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1
Introduction

Biological networks can be loosely defined as an ensemble of interacting biologically
active entities. Actin filaments and molecular motors self-organizing in the cells cytoskele-
ton, birds collectively moving in a flock or immune cells interacting in the immune system
are examples of biological networks. In these systems, constituents at the smallest scales
consume energy to self-organize and induce an emergent functional behavior at a larger
scale. For instance, microtubules and molecular motors self-organize in a non-linear elastic
cytoskeleton to ensure tissue integrity (1; 2), birds collectively align in flocks to increase
their ability to escape predators (3; 4), and immune cells cluster in diverse cell subsets
to efficiently recognize and eradicate pathogens. Inspired by statistical physics, models
treating statistically the interactions between each constituent of the network have been
successfully applied to describe self-organization in the cell cytoskeleton or collective mo-
tion in bird flocks. In the first part of this thesis we develop inference methods to learn
statistical physics models directly from experimental biological data. Despite their success
in the field of active matter, these models are unusuable to describe networks spanning
multiple scales of space and time, and in particular the immune system. To fill this gap,
models describing the organization of biological networks as resulting from an optimality
principle have been developed. In the recent years, this approach, which shares similarities
with machine learning methods (5; 6), has been repeatedly applied to model the immune
system (7; 8; 9). Following this line of thinking, in the second part of this thesis we model
the B-cell immune response to pathogens using tools of decision theory and we describe
how the resulting immune pressure shapes the evolution of viral populations.

Historically, statistical physics approaches to self-organization originated with the work
of Vicsek et al. (10), which introduced an agent-based first order stochastic model to
describe the collective motion observed in flocks of birds. Along with the hydrodynamic
theory of flocking developed a few years later by Toner et al. (11), these ideas gave birth
to the field of active matter and triggered an intensive experimental research on active
biological systems like biopolymers (12; 13; 14), bacteria colonies (15) and cell assemblies
(16). However, while the original Vicsek model aimed at describing collective motion
in groups of animals, experimental evidence on these systems remained scarse. Recent
recordings of flocks of European starlings have filled this gap and have led to challenging
observations unaccounted for by active matter models (17; 18; 19). In particular, while
the static properties of real flocks are well captured by the Vicsek model (20), it does
not predict the linear dispersion relation for the transfer of information observed during
collective turns (17; 18). This observation motivated the development of a second order
stochastic model (19), called the inertial spin model, which introduces a rotational inertia
in the velocity degree of freedom of the birds. While this model predicts a linear dispersion
relation in agreeement with experiments, in the absence of an appropriate inference scheme
it has not been fully confronted to data.
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Figure 1.1: Biological networks at various scales. A. Self-organized patterns by
the action of molecular motors on microtubules. The concentration of kinesin (molecular
motor) increases from left to right: (a) disordered array of microtubules, (b) spiral patterns
and (c) astern patterns. B. Collective motion in a flock of starlings and C. in a school
of fish. D. The many scales of the immune system. The immune network spans multiple
scales, from molecular receptor-antigen interactions to the co-evolution of viruses and
hosts. Figures A and C were adapted from (21). Figure D was adapted from (22).

To fill this gap, after a brief overview in chapter 3 of the models used to describe
collective behaviour, we develop in chapter 4 a novel inference scheme for second order
stochastic dynamics. We first investigate the failure of naive inference approaches usually
applied to first order models, and we connect it to the problem of inferring partially
observed stochastic dynamics. Finally, we apply our novel inference scheme to bird flocks
simulated with the inertial spin model and we quantify its robustness to measurement
noise.

Optimization approaches in the immune system were introduced by Perelson et al.
(23; 24) to study the optimal B-cell population dynamics minimizing the duration of
an infection, and have recently been revived to study the optimal organization of T-
(9) and B-cell repertoires (7). As a common feature, these models assume that adaptive
immunity has evolved as a mechanism maximizing the recognition and the neutralization of
foreign pathogens. Under this constraint, they predict how the size, the diversity, and the
turnover of the different cell subsets depend on the pathogenic environment in which the
immune system evolves. Unfortunately, in the absence of high-throughput experimental
data quantifying receptor-protein interactions, these approaches are bound to describe
immune repertoires in abstract mathematical terms of limited predictive power. However,
a number of processes in the immune response remain far from being empirically explained,
and we believe that this downside should not hold back attempts to theoretically rationalize
their existence. For instance, the general consensus is that memory B cells generated upon
affinity maturation are a built-in anticipation mechanism for future infections by antigenic
variants (25; 26), yet no model has (i) showed that this is a potentially useful strategy (ii)
described what could constrain the resulting size and diversity of this memory pool. On a
similar note, the origins and consequences of the phenomenon of antigenic imprinting or
“original antigenic sin”, in which the immune system seemingly underperforms by reusing
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old memory cells in spite of forming a de novo response, are still largely debated (27; 28;
29; 30).

After an introduction in chapter 5 about the adaptive immune system and the models
used to describe it, we investigate in chapter 6 how the B cell repertoire is organized
to respond optimally to evolving pathogens. Using the theory of decision making we
show how both anticipation of future infections by a diverse memory pool and inhibition
of affinity maturation by existing memory cells emerge as long-term optimal strategies
balancing protection and resource costs.

Having investigated the optimal immune response to evolving pathogens, it is natural to
ask how in return the immune pressure exerted by recovered hosts influences the evolution
of a viral population. To model the spread of infectious diseases, classical models study
the time evolution of populations of infected and recovered hosts (31; 32). Within these
models, viral evolution is summarized by a viral strategy which encompasses the viral
mutation rate, the transmission rate and the infection-induced death rate. In agreement
with experimental observations on influenza, these models of co-evolution have shown that
immune pressure promotes antigenic evolution, and as a result immune escape, repeated
epidemics and reinfections (33; 34; 35; 36). Building on this knowledge, recent theoretical
work has shown that this antigenic escape can in return drive the evolution of more
transmissible and deadly variants (37). However, to this date no theoretical work addresses
in a general framework how the immune pressure drives the evolution of viral strategies. In
particular, the interplay between the cross-reactivity of antibodies elicited by the infection
and the finite size of the viral population have so far been ignored, while they have been
shown to be essential in antigenic evolution (38; 39).

In chapter 7 we investigate eco-evolutionary feedbacks at play between finite-size host
and viral populations. We derive a new general result stating that evolutionary stable
viral strategies obey a trade-off between maximizing the speed of antigenic evolution when
the cross-reactiviy of antibodies is low and maximizing the basic reproduction ratio as it
becomes larger. We apply this result to study the evolution of virulence and the mutation
rate, and we derive new analytical predictions for their evolutionary stable states under
the effect of immune pressure.

Finally, in chapter 8 we conclude this thesis by summarizing its main contributions
and we anticipate future research directions building on our results.

Publications
This thesis collects published articles, and yet to be submitted ones. Chapter 4 was

the fruit of a collaboration with Federica Ferretti and was published in Physical Review
X (40). The results presented in chapter 6 were published in the Proceedings of the
National Academy of Sciences (41), and the results of chapter 7 constitute an article still
in preparation in collaboration with Andrea Mazzolini. The published chapters have been
reprinted in this manuscript with minor modifications, and the yet unpublished one has
been written as a draft for a future publication. Chapters 3 and 5 are original to this
manuscript and aim at providing context and motivations for the research carried out in
the rest of the manuscript.
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Résumé

Cette thèse rassemble des travaux publiés aux chapitres 4 et 6, ainsi que des travaux en
voie de soumission au chapitre 7. Le chapitre 3 introduit et motive les travaux présentés au
chapitre 4, tandis que le chapitre 5 introduit et motive les travaux présentés aux chapitres
6 et 7. Les chapitres 4, 6 et 7 sont présentés sous la forme d’articles et peuvent donc être
lus indépendamment du reste du manuscrit.

Le chapitre 4 de cette thèse s’intéresse à l’étude des processus stochastiques du second
ordre et à l’inférence de leurs paramètres à partir de données expérimentales. Ce travail
trouve son origine dans plusieurs résultats expérimentaux (42; 43; 17; 44) indiquant que
certains phénomènes observés dans des systèmes vivants ne peuvent pas être expliqués à
l’aide de dynamiques du premier ordre dans le degré de liberté d’intérêt. Par exemple,
dans les nuées d’oiseaux l’information de changement de direction d’un oiseau se propage
selon une loi de dispersion linéaire en désaccord avec les prédictions du premier ordre (17).
Pour concilier théorie et expérience, il apparaît donc nécessaire d’étudier des dynamiques
du second ordre.

Afin de pouvoir confronter ces nouveaux modèles aux observations, nous développons
au chapitre 4 une nouvelle méthode d’inférence Bayésienne. Dans ce contexte, les prob-
lèmes qui se posent découlent de la combinaison de trois ingrédients : l’ordre de la dy-
namique des degrés de liberté mesurables indépendamment, le caractère stochastique des
processus biologiques, et l’échantillonnage des données en temps discret. Nous démontrons
que l’ordre du développement de Taylor-Itô nécessaire à la discrétisation est essentiel pour
assurer une inférence fiable à partir des données. En particulier, nous montrons que la pré-
cision minimale est O(∆t3/2), et que les approximations d’ordre inférieur conduisent à un
estimateur biaisé pour le coefficient d’amortissement, comme cela a déjà été observé dans
des contextes non Bayésiens (45; 46; 47). Fort de ce résultat théorique, en employant des
schéma numériques disponibles dans la littérature (48; 49), nous développons une méthode
d’inférence de maximum de vraisemblance applicable à une large variété de processus hors
et à l’équilibre. Au moyen de simulations numériques et de résultats analytiques, nous
démontrons que cette méthode se généralise aux modèles utilisés pour décrire l’évolution
des nuées d’oiseaux.

Ces résultats constituent, à notre connaissance, la première approche d’inférence de
maximum de vraisemblance pour des dynamiques non-Markoviennes (ou, de manière
équivalente, des dynamiques Markoviennes partiellement observées). Finalement, nous
quantifions les limites de cette méthode en présence d’erreurs de mesure, ce qui nous
amène à proposer au chapitre 8, en ouverture de ce travail de thèse, un certain nombre de
pistes d’amélioration.

Le chapitre 6 étudie l’organisation de l’immunité adaptative au moyen d’outils math-
ématiques inspirés de la théorie de la prise de décision. L’immunité adaptative repose
sur des populations de lymphocytes exprimant à leur surface des récepteurs capables de
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reconnaître les antigènes d’agents infectieux. Lors d’une infection le processus de matura-
tion d’affinité permet aux lymphocytes B d’adapter par mutations répétées leur récepteur
(BCR) aux antigènes de l’agent infectieux (50). Le système immunitaire génère ainsi des
plasmocytes, lymphocytes B ayant une forte affinité pour ces antigènes et qui assurent
une immunité de long terme grâce à la sécrétion d’anticorps - la version soluble du BCR.
Il produit également un répertoire de cellules mémoires ayant une affinité variable pour
les antigènes de l’agent infectieux (51). Malgré une connaissance biologique détaillée de
ces phénomènes, la diversité et la taille de ce répertoire mémoire, ainsi que les contraintes
biologiques à l’œuvre, n’ont pas encore été totalement élucidés.

Afin de pouvoir éclairer ces questions, nous proposons au chapitre 6 un modèle de prise
de décision en temps discret décrivant la réorganisation du répertoire de lymphocytes B à
la suite d’une infection. Avec cette approche, le répertoire immunitaire est constamment
réactivé à la suite de réinfections, à l’instar des infections saisonnières dues la grippe ou
désormais au SARS-Cov-2. Ces réinfections sont le fruit d’une évolution antigénique vi-
rale induite par la pression de sélection exercée à l’échelle de la population (52; 53; 36).
L’objet de notre approche est alors de déterminer, du point de vue d’un système immuni-
taire prototypique, la stratégie optimale garantissant une protection sur le long terme tout
en limitant la création de nouveaux lymphocytes. Les processus intervenant dans cette
prise de décision sont au nombre de deux : la production de lymphocytes mémoires au
moyen de la maturation d’affinité, et la réactivation de cellules immunitaires produites lors
d’infections antérieures. En exploitant ce cadre théorique, nous déterminons la taille et la
diversité du répertoire mémoire généré à la suite d’une infection. Lorsque le virus évolue
peu entre deux réinfections la réponse optimale est monoclonale, ce qui correspond en
pratique aux plasmocytes. Lorsque le virus évolue suffisamment pour rendre inopérante la
réactivité croisée des lymphocytes, la réponse optimale est polyclonale, avec une diversité
d’autant plus grande que le virus évolue. En pratique cette stratégie est implémentée par
les lymphocytes B mémoires. Fort de ce résultat, nous démontrons que la réactivation
de lymphocytes B mémoires déjà existants peut conduire à l’apparition d’une empreinte
antigénique réduisant la production de nouveaux lymphocytes par maturation d’affinité.
Cette observation rationalise dans un cadre théorique la notion de "péché antigénique
originel" (54; 29; 55). Enfin, notre modèle prédit que la distribution du nombre de lym-
phocytes portant un récepteur identique décroît comme une loi de puissance, en accord
avec les distributions mesurées par séquençage des immunoglobulines de type G chez des
donneurs sains.

Ces résultats offrent une perspective nouvelle sur la modélisation de la réponse immu-
nitaire des lymphocytes B en permettant de décrire non seulement la taille et la diversité
du répertoire immunitaire généré et réactivé à la suite d’une infection, mais également le
phénomène d’empreinte antigénique. En ouverture de ce travail de thèse, au chapitre 8,
nous proposons des pistes de recherche qui permettraient de confronter plus en profondeur
ces résultats aux données expérimentales.

Forts de ces résultats, il est naturel de se demander comment en retour la pression
immunitaire influence l’évolution virale, et en particulier le taux de mutation. C’est la
question que nous abordons dans le chapitre 7 en nous intéressant aux stratégies virales
sélectionnées par la pression immunitaire.

La survie des souches virales est dictée par leur capacité à se propager d’hôte en hôte
dans la population. Dans les modèles SIR (Susceptible, Infected, Recovered) classiques
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(31; 32) cette capacité est mesurée par le nombre de reproduction de base qui désigne le
nombre moyen d’infections secondaires qu’un individu infecté engendre dans une popula-
tion sans immunité préexistante. En l’absence d’évolution antigénique des souches viral,
tout variant augmentant ce nombre moyen d’infections secondaires se propage avec succès
dans la population (56; 32), et par conséquent la population virale tend à maximiser son
nombre de reproduction de base (57). Cependant, certains virus responsables d’infections
saisonnières peuvent s’adapter et échapper à l’immunité grâce à des mutations modifi-
ant les antigènes ciblés par les anticorps. En particulier, chez certains virus comme le
virus de la grippe, cette évolution est caractérisée par une onde solitaire d’adaptation
où de nouveaux variants antigéniques apparaissent continuellement dans la population
(58; 53; 59; 60). Par conséquent, la survie de ces souches virales dépend non seulement de
leur nombre de reproduction de base, mais aussi de leur capacité à générer des variations
antigéniques pour échapper à l’immunité acquise (61). Dans le chapitre 6 nous proposons
un cadre théorique inspiré des modèles SIR pour étudier la coévolution de populations
de tailles finies d’hôtes et de souches virales. Nous montrons à l’aide de simulations
numériques et d’approximations analytiques que la capacité des anticorps à neutraliser
différents variants viraux, appelée réactivité (ou immunité) croisée, détermine la vitesse
de l’évolution antigénique des souches virales. Ces résultat nous amènent à observer que
la stratégie virale optimale sur le plan évolutif est dictée par un compromis entre la max-
imisation de la vitesse d’évolution antigénique lorsque la réactivité croisée est faible, et
la maximisation du nombre de reproduction de base lorsqu’elle devient plus importante.
En conséquence, nous montrons qu’une réactivité croisée limitée favorise l’évolution de
pathogènes hautement transmissibles et mortels avec des taux de mutation très élevés,
amenant la population virale très proche de l’extinction en raison de l’accumulation de
mutations délétères. Ces observations sont en accord avec les taux de mutation très élevés
mesurés chez les virus à ARN (62), les rendant notoirement très sensibles à de petites
élévations de leur taux de mutation provoquées par des médicaments mutagènes (63; 64).

Dans l’ensemble, ce travail offre un cadre analytique robuste pour étudier l’évolution
des stratégies virales pour des pathogènes susceptibles d’évoluer antigéniquement, à l’instar
du virus de la grippe ou du SARS-Cov-2. Il apporte un nouvel éclairage sur les rétroac-
tions éco-évolutives qui dictent l’évolution des stratégies virales, et concilie dans cadre
théorique unique des résultats récents sur l’évolution de la virulence en présence de varia-
tions antigéniques (37) et les études classiques sur les pathogènes à l’équilibre endémique
(65; 57).





3
Modeling and inferring collective behavior

From the mechanics of the cellular cytoskeleton (66; 67) to the collective motion of
cells and animal groups (21), classical physics has been remarkably successful in modeling
living matter systems. In particular, the similarities between the emergence of large scale
properties in living and inanimate matter have fueled physicists hope to describe both
within a statistical-physics inspired approach (68). However, despite a strong qualitative
success of these models, their connections with experimental data has been tenuous. In
the last decade, inference frameworks have been developed to fill this gap and interrogate
statistical physics models directly from data (68). While inverse approaches have been
successfully applied to describe overdamped stochastic dynamical systems, they cannot
be readily applied to systems exhibiting inertial dynamics like bird flocks (17; 19). To
solve this issue, in chapter 4 we develop a new Bayesian inference approach for under-
damped Langevin dynamics. As an introduction, in this chapter we present the modeling
approaches used to study collective behavior and to learn equations of motion from time-
resolved data.

3.1. Modeling collective behavior

Collective behaviors are ubiquitous in biological systems and appear at multiple scales,
from the cellular cytoskeletal network (69) to cell tissues (70), bacterial suspensions (71)
and large animal groups (72). Owing to a constant injection of energy at the individual
level, these many-body systems are intrinsically not at equilibrium. However, general-
izations of equilibrium statistical physics models have proven accurate to describe their
behavior, and a large corpus of models have been developped to study active matter sys-
tems (21). Historically, agent-based models were the first one introduced (10), readily
followed by hydrodynamic theories (11). In the following manuscript we will focus on the
former, and in particular on the variants of the Vicsek model (10).

3.1.1 The Vicsek model

Vicsek et al. introduced in 1995 (10) a dynamical agent-based model to describe
self-organized collective motion in biological systems. In this model, N particles move
at a constant speed in a two-dimensional space and are subject to noisy local alignment
interactions. In this assembly of particles, also called a flock, each particle has position ri
and a velocity vi = v0ui with ui its normalized particle orientation. Particle i interacts
with particle i with a strength Jij , and the evolution of the flock is governed by a set of
discrete-time update rules for the position and the orientation of each particle: ri(t+ ∆t) = ri(t) + v0ui(t)∆t

ui(t+ ∆t) = RεΘ
(∑

j Jijui(t)
)
,

(3.1)
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Figure 3.1: Collective motion in the Vicsek model. A. Disordered phase. The flock
does not have a collective direction of motion and Φ ' 0. B. Ordered phase. The flock
has a collective direction of motion and Φ ' 1. C. Phase transition from a polarized phase
to a disordered phase as the noise is increased at a fixed density of particles. This figure
was adapted from (10).

where Θ is the normalization operator θ(x) = x/‖x‖, ∆t is the time step and Rε is the
noise operator which applies a random rotation in the angle [−2πε, 2πε] to its argument.
According to Eq. 3.1 the orientation of particle i is updated as a noisy weighted estimate
of other particles’ orientations. To ensure a local alignment, the interaction strength is
required to decay fast enough with the interparticle distance. This distance can be metric,
in which case Jij is a function of rij = ‖ri − rj‖, or topological and Jij is non-zero if and
only if particle j is among the nc nearest neighbours of particle i. In the absence of self-
propulsion, v0 = 0 and the orientations {ui}i=1,...,N can be formally identified as spins of
an XY Heisenberg model of a ferromagnet. However, in presence of self-propulsion the
network constantly rearranges and this formal equivalence does not hold. In particular,
this reshuffling of the particles’ positions breaks detailed balance and the system is not at
equilibrium (73).

Emergence of collective motion

Following the analogy with the Heisenberg model, the natural order parameter to
investigate collective motion is the average direction of the flock, also called polarization:

Φ = 1
N

∥∥∥∥ N∑
i=1

ui
∥∥∥∥. (3.2)

While in the absence of self-propulsion the Mermin-Wagner theorem forbids any phase
transition between a disordered phase Φ = 0 and an ordered phase Φ > 0 (74), in the
presence of self-propulsion spontaneous collective motion emerges (10; 75). As a matter of
fact, as the noise is lowered (with respect to the average interaction strength) or the average
density is increased (at fixed interaction range), the flocks goes from a disordered phase
Fig. 3.1A to a collectively moving phase Fig. 3.1B. For metric interactions this transition
(Fig. 3.1B) is of first order, with a coexistence phase consisting of dense traveling bands
of particles (76). While it has long been thought to be a second order transition for
topological interactions, recent developments have shown that it is of first order (77).
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Figure 3.2: Collective turns in real bird flocks. A. Schematic representation of a
rigid-body turn and an equal-radius turn. In the rigid-body turn, the bird in black is the
center of rotation. B. Equal-radius trajectories of three birds taken coming from a camera
acquisition of a turning flock of starlings. Figures A-B have been adapted from (78).
C. Radial accelerations in three turning flocks of starlings. The information propagates
from the first-ranked birds (closest to the perturbation) to the last-ranked birds. This
information propagates almost undamped: as shown in the inset amax doesn’t decay as
the rank of the bird increases. D. Linear dispersion relation for the transfer of information
as measured from the radial acceleration profiles. Figures C-D. have been adapted from
(18).

Continuous-time formulation

In the continuous-time limit and in d dimensions the Vicsek model Eq. 3.1 is conve-
niently replaced by the following set of equations for the velocities vi (78): ṙi = vi

ηv̇i =
(∑

j Jijvj + v0ξi
)
⊥
,

(3.3)

with η the dissipation, ξi a d-dimensional white noise 〈ξi,α(t)ξj,β(t′)〉 = 2Tηδαβδijδ(t− t′),
and T the statistical temperature. This is a first order stochastic differential equation in
the velocity degree of freedom, which physicists equivalently refer to as an overdamped
Langevin equation. The ⊥ symbol denotes the projection onto the plan perpendicular to
the velocity vi, which enforces the self-propulsion constraint. Notably, this overdamped
Langevin equation is the constant speed limit of a broader class of models called active
Brownian particles, in which the speed is allowed to fluctuate (79).

3.1.2 Inertial dynamics

Despite its remarkable success in reproducing the self-organized collective motion ob-
served in a variety of biological systems, the Vicsek model is unable to provide a realistic
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description of bird flocks, and in particular of their collective turns (17; 18; 78). Turns
occur as a collective response to an external stimulus, they are sustained by a bird to bird
transmission of information and they are initiated locally as a sudden change of orienta-
tion. By measuring the radial acceleration profile (Fig. 3.2C) of each bird in real flocks
of starlings (17), authors showed that the turn perturbation propagates according to a
linear dispersion law Fig. 3.2D, with negligible reshuffling of the birds’ positions. This
observation is in striking disagreement with Vicsek-like models, as they only allow for a
diffusive transfer of information (17).

Modeling collective turns
In order to modify the Vicsek model to account for collective turns, it is necessary

to understand the mechanisms at play in the birds sudden change of orientation (18; 19).
Particles in a many-body system can rotate in two ways: as a rigid body with all the points
rotating at the same angular velocity with respect to a common fixed point, or on paths
with equal radius of curvature Fig. 3.2A. Mathematically, these two types of rotations are
very similar: the rigid-body rotation is acting in the position space ri, while an equal-
radius turn is a rotation acting in the space of the birds’ orientations ui. In position
space, rotations are generated by the angular momentum `i = ri ×mṙi with m the mass
of the particle. Correspondingly, rotations in the space of the birds’ orientations can be
described through the definition of another angular momentum called spin si = ui × χu̇i
and with the introduction of a generalized inertia χ (80). This inertia is unrelated to the
mass and accounts for the particles’ resistance to sudden orientational changes.

Inertial spin model
Experimental evidence supports the model of equal-radius turns and hints at the exis-

tence of a generalized inertia (17; 18) Fig. 3.2B. This observation lead to a new dynamical
model, called inertial spin model (ISM), which amounts to a minimal modification of the
Vicsek model Eq. 3.3 by making use of the spin si degree of freedom (19):

ṙi = vi
v̇i = − 1

χvi × si
ṡi = − η

χsi + 1
v2
0
vi ×

∑
j Jijvj + ξi⊥,

(3.4)

where ⊥ again denotes the projection on the space perpendicular to vi and ξi is a 3-
dimensional white noise 〈ξi,α(t)ξj,β(t′)〉 = 2Tηδαβδijδ(t− t′). By taking advantage of the
constant speed assumption, the dynamics for the velocity Eq. 3.4 can be rewritten as a
generalization of Eq. 3.3:

χv̈i =

−ηv̇i +
∑
j

Jijvj + v0ξi


⊥

− χ
∥∥∥∥ v̇i
v0

∥∥∥∥2
vi. (3.5)

This is a second order differential stochastic equation in velocity, also referred to as an
underdamped Langevin equation. Importantly, the introduction of the additional spin
degree of freedom promotes the first order Vicsek model Eq. 3.3 to a second order model,
allowing for a transfer of information obeying a linear dispersion relation (17). This model
is a generalization of the Vicsek model Eq. 3.3, and in the overdamped limit χ/η2 → 0
the Vicsek model Eq. 3.3 is recovered (78). In chapter 4 we will develop a new inference
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method to learn the parameters of Eq. 3.5 from discrete-time trajectories. However, before
doing so we will present existing inference methods and discuss their limitations.

3.2. Learning equations of motion from data
Despite the theoretical understanding provided by agent-based models, they need to

be adjusted to measurements in order to produce accurate real-life predictions. This task
of learning models from real data is referred to as inference. When dealing with dynam-
ical models, measurements generally consist of discrete time series. While a large corpus
of literature has been dedicated to the reconstruction of deterministic models from time
series (81), in collective behavior models the stochastic component cannot be ignored. Im-
portantly, this source of stochasticity is distinct from the measurement noise accumulated
during the acquisition of trajectories. While the former is essential to the emergence of
collective behaviors, the latter is a source of confusion in the reconstruction of the trajec-
tories. The problem of disentagling one from the other is ubiquitous to the inference of
stochastic trajectories (82; 83) and is discussed in chapter 4.

3.2.1 Learning dynamical models
Generically, to perform the inference of a stochastic process we assume it is a diffusion

process, with F the deterministic force, D the diffusion matrix, and ξ a white noise with
unit variance:

ẋ = F(x, t) +
√

2D(x, t)ξ. (3.6)

This description Eq. 3.6 is not restrictive to first order processes, as for any process of
arbitrary order we can always reformulate it as a first order equation Eq. 3.6 by changing
variable x← (x, ẋ, ...). In particular, in this formulation the variable x follows a Markovian
evolution. Within this framework, the goal of inference is to learn the force field F and the
diffusion matrix D given a dataset of m observed trajectories Dm = {xα0:L, α = 1, ...,m}.

Importantly, if the process x(t) partially observed, in the sense that the measurement
apparatus does not provide an independent observation of all its degrees of freedom, the
dynamics of the observed degrees of freedom is not Markovian anymore. This problem is
closely related to the task of building novel inference scheme for second order stochastic
differential equation, and is discussed at length in chapter 4. For sake of simplicity, in this
introduction we consider that the process is fully observed.

Non-parametric & Semi-parametric inference
The task of learning a general force field and diffusion matrix from measurements

is referred to as non-parametric inference. Most common strategies require to bin the
phase space in order to reconstruct locally F and D (84). This daunting task requires
an enormous amount of data, which makes these strategies unusable for non-stationary
processes and large phase spaces. To circumvent some of these difficulties, a method
called stochastic force inference has been recently introduced (82; 85). Under the same
stationarity assumption, authors approximate the force field and the diffusion matrix using
a finite basis of functions {cα(x)}α=1,...,nb :

Fi(x) '
nb∑
α=1

Fi,αcα(x), with
∫
dxcαcβP (x) = δαβ, (3.7)
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where P (x) is the stationary measure and the parameters Fi,α are the coefficients of
projections of the force field components on the basis:

Fi,α =
∫
dxP (x)Fi(x)cα(x). (3.8)

Under the additional assumption that the process is ergodic, the ensemble averages can be
replaced by time averages and estimated from measured trajectories. A similar estimator
using the same basis of functions can be derived for the diffusion matrix. The improvement
of this approach over the previous ones is drastic: not only the phase space does not require
binning anymore, but the number of parameters to learn drops to a manageable number
nb×d, where nb is the number of basis functions used and d is the phase space dimension.
In particular, the choice of the basis of functions can be informed by physical knowledge of
the dynamics, increasing even more the efficiency of the method. Additionaly, making use
of the Itô-Stratonovich correspondance, authors were able to derive estimators unbiased
by measurement noise.

However, this method solely applies to stationary processes and only allows for metric
parametrizations of the force field. As we have mentionned, the use of topological inter-
action networks is common to model collective motion, and this inference approach does
not offer a satisfying framework to learn the Vicsek model and its inertial generalization
the ISM. Additionally, this method does not provide a probabilistic framework to evaluate
the likelihood of the data given the learnt parametrization. In particular, in the field of
collective behavior a probabilistic inference approach is needed to perform model selection
and assess the validity of the inertial spin model over the Vicsek model. Before developing
probabilistic inference methods solving these issues in chapter 4, we introduce Bayesian
inference methods.

Bayesian inference

A statistical model is determined by its functional formM, for instance inertial or non-
inertial in the case of collective motion, its parameters θ, and the predictions P (Dm|θ,M)
it makes about the data Dm. Additionaly, the prior distribution P (θ|M) denotes the a
priori knowledge we have about the parameters, which for instance may come from past
experiments. The term Bayesian inference refers to a set of inference methods where
the validity of the parameters θ, given the measured data Dm, is estimated using Bayes
theorem (86). Assuming the modelM is the one generating the data, the probability of
the model parameters being θ given the measured data Dm reads:

P (θ|Dm,M) = P (Dm|θ,M)P (θ|M)
P (Dm|M) (3.9)

The probability P (Dm|M) is the evidence of the model and is independent of the parame-
ters. Therefore, it is commonly ignored when looking for the parameters θ best fitting the
data Dm. Performing Bayesian inference finally amounts to maximizing P (θ|Dm,M) the
posterior distribution. The corresponding estimator, called maximum a posteriori reads:

θ̂MAP = arg max
θ
P (θ|Dm,M). (3.10)
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The choice of the prior distribution can be driven by prior experiments, or simply by
considerations about the validity range of the model parameters. In the absence of both,
the general rule is to use the least informed prior P (θ|M) = constant. The inference task
becomes driven by the data likelihood P (Dm|θ,M) only, and the maximum a posteriori
estimator Eq. 3.10 coincides with the maximum likelihood estimator:

θ̂ML = arg max
θ
P (Dm|θ,M). (3.11)

In the limit of an infinite number of samples m → ∞ the maximum likelihood estimator
is in general consistent, in the sense that it converges in probability to the true value
generating the data (87).

As the process is Markovian, the likelihood of any trajectory x0:L sampled with a
timestep ∆t can be written as:

P (x0:L, θ) =
L∏
i=1

P∆t(xi|xi−1, θ)P (x0|θ), (3.12)

where P∆t(x′|x) = P (x′, t + ∆t|x, t) is the propagator of the diffusion process over a
duration ∆t, and P (x0|θ) is the probability distribution of the initial condition x0. With
this equation, we see that performing Bayesian inference for dynamical stochastic models
amounts to finding the propagator P∆t. In most applications, it cannot be explicitely
calculated and it is approximated for small time steps using a Taylor-Itô expansion. In the
last section of this introduction we illustrate this with previous inference results obtained
with the Vicsek model (80; 88). Importantly, Eq. 3.12 can be written as the product of
propagators over successive couples of data points because the process is fully observed.
As we mentionned, in the partially observed case the Markov property does not hold,
and in particular the trajectory likelihood does not split over successive couples of points
like in Eq. 3.12. In chapter 4 we develop a novel inference scheme that circumvents this
problem.

3.2.2 Inference in the Vicsek model

Bayesian inference has been successfully applied to dynamical recordings of bird flocks
(88; 80) using the Vicsek model Eq. 3.3. To achieve this task, authors focused on the
velocity fluctuations around the collective direction of motion of the flock n. Following
previous evidence indicating that birds are interacting through topological interactions
(89), authors chose a nearest neighbour parametrization of the interaction network. As-
suming the flock is highly polarized Φ ' 1, at first order in the fluctuations πi orthogonal
to n, Eq. 3.3 reads as:

ηπ̇i = −J
∑
j

Λijπj + ξi⊥, (3.13)

with 〈ξi⊥(t)ξj⊥(t′)〉 = 2(d−1)Tηδijδ(t− t′) and Λij = ncδij−nij is the discrete Laplacian.
Using Euler discretization and denoting π = (π1, ...,πN ), the short time propagator P∆t
reads:

P∆t(π′|π) = (4πTη∆t)−N(d−1)/2 exp
[
−(π′ − π + J∆tΛπ)2

4Tη∆t

]
. (3.14)
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Expanding the argument of the exponential, the propagator depends on a set of correla-
tions between the fluctuations at time t and t + ∆t (80; 88). With an hybrid analytical
and numerical maximization of the likelihood, authors obtained estimates for nc ∼ 5 ,
J and T . In particular, they learnt from this inference that the local relaxation of the
velocity degrees of freedom is much faster than the network reshuffling, leading to the
conclusion that flocks are locally at equilibrium (88). In chapter 4 we follow the line of
thinking outlined in this section to develop inference schemes for second order stochastic
processes. We also discuss in length the role of discretization and of partial observability
on the consistency of the maximum likelihood estimators.



4
Building general Langevin models from discrete
datasets

4.1. Abstract
This chapter was previously published in:
◦ Ferretti F, Chardès V, Mora T, Walczak AM, Giardina I (2020) Building general
langevin models from discrete datasets. Physical Review X, 10:031018.

The section “ISM simulations” was moved from Appendix to section Methods. Figures
fonts have been changed.

Many living and complex systems exhibit second order emergent dynamics. Limited
experimental access to the configurational degrees of freedom results in data that appears
to be generated by a non-Markovian process. This poses a challenge in the quantitative
reconstruction of the model from experimental data, even in the simple case of equilib-
rium Langevin dynamics of Hamiltonian systems. We develop a novel Bayesian inference
approach to learn the parameters of such stochastic effective models from discrete finite
length trajectories. We first discuss the failure of naive inference approaches based on
the estimation of derivatives through finite differences, regardless of the time resolution
and the length of the sampled trajectories. We then derive, adopting higher order dis-
cretization schemes, maximum likelihood estimators for the model parameters that provide
excellent results even with moderately long trajectories. We apply our method to second
order models of collective motion and show that our results also hold in the presence of
interactions.

4.2. Introduction
Recent experimental findings on a variety of living systems, from cell migration (83),

bacterial propulsion (90), worm dynamics (91), to the larger scale of animal groups on
the move (42; 43; 17; 44), indicate that the observed behavior cannot be explained with a
first order dynamical process, but requires a higher order description. For bird flocks and
insect swarms, the case which interests us most, data show that propagating directional
information during collective turns in flocks requires rotational inertia, i.e. a reversible
dynamical term, to account for the measured dispersion law (17). The shape of the
velocity-velocity correlation function in swarms, which flattens at short times, also points
to a second order dynamics for these systems, as suggested by the value of the dynamical
critical exponent (44). Overall, data indicate that considering second order dynamics is
required to explain how animal groups behave on their natural size and time scales —
even though overdamping might theoretically occur for very large systems and on very
large time scales.

The emergent dynamics of all the above systems share three fundamental ingredients:
an effective inertia, dissipation, and a stochastic contribution. Disentangling such con-
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tributions is often crucial to understand the processes at stake and reliable methods are
required to extract that information from available data. The example of animal groups,
which motivates the present work, is also helpful to discuss the theoretical objectives and
experimental constraints of the inference procedure. Ideally, we would like to build the
simplest continuous second order model consistent with experimental findings. We seek a
continuous time model for several reasons: i) it allows computations to be performed; ii) it
is a reasonable assumption for systems where microscopic update times are much smaller
than observational scales (cognitive processes occur on tenths of milliseconds, whereas
behavioral changes on scales of seconds); iii) it circumvents the inherent arbitrariness of
discrete time modelling. Experimental data, on the other hand, come in the form of
discrete time series, where the discretization interval is set by the time resolution of the
experimental apparatus.

In the presence of stochasticity, the nature of the data poses two major problems. First
of all, if the dynamics is of second order, all signals (including initial condition and noise)
are propagated in time with a memory kernel, making the relation between the coarse
grained data that we observe and the underlying process far more complex than in the first
order case. The memory kernel arises from the contraction of the dynamical description
of the second order stochastic process from the full phase space to a lower dimensional
subspace —usually that of measurable degrees of freedom (92; 93; 94). For example, were
we able to experimentally measure with the same accuracy a pair of conjugate variables,
e.g. positions and velocities of moving individuals, we could seek a model for their joint
evolution. But in common experiments that is not the case, as one typically measures one
degree of freedom (e.g., positions) and must derive the other. To confront the data, we
therefore need to work in a reduced space. Secondly, the goal of the inference procedure
is to retrieve a continuous stochastic model from a collection of discrete sample paths
occurring on finite observational time scales ∆t. In absence of an explicit solution for
the stochastic process, the most reasonable thing to do is to transform the stochastic
differential equation (SDE) into an approximated difference equation. Such discretization
must be performed very carefully, since the resulting equation should correctly represent
the underlying stochastic process both at the scales of the sampled data (at which inference
works), and in the microscopic limit of vanishing increments.

These two problems are quite general and do not depend on the presence of interactions
in the system, but rather on the nature of the dynamics. Although the issue has been
considered before, the literature is sparse and a satisfying Bayesian inference approach is
still lacking. Previous attempts to provide systematic inference strategies for second order
dynamics consist of building converging estimators for the different terms of the model
from proper combinations of measurable quantities (95; 46; 96), or in exploiting known
relations between model parameters and accessible observables (47).

In a more general and refined way, the problem can be reformulated in terms of a
dynamical inverse problem, and much work has been done in this field in the last years
(97; 98; 86). However most analyses have focused on first order processes in time (99;
100; 101; 80; 88; 82; 102; 103). Second order processes have been considered within this
framework in Refs. (45; 104), yet the proposed method differs from a proper maximum
likelihood approach, due to the difficulty of deducing a pseudo-likelihood function in the
case of non-Markovian processes.

To the best of our knowledge, we present here the first maximum likelihood inference
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approach for non-Markovian inertial processes. It differs from previous studies in its first
principle derivation and absence of a Markovian embedding. We derive explicit formu-
las for the parameter estimators, and test our approach on synthetic data in a variety
of models, including non-linear forces, multiplicative noise and many-body interactions.
Results show that the method is accurate and robust, providing an important tool in the
analysis and understanding of real systems. The paper is organized in the following way:
in Sec. 4.3.1 we formalize the problem and discuss in detail how to build an appropriate
dynamical inference strategy for inertial systems with linear dissipation. We explain the
interplay between the order of convergence of discretized SDEs obtained from Taylor-Itô
expansions and the consistency of the corresponding max-likelihood parameter estima-
tors. We show that to get accurate results the simplest Euler-like schemes, which work
well with first order dynamics, are insufficient, so that one needs to go to the next order
of approximation. Theoretical predictions are compared with numerical data to consoli-
date our results. Sec. 4.3.2 introduces non-Bayesian inference schemes, while in Sec. 4.3.3
we discuss the problem of eliminating the initial velocity. In Sec. 4.3.4 we address the
case of a strongly interacting system: the inference procedure is applied to synthetic data
obeying the Inertial Spin Model, a model of self-propelled particles that describes the
phenomenology of natural flocks of birds (17). The effect of experimental measurement
noise is discussed in Sec. 4.3.5. Finally, in Sec. 4.4 we summarize all our results, discuss
their conceptual relevance, and outline their potential for applications to real data.

4.3. Results
4.3.1 Maximum-likelihood inference approach for Langevin dynamics
Problem definition

Let us assume that the available experimental data are sequences of points (x0, x1, . . . xL)
uniformly separated in time by ∆t, and that the underlying dynamics is described by the
complete Langevin equation of the form:

ẍ = −ηẋ+ f(x) + σξ, (4.1)

where f(x) = −V ′(x) is a conservative force, σ2 = 2Tη, and ξ is a standard white noise:
〈ξ〉 = 0, 〈ξ(t)ξ(t′)〉 = δ(t − t′). Without lack of generality, the inertial mass is set to 1.
Since the noise is additive, it is unnecessary to distinguish between Itô and Stratonovich
integration.

Let us call λ the irreducible set of parameters that enter in Eq. 4.1, namely the effective
damping coefficient η, the effective temperature T , and the parameters entering in the
definition of the potential V (x). The aim of dynamical statistical inference is to provide
an estimate of their values. Following a Bayesian approach, the posterior distribution of
parameters given the data reads:

P (λ|{(x0, . . . , xL)α}) ∝ P ({(x0, . . . , xL)α}|λ)ρ(λ), (4.2)

where each Greek index labels a different experimental sample. By choosing a uniform
prior ρ(λ), the maximum of Eq. 4.2 corresponds to the maximum likelihood estimator.
The conceptual and technical difficulty of the whole inference problem is then only about
finding a tractable expression for the dynamical likelihood.
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The theory of stochastic processes provides us with an explicit but formal expression
for the transition probability P (x(t)|x(0), ẋ(0)), involving, in general, integro-differential
operators. A closed form solution for the stochastic process may be generally unknown
or complicated 1, especially for many body or off-equilibrium systems, but finely time-
resolved data may be available. What we look for is then an (eventually approximated)
expression for the probability of the discrete trajectory, for which a practical connection
with the data can be established.

A first general strategy is the following:
1. As a preliminary step, Eq. 4.1 can be conveniently rewritten as a set of two first

order equations: ẋ = v

v̇ = −ηv + f(x) + σξ.
(4.3)

2. Since the dynamics is Markovian when parametrized by the vector variable q =
(x, v), the probability of a discrete trajectory in this space, given the initial condition
q0 = (x0, v0), can be split into a product of propagators:

P (qL, . . . ,q1|q0) =
L∏
n=1

P (qn|qn−1). (4.4)

3. Following (105), one can exploit any update rule based on a Taylor-Itô expansion to
approximate, within a certain order of accuracy, the propagator over a small time
interval ∆t:

P (qn|qn−1) = P(k)(qn|qn−1) + o(∆tk). (4.5)

Eq. 4.5 can be replaced into Eq. 4.4 to get an approximated expression for the
probability density of the sequence of points in phase space:

P(k)(qL, . . .q1|q0) =
L∏
n=1

P(k)(qn|qn−1) + o(∆tk). (4.6)

4. Marginalizing over the velocity-like degrees of freedom one gets a probability dis-
tribution depending on the x’s only. This projection operation on the subspace of
x variables is where the original Markovian property of Eq. 4.4 is generally lost.
A crucial remark, beyond the non-Markovian nature of the resulting dynamics, is
that this procedure does not simply consist of removing the intermediate variables
v1, . . . , vL, but also of eliminating the initial condition v0. This is at the same time
a further technical difficulty and a fundamental conceptual issue in the context of
stochastic dynamics. We refer to Sec. 4.3.3 for a broader discussion.

When this strategy is adopted, the first thing we need is then a discrete integration
scheme for Eq. 4.1 or Eq. 4.3. Although the naive intuition is that any convergent —even if
slowly— discretization scheme should work for small ∆t, in fact the order of approximation
of the temporal discretization is able to affect the mathematical properties of the discrete
path integral measure and, consequently, the correctness of estimators obtained through

1We seek a solution of the stochastic process either as an explicit sample-path solution in position space
that does not involve integro-differential operators, or as the time-dependent solution of the associated
Fokker-Planck equation (73).
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a maximum likelihood inference procedure (105; 45).
Alternatively, one can follow a second strategy, summarized as ‘first marginalize, then

discretize’, in contrast to the ‘first discretize, then marginalize’ strategy discussed above.
The starting point is here the generalized Langevin equation (GLE) corresponding to the
desired process, Eq. 4.1, which can be obtained adopting the Mori-Zwanzig formalism (92)
(see App. A.1.1):

ẋ = v0e
−ηt +

∫ t

0
dsK(t− s)f(x(s)) + ζ(t). (4.7)

In this equation, K(t) = e−ηt and the effective noise is given by ζ(t) =
∫ t

0 dse
−η(t−s)ξ(s).

This formalism shows that, when projected from the full phase space into the x space, the
dynamics acquires a memory, described by a friction kernelK(t) and color in the noise. We
note that the relation 〈ζ(t)ζ(t′)〉 ∝ K(|t−t′|) holds asymptotically in the limit of infinitely
long trajectory, and it reduces to the second fluctuation dissipation theorem when f(x)
is linear. Discrete update equations can now be obtained by integrating Eq. 4.7 on ∆t
intervals, and self-consistently removing v0. We notice that, for arbitrary forces f(x),
the corresponding term cannot be exactly integrated and it needs to be approximated at
small ∆t. The fact that the derivative of the measured coordinate – position, x, – enters
parametrically through v0 in the GLE stems from the second order nature of the process.
Its elimination, which is necessary to retrieve a stochastic difference equation where only
the x variable appears, is connected to the problem anticipated in point 4 of the procedure
outlined above.

The two strategies must be equivalent: the order of the discretization and marginal-
ization operations should be exchangeable. In the following section we show how the
simplest inference schemes derived from Euler-like discretizations of Eq. 4.3 do not satisfy
this requirement, whereas higher order discretization schemes, strongly convergent as at
least O(∆t3/2), retrieve correct maximum likelihood estimators.

Failure of naïve inference schemes

Discrete integration approaches for SDEs are well known in the literature in connection
to numerical computation methods (see, e.g. (106)). Here, we summarize how the order of
approximation of these discretization schemes interferes with the non-Markovian character
of the observed dynamics. This makes standard claims about the convergence of these
integrators not generally valid in cases when only a projection of the original Markovian
process is observed. Rigorous results can be found in (45). We are mainly interested in,
from an application point of view, the bias that this fact introduces in naïve inference
approaches, and possible correction strategies.

Let us start then with the simplest possible construction, i.e. the Euler-Maruyama
scheme applied to Eq. 4.1 (in this case corresponding to the Milstein scheme) (106). The
discrete update equations for the Markov process read:xn+1 − xn = ∆t vn

vn+1 − vn = −η∆t vn −∆t f(xn) + σ∆t1/2 rn,
(4.8)

with rn i.i.d. random variables of normal distribution N (0, 1), for n = 0, . . . , L − 1. We
remind that the first neglected terms in Eq. 4.8 are O(∆t3/2). The scheme provides then
a deterministic update for the x variables, which manifests itself through δ-functions; a
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Figure 4.1: Inference results for the stochastic harmonic oscillator. Sample trajec-
tories are obtained from exact numerical integration of the set of first order equations with
parameters ηsim, ωsim

0 and T sim. The simulation time step τ sim is always equal to 0.005,
and it corresponds to the minimum displayed value of ∆t in A. Points at higher values of
∆t are obtained applying the inference procedure to sub-trajectories extracted from the
original one. Each of the points displayed in B-D is obtained as a weighted average of the
inference results for different ∆t values in the range where the small ∆t approximation is
valid. Weights correspond to the squared inverse of the errorbars, displayed in A for the η
parameter. We compare the accuracy of all the schemes derived in App. A.1.2 from a first
order Taylor-Itô expansion (Euler-fwd, Euler-bkd, BBK) and from a second order expan-
sion (Toeplitz, Non-Bayes). A. Inferred values for the damping coefficient of the harmonic
oscillator, η∗. Averages over 10 sample trajectories of 5000 points (for any ∆t) are reported
with their 0.95 CI. Simulation parameters: T = 1, ω0 = 1, η = 3. B. Inferred damping
coefficient η∗ vs true simulation parameter ηsim: results from higher order methods follow
the line of slope 1, whereas numerical results from naïve methods fall on the line of slope
2/3. The remaining parameters are fixed: T = 1, ω0 = 1. C. Inferred squared frequency
of the harmonic oscillator ω2

0
∗ vs true simulation parameter ω2

0
sim. All the schemes give

correct results in this case in the whole explored range of values. Simulation parameters:
η = 3, T = 1. D. Inferred temperature T ∗ vs the true value of the simulation parameter
T sim: again, results from all schemes fall on the line of slope 1 in the whole explored range
of values. Remaining simulation parameters: η = 1.5, J = 1.
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simple change of variables from rn to vn+1 immediately completes the derivation of the
discrete propagator in (x, v) space. Finally, in this case one can explicitly marginalize
over the velocity degrees of freedom, and eliminate the initial condition v0. Indeed, to this
order of approximation, information on v0 is fully equivalent to information on x1. From
this marginalization, a fully factorized probability distribution for the discrete sequence is
obtained:

P(1)(xL, . . . , x2|x0, x1) =
L−1∏
n=1

P(1)(xn+1|xn, xn−1), (4.9)

where transition probabilities are defined as follows:

P(1)(xn+1|xn, xn−1) = 1
Zn

e−Sn(xn+1,xn,xn−1) , (4.10)

with
Zn =

√
2πσ2∆t3 ; (4.11)

(4.12)Sn = 1
2σ2∆t3

[
xn+1 − 2xn + xn−1 + η∆t(xn − xn−1)−∆t2f(xn)

]2
.

A factorization of P (xL, . . . x2|x1, x0) into a product of transition probabilities of this
kind is possible because the random variables appearing in the x difference equation,
obtained from Eq. 4.8 through variable elimination, are independent. This is a crucial but
artificial feature occurring only at this level of approximation: more accurate discretization
procedures produce an effective noise for the x variables which is correlated in time. As
a matter of fact, when the description of a Brownian motion is contracted from the full
phase space to position space, a colored noise emerges, which is incompatible with the
independence of subsequent random variables at any ∆t.

Nonetheless, we find it useful to compute the associated dynamical likelihood, as de-
fined in Eq. 4.2, and develop the corresponding inference scheme. For the sake of clarity, we
will focus on the example of the harmonic oscillator, where f(x) = −ω2

0x. Using Eqs. 4.10–
4.12 , an expression for the likelihood as product of transition probabilities for a second
order master equation is recovered. This corresponds to the discrete path probability one
would obtain adopting a maximum caliber approach (97) when certain time-dependent
observables are taken as fixed. For the one-dimensional harmonic oscillator, they are the
equal-time correlations, one-time-step correlations and two-time-step correlations of the
process. Indeed, rearranging the sum of Sn’s in Eq. 4.9, the reduced minus-log-likelihood
can be written as:

L(η, T, ω2
0)

L− 1 = 1
2 ln(2πσ2∆t3) + 1

2σ2∆t3
[
C ′s + (2− η∆t+ ω2

0∆t2)2Cs + (1− η∆t)2C ′′s

+2(1−η∆t)Fs−2(2−η∆t+ω2
0∆t2)Gs−2(1−η∆t)(2−η∆t+ω2

0∆t2)G′s
]
,

(4.13)

where we introduced the following notation for the experimental temporal correlation
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functions, evaluated at a time distance of 0, ∆t and 2∆t:

Cs = 1
L−1

∑L−1
n=1 xnxn; C ′s = 1

L− 1

L−1∑
n=1

xn+1xn+1;

C ′′s = 1
L−1

∑L−1
n=1 xn−1xn−1; Gs = 1

L− 1

L−1∑
n=1

xnxn+1;

G′s = 1
L−1

∑L−1
n=1 xnxn−1; Fs = 1

L− 1

L−1∑
n=1

xn−1xn+1.

Minimization of the quantity in Eq. 4.13 with respect to η, T and ω2
0 yields the inference

formulas for the parameters of the harmonic oscillator. We express here only the estimator
of the damping coefficient η, while the remaining ones can be found in App. A.1.2:

η∗ = 1
∆t

2Cs −Gs −G′s −
G′s
C ′′s

(2G′s − C ′′s − Fs)

Cs + C ′′s − 2G′s −
(C ′′s −G′s)2

C ′′s

. (4.14)

At this point, having an explicit inference method, it can be both numerically and
analytically tested. We simulated discrete trajectories of the stochastic harmonic oscillator
in several damping conditions using an exact integrator (107), with a numerical time step
τ sim = 0.005. We applied inference formulas to discrete data sets sampled from synthetic
trajectories at time intervals ∆t ≥ τ sim. This choice mimics real experiments, where the
time resolution is fixed by the acquisition apparatus, while the true microscopic time-scale
of the dynamics is unknown. Filtering the synthetic trajectories in time is a good blind
inspection tool to check the robustness of the continuous description given by the inferred
parameters, without prior knowledge about the time scales of the process. Moreover,
this test on numerical simulations can help us identifying the time window in which any
dynamical inference scheme is expected to work: in discretizing the equations of motion,
the implicit assumption is that ∆t must be much smaller than the typical time scales of
the process (η−1 and ω−1

0 in this example).
Results, reported in Fig. 4.1, show that a systematic error in the estimation of the

damping coefficient emerges, which can be cast into a constant rescaling factor close to
2/3 for the inferred value η∗ as compared to the true value ηsim. It is worth remarking
that this rescaling is independent of ∆t, as clearly visible in Fig. 4.1A, so increasing the
resolution of the acquisition instruments is of no help in improving the estimation of the
damping coefficient. The same problem also occurs when using other variants of the
EM scheme obtained from a Taylor-Itô expansion of the same order, as we illustrate in
App. A.1.2. On the contrary, the estimation of the remaining parameters is in agreement
with the parameter values used in the simulations, as shown in Figs. 4.1C–D.

Numerical evidence for the stochastic harmonic oscillator agrees with the results of
Refs. (47; 46), who pointed out, in a non-Bayesian framework, the failure of the same
naïve embedding strategy for second order SDEs. We stress that the EM discretization
is the simplest and most commonly used extrapolation of the derivative of an observed
variable from its finite increment. This approximated estimation of the velocity works if
one observes the system in the overdamped regime, i.e. when η∆t � 1 and ω0/η < ∞,
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and the effective dynamics can be described by a first order equation. In this case, EM-
based inference schemes provide in effect excellent results (80; 88). However, when a
non-Markovian signal is observed, such as the partial observation of a higher dimensional
Markovian process, these schemes are bound to fail.

A simple argument can help us to understand what is missing, and why the parameter
η is the one affected by the approximation. Assuming that experimental averages perfectly
reproduce ensemble averages, we can replace into Eq. 4.14 the known analytical expression
for the self-correlation of the harmonic oscillator in the stationary regime C(0), C(∆t) and
C(2∆t). Since the underlying assumption of the whole procedure is that the time lag ∆t
between subsequent points is small, compared to the typical time scales of the dynamics,
we can perform a Taylor expansion around t = 0, obtaining from Eq. 4.14 an expression
for η∗ depending only on the derivatives of C(t) at t = 0:

η∗ ' 1
∆t

2Ċ(0)− 2
3
...
C(0)∆t2 − C̈(0)Ċ(0)

C(0) ∆t3

2Ċ(0) + C̈(0)∆t+ 1
C(0)

[
Ċ(0) + 1

2 C̈(0)∆t
]2

∆t
. (4.15)

Knowing explicitly C(t) for the harmonic oscillator (also in App. A.1.2, Eq. A.27), one
can compute the desired derivatives:

C(0) = T

ω2
0

; Ċ(0) = 0 ; C̈(0) = −T ;
...
C(0) = ηT . (4.16)

Proper combinations of these quantities allow us to extrapolate all the parameters of the
model. The importance of the first derivative as a quantity to discriminate between first
and second order dynamics in oscillator-like models has already been stressed in (108; 78),
with explicit reference to complex interacting systems. Our point is that we can go beyond
the binary answer provided by Ċ(0)/C(0), proportional – through a time scale factor – to
1 or to 0 for first or second order dynamics respectively, and give a quantitative estimation
of the damping regime in which a system operates, employing all the derivatives at t = 0
up to the third one.

By replacing Eqs. 4.16 into Eq. 4.15, we obtain:

η∗ = −2
3

...
C(0)
C̈(0)

[1 +O(∆t)] = 2
3η +O(∆t). (4.17)

We find then, at the leading order, a rescaling factor of 2/3, as observed in numerical
tests. No rescaling factors appear for the other inferred parameters: performing the same
replacement and expansion of the analytical correlation functions in the inference formulas
of T and ω0, we see that temperature and pulsation are correctly retrieved from proper
combinations of C(0) and C̈(0).

This result gives us a clue to understand the origin of the ∆t-independent rescaling
factor for η. Looking back at Eq. 4.8, one realizes from simple dimensional analysis that
the elimination of the velocity variables makes terms of order O(∆t3/2) appear, even if
the starting accuracy of the expansion is O(∆t). This means that Eq. 4.13 has been
inconsistently derived retaining only some of the O(∆t3/2) contributions; in turn this
produces missing O(∆t3) contributions to the fluctuations of x. This explains why Eq. 4.14
is incorrect and shows the need of higher order discretization schemes for stochastic second
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order dynamics.
We finally remark that this 2/3 rescaling factor is not a specific feature of the stochastic

harmonic oscillator, but a recurrent trait in stochastic models of the form of Eq. 4.1. As
rigorously proven by Gloter, the so-called quadratic variation of the discretized velocities
(corresponding to an empirical estimate of the squared acceleration) uniformly converges
to the expected value for the quadratic variation of the real unobserved velocities rescaled
by 2/3 (45). These quadratic variations are O(∆t3), and the former one is the only directly
measurable quantity containing the necessary dynamical information to disentangle the
contribution of dissipation from diffusion and infer η in our setting 2.

Higher order inference schemes
The lowest order of convergence required to develop any reasonable dynamical maxi-

mum likelihood scheme is O(∆t3/2). Since the mean square convergence of the infinitesimal
increment of the process is what determines its statistical properties at any time, the min-
imum requirement for an inference method exploiting only local dynamical information is
to reproduce fluctuations correctly at the leading order in ∆t.

Independently of the details of the discretization, following the procedure outlined in
Sec. 4.3.1, with O(∆t3/2) accuracy one reduces to a sequence of intertwined Gaussian
integrals for the marginalization of v1 . . . vL, which may be cumbersome to compute for
arbitrary length of the trajectory. Therefore, it is convenient to work again with update
equations in x space. They can be obtained either from a temporal discretization of the
GLE 4.7 or from the elimination of the velocity variables in the discrete-time equations
resulting from a second order Taylor-Itô expansion of the Markov process in Eq. 4.3. In
the first case, since the same exponentially decaying kernel propagates both the noise and
the initial condition in Eq. 4.7, it is possible to manipulate the integrated GLE to find a
stochastic difference equation that does not contain v0 and is driven by a short correlated
effective noise:

(4.18)xn+1 − xn − e−η∆t(xn − xn−1) = 1− e−η∆t

η

∫ tn+1

tn−1
Ψ(t− tn)f(x(t))dt+ ζn

where

ζn =
∫ tn+1

tn−1
Ψ(t− tn)ξ(t)dt; (4.19)

Ψ(t) =


eηt−e−η∆t

1−e−η∆t if −∆t < t < 0 ;
1−eη(t−∆t)
1−e−η∆t if 0 < t < ∆t .

(4.20)

Correspondingly, the ‘first discretize, then marginalize’ strategy provides a stochastic dif-
ference equation with the same properties. We detail both procedures in App. A.1.1.

Concentrating on the case of the stochastic harmonic oscillator, any consistent discrete-
time description in x space takes the form of a linear stochastic difference equation like:

xn+1 + αxn + βxn−1 = ζn, (4.21)
2The class of models considered by Gloter in (45) isn’t exactly the same as the one we consider in

Eq. 4.1 (f(x) = 0 is assumed and the presence of nonlinear nonconservative forces and of a multiplicative
noise of the form of σ(v)ξ is allowed) but we think that the result in (45) may be extended also to the
f(x) 6= 0 case.
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where the inhomogeneous terms ζn are still Gaussian random variables of null mean, but
they are no longer independent. This is the crucial difference with the Euler-Maruyama
scheme, which takes into account only the diagonal entries of the covariance matrix Cnm =
〈ζnζm〉.

Eq. 4.21 defines an affine map:

ζ = (ζ1, . . . , ζL−1)> 7→ x = (x2, . . . , xL)> = M−1ζ + x0, (4.22)

where Mij = δi,j +αδi,j−1 + βδi,j−2 and x0 = (x0, x1, 0, . . . , 0)>, which can be generalized
to a nonlinear transformation when anharmonic forces are present. This map can be
exploited, when the covariance matrix C and its inverse are known, to write the new,
higher order, dynamical likelihood. For the harmonic oscillator, it reads:

(4.23)
P(2)(xL, . . . , x2|x1, x0) = 1

Z
exp

−1
2

L−1∑
n,m=1

(xn+1 + αxn + βxn−1)C−1
nm(xm+1 + αxm + βxm−1),

where Z is the normalization constant:

Z =
[
(2π)L−1 det C

]1/2
=
[
L−1∏
k=1

2πλk

]1/2

, (4.24)

with λk the k-th eigenvalue of the covariance matrix C. The effective parameters α and β,
as well as the entries of the covariance matrix, are known combinations of the parameters
of the model, whose details depend on the adopted discretization scheme. In the following
results we adopt α = −1− e−η∆t + ω2

0∆t
(
1− e−η∆t

)
/η and β = e−η∆t.

For well-chosen α, β and Cnm, Eq. 4.21 and Eq. 4.23 are exact, in the limit L → ∞.
Thanks to linearity, it is possible to design an exact integration algorithm for the Markov
process 4.3 at any time step increment ∆t (107). For nonlinear generalizations of f(x),
the exact Gaussian character of the random increment is lost. However, at leading order
in ∆t, a multivariate Gaussian distribution still represents a good approximation for the
distribution of the random increments ζn appearing in the x update equation, which takes
the form:

xn+1 + F (xn, xn−1;µ) = ζn, (4.25)

with µ a set of effective parameters. The corresponding generalization of Eq. 4.23 can be
obtained (see App. A.1.2).

To order O(∆t3), for both linear and nonlinear second order processes, one can deduce
from Eq. 4.19 that C has a ‘nearest-neighbour’ structure of the kind:

Cnm = 〈ζnζm〉 = a δn,m + b δn,m±1 (4.26)

where
a ' 2

32Tη∆t3 ; b ' 1
62Tη∆t3. (4.27)

Hence the covariance matrix has the form of a symmetric tridiagonal Toeplitz matrix of
order L − 1. These mathematical features carry a deep physical meaning: first of all,
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the presence of non-vanishing off-diagonal elements is the signature of a colored noise.
Secondly, the fact that the matrix is banded means that the correlation of the noise
variables is short-ranged, i.e. that the associated memory kernel, in a continuous-time
description, decays fast (93). Finally, the Toeplitz structure is synonymous with shift
invariance.

A more careful derivation of the update equations in x space would require shift invari-
ance not to hold and the first entry of the covariance matrix C11 to be different from the
other elements of the main diagonal. Eq. 4.21 is in fact not valid for the first integration
step, where the initial conditions intervene. In this respect the structure of the data also
poses the problem of the elimination of the initial condition v0 in favour of x0 and x1.
Even if not able to perform it explicitly without stationarity assumptions, we can argue
(see App. A.1.1) that it has the effect of modifying the covariance matrix in the following
way:

C =


ã b . . . 0

b a .
...

... .
. . . b

0 . . . b a

 , (4.28)

where the shift invariance expressed by the Toeplitz structure of Eq. 4.26 is then broken
at the beginning of the time series. Despite that, the error we make by replacing ã with a
in the quasi-Toeplitz matrix 4.28 is negligible in the limit of long trajectories, as discussed
in Sec. 4.3.3 and checked in Fig. 4.4. Intuitively, since the breaking of the shift invariance
occurs only at the first step, the longer the trajectory, the more similar this is to a truly
shift invariant situation. Notice that what matters is not the total length (L + 1)∆t of
the trajectory in units of the physical time scales of the process, but just the number of
points L+ 1 of which the trajectory is made up 3.

Apart from the difficulty in determining correctly ã, the advantage of replacing the
true covariance matrix Eq. 4.28 with a Toeplitz matrix is that the inverse of the Toeplitz
matrix is explicitly known, as well as the eigenvalues (109; 110):

C−1
nm = 2

L

L−1∑
k=1

sin
(
nkπ
L

)
sin
(
mkπ
L

)
a+ 2b cos

(
kπ
L

) ; (4.29)

λk = a+ 2b cos
(
kπ

L

)
. (4.30)

Let us highlight that the inverse of the covariance matrix does not preserve a banded
structure. This means that, even if noise correlations are local in time, two-time functions
of every pair of points of the trajectory enter into the minus-log-likelihood. Hence Eq. 4.23
cannot be factorized. Factorization corresponds to a block structure for C−1, which implies
a block structure for C. This is incompatible with the tridiagonal Toeplitz or quasi-
Toeplitz nature of the covariance matrix, where off-diagonal elements are of the same
order as the diagonal ones.

3This is not surprising if one carefully looks at the expression of the inverse of the tridiagonal Toeplitz
matrix Eq. 4.29, which closely resembles Fourier series expansions. Increasing the number of points cor-
responds to including an increasing number of harmonics; finite size corrections to parameters estimators
can be seen as a counterpart of the Gibbs phenomenon.
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Nonetheless, having built an explicit discrete path integral measure, a maximum like-
lihood approach reduces to minimizing the quantity L = − lnP (xL, . . . , x2|x1, x0) with
respect to the parameters of the model. Thanks to the regularities of Eq. 4.23, the mini-
mization of L can be performed analytically in the case of the harmonic oscillator and, in
general, of simple single-particle systems. The optimization procedure can be performed
semi-analytically also for many-particle systems, like active agent-based microscopic mod-
els or spatially discrete counterparts of field theoretical models. In these cases an additional
parameter is typically the interaction range of effective pair-wise potentials, which may
depend on a different (measurable) variable than the field-like observable x. In general,
once an expression for L is given, a large number of optimization algorithms are avail-
able to minimize it with respect to all the extra parameters that do not allow for a full
analytical approach.

Complete inference formulas for one-dimensional harmonic and anharmonic oscillators
and for a system of many coupled harmonic oscillators with parameter-dependent connec-
tivity matrix are reported in Apps. A.1.2–A.1.2. In all cases, optimal parameter values
are given by combinations of all the two-time functions up to the length of the trajectory,
and not only those computed at a temporal distance of 0, 1 and 2 time steps.

For the non-interacting case, we tested the developed schemes numerically by apply-
ing the inference formulas to synthetic stochastic trajectories of two reference processes:
the Brownian motion in a harmonic potential, and the Brownian motion in a symmetric
anharmonic potential V (x) = 1

2kx
2 + 1

4λx
4. The equations of motion corresponding to the

latter read: ẋ = v

v̇ = −ηv − kx− λx3 + σξ ,
(4.31)

where we chose a unitary mass particle, σ2 = 2Tη and ξ(t) as a white noise. We generated
synthetic trajectories as in (48) and subsampled them by progressively increasing the time
separation ∆t between subsequent observed points.

The comparison with naïve inference schemes for the example of the harmonic oscillator
confirms the analytical predictions (Fig. 4.1). In any damping regime, the higher order
inference method outperforms the naïve scheme in two ways: perturbatively, since the
convergence of the parameter estimators is extended to a larger ∆t window due to the
higher order Taylor-Itô expansion (an example in Fig. 4.1A), and non perturbatively in
∆t, since no rescaling factor for the η parameter is required (Fig. 4.1B). The different
behaviour of the various schemes at large ∆t, where the series expansion is non-asymptotic,
is probably related to the details of the discretization rules and their stability properties.

Fig. 4.2 shows numerical results based on the Toeplitz inference scheme for the anhar-
monic stochastic oscillator for varying values of the parameters λsim (Figs. 4.2A–D) and
ksim (Figs. 4.2E–G). In all the explored regimes the inference scheme provides excellent
results, showing, in particular, that no bias is introduced by the possible imbalance be-
tween linear and nonlinear force terms (values close to the origin are correctly estimated
in Fig. 4.2D and Fig. 4.2F), even if, for a fixed ∆t, an increase in the relative error or
more noisy estimations cannot be prevented in these conditions (Fig. 4.2G). Moreover, no
bias is introduced by the fact that, when k assumes a negative value, the particle may be
confined in a single minimum of the double-well potential for all the length of the sampled
trajectory (see Fig. 4.2E).
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Figure 4.2: Inference of a Brownian motion in a force field. We perform Bayesian
inference of a Brownian motion in a force field f(x) = V ′(x), with V (x) = 1

2kx
2 + 1

4λx
4.

Only the Toeplitz method is applied; as for the harmonic oscillator, in A-D and F 10
sample trajectories of length 5000 points are considered for each ∆t. Errorbars are 0.95
CI. A-C. Inferred model parameters against subsampling parameter ∆t. The true value
is equal to 1 in all cases and is marked by the straight grey line. D. Inferred vs true value
of the nonlinear coefficient λ. E. Excerpts of sample trajectories in various landscapes.
The strength of the confining potential is qualitatively indicated by the colormap, with
light areas corresponding to the minimum of the potential. The following parameters of
the simulation are kept fixed: T = 1, η = 1, λ = 1. By varying the parameter k we
realize, from top to bottom: a strong confinement in a double well potential, with long
exit times, at k = −5; a switching dynamics with relatively short switching times, at
k = −2; a marginal situation at k = 0; confined Brownian motion in the vicinity of the
origin at positive values of k (k = 5). F. Inferred vs true value of the parameter of the
linear force k, assuming both positive and negative values. G. Histogram of counts for
the relative distance of the inferred parameter k∗ to the simulation parameter ksim. With
fixed λsim = 1 and ksim = {2,−5}, the weight of anharmonicity varies, but the variance of
all the estimated parameters seems to be unaffected. As a result, relative errors decrease
for larger |k|. 100 trajectories are sampled for each k value shown in the histogram, and
∆t = 0.025 in all cases.
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A B C

Figure 4.3: Inference method applied to a multiplicative process. The process is
described by Eq. 4.32 with f(x) = −kx and σ(x) =

√
a+ bx2. A. The fraction of time

spent by the system in each region of the phase space for a sample trajectory of length
4 · 104, with k = 1, η = 1, a = 1, b = 1 and initial condition (x0 = 0, v0 = 0). There
is a clear difference with the Gaussian distribution having the same second moment (red
line), showing the effect of the multiplicative noise. B. Analytically optimized negative
log-likelihood as a function of the effective parameter α = a/b, computed on a sample
sub-trajectory of 5000 points, ∆t = 0.016, with the same parameters as in A. In the inset
optimal values of α as a function of ∆t are reported. Errorbars correspond to 0.95 CI on
10 sample trajectories of 5000 points for each ∆t. The color code refers to the value of
αsim, measuring the relative contribution of additive and multiplicative part of the noise
term. C. Performance of the method in inferring the whole set of parameters of the model.

Generalization to multiplicative noise
In order to understand the limits and full potential of the method, we focus in this

section on possible generalizations to the case of non-additive noise. An adaptation of
our non-Markovian Bayesian inference scheme can be developed for the following class of
multiplicative processes:

ẍ = −ηẋ+ f(x) + σ(x)ξ, (4.32)

with ξ(t) a standard white noise and initial conditions x(0) = x0, ẋ(0) = v0. This model
has two features: linear dissipation, and a velocity-independent diffusion coefficient only
proportional to σ2(x). Under these conditions, the memory kernel of the GLE associated to
Eq. 4.32 is explicitly known and, following the same procedure that led to the discretization
of the additive process in Sec. 4.3.1, we obtain an approximated discrete time update rule
of the form:

(4.33)xn+1 − xn − e−η∆t(xn − xn−1)− 1− e−η∆t

η
∆tf(xn) = ζn,

where the stochastic term is defined as

ζn = 1− e−η∆t

η

∫ tn+1

tn−1
dt′Ψ(t′ − tn)σ(x(t′))ξ(t′). (4.34)

The function Ψ(t) is defined in the same way as in Eq. 4.20.
The approximation of the force term in Eq. 4.33 corresponds to that of the Langevin

impulse integrator (49). Alternative numerical integration schemes for GLEs, such as the
stochastic Verlet algorithm (111), can also be used.
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From now on we will implicitly refer to the Itô integration prescription. However, due
to the fact that σ(x) only depends on the configurational degree of freedom, x, the mean
square convergence of ζn is not affected by a switch to the Stratonovich convention. As a
result, one can say that, up to O(∆t3), stochastic terms satisfy

〈ζnζm〉 '
2
3∆t3σ2(xn)δn,m + 1

6∆t3σ(xn)σ(xm)δn,m±1 . (4.35)

This choice of off-diagonal terms ensures the positiveness of the matrix, if σ(x) > 0 4. The
covariance matrix also preserves a tridiagonal symmetric structure. However, the Toeplitz
property is lost since, in the presence of multiplicative noise, shift invariance cannot hold.
Nevertheless, we can build an efficient maximum likelihood inference routine. Let us
rewrite the minus-log-likelihood associated to Eq. 4.33 as

L= 1
2

L−1∑
k=1

lnλk(x;ν)+
L−1∑
n,m=1

[xn+1+F (xn, xn−1;µ)]C−1
nm(x;ν) [xm+1+F (xm, xm−1;µ)] ,

(4.36)

so that we can distinguish between the subset of parameters µ, including η and the pa-
rameters of the conservative potential, and the subset ν appearing in the x-dependent
diffusion coefficient σ(x;ν). For the parameters in the former set, analytical formulas for
their max-likelihood estimators can be found as functions of ν, while the latter generally
requires numerical optimization (unless σ(x;ν) is univariate and has a purely multiplica-
tive dependence on its single parameter). The effective cost function can be evaluated,
also in the case of long trajectories, once the inverse and the spectrum of the symmetric
tridiagonal matrix are computed.

To illustrate the method, we applied it to the multiplicative process in Eq. 4.32, with
f(x) = −kx and σ(x) =

√
a+ bx2, where a and b are non-negative parameters. In

this case the max-likelihood procedure can be reduced to a one-dimensional numerical
optimization. Complete inference formulas are reported in App. A.1.2 and the results are
shown in Fig. 4.3. These confirm that the method provides a reliable inference tool also in
the case of a nonequilibrium multiplicative process, independently of the relative strength
of the additive and multiplicative contributions to the noise term, and that the procedure
does not require equilibrium assumptions to work, nor does it exploit the fluctuation
dissipation theorem.

4.3.2 Alternative non-Bayesian approach
Alternative inference approaches to the maximum likelihood method are also possible.

Several examples are known in the literature: the most general ones, applicable to a vast
class of second order stochastic processes, derive the parameters of the assumed model (in
the form of a SDE or of a chosen set of projection functions) through a fitting procedure
on measurable quantities, typically involving conditional moments of the increments of
the process (95; 46; 96; 47). Also in this case the relations used for fitting can be found
through a Taylor-Itô expansion even when a nonlocal solution in time is unknown. Other

4There exists a similarity transformation that transforms the matrix in Eq. 4.35 into a strictly diagonally
dominant matrix with positive entries. Since the spectrum is unchanged and it is real, this ensures the
non-negativity of all the eigenvalues.
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strategies have been proposed with a reformulation of the task – having relevant application
in chemical physics and molecular dynamics – i.e. not to learn the best model for the
measured variables, but to find from higher dimensional data the coarse-grained dynamics
of a given system (112; 113).

In this section we put ourselves in a simpler framework than that of Ref. (95; 46; 96)
and derive non-Bayesian parameter estimators just for the stochastic harmonic oscillator,
in order to compare on this example the non Bayesian methodology and the maximum
likelihood dynamical inference scheme we developed. From update equations in position
space like Eq. 4.21, obtained from an O(∆t3/2) Taylor-Itô expansion, some relations be-
tween experimental correlation functions and model parameters can be found. Let’s take
the update equation of the Langevin impulse integrator (49):

xn+1 = xn + e−η∆t(xn − xn−1) + 1− e−η∆t

η
ω2

0∆txn + ζn. (4.37)

with ζn the Gaussian random variables characterized by Eq. 4.26. Multiplying both sides
of Eq. 4.37 by xm, for m ∈ {n− 1, n, n+ 1}, and self-consistently averaging over the noise
distribution, yields a set of three independent equations, from which all the parameters of
the dynamical model can be extracted (explicit formulas are derived in Appendix A.1.2).

Notice that, in contrast to the max-likelihood inference method, the obtained relations
can involve only three types of temporal correlation functions: equal-time, one-time-step
and two-time-step correlations. Even if we are not using all the exploitable information
carried by an N -point trajectory (the operation outlined above could in principle be per-
formed for all xm), this is the optimal minimal choice. Indeed, the shape of the temporal
correlation function at small times contains substantial dynamical information. Moreover,
due to the finite length of the trajectories, two-time quantities, like correlation functions,
are typically better estimated at small time differences than at large ones.

As expected, parameter estimators provide good values without rescaling. Unfortu-
nately, however, we cannot extend this approach to interacting systems, where an inter-
action range is needed to parametrize the potential. As these formulas do not come from
the optimization of any cost function, there is no efficient numerical strategy to find the
best parameters of the interaction potential. The problem is bypassed if no assumption
is made about the structure of the interaction, and a different parameter is associated
to each element pair in the system. In this framework, however, severe overfitting is-
sues may emerge as well as numerical scaling problems, since the number of parameters
grows roughly quadratically with the system size. We remark that this scaling curse does
not afflict all non-Bayesian inference methods (95), but only the simple one used here to
compare its results with our Bayesian scheme.

Finally, it is important to specify the probability density function with respect to which
we are taking the averages in Eq. 4.37. Since, in order to compute 〈xnξn〉 and 〈xn+1ξn〉, we
self-consistently used the same update rule and the same shift-invariant noise statistics, we
argue that we implicitly introduced a stationarity assumption, overcoming the problem
anticipated in Sec. 4.3.1 and better discussed in Sec. 4.3.3. As a result, the inference
formulas obtained in this way do not require any rescaling factor, for any length of the
trajectory.
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Figure 4.4: Asymptotic consistency of the ML estimator. Numerical validation of
the finite-size distortion introduced by the shift-invariant approximation. Black points
connected by dashed lines represent the analytical prediction about the rescaling factor
%(L + 1) = η∗(L + 1)/ηsim, with %(L = 3) = 2/3 (shortest possible trajectory) and
%(L + 1) → 1 monotonically as L → ∞. Numerical results are in agreement with this
prediction. As expected, no dependence on trajectory length is found for the non-Bayesian
method, nor for Euler-like methods (BBK used here – see App. A.1.2 for details).

4.3.3 Role of the unobserved initial condition

Once colored noise is included to take into account the non-Markovian character of
the partially observed process, the remaining problem in the application of the Bayesian
methodology to second order stochastic models lies in the elimination of the unobserved
initial condition. To explain this, let us take a step back.

In a maximum likelihood setting, the first task is to calculate the probability of ob-
serving a given sequence of datapoints, knowing the parameters of the model λ. In first
order stochastic processes, when all the degrees of freedom allowing for a Markovian de-
scription of the dynamics are experimentally accessible, there is no ambiguity on how this
likelihood should be computed (see, for example, (80)). On the other hand, for second
order stochastic processes the inference problem may turn out to be ill-defined. For a first
order model

ẏ = g(y) + ξ, (4.38)

with initial condition y(0) = y0 the propagator is defined as P (yL, . . . , y1|λ; y0). Here
y0 represents quantities that do not change in the inference procedure and the same in
the posterior, the likelihood and the prior: the initial condition and the structure of the
model. We will introduce a semicolon to separate the quantities that do are not updated
in the inference. For a second order stochastic process the initial condition is given by the
pair x(0) = x0, ẋ(0) = v0 and the propagator is P (xL, . . . , x1|λ, x0, v0). However, unlike
x0, the initial condition on the velocity is not empirically known, so we the propagator
does not result in a likelihood of the form of P (xL, . . . , x1|λ;x0, v0).

Let us briefly note that this is strictly connected to the embedding problem in stochas-
tic processes, and that the only consistent way to bypass it is to use the steady state
distribution of v0. Nonetheless, in Sec. 4.3.1 we decided to deal with the initial condition
problem in a different way. First, the choice of the discretization scheme confined the
initial condition problem only to the first timestep, independently of the total number of
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datapoints and the relation of the decay time of the memory kernel to ∆t. Neglecting the
breaking of shift invariance, we introduced a Toeplitz approximation for the noise covari-
ance matrix: this approximation works well for long trajectories (with many datapoints),
whereas it fails for very short ones. The convergence is however quite fast, as shown in
Fig. 4.4. The advantage of this strategy is twofold: it is simpler than exact marginal-
ization, and applies even when a steady state distribution is not available (e.g. in the
multiplicative case).

Remarkably, the problem of the elimination of the initial condition on the first deriva-
tive of the observed variable doesn’t affect the non-Bayesian approach. This tells us that
non-Bayesian methods apply even to (multiple) disconnected triplets of points or, in gen-
eral, to disconnected small sequences, if a fragmented observation of the system is the
only one achievable. On the contrary, the Toeplitz method is exact only in the infinite
trajectory limit, so the smaller the number of subsequent points, the less accurate the
inference scheme becomes. In other words, what matters in this case is not only the total
number of points for statistical reasons —which is the only thing to worry about in all
the other developed schemes— but also their succession in time.

We checked this in numerical simulations of the stochastic harmonic oscillator, keeping
constant the total number of points used in the inference procedure, (L + 1)nS , and
adapting the number of samples nS as the length L+1 of the sample trajectories is varied.
A significant deviation of the inferred value from the simulated one is visible in Fig. 4.4 for
small values of L. For small L it is also possible to approximately estimate the distortion
introduced by the finite size of the trajectory under the Toeplitz assumption. Following
the same idea that led to the prediction of the 2/3 function for the η parameter of the
harmonic oscillator, one can expand the two time correlation functions appearing in the
Toeplitz inference formulas for small L, obtaining

η∗ ' − 1
∆t ln

(
1 + %(L+ 1)

...
C(0)
C̈(0)

∆t
)

[1 +O(∆t)] , (4.39)

from which we deduce that the ∆t-independent rescaling factor of the damping coefficient
can be identified with %(L+ 1) in Eq. 4.39. The first few values of these rescaling factors
are: %(3) = 2/3, %(4) = 5/6, %(5) = 7/8, %(6) = 19/21, in good agreement with numerical
results. The exact value is only retrieved in the L → ∞ limit, yet time lapse recordings
in common motility observation experiments are typically composed by a much larger
number of frames than those shown in Fig. 4.4. Although we showed that the wrong
marginalization of the initial condition can play a role, in practice this effect can hopefully
be neglected in many situations.

4.3.4 Interacting case

Following our original objective to develop an inference strategy for natural flocks of
birds, we generalized the inference equations of Sec. 4.3.1 and performed numerical simula-
tions of the topological inertial spin model (ISM) on a non-evolving random lattice at low
temperature. The model, introduced to account for experimentally observed features that
could not be explained within the framework of first order processes (17; 19), represents
a second-order generalization of the well-known Vicsek model. The stochastic equations
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Figure 4.5: Inference results for the Inertial Spin Model. A. Inferred values for
the effective damping coefficient η/χ. We notice the emergence of a 2/3 rescaling factor
for naïve methods derived from first order Taylor-Itô expansions. B. Inferred topological
interaction range from numerical minimization of the reduced minus-log-likelihood, which
is properly defined only in the Toeplitz scheme and in the three lower order variants of
the Euler scheme. C. Inferred values for the parameter T/χ, as derived from Eq. 4.41.
One notices a slight divergence from the slope-1 line, which is especially evident at large
temperatures. This is due to the spin-wave approximation (SWA), whose first correction
only impacts the temperature parameter and can be explicitly evaluated, as explained
in App. A.1.3. D. Inferred values of the interaction strength, (J/χ)∗ vs the parameter
value used in simulations, (J/χ)sim. All methods retrieve the correct results. We remark
that only the parameters in the left panels, η/χ and T/χ, can be estimated by the non-
Bayesian method. In all the simulations we took flocks of N = 1000 birds. Additional
information about the choice of the model parameters and numerical methods can be found
in Methods. Points inA-C andD are obtained as in the case of the harmonic oscillator (see
Fig. 4.1). For the O(∆t1/2) methods we consider different integration schemes: standard
Euler (Euler-fwd), inverse (Euler-bkd) and BKK defined in section A.1.2).
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of motion in three dimensions read:
ṙi = vi
v̇i = − 1

χvi × si
ṡi = − η

χsi + 1
v2
0

∑
j Jij (vi × vj) + ξi⊥,

(4.40)

where the indexes i, j = 1, . . . , N label different individuals, v0 is the constant modulus of
each velocity vector vi, and ξi⊥ is the orthogonal projection to vi of a three-dimensional
white noise of parameters T and η: 〈ξi⊥(t) · ξj⊥(s)〉 = 2δij2Tηδ(t − s). Motivated by
the findings of (89), we choose to parametrize the coupling constant as Jij = J nij , where
nij = 1 if bird j is among the first nc nearest neighbours of bird i, whereas it takes a null
value otherwise.

In the ordered phase, the spin-wave expansion of the equations of motion of the inertial
spin model linearizes the force terms, and Eq. 4.40 takes the form of a set of SDEs for N
coupled harmonic oscillators (80):

χπ̈i = −ηπ̇i − J
N∑
j=1

Λijπj + ξ̃i⊥ , i = 1, . . . , N. (4.41)

Here πi are the birds’ normalized velocity fluctuations, lying on the orthogonal plane to
the direction of collective motion, Λij = ncδij − nij is the discrete Laplacian of the birds’
network, and ξ̃i⊥ is now a two-dimensional white noise that lives on the same plane as πi.
To leading order, it is described by the parameters T and η appearing in Eq. 4.40. For a
full derivation of the equations of motion in the spin-wave approximation see App. A.1.3.
Thanks to the linearity of Eq. 4.41, the same inference strategy one can develop for a
system of coupled harmonic oscillators applies also to the inertial spin model in the highly
polarized phase.

For the sake of simplicity, in our simulations we discarded the first equation of Eq. 4.40
and kept the birds’ reciprocal positions fixed. The dynamical maximum likelihood ap-
proach, however, should work even when reshuffling birds’ reciprocal positions and static
approaches fail, since at each time step it is possible to reconstruct the neighborhood of
each individual and compute the associated time-dependent observables (88; 80; 20). This
would introduce an effective nonlinearity which, like in the non-interacting case, is not
supposed to modify the leading Gaussian nature of the propagator at small ∆t.

We applied and compared different inference strategies to the synthetic trajectories.
Results are in qualitative agreement to those of the harmonic oscillator. In particular,
the expected rescaling factor of 2/3 for the damping coefficient is retrieved using any EM-
like scheme, as shown in Fig. 4.5A. This fact corroborates that the emergence of this 2/3
factor is a universal feature of second order stochastic processes, coming from the interplay
between the terms containing second and first order time derivatives, rather than the kind
of conservative forces which are applied to the system. Again, Bayesian and non-Bayesian
inference schemes derived from a higher order expansion do not require any rescaling – at
least for sufficiently long trajectories.

As already mentioned, however, there are some relevant differences with respect to
the simple non-interacting case. First of all, the additional difficulty we must face in the
case of N -body dynamics is that of estimating the interaction range. Since an explicit
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analytical minimization of the minus-log-likelihood is not operable, a numerical approach
is needed. The problem is however algorithmically tractable, since it simply consists of a
one-dimensional optimization problem. Moreover, if the parametrization of the nij matrix
discussed above is adopted, nc is a discrete parameter, so the exact minimum value can
always be found (see Fig. 4.5B). Wrong estimations of the topological interaction range can
be due to a blurred reconstruction of the likelihood from the data. As the number of birds
N or the number of trajectory points L is increased, the improved statistics smoothens the
rugged reconstructed likelihood and the real minimum becomes easier to detect. To this
end, another parameter playing a relevant role is the time lapse ∆t: when the separation
between subsequent datapoints is very small compared to the time scales of the system,
increments are also very small. Smaller increments correspond to smaller quantities to
minimize, which are then subject to bigger relative errors. This effect is at the origin of
what we observe in Fig. 4.5B.

Once the optimal value of nc is recovered, it is then used to compute the spatially
structured correlation functions which enter into the formulas of the remaining parameters.
Non-Bayesian methods are not based on any likelihood definition, and, as a result, do not
allow us to infer nc. Despite that, an approximated estimation of the effective temperature
T/χ and of the damping coefficient η/χ is still possible, as shown in Figs. 4.5A and
Fig 4.5C. On the contrary, the parameters associated to the interaction potential, nc and
J , are not evaluated within this framework.

Applied to large interacting systems, our non-Markovian maximum likelihood method
performs well even for relatively short trajectories. Taking, for instance, trajectories of
length L = 200 for systems of N = 1000 particles already enables us to achieve good ac-
curacy, with undistinguishable features in the inference of η/χ and T/χ compared to the
non-Bayesian method (see Fig. 4.5). As already pointed out, the need for very long tra-
jectories in the max-likelihood scheme, for both single particle and many particle models,
stems from two different facts. Firstly, the shift-invariance approximation introduced by
enforcing a Toeplitz structure for the noise covariance matrix results in better performance
for longer trajectories. Secondly, the empirical reconstruction of two-time correlations,
which are the quantities that enter into inference formulas, improves when achieved from
longer trajectories as compared to shorter ones. In other words, the larger the number
of datapoints, the higher the amount of available information. The advantage of moving
from the single oscillator to the many-body interacting case is that a restricted number of
“local" quantities turn out to dominate and self-average in sufficiently large systems. So
the statistical issue can be at least partially mitigated by averaging over the sample size,
rather than relying only on temporal averages as we are compelled to do in the case of the
harmonic oscillator.

4.3.5 Effect of experimental errors
So far, we have not included observation errors in the developed inference scheme, but

we assumed that stochastic trajectories are sampled with infinite accuracy. However, data
are typically affected by accuracy limitations and other sources of experimental errors. In
the current section we show the effects of an additional source of noise on the estimation
of the model parameters.

The simplest (still realistic, in many practical cases) way to model experimental errors
is through a superposition of the discretely sampled trajectory with a sequence of i.i.d.
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A C E

B D F

Figure 4.6: Effect of measurement error for the ISM. In the top row results from
the Toeplitz inference scheme are reported; in the bottom row results from the BBK
inference scheme are reported. The rescaling of the inverse sampling rate in the abscissa
make the curves in C-F to depart at the same point (∆t/σ2/3 ∼ 1) from the expected
value in absence of experimental errors (1 for the Toeplitz method, 2/3, marked by the
red dot-dashed line, for the BBK method). The collapse of the curves shown in E-F
proves that the control parameter is the ratio between stochastic and experimental noise:
Tη∆t3/σ2. The black lines, having a slope -3, are a guide for the eye. We notice that for
large noise-to-signal ratio the estimate of η with the Toeplitz method may be problematic
since estimators of positive definite quantities built with noisy data can become negative,
as visible in the inset of C. We refer to App. A.1.2 for details on the inference formulas.
Errorbars on A-B are not shown, for sake of clarity, whereas in C-F the 0.95 CI is smaller
than the markersize.

Gaussian random variables N (0, σ2).
As pointed out by several authors (47; 46; 95), even when σ2 is very small measurement

noise can impact dynamical inference. A large modification of the high-frequency region
of the power spectrum of reconstructed velocities is introduced (47), which in turns results
in a diverging bias in parameter estimation as ∆t→ 0 (46). This bias and its trend with
∆t appear also in our inference method (see Fig. 4.6). Intuitively, the inference procedure
relies on the increments of the measured degree of freedom, ∆x, whose average absolute
value has a monotonic dependence on ∆t, and need to be compared with the amplitude
of measurement errors σ, which we assume to be independent of the data acquisition
sampling rate. At very high sampling rates experimental errors will dominate over the
effective dynamics, resulting into an artificial trend ∼ ∆t−1 for the parameter η, and
∼ ∆t−2 for the effective temperature and pulsation of the harmonic oscillator (the same
dimensional analysis argument can be extended to the parameters of the inertial spin
model).
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Since noise cannot be ignored, we include it in the model in the form of a hidden
(non) Markov model. Suppose we measure noisy discrete datapoints {(x̂0, x̂1, . . . , x̂L)α}
corresponding to trajectory points {(x0, x1, . . . , xL)α}. Following a maximum likelihood
argument, we estimate the parameters λ of the dynamical hidden model as

(4.42)
λ∗H = arg max

λ
P (λ|x̂0, . . . , x̂L)

= arg max
λ

P (x̂0, . . . , x̂L|λ),

where

(4.43)P (x̂0, . . . , x̂L|λ) =
∫
dx0 . . . dxLP (x0, . . . , xL|λ) ·

L∏
n=0

P (x̂n|xn).

We assume P (x̂n|xn) = 1√
2πσ2 exp− (x̂n−xn)2

2σ2 and P (x0, . . . , xL|λ) is determined by the
hypothesized dynamical model. As long as we deal with linear models, as in the interacting
and non-interacting cases considered above, P (x̂0, . . . , x̂L|λ) reduces to Gaussian integrals
and the marginalization over the hidden variables can be performed explicitly. A full
treatment at any noise-to-signal ratio is then possible, but not easily generalizable beyond
the harmonic case. For this reason here we limit ourselves to showing the predicted effect
of experimental uncorrelated noise on numerical simulations. Explicit rewriting of the
likelihood in Eq. 4.43 allows us to identify the combination of parameters that control the
transition from the small to large noise regime. If Tη∆t3/σ2 � 1, noise dominates and,
to lowest order, P (x̂0, . . . , x̂L|λ) '

∏L
n=0

1√
2πσ2 e

− 1
2σ2 x̂

2
n . If Tη∆t3/σ2 � 1, the effect of

noise will be small, and the likelihood will converge to the one we found in absence of
experimental errors.

We conclude, in agreement with Ref. (95; 46), that whenever the experimental appa-
ratus and the observed process are such that the chain of conditions σ2 � Tη∆t3 � 1
holds, the developed inference strategy still provides a reliable methodology to infer the
parameters of the dynamics. When that condition is not fulfilled, controlled denoising
procedures or inference strategies based on hidden modelling must be employed.

4.4. Conclusions
We proposed a maximum likelihood inference strategy to tackle the problem of learning

the best continuous inertial stochastic model from time lapse recordings of an observed
process. The problems arising in this context are general, as they stem from the com-
bination of the following three ingredients: the second (or higher) order nature of the
process, when described in terms of the directly measurable degrees of freedom, stochas-
ticity, and the use of discrete sequences of datapoints. Because of that, contrary to first
order processes, reconstructing the continuous-time dynamical model from the data is not
a straightforward task in the case of second order dynamics. Careful attention must be
paid to the mathematical peculiarities of Brownian motion, and in particular to the min-
imum order of convergence of the Taylor-Itô expansion allowing for a correct description
of infinitesimal fluctuations.

We want a robust inference methodology which could be applied to a wide class of
inertial processes, without knowing their exact time-dependent solution. Such a method
must then exploit only the local dynamical information carried by the differential equation.
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Locally in time, the statistical properties of a Markovian or non-Markovian process are
determined by the random variable appearing in the discretized Langevin or generalized
Langevin equation respectively. It is then crucial to evaluate correctly the incremental
fluctuations, at least to leading order in ∆t.

In the considered non-Markovian scenario, the minimum order of convergence required
for the Taylor-Itô expansion is O(∆t3/2). We showed that lower order approximations
lead to the emergence of a 2/3 rescaling factor for the inferred damping coefficient, as
already pointed out in Ref. (45) and in Ref. (46; 47) in non-Bayesian settings. Employing
known numerical integration schemes (48; 49), we developed, to the best of our knowledge,
the first max-likelihood inference approach for non-Markovian dynamics (or, equivalently,
partially observed Markovian dynamics, since the Markovian embedding is not exploited).
We demonstrated the robustness and wide applicability of the method by applying it
to different processes: an exactly solvable stochastic oscillator with additive noise with
a Gaussian propagator; the Brownian motion of a particle in an anharmonic potential
in thermal contact with a heat bath at constant temperature T ; a stochastic harmonic
oscillator driven by multiplicative noise. While the first two examples are described in
equilibrium by Gibbs-Boltzmann distribution, the latter is intrinsically out of equilibrium.
In all these cases our maximum likelihood estimators for the model parameters are in good
agreement with the values used in simulations.

The method can also be successfully and efficiently applied to large interacting sys-
tems, with prior modelling of the interaction mechanism. It is in this aspect that the
most promising applications of our max-likelihood method possibly lie. The class of pro-
cesses for which the method has been developed correspond to the simplest way of incor-
porating memory effects in the equilibrium dynamics of complex Hamiltonian systems.
Its fundamental ingredients are linear dissipation and additive noise. With these condi-
tions fulfilled, the problem is computationally efficient and tractable. For non-interacting
systems we showed it is possible to generalize the Bayesian inference approach to non
equilibrium processes driven by multiplicative noise. This generalization should work also
for interacting ones.

An important remark is that in this setting only single valued parameters can be
inferred. Heterogeneities in time and space are not taken into account. The proposed
method is able to cope with slow time dependence of the parameters compared to the
available experimental frame rate, by assuming effectively constant parameters along long
sub-trajectories. For fast varying parameters, a better approach is to describe the param-
eter as a random variable drawn from an unknown distribution and infer the parameters
of this distribution. For the spatial heterogeneity in very large systems, unless it is mod-
elled using a small number of parameters, a brute force maximum likelihood approach
is not feasible and more sophisticated strategies must be developed, as for static inverse
problems (98).

Another possible extension of the method is to include a position dependent dissipation
coefficient. This modification would not alter the Gaussian nature of the propagator at
short times, even if the noise covariance matrix will no longer be tridiagonal. Nonlinearities
in the first derivative of the measured degree of freedom x and v-dependent multiplicative
noise could also be considered. Finally, one could try to generalize the approach to higher
order processes, provided that this is motivated by some experimental evidence.

Relating the exact maximum likelihood procedure to alternative effective inference



Building general Langevin models from discrete datasets 44

schemes, like Gloter’s minimum contrast strategy (45), also remains an open question.
Specifically, is it possible to associate to these non-Markovian processes an effective Marko-
vian description with uncorrelated noise (corresponding to factorized dynamical likelihood)
and rescaled parameters? Our analysis suggests that it should be possible to adopt, even if
incorrectly, one of the naïve methods discussed in Sec. 4.3.1 and introduce an a posteriori
correction of the wrongly estimated parameter, to take into account the effect of the lowest
order discretization.

Another interesting development would be to provide a reliable inference method even
in the presence of strong measurement errors. The maximum likelihood framework pro-
vides a natural formulation for the problem in terms of hidden Markov models.

The natural use of the developed framework is application to real data. Technical
specifications of acquisition systems have remarkably improved in the last decades, and it
is now possible to collect well resolved trajectories for long enough time windows. This is
also true for animal groups on the move, where experiments are performed in the field and
strong limitations are usually set on the acquisition length due to global motion. We know
from previous work that the emergent dynamics of groups of birds is dominated by an
effective rotational inertia (17). This inertia allows information to propagate linearly and
in an almost undamped way allowing flocks to turn coherently. Retrieving the effective
damping coefficient in this case will allow us to predict the scales where damping becomes
relevant, setting a size limit for groups able to collectively change direction. In the context
of swarm dynamics, recent theoretical findings (114; 115) suggest that the value of the
damping coefficient sets —again— a size crossover for groups displaying different critical
behavior on the large scale. Understanding the interplay between size, information propa-
gation and response is a key issue in collective behavior and a reliable inference approach
is crucial to provide well grounded answers to these questions.

4.5. Methods

4.5.1 ISM simulations

We implemented a numerical integrator for the ISM in d = 3 that combines the leapfrog
method with Boris’s trick to ensure speed conservation (116). We performed simulations
on fixed Poisson random lattices (i.e. sites are randomly chosen points with uniform
distribution), discarding the update of particle positions and consequent reshuffling effects.
As a result, the adjacency matrix of the graph associated to the interacting particle system
is time-independent and the constant speed v0 of each bird does not play any role. Thus
the numerical integrator we used consists of the following set of update equations:v n+1

i = v n
i + (v n

i + v n
i × tn)× un

s n+1/2
i =

(
1 + η∆t

2χ

)−1 {(
1− η∆t

2χ

)
s n−1/2
i + v n

i ×
[
J∆t
χ

∑
j nijv n

j + Ξ n
i

]}
,

(4.44)

with tn = − 1
2χ∆tsn+1/2 and un = 2tn/(1 + |tn|2). Ξ n

i is a three-dimensional isotropic
Gaussian variable of zero mean and of variance:

〈Ξ n
i ·Ξ m

j 〉 = δijδmn 2 · 3 · Tη∆t. (4.45)
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Additionnally, the adjacency matrix explicitly reads:

nij =

1 if rij ≤ nc
0 if rij > nc

(4.46)

with rij the rank of bird j as a neighbour of bird i (excluding the bird itself, to which we
conventionally associate rank rii = 0). In all of our simulations we worked with periodic
boundary conditions. We tried to ensure that the system was sampled in a stationary
regime by starting from microscopic configurations corresponding to polarization values
close to the equilibrium ones. The polarization is the macroscopic order parameter of
the system and it is defined, in perfect analogy to the magnetization in a 3-dimensional
Heisenberg model, as Φ = 1

Nv0

∣∣∣∑N
i=1 vi

∣∣∣.
Flocks of N = 1000 birds are simulated to obtain the results shown in this paper,

with topological range of interaction nc = 6 (except for the data in Fig. 4.5B), alignment
strength J/χ = 5 and effective temperature T/χ in the range [0.2, 1.2]. When not explictly
indicated, we took T/χ = 0.4, approximately corresponding to a polarization of 0.97
(for nc = 6). We chose an integration time step of τsim = 0.0005/(Jnc) for all the
simulations. Different damping regimes have been explored, and the performance of the
inference method was tested in each of them, and for various choices of the time lag ∆t.
In order to disentangle the effects of the discrete nature of the simulation from proper
malfunctioning of the inference schemes, the minimum inference time step ∆t displayed
in Figs. 4.5B and S2 is 5τsim.





5
Modeling the immune response

In the first part of this manuscript we have used models inspired by the physics of
stochastic processes to study biological networks consisting of a well-identified small set
of interacting agents. These agent-based models allow for a statistical description of the
emergence of collective behaviors in biological networks, like collective motion in animal
groups (72) or self-organization in cell biology (1). However, this complex systems ap-
proach fails to describe the organisation of biological networks at the level of organisms,
where an uncountable number of agents interact at multiple scales. In the mammalian
adaptive immune system, interactions range from a cellular scale, with local lymphocytes
dynamics, to an organismal scale with the communication and exchange of cells across
the entire body. To circumvent these difficulties, we develop in chapter 6 an optimization
approach to study the B cell immune response. As a preamble, in this chapter we intro-
duce relevant notions of immunology and we present the different modeling approaches
necessary to understand the research directions taken.

5.1. Overview of the immune system

Biological organisms are constantly threatened by the invasion of a variety of mi-
croorganisms ranging from bacteria to viruses, parasites and fungi (117). While some
microorganisms are endogenous to their host, like the gut microbiota in mammals, oth-
ers are detrimental and have led to the development of a variety of host immune defense
mechanisms (118). In vertebrates, this immune defense consists of two branches: innate
and adaptive. Innate immunity is shared by plants and animals and is usually considered
the most primitive sort of immunity that allowed early organisms to distinguish self and
non-self (119; 120; 121). This immunity is the first line of defense triggered by an infec-
tion, and is mediated by germline encoded pattern recognition receptors (PRRs) that can
recognize molecular motifs harboured by microorganisms. These motifs, called pathogen-
associated molecular patterns (PAMPs), are conserved across many microorganisms and
typical examples are membrane carbohydrates and lipids or nucleic acids (117). By tar-
geting PAMPs with PRRs, innate immunity recognizes a set of warning features that are
associated with an infection, and in return recruits specific cells, called neutrophils and
macrophages, to eliminate the pathogens.

By constrast, adaptive immunity is involved in the late phase of pathogen elimination,
as well as in the generation of an immunological memory about pathogen-specific molec-
ular patterns. Contrarily to PAMPs, these molecular motifs, called antigens, are specific
to each pathogen and are extremely diverse. While this diversity cannot reasonably be
encoded in the germline like PRRs, it constitutes from the viewpoint of immune defense a
potentially very useful pathogen fingerprint. Adaptive immunity solves this problem and
exploits the diversity of antigens to recognize and remember pathogens individually. The
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Figure 5.1: Antigen receptors structures and VDJ recombination. A. B-cell re-
ceptor (BCR) and T-cell receptor (TCR). The BCR, or immunoglobulin, is a Y-shaped
receptor composed of two copies of two chains called heavy and light. The TCR is com-
posed only of two chains called alpha and beta. All these chains have a constant region at
the stem of the receptor, and a variable region at its extremities. In this variable region is
located the most variable segment of the receptor, called CDR3, with which it binds for-
eign antigen. B. VDJ recombination for the heavy and beta chains proceeds sequentially:
gene templates are chosen and followed by random deletions and insertions. The resulting
gene contains a hypervariable region coding for the CDR3 loop of the receptor.

mechanisms by which it achieves this daunting task involve elaborated somatic rearrange-
ments of germline encoded molecular patterns (118). As a consequence, as opposed to
innate immunity, this branch of immune response is restricted to vertebrates (122; 123).
Importantly, even though they are successive stages of an immune response, the innate
and adaptive branches constantly communicate with each other (124). For instance, den-
dritic cells are activated by PAMPs and play the role of antigen presenting cells for the
adaptive immunity. In the following we focus on the specific case of adaptive immunity in
mammals.

5.2. The adaptive immune system

As outlined in the previous section, adaptive immunity is characterized by its ability to
adapt to any threat, ensuring complete pathogen identification and clearance. It owes its
flexibility to mechanisms of somatic gene modifications that generate a virtually infinitely
diverse pool of lymphocytes, each displaying on their surfaces unique antigen receptors.
This lymphocyte population, also called a repertoire, is comprised of two cell types: T and
B cells. They both bind antigens with a particular receptor protein, respectively called
TCR and BCR. Structurally, the two receptors differ in their protein structure: the BCR
is made of two copies of heavy and light chains, while the TCR is made of two alpha and
beta chains Fig. 5.1A. They both harbour a conserved region, shared by differents cells,
and a variable region encoding the antigen diversity and used for pattern recognition.

5.2.1 Receptor diversity

Contrarily to PRRs, the diversity of all antigens cannot possibly be encoded in the
germline (22). To solve this task, the adaptive immune system relies on a stochastic gene
rearrangement called V(D)J recombination (125; 126). This recombination relies on a
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Figure 5.2: Germinal centers and affinity maturation. A. Multiphoton-microscopy
imaging of a germinal center. Germinal center B cells (GC B cells) are marked in green,
Follicular Dendritic Cells (FDCs) in red, and naive B cells in blue. The boundary between
light zone (LZ) and dark zone (DZ) is marked with a dashed line and is illustrative. A
germinal center has a typical size of ∼ 100 to 500µm. This image was adapted from
(130). B. Schematic representation of affinity maturation in a germinal center. GC B
cells proliferate and mutate in the dark zone before migrating in the light zone where they
compete for antigen uptake and T-cell help. Surviving cells are either exported from the
germinal center (as plasma or memory cells) or they undergo further rounds of affinity
maturation. This schematic was adapted from (131).

germlined encoded library of gene templates, called V, D and J for the heavy and beta
chains, and V and J for the light and alpha chains.

Upon cell differentiation, the lymphocyte DNA is edited (see Fig. 5.1B) and one of each
templates are chosen among the germline encoded ones. They are subsequently joined with
randomly inserted and deleted nucleotides at the junctions. Thanks to the randomness of
these insertions and deletions, the newly obtained gene harbours a hypervariable region
overlapping the two recombination junctions (22). This hypervariable region is the one
with which the receptor binds its cognate antigen, and is referred as the complementary-
determining-region 3 (CDR3). The diversity of CDR3s that can be generated through
V(D)J recombination is enormous, allowing for a specific detection of potentially any
antigen (22).

While the diversity of antigen receptors generated by recombination endows the im-
mune system with a remarkably accurate pathogen fingerprinting technique, it also comes
with undesirable properties. V(D)J recombination can generate a important amount of
antigen receptors recognizing self-proteins (22), potentially leading to auto-immune reac-
tions (127; 128; 129). The adaptive immune system solves this issue by implementing a
negative selection mechanism for auto-reactive lymphocytes called central tolerance.

5.2.2 Clonal selection theory

Once generated and selected for self-tolerance, T and B cells form a pre-exposure
repertoire called the naive repertoire. This naive repertoire of cells recirculates constantly
in the peripheral lymphoid tissues, awaiting activation by foreign antigens. The subsequent
clonal dynamics obeys a set of rules proposed by Burnet in his clonal selection theory (132)
and long-verified by experiments (133; 134). First, each T and B lymphocytes has up to
105 copies of a unique type of antigen receptor on their surface. Second, activation by
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receptor-antigen binding is required for cell proliferation. Finally, the offspring of any
lymphocyte carries the same type of receptor as its parent. This set of rules define a
theory for the population dynamics and selection of lymphocytes based on their affinity
for the available antigens.

Beyond this unified theory of clonal selection is hidden a highly entangled biological
reality. Both T and B cells can be subdivided in phenotypically distinct subsets serving
different functions. This distinction is experimentally assessed by elucidating the molecular
markers at the surface of the cells. For instance, T cells expressing the CD4 glycoprotein
on their surface are known as helper T cells and modulate the immune response with the
aid of signaling molecules called cytokines. On the other hand, T cells expressing the CD8
glycoprotein on their surface are known as cytotoxic T cells as they kill abnormal cells,
like cancer cells or cells infected by viruses.

Similarly, upon antigen activation, naive lymphocytes can differentiate towards effector
cells or memory cells. Broadly speaking, effector cells express surface proteins promot-
ing cell-adhesion and migration to increasingly navigate peripheral lymphoid tissues and
recognize antigens. On the contrary, memory cells express surface proteins enhancing
long term survival and co-stimulation to keep a long-lasting immunological memory of
the infection. This refinement of the different cell phenotypes goes well beyond this two
simplified subsets and lymphocytes are subject to a large number of different interactions
dictating their fate and their function in the repertoire. As a consequence, while clonal se-
lection theory provides an incredibly successful framework to understand adaptive immune
response, it remains particularly difficult to draw quantifiable predictions from it.

Finally, the clonal selection theory proposed that individual lymphocytes are specific
for a single antigen. However, the number of potential antigens exceeds by order of magni-
tudes the number of cells in the body (135; 136), and full protection can only be achieved
if every receptor can bind many antigens. This degeneracy in the receptor-antigen map-
ping is common to T- and B-cell repertoires (137; 135; 138) and is called cross-reactivity.
This assumption of cross-reactivity is essential to ensure a proper immune coverage by the
adaptive repertoire, and will be at the center of our analysis.

5.3. B-cell repertoire
B cells perform their function in the adaptive immunity thanks to their antigen receptor

called immunoglobulin. Contrarily to T cells, not only do B cell express their receptor in a
membrane-bound form, but they also express it in a soluble form, called an antibody. This
soluble form of the receptor is free to circulate in the organism and to bind to its cognate
antigen at the surface of the pathogen, potentially forbidding it to replicate. However,
there is no guarantee that antibodies generated after a primary antigen exposure will bind
strongly enough to efficiently neutralize the pathogens. In fact the opposite is more likely,
and the antibodies generated by the naive response bind poorly to the antigens (139). To
circumvent this limited efficacy, the activated naive cells can undergo a process of affinity
maturation increasing the affinity of their receptor for the antigen.

5.3.1 Affinity maturation
Affinity maturation is crucial to increase the affinity of naive cells to the challenging

antigens. Upon antigenic stimulus and with help from the CD4 T cells, secondary struc-
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Figure 5.3: Affinity maturation exports. A. Affinity dependent model for post-
germinal-center B cell fate choice. Surviving cells with lower affinity become memory
B cells. Cells with the highest affinity differentiate into plasma cells, while cells of inter-
mediate affinity reenter the dark zone to undergo further rounds of affinity maturation.
This schematic was adapted from (140) B. Temporal switch in the germinal B-cell fate
in mice experiments. B-cell fate shifts from memory to plasma as time goes (and as the
affinity increases). This figure was adapted from (51)

tures called germinal centers form in lymph nodes. (139). These structure form a few
days after infection, and typically last up to three weeks, with the exception of chronic
infections (141). As revealed by microscopy in Fig. 5.2A, germinal centers are made of
two zones, the dark zone dedicated to cell mutations and proliferation and the light zone
dedicated to B-cell competition for antigen capture (130). The role of this structure is to
generate BCR variants via an increase in the mutation rate and select the largest affinity
ones. The separation between the two zones allows the process to operate iteratively,
continuously increasing the affinity of B cells for the antigen.

Selection for antigen affinity

Antigen-activated B cells enter the dark zone (Fig. 5.2B) where they express an enzyme
inducing mutations in the Ig-coding gene. Under the action of this enzyme, the natural rate
of DNA mutations reaches up to 106 times the typical germline mutation rate (142), and
proliferating B cells accumulate changes in their BCR. Additionaly, most recent evidence
indicates that B-cell proliferation in this zone is positively selecting for antigen affinity,
such that high-affinity cells proliferate more than low-affinity ones (140). These B cells
then migrate into the light zone Fig. 5.2B where they compete for antigen capture and
T-cell help.

In the light zone, B cells compete for the extraction of antigen presented at the surface
of follicular dendritic cells Fig. 5.2B. This captured antigen is then displayed on the B-cell
surface to be probed by helper T cells. The strength and duration of the binding with
helper T cells is a measure of the cell affinity for the antigen. The poor binders die by
apoptosis, while the good binders are allowed to reenter the dark zone and undergo another
round of affinity maturation. Cycling between dark and light zone steadily increases B
cells’ affinity and reduces the clonality of the B-cell pool (143). While some germinal
centers eventually harbour ∼ 1 clonal family (ie. phylogenetically related B cells), the
clonality in germinal centers is largely sensitive to stochastic effects, allowing them to
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maintain clonal diversity even in the presence of a strong selection (140).

Germinal center exports
To actively take part in the immune response, B cells with increased affinity must

be exported from germinal centers into the effector cell compartment. Effector B cells
secrete large amounts of antibodies and are referred to as plasma cells. Plasma cells can
be either short-lived and participate in the immediate immune response, in which case
they are called plasmablasts, or they can be long-lived and sustain high antibody titers in
the blood for years (139; 144). While plasmablasts aim at a fast pathogen clearance and
host recovery, long-lived plasma cells constitute a form of long-term immune protection.
Importantly, long-lived plasma cells primarily reside in the bone-marrow where their sur-
vival niche is located. The humoral immunity offered by plasma cells is usually referred
to as antibody based immunity and is one of the goals of vaccination (145).

Germinal center B cells are also exported into the memory cell compartment, whose role
is distinct from the plasma cell one. While memory cells are also long-lived, contrarily to
plasma cells they do not secrete antibodies. They are known to respond to re-activation by
fast differentiation into plasmablasts at low concentration of antigens (146; 51). Notably,
the reactivation of 10 to 100 memory B cells is enough to generate biologically relevant
antibody titers (51). To efficiently achieve this task, memory B cells are found in secondary
lymphoid tissues (spleen, lymph nodes, peripheral tissues) and circulate in the blood.

The type of germinal center export, memory or plasma, is strongly related to the
affinity of germinal center B cells. Contrarily to plasma cells (147), memory B cells have
low affinity (25). In this line, in the most up to date mechanistic models (148; 140), antigen
affinity is the main determinant of germinal B cell fate decision Fig. 5.3A. According to
this model, in the light zone, B cells of no or low affinity die by apoptosis. Of the surviving
cells, the ones with the lowest affinity are exported as memory B cells, while the other
ones re-enter the dark zone and undergo more rounds of affinity maturation. Finally, cells
with the highest affinity are exported from the light zone in the plasma cell compartment.
As affinity increases with time, this model is compatible with observations Fig. 5.3B that
germinal centers exports shift from memory B cells to plasma cells over time (147; 51).

5.3.2 Typical immune response
Depending on the presence or the absence of a pre-existing immunity, an immune

response to an antigen is respectively referred to as a primary or a recall response. Because
of cross-reactivity of immune cells, the notion of pre-existing immunity is ambiguous, and
this observation will be at the center of chapter 6.

During a primary response, the pool of available cross-reactive cells is very limited,
and is mostly comprised of naive cells. These cells are actived by antigen encounter at
the interface between secondary lymphoid tissues (lymph nodes, spleen) and the blood.
They migrate to extrafollicular sites where they undergo massive clonal expansion and
differentiation into plasmablasts (144). Extrafollicular sites are defined by opposition to
B-cell follicles which are essentially the niche within which germinal centers grow. This
extrafollicular response peaks 4 to 6 days after infection (139) with large antibody titers.
Ultimately, some of these plasmablasts can differentiate into plasma cells, forming a long
term memory (149; 150).

Along with this early response, a small subset of activated B cells are directed toward
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follicular sites where they seed germinal centers (139). As we mentionned, affinity matu-
ration takes place over 2 to 4 weeks, leading to the production of high affinity plasma cells
and a diverse pool of memory B cells. These plasma cells then produce high antibody
titers that ensure a complete pathogen clearance and host recovery. The diverse pool of
memory B cells is long-lived, and the general consensus is that not only does it serve as
a memory of the antigenic stimuli, but it also helps anticipating future antigenic variants
(25; 26). This perspective on the memory repertoire will be discussed and rationalized in
the chapter 6.

A recall response corresponds to any subsequent stimulation of the B-cell repertoire by
a similar antigen. It can correspond to a vaccination boost, or simply a reinfection after
protecting antibody titers have waned (145; 151). Contrarily to the primary response
where the pool of cross-reactive cells available was very limited and of low affinity, it is
now made of a large amout of memory B cells with varying affinities. Among these cells,
the largest affinity ones are recruited in an extrafollicular response to generate neutralizing
antibodies. The similarity of this second antigenic stimuli with the primary one, as well as
the diversity of the available memory pool completely determine the efficacy of the recall
response. In particular, if the recall response is particularly strong because memory B
cells of high affinity were available, it can limit the generation of de novo memory and
plasma cells.

This preferential recall of memory B cells elicited by past exposure with respect to the
generation of a de novo response specific to the infecting strain is called antigenic imprint-
ing, or ‘original antigenic sin’. It was first observed by Francis and colleagues (54) which
showed that consecutive exposures to antigenically drifted influenza strains preferentially
boost antibodies targeting strains encountered in early childhood. Recent refinements of
this observation have shown a gradual shift with age (and number of reinfections) of the
antibody response towards the conserved part of the hemagglutinin protein (152; 153; 154),
showing that preferential recall of memory B cells targeting slowly evolving epitopes can
inhibit the generation of a de novo response targeting the more fastly evolving ones (55).

Antigenic imprinting results from a negative feedback between a fast early response
mediated by cross-reactive memory B cells and the generation of a de novo response via
affinity maturation. In particular, because of an increased ability to proliferate upon
antigen activation (155; 156), cross-reactive memory B cells can outcompete naive cells
in recall responses and inhibit de novo affinity maturation (29; 55). Additionally, an
early antibody response can also limit germinal center formation by decreasing antigen
availability (157). Importantly, the amount of antigen presented and how it is delivered,
through infection or vaccination (158), with an inactivated or activated virus (159), with or
without adjuvant (160), is crucial to control the outcome of the B-cell response. As a rule
of thumb, increasing the amount of antigen, repeateadly vaccinating or using adjuvants is
useful to limit the extent of antigenic imprinting (55; 29). In chapter 6 we will rationalize
this phenomenon by showing how the inhibition of affinity maturation by a cross-reactive
B-cell response can emerge as a long-term optimal strategy for the immune system.

5.4. Modeling adaptive immunity
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5.4.1 Repertoire dynamics

T and B cells are organized in groups of cells expressing the same antigen receptor,
called clones. The first modeling attempts of adaptive repertoires treated lymphocytes
population dynamics as an ecological process where clones compete for proliferation and
survival signals in a given antigenic environment (161; 162; 163).

To describe repertoire dynamics we denote by Ci the size of clone i and aj the con-
centration of antigen j. The cross-reactivity of receptor i with antigen j is denoted by
Kij . Antigens can be either bound to receptors in the form of antigen-receptor complexes,
or free and available for binding. Beyond this binding-unbinding process, bound antigens
can undergo division and receive increased survival signals. Under these dynamics, the
concentration Fj ≤ aj of free antigen j reaches a quasi steady state balanced by the bind-
ing, unbinding, division and death of lymphocytes (161). It follows that the determinant
parameter for the dynamics of clone i is the overall concentration of free antigens available
for interaction with a receptor, also called antigenic stimuli Si =

∑
ijKijFj . The resulting

repertoire dynamics generically obey the following equation (164):

dCi
dt

= Γ(Si)Ci, (5.1)

with Γ(Si) denoting the effective growth rate under antigenic stimuli Si. In the absence
of antigenic stimuli, clones do not receive survival signals and Γ(0) < 0. Maintaining a
steady state population of clonotypes requires a constant input of new clones. In practice,
this input is provided by primary lymphoid organs: the thymus for T cells and the bone-
marrow for B cells. The main conclusion of these models is that receptor cross-reactivity
promotes the competitive exclusion of clonotypes responding to the same antigens (161).
Importantly, it ensures a limited commonality between antigens cross-reacting with dif-
ferent receptors. As a consequence, the diversity of the repertoire is fixed by the diversity
of the antigenic environment.

These early models disregarded stochastic effects, like birth-death noise and antigenic
stimuli fluctuations. The former is crucial to investigate clone extinction by competitive
exclusion (165; 166), while the latter is necessary to study the variability in clone sizes
(167). Under random uncorrelated antigenic fluctuations, clonal dynamics Eq. 5.1 can be
modeled by a geometric Brownian motion (167; 168):

dCi
dt

= Γ(0)Ci +
√

2σCiξi, (5.2)

with Γ(0) the average antigenic stimulation, and
√

2σξi its fluctuations. This fluctuating
fitness model predicts power-law distributions p(C) ∼ C−1−α with α = |Γ(0)|/σ2 (167),
in agreement with T-cell repertoire sequencing in healthy individuals (168). In particular,
the stronger the antigenic fluctuations, the larger clones grow.

Importantly, in this fluctuating fitness model successive antigenic challenges are un-
correlated. This assumption is well suited for T cells which are known to have a large
cross-reactivity and are likely to be reactivated by different pathogens (135). On the
contrary, we know that B cells constantly need to update their BCR through affinity
maturation to match new antigenic variants of evolving pathogens like influenza or SARS-
CoV-2. In this setting, the fluctuating fitness felt by a clonotype is strongly correlated
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from one infection to the other, and we can expect the shape of the clone-size distribution
to change. In chapter 6 we will provide a new prediction for the clone-size distribution of
memory B cells taking into account this observation.

5.4.2 Optimal immune response

Another class of model takes a top-down approach to describe the immune response
from the viewpoint of cost-optimization. Interestingly, the first models proposed by Perel-
son and colleagues took this path to investigate strategies maximizing the efficiency of the
B-cell response (23; 24). As we mentionned, during the extrafollicular response, naive B
cells differentiate into plasmablasts, some of which ultimately become plasma cells. While
the former are short-lived, the latter are long-lived and have a larger antibody secretion
rate (169). Denoting A(t) the amount of antibodies produced by both these cell types,
they investigated the optimal differentiation rate u∗(t) from plasmablasts to plasma cells
minimizing the time T needed to reach an antibody titer A∗:

u∗(t) = min
u(t)

T, (5.3)

A(T ) = A∗. (5.4)

They found the optimal plasmablasts to plasma cells differentiation rate to take the form
of a ‘bang-bang’ control, with a normalized differentiation rate u∗(t) = 0 for t < τ∗ and
u∗(t) = 1 for t > τ∗. These fascinating results are in agreement with the biological
observation that plasmablasts appear at a late stage of the extrafollicular response (149;
150).

Recent work (9; 8) revived this success by studying optimal adaptive repertoires min-
imizing the duration of the infection. Contrarily to early works that focused on a single
antigen-lymphocyte pair, these later studies investigated the optimal repertoire organiza-
tion in the context of multiple cross-reacting antigen-lymphocyte pairs. In the absence of
precise quantitative data, they modeled cross-reactivity in a conceptual space representing
the receptor-antigen interaction. This shape space (170) is endowed with a metric (as-
sumed to be Euclidean) quantifying the cross-reactivity between antigens and receptors.
In this space, the cross-reactivity between receptor x and antigen a is usually denoted as
a probability of interaction 0 < f(x, a) < 1. In particular, the farther apart is a receptor
from an antigen, the smaller is their cross-reactivity. Experimental evidence from hosts-
influenza co-evolution identified a possible shape space candidate as a low dimensional
feature space obtained by dimensional reduction of the combined genomic and neutraliza-
tion assays data (58; 53; 59).

Using this construction, authors investigated the optimal distribution of lymphocytes
minimizing the cost of an infection. The cost of an infection by an antigen at position a
on the space, denoted Fa, depends on the ability of the host repertoire to recognize the
infecting antigen. Similarly to the definition of the antigenic stimuli we introduced above,
this ability to recognize an antigen a, also called coverage C(a), is given by the average
number of immune cells interacting with a through cross-reactivity C(a) =

∑
x f(x, a)nx,

with nx the number of lymphocytes with receptor x. A convenient choice for the infection
cost is then to depend on the coverage as a power law of exponent α, Fa ∼ C−αa such that
the smaller the coverage the larger the infection cost (9). In a static antigenic environ-
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ment, the long-term cost over multiple infections is equal to the cost averaged over the
distribution of pathogens Qa, and the optimal distribution of lymphocytes {n∗x} minimizes
this expected infection cost:

{n∗x} = arg min
{nx}

∑
a

QaFa(Ca) with
∑
a

Qa = 1. (5.5)

In line with the competitive exclusion of lymphocytes observed in repertoire dynamics
models (161), they observed that cross-reactivity decreases repertoire diversity. Impor-
tantly, this connexion is made quantitative as they showed that optimal repertoires emerge
as steady-state solutions of competitive repertoire dynamics.

In their more recent work (8), authors investigated the optimal distribution of lym-
phocytes in a changing and partially observed antigenic environment. The optimization
problem Eq. 5.5 was replaced by a time dependent one:

{n∗x(t)} = arg min
{nx(t)}

∑
a

Q̂a(t)Fa(Ca) with
∑
a

Q̂a(t) = 1, (5.6)

where Q̂a(t) denotes the antigenic environment estimation the host has built over the
previous infections. This formulation provided theoretical insight into the problems of
memory attrition and aging. However, the optimal repertoire instantaneously minimizes
the expected cost upon infection, which can lead to massive rearrangements of the lym-
phocyte population. In other words, within this formulation the repertoire has an infinite
plasticity. Solving this issue by introducing explicit constraints on the repertoire updates
from one infection to the other is the main motivation of chapter 6.

5.5. Theory of decision making
A promising approach to describe the adaptive immune repertoire is based on Markov

decision theory. It was recently applied to investigate memory formation in the T-cell
repertoire (6) as well as in the B-cell one (7). Markov decision theory is interested in mod-
eling decision making of an agent in a randomly evolving environment. The environment
is modeled by a discrete-time stochastic process {xk, k ∈ N}, and upon observation of its
state xk the agent makes a decision uk. The decision made can influence the evolution of
the environment at later times, and the environment state xk+1 at time k + 1 is drawn
from a transition probability p:

xk+1 ∼ p(xk+1|xk, uk). (5.7)

Decisions uk−1, ..., u0 could also influence the environment state at time k + 1, but we
can always redefine the decision variable uk ← {uk, uk−1, ..., u0} to be left with a Marko-
vian evolution Eq. 5.7. We further assume that decisions taken upon observation of the
environment state xk are generated by a policy πθ parametrized by parameters θ:

uk ∼ πθ(uk|xk). (5.8)

Similarly, past environment states xk−1, ..., x0 could influence the action taken at time k,
but we can always redefine the environment variable xk ← {xk, xk−1, ..., x0} to have a
Markovian evolution Eq. 5.8. For each decision uk its performance is measured through
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a reward rk = r(xk, uk) (or conversely through a cost). All this being defined, the triplet
(p, πθ, r) defines a Markov decision process.

We can let the process evolve for a duration T and we are left with a sequence of states
and decisions hT = {(x1, u1), ..., (xT , uT )} forming the history of the process. The goal
of optimal decision theory is to find the policy πθ maximizing the accumulated reward
(or conversely minimizing the accumulated cost). This overall reward to optimize upon is
taken as a weighted sum of the rewards received over the course of the entire trajectory
(171):

L(θ) = EhT

[
T∑
k=0

akr(xk, uk)
]
, (5.9)

where ak are weighting factors summing up to 1. In chapter 6 we will use average reward
with ak = 1/T . Under the assumption T →∞ and that the joint evolution {(xk, uk), k ∈
N} is stationary ergodic, the long-term average reward can be written:

L(θ) = lim
T→∞

1
T

T∑
k=0

r(xk, uk). (5.10)

Finally, maximizing this average reward (or conversely minimizing this average cost) with
respect to θ gives us access to the optimal policy πθ.

We have seen that upon antigenic stimuli, the B-cell repertoire makes a variety of
decisions ranging from how long affinity maturation should last to how diverse the memory
and the plasma pools should be or how many memory cells should be stored. These
decisions are encoded in the interactions the different cell subsets have between themselves
and with the antigen, and they serve a clear function: ensuring a long-term protective
immunity. Markov decision theory therefore is a natural framework to model the B-
cell immune response and investigate the optimal immune strategies πθ that recapitulate
clonal selection theory and affinity maturation. In the following chapter we will leverage
this theory to model the optimal B-cell response to evolving pathogens.
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Affinity maturation for an optimal balance between
long-term immune coverage and short-term resource
constraints

This chapter was previously published in:
◦ Chardès V., Vergassola M., Walczak A.M., Mora T. (2022) Affinity maturation for
an optimal balance between long-term immune coverage and short-term resource
constraints. Proceedings of the National Academy of Sciences, 119(8):e2113512119.

The section “Analytical results in a solvable model” has been moved from Appendix to
Text. Part of the section “Mathematical model” has been moved from Methods to the
end of section “Model”.

In order to target threatening pathogens, the adaptive immune system performs a con-
tinuous reorganization of its lymphocyte repertoire. Following an immune challenge, the
B cell repertoire can evolve cells of increased specificity for the encountered strain. This
process of affinity maturation generates a memory pool whose diversity and size remain
difficult to predict. We assume that the immune system follows a strategy that maximizes
the long-term immune coverage and minimizes the short-term metabolic costs associated
with affinity maturation. This strategy is defined as an optimal decision process on a fi-
nite dimensional phenotypic space, where a pre-existing population of cells is sequentially
challenged with a neutrally evolving strain. We show that the low specificity and high
diversity of memory B cells - a key experimental result - can be explained as a strategy
to protect against pathogens that evolve fast enough to escape highly potent but narrow
memory. This plasticity of the repertoire drives the emergence of distinct regimes for the
size and diversity of the memory pool, depending on the density of de novo responding
cells and on the mutation rate of the strain. The model predicts power-law distributions
of clonotype sizes observed in data, and rationalizes antigenic imprinting as a strategy to
minimize metabolic costs while keeping good immune protection against future strains.

6.1. Introduction
Adaptive immunity relies on populations of lymphocytes expressing diverse antigen-

binding receptors on their surface to defend the organism against a wide variety of pathogens.
B lymphocytes rely on a two-step process to produce diversity: first a diverse naive pool of
cells is generated; upon recognition of a pathogen the process of affinity maturation allows
B cells to adapt their B-cell receptor (BCR) to epitopes of the pathogen through somatic
hypermutation (50). This process, which takes place in germinal centers (172), can in-
crease the affinity of naive BCR for the target antigen by up to a thousand fold factor (173).
Through affinity maturation, the immune system generates high-affinity, long-lived plasma
cells, providing the organism with humoral immunity to pathogens through the secretion
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of antibodies—the soluble version of the matured BCR—as well as a pool of memory cells
with varying affinity to the antigens (51). However, the diversity and coverage of the
memory pool, as well as the biological constraints that control its generation, have not yet
been fully explored.

Analysis of high-throughput BCR sequencing data has revealed long tails in the dis-
tribution of clonotype abundances, identifying some very abundant clonotypes as well as
many very rare ones (174; 175). Additionally, many receptors have similar sequences and
cluster into phylogenetically related lineages (176; 142; 177; 178; 179). These lineages have
been used to locally trace the evolution of antibodies in HIV patients (180; 181) and in
influenza vaccinees (182; 183). Memory B-cell clones are more diverse and less specific to
the infecting antigen than antibody-producing plasma cells (184; 147). This suggests that
the immune system is trying to anticipate infections by related pathogens or future escape
mutants (25).

Theoretical approaches have attempted to qualitatively describe affinity maturation as
a Darwinian co-evolutionary process, and studied optimal affinity maturation schemes (185;
186; 187; 187), as well as optimal immunization schedules to stimulate antibodies with large
neutralizing capabilities (188; 189; 190). Most of these approaches have been limited to
short timescales, often with the goal of understanding the evolution of broadly neutraliz-
ing antibodies. Here we propose a mathematical framework to explore the trade-offs that
control how the large diversity of memory cells evolves over a lifetime.

Despite long-lasting efforts to describe the co-evolution of pathogens and hosts im-
mune systems (191; 192; 193; 194; 36), and recent theoretical work on optimal schemes for
using and storing memory in the presence of evolving pathogens (7), few theoretical works
have described how the B-cell memory repertoire is modified by successive immuniza-
tion challenges. Early observations in humans (54) have shown that sequential exposure
to antigenically drifted influenza strains was more likely to induce an immune response
strongly directed towards the first strain the patients were exposed to (55). This immune
imprinting with viral strains encountered early in life was initially called “original anti-
genic sin,” as it can limit the efficiency of vaccination (195). This phenomenon has been
observed in a variety of animal models and viral strains (196). Secondary infections with
an antigenically diverged influenza strain can reactivate or “backboost” memory cells spe-
cific to the primary infecting strain (159). This response is characterized by lower binding
affinity but can still have in-vivo efficiency thanks of cross-reactive antibodies (197; 198).
There is a long-standing debate about how detrimental “original antigenic sin” is (29; 28).
Under what conditions should the immune system invest in keeping an antibody mem-
ory of past infections, as opposed to responding de novo to each new infection? When
developing memory is preferred to responding de novo, how diverse should that memory
be?

We build a theoretical framework of joint virus and repertoire evolution in antigenic
space, and investigate how acute infections by evolving pathogens have shaped, over evolu-
tionary timescales, the B-cell repertoire response and re-organization. Pathogens causing
acute infections may be encountered multiple times over time scales of years, especially
when they show a seasonal periodicity, while the maturation processes in the B-cell reper-
toire take place over a few weeks. This observation allows us to consider that affinity
maturation happens in a negligible time with respect to the reinfection period. Within
this approximation, we investigate the optimal immune maturation strategies using a



61 6.2 Results

framework of discrete-time decision process. We show the emergence of three regimes—
monoclonal memory response, polyclonal memory response, and a de novo response—as
trade-offs between immune coverage and resource constraint. Additionally, we demon-
strate that reactivation of already existing memory clonotypes can lead to self-trapping
of the immune repertoire to low reactivity clones, opening the way for “original antigenic
sin.”

6.2. Results

6.2.1 Affinity maturation strategies for recurring infections

B cells recognize pathogens through the binding of their BCR to parts of the pathogen’s
proteins, called epitopes, which we refer to as “antigens” for simplicity. To model this
complex protein-protein interaction problem, we assume that both receptors and antigens
may be projected into an effective, d-dimensional antigenic space (Fig. 6.1), following the
“generalized shape space” idea pioneered by Perelson and Oster (199). Receptor-antigen
pairs at close distance in that space bind well, while those that are far away bind poorly.
Specifically, we define a cross-reactivity function 0 ≤ f ≤ 1 quantifying the binding affinity
between antigen a and receptor x, which we model by a stretched exponential,

f(x, a) = e−(‖x−a‖/r0)q . (6.1)

This choice of function is the simplest that allows for introducing a cross-reactivity radius,
r0, while controlling how sharply recognition is abrogated as the distance between antigen
and receptor oversteps that radius, through the stretching exponent q.

For simplicity, we focus on a single pathogen represented by its immunodominant
antigen, so that each viral strain is represented by a single point at in antigenic space
(black square), where t = 1, 2, . . . is a discrete time counting the number of re-infections.
It is difficult to estimate the rate of re-infections or exposures to the same pathogen. It
can be fairly high in humans, where individuals are exposed to the most common viruses
from less than once to several times a year (200). The numbers of lifetime exposures would
then range from a few to a few hundreds.

The B cell repertoire, on the other hand, is represented by a collection of antigenic
coordinates corresponding to each receptor clonotype. We distinguish memory cells (dark
blue circles in Fig. 6.1A), denoted by Pt, which have emerged in response to the presence
of the virus, and a dense background of naive and innate cells N (light blue circles) which
together provide a uniform but weakly protective coverage of any viral strain (subsumed
into the parameter φ defined later).

The viral strain evolves randomly in antigenic space, sequentially challenging the ex-
isting immune repertoire. This assumption is justified by the fact that for acute infections
with a drifting viral strain, such as influenza, the immune pressure exerted on the strain
does not happen in hosts but rather at the population level (191). Viral evolution is not
neutral, but it is unpredictable from the point of view of individual immune systems.
Specifically, we assume that, upon reinfection, the virus is represented by a new strain,
which has moved from the previous antigenic position at to the new one at+1 according to
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Figure 6.1: Model of sequential affinity maturation. A. An infecting strain is
defined by its position an in antigenic space (dark square). In response, the immune
system creates m new memory clonotypes xj (blue points) from a Gaussian distribution
of width σ centered in at (red area). These new clonotypes create a cost landscape (blue
areas) for the next infection, complemented by a uniform background of naive, innate
and T cells (basal coverage, light blue). The next infecting strain (red square) is drawn
from a Gaussian distribution of width σv centered in at (orange area). The position of
this strain on the infection landscape is shown with the arrow. Antigenic space is shown
in 2 dimensions for illustration purposes, but can have more dimensions in the model.
B. Cross-section of the distributions of memories and of the next strain, along with the
infection cost landscape Lt (in blue). Memories create valleys in the landscape, on a
background of baseline protection φ. C. Sequential immunization. Strain at modifies the
memory repertoire into Pt, which is used to fight the next infection at+1. Pt is made of all
newly created clonotypes (blue points in A) as well as some previously existing ones (not
shown). Clonotype abundances are boosted following each infection as a function of the
cross-reactivity, and each individual cell survives from one challenge to the other with a
probability γ.
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a Gaussian distribution with typical jump size σv, called “divergence":

at+1 = at + σvηt+1, (6.2)

where ηt is a normally distributed d-dimensional variable with 〈ηt〉 = 0 and 〈ηt ·ηt′〉 = δtt′ .
Upon infection by a viral strain at at, available cross-reactive memory or naive cells

will produce antibodies whose affinities determine the severity of the disease. We quantify
the efficiency of this early response to the strain at with an infection cost It:

It = min
[
φ,
( ∑
x∈Pt−1

nx,tf(x, at)
)−α]

, (6.3)

where φ > 0 is a maximal cost corresponding to using a de novo response, and where nx,t
denotes the size of clonotype x at time t. This infection cost is a decreasing function of
the coverage of the virus by the pre-existing memory repertoire, Pt−1:

C(at) =
∑

x∈Pt−1

nx,tf(x, at), (6.4)

with a power α governing how sharp that dependence is. Intuitively, the lower the coverage,
the longer it will take for memory cells to mount an efficient immune response and clear
the virus, incurring larger harm on the organism (9; 8).

When memory coverage is too low, the response of the naive B-cell repertoire and the
rest of the immune system, including its innate branch as well as T-cell cytotoxic activity,
offer protection through a de novo response, incurring a maximal cost fixed to φ. Memory
cells respond more rapidly than naive cells, which is indirectly encoded in our model by the
de novo cost φ being larger than the cost when specific memory cells are present (of order
1 or less). In the Supplementary Text we show how this de novo cut-off may be derived
in a model where the immune system activates its memory and de novo compartments
in response to a new infection, when, for example, naive clonotypes are very numerous
but offer weak protection. In that interpretation, φ scales like the inverse density of naive
cells. We will refer to φ−1 as “de novo density,” keeping in mind that this basal protection
levels also includes other arms of the immune system. In Fig. 6.1B we plot an example of
the infection cost along a cross-section of the antigenic space.

After this early response, activated memory cells proliferate and undergo affinity mat-
uration to create new plasma and memory cells targeting the infecting strain. To model
this immune repertoire re-organization in response to a new infection at, we postulate
that its strategy has been adapted over evolutionary timescales to maximize the speed
of immune response to subsequent challenges, given the resource constraints imposed by
affinity maturation (9). This strategy dictates the stochastic rules according to which the
BCR repertoire evolves from Pt−1 to Pt as a result of affinity maturation (Fig. 6.1C).

We consider the following rules inspired by known mechanisms available to the immune
system (172). After the infection by at has been tackled by existing receptors, and the
infection cost has been paid, new receptors are matured to target future versions of the
virus. Their number mt is distributed according to a Poisson law, whose mean is con-
trolled by the cost of infection, m̄(It). This dependence accounts for the feedback of the
early immune response on the outcome of affinity maturation, consistent with extensive
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experimental evidence of the history dependence of the immune response (201). Each new
receptor is roughly located around at in antigenic space with some added noise σ(It), and
starts with clonotype size nx,t = 1 by convention. The diversification parameter σ can be
tuned by the immune system through the permissiveness of selection in germinal centers,
through specific regulation factors induced at the early stage of affinity-based selection
(202): σ = 0 means that affinity maturation only keeps the best binders to the antigens,
while σ > 0 means that selection is weaker.

At the same time, each clonotype x ∈ Pt−1 from the previous repertoire may be re-
activated and be subsequently duplicated through cell divisions (25), with probability
µf(x, at) (see Methods), proportional to the cross-reactivity, where 0 ≤ µ ≤ 1 is a prolif-
eration parameter. These previously existing cells and their offspring may then die before
the next infection. We denote by γ their survival probability, so that the average lifetime
of each cell is (1− γ)−1. The proliferation and death parameters µ and γ are assumed to
be constrained and fixed. The net mean growth is thus given by:

〈nx,t〉 = (1 + µf(x, at))γnx,t−1. (6.5)

Γ ≡ (1 + µ)γ is defined as the maximum growth factor. At the end of the process, the
updated repertoire Pt combines the result of this proliferation and death process applied
to Pt−1 with the new receptors obtained from affinity maturation.

To assess the performance of a given strategy, we define an overall cost function at
each time step:

Lt = It + κmt. (6.6)

The second term κmt corresponds to a plasticity cost encoding the resources necessary
to generate and maintain new memory clonotypes with affinity maturation. This cost
enforces a minimal homeostatic constraint on the memory repertoire. We neglect any
dependence of the cost on the diversification σ, which is secondary and would require
adding additional parameters without affecting the qualitative picture. We assume that,
over evolutionary timescales, the immune system has minimized the average cumulative
cost over a large number of infections:

L(m,σ) = lim
T→∞

1
T

T∑
t=1

Lt. (6.7)

This optimization yields the optimal parameters of the strategy, namely the best functions
m∗(I) and σ∗(I) describing the extent and diversity of affinity maturation and how they
should depend on the strength of the infection I:

(m̄∗, σ∗) = arg min
(m,σ)

L(m,σ), (6.8)

For the sake of simplicity, in the next three sections we will specialize to the case of
constant functions m(I) ≡ m and σ(I) ≡ σ. We will come back to the general case in the
last section of the results.
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Figure 6.2: Regimes of affinity maturation. A. Phase diagram of the model as a
function of the de novo density 1/φ, and viral divergence σv, in a two-dimensional antigenic
map. Three phases emerge: monoclonal memory (red), polyclonal memory (purple) and de
novo response (white). B-C. Snapshots in antigenic space of the sequential immunization
by a viral strain in the (B) monoclonal and (C) polyclonal phases. We show the viral
position (red dots), memory clonotypes (black dots), and viral trajectory (black line).
The colormap shows the log infection cost. Parameters σv and φ correspond to the crosses
on the phase diagram in A, with their respective optimal σ∗, m̄∗ (see arrows). D. Diversity
σ∗, E. optimal size m̄∗, and F. frequency of de novo response usage to an immunization
challenge for different de novo densities 1/φ. Parameters values: κ = 3.3, α = 1, q = 2,
d = 2, γ = 0.85, µ = 0.5. Parameters values: Nh = 1010, M = 5, β0 = 2, γ = 0.6,
Dα = 2 · 10−6.

6.2.2 Phase diagram of optimal affinity maturation strategies

We obtain optimal constant strategies m̄(I) = m∗, σ(I) = σ∗, by minimizing the
simulated long-term cost L(S) (Eq. 6.7) in a 2-dimensional antigenic space (see Methods
for details of the simulation, optimization procedures, and phase determination). By
varying two key parameters, the cost φ associated to the use of the de novo response, and
the virus divergence σv, we see a phase diagram emerge with three distinct phases: the de
novo monoclonal response, and polyclonal response phases (Fig. 6.2A). In Figs. 6.2B-C we
show examples of the stochastic evolution of memory repertoires with optimal rules in the
two phases (monoclonal and polyclonal responses). Figs. 6.2D-F show the behaviour of
the optimal parameters, as well as the fraction of infections for which the de novo response
is used (when the maximal infection cost φ is paid). The general shape and behaviour of
this phase diagram depends only weakly on the parameter choices (see Appendix, Fig. S4).
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Figure 6.3: Analytical solution of a tractable model. A. Exact phase diagram in
d = 1 for the simplified model (q = ∞, γ = 0, and all-or-nothing infection cost). The
boundary between monoclonal is given by σ′v = r0 and the boundary between polyclonal
by φ−1 = (κσ′v/r0)−d. B. Optimal memory diversity σ′∗ ≈ σ′v and C. optimal infection
and plasticity costs for as a function of σ′v for φ = 50. σ′ and σ′v are rescaled versions of
the diversity and divergence to match the variances of the original model.

When the de novo response is sufficiently protective (small φ), or when the virus
mutates too much between infections (large σv), the optimal strategy is to produce no
memory cells at all (m̄∗ = 0), and rely entirely on the de novo response, always paying a
fixed cost Lt = L = φ (de novo phase).

When the virus divergence σv is small relative to the cross-reactivity range r0, it is ben-
eficial to create memory clonotypes (m̄∗ > 0), but with no diversity, σ∗ = 0 (monoclonal
response). In this case, all newly created clonotypes are invested into a single antigenic
position at that perfectly recognizes the virus. This strategy is optimal because subse-
quent infections, typically caused by similar viral strains of the virus, are well recognized
by these memory clonotypes.

For larger but still moderate virus divergences σv, this perfectly adapted memory is
not sufficient to protect from mutated strains: the optimal strategy is rather to generate
a polyclonal memory response, with m̄∗ > 0, σ∗ > 0. In this strategy, the immune system
hedges its bet against future infections by creating a large diversity of clonotypes that
cover the vicinity of the encountered strain. The created memories are thus less efficient
against the current infection, which they never will have to deal with. The advantage of
this strategy is to anticipate future antigenic mutations of the virus. This diversified pool
of cells with moderate affinity is in agreement with recent experimental observations (172;
203; 204; 25). The diversity of the memory pool is supported by a large number of
clonotypes m̄∗ (Fig. 6.2E). As the virus divergence σv is increased, the optimal strategy is
to scatter memory cells further away from the encountered strain (increasing σ∗, Fig. 6.2D).
However, when σv is too large, both drop to zero as the de novo response takes over
(Fig. 6.2F). Increasing the de novo density φ−1 also favors the de novo phase. When there
is no proliferation on average, i.e. Γ = (1 + µ)γ < 1, there even exists a threshold φ−1

c

above which the de novo response strategy is always best (Appendix Fig. S4, and Text for
estimates of that threshold).
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6.2.3 Analytical results in a solvable model
To gain insight into the transitions observed in the phase diagram of Fig. 6.2, we

can make a series of simplifications and approximations about the model that allow for
analytical progress. We assume a step function for the cross-reactivity function f(x, a) = 1
for ‖x − a‖≤ r0, and 0 otherwise, corresponding the limit q = ∞. Likewise, we assume
a uniform distribution of viral antigenic mutations at+1 = at + σ′vη

′
t+1, where η′t is a

random point of the d-dimensional unit ball, with σ′v = σv
√

1 + 2/d (so that the variance
is the same as in the Gaussian case), and similarly for memory diversification, with new
clonotypes drawn from a uniform distribution is a ball of radius σ′ = σ

√
1 + 2/d. The

infection cost is approximated by an all-or-nothing function, with It = 0 if there is any
coverage C(at) > 0, and It = φ if C(at) = 0. We further assume γ = 0: all clonotypes are
discarded at each time step, so that memory may only be used once.

In this simplified version of the model, the phase diagram and optimal parameters can
be computed analytically. We first summarize the main results below. In the subsequent
paragraphs, we provide detailed derivations in the case of arbitrary dimensions, and also
provide additional exact formulas in the one-dimensional case.

One can show (see Appendix) that the transition from monoclonal to polyclonal re-
sponse occurs exactly when the radius of the ball within which viral mutations occur
reaches the cross-reactivity radius r0:

σ′v = r0. (6.9)

Below this transition (σ′v < r0), the optimal strategy is to have no diversity at all and
perfectly target the recognized antigen at, σ′∗ = 0, as any memory cell at at will recognize
the next infection. In this case the optimal mean number of memories m̄∗ = ln(φ/κ)
results in a trade off between the cost of new memories with the risk of not developing any
memory at all by minimizing φe−m̄ + κm̄. The transition from the monoclonal response
to de novo phases is then given by φ = κ, where m̄∗ = 0.

The polyclonal-to- de novo response transition may also be understood analytically.
In the polyclonal response phase, the optimal strategy is, in either of the limits σ′v � r0
or m̄∗ � 1 (see Appendix):

σ′
∗ ≈ σ′v − r0 (6.10)

m̄∗ ≈ σ′v
d

rd0
ln
(
φ

κ

rd0
σ′v

d

)
. (6.11)

In particular this result becomes exact at the transition from polyclonal to de novo re-
sponse, where m̄∗ = 0. The transition is thus given by:

φ−1 = rd0
κσ′v

d
. (6.12)

The polyclonal response is outcompeted by the de novo one when the density of de novo
responding cells (φ−1) becomes larger than the probability density of new strains falling
within the cross-reactivity radius (rd0/σ′v

d), rescaled by the memory cost coefficient κ−1.
Fig. 6.3 shows the resulting phase diagram, as well as the optimal diversity σ′∗ and

predicted costs for a fixed φ and d = 1. These predictions reproduce the main features of
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the full model, in particular the scaling of the immune diversity σ with σv (Fig. 6.2D vs.
Fig. 6.3B) and the general shape of the optimal memory size m̄∗ (Fig. 6.2E vs. Fig. 6.3C),
which first increases as the virus becomes more divergent, to later drop to zero as memory
becomes too costly to maintain and the system falls into the de novo phase.

In summary, the model predicts the two expected regimes of de novo response and
memory use depending on the parameters that set the costs of infections and memory
formation. But in addition, it shows a third phase of polyclonal response, where affinity
maturation acts as an anticipation mechanism whose role is to generate a large diversity
of cells able to respond to future challenges. The prediction of a less focused and thus
weaker memory pool observed experimentally is thus rationalized as a result of a bet-
hedging strategy.

6.2.4 Population dynamics of optimized immune systems
We now turn to the population dynamics of the memory repertoire. When the virus

drifts slowly in antigenic space (small σv), the same clonotypes get reactivated multiple
times, causing their proliferation, provided that Γ = γ(1 + µ) > 0. This reactivation
continues until the virus leaves the cross-reactivity range of the original clonotype, at which
point the memory clone decays and eventually goes extinct (Fig. 6.4A). Typical clonotype
size trajectories from the model are shown in Fig. 6.4B. They show large variations in both
their maximal size and lifetime. The distribution of clonotype abundances, obtained from
a large number of simulations, is indeed very broad, with a power-law tail (Fig. 6.4C).
The lifetime of clonotypes, defined as the time from emergence to extinction, is distributed
according to an exponential distribution (Fig. 6.4D). The exponents governing the tails of
these distributions, β and γ, depend on the model parameters, in particular the divergence
σv.

We can understand the emergence of these distributions using a simple scaling ar-
gument, detailed in Supplementary Text. The peak size of a clonotype depends on the
number of successive infections by viral strains remaining within a distance r∗ from the
clonotype:

r∗ = r0 ln[γµ/(1− γ)]1/q, (6.13)

under which it continues expanding. This number has a long exponential tail with char-
acteristic time ts ∼ (r∗/σv)2. One can show that this translates into a power law tail for
the distribution of clonotype sizes:

p(n∗) ∼ 1
n∗1+β , with β ∼ σ2

v

r∗2 ln Γ , (6.14)

and an exponential tail for the lifetime of clonotypes:

p(tl) ∼ e−λtl , λ ∼ σ2
v

r∗2

(
1 + ln Γ

ln(1/γ)

)−1
. (6.15)

This simple scaling argument predicts the exponents β and λ fairly well: Figs. 6.4E-F
confirm the validity of the scaling relations (6.14)-(6.15) against direct evaluation from
simulations, for d = 2 and q = 2. These scalings still hold for different parameter choices
(see Appendix, Fig. S5).

These scaling relations are valid up to a geometry-dependent prefactor, which is gov-
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Figure 6.4: Clonotype dynamics and distribution. A. Sketch of a recall response
generated by sequential immunization with a drifting strain. Clonotypes first grow with
multiplicative rate Γ = γ(1 + µ), until they reach the effective cross-reactivity radius r∗,
culminating at n∗, after which they decay with rate γ until extinction at time tl. B. Sample
trajectories of clonotypes generated by sequential immunization with a strain of mutability
σv/r0 = 0.53. C. Distribution of clonotype size for varying virus mutability σv/r0. D.
Distribution of the lifetime of a clonotype for varying virus mutability σv/r0. From B toD
the proliferation parameters are set to γ = 0.85, γ = 0.5 ie. Γ = 1.275. E. Scaling relation
of the power law exponent for varying values of the parameters. Inset: dependence of the
proportionality factor a on dimension. F. Scaling relation of the decay rate λ for varying
σv/r0, with scaling of the proportionality factor b. In both E-F., the different parameters
used are (γ = 0.82, µ = 0.65) ie. Γ = 1.353 (diamonds), (γ = 0.8, µ = 0.62) ie. Γ = 1.296
(squares), (γ = 0.85, µ = 0.5) ie. Γ = 1.275 (circles), (γ = 0.87, µ = 0.4) ie. Γ = 1.21
(triangles >), (γ = 0.9, µ = 0.35) ie. Γ = 1.21 (triangles <). From B to F, the strategy
was optimized for φ = 100 and κ = 0.5/(1 − γ). The color code for σv/r0 is consistent
across the panels C to F. In this panel, the other parameters used are α = 1, q = 2, d = 2.
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Figure 6.5: Comparison to repertoire data. A. Clonotype abundance distribution of
IgG repertoires of healthy donors from (205). B. Estimated mutatibility σv in units of
the rescaled cross-reactivity r∗, defined as the antigenic distance at which clonotypes stop
growing. σv is obtained as a function of d by inverting the linear relationship estimated
in the inset of Fig. 6.4E, assuming q = 2 and Γ = 1.4 (estimated from (25)).

erned by dimensionality and the shape of the cross-reactivity kernel. In the Supplementary
Text, we calculate this prefactor in the special case of an all-or-nothing cross-reactivity
function, q =∞. Generally, β increases with d, as shown in the insets of Figs. 6.4E-F for
q = 2. In higher dimensions, there are more routes to escape the cross-reactivity range,
and thus a faster decaying tail of large clonotypes. This effect cannot be explained by
having more dimensions in which to mutate, since the antigenic variance is distributed
across each dimension, according to σ2

v/d. Rather, it results from the absence of antigenic
back-mutations: in high dimensions, each mutation drifts away from the original strain
with a low probability of return, making it easier for the virus to escape, and rarer for
memory clonotypes to be recalled upon infections by mutant strains.

6.2.5 Comparison to experimental clone-size distributions

The power-law behaviour of the clone-size distribution predicted from the model in
Fig. 6.4E can be directly compared to existing data on bulk repertoires. While the model
makes a prediction for subsets of the repertoire specific to a particular family of pathogens,
the same power-law prediction is still valid for the entire repertoire, which is a mixture
of such sub-repertoires. Power laws have been widely observed in immune repertoires:
from early studies of repertoire sequencing data of BCR in zebrafish (174; 206), to the
distribution of sizes of clonal families of human IgG BCR (number of unique sequences in
a lineage stemming from a common naive ancestor) (182; 207), as well as in T-cell receptor
repertoires (175). However, these power laws have not yet been reported in the clonotype
abundance distribution of human BCR (number of copies of unique BCR sequences).

To fill this gap, we used publicly available IgG repertoire data of 9 human donors
from a recent ultra-deep repertoire profiling study of immunoglobulin heavy-chains (IGH)
(205). The data was downloaded from Sequence Read Archive and processed as in (207).
Repertoires were obtained from the sequencing of IGH mRNA molecules to which unique
molecular identifiers (UMI) were appended. For each IGH nucleotide clonotype found
in the dataset, we counted the number of distinct UMI attached to it, as a proxy for the
overall abundance of that clonotype in the expressed repertoire. The distributions of these
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abundances are shown for all 9 donors in Fig. 6.5A. In agreement with the theory, they
display a clear power-law decay p(n) ∼ n−1−β, with β = 1.2-2.4.

Since the experimental distribution is derived from small subsamples of the blood
repertoire, the absolute abundances cannot be directly compared to those of the model.
In particular, subsampling means that the experimental distribution focuses on the very
largest clonotypes. Thus, comparisons between model and data should be restricted to the
tail behavior of the distribution, namely on its power-law exponent β. The bulk repertoire
is a mixture of antigen-specific sub-repertoires, each predicted to be a power law with a
potentially different exponent. The resulting distribution is still a power-law dominated
by the largest exponent.

We used this comparison to predict from the exponent β the virus divergence between
infections. To do so, we fit a linear relationship to the inset of Fig. 6.4E, and invert it for
various values of the dimension d to obtain σv/r∗. We fixed Γ = 1.4, which corresponds
to a 40% boost of memory B cells upon secondary infection, inferred from a 4-fold boost
following 4 sequential immunizations reported in mice (25). The result is robust to the
choice of donor, but decreases substantially with dimension, because higher dimensions
mean faster escape, and thus a lower divergence for a given measured exponent (Fig. 6.5B).
The inferred divergence σv is always lower than, but of the same order as, the effective
cross-reactivity range r∗, suggesting that the operating point of the immune system falls in
the transition region between the monoclonal and polyclonal response phases (Fig. 6.2A).

6.2.6 Inhibition of affinity maturation and antigenic imprinting
In this section we come back to general strategies where the process of affinity mat-

uration depends on the immune history through the infection cost I experienced by the
system during the early immune response, which controls the number and diversity of
newly created memories following that response: m̄(I), σ(I). The optimization of the loss
function (6.6) is now carried out with respect to two functions of I. To achieve this task,
we optimize with respect to discretized functions (m̄1, ..., m̄n) and (σ1, ..., σn) taken at n
values of the infection cost I between 0 and φ. From this optimization, a clear transition
emerges between a regime of complete inhibition of affinity maturation (m̄∗(I) = 0) at
small infection costs, and a regime of affinity maturation (m̄∗(I) > 0) at larger infection
costs (Fig. 6.6A). In the phase where affinity maturation occurs, the optimal diversity
σ∗(I) is roughly constant (Fig. 6.6B).

This transition means that when pre-existing protection is good enough, the optimal
strategy is not to initiate affinity maturation at all, to save the metabolic cost κmt.
This inhibition of affinity maturation is called “antigenic imprinting,” and is linked to
the notion of “original antigenic sin,” whereby the history of past infections determines
the process of memory formation, usually by suppressing it. This phenomenon leads
to the paradoxical prediction that a better experienced immune system is less likely to
form efficient memory upon new infections. Importantly, in our model this behaviour
does not stem from a mechanistic explanation, such as competition for antigen or T-cell
help between the early memory response and germinal centers, but rather as a long-term
optimal strategy maximizing immune coverage while minimizing the costs of repertoire
re-arrangement.

To simplify the investigation of antigenic imprinting, we approximate the optimal
strategies in Fig. 6.6A and B by step functions, with a suppressed phase, m̄(I) = 0, for I <
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Figure 6.6: Imprinting and backboosting. A,B. Optimal regulatory functions for
(A) the number m∗(I) and (B) the diversity σ∗(I) of new memories as a function of the
infection cost I, for two values for the viral divergence. These functions show a sharp
transition from no to some memory formation, suggesting to replace them by simpler step
functions (dashed lines). This step function approximation is used in the next panels.
C. Frequency of infections leading to affinity maturation in the optimal strategy. The
frequency increases with the virus divergence σv, up to the point where the transitions to
the de novo phase where memory is not used at all. D. Typical trajectory of infection cost
in sequential infections at σv/r0 = 0.5. When the cost goes beyond the threshold ξ, affinity
maturation is activated, leading to a drop in infection cost. These periods of sub-optimal
memory describe an “original antigenic sin,” whereby the immune system is frozen in the
state imprinted by the last maturation event. E. Distribution of imprinting times, i.e. the
number of infections between affinity maturation events, decays exponentially with rate
λm. The proliferation parameters in A to E are set to γ = 0.85 and µ = 0.5. F. Predicted
scaling of λm with the clonotype decay rate λ from Figs. 6.4D and F. In F, the different
parameters used are (γ = 0.82, µ = 0.65) ie. Γ = 1.353 (diamonds), (γ = 0.8, µ = 0.62)
ie. Γ = 1.296 (squares), (γ = 0.85, µ = 0.5) ie. Γ = 1.275 (circles), (γ = 0.87, µ = 0.4) ie.
Γ = 1.21 (triangles >), (γ = 0.9, µ = 0.35) ie. Γ = 1.21 (triangles <). The color code for
σv/r0 is consistent across the panels E and F. From D to F, the strategy was optimized
for φ = 100 and κ = 0.5/(1 − γ). In this panel, the other parameters used are α = 1,
q = 2, d = 2.
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ξ, and an active phase, m̄(I) ≡ m̄ > 0 and σ(I) ≡ σ, for I > ξ. The threshold ξ is left as
an optimization parameter, in addition to σ and m̄. Optimizing with respect to these three
parameters, we observe that the frequency of affinity maturation events mostly depends
on σv (Fig. 6.6C). While this threshold remains approximately constant, the frequency of
affinity maturation events increases as σv increases. At small σv, the optimal strategy is to
extensively backboost existing memory cells; for large σv, the growing unpredictability of
the next viral move makes it more likely to have recourse to affinity maturation. In other
words, when the virus is stable (low σv), the immune system is more likely to capitalize on
existing clonotypes, and not implement affinity maturation, because savings made on the
plasticity cost outweigh the higher infection cost. As the virus drifts away with time, this
infection cost also increases, until it reaches the point where affinity maturation becomes
worthwile again.

Trajectories of the infection cost show the typical dynamics induced by backboosting,
with long episodes where existing memory remains sufficient to keep the cost below ξ

(Fig. 6.6D), interrupted by infections that fall too far away from existing memory, trig-
gering a new episode of affinity maturation and concomitant drop in the infection cost.

We call the time between affinity maturation events tm. Its mean 〈tm〉 is equal to the
inverse of the frequency of maturation events, and thus decreases with σv. Its distribution,
shown Fig. 6.6E, has an exponential tail with exponent λm. The exponential tail of
the distribution of tm is dominated by episodes where the viral strain drifted less than
expected. In that case, the originally matured clonotype grows to a large size, offering
protection for a long time, even after it has stopped growing and only decays. We therefore
expect that in the case of a slowly evolving virus σv � r0, the escape rate from the
suppressed phase is given by the clonotype decay rate: λm ∼ λ. We verify this prediction in
Fig. 6.6F. Interestingly, for slowly evolving viruses, the typical clonotype lifetime diverges,
leading to a lifelong imprinting by the primary immune challenge. Conversely, as the viral
divergence σv grows, the imprinting time decays faster than the typical clonotype lifetime
and the extent of the imprinting phenomenon is limited.

6.3. Discussion
Adaptive immunity coordinates multiple components and cell types across entire or-

ganisms over many space and time scales. Because it is difficult to empirically characterize
the immune system at the system scale, normative theories have been useful to generate
hypotheses and fill the gap between observations at the molecular, cellular, and organismal
scales (208; 22). Such approaches include clonal selection theory (132), or early arguments
about the optimal size and organization of immune repertoires (199; 23; 24), and of affinity
maturation (187; 186). While these theories do not rely on describing particular mecha-
nisms of immune function, they may still offer quantitative insights and help predict new
mechanisms or global rules of operation.

Previous work developed models of repertoire organization as a constrained optimiza-
tion problem where the expected future harm of infection, or an ad hoc utility function, is
minimized (9; 8; 5; 7). In Ref. (8), it was assumed clonotypes specific to all antigens are
present at all times in the repertoire; the mechanism of immune memory then merely con-
sists of expanding specific clonotypes at the expense of others. This assumption describes
T-cell repertoires well, where there are naive cells with good affinity to essentially any
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antigen (209). For B cells the situation is more complex because of affinity maturation.
In addition, re-organizing the repertoire through mutation and selection has a cost, and
is subject to metabolic and physical constraints.

Our work addresses these challenges by proposing a framework of discrete-time decision
process to describe the optimal remodeling of the B-cell repertoire following immunization,
through a combination of affinity maturation and backboosting. While similar to (7), our
approach retains the minimal amount of mechanistic details and focuses on questions of
repertoire remodeling, dynamics, and structure. The specific choices of the cost functions
were driven by simplicity, while still retaining the ability to display emergent behaviour.
Generalizing the metabolic cost function to include e.g. costs of diversification (through a
dependence on σ) or of cell proliferation is not expected to affect our results qualitatively,
although it may shift the exact positions of the transition boundaries.

We investigated strategies that maximize long-term protection against subsequent chal-
lenges and minimize short-term resource costs due to the affinity maturation processes.
Using this model, we observed that optimal strategies may be organized into three main
phases as the pathogen divergence and de novo coverage are varied. We expect these
distinct phases to co-exist in the same immune system, as there exists a wide range of
pathogen divergences, depending on their evolutionary speed and typical frequency of
recurrence.

For fast recurring or slowly evolving pathogens, the monoclonal response ensures a
very specific and targeted memory. This role could be played by long-lived plasma cells.
These cells are selected through the last rounds of affinity maturation, meaning that they
are very specific to the infecting strain (131). Yet, despite not being called memory cells,
they survive for long times in the bone marrow, providing long-term immunity.

For slow recurring or fast evolving pathogens, the polyclonal response provides a diverse
memory to preempt possible antigenic drift of the pathogen. The function could be fulfilled
by memory B cells, which are released earlier in the affinity maturation process, implying
that they are less specific to the infecting strain, but collectively can cover more immune
escape mutations. While affinity maturation may start from both memory or naive B cells
during sequential challenges, the relative importance of each is still debated (210; 211; 212).
Our model does not commit on this question since we assume that the main benefit of
memory is on the infection cost, rather than its re-use in subsequent rounds of affinity
maturation.

For simplicity our model assumed random evolution of the virus. However, there is
evidence, backed by theoretical arguments, that successive viral strains move in a predom-
inant direction in antigenic space, as a result of immune pressure by the host population
(52; 53; 36). While it is unlikely that the immune system has evolved to learn how to ex-
ploit this persistence of antigenic motion in a specific manner, such a bias in the random
walk is expected to affect the optimal strategy, as we checked in simulations (Fig. S6).
The bias of the motion effectively increases the effective divergence of the virus, favoring
the need for more numerous and more diverse memory cells. However, it does not seem
to affect the location of the polyclonal-to-de novo response transition.

The model is focused on acute infections, motivated by the assumption that recurring
infections and antigenic drift are the main drivers of affinity maturation evolution. How-
ever, much of the model and its results can be re-interpreted for chronic infections. In that
context, the sequential challenges of our model would correspond to selective sweeps in the
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viral population giving rise to new dominant variants. While the separation of time scales
between the immune response and the rate of reinfections would no longer hold, we expect
some predictions, such as the distribution of clonotype sizes and the emergence of im-
printing, to hold true. Chronic infections also imply that the virus evolves as a function of
how the immune system responds. Including this feedback would require a game-theoretic
treatment. We speculate that it would drive antigenic motion in a persistent direction, as
argued earlier and evaluated in Fig. S6.

We investigated strategies where the outcome of affinity maturation is impacted by
the efficiency of the early immune response. It is known that the extrafollicular response
can drastically limit antigen availability and T-cell help, decreasing the extent of affinity
maturation and the production of new plasma and memory cells (157). Our general
framework allows for but does not presume the existence of such negative feedbacks.
Instead, they naturally emerge from our optimization principle. We further predict a sharp
transition from no to some affinity maturation as a function of the infection cost. This
prediction can be interpreted as the phenomenon of antigenic imprinting widely described
in sequential immunization assays (159), or “original antigenic sin” (196). It implies
that having been exposed to previous strains of the virus is detrimental to mounting the
best possible immune response. Importantly, while antigenic imprinting has been widely
described in the literature, no evolutionary justification was ever provided for its existence.
Our model explains it as a long term optimal strategy for the immune system, maximizing
immune coverage while minimizing repertoire re-arrangements (encoded in the cost κm).

We believe this framework can be generalized to investigate interactions between slow
and fast varying epitopes, which are known to be at the core of the low effectiveness of
influenza vaccines (55). When during sequential challenges only one of multiple epitopes
changes at a time, it may be optimal for the immune system to rely on its protections
against the invariant epitopes. Only after all epitopes have escaped immunity does affinity
maturation get re-activated concomitantly to a spike of infection harm, similar to our result
for a single antigen.

Our model can explain previously reported power laws in the distributions of abun-
dances of B-cell receptor clonotypes. However, there exist alternative explanations to such
power laws (167; 213) that do not require antigenically drifting antigens. Our model pre-
dictions could be further tested in a mouse model, by measuring the B-cell recall response
to successive challenges (159), but with epitopes carefully designed to drift in a controlled
manner, to check the transition predicted in Fig. 6.6A. While not directly included in
our model, our result also suggest that the size of the inoculum, which would affect the
infection cost, should also affect backboosting. This effect could also be tested in mouse
experiments. The predicted relationships between viral divergence and the exponents of
the power law and clonotype lifetimes (Figs. 6.4E and F) could be tested in longitudinal
human samples, by sequencing sub-repertoires specific to pathogens with different rates of
antigenic evolution. This would require to computationally predict what B-cell receptors
are specific to what pathogen, which in general is difficult.

We only considered a single pathogenic species at a time, with the assumption that
pathogens are antigenically independent, so that the costs relative to different pathogens
are additive. Possible generalizations could include secondary infections, as well as anti-
genically related pathogens showing patterns of cross-immunity (such as cowpox and small-
pox, or different groups of influenza), which could help us shed light on complex immune
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interactions between diseases and serotypes, such as negative interference between differ-
ent serotypes of the Dengue fever leading to hemorrhagic fever, or of the human Bocavirus
affecting different body sites or (196).

6.4. Methods
6.4.1 Mathematical model

The positions of newly created memory receptors upon infection are drawn at random
according to:

xj = at + σξj , j = 1, . . . ,mt, (6.16)

where ξj is normally distributed with 〈ξj〉 = 0 and 〈ξ2
j 〉 = 1. Their initial sizes are set to

nxj ,t = 1. Upon further stimulation, the new size n′x,t of a pre-existing clonotype right
after proliferation is given by:

n′x,t − nx,t−1 ∼ Binom(nx,t−1, µf(x, at)), (6.17)

where f(x, a) = e−(‖x−a‖/r0)q is the cross-reactivity Kernel. After proliferation, each
memory may die with probability γ, so that the final clonotype size after an infection
cycle is given by nx,t ∼ Binom(n′x,t, γ).

In all results except in the last section of the Results, we use the Ansatz of constant
functions, m(I) ≡ m, σ(I) ≡ σ. In the last section of the Results, we first perform
optimization over discretized functions m = (m1, . . . ,mn), σ = (σ1, . . . , σn) defined over
n chosen values of I = (I1, . . . , In). Then, we parametrize the functions as step functions:
σ(I) = 0 and m(I) = 0 for I < ξ, and σ(I) = σ and m(I) = m for I > ξ, and optimize
over the 3 parameters σ,m, ξ.

6.4.2 Monte-Carlo estimation of the optimal strategies
The average cumulative cost L in Eq. 6.7 is approximated by a Monte-Carlo method.

To ensure the simulated repertoire reaches stationarity, we start from a naive repertoire
and discard an arbitrary number of initial viral encounters. Because the process is ergodic,
simulating a viral-immune trajectory over a long time horizon is equivalent to simulating
M independent trajectories of smaller length T . To ensure the independence of our random
realizations across our M parallel streams we use the random number generators method
split provided in Tina’s RNG library (214). The cumulative cost function L is convex
for the range of parameters tested. To optimize L under positivity constraints for the
objective variables σ, m̄ and ξ, we use Py-BOBYQA (215), a coordinate descent algorithm
supporting noisy objective functions.

The polyclonal to monoclonal (red curve) and memory to de novo response (blue curve)
boundaries of the phase diagrams in Fig. 6.2 and Fig. S4 are obtained by respectively
solving ∂L/∂σ = 0 in the monoclonal phase and ∂L/∂m̄ = 0 in the de novo phase. Both
these derivatives can be approximated by finite differences with arbitrary tolerances on
σ and m̄. We fix the tolerance on σ to 0.2 and the tolerance on m̄ to 0.01. To obtain
the root of these difference functions, we use a bisection algorithm. In order to further
decrease the noise level, we compute the difference functions across pairs of simulations,
each pair using an independent sequence of pathogens at of length L = 400. The number
of independent pairs of simulations used for each value of σv and φ is M ∼ 105.
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This chapter is yet to be published:
◦ Chardès V., A. Mazzolini, Walczak A.M., Mora T. In preparation.

Antigenic variation is the main immune escape mechanism for RNA viruses like in-
fluenza or SARS-CoV-2. It promotes diversity in the viral population and leads to repeated
epidemics and reinfections. This antigenic evolution is fueled by remarkably high viral
mutation rates, and is sustained by continuous pathogen transmission between hosts. In
chapter 6, we investigated the optimal immune response maximizing the long-term protec-
tion against these antigenically evolving pathogens. We found that the optimal diversity
σ∗ and number m̄∗ of memory B cells generated upon affinity maturation increase with σv
the typical viral divergence between two reinfections. In this sense, the immune system
generates a diverse memory pool anticipating for future antigenic variants. Following these
results, it is natural to ask how the immune pressure in return shapes the viral evolution,
and in particular its escape rate σv. This is the question we address in the this chapter by
investigating the evolutionary stable viral strategies under the immune pressure exerted
by a population of hosts.

7.1. Introduction
The survival of viral strains is dictated by their ability to spread from host to host in

the population. In classical SIR models (31; 32) this ability is measured through the basic
reproduction ratio, which denotes the average number of secondary infections an infected
individual generates in a population with no pre-existing immunity. In the absence of
antigenic evolution, any variant increasing this average number of secondary infections
successfully spreads in the population (56; 32), and as a consequence the viral population
reaches its evolutionary stable strategy when its basic reproduction ratio is maximized
(57). Similarly to the long-term cost of chapter 6 whose minimization provided the opti-
mal immune strategy, the maximization of the basic reproduction ratio here provides the
evolutionary stable viral strategy.

However, viruses adapt and can evade immunity thanks to mutations modifying the
epitopes targeted by antibodies. In particular, in viruses like influenza this evolution is
characterized by a traveling wave of adaptation with new antigenic variants continuously
appearing in the population (58; 53; 59; 60). As a consequence, the survival of these viral
strains not only depends on their basic reproduction ratio, but also on their ability to
generate antigenic variation to escape immunity (61). In this case, recent results suggest
that the evolutionary stable viral strategy maximizes the speed of antigenic evolution
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rather than the basic reproduction ratio (37). However, these results were obtained in a
fully deterministic model of viral escape, ignoring finite population size effects, which are
known to be ubiquitous in antigenic adaptation (38; 39). In this light, it remains unclear
how antigenic escape coupled with finite size demographic effects constrain the evolution
of the viral population.

To tackle these challenges, following chapter 6, we describe both the host immune
memories and the viral strains as living in the same antigenic space (216; 36; 37; 33),
corresponding to a space of “molecular similarity”, also called “shape space” (170). This
construction has been linked to a low dimensional projection of experimental data on which
influenza and host antibodies co-evolve (58; 53; 59). In this antigenic space, we describe
with a Susceptible-Infected-Recovered formalism (31; 32) the co-evolution of finite size
populations of susceptible and infected hosts. Within this framework, the pathogen is
transmitted from host to host at a rate β while hosts die of infection at a rate α and
recover at rate γ. Together with the pathogen mutation rate, these parameters define a
viral strategy. While the influence of in-host eco-evolutionary feedbacks on the evolution
and control of pathogens causing chronic infections has already been studied (217; 218), in
this chapter we investigate how inter-host immune pressure shapes the evolutionary stable
strategy of viruses causing acute infections.

We show using simulations and analytical approximations that the capacity of anti-
bodies to neutralize different viral variants, called cross-reactivity, determines the speed
of antigenic evolution. We demonstrate that as the cross-reactivity increases, the viral
evolution slows down and crosses-over from a Fisher-KPP wave (219) to a linear fitness
wave (220; 221). Following these results, we find that the evolutionary stable viral strat-
egy is dictated by a trade off between maximizing the speed of antigenic evolution when
the cross-reactivity is small, and maximizing the reproduction ratio as it becomes larger.
As a consequence, we show that a reduced cross-reactivity favors the evolution of highly
transmissible and deadly pathogens with mutation rates close to the extinction threshold.

7.2. Results
7.2.1 Coarse-grained SI(R) model for antigenically evolving pathogens

Following the shape space idea introduced by Perelson and Oster (199), we describe
the co-evolution of a viral population - infected hosts - and of immune receptors in a one
dimensional continuous antigenic space. The closer a receptor-virus pair is in this space,
the stronger is their binding. To quantify this affinity, we introduce a cross-reactivity
function 0 < f < 1 between a strain at position y and a receptor at position x, which we
choose to be an exponential function:

f(x, y) = exp
( |x− y|

r0

)
, (7.1)

where r0 denotes the cross-reactivity range and modulates the distance over which a
receptor x is effective in protecting from the strain y. In this space, viruses continuously
mutate, each time changing their antigenic position by an infinitesimal distance δx� r0,
and proliferate through infection of new susceptible hosts. A randomly chosen host is
susceptible to a given strain x if and only if its most recent infection is not due to a
variant y too similar to x. We quantify the degree of susceptibility of hosts via a probability
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Pinfect(x, t) that a strain at position x can infect a randomly chosen host in the population.
To treat the probability of infection, we define h(x, t) the probability density for a

randomly chosen host to have an immune memory of the virus located at position x. To
model the evolution of this probability density, we take a recently introduced mean-field
approach (36), assuming that hosts are exchangeable and have each M stored receptors
that were elicited by past encounters with the virus. In particular, every time a host is
infected by a strain x, a new memory is added at the position x and an old memory is
discarded uniformly at random in the pool of all the memories elicited by the virus in
the host population. As a consequence, the cross-reactivity function directly controls the
degree of cross-immunity between strains: a past challenge with a strain y protects a host
from the strain x proportionally to the cross-reactivity f(x, y). The population density of
host infected by strain x at time t is denoted n(x, t), and the population dynamics of the
immune repertoire are modeled by:

∂th(x, t) = 1
MNh

[n(x, t)−N(t)h(x, t)] , (7.2)

where Nh is the total number of hosts. We have the normalization
∫
dxh(x, t) = 1, such

that nh(x, t) = MNhh(x, t) is the density of immune receptors in the host population.
Following this prescription for h(x, t), a randomly chosen host in the host population is
susceptible to a strain x if and only if none of its M stored immune receptors recognize
the threat:

Pinfect(x, t) =
[∫

dyh(y, t)(1− f(x− y))
]M

= (1− c(x, t))M , (7.3)

where we introduced c(x, t) the coverage, ie. the probability that an individual immune
receptor of the host recognizes the variant. Following standard SI(R) modeling, we denote
β the pathogen transmission rate, α the death rate of infected individuals, called virulence,
and γ the recovery rate. We assume that deaths caused by the viral infection are balanced
by a constant birth rate, ensuring that the host population size remains constant and
equal to Nh.

The effective growth rate or “fitness” of a strain x is linearly related to the probability
of infection: f(x, t) = βPinfect(x, t)−(α+γ). Additionally, we assume that viral mutations
are unbiased 〈δx〉 = 0, such that in the limit of infinitely small mutations happening at a
rate Ux the density of infected hosts effectively diffuses with constant D = Ux〈δx2〉/2. The
dynamics of the viral population are then described by the following stochastic differential
equation:

∂tn(x, t) = f(x, t)n(x, t) +D∂2
xn(x, t) +

√
n(x, t)η(x, t), (7.4)

where η is a gaussian white noise 〈η(x, t)η(x′, t′)〉 = δ(t − t′)δ(x − x′). The total viral
population size is N(t) =

∫
dxn(x, t) and can fluctuate while the total size of the immune

repertoire remains fixed to M receptors per host for a total of MNh immune memories.
Under the assumption the the viral population reaches a steady state N(t) = N , we can
integrate Eq. 7.2:

h(x, t) = 1
N

∫ t

−∞

dt′

τ
e−

t−t′
τ n(x, t′), (7.5)

where τ = MNh/N defines the turnover time scale of immune receptors. Together,
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Figure 7.1: Antigenic wave cross-over. A. Snapshot of the viral evolution. The viral
population n(x, t) (red) travels to the right with a speed v, pushed by a density of immune
receptors h(x, t) (black). B. Cross-over in the infection probability Pinfect at the tip of
the wave as a function of the cross-reactivity r0. At small r0 the host population is fully
susceptible to the most mutated strains, while it reaches the equilibrium susceptibility
R−1

0 (56; 32) at large r0. C-D. Snapshot of the viral evolution at small C and large D
cross-reactivity. At large cross-reactivity the susceptibility profile is linear over the viral
population. The legend in A is consistent across panels A, C and D. Parameters values:
Nh = 1010, M = 5, β0 = 2, γ = 0.6. For details about the simulations see Methods.

Eqs. 7.2–7.4 describe the co-evolution of the infected host population and of the immune
protections. This approach is largely inspired by a model recently introduced to study
antigenic waves in virus-immune co-evolution (36).

7.2.2 Finite size induced cross-over in antigenic evolution
Finite size effects arising from demographic stochasticity have long been included in

intra-hosts (222) and inter-host models of viral evolution (223; 216; 36; 35). Similarly,
the effects of cross-reactivity on viral antigenic evolution have been studied in intra-host
models (224). However, no model yet has described the combined effect of demographic
stochasticity and of varying the cross-reactivity on antigenic escape. In this section we
investigate the modes of antigenic evolution as we vary the cross-reactivity. To do so, we
propose a deterministic approximation to the full stochastic dynamics where we introduce
a cut-off in the viral population growth rate when n(x, t) < nc:

∂tn(x, t) = [βPinfect(x, t)− (α+ γ)] Θ(n− nc)n(x, t) +D∂2
xn(x, t), (7.6)

where Θ is a heaviside function and R0 = β/(α+γ) is the basic reproduction ratio. In the
context of antigenic evolution, the speed of antigenic evolution, the viral population size
and the viral population diversity obtained from stochastic simulation are in agreement
with the approximated cut-off theory (36).

We simulated by finite differences (see Methods) Eq. 7.6 and Eq. 7.2 on a one dimen-
sional lattice and we find Fig. 7.1A a stable traveling wave solution moving ballistically
with a constant population size N . In Fig. 7.1B we see that at small cross-reactivity,
strains at the front of the wave are antigenically far enough from the bulk of the wave to
experience a fully susceptible host population Pinfect ' 1 . When the cross-reactivity in-
creases, the susceptibility of the host population to the most antigenically mutated strains
decreases. In the limit of infinite cross-reactivity any immune receptor can recognize any
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strain with equal probability. In this case, the model is equivalent to classical SI(R) mod-
els without antigenic evolution (57), and the susceptibility of the host population to any
strain is the equilibrium one Pinfect(x, t) = R−1

0 .

At small cross-reactivity, the host population is fully susceptible to the most antigeni-
cally mutated strains and the probability of infection is flat and equal to unity at the tip
of the wave. This is the scenario of a FKPP wave where the fitness is maximum at the
front of the wave (Fig. 7.1C), and the speed of the wave reads as (219; 225; 226):

v = 2
√

(β − (α+ γ))D
(

1− π2

ln2N

)
(7.7)

On the contrary, at large cross-reactivity the leading strains at the front of the wave
experience a partially immunized host population, and a new antigenic variant has a
fitness advantage over less mutated ones. In particular, in Fig. 7.1D the fitness landscape
over the extent of the traveling wave becomes linear.

We can gain insight into this linear regime by assuming that the width of the traveling
wave solution is negligeable with respect to the typical distance vτ over which the immune
protection decays. The wave density can then be replaced in Eq. 7.5 by a Dirac delta
function moving on the antigenic space at speed v. The immune density h and the receptor
coverage c then simplify as:

h(x, t) ' 1
vτ

exp
(
−vt− x

vτ

)
Θ(vt− x), (7.8)

c(x, t) ' e−(x−vt)/r0

1 + vτ/r0
, x > vt, (7.9)

where Θ denotes a heaviside function. Within this approximation, the fittest strains at a
distance u� vτ feel a linearized fitness gradient s:

f(vt+ u, t) = β (1− c(vt+ u, t))M − (α+ γ) ' f0 + su, (7.10)

where f0 is the average viral population fitness and s the selection strength reads:

s = (α+ γ)M
vτ

(7.11)

We expect the average fitness f0 to be zero since the viral population is at steady state,
which in turn constrains the value of vτ and the fitness gradient s:

vτ = r0
(
R

1/M
0 − 1

)−1
. (7.12)

Importantly s ∼ r−1
0 such that as the cross-reactivity increases, receptors with increasingly

remote antigenic positions can recognize the threat and the fitness gradient vanishes until
the susceptibility of the host population to any antigenic variant reaches the equilibrium
limit of the dotted line in Fig. 7.1. In this sense, increasing the cross-reactivity decreases
the fitness advantage of strains at the tip of the wave: the immune pressure for new
antigenic variant decreases and the wave slows down. Finally, in this linear fitness regime
the dynamical equation governing the evolution of the traveling wave Eq. 7.6 can be
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simplified:
∂tn(x, t) = s(x− vt)Θ(n(x, t)− nc)n(x, t) +D∂2

xn(x, t). (7.13)

This equation has been extensively studied in fitness wave theory (220; 221; 227) and the
resulting speed of adaptation depends weekly on the viral population size. For our model
Eq. 7.13, the speed of the wave reads as (see App. A.3.1):

v = 2(D2s)1/3
[(

3 ln(N
nc

(s/D)1/3)
)1/3

+ ξ0

(
3 ln(N

nc
(s/D)1/3)

)−1/3 ]
(7.14)

This equation along with Eq. 7.12 and the expression for s close the system of equations
and entirely determine v and N . This construction tells us that the most antigenically
mutated strains at the tip of the wave are at a distance uc ' v2/(4Ds) from the bulk of
the wave (see App. A.3.1).

Following the first observation from Fig. 7.1, as the cross-reactivity increases we expect
the traveling wave to cross-over from a FKPP wave with speed Eq. 7.7 to a linear fitness
wave with speed Eq. 7.14. In particular, in the large population size limit, we expect this
cross-over between regimes to be scale invariant after rescaling v → v/r0 and D → D/r2

0.
We verify this prediction by plotting the rescaled speed v/r0 as a function of the antigenic
escape rate D/r2

0 for different values of D and r0. The numerical results in Fig. 7.2B-C
collapse on a single curve showing a cross-over between two distinct regimes as the cross-
reactivity decreases. At small antigenic escape rate the viral population experiences a
linear fitness profile and the speed (Fig. 7.2B) is predicted by Eq. 7.14, while at larger
antigenic escape rate hosts are fully susceptible to the most antigenically mutated strains
and the speed of evolution is given by Eq. 7.7. Similarly, at low escape rates the incidence
rate (Fig. 7.2C) is predicted by Eq. 7.12 and Eq. 7.14, while it becomes larger and deviates
from this prediction as the escape rate grows.

7.2.3 Invasion criteria and the evolution of viral strategies

In the previous section we identified the modes of viral evolution given the parameters
of the eco-evolutionary process. We now address the more general question of predicting
the evolutionary stable viral strategy. To do so, we will derive the conditions for a success-
ful invasion of the viral population by a mutant with a different strategy (228; 229). This
mutant has a viral strategy (Dm, αm, βm, γm), while the wild-type strain has a strategy
(D,α, β, γ). Additionally, we consider that this mutant appears at negligible frequency
with respect to the wild type. In the frame u = x−vtmoving with the wild type population
at speed v, the mutant population obeys the equation:

∂tnm =
(
v∂u +Dm∂

2
u

)
nm(u, t) + [βmPinfect(u, t)− (αm + γm)] Θ(n− nc)nm. (7.15)

We are interested in establishing a criterion for this mutant population to invade the wild
type population. In particular, we know that the wave is driven by its tip (39; 38), and
that in order to invade the wild type population, a mutant must be able to proliferate at
the tip of the wave. We will therefore treat the mutant growth at the tip of the wild type
wave, and linearize Eq. 7.15 for each of the regimes described in the previous section.
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Figure 7.2: Regimes of antigenic escape. A. Speed of antigenic evolution v as a
function of cross-reactivity r0. At small r0 the speed matches the FKPP prediction,
Eq. 7.7, while at larger r0 it matches the linear fitness prediction, Eq. 7.14. B. Rescaled
speed v/r0 as a function of the antigenic escape rate D/r2

0. The points collapse on a
single curve and match FKPP prediction at small r0 while at larger r0 they follow the
linear fitness prediction. C. Incidence rate as a function of the dimensionless escape rate
D/r2

0. At large r0 the incidence rate N/Nh is fully determined by Eq. 7.7, Eq. 7.11 and
Eq. 7.12. In B-C. the antigenic escape rates are D = 2 · 10−5 (circle) D = 4.5 · 10−5

(square) and D = 1 · 10−4 (triangles >). The legend of A is consistent across all panels.
Parameters values: Nh = 1010, M = 5, β0 = 2, γ = 0.6. For details about the simulations
see Methods.

Evolutionary stable viral strategy in the FKPP regime

In the FKPP regime at small cross-reactivity, the fittest strains at the front of the
wave experience a fully susceptible host population Pinfect ' 1. In the co-moving frame,
the mutant population at the tip of the wave obeys the following approximate equation:

∂tnm =
(
v∂u +Dm∂

2
u

)
nm(u, t) + fmΘ(n− nc)nm, (7.16)

with fm = βm − (αm + γm). (7.17)

Importantly, fm here is the growth rate of the mutant in a fully susceptible host population.
Up to the tip of the wave uc, this equation has a simple solution (see App. A.3.2), and
the mutant population invades if and only if:

fm >
v2

4Dm
. (7.18)

In particular, we see here that for a large enough viral population, the mutant can invade
if and only if the steady-state speed of its own wave vm ' 2

√
fmDm is larger than that

of the wild type. In other words, the evolutionary stable state of the viral population is
reached when the speed of evolution is maximized.

Evolutionary stable strategy in the linear fitness regime

At large cross-reactivity, the fittest strains experience a linear gradient. The approxi-
mate equation for the mutant population of virulence αm at the tip of the wave reads in
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the co-moving frame:

∂tnm =
(
v∂x +Dm∂

2
x

)
nm(x, t) + [∆fm + smx] Θ(n− nc)nm(x, t), (7.19)

with ∆fm = βm

(
1
R0
− 1
R0,m

)
and sm = βm

β
s. (7.20)

where R0 = β/(α+γ) and R0,m = βm/(αm+γm) are respectively the reproduction ratio of
the wild-type and of the mutant strain. Here ∆fm is the fitness advantage of the mutant
population under the immune pressure exerted by a host population immunized by the
wild-type. Similarly, sm is the fitness gradient felt by the mutant strain under the immune
pressure of a host population immunized by the wild type strain. Up to the tip of the wave
uc, this equation has a closed-form solution (see App. A.3.2), and the mutant invades if
and only if:

smuc + ∆fm >
v2

4Dm
. (7.21)

As the cross-reactivity increases, the fitness gradient decreases and the wave slows down.
Asymptotically the antigenic evolution stops, and the remaining condition for the mutant
to invade is to have a positive growth advantage with respect to the wild-type in a host
population fully immunized by the wild-type, ie:

∆fm = βm

(
1
R0
− 1
R0,m

)
> 0. (7.22)

As a consequence, the evolutionary stable state of the viral population is reached when
the basic reproduction ratio is maximized.

We have here the central message of this work: the evolutionary stable viral strategy
is dictated by a trade off between maximizing the speed of antigenic evolution when
the cross-reactivity is small and maximizing the reproduction ratio as it becomes larger.
The specific shape of this trade-off then depends on the ecological feedback between the
trait evolving and the immune pressure exerted by the recovered hosts. To illustrate the
applicability of our approach, we first investigate the evolution of virulence, and we later
study the evolution of the mutation rate.

7.2.4 Evolutionary stable virulence

We now apply the general approach introduced before to predict the evolutionary stable
virulence at fixed values of D and γ. In the absence of antigenic escape, the evolutionary
stable viral strategy maximizes the reproduction ratio R0 (56; 32), which at fixed values
of β and γ is satisfied when the death rate of infected individuals α = 0. To account
for the observed non-zero virulence in real-life pathogens, it is assumed that strains with
an increased transmissibility cause shorter infections (230; 65; 231). Biologically, this
hypothesis comes from the idea that an increased viral load increases transmission but
also host mortality. This constraint is mathematically described with a function β(α),
with β′′(α) < 0. This concavity ensures the evolutionary stability of non-zero virulence
in non-antigenically evolving pathogens (232). Following the previous section, we assume
that the mutant has evolved a virulence very close to the wild type strain such that
αm = α+ δα with δα� α.
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Figure 7.3: Evolutionary stable virulence. A. Evolutionary stable virulence αess as a
function of cross-reactivity r0 for D = 4.5 ·10−5. The simulated αess (circles, see Methods)
is dictated by a trade-off between maximizing the speed of antigenic evolution v at small
cross-reactivity and maximizing the reproduction ratio R0 at large cross-reactivity. The
dark line is the prediction from Eq. 7.28 using the speed in the linear fitness regime
Eq. 7.14. B. Evolutionary stable virulence αess as a function of rescaled antigenic escape
rate D/r2

0 for different values r0 and D. The points collapse on a single curve and we
recover the trade-off described in A as r0 is varied (colormap in inset). C. Prediction from
Eq. 7.30 for different values of r0 and D. The data points align with the identity line,
confirming the validity of the relation. In B-C. the antigenic escape rates are D = 2 ·10−5

(circle) D = 4.5 · 10−5 (square) and D = 1 · 10−4 (triangles >). Parameters values:
Nh = 1010, M = 5, β0 = 2, γ = 0.6. For details about the simulations see Methods.

At small cross-reactivity, the viral population is in the FKPP regime and the invasion
criterion Eq. 7.18 reads as:

β(αm)− (αm + γ) > v2

4D (7.23)

Expanding it with respect to δα and making use of Eq. 7.7 in the large viral population
size limit (β − (α+ γ)) ' v2/(4D) the criterion becomes:

δα
(
β′(α)− 1

)
> 0. (7.24)

The fixed point of the dynamics reads:

β′(α) = 1. (7.25)

As β′(α) is a monotonically decreasing function this fixed point is stable and corresponds
to the evolutionary stable strategy. We recover here the result derived in (37). This result
is strictly equivalent to maximizing the FKPP speed of evolution Eq. 7.7.

When the cross-reactivity is large, the viral population is in the linear fitness regime
and the invasion criterion Eq. 7.21 reads as:

β(αm)
β(α) suc + β(αm)α+ γ

β(α) − (αm + γ) > v2

4D. (7.26)
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Again expanding it with respect to δα and using suc ' v2/4D the criterion becomes:

δα
β′(α)
β(α)

(
α+ γ + v2/4D − 1

)
> 0. (7.27)

The fixed point of the dynamics then reads as:

β′(α)
β(α)

(
α+ γ + v2

4D

)
= 1. (7.28)

This result is original to this work and relates the speed of antigenic adaptation to the
evolutionary stable virulence through the shape of the virulence-transmission trade-off.
When r0 → 0, in the large viral population limit using Eq. 7.7 we recover the equation
Eq. 7.28. On the contrary, when r0 →∞, the fitness gradient s→ 0 and the evolutionary
stable state satisfies:

β′(α) = β(α)
α+ γ

. (7.29)

This is equivalent to maximizing R0 since R′0(α) = (β′(α)(α+ γ)− β(α))/(α+ γ)2.
To verify this prediction, we extend our co-evolutionary framework to account for

virulence evolution. We subject virulence to diffusion (see Methods) under a transmission-
virulence trade-off β(α) = β0

√
α. We simulate the evolution of virulence, and we verify in

Fig. 7.3A that the evolutionary stable virulence maximizes v at small cross-reactivity and
maximizes R0 at large cross-reactivity. We verify with these observations that the fixed
point of the dynamics Eq. 7.25 and Eq. 7.28 are stable and correspond to the evolutionary
stable strategy of the viral population. The "linear fitness" prediction Eq. 7.28 (black
line Fig. 7.3A-B) agrees remarkably well in a large range of cross-reactivities with the
evolutionary stable virulence. With our choice of β(α) both Eq. 7.25 and Eq. 7.28 predict
the following relation for the evolutionary stable virulence:

α = γ + v2

4D. (7.30)

While we expect this relation to hold only in the linear fitness and FKPP regimes, we see
in Fig. 7.2C. that the simulated evolutionary stable virulence collapses to the prediction
of Eq. 7.30 along the entire cross-over and for various values of D and r0.

7.2.5 Evolutionary stable mutation rate

The mutation rate is known to extensively vary across pathogens, with remarkably
high values attained in RNA viruses (233; 62; 234; 235). A majority of mutations occuring
in viruses do not affect either the virulence or the antigenic traits and generically decrease
the intrinsic fitness of the strain (236; 237; 63; 238). The larger the total mutation rate
the more these deleterious mutations accumulate and decrease the pathogen’s infectivity.
As a consequence, increasing this already very high mutational load can lead to extinction
of the viral population and is a widely used antiviral strategy (64). Under this constraint,
the optimal mutation rate maximizing the intra-host antigenic escape has already been
investigated for pathogens causing chronic infections (239; 240). However, for pathogens
causing acute infections like influenza, the role of inter-host dynamics is crucial and can’t
be ignored. In this section, using the arguments developed in Sec.7.2.3 we investigate
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Figure 7.4: Evolutionary stable mutation rate. A. Evolutionary stable mutation rate
Dess as a function of cross-reactivity r0. The simulated Dess (circles, see Methods) matches
the FKPP prediction (dashed line) at small cross-reactivity, and follows the linear fitness
prediction at large cross-reactivity (dark line). The extinction threshold De is shown in
blue. B. Prediction from Eq. 7.38 for different values of r0 and λx. The simulated Dess
align with the idendity line, confirming the validity of the relation. The values of λx are
λx = 500 (squares) and λx = 1000 (circles). Parameters values: Nh = 1010, M = 5,
R0 = 1.5. For details about the simulations see Methods.

how inter-host immune pressure determines the evolutionary stable mutation rate of RNA
viruses.

To account for deleterious mutations the effective reproduction ratio of the pathogen
is recasted as R = R0e

−Ud (63), where Ud denotes the rate of occurence of deleterious
mutation. Introducing λ the ratio of deleterious to antigenic mutations we can rewrite it
as:

R = R0e
−λU ≡ R0e

−λxD, (7.31)

where λx = 2λ/〈δx2〉. We further assume that a change in the total mutation rate of
the pathogen does not significatively change the ratio of deleterious to antigenic muta-
tions. Finally, the evolution equation Eq. 7.6 for the density of infected individuals can
be rewritten as:

∂tn(x, t) = (α+ γ)
(
R0e

−λxDPinfect(x, t)− nc
)

Θ(n− 1)n(x, t) +D∂2
xn(x, t). (7.32)

In order to investigate the evolution of the mutation rate we decouple it from the virulence
by assuming the latter is fixed and we set α + γ = 1. Following the previous sections,
we consider that a mutator mutant arise with a diffusion constant Dm = D + δD and
δD � D, and we analytically estimate the evolutionary stable mutation rate in both the
FKPP and the linear fitness regimes.

At small cross-reactivity, the viral population is in the FKPP regime and the invasion
criterion Eq. 7.18 reads as: (

R0e
−λxDm − 1

)
>

v2

4Dm
. (7.33)

Expanding with respect to δD, and making use of Eq. 7.7 in the large viral population
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size limit R0e
−λxD − 1 ' v2/(4D) the criterion becomes:

δD
(
v2/(4D2)− λxR0e

−λxD
)
> 0. (7.34)

The fixed point of the dynamics is then:

v2/(4D2)− λxR0e
−λxD = 0. (7.35)

In the large viral population size limit this result is equivalent to maximizing with respect
to D the FKPP speed Eq. 7.7.

When the cross-reactivity is large, the viral population is in the linear fitness regime
and the invasion criterion Eq. 7.21 reads as:

e−λx(Dm−D)suc +
(
e−λx(Dm−D) − 1

)
>

v2

4D. (7.36)

Expanding with respect to δD and using suc ' v2/(4D) we are left with:

δD

(
v2

4D2 − λx

(
v2

4D + 1
))

> 0. (7.37)

The fixed point of the dynamics then reads as:

D = v2

4λxD
(1− λxD) . (7.38)

Interestingly, Eq. 7.35 can be rewritten as Eq. 7.38, and in both regimes the evolutionary
stable mutation rate obey the relation Eq. 7.38. To verify this prediction, we extend our co-
evolutionary framework to account for the evolution of the mutation rate. We simulate the
evolution of the mutation rate (see Methods) for different cross-reactivity values in Fig. 7.4.
At small cross-reactivity in Fig. 7.4A, the evolutionary stable mutation rate maximizes
the speed of evolution and is particularly close to the viral extinction threshold De =
lnR0/λx (237; 63), above which the reproduction ratio is smaller than unity. This result is
reminiscent of previously derived evolutionary stable mutation rate for in-hosts dynamics
of continuously evading pathogens (239). As the cross-reactivity increases in Fig. 7.4A
the viral population crosses over to the linear fitness regime and the evolutionary stable
mutation rate decreases. Asymptotically, as the cross-reactivity range increases, the viral
population tends to maximize the reproduction ratio and the evolutionary stable mutation
rate vanishes. We verify with these observations that the fixed point of the dynamics
Eq. 7.35 and Eq. 7.38 are stable and correspond to the evolutionary stable strategy of
the viral population. Finally, we see in Fig. 7.4C. that the simulated evolutionary stable
mutation rate collapses on the prediction Eq. 7.38 along the entire cross-over and for
various values of λx and r0.

7.3. Conclusions
In this work we have developped an analytical co-evolution framework for studying

the evolution of viral strategies in finite size viral population in response to immune
pressure. Within this SI(R) inspired framework, we observed that the viral population
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forms an antigenic wave escaping the ecological pressure resulting from immune memories
elicited by past infections in the host population. We showed that, as the cross-reactivity
of immune receptors increases, the selection for antigenic adaptation decreases and the
antigenic wave crosses over from a FKPP regime to a linear fitness regime. In both
regimes we derived general invasion conditions for the evolution viral strategies, and we
showed that the evolutionary stable point of any viral strategy is shaped by a trade off
between maximizing the speed of antigenic evolution when the cross-reactivity is small
and maximizing the reproduction ratio as it becomes larger. Applied to the evolution of
the virulence, this observation reconciles in one model results about virulence evolution of
recent studies in presence of antigenic escape (37) and of classical studies about pathogens
at endemic equilibrium (65; 57).

Our analysis further revealed the critical role played by strains showing the largest
degree of antigenic variation in the population. Not only do they rule the antigenic evo-
lution (39; 38), but we show that they also dictate the evolution of viral strategies. This
observation has particularly interesting epidemiological consequences regarding the evo-
lution of pathogenic virulence. According to our results, if the host population is almost
fully susceptible to the most antigenically mutated variants, the pathogen is expected to
evolve towards large transmission rates and virulence. On the contrary, when a large de-
gree of cross-immunity exists between different variants, the virulence should rather reach
intermediate levels maximizing the reproduction ratio. In this light, the level of cross-
immunity between strains could potentially be used as a predictor for virulence evolution.
As a consequence, a natural extension to our framework is to use it to investigate optimal
control strategies limiting the evolution of more transmissible and virulent variants (241).

While it is clear that high levels of deleterious mutations are detrimental to the viral
population, it remains debated whether high mutation rates in RNA viruses have been
selected because they offer a mechanism of antigenic escape, or simply because they corre-
late with faster in-host replication speed (233; 234; 235). Our work provides a quantitative
description of the first hypothesis by predicting the evolutionary stable mutation rate as a
function of the speed of antigenic adaptation and the rate of deleterious to antigenic muta-
tions. In particular, we observe that while mutation rates close to the extinction threshold
are obtained at small cross-reactivity, the evolutionary stable mutation rate decreases as
cross-reactivity increases.

Overall, our work offers a robust analytical framework to study the evolution of viral
strategies in the context of antigenically escaping pathogens. It provides new theoretical
insight into the eco-evolutionary feedbacks dictating the evolution of viral strategies, and
can be used to study the evolution of any non-antigenic trait in antigenically evolving
populations.

7.4. Methods

7.4.1 Simulations of viral immune co-evolution

In Sec. 7.2.2 we simulated Eq. 7.6 using a finite differences approximation. We choose
a time step ∆t, a mesh size ∆x, and use Euler discretization for the first derivative and
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Verlet discretization for the second derivative:

n(x, t+ ∆t)− n(x, t)
∆t = [βPinfect(x, t)− (α+ γ)] Θ(n(x, t)− nc)n(x, t)

+D
n(x+ ∆x, t) + n(x−∆x, t)− 2n(x, t)

∆x2 . (7.39)

We make sure that the Courant-Friedrich-Levy condition is verified D∆t/∆x2 < 1. This
condition simply requires that the time step is small enough to capture diffusion over a
distance ∆x. To compute Pinfect(x, t) we first solve Eq. 7.2 by finite differences using Euler
discretization:

nh(x, t+ ∆t)− nh(x, t)
∆t = n(x, t)− N(t)

MNh
nh(x, t), (7.40)

and we compute the convolution Eq. 7.3 with a Fast Fourier Transform with periodic
boundary conditions (242). We make sure that the antigenic space is large enough for the
viral wave not to interact with the tail of immune memories when reaching the boundaries.

We chose ∆t = 0.04 and ∆x = min (fr0, 0.18) for Fig. 7.1 and Fig. 7.2, with f = 0.03
for D = 2 · 10−5, f = 0.0625 for D = 4.5 · 10−5 and f = 0.1 for D = 10−4. For Fig. 7.3
we chose ∆t = 0.04 and ∆x = min (fr0, 0.2) for Fig. 7.1 and Fig.7.3, with f = 0.04 for
D = 2 · 10−5, f = 0.07 for D = 4.5 · 10−5 and f = 0.1 for D = 10−4. For Fig. 7.4 we chose
∆t = 0.06 and ∆x = min (0.05r0, 0.02) for all values of λx.

7.4.2 Simulations of the evolutionary dynamics of viral strategies
We denote Dχ the diffusion constant of the viral parameter χ we investigate. In

Sec. 7.2.4 this viral parameter is the virulence and in Sec. 7.2.5 it is the mutation rate D.
Generically, the evolutionary dynamics of the viral strategy obey the following diffusion
equation:

∂tn(x, χ, t) = f(x, χ, t)Θ(n− nc)n(x, χ, t) +
[
D∂2

x +Dχ∂
2
χ

]
n(x, χ, t) (7.41)

We simulate this equation using a finite differences approximation. We choose a time step
∆t, a mesh shize ∆x and a parameter step size ∆χ. The finite difference equation reads:

n(x, χ, t+ ∆t)− n(x, χ, t)
∆t = f(x, χ, t)Θ(n(x, χ, t)− nc)n(x, χ, t)

+D
n(x+ ∆x, χ, t) + n(x−∆x, χ, t)− 2n(x, χ, t)

∆x2

+Dχ
n(x, χ+ ∆χ, t) + n(x, χ−∆χ, t)− 2n(x, χ, t)

∆χ2 (7.42)

We make sure the Courant-Friedrich-Levy conditions are satisfied, and we implement the
evolution of the immune memories as described in Method. 7.4.1. For Fig. 7.3 we took
Dα = 2 · 10−6 and ∆α = 0.012. For Fig. 7.3, we assumed that the mutation rate evolves
logarithmically and we took DlnD = 2 · 10−6 and ∆ lnD = 0.037.
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Conclusions

8.1. Main contributions of this thesis
In the context of active matter, statistical-physics inspired models have been success-

fully applied to study the emergence of collective behaviour, but their connections to
experimental data remains sparse. Recent evidence showed that the observed collective
dynamics in flocks of European starlings are better described by inertial stochastic models
for the birds’ velocities (17; 18; 78) than by first order ones. Following this observation,
the objective of the first part of this thesis was to advance towards a quantitative con-
frontation of these models by developing a Bayesian inference method for second order
models of collective behaviour

To tackle this inference problem of reconstructing a continuous-time stochastic dynam-
ical model from experimental discrete time series, an essential ingredient is to choose a
discretization of the continuous-time dynamics. While doing so, it is often assumed that
all the degrees of freedom of the continuous dynamics are measured independently by
the experimental apparatus. However, in the case of partially observed dynamics, it has
been observed that the choice of discretization is crucial, and that low order discretization
schemes provide inconsistent estimators (46; 47). In chapter 4 we explained this observa-
tion by showing how the choice of discretization reflects the observability of the degrees of
freedom of the dynamics. In particular, we demonstrated that Euler discretizations used
to reconstruct fully observed first order dynamics provide inconsistent estimators when the
dynamics are partially observed. We circumvented this difficulty by developing a novel in-
ference scheme for second order stochastic dynamics based on a higher order discretization
of the continuous-time equations. We were able to derive an analytical expression for the
likelihood of partially observed trajectories, and obtained maximum-likelihood estimators
consistent in the limit of infinitely long time series. Finally, we showed that not only does
this method apply to equilibrium processes like Brownian particles in an anharmonic po-
tential, but it also applies to non-equilibrium processes like stochastic harmonic oscillators
with multiplicative noise.

Motivated by this success, we applied our method to the inertial spin model introduced
to describe bird flocks. This model of collective behaviour constitutes a strongly interacting
system of underdamped of Langevin equations, for which no inference scheme had yet been
developed. By studying velocity fluctuations around the collective direction of motion we
derived estimators consistent in the limit of long time series for all the parameters of the
model. Notably, this showed that our inference scheme can be applied to non-equilibrium
models of active matter with a large number of interacting agents. This work paves the
way for this inference scheme to be applied to real recordings of flocks of starlings.

In the second part of this thesis we shifted our interest towards the immune system, a
biological network of increased complexity. Contrarily to the assemblies of cells or animals
studied in chapter 3–4, the immune system is composed of an uncountable number of
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agents interacting across time and space at various scales. As a consequence, agent-based
approaches are difficult to use to gain insight into the organization of the immune system.
To tackle this challenge, the objective of the second part of this thesis was to develop
a new approach using decision making theory to describe how the B cell subset of the
immune system is organized to respond optimally to evolving pathogens.

To this end, in chapter 6 we modeled as a discrete-decision process the B-cell response
elicited by sequential reinfections by an evolving pathogen. Within this framework, we
investigated affinity maturation and backboosting strategies maximizing the long-term
protection against future infections, and minimizing short-term resource costs due to the
creation of new B-cell clones. We showed that optimal immune strategies are highly depen-
dent on the antigenic divergence between infections. While for slow evolving pathogens
the B-cell response generated by affinity maturation is monoclonal and specific to the
infecting strain, for fast evolving pathogens the response is polyclonal with a diversity
matching the pathogen typical antigenic divergence between subsequent infections. This
last result suggests that the diversity of the memory pool constitutes a mechanism of an-
ticipation of escape mutations, which is in agreement with the current consensus about
the role of memory B cells (26; 25). Our model also predicted power-law distributed clone
sizes in agreement with experimental sequencing data from healthy donors. Contrarily to
other models of immune repertoire dynamics where clone-size diversity was generated by
random non-correlated reinfections (167), in our model the main force driving it is the
antigenic divergence between successive infections. Discriminating the different models is
a promising idea for future research.

In a second time, we investigated how the efficiency of the extrafollicular response can
limit the extent of affinity maturation and the production of new plasma and memory cells.
To this end, we allowed affinity maturation to be modulated by the infection cost as a
proxy of the speed of response. We showed that under this new strategy, the extrafollicular
response inhibits affinity maturation as long as the existing memory cells respond fast
enough, a phenomenon reminiscent of antigenic imprinting, or “original antigenic sin’
(196; 29; 28; 30). Importantly, these results showed that antigenic imprinting emerges as
a long term optimal strategy without requiring built-in negative feedbacks between the
early response and affinity maturation.

In the last part of this thesis we studied how in return a population of hosts influences
the fate of viral populations. To this end we used a SI(R) inspired approach to model the
feedbacks from the host population on the viral evolution. This immune pressure not only
drives the virus antigenic evolution of viral populations but also selects for the strain’s
mutation rate, transmission rate and virulence. The objective of this part of the thesis was
to understand the properties of the evolutionary optimum reached by these viral strategies
under the effect of immune pressure.

We first showed that the speed of antigenic escape is highly dependent on the degree
of cross-reactivity of antibodies elicited by past infections. While for small cross-reactivity
the host population is fully susceptible to the most antigenically advanced strains and the
speed of antigenic evolution is maximum, as the cross-reactivity increases the susceptibility
to the newest strains decreases and the antigenic evolution slows down. As a consequence
of this cross-over, we then demonstrated how evolutionary stable viral strategies obey a
trade off between maximizing the speed of antigenic evolution at small cross-reactivity and
maximizing the basic reproduction ratio at large cross-reactivity. This result is general
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and holds for the evolution of any non-antigenic trait.
To prove the applicability of this approach, we first applied it to study the evolution

of virulence in antigenically evolving viral populations. Recent results showed that anti-
genic escape promotes larger transmissilibity and virulence than expected for non-evolving
pathogens (37). Our approach refined this observation by reconciling both results: at
small cross-reactivity antigenic escape promotes high virulence and transmissibility, but
as cross-reactivity is increased the evolutionary stable virulence reaches the one predicted
by models at endemic equilibrium. We believe that this result paves the way for pre-
dictors of the evolution of virulence to be built using the degree cross-immunity between
strains. In a second time we applied our approach to study the evolution of the mutation
rate in viruses causing acute infections. While we found that at low cross-reactivity the
evolutionary stable mutation rate is close to the extinction threshold, we showed that an
increased cross-reactivity (and thus a decreased selection for new antigenic variants) leads
to more moderate mutation rates. Additionally we derived an analytical prediction for the
evolutionary stable mutation rate linking the ecological pressure from the host population
and the rate of deleterious to antigenic mutations. We believe that these results could be
used to discriminate the different hypotheses justifying the emergence of particularly high
mutation rates in RNA viruses (233; 234; 235).

8.2. Directions for future research
Applying inference on real recordings of flocks of starlings

In chapter 4 we developed a versatile inference approach for second order stochastic
models. The natural prospect for this approach is to be applied to discrete time trajectories
reconstructed from recordings of flocks of starlings. However, preliminary analysis revealed
that, when applied to real data, the inference scheme is in the high noise regime described
in Fig. 4.6, thereby compromising the retrieval of the stochastic information from the
trajectories.

The analysis presented in Sec. 4.3.5 shows that estimators remain consistent in the
limit of a measurement noise negligeable with respect to the stochastic contribution to
infer. While the former is considered uncorrelated and independent of the acquisition
rate, the latter depends on it through the choice of the discretization. Increasing the
time step is an option to counteract the effect of measurement noise, as it increases the
stochastic contribution to infer, but it also decreases the precision of the inference as it
is accurate in the limit of small time steps. As a consequence, it is necessary to increase
the inference scheme robustness to measurement noise before being able to apply it on
data. To this end, a first approach is to exploit discretizations of the stochastic equations
ensuring an efficient canceling of the measurement noise. This method is the one adopted
by Frishman et al. (82), which were able to build noise robust estimators. However, the
applicability of this idea to our specific scheme remains unclear, and it may come at the
cost of the generality of our approach by being parameter dependent. A more pragmatic
idea is to rewrite Eq. 4.35 for the noisy measurements, and learn the noise amplitude along
with other parameters of the model. Preliminary work revealed that following this path
an analytical formula for the likelihood can be obtained in the small noise limit. We can
hope that taking into account measurement noise directly in the likelihood, along with
model parameters to infer, will extend the applicability of our inference scheme to noisy
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data.
Increasing the robustness of the inference approach presented in chapter 4 is an achiev-

able, although cumbersome, task. We believe however that drastic improvements can be
done without loosing the generality and applicability of the approach. This is a necessary
step to take before being able to apply it on recordings of flocks of starlings.

Analyzing B-cell repertoire dynamics at level of functional families
The fundamental idea we developed in chapter 6 is that the main driver of the B-cells

population dynamics is the frequency of reinfections and the mutation rate of pathogens.
As hinted in chapter 5, this idea goes beyond usual B-cell population dynamics models
that mostly ignore correlations between successive antigen exposures. To be able to go
beyond our theoretical work and discriminate our predictions on the repertoire dynamics
of memory B cell from previous models, a data-driven analysis of the population dynamics
of B cells responding to specific antigens, or functional families, is necessary.

The clustering of T-cells in functional families has already profoundly changed the way
we analyze the immune response, allowing for the identification of antigen-specific T-cells
from single bulk repertoire snapshots (243). The construction of functional families in the
T-cell repertoire relied on experimental evidence that antigen-specific T-cell pools differed
by up to 4 amino acids in the CDR3 (244; 245; 246). Extending this approach to B cells is
particularly challenging since the B-cell-to-peptide interaction is more complex than the
T-cell-to-peptide one. Notably, B-cells CDR3s are significantly longer than T-cells CDR3s
and their 3-dimensional structure is essential to the recognition of peptides. However,
contrarily to T cells, B cells undergo affinity maturation, and thus can be clonally related
through a common evolutionary history. As B cells of common ancestry are expected
to share functionality, we can first leverage this information to cluster B-cell clonotypes
into functional families. Their identification is enabled by genomic data itself, thus not
requiring structural measurements a priori. The sequences statistics of these functional
families can, in a second step, be reduced to a number of structural factors such as the
Kidera factors to inform on the molecular specificity of the different families (247; 248).
We believe that this ability is essential to dissect the immune response at the level of where
it happens, rather than from bulk repertoire snapshots. To draw a parallel, a description
of the B-cell repertoire at this level amounts to investigating it at a mesoscopic scale,
where both structural and statistical effects matter.

Studying the B-cell repertoire at the level of functional families is an ambitious task,
but we believe that it is a necessary step to elucidate the drivers of B-cell population
dynamics, and in particular disentangle the role of viral evolution from factors intrinsic to
the immune response.
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1.1. Building general Langevin models from discrete datasets

A.1.1 Discretization procedure

Let us briefly summarize two possible systematic strategies to obtain a discretized
equation in the space of the x variables up to the desired O(∆t3/2) order. Following (92),
we can derive from (4.3) the associated GLE by formally solving the second equation of
the system:

v(t) =
∫ t

0
ds e−η(t−s) [f(x(s)) + ξ(s)] + v0e

−ηt. (A.1)

Plugging this expression back into the equation for x, we get a closed equation in x space:

ẋ =
∫ t

0
dsK(t− s)f(x(s)) + ζ(t) + v0e

−ηt, (A.2)

where K(t) = e−ηt and ζ(t) =
∫ t

0 dse
−η(t−s)ξ(s). Discrete update equations on the scale

∆t can now be obtained by integrating (A.2) between tn and tn+1 and between tn−1
and tn. An exponentially decaying memory kernel propagates both the noise and the
initial condition v0 in (A.2); it is then possible to identify an appropriate reweighing of
its integrated counterparts in order to get rid of both effects. Indeed the combination
xn+1 − xn − e−η∆t(xn − xn−1) does not contain v0 and has a short correlated effective
noise:

xn+1 − xn − e−η∆t(xn − xn−1) = 1− e−η∆t

η

∫ tn+1

tn−1
Ψ(t− tn)f(x(t))dt+ ζn (A.3)

with

ζn =
∫ tn+1

tn−1
Ψ(t− tn)ξ(t)dt,

Ψ(t) = eηt − e−η∆t

1− e−η∆t [θ(t+ ∆t)− θ(t)] + 1− eη(t−∆t)
1− e−η∆t [θ(t)− θ(∆t− t)] , (A.4)

θ(t) being the Heaviside function. We can check that 〈ζnζm〉 has the nearest neighbor
structure of (4.26):

〈ζnζm〉 = Cnm = aδn,m + bδn,m±1.

From (A.4) one deduces that, to order O(∆t3), the coefficients a and b of the covariance
matrix assume the expression reported in (4.27).

So far, these equations are exact. Some approximation is needed at this stage to
evaluate the integral of the force. Various methods have been investigated in the literature;
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among the simplest is the Langevin Impulse method (49), which approximates the integral
with the function at the midpoint, leading to

xn+1 = xn + e−η∆t(xn − xn−1) + 1− e−η∆t

η
∆tf(xn) + ζn. (A.5)

Alternatively, taking the first order expansion of the force around the midpoint, f(x(t)) '
f(xn)+ t−tn

∆t [f(xn)− f(xn−1)] in (A.3), one recovers the stochastic Verlet algorithm (111),
which is one order more accurate than (A.5).

Another approach, followed in (48) (see also (249)), is to consider the full system of
equations in the (x, v) phase space in integral form:

xn+1 = xn +
∫ tn+1
tn v(t)dt

vn+1 = vn +
∫ tn+1
tn f(x(t))dt+

∫ tn+1
tn ξ(t)dt

(A.6)

and perform a second order Taylor-Itô expansion around the point tn:xn+1 = xn + vn∆t+Dn

vn+1 = (1− η∆t)vn + 1
2∆t [f(xn+1) + f(xn)] + σ∆t1/2ξn − ηDn,

(A.7)

where Dn is defined as follows:

Dn = 1
2∆t2 [f(xn)− ηvn] + σ∆t3/2

[1
2ξn + 1

2
√

3
θn

]
(A.8)

and ξn and θn are i.i.d. Gaussian variables sampled from N (0, 1). Eliminating the velocity
variables vn and vn−1, we find a difference equation of the form of (4.21):

(A.9)
xn+1 = 2xn − xn−1 − η∆t

(
1− η∆t

2

)
(xn − xn−1)

−∆t2f(xn) + η∆t3

4 [f(xn)− 3f(xn−1)] + ∆t3/2ζn,

with α and β coinciding, up to O(∆t2), to the Taylor expansion of the coefficients in (A.5).
The noise variable ζn is defined from (A.7) as a linear combination of ξn, ξn−1, θn, θn−1.
As a result, due to overlapping Wiener processes, correlations between subsequent noise
extractions emerge, which are still described by (4.26).

This second derivation is helpful in justifying the quasi-Toeplitz structure of the covari-
ance matrix discussed in the main text. Indeed, fixing x1 implies fixing the first random
increment which is responsible for position update in the integration scheme (A.7), when
the known initial conditions are (x0, v0). Since this stochastic increment enters into the
definition of ζ1 but not in that of ζ2, the true covariance matrix must have a different
entry C11 than the other elements on the main diagonal, as in (4.28).

A.1.2 Inference formulas
Naïve max-likelihood approaches for the harmonic oscillator

Several Euler-like schemes for the numerical integration of second order stochastic
differential equations can be defined. From each of them, inconsistently retaining only the
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diagonal O(∆t3/2) stochastic terms when we write the update equations in x space, we
can extract a factorized expression for the dynamical likelihood, such as (4.10).

Let us focus on three particular examples: the standard explicit Euler-Maruyama
scheme (EM-fwd), its implicit variant (EM-bkd), and the symmetric BBK scheme (250).
The three of them may be obtained from the second order SDE (4.1) by approximating
first and second time derivatives adopting a forward, backward or symmetric prescription
respectively. The resulting update equations in the three cases read:

[EM-fwd] xn+1 − (2− η∆t)xn + (1− η∆t+ ω2
0∆t2)xn−1 = σ∆t3/2rn−1 (A.10)

[EM-bkd] (1 + η∆t)xn+1 − (2 + η∆t− ω2
0∆t2)xn + xn−1 = σ∆t3/2rn+1 (A.11)

[BBK]
(
1 + η∆t

2

)
xn+1 − (2− ω2

0∆t2)xn +
(
1− η∆t

2

)
xn−1 = σ∆t3/2rn (A.12)

with σ =
√

2Tη and {rn} a sequence of L− 1 i.i.d. Gaussian random variables of null
mean and unit variance.

Thanks to the independence of the random variables appearing in (A.10)–(A.12), the
discrete propagator takes an approximate factorized form, which we can generally write
as:

P(1)(x2, . . . , xL|x0, x1) =
L−1∏
n=1

1
Zn

e−Sn(xn+1,xn,xn−1). (A.13)

The reduced minus-log likelihood, defined as

L
L− 1 := − lnP (x2, . . . , xL|x0, x1)

L− 1 , (A.14)

corresponds in the factorized case to the temporal average of the quantity (Sn + lnZn).
This quantity is defined in a slightly different way in the three cases above; consequently,
in each of these cases the reduced minus-log-likelihood will be slightly different, as reads
in the following. We recall the notation used in the main text to indicate the equal-time,
one-step and two-step experimental correlation functions:

Cs = 1
L− 1

L−1∑
n=1

xnxn; C ′s = 1
L− 1

L−1∑
n=1

xn+1xn+1;

C ′′s = 1
L− 1

L−1∑
n=1

xn−1xn−1; Gs = 1
L− 1

L−1∑
n=1

xnxn+1;

G′s = 1
L− 1

L−1∑
n=1

xnxn−1; Fs = 1
L− 1

L−1∑
n=1

xn−1xn+1.
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[EM-fwd] L
L− 1 =1

2 ln
(
4πTη∆t3

)
+ 1

4Tη∆t3 [C ′s + (2− η∆t2)2Cs

+ (1− η∆t+ ω2
0∆t2)2C ′′s − 2(2− η∆t)Gs

+ 2(1− η∆t+ ω2
0∆t2)Fs

− 2(2− η∆t)(1− η∆t+ ω2
0∆t2)G′s], (A.15)

[EM-bkd] L
L− 1 =1

2 ln
(
4πTη∆t3

)
− ln (1 + η∆t)

+ 1
4Tη∆t3 [(1 + η∆t)2C ′s + (2 + η∆t− ω2

0∆t2)2Cs + C ′′s

− 2(1 + η∆t)(2 + η∆t− ω2
0∆t2)Gs + 2(1 + η∆t)Fs

− 2(2 + η∆t− ω2
0∆t2)G′s], (A.16)

[BBK] L
L− 1 =1

2 ln
(
4πTη∆t3

)
− ln

(
1 + η∆t

2

)
+ 1

4Tη∆t3 [ (1 + η∆t/2)2C ′s

+ (2− ω2
0∆t2)2Cs + (1− η∆t/2)2C ′′s

− 2(2− ω2
0∆t2) (1 + η∆t/2)Gs

+ 2 (1 + η∆t/2) (1− η∆t/2)Fs
− 2(2− ω2

0∆t2) (1− η∆t/2)G′s] . (A.17)

Minimization of (A.15)–(A.17) with respect to the parameters of the model yields the
following optimal values, according to the adopted scheme:
◦ Euler-forward:

η∗fwd = 1
∆t

Gs +G′s − 2Cs + G′s
C′′s

(2G′s − C ′′s − Fs)

−Cs + G′s
2

C′′s

; (A.18)

ω2
0
∗
fwd = 1

∆t2
(2− η∆t)G′s − (1− η∆t)C ′′s − Fs

C ′′s
; (A.19)

T ∗fwd = 1
2η∆t3 [C ′s + (2− η∆t2)2Cs+

(1− η∆t+ ω2
0∆t2)2C ′′s − 2(2− η∆t)Gs+

2(1− η∆t+ ω2
0∆t2)Fs−

2(2− η∆t)(1− η∆t+ ω2
0∆t2)G′s] ; (A.20)

◦ Euler-backward:

η∗bkd = 1
∆t

C ′′s + Fs − G′s
Cs

(Gs +G′s)
GsG′s
Cs
− Fs

; (A.21)

ω2
0
∗
bkd = 1

∆t2
(2 + η∆t)Cs −G′s − (1 + η∆t)Gs

Cs
; (A.22)

T ∗bkd = 1
2η∆t3 [(1 + η∆t)2C ′s + (2 + η∆t− ω2

0∆t2)2Cs+

C ′′s − 2(1 + η∆t)(2 + η∆t− ω2
0∆t2)Gs+

2(1 + η∆t)Fs − 2(2 + η∆t− ω2
0∆t2)G′s] ; (A.23)
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◦ BBK:

η∗
BBK

= 2
∆t

C ′′s + Fs − G′s
Cs

(Gs +G′s)
C ′′s − Fs −

G′s
Cs

(G′s −Gs)
; (A.24)

ω2
0
∗
BBK

= 1
∆t2

2Cs −
(
1 + η∆t

2

)
Gs −

(
1− η∆t

2

)
G′s

Cs
; (A.25)

T ∗
BBK

= 1
2η∆t3 [ (1 + η∆t/2)2C ′s + (2− ω2

0∆t2)2Cs+

(1− η∆t/2)2C ′′s−
2(2− ω2

0∆t2) (1 + η∆t/2)Gs+
2 (1 + η∆t/2) (1− η∆t/2)Fs−
2(2− ω2

0∆t2) (1− η∆t/2)G′s] . (A.26)

All of the schemes above are derived from numerical integrators with weak and strong
convergence order O(∆t), and consequently give a 2/3 rescaling factor for the inferred
damping coefficient η∗. This can be checked using the procedure outlined to derive (4.15),
which consists of replacing the experimental two-time quantities with the known correla-
tion functions for the harmonic oscillator:

C(t) = T

ω2
0
e−γt

cos
(√

ω2
0 − γ2t

)
+ γ

sin(
√
ω2

0 − γ2t)√
ω2

0 − γ2

 , (A.27)

where γ = η/2, and performing a Taylor expansion around the zero temporal distance. In
the same way, the exactness of the inference formulas for T ∗ and ω2

0
∗ can be checked for

the three methods.

Shift-invariant O(∆t3/2) Bayesian approach
We argued that the joint probability of sequences of points in real space is not factor-

ized into a chain of conditional probabilities. This happens because the dynamics of the
harmonic oscillator, when projected into the x space, is governed by evolution equations
containing a colored noise. The right scheme to adopt is then of the kind of (4.21): as dis-
cussed in the main text, this requires correlations between subsequently extracted random
variables to be taken into account, resulting, in the case of additive noise, in a covariance
matrix with a (quasi-)Toeplitz symmetric tridiagonal structure (cfr. (4.28) and (4.26)).
We pursue a maximum likelihood approach taking as the function of the parameters of
the model to maximize:

(A.28)
P(2)(xL, . . . , x2|x1, x0) = 1

Z
exp

−1
2

L−1∑
n,m=1

(xn+1 + F (xn, xn−1;µ))C−1
nm(xm+1 + F (xm, xm−1;µ)).

The partition function is specified by (4.24) and (4.30), whereas the relation between
µ and the physical parameters of the dynamical model depends on the details of the
discretization scheme which is adopted.
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A B C D

Figure S1: Accuracy of the different likelihood-based methods for the harmonic
oscillator. Max-likelihood accuracy in inferring the damping coefficient of the harmonic
oscillator, in varying damping regimes: A. shows the O(∆t3/2) Toeplitz method; B–D.
show the three O(∆t1/2) variants corresponding, respectively, to the Euler forward, Euler
backward and BBK schemes. The main features to highlight are the appearance of the 2/3
rescaling factor for the O(∆t1/2) scheme (red dot-dashed line), compared to the absence of
any rescaling for the O(∆t3/2) scheme, and the higher stability of the latter with respect
to ∆t filtering. Different damping regimes are explored: the sampled values of ηsim are
indicated in the colorbar. The remaining parameters are: T = 1, ω0 = 1. Each point is
the average of the inference results of 10 different trajectories of 5000 points (for any ∆t).
Errorbars are taken as 0.95 CI.

Thanks to the peculiar structure of this likelihood, one can go pretty far with simple
algebra in the optimization problem. First of all, it is convenient to reformulate the issue
as a minimization problem for the minus log-likelihood:

(A.29)
L = L− 1

2 ln
(

2π2
3Tη∆t3

)
+ 1

2

L−1∑
k=1

ln
(

2 + cos
(
kπ

L

))

+ 3/2
LTη∆t3

L−1∑
n,m=1

[
(xn+1 + F (xn, xn−1;µ))Ãnm(xm+1 + F (xm, xm−1;µ))

]
,

being

Ãnm =
L−1∑
k=1

sin
(
nkπ
L

)
sin
(
mkπ
L

)
2 + cos

(
kπ
L

) . (A.30)

As usual, the temperature just appears as a prefactor for the effective action, without
affecting its actual dynamical structure. The optimal value is given by:

T ∗ = 3
L(L− 1)η∆t3

L−1∑
n,m=1

[
(xn+1 + F (xn, xn−1;µ))Ãnm(xm+1 + F (xm, xm−1;µ))

]
.

(A.31)
Replacing it into (A.29) and getting rid of additional constants, we obtain a reduced
minus-log-likelihood:

L ∝ 1
L− 1

L−1∑
n,m=1

L−1∑
k=1

sin
(
nkπ
L

)
sin
(
mkπ
L

)
2 + cos

(
kπ
L

) (xn+1 +F (xn, xn−1;µ))(xm+1 +F (xm, xm−1;µ)).

(A.32)



101 A.1 Building general Langevin models from discrete datasets

One can now split all the terms appearing in the sum and derive with respect to the
effective parameters µ. Focusing on the case of the simple stochastic harmonic oscillator,
F (xn, xn−1;µ) = αxn + βxn−1, the set of effective parameter corresponds to µ = (α, β).
By adopting the Langevin Impulse integrator (see App. A.1.1), they correspond to:α = −1− e−η∆t + ω2

0∆t
(
1− e−η∆t

)
/η

β = e−η∆t.
(A.33)

By adopting a second order Taylor expansion around the prepoint, they correspond to:α = −2 + η∆t
(
1− η∆t

2

)
+ ω2

0∆t2

β = 1− η∆t
(
1− η∆t

2

)
.

(A.34)

As required for them to be consistent, the two variants are equivalent up to O(∆t3). The
numerical results shown in this paper are obtained using (A.33).

Imposing that the derivatives of L w.r.t. α and β are zero leads to:

α∗ = −T1 + β∗T3
2T4

; β∗ = T1T3 − 2T2T4
−T 2

3 + 4T4T5
, (A.35)

where, with implicit sum over the indexes n,m form 1 to L− 1,

T1 = 2
L
Ãnm xnxm+1 ; T2 = 2

L
Ãnm xn−1xm+1 ;

T3 = 2
L
Ãnm xn−1xm ; T4 = 1

L
Ãnm xnxm ;

T5 = 1
L
Ãnm xn−1xm−1 . (A.36)

This procedure can be applied to find explicit formulas for any non-interacting system
described by a Kramers process with velocity-independent forces f(x), as in (4.1). We
report here those we derived and used for the anharmonic model with force f(x) = −kx−
λx3. Referring again to the Langevin Impulse integrator, one possible set of independent
parameters is given by µ = (β,K,Λ), where β = e−η∆t, K = k∆t/η, Λ = λ∆t/η. The
Toeplitz inference formulas for those parameters read:

β∗ =
[
P5 −

P6P8
P2
− (P2P9 − P3P8)(P2P7 − P3P6)

P2(P2P4 − P 2
3 )

]

·
[
P1 −

P 2
6
P2
− (P2P7 − P3P6)2

P2(P2P4 − P 2
3 )

]−1

; (A.37)

Λ∗ =β∗(P2P7 − P3P6)− (P2P9 − P3P8)
(1− β∗)(P2P4 − P 2

3 )
; (A.38)

K∗ = β∗P6 − P8
(1− β∗)P2

− Λ∗P3
P2

; (A.39)
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Figure S2: Accuracy of the different likelihood-based methods for the ISM.Max-
likelihood accuracy in inferring the effective parameter η/χ of the inertial spin model: A.
shows the O(∆t3/2) Toeplitz method; B–D. show the three O(∆t1/2) variants correspond-
ing, respectively, to the Euler forward, Euler backward and BBK schemes. We see the 2/3
factor for the O(∆t1/2) schemes (red dot-dashed line), and no rescaling for the O(∆t3/2)
scheme. ISM simulations are performed in different damping regimes: the sampled values
for the parameter ηsim are indicated along the colorbar. The remaining parameters are:
χ = 1, T = 0.4, J = 5.0, nc = 6, N = 1000. Each point is the average of the inference
results of 10 different trajectories of 200 points (for any ∆t). Errorbars correspond to 0.95
CI.

where

P1 = (xn − xn−1)Ãnm(xm − xm−1) ;
P2 = xnÃnmxm ; P3 = xnÃnmx

3
m ; P4 = x3

nÃnmx
3
m ;

P5 = (xn − xn−1)Ãnm(xm+1 − xm) ;
P6 = (xn − xn−1)Ãnmxm ; P7 = (xn − xn−1)Ãnmx3

m ;
P8 = (xn+1 − xn)Ãnmxm ; P9 = (xn+1 − xn)Ãnmx3

m . (A.40)

From these equations, the max-likelihood estimators for the physical parameters λ∗, k∗
and η∗ can be found.

Generalization to the interacting case (ISM)

As one moves from single to many particle systems, extra parameters are needed:
position and velocity variables are conveniently represented as N -component vectors, N
being the number of constituents of the group, and model parameters become matrices.
For the equations of motion of the three-dimensional ISM on a fixed lattice in the spin-wave
approximation (4.41), the update rule becomes:

ζin = πin+1 + αijπnj + βijπn−1j , (A.41)

with

αij = α0δij + α1Λij and βij = βδij ,

where Λij is the discrete Laplacian, and sums over the j index are implicit.
The definitions of α0, α1 and β depend on the details of the discretization. Using, for
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instance, the Langevin impulse integrator (LI),(
η

χ

)∗
LI

= − ln β∗

∆t ;
(
J

χ

)∗
LI

= − ln β∗

1− β∗
α∗

∆t2 . (A.42)

Using instead a second order Taylor expansion, we get:(
η

χ

)∗
IIT

= 1−
√

2β∗ − 1
∆t ;

(
J

χ

)∗
IIT

= α∗

∆t2 . (A.43)

The three parameters α0, α1 and β are not independent, since the extra independent
parameters of the interacting problem are hidden in the adjacency matrix. In both of the
cases considered above ((A.43) and (A.42)), α0 and β are linked by the same relation:
α0 = −β − 1. Renaming α1 = α, the minus-log-likelihood reads:

(A.44)
L = (L− 1)(d− 1)

2 ln
(
Tη

χ2 ∆t3
)

+ const

+ 3/2
LTη
χ2 ∆t3

L−1∑
n,m=1

1
N

N∑
i=1

Ãnm
[
πin+1 − πin − β(πin − πin−1) + αΛijπnj

]

·
[
πim+1 − πmi − β(πim − πim−1) + αΛilπml

]
.

Again, one can proceed with an analytic minimization with respect to T , α and β,
giving:

α∗ = βK4 −K3
2K5

; (A.45)

β∗ = −K3K4 + 2K1K5
−K2

4 + 4K2K5
; (A.46)

(A.47)T ∗ = 3
(d− 1) (η/χ)∗∆t3

[
K0 − β∗K1 + β∗2K2 + α∗K3 − α∗β∗K4 + α∗2K5

]
,

with K0 . . .K5 the generalization to the many-particle case of the combinations of exper-
imental observables T1, . . . , T5 defined above (again with implicit sums over n,m):
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K0 = 1
N

N∑
i=1

Ãnm
L(L− 1)(πin+1 − πin) · (πim+1 − πim) ;

K1 = 2
N

N∑
i=1

Ãnm
L(L− 1)(πin+1 − πin) · (πim − πim−1) ;

K2 = 1
N

N∑
i=1

Ãnm
L(L− 1)(πin − πin−1) · (πim − πim−1) ;

K3 = 2
N

N∑
i,j=1

Ãnm
L(L− 1)Λij(πin+1 − πin) · πjm ;

K4 = 2
N

N∑
i,j=1

Ãnm
L(L− 1)Λij(πin − πin−1) · πjm ;

K5 = 1
N

N∑
i=1

Ãnm
L(L− 1)ΛijΛilπjn · πlm .

Generalization to the multiplicative case
From (4.33) – (4.34), which define the discrete update rule for the multiplicative process

described by (4.32), one can derive max-likelihood estimators for the parameters of the
model by minimizing the effective cost function in (4.36). Let us carry on this explicitly
for the following reference example:

ẍ = −ηv − kx+
√
a+ bx2ξ, (A.48)

such that the quantities appearing in (4.36) read:

(A.49)F (xn, xn−1;µ) = xn − e−η∆t(xn − xn−1) + (1− e−η∆t)k∆t
η
xn,

with µ =
(
e−η∆t, k∆t/η

)
and

Cnm =
(
a+ bx2

n

)
δn,m +

√
(a+ bx2

n) (a+ bx2
m)δn,m±1. (A.50)

Simple manipulations allow us to reduce to the minimization problem to a one-dimensional
numerical optimization, since analytical formulas for the optimal values of the effective
parameters β = e−η∆t, K = k∆t/η and b can easily be found:

b∗ = 3
L− 1

[
P0 −

P 2
4
P2
− (P3P2 − P4P5) (P3P2 − P4P5)

P1P2 − P 2
5

]
;

β∗ = P ∗3P
∗
2 − P ∗4P ∗5

P ∗1P
∗
2 − (P ∗5 )2 ; K∗ = β∗P ∗5 − P ∗4

(1− β∗)P ∗2
. (A.51)

where we renamed α = a/b and P ∗i = Pi(α∗). The optimal value of the new effective
parameter α∗ is the minimizer of the following function of α:

(A.52)L = 1
L− 1

L−1∑
k=1

ln λ̃k + ln
[
P0 −

P 2
4
P2
− (P3P2 − P4P5) (P3P2 − P4P5)

P1P2 − P 2
5

]
,
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where {λ̃k} is the set of eigevnvalues of the reduced covariance matrix

(A.53)
A−1

nm = 3Cnm/(b∆t3)

= 2
(
α+ x2

n

)
δn,m + 1

2

√
(α+ x2

n) (α+ x2
m)δn,m±1 ,

and

P0 = 1
L− 1

L−1∑
n,m=1

(xn+1 − xn)Anm(xm+1 − xm) ;

P1 = 1
L− 1

L−1∑
n,m=1

(xn − xn−1)Anm(xm − xm−1) ;

P2 = 1
L− 1

L−1∑
n,m=1

xnAnmxm ;

P3 = 1
L− 1

L−1∑
n,m=1

(xn+1 − xn)Anm(xm − xm−1) ;

P4 = 1
L− 1

L−1∑
n,m=1

(xn+1 − xn)Anmxm ;

P5 = 1
L− 1

L−1∑
n,m=1

(xn − xn−1)Anmxm .

Non-Bayesian approach: inference formulas without a likelihood
We build in this section an alternative approach to the Bayesian one, as outlined in

Section 4.3.2 of the main text. To be explicit, we need to choose a discrete update equation
in x space: let us choose again the one corresponding to the usual continuation rule of the
LI:

xn+1 = xn + e−η∆t(xn − xn−1) + 1− e−η∆t

η
ω2

0∆t xn + ζn, (A.54)

and multiply its r.h.s. and l.h.s. by xn, xn+1 and xn−1 and take the average over the noise
distribution. The resulting equations are:

〈xn+1xn〉 = 〈xn2〉+ e−η∆t(〈xn2〉 − 〈xnxn−1〉)

+ 1− e−η∆t

η
ω2

0∆t〈xn2〉+ 〈xnζn〉 ; (A.55)

〈xn+1xn+1〉 = 〈xnxn+1〉+ e−η∆t(〈xnxn+1〉 − 〈xn−1xn+1〉)

+ 1− e−η∆t

η
ω2

0∆t〈xnxn+1〉+ 〈ζnxn+1〉 ; (A.56)

〈xn+1xn−1〉 = 〈xnxn−1〉+ e−η∆t(〈xnxn−1〉 − 〈x2
n−1〉)

+ 1− e−η∆t

η
ω2

0∆t〈xnxn−1〉 . (A.57)

Using again (A.54) – combined with the covariance matrix of the Gaussian variables
– to compute 〈ζnxn〉 and 〈ζnxn+1〉, the relations we find are:
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Gs = Cs + e−η∆t(Cs −G′s) + 1− e−η∆t

η
ω2

0∆t Cs + b ; (A.58)

C ′s = Gs + b+ a+ e−η∆t(Gs − Fs + b) + 1− e−η∆t

η
ω2

0∆t(Gs + b) ; (A.59)

Fs = G′s + e−η∆t(G′s − C ′′s ) + 1− e−η∆t

η
ω2

0∆tG′s . (A.60)

In order to find (A.58)–(A.60), we identified the actual correlation functions with the
empirical ones, denoted with C, G and F symbols, and we hypothesized a stationarity
assumption to hold to explicitly compute them. After proper manipulation, one can
extract “inference relations” for b, e−η∆t and ω2

0∆t, and derive from them the physical
parameters of the model. In order, e−η∆t is given as the solution of the second-degree
polynomial equation:

(A.61)(2G′s − Cs − C ′′s )e−2η∆t +
[
2Gs + C ′′s − Cs − 2Fs + 5(2G′s − Cs − C ′′s )

]
e−η∆t

+
[
Gs −G′s + Fs − C ′s + 5(G′s − Cs − Fs +Gs)

]
= 0;

then b and ω2
0∆t are computed as follows:

b = G′s − Fs +Gs − Cs + e−η∆t (2G′s − C ′′s − Cs) ; (A.62)

ω2
0∆t = −η

1− e−η∆t

[
Gs − Cs − b

Cs
− e−η∆tCs −G′s

Cs

]
. (A.63)

Notice that these inference equations are not unique. Combining the starting equations
in a different way would result into slightly different inference formulas, which, however,
should provide the same result if the experimental correlation functions faithfully repro-
duce ensemble averages at the steady state.

This strategy cannot be adapted to interacting problems, outside of the mean field
approximation. The obstacle comes from the parametrization of the interaction matrix,
which is the discrete counterpart of the introducing an interaction range in the corre-
sponding field theory. Without a priori parametrization, the issue of sufficient statistics
arises: one can think about repeating the same procedure in the multi-particle case for
each particle pair and look for independent inference formulas for any matrix element JΛij .
Bypassing the technical difficulties related to solving the resulting system of N2 +2 second
degree equations for the unknowns b, e−η∆t and {JΛij}i,j=1...N , we have a much greater
number of parameters to infer than of points in each frame. This problem becomes totally
untractable if one also allows Λij to evolve in time, as in active animal groups (251; 88).

Assumptions about the structure of the matrix Λij dramatically diminish the num-
ber of parameters and help us deal with the worry of insufficient statistics, but require
an alternative strategy to estimate the interaction range, since this physically motivated
parametrization does not allow us to find closed-form equations.

It is possible yet to approximately estimate the damping coefficient and the effective
temperature of the system of interacting particles, assuming that they are all immersed
in the same uniform thermal bath. Under this assumption, (A.55)–(A.57) can be adapted
to the interacting case and properly manipulated to find the following relations:
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Fs −G′s −Gs + Cs = e
− η
χ

∆t (2G′s − C ′′s − Cs)
+ G′int − Cint

Cint

[
Gs − Cs − b− e−

η
χ

∆t(Cs −G′s)
]
− b ; (A.64)

C ′s − 2Gs + Cs = e
− η
χ

∆t (
Gs − Fs − Cs +G′s

)
+ b

{
4 + e

− η
χ

∆t + nc
Cint

[
Gs − Cs − b− e−

η
χ

∆t(Cs −G′s)
]}

+ Gint − Cint
Cint

[
Gs − Cs − b− e−

η
χ

∆t(Cs −G′s)
]

; (A.65)

where we have used the third independent equation to eliminate J/χ and exploited the fact
that a = 4b, with b = 1

62Tη
χ2 ∆t3. Let us define the empirical spatio-temporal correlation

functions involved in these inference formulas:

◦ Equal-time correlations:

Cij = 1
L− 1

L−1∑
n=1

πin · πjn ; (A.66)

C ′ij = 1
L− 1

L−1∑
n=1

πin+1 · π
j
n+1 ; (A.67)

C ′′ij = 1
L− 1

L−1∑
n=1

πin−1 · π
j
n−1 ; (A.68)

◦ One-step correlations:

Gij = 1
L− 1

L−1∑
n=1

πin+1 · πjn ; (A.69)

G′ij = 1
L− 1

L−1∑
n=1

πin · π
j
n−1 ; (A.70)

◦ Two-step correlations:

Fij = 1
L− 1

L−1∑
n=1

πin+1 · π
j
n−1 . (A.71)

The observables appearing in (A.64)–(A.65) are defined from (A.66)–(A.71) as in the
following. We can distinguish the contribution of self-correlations, encoded by:

Cs = 1
N

Tr C ; C ′s = 1
N Tr C′ ; C ′′s = 1

N
Tr C′′ ;

Gs = 1
N

Tr G ; G′s = 1
N Tr G′ ; Fs = 1

N
Tr F ;

and that of correlations between directly interacting birds, encoded by the quantities:

Cint = Tr(ΛC)
N

; Gint = Tr(Λ>G)
N

; G′int = Tr(ΛG′)
N

;

where Λij = ncδij−nij . Notice that all of them are by definition self-averaging quantities,
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which obviously tend to be more and more stable as the size of the system increases.
As already stressed, in absence of a proper likelihood, an unattainable task is that

of dealing with functions denoted with an int subscript; however, the manipulation we
carried out to derive (A.64)–(A.65) confines them into sub-leading terms. This can be
checked by looking at the combinations:

Gint − Cint
Cint

[(
1− e−

η
χ

∆t
)

(Gs − Cs)− b
]
' O(∆t5) , (A.72)

the one obtained replacing Gint with G′int, and

b · nc
Cint

[
(1− e−

η
χ

∆t)(Gs − Cs)− b
]
' O(∆t6). (A.73)

Under the working hypothesis that ∆t is sufficiently small, we can neglect these terms
and find usable relations to extract the effective parameters of the thermal bath (η/χ,
T/χ) from the experimental self-correlations only. Precisely, η/χ is found as a solution of
the equation:

(A.74)(C ′′s + Cs − 2Gs)e−2 η
χ

∆t + 2(Fs − 5G′s −Gs + 3Cs + 2C ′′s )e−
η
χ

∆t

+ 4Fs − 4G′s − 6Gs + 5Cs + C ′s = 0 ,

whereas the effective temperature is extracted from b, being:

b = G′s +Gs − Fs − Cs + e
− η
χ

∆t (2G′s − Cs − C ′′s ) . (A.75)

Notice that this formula is exactly equivalent to (A.62), since we defined the effective
damping coefficient of the harmonic oscillator as η = µ/m, whereas the corresponding
quantity, having the dimension of an inverse time scale, is η/χ for the ISM. These formulas
have been applied to find the results shown in Fig. 4.5.

A.1.3 Equations of motion of the ISM in the spin wave approximation
We derive in this appendix the equations of motion of the inertial spin model (ISM)

in the so-called spin wave approximation (SWA). The name comes from the analogy with
ideal Heisenberg ferromagnets which, at very low temperatures, can be studied using an
approximate theory, whose basic idea is that the lowest energy excitations in a ferromagnet
are those produced by a single reversed spin over a large number of otherwise aligned spins
in a crystal lattice. Dyson1956 showed that an interaction between spin-wave states arises
from this approximation and it should be taken into account to consistently work out the
spin wave expansion (252). In a similar way, since natural flocks of starling are in a deeply
ordered phase, we can perform an expansion around the perfectly ordered state of the
flock, where all of the birds’ velocities are aligned along the same direction.

Let us denote by n the collective direction of motion of the flock. Each vector vi can
be decomposed into its longitudinal and transverse components with respect to n:

vi = vLi n + πi. (A.76)

In the case of bird flocks, the spin-wave approximation reduces to approximating the
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Figure S3: First correction to the SWA. The comparison between the plots shows
the effect of the SWA: in A. the raw inferred values of T/χ, obtained using the infer-
ence formulas derived from (4.41), are reported. In B. we included the first correction
by rescaling the output with the time-averaged polarization, for each sample trajectory.
Φ̄ is the average of the averaged polarizations among different simulated flocks, at any
given temperature. Errorbars for Φ̄ correspond to standard errors, whereas vertical bars
represent, as in the other figures, 0.95 CI.

longitudinal components as follows:

vLi =
√

1− |πi|2 ' 1− 1
2 |πi|

2, (A.77)

having vi a unit length. The equations of motion of the ISM (with fixed interaction
network) can be written in the form of a set of second order SDEs for the velocity variables:

d2vi
dt2

=

−ηdvi
dt
− J

N∑
j=1

nijvj + ξi


⊥

−
∣∣∣∣dvidt

∣∣∣∣2 vi, (A.78)

where the ⊥ symbol indicates the projection onto the orthogonal plane to the direction of
motion of the i-th bird, vi. This projection operator and the last term of (A.78) are the
required ingredients to ensure individual speed conservation: |vi(t)|= v0 = 1 ∀i, t. Thanks
to this property, (A.78) further simplifies:

d2vi
dt2

= −ηdvi
dt
− J

N∑
j=1

nijvj⊥ + ξi⊥ −
∣∣∣∣dvidt

∣∣∣∣2 vi. (A.79)

Using (A.76) – (A.77), and exploiting the fact that, for any vector a,

a⊥ = −vi × (vi × a) , (A.80)

one can evaluate all the terms appearing in (A.79), at the desired order of approximation.
Let us focus firstly on time derivatives: we notice that, in principle, they also produce

terms containing dn
dt and

d2n
dt2 . In the following we will assume that the direction of collective

motion n is constant. This is legitimate in the limit N →∞, when the wandering of the
order parameter is suppressed, or at least when it is very slow compared to the relaxational
dynamics of the degrees of freedom. If, on the contrary, one wants to take this effect into
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account, apparent forces emerge because the chosen reference frame is non-inertial.
Neglecting apparent forces enables to segregate on-plane (i.e. perpendicular to n) and

off-plane (i.e. parallel to n) contributions, and completely disentangle the corresponding
equations. One can then consider the equations in the π-plane only:

d2πi
dt2

+ η
dπi
dt

+ JΛijπj = P̂ξi⊥ +O(|π|3), (A.81)

where Λij = nij − ncδij and P̂ is the projection operator onto the plane perpendicular to
the collective velocity V = 1

N

∑N
i=1 vi ≡ Φn. The velocity fluctuations πi play in this case

the same role as spin excitations in Dyson1956’s SWA, both becoming the new degrees of
freedom and displaying a linear interaction.

At this stage, what remains to explicitly evaluate is only P̂ξi⊥. We know that ξi⊥
lives in the plane perpendicular to vi, so that the perpendicular component to the plane
spanned by V and vi is left unchanged by this projection operator, while the other one is
contracted with a factor cos θi, with θi the angle between vi and n. As a result:

〈P̂ξi(t) · P̂ξi(s)〉 = 2(1 + cos2 θi)
Tη

χ2 δ(t− s). (A.82)

The second moment of each noise term is then rescaled, with respect to the original one,
by a factor:

1
2(1 + cos2 θi) = 1

2

(
1 +

(
vLi

)2
)

= 1− 1
2 |πi|

2' vLi . (A.83)

In order to let the fluctuation-dissipation theorem hold, this rescaling can be re-adsorbed
by the temperature parameter T/χ, which is in principle different for each bird. At an
averaged level, we can define a new spin wave temperature that differs form the original
temperature of the inertial spin model by a factor 1

N

∑N
i=1 v

L
i , which is by definition

equivalent to the polarization of the flock Φ = | 1
N

∑N
i=1 vi|. In the low temperature case,

where |π|� 1, Φ = 1 +O(|π|2); the first correction to the temperature parameter is then
of a lower order with respect to the terms which have been neglected in the deterministic
part of (A.81) and shall correctly be included through this simple effective rescaling.

As long as the experimental or statistical errors are wide enough and the system
pretty ordered, this SWA-related correction is negligible. Thanks to the large statistics
and high accuracy we managed to have with our simulations and inference machinery, we
are able to detect it in Fig. 4.5C, where points are systematically placed below the line
of slope 1, especially for higher values of the temperature, which in turn correspond to
lower polarization values. A comparison between the two panels of Fig. S3 confirms that
this is truly the origin of the observed trend and not an intrinsic defect of the inference
procedure.
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1.2. Affinity maturation for an optimal balance between long-term
immune coverage and short-term resource constraints

A.2.1 Mean-field de novo coverage
Here we show how the infection cost function defined in the main text,

It = min

φ,
 ∑
x∈Pt−1

cx,tf(x, at)

−α , (A.84)

may be derived as the mean-field limit of a repertoire with memory and de novo compart-
ments.

In addition to the evolving memory repertoire Pt already described in the main text,
we define a de novo response made of random receptors N , distributed uniformly with
density ρ. Viruses may be recognized by either the memory or de novo clonotypes. The
de novo coverage is defined as:

Cdenovo(at) =
∑
x∈N

f(x, at), (A.85)

and the memory coverage as before:

C(at) =
∑

x∈Pt−1

cx,tf(x, at). (A.86)

(In this convention, each de novo clonotype has size one in arbitrary units.)
Depending on the values of these coverages, the system will choose to use either the

de novo response, or an existing memory. In this decision, we factor in the fact that using
the de novo response is more costly, which we account for using a prefactor β < 1. The
cost is then defined as:

Lt = max [βCdenovo(at), C(at)]−α . (A.87)

We can simplify this expression in the limit where de novo responding clonotypes are very
numerous, but each offer weak coverage. In the limit of high density of de novo responding
cells, ρ→∞, the coverage self-averages to its mean value:

Cdenovo ≈ 〈Cdenovo〉 = ρ

∫
ddx f(x, at) = ρUd(q)rd0 , (A.88)

with
Ud(q) =

∫
ddy e−‖y‖

q = Sd

∫
rd−1dr e−r

q
, (A.89)

where we have done the change of variable x = at + yr0, and where Sd = 2πd/2/Γ(d/2) is
the surface area of the unit sphere.

Taking the ρ→∞ and β → 0 limits, while keeping βρ finite, corresponds to a dense de
novo response but where each de novo responding cell weakly covers the antigenic space.
In this limit we recover the model of the main text

It = min
[
φ,C(at)−α

]
, (A.90)

with φ = (ρβUd(q)rd0)−α.
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A.2.2 Transition from monoclonal to de novo phase at σv = 0

Here we derive an expression for the phase boundary between the monoclonal and
polyclonal phases in the limit σv = 0, where the virus does not move.

In the special case where µ = 0, clonotypes cannot multiply. At each time step,
a number mn of new clonotypes at created at an = const, distributed according to a
Poisson law of mean m̄. This number is added to existing clonotypes, of which a random
fraction γ survives. If the previous number of clonotypes, Mn, is Poisson distributed with
mean M̄n, the number of surviving ones M ′n is also Poisson distributed with mean γM̄n

(since subsampling a Poisson-distributed number still gives a Poisson law). Then, the new
number of clonotypes, Mn+1 = M ′n +mn, is also Poisson distributed, with the recurrence
relation:

M̄n+1 = γM̄n + m̄. (A.91)

At steady state, we have
M̄n →

m̄

1− γ . (A.92)

Since all clonotypes are at x = an, the coverage is C(an) = M , so that the expected
cost reads:

L = φ exp
(
− m̄

1− γ

)
+

+∞∑
M=1

1
Mα

exp
(
− m̄

1− γ

) 1
m!

(
m̄

1− γ

)M
+ κm̄. (A.93)

To find the transition from monoclonal to de novo response, m̄ = 0, we need to find the
value of φ for which ∂L/∂m̄ changes sign at m̄ = 0: if this derivative is positive, it is
better to have m̄ = 0 (since the function is convex); if it is negative, there is benefit to be
gained by increasing m̄ > 0. The condition:

∂L
∂m̄

∣∣∣∣
m̄=0

= κ− φ

1− γ + 1
1− γ (A.94)

gives the transition point
φc = 1 + κ(1− γ) (A.95)

For µ > 0, we redefine Mn as the sum of all clonotype sizes, which is equal to the
coverage, C = Mn =

∑
x∈Pn cx,n. The recurrence relation is replaced by:

M̄n+1 = γ(1 + µ)M̄n + m̄. (A.96)

For γ(1 + µ) > 1, this number explodes, so that M is infinite, reducing the infection cost
to 0 regardless of m̄. The transition point is then

φc = 0. (A.97)

For γ(1 + µ) < 1, M̄n reaches a steady state value,

M̄n →
m̄

1− γ(1 + µ) . (A.98)

Although Mn is not strictly distributed according to a Poisson law, it is still a good
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Figure S4: Phase diagram for various parameters. A. Phase diagram for parameters
µ = 0, γ = 0.85 and d = 2. We observe the upper transition point φc = (1+κ(1−γ))−1 at
σv = 0. B. Phase diagram for parameters µ = 0.5, γ = 0.85 and d = 3. Since γ(1 +µ) > 1
the transition point φc =∞. In both A and C we observe that the phase diagram retains
the same shape. In this panel α = 1, q = 2 and κ = 0.5/(1− γ).

approximation, so that we can repeat the same argument as with µ = 0,

φc ≈ 1 + κ(1− γ(1 + µ)). (A.99)

A.2.3 Analytical results in a solvable model

General formulation

Define Phit(σ′, r0, r) as the probability that a random memory will recognize the next
infection at distance r, i.e. the probability that a random point in the ball of radius σ′ and
a point at distance r from its center are at distance ≤ r0. The probability that none of m
clonotypes recognize the virus, where m is drawn from a Poisson distribution of mean m̄,
reads:

Pmiss(σ′, r0, r) =
∑
m

e−m̄
m̄m

m! (1− Phit(σ′, r0, r))m = e−m̄Phit(σ′,r0,r). (A.100)

The best strategy maximizes this probability, averaged over the location of the next in-
fection, over σ′:

P̄miss(σ′, m̄, r0, σ
′
v) =

〈
e−m̄Phit(σ′,r0,r)

〉
B(σ′v)

= 1
σ′v

dVd

∫ σ′v

0
Sdr

d−1dr e−m̄Phit(σ′,r0,r)

(A.101)
where Bσ′v is the ball of radius σ′v, Vd = πd/2/Γ(d/2 + 1) is the volume of a unit ball, and
Sd = 2πd/2/Γ(d/2) the area of the unit sphere.

Then the expected overall cost reads:

L = φP̄miss(σ′, m̄, r0, σv) + κm̄ = φ
〈
e−m̄Phit(σ′,r0,r)

〉
B(σ′v)

+ κm̄. (A.102)
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Exact location of the phase transitions, and approximate solution in the polyclonal
phase

The location of the optimal σ′ may be rigorously bounded from above and below. If
σ′ < σ′v − r0, then only part of the future positions of the virus are covered, so increasing
σ′ can bring no harm. Likewise, for σ′ > σ′v + r0, memory covers parts of the antigenic
space that have no chance of harboring the next virus, so that decreasing σ′ is also always
advantageous. Thus, the optimum σ′∗ must satisfy:

σ′v − r0 ≤ σ′∗ ≤ σ′v + r0. (A.103)

As already argued in the main text, when σ′v < r0, there is clearly no benefit to having
σ′ > 0, so the optimum is reached at σ′ = 0. (A.103) further shows that if σ′v > r0, then
σ′∗ > 0, so that a polyclonal phase is optimal. As a consequence, the transition from the
monoclonal to polyclonal phases happens exactly at:

σ′v = r0. (A.104)

In the monoclonal phase, memory always recognizes the next virus. The only risk of
paying φ is when no memory is created, which happens with probability e−m̄, so that the
cost reads:

L = φe−m̄ + κm̄. (A.105)

The optimal m̄∗ = ln(φ/κ) cancels at the monoclonal-to- de novo response transition:

φ = κ. (A.106)

In the polyclonal phase, we could not find a general analytical solution, but there are
two limits in which the solution may be calculated. The first limit is when σv � r0. In
that case, (A.103) implies σ′∗ ≈ σ′v, and

Phit(σ′∗, r0, r) ≈
rd0
σ′v

d
, (A.107)

which doesn’t depend on r. Then, minimizing

L ≈ φe−m̄Phit + κm̄ (A.108)

with respect to m̄ yields:

m̄∗ = 1
Phit

ln
(
φ

κ
Phit

)
= σ′v

d

rd0
ln
(
φ

κ

rd0
σ′v

d

)
. (A.109)

The second limit in which things simplify is for small m̄. Then the exponential in
(A.101) may be expanded at first order, yielding:

L = φ
(
1− m̄〈Phit(σ′, r0, r)〉B(σ′v)

)
+ κm̄, (A.110)

where 〈·〉r is the mean of over the ball of radius σ′v. Minimizing with respect to σ′ is
equivalent to maximizing 〈Phit(σ′, r0, r)〉r, which is the probability that a random point
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in the ball of radius σ′ and a random point in the ball of radius σ′v are separated by less
than r0. This probability is maximized for any σ′ ≤ σv − r0, where it is equal to (r0/σ

′
v)d.

Increasing σ′ beyond σv − r0 can only lower the probability of recognition. Thus:

min
σ′
L = φ+ m̄

(
κ− φ r

d
0

σ′v
d

)
. (A.111)

This gives us the condition for the transition from polyclonal to de novo response, where
m̄∗ = 0. This happens when:

φ = κ
σ′v

d

rd0
. (A.112)

This condition gives us an exact expression for the location of the transition.

Exact solution in dimension 1
For d = 1, the cost L in (A.102) may be calculated analytically, by using exact expres-

sions of Phit(σ′, r0, r). When σ′v ≤ r0, the optimal σ′ is zero as explained in the main text.
When σ′v > r0, we distinguish two cases: r0 < σ′v ≤ 2r0, and σ′v > 2r0.

Case r0 < σ′
v ≤ 2r0. Since we know that the optimal σ′ is between σ′v − r0 and σ′v + r0, we

focus on that range. Then there are two subcases for σ’.
If σ′v − r0 < σ′ ≤ r0, there are two contributions to the integral of P̄miss over the

position of the virus r. Either r ≤ r0−σ′, then all memories recognize the virus, Phit = 1;
or r0 − σ′ < r < σ′v < r0 + σ′, in which case the recognition probability is given by the
normalized intersection of two balls at distance r of radii σ′ and r0,

Phit = σ′ + r0 − r
2σ′ . (A.113)

Thus we obtain doing the integral over r in (A.101), if σ′v − r0 < σ′ ≤ r0:

P̄miss(σ′, m̄, r0, σ
′
v) = 1

σ′v

[
(r0 − σ′)e−m̄ +

∫ σ′v

r0−σ′
exp

(
−m̄σ′ + r0 − r

2σ′
)
dr

]
. (A.114)

If r0 < σ′ ≤ σ′v + r0, there are also two contributions. Either r ≤ σ′ − r0, in which
case there is no boundary effect, and the recognition probability is just Phit = r0/σ

′
v; or

σ′−r0 < r ≤ σ′v ≤ σ′+r0, in which case we have again (A.113). Performing the integration
in (A.101) we obtain, if r0 < σ′ ≤ σ′v + r0:

P̄miss(σ′, m̄, r0, σ
′
v) = 1

σ′v

[
exp

(
−m̄r0

σ′

)
(σ′ − r0) +

∫ σ′v

σ′−r0
exp

(
−m̄σ′ + r0 − r

2σ′
)
dr

]
.

(A.115)

Numerical analysis shows that (A.114) admits a minimum as a function of σ′ in its interval
of validity, σ′v − r0 < σ′∗ ≤ r0, while (A.115) is always increasing.

Case σ′
v > 2r0. In this case, there is only a single subcase in the range of interest σ′v − r0

and σ′v+r0. This case is the same as the previous one considered, and the result is given by
the same formula (A.115). However, for σ′v > 2r0, this expression now admits a minimum
σ′v − r0 < σ′∗ ≤ σ′v + r0.
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We recover that in both cases (a and b), in the limit m̄→ 0, this minimum is reached
at σ′v − r0.

A.2.4 Population dynamics in sequential immunization
Clonotype growth and decay as a first-passage problem

We now want to study clonotype proliferation induced by a recall response. We focus
on the limit of small mutation rates σv � r0. Within this regime, the system is in the
monoclonal phase with σ∗ = 0. We can therefore focus on the case of a single clonotype
at position x = 0 on the phenotypic space, and ask how successive challenges will modify
its size. (Different initial conditions will only change the prefactor in front of the expo-
nential modes in the distribution of first passage times, so the large time behavior of this
probability distribution will be the same as discussed below.)

The clonotype has an initial size c = 1, and the virus drifts away from x = 0 with
viral divergence σv. In the general model, cells have probability γ to survive from one
challenge to the other. Proliferation is taken to be proportional to the cross reactivity
radius, µe−(r/r0)q . The population dynamics is thus given by the approximate recursion:

nt+1 ≈ ntγ
[
1 + µe−(r/r0)q

]
, (A.116)

where we have neglected birth-death noise. We can further simplify this equation to
nt+1 = γ(1 + µΘ(r − r∗))nt, where r∗ = r0 ln(γµ/(1 − γ))1/q is defined as the radius at
which the net fold-change factor crosses 1, i.e. when birth is exactly compensated by
death. This means that, as long as the virus is within distance r∗, the clonotype grows
with fold-change factor ∼ Γ. As soon as it reaches r∗, and neglecting possible returns
below r∗ (which happen with probability 1 for d ≤ 2, but with a frequency that does not
affect the overall decay), it will decay with fold-change factor ∼ γ. The problem is thus
reduced to determining the first-passage time of the viral antigenic location at radius r∗.

We use a continuous approximation corresponding to a slowly evolving strain, σv � r0:

a(0) = 0, da = σv√
d
dW, (A.117)

where W is a Wiener process. The radius, given by r(t) = |a(t)|, behaves on average as:

〈r(t)2〉 = tσ2
v . (A.118)

The time it takes for r(t) to reach r∗, denoted by t∗, is approximately given by 〈t∗〉 ∼
(r∗/σv)2. The tail of the distribution for this first-passage time is dominated by rare events
when the virus mutates less than expected between infections, leading to larger episodes of
growth. We will show in the next two sections that the distribution of these exceptionally
long t∗ has an exponential tail:

P (t∗ > t) ∼ e−t/ts , ts ∼ 〈t∗〉 ∼
r∗2

σ2
v

. (A.119)

This translates into a power-law tail for the peak clonotype abundance,

p(n∗) ∼ 1
n∗1+β , with β ∼ σ2

v

r∗2 ln Γ . (A.120)
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The same scaling holds for the distribution of all abundances, since the peak determines
the rest of the trajectory.

Within the same simplified picture, the lifetime tl of a clonotype is the sum of the time
it takes to reach the peak, t∗, and the decay time until extinction, which is approximately
ln(n∗)/ln(1/γ):

tl = t∗ + ln(n∗)
ln(1/γ) =

(
1 + ln Γ

ln(1/γ)

)
t∗. (A.121)

Thus, tl is proportional to t∗, and therefore also exponentially distributed:

p(tl) ∼ e−λtl , λ ∼ σ2
v

r∗2

(
1 + ln Γ

ln(1/γ)

)−1
. (A.122)

Next we derive in detail the distributions of the first passage time of r(t) to r∗ to obtain
Eq. A.119.

First passage time in d = 1

The distribution of first passage time, p(t), can be computed solving diffusion with a
box of size 2r∗ in d = 1 (253):

p(t) =
+∞∑
n=0

(2n+ 1)σ2
vπ

2r∗2 (−1)n exp
(
−(2n+ 1)2π2σ2

vt

8r∗2

)
(A.123)

The dominant term (n = 0) at long times gives an exponential decay:

p(t) ≈ σ2
vπ

2r∗2 exp
(
− π2σ2

vt

8r∗2
)
. (A.124)

First passage in higher dimensions

We define f(r, t) as the probability density that the virus has not yet reached r∗ at
time t, and is at radius r. This probability density is solution to the diffusion equation
with spherical symmetry and absorbing boundary conditions in arbitrary dimension d > 1:

∂f

∂t
= σ2

v

2d

[
∂2f

∂r2 + d− 1
r

∂f

∂r

]
, f(r∗, t) = 0. (A.125)

Assuming separation of variables, f(r, t) = T (t)R(r), we have:

T ′(t)
T (t) = σ2

v

2d
R′′(r) + d−1

r R′(r)
R(r) ≡ − σ2

v

2dr∗2λ, (A.126)

where λ is to be determined later. This implies T (t) = Ce
−λ σ2

v
2dr∗2

t where C is a constant.
The radial part R(r) is solution to:

R′′(r) + d− 1
r

R′(r) = − λ

r∗2
R(r). (A.127)
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For d = 1 this equation reduces to a harmonic equation and we recover the above solution
in 1D. Using the change of variable R(r) = r1−d/2g(r) we derive the following equation:

r2g′′(r) + rg′(r) +
(
λ
r2

r∗2
−
(
d

2 − 1
)2)

g(r) = 0. (A.128)

Changing the variable x =
√
λr/r∗, the function g̃(x) = g(xr∗/

√
λ) is solution to the

Bessel differential equation of order d/2−1. It can therefore be written as a superposition
of a Bessel function of the first kind and a Bessel function of the second kind, both of
order d/2 − 1. The Bessel function of the second kind having a singularity at x = 0, our
solution is only given by the Bessel function of the first kind g(xr∗/

√
λ) = BJd/2−1(x).

The radial function R now reads:

R(r) = Br1−d/2Jd/2−1(
√
λr/r∗). (A.129)

The absorbing boundary condition at r = r∗ gives us the condition Jd/2−1(
√
λ) = 0, which

has an infinite number of solutions j0,d/2−1, ..., jn,d/2−1, ..., so that λ can take values

λn = j2
n,d/2−1. (A.130)

The general solution to (A.125) is given as a linear combination of all possible modes,
with coefficients Cn determined from boundary conditions and the Dirac delta initial
condition, f(r, 0) = δ(r):

f(r, t) =
+∞∑
n=0

Cnr
1−d/2Jd/2−1

(
jn,d/2−1
r∗

r

)
exp

(
−
j2
n,d/2−1
2dr∗2 σ2

vt

)
. (A.131)

The distribution of first passage times asymptotically follows the largest mode of this
series, n = 0, so that:

p(t) ∼ exp
(
−
j2
0,d/2−1
2dr∗2 σ2

vt

)
. (A.132)

For instance for d = 2, 3, 4 we have j0,0 ≈ 2.40483, j0,1/2 = π, j0,1 ≈ 3.83171.
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A.2 Affinity maturation for an optimal balance between long-term immune coverage and

short-term resource constraints

Figure S5: Scaling relations for various parameters. A-B. Power law exponent β
and lifetime decay rate λ in dimension d = 5 with a Gaussian cross-reactivity kernel with
q = 2. C-D. Power law exponent β and lifetime decay rate λ in dimension d = 2 with a
cross-reactivity kernel with q = 3. The different parameters used are (γ = 0.82, µ = 0.65)
i.e. Γ = 1.353 (diamonds), (γ = 0.8, µ = 0.62) i.e. Γ = 1.296 (squares), (γ = 0.85, µ = 0.5)
i.e. Γ = 1.275 (circles), (γ = 0.87, µ = 0.4) i.e. Γ = 1.21 (triangles >), (γ = 0.9, µ = 0.35)
ie. Γ = 1.21 (triangles <). The strategy is optimized with φ = 100, κ = 0.5/(1− γ). We
used α = 1 throughout.
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Figure S6: Optimal strategy in presence of drift. A. Optimal diversity B. size
and C. frequency of naive usage in response to an immunization challenge for different
strain drift v/r0. The strain follows a random walk with drift v in a fixed direction e0:
at+1 = at+ve0 +σvηt. Parameters values: µ = 0.5, γ = 0.85, κ = 3.3, α = 1, q = 2, d = 2.
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1.3. Eco-evolutionary stability of viral strategies

A.3.1 Calculation of the speed of the wave

We solve here the steady-state diffusion reaction equation in the vicinity of the tip of
the wave. We follow steps very similar to (220), and we define nc the cut-off value on the
density:

vφ′ +Dφ′′ + sxΘ(φ− nc)φ = 0. (A.133)

Although our velocities can be around v ∼ 10−3, our diffusion constants are usually orders
of magnitude less, and around the bulk of the wave were the population size is large we
can neglect diffusion. The equation there reads as:

vφ′ + sxφ = 0. (A.134)

And the bulk solution for x � xc is φ = e−sx
2/(2v). When approaching the tip, the

population size drops and the diffusion can’t be neglected. In this case, we rewrite the
solution as φ = e−vx/(2D)ψ such that we now have:

Dψ′′ +
(
sx− v2

4D

)
ψ = 0. (A.135)

By a change of variable we find an Airy equation, such that the full solution can be written:

φ = e−vx/(2D)
[
AAi

(
γ − x
δ

)
+BBi

(
γ − x
δ

)]
,with γ = v2

4Ds and δ =
(
D

s

)1/3
. (A.136)

The diffusionless solution in the bulk and this one must have the same behavior, such that
as x increases Bi term will decay and the overall decay of φ will be faster than the one of
the bulk solution. Therefore, the only term that can remain is the Airy function Ai. The
solution now reads as:

φ = e−vx/(2D)AAi
(
γ − x
δ

)
. (A.137)

We now have the full solution up to the tip of the wave, defined up to a constant A which
is defined by the normalization. We still need to solve it beyond the tip of the wave and
match the two solutions at xc. Beyond xc the equation reads as:

vφ′ +Dφ′′ = 0. (A.138)

The solution is φ = nce
−v(x−xc)/D as it needs to take the value nc at the tip (by definition

the tip of the wave being the point where the density drops below nc. We match the two
solutions at xc as well as their derivatives, which gives:

A = nce
vxc/(2D)

/
Ai
(
γ − xc
δ

)
, (A.139)

v

2D = δ−1 Ai′[γ−xcδ ]
Ai[γ−xcδ ]

. (A.140)

As we said that v � D even if we have small speeds, such that the fraction on the r.h.s.
of the second equation should be large. This requires that the Airy function is close to its
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first zero, in other words (γ − xc)/δ = ξ0 + η where η � 1. We therefore have:

Ai′[γ−xcδ ]
Ai[γ−xcδ ]

= Ai′(ξ0)
Ai(ξ0) + ηAi′(ξ0) = η−1, (A.141)

and we are left with:

δη = γ − xc − ξ0δ = 2D
v
, (A.142)

ie. xc = γ − ξ0δ = v2

4Ds − ξ0

(
D

s

)1/3
, (A.143)

where we have neglected the term 2D/v. This first root of the Airy function is ξ0 =
−2.3381. Finally we need to eliminate A using the normalization:

N =
∫ xc

−∞
φ(x)dx. (A.144)

We introduce ξ:
ξ = ξ0 + xc − x

δ
, (A.145)

and the normalization becomes:

N

nc
= δ

e−η
−1ξ0

Ai(ξ0 + η)

∫ +∞

ξ0
eη
−1ξAi(ξ + η)dξ. (A.146)

We can extend the integral to −∞ as the Airy function oscillates below ξ0 and the overall
contribution to the total integral will be negligible. Then, using the Laplace transform of
the Airy function we are left with the following equation:

N

nc
= δ

e−η
−1ξ0+η−3/3+1

Ai(ξ0 + η) , (A.147)

and after expanding the Airy function at small η we have:

ln
(
N

nc
δ−1

)
= ln η−1 − ξ0η

−1 + 1
3η
−3 + 1− ln Ai′(ξ0). (A.148)

At leading order in η−1 we have:

v = Dδ−1
(

24 ln
(
N

nc
δ−1

))1/3
= (D2s)1/3

(
24 ln

(
N

nc
(s/D)1/3

))1/3
. (A.149)

We can also estimate the second order correction to the speed that also matters in the
regime we investigate. To compute this second order correction we simply plug-in the first
order guess in the second order term in Eq; A.148. After Taylor expanding we are left
with the result:

v = 2(D2s)1/3
[(

3 ln
(
N

nc
(s/D)1/3

))1/3
+ ξ0

(
3 ln

(
N

nc
(s/D)1/3

))−1/3]
. (A.150)
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In particular, in the large population size limit we have:

ftip = sxc '
v2

4D. (A.151)

A.3.2 Solution of the diffusion equation with linear growth rate

We provide here a solution of the diffusion equation with an linear growth rate and no
cut-off:

∂tφm = v∂xφm +Dm∂
2
xφm + (fm + smx)φm. (A.152)

Taking the fourier transform of the equation we have:

∂tφ̂m = (ivk −Dmk
2 + fm)φ̂m + smi∂kφ̂m. (A.153)

To solve this equation we try the following ansatz φ̂m = A(k, t)eiψ(k,t) where A and ψ are
real functions. Separating between imaginary and real parts we are left with the following
set of equations:

∂tA = (−Dmk
2 + fm)A− smA∂kψ, (A.154)

A∂tψ = vkA+ sm∂kA, (A.155)

The solution to the second equation reads as:

A = A0(t) exp
[

1
sm

(
−vk

2

2 +
∫
∂tψdk

)]
. (A.156)

Injecting it in (A.154), under the condition that A is always non zero, and differentiating
with respect to k we obtain:

1
sm

∂2
t ψ + sm∂

2
kψ = −2Dmk. (A.157)

We now suppose that ∂2
kψ = 0. Integrating (A.157) twice with respect to t and computing

it’s integral with respect to k, we have:

φ̂m = A0(t) exp
[

1
sm

(
−vk

2

2 −Dmsmk
2t+

∫
A1(k)dk

)]

× exp
[
i

(
−Dmsmkt

2 +A1(k)t+A2(k)
)]
, (A.158)

where A1 and A2 are functions of k. Since the initial condition is a Dirac delta centered
at y0 φm(y, 0) = εδ(y − y0) and φ̂m(k, 0) = εe−iky0 . It gives:

−vk2

2 +
∫
A1(k)dk = 0, (A.159)

A0(0)eiA2(k) = εe−iky0 . (A.160)
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So we have A1(k) = vk and the final solution reads as:

φ̂m = ε
A0(t)
A0(0) exp

(
−Dmk

2t
)

exp
[
ik

(
−Dmsmt

2 + vt− y0

)]
. (A.161)

We still have to work out the dependency of A0 with time. To find it we can reinject the
value of A and ψ in (A.154). Using the non-negativity of A we can solve the equation for
A0. Fourier transforming back to real space, the solution reads as:

φm(y, t) = exp
[
− sm

(
vt2

2 −Dmsm
t3

3 − y0t

)
+ fmt

]
ε√

4πDmt

× exp
(
−((y − y0) + vt−Dmsmt

2)2

4Dmt

)
. (A.162)
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MOTS CLÉS

Réseaux Biologiques, Immunologie, Modélisation Biophysique, Processus Stochastiques, Inférence Bayesi-
enne, Biologie des Systèmes, Epidémiologie, Evolution

RÉSUMÉ

Les réseaux biologiques sont des collections d’entités biologiquement actives qui s’auto-organisent pour assurer une
fonction émergente. Par exemple, les oiseaux s’alignent collectivement en nuées pour augmenter leur capacité à échap-
per aux prédateurs, et les cellules immunitaires s’organisent en divers sous-ensembles de cellules pour assurer une
protection efficace contre les infections.
Dans les nuées d’oiseaux, le nombre d’oiseaux est faible et leurs interactions sont locales dans l’espace et le temps.
Pour décrire ce système biologique, nous adoptons dans la première partie de cette thèse une approche de physique
statistique utilisant des modèles de Langevin sur- et sous-amortis. Nous développons un nouveau schéma d’inférence
Bayésien pour les modèles stochastiques du second ordre en équilibre et hors équilibre, et nous relions l’échec des
schémas d’inférence naïfs au problème de l’inférence des équations du mouvement à partir de dynamiques partiellement
observées. Nous démontrons ensuite l’applicabilité de notre approche à un modèle récent de mouvement collectif des
nuées d’oiseaux.
En revanche, dans le système immunitaire le nombre de cellules est presque incalculable et leurs interactions vont de
l’échelle moléculaire à l’échelle de l’organisme. Pour contourner ce problème, nous développons dans la deuxième par-
tie de cette thèse un nouveau modèle décrivant l’organisation du système immunitaire comme résultant d’un principe
d’optimalité. En maximisant la protection à long terme et en minimisant l’utilisation de ressources à court terme, nous
démontrons l’existence de stratégies immunitaires optimales correspondant à des sous-ensembles du répertoire de lym-
phocytes B quantifiés expérimentalement. En outre, nous rationalisons le phénomène de l’empreinte antigénique, ou
"péché antigénique originel", comme une stratégie immunitaire optimale à long terme.

Dans la dernière partie de cette thèse, nous étudions comment, à son tour, la pression immunitaire d’une population

hôte influence l’évolution virale. Nous constatons que la stratégie virale optimale sur le plan évolutif maximise le taux

d’évolution antigénique lorsque l’immunité croisée est faible et maximise le taux de reproduction de base lorsqu’elle

devient plus importante. En conséquence, nous montrons qu’une faible immunité croisée favorise l’émergence de variants

hautement transmissibles et virulents avec des taux de mutation proches du seuil d’extinction.

ABSTRACT

Biological networks are collections of biologically active entities self-organizing to provide an emergent function. For
example, birds collectively align in flocks to increase their ability to escape predators, and immune cells form diverse
subsets of cells to ensure efficient protection against infections.
In bird flocks, the number of birds is small and their interactions are local in space and time. To describe this biological
system, we adopt in the first part of this thesis a statistical physics approach using over- and under-damped Langevin
models. We develop a new Bayesian inference scheme for second-order stochastic models in equilibrium and out of
equilibrium, and we relate the failure of naive inference schemes to the problem of inferring equations of motion from
partially observed dynamics. We then demonstrate the applicability of our approach to a recent model of collective
motion of flocks of birds.
In the immune system, on the other hand, the number of cells is uncountable and their interactions range from the
molecular to the organismal scale. To circumvent this problem, we develop in the second part of this thesis a new
model describing the organization of the immune system as the result of an optimality principle. By maximizing long-term
protection and minimizing short-term resource costs, we find optimal immune strategies consistent with experimentally
quantified subsets of the B cell repertoire. Furthermore, we rationalize the phenomenon of antigenic imprinting, or “original
antigenic sin”, as an long-term optimal immune strategy.

In the final part of this thesis, we study how in return the immune pressure of a host population drives viral evolution. We

find that the evolutionarily stable viral strategy maximizes the rate of antigenic evolution when cross-immunity is low and

maximizes the basic reproduction ratio as it becomes larger. As a result, we show that low cross-immunity favors highly

transmissible and virulent variants with mutation rates near the extinction threshold.
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