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ABSTRACT 

The mechanical properties and deformation behavior of textile reinforcements are 

crucial for the manufacture of composite parts with complex shapes. The quality of 

reinforcements determines the mechanical properties and load-bearing capacity of the 

composite parts. This thesis will focus on two-dimensional flat braids and three-

dimensional tubular braids to explore the mechanical properties of braided 

reinforcements from both experimental and simulation aspects. Firstly, based on the 

bias-extension test, the in-plane shear mechanical model of flat fabric was established 

by a kinematic method. On this basis, the mechanical properties of tubular fabric were 

investigated. Uniaxial tensile tests were conducted on the tubular fabric to obtain the 

shear response. Meanwhile, a theoretical model for characterizing the shear behavior of 

tubular fabrics was developed and validated based on the experimental results. In 

addition, considering that the fabric was greatly affected by temperature during the 

forming process, the thermomechanical behavior of tubular braids was investigated. 

The effects of different temperatures and tensile speeds on the load-bearing capacity 

and shear properties of fabrics were discussed. To improve manufacturing efficiency 

and avoid “trial and error”, a non-orthogonal hyperelastic constitutive model for 

simulating the forming process of braided reinforcements was improved. The model 

considered the tensile and shear deformation modes of the braided fabrics during the 

forming process and used invariants to describe the corresponding strain energy. The 

relation between the tensile load and the second Piola-Kirchhoff stress tensor was also 

established to identify the material parameters. The simulation results of the bias-

extension test and hemispherical stamping test of the braided fabrics were compared 

with experimental results to verify the correctness of the hyperelastic model. Finally, 

based on the tensile test of the tubular braided fabrics, the hyperelastic model was used 

to investigate the forming of the tubular fabrics. The results show that the theoretical 

model proposed in the experimental part of this thesis and the improved non-orthogonal 

hyperelastic constitutive model in the simulation part can effectively characterize the 

mechanical behavior of the braided fabrics.  
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Résumé 
Les propriétés mécaniques et la déformabilité des renforts textiles sont essentielles 

pour la fabrication de pièces composites de formes complexes. La qualité des renforts 

détermine les propriétés mécaniques et la capacité de charge des pièces composites. 

Cette thèse se concentrera sur les tresses plates bidimensionnelles et les tresses 

tubulaires tridimensionnelles pour explorer les propriétés mécaniques des renforts 

tressés sous des aspects expérimentaux et de simulation. Tout d'abord, sur la base du 

Bias-extension test, le modèle mécanique de cisaillement dans le plan de la tresse plate 

a été établi par une méthode cinématique. Sur cette base, les propriétés mécaniques de 

la tresse tubulaire ont été étudiées. Des essais de traction uniaxiale ont été réalisés sur 

pour obtenir la réponse au cisaillement. En même temps, un modèle théorique 

caractérisant le comportement de cisaillement des tresses tubulaires a été développé et 

validé sur la base des résultats expérimentaux. De plus, compte tenu de l'impact 

important de la température sur le renfort co-mélé thermoplastique lors du 

thermoformage, le comportement thermomécanique des tresses tubulaires a été étudié. 

Les effets de différentes températures et vitesses de traction sur la capacité de charge et 

les propriétés de cisaillement des renforts textiles ont été discutés. Pour améliorer 

l'efficacité de la fabrication et éviter les essais coûteux, un modèle constitutif 

hyperélastique non orthogonal pour simuler le procédé de mise en forme des renforts 

tressés a été amélioré. Le modèle prenait en compte les modes de déformation en 

traction et en cisaillement des tresses lors de la mise en forme et utilisait des invariants 

pour décrire l'énergie de déformation correspondante. La relation entre la charge de 

traction et le tenseur des contraintes de Piola-Kirchhoff de second ordre a été également 

établie pour identifier les paramètres du matériau. Les résultats de simulation du Bias-

extention test et du test d’emboutissage hémisphérique des tresses ont été comparés aux 

résultats expérimentaux pour vérifier le modèle numérique dévelopé. Enfin, sur la base 

de l'essai de traction des tresses tubulaires, le modèle hyperélastique a été utilisé pour 

étudier le préformage des tresses tubulaires. Les résultats montrent que le modèle 

théorique proposé dans la partie expérimentale de cette thèse et le modèle constitutif 

hyperélastique non orthogonal amélioré dans la partie de simulation peuvent 

caractériser efficacement le comportement mécanique des tresses biaxiales avec des 

structures 2D et 3D-tubulaire. 
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 Résumé en français  

Les composites textiles, en tant que matériaux avancés, ont été largement utilisés 

dans divers domaines. Leur application permet de réduire le poids des pièces 

composites de forme complexe. Par rapport aux matériaux métalliques traditionnels, les 

composites textiles ont une résistance et une rigidité similaires, mais leur poids est 

considérablement réduit, ce qui est important pour la réduction de la consommation 

d'énergie et de la pollution de l'environnement. La fabrication de pièces composites 

nécessite une phase de mise en forme du renfort dans la géométrie souhaitée, ce que 

l'on appelle le procédé du préformage. Au cours de ce procédé, la déformation du textile 

est complexe et les facteurs affectant la déformation sont nombreux, ce qui peut 

facilement entraîner divers défauts de mise en forme, tels que le plissement, les boucles 

et le glissement. Étant donné que ces défauts de mise en forme ne peuvent pas être 

éliminés et qu'ils sont conservés dans les phases de préformage ultérieurs, ils finissent 

par affecter la forme et les performances des structures composites finales. Cette 

situation est très défavorable au traitement et à la fabrication des pièces composites, et 

il est nécessaire d'éliminer des défauts à la source et d'améliorer la qualité du 

préformage. 

Afin d'améliorer la qualité du formage des pièces composites, le procédé de 

préformage des renforts textiles est devenu le cœur de la recherche. Les propriétés 

mécaniques et le comportement à la déformation des renforts textiles sont cruciaux pour 

la fabrication de pièces composites de forme complexe, et leur qualité de préformage 

influence fortement les propriétés mécaniques et la capacité de charge des pièces. Les 

renforts textiles sont généralement préparés par deux procédés textiles : le tissage et le 

tressage. Les renforts tissés à une seule couche sont formés par l'entrecroisement de 

deux ensembles de fils orthogonaux. Les fils longitudinaux sont les fils de chaîne et les 

fils transversaux sont les fils de trame. Lorsque la préforme tissée à une seule couche 

ne peut répondre aux exigences d'épaisseur du matériau composite, la préforme tissée 

à plusieurs couches peut être empilée et reliée par des fils dans le sens de l'épaisseur 
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pour obtenir une préforme tridimensionnelle. Bien que les matériaux composites 

préparés par les préformes tridimensionnelles présentent une résistance élevée au 

cisaillement entre les couches, ce qui résout efficacement le problème de la fissuration 

par délamination des composites stratifiés, les préformes bidimensionnelles et 

tridimensionnelles ne peuvent pas répondre aux exigences d'épaisseur du matériau 

composite. Enfin les préformes tissées bidimensionnelles et tridimensionnelles ont un 

champ de mise en forme par l'angle de tissage qui est fixe et égal à 90°. La recherche a 

révélé que le processus de tressage, un autre procédé textile couramment utilisé, permet 

de préparer des renforts tressés qui peuvent compenser les défauts des renforts tissés. 

Les préformes tressées présentent une plus grande variabilité structurelle et davantage 

de motifs de tressage, ce qui permet de les concevoir en fonction de différentes 

conditions d'application, élargissant ainsi le champ d'application des composites textiles. 

En raison de la structure symétrique des préformes tissées, la loi de comportement est 

facile à caractériser et à prévoir et elle a l’objet de nombreux travaux. Ceci n’est pas le 

cas pour les préformes tissées, car son comportement mécanique pendant le préformage 

n'a pas été aujourd’hui entièrement caractérisé. L’objet de ce travail porte sur l’étude et 

l’analyse des  propriétés mécaniques pertinentes des préformes tressées, lors de leur 

mise en forme par préformage. 

Le chapitre Ⅰ présente d'abord une revue de la littérature sur les textiles composites, 

résumant les types de préformes textiles, le procédé du préformage et les défauts 

existants. Afin de minimiser les défauts, ce chapitre étudie les essais pertinents pour 

caractériser les propriétés mécaniques des préformes en fonction de leurs modes de 

déformation pendant le préformage, y compris les propriétés de traction, de cisaillement 

dans le plan et de flexion. Sur la base des recherches expérimentales, les propriétés 

mécaniques des préformes peuvent être obtenues et utilisées pour simuler le procédé de 

mise en forme du renfort textile afin d'éviter les "erreurs de mesures expérimentales". 

C'est pourquoi différentes méthodes de simulation sont ensuite exposées, 

principalement à l'échelle macroscopique, mésoscopique et microscopique. 
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Parallèlement, les modèles discrets, semi-discrets et continus sont également résumés 

pour le problème des grandes déformations des tissus. On montre ainsi que les 

différentes méthodes de simulation ont leurs propres avantages et inconvénients et 

doivent être choisies raisonnablement en fonction des problèmes pratiques. 

Le chapitre Ⅱ présent principalement des recherches sur les tresses plates 

bidimensionnelles et les tresses tubulaires tridimensionnelles, et explore les propriétés 

mécaniques des renforts tressés à partir de l'expérience. Les propriétés mécaniques des 

préformes tressées bidimensionnelles ont été déterminées par des essais « Bias 

extension tests ». Une approche cinématique est utilisée pour établir un modèle 

mécanique de cisaillement dans le plan pour les tresses afin de décrire leur 

comportement en cisaillement. Les propriétés mécaniques des tresses tubulaires sont 

ensuite étudiées. Des essais de traction uni axiale sont effectués pour obtenir leur 

réponse au cisaillement. Il a été constaté que ces tresses subissent un cisaillement 

inhomogène en surface extérieure du tube, une combinaison de cisaillement en surface 

et d'extension du fil, et enfin une extension pure du fil sous une charge de traction. En 

outre, un modèle analytique permettant de caractériser le comportement en cisaillement 

des tresses tubulaires est établi et vérifié par rapport aux résultats expérimentaux. De 

plus, étant donné l'influence significative de la température sur le renfort pendant le 

thermoformage, le comportement thermomécanique de tresses tubulaires est également 

étudié. Les effets de températures et vitesses de traction sur les propriétés de 

cisaillement sont discutés. 

Pour améliorer l'efficacité et réduire les coûts de fabrication, le chapitre Ⅲ développe 

un modèle constitutif hyperélastique non orthogonal pour simuler le préformage des 

renforts tressés. Le modèle prend en compte les modes de déformation en traction et en 

cisaillement des tresses pendant leur mise en forme et utilise les invariants de la 

transformation géométrique pour décrire l'énergie de déformation correspondante. La 

relation entre la charge de traction et le second tenseur des contraintes de Piola-

Kirchhoff est également établie pour identifier les paramètres du matériau. Les résultats 
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de simulation des essais de « Bias-extension test » et d'emboutissage hémisphérique ont 

été comparés aux résultats expérimentaux pour valider le modèle développé. 

Enfin, le chapitre Ⅳ se concentre sur l’étude de la simulation de la mise en forme de 

tresses tubulaires par le modèle hyperélastique développé dans chapitre Ⅲ. En tirant 

parti du comportement de contraction radiale des tresses tubulaires sous tension, le 

tresse est étiré et conformé sur des moules de différentes formes pour obtenir la forme 

souhaitée. L'effet des différentes formes de section transversale sur les propriétés de 

cisaillement des tissus est analysé. Les résultats indiquent que le modèle analytique du 

renfort tressé proposé dans la partie expérimentale et le modèle constitutif 

hyperélastique non orthogonal dans la partie simulation peuvent caractériser 

efficacement le comportement mécanique du renfort tressé, ce qui pose une base 

théorique pour la mise en forme rapide de préformes tressées multicouches dans les 

procédés ultérieurs. 
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 Problems statement 

Textile composites, as an advanced material, have been widely used in various fields. 

Its application provides the possibility of reducing the weight of composite parts with 

complex shapes. Compared with traditional metal materials, textile composites have 

similar strength and stiffness, but their weight is greatly reduced, which is significant 

for reducing energy consumption and environmental pollution. The manufacture of 

composite parts requires preforming the reinforcement into the desired shape, which is 

known as the preforming process. During this process, the deformation of the fabric is 

more complex and there are more factors affecting the deformation, which can easily 

lead to a variety of forming defects, such as wrinkling, buckling and slippage. 

Considering that these forming defects cannot be eliminated and are retained in 

subsequent forming processes, they ultimately affect the shape and performance of the 

composite components. This is very unfavorable to the processing and manufacturing 

of composite parts, and it is necessary to eliminate the forming defects at the source and 

improve the forming quality. 

To improve the forming quality of composite parts, the preforming process of textile 

reinforcement has become the focus of research. The mechanical properties and 

deformation behavior of textile reinforcements are crucial to the manufacture of 

composite parts with complex shapes, and their preforming quality determines the 

mechanical properties and load-bearing capacity of the parts. Textile reinforcements are 

usually prepared by two textile processes: weaving and braiding. The single-layer 

woven preforms are formed by interweaving two sets of orthogonal yarns. The 

longitudinal yarns are called warp yarns, and the transverse yarns are called weft yarns. 

When the single-layer woven preform cannot meet the thickness requirements of the 

composite material, the multi-layer woven preform can be stacked together and 

connected with yarn along the thickness direction to obtain a three-dimensional preform. 

Although composite materials prepared by the three-dimensional preforms have high 

interlayer shear resistance, which effectively solves the problem of delamination 
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cracking of the laminated composites. However, the two-dimensional and three-

dimensional woven preforms limit their application range because the weaving angle is 

fixed at 90°. The research has found that braiding process, as another commonly used 

textile process, can prepare braided preforms that can compensate for the shortcomings 

of woven preforms. Braided preforms have greater structural variability and more 

braiding patterns, allowing for design based on different application conditions, thus 

further expanding the application range of textile composites. At the same time, due to 

the symmetrical structure of woven preforms, the deformation law is easy to 

characterize and predict. So, it has been widely studied. Compared with the woven 

preform, the deformation behavior characteristics of braided preform during the 

preforming process have not been fully characterized. This thesis will analyze and study 

the relevant properties of braided preforms. 

 Thesis outline 

Chapter Ⅰ first provides a literature review on textile composites, summarizing the 

types of textile preforms, preforming process and existing forming defects. In order to 

minimize defects, this chapter investigates the relevant tests for characterizing the 

mechanical properties of preforms according to their deformation modes during the 

forming process, including tensile, in-plane shear and bending properties. Based on 

experimental researches, the material properties of the preforms can be obtained and 

used to simulate the fabric forming process to avoid “trial and error”. Therefore, 

different simulation methods are proposed, mainly including macroscopic, mesoscopic 

and microscopic scales. Meanwhile, discrete, semi-discrete and continuous methods are 

also summarized for the large deformation problem of fabrics. Different simulation 

methods have their own advantages and disadvantages, and should be chosen 

reasonably according to practical problems. 

Chapter Ⅱ mainly takes two-dimensional flat braids and three-dimensional tubular 

braids as the research objects, and explores the mechanical properties of braided fabrics 

from the experiment. The mechanical properties of the two-dimensional braided 
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preforms were determined by bias-extension tests. A kinematic approach is used to 

establish an in-plane shear mechanical model for braided fabric to describe their shear 

behavior. Based on this, the mechanical properties of tubular braids are explored. The 

uniaxial tensile tests are conducted on tubular fabrics to obtain their shear response. It’s 

found that such fabrics undergo non-homogenous in-plane shearing, a combination of 

in-plane shearing and yarn extension, and finally pure yarn extension under tensile 

loading. Additionally, a theoretical model for characterizing the shear behavior of 

tubular fabrics are established and verified according to the experimental phenomena. 

Furthermore, considering the significant influence of temperature on fabric during the 

forming process, the thermomechanical behavior of tubular braided fabric is also 

studied. The effects of different temperatures and tensile speeds on the load-bearing 

capacity and shear properties of the tubular fabric are discussed. 

To improve manufacturing efficiency and reduce manufacturing costs, Chapter Ⅲ 

improves a non-orthogonal hyperelastic constitutive model for simulating the forming 

process of braided reinforcements. The model considers the tensile and shear 

deformation modes of the braided fabrics during the forming process and uses 

invariants to describe the corresponding strain energy. The relation between the tensile 

load and the second Piola-Kirchhoff stress tensor is also established to identify the 

material parameters. The simulation results of the bias-extension test and hemispherical 

stamping test of the braided fabrics were compared with experimental results to verify 

the correctness of the hyperelastic model. 

Finally, based on the tensile tests of tubular fabrics, Chapter Ⅳ focuses on the 

forming of tubular braids based on the improved hyperelastic model. By taking 

advantage of the radial contraction behavior of tubular fabrics under tension, the fabric 

is stretched and conformed on the molds of different shapes to achieve the desired shape. 

The effect of different cross-sectional shapes on the shear properties of fabrics is 

analyzed. The results indicate that the theoretical model of the braided fabric proposed 

in the experimental part and the improved non-orthogonal hyperelastic constitutive 
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model in the simulation part can effectively characterize the mechanical behavior of the 

braided fabric, which lays a theoretical foundation for the rapid forming of multi-layer 

braided preforms in subsequent processes.  
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1Ⅰ. State of the art 
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 Résumé en français  

Ces dernières années, sous la demande de l'industrie de la fabrication haut de gamme, 

les matériaux composites aux formes complexes sont devenus progressivement un sujet 

de recherche phare dans le domaine des composites, comme le montre la Fig. 1.1 

Aujourd’hui, l'application des matériaux composites dans les composants structuraux 

porteurs de grandes surfaces est relativement mature. Avec les exigences croissantes en 

matière de matériaux légers dans les industries aérospatiale et automobile, la demande 

de composites aux formes complexes augmente également progressivement. En effet, 

les composites aux formes complexes présentent non seulement les mêmes propriétés 

mécaniques que les composants métalliques, mais ils permettent également de réduire 

d’avantage le poids des pièces et de réaliser des économies d'énergie. En raison de 

l'anisotropie des matériaux composites, la maîtrise est difficile dans le processus de 

fabrication de pièces composites aux formes complexes. Actuellement, la production 

de composants en matériaux composites de haute qualité et efficace est devenue un 

point difficile et un défi dans le domaine des matériaux composites. 

 

 

Fig. 1.1 Pièces composites aux formes complexes [1,2]. 

 

Les pièces composites aux formes complexes peuvent être réalisées grâce à la 

technologie textile, ce qui favorise le développement des composites textiles. Les 

composites textiles sont des matériaux haute performance composés de préformes de 

fibres et de la polymérisation de la matrice. Lors de la préparation de pièces composites 

textiles aux formes complexes, il est généralement nécessaire de préparer le textile en 

préformes, c'est-à-dire un processus de préformage. L'orientation des fibres et la forme 
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de préformage à cette étape ont un impact significatif sur l'injection de résine ultérieure 

et la capacité de charge des pièces composites. Par conséquent, la structure et les 

propriétés mécaniques des préformes de fibres déterminent les propriétés mécaniques 

des pièces composites structurales. 

Actuellement, il existe de nombreuses structures différentes de préformes, 

notamment le tissage, le tressage, le tricotage et le surpiquage, réalisées selon différents 

processus de formation textile. En même temps, selon la pénétration des fils dans la 

direction de l'épaisseur de la préforme, celle-ci peut être divisée en une structure 

bidimensionnelle plane et une structure tridimensionnelle. Dans la structure 

tridimensionnelle, on trouve à la fois des tissus tubulaires avec une bonne intégrité et 

des tissus planaires multicouches reliés par des fils de liage. Étant donné que les 

différentes structures des préformes textiles présentent différentes propriétés 

mécaniques, il est nécessaire de les classer. Des études ont montré que les propriétés 

mécaniques des textiles sont principalement déterminées par la structure des fibres. 

Cela s'explique par le fait que les textiles sont composés de nombreux fils discrets, et 

chaque fil est composé de centaines de fibres. Pour les textiles secs, l'absence de 

cohésion interne entre les fibres en raison de l'absence de remplissage de la matrice les 

rend susceptibles de glisser, ce qui affecte la qualité du préformage des textiles. De plus, 

l'anisotropie du textile entraîne également une hétérogénéité de la résistance et de la 

rigidité des tissus, qui est étroitement liée à l'orientation des fibres. Tous ces facteurs 

provoquent différents types de défauts de formage dans les préformes lors du processus 

de formage. 

En mettant l'accent sur les préformes textiles, ce chapitre présente d'abord les 

applications des composites textiles, puis fournit un résumé détaillé de la classification 

des préformes textiles. Étant donné que les préformes avec différentes structures ont 

des propriétés mécaniques différentes, le processus de préformage est très important et 

le tissu est accompagné de défauts pendant le processus de préformage. Afin de 

minimiser les défauts, des tests mécaniques sur les préformes sont également étudiés, 

comprenant principalement la tension, le cisaillement plan et la flexion. Sur la base des 

tests mécaniques, les propriétés de la préforme peuvent être caractérisées et utilisées 

comme paramètres de simulation importants pour simuler la mise en forme du tissu. 

Différentes méthodes de simulation ont été proposées pour différentes échelles de 

recherche, comprenant principalement le niveau microscopique, mésoscopique et 

macroscopique. En même temps, selon l'objet de recherche, cela peut être divisé en 
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modèles discrets, semi-discrets et continus. Ce chapitre fournit un résumé systématique 

de la caractérisation expérimentale et de la modélisation mécanique des propriétés 

mécaniques des préformes, ce qui constitue la base des chapitres suivants. 

Mots-clés : Composites textiles ; Préformage ; Défauts ; Propriétés mécaniques ; 
Simulation. 
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1.1 Introduction to the textile composites 

1.1.1 Textile composites and their applications 

Composite materials are composed of two or more materials with different properties 

through physical or chemical methods. It is a material with new properties that can 

bring into play the advantages of various materials, overcome the shortcomings of a 

single material, expand the scope of material applications and better meet various 

performance requirements. Composites consist of two main components: matrix and 

reinforcement. The reinforcement provides strength and stiffness support for the 

material and controls the mechanical properties of the entire structure. The matrix holds 

and protects the reinforcement, transmits loads, and provides cohesion. The 

combination of matrix and reinforcement combines the properties of different materials, 

showing the characteristics of lightweight, high strength, convenient processing and 

molding, excellent elasticity, and chemical corrosion resistance. It has gradually 

replaced wood and metal alloys and is widely used in aviation and automobiles, medical, 

construction, sports, energy and military manufacturing, and other manufacturing fields. 

Composites were first used to manufacture laminates and are widely used due to their 

high stiffness and strength. In the process of application, the out-of-plane properties are 

weak and the fabric lay-up process takes a lot of time [3]. Therefore, over the past few 

decades, textile composites have been developed to compensate for the disadvantages 

of laminates. Textile composites refer to the materials that use textile technology to 

prepare various fiber-reinforced materials into textile preforms, and then mix the matrix 

with the preforms. Compared with conventional laminated composites, the preparation 

of textile composites has a higher production efficiency, and the structural stability of 

the material is improved due to the interlacing of yarns [4]. The problem of 

delamination in the thickness direction of the laminate is also solved by adding a binder 

yarn [5] that runs through each layer of fabric along the thickness direction of the textile 

fabric, avoiding defects such as interlayer cracking and delamination damage of 

composite components. At the same time, textile technology can manufacture various 

complex shapes more flexibly and play an irreplaceable role in weight reduction for 

large and complex components. Therefore, it is widely used in various fields, as shown 

in Fig. 1.2. 

In aviation, high strength, high rigidity, and lightweight are the basic requirements 

for structural materials in the aerospace field. The development of textile technology 



 

17 

has further expanded the scope of the application of composite materials in aviation, 

from non-load-bearing components such as spoilers and fairings to secondary load-

bearing components such as aircraft tails to large-scale main load-bearing components 

such as cabins and wings. Composites have gradually replaced traditional metals such 

as steel, aluminum and titanium to become the fourth largest aerospace structural 

materials. At present, in the field of civil airliners, the amount of composite materials 

used in Boeing 777 has reached 9.9t, accounting for 25% of the total weight of the 

structure; Boeing 787 took the lead in applying composite materials to the main bearing 

structure, and the amount of composite materials used exceeds 50% of the total weight 

of the entire structure [6]. The Airbus A350-XWB has further increased the amount of 

advanced composite materials, reaching 52% of the total weight of the structure. 

In the automotive field: The high strength and high modulus of composite materials 

are widely used in the automotive field, which greatly reduces the overall weight and 

fuel consumption of the body. Textile composites are used instead of metal in the body, 

interior, bumpers, wheels and other parts of the car to achieve a better weight reduction 

effect. For example, the BMW i8 uses composite materials for its body, reducing its 

mass by 39%. At the same time, the higher cushioning capacity and energy absorption 

rate of the composite material also improves the crash safety of the car. 

Other fields: Textile composites are also widely used in various fields such as sports, 

medicine and military. Sports helmets, skis, medical prostheses, medical braces, tank 

armor and bulletproof vests all meet their respective performance requirements by using 

textile composite materials.  

 

 

Fig. 1.2 Applications of textile composites. 

1.1.2 Textile reinforcement 

According to the definition of composite materials, the composition of textile 
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composites also includes matrix and reinforcement. The matrix consists mainly of 

polymer, metal and ceramic, while the reinforcement includes natural and artificial 

fibers, etc. The manufacture of textile composite components first requires the 

reinforcement fibers to be made into textile preforms. Depending on the textile process,  

the textile preforms can be classified as woven, knitted, braided and nonwoven fabrics 

[7], as shown in Fig. 1.3. Based on the dimensionality of the fabric, the preforms are 

further divided into two-dimensional (2D) fabrics and three-dimensional (3D) fabrics. 

Two-dimensional fabrics, also known as flat fabrics, are manufactured from two sets of 

yarns with different orientations by textile technology. Among them, two-dimensional 

woven fabrics are composed of two sets of orthogonal yarns, the longitudinal yarns are 

called the warp and the lateral yarns are weft. Due to their good in-plane properties and 

drapability, two-dimensional woven fabrics can be formed integrally and have become 

one of the most widely studied types of fabrics. With the expansion of fabric 

applications, single-layer fabrics cannot meet the thickness requirements of composite 

materials, and it’s necessary to stack multi-layer fabrics and increase yarns in the 

thickness direction for effective connection, thereby obtaining three-dimensional 

woven fabrics. Whether it is a two-dimensional woven fabric or a three-dimensional 

woven fabric, the interlacing angle between yarns is fixed at 90° and cannot be changed, 

which leads to a relatively single variety and pattern of fabrics, and the angle of yarns 

cannot be modified when forming complex shapes, thus limiting the further use of 

woven preforms. Therefore, braiding technology has gradually developed and been 

applied to the preparation process of textile preforms [8,9]. Unlike woven fabrics, the 

angle between the two sets of yarns in braided fabrics can be specified as arbitrary 

angles, and the drapability is further improved, making them more suitable for 

manufacturing complex curved shapes. This shows that braided fabrics have broad 

development prospects. Considering that the research on braided fabrics is still 

incomplete, the mechanical properties of braided fabrics have not been fully 

characterized. Therefore, this thesis mainly focuses on the preforming process of 

braided fabrics as the research object. 
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Fig. 1.3 Types of textile fabric reinforcement. 

 

1.2 Introduction of braided fabric reinforcement 

1.2.1 Braiding technique 

Among various textile composites, artificial fibers (carbon fiber and glass fiber) have 

been widely used in textile preforms due to their excellent properties such as high 

strength, high stiffness, and corrosion resistance [10–13]. However, artificial fibers 

have poor biodegradability and cannot be recycled. In contrast, natural fibers (flax and 

cotton) mainly come from plants and are easier to obtain with low cost and easy 

recycling and biodegradability while meeting certain mechanical properties. Therefore, 

they have gradually attracted attention from manufacturing industries such as aviation 

and automotive. To further utilize the advantages of natural fiber-reinforced composites, 

people have integrated ancient braiding technology with modern composite molding 

technology in recent decades, forming unique braided structure composites. Braided 

structure composites are the product that combines modern textile industry technology 

with advanced composite material technology, displaying unique advantages in the field 

of modern engineering technology. 

The development of braiding technology is shown in Fig. 1.4. It’s a kind of biased 

interlacing technique for creating rope-like structures which can be traced back to the 

early European pentacle dance [14]. In a traditional braiding machine, the yarn carriers 
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are centered on a bobbin and rotated along a disc track. In this case, the yarn carriers 

are divided into two groups, one group of yarns rotates in a clockwise direction and the 

other group rotates in a counterclockwise direction. In this case, multi-strand yarns are 

interwoven at a certain angle to manufacture flat or tubular fabrics. The development 

and application of braiding machines can precisely position and control the yarn, which 

greatly improves the preparation speed of braided fabrics and has broad application 

prospects [15,16]. 

 

 

Fig. 1.4 The development of braiding technology. 

 

As for the braiding method, the process characteristic of two-dimensional biaxial 

braiding technology is to transfer the yarn carrier through traditional intermeshing 

angular gears, allowing it to move simultaneously according to different rules. This 

makes three or more bundles of yarn, which are oriented in the direction of the formed 

fabric, twist, and group together and are arranged in a certain angle direction with the 

formed fabric, finally forming woven fabric [17–19]. With the diversified demand for 

composite components for their reinforcement properties, triaxial braiding technology 

has been developed in recent years. In addition to the traditional two groups of yarns, a 

third group of yarn is introduced along the forming direction (the axial direction) of the 

fabric to form an axial yarn system to enhance its axial properties. In addition, single-

layer reinforced fabrics are difficult to meet the thickness requirements for making 

reinforcements in many applications, so multiple overlapping layers have been 

developed, but their basic structure is similar to that of single-layer braided structures. 

1.2.2 Structures of braided fabric reinforcement 

Unlike the weaving process, the braiding process is more suitable for the manufacture 

of flat or tubular fabrics. The types and patterns of fabrics prepared by the braiding 
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process are more diverse [20], as shown in Fig. 1.5. In this case, flat braided fabrics are 

made by a braiding machine with a closed loop track that has the same path throughout 

the bobbin carrier. Tubular braided fabrics are produced by the braiding machine with 

two closed tracks[21]. Depending on the coverage of the braiding traction, braids are 

further divided into open braids (coverage of about 80%) and closed braids (coverage 

of 100%) [22]. In addition to traditional two-dimensional braids, the braiding process 

can also increase the number of yarn systems so that the fibers inside the preforms 

interlace with each other in the plane and the thickness direction to form a complete 

three-dimensional braided preforms. Among them, the multilayer fabric angle 

interlocking method can maintain stable in-plane shear characteristics due to the 

designability of the structure and the flexibility of the braiding angle, thus promoting 

the stability, drapability and structural integrity of the composite. 

 

 

Fig. 1.5 Types of braided fabric reinforcement [21]. 

 

1.2.3 Types of braided fabric reinforcement   

Although the basic principles and equipment of two-dimensional braiding 

technology are very similar, there are many specific types of braiding fabrics, as shown 

in Fig. 1.6. The two-dimensional braided fabrics are fibers or yarns that are evenly 

distributed on the plane of the fabric through two-dimensional braiding technology. 

According to the presence or absence of axial yarns, two-dimensional braided fabrics 

can be classified into two basic types biaxial and triaxial braiding [23]. During the 
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braiding process, the pattern of the fabric can be determined by the number of fuses set 

on the horn gear. Currently, the most commonly used braided structures include 

Diamond Regular and Hercules structures [24]. Diamond braids mean that one yarn 

continuously alternates from above and below another yarn; Regular braids mean that 

one yarn crosses above and below two other yarns in a repetitive manner; Hercules 

braids mean that one yarn repeatedly passes through the top and bottom of three other 

yarns. Due to the complexity of material selection, fabric shape and structure, it is 

difficult to simply and comprehensively represent the structure of two-dimensional 

braided fabrics in detail. The above structural representations only distinguish some 

commonalities of the fabric, the specific structures still need to be explained. 

 

 

Fig. 1.6 Types of braided fabric reinforcement [22]. 

 

1.3 Textile preforming 

1.3.1 Preforming technology 

There are a variety of forming processes for textile composites. Depending on factors 

such as forming quality, forming efficiency and the ability to form complex shapes, two 

widely used processing methods are: Liquid Composite Molding (LCM) and 

Thermoforming. 

(1) The Liquid Composite Molding (LCM) process includes more than ten different 

types of manufacturing processes [25,26], which can be summarized as injecting liquid 

matrix into a closed mold cavity with preforms, or heating and melting a resin film that 
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has been pre-inserted into the mold cavity so that the liquid matrix infiltrates the 

preforms and cures into composite parts. Resin Transfer Molding (RTM) (Fig. 1.7) as 

a type of forming in the LCM process, is often used to manufacture complex-shaped 

composite materials. It can be roughly divided into several steps such as preforming, 

resin injection, curing and demolding. It is worth noting that in the preparation of 

complex composite parts, the fabric needs to be preformed first to obtain the desired 

shape, and this process is called preforming process. Preforming process can be 

achieved by direct textile forming (Fig. 1.8 (a)), which produces relatively good density 

and quality of preforms, but has a long preparation cycle and high cost. Therefore, the 

stamping preforming process (Fig. 1.8 (b)) is gradually being studied and applied as an 

alternative process for the rapid forming of complex shapes with a short preparation 

cycle and low cost. 

 

 

Fig. 1.7 Resin transfer molding injection process [27]. 

 

 

(a)                             (b) 

Fig. 1.8 Classification of preforming process, (a) braiding preforming and (b) 

stamping preforming [28]. 

 

(2) Thermoforming process utilizes thermoplastic prepreg to manufacture composite 

parts [29]. The thermoplastic prepreg contains resin in the fibers, which eliminates the 

need for a resin injection stage during the forming process of composite parts. It avoids 

problems such as uneven distribution of resin and voids in the materials. At the same 

time, the manufacturing process of thermoforming is relatively fast and usually takes 
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only a few minutes to complete [30]. This provides the possibility of manufacturing 

composite parts in large-scale production. As shown in Fig. 1.9, the thermoforming 

process can be divided into the following steps: 1) heating the thermoplastic prepreg in 

an oven to the resin melting temperature; 2) transferring the prepreg to the 

corresponding mold; 3) closing the mold and applying pressure to the thermoplastic 

prepreg to make it into the desired shape; 4) waiting for the mold to cool and then 

demolding the composite part. The overall forming stage is similar to the RTM process, 

but the mechanical properties of the prepregs change during the heating stage, which 

cannot be ignored for the subsequent structural parts. 

 

 

Fig. 1.9 Stages of the thermoforming [30]. 

1.3.2 Preforming defects  

As mentioned above, during the preparation of composite materials with complex 

shapes, the dry textile preform needs to be preformed into the desired shape before resin 

injection, and this process is defined as the preforming process [31]. As the first step in 

the liquid molding process of composite materials, the quality of preforming in this 

process is crucial. The quality of the preforming largely determines the quality and 

mechanical properties of the final composite structure [32]. At present, preforming 

process has been used to manufacture hemisphere [33–36], double-dome [37–40] , 

square box [41,42], tetrahedron [28,43–45] and various more complex preformed 

shapes [46,47], as shown in Fig. 1.10. Studies have shown that the preforming process 

of the fabric is a challenging task. The parameters of the preform and the preforming 

process parameters affect the deformation behavior of the fabric [48]. Improper process 

parameters will cause behaviors such as yarn slippage, in-plane shear, interlayer slip, 
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and draw-in. These deformation behaviors can induce various defects in the fabric, as 

shown in Fig. 1.11. Wrinkling is one of the most common defects on a macro scale. 

Boisse et al. proposed that the weak bending stiffness of textiles causes slippage 

between fibers, resulting in frequent wrinkling [49]. In order to study the formation of 

wrinkles, many researchers have attempted to reduce wrinkling by changing the 

pressure of the blank holder. S. Allaou et al. [44] pointed out that in order to obtain no 

wrinkle fabrics, blank holder is necessary. In addition, Labanie et al. [48] found through 

experiments that the process parameters have a certain influence on the yarn tension 

and contact stress. If the pressure of blank holder is too high, the yarn jamming occurs 

in the stretched deformation area of the fabric. This resulting in uneven distribution of 

fiber bundles and causing defects.   

 

 

Fig. 1.10 Preformed shapes, (a) hemisphere [36], (b) double-dome [40], (c) 

tetrahedron [44,50], (d) square box [41] and (e) complex shapes [46,47]. 

 

 

Fig. 1.11 The preforming defects[51]. 

 

Buckling, breaking, and misalignment are also common defects that occur during the 
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preforming process of the fabric [52–54]. These defects can cause uneven resin flow in 

the matrix, negatively affecting the shape and mechanical properties of the completed 

composite component. Gatouillat et al. [55] found through simulation studies that yarn 

slippage during the preforming process can cause the internal structure of the preform 

to loosen, reducing its mechanical properties. It can also cause uneven matrix resin 

distribution in the composite material after forming, which can easily lead to stress 

concentration, thereby reducing the mechanical properties of the composite structure. 

The deformation properties of triaxial braided composite reinforcements during the 

manufacturing process were studied [56]. Manufacturing defects such as fiber 

vacancies, buckling and gaps existed in the preforming process of triaxial braided 

fabrics. The longitudinal and radial sliding of yarns became the main preforming 

behavior. The literature also pointed out that the braiding angle directly affects the 

variation of the fabric deformation performance and is a key parameter for the 

deformation performance of braided fabrics. A large number of studies have analyzed 

the deformation behavior of textile preforms in the preforming stage and established 

the relationship between defects and preforming process parameters to optimize the 

preforming process. However, most of them focus on woven preforms, and there are 

relatively few studies on the deformation behavior of braided preforms during the 

preforming process. Therefore, it is necessary to master the deformation behavior and 

mechanical properties of braided preforms to improve the forming quality of preforms 

plays a decisive role in improving the performance of composite materials with special-

shaped complex structures. 

1.4 Mechanical properties and characterization of the textile preform 

From the previous discussion, it is clear that the exploration of the mechanical 

properties of composite components and characterization of complex structures has 

become a top priority in the preparation of composites. This is mainly influenced by 

several factors, including the mechanical properties of the reinforcement (fibers) and 

matrix (resin), the interfacial properties between fibers and resin, and the resin infusion 

process. As mentioned in section 1.3, the preparation of complex structures composite 

components requires textile preforms to undergo a preforming process to obtain the 

desired shape. Therefore, the mechanical properties of the preforms in the forming 

process directly affect the mechanical properties of the formed composite parts. This is 

mainly because, during the preforming process, the mechanical properties of the fabric 
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determine its deformation behaviour, which results in different forming defects. 

Therefore, a comprehensive exploration of the basic mechanical properties of the 

preform is of great significance for improving the overall mechanical properties of the 

component, and also to improve the final forming quality of the component. 

The mechanical behavior of textile-reinforced materials during the forming process 

has been extensively studied. A large number of studies have focused on understanding 

the mechanical behavior of the reinforcements through experiments and determining 

parameters for material constitutive models, which in turn facilitates the application of 

simulation methods. The basic mechanical properties of textile preforms during 

forming process include tensile, shear, bending, and compression properties. 

Gerekeereke et al. summarized the experimental characterization methods for the 

mechanical properties of textile structures [57]. Bussetaa [58] et al. also proposed 

testing methods for determining the tensile stiffness, shear stiffness, bending stiffness, 

and contact surface friction of fabrics. To characterize the deformation properties of 

fabrics, reveal the deformation mechanism and accurately predict the complex shapes 

of fabric forming. This thesis focuses on the tensile, shear and bending behaviors during 

the textile fabric forming process to provide data support for simulation analysis. 

1.4.1 Tensile properties 

Since the axial tensile stiffness of the yarn is much greater than the other stiffnesses 

in the transversal direction, the axial direction of the yarn becomes the direction of the 

maximum tensile stiffness of the textile preforms. Therefore, the orientation of the yarn 

has a significant impact on the mechanical properties of the preforms. The tensile 

stiffness is mainly determined by uniaxial tensile tests. The uniaxial tensile test not only 

determines the tensile stiffness of a single yarn (Fig. 1.12 (a)) but also determines the 

tensile deformation capacity of the 2D textile structures (Fig. 1.12 (b)). In the uniaxial 

tensile test, the yarn exhibits a linear behavior in the initial stage of loading, which is 

different from the tensile behavior of the 2D fabrics. The tensile behavior of the fabric 

shows a non-linear evolution in the initial stages of loading [57,59–61], which is related 

to the fluctuations of yarns, especially the number of curls and the curl amplitude of the 

yarns in the fabric [59]. In addition, considering the interlocking contact between yarns 

in two-dimensional fabrics, the coupling between the two yarns also affects the tensile 

state of the fabric. In this case, the uniaxial tensile test cannot accurately describe the 

tensile behavior of the fabric. In order to characterize the tensile coupling between yarns, 
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Bossie [62] used a biaxial tensile test to study the biaxial tensile coupling properties of 

woven fabric by applying tensile loads to the warp and weft directions, as shown in Fig. 

1.12 (c). The device can adjust the strains corresponding to the warp and weft directions 

to obtain different strain ratios and measure them by mechanical extensometer or optical 

methods. At the same time, the load in each direction is output by a load sensor. Fig. 

1.12 (d) shows the biaxial tensile test results of 2-2 twill carbon fabrics with different 

strain ratios.  

 

 

Fig. 1.12 Tensile test of textile materials, (a) single yarn [63], (b) uniaxial tensile of 

fabric [63], (c) biaxial tensile of fabric [64] and (d) tension-strain curves of different 

ratios 11 22k   [64]. 

 

1.4.2 In-plane shear properties 

In-plane shear deformation is one of the most important deformation modes in the 

forming of textile preforms, which is mainly manifested as the reduction of the angle 

between interlaced yarns. The reason why textile composites can be manufactured into 

complex shapes more easily is mainly due to the shear deformation mode of the preform. 

As in-plane shear is the key deformation mode of the hyperboloid structure in preforms, 

it is closely related to the final shape of the component. Moreover, shear deformation 

can also cause wrinkles to form in the forming process of fabric, affecting the forming 

quality and mechanical properties of components. At present, the shear deformation of 

fabric is mainly studied through the picture frame test (PFT) and bias-extension test 

(BET) [57,65–68], shown in Fig. 1.13. Both of these methods were tested with single-

layer preforms, which were first started in the early 1960s. After many years of 

development, they have been widely used in the characterization of in-plane shear 

properties of woven preforms [66,69–71]. 
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Fig. 1.13 Two principle methods to identify in-plane shearing properties of textile 

fabrics, (a) picture frame test [72] and (b) bias-extension test [73]. 

 

The frame used in the picture frame test is made up of four equal-length rigid rod 

hinges. When the frame is fixed on the stretching machine, the machine will apply a 

force along the diagonal direction of the frame, and the intersecting connecting rods 

rotate close to each other, causing the frame to gradually evolve from an initial square 

into a diamond frame. The cross-shaped single-layer woven fabric is fixed in the frame, 

and the fabric undergoes in-plane shear behaviour under the action of force. Fig. 1.13 

(a) represents the deformation of the experimental sample. In the ideal conditions, the 

fabric is subjected to pure shear deformation under a constant in-plane shear force in 

the tensile test [74,75], and the yarn is not subjected to tension along its axis during the 

experiment. This requires that the fiber should be aligned with the edges of the frame 

when the fabric is clamped to avoid stretching the fibers. Otherwise, the high tensile 

stiffness of the fiber will cause a large error in the measurement of the shear curve. 

Launay et al. [76] measured the tension of yarn during the PFT and found that yarn was 

subjected to a certain tension. At the same time, they proved that the in-plane shear 

behavior of the fabric will be affected by the tension of the yarn when the two ends of 

the yarn are installed in the picture frame under the state of tension. Therefore, to ensure 

the accuracy of the experimental results, it is necessary to avoid the yarns in the 
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tensioned state when the picture frame tensile test is used to analyze the in-plane shear 

behaviour of the textile preforms. 

Bias-extension test is another commonly used method to characterize in-plane shear 

properties of woven fabrics. Compared with PFT, BET has certain advantages in 

accuracy and portability, especially for studying in-plane shear and tensile properties of 

preforms at high temperatures. Due to the free boundary conditions, the yarn has no 

tension in its direction except for the small tension of the interaction between warp and 

weft, so the influence of yarn tension on shear performance can be reduced. The 

sensitivity of the bias-extension test to deviation is lower than that of the picture frame 

test, and there is no need to design a special clamping structure. Based on the 

advantages of the bias-extension test, exploring the characteristics of shear and tensile 

mechanical properties within the woven preforms has become the focus of research at 

this stage. In the bias-extension tensile test, the woven fabric was cut into a rectangular 

shape with a length-to-width ratio ≥ 2 [77], and the warp and weft yarns were oriented 

at 45° to the loading direction of the tensile force. When the two ends of the preforms 

are subjected to tension, the intersecting yarns first undergo rigid rotation around the 

interweaving point and the fabric exhibits in-plane shear behavior. In this case, the main 

resistance to in-plane shear comes from the friction between the yarns. Therefore, the 

shear force of the fabric is small at the initial stage, and when the intersecting yarns 

come into contact with each other, transversal compression is generated. Then, the in-

plane shear of the fabric ends, the angle between two yarns reached the critical locking 

angle [78–80], the tensile force increases rapidly and the fabric fails to bear the load. 

For the bias-extension test, it’s assumed that the fibers are not stretchable and the yarn 

does not slip, the fabric will present three distinct partitions, such as no shear zone A, 

half shear zone B and pure shear zone C shown in Fig. 1.13 (b) [73,81–83]. However, 

there are some limitations to the pure shear deformation in zone C, as it assumes that 

the fiber bundles are inextensible and there is no relative slippage between them. 

Nevertheless, due to the free ends of the fiber bundles in zone C, large shear 

deformation can easily induce interlayer slip of the fiber bundles, affecting the actual 

shear deformation behavior [65,84,85]. 

The shear behavior of fabrics is usually characterized by the shear angle. Assuming 

that there is no slippage during the test, the shear angle can be determined by the global 

displacement. The analytical model of displacement and shear angle can be quickly 

obtained during the stretching process. In addition, the direct optical measurement 
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method of shear angle is widely used to eliminate the influence of slippage. Harrison et 

al. [86] used the digital image correlation (DIC) to measure the shear angle and check 

the deformation uniformity of the fabric. It is worth noting that when defects are present 

in the specimen, the DIC measurement results may be inaccurate. An improved 

transversal tensile test was proposed to study the shear-tension coupling and wrinkling 

behaviour in detail [77]. When analyzing the in-plane shear mechanical properties of 

the fabric, it is not enough to explain and describe the change in the shear angle. By 

determining the shear force that causes the change of the shear angle, the shear moment 

can be calculated to provide a more comprehensive description of the in-plane shear 

behavior of the preform. 

As mentioned above, current research on the in-plane shear and tensile properties of 

textile preforms is mainly focused on woven fabrics, as the variability of the braiding 

angle in braided preforms brings some difficulty in the mechanical analysis. Therefore, 

further research is needed to improve the understanding of the in-plane shear and tensile 

properties of braided preforms. Potluri and Manan et al. [87] proposed a micro-

mechanical model based on tensile experiments under special conditions that can 

describe the in-plane shear behaviour of braided preforms. Rosso et al. [88] investigated 

the tensile properties of biaxial braided preforms (less than 16 yarns) prepared from 

Kevlar and found that the braiding angle exerted an important influence on their 

mechanical properties. In addition, the tensile experiment of biaxial braided preforms 

showed that the strain along the axial direction of the preform increased with the 

increase of the braiding angle [89]. Guzman-Maldonado [90] studied the in-plane shear 

behavior of non-orthogonal fabrics by conducting PFT. Xiao et al. [91] proposed an 

analytical model for characterizing in-plane shear behavior for two-dimensional 

braided preforms and considered the effect of yarn compaction in a subsequent study 

to analyze the transition from compacting to slippage of yarn during BET. 

1.4.3 Bending properties 

During the forming process of preforms, the bending behavior of fabrics is often 

neglected [92]. The bending stiffness of preforms is lower than that of composites due 

to the absence of matrix bonding between the fibers in the preform. However, many 

studies have shown that the bending properties have an important influence on the 

simulation of forming, especially for the characterization of wrinkles. The size, shape 

and number of wrinkles are all affected by the bending behavior [57,93]. Studies have 
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shown that a larger bending stiffness increases the number and size of wrinkles. When 

the fabric is bent, slippage occurs between the fibers, resulting in a low bending stiffness 

of the fabric[94]. But, the wrinkles of the fabric change after the bending stiffness is 

considered in the forming simulation, as shown in Fig. 1.14. Bossie et al. [43,95] 

considered the effect of bending stiffness in the fabric forming simulation, the number 

of wrinkles in the simulation results decreased and the size increased, which in turn 

more accurately predicted the deformation of the fabric (Fig. 1.15). The bending 

deformation mechanism of preforms is complex, which is manifested in transverse 

shear and local transverse compression on the fabric, and relative slippage and buckling 

on the yarn. Currently, the standard tests used to measure the bending properties of 

fabrics mainly include the Peirce cantilever test, the Kawa-bata bending test and the 

three-point bending test. Since the three-point bending test is mainly used to measure 

fabrics with thickness, this chapter focuses on the methods used to measure the bending 

stiffness of single-layer two-dimensional fabrics. 

 

 

Fig. 1.14 Draping on an hemisphere, (a) initial geometry, (b) tensile stiffness only, (c) 

tensile stiffness + in plane shear stiffness and (d) tensile stiffness + in plane shear 

stiffness + bending stiffness [43]. 

 

 

Fig. 1.15 Compression in the yarn direction of a woven reinforcement with different 

bending stiffness, (a) 1Nmm-1 , (b) 5Nmm-1 and (c) 10Nmm-1 [96]. 

 

(1) The Peirce cantilever beam method: This method was developed in the 1930s 

[97,98]. It is based on the principle that the textile cantilever bends under its gravity. 
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Due to its simple operation and wide applicability, it has been used in bending tests of 

dry fabrics and prepregs. It can be combined with optical measurement techniques to 

measure the deformation of the specimen conveniently and quickly. The cantilever 

beam method assumes that the bending stiffness of the fabric is constant, as shown in 

Fig. 1.16 (a). A rectangular fabric specimen was placed on a horizontal platform and 

extended slowly along the horizontal direction. The fabric was bent under its gravity 

until the tip of the cantilever touched the three-dimensional inclined plane, and the 

bending stiffness was calculated according to the corresponding formula. The initial 

inclination angle of the three-dimensional inclined plane was 7.1°. Later, for the 

convenience of calculation, some scholars positioned the inclined plate angle at 41.5° 

[55,99,100]. 

The accuracy of the bending stiffness calculated using the cantilever beam bending 

method needs to be improved. Lammens et al. [101] found that the bending stiffness 

calculated using the conventional cantilever beam test method has a certain error, which 

ignores the effect of higher-order effects. Since the bending stiffness of fabric has some 

nonlinearity, Bilbao et al. [102] proposed an optically assisted test method for 

measuring high curvature bending properties. The device used for this test is shown in 

Fig. 1.16 (b), which includes a mechanical part and an optical part. The free end of the 

specimen is suspended under gravity or a certain mass is suspended at its free end to 

achieve high curvature bending. The bending shape of the specimen is captured by a 

camera to record the deformation process of the entire fabric, and the bending moment-

curvature curve is plotted to characterize the bending stiffness for measuring woven 

fabrics with different structures, thicknesses and bending stiffnesses. Based on this, 

Liang et al.[103] used the device (Fig. 1.16 (c)) to conduct bending tests on 2D fabrics, 

3D laminated fabrics and 3D woven fabrics, and obtained the curvature by fitting the 

bending states of specimens with uniform quartic B-spline curves. In addition, Liang et 

al. also characterized the bending behavior of thermoplastic prepreg and proposed a 

cantilever beam test device that could control the ambient temperature for testing. Due 

to the possible distortion caused by nonlinear load effects during the preform draping, 

SHERWOOD et al. [104] proposed a vertical cantilever beam method. The preform was 

suspended vertically and the load was applied to its free end. The displacement of the 

specimen was recorded by a camera and the bending curvature was calculated. Based 

on this method, Alshahrani et al. [105] tested the bending behavior of thermoplastic 

prepregs at high temperatures using a test device with radiant heating shown in Fig. 
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1.16 (d). The bending stiffness of the prepregs decreased with increasing temperature 

until the thermoplastic resin melted and the bending stiffness remained constant. The 

bending stiffness was also affected by the loading rate, with a higher loading rate 

resulting in a larger bending stiffness. 

 

 

Fig. 1.16 The Peirce cantilever beam method, (a) standard cantilever bending test 

[94], (b) new flexometer-cantilever bending test fixture [102], (c) support for the high 

thickness specimen clamping [93] and (d) vertical cantilever bending test system 

[105]. 

 

(2) Kawa-bata bending test: This method is another method to measure the bending 

properties of fabrics, which was developed in 1980 [102,106]. It mainly investigates 

the effect of the loading rate and the cyclic loading on the bending stiffness of the fabric. 

As shown in Fig. 1.17, this test ensures that the specimen undergoes pure bending 

deformation during the test, to measure the mechanical properties of the preforms in 

pure bending. In addition, the device allows obtaining the variation of the bending 

moment per unit width of the specimen with curvature. By using this device for bending 

cyclic loading tests, the nonlinear relationship between bending moment and curvature 

of the preform can be obtained. Furthermore, a rheometer bending test device has also 

been developed to control the temperature and bending rate during the experiment and 

to study the dependence of fabric bending stiffness on temperature and loading 

frequency.   
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Fig. 1.17 Kawabata bending test, (a) KES-FB2 device [102] and (b) rheometer 

bending test device [107]. 

 

1.5 Modelling approaches for the simulation of the textile forming 

For the forming research of textile composites, the characterization of the mechanical 

properties of preform based on the experiments requires high time and cost. It is difficult 

to conduct characterization tests on certain parts of the fabric, so the numerical 

simulation of the textile composites is of great significance for the forming process. It 

can predict the feasibility of the fabric forming process and the generation of defects 

under given conditions, which is beneficial to reduce the "trial and error" process in the 

forming stage. Since the textile preforms are composed of thousands of continuous 

fibers and have multi-scale characteristics, they are usually divided into three scales, 

i.e. macroscale (part-mm), mesoscale (yarn-10-1 mm) and microscale (fibre -um) 

[58,64,108], as shown in Fig. 1.18. 

(a) At the macroscopic scale, the fabric is considered a continuous material. The 

overall deformation and the formability of the preforms are mainly studied to predict 

defects such as wrinkles, yarn slippage and buckling, etc [49]. 

(b) At the mesoscopic scale, the studies mainly focus on a large number of 

intersecting yarns and representative unit cell (RUC) that can represent the periodic 

structural fabric, considering the interaction between yarns to determine the local 

characteristics of the reinforcing material [109]. This scale allows the calculation of the 

final mechanical properties of the component as well as the permeability of the 

deformed reinforcement to predict damage and virtual mechanical tests, which can be 

used to simulate the resin injection step. However, the simulations at this scale are 

limited to small areas, and it is difficult to simulate the entire sections when considering 

the number of yarns and their complex interactions. 

(c) The microscopic scale is the smallest scale for simulating textile composites. On 
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this scale, fiber monofilament is the most basic constituent, such as carbon fiber, glass 

fiber, aramid fiber, etc. The contact and interaction between fibers are considered, the 

defects are characterized by establishing beam element models, such as fiber fracture. 

The different features and defects mentioned above need to be detected and 

characterized at different scales, so multi-scale modeling is very important. Considering 

that the object of this paper is a preform and its mechanical characterization mainly 

reflects in the macroscopic aspect. So, this thesis focuses on modeling and simulation 

analysis at the macroscopic level. 

 

 

Fig. 1.18 Three different scales of textile reinforcements [108], (a) Macroscopic scale, 

(b) Mesoscopic scale and (c) Microscopic scale. 

 

Macroscopic numerical simulations mainly include geometric methods based on 

kinematic descriptions and mechanical methods based on finite element techniques [58]. 

The kinematic approach, also known as the mapping approach or the fishnet approach, 

is a purely geometric approach that allows the calculation of the fiber orientation after 

the deformation of the textile composites [110]. This method does not take into account 

mechanical behavior and cannot predict major defects and problems such as wrinkling. 

The mechanical method, also known as the finite method, is based on the material 

constitutive model to predict the mechanical deformation of textile materials. In the 

mechanical model, fibers and yarns do not appear in the model. The components of the 

fabric and their interactions are not studied. The complexity of this model lies in the 

material behaviour laws. Since textile preforms are non-homogeneous materials, 

numerical simulation methods for preform forming can be classified into discrete, semi-

discrete and continuous methods [111]. 

1.5.1 Discrete approach 

The discrete approach studies the mechanical behavior of fabrics at the microscopic 

scale [112,113]. This approach takes a single yarn as the object, and each yarn is 
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modelled. At the same time, it considered the contact between adjacent yarns. It can 

provide changes in the yarn of the fabric due to deformation and facilitates the 

calculation of the fabric permeability and the volume fraction of the fibers. As described 

in reference [114], the microscopic discrete models of preforms require the calculation 

of a large number of fibres and their contacts, which translates to a computational effort 

and computational time. In the existing discrete methods, the digital element approach 

has been proposed and used to simulate textile processes [115], as shown in Fig. 1.19 

(a). Each yarn is discretized into rod elements, and the elements are connected by 

smooth hinges, which the contact behavior between yarns is simulated using contact 

elements. Based on the single-chain digital element, Zhou et al. [116] further simulated 

the fibre monofilament in the yarn and constructed a "multi-chain digital element", 

shown in Fig. 1.19 (b). Said et al. [117] used the "multi-chain digital element" method 

to simulate the compaction process of large-scale 3D fabrics and accurately predicted 

the internal structure of the fabric after deformation.  

 

 

Fig. 1.19 Digital element approaches, (a) single-chain digital element and (b) multi-

chain digital element [118]. 

 

Starting from the concept of the digital element method, a nodal modeling approach 

using rods and springs interconnected is proposed [119]. It used the different 

connections to achieve different deformation models and simulated the response of 

materials in terms of extension, shear, torsion and bending, as shown in Fig. 1.20. In 

addition, an approach of virtual fibers at the microscopic scale is also proposed and the 

geometric model is generated by connecting 3D truss or beam elements. Various textile 

preform models are established based on the virtual fiber approach as shown in Fig. 

1.21, including non-wrinkles fabrics [120], two-dimensional fabric layers[121,122], 

weft-knitted fabrics [123,124], and three-dimensional woven preforms [125,126]. The 

discrete method is rarely used for forming analysis of textile-reinforced materials due 

to its high accuracy and difficulty in obtaining the internal stress state of the material. 
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Fig. 1.20 The discrete modelling approach, (a) the typical ‘O’ discrete model, (b) 

linear springs for stretch, (c) torsion, (d) diagonal linear springs for shear and (e) 

bending [119]. 

 

 

Fig. 1.21 The virtual fiber approaches, (a) non-crimp fabric [120] and (b) 2D woven 

fabric [121], (c) weft knitted fabric [123] and (d) 3D woven fabric [125]. 

 

1.5.2 Semi-discrete approach 

The semi-discrete approach [127] is intermediate between the discrete and 

continuous approaches and is used to define the structure of yarns. The microstructure 

of fabrics is obtained by considering the effect of different deformations on the internal 

nodal loads of yarns. In the semi-discrete method, the fabric is considered to be 

composed of a certain number of discrete elements. Hamila and Boisse et al. [128] 

developed a three-node finite membrane element based on the semi-discrete method, 

shown in Fig. 1.22 (a). On this basis, a three-node shell element was also proposed and 

used to mesh the reinforcements. This method takes into account the tension-locking 

phenomenon and assumes that the warp and weft directions are arbitrary on both sides 

of the element to avoid locking [129]. The semi-discrete approach considers the 

contribution of the material’s tensile stiffness, in-plane shear stiffness and out-of-plane 

bending stiffness to the internal loads of the element. In particular, the tensile and in-
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plane shear behaviors are described using three nodal shell elements, while the bending 

behavior is described by two adjacent shell elements. In addition, an 8-node hexahedral 

elements (Fig. 1.22 (b)) are also proposed to simulate 3D interlock composite 

preforming [130]. 

 

 

Fig. 1.22 The semi-discrete approaches, (a) three-node finite membrane element [129] 

and (b) 8-node hexahedral elements [130]. 

 

In the existing literature, semi-discrete approaches have been widely used for the 

textile draping process, as shown in Fig. 1.23. It defines the relationship between load 

and strain fields and uses the principle of virtual work to establish the relationship 

between external virtual work, internal virtual work and acceleration virtual work. 

Among them, the internal virtual work is mainly composed of three parts: tension, in-

plane shear and bending. Meanwhile, the parameters in the principle of virtual work are 

measured by experimental methods. At present, the semi-discrete method has been 

successfully applied in the simulation analysis of hemispherical draping [43,130], 

tetrahedral forming [44], square box preforming [28] and its effectiveness has also been 

confirmed. In hemispherical draping, a simplified form of virtual internal work was 

used to analyze the role of three kinds of stiffness (tension, in-plane shear and bending) 

in the wrinkling simulation [43]. It pointed out that in the double-curved forming 

process, the in-plane shear stiffness is the main reason for wrinkling, the shear angle is 

not directly related to wrinkling, and the bending stiffness mainly determines the shape 

of the wrinkling. The forming process of tetrahedron shows that the shear angles 

calculated using the semi-discrete simulation method agree well with the experiment 

[44]. The correct shape of the fold was obtained by this method. The simulation analysis 

also found that the pressure on the blank holders has an important effect on the wrinkles, 

it can avoid repeating experiments to obtain these conclusions. The distribution of shear 

angle obtained by the box preforming simulation using the semi-discrete method is 
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consistent with the experiment. Wrinkles can be observed at the corners of the box, and 

applying higher pressure at the corners increases the risk of wrinkling and slippage. 

Furthermore, predicted wrinkling under different forming conditions for the square box 

using the semi-discrete approach. In the subsequent research work, the semi-discrete 

method was also applied to the simulation of thermoforming of multilayer composite 

preforms [131]. 

 

 

Fig. 1.23 Applications of semi-discrete approach, (a) hemispherical draping [130], (b) 

square box preforming [28], (c) tetrahedral forming [44] and (d) thermoforming of 

multilayer composite preforms [131]. 

 

1.5.3 Continuous approach 

In the actual simulation process, in addition to selecting the suitable simulation 

method, the efficiency of the simulation also needs to be considered. Based on the 

discrete and semi-discrete approaches, continuous approaches have been proposed and 

used to characterize the deformation of fabrics [38,132,133]. This method can 

effectively improve the simulation efficiency. The continuous approach treats the 

preforms as a continuum and does not consider the structure inside the preforms, the 

mutual friction and extrusion between the yarns, etc. It is based on the theory of 

continuum mechanics to study the macroscopic mechanical response of the fabrics to 

the external load, and then obtain the load-deformation curve. This method is not only 

easy to implement in finite element software but also has high computational efficiency, 

which can predict the shape and mechanical properties of the final component. The key 

to this method is to select a suitable constitutive model that responds to the specific 
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mechanical properties of the fabric and to determine the material parameters through 

corresponding mechanical tests. Since textile structures exhibit anisotropy and large 

shear and bending deformations, different continuum models have been developed and 

used to describe the mechanical behavior of textiles. Currently, numerical simulation 

methods have been developed including non-orthogonal rate-independent models, 

hypoelastic models and hyperelastic models, etc., as shown in Fig. 1.24. 

Peng and Cao [134] developed a non-orthogonal constitutive model for woven 

fabrics under large deformations to characterize the anisotropic material behavior of 

fabrics. A convective coordinate system was introduced to decouple the tension and 

shear of the fabric. It simplifies the material characterization of the woven fabric.  

Additionally, a fiber orientation model was established to track the yarns’ orientation 

during the deformation of the fabric. The prediction results of the non-orthogonal model 

were in good agreement with the experimental results, while the prediction results of 

the orthogonal model are quite different. Furthermore, Yu et al. [135] developed another 

new non-orthogonal constitutive model, which well explained the influence of 

differences in fiber strength and orientation on the anisotropic behavior of 

reinforcements. It also pointed out that the new constitutive model successful simulated 

the shearing behavior without significant length change. 

In the condition of large deformation of fabrics, the hypoelastic and hyperelastic 

models have also been proposed. The hypoelastic constitutive model mainly reflects the 

relationship between the constitutive tensor and the strain rate. It’s shown that using 

hypoelastic law with an objective derivative based on the warp and weft fibre rotation 

tensors can correctly trace the specific behaviour of the woven materials [40]. A 

hypoelastic constitutive model for fibrous materials was proposed and extended to the 

forming simulation of textile materials with two fiber orientations. The objective 

derivative of the model is defined by fiber rotation, which can be implemented in 

Abaqus software [136]. A stress resultant shell method considering independent 

bending and tensile stiffness is proposed, which simulated the draping process of textile 

composite reinforcements with continuous fibers by relating the stress moment to 

membrane strains and curvatures according to hypoelastic laws [137]. Within the 

framework of non-orthogonal hypoelastic material laws, a finite element model for 

solving highly non-linear fabric forming problems was proposed and embedded in shell 

or membrane elements. The model can characterize the mechanical behavior of fabrics 

and improve the formability of multilayer preforms [138]. 
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When the hyperelastic model is used to simulate the macroscopic mechanical 

behavior of fabrics, it is necessary to select appropriate invariants. The constitutive 

model mainly describes the relationship between strain energy and various invariants. 

The total strain energy of the fabric is decoupled into the sum of various independent 

deformation strain energies such as tension, shearing and bending. These independent 

strain energies do not affect each other. The tensile strain energy in the fiber direction 

and the shear strain energy caused by the angle variation in the fabric plane are added 

to the hyperelastic constitutive model [132]. This is based on the mechanical behavior 

of fabrics during forming and is used to simulate the draping of textile composites. 

Charmetant et al. [139]established a hyperelastic model for analyzing the large 

deformation behavior of 2D fabrics and studied four deformation modes of fabrics. 

Subsequently, six deformation modes were proposed and added to the hyperelastic 

model for large-thickness 3D interlocking preforms [133]. Florian et al. [140] proposed 

a hyperelastic material model considering tension-compression-shear biaxial coupling, 

which was successfully applied to the simulation of woven fabric forming. Juan et al.  

[141] used a hyperelastic constitutive model to study the formability of a single-layer 

E-glass non-crimp 3D orthogonal woven reinforcement with complex shapes, and 

simulated the forming process of tetrahedral and double dome shapes. The effectiveness 

of the constitutive model was verified. 

 

 

Fig. 1.24 Continuous approach, (a) the non-orthogonal constitutive model [40], (b) the 

hypoelastic model [137] and (c) the hyperelastic model [133,142]. 
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1.6 Conclusion of Chapter Ⅰ 

The application of composite materials in components is changing from simple 

structures to complex structures, and the research is gradually changing from laminated 

composites to textile composites. This chapter responds to this trend with a great deal 

of research on the fabrication of composites with complex shapes. Firstly, the basic 

concept and application of textile composites are introduced, and then the 

reinforcements of textile composites are classified. On this basis, the preforming 

process of composites before resin injection is introduced, which is one of the key steps 

in manufacturing composites with complex shapes. During the preforming process, the 

mechanical behavior of the fabric can lead to different types of defects, such as wrinkles, 

buckling, etc. In order to reduce defects generation, the mechanical properties of the 

fabric are essential. Therefore, the fourth part of this chapter reviews the 

characterization test for the mechanical properties of fabrics, mainly including tensile, 

in-plane shear and bending properties for the deformation of single-layer fabrics during 

the preforming process. Considering the many factors that affect the quality of fabric 

forming, it is difficult to conduct research completely relying on experiments. Based on 

the mechanical properties testing of fabrics, the fifth part mainly introduced the 

simulation method of fabric forming. The simulation of textile reinforcements can be 

divided into microscopic, mesoscopic and macroscopic. Among them, the macroscopic 

scale method is acceptable to simulate the fabric forming process although some 

information is neglected in the simulation, and the method requires the lowest 

computational cost. Therefore, this chapter mainly analyzes the simulation methods of 

fabrics at the macroscopic level, which are mainly classified as discrete, semi-discrete 

and continuous. After the comparative analysis, the subsequent chapters in this thesis 

will use the continuous approach to study and simulate the mechanical properties of 

fabrics. 
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2Ⅱ. Mechanical behavior 

characteristics under tensile 

load during forming of 

braided fabrics 
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 Résumé en français  

Les composites tressés présentent de nombreux avantages intéressants, tels que la 

variabilité structurelle, des cycles de préparation courts et la possibilité d'être conçus 

selon diverses conditions d'application. Ces avantages jouent un rôle important dans la 

réduction du poids des composants aux formes complexes. Aujourd’hui, l’application 

des composites tressés devient de plus en plus large et est progressivement utilisé dans 

des industries telles que l'aérospatiale, l'automobile, la médecine et le sport. 

Par rapport aux renforts tissées, les propriétés mécaniques des renforts tressés sont 

plus complexes et varient en fonction de l'angle de tressage. Les renforts tressés sont 

principalement divisés en renforts plats bidimensionnels et en renforts tubulaires 

tridimensionnels, comme illustré dans la Fig. 2.1. pour lesquels les propriétés 

mécaniques doivent être étudiées de manière séparée. Les caractéristiques de 

cisaillement dans le plan du préformage des tresses sont l'un des facteurs importants 

pour garantir la qualité des préformes avant l'imprégnation de la résine. L'étude des 

tresses plates a suscité de l'attention car due à leur structure asymétrique, elles 

présentent des comportements mécaniques différents dans les directions axiale et 

transversale. Ce chapitre étudie les propriétés mécaniques des préformes tressées en se 

basant sur des essais de traction. Tout d'abord, un modèle théorique est développé pour 

décrire le comportement de cisaillement dans le plan des tresses plates avec des angles 

de tressage arbitraires lors du biax-extension test, et la réponse en charge de la tresse 

est obtenue. L'angle de cisaillement lors des expériences est enregistré à l'aide de 

méthodes d’imagerie numérique et les résultats théoriques sont obtenus à partir de 

l’implémentation du modèle. Les résultats montrent que les renforts tressés présentent 

des caractéristiques de cisaillement différentes dans les directions transversale et axiale. 

De plus, l'étude du comportement mécanique des tresses plates fournira une loi 

théorique et des données pour l’approche de simulation par éléments finis abordée dans 

les chapitres Ⅲ et Ⅳ. 
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Fig. 2.1 Renfort tressé, (a) avec une structure plate et (b) avec une structure tubulaire. 

 

Mots-clés: Tresse plate; Tresses tubulaire; Cisaillement dans le plan; Propriétés 

mécaniques; Propriétés thermomécaniques 
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2.1 Introduction 

The mechanical properties of braided fabrics largely affect the properties of 

composite parts with complex shapes. This chapter mainly focuses on the mechanical 

properties of two types of braided fabrics made of natural fibers, i.e., flat braided fabrics 

and tubular braided fabrics. Since flat braided fabrics have been extensively studied, 

this chapter just only introduces the theoretical models of flat braided fabrics and the 

results under bias-extension tests. The deformation analysis of tubular fabrics becomes 

the focus of this chapter. First, a mechanical model is established to describe the shear 

deformation characteristics of tubular braided fabrics, and then the mechanical response 

of tubular fabrics is studied under the uniaxial tensile tests. Considering that the 

mechanical properties of the fabric are affected by temperature during the forming 

process, this chapter also studies the thermomechanical properties of the tubular fabric. 

Through the analysis of theory and experiment, the mechanical properties of the 

preform are comprehensively grasped and provide a theoretical basis for the simulation 

analysis.  

2.2 Bias-extension test for 2D non-orthogonal fabrics 

2.2.1 Analytical model for shearing angle  

To study the bias-extension test, two hypotheses are proposed: one to assume that the 

preform has no yarn slippage during the initial stage of loading, and that the yarns in 

the fabric are inextensible. Under this condition, there will be three shear areas in the 

fabric, as shown in Fig. 2.2. Area A represents the non-deformed zone ( 0  ), and no 

shearing took place in this zone. Area B represents the half-shear zone ( 2 ), in two 

interlaced yarns, where one of the yarns was free at both ends. Free yarns undergo in-

plane shearing during the tensile test. Area C represents the pure shear zone (  ), which 

appears in the middle part of the preform. The interlaced yarns were free at both ends. 

Therefore, in the process of the preform bearing the load, the interlaced yarns in this 

region underwent complete shearing.  
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Fig. 2.2 The geometry of the fabric during a bias extension test, (a) initial state and (b) 

deformed state. 

 

Fig. 2.2 (a) shows the undeformed stage of the fabric, the braiding angle  2 was 

unchanged since the fabric had not yet been stretched. With the increase of the load, the 

two interlaced yarns in zone C started to rotate, and β gradually decreased to α, causing 

the shear angle γ to be generated. This shear angle can be expressed as: 

      (2.1) 

In the pure shear zone, the value    can be determined according to the fabric 

geometry. 

 
cos

2 2 c

D u

L

    
 

                       (2.2) 

Here, D  and cL  are the diagonal length and theoretical side length of the rhombus 

of the pure shear zone (zone C) before deformation. The height of the triangle ( L ) in 

area A remained unchanged after the deformation and can be expressed as 

tan( 2)L l  . The diagonal length of the pure shear zone D  can thus be computed 

as: 

0 0

tan( )
2

l
D L L L                        (2.3) 
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The relationship between the braiding angle ( ) and 2L  is: 

2cos
2

c

D
L




 
 
 

                           (2.4) 

According to Eq. 2.2 and Eq. 2.3: 
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 (2.5) 

Therefore, the theoretical value of the shear angle is defined as: 
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 (2.6) 

In the initial configuration, the fabric was not stretched and had no shearing behavior. 

The areas of zones A, B and C are expressed as: 
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  (2.7) 

It is worth noting that the geometric relationship mentioned above is only correct 

when the aspect ratio of the fabric satisfies the following condition:  

0L
r

l
                               (2.8) 

2

2

tan
r




 
 
 

                            (2.9) 

2.2.2 Sample preparation  

The proposed models were examined by using braided fabrics of flax/PA12 

commingled yarns listed in Table 2.1. The biaxial braided fabrics were all produced by 

overbraiding on the braiding looms provided by the Gemtex laboratory [143,144]. It 

should be stated that it was necessary to carefully cut the fabric into a single layer of 

samples for the bias-extension test. A fair amount of attention was also required to 

master the braiding angle and avoid fiber slippage or local pull-out, as shown in Fig. 

2.3.  
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Fig. 2.3 The fabrics for bias-extension tests, (a) axial test and (b) transversal test. 

 

Table 2.1 The main physical properties of the tested braided fabrics. 

Parameters  Flax/PA12 

Type of braid  Biaxial twill 2-2 

Yarn density (tex)  500  

Braiding angle (β/2)  35° 

Yarn thickness (mm)  1.03 

Yarn width (mm)  1.15 

Number of yarns per cm  4.2 

Area density of the fabric (g/m2)  376 ± 5 

 

2.2.3 Experimental setup and the results 

A series of bias-extension tests were performed on a rectangular sample to obtain the 

material parameters for the in-plane shear behavior. As mentioned in Section 2.2, to 

obtain a more complete mechanical behavior and validate the proposed theoretical 

model, two “Bias-extension” type tests were carried out in the axial and transversal 

directions to apply stress on the specimen in negative and positive shear, respectively 

[145]. 

The bias-extension test of non-orthogonal fabrics was conducted on a standard MTS 

system at a loading rate of 50 mm/min. The relevant parameters of the textile materials 

are listed in Table 2.1. It is worth noting that the braiding angle ( 2 ) of the fabric was 

35°, and that the fabric structure was asymmetrical in the axial and transversal 
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directions. So, the angle of the interlaced yarn is 70° and 110° in the axial and 

transversal directions respectively. According to the requirements of Eq. 2.9, the 

parameters whose aspect ratio met the test requirements were obtained. The aspect 

ratios had to be greater than 2.9 in the axial direction and 1.4 in the transversal direction, 

and the specific parameters are shown in Table 2.2. Meanwhile, a camera was used to 

observe the deformation of the fabric in real time during the experiment. To reduce the 

error, each test is repeated five times to obtain average data.  

 

Table 2.2 The main geometrical properties of the tested specimens. 

Stretch direction 
Sample 

yarns 

0L (length) 

(mm) 

l (width) 

(mm) 
D (mm) 

r (ratio) 

( 0L / l ) 

Axial Direction 
Flax/PA12 

200 50 128.59 4 

300 50 228.59 6 

Transversal Direction 100 60 57.98 1.67 

 
In order to ensure a sufficient pure shear space of the fabric, the geometric ratios of 

4 in the axial direction and 1.67 in the transversal direction were selected for the test. 

According to the definition of in-plane shear angle, the axial direction along the sample 

is the positive direction. So, for the bias-extension test in the axial direction of the 

sample, the load and displacement are taken as positive values; for the test in the 

transversal direction of the sample, the load and displacement are taken as negative 

values. Fig. 2.4 shows the evolution of the experimental force obtained for these two 

tests as a function of the displacement, and the calculation of the shear angle determined 

from Eq. 2.6. However, only experimental data for a shear angle between -80° and 40° 

were used to characterize the material shearing. At this stage, there is enough shear 

space between the yarns. The yarns rotate with each other without being stretched, and 

the fabric undergoes pure shear deformation. 
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(a)                                  (b) 

Fig. 2.4 Results of flax/PA12 in different directions, (a) experimental load and (b) 

theoretical shear angle. 

 

From Fig. 2.4, it can be seen that the relationship between load and displacement 

exhibits a nonlinear evolution, and the stretching process of the fabric goes through 

three stages. Firstly, as the displacement increases, the load increases slowly. The yarns 

have enough shear space, and the load is mainly used to overcome the friction between 

the yarns. With further displacement, the in-plane shear space of the intersecting yarns 

continuously decreases. When the interlaced yarns contact each other through the in-

plane shearing process, the shear space no longer exists. At this point, the continuous 

in-plane shear behavior of the interlaced yarns will generate a transverse compressive 

force in the radial direction of the yarns, causing the load to increase rapidly and enter 

the second stage. Subsequently, as the stretching process continues, the intersecting 

yarns experience relative slippage, resulting in a decrease in load. The load-bearing 

capacity of the fabric is lost, and the in-plane shear behavior comes to an end. 

2.3 Shear deformation characteristics of tubular fabrics under tensile 

loads 

2.3.1 Materials and methods 

The Flax/Polyamide 12 commingled yarns with a linear density of 500 tex and 1.78 

mass ratio (64% flax yarns / 36% PA12 yarns) used in this study were provided by 

Schappe Technique. The tested tubular braided fabric is shown in Fig. 2.5 (b) and their 

main properties are listed in Table 2.3. The total number of yarns in the tubular fabric 

is 96. The braiding angle (β/2) shown in Fig. 2.5 (a) is defined as the angle between the 
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axial direction and the yarn. 

Table 2.3 The main properties of the tested tubular braided fabric. 

Parameters

Type of fabric Biaxial twill 2-2 

Area density (g/m2) 376 ± 5 

Thickness (mm) 2.1 

Diameter (mm) 50 

Braiding angle (β/2)  55°

Number of yarns per cm 4.2 

(a)       (b)  

Fig. 2.5 Tested tubular braided fabric. 

The experimental setup for the tensile testing is shown in Fig. 2.6. Both ends of the 

specimen were fixed in the tensile machine by clamps, and a stretching force was 

applied at a uniform speed (10 mm/min) along the axial direction of the fabric. The 

length of the specimen was 40 mm excluding the gripped zones. It was essential to leave 

an appropriate length of fabric for clamping to ensure that no slippage occurred between 

the tows of the specimen and the clamps during the test [146]. To accurately analyze 

the mechanical response during the tensile testing of the tubular braided fabric, 3D 

scanning equipment with two cameras, shown in Fig. 2.6, was employed to monitor the 

test progression in real-time and record the changing state of the sample with the 

stretching. Consequently, the extension of the yarns and the change of the angle 

between them could be determined thanks to some markers related to the non-

homogenous deformation shown in Fig. 2.7.  
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In order to reduce the experimental error when identifying the yarns’ elongation, two 

intersecting yarns and pastes corresponding to markers at the intersection were chosen. 

The only criterion for selecting the markers was to ensure that they were positioned on 

the same single yarn. Considering the possible influence of yarn shearing, 5 marks were 

made on the fabric to obtain the length variation of two intersecting yarns and take the 

average value. For this, asymmetric markers were deemed to be more representative. 

The yarns’ extension could be recorded during the test but not at the beginning, and in 

the course of the experiment the extension eventually led to damage to the sample’s 

structure (Fig. 2.7 (d)).  

 

 

Fig. 2.6 Experimental device. 
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(a)     (b)            (c)    (d)

Fig. 2.7 Tubular fabric specimen and markers, (a) initial state, (b) deformed state with 

50% deformation, (c) deformed state with 75% deformation and (d) failure state. 

After the tensile testing, the tubular fabrics eventually took on a radially contracted 

shape. At the beginning of the test, the intersecting yarns had enough rotational space 

to be accompanied by a pure shear behavior under the tensile load, and the radial 

contraction thus strongly depended on the variation of the shear angle. The study of 

radial shrinkage of tubular fabrics relies on their 3D structure and several methods can 

be used to remodel this: mathematical models and related algorithms to establish fabric 

simulation models [147], X-ray tomography to remodel the representative volume 

element [148–150], and 3D scanning to quickly reconstruct the model to experimental 

analysis. 3D scanning is an emerging technology that can convert objects into digital 

forms in spatial dimensions for rapid imaging [151]. Taking 3D images with a camera 

to capture the coordinates (x, y, z) of an object and regenerate the point clouds on the 

surface of the object has become a popular technique for characterizing textile 

deformation, and includes measurements of various strains during the textile 

reinforcements forming [73], reconstruction of wrinkling [143,144]; measurement of 

tow buckling [152], etc. In the present study, to vividly describe the profile shape of the 

deformed fabric during the test, Structure From Motion (SFM) was used complemented 

with the software CloudCompare to increase the quality of modelling [153]. 

SFM is an algorithm that reconstructs a real three-dimensional scene using two-
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dimensional images from various angles in the collected space. SFM automatically 

extracts camera parameters from images, finds overlapping scenes in the input images, 

and performs feature extraction. When the feature points of the image are obtained, they 

are matched by calculating the Euclidean distance between the feature points of two 

images [154]. After finding the image pairs that match the required number of feature 

points, for each image, the matching pair is optimized and improved by the RANSAC 

algorithm [155]. The feature points are passed on in a chain in such matching pairs, and 

they are always detected to form a trajectory. At the same time, by estimating the 

internal and external parameter matrices, the coordinates of 3D points are obtained by 

triangulation. 

Based on the reference points, i.e., the points in the non-moving parts, 

CloudCompare allows scaling of the model to obtain the real coordinates of the 

reconstructed point cloud in the 3D scene according to the actual geometric size. It also 

supports the output of coordinates for subsequent processing [156]. The original point-

clouds exported by the SFM method include quite a significant amount of noise points. 

To increase the quality of the 3D reconstruction, post-processing was carried out in 

CloudCompare. The noise filtration was able to remove the isolated points from the raw 

point-clouds. The sizes of the processed point clouds generated via the SFM algorithm 

were relative and had to be calibrated to the real dimensions of the sample [153]. Errors 

were allowed in the calibration process. By modeling the known physical objects, the 

dimensions of the model obtained by the mentioned SFM and CloudCompare software 

were compared with the actual dimension and the modeling accuracy was found to be 

close to 99.32%.  

Fig. 2.8 shows the evolution of this post-processing for a deformed tubular braided 

fabric in the axial tensile test. The new point-clouds in Fig. 2.8 (c) reproduced the 

essential features of the sample in Fig. 2.8 (a) after eliminating the isolated points (the 

noise) in the raw point clouds (Fig. 2.8 (b)). 
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 (a)                     (b)                       (c)  

Fig. 2.8 Example of three-dimensional reconstruction, (a) photo of the sample, (b) raw 

point cloud, (c) processed point cloud. 

2.3.2 Mechanical responses in the tensile test 

As presented in Fig. 2.7, tensile stretching of a tubular braided fabric leads principally 

to shearing deformation and extension of the yarns. The rotation of the yarns related to 

the shearing deformation on the plane of the unit cell is shown schematically in Fig. 2.9. 

This shearing deformation can be quantified by a shear angle. It is evident that the shear 

angle is not uniform in all of the unit cells, which is similar to what is seen for a flat 

braid [157] and to the bias-extension of a woven fabric [65,66,74] presenting different 

shear angle distributions, i.e., for which the shear angle is not unique. From the bias-

extension test, it was found that the in-plane shearing was divided into three zones, i.e., 

the no-shear zone, the pure-shear zone and the semi-shear zone. The unit cells in the 

same zone had identical shear angles. Compared to the bias-extension test of flat fabrics, 

tensile testing of tubular fabrics led to the shear angles being identical only if the unit 

cells were on the circumference of the same height (i.e., had the same Z position), as 

shown in Fig. 2.9 (b). Therefore, the shearing deformation described by the shear angles 

is related to the tensile displacement in the axial direction. During a tensile test, the 

fabric is subjected to axial tension, and the intersecting yarns rotate and approach each 

other along the stretching direction [158–161], thereby causing a decrease in the angle 

between the yarns in the axial direction, resulting in a shearing behaviour.  
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(a)                          (b) 

Fig. 2.9 Schematic representation of the shearing deformation, (a) on the plane of a 

unit cell and (b) on the whole structure of the braided fabric. 

 

The shearing deformation on the plane of the unit cell is shown schematically in Fig. 

2.9 (a). The shearing angle is one of the essential parameters during the forming of 

textile fabrics. To describe how the shearing mechanism is coupled with the extension 

of the tubular fabrics and then optimize the pre-forming process of such a 3D structure, 

the analytical models need to be based on experiments to ascertain the relationship 

between tensile displacement and radial shrinkage, and subsequently determine the 

changes in shear angles and shear moments. Consequently, it is necessary to establish 

a kinematic and mechanical model to portray how the shear angle is connected to the 

tensile displacement [65,66,76,162] and also to describe the shear moment as a function 

of the shear angle [65,66,76,163].  

(1) Prediction of the shear angle 

Fig. 2.10 gives a schematic display of the whole tubular specimen and unit cell 

deformations under tensile stress. The tubular fabric undergoes radial contraction under 

tensile displacement [164,165] and the yarns become reoriented. In this case, the shear 

angles are generated distinctly on different zones corresponding to the Z position of the 

unit cell. The shear angles increase with the tensile displacement. To determine the 

shear angles, the axisymmetric fabric can first be projected on a plane as shown in Fig. 

2.10, after which the radial contraction leads to the fabric taking on the shape of a 
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parabola as described in Eq. 2.10. 
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                             (2.10) 

Here, z and r are axial and radial coordinates, respectively, and N, bi, i are constants. 

To simplify the calculation, N can be suggested as 1 which will be confirmed by 

experiments. Consequently, Eq. 2.10 can be expressed as: 
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                        (2.11) 

Where u is the tensile displacement, 0b   presents the minimum radius of the 

deformed tubular fabric (the radius on the mean plane), and L and W symbolize the 

original length and diameter of the fabric, respectively.  

 

 

Fig. 2.10 The tubular braided fabric under a tensile load and a deformed unit cell in 

the ith circumference. 

 

Based on Eq. 2.11, the radial contraction at any position in the axial direction and the 

corresponding circumferential radius can be obtained since there is an assumption of 

no network slippage at the cross-over points of the yarns [65,146]. Therefore, the ith 

unit cell can be represented as the research object (Fig. 2.10) to calculate the shear angle 

as shown in the following equations. 
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                            sin = i
i

a

l
                             (2.13) 

In the ith unit cell, i   is the shear angle, ia   and l   represent half of the diagonal 

length and the side length of the cell, respectively. 

The radius of the circle in which the ith cell is located can be defined as ir, and ia  can 

thus be expressed as: 
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i
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where n presents the number of the unit cells in a circumference. This number is a 

constant in the initial state and does not change in the deformed state.                                    

The shear angle i  of the ith unit cell during the extension of the tubular braided 

fabric can be obtained by Eqs. 2.16-2.17.  
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              (2.16)                   
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            (2.17) 

Here, zi is the Z coordinate of the center of the ith cell. 

It is clear that the shear angle is identical in all unit cells on the same circumference 

(with the same Z positions). Therefore, the shear angle as a function of the tensile 

displacement can be given as: 
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           (2.18) 

(2) Shear moment and shear load 

As presented previously, the shear deformation is the domestic deformation mode 

during the tensile testing of a tubular braided fabric, and one can neglect the compaction 

on the lateral sides of the yarns and the extension of the fibres which normally occurs 

after the “locking shear angle”. Consequently, the power from the clamping load can 

be considered to dissipate mainly in the shearing zones. Regarding the non-

homogenous shear deformation in the tubular structure, the prediction of the shear 

moment is focused on the unit cells that have the same Z. Considering a continuum 
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structure, the dissipation of energy during the tensile stress can be described by Eq. 2.19.  
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where ( )sM  is the shear moment per unit area. ( )F  is the clamping force. u is the 

rate of the quantity u. As a result, the shear moment ( )sM  is a function of the shear 

angle and depends on z in the axial direction as detailed in Eq. 2.20. 
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(2.20) 

As the tangential load along the side of a fabric rhomboid element with unit cell 

dimensions (Fig. 2.9), the shear load has been described in [65], and depends on the 

shear moment of the fabric element (cf. Eq. 2.21). As a result, this load on a unit cell of 

the tubular braided fabric can be expressed by Eq. 2.22. On this basis, the numerical 

integration algorithm is employed to calculate the shear load during the tensile test. This 

is mainly achieved by employing MATLAB to call the integral function to implement. 
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(2.22)                   

2.3.3 Verification of the hypothesis 

Several circles were marked on the tubular samples in their initial state to verify that 

no sliding took place between the yarns at the cross-over points. As shown in Fig. 2.7, 

the circles remained plane and perpendicular to the tubular axis throughout the test, 

which means that the circles were deformed only in the radial direction.  

As described in section 2.3.2, the establishment of the theoretical shear model first 

considered the profile change during the stretching process of the fabric. Thanks to the 

Digital Image Correlation (DIC) method, the deformed profiles were reconstructed by 

using SFM and are shown in Fig. 2.11. During the acquisition of the images, the surface 
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of the samples was sufficiently and evenly illuminated without the appearance of 

reflections. To ensure accuracy, a full-range image stream including 72 images from all 

angles of the specimen was used to reconstruct the 3D point clouds. 

It was found that the radial shrinkage of the fabric increased with the tensile 

displacement. The deformed tubular fabric maintained a symmetrical shape. Fig. 2.12 

(a-c) present the comparisons between the measured lateral profiles and the ones 

obtained theoretically from Eq. 2.10 at a deformation of 25, 50 and 75 %, respectively. 

The good agreement found validated the hypothesis of the lateral profile and the 

expression of the theoretical profile curve provided by Eq. 2.10.    

 

 

Fig. 2.11 The tubular fabric at 25, 50 and 75% deformation. 
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Fig. 2.12 Comparisons between measured and theoretical approaches about the lateral 

profile of the deformed tubular sample. 

 

2.3.4 Tensile curves of the tubular braided fabrics  

Fig. 2.13 presents the tensile load vs. the global deformation of tubular braided 

samples in axial extension tests. The curves can be divided into three parts before 

reaching the maximum load. In the 1st part, the load increased relatively slowly as a 

function of the tensile deformation. It was believed that this phenomenon concerned the 

pure in-plane shearing of each unit cell. At 60% deformation, the load started to rise 

rapidly due to the effects of extension and lateral compaction of the yarns. Between the 

60 and 75% deformation, in-plane shearing was the dominating deformation mode: 

when strong contact appeared on the lateral sides of the yarns, the lateral compaction 

blocked the yarns’ rotation. Consequently, the coupling of extension and lateral 

compaction of the yarns generated a rapid rise in the load. This significant increase 

started to fade at 125% deformation when the first damage to the yarns was observed 

near the clamps.     
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Fig. 2.13 Tensile load vs. global deformation for tubular braided samples. 

 

Fig. 2.14 shows the shear angle and elongation of the yarn as a function of the fabric’s 

global deformation. As can be seen, there was hardly any extension of the yarns before 

75% deformation and the shear angle augmented rapidly in this pure shearing zone 

(Zone 1). Between 75 and 125% deformation, denoted “Zone 2” in Fig. 2.14, the shear 

angle increased slowly due to the impediment of the yarns’ lateral compaction. In 

contrast, a significant extension of the yarns was noted. After 125% deformation (in 

Zone 3), the shear angle barely changed. From this moment, the deformed structure was 

completely locked and was denoted the “locking structure”. Compared with plane 

textile fabrics, it was not appropriate to define it as a “locking angle”, as a “locking 

angle” is not uniform in deformed tubular fabrics. In Fig. 2.14, the “locking angle” was 

close to 60° in the zone of 5 mm from the central line of the fabric (zone B in Fig. 2.15). 

The results displayed in Fig. 2.14 also explain the phenomena extracted from the tensile 

load / global deformation curve in Fig. 2.13. 
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Fig. 2.14 Shear angle and elongation of the yarn vs. the fabric’s global deformation 

during a tensile test (observed at 5 mm from the central line of the fabric). 

 

2.3.5 In-plane shear response 

As discussed previously, the axial tensile test of the tubular braided fabric generates 

a variation in the angle between the yarns. This angle can be defined as the in-plane 

shear angle on a unit cell and is not homogenous along the tubular sample. Fig. 2.15 

shows four selected zones on the tested fabric in the axial direction according to the 

relevant dimensions. Due to the symmetry, it was possible to monitor the angles 

between the yarns only on the upper half of the sample. 
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Fig. 2.15 Schematic representation of the shear region division. 

 

Fig. 2.16 shows a comparison between the theoretical and experimental shear angles 

as functions of the global tensile deformation. The theoretical angles were calculated 

by using Eq. 2.17 and the experimental ones were obtained by DIC. The shear angles 

were found to be different in various distinct zones on the tubular sample. The central 

zone (zone A) consistently underwent the biggest shearing effect compared with the 

other zones. The zone closest to the clamps (zone D) had little rotation space, which led 

to it having the smallest shear angles. A good agreement (<10%) between theoretical 

and experimental approaches confirmed the developed analytical model, but this 

agreement lasted only up to 75% deformation or in the pure-shearing stage. From 75% 

global deformation, analytical and experimental results are increasingly divergent (30% 

difference at 120% deformation and 50% difference at 150% deformation). Moreover, 

at 75% global deformation, a notable shearing effect with a shear angle of almost 60° 

and radial shrinkage of 41% was observed in zone A. With the given braided fabric in 

the present study, 60° in-plane shearing deformation can be considered deep forming. 

In other words, it was possible to carry out deep forming while remaining in the pure-

shearing stage of the tubular braided fabric in question.  
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Fig. 2.16 Shear angle vs. global tensile deformation: comparison between theoretical 

and experimental results. 

 

As presented in Fig. 2.16, the theoretical model provided a good prediction of the 

shear angle in the pure-shearing stage during the tensile testing of the tubular braided 

fabrics. Fig. 2.17 displays the shear loads as a function of the shear angles of the tubular 

braided samples under the axial tensile stress, with values obtained by Eq. 2.22. The 

four curves of shear load vs. shear angle corresponded to the four zones defined in Fig. 

2.17. To obtain the same shearing deformation (i.e., the same shear angle), the different 

zones required different shear loads. There thus existed a local shearing behaviour or 

shearing deformation field on the tubular fabric. Compared with the zones close to the 

clamps, the central zones were deformed more easily under the shearing effects. It can 

be also observed that the “locking angle” was not uniform in the zones and depended 

on the position in the axial direction (the Z position). Furthermore, when going from 

zone A to zone D, the maximum shear angle that could be reached gradually decreased, 

indicating that zone A had a larger shearing space than the other areas in the pure-

shearing stage. 
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Fig. 2.17 Shear load vs. shear angle in the different zones of the tubular braided fabric. 

 

2.4 Thermomechanical behavior of tubular fabrics under the tensile 

loads 

2.4.1 Materials 

The tubular braided reinforcements analyzed in the present study were manufactured 

from natural fibers commingled with Flax and Polyamide 12 (PA12) yarns (as shown 

in Fig. 2.18 (b)). The fabrics were produced by Gemtex laboratory. The total number of 

yarns in the tubular fabric is 96 and it was provided by Schappe Technique. The length 

of the specimen used for the test is 40 mm excluding the gripper zones and the diameter 

of the specimen is 50 mm. The main physical properties are noted in Table 2.4. As the 

important parameters of the samples, the braiding angle was determined by the braiding 

process. It can be noted that half of the angle between the tows is defined as the braiding 

angle (β/2) which is 55°, the structure is shown in Fig. 2.18 (a). 
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(a)                                         (b)  

Fig. 2.18 Tubular braided fabrics, (a) Structure diagram of 2-2 twill with braids and 

(b) Tested braids with Flax/PA12 commingled yarn.

Table 2.4 The main properties of the tubular braid fabrics. 

Parameters Flax/PA12 Specimen

Type of braid Biaxial twill 2-2 

Initial braid angle (β/2) 55°

Yarns density (tex) 500 

Area density (g/m2) 376 ± 5 

Number of yarns per cm 4.2 

Thickness (mm) 2.06 

The mass fraction of flax 64% 

The mass fraction of polyamide 36% 

2.4.2 Tensile tests under hot temperatures 

The uniaxial tensile tests are conducted by an Instron tensile machine with a load cell 

is 250 kN. According to the standard NF ISO 13934, the tensile speed was set to 

10mm/min. To avoid the sliding of the sample during the stretching process, the ends 

of the fabric are connected to the stretching machine by the corresponding clamps. The 

mechanical behavior and the braiding angle of the samples during tensile tests were 

recorded thanks to a camera that was positioned in front of the machine. The software 

ImageJ is also used to analyze the pictures. Fig. 2.19 displays the experimental setup. 

The thermomechanical test of the fabric is mainly divided into two parts to analyze the 

effects of temperature and tensile speed on mechanical properties. Since the melting 

value of PA12 is 178 °C, the temperature range was chosen to include below and above 
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the melt temperature to analyze the thermomechanical properties of fabrics more 

comprehensively. The specific experimental conditions are shown in Table 2.5. All tests 

are performed in an isothermal oven and each test was started after the temperature has 

stabilized. To ensure the accuracy of the results, the tests are conducted more than three 

times. 

 

 

Fig. 2.19 Setup of the tensile machine with the specimen. 

 

Table 2.5 The different main conditions of the tensile test. 

Condition Temperature( C ) Velocity(mm/min) 

Room temperature and 

displacement speed 
20 10 

Variants of temperature 

with same velocity 

150 

10 
170 

180 

190 

Variants of velocity with 

same temperature 
190 

5 

10 

20 

 

Fig. 2.20 shows the tubular specimen before and after the tensile test. Fig. 2.20 (a) 

shows the initial state of the specimen. The deformed shape at 150 °C is shown in Fig. 

2.20 (b). Fig. 2.20 (c) shows the deformation at 190 °C. The radial shrinkage structure 
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of the specimens is clearly shown in the deformed configuration. The melting state of 

PA12 can be observed at 190 °C and the specimen was impregnated. 

The experimental results in Fig. 2.20 show that the shear behavior of tubular fabric 

under tensile load not only leads to radial shrinkage but also yarns’ reorientation 

[159,161], which creates the shear angle. It’s similar to the in-plane shear of the woven 

fabric [65,66,84]. During the bias-extension test, as the tensile displacement increases, 

the intersecting yarns rotate with each other and leading to a decrease in the angle 

between them. So, the fabric undergoes in-plane shear behavior and produces the shear 

angle. The in-plane shear behavior leads to three different zones, which are the ‘no-

shear zone’, ‘semi-shear zone’ and ‘pure shear zone’ [76,162,166]. It is worth noting 

that the shear angles are equal within the same zone. But for tubular fabrics, the shear 

angle is the same only at the fabric’s circumference of the same height. To analyze the 

mechanical behavior of tubular fabrics, it’s crucial to grasp the variation law of shear 

angle. As the shear angle not only depends on the tensile displacement but also is 

affected by the temperature. Therefore, to analyze the shear behavior of fabrics during 

thermoforming, the effects of deformation and temperature need to be considered. In 

the existing studies, the analysis of shear angle is mostly based on analytical models 

which have proven to be effective for characterizing the mechanical behavior of fabrics 

at room temperature and have been used for simulation analysis. This section attempts 

to develop an analytical model to determine the shear angle on the smallest 

circumference of the tubular fabrics at room temperature. 
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  (a)                    (b)                     (c)  

Fig. 2.20 Tensile tests performed on tubular braids in an isothermal oven, (a) initial 

state, (b) specimen with broken yarn at 150 °C and (c) specimen with broken yarn at 

190 °C. 

Compared to the state of the fabric after removing it from the tensile machine at 

150 °C and 190 °C, the results are different (Fig. 2.21). It can be directly observed that 

after being stretched at the temperature of 190 °C, the fabric still maintained the radial 

shrinkage shape even if it has been removed from the tensile machine after being 

stretched at the temperature of 190 °C. It’s probably due to the fact that 190 °C exceeds 

the melting point of PA12, the fabric is in a molten state and cannot return to its initial 

state after curing. On the contrary, the melting point of PA12 is not reached at 150 °C, 

the fabric has the behavior of returning to its original state when it is removed from the 

machine. This also confirms that temperature has an important influence on the forming 

of the fabric and should be set reasonably. In particular, the melting point of the yarn 

cannot be ignored during the thermoforming process. 
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(a)                            (b)  

Fig. 2.21 Specimens removed from the testing machine, (a) specimen at 150 °C and 

(b) specimen at 190 °C.

In the forming process of the fabric, the influence of the shear angle cannot be 

ignored. On the one hand, the shear angle facilitates the draping of the fabric. On the 

other hand, the shear angle is closely related to wrinkling. The shear angle facilitates 

the draping of the fabric but is also closely related to wrinkling. When the shear angle 

exceeds the maximum critical value (“locking angle”), wrinkling is more likely to be 

produced. So, it is necessary to master the evolution of the shear angle. It is obvious 

from the experimental results that the distribution of the shear angle of the tubular fabric 

is not uniform. The shear angle is the largest in the middle part of the fabric and the 

smallest at both ends. Therefore, the shear angle in the minimum circumference of the 

fabric (“the maximum shear zone”) is the first to reach the locking angle, which induces 

forming defects. In this section, an attempt is made to develop an analytical model to 

predict the shear angle in the maximum shear zone of tubular fabrics. 

According to the experimental results, a deformation schematic diagram of tubular 

fabric is shown in Fig. 2.22, L and W in the figures symbolize the original length of the 

fabric and the diameter of the fabric, respectively. z represents the axial direction of the 

fabric. F is the tensile load. It is assumed that there is no slippage between two yarns 

and the yarns are not elongated during the test. As the tensile displacement increases, 

the relationship between the displacement and the minimum radius of the fabric can be 



 

76 

fitted: 

20.005587 0.5367 25.06b u u                (2.23) 

where u presents the tensile displacement and b presents the minimum radius of the 

fabric.    

To study the shear angle of the fabric, a unit cell in the minimum circumference of 

the fabric is taken as the research object, as shown in Fig. 2.22. According to the 

definition of the shear angle and the corresponding geometric relationship, the shear 

angle on the minimum circumference of the fabric can be expressed as: 

                               (2.24) 
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2arcsin
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                      (2.25) 

where L symbolizes the original length of the fabric, z indicates the height of the 

fabric along any circumference in the axial direction. W represents the diameter of the 

fabric.   is the initial interlaced angle and   is the shearing angle. 

 

 

Fig. 2.22 Deformation of the tubular fabric before and after the test. 

 

2.4.3 Results and discussion 

(1) Comparison between the experimental and theoretical shear angle 

The shear angle in the minimum circumference of the fabric during the test was 

measured optically to verify the theoretical model proposed in Section 2.4.2. The 
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theoretical value of the shear angle can be obtained by bringing the displacement into 

Eq. 2.25, the theoretical value of the shear angle at 150 °C can be obtained and 

compared with the experimental results, as shown in Fig. 2.23. The measurement results 

of the shear angle in the minimum circumference of the fabric follow the theoretical 

curve until the deformation reaches 60% to 70% (corresponding to a 50° shear angle). 

When the fabric deformation reaches about 35% to 40% (i.e. a 35° angle), the 

experimental value and the theoretical value begin to separate, but the theoretical value 

can still describe the experimental value well. The maximum error at this stage is 9.5%. 

This means that there is no (or limited) elongation of the yarn and no (or limited) 

slippage between the two yarns before the 40% deformation, which is consistent with 

the previous assumptions. In this stage of the test, it is reasonable to use theoretical 

values to reflect the shear angle. The crossed yarns are rotated relative to each other, 

and the shear angle increases. When the deformation exceeds 70%, there is a large 

separation between the experimental curve and the theoretical curve. The maximum 

error at this stage is more than 10.4%. At the same time, the growth rate of the measured 

shear angle slows down, while the theoretical shear angle continues to increase. This 

can be due to slippage between the two yarns or yarn elongation. However, theoretical 

models do not take these two factors into account and thus cannot continue to describe 

the shear behavior of fabrics.  

 

 

Fig. 2.23 Comparison of experimental and theoretical shear angle in the maximum 

shear zone of fabrics. 
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(2) Comparison of tensile behavior of flat braided fabric and tubular braided fabric 

The mechanical behavior of flat braided fabrics depends on the bias-extension test. 

The details of the test with Flax/PA12 flat braided fabrics are given in the Chapter Ⅱ 

and fabrics with an aspect ratio of 4.2 were selected to compare with tubular fabrics, 

the tensile schematic is shown in Fig. 2.24. Three distinct zones A, B and C are clearly 

indicated in Fig. 2.24 (a). There is no shearing deformation in zone A, half shearing 

deformation in zone B and pure shearing deformation in zone C. The sample is stretched 

to produce the pure in-plane shear angle in zone C and semi-angle in zone B. Compared 

with the stretching of flat fabrics, the deformation of tubular fabrics is more complicated. 

In the tensile test, the tubular fabric exhibits multiple different zones along its axial 

direction, and the shear angles of each zone are not equal. The distribution of the shear 

angle has a non-uniformity, the shear angle is largest near the middle part of the fabric 

and smallest near the ends. The shear angles are equal only if they are located on the 

same circumference of the fabric. At the same time, the maximum shear angle of flat 

fabric is in the pure shear zone, while the maximum shear angle of the tubular fabric is 

located on the minimum circumference of the fabric. 

 

 

Fig. 2.24 Schematic diagram of deformation of flat braided fabric and tubular braided 

fabric. 

 

The braiding angle, as one of the most important parameters of the braided preform, 

has a great influence on the mechanical properties of the braided composite materials. 
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The mechanical properties of braided preforms vary with the braiding angle. Therefore, 

the shear angle in the maximum shear zone of flat braided fabric in the literature and 

tubular braided fabric in the present paper is compared during the stretching process, as 

shown in Fig. 2.25. The maximum shear angle of two fabrics increases first and then 

tends to be constant with the increase of tensile displacement. Under the same tensile 

displacement, the shear angle of the tubular fabric changes faster than that of the flat 

fabric. This is mainly because the middle zone of the tubular fabric has a larger shear 

space. 

 

 

Fig. 2.25 Comparison of the shear angle for flat braided fabric in the pure shear zone 

and tubular braided fabric in the maximum shear zone. 

 

2.4.4 Characterizations of tubular braided fabrics with Flax/PA12 Yarn 

The load-displacement curves of the tubular fabric at different temperatures are 

shown in Fig. 2.26. The tensile curves of the fabric at different temperatures can be 

divided into three stages. In the first stage, the load increases relatively slowly with the 

increase of deformation. The load at this stage is necessary to overcome the adhesive 

friction between the yarns so that the yarns rotate with each other and start shearing 

until a deformation of about 35%~40%, which is consistent with the separation of the 

theoretical and experimental values of the shear angle mentioned in Fig. 2.23. Similar 

to the bias-extension test, the fabric at this stage exhibits pure shear behavior. Then, the 
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yarns contact each other and generate transversal compaction resulting in a rapid 

increase in load with the deformation increases. It is further explained that the growth 

rate of the in-plane shear angle slows down after the theoretical and experimental curves 

separate clearly. Finally, the load decreases due to the breakage of the fabric.  

Although all of the curves in Fig. 2.26 present a similar non-linear evolution, the 

maximum load decreases with increasing temperature. The maximum load on the 

specimen at room temperature (T=20°C) is much larger than that at higher temperatures. 

In addition, the maximum deformation of the fabric also decreases with the temperature 

increases, and the fabric at 20 °C has a greater tensile deformation compared to 190 °C, 

which is strongly related to the melting point of PA12. The literature [167] gives the 

tensile results of single Flax/PA12 yarns at different temperatures, as shown in Fig. 2.27. 

 

 

Fig. 2.26 The tensile load vs. tensile deformation of tubular fabrics under variation of 

temperature. 

 

The tensile behavior of a single yarn at room temperature is analyzed, specifically 

showing a large deformation as a relatively large force, which can be divided into three 

stages: rapid increase (<3%), slow increase (3%-35%), and rapid decrease (>35%). The 

yarn in the first phase presents a shorter deformation corresponding to a large increase 

in tensile load. When the deformation reaches only about 3%, the slope of the curve 

changes, and the pure flax was broken, it has been proved by literature [168]. After the 

breakage of pure flax, PA12 was slightly deformed without breaking and it would still 

bear the load. The yarn retained a certain strength at this stage, the tensile process 
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continues to the next phase. In the second stage, the larger deformation of yarn could 

be observed but the slope of the increasing load is slower. At this phase, pure flax was 

broken, PA12 exhibited tensile behavior and the yarn presents a progressive 

deformation until PA12 was broken. The curve enters the third stage after a second 

slope change. In the third stage, the load decreases sharply, indicating an increased 

progression of a slip of fracture in flax and PA12. 

From the above discussion, in Fig. 2.27, the tensile process of a single yarn at room 

temperature can be summarized as: (1) pure flax breakage; (2) PA12 breakage; (3) 

slippage of flax and PA12. Comparing the tensile behavior of the yarn at other 

temperatures, it was found that as the temperature increased, the tensile behavior of the 

yarn gradually changed from the initial 3 parts to 2 parts, and the maximum deformation 

also decreased from the initial 35% to 3 %. When the temperature was lower than the 

melting temperature (178 °C) of PA12, the tensile curves still included the three stages. 

While the deformation in the second stage decreased significantly as the temperature 

increased. This is because temperatures affect the strength of PA12, causing the force 

required to break and cause breakage in PA12 to decrease as the temperature approaches 

its melting value. Therefore, compared with room temperature, the deformation before 

PA12 reached fracture also decreased with increasing temperature. On the contrary, 

when the temperature was higher than the melting point of PA12, PA12 melted and the 

tensile behavior of the yarn was mainly characterized by pure flax and the curve 

consisted of only two stages. The maximum load drops sharply. This is also the reason 

why the maximum load and maximum deformation of tubular fabric as shown in Fig. 

2.26 decrease with the increase in temperature during the stretching process. So, the 

thermomechanical behavior of the fabric depends largely on the temperature. 
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Fig. 2.27 The tensile load vs. tensile deformation of single flax/PA12 yarn 

under variation of temperature [167]. 

 

The shear angle is an important parameter to reflect the mechanical properties of the 

specimen. The relationship between the shear angle and the load at different 

temperatures is shown in Fig. 2.28. It can be found that at different temperatures, the 

shear angle and load present a non-linear evolution. Following the load augmentation, 

the shear angle increases. The increase in load can be divided into two stages. At first, 

the shear angle increases with a smaller load, then the shear angle becomes larger and 

the load also increases noticeably. It’s due to the pure shear behavior of fabric at the 

initial stage of the tensile test and the transverse compaction of the yarns after “the 

locking angle”. Similarly, the specimen at room temperature leads to load on the 

specimen that is much larger than for higher temperatures. This indicates that the shear 

stiffness of the fabric decreases with increasing temperature. When the state of the 

fabric tends to be stable, as the test temperature increases, the shear angle increases 

under the same load conditions. This is also caused by the melt state.  
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Fig. 2.28 The tensile load vs. shear angle under the different temperatures of tubular 

fabrics. 

 

The load versus deformation curves are plotted in Fig. 2.29 corresponding to three 

different displacement rates. The temperature is maintained at 190°C. Firstly, the 

thermomechanical properties of the fabric show similar evolution for the different 

tensile speeds, which are also divided into three phases. Secondly, it can be found that 

the maximum load of the fabric at a speed of 20 mm/min increases noticeably compared 

with the maximum load at a speed of 10 mm/min and 5 mm/min. This indicates that the 

displacement rate has a certain influence on the properties of tensile behavior. The shear 

stiffness improved by increasing the tensile speed. Under faster speed conditions, PA12 

doesn’t melt enough and the fabric maintains a high level of tensile resistance to 

stretching. 
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Fig. 2.29 The tensile load vs. tensile deformation curves under the different tensile 

speeds of tubular fabrics at 190 °C. 

 

The shear angle characteristics corresponding to different tensile speeds of the fabric 

at 190 °C are shown in Fig. 2.30. It can be observed that fabric requires bigger effort at 

20 mm/min than at 10 mm /min and 5 mm/min to achieve the same shear angle. Thus, 

this also proves that the strength of the fabric is influenced by the variation of the tensile 

speed. The strength of the fabric can be kept high by properly increasing the tensile 

speed. 

 

 

Fig. 2.30 The tensile load vs. shear angle under variation of speed for tubular fabrics 

at 190 °C. 
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2.5 Conclusion of chapter Ⅱ 

The forming of textile reinforcements is a complex process in which serval 

deformation modes are coupled. In this chapter, the shear properties of 2D braided 

fabrics are firstly analyzed by bias-extension test. Then, the mechanical response of 

tubular braided fabrics with hollow structures under an axial tensile load was 

investigated. This complex mechanical response was divided into three main parts from 

the tensile load/deformation curve. Pure shearing was the first part and generated the 

non-homogenous in-plane shear angles on the deformed tubular structure. A 

combination of in-plane shearing and yarn extension was observed in the second part 

until the lateral compaction of yarns completely blocked their rotation, and this 

phenomenon was called a “locking structure”. In the last part, after the “locking 

structure”, yarn extension became the dominant deformation mode, which finally led 

to structural damage. When it comes to the forming deformation, it was believed to take 

place within the first part, i.e., in the pure-shearing zone. For this, an analytical model 

was developed to describe the in-plane shear behaviour under axial tensile stress. The 

corresponding availability is verified by comparing experimental results produced by 

tubular fabrics. 

Considering the effect of temperature on the fabric forming process, this chapter 

characterizes the thermomechanical properties of tubular fabrics at different forming 

temperatures and stretching speeds. Compared with the curves at different temperatures, 

the fabric at room temperature has the highest shear stiffness. As the temperature 

increases, the state of the yarn gradually transforms from a solid state at room 

temperature to a liquid state above the melt temperature. The effect of lubrication 

reduces the friction between the yarns, so the shear stiffness is reduced and the 

maximum load gradually decreases. The effect of tensile speed on the mechanical 

properties of the fabric is specifically shown by the fact that the strength of the fabric 

increases as the tensile speed increases. In the case of increasing the tensile speed, the 

fabric requires a bigger effort to achieve the same shear angle and the shear stiffness 

increases. 
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3Ⅲ. Numerical forming 

analysis of biaxial braided 

composite reinforcements 
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 Résumé en français  

Pour fabriquer des pièces composites à double courbure et de formes complexes, un 

renfort sec peut être utilisé dans les procédés LCM (Liquid Composite Molding), 

comme mentionné dans le chapitre Ⅰ. Cependant, il s'agit d'une étape physique 

compliquée comprenant des comportements de déformabilité complexes. En raison des 

caractéristiques du renfort et des paramètres de fabrication, l'étape de préformage du 

renfort est également accompagnée de divers défauts. D'autre part, lorsque le tissu est 

drapé hors de la forme complexe attendue sur un moule à double courbure, cela entraîne 

une redistribution et une redirection des fibres, affectant ainsi les propriétés mécaniques 

du composant. En raison de la complexité du processus de préformage du tissu, il est 

difficile de se fier uniquement à des "essais", et seul une approche de simulations 

numériques peut permettre la prédiction la mise en forme du renfort et le réglage et 

l’optimisation des paramètres de fabrication. 

La simulation numérique nécessite d'abord la sélection d'un modèle constitutif 

approprié pour décrire la loi de comportement du matériau. Ensuite, les paramètres 

requis pour la simulation sont déterminés en fonction des expériences. Lors de la mise 

en forme, ce modèle doit refléter avec précision les propriétés mécaniques des renforts 

et prédire le comportement anisotrope des composites finaux en raison de la 

réorientation et de la redistribution complexes des fils. Étant donné que la déformation 

du renfort pendant le préformage se manifeste au niveau macroscopique, selon le 

contexte théorique du chapitre Ⅰ, le modèle de simulation numérique continu peut être 

choisi pour analyser et prédire efficacement le comportement mécanique des renforts 

pendant leur mise en forme d'un point de vue macroscopique. Le modèle continu 

comprend le modèle constitutif orthogonal et le modèle constitutif non-orthogonal. Les 

résultats de simulation du modèle non-orthogonal se rapprochent plus des expériences 

que ceux du modèle orthogonal. Actuellement, les modèles constitutifs non 

orthogonaux ont été utilisés pour l'analyse des déformablités pendant le procéde de mise 

en forme des renforts tissés, des NCF (Non-crimp fabrics) et des tissus 3D interlock. 

Parmi les modèles continus, le modèle hyperélastique a été largement étudié et 

appliqué pour simuler le comportement mécanique macroscopique des tissus. Le 

modèle hyperélastique est basé sur la théorie de la mécanique des milieux continus et 

ses relations constitutives sont représentées par l'énergie de déformation et l'invariance 

plutôt que par une matrice de rigidité. Ce modèle constitutif prend en compte les 
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différents modes de déformation qui apparaissent dans le tissu pendant le procédé de 

mise en forme, tels que l’extension, le cisaillement dans le plan et la flexion, comme 

illustré dans la Fig. 3.1. Le modèle hyperélastique est un modèle élastique non linéaire 

typique pour les différents modes de déformation qui se produisent dans la mise en 

forme des renforts textiles, en supposant que les différents modes de déformation ne 

sont pas couplés les uns par rapport aux autres et que l'énergie totale de déformation du 

renfort est égale à la somme des énergies de déformation correspondant dans les 

différents modes de déformation indépendants. L'énergie de déformation est exprimée 

sous forme de fonction polynomiale des invariants en utilisant des invariants appropriés, 

et leur identification est réalisé par des tests mecaniques tels que le test de traction 

uniaxiale/biaxiale, le test de picture-frame test ou le bias-extension test. 

 

 

Fig. 3.1 Modes de deformation modes, (a) extension, (b) cisaillment dans le plan et (c) 

flexion. 

 

Cependant, un grand nombre d'études de simulation sont limitées au cas des tissus 

où les directions de trame et de chaîne sont perpendiculaires les unes par rapport aux 

autres, et très peu d'investigations ont été consacrées aux tresses non orthogonales. Ce 

chapitre propose un modèle constitutif hyperélastique pour caractériser les propriétés 

mécaniques anisotropes des renforts tressés non orthogonaux afin de simuler le procédé 

de préformage. En se basant sur les modes de déformation, l'énergie de déformation a 

été définie par des invariants spécifiques correspondants. Les coefficients de la loi 

constitutive hyperélastique ont été identifiés dans le cas des renforts non orthogonaux 

grâce à l'établissement d'un modèle énergétique entre le tenseur de contrainte de 

Kirchhoff et l’effort de traction. La loi constitutive et le modèle énergétique ont ensuite 

été validés par comparaison avec le bias-extension test et le test d’emboutissage 
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hémisphérique. 

Mots-clés: Textile composites; Renfort tressés; Simulation numérique; Modèle 

hyperélastique; Mise en forme 
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3.1 Introduction 

The forming process of the preforms is crucial for the final properties of complex-

shaped composites, and the deformation behavior of the fabrics is determined by the 

mechanical properties discussed in Chapter Ⅱ. Based on the bias-extension test of flat 

fabrics, the objective of this chapter was thus to first improve a non-orthognal 

hyperelastic constitutive model to simulate the forming process of non-orthogonal 

composite braided fabrics, taking into account the tensile and shear effects of the fibers. 

The shear invariant proposed by this model can be used to characterize the shear 

deformation of fabrics with arbitrary braiding angles. The theoretical relations were 

introduced to obtain the in-plane shear component for the hyperelastic model for fabrics 

with arbitrary braiding angles. To prove the validity of the model and shear coefficients, 

the bias extension test and preforming test of non-orthogonal braided fabrics were 

simulated. The numerical simulation results are in good agreement with the 

experimental results, which effectively verified the correctness of each theoretical 

model. 

3.2  Hyperelastic modeling for non-orthogonal fabrics 

3.2.1 Description of non-orthogonal fabrics 

Weaving, braiding and knitting are the main methods to produce textile preforms 

[157]. Among them, weaving is primarily used to create woven fabrics (two interlaced 

yarns that are orthogonal in the initial position). The braiding technology can obtain 

fabrics with arbitrary braiding angles (between 5° and 85°) by setting specific braiding 

process specifications and mandrel parameters [16,169,170]. The fabrics obtained by 

the braiding machine have a three-dimensional tubular structure, and needs to be cut 

and opened along their axial direction to become two-dimensional flat single-layer 

fabrics, as presented in Fig. 3.2. Braided fabrics are flexibly used in advanced 

composite parts due to their variable braiding angles. Compared with woven fabrics, 

braided fabrics present non-symmetrical structures in two directions, so the mechanical 

properties of the fabric should be defined simultaneously for different directions (axial 

direction and transversal direction) to achieve a comprehensive grasp of the in-plane 

shear and tensile behaviors. 

 



 

93 

 

 

Fig. 3.2 Acquisition of 2D braided fabrics and structural diagram in two directions, (a) 

three-dimensional tubular braided structure, (b) the axial direction and (c) the 

transversal direction. 

 

3.2.2 Description of the movement 

The motion of any point in a solid region   in space with a boundary surface 

is described by the bijective function  : 

 ( , )x X tΦ  (3.1) 

It provides the position vector x  at time t for any particle that previously occupied 

position X . For a fixed time t, this function defines the deformation of arbitrary point 

in the solid between the reference configuration 0C  and a current configuration tC , 

as shown in Fig. 3.3. 
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Fig. 3.3 Initial configuration C0 and current deformed configuration Ct. 

 

The displacement of a particle is given by the difference between its current position 

and its initial position. Therefore, 

 ( , ) ( , ) ( , 0)u X t X t X x X      (3.2) 

A key quantity in deformation characterization is the deformation gradient F  , 

which allows describing the relative spatial positions of two neighboring particles after 

deformation using their relative material positions before deformation. The deformation 

gradient is defined as: 

 x
F

X





 (3.3) 

Using the deformation gradient, an infinitesimal line segment d x   in the current 

configuration can be described by the corresponding line segment d X  in the reference 

configuration. 

dx F d X   (3.4) 

In nonlinear continuum mechanics, various strain measurement methods are utilized, 

and the Green-Lagrange strain tensor E  only be considered here. 

 
2

( ) ( ) ( )T

d x d x d X d X d X E d X

d x d x F d X F d X d X F F d X

     

        
 (3.5) 

According to the above equations, the Green-Lagrange strain can be expressed as: 

 
1

( )
2

TE F F I    (3.6) 

Typically, nonlinear problems involve three stress measures: Cauchy stress  , the 
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first Piola-Kirchhoff stress P , and the second Piola-Kirchhoff stress S . In Fig. 3.4, the 

deformed body is virtually divided into two domains before and after deformation. 

 

 

Fig. 3.4 Definition of the stress vector. 

 

The Cauchy stress is defined as: 

 σ σ
d f

n d f n d
d

s
s
    =  (3.7) 

Therefore, Cauchy stress represents the internal forces expressed in the current 

configuration. The internal forces, surface and normal vectors are all described 

differently. The first Piola-Kirchhoff stress P  is defined as: 

 d f P N ds    (3.8) 

The second Piola- Kirchhoff stress S  is defined by: 

 dF S N dS    (3.9) 

The relations between the three stresses can be denoted by the following equation 

 
1 1

T T

T

J F S F PF

S F P J F F

 

  

   


 
 (3.10) 

Where J  is the determinant of the deformation gradient: det( )J F  

The definition of hyperelastic behavior law begins with the Clausius-Duhem 

inequality. The Clausius-Duhem inequality can be expressed in the initial configuration 

as follows. 

 
0 0

1
( ) : 0Q S E

x

 



      


    (3.11) 

With 0  the dissipation per volume unit in the initial configuration, the   specific 
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free energy per mass unit,   the temperature, η the specific entropy, and the heat flux 

vector Q   in the initial configuration. In the theory of “purely mechanics”, thermal 

effects are usually overcome. The temperature is considered homogeneous in an 

isothermal system. So, the dissipation is written as: 

 0 0 :S E      (3.12) 

A hyperelastic material is a material whose initial stain energy per unite volume  

0w     is independent of its actual state. The material does not exhibit any 

dissipation or energy loss ( 00Φ ) during deformation. Hence, two conditions related 

to the foundation of hyperelastic behavior laws are as follows: 

0

( ) :

( )

w F S E

w w F 

 


 




 (3.13) 

The results indicate that for the principle of material frame indifference, the strain 

energy is only a function of the right Cauchy-Green deformation tensor ( TC F F ). 

 
0( )

1
( ) : :

2

w w C

w C S E S C

 

  


 (3.14) 

Then  

 
1 1

( ) : : 0 2
2 2

Cw w w
w C S C S S

C t C C

   
            

  (3.15) 

Eq. (3.15) is the general expression of hyperelastic behavior models. It only requires 

the definition of the strain-energy potential w  related to the mechanical behavior of 

the material. 

In addition, considering that the fabric materials studied in this chapter are 

orthotropic, the characteristics of materials are defined by three preferred directions:

1M  , 2M  and 3M  . These directions allow to define the structural tensors, and it is 

defined as follows: 

 , , 1,3i jij
M M M i j    (3.16) 

The representation theorem allows expressing the strain energy density expression 

as a function of transformation invariants that capture anisotropic behavior. 

 1 2 3 41 42 43 412 413 423 51 52 53( , , , , , , , , , , , )orth orthw w I I I I I I I I I I I I  (3.17) 
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Where 1I , 2I  and 3I corresponding to the classical invariants of Cauchy-Green, and 

the mixed invariants are defined as: 

 

4

4

2 2
5

: : :

: : :

: : :

i ii ii

i jij ij

i ii ii

I C M M C M

I C M M C M

I C M M C M

 

 

 

 (3.18) 

3.2.3 Establishment of hyperelastic model for the biaxial braided reinforcements 

Hyperelastic materials refer to nonlinear elastic materials with large deformations. 

The stress work is only related to initial and current strain states, and is independent of 

deformation paths. Although friction between yarns consumes very little energy during 

deformation [38], the hyperelastic material can be approximately considered to have no 

energy dissipation in the deformation process without considering unloading, and the 

deformation energy required by the material is equivalent strain energy. For this reason, 

the constitutive model of the hyperelastic material is deduced from the strain energy 

function, where the energy density is usually defined by: 

 1 2( ) ( , , , )nw C w I I I    (3.19) 

Consequently, according to the section 3.2.2, the Lagrangian constitutive equation of 

a hyperelastic material can be written as: 

 
( )

2 2 n

n

w C Iw
S

C I C

 
 

  
  (3.20) 

where w  is the strain energy, nI are the invariants, S  is the second Piola-Kirchhoff 

stress tensor, and C   is the right Cauchy-Green strain tensor. It can be directly 

represented by the deformation gradient tensor F  as: 

 ( , ) TC x t F F   (3.21) 

In continuum mechanics, the deformation gradient tensor is then: 

 ( , )
x

F x t
X





 (3.22) 

where X  and x  are the position of a material particle in the referential configuration 

and the current configuration, respectively. The schematic diagram is shown in Fig. 3.3. 

Finally, the Cauchy stress tensor can be expressed as: 



 

98 

 
1 TF S F
J

      (3.23) 

where J  is the Jacobian matrix.   3detJ F I  , 3I  represents the local change of 

volume during deformation. 

To analyze the mechanical behavior of textile composite reinforcements, different 

hyperelastic models have been proposed describing the various structural types of 

fabrics. These models are based on formulations of physical invariants to portray the 

deformation modes by definition of strain energy. 

The reorientation of the fabric fibers during the forming process is key to obtaining 

complex shapes. In the initial configuration, there are two privileged directions of fabric 

(as shown in Fig. 3.5), 1M  and 2M  , respectively. The symmetry group for such a 

material is characterized by the structural tensors: 

 i jij
M M M     , 1, 2i j   (3.24) 

 

Fig. 3.5 Schematic diagram of the two principal directions in a unit cell in the initial 

and current configurations. 

 

Let us assume that the deformation modes of 2D braided fabrics during formation 

are tension along the principal directions and shear between two threads; and that these 

are independent of each other. The total strain energy of the fabric can be written as the 

summation of the corresponding strain energies of these independent deformation 

modes [171]: 
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1 1 2 211 22 12
( ) ( ( , )) ( ( , )) ( ( , ))elong elong elong elong sh shw C w I C M w I C M w I C M    (3.25) 

where w is the strain energy, C  is the right Cauchy-Green strain tensor, 
ij

M is the 

structural tensors. 

According to Eq. 3.25, the stress results become: 

 
1 1 2 2

1 2

2 2 elong elong elong elong sh sh

elong elong sh

w I w I w Iw
S

C I C I C I C

      
               

 (3.26) 

where elong1I , 2elongI , shI  are the invariants of elongation and in-plane shear. 

The invariants along two privileged directions reflect the elongation of the yarn. As 

it is not affected by the braiding angle, it is the same as the tension invariants for woven 

fabrics and can be expressed as: 

  4ln( )elongi iI I   1,2i   (3.27) 

where 4 :i ii
I C M   1,2i   

The derivative of the elongation invariant concerning C is given by: 

 
4

1

2
elongi

ii
i

I
M

C I





 1,2i   (3.28) 

The shear angle is a visual representation of the shear deformation mode and is the 

basis for calculating the shear strain energy. The definition of the shear invariant 

depends on the shear angle, expressed as cos( ) cos( )shI    , as seen in Fig. 3.5. For 

woven fabrics, the shear invariant is equal to zero in the initial state. In non-orthogonal 

materials, due to the arbitrariness of the braiding angle, the shear invariant characterizes 

the angle variation between the principal directions, and the braiding angle of the fabric 

needs to be taken into account (Eq. 3.29). This is completely different from woven 

fabrics, which is also the perspective of this work.  

 412
1 2

41 42

sh

I
I M M

I I
    (3.29) 

Consequently, the derivative of the shear invariant concerning C  is given by Eq. 

3.30. 
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  where 412 12
:I C M , 412

1

41 42

sh

I
I

I I
  

3.3 Strain energy and material parameters identification 

Now that the expressions for the physical invariants have been presented, each 

contribution to the strain energy can be expressed, in terms of the respective physical 

invariants, as a polynomial function. The identification of the polynomial coefficients 

(material parameters) is achieved by fitting simple tests, such as the uniaxial and/or 

biaxial tension test [134,172], the picture frame test [173–176] and the bias extension 

test [84].  

3.3.1 Expression of elongation strain energy and shear strain energy 

The strain energy associated with the tension of 2D braids is closely related to the 

elongation of the yarns. Consider that the elongation behavior in the two main directions 

is the same, but that each contribution is independent of the other. The strain energy can 

be expressed as an even function of the type: 

    2 2

1 1 2 2
1 1

n ni i

elong i elong elong i elong
i i

w c I w c I
 

    (3.31) 

where ( 1,2,...)ic i   are the tension strain energy coefficients, and the identification 

of which can be performed directly from a uniaxial tensile test in one of the principal 

directions. In this chaper, the coefficients are obtained by fitting the force-displacement 

curve of the single yarn under the uniaxial tensile test, more details are given in 

Appendix A. According to Eq. 3.31, the partial derivative of tensile strain energy with 

respect to the invariant is: 

                          2 1

1

2
N ielongi

i elongi
ielongi

w
i c I

I






 

               (3.32) 

The in-plane shear mechanical behavior of the material is determined by using a bias-

extension test or a picture frame test. The shear strain energy is expressed by a 

polynomial function;  

2

1

( )
n

i
sh i sh

i

w k I


             (3.33) 

In the formula, ( 1,2,...)ik i    are the shear coefficients of the strain energy. The 

derivative with respect to the shear invariants is given by Eq. 3.34: 
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3.3.2 Relations between tensile load and second Piola-Kirchhoff shear stress 

tensor 

Determining fabric shear parameters has been widely discussed in the literature 

[38,177] and most of the investigations used the picture frame test to carry out the 

identification. For the picture frame test, the fabric is in a pure shear state under the 

assumption that there is no sliding between yarns and that all the power created by the 

external force is converted into shear strain energy. Consequently, it becomes easier to 

obtain shear parameters. During frame testing, misalignment can easily be introduced 

during clamping, which induces spurious tension during testing. At the same time, the 

fibers on the boundary of the picture frame are not purely sheared due to the clamping 

[174].  

In contrast, attempting to obtain the shear parameters of materials by the bias-

extension test is more accurate. It is worth noting that the pure shear behavior in the 

bias-extension test only occurs in a partial area of the fabric, so it is a challenge to 

identify the shear parameters. In this section, based on an energetic approach, the 

second Piola-Kirchhoff (PK2) shear stress was directly related to the traction load of 

the bias-extension test. 

In the initial configuration, the fabric was not deformed, and the principal directions 

in a unit cell can be represented in the global coordinate system, as shown in Fig. 3.5. 

 1 10 20sin cos
2 2

M e e
        

   
 (3.35) 

 2 10 20sin cos
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M e e
         

   
 (3.36) 

When the fabric was stretched, the fibers became reoriented, and the components of 

the principal directions were thus:     
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'
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2 2
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 (3.38) 
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From the kinematics of the bias-extension test one can obtain the deformation 

gradient F : 

10 10 20 20

1 1
sin cos

2 2 2 2sin cos
2 2

F e e e e
   

 
                   

   
   

 (3.39) 

When 90   , the deformation gradient is expressed as: 

 10 10 20 202 sin 2 cos
4 2 4 2

F e e e e
                
   

 (3.40) 

where 10 20( , )e e  is the global coordinate system and 20e  follows the tensile direction. 

From the deformation gradient, the right Cauchy Green strain tensor TC F F  and 

its derivative with respect to time C  are:  
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 (3.41) 

At the same time, for the woven fabrics: 
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where   is the shear angle. 

As mentioned in the literature [178], the fabric consists of three different partitions 

(A, B and C) during the bias-extension test. Zone A namely “no-deformed zone”, Zone 

B called “semi-shear zone” and Zone C is “pure shear zone”, as shown in Chapter Ⅱ 

(Fig. 2.2). Assuming that the only mode of deformation in the specimen is pure shear, 

the external power due to machine forces can be related to the internal power due to 

shear forces in each zone. However, the only deformation mode involved in this balance 

are zones B and C, since zone A is not deformed. In a quasi-static tensile test, the load 

(F) on the specimen is related to the second Piola-Kirchhoff stress according to the 
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principle of equal internal (Pint) and external power (Pext). 
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By integrating the energy on the initial effective surfaces of the specimen, the 

relationship between the external force and the components of the PK2 tensor can be 

deduce 
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Where  11
S   and  22

S   are diagonal stress components in the pure shear zone of 

the specimen, 
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 are stress components in the semi-shear zone, B
Z  

and C
Z  are the initial surface area of zones B and C. u is the tensile displacement of 

the sample,
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 . h is the thickness of the sample. The specific geometric 

relationship can be found in Chapter Ⅱ (section 2.2.1). 

3.4 Forming simulation of 2D biaxial braided reinforcements 

3.4.1 Simulation of bias-extension test 

(1) Experimental setup 

The specific setup of bias-extension tests has been described in Section 2.2.2 of 

Chapter Ⅱ. The properties of fabrics are in Table 2.1. To comprehensively investigate 

the mechanical properties of the fabric, the test was carried out on the axial and 

transversal directions of the fabric. The dimensions of the samples are shown in Table 

2.2. The tests were selected to analyze the fabric in the axial direction corresponding to 

different aspects (r=4 and r=6). The experiments were carried out by the Gemtex 

laboratory in the university of Lille. 

(2) Simulation analysis 

The relation, resulting from the energy approach, between the load and the shear 

stress PK2 was used to obtain the shear parameters. The Levenberg–Marquardt 

algorithm is proposed to get a numerical solution for nonlinear minimization. 

According to Eq. 3.44, by using the Levenberg–Marquardt algorithm to interpolate the 
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average experimental results of bias-extension tests (shown in Fig. 3.6) with geometric 

ratios, which were 4 in the axial direction and 1.67 in the transversal direction, the 

shearing coefficients in Eq. 3.33 could be determined, and are summarized in Table 3.1. 

Using this algorithm, only three sets of shear coefficients were obtained without an 

overfitting problem. 

 

 
Fig. 3.6 Identification of shear parameters for flax/PA12 in the axial and transversal 

directions. 

 
Table 3.1 The shear coefficients of the strain energy 

Fabric 
types 

Axial direction 
2( / )J mm  

Transversal direction 
2( / )J mm  

Flax/PA12 
1 0.000251k  , 2 0.0563k  , 

3 0.2086k   

1 0.0023k  , 2 0.0019k  , 

3 0.0011k   

 
Different directions of Flax/PA12 were selected to simulate the bias-extension test. 

According to the experimental conditions, one end of the fabric was fixed and the other 

end was subjected to a displacement load along the tensile direction. The simulation 

results of the bias-extension test and a comparison with an experimental approach are 

shown in Fig. 3.7, which presents the distribution of the shear angles. According to the 

simulation results, the fabric was asymmetrical in the axial and transversal directions 

due to the non-orthogonal structure of the braided preform. The three different zones 

could be clearly seen in both types of fabrics (as mentioned in Fig. 2.2 of Chapter Ⅱ: no 
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deformation in zone A, semi-shear deformation in zone B and pure shear deformation 

in zone C).  

 

 

(a) axial direction 

 

 

(b) transversal direction 

Fig. 3.7 In-plane shear angles during the bias-extension tests. 

 

Eq. 2.6 in Chapter Ⅱ gives the theoretical model for calculating the shear angle in the 

pure shear zone (zone C), and the theoretical value of the in-plane shear angle in the 

tensile process can be obtained by substituting the experimental displacement into the 

equation. Comparing the simulation results of the selected fabric in the axial and 
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transversal directions with the theoretical model, the relation between the shear angle 

(in the pure shear zone) and displacement could be determined and is portrayed in Fig. 

3.8. The different ratios (r) of the length to the width of the fabric were compared. The 

predicted shear angle using the shearing parameters (Table 3.1) was in good agreement 

with its theoretical counterpart. 

 

 

(a) 

 

(b) 

Fig. 3.8 Comparison of shear angle between theoretical and simulated values in (a) the 

axial direction (AD) and (b) the transversal direction (TD). 

3.4.2 Simulation of hemispherical forming process 

(1) Experimental setup 
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Forming experiments with hemispherical punches were carried out on a specific 

preforming device at room temperature, and the schematic diagram of the device is 

shown in Fig. 3.9 (a). The device was able to provide a variation of forming conditions 

for the textile reinforcement to achieve the desired double-curved shape. The flax/PA12 

fabric was used in the forming test, and was initially a 155mm×155mm square. The 

thickness of the fabric was 2.06 mm and the braiding angle was 35° (Fig. 3.9 (b)). The 

main properties of the textile were the same as those in Table 2.1. During the forming 

process of non-orthogonal braided fabrics, both tensile and shear strain energies need 

to be considered. The coefficients used to characterize the tensile strain energy and the 

shear strain energy are obtained by experiments. It is noteworthy that the coefficients 

( ic ) of tensile strain energy obtained from the data of uniaxial tensile tests of a single 

yarn (flax/PA12) and the value is 181. The coefficients ( ik ) of shear strain energy were 

obtained from bias-extension test as described in Table 3.1. The pressure required 

during the test was provided by pneumatic jacks. In order to compare the preforming 

results, draping experiments were conducted with 0.05 and 0.2 MPa pressure. 

 

 

(a) 
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(b) 

Fig. 3.9 (a) Schematic diagram of the preforming test and (b) the flax/PA12 braided 

fabric sample. 

 

(2) Simulation analysis 

The preforming process of hemispheric stamping was simulated by using the non-

orthogonal hyperelastic model proposed in section 3.2. This model was implemented 

in a nonlinear explicit finite element code provided by Innovamics. In the draping 

simulation of the fabric, finite element models of the fabric and the experimental setup 

were constructed. The blank was modeled by triangular membrane elements (the 

element size was 3 mm) and a penalty approach was used to model the contact. For the 

punch and die, the contact-triangle elements were used and the size of the elements was 

3mm. For the fabric, the membrane elements were used and the size was 2mm. 

For the preforming simulation by the FE analysis, the geometry of the forming tool 

(punch, die and holder) is given in Fig. 3.10. The different pressures were uniformly 

applied to the holder and the friction coefficient between the fabric and the tool was set 

to 0.2. To improve the computational efficiency, only a quarter of the fabric was 

modeled to take into account the symmetry of the forming process. The entire draping 

simulation process is summarized as: the fabric is placed flat on the die, the pressure 

was applied on the blank to press the fabric and the velocity boundary condition was 

used to control the punch speed (50 mm/min) to drape the fabric. 
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Fig. 3.10 The geometry of the forming tool in numerical simulation analysis. 

 

Fig. 3.11 shows the comparison between the deformed shape of a braided fabric 

predicted by the hyperelastic model and its experimental counterpart at 0.2 MPa 

pressure of the blank-holder. The two shapes exhibited decent consistency. It was found 

that the non-orthogonal braiding angles led to deformation differences in the fabric in 

the axial and transversal directions. The forming of the hemisphere of the braided fabric 

is asymmetric. The fabric presented a draw-in phenomenon along the axial direction, 

accompanied by in-plane shear. Furthermore, small changes were observed in the 

transversal direction. At the same time, two significant intra-ply shear behaviors 

appeared in the axial direction, and the local fiber volume fraction in the shearing 

regions was higher than in other regions.  

 

 

(a) 
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(b) 

Fig. 3.11 Deformed braids after preforming under 0.2 MPa pressure of the blank-

holder,(a) experimental approach and (b) numerical simulation. 

 

Under the pressure of 0.05 and 0.2 MPa, the deformed boundary profile of the 

simulated fabric was compared with the experiment, as shown in Fig. 3.12. According 

to a direct comparison of the area of maximum error, the simulation results were 

consistent with their experimental counterparts. The simulation could thus give a 

satisfactory portrayal of the preformed shapes, with errors ranging from approximately 

0% to 12%, which could be reasonably accepted. 

 

 

(a) 
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(b) 

Fig. 3.12 Comparison of the deformed boundary profile under different preforming 

conditions, (a) 0.05 MPa and (b) 0.2 MPa blank-holder pressure. 

 

The shear angle is an important reference when it comes to predicting the wrinkling 

of the deformed part and the key to calculating the fiber volume fraction. Accurate 

prediction of the shear angle distribution is of great significance for fabric forming 

optimization. In order to obtain accurate shear angle results, the fabric was divided into 

17 zones according to the shear angle distribution presented by the test, as shown in Fig. 

3.13. The average value of the shear angle for each zone was computed and compared 

with the simulation results, as can be seen in Fig. 3.14. The maximum errors of shear 

angle at a pressure of 0.05 MPa and 0.2 MPa were 9.3% and 8.2%, respectively. The 

maximum shear angle occurred in the transition region between the double dome curve 

surface and the flat area of the fabric (zone 13). So, the effectiveness and accuracy of 

the numerical predictions on the shear angles were vindicated from the comparison. 

Furthermore, the measured shear angles and deformed profiles and simulation results 

showed excellent agreement establishing the reliability of the hyperelastic model.  
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(a) 0.05 MPa-Experiment (b) 0.05 MPa-Simulation 

 

 
 

(c) 0.2 MPa-Experiment (d) 0.2 MPa-Simulation 

Fig. 3.13 Deformed braids after hemispherical preforming obtained by experimental 
and numerical simulation approaches under different blank-holder pressures. 

 

 

(a) blank-holder pressure of 0.05 MPa 
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(b) blank-holder pressure of 0.2 MPa 

Fig. 3.14 Comparison of in-plane shears between experiment and numerical 

simulation approaches in 17 different zones. 

 

3.5 Conclusion of Chapter Ⅲ 

The present chapter proposed a new hyperelastic model to characterize the 

mechanical behavior of non-orthogonal braided fabrics during a preforming process. 

Tension and shear deformation modes were introduced to describe the relationship 

between strain energy and invariants. In particular, the shear invariant presented in this 

chapter can be applied to braided fabrics with arbitrary angles and is not limited to 

woven fabrics. At the same time, a theoretical relation between the second Piola-

Kirchhoff stress tensor and the tensile load was established to predict the shear 

coefficients in the hyperelastic model by utilizing the data of the bias-extension test. To 

examine the validity of the model, the bias-extension test and hemispherical test of non-

orthogonal braided fabrics were also simulated, and good agreement was found 

between the numerical simulation results and their experimental counterparts, thus 

proving the validity of the numerical model. Furthermore, the hyperelastic constitutive 

model improved in this chapter will be continued to analyze the forming of tubular 

fabrics in Chapter Ⅳ. 
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4Ⅳ. Analysis and 

simulation on formability 

behaviors of tubular  
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 Résumé en français  

Les composites tubulaires tridimensionnels sont des matériaux multi-composants 

composés d'une matrice et de préformes textiles tridimensionnelles. Ils présentent des 

propriétés mécaniques similaires à celles des métaux, mais sont plus légers et offrent 

une meilleure résistance à la corrosion que les métaux. Ce matériau composite est une 

structure tubulaire complexe à plusieurs couches avec un intérieur creux et d’une 

certaine épaisseur. Le textile sert de matériau de renforcement pour la structure 

tubulaire et présente un grand potentiel. Ce renforcement tubulaire peut être directement 

formé par mise en forme en continue, ce qui entraîne une grande stabilité structurelle 

comme illustré dans la Fig. 4.1. Par rapport aux renforcements tubulaires formés après 

coup, il évite les concentrations de contraintes causées par les défauts de la mise en 

forme, ce qui se traduit par une distribution de charge plus uniforme sur le renfort textile. 

Les renforcements tubulaires tridimensionnels peuvent être préparés par tissage, 

tressage et tricotage. Les renforts tissés ont des angles de tissage fixes et un seul motif 

structural, tandis que les renforts tricotés ont un facteur de couverture plus faible et une 

rigidité moindre, ce qui les rend inadaptés aux structures de grande portée. Par 

conséquent, les renforcements préparés par des méthodes de tressage sont devenus 

l'objet d'attention dans les matériaux composites tubulaires. Les tressés offrent une 

flexibilité dans les angles de tressage, permettant l'ajustement de la direction et de la 

quantité de fil en fonction des besoins spécifiques, ce qui entraîne une plus grande 

variété de motifs de tissu et des performances supérieures. Ces excellentes propriétés 

font que les composites tressés tubulaires soient largement utilisés dans les domaines 

de l'aérospatiale, de l’armement, de la médecine et du sport, ainsi que dans le transport 

de pétrole et de gaz naturel (pipeline). 
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Fig. 4.1 Tressage et le renfort tubulaire. 

 

À l'heure actuelle, les composants composites tubulaires sont encore confrontés à des 

défis importants pour réduire davantage le poids et les coûts tout en améliorant leurs 

propriétés mécaniques. Les propriétés mécaniques de ces composants dépendent 

largement des propriétés mécaniques des renforts qui les composent. Le chapitre Ⅱ 

portait sur l’analyse de la réponse mécanique des tresses tubulaires à structure creuse 

sous des charges de traction axiale, révélant que ce type de renfort subit une contraction 

radiale tout en s'étirant axialement. Ce comportement est étroitement lié au cisaillement 

dans le plan du renfort textile. De plus, ce comportement facilite la mise en forme de la 

tresse tubulaire sur différents moules. En plaçant le renfort à structure creuse sur des 

moules de formes diverses et en soumettant le renfort textile  à des charges de traction 

axiale, le textile adhère à la surface extérieure des moules. Sous l'influence de la charge 

de traction, le renfort textile présente un comportement de cisaillement, qui est 

supprimé au contact du moule. Compte tenu de la complexité de la déformation du 

textile, il est difficile d'étudier de manière exhaustive les facteurs qui influencent le 

comportement mécanique des renforts textiles uniquement par des expériences. Par 

conséquent, sur la base de l'analyse expérimentale, la méthode de simulation est un 

moyen efficace d'éviter un développement expérimental coûteux. 

En analyse numérique, les modèles constitutifs appropriés sont cruciaux. La tresse 

tubulaire étudiée dans cet article est préparée à partir de fibres naturelles, ce qui peut 

être considéré comme un continuum. Par conséquent, en se basant sur la mécanique des 

milieux continus, le chapitre Ⅲ a établi un modèle hyperélastique pour caractériser le 
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comportement mécanique des tresses non orthogonales. Ce chapitre continue d'utiliser 

le modèle hyperélastique pour analyser les propriétés mécaniques des renforts 

tubulaires tressés. Selon les tests mécaniques des tresses tubulaires, les caractéristiques 

de contraction radiale et l'inhomogénéité de cisaillement sont reflétées dans la 

simulation. 

Mots-clés: Renforts tressés tubulaires, Simulation numerique, Modèle hyperelastique, 

Mise en forme 
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4.1 Introduction 

Tubular braided fabrics prepared directly from braiding machines are widely used 

due to their excellent integrity. The mechanical properties of the fabric are crucial, 

which determine the mechanical performance of the composite tubes. In order to 

investigate the mechanical characteristics of the fabric, this thesis explores both 

experimental and simulation aspects. In Chapter Ⅱ, experimental tests on tubular 

braided fabrics are conducted to investigate the deformation of the fabrics under axial 

tensile loads and a theoretical model for characterizing the shear behavior of the fabrics 

is developed. In this chapter, the tensile and preforming of tubular fabrics are simulated 

based on the hyperelastic constitutive model proposed in Chapter Ⅲ to simulate the 

mechanical behavior of non-orthogonal fabrics. Firstly, the mechanical parameters used 

to characterize the shear behavior of the tubular fabric are fitted based on the 

experimental data and the theoretical model obtained from Chapter Ⅱ. Then, the shear 

parameters were used to simulate the stretching process of the fabric, and the profile of 

the fabric under different tensile deformation conditions (25%, 50%, 75%) was 

obtained and compared with the experiment. The good comparison results showed the 

validity of the simulation model. Furthermore, based on the radial contraction effect of 

the fabric under tensile loads, this chapter analyzes the preforming process of tubular 

fabrics. It is found that the shear deformation of the fabric facilitates preforming on 

molds of different shapes, leading to different preforming shapes. Meanwhile, the shear 

behavior during the forming process is also investigated. 

4.2  Materials and Methods 

4.2.1 Tensile test of tubular fabrics. 

To investigate the mechanical properties of the tubular braided reinforcement, tensile 

tests have been conducted to obtain the mechanical response of the fabrics, as described 

in section 2.3.1 of Chapter Ⅱ. The tubular fabric is made of commingled yarns with 64% 

flax and 36% polyamide 12 (flax/PA12), the braiding angle (β/2) shown in Fig. 2.4 (a) 

is 55°. The length of the fabric is 40 mm (excluding the clamping area) and the diameter 

is 50 mm. The specific parameters are shown in Table 2.3. The tensile test was carried 

out on the Instron tensile machine in the LPMT Laboratory with a load cell is 250 kN. 

The experimental setting can be shown in Fig. 2.5. The two ends of the fabric are fixed 
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to the tensile machine by the corresponding clamps to avoid sliding. All of the tests 

were performed at a constant speed of 10 mm/min and repeated at least three times. The 

shear angle was measured by an optical measurement and deformation was recorded by 

3D scanning equipment (GOM) during the test. The variation of tensile load with 

displacement is output by the tensile machine. 

4.2.2 Preforming test of tubular fabrics 

It can be seen from Section 2.3 of Chapter Ⅱ that a fabric will undergo radial 

shrinkage along its circumference under axial load, which depends on the elongation 

and shear effect of the yarn in the fabric. Taking advantage of this characteristic of the 

fabric, the preforming test of fabric was investigated under tensile load. Tetrahedral and 

cylindrical models were chosen in the present section to investigate the formability of 

tubular braided fabrics. 

The preforming test of the tubular fabric is set up as shown in Fig. 4.2 and the 

experiment is still conducted on the Instron tensile machine. Firstly, the mold is fixed 

on the tensile machine, and then the tubular fabric is placed over the outer surface of 

the mold. During this process, it is important to maintain the original shape of the fabric 

to prevent it from being stretched. One end of the fabric is fixed to the mold, while the 

other end is connected to the tensile machine. The fabric is stretched by the tensile 

machine at a speed of 10 mm/min and gradually fitted to the mold to obtain the desired 

shape. Moreover, to get the elongation of a single yarn, the fabric will be marked by 

points along the same yarn (Fig. 4.2). The experimental results recorded by the camera 

used in the experiment will be processed in Image J software, and the marker-based 

tracking approach is used to get the material deformation.  
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Fig. 4.2 Schematic illustration of the tubular braided fabric preforming process. 

 

4.2.3 Identification of shear coefficients of tubular fabrics in the hyperelastic 

model 

The simulation analysis theory of fabric adopts the hyperelastic constitutive model 

proposed in Chapter Ⅲ. The constitutive model uses the invariant in deformation to 

describe the corresponding strain energy. For the tensile strain energy, its magnitude 

depends on the material properties of the fabric and is independent of the fabric 

structure, the coefficient ic of tensile strain energy is consistent with that mentioned in 

Chapter Ⅲ. For the shear strain energy, the shear coefficient in the constitutive model 

changes as the structure of the fabric changes. Therefore, the theory for determining the 

shear coefficient of the fabric needs to be re-established. For a three-dimensional (3D) 

tubular fabric, when a tensile load is applied along its axial direction, the intersecting 

yarns in the fabric will mutually rotate along the intersection point causing the shear 

effect, which is the same as the in-plane shear behavior of a flat fabric.  

The shear deformation gradient ( F ) and the right Cauchy Green strain tensor ( C ) 

of the fabric are easily obtained: 

 



123 

10 10 20 20

1 1
sin cos

2 2 2 2sin cos
2 2

x
F e e e e

X

   
 

                      
   
   

     (4.1) 

2 2

10 10 20 20

sin cos
2 2

sin cos
2 2

TC F F e e e e

   

 

        
                
      
            

 (4.2) 

10 20

where X and x are the position of a material particle in the referential configuration and 

the current configuration, respectively. β is the braiding angle,γ/ 2 is the shear 

angle. ( ,e e  ) are the global coordinate systems. 

The tubular fabric used in this chapter is a non-orthogonal fabric with a braiding 

angle of 55°, and its shear invariant is expressed as: 

412
1 2

41 42

sh

I
I M M

I I
    (4.3)

where 41 11
:I C M , 42 22

:I C M , 412 12
:I C M . 4iI  are the mixed invariants. 

ij
M are the structural tensors. 

According to Eq. 3.20 in Chapter Ⅲ, the second Kirchhoff shear stress tensor is 
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where shw  is the shear strain energy, C  is the right Cauchy-Green strain tensor, shI  

is the in-plane shear invariant. 
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where ( 1,2,...)ik i  are the shear coefficients of the strain energy. They are determined 

by experiment.
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Eq. 4.3 gives the relationship between shI  and C . And then, the derivative of the 

shear invariant concerning C  can be expressed as:  
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Considering that the shear deformation of fabric depends on the coordinates of the 

yarn, the coordinates of Eq. (4.6) are expressed as: 
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The diagonal stress components in the different shear zones of the specimen are given 

by:     

   

 

2 12
11 1

1

2 12
22 1

1

( ) 2 sin 1 2
2

( ) 2 cos (1 ) 2
2

n
i

i sh i sh
i

n
i

i sh i sh
i

S I i k I

S I i k I













            


           




              (4.8)                

Considering that the tubular fabric first undergoes pure shear deformation under axial 

tensile load, the external power generated by the machine force (F) is the sum of the 

internal power generated by the shear forces in each shear zone. 
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where F is the tensile load, u is the tensile displacement, 0V  is the volume of fabric in 

the initial state.  

According to Eq. 4.2, the derivative of C  with respect to time is given by:             
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From Eq. 4.8 and Eq. 4.10,  
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The shear angle of the tubular fabric is not uniform, and according to Eq. 2.17 in 

Chapter Ⅱ, the shear angle in the ith shear zone can be expressed by: 
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Integrating the energy of the initial effective surfaces of the fabric, the relations 

between the tensile load and components of the shear tensor can be obtained: 
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where u is the tensile displacement, 0b  presents the minimum radius of the deformed 

tubular fabric, Ai is the initial surface area of different shear zones, h is the thickness of 

the fabric, N is the number of shear zones of the fabric, and L and W symbolize the 

original length and diameter of the fabric, respectively.  

Eq. 4.13 gives the relationship between the tensile load and the second Kirchhoff 

shear stress tensor, and the parameters ( ik ) of the shear strain energy are obtained using 

this relation. Chapter Ⅱ has demonstrated that tubular braided fabrics under the axial 

tensile load undergo radial shrinkage resulting in a non-uniform distribution of the shear 

angle in the fabric. Meanwhile, the shear theory presented in Chapter Ⅱ was verified by 

four different partitions (zone A, zone B, zone C and zone D) in the axial direction of 

the fabric, as shown in Fig. 2.15. Therefore, in the study of this chapter, N=4 in Eq. 

4.13. The numerical solution for nonlinear minimization can be obtained via 

Levenberg–Marquardt algorithm. The shear coefficients of the tubular fabric are 

identified by using the Levenberg–Marquardt algorithm to interpolate the force-

displacement data of the fabric under the action of axial tension, as shown in Fig. 4.3. 
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Fig. 4.3 Identification of shear parameters for flax/PA12 of tubular braided fabrics. 

 

Table 4.1 The shear coefficients of the strain energy 

Fabric types Shear Coefficients 
2( / )J mm  

Flax/PA12 1 0.1608k  , 2 0.1823k  , 3 0.4335k   

 

4.3 Numerical simulation settings 

4.3.1 Simulation of uniaxial tensile test for tubular braided fabrics 

The hyperelastic constitutive model proposed in Chapter Ⅲ was used to simulate the 

uniaxial tensile process of tubular braided fabric. The fabric initially has a hollow 

cylindrical shape, and the finite element model is established based on the experimental 

specimen, as shown in Fig. 4.4. The dimensions of the simulation model are consistent 

with the experiments (diameter is 50 mm, height is 40 mm, thickness is 2.06 mm). It is 

worth noting that the direction of yarns is crucial in the numerical simulation of tubular 

fabric as they reflect the fabric's deformation behavior (Eq. 4.1). The deformation 

gradient of the fabric at different stages of stretching is achieved by tracking the 
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coordinates of yarns, which depend on the relation between the local and global 

coordinate systems. Considering the special structure of the tubular fabric, the 

orientation of the yarns constituting the fabric is not unique, which makes the 

characterization of the yarns difficult. Interestingly, the distribution of these yarns also 

seems to exhibit a certain law. All the interlaced yarns in the same group of axial 

columns in the fabric have consistent directions, as shown in Fig. 4.4 (b). Therefore, in 

this study, the yarns of the tubular fabric are divided into different groups according to 

the axial columns in which they are located by using the grouping method, and the yarns 

of all units located in the same group are set in the same direction. By utilizing this 

method, the fabric is divided into different columns and assigned different orientations. 

So, all intersecting yarn orientations in the fabric are completely described. 

 

 

Fig. 4.4 Tensile test of tubular braided fabric, (a) experimental setup and (b) finite 

element model of the fabric. 
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The simulation analysis of the fabric under uniaxial tensile load is implemented using 

the C++ code developed by Innovamics mentioned in Chapter Ⅲ. According to the 

experimental setup, a fixed constraint is applied to the bottom of the fabric, while a 

displacement load is applied to the top of the fabric along its axial direction. The 

material properties of the fabric are chosen to be hyperelastic and the triangular 

membrane elements are used and the element size is set to 2.5 mm. The uniaxial tensile 

test of the tubular fabric is conducted at room temperature and the profile of the fabric 

under different tensile deformation conditions can be obtained from the tensile test. In 

order to compare with the experimental results in Chapter Ⅱ, the profile of the fabric at 

25%, 50% and 75% deformation were also selected for the simulation analysis, and the 

comparison results are shown in Fig. 4.5. Meanwhile, the errors of the experimental 

and simulated values of the fabric profiles under different tensile deformations were 

calculated, the corresponding errors under 25%, 50% and 75% tensile deformations 

were 14.7%, 10.2% and 10.8%, respectively. The errors are in a reasonable range and 

validate the effectiveness of the hyperelastic model and simulation methods. 
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Fig. 4.5 Comparison of experimental and simulated profiles of tubular fabrics at 

different tensile deformations, (a) 25% tensile deformation, (b) 50% tensile 

deformation and (c) 75% tensile deformation. 

 

As described in Section 2.3 of Chapter Ⅱ, the mechanical behavior of the fabric in 

uniaxial tensile tests is divided into three stages: pure shear, a combination of shear and 

yarn extension, and pure yarn extension. The theoretical model of the shear angle 

described in Eq. 4.12 has been validated and it can effectively describe the shear angle 

variation of the fabric in the pure shear stage. Therefore, the shear parameters of the 

fabric obtained by using Eq. 4.3 (shown in Table 4.1) are also applicable to the 

simulation of the pure shear stage. In the experiments to analyze the shear behavior of 

the fabric, four different zones (zone A, zone B, zone C, zone D) were selected along 

the axial direction of the fabric in Chapter Ⅱ, so the analysis of the simulation results 

was also divided into four corresponding zones (zone A, zone B, zone C, zone D). In 

order to verify the accuracy of the simulation analysis, the in-plane shear angle was 
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measured for shear zones from A to D (Fig. 4.6). The values were compared to the shear 

angle calculated by the simulation and were found to be in fairly good agreement. 

 

 

 

Fig. 4.6 Comparison of experimental and simulation results in different shear zones 

of tubular fabrics. 

4.3.2 Simulation of forming process about the tubular fabrics 

(1) The details of the simulation method 

Consistent with the simulation of the uniaxial tensile test of the tubular fabric, the 

simulation of the forming process still uses the nonlinear explicit finite element code 

provided by Innovamics. The finite element modeling of the forming setup includes the 

tubular specimen and the different shapes of forming molds. The forming specimen will 

be deformed under the action of the tensile loads. The modeling of a tubular braided 

specimen is presented in Fig. 4.7. The specimen model is meshed using the triangular 
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MEMBRANE elements, and the length of the right-angle side of the triangular element 

is 2.5 mm. As the forming tools, the deformation of the molds is much smaller than that 

of the test samples. Therefore, the forming tools are considered as rigid bodies without 

deformation in the simulation process. Each part will be meshed by the triangle rigid 

body element and the mesh size is 3 mm. Furthermore, the coefficient of friction 

between the fabric and the model was set to 0.2. 

The forming simulation presented in this chapter includes two types of forming: 

cylinder and tetrahedron. For these two models, they are both centrally symmetrical 

shapes. In order to save time and improve simulation efficiency, only a quarter of the 

model is created and the symmetrical boundary conditions are set in the simulation. 

Then, the entire model can be obtained by using the reflect function of Paraview 

software (shown in Fig. 4.7). 

 

 

Fig. 4.7 Forming of tubular braided fabrics on the different molds, (a) tetrahedron 

and (b) cylinder. 

 

(2) Simulation analysis of the preforming process with tetrahedral 

According to the above-mentioned, the tubular braided fabric was stretched and 

preformed on a tetrahedral mold, the mold is shown in Fig. 4.8 (a). The preforming 
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experimental results of the fabric under the tensile displacement of 25 mm are shown 

in Fig. 4.8 (b). From the experimental results, it can be seen that the tubular fabric is 

finally attached to the mold to form the expected shape. This indicates that under the 

action of tensile load, the fabric undergoes shear behavior, resulting in a certain degree 

of shrinkage in the radial direction of the fabric. When the fabric contacts the mold, the 

radial shrinkage weakens. Interestingly, compared with the preforming process of 2D 

fabrics, the defects in preforming process of 3D tubular fabrics are more related to yarn 

slippage rather than wrinkles. Using the shear parameters of the tubular fabric obtained 

in Section 3.2.3 and the improved hyperelastic constitutive model in Chapter Ⅲ, the 

preforming process of the tubular fabric is simulated and analyzed. The boundary 

conditions of the simulation are set according to the tensile test. The simulation result 

of the tetrahedron is shown in Fig. 4.8 (c). The simulation results and the experimental 

results show a good consistency in the final formed shape of the fabric, and the fabric 

has uneven shearing. According to the degree of shearing, the fabric is divided into 7 

different zones, which are closely related to the shape of the mold. 

 

 

Fig. 4.8 Preforming of tubular braided fabrics on tetrahedral mold, (a) preforming 

mold, (b) experimental result and (c) simulation result. 
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In order to analyze more intuitively the mechanical behavior of the fabrics during the 

tensile process and the shape changes of preforming, it is difficult to obtain the shapes 

of the fabric in the entire forming process from experiments. Therefore, this section is 

investigated by using the simulation method. In the simulation process, tubular fabrics 

under different tensile displacements of 0, 10, 20 and 25 mm were selected for 

investigation. The slide function of the post-processing software Paraview was utilized 

to cut along the deformed part of the tubular fabric to obtain the shape of the fabric 

under different tensile displacements, as shown in Fig. 4.9. Through comparison, it was 

found that as the stretching displacement increased, the hollow part of the fabric 

gradually changed from the initial circular shape to a quadrilateral shape until the fabric 

adhered to the mold and became a tetrahedron shape. With a further increase in tensile, 

the fabric became more conformal to the mold, resulting in the desired preformed shape. 

 

 

Fig. 4.9 Evolution of preformed shapes of tubular braided fabrics under different 

tensile displacements, (a) tensile displacement of 0 mm, (b) tensile displacement of 10 

mm, (c) tensile displacement of 20 mm and (d) tensile displacement of 25 mm. 

 

The achievement of preforming tubular braided fabrics mainly relies on the shear 

interaction between yarns, which determines the shape and mechanical properties of the 

preforms during the forming process. Therefore, accurate prediction of the shear angle 
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distribution plays an important role in fabric forming optimization, which is also one of 

the indicators to verify the accuracy of the simulation method. Considering that the 

tubular fabric is symmetrical, what is illustrated in Fig. 4.8 only shows half of the fabric. 

After preforming the tubular fabric on the tetrahedron mold, it is divided into 7 zones 

based on the distribution of shear angles. The optical measurement methods can be used 

to obtain the shear angle in any zone of the fabric. The shear angle of each zone is 

calculated and the average value is taken as the final shear angle of this zone. At the 

same time, the distribution of shear angle obtained by simulation was used to compare 

with the experimental results, as shown in Fig. 4.10, the maximum error in shear angle 

was 10.4%. The maximum shear angle of the fabric occurs on the four faces of the mold 

(zone 3 and zone 5). Therefore, the validity and accuracy of the numerical prediction 

on the shear angle were confirmed from the comparison. 

 

 

Fig. 4.10 Comparison of in-plane shears between experiment and numerical 

simulation approaches in 7 different zones. 

 

Since the maximum shear angle of the fabric is in zone 3 and zone 5, the yarn in this 

region is stretched earlier than in other regions, and the yarn elongation of the fabric 

during stretching can be obtained through the marking points on the fabric, as 
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mentioned in Section 4.2.2. At the same time, the simulation results of fabrics with the 

same tensile displacement are selected for comparison, as shown in Fig. 4.11. The yarn 

elongation during the test is in good agreement with the simulation results, which 

further confirms the validity of the simulation. It is worth noting that Ref. [167] has 

given that Flax would be broken when the elongation of a single yarn reached about 

3%. Therefore, the comparative results of the test and simulation in this part are selected 

before the Flax is broken. 

 

 

Fig. 4.11 Comparison of experimental and numerical simulation of yarn elongation 

in zone 3. 

 

(3) Simulation analysis of the preforming process with cylinder 

The preforming process of the tubular braided fabric on the cylindrical mold was 

achieved by the same tensile test as the tetrahedral preforming. The cylindrical mold is 

shown in Fig. 4.12 (a), and Fig. 4.12 (b) shows the experimental results of the fabric 

with a tensile displacement of 25 mm. From the figures, it can be found that the tubular 

fabric was finally molded into the expected shape under the tensile load, and the 

preformed fabric presented five zones depending on the shear angle. Meanwhile, the 

preforming process of the tubular fabric is numerically simulated using the hyperelastic 
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model, and the simulation results are shown in Fig. 4.12 (c). The figure displays the 

shear angle distribution of the fabric and the the partition of the shear angle is consistent 

with the experiment. 

 

 

Fig. 4.12 Preforming of tubular braided fabrics on cylinder mold, (a) mold, (b) 

experimental result and (c) simulation result. 

 

Forming of tetrahedra of tubular braided fabrics has been investigated in terms of 

shape changes of fabrics under different tensile displacements. The same method was 

used to study the forming of the fabric on a cylindrical mold. The shape changes of the 

tubular fabric under different tensile displacements are shown in Fig. 4.13. From the 

analysis of the figure, it can be observed that the fabric exhibits more noticeable radial 

shrinkage behavior under the action of tensile load. The hollow part of the fabric 

gradually decreases and conforms to the mold as the tensile displacement increases. 

When the fabric is in complete contact with the mold, the radial shrinkage ends and the 

fabric takes on a cylindrical shape. 
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Fig. 4.13 Evolution of preformed shapes of tubular braided fabrics under different 

tensile displacements, (a) tensile displacement of 0 mm, (b) tensile displacement of 10 

mm, (c) tensile displacement of 20 mm and (d) tensile displacement of 25 mm. 

 

Fig. 4.12 displays the shear angle distribution of the fabric after forming on a 

cylindrical mold, which is mainly divided into five different shear zones. Based on the 

experimental results, the average shear angles of the fabric in each region were 

calculated and compared with the simulation results, as shown in Fig. 4.14. In the 

comparison of the shear angles of the five different zones, the largest error was found 

in zone 1, with an average value of 12.16° for the test and 11.36° for the simulation, 

resulting in a maximum error of 6.6%. In addition, the maximum shear angle of the 

fabric appeared in the middle part of the cylinder (zone 3). Furthermore, the elongation 

of a single yarn in zone 3 was measured and compared with the simulation results, 

showing good consistency (Fig. 4.15). It is confirmed that the use of a non-orthogonal 

hyperelastic model to simulate the preforming of tubular braids is reasonable. 
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Fig. 4.14 Comparison of in-plane shears between experiment and numerical 

simulation approaches in 5 different zones. 

 

 

Fig. 4.15 Comparison of experimental and numerical simulation of yarn elongation 

in zone 3. 

 

(4) Forming of tubular fabrics under variation of tensile direction 

The simulation analysis of uniaxial tensile tests and preforming tests on tubular 

fabrics has demonstrated the effectiveness of the hyperelastic model. On this basis, the 

influence of changes in the tensile direction on the mechanical behavior of the fabric is 

considered. The forming of fabrics in different tensile directions is analyzed by using 
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numerical simulation, and the deformation behaviors of tubular fabrics on L-shaped 

pipes with the angles between the tensile direction and the horizontal direction of 135° 

and 165° are investigated respectively. The finite element model is shown in Fig. 4.16. 

 

 

Fig. 4.16 Finite element model under different tensile directions. 

 

During the simulation process of fabric forming, one end of the tubular fabric is fixed 

on the mold, and the other end is applied with a load along the bending direction of the 

mold. Under the action of the load, the fabric takes on a shape consistent with the mold, 

as shown in Fig. 4.17. The simulation results reveal different shear angle distributions 

on the inside and outside of the fabric, and the tensile direction also has an impact on 

the shear angles. 

 

 

Fig. 4.17 The distribution of shear angles under different tensile directions. 

 

To further investigate the mechanical behavior of the tubular fabrics, the shear angles 

of the inside and outside of the fabrics as well as the elongation of a single yarn are 
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compared, as shown in Fig. 4.18. Under the same mold, the shear angle on the inside 

of the fabric is greater than that on the outside, and the elongation of yarns on the inside 

is smaller than that on the outside. This is because, during the bending of the fabric, the 

outer-side yarns experience tensile stress, leading to yarn elongation, and the shearing 

effect between yarns is reduced. On the other hand, the inner-side yarns are subjected 

to compressive stress, reducing their elongation, and the shearing behavior of the yarns 

is more pronounced on the inner side compared to the outer side. In addition, the tensile 

direction of the load affects the degree of fabric bending. The shear angle of the inner 

and outer parts of the fabric increases with the increase of the mold angle. When the 

mold angle is larger, the fabric experiences less bending, and the pure shearing process 

of the fabric is less affected by the tensile direction, allowing for more shearing space. 

Comparing the elongation of yarns under different tensile directions, it is observed 

that the elongation of yarns on the inside of the fabric increases with an increase in the 

mold angle, and the elongation of yarns on the outside of the fabric decreases with the 

increase of the mold angle. This is due to the fact that the fabric bends less on the mold 

at 165°, and the outer tensile and inner compressive stresses on the fabric are smaller 

than those on the mold at 135°. 

 

    

(a)                                (b)  

Fig. 4.18 Comparison of results for tubular fabrics in different tensile directions, (a) 

shear angle and (b) elongation of the yarn. 
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4.4 Conclusion of Chapter Ⅳ 

In this chapter, the mechanical behavior of tubular braided fabrics under the uniaxial 

tensile test proposed in Chapter Ⅱ and the improved non-orthogonal hyperelastic 

constitutive model in Chapter Ⅲ are used to simulate the preforming process of tubular 

fabrics. The theoretical relationship between the fabric load and the second Piola-

Kirchhoff stress tensor was established, and the strain energy coefficients used to 

characterize the shear deformation of the fabric were obtained by fitting the force-

displacement curves of the fabric using this theoretical relationship. To validate the 

effectiveness of the shear parameters and the hyperelastic model, the uniaxial tensile 

process of tubular fabrics was simulated in this chapter. It was found that the fabric 

contracted in its radial direction under the axial tensile load, which was consistent with 

the experimental results. Meanwhile, the experimental and simulated results of the 

fabric profile at different tensile displacements were compared, and the maximum radial 

shrinkage error was 14.7%. Considering the non-uniform shear of the fabric, four 

different zones of the fabric in the axial direction were investigated in Chapter Ⅱ. In 

this chapter, the experimental and simulated shear angles in these four zones are 

compared, and the better agreement proves the validity of the hyperelastic model for 

characterizing the shear behavior of tubular braided fabrics. 

Secondly, this chapter investigates the deformability of fabrics on different-shaped 

molds by studying the radial contraction mechanical behavior of tubular fabrics under 

tensile load. Axial tensile tests were conducted on the fabrics to obtain the results of 

fabric preforming on tetrahedral and cylindrical molds. It was found that the shear angle 

distribution of the fabrics after preforming was non-uniform. Additionally, when the 

fabric preforming process was simulated by using the hyperelastic model and compared 

with the experimental results, the shear angles were in good agreement. This is 

conducive to further research on various factors affecting the preforming results of the 

fabric. Finally, the deformation behavior of tubular fabrics under different tensile 

directions was also investigated. It was found that the shear behavior of the inner side 
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of the fabric was more pronounced than that of the outer side during the tensile process. 

Meanwhile, the tensile direction affected the bending degree of the fabric, resulting in 

the shear behavior of the fabrics decreasing with the increase of the degree of bending. 
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5Ⅴ. GENERAL 

CONCLUSION 
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 Résumé en français  

Cette thèse a étudié les propriétés mécaniques et les déformabilités des renforts 

textiles au cours du préformage. En se basant sur l'analyse cinématique, la performance 

en cisaillement des renforts tressés bidimensionnels lors du Bias-extension test a été 

étudiée. L'étude a révélé que le comportement en cisaillement des tresses plates est 

asymétrique dans les directions transversale et axiale. Le comportement mécanique des 

renforts tressés avec la structure 3D-tubulaires a été étudié en utilisant des tests de 

traction uniaxiale. Sous une charge axiale, le renfort tubulaire présente une contraction 

radiale, et sa réponse mécanique est divisée en trois parties : cisaillement pur, 

combinaison de cisaillement et d'allongement des fils, et allongement pur des fils. Lors 

de l'étude de la déformabilité pendant la mise en forme du renfort tressé tubulaire, la 

déformation dans la phase de cisaillement pur est essentielle. Un modèle analytique est 

établi pour décrire le comportement de cisaillement pur sous tension axiale. L'efficacité 

de ce modèle a été vérifiée en comparant avec des résultats expérimentaux. L'effet de 

la température sur les propriétés thermomécaniques des tresses tubulaires avec des fils 

comélés thermoplastiques a été étudié. Les résultats montrent que la rigidité au 

cisaillement des tresses est la plus élevée à température ambiante pour la même vitesse 

de traction. À mesure que la température augmente, le changement de l'état des fils 

diminue la rigidité au cisaillement. A une même température, la rigidité au cisaillement 

augmente avec l'augmentation de la vitesse de traction. 

La réponse mécanique des tresses plates et tubulaires sous charge de traction a 

également été simulée à l'aide d'un modèle constitutif hyperélastique amélioré. Les 

invariants de traction et de cisaillement sont utilisés pour décrire les modes de 

déformation correspondants des tresses lors de la mise en forme. La validité de la 

simulation numérique a été vérifiée par des Bias-extension tests et des tests 

d’emboutissage hémisphérique sur les tissus tressés non orthogonaux. Les résultats 

indiquent que tant le comportement en cisaillement que le préformage des tresses 

présentent une asymétrie. En particulier, les invariants de cisaillement proposés dans le 

chapitre Ⅲ peuvent être appliqués à un renfort textile biaxial avec un angle arbitraire et 

non pas limité au 90°. 

Les déformabilités des tresses tubulaires ont été étudiées à l'aide d'un modèle 

hyperélastique amélioré. Des tests mécaniques sur les tresses tubulaires ont été réalisés 

pour simuler les caractéristiques de contraction radiale et l'inhomogénéité de 
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cisaillement. Les profils de déformation des tresses ont été comparés aux résultats des 

tests, ce qui a confirmé la rationalité de l'utilisation du modèle hyperélastique pour 

simuler la déformation des tresses tubulaires. De plus, la contraction radiale des tresses 

tubulaires sous charge de traction favorise la mise en forme avec des différentes moules 

(cylindres, tétraèdres, en forme de L), cela dépend l'effet de cisaillement. 
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5.1 Conclusion 

The present study aims to analyze and simulate the forming process of 2D and 3D 

tubular biaxial braided composite reinforcements. The mechanical properties and 

deformation behavior of textile fabrics were investigated. The preforming process is 

typically the first step in manufacturing complex-shaped composites. During the 

preforming, various forming defects can easily occur in the preform due to the influence 

of many factors, which can impact the final forming quality and mechanical 

performance of the composite component. Therefore, characterizing forming defects, 

studying deformation mechanisms and optimizing process parameters are of great 

significance for improving the forming quality of textile preforms. It can identify the 

suitable forming conditions for textile reinforcements to minimize the defects during 

the forming. At present, the research on textile-reinforced materials mainly relies on 

experimental methods. The diverse structures of textile reinforcements, varied 

manufacturing parameters and diverse preforming shapes increase the difficulty of 

experiments. Simulation methods, as an auxiliary approach, can conduct numerous 

parameter studies without repetitive experiments, thereby improving the research 

efficiency and saving the research time and cost. Therefore, this thesis employed a 

combination of experimental and simulation methods to investigate the preforming 

process of braided reinforcements. 

The main achievements of the research are concluded as follows: 

1) Based on the kinematic analysis, the shear performance of two-dimensional 

braided fabrics under the bias extension test was investigated. The study revealed that 

the shear performance of flat braided fabrics is asymmetric in the transverse and axial 

directions. The mechanical behavior of tubular braided fabrics was studied utilizing 

uniaxial tensile tests. Under axial loading, the tubular fabric was accompanied by radial 

shrinkage, and their mechanical responses were mainly divided into three parts: pure 

shear, the combination of shear and yarn’s elongation, and yarn’s elongation. When 

studying the forming deformation, the deformation in the pure shear stage is essential. 
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An analytical model is established to describe the pure shear behavior under axial 

tension. The effectiveness of the corresponding method was verified by comparing the 

experimental results of tubular fabrics. In addition, the effect of temperature on the 

mechanical properties of fabrics was also investigated. It was shown that the shear 

stiffness of fabrics was highest at room temperature for the same tensile speed. As 

temperature increases, the change of yarn state decreases the shear stiffness of fabrics. 

At the same temperature, fabric strength and shear stiffness increase with increasing 

tensile rate. 

2) The mechanical response of flat braided fabrics under tensile load was simulated 

via an improved hyperelastic constitutive model. The model used the relation between 

invariant and strain energy to characterize the deformation modes of braided fabrics 

during the preforming process. The non-orthogonal structure of the fabric results in 

significant differences in strain energy under shear deformation compared to woven 

fabrics. Meanwhile, the relationship between the tensile load and the second Piola-

Kirchhoff stress tensor was established to identify the shear strain energy coefficients. 

The validity of numerical simulations was verified through the bias-extension tests and 

hemispherical stamping tests on non-orthogonal braided fabrics. The results indicated 

that the shear behavior of the braided fabrics under the bias-extension test is asymmetric, 

and the fabrics have different in-plane shear angles in the transverse and axial directions. 

In addition, the shear angles in different sizes of fabric proved that the shear behavior 

of fabrics was influenced by the width of the yarn. In the simulated preforming process 

of braided fabrics, the fabric exhibited different shear deformations in the axial and 

transverse directions. The fabric has an obvious draw-in behavior in the axial direction. 

The maximum shear angle occurred in the transition region between the double dome 

curve surface and the flat area of the fabric. In particular, the shear invariants proposed 

in this study can be applied to braided fabrics with arbitrary angles and are not limited 

to woven fabrics. 
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3) The forming properties of tubular braided fabrics were also investigated using an 

improved non-orthogonal hyperelastic model. The coefficients of shear strain energy 

were obtained from the relationship between the tensile load and the shear stress tensor. 

From the simulation results of mechanical tests on tubular braided fabrics, the radial 

contraction under the axial tensile load was obtained, which was consistent with the 

experimental results. Meanwhile, the experimental and simulated results of the fabric 

profile at different tensile displacements were compared, which verified the 

effectiveness of the simulation. The mechanical tests in Chapter Ⅱ confirmed the shear 

inhomogeneity of the fabric and investigated four different regions along the axial 

direction of the fabric. In this chapter, the simulation results of the shear angle in these 

four regions were compared with the experimental results and the results are in good 

agreement. The formability of tubular braids on different-shaped molds was 

investigated by studying the radial contraction mechanical behavior of fabrics under 

tensile load. The preforming results of the fabric on tetrahedral and cylindrical molds 

were also obtained through axial tensile tests, which depend on the radial shrinkage 

behavior of tubular fabrics. The fabrics exhibited different shear partitions after forming 

on different molds. By utilizing the hyperelastic model to simulate the fabric 

preforming process and comparing the simulation results with the experimental results, 

the shear angles of the different shear zones are in good agreement. This is conducive 

to further investigating various factors that influence the preforming results of the fabric. 

5.2 Perspectives 

With the expanding use of braided reinforcements in the manufacturing industry, the 

analysis of their mechanical properties is crucial. This thesis has studied the mechanical 

properties of flat braided fabrics and tubular braided fabrics, primarily employing 

experimental and simulation methods to study the fabric's mechanical behavior during 

the preforming process. Additionally, a preliminary exploration of the 

thermomechanical properties of tubular braided fabrics has been carried out. Based on 
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the research conclusions obtained in the thesis work, further research work can be done 

in the following items: 

 The thermomechanical properties of tubular fabrics need to be simulated using 

finite element models. This includes the establishment of fabric constitutive models, 

validation of thermomechanical properties, and the prediction of thermoforming 

properties. It will provide a reference for the production of composite components. 

 The deformation modes during the fabric preforming process are not only limited 

to tensile and shear. The tension of yarn generated by the outside bending of the 

fabric also needs to be analyzed. In subsequent research, experiments for 

characterizing the bending properties of braided fabrics need to be conducted. 

Corresponding mechanical models also need to be established and validated to 

obtain simulation parameters for the bending deformation of the fabric. 

Furthermore, the constitutive models used for simulating the textile reinforcements 

forming process should incorporate the relevant theory to express the bending 

deformation. 

 Preforming of braided fabrics can be considered using other punch shapes (e.g., 

square and triangle) for preforming tests. Simultaneously, numerical simulations 

can be employed to study the effect of various parameters on the preforming shape 

of the fabric. This optimization of the forming process can enhance the quality of 

preforming and subsequently expand the range of applications for braided fabrics. 

 The coupling characteristics of the various deformation modes affect the shape and 

quality of fabric preforms and also need to be investigated at a deeper level. For 

example, the effects of coupled tension-shear and shear-bending on the forming 

quality of braided fabrics. Conducting experiments involving different coupled 

deformation modes and establishing corresponding mechanical models to provide 

the basis for simulation analysis. 
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7Appendix A 

Coefficients identified on the tensile behavior of the fabric 

The tensile strain energy of fabric can be considered to be related to the elongation 

of the yarn, and the tensile coefficients describe the relationship between the tensile 

strain energy and the tensile invariants. The identification of these coefficients are 

mainly determined by the universal tensile test of a single yarn. Since yarns may be 

damaged during the braiding process, it is necessary to test yarns extracted from the 

fabric before braiding. 

The tests used in this thesis was completed in the Gemtex laboratory, and the test 

setup are shown in Fig. A1 (a). A single Flax/PA12 yarn was selected to do the test at 

room temperature. The yarn was inserted and clamped by a top movable clamp, a load 

sensor on the top clamp measured the load in real time. The machine was set at 150 mm 

to ensure an accurate fixed length of the specimen. A preliminary test was conducted to 

verify that the slip of the test specimen was 0%. The load curve of the test is shown in 

Fig. A1 (b).  

 

 

(a)                            (b) 
Fig. A1 Tensile test of single yarn [167]. 

 

The tensile coefficient of the fabric describes the relationship between the tensile 
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invariants and the tensile strain energy. Using the load-deformation curve of yarn to 

obtain tensile coefficients requires establishing their relationship to tensile strain energy, 

which depends on the second Piola-Kirchhoff tensile stress tensor. The schematic 

diagram of a single yarn before and after deformation is shown in Fig. A2. Define 

0

L

L
  . 

 

Fig. A2 Schematic diagram of a single yarn before and after deformation. 

 

Using the elongation of the yarn, its deformation gradient is expressed as: 
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An expression for the right Cauchy Green strain tensor: 
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According to Equation 3.24, the second Kirchhoff tensile stress tensor is expressed 

as: 
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Considering that the only mode of deformation of the yarn is tension, the external 

power due to machine forces can be related to the internal power due to tensile forces 

of yarn: 

ext intP P                             (A4) 
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The relationship between tensile load, deformation and tensile coefficient is: 
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From Fig. A1 (b), it is found that the tensile of a single yarn is divided into three 

stages, corresponding to the breakage of flax and PA12. For the fitting, only the first 

linear portion of the yarn was selected. According to Eq. A6, using MATLAB to fit Fig. 

A1 (b), the tensile coefficient can be obtained, shown in Fig. A3. 

11; 181n c   

 

Fig. A3 Identification of tensile parameters for flax/PA12 single yarn. 
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