ U ≃ S ◦ U · R ◦ U ,
And the following morphisms when composing with the derivative:

• (S +R)′ ≃ S ′ +R′, • (S · R)′ ≃ S ′ · R+ S · R′, • (S ◦ R)′ ≃ S ′ ◦ R · R′.

Moreover, these isomorphisms are coherent with each other, meaning that “any diagram involving
only these isomorphisms commutes”. Because of this, we will write them as equality in the sequel.

We once again refer to Paragraph 1.1.2 for the discussion on the coherence conditions of the
isomorphisms.

Proof. Let us show the associativity of the plethysm, let us reuse the notation U, V and the bijection
between them from Lemma 1.2.2.11. We have:

((S ◦ R) ◦ U)(A) =
⊎
k∈N

⊎
Λ⊢kA

 ⊎
m∈N

⊎
Γ⊢mΛ

S(Γ)×
∏
γ∈Γ

R(γ)

×∏
λ∈Λ

U(λ)

=
⊎
k∈N

⊎
(m,Λ,Γ)∈U

S(Γ)×
∏
γ∈Γ

R(γ)×
∏
λ∈Λ

U(λ)

=
⊎
k∈N

⊎
(P,(mp,Qp)p∈P )∈V

S

⊔
p∈P
{Qp}

× ∏
γ∈⊔

p∈P {Qp}
R(γ)×

∏
λ∈⊔

p∈P Qp

U(λ)

=
⊎
k∈N

⊎
(P,(mp,Qp)p∈P )∈V

S (P )×
∏
p∈P

R(Qp)× ∏
q∈Qp

U(q)


=
⊎
k∈N

⊎
P⊢kA

⊎
(mp∈N)p∈P

⊎
(Qp⊢mpp)p∈P

S (P )×
∏
p∈P

R(Qp)× ∏
q∈Qp

U(q)


=
⊎
k∈N

⊎
P⊢kA

S (P )×
∏
p∈P

 ⊎
mp∈N

⊎
Qp⊢mpp

R(Qp)×
∏
q∈Qp

U(q)


= (S ◦ (R ◦ U))(A)

We should also check what happens at the level of morphisms. Let σ : A → B be a bijection, we
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have:

((S ◦ R) ◦ U)(σ) =
⊎
k∈N

⊎
Λ⊢kA

 ⊎
m∈N

⊎
Γ⊢mΛ

S
((
σΛ
)Γ)×∏

γ∈Γ

R
((
σΛ
)
|γ

)×∏
λ∈Λ

U
(
σ|λ
)

=
⊎
k∈N

⊎
(m,Λ,Γ)∈U

S
((
σΛ
)Γ)×∏

γ∈Γ

R
((
σΛ
)
|γ

)
×
∏
λ∈Λ

U
(
σ|λ
)

=
⊎
k∈N

⊎
(P,(mp,Qp)p∈P )∈V

S
((

σ
⊔

p∈P Qp

)⊔
p∈P {Qp}

)
×

∏
γ∈⊔

p∈P {Qp}
R
((

σ
⊔

p∈P Qp

)
|γ

)

×
∏

λ∈⊔
p∈P Qp

U
(
σ|λ
)

=
⊎
k∈N

⊎
(P,(mp,Qp)p∈P )∈V

S
(
σP
)
×
∏
p∈P

R((σ|p)Qp
)
×
∏
q∈Qp

U
((
σ|p
)
|q

)
=
⊎
k∈N

⊎
P⊢kA

⊎
(mp∈N)p∈P

⊎
(Qp⊢mpp)p∈P

S
(
σP
)
×
∏
p∈P

R((σ|p)Qp
)
×
∏
q∈Qp

U
((
σ|p
)
|q

)
=
⊎
k∈N

⊎
P⊢kA

S
(
σP
)
×
∏
p∈P

 ⊎
mp∈N

⊎
Qp⊢mpp

R
((
σ|p
)Qp
)
×
∏
q∈Qp

U
((
σ|p
)
|q

)
= (S ◦ (R ◦ U))(σ)

We used here some relation on sigma in particular that
(
σ|p
)
|q = σ|p, that

(
σ
⊔

p∈P Qp

)
|Qp

=
(
σ|p
)Qp

or the more involved: (
σ
⊔

p∈P Qp

)⊔
p∈P {Qp}

= α−1 ◦ σP ◦ α,

with α :
⊔
p∈P Qp → P the bijection that send each Qp to p.

Since the associativity of the plethysm is the only difficult part of the proof we leave the other relations
to the reader. The reader wanting to check the other relations can make use of Propositions 1.1.2.6
and 1.1.1.6 to do so.

Species also have an additional operation, indeed one can always “point” a structure by adding a
marked point to the structure. Let us define this operation.

Definition 1.2.2.13. Let S be a species, the pointed species S• is defined by S• = X · S ′.

If S is a species, then an S•-structure on a finite set A is a pair (s, a) such that a ∈ A and s is an
S-structure on A. We can check that S• = X · S ′.

1.2.3 Action of Sn and Schur functors

As we have seen, the data of a species is equivalent to the data of a symmetric sequence. In particular,
if S is a species, then S(n) has a natural action of Sn. In the sequel, the action of Sn on S(n) will
always be denoted as a right action, and the action of Sn on An = Hom(n,A) and on Hom(A,n)
will both be denoted as a left action. We will use the notation A ×Sn B for A a set with a right
action of Sn and B a set with a left action of Sn, to denote the quotient of A×B by the diagonal
action of Sn. Since species are deeply related to symmetric sequences, this explains the terminology
Schur functor we used for naive species. Let us define the Schur functor associated to a species.
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Definition 1.2.3.1. Let S be a species, the Schur functor associated to S is the functor FS : Set→
Set defined by:

FS(A) =
⊎
n∈N
S(n)×Sn A

n

FS(f) =
⊎
n∈N

idS(n)×Snf
×n

A functor F : Set→ Set is an analytic functor if there is a species S such that F ≃ FS .

Let us give an alternative formula for the plethysm of species which does not involve the use of
partitions but use group actions. We will use it to show that the plethysm of species corresponds to
the composition of the Schur functors.

Proposition 1.2.3.2. Let S and R be two species such that R is connected and n ∈ N, we have:

(S ◦ R)(n) ≃
⊎
k∈N
S(k)×Sk

 ⊎
f :n→k

k∏
i=1

R(f−1(i))


And the action of Sn is given by the pre-composition on f . We will omit the isomorphism in the
following and write it as an equality.

Proof. We need to show the following:

⊎
P⊢kn

S(P )×
∏
p∈P
R(p) ≃ S(k)×Sk

 ⊎
f :n→k

k∏
i=1

R(f−1(i))


Here the partition P is unordered, hence we can order P and then quotient by the simply transitive
action of Sk on the ordered partitions. Since an ordering of P is a bijection k → P , we get:

⊎
P⊢kn

S(P )×
∏
p∈P
R(p) ≃

⊎
P⊢kn

 ⊎
Bij(k→P )

S(P )×
k∏
i=1

R(pi)

 /Sk

Moreover, by fixing an ordering of P , we have S(P ) = S(k) and the action of Sk is the diagonal
action, hence we get:

⊎
P⊢kn

S(P )×
∏
p∈P
R(p) ≃ S(k)×Sk

⊎
P⊢kn

 ⊎
Bij(k→P )

k∏
i=1

R(pi)


Since the data of an ordered partition of n is the same as a map n→ k, we get:

⊎
P⊢kn

S(P )×
∏
p∈P
R(p) ≃ S(k)×Sk

 ⊎
f :n→k

k∏
i=1

R(f−1(i))



Proposition 1.2.3.3. Let S and R be two species such that R is connected, then FS◦R ≃ FS ◦ FR.

Proof. Let A be a set, we have:

FS ◦ FR(A) =
⊎
k∈N
S(k)×Sk

⊎
j∈N
R(j)×Sj

Aj

k

=
⊎
n∈N

⊎
k∈N
S(k)×Sk

⊎
λ⊨kn

k∏
i=1

(
R(λi)×Sλi

Aλi

)
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Inspecting the actions of Sλi on R(λi)×Aλi , we can remark that:

⊎
λ⊨kn

k∏
i=1

(
R(λi)×Sλi

Aλi

)
=

⊎
f :n→k

k∏
i=1

R(f−1(i))×Sn A
n

Hence, we get:

FS ◦ FR(A) =
⊎
n∈N

⊎
k∈N
S(k)×Sk

⊎
f :n→k

k∏
i=1

R(f−1(i))×Sn A
n

=
⊎
n∈N

⊎
k∈N
S(k)×Sk

⊎
f :n→k

k∏
i=1

R(f−1(i))

×Sn
An

=
⊎
n∈N

(S ◦ R)(n)×Sn
An

= FS◦R(A)

The same computation work at the level of morphisms, hence we have FS◦R ≃ FS ◦ FR.

Remark 1.2.3.4. This proposition allows us to define the plethysm in full generalities, without
assuming that one of the species is connected. However, one need to be careful when doing so, as the
formula with partitions is not valid in this case.

Definition 1.2.3.5. Let F,G : Set → Set be two functors, we denote by F + G and F × G the
functors defined by:

(F +G) : (f : A→ B) 7→ (F (f) ⊎G(f) : F (A) ⊎G(A)→ F (B) ⊎G(B))

(F ×G) : (f : A→ B) 7→ (F (f)×G(f) : F (A)×G(A)→ F (B)×G(B))

Proposition 1.2.3.6. Let S and R be two species, then FS+R ≃ FS + FR and FS·R ≃ FS ×FR.

Proof. It is straightforward for the sum. Let us do the computation for the product. We have:

(FS ×FR)(A) =

(⊎
n∈N
S(n)×Sn A

n

)
×
(⊎
n∈N
R(n)×Sn A

n

)
=
⊎
n∈N

⊎
i+j=n

S(i)×Si A
i ×R(j)×Sj A

j

=
⊎
n∈N

⊎
I⊔J=n

(S(I)×R(J))×Sn
An

= FS·R(A)

The same computation work at the level of morphisms, hence we have FS·R ≃ FS ×FR.

We can see that the functor
F : Spe → Fun(Set,Set)

S 7→ FS
is monoidal. It is quite clear that

this functor is not essentially surjective, however one may wonder if it is fully faithful, and what is its
essential image. Let us show that it is fully faithful using the technics of [46]. A purely categorical
description of the full subcategory of Fun(Set,Set) of analytic functors is given in this same article,
however, we will not state it here.

Definition 1.2.3.7. Let F : Set→ Set be a functor. Let DF be the diagram category of F defined
by: an object of DF is a pair (A, x) with A a finite set and x ∈ F (A) and a morphism from (A, x)
to (B, y) is a map f : A→ B such that F (f)(x) = y. By definition, such a morphism is said to be
injectif (resp. surjectif, bijectif ) if the underlying map between the sets is injective (resp. surjective,
bijective).
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Definition 1.2.3.8. Let (A, x) ∈ DF , it is generic if for any X,Y ∈ DF and any morphism
(A, x)→ Y and X → Y , we have h such that the following triangle commutes:

X

(A, x) Y

∃h

It means that any maps (A, x)→ Y can be factorized through any map X → Y .

Lemma 1.2.3.9. Any map to a generic object is surjective. If both the source and the target are
generic, then the map is bijective.

Proof. Let φ : (B, y) → (A, x). If (A, x) is generic, we have h such that the following triangle
commutes:

(B, y)

(A, x) (A, x)id

φh

Since id is surjective, we get that φ is surjective. If both (A, x) and (B, y) are generic, then h is
surjective since its target is generic, hence φ is bijective.

Definition 1.2.3.10. Let F : Set→ Set be a functor. We define its Taylor-Joyal expansion of F to
be the species F̂ such that F̂ (A) is the set of x ∈ F (A) such that (A, x) is generic. Since generic
objects are stable by isomorphism, we have a well defined species.

Theorem 1.2.3.11. Let S be a species, then F̂S = S.
Proof. First, let x ∈ S(n)×Sn

Bij(n,A) and let us show that (A, x) is generic. Let:

(C, z)

(A, x) (B, y)
φ

ψ

Let us construct h such that the triangle commutes. Let x = [(s, σ)], y = [(sy, f)] and z = [(sz, g)]
with s ∈ S(n), sy ∈ S(i), sz ∈ S(j), σ ∈ Bij(n,A), f ∈ Hom(i, B) and g ∈ Hom(j, C). Since

FS(φ)(x) = FS(ψ)(z) = y,

we have i = j = n moreover we can assume s = sy = sz. We know that (s, φ ◦ σ), (s, ψ ◦ g) and (s, f)
are in the same orbit of S(n)×Hom(n,B) under the diagonal action of Sn. Let τ ∈ Sn such that
φ ◦ σ = ψ ◦ g ◦ τ and s.τ = s. Finally, let h = g ◦ τ ◦ σ−1, we have:

FS(h)(x) = [(s, h ◦ σ)] = [(s, g ◦ τ ◦ σ−1 ◦ σ)] = [(s, g ◦ τ)] = [(s, g)] = z

Moreover, ψ ◦ h = ψ ◦ g ◦ τσ−1 = φ ◦ σ ◦ σ−1 = φ, hence the triangle commutes. Hence, (A, x) is
generic.
Let us show that these are the only generic objects. Let (D, t) be generic and let us denote t = [(s, f)]
with s ∈ S(n) and f ∈ Hom(n,D). Let u = [(s, id)] ∈ S(n)×Sn

Bij(n, n), we have f : (n, u)→ (D, t),
moreover (n, u) is generic, hence f is bijective.

We have that F̂S(n) = S(n)×Sn Bij(n, n), since the left action of Sn on Bij(n, n) is simply transitive,

we have F̂S(n) ≃ S(n) which concludes the proof.
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In particular, one may remark that the species S is entirely determined by its Schur functor FS .
Let us compute the Taylor-Joyal expansion of some classical functors.

Example 1.2.3.12.

• We recall that a monoid is a set together with a binary operation that is associative and
has a neutral element. Let Mon be the free monoid functor, we have M̂on = L. Indeed,
Mon(A) =

⊎
n∈NA

n and we recognize the Schur functor of L. In particular, Mon is an analytic
functor.

• Let Grp be the free group functor, we have Ĝrp = 0. Indeed, let (A, x) with x ∈ Grp(A). Let
us consider A ⊔ {a, b} → A ⊔ {a} that is the identity on A and send a and b to a. We have:

(A ⊔ {a, b}, ab−1x)

(A, x) (A ⊔ {a}, x)

We cannot have a map (A, x)→ (A ⊔ {a, b}, ab−1x) that make the diagram commute, hence
(A, x) is not generic. In particular, Grp is not an analytic functor.

This example is already quite interesting. It shows that the theory of species allows one to study
some algebraic structures such that monoids, but not all of them, since groups escape this scope.

1.2.4 Arithmetic species and categorical L function

This subsection mostly comes from a discussion with Thomas Agugliaro. It will not be used nor
developed in the sequel, and thus can be skipped. However, the author thinks that it is interesting
nonetheless, and that it would be a shame not to mention it. The goal is to categorify the Dirichlet
convolution and to relate species with the Dirichlet convolution to some class of functors. The main
idea is that anything that transforms a convolution product into a product is a kind of Fourier
transform, in this regard, the Schur functor lets us transform the Cauchy product, that we can see as
a kind of convolution product, into the usual cartesian product. Let us try to find the analog of the
Schur functor that would transform the Dirichlet convolution into the usual cartesian product. First
we need to categorify the Dirichlet convolution. It is already done in [64], however we will have a
different approach. Let us recall what is the Dirichlet convolution.

Definition 1.2.4.1. Let f =
∑
n∈N∗ fnx

n and g =
∑
n∈N∗ gnx

n be two formal power series, then
the Dirichlet convolution of f and g is the formal power series f ∗ g =

∑
n∈N∗ hnx

n defined by:

hn =
∑

d×q=n
fdgq

We may remark that the definition of the Dirichlet convolution is very close to the definition of
the Cauchy product. Indeed, replacing the product by the sum, we get the Cauchy product. To
categorify the Dirichlet convolution, we need to understand the analog of I ⊔ J = A with a cartesian
product instead of a union. Let us understand the symbol ⊔ in a categorical way. Let A be a set and
let us write the universal property of the coproduct (which is ⊎ with our notations):

I A J

I ⊎ J

∃!
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From this diagram, we can see that we use the symbole ⊔ under two conditions.

• The first condition is that I and J are subsets of A, it is here to ensure that we have a finite
number of choices for I and J .

• The second condition is that the dashed arrow is a bijection, the surjectivity ensure that
I ∪ J = A and the injectivity ensure that I ∩ J = ∅.

Let us write the same diagram for the product:

P A Q

P ×Q

∃!

Definition 1.2.4.2. Let A be a set, and let P and Q be two quotients of A, then we denote P ⋉Q = A
when A→ P ×Q is a bijection. We say that P ⋉Q is a direct product of A.

Since the author did not find any reference for this notion, he does not know if it is already known
and studied. Let us show the following lemma on direct products which is the main motivation for
this notion. It was found by Thomas Agugliaro and the author.

Lemma 1.2.4.3. Let A be a non-empty finite set and P ⋉Q = A. Let p ∈ P and q ∈ Q, then p ∩ q
is a singleton. Moreover, |p| = |Q| and |q| = |P |, in particular each element of P have the same
cardinality.

Proof. Let since A→ P ×Q is a bijection, we have a unique a ∈ A such that a ∈ p∩ q hence p∩ q is
a singleton, moreover if (p′, q′) ̸= (p, q) then p′ ∩ q′ and p∩ q are disjoint. Hence, p =

⊔
q′∈Q p∩ q′, in

particular |p| = |Q|. Idem for |q| = |P |.

With this, we have a very natural candidate for the Dirichlet convolution on species (which
coincide with the definition given in [64]):

Definition 1.2.4.4. Let S and R be two species, then the Dirichlet convolution of S and R is the
species S ∗ R defined by:

(S ∗ R)(A) =
⊎

P ⋉Q=A

S(P )×R(Q)

(S ∗ R)(σ) =
⊎

P ⋉Q=A

S(σP )×R(σQ)

Now that we have a Dirichlet convolution on species, we can try to find the analog of the Schur
functor that would transform the Dirichlet convolution into the usual cartesian product. We saw
that reverting some arrows gave us a good notion of Dirichlet convolution, hence we can try to revert
some arrows in the definition of the Schur functor.

Definition 1.2.4.5. Let S be a connected species, the categorical L function associated to S is the
contravariant functor LS : Set→ Set defined by:

LS(A) =
⊎
n∈N∗

S(n)×Sn Hom(A,n)

LS(f) =
⊎
n∈N∗

idS(n)×Sn
f∗



54 CHAPTER 1. COMBINATORIAL SPECIES

A contravariant functor F : Set→ Set is a categorical L function if there is a connected species S
such that F ≃ LS .
It is the categorification of the Dirichlet series associated to S, defined by:

L(S, s) =
∑
n∈N∗

|S(n)|
n!

n−s

Let us show that a connected species S is entirely determined by its categorical L function LS .
To do so, let us adapt the proof for analytic functors given in [46].

Definition 1.2.4.6. Let F : Set→ Set be a contravariant functor. Let DF be the diagram category
of F defined by: an object of DF is a pair (A, x) with A a finite set and x ∈ F (A) and a morphism
from (A, x) to (B, y) is a map f : B → A such that F (f)(x) = y. By definition, such a morphism is
said to be injectif (resp. surjectif, bijectif ) if the underlying map between the sets is injective (resp.
surjective, bijective).

Definition 1.2.4.7. Let (A, x) ∈ DF , it is generic if for any X,Y ∈ DF and any morphism
(A, x)→ Y and X → Y , we have h such that the following triangle commutes:

X

(A, x) Y

∃h

It means that any map (A, x)→ Y can be factorized through any map X → Y .

Lemma 1.2.4.8. Any map to a generic object is injective. If both the source and the target are
generic, then the map is bijective.

Proof. Let φ : (B, y) → (A, x). If (A, x) is generic, we have h such that the following triangle
commutes:

(B, y)

(A, x) (A, x)id

φh

Since id is injective, we get that φ̃ : A→ B is injective. If both (A, x) and (B, y) are generic, then h
is injective since its target is generic, hence φ is bijective.

Definition 1.2.4.9. Let F : Set→ Set be a contravariant functor. Let F̂ the Joyal expansion of F
be the connected species defined by F̂ (A) is the set of x ∈ F (A) such that (A, x) is generic. Since
generic objects are stable by isomorphism, we have a well defined species.

Theorem 1.2.4.10. Let S be a connected species, then L̂S = S.

Proof. First, let x ∈ S(n)×Sn
Bij(A,n) and let us show that (A, x) is generic. Let:

(C, z)

(A, x) (B, y)
φ

ψ
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Let us construct h such that the triangle commutes. Let x = [(s, σ)], y = [(sy, f)] and z = [(sz, g)]
with s ∈ S(n), sy ∈ S(i), sz ∈ S(j), σ ∈ Bij(A,n), f ∈ Hom(B, i) and g ∈ Hom(C, j). Since:

LS(φ̃)(x) = LS(ψ̃)(y) = z,

we have i = j = n moreover we can assume s = sy = sz. We know that (s, φ̃ ◦ σ), (s, ψ̃ ◦ g) and (s, f)
are in the same orbit of S(n)×Hom(B,n) under the diagonal action of Sn. Let τ ∈ Sn such that

σ ◦ φ̃ = τ ◦ g ◦ ψ̃ and s.τ = s. Finally, let h̃ = σ−1 ◦ τ ◦ g, we have:

LS(h̃)(x) = [(s, σ ◦ h̃)] = [(s, σ ◦ σ−1 ◦ τ ◦ g)] = [(s, τ ◦ g)] = [(s, g)] = z

Moreover, h̃ ◦ ψ̃ = σ−1 ◦ τ ◦ g ◦ ψ̃ = σ−1 ◦ σ ◦ φ̃ = φ̃, hence the triangle commutes. Hence, (A, x) is
generic.
Let us show that these are the only generic objects. Let (D, t) be generic and let us denote t = [(s, f̃)]

with s ∈ S(n) and f̃ ∈ Hom(D,n). Let u = [(s, id)] ∈ S(n)×Sn
Bij(n, n), we have f : (n, u)→ (D, t),

moreover (n, u) is generic, hence f̃ is bijective.

We have that L̂S(n) = S(n)×Sn
Bij(n, n), since the action of Sn on Bij(n, n) is simply transitive,

we have F̂S(n) ≃ S(n) which concludes the proof.

We should check that the transformation we have defined sends the Dirichlet convolution into the
usual cartesian product.

Definition 1.2.4.11. Let F,G : Set→ Set be two contravariant functors, let F +G and F ×G be
the contravariant functors defined by:

(F +G) : (f : A→ B) 7→ (F (f) ⊎G(f) : F (A) ⊎G(A)→ F (B) ⊎G(B))

(F ×G) : (f : A→ B) 7→ (F (f)×G(f) : F (A)×G(A)→ F (B)×G(B))

Proposition 1.2.4.12. Let S and R be two connected species, then LS+R = LS + LR and LS∗R =
LS × LR.

Proof. Checking the sum is straightforward. Let us do the computation for the product. We have:

(LS × LR)(A) =

( ⊎
i∈N∗

S(i)×Si Hom(A, i)

)
×

 ⊎
j∈N∗

R(j)×Sj Hom(A, j)


=
⊎
n∈N∗

⊎
i×j=n

(
S(i)×Hom(A, i)×R(j)×Hom(A, j)

)
/ (Si ×Sj)

=
⊎
n∈N∗

⊎
I ⋉J=n

(S(I)×R(J)×Hom(A,n)) /Sn

=
⊎
n∈N∗

⊎
I ⋉J=n

(S(I)×R(J))×Sn
Hom(A,n)

= LS∗R(A)

The computation for the morphisms is the same.

The same is true for the Dirichlet series:

Proposition 1.2.4.13. Let S and R be two connected species, then L(S +R, s) = L(S, s) + L(R, s)
and L(S ∗ R, s) = L(S, s)× L(R, s).
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Proof. Checking the sum is straightforward. Let us do the computation for the product. We need to
compute |(S ∗ R)(n)|:

|(S ∗ R)(n)| =

∣∣∣∣∣∣
⊎

P ⋉Q=n

S(P )×R(Q)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
⊎
d|n

n!

d!(n/d)!
S(d)×R(n/d)

∣∣∣∣∣∣
=
∑
d|n

n!

d!(n/d)!
|S(d)| ×

∣∣∣R(n/d)∣∣∣
We have:

L(S ∗ R, s) =
∑
n∈N∗

|(S ∗ R)(n)|
n!

n−s

=
∑
n∈N∗

∑
d|n

|S(d)|
d!

×

∣∣∣R(n/d)∣∣∣
(n/d)!

d−s(n/d)−s

= L(S, s)× L(R, s)

Since categorical L functions are contravariant, we cannot hope them to be stable under composi-
tion. However, we can still generalize the formula of the plethysm by replacing usual partitions by
some kind of “multiplicative partitions”. Let us do so, we will interpret the construction at the level
of categorical L function afterward.

Definition 1.2.4.14. Let A be a set and k ∈ N, a quotientation of A of length k is a set P =
{P1, . . . , Pk} such that A = P1 ⋉ . . . ⋉Pk, and ∀i, |Pi| ≠ 1. We denote by P⋉kA the fact that P is a
quotientation of A of length k.

Proposition 1.2.4.15. Let n, k ∈ N, and let λ1, . . . , λk ∈ N∗ such that λ1 × · · · × λk = n, then the
number of P⋉kn such that we can order P so that |Pi| = λi is

n!
mλλ1!...λk!

, with

mλ =

n∏
j=2

κj

where κj is the number of part of size j of λ.

Proof. Let us fill each case of a hypercube of size λ1 × · · · × λk with a number between 1 and n such
that each number appears exactly once. We have n! ways to do so. The collection of the slides of the
hypercube in the direction i is Pi. However each Pi is not ordered, hence, we need to divide by λi!.
Moreover, P itself is not ordered hence we can permute parts of the same size, we get:

n!

mλλ1! . . . λk!

Proposition 1.2.4.16. Let P⋉kn, the number of (λ1, . . . , λk) ∈ Nk such that we can order P so
that |Pi| = λi is

k!
mP

where:

mP =

n∏
j=1

κj !

where κj is the number of part of size j of P .
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Proof. To get such a (λ1, . . . , λk), we need to put a order on the parts of P . However, exchanging
parts of the same size does not change the (λ1, . . . , λk), hence we need to divide by κj ! for each j.

Definition 1.2.4.17. Let S and R be two species such that R is strongly connected, then the
arithmetic plethysm of S and R is the species S □ R defined by:

(S □ R)(A) =
⊎
k∈N

⊎
P⋉kA

S(P )×
∏
p∈P
R(p)

(S □ R)(σ) =
⊎
k∈N

⊎
P⋉kA

S(σ(P ))×
∏
p∈P
R(σp)

We denote by σ(P ) the map induced by σ on P⋉kA.

A first inspection of the arithmetic plethysm show that it is not monoidal. In fact the only
relation it seems to satisfy is that X □ S = S. However, we can still try to understand the arithmetic
plethysm at the level of L function.

Proposition 1.2.4.18. Let S and R be two species such that R is strongly connected, then
L(S □ R, s) = fS ◦ L(R, s).

Proof. Let us compute |(S □ R)(n)|:

|(S □ R)(n)| = |
⊎
k∈N

⊎
P⋉kn

S(P )×
∏
p∈P
R(p)|

=

∣∣∣∣∣⊎
k∈N

⊎
λ1×···×λk=n

n!

k!λ1! . . . λk!
S(k)×

k∏
i=1

R(λi)
∣∣∣∣∣

=
∑
k∈N

∑
λ1×···×λk=n

n!

k!λ1! . . . λk!
|S(k)| ×

k∏
i=1

∣∣R(λi)∣∣
=
∑
k∈N

1

k!
|S(k)|

∑
λ1×···×λk=n

n!×
k∏
i=1

1

λi!

∣∣R(λi)∣∣
Hence, we get:

L(S □ R, s) =
∑
n∈N∗

|(S □ R)(n)|
n!

n−s

=
∑
n∈N∗

∑
k∈N

1

k!
|S(k)|

∑
λ1×···×λk=n

n!

n!
×

k∏
i=1

1

λi!

∣∣R(λi)∣∣n−s
=
∑
n∈N∗

∑
k∈N

1

k!
|S(k)|

∑
λ1×···×λk=n

k∏
i=1

1

λi!

∣∣R(λi)∣∣λ−si
=
∑
k∈N

1

k!
|S(k)|L(R, s)k

= fS ◦ L(R, s)

Proposition 1.2.4.19. Let S and R be two species such that R is strongly connected, then LS □ R =
FS ◦ LR.
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Proof. Let us do the computation for the objects. We have:

FS(LR(A)) =
⊎
k∈N
S(k)×Sk

( ⊎
m∈N∗

R(m)×Sm Hom(A,m)

)

=
⊎
n∈N

⊎
k∈N

⊎
λ1×...λk=n

(
S(k)×

k∏
i=1

R(λi)×Hom(A,n)

)
/ (Sk ×Sλ1

× · · · ×Sλk
)

=
⊎
n∈N

⊎
k∈N

⊎
P⋉kn

S(P )×∏
p∈P
R(P )×Hom(A,n)

 /Sn

=
⊎
n∈N

⊎
k∈N

⊎
P⋉kn

S(P )×∏
p∈P
R(P )

×Sn Hom(A,n)

= LS □ R(A)

We allow ourselves not to give all the details since we already did a lot of similar computations.

Corollary 1.2.4.20. Let S, R and U be three species such that R and U are strongly connected
species, then S □(R □ U) = (S ◦ R) □ U .

This fact shows that the category of categorical L functions is stable by left composition with
analytic functors. Moreover, the arithmetic plethysm gives a combinatorial interpretation of such
composition. With our formalism, it is tempting to construct the species analog of some of the most
famous L function, the Hasse-Weil zeta function of an algebraic variety (we recall that the Riemann
zeta function is the Hasse-Weil zeta function of the point). Let V be an algebraic variety over Fp,
then we would like to define the point evaluation species F(V,p) such that F(V,p)(A) would be the “A
points of V ”. The issue is that V (A) is defined only if A is a field. Let A be a finite set such that
|A| = pn since A does not admit any structure of field of characteristic p otherwise. Let us use the
following trick to define F(V,p)(A):

F(V,p) : A 7→ Bij(A,Fpn)×Aut(Fpn ) V (Fpn)

Let us try to understand this definition: We would like to get the set of “A points of V ” which is not
defined if A is not a field. Let us put a structure of field on A, an easy way to do so is by considering
a bijection A→ Fpn , since V (Fpn) is well defined, such a bijection allows us to define V (A). Then
we say that such sets of points are the same if we can go from one to another via an automorphism
of Fpn (hence by the Frobenius). With this, we can copy the definition of the zeta function of the
algebraic variety V . Let p be a prime, and Nn = |V (Fpn)|. We define Z(V,p) = E □ F(V,p) the local
zeta species of V . Let P be the set of prime numbers, we define the zeta species of V by:

ZV =∗
p∈P

Z(V,p)

Let us compute the Dirichlet series of ZV . First we need to understand the species F(V,p). We
have that F(V,p)(A) is non-empty only if |A| = pn for some n ∈ N∗, moreover we have:

∣∣F(V,p)(p
n)
∣∣ = ∣∣Bij(pn,Fpn)×Aut(Fpn ) V (Fpn)

∣∣ = (pn!Nn)

n

Then its associated L function is:

L(F(V,p), s) =
∑
n∈N∗

|F(V,p)(p
n)|

pn!
p−ns =

∑
n∈N∗

Nn
n
p−ns



1.2. SPECIES 59

Hence, we have:
L(Z(V,p), s) = exp(L(F(V,p), s))

Which is exactly the local zeta function of the algebraic variety V . Hence, L(ZV , s) is exactly the
zeta function of V .
We can do the computation for the point. Let Fp be the point evaluation species of the single point,
then for A such that |A| = pn we have:

Fp : A 7→ Bij(A,Fpn)×Aut(Fpn ) {∗}

Then we have:

L(Fp) =
∑
n∈N∗

|Fp(pn)|
pn!

p−ns =
∑
n∈N∗

1

n
p−ns = ln

(
1

1− p−s
)

Let us define the Riemann species by:

Z =∗
p∈P

E □ Fp

Then we have:

L(Z, s) =
∏
p∈P

exp

(
ln

(
1

1− p−s
))

= ζ(s)

We have also an interpretation of the Riemann species using the Artin-Wedderburn theorem:

Z(A) =
⊎

R semi-simple finite commutative ring up to isomorphism

Bij(A,R)/Aut(R)

And the associated categorical L function is:

LZ(A) =
⊎

R semi-simple finite commutative ring up to isomorphism

Hom(A,R)/Aut(R)

Moreover the computation of the L function of the Riemann species show that |Z(n)| = n!. And we
get the contravariant functor:

LZ : A 7→
⊎
n∈N∗

Z(n)×Sn
Hom(A,n)

Since the Artin-Wedderburn theorem also works in the context of non-commutative rings, we can
also define the non-commutative Riemann species. One should not be afraid by the word “non-
commutative” since it only means that matrix algebras show up. Let us define the non-commutative
Riemann species by:

Znc(A) =
⊎

R semi-simple finite ring up to isomorphism

Bij(A,R)/Aut(R)

Similarly, we have:

Znc =∗
p∈P

E □ Mp

Where we define Mp on a finite set A such that |A| = pn by:

Mp(A) =
⊎

d2×α=n
Bij(A,Md (Fpα))/AutRing(Md (Fpα))

A computation of the ring automorsphisms of Md (Fpα) show that:

L(Znc, s) =
∏
p∈P

∏
α∈N∗

∏
d∈N∗

exp

(
pα − 1

α
∏d
i=1(p

αd − pα(d−i))
p−αd

2s

)
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Another idea would be to replace rings by groups, and to define the cyclic group species and the
commutative group species by:

ZC(A) =
⊎

C cyclic group up to isomorphism

Bij(A,C)/Aut(C)

ZG(A) =
⊎

G finite commutative group up to isomorphism

Bij(A,G)/Aut(G)

The classification of finite commutative groups and the fact that the decomposition of a commutative
group in a product of commutative groups of order pn is canonical show that:

ZC =∗
p∈P

Cp

ZG =∗
p∈P

Gp

Where we define Cp and Gp on a finite set A such that |A| = pn by:

Cp(A) = Bij(A,Z/pnZ)/Aut(Z/pnZ)

Gp(A) =
⊎

G finite commutative group of order pn up to isomorphism

Bij(A,G)/Aut(G)

Since the number of automorsphisms of Z/nZ is given by φ(n) the Euler totient function, we get:

L(ZC , s) =
∑
n∈N∗

1

φ(n)
n−s =

∏
p∈P

(
p

(p− 1)(ps+1 − 1)

)
The author does not know any formula for L(ZG, s), moreover the fact that the decomposition of a
commutative group of order pn into cyclic groups is not canonical show that Gp ≠ E □ Cp. We can
compute |Z(n)|, |Znc(n)|, |ZG(n)| and |ZC(n)| for small values of n, and give a link to the according
sequence in the OEIS [76].

n 1 2 3 4 5 6 . . . 16 . . . OEIS
|Z(n)| 1 2 6 24 120 720 . . . 20922789888000 . . . A000142
|Znc(n)| 1 2 6 24 120 720 . . . 24409921536000 . . . A370360
|ZC(n)| 1 2 3 12 30 360 . . . 2615348736000 . . . A034381
|ZG(n)| 1 2 3 16 30 360 . . . 4250979532800 . . . A034382

The author does not know if these Dirichlet series (except for the function ζ) have already been
studied nor if they have any interesting properties. However, the author thinks that this manuscript
is an appropriate place to display these quite strange species.

It has been brought to the attention of the author after writing this subsection that the computation
of the species associated to the Hasse-Weil zeta functions has been done in the ncatlab [20], see [3].
This leads the author to the following page of the ncatlab: [4], where the same kind of computation
are done for the Artin-Mazur zeta function on dynamical systems. A Z-set is the data of a set
S equipped with a bijection f . A morphism of Z-set (R, g) to (S, f) is a map φ : R → S such
that φ ◦ g = f ◦ φ. Let (S, f) be a Z-set, a Z-set over (S, f) is a Z-set (R, g) with a morphism
φ : (R, g)→ (S, f). We can define the Artin-Mazur functor of (S, f) by:

J(S,f) : A 7→
⊎

(R,g) finite Z-set over (S, f) up to isomorphism

Hom(A,R)/Aut(R, g)

Then it is shown in [4] that J(S,f) is a categorical L function and that the associated Dirichlet series
is the Artin-Mazur zeta function of (S, f).

https://oeis.org/A000142
https://oeis.org/A370360
https://oeis.org/A034381
https://oeis.org/A034382
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1.2.5 Implicit species theorem

Same as with naive species, we need to work out the multi-variate case. And same as with naive
species, no major difficulties arise. Let us fix the following notations. Let X = (X1, . . . , Xk) be a
k-tuple of formal variables, Y = (Y1, . . . , Yl) be an l-tuple of formal variables and Z a single formal
variable. We use the same notations as for k-ogf, except that variables are capitalized in the case of
multi-sort species.

Definition 1.2.5.1. Let BkSpe be the functor category Bk → Set. A k-sort species S is an object of
BkSpe, it is a functor S : Bk → Set, the k-sort species S is finite if each object of its essential image
is finite. A k-sort species S is connected if S(0) = S(0, . . . , 0) = ∅. A morphism of k-sort species
is a morphism in BkSpe, it is a natural transformation between two functors S,R : Bk → Set. The
category BkSpe is the category of k-sort species . If needed, we will specify the formal variables of the
k-sort species S in brackets and write S[X] = S[X1, . . . , Xk] in order to be able to identify, derive or
compose in a specific variable. One need to be careful as it is not the same convention as in [7].

Let us define the identification of variables, the partial derivative and the partial composition for
k-sort species.

Definition 1.2.5.2. Let S[X,Y ] = S[X1, . . . , Xk, Y1, . . . , Yl] be a (k + l)-sort species, then we can
identify the variables Y1, . . . , Yl to a single variable Z and get the k+1-sort species S[X1, . . . , Xk, Y =
Z] defined by:

S[X,Y = Z](A,B) = S[X1, . . . , Xk, Z, . . . , Z](A,B) =
⊎
P⊨lB

S[X,Y ](A,P )

S[X,Y = Z](φ,ψ) = S[X1, . . . , Xk, Z, . . . , Z](φ,ψ) =
⊎
P⊨lB

S[X,Y ](φ,ψP )

Here A ∈ Bk and B ∈ B, and φ is a morphism in Bk, and ψ in B. We denote by P ⊨l B a length l
ordered partition of B and ψP the morphism in Bl induced ψ such that the source is P .

Definition 1.2.5.3. Let S[X] = S[X1, . . . , Xk] be a k-sort species, then we can define the partial

derivative of S with respect to the variable Xi for i ∈ k, and get the k-sort species ∂S[X]
∂Xi

defined by:

∂S[X]

∂Xi
(A) = S[X](A1, . . . , Ai ⊎ {∗}, . . . , Ak)

∂S[X]

∂Xi
(φ) = S[X](Aφ1, . . . , φi ⊎ id{∗}, . . . , φk)

Definition 1.2.5.4. Let S[X] = S[X1, . . . , Xk] be a k-sort species, and R1, . . . ,Rk be l1 up to lk-sort
species, then we can define S[R] the composition of S with R1 up to Rk. Let A ∈ Bl1 × · · · × Blk ,
then the (l1 + · · ·+ lk)-sort species S[R] is defined by:

S[R](A) = S ◦ (R1, . . . ,Rk)(A) =
⊎

m∈Nk

⊎
P⊢mA

S(A)
k∏
i=1

∏
pi∈P (i)

Ri(pi)

S[R](φ) = S ◦ (R1, . . . ,Rk)(φ) =
⊎

m∈Nk

⊎
P⊢mA

S(φ)
k∏
i=1

∏
pi∈P (i)

Ri((φi)|pi)

Here we denote P ⊢m A to ease the notation, we should have written (P (i) ⊢mi Ai)
k
i=1 where Ai is

an li-tuple of finite sets and P (i) is a length mi partition of an li-tuple. A length mi partition of an
li-tuple is an mi-tuple of li-tuples of sets such that the union of the li-tuples is disjoint and equal to
the li-tuple Ai.



62 CHAPTER 1. COMBINATORIAL SPECIES

Let i ∈ k and U = Ri, then if Rj = Xj for j ̸= i then we write S ◦i U instead of S[R], and we call it
the partial composition of S with U in i.
One need to be careful when composing. Indeed, to get (l1 + · · ·+ lk) different variables, we need to
assume that the sets of variables of the Ri are disjoint. When it is not the case, we need to rename
the variables to make them disjoint, and to compose the multi-sort species. Finally, we can identify
the variables that need to be identified.

We can now show the compatibility relation between the partial derivative and the identification
of variables, and the chain rule for k-sort species.

Proposition 1.2.5.5. Let S[X,Y ] be a (k + l)-sort species and Z a formal variable. Then:

∂S[X,Y = Z]

∂Z
=

l∑
i=1

∂S
∂Yi

(X,Y = Z)

Proof. Let us compute:

∂S[X,Y = Z]

∂Z
(A,B) = S[X,Y = Z](A,B ⊎ {∗})

=
⊎

P⊨lB⊎{∗}
S[X,Y ](A,P )

=
⊎
P⊨lB

l⊎
i=1

S[X,Y ](A,P1, . . . , Pi ⊎ {∗}, . . . , Pl)

=

l⊎
i=1

∂S
∂Yi

(X,Y = Z)

The same computation work at the level of morphisms.

Proposition 1.2.5.6 (Chain rule). Let S be a k-sort species and R1, . . . , Rk be l1 up to lk-sort
species. Then:

∂(S[R])
∂Xi

=

k∑
j=1

(
∂S
∂Yj

)
[R]∂Rj

∂Xi

Proof. If we assume that the sets of variables of the Rj are disjoint, and let Rj be the only one
where Xi appears. Then we have:

∂(S[R])
∂Xi

=
∂S
∂Yj

[R]∂Rj
∂Xi

If the variables of the Rj are not disjoint, then in order to compose the multi-sort species, we have
renamed the variables to make them disjoint, composed the multi-sort species with disjoint sets of
variables, and identified the variables that needed to be identified. Hence, the compatibility between
the partial derivative and the identification of variables allow us to conclude.

Let us state the implicit species theorem.

Theorem 1.2.5.7 (Implicit species theorem). Let H[X,Y ] be a 2-sort species in two variables X
and Y such that:

H(0, 0) = ∅ and
∂H

∂Y
(0, 0) = ∅

Then there exists a unique species A such that:

A[X] = H[X,A[X]] and A(0) = ∅
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Proof. It is enough to define A(n) and its action of Sn for each n ∈ N by induction. Let us notice
that we have H[X,Y ](0, 1) = ∅ because of the second condition. Let us now define the species A by
induction. We define A(0) = ∅. Then we define A(n) for n ∈ N by induction. Let n ∈ N, we assume
that A(I) is defined for each I ⊂ n. We know that we should have:

A(n) = H[X,A[X]](n)

=
⊎

I⊔J=n
H[X,A[Y ]](I, J)

=
⊎

I⊔J=n

⊎
k∈N

⊎
P⊢kJ

H[X,Y ](I, P )×
∏
p∈P
A(p)

We may notice that A(n) only appears when I = ∅ and k = 1, however since H[X,Y ](0, 1) = ∅, the
term where A(n) appears cancels. Hence, we can define:

A(n) =
⊎

I⊔J=n

⊎
k∈N

⊎
P⊢kJ

H[X,Y ](I, P )×
∏
p∈P
A(p)

We have defined A by induction, such that A(0) = ∅ and A(n) = H[X,A[X]](n). Let us define the
action of Sn on A(n). Let σ ∈ Sn, we define:

A(σ) =
⊎

I⊔J=n

⊎
k∈N

⊎
P⊢kJ

H[X,Y ](σ|I , σ
P
|J)×

∏
p∈P
A(σ|p)

From the induction, we have that A is unique.

We will extensively use this theorem to define various species. Moreover, we can give an
interpretation of species constructed this way using the analogy that a sum means a “or”, a product
means a “and”, an X is an “atomic element” or a “root” and E ◦ S means “set of S-structures”. As
example, let RT be the species of rooted trees, a rooted tree is a root and a set of rooted trees (which
are the children of the root). Hence, we have RT = X.E(RT ). Via the implicit species theorem this
is a definition of RT .

1.3 Variation on species

We now have all the constructions we want to work with species. It is now that the very categorical
nature of species kicks in. Indeed, we have defined species “valued in Set” however, because everything
is categorical, we can replace Set by any category, and as long as the definition makes sense, we will
have the same properties. But first, let us investigate a bit on the relation between species and naive
species.

1.3.1 Shuffle species and ordered species

As we have defined species and naive species, it is quite natural to ask how they relate to each other.
We have the following pair of functors between the discrete category N and the category B:

N B

Pre-composition by those functors gives rise to the following pair of functors between the category of
naive species and the category of species:

NSpe Spe
I

U
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Here, the functor I is given by the pre-composition by B ↠ N and its image is the full subcategory
of species endowed with a trivial group action. The functor U is given by the pre-composition by
N ↪→ B and can be seen as the “forgetful functor” that forgets the group action. A naive guess would
be that it is an adjunction, however (I, U) does not form an adjunction. Let us compute the adjoints
of I and U , starting with I.

Definition 1.3.1.1. Let FP be the fixed point functor from Spe to NSpe that send a species S to
the naive species FP (S) such that FP (S)(n) is the set of fixed points of the action of Sn on S(n).
Since morphisms of species send fixed points to fixed points, FP is indeed a functor.
Let Orb be the orbit functor from Spe to NSpe that send a species S to the naive species Orb(S)
such that Orb(S)(n) is the set of orbits of the action of Sn on S(n).

Proposition 1.3.1.2. The functor FP is right adjoint to I and Orb is left adjoint to I. We have:

NSpe Spe

FP

I

Orb⊣
⊣

Proof. Let S be a naive species and R be a species. Let us show that:

HomNSpe(S, FP (R)) ≃ HomSpe(I(S),R)

Let φ : I(S)→ R be a morphism of species. Since the group actions in the species I(S) are trivial,
the image of an element of I(S) by φ is a fixed point of R. Hence, φ induces a morphism from S
to FP (R). Moreover, any morphism from S to FP (R) will give rise to a morphism from I(S) to
R by post-composing with the inclusion of fixed points in R. Hence, we have a bijection between
HomNSpe(S, FP (R)) and HomSpe(I(S),R). Those bijections are natural in S and R, which show
that we have an adjunction.
Let us show that HomNSpe(Orb(R),S) ≃ HomSpe(R, I(S)). Let φ : R → I(S) be a morphism
of species. Let A be a finite set. Since φA : R(A) → I(S)(A) is equivariant, it sends orbits to
orbits. Moreover, since the group actions in I(S) are trivial, the orbits are reduced to 1 element,
and φ factorize through the projection of R(A)→ Orb(R)(A). Hence, φ induce a morphism from
Orb(R) to S. Moreover, any morphism from Orb(R) to S will give rise to a morphism from R to
S by pre-composing with the projection on the orbits of R. Hence, we have a bijection between
HomNSpe(Orb(R),S) and HomSpe(R, I(S)). Those bijections are natural in S and R, which show
that we have an adjunction.

The functor U also admits a left adjoint and a right adjoint. In order to compute the left
adjoint, we will use the species of total orders L introduced in Definition 1.2.1.5. Let use recall that
L(A) = Bij(n,A) and L(σ) : f → σ ◦ f for each A,B ∈ B and σ : A→ B a bijection.

Proposition 1.3.1.3. The species L is finite, fL(x) =
1

1−x and the action of Sn on L(n) is simply
transitive. In particular, Orb(L) ≃ set and FP (L) ≃ 1 +X.

Proof. It is well known that |Bij(n,A)| = n!, hence L is finite and fL(x) =
1

1−x . The action of Sn

on L(n) is simply transitive since it is the action of Sn on itself by right multiplication. Hence,
Orb(L) ≃ set and since Sn is trivial only if n = 0 or n = 1, we have FP (L) ≃ 1 +X.

Proposition 1.3.1.4. Let Σ be the symmetrization functor from NSpe to Spe defined by Σ(S) =
L⊙ I(S). The functor Σ is left adjoint to U . We have:

NSpe Spe
Σ

U

⊣
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Proof. Let us prove that Σ is left adjoint to U . Let S be a naive species and R be a species. Since
the action of Sn is simply transitive on L(n), an equivariant map from L(n) × S(n) to R(n) is
entirely determined by the induced map from the set S(n) to the set R(n). Moreover, any map from
the set S(n) to the set R(n) give rise to an equivariant map from L(n)× S(n) to R(n). Since the
data on the sets n entirely determine species and morphisms of species, we have a bijection between
HomSpe(Σ(S),R) and HomNSpe(S, U(R)). Hence, Σ is left adjoint to U .

Now that we have a better understanding of the situation, we see that we have two very different
embedding of NSpe in Spe. Indeed, one can embed NSpe in Spe by the inclusion I and one can embed
NSpe in Spe by the functor Σ. Let us compare those two embeddings. Since we have U ◦ I = id and
Σ ◦Orb = id, we have two main ways of relating NSpe and Spe.

NSpe Spe
I

U

NSpe Spe
Σ

Orb

The embedding via I is well suited to study combinatorial structures with trivial group actions,
however these are not stable by derivative, product nor plethysm as we will see in the following.
This embedding is still quite useful when one needs to forget the group actions since U ◦ I = id, for
example if one needs to impose a posteriori a linear order which is the case when defining Gröbner
bases. On the other hand, the embedding via Σ is well suited to study combinatorial structures
without group actions, for example cases when the combinatorial structure depend on an a priori
linear order. In this case, the embedding via Σ “puts” the linear order inside the combinatorial
structure. The main downside of this embedding is that it is not stable by Hadamard product. We
may remark that:

• The functor I and U are symmetric monoidal functors with respect to the sum and the
Hadamard product. Moreover, they respect the structure morphisms of Proposition 1.2.2.12
which only involve the sum and the Hadamard product.

• The functor Σ and Orb commute with the derivative, are symmetric monoidal functors with
respect to the sum and the product and are monoidal with respect to the plethysm. Moreover,
they respect the structure morphisms of Proposition 1.2.2.12 which does not involve the
Hadamard product. Moreover, Σ is compatible with the generating function, and the Schur
functor.

Because those interpretations of the category NSpe are quite different, we will use two different
notations for this category.

Definition 1.3.1.5.

• Let us denote by XSpe the category NSpe when we implicitly compare it to Spe via the
functors I and U . Effectively, XSpe is the category NSpe, however the operations on XSpe
are different from the operations on NSpe. Indeed, the operations on XSpe are the operations
of Spe transported via the functors I and U . Objects of XSpe are called shuffle species, and
morphisms of XSpe are called morphisms of shuffle species. We call XSpe the category of
shuffle species.

• Let us denote by LSpe the category NSpe when we implicitly compare it to Spe via the functors
Σ and Orb. Effectively, LSpe is the category NSpe, however the operations on LSpe are the
operations of Spe transported via the functors Σ and Orb. Objects of LSpe are ordered species ,
and morphisms of LSpe are morphisms of ordered species. We call LSpe the category of ordered
species.

One need to be careful with the terminology. Indeed, what we are calling ordered species are also
sometimes called linear species in the literature, see [7]. We choose to use the terminology ordered
species since we will use the term linear species for a different notion.
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The operations on LSpe are exactly the same as the operations on NSpe. However, the operations
on XSpe are different from the operations on NSpe. Indeed, the sum and the Hadamard product
are the same, but the derivative, the product and the plethysm are different. Strictly speaking, we
have already defined the derivative, the product and the plethysm on XSpe by:

• S ′ = U(I(S)′) for a shuffle species S,

• S · R = U(I(S) · I(R)) for two shuffle species S and R,

• S ◦ R = U(I(S) ◦ I(R)) for two shuffle species S and R.

However, it will be way more convenient to define them directly on XSpe, and to have explicit
formulas for them. Let us do this now.

Definition 1.3.1.6. Let S and R be two shuffle species. We define the following operations on
shuffle species:

• the shuffle derivative S ′ such that for each n ∈ N:

(S ′)(n) = S(n+ 1)

• the sum S +R such that for each n ∈ N:

(S +R)(n) = S(n) ⊎R(n)

• the shuffle product (or shuffle Cauchy product) S ·X R such that for each n ∈ N:

(S ·X R)(n) =
n⊎
i=0

(
n

i

)
S(n− i)×R(i)

• the Hadamard product S ⊙R such that for each n ∈ N:

(S ⊙R)(n) = S(n)×R(n)

• if R is connected, the shuffle plethysm S ◦X R such that for each n ∈ N:

(S ◦X R)(n) =
⊎
k∈N
S(k)

⊎
λ⊨kn

n!

k!λ1! . . . λk!

k∏
i=1

R(λi)

Here we use nA for A ⊎ · · · ⊎A with n copies of A.

Because the formulas are quite similar, the shuffle derivative, the sum, the shuffle product,
the Hadamard product and the shuffle plethysm satisfy the same relations as the ones of Proposi-
tion 1.2.2.12. Since this is the fourth times those 19 relations appear, let not state them again.

We will also need graded species in the sequel, let us define them.

Definition 1.3.1.7. A k-graded species S is a functor B× Nk → Set. Equivalently, it can be seen
as a functor B→ NkSpe. A k-graded species is finite if for each A ∈ B, the k-sort ordered species
S(A) is strongly finite. Species embeds in k-graded species by the functor Set→ NkSpe such that
the k-sort ordered species associated to the finite set A is A(0) = A and A(n) = ∅ for n ̸= 0. The
generating function of a k-graded species S is the formal power series in k + 1 variables defined by:

fS =
∑
n∈N

fS(n)
1

n!
xn
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All our constructions generalize naturally to k-graded species. If k = 1, we speak of graded
species, if k = 2, we speak of bigraded species. In the sequel, we will only consider graded and
bigraded species, and we will denote them Su,w with u and w two formal variables corresponding to
the two grading. We will also use the graded non-empty set species Ew≥1 defined by Ew≥1(A, k) = {∗}
if |A| = k + 1 and Ew≥1(A, k) = ∅ else. Its generating function is:

fEw
≥1
(x,w) =

∑
n∈N∗

1

n!
xnwn−1 =

1

w
(exp(wx)− 1)

Forgetting the grading, is the same as evaluating the formal variable associated at 1.

1.3.2 Species in other categories

In order to do algebra, we may want to consider species in other categories, in particular species
which “take values” in the category of vector spaces. Let us do a checklist of the properties of the
category Set that we use to define species, and see if we can generalize the definition of species to
other categories.

• To define the operations (derivation, sum product, Hadamard product and plethysm) on species
(resp. ordered species, and shuffle species), and to show there properties, we heavily used the
fact that Set is a symmetric rig-category for the disjoint union ⊎ and the cartesian product ×.
However, as mentioned several times, we did not use any additional structure nor property of
Set in this regard. Hence, species (resp. ordered species, and shuffle species) can be defined in
any symmetric rig-category C. (One may remark that ordered species can in fact be defined in
any rig-category.)

• To define the generating function of a species (resp. ordered species), we used the fact that we
have a “good notion of size” in Set. More precisely, we used the fact that we have a functor
Set → N such that |A ⊎ B| = |A|+ |B| and |A × B| = |A| × |B|. Since we are working with
formal power series, we do not need to assume that the size takes values in N, taking values in
R is enough (one need to be careful as negative size may create convergence issues). Hence,
generating functions of a C-valued species (resp. ordered species) can be defined if C admits a
rig-functor to R.

• To define the Schur functor of an ordered species and show its properties, we did not use other
structures or properties than being a symmetric rig-category. Hence, the Schur functor of a
C-valued ordered species can always be defined and will satisfy the expected properties.

• To define the Schur functor of a species, we used a lot more structure. Indeed, we used the fact
that we can define “actions of Sn on a set”. We can define actions of a group G in any category
C by a functor BG→ C. However, we also used the fact that one could quotient by the action
of Sn which is not the case in any category. Moreover, we used the fact that action of Sn

were compatible with the sum and the product, meaning that actions of Sn commute with
the sum by a structure isomorphism, and that this structure isomorphism is coherent with the
structure isomorphism of the rig-category. This condition is way more restrictive than being a
symmetric rig-category. However, it is respected by the category of sets, graded sets, vector
spaces, graded vector spaces, differential graded vector spaces, co-commutative co-algebras,
graded co-commutative co-algebras, differential graded co-commutative co-algebras, topological
spaces, and so on...

Let us introduce the following notations:

• Let Vect be the category of vector spaces over a field K (of characteristic 0), the size of a vector
space is its dimension.
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• Let grVect be the category of graded vector spaces over a field K, the size of a graded vector
space is its Euler characteristic when it is well defined.

• Let dgVect be the category of differential graded vector spaces over a field K, the size of a
differential graded vector space is the Euler characteristic of its homology when it exits.

• Let Cog be the category of co-unitary co-commutative co-algebras over a field K, the size of a
co-unitary co-commutative co-algebra is its dimension.

• Let grCog be the category of graded co-unitary co-commutative co-algebras over a field K, the
size of a graded co-unitary co-commutative co-algebra is its Euler characteristic when it exits.

• Let dgCog be the category of differential graded co-unitary co-commutative co-algebras over
a field K, the size of a differential graded co-unitary co-commutative co-algebra is the Euler
characteristic of its homology when it exits.

• Let Top be the category of convenient topological spaces (compactly generated Hausdorf for
example), we do not define the size in this case.

For C a rig-category, let us denote C Spe (resp. C LSpe, and C XSpe) the category of C-valued
species (resp. ordered species, and shuffle species). We have the following usual functors that are
rig-functors respecting the size:

Set Vect Cog

grVect grCog Top

dgVect dgCog

Let us explicitly define these functors:

• The functor Set→ Vect is the free vector space functor, the functor that send a set A to the
vector space SpanK(A).

• The functor Vect → grVect (resp. Cog → grCog) is the embedding of Vect in grVect in the
0-th component, this is the functor that sends a vector space V to the graded vector space V
concentrated in degree 0.

• The functor grVect→ dgVect (resp. grCog→ dgCog) is the embedding of grVect in dgVect by
the trivial differential, this is the functor that sends a graded vector space V to the differential
graded vector space V with trivial differential.

• The functor dgVect → grVect (resp. dgCog → grCog) is the homology (or the cohomology
depending on the context) functor, this is the functor that sends a differential graded vector
space V to its homology H(V ) (or its cohomology).

• The functor Cog→ Vect (resp. grCog→ grVect, and dgCog→ dgVect) is the forgetful functor
that sends a co-unitary co-commutative co-algebra to its underlying vector space.

• The functor Top→ grCog is the homology functor, this is the functor that sends a topological
space X to its singular homology H(X). The fact that this functor is a rig-functor is a
consequence of the Künneth formula, the co-algebra structure come from the diagonal map
X → X ×X. We will give a more detailed explanation in Section 2.3.1.
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These functors induce the following functors of species (which respect the operations of species, and
their coherence morphisms):

Set Spe Vect Spe Cog Spe

grVect Spe grCog Spe Top Spe

dgVect Spe dgCog Spe

We have the same situation for ordered species and shuffle species. In the following, we will call set
species or simply species the Set-valued species, linear species the Vect-valued species, and topological
species the Top-valued species. These generalizations can also be done with graded species.

1.4 Rooted trees, rooted Greg trees and hypertrees

We will now apply the theory of species to the combinatorics of rooted trees. No theorem will be
stated nor proved in this section however, we will introduce the five species that will play a key
role in the last chapter, namely the species of rooted trees, rooted Greg trees, hyperforests, Greg
hyperforests, and reduced Greg hyperforests. Let us start with the species related to trees, we will
define the species related to hypertrees in the second subsection.

1.4.1 Combinatorics of rooted trees and rooted Greg trees

We will now apply the theory of species to the combinatorics of rooted trees and rooted Greg trees.
These are quite usual definitions and results. Let us start by defining graphs, trees, and rooted trees.

Definition 1.4.1.1. A (simple) graph structure G on a finite set V is a pair (V, E) with E ⊆ P=2(V),
we use the notation P=2(V) to denote the set of subsets of V of cardinal 2. Elements of V are called
the vertices of G and elements of E are the edges of G.

Definition 1.4.1.2. A path of length n in G is a pair of finite sequences (v0, . . . , vn) and (e1, . . . , en)
such that v0, . . . , vn ∈ V, e1 . . . , en ∈ E , vi ∈ ei and vi ∈ ei−1 for each i ∈ n, and vi ≠ vj for i ̸= j
except possibly if (i, j) = (0, n) or (n, 0) (meaning that paths do not go twice by the same vertex,
except possibly if those are the source and the target). A path is a cycle if v0 = vn and the ei are
different from each other.

Definition 1.4.1.3. A graph structure is connected if there exists a path between any two vertices.
A tree structure on V is a connected graph structure on V without cycles. A rooted tree structure
on V is a tree structure on V with a distinguished vertex called the root . A forest structure on V
is partition of V into disjoint sets together with a rooted tree structure on each set, equivalently
it is a graph structure on V without cycles together with a distinguished vertex in each connected
component. Forests are assumed to be non-empty.

Definition 1.4.1.4. Let (V1, E1) and (V2, E2) be two graph structures. A graph isomorphism from
(V1, E1) to (V2, E2) is a bijection σ : V1 → V2 such that for each v1, v2 ∈ V1, {v1, v2} ∈ E1 if and only
if {σ(v1), σ(v2)} ∈ E2. A rooted tree isomorphism is a graph isomorphism that preserves the root. A
forest isomorphism is a bijection respecting the partitions of the set of vertices, and such that the
induced bijection on each part is a rooted tree isomorphism.

The set of rooted tree structures of 2 is depicted in Figure 1.2. Rooted trees will always be
depicted with the root at the bottom (just like in real life).
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Figure 1.2: The set of rooted tree structures on the set 2.
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Some notations in rooted trees Let T be a rooted tree. Any vertex v of T admits a unique
path to the root of T . If v is the root then it does not admit a parent. If v is not the root, the second
vertex of this path w is called the parent of v and v is called a child of w. We also call child of w the
tree above v rooted at v. With this convention, the children of w form a possibly empty set rooted
trees. The edge {v, w} is the outgoing edge of v and is an incoming edge of w. (We go down the tree.)

These definitions of graphs, trees and forests can instantly be translated into species, however,
with these definitions, vertices of graphs, trees, and forests are always bijectively labeled, meaning
that the vertices can be distinguished from each other. We will also need to consider unlabeled
graphs, trees, and forests. Let us define them.

Definition 1.4.1.5. Let us consider the set of graph (resp. tree, rooted tree, and forest) structures
on n, we have an action of Sn on this set given by the permutation of the vertices. An unlabeled
graph (resp. tree, rooted tree, and forest) with n vertices is an orbit of the action of Sn on the set
of graph (resp. tree, rooted tree, and forest) structures on n. Such an unlabeled graph (resp. tree,
rooted tree, and forest) is asymmetric if the orbit contain exactly n! elements.

The set of unlabeled rooted trees with 3 vertices is depicted in Figure 1.3. The non-asymmetric
one is depicted inside a box. Indistinguishable vertices will always be depicted in black.

Figure 1.3: The set of unlabeled rooted trees with 3 vertices.

,

One may want to consider graphs where some vertices are distinguishable vertices, and others are
indistinguishable vertices. Let us define them.

Definition 1.4.1.6. A graph (resp. tree, rooted tree, and forest) structure with k black vertices on
the finite set V is an orbit of the action of Sk on the set of graph (resp. tree, rooted tree, and forest)
structures on the finite set V ⊎ k. Such a structure is asymmetric if the orbit contains exactly k!
elements.

The set of rooted trees structure with 2 black vertices on 1 is depicted in Figure 1.4. All of these
are asymmetric except the one in a box.

Figure 1.4: The set of rooted trees with 2 black vertices on the set 1.
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1

,
1

,
1

In the sequel, we will refer to the distinguishable vertices as the white vertices, and to the
indistinguishable vertices as the black vertices, moreover the set of black vertices a tree τ will always
be denoted BV (τ). Let us now define the relevant species.
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Definition 1.4.1.7. Let RT be the rooted trees species such that RT (A) is the set of rooted tree
structures on A.

Proposition 1.4.1.8. The species RT is the unique species satisfying the following functional
equation:

RT = X · E ◦ RT
Proof. Let H[X,Y ] = X ·E[Y ], we may remark that H satisfies the conditions of the implicit species
theorem. Hence, there is a unique species satisfying the functional equation. Let us show that RT
satisfies the functional equation. Let A be a finite set, let us show that RT (A) = (X · E ◦ RT )(A).
Let T be a rooted tree structure on A, let r be the root of T , and let {r, r1}, . . . {r, rk} be the edges
of T containing r. Let Ti be the maximal connected subgraph of T containing ri and not containing
r. We have that Ti is a tree, let us root Ti in ri. Then the data of (r, {T1, . . . , Tk}) is the same as the
data of T . Indeed, connecting r to each root of the Ti recovers T , and removing the edges containing
r recovers (r, {T1, . . . , Tk}). Hence, we have a bijection between the set of rooted tree structures on
A and the set of pairs (r, {T1, . . . , Tk}) where r ∈ A and T1, . . . , Tk are rooted tree structures on the
block of a partition of A \ {r}.

An immediate consequence of this definition, is a formula for the generating function of the
species of rooted trees. Let us denote by revx(f) the composition reversed of f in the variable x,
that is revx(f) ◦x f = f ◦x revx(f) = id.

Proposition 1.4.1.9. We have:

fRT (x) = revx (x exp(−x))
Proof. From the definition of RT , we have:

fRT (x) = x exp fRT (x)

Hence:
fRT · exp(−fRT ) = x

A Lagrange inversion formula let us compute the coefficients of the series fRT (x), we have that

|RT (n)| = nn−1,

which is known as the Cayley formula. This is the sequence A000169 of the OEIS, see [76].
Another example of species that we will use is the species of twisting rooted trees, the name

comes from the operadic twisting that we will define in Subsection 2.3.3.

Definition 1.4.1.10. A black rooted tree structure on A is a rooted tree structure with k black
vertices on A for some k ∈ N. We define BRT the black rooted trees species such that BRT (A) is
the set of black rooted tree structures on A. The weight of a black rooted tree is the number of black
vertices. We define T RT the twisting rooted trees species as the subspecies of BRT of asymmetric
black rooted trees.

One may notice that BRT is graded by the weight. Let u be a formal variable encoding the
weight, we denote by BRT u the species BRT graded by the weight. Same for the subspecies T RT u.
One may notice that BRT 0 = T RT 0 = RT .
Remark 1.4.1.11. We would like to write:

BRT u = X · E ◦ BRT u + u · E ◦ BRT u
Since the root of a black rooted tree is either white or black, and that the contribution from the
white root would be X ·E ◦ BRT u, and the contribution from the black root would be u ·E ◦ BRT u.
However, BRT u is not connected, and although we stated in Remark 1.2.3.4 that we could define
the plethysm in this case, we did not. Moreover, we may notice that H[X,Y ] = X ·E[Y ] + uE[Y ]
does not satisfies the conditions of the implicit species theorem.

https://oeis.org/A000169
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This species is quite useful despite the fact that it is not finite. However, we cannot apply the
implicit species theorem. Let us try to solve this issue by tweaking the equation a bit. Let H[X,Y ]
defined by:

H[X,Y ] = X · E[Y ] + uE≥2[Y ]

We remark that H satisfies the conditions of the implicit species theorem. Let us understand the
species it defined. It is the species of rooted Greg trees. Rooted Greg trees were initially introduced
by Flight in [34] to encode and solve a problem from textual criticism which was first stated by Greg
in [40] and studied by Maas in [62].

Definition 1.4.1.12. A rooted Greg tree structure on A is a rooted tree structure with k black
vertices on A for some k ∈ N such that each black vertex has at least two children. We define G the
rooted Greg trees species such that G(A) is the set of rooted Greg tree structures on A.

Once again this species is graded by the weight (the number of black vertices). We denote by
Gu the species G graded by the weight. We denote Gk the species of rooted Greg tree of weight k.
One may notice that G0 = RT . One may notice that the condition that each black vertex has at
least two children is exactly the condition that the species E≥2 in the functional equation imposes,
moreover one may check that it implies that each rooted Greg tree is asymmetric. Hence, Gu is a
subspecies of T RT u. The set G(2) is depicted in Figure 1.5.

Figure 1.5: The set G(2).
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Proposition 1.4.1.13. The species of rooted Greg trees Gu is the unique graded species verifying:

Gu = X · E ◦ Gu + uE≥2 ◦ Gu

Proof. Let H[X,Y ] = X · E[Y ] + uE≥2[Y ], we may remark that H satisfies the conditions of the
implicit species theorem. Hence, there is a unique species satisfying the functional equation. The
fact that Gu satisfies the functional equation is a direct consequence of the definition of Gu.

Proposition 1.4.1.14. We have:

fG(x, u) = revx ((x+ ux+ u) exp(−x)− u)

Proof. From the definition of Gu, we have:

fG(x, u) = x exp(fG(x, u)) + u exp(fG(x, u))− ufG(x, u)− u

Hence:
(fG(x, u)− ufG(x, u)− u) exp(fG(x, u))− u = x

Remark 1.4.1.15. We can recover the recursive formula enumerating the rooted Greg trees from [45,
Proposition 2.1] by resolving a differential equation. We have h(x, u) = ((u+ 1)x+ u) exp(−x)− u.
Hence:

• ∂h
∂x = −((u+ 1)x− 1) exp(−x),

• ∂h
∂u = (x+ 1) exp(−x)− 1.
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Hence:

(u+ 2)h+
∂h

∂x
− (u+ 1)2

∂h

∂u
= 1

Let f be such that h(f(x, u), u) = h◦(f, id) = x. We have that ∂h∂x ◦(f, id).
∂f
∂x = 1 and ∂h

∂x ◦(f, id).
∂f
∂u+

∂h
∂u ◦ (f, id) = 0, hence:

((u+ 2)x− 1)
∂f

∂x
+ (u+ 1)2

∂f

∂u
= −1

Let f(x, u) =
∑ gk(u)

k! xk with gk polynomials in u, we get the following recursive relation:

• g0(u) = 0,

• g1(u) = 1, and

• gk+1(u) = (u+ 2)kgk(u) + (u+ 1)2g′k(u).

Once again the Lagrange inversion formula (or the recursive formula we just get) allows us to
compute the coefficients of the series fG(x, u) which give the sequence A005264 and the non-graded
version, the coefficients of the series fG(x, 1) which give the sequence A048160.

Definition 1.4.1.16. Since Gu is a subspecies of T RT u, we can define the rooted non-Greg trees
species NGu as the species such that T RT u = Gu +NGu.

A generalization of rooted Greg trees that we will need in the sequel are rooted Greg trees with k
different kind of black vertices. Let us define them.

Definition 1.4.1.17. A rooted k-Greg tree structure on A is a rooted Greg tree structure together
with a labeling of the black vertices on k. A labeling of the black vertices on k is a map B → k where
B is the set of black vertices. It is important to notice that this labeling is a priori not a bijection,

meaning that some black vertices may have the same label. We define G(k)u the rooted k-Greg tree

species such that G(k)u (A) is the set of rooted k-Greg tree structures on A.

One may notice that G(k)u is a subspecies of G(k+1)
u , that G(0)u = RT ⊆ Gu = G(1)u , and finally

G(k)0 = RT .

Proposition 1.4.1.18. The species of rooted Greg trees G(k)u is the unique graded species verifying:

G(k)u = X · E ◦ G + kuE≥2 ◦ G(k)u

Moreover:
fG(k)(x, u) = revx ((x+ kux+ ku) exp(−x)− ku)

Proof. The proofs are similar to the ones of Gu.

Remark 1.4.1.19. A strange phenomenon in combinatorics is that sometimes evaluating a generating
function at −1 gives a meaningful answer although, we are technicality trying to understand our
construction on a (non existing) set of with −1 element which does not mean anything. We have:

fG(x,−1) = − ln(1− x)

We may notice that all the coefficients of this series are positive indeed those are (n − 1)!, so it
appears to enumerate something. The naive combinatorial interpretation would be that it enumerates
the number of rooted Greg trees with −1 kind of black vertices, which is not meaningful at all. A
conceptual explanation will be given in Section 3.2.

To summarize, we have defined a sequence of species (G(k))k∈N starting by the rooted trees and
the rooted Greg trees. We have computed their generation function, and an evaluation in −1 of the
generating function hint that an interesting phenomenon is hidden behind this sequence.

https://oeis.org/A005264
https://oeis.org/A048160
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1.4.2 Generalization to hypertrees

Let us now generalize what we have done to hypertrees. Hypertrees are a generalization of rooted
trees where the edges can have more than two vertices. Same as trees are connected graphs without
cycles, hypertrees are connected hypergraphs without cycles once the correct definitions are given.
Hypergraphs were introduced by Berge in [6] to generalize graphs. Let us define them.

Definition 1.4.2.1. A (simple) hypergraph structure H on a finite set V is a pair (V, E) with
E ⊆ P≥2(V), we use the notation P≥2(V) to denote the set of subsets of V of cardinal at least 2.
Elements of V are called the vertices of H and elements of E are the edges of H. The hyper-weight of
an edge is its number of elements minus 2. Edges of hyper-weight 0 are simple edge, and edges of
positive weight are the hyperedges.

Definition 1.4.2.2. A path of length n in H is a pair of finite sequences (v0, . . . , vn) and (e1, . . . , en)
such that v1, . . . , vn ∈ V, e0, . . . , en ∈ E , vi ∈ ei and vi ∈ ei−1 for each i ∈ n, and vi ≠ vj for i ̸= j
except possibly if (i, j) = (0, n) or (n, 0) (meaning that paths do not go twice by the same vertex,
except possibly if those are the source and the target). A path is a cycle if v0 = vn and the ei are
different from each other.

An important fact to notice is that if the intersection of two edges contains more than one vertex,
then it create a cycle.

Definition 1.4.2.3. A hypergraph structure is connected if there exists a path between any two
vertices. A hypertree structure on V is a connected hypergraph structure on V without cycles. A
rooted hypertree structure on V is a tree structure on V with a distinguished vertex called the root .
The hyper-weight of a hypertree is the sum of the hyper-weight of its edges. A hyperforest structure
on V is a partition of V into disjoint sets together with a rooted hypertree structure on each set,
equivalently it is a hypergraph structure on V without cycles together with a distinguished vertex
in each connected component. The hyper-weight of a hyperforest is the number of hypertrees it
contains minus 1 plus the hyper-weight of each of these hypertrees. Hyperforests are assumed to be
non-empty.

Definition 1.4.2.4. Let (V1, E1) and (V2, E2) be two hypergraph structures. A hypergraph iso-
morphism from (V1, E1) to (V2, E2) is a bijection σ : V1 → V2 such that for each v1, . . . , vk ∈ V1,
{v1, . . . , vk} ∈ E1 if and only if {σ(v1), . . . , σ(vk)} ∈ E2. A rooted hypertree isomorphism is a hyper-
graph isomorphism that preserves the root. A hyperforest isomorphism is a bijection respecting
the partitions of the set of vertices, and such that the induced bijection on each part is a rooted
hypertree isomorphism.

The set of hyperforest structures of 2 is depicted in Figure 1.6. Hypertrees will always be depicted
with the root at the bottom (just like in real life, if hypertrees existed).

Figure 1.6: The set of hyperforest structures on the set 2.
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Some notations in rooted hypertrees Let T be a rooted hypertree. Any vertex v of T admits
a unique minimal path to the root of T . If v is the root then it does not admit a parent. If v is not
the root, the second vertex of this path w is called the parent of v and v is called a child of w. We
also call child of w the hypertree above v rooted at v, with this convention, the children of the vertex
w form a possibly empty set of hyperforests. The edge containing v and w is the outgoing edge of v
and is an incoming edge of w. (We go down the hypertree.)
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These definitions of hypergraphs, hypertrees, and hyperforests can instantly be translated into
species, however, with these definitions, vertices of hypergraphs, hypertrees, and hyperforests are
always bijectively labeled, meaning that the vertices can be distinguished from each other. We will
also need to consider unlabeled hypergraphs, hypertrees, and hyperforests. Let us define them.

Definition 1.4.2.5. Let us consider the set of hypergraph (resp. hypertree, rooted hypertree, and
hyperforest) structures on n, we have an action of Sn on this set given by the permutation of the
vertices. An unlabeled hypergraph (resp. hypertree, rooted hypertree, and hyperforest) with n vertices
is an orbit of the action of Sn on the set of hypergraph (resp. hypertree, rooted hypertree, and
hyperforest) structures on n. Such an unlabeled hypergraph (resp. hypertree, rooted hypertree, and
hyperforest) is asymmetric if the orbit contains exactly n! elements.

The set of unlabeled rooted hypertrees with 3 vertices is depicted in Figure 1.7. The non-
asymmetric ones are depicted in a box. Indistinguishable vertices will always be depicted in black.
The hyperedges are depicted in gray.

Figure 1.7: The set of unlabeled rooted hypertrees with 3 vertices.
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One may want to consider hypergraph where some vertices are distinguishable vertices, and others
are indistinguishable vertices. Let us define them.

Definition 1.4.2.6. A hypergraph (resp. hypertree, rooted hypertree, and hyperforest) structure with
k black vertices on the finite set V is an orbit of the action of Sk on the set of hypergraph (resp.
hypertree, rooted hypertree, and hyperforest) structures on the finite set V ⊎ k. Such a structure is
asymmetric if the orbit contain exactly n! elements.

In the sequel, we will refer to the distinguishable vertices as the white vertices, and to the
indistinguishable vertices as the black vertices, moreover the set of black vertices a hypertree τ will
always be denoted BV (τ). Let us now define the relevant species.

Definition 1.4.2.7. Let HT be the rooted hypertrees species such that HT (A) is the set of rooted
hypertree structures on A. Let HF be the hyperforests species such that HF(A) is the set of
hyperforest structures on A. These species are graded by the hyper-weight. Let w be a formal
variable encoding the hyper-weight, we denote HT w the species HT graded by the hyper-weight.
We denote by HT k the species of rooted hypertree of hyper-weight k. Same for the species HFw.

Proposition 1.4.2.8. The species HT is the unique species satisfying the following functional
equation:

HT w = X · E ◦ Ew≥1 ◦ (HT w)
The species HF is the unique species satisfying the following functional equation:

HFw = Ew≥1 ◦ (X · E ◦ HFw)

Moreover, HFw = Ew≥1 ◦ HT w.

Proof. It is clear from the definition that:

HFw = Ew≥1 ◦ HT w
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Moreover, let H1[X,Y ] = X · E ◦ Ew≥1[Y ] and H2[X,Y ] = Ew≥1 ◦ (X · E[Y ]), we may notice that H1

and H2 satisfy the conditions of the implicit species theorem. Hence, for each equation, there is a
unique species satisfying it. Let us show that we have:

HT w = X · E ◦ HFw

Let A be a finite set, and T be a rooted hypertree structure on A, let r be the root of T , and let
{r} ⊔R1, . . . {r}⊔Rk be the edges of T containing r. For v ∈ Ri, let Ti,v be the maximal connected
sub-hypergraph of T containing v and not containing r. We have that Ti,v is a hypertree, let us mark
v as the root of Ti,v. Then Fi = {Ti,v | v ∈ Ri} is a hyperforest. Then the data of (r, {F1, . . . , Fk})
is the same as the data of T . Indeed, connecting r to each root of the Fi recovers T , and removing
the edges containing r recovers (r, {F1, . . . , Fk}). Hence, we have a bijection between the set of
rooted hypertree structures on A and the set of pairs (r, {F1, . . . , Fk}) where r ∈ A and F1, . . . , Fk
are hyperforest structures on the block of a partition of A \ {r}.
To get the grading, it suffices to notice T and (r, {F1, . . . , Fk}) have the same hyper-weight, where
the hyper-weight of (r, {F1, . . . , Fk}) is the sum of the hyper-weight of the Fi.

Proposition 1.4.2.9. We have:

fHT (x,w) = revx

(
x exp

(
1

w
(1− exp(wx))

))

fHF (x,w) = revx

(
1

w
ln (1 + wx) exp(−x)

)
Proof. From the definition of HT , we have:

fHT (x,w) = x exp

(
1

w
(exp (fHT (x,w))− 1)

)
Hence:

fHT (x,w) exp

(
1

w
(1− exp (fHT (x,w)))

)
= x

From the definition of HF , we have:

fHF (x,w) =
1

w
(exp (wx exp (fHT (x,w)))− 1)

Hence:
1

w
ln (1 + wfHF (x,w)) exp (−fHF (x,w)) = x

This is not the first time, and will not be the last, that the Lagrange inversion formula allows
us to compute the coefficients of the series fHT (x,w) and fHF (x,w). The sequence A210586 is the
sequence of the coefficients of fHT (x,w) and the sequence A035051 is non-graded version, hence the
sequence of the coefficients of fHT (x, 1). Same for fHT (x,w), where its sequence of coefficients is
A364709 and its non-graded version is A052888. The sequences of the OEIS may need to be slightly
shifted to match the sequences of the coefficients of the above-mentioned series.

Let us introduce the notion of tree shape, defined by the author in [53], which allows us to
decompose rooted hypertrees into rooted trees, and to reconstruct rooted hypertrees from rooted
trees.

Definition 1.4.2.10. Let P be a partition of length k of A, a tree shape on P is a rooted hypertree
structure with k black vertices on A such that:

• the root is black,

https://oeis.org/A210586
https://oeis.org/A035051
https://oeis.org/A364709
https://oeis.org/A052888
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• simple edges are only between a black vertex and a white vertex such that the black vertex is
bellow (closer to the root),

• hyperedges are only between a white vertex and several black vertices such that the white
vertex is bellow,

• for each p ∈ P , we have a black vertex such that p is the set of the white vertices connected to
it via simple edges.

A forest shape on P is a partition Q of P together with a tree shape on each block of the partition
Q. Let TSw(P ) be the set of tree shape on P , and FSw(P ) be the set of forest shape on P . As
before, w is the formal variable encoding the hyper-weight and the hyper-weight of a tree shape is
the hyper-weight of its underlying rooted hypertree, same for the hyper-weight of a forest shape
which is the hyper-weight of its underlying hyperforest.

Definition 1.4.2.11. Let T be a rooted hypertree structure on A. We denote by G be the maximal
subgraph of T . Since G is a subgraph, it only keeps simple edges and all the hyperedges are removed.
Since T has no cycles, G has no cycles either, hence G is a non-empty set of trees. Moreover, since T
is rooted and connected, each tree τ of G admits a unique vertex v with the shortest path to the
root, and we can mark v as the root of τ . Thus G is a forest. The forest G is the forest of maximal
subtrees of T . Let S be the tree shape of T , it is the hypertree obtained by collapsing each maximal
subtree of T into a corolla rooted at a black vertex with all the white vertices of the maximal subtree
as leaves.
Let φ be the decomposition map such that φ(T ) = (P, S,G) with P the partition of the set of vertices
of T corresponding to the connected components of G, S the tree shape of T , and G the forest of
maximal subtrees of T .

Definition 1.4.2.12. The shape of a hyperforest F called forest shape of F is the set of the tree
shapes of rooted hypertrees of F . We extend φ, the decomposition map, to the hyperforest by
φ(F ) = (P, S,G) with P the partitions of the set of vertices of F corresponding to the connected
components of G, S the forest shape of F , and G the union of the forests of maximal subtrees of
each hypertrees of F .

Proposition 1.4.2.13. Let A be a finite set. The decomposition map φ gives a bijection between
HT (A) and the set of triples (P, S,G) such that P is a partition of A, S is a tree shape on P , and
G is a forest such that for each p ∈ P we have a tree of G with p as its set of vertices. Same with
HF(A) and the set of triples (P, S,G) such that P is a partition of A, S is a forest shape on P , and
G is a forest such that for each p ∈ P we have a tree of G with p as its set of vertices.

Proof. Since the forest shape of a hyperforest is the set of the tree shapes of its elements, it is enough
to prove it for rooted hypertrees. Let T be a rooted hypertree structure on A, by definition the
map φ send T to the triple (P, S,G) such that P is a partition of A, S is a tree shape and G is a
forest such that for each p ∈ P we have a tree of G with p as its set of vertices. Let rebuild a rooted
hypertree from the data (P, S,G). Let ψ(P, S,G) be the hypertree obtained by replacing corolla of S
by the tree of G with the same set of vertices. We have that φ ◦ ψ and ψ ◦ φ are identity maps.

Corollary 1.4.2.14. We have:

HT w(A) =
⊎
k∈N

⊎
P⊢kA

TSw(P )×
∏
p∈P
RT (p)

HFw(A) =
⊎
k∈N

⊎
P⊢kA

FSw(P )×
∏
p∈P
RT (p)

Remark 1.4.2.15. One need to be careful since neither TS nor FS are species. We could define the
species:

T Sw : A 7→
⊎
k∈N

⊎
P⊢kA

TSw(P )



78 CHAPTER 1. COMBINATORIAL SPECIES

FSw : A 7→
⊎
k∈N

⊎
P⊢kA

FSw(P )

However, we have HT w ≠ T Sw ◦ RT and HFw ̸= FSw ◦ RT . Indeed, when computing T Sw ◦ RT
or FSw ◦ RT , we lose the information of the partition. Hence, we do not get HT w nor HFw. The
sequence of cardinals of T S is A367752 and the sequence of cardinals of FS is A367753.

Since both the species of rooted hypertrees and the species rooted Greg trees generalize the
species of rooted trees, it could be interesting to define a species that generalize both the species of
rooted hypertrees and the species of rooted Greg trees. We have two quite natural ways of doing so.
Either we consider rooted hypertrees with black and white vertices such that each black vertex has
at least two incoming edges, or we replace RT by Gw in the above corollary. Let us start by the first
option, and define Greg hypertrees which were introduced by the author in [53].

Definition 1.4.2.16. A Greg hypertree structure on A is a rooted hypertree with black vertices
on A such that each black vertex has at least two children. A Greg hyperforest structure on A is a
partition of A together with a Greg hypertree structure on each block of the partition. Let GHu,w
be the Greg hypertrees species such that GHu,w(A) is the set of Greg hypertrees structures on A. Let
GFu,w be the Greg hyperforests species such that GFu,w(A) is the set of Greg hyperforests structures
on A. Those species are graded by the hyper-weight and the weight. Those species are bigraded by u
the number of black vertices and w the hyper-weight.

Once again, we may notice from the definition that Greg hypertrees and Greg hyperforests are
asymmetric.

Proposition 1.4.2.17. The species of Greg hypertrees GHu,w is the unique graded species verifying:

GHu,w = X · E ◦ Ew≥1 ◦ GHu,w + uE≥2 ◦ Ew≥1 ◦ GHu,w

The species of Greg hyperforests GFu,w is the unique graded species verifying:

GFu,w = Ew≥1 ◦ (X · E ◦ GFu,w + uE≥2 ◦ GFu,w)

Moreover, we have GFu,w = Ew≥1 ◦ GHu,w.

Proof. It is clear from the definition that:

GFu,w = Ew≥1 ◦ GHu,w

Moreover, let H1[X,Y ] = X ·E ◦Ew≥1[Y ] +uE ◦Ew≥1[Y ] and H2[X,Y ] = Ew≥1 ◦ (X ·E[Y ] +uE≥2[Y ]),
we may notice that H1 and H2 satisfy the conditions of the implicit species theorem. Hence, for each
equation, there is a unique species satisfying it. Let us show that we have:

GHu,w = X · E ◦ Ew≥1 ◦ GHu,w + uE≥2 ◦ Ew≥1 ◦ GHu,w

It suffice to notice that the root is either white or black, and that if it is black it has at least two
children. The rest of the proof is the same as with rooted hypertrees.

Proposition 1.4.2.18. We have:

fGH(x, u, w) =

revx

((
x+

u

w
(exp(wx)− 1) + u− u exp

(
1

w
(exp(wx)− 1)

))
exp

(
− 1

w
(exp(wx)− 1)

))

fGF (x, u, w) = revx

((
1

w
ln (1 + wx) + ux+ u− u exp(x)

)
exp (−x)

)
Proof. This is a direct consequence of the functional equations.

https://oeis.org/A367752
https://oeis.org/A367753
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We can once again use the Lagrange inversion formula to compute the coefficients of the series
fGH(x, u, w) and fGF (x, u, w). The sequence of coefficients of fGF (x, 1, 1) is A364816, the graded
versions are also in the OEIS, fGF (x, 1, w) is A370949, and fGF (x, u, 1) is A370948.

The species of Greg hyperforest and rooted Greg hypertrees will be used in the sequel, however,
the description with forest shapes and tree shapes does not work for those species. Let us define a
subspecies of the species of Greg hypertrees that will admit such a description. Let us introduce the
reduced Greg hypertrees.

Definition 1.4.2.19. A Greg hypertree is reduced if black vertices have no incoming hyperedges.
A Greg hyperforest is reduced if each of its elements is reduced. Let RGHu,w be the reduced Greg
hypertrees species such that RGHu,w(A) is the set of reduced Greg hypertrees structures on A. Let
RGFu,w be the reduced Greg hyperforests species such that RGFu,w(A) is the set of reduced Greg
hyperforests structures on A. Those species are bigraded by u the number of black vertices and w
the hyper-weight.

Proposition 1.4.2.20. The species of reduced Greg hypertrees RGHu,w is the unique graded species
verifying:

RGHu,v = X · E ◦ Ew≥1 ◦ RGHu,w + uE≥2 ◦ RGHu,w
Moreover, we have RGFu,w = Ew≥1 ◦ RGHu,w.
Proof. It is clear from the definition that:

RGFu,w = Ew≥1 ◦ RGHu,w
Moreover, let H[X,Y ] = X ·E ◦Ew≥1[Y ] + uE≥2[Y ], we may notice that H satisfies the conditions of
the implicit species theorem. Hence, the equation admit a unique solution. Let us show that we have:

RGHu,v = X · E ◦ RGFu,w + uE≥2 ◦ RGHu,w
Let us notice that the root is either white or black. If the root is white, then the same argument as
for rooted hypertrees applies, and we get:

X · E ◦ RGFu,w
If the root is black, then it has at least two children, and each edge is a simple edge. Hence, the
same argument as for rooted trees applies, and we get:

uE≥2 ◦ RGHu,w
Adding the two contributions gives the result.

Proposition 1.4.2.21. We have:

fRGH(x, u, w) = revx

(
(x+ u+ ux− u exp(x)) exp

(
− 1

w
(exp(wx)− 1)

))
fRGF (x, u, w) = revx

((
1

w
ln(1 + wx) + u+

u

w
ln(1 + wx)− u exp

(
1

w
ln(1 + wx)

))
exp (−x)

)
Proof. This is a direct consequence of the functional equations.

We can once again use the Lagrange inversion formula to compute the coefficients of the series
fRGH(x, u, w) and fRGF (x, u, w).

Proposition 1.4.2.22. We have:

RGHu,w(A) =
⊎
k∈N

⊎
P⊢kA

TSw(P )×
∏
p∈P
Gu(p)

RGFu,w(A) =
⊎
k∈N

⊎
P⊢kA

FSw(P )×
∏
p∈P
Gu(p)

https://oeis.org/A364816
https://oeis.org/A370949
https://oeis.org/A370948


80 CHAPTER 1. COMBINATORIAL SPECIES

Proof. The proof is the same as for rooted hypertrees and hyperforests, we only need to check that
the maximal subtrees of a reduced Greg hypertree are rooted Greg trees, which is the case since the
black vertices have no incoming hyperedges and have at least two children.

Remark 1.4.2.23. As with hypertrees, one needs to be careful since RGHw ̸= T Sw ◦ Gu and
RGFw ̸= FSw ◦ Gu. Indeed, we would lose the information of the partition.

To summarize, we have defined the following generalization of rooted trees:

GFu,w

RGFu,w

HFw Gu

RT

u=0 w=0

u=0 w=0

w=0 u=0



Chapter 2

Operads

We defined and studied species in the first chapter to lay down a nice mathematical fundament to
the theory of operads that we are going to study in this chapter. This choice of introducing species
before operads is not arbitrary, as it allows the author to emphasize their point of view: an operad
should be understood as an algebra in the category of species. However, this point of view is quite
anachronic. Indeed, the theory of combinatorial species was founded by Joyal in 1981, see [47], and
the first instance of the word operad with a formal definition was in 1972 by May, see [67]. The
notion of operads did not emerge out of nowhere, a lot of proto-examples (or straight example using
other terminologies) can be found. We can think about the article of Artamonov in 1969, see [2],
where clones of multilinear operations are literally symmetric algebraic operads. Before that in 1968,
the article [9] of Boardman and Vogt where category of operators in standard form are introduced,
and are in fact PROP completion of symmetric algebraic operads (that we are not going to define).
One can even go back to 1898 with the work of Whitehead, see [80] where the complete algebraic
systems are quadratic operads generated by one operation of arity two in disguise. We refer to the
book of Markl, Shnider and Stasheff [61] for a more detail history of operads. We can also refer the
article of Dotsenko [26] were some historical elements are discussed.
The operads we are interested in are the symmetric algebraic operads, these are algebra in the category
of linear species. We once again point out that this terminology is not standard since there is no
standard terminology in the literature. What we call linear species are species that take values in
the category of vector spaces, this agree with the terminology in [60], however this is in contradiction
with the terminology in [7] where what we call ordered species is called linear species, and what
we call linear species is called tensor species. To define operads, we will start by defining the tree
monads (which are secretly the free operad functors). One need to be very careful since tree monads
have very few in common with the trees we defined at the end of the first chapter. In the first
section, we will define the tree monads on set species, the species we have defined in the first chapter.
After this section, we will switch to linear species as explain in Subsection 1.3.2. We will define
symmetric algebraic operads, non-symmetric algebraic operads and shuffle algebraic operads, that we
will respectively call operads, ns operads and shuffle operads for short. We will extend our definitions
to the differential graded case, where the only additional difficulty is the appearance of Koszul signs.
Then, since operads are algebras in disguise, we will quickly introduce some tools of homological
operad theory which really is homological algebra on operads. The main tool we are introducing is
the Koszul theory for operads, which is a generalization of the Koszul duality for associative algebras
introduced by Priddy in 1970, see [72], and then extended to algebraic operads in 1994 by Ginzburg
and Kapranov [39], and Getzler and Jones [37]. We will conclude by a classification of Koszul set
operads generated by one operation of arity two that the author did in order to check a conjecture
on the generating function of Koszul operads.

81
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2.1 The tree monads

First let us recall the definition of a monoidal object and a monad. Let (C,⊗, 1) be a monoidal
category. A monoid object in C is a triple (M,γ, ε) with M ∈ C, and with γ :M⊗M→M and
ε : id→M morphisms of C such that γ is associative and ε is its unit, meaning that the following
diagrams commute:

M ⊗ (M ⊗M) M ⊗M

(M ⊗M)⊗M

M ⊗M M

id⊗γ

γ⊗id

γ

γ (associativity diagram)

1⊗M M ⊗M M ⊗ 1

M

ε⊗id

γ

id⊗ε

(unit diagram)

A co-monoid object in C is a a monoid object in the opposite category Cop, meaning that it is a
triple (M,∆, η) with the above diagrams reversed. A semi-monoid object is a “non-necessarily unital”
monoid object, meaning that it is a pair (M,γ) such that γ is associative. Semi-monoid are often
called “semi-groups”, however the author find this terminology misleading, and rather use the term
“semi-monoid” to avoid confusion. A monoid morphism f : (M,γ, ε)→ (N, δ, ν) is a morphism of C
respecting the multiplication and the unit, meaning that the following diagram commute:

M ⊗M N ⊗N

M N

f⊗f

f

γ δ

1 M

N

ν
f

ε

A semi-monoid morphism is a morphism of C respecting the multiplication, in particular any monoid
morphism is a semi-monoid morphism, but the converse is false in general. A monad (M, µ, η) on
C is a monoid object in the endofunctor category (End(C), ◦, id) of C. An algebra overM is a pair
(A,α) with A ∈ C and α :M(A)→ A a morphism of C such that the following diagrams commute:

(M◦M)(A) M(A)

M(A) A

M(α)

α

µA α

A M(A)

A

idA
α

ηA

A morphism ofM-algebras f : (A,α)→ (B, β) is a morphism of C such that the following diagram
commutes:

M(A) M(B)

A B

M(f)

f

α β
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The category ofM-algebras and there morphisms is the Eilenberg-Moore category ofM and is usually
denoted CM, however since in our context algebras over a monad will literally be algebras, we will
denote itM Alg. Let φ :M→N be a morphism of monads, it induces a functor:

φ∗ :M Alg → N Alg
(A,α) 7→ (A,α ◦ φA)

2.1.1 The symmetric tree monad

First let us recall the tree-like structure of the plethysm of species. Let X and Y be two species. We
have that:

(X ◦ Y)(A) =
⊎
k∈N

⊎
P⊢kA

X (P )×
∏
p∈P
Y(p)

Hence, an element of (X ◦ Y)(A) is a pair (s, (rp)p∈P ) with s ∈ X (P ) and rp ∈ Y(p). We depict
such an element by a tree-like structure, as depicted in Figure 2.1 with P = {p1, . . . , pk} and
pi = {ai,1, . . . , ai,li}.

Figure 2.1: An element of (X ◦ Y)(A)

· · ·

· · · · · ·

p1 pk

r1 rk

s

a1,1 a1,l1 ak,1 ak,lk

One need to be very careful with those tree-like representations of elements of (X ◦ Y)(A) since
they are very different from the species we have defined in Section 1.4.

Let us inductively define the tree monad T on the category of species.

Definition 2.1.1.1. Let X a connected species. We define the tree monad T by the following
induction:

• T≤0{X} = X,

• T≤n+1{X} = X ◦ T≤n{X}+X,

• T {X} = ⋃n∈N T≤n{X}.

Similarly, we define the reduced tree monad T by the following induction:

• T ≤0{X} = ∅,

• T ≤n+1{X} = X ◦ (T ≤n{X}+X),

• T {X} = ⋃n∈N T ≤n{X}.

If f : X → Y is a morphism of species, we define T (f) : T {X} → T {Y} and T (f) by the same
inductions. From these definitions, we have T {X} = T {X}+X and T {X} = X ◦ T {X}.

It is not clear from the definitions why we call these monads the tree monads. Let us depict
an element of T {X}. Let A a finite set, P = {p1, . . . , pk} a partition of A and let us denote
pi = {ai,1, . . . , ai,li}, let s ∈ X (P ) and ti ∈ T≤n{X}(pi). Let us depict an element T ∈ T≤n+1{X}(A)
in Figure 2.2. Let us explain our notations and the structure of T .

• The circles are the internal vertices.



84 CHAPTER 2. OPERADS

• The triangles are subtrees.

• Leaves are bijectively labeled by elements of A, meaning that we have a bijection between the
set of leaves and A.

• Each edge is labeled by a subset of A which is the set labels of leaves of the subtree it is incident
to. For example, in the figure the edge between the internal vertex labeled by s and the subtree
t1 is labeled by the set p1 = {a1,1, . . . , a1,l1}.

• Each internal vertex is labeled by an element v ∈ X ({q1, . . . , qk}) with q1, . . . , qk the labels of
the incoming edges of this vertex.

In Figure 2.2, we depict the element T = (P, s; t1, . . . , tk) ∈ X ◦ T≤n{X}(A) ⊆ T≤n+1{X}(A).

Figure 2.2: An element of T≤n+1{X}(A)

· · ·
· · · · · ·

p1 pk

t1 tk

s

a1,1 a1,l1 ak,1 ak,lk

We can now understand the inductive definition of the tree monad. The elements of T≤n+1{X}
are trees of length at most n + 1. A tree of length 0 is reduced to a leaf, hence T≤0{X} = X. A
tree of length at most n + 1 is either a root with subtrees of length at most n or a leaf. Hence,
T≤n+1{X} = X ◦ T≤n{X}+X. The reduced tree monad is the same, but we do not allow the root
to be a leaf, hence T ≤0{X} = ∅. An important fact to notice is that T≤n{X} naturally gives us a
filtration of T {X} but not a grading. We denote by Tl{X} the associated grading which corresponds
to considering the length of the longest path. We can also define the weight of a tree T ∈ T {X}(A) as
the cardinality of the set of internal vertices of T . Hence, the species T {X} is bi-graded by the length
and the weight we denote by Tl,w{X} this bi-graded species. The species T {X} is also bi-graded by
the length and the weight, however, since we would like the grading to start at 0, and that we do
not have the trivial tree (of length and weight 0) in T {X}, the weight of a tree T ∈ T {X}(A) is the
weight of the according tree in T {X}(A) minus 1, same for the length. Hence, we have:

Tl,w{X} = X + T l+1,w+1{X} = X + lwT l,w{X}

Proposition 2.1.1.2. The tree monad is a monad.

Proof. First we need to ensure that T is well-defined. To do so, we need to check that T≤n{X} ⊆
T≤n+1{X}. This is clear for n = 0. Assume that T≤n{X} ⊆ T≤n+1{X}. Then we have:

T≤n+1{X} = X ◦ T≤n{X}+X ⊆ X ◦ T≤n+1{X}+X = T≤n+2{X}

Moreover, one can check that T is a functor from the category of connected species to itself. From
the inclusion X ◦ T≤n{X} ⊆ T≤n+1{X}, we have:

T {X} = X ◦ T {X}+X

To show that T is a monad, we need to define γ : T ◦ T → T and ε : id→ T . The morphism ε is
straightforward to define:

X ⊆ X ◦ X ◦ T {X}+ X +X ⊆ X ◦ (X ◦ T {X}+X) +X = X ◦ T {X}+X = T {X}
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To describe it more explicitly, we have that εX send s to the tree with one internal vertex labeled by
s.
Let us define γX : T (T {X})→ T {X}. It should send a tree labeled by trees labeled by X to a tree
labeled by X . The idea is to replace each internal vertex by the tree labeling it. Let us depict on an
example the inductive definition of γX :

· · ·
· · · · · ·

· · · · · ·
· · ·

· · · · · · · · · · · ·

p1 pk

t1 tk

s

q1,1 q1,l1 qk,1 qk,lk

T1,1 T1,l1 Tk,1 Tk,lk

q1,1

q1,l1 qk,1
qk,lk

α1 α2 α3 α4 α5 α6 α7 α8

7→

· · ·

· · · · · ·

· · · · · · · · · · · ·

p1 pk

t1 tk

s

γ(T1,1) γ(T1,l1) γ(Tk,1) γ(Tk,lk)

q1,1
q1,l1 qk,1

qk,lk

α1 α2 α3 α4 α5 α6 α7 α8

It is quite clear from this kind of picture that γ associative and unital with respect to ε. Explicit
formulas for γ and ε can be written down, but they are quite cumbersome and do not bring any
insight.
Same for the reduced tree monad which is a sub-monad of the tree monad. We have the same
situation for the ns and shuffle tree monads.

We will no longer write the labels of internal edges since they are entirely determined by the
labels of the leaves. Here is an example of the trees we will draw from now on:

a b

c

x

y

An issue we can notice is that we do not have a canonical way to depict an element of T {X} with
trees. Indeed, the following trees depict the same elements of T {X}:

a b

c

x

y =

b a

c

x

y = c

a b

x

y = c

b a

x

y

We will see that this issue does not appear in the non-symmetric case, and we will use this fact
to make to have canonical representation of each element in the shuffle case.

2.1.2 The non-symmetric tree monad

Let us copy-past (literally) the previous section and adapt it to the non-symmetric case. Let us
inductively define the non-symmetric tree monad T ns, later ns tree monad for short, on the category
of ordered species by the same induction as the tree monad.
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Definition 2.1.2.1. Let X a connected ordered species. We define the ns tree monad T by the
following induction:

• T ns
≤0{X} = X,

• T ns
≤n+1{X} = X ◦ T ns

≤n{X}+X,

• T ns{X} = ⋃n∈N T ns
≤n{X}.

Similarly, we define the reduced ns tree monad T by the following induction:

• T ns

≤0{X} = ∅,

• T ns

≤n+1{X} = X ◦ (T
ns

≤n{X}+X),

• T ns{X} = ⋃n∈N T
ns

≤n{X}.

If f : X → Y is a morphism of ordered species, we define T ns(f) : T ns{X} → T ns{Y} and
T ns

(f) by the same inductions. From these definitions, we have T ns{X} = T ns{X} + X and
T ns{X} = X ◦ T ns{X}.

Let us depict element of T ns{X} by tree-like structures and point out the differences with the

tree monad. Let m ∈ N and λ a composition of m of length k, we denote νi =
∑i−1
j=1 λi. Let s ∈ X (k)

and ti ∈ T ns
≤n{X}(λi). We depict the element of T ns

≤n+1{X}(m) as follows:

· · ·

· · · · · ·

1 k

t1 tk

s

1 λ1 νk + 1 m

Proposition 2.1.2.2. The ns tree monad is a monad.

Proof. The same discussion as for the tree monad applies here.

We will no longer write the labels of internal edges nor the leaves since they are in increasing
order. Hence, in the non-symmetric case, we have planar trees such that each vertex is labeled by an
element of X (k) with k the number of incoming edges of this vertex. Here is an example of the trees
we will draw from now on with x, y ∈ X (2):

x

y

However, since we work with planar trees, one need to be careful since the order of the incoming
edges of each vertex is important. For example, the following trees are different:

x

y ̸=
x

y

This allows us to have a canonical representation for each element of T ns{X}, and we will use this
idea of considering planar trees to make sure we have canonical representation of each element in
the shuffle case. We can also understand why we could not have canonical representations in the
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symmetric case, indeed the symmetric group action on the leaves cannot be compatible with the
planar structure of the trees.

We have a fully faithful functor Σ : LSpe→ Spe the symmetrization functor. Furthermore, we
know it commutes with the plethysm, hence we have:

T {Σ(X )} = Σ(T ns{X})

This allows us to see the non-symmetric case as a particular case of the symmetric case. Hence,
everything we will do for the symmetric case will be valid for the non-symmetric case, however some
tools of the non-symmetric case will not be available in the symmetric case.

2.1.3 The shuffle tree monad

We can also define the shuffle tree monad for shuffle species. The trees that are going to appear are
going to be a “mix” between the trees of the symmetric case and the non-symmetric case. Let us
inductively define the shuffle tree monad T X on the category of shuffle species by the same induction
as the tree monad.

Definition 2.1.3.1. Let X a connected shuffle species. We define the shuffle tree monad T X by the
following induction:

• T X
≤0{X} = X,

• T X
≤n+1{X} = X ◦X T X

≤n{X}+X,

• T X{X} = ⋃n∈N T X
≤n{X}.

Similarly, we define the reduced ns tree monad T by the following induction:

• T X
≤0{X} = ∅,

• T X
≤n+1{X} = X ◦X (T X

≤n{X}+X),

• T X{X} = ⋃n∈N T
X
≤n{X}.

If f : X → Y is a morphism of ordered species, we define T X(f) : T X{X} → T ns{Y} and

T X
(f) by the same inductions. From these definitions, we have T X{X} = T X{X} + X and

T X{X} = X ◦X T X{X}.

Let us recall that the shuffle plethysm is the image of the plethysm under the forgetful functor
from the category of species to the category of shuffle species. In particular, for X and Y to shuffle
species, we have:

(X ◦X Y)(n) =
⊎
k∈N

⊎
P⊢kn

X (k)×
∏
p∈P
Y(|p|)

=
⊎
k∈N

⊎
λ⊨kn

n!

k!λ1! . . . λk!
X (k)×

k∏
i=1

Y(λi)

From this fact, we see that we can depict elements of T X{X} by tree-like structures, same as in the
symmetric case but with integers labeling the leaves. Let m ∈ N, P = {p1, . . . , pk} a partition of m

and λ the composition of m given by λi = |pi|. We denote by νi the sum
∑i−1
j=1 λj . Figure 2.3 depicts

an element of T X{X}(m) with those notations. To get a canonical representation of elements of
T ns{X} by tree-like structures, we need to define the notion of shuffle tree.
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Figure 2.3: An element of T X{X}(A)

· · ·
· · · · · ·

p1 pk

t1 tk

s

1 λ1 νk + 1 m

Definition 2.1.3.2. A shuffle tree is a planar rooted tree such that the leaves are bijectively labeled
by the set {1, . . . , n} with n the number of leaves, such that:
When we label each edge by the smallest label of the leaves above it, the labels of the incoming edges
of each vertex are in increasing order.

Example 2.1.3.3. The following planar trees are shuffle trees:

1

2 3

•

• ;

1 2

3

•

• ;

1 3

2

•

•

The following planar trees are not shuffle trees:

1

3 2

•

• ; 2

1 3

•

• ; 2

3 1

•

• ; 3

1 2

•

• ; 3

2 1

•

• ;

2 1

3

•

• ;

2 3

1

•

• ;

3 1

2

•

• ;

3 2

1

•

•

All the example we give are binary planar trees. Shuffle trees do not have to be binary, however
for all the explicit computations we will do, only binary trees will appear.

Proposition 2.1.3.4. The shuffle tree monad is a monad.

Proof. The same discussion as for the tree monad applies here.

We will depict elements of T X{X} by shuffle trees such that each internal vertex is labeled by
elements of X (k) with k the number of incoming edges of this vertex. Here some examples with
x, y ∈ X (2):

1

2 3

x

y ;

1 2

3

x

y ;

1 3

2

x

y

2.2 Algebraic operads

With the definition of the tree monads, we are ready to give definitions of algebraic operads. The last
point to clarify is the category in which we are going to work. We would like to work with vector
spaces over a field of characteristic 0 to do algebra. Hence, our goal is to work in the linear case,
with linear species. The functor Span : Set→ Vect induces a functor:

Span : Spe→ Vect Spe

Same in the ns and shuffle case. We can define our tree monads in the linear case by the same
induction as in the set theoretical case. Since the Span functor is compatible with the operations
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of the category of species, it commutes with the tree monads. By a slight abuse of notation, we
denote by T : Vect Spe→ Vect Spe the linear tree monad. Same in the ns and shuffle case. To avoid
confusion, we will denote by T {X} the tree monad applied on X a set species, by T (S) applied on S
a linear species, and by T [X ] applied on Span(X ). We may notice that:

T [X ] = Span(T {X}) = T (Span(X ))

Proposition 2.2.0.1. We have the following:

• Let S be an ordered linear species and X a basis of S as a vector space. Then X is an ordered
set species. We have that the planar trees such that the internal vertices are labeled by elements
of X constitute a basis of T ns(S) as a vector space. Namely:

T ns(S) = Span(T ns{X})

• Let S be a shuffle linear species and X a basis of S as a vector space. Then X is a shuffle set
species. We have that the shuffle trees such that the internal vertices are labeled by elements of
X constitute a basis of T X(S) as a vector space. Namely:

T X(S) = Span(T X{X})

• Let S be a linear species and X a basis of S as a vector space. Then X is a shuffle set species.
Indeed, it is not possible to guaranty that the basis is compatible with the group action. We
have that the shuffle trees such that the internal vertices are labeled by elements of X constitute
a basis of T (S) as a vector space. Namely:

U(T (S)) = Span(T X{X})

The case we are interested in is the last one. However, we see that it is the most involved one. It is
exactly because of this technicality that we needed to introduce shuffle species.

Proof. The easy case is the ordered case. Let S be an ordered linear species and X a basis of
S as a vector space. We have that X is an ordered set species such that Span(X ) = S. Hence,
Span(T ns{X}) = T ns(S), and the discussion of Subsection 2.1.2 explicitly describes the basis. The
shuffle case is similar with shuffle trees instead of planar trees.
The linear case is slightly more tricky as the basis given by the shuffle trees is not compatible with
the symmetric group action. However, by the definition of the linear shuffle species, we have that
U(T (S)) = T X(U(S)) for S a linear species and U : Vect Spe→ Vect XSpe the forgetful functor.
Hence, T X(U(S)) is the underlying vector space of the linear species T (S). The same discussion as
in the shuffle case concludes the proof.

From now on all the species will be assumed to be linear species. Same for ordered and shuffle
species that will be assumed to be respectively linear ordered species and linear shuffle species.

2.2.1 Definitions of algebraic operads

We are now ready to give the definitions of algebraic operads. We will give three equivalent definitions
of operads. The first one is through the tree monad which ease the study of the free operads, and
allows us to do computations by working on trees in this case. The second one is through the
plethysm which shows that an operad is literally a monoid in the category of species relatively to
the plethysm. The last one is a partial definition which allows us to see an operad as a collection of
abstract multilinear maps closed under composition.

Definition 2.2.1.1 (T -algebra definition of an operad). A symmetric algebraic operad, or operad
for short, is an algebra over the tree monad T .
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Definition 2.2.1.2 (Monoidal definition of an operad). An operad is a monoid in the category of
species according to the plethysm.

Definition 2.2.1.3 (Partial definition of an operad). An operad is a species P ∈ Vect Spe together
with a collection of maps ◦i and an element ei ∈ P({i}) such that ◦i : P(A⊔{i})⊗P(B)→ P(A⊔B)
such that the following diagrams commute:

P({j})⊗ P(A ⊔ {i}) P(A ⊔ {i}) P(A ⊔ {i})⊗ P({i})

P(A ⊔ {i})

◦j ◦i

ej⊗id id⊗ei

(identity)

P(A ⊔ {i})⊗ (P(B ⊔ {j})⊗ P(C)) P(A ⊔ {i})⊗ P(B ⊔ C)

(P(A ⊔ {i})⊗ P(B ⊔ {j}))⊗ P(C)

P(A ⊔B ⊔ {j})⊗ P(C) P(A ⊔B ⊔ C)

id⊗◦j

◦i⊗id

◦j

◦i

(sequential composition)

(P(A ⊔ {i, j})⊗ P(B))⊗ P(C) P(A ⊔B ⊔ {i})⊗ P(C)

(P(A ⊔ {i, j})⊗ P(C))⊗ P(B)

P(A ⊔ C ⊔ {j})⊗ P(B) P(A ⊔B ⊔ C)

◦j⊗id

◦i⊗id

◦j

◦i

(parallel composition)

P(A ⊔ {i})⊗ P(B) P(C ⊔ {σ(i)})⊗ P(D)

P(A ⊔B) P(C ⊔D)

P(σ)⊗P(τ)

P((σ\{i})⊔τ)

◦i ◦σ(i)

(compatibility with the species structure)

These diagrams may seem cryptic at first, but they are very natural. One needs to see a partial
operad as the algebraic structure encoding partial composition of multivariate maps with elements of
P(A) being multivariate maps such that the input are labeled by the set A. Indeed, the first diagram
is the unitary condition stating that composing with the identity in the input i does not change the
map, and that composing f in the input of the identity gives f once again.

f ◦i id = f and id ◦jf = f
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The second diagram is the associativity of the composition stating that composing a map h in the
input j of a map g and then composing the result g ◦j h in the input i of f is the same as composing
g in the input i of f and then composing h in the input j of the result g ◦i f .

f ◦i (g ◦j h) = (f ◦i g) ◦j h

The third diagram is the sequential axiom stating that the inputs of f are independent hence
composing g in the input i of f and then composing h in the input j of the result f ◦i g is the same
as composing h in the input j of f and then composing g in the input i of the result f ◦j h.

(f ◦i g) ◦j h = (f ◦j h) ◦i g

The last diagram is the fact that relabeling the inputs of the maps does not change the result of the
composition. Hence, with σ a relabeling of the inputs of f and τ of the inputs of g, we have:

(f.σ) ◦σ(i) (g.τ) = (f ◦i g).((σ \ {i}) ⊔ τ)

Proposition 2.2.1.4. The three definitions of an operad are equivalent.

Proof. Let P be an operad defined by partial compositions, let us define a monoid structure on P.
We need to define a map γ : P ◦ P → P and a map ε : X → P. Let us define γ as follows:

γA : (s; r1, . . . , rn) 7→ (. . . (s ◦p1 r1) ◦p2 r2 . . . ) ◦pn rn

Where A is a finite set, P = {p1, . . . , pn} is a partition of A, s ∈ P(P ), ri ∈ P(pi), and thus
(s; r1, . . . , rn) ∈ (P ◦P)(A). Let us define ε by ε{∗} : ∗ 7→ e∗, where e∗ is the element of P({∗}) given
by the partial operad structure. The parallel composition diagram ensures that γ is well-defined.
The compatibility with the species structure diagram ensures that γ and ε are morphisms of species.
The sequential composition diagram and unitary diagram ensure respectively that γ is associative,
and that ε is its unit. Hence, P is a monoid in the category of species according to the plethysm.
Let P an operad defined by the monoidal definition, let us inductively define a T -algebra structure
on P:

• Let us define µ0 : T≤0(P)→ P by µ0 = ε.

• Assume that we have defined µn : T≤n(P)→ P, let us define µn+1 : T≤n+1(P)→ P by:

µn+1 = γ(id ◦µn) + ε : P ◦ T≤n(P) +X → P

The fact that γ is associative and unital with respect to ε ensures that µ is a T -algebra structure on
P.
Let P an operad defined by the T -algebra definition, let us define a partial operad structure on P.
Let us define the partial operad structure on P by:

◦i : (s, r) 7→ µ

 i

r

s


Where we omitted the leaves for readability. Let us define ei = µ(∗). The fact that µ is a T -algebra
structure on P ensures that the partial compositions verify the required axioms. Hence, P is a partial
operad.
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To summarize, if P is an operad defined by T -algebra definition, then we can get the partial
compositions by setting:

◦i : (s, r) 7→ µ

 i

r

s

 (Leaves are omitted for readability.)

Moreover, we can get the monoidal structure by setting:

γ : (s; r1, . . . , rn) 7→ µ


· · ·

p1 pk

r1 rk

s

 (Leaves are omitted for readability.)

Then, if we only have the partial compositions, we can recover the monoid structure γ by setting:

γ : (s; r1, . . . , rn) 7→ (. . . (s ◦p1 r1) ◦p2 r2 . . . ) ◦pn rn

And if we only have the monoidal structure, we can recover the T -algebra definition by inductively
defining a T -algebra structure on P as follows:

µ = γ(id ◦µ) + ε : P ◦ Tn(P) +X → P

Hence, the three definitions are equivalent. The full data are given by the T -algebra structure. The
data of the partial compositions are enough to recover the monoidal structure, and the data of the
monoidal structure allows us to inductively recover the T -algebra structure.

Definition 2.2.1.5. A morphism of operads is:

• a T -algebra morphism; or

• a monoid morphism; or

• a morphism of species that respects the partial compositions and the unit.

Those three definitions are equivalent.

The equivalence of the three definitions of an operad allows us to have three interpretations of the
notion of operad. The partial definition tells us that an operad behave like a collection of multivariate
maps stable by partial compositions. The monoid definition allows us to understand an operad as a
combinatorial object, a species, together with an algebraic structure, a monoidal structure. Finally,
the T -algebra definition provide a way to represent elements of operads as trees and to do actual
computations with them.

Let us give the analogous definitions for the ns and shuffle case.

Definition 2.2.1.6. Similarly to the symmetric case, we have three equivalent definitions for a
non-symmetric algebraic operad, or ns operad for short:

• A ns operad is an algebra over the ns tree monad T ns.

• A ns operad is a monoid in the category (Vect LSpe, ◦, X) of ordered species according to the
plethysm.
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• A ns operad is an ordered species P ∈ Vect LSpe together with an element e ∈ P(1) and
a collection of maps ◦i : P(n + 1) ⊗ P(m) → P(n + m) satisfying the unitary, sequential
composition, and parallel composition axioms, meaning that the following diagrams commute:

P(1)⊗ P(n) P(n) P(n)⊗ P(1)

P(n)

◦1 ◦i

e⊗id id⊗e

(ns identity)

P(n+ 1)⊗ (P(m+ 1)⊗ P(k)) P(n+ 1)⊗ P(m+ k)

(P(n+ 1)⊗ P(m+ 1))⊗ P(k)

P(n+m+ 1)⊗ P(k) P(n+m+ k)

id⊗◦j

◦i⊗id

◦j+i−1

◦i

(ns sequential composition)

(P(n+ 2)⊗ P(m))⊗ P(k) P(n+m+ 1)⊗ P(k)

(P(n+ 2)⊗ P(k))⊗ P(m)

P(n+ k + 1)⊗ P(m) P(n+m+ k)

◦j⊗id

◦i⊗id

◦j′

◦i′

(ns parallel composition)
With i′ = i if i < j and i′ = i+ k − 1 if i > j, same with j′ = j if j < i and j′ = j +m− 1 if
j > i.

The equivalence of these three definitions is a direct consequence of the discussion we had in the
symmetric case. One may remark that indexing the partial compositions over the integers {1, . . . , n}
rather than any finite set creates some technicalities. Indeed, one need to renumber the inputs of the
maps when composing them, which is the reason why j + i− 1 appears in Diagram ns sequential
composition.

Definition 2.2.1.7. Similarly to the symmetric case, we have three equivalent definitions for a
shuffle algebraic operad, or shuffle operad for short:

• A shuffle operad is an algebra over the shuffle tree monad T ns.

• A shuffle operad is a monoid in the category (Vect XSpe, ◦X, X) of shuffle species according
to the shuffle plethysm.

• A shuffle operad is a shuffle species P ∈ Vect XSpe together with an element e ∈ P(1) and a
collection of maps ◦i,I : P(n+ 1)⊗ P(m)→ P(n+m) with I ⊆ n+m such that |I| = m and
i = min(I), satisfying the unitary, sequential composition, and parallel composition axioms,
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meaning that the following diagrams commute:

P(1)⊗ P(n) P(n) P(n)⊗ P(1)

P(n)

◦1,{1} ◦i,{i}

e⊗id id⊗e

(shuffle identity)

P(n+ 1)⊗ (P(m+ 1)⊗ P(k)) P(n+ 1)⊗ P(m+ k)

(P(n+ 1)⊗ P(m+ 1))⊗ P(k)

P(n+m+ 1)⊗ P(k) P(n+m+ k)

id⊗◦j,J

◦i,I⊗id

◦j′,J′

◦i′,I′

(shuffle sequential composition)

(P(n+ 2)⊗ P(m))⊗ P(k) P(n+m+ 1)⊗ P(k)

(P(n+ 2)⊗ P(k))⊗ P(m)

P(n+ k + 1)⊗ P(m) P(n+m+ k)

◦b,B⊗id

◦a,A⊗id

◦b′,B′

◦a′,A′

(shuffle parallel composition)

Like in the ns case, some renumbering appears in the parallel and sequential compositions. For
the sake of completeness, let us explicitly describe the renumbering. For the sequential composition,
let us consider the following shuffle tree:

. . . . . .

. . . . . .

. . .

S1 S5

S2 S4

S3

Then I, J, I ′, J ′ are defined as follows:

• I ′ = S2 ⊔ S3 ⊔ S4;

• J ′ = S3;

• I = S2 ⊔ {j′} ⊔ {s− js + 1 | s ∈ S4} with js = |{r ∈ S3 | r ≤ s}|;
• J = {s− i′ − is + 1 | s ∈ S3} with is = |{r ∈ S5 | r ≤ s}|.
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We may notice that either (I, J ′) or (I ′, J) are enough to recover the full data of the shuffle tree. For
the parallel composition, let us consider the following shuffle tree:

. . . . . . . . .

. . . . . .

P1 P3 P5

P2 P4

Then A,B,A′, B′ are defined as follows:

• A′ = P2;

• B′ = P4;

• A = {p− bp | p ∈ P2} with bp = |{q ∈ P4 | q ≤ p}|;

• B = {p− ap + 1 | p ∈ P4} with ap = |{q ∈ P2 | q ≤ p}|.
Once again, we may notice that either (A,B′) or (A′, B) are enough to recover the full data of the
shuffle tree. The renumbering have become much more painful in the shuffle case, because of those
technicalities, we will allow ourselves to index the inputs over finite sets even in the ns or shuffle
case, thus avoiding the need to renumber the inputs of the maps when composing them. Once again,
the equivalence of these three definitions is a direct consequence of the discussion we had in the
symmetric case.

First let us define our first example of operad, the trivial operad.

Definition 2.2.1.8. The trivial operad is the operad I = (X, 0, id) with the monoid definition. We
have that I = T (0), hence I is the initial object of the category of operads.

The trivial operad is the initial object of the category of operads, it is the simplest operad. It is
the operad with only one element, the identity. It also allows us to define the notion of augmented
operad, which is quite important since all the concrete example of operads we are going to give are
actually augmented operads.

Definition 2.2.1.9. An augmented operad is an operad (P, γ, ε) together with an augmentation
map η : P → I such that η ◦ ε = id. The augmentation map is the map η, and the augmentation
ideal is the kernel of η.

Definition 2.2.1.10. Let P and Q be two augmented operads and P and Q their augmentation
ideal. The connected sum of P and Q is the operad I ⊕ P ⊕Q such that the partial composition of
an element of P with an element of Q is zero, and similarly the partial composition of an element of
Q with an element of P is zero. It means that: f ◦i g = g ◦j f = 0 for all f ∈ P and g ∈ Q.

To see the link between operads and algebraic structures, let us define our second and less trivial
example of operad, the endofunctor operad, and see how it is related to the notion of algebra over a
monad.

Definition 2.2.1.11. Let V be a vector space, the endomorphism operad of V is the operad EndV
such that EndV (A) = Hom(V ⊗A, V ) with the composition of endomorphisms.

Definition 2.2.1.12. Let P be an operad, let FP be the Schur functor associated to the underlying
species of P. Since the plethysm of operads corresponds to the composition of endomorphisms, FP
is a monad of Vect. A P-algebra is an algebra over the monad FP .

Proposition 2.2.1.13. The data of a P-algebra structure on V is equivalent to the data of a
morphism of operads P → EndV .
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Proof. A P-algebra structure on V is a morphism µ : FP(V ) → V compatible with the monadic
structure of FP . From the definition of FP , it is a family of morphisms µn : P(n)⊗Sn V

⊗n → V .
Moreover we have:

Hom
(
P(n)⊗Sn V

⊗n, V
)
= HomSn

(
P(n),Hom

(
V ⊗n, V

))
Hence, we have a morphism of species P → EndV . Moreover, the fact that µ is compatible with the
monad structure of FP ensures that the morphism of species is a morphism of operads.
Conversely, a morphism of operads P → EndV give rise to a P-algebra structure on V .

2.2.2 Presentation by generators and relations

We have a nice definition of operads and the promise that they can encode algebraic objects. However,
we do not know (yet) how to construct useful operads. A very general way to construct mathematical
objects is by generators and relations. Let us see how to do that for operads. To construct a
mathematical object by generator and relations, one usually need two ingredients: a notion of free
object and a notion of quotient. The T -algebra definition already provides us with a notion of free
object, the free operad on a species S is T (S). Let us see how to define a notion of quotient for
operads.

Definition 2.2.2.1. Let (P, γ, ε) be an operad (resp. a ns operad, a shuffle operad) given by the
monoid definition, a left ideal of P is a subobject L of P such that γ(P ◦ L) ⊂ L. A right ideal of P
is a subobject R of P such that γ(R ◦ P) ⊂ R.

These definitions of left and right ideals may seem equivalent to each other, however, they are
not. Indeed, a technical issue in the world of operads is that the plethysm is left linear but not right
linear. Let us define the infinitesimal composition as a linearization of the plethysm. We recall that
the plethysm is defined by:

• (S ◦ R)(A) =
⊕
k∈N

⊕
P⊢kA

S(P )⊗
⊗
p∈P

R(p) for species;

• (S ◦ R)(n) =
⊕
k∈N

⊕
λ⊨kn

S(k)⊗
k⊗
i=1

R(λi) for ordered species;

• (S ◦X R)(n) =
⊕
k∈N

⊕
λ⊨kn

n!

k!λ1! . . . λk!
S(k)⊗

k⊗
i=1

R(λi) for shuffle species.

With those formulas, we clearly say the plethysm is not right linear.

Definition 2.2.2.2. Let us define the infinitesimal composition of S with R relatively to U by:

• (S ◦′ (U ,R))(A) =
⊕
k∈N

⊕
P⊢kA

S(P )⊗
⊕
p∈P

R(p)⊗
⊗
q ̸=p
U(q) for species;

• (S ◦′ (U ,R))(n) =
⊕
k∈N

⊕
λ⊨kn

S(k)⊗
k⊕
i=1

R(λi)⊗
⊗
j ̸=i
U(λj) for ordered species;

• (S ◦′X (U ,R))(n) =
⊕
k∈N

⊕
λ⊨kn

n!

k!λ1! . . . λk!
S(k)⊗

k⊕
i=1

R(λi)⊗
⊗
j ̸=i
U(λj) for shuffle species.

We will denote S ◦′ R for S ◦′ (I,R).
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We have clearly fixed the linearity issue. Indeed, we have: S ◦′ (U ,R1 +R2) = S ◦′ (U ,R1) +
S ◦′ (U ,R2). However, we added a new issue: one need to choose a third species U to define the
infinitesimal composition. This is not a big issue, as we will have a canonical choice for U . Another
slight issue is that one need to be careful that S ◦′ (R,R) ̸= S ◦ R in general. Indeed, a lot of
elements of S ◦ R are present multiple times in S ◦′ (R,R) since we have chosen a preferred copy of
R. However, we still get a canonical morphism S ◦′ (R,R)→ S ◦R

Definition 2.2.2.3. Let P be an operad (resp. a ns operad, a shuffle operad), a left infinitesimal
ideal of P is a subobject L of P such that γ(P ◦′ L) ⊂ L. An operadic ideal of P is a subobject S
such that S is a left infinitesimal ideal and a right ideal.

Proposition 2.2.2.4. Let φ : P → Q be a morphism of operads. The kernel of φ is an operadic
ideal of P.

Proof. Let us check this property using partial compositions. Let f ∈ P such that φ(f) = 0. Then
for all g ∈ P we have:

φ(f ◦i g) = φ(f) ◦i φ(g) = 0

Hence, ker(φ) is a right ideal of P. Moreover, we have:

φ(g ◦i f) = φ(g) ◦i φ(f) = 0

Hence, ker(φ) is a left infinitesimal ideal of P. Same in the ns and shuffle cases.

Definition 2.2.2.5. Let P be an operad (resp. a ns operad, a shuffle operad) and S be a subspecies
of P. The quotient of P by S is the species P/S such that (P/S)(A) = P(A)/S(A) for all A.

Proposition 2.2.2.6. Let P be an operad (resp. a ns operad, a shuffle operad) and S a subspecies of
P. The operadic structure of P induces an operadic structure on P/S if and only if S is an operadic
ideal of P.

Proof. If P induces an operadic structure on P/S, then π : P → P/S is a morphism of operads.
Hence, S is an operadic ideal of P. Conversely, if S is an operadic ideal of P, let f1, f2 ∈ P and
g1, g2 ∈ P such that f1 − f2 ∈ S and g1 − g2 ∈ S. Then:

f1 ◦i g1 − f1 ◦i (g1 − g2)− (f1 − f2) ◦i g1 = f2 ◦i g2

Since S is an operadic ideal, we have:

π(f1 ◦i g1) = π(f2 ◦i g2)

Hence, the partial compositions are well-defined on P/S. Same in the ns and shuffle cases.

The last ingredient we are missing to define an operad by generator and relator is the operadic
ideal generated by a subset.

Definition 2.2.2.7. Let P be an operad (resp. a ns operad, a shuffle operad) and R a subset of P.
The operadic ideal generated by R is the smallest operadic ideal of P containing R. More precisely,
it is the intersection of all operadic ideals of P containing R which is an operadic ideal of P since
operadic ideals are stable by intersection.

Definition 2.2.2.8. Let S be a species (resp. an ordered species, a shuffle species) and R =
{r1, . . . , rk} a set of elements of T (S). The operad (resp. the ns operad, the shuffle operad) generated
by S with relations R denoted by T (S)/⟨R⟩ or T (S)/⟨r1, . . . , rk⟩ is the quotient of T (S) by the
operadic ideal generated by R. In the case of set species, we introduce the following two notations:

• If X is a set species, and R an equivalence relation on T {X}, then we denote by T {X}/R the
set operad generated by X with relation R.
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• If X is a set species, we denote T [X ] = T (Span(X )). If R ⊆ T [X ], then we denote by T [X ]/⟨R⟩
the algebraic operad generated by Span(X ) with relations R.

With those definitions, we have a way to construct operads by generators and relations, and we
can finally define the coproduct of operads.

Definition 2.2.2.9. Let P and Q be two operads. The coproduct of P and Q is the operad P ∨Q
satisfying the universal property of the coproduct in the category of operads. More explicitly, if
P = T (S1)/R2 and Q = T (S2)/R2, then P ∨Q = T (S1 ⊕S2)/⟨R1 ⊕R2⟩. If we have a third operad
U such that:

P U Qψφ

Then the fibered coproduct of P and Q over U denoted P ∨U Q is:

P ∨U Q = (P ∨Q)/⟨φ(x)− ψ(x) | x ∈ U⟩

We would like to draw the attention of the reader towards the last notation T [X ]/⟨R⟩ since this
is the notation we are going to use in the rest of the document.

2.2.3 The Three Graces and the operadic butterfly

We can now define our favorite operads, the Three Graces. The Three Graces are the three operads
Ass, Com, and Lie respectively encoding the associative, commutative associative, and Lie algebras.
They were named the Three Graces by Loday since these are the three most important example of
operads. Let us start with the operad Ass of associative algebras. We specify “associative” algebras
because most algebra we are going to consider are not associative at all. Hence, the reader should
keep in mind that we use the term algebra for a general algebraic structure, in particular algebra are
always assumed to be non-necessarily associative algebra.

Definition 2.2.3.1. The associative operad denoted Ass is the operad generated by one generator
of arity two without symmetry µ and the relations {µ ◦1 µ− µ ◦2 µ}.

Ass = T [µ, µ.(1 2)]/⟨µ ◦1 µ− µ ◦2 µ⟩

One can “draw” the relation µ ◦1 µ = µ ◦2 µ as follows:

a b

c

µ

µ = a

b c

µ

µ

If interpret µ a product (a bilinear map) of a vector space V and a, b, c ∈ V , we get (ab)c = a(bc)
and we recognize the associativity relation. Formally, we have the following result:

Proposition 2.2.3.2. The category Ass Alg is the category of (non-necessarily unital) associative
algebras.

Proof. Let (A,m) be an associative algebra, then by the universal property of the free operad, there
exists a unique morphism of operads such that:

T [µ, µ.(1 2)] → EndA
µ 7→ m

Moreover since m is associative, it factorizes through Ass. Hence, we have a morphism of operads
Ass → EndA. Conversely, let φ : Ass → EndA be a morphism of operads, then let m = φ(µ). We
have that (A,m) is an associative algebra.
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This basic example is interesting in many aspects. First it shows that operads can be used to
encode algebraic structures, indeed replacing the associativity relation by let say the Jacobi identity,
we would get the operad of Lie algebras. Moreover, the operad Ass have a lot of interesting properties:

Proposition 2.2.3.3. The underlying species of Ass is the species L≥1 of total order on non-empty
sets.

Proof. Since Ass-algebras are exactly the associative algebras, the Schur functor FAss is the free
associative algebra. Hence, we have:

FAss(V ) =
⊕
n≥1

V ⊗n

We recognize the Schur functor of the species L≥1. Hence, Ass = L≥1 as species.

Similarly, we can define the operad Com of (non-necessarily unital) commutative associative
algebras. The only modification we need to do is to make the product commutative.

Definition 2.2.3.4. The commutative operad denoted Com is the operad generated by one symmetric
generator c of arity two and the relations {c ◦1 c− c ◦2 c}.

Com = T [c]/⟨c ◦1 c− c ◦2 c⟩

Such that the action of S2 is given by c.(1 2) = c.

We can see from this example that the data of the group action on the generators is fundamental
to define the operad. Indeed, the operad Ass and Com are quite different, however they only differ
by the action of S2 on the generator.

Proposition 2.2.3.5. The category Com Alg is the category of commutative associative algebras.

Proof. Let (A,m) be a commutative associative algebra, then by the universal property of the free
operad, there exists a unique morphism of operads such that:

T [c] → EndA
c 7→ m

Moreover since m is associative, it factorizes through Com. Hence, we have a morphism of operads
Com→ EndA. Conversely, let φ : Com→ EndA be a morphism of operads, then let m = φ(c). We
have that (A,m) is a commutative associative algebra.

Proposition 2.2.3.6. The underlying species of Com is the species E≥1 of non-empty sets.

Proof. Since Com-algebras are exactly the commutative associative algebras, the Schur functor FCom

is the free commutative associative algebra. Hence, we have:

FCom(V ) =
⊕
n≥1

V ⊗n/Sn

We recognize the Schur functor of the species E≥1. Hence, Com = E≥1 as species.

Let us define the last of the Three Graces, the operad Lie of Lie algebras. The Lie operad is a bit
more complicated than the two previous ones, since we need to encode the Jacobi identity.

Definition 2.2.3.7. The Lie operad denoted Lie is the operad generated by one skew-symmetric
generator ℓ of arity two and the relations {ℓ ◦1 ℓ+ (ℓ ◦1 ℓ).(1 2 3) + (ℓ ◦1 ℓ).(1 3 2)}.

Lie = T [ℓ]/⟨ℓ ◦1 ℓ+ (ℓ ◦1 ℓ).(1 2 3) + (ℓ ◦1 ℓ).(1 3 2)⟩

Such that the action of S2 is given by ℓ.(1 2) = −ℓ.
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Proposition 2.2.3.8. The category Lie Alg is the category of Lie algebras.

Proof. Let (g, [. , .]) be a Lie algebra, then by the universal property of the free operad, there exists a
unique morphism of operads such that:

T [ℓ] → Endg
ℓ 7→ [. , .]

Moreover since [. , .] satisfies the Jacobi identity, it factorizes through Lie. Hence, we have a morphism
of operads Lie → Endg. Conversely, let φ : Lie → Endg be a morphism of operads, then let
[. , .] = φ(ℓ). We have that (g, [. , .]) is a Lie algebra.

These three operads are related the following way:

Lie→ Ass ↠ Com

The way to understand this is that any associative algebra is a Lie algebra since the commutator is a
Lie bracket, and any commutative associative algebra is an associative algebra. The morphisms are
given by:

Lie Ass Com
ℓ 7→ µ− µ.(1 2) µ 7→ c

It was remarked that it is possible to extend this diagram. Let us define four other operads:

Definition 2.2.3.9. Let us define the following operads:

• The diassociative operad denoted Diass:

Diass = T [a, b, a.(1 2), b.(1 2)]/⟨a◦2a−a◦1a, a◦2a−a◦2b, a◦1b−b◦2a, b◦1a−b◦2b, b◦1a−b◦1b⟩

• The dendriform operad denoted Dend:

Dend = T [x, y, x.(1 2), y.(1 2)]/⟨x ◦1 x− x ◦2 x− x ◦2 y, x ◦1 y − y ◦2 x, y ◦1 x+ y ◦1 y − y ◦2 y⟩

• The Leibniz operad denoted Leib:

Leib = T [λ, λ.(1 2)]/⟨λ ◦1 λ+ (λ ◦1 λ).(1 2 3) + (λ ◦1 λ).(1 3 2)⟩

• And the Zinbiel operad denoted Zinb:

Zinb = T [z, z.(1 2)]/⟨z ◦1 z − z ◦2 z − (z ◦2 z).(2 3)⟩

These operads were respectively introduced in [59] for the diassociative and dendriform operads,
in [56] for the Leibniz operad, and in [58] for the Zinbiel operad. We then have the following
commutative diagram:

Diass Dend

Leib Ass Zinb

Lie Com

λ 7→ a− b.(1 2)
a 7→ µ
b 7→ µ

λ 7→ ℓ ℓ 7→ µ− µ.(1 2)

µ 7→ x+ y
x 7→ z

y 7→ z.(1 2)

µ 7→ c c 7→ z + z.(1 2)

Let us define the true favorite operad of the author, the operad PreLie encoding pre-Lie algebras
which was first introduced in [19].
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Definition 2.2.3.10. The pre-Lie operad denoted PreLie is the operad generated by one generator
of arity two without symmetry r and the relations {r ◦1 r − r ◦2 r = (r ◦1 r − r ◦2 r).(1 2)}.

PreLie = T [r, r.(1 2)]/⟨(r ◦1 r − r ◦2 r)− (r ◦1 r − r ◦2 r).(1 2)⟩

The way to understand this definition is that pre-Lie algebras (which are algebras over PreLie)
are a generalization of associative algebras, indeed pre-Lie algebras satisfy a weakened version of
associativity: instead of having the associator that vanishes, we have that the associator is right
symmetric. The reason PreLie is interesting is that we still have:

Lie→ PreLie

With the morphism ℓ 7→ r − r.(1 2). Moreover, we have the following fact:

Proposition 2.2.3.11. Let P be an operad. Let ⋆ be defined by ⋆ =
∑ ◦i with ◦i the partial

compositions. Then (P, ⋆) is a pre-Lie algebra.

Proof. Let f, g, h ∈ P and let us compute (f ⋆ g) ⋆ h. We have that:

(f ⋆ g) ⋆ h =
∑

(i,j)∈Seq
(f ◦i g) ◦j h+

∑
(i,j)∈Par

(f ◦i g) ◦j h

With Seq the set of indices (i, j) such that the composition is sequential and Par the set of indices
(i, j) such that the composition is parallel. Using the sequential composition axiom we have that:

(f ⋆ g) ⋆ h =
∑

(i,j)∈Seq
f ◦i (g ◦j h) +

∑
(i,j)∈Par

(f ◦i g) ◦j h

= f ⋆ (g ⋆ h) +
∑

(i,j)∈Par
(f ◦i g) ◦j h

Hence, we get:

(f ⋆ g) ⋆ h− f ⋆ (g ⋆ h) =
∑

(i,j)∈Par
(f ◦i g) ◦j h

Using the parallel composition axiom we get the intended result.

The property that any operad is a pre-Lie algebra is quite interesting, and is part of the reason
why the author is so fond of pre-Lie algebras. We will see more about the pre-Lie operad in the next
chapter.

2.2.4 Operadic rewriting systems

We now know how to define operads by generators and relations. However, a usual issue with this
kind of definition is that it is not easy to compute with it. Indeed, we have no canonical way to
represent an element of a quotient. To solve this issue, we will be using rewriting systems. We will
first recall the basic definitions of abstract rewriting systems (ARS). We will then adapt this notion
to vector spaces to get linear rewriting systems (LRS), this terminology is not standard and once
again the reader should be careful as in the literature LRS is used to denote a different notion. In
our case we use the terminology LRS to denote a rewriting system on vector spaces compatible with
the structure. Finally, we will define operadic rewriting systems (ORS) which are rewriting systems
on operads. The adapted context to these constructions are in fact polygraph, see [41], however the
author do not wish to introduce this general context, and we will adapt the definitions and proofs to
the operadic case. What we are going to achieve with operadic rewriting systems is usually done
either with PBW basis, see [43], or with Gröbner basis, see [28] and [10]. However, since the author
tends to prefer rewriting systems, we will use this approach.
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Definition 2.2.4.1. An abstract rewriting system, denoted ARS , is a pair (A,→) where A is a set
and → is a binary relation on A, called the reduction relation. We denote by a→ b a rewriting step
which is a couple (a, b) in relation by →. We denote by

∗→ the reflexive and transitive closure of →,

meaning that a
∗→ b if we have a sequence:

a = a0 → a1 → . . .→ an = b

We will denote ← the opposite relation of →, meaning that a← b if b→ a.

Definition 2.2.4.2. Let (A,→) be an ARS, and a, b ∈ A. We say that a and b are joinable if there

exists c ∈ A such that a
∗→ c

∗← b. Denote by a ↓ b the fact that a and b are joinable.

Definition 2.2.4.3. The ARS (A,→) is confluent if for all a, b, c ∈ A such that a
∗← c

∗→ b, we have
a ↓ b. It is locally confluent if for all a, b, c ∈ A such that a← c→ b we have a ↓ b.

Definition 2.2.4.4. The ARS (A,→) is terminating if there is no infinite sequence a0 → a1 → a2 →
. . . . It is convergent if it is confluent and terminating.

Theorem 2.2.4.5 (Diamond Lemma). Let (A,→) be an ARS. If (A,→) is locally confluent and
terminating, then it is convergent.

The first proof of this theorem was given in [68]. However, we refer to [8] for a more concise and
understandable proof.

Definition 2.2.4.6. Let (A,→) be an ARS. An element a ∈ A is reducible if there exists b ∈ A such

that a→ b. It is irreducible otherwise. If a
∗→ b and b is irreducible, we say that b is a normal form

of a.

Theorem 2.2.4.7. Let (A,→) be a convergent ARS. Then each a ∈ A admits a unique normal form.

Proof. Since (A,→) is terminating, we have that each a ∈ A admits a normal form. Since (A,→) is
confluent, we have that this normal form is unique.

This theorem is the reason why we are interested in rewriting systems. Indeed, it gives us a
canonical way to represent an element of a quotient. Before adapting this notion to vector spaces, let
us relate termination and wellness of partial order.

Definition 2.2.4.8. Let A be a set. Let us recall that a partial order on A is a binary relation ≥ on
A which is:

• reflexive: for all a ∈ A, a ≥ a;

• transitive: for all a, b, c ∈ A, if a ≥ b and b ≥ c then a ≥ c;

• antisymmetric: for all a, b ∈ A, if a ≥ b and b ≥ a then a = b.

Let us denote a ≥ b and a ̸= b by a > b. A well partial order, denoted wpo, is a partial order such
that there is no infinite sequence:

a0 > a1 > a2 > . . .

It can be seen as a Noetherian property for partial orders.

Theorem 2.2.4.9. Let (A,→) be an ARS. Then (A,→) is terminating if and only if we have a wpo
≥ on A such that → is strictly decreasing for ≥, meaning that for all a, b ∈ A such that a→ b, we
have a > b.
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Proof. Let us first prove that if (A,→) is strictly decreasing along ≥ a wpo, then it is terminating.
Let us suppose that (A,→) is not terminating, then there is an infinite sequence a0 → a1 → a2 → . . . .
Hence, we get a0 > a1 > a2 > . . . , which is a contradiction since ≥ is a wpo.
Let us now prove that if (A,→) is terminating, then we have a wpo ≥ on A such that → is strictly

decreasing for ≥. Let us show that
∗→ is a wpo. It is reflexive and transitive, moreover → is strictly

decreasing for
∗→ by definition. Let us show that

∗→ is antisymmetric. Let us suppose that a
∗→ b

and b
∗→ a for a ̸= b. Then we have a → a1 → . . . → an → b and b → b1 → . . . → bm → a. Hence,

we can construct:

a→ a1 → . . .→ an → b→ b1 → . . .→ bm → a→ a1 → . . . an → b→ b1 → . . .→ bm → a→ . . .

Which is a contradiction with the fact that (A,→) is terminating. Hence,
∗→ is antisymmetric. Let

us show that
∗→ is a wpo. Let us suppose that there is an infinite sequence a0

∗→ a1
∗→ a2

∗→ . . .
with ai ̸= ai+1. Then we have:

a0 → a
(1)
0 → . . .→ a

(n0)
0 → a1 → a

(1)
1 → . . .→ a

(n1)
1 → a2 → . . .

This is a contradiction with the fact that (A,→) is terminating. Hence,
∗→ is a wpo.

However, we are working with algebraic operads, operads on vector spaces, not on sets. Let us
adapt the notion of rewriting system to linear algebra. We recall we are not using standard definition
for LRS.

Definition 2.2.4.10. A linear rewriting system, denoted LRS , is a pair (M,R) where M is a set
usually referred as the set of monomials, and R is a subset of M × Span(M). Elements of R are
called rewriting rules and are denoted by m → v instead of (m, v). If v = λi0mi0 +

∑
λimi, we

denote by v → w the fact that mi0 → vi0 and w = λi0vi0 + sumλimi. With those notations, we have
that (Span(M),→) is an ARS.

From the fact that we can get an ARS from an LRS, we can get a notion of confluence, termination,
and convergence for LRS. The useful part is that the ARS given by an LRS is compatible with the
vector space structure of Span(M).

Definition 2.2.4.11. Let (M,R) be an LRS. Let us write m ≻ mi if we have m → ∑
λimi ∈ R

with λi ̸= 0. Let ≥ be the reflexive and transitive closure of ≻.

Lemma 2.2.4.12. Let (M,R) be a terminating LRS. Then (M,R) induces a complete transfinite
filtration FαM on the set M such that ≻ is decreasing along this filtration.

Proof. First, let us define a transfinite filtration on Span(M). Let G0Span(M) be the set of irreducible
elements of V . Let GαSpan(M) be the set of elements of Span(M) such that for all v ∈ GαSpan(M)
and v → w, we have w ∈ GβSpan(M) with α > β. One need to be careful since GαSpan(M) and
FαSpan(M) =

⋃
β<αGαSpan(M) are a priori not sub vector spaces of Span(M). Let ν be the smallest

ordinal such that GνSpan(M) = ∅. Such an ordinal exists, indeed since the GαSpan(M) are disjoints,
let γ be an ordinal of cardinality greater than Span(M), we have β < γ such that GβSpan(M) = ∅.
We have FνSpan(M) = Span(M), indeed let v /∈ FνSpan(M), then v /∈ Fν+1Span(M) hence we have
v1 /∈ FνSpan(M) such that v → v1. By induction we can construct:

v → v1 → v2 → . . .

Which lead to a contradiction since (M,R) is terminating. Let FαM = (FαSpan(M))∩M . This is a
complete transfinite filtration of M . From its definition, ≻ is decreasing along this filtration.

Theorem 2.2.4.13. Let (M,R) be an LRS. Then it is terminating if and only ≥ is a wpo on M . In
particular, it is terminating if and only if it is terminating on M .
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Proof. Assume that ≥ is a wpo on M and let us show that (M,R) is terminating. Let us suppose
that (M,R) is not terminating, then there is an infinite sequence

m→ v1 → v2 → v3 → . . .

Hence, we get:

m0 > m1 > m2 > m3 > . . .

This is a contradiction since ≥ is a wpo.
Assume that (M,R) is terminating. By the previous lemma, we have a complete transfinite filtration
FαM of M such that ≻ is decreasing along this filtration. By definition, ≥ is reflexive and transitive,
and for each rewriting rule m →∑

λimi, if λi ̸= 0 then we have m > mi. In particular, we have
that m > mi imply that m ∈ FαM and mi ∈ FβM with α > β. Hence, ≥ is a wpo on M .

The proof is quite technical, however the idea is quite simple: if the LRS is terminating, then
each rewriting rule is decreasing for a well-chosen wpo on M .

Lemma 2.2.4.14. Let (M,R) be a terminating LRS. Then it is confluent if and only if it is confluent
on M .

Proof. It is clear that if (M,R) is confluent, then it is confluent on M . Let us show the converse.
Assume that (M,R) is confluent on M . Let us show that (M,R) admits unique normal forms. Let
v = λ1m1 + λ2m2 +

∑
λimi and let us rewrite m1 and m2. By Theorem 2.2.4.13, we have that

either there is no occurrence of m1 in the rewriting rules of m2 or there is no occurrence of m2 in
the rewriting rules of m1. Up to reordering the basis, we can assume that m1 is not in the rewriting
rules of m2. Let us write m1 →

∑
µimi and m2 →

∑
νimi, we have:

λ1m1 + λ2m2 +
∑
λimi

λ1m1 +
∑

(λi + λ2νi)mi

(λ2 + λ1µ2)m2 +
∑

(λi + λ1µi)mi

λ1µ2m2 +
∑

(λi + λ1µi + λ2νi)mi

∑
(λi + λ1µi + (λ2 + λ1µ2)νi)mi

Hence, (M,R) is locally confluent in v if the two rewriting rules rewrite different monomials. Let
us rewrite the same monomial m of v by two different rewriting rules to get: v1 ← v → v2. By
Theorem 2.2.4.13, we have a wpo on the monomials. For each monomial lower than m, let us chose a
rewriting rule, and let us rewrite v by those rules to get v

∗→ ṽ such that the only monomial lower
than m in ṽ are irreducible. By the previous computation we see that the order does not matter. We
have:

v

v1 v2

ṽ

∗
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By the previous computation, we can complete it and get:

v

v1 v2

ṽ

ṽ1 ṽ2

∗

∗∗
∗ ∗

The other monomials of ṽ does not interfere with the rewriting of m, indeed they are either greater
than m and we do not rewrite them, or they are irreducible and we can not rewrite them. Hence,
since (M,R) is confluent in m we have:

v

v1 v2

ṽ

ṽ1 ṽ2

u

∗

∗∗
∗ ∗

∗ ∗

Hence, (M,R) is locally confluent. By the diamond lemma, we have that (M,R) is confluent.

Theorem 2.2.4.15 (Linear Diamond Lemma). Let (M,R) be a terminating LRS. Then it is
convergent if and only if it is locally confluent on M .

Proof. It is clear that if (M,R) is convergent, then it is locally convergent on M . Let us show the
converse. Assume that (M,R) is locally convergent on M . By theorem 2.2.4.13, we have a complete
ordinal filtration on M , let us denote it FαM . Let us do an ordinal induction. It is clear that (M,R)
is convergent once restricted to Span(F1M) since F1M is the set of irreducible monomials. Let α be
an ordinal, and assume that (M,R) is convergent once restricted to Span(FβM), with β < α. Let

m ∈ FαM , let us show that (M,R) is convergent in m. Let v1
∗← m

∗→ v2, assuming v1 ̸= m and
v2 ̸= m, we have:

m

u1 u2

v1 v2

∗ ∗

We know that (M,R) is locally convergent in m, hence:

m

u1 u2

v1 u v2

∗ ∗∗ ∗



106 CHAPTER 2. OPERADS

By the induction hypothesis, we have that (M,R) is convergent in u1 and u2. Hence, we have:

m

u1 u2

v1 u v2

w1 w2

∗ ∗∗ ∗

∗ ∗ ∗ ∗

By induction hypothesis, we have that (M,R) is convergent in u. We get:

m

u1 u2

v1 u v2

w1 w2

v

∗ ∗∗ ∗

∗ ∗ ∗ ∗

∗ ∗

Hence, (M,R) is convergent in m. Hence, (M,R) is convergent on the monomials of Span(FαM).
By the previous lemma we have that (M,R) is on FαM . By induction, we have that (M,R) is
convergent.

One need to be a bit careful with the last theorem, indeed the terminating hypothesis is crucial.
Let us show an example of a non-terminating LRS which is confluent on M but not on Span(M).

Example 2.2.4.16. Let V be the vector space with basis M = {a, b, c, d} and let R = {a →
c− b, b→ d− a}. It is quite clear that (M,R) is confluent on M . However, we have c← a+ b→ d,
so it is not confluent on V .

We still do not have exactly what we want. Indeed, we want to work with operads, hence we
would like to have a notion of rewriting system for operads.

Definition 2.2.4.17. An operadic rewriting system, denoted ORS , is a triple (S,X , R) where S is a
linear species, X is a shuffle set species such that U(S) = Span(X ), and R = (Rn)n∈N such that Rn
is a subset of T X{X}(n)×T (S)(n). We denote by R′ the set of rewritable monomials which are the
monomials admitting at least one rewriting rule in R.

We now would like to get an LRS compatible with the shuffle operadic structure of T X(U(S))
from an ORS (S,X , R). The key idea is to define a notion of divisibility in T X{X}.
Definition 2.2.4.18. Let D ∈ T X{X}(k) and T ∈ T X{X}(n) with X a shuffle set species. D is a
divisor of T if we have T0 and T1, . . . , Tk such that:

T = T0 ◦i,I (γI1,...,Ik(D;T1, . . . , Tk))

With ◦i,I given by the shuffle operad structure of T X{X} via the partial compositions, and γI1,...,Ik
given by the shuffle operad structure of T X{X} via the monoid definition. This definition means
that D divides T if we can get T by composing some Ti in the leaves of D and then composing the
result in a leaf of T0.
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To grasp the intuition behind this definition, let us give a more visual definition of divisibility.
An element of T X{X}(n) is a shuffle tree with n leaves such that internal vertices are labeled by
elements of X . Hence, we can think of T as a triple (τ, σ, f) with τ a planar tree, σ the bijective
labeling of the leaves respecting the shuffle tree condition, and f the labeling of the internal vertices.
Then D is also a triple (ν, ρ, g). Let τ ′ be a sub-tree of τ , the labeling σ′ of the leaves of τ ′ induced
by σ is defined by: σ′ of l a leaf of τ ′ is the minimal label of leaves of τ which are above the vertex
of τ corresponding to l. Then D divides T if we can find a sub-tree τ ′ of τ such that the labeling f
restricted to the internal vertices of τ ′ is equal to g, and the labeling σ′ induced by σ on the leaves
of τ ′ defined by σ′ is equal to ρ ◦ g with g an increasing function. Let us show some examples and
non-examples of divisibility.

Example 2.2.4.19. For simplicity, let us assume that X contains only one element of arity two, and
let us omit the labeling of the internal vertices. Let us consider the following elements of T X{X}(4)
and find their divisor in T X{X}(3):

T1 =

1 2 3 4

•

• • ; T2 =

1 3 2 4

•

• • ; T3 =

1 4 2 3

•

• •

Then the divisor of T1 in T X{X}(3) are:
1 2

3

•

• ; 1

2 3

•

•

The divisor of T2 and T3 are the same, and are:

1 3

2

•

• ; 1

2 3

•

•

Definition 2.2.4.20. Let D ∈ T X{X}(k) and T ∈ T X{X}(n) with X a shuffle set species, such
that D divides T . We have:

T = T0 ◦i,I (γI1,...,Ik(D;T1, . . . , Tk))

Let S ∈ T X{X}(k). The substitution of D by S in T is the element of T X{X}(n) defined by:

(T0,I);(T1,I1),...,(Tk,Ik)

□
T,D

(S) = T0 ◦i,I (γI1,...,Ik(S;T1, . . . , Tk))

Formally this depends on the choice of T0, I;T1, I1, . . . , Tk, Ik, however since it makes the notation
heavy, we will instead write:

□T,D(S)

We still need to remember that this depends on the choice of T0, I;T1, I1, . . . , Tk, and that we
implicitly fixed such a choice when using this notation.

Definition 2.2.4.21. Let (S,X , R) be an ORS. Let m ∈ T X{X}, we denote m→ t if there exists
D divisor of m and (D, r) ∈ R such that r =

∑
λiri and t =

∑
λi□m,D(ri). We denote by R□ the

set of couples (m, t) such that m→ t. Then (T X{X}, R□) is an LRS.

Since we have an LRS, we also have a ARS associated to any ORS. Moreover, from our constructions
the ARS associated to an ORS (S,X , R) is compatible with the shuffle operadic structure of T X(U(S)).
Hence, we have a notion of confluence, termination, and convergence for ORS.

We have defined the formalism of ORS, in order to define operads by generators and relations,
and to get canonical basis of those operads. Let us define an operad via an ORS.
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Definition 2.2.4.22. Let (S,X , R) be an ORS. We recall that we have a canonical identification:
Span

(
T X{X}

)
= U (T (S)). Let us define RX = ⟨m − r | (m, r) ∈ R⟩ ⊆ T X(U(S)) the shuffle

operadic ideal generated by m− r such that (m, r) ∈ R. Then the shuffle operad defined by (S,X , R)
is the operad PX = T X(U(S))/RX. If we have R ⊆ T (S) such that U(R) = RX, then we can
define the operad defined by (S,X , R) by P = T (S)/R.

We can see in this definition that we need both the data of the species S and the shuffle set
species X . Indeed, we need the data of the shuffle set species X in order to have a basis of T (S),
and we need the data of the species S in order to get the action of the permutation groups.

Proposition 2.2.4.23. Let (S,X , R) be a convergent ORS. Then the operad P defined by (S,X , R)
admits a canonical basis.

Proof. It suffices to compute the normal forms of (S,X , R). They constitute a basis of P.

Definition 2.2.4.24. Let us define the notion of critical monomial. Let (S,X , R) be an ORS. A
monomial m ∈ T X{X} is critical if there exists t1 and t2 two shuffle trees such that we have (t1, r1)
and (t2, r2) in R, and:

m = T0 ◦i,I (γI1,...,Ik(v;T1, . . . , Tk))
With:

t1 = T0 ◦i′,I′ v and t2 = γI1,...,Ik(v;T1, . . . , Tk)

The shuffle tree v is called an overlap of t1 and t2.

The intuitive idea behind the notion of critical monomial is that it is a small common multiple of
two monomials t1 and t2 appearing in the rewriting rules. The critical monomials are the smaller
monomials which can be rewritten in two different ways, and where those two ways overlap.

Theorem 2.2.4.25 (Operadic Diamond Lemma). Let (S,X , R) be a terminating ORS. Then
(S,X , R) is confluent if and only if it is locally confluent on the critical monomials.

Proof. It is clear that if (S,X , R) is confluent, then it is locally confluent on the critical monomials.
Let us show the converse. Assume that (S,X , R) is locally confluent on the critical monomials. Let
m ∈ T X{X}, let us show that (S,X , R) is locally confluent in m. Let t1 ← m→ t2. Let us denote
by d1 → r1 and d2 → r2 the rewriting rules we used. If we have an overlap in the division of m by d1
and d2, then we have a critical monomial c of d1 and d2 such that c divide m, and the local confluence
of (S,X , R) in c conclude. If we do not have an overlap, then the two rewriting rules commutes, and
we have the local confluence of (S,X , R) in m. Theorem 2.2.4.15 allows us to conclude.

From this theorem, we can see that the local confluence of an ORS can be checked on the critical
monomials. In the case of a finite number of rewriting rules, we have a finite number of critical
monomials, hence we can check the local confluence of an ORS by checking it on a finite number of
cases, which can be done by hand or by a computer. The last issue is to check the termination of an
ORS. It is in general not possible to reduce the termination of an ORS to the termination of a finite
number of cases. However, we can use the good old trick of having a well order. Let us define the
notion of monomial partial order.

Definition 2.2.4.26. Let X be a shuffle set species. A monomial partial order Ξ on T X{X} is a
collection of wpo Ξn on T X{X}(n) which is compatible with the shuffle operad structure of T X{X},
meaning that for T1 ≻Ξn

T2, we have:

T1 ◦i,I S ≻Ξm
T2 ◦i,I S and S ◦j,J T1 ≻Ξm

S ◦j,J T2

Definition 2.2.4.27. Let (S,X , R) be an ORS. Let us write m ≻n mi if we have m→
∑
λimi ∈ Rn

with λi ̸= 0. Let Ξn be the reflexive and transitive closure of ≻n, we denote Ξ = (Ξn)n∈N.
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Theorem 2.2.4.28. Let (S,X , R) be an ORS. Then it is terminating if and only Ξ is a monomial
partial order. In particular, it is terminating if and only if it is terminating on T X{X}.
Proof. This is a direct corollary of Theorem 2.2.4.15. The fact that Ξ is compatible with the shuffle
operad structure is direct consequence of its definition.

This theorem allows us to reduce the termination of an ORS to finding a monomial partial order
such that the rewriting rules are decreasing. Any terminating ORS give such a monomial partial
order, however we would like to go the other way around. We would like some “classical” monomial
partial orders such that we can check the termination of an ORS by checking that the rewriting rules
are decreasing for those monomial partial orders. However, because they are more convenient than
partial orders, let us work with preorders:

Definition 2.2.4.29. We recall that a preorder on a set A is a reflexive and transitive relation.
meaning that:

• For all a ∈ A, we have a ≤ a.

• For all a, b, c ∈ A, if a ≤ b and b ≤ c, then a ≤ c.
Let a, b ∈ A, we denote by a ∼ b the fact that a ≤ b and b ≤ a, and we denote by a < b the fact
that a ≤ b and a ≁ b. A well preorder is a preorder such that each non-empty subset has a minimal
element. A total preorder is a preorder such that for all a, b ∈ A, we have a ≤ b or b ≤ a.
Definition 2.2.4.30. Let M be a monoid. A monoidal preorder is a preorder which is compatible
with the monoid structure of Mon(X ), meaning that for u ≤ v, we have u ·w ≤ v ·w and w ·u ≤ w · v.

Let us give some important example and non-example of monoidal orders.

Example 2.2.4.31. Let X = {a, b} and let a ≤ b. The lexicographic order on Mon(X ) is not a
monoidal preorder. Indeed, we have a ≤ aa but ab ≥ aab. However, the graded lexicographic order
is a monoidal preorder.

Example 2.2.4.32. Let us consider Q = Mon({x, y, q})/⟨xq − qx, yq − qy, yx− xyq⟩ the so-called
quantum monoid . It is quite clear that any element of Q admits a unique representation of the form
xiyjqk with i, j, k ∈ N. Let us put the following order on Q: we write xiyjqk ≥ xi′yj′qk′ if

• i < i′, or

• i = i′ and j > j′, or

• i = i′, j = j′ and k > k′.

One may notice the condition i < i′ which seems to be the wrong way, however it is the correct way.
We have:

xiyjqkxi
′
yj

′
qk

′
= xi+i

′
yj+j

′
qk+k

′+ji′ ,

and we can check that it is a monoidal preorder using this formula.

Definition 2.2.4.33. Let X be a shuffle set species. A monomial preorder Ξ on T X{X} is a
collection of total well preorders Ξn on T X{X}(n) which is compatible with the shuffle operad
structure of T X{X}, meaning that for T1 ≻Ξn T2, we have:

T1 ◦i,I S ≻Ξm
T2 ◦i,I S and S ◦j,J T1 ≻Ξm

S ◦j,J T2

We are interested in monomial partial orders, not in monomial preorders. However, we can always
get a partial order from a preorder the following way:

Proposition 2.2.4.34. Let Ξ be a preorder, then Ξ′ defined by a ≤Ξ′ b if a <Ξ b or a = b. Then Ξ′

is a partial order. Moreover:
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• if Ξ is a well preorder, then Ξ′ is a well order,

• if Ξ is a monoidal preorder, then Ξ′ is a monoidal partial order, and

• if Ξ is a monomial preorder, then Ξ′ is a monomial partial order.

This allows us to get a partial order from a preorder. In particular, an ARS which decreases
along a preorder will also decrease along the associated partial order. Since they are more convenient,
we will mostly work with monomial preorders, i.e. total well preorders which are compatible with
the shuffle operad structure.

Let us give some examples of monomial preorders.

Definition 2.2.4.35. Let T ∈ T X{X}(n). The leaf permutation of T is the sequence of integers
(i1, . . . , in) such that ij is the label of the j-th leaves of T from left to right. The permutation order is
the order on T induced by the lexicographic order on the leaf permutations. The reverse permutation
order is the order on T induced by the reverse lexicographic order on the leaf permutations.

It is quite clear that the permutation and reverse permutation orders are monomial preorders.
However, these monomial preorders are quite “weak” as most shuffle trees are equivalent. They are
not useless as they already provide a way of checking the termination of ORS of the Lie operad and
of the Com operad. Let us consider the operad Lie, it is generated by one element of arity two, so
we will omit the labeling by this element in the shuffle trees. We can see the Jacobi identity as the
following rewriting rule:

1 3

2

•

• →
1 2

3

•

• − 1

2 3

•

•

There is only one critical monomial for this rewriting rule. Its local confluence is checked in Figure 4.5
of the appendix. Counting the normal forms for this ORS allows us to show the following non-trivial
fact:

Proposition 2.2.4.36. We have that dim(Lie(n)) = (n− 1)!.

Proof. Since we have a convergent ORS, we have a canonical basis of Lie. It suffices to count the
normal forms of the ORS. The only rewritable monomial is the left comb with leaves (1, 3, 2), let d
be this monomial. We have 2 normal forms in arity 3. Let us assume that we have (n− 1)! in arity
n, and show that we have n! normal forms in arity n+ 1. To get a normal form in arity n+ 1 from a
normal form in arity n, we need to know where we composed the Lie bracket carrying the leaf n+ 1.
We cannot have composed it in a left input since it would be divisible by d in this case. Hence, either
we have composed it in a right input or it is the root. We have n− 1 choices for composing is a right
input and 1 for the root. Hence, we have n · (n− 1)! = n! normal forms in arity n+ 1.

Let us construct more “powerful” monomial preorders, meaning that they allow us to compare
more shuffle trees.

Definition 2.2.4.37. Let T ∈ T X{X}(n). The path sequence of T is the sequence (v1, . . . , vn)
defined the following way: Let us consider the unique path from the root of T to the leaf i, let vi be
the sequence of the labels of the internal vertices of this path.

Let us compute some path sequences.

Example 2.2.4.38. Let us consider the following shuffle trees, and compute their path sequences.

T1 = 1

2 3

x

y ; T2 =

1 2

3

x

y ; T3 =

1 3

2

x

y

Then the path sequence of T1 is (x, xy, xy), the path sequence of T2 is (xy, xy, x) and the path
sequence of T3 is (xy, x, xy).
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The path sequences are quite useful to define monomial preorders. Indeed, they allow us to define
monomial preorders using monoidal preorders via the so called path extension:

Definition 2.2.4.39. Let T ∈ T X{X}(n), and let θ be a preorder on Mon(X ). The path extension
of θ is the sequence of order on T X{X}(n) induced by θ on the path sequences of the shuffle trees.
Let T1 and T2 be two shuffle trees of T X{X}(n) such that the path sequences of T1 and T2 are
(v1, . . . , vn) and (w1, . . . , wn), we have T1 ≻θ T2 if and only if we have i such that vi ≻θ wi, and for
any j < i we have vj = wj . The reverse path extension of θ is the reverse order of the path extension
of θ.

Proposition 2.2.4.40. If θ is a monoidal preorder, then the path extension of θ is a monomial
partial order.
Respectively, if the reversion of θ is a monoidal preorder, then the reverse path extension of θ is a
monomial partial order.

Proof. Let T1 and T2 be two shuffle trees of T X{X}(n) such that the path sequences of T1 and T2
are (v1, . . . , vn) and (w1, . . . , wn). Let S be a shuffle tree of T X{X}(k) such that its path sequence is
(u1, . . . , uk). Let us compute the path sequence of T1 ◦i,I S with I = {i = i1, i2, . . . , ik} in increasing
order. We get:

(v1, . . . , viu1, vi1+1, . . . , viu2, vi2 , . . . , viu3, vi3−1, . . . , viuk, vik−k+2, . . . , vn)

Same for T2 ◦i,I S, we get:

(w1, . . . , wiu1, wi1+1, . . . , wiu2, wi2 , . . . , wiu3, wi3−1, . . . , wiuk, wik−k+2, . . . , wn)

Hence, if we have T1 ≻θ T2, we have j such that vj ≻θ wj , and for any l < j we have vl = wl. Hence,
by the explicit computation of the path sequence of T1◦i,IS and T2◦i,IS, we have T1◦i,IS ≻θ T2◦i,IS.
The same computation concludes for S ◦i,I T1 ≻θ S ◦i,I T2.

Let us give three key example of such path extension.

Example 2.2.4.41. Let X = {x1, . . . , xn} and let us consider a function ψ : X → N. We extend ψ
to Mon(X ) by ψ(uv) = ψ(u) +ψ(v). Then the weight order relatively to ψ on Mon(X ) is a monoidal
preorder. Hence, the path extension of weight order is a monomial preorder. This monomial preorder
is called the weight order , it depends on the function ψ.

Example 2.2.4.42. Let X = {x1, . . . , xn} and let us put the order x1 ≤ x2 ≤ · · · ≤ xn. Then the
graded lexicographic order on Mon(X ) is a monoidal preorder. Hence, the path extension of the
graded lexicographic order is a monomial preorder. This monomial preorder is called the graded path
lexicographic order . Similarly, the reversed graded path lexicographic order is a monomial preorder.

Example 2.2.4.43. Let X = {x1, . . . , xn, y1, . . . , yk}. Let us consider the morphism of monoid
Mon(X )→ Q defined by xi 7→ x and yi 7→ y with Q for Example 2.2.4.32. The monoidal preorder
on Q induces a monoidal preorder on Mon(X ). The path extension of this preorder is a monomial
preorder. This monomial preorder is called the quantum order on X . One may notice that the
quantum order on X depends on the choice of the morphism of monoid Mon(X ) → Q, hence it
depends on the choice of the x-like and y-like elements of X .

We have defined the most classical monomial preorders. However, we can do more, we can
combine them together.

Definition 2.2.4.44. Let Ξ and Θ be two total preorders. The concatenated order Ξ.Θ is the
preorder defined by a ≤Ξ.Θ b if:

• a <Ξ b, or

• a ∼Ξ b and a ≤Θ b.
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We can directly see from this definition that the reverse of the concatenated order is the
concatenation of the reverse orders. Moreover, we have the following lemma.

Lemma 2.2.4.45. If Ξ and Θ are monomial preorder, then Ξ.Θ is a monomial preorder.

Proof. The verification is direct from the definition.

This lemma allows us to construct more monomial preorders by concatenating the classical
monomial preorders. It would have been crucial if we were working with Gröbner bases or PBW bases
since we would have needed to find total orders, and that this lemma allows us to refine preorders
more and more by concatenating them together to get total orders. It is still useful in our case since
it allows us to construct new monomial preorders from old ones.

2.2.5 Application of ORS to freeness properties

Let us give some applications of ORS to show freeness properties of operads, namely we will recall
the main theorem of [25] and [31]. These theorems were originally stated with Gröbner basis, however
we can restate them with ORS. First, we need to define those freeness properties. Let us define
modules over operads.

Definition 2.2.5.1. Let P be an operad.

• A left module L over P is a species L with a morphism P ◦ L → L such that the following
commutes:

P ◦ P ◦ L P ◦ L

P ◦ L L

• A right module R over P is a species R with a morphism R ◦ P → R such that the following
commutes:

R ◦ P ◦ P R ◦ P

R ◦ P R

• A bimodule M over P is a left and right module over P such that the two structures commute,
meaning that the following diagram commutes:

P ◦M ◦ P M ◦ P

P ◦M M

These are the usual definition of left, right, and bimodule. However, since ◦ is not symmetric,
left and right modules behave quite differently in general. Let Q be an operad such that we have a
morphism of operads P → Q, then this morphism induces a canonical structure of a left and a right
module on Q over P. (It in fact induces a structure of bimodule over P.)
Definition 2.2.5.2. Let P be an operad. A left module L over P is free if we have a species X such
that L ≃ P ◦ X and the structure of left module is given by the operadic structure of P, namely:

P ◦ L ≃ P ◦ P ◦ X → P ◦ X ≃ L
Same for a right module.
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Let (S,X , U) and (S ⊕R,X + Y, U ⊔ V ) be two convergent ORS admitting associated operads,
and let P and Q the associated operads. Then we have the following theorem.

Theorem 2.2.5.3 (left freeness version). [25, Theorem 4] Assume that the root of the rewritable
monomial of V are elements of Y. Then Q is free as left P-module.

Theorem 2.2.5.4 (right freeness version). [25, Theorem 4] Assume that the vertices such that each
child is a leaf, of the rewritable monomial of V are elements of Y. Then Q is free as right P-module.

Using well-chosen ORS, these theorems allow us to show several interesting result. For example
it is shown in [25] that the operad PreLie is free as a left module and as a right module over the
operad Lie. One could also show that Ass is free as a right module over Lie. An interesting fact to
notice is that Ass is not free as a left module over Lie.

Proposition 2.2.5.5. The operad Ass is not free as a left module over the operad Lie.

Proof. We know the dimensions of Ass and of Lie. Indeed, for n ≥ 1, we have that dim(Ass(n)) = n!
and dim(Lie(n)) = (n− 1)!. Hence we have that fAss(x) =

x
1−x and fLie(x) = − ln(1− x). Assume

that we have a species X such that Ass = Lie ◦ X then we have fAss = fLie ◦ fX . Hence we can
compute fX and we get:

fX (x) = 1− exp

(
x

x− 1

)
We can compute the first few terms of the series expansion of fX and we get:

fX (x) = 1 + x+
1

2
x2 +

1

6
x3 − 1

24
x4 +O(x5)

We get a negative dimension in arity 4, hence Ass is not free as a left module over Lie.

Let us now define the Nielsen-Schreier property.

Definition 2.2.5.6. An operad P has the Nielsen-Schreier property if any subalgebra of a free
P-algebra is free.

Let us recall the following theorem:

Theorem 2.2.5.7. [31, Theorem 4.1] Let P be an operad generated by S, and X a basis of S
satisfying the following conditions:

• P admits a convergent ORS (S,X , U) decreasing along the reverse graded path lexicographic
ordering such that for each rewritable monomial, the smallest leaf is directly connected to the
root.

• P admits a convergent ORS (S,X , V ) such that each rewritable monomial is a left comb with
the smallest leaf and the second-smallest leaf directly connected to the same vertex.

Then P has the Nielsen-Schreier property.

We could once again use the operad Lie as an example. Indeed, it is shown in [31] that Lie has
the Nielsen-Schreier property.

2.3 Differential graded operads

We are ready to generalize everything we have done to the differential graded setting. From a
categorical point a view, we have nothing to do. We just write down our nice categorical definitions
using commutating diagrams and everything will work smoothly. However, once we want to do
computations, we need to be careful. We will hit the usual technical difficulty of computation in
homological algebra: the random appearance of signs coming from nowhere. Except those signs are
not random, and they do not come from nowhere, they come from the Koszul sign rule. Let us recall
it, explain it, and do some computations with it.
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2.3.1 The Koszul sign rule

The Koszul sign rule is not a formal math theorem, and is more like a general principle. Let us recall
it. “When two symbols a and b of homological (or cohomological) degree |a| and |b| are exchanged,
a sign (−1)|a||b| should appear”. One of the motto of homological algebra is that “any sign comes
from the Koszul sign rule”. Let us give some examples of the Koszul sign rule (and play the game of
finding the Koszul sign rule behind usual formulas).

Tensor product of chain complexes Let us consider two chain complexes (C•, ∂C) and (D•, ∂D).
The tensor product of the two chain complexes should be a chain complex (C ⊗D, ∂) such that ∂ is
a differential defined from ∂C and ∂D. The most natural way of defining ∂ would be:

∂ = ∂C ⊗ id+ id⊗∂D

Let us compute it a naive way on an element a⊗ b:

∂(a⊗ b) = ∂C(a)⊗ b+ a⊗ ∂D(b)

Then we have:

∂2(a⊗ b) = ∂2C(a)⊗ b+ 2∂C(a)⊗ ∂D(b) + a⊗ ∂2D(b) = 2∂C(a)⊗ ∂D(b)

It fails to be a differential, since it does not square to zero in general. To fix it, we need to add a sign:

∂(a⊗ b) = ∂C(a)⊗ b+ (−1)|a|a⊗ ∂D(b)

And we now have a differential. This sign comes from the fact that from (id⊗∂D)(a⊗ b) to a⊗ ∂D(b)
the symbols a and ∂D have been exchanged, hence we need to add a sign (−1)|a||∂B |. Since ∂D
is a differential, we have |∂D| = 1 (or −1 depending on whether we are using the homological or
cohomological convention). Hence, we get the sign (−1)|a|.

Braiding map of chain complexes Let us consider two chain complexes C = (C•, ∂C) and
D = (D•, ∂D). We have defined the tensor product of C and D as C ⊗D = (C• ⊗D•, ∂). However,
since we have C• ⊗D• ≃ D• ⊗ C• via a trivial isomorphism, we should have C ⊗D ≃ D ⊗ C. Let
us naively define a braiding map τ : C ⊗D → D ⊗ C by τ(a⊗ b) = b⊗ a. We have:

a⊗ b ∂C(a)⊗ b+ (−1)|a|a⊗ ∂D(b)

(−1)|a|∂D(b)⊗ a+ b⊗ ∂C(a)

b⊗ a ∂D(b)⊗ a+ (−1)|b|b⊗ ∂C(a)

∂

τ

∂

τ

̸=

We see that τ is not a chain map. To fix it, we need to add a sign:

τ(a⊗ b) = (−1)|a||b|b⊗ a

With this sign, we have that τ is a chain map.
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Internal Hom of chain complexes Let us consider two chain complexes C = (C•, ∂C) and
D = (D•, ∂D). Let us define the chain complex (Hom(C,D), d) the following way:

• Hom(C,D)n is the set of function f of degree n, meaning that f(Ci) ⊆ Di+n,

• d = (∂D)∗ − (∂C)
∗
meaning that d is the difference between the post-composition by ∂D and

the pre-composition by ∂C . We take the difference since we would like to have df = 0 for f a
degree 0 map that is a chain map.

One may notice the appearance of the Koszul sign rule, indeed when computing (∂C)
∗ ◦ f , we should

get f ◦ ∂C , however we exchange the symbols f and ∂C , hence we need to add a sign (−1)|f ||∂C |.
Hence, we have:

d(f) = ∂D ◦ f − (−1)|f |f ◦ ∂C

Künneth formula Let us consider two chain complexes C and D. We have the Künneth formula:

H(C ⊗D) ≃ H(C)⊗H(D)

Moreover if X and Y are topological spaces, then we have the Künneth formula in homology:

H∗(X × Y ;R) ≃ H∗(X;R)⊗H∗(Y ;R)

Moreover, since X × Y ≃ Y ×X, we have a map:

H∗(X;R)⊗H∗(Y ;R) ≃ H∗(X × Y ;R) ≃ H∗(Y ×X;R) ≃ H∗(Y ;R)⊗H∗(X;R)

Since the Künneth map is explicit, we can compute the map H∗(X;R)⊗H∗(Y ;R)→ H∗(Y ;R)⊗
H∗(X;R). One may check that we exactly get τ the braiding map, ensuring that the homology
with real coefficients (or more generally coefficient in a field) is a monoidal functor. This allows
us to show the following fact: the homology of a topological space is a co-commutative co-monoid.
Indeed, any topological space is a co-commutative co-monoid in the category of topological spaces, it
is clear that the diagonal map ∆ : X → X ×X and the trivial map η : X → {∗} give a structure
of co-commutative co-monoid to X. Hence, we have that H∗(X;R) is a co-commutative co-monoid
in the category of graded vector spaces. However, the co-monoid structure is no longer trivial at
the level of homology, indeed this co-monoid structure is exactly the dual of the cup product in the
cohomology.

Orientation of Rn Let us consider the manifold Rn. Since Rn is orientable, the data of an
orientation of Rn is the same as the data of a local orientation of Rn around 0. A local orientation
of Rn around p ∈ Rn is a choice of generator of the homology group Hn(Rn,Rn \ {p};Z), which is
isomorphic to Z. Hence, an orientation of Rn is a choice of generator of Z as a group, so it is ±1. Let
us consider Rn and Rm and try to get an orientation of Rn+m from an orientation of Rn and of Rm.
Using the relative version of the Künneth formula in homology, we have the following exact sequence:

0→
n+m⊕
i=0

(Hi(Rn,Rn \ {0};Z)⊗Hn+m−i(Rm,Rm \ {0};Z))

→ Hn+m(Rn × Rm, (Rn \ {0})× Rm ∪ Rn × (Rm \ {0});Z)

→
n+m−1⊕
i=0

Tor (Hi(Rn,Rn \ {0};Z), Hn+m−i(Rm,Rm \ {0};Z))→ 0

Hence, we get:

Hn(Rn,Rn \ {0};Z)⊗Hm(Rm,Rm \ {0};Z) ≃ Hn+m(Rn × Rm, (Rn × Rm) \ {0};Z)
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Since the tensor product is symmetric, we get:

Hm+n(Rm × Rn, (Rm × Rn) \ {0};Z) ≃ Hn+m(Rn × Rm, (Rn × Rm) \ {0};Z)

This result is quite obvious since we know that these two homology groups are isomorphic to Z.
However, the non-trivial part is the actual isomorphism. Indeed, one may check that the isomorphism
is (−1)nm. Hence, the fact that the orientation of Rn+m given by the orientation of Rn × Rm is
(−1)nm times the orientation given by Rm × Rn can be seen as an instance of the Koszul sign rule.

Dimension and Euler characteristic Let V be a vector space. The dimension of V is the
cardinal of a basis of V , however this definition is not “categorical enough” to easily generalize it.
Another definition of the dimension of V is to say that it is the trace of the identity. In this case,
finding a categorical definition of the trace would be enough to define the dimension in a categorical
way. We have:

K eval← V ∨ ⊗ V ξ→ End(V )
f(v) ←[ f ⊗ v 7→ (x 7→ f(x)v)

We remark that if φ is in the image of ξ, we have that eval(ξ−1(φ)) is exactly the trace of φ. Let us
show where the Koszul sign rule appears in this construction. We have defined ξ such that it is the
unique function satisfying::

eval(ξ(f ⊗ v)⊗ x) = eval(f ⊗ x)v
Taking the Koszul sign rule seriously would lead us to:

eval(ξ(f ⊗ v)⊗ x) = (−1)|x||v| eval(f ⊗ x)v

In the case of vector spaces, then nothing changes since the degree of a vector is 0. However, in the
case of chain complexes, we get:

K eval← C∨ ⊗ C ξ→ End(C)
f(v) ←[ f ⊗ v 7→ (x 7→ (−1)|x||v|f(x)v)

We remark that if id is in the image of ξ then eval(ξ−1(id)) exactly gives the Euler characteristic of
C. This gives an interpretation of the (−1)n in the Euler characteristic as an instance of the Koszul
sign rule.

Principle of inclusion and exclusion Let us consider A and B two finite sets, and let us show
(probably in the worst possible way) that:

|A ∪B| = |A|+ |B| − |A ∩B|

More generally, let (Ai)i∈{1,...,n} be a family of finite sets, let us show that:∣∣∣∣∣
n⋃
i=1

Ai

∣∣∣∣∣ =
n∑
i=1

(−1)i−1
∑

1≤i1<···<ik≤n

∣∣∣∣∣∣
k⋂
j=1

Aij

∣∣∣∣∣∣
We have: ⋂

i

Ai
⊎
j

⋂
i̸=j

Ai . . .
⊎
i>j

Ai ∩Aj
⊎
i

Ai
...

...

With the j-th arrow being the inclusion from
⋂
lAil →

⋂
l|l ̸=j Ail with i1 < · · · < ik. We may notice

that this is a semi-simplicial set, let us consider its geometric realization R. We have a bijection
between π0(R) and A1 ∪ · · · ∪ An, indeed, two point of A1 ⊎ · · · ⊎ An are in the same connected
component if and only if they are connected by an edge, if and only they have the same image in
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A1∪ · · ·∪An. Let us show that each connected component of R is contractible. Let a ∈ A1∪ · · ·∪An
and let us consider Ra the connected component associated to a. We have that Ra is a simplex since
its vertices are in bijection with the indices i such that a ∈ Ai, its edges are in bijection with the
indices i, j such that a ∈ Ai ∩Aj , and so on. Hence, Ra is contractible. Hence, the homology of its
chain complex is concentrated in degree 0. Moreover, its chain complex C is:

R
⋂

i Ai R
⊎

j

⋂
i̸=j Ai . . . R

⊎
i>j Ai∩Aj R

⊎
i Aidddd

Hence, we have that the Euler characteristic of C is the cardinal of A1 ∪ · · · ∪An, we have:∣∣∣∣∣
n⋃
i=1

Ai

∣∣∣∣∣ =
n∑
i=1

(−1)i−1
∑

1≤i1<···<ik≤n

∣∣∣∣∣∣
k⋂
j=1

Aij

∣∣∣∣∣∣
Since we just saw that the signs in the Euler characteristic are instances of the Koszul sign rule, so
are the signs in the principle of inclusion and exclusion.

We could continue the game and express the signature of a permutation or the Legendre symbol
as an instance of the Koszul sign rule. However, let us stop here and go to the main topic of this
section: differential graded operads, and more precisely where does the Koszul sign rule appears in
the definition of a differential graded operad. Because we defined operads in a quite categorical way,
either as algebra over the tree monad, as monoids in the category of species, or with the partial
compositions, we do not need to change those definitions to get differential graded operads.

Definition 2.3.1.1. A symmetric differential graded operad, denoted dg operad , is either:

• An algebra over the tree monad in the dg species,

• A monoid in the category of dg species relatively to the plethysm,

• A dg species with partial compositions satisfying the same axioms as in Definition 2.2.1.3,
namely the identity, the parallel composition, the sequential composition, and the compatibility
with the species structure.

These three definitions are equivalent. Same for shuffle dg operads and ns dg operads.

To understand where the Koszul sign appears, let us do two very basic computations, one for the
sequential composition and one for the parallel composition. Let us consider a dg operad P and let
f, g, h ∈ P then:

• For the sequential composition we should relate (f ◦i g) ◦j h and f ◦i (g ◦j h). Since “nothing is
exchanged”, we get:

(f ◦i g) ◦j h = f ◦i (g ◦j h)

• For the parallel composition we should relate (f ◦a g) ◦b h and (f ◦b h) ◦a g. Since g and h are
exchanged, we get:

(f ◦a g) ◦b h = (−1)|g||h|(f ◦b h) ◦a g

Another quite important place where the Koszul sign rule appears is in the definition of the
endomorphism operad. Let C = (C•, ∂) be a chain complex, then let us recall that Hom(C⊗k, C) is
a chain complex such that:

• Hom(C⊗k, C)n is the set of functions f degree n, meaning that f = (fi)i∈Z and fi :
(
C⊗k)i →

Cn+i,

• and d(f) = ∂C ◦ f − (−1)|f |∑j f ◦j ∂C .
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Then we define EndC the endomorphism operad of C as the operad such that EndC(n) = Hom(C⊗n, C)
and the composition is the composition of functions. We have that EndC is a dg operad. Let us show
some computations in EndC to see where the Koszul sign rule appears. First, let us understand the
action of Sn on EndC(n). Let σ ∈ Sn such that σ = (i i+ 1), let f ∈ EndC(n), and x1, . . . , xn ∈ C.
Then (f.σ)(x1⊗· · ·⊗xn) should give f(x1⊗· · ·⊗xi+1⊗xi⊗· · ·⊗xn). However, we once again need
to exchange some symbols, here we exchange xi and xi+1, hence we need to add a sign (−1)|xi||xi+1|.
Hence, we have:

(f.σ)(x1 ⊗ · · · ⊗ xn) = (−1)|xi||xi+1|f(x1 ⊗ · · · ⊗ xi+1 ⊗ xi ⊗ · · · ⊗ xn)

Since we can write any permutation as a product of (i i+ 1), we can compute the sign that appears
for any permutation. We may notice that if all the xi are of odd degree, the sign is exactly the sign
of the permutation. If all of the xi are of even degree, then no sign appears.
Let us now compute the sign that appears when composing two elements of EndC . Let f ∈ EndC(n),
g ∈ EndC(m), and x1, . . . , xi−1, xi+1, . . . , xn ∈ C, and y1, . . . , ym ∈ C. Let us compute

(f ◦i g)(x1 ⊗ · · · ⊗ xi−1 ⊗ y1 ⊗ · · · ⊗ ym ⊗ xi+1 ⊗ · · · ⊗ xn⊗)

It should give:
f(x1 ⊗ · · · ⊗ xi−1 ⊗ g(y1 ⊗ · · · ⊗ ym)⊗ xi+1 ⊗ · · · ⊗ xn)

However, we see that a lot of symbols are exchanged, hence we get:

(f ◦i g)(x1 ⊗ · · · ⊗ xi−1 ⊗ y1 ⊗ · · · ⊗ ym ⊗ xi+1 ⊗ · · · ⊗ xn⊗) =
(−1)sf(x1 ⊗ · · · ⊗ xi−1 ⊗ g(y1 ⊗ · · · ⊗ ym)⊗ xi+1 ⊗ · · · ⊗ xn)

Where we denote:

s =

i−1∑
j=1

|xj ||g|

As we can see quite intricate signs appear. One cannot avoid those signs since they are needed for the
theory to be coherent as we saw in the first two paragraphs of this section. However, the Koszul sign
rule allows us to postpone the appearance of these signs to the very end, when we need to actually
apply the function to some elements. This is the main reason why we use the Koszul sign rule: signs
are unavoidable, but let us try to avoid them for as long as we can, and postpone their appearance
to the very end, when we need to actually evaluate functions.

2.3.2 Bar and cobar constructions

Now that we have dg operads, let us consider operads as they are: algebra in a category of
combinatorial object, the species; and let us do some “operadic homological algebra”. A powerful
and unavoidable tool of homological algebra is the bar and cobar constructions. Let us adapt them
to the operadic context. Before doing so, we need to define the notion of a cooperad. Since we
understood what operads are, defining cooperads should be a formality. As cooperad is “an operad
with the arrows the other way around”. Let us give the formal definition.

Definition 2.3.2.1. Let T c be the tree comonad . Let us recall that we have a basis for T given by
the (unlabeled) shuffle trees. Since at number of leaves fixed and at number of internal vertices fixed,
there are a finite number of (unlabeled) shuffle trees, we have an isomorphism between T and T ∨ its
linear dual. We define T c to be the functor T ∨ together with the comonad structure induced on T ∨

by the monad structure of T . Same for the shuffle tree comonad and the ns tree comonad .

This definition may be a bit too fast. To understand it, and to work out the comonad structure of
T c, one need to go back to the discussion about the monad structure of T and flip the arrows. Long
story short: T ◦ T is encoded by the shuffle trees such that the labels of internal vertices are shuffle
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trees. The monad structure corresponds to “erasing the circles around the shuffle trees labeling
vertices” and making them actual subtrees, see Figure 2.2. The comonad structure corresponds to
the reversed process: “drawing circles around subtrees and making them labels of internal vertices”,
since there are no canonical subtrees, one need to do the sum over all possible choices of collection of
subtrees.

Definition 2.3.2.2. An algebraic symmetric cooperad, denoted cooperad , is either:

• A coalgebra over the tree comonad,

• A comonoid in the category of species relatively to the plethysm,

• A species with partial co-compositions satisfying the same axioms as in Definition 2.2.1.3
with the arrows reversed, namely the co-identity, the parallel co-composition, the sequential
co-composition, and the compatibility with the species structure.

These three definitions are equivalent. Same for shuffle cooperads and ns cooperads.

It is clear from this definition that the linear dual of a finite operad is a cooperad, and that
reciprocally the linear dual of a finite cooperad is an operad. (Here we need to assume finiteness
to have that (T c(S))∨ ≃ T (S∨). The finiteness hypothesis is necessary when one takes the linear
dual of an operad, however it can be dropped when one takes the linear dual of a cooperad.) Let us
now define the suspension of an operad. One need to be quite careful since we have two possible
suspension, the “classical suspension” and the “operadic suspension”. The classical suspension is the
suspension of the underlying chain complex, which does not respect the operadic structure, while the
operadic suspension is the suspension of the operad.

Definition 2.3.2.3. Let P be a dg operad. The classical suspension of P is the dg species s+P
defined by s+P(n) = s+K⊗ P(n). Similarly, the classical desuspension of P is the dg species s−P
defined by s−P(n) = s−K⊗ P(n). We denote by s+f = s+ ⊗ f ∈ s+P and s−f = s− ⊗ f ∈ s−P.

Let us point out the Koszul signs that appear. Let us compute (s+f).(1 2):

(s+f).(1 2) = (s+ ⊗ f).(1 2)

= s+ ⊗ (f.(1 2))

= s+(f.(1 2))

The differential dP induce a differential id⊗dP on s+P that we will also denote dP . by the Koszul
sign rule, we have:

dP(s+f) = −s+(dPf)
Let us denote γs+ : s+K⊗ s+K→ s+K such that γs+(s+, s+) = s+. Let us try to define the partial
compositions in s+P by •i = γs+ ⊗ ◦i, and compute •i ((s+f)⊗ (s+g)):

•i ((s+f)⊗ (s+g)) = •i ((s+ ⊗ f)⊗ (s+ ⊗ g))
= (−1)|f | •i ((s+ ⊗ s+)⊗ (f ⊗ g))
= (−1)|f |γs+(s+ ⊗ s+)⊗ f ◦i g
= (−1)|f |s+(f ◦i g)

Finally, let us show why we do not get an operadic structure with the classical suspension. We have:

•i ((s+f)⊗ (•j ((s+g)⊗ (s+h)))) = (−1)|f |+|g|(s+(f ◦i g ◦j h))
= (−1)|f |(−1)|f |+|f |+|g|(s+f ◦i g ◦j h)
= (−1)|f | •j ((•i ((s+f)⊗ (s+g)))⊗ (s+h))
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Indeed, in s+P, the operations •i are of degree −1, hence the parallel composition and sequential
composition axioms are satisfied up to a sign. Since the parallel composition and sequential composi-
tion axioms are not satisfied on the nose, but only up a sign, we do not get an operad. Let us now
define the operadic suspension and desuspension.

Definition 2.3.2.4. Let us define the suspension operad ß+Com. We saw that Com = EndK, hence
let us define ß+Com = Ends−K. We have that ß+Com(n) = Hom(s−K⊗n, s−K), hence ß+Com(n) is

of dimension 1 and is generated by ß
(n)
+ of degree n− 1 defined by:

ß
(n)
+ : s− ⊗ · · · ⊗ s− 7→ s−

We have that ß+Com is the commutative associative operad on one generator of degree 1. By a slight

abuse of notation, we will denote by ß+ instead of ß
(n)
+ . We define the desuspension operad ß−Com

as the operad Ends+K, it is the commutative associative operad on one generator of degree −1.

We use here the notation ß+Com for the suspension operad. This is not a classical notation,
however s, σ, S, and Σ are already used. The author chose to use an Eszett, ß, to denote the
suspension operad since the other s-like letters are not available.

Definition 2.3.2.5. Let P be a dg operad. The operadic suspension of P is the operad ß+P =
ß+Com⊙P . Similarly, the operadic desuspension of P is the operad ß−P = ß−Com⊙P . We denote
by ß+f = ß+ ⊗ f ∈ ß+P and ß−f = ß− ⊗ f ∈ ß−P.

Let us point out the Koszul signs that appear. Let us compute ß+f.(1 2):

ß+f.(1 2) = (ß+ ⊗ f).(1 2)

= (ß+.(1 2))⊗ (f.(1 2))

= (−1)ß+(f.(1 2))

Let us compute ß+f ◦i ß+g with k the arity of g:

ß+f ◦i ß+g = (ß+ ⊗ f) ◦i (ß+ ⊗ g)
= (−1)(k−1)|f |(ß+ ◦i ß+)⊗ (f ◦i g)
= (−1)(k−1)|f |ß+(f ◦i g)

We can see from these computations that the classical suspension and the operadic suspension are
quite different, and that one need to be careful not to mix them up. To understand these two
suspensions, let us consider the following example. Let P be a dg operad, and let C be a P-algebra,
meaning that C is a chain complex and we have a degree k morphism of dg operads P → EndC . Let
us suspend C with the classical suspension. We get s+C, we still have an operad Ends+C , however
the linear map P → Ends+C is no longer of constant degree, indeed P(n)→ Ends+C(n) is of degree
k+1−n. However, if we do the operadic desuspension of P , we get ß−P and we get back our degree
k morphism ß−P → Ends+C . Hence, the operadic suspension and desuspension are the correct way
to suspend and desuspend an operad, while the classical suspension and desuspension are the correct
way to suspend and desuspend a chain complex.

The bar construction Let P = I + P be an augmented operad with P its augmentation ideal.
Let us denote by (B(P), d1) the dg cooperad T c

(
s+P

)
. The cooperad B(P) will be the underlying

cooperad of the bar construction, we need to define the differential of the bar construction. The
partial compositions of P induce a map:

s+P ◦′ s+P → s+P
s+f ◦i s+g 7→ (γs+ ⊗ ◦i)(s+f ⊗ s+g)
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We have computed the Koszul sign that appear in the example after Definition 2.3.2.3. One can
extend this map on T c

(
s+P

)
by a map that we denote d2:

d2 : T c
(
s+P

)
→ T c

(
s+P

)
Proposition 2.3.2.6. The map d2 is a differential on B(P).
Proof. This follows from the parallel composition and sequential composition axioms of P, and the
Koszul sign rule. Let us compute d22 on an element of B(P) as an example. Let:

T = (s+f ◦i s+g) ◦j s+h = s+f ◦i (s+g ◦j s+h)

Let us compute d22(T ). We have:

d2(T ) = (d2(s+f ◦i s+g)) ◦j s+h+ (−1)|s+f |s+f ◦i d2(s+g ◦j s+h)
= (−1)|f |s+(f ◦i g) ◦j s+h+ (−1)|f |+1(−1)|g|s+f ◦i s+(g ◦j h)
= (−1)|f |s+(f ◦i g) ◦j s+h+ (−1)|f |+|g|+1s+f ◦i s+(g ◦j h)

Hence:

d22(T ) = (−1)|f |d2 (s+(f ◦i g) ◦j s+h) + (−1)|f |+|g|+1d2 (s+f ◦i s+(g ◦j h))
= (−1)|f |(−1)|f |+|g|s+(f ◦i g ◦j h) + (−1)|f |+|g|+1(−1)|f |s+(f ◦i g ◦j h)
= s+(f ◦i g ◦j h)− s+(f ◦i g ◦j h)
= 0

Proposition 2.3.2.7. Let us recall that d1 is the differential on B(P) induced by the differential of
P. Then d1 and d2 anticommute.

Proof. This directly follows from the fact that dP commutes with the partial compositions of P , and
from the Koszul sign rule. Let us compute d1d2 and d2d1 on an element of B(P) as an example. Let:
T = s+f ◦i s+g Then we have:

d1d2(T ) = d1

(
(−1)|f |s+(f ◦i g)

)
= −(−1)|f |s+dP(f ◦i g)
= −

(
(−1)|f |s+ (dP(f) ◦i g) + s+ (f ◦i dP(g))

)
And:

d2d1(T ) = d2

(
d1(s+f) ◦i s+g + (−1)|s+f |s+f ◦i d1(s+g)

)
= −d2

(
s+dP(f) ◦i s+g + (−1)|f |+1s+f ◦i s+dP(g)

)
= −

(
(−1)|dP(f)|s+ (dP(f) ◦i g) + (−1)|f |+1(−1)|f |s+ (f ◦i dP(g))

)
= (−1)|f |s+ (dP(f) ◦i g) + s+ (f ◦i dP(g))

Since the proofs that d22 = 0 and that d1 and d2 anticommute are purely technical, we will not
give them here, and we hope that the examples of computations we gave are enough to convince the
reader that he could write down the complete proof.
We define the bar construction of P to be the dg cooperad (B(P), d), with d = d1 + d2. From the
fact that T c = X + T c, one may notice that (B(P), d) is co-augmented. Let us now define the cobar
construction.
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The cobar construction Let us define the cobar construction. Since the cobar construction
is the same as the bar construction, with the arrows reversed, we will allow ourselves to be a bit
sketchy, and not to show the computations. Let C = I + C a co-augmented cooperad. Let us denote
by (Ω(C), d1) the dg operad T

(
s+C

)
. The operad Ω(C) will be the underlying operad of the cobar

construction, we need to define the differential of the cobar construction. The partial co-compositions
of C induce a map:

s+C → s+C ◦′ s+C
s+t 7→

∑
f◦ig=t

(−1)|f |s+f ◦i s+g

One can extend this map on T
(
s+C

)
by a map that we denote d2:

d2 : T
(
s+C

)
→ T

(
s+C

)
The map d2 is a differential on Ω(C). Moreover, d2 and d1, the differential induced by the differential
of C, anticommute. Hence, we define the cobar construction of Ccobar construction to be the dg
operad (Ω(C), d), with d = d1 + d2. From the fact that T = X + T , one may notice that (Ω(C), d) is
augmented.

The bar and cobar constructions are in fact functors. More over they are related by the following
theorem:

Theorem 2.3.2.8. The functors B and Ω respectively of the bar and cobar construction are adjoint
functors. We have:

{aug. dg operads} {coaug. dg cooperads}

B

Ω

⊣

We refer to [60], Theorem 6.5.10 page 214 for a proof of this theorem.
We will unfortunately not have the time to go further in the study of the bar and cobar

constructions. However, the bar/cobar constructions are a very powerful tool in homological algebra,
and we refer to [60] for a more detailed study of the bar and cobar constructions, and how they
allow us to relate the next section, operadic Koszul duality, to resolutions and minimal models of
operads. More specifically, we refer the interested reader to the Rosetta Stone Theorem 10.1.22 page
356 of [60] which relates homotopy algebra, bar/cobar constructions, Koszul duality, and twisting
morphisms.

2.3.3 The operadic twisting

Let us quickly define the operadic twisting. We will not explicitly need it, however we will use
construction that are quite similar to the operadic twisting. Although, we will go a bit on the
definition, Subsection 3.1.2 is entirely dedicated to an example of operadic twisting, the operadic
twisting of the operad of pre-Lie algebras. We refer the reader interested in a more in depth study of
the operadic twisting to [22] and the book [30].

We will use the cohomological convention for the degree, hence a differential is a map a degree 1
that squares to zero. Let us describe the operadic twisting. Let g be a differential graded Lie algebra,
a Maurer-Cartan element of g is a degree 1 element α ∈ g such that dα+ 1

2 [α , α] = 0. This condition
ensures that the map dα = d+ [α , ·] is a differential on g.

Definition 2.3.3.1. Let P be an operad. The pre-Lie algebra (g, ⋆) associated to P is the “weighted”
vector space g =

⊕
n∈N P(n) (here we use the word “weighted” instead of “graded” to emphasize the

fact that this is not the cohomological grading) with the product ⋆ defined by:

µ ⋆ ν =

n∑
i=1

µ ◦i ν



2.4. OPERADIC KOSZUL THEORY 123

In particular, this is a Lie algebra. If the operad is differential graded, (g, ⋆) is a differential graded
pre-Lie algebra. The Maurer-Cartan equation can be written as:

dµ+ µ ⋆ µ = 0

This imposes that µ is an arity 1, degree 1 element, hence µ ⋆ µ = µ ◦1 µ. Such an element is called
an operadic Maurer-Cartan element .

Definition 2.3.3.2. Let P be an operad, and φ : Lie→ P a morphism of operads from the operad
Lie to P and l̃ the image of l in P . The operadic twisting of P by φ is the differential graded operad
(TwP, dTw) defined by as follows:

• Let α be a formal Maurer-Cartan element, α is an arity 0, degree 1 operation symbol.

• Let TwP = P∨̂α be the operad P extended by the operation symbol α without any relation.
The symbol ∨ denotes the coproduct in the category of operads. We use the notation ∨̂ since
we need complete to the operad P ∨ α because of the appearance of potentially infinite sums in
the general theory developed in [22] and in the book [30]. In our case, this technicality is not
relevant.

• The differential dMC is defined by: dMC(α) = − 1
2 l̃(α, α) which is − 1

2 (l̃ ◦1 α) ◦2 α when written
with the partial compositions, and for any p ∈ P, dMC(p) = 0. It extends to the whole operad
TwP by compatibility with the composition. With this differential, any (TwP, dMC)-algebra is
a graded differential P-algebra, with a marked Maurer-Cartan element which is the image of α.

• Let µ be an operadic Maurer-Cartan element of (TwP, dMC). The operadic Maurer-Cartan
equation ensure that the map dMC + µ ⋆ · − · ⋆ µ is a differential on TwP . The differential dTw

is defined by dTw = dMC + µ ⋆ · − · ⋆ µ with µ = l̃(α, ·) which is an operadic Maurer-Cartan
element.

2.4 Operadic Koszul theory

Koszul duality was originally introduced for associative algebras by Priddy in 1970, see [72]. It was
then extended to algebraic operads in 1994 by Ginzburg and Kapranov [39], and Getzler and Jones
[37]. The theory of Koszul duality for operads is a vast and deep theory, and we will only scratch the
surface of it. The main strength of Koszul duality is its link with homotopical algebra as for example
the duality between Lie algebras and commutative algebras in rational homotopy theory. This is
even more the case in operadic Koszul duality, where Koszul duality and the Koszul property are
related to minimal models of operads, allowing to study homotopical properties of algebra over an
operad. We refer the interested to the book [60], as we unfortunately will not have the time to do the
link between Koszul duality and homotopical algebra. We will still introduce the main concepts of
operadic Koszul duality, give some basic results, and give a nice criterion for the Koszul property of
an operad. However, we are going to use the operadic Koszul theory in a rather unusual way. Indeed,
we are going to use it to compute arity-wise dimension of operads. This is a very specific use of the
operadic Koszul theory, and we will only introduce and prove the relevant results for this specific use.
The author would like to point out that the operadic Koszul theory is a very interesting theory going
much further than what we will present here, and that using it to compute arity-wise dimension
of operads is a quite strange use of it since it is usually used to study homotopical properties of
algebras. The author believes that there is something somewhat funny in using such a deep theory
to derive something as elementary as equality between integers. We will start by defining the Koszul
dual of a quadratic operad, and the Koszul complex. We will then give criterions for the Koszul
property of an operad, a positive criterion sufficient but not necessary for an operad to be Koszul,
and a negative criterion necessary but not sufficient for and operad to be Koszul. Those criterions
will be enough to prove or disprove Koszulness of all operads we will encounter in this manuscript,
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however, they are by no mean sufficient to answer the question in the general case. Moreover, we
should point out that other criterions to prove or disprove Koszulness of operads does exist. We will
apply our criterion to the operadic butterfly, disproving a conjecture Loday made in [57]. Finally,
we will discuss the generating function of Koszul operads, and classify Koszul set operads on one
generator of arity 2 in order to prove a conjecture of the author.

2.4.1 Koszul duality of quadratic operads

Let us introduce the Koszul theory for quadratic operads. It does exist in a more general context,
however we will only need the Koszul theory in the quadratic case. Let us define the Koszul dual of
quadratic operads. First we need to define the notion of quadratic operad.

Definition 2.4.1.1. An operad P is quadratic if we have P = T (S)/⟨R⟩ with R ∈ S ◦′ S.
Definition 2.4.1.2. Let S be a species. The cofree cooperad generated by S is the cooperad T c(S).
Let R ⊆ S ◦′ S. The cooperad cogenerated by S with corelators R is the maximal sub-cooperad
C(S, R) of T c(S) such that the following composition is zero:

C(S, R) ↪→ T c(S) ↠ S ◦′ S/R
We remark that with this definition, the corelators are always quadratic. We could have defined

the cooperad cogenerated by S with corelators R in a more general setting, however we will not need
this generality since the only use of this definition is in the following definition. Let us define Koszul
dual cooperad.

Definition 2.4.1.3. Let P = T (S)/R be a quadratic operad. The Koszul dual cooperad of P is the
cooperad

P ¡ = C(s+S, s2+R)
Definition 2.4.1.4. Let P = T (S)/R be a quadratic operad. The Koszul dual operad is P ! which
is ß+ (P ¡)

∨
where ∨ denotes the arity-wise linear dual. We denote S∗ = ß+ (s+S)∨. If X is a basis of

S and S is a finite species, we denote by X∗ the according basis in S∗.
Let us give the explicit construction of the Koszul dual of a finite quadratic operad. Let

P = T (S)/R. First, let us chase the action of the symmetric group through the construction. Let X
be a basis of S, let f ∈ X and σ ∈ Sn. We denote:

f.σ = g

Then by definition, in s+S, we have that:

s+f.σ = s+g

Since X is a basis of S, we have (s+X )∨ a basis of (s+S)∨. We get:

(s+f)
∨.σ = ((s+f).σ)

∨ = s+g
∨

Finally, we have a basis ß+(s+X )∨ of ß+(s+S)∨. Let us denote them X∗ and S∗. We have:

ß+(s+f)
∨.σ = (ß+ ⊗ (s+f)

∨) .σ = (ß+.σ)⊗ ((s+f)
∨.σ) = sgn(σ)ß+(s+g)

∨

We denote by sgn(σ) the sign of the permutation σ. Hence, we have that S∗ ≃ S ⊗ sgn. One need to
be careful since this isomorphism is not canonical, it depends on the choice of a basis of S. This
isomorphism gives a non-degenerate pairing between S and S∗, hence we get a non-degenerate pairing
between S∗ ◦1 S∗ = S∗ ⊗ S∗ and S ◦1 S = S ⊗ S. It gives a pairing between S ◦′ S and S∗ ◦′ S∗
since S ◦1 S generates S ◦′ S through the action of the symmetric groups, moreover this pairing is
non-degenerate if S is finite. We can compute it the following way, if f, g, h, k ∈ S, we have:

⟨(f∗ ◦1 g∗).σ, (h ◦1 k).σ⟩ = sgn(σ)(−1)|g∗||h|f∗(h)g∗(k)
Since S ◦′ S is generated by S ◦1 S under the action of Sn, this formula gives the pairing on S ◦′ S.
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Theorem 2.4.1.5. Let P be a finite quadratic operad generated by S. Then, we have that P ! =
T (S∗)/R⊥

∗ where R⊥
∗ is the orthogonal to R in S∗ ◦′ S∗ for the pairing defined above.

Proof. By construction, we know that P ! is generated by S∗. Moreover, from the definition of
P ¡ we know that f ∈ s+S ◦′ s+S is in P ¡ is and only if the corresponding element in S ◦ S is
in R. Since we take the linear dual we have the image of R⊥

∗ is zero in P !. Hence, we have
T (S∗)/R⊥

∗ ↠ P !. By maximality of P ¡ which is defined by cogenerators and corelators, we have that
it is an isomorphism.

Proposition 2.4.1.6. Let P be a finitely generated quadratic operad. Then we have that (P !)! = P.

Proof. The finiteness hypothesis ensure that S = (S∨)∨ with S a species generating P. The proof
directly follows from this fact.

The Koszul complex Let P = T (S)/R be a quadratic dg operad. Let us define the Koszul
complex of P to be P ¡ ◦P . We need to define the differential of the Koszul complex using the operadic
structure of P. First, let us denote by d1 the map dP¡ ◦ idP + idP¡ ◦dP , one need to be careful since
this map is not a composition of maps, but the map induced by the plethysm. We need to denote
the “second part” of the differential. We know that P ¡ is a sub-cooperad of T (s+S) by definition.
We have a map:

T c(s+S)→ T c(T c(s+S))→ T c(s+S) ◦′ s+S
Indeed, the map T c(s+S)→ T c(T c(s+S)) is induced by the comonad structure of T c, and second
map is the projection on T c(s+S) ◦′ S ⊆ T c(T c(s+S)). This induces a map on P ¡:

∆′ : P ¡ → P ¡ ◦′ s+S

Hence, we have:

P ¡ ◦ P → (P ¡ ◦′ s+S) ◦ P → P ¡ ◦′ (I ◦ P, s+S ◦ P)→ P ¡ ◦′ (P,S ◦ P)→ P ¡ ◦′ (P,P)→ P ¡ ◦ P

This is a map of degree −1, since the only map of non-zero degree used to define it is s+S → S. We
need to check that it square to zero. To do so, let us explicitly describe it. An element T of P ¡ ◦ P is:

T = γ(C;P1, . . . , Pn)

With C ∈ P ¡ ⊆ T c(s+S), and Pi ∈ P. First, let us describe d2 if C is a shuffle tree. We can
understand T as follows: The bottom part of T is C, the cooperadic part of T , and we have P1, . . . , Pn
element of P grafted to the leaves of C, the operadic part of T . Then, d2(T ) is the sum over all the
possible ways to switch an internal vertex of C from the cooperadic part to the operadic part, let
us point out that from the construction, only internal vertices of C such that all its children are
leaves can be switched. Then when applying d2 twice, we get the sum over all the possible ways to
switch two internal vertices of C from the cooperadic part to the operadic part. We can see that we
switched two vertices v1 and v2 that were either “in parallel”, meaning that the vertices are not one
on top of the other, or “in series”, meaning that the vertices are one on top of the other. In the first
case, switching s+v1 before s+v2 give the opposite sign of switching s+v2 before s+v1 because of the
Koszul sign rule, and the two contributions cancel out. In the second case, it means that s+v2 ◦i s+v2
viewed as a shuffle tree in T c(s+S) is in P ¡, and by construction, it means that π(v2 ◦i v2) = 0 ∈ P,
when v2 ◦i v2 viewed as a shuffle tree in T (S). Hence, we get 0. We cannot assume that C is a shuffle
tree since P ¡ is a sub-cooperad of T c(s+S), however this proof still work when considering linear
combinations. Hence, d2 = 0. Because dP¡ and dP are compatible with the composition, and because
of the Koszul sign rule, we have that d1 and d2 anticommute. Let dκ = d1 + d2, we have that d2κ = 0.

Definition 2.4.1.7. Let P be a quadratic dg operad. The Koszul complex of P is the chain complex
(P ¡ ◦ P, dκ). If P is not differential graded, then dκ = d2 in the above discussion.
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Definition 2.4.1.8. Let P be a quadratic operad. The operad P is Koszul if H(P ¡ ◦ P, dκ) = K.
By a sight abuse of notation, we will say that the Koszul complex of P is acyclic.

Proposition 2.4.1.9. Let P be a finitely generated quadratic operad. Then P is Koszul if and only
if P ! is Koszul.

Proof. The Koszul complex splits according to the number of generators. The Koszul complex of P
is acyclic if and only its linear dual (arity-wise and number of generator wise) is acyclic. Hence, we
have that P is Koszul if and only if P ! is Koszul.

From the definition of the Koszul complex, we can prove the following theorem.

Theorem 2.4.1.10. Let P be a quadratic finite operad. Let χP¡◦P(x, y) =
∑ χ(P¡◦P)(n)(y)

n! xn be the
generating series of the Euler characteristic of the Koszul complex of P graded by the number of
generators. Then we have:

fP!(fP(x, y),−y) = χP¡◦P(x, y)

Proof. Let y1 be the formal variable associated to the number of operadic generators, and y2 the
formal variable associated to the number of cooperadic generators. It is quite clear from the definition
of the Koszul complex that its generating series bi-graded by the number of operadic and cooperadic
generators fP¡◦P(x, y1, y2) is the composition of the generating series of P ¡ and P. Hence, we have:

fP¡◦P(x, y1, y2) = fP¡(fP(x, y1), y2)

Since the degree is the number of cooperadic generators, we have that the Euler characteristic of the
Koszul complex of P bi-graded by the number of operadic and cooperadic generators is:

χP¡◦P(x, y1, y2) = fP¡◦P(x, y1,−y2)

Since the total number of generators is the sum of the number of operadic and cooperadic generators,
we have:

χP¡◦P(x, y) = fP¡(fP(x, y),−y)
Since fP¡ = fP! , we get the result.

This lead to a nice criterion on generating series to check if an operad is Koszul.

Corollary 2.4.1.11 (Ginzburg-Kapranov criterion for Koszulness). Let P be a quadratic finite
operad. If P is Koszul then:

fP!(fP(x, y),−y) = x

If P is generated in arity two, we can drop the grading by the number of generators which is redundant
with the arity and we get:

−fP!(−fP(x)) = x

This lead to another criterion on generating series to check if an operad is Koszul:

Corollary 2.4.1.12. Let P be a quadratic finite operad generated in arity two. If P is Koszul then
each coefficient of rev(fP(x)) is non-negative.

This last criterion is particularly useful since it is quite easy to check. Indeed, the n-th coefficient
of rev(fP(x)) is determined by the n first coefficient of fP(x), hence one can compute the n-th
coefficient of rev(fP(x)) by a finite number of operations. Since we have a software to compute
arity-wise dimension of operads from a presentation by generators and relations, we can use the
Lagrange inversion formula to check this criterion. Its is quite nice since we do not need to compute
the Koszul dual of P to check if it is Koszul.
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2.4.2 Koszulness and convergent quadratic ORS

Let us show a particularly useful example of Koszulness result. Namely, that an operad defined via a
quadratic convergent ORS is Koszul. This will be our main tool to prove Koszulness of operads in
this manuscript. This is a slight generalization of the PBW case, see [43], and the Gröbner basis
case, see [28] and [10], since we only require a partial monomial ordering instead of a total monomial
ordering. It was long known that this generalization was possible, however the author could not find
a reference for this result. We will give a proof of this result in this subsection.

Definition 2.4.2.1. An operad is monomial if it is the quotient of a free operad by a two-sided ideal
generated by monomials. It is quadratic monomial if the ideal is generated by monomials involving
exactly 2 generators. Same for a cooperad, shuffle operads and shuffle cooperads.

Let us show that quadratic monomial operads are Koszul. To do so, we need to show that the
Koszul complex is acyclic. Let P be a quadratic monomial operad, given by P = T {X}/⟨M⟩ with
X the set of generators and M the set of monomials generating the operadic ideal of relation of P.
Since P is monomial, we have a preferred basis for P given by the set of monomials in T {X} that are
not divisible by any m ∈M . Same for the Koszul dual cooperad P ¡ for which the preferred basis is
given by the set of monomials in T {s+X} that are not divisible by any m ∈M∗. Hence, the Koszul
complex of P has a preferred basis given by the shuffle trees of the form:

γI1,...,In(C;P1, . . . , Pn)

where C is an element of the preferred basis of P ¡ and P1, . . . , Pn are elements of the preferred basis
of P. Hence, one can get a shuffle tree of T {X} through the bijection s+X → X .
Proposition 2.4.2.2. The differential dκ of the Koszul complex of P split according to the underlying
shuffle tree of T {X} obtain by the bijection s+X → X .
Proof. Let us differentiate a shuffle tree T of the Koszul complex of P. We can write T =
γI1,...,In(C;P1, . . . , Pn). Let us denote vi the internal vertices of C such that all their children
are leaves, and s+xi ∈ s+X their labels. Then, dκ(γI1,...,In(C;P1, . . . , Pn)) is, up to a Koszul sign,
the sum over i of the same shuffle tree with s+xi flipped to xi. Hence, if one “forget the s+” in the
labels, the underlying shuffle tree did not change, more formally, the underlying shuffle tree of T {X}
obtain by the bijection s+X → X did not change after applying dκ.

Lemma 2.4.2.3. The sub-complex (A, dκ) of the Koszul complex of P spanned by the shuffle trees
of height 2 is acyclic, meaning that the cohomology of (A, dκ) is zero.

Proof. Let us consider a shuffle tree of height 2 given by

γI1,...,Im(f ; id, . . . , id, g1, id, . . . , id, g2, . . . , gn−1, id, . . . , id, gn, id, . . . , id)

where f, g1, . . . , gn ∈ X . By a slight abuse of notation, let us denote it:

γ(f ; g1, . . . , gn)

Then let us construct the following simplex: The vertex i is:

γ(s+f ; g1, . . . , gi−1, s+gi, gi+1, . . . , gn)

The edge linking i and j is:

γ(s+f ; g1, . . . , gi−1, s+gi, gi+1, . . . , gj−1, s+gj , gj+1, . . . , gn)

And so on. We may notice that the Koszul complex restricted to the shuffle tree γ(f ; g1, . . . , gn)
(under the bijection s+X → X ) is the reduced chain complex of the simplex we just constructed,
with γ(s+f ; g1, . . . , gn) for the empty set. We may in fact only have a facet of the simplex, indeed if
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s+f ◦i s+gi ∈ s2+M , then the simplex is degenerate as the i vertex is 0. If s+f ◦i s+gi ∈ s+M for all i,
then it is the only case where γ(f ; g1, . . . , gn) is not zero in the Koszul complex, hence in this case
we get the chain complex:

0→ γ(s+f ; g1, . . . , gn)→ γ(f ; g1, . . . , gn)→ 0

In all these cases, we get acyclic complexes since simplex are contractible. Hence, the Koszul complex
restricted to the shuffle trees of height 2 is acyclic.

Theorem 2.4.2.4. The Koszul complex of a quadratic monomial operad is acyclic. The same is
true for quadratic monomial shuffle operads.

Proof. Let us use the previous lemma and a spectral sequence argument. Since the shuffle tree
are a basis of the tree monad, we can assume that P is a shuffle operad without loss of generality.
Let P = T X{X}/M and let us prove that (P ¡ ◦ P, dκ) is acyclic. Let T be a shuffle tree of the
Koszul complex of P. Let S be the underlying shuffle tree under the identification s+X → X . The
minimal representative of S denoted Smin is the shuffle tree of the Koszul complex of P such that
its underlying shuffle tree under the identification s+X → X is S and such that it has the minimal
number of internal vertices labeled by elements of X . Let v be (one of) the highest vertices labeled
by elements of s+X in Smin, there is at least one vertex labeled by elements of s+X in Smin since the
root is always labeled by s+X in Smin. Let us define t as either the maximal subtree of T of height 2
such that the parent of v is its root, or as the maximal subtree of T of height 2 such that v is its
root if v is the root of T . Let us write T as:

T = R ◦i,I (γI1, . . . , In(t;P1, . . . , Pn))

We have P1, . . . , Pn are labeled over X , and t is of height 2. We define the degree of T as the number
of internal vertices labeled by elements of X in R. The differential dκ is increasing along the degree
since it turns elements of X into elements of s+X . Let us consider the decreasing filtration induced
by the degree, and the associated spectral sequence. We have that d0 is exactly the restriction of
dκ on t. Hence, by the previous lemma, we have that the spectral sequence abuts at the first page.
The differential dκ splits accordingly to the number of internal vertices of the shuffle trees. Since
the degree is bounded by the number of internal vertices, at number of internal vertices fixed, the
filtration is bounded. By [79][Classical Convergence Theorem of spectral sequence 5.5.1], at number
of internal vertices fixed we have that the spectral sequence converges. Hence, the Koszul complex of
P is acyclic.

This theorem is quite useful and already has some non-trivial consequences. In particular, the
criterion given by this theorem is sufficient to classify Koszul set operads on one generator of arity
two, see 2.4.5. However, it can be seen as the base case of a more general theorem. Indeed, any
operad admitting a presentation by a quadratic convergent ORS is Koszul. This is a quite powerful
result, and one of the main computational tools to show that an operad is Koszul. Let us show this
theorem, using our favorite tool: the spectral sequence. To do so, we need a filtration. Let (S,X , R)
be a quadratic convergent ORS admitting an associated operad, and P its associated operad. We
recall that (S,X , R) induces a transfinite filtration Fα on T {S}.

Theorem 2.4.2.5. The Koszul complex of an operad admitting a quadratic convergent ORS is
acyclic.

Proof. Since (S,X , R) is a quadratic convergent ORS, we have canonical representations of the
elements of P by shuffle trees of T X{X}. By definition of P ¡ we have P ¡ ⊆ T X{s+X}. Since the
Koszul complex is given by P ¡ ◦ P, we have canonical representations of the elements of the Koszul
complex by shuffle trees of T X{s+X} ◦ T X{X}. Moreover, any shuffle tree of T X{s+X} ◦ T X{X}
can be seen as a shuffle tree of T X{X} by “forgetting the s+” in the labels. Hence, we have transfinite
filtration on the shuffle trees of T X{s+X} ◦ T X{X}. The differential dκ is decreasing along this
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transfinite filtration since we may be forced to rewrite the part of shuffle tree of T X{s+X} ◦ T X{X}
which is in T X{X} after applying dκ. Let us consider the associated transfinite spectral sequence.
We have that d0 is exactly the differential d′κ of the Koszul complex of P ′ = T X{X}/⟨R′⟩ with R′

the rewritable monomials of (S,X , R). Hence, by the previous theorem, d0 is acyclic. Hence, the
spectral sequence abuts at the first page, hence the Koszul complex of P is acyclic.

One should not be afraid of the appearance of transfinite spectral sequence, since in most cases
the filtration is bounded. We refer to [79] for a detailed study of spectral sequence (and for a very
nice introduction to homological algebra). We refer more specifically to [44] and [73] for the case of
transfinite spectral sequence.

2.4.3 Koszulness in the operadic butterfly

Let us apply the previous theorem to the operadic butterfly. We recall that the operadic butterfly is
the following diagram of operad:

Diass Dend

Leib Ass Zinb

Lie Com

−

−

+

+

Let us recall the definition of the operads in the butterfly diagram. This will allow us to fix some
notation for the generators of these operads. For X a set species, we denote T [X ] = T (Span(X )) to
ease the notations.

Diass = T [a, b, a.(1 2), b.(1 2)]/⟨a◦2 a−a◦1 a, a◦2 a−a◦2 b, a◦1 b− b◦2 a, b◦1 a− b◦2 b, b◦1 a− b◦1 b⟩

Dend = T [x, y, x.(1 2), y.(1 2)]/⟨x ◦1 x− x ◦2 x− x ◦2 y, x ◦1 y − y ◦2 x, y ◦1 x+ y ◦1 y − y ◦2 y⟩

Leib = T [λ, λ.(1 2)]/⟨λ ◦1 λ+ (λ ◦1 λ).(1 2 3) + (λ ◦1 λ).(1 3 2)⟩

Ass = T [µ, µ.(1 2)]/⟨µ ◦1 µ− µ ◦2 µ⟩

Zinb = T [z, z.(1 2)]/⟨z ◦1 z − z ◦2 z − (z ◦2 z).(2 3)⟩

Lie = T [ℓ]/⟨ℓ ◦1 ℓ+ (ℓ ◦1 ℓ).(1 2 3) + (ℓ ◦1 ℓ).(1 3 2)⟩

Com = T [c]/⟨c ◦1 c− c ◦2 c⟩

From these definitions, one can wonder how Ass is different from Com, or Leib from Lie. This is
because our description is not complete, we need to specify the action of S2 on the generators. Let
us do it. The generators a, b, x, y, λ, µ and z have no symmetries. For example, in the case of Diass,
it means that (a, b, a.(1 2), b.(1 2)) is a basis of Diass(2) as a vector space. The generator ℓ of Lie
is antisymmetric so ℓ.(1 2) = −ℓ, and the generator c of Com is symmetric so c.(1 2) = c. This is
the difference between Ass and Com, and Leib and Lie. The attentive reader may have noticed that
{ℓ} is not a set species since it is not stable under the action of S2, however Span({ℓ}) is indeed a
species so the notation T [ℓ] is still licit. We can specify the 8 maps of the operadic butterfly. It is
enough to specify the image of the generators. We let the reader check that the following maps are
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well-defined, and that they make the diagram commute.

Diass Dend

Leib Ass Zinb

Lie Com

λ 7→ a− b.(1 2)
a 7→ µ
b 7→ µ

λ 7→ ℓ ℓ 7→ µ− µ.(1 2)

µ 7→ x+ y
x 7→ z

y 7→ z.(1 2)

µ 7→ c c 7→ z + z.(1 2)

A well known result in operad theory is the following. With our theorem on Koszulness of operads
admitting a quadratic convergent ORS, we could find convergent quadratic ORS for the operads
in the butterfly. We let the reader find such a convergent quadratic ORS for the operads in the
butterfly. The tricky part is to find the monomial partial ordering. After that the software developed
in [27] allows us to skip the tedious verification by hand of the confluence of the rewriting system.
We will not give the solution here, but we will give the result:

Theorem 2.4.3.1. The operads Diass, Dend, Leib, Ass, Zinb, Lie and Com are Koszul. Moreover,
we have:

• Diass! = Dend,

• Leib! = Zinb,

• Ass! = Ass, and

• Lie! = Com.

From this theorem, we can see that the left/right symmetry of the operadic butterfly corresponds
to the Koszul duality. This fact led Loday to ask the following question: “Is there a Koszul operad
f such that f! = f which completes the diagram?” This question stayed open for quite a long time,
and we will see that the answer is no. However, we first need to make the question more precise,
what does “completing the diagram” mean? We want an operad f such that:

f

Diass Dend

Leib Ass Zinb

Lie Com

I

Where f has four non-symmetric generators α, β, γ and δ. The morphism Diass→ f is given by:

a 7→ α+ γ

b 7→ β + δ
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And finally, the morphism f→ Dend is given by:

α 7→ x

β 7→ x

γ 7→ y

δ 7→ y

Let us define the following 15 relations:

α ◦1 α = α ◦2 α+ α ◦2 β, α ◦1 β= β ◦2 α, β ◦2 α+ β ◦2 β = β ◦1 β,
α ◦1 α = α ◦2 γ + α ◦2 δ, α ◦1 β= β ◦2 γ, β ◦2 α+ β ◦2 β = β ◦1 δ,
α ◦1 γ = γ ◦2 α+ γ ◦2 β, α ◦1 δ = δ ◦2 α, β ◦2 γ + β ◦2 δ = δ ◦1 β,
γ ◦1 α = γ ◦2 γ + γ ◦2 δ, γ ◦1 β = δ ◦2 γ, δ ◦2 α+ δ ◦2 β = δ ◦1 δ,
γ ◦1 γ = γ ◦2 γ + γ ◦2 δ, γ ◦1 δ = δ ◦2 γ, δ ◦2 γ + δ ◦2 δ = δ ◦1 δ (1-15)

And let define two relations:

δ ◦1 γ − δ ◦1 α = +α ◦2 β − α ◦2 δ (16+)

δ ◦1 γ − δ ◦1 α = −α ◦2 β + α ◦2 δ (16-)

Let us define the operad f+ as the quotient:

T [α , β, γ, δ, α.(1 2), β.(1 2), γ.(1 2), δ.(1 2)]/R+,

where R+ is the operadic ideal generated by the relations (1-15) and (16+). Similarly, let us define
the operad f− as the quotient:

T [α , β, γ, δ, α.(1 2), β.(1 2), γ.(1 2), δ.(1 2)]/R−,

where R− is the operadic ideal generated by the relations (1-15) and (16-). The study done in [57]

Theorem 2.4.3.2. Let f be an operad such that f! = f and f completes the butterfly diagram.

Then f = f+ or f = f−. Moreover, if f is Koszul, dim(f(n))
n! = 4n−1.

However, the question if either f+ or f− are Koszul stayed open for quite a long time, almost 20
years. We now have software that can compute arity-wise dimension of operads from a presentation.
Let us do it.

Proposition 2.4.3.3 (Solution to Exercice 3.12 [10]). We have dim(f+(n))
n! = 56 ̸= 64 and

dim(f−(n))
n! = 58 ̸= 64. In particular neither f+ nor f− are Koszul.

Proof. We used the software [27] to compute the arity-wise dimension of f+ and f−. We get:

n 1 2 3 4 5 6 7 . . .
dim(f+(n))

n! 1 4 16 56 210 792 3003 . . .
dim(f−(n))

n! 1 4 16 58 211 793 3004 . . .

These computations are quite surprising. Indeed, the first terms on the sequence of arity-wise
dimensions of f+ seem to link to A001791. This lead the author to a new conjecture on the arity-wise
dimension of f+.

https://oeis.org/A001791
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Conjecture 2.4.3.4. Let n ̸= 3. Up to n=7, we have:

dim(f+(n))

n!
=

(
2n

n− 1

)
Does this formula hold for n > 7?

The fact that one cannot complete the operadic butterfly with a Koszul operad hints that we
did not look at operadic butterfly the right way. Indeed, we may equivalently write the operadic
butterfly the following way:

Diass Com

Leib Ass Zinb

Lie Dend

In this case, it is the central symmetry that corresponds to the Koszul duality. Let us recall the
definition of the following operad:

PreLie = T [r, r.(1 2)]/⟨r ◦1 r − r ◦2 r = (r ◦1 r − r ◦2 r).(1 2)⟩

One can compute its Koszul dual:

Perm = T [p, p.(1 2)]/⟨p ◦1 p = p ◦2 p, p ◦1 p = (p ◦2 p).(1 2)⟩

Then we have:

Theorem 2.4.3.5. The operads Perm and PreLie are Koszul. Moreover, we have the following
commutative diagram:

Leib Diass Perm

Lie Ass Com

PreLie Dend Zinb

λ 7→ a− b.(1 2)
a 7→ p

b 7→ p.(1 2)

λ 7→ ℓ

ℓ 7→ r − r.(1 2)

a 7→ µ
b 7→ µ

ℓ 7→ µ− µ.(1 2)

p 7→ c

µ 7→ c

µ 7→ x+ y

x 7→ z
y 7→ z.(1 2)

c 7→ z + z.(1 2)

r 7→ x− y.(1 2)

This way of completing the operadic butterfly is quite interesting. It was done in [17], and we
refer to this paper for a proof of this theorem.

2.4.4 Generating function of Koszul operads

We already saw that Koszulness of an operad imposes some conditions on the generating function
of the operad. There is in fact a quite famous conjecture of Polishchuk and Positselski [71] on the
generating function of Koszul algebra let us cite it:



2.4. OPERADIC KOSZUL THEORY 133

Conjecture 2.4.4.1 (Polishchuk, Positselski). Let A be a finitely generated Koszul algebra, then the
Hilbert series of A is a rational function.

This conjecture can be extended to operads with the insight of Khoroshkin and Piontkovski [49]:

Conjecture 2.4.4.2 (Khoroshkin, Piontkovski).

• Let O be a finitely generated Koszul non-symmetric operad, then the Hilbert series of O is an
algebraic function.

• Let P be a finitely generated Koszul symmetric operad, then the Hilbert series of P is a
differential algebraic function.

It states that the Hilbert series of any finitely generated Koszul symmetric operad should satisfy
a non-trivial differential algebraic equation over Z[t]. It can be experimentally checked on examples
appearing in the literature, however most of the examples are operads generated in arity two, and
are often generated by one operation. We have already introduced the Koszul operads Ass, Com,
Lie, Leib, Zinb, PreLie and Perm which are all generated by one operation of arity two. In order to
be the most exhaustive possible, we looked through Operadia[77] which is an under construction
database of operads and their property inspired by the article of Zinbiel [81]. One can find at least
17 Koszul operads generated by one operation of arity two in [77], at the time this is written down.
A summary table of those operads and their Hilbert series is given in Table 4.1 of the appendix, the
sequence of arity-wise dimensions of the operads are given in the OEIS, they might be shifted by 1
or have a non-zero first term.

One may remark that all their Hilbert series satisfy differential algebraic identities. Moreover,
those identities are of order 1 meaning that only f and f ′ appear and no higher differential of f . It
leads us to the following conjecture:

Conjecture 2.4.4.3. Let P a Koszul symmetric operad generated by one operation of arity two,
then the Hilbert series of P is differential algebraic of order 1 over Z[x]. Equivalently, fP and f ′P are
algebraically dependent over Z[x].

Remark 2.4.4.4. One cannot expect this conjecture to be true for binary finitely generated Koszul
symmetric operads since one can define the operad Com ◦ Com by generators and relations:

Com ◦ Com = F(c1, c2)/⟨c1 ◦1 c1 − c1 ◦2 c1, c2 ◦1 c2 − c2 ◦2 c2, c1 ◦1 c2⟩

where the action of S2 on {c1, c2} is given by ci.(1 2) = ci. One can show that this operad is
Koszul, moreover its Hilbert series is exp(exp(x)− 1)− 1 which is not algebraically dependent with
its differential over Z[x].
More generally this construction allows us to build a Koszul operad P with n generators such that
its Hilbert series is not algebraically dependent with its first n− 1 differentials over Z[x].

A very pedestrian way to prove this conjecture would be to classify all Koszul symmetric operads
generated by one operation of arity two, and to compute the Hilbert series of each of them. For the
sake of simplicity, we will restrict ourselves to the case of set operads and prove the conjecture in
this particular case.

2.4.5 Classification of Koszul set operads generated by one operation of
arity two

To check the last subsection conjecture, let us try to classify Koszul operads generated by one
operation of arity two. To ease this classification and to reduce the number of cases, we will restrict
ourselves to the case of set operads. Let us note KSetOp1 for set operads generated by one operation
of arity two without symmetries. We denote by Mag the so called magmatic operad which is the free
operad generated by one operation of arity two without symmetries. The following lemma allows us
to reduce the study of KSetOp1 to the study of a finite number of operads.

https://operadia.pythonanywhere.com
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Lemma 2.4.5.1. Let P be a KSetOp1 operad, then P is a quotient of Mag by an equivariant
equivalence relation on the monomials of Mag(3).

Proof. Since P is generated by one operation of arity two, it is a quotient of Mag, moreover since P
is Koszul, P is quadratic, hence the relations are quadratic. Moreover, since P is a set operad, the
relations are given by an equivariant equivalence relation on the monomials.

This lemma allows us to reduce the study to a finite number of cases. However, in each case, we
will need to show if it is Koszul or not. Our main tool to show Koszulness will be Theorem 2.4.2.4.
Our main tool to show non-Koszulness will be Corollary 2.4.1.12. Using the software SageMath[78]
to compute reverse power series, we can state the following proposition:

Proposition 2.4.5.2. Let P be an operad such that its generating series is one of the power series
of Table 4.2 of the appendix. Then P is not Koszul.

Proof. For each power series of Table 4.2, we computed the reverse power series and found some
negative coefficients. This implies that the operad is not Koszul. Table 4.2 was assembled after the
actual classification and contains most of the power series of the non-Koszul operads we had to check
to establish the classification.

Some KSetOp1 operads are well known:

• The magmatic operad on one generator without symmetries,

• The non-associative permutative operad,

• The associative operad,

• The permutative operad,

• The Koszul dual of the Lie admissible operad (which is indeed a set operad when considering
the non-symmetric generator).

We have already introduce most of them. Let us introduce the last ones. The non-associative
permutative operad denote NAP is the operad defined by:

NAP = T [x, x.(1 2)]/⟨x ◦1 x = (x ◦1 x).(2 3)⟩

The Koszul dual of the Lie admissible operad denoted LieAdm! is the operad defined by:

NAP = T [x, x.(1 2)]/⟨x◦1 x = (x◦1 x).(1 2) = (x◦1 x).(2 3) = x◦2 x = (x◦2 x).(1 2) = (x◦2 x).(2 3)⟩

Using convergent quadratic ORS, One can check that those are indeed Koszul.

Let us define CMag and AMag respectively the commutative magmatic operad and the anti-
commutative magmatic operad. They are defined by CMag = T [c] with c.(1 2) = c and AMag = T [l]
with l.(1 2) = −l. We also define CNil2 and ANil2 the commutative nilpotent operad of order 2 and
the anti-commutative nilpotent operad of order 2. They are defined by CNil2 = CMag/CMag(3) and
ANil2 = AMag/AMag(3), this means that in CNil2 and ANil2 any non-trivial partial composition
gives 0. It is clear from Theorem 2.4.2.4 that these four operads are Koszul. Moreover, we have
ANil2 = CMag! and CNil2 = AMag!.

The operads AMag, CNil2, and ANil2 are clearly not set operads. However, they will be the
building blocks of the four new Koszul set operads that we will introduce to complete the classification.

https://www.sagemath.org
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The magmatic operad We denote by Mag the magmatic operad, and let x be its generator
without symmetry. The operad Mag admits a non-trivial automorphism given by x 7→ x.(1 2), let
us call it the reverse automorphism. The operad Mag is Koszul and is in fact the first example of
KSetOp1. By Lemma 2.4.5.1, any KSetOp1 operad is a quotient of Mag by an equivariant equivalence
relation on the monomials of Mag(3). Let us study the action of S3 on the set of monomials of
Mag(3). They can be represented by all possible ways to parenthesize the product of three elements
a, b and c with a, b and c in any order. Let us represent it this way:

a(bc)

b(ac)

b(ca)

a(cb)

c(ab)

c(ba)

(ab)c

(ac)b

(ca)b

(ba)c

(bc)a

(cb)a

Black edges represent the action of the transposition (1 2), red edges represent the action of the
transposition (2 3), blue edges represent the action of the transposition (1 3), green edges represent
the action of the 3-cycles.

As we can see, the action of S3 on the monomials of Mag(3) have 2 orbits let us call them the
left and right orbits. They are exchanged by the reverse automorphism of Mag.

Proposition 2.4.5.3. Let R be an equivariant equivalence relation on the monomials of Mag(3),
then R satisfies exactly one of the following property:

1. all equivalence classes are either subsets of the left orbit or subsets of the right orbit;

2. all equivalence classes contain elements of both orbits.

In the first case, the relation is entirely determined by the class of (ab)c and the class of a(bc). In
the second case, the class of (ab)c is enough to determine the relation.

The first case can be refined in four sub-cases:

Proposition 2.4.5.4. Let R be an equivariant equivalence relation on the monomials of Mag(3)
satisfying Property 1 of Proposition 2.4.5.3, then R satisfies exactly one of the following property:

1.1 the relation is trivial (equivalence classes are singletons);

1.2 equivalence classes of the left orbit are reduced to singletons, and equivalence classes of the right
are not;

1.3 equivalence classes of the right orbit are reduced to singletons, and equivalence classes of the
left are not;

1.4 no equivalence class is reduced to a singleton.

The first sub-case gives rise to the operad Mag. The second and third sub-cases are equivalent by
the reverse automorphism. The last sub-case is the same as giving one equivalence relation on the
left orbit and another one on the right orbit.

The second case in Proposition 2.4.5.3 can be refined in two sub-cases:

Proposition 2.4.5.5. Let R an equivariant equivalence relation on the monomials of Mag(3)
satisfying Property 2 of Proposition 2.4.5.3, then R satisfies exactly one of the following property:
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2.1 all equivalence classes contain exactly two elements;

2.2 all equivalence classes contain strictly more than two elements (namely 4, 6 or 12 elements).

We start by studying Sub-case 1.2. We then study Sub-case 1.4 in Paragraph 2.4.5. Sub-case 2.1
is studied in Paragraph 2.4.5 and Sub-case 2.2 in Paragraph 2.4.5. Since Sub-case 1.1 is trivial and
Sub-cases 1.2 and 1.3 are equivalent, all the possible cases are explicitly considered.
This approach leads us to consider 72 operads, however some of them are isomorphic. Removing
isomorphic operads allows us to reduce this number to 39 operads to check.

Equivariant relations on the right orbit Let us first study Sub-case 1.2. By equivariance, a
relation of Sub-case 1.2 is entirely determined by the class of (ab)c. Moreover, the equivalence class
of (ab)c contains either 2, 3 or 6 elements. We have a priori 5 possibilities to relate two elements of
the right orbit:

• (ab)c ∼ (ac)b;

• (ab)c ∼ (ba)c;

• (ab)c ∼ (bc)a;

• (ab)c ∼ (ca)b;

• (ab)c ∼ (cb)a.

However, since the relation is equivariant, the relation generated by (ab)c ∼ (ca)b is the same
as the relation generated by (ab)c ∼ (bc)a. Moreover, this relation is the only one such that the
equivalence class of (ab)c contains 3 elements.
We have only one possibility for a relation such that the equivalence class of (ab)c contains 6 elements:

(ab)c ∼ (cb)a ∼ (ca)b ∼ (ba)c ∼ (ac)b ∼ (bc)a

Hence, we have 5 possibles relations which gives rise to 5 operads:

• P1 with (ab)c = (ac)b;

• P2 with (ab)c = (ba)c;

• P3 with (ab)c = (cb)a;

• P4 with (ab)c = (bc)a = (ca)b;

• P5 with (ab)c = (cb)a = (ca)b = (ba)c = (ac)b = (bc)a.

We recognize that P1 is the (right) non-associative permutative operad, hence is Koszul.

Proposition 2.4.5.6. The operads P2, P3, P4 and P5 are not Koszul.

Proof. Let us compute the first dimensions of the operads P2, P3, P4 and P5 using the Haskell
calculator [27]:

n P2(n) P3(n) P4(n) P5(n)
1 1 1 1 1
2 2 2 2 2
3 9 9 8 7
4 60 60 40 29
5 525 520 210 146

We recognize the generating series 1, 2, 3 and 4 of Table 4.2, thus P2, P3, P4 and P5 are not
Koszul.

The sub-case 1.2 has been considered, since the sub-case 1.3 is equivalent by the reverse automor-
phism, we only need to consider the sub-case 1.4 to finish the study of the case 1.
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Compatibility between the relations on the left and right orbits Let us study Sub-case
1.4. We need to study the compatibility between the relations on the left and right orbits. By the
previous section, we have 5 relations involving only the right orbit :

• RR1 = {(ab)c = (ac)b},

• RR2 = {(ab)c = (ba)c},

• RR3 = {(ab)c = (cb)a},

• RR4 = {(ab)c = (bc)a = (ca)b},

• RR5 = {(ab)c = (cb)a = (ca)b = (ba)c = (ac)b = (bc)a},

And their symmetric by the reverse automorphism:

• LL1 = {a(bc) = b(ac)},

• LL2 = {a(bc) = a(cb)},

• LL3 = {a(bc) = c(ba)},

• LL4 = {a(bc) = b(ca) = c(ab)},

• LL5 = {a(bc) = b(ca) = c(ab) = a(cb) = b(ac) = c(ba)},

We have 25 possibilities to combine the relations RRi and LLj , however by the automorphism of
the magmatic operad, we only need to study those with i ≤ j, and thus we have 15 possibilities.

A naive guess would be that since RR1 gives rise to the right non-associative permutative operad,
and LL1 gives rise to the left non-associative permutative operad, the operad with both relations
would be Koszul. We will show that it is not the case.

Let Pi;j = Mag/⟨RRi; LLj⟩.

Proposition 2.4.5.7. The operads P1;1, P1;2, P1;3, P1;4 and P1;5 are not Koszul.

Proof. Let us compute the first dimensions of the operads P1;1, P1;2, P1;3, P1;4 and P1;5 using the
Haskell calculator [27]:

n P1;1(n) P1;2(n) P1;3(n) P1;4(n) P1;5(n)
1 1 1 1 1 1
2 2 2 2 2 2
3 6 6 6 5 4
4 14 20 14 6 5
5 30 75 30 10 6
6 ∗ 312 ∗ 18 7
7 ∗ ∗ ∗ ∗ 8
8 ∗ ∗ ∗ ∗ 9

We recognize the generating series 7, 8, 7, 10 and 14 of Table 4.2 of the appendix, thus P1;1, P1;2,
P1;3, P1;4 and P1;5 are not Koszul.

Proposition 2.4.5.8. The operads P2;3, P2;4, P2;5, P3;4, P3;5 and P4;4 are not Koszul.

Proof. The proof is the same.
Let us compute the first dimensions of the operads P2;3, P2;4, P2;5, P3;4, P3;5 and P4;4 using the
Haskell calculator [27]:
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n P2;3(n) P2;4(n) P2;5(n) P3;4(n) P3;5(n) P4;4(n)
1 1 1 1 1 1 1
2 2 2 2 2 2 2
3 6 5 4 5 4 4
4 14 8 5 2 2 2
5 21 18 6 2 1 2
6 ∗ 55 7 ∗ 1 2
7 ∗ ∗ 8 ∗ 1 2
8 ∗ ∗ 9 ∗ ∗ ∗

We recognize the generating series 9, 11, 14, 12, 15 and 13 of Table 4.2 of the appendix, thus P2;3,
P2;4, P2;5, P3;4, P3;5 and P4;4 are not Koszul.

Proposition 2.4.5.9. The operad P4;5 is not Koszul.

Proof. The idea of the proof is the same but more dimensions are needed, indeed the obstruction
appears in dimension 15. Let us compute the first dimensions of the operad P4;5 using the Haskell
calculator [27] which give a (non-quadratic) convergent ORS. We get:

(1, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, . . . )

This is the generating series 17 of Table 4.2 of the appendix, thus P4;5 is not Koszul.

Proposition 2.4.5.10. The operad P3;3 is not Koszul.

Proof. The method consisting of finding negative coefficients in rev(−fP(−t)) does not seem to work
in this case. However, one can remark that this operad is self-dual (in the sens of Koszul duality).
We recall that x is the generator without symmetries of this operad, let y = x.(1 2). The relations of
P3;3 are:

x ◦1 x− y ◦2 y ; y ◦1 y − x ◦2 x
And those relations are the same as the one of the operad P !

3;3 with x 7→ x∗.
Let us compute the first dimensions of the operad P3;3 using the Haskell calculator [27]. We get
(1, 2, 6, 20, 60, 182, 546, ?, ?, . . . ). Thus, we can compute:

fP3;3
(−fP3;3

(−t)) = t− 7

12
t7 +O(t8)

Which show that P3;3 is not Koszul.

Proposition 2.4.5.11. The operad P5;5 is not Koszul.

Proof. Once again the generating series method does not seem to work in this case. Let us polarize
the relations of P5;5 by defining [a, b] = ab− ba and a.b = ab+ ba and rewriting the relations of P5;5

using those:

• (a.b).c = a.(b.c),

• [a.b, c] = −[a, b.c],

• [a, b].c = 0,

• [[a, b], c] = 0.

From this presentation we can see that P5;5 is graded by [·, ·] and the dimensions can be easily
computed. We get (1, 1 + u, 1 + u, 1, 1, 1, . . . ) where u is the generator of the grading. This case look
very much like [11, Proposition 3.6] (however this is not the same operad). We have that:

fP5;5
= exp(t)− 1 +

u

2
t2 +

u

6
t3
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The power series criterion can be used on this series and the first negative term is

−1983044460002323872u2
20!

t20

which is the exact same term as in [11, Proposition 3.6] since the power series are the same. Thus,
P5;5 is not Koszul.

Theorem 2.4.5.12. The operad P2;2 is Koszul and self-dual.

Proof. Let us polarize the relations of P2;2 by defining [a, b] = ab− ba and a.b = ab+ ba and rewriting
the relations of P2;2 using those:

• [a, [b, c]] = 0,

• [a, b].c = 0,

By Theorem 2.4.2.4, P2;2 is Koszul. Moreover, its generating series can be computed and is
2− t−

√
1− 2t. Computation of its Koszul dual show that it is self-dual.

Let us denote by ANil2 ◦ CMag the operad P2;2. This notation comes from distributive laws of
operads, that we did not define in this manuscript. It was first introduced in [5], we refer the reader
to [60] for its application to operads. With this theorem, we have finished the study of Case 1. We
will now study Case 2, starting with Sub-case 2.1.

Equivariant relations relating exactly one term of the left and one of right orbits As in
Paragraph 2.4.5, knowing the equivalence class of (ab)c is enough to determine the relation. Thus,
we have 6 possibilities:

• (ab)c ∼ a(bc),

• (ab)c ∼ a(cb),

• (ab)c ∼ b(ac),

• (ab)c ∼ b(ca),

• (ab)c ∼ c(ab),

• (ab)c ∼ c(ba).

Moreover, none of those relations are equivalent. We get the 6 following operads:

• P6 with (ab)c = a(bc),

• P7 with (ab)c = a(cb),

• P8 with (ab)c = b(ac),

• P9 with (ab)c = b(ca),

• P10 with (ab)c = c(ab),

• P11 with (ab)c = c(ba).

We recognize that P6 is the associative operad, hence is Koszul.

Proposition 2.4.5.13. The operads P7, P8 and P9 are not Koszul.

Proof. Let us compute the first dimensions of the operads P7, P8 and P9 using the Haskell calculator
[27]:
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n P7(n) P8(n) P9(n)
1 1 1 1
2 2 2 2
3 6 6 6
4 12 12 12
5 20 20 1

We recognize the generating series 5, 5 and 6 of Table 4.2 of the appendix, thus P7, P8 and P9 are
not Koszul.

Theorem 2.4.5.14. The operad P10 is Koszul and is self-dual.

Proof. Let us polarize the relations of P10 by defining [a, b] = ab− ba and a.b = ab+ ba and rewriting
the relations of P10 using those:

• [a, [b, c]] = 0,

• [a, b.c] = 0,

By Theorem 2.4.2.4, P10 is Koszul. Moreover, its generating series can be computed and is 1 −√
1− 2t− t2. Computation of its Koszul dual show that it is self-dual.

We will denote by CMag ◦ANil2 the operad P10.

Theorem 2.4.5.15. The operad P11 is Koszul.

Proof. Let us polarize the relations of P11 by defining [a, b] = ab− ba and a.b = ab+ ba and rewriting
the relations of P11 using those:

• a.[b, c] = 0,

• [a, b.c] = 0,

We get the connected sum of the magmatic operad over a symmetric generator and the magmatic
operad over a skew-symmetric generator. By Theorem 2.4.2.4, it is Koszul. Moreover, its generating
series can be computed and is 2− t−

√
1− 2t.

The operad P11 will be denoted by CMag#AMag since it is the connected sum of CMag and
AMag. This concludes the study of Sub-case 2.1. The last sub-case to study is Sub-case 2.2.

Equivariant relations mixing several terms of the left and right orbits Let us study
Sub-case 2.2. Because the relations are equivariant, the same number of elements of the left and
right orbits must appear in each class of the equivalence relation, either 2, 3 or 6. Let us name the
relations of the previous section:

• RL6 = {(ab)c = a(bc)},

• RL7 = {(ab)c = a(cb)},

• RL8 = {(ab)c = b(ac)},

• RL9 = {(ab)c = b(ca)},

• RL10 = {(ab)c = c(ab)},

• RL11 = {(ab)c = c(ba)}.
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Any relation of Sub-case 2.2 is a combination of a relation of Sub-case 2.1 and a relation of
Sub-case 1.2.

Let define the operads Pi;j = Mag/⟨RRi; RLj⟩. We get a total of 30 operads, however some of
them are isomorphic.

Proposition 2.4.5.16. The couples of operads (P1;6,P1;7), (P1;8,P1;10), (P1;9,P1;11), (P2;6,P2;8),
(P2;7,P2;9), (P2;10,P2;11), (P3;6,P3;11), (P3;7,P3;10) and (P3;8,P3;9) are couples of isomorphic oper-
ads.

Proof. Let us compute the class of (ab)c in P1;6. We get: (ab)c = (ac)b by definition of RR1 and
(ab)c = a(bc) by definition of RL6. Moreover, by equivariance, RL6 implies (ac)b = a(cb) and thus
the class of (ab)c is

{(ab)c, (ac)b, a(bc), a(cb)}
Which is the same as in P1;7.
The proof is the same for the other couples.

With the exact same method, one can prove the following result:

Proposition 2.4.5.17. The triples of operads (P4;6,P4;9,P4;10) and (P4;7,P4;8,P4;11) are triples of
isomorphic operads.

Theorem 2.4.5.18. The operads P5;6, P5;7, P5;8, P5;9, P5;10 and P5;11 are all isomorphic to the
Koszul dual of the Lie admissible operad and thus Koszul.

Proof. It is clear in all six cases that the class of (ab)c is the entire set Mag(3). Thus, we recognize
the Koszul dual of the Lie admissible operad which is Koszul.

Proposition 2.4.5.19. The operads P1;8, P1;9, P2;7, P3;6, P3;7 and P3;8 are not Koszul.

Proof. Although those operads are not proved to be isomorphic, they are all share the same dimensions
which are (1, 2, 3, 1, 1, 1, . . . ) this can be computed using the Haskell calculator [27] which give a
(non-quadratic) convergent ORS. This is the series 16 of Table 4.2 of the appendix and thus those
operads are not Koszul.

Proposition 2.4.5.20. The operad P4;6 is not Koszul.

Proof. Let us polarize the relations. We get:

• [a, [b, c]] = 0,

• [a, b].c = a.[b, c],

• [a, b.c] = 0,

• (a.b).c = a.(b.c)

We recognize the operad of [11, Proposition 3.6] which is not Koszul.

Proposition 2.4.5.21. The operad P4;7 is not Koszul.

Proof. Let us polarize the relations. We get:

• [a, [b, c]] = −[[a, b], c],

• [a, b].c = 0,

• [a, b.c] = 0,

• (a.b).c = a.(b.c).
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From this presentation, we can remark that P4;7 is graded by [·, ·] and the dimensions can be easily
computed. We get (1, 1+ u, 1+ u2, 1, 1, 1, . . . ) where u is the generator of the grading. We have that:

fP4;7
= exp(t)− 1 +

u

2
t2 +

u2

6
t3

The power series criterion can be used on this series and the first negative term is −35u5

6! t6 which
show that this operad is not Koszul.

Theorem 2.4.5.22. The operad P2;10 is Koszul.

Proof. Let us polarize the relations. We get:

• [[a, b], c] = 0,

• [a, b].c = 0,

• [a, b.c] = 0.

One may recognize the connected sum of CMag and ANil2. By Theorem 2.4.2.4, P2;10 is Koszul.
Moreover, its generating series can be computed and is 1−

√
1− 2t+ 1

2 t
2.

The operad P2;10 will be denoted by CMag#ANil2 since it is the connected sum of CMag and
ANil2. The two last operads to check are P1;6 and P2;6. One can remark that they are in fact
isomorphic to the permutative operad and thus are Koszul.

Now that all the possible cases have been studied, we can state the main result:

Theorem 2.4.5.23. Let P a KSetOp1, then P is isomorphic to one of the 9 following operads:

• Mag the magmatic operad;

• NAP the non-associative permutative operad;

• CMag ◦ANil2 which is build from CMag and ANil2 with the relation [a.b, c] = 0;

• ANil2 ◦ CMag which is build from CMag and ANil2 with the relation [a, b].c = 0;

• CMag#AMag which is the connected sum of CMag and AMag;

• Ass the associative operad;

• CMag#ANil2 which is the connected sum of CMag and ANil2;

• Perm the permutative operad;

• LieAdm! the Koszul dual of the Lie admissible operad.

Moreover, only Ass, CMag ◦ANil2 and ANil2 ◦CMag are self-dual. And only NAP and Perm do not
inherit the reverse automorphism from Mag.

Proof. By Propositions 2.4.5.3, We know that it is enough to study equivariant equivalence relations
on the monomials of Mag(3) satisfying either Case 1 or Case 2. Moreover, Proposition 2.4.5.4 refine
Case 1 into Sub-cases 1.1, 1.2, 1.3 and 1.4.

• Sub-case 1.1 is trivial and correspond to the magmatic operad Mag.

• Sub-case 1.2 is studied in Section 2.4.5. It gives rise to 5 operads, however only 1 is Koszul,
the operad P1 which is isomorphic to NAP.

• Sub-case 1.3 is equivalent to Sub-case 1.2 by the reverse automorphism.
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• Sub-case 1.4 is studied in Section 2.4.5. It gives rise to 25 operads, the reverse automorphism
allows us to reduce this number to 15 operads. Among those 15 operads, only 1 is Koszul, the
operad P2;2 that we denote ANil2 ◦ CMag.

Proposition 2.4.5.5 refine Case 2 into Sub-cases 2.1 and 2.2.

• Sub-case 2.1 is studied in Section 2.4.5. It gives rise to 6 operads, 3 of them are Koszul, the
operads P6 (isomorphic to Ass), P10 and P11 that we respectively denote CMag ◦ANil2 and
CMag#AMag.

• Sub-case 2.2 is studied in Section 2.4.5. It gives rise to 30 operads, however some of them are
isomorphic, we can reduce this number to 12 operads. Among those 12 operads, 3 of them
are Koszul, the operads P1;6 (isomorphic to Perm), P5;6 (isomorphic to LieAdm!) and the new
operad P2;10 that we denote CMag#ANil2.

All the cases have been exhausted and we have found 9 Koszul operads.

Moreover, we have the following poset of quotient of operads:

Mag

NAP Ass CMag#AMag CMag ◦ANil2 ANil2 ◦ CMag

Perm CMag#ANil2

LieAdm!

Corollary 2.4.5.24. Let P a Koszul set operad over one generator of arity two, then P is isomorphic
to one of the 11 following operads:

• Mag the magmatic operad and fP(x) = 1
2 (1−

√
1− 4x);

• NAP the non-associative permutative operad and fP is the Euler’s tree function defined by

fP(x) =
∑
n∈N∗

nn−1

n! xn;

• CMag ◦ANil2 which is build from CMag and ANil2 with the relation [a.b, c] = 0, and fP(x) =
1−
√
1− 2x− x2;

• ANil2 ◦ CMag which is build from CMag and ANil2 with the relation [a, b].c = 0, and fP(x) =
2− x− 2

√
1− 2x;

• CMag#AMag which is the connected sum of CMag and AMag, and fP(x) = 2−x− 2
√
1− 2x;

• Ass the associative operad and fP(x) = x
1−x ;

• CMag#ANil2 which is the connected sum of CMag and ANil2, and fP(x) = 1−
√
1− 2x+ 1

2x
2;

• Perm the permutative operad and fP(x) = x exp(x);

• LieAdm! the Koszul dual of the Lie admissible operad and fP(x) = exp(x)− 1 + x2

2 ;
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• CMag the commutative magmatic operad and fP(x) = (1−
√
1− 2x);

• Com the commutative operad and fP(x) = exp(x)− 1.

All those operads satisfies Conjecture 2.4.4.3.

Corollary 2.4.5.25. The Hilbert series of a Koszul symmetric set operad generated by one operation
of arity two is differential algebraic of order 1 over Z[x].



Chapter 3

Combinatorial interpretations of
operads

We have introduced the species in the first chapter, and the operads in the second chapter as algebra
in the category of species. In this chapter, we will focus on the combinatorial interpretation of
some operads. Indeed, understanding the underlying species of an operad defined by generators and
relations is a highly non-trivial, same as it is not trivial to find the exhaustive set of relations of an
operad when it is not defined by generators and relations. We will study the species introduced in
Section 1.4, and put operadic structures on them. We will then relate those newly defined operads
to various construction of the operads PreLie and Lie, and ultimately we will use those results to
prove a conjecture of Dotsenko on the operad FMan, see [23]. First we will recall the construction of
Chapoton and Livernet of an operadic structure on the species of rooted trees, recall the amazing
theorem stating that this operad is isomorphic to PreLie, see [19]. We will then use this combinatorial
interpretation of PreLie to give a very precise description of TwPreLie the operadic twisting of
PreLie, as it is done in [30].
In the second section, we display the results of the first article of the author [52]. We relate the
combinatorial description of PreLie to the rooted Greg trees for two main reasons. First, because
vector spaces with two pre-Lie product sharing the same Lie bracket do appear in geometry with the
notion of Joyce structure, see [13]. This is not strange at all since any flat torsion-free connection
gives a pre-Lie structure on the space of vector fields of a smooth manifold, see [14] for an overview
of the appearance of pre-Lie algebras in geometry. Hence, a vector spaces with two pre-Lie product
sharing the same Lie bracket appears naturally when considering the space of vector fields of a
smooth manifold with two flat torsion-free connections. Then when computing the first dimension of
the operad encoding this structure, we get the same numbers as when enumerating the rooted Greg
trees. The second reason is because of the apparent link between the operadic twisting of PreLie
and rooted Greg trees that we make explicit in Theorem 3.2.1.20. We conclude the section by the
explicit computation of the generator of the coproduct of several copies of PreLie fibered over Lie,
thus generalizing a conjecture of Chapoton [18] that was proven by Dotsenko [24].
In the third section, we display the generalization of the first two sections to hypertrees that was
made in the second article of the author [53]. We relate hyperforests to the operad ComPreLie first
define in [65] by Mansuy. Then using the insight that rooted Greg trees relates to the operadic
twisting of PreLie, we relate the operadic twisting of ComPreLie to Greg hyperforests. We conclude
the section by adapting the construction to reduced Greg hyperforests, since they also generalize
both rooted Greg trees and hyperforests.
In the last section, we finally prove the main theorem of [53]. First we introduce the operad FMan
defined by Hertling and Manin in [42], and state the conjecture of Dotsenko [23] that FMan admits
an embedding in ComPreLie. We then use all the tools we have introduced so far to prove this
conjecture.
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3.1 Combinatorics of the PreLie operad

Let us relate the combinatorics of PreLie to rooted trees. To do so, we follow the construction of [19]
of an operadic structure on the rooted trees species. We then use this construction to give a precise
combinatorial description of the operadic twisting of PreLie.

3.1.1 Rooted trees and insertions

First, let us define the insertion product in the species of rooted trees. For S a rooted tree, v a vertex
of S, the forest FS = {S1, . . . , Sk} the forest of the children of v and B the rooted tree below v. Let
us introduce the following notation:

S
=

· · ·

v

S1 Sk

B

= v

FS

B

We use circles to represent vertices, triangles to represent trees or forests and double edges to represent
that each tree of the forest FS is grafted to v.

Definition 3.1.1.1. Let S and T be two rooted trees labeled over disjoint sets and V (S) the set of
vertices of S, let S ⋆ T be the fall product of T over S defined by:

S ⋆ T =
∑

v∈V (S)

v

TFS

B

For the sake of readability, let us omit the sums, the tree B and the forest FS:

S ⋆ T =

v

T

Example 3.1.1.2. Let compute (R ⋆ S) ⋆ T to grasp the definition of the fall product. Let vr and
vr′ be generic vertices of R and vs a generic vertex of S.

(R ⋆ S) ⋆ T = vs

vr

T

+

vr′ vr

ST

+

vr

S T
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Here S falls on the vertex vr of R, then either T falls on a vertex of S, or T falls on another vertex
vr′ of R, or T falls on the vertex vr of R.
We denote by a dotted line the path between two vertices which may contain several edges. The
dotted line is vertical if one vertex is above the other. The dotted line is horizontal if the two vertices
can be either one above the other, or not.

Proposition 3.1.1.3. The fall product is pre-Lie.

Proof. We have computed (R ⋆ S) ⋆ T , moreover we have:

R ⋆ (S ⋆ T ) = vs

vr

T

Hence, (R ⋆ S) ⋆ T −R ⋆ (S ⋆ T ) is symmetric in S and T . Hence, the fall product is pre-Lie.

Remark 3.1.1.4. The fall product allows us to graft a rooted tree T over another rooted tree S on all
possible vertices of S. However, as we can see in the above computation, a naive composition of the
fall product is not enough to make several trees fall on the same tree. Indeed, making several trees
(two trees T and S for example) fall on the same tree R should not depend on the order in which we
make them fall. However, when computing (R ⋆ S) ⋆ T , we have that S fall on R, but T can either
fall on S or on R, hence this is not symmetric in S and T . The solution is to use the symmetric
brace products.

The symmetric brace products were first introduced by Lada and Markl [50] and the following
formula to get the symmetric brace products from a pre-Lie product was given by Oudom and Guin
[69]:

• Br(S) = S

• Br(S;T ) = S ⋆ T

• Br(S;T1, . . . , Tn+1) = Br(S;T1, . . . , Tn) ⋆ Tn+1 −
∑n
i=1Br(S;T1, . . . , Ti ⋆ Tn+1, . . . , Tn)

The symmetric brace product Br(S;T1, . . . , Tn) is the sum of all possible ways to graft the trees
T1, . . . , Tn on vertices of S. It is symmetric in the Ti’s. For FT = {T1, . . . , Tn}, we will write
Br(S;FT ).

Let us recall that an operad structure on a species can be given by a collection of operations ◦i of
arity 2, the partial compositions satisfying the sequential and parallel composition axioms. Let us
define these operations on rooted trees using the symmetric brace products.

Definition 3.1.1.5. Let T and S be two rooted trees, let i be a label of a vertex of T and v this
vertex.

T
=

v

FT

B
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Let us consider U = Br(S;FT ), then the partial composition ◦i is defined by:

T ◦i S =

B

v

U

The children of v fall on S, then the result of this symmetric brace product is grafted on v, and
finally the vertex v is removed. This is exactly the insertion of S in T at the vertex v, with all the
children of v falling on S. Although we do not describe the construction the same way as [19], the
two constructions are the same. Hence, those partial compositions satisfy the sequential and parallel
composition axioms.

Remark 3.1.1.6. When defining partial compositions on a species P , we define

◦i : P(A ⊔ {i})⊗ P(B)→ P(A ⊔B),

where A and B are disjoint sets. It is equivalent to the definition with

◦i : P(n)⊗ P(m)→ P(n+m− 1)

which involves the compatibility with the actions of the symmetric groups and also involves some
renumbering.

Let us recall the following result:

Theorem 3.1.1.7. [19, Theorem 1.9] Let RT be the species of rooted trees. The operad (RT , {◦i})
with the partial compositions defined as above is isomorphic to the operad PreLie. Moreover, the

isomorphism is
1

2
7→ x with x the generator of PreLie.

3.1.2 Operadic twisting of PreLie

Let us now explicitly describe the operadic twisting of PreLie by the morphism φ : Lie → PreLie
given by φ(l) = x − x.(1 2), using the combinatorial description of PreLie. Let α be a formal
Maurer-Cartan element, α is an arity 0, degree 1 operation symbol, let us denote it by a black vertex.
Then, the underlying species of PreLie∨̂α is the species twisting rooted trees, see Definition 1.4.1.10.
As example, the element

((x ◦1 x− x ◦2 x) ◦2 α) ◦2 α
would be represented by the rooted tree with the white vertex as the root having two black children.
However, computations show that this element is equal to its opposite, hence is zero. This species
contain the species of rooted Greg trees as a subspecies, however, it is infinite dimensional in each
arity. The differential dMC is defined by dMC(α) = − 1

2 l̃(α, α), hence, dMC(α) = − 1
2 (x(α, α) −

x.(1 2)(α, α)) = −x(α, α) by the Koszul sign rule. The vector space of arity 1 degree 1 elements is
spanned by x ◦1 α and x ◦2 α, let us compute their differential:

dMC(x ◦1 α) = x ◦1 dMC(α) = −x ◦1 ((x ◦1 α) ◦2 α)

dMC(x ◦2 α) = x ◦2 dMC(α) = −x ◦2 ((x ◦1 α) ◦2 α)
Those computations can be represented using rooted trees, see Figure 3.1, however one need to be
careful with the order in which the black vertices are “filled”, indeed (x ◦1 α) ◦2 α and (x ◦2 α) ◦1 α
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Figure 3.1: Example of computation of dMC on some trees.

dMC = − ; dMC

1
= −

1

−
1

; dMC

1
= −

1

Figure 3.2: Composition of the arity 1 degree 1 elements.

(x ◦1 α) ◦1 (x ◦1 α) =

1

; (x ◦2 α) ◦1 (x ◦1 α) = − 1 −
1

(x ◦1 α) ◦1 (x ◦2 α) = 1 ; (x ◦2 α) ◦1 (x ◦2 α) = −

1

are represented by the same rooted tree but have opposite signs, we use the convention bottom to
top and left to right.

Let us find a Maurer-Cartan element. We need to compute (x◦iα)◦1 (x◦j α) with i, j ∈ {1, 2}, see
Figure 3.2. Since an operadic Maurer-Cartan element is a degree one arity one element, this shows that
the unique operadic Maurer-Cartan element (up to multiplication by a scalar) is µ = (x◦1α)−(x◦2α).
This allows to describe the differential dTw on the rooted trees:

Proposition 3.1.2.1. [30, Subsection 6.7] Let T be a twisting rooted tree, then dTw(T ) is the sum
of:

1. All possible ways to split a white vertex of T into a white vertex retaining the label and a black
vertex above it and to connect the incoming edges to one of the two vertices, up to an explicitly
computable sign.

2. All possible ways to split a white vertex of T into a white vertex retaining the label and a black
vertex below it and to connect the incoming edges to one of the two vertices, up to an explicitly
computable sign.

3. All possible ways to split a black vertex of T into two black vertices and to connect the incoming
edges to one of the two vertices, up to an explicitly computable sign.

4. All possible ways to graft an additional black leaf to T , up to an explicitly computable sign.

5. And the tree obtain by grafting T on top of a new black root, up to an explicitly computable
sign.

Moreover, many terms cancel due to the signs. In particular, if T has more than one vertex, all
contributions from 4 and 5 get cancelled by contributions from 1, 2 and 3.

Remark 3.1.2.2. The signs in the previous proposition depend on the order in which the black vertices
are “filled”. In this description, we assume that the newly created black vertex is filled first. The
signs created when changing the ordering can be computed using the Koszul sign rule. Assume that
T has k black vertices and n white vertices. To explicitly compute dTw(T ), we may notice that:

T = γ(U ; ε1, . . . , εn+k),
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where exactly k of the εi are α, and the other n are the identity. One need to be careful with the
order in which the εi are composed, indeed, this way of writing T is not unique, and the signs in
the previous proposition depend on the order in which the εi are composed. However, once such a
decomposition is chosen, one can compute dTw(T ) using the formula:

dTw(T ) = dMC(T ) + [µ, T ]

The Koszul sign appears during this computation.

A direct computation show that:

Proposition 3.1.2.3. Let us denote g = −dTw(x) then we have that:

g =
21

Moreover, x and g satisfies the relation:

(x ◦1 g − (g ◦1 x).(2 3)− g ◦2 x)− (x ◦1 g − (g ◦1 x).(2 3)− g ◦2 x).(2 3)

Theorem 3.1.2.4. [29, Theorem 5.1] The embedding of differential graded operads (Lie, 0) →
TwPreLie induces an isomorphism in the cohomology.

3.2 Coproducts of the PreLie operad over the Lie operad

Smooth manifold with two flat torsion-free connections appear in the literature with the notion of
Joyce structure, see [13]. The algebraic structure given by such two flat torsion-free connections
is exactly the algebraic structure encoded by the operad PreLie ∨Lie PreLie which is the coproduct
of two copies of the PreLie fibered over Lie. Computations show that dimensions of the low arity
components of

∨2
Lie PreLie coincide with the number of rooted Greg trees A005264 in [76]. This

leads to the natural following questions:

• Are
∨2

Lie PreLie and the species of rooted Greg trees equinumerous?

• Are they isomorphic as species?

• Are they isomorphic with their extra algebraic structure?

3.2.1 Rooted Greg trees and the Greg operad

First let us put an operadic structure on the rooted Greg trees species. Let us naively generalize
the construction described in the last section to the rooted Greg trees. Definition 3.1.1.1 of the fall
product is the same where we allow rooted Greg trees to fall on either black or white vertices, it is
straightforward to check that it is a pre-Lie product on G. Definition 3.1.1.5 of partial compositions
is also the same, however one can only compose in the white vertices. One may want to check that it
satisfies the sequential and parallel composition axioms.

Proposition 3.2.1.1. The partial compositions on G satisfy the sequential and parallel composition
axioms.

Proof. Parallel composition axiom: Let us compute (T ◦i S) ◦j R in the case where i and j are the

https://oeis.org/A005264
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labels vi and vj which are white vertex of T . Let us write T the following way:

T =

T0

FT (i)

vi vj

FT (j)

Applying the definition of the partial composition, we get:

(T ◦i S) ◦j R =

T0

U

vi vj

V

= (T ◦j R) ◦i S

with U = Br(S;FT (i)) and V = Br(R;FT (j)). The parallel axiom is verified.
Sequential composition axiom: Let us compute T ◦i (S ◦j R) in the case where i is the label of vi

a white vertex of T and j is the label of vj a white vertex of S. Let us write:

T =

T0

FT

vi
and S =

S0

FS

vj

With those notations for T and S, the computation of T ◦iS gives Subfigure 3.3a, with the additional
notations FS = (S1, . . . , Sk), FU = (U1, . . . , Uk), Ul = Br(Sl;FTl) and FT =

⊔k+1
l=0 FTl for every

possible such decomposition of FT in (possibly empty) subforest. From this, the computation
of (T ◦i S) ◦j R gives Subfigure 3.3b, with the additional notation V = Br(R;FU ∪ FTk+1).

Finally, the computation of T ◦i (S ◦i jR) gives Subfigure 3.3c, with W = Br(Br(R;FS); F̃ T1) and

U0 = Br(S0;FT0), and FT = FT0 ⊔ F̃ T1 for every possible such decomposition of FT in (possibly
empty) subforest. To conclude, one needs to remark that V = W . Indeed, in the definition of W ,

the forest FS falls on R, then F̃ T1 falls on the result; and in the definition of V , some trees of F̃ T1
fall on some trees of FS and the resulting forest falls on R. Those two operations give the same
result.

Definition 3.2.1.2. Let Greg be the operad (G, {◦i}). Let us note

x =
1

2
y =

1

2
g =

1 2

We know from the previous section that x satisfies the pre-Lie relation. Let us introduce the following
notation:

xn =
· · ·
1

2 n
gn =

· · ·1 n
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Figure 3.3: Computation of several composition of rooted Greg trees

(a) Computation of T ◦i S.

T ◦i S =

T0

U0

FU FTk+1

vj

vi

(b) Computation of (T ◦i S)◦j R.

(T ◦i S) ◦j R =

T0

U0

vi

vj

V

(c) Computation of T ◦i (S ◦j R).

(T ◦i S) ◦j R =

T0

U0

vi

vj

W

Example 3.2.1.3. Let us compute x ◦1 g. Because of the renumbering that we have been ignoring,

we have to compute
1

3
◦1

1 2
.

1

3
◦1

1 2
= 1 2

3

+ 1 2

3

+
1 2 3

Hence, we have x ◦1 g − (g ◦1 x).(2 3) − g ◦2 x =
1 2 3

. One may recognize that the left-hand

side of the equation is the Leibniz rule. Moreover, since the right-hand side is symmetric, we have
x ◦1 g − (g ◦1 x).(2 3)− g ◦2 x = (x ◦1 g − (g ◦1 x).(2 3)− g ◦2 x).(2 3). Let us call this relation the
Greg relation.

Remark 3.2.1.4. The element g3 encodes the failure to verify the Leibniz’s rule in the operad Greg,
the same as the element x3 encodes the failure to verify the associativity relation.

Proposition 3.2.1.5. The operad Greg is generated in arity two.

Proof. Let P(x, g) be the suboperad of Greg generated by x and g. We have to show that P(x, g) =
Greg. Let us prove it by induction on the arity.

• Base case: By definition P(x, g)(2) = Greg(2).

• Induction step: Let n ≥ 2 and suppose that P(x, g)(k) = Greg(k) for all k ≤ n. We have to show
that P(x, g)(n+1) = Greg(n+1). Computing x◦1xn and x◦1gn shows that xn+1 ∈ P(x, g)(n+1)
and gn+1 ∈ P(x, g)(n+1). Since we can obtain any rooted Greg trees by inductively composing
corollas in the leaves of smaller trees, we have Greg(n+ 1) = P(x, g)(n+ 1).

By induction, P(x, g) = Greg.

We want to prove that Greg is quadratic to get a quadratic presentation. In order to do so, we
will introduce a quadratic operad Greg′, show that Greg′ is Koszul and use the information given on
its dimensions of components to show that Greg′ is isomorphic to Greg.
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Definition 3.2.1.6. Let Greg′ be the quotient of the free operad generated by x̃ and g̃ such that x̃
has no symmetry and g̃.(1 2) = g̃, by the following relations:

• (x̃ ◦1 x̃− x̃ ◦2 x̃)− (x̃ ◦1 x̃− x̃ ◦2 x̃).(2 3)

• (x̃ ◦1 g̃ − (g̃ ◦1 x̃).(2 3)− g̃ ◦2 x̃)− (x̃ ◦1 g̃ − (g̃ ◦1 x̃).(2 3)− g̃ ◦2 x̃).(2 3)

The first relation is the pre-Lie relation and the second one is the Greg relation. Since Greg is
generated in arity two and those relations are satisfied in Greg, we have a surjective morphism of
operads Greg′ ↠ Greg.

Remark 3.2.1.7. From this definition and using the formalism of shuffle operads, it would already be
possible to prove that Greg′ is Koszul. However, the dimensions of components of its Koszul dual
are much simpler, hence we will compute and work with the Koszul dual of Greg′.

Definition 3.2.1.8. Let (Greg′)! be the quotient of the free operad generated by x∗ and g∗ such
that x∗ has no symmetry and g∗.(1 2) = −g∗, by the following relations:

x∗ ◦1 x∗ − x∗ ◦2 x∗ ; x∗ ◦1 x∗ − (x∗ ◦1 x∗).(2 3) ; x∗ ◦1 g∗ − g∗ ◦2 x∗

x∗ ◦1 g∗ + (x∗ ◦1 g∗).(1 2 3) + (x∗ ◦1 g∗).(1 3 2) ; x∗ ◦2 g∗ ; g∗ ◦1 g∗
The two first relation are associativity and permutativity. The third one can be see as a Leibniz
relation if we add the fifth one to it. The fourth one can be seen as some kind of Chasles relation
(see the next definition). The two others are some nilpotency relations.

Proposition 3.2.1.9. The operad (Greg′)! is the Koszul dual of Greg′.

Proof. We have already detailed the explicit computation of the Koszul dual in Subsection 2.4.1. To
check if it is indeed the dual, we need to show we get R⊥ using notation of Subsection 2.4.1. We can
easily check that the relations we are giving are in R⊥. To show that we have the whole R⊥, we
need to compute the dimension. We have:

dim (Span ({x̃, g̃}) ◦′ Span ({x̃, g̃})) = 3× 32 = 27

The space of relation of Greg′ is of dimension 3 + 2 = 5, indeed the first relation is a pre-Lie relation
and its orbit contain 3 elements, and the second relation contain 2 elements in its orbit and they are
linearly independent. The space of relation of (Greg′)! is of dimension (6 + 3) + (6 + 1 + 3) + 3 = 22.
This can be computed by explicitly writing down the orbits of each relations.

Let us give an example of (Greg′)!-algebra that allows us to show that dim((Greg′)!(4)) ≥ 7.

Definition 3.2.1.10. Let χ be a finite alphabet and W(χ) be the linear span of finite words on χ
with the following extra decorations: either one letter is pointed with a dot, or there is an arrow
from one letter to another. Let W (χ) be the quotient of W(χ) by the following relations, letters
commute with each other (the dot its letter, and the arrow follow the two letters it links), reverting
the arrow changes the sign and the Chasles relation holds:

↷
abcv =

↷
cbav +

↷
acbv

for any a, b, c ∈ χ and v a finite word. Because the letters commute, we can write the elements of
W (χ) with the pointed letter (or arrowed letters) at the start. Let the x and g products on W (χ)
defined by:

• ȧv x ḃw = ȧvbw

•
↷
abv x ċw =

↷
abvcw
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• ȧv g ḃw =
↷
abvw

All other cases give 0.

Proposition 3.2.1.11. The algebra (W (χ), x , g ) is a (Greg′)!-algebra generated by χ.

Proof. Indeed, ȧv = ȧ xw with w the word v with a dot on a letter (let us say the first one for
example) and

↷
abv = (ȧ g ḃ)xw

so (W (χ), x , g ) is generated by χ under the operations x and g . The product g is skew-symmetric,
indeed

ȧ g ḃ =
↷
ab =

↶
ba = −

↷
ba = −ḃ g ȧ

The 6 relations of (Greg′)! are easily checked.

Proposition 3.2.1.12. We have dim((Greg′)!(4)) ≥ 7.

Proof. Let A = W ({a, b, c, d}). Let us compute the dimension of Mult(A(4)) the multilinear part
of A(4). Let us write words of Mult(A(4)) such that the arrow always starts from a and go to the
second letter, and aside from that, the letters are in the lexicographic order. The rewriting rule
↷
βγα 7→ ↷

αγβ −
↷
αβγ is confluent. Indeed:

↷
cdab =

↷
bdac−

↷
bcad = (

↷
adbc−

↷
abcd)− (

↷
acbd−

↷
abcd) =

↷
adbc− ↷

acbd

Hence, Mult(A(4)) is spanned by the words ȧbcd, aḃcd, abċd, abcḋ,
↷
abcd,

↷
acbd and

↷
adbc. Since A is a

(Greg′)!-algebra on 4 generators, dim((Greg′)!(4)) ≥ dim(Mult(A(4))) = 7.

Remark 3.2.1.13. The algebra (W (χ), x , g ) is in fact the free (Greg′)!-algebra generated by χ.

Let us use the formalism of shuffle operads to write down a convergent ORS of (Greg′)!. Writing
the relations of (Greg′)! using shuffle trees is a good exercise to familiarize ourselves with shuffle
trees, and to be careful not to confuse them with the species of rooted trees or rooted Greg trees.
Since the actions of the symmetric groups are disposed of when working with shuffle operads, let us
note y∗ = x∗.(1 2). The result of the computation is displayed in Figure 4.6 of the appendix.

From those computations, the only missing ingredient to get a terminating ORS is a monomial
order. We will consider the three following orders to get terminating rewriting systems. We refer to
Definitions 2.2.4.35 and 2.2.4.39, and Examples 2.2.4.41 and 2.2.4.42 for the definitions of the orders.
One should understand the juxtaposition of the orders as their concatenation see Definition 2.2.4.44.

• The ORS associated to the graded path lexicographic permutation order with x∗ > y∗ > g∗
gives the rewriting system displayed in Figure 4.7 of the appendix.

• The ORS associated to the permutation reverse graded path lexicographic order with g∗ >
y∗ > x∗ gives the rewriting system displayed in Figure 4.8 of the appendix.

• The ORS associated to the reverse graded path lexicographic permutation order with x∗ >
y∗ > g∗ gives the rewriting system displayed in Figure 4.9 of the appendix.

Proposition 3.2.1.14. The ORS displayed in Figures 4.7, 4.7 and 4.7 of the appendix are convergent.

Proof. To prove this fact one has to choose either checking the confluence of the critical monomials
(more than 250 cases to check for the rewriting system displayed in Figure 4.7 of the appendix), or notic-
ing that there are 7 normal forms in arity 4 for each rewriting system and because dim((Greg′)!(4)) ≥ 7,
no new relation can appear. Since we have a monomial order and the rewriting rules are quadratic in
an operad generated in arity two, checking arity 4 is enough.
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Proposition 3.2.1.15. We have that dim((Greg′)!(n)) = 2n− 1 for all n ≥ 1, hence its exponential
generating series is (2t− 1) exp(t) + 1.

Proof. It suffices to count the normal forms of a rewriting system for example the one displayed in
Figure 4.7 of the appendix. Let n ≥ 2 and count the number of normal forms in arity n. Those are
right combs with at most one g∗, with all the x∗ above the g∗ and the y∗, and all the y∗ below the
g∗ and the x∗. Let us depict them in arity 4:

1

2

3 4

y∗

y∗

y∗
;
1

2

3 4

y∗

y∗

x∗
;
1

2

3 4

y∗

x∗

x∗
;
1

2

3 4

x∗

x∗

x∗
;
1

2

3 4

y∗

y∗

g∗
;
1

2

3 4

y∗

g∗

x∗
;
1

2

3 4

g∗

x∗

x∗

Hence, the normal forms are determined by the number of occurrences x∗ and g∗, and have either
zero or one occurrence g∗. If there is no g∗, then one can have from 0 to n− 1 occurrences of x∗. If
there is one g∗, then one can have from 0 to n− 2 occurrences of x∗. Hence, the number of normal
forms in arity n is 2n− 1.

Theorem 3.2.1.16. The operad Greg′ is Koszul.

Proof. We have a quadratic convergent ORS for (Greg′)!, hence (Greg′)! is Koszul, hence Greg′ is
Koszul.

Theorem 3.2.1.17. The exponential generating series of the operad Greg′ is the inverse under
composition of (2t+ 1) exp(−t)− 1. Hence, Greg′ is isomorphic to Greg.

Proof. We know that a Koszul operad P satisfies fP(fP!(−t)) = −t. Hence, the exponential
generating series of the operad Greg′ is the inverse under composition of (2t+ 1) exp(−t)− 1. Since
we have a surjective morphism from Greg′ to Greg, and they have the same exponential generating
series, the morphism is an isomorphism.

Corollary 3.2.1.18. The operad Greg is generated in arity two and Koszul.

Definition 3.2.1.19. Let us define the differential graded operad Greg−1 as the operad Greg such
that g is of degree 1 and with the differential d such that d(x) = d(y) = g. We may notice that:

d((x ◦1 x− x ◦2 x)− (x ◦1 x− x ◦2 x).(2 3))

= (g ◦1 x− g ◦2 x)− (g ◦1 x− g ◦2 x).(2 3) + (x ◦1 g − x ◦2 g)− (x ◦1 g − x ◦2 g).(2 3)

= (g ◦1 x− g ◦2 x)− (g ◦1 x− g ◦2 x).(2 3) + (x ◦1 g)− (x ◦1 g).(2 3)

= (x ◦1 g − (g ◦1 x).(2 3)− g ◦2 x)− (x ◦1 g − (g ◦1 x).(2 3)− g ◦2 x).(2 3)

In particular, we have that d is indeed well defined on Greg−1.

Proposition 3.1.2.3 states that we have a morphism of differential graded operads Greg−1 →
TwPreLie, moreover since rooted Greg trees have no non-trivial tree automorphisms, this morphism
is injective. Hence, using Theorem 3.1.2.4, we get the following theorem.

Theorem 3.2.1.20. The embedding of differential graded operads (Lie, 0) → Greg−1 induces an
isomorphism in the cohomology.

Proof. From Proposition 3.1.2.1, we have that the differential of TwPreLie splits on rooted Greg
trees and rooted non-Greg trees. We have TwPreLie = Greg−1 ⊕NG with some differential on NG
hence, H∗ (TwPreLie) = H∗

(
Greg−1

)
⊕H∗ (NG). Since the cohomology of TwPreLie is generated

by the image of l the generator of Lie and that it is in Greg−1, we have that NG is acyclic and that
the cohomology of Greg−1 is Lie.

This theorem give us a nice interpretation of the fact that fG(x,−1) = − ln(1− x), indeed the
exponential generating series of Lie is − ln(1− x) which is the cohomology of Greg−1.
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3.2.2 Deformations of Greg parametrized by coalgebras

We have studied the operad Greg, however we have not yet relate this operad to
∨2

Lie PreLie which
is another notation for PreLie∨Lie PreLie. In fact, we shall now establish a much more general result
about the operad

∨n+1
Lie PreLie.

Proposition 3.2.2.1. The operad
∨n+1

Lie PreLie is isomorphic to the operad T [x, c1, . . . , cn]/⟨R⟩,
with x without symmetries, ck.(1 2) = ck and R the relations:

(x ◦1 x− x ◦2 x)− (x ◦1 x− x ◦2 x).(2 3) (pre-Lie)

(x ◦1 ck − (ck ◦1 x).(2 3)− ck ◦2 x)− (x ◦1 ck − (ck ◦1 x).(2 3)− ck ◦2 x).(2 3)

+
∑

i,j|max(i,j)=k

(ci ◦1 cj − (ci ◦1 cj).(2 3)) (diff pre-Lie)

Proof. We already know the following presentation:
∨n+1

Lie PreLie ≃ T [x1, . . . , xn+1]/⟨R′⟩ with xk
without symmetries and R′ the relations:

(xk ◦1 xk − xk ◦2 xk)− (xk ◦1 xk − xk ◦2 xk).(2 3) (pre-Lie k)

(xk − xk+1)− (xk − xk+1).(1 2) (share)

Let ck = xk+1 − xk, then ck = ck.(1 2) is equivalent to Relation (share). Let x = x1. We have that

xk+1 = x+
∑k
i=1 ci. Hence, R′ is equivalent to:

(x ◦1 x− x ◦2 x)− (x ◦1 x− x ◦2 x).(2 3)+

k∑
i=1

((x ◦1 ci − x ◦2 ci)− (x ◦1 ci − x ◦2 ci).(2 3) + (ci ◦1 x− ci ◦2 x)− (ci ◦1 x− ci ◦2 x).(2 3))+

k∑
i=1

k∑
j=1

((ci ◦1 cj − ci ◦2 cj)− (ci ◦1 cj − ci ◦2 cj).(2 3)),

which is equal to:

(x ◦1 x− x ◦2 x)− (x ◦1 x− x ◦2 x).(2 3)+

k∑
i=1

(x ◦1 ci − (x ◦1 ci).(2 3) + (ci ◦1 x− ci ◦2 x)− (ci ◦1 x− ci ◦2 x).(2 3))+

k∑
i=1

k∑
j=1

(ci ◦1 cj − (ci ◦1 cj).(2 3))

Finally, if we subtract consecutive relations; we obtain

x ◦1 ck − (x ◦1 ck).(2 3) + (ci ◦1 x− ck ◦2 x)− (ck ◦1 x− ck ◦2 x).(2 3)+∑
i,j|max(i,j)=k

(ci ◦1 cj − (ci ◦1 cj).(2 3)),

which is the intended relation.

This quadratic presentation very much look like the presentation of the operad Greg. The operad∨2
Lie PreLie is not isomorphic to Greg, however one may wonder if the operad

∨2
Lie PreLie is a

deformation of Greg. We shall now show that it is indeed the case.
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Deformation via a coalgebra Let C = (V,∆) with V be a vector space of finite dimension n
and ∆ a co-associative co-commutative co-multiplication on V .

Definition 3.2.2.2. The vector space of rooted Greg trees over V is GVk (m) =
⊗

τ∈Gk(m) V
⊗BV (τ).

It has a basis of rooted Greg trees whose black vertices are labeled by a basis of V . Let GV (m) =⊕
k GVk (m) and GV =

⊕
m GV (m).

Definition 3.2.2.3. Let us define the deformed fall product ⋆∆ on GV . Let S and T be two rooted
Greg trees over V . For v a vertex of S, the forest FS = {S1, . . . , Sk} the forest of the children of v,
B the rooted tree below v and cv the label of v. Let us write:

S
= cv

FS

B

For v a black vertex and cv its label, let us write cv(1) ⊗ cv(2) = ∆(cv) using the Sweedler notation.

Let us define the product ⋆∆ by:

S ⋆∆ T =
∑

v∈V (S)

cv

TFS

B

+
∑

v∈BV (S)

∑
FS(1)⊔FS(2)=FS cv(1)

cv(2)

TFS(2)

FS(1)

B

For the sake of readability, let us write:

S ⋆∆ T =

cv

T

+

cv(1)

cv(2)

T

Proposition 3.2.2.4. The deformed fall product ⋆∆ is pre-Lie.

Proof. The proof is the tedious computation of (R ⋆∆ S) ⋆∆ T −R ⋆∆ (S ⋆∆ T ). The computation of
(R⋆∆ S) ⋆∆ T is written down in Figure 4.10; r, r′ and s are labels of vertices of R and S respectively.
The boxed terms are the terms of R ⋆∆ (S ⋆∆ T ). Using the co-associativity and co-commutativity of
∆, we get that (R ⋆∆ S) ⋆∆ T −R ⋆∆ (S ⋆∆ T ) is symmetric in S and T . Hence, the deformed fall
product ⋆∆ is pre-Lie.

Remark 3.2.2.5. One may notice that co-commutativity is stronger than the needed condition, indeed
the weaker needed condition is that r(1) ⊗ r(2) ⊗ r(3) = r(1) ⊗ r(3) ⊗ r(2) using Sweedler notation,
which is known as the co-permutativity property. Moreover, one may notice that if C admits a
co-unity, then the co-permutativity property is equivalent to the co-commutativity property.
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The symmetric brace product Br∆ associated to ⋆∆ is also defined by the following formula:

Br∆(S;T1, . . . , Tn+1) = Br∆(S;T1, . . . , Tn) ⋆
∆ Tn+1 −

n∑
i=1

Br∆(S;T1, . . . , Ti ⋆
∆ Tn+1, . . . , Tn)

Same as Br, Br∆ is symmetric in the Ti’s.

Definition 3.2.2.6. The partial compositions ◦∆i are defined the same way as in Definition 3.1.1.5
by:

T ◦∆i S =

B

v

U

with U = Br∆(S;FT ).

Proposition 3.2.2.7. The partial compositions ◦∆i satisfy the sequential composition and parallel
composition axioms.

The proof is the same as the one of Proposition 3.2.1.1.

Definition 3.2.2.8. Let us denote C = (V,∆), and let GregC be the operad (GV , {◦∆i }). Let
(e1, . . . , en) be a basis of V and:

xn =

· · ·

1

2 n

gkn =

· · ·1 n

ek

Let x = x2 and gk = gk2 .

Proposition 3.2.2.9. The operad GregC is generated in arity two and satisfy the following relations:

(x ◦1 x− x ◦2 x)− (x ◦1 x− x ◦2 x).(2 3) (pre-Lie)

(x ◦1 gk − (gk ◦1 x).(2 3)− gk ◦2 x)− (x ◦1 gk − (gk ◦1 x).(2 3)− gk ◦2 x).(2 3)

+ (gk(1) ◦1 gk(2) − (gk(1) ◦1 gk(2)).(2 3)) (greg ∆)

With gk(1) and gk(2) defined by ∆ under the identification of V with the linear span of the generators

gk.

Proof. Let us compute x ◦1 gk:

1

3

◦1
1 2

ek
= 1 2

3

ek

+ 1 2

3

ek

+

1 2 3

ek
+ 1

2 3

ek(1)

ek(2) +

1

2

3

ek(1)

ek(2)

This shows that the operad GregC satisfies Relation greg ∆.
Let P(x, g1, . . . , gn) be the suboperad of GregC generated by x and g1, . . . , gn. We have to show
that P(x, g1, . . . , gn) = GregC . Let us prove it by induction on the arity.
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• Base case: By definition P(x, g1, . . . , gn)(2) = GregC(2).

• Induction step: Let m ≥ 2 and suppose that P(x, g1, . . . , gn)(k) = GregC(k) for all k ≤ m. We
have to show that P(x, g1, . . . , gn)(m+ 1) = GregC(m+ 1). Computing x ◦1 xm and x ◦1 gkm
shows that xm+1 ∈ P(x, g1, . . . , gn)(m+ 1) and gkm+1 ∈ P(x, g1, . . . , gn)(m+ 1). Since we can
obtain any rooted Greg trees by inductively composing corollas in the leaves of smaller trees,
we have GregC(m+ 1) = P(x, g1, . . . , gn)(m+ 1).

By induction, P(x, g1, . . . , gn) = GregC .

Let us use the same strategy as in the previous sections to prove that the operad GregC is Koszul.

Definition 3.2.2.10. Let GC the operad defined by generators and relations as follows: x̃ is a
generator without symmetries, g̃k are symmetric generators such that:

(x̃ ◦1 x̃− x̃ ◦2 x̃)− (x̃ ◦1 x̃− x̃ ◦2 x̃).(2 3)

(x̃ ◦1 g̃k − (g̃k ◦1 x̃).(2 3)− g̃k ◦2 x̃)− (x̃ ◦1 g̃k − (g̃k ◦1 x̃).(2 3)− g̃k ◦2 x̃).(2 3)

+ (g̃k(1) ◦1 g̃k(2) − (g̃k(1) ◦1 g̃k(2)).(2 3))

With g̃k(1) and g̃
k
(2) defined by ∆ under the identification of V with the linear span of the generators

g̃k.

Let C∗ = (V ∗, µ) the linear dual of C. This is a commutative algebra of dimension n.

Definition 3.2.2.11. Let (GC)! the operad defined by generators and relations as follows: x∗ is a
generator without symmetries, gk∗ are skew-symmetric generators such that:

x∗ ◦1 x∗ − x∗ ◦2 x∗ ; x∗ ◦1 x∗ − (x∗ ◦1 x∗).(2 3) ; x∗ ◦1 gk∗ − gk∗ ◦2 x∗

x∗ ◦1 gk∗ + (x∗ ◦1 gk∗ ).(1 2 3) + (x∗ ◦1 gk∗ ).(1 3 2) ; x∗ ◦2 gk∗ ; gi∗ ◦1 gj∗ − x ◦1 gi.j∗
With the notation gi.j∗ = µ(gi∗, g

j
∗), one should be careful since i.j in not the product of i and j; this

is just a way to keep notation more compact.

Let us generalize the construction ofW (χ) of Definition 3.2.1.10 to get an example of (GC)!-algebra
that allows us to show that dim((GC)!(4)) ≥ 4 + 3n.

Definition 3.2.2.12. Let χ be a finite alphabet and WC(χ) be the linear span of finite words on χ
with the following extra decorations: either one letter is pointed with a dot or there is an arrow from
one letter to another, the arrow is linearly labeled by V ∗.

Let us write
i↷ instead of

e∗i↷ and
i.j
↷ instead of

µ(e∗i ,e
∗
j )↷ .

Let WC(χ) be the quotient of WC(χ) by the following relations, letters commute with each other
(the dot follows its letter, and the arrow follow the two letter it links), reverting the arrow changes
the sign and the Chasles relation holds:

i↷
abcv =

i↷
cbav +

i↷
acbv

for any a, b, c ∈ χ and v a finite word. Because the letters commute, we can write the elements of
W (χ) with the pointed letter (or arrowed letters) at the start. Let the x and g

i
products on W (χ)

defined by:

• ȧv x ḃw = ȧvbw

•
i↷
abv x ċw =

i↷
abvcw
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• ȧv g
i
ḃw =

i↷
abvw

•
i↷
abv g

j
ċw =

i.j↷
abvcw

• ȧw g
j

i↷
bcv = −

i.j↷
bcvaw

All other cases give 0.

Proposition 3.2.2.13. The algebra (WC(χ), x , { g i}) is a (GC)!-algebra generated by χ.

Proof. Indeed, ȧv = ȧ xw with w the word v with a dot on a letter (let us say the first one for
example) and

i↷
abv = (ȧ g

i
ḃ)xw

so (W (χ), x , { g
i
}) it is generated by χ under the operations x and g

i
. The products g

i
are

skew-symmetric since

ȧ g
i
ḃ =

i↷
ab =

i↶
ba = −

i↷
ba = −ḃ g

i
ȧ

The relations of (GC)! are easily checked.

Proposition 3.2.2.14. We have dim((GC)!(4)) ≥ 4 + 3n.

Proof. Let A = W ({a, b, c, d}). Let us compute the dimension of Mult(A(4)) the multilinear part
of A(4). Let us write words of Mult(A(4)) such that the arrow always starts from a and go to the
second letter, and aside from that, the letters are in the lexicographic order. The rewriting rule
i↷
βγα 7→

i↷
αγβ −

i↷
αβγ is confluent. Indeed:

i↷
cdab =

i↷
bdac−

i↷
bcad = (

i↷
adbc−

i↷
abcd)− (

i↷
acbd−

i↷
abcd) =

i↷
adbc−

i↷
acbd

Hence, Mult(A(4)) is spanned by the words ȧbcd, aḃcd, abċd, abcḋ,

i↷
abcd,

i↷
acbd and

i↷
adbc. Since A is a

(GC)!-algebra on 4 generators, dim((GC)!(4)) ≥ dim(Mult(A(4))) = 4 + 3n.

Remark 3.2.2.15. The algebra (W (χ), x , { g
i
}) is in fact the free (GC)!-algebra generated by χ.

Let us consider the three following monomials orders. We refer to Definitions 2.2.4.35 and 2.2.4.39,
and Examples 2.2.4.41 and 2.2.4.42 for the definitions of the orders. One should understand the
juxtaposition of the orders as their concatenation see Definition 2.2.4.44:

• the rewriting system associated to the graded path lexicographic permutation order with
x∗ > y∗ > g∗ gives the rewriting system displayed in Figure 4.11 of the appendix;

• the rewriting system associated to the weighted permutation reverse graded path lexicographic
order with g∗ > y∗ > x∗ and g∗ of degree 1 gives the rewriting system displayed in Figure 4.12
of the appendix;

• and the rewriting system associated to the reverse graded path lexicographic permutation order
with x∗ > y∗ > g∗ gives the rewriting system displayed in Figure 4.13 of the appendix.

Proposition 3.2.2.16. The rewriting systems displayed in Figures 4.7, 4.12 and 4.13 of the appendix
are convergent.
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Proof. As in Proposition 3.2.1.14, noticing that there are 4 + 3n normal forms in arity 4 for each
rewriting system and that dim((GC)!(4)) ≥ 4 + 3n is enough. Since we have a monomial order and
the rewriting rules are quadratic in an operad generated in arity two, checking arity 4 is enough.

Proposition 3.2.2.17. We have that dim((GC)!(m)) = (n + 1)m − n for all m ≥ 1, hence its
exponential generating series is ((n+ 1)t− n) exp(t) + n.

Proof. It suffices to count the normal forms of a rewriting system for example the one displayed in
Figure 4.11 of the appendix. Let m ≥ 2 and count the number of normal forms in arity m. Those are
right combs with at most one gk∗ , with all the x∗ above the gk∗ and the y∗, and all the y∗ below the gk∗
and the x∗. Hence, the normal forms are determined by the number of occurrences x∗ and gk∗ , and
have either zero or one occurrence gk∗ . If there is no g

k
∗ , then one can have from 0 to m−1 occurrences

of x∗. If there is one gk∗ , then one can have from 0 to m− 2 occurrences of x∗ and n choice for the gk∗
that appears. Hence, the number of normal forms in arity m is m+ n(m− 1) = (n+ 1)m− n.

Theorem 3.2.2.18. The operad GC is Koszul.

Proof. We have a quadratic convergent ORS for (GC)!, hence (GC)! is Koszul, hence GC is Koszul.

Proposition 3.2.2.19. The exponential generating series of GregC verifies:

fGregC = t exp(fGregC ) + n(exp(fGregC )− fGregC − 1)

Proof. An inspection of the species GV which is the species of rooted Greg trees such that the black
vertices are labeled by {e1, . . . , en} shows that:

GV = X · E(GV ) + nE≥2(GV )

With the usual notation of species, X is the singleton species, E is the species of sets and E≥2 is
the species of sets with at least two elements. The above equation means that a rooted Greg tree
is either a white vertex and a set of rooted Greg trees connected to it, or a black vertex labeled
by ek (so n possibilities) and a set of at least 2 rooted Greg trees connected to it. Since GV is the
underlying species of GregC , we have that:

fGregC = t exp(fGregC ) + n(exp(fGregC )− fGregC − 1)

Remark 3.2.2.20. We can recover the recursive formula enumerating the rooted Greg trees from [45,
Proposition 2.1] by resolving a differential equation. Let h(t, z) = ((z + 1)t+ z) exp(−t)− z. Hence:

• ∂h
∂t (t, z) = −((z + 1)t− 1) exp(−t),

• ∂h
∂z (t, z) = (t+ 1) exp(−t)− 1.

Hence:

(z + 2)h(t, z) +
∂h

∂t
(t, z)− (z + 1)2

∂h

∂z
(t, z) = 1

Let f be such that h(f(t, z), z) = h◦ (f, id) = t. We have that ∂h
∂t ◦ (f, id).

∂f
∂t = 1 and ∂h

∂t ◦ (f, id).
∂f
∂z +

∂h
∂z ◦ (f, id) = 0, hence:

((z + 2)t− 1)
∂f

∂t
+ (z + 1)2

∂f

∂z
= −1

Let f(t, z) =
∑ gk(z)

k! tk with gk polynomials in z, we get the following recursive relation:

• g1(z) = 1

• gk+1(z) = (z + 2)kgk(z) + (z + 1)2g′k(z)
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Theorem 3.2.2.21. The operad GC is isomorphic to GregC .

Proof. We know that dim((GC)!(m)) = (n + 1)m − n, hence its exponential generating series is
f(GC)! = ((n+ 1)t− n) exp(t) + n. Let h(t, n) = −f(GC)!(−t) = ((n+ 1)t+ n) exp(−t)− n, since GC
is Koszul, we know that h(fGC (t, n), n) = t. Hence:

t = ((n+ 1)fGC + n) exp(−fGC )− n

Hence:
fGC = t exp(fGC ) + n(exp(fGC )− fGC − 1)

Which shows that fGC = fGregC . Since we have a surjective morphism from GC to GregC and equality

of dimensions of components, we have that GC is isomorphic to GregC .

Corollary 3.2.2.22. The operad GregC is generated in arity two and Koszul.

Definition 3.2.2.23. Let Gregn be the operad Greg(V,0), with 0 the trivial co-multiplication on V .

Corollary 3.2.2.24. The operad
∨n+1

Lie PreLie is isomorphic to Greg(V,∆max) with:

∆max : ek 7→
∑

i,j|max(i,j)=k

ei ⊗ ej

Moreover,
∨n+1

Lie PreLie is filtered by the grading of the rooted Greg trees by the number of black
vertices. The associated graded operad is Gregn.

Corollary 3.2.2.25. The operad
∨n+1

Lie PreLie is Koszul.

Remark 3.2.2.26. This fact is not a direct consequence of the definition of
∨m+1

Lie PreLie as a coproduct.
Indeed, the fiber coproduct of two Koszul operads P and Q over a Koszul operad R is not necessarily
Koszul. Take for instance the operads

∨2
Lie Ass and

∨2
Lie Pois which are not Koszul, it can be checked

by comparing the exponential generating series of those operads and of their Koszul dual. Worst,
freeness as right R-modules of P and Q does not solve the issue as shown by the example

∨2
Lie Pois.

It seems that freeness as left modules solve this issue. Indeed, for instance the operads
∨2

Com Pois

and
∨2

Com Zinb are Koszul. However, the author does not know how to prove that left freeness ensure
that Koszulness is preserved. Left and right freeness are defined at the very beginning of the next
section.

3.2.3 Freeness and explicit computation of the generators

We have seen that GregC is Koszul using quadratic convergent ORS. However, one quadratic
convergent ORS was enough to show this fact. Three different quadratic convergent ORS were
computed with particular normal forms. Indeed, the goal was to apply the freeness theorems of
Subsection 2.2.5. Let C be a co-associative co-commutative coalgebra and C ′ a sub-coalgebra of C.

Theorem 3.2.3.1. The operad GregC is free as left and as a right GregC
′
-module. (And not as a

bimodule.)

Proof. By reversing the order, one can go from an ORS of an operad to an ORS of its Koszul dual,
this exchanges the rewritable monomials and the normal forms, and reverse the monomial partial
order. Hence, the ORS displayed in Figure 4.12 of the appendix witness the left freeness and the
ORS displayed in Figure 4.13 of the appendix witness the right freeness.

Remark 3.2.3.2. When we have P → Q a morphism of operads, we can never expect Q to be free as
a P-bimodule. Indeed, P itself is not free as a P-bimodule.

Corollary 3.2.3.3. The operad
∨n+1

Lie PreLie is free as left and as a right
∨n

Lie PreLie-module.



3.2. COPRODUCTS OF THE PreLie OPERAD OVER THE Lie OPERAD 163

Theorem 3.2.3.4. The operad GregC has the Nielsen-Schreier property.

Proof. The ORS displayed in Figure 4.11 of the appendix witness the first condition and the ORS
displayed in Figure 4.12 of the appendix witness the second condition.

Corollary 3.2.3.5. The operad
∨n

Lie PreLie has the Nielsen-Schreier property.

Let us compute the explicit generators of
∨n+1

Lie PreLie as a left
∨n

Lie PreLie-module. To do so, let
us mimic the proof of [24].

Cyclic operad A structure of cyclic operad on an operad P is given by an action of Sn+1 on P(n)
compatible with the operadic structure. This is equivalently given by an action of τ = (1, 2, . . . , n+1)
on P(n) verifying:

• τ(µ ◦i ν) = τ(µ) ◦i+1 ν for i < m with m the arity of µ;

• τ(µ ◦m ν) = τ(ν) ◦1 τ(µ).

It is known that Lie is a cyclic operad, see [38], CycLie is the species underlying this cyclic operad so
as vector space we have Lie(k) = CycLie(k + 1). In the particular case of CycLie, the action of τ
is given by τ(l) = l. Let us describe CycLie a bit more explicitly. We have that CycLie is a right
Lie-module, moreover it is generated by r commutatif in arity 2 and satisfies the following relation:

r ◦1 l = r ◦2 l

This relation should be understood the following way: r correspond to id in Lie. The action of S2

on id is trivial. Since τ(l) = l we have that τ(l ◦2 id) = τ(id) ◦1 τ(l) = l, where l correspond to r ◦2 l
in CycLie since r correspond to id in Lie, and τ(l ◦2 id) correspond to (r ◦2 l).(1 2 3) in CycLie. In
particular, we have that CycLie is the right Lie-module generated by r and satisfying the relation
r ◦1 l = r ◦2 l.
Let us introduce the following notation, x is the generator of PreLie without symmetries, x = µ+ l
with µ symmetric and l skew-symmetric. Then l is the generator of the suboperad Lie of PreLie.

We want to prove that
∨n+1

Lie PreLie ≃ ∨nLie PreLie ◦ T (T (n)
(CycLie)) with T the free operad

functor, T the reduced free operad functor such that T (X ) = T (X )⊕X and T (n)
the n-th iteration

of T . We will do so by induction on n. The initialization is exactly the main theorem of [24].

Theorem 3.2.3.6. [24, Theorem 1] Let Y be the subspecies of PreLie such that y ∈ Y if and only if
y = (µ ◦2 a) ◦1 b with a, b ∈ Lie. Then:

• Y is isomorphic to CycLie as species;

• Let P(Y) the suboperad of PreLie generated by Y, then P(Y) is free;

• The left Lie-submodule of PreLie generated by P(Y) is free and coincide with PreLie.

Let us use the exact same technic as the one used in [24] to explicitly compute the generators

of
∨n+1

Lie PreLie as a left
∨n

Lie PreLie-module. The idea is the following, we introduce some explicit

generators of
∨n+1

Lie PreLie as a left Lie-module and as a left
∨n

Lie PreLie-module. We then define a
bunch of surjective morphisms of species involving those generators. We then compute the dimensions
of the species involved to show that the morphisms are isomorphisms. Finally, we conclude that the
generators we introduced freely generate

∨n+1
Lie PreLie.
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Notations We fix the inclusions
∨k

Lie PreLie→
∨n+1

Lie PreLie given by x is send to x, c1 is send to
c1 up to ck is send to ck. We denote by Y0 the species Y of [24, Theorem 1], which is defined as the
subspecies PreLie generated by the (µ ◦2 a) ◦1 b with a, b ∈ Lie. We define Yn to be the subspecies of∨n+1

Lie PreLie generated by the (cn ◦2 a) ◦1 b such that a, b ∈ ∨nLie PreLie. We denote X0 = Y0, and
we define Xn be the subspecies of Yn generated by the (cn ◦2 a) ◦1 b with a, b ∈ Lie which is different

from Y when n ̸= 0. Let P(Yn) be the suboperad of
∨n+1

Lie PreLie generated by Yn. And let Zn be
the species inductively defined by Z0 = T (Y0) and Zn+1 = Zn ◦ T (Yn+1).

We can notice the following facts: By fixing the morphisms
∨k

Lie PreLie →
∨n+1

Lie PreLie, we have

that
∨n+1

Lie PreLie is a left
∨k

Lie-module. Moreover, by definition, Yn is a right
∨n

Lie PreLie-module
which implies that it is a right Lie-module. Hence, T (Yn) is a right Lie-module, hence Zn is also
a right Lie-module. The species Xn is also a right Lie-module, moreover it is generated by cn as a
right Lie-module.

The goals are to show that: Xn is isomorphic to CycLie, that Yn is isomorphic to T (n)
(CycLie), that

P(Yn) is free, and that Zn is isomorphic to:

T (CycLie) ◦ T (T (CycLie)) ◦ · · · ◦ T (T (n)
(CycLie))

Let us define the surjective morphisms that we will need.

Lemma 3.2.3.7. We have a surjective morphism of Lie-bimodule from Lie ◦ Zn to
∨n+1

Lie PreLie.

Proof. Let k ≤ n+ 1. Since Yk is a subspecies of
∨k

Lie PreLie ⊆
∨n+1

Lie PreLie, we have a morphism

of species from T (Yk) to
∨n+1

Lie PreLie. Hence, we have a morphism from Zn to
∨n+1

Lie PreLie. Since

Lie is a suboperad of
∨n+1

Lie PreLie, we have a morphism of left Lie-module from Lie ◦ T (Yk) to∨n+1
Lie PreLie. This is a morphism of right Lie-module since it is compatible with the composition

by l. Moreover, this morphism is surjective since l ∈ Lie, µ ∈ Y0, c1 ∈ Y1, ..., cn ∈ Yn which imply
that l, µ, c1, . . . , cn ∈ Lie ◦ Zn and since those are the generators of

∨n+1
Lie PreLie, we have that the

morphism Lie ◦ Zn →
∨n+1

Lie PreLie is surjective.

Let us define the following filtration on Lie ◦ Zn:
Definition 3.2.3.8. Let us define the weight of an element of T (Yk) as the usual weight in free
operad, which is the number of generators needed in the composition. Then we define inductively
the weight of an element γ(z, f1, . . . , fk) of Zn with z ∈ Zn−1 and fi ∈ T (Yn) as the total sum of
the weight of those elements. For an element α = γ(l, z1, . . . , zr) of Lie ◦ Zn such that zi ∈ Zn of
weight wi and l ∈ Lie of arity r, let w = r +

∑
wi be the weight of α. We define the filtration by

α ∈ Fw(Lie ◦ Zn) with w the weight of α.

Proposition 3.2.3.9. This filtration is compatible with the Lie-bimodule structure. (It is in fact a
filtration by infinitesimal Lie-bimodule.)

Proof. Indeed, we have that l(F p(Lie ◦Zn), F q(Lie ◦Zn)) ⊆ F p+q(Lie ◦Zn) and F p(Lie ◦Zn) ◦Lie ⊆
F p(Lie ◦ Zn).

Hence, this filtration induces a filtration on
∨n+1

Lie PreLie by the surjective morphism of Lie-
bimodule of the previous lemma.

Lemma 3.2.3.10. We have a surjective morphism of species from CycLie to Xn.
Proof. Let us compute Relation (diff pre-Lie) with x = µ+ l. We get:

(l ◦1 cn − (cn ◦1 l).(2 3)− cn ◦2 l)− (l ◦1 cn − (cn ◦1 l).(2 3)− cn ◦2 l).(2 3)

(µ ◦1 cn − (cn ◦1 µ).(2 3)− cn ◦2 µ)− (µ ◦1 cn − (cn ◦1 µ).(2 3)− cn ◦2 µ).(2 3)

+
∑

i,j|max(i,j)=n

(ci ◦1 cj − (ci ◦1 cj).(2 3))
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Let us rewrite it a bit:

2× (cn ◦2 l) + (cn ◦1 l).(2 3)− (cn ◦1 l) = l ◦1 cn − (l ◦1 cn).(2 3) + (µ ◦1 cn − (cn ◦1 µ).(2 3))−
(µ ◦1 cn − (cn ◦1 µ).(2 3)).(2 3) +

∑
i,j|max(i,j)=n

(ci ◦1 cj − (ci ◦1 cj).(2 3))

Let us point out that element of the left-hand side are in F 2
∨n+1

Lie PreLie and elements of the right-

hand side are in F 3
∨n+1

Lie PreLie. Indeed, at the left-hand side, we have composition of the identity
(arity 1) with elements of T (Yn) having exactly one occurrence of an element of {µ, c1, . . . , cn},
hence degree 2. At the right-hand side, we have either composition of l (arity 2) with elements of
T (Yn) having exactly one occurrence of an element of {µ, c1, . . . , cn}, hence degree 3; or composition
the identity (arity 1) with elements of T (Yn) having exactly two occurrences of an element of
{µ, c1, . . . , cn}, hence degree 3.
Let us consider grFXn the graded species associated to the restriction of the filtration F of Xn. As
species we have that grFXn is isomorphic to Xn. Moreover, in grFXn, the above relation gives:

2× (cn ◦2 l) + (cn ◦1 l).(2 3)− (cn ◦1 l) = 0

Let us denote r this relation and compute 1
3 (r + r.(1 3)):

1

3
(2× (cn ◦2 l) + (cn ◦1 l).(2 3)− (cn ◦1 l) + 2× (cn ◦2 l).(1 3) + (cn ◦1 l).(1 2 3)− (cn ◦1 l).(1 3)) = 0

We get:
(cn ◦2 l) = (cn ◦1 l) (cyc)

This relation allows us to define a morphism of species from CycLie to grFXn by sending ĩd 7→ cn
and l̃ 7→ (cn ◦2 l), with ĩd and l̃ the identity and the Lie bracket of CycLie. Indeed, we have an action
of τ = (1 2 3) on cn ◦2 l and (cn ◦2 l).τ = (cn ◦1 l), which gives (cn ◦2 l) by the relation above, hence
τ(l̃) = l̃. This morphism is surjective since grFXn is a right Lie-module generated by cn. Hence, we
have a surjective morphism of species from CycLie to Xn.

Lemma 3.2.3.11. We have a surjective morphism of species from Xn ◦ Zn−1 to Yn.

Proof. Let γ(cn, y1, . . . , yk) a monomial element of Yn, since yi ∈
∨n

Lie PreLie and Lie◦Zn−1 surjects
on
∨n

Lie PreLie, we have li such that:

yi = γ(li, α(i,1), . . . , α(i,ri))

with li ∈ Lie and α(i,j) ∈ Zn−1. Let β = γ(cn, l1, . . . , lk), we have β ∈ Xn, hence γ(cn, y1, . . . , yk) is
in the image of Xn ◦ Zn−1.

Let us summarize the morphisms of species we have:

n∨
Lie

PreLie ◦ T (CycLie ◦ Zn−1) ↠
n∨
Lie

PreLie ◦ T (Xn ◦ Zn−1) ↠
n∨
Lie

PreLie ◦ T (Yn) ↠
n+1∨
Lie

PreLie

One last ingredient is needed: the equality of dimensions of the components to show that those
morphisms are in fact isomorphisms.

Proposition 3.2.3.12. Let S a species, fS(t) its exponential generating series. Then

fT (T (n)
(S))

(t) =
revt(t− (n+ 1)fS(t))− t

n+ 1
+ t

where revt is the inverse of the composition in the argument t and fT (T (n)
(S))

the exponential

generating series of T (T n(S)).
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Proof. For a species S with exponential generating series fS(t), the exponential generating series
fT (S)(t, z) of T (S) is given by fT (S)(t, z) which is the inverse of t− zfS(t) for the composition in
the argument t, hence we have fT (S)(t, z) = revt(t − zfS(t)). Hence, the exponential generating

series of T (S) is fT (S)(t, z) = fT (S)(t, z)− t = revt(t− zfS(t))− t. The exponential generating series

fT (S)(t, z) and fT (S)(t, z) have two arguments, the first one, t, count the arity of the elements and
the second one, z, count the number of generators of the elements in the free operad. Since z count
the number of generators of the elements in the free operad, dividing by z allows us to count the

number of compositions of generators. Hence, the exponential generating series of T (n)
(S)(t) is

revt(t−nfS(t))−t
n . Finally, we get:

fT (T (n)
(S))

(t) =
revt(t− (n+ 1)fS(t))− t

n+ 1
+ t

Lemma 3.2.3.13. The exponential generating series of
∨n

Lie PreLie ◦ T (T
(n)

(CycLie)) is equal to

the exponential generating series of
∨n+1

Lie PreLie.

Proof. Let us compute the exponential generating series of T (T (n)
(CycLie)). The exponential

generating series of CycLie is well known to be (1− t) ln(1− t) + t, indeed its dimensions are (n− 2)!.

Hence, the exponential generating series of T (T (n)
(CycLie)) is

fT (T (n)
(CycLie))

(t) =
revt(t− (n+ 1)(1− t) ln(1− t)− (n+ 1)t)− t

n+ 1
+ t

We have already computed the exponential generating series of
∨n+1

Lie PreLie in Proposition 3.2.2.19
which is

f∨n+1
Lie PreLie(t) = revt((nt+ t+ n) exp(−t)− n)

And the exponential generating series of
∨n

Lie PreLie is

f∨n
Lie PreLie(t) = revt((nt+ n− 1) exp(−t)− n+ 1)

Let us show that f∨n+1
Lie PreLie(t) = (f∨n

Lie PreLie ◦ fT (T (n)
(CycLie))

)(t). Let

f(t) = (nt+ t+ n) exp(−t)− n g(t) = (nt+ n− 1) exp(−t)− n+ 1

h(t) = t− (n+ 1)(1− t) ln(1− t)− (n+ 1)t

We want to show that:

revt(f)(t) = (revt(g) ◦ (
revt(h)− t
n+ 1

+ t))(t)

It suffices to show that h((n+ 1)g − nf) = f . Let us compute:

(n+ 1)g(t)− nf(t) =(n+ 1)((nt+ n− 1) exp(−t)− n+ 1)− n((nt+ t+ n) exp(−t)− n)
=((n+ 1)nt exp(−t) + (n+ 1)(n− 1) exp(−t)− (n+ 1)(n− 1))−
(n(n+ 1)t exp(−t)− n2 exp(−t) + n2)

=− exp(−t) + 1

Hence:

h((n+ 1)g − nf) = − exp(−t) + 1− (n+ 1) exp(−t) ln(exp(−t))− (n+ 1)(− exp(−t) + 1) = f

which concludes the proof.
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We can state and prove the generalization of the previous theorem:

Theorem 3.2.3.14. We have:

1. The species Xn is isomorphic to CycLie as a species.

2. The species Yn is isomorphic to T (n)
(CycLie) as species;

3. The suboperad P(Yn) of
∨n+1

Lie PreLie generated by Yn is free;

4. The left
∨n

Lie PreLie-submodule of
∨n+1

Lie PreLie generated by P(Yn) is free and coincide with

the
∨n

Lie PreLie-module
∨n+1

Lie PreLie.

5. The species Zn is isomorphic to T (CycLie) ◦ · · · ◦ T (T (n)
(CycLie)) as species;

6. The left Lie-submodule of
∨n+1

Lie PreLie generated by Zn is free and coincide with the Lie-module∨n+1
Lie PreLie.

Proof. Let us prove this theorem by induction on n. The base case is the theorem of [24]. From the
previous lemmas we have

n∨
Lie

PreLie ◦ T (CycLie ◦ Zn−1) ↠
n∨
Lie

PreLie ◦ T (Xn ◦ Zn−1) ↠

n∨
Lie

PreLie ◦ T (Yn) ↠
n∨
Lie

PreLie ◦ P(Yn) ↠
n+1∨
Lie

PreLie

By item (5), we have Zn−1 ≃ T (CycLie) ◦ · · · ◦ T (T
(n−1)

(CycLie)), hence

CycLie ◦ Zn−1 ≃ CycLie ◦ T (CycLie) ◦ · · · ◦ T (T (n−1)
(CycLie)) ≃ T (n)

(CycLie)

Those surjective morphisms are isomorphisms by equality of dimensions. This shows that:

1. The species Xn is isomorphic to CycLie;

2. The species Yn is isomorphic to T (n)
(CycLie);

3. The species P(Yn) is isomorphic to T (Yn);

4. And the left
∨n

Lie PreLie-module
∨n

Lie PreLie ◦ P(Yn) is isomorphic to
∨n+1

Lie PreLie as left∨n
Lie PreLie-module.

Moreover, since Zn = Zn−1 ◦ T (Yn) we have that Zn is isomorphic to:

T (CycLie) ◦ · · · ◦ T (T (n)
(CycLie))

as a species. Since
∨n

Lie PreLie◦P(Yn) is isomorphic to
∨n+1

Lie PreLie as left
∨n

Lie PreLie-module, they

are isomorphic as left Lie-module. Hence, Lie ◦ Zn is isomorphic to
∨n+1

Lie PreLie as left Lie-module,

in particular the left Lie-submodule generated by Zn is free and coincide with
∨n+1

Lie PreLie.

Remark 3.2.3.15. This proof can be adapted to show that Gregn ≃ Gregn−1 ◦ T (T
(n)

(CycLie)).

The operad
∨n+1

Lie PreLie is also free as a right
∨n

Lie PreLie-module. It could be interesting to
compute explicit generator in this case.
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3.3 Generalization to hypertrees

We saw in Section 1.4 that hyperforests were a generalization of rooted trees, and that Greg
hyperforests and reduced Greg hyperforests were two possible ways to generalize both hyperforests
and rooted Greg trees at the same time. Let us do the constructions of the above section for
hypertrees, generalizing [19, Theorem 1.9] to the operad ComPreLie that we will introduce in this
section.

3.3.1 Hyperforests and the operad ComPreLie

Let us now give a description à la Chapoton-Livernet of the operad ComPreLie. The operad
ComPreLie was first introduced in [65], it is defined by the following presentation:

T [x, y, c]/⟨(x ◦1 x− x ◦2 x)− (x ◦1 x− x ◦2 x).(2 3),

x ◦1 c− (c ◦1 x).(2 3)− c ◦2 x, c ◦1 c− c ◦2 c⟩

where x, y and c are operations of arity two, and the action of S2 on x, y and c is given by x.(1 2) = y
and c.(1 2) = c. The first relation is the pre-Lie relation for x, the second one is a Leibniz rule and
the third is the associativity of c. Its Koszul dual, the operad ComPreLie!, is defined by the following
presentation:

T [x∗, y∗, c∗]/⟨x∗ ◦1 x∗ − x∗ ◦2 x∗, x∗ ◦1 x∗ − (x∗ ◦2 x∗).(2 3),

x∗ ◦2 c∗, x∗ ◦1 c∗ − (c∗ ◦1 x∗).(2 3), c∗ ◦1 c∗ − c∗ ◦2 c∗ − c∗ ◦1 c∗.(2 3)⟩

where x∗, y∗ and c∗ are operations of arity two, and the action of S2 on x∗, y∗ and c∗ is given by
x∗.(1 2) = y∗ and c∗.(1 2) = −c∗. In order to compute arity-wise dimensions of ComPreLie!, let us
introduce the following ComPreLie!-algebra admitting an explicit description:

Definition 3.3.1.1. Let X a finite set, Lie(X) the free Lie algebra generated by X and uCom(X)
the free unitary commutative associative algebra generated by X. Let LC(X) = Lie(X)⊗ uCom(X).
For a1 ⊗ a2 and b1 ⊗ b2 in LC(X), let us define two operations of arity two [·, ·] and ·.· by:

• (a1 ⊗ a2).(b1 ⊗ b2) = a1 ⊗ (a2.b1.b2) if b1 ∈ Vect(X);

• (a1 ⊗ a2).(b1 ⊗ b2) = 0 if b1 /∈ Vect(X);

• [(a1 ⊗ a2), (b1 ⊗ b2)] = [a1, b1]⊗ (a2.b2).

One can check that LC(X) is a (ComPreLie)!-algebra with [·, ·] the image of c∗ and ·.· the image
of x∗. Moreover, it is generated as a (ComPreLie)!-algebra by the elements of the form a⊗ 1 with
a ∈ X and 1 the unit of uCom(X).

Definition 3.3.1.2. Let un be the sequence of logarithmic numbers, see Sequence A002104 in the
OEIS [76]. This sequence is defined by:∑

n≥1

un
n!
tn = − log(1− t) exp(t)

Proposition 3.3.1.3. We have that un = dim(Mult(LC({a1, . . . , an}))) with Mult the multilinear
part, in particular u4 = 24.

Proof. Since LC({a1, . . . , an}) = Lie({a1, . . . , an})⊗ uCom({a1, . . . , an}), we have that:

Mult(LC({a1, . . . , an})) =
⊕

I⊔J={a1,...,an}
Mult(Lie(I))⊗Mult(uCom(J))

Hence, n→ Mult(LC({a1, . . . , an})) give rise to a species which is the Cauchy product of Lie and
uCom. Hence, its exponential generating series is − log(1− t) exp(t).

https://oeis.org/A002104
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The operad ComPreLie! admits a terminating quadratic rewriting system displayed in the appendix
Figure 4.14 of the appendix, it has 19 rules. This rewriting system is obtained using the quantum
permutation graded path lexicographic order with x∗ and y∗ of x-type and c∗ of y-type. We refer
to Definitions 2.2.4.43 and 2.2.4.39, and Examples 2.2.4.41, 2.2.4.35 and 2.2.4.42 for the definitions
of the orders. One should understand the juxtaposition of the orders as their concatenation see
Definition 2.2.4.44. Moreover, this rewriting system has the following property:

Proposition 3.3.1.4. The sequence of numbers of normal form of the rewriting system displayed in
Figure 4.14 of the appendix is the sequence of logarithmic numbers un.

Proof. Since ComPreLie! is graded by the number of occurrences of c∗, it is clear that the suboperad
generated by c∗ is the Lie operad. The rewriting system displayed in Figure 4.14 of the appendix
restricted to c∗ is the rewriting system associated to the permutation graded path lexicographic
order, which is known to be a Gröbner basis (in particular this is a convergent ORS) for the Lie
operad, see [10, Example 5.6.1.1]. In particular, normal forms of Lie(n) are in bijection with a basis
of Lie({a1, . . . , an}).
An analogous observation shows that the rewriting system displayed in Figure 4.14 of the appendix
restricted to x∗ and y∗ is a convergent ORS of the operad Perm.
Moreover, a normal form is given by a pair (a, b) with a a normal form of Lie and b a normal form of
Perm, with a composed in the non-symmetric input of b. This allows us to build a bijection between
normal forms of ComPreLie!(n) and Mult(LC({a1, . . . , an})). Hence, the number of normal forms
of ComPreLie!(n) is the number of multilinear elements of LC({a1, . . . , an}). This concludes the
proof.

Theorem 3.3.1.5. The operad ComPreLie! is Koszul. Moreover, its Hilbert series is given by:

fComPreLie!(t) = − log(1− t) exp(t)
Proof. The inequality dim(ComPreLie!(4)) ≥ 24 and the fact that the rewriting system admit 24
normal forms in arity 4 ensures that the ORS is convergent. Hence, ComPreLie! is Koszul.

Corollary 3.3.1.6. The operad ComPreLie is Koszul. Moreover, its Hilbert series is given by:

fComPreLie(t) = rev(log(1 + t) exp(−t))
with rev the compositional inverse in t of a series.

With this result, we know the dimensions of the operad ComPreLie, indeed it is Sequence A052888
of the OEIS [76]. Let us now give a combinatorial description of the operad ComPreLie.

Definition 3.3.1.7. Let S and T be two hyperforests and i be a label of a vertex vi of S. Let B be
the tree below the vertex vi in S, and C = {C1, . . . , Cn} be the set of forests of children of vi in S
such that each rooted hypertrees that are grafted at vi by the same edge are in the same forest. The
insertion of T in S at the vertex i denoted S ◦i T is the formal sum of all possible way to graft the
set of hyperforests C1, . . . , Cn on vertices of T such that each rooted hypertrees of Cj are grafted
at T by the same edge, and then grafting the result on the parent of vi in B. If T is a forest this
creates a unique hyperedge that connects all its rooted hypertrees to the parent of vi.

Let us compute the following examples:

1

3
◦1 1 2 =

12

3
+

1 2

3

and:

1

2
◦2 2 3 =

1

2 3

As one can remark, a hyperedge is created in the second example.

https://oeis.org/A052888
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Proposition 3.3.1.8. The insertions satisfy the parallel and sequential axioms. Hence, they give a
structure of operad on the species of hyperforests.

Proof. It is clear that the parallel axiom is verified since we are inserting hyperforests in different
vertices. The proof of the sequential axiom is the computation shown in Figure 3.4 with the convention
that double edges means that all the rooted hypertrees of the forest are grafted at the same vertex
via the same edge. Indices are omitted for readability.

Figure 3.4: The sequential axiom for HF

(a) Notation for T

T =

· · ·C1 Ck

A

v

(b) Notation for S

S =

· · ·D1 Dℓ

B

w

(c) Computation of T ◦v S ◦w R

· · · · · ·

· · · · · ·

· · ·

C C C C

C C

C C

D D

R

B

A

Let us denote:

xn =
· · ·

1

2 n
; cn = · · ·1 n

As in the operad PreLie, the elements xn are the symmetric braces, see [50].

Proposition 3.3.1.9. The operad HF is generated by arity 2 elements. It means that HF is
generated by x2 and c2.

Proof. Let P be the suboperad of HF generated by HF(2). Let us prove inductively that P = HF :
• Initial case: P(2) = HF(2) by definition.

• Induction step: If T = xn, then T is a rooted tree, and thus in the suboperad generated by x2
since PreLie is generated by arity 2 elements. If T = cn, then T = (. . . (c2 ◦1 c2) ◦1 . . . ) ◦1 c2.
Else, T can be obtained by inductively composing copies of xi and of cj at the leaves.
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Theorem 3.3.1.10. The operad (HF , {◦i}) is isomorphic to the operad ComPreLie. Moreover, the
morphism is given by x2 7→ x and c2 7→ c.

Proof. The example of computation show that HF satisfies the relations of ComPreLie. Since, HF
is generated by arity 2 elements, we have a surjective morphism ComPreLie→ HF . The equality of
the Hilbert series show that this morphism is bijective.

Remark 3.3.1.11. A combinatorial interpretation of the operad ComPreLie was already given in [35]
using partitioned trees. This theorem shows in particular that the species of hyperforests is isomorphic
to the species of partitioned trees. However, the author finds the description of ComPreLie as the
species of hyperforests more convenient to carry out computations.

3.3.2 From rooted hypertrees to the Greg hypertrees

Now that we have a combinatorial description of the operad ComPreLie, we want an analogue of the
operad Greg in this context. Let us define the ComGreg operad by the following presentation:

T [x, y, c, g]/⟨(x ◦1 x− x ◦2 x)− (x ◦1 x− x ◦2 x).(2 3),

x ◦1 c− (c ◦1 x).(2 3)− c ◦2 x, c ◦1 c− c ◦2 c,
(x ◦1 g − (g ◦1 x).(2 3)− g ◦2 x)− (x ◦1 g − (g ◦1 x).(2 3)− g ◦2 x) .(2 3)⟩

with x, y, c and g operations of arity two, and the action of S2 on x, y, c and g is given by x.(1 2) = y,
c.(1 2) = c and g.(1 2) = g. The first relation is the pre-Lie relation for x, the second one is a Leibniz
rule, the third one is theassociativity of c and the last one is the Greg relation. Its Koszul dual, the
operad ComGreg! is defined by the following presentation:

T [x∗, y∗, c∗, g∗]/⟨x∗ ◦1 x∗ − x∗ ◦2 x∗, x∗ ◦1 x∗ − (x∗ ◦1 x∗).(2 3),

x∗ ◦2 c∗, c∗ ◦2 x∗ − x∗ ◦1 c∗, c∗ ◦1 c∗ − (c∗ ◦1 c∗).(2 3)− c∗ ◦2 c∗,
x∗ ◦1 g∗ − g∗ ◦2 x∗, x∗ ◦2 g∗, c∗ ◦1 g∗, g∗ ◦1 c∗, g∗ ◦1 g∗⟩

Remark 3.3.2.1. Let us denote ∨ the coproduct of operads, and for P an operad, ∨P the fibered
coproduct of operads over P. One may remark that ComGreg = ComPreLie ∨PreLie Greg. This is
not enough to show that ComGreg is Koszul, however as we have worked out a description of the
free ComPreLie!-algebras and Greg!-algebras in the previous section, we can guess a description of
the free ComGreg!-algebras, and show that ComGreg! is Koszul.

Definition 3.3.2.2. Let X be a finite alphabet. Let Ar(X) be the linear span of finite words on X
with the following extra decoration: there is an arrow from one letter to another. Let Ar(X) be the
quotient of Ar(X) by the following relations: letters commute with each other (the arrow follows the
letters), reverting the arrow change the sign and

↷
abcv =

↷
cbav +

↷
acbv

for any a, b, c ∈ X and v a finite word. Because the letters commute, we can write the elements of
Ar(X) with the arrow going from the first letter to the second one.
Let LCA(X) = LC(X)⊕Ar(X) and let us define ·.·, [·, ·] and {·, ·} on LCA(X) by:

• {a⊗ v, b⊗ w} =
↷
abvw for a, b ∈ X,

• (
↷
abv).(c⊗ w) =

↷
abvcw for c ∈ X,

• and ·.· and [·, ·] are the same as in LC(X).
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All other cases give 0.

Proposition 3.3.2.3. The algebra (LCA(X), ·.·, [·, ·], {·, ·}) is a (ComGreg)!-algebra generated by
X.

Proof. Direct computations show that LCA(X) is a (ComGreg)!-algebra. Moreover, it is generated

by X since LC(X) is generated by X and
↷
abv = {a⊗ v, b⊗ ε}.

Proposition 3.3.2.4. We have dim(Mult(LCA({a, b, c, d}))) = 27.

Proof. We have:

Mult(LCA({a, b, c, d})) = Mult(LC({a, b, c, d}))⊕Mult(Ar({a, b, c, d}))

We already know the dimension of Mult(LC({a, b, c, d})), and it is not difficult to check that
Mult(Ar({a, b, c, d})) is of dimension 3. Hence, Mult(LCA({a, b, c, d})) is of dimension 27.

The rewriting system of ComGreg! is displayed in Figures 4.14 and 4.15 of the appendix with the
rules not involving g∗ in the first one and the ones involving g∗ in the second one, it has 38 rules.
This rewriting system is obtained using the quantum permutation graded path lexicographic order
with x∗ and y∗ of x-type, and c∗ and g∗ of y-type. We refer to Definitions 2.2.4.35 and 2.2.4.39,
and Examples 2.2.4.41 and 2.2.4.42 for the definitions of the orders. One should understand the
juxtaposition of the orders as their concatenation see Definition 2.2.4.44. Moreover, this rewriting
system has the following property:

Proposition 3.3.2.5. The exponential generating function of the number of normal forms of the
rewriting system displayed in Figures 4.14 and 4.15 of the appendix is given by:

f = − ln(1− t) exp(t) + t exp(t)− exp(t) + 1

In particular it has 27 normal forms in arity 4.

Proof. One may remark that c∗ and g∗ cannot appear at the same time in a normal form. Hence,
either g∗ appears or not. If g∗ does not appear, then we have a normal form of ComPreLie!. If g∗
appears, then we have a left comb with only g∗ and x∗ appearing, and only one occurrence of g∗
at the top of the left comb. Hence, a normal form with g∗ appearing is entirely determined by the
label of the second leave of g∗, hence we have n− 1 such normal form in arity n. Computation of the
exponential generating series show that it is:

− ln(1− t) exp(t) + t exp(t)− exp(t) + 1

Theorem 3.3.2.6. The operad ComGreg! is Koszul.

Proof. The inequality dim(ComGreg!(4)) ≥ 27 and the fact that the rewriting system admit 27
normal forms in arity 4 ensure that the ORS is convergent. Hence, ComGreg! is Koszul.

Corollary 3.3.2.7. The operad ComGreg is Koszul. Moreover, its Hilbert series is given by:

fComGreg(t) = rev(ln(1 + t) exp(−t) + t exp(−t) + exp(−t)− 1)

with rev the compositional inverse in t of a series.

Now that we know that the arity-wise dimensions of the operad ComGreg, we can describe the
underlying species.

Same as in the previous subsection, one can define insertions and show that they define an operad
structure on GF .
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Definition 3.3.2.8. Let S and T be two Greg hyperforests and i be a label of a vertex vi of S. Let
B be the tree below the vertex vi in S, and C = {C1, . . . , Cn} be the set of forests of children of vi
in S such that each rooted Greg hypertrees that are grafted at vi by the same edge are in the same
forest. The insertion of T in S at the vertex i denoted S ◦i T is the formal sum of all possible way to
graft the set of Greg hyperforests C1, . . . , Cn on black or white vertices of T such that each rooted
Greg hypertrees of Cj are grafted at T by the same edge, and then grafting the result on the parent
of vi in B. If T is a forest it creates a unique hyperedge that connects all its rooted Greg hypertrees
to the parent of vi.

The same computations show that:

Proposition 3.3.2.9. The insertions satisfy the parallel and sequential axioms. Hence, they give a
structure of an operad on the species of Greg hyperforests.

Let us denote:

xn =
· · ·

1

2 n
; cn = · · ·1 n ; gn =

· · ·1 n

Proposition 3.3.2.10. The operad GF is generated by arity 2 elements.

Proof. Let P the suboperad of GF generated by GF(2), let us prove by induction on the arity that
P = GF .

• Base case: by definition P(2) = GF(2).

• Induction step: let T ∈ GF(n), if T = xn or gn then T ∈ P since Greg is generated by arity 2
elements. If T = cn then T ∈ P since HF is generated by arity 2 elements. Else, T can be
obtained by inductively composing copies of xi, cj and gk at the leaves.

Theorem 3.3.2.11. The operad GF is isomorphic to ComGreg.

Proof. Computations show that the relations of ComGreg are satisfied in the operad GF . Hence,
we have a morphism ComGreg→ GF . Since GF is generated by arity 2 elements, the morphism is
surjective. Moreover, we have fGF (t, 1, 1) = fComGreg(t). The equality of the Hilbert series shows
that this morphism is bijective.

3.3.3 Reduced Greg hypertrees

As we have seen in Theorem 3.2.1.20, the link between the operad Greg−1 and the operadic twisting
of PreLie depicted in Proposition 3.1.2.3 allowed us to prove that H∗(Greg−1) = Lie which is the
suboperad of PreLie generated by the Lie bracket. To use the same idea for the operad ComPreLie,
we would need to define a differential d on ComGreg such that d(x) = g and d(c) = 0. However, such
a differential would not be compatible with the operad structure since we would have:

d(0) = d(x ◦1 c− c ◦2 x− (c ◦1 x).(2 3)) = g ◦1 c− c ◦2 g − (c ◦1 g).(2 3) ̸= 0

In order to fix this issue, we will need reduced version of the operad ComGreg which will not be
Koszul, but on which such a differential can be defined.

Definition 3.3.3.1. Let us define the reduced ComGreg operad RedComGreg by

RedComGreg = ComGreg/⟨g ◦1 c− c ◦2 g − (c ◦1 g).(2 3)⟩
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Let us describe the underlying species of RedComGreg as a subspecies of GF .
Let us study the rewriting rule g ◦1 c 7→ c ◦2 g+ (c ◦1 g).(2 3) at the level of the Greg hyperforests.

It may be written the following way:

1 2 3
7→

1

2 3
+

1

2

3

The hyperedge above the black vertex is no longer present in the right-hand side. This lead to the
definition of the following species:

Definition 3.3.3.2. The height of a Greg hyperforests is the sum over all hyperedges of their
hypertree weight times the number of white vertices in the path from this hyperedge to the root.

Proposition 3.3.3.3. The following rewriting system on GF is convergent:

· · ·1 n
7→

· · ·

1

n
+ · · · +

· · ·1

n

For readability, other edges of the black vertex are omitted in the picture, however they are present
and stay connected to the black vertex.

Proof. To be fair, we did not write down all the rewriting rules of this LRS. Indeed, we should
have one rewriting rule for each incoming hyperedge of each black vertex of each Greg hyperforest.
Moreover, if the black vertex is not a root, then the hyperforest depicted in the right-hand side of
the rewriting rule should be grafted on the parent of the black vertex by an hyperedge.
Now that we have more precisely state the rewriting system, let us remark that those rewriting rules
strictly decrease the height of the Greg hyperforests. Hence, it terminates. Let us apply consecutively
two rewriting rules. We let the reader do the computation and notice that the result does not depend
on the order of the rewriting rules.

Corollary 3.3.3.4. The species underlying the operad RedComGreg is RGF .

Proof. The rewriting system of the previous proposition gives us a projection of GF on RGF , by
applying the rewriting system in any order. Moreover, all those rewriting rules are consequences of
the rule g ◦1 c 7→ c ◦2 g + (c ◦1 g).(2 3). Hence, RGF is the operad GF quotiented by the relation
g ◦1 c 7→ c ◦2 g + (c ◦1 g).(2 3), which is the definition of RedComGreg.

Let u be a formal variable encoding the hypertree weight grading and v be a formal variable
encoding the Greg weight grading. Let us denote fRGF (t, u, v) the exponential generating series of

RGF according to these grading. It means that fRGF (t, u, v) =
∑
ai,j,k

tiujvk

i! where ai,j,k is the
number of reduced Greg hyperforests with i white vertices of hypertree weight j, and Greg weight k.

Proposition 3.3.3.5. The exponential generating series of RGF is given by:

fRGF (t, u, v) = rev

((
(v + 1)

ln(1 + ut)

u
+ v − v exp

(
ln(1 + ut)

u

))
exp(−t)

)
In particular, fRGF (t, 1,−1) is the series

∑
n≥1 n

n−1 tn

n! .

Proof. Let us inspect the species RGF and G of reduced rooted Greg hypertrees. We have:

RGF =
1

u
E≥1(u.G)

and:
G = X.E(RGF) + vE≥2(G)
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Hence, we have:

fG =
ln(1 + u.tfRGF )

u

and:

ln(1 + u.tfRGF )
u

= t exp(fRGF ) + v exp

(
ln(1 + u.tfRGF )

u

)
− v ln(1 + u.tfRGF )

u
− v

We get that:

fRGF (t, u, v) = rev

((
(v + 1)

ln(1 + ut)

u
+ v − v exp

(
ln(1 + ut)

u

))
exp(−t)

)

Remark 3.3.3.6. The computation of the composition reverse of this exponential generating series
show that RedComGreg is not Koszul.

We can now define the analogue of Greg−1 for the operad ComPreLie. We will compute its
cohomology in the next section to show the main theorem.

Definition 3.3.3.7. Let dgComGreg be the differential graded operad such that the underlying
operad is RedComGreg with x, y and c in degree 0 and g in degree 1, and the differential is given
by d(x) = g and d(c) = 0. Computing d on the relations defining RedComGreg show that d is well
defined. The underlying species of this operad is RGF , hence d is also defined on RGF . Let F pRGF
be the subspecies of RGF of reduced Greg hyperforests of height less or equal to p. The differential
d respect the filtration by the height.

3.4 Application to the FMan operad

3.4.1 The operad FMan

The operad FMan is the operad encoding the algebraic structure on the vector fields of a Frobenius
manifold. It is conjectured in [23] that FMan is isomorphic to the suboperad of ComPreLie generated
by x − y and c. In this section, we will prove this conjecture. First, let us state presentation of
the operad FMan by generators and relations from [42]. The operad FMan admit the following
presentation:

T [l, c]/⟨l ◦1 l − l ◦2 l − (l ◦1 l).(2 3), c ◦1 c− c ◦2 c,
(l ◦1 c) ◦3 c− (c ◦1 l) ◦1 c− ((c ◦1 l) ◦1 c).(3 4)− (c ◦2 l) ◦3 c− ((c ◦2 l) ◦3 c).(1 2)+

((c ◦1 c) ◦3 l).(2 3) + ((c ◦1 c) ◦3 l).(1 3)− ((c ◦1 c) ◦3 l).(1 4)− ((c ◦1 c) ◦3 l).(2 4)⟩,

where the action of S2 on l and c is given by l.(1 2) = −l and c.(1 2) = c. The relations defining
FMan are the Jacobi relation of the Lie bracket l, the associativity relation of the commutative
product c and the so-called Hertling-Manin relation which is cubical. The Hertling-Manin relation
can be understood the following way: Let LR = l ◦2 c− c ◦1 l − (c ◦2 l).(1 2) be the failure to satisfy
the Leibniz rule. Then LR satisfy the Leibniz rule in its first input, meaning that:

LR ◦1 c− c ◦2 LR− (c ◦1 LR).(2 4 3) = 0

Since this relation is cubical, FMan is not quadratic, hence escapes the scope of the Koszul duality
theory. However, this operad is closely related to the operad PreLie, indeed from [23], we know that
FMan is the graded operad associated to the filtration of PreLie by the embedding of Lie into PreLie.
In particular, the arity-wise dimensions of FMan are the same as the arity-wise dimensions of PreLie,
which are given by the sequence nn−1.
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3.4.2 Proof of a conjecture of Dotsenko

In order to prove that we have an embedding of FMan into ComPreLie, we will compute the
cohomology of dgComGreg and show that it is FMan. In order to do so, we will show that the
cohomology of dgComGreg is concentrated in degree 0, then since we know the arity-wise Euler
characteristic of dgComGreg, we know the arity-wise dimension of the cohomology of dgComGreg.
Moreover, since those are the same as the arity-wise dimension of FMan, we will have an isomorphism
between FMan and the cohomology of dgComGreg, thus showing the embedding of FMan into
ComPreLie.

Let us give a description of the differential d on dgComGreg similar to the description of the
differential of TwPreLie given in Proposition 3.1.2.1. To do so, let us denote:

xn =
· · ·

1

2 n
; gn =

· · ·1 n
; cn = · · ·1 n ; hn =

· · ·

1

2 n

Moreover, for P = {{λ1,1, . . . , λ1,n1}, . . . , {λk,1, . . . , λk,nk
}} a partition of {2, . . . , n}, let us denote:

pP =

· · · · · · · · ·

1

λ1,1 λ1,n1
λk,1 λk,nk

Then any reduced rooted Greg hypertree which is a corolla is gn or pP for some n or P up to a
permutation of the labels.

Definition 3.4.2.1. We recall that the complex (RGF , d) is filtered by the height. Let us denote by
(grhRGF , d0) the associated graded complex. We have a canonical isomorphism RGF and grhRGF .

Proposition 3.4.2.2. Let T be a reduced Greg hyperforests, i the label of a leaf and C a corolla,
then d0(T ◦i C) = d0(T ) ◦i C + (−1)|T |T ◦i d0(C).

Proof. Let us denote lht for “lower height terms”, meaning reduced Greg hyperforests of lower height.
We have:

d0(T ◦i C) = d(T ◦i C) + lht

= d(T ) ◦i C + (−1)|T |T ◦i d(C) + lht

= d0(T ) ◦i C + (−1)|T |T ◦i d0(C) + lht

Moreover, since we compose a single reduced rooted Greg hypertree in a leaf of T , no rewriting are
involved in the composition. Hence, d0(T ) ◦i C and T ◦i d0(C) have the same height. Hence:

d0(T ◦i C) = d0(T ) ◦i C + (−1)|T |T ◦i d0(C)

Lemma 3.4.2.3. The differential d0 on grhRGF admits a description similar to Proposition 3.1.2.1.
The image of a reduced Greg hyperforests T is obtained as the sum of six terms:

1. The sum of all possible ways to split a white vertex of T into a white vertex retaining the
label and a black vertex above it and to connect the incoming edges to one of the two vertices
(hyperedges cannot be grafted on the black vertex), up to a sign.

2. The sum of all possible ways to split a white vertex of T into a white vertex retaining the
label and a black vertex below it and to connect the incoming edges to one of the two vertices
(hyperedges cannot be grafted on the black vertex), up to a sign.
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3. The sum of all possible ways to split a black vertex of T into two black vertices and to connect
the incoming edges to one of the two vertices, up to a sign.

4. The sum over all the white vertex directly above a hyperedge to graft this white vertex on top
of a new black vertex, and to put this new black vertex in the hyperedge in place of the white
vertex, up to a sign.

5. The sum of all possible ways to graft an additional black leaf to T , up to a sign.

6. The sum of all possible ways graft a tree of T on top of a new black root, up to a sign.

In this description, we forbid the grafting of rooted hyperedges on black vertices to ensure that the
result is a reduced Greg hyperforests. Some black vertex that are created have zero or one child,
however, those terms cancel out in the differential, and we are left with a sum of reduced Greg
hypertrees.

Proof. Let us denote ddescr the map described in the proposition. Let us prove that ddescr = d0. In
order to do so, let us prove that ddescr(C) = d0(C) for C a corolla, and then that ddescr(T ◦i C) =
ddescr(T ) ◦i C + (−1)|T |T ◦i ddescr(C) for i a label of a leaf of T and C a corolla.
Let us first prove that ddescr(C) = d0(C) for C a corolla. Let C be a corolla, if C = xn or gn (up to
a permutation) then ddescr(C) = d(C) = d0(C) from Proposition 3.1.2.1. Else, we have C = pP for
some partition P , which allows us to write C as a composition the following way:

C = (. . . (xk ◦i1 ck1) ◦i2 . . . ) ◦is cks

Let us compute d0(C):

d0(C) = d(C) + lht

= d((. . . (xk ◦i1 ck1) ◦i2 . . . ) ◦is cks) + lht

= ((. . . (d(xk) ◦i1 ck1) ◦i2 . . . ) ◦is cks) + lht

= ((. . . (ddescr(xk) ◦i1 ck1) ◦i2 . . . ) ◦is cks) + lht

Let T be a reduced rooted Greg hypertree appearing in ddescr(xk). To conclude, we need to know
of when ((. . . (T ◦i1 ck1) ◦i2 . . . ) ◦is cks) has the same height as C. This is the case if and only no
rewriting is involved in the compositions, hence if and only if each ij is the label of a leaf which is
the child of a white vertex. This is exactly the condition that “hyperedges cannot be grafted on the
black vertex” in the terms from (1) and (2). Moreover, since all the new vertices coming from the
ckj are leaves connected by hyperedges, the terms from (1) compensate with the terms from (5), and
the terms from (2) compensate with the terms from (4). Hence, we have that ddescr(C) = d0(C).
Let us show that ddescr(T ◦i C) = ddescr(T ) ◦i C +(−1)|T |T ◦i ddescr(C) for i a label of a leaf of T and
C a corolla. Let us assume that T is not the identity since the result is obvious if T is the identity.
The vertex v labeled i is a white leaf which is not the root, hence the contributions of v in the sum
come from (1) and (5) which compensate, and from (2) which create a new black vertex below it.
The only thing that changes for the vertices of C, once composed in T , is that the root of C will no
longer be a root, hence the contribution from (6) will no longer appear. However, the contribution of
v is exactly the missing contribution of C that no longer appears once composed in T , hence:

ddescr(T ◦i C) = ddescr(T ) ◦i C + (−1)|T |T ◦i ddescr(C)

The sign (−1)|T | comes from the order in which we fill the black vertices, see Remark 3.1.2.2.
Since any reduced Greg hyperforests can be obtained by inductively composing corollas in leaves, we
have that ddescr = d0.

Now that we have this description, let us compute the cohomology of dgComGreg using the
Künneth formula and the fact that the cohomology of Greg−1 is Lie.
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Proposition 3.4.2.4. We have the following isomorphism of chain complexes, where TS(P ) is the
linear span of the tree shapes on P a partition as defined in Definition 1.4.2.10:

(RGF(n), d0) ≃
⊕
k

⊕
P⊢kn

⊗
p∈P
G(p), d

⊗ TS(P )

Proof. Let T be a forest of reduced rooted Greg trees, and φ(T ) = (S,M1, . . . ,Mk). Then from the
description of the differential d0 on RGF , we have:

d0(T ) =

k∑
i=1

±φ−1(S,M1, . . . , d0(Mi), . . . ,Mk)

This proves the isomorphism of chain complexes.

Remark 3.4.2.5. Let λ ⊢ n and let TS(λ) the direct sum of TS(P ) for P a partition of n in parts of
size λi. We have a right action of the group Sλ =

∏
Sλi on

⊗
i G(λi), a left action of Sλ, and a

right action of Sn on TS(λ). The isomorphism of chain complexes is compatible with those actions,
meaning that we have the following isomorphism of Sn-modules:

RGF(n) ≃
⊕
λ⊢n

(⊗
i

G(λi)
)
⊗Sλ

TS(λ)

We can finally apply the Künneth formula to show that the cohomology of dgComGreg is
concentrated in degree 0.

Theorem 3.4.2.6. The cohomology of the operad dgComGreg is concentrated in degree 0.

Proof. From the previous proposition, we have that:

(RGF(n), d0) ≃
⊕
k

⊕
P⊢kn

⊗
p∈P

(G(p), d)

⊗ TS(P )

Hence, we have:

H∗(RGF(n), d0) ≃
⊕
k

⊕
P⊢kn

⊗
p∈P

H∗(G(p), d)

⊗ TS(P )

From [30, Theorem 5.1], we have that H∗(G(p), d) is concentrated in degree 0. Hence, we have that
H∗(RGF(n), d0) is concentrated in degree 0. The spectral sequence associated to the filtration by
the height abuts at the first page, hence the cohomology of (RGF , d) is concentrated in degree 0.

Remark 3.4.2.7. From this proof, we can get the following description of the cohomology of (RGF , d):

H∗(RGF(n), d) ≃
⊕
k

⊕
P⊢kn

⊗
p∈P

Lie(p)

⊗ TS(P )

This description could allow us to get a recursive formula for the dimension of H∗(RGF(n), d0) if
the dimensions of TS(P ) were known.

Corollary 3.4.2.8. The morphism FMan→ ComPreLie is injective.

Proof. Since H∗(dgComGreg) = H0(dgComGreg), and using the description of H∗(dgComGreg)
with tree shapes, we have that H0(dgComGreg) is the suboperad of ComPreLie generated by
x − y and c. Hence, we have a surjective morphism FMan → H0(dgComGreg). We know that
dim(FMan(n)) = nn−1 from [24], and we have computed the Euler characteristic of RGF in
Proposition 3.3.3.5. Since the dimensions are the same, the morphism FMan→ H0(dgComGreg) is
an isomorphism. Hence, φ is injective.
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Corollary 3.4.2.9. Let u be the additional grading of FMan by the number of commutative product.
The Hilbert series of FMan is given by:

fFMan(t, u) = fRGF (t, u,−1) = rev

((
exp

(
ln(1 + ut)

u

)
− 1

)
exp(−t)

)
Remark 3.4.2.10. Moreover, from Remarks 3.4.2.5 and 3.4.2.7, and using the same notations, we
have the following isomorphism of Sn-modules:

FMan(n) ≃
⊕
λ⊢n

(⊗
i

Lie(λi)

)
⊗Sλ

TS(λ)

Remark 3.4.2.11. Theorem 3.3 from [66] gives a description of the subspace Lie(V ) ⊆ PreLie(V )
using constructions similar to the operadic twisting of PreLie. This description can be understood
as a consequence of [30, Theorem 5.1]. It can be generalized to give description of the subspace
FMan(V ) ⊆ ComPreLie(V ) using Theorem 3.4.2.8.
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Appendix

Figure 4.5: Local confluence of the critical monomial of Lie.
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Table 4.1: Summary table of binary mono-generated Koszul operads in Operadia.

Operad Entry in the OEIS Hilbert series Equation Reference

Lie A000142 − ln(1− x) (1− x)f ′ − 1

Com A000012 exp(x)− 1 f − f ′ + 1

Ass A000142 x
1−x (1− x)f − x [70]

Pois ” ” ” [36]

Leib ” ” ” [56]

Zinb ” ” ” [58]

LeftNil ” ” ” [12]

PreLie A000169 rev(x exp(x)) xff ′ − xf ′ + f [19]

NAP ” ” ” [55]

Perm A000027 x exp(x) (1 + x)f − xf ′ [17]

NAP! ” ” ” [55]

Alia A220433 rev
(
−x+ x2 − x3

6

)
f − f2 + f3

6 − x [32]

LeftAlia ” ” ” [32]

Alia! None x+ x2 + x3

6 f −
(
x+ x2 + x3

6

)
LieAdm A337017 rev

(
1− t2

2 − exp(−x)
)

f ′
(
f2

2 + f + x− 1
)
+ 1 [75]

LieAdm! A294619 x2

2 + exp(x)− 1 f − f ′ −
(
x2

2 − 2x− 1
)

Bess A001515 exp(1−
√
1− 2x)− 1 (1− 2x)(f ′ − f − 1)2 − (f + 1)2 [16]

https://operadia.pythonanywhere.com
https://oeis.org/A000142
https://oeis.org/A000012
https://oeis.org/A000142
https://oeis.org/A000169
https://oeis.org/A000027
https://oeis.org/A220433
https://oeis.org/A337017
https://oeis.org/A294619
https://oeis.org/A001515
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Table 4.2: Generating series appearing in the classification of KSetOp1 and the first negative term of
their reverse.

fP(t) first negative term

in revt(−fP(−t))

1 t+ 2
2! t

2 + 9
3! t

3 + 60
4! t

4 + 525
5! t

5 +O(t6) −15
5! t

5

2 t+ 2
2! t

2 + 9
3! t

3 + 60
4! t

4 + 520
5! t

5 +O(t6) −10
5! t

5

3 t+ 2
2! t

2 + 8
3! t

3 + 40
4! t

4 + 210
5! t

5 +O(t6) −50
5! t

5

4 t+ 2
2! t

2 + 7
3! t

3 + 29
4! t

4 + 146
5! t

5 +O(t6) −46
5! t

5

5 t+ 2
2! t

2 + 6
3! t

3 + 12
4! t

4 + 20
5! t

5 +O(t6) −140
5! t5

6 t+ 2
2! t

2 + 6
3! t

3 + 12
4! t

4 + 1
5! t

5 +O(t6) −121
5! t5

7 t+ 2
2! t

2 + 6
3! t

3 + 14
4! t

4 + 30
5! t

5 +O(t6) −90
5! t

5

8 t+ 2
2! t

2 + 6
3! t

3 + 20
4! t

4 + 75
5! t

5 + 312
6! t

6 +O(t7) −318
6! t6

9 t+ 2
2! t

2 + 6
3! t

3 + 14
4! t

4 + 21
5! t

5 +O(t6) −81
5! t

5

10 t+ 2
2! t

2 + 5
3! t

3 + 6
4! t

4 + 10
5! t

5 + 18
6! t

6 +O(t7) −2572
6! t6

11 t+ 2
2! t

2 + 5
3! t

3 + 8
4! t

4 + 18
5! t

5 + 55
6! t

6 +O(t7) −1541
6! t6

12 t+ 2
2! t

2 + 5
3! t

3 + 2
4! t

4 + 2
5! t

5 +O(t6) −112
5! t5

13 t+ 2
2! t

2 + 4
3! t

3 + 2
4! t

4 + 2
5! t

5 + 2
6! t

6 + 2
7! t

7 +O(t8) −26238
7! t7

14 t+ 2
2! t

2 + 4
3! t

3 + 5
4! t

4 + 6
5! t

5 + 7
6! t

6 + 8
7! t

7 + 9
8! t

8 +O(t9) −95669
8! t8

15 t+ 2
2! t

2 + 4
3! t

3 + 2
4! t

4 + 1
5! t

5 + 1
6! t

6 + 1
7! t

7 +O(t8) −29093
7! t7

16 t+ 2
2! t

2 + 3
3! t

3 + 1
4! t

4 + 1
5! t

5 + 1
6! t

6 + 1
7! t

7 + 1
8! t

8 + 1
9! t

9 −802543633
11! t11

+ 1
10! t

10 + 1
11! t

11 +O(t12)

17 t+ 2
2! t

2 + 3
3! t

3 + 2
4! t

4 + 2
5! t

5 + 2
6! t

6 + 2
7! t

7 + 2
8! t

8 + 2
9! t

9 −1080639958361062
15! t15

+ 2
10! t

10 + 2
11! t

11 + 2
12! t

12 + 2
13! t

13 + 2
14! t

14 + 2
15! t

15 +O(t16)
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Figure 4.6: The 25 relations of the shuffle operad (Greg′)!.
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Figure 4.7: The “dlp” rewriting system for (Greg′)!.
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Figure 4.8: The “prdl” rewriting system for (Greg′)!.
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Figure 4.9: The “rdlp” rewriting system for (Greg′)!.
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Figure 4.10: The computation of (R ⋆∆ S) ⋆∆ T .
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Figure 4.11: The “gplp” rewriting system for (GC)!.
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Figure 4.12: The “wprgpl” rewriting system for (GC)!.
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Figure 4.13: The “rgplp” rewriting system for (GC)!.

1 2

3

gi∗

gj∗ 7−→
1 2

3

x∗

gi.j∗ ;

1 3

2

gi∗

gj∗ 7−→
1 3

2

x∗

gi.j∗ ; 1

2 3

gi∗

gj∗ 7−→ −
1 3

2

x∗

gi.j∗ +

1 2

3

x∗

gi.j∗

1

2 3

x∗

gk∗ 7−→ 0 ;

1 3

2

y∗

gk∗ 7−→ 0 ;

1 2

3

y∗

gk∗ 7−→ 0

1

2 3

gk∗

y∗ 7−→
1 3

2

x∗

gk∗ ;

1 2

3

gk∗

x∗ 7−→
1 3

2

x∗

gk∗ ; 1

2 3

gk∗

x∗ 7−→
1 2

3

x∗

gk∗

1 3

2

gk∗

x∗ 7−→
1 2

3

x∗

gk∗ ; 1

2 3

y∗

y∗ 7−→
1 3

2

x∗

y∗ ;

1 2

3

y∗

y∗ 7−→
1 3

2

x∗

y∗

1

2 3

y∗

x∗ 7−→
1 2

3

x∗

y∗ ;

1 3

2

y∗

y∗ 7−→
1 2

3

x∗

y∗ ; 1

2 3

x∗

y∗ 7−→
1 2

3

x∗

x∗

1 3

2

x∗

x∗ 7−→
1 2

3

x∗

x∗ ;

1 3

2

y∗

x∗ 7−→
1 2

3

x∗

y∗ ;

1 2

3

y∗

x∗ 7−→
1 3

2

x∗

y∗

1

2 3

x∗

x∗ 7−→
1 2

3

x∗

x∗ ; 1

2 3

y∗

gk∗ 7−→
1 3

2

x∗

gk∗ −
1 2

3

x∗

gk∗

1 3

2

gk∗

y∗ 7−→ −
1 3

2

x∗

gk∗ +

1 2

3

x∗

gk∗ ;

1 2

3

gk∗

y∗ 7−→
1 3

2

x∗

gk∗ −
1 2

3

x∗

gk∗

1



192 APPENDIX

Figure 4.14: The “qpgpl” rewriting system for ComPreLie!.
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Figure 4.15: The fragment of the “qpgpl” rewriting system for ComGreg! involving g∗.
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Index

k-graded species, 66
finite, 66
generating function of -, 66

k-ogf, 36
connected, 36
finite, 36
partial composition of -, 37
partial derivative of -, 36
variables identification of -, 36

k-sort species, 61
category of -, 61
connected, 61
finite, 61
morphism of -, 61

k-variate ogf, see k-ogf

abstract rewriting system, see ARS
analytic functor, 49
ARS, 102

confluent, 102
convergent, 102
irreducible element of -, 102
joinable elements of -, 102
locally confluent, 102
normal form, 102
reducible element of -, 102
reduction relation of -, 102
rewriting step of -, 102
terminating, 102

associative operad, 98
augmentation ideal, 95
augmentation map, 95

Baez’ conjecture, 41
bar construction, 121
bigraded species, 67
black rooted trees species, 71

categorical L function, 54
classical desuspension, 119
classical suspension, 119
co-monoid, 82
commutative group species, 60
commutative operad, 99

composition of integer, 30
cooperad, 119

cofree, 124
monomial, 127
non-symmetric (ns), 119
presented by cogenerators and corelators, 124
quadratic monomial, 127
shuffle, 119

cyclic group species, 60
cyclic operad, 163

decomposition map
of a forest, 77
of a tree, 77

dendriform operad, 100
desuspension operad, 120
diagram category of a contravariant functor, 54

generic object in -, 54
diagram category of a functor, 50

generic object in -, 51
Diamond Lemma, 102

Linear, 105
Operadic, 108

diassociative operad, 100
direct product, 53

egf, 45
connected, 45
finite, 45
strongly connected, 45

exponential generating function, see egf

fall product, 146
fixed point functor, 64
forest, 69

isomorphism, 69
unlabeled, 70
asymmetric, 70

with black vertices, 70
asymmetric, 70

forest of maximal subtrees, 77
forest shape, 77

of a forest, 77
Freeness theorems
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left module version, 113
Nielsen-Schreier version, 113
right module version, 113

Ginzburg-Kapranov criterion, 126
graded species, 67

graded non-empty set species, 67
graph, 69

connected, 69
cycle of -, 69
edge of -, 69
isomorphism, 69
path of -, 69
unlabeled, 70
asymmetric, 70

vertex of -, 69
with black vertices, 70
asymmetric, 70

Greg hyperforest, 78, 174
reduced, 79

Greg hyperforests species, 78
Greg hypertree, 78

reduced, 79
Greg hypertrees species, 78

hyperforest, 74
hyper-weight of -, 74
isomorphism, 74
unlabeled, 75
asymmetric, 75

with black vertices, 75
asymmetric, 75

hyperforests species, 75
hypergraph, 74

connected, 74
cycle of -, 74
edge of -, 74
hyper-weight of -, 74
hyperedge of -, 74
isomorphism, 74
path of -, 74
simple edge of -, 74
unlabeled, 75
asymmetric, 75

vertex of -, 74
with black vertices, 75
asymmetric, 75

hypertree, 74
unlabeled, 75
asymmetric, 75

with black vertices, 75
asymmetric, 75

implicit species theorem
naive species, 39
species, 62

infinitesimal composition, 96
insersion product in Greg hyperforest, 173
insersion product in hyperforest, 169

Joyal expansion, 54

Koszul complex, 125
Koszul dual cooperad, 124
Koszul dual operad, 124
Koszul property, 126
Koszul sign rule, 114

Leibniz operad, 100
Lie operad, 99
linear rewriting system, see LRS
LRS, 103

rewriting rules of -, 103

monad, 82
algebra over -, 82
morphism of -, 82

Eilenberg-Moore category of -, 83
monoid, 82

morphism of -, 82

naive k-sort species, 38
category of -, 38
connected, 38
finite, 38
morphism of -, 38
partial composition of -, 38
partial derivative of -, 38
variables identification of -, 38

naive species, 33
category of -, 33
connected, 33
empty set species, 34
equinumerous, 34
finite, 33
morphism of -, 33
naive set species, 34
ogf associated to -, 34
singleton species, 34
strongly connected, 33
strongly finite, 33
trivial species, 34

Nielsen-Schreier property, 113
non-commutative Riemann species, 59
non-symmetric algebraic operad, see ns operad
ns operad, 92

differential graded (dg), 117
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left ideal of -, 96
left infinitesimal ideal of -, 97
presentation by generator and relator, 97
right ideal of -, 96

ns tree monad, 86
reduced, 86

ogf, 30
connected, 30
finite, 30
strongly connected, 30

operad, 89, 90
algebra over -, 95
augmented, 95
connected sum of -, 95

bimodule over -, 112
coproduct of -, 98
defined by an ORS, 108
differential graded (dg), 117
fibered coproduct of -, 98
left ideal of -, 96
left infinitesimal ideal of -, 97
left module over -, 112
free, 112

monomial, 127
morphism of -, 92
presentation by generator and relator, 97
quadratic, 124
quadratic monomial, 127
right ideal of -, 96
right module over -, 112
free, 112

trivial, 95
operadic desuspension, 120
operadic ideal, 97

generated by a subset, 97
operadic Maurer-Cartan element, 123
operadic rewriting system, see ORS
operadic suspension, 120
operations on egf, 45

composition, 45
derivative, 45
Dirichlet convolution, 52
Hadamard product, 45
product, 45
sum, 45

operations on naive species
derivative, 34
Hadamard product, 34
plethysm, 34
product (Cauchy product), 34
sum, 34

operations on ogf, 30

composition, 30
derivation, 30
Hadamard product, 30
product, 30
sum, 30

operations on shuffle species, 66
Hadamard product, 66
shuffle derivative, 66
shuffle plethysm, 66
shuffle product (shuffle Cauchy product), 66
sum, 66

operations on species, 43
arithmetic plethysm, 57
derivative, 43
Dirichlet convolution, 53
Hadamard product, 44
plethysm, 44
pointing, 48
product (Cauchy product), 44
sum, 43

orbit functor, 64
ordered species, 65
ordinary generating function, see ogf
ORS, 106

critical monomials of -, 108
overlap, 108
rewritable monomials of -, 106

partial composition, 62
partial order, 102

monomial, 108
well (wpo), 102

partition of set, 42
type of -, 42

pre-Lie operad, 101
preorder, 109

monoidal, 109
monomial, 109
graded path lexicographic order, 111
permutation order, 110
quantum order, 111
reverse graded lexicographic path order,
111

reverse permutation order, 110
weight order, 111

path extension of -, 111
reverse path extension of -, 111
total, 109
concatenation of -, 111

well, 109

quantum monoid, 109
quotientation, 56



198 INDEX

reduced Greg hyperforests species, 79
reduced Greg hypertrees species, 79
reverse automorphism, 135
Riemann species, 59
rig, 40

commutative, 40
rig-category, 41

symmetric, 41
rooted k-Greg tree species, 73
rooted Greg trees species, 72
rooted hypertree, 74

child of a vertex, 74
hyper-weight of -, 74
incoming edge, 74
isomorphism, 74
outgoing edge, 74
parent of a vertex, 74
root of -, 74
unlabeled, 75
asymmetric, 75

with black vertices, 75
asymmetric, 75

rooted hypertrees species, 75
rooted non-Greg trees species, 73
rooted tree, 69

black rooted tree, 71
weight of -, 71

child of a vertex, 70
incoming edge, 70
isomorphism, 69
outgoing edge, 70
parent of a vertex, 70
root of -, 69
rooted Greg tree, 72
rooted k-Greg tree, 73

unlabeled, 70
asymmetric, 70

with black vertices, 70
asymmetric, 70

rooted trees species, 71

semi-monoid (semi-group), 82
morphism of -, 82

shuffle algebraic operad, see shuffle operad
shuffle cooperad

monomial, 127
quadratic monomial, 127

shuffle operad, 93
defined by an ORS, 108
differential graded (dg), 117
left ideal of -, 96
left infinitesimal ideal of -, 97
monomial, 127

presentation by generator and relator, 97
quadratic monomial, 127
right ideal of -, 96

shuffle species, 65
shuffle tree, 88

divisor, 106
leaf permutation of -, 110
path sequence of -, 110
substitution, 107

shuffle tree monad, 87
reduced, 87

species, 41
at least k elements set species, 41
categorical L function of -, 53
category of -, 41
connected, 41
Dirichlet series of -, 54
egf associated to -, 45
element species, 42
empty set species, 41
equinumerous, 45
finite, 41
morphism of -, 41
Schur functor of -, 49
set species, 41
singleton species, 41
strongly connected, 41
strongly finite, 41
total order on non-empty sets species, 42
total order species, 42
trivial species, 41

suspension operad, 120
symmetric algebraic operad, see operad
symmetric sequence of sets, 42

morphism of -, 42

Taylor-Joyal expansion of a functor, 51
tree, 69

unlabeled, 70
asymmetric, 70

with black vertices, 70
asymmetric, 70

tree comonad, 118
non-symmetric (ns), 118
shuffle, 118

tree monad, 83
length, 84
reduced, 83
weight, 84

tree shape, 76
of a tree, 77

twisting rooted trees species, 71
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Zinbiel operad, 100
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Paul LAUBIE

Combinatoire,
homotopie et

plongement d’opérades

Résumé :
Les opérades algébriques sont un outil algébrique permettant d’encoder certaines variétés d’al-
gèbres non-nécessairement associatives, comme les algèbres de Lie ou les algèbres pre-Lie.
De plus, les opérades algébriques peuvent elles-mêmes être vues comme des algèbres dans
une catégorie bien choisie. Cette remarque permet l’étude des opérades via les puissants outils
de l’algèbre homologique. En parallèle, la catégorie monoïdale telle que les objets en monoïde
de cette catégorie sont les opérades est la catégorie des espèces combinatoires munie du plé-
thysme. Cela permet d’adopter un point de vue très combinatoire sur les opérades donnant ainsi
des descriptions très explicites des objets considérés. Ces deux approches synergisent très bien
ensemble et cette thèse se concentrera sur l’interaction entre ces deux points de vue. En effet,
nous utiliserons des outils homotopiques tels que la dualité de Koszul opéradique pour obte-
nir des informations combinatoires sur les opérades que nous étudions. Nous utilisons ensuite
celles-ci pour obtenir des descriptions combinatoires permettant d’effectuer des calculs expli-
cites. Cette thèse est divisée en trois parties. La première partie est une introduction à la théorie
des espèces. Ensuite, nous donnons une introduction à la théorie des opérades algébriques et
à la dualité de Koszul opéradique. Enfin, nous calculons certaines descriptions combinatoires
d’opérades, et les appliquons pour prouver une conjecture de Dotsenko sur un plongement de
l’opérade encodant la structure algébrique sur le champ de vecteurs des variétés de Frobenius.
Combinatoire, Opérade, Espèce combinatoire, Dualité de Koszul, Algèbre de Lie, Algèbre pre-
Lie, Arbres enracinés, Arbres de Greg, Hyperarbres.

Résumé en anglais :
Algebraic operads are an algebraic tool for encoding some varieties of algebras, not necessarily
associative, such as Lie algebras or pre-Lie algebras. Moreover, algebraic operads can them-
selves be viewed as algebras in a well-chosen category. This observation allows the study of
operads using the powerful tools of homological algebra. Simultaneously, the monoidal category
where the monoid objects are operads is the category of combinatorial species equipped with
plethysm. This enables a very combinatorial perspective on operads, providing explicit descrip-
tions of the considered objects. These two approaches synergize well together, and this thesis
will focus on the interaction between these two viewpoints. Indeed, we will use homotopical tools
such as operadic Koszul duality to obtain combinatorial information on the operads we study. We
then use this information to derive combinatorial descriptions that allow for explicit computations.
This thesis is divided into three parts. The first part is an introduction to the theory of species.
Next, we provide an introduction to the theory of algebraic operads and operadic Koszul duality.
Finally, we compute descriptions of operads and apply them to prove a conjecture by Dotsenko
on embedding the operad encoding the algebraic structure on the vector field of Frobenius ma-
nifolds.
Combinatorics, Operad, Combinatorial species, Koszul duality, Lie algebra, Pre-Lie algebra,
Rooted trees, Greg trees, Hyper-trees.
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