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Résumé

Cette these aborde la tiche complexe de la segmentation d’images a haute dimension, en particulier
les images médicales en 3D. La haute dimensionnalité inhérente de ces images pose un obstacle a
une segmentation efficace. Les modeles d’apprentissage profond nécessitent un contexte global et des
informations fines pour segmenter avec précision des structures complexes. Ces exigences ne sont,
cependant, pas satisfaites par les modeles classiques tels que UNet, qui restent limités par la taille
de leur champs réceptifs ainsi que des contraintes mémoire sur la taille des entrées de ces modeles.
Pour lever ces limitations, nous avons €tudié dans cette these les modeles d’attention Transformers,
qui sont utilisés pour leur capacité a capturer des interactions a longue portée. Dans ce travail, nous
introduisons des modules Transformers enrichis de représentations globales améliorant ainsi leur
efficacité dans la modélisation d’interactions a longue portée et tres longue portée dans des volumes

de hautes dimensions.

Dans un premier temps, nous nous concentrons sur la segmentation d’images médicales en 2D et
présentons le modele U-Transformer. Ce modele novateur integre les architectures Transformer dans
la segmentation d’imagerie médicale pour surmonter les limitations des modeles classiques UNet
avec des champs réceptifs restreints. U-Transformer intégre des mécanismes d’auto-attention dans
I’encodeur et plusieurs couches de mécanismes d’attention croisée dans le décodeur. En combinant
les réseaux neuronaux convolutionnels avec les Transformers, U-Transformer atteint des performances

de pointe sur deux ensembles de données différents, dépassant les résultats établient par nnUNet.

Bien que prometteuse, I’architecture U-Transformer ne modele les interactions qu’au plus profond
du modele, ce qui entraine une résolution dégradée. Une solution serait d’avoir des Transformers
a chaque niveau de résolution, mais les besoin requis en termes de calcul et de mémoire sont alors
irréalistes. Nous avons introduit GLAM pour résoudre ces problemes. GLAM est un module
congu pour une intégration transparente dans les modeles Window Transformer. GLAM aborde
les limitations auxquelles sont confrontés les Window Transformers, qui ont du mal a capturer des
interactions a longue distance dans des cartes de caractéristiques de haute résolution. En utilisant des
jetons globaux et des modules Transformer spécifiques, GLAM facilite la propagation de I’information

entre les fenétres, permettant aux fenétres interconnectées de capturer des informations a longue portée.



RESUME

GLAM surpasse les méthodes traditionnelles sur des ensembles de données de segmentation de scenes

réelles et un ensemble de données de segmentation d’images médicales en 3D.

Dans le contexte de la segmentation d’images médicales 3D, GLAM est entrainé sur des patchs
extraits des images d’origine et ne modélise pas les informations au-dela de ces régions, ce qui est
important pour la segmentation de structures complexes nécessitant une information sur la strucutre
anatomique imagée. Pour remédier a cela, nous avons proposé d’adapter le mécanisme de jeton global
pour modéliser ces informations perdues. Ainsi, nous proposons FINE et LORI, qui permettent la
modélisation d’interactions a longue portée et hors de portée. FINE et LORI sont des modules poly-
valent pour diverses méthodes d’apprentissage profond. Les expériences menées sur trois ensembles
de données de segmentation d’images médicales en 3D, comprenant des scans CT et des données
d’échographie, démontrent de maniere constante la supériorité de LORI par rapport aux méthodes

classiques, soulignant sa robustesse et I’'importance de la modélisation du contexte.

Mots-clés : Ségmentation, Transformer, Vision Artificielle, Apprentissage profond, Imagerie
Médicale
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Abstract

This thesis addresses the challenging task of segmenting high-dimensional images, specifically
3D medical images. The inherent high dimensionality of these images poses an obstacle to effective
segmentation. We established that deep learning models require a global context and fine grain
information to accurately segment complex structures. These requirements are not satisfied together
by classical models like UNet which often struggle due to limited receptive fields and restricted input
region sizes. To tackle these limitations, we studied in this thesis Transformers attention models
which are employed for their capacity to capture long-range interactions. In this work, we introduce
Transformer modules enriched with global tokens to enhance their effectiveness in modeling long and
out-of-range interactions in high-dimensional images, such as 3D medical images.

First, we focus on 2D medical image segmentation and introduce the U-Transformer model.
This pioneering model incorporates Transformer architectures into medical imaging segmentation to
overcome the limitations of classical UNet models with restricted receptive fields. The U-Transformer
integrates self-attention mechanisms in the encoder and multiple layers of cross-attention mechanisms
in the decoder. By combining Convolutional Neural Networks with Transformers, the U-Transformer
achieves state-of-the-art performance on two diverse datasets, surpassing the established state-of-the-
art nnUNet baseline.

U-Transformer is interesting but only model interactions in the bottleneck, thus have a degraded
resolution. The solution would be to have Transformers at each resolution level, but this implies
computational and memory limitations. We introduced GLAM which tackles these issues. GLAM is
amodule designed for seamless integration into windowed Transformer models. GLAM addresses the
limitations faced by prior windowed Transformers, which struggle to capture long-range interactions
in high-resolution feature maps. Leveraging global tokens and specific Transformer modules, GLAM
facilitates information propagation between windows, enabling interconnected windows to capture
long-range information. GLAM outperforms traditional methods on real-life scene segmentation
datasets and a 3D medical image segmentation dataset.

In the context of 3D medical image segmentation, GLAM is trained on cropped patches of the

11



ABSTRACT

full size images and doesn’t model information beyond this cropped regions which is important for
complex structures which requires more information to be segmented. To address this, we proposed
to adapt the global token mechanism to model this lost information. Thus we propose FINE and LORI
which enables the modeling of long and out-of-range interactions. FINE serves as a generic module
for windowed transformer-based models and exhibits promising preliminary results on BCV dataset.
LORI is a versatile module for various deep learning methods. Experiments across three 3D med-
ical image segmentation datasets, including CT-scans and ultrasound data, consistently demonstrate
LORT’s superiority over classical methods, underscoring its robustness and the importance of context

modeling.

Keywords : Segmentation, Transformers, Computer Vision, Deep Learning, Medical Image.
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Résumé de la these

Segmentation sémantique d’images médicales 3D par deep learning

Lintelligence artificielle (IA), et en particulier 1I’apprentissage profond (Deep Learning, DL), a
connu d’importantes avancées, impactant divers domaines tels que I’analyse d’images et de vidéos, la
reconnaissance audio ou la traduction de texte. Ces progres sont dus a deux facteurs principaux : le
développement de vastes bases de données (par exemple, ImageNet pour la classification d’images,
ADE20K pour la segmentation d’images, et COCO pour la détection d’objets) et I’augmentation du
nombre de parametres des modeles grace aux progres du calcul sur unité de traitement graphique
(GPU). De plus, des techniques novatrices comme les modeles Transformers ont permis d’exploiter
efficacement ces grandes bases de données. Ces avancées ont conduit a la création de modeles dits
"Fondation" avec un nombre considérable de parametres. Cela a mené au développement d’outils
logiciels accessibles au grand public tels que Chat GPT et DALL-E, qui assistent dans diverses
taches comme la traduction, la programmation et la création d’images artistiques a partir de textes.
Parallelement, I’TA progresse dans des domaines spécifiques comme la climatologie, 1’astronomie et
la médecine, et est également utilisée dans le développement de jeux vidéo et de systemes de conduite

autonome.

La vision par ordinateur (Computer Vision, CV), un sous-domaine de I’intelligence artificielle, se
concentre sur le traitement et I’analyse d’informations visuelles provenant de diverses sources telles
que les caméras, les images et les vidéos. Elle comprend des taches telles que la classification d’images,
la détection d’objets et la segmentation d’images. La classification d’images consiste a attribuer une
étiquette ou une classe spécifique a une image, en identifiant et catégorisant les principaux objets ou
caractéristiques présents. La détection d’objets vise a déterminer la position précise d’un ou plusieurs
objets dans une image, en identifiant différents objets et leurs coordonnées spatiales. La segmentation
d’images, une autre tache cruciale, implique d’assigner une classe spécifique a chaque pixel de I’'image,
permettant ainsi de diviser I’image en régions ou segments distincts, chacun associé a une catégorie

particuliere. Cette segmentation est particulierement importante dans 1’analyse d’images médicales.

Cette these se consacre a I’amélioration de I’analyse d’images médicales grice a des innovations
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en vision par ordinateur. Elle est réalisée en collaboration avec le Conservatoire Nationale des Arts
et Métiers (CNAM) a Paris et I’Institut de Recherche sur les Cancers de I’Appareil Digestif (IRCAD)
a Strasbourg. ’IRCAD est reconnu mondialement pour son excellence en recherche médicale. Cette
theése fait partie du projet Disrumperd|: Démocratisation du diagnostic automatique, du dépistage, de
la biométrie et de la chirurgie percutanée augmentée assistée par 1’intelligence artificielle. L'objectif
principal de Disrumpere est d’augmenter 1’acces aux soins de santé en utilisant I’intelligence artificielle
pour améliorer les capacités des sondes a ultrasons portables et abordables, rendant leur utilisation
accessible aux non-experts. Conduit par IRCAD France et IRCAD Afrique, le projet rassemble des
équipes d’ingénieurs et de chercheurs déterminés a développer un outil pouvant impacter significa-
tivement la santé en Afrique et répondre aux défis des déserts médicaux en France. Le projet comporte
plusieurs composants clés. Le premier implique le développement d’algorithmes performants pour le
diagnostic et le suivi, facilitant la détection efficace et précise de pathologies courantes. Le deuxieme
se concentre sur la démocratisation de la chirurgie percutanée augmentée par la robotique, en utilisant
des guidages par ultrasons pour effectuer des biopsies ou détruire de petites tumeurs cancéreuses. Dis-
rumpere vise a rendre cette technique chirurgicale plus accessible, élargissant la portée des procédures

peu invasives et améliorant les résultats pour les patients.

L’application de I'IA dans I’imagerie médicale est reconnue comme un domaine a fort potentiel
bénéfique pour la société. L'IA peut assister les professionnels de santé dans diverses taches, allant
du diagnostic a la planification et a la guidance chirurgicale. Dans le domaine de I’analyse d’images
médicales, une gamme variée de modalités d’imagerie médicale existe, chacune offrant ses propres
avantages. Ces modalités incluent des images telles que des images rétiniennes ou cellulaires micro-
scopiques, 1’Tmagerie par Résonance Magnétique (IRM), la Tomodensitométrie (CT) et I’Echographie
(US). L'IRM offre une précision exceptionnelle pour capturer des informations détaillées sur des tissus
mous tels que le cerveau, le coeur ou les tumeurs, de maniere non invasive. La CT, quant a elle, utilise
des rayons X pour obtenir des scans 2D ou 3D précis du corps entier, y compris les tissus et les os.
L’échographie, une modalité non invasive et économique, fournit des images médicales en temps réel
et sans les risques des radiations ionisantes. Avec la disponibilité de ces diverses modalités d’imagerie,
de nombreuses taches peuvent €tre accomplies en utilisant I'IA, y compris la détection de tumeurs ou
de 1ésions, la segmentation d’images, la reconstruction d’images, et la segmentation d’organes pour

aider au diagnostic ou a la planification de la chirurgie [22, 23] [1, 24].

La segmentation des images échographiques est une tiche complexe confrontée a des défis impor-
tants, principalement en raison de deux facteurs clés : la disponibilité limitée de données annotées et
la qualité intrinseque associée a la modalité des ultrasons (US). Comme indiqué, les images US sont

intrinsequement bruitées, avec un bruit de speckle particulierement problématique dans le processus

tThttps://www.ircad. fr/fr/newsletter-de-1lircad-decembre-2022/
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de segmentation. De plus, la résolution des images US varie au sein du volume, entrainant des dis-
torsions dans I’image. Certains tissus ont la capacité d’absorber compleétement I’onde ultrasonore, ce
qui entraine des occlusions et des ombres dans les images. Ces défis limitent I’efficacité des modeles
d’apprentissage profond conventionnels pour la segmentation d’images US. Ces artefacts posent des
difficultés méme pour les cliniciens experts, comme en témoignent les écarts dans les résultats de
segmentation entre différents experts. En conséquence, les modeles d’apprentissage profond tradi-
tionnels rencontrent des limitations lorsqu’ils sont appliqués aux modalités US, avec des erreurs sur
les bords et des confusions sur des taches difficiles comme la segmentation de plusieurs types de
vaisseaux. Par conséquent, il existe un intérét croissant pour des stratégies qui exploitent les infor-
mations contextuelles pour surmonter ces défis dans la communauté de recherche. En incorporant un
contexte supplémentaire, la capacité du modele a classer avec précision un pixel bruyant ou occulté
peut étre améliorée en considérant les dépendances a longue portée. Dans les régions plus bruyantes
ou ombragées, le modele doit étendre son analyse au-dela du voisinage immédiat afin de discerner les

structures prédominantes dans ladite région.

L'utilisation d’images 3D en imagerie médicale a apporté des avantages significatifs, permettant
une modélisation contextuelle plus complete. L'utilisation de volumes plutdt que de tranches 2D est
une approche supérieure car elle fournit plus d’informations au modele lors de la segmentation de
voxels. Avec la capacité d’examiner des structures sous plusieurs directions, le modele peut mieux
exploiter le contexte dans la segmentation des images US, CT ou IRM. Bien qu’il existe plusieurs
architectures qui exploitent directement les volumes, elles nécessitent souvent une complexité spatiale
élevée, entralnant une consommation significative de mémoire GPU. L'utilisation d’une méthode de
pointe telle que 3D-UNet [11] rend impossible le traitement de 1’ensemble du volume de 1’'image.
Les images 3D ont souvent de grandes dimensions, mais méme 1’utilisation de la premiere couche de
cette image 3D consommerait environ 24 Go de mémoire GPU. De plus, le modele entier nécessiterait
plus de 60 Go de mémoire GPU pour le traitement d’un seul volume lors de I’inférence, et plus de
120 Go lors de la formation. Cette contrainte matérielle, due au cofit élevé des GPU, peut avoir un
impact négatif sur la capacité et les performances des modeles de DL. Pour résoudre ce probleme, les
chercheurs ont adopté une stratégie commune consistant a entrainer des modeles DL sur une région
plus petite du volume original [1, 23], permettant au modele de traiter des portions plus petites du
volume pendant la formation et I’inférence. Cette méthode permet au modele de segmenter le volume
complet en utilisant une stratégie de fenétre glissante lors de I’inférence. Cependant, la stratégie
commune est de travailler avec des patchs de volume découpés. Une configuration typique serait, pour
un ensemble de données médicales, de montrer une taille moyenne de volume de 512 x 512 x 256
voxels et de s’entrainer sur des cultures aléatoires de dimension 128 x 128 x 64, ce qui ne représente
que 1.6 % du volume original. Cela implique une perte de I’information et du contexte total disponibles
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pour le modeéle DL & exploiter. A cause de cette stratégie, les méthodes perdent ce que nous appelons
des informations hors de portée, c’est-a-dire des informations en dehors de I’image découpée. De plus,
méme dans les patchs découpés, la plupart des méthodes ne peuvent pas modéliser spécifiquement les

interactions a longue portée dans les caractéristiques de haute résolution.

Cette these a pour objectif d’étudier de nouvelles méthodologies pour améliorer la précision de la
segmentation des images médicales 3D. L’accent est mis sur I’exploration d’approches qui utilisent
efficacement le contexte global dans les images 3D. Cela signifie modéliser les interactions a
Pintérieur et a I’extérieur des patchs découpés, tout en maintenant une haute résolution spatiale
pour exploiter davantage d’informations et, par conséquent, obtenir une segmentation plus
précise.

La premicere partie présente le U-Transformer, une innovation qui integre le mécanisme d’attention
des Transformers dans une architecture UNet pour la segmentation d’images médicales 2D. Cette
approche résout le probleme du champ de réception limité rencontré avec les architectures UNet clas-
siques. Le U-Transformer, pionnier dans I’application des Transformers a la segmentation d’images
médicales, se distingue par sa capacité a modéliser une attention globale dans le goulot d’étranglement
de I’encodeur, contrairement aux modeles d’attention standard (exemple Attention-UNet [[19]) qui ne
renforcent pas le contexte global. C’est aussi I'une des premieres utilisations des Transformers en
vision par ordinateur apres la publication de ViT [[12]]. Le U-Transformer surmonte les limitations des
U-Nets traditionnels, notamment leur incapacité a modéliser des interactions contextuelles a longue
portée et des dépendances spatiales essentielles pour une segmentation précise dans des contextes dif-
ficiles. Il integre des mécanismes d’attention a deux niveaux : un module d’auto-attention qui exploite
les interactions globales entre les caractéristiques de I’encodeur, et une attention croisée dans les “skip
connexions” qui améliore la récupération spatiale fine dans le décodeur UNet en filtrant les carac-
téristiques non sémantiques. Les expériences montrent une nette amélioration des performances du
U-Transformer par rapport au U-Net classique et au Attention U-Net local. L’article souligne égale-
ment I’importance de combiner auto- et attention croisée, ainsi que les capacités d’interprétabilité

offertes par le U-Transformer.

La deuxieme partie de la these aborde la difficulté que rencontre le U-Transformer a gérer la haute
dimensionnalité des images médicales 3D, due a la complexité quadratique de 1’auto-attention et de
I’attention croisée. Cette complexité limite I’efficacité du modele a traiter les interactions a longue
portée avec des caractéristiques de haute résolution. Pour résoudre ce probleme, notamment dans
le traitement d’images haute résolution et d’images 3D, la deuxieme phase de cette thése introduit
GLAM (GLobal Attention Multi-resolution transformers). GLAM, un module générique pouvant €tre
intégré dans la plupart des architectures de Transformers existantes, se distingue par 1’inclusion de

tokens globaux apprenables. Ces tokens, contrairement aux méthodes précédentes, peuvent modéliser
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des interactions entre toutes les régions de I’image et extraire des représentations puissantes durant
I’entrainement. Inspirés par le token de classe [26} [12]], ils jouent un role clé dans la transmission
d’informations a travers différentes régions de 1’image a chaque étape. L’intégration de GLAM
dans le modele permet des interactions étendues sur de longues distances, absentes auparavant. Des
expériences approfondies révelent que GLAM surpasse nettement les performances des modeles état
de I’art sur des images 2D de grandes dimensions. De plus, GLAM montre également de bonnes
performances sur des images médicales 3D.

La troisieme partie explore une nouvelle approche pour modéliser des informations contextuelles
completes, y compris des interactions hors de portée, lors de I’entrainement de modeles a partir
de patches 3D locaux. Cette méthode vise a surmonter la limitation de ne pouvoir exploiter des
informations au-dela des frontieres du volume d’entrée. S’appuyant sur le concept de GLAM, qui
utilise des tokens globaux pour modéliser indirectement des informations, cette approche est étendue
pour inclure la modélisation d’interactions hors de portée, méme dans des cartes de caractéristiques a
haute résolution. Notre contribution est, a notre connaissance, la premicre a intégrer des informations
au-dela du volume d’entrée coupé dans le contexte de la segmentation d’images médicales 3D.
Nous introduisons une méthode visant a résoudre les défis mentionnés en facilitant I’intégration
de dépendances a longue portée et hors de portée dans les modeles de segmentation médicale.
Cette méthode integre des tokens globaux et utilise des mécanismes d’auto-attention pour créer des
interactions a longue portée et hors de portée. Deux variantes de cette méthode sont proposées : FINE
(Full resolutloN mEmory transformer), une architecture enticrement basée sur les transformateurs
servant de preuve de concept préliminaire, et LORI, un module générique pouvant étre intégré sans
probléme dans des modeles existants tels que nnUNet. Des expériences préliminaires sur BCV avec
FINE démontrent sa pertinence, et des évaluations expérimentales approfondies avec LORI sur trois
ensembles de données distincts: deux ensembles de données de segmentation multi-organes CT 3D et
un ensemble de données d’images échographiques 3D pour la segmentation du foie et des vaisseaux.
Les résultats obtenus montrent une amélioration substantielle des performances de segmentation avec
LORI. Notamment, LORI a montré des performances supérieures sur plusieurs ensembles de données

d’images 3D haute résolution multi-classes, indépendamment des différentes modalités impliquées.
U-Net Transformer: Self and Cross Attention for Medical Image Segmentation

Jusqu’a récemment, les méthodes de pointe en matiere de segmentation d’images s’appuyaient
sur des Réseaux Convolutifs (Fully Convolutional Networks, FCNs), tels que U-Net et ses vari-
antes [20, (11}, 27, 28]]. Les architectures U-Net, basées sur un schéma encodeur-décodeur, extraient
des représentations sémantiques de haut niveau via une cascade de couches convolutionnelles. Le
décodeur, quant a lui, utilise des “skip connexions” pour réutiliser les cartes de caractéristiques a

haute résolution de 1’encodeur, dans le but de récupérer les informations spatiales perdues dans les
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représentations de haut niveau. Malgré leurs performances exceptionnelles, les FCNs présentent des
limites conceptuelles dans les taches de segmentation complexes, notamment lorsqu’il s’agit de gérer
des ambiguités visuelles locales et un faible contraste entre les organes. Les structures présentant
des dépendances spatiales a longue portée dans des régions a faible contraste peuvent entrainer une
mauvaise classification. De plus, la classification de petits organes ou d’organes a variabilité de forme

significative, tels que le pancréas, représente un défi supplémentaire.

Dans cette partie, nous présentons le réseau U-Transformer, qui tire parti des capacités des trans-
formers pour modéliser les interactions a longue portée et les relations spatiales entre les structures
anatomiques. Le U-Transformer conserve le biais inductif de la convolution grace a son architecture
en forme de U, mais introduit des mécanismes d’attention a deux niveaux, ce qui aide a modéliser le
contexte global et a interpréter les décisions du modele. Premierement, un module d’auto-attention
exploite les interactions globales entre les caractéristiques sémantiques a la fin de I’encodeur pour
modéliser explicitement I’information contextuelle compleéte. Deuxieémement, nous introduisons une
attention croisée dans les “skip connexions” pour filtrer les caractéristiques non sémantiques, perme-

ttant une récupération spatiale fine dans le décodeur U-Net.

Comme mentionné précédemment, les architectures en forme de U de type encodeur-décodeur
manquent d’informations contextuelles globales pour gérer des taches complexes de segmentation
d’images médicales. Pour remédier a cela, nous introduisons le réseau U-Transformer, qui enrichit les
U-Nets avec des modules d’attention basés sur des transformers a tétes multiples. Le U-Transformer
modélise les interactions contextuelles a longue portée et les dépendances spatiales en utilisant deux
types de modules d’attention : I’Auto-Attention a Tétes Multiples (Multi-Head Self-Attention, MHSA)
et ’Attention Croisée a Té€tes Multiples (Multi-Head Cross-Attention, MHCA). Ces deux modules sont
congus pour exprimer une nouvelle représentation de I’entrée basée, dans le premier cas, sur son auto-
attention ou, dans le second cas, sur I’attention portée aux caractéristiques de niveau supérieur.
Ces modules permettent au U-Transformer de surmonter les limitations des architectures U-Net
traditionnelles en fournissant un cadre amélioré pour la compréhension et la segmentation des images

médicales complexes.

Le module MHSA est congu pour extraire des informations structurales a longue portée des images.
Pour ce faire, il est composé de fonctions d’auto-attention a tétes multiples, comme décrit dans les
travaux de Vaswani et al. [29], et est positionné dans le goulot d’étranglement du U-Net. L’objectif
principal du MHSA est de connecter chaque élément de la carte de caractéristiques s€émantiquement
riches avec tous les autres, offrant ainsi un champ de réception qui englobe toute I’image d’entrée. La

décision concernant un pixel spécifique peut donc €étre influencée par n’importe quel pixel de I’entrée.

Lattention peut également €étre utilisée pour augmenter ’efficacité du décodeur U-Net, en par-

ticulier pour améliorer les cartes de caractéristiques de niveau inférieur transmises via les “skip
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connexions”. Bien qu’elles conservent des informations a haute résolution, elles manquent de la
richesse sémantique présente plus profondément dans le réseau. L'idée derriere le module d’Attention
Croisée a Tétes Multiples (MHCA) est de désactiver les zones bruitées ou non pertinentes des carac-
téristiques de la “skip connexions” et de mettre en évidence les régions présentant un intérét significatif

pour la tache.

L’évaluation de U-Transformer a été réalisée pour la segmentation d’organes abdominaux sur
deux ensembles de données : le dataset public du pancréas de The Cancer Imaging Archive (TCIA)
[30]] et un ensemble de données interne multi-organes (IMO). La segmentation précise du pancréas
est particulierement difficile en raison de sa petite taille, de sa forme complexe et variable, et du
faible contraste avec les structures avoisinantes. De plus, le contexte multi-organes permet d’évaluer
comment U-Transformer peut tirer parti de 1’attention provenant des annotations de plusieurs organes.
Pour une comparaison équitable, U-Transformer a été comparé au modele de base U-Net [20] et a
I’Attention U-Net [19] qui possedent le méme fond convolutif. Les performances ont également été
évaluées en utilisant uniquement MHSA et uniquement 1’attention croisée MHCA. U-Net compte
environ 30 millions de parametres, et I’augmentation de parametres due a U-Transformer est limitée

(environ 5 millions pour MHSA, et environ 2,5 millions pour chaque bloc MHCA).

Le U-Transformer a surpassé U-Net de 2.4 points sur le dataset TCIA et de 1.3 points pour
IMO, et a également dépassé ’Attention U-Net de 1.7 points pour TCIA et de 1.6 points pour IMO.
Des “paired t-tests” montrent que 1’amélioration est significative avec des “p-values” inférieures a
3% pour chaque expérience. Des expériences supplémentaires ont été menées en utilisant nnU-Net
[1] comme modele de base et pipeline d’entrainement. nnU-Net, une version plus robuste et plus
profonde de U-Net, est bien optimisé€ et entrainé dans un pipeline d’entrainement sur mesure pour
la segmentation d’images médicales. Il obtient les meilleurs résultats sur plusieurs tdches. Notre
approche a été évaluée en utilisant le code Github des auteurs de nnU-Net sur TCIA avec un pliage
en 3 et en suivant la configuration expérimentale de [1]. Nos résultats montrent un gain d’environ
1 point (84.08 contre 83.09 en indice de Dice), ce qui est une amélioration importante étant donné
la forte baseline, et statistiquement significatif avec un “paired t-test” (p=0.023). Cela souligne que
nos modules MHSA/MHCA améliorent les performances par rapport aux modeles convolutionnels de

pointe.
Full Contextual Attention for Multi-resolution Transformers in Semantic Segmentation

Le principal attrait des transformers réside dans leur capacité a saisir des interactions a longue
portée, un élément crucial pour la segmentation sémantique. Cependant, cette stratégie n’est pas
facilement extensible aux images haute résolution impliquant un grand nombre de patches, en raison
de la complexité quadratique du module d’attention des transformers. Par exemple, le U-Transformer

présenté applique uniquement 1’auto-attention dans le goulot d’étranglement, et 1’attention croisée
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utilise une opération de sous-échantillonnage qui dégrade I'information spatiale. Une stratégie sim-
ple et efficace pour surmonter cette limitation est de s’appuyer sur des approches multi-résolutions,
ou I’attention dans les cartes de caractéristiques haute résolution est calculée sur des sous-fenétres.
Plusieurs tentatives récentes ont €té faites dans cette direction. Cependant, elles limitent les inter-
actions des caractéristiques haute résolution a I’intérieur de chaque fenétre. Nous introduisons une
approche pour la segmentation sémantique qui incorpore une attention globale dans les transformers
multi-résolutions (GLAM). Le module GLAM permet de modéliser des interactions longue portée a
toutes les échelles d’un transformer multi-résolution. L’incorporation de GLAM dans 1’architecture
Swin [17] permet de capturer conjointement des informations spatiales détaillées dans des cartes de
caractéristiques haute résolution et un contexte global, deux éléments cruciaux pour une segmentation
appropriée dans des scénes complexes.

L’idée principale de GLAM est de fournir un moyen de représenter des interactions completes a
toutes les résolutions de cartes de caractéristiques, ce qui est impossible dans les modeles classiques, en
particulier dans les cartes de caractéristiques a haute résolution, en raison de la complexité quadratique
de I’attention des transformers. Il est important de noter que GLAM peut étre intégré dans diverses
architectures multi-résolutions, par exemple Swin [21] ou en segmentation 3D, par exemple nn-
Former [2]. L’idée centrale de GLAM est de concevoir des tokens globaux, qui sont utilisés dans
une succession de deux étapes d’attention : d’abord, entre les tokens visuels dans chaque fenétre
indépendamment, et ensuite, entre les tokens globaux parmi différentes fenétres. Nous montrons
que cette conception permet de représenter des interactions completes entre toutes les régions de
I’image a toutes les échelles, et également des informations externes utiles pour la segmentation tout
en conservant I’efficacité. Nous introduisons également un module de sur-echantillonage non local
(NLU) pour étendre la modélisation du contexte complet dans les architectures en forme de U et pour
fournir une interpolation efficace de cartes de caractéristiques sémantiques riches dans un décodeur
associé. L'idée de base derriere GLAM est d’associer des tokens globaux a chaque fenétre, chargés
de capturer I’information locale et de la transmettre a d’autres régions de ’image en calculant une
MHSA entre tous les tokens globaux. Ainsi, lorsque I’information est traitée a I’échelle de la fenétre,
I’encodage des tokens visuels integre des informations utiles a longue portée. La communication
entre les fenétres a un niveau hiérarchique donné dans le transformer GLAM est obtenue grace a
I’interaction des tokens globaux. A chaque bloc ! du transformer GLAM, il y a deux étapes : i) les
tokens visuels captent leurs statistiques locales a travers un transformer a fenétre locale (W-MSA), et
ii) les tokens globaux sont ré-encodés par un transformer global (G-MSA), ou les tokens globaux de
différentes fenétres interagissent entre eux. Formellement, le /"¢ bloc du transformer GLAM prend

en entrée 7! et produit en sortie 7/ par la succession d’une étape W-MSA et d’une étape G-MSA..

GLAM a été évaluée sur trois ensembles de données distincts pour la segmentation s€émantique

32



RESUME DE LA THESE

: ADE20K [31]], Cityscapes [32] et BCV [33]. ADE20K est un ensemble de données de parsing de
sceénes composé de 20 210 images réparties en 150 classes d’objets. Cityscapes contient des scenes
de conduite et comprend 5 000 images annotées avec 19 classes différentes. BCV est un ensemble
de données pour la segmentation d’organes abdominaux, incluant 30 scans CT qui sont des volumes
3D annotés avec 8 organes abdominaux différents. En raison des performances supérieures de Swin,
GLAM aété intégré a cette base pour la segmentation de jeux de données 2D, résultant en deux modeles
: GLAM-Swin-UperNet et GLAM-Swin-UNet. Le premier est un modele hybride combinant une
base de transformers et une té€te de CNN, tandis que le second est un modele transformers complet avec
un décodeur symétrique a I’encodeur. Pour les images 3D, GLAM a été intégré dans nnFormer, congu
de maniere similaire 2 Swin-UNet pour la segmentation d’images médicales 3D. Les performances
des modeles Swin et GLAM montrent des gains significatifs et constants par rapport a leurs versions
originales, que ce soit sur des modeles plus petits ou plus grands, avec environ +1.5 point sur ADE20K
avec Swin-UNet, et +1.2 point sur BCV avec le modele nn-Former. GLAM-nnFormer surpasse
significativement toutes les autres méthodes médicales existantes avec au moins 1.2 points de Dice
en plus en moyenne. A notre connaissance, GLAM-nnFormer dépasse 1’état de I’art sur I’ensemble
de données BCV. De plus, GLAM-Swin-UNet atteint 49.10% de mloU sur ADE20K, surpassant son
homologue Swin vanilla d’au moins 1.10 points de mloU. GLAM-Swin-UperNet obtient 81.47% de

mloU sur Cityscapes, ce qui est 1.58 points de mieux que son homologue Swin-Upernet.

LORI: Long and Out of Range Interaction transformer module for 3D medical image segmen-
tation

Dans le domaine actuel de la segmentation basée sur le DL, la plupart des méthodes existantes
(34, [14, 135, 136] ne peuvent pas traiter des images médicales 3D complétes et sont limitées a traiter
des sous-régions de I’image d’entrée, c’est-a-dire des patches extraits plus petis. Contrairement aux
tranches 2D, ces patches préservent la nature 3D de I’entrée, tout en conservant la résolution originale
du volume et en maintenant tous les détails fins. Cependant, cette approche présente des inconvénients.
En effet, les patches sont traités indépendamment, ce qui entraine une perte dramatique de contexte
: les informations en dehors du patch, c’est-a-dire les informations hors de portée, ne peuvent pas
étre utilisées dans la prédiction et sont perdues. Par conséquent, lors de scénarios de segmentation
difficiles, par exemple des organes complexes ou des données bruyantes, les modeles ont souvent
du mal a produire une segmentation précise. L’objectif principal de cette partie est de résoudre ce
probleme en utilisant une nouvelle méthode pour modéliser les interactions hors de portée. Dans cette
partie, nous généralisons le concept de tokens globaux comme pivot pour diffuser des informations
multi-échelles dans ’attention. Comparé a 1’auto-attention standard appliquée sur un volume 3D
brut, cette approche offre un moyen de modéliser le contexte global tout en maintenant 1’utilisation

de la mémoire et le colt de calcul sous contrdle. Ainsi, nous présentons le transformer Long and
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Out-of-Range Interaction (LORI).

Notre but est de modéliser des interactions a grande échelle et a haute résolution en généralisant
le concept d’indirection de I’information via des tokens globaux, nécessitant 1’identification de trois
niveaux d’information. Au niveau de la fenétre, I’objectif est de conserver des détails fins en calculant
une auto-attention quadratique compléete. Le deuxiéme niveau concerne le patch extrait, ot ’'on vise a
propager I’'information des fenétres locales entre elles. Enfin, au niveau global, I’information provient
du volume global, décrivant les structures de haut niveau dans I’image. Idéalement, 1’information
devrait circuler du niveau global au niveau fenétre. Pour cela, chaque niveau est subdivisé en sous-
régions, chacune associée a des tokens globaux dédiés, permettant une gestion flexible et efficace de

I’information a différentes échelles.

LORI utilise des tokens globaux ancrés dans des régions du volume d’entrée. Lors d’une passe
avant, les tokens globaux liés aux régions qui se chevauchent avec le patch recadré sont injectés dans
le modele. A travers LORI, ces tokens globaux font circuler I’information dans le patch et infusent des
informations hors de portée. Ces tokens globaux agissent comme des représentations locales de parties
anatomiques spécifiques. Le fait que toutes ces parties ne soient pas disponibles lors de la segmentation
d’un patch donné représente un défi pour apprendre ces représentations. Plutot que d’apprendre deux
ensembles séparés de tokens globaux dédiés a extraire des représentations utiles de la structure sous-
jacente et a propager des informations a haute résolution entre les fenétres, LORI utilise un seul niveau
de tokens globaux ancrés a chaque sous-région du volume. Ces tokens globaux sont appris de maniere
asynchrone en mettant a jour uniquement ceux associés aux régions qui se chevauchent avec les patches
d’entrainement. L’injection de tokens globaux ancrés dans le module GLAM confere au modele la
capacité d’utiliser les représentations apprises des régions entourant le patch. Cette information
permet au modele d’aligner les tokens visuels de 1’entrée avec les représentations de haut niveau
apprises, améliorant ainsi leur pertinence pendant I’entrainement. Allant plus loin, en enchainant de
multiples opérations W-MSA et G-MSA, LORI utilise non seulement les informations environnantes,
mais aussi les représentations de la structure sous-jacente dans son ensemble, permettant au modele de
saisir indirectement les interactions au-dela du patch observé. La séquence complete des opérations
de LORI est donnée par une modification du GLAM introduit précédemment. LORI a la capacité de
reproduire I’échange d’informations entre les fenétres effectué par la modélisation des interactions a
longue portée. De plus, via G-MSA, I’ attention entre les tokens globaux sélectionnés et tous les tokens
globaux est évaluée, permettant ainsi un partage indirect d’informations de 1’ensemble du volume.
Par la suite, dans le bloc suivant, les informations hors de portée recueillies par les global tokens
sélectionnés sont transmises aux tokens visuels de la patch extrait, partageant ainsi les informations

capturées.

Pour démontrer I’efficacité de la méthode proposée, des expériences ont été menées sur trois
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ensembles de données distincts : WORD [37] un ensemble de donnée de segmentation multi-organes
CT scans 3D, la base de segmentation multi-organes CT Scans 3D Synapse (BCV) [38]], et un ensemble
de données privé de segmentation du foie et de ces vaisseaux en 3D nommé LIVUS. Pour chaque
ensemble de données, les résultats ainsi que leurs écarts-types correspondants ont été rapportés,
ces derniers ayant été calculés sur I’ensemble des différents patients présents dans les ensembles de
données. Dans cette étude, I’efficacité de 1I’approche proposée a été évaluée en la comparant a diverses
architectures d’état de I’art (SOTA) : CNN avec nnUNet [34] et DeepLabV3 (2D) [39], Transformer
avec 3D Swin-UNet [33] et FINE [40], ainsi que des hybrides avec Colr [14] et UNETR [36]. A
I’exception de DeepLabV3 et UNETR, tous les modeles ont été entrainés dans la méme configuration,
pour des fins de comparaison. LORI, étant un module polyvalent, peut étre intégré sans probleme
dans divers modeles de segmentation. Dans cette étude, nnUNet a été choisi comme base pour LORI
en raison de ses performances SOTA sur plusieurs ensembles de données. De plus, 1’architecture
basée sur la convolution de nnUNet présente une limitation en termes de petits champs de réceptif au
niveau des cartes de caractéristiques a haute résolution. Cependant, cette limitation est efficacement
abordée par LORI, qui étend la capacité du modele a capturer des interactions a longue portée. Pour
intégrer LORI dans nnUNet, un module de Transformer Swin a été implémenté. Ce module a été
inséré apres chaque couche de convolution de 1’encodeur nnUNet, permettant a LORI d’utiliser les

cartes de caractéristiques générées par les convolutions.

Les résultats expérimentaux, présentés dans un tableau spécifique, mettent en évidence la supérior-
ité de la méthode proposée, LORI, par rapport aux approches de pointe sur trois ensembles de données
divers. L’évaluation démontre 1’efficacité notable de LORI dans la segmentation précise de multiples
organes dans une image CT 3D. En particulier, LORI réalise une amélioration significative du score
de Dice, avec +1.6 points sur I’ensemble de données WORD et +0.35 points sur I’ensemble BCV
par rapport a la deuxieme meilleure méthode. De plus, LORI montre une amélioration remarquable
de +0.86 points sur I’ensemble de données LIVUS, caractérisé par des images échographiques tres
bruitées. Ce résultat souligne la capacité de LORI a améliorer la qualité de la segmentation dans des
modalités difficiles, établissant ainsi son efficacité pour relever des taches de segmentation complexes.
De plus, en considérant la distance moyenne de Hausdorff a 95%, LORI atteint une valeur de 6.45
comparée a 7.90 pour la deuxieéme meilleure méthode. La performance supérieure de LORI sur cette
métrique souligne sa capacité a capturer avec précision les contours des organes et a produire des
segmentations plus précises. L’évaluation de la distance moyenne symétrique de surface (ASSD)
valide également la supériorité de LORI en termes de précision de segmentation. Avec un ASSD
de 0.97mm par rapport a 1.86mm pour la deuxieme meilleure méthode, LORI démontre un gain
substantiel de 0.89. Ce résultat renforce I’'idée que LORI surpasse les autres méthodes sur plusieurs
métriques d’évaluation.
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Conclusion et Perspectives

Dans cette these, le probleme de la segmentation d’images de haute dimension, en particulier les
images médicales 3D, a ét€ abordé. La haute dimensionnalité de ces images représente un défi pour
leur segmentation. Il a été expliqué que les modeles d’apprentissage profond (DL) nécessitent un
contexte global pour segmenter efficacement les régions locales, tandis que les modeles classiques
souffrent de champs réceptifs limités ou de tailles de régions d’entrée restreintes. Pour surmonter ces
limitations, les modeles de Transformers ont été choisis pour leur capacité a capturer des interactions
a longue portée. Nous avons développé des modules Transformers utilisant des tokens globaux pour
améliorer la capacité des Transformers a modéliser des interactions longues et hors de portée sur des

images de haute dimension, telles que les images médicales 3D.

L utilisation des modeles et concepts présentés pourraient étre une base pour plusieurs projets.
Nous avons collaboré avec I'IRCAD sur une base de données publique comprenant des images
couplées d’échographie et de CT du rein en 3D, spécialement congues pour la segmentation et le
recalage. Dans le cadre du processus d’évaluation, le modele GLAM a été utilisé comme base pour la
segmentation. L'IRCAD, avec le projet DISRUMPERE, vise a développer un dispositif médical pour
la segmentation en temps réel des images échographiques, notamment pour la détection autonome de
tumeurs, marquant une avancée importante en IA médicale, les global tokens permettraient de traiter
de facon efficace I’aspect temporel de cette tiche. L’étude de Moor [41] souligne que les modeles
de fondation, combinant texte et images, sont cruciaux pour 1’analyse d’images médicales, grace a
leur traitement de données de haute dimension et leurs capacités multimodales, les tokens globaux
pourraient €tre utilisés pour créer un échange d’information entre modalité. Enfin, les tokens globaux
seraient utiles dans divers domaines de haute dimension avec des dépendances longues portées comme

la vision par ordinateur en haute résolution et I’analyse audio.
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1.1. CONTEXT

1.1 Context

Artificial intelligence (AI) has emerged as a prominent and rapidly evolving field of research,
garnering widespread attention and participation from researchers across disciplines. Notably, deep
learning (DL), as a major branch of Al has witnessed significant advancements, resulting in accelerated
progress. Multiple historical tasks have benefited from this progress. Fig[I.1]illustrates some of these
tasks with image and video analysis, audio recognition, or text translation. This notable leap forward
has been made possible due to two main factors: First, the development of extensive datasets, such
as ImageNet [[7] with 14M images and 21K classes for image classification, ADE20K [31] with 30K
images and 150 classes in image segmentation or COCO [42] with 330K images and 80 classes
for object detection. Secondly, the increase in model parameters since 2012 was made possible
by the development of graphics processing unit (GPU) computing which made DL model training
much faster. More recently, novel techniques like Transformers [29] models have further contributed
to leveraging these vast datasets effectively. Consequently, these advancements have facilitated the
creation of models with a substantial number of parameters, commonly referred to as foundation
models. This rapid development has arrived in the hands of the general public domain through the
release of user-friendly software tools like Chat GPT [43], 44, which offer valuable assistance in various
tasks such as translation, coding, and writing. Additionally, tools like DALL-E [45]] and Midjourney
enables the creation of realistic and artistic images based on textual prompts. Furthermore, there are
ongoing efforts in numerous laboratories to develop applications of Al for the general public, such as
autonomous driving and video games. Simultaneously, Al has begun to make significant inroads in

specific fields such as climatology, astronomy, and medicine.

Computer vision (CV), as a subfield of Al, focuses on the processing and analysis of visual infor-
mation from various sources such as cameras, images, and videos. CV includes tasks such as image
classification, object detection, and image segmentation (Fig[I.2). Image classification involves the as-
signment of a specific label or class to an image. This task entails the identification and categorization
of the main objects or features present within the image. Object detection, on the other hand, focuses
on determining the precise position or location of one or multiple objects within an image. Object
detection enables the identification of different objects and their corresponding spatial coordinates.
Image segmentation is yet another crucial task in computer vision, which involves assigning a specific
class to every individual pixel within an image. This process enables the partitioning of the image into
distinct regions or segments, each associated with a particular category. Image segmentation plays a

core role in medical image analysis.

The present thesis endeavors to enhance the field of medical image analysis with several CV

research innovations. It is conducted in collaboration with the Conservatoire Nationale des Arts et
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Figure 1.1: Significant applications of Al research: Faces recognition [3] and video Action recognition

[4] in computer vision, Audio speech to text [3] for audio analysis and text translation [6] for natural
language processing.

Imag_gNet_ - Pascal VOC - Object detection ADE20K - Segmentation
Classification

Figure 1.2: Examples of traditional computer vision tasks: Classification with an image of a Border
Collie from ImageNet [7], Object detection with the detection of multiple objects (cars, bicycle,

truck) in a city [8], and Segmentation of a city [9] with multiple objects segmented (tree, sky, cars,
pedestrian).

Meétiers (CNAM) in Paris and the Digestive System Cancer Research Institute (IRCAD) in Strasbourg.
IRCAD is a renowned institution for medical innovation, globally recognized for its excellence in

research. This thesis is part of the Disrumperdl| project: Democratization of automatic diagnosis,

tThttps://www.ircad. fr/fr/newsletter-de-1lircad-decembre-2022/
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1.1. CONTEXT

screening, biometrics and augmented percutaneous surgery assisted by artificial intelligence. The
primary objective of Disrumpere is to increase access to healthcare by leveraging artificial intelligence
to enhance the capabilities of affordable portable ultrasound probes, thereby making their utilization
accessible for non-experts. Led by IRCAD France and IRCAD Africa, the project brings together teams
of dedicated engineers and researchers who are determined to develop a tool that can significantly
impact healthcare in Africa and address the challenges faced by "medical deserts" in France. The
project encompasses several key components. The first component involves the development of high-
performing algorithms for diagnostic and monitoring purposes. These algorithms aim to facilitate
the easy detection of common pathologies, enabling efficient and accurate diagnosis. The second
component focuses on the democratization of augmented percutaneous surgery through robotics. This
aspect of the project involves utilizing ultrasound guidance to perform biopsies or destroy small
cancerous tumors using needles. By making this surgical technique more accessible, Disrumpere

aims to expand the reach of minimally invasive procedures and improve patient outcomes.

The application of Al in medical imaging is widely recognized as a field with immense potential
to benefit society. Al has the capability to assist healthcare professionals in various tasks, ranging
from diagnosis to surgical planning and guidance (Fig. [I.3). In the realm of medical image analysis, a
diverse range of medical imaging modalities exists, each possessing its own benefits. These modalities
encompass an array of images such as microscopic retina or cell images, Magnetic Resonance Imaging
(MRI), Computed Tomography (CT), and Ultrasound (US). MRI offers exceptional precision in
capturing detailed information about soft tissues such as the brain, heart, or tumors without being
invasive. CT, on the other hand, employs X-rays to obtain precise 2D or 3D scans of the entire body,
including both tissues and bones. Ultrasound, a non-invasive and cost-effective modality, provides
medical images in real time and without the harm of ionizing radiation. With the availability of these
various imaging modalities, numerous tasks can be accomplished using Al [22} 23] [1| 24], including
tumor or lesion detection, image segmentation, image reconstruction, and organ segmentation for

diagnosis help or surgery planning.

Semantic segmentation has always been a fundamental task in medical image analysis [46, 47]],
as it is usually the first step in the chain of computer-assisted medical diagnosis. It can be used as
a tool for clinical diagnosis as well as for surgery preparation and assistance. The main objective of
this thesis is to address the task of segmenting medical images through the development of novel DL
models. The focus of this study is on two modalities, namely CT and US images. The segmentation of
CT scans is of great significance due to the existence of numerous applications, datasets, and research
efforts dedicated to this task. Integrating the segmentation of CT volumes into the Disrumpere project
for medical image registration between Ultrasound and CT holds immense potential. Moreover, US

image segmentation is of utmost importance, as manual segmentation of ultrasound images by experts
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CT Scan MRI Scan Ultrasound images

Figure 1.3: Example of medical image analysis modalities (CT: Computed Tomography; MRI: Mag-
netic Resonance Imaging; US: Ultrasound images).

can be time-consuming and challenging. Using ultrasound images for medical purposes provides
several advantages. Firstly, ultrasound images can be obtained quickly, allowing for timely diagnosis
and treatment. Secondly, the use of ultrasound is less invasive compared to other imaging techniques,
reducing patient discomfort and potential complications. Additionally, ultrasound imaging is a cost-
effective and real-time option, making it more accessible for medical practitioners and patients alike.
Furthermore, the 3D aspect of medical images segmentation is of significant importance. In CT, it
helps to detect small and difficult organs by giving more contextual information. But this importance is
greater with US images. Unlike 2D ultrasound images, which lack sufficient information for accurate
segmentation, 3D ultrasound images (Fig. [I.4) provide a greater level of detail. This enhanced level
of information enables more precise and reliable automatic segmentation, enhancing the diagnostic
capabilities of ultrasound imaging. Automating this process through advanced DL techniques has the
potential to provide the medical community with new tools. The integration of this thesis with other
research endeavors within the Disrumpere project opens up exciting prospects for research in the field

of accelerated and non-invasive automated surgical procedures.

1.2 Motivations and challenges

Ultrasound image segmentation is a complex task that is faced with significant challenges, primarily

due to two key factors: the limited availability of annotated data and the inherent quality associated
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Figure 1.4: 3D Ultrasound image and segmentation of Liver and Vessels. The segmentation mask is
done by an expert. These images come from a private dataset collected at IRCAD.

Shadows Noise

Figure 1.5: Challenges in US images interpretation: US images show multiple sources of data
uncertainty. As shown in the image, there are often acoustic shadows which hide parts of the image.
Compared to CT and MR, US usually has a higher signal-to-noise ratio, which reduces the capacity
to find details as shown on the image’s zoom.

with US modality. As shown in [I.5] US images are inherently noisy, with speckle noise posing a
particular difficulty in the segmentation process. Furthermore, the resolution of US images varies
within the volume, leading to distortions in the image. Additionally, certain tissues have the ability to
completely absorb the ultrasound wave, resulting in occlusions and shadows within the images. These
challenges impede the effective use of conventional deep learning models for US image segmentation.
These artifacts pose difficulties even for expert clinicians, as evidenced by deviations in segmentation
outcomes among different experts, as demonstrated in Fig. [[.6] As a result, traditional deep learning
models encounter limitations when applied to US modalities, with errors on edges and confusion on
difficult tasks like the segmentation of multiple types of vessels [48] 49]. Consequently, there is a
growing interest in strategies that leverage contextual information to overcome these challenges in the
research community. By incorporating additional context, the model’s ability to accurately classify
a noisy or occluded pixel can be enhanced by considering long-range dependencies. In bigger noisy
or shady regions, the model must extend its analysis beyond the immediate neighborhood in order to

discern the prevailing structures within said region.
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Example 1

Example 2

Figure 1.6: Two examples of Ultrasound images with Liver and vessel segmentation by three experts.
We see on the first row the disagreement to segment the IVC (in orange) with Expert 2 vs Expert 1 &
3. On the second row, there is a disagreement about segmenting the HV (in green) with Expert 2 vs
Expert 1 & 3, and the liver (in blue) with Expert 3 vs. Expert 1 & 2.

Medical imaging has significantly benefited from the use of 3D images, which allow for more
comprehensive context modeling. Utilizing volumes instead of 2D slices is a superior approach as
it provides more information to the model during voxel segmentation. With the ability to examine
structures from multiple directions, the model can better leverage the context in US, CT, or MRI
segmentation. While multiple architectures that directly exploit volumes exist, they often require a
high spatial complexity, resulting in a significant consumption of GPU memory. When employing a
state-of-the-art method such as 3D-UNet [[11], it’s impossible to process the entire volume of the image.
It is common for 3D images to have large dimensions. However, even utilizing only the first layer of this
3D image would consume approximately 24 GB of GPU memory. Moreover, the entire model would
necessitate more than 60Gb of GPU memory for processing a single volume during the inference
stage, and over 120Gb during the training stage. This poses a significant challenge due to the high cost
of GPUs, which are expensive tools used for DL. model training. As a result, this hardware limitation
can have a detrimental impact on the capacity and capability of DL models. To address this problem,
researchers have adopted a common strategy of training DL models on a smaller region of the original
volume [[1} 25]], allowing the model to process smaller portions of the volume during both training and
inference. This method enables the model to segment the full volume using a sliding window strategy
during inference. But the common strategy is to work with cropped volume patches. A typical

configuration would be for a medical dataset to show an average volume size of 512 x 512 x 256
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. Receptive
field
Out-of-range Long-range
information information
a) Full image b) Cropped patch

Figure 1.7: Long and out-of-range limitations. This schema shows the out-of-range information
loss effect due to random cropping, a commonly employed strategy for training segmentation models
on large 3D medical images. On b) we see a zoom on the cropped patch (in red) from the original
image (in green). The Receptive Field (in blue) in a CNN designates the area of the input image
reached by a unit at the end of the network. When classifying the pixel in the center of the blue square,
the area outside the receptive field is thus not taken into account. The information outside the patch
in the original image is, by definition, not used during segmentation. Through this manuscript, we
designate as long-range the information not encompassed by standard CNN backbones receptive field
and as out-of-range areas outside the cropped patch.

voxels and to train on random crops of dimension 128 x 128 x 64, which represents only 1.6% of the
original volume. This implies a loss of the total information and context available for the DL. model
to exploit. As can be seen in Fig. [[.7]a), the cropping strategy consists of selecting a smaller patch
in a full image to be processed by the model. Because of this strategy, the methods lose what we call
out-of-range information, information outside of the red-cropped image. Furthermore, even within
the cropped patches, most methods can’t model interactions long-range interactions specifically within
high-resolution features. On[I.7|b), we denote as long-range information, the information outside the

model receptive field in blue.

With the awareness of all aforementioned limitations, the objective of this thesis is to investigate
new methodologies to improve the accuracy of 3D medical image segmentation. This thesis aims
to explore approaches that effectively use global context in 3D images, which means modeling
interaction inside and outside of the cropped patches, while simultaneously maintaining a high
spatial resolution to leverage more information, and consequently, to achieve more accurate
segmentation.
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1.3 Main trends in medical image segmentation

1.3.1 Medical image segmentation before deep learning

The automatic segmentation of objects in medical images has been a topic of significant interest
and extensively explored in the literature [S0, 51} 52]. The initial attempts primarily focused on
hand-crafted methods, where segmentation relied on the image itself and predefined rules such as
thresholding [53! 54|, region-growing [55, 156]], or watershed [57, I58]]. Subsequently, model-based
approaches gained prominence with the increasing availability of labeled data. These approaches
encompass deformable models [39, 160, 61} 62] and atlas-based methods [63, 164, 165, 66, |67, 68]].
Deformable models aim to modify a predefined curve to accurately fit the image through the utilization
of energy minimization algorithms. On the other hand, atlas-based methods are more specific to
medical images and exploit the fact that organs are typically located at similar positions across patients.
These methods utilize label-transfer to assign labels to the target volume based on annotations from the
dataset. Additionally, Statistical Shape Models (SSMs) [69, [70, [71]] are often employed to constrain

the models with shape information extracted from labeled images.

1.3.2 Convolutional neural networks (CNNSs)

Convolution [[72] is a fundamental image processing method involving the application of a weighted
filter to an image, enabling operations like edge detection by considering the surrounding pixels’
influence. It should be noted that convolution is a local operation, meaning that it applies its weights to
a small region of the input, but shares the same weights for the whole input. Consequently, the number
of parameters utilized in convolutional operations does not depend on the size of the image and can
be easily controlled. Multiple convolutional neural network (CNN) architectures have been developed
and refined over the years, leveraging the inherent power of convolutions. These architectures have
brought about a significant revolution in computer vision, primarily in image classification, but also
extending to semantic segmentation tasks, but also to signal processing field, time series or audio. The
field of image classification with deep learning witnessed its initial breakthrough with the introduction
of AlexNet [10] (see Fig. [I.8), which incorporated a hierarchical structure of convolution layers.
This was followed by the development of VGG [/3l], which featured a deeper architecture with
smaller convolution kernels. Subsequently, Inception [[74] introduced skip connections and multiple
convolution kernel sizes to enhance performance. Finally, residual neural networks (ResNet) emerged
as a significant advancement in deep learning for computer vision [75]. This architecture introduced a
residual layer that facilitates identity mappings and enables deep learning models with tens or hundreds

of layers to train easily while achieving improved accuracy when going deeper. Residual Networks
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have become a crucial component of deep learning models in computer vision.
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Figure 1.8: AlexNet schema [10]. Simplified schema of AlexNet with the different succession
convolution and pooling layers, followed by dense layers.

In the current era of deep learning, Fully Convolutional Neural Networks (FCNs) [[76,77,78.,[79,80]]
have been at the forefront of state-of-the-art performance in semantic segmentation. In this field,
the approach typically involves separate encoder or backbone networks, with the aim of extracting
maximum semantic features from the images [75, I81, 182, [83]. The decoder network, on the other
hand, is responsible for constructing the segmentation mask [84} 85]. For instance, DeepLab [/9]] is
a well-known model that is based on an encoder-decoder architecture. Various datasets are used by

the research community to adapt and improve the performance of these segmentation architectures
(9. 186,87, 188].

CNNs for medical images segmentation. Convolutional neural networks have emerged as
powerful tools in the field of medical image analysis due to their ability to learn and extract relevant
features, implemented as convolutional filters, from images. Following the ideas of FCNs, medical
segmentation methods are FCNs-based methods with skip connections, an innovation well suited for
medical images because of the structured data aspect of medical images. Conventional architectures
such as UNet [20] and its variants, purpose-built for medical image segmentation, are commonly
employed. Notably, UNet’s architecture, which incorporates skip connections between encoder and
decoder modules, is well-suited for small datasets when associated with a strong data augmentation
as it facilitates the integration of high-resolution features from the encoder into the decoder, enabling
effective utilization of input image information. UNet [20] and 3D UNet [[89] architectures, which
are CNN based presented in Fig. [[.9] have demonstrated their effectiveness in various medical image
segmentation tasks. Furthermore, the multi-scale structure of UNet models enables them to capture
local details in high-resolution feature maps and extract increasingly higher-level semantic features in

each down layer until the bottleneck. However, despite their impressive performance, these models
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are limited by their receptive field which refers to the area in the input image that a particular feature in
the network can “see” and use to make a prediction [[18]], this is called the receptive field in a CNN and
it designates the area of the input image reached by a unit at the end of the network. In other words,
it represents the effective size of the convolutional kernel at a given layer. The receptive field of a
feature is determined by the size and number of layers in the network, as well as the stride and pooling
operations applied. This limitation is particularly pronounced in high-resolution feature maps, where
the receptive field can be small and the amount of information available for segmenting a pixel is
limited due to the local nature of the convolutions.
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Figure 1.9: 3D UNet architecture schema [11]].

1.3.3 Transformers

Transformers in NLP. Transformers have emerged as a recent breakthrough in NLP, revolutioniz-
ing the way language models are designed and trained [90]. They incorporate a novel combination of
multi-head self-attention, multi-layer perceptron, skip connection, and layer normalization to handle
long sequences and capture long-range dependencies. The self-attention mechanism connects each
input element, denoted as tokens, to each other which is well designed to model long-range interac-
tions. This is a significant improvement over previous recurrent models [91), 92], which struggled
with long-range dependencies. The introduction of transformers enabled the development of powerful
models such as BERT [93], which outperformed every prior NLP model. Subsequently, a variety of
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large-scale Transformers-based models such as GPT [43] 144, 94] have been introduced, leading to a
revolution in the NLP field.

The Transformers self-attention mechanism is a critical component of the architecture. To elab-
orate, the mechanism works by projecting a sequence of N embedded tokens, X € R¥*?_ where d
denotes the embedding dimension, into queries Q € RV*? keys K € RV*?_ and values V € RV*4,
Subsequently, the attention is computed between the queries and the keys using the softmax function

with the formula:

T
A = softmax (%)

where A € RV*N | The output of the self-attention mechanism is then obtained by computing Z = AV,
where Z € RV*4_ This output can be interpreted as a weighted sum of the values V with the weights
given by the attention scores in A. The self-attention mechanism thus enables the Transformers to
capture dependencies between tokens at various positions in the input sequence, providing a powerful
tool for modeling long-range dependencies. The original transformer model is detailed in Fig. [[.10]

Transformers in computer vision. The pioneering work before the use of Transformers in
computer vision can be traced back to the field of video analysis, as demonstrated in the work by [95].
In this work, self-attention mechanisms were employed to effectively model long-range dependencies
between image frames. Transformers have gained popularity in the computer vision community due
to their ability to model long-range dependencies and perform full attention on input data. The Vision
Transformers (ViT) [12] is the first to employ a Transformer encoder directly for image classification
and has demonstrated superior performance compared to other methods. ViT has demonstrated that
Transformers possess the capability to effectively handle extensive datasets when trained on ImageNet,
resulting in great performance outcomes. To adapt transformers for image processing, ViT divides
images into patches of size 16 x 16 and re-embeds them into a sequence of N tokens of size d. A
class token is added to the sequence as an extra learnable token, which serves as the features for the
final classification layer. This class token inspired us in our work for the development of the global
tokens which will be explained later. Additionally, ViT uses positional encoding to bring positional
bias to the tokens, which can take various forms [96,97, 98] (see Fig. [I.TT). Although ViT is a strong
backbone for various tasks, it is challenging to train [99] as transformers require more data than CNNs
because it has many more trainable parameters, leading to a difficult pre-training phase. Moreover, ViT
computes a full attention map between all its input tokens, resulting in spatial complexity of &’(N?) per
layer. This large complexity could be problematic for high-dimensional images because of memory
consumption limitation and it limits the possibility of working with smaller patches for finer-grained

information modeling. Some methods like windowed transformers in hierarchical models [17] exist

to tackle these issues and will be described in[Chapter 3]
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Figure 1.10: The transformer architecture. This schema shows the detailed original transformer
model architecture with the encoder and decoder parts and all its sub-modules: embedding of the
input tokens, positional encoding, multi-head self-attention, normalization, skip connections, and
feed-forward network.

More recently, the Segment Anything Model (SAM)[100] was developed using transformers,
which has demonstrated remarkable ability to segment all parts of an image without the need for
labels. This architecture is able to segment by looking for semantically coherent components related
to a pixel. However, Transformers still face challenges in the domain of medical imaging, particularly
in ultrasound medical images, as shown in[I.12)mainly because of the high dimensionality of medical

images and domain shift.
Transformers for medical image segmentation.

The medical imaging community has been actively engaged in researching attention mechanisms
(101, 102, 103} (104, 105, 19, 106]. Among these models, Attention U-Net [19] introduces an
additive attention gate to selectively filter the features obtained from the skip connections. In this
thesis, we investigate the attention mechanism introduced by Transformers, which incorporates a self-

attention mechanism enabling connections between all input entries. This feature greatly facilitates the
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Transformer encoder. In order to perform classification, ViT use the standard approach of adding an
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Figure 1.12: Example of segmentation produced by SAM on US images [[13]. We observe that SAM
struggle to segment the breast tumour and the kidney. Even if SAM is trained on an extra large dataset
and is design to be an universal segmentation model, it suffers from domain shift.

modeling of global context. Transformers have significantly benefited the medical image community
by introducing robust models for image segmentation [36, [14] 35]]. Each of these approaches
leverages transformers to enhance the receptive field of the method, thereby leveraging additional
information from the input to generate the segmentation results. TransUNet is a pioneering

technique for segmenting medical images using Transformers. This method utilizes a hybrid encoder
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architecture that combines CNNs and Transformers to extract essential information from the input
image. Subsequently, a CNN decoder is employed to generate the segmentation mask. It is important
to note that TransUNet is designed exclusively for processing 2D images, which poses a significant
limitation as it cannot be applied in scenarios where a 3D context is required. UNETR [36]] employs
a transformer-based encoder architecture, similar to the ViT [12], whereby the entire 3D input is
subdivided into smaller patches, which are then treated as tokens and processed within the Transformer
modules. Subsequently, the extracted features undergo recombination and further processing through
a CNN decoder. While UNETR serves as a strong model, it is noteworthy that its encoder component
demands a substantial amount of GPU memory. Consequently, harnessing UNETR to its full potential
necessitates substantial computational resources, approximately eight times more than what is typically

required by other comparable methods.

Moreover CoTr [14], as illustrated in Fig. [[.13|represents a hybrid model comprising both a CNN en-
coder and decoder components. Notably, Colr introduces a deformable transformer module positioned
between these encoder and decoder segments, employed to amplify feature extraction capabilities. The
deformable characteristics inherent to this transformer module afford CoTr the ability to approximate
self-attention mechanisms when handling voluminous 3D input images. However, it is imperative
to acknowledge that Colr is subject to certain limitations. Specifically, the self-attention mechanism
within CoTr does not encompass the high-resolution feature maps generated by the encoder. Lastly,
nnFormer [35] (or Swin-UNet) represents a transformer-based model comprising both an encoder and
decoder fashioned entirely with transformer components. This model stands as a robust baseline, cap-
italizing on windowed Transformers [17], which effectively approximate the self-attention mechanism
by computing it locally, as opposed to considering the entirety of the input. Additionally, nnFormer
leverages a hierarchical architectural design, facilitating feature mixing across the model’s layers. It is
worth noting that the window transformer paradigm employed in nnFormer demonstrates substantial
proficiency in processing high-dimensional images. However, it is important to acknowledge a trade-
off in this approach. While it excels in handling large-scale image data, it does exhibit limitations in
terms of global context modeling, particularly within high-resolution feature maps.

Efficient attention in Transformers.

Long sequences have been a challenge for transformers because the original self-attention mech-
anism has a quadratic complexity in the sequence length. Thus, efficient attention mechanisms have
garnered significant attention in recent years as shown on Fig[I.14] The quest for more computation-
ally and memory-efficient models has led to a proliferation of novel approaches and techniques. Here,
we provide an overview of key developments in the field of efficient attention, categorizing them into
several major themes and highlighting notable models and methods. It is noticeable that none of the

methods are specified for 3D medical images which implies specific issues to deal with.
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Figure 1.13: Schema of CoIr [14]. A CNN-encoder, a DeTrans-encoder, and a decoder. Gray
rectangles: CNN blocks. Yellow rectangles: 3D deformable Transformer layers. The CNN-encoder
extracts multi-scale feature maps from an input image. The DeTrans-encoder processes the flattened
multi-scale feature maps that embedded with the positional encoding in a sequence-to-sequence
manner. The features with long-range dependency are generated by the DeTrans-encoder and fed to

the decoder for segmentation.

A significant portion of research on efficient attention models falls under the category of sparsity
and pattern-based approaches. These methods aim to reduce the quadratic complexity of self-attention
mechanisms. Notable models in this category include Sparse Transformers [108]], which introduced
the concept of structured sparsity patterns in self-attention. They allow for selective attention to
specific tokens while ignoring others, enabling a significant reduction in computational requirements.
Other models like Routing Transformers [[109] and Reformers [[110] focus on learning adaptive patterns
for attention, improving the scalability of the Transformer architecture.

Efforts to approximate self-attention mechanisms using low-rank approximations and kernel meth-
ods have emerged as a prominent trend. Models like Linformer [16], illustrated on Fig[T.15] propose
a fixed low-rank factorization of the attention matrix, significantly reducing computational complex-
ity. Performer [111] introduced a kernel-based approach to efficiently approximate self-attention,

emphasizing scalability and the ability to handle long sequences.

In this thesis, we focus on high-resolution and structured data. Thus we stand in another method
family based on computer vision strategies. Among these approaches, window-based patch extraction
vision transformers recently provided a simple yet efficient approach to compute attention [17, 112,
113]] (see Fig. [I.16). Some vision transformers have combined multiple efficient attention mechanisms.

The recent ViT-inspired backbone PvT [114] is based on windowed self-attention and attention
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Figure 1.14: Taxonomy of Efficient Transformer Architectures [15].

approximation close to Linformer [16]].

In the pursuit of memory efficiency, a class of models has been developed, incorporating global
memory elements [[115, [116]. Longformer [117] and ETC [118]] are notable examples that include
global memory components, allowing information to be shared across tokens more efficiently. Vil
[119] balances sparse attention by using a reduced set of global tokens (usually a single one) to
extract global representations of the input image. These models offer solutions for tasks that require

processing long sequences, such as document summarization and question answering.

The aforementioned strategies have been primarily devised for tasks related to NLP or image
classification. Consequently, these strategies are not specifically tailored for segmentation tasks since
they do not include the preservation of attention across high-resolution feature maps. Additionally,
none of these methods address the problem of incomplete representation of the entire volume in the
input due to the usage of cropped patches.
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Figure 1.15: Linformer [16]. Left and bottom-right show architecture and example of Linformer
multihead linear self-attention. Top right shows inference time vs. sequence length for various
Linformer models.

1.4 Contributions and Outline

U-Net Transformer: Self and Cross Attention for Medical Image Segmentation

We first incorporated Transformers attention mechanism in a UNet model to address the problem
of limited receptive field encountered in UNet architectures when applied to the task of segmenting 2D
medical images. We introduce the U-Transformer network, which combines a U-shaped architecture
for 2D medical images segmentation with self- and cross-attention from Transformers. U-Transformer
was among the early adopters of Transformers for medical image segmentation. It enables modeling
global attention in the bottleneck of the encoder, in contrast to standard attentions models used in the
field (e.g. Attention-UNet [19]) that do not improve global context. Additionally, we demonstrated
one of the earliest applications of Transformers in computer vision, following the publication of ViT
[12]]. U-Transformer overcomes the inability of U-Nets to model long-range contextual interactions and
spatial dependencies, which are arguably crucial for accurate segmentation in challenging contexts. To
this end, attention mechanisms are incorporated at two main levels: a self-attention module leverages
global interactions between encoder features, while cross-attention in the skip connections allows a fine
spatial recovery in the U-Net decoder by filtering out non-semantic features. Experiments show the
large performance gain brought out by U-Transformer compared to U-Net and local Attention U-Nets.

We also highlight the importance of using both self- and cross-attention, and the nice interpretability
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Figure 1.16: Comparison between windowed based transformer and ViT [17]. (a) Swin Trans-
former builds hierarchical feature maps by merging image patches (shown in gray) in deeper layers
and has linear computation complexity to input image size due to computation of self-attention only
within each local window (shown in red). It can thus serve as a general-purpose backbone for both
image classification and dense recognition tasks. (b) In contrast, previous ViT-produced feature maps
of a single low resolution and have quadratic computation complexity to input image size due to
computation of self-attention globally.

features brought out by U-Transformer.
Full Contextual Attention for Multi-resolution Transformers in Semantic Segmentation

U-Transformer struggles to handle the high dimensionality of 3D medical images due to the
quadratic complexity of self and cross attention, leading to limited efficiency in modeling long-range
interactions with high-resolution features. The second phase of this thesis aimed to address the
challenge of incorporating long-range interaction modeling into transformer models for both high-
resolution images and 3D images, particularly at feature maps with high-resolutions. We present
GLAM (GLobal Attention Multi-resolution transformers) as a solution to address the limitation
of multi-resolution transformers in capturing local interactions within high-resolution feature maps.
GLAM is introduced as a means to overcome this problem and enhance the performance of transformers
in handling high-dimension images. GLAM is a generic module that can be integrated into most
existing Transformers backbones. GLAM includes learnable global tokens, which unlike previous
methods can model interactions between all image regions, and extracts powerful representations
during training. The incorporation of global tokens in the model, influenced by the class token
[26] [12], serves as pivotal elements for the transmission of information across various regions of the

image at each stage. Consequently, this integration of GLAM engenders extensive interactions over
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long distances, which were previously absent in the model. Extensive experiments show that GLAM
exhibit substantially better performances than the vanilla state-of-the-arts on 2D high dimensions
images. Moreover, GLAM performs also well on 3D medical images.

Long and Out of Range Interaction transformer module for 3D medical image segmen-
tation

To go one step further, this chapter explores the possibility to model full contextual information in-
cluding out-of-range interactions when training a model from local 3D patches. This approach restricts
the ability to leverage information from the entire volume, beyond the boundaries of the input. Building
upon the concept introduced by GLAM, which employs global tokens to indirectly model information,
we extend this idea by incorporating out-of-range interaction modeling even in high-resolution feature
maps. Notably, our contribution is, to the best of our knowledge, the first to integrate information
beyond the cropped input volume in the context of 3D medical images segmentation. We introduce a
method that aims to address the aforementioned challenges by facilitating the incorporation of long-
and-out-of-range dependencies in medical segmentation models. This method incorporates global
tokens and employs self-attention mechanisms to create long-range and out-of-range interactions. We
provide two variant of this method: FINE (Full resolutloN mEmory transformer), a fully transformer
architecture which works as a preliminary proof of concept, and LORI which is a generic module al-
lowing it to be seamlessly integrated into existing models such as nnUNet. We performed preliminary
experiments on BCV with FINE showing its relevance, and extensive experimental evaluations with
LORI on three distinct datasets: two 3D CT multi-organs segmentation datasets and one 3D ultra-
sound image dataset for liver and vessel segmentation. The results obtained from these evaluations
demonstrate the substantial enhancement in segmentation performance achieved by LORI. Notably,
LORI exhibited superior performance across multiple multi-class high-resolution 3D image datasets,
irrespective of the different modalities involved.
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Chapter summary

As explained infsection I.2] medical image segmentation remains particularly challenging for com-
plex and low-contrast anatomical structures. In this chapter, we introduce the U-Transformer network,
which combines a Transformers attention mechanism with a UNet architecture. U-Transformer over-
comes the inability of U-Nets to model long-range contextual interactions and spatial dependencies,
which are arguably crucial for accurate segmentation in challenging contexts. To this end, attention
mechanisms are incorporated at two main levels: a self-attention module leverages global interactions
between encoder features, while cross-attention in the skip connections allows a fine spatial recovery

in the U-Net decoder by filtering out non-semantic features. Experiments on two abdominal CT-image
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datasets show the large performance gain brought out by U-Transformer compared to U-Net and local
Attention U-Nets. We also highlight the importance of using both self- and cross-attention and the
nice interpretability features brought out by U-Transformer.
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2.1 Introduction

Until recently, state-of-the-art methods rely on Fully Convolutional Networks (FCNs), such as
U-Net and variants 11,27, 28]]. U-Nets use an encoder-decoder architecture: the encoder extracts
high-level semantic representations by using a cascade of convolutional layers, while the decoder
leverages skip connections to re-use high-resolution feature maps from the encoder in order to recover

lost spatial information from high-level representations.

Despite their outstanding performances, FCNs suffer from conceptual limitations in complex
segmentation tasks, e.g. when dealing with local visual ambiguities and low contrast between organs.
Structures exhibiting long-range spatial dependencies within regions characterized by low contrast
can result in misclassification. Moreover, the classification of small organs or with significant shape
variability, such as the Pancreas, poses additional challenges. This is illustrated in Fig [2.Th) for
segmenting the blue cross region corresponding to the pancreas with U-Net: the limited Receptive
Field (RF) framed in red does not capture sufficient contextual information, making the segmentation

fail, see Fig[2.1k).

a) Ground Truth b) Attention map ¢) U-Net  d) U-Transformer

Figure 2.1: Global context is crucial for complex organ segmentation but cannot be captured by vanilla
U-Nets with a limited receptive field, i.e. blue cross region in a) with failed segmentation in c). The
proposed U-Transformer network represents full image context by means of attention maps b), which
leverage long-range interactions with other anatomical structures to properly segment the complex
pancreas region in d).

The Receptive Field (RF) in a ConvNet designates the area of the input image reached by a unit
at the end of the network. It can be obtained theoretically by looking at the convolution and pooling
operations. In our work, we use 512x512 input images and the Theoretical Receptive Field (TRF)
of a standard U-Net is small (140x140) which does not enable to model full contextual information.
Although the TRF is larger for deeper networks (e.g. nnU-Net), the TRF often overestimates the actual

contextual information that the network could handle. This has been studied in [18]] where the authors
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introduced the notion of Effective Receptive Field (ERF). The proposed method consists of putting
a gradient of one at the end of the bottleneck for the central unit and setting the other gradients to
zeros. Then, we propagate the gradients with the back-propagation and get the values assigned to the
network’s input. Thus, we obtain an array with the same size as the input as shown in Fig. 2.2] We
can see that the gradients describe a Gaussian centered on the image’s center with the values quickly
decreasing till reaching zero. With that Gaussian, we can get the Effective Receptive Field (ERF) as
formulated in [18]]. We can easily imagine that the ERF is considerably smaller than the TRF and for
instance the nnU-Net, Fig. @h, which has a large TRF gets a ERF of about 200x200, which is much
lower.

(a) CT slice (b) U-Net (c) nnU-Net

Figure 2.2: The Effective Receptive Field as formulated in [18]. We put a gradient of one at the
end of the encoder and propagate it to the input. The figures show high gradient values in white and
zero gradients in black. We analyze the U-Net and nnU-Net architectures and observe that the final
ERF is much smaller than the TRF. a) b) and c) have the same dimensions (512x512 pixels).

In this chapter, we introduce the U-Transformer network, which leverages the strong abilities
of transformers [29] to model long-range interactions and spatial relationships between anatomical
structures. U-Transformer keeps the inductive bias of convolution by using a U-shaped architecture
but introduces attention mechanisms at two main levels, which help model global context and interpret
the model decision. Firstly, a self-attention module leverages global interactions between semantic
features at the end of the encoder to explicitly model full contextual information. Secondly, we
introduce cross-attention in the skip connections to filter out non-semantic features, allowing a fine
spatial recovery in the U-Net decoder.

Fig 2.1b) shows a cross-attention map induced by U-Transformer, which highlights the most
important regions for segmenting the blue cross region in Fig[2.1ja): our model leverages the long-range
interactions with respect to other organs (liver, stomach, spleen) and their positions to properly segment

the whole pancreas region, see Fig[2.1d). Quantitative experiments conducted on two abdominal CT-
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image datasets show the large performance gain brought out by U-Transformer compared to U-Net

and to the local attention in [19]].

2.2 Related Work

Attention Models As we said in [subsection 1.3.3| only few works have been proposed and use
simple attention modules [[101, 102,103} 104,105, 119,1106]. Attention U-Net [[19}103]] is one of those
models and introduces an additive attention gate which aims at filtering the features coming from the

skip connections, as shown in Fig. The attention weights are computed from the gating signal
coming from the previous level of the decoder and the skip connection. At the bottom, we can see the
detailed attention gate and how the weights are computed. The final attention is very local because
every operation is done at a pixel level.

In U-transformer, we introduce a cross-attention module in the decoder. It shares the same
motivation of filtering out the skip connections based on more semantic features than in Attention
U-Net. However, the attention gate shares the same limitation of local attention as the other models.
On the other hand, our cross-attention is based on Transformers [29] and is able to model long-range
interactions. Moreover, our MHCA is original in its design since the keys and the queries are computed
from the high-level features. It differs from the standard way cross-attention is used in [29]]. In our
case, we are not trying to express similarities between the different U-Net levels but rather to filter the
skip-connections based on the self-similarity of more semantic features. On top of that, we propose
to add a Multi-Head Self-Attention (MHSA) in the bottleneck which further enforces the modeling of
global interactions in our model, which are not leveraged in Attention U-Net.

Discussion on Concurrent Works. Transformer networks have not been extensively studied in
medical image analysis. However, there have been several attempts in the last few months [120, 107,
121,136/, [14]. In TransUnet [[107], the authors propose a method inspired by DeTr [122]] integrated into
a U-Net model. It could be seen as using only self-attention in the bottleneck as compared to our model
which also adds cross-attention mechanisms in the skip connections. In the TransFuse model [121],
the attention module is inspired by SeTr [123]] where the image is first divided into patches which are
then considered as tokens. Using this approach reduces considerably the input information contrary
to our model which uses the complete image and could model finer global interactions. In CoTr [14],
the model is based on Deformable DeTr [124] which is a very specific method aiming at reducing
the memory needed by Transformers by using a “deformable” Transformer that does not compute the
complete attention matrix. Instead, they use a limited number of reference points which point with an
offset vector to the most important tokens but not all of them. It allows the processing of multi-scale

and high-resolution features. Despite those attempts, none of them propose to use a cross-attention in
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Figure 2.3: The Attention U-Net as proposed in [19]: The top image is the overall architecture with
Attention Gates (AGs) at each skip connection. The bottom image is the attention gate mechanism
with g being the gating signal (from the previous decoder block) and x the input signal (the skip
connection).

a U-shape FCN to improve the spatial recovery in the decoder, contrary to U-Transformer.

2.3 The U-Transformer Network

As mentioned in Section[2.1] encoder-decoder U-shaped architectures lack global context informa-
tion to handle complex medical image segmentation tasks. We introduce the U-Transformer network,
which augments U-Nets with attention modules built from multi-head transformers. U-Transformer
models long-range contextual interactions and spatial dependencies by using two types of attention
modules (see Fig[2.4): Multi-Head Self-Attention (MHSA) and Multi-Head Cross-Attention (MHCA).

64



2.3. THE U-TRANSFORMER NETWORK

Both modules are designed to express a new representation of the input based on its self-attention in
the first case (cf. [2.3.1)) or on the attention paid to higher level features in the second (cf. [2.3.2).

P Max-pooling (by 2) P (Conv 3x3x3 + BN + ReLU)(x2)
P Conv 1x1 + BN + ReLu P Upsampling (by 2) + Conv 3x3

Figure 2.4: U-Transformer augments U-Nets with transformers to model long-range contextual
interactions. The Multi-Head Self-Attention (MHSA) module at the end of the U-Net encoder gives
access to a receptive field containing the whole image (shown in purple), in contrast to the limited
U-Net receptive field (shown in blue). Multi-Head Cross-Attention (MHCA) modules are dedicated
to combine the semantic richness in high level feature maps with the high-resolution ones coming
from the skip connections.

2.3.1 Self-attention

The MHSA module is designed to extract long-range structural information from the images. To
this end, it is composed of multi-head self-attention functions as described in [29] positioned at the
bottom of the U-Net as shown in Figure 2.4] The main goal of MHSA is to connect every element in
the highest feature map with each other, thus giving access to a receptive field including all the input
images. The decision for one specific pixel can thus be influenced by any input pixel. The attention
formulation is given in Equation [2.5]

2.3.2 Cross-attention

The MHSA module allows to connect every element in the input with each other. Attention may
also be used to increase the U-Net decoder efficiency and in particular, enhance the lower level feature
maps that are passed through the skip connections. Indeed, if these skip connections ensure to keep a
high-resolution information they lack the semantic richness that can be found deeper in the network.
The idea behind the MHCA module is to turn off irrelevant or noisy areas from the skip connection
features and highlight regions that present a significant interest for the application. Figure [2.6| shows

the cross-attention module. The MHCA block is designed as a gating operation of the skip connection
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Figure 2.5: MHSA module: the input tensor is embedded into a matrix of queries Q, keys K and
values V. The attention matrix A in purple is computed based on Q and K. (1) A line of A corresponds
to the attention given to all the elements in K with respect to one element in Q. (2) A column of the
value V corresponds to a feature map weighted by the attention in A.

S based on the attention given to a high level feature map Y. The computed weight values are then
re-scaled between 0 and 1 through a sigmoid activation function. The resulting tensor, denoted Z in
Figure[2.6] is a filter where low magnitude elements indicate noisy or irrelevant areas to be reduced.
A cleaned-up version of § is then given by the Hadamard product Z® S. Finally, the result of this
filtering operation is concatenated with the high level feature tensor Y. Here, the keys and queries
are computed from the same source as we are designing a filtering operation whereas for NLP tasks,
having homogeneous keys and values may be more meaningful. This configuration proved to be
empirically more effective.

2.4 Experiments

We evaluate U-Transformer for abdominal organ segmentation on The Cancer Imaging Archive
(TCIA) pancreas public dataset [30], and an Internal Multi-Organ dataset (IMO).

Accurate pancreas segmentation is particularly difficult, due to its small size, complex and variable
shape, and because of the low contrast with the neighboring structures, see Fig In addition, the

multi-organ setting assesses how U-transformer can leverage attention from multi-organ annotations.

Experimental setup The TCIA pancreas datasef!] contains 82 CT-scans with pixel-level annotations.
Each CT-scan has around 181 ~ 466 slices of 512 x 512 pixels and a voxel spacing of ([0.66 ~ 0.98]
x [0.66 ~ 0.98] x [0.5 ~ 1.0]) mm?.

We also experiment with an Internal Multi-Organ (IMO) dataset composed of 85 CT-scans anno-
tated with 7 classes: liver, gallbladder, pancreas, spleen, right and left kidneys, and stomach. Each

Thttps://wiki.cancerimagingarchive.net/display/Public/Pancreas-CT
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Figure 2.6: MHCA module: the value of the attention function corresponds to the skip connection
S weighted by the attention given to the high level feature map Y. This output is transformed into a
filter Z and applied to the skip connection.

CT-scan has around 57 ~ 500 slices of 512 x 512 pixels and a voxel spacing of ([0.42 ~ 0.98] x
[0.42 ~ 0.98] x [0.63 ~ 4.00])mm”.

All experiments follow a 5-fold cross validation, using 80% of images in training and 20% in
test. We use the Tensorflow library to train the model, with Adam optimizer (10~* learning rate,
exponential decay scheduler).

We compare U-Transformer to the U-Net baseline [20] and Attention U-Net [19] with the same
convolutional backbone for fair comparison. We also report performances with self-attention only
(MHSA, section [2.3.1), and the cross-attention only (MHCA, section [2.3.2). U-Net has ~ 30M
parameters, and the overhead from U-transformer is limited (MHSA ~ 5M, each MHCA block
~ 2.5M).

2.4.1 U-Transformer performances

Table [2.1] reports the performances in Dice averaged over the 5 folds and over organs for IMO.
U-Transformer outperforms U-Net by 2.4pts on TCIA and 1.3pts for IMO, and Attention U-Net by
1.7pts for TCIA and 1.6pts for IMO. The gains are consistent on all folds, and paired t-tests show that

the improvement is significant with p—values < 3% for every experiment.

Extended results. We also conducted extended experiments using nnU-Net [1] as a baseline and a
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Table 2.1: Results for each method in Dice similarity coefficient (DSC, %) on TCIA and IMO. Bold
indicates best performances.

Dataset U-Net [20] Attn U-Net [19] MHSA MHCA U-Transformer
TCIA | 76.13(£0.94) 76.82 (£ 1.26) | 77.71 (£ 1.31) 77.84 (£ 2.59) 78.50 (£ 1.92)
IMO 86.78 (£ 1.72) 86.45(+1.69) | 87.29 (+1.34) 87.38 (+1.53) 88.08 (£ 1.37)

training pipeline. nnU-Net is a stronger and deeper version of UNet, well optimized and trained in
a tailored training pipeline for medical image segmentation. It reaches the best results on multiple
tasks. We evaluated our approach using the nnU-Net authors’ Github code on TCIA using 3 fold and
following the experimental setup in [1]]. As presented in Tab. [2.2]our results show a gain of 1pt (84.08
vs 83.09 in Dice), which is a large improvement given the strong baseline, and statistically significant
with a paired t-test (p=0.023). This highlights that our MHSA/MHCA modules improve performances
over state-of-the-art convolutional models.

Table 2.2: Extended results in Dice (%) on TCIA using nnU-Net [1]] baseline and experimental setup.
In this setup, U-Transformer has more layers, and the MHSA is applied also on more layers. The
number of layers match nnU-Net architecture.

Dataset | nnU-Net [[1]] MHSA MHCA U-Transformer
TCIA | 83.09 (£ 1.23) | 83.78 (= 1.12) 83.41 (£ 1.08) 84.08 (£ 1.17)

Figure provides a qualitative segmentation comparison between U-Net, Attention U-Net and
U-Transformer. We observe that U-Transformer performs better on difficult cases, where the local
structures are ambiguous. For example, in the second row, the pancreas has a complex shape that is

missed by U-Net and Attention U-Net but U-Transformer successfully segments the organ.

In Table[2.1] we can see that the self-attention (MHSA) and cross-attention (MHCA) alone already
outperform U-Net and Attention U-Net on TCIA and IMO. Since MHCA and Attention U-Net apply
attention mechanisms at the skip connection level, it highlights the superiority of modeling global
interactions between anatomical structures and positional information instead of the simple local
attention in [[19]]. Finally, the combination of MHSA and MHCA in U-Transformer shows that the
two attention mechanisms are complementary and can collaborate to provide better segmentation

predictions.

Table[2.3]details the results for each organ on the multi-organ IMO dataset. This further highlights
the interest of U-Transformer, which significantly outperforms U-Net and Attention U-Net for the most
challenging organs: pancreas: +3.4pts, gallbladder: +1.3pts and stomach: +2.2pts. This validates
the capacity of U-Transformer to leverage multi-label annotations to drive the interactions between

anatomical structures and use easy organ predictions to improve the detection and delineation of more
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Figure 2.7: Segmentation results for U-Net [20], Attention U-Net [19] and U-Transformer on the
multi-organ IMO dataset (first row) and on TCIA pancreas (second row).

difficult ones. We can note that U-Transformer is better for every organ, even the liver which has a
high score > 95% with U-Net.

Table 2.3: Results on IMO in Dice similarity coefficient (DSC, %) detailed per organ.

Organ U-Net [20]  Attn U-Net [19] MHSA MHCA U-Transformer
Pancreas 69.71 (£3.74)  68.65 (£2.95) | 71.64 (£3.01) 71.87 (£297) 73.10 (+2.91)
Gallbladder | 76.98 (£ 6.60)  76.14 (£6.98) | 76.48 (+6.12) 77.36 (£6.22) 78.32 (£6.12)
Stomach 83.51 (£4.49) 82.73 (£4.62) | 84.83 (£3.79) 84.42 (+435) 85.73 (+3.99)
Kidney(R) | 92.36 (+0.45) 92.88 (+1.79) | 92.91 (+1.84) 92.98 (+1.70) 93.32 (+ 1.74)
Kidney(L) | 93.06 (+1.68) 92.89 (+0.64) | 92.95 (+1.30) 92.82 (+1.06) 93.31 (£ 1.08)
Spleen 9543 (+1.76) 9546 (£1.95) | 9543 (+2.16) 95.41 (£2.21) 95.74 (+2.07)
Liver 96.40 (£0.72)  96.41 (£0.52) | 96.82 (£ 0.34) 96.79 (£ 0.29) 97.03 (= 0.31)

2.4.2 U-Transformer analysis and properties

Positional encoding and multi-level MHCA. The Positional Encoding (PE) allows to leverage the
absolute position of the objects in the image. Table[2.4]shows an analysis of its impact, on one fold on
both datasets. For MHSA, the PE improves the results by +0.7pt for TCIA and +0.6pt for IMO. For
MHCA, we evaluate a single level of attention with and without PE. We can observe an improvement
of +1.7pts for TCIA and +0.6pt for IMO between the two versions.
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Table [2.4] also shows the favorable impact of using multi vs single-level attention for MHCA:
+1.8pts for TCIA and +0.6pt for IMO. It is worth noting that Attention U-Net uses multi-level
attention but remains below MHCA with a single level. Figure [2.8]shows attention maps at each level
of U-Transformer: level 3 corresponds to high-resolution features maps, and tends to focus on more
specific regions compared to the first levels.

Table 2.4: Ablation study on the positional encoding and multi-level on one fold of TCIA and IMO.

MHSA MHCA
U-Net Attn U-Net | woPE— WwWPE | 1IvlwoPE - 11vlwPE - multi-lvl w PE
TCIA 76.35 77.23 78.17  78.90 77.18 78.88 80.65
IMO  88.18 87.52 88.16  88.76 87.96 88.52 89.13

Ground Truth Cross-attn level 1 Cross-attn level 2 Cross-attn level 3

Figure 2.8: Cross-attention maps for the yellow-crossed pixel (left image).

Further analysis. To further analyze the behavior of U-Transformer, we evaluate the impact of the
number of attention heads for MHSA Fig. 2.9} more heads lead to better performances, but the
biggest gain comes from the first head (i.e. U-Net to MHSA). Finally, the evaluation of U-Transformer
with respect to the Hausdorff distance Tab. [2.3]follows the same trend as with the Dice score. This
highlights the capacity of U-Transformer to reduce prediction artifacts by means of self- and cross-
attention. In addition, we have evaluated our method on a TCIA multiorgan extension which gives the
same trends as with our IMO Table 5.3.

Table 2.5: Hausdorff Distances (HD) for the different models

Dataset U-Net Attn U-Net U-Transformer
TCIA 13.61 (£2.01) 1248 (£ 1.36) 12.34 (= 1.51)
MO 12.06 (£ 1.65) 12.13 (£ 1.58) 12.00 (£ 1.32)
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Figure 2.9: Evolution of the Dice Score on TCIA (fold 1) when the number of heads varies between
0 and 8 in MHSA.

2.5 Conclusion

This chapter introduces the U-Transformer network, which augments a U-shaped FCN with Trans-
formers. We propose to use self and cross-attention modules to model long-range interactions and
spatial dependencies. We highlight the relevance of the approach for abdominal organ segmentation,
especially for small and complex organs. To enhance the ability of U-Net to capture more context,
the utilization of 3D images would be appropriate. U-transformer is limited to 2D segmentation and
the self-attention module is in the bottleneck modeling only coarse interactions. The extension of this
method to 3D images while keeping global interactions at each level is an open question and the core

of the next chapter.
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Chapter summary

The quadratic complexity of self and cross-attention in U-Transformer renders it ineffective in
handling the high dimensionality of 3D medical images. This issue also impacts the architecture
of the model as the self-attention can only be performed in the bottleneck and the cross-attention
requires a downsampling pre-processing. Thus, U-Transformer can’t model long-range interaction

with high-resolution features which limits its efficiency. This chapter aims to address these limitations
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by incorporating long-range interaction modeling even in high-resolution feature maps. We present
GLAM (GLobal Attention Multi-resolution transformers) as a solution to address the aforementioned
limitations. The core idea of GLAM is to incorporate global tokens in the model, influenced by the
class token[93}[125], that serves as pivotal elements for the transmission of information across various
regions of the image at each stage. GLAM includes learnable global tokens, which unlike classical
transformer-based methods can model interactions between all image regions, and extract powerful
representations during training. GLAM is a generic module that can be integrated into most existing
windowed Transformers backbones. Consequently, this integration of GLAM engenders extensive
interactions over long distances, which were previously absent in the model. Extensive experiments
show that GLAM-Swin or GLAM-Swin-UNet exhibit substantially better performances than their
vanilla counterparts on ADE20K and Cityscapes. Moreover, GLAM can be used to segment large
3D medical images, and GLAM-nnFormer achieves new state-of-the-art performance on the BCV

dataset.
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3.1 Introduction

The main appeal of transformers is their ability to grasp long-range interactions, which is a crucial
point for semantic segmentation. However, this strategy is not easily scalable to high-resolution images
involving a large number of patches, due to the quadratic complexity of the transformer’s attention
module. For instance, The U-Transformer presented in only applies self-attention in the
bottleneck, and cross-attention uses a downsampling operation which degrades the spatial information.
A simple and efficient strategy to tackle this limitation is to rely on multi-resolution approaches, where
the attention in high-resolution feature maps is computed on sub-windows. There have been various
recent attempts in this direction [17, [114, 126, 112 21]. However, they limit the interactions of
high-resolution features to within each window. These limitations will be detailed in the related work

section.

We introduce an approach for semantic segmentation that incorporates global attention in multi-
resolution transformers (GLAM). The GLAM module enables full-range interactions to be modeled
at all scales of a multi-resolution transformer. As illustrated in Fig. 3.1] incorporating GLAM
into the Swin architecture [[17] enables to jointly capture fine-grained spatial information in high-
resolution feature maps and global context, where both elements are crucial for proper segmentation
in complex scenes. This concept is illustrated in Fig. [3.T where Fig. [3.Th) shows an input image, and
Fig.[3.1b) shows the self-attention map provided by GLAM in the highest-resolution feature map for
the pedestrian region pointed out by the yellow cross in Fig.[3.Th). We can see that the attention map
involves long-range interactions between other visual structures (cars, buildings), in contrast to the
Swin baseline, where the window attention at a high-resolution feature map is limited to the small
rectangular region in Fig. [3.Tp). Consequently, GLAM has exploited longer-range interactions to
successfully segment the image, as shown in [3.14d).

To achieve this goal, we have made the following novel contributions:

* We introduce the GLAM transformer, able to represent full-range interactions between all local
features at all resolution levels. The GLAM transformer is based on learnable global tokens
interacting between all visual features. To fully take into account the global context, we also
design a non-local upsampling scheme (NLU) which is inspired by the cross-attention used in
but extend the idea by incorporating a full transformer module.

* GLAM is a generic module that can be incorporated into any multi-resolution transformer. It
consists of a succession of two transformers applied on the merged sequence of global and
visual tokens and in-between global tokens. We highlight that the GLAM transformer can

represent full-range interactions between image regions at all scales while retaining memory
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¢) Ground Truth d) GLAM prediction

Figure 3.1: When segmenting the high-resolution image in a) with state-of-the-art multi-resolution
transformers, e.g. Swin [[17]], the attention in the highest-resolution feature maps is limited to a small
spatial region, i.e. the blue square for the yellow-crossed pedestrian. Our method incorporates GLobal
Attention in Multi-resolution transformers (GLAM). The GLAM attention map for the pedestrian in
a) 1s depicted in b): it captures both fine-grained spatial information and long-range interactions,
enabling successful segmentation, as shown in d).

and computational efficiency. Beyond spatial interactions, global tokens also model the expected
scene composition.

» Experiments on various generic (ADE20K) [127], autonomous driving (Cityscape) and
medical (BCV) datasets [128] show the important and systematic gain brought by GLAM when
included into existing state-of-the-art multi-resolution transformers including Swin, Swin-UNet,
and nn-Former. We also show that GLAM outperforms state-of-the-art methods on BCV.

Finally, ablation studies, model analysis, and visualizations are presented to assess the behavior
of GLAM.

3.2 Related work

Several recent approaches proposed adaptations of the vanilla ViT architecture. In particular,
some architectures rely on multi-resolution processing. T2T ViT [129] constructs richer semantic
feature map through token aggregation while TnT and crossViT uses two transformers for
fine and coarse resolution. PvT [114] is the first backbone with a fully pyramidal architecture that is

based on windowed transformers, allowing to process the images at fine resolution and to build rich
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feature maps while reducing the spatial complexity. Other methods kept this hierarchical approach
while improving information sharing between the windows. Swin [[17] and its variant [21} 2] proposed
to use shifted windows, Twins [|132] uses interleaved fine and coarse resolution transformers, and

CvT [133]] replaces linear embedding with convolutions.

These methods are based on the fact that self-attention cannot be applied to long sequences
e.g. patches from high-resolution images because the computation of the attention matrix has quadratic
memory complexity. To allow high-resolution processing and thus long sequences of small patches,
windowed transformers treat the image as a batch of non-overlapping windows [17, [114} [112,126].
This approach is combined with a pooling strategy [21, [17, 114} [126] and is well suited to build
a multi-resolution encoder, able to produce rich semantic maps. Multi-resolution backbones are
built by chaining windowed transformer blocks and downsampling. These hierarchical architectures
manage to build larger receptive fields in deeper layers, similar to CNNs. This, however, does not
guarantee a global receptive field and the maximal receptive field depends on the model’s depth.
More importantly, this process introduces a major modification to the transformer modules. At a finer
resolution, only local interactions are considered. With this modification, the processing of isolated

patches by self-attention may not be as effective as global self-attention performed on the full image.

3.3 The GLAM Method

The main idea in GLAM is to provide a way to represent full range interactions at all feature map
resolutions, which is impossible in vanilla models, especially in high-resolution feature maps, due to

the quadratic complexity of attention transformers.

GLAM is illustrated in Fig. where it has been added to the Swin-UNet architecture [17]. Note
that GLAM can be included in various multi-resolution architectures, e.g. Swin [21]] or PvT [114]
and is also applicable for 3D segmentation, e.g. nn-Former [2]]. The core idea in GLAM is to design
global tokens (in red in Fig. [3.2)), which are leveraged into a succession of two attention steps: first,
between visual tokens in each window independently and, second, between global tokens among
different windows. We show in Sec. [3.3.1| that this design enables to represent full range interactions
between all image regions at all scales, and also external information useful for segmentation while
retaining efficiency. We also introduce a non-local upsampling scheme (NLU) to extend the full
context modeling in U-shape architectures and to provide an efficient interpolation of rich semantic

feature maps in an associated decoder.

As shown in Fig.[3.2] GLAM can be included into any multi-resolution transformer architecture [[17,
11411126} 112, 21, 2.
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Figure 3.2: The GLAM module for modeling full-range interaction in multi-resolution transformers.
GLAM is included at each resolution level of any multi-resolution transformer architecture, e.g. Swin-
UNet [17] or Swin-UperNet [17]. GLAM includes learnable global tokens, which are leveraged
into a succession of two attention steps. We show that this design can indirectly represent long-
range interactions between all image regions at all scales, and also external information useful for
segmentation while retaining efficiency. We also introduce a non-local upsampling scheme (NLU) to
extend the global context modeling in full transformer U-shape architectures such as [21} 2].

3.3.1 Global attention multi-resolution transformers

We show how the GLAM module can provide global attention in all feature maps of multi-
resolution transformers. The GLAM transformer is illustrated in Fig.[3.3] consisting of a sequence of
L transformer blocks, processing visual tokens in each region of the multi-resolution maps (shown in
blue in Fig.[3.3)) and global tokens (shown in red in Fig. [3.3).

The basic idea behind GLAM is to associate global tokens to each window that is responsible to
encapsulate the local information and transmit it to other image regions by computing MSA between
all global tokens. Thus, when information is processed at the window scale, the visual tokens embed-

ding incorporates useful long-range information.

Global Tokens. Global tokens lie at the core of Global Attention (GA). They are specific tokens
concatenated to each window and are responsible for communication between windows. We define
as N,, the number of windows in the feature map, N, as the number of patches per window, and
{vi}lgkg n, as the sequence of windows after being processed by the I'" GLAM-transformer block.
We define as {g} }1<i<n, the sequence of Np-dimensional global tokens associated to each window.
The initialization of the global tokens {g,?}lngNw is the same for all windows and is learned by

the model. The input of the I'" transformer block, defined as z, is a batch of tokens from each
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Figure 3.3: GLAM-Transformer: as in multi-resolution approaches, each input feature map is
divided into N,, non overlapping windows (blue). The core idea in GLAM is to design learnable
global tokens (in red). The visual tokens from each window are concatenated with the global tokens
and processed through a local window transformer (W-MSA). Every W-MSA is followed by a global
transformer (G-MSA), where global tokens between different windows interact with each other, which
brings a global representation to each window. These two steps give the GLAM-Transformer block;
Multiple blocks are chained at every hierarchy level in typical multi-resolution transformer backbones.
We show that global tokens learned from GLAM-Transformer indirectly model global interactions
between all visual tokens in all widows. The global tokens are also able to represent extra learnable
knowledge beyond the patch interactions in a single image.

window concatenated with the corresponding global tokens, i.e. z/ € RN X (N +Np)XC with € being the
dimension of the tokens. Consequently, the elements in the batch have the form:

!

k
GLAM-Transformer. The communication between windows at a given hierarchy level is obtained
through the interaction of global tokens. At each block / of the GLAM-transformer, there are two
steps: i) visual tokens grasp their local statistics through a local window transformer (W-MSA), and
ii) the global tokens are re-embedded by a global transformer (G-MSA), where global tokens from
different windows interact with each other. Formally, the " GLAM-transformer block inputs z/~!
and outputs z' by the succession of a W-MSA and a G-MSA step:

2l = W-MSA(Z' 1),
g' = G-MSA(g"),
T
2 =[gf's!'] (3.2)

We define as Alr the attention matrix for the window r in the transformer block /. We introduce the
following decomposition to express the attention with respect to the global and local tokens:
Al =

r

A

I i
A
res ?gVI ) (3.3)

Vg ARy
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The square matrices AL e RNe*Ne and AL e RN <Ny give the attention from the global token

}’gg ryy

and the spatial tokens on themselves respectively. The matrices AL o € RYN and Almg € RV
are the cross attention matrices between local and global tokens. We define as B € RMwNe) < (N-Ng)
the global attention matrix from all the global token sequence and Bﬁ i€ RNe*Ne as the sub-matrices

giving the attention between the global tokens of windows i and j.

GLAM-Transformer properties. Putting aside the value matrix, the W-MSA gives the following
embedding g’ from gl

l l —1
g =A gggr +Argv (34)

The G-MSA, i.e. the MSA on the sequence of global tokens gives the following embeddings:

N,y
g = Y. Bl
n=1
Ny
=Y B, (A} g ' +AL V). (3.5)
n=1

From Eq. we have the expression of the global token for a window r processed by the [ G-MSA
block transformer. Developing this formulation we obtain the following expression for the k¥ global

token in the " window:

Ny Ng Ng+N) -
=) Zbkmm'( Y aj,mz,;,/)

/7 F— '7

Nw Ng

o Z Zbkwr(zaﬂzé’n/

r=1j

NP
-1
+ Z aj,r’7i+NgV,',rf ) . (36)
i=1

The variables z; », g;, and v; , corresponds respectively to the visual, global or generic token i in
window r. a;j ,; is the attention coeflicient given by the token j to the token i inside the window r.
b; i is the attention coefficient from the global token j in the window r to the global token j in
the window r’. Re-arranging the indices of equation leads to the following expression for the k"
global token in the 7" window:
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; Ny Np [ Ng f
o -1
gk,r - Z Z Z bk7r7j7r, ajvr/7(i+Ng) Vi,r,
F=li=1 \j=1
Nw

Ng Ng
+ Z (Z bk7r7j,r’ Z a;, i gf;/1> (3.7)
j=1 i=1

r'=1

This leads to a global attention matrix Gy, € R(MwNo)x(NwNo) agsociated to the k™ global token given by

(G = Zl;lil b rjrajp (ieng) + Zl;lil i 1.y Z?]:”'l aj ;. Eq gives the embedding of the global
token gfﬂr at the I GLAM-transformer block, with respect to all visual tokens in all feature map
windows vﬁ;,l (first row), and all global tokens gﬁ;,l (second row). This rewriting shows that the global
embedding g,lw captures interactions between all image regions independently of the resolution. The
different terms in the decomposition are interpreted as an attention map associated with each image
region. This is the visualization shown in Fig[3.1} the row of the first term corresponds to patch-
based attention which depends on all the tokens of the feature map, while the second row represents

window-based attention.

Overall, global tokens embedded with GLAM-transformers provide a way for information propa-
gation across all windows (first row in Eq.. [3.7)), but also global information (second row) that goes
beyond matching visual features in a single image. Especially, this represents global and learned in-
formation across the dataset and can be leveraged as a stabilizing effect in SA, because the information
is shared not only from the input but from all the windows in the dataset. This makes them a powerful

tool to interpret isolated tokens and to take advantage of redundant structures in the data.

GLAM-Transformer complexity. The computational complexity of an MSA module for an image
I divided into & x w patches has quadratic scaling with respect to the image area hw. The windowed
approach W-MSA only depends on N,hw. The complexity of both methods is given by:

Q(MSA(I)) = 4hwc® +2(hw)?c (3.8)
Q(W-MSA(I)) = 4hwc* +2N,hwe (3.9)

This makes the W-MSA scalable to a large number of patches where the MSA can not be computed.
With few global tokens, the global attention adds only a few numbers of operations as it corresponds
to adding N, tokens in each window and performing MSA over a sequence of length N, X N,,,. Itis also
worth noting that the global tokens add a limited memory overhead as they do not require any more

activation saving and only add a few elements in the attention matrix from each transformer block.

Non-Local Upsampling. We introduce a Non-Local Upsampling (NLU) module for a full transformer
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decoder such as [21} [2]. NLU is designed to upsample the semantic features based on all the tokens

coming from the skip connection, by drawing inspiration for non-local means [134].

The proposed NLU is illustrated in the supplementary material. To perform the upsampling, the
skip connections are embedded into a query matrix of size (4N,) x C while the semantic low-resolution
features are embedded into the keys and values of size N, x C. The projection of the values on the

resulting attention matrix has the size (4N,) x C.

3.4 Experiments

3.4.1 Experimental Settings

Datasets. We evaluated our method on three different semantic segmentation datasets: ADE20K [31],
Cityscapes [32]] and BCV [33]. ADE20K is a scene parsing dataset composed of 20,210 images with
150 object classes. Cityscapes contains driving scenes and is composed of 5,000 images annotated
with 19 different classes. BCV is an abdominal organ segmentation dataset that includes 30 CT scans

which are 3D volumes annotated with 8 abdominal organs.

Implementation details. GLAM models were implemented into the mmseg [135] codebase and the
models were trained on 8 Tesla V100 GPUs. The layers were pretrained on ImageNet-1K and standard
augmentation was used: random crop, rotations, translations, ezc. We used the Adam optimizer with
a weight decay of 0.01 and a polynomial learning rate scheduler starting from 0.00006 and with a
factor of 1.0. The reported segmentation performances are mean Intersection over Union (mloU) for
ADE?20k and Cityscapes and Dice Similarity Score (DSC) for BCV.

Training details: ADE20K and Cityscapes. For both ADE20K and Cityscapes, we implemented
GLAM into the mmseg codebase [135]. All experiments ran on 8 Tesla V100 GPUs with 32GB
and a batch size of 16 using data augmentation from the mmseg framework: random horizontal
flipping, random re-scaling within ratio range [0.5, 2.0] and random photometric distortion. GLAM
is implemented into the Swin and Swin-UNet models. Therefore, we were able to use the pre-
trained weights from the respective models on ImageNet-1k [[136]. For the case of the Swin-UNet
backbone, we keep the same strategy as in [21] and duplicate symmetrically the encoder’s weights
to the decoder before fine-tuning. The added NLU and G-MSA modules could not benefit from this
strong pre-training and their parameters were initialized randomly. Thanks to their integration into
the overall architecture and the limited parameter increase they represent, this did not impact the good
performances of the GLAM models. Complete pre-training on ImageNet of the GLAM backbones
may however lead to even higher scores. The chosen optimizer is Adam with a weight decay of 0.01

and a polynomial learning rate scheduler starting from 0.00006 and with a factor of 1.0. The images
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in train are cropped at a size of 512 x 512 for ADE20K and 768 x 768 for Cityscapes. In validation
the complete image is provided.

Training details: BCV. BCV is a medical image dataset composed of abdominal CT-scans. Thus,
the models aren’t pretrained on ImageNet as for ADE20K or Cityscapes. However, we integrated our
experiments in the nnUNet framework that integrates an efficient training procedure. We followed
the nnFormer model and used the SGD optimizer with an initial learning rate of 0.01. We employ a
polynomial learning rate scheduler and a weight decay of 3e-5. The loss function is a combination of
the cross entropy and dice. Similarly to nnFormer, the numbers of heads used in the encoder stages
are [6, 12, 24, 48]. The training is performed through 1000 epochs where each image is cropped at
a size of (128 x 128 x 64), as it is classically done for semantic segmentation over large 3D medical

images, and in validation, we use a sliding window on the complete input volume.

3.4.2 GLAM performance

Table 3.1: GLAM Improvements on various multi-resolution transformers. Performances are
evaluated with respect to mloU for ADE20k and Cityscapes and average DSC for BCV.

Dataset Method Size  Score
Swin-UNet [21]] Tiny 42.75
GLAM-Swin-UNet Tiny 44.19
Swin-UNet [21] Small 47.49
GLAM-Swin-UNet Small 47.90
Swin-UNet [21]] Base 47.85
GLAM-Swin-UNet Base 49.10
Swin-UperNet[[17]] Tiny 43.69
GLAM-Swin-UperNet | Tiny 44.16

ADE20K Swin-UperNet [17] Small 47.72
GLAM-Swin-UperNet | Small 47.75
Swin-UperNet [17] Base 47.99
GLAM-Swin-UperNet | Base 48.44
Swin-UperNet [17] Tiny 78.24
GLAM-Swin-UperNet | Tiny 78.64
Swin-UperNet [17] Base 80.79

Cityscapes GLAM-Swin-UperNet | Base 81.47
Swin-UNet [21]] Tiny 77.43
GLAM-Swin-UNet Tiny 78.29

BCV nnFormer [2]] Tiny 87.40
GLAM-nnFormer Tiny 88.60
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GLAM in multi-resolution transformers. GLAM is well suited to work with window transformers
such as PvT [[114,/112] or Swin [17] as well as its variants [21,2]]. Due to the top performances of Swin,
we incorporated GLAM into this backbone to compute the segmentation of 2D datasets leading to two
models: GLAM-Swin-UperNet and GLAM-Swin-UNet. The first one is a hybrid model combining
a transformer backbone and a CNN head [21], [80] while the second one is a full transformer model
with a decoder symmetric to the encoder [21]. For 3D images, GLAM was plugged into nnFormer [2]]
which is designed similarly to Swin-UNet for 3D medical image segmentation. The performances
of the Swin and GLAM models are presented in Table 3.1l GLAM models exhibit important and
consistent performance gains compared to their vanilla counterparts, either on small or larger models:
e.g. ~ +1.5pt gain on ADE20K with Swin-UNet (Base or Tiny), and +1.2pt on BCV on the recent

nn-Former model.

State-of-the-art comparison. We now compare the GLAM-Swin models with existing approaches
on BCV [33], ADE20K [31] and Cityscapes [32].

BCYV. Table reports our results and recent baselines for 3D medical segmentation. GLAM-
nnFormer significantly outperforms all other existing methods by at least 1.2% average Dice. To the

best of our knowledge, GLAM-nnFormer outperforms state-of-the-art on the BCV dataset.

ADE20K and Cityscapes. Table summarizes our results. To be fair, we compared models up to
~ 150M parameters, and we report the top performances from the mmseg [[135] benchmark for all
methods, with 160K training epochs for all methods. Moreover, we compared only methods trained on
768 x 768 resolution images on Cityscapes. In this setup, GLAM-Swin-UNet yields 49.10% mloU on
ADE20K outperforming its vanilla Swin counterpart with at least 1.10% mloU. GLAM-Swin-UperNet
achieves 81.47 % mloU on Cityscapes which is 1.58 % better than its Swin-Upernet counterpart.

Table 3.2: Comparison to state of the art methods on BCV.

Methods Average Dice Score (%)
VNet [137] 68.81
U-Net [138] 76.85
Att-UNet [19] 77.77
R50-Deeplabv3+ [[79] 75.73
TransUNet [107] 77.48
Swin-Unet [21] 79.13
TransClaw U-Net [139] 78.09
nnUNet (3D) [140] 86.99
nnFormer [2] 87.40
GLAM-nnFormer 88.60
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Table 3.3: Comparison to state of the art methods on ADE20K and Cityscapes. All experiments are
made or reported are with single-scale inference.

ADE20K Cityscapes

Method Backone mloU mloU
FCN [77] ResNet-101 41.40 77.34
CCNet [141] ResNet-101 43.71 79.45
DANet [[142] ResNet-101 43.64 80.47
UperNet [80] ResNet-101 43.82 80.10
DNL [143] ResNet-101 44.25 79.41
PSPNet [78] ResNet-101 44.39 79.08
DeepLabV3+ [79] ResNet-101 45.47 79.41
Trans2Seg [114] PVT-S 42.60 -

FPN [114] PVT-L 42.10 -

TNT [130] TNT-S 43.60 -

SETR-PUP [144] DeiT-L 46.34 79.21
Swin-UNet [21] Swin-B 47.85 -

Swin-UperNet [17] Swin-B 47.99 80.79
GLAM-Swin-UNet Swin-B 49.10 -

GLAM-Swin-UperNet | Swin-B 48.44 81.47

3.4.3 Additional results

ADE20K In this additional experiment we use Multi Scales (MS) inference to evaluate the model
and their extended GLAM version on ADE20K. As shown in [3.4] while MS inference improves the
performances for all the methods, the GLAM models still outperform their baselines. Indeed, in this
configuration, GLAM-Swin-UNet Base reach +1.55% on ADE20K and is still +0.93% higher than
Swin-UNet Base.

Cityscapes We provide the same analysis on Cityscapes and compare the performances of Sinw-UNet
Tiny and GLAM-Swin-UNet Tiny with and without MS inference as reported in[3.5] Again, GLAM-
Swin-UNet Tiny outperforms Swin-UNet Tiny by 1% mloU when trained over 40k epochs using
MS inference. Moreover, we also give complementary results by providing performances with both
models trained through 160k iterations. As can be seen in the better performances of the GLAM
model are stable as the GLAM-Swin-UNet outperforms its baseline by 0.80% mloU and 1.09% mloU
with respectively SS and MS inference when trained through 160k epochs.

Synapse To explore more in depth the performance gain brought out by GLAM in Table 3 of the main
paper, we show in [3.6| the segmentation results for the different organs of the dataset. The results are
given for two baselines: TransUNet [107] and nnFormer [2] as well as for GLAM-nnFormer. We

use the publicly available implementations provided by authors for both modelq’j?l The proposed

Thttps://github.com/Beckschen/TransUNet
2https://github.com/282857341/nnFormer
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Table 3.4: GLAM Improvements with Multi Scale inference on ADE20K. Performances are
evaluated with respect to mloU for single scale inference (SS) and multiscales inference (MS).

Method Size SS MS

Swin-UNet [21]] Tiny 4275 44.72
GLAM-Swin-UNet | Tiny 44.19 46.11
Swin-UNet [21]] Base 47.85 49.72
GLAM-Swin-UNet | Base 49.10 50.65

Table 3.5: GLAM Improvements with Multi Scale inference on Cityscapes. Performances are
evaluated with respect to mloU for single scale inference (SS) and multiscales inference (MS).

Method Size  SS MS

Swin-UNet 40K [21] Tiny 77.43 78.56
GLAM-Swin-UNet 40K | Tiny 78.29 79.56
Swin-UNet 160K [21]] Tiny 79.98 80.90
GLAM-Swin-UNet 160K | Tiny 80.78 81.99

GLAM-nnFormer sensibly outperform both baselines for all the classes except on the kidneys and the

pancreas where the results are close to the standard nnFormer.

Table 3.6: Detailed per-organ comparison on the multi-organ Synapse dataset (Dice Score in %).

Methods Aotra Gallbladder Kidnery(L) Kidnery(R) Liver Pancreas Spleen Stomach
TransUNet [107] | 87.23 63.16 81.87 77.02 94.08 55.86 85.08 75.62
nnFormer [2] 89.81 63.18 93.78 94.58 96.19  83.16 95.76 86.14
GLAM-nnFormer | 90.10 65.81 93.92 94.56 96.74 8291 96.49 88.20

3.4.4 Model Analysis

In this part, we analyze various important aspects of GLAM.

Number of Global Tokens. The number of global tokens directly influences the capacity of GLAM
to model global interactions between the windows. Fig. [3.4]shows the impact of this hyper-parameter
on segmentation performances. We can see that using more global tokens improves performance.
However, it also increases the number of parameters and memory cost which forces a trade-off. We
keep a reasonable value of 10 global tokens, which gives an important performance boost of +1.4pts

in both the tiny and base versions of the Swin-UNet model.

Impact of NLU. GLAM improves context modeling in multi-resolution transformers thanks to global
attention and Non-Local Upsampling (NLU). Table provides an ablation study of these two

components. We can see that NLU gives an improvement of 0.45pt compared to the original Swin-
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Figure 3.4: Impact of the number of global tokens on performance (mloU) using ADE20k.

Table 3.7: Impact of the NLU and the GLAM transformer on a tiny Swin-UNet, 10 global tokens, on

5
glebal tokens

ADE20k.
Method NLU GLAM | mloU
Swin-UNet-T 42.75
Swin-UNet-T v 43.20
Swin-UNet-T v v 44.20

UNet that uses a patch expansion operation for upsampling. GLAM brings another large improvement

for a total gain of +1.44pts compared to the baseline.

Long-range interaction. To highlight the impact of G-MSA, Table shows the performances of
GLAM backbones using only a W-MSA step but no G-MSA. GLAM backbones show consistent gains
compared to their counterparts without G-MSA. This ablation highlights the crucial role of this step
to leverage long-range interactions and that the performance gains made by GLAM can not only be

explained by the parameter overhead.

Table 3.8: Impact of G-MSA phase on GLAM transformer on different model, 10 global tokens, on

ADE20k. GLAM-nogmsa is GLAM without the G-MSA phase.

10

Method mloU
GLAM-nogmsa-Swin-UNet B 47.90
GLAM-Swin-UNet B 49.10
GLAM-nogmsa-Swin-UperNet B | 47.95
GLAM-Swin-UperNet B 48.44

Parameter and FLOPs overhead. The overhead due to the global tokens is controlled and propor-

tional to the number of GLAM transformer blocks. This overhead brings higher performance gains

87




3.4. EXPERIMENTS

than increasing the backbone size which validates the model architecture. Table[3.9)illustrates that the
GLAM-Swin Base backbones show superior efficiency compared to their vanilla Large counterpart
with a superior mloU increase with respect to additional learnable parameters. The same analysis can
be done with FLOPs overhead with a higher mloU increase per extra-FLOP for GLAM-Swin Base

compared to Swin Large.

Table 3.9: Analysis of the relative mIoU increase with respect to extra learnable parameters and
FLOPs compared to the standard Base and Large backbones.

1 rel. mloU / #param 1 rel. mIoU / FLOPs

backbone ‘ #param. FLOPs

x1072 %1072
Swin-UperNet B 121 0 81G 0
Swin-UperNet L 234 0.4 180G 0.4
GLAM-Swin-
UperNet B 197 0.6 99G 2.5

e

Input image GLAM global attention

Figure 3.5: Averaged GLAM attention map in 3D. The information inside the blue window is
ambiguous. To segment the voxel at the red cross, the model leverages long-range dependencies
including neighbor organs. The pancreas is in green, the aorta in red, and the stomach in blue.

Global token merging strategy. Here, we study the importance of how the global tokens between
different windows are merged: with the GLAM transformer, we use a global self-attention (G-MSA)
mechanism. We compare G-MSA with an averaging and a random permutation strategy. We can see
in Table [3.10] that G-MSA is largely superior to the two other options. This validates the usefulness
of the G-MSA step, which enable indirect modeling of full-range interactions between visual region
when applied after W-MSA.
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Table 3.10: Global token merging (tiny Swin-Unet, ADE20k).

Merging strategy mloU
Random permutation | 43.2
Average 43.7
G-MSA Merging 44.2

3.4.5 Visualizations.

ADE20K and Cityscapes. Fig. shows qualitative visualizations of the GLAM method. In
Fig. [3.6p), we show GLAM attention maps for the highest resolution feature maps of a GLAM
Swin-Unet model. Echoing observations in Fig. [3.1]in Cityscape, we can see that GLAM can model
full-range interactions in this spatially fine layer. This enables to exploit spatial relationships with
other important structures (e.g. other sofas, arcades), which is not possible with the baseline Swin-
Unet due to its limited window attention. We can notice the relevance of the GLAM segmentation.
Furthermore, Fig. [3.5] shows the GLAM attention averaged over the axial direction for the red cross
(pancreas). We can see that long-range dependencies are involved, with a much larger spatial extent
than the local window (in blue), where attention is given to neighboring organs (stomach and aorta).
The full context is crucial to properly segment complex organs with visual local ambiguities such as
the pancreas.

In[3.8]and 3.9] we select some representative images of the GLAM-Swin-Unet and GLAM-Swin-
Upernet. We provide attention maps for the lowest hierarchy as well as the generated segmentation
map for the GLAM models. The attention is computed with respect to a global token associated to
the 7 x 7 blue window plotted in the image (not to the scale). For the first stage of the model, the
patch size is 4 x 4 patches and thus the dimension of the window is 28 x 28 pixels. We see that
the model manages to detect long-range interactions directly in high-resolution feature maps without
being limited by the small window size. Attention is paid mostly between elements of the same class:
vegetation in[3.8] chairs or sky in[3.9]but also to salient elements such as corners or edges and semantic

ones such as cars and pedestrians.

We provide another comparison on ADE20K in Fig. below. Again, we can notice that Swin’s
attention is limited to the small blue region. In contrast, GLAM can compute a global attention map at
high-resolution thanks to the G-MSA module, providing both accurate spatial information and global

context.

BCYV. In Fig. [3.6b), we show segmentation results of GLAM-nn-Former for 3D medical image

segmentation. We show the results on a given 2D slice. We can notice that GLAM nn-Former is
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GLAM global attention Ground truth GLAM prediction

a) Segmentation results and global attention of GLAM on ADE20K.

Input image (2D slice) Ground truth nnFormer prediction GLAM prediction
b) Segmentation results on BCV.
Figure 3.6: Qualitative visualisations of GLAM. We show the ability of GLAM to model full contextual

information in high-resolution feature maps on ADE20K (first row), and the ability of GLAM-nn-
Former to accurately segment the stomach (in pink).

GLAM global attention

Swin Attention

Figure 3.7: Global attention of GLAM compared to vanilla Swin on ADE20K.

qualitatively much better at segmenting the stomach (in pink) than nn-Former. This can be explained
by the global interactions of our model, which enables it to better represent specific interactions

between organs.

In [3.10] we present more segmentation results on 3D medical images and provide a qualitative
analysis of the performances between nnFormer and GLAM-nnFormer. The GLAM model manages
to retrieve better segmentation of the liver (pink) and the stomach (purple). The memory effect of the
global tokens manages to limit the error due to the inference on 3D crops which is well illustrated on

the liver reconstruction.
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Figure 3.8: Qualitative results of GLAM incorporated to Swin-upernet on Cityscapes For two
test images, we show from top-left to bottom-right : the image, the global attention map with respect
to the blue window, the ground truth and the predicted segmentation.

3.5 Conclusion

This chapter introduces GLAM, a method for modeling full contextual interactions in multi-
resolution transformer-based models. The GLAM transformer leverages learnable global tokens at

each resolution level of the model, which allows a complete interaction of the tokens across the image
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Figure 3.9: Qualitative results of GLAM incorporated to Swin-UNet on ADE20K For two test
images, we show from top-left to bottom-right : the image, the global attention map with respect to
the blue window, the ground truth and the predicted segmentation.

regions. Experiments show the large and consistent gain of GLAM when incorporated into several
multi-resolution transformers (Swin-UNet, nn-Former, Swin) on diverse natural, panoptic or medical

datasets.

Nevertheless, the typical size of 3D medical images doesn’t allow to directly segment the full
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nnFormer prediction GLAM prediction

Input image (2D slice) Ground truth nnFormer prediction GLAM prediction

Figure 3.10: Qualitative results of GLAM Incorporated to nnFormer on BCV. The observed
organs are the liver (pink), the stomach (purple), the aorta (cyan) and the spleen (blue).

volume. A common strategy is to train the network on randomly cropped patches. If this strategy
ensures relatively good performances and generalization, it strongly restricts the context of the model
and thus the scale of the information to grasp. For 3D medical image segmentation, GLAM is able to
model full interaction in the cropped patch input but is still unable to model interactions beyond this
cropped patch. These out-of-range interactions in the full original volume are not exploited. To deal
with this issue, in the next chapter, we present an extension of GLAM that is able to indirectly model

out-of-range interactions.
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Chapter 4

LORI: Long and Out of Range Interaction
transformer module for 3D medical image
segmentation
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Chapter summary

We saw in the last chapter that indirect attention is a promising tool to model long-range interaction

even at high-resolution. This concept extends well to very large medical volumes which are typically

95



trained on random cropping. If this training strategy allows scalable training on high-resolution
medical volumes, the attention of the model is restricted to the cropped patch boundaries. This means
that with this strategy the model lost what we call out-of-range interactions. In this chapter, we
introduced a novel transformer-based method to effectively model high-resolution interactions inside
the cropped patch and still capture out-of-range interactions from the large anatomical structure by
building upon the concept of indirect attention introduced in GLAM in We introduce
a new transformer method that aims to address the aforementioned challenges by facilitating the
incorporation of long-and-out-of-range dependencies in medical segmentation models. This method
incorporates global tokens that serve to propagate global representations between the different regions
of the image. We provide two variants of this method: FINE (Full resolutloN mEmory transformer), a
full transformer architecture that works as a preliminary proof of concept, and LORI (Long and Out-of-
Range Interaction transformer) which is a generic module allowing it to be seamlessly integrated into
existing models such as nnUNet. FINE is a proof of concept extending GLAM method by using two
levels of global tokens for long-range and out-of-range interactions modeling while LORI utilizes only
one type of global token to model all interactions simultaneously, resulting in enhanced efficiency.
We performed preliminary experiments on BCV with FINE showing its relevance, and extensive
experimental evaluations with LORI on three distinct datasets: two 3D CT multi-organs segmentation
datasets and one 3D ultrasound image dataset for liver and vessel segmentation. The results obtained
from these evaluations demonstrate the consistent enhancement in segmentation performance achieved
by LORI. Notably, LORI exhibited superior performance across multiple multi-class high-resolution

3D image datasets, irrespective of the different modalities involved.
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4.1 Introduction

Nowadays, most existing DL based segmentation methods [34, 14} 35, 36] can not handle full 3D
medical images and are limited to processing sub-regions of the input image ie. cropped patches.
Contrary to 2D slices, those patches enable to preserve the 3D nature of the input, while keeping the
original resolution of the volume and maintaining all the fine-grained details. However, this approach
is not free of drawbacks. Indeed, patches are processed independently, leading to a dramatic loss of
context: information outside the crop ie. out-of-range information, cannot be used in the prediction
and is lost. Consequently, when facing challenging segmentation scenarios, e.g., intricate organs or
noisy data, the models often struggle to produce accurate segmentation. As illustrated in Fig. [4.1]
the input patch, represented by the green square, encompasses only a limited portion of the original
image. Consequently, the amount of available information within this patch is insufficient for an
accurate segmentation of the kidney, depicted in yellow. The main objective of this chapter is to

address this issue by using a new method to model out-of-range interactions.

In this chapter, we generalize the concept of global tokens as a pivot to spread multi-scale infor-
mation in the attention. Compared to standard self-attention applied on raw 3D volume, this approach
provides a way to model global context while maintaining memory usage and computational cost
under control. Thus, we present the Full resolutloN mEmory transformer (FINE) and the Long and
Out-of-Range Interaction transformer (LORI).

In Fig. 4.1 LORI shows its capacity to effectively leverage both long-range and out-of-range
information modeling meaning that both high-resolution information inside the crop and in the full
volume are processed. As represented by the attention map, each pixel can indirectly attend to any
other pixel of the original volume, even outside the input patch. Moreover, the global tokens can learn
by them-self strong positional information of the region they are assigned to. In this way, it enables the
model to accurately segment the pixel indicated by the red cross, by benefiting from a larger context.

The main contributions of this chapter are as follows:

* We introduced FINE, which serves as a preliminary work for LORI. FINE is a proof of concept
for modeling of long and out-of-range interactions through global tokens in the context of 3D
medical image segmentation. FINE uses one type of global tokens for long-range information
and another one for out-of-range information. Then FINE uses two Transformer modules to

create the information indirection.

* We propose LORI, an efficient module for modeling long and out-of-range interactions through
global tokens, enabling the effective dissemination of information from the entire original

volume to all feature maps, bringing consistent gains to the performance of state-of-the-art
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LORI's Prediction LORI's Indirect Attention

Figure 4.1: Visualization of LORI’s Indirect Attention on the WORD Dataset. The red cross indicates
the focal pixel, with the attention map highlighting its corresponding attention. Unlike the limitation
imposed by the window size (blue square), LORI efficiently computes long-range attention across
the entire input cropped image (green square). Furthermore, LORI effectively captures out-of-range
attention from the complete volume, as demonstrated through visualizations on axial, sagittal, and
coronal planes. These visualizations demonstrate LORI’s capacity to harness information from
diverse spatial dimensions, underscoring its potential in significantly enhancing 3D medical image
segmentation.

methods. LORI uses only one type of global tokens to model all interactions and thus uses only

one Transformer making it more efficient as it requires less parameters.

* We demonstrate the versatility of LORI through its integration into various state-of-the-art
segmentation architectures: CNNs with nnUNet[34], Transformers with 3D Swin-UNet[35]],
and hybrid such as CoTr [14].

* We show the superiority of LORI compared to state-of-the-art models on two significant 3D
CT datasets for multi-organ segmentation, as well as a private dataset for liver and vessel

segmentation in 3D ultrasound images.

4.2 Indirect attention modeling

We aim to model large-scale and high-resolution interactions by generalizing the concept of
information indirection through global tokens. This necessitates the identification of three levels of
information. Firstly, at the window level, we want to preserve fine-grained details and thus compute
full quadratic self-attention. The second level corresponds to the cropped patch extension over which
we aim to propagate local windows information. Lastly, at the global level, information is derived

from the overall volume which describes the high-level structures within the image. Ideally, we would
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like the information to cascade from the global level to the window level. To circulate information,

we need to subdivide each level into sub-regions to be paired with dedicated global tokens.

Generic Notations. We will present here the notations needed for the methods:

H x W x D the full volume dimensions

* H, x W, x D, the dimension of the large volume sub-regions

* ng the number of global tokens associated with each of the sub-regions

* N. = }% the number of sub-regions in a large volume

* N,, the number of windows in the patch cropped for training

o x € RI>XWrxDr the patch cropped from the large volume to be processed by the neural network

* N, the number of visual tokens paired with each window v

o {viti<k<n, € RN»*4 the set of visual token sequences related to the k — th window of the input
X

* Visual tokens ie. inside a window will be in blue and global tokens in red

* NB: To ease the computation and restrict the number of global tokens, we chose the sub-
regions and the windows to be non-overlapping. Moreover, the cropped patch and the volume

sub-regions dimensions share the same dimensions.

4.3 The Full resolutloN mEmory transformer (FINE)

We introduce the specific following notations for this sub-section only:

e 0 € RWNwNo)xd, sequence of N,, window-level global tokens

« W e RWeN)xd, sequence of N, volume-level global tokens

The core idea of FINE is to introduce global tokens to enable full-range interactions between all
voxels at all resolution levels with random cropping. We introduce global tokens at two levels. First,
we add specific global tokens to the sequence of visual tokens from each window. We chose to call
them window tokens to avoid any confusion. The second level of global tokens will be used to keep

track of the observed part of the volume. We will refer to these dedicated global tokens as volume
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tokens. These volume tokens are associated with each element of the grid of sub-regions covering
the entire volume and are called by the transformers when performing the segmentation of a cropped
patch. As can be seen in Figd.2] the volume tokens induce a positional encoding learned over the

entire volume.

High-Resolution

Volume _
xT
' ~ ] -
DDEEEE DoEEEE ® DoEEEN
EREEENE EEEEEE . [omsA ] EEEEER
’ EEE EEE

\_

3D cropped
patch
| | OOEE
oEmg ] M T ooeo
- visual token |:| window token - volume token |:| current volume token

Figure 4.2: To segment the cropped patch in blue and model global context, two levels of memory
tokens are introduced: window (red) and volume (green) tokens. First, the blue crop is divided into
windows over which Multi-head Self-Attention (MSA) is performed in parallel. For each window,
the sequence of visual tokens (blue) is augmented with a specific window token. Second, the local
information embedded into each window token is shared between all window tokens and volume
tokens intersecting with the crop (light green). Finally, high-level information is shared between all
volume tokens).

In Fig.2] volume, window, and visual tokens are indicated in green, red, and blue respectively.
First, MSA is performed for each window over the merged sequence of visual and window tokens.
Given a sequence of visual tokens ie. small patches, W-MSA consists of computing the MSA in
parallel for all windows composing the sequence. G-MSA is performed over the merged sequence
of all window tokens and corresponding volume tokens to grasp long-range dependencies in the
input patch. G-MSA involves only the volume token corresponding to sub-volumes intersecting with

the input patch x. Finally, full-resolution attention is achieved by applying MSA over the sequence
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of volume tokens. Formally, the /-th FINE-transformer bloc is composed of the following three

operations:

V0] = W-MSA('~, ")),
(o, W] = G-MSA([o'~!, w'™1)), (4.1)
Ww! =MSA(W)).

w denotes the volume tokens corresponding to sub-volumes with a non-null intersection with x and

la, b] stands for the concatenation of a and b along the first dimension.

4.4 Long-and-Out-of-Range Interaction method (LORI)

We introduce the specific following notations for this sub-section only:

G € RM:*4; sequence of all grounded global tokens

N, the number of sub-regions overlapping with x

g € RN~*4: sequence of grounded global tokens associated with the regions overlapping with x

{22} with 20 = [0, g% the merged sequences of visual tokens for the window k and the global

tokens related to the cropped area.

Asillustrated in Fig. [4.3] LORI uses global tokens grounded to regions of the input volume. During
a forward pass, global tokens related to regions overlapping with the cropped patch are injected into
the model (Fig. 4.3|(a)). Through LORI, these global tokens circulate information in the patch (Fig.
[4.3](b)) and infuse out-of-range information (Fig. 4.3](c)).

Grounded Long-Range Interaction Global tokens behave as local representations of specific anatom-
ical parts. The fact that all of these parts are not available when segmenting a given crop is a challenging
configuration to learn these representations. Rather, than learning two separate sets of global tokens
dedicated to extract useful representations of the underlying structure and propagate high-resolution
information between windows, we use only one level of global tokens grounded to each sub-region
of the volume. These global tokens are learned asynchronously by updating only the ones associated

with the regions overlapping with the training patches x.

Out-of-range interaction Injecting grounded global tokens into the GLAM module gives the model

the ability to use learned representations of the regions surrounding the patch. This information
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Figure 4.3: Overview of the LORI module: (a) shows the whole set of global tokens of LORI (purple
tokens), each one associated with a region of the image. When a cropped patch is selected into the
full-size image (red square), the associated global tokens are selected (red tokens). The set of visual
tokens (yellow tokens) is also selected and reorganized into a subset of windows. (b) shows the first
attention step of LORI where the selected global tokens are duplicated to form the global feature map
and to be associated with each window. A window transformer (W-MSA) is applied to this feature
map to share information between the global feature map and the visual tokens. (c) shows the second
attention step of LORI done by a classic transformer (G-MSA) on the features composed of the global
feature map which captured information from each window and the set of all global tokens. This step
lets the global feature map share information between all windows and incorporates information from
the full-size image.

allows the model to align the visual tokens of the input with the learned high-level representations thus
improving their relevance during training. To go one step further, by chaining multiple W-MSA and
G-MSA operations, LORI uses not only surrounding information but the representations of the total
underlying structure allowing the model to indirectly grasp interactions beyond the observed patch.
LORI’s complete sequence of operations is given by a slight modification of the GLAM introduced
previously and the /-th block of the module has the following form:

2l = W-MSA(Z' 1),

T
¢ =aMsa([6”g"]).
/ r T
Vke{l,'-~,Nw}zk:[v§<,g” . 4.2)

LORI possesses the capability to replicate the information exchange among windows performed
by long-range interaction modeling. Additionally, through G-MSA, the attention between the selected
global tokens g’ and all the global tokens G' is evaluated, and information from the entire volume

is indirectly shared. Subsequently, in block [ + 1, the out-of-range information gathered by g’ is
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transmitted to the visual tokens of the cropped region v/*!, thereby sharing the captured information.

Upon comparing LORI to FINE [40], it becomes evident that LORI exhibits a more streamlined
architecture, employing only two multi-head self-attention operations: one for window attention and
another for long and out-of-range attention, as expressed by Eq. #.2] In contrast, FINE utilizes three
separate steps, partitioning the G-MSA into two parts. This dissimilarity grants LORI enhanced
efficiency by requiring fewer parameters and operations for establishing the information indirection.
Furthermore, LORI enables easier propagation of out-of-range information, necessitating only two
modules in the layer to transfer the information from global tokens to visual tokens, in contrast to
FINE’s three steps, resulting in a lighter overall architecture.

Indirect LORI attention As depicted in Fig. ??(c), LORI facilitates the indirect computation of
attention across the entire input volume. The attention between the global tokens (depicted on the
left) that capture long-range and out-of-range information is integrated with the local visual tokens,
allowing for the indirect propagation of information across all visual tokens and thus indirect full
attention. To observe this attention and thus better understand the method, we can develop the indirect
attention formula based on the LORI’s operations described earlier. The following section will show
how to compute the indirect attention of LORI mechanism.

th

Let note: i, j and [ the ' cropped patch, j*" window and /" LORI’s block.

The attention matrix of LORI’s W-MSA for crop i, window j, and block / can be denoted as Af e
Similarly, the attention matrix of LORI’s global tokens MSA for crop i and block / can be represented

as Bf. We describe these matrices as:

l l l 1
Al — {A;J}vv A;‘j,vgl B! = Bil,GG Bil,Gg 4.3)
g | [ i— / / .
Alj,gv AlJ,gg Bl,gG Bt,gg

We define A;; ,y, or B; x, the sub-matrices of the attention between a set of token x as queries and an

other set y as keys and values.

In the following proof, we aim to obtain the indirect global attention matrix for the visual tokens

of window j, crop i, and block /. To accomplish this, we consider the indirect cumulative contribution

I+1

of all tokens in the construction of v;;~ which is indirectly based on all the visual tokens vi-1 for all

cropped patch ¢ and window w.

Thanks to Eq. [3.2]and Eq. [4.3] we can describe the composition of each token with their associated
attention matrix like this:

103



4.4. LONG-AND-OUT-OF-RANGE INTERACTION METHOD (LORI)

Ground Truth nnUNet 3D Swin-UNet CoTr
I Liver Kidney (L) Stomach I Esophagus I Duodenum Intestine HE Rectum IS Femur (L)
N Spleen Kidney (R) Gallbladder HEl Pancreas N Colon Adrenal Bladder Hl Femur (R)

Figure 4.4: Visualisation of segmentation masks produced by the different methods on the test set of
WORD dataset.

! -1 ! -1
A;J vy V;'j | + A;'j,vg g;'j |
gi{ = Alij,gv Vig 1 + Alij,gg g;'j (4.4)
Gi=Bigs G + Big &
I _pl -1 ! ~l
8ij=Bigs; G + Big; &
Then, using Eq. 4.4| we can develop Vl“.
N I+1
Vij At]vvv +Al]vgglj
AL Y=l Al I+1 (! / -1
_Aljvv(AleV +A]Vggz] )+Aljvg(B ggjgl+B,gG]G )
141 Al l N L 1 !
+ +1 +1 “1
- Al_] val] wVij AzJ vg (B i.gg, ]ngw) + Al] vg (Bl ,8G, ]cGi,c ) +Cst (4.5)
w C
Ny N,
141 Al I+1 I ! I+1 -1
Alj VVAl] wV z] Alj vg (B 0,88, ]wAzw gv ) Alj vg ( i,gG, ]CG ) +Cst
w
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Now, to visualize the indirect attention that contributes to construct v ] ! outside of the cropped
patch i, we pose that Gf Cl = GIQCVC € [1,...,Nc]. We can do this assumption because Gﬁ Cl represent
an estimation of the information contained in the cropped patch ¢ and Gé,c is the global tokens that

represent the most the cropped patch ¢ as it has captured information from its visual tokens. So we

can write:
N, N,
I+1 I4+1 Al I+1 l l I+1 l
Vij Al] valJ wV Al] vg <Bl .88 JWAlW gv ) Au vg ( i,8G, ]CG ) +Cst
w
I4+1 Al I+1 pl l l 1
Al] VvAl] vv + Z ALJ vgB 1,88, ]WAIW gv ) (46)
¥ Ny 1 1 l
+1
+ Z(Z(AU vgB ,8G, jCBC Gg, chcw ,gV )) +Cst
C w

We can now observe the indirect attention coeflicients that contribute to the formation of the visual
tokens VfJH Let Cf;LCIW represent the indirect attention of the visual tokens from crop i and window j
with respect to all other crops ¢ and windows w in the volume, for layer / 4- 1. Consequently, we have

the following expression:

I+1 l . .
Az] vng gG,]ch Gg, chcw gV ifc#i
+1 _ 141 1 l I+1 p! l : _ :
Cz] cow T Alj vgBl gG, ]zBi,Gg,zwAlw gv + Alj vng 28, ]WAlW gv ; ifc=iandw 7é J
141 l l [+1 l +1 Al
Alj vng gG, szi,Gg,zwAlw gv + Alj vng g8, ]JAl] gv + AU V\/Al_] v else.

4.7)

Fig. [4.1]illustrates the indirect attention computed using the formulation in equation Eq. The
visualizations demonstrate that LORI effectively captures long-range and out-of-range interactions.
Notably, on the axial plane, we observe that the attention within the window (blue square) appears
denser, indicating direct attention focused on this region. This observation aligns with the formulation
in Eq. where a higher number of attention weights are involved within the window. Moreover,
the indirect attention outside the window exhibits diversity, with distinct focuses on other anatomical
structures such as organs, bones, or skin boundaries. This indirect attention provides the model with

robust positional information, enhancing its ability to accurately segment the pixel of interest.
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4.5 Experiments

4.5.1 Datasets

In order to demonstrate the effectiveness of our proposed method, we conducted training and
evaluation experiments on three distinct datasets: WORD [37]], Synapse multi-organ segmentation
(BCV) [38]], and a private dataset named LIVUS. For each dataset, we report the results along with
their corresponding standard deviations, which were computed across all different patients in the
datasets.

WORD. The Whole abdominal ORgan Dataset (WORD) is a recently introduced large-scale
dataset specifically designed for algorithm research and clinical application development. It consists
of a collection of 150 abdominal CT volumes. In our experiments, we adhere to the predefined training
and testing splits provided by the dataset, which encompass 100 volumes for training purposes and 30
volumes for testing. Each CT volume in the dataset is made up of a total of 16 distinct organs, namely
the liver, spleen, left kidney, right kidney, stomach, gallbladder, esophagus, pancreas, duodenum,
colon, intestine, adrenal gland, rectum, bladder, left femur, and right femur.

BCYV. The BCV dataset consists of 30 abdominal CT scan cases. Following the commonly used
data split [35]], 18 cases are selected to form the training set, while the remaining 12 cases are kept for
testing purposes. In our evaluation, we report the performance of the model on 13 specific abdominal
organs, namely the spleen, right kidney, left kidney, gallbladder, esophagus, liver, stomach, aorta,
inferior vena cava (IVC), portal vein system (PVS), pancreas, right adrenal gland, and left adrenal

gland.

LIVUS. The Llver and Vessels UltraSound (LIVUS) dataset is a private segmentation dataset
comprising 24 3D ultrasound volumes of the liver and its associated vessels: portal vein (PV), inferior
vena cava (IVC), and hepatic vein (HV). The segmentation of these vessels is hard as they are similar
and close one to another. For our experiments, we used a split of 16 volumes for training and 8 volumes
for testing. The acquisition of this dataset was carried out by us. Three domain experts annotated
each volume. The final segmentation masks are obtained by combining these annotations through the
STAPLE[145] (Simultaneous Truth and Performance Level Estimation) algorithm. Four classes are
annotated in this dataset: the liver, PV, IVC and HV.

4.5.2 Implementation details

This work was performed using HPC resources from GENCI-IDRIS, using a single Nvidia V100
GPU with 32GB memory for the experiments. Following the training strategy described in 34,14} 35,
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371, the initial learning rate is set to 0.01, and a polynomial decay strategy is employed for the learning
rate schedule. The SGD optimizer was used, with a momentum value of 0.99 and a weight decay
of 3e-5. Models are trained with deep supervision with a hybrid loss combining both cross-entropy
and dice losses through addition. Training is performed for 1000 epochs, each epoch comprising 250

iterations with a batch size of 2.

As stated in [34], all volumes were first resampled to achieve a consistent target spacing. Then,
a series of augmentations such as rotation, scaling, Gaussian noise, Gaussian blur, brightness and
contrast adjustment, simulation of low resolution, and gamma augmentation were employed. However,
we did not use mirroring augmentation due to its incompatibility with the proposed approach, which

is strongly based on the positional information.

4.5.3 Backbones

In this study, we evaluate the efficiency of the proposed approach. To this end, we propose a
comparison with various SOTA architectures: CNN with nnUNet[34] and DeepLabV3(2D) [39],
Transformer with 3D Swin-UNet [35] and FINE [40], and hybrids with CoTr[14] and UNETR [36].
Except for DeepLabV3 and UNETR because of computing resources, all the models were trained in

the same configuration, for comparison purposes.

LORI, being a versatile module, can be seamlessly integrated into various segmentation models.
In this study, we chose nnUNet as the backbone for LORI due to its SOTA performance across multiple
datasets. Additionally, nnUNet’s convolutional-based architecture presents a limitation in terms of
small receptive fields in high-resolution feature maps. However, this limitation is effectively addressed
by LORI, which extends the model’s ability to capture long-range interactions. To integrate LORI
into nnUNet, we implemented a Swin Transformer module following the operations described in Sec.
4.4l This module was inserted after each convolutional layer of the nnUNet encoder, allowing LORI
to utilize the feature maps generated by the convolutions. Additionally, in Sec. 4.6.3] we extended the
application of LORI to other backbones such as 3D Swin-UNet. This was achieved by replacing the
original operations with LORI’s operations. Furthermore, in the case of Colr, we incorporated extra
global tokens into the sampling points set[124]] and applied the out-of-range interaction operations on

this modified set, enabling the integration of LORI into the CoTr model.
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4.6 Results

4.6.1 Preliminary results

The results in this section are from preliminary experiments done on the BCV dataset with a
smaller set of organs to match other prior methods papers showing results. Here we show that our

proof of concept works by comparing it to multiple SOTA methods.

Average Per organ dice score (%)
Method HD95S DSC| Sp Ki Gb Li St Ao Pa
UNet [146] - 774 | 86.7 732 69.7 934 75.6 89.1 54.0
AttUNet [19] - 783 | 873 746 689 93.6 758 89.6 58.0
VNet [147] 67.4 | 80.6 789 519 87.8 57.0 753 40.0

Swin-UNet [21] 21.6  78.8 | 90.7 814 665 943 76.6 855 56.6
nnUNet [140] 105 87.0 | 919 869 71.8 97.2 853 93.0 83.0
TransUNet [107] | 31.7 843 | 88.8 849 72.0 955 84.2 90.7 740

UNETR [36]] 23.0 78.8 | 87.8 852 60.6 945 740 90.0 59.2
CoTr* [25] 11.1  85.7 | 93.4 86.7 66.8 96.6 83.0 92.6 80.6
nnFormer [2] 99 86.6 905 864 70.2 96.8 86.8 92.0 833
FINE* 9.2 871 [ 955 874 665 97.0 89.5 91.3 825

Table 4.1: Method comparison using the BCV dataset and the training / test split from [2]. Average
Dice scores are shown (DSC in % - higher is better). The average and individual organ 95% Hausdorft
distances are also shown (HD95 in mm - lower is better). * denotes results trained by us using the
authors’ public code.

Single fold comparison To fairly compare with reported SOTA results, the same single split of
18 training and 12 test images was used as detailed in [2]. The results are provided in Table
FINE obtains the highest average Dice score of 87.1%, which is superior to all other baselines. It
also attains the best average 95% Hausdorff distances (HD95) of 9.2mm. Note that the second best
method in Dice (nnUNet) is largely below FINE in HD95 (10.5), and the second best method in HD95
(nnFormer) has a large drop in Dice (86.6).

S-fold cross-validation comparison A 5-fold cross-validation of 18 training and 12 test images was
used to compare FINE with the public implementation of the leading transformer baselines (Colr
and nnFormer). The Dice score results are provided in Table 4.2l FINE'’s average improvement is
significant (more than 1.5 pt with the second baseline with low variance), and FINE gives the best
results in 6 out of 7 organ segmentation. The statistical significance in Dice is measured with a paired
2-tailed t-test. The significance of FINE gains with respect to Colr (3e-2) and nnFormer (5e-2) is
confirmed.
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Method Average Sp Ki Gb Li St Ao Pa
CoTr [25] 84.44+3.7 || 91.8£5.0 | 87.9+3.4 | 60.4+10.0 | 95.7+1.4 | 84.8+1.3 | 90.3+1.8 | 80.0£3.2
nnFormer [2] | 84.6+3.6 || 90.5+£6.1 | 87.9+3.3 | 63.3£8.1 | 95.7+1.7| 86.4+0.8 | 89.14+2.0 | 79.5+3.5
FINE 86.3+3.0(944+19 |905+43 | 65.9+78 |96.0+1.1 | 87.9+1.2|89.4+1.7 | 80.2+2.8
P-values FINE vs. Cotr : 3e-2 FINE vs. nnFormer : 5e-2

Table 4.2: Method comparison with SOTA transformer baselines (Colr and nnFormer) using the BCV
dataset and 5-fold cross validation. Results show mean and standard deviation of Dice (in %) for each
organ and the average Dice over all organs (higher is better).

Average Per organ dice score
HD95 DSC| Sp Ki Gb Li St Ao Pa
nnFormer [2] | O 0 8.0 86.2 1960 942 572 965 872 89.5 82.5
v 0 7.7  86.6 | 9577 942 609 96.8 85.1 90.0 83.8
v oo v | 52 871962 945 615 968 87.3 90.3 83.0

Method WT VT

FINE

Table 4.3: Ablation study of the impact of different tokens on BCV dataset. The metrics are Dice
score (DSC in %) for all organs and in average, and the 95% Hausdorft distance (HD95 in mm). WT:
Window tokens. VT: Volume tokens.

Ablation study To show the impact of the different tokens in FINE, an ablation study is presented in
Table d.3] Three variations of FINE are compared: FINE without tokens, which is equivalent to the
nnFormer method; FINE with window tokens but without volume tokens, and FINE with window and
volume tokens (default). The results show that the window tokens generally help to better segment
small and difficult organs like the pancreas (Pa) and gallbladder (Gb). The use of window tokens
leads to an increase in average Dice by +0.4 points. Furthermore, adding volume tokens increases
performance further (average Dice increase of +0.5 points, and average HD95 reduction from 7.7mm
to 5.2mm).

4.6.2 Results

In this section, we conduct extended experiments on the three datasets presented earlier. Moreover,
concerning the BCV dataset, we will now use all organs and retrain all SOTA methods as they do
not always give the results for all classes in their original paper. By adding these difficult organs, we
expect to show slightly lower average results. This setup is important to give fairer and reproducible

results.

Comparisons with state-of-the-art. The experimental results, as presented in Tab. highlight
the superiority of our proposed method, LORI, when compared to state-of-the-art approaches across
three diverse datasets. The evaluation demonstrates LORI’s notable efficiency in accurately segment-

ing multiple organs within a 3D CT image. Specifically, LORI achieves a substantial dice score
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improvement of +1.6 points on the WORD dataset and +0.35 points on the BCV dataset compared
to the second best-performing method. Furthermore, LORI exhibits a commendable improvement of
+0.86 points on the challenging LIVUS dataset, characterized by poor-quality ultrasound images. This
outcome underscores LORI’s ability to enhance the quality of segmentation in difficult modalities,

further establishing its effectiveness in addressing challenging segmentation tasks.

Methods | DeepLabV3+(2D) | UNETR(3D) | nnUNet | 3D Swin-UNet | CoTr | FINE | LORI
WORD 84.91 79.77 85.06 79.47 86.26 | 85.26 | 87.86

BCV 75.73 79.56 82.90 82.33 82.44 | 83.01 | 83.25
LIVUS - - 67.50 62.92 66.90 | 64.12 | 68.36

Table 4.4: Comparison of the overall organs mean Dice score (in %) of LORI with state-of-the-art
methods on three different datasets: WORD, BCV, and LIVUS.

Methods DeepLabV3+(2D) | UNETR(3D) nnUNet 3D Swin-UNet CoTr FINE LORI

Liver 96.21+1.34 94.67+1.92 | 96.5740.63 96.36+0.57 96.544+0.60 | 96.36+0.66 | 96.631+0.61
Spleen 94.68+5.64 92.85+3.03 | 96.00+0.87 95.53+1.05 95.9940.84 | 95.62+0.97 | 96.10+0.89
Kidney (L) 92.014+13.00 91.4945.81 94.9043.17 95.02+0.86 95.70+0.83 | 94.97+0.83 | 95.524+0.93
Kidney (R) 91.84+14.41 91.724+7.06 | 95.814+0.93 95.234+0.91 95.864+0.90 | 95.29+0.86 | 95.90+0.87
Stomach 91.1643.07 85.56+6.12 | 91.88+2.85 91.2342.78 92.044+2.27 | 91.00+3.17 | 91.944+2.76
Gallbladder 80.05£17.92 65.084+19.63 | 85.30+6.01 80.0449.16 84.62+595 | 81.48+8.21 | 85.69+5.97
Esophagus 74.884+14.69 67.71+13.46 | 78.504+13.02 | 75.11+13.40 | 78.17+13.04 | 76.08+12.42 | 78.86+12.09
Pancreas 82.39+6.68 74.7949.31 85.46+5.59 82.1446.25 84.52+6.19 | 82.82+6.35 | 85.36+5.76
Duodenum 62.81+£15.21 57.56+11.23 | 70.38+15.34 | 66.51+14.94 | 69.46+15.60 | 66.11+14.93 | 69.96+16.01
Colon 82.72+8.79 74.62+11.50 | 87.35+8.68 85.73+7.86 87.03£8.55 | 86.02+7.26 | 87.01£8.80
Intestine 85.96+4.02 80.40+4.59 | 89.53+3.26 88.15+3.13 89.52+2.97 | 88.36+2.94 | 89.36+3.20
Adrenal 66.82+10.81 60.76+8.32 | 73.41+8.10 66.214+9.74 71.5548.78 | 66.96+9.81 | 72.76+8.50
Rectum 81.85+6.67 74.06£8.03 | 82.0645.48 79.7945.33 81.74+£6.41 | 80.29+5.66 | 82.35+4.88
Bladder 90.864+14.07 85.42+18.17 | 92.28+9.91 91.61+10.38 | 91.944+10.75 | 91.37+11.04 | 92.30+10.03
Head of Femur (L) 92.014+4.76 89.47+6.40 | 76.62+16.64 54.60+6.70 82.02+20.44 | 91.46+4.57 | 92.72+4.22
Head of Femur (R) 92.2944.01 90.174+4.00 | 64.82+14.46 28.3246.54 83.384£21.93 | 79.99+12.23 | 93.23+3.38
Mean 84.91£5.05 79.774+4.92 | 85.06+3.12 79.4743.05 86.26+3.95 | 85.26+3.03 | 87.86+2.94

P-values : LORI vs. nnUNet: 4.6e-8 ; LORI vs. 3D Swin-UNet: 1.7e-26 ; LORI vs. CoTr: 2.6e-3 ; LORI vs. FINE: 3.6e-03

Table 4.5: Detailed results on WORD’s dataset. The Dice score in % is given. The p-values between
LORI and the methods we trained ourselves is also given.

In Tab. §.5] we present the mean dice scores obtained for each organ on the WORD dataset,

which offers the most diverse range of organs for segmentation. The results demonstrate that LORI
outperforms competing methods on the majority of organs. Notably, LORI achieves significant
improvements for organs such as the Gallbladder, Esophagus, and Femurs, which are less represented
in the dataset in terms of organ distribution according to [37]. This suggests that LORI exhibits
greater stability in segmenting organs with limited representation. A statistical t-test was conducted to
evaluate the significance of the performance improvements achieved by LORI compared to nnUNet,

3D Swin-UNet, and CoTr. The p-values in Tab. [4.5] significantly below the significance level of 0.05,
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provide strong evidence to confirm the statistical significance of the gains achieved by LORI compared

to the other models.

Furthermore, as shown in Tab. 4.6 when considering the average 95% Hausdorft Distance, LORI
achieves a value of 6.45 compared to 7.90 for the second-best method. The superior performance
of LORI on this more stringent metric highlights its ability to accurately capture organ boundaries
and produce more precise segmentations. The evaluation of the average symmetric surface distance
(ASSD) further validates the superiority of LORI in terms of segmentation accuracy. With an ASSD
of 0.97 compared to 1.86 for the second-best method, LORI demonstrates a substantial gain of 0.89.
This outcome reinforces the notion that LORI outperforms other methods across multiple evaluation

metrics.

Metric nnUNet 3D Swin-UNet CoIr LORI
HD95 | 8.03 £4.56 | 30.10E£439 |790+541 ]| 6.45 +2.40
ASSD | 1.86 +4.48 6.43 £+ 1.35 1.87 £4.73 | 0.97 & 0.61

Table 4.6: Results on WORD’s dataset showing 95% Hausdorff distance (HD96) and average sym-
metric surface distance (ASSD) metrics.

Finally, LORI performs better on these datasets than FINE. Indeed, LORI is different from FINE
for two main reasons: Firstly, LORI is a completely versatile module. This means that LORI can be
used on any computer vision method to deal with out-of-range modeling problems. Secondly, LORI
is more efficient than FINE as it only employs one transformer module to create the indirection link
between all regions instead of two for FINE. This means that LORI needs fewer parameters to work
and thus the training is also easier. These differences explained the better performances of LORI over
FINE.

4.6.3 LORI Model analysis

Study of the versatility of LORI. To assess the individual contributions of long-range interaction
and out-of-range interaction modeling in LORI, we conducted an ablation study on the WORD and
LIVUS datasets, representing different modalities. By evaluating LORI with only local interaction,
only long-range interaction, and the full LORI model which mixes long and out-of-range interaction,
we were able to quantify the impact of each component. Additionally, we explored the versatility of
LORI by employing different backbone architectures.

Tab. 4.7 presents the results of the ablation study, highlighting the influence of long-range interac-
tion (GLAM) and its combination with out-of-range interaction (ORI) in LORI on the segmentation

performance. Notably, utilizing GLAM methods alone consistently leads to improved average Dice

111



4.6. RESULTS

Method Attention | #Params LIVUS WORD
local 31M 67.50+8.24 | 85.06+3.12
nnUNet GLAM 45M 68.03+8.84 | 86.154+3.83
LORI 45M 68.36+:8.96 | 87.86+2.94
local 159M | 62.92+9.96 | 79.474+3.05
3D Swin-UNet | GLAM 253M | 60.1949.74 | 79.88+2.97
LORI 253M | 64.811+9.80 | 86.12+3.17
CoTr GLAM 41M 66.90+8.23 | 86.2643.95
LORI 63M 67.19+8.59 | 87.48+3.08

Table 4.7: Study of the importance of long-range mechanism (GLAM), the combination of long and
out-of-range mechanisms (LORI) and versatility of LORI module. This ablation shows dice score in
% on LIVUS and WORD dataset. The number of parameter of each method is given showing a small
increase compared to the gains.

scores across the majority of cases. Furthermore, the incorporation of ORI methods consistently en-

hances the Dice scores, even in the presence of Colr, which inherently integrates GLAM techniques.

The ablation study conducted in this research demonstrates the significance and complementar-
ity of the two contributions introduced in LORI: long-range interaction and out-of-range interaction
modeling. The results validate the importance of both components in improving segmentation perfor-
mance. Moreover, the study highlights the potential of LORI as a valuable module to integrate into

existing segmentation methods, as it has been shown to enhance overall performance.

Study of LORI’s structure. The conducted ablation study, as illustrated in Fig. (a) and (b),
reveals that the addition of extra global tokens within the LORI or the addition of extra LORI modules
is dispensable. This observation suggests that the improved performance achieved by LORI cannot
be solely attributed to parameter augmentation, as an excessive increase in global tokens leads to a
decline in performance. Additionally, Fig. 4.5|(c) demonstrates that the placement of LORI in the
high-resolution layers yields superior performance compared to its exclusive placement in the low-
resolution layers. This finding highlights the critical role of LORI in effectively modeling long-range
interactions within high-resolution feature maps. It is important to note that the final architectural
configuration of LORI adopted in this chapter was selected based on the best performance outcomes
observed in these ablation studies.

Visualizations. Qualitative results, in the form of segmentation masks, are presented to offer
a detailed analysis of LORI’s performance in medical image segmentation. By visually comparing
these results with those of other methods on the test set, the accuracy and effectiveness of LORI can

be evaluated, providing valuable insights into its performance.

Fig. [.6 showcases selected samples from the WORD dataset, providing visual evidence that

112



4.6. RESULTS

88 1
87.85 1 87.850
87 1
87.825
87.80 1

87.800 - 86

87.757 87.775 85 4

87.70 4 87.750 as ]

87.7254

87.65 - 831
87.700 A

82
87.60 . ‘ | 876754

T
1 3 2

T T T T T
6 1 2 3 4

2 4
(a) Number of global tokens (b) Number of LORI module (¢) Position of LORI

Figure 4.5: This ablation study shows the dice score (in %) on the WORD dataset of LORI with
different architecture parameters. In (a) we experimented LORI with different number of global
tokens associated with each region of the full-size image. In (b) we experimented with different
number of LORI modules in a layer. In (c) we experimented different position of LORI in the based
model: 1 correspond to only the last layer; 2 correspond to the two last layers; 3 correspond to the
three last layers; 4 correspond to the four last layers.

reinforces our quantitative findings. LORI’s ability to accurately segment less-represented organs
is evident in the precise segmentation of the adrenal gland in the first row and the femur in the
second row. Additionally, LORI demonstrates improved performance compared to 3D Swin-UNet in
distinguishing between the right and left femur, thanks to its out-of-range interaction modeling that
enhances spatial awareness. Furthermore, LORI outperforms other methods by avoiding the creation
of holes in segmented organs, leveraging its utilization of the entire context outside the kidney which

other models don’t have access to because of the cropped patch size.

The LIVUS dataset serves as a valuable resource to assess the robustness of LORI, as depicted in
Fig. This dataset presents a challenging segmentation task, and LORI’s strength is evident in its
ability to address these difficulties effectively. Specifically, LORI demonstrates accurate segmentation
by avoiding confusion between the inferior vena cava (IVC) and the portal vein (PV) in the first row
of the visual results. Additionally, in the second row, LORI successfully captures the hepatic vein
(HV) boundaries. Notably, LORI avoids segmenting the liver beyond its actual boundaries in both
examples. These observations suggest that LORI leverages its long-range interaction modeling to
accurately delineate complex organ boundaries such as IVC/HV, while the out-of-range interaction
modeling aids in precisely identifying the location of the IVC and avoiding confusion with the PV.
Moreover, the out-of-range interaction also ensures that regions of the image distant from the actual

liver are not mis-segmented.
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Ground Truth nnUNet 3D Swin-UNet CoTr
I Liver Kidney (L) Stomach I Esophagus I Duodenum Intestine HE Rectum IS Femur (L)
N Spleen Kidney (R) Gallbladder HEl Pancreas N Colon Adrenal Bladder Hl Femur (R)

Figure 4.6: Visualisation of segmentation masks produced by the different methods on the test set of
WORD dataset.

Ground Truth 3D Swin-UNet
IVC EEE HV

Figure 4.7: Visualisation of segmentation masks produced by the different methods on the test set of
LIVUS dataset.
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4.7 Conclusion

This chapter introduces LORI, a module specifically designed to address the challenges of long and
out-of-range interaction modeling in 3D medical image segmentation. LORI enables information ex-
change among all visual tokens within a full-size volume, overcoming the limitations of small receptive
fields in models such as nnUNet at high-resolution feature maps. By incorporating information from
beyond the cropped patch, LORI effectively tackles a critical issue in 3D medical image segmentation.
Experimental results demonstrate that LORI significantly improves segmentation performance on CT
and ultrasound 3D image datasets. Importantly, LORI is a versatile module that can be seamlessly

integrated into various existing models, consistently yielding performance enhancements.
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5.1 Contributions

In this thesis, the issue of segmenting high dimension images, specifically 3D medical images, was
addressed. The high dimensionality of these images poses a challenge in their segmentation. It was
explained that DL models require global context in order to effectively segment local regions, while
classical models suffer from limited receptive fields or restricted input region sizes. To overcome these
limitations, Transformers models were chosen for their ability to capture long-range interactions. We
developed Transformers modules utilizing global tokens to enhance the capability of Transformers in

modeling long and out-of-range interactions on high dimension images, such as 3D medical images.

U-Transformer. We first focused on the segmentation of 2D medical images and introduced a novel
model called the U-Transformer. This model represents one of the earliest attempts to incorporate
Transformer architectures for the purpose of medical imaging segmentation. Our contribution aimed
to address the limitations of the classical UNet model, which has restricted receptive fields. To
overcome this challenge, we integrated self-attention mechanisms in the encoder and multiple layers
of cross-attention mechanisms in the decoder of our proposed U-Transformer model. By combining
CNNs with Transformers, we developed a powerful hybrid model for the segmentation of 2D medical
images. Our model achieved state-of-the-art performance on two different datasets and outperformed

the nnUNet, which serves as a strong baseline in this domain.

Introduction of global tokens. The next step involved the development of GLAM, a module that can
be seamlessly integrated into any windowed Transformer model. The primary objective of GLAM
is to address the quadratic complexity of vanilla transformers but also of recent multi-resolution
transformers, which are capable of handling high dimensional images but lack long-range interaction
in high-resolution feature maps. GLAM leverages global tokens and specific Transformer modules to
facilitate the propagation of information between windows. As aresult, each window is interconnected,
enabling the model to capture long-range information. The performance of GLAM surpassed that of
traditional methods when evaluated on two real-life scene segmentation datasets and one 3D medical
image segmentation dataset.

Long and out-of-range interaction modeling. Finally, we showed that the limited input size poses
a significant challenge in the segmentation of 3D medical images. Traditional methods often employ
smaller cropped patches to segment individual regions of the full volume, resulting in a substantial
loss of contextual information. To address this issue, we propose LORI, which enables the modeling
of long-and-out-of-range interactions and functions as a versatile module for various deep learning
methods. Moreover, LORI efficiently utilizes global tokens by requiring only one transformer step to
propagate information from the entire volume. We conducted experiments on three 3D medical images

segmentation datasets, comprising two CT-scans and one ultrasound dataset. The results consistently

118



5.2. ON GOING WORK

demonstrate that LORI outperforms classical methods across different configurations, highlighting its

robustness and the significance of context modeling.

5.2 On going work

Medical image registration. Image registration consists of spatially aligning images representing
identical structures, to overlap them and provide additional visual information. This process can be
unimodal or multimodal, as well as intra-patient or interpatient. The integration of both segmen-
tation and registration techniques is essential in developing a navigation system for percutaneous
ultrasound-guided puncture. Furthermore, the application of segmentation and registration methods
can complement each other in terms of performance and evaluation. For instance, surface-based
registration necessitates a preliminary segmentation step, while transfer-based segmentation relies
on registration. Additionally, the evaluation of registration methods often involves the utilization of

segmentation masks, where the overlay after registration is evaluated.

Currently, we are collaborating with IRCAD on a public database comprising paired 3D kidney
ultrasound and CT images, specifically designed for segmentation and registration purposes. As part
of the evaluation process, the GLAM model has been employed as a baseline for segmentation. Fig.

[5.1] shows some qualitative results obtained during this collaboration.

It would be also worth exploring with this new dataset the potential of our LORI method in the
domain of multimodal image segmentation as well. By adapting global tokens, we could propagate
information from one modality to another, thereby facilitating the segmentation of ultrasound images

with the assistance of CT images.

5.3 Perspectives for futures Works

Medical videos. The challenge of dealing with medical US images has been described in this thesis.
We have acknowledged the need for additional contextual information to enhance the performance
of segmentation methods in accurately identifying anatomical structures within these images. One
potential solution to incorporate more context is through the utilization of medical US videos. In
contrast to static US images, medical US videos provide real-time data that can capture the entire
process of acquiring a 3D ultrasound image. These videos contain valuable information and offer
a richer context for analysis. However, the high-resolution of such videos poses a challenge for DL
processing methods. To address this issue, the application of global tokens like GLAM or LORI

presents an interesting solution. The use of global tokens enables efficient handling of high-resolution
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Manual Ann.1 Manual Ann.2 3D UNe VNet nnUNet CoTr Glam

US KDY_17L US KDY.01R | CT KDY.17 CT KDY.01

Figure 5.1: Qualitative results showing example CT and US segmentations using IRCAD’s new dataset
(patient O1 and 17). The top two rows shows coronal CT slices, with ground-truth segmentations
overlaid in green, and estimated segmentations in blue. The bottom two rows shows longitudinal US
slices, with ground truth segmentations overlaid in red, and estimated segmentations in blue. The two
rows last (Annotator 1 and 2) show segmentations from each annotator, and the remaining rows show
the best training version on average between single or double target(s) of each automatic segmentation
from 5 DNN-based methods.

US videos, overcoming the limitations of traditional approaches. Furthermore, by utilizing global
tokens, the treatment of the temporal aspect of the data could be enhanced, by allowing the propagation
of information through time. This facilitates the modeling of long-range interactions over the duration

of the video.

Real life experiments. IRCAD, through DISRUMPERE, aimed at getting tangible real-world impact
through its research endeavors. We would like to further evaluate and also adapt LORI for real-time
segmentation of US images. The envisioned outcome of this is the development of a sophisticated med-
ical device capable of autonomously detecting tumors, delineating their boundaries, and subsequently
executing an automatically precise surgical intervention via minimally invasive puncture procedures.
It is important to underscore that this initiative represents a concerted interdisciplinary effort, involving
multiple research departments, and holds the potential to signify a significant advancement within the
domain of Al applied to the field of medicine.

Foundation models. Foundation models have been identified as a significant advancement in the field
of AI for medical image analysis, as discussed in Moor’s study [41]]. These models combine text and
images using a vast dataset, enabling them to perform multiple tasks without relying on task-specific

labeled data. Additionally, the integration of Natural NLP components in these models provides
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further insights into their decision-making process. Furthermore, the incorporation of global tokens
in this research has the potential to enhance the models’ ability to process high-dimensional data and
address multimodal tasks effectively.

Global tokens in other tasks. The concept of global tokens is a versatile and adaptable tool that
holds potential utility across diverse domains. In the realm of computer vision, for instance, the
use of methods such as GLAM or LORI can be applied to address a spectrum of tasks involving
high-dimensional image data. These tasks encompass but are not limited to satellite image analysis,
3D image reconstruction, image super-resolution, analysis of astronomical images, and video analysis.
Furthermore, the versatility of global tokens transcends the confines of computer vision and extends
to various other disciplinary domains. In the context of multi-task learning, global tokens may be
leveraged to facilitate the propagation of information as necessary, enhancing the model’s ability to
perform multiple concurrent tasks effectively. Additionally, in instances where graph neural networks
grapple with extensive graph structures, the integration of global tokens can enhance their scalability
and information exchange capacities. Finally, within the domain of audio analysis, global tokens can
be employed across various temporal ranges, enabling communication and synergy between them to
bolster the analysis of complex audio data. Thus, the concept of global tokens as presented in this
thesis manifests as a promising and cross-disciplinary approach with the potential to augment a wide
spectrum of applications.
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Appendix A

Detailed Non Local Upsampling

In our approach we introduce the Non-Local Upsampling (NLU) module which is used in place of
conventional upsampling operations which are based on local information only (bilinear, deconvolu-
tion). As a contrary, the idea of the NLU is to upsample the semantic features based on all the tokens
coming from the skip connection by using a MSA block in the Swin with Upernet or Swin-Unet heads.

The NLU module is detailed in Fig. [A.I] By using the same blocks as in [148], the skip

connection is embedded into a query matrix Q € R(“*N»)*C

while the keys and values are computed
from the semantic low resolution features: K € RM*¢ and V € RV»*C_ The resulting attention matrix
is A € R4Np)*Np - To maintain the residual connection in the Transformer block, the low resolution
features are upsampled and a linear projection adapts the number of channels before the sum. Then a
Feed Forward (FF) layer is also used. It is worth noting that a normalization layer is included in both
parts but omitted in the schema for clarity. At the end, a concatenation of the skip-connection and the

upsampled semantic features ends the NLU the same way than in the standard U-Net architectures.
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Figure A.1: Non-Local Upsampling The upsampling is processed window by window and is con-
ceived as a super-resolution module where the low resolution feature map in the decoder (red) are
re-embedded based on the high resolution ones coming from the encoder (blue). The patches are
downsampled by a factor 2 before each hierarchy in the models. A given region from the decoder
corresponds then to four neighbouring windows in the feature map coming from the skip connection.
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