N
N

N

HAL

open science

Twin-Width, logical and combinatorial characterisations
Colin Geniet

» To cite this version:

Colin Geniet. Twin-Width, logical and combinatorial characterisations. Combinatorics [math.CO].
Ecole normale supérieure de lyon - ENS LYON, 2024. English. NNT : 2024ENSL0013 . tel-04643807

HAL Id: tel-04643807
https://theses.hal.science/tel-04643807
Submitted on 10 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://theses.hal.science/tel-04643807
https://hal.archives-ouvertes.fr

‘d I . S
W] B

— W] -

uU” ENS DE LYON
THESE

en vue de 'obtention du grade de Docteur, délivré par

I’ECOLE NORMALE SUPERIEURE DE LYON

Ecole Doctorale N°512
Ecole Doctorale en Informatique et Mathématiques de Lyon

Discipline : Informatique

Soutenue publiquement le 5 juillet 2024 par

Colin GENIET

Twin-Width

Caractérisations Logiques et Combinatoires

Devant le jury composé de :

Victor CHEPOI Professeur des universités, Aix Marseille Université Rapporteur
Martin GROHE Professeur, Université RWTH Aachen Rapporteur
Frédérique BASSINO Professeure des universités, Université Paris 13 Examinatrice
Mamadou Moustapha KANTE Professeur des universités, Université Clermont Auvergne FExaminateur
Alantha NEWMAN Chargée de recherche, Université Grenoble Alpes Examinatrice
Toan TODINCA Professeur des universités, Université d’Orléans Examinateur

Stéphan THOMASSE Professeur des universités, ENS de Lyon Directeur de thése

A celle qui m’apprit les mathématiques, et & les aimer

Acknowledgments

My three years in Lyon come to a close as I finish writing this manuscript.
During these three years, I met several persons who helped and accompanied
me, scientifically and personally, and whom I would like to thank.

Early in our first discussion, Stéphan Thomassé described to me the ‘in-
teresting notion’—quite the understatement!—he was working on. I had little
idea then of the journey this would become, as Stéphan became my advisor,
and this notion my thesis. Five years later, I can appreciate the chance I had
to benefit not only from his invaluable knowledge and insight, but also from
the tremendous time he spent working with me, and indeed all of his students,
in all circumstances. For all this time, advice, questions, and ideas, I owe you
my greatest gratitude.

Reviewing a manuscript is no small task, and for this I am extremely grate-
ful to Victor Chepoi and Martin Grohe, whose comments were invaluable in
bringing this manuscript to its current form. I also want to thank Frédérique
Bassino, Mamadou Kanté, Alantha Newman, and Ioan Todinca, for accepting
to join them as part of my jury.

Coming to the LIP at ENS Lyon throughout these three years has always
been a great experience and excellent environment; for this I want to give
my greatest thanks to our truly amazing administrative staff, and particularly
to Laure and Marie for their infinite patience with our team. In these three
years, I shared an office with Pegah, Hugues, Julien, and Malory: to each of
you, thank you for this great time, your good humour, and your wildly varied
characters which kept this office joyful! And as the world does not stop at the
office door, this ‘thank you’ extends to all my colleagues in the MC2 team, in
LIP, and also in LIRIS, with a special mention for Laurent who works so hard
to keep the bond between our two teams.

I had the great pleasure to work and discuss on twin-width with many
people, without whom this work would never have been what it is. I want to
thank all of you, and particularly my coauthors Edouard, Eun Jung, Rémi,
Romain B.,; and Romain T. And since thinking about nothing but twin-width
would have made for a sad PhD, I shall not forget those of you with whom
I worked on other questions: Alexandra, Claire, Louis, Marthe, and Nicolas.
Finally, T want to give special thanks to some persons who paved my way to
this PhD: Stéphane who gave me a taste of graph theory—and a good onel—
during my very first internship; Mikotaj who welcomed me for a great year in
Warsaw and taught me so much about logic; and Michal and Szymon whose
unfaltering interest and excellent ideas have been an amazing motivation.

Science alone is not enough to be a researcher, much less a person, and
thus I also want to express my deepest gratitude to those who supported me
personally and emotionally during these years: my family, and particularly my
parents, who guided me in the path to mathematics, and whom I will never be
able to thank enough for their unending support. But also the friends I met
in Lyon through music, who helped me keep joy in sad days and motivation
in boring ones with Mozart, Shostakovich, and Tchaikovsky: Basile, Julien,
Nicolas, and my very dear friend, Sasha.

Résumé

Un graphe est composé d’un ensemble de sommets reliés par des arétes. Les
graphes sont des structures versatiles, couramment utilisées pour représenter
des réseaux de transports, de communication, ou d’individus. Cette versatilité
a un prix : beaucoup de problémes naturels — e.g. trouver un nombre maxi-
mum de sommets non reliés — sont difficiles. Plutot qu’essayer de les résoudre
en toute généralité, on peut se restreindre a des graphes satisfaisant certaines
conditions pouvant simplifier la tdche, comme par exemple les graphes pla-
naires, i.e. les graphes pouvant étre dessinés sur le plan sans croisement.

C’est dans cet esprit que Bonnet, Kim, Thomassé et Watrigant ont introduit
en 2020 la twin-width, (lit. largeur de jumeaux) inspirée par une notion de
largeur de permutations de Guillemot et Marx. Elle est définie par des suites
de contractions, au cours desquelles on fusionne des paires de sommets jusqu’a
avoir réduit le graphe a un seul sommet, tout en mesurant une notion d’erreurs.

De nombreuses classes de graphes sont de twin-width bornée : par exemple
les graphes planaires, ou plus généralement ceux évitant un mineur fixé, ainsi
que les graphes de tree-width ou clique-width bornée. Dans une telle classe C, les
suites de contractions ont des applications remarquables. On peut par exemple
les utiliser pour obtenir un algorithme efficace (au sens de la complexité paramé-
trée) pour tout probléme exprimé en logique du premier ordre ; des résultats de
coloriage montrant que C est x-bornée ; et une borne sur le nombre de graphes
d’une taille donnée dans C, qui est une petite classe. Mentionnons cependant
une limite de la notion : trouver rapidement de bonnes suites de contractions
est un probléme ouvert en général, bien que des algorithmes soient connus pour
tous les exemples précédents de classes de twin-width bornée.

Aprés une présentation détaillée de ces notions et résultats connus ainsi
que des techniques impliquées, cette thése s’intéresse a la question suivante :
les propriétés précédentes (algorithme pour les propriétés du premier ordre, co-
loriage, petitesse) sont elles exclusivement vérifiées par les classes de twin-width
bornée ? En général ce n’est pas le cas : pour les deux premiéres propriétés, les
graphes de degré borné sont un contre-exemple, et nous construisons une petite
classe de twin-width non bornée, en passant par les groupes et les graphes de
Cayley.

Neéanmoins, on peut re-poser cette question pour d’autres structures que
les graphes. En effet la définition de twin-width s’adapte aisément a toute
structure composée de relations binaires. Ainsi, dans les graphes ordonnés (un
graphe muni d’un ordre total sur les sommets), Bonnet, Giocanti, Ossona de
Mendez, Simon, Thomassé et Toruiiczyk ont montré que twin-width bornée,
petitesse, et résolution efficace de problémes du premier ordre sont des condi-
tions équivalentes. De plus, la twin-width peut étre rapidement approximée
dans ces structures. Nous généralisons ces résultats aux tournois (un ensemble
de sommets avec pour chaque paire un choix de direction, ou du “gagnant”).

Les permutations peuvent étre vues comme un cas particulier de graphes
ordonnés. Si les graphes ordonnés en général se comportent bien vis a vis de
la twin-width, les permutations sont tout particuliérement intéressantes : dans
leurs travaux fondateurs, Guillemot et Marx montrent que pour les permuta-
tions, avoir twin-width bornée est équivalent & éviter un motif. Aprés avoir
reformulé quelques résultats classiques de combinatoire des permutations sous
I’angle de la twin-width, nous présenterons un résultat de décomposition : les

vii

permutations de twin-width bornée se factorisent en un nombre borné de per-
mutations dites séparables, qui sont les permutations de twin-width 0.

Nous terminons cette étude avec des structures pour lesquelles notre com-
préhension de la twin-width est bien moins compléte : les graphes éparses et
les groupes. Deux définitions équivalentes de la twin-width des groupes sont
présentées, 'une passant par les graphes de Cayley, et 'autre se ramenant
aux permutations par les actions de groupes. Ces deux définitions permettent
de montrer que la twin-width des groupes est préservée par un grand nombre
d’opérations et constructions classiques. En revanche, montrer ne serait ce qu’il
existe des groupes de twin-width infinie est difficile. Nous le prouvons grace a un
théoréme d’Osajda, permettant de plonger une suite de graphes de degré borné
dans un groupe. Les groupes, comme les graphes de degré borné, se trouvent
ainsi dans une situation étonnante : on montre qu’il en existe de twin-width
infinie, sans savoir les expliciter. L’existence d’un groupe de twin-width infinie
nous permet de construire une petite classe avec twin-width non bornée.

viii

Summary

A graph consists of a set of vertices connected by edges. Graphs are versatile
structures, commonly used to represent networks of transportation, communic-
ation, or persons. This versatility has a cost: numerous natural algorithmic
problems on graphs are hard to solve, such as finding a largest set of pairwise
non-adjacent vertices. Rather than trying to solve such problems in full gener-
ality, one may constrain the input graphs to simplify the problem, for instance
by considering only planar graphs, i.e. the ones drawn in the plane with no
crossing edges.

This work studies such a constraint: twin-width, introduced in 2020 by Bon-
net, Kim, Thomassé, and Watrigant, and inspired by a width of permutations
defined by Guillemot and Marx. Twin-width is defined through contraction se-
quences, during which one identifies pairs of vertices until the graph is reduced
to a single vertex, while measuring some notion of errors.

Many well-known graph classes have bounded twin-width: for instance
planar graphs, or more generally graphs avoiding a fixed minor, as well as
graphs with bounded tree-width or clique-width. In such a class C, contraction
sequences have remarkable applications. Notably, they can be used to obtain an
efficient algorithm (in the sense of parameterized complexity) for any problem
expressed through first-order logic; graph colouring results which show that C
is x-bounded; and an upper bound on the number of graphs in C with a given
size: C is called small. Let us however mention a limitation: efficiently finding
good contraction sequences is an open problem in general, although it can be
done for all the aforementioned examples of graphs with bounded twin-width.

After an in-depth introduction of these notions, known results, and of the
techniques involved, this thesis considers the following question: are the pre-
vious properties (algorithm for first-order properties, colouring, smallness) ex-
clusive to classes with bounded twin-width? In general, this is not the case.
Indeed graphs with bounded degree are counterexamples for the first two prop-
erties, and we construct a small class with unbounded twin-width, using groups
and Cayley graphs.

Nonetheless, one may ask the same question for structures other than
graphs. Indeed twin-width easily extends to any structure consisting of bin-
ary relations. Thus, in ordered graphs (graphs with a total ordering of the
vertices), Bonnet, Giocanti, Ossona de Mendez, Simon, Thomassé¢, and Tor-
unczyk proved that bounded twin-width, smallness, and efficient algorithms for
first-order properties are all equivalent. Further, twin-width can be efficiently
approximated in these structures. We extend these results to tournaments (a
set of vertices with, for each pair, the choice of a direction or ‘winner’).

Permutations can be seen as a special case of ordered graphs. While ordered
graphs in general are well-behaved for twin-width, permutations are particu-
larly interesting: in their founding work, Guillemot and Marx show that for
permutations, bounded twin-width is equivalent to avoiding a pattern. After
revisiting some classical results on permutations with the point of view of twin-
width, we present a decomposition result: permutations with bounded twin-
width factorise into bounded products of separable permutations, which are
the permutations with twin-width O.

We conclude this work with structures where our understanding of twin-
width is far more limited: sparse graphs and groups. Two equivalent definitions

ix

of twin-width in groups are introduced, the first using Cayley graphs, and the
second using permutations and group actions. Using these two definitions, we
show that twin-width of groups is stable under a number of classical operations
and constructions. However, merely showing that groups with infinite twin-
width exist is difficult. We prove it using a theorem of Osjada, allowing to
embed sequences of bounded degree graphs into groups. Groups and bounded
degree graphs alike exhibit a peculiar situation: while it can be shown that
there exist some with infinite twin-width, no explicit construction is known.
The existence of a group with infinite twin-width allows us to construct a
small class with unbounded twin-width.

CONTENTS

H This thesis

[L_Introduction|

T1

Graph algorithms and Independent Sets|

T2

Classes of graphs| L.

T3

Complexity measures|.

T4

Organisation of this thesis|

Contraction Sequences|

P2

First examples and basic constructions|

[2.2.1 Contractions in trigraphs, trees and grids|
[2.2.2 Contraction tree and cographs|
2.2.3 Clique-width|
2.2.4 Some graphs with large twin-width|.

..............................

2.3.1 A lower bound: twincut graphs|
2.3.2 x-boundedness| oL

pA

Algorithmic application| 000

2.4.1 Independentset|.
2.4.2 Computing twin-width|

IBibliographic noticel oo oo

B Crids o Matrices

BI

Grids and sparsity]o .o Lo

B.2

A grid theorem for twin-width|

13.4.1 Balanced partitions and integrality gap|
13.4.2 Compact representations|.

|Bibliographic noticef 000000

4 First-Order Logic

4.2.3 Model-Checkingl
4.2.4 Interpretations, Transductions|

xi

33
33
36
38
39
44
44
47
a0
o1
o4
96

xii CONTENTS

[4.2.5 Independencelo oo 64

4.3 Twin-width and first-order logic|. 66
[F Nowhere Sparse Structures| 69
.1 Definitions and preliminaries| 69
9.2 Approximating twin-width in ordered structures| 71
9.3 Approximating twin-width in tournaments|. 73
[.3.1 Binary search trees|. 73
BE32 Chamorders oL 74
b.3.3 Fxtraction|. oo 75
(6.3.4 Characterisation of twin-width i tournamentsl 78
[5.3.5 Structures over tournamentsl 79

p.4 Extracting canonical obstructions|. 79
6.4.1 Permutations as obstructionsl 80
[5.4.2 Obstructions in ordered graphs| 82
0.4.3 Obstructions in tournaments| 85
6__Permutations| 89
6.1 Encodings of permutations|. 89
6.2 Patterns, substitutions, and separability| 93
B21 Patterns« o oo 94
[06.2.2 Separable permutations| 95
6.2.3 Substitutionl. oo 96
[6.2.4 Substitution treesl 97

6.3 Composition and decomposition|. 98
6.4 Delayed substitutions|. 100
6.41 Definitionl oo 100
[6.4.2 Distinguishability|. 100
[6.4.3 Factoring delayed substitutions| 102
[6.4.4 Constructing delayed structured trees| 103

6.5 Partitions and mixity|. Lo oo L 104
[6.5.1 Preliminaries 105
[6.5.2 Non-mixed partitions| 107
[6.5.3 Separating mixed parts| 0oL 108

6.6 Reducing the size of mixed divisions| 110
6.7 Encoding graphs and permutations| 114
[6.7.1 Path system representations|. 114
[6.7.2 Subdivisions of sparse graphs| 116
[6.7.3 Transducing bounded twin-width classes|. 118

|7 Sparse graphs and groups| 121
7.1 Preliminaries: graphs and groups| 121
[r.1.1 Cayley graphs|., 121
[7.1.2° Powers of graphs| 122
[7.1.3 Coarse geometry| 123

7.2 Twin-width of groups|. L. 124
[7.2.1 Sparse twin-width| 000, 124
[7.2.2 Power graphs| o 0oL 125
[7.2.3 Infinite graphs| 126

[7.2.4 Group invariant|. 127

7.4 Groups with finite twin-width|

[7.4.2 Products and quotients|
[7.4.3 Infinite products and wreath products|
[7.4.4 Group actions|.
[7.4.5 Uniform and non-uniform twin-widthl
7.5 Constructing groups with infinite twin-width|

[ndex|

LIST OF FIGURES

1.1 Example of independent set|
2.1 Quotient trigraph|. oo oo
2.2 Example of contraction sequence|o L.
2.3 Contraction sequence for paths and cycles|
2.4 Contraction sequence for trees|
2.5 Contraction sequence for grids|
2.6 Cograph and i1ts cotree|. L.
2.7 Rook graph, and 1-subdivided clique
2.8 Colouring rules for triangle-free graphs ot small twin-width|

2.9 Twincut graphs| oL L o

13.3 High rank division as obstruction to twin-width|.
4.1 A relational structurelo
5.1 Representation of ordered graphs|

p.2 Representation of permutations|
b.3 Example of tournament| o000
p.4 Binary search tree in a tournament|.00
.5 Chain quasi-order| o
0.6 Extraction of a chain quasi-order from a BST order|
5.7 Encoding of a graph as a biorder|
5.8 Encodings of permutations as tournaments|

xiii

143

151

157

xiv LIST OF FIGURES

6.1 Several representations of permutations| 90
6.2 Matrix of a permutation on [n?] with an n-gridf. 92
6.3 Construction of separable permutations| 96
6.4 Distinguishability in delayed substitutions| 101
6.5 Proof of Lemmal6.37 108
6.6 Proof of Lemmal6.401. 0oL 109
6.7 Adjacency matrix of the permutation 3142. 111
6.8 Path system representation| 114
6.9 Adjacency matrix of a path system representation| 115
7.1 Example of Cayley graphs| 122

[7.2 Powers and quotients of graphs| 125

HOW TO READ THIS THESIS

This work is divided in two parts and an introduction. The
presents the context motivating twin-width: graph algorithms, parameterized
complexity, and the underlying question of what being simple or complex means
for graphs.

The first part, Chapters [2] to [d] is an in-depth introduction to twin-width.
It presents key properties of graphs with small twin-width related algorithms,
logic, colourings, encodings, and enumeration, as well as several examples of
classes of graphs with and without bounded twin-width. It is meant as a
first introduction to twin-width, and assume only general knowledge of graph
theory.

The second part, Chapters [5] to [7} builds upon the first half and present
some more involved results about twin-width, many of which involve struc-
tures others than graphs. These three chapters are mostly, but not entirely
independent of each other.

The is meant as a reminder for the definitions used in this work,
with pointers to the full definition and context in the main text.

XV

CHAPTER 1

INTRODUCTION

A graph G consists of a set V(G) of vertices or abstract points, together with a
set E(G) of edges, i.e. pairs of vertices which can be understood as connections
between the vertices. Graphs are simple but extremely versatile structures:
they are commonly used to represent networks of connections (e.g. railways,
communication links, social connections, or bridges in Kénigsberg), or conflicts
between objects represented by vertices (e.g. interferences between radio sta-
tions, simultaneously live variables in a register allocation problem). One can
even argue that anything can be represented by graphs: the computer scientist
may notice that any relational database can be drawn as a graph whose vertices
are objects and tuples with edges representing membership; the mathematician
meanwhile will notice that models of set theory are infinite directed graphs,
vertices being sets and edges again representing membership.

Unfortunately, this versatility comes at the cost: one should expect objects
which can represent anything to be complex. This complexity takes various
aspects. Algorithmically, many natural problems on graphs cannot be solved
quickly; the ones which can, e.g. finding a shortest path, are the exception
rather than the rule. Mathematically, one can hardly hope to find any in-
teresting structure or description in arbitrary graphs. Let us illustrate this
situation through an algorithmic problem which is remarkably easy to state,
yet hard to solve: finding independent sets.

1.1 GRAPH ALGORITHMS AND INDEPENDENT SETS

In a graph G, a subset of vertices S C V(G) is called independent or stable
if there is no edge zy € E(G) with z,y € S (see Figure [1.1). The definition
is particularly natural if the edges of G are understood as conflicts between
vertices: an independent set is a conflict-free subset. The independent set
problem asks to find an independent set with as many vertices as possible in a
given graph G.

Figure 1.1: Example of independent set (filled vertices) in the Petersen graph.

2 CHAPTER 1. INTRODUCTION

Polynomial algorithms. What is meant by an efficient algorithm? The
simplest and most common requirement is a polynomial time algorithm, i.e.
one which runs in time bounded by some polynomial O(n¢) of the input size n,
which for graphs means the number of vertices n = |V(G)|. The independent
set problem is NP-complete: it is in fact one of the oldest known NP-complete
problems, featured in Karp’s list in 1972 [66]. Thus a polynomial time al-
gorithm for independent set would imply that P = NP, considered an unlikely
answer to the famous P vs NP problem. This is a strong indication that inde-
pendent set can likely not be solved in polynomial time.

When interested in algorithms, knowing that a problem can likely not be
solved in polynomial time is hardly a satisfying answer: it is natural to wonder
if this NP-hard problem could nonetheless be solved efficiently, for relaxed
notions of ‘solving’ and ‘efficiently’.

Approximation algorithms. A very natural idea is to look not for the best
solution, but a good enough one: a solution close to the optimal. The vertex
cover problem is a good example. A set C' C V(G) of vertices is called a vertex
cover if any edge in F(G) has an endpoint inside C. Remark that C is a vertex
cover if and only if its complement V(G) \ C is an independent set. It follows
that finding a smallest vertex cover is as hard as finding a largest independent
set: both problems are NP-complete. However, the following simple algorithm
will quickly find a vertex cover at most twice as large as the smallest one:
greedily pick a maximal matching M (a set of edges with no shared endpoints),
and take all endpoints of edges in M as a vertex cover. This is called a 2-
approzimation algorithm, running in polynomial time.

Despite their link, remark that finding a 2-approximation for vertex cover
(one at most twice as large as the minimum) is a very different problem from
finding a 2-approximation for independent set (one at least half as large as the
maximum). And indeed, while the former can be done in polynomial time, the
latter is hard: unless P = NP, it is impossible to approximate independent set
up to any constant factor, or in fact up to a factor which is less than a polyno-
mial of the input size [87]. Thus for independent set, finding an approximate
solution is just as hard as finding the optimal one.

Parameterized complexity. An approximation algorithm accepts non op-
timal solutions. What about trade-offs on the complexity instead? Parameter-
ized complexity, pioneered by Downey and Fellows |38|, allows the complexity
to depend on a parameter, for instance the size of the solution. Say we are
not looking for the largest independent set, but for one of a given size k. The
naive algorithm enumerating all subsets of size k runs in time roughly n*.
Even with small values of k, say 10, this quickly becomes prohibitively long
when n grows. Fized parameterized tractable algorithms (FPT), the key notion
of parameterized complexity, require to decouple the dependencies in k and n:
an FPT algorithm is one running in time f(k) - n¢ for some constant ¢, and an
arbitrary computable function f—often the exponential 2¥. Thus for fixed k
this is a polynomial algorithm. When k grows, the multiplicative constant in
this polynomial grows possibly very quickly, but the degree does not.

Vertex cover is again a good example. Suppose that we are looking for a
vertex cover C of size k in G. Pick any vertex v; there are two choices: either

1.1. GRAPH ALGORITHMS AND INDEPENDENT SETS 3

have v in C, or have all of its neighbours in C—as the edges incident to v
would be uncovered if we do neither. Then, for each of the two choices, repeat
the process. Note that at each choice, a vertex at least is added to C, thus if
no solution is found after k£ choices, one should simply give up: C' is already
too large. Hence this process explores a tree of choices, with two possibilities
at each point, and stopping after k choices. There are 2* branches in this tree,
and the resulting algorithm runs in time 2* - n. The vertex cover problem is
therefore FPT.

For independent set however, the results are once again negative. Again,
despite the link between the two problems, an FPT algorithm for vertex cover
(which should be particularly fast when there is a small vertex cover, hence a
very large independent set) is very different from an FPT algorithm for inde-
pendent set (which needs to be fast when looking for small independent sets).
Independent set is known to be complete for the parameterized complexity
class W[1]. One may think of FPT vs W[1] as the parameterized complexity
analogue of P vs NP: independent set being W/[1]-complete is a strong indica-
tion that it should not admit an FPT algorithm.

Restricted graphs. Independent set is thus a truly difficult problem for
which none of the previous approaches yields any kind of efficient algorithm.
It is unreasonable to try to solve it for all graphs, which naturally leads to
the next question: are there specific graphs for which independent set can be
solved quickly?

An extremely simple example is trees, i.e. connected graphs with no cycles.
In trees, a simple greedy algorithm finds a largest independent set S: pick a
leaf (vertex with only one neighbour), add it to S, remove its neighbour from
the graph, and repeat.

A more complex picture is found in planar graphs, that is graphs which can
be drawn on the plane without crossing edges: the independent set problem
is NP-complete |50], but it can be approximated. Euler’s formula implies that
a planar graph on n vertices contains an independent set S with % vertices,
obtained by repetitively picking a vertex with no more than 5 neighbours and
deleting its neighbours (compare with the algorithm in trees). In a trivial
sense, this is a 6-approximation algorithm for independent set, and an FPT
algorithm can be obtained for similar reasons. More interestingly, independent
set in planar graphs admits polynomial time c-approximation algorithms for
any constant ¢ > 1 |7]. This is called a polynomial time approximation scheme
(PTAS).

In both trees and planar graphs there always exist independent sets of size
linear in the number of vertices. Let us give an example in which this is not
the case. A cograph is a graph constructed starting from individual vertices by
two operations: the disjoint union of two graphs, and the complete union (i.e.
taking the disjoint union of graphs and adding all edges between them). For
example, edgeless graphs and cliques (graphs with all possible edges) are both
cographs. For both operations, one can easily find a maximum independent
set in the resulting graph given solutions in the two parts: suppose we have
maximum independent sets S; in G;, ¢ = 1,2. Then §7 U S5 is a maximum
independent set in the disjoint union of Gy and G, while in the complete union,
whichever of S7 or Ss is largest will be a maximum independent set. Given a

4 CHAPTER 1. INTRODUCTION

cograph G, it is also possible to reconstruct the sequence of operations which
built G. Applying the above to this sequence of operations yields a maximum
independent set in G in polynomial time.

1.2 CLASSES OF GRAPHS

The previous examples demonstrate how a problem which seems hopelessly
difficult when considering all graphs, may admit interesting algorithms when
restricting the graphs considered. Oftentimes, the question one should ask is
not is it possible to solve this efficiently? but rather for which graphs can this
problem be solved efficiently? In a sense, we want to classify graphs as either
simple or complex.

This phrasing is slightly misleading: it does not make sense to ask if e.g.
the independent set problem is hard for one specific graph G. Indeed nobody
would care for an algorithm designed only for G. Algorithms are designed for
classes of graphs, and for instance the independent set problem is simple in
the classes of trees, of cographs, of planar graphs, while it is hard in the class
of all graphs. The question we really mean to ask is for which classes of graphs
can this problem be solved efficiently?.

Here, a class of graphs simply means a collection of graphs closed under
isomorphism. Without additional restrictions, a class of graphs can be ex-
tremely complex to describe, as one may arbitrarily pick which graphs (up
to isomorphism) it contains. It is unreasonable to attempt to characterise all
classes of graphs in which e.g. the independent set problem is simple. Instead,
one will usually restrict their attention to classes of graphs with a coherence
condition: if G is in the class C, then any graph H contained in G should also
belong to C. For graphs, contained can have many different meanings. The
most common ones are the following.

subgraphs A subgraph in G is a graph obtained by removing any subset of
edges and vertices. Naturally, if a vertex v is removed, so should all edges
incident to v.

A class C of graphs closed under subgraphs—meaning that when G € C,
any subgraph of G is also in C—is called monotone. For example, the
classes of forests (disjoint unions of trees) and of planar graphs are mono-
tone, but that of cographs is not: it contains all cliques K, (n vertices all
pairwise connected), and any graph on n vertices is a subgraph of K.

induced subgraphs An induced subgraph of G is obtained by deleting ver-
tices from G, and removing only the edges incident to the deleted vertices.
That is, if X is the set of preserved vertices, then all edges of G with en-
dpoints in X are kept. This subgraph is said to be induced by X, and is
denoted by G[X].

A class closed under induced subgraphs is called hereditary. Since induced
subgraphs are a more restrictive notion than subgraphs, a class which is
monotone is also hereditary. Forests and planar graphs are hereditary
because monotone, and cographs are hereditary but not monotone.

minors A minor of G is obtained by deleting vertices and edges, and contract-
ing edges. Contracting an edge uv means merging the vertices v and v

1.2. CLASSES OF GRAPHS 5

while preserving their edges: the vertex resulting from this merge will be
adjacent to some z if either u or v was adjacent to x.

Any minor closed class is also monotone. Forests and planar graphs are
examples of minor closed classes. The class of subcubic graphs, i.e. in
which the degree (number of neighbours) of each vertex is at most 3, is
a monotone class which is not minor closed.

We have thus three notions of stability under some containment relation for
graph classes: hereditary, monotone, and minor closed, from the weakest to
the strongest requirement.

Minor closed classes. Minor closed classes are well understood thanks
to the colossal work of Robertson and Seymour in the graph minors series.
A minor closed class C which does not contain all graphs must avoid some
graph H as minor, i.e. H is not a minor of any G € C: indeed this holds for
any H € C. Robertson and Seymour describe a structure in graphs avoiding
any fixed minor: they decompose into graphs which up to small errors can be
embedded in surfaces with fixed genus [84]. Thus in a very broad sense, classes
which avoid a minor behave like planar graphs, and enjoy many of their prop-
erties. In particular, the independent set problem, while NP-complete, admits
a PTAS and an FPT algorithm, and this generalises to a wide range of other
algorithmic problems. Thus any minor closed class other than the class of all
graphs is simple in a strong sense.

Monotone classes. The situation is more complex in monotone classes. Re-
garding independent sets, Ramsey’s theorem implies that in any graph G avoid-
ing H as subgraph, there is an independent set of size O(n%)7 with n, k the
number of vertices of G, H respectively. Thus for a fixed H, independent sets of
at least polynomial size can be found in graphs avoiding H as subgraph. Non-
etheless, a simple reduction shows that in for instance triangle-free graphs (i.e.
without K5 as subgraph), independent set is NP-hard to approximate within
any constant. Avoiding one fixed H as subgraph is not in general sufficient to
ensure that a class is simple.

A major advance in the understanding of monotone classes is the theory
of sparsity of Neget¥il and Ossona de Mendez |75]. Sparse is a broad term
referring to graphs with few edges, as opposed to dense graphs. It can have
many different meanings. Having bounded degree and avoiding a minor are
two incomparable and strong notions of sparsity. Generalising both, Nesetfil
and Ossona de Mendez defined nowhere dense classes. Grohe, Kreutzer, and
Siebertz proved that nowhere dense classes have FPT algorithm to solve any
problem described using first-order logic, i.e. with a logical formula quantifying
on vertices of the input graph. First-order logic allows to describe a broad
class of problems, including independent set. Conversely, a monotone class C
which is not nowhere dense can in a sense encode all graphs through some
first-order formula [1], a property called first-order independence. This implies
that first-order logic problems in C cannot be solved by an FPT algorithm [69]
(assuming that FPT # W[1]).

Thus a monotone class C either is nowhere dense, which gives it sufficient
structure to solve first-order problems, or can encode all graphs, which implies

6 CHAPTER 1. INTRODUCTION

that first-order problems are hard in C. This is precisely the kind of dichotomy
which we are interested in: for a fixed class of problems (first-order definable),
a structural notion (nowhere dense) characterises the classes of graphs in which
these problem can be efficiently solved.

Hereditary classes. Being far more general than monotone classes, the cur-
rent understanding of hereditary classes is limited. A question which has raised
significant work is the following. Given a graph H, one can consider the class
of H-free graphs (i.e. of graphs which do not contain H as induced subgraph),
which is by construction hereditary. For which H is there a polynomial al-
gorithm for independent set in H-free graphs? Using that independent set is
NP-hard in graphs with maximum degree 3 |50|, one can show that H must be
restricted to very simple graphs: paths, subdivided claws (i.e. three paths shar-
ing an endpoint), and disjoint unions thereof. It is conjectured that when H
is such a graph, there is a polynomial algorithm for independent set in H-
free graphs. A quasi-polynomial approximation scheme is known [31], while
polynomial algorithms are only known for special cases of H [5, 71} |60, 24].

The former conjecture however only applies to classes defined by avoiding a
single induced subgraph H, and many interesting hereditary classes cannot be
described with a single, or even a finite list of induced subgraphs to avoid. For
instance chordal graphs are the graphs which do not contain a cycle Cy on k
vertices as induced subgraph for any £ > 4. A maximum independent set can be
found in a chordal graph by repetitively picking a vertex whose neighbourhood
is a clique (which always exists in a chordal graph) and deleting its neighbours.
This is a generalisation of the algorithm on trees.

There is no conjectured characterisation of the hereditary classes in which
independent set has a polynomial algorithm. A bold conjecture was however
proposed for problems defined in first-order logic. Recall that in a monotone
class C, there is an FPT algorithm for first-order problems if and only if C cannot
encode all graphs through a first-order formula. It is conjectured that the same
also holds for hereditary classes [48]. For monotone classes, this equivalence
was established through a third, more structural condition: being nowhere
dense. A generalisation of nowhere dense would most likely be necessary to
extend the result to hereditary classes, and even with such a notion, finding
FPT algorithms for first-order problems may prove very difficult. We will see
a few examples of classes with such algorithms—in addition to nowhere dense
classes—in the remainder of this introduction and this work.

1.3 COMPLEXITY MEASURES

The previous section made a case for trying to classify classes of graphs as
simple or complex, and not the graphs themselves: a single finite graph cannot
by itself be considered complex. On the other hand, it is reasonable to define
a gradual measure of the complexity of individual graphs, as a function from
graphs to numbers: the smaller the number, the simpler the graph. Such func-
tions, called graph complexity measure, or more colloquially width functions,
have become central in graph theory and parameterized algorithms.

1.3. COMPLEXITY MEASURES 7

Tree-width. Undoubtably the most famous graph complexity measure is
tree-width. The notion was proposed independently by different authors around
1975, but its development came as part of the work on graph minors of Rober-
ston and Seymour [82]. The tree-width tw(G) indicates how close to a tree G
is. For instance, forests have tree-width 1. With regards to tree-width, a class
of graphs C is considered simple if it has bounded tree-width: there is some
constant ¢ such that tw(G) < ¢ for any G € C.

Numerous problems, including independent set, can be solved in linear time
on bounded tree-width classes. Precisely, they have FPT algorithms with the
tree-width as parameter: for instance, a maximum independent set in G can
be found in time 2¢%(%) . n. Notice here that the parameter in the complexity
is only the tree-width, and not the size of the desired independent set. This
extends to any problem described using a monadic second-order formula [32],
a logic far more expressive than first-order logic, allowing quantification on
subsets of vertices and edges. Notable such problems include finding proper
colourings (colourings of vertices with distinct colours on adjacent vertices) or
Hamiltonian cycles (a cycle going through all vertices).

The class of graphs with tree-width at most %k is minor closed, hence avoids
some graphs as minor (e.g. Kj). There are however minor avoiding classes with
unbounded tree-width: for instance planar graphs. The grid minor theorem of
Robertson and Seymour proves that a class C has bounded tree-width if and
only if it avoids a planar graph as minor [83]. Thus for a minor-closed class C,
tree-width gives a second, stronger notion of simplicity: either C has bounded
tree-width, which makes it very simple (independent set is solved in linear
time), or C avoids a minor but contains all planar graphs, and is relatively
simple (independent set is NP-hard, but has a PTAS), or C is the very complex
class of all graphs.

Clique-width. Tree-width is a sparse graph notion: any dense graph has
large tree-width, for instance cliques have tw(K,) = n. Results about tree-
width are thus of little use to dense graphs. Clique-width, attributed to Cour-
celle, Engelfriet, and Rozenberg [33], is a variant of tree-width which accom-
modates dense graphs. Whereas the tree-width tw(G) indicates whether G
resembles a tree, the clique-width ¢cw(G) indicates how easily G can be en-
coded as a tree. For instance, cographs, which are easily encoded by the tree
of operations (disjoint and complete sum) used to construct them, have clique-
width at most 2.

Clique-width satisfies cw(G) < O(2t(). Thus any class of graphs with
bounded tree-width also has bounded clique-width. Conversely, a class with
bounded clique-width which avoids some bipartite complete graph K, ; as sub-
graph has bounded tree-width. In that sense, clique-width is the dense analogue
of tree-width.

With clique-width as parameter, there are FPT algorithms for all problems
expressed in a weaker variant of monadic second-order logic allowing quanti-
fication on subsets of vertices, but not subsets of edges. This still includes
independent set and colouring, but not Hamiltonian cycles.

Twin-width. This leads us to the main subject of this work: twin-width
is a graph complexity measure introduced by Bonnet, Kim, Thomassé, and

8 CHAPTER 1. INTRODUCTION

Watrigant |19], based on a notion of Guillemot and Marx for permutations |61].
We will see that classes with bounded tree-width or clique-width have bounded
twin-width: indeed tww(G) < 2cew(G). Twin-width however goes far further:
planar graphs, and more generally classes avoiding a minor have bounded twin-
width, but not bounded clique-width.

In a class C with bounded twin-width, there is an FPT algorithm for first-
order logic problems [19], comparable to the result known in nowhere dense
classes (note that nowhere dense and bounded twin-width are incomparable
conditions). This algorithm however has a limitation: it must be given a witness
of the twin-width of the input graph, and computing witnesses of twin-width
is a major open problem. For instance, independent sets of size k in graphs of
twin-width ¢ can be found in time t©*) . n when provided with a witness of
twin-width. Remark the difference in complexity with the tree-width algorithm:
both twin-width and the solution size are parameters in the complexity. One
cannot remove the dependency in k, since independent set can be NP-hard in
classes with bounded twin-width such as planar graphs.

1.4 ORGANISATION OF THIS THESIS

This thesis is concerned with twin-width, its properties and characterisations,
and its relationship to some of the other notions presented in this introduction.
It is organised as follows.

The first half of this work presents properties and results on twin-width,
alongside examples of classes of graphs with bounded twin-width. Chapter
presents the definition of twin-width through contraction sequences, and uses
it to construct the previously mentioned FPT algorithm for independent set,
as well as results on graph colourings, and several simple examples of graphs
with or without bounded twin-width. Chapter [3] introduces a second charac-
terisation of graphs with bounded twin-width: their adjacency matrices, when
judiciously ordered, avoid some grid-like structures. This leads to a proof that
classes avoiding a minor have bounded twin-width, and to results on compact
representations and enumeration of graphs with small twin-width. Chapter [4]
presents two major results relating twin-width and first-order logic, with an
extensive introduction of the logical notions involved. The results of these first
three chapters come primarily from the work of Bonnet, Kim, Thomassé, and
Watrigant which defined twin-width for graphs [19).

The latter half is motivated by the following question: can the previous
remarkable properties of twin-width—algorithms, enumeration, etc.—be char-
acterisations of twin-width? That is, are these properties satisfied exclusively
by classes with bounded twin-width? While this is not the case in general for
graphs, we will present examples in which such equivalences hold. In Chapter 5]
presents such characterisations when extending twin-width to structures other
than graphs: ordered structures, tournaments, permutations. More generally,
twin-width is shown to be particularly useful and well behaved for these struc-
tures. Chapter [0] focuses further on permutations in particular: after revisit-
ing the results of Guillemot and Marx which predate the definition of twin-
width for graphs [61], we prove a factorisation theorem for permutations with
bounded twin-width. Chapter [7] generalises twin-width to yet another kind of
structures: infinite groups. After studying basic properties of twin-width for

1.4. ORGANISATION OF THIS THESIS 9

groups, it presents the highly non-trivial construction of a group with infinite
twin-width. This disproves a conjectured characterisation of twin-width, by
providing a class which has unbounded twin-width but is small, i.e. has few
graphs in some precise sense.

CHAPTER 2

CONTRACTION SEQUENCES

This chapter defines twin-width through contraction sequences, presenting a
number of simple examples, and some applications on contraction sequences:
dynamic programming algorithms, and graph colouring results. It is largely
based on the first paper on twin-width of Bonnet, Kim, Thomassé, and Wat-
rigant [19], and the followup work of the same with the author |14} [15].

2.1 DEFINITIONS

Consider a graph G = (V, E), and a partition P of its vertex set V. Given
distinct parts X,Y € P, we distinguish three situations.

1. If all vertices of X are adjacent to all vertices of Y, then X, Y are said
to be complete to each other.

2. Symmetrically, if no vertex of X is adjacent to a vertex of Y, then X, Y
are said to be anticomplete.

In either of these first two cases, X and Y are also said to be homogeneous.

3. When X and Y are not homogeneous, meaning that there is at least one
edge and one non-edge them, we say that X and Y are in error.

These three situations are described in a quotient structure called a trigraph:
the trigraph Tri(G,P) has P for vertex set, and between two parts X,Y € P,
there is (1) no edge if X,Y are anti-complete, (2) a normal edge if they are
complete, (3) and an error edge if they are non-homogeneous. Thus, a tri-
graph (V, E,| R) is defined by a vertex set V, and two sets E, R of normal and
error edges respectively, so that (V, E) and (V, R) are two graphs, and E, R are
disjoint. By convention, normal edges are depicted in black, and error edges in
red. See Figure 2.1] for an example.

Figure 2.1: Example of a partition of a graph represented by circles, and the
associated trigraph in thick edges (black for normal edges, and red for error
edges).

11

12 CHAPTER 2. CONTRACTION SEQUENCES

The point of this definition is that if the trigraph Tri(G,P) has few error
edges, (the meaning of ‘few’ will be clarified shortly) then it is a good abstrac-
tion of G. For instance, in the extreme case where Tri(G, P) contains no error
edge, the graph G is entirely described by Tri(G, P), and the restriction of G
to each part of P. More generally, if one wishes to describe G, it is sufficient
to give:

1. the trigraph Tri(G, P) itself, describing the large-scale structure of G,

2. for each part X € P, the local induced subgraph G[X],

3. and for each non-homogeneous pair X,Y € P, the bipartite subgraph
induced by G between X and Y.

When there are few error edges and the partition P is reasonably balanced,
such a description may be significantly smaller than the naive representation
of G. Nonetheless, having a partition P with few error edges does not by itself
ensure that G is simple: the quotient trigraph, and the subgraphs induced by
parts or by error edges could all be arbitrarily complex.

This leads to the following definition, whose underlying idea is to ask for a
good partition at all possible scales. A contraction sequence for a graph G is a
sequence Py, ..., Py of partitions of V(G), which

1. starts with the partition into singletons P, = {{z} | x € V(G)},

finishes with the trivial partition P; = {V(G)}, and

3. progresses from P; 11 to P; by merging two parts, that is replacing some
parts X, Y € P;1q with (X UY) € P;.

N

The indices of the partitions are chosen backwards so that P; has exactly @
parts.

Notice that the definition of contraction sequence does not involve the edges
of G in any way: this is because we have not yet required the partitions P; to
‘have few error edges’. In a trigraph H = (V| E, R), the error degree of v € V,
denoted by deg&"™ (v), is the degree of v in (V, R), that is the number of error
edges incident to v. The width of a contraction sequence P,,...,P; is the

maximum error degree observed throughout the sequence:

Err
max max degr.. N (X))
R, ETri(G,P;) (X)

Thus, this condition is about the number of error edges not globally, but locally
around each part. Finally, the twin-width of the graph G is the minimum width
of a contraction sequence for G. See Figure 2.2] for a first illustration.

We invite the reader to check the following basic properties:

1. Given a graph G = (V,E), denote by G¢ = (V, (‘2,) \ E) its comple-
ment, obtained by replacing edges with non-edges and vice-versa. Then
tww(G) = tww(GO).

2. For any induced subgraph H of G, tww(H) < tww(G): twin-width is
monotone under taking induced subgraphs.

2.2. FIRST EXAMPLES AND BASIC CONSTRUCTIONS 13

Figure 2.2: Example of a contraction sequence of width 2. The contraction
steps are represented in reading order. At each step, parts are represented by
circles, and the quotient trigraphs are drawn in thick edges. For simplicity,
singleton parts and the edges joining them are omitted.

In this sequence of trigraphs, no vertex is incident to more than two error edges,
hence the width of the contraction sequence is 2. One may check that this is

optimal for this graph, because it contains C5 as induced subgraph. Thus, its
twin-width is 2.

2.2 FIRST EXAMPLES AND BASIC CONSTRUCTIONS

The path P, is the graph with vertex set [n] (where [n] denotes {1,...,n}),
and edges from ¢ to (i + 1) for all ¢« € [n — 1]. Consider the sequence of
partitions P, ..., P1 where

P ={{1},{2},.... {i =1}, {i,...,n}},

see Figure 2.3] This is clearly a contraction sequence, and in each trigraph
Tri(P,,P;), there is exactly one error edge between {i — 1} and {7,...,n}. It
follows that the maximum error degree is 1, and tww(P,) < 1. The cycle C,, is
obtained by adding the edge from 1 to n to the path P,. With the very same
sequence of partitions, the trigraph Tri(C,,P;) now has at most two error
edges from {i,...,n} to {i — 1} and {1} respectively, from which it follows
that tww(Cy,) < 2.

These two bounds are optimal for sufficiently long paths and cycles; this is a
good opportunity to introduce the following definition, which is the etymology
of ‘twin-width’. Given distinct vertices z,y in a graph G, their neighbourhood
difference An(z,y) = (N(2)AN(y))\{z, y} is the set of other vertices adjacent

14 CHAPTER 2. CONTRACTION SEQUENCES

E—S———s

Figure 2.3: Typical partition in a contraction sequence for a path and a cycle.

to exactly one of z and y. The vertices x and y are said to be k-near twins if
|An(z,y)| < k. Vertices which are O-near twins are simply called twinsﬂ

Lemma 2.1. If G is a graph with tww(G) = k, then G contains k-near twins.

Proof. Given a contraction sequence P,,,...,P; of width k for G, it suffices to
consider the very first contraction, i.e. P,_1. There is exactly one part {x,y}
in P,,_1 with two vertices, the others being singletons. Further, if z € Ay (z,y),
then {z} is in error with {x,y}. It follows that

An (@,)| = degliap,) {z.9}) <k,

i.e. z and y are k-near twins. O

The reader may now check that paths on at least 4 vertices do not contain
twins, and cycles on at least 5 vertices do not contain 1-near twins, from which
it follows that the former bounds on twin-width are tight.

2.2.1 Contractions in trigraphs, trees and grids. So far, we have
defined contractions sequences in terms of the sequence of partitions. This
point of view is useful in many contexts, for instance in the algorithms presen-
ted at the end of this chapter, and the grid theorem of Chapter [3] However,
when working with concrete examples of graphs, it is often more natural to
directly consider the quotient trigraphs.

Given a trigraph G = (V, E, R) and two arbitrary vertices z,y € V, the
contraction of x,y is the operation which replaces z,y with a new vertex z,
with the following edges: for any other vertex v € V' \ {z,y}

1. if v is connected to both z and y by normal edges, then v is connected
to z by a normal edge,

2. symmetrically, if v is adjacent to neither = nor y, then v is not adjacent
to z, and

3. in any other case, v is connected to z by an error edge.

A simple case analysis shows that contractions correspond to merging parts
in the following sense.

In some contexts, one distinguishes true and false twins depending on whether or not
the twins are adjacent. This distinction is not relevant to twin-width.

2.2. FIRST EXAMPLES AND BASIC CONSTRUCTIONS 15

Figure 2.4: Typical trigraphs in the contraction sequences of width 2 for trees.
The circled pairs of vertices should be contracted for the next step; for the
trees in this example, several choices are possible.

Lemma 2.2. Consider a graph G, a partition P of V(G), two parts X,Y € P,
and P’ obtained from P by merging X and Y. Then Tri(G,P’) is obtained
from Tri(G,P) by contracting the vertices X and Y.

A characterisation of contraction sequences through trigraphs follows.

Lemma 2.3. Let G be a graph and G, ...,G1 a sequence of trigraphs. Then
there is a contraction sequence Py, ..., P1 for G such that G; = Tri(G,P;) if
and only if

1. G, = (V(G), E(G), D), i.e. has the same vertices and edges as G and no
error edge,

2. 1 is the trigraph with only one vertex, and

3. G; is obtained from G;11 by contracting two vertices.

We somewhat abusively call ‘contraction sequence’ both the sequence of
partitions P,,...,P; and the corresponding sequence of trigraphs G, ..., G;.
It should be clear from the context and notations whether we are referring to
partitions or trigraphs.

Let us now resume our list of graphs of small twin-width, using this new
characterisation to simplify the descriptions of the contraction sequences.

Fact 2.4 |19]. Trees have twin-width at most 2.

Proof. Consider a tree T'. We will construct a contraction sequence G,,...,G;
subject to the following conditions:

1. for each trigraph G; = (V;, E;, R;), the graph (V;, E; U R;) is a tree,
2. each error edges of G; is incident to a leaf of this tree, and
3. the maximum error degree in G; is at most 2.

Initially, G,, has the same edges as T and no error edge, and clearly satisfies
the conditions. Then, given G;;1, we construct G; by the following rules (see

Figure [2.4)).
e If G;41 contains two leaves with the same parent, contract them.

e Otherwise, there exists a leaf x with no siblings (e.g. take = at maximal
distance from the root); contract x with its parent.

16 CHAPTER 2. CONTRACTION SEQUENCES

These rules apply until the remaining trigraph is reduced to one vertex, and
thus yield a contraction sequence. Clearly, the rules ensure that G; remains a
tree. Furthermore, the vertex z in G; resulting from the contraction is a leaf,
and any new error edge is incident to z, hence condition (2) is preserved. Let
us now verify that the error degree cannot exceed 2.

e Assume the first rule is applied to leaves x,y with parent ¢, contracted
into z. The error degrees of vertices outside x,y,t are unaffected, hence
we only need to consider z and ¢. Since z is a leaf, its error degree is at
most 1. As for ¢, remark that zt is an error edge only if xt or yt was an
error edge, and the contraction of x, y cannot create error edges from ¢ to
a vertex other than z. It follows that the error degree of ¢ cannot increase
in this operation.

e The second rule is only applied when for each node of G471, at most one
child is a leaf. Thus after the contraction, in GG;, no node has more than 2
children leaves. It follows from condition (2) that the error degree cannot
exceed 2. O

For a lower bound matching Fact 2:4] a slightly tedious case disjunction
shows that the subdivided claw (i.e. the tree whose root has 3 children, each
of which has a single child leaf) has twin-width exactly 2.

The (n x m)—gricﬂ is the graph on vertex set [n] x [m] in which two vertices
are adjacent if and only if they are at distance 1 in the plane.

Fact 2.5 |19]. Grids have twin-width at most 4.

Proof. The contraction sequence for the (n x m)-grid is as follows: the m
vertices of the first column are contracted with those of the second column,
that is, (1,1) with (2, 1), then (1,2) with (2,2), until (1,7n) with (2,n). At this
point, the trigraph obtained is the (n x (m — 1)) grid, except that all edges
incident to the leftmost column are error edges. We then repeat this process
until only a path remains, which is easily contracted. The reader may verify
that at all steps in this process, the maximum error degree is 4, which is reached
only by the vertex resulting from the previous contraction, see Figure 2.5 [

An elegant argument of Ahn, Chakraborti, Hendrey, and Oum [2| shows
that the bound of 4 is reached for grids of size at least 7 x 7.

This contraction process generalises to grids in any fixed dimension d (i.e.
the graph on vertex set [n]? where vertices are adjacent when they are at
distance 1 in R?). One chooses an axis, and contracts the first hyperplane with
the second, then with the third, until a grid of dimension (d — 1) remains. This
contraction sequence has width linear in d, and a near-twins argument shows
that this is optimal up to the multiplicative constant.

Fact 2.6 |19, Theorem 4.3]. Grids of dimension d have twin-width 6(d).

2Not to be confused with the grids in matrices used throughout Chapter [3] which are
unrelated, except for their visual representation.

2.2. FIRST EXAMPLES AND BASIC CONSTRUCTIONS 17

Figure 2.5: Typical trigraph in the contraction sequence and width 4 for grids.
The circled pair of vertices should be contracted for the next step.

2.2.2 Contraction tree and cographs. As our next example, we will
characterise the graphs of twin-width 0: they are exactly the cographs. To this
end, let us describe how contraction sequences can be represented as trees.

Consider any contraction sequence P,,...,P; for a graph G. We incre-
mentally define binary trees T7,...,7T, such that the leaves of T; are exactly
the elements of P;.

e The tree T} consists only of its root, corresponding to V(G).

e Assume that 7; has been constructed, and assume that X,Y are the
parts of P; 11 which are merged to obtain P;. Thus there is a leaf of T;
corresponding to X UY', and 7} is obtained from 7; by adding X and Y
as children of X UY.

The last tree T' = T, is called the contraction tree of the sequence P,, ..., P;.
The nodes of T are all the subsets of V(G) which appear in P,,...,P;. Its
leaves are the singletons, in bijection with V(G), while each internal node of T'
is the disjoint union of its children. The contraction tree partially records the
order of contractions, but does not fully describe the contraction sequence:
if X,Y are nodes of T, neither being a descendant of the other, then 7" does
not indicate which of X or Y was created first in the sequence.

There is another, more abstract description of this contraction tree, which
is an opportunity to introduce useful vocabulary on partitions. Consider again

a contraction sequence P,,...,P;. Then for any ¢ > j, the partitions P;, P;
satisfy
(2.1) VX eP,Y €P;, eithae XCYor XNY =g,

i.e. P; is obtained by splitting parts of P;. It is said that P; is a refinement
of P;, or that P; is a coarsening of P;. To verify (2.1)), remark that P; 41 obvi-
ously refines P;, and that the refinement relation on partitions is transitive—it
is a partial ordering.

Now denote by P = [J;-_, P; the collection of all parts appearing throughout
the contraction sequence. It easily follows from that 3 satisfies

(2.2) VXY €B, either XCY, YC X, or XNY =g,

i.e. subsets in P never intersect in a non-trivial way. This property of the
family B is known as being laminar; it guarantees that there exists a unique

18 CHAPTER 2. CONTRACTION SEQUENCES

treeE|T whose nodes are elements of 3, and such that a node X is a descendant
of Y if and only if X C Y. This is again the contraction tree.

Let us now apply this construction to graphs of twin-width 0: assume
that P, ..., P; is a contraction sequence of G where the trigraphs Tri(G, P;)
do not contain any error edges, and consider T the associated contraction tree.
Let X be an internal node of T with children Y7, Y5, meaning that X = Y, WY5.
These correspond to some step i in the contraction sequence: P; is obtained
from P;41 by replacing Y7,Ys € P;11 with X. Since Tri(G, P;+1) has no error
edge, Y7 and Y5 must be either complete or anti-complete to each other. By
labelling the node X with 0, resp. 1, when Y; and Y, are anti-complete, resp.
complete to each other, we find that G satisfies the following:

Property 2.7. There is a tree T whose set of leaves is V(G), and whose internal
nodes are labelled with either 0 or 1, such that any two vertices z,y € V(G)
are adjacent if and only if their least common ancestor in T is labelled with 1.

Property [2.7] characterises cographs, which we presented in Chapter [I] as
the graphs constructed by a sequence of disjoint and complete unions. Indeed,
the tree T describes how to construct G with disjoint and complete unions:
calling G the subgraph of G induced by the descendants of ¢, one can check
that if ¢ is a node in T labelled with 0 (resp. 1) and with children ¢1, t5, then
G is the disjoint (resp. complete) union of G¢,,Gy,. This tree T describing
the construction of G is called cotree. See Figure [2.6] for an example.

1
a
e
b
f
c

Figure 2.6: Example of a cograph, and a cotree describing it.

Conversely, given a cograph G with cotree T', one can construct a con-
traction sequence of width 0 as follows. Without loss of generality, there are
no nodes in T with exactly one child—such nodes can be deleted. Assum-
ing |V(G) > 2|, T must contain sibling leaves x,y, which are twins in the co-
graph G: indeed, for any z ¢ {x,y}, the pairs z, z and y, z have the same least
common ancestor, hence zz € F(G) if and only if yz € E(G). Now contract
and y: since they are twins, the resulting trigraph has no error edge, and has
exactly the same vertices and (normal) edges as G — = (or G — y). The latter
is also a cograph, whose cotree is T — x (resp. T — y), thus this process can be
repeated until reaching the one-vertex graph. This is a contraction sequence
in which trigraphs have no error edges, hence tww(G) = 0. Thus,

Fact 2.8 |19]. A graph G is a cograph if and only if tww(G) = 0.

3 Actually a forest and not a tree in the general case. Here T is indeed a tree since the
full set V(G) is in B, and is the root of T'.

2.2. FIRST EXAMPLES AND BASIC CONSTRUCTIONS 19

2.2.3 Clique-width. In light of Fact 2.8} twin-width can be seen as a nat-
ural generalisation of cographs, in much the same way that tree-width is a
generalisation of trees. This is interesting as there is another natural gener-
alisation of cographs as a complexity measure: clique-width. As announced
in the introduction, we will now see that classes with bounded clique-width
also have bounded twin-width. This result was proved in [19], but the precise
bound proved below was first published in [9].

Let us first define clique-width. It generalises the construction of cographs
through disjoint and complete unions, by allowing more complex operations.
These operations are defined on graphs G with some additional information: a
labelling Ag : V(G) — [k], for some fixed k. The operations are the following:

disjoint union G® H, which makes a disjoint union of the vertices of G and H
while preserving the existing edges and labellings.

adding edges between labels i, j € [k], which preserves the vertices and their
labels, but adds the edge xy for any vertices z,y with labels ¢ and j
respectively.

relabelling by f : [k] — [k], which keeps the graph G unchanged, but replaces
the labelling A\ with f o Ag.

The clique-width c¢w(G) is the minimum number k of labels needed to con-
struct G with these operations, starting from graphs with a single vertex.

Fact 2.9 (Baril, Couceiro, Lagerkvist [9]). For any graph G,
tw(G) < 2cw(G) — 1.

Proof. Fix the number k of labels. Given G labelled with Ag : V(G) — [k],
the labelling defines a canonical partition of the vertices

Pa = {A'(0) | i € [k}

For the sake of induction, we will prove the following: for any labelled
graph (G, Ag) constructed by disjoint union, relabelling, and addition of edges
using at most k labels, there is a contraction sequence P,, ..., P, of width at
most 2k — 1 which finishes not with the trivial partition {V(G)}, but rather
with the canonical partition P, = Pg. When G is equipped with the trivial
labelling mapping all vertices to 1 (which can always be obtained by a single
relabelling operation), this proves the result.

disjoint union Assume that (G, \g), (H, Ag) have contraction sequences as
above. In the disjoint union G & H, one can independently apply the
contraction sequence of G and that of H without any additional errors.
The partition obtained at this point is Pg W Pg. To obtain the desired
partition Pgasr, it only remains to merge Ag'(i) with A;'(i) for each
label ¢ € [k]. Since there remains no more than 2k parts at this point,
this cannot increase the error degree beyond 2k — 1.

adding edges Fix a contraction sequence P,,..., P, as above for (G, \g).
Remark that any part P € P; in the sequence is contained in some)\51 (1),
i.e. all vertices of P have the same label. We now add edges from vertices

20 CHAPTER 2. CONTRACTION SEQUENCES

labelled ¢ to the ones labelled j. Given parts X,Y € P;, there are two
cases: if X islabelled ¢ and Y labelled j (or vice versa), then the new edges
ensure that X,Y are homogeneous; otherwise, no edge is added between
them. Either way, the new edges cannot create an error between X and Y.
Thus the same contraction sequence also still satisfies the requirement
after adding the edges.

relabelling Consider G labelled with A : V(G) — [k], and a relabelling
map f : [k] = [k]. Call u = fo the new labels, and Py, P, the canonical
partitions corresponding to A, . Notice that vertices with the same la-
bels in A also have the same labels in u. It follows that P, is a refinement
of P,. Suppose now that we have a contraction sequence Py, ..., P, with
width 2k — 1, such that P, = Py. Since Py refines P,, this sequence
can be extended with a few merges to reach P,. Since P, already has
no more than k parts, these additional steps cannot increase the error
degree beyond k — 1. We thus obtain the desired contraction sequence
for (G, p). O

As announced in the introduction, we will see in section [3.3.1] that planar
graphs have bounded twin-width. They are well-known to have unbounded
clique-width, thus providing an example which separates bounded twin-width
from bounded clique-width. Interestingly, the definition of twin-width can
be restricted to characterise clique-width: defining component twin-width by
measuring the maximal size of a connected component in the graphs of error
edges of a contraction sequence, one finds that clique-width and component
twin-width are within a factor 2 of each other |18} 9.

2.2.4 Some graphs with large twin-width. So far, we have seen several
examples of families of graphs whose twin-width is bounded by small constants.
Let us now present classes of graphs which on the contrary have unbounded
twin-width.

The (nxn) rook graph is the graph with vertex set [n] x [n], in which (x1,y1)
and (z2,y2) are adjacent whenever either z; = x9 or y; = yo. It represents the
possible moves of a rook on a chessboard, hence the name.

Fact 2.10 [19]. The (n x n) rook graph has twin-width at least 2n — 4.

Proof. Using Lemma it suffice to show that the (n x n) rook graph has no
(2n—5)-near twins. Consider distinct vertices v1 = (z1,y1) and vo = (z2,y2) in
[n] x [n]. Without loss of generality, assume that they are on distinct columns,
i.e. £1 # x3. Then for any y € [n] \ {y1,y2}, we have that

(21,y) € N(v1) \ N(v2) and (z2,y) € N(v2) \ N(v1)

This gives 2(n — 2) vertices in the symmetric difference of neighbourhoods,
hence vy, vy are not (2n — 5)-near twins. O

This near-twins argument amounts to only considering the first step in the
contraction sequence. In the next example, we will instead need to consider
a well chosen step in the middle of the sequence to obtain the desired lower
bound on twin-width.

2.2. FIRST EXAMPLES AND BASIC CONSTRUCTIONS 21

Figure 2.7: Rook graph, and 1-subdivided clique.

The r-subdivision of a graph G, denoted here by G is the graph obtained
by replacing each edge xy of G by a path on (r + 1) edges joining z to y. In
the subdivision of G, the vertices which originate from V(G) are called central
vertices, while the added vertices (which have degree 2) are called subdivision
vertices.

Fact 2.11 |14, section 6]. For k > 1, if K has twin-width t, then
n—1<(t+2)F1

Proof. Let G = KT(Lk), and assume that tww(G) = t. In a contraction se-
quence P, ..., P1 of width t for G, consider the first contraction involving a
central vertex, that is, let 7 be maximal such that there is a part X € P; which
is not a singleton and contains a central vertex . For r € [k+ 1], denote by C.
the set of vertices at distance exactly r from z in G. There are exactly n — 1
vertices in C)., which are subdivision vertices when r < k, and central vertices
when r =k + 1.

Claim 2.12. Let P € P; be a part which is not a singleton. Then there are
at most ¢ 4+ 1 parts in P; which are connected in Tri(G,P;) to P by either a
normal or an error edge.

Proof. By assumption, at most ¢ parts of P; are connected to P by an error
edge, thus we only need to show that at most 1 part is connected to P by
a normal edge. Suppose for a contradiction that P;, P, are connected to P
by normal edges. Consider z,z € P (since it is not a singleton), y € P;
and w € P,. Then zyzw is a cycle of length 4 in G, which cannot exist since G
is a subdivided graph. |

Remark now that all vertices in C; are either in X, or in one of the ¢ + 1
parts adjacent to X (by a normal or error edge). Thus the vertices of Cy are
split among at most t 4+ 2 parts of P;, one of which, say X7, must contain at
least ’ZT’QI of the vertices of C;. These vertices in C7; N X7 have at least ;’T’Ql
neighbours in C5, which again are split between at most ¢ + 2 parts, one of
which contains at least ﬁ of them. This process can be repeated to find a

part X, with at least ﬁ vertices of C,., until either » = k& + 1 is reached,
or ﬁ < 1. Recall now that P; was chosen to be the first step in which a
central vertex, namely x, is involved in a contraction. It follows that no two

vertices of Cj1 are in the same part of P;, hence necessarily % <1. O

22 CHAPTER 2. CONTRACTION SEQUENCES

Fact 2.11] implies that for any constant r, the class of r-subdivided graphs
has unbounded twin-width. Further, one can replace the constant r by a slow
growing function: for any function f : N — N, consider the class {Kr(Lf(n))}neN.
It follows from Fact 2.11] that this class has unbounded twin-width whenever
f(n) = o(logn). We will revisit the twin-width of subdivided graphs much
later in section

2.3 COLOURING

It is time to present some applications of twin-width: we will use contraction
sequences of small width to obtain good colourings of graphs.

A (proper) k-colouring of a graph G is a map A : V(G) — [k] such that
the colours A(x), A(y) are different whenever x and y are adjacent. When
such a colouring exists, the graph G is called k-colourable. The chromatic
number x(G) is the smallest k such that G is k-colourable.

We wish to show that graphs with small twin-width can be coloured with
few colours. Unfortunately, the clique K,, has twin-width 0, and requires n
colours; thus one can certainly not colour graphs of twin-width ¢ with f(¢)
colours for any function ¢. Fortunately, there is a very well-known notion
of ‘good colourings’ for graphs which may contain large cliques. The clique
number w(G) denotes the maximum size of a clique contained in G. Remark
that w(G@) < x(G). A hereditary class C of graphs is x-bounded if there exists a
function f such that any G € C satisfies x(G) < f(w(G)). In essence, C being
x-bounded means that the only reason for which a graph G € C may require a
large number of colours is that it contains a large clique. Remark that the class
of all graphs is not x-bounded: there are numerous constructions of graphs with
no triangle (hence certainly no larger cliques) but arbitrarily large chromatic
number |88 {74} 37|, and we will present yet another in section m

We will show in this section that graphs of twin-width ¢ are x-bounded.
As an introduction, we first consider the case of triangle-free graphs, that is
graphs satisfying w(G) = 2.

Lemma 2.13 |15, Theorem 20]. Triangle-free graphs of twin-width t are (t+2)-
colourable.

Proof. Let P,,,...,P1 be a contraction sequence for G of width t. We use
that G has no triangle in the following.

Claim 2.14. A part P € P; either is edgeless (i.e. there are no edges between
vertices of P), or is not incident to any normal edge in Tri(G,P;).

Proof. If wv is an edge inside P and PP’ is a normal edge in Tri(G,P;),
then wvw is a triangle for any w € P’. |

Consider now the contraction sequence in reverse order, starting with P;.
We will construct a proper colouring A; : P; — [t + 2], meaning that adja-
cent parts (by either a normal or a red edge) are given distinct colours. For
Py = {V(G)} this is trivial, we assign an arbitrary colour to V(G).

Suppose now that P; is obtained by merging X,Y € P;;1, and that we have
already coloured P; as A;. Then we colour P;y; as follows (see Figure :

e Any Z # X,Y keeps its colour \;11(Z2) = \;i(2).

2.3. COLOURING 23

Figure 2.8: Update rules for colourings of triangle-free graphs of twin-width ¢
(t = 3). The neighourhood of X,Y is represented. Left case: the normal edges
incident to X UY ensures that X,Y are non-adjacent: they can keep the same
colour. Right case: without normal edges incident to X UY, the parts X,Y
and their neighbours add up to at most ¢+ 2 parts, thus ¢+ 2 colours is enough
to update X,Y.

e If X UY is incident to a normal edge, then it is edgeless by the claim,
and in particular X,Y are non-adjacent in T7i(G,P;11). Thus we can
keep the same colour for both parts: A;y1(X) = A1 (Y) = (X UY).

e Otherwise, X UY has at most ¢ neighbours in P;. Discarding the colours
of these neighbours, there remains two available colours among ¢ + 2,
which we give to X and Y respectively. O

2.3.1 A lower bound: twincut graphs. Before generalising Lemma [2.13
to a proof of y-boundedness, let us present an almost matching lower bound:
there are triangle-free graphs with twin-width ¢ and chromatic number ¢+ 1 for
arbitrary ¢t € N. This construction, called twincut graphs, was introduced in a
work with Bonnet, Bourneuf, Duron, Thomassé, and Trotignon [11] to answer
an unrelated question of Chudnovsky, Penev, Scott, and Trotignon [30]: they
are a class of triangle-free graphs which all contain either twins or a 2-cut, yet
have unbounded chromatic number. The construction is heavily inspired by
the well-known Zykov graphs |88].

The graphs Gy are constructed inductively as follows. First consider a
tree Ty of depth k — 1, in which nodes at depth i < k — 1 have exactly |G|
children. Each node of T} is a vertex of G;. The edges of T, however are
not in Gy: they only serve to describe its structure. For each node = € T}, at
depth ¢ < k — 1, create a copy of G;41 in G}, using the children of z. Thus at
depth 2, the children of the root form a copy of Ga; there are |G3| copies of G5
at depth 3, |G2||G3| copies of G4 at depth 4, etc. Finally, for each branch b
of Ty, (i.e. a path from the root to a leaf), we add a new vertex v;, to G, and
connect v, to all nodes of b. We call v, a branch vertex. The first graphs Gy

24 CHAPTER 2. CONTRACTION SEQUENCES

Figure 2.9: Construction of the first few twincut graphs. Dashed edges repres-
ent the underlying tree Ty ; they are not part of the graph. Hollow vertices at
the bottom are branch vertices. In G4, only edges from the first two branch
vertices are represented for readability.

are represented in Figure (1 is a single vertex, G5 a single edge, and G3
is the cycle Cs.

We will now show that these twincut graphs are triangle-free, and sat-
isfy x(Gg) = k and tww(Gy) < k — 1, and thus proving x(Gg) = tww(Gj) + 1,
only one off the upper bound of Lemma

Lemma 2.15. The twincut graphs G are triangle-free.

Proof. The neighbourhood of a branch vertex v, is an independent set in Gy,
hence a branch vertex cannot be part of a triangle. We can thus discard all
branch vertices. What remains are disjoint copies of G1,...,Gg_1, which are
triangle-free by induction. O

Lemma 2.16 [11]|. The twincut graphs Gy, have chromatic number x(Gy) = k.

Proof. The proof is by induction on k. To show that Gy, is k-colourable, remark
that G consists of disjoint copies of G1,...,Gk_1, connected by the branch
vertices which are pairwise non-adjacent. Then we can inductively colour the
copies of G, ..., Gi_1 with colours {1, ..., k—1}, and colour all branch vertices
with k.

For the lower bound, consider A\ be a proper colouring of Gj. We will
find a branch b = vy,...,v5_1 of T} in which the colours A(v;) are all dis-
tinct. Starting from the root r, suppose by induction that we have found a
path r = vq,...,v;_1 without repeated colours. The children of v;_; form a
copy of G;, which by induction cannot be coloured with less than ¢ colours.
Thus there exists a child v; of v;—; whose colour A(v;) is distinct from the ¢ —1

already used colours A(v1),...,A(v;—1), by which we extend b. Having con-
structed b, consider its branch vertex v: it is adjacent to all of vy,...,vp_1,
and thus needs to use a kth different colour. O

It only remains to bound the twin-width of twincut graphs. We would like
to thank Bourneuf and Thomassé for this unpublished proof.

Lemma 2.17 (Bourneuf, Thomassé). The twincut graphs G have twin-width
tww(Gg) < k— 1.

2.3. COLOURING 25

Figure 2.10: The three steps to contract y with its neighbour in G}.

Proof. Observe that the property is satisfied by the first few graphs: G, Gs
have twin-width 0, while G3 = C5 has twin-width 2.

Let us now prove the result for k£ > 4 by induction. We work with trigraphs,
and for the sake of the induction, we will start with a slightly more complex
graph than Gy: let G}, be obtained by adding to G, for each branch vertex vy,
a new vertex wj connected only to v, by an error edge.

Consider now a vertex x € Ty, at depth k — 2, and denote by X its children,
which are leaves. Then G.[X] is a copy of Gj—_1, which by induction has twin-
width at most k£ — 2. To each child y € X is associated (1) a branch vertex v,
corresponding to the branch from the root to the leaf y, and (2) a pending
vertex w, connected to v, by an error edge. Fix a contraction sequence of
width k& — 2 for Gx_1. We will replicate it on X, while also contracting the
corresponding branch and pending vertices. Say that at some point in this
contraction sequence, y;,y2 € X are to be contracted.

1. First we contract wy, , w,,, and call w, the resulting vertex. Then w, has
error degree 2, other vertices keep the same error degree.

2. Next we contract vy, , vy, into v,. Then v, has exactly three error edges
to y1,y2,wy, as the other neighbours are shared by v,, and v,, (they
are x and its ancestors). Furthermore, y;v, is the only error edge from y;
to a vertex outside X.

3. Finally we contract y; and ¥ into y, reducing the error degree of v, to 2.
Once again, the only error edge from y to a vertex outside X is the one
to vy.

See Figure for an illustration.

Thus, throughout these contractions, (1) the error degree of y € X is only
one more than the error degree observed in the contraction sequence for Gy_1,
hence at most k—1, and (2) all other vertices have error degree at most 3 < k—1.

Once we have finished contracting the copy of Gi_1 as described above, all
of X is contracted into a single vertex y, with a branch vertex v,, a pending
vertex w,, and the error edges yv, and wyv,. This vertex y has no other
neighbour, and we finally contract y and w,. This process can be replicated
for every choice of x at depth k — 2, and the resulting trigraph is exactly G},_,,
which by induction admits a contraction sequence of width k — 2. O

26 CHAPTER 2. CONTRACTION SEQUENCES

2.3.2 x-boundedness. Let us now come back to Lemma [2.13] which we
wish to generalise to a y-boundedness proof. We will reformulate the argument
into a form which allows an induction on the clique number.

To prove Lemma two recolouring rules were applied at each step of
the contraction sequence: (1) if a part has no incident normal edge, then it has
few neighbours, hence there always remains enough colours to recolour it, and
(2) otherwise X is edgeless, hence when splitting X, both parts can keep the
colour of X. Remark now that if we fix a vertex x, and consider the sequence
of parts containing z, these two rules do not alternate: once X > x becomes
edgeless, any Y C X will also be edgeless; we can in fact immediately assign
the colour of X to z (and to all other vertices in X). The idea of the following
reformulation is to only consider the moment when X becomes edgeless.

Theorem 2.18 |15, Theorem 21|. Any graph G with twin-width t, clique num-
ber w, and chromatic number x satisfies

X< (t+2)97h

Proof. The proof is by induction on w. The base case w = 1 corresponds to
edgeless graphs and is trivial.

Fix a contraction sequence P,,...,P; for G of width ¢, and let us consider
the contraction tree T'. Recall that its nodes are elements of the laminar family

P={XePi|iecnl},

and that X is an ancestor of YV if and only if X D Y. Let w = w(G) be the
maximum size of a clique in G. We are now interested in the set of parts whose
clique number strictly decreases compared to G:

Q={X eP|w(@X])) <w}.
In the triangle-free case (w = 2), these were the edgeless parts. Finally, define

P ={X €| X is inclusion-wise maximal in 2} .

Claim 2.19. The family P is a partition of V(G).

Proof. Two parts X,Y € P cannot be contained in each other by maximality,
and thus must be disjoint since 8 is a laminar family. Furthermore, for any
vertex x € V(G), the singleton {z} is in , hence either {z} or some larger
part containing it is in P, and thus P covers V(G). |

We will now prove that Tri(G,P) is (t + 1)-degenerate: one can find an
ordering < of P for which each part P € P has at most ¢ + 1 neighbours
preceding P in <. This implies that Tri(G,P) is (t + 2)-colourable.

Given X € P, let p(X) be its parent in the contraction tree 7', and call
index i(X) of X the step of the contraction sequence at which p(X) is created
by merging X with some other part. Thus p(X) € P;(x), and X € Pj(x)41.

Claim 2.20. For any X € P, there are at most ¢ + 1 parts Yi,..., Y1 with
some edge between X and Yy in G and satisfying i(Y;) < i(X).

2.4. ALGORITHMIC APPLICATION 27

Proof. Fix ¢ = i(X), so that p(X) € P;,. By maximality of X, we know
that p(X) must contain an w-clique. Then in P;, no normal edge can be
incident to p(X): this would create an (w + 1)-clique in G. Since P; has error
degree at most ¢, this leaves at most ¢ parts Z1,...,Z; in P; incident to p(X)
(by error edges).

Now consider some Y; € P and fix j = i(Y;) + 1, so that Y, € P;. Suppose
in a first time that i(Y,) < ¢. This gives ¢ > j, hence P; refines P;. Since there
exists an edge between Y; and X, it follows that Y, must contain some Z,,.
Two different Yy, Yy are disjoint, hence cannot contain the same Z,,, leaving
only ¢ choices for Y.

It only remains to consider the case i(Y;) = i(X). In that case p(X) = p(Yz),
and X,Y; are the two parts merged to create p(X); there can only be exactly
be one part Y, satisfying this condition.

Thus at most ¢ + 1 parts adjacent to X have index at most i(X): ¢ with
strictly smaller indices, and one with the same. |

We now order the parts of P according to their indices, breaking the ties
arbitrarily. By the claim, each part X is adjacent to at most ¢t+1 parts before X
in this order. Thus there is a t + 2-colouring A of P: assuming that A(Y) is
fixed for all Y < X, we choose A(X) to be any colour which is not used by
any Y < X adjacent to X.

Finally, using that for X € P the graph G[X] has no w-clique, we can
by induction hypothesis colour each G[X] with (¢ + 2)“~2 colours. Call this
colouring

px V(GIX]) = [(t+2)77].

Then we colour G as follows: a vertex x contained in X € P is given the colour
v(w) = (t+2)*72ANX) + px (2).

Adjacent vertices in the same X are given distinct colours because pux is a
proper colouring of G[X], and adjacent vertices in different parts of P are
given distinct colours thanks to A. This is a (¢ + 2)“~!-colouring of G. O

We have thus proved that graphs with twin-width ¢ and clique number w
are (t + 2)“~!-colourable. If the clique number w is considered constant,
this is a polynomial function of twin-width. On the other hand, if we fix a
class with bounded twin-width, this proof only bounds the chromatic number
by an exponential function of the clique number. Pilipczuk and Sokotowski
proved that this bound can be improved to a quasi-polynomial function [79|,
and Bourneuf and Thomassé improved their technique to obtain a polyno-
mial bound [23]. Thus any class C with bounded twin-width is polynomially
x-bounded: graphs G € C satisfy x(G) < w(G)¢ for some constant c.

We will not present these results in further details, but the techniques de-
veloped in their proof will play a crucial role in Chapter [6]

2.4 ALGORITHMIC APPLICATION

Let us conclude this chapter with a second application of twin-width, an al-
gorithm: we want to solve the independent set problem from the introduction
on graphs of small twin-width. Later, Chapter [] will discuss a far reaching
generalisation of this algorithm to the first-order model checking problem.

28 CHAPTER 2. CONTRACTION SEQUENCES

2.4.1 Independent set. Recall that a set S of vertices is called independ-
ent or stable if there is no edge zy € F(G) with z,y € S. The algorithmic prob-
lem of finding a largest independent set is notoriously simple to express, and
hard to solve: it is NP-complete, and under standard complexity hypotheses,
it admits no good approximation algorithm, and is not FPT with regards to
the solution size. We will show that it becomes FPT when given a contraction
sequence of bounded width.

Theorem 2.21 [19], [15, Theorem 9]. There is an algorithm which, given a
graph G, a contraction sequence for G of width t, and k € N, decides whether G
contains an independent set of size k in time f(k,t) P for some computable
function f.

We first give a high level view of the proof of Theorem It is a dynamic
programming algorithm: using the contraction sequence, it defines a number
of algorithmic subproblems (carefully chosen variants of the independent set
problem), each of which is easily solved when given the solutions to a few sim-
pler subproblems. Then, one can solve all of them, starting from the simplest
and working our way up to increasingly more difficult ones while remembering
all already found solutions. The last subproblem reached is the independent
set problem itself. If the number of subproblems to solve is polynomial, and
each of them takes polynomial time, this yields a polynomial algorithm.

What are these subproblems? In essence they are local variants of inde-
pendent set, where the vertices which can be used are restricted. For instance,
given some part P from the contraction sequence, one may ask for an inde-
pendent set inside P, rather than in the entire graph. Now if P was obtained
by merging Py, P, we would like to quickly solve this problem on P, given the
solutions for Py, P». If P;, P, are not connected by any edge, this is easy: the
union of the best solutions for P; and P, will be the best for P. Similarly, if
there are all edges between them, no independent set may intersect both Py, Ps,
so the best solution for P will be either the one from P;, or the one from P.
But if Py, P; are in error there is no reasonable way to combine their respective
solutions into an optimal one for P. The ‘independent set restricted to a part’
subproblem is not sufficiently general for this scheme to work.

The subproblem we actually consider is: given k parts Py, ..., P, from one
of the partitions in the contraction sequence, is there an independent set of
size k in Py U--- U P,? We never need to consider more than k parts, since
we are only looking for an independent set of size k. Solving this subproblem
for all k-tuples of parts is not possible: the resulting complexity would be n*,
which is not FPT, and is the same as the trivial algorithm! The crucial insight
is that it is sufficient to solve this for the tuples Py, ..., Py which are connected
in the graph of error edges. Because the error degree is bounded, there are
only linearly many such tuples for a constant k.

Let us now make these ideas precise.

Proof of Theorem|[2.21] The trace of an independent set S on a partition P
of V(G) is the map

tI‘p(S)ZP—)N
X —|XnNS|

2.4. ALGORITHMIC APPLICATION 29

More generally, we call any map f : P — N a potential trace over P, and
say that f is realisable if there is an independent set S whose trace is f.
Remark that when P = {V(G)} is the trivial partition, the trace V(G) — k
is realisable if and only if G contains an independent set of size k. Therefore
testing whether a given potential trace is realisable generalises the independent
set problem. Testing if a potential trace is realisable is the subproblem solved by
the dynamic algorithm: given a contraction sequence P,,...,P1, we compute
which potential traces are realisable, first over P,,, then P, _1, until P;, which
answers the independent set problem.

Consider two consecutive partitions P;41,P; in the contraction sequence,
where P; is obtained by merging X, Y € P;11. Let f: P; — N be a potential
trace. We say that ¢ : Pip1 — N lifts to f if f(XUY) = ¢g(X) + g(Y),
and f(Z) = g(Z) for any Z € Pit1 \ {X,Y}. There are exactly f(XUY)+1
traces over P; 41 which lift to f, and f is realisable if and only if there exists
a realisable trace which lifts to f. Thus an instance of the subproblem in P;
(testing if f is realisable) can be reduced to a few subproblems at the previous
step P;y1 (testing if some g lifting to f is realisable), which is exactly what we
need for a dynamic programming algorithm.

There are however n* potential traces, hence we cannot afford to consider
all of them. We will now show that only a small subset of them are required.

Define the sum of a potential trace f as |f| = > ycp f(X), and its support
as supp(f) = {X € P | f(X) > 0}. If A C P, then the restriction f4 is the
potential trace which coincides with f inside A, and is null outside A. Finally,
we call error graph of the partition P the graph Err(G,P) with vertices P,
and an edge XY whenever X,Y € P are in error.

Claim 2.22. Let f be a potential trace over P, and H the subgraph of Err(G,P)
induced by supp(f). Then f is realisable if and only if

1. no normal edge exists between vertices of supp(f) in Tri(G,P), and
2. for any connected component C of H, the restriction f|c is realisable.

Proof. Firstly, the two conditions are necessary for f to be realisable: if XY is a
normal edge in Tri(G, P), then all vertices of X are adjacent to all vertices of Y,
hence no independent set can intersect both X and Y; and if f is realisable,
then so are all of its restrictions.

Let us now assume that the two conditions are satisfied. Let C4,...,Ck
be the connected components of H, and S; an independent set whose trace
is fic,- We claim that S = L—ﬂie[k] S; is an independent set, whose trace clearly
is f. Consider a,b € S. If a,b are both in the same S;, then they are certainly
non adjacent. If a € S;, b € S; with ¢ # j, call A € C; (resp. B € Cj) the
part containing a (resp. b). By the first condition, there is no normal edge
between A and B. Furthermore, since A and B are in distinct components of
the error graph H, they are in particular non-adjacent. Thus there is neither
a normal nor an error edge between A and B in T7ri(G,P), hence a and b are
non-adjacent in G. This proves that S is independent.]

Say that a potential trace f over P is connected if supp(f) is connected
in Err(G,P). Claim implies that if we already know which connected
potential traces over P are realisable, then we can test whether any given

30 CHAPTER 2. CONTRACTION SEQUENCES

potential trace over P is realisable in polynomial time. Using this remark, we
can complete the dynamic programming algorithm.

Given a contraction sequence P,,...,P; for G of width ¢, and the target
size k for the independent set, we proceed as follows.

1. For each P;, enumerate the set 7; of potential traces over P; which are
connected and have sum at most k. Call R; C 7; the subset of realisable
traces, which we will compute.

2. If f € T, is a connected trace over the partition into singletons P,,, then
the support of f must be a singleton {z}, since P,, induces no error edge.
Thus testing if f is realisable, and computing R, is trivial.

3. For i from n — 1 to 1, we compute R; as follows, assuming that R;;1
is already known: Given f € T;, enumerate the at most (k + 1) traces
G155 g1 over Piyq which lift to f. Claim 2:22] and the knowledge
of R;+1 allow to test whether each g, is realisable, and f is realisable if
and only one of the gy is.

4. Finally, check whether the potential trace V(G) — k in T; is realisable.

The complexity of this algorithm is (3", |7;]) - n®®M). Thus, to conclude the
proof, we only need to bound the size of the 7;. First remark that at most k*
distinct potential traces can have the same support. Thus it suffice to bound
the number of possible supports, i.e. of connected subgraphs of Err(G,P;) on
at most k vertices.

Claim 2.23. In a graph G on n vertices with maximum degree ¢, the number of
subsets of at most k vertices inducing a connected subgraph is at most n-t2#=2.

Proof. If X induces a connected subgraph and | X| < k, then there is a walk of
length 2k —2 in G whose vertex set is exactly X: it can be obtained by walking
along a spanning tree of G[X]. Thus the number of such subsets X is bounded
by the number of walks of length 2k — 2, which is at most n - t?*~2, |

It follows from the claim and previous remarks that |7;| = (kt)°*) . n, and
the algorithm runs in (kt)O®*) . @), O

2.4.2 Computing twin-width. The algorithm of Theorem [2.2T)makes one
crucial assumption: the input graph is given together with a contraction se-
quence, witnessing its twin-width. Thus we cannot say that independent set
is FPT parameterized by twin-width and the solution size: this would require
an algorithm doing the same work as Theorem [2:2I] but without having access
to a contraction sequence in the input. This is a limitation of most currently
known algorithms using twin-width (55| is a notable exception).

It is therefore crucial to be able to compute good contraction sequences.
This is a major open problem, arguably the most important one related to
twin-width. This section is a short introduction to this problem—Ilater chapters
will discuss some special cases in more depth.

First the bad news: finding an optimal contraction sequence is NP-hard.

Theorem 2.24 (Bergé, Bonnet, Déprés [10]). Given a graph G, it is NP-
complete to test whether tww(G) < 4.

2.4. ALGORITHMIC APPLICATION 31

This rules out any hope of efficiently and exactly computing twin-width
in the general case. But we need not find the exact value of twin-width: if
given G with twin-width ¢, we can find a contraction sequence of width say 2t,
then algorithms such as Theorem can still be applied to this contraction
sequence, with complexity FPT in ¢t. Thus approximation algorithm are what
we really are looking for, and Theorem [2:24] does not preclude them.

We will be very generous regarding the meaning of approximation, for it
would be unwise to be picky about it when no algorithm is currently known:
the goal is an approximation up to any function of the optimum.

Question 2.25. Is there an algorithm which given a graph G with twin-width ¢,
finds a contraction sequence of width f(¢) in time g(t) - n®™), for some com-
putable functions f, g?

We call FPT approzimation an algorithm which satisfies the constraints of
Question [2.25] Remark that these constraints are precisely chosen to ensure
that an FPT approximation of twin-width, combined with Theorem [2.21] gives
an FPT algorithm for independent set parameterized by twin-width and the
solution size.

As already stated, Question 2.2 is a major open problem. Chapter [5] will
discuss some significant specific structures for which approximation algorithms
for twin-width are known: ordered structures, permutations, and tournaments.
Section|3.4.3|also gives some insight on the difficulties underlying Question|2.25
when considering only cubic graphs, we not only do not know how to approx-
imate twin-width, but cannot even answer a much simpler question: explicitly
construct cubic graphs with large twin-width.

BIBLIOGRAPHIC NOTICE

Twin-width as presented here, and the surrounding notions and terminology,
were defined in 2020 by Bonnet, Kim, Thomassé, and Watrigant [19]. The
underlying ideas however date back to 2014: they were developed by Guillemot
and Marx for permutations under the simple name of ‘width’, with the goal of
efficiently finding patterns in permutations [61].

The examples presented throughout section [2.2] come from the first work
on twin-width of Bonnet et al. [19], and its followup with the author |14].

The dynamic programming scheme over contraction sequences used in The-
orem [2.21]is one of the key ideas of Guillemot and Marx used for pattern recog-
nition [61], and the generalisation to first-order model checking which will be
explained in Chapter [4] is present in the initial work on twin-width [19]. This
specific presentation of the independent set algorithm is based the third paper
in the twin-width series with Bonnet et al. [15].

The colouring and y-boundedness result in section are also from [15],
while the twincut graphs used as lower bound were introduced by Bonnet,
Bourneuf, Duron, Thomassé, Trotignon, and the author in [11].

CHAPTER 3

GRIDS IN MATRICES

The previous chapter introduced twin-width through contraction sequences.
We will now present a second, equally important characterisation, the grid
theorem for twin-width: a graph G has bounded twin-width if and only if for
some choice of ordering of V(G), the adjacency matrix of G contains no large
grid-like structure. This grid theorem relies on a major result of extremal
combinatorics of Marcus and Tardos |73].

After introducing the Marcus—Tardos theorem, we will prove the grid the-
orem for twin-width, and demonstrate through examples how it can provide up-
per bounds on twin-width where explicitly constructing contraction sequences
may be tedious.

Finally, we will use a variant of this grid theorem to construct balanced
contraction sequences. Through compact encodings of graphs with small twin-
width, these balanced contraction sequence lead to a crucial result: an upper
bound on the number of graphs with bounded twin-width, which is exception-
ally useful to prove that certain classes of graphs have unbounded twin-width,
for instance graphs of bounded degree.

Preliminaries: matrices. Let us first fix a couple of notations and conven-
tions regarding matrices which are used throughout this chapter.

The most important is that we see the ordering of rows and columns as
an intrinsic part of a matrix, which plays an important role in the definitions
of this chapter. In particular, when manipulating the adjacency matrix of a
graph G, we will need to specify the ordering < of V(G) used for the rows and
columns: this choice of ordering may significantly alter the properties of the
matrix. We denote by A(G, <) this adjacency matrix.

The intersection of a row and column of the matrix is an entry, which has
a value. An entry with value v is called a v-entry. We will almost exclusively
manipulate 0-1 matrices, i.e. the values are either 0 or 1. For such matrices,
the rank is understood over the binary field Fs.

3.1 GRIDS AND SPARSITY

A division of a matrix M is a pair D = (R,C) of partitions of the rows and
columns of M into intervals: each part R € R is an interval in the ordered set
of rows of M, and similarly with columns. If |[R| = k and |C| = ¢, we say that D
is a (k x £)-division, or simply a k-division when k = ¢. Parts Re R or C € C
are called blocks of rows and columns respectively, and the submatrix M|z ¢
induced by the intersection of R and C' is called a cell of D.

When D is a (k x I) division of a 0-1 matrix M, it is natural to define a
quotient M/D: it is a (k x I) 0-1 matrix whose rows and columns are R and C
respectively, which inherit the order of the rows and columns of M. In M/D,
there is a ‘1’ at the intersection of row R € R and column C' € C if and only if
the cell M|ryc contains a ‘1’.

33

34 CHAPTER 3. GRIDS IN MATRICES

Finally, a k-grid in a 0—1 matrix M is a k-division D of M such that the
quotient M /D consists only of ‘1’s, i.e. every cell of D contains a ‘1’. See
Figure for an example. Having a k-grid in M for some large k& means
that M contains many ‘1’ which in a sense are well distributed. We think of
such a matrix as complex, and will be interested in matrices without grids of
a given size-k.

01 0/0 0|0 1|1 O
0 0 1|1 0|0 1|0 1
0 00|0 1|0 0|0 O
1 00(0 1|1 01 0
00 1/0 0|0 0|0 O
0 0 0|0 0|1 0|0 1
00 1|1 1|0 0|0 O
0 00|/0 0|0 0|1 O
010|1 0|1 0|0 O

Figure 3.1: Example of a 4-grid in a matrix: the lines indicate the division,
every cell of which contains a ‘1’.

Before introducing the main theorem of this section, let us mention two
easy and useful lemmas on grids and divisions.

Lemma 3.1. If a submatrix of M contains a k-grid, then so does M.

Proof. Let N be a submatrix of M and D = (R,C) a k-grid of N. The rows
and columns of M missing in N can be added to existing parts of R and C
respectively, while respecting the condition that R and C are partitions into
intervals. The result is a k-grid in M. 0

Lemma 3.2. Let M be a 0-1 matriz, Dy a division of M, and D2 a division
of M/Dy. Then there is a third division D3 of M such that

M/Ds = (M/D1)/Ds.
In particular, if M /Dy has a k-grid, then so does M.

Proof. Let D; = (R;,C;) be the partitions defining D; for i = 1,2,3. A
part Ry € Ry is a set of rows of M/D;, hence an element R; € Ry is it-
self a block in Ri. Thus Ry is a set of sets of rows of M. The division D5 is
defined by flattening:

(31) Rs3 = {UR1€R2 R, | Ry € RQ},

and similarly for columns. It is easy to verify that D3 satisfies the desired
property. O

Let us now focus on matrices which do not admit any k-grid, which are
called k-grid free. Intuitively, such matrices—if they are much larger than k—
cannot contain too many ‘1’. This intuition is formalised by the following
result, known as the Marcus—Tardos theorem, or formerly the Fiiredi-Hajnal
conjecture: for fixed k, the maximum number of ‘1’s in a k-grid free matrix M

3.1. GRIDS AND SPARSITY 35

< k non-zero columns

[| 1 1 T
Lo 11 - L | | [
Lt | T |
< k non-zero rows . Lo
S 1 1
non-wide and . ; } ; 3
non-tall cell has R

< (k—1)21s Loy Wide cells with

Loy the same k non-

— zero columns
eall coll F--1---+4 combine into
all cell: -1 --- - :
a grid.
k non-zero rows || - 1" 1 -

1 1 T
| ' [
I 1 11
k? rows I
L1
wide cell:

k2 columns
k non-zero columns

Figure 3.2: Types of cells in the proof of the Marcus Tardos theorem.

is linear in the size of M. This cornerstone result implies a famous conjecture of
Stanley and Wilf—which we shall discuss later in section and Chapter [6}—
and a major part of the theory of twin-width is built upon it. Its original proof,
reproduced below, is beautifully simple.

Given a 0-1 matrix M, let |M| denote the number of 1-entries in M. We
are interested in the maximum number of ‘1’s in a k-grid free matrix of a given
size, i.e. the map

f(n, k) = max{|M| : M is a k-grid free n x n matrix}

Theorem 3.3 (Marcus-Tardos [73]). For any k € N, there is a constant c,
such that

f(n,k) <cp-n.

Proof. Let k € N be fixed arbitrarily. We will prove a linear recurrence relation
for f(n,k). Without loss of generality, let us assume that n is a power of k2,
and consider M an n x n matrix without a k-grid.

Let D = (R,C) be the regular division of M into n/k? parts: each cell of D
is a k% x k? matrix. By Lemma the quotient matrix M /D is k-grid free.
Thus, |M/D| < f(n/k?, k), meaning that at most f(n/k?, k) cells of D contain
a ‘1’. Let us now split them in several types. A cell A of D is said to be wide
if inside A, at least k distinct columns contain a ‘1’. Similarly, A is tall if at
least k rows of A contain a ‘1’. See Figure for an illustration. We will count
the ‘1’s contained in tall or wide cells separately from the rest.

Claim 3.4. A block R € R of columns contains less than k(kl:) wide cells.

36 CHAPTER 3. GRIDS IN MATRICES

Proof. Suppose for a contradiction that R € R contains k(k;) wide cells. For

each of these cells, pick k& columns each containing a ‘1’, among the k2 columns
of R. By pigeonhole principle, the same subset R* C R of k columns will be
chosen for at least k of these cells, say A1, ..., Ax. Now consider the submatrix
formed by the columns R/, and the rows intersecting one of Ay, ..., Ax. This
submatrix has a k-grid, with the following division: each column of R’ is in its
own block, and each cell A; defines a block of rows. Thus there is a submatrix
of M with a k-grid, a contradiction. |

Claim H implies that there are at most 7z - k;(k]:) wide cells in total, each
of size k? x k2. Thus the total number of ‘1’s in M contained in wide cells is
at most

(3.2) k4;‘2k(1§j> —nk3<]i>

Naturally, the same bound applies to the ‘1’s contained in tall cells. Now
consider finally the cells which are neither tall nor wide. In such a cell, at
most (k— 1) rows and as many columns are non-zero, hence the number of ‘1’s
is at most (k — 1)2. Further, recall from the beginning of the proof that there
are at most f(n/k?, k) non-zero cells. It follows that the number of ‘1’s in M
contained in cells which are neither tall nor wide is at most

(3.3) f (%k) (k- 1)2.
Combining and , we obtain

k2
(3.4) f(n,k)gf(;,k)-(k—1)2+n-2k3(k).

This last equation is of the form

(3.5) k) <bi- f (;k) Fdy o,

where ag, bg,d;, depend only of k, and a > bg. Under such a recurrence
equation, it is well known that f(n,k) = O(n), for k fixed. O

The constant ¢ given by Theorem is called the Marcus—Tardos con-
stant. The bound given by the previous proof, which we did not explicit,
is ¢ = 20(Flogk) A refinement of this argument due to Fox shows that it can
be improved to ¢, = 20%):

Theorem 3.5 |44, Theorem 13]. For any k,n € N, f(n,k) < n -3k - 28,

For algorithmic purposes, let us finally remark that the proof of Theorem [3.3]
is effective, and yields an FPT algorithm parameterized by k to find a k-grid
in a sufficiently dense matrix.

3.2 A GRID THEOREM FOR TWIN-WIDTH

Let us now introduce the main result of this chapter: graphs whose adjacency
matrix contains no large grid have small twin-width. The idea originates from

3.2. A GRID THEOREM FOR TWIN-WIDTH 37

the work of Guillemot and Marx [61], and was generalised in |19} [17]. We will
see a number of variants of this result, starting with the simplest which applies
to graphs of bounded degree.

Theorem 3.6. Let G be a graph and < an ordering of V(G) such that the
adjacency matriz A(G, <) is k-grid free. Then tww(G) < max(2cx, A(G)),
where A(G) is the mazimum degree in G.

Furthermore, there is a polynomial algorithm which given G and < finds
contraction sequence of width max(2cy, A(G)).

Proof. Let t = max(2¢x, A(G)) be the bound on twin-width we are aiming for.
We greedily construct a contraction sequence for G subject to the following
restrictions:

e The sequence only consists of partitions of V(@) into intervals of <, i.e.
one only merges parts which are consecutive for <.

e All parts have degree at most ¢, counting both normal and error edges.

That is, we start with the partition P, into singletons, and if P; has been
constructed, we choose P;_; to be any partition obtained by merging two
consecutive parts of P; such that all parts in Tri(G, P;—1) have degree at most ¢
(hence a fortiori error degree at most t). Notice that initially P,, satisfies the
second condition because we chose ¢t > A(G). This process can be implemented
in polynomial time, and if it succeeds we obtain a contraction sequence of width
at most ¢ as desired.

Let us thus assume that the former process fails after reaching a partition P;.
Denote by P; < - -+ < P, the parts of P;. Furthermore, call M = A(G, <) the
k-grid free adjacency matrix, and consider the division D = (P;, P;) of M. We
will prove that the quotient M /D contains a k-grid, a contradiction.

Claim 3.7. In M/D, for any i € [r — 1], there are at least 2¢c; + 1 entries ‘1’s
contained in the two consecutive columns P; and P;y;.

Proof. By assumption, merging P; and P,y is disallowed. Notice that mer-
ging P; and P;;; will never increase the degree of a third part—this is why we
use total degree and not error degree.

Thus the reason merging P; and P;; is disallowed must be that P; U P,
is adjacent to more than ¢ > 2¢j other parts of P;. Each of these parts gives a
non-zero cell in the block P; or P;;1 of D. |

By pairing consecutive columns in M /D, it follows from this claim that
(3.6) |M/D| = [r/2] - (2¢x + 1).

Remark here that » > 2¢; + 1, for otherwise it would be impossible to have
degree more than 2c;. Therefore,

r/2 < T <20k—|—1’
r/2] ~r—1 2¢y,

allowing to rewrite (3.6 as

(3.7)

(3.8) |M/D| > |r/2] - 2cx + 1) > = - 2¢, = reg.

r
2

38 CHAPTER 3. GRIDS IN MATRICES

Thus M/D is an (r X r)-matrix containing more than rcj ‘1’s, hence it contains
a k-grid by Theorem [3.3] This contradicts the hypothesis that M has no k-
grid. O

Theorem is helpful to obtain upper bounds on the twin-width of graphs:
instead of directly constructing a contraction sequenc