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General Introduction

The aim of this thesis is to study the intimate structure of the topological defects and smectic layers distortion in
smectic A liquid crystal thin films. We focused on the 1D patterns, the so-called oily streaks which were created
by confining thin films between uniform planar anchoring imposed by the rubbed PVA substrate and homeotropic
anchoring imposed by air. The material that we studied is the well known (8CB) in smectic A phase. The layered
structure of the 8CB allows us for a study using X-ray scattering. Moreover, we have studied the evolution of the
oily streaks structures as function of the thicknesses of the smectic A liquid crystal thin film. My PhD aims at
reconstructing the intimate internal structure of the oily streaks using a nanoscale resolution.

Due to the ubiquitous nature of topological defects, they have been of interest to both theoreticians and
experimentalists. In condensed matter physics, they play a crucial role in mechanical and electrical properties
of various materials such as superconductors [1], insulators[2] and superfluids [3]. The dislocation defects are
responsible for the plastic deformation of crystalline material such as metal [4]. In cosmology, liquid crystals has
been used as a remarkably useful laboratory test bed of the dynamics of cosmologically relevant defects [5]. Liquid
crystals defects have been explored from the perspective of technological applications including self-assembly of
nanomaterials [6, 7, 8, 9], optical vortex generation [10] and in tunable plasmonic metamaterials [11]. Recently it
has been mathematically shown that the topological defects in liquid crystals resemble to quantum bit, which would
help in the development of practical quantum computer [12].

However, this technology based on the liquid crystal topological defect requires a precise understanding of
their intimate structures. In particular, Michel et al. [13] has demonstrated that the 1D patterns of defects could
be created when smectic liquid crystals were distorted in arrays of hemicylinders, the so-called oily streaks.
Various experimental works have been performed to attain a precise understanding of the intimate structure of
these hemicylinders [14, 15, 16]. Xia et al. [17] have worked on the structural landscape of the oily steaks
and have developed a free energy model suitable for finite element simulation allowing to propose a preliminary
structure for the oily streaks. These oily streaks intimate structure is currently interesting for mathematicians. For
instance, Ball, Canevari, and Stroffolini [18] have reported a mathematical model to describe the oily steak structure.

From a more applied point of view, Wu et al. [19] have demonstrated that new unprecedented oily streak
structures can emerge in a predictable manner from the combination of various flexible defect engineering. They
have also shown that a lateral electric field can manipulate the width and the orientation of the oily streaks. 1d
patterns can also rotate as much as 12◦ near the N-SA transition when 8CB is doped with a chiral dopant. Recently
Missaoui et al. [20] have reported an experimental work on a new way of strictly localize oily streaks on a substrate
and of distorting them in a controllable manner. Understanding how to be able to modify the defects requires
to understand them in the simplest unidirectional situation in a first step. Also many works have demonstrated
that topological defects trap and confine nanoparticles within the defect cores [21, 22, 23, 24, 25]. The result
is that oriented topological defects can create unique assemblies of nanoparticles perfectly oriented by the defect
orientation [26, 27, 28, 29, 30, 31].Understanding the interaction between defect cores and nanoparticles is thus
crucial to be able in the future to control better these assemblies of nanoparticles. However this requires first a
perfect control on the nature of the defects, on their structure and localization .

Despite of the ample works both theoretically and experimentally on the structure of the topological defects,
their intimate structure is yet to be attained. It is in this perspective that in this thesis we have used the
4-n-Octyl-4’-Cyanobiphenyl ( 8CB ) smectic A liquid crystal to study the intimate internal structure of the oily
streaks using synchrotron X-ray scattering.

This thesis is made of six chapters:

In chapter 1, we have focused on the state-of the-art of the liquid crystals, in particular the smectic A phases.
We have reviewed the models developed for the free energy of the liquid crystals and the topological defects in this
smectic A phase. We have given a review on the works that have been done by our team on the smectic A thin
films where they have shown that the oily streaks are made of an array of topological defects. We have detailed

9



the current understanding of the structure of the oily streaks. Finally we have explained the preparation of the oily
streak thin films and their typical observation by Optical Microscopy.

Chapter 2 of this thesis concerns the X-ray diffraction of smectic liquid crystals. The layered structure of the
8CB smectic A liquid crystal allows for possible X-ray study of its structure. We have first described the X-ray
diffraction of the 3D crystals and then of the smectic liquid crystal. We have firstly focused on a system made of
perfectly flat layers. We have presented the effects of the famous Peierls-Landau instability on the smectic liquid
crystals. In the ideal system, this instability replaces the Bragg peaks with algebraic decay singularities, whereas
in the real system, for instance for samples of finite size, the X-ray scattered intensity is made up of significantly
large Bragg peaks accompanied by tails. We have then reviewed different works of smectic A liquid crystals where
X-ray diffraction scattering has been used. We have reviewed in particular the previous studies on the structure of
the oily streaks performed by our group.

Chapter 3 was devoted to the experimental technique and data analysis. In this chapter, we have described in
detail the methodology that we have developed for a new analysis of our data. We have described how to take into
account the refraction effects of our thin 8CB films. We presented an unprecedented measurement technique to
ascertain the Bragg condition while measuring the intensity scattered by the smectic layers inside the oily streaks.
For this we have combined theoretical calculation and experimental measurements at different incident angles of
the scattering of the smectic hemicylinders. We demonstrated how to extract the value of the wave vector transfer
and of its full width at half maximum in order to use them as new parameters in the understanding of the intimate
structure of the oily steaks. We have also presented a technique to correct the effects of misorientation-based
asymmetry of the sample.

Chapter 4 describes in details the results on the X-ray scattering study of the intimate structure of the smectic
A oily streaks. We have focused on a film of thickness 180 nm. We have demonstrated that the integrated intensity
is not directly proportional to the number of scattering layers in contrast to the system of perfectly flat layers that
we have seen in chapter 3. A new relationship between the integrated intensity and the number of the scattering
smectic layers was therefore presented. This has allowed for an interpretation of the intensity scattered by the
curved smectic layers. The presence of disclinations has thus been demonstrated. We have also evidenced the
presence of chevrons in the middle of the flattened hemicylinders. In order to explain the origin of these chevrons,
we have presented a calculation of the energy minimization for the rotating smectic layers which has also finally
revealed new features of dilation of the rotating smectic layers close to the center of curvature of the oily streak.

In chapter 5, we present the results from the study of the evolution of the structure that was previously described
in chapter 4 as a function of film thickness. The dominating role of the disclination on the oily streak structure
when the thickness increases has been demonstrated.

We then give a general conclusion with perspectives in chapter 6.

Keywords— liquid crystals, smectic A phase, topological defects, disclinations, wall defect, film thickness.
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Chapter 1

Introduction to liquid crystals phase and
topological defects

La volonté trouve, la liberté choisit. Trouver et
choisir, c’est penser

– Victor Hugo
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1.1 Introduction

Generally crystalline solid materials are characterized by a long-range translational order and an orientation order. They are also
anisotropic. When these solid materials transform into an isotropic liquid, the long-range translational order and the orientation
order are lost. Between the solid crystalline state and the isotropic liquid there may be an intermediate state, called the liquid
crystal. Liquid crystals correspond to a state of matter that exhibits properties intermediate between those of a conventional
crystalline solids and those of an isotropic liquids. For example, a liquid crystal may flow like a liquid, but its molecules may
be oriented in the same way as a crystalline solid.

Until the late nineteenth century, it was believed that there existed only three states of matter: solid, liquid and gas, and
that a material could only change depending on temperature variation from one of these states to another. This has changed in
1888 by the observation of an Austrian Botanist and Chemist, Friedrich Reinitzer. While experimenting with the structure and
behavior of cholesteryl benzoate, a molecule found in carrots, he observed that this chemical melted at 145◦C into a cloudy
fluid which in turn melted at 179◦C into liquid. In addition to these two melting points, he also observed both reflection of
polarized light and rotation of polarization of light [1]. These strange behaviors of the cholesteryl benzoate led him to contact a
German Physicist Otto Lehmann who was recognized for optical microscopy measurements. Then he studied the cloudy fluid
using polarized-light microscopy which enabled him to observe the liquid-like flowing of ordered rod-like molecular structure.
He concluded that the cloudy fluid was an unprecedented phase of matter after having been convinced that the cloudy fluid had
both crystalline and liquid characteristics. In 1889, he named this phase liquid crystal.

After a long polemic period among the scientific community on the discovery of Lehmann (it was considered incompatible
with the existing understanding of matter) , it was until early in the Twentieth century, that a French physicist and mineralogist
Georges Friedel published a conclusive work on the existence of the new state of matter and gave concrete classification of
the liquid crystal structures into nematic, smectic, and cholesteric mesophases[2]. While the cholesteric was named after the
pioneering discovery of Reinitzer on cholesterol esters, the name nematic comes from its thread-like structure, whereas the
smectic comes from a Greek word smectos which means soap. This was due to the fact that it behaves like stacked layers that
slide on one another like in a soapy film [3].

Most of the materials which can exhibit these liquid crystal phases can be found in natural systems such as proteins, cell
membrane, DNA, soap, tobacco mosaic virus [4, 5, 6, 7, 8]. Very scarcely, liquid crystal can be found in inorganic system.
There is ample of articles on mineral liquid-crystalline phases. For example semiflexible wires, such as V2O5 ribbons, imogolite
nanotubes, or Li2Mo6Se6 wires, form a nematic phase at large enough concentrations [9, 10, 11, 12, 13, 14, 15]. Liang-shi
Li et. al. have shown the formation of liquid crystalline phases of CdSe semiconductor nanorods[16, 17]. Many other
liquid-crystalline phases of mineral nanorods have been reported for example goethite nanorods[10, 18] sepiolite [19].

These liquid crystal materials exhibit intermediate physical and chemical properties between the conventional crystalline
phase and liquid phase and they can be found in two categories of the liquid crystal phases depending on how the mesophase is
produced: The first one corresponds to lyotropic liquid crystals which form only in the presence of a solvent such as water or oil.
The stability of the existence of liquid crystalline properties depends on the concentration. Most of the amphiphilic molecules
such as soap exhibit the lyotropic liquid crystal properties. The second one, which in fact has been our focus throughout the
whole period of my thesis corresponds to thermotropic liquid crystals. The existence of liquid-crystalline properties depends
on temperature. Their constituent molecules are anisotropic rigid rod-like or disc-like molecules which can be easily polarized.

An example of these rod-like molecules is the 4-n-Octyl-4’-Cyanobiphenyl, commonly known as 8CB( shown in figure 1.1),
one constituent of the nCB families where n is the number of carbon atoms in the alkyl chain on which the phase transition
of such molecules depends [20]. This material has been our interest throughout my thesis. The 8CB is composed of two
parts (figure 1.1): a long flexible non-polar alkyl chain characterized by a rigid polar head. The latter is formed by two highly
polarizable biphenyl groups and a cyano group with a strong polar moment of 4.9D. The formation of mesophases has resulted
from this molecular antagonism which is characterized by very weak miscibility of the two molecular groups which form the
8CB. When two 8CB molecules interact the Van der Waals force is weak for the alkyl chains and it is strong for the rigid polar
heads.

Figure 1.1: The 4-n-Octyl-4’-Cyanobiphenyl.
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Due to their high sensitivity in responding to the external applied factor such as temperature and electric field, liquid crystal
materials play a key role in displays and optical imaging technology among many existing others. Today, many studies on the
development of liquid crystal based-technology are still currently being done around the world.

1.1.1 Nematic phase
When cooled from liquid state to 40.5◦, the 8CB liquid crystal reaches a nematic phase ( figure 1.4). In this phase, all molecules
are orientated so that their long axis is parallel to the director n⃗ ( as shown in figure 1.3 ), a unit vector around which all
molecules are preferentially orientated. This unit vector is along the optical axis. For 8CB the nematic phase is uniaxial. n⃗ and
−n⃗ are equivalent. Nematic has orientation order, and the center of mass of molecules is randomly distributed like in the liquid
phase. Unlike the solid phase, nematic has no positional order. The nematic phase is characterized by an order parameter, a
degree of molecular alignment along the director.

S = 1
2 < 3 cos2 θi − 1 > (1.1)

where θi is angle of deviation between a molecular long axis and director n⃗ as (shown in figure 1.2). The value of the nematic
order parameter varies between 0 and 1, with S = 1 corresponding to the perfect nematic order where all molecular are aligned
parallel to n⃗. S = 0 corresponds to no long-range orientation order. S therefore is used to describe the nematic-isotropic liquid
phase transition.

Figure 1.2: Nematic director

Figure 1.3: Uniaxial nematic type of ordering in thermotropic liquid crystal. n⃗ is the nematic director of the 8CB
molecules depicted as in the blue ellipses
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Figure 1.4: Phase transitions induced by temperature in 8CB molecules.

1.1.2 Smectic A phase
When the 8CB material cools down from the nematic phase, it reaches the smectic phase at temperature 33.5◦C. Generally, there
are a diversified set of smectic phases which have intermediate properties between nematics and crystalline solids. Among these
smectic phases, SmA and SmC are the two most widely found ones that are still thoroughly studied [21]. SmC is constituted by
rod-like molecules organized in periodic layers of of interlayer spacing do with their long axis being tilted to the layer normal. In
the smectic A, the rod-like molecules are arranged in periodic layers of of interlayer spacing do with their long axis being parallel
to the layer normal as shown in figure 1.5. This material has a liquid character inside each smectic layer. This layered structure

Figure 1.5: 8CB smectic A ordering in thermotropic liquid crystal. n⃗ is the smectic director and is parallel to the
layer normal.

of the smectic A phase of the 8CB material is interesting in that it allows us to measure the materials with X-RAY diffraction
which now can allow, with the use of synchrotron radiation a particularly accurate study of the corresponding structures, as I
will try to show in this manuscript.

The smectic A liquid crystal phase is characterized by long-range orientational order and quasi-long-range 1-D translational
order of rod-like molecules. The interlayer distance d is constant. In the case of 8CB material, the value of do is 31.6 Å. Let’s
consider a smectic layer to be parallel to the X-Y-plane and the layer displacement u(z) = uz(r) is in the z direction. In smectic
phase, the mass density ρ exhibits a periodic variation along the normal to the smectic layers, i.e., parallel to the z-direction
(figure 1.5) . If we ignore the higher-order harmonic terms of its Fourier series, this density can be written as [22, 23, 24, 25]

ρ(z) = ρo + ρ1 cos[qoΦ(z)] (1.2)

where Φ(z) = z + u(z) is the phase parameter and ρo is the average density of the medium, qm = 2π
do

and u(z) is the layer
displacement from the position z = ndo where n is an integer, with the origin is chosen at z = 0. When the smectic layers are
rotating for example in our system as we will see later in this manuscript, we can write this in polar coordinates as

ρ(r) = ρo + ρ1 cos[qoΦ(r)] (1.3)

where

Φ(r) = r + u(r) (1.4)
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and u(r) is the layer displacement in the direction n⃗ at the position r = z2 + ϱ2 with ϱ2 = x2 + y2 from the equilibrium
position r = nd, with n integer and the origin is chosen at r = 0. The u(r) which can for instance be the undulation (figure
1.6) due to the thermal fluctuation or some imposed deformation [23, 25].

Figure 1.6: Undulation (left) and compression (right) of smectic layers with corresponding wave vector for the
smectic-A phase. u(r) is the one dimensional smectic layer displacement from its equilibrium position[25].

This layered structure system can give rise to linear defects such as dislocation and disclinations as in other crystalline
systems. There is a large elastic energy associated with any deformation which changes the interlayer spacing in smectic A
material. In the next section I will describe the distortion free energy in nematic and smectic A systems.

1.1.3 Nematic distortion free energy density
Distortion free energy density describes the increase in the free energy of a liquid crystal caused by distortions from its uniformly
aligned configuration. Shearing, compression or dilatation, bending of the smectic layers, splay, and twist deformation are some
of the distortions that can be applied to the liquid crystal system.

The distortion free energy density for a nematic is given by the Frank-Oseen energy density associated with the director
field n⃗ deformation as shown in the equation 1.5.

fd = K1

2 (∇ · n⃗)2 + K2

2 (n⃗ · ∇ × n⃗)2 + K3

2 (n⃗× ∇ × n⃗)2 + K4

2 ∇ · (n⃗∇ · n⃗+ n⃗ · ∇ × n⃗) (1.5)

All the above Frank constants K in the distortion-free energy are useful to describe how a liquid crystal materials responds
to strain or deformation applied to it. Each of them is related to a specific pure deformation as displayed in figure 1.7. The
constants K1, K2, and K3 are associated respectively with the splay ,twist, and bend deformation of the director. The fourth
constantK4 is associated with the saddle-splay energy that describes the surface interaction. Generally, more than one of these
deformations is often created. Since the free-energy density has the energy dimension per unit volume, these constants can be
estimated as energy (E) of molecular interactions responsible for the orientation order divided by a molecular size (l). Their
dimension is therefore J/m[26].

K = E

l
(1.6)

The magnitudes of these constants can be determined, and their order is often K3 > K1 > K2. In most cases, the bending
constant (K3) is the largest because of the rigid-rod shape of molecules whereas the twist constant K2 is the smallest.
Consequently, the twist deformation is the most favorable in the nematic phase. For example, for the nematic 5CB, these values
were found to be

K3 = 1 × 10−12Jm−1;K1 = 0.64 × 10−12Jm−1;K2 = 0.3 × 10−12Jm−1;

The value of all these constants strongly decreases as temperature increases and vanishes in isotropic phase [23, 27, 28].
The distortion-free energy of the nematic liquid crystal in equation 1.5 is most often written in terms of the first three terms.

The fourth term contributes a surface term. Since the energies in the bulk of the liquid crystal are often greater than those due
to the surface, the contribution of this term to the total free energy of the system is often neglected [20].
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Figure 1.7

1.1.4 Smectic distortion free energy density
The smectic free energy can be changed by altering either the smectic medium’s density or the smectic layer’s thickness [24].
Moreover, since the director field, n is normal to the smectic layer, the bending of this layer can deform it.

The equation of total smectic distortion free energy per unit volume is formed by the contributions from the variation of the
thickness of the layer, i.e., compression/dilation and the deformation of the director such as twist and bend. While the thickness
of the layer is necessarily changed under the bend deformation, this is not the case when the deformation is the splay [24]. Let’s
now look at how this equation is derived from the two contributions.

Contribution from deformation of the smectic director

Applied to the smectic case, the constants K1 in equation 1.5 is still associated with the splay deformation of the director. It
corresponds to the total curvature of the layers.

∇ · n⃗ = 1
R1

+ 1
R2

=
(
∂2u(r)
∂x2 + ∂2u(r)

∂y2

)
(1.7)

Both R1 and R2 are the principal curvature radii. This term appears in the equation regardless of whether the layer’s thickness
is changed or not.

The constant K2 for the twist deformation (figure 1.7) will disappear as long as the director is assumed to remain parallel
to the layers normal.

n⃗ · ∇ × n⃗ = 0 (1.8)

This shows that twist deformation is forbidden in the smectic phase.
The third term in equation 1.5 always appears as long as there is a variation in smectic layers thickness. It is thus replaced

by the dilation term described below. The term related to the Gaussian curvature is strictly zero if the smectic layers are
topologically equivalent to the plane [24]. Finally, the only remaining contribution from the deformation of the nematic director
in smectic phase is the splay term and is given by equation 1.9.

fd = K1

2

(
∂2u(r)
∂x2 + ∂2u(r)

∂y2

)2

(1.9)

Contribution from the variation of the thickness of the layer and density of the smectic medium

Let’s now look at the contribution from changing the smectic layer’s thickness and density of the smectic medium. The general
expression of this contribution to the distortion-free energy per unit volume is given in [24] as

fe = A

2 θ
2 + Cθχ+ B

2 χ
2 (1.10)

where the parameter θ is the volume dilation and it comes from the fact that for a distorted material the density will vary
from its of the non-distorted value [24]. It is defined as

θ = ∇ · u(r) = − (ρ− ρo)
ρo

(1.11)
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where ρ is the density after deformation, ρo is the density value without deformation.
The parameter χ is the smectic layer dilation or compression. It is defined as

χ = ∂u(r)
∂z

= do − d

do
(1.12)

where do is the value of the interlayer distance before deformation and d is the actual value measured along the director (Z
direction). This relation in equation 1.12 can be shown as follow We need to write this in terms of interlayer spacing. The
smectic layers are region of maximum density [29] i.e cos

{
qo

[
Φ(z)

]}
= 1 in equation 1.3. Let’s consider two consecutive

smectic layers. For the first one cos
{
qo

[
Φ(z)

]}
= cos 2πn and the second one cos

{
qo

[
Φ(z′)

]}
= cos 2π(n+ 1).

We can now write two equations {
qo[Φ(z)] = 2πn
qo[Φ(z′)] = 2π(n+ 1)

(1.13)

Using equation 1.4 Φ(z) = z + u(z) and Φ(z′) = z + ∆z + u(z + ∆z){
qo[z + u(z)] = 2πn
qo[z + ∆z + u(z + ∆z)] = 2π(n+ 1)

(1.14)

If we take the difference between the corresponding sides of equation 1.13

∆z + [u(z + ∆z) − u(z)] = 2π
qo

(1.15)

where ∆z is equal to the interlayer spacing d′. This equation is equivalent to write

∂u

∂z
= (do

d′ − 1) (1.16)

Furthermore, all three constants A, B, and C satisfy the condition of stability that is A > 0,B > 0, and AB > C2 [24].
If the smectic sample is confined in a rigid and fully closed container, its volume will not be changed, making θ vanish.

However, in our case, the samples are in the open air, so the volume can indeed freely change with the pressure inside the
smectic samples remaining unchanged. The atmosphere exerts an upward pressure force on the sample. The pressure change
for the sample can be quantified as

P − Patm = −∂ρf

∂θ
= −Aθ − Cχ = 0 =⇒ θ = −C

A
χ (1.17)

where

ρf = fd + fe = K1

2

(
∂2u(r)
∂x2 + ∂2u(r)

∂y2

)2

+ A

2 θ
2 + Cθχ+ B

2 χ
2 (1.18)

Replacing the values of θ in the equation 1.10, it becomes

fe = A

2 (C
A
χ)2 − C(C

A
χ2) + B

2 χ
2 (1.19)

This is equal to

fe = 1
2(B − C2

A
)χ2 (1.20)

In practice A ≫ C and B. Using this approximation in equation 1.20, we are able to show that the contribution from the
variation of the layer’s thickness and density of the smectic medium is given by just the compression or dilation of the smectic
layers.

fe = B

2 (∂u(r)
∂z

)2 (1.21)
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By adding equation 1.21 and 1.9, the total distortion-free energy per unit volume for smectic layers in equation 1.18 becomes
1.22

ρf = B

2

(
∂u(r)
∂z

)2

+ K1

2

(
∂2u(r)
∂x2 + ∂2u(r)

∂y2

)2

(1.22)

B is the layer compression modulus and K1 is the splay constant. These two constants are expressed in units of energy per
unit volume and energy per unit length respectively. The square root of the ratio of K1 to B is defined as penetration length λ.
This is a characteristic length of material, and it is of the order of magnitude of the layer spacing do. It measures the relative
importance of the splay term versus the compressibility term.

λ =
√
K1

B
(1.23)

The free energy can also be sometimes found written in terms of the phase Φ . It thus becomes

Υ = B

2

{∫
d2x

[
(∇Φ)2 − 1

2

]2

+ λ2(∇2 · Φ)2
}

(1.24)

[30, 31, 32]
For such a purpose we use the fact :

(∇Φ)2 − 1
2 =

( ∂(z+u(z))
∂z

)2 − 1
2 ⇐⇒ (∇Φ)2 − 1

2 =≈ ∂(u(z))
∂z

(1.25)

Where the term with square of the derivative of the layer displacement is considered to be too small and is ignored. Using
equation 4.40, it can easily be shown that

∇2u(z) = ∇2Φ(z) (1.26)

The second term of 1.22 is ∇2u(r) − ∂2u(r)
∂z2 . This last term is small compare to the first term of ρf and is negligible, allowing

to write the second term of 1.22 as ∇2u(r). Following equation 1.26, the equation 1.22 can therefore be written in terms of
this phase field Φ(r) as in equation 1.22.

1.1.5 Anchoring and surface energy
As we will see later on in this manuscript, the liquid crystal may be bounded between two fixed surfaces or deposited in the open
air on a surface. For example, the thin film samples we studied during this thesis were created by confining the 8CB smectic
A liquid crystal between a rubbed PVA substrate and air. Without surface or applied forces, the average orientation of liquid
crystal molecules at equilibrium is arbitrary. However, when deposited on a surface, the molecules must either be firmly or
loosely anchored to the bounding surface(s). The anchoring refers to the orientation or alignment of liquid crystal molecules
on a surface or interface. It is said to be strong when it permanently fixes the molecular orientation; otherwise, it is weak. The
energy required to rotate the director n⃗ of a liquid crystal from its preferred orientation at the surface to some other orientation
is called anchoring energy. A complete description of the deformed liquid crystal must consider the interaction between the
molecule and the surface, i.e., anchoring. Therefore the total distortion-free energy may have the surface term to consider the
anchoring energy. This total energy becomes as

F
′
d = Fd + Fsurface (1.27)

For the case of strongly anchored molecules, when an external perturbation field is applied, the direction axis of the
molecules at the surfaces will be fixed, and only the molecules in bulk will be deformed, so the surface energy term is considered
constant. It has not to be included in the total energy. In contrast to this first case, when the molecules are loosely anchored in
the presence of the perturbation, the director axis of the molecules in bulk and those at the surface will be deformed. Therefore
the surface energy term has to be included in the total distortion-free energy [28].
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Two terms form the surface energy per unit surface. The first one is the anchoring energy per unit surface W . This is an
anisotropic part. The other part is the surface tension τ(θ, ϕ) where the θo is the favorable (so-called easy orientation) zenithal
anchoring angle and ϕo is the favorable azimuthal anchoring angle [27, 33].

Fsurface(θ, ϕ) = τ(θo, ϕo) +W (θ − θo, ϕ− ϕo)

The anchoring energy can be purely polar when the θ = θo.

W = wp sin2 (θ − θo)

and purely azimuthal when ϕ = ϕo.

W = wa sin2 (ϕ− ϕo)

Figure 1.8: Schematic illustration of different types of anchoring conditions of molecules. (a) Uniform planar
anchoring (b) Degenerate planar anchoring (c) Homeotropic anchoring (d) tilted anchoring. [24]

There are three types of anchoring as shown in figure 1.8: Planar ( can be uniform or degenerate), homeotropic, and
tilted anchoring. When the director is parallel θ = 90◦ to the surface, and all molecules are orientated in the same direction,
the anchoring is called uniform planar anchoring (see figure 1.8(a)). Degenerate planar anchoring is when the molecules
are randomly oriented parallel to the surface (see figure 1.8(b)). The anchoring is homeotropic if the molecular direction is
perpendicular to the surface θ = 0◦ (see figure 1.8(c)). The tilted anchoring is when the zenithal angle has a nonzero value less
than θ = 90◦ (see figure 1.8(d)).

In our study, the 8CB smectic A liquid crystal molecules will be confined between uniform planar and homeotropic
anchoring. The former is produced by rubbing PVA substrate. So when 8CB molecules are deposited upon it, they are all
oriented parallel to the substrate surface in a non-degenerate manner. The later anchoring is imposed by air.

1.2 Topological defects in smectic liquid crystal phase
The confinement of liquid crystal between interfaces or competing anchoring conditions and shearing techniques can distort
it into topological defects. Using polarizing microscopy Georges Friedel has observed and described focal conics textures
formed in smectic liquid crystal deposited between slide and cover slip [24]. The formation of a variety of topological defects
is how the liquid crystal relaxes from breaking the symmetry of the smectic layers structures. Liquid crystal topological defects
are associated with places where the liquid crystal order is no more defined. They can be linear such as dislocations and
disclinations or 2D defects such as some 2D grain boundaries, between two regions of different molecular configurations. Due
to their ubiquitous nature, the understanding of the physics associated with these topological defects is generally important.
They indeed concern in various fields of research such as mathematics [34], cosmology [35]. The presence of topological
defects is also vital in biological matter [36]. In soft condensed matter, in particular with liquid crystals, the anisotropy nature
of mesogens molecules enriches the defects with tunable optical and morphology behavior which. This endows them with the
ability to significantly alter the properties of the materials allowing to foster novel applications[37]. For instance, they can work
as the matrix for particle assembly where they attract and trap nanoparticles like gold nanoparticles, fluorescent nanocrystals,
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and semiconductor nanorods in their defects core. This stabilizes the liquid crystal-nanoparticles composite structure as a
result of releasing the energy associated with defects cores [38] and thus allows to study new kinds of nanoparticle assemblies
and their related optical properties. Other various applications such as optical imaging and motion control of bacteria can be
possible by the use of some specific defect engineering. Wu et al. [37] have shown how smectic defects such as oily streaks
can be manipulated by a combination of preprogramming of alignment condition. By deflecting, bending, and splaying they
produce new types of defects. It is therefore vital to understand the structure of liquid crystal topological defects. There is
ample literature on the theoretical study of topological defects in particular in smectic phase . However, the availability of
comprehensive experimental data on their exact structure is still vital especially as nanoscale resolution and probably even more
in smectic phase than in nematic phase.

The first type of topological defect in smectic liquid crystal is dislocation where the smectic order melts, ψ = 0. The
second type of topological defect in smectic liquid crystal is disclination where the layer normals which are defined as ∇Φ

|∇Φ|
are singular. [29]. In smectic there are also well known smectic textures called focal conic domains. They are defined around
smectic topological defects. The two singular and conjugate lines, the ellipse and hyperbola, around which smectic layers are
bent.

1.2.1 Disclination

Disclinations are singular lines in which rotational symmetry is broken. They are the most common defects in uniaxial nematic
and smectic. Disclination lines in a smectic are where smectic layers intersect along a line as shown in figure 1.9. The smectic
disclinations are characterized by a topological charge Qdf ≥ 1 that is given by Qdf = 1 − m

2 where m ≥ 0 is the integer
number of layers that are attached to a generic point along the dislocation line [39]. A smectic disclination can have a maximum
topological charge of +1 (as in figure 1.9(e)) [40].

In general, disclinations occur in pair of opposite or same signs which restore the long range order of the normal to layers.
This pair is equivalent to a large charge dislocations (in figures 1.11(b) and 1.10(b)) of Burger vector equal to twice the number
of layers between the two disclination defect cores [23]. The energy of the disclination defect is given by

EDisclination = π

2K1 ln ( bdo

2rc
) + Ec (1.28)

where EC is the energy of the disclination core where the smectic order decreases and the layer thickness is denoted by d.

Figure 1.9: Smectic disclination points with different strength Q which is defined as the number of time the vector
field winds around the defect core in anticlockwise sense. For the red defect core, m = 3 and the Q = − 1

2 . For the
green defect core, m = 1 and Q = − 1

2 [29, 40, 41]

1.2.2 Dislocations

Dislocations are linear defects observed in smectic A material and crystals. They locally break the translational symmetry of
the lamellar structure and involve local variations of layers thickness [29]. They are characterized by a Burger vector which
has to be an integer multiple of the interlayer spacing d, where the integer is the number of all extra layers. Dislocations in the
smectics play an important role in phase nucleation, layer reorientation, and dynamics [39]. There exists two main types of
dislocation defects in smectic A liquid crystal materials: the edge dislocations and the screw dislocations.
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Screw dislocations

The first translation defects are screw dislocations (figure 1.10). Their Burger vector is parallel to the defect line. The energy
of a screw dislocation is given by

Escrew = Bb4

128π3r2
c

+ K1b
4

64π3r4
c

+ Ec (1.29)

where b is the Burger vector, rc is the core radius, Ec is the core energy, K1 is the bending constant. The screw dislocations
can split into a + 1

2 disclination pair [39]. The existence of giant screw dislocations has been demonstrated experimentally [42,
43]. However, experimental results on the exact structure of their core are still scarce.

Figure 1.10: The screw dislocation in smectic materials. (a) small screw dislocation showing a Burger vector
parallel to the defect line. Figure reprinted from [24]. (b) The giant screw dislocation formed by a pair of two
dislocation lines (shown in green color) of topological charge + 1

2 . Figure reprinted from [39].

Edge dislocations

Edge dislocations are other defects which break locally the translational symmetry of lamellar structure. They are shown in
figure 1.11, the Burger vector b⃗ is perpendicular to the defect line denoted by t⃗ figure 1.11(a). They appear when one or more
extra layers is/are added. The energy of the dislocation per unit length is

Eedge =
√
K1Bb

2

2rc
+ Ec (1.30)

where b is the Burger vector, rc is the core radius, Ec is the core energy. Here by core, I mean the end of the broken layer(s)(see
figure 1.11). The term in the square root is from to the competition between curvature energy and the elastic energy around the
dislocation core (compression and dilation) [44]. They play a central role in explaining the plastic properties of the smectic A
phase [45]. This smectic dislocations are not topologically protected and so the symmetry of smectic allows the dislocations of
large enough Burger vectors to be decomposed into disclinations pair [29, 39]. This is the case of the edge dislocations of large
Burger vector which can split into + 1

2/− 1
2 pair of disclination lines as shown in figure 1.11(b) [39]. The energy of such giant

dislocation defect is given by equation 1.31

Egiant = πK1

2 ln ( b

2rc
) + Ec (1.31)

where the b is the Burger vector, d is the layer thickness, rc is the core radius of the two disclinations andEc is their core energy
[24, 37, 46] Despite of a substantial theoretical literature’s, the detailed structure of elementary dislocations in real smectics
remains largely elusive. Meyer et al [47] have reported the first experimental observation of elementary edge dislocations in
smectic liquid crystals. The experimental characterizations of structure and defect core of elementary dislocations are scarce to
date [24]. For instance, for smectic dislocation, only one Cryo-transmission electron microscopy (Cryo-TEM) observation of
edge dislocations in smectic C* materials is available [48] and one polarized optical microscopy measurement for giant smectic
rods [43].
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Figure 1.11: The dislocation in smectic materials. (a) small edge dislocation with a Burger vector defect line. [24].
(b) The giant edge dislocation in smectic with a core splits into a pair of disclination lines. These dislocations lines
have a topological charge of + 1

2 (green point) and - 1
2 (red point) respectively. Figure reprinted from [39].

1.2.3 Focal conics domain
The most common smectic textures associated with topological defects are focal conics domains (FCD). A FCD is characterized
by two conjugate focal lines, the ellipse and hyperbola as shown in figure 1.12. The smectic layers rotate around the two lines,
keeping constant their interlayers spacing parallel and having a common normals and curvature center along a same normal.
They can be formed when the smectic A film is thick enough [24]. A 2D pattern of non-toroidal FCDs has been observed when

Figure 1.12: The focal conics domains. (a) The plane of that contains the ellipse is orthogonal to the plane that
contain the hyperbola. [49] (b) Model of the 2d pattern non-toroidal FCDs (c) FCPEM image of a 2d pattern of
non-toroidal FCDs [50].

the smectic-A 4-cyano-4’-n-octylbiphenyl (8CB) liquid crystal film of larger thickness deposited in air on different substrate
such as molybdenite and mica crystals [51] and PVA and PI polymers [50]. Claire Meyer et al. have also worked on focal Conic
Stacking in Smectic A Liquid Crystals. They reported two textures of topological defects, specifically the flower texture and the
generation texture texture[52]. It was reported that when dislocations interact with focal conics domains, some imperfection on
the FCD are produced as detailed in [53].

1.2.4 2D defect: Grain boundaries in smectics
Another feature that emerged from the frustrated smectic liquid crystal thin film is the grain boundary. These are are separating
two domains of different orientations. They are characterized by a disorientation angle θ 1.13. Williams and Kléman [44] have
considered an homeotropic sample or a perfect planar sample as shown in figure 1.13(a). If the sample is bent on its ends with
a small disorientation angle θ ≪ 1, a curvature wall of layers will be formed in the between the two disoriented parts with an
associated dilation of the layers without dislocations. This can be seen in figure 1.13(b). The curvature energy per unit surface
is given by
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Ec ≈ 2
3

√
KBθ3 (1.32)

Figure 1.13: (a)The uniform planar sample (b) after applying a small disorientation angle, with no dislocation (c)
curvature wall for larger disorientation angle. It has some dislocations. (d) when the disorientation is increasing
further beyond 25◦ the wall is full of dislocations only[44]

The energy of such a grain boundary has been more precisely calculated in [54]. When the disorientation angle increases,
the stress increases and the system relax by adding extra layers which are associated with dislocation defects (see figure 1.13(c)).
The produced curvature wall is called mixed curvature wall [24]. Its curvature energy is of the order

Ecomb = Eed

do
θ2 (1.33)

where Eed is the energy of the produced edge dislocation and do layer thickness. This wall is expected to be experimentally
obtained for θ between few degrees and 25◦.

When the disorientation angle θ ≈ π, the curvature is made up only of dislocations as shown in figure 1.13(d). The energy
of the curvature wall given is of the order of

E = Eed

b
(π − θ) (1.34)

When the samples exhibit planar anchoring with degenerate anchoring and the angle is much larger, the Grandjean walls,
or focal domain walls appear as shown in figure 1.14. This only appears if the sample thickness is large enough [44]. When
the film is thick enough (thicker than 1 µm) arrays of focal conics are formed as shown on figure1.14[44] and as discussed in
section 1.3.3 below. However in my thesis I worked with thin films of thickness smaller than 300 nm. Topological defects and
curvature wall were thus produced as described below and in the next chapters. Our film are confined between non-degenerate
planar anchoring on the substrate and the homeotropic anchoring.

1.3 Study of the oily-streak in 8CB smectic A thin film
The smectic oily streaks are 1D patterns. They correspond to the structure adopted by smectic liquid crystal films deposited on a
substrate which imposes a unidirectional planar anchoring whereas the liquid crystal molecules are imposed to be perpendicular
to the air ( homeotropic anchoring) [38, 49, 55]. They have been found in many different liquid crystal system such as 8CB,
other alkyl-cyanobiphenyls [56], alyloxy-cyanobyphenyls (8OCB)[57], and 9004 [58]. They have been obtained by depositing
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Figure 1.14: Tilt wall between two grains achieved by a system of confocal domains (Grandjean boundary) [44]

thin LC films in air on various substrates that impose unidirectional planar anchoring, such as molybdenite [55], mica [51, 59],
the photoalignment agent sulfonic azo dye SD1 [37], rubbed polyimide (PI) [58], and the rubbed polyvinylalcohol (PVA) [38].

During my thesis, we have used rubbed PVA-coated glass slides as substrates. In this section I will start by introducing
the sample preparation. Then, I will talk about the preliminary analysis which is based on the use of optical microscopy to
not only determine the film thickness, the period of the pattern but also to ascertain the presence of the oily streaks or other
structure known as larger streaks.I will then summarize the previous results that have been obtained concerning the structure of
oily streaks such as how it evolves on different substrate, notably, the PVA,MoS2 and muscovite mica. Right before concluding
this chapter, I will talk about how this structure evolved as function film thickness.

1.3.1 sample preparation
The samples of the 8CB smectic A thin films that we have studied during my thesis were prepared by Professor Haifa Jeridi
and two PhD students of Professor Emmanuelle Lacaze, notably Caterina Tosarelli and Lamya Essaoui. They have also done
the preliminary analysis of these sample to ascertain the presence of oily streaks They also determined the film thickness. The
first step in sample preparation was the preparation of the substrate. This consists of a scrupulous cleaning of the glass slide
of surface 18 mm × 18 mm to ensure a good spreading of 8CB film upon substrate but also avoid dusts that may affect the
anchoring of the molecules. Once the glass slide cleaning is finished, they deposit using spincoating a droplet (100 µL) of an
aqueous solution of PVA (poly vinyl alcohol from Sigma Aldrich) (0.5 wt %, acceleration 400 rpm s−1, speed 3000 rpm,
during 30s) on the glass slides. The resulted PVA layer of thickness around 10 nm was firstly heated at the oven for 1 hour at
140◦. Right after removing the PVA-coated glass slide from the oven, they rubbed the slides unidirectionally using the rubbing
machine shown in figure 1.15. A great attention is taken during this rubbing in order to control the rubbing forces. This is a
critical issue since, for strong forces (shorter distance between the PVA substrates and the rubbing roller of the rubbing machine),
the oily streaks texture largely dominate the overall structure. By reducing the rubbing force, an other structure called Large
stripes appear in majority. Recently H. Jeridi et al [60]. have proposed a schematized model of structure of the large stripes
shown in figure 1.16(d). It may correspond to hemicylindrical superposition of smectic layers similarly to oily streaks with a
similar structure at the edges of the hemicylinders (figure 1.16(b)), but its central part is larger than the one of oily streaks and
the flat layers in this part may directly touch the substrate contrary to the oily streak structure. As a result larger widths of the
hemicylinders are observed for large stripes with respect to oily streaks (1.16(a)). Detailed study is however necessary to obtain
the precise structure of the large stripes and understand its relationship with the anchoring forces A moderate force produces a
coexistence of the two structures.

The substrate/8CB film interface imposes a uniform unidirectional planar anchoring to the 8CB molecules deposited
upon the substrate as shown in figure 1.8(a)). These 8CB liquid crystal films were deposited by spin-coating the droplets
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Figure 1.15: Rubbing machine

of 4-n-octyl-4’-cyanobiphenyl (8CB from Sigma-Aldrich), (50µL, 0.2M ) in toluene as solvent (speed 3000 rpm during 30s,
acceleration between 500 rpm s−1 and 1000 rpm s−1) on the rubbed PVA substrate. The air-8CB interface imposes an
homeotropic anchoring on the 8CB molecules. Therefore the 8CB smectic A liquid crystal film is confined between the two
antagonistic anchorings, the uniform unidirectional planar on the substrate/film interface and the homeotropic anchoring at the
film/air interface. This induces a bending of the smectic layers into a periodic array of flatten hemicylinders which are parallel
to the substrate and perpendicular to the anchoring direction as schematized in figure 1.16 (a) [55, 60]. In the next subsection, I
will briefly talk about the optical microscopy analysis of the sample.

Figure 1.16: 3D schematized model of (a) oily streak and (b) large streak. Smectic layers are curved in flattened
hemicylinders with the molecular orientation shown in yellow. The 2D cross-section view of (a) oily streaks (d)
large stripes have the same expected structure in the edges of the hemicylinder but the central part of large streak
is larger than that of the oily streaks. [60].
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1.3.2 Polarized optical microscopy study

Birefringence

One of the quintessential properties of liquid crystal, in particular smectic phases is their birefringence property. This property
makes the polarized optical microscopy most useful in the study of the liquid crystal structure. Let’s briefly review what is the
birefringence of the liquid crystal.

Birefringent materials have two different indices of refraction. The ordinary no and extra-ordinary ne indices depend on the
direction of the polarization of the light with respect to the director n⃗. The former is when the smectic director is perpendicular
to the direction of light polarization and the latter is when the director is parallel to the light polarization. So birefringence ∆n
is the difference between the two refraction indices.

∆n = ne − no (1.35)

Our smectic A sample were observed using an upright optical microscope (Leica DMRX). The light from either halogen
lamp was impinged normally on our thin film placed between two polarizers like in the example shown in figure 1.17 for a
nematic slab between two glass slides and two crossed polarizers.

Figure 1.17: Propagation of light through a polarizer, a uniaxial slab, and analyzer. The image reused from the
book:Soft matter Physics, an introduction, by Maurice Kleman and Oleg D.Lavrentovich, 2003 [27]

The polarizer between the lamp and the sample linearly polarizes the incident light. After passing through the 8CB thin
film, the linearly polarized light splits into ordinary and extra-ordinary waves with mutually perpendicular polarizations and
amplitudes Ex = Eo cos(β) and Ey = Eo sin(β), where Eo is the amplitude of the incident light and β is the angle between
the direction of polarization of light and the local smectic director n. The two waves are out of phase with a phase difference of

∆ϕ = 2πt(ne − no)
λo

where t is the thickness of the liquid crystal sample, λo is the wavelength of the incidence light.
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If the liquid crystal director is planar and homogeneous, the light intensity passing through the thin film and the crossed
polarizers is given by

I = Io sin2(2β) sin2[πt(ne − no)
λo

]

This intensity expression is anyway qualitatively helpful for non homogeneously planar sample by taking an effective ne for
studying the liquid crystal structure. In our optical microscope it is collected by a SONY CDD camera of resolution 1600×1200
pixels. We work in reflection mode between crossed polarizers. In the figure 1.18(b), we observe a periodic array of stripes
Each stripe corresponds to a flattened hemicylinder parallel to the substrate and perpendicular to the unidirectional anchoring
direction.

The dark parts of the stripes correspond to areas where neeff is close to no and I close to zero. It thus corresponds to
the central part of the hemicylinders which is formed by a majority of molecules oriented parallel to the direction of light
propagation. On the two edges of each hemicylinder there are rotating layers. When the stripes are orientated at 45◦ with respect
to the polarizers, the intensity from this part of rotating layers is maximum and so it appears bright in the optical microscopy
images, finally leading to stripes made of alternating dark and bright lines.

Figure 1.18: (a) Periodic array of the flattened hemicylinders in the 8CB film confined between unidirectional
anchoring (on the MoS2 single crystalline substrate) and the homeotropic anchoring on the film-air interfaces.
In the highlighted part, the 8CB molecules are depicted in orange color. (b) Optical microscopy image between
crossed polarizers of size 165 µm × 123µm obtained on a sample of thickness 0.20 µm. [55, 60].

Determination of the smectic film thickness and the period of oily steaks.

The optical microscopy in reflection mode (with crossed polarizers) was used to observe the periodic array of oily streaks. The
determination of the film thickness is done using the optical microscopy in reflection mode (with parallel polarizers). This
gives pattern of colors as shown in figure 1.19. They come from the interference phenomenon between the light reflected from
the two interfaces of the sample being observed under the microscope. The smectic film thickness is determined by using the
measurement of the Newtons’ tints shown in the appendix A. The film thickness t is given by

t = δ

2n (1.36)

where δ is the path different between the reflected signals and n is the average optical index and is given n = ne+2no
3 . For the

case of our 8CB smectic liquid crystal thin films, no = 1.518, ne = 1.673 and n = 1.57.
The period of the streaks in an optical polarized image was determined for 8CB smectic A liquid crystal film deposited on

different substrate.

1.3.3 Structural Evolution of the smectic stripe as function film thickness.
Thin films

The period is always greater than twice the film thickness. For PVA substrate, the slope is 1.5 and the offset 300 nm as shown in
figure 1.19(inset) [38]. ForMoS2 the slope is 4.4 and the offset 500 nm. These results show that the structure of the oily streaks
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Figure 1.19: Image of optical microscopy in reflection mode between parallel polarizers of sample in average of
120 nm thick film. It has a large majority of oily streaks. The images was obtained from Lamya Essaoui. Inset
graph: Stripe period as a function of film thickness. The red line is a linear fit [38].

can correspond to a perfect hemicylinder but,instead to flattened hemicylinders. This result is in contrast with the suggestion
of Parodi [61] and Allet et al.[62]. They proposed a structure in which there was no central flat part, i.e., the two hemicylinder
quarters were directly connected. Hence the stripes were formed by perfect hemicylinders and the area above the curvature wall
between the neighboring perfect quarters of hemicylinder was either filled with nematic or kept unfilled. Allet, Kleman, and
Vidal [62] have also proposed - 1

2 disclination defect in this part. The instead observed flattened pattern is induced by the hybrid
anchoring conditions where the surface energy tends to keep flat the smectic layers and thus favour the flat areas of the flattened
hemicylinders.

The model schematized in figure 1.18(a), with flattened central part was found not only onMoS2 single crystalline substrate
for film thickness between 70 and 450nm, but it was also found when the 8CB film is deposited on the PVA substrate [38, 55,
63, 64]. The model of the internal structure of the 8CB film of 220nm thickness deposited on PVA was developed through a
combination of ellipsometry, optical microscopy and X-RAY diffraction (I will come back on this in chapter 2). It is shown in
figure 1.20 [38]. This model has three parts. The first part is formed by central layers that obeying the homeotropic anchoring.
The second part is formed by two edges. Each is formed by rotating layers that are satisfying the hybrid anchoring. The third
part is formed by perpendicular layers everywhere on the substrate obeying the uniform planar anchoring. This last part has a
thickness of 30 nm of perpendicular layers.

Due to the strong anchoring that was on the PVA substrate, these perpendicular layers cover entirely [38]. As a result a 2D
topological grain boundaries that separates the perpendicular layers from the central flat layers as shown in green color in fig.
1.20 is expected. It was shown that an hexagonal network of nanoparticles can be trapped in this 2D defect which also stabilized
it energetically [60, 65]. This model has also rotating grain boundaries (shown in red in figure 1.20) separating the central flat
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layers from the rotating smectic layers. In contrast to the PVA substrate, when the 8CB film is deposited on the MoS2 single
crystalline substrate, the central part is considerably larger as shown by the large slope of the curve of period as function of
thickness. This would imply a very large and energetically expensive, grain boundary. So we expect this part to disappear and
be replaced by possibly flat layers reaching directly the substrate. This suggests that the planar anchoring on this substrate is
weak enough to be partially broken and allows formation of larger flat hemicylinders than the ones formed on PVA substrate
[49].

Figure 1.20: Schematized model of the internal structure of the oily streak for 8CB film of 220 nm [38]

Two neighboring hemicylinders are separated by a vertical curvature wall shown in blue in figure 1.20. The structure of this
wall is still enigmatic. From top to down along this curvature wall, the bend distortion increases. A chain of dislocations can
be expected along this wall [49]. However, Coursault Delphine [66] and other works such as Allet, Kleman, and Vidal [62] and
[58] have suggested the possible existence of - 1

2 disclination defect on the top of this wall near the air surface.
When the 8CB smectic film has been deposited in air on the muscovite mica, the model of flattened hemicylinders appears

still valid since the scattered intensity resembled what was obtained for both PVA and MoS2 substrate [66] for similar thickness.
As we will see in the chapter 2, this suggests a universality of the structure of the distorted 8CB thin films imposed by antagonistic
anchoring.

Thick films

For film thickness much larger than 300 nm, 8CB film of order of 1 µ m deposited on mica, a model completely different from
those of both PVA and MoS2 substrate was built issued from different X-RAY scattering result with respect to thin film. The
model is shown in figure 1.21. It is centered on a virtual singularity, with some layers perpendicular to the substrate and two
vertical grain boundaries separating two neighboring hemicylinders (vertical red line). The 2D central grain boundary (in green
color 1.20) has disappeared for thicker film. The cylinders are bent around virtual disclinations (blue dots). This structure
avoids almost all topological defects except at the junction between grain boundaries. This is only possible for thick films. For
sufficiently small thickness the creation of a lot of topological defect takes place. [49].

For much larger 8CB film thickness such as 1.5 µm, deposited on the muscovite mica, 1D pattern of oily streaks pattern
transform into 2D patterns of non-toroidal focal conics as shown in figure 1.12 and 1.22. The smectic film thickness clearly
appears as a crucial parameter for not only the appearance of the 1D pattern but even for the determination of the internal
structure of the 1D patterns.
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Figure 1.21: Schematized model of the internal structure of the oily streak for 8CB film of 1µm deposited on
muscovite mica substrate. [59]

Figure 1.22: Bidimensional lattice of focal conics domains in a 8CB mica for a 8CB thickness of the order of 1.5
µm. [51].

1.4 Conclusion and objectives

1.4.1 Conclusion
In this chapter I have introduced the smectic liquid crystal topological defects. We have seen that the confinement of the 8CB
smectic A in antagonistic anchoring distorted its pristine configuration into a periodic array of stripes which can be either oily
streaks or large stripes. We have focused on the previous studies on the evolution of these oily streaks as a function of both
the film thickness and the nature of the substrate upon which the film is deposited. We have clearly seen that the exact internal
structure of the oily streaks is still enigmatic with still pending questions at the origin of my PHD aimed at clarifying their exact
structure and its evolution with the films thickness.

What is the exact structure of the central part of the hemicylinders and in particular of the 2D grain boundary area ? In the
area between two neighboring hemicylinders, the bend distortion energy increases from top to bottom, this strongly suggests the
appearance of topological defects along this curvature wall, however, this has not yet been studied. Are there other topological
defects inside this oily streaks configuration? For example what is the exact structure of the part at the top of the curvature wall
between the two neighboring hemicylinders? We have seen that the film thickness affects the periodic pattern of stripes. The
thickness increases can fully modify the pattern ultimately leading to a transformation into focal conics domains. It would be
interesting to study the effect of the film thickness of the intimate structure on the oily streaks.

My thesis aims at responding to all of these questions. The main goal was to reconstruct the intimate internal structure of
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the oily streaks structure and to study the effect of the variation of the film thickness on the oily streaks structure. Topological
defects are crucial in tailoring properties of liquid crystal materials and they can lead to various applications. Nanoparticles and
microparticles can be efficiently be trapped in the defect core and therefore inherit their self assembling from this topological
matrices. The emerged composite could be useful for metamaterial, sensor, or solar cell production [67, 68, 69, 70, 71].
The determination of the intimate structure of the oily streaks has become more interesting for theoreticians and experimental
physicist. Xia et al. [67] have worked on the structural landscape in geometrically frustrated smectic. They have developed
a free energy model suitable for finite element simulation. They have proposed a simulated structure of the oily streak
reported in [38, 55, 63]. For these theoreticians, oily streaks consist in thin smectic films, thus appropriate for simulations,
of distortions displaying cylindrical symmetry that allow to work mainly in 2-dimension which is an advantage. This latter
advantage is also used in my study together with the induced periodic structure for an easier analysis of X-RAY diffraction. The
unprecedented resolution that can be achieved is thus particularly interesting for simulation since it provides accurate comparison
with experimental systems. Wu et al. [37] have also worked on this structure. They reported a flexible defect engineering based
oily streaks. They have also shown that the distribution of the electric field can manipulate the width and the orientation of the
oily streaks. These results evidence that many unprecedented application may be developed based on oily streaks. Recently,
Missaoui et al. [72] have also reported a new way of distorting oily streaks. Understanding how to be able to modify the defects
requires however, to understand them first in the simplest unidirectional situation.

All the above works highlight the interesting and indispensable work that has to be done to precisely understand the internal
structure of the oily streak in smectic thin films. This would open gates to not only many liquid crystal-based technological
applications but also fundamental applications towards a full understanding of these still complex smectic phases.
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Chapter 2

X-ray diffraction of smectic liquid crystal

Somewhere, something incredible is waiting to be
known

– Carl Sagan
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2.1 Introduction
My thesis was focused on the study of oily streaks using synchrotron X-ray scattering. Consequently this chapter is devoted to
an overview of X-ray scattering studies that focused in particular on smectic A phase. I will give an review on studies in our
group on the intimate structure of the oily streaks using X-ray scattering.

X-rays are high-energy electromagnetic waves which have a wavelength between 0.01 − 10 nm and energy between 124
eV and 124 KeV. This X-ray radiation can be produced using X-ray tubes or synchrotron facilities. The later are designed to
generate electromagnetic radiation from the far infrared to the hard X-ray regime as shown in figure 2.1 (b). The third-generation
synchrotron light sources are capable of producing 1012 times higher brilliance than laboratory-based sources [1]. During my
thesis, we conducted experiments using the X-ray beam from Soleil synchrotron, a third-generation synchrotron facility. The
synchrotron facility is a particular type of cyclic particle accelerator. One of its main components is a ring-shaped vacuum-filled
pipe surrounded by magnets (figure 2.1 (a)). Synchrotron radiation is produced when an electron accelerates, either by changing

Figure 2.1: (a) A schematic of the most important components of a third-generation synchrotron. Electrons from
a source (e.g. a heated filament in an electron gun) are accelerated in a linear accelerator (linac) into an evacuated
booster ring (the black ring inside the storage ring), where they undergo further acceleration. Accelerated electrons
in the evacuated storage ring emitting electromagnetic (synchrotron) radiation as their direction is changed by
bending magnets, wigglers, or undulators [2]. (b) Synchrotron radiations range from the far infrared to the hard
X-ray regime

the speed or direction of its motion using bend magnets to steer them in a closed path or special insertion magnet devices
(wigglers or undulators) that keep an average straight trajectory [2].

At the beamline, tangential to the storage ring, the radiation is normally (but not always) monochromated and focused using
X-ray optics onto a sample. The beamlines are designed for specific applications. For instance, we have used an X-ray beam of
energy 18.4 keV and beam size of 300 µm2 on the SIXS beamline which is dedicated to the structural characterization of surfaces,
interfaces, as well as nano-objects in controlled environments by means of surface-sensitive X-ray scattering techniques, such
as Grazing Incidence X-ray Diffraction (GIXD), X-ray Reflectivity (XRR), Grazing Incidence Small Angle X-ray Scattering
(GISAXS) and Transmission Small Angle X-ray Scattering (TSAXS). We have used the GISAXS and TSAXS in an helium gas
environment aimed at protecting the liquid crystal from X-ray damages.

The interaction of X-rays radiation with material depends on the X-ray’s energy and the material’s composition but poorly
on its chemical properties since the photon energy is much higher than the chemical binding energy. These X-rays radiation can
interact with material through transmission, absorption, and scattering. The latter can be inelastic such as Compton scattering.
In this case, the scattered waves’ wavelength differs from that of the incident waves. Such scattering is incoherent and cannot
produce an interference phenomenon, so it contains information on the structure of the scattering material only at short scale.
The X-ray scattering can also be elastic, i.e., the incident and scattered waves have the same wavelength. Elastically scattered
beams are coherent with incident one and can produce interferences. Therefore they are helpful for the determination of the
structure of the crystal or liquid crystal material [3]. Since liquid crystal materials, particularly smectic A materials, have
crystalline properties; we will start in the section 2.2 of this chapter with X-ray diffraction of a 3D crystalline structures I will
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then describe how it is related to a system of flat layers of smectic A liquid crystal film. In section 2.3, I will describe the
Peierls-Landau instability and in the next two sections, I discussed its impact on X-ray diffraction of smectic A liquid crystals.
In particular, I will describe different works that have been done on both the ideal smectic samples system (in section 2.4) and
real smectic samples. Finally, in section 2.6, I will reviewed different examples of the X-ray scattering of distorted smectic A
liquid crystal films focusing on the so-called oily streaks.

2.2 X-ray diffraction from a 3D structure

2.2.1 Scattered intensity from a single isolated atom

When X-rays irradiate a crystalline material, the oscillating electric field E⃗ = Eoe
i(νt−

−→
ki.−→r ) acts on the charged particles such

as atoms and molecules and leads them to oscillate at the same frequency ν. These particles thus behave like small dipoles that
radiate the scattered light. Waves emitted from different particles have amplitude and phase and can interfere constructively or
destructively. These interferences lead to fringe patterns that contain information on the structure of the scattering material.
For constructive interference, the path difference equals an integer multiple of the X-ray wavelength. In this subsection, we will
start by looking at the scattered intensity from an isolated atom with many electrons, and then we shall generalize the expression
of the scattered intensity.

The scattered light from an free electron interacting with the X-ray, has an electric field given by the Thomson approximation
formula shown below

−→
Ee = e2 sin(θ)ei(νt−

−→
kD.−→r )Eo

mec2r
(2.1)

where Eo is the amplitude of the incident electric field, e is the charge of an electron, me is the mass of an electron, c is the
speed of light and k⃗D is the scattered wave vector. θ is defined in figure 2.2. The use of the previous formula 2.1 for an atom
which has an electron density distribution ρ, and an infinitesimal volume dv positioned at −→r from the origin, scatters an electric
field amplitude dEs (in equation 2.2) at any point M at distance

−→
R from the origin as shown in figure 2.2 and R = −→

R . It is a
standard approximation in X-ray scattering and leads to

dEs = e2 sin(θ)ei(νt−
−→
kD.

−→
R′)Eo

mec2R′ ρ(r⃗)dvei(−k⃗i·r⃗) (2.2)

where
−→
R′ = −→

R − −→r .
This infinitesimally small scattered amplitude can be written as

dEs = e2 sin(θ)ei(νt−
−→
kD.(−→

R−−→r ))Eo

mec2R′ ρ(r⃗)dvei(−k⃗i·r⃗)

=⇒ dEs = e2 sin(θ)ei(νt−
−→
kD.

−→
R)Eo

mec2R′ ρ(r⃗)dvei(k⃗D·r⃗)ei(−k⃗i·r⃗)

=⇒ dEs = e2 sin(θ)ei(νt−
−→
kD.

−→
R)Eo

mec2R′ ρ(r⃗)ei(−→q ·r⃗)dv

with −→q = k⃗D − k⃗i and r ≪ R. K⃗i is the incident wave vector. The total scattered amplitude from the single isolated atom
can then be obtained by integrating over the whole region around point M as follow

Es = e2 sin(θ)ei(νt−
−→
kD.

−→
R)Eo

mec2R

∫
ρ(r⃗)ei(−→q ·r⃗)dv = Ee × FT (ρ(−→r )) with Ee the electric field due to an isolated electron.

(2.3)

The total scattered amplitude is proportional to the Fourier transform of the spatial distribution of electrons, the electronic
density, i.e., FT (ρ(−→r )). It is known as the atomic scattering factor and is a measure of the scattering amplitude of a wave by
an isolated atom. In the following we will call it fi, where i denotes the index of the ithatom.
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Figure 2.2: Schematized illustration of scattering from an infinitesimal volume dv. The electric field dED is
calculated on an arbitrary point M .

2.2.2 Scattered intensity from an ensemble of atoms
For a case of an ensemble ofN atoms positioned atRi, i = 1, . . . , N , let’s assume that we work under the kinematic diffraction
so that the absorption and multiple scattering are neglected. Let’s use equation 2.3 to calculate the total intensity scattered by
the arbitrary ensemble of atoms. The total amplitude scattered by the ensemble of atoms is given by

A(q⃗) =
N∑

i=1

Ee

∫
ρi(r⃗)ei(−→q ·r⃗i)dv (2.4)

It is equal to

Ee

N∑
i=1

FT (ρi(r⃗)) (2.5)

The total scattered intensity is

Is = Ee.E
∗
e

(
N∑

i=1

FT (ρi(r⃗))

)( N∑
i=1

FT (ρi(r⃗))

)∗

(2.6)

The Fourier transform of a sum of functions is equal to the sum of Fourier transform of individual functions. Hence we can
write 2.6 as

Is = |Ee|2
(
FT (

N∑
i=1

(ρi(r⃗)))

)(
FT (

N∑
i=1

(ρi(r⃗)))

)∗

(2.7)

This can be written as

Is = |Ee|2.FT [ρ
′
(r⃗)]FT [ρ

′
(r⃗)]∗

47



The equation 2.4 becomes

Is = |Ee|2 · FT [G(r⃗)] (2.8)

whereG(r⃗) = ρ
′
(r⃗)⊛ρ

′
(r⃗)∗ is a pair-correlation function. The structure factor SBragg(q⃗) is defined as a normalized intensity

[4, 5, 6]. The normalization factor for an ensemble of atom is the square of the total amplitude scattered by all electron. For an
ensemble of identical atoms, G(r⃗) = N2ρi(r⃗) ⊛ ρi(r⃗)∗ and the structure factor is given by

SBragg(q⃗) = Is

|NEe|2 = FT [G(r⃗)] (2.9)

The structure factor is the Fourier transform of a pair-correlation function G(r⃗) [7, 8].

SBragg(q⃗) =
∫
G(r⃗)eiq⃗·r⃗dr⃗ (2.10)

2.2.3 3D crystal
The intensity of the scattering peaks is determined by the arrangement of atoms in the entire crystal. Here the magnitude of the
transferred wave vector is also known as the scattering vector and is given by −→q = k⃗D − k⃗i as defined above. Consider a 3D
crystal formed by periodic 3D array of layers with finite number of scatters in each layer. For example, these scatterers may be
atoms. Positions of atoms in a crystal are defined by considering that they form layers with periodic structure and long-range
translational symmetry. These position are given by

r⃗l = R⃗+ r⃗{
R⃗ = p⃗l + t⃗j + wk⃗

r⃗ = xi l⃗ + yij⃗ + zik⃗
(2.11)

R is a lattice vector, rl is the position of an atom in the initial unit cell. The scattering amplitude from crystalline materials
composed of atoms can be written in general as [9, 10, 11]

Acrystal(q⃗) =
AllAtoms∑

l

fl(q⃗)eiq⃗.r⃗l

Acrystal(q⃗) =
Allatoms∑

R⃗+r⃗

fm(q⃗)eiq⃗.(R⃗+r⃗)

Acrystal(q⃗) =

Lattice︷ ︸︸ ︷∑
n

eiq⃗R⃗

Unitcell︷ ︸︸ ︷∑
m

fm(q⃗)eiq⃗r⃗ (2.12)

The equation 2.12 becomes

Acrystal(q⃗) = F

Lattice︷ ︸︸ ︷∑
n

eiq⃗R⃗ (2.13)

where F =

Unitcell︷ ︸︸ ︷∑
m

fm(q⃗)eiq⃗r⃗ is the unit cell form factor. and fm is the atomic form factor. Using equation 2.13 we can calculate

the total scattered amplitude from this 3D crystal.

Acrystal(q⃗) = F
∑
n,t,w

eiq⃗R⃗ (2.14)
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Acrystal(q⃗) = F

N∑
eipq⃗l⃗

T∑
eiq⃗t⃗j

W∑
eiq⃗wk⃗ = ANATAW (2.15)

Let’s start in the direction l⃗. Let us take the position xo as the origin of the space, and other scatters are positioned at d, 2d, 3d,
4d, ...,Nd where d is the interlayer period in l direction. In other words p = xo+ nd

AN = F

N∑
eiq(xO+nd) = F

[
eiqxO + eiq(xO+d) + eiq(xO+2d) + eiq(xO+3d)+

eiq(xO+4d) + eiq(xO+5d) + eiq(xO+6d) + · · · + eiq((xO+(N−1)d)

] (2.16)

N is the number of layers, q is the projection of the wave vector transfer along l⃗,

AN = F

N∑
eiq(xO+md) = FeiqxO

[
1 + eiq(d) + eiq(2d) + eiq(3d)+

eiq(4d) + eiq(5d) + eiq(6d) + · · · + eiq(N−1)d

] (2.17)

let’s define b = eiqd, then the equation 2.17 becomes

AN = FeiqxO

(
1 + b+ b2 + ...+ bN−1

)

AN − bAN = FeiqxO

(
1 − bN

)
⇐⇒ A(1 − b) = FeiqxO

(
1 − bN

)

AN = FeiqxO

(1 − bN

1 − b

)
= FeiqxO

(1 − (eiqd)N

1 − eiqd

)

AN = FeiqxO

[
e

iqd(N−1)
2 (e− iqdN

2 − e
iqdN

2 )
(e− iqd

2 − e
iqd

2 )

]
(2.18)

AN = F exp

 iq
(

2xo + (N − 1)d
)

2

 sin ( qdN
2 )

sin ( qd
2 )

I = ANA
∗
N as results,

I = FF ∗ sin2 ( qdN
2 )

sin2 ( qd
2 )

(2.19)

where FF ∗ =| F |2= F 2

=⇒ I = F 2 sin2 ( qdN
2 )

sin2 ( qd
2 )

(2.20)
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The structure factor SBragg(q⃗) is defined as a normalized intensity [4, 5, 6]. The normalization factor for many atoms
system such as this 3D crystal is 1∑N

i=1
(F 2

i
)

= 1
NF 2 with F is the unit cell form factor. So,

SBragg(q⃗) = 1
N

sin2 ( qdN
2 )

sin2 ( qd
2 )

(2.21)

We eventually arrive at the expression of the total scattered intensity as a function of both the form factor and the structure factor
as

I = NF 2SBragg(q⃗) (2.22)

The structure factor defines the so-called Bragg peaks which present a Gaussian form as shown in figure 2.3. Let’s look at the

Figure 2.3: The calculated of intensity as function the magnitude wave vector transfer q with N = 5.

Bragg position qmax of the maximum intensity using equation 2.22. The maximum intensity is when this quantity is an even
multiple of π, i.e., qmaxd

2 = kπ where k = 1, 2, 3, ... and d = 2π
qm

. qm is the Bragg wave-vector transfer. These values give
sin qmaxd

2 = 0. Hence the position of the maximum intensity can be obtained using

qmax = kqm (2.23)
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The equation 2.21 gives an indeterminate case as q approach the qmax. After applying twice the L’Hôpital’s rule on it we
obtained SBragg(q⃗) = N . Using this value in the equation 2.22, we obtain a maximum intensity Imax = N2F 2 at positions
qmax = kqm.

The intensity peak gets as much as stronger and narrower as the number N of the scattering center increases.
Our next step is to find a relationship between the number of the diffracting smectic layers and the width of the peak of

diffracted intensity of Equation 2.22.
Let’s now introduce a new parameter in this equation x = kπ− qd

2 in the equation 2.36 and it becomes equation 2.24 to be
used to calculate the relationship between the number of scattering layers and the Full Width at Half Maximum (FWHM).

I = NF 2

(
sinN(kπ − x)
sin (kπ − x)

)2

= NF 2

(
sinNx
sin x

)2

(2.24)

The intensity becomes maximum when x → 0 i.e qd
2 → kπ which is gives the position of maximum intensity qmax = kqm.

The Mac-Lauren’s expansion of sinus function up to the second term is

sin x = (x) − (x)3

3! + (x)5

5! − ...

Other terms are neglected since they are too small when x → 0. We can use this expansion in equation 2.24 to get the width of
the peak of intensity and its relationship with the number of diffracting layers. So

I = F 2

(
Nx− (Nx))3

6

x− (x)3

6

)2

⇐⇒ I = F 2N2

(
1 − (Nx)2

6

1 − (x)2

6

)2

Expanding both parts of the fraction, we neglect the term to the power 4 since they are much smaller as x → 0. We get this
equation

I(x) = F 2N2(
1 − (xN)2

3

1 − x2
3

) (2.25)

From this equation 2.25, we can write the intensity at Full Width Half Maximum (FWHM) as

F 2N2(
1 − (xN)2

3

1 − x2
3

) = F 2N
2

2

=⇒ (1 − (xN)2

3 ) = 1
2(1 − x2

3 )

2 − 2(xN)2

3 = 1 − x2

3

=⇒ 1 = x2

3 (−1 + 2N2)

1 = x2

3 (2N2)

x =
√

3
2

1
N

Since x = kπ− qd
2 then qd

2 = kπ±
√

3
2

1
N

, these two values are around the position of the maximum intensity on the Gaussian
Peak. Hence full width at half maximum can be obtained

∆q =
√

6qm

πN

and the number of diffracting layers be given by

N =
√

6
π

qm

∆q (2.26)
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Let’s consider our Gaussian function

G(x) = Ae
( x−pos

σq
)2

(2.27)

Where the standard parameter σq = σ′√2 is related to the full width at half maximum as

FWHM = 2σ′√2 ln 2 ⇐⇒ FWHM = 2σq

√
ln 2 (2.28)

Experimental determination of the Gaussian Peak of intensity, leads to the Full width at Half maximum which is related to the
fitting parameter for σq finally giving:

∆q = 2σq

√
ln 2 (2.29)

This gives us finally

N =
√

6
4π

qm

σ
√

ln 2
(2.30)

Integrated Intensity

Since the Bragg peaks of intensity as a function of the q in figure 2.3 have a Gaussian form, we can use the Gaussian integral to
calculate the integrated intensity. The Bragg intensity in the above peak is given

I(q) = Imaxe
−( q−qm

σq
)2

(2.31)

The integrated intensity is given by

Iinteg(q) = Imax

∫ +∞

−∞
e

−( q−qm
σq

)2
dq (2.32)

let’s denote x = q−qm
σq

, so this equation 2.32 can be written as

Iinteg(q) = Imaxσq

∫ +∞

−∞
e−x2

dx (2.33)

Using the famous Gaussian integral, we obtain the integrated intensity as

Iinteg(q) = Imaxσq

√
π (2.34)

we have seen in the equation 2.29 that the full width at half maximum is related to the σq by ∆q = 2σq

√
ln 2 and so the

integrated intensity of a Bragg peak is given

Iinteg(q) = Imax∆q(
√
π ln 2

2 ln 2 ) (2.35)

The integrated intensity is thus proportional to the product of the maximum intensity with ∆q. Since the maximum intensity is
proportional to the N2. and the ∆q is proportional to 1

N
(equation 2.26), hence the integrated intensity is proportional to the

N .
Now that we finish the calculation in one direction l⃗, the remaining directions in the equation 2.15 give the same results. So

we can write the total scattered intensity in 3D as follows

I ∝

(
sin2 ( qdN

2 )
sin2 ( qd

2 )

)(
sin2 ( qvM

2 )
sin2 ( qv

2 )

)(
sin2 ( qwT

2 )
sin2 ( qw

2 )

)
(2.36)

where d, v, and w are the period in each direction and N , M , and T are the total number of layers in each direction. The
maximum intensity in each direction is proportional to N2, M2, and T 2 and the full width at half maximum of the peak follow
the equation 2.26. The integrated intensity for a 3D crystal is thus proportional theN ,M , and T respectively in the 3 directions.
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Smectic liquid crystal materials

The smectic liquid crystal material has a 1D quasi-long range translational order. Inside each smectic layer the molecules do
not have crystalline order. So all the above calculations for a 1D system correspond to a perfectly oriented smectic A liquid
crystal system. In this case, the equation 2.22 corresponds to the intensity scattered by N perfectly flat smectic layers. F is
the form factor of an entire smectic later, where the surface of the smectic layer is taken into account in F .The SBragg(q⃗)
corresponds to the smectic structure factor. In the following section, we will use the definition of smectic structure factor given
in equation 2.10. The number of scattering smectic layersN is expected to be related to the FWHM of the peak of the scattered
intensity by equation 2.26 where qm = 2π

d
with d the smectic A interlayer distance. The integrated Bragg intensity of N

perfectly periodic flat smectic layers is proportional to N . Would this relationship between the number of scattering smectic
layers and the integrated Bragg intensity or the full width at half maximum be still the same for our system which is made of
rotating smectic layers ? The answer to this question would help in the rest chapters of this manuscript because it will help us
to reconstruct the internal structure of the oily streaks in chapter 4 sections 4.7 and 4.9. Each oily streak can be considered as
in 3D where the third orientation doesn’t change. In next section, I will review various works that have been performed on both
ideal and real smectic A material.

2.3 Peierls-Landau instability
3D solid crystals exhibit 3D long-range translational order and present layer fluctuations of amplitude smaller than the lattice
spacing. When the dimensionality decreases, these thermal fluctuations become strong and eventually destroy the long-range
translational order in either one or two dimensional systems As a result the bodies with one or two dimensional periodic density
cannot exist [12]. Hence, the smectic A phase should not exist since its long-range translational order is destroyed by the thermal
fluctuation modes related to bending and compression of the layers (Fig. 1.6). This result is known as Landau-Peierls instability.
In this section, we will review the Landau-Peierls instability that has been described for smectic A. In the next section we will
see its implication on the X-ray scattering of the smectic liquid crystal.

Using equation 1.22 of Chapter 1, we can write the total distortion energy[8, 13, 14, 15].

Υ =
∫
dr3
{
B

2

[
∂u(r)
∂z

]2

+ K1

2

[
∂2u(r)
∂x2 + ∂2u(r)

∂y2

]2}
(2.37)

The integration in equation 2.37 is carried out over the volume of the system. It can be written in Fourier space as a sum of
contributions from fluctuations with different wave vectors in Fig. 1.6. To do this, let’s denote FT (Υ) = Υ̃q

Υ̃q = 1
2(2π)3

∫
dq3
{
B

2

[
∂(u(q)eir⃗q⃗)

∂z

]2

+ K1

2

[
∂2(u(q)eir⃗q⃗)

∂x2 + ∂2(u(q)eir⃗q⃗)
∂y2

]2}
(2.38)

Using the quantity r⃗q⃗ = (zqz + q⊥(x+ y)) the equation 2.38 becomes

Υ̃q = 1
2(2π)3

∫
dq3
{
B

2

[
∂(u(q)ei(zqz+q⊥(x+y)))

∂z

]2

+ K1

2

[
∂2(u(q)ei(zqz+q⊥(x+y)))

∂x2 + ∂2(u(q)ei(zqz+q⊥(x+y)))
∂y2

]2}
(2.39)

After the derivation, the equation 2.39 becomes

Υ̃q = 1
2(2π)3

∫
dq3
[
Bq2

z +Kq4
⊥

]
| u(q) |2 (2.40)

Using the theorem of energy equipartition [13], we get the mean-square fluctuation to be in real space

⟨u(r)2⟩ = kBT

(2π)3

∫
d3q

Bq2
Z +Kq4

⊥
(2.41)

Fluctuation modes with wavelengths larger than the sample size L normal to the layers (film thickness) and W in the plane of
the layers are not possible. Also modes with wavelengths shorter than layers spacing d or the lateral molecular spacing ao is
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not allowed [8]. So the integration boundaries are 2π
W

≤ q⊥ ≤ 2π
ao

and 2π
L

≤ qz ≤ qm = 2π
d

. As W ≫ L and ao < d then
W → ∞ and ao → 0

⟨u(r)2⟩ = kBT

4π2

∫ ∞

0

∫ qm

L−1
dqzdq⊥

q⊥

Bq2
Z +Kq4

⊥
≃ kBT

8π
√
KB

ln
(
L

p

)
(2.42)

WhenL goes to infinity, we can see the logarithmic divergence of the mean-squared fluctuations, a result known as Landau-Peierls
instability in the limit of |ψo| = 1 [13]. This divergence of the real-space positional fluctuation leads to the replacement of the
Bragg peaks by power-law singularities as we will see below. In the following part of this chapter, I will show the effect of this
instability on both idealistic and realistic smectic A systems.

2.4 X-ray scattering of perfectly oriented smectic A liquid crystal
To write this part many sources were available. Among them, is the work of Leon Gunther et al. [16] and the other one is the
work of Kaganer et al [17]. Both of them are on the X-ray scattering of the smectic liquid crystal.

Let’s SCaille(q⃗) be the static structure factor of a perfectly oriented infinitely large smectic A sample, where q⃗ = K⃗i − K⃗s

is the wave-vector transfer, Ki and Ks are the incident and scattered waves respectively. We have seen that the static structure
factor is given by

SCaille(q⃗) =
∫
G(r⃗)eiq⃗.r⃗dr⃗ (2.43)

where G(r⃗) is the smectic pair-correlation function.
In chapter 1 we have seen that the smectic A system is periodic in direction z, this allows to develop the density ρ as shown

in equation 2.44. For this development we can use the density described in chapter 1 in equation 4.38.

ρ(r) = ρo + ρ1 cos
{
qm

[
r + u(r)

]}
(2.44)

Since the smectic layers are fluctuating in z-direction then〈
ρ(r)ρ(0)

〉
−
〈
ρ2

1
〉

≈
〈
exp
(
iqm · (u(r) − u(0))

)〉
[8, 13, 14]

where G(r⃗) =
〈
exp
(
iqm · (u(r) − u(0))

)〉
is the displacement-displacement correlation function. In the harmonic

approximation this correlation function becomes

G(r⃗) =< e− 1
2 q2

m[u(r)−u(0)]2 >

Where the reciprocal-lattice vector for a smectic domain is qm = m( 2π
p

), m is in integer as defined previously. For the
case of perfect crystal materials which have true long-range order r → ∞, then G(r⃗)tends to a constant value. However, as
consequence of the Landau-Peierls instability, the liquid crystal materials exhibit exhibit the quasi-long-range order as we have
seen in the previous section. The function G(r⃗) describes the algebraic decay typical for the layer structure of a smectic liquid
crystal [7]. This correlation function has been calculated to be [13, 14, 16, 17]

G(r⃗) = G(ϱ, z) ≈ (2p
ϱ

)2ηe−2ηγe−ηE1( ϱ2
4λz

) (2.45)

where r = z2 + ϱ2 is the position of the layer and ϱ2 = x2 + y2. After using the asymptotic expression for the exponential
integral [16], the equation 2.45 was written as

G(ϱ, z) =

{
( d2

λz
)ηe(−ηγ) ∝ z−η, ϱ ≪

√
(λz)

( 2d
ϱ

)2ηe(−2ηγ) ∝ (ϱ)−2η, ϱ ≫
√
λz

(2.46)

54



where γ = 0.5772 is the Euler’s constant, E1 is the exponential integral function. The power-law exponential η is given by

η = (2πm
d

)2 kBT

8π
√
BK

where (m = 1, 2, ...
This exponent is determined by how close 1 − T

TC
is to 0 i.e how close the temperature T is close to the phase transition

temperature Tc. The results of substituting the algebraic decay of the positional correlations in the smectic layers given by
equation 2.46 in the equation 2.43 are the power-law singularities (equations 2.47 and 2.48) that replace the smectic Bragg peaks
[13, 16, 17].

For longitudinal scan, when q⊥ = 0, the structure factor is given by the equation

SCaille(q⊥ = 0, qz) ∝ (qz − qm)−2+η (2.47)

We note Q = qz − qm is the deviation of the reciprocal-lattice vector qm, from the Bragg wave-vector transfer qm in the
direction parallel to the layer normal. For transverse scan, when Q = 0, the structure factor is given by the equation

SCaille(q⊥, qz = qm) ∝ q−4+2η
⊥ (2.48)

These results are only valid if fluctuations in the layer displacement are smaller than d, the interlayer spacing [17]. Otherwise
the correlation function G(r) will vanish and hence no structure factor peak would be obtained. We have seen that the phase
of the smectic order parameter is related to the layer displacement is proportional qm

⃗u(r). Thermal fluctuations in the phase
of the order parameter in smectic A liquid crystal sample can be inferred from the mean-square fluctuation ⟨|u(r)|2⟩ of the
smectic layers in equation 2.42. They lead to the destruction of the true 1-dimensional long range transitional order in smectic
sample. The consequence is the replacement of the Structure factor of δ(q⃗) function-type Bragg peaks obtained for a system of
long-range positional order of of 3-D crystals, by power-law singularities given in equations 2.47 and 2.48. These two equations
were first calculated by Caille

′
for a perfectly oriented smectic liquid crystal in the harmonic approximation. Als-Nielsen et al.

[14, 18] was the first to observe experimentally these intensity distributions of X-ray scattering in form of algebraïc decay of the
smectic liquid crystal translational order in the limit of an ideal infinitely large sample of the octyloxy-cyanobiphenyl (8OCB)
in smectic A phase.

Figure 2.4: Simulated true Bragg peak (dashed line) and experimentally measured (solid circle) line profile of
intensity from 1.5mm thick 8 OCB in smectic A liquid crystal phase [14] .

They have used a high-resolution X-ray diffraction study of the density wave to prove that the X-ray scattering near qm = 2mπ
d

in the smectic A phase of the (80CB) can be described by equations 2.47 and 2.48, the consequence of Landau-Peierls instability.
The result are shown in figure 2.4. This figure is showing the direct beam (open circle), the simulated true Bragg peak

profile of the 8OCB (dashed line) and the experimentally measured profile of diffuse scattering of the (8OCB) (closed circle).
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This measured smectic-A 8OCB liquid crystal diffuse scattering intensity is significantly different from the simulated true Bragg
peak and indeed consistent with the predicted power-law singularity form shown in equation 2.47. This result confirms that the
smectic A phase has not long-range order but a quasi-long range order.

Kaganer, Petrov, and Samoylova [7] have expanded this theory of X-ray scattering in smectic liquid crystals from ideal to
real systems where they have even considered several factors that contribute to the X-ray diffraction line profile in smectic-A
liquid crystal such as finite size effect [17]. I will describe the finite size effects in the next section.

2.5 Finite-size Effects on the structure factor of the smectic A liquid crystal

So far, we have looked at the calculation on the infinite system as in a case where the X-ray beam impinged on the whole endless
sample. However, in practice, our samples have a finite size and the X-ray beam may cover an entire sample or part of it. This
finite size refers to an actual size of entire sample or size of domains in it [17]. Gunther, Imry, and Lajzerowics [16] have
investigated the effect of finite size on the X-ray intensity scattered by a smectic A liquid crystal sample of finite size. They
have found that it is formed by the thermal diffuse scattering given by equations 2.47 and 2.48 in addition with true albeit weak
Bragg peak. The later comes into existence because this limitation of the sample size to a finite value or subject to an a external
field results in a strong coupling between layers.

The correlation function in equation 2.45 is replaced by an other functionG′(R) = G(R).Fs(R) where Fs(R) is the finite
smectic structure factor. The structure factor of the smectic finite sample was written in real space as the convolution of the
scattering intensity of an infinite sample Skaganer(q⃗) with the lattice sum for function Fs(R) [17].

Skaganer(q⃗) ∝
∫
dRG(R)Fs(R) exp{(iq⃗R)} (2.49)

For a wave vector in the vicinity of the reciprocal lattice vector qm, the Fourier transform of the finite sample structure factor
function Fs(R) is

Fs(qm +Q) = υ−2|s(Q)|2,where, |s(Q)|2 =
3∏

i=1

(
sin2 ( QiLi

2 )
sin2 ( Qid

2 )

)
(2.50)

where Q = qz − qm and υ is the volume per molecule. s(Q) is the domain-shape function which is the Bragg Peak that we
have seen in section 2.2.3. The Li = Nid is the domain size in the i direction i.e it can be either x or y or z direction and
Ni is the number of smectic layers in either of the directions . For a domain of finite dimension L = Nd, the width of Bragg
peak is ∆Qi ≃ N−1 and it is accompanied by tails that are decreasing proportional to (Qi)−2 [17]. They have considered the
dimension Lz in the direction normal to the sample and L′ ∼= Lx, Ly is domain size in the plane of layers. For the case q⊥ = 0
and Q ̸= 0 using the integration over ϱ and then z in the two corresponding parts as shown in the equation 2.47, the result of
the X-ray scattering can be written as

Skaganer(q⃗) ∝ D
λ1−η

(qz − qm)−2+η
+ Fs(qm +Q)(L

′
)2−2η (2.51)

This equation 2.51 displays a Bragg peak of the finite domain or the whole finite sample (second term ) associated with
∆Q ∝ L−1

z . The algebraic decay in the first term is associated with tails. D is a numerical constant.
Stamatoff et al. [19] have also observed the lineshape of the first-order diffraction Bragg peak from COB with subtle

deviation from the true long-range order (figure 2.5). They observed a peak which had a relatively large tail associated with the
strong thermal fluctuation and obeying the power law singularities that we have seen above.

A.N.Zisman et al. [20] have also studied this effect of finite size on 8CB in the smectic A liquid crystal phase. They have
carried out an X-ray study in which, in contrast to Caille

′
calculation, the fluctuations in the amplitude of the order parameter |ψ|

of the smectic A phase was taken into account. In their study, they also considered that the bounded nature of the homogeneous
blocks can alter the line shape. They have used the result that we have just seen above on a system with finite-size; for small
size blocks, the δ− function can be replaced by I(q⃗) ∼ (sin2(qL))/q2. So, for such a sample the scattered intensity would be
expressed in terms of both the latter function and an algebraic decay function just as equation 2.51 .
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Figure 2.5: Line profile of first-order diffraction intensity from a 1mm thick rectangular COB in smectic A liquid
crystal phase [19].

The results in this section are showing that for finite size smectic domains or samples, the scattered intensity is formed by the
addition of the Bragg peak and the tails. These tails are governed by the power-law exponent parameter η which is temperature
dependent. The samples that we have used in this thesis are also of finite size and confined between the PVA substrate and air
with particularly small thickness. We have worked at room temperature such that the η is sufficiently small that the tail can be
too small to be ignored. In this case the effects of the Peierls–Landau instability have not displaced the Bragg peaks and we can
easily measure these peaks. Moreover, we are interested only in the Bragg peaks (and their widths) which contain information
on the structure of our 8CB films. In our experimental data the tails were not only small but also overlapped with the background
noise. Therefore, we have filtered them out together with the background noise and we have measured and analyzed only the
Bragg’s peaks.

2.6 The X-ray scattering of distorted smectic A liquid crystal films

2.6.1 Smectic ordering in a silica aerogel
Silica gel is a highly porous, noncrystalline type of silicon dioxide (silica) made of nanometer-sized gaps and pores. The 8CB
molecules have been confined inside these pores. The confinement of the smectic A liquid crystal film strongly affects its layers
ordering [21]. Clark et al. [22] have used X-ray scattering to study the effect on smectic ordering in 8CB incorporated into the
pores of a silica aerogel. The pore size was 200Å. They found that the diffraction peaks of the 8CB in the aerogel are broader
than those of pure 8CB. The broadening of the peaks in Fig 2.6 shows that long range translational order is replaced by short
order as temperature increases. Only smectic short-range order was observed [22, 23, 24]. The aerogel-8CB system contains
distribution of finite size domains and so as we discussed in section 2.5 for finite size effect, the curves of intensity in this figure
2.6 were formed by Bragg peak for the 8CB smectic A which is accompanied by algebraic decay (background aerogel). The
shape of the scattering of this background aerogel can be seen between 1.2 nm−1 < q < 3.0 nm−1 at the lowest temperature
where there is no smectic peak. This background was fitted by a sum of a power-law plus the background constant Bq−k + C
where the k value was fixed at 3.68.

The Bragg peaks for smectic were best fitted by a Lorentzian peak I(q) ≡ A
{
R(q) ⊛

[
1 + (q − qm)2ξ2]−1} and the

parametersA,B,C, ξ and qm = 2π
d

were adjustable with the results in figure 2.6 a They found that the 8CB smectic-A layering
peak centered at qm = 1.98 nm−1 was gradually narrowing as temperature decrease and eventually disappeared at 0◦C being
replaced at temperature −4◦C by crystalline peaks in range 4.8 nm−1 < q < 14.0 nm−1. As temperature increases the
thermal fluctuations increases and washed out the long range translational order. It was replaced by the short range order in
smectic A. When the temperature increases further, these fluctuations continue to eventually destroy completely the short range
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Figure 2.6: Measured X-ray integrated scattered intensity as function of temperature where the SBragg(q⃗) is the
X-ray structure factor of the aerogel-8CB system. It is from 0.36 g

cm3 silica aerogel-8CB composite [22].

order. This can be seen in the inset of figure 2.6 where the smectic A peak gradually transforms from narrow and high intensity
to the much broader and nearly null intensity peak. This shows that beyond the A-N phase transition temperature the smectic
peak completely disappear. There are numerous X-ray scattering study of the confinement of the 8CB systems in aerogel, where
similar results were found [22, 23, 24, 25, 26].

2.6.2 Review on the construction of the oily-streak model
The confinement of smectic liquid crystal materials is a good candidate to produce and study the topological defects [27]. In
the literature described above, there is no work on X-ray diffraction aimed at studying the internal structure of the topological
defects that arise as a way to relax from such confinement. The group of Dr. Emmanuelle Lacaze has been working to fill
this gap for nearly two decades [28]. For such a purpose, the 8CB molecules have been deposited on different substrates such
as molybdenum disulfide (MoS2), mica, and Polyvinyl Alcohol(PVA), all these substrates imposing a planar unidirectional
anchoring.

The structure induced by competing boundary conditions (planar unidirectional and homeotropic) has been described in
chapter 1. It has been studied using a combination of different but complementary experimental techniques such as polarized
optical microscopy, ellipsometry, Atomic force microscopy, and X-ray diffraction. The latter technique is used because of
the periodic layered structure of 8CB in the smectic A phase. The group of E. Lacaze used Grazing incident small angle
X-ray Scattering (GISAXS) and Transmission Small Angle X-ray Scattering (TSAXS). In this section I will describe the X-ray
diffraction results from these studies.

Michel et al. [29] have demonstrated that the oily streaks are formed by flattened hemicylinders. Two cylinder quarters at
the edges are formed by smectic layers rotating around the hemicylinder’s axis. They are joined by a set of horizontal smectic
layers (figure 1.20 , in section 1.3 , chapter 1). To study the internal structure of the oily streaks, they hypothesized that ,
the normalized scattered Bragg intensity for the wave-vector transfer q⃗ oriented at an angle α from the substrate was directly
proportional to the number of smectic layers whose normal is parallel to q⃗ (figure 2.7b). For α = 0◦ the layers are perpendicular
to the substrate and for α = 90◦ they are parallel to the substrate.

8CB deposited on the molybdenite in the air

When the 8CB film was adsorbed on molybdenite (MoS2), the observed scattered intensity is shown in figure 2.7a. It was
scattered from a smectic film of thickness 450 nm. The continuous intensity profile, almost constant from α = 10◦ to α = 80◦,
corresponds to the smectic layers rotating in the two edges of the hemicylinder model shown in figure 2.7b. The intensity in the
inset corresponds to α = 90◦, in other words to the central flat layers. These results are consistent with the model of smectic
layers superimposed into flattened hemicylinders with edges made of cylinder quarters and the existence of a large volume of
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(a) (b)

Figure 2.7: (a). X-ray scattering intensity for a sample of thickness 450 nm measured by continuously rotating the
wave vector transfer q between α = 0◦ to α = 80◦.The inset corresponds to a zoom on the intensity values around
α = 90◦. (b) The hemicylinder mode that agrees with this measured intensity.

smectic layers which contain molecules in the homeotropic geometry (flat smectic layers) the central part of the hemicylinder
(See chapter 1, section 1.3). When α is smaller than 7◦ , the incident beam tilt angle becomes smaller than θ8CB = 0.17◦ the
critical angle and the beam penetration becomes negligible. This explains the null intensity between α = 0◦ and α = 7◦.

8CB deposited on the PVA (polyVinyl Alcohol) substrate in the air

Delphine Coursault et al [30] have studied the structure of the oily streaks on rubbed PVA using X-ray diffraction. They used
8CB film deposited on rubbed-PVA coated glass slide. In chapter 1 we have seen that this substrate imposes a strong uniform
unidirectional planar anchoring on the 8CB molecules deposited upon it in contrast with the 8CB/air interface, it imposes an
homeotropic anchoring. They used grazing incidence set-up (incident angle of 0.2◦) with an X-ray beam of 18 keV and beam
size of 300 × 300 mm2. They observed on an XPAD detector a scattering ring (figure 2.8) It shows that, for each α value in
the ring, a non-zero intensity is measured in agreement with a continuous rotation of the smectic layers around the axis of the
hemicylinder at the edges of the flattened hemicylinders.

In figure 2.8b, we see the intensity evolution for a thickness e = 100 nm as a function of α extracted from combination of
both the GISAXS scattering ring shown on figure 2.8a and the TSAXS data. In figure 4.4b we have TSAXS data for e = 230
nm, where α = 0◦ corresponds to perpendicular layers.

For the thickness 100 nm, a decrease of intensity is observed from α = 5 to α = 80◦.
Using this observed decrease of intensity the group of E.Lacaze has built a model for the internal structure of the oily streaks

(shown in figure 2.9a). The model is based on the following hypotheses [30]:

1. The measured intensity is approximated to the integrated intensity and is thus proportional to the number N(α) of
smectic layers which have normals oriented at α in agreement with the calculation described in section 2.2.3.

2. The junction between the hemicylinders is made of a curvature wall characterized by an angle ω which is an angle
between the substrate and the line drawn from curvature center to the top of the curvature wall (figure 2.9).

With these hypotheses, the profile r(α) of the rotating grain boundary that joins the rotating smectic layers and the central
flat smectic layers close to the curvature center (in red on figure 2.9) has thus been calculated using n ∗ d extracted from the
measurement of a film of thickness 100 nm (shown on Figure 2.8b).

The rotating grain boundary shown in side view (red color) in figure 2.9 was described as a half tube with a quasi-elliptical
profile of minor axis and semimajor axis of 140 nm and 110 nm (figure 2.10a) respectively. These values are close to the ones
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(a) (b) (c)

Figure 2.8: (a) The scattering ring observed on 2D XPAD detector using GISAXS (b) Normalized integrated
intensity for the 8CB film of 100 nm thickness, obtained by combining the GISAXS and TSAXS signals (c)
Normalized integrated intensity for an 8CB film of 230 nm thickness obtained in the TSAXS configuration [30].

(a) (b)

Figure 2.9: The hemicylinder model for the oily-streak in the 8CB deposited on the rubbed PVA on film of (a) 100
nm thickness (b) 230nm thickness [30].

previously extracted from measurements performed on MoS2 substrates (figure 2.10b) [31]. The lower part of this profile is
expected to be dislocation-free. The profile of dislocation-free grain boundary can indeed be calculated [30, 32] and it fitted
well with the basis of the extracted profile of the rotating grain boundary (green in figure 2.10a). The curvature wall angle Ω
was found to be 30◦ for the 100 nm thick film and 50◦ for the 230 nm thick film sample.

This suggests also that the dislocations populate only the top of the rotating grain boundary with 3 suggested dislocations
of different Burger vectors.

However, the exact number of dislocations on this upper part and where exactly they are located are still bewildering facts.
Two topological defects have been evidenced: the dislocation defects on the upper part of the rotating grain boundary and

the 2D topological grain boundary. This latter one has been evidenced for thick sample (in green color in figure 2.9b). It is
separating the perpendicular layers on the substrate and the central flat layers. For the 100 nm thick film, the model (figure 2.9a)
is associated with a large area in the center of the flattened hemicylinders of unfavorable anchoring where the central layers are
directly deposited on the substrate.

8CB deposited on the muscovite mica crystalline substrate

Another X-ray ray scattering study of confined smectic A liquid crystals was done by Zappone et al. [32] in order to analyze the
structural evolution when thickness increases. 8CB smectic A film of thickness 1µm was deposited in the air on a muscovite
mica crystalline substrate. The X-ray scattering intensity obtained for a thicker film (figure 2.11) was completely different from
what was obtained for thin films of 8CB deposited on PVA or molybdenite substrate. A completely new model has thus been
proposed to explain these experimental results as discussed in chapter 1, section 1.3.3.

During the thesis of Delphine Coursault [33], it was found that for thin film, the intensity as a function of layer orientation
α was similar to that of MoS2 as shown in figure 2.12. In this figure, we compare the intensity profiles obtained on both
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(a) (b)

Figure 2.10: (a) The profile of rotating grain boundary extracted from experimental data (in black color) and for
the oily-streak in the 8CB film of 100 nm thickness deposited on the rubbed PVA substrate (with a calculated grain
boundary without dislocation in green) (b) Profile of the rotating grain boundary from data obtained for 8CB films
of different thicknesses deposited on MoS2 substrate [30, 31].

(a) (b)

Figure 2.11: The X-ray diffraction intensity from smectic A 8CB thicker film deposited on mica (thickness around
1µm (a) The model of the internal structure of the oily streaks observed with mica (b) [32].

muscovite mica andMoS2 for thin films and those obtained on PVA substrate. We can see that the scattered intensity from these
thin smectic films are nearly the same. This shows that the thin film structure, at least for the rotating layers, may not strongly
depend on the substrate nature. The structure mostly depends on the thickness. For large thicknesses topological defects mostly
disappear. they are present only for thin enough films. We have thus decided to concentrate on the films with topological defects
and also to study how the defects themselves vary as a function of thickness.

2.6.3 Chevron structure evidenced using X-ray diffraction in thick films
Takanishi et al. [34] have reported a chevron structure in 8CB smectic A which was caused by temperature. They have used
an X-ray diffraction study of a confined smectic A liquid crystal sample to study its structure. They confined the 8CB between
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Figure 2.12: X-ray scattering intensity as a function of the orientation α of the wave vector transfer q⃗ with respect
to the substrate for 8CB thin thickness [e = 70, 150, and 200 nm (full red triangles, black crosses, and open blue
circles, respectively)] deposited on (a) MoS2 [31] (b) muscovite mica thickness not precisely known) [33]. (c)
Rubbed PVA

two rubbed polyvinyl alcohol (PVA) coated glasses. The two plates were rubbed in an anti-parallel direction imposing a
planar alignment of the 8CB deposited on them [35]. The sample cell was 25µm. These experiments were done by heating
and cooling processes (figure 2.13 ). In the cooling process, a single diffraction peak was observed at tilt angle 0◦ near the

Figure 2.13: X-ray scattering of 8CB smectic A sample of 25 µm thickness. The tilt angle is the angle between the
glass-plate normal and a layer direction [34].

smectic/nematic phase transition temperature. This peak was attributed to the bookshelf structure with layers perpendicular to
the glass plates ( figure 2.14 ). As the temperature decreases, the single peak splits into three peaks; one central and two lateral
peaks. They inferred from this result that there was a gradual bend of the bookshelf structure that was observed very close to
the smectic/nematic phase transition temperature. This bending eventually led to formation of a chevron structure which they
associated with the lateral diffraction peaks as shown in figure 2.13. They concluded that the chevron resulted from the thermal
contraction of smectic layers reducing their thickness in the bulk part away from the surface. This chevron structure is more
favorable than the bookshelf structure with dislocations defects near the bounding surface [36, 37, 38].

In our study of smectic thin film using X-ray diffraction we have also evidenced the chevron structure, which was not caused
by temperature variation but by mechanical strain. We will describe this results in chapter 4.
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Figure 2.14: (a) Chevron structure scheme in homogeneously aligned 8CB Smectic sample. The tilt angle is
between the direction of the layers and the normal to the bounding plate (b) non-deformed Bookshelf structure in
smectic A where the molecules are perpendicular to the layers. The layers are normal to the bounding plates that
induce planar anchoring.

2.7 Conclusion

Various factors contribute to the lineshape peak of the scattered intensity for a smectic A liquid crystal sample. Notably, the
finite-size effects cover or destroy the Landau-Peierls instability effect that comes from the thermal fluctuation. These factors
mask the algebraic decay of the displacement correlation between the layers. The long tails associated with the power-law decay
become insignificant in the case of a finite-size sample, so they can be neglected. We will use the usual features of periodic
compounds that have been calculated in the first sections of this chapter. The Landau-Peierls instability effects do not displaced
the Bragg peak and so the observed peak are centered on the Bragg position. We will be interested in the following chapters on
this Bragg peak.

Concerning X-ray diffraction of smectic 8CB distorted by antagonistic anchorings with thicknesses not larger than 1µm,
analysis using Bragg condition has been considered already in the past. As shown in the first sections of this chapter is vital
that the Bragg condition is satisfied we want to extract the structural information on the 8CB films using the scattered Bragg
intensity expected to be proportional to N2 but it has been shown to be possible by the past measurements. This makes the
8CB smectic film a laboratory for the understanding of the topological defects intimate structure which is still scarce despite
of currently existing literature on them. Moreover, interesting results had already been obtained but they necessitate that the
efforts may be continued since some questions are still pending (see conclusion of chapter 1). For instance in the oily streaks of
smectic 4-n-octyl-4’-cyanobiphenyl (8CB), 1D defects lead to NP chain formation whereas 2D topological grain boundary leads
to the formation of 2D hexagonal networks of gold nanospheres [39, 40, 41]. The precise understanding of this nanoparticles
confinement in the defect cores requires a precise understanding of the intimate structure of the topological defects in smectic
A system. The calculation presented at the start of this chapter highlights that specific effort be devoted for ensuring that
the Bragg’s condition is satisfied; in chapter 3 of this manuscript we have described an unprecedented determination of this
condition. All the above studies of confinement of the 8CB smectic A liquid crystal between air and crystalline substrate show
that for the study of these 1D patterns, the so-called oily-streaks [28]. X-ray diffraction is a powerful tool. In particular, it may
allow to study how topological defects appear when the thickness is small enough. Most of the previous studies are based on
the hypothesis that the number of diffracting smectic layers is directly proportional to the scattered intensity. The relationship
between this scattered intensity and the number of diffracting smectic layers or scatters in the 8CB thin film must thus be
established, not only for flat smectic layers like in the calculations of this chapter but also for rotating layers. Moreover, studies
however, the integrated intensity has not been determined with a high precision. We have seen in this last chapter 2 what are the
necessary ingredient to determined precisely the integrated intensity. Firstly, it is the ∆q parameter which is associated with the
domain size; in our case, it is connected with the number of diffracting smectic layers in one hemicylinder. Secondly, it is the
domain mosaicity. Since the rubbing of the PVA crystalline substrate induces azimuthal misorientation of the hemicylinders it
is vital to consider the mosaicity effect on the intensity. It also appears that the validity of Bragg conditions must be scrutinized
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to allow for a safe use of the integrated intensity.
In the next chapters of my manuscript, I will thus show how a more precise analysis of the X-ray data can be used to ascertain

in more detail the intimate system of the oily streak with nanoscale resolution. All these features led us to fully reconsider the
analysis of the X-ray data which will be the subject of the next chapter, the chapter 3. The idea was also to obtain the largest
possible amount of experimental results to build the safest model as possible for the oily streaks intimated structure (presented
in chapters 4 and 5 that even include revisiting the structure of the central flat layers).
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Chapter 3

Experimental technique and data analysis

“If I have seen further than others, it is by
standing upon the shoulders of giants.” –

– Isaac Newton
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3.1 Introduction

The confinement of the 4-n-octyl-4’-cyanobiphenyl (8CB) smectic A thin film between two antagonistic anchoring distorts it
into two kinds of arrays of linear defect structures, the so-called oily streaks and large streaks structures. These structures can
be monitored by the anchoring strength. The oily streaks structure has been studied in the past [1, 2, 3, 4] but several questions
are still pending as discussed in chapters 1 and 2 of this manuscript. It is made of smectic layers superimposed in flattened
hemicylinders as described in chapter 1 and in chapter 2 with an emphasis on the X-ray diffraction results. Topological defects
in this structure were found to effectively act as traps for nanoparticles being able to transfer their geometry to nanoparticles
organization and therefore to work as a template for their self-assembling [5, 6]. Recently, the internal structure of the so-called
large streaks has been suggested [7].

We aim to accurately determine the models of the internal structure of oily with high precision. This would not only help to
study the intimate structure of liquid crystal topological defects, all this being still elusive but also in a second step, it would help
to understand and control the self-assembling processes of nanoparticles inside the core of the topological defects. For such a
purpose, during my Ph.D. thesis, I have developed a new way of analyzing our experimental X-ray data that I will present in this
chapter. We have developed particularly an unprecedented methodology of ascertaining the satisfaction of the Bragg condition
for particular orientation α of rotating smectic layers inside the hemicylinder.

3.1.1 Experimental set up
We have carried out two X-ray scattering measurements at the SIXS beamline on the SOLEIL Synchrotron facility in collaboration
between the team of Professor Emmanuelle Lacaze, Bernard Croset, Haifa Jeridi, Michel Goldmann (INSP), the colleagues of
SIXS beamline (Alina Vlad , Yves Garreau and Alessandro Coati), David Baboneau and Doru Constantin. We collected huge
amount of data that I have been analyzing throughout this thesis. The experiment set-up is shown in figure 3.1. We have used
an X-ray beam of 300 µm× 300 µm and a photo-energy fixed at 18.44 KeV. The X-ray beam exiting from the vacuum tube
is impinged on a sample of 18 mm × 18 mm. The Sample-Detector distance was 1.7 m for an Eiger detector. This detector
is a single-photon counting X-ray pixel detector made of (1065, 1030) pixels, i.e 1065 lines and 1030 columns. The size of a
pixel is 75 × 75 µm2, this corresponds to a q pixel size of 0.004 nm−1 ×0.004 nm−1. The sample is fastened to a copper
component and covered by a Kapton cone connected to a helium bottle (see figure 3.1 ) to allow the sample to be kept under a
helium atmosphere and hence prevent the liquid crystal from being deteriorated while the sample holder remains transparent to
the X-ray beam during the measurements.

We have used Grazing Incident Small Angle X-ray Scattering (GISAXS ) (figure 3.2a) and Transmission Small Angle
X-ray Scattering (TSAXS ) (figure 3.2b). We have studied samples of 8CB smectic A liquid crystal thin films of different
thicknesses. The experimental setups of these two configurations was first used during the thesis of Delphine Coursault [8] and
of M. Syou-p’heng DO [9], the former students of Professor Emmanuelle Lacaze.

Using the TSAXS configuration, the intensity scattered by the perpendicular layers close to the substrate (see chapter 2
section 2.6.2) was measured by rotating the sample through 90◦ to make it perpendicular to the X-ray beam and hence probe
an area of size 300 µm× 300 µm [1]. Using the GISAXS configuration shown in figure 3.2a, we have measured the intensity
scattered by all the rotating smectic layers in the two edges of the hemicylinder together with the intensity of scattered by the
smectic layers in the central part of the hemicylinder. The sample surface being almost parallel to X-ray beam, we probe an
area of size 300 µm × 18 mm. For each sample, a 2D optical map (zmc, ymc on the surface) was drawn. For this purpose
the surface of the sample has been divided into squares of size 100 µm per 100 µm where the thickness has been identified
using the colors by optical Microscopy. The zmc was parallel to the direction of the stripes and ymc was perpendicular to the
zmc. The borders of the sample have been precisely identified by X-ray in transmission, allowing to precisely combine X-ray
measurements with optical maps to determine the thickness of each zone.

For instance, in the sample that we will analyze in this chapter 3 and in the chapter 4, in the TSAXS configuration, we have
measured two ymc zones: ymc = −2 and ymc = 0. For each of these zones, we have measured 4 zmc zones, notably −4, −1,
1 and 0. For the ymc = −2, the thicknesses are respectively 200 nm, 192 nm, 182 nm and 182 nm whereas for the ymc = 0,
the thicknesses are respectively 185 nm, 192 nm, 198 nm and 192 nm. In GISAXS configuration, different zone were also
measured, notably −4, −1, 1 and 0 and their thicknesses are respectively 180 nm, 200 nm, 200 nm and 210 nm. It appears
that generally the thickness is mostly homogeneous along the stripes but less homogeneous perpendicular to the stripes. This
allows to define properly the thickness in both TSAXS and GISAXS set-up, with an uncertainty around 30 nm. The effective
domination of oily streaks with respect to large stripes has also been identified.
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Figure 3.1: The experimental setup at SIXS beam line of Soleil synchrotron facilities.

(a) (b)

Figure 3.2: Grazing incident Small Angle X-ray Scattering set up and the diffraction image (a)Transmission Small
Angle X-ray Scattering set up and the signal (the comma in the zoomed part) scattered from the perpendicular layer
(b).

In the GISAXS step, we have used seven different incident angles ω: 0.1◦, 0.15◦, 0.2◦, 0.25◦, 0.3◦, 0.5◦, 0.6◦. For each
measurement, a scattering ring (see figure 3.7) centered on the direct beam position is observed on the 2D detector (see figure
3.2a). This ring depicts the rotation of the smectic layers whose normal is parallel to the wave-vector transfer ⃗qfilm which is
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rotating around the axis of the hemicylinder through an angle αfilm with respect to the substrate. The ring is formed by the
intensity scattered by such layers.

The measurements were systematically done with a detector placed in a position that was preventing the direct X-ray beam
to reach the detector since it could damage it. In addition a hidden zone was present in the middle of the detector (the pink ribbon
visible in figure 3.3). The effect of this was that the signals scattered by smectic layers in the central part of the hemicylinder
were hindered on the detector (figure 3.3 (a)), the purple thick line passing through the central part of the scattering ring. These
hidden data are crucial to get the complete structure of the hemicylinder and its understanding. To get this data we have shifted
the detector as shown in figure 3.3(b) which is showing a ring formed by the signal scattered by both the smectic layers in the
central part of the hemicylinder (they are highlighted in the black box) and the rotating smectic layers in the rest part of the ring.
Almost systematically we have measured the two positions of the detector.

Figure 3.3: Images from Eiger detector (a) before (b) after shifting the detector in order to visualize the signal
scattered from the central part of the hemicylinder. The part highlighted in black is the central part of the
hemicylinder.In red the position of the beam-stop that hides the direct beam is visible.

We have used two different but complementary techniques to measure the scattering of the smectic layers. The first one was
to keep the rotation angle µ = 0 (this µ is an angle of rotation of the sample around the axis-z perpendicular to the substrate
see figure 3.2a) and to change only the incidence angle ω while keeping the detector and the direct beam fixed. This is the
technique that had been used before this thesis. The second technique, which is a new one, consists in rotating the sample
through the angle µ around the z-axis that is perpendicular to the substrate and keeping fixed the incident angle ω. In the next
coming sections of this chapter I will detail the extraction and treatment of data from a pure liquid crystal sample on a specific
measured zone of 180 nm, zmc = −4.

3.2 Data treatment technique and analysis for measurement at µ = 0

3.2.1 Extraction of the data from perpendicular layers
In figure 3.2b, we showed the setup of the experimental Transmission Small Angle X-ray scattering configuration where the
X-ray beam is perpendicular to the substrate and to the hemicylinders (the stripes which are visible by Optical Microscopy and
are parallel to the x direction ). The intensity scattered on the 2D detector is shown in figure 3.4. Two scattered spots are
detected ( in the zoomed parts) in form of an arc. When the motor µ is at µ = 0◦, the two spots correspond to the signals
scattered by perpendicular layers. In TSAXS configuration, when µ is varied, the spots correspond to the scattering of the
smectic layers oriented at α = µ. For each µ, we have fitted the detector image with a 2D Gaussian function written in polar
coordinates. The results were the maximum intensity, the radial position q, ∆q and the mosaicity as a function of motor µ, in
other words in its configuration as a function of α. The results are shown in figure 3.5a and figure 3.5b for the intensity and for
q respectively. These results will be discussed in chapter 4.

3.2.2 Extraction of Data from rotating smectic layers
To extract the data diffracted by the smectic layers for each α along the whole diffraction ring, we have developed a Python code
that allowed us to process the raw data from the experiment in HDF5 format. In the following I will start with the data obtained
for different incident angles ω with the sample fixed at µ = 0◦. I will then explain the extraction of the data obtained by varying
µ for fixed incident angle ω. This latter technique will be hereinafter referred to as µscan.
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Figure 3.4: The image showing the intensity scattered by the perpendicular layers. It is obtained from TSAXS
set-up with a 8CB zone of thickness 185 nm.

(a) (b)

Figure 3.5: The maximum intensity scattered from perpendicular layers (a) The position of the maximum intensity
from perpendicular layers (b).

Figure 3.7 is showing the diffraction rings for all incident angle ω values obtained for µ = 0 at the position zmc = −4
corresponding to an average thickness e = 180 nm. With a close look, we can see that the range of angular position of the ring
which is visible is becoming smaller as the incident ω is increasing. This is the effect of the horizon which is due to refraction
and will be explained in section 3.2.4 of this chapter.

The process of data extraction was as follow: For each line Z, we have drawn the intensity curve as a function of the column
pixels denoted as Y (see figure 3.6 ). We have then defined the background noise of this intensity and fitted it with an affine
function to ensure that the background noise and the tails that we have discussed in chapter 2 are well defined and then removed.
After removing these background from the raw intensity, the remaining intensity was fitted with a Gaussian function. The
results of this fitting process are the maximum intensity, the position Y of this maximum intensity in pixel unit and the width
(∆Y ). These data were drawn as a function of the line Z.

This process was also done using column fitting of the scattering ring. The results of this fitting process are the maximum
intensity, the position Z of this maximum intensity in pixel unit and the width (∆Z). The results from the column fitting were
correct for only small α angle since the column was tangent to the scattering at large α whereas those from the line fitting were
correct only at larger α, since line was tangent to the scattering ring at small α. We needed to get the radial values of both the
width and the position of the maximum intensity. This radial position is the magnitude of the wave vector transfer q. The radial
width of the scattering is ∆q. The two parameters are shown in figure 3.3(a). To obtain them we have applied a correction
in the two fitting processes. The radial width was ∆q = sin(α)∆Y for the line fitting and ∆q = cos(α)∆Z for the column
fitting. These radial width values from the two fitting process were found to be the same and correct for all orientations α along
the scattering ring which is also shown in figure 3.3(a) and will be discussed in section 3.3.5. In the following part of this
manuscript we have used the results from the line fitting. The evolution of these full width at half maximum (FWHM) will be
discussed in section 3.3.5 and the calculation and discussion of the radial position q will be discussed in section 3.2.4.
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Figure 3.6: Fitting of intensity at line Z = 105 pixels along the scattering ring

All the data we extracted from this scattering ring need to be plotted as a function of the orientation α, which is the polar
coordinate. The first task that we had was the determination of the center of the polar coordinates. This center is the position
of the direct beam. In the next section I will describe how this position was determined.

(a) (b) (c)

(d) (e) (f)

Figure 3.7: Evolution of the diffraction ring as a function angle of incidence
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3.2.3 Determination of the Direct beam position
Let’s consider an incident X-ray beam impinged on the air-liquid crystal interface with the incident angle angle ωi. This beam is
refracted at an angle ω

′
ri (see figure 3.8 (a)). The Snell–Descartes law of refraction at this interface is ni cosωi = n8CB cosω

′
ri,

where ni = 1 and n8CB are respectively the refractive indices for air and the smectic liquid crystal which is in our case, 8CB.
The critical angle of external reflection of the film can then be obtained from n8CB = cosωc. The refractive index of the 8CB
n8CB = 1 − δ8CB with δ8CB = 8.57 × 10−7 is the dispersion constant for 8CB. This critical angle is ωc = 0.075◦.

Using the value of the refraction index of the 8CB liquid Crystal in the Snell’s law, we get

cosωi = cosωc cosω
′
ri (3.1)

(a) (b)

Figure 3.8: (a) Refraction of the beam impinging on the 8CB film. The sample coordinate system is (x, y, z) and
the detector coordinate system is (X, Y, Z) (b) Refraction of the scattered beam on the 8CB-air interface. This
figure is in sample frame where the blue line is depicting the sample surface. The blue point is depicting the 8CB
film that is diffracting the X-ray beam.

Considering that all the omega angles are small we can use cosω ≈ 1 − ω2

2 and hence, we can easily obtain

ω2
i = ω

′2
ri + ω2

c ⇐⇒ ω
′
ri =

√
ω2

i − ω2
c (3.2)

We can now get the deviation angle of the direct beam due to refraction at the air-liquid crystal interface as

∆ω = ωi − ω
′
ri ⇐⇒ ∆ω = ωi − ωi

√
1 − ω2

c

ω2
i

(3.3)

Using the distanceD between the sample and the detector (D = 1.7 m), we can get the relationship between ∆ω and the spatial
refraction of the direct beam ∆Z measured in the detector to be

tan ∆ω = ∆Z
D

⇐⇒ ∆ω = ∆Z
D

which is eventually

∆Z(ωi) = D × ωi(1 −
√

1 − ω2
c

ω2
i

) (3.4)

Each ring presented on figure 3.7 has been fitted by a circle. This allowed to extract the ring center Z position (green spots
on figure 3.9) and to draw their evolution when omega varies. The comparison between the green spots and the red ones
corresponding to the theoretical curve of equation 3.4 confirms that the centers of the rings correspond to the direct beam
position, eventually refracted by the liquid crystal surface if the incident angle is small. We have therefore made a python code
to calculate the direct beam position. In this code we have first combined all the ring positions Y of maximum intensity of all
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ω angles in one common array, all the Z positions in another common array. The Z position of the center of the ring would be
given by

Z = Zc + ∆Z(ωi) +
√
r2 − (Y − Yc)2 (3.5)

where (Zc, Yc) is the direct beam position. We have thus used all positions of all rings, combined together and fitted by both
the equation 3.4 and 3.5 to extract the best fit values of the direct beam position. They will be considered in the following of my
manuscript as the direct beam coordinates.

Figure 3.9: The comparison between the variation of the center of the ring and the shift of the direct beam due to
its refraction on the air-film interface. The solid red circle is showing the shift of the direct beam for all values of
the incident angle ωi.

3.2.4 Calculation of the correction of the refraction effects on the diffracted beam from
the 8CB film

Refraction correction for the q values

In section 3.2.3 we have introduced the extraction of the radial position q of the maximum intensities.The radius of the scattering
is given in (nm−1) by

q = (
√

(Z − Zc)2 + (Y − Yc)2)(2πsp
Dλ

) (3.6)

where sp is the size of a pixel on the detector. D is the sample-detector distance and λ is the wavelength of the X-ray beam
that we have used. The orientation α along the scattering ring is given by

α = arctan
(

(Z − Zc)
(Y − Y c)

)
(3.7)
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Figure 3.10: The wave vector transfer on the detector for the different omega values shown in different colors.

This equation 3.6 gives the values for q measured on the detector and they are plotted in figure 3.10.
However, when an X-ray beam is impinged onto an 8CB thin film, it is refracted on the air-8CB interface (figure 3.8a).

The refracted beam is diffracted by the molecules inside the film (the green beam in figure 3.8b) . This diffracted beam is
also refracted as it exits the 8CB-air interface and hence, the signals we see on the detector are the refracted-diffracted beam.
Therefore, we need the exact values of the wave vector transfer inside the 8CB film i.e the value corrected from the refraction
on both the incident and exiting beam. This is the aim of this section.

We know that the magnitude of the wave vector transfer in airKo = 2π
λ

, where λ is the wavelength of the X-ray beam being
used. We also know the refractive index of the 8CB n8CB = 1 − δ8CB where δ8CB = 8.57 × 10−7 which is the dispersion
constant for 8CB. There are two laws of optics that relate the wave vector in air

−→
K to the wave vector in the 8CB film

−→
k . The

first one is that the parallel components of the wave vector are conserved i.e
−→
K∥ =

−→
k ∥. The second law is ko = nKo where

the ko and Ko are the magnitudes of the wave vector in the 8CB film and air respectively.
In figure 3.8a, we considered (x,y,z) the sample orthogonal coordinate system where x and y are parallel to the sample

surface plane with z being the normal to this surface. We also consider (X,Y,Z) as the detector orthogonal coordinate system
such that Y is parallel to the direct beam. Both X and Y form a plane which is parallel to the surface and perpendicular to the
detector. The vertical Z is parallel to the detector. We take the position of the direct beam without refraction as the origin of
the two coordinate systems. If the beam impinges onto the sample through an angle ωi, which is done by rotating the sample
around X − axis , we will need to do a transformation of the coordinates from detector frame to the sample frame.

Let’s start our calculation working in the sample coordinate system. Using the above two laws of the optics on the 3.8, we
can easily get the Snell’s law of refraction as follow:{

cosωi = n8CB cosω
′
ri

cosωef = n8CB cosω
′
sf

(3.8a)

(3.8b)
Knowing the refractive index of the 8CB film we can found that the critical angle is ωc = 0.075◦. Since we want to find the
wave vector transfer inside the 8CB film, we start by the known law of diffraction in the film that the wave-vector transfer qfilm
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(see figure 3.8) is given by

−−−→qfilm = −
−→
kri +

−→
ksf (3.9)

and its component in z-direction is given by qzfilm = −kriz + ksfz The equation 3.9 can be written as

qzfilm = ko(
√

1 − cos2(ω′
ri) +

√
1 − cos2(ω′

sf )) (3.10)

This equation can be written as

qzfilm = Ko(
√
n2

8CB − cos2(ωi) +
√
n2

8CB − cos2(ωef )) (3.11)

Similarly to Babonneau et al. [10] this equation can be rewritten as

qzfilm =
√

−K2
cz +K2

iz +
√

−K2
cz +K2

efz (3.12)

Where the critical wave vector transfer Kc = qc is given by 2π
λ

sinωc [11].
We need to use the value of the refracted-diffracted beam Kefz in the equation 3.12 to get an expression that is in function

of all known parameters. The wave-vector transfer q on the detector is usually found in the literature as

Figure 3.11: Grazing-incident in reflection geometry

{ −−→
Kef = −→q + −→

K i

=⇒ Kefz = qz −K sin(ωi)
(3.13a)
(3.13b)

Using equation 3.13 and 3.11 we can express it in a similar way as in literature[11, 12, 13, 14].

qzfilm =
√

−(Ko sinωc)2 + (Ko sinωi)2 +
√

−(Ko sinωc)2 + (qz −Ko sinωi)2

However, in our case, we want to relate qzfilm inside the film with the real values of the exiting refracted-diffracted beam in the
sample frame. This can be achieved by a coordinates transformation from detector frame to the sample frame as follow:

(
Kefx

Kefy

Kefz

)
=

(1 0 0
0 cosωi sinωi

0 − sinωi cosωi

)(
KefX

KefY

KefZ

)
=

(
KefX

cosωiKefY +KefZ sinωi

− sinωiKefY +KefZ cosωi

)
(3.14)
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We thus obtain:

qzfilm =
√

−(Ko sinωc)2 + (Ko sinωi)2 +
√

−(Ko sinωc)2 + (− sinωiKefY +KefZ cosωi)2 (3.15)

We can write the coordinate of the refracted-diffracted beam in the detector in the polar coordinates as
KefX = q cosα
KefY =

√
K2

o −K2
efX −K2

efZ

KefZ = q sinα
(3.16)

where q and α are the measured parameters that are obtained from the 2D detector analysis and we get the following equation

qzfilm =
√

−(Ko sinωc)2 + (Ko sinωi)2 +
√

(− sinωi

√
K2

o − q2 + (q sinα) cosωi)2 −K2
cz (3.17)

The exact value of the wave vector in the sample right before the refraction on the 8CB-air interface is

qfilm =
√
qz2

film + qx2
film (3.18)

where qxfilm = KefX i.e qfilm cos(αfilm) = q cos(α) and

q = (
√

(Z − Zc)2 + (Y − Yc)2) ∗ (2π ∗ sp
Dλ

)

(a) (b)

Figure 3.12: (a) The raw value of the wave vector transfer on the detector (b) The wave vector transfer inside the
8CB film.

This qxfilm expression gives αfilm as

αfilm = arccos (q cos (α)
qfilm

) (3.19)

αfilm is the orientation of the wave vector transfer inside the film and we found that its difference from the orientation α of the
wave vector transfer on the detector is negligible. From now on, we will be using the determination of α. Figure 3.12 is showing
the comparison between the raw values of the wave vector transfer q on the detector (the refraction effect are not corrected)
and the corrected values qfilm inside the sample which is plotted as a function of αfilm whereas q is plotted as a function of
α. The corrected qfilm values appear to have lost the border effects related to refraction. All q curves for different incident
angle ω values are very similar and almost superimposed in agreement with q values almost independent of the incident angles.
Once normalized all qfilm for different ω perfectly superimpose as shown by figure 3.13. In the following we will use these
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superimposed curves to discuss the qfilm evolution when alpha varies in chapter 4. We are now able to get the exact values of
qzfilm and hence the exact values of the interlayer layer spacing. These qfilm values will be used to reconstruct the intimate
structure of the hemicylinder in chapter 4. d will be written as 2π

q
in the following. We can already observe how well defined

are the q curves once corrected. The variation with alpha are clearly visible whereas they are very small, of around 3 pixels in
overall.

Figure 3.13: Evolution of normalized qfilm values as a function of α

Determination of the horizon

Let’s take from equation 3.17 the part in the second square root and let’s write it in details as follow(√
(− sinωi

√
1 − ( q

Ko
)2 + 1

Ko
(q sinα cosωi))2 − sin2 ωc

)
(3.20)

After replacing it the above equation 3.17 and neglecting all term with K2
o we get

qzfilm ≈ Ko

(√
sin2 ωi − sin2 ωc +

√
(− sinωi + 1

Ko
(q sinα cosωi))2 − sin2 ωc

)
(3.21)

where Ko = 2π
λ

and q = 2π
d

, d the inter-layers distance for the 8CB smectic A liquid crystal thin film, λ = 0.067nm The
part inside the square root corresponds to the exiting beam. It has to be positive and zero at the horizon. We can thus write{

(− sinωi + 1
Ko

(q sinα cosωi))2 − sin2 ωc ≥ 0
1

Ko
(q sinα cosωi) ≥ sinωi + sinωc

(3.22)

Since the incident ωi is small we can write 1
Ko

(q sinα) ≥ ωi + ωc, an expression which gives the critical angle of orientation
of the wave vector αc below which no exiting beam can be seen on the detector since this beam is below the horizon

α ≥ arcsin
{

( d
λ

(ωi + ωc))
}

(180
π

) (3.23)

αc = arcsin
{

( d
λ

(ωi + ωc))
}

(180
π

) (3.24)
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Figure 3.14: Evolution of the critical orientation α as a function of the incident angle ω.

Using equation 3.24, we have plotted the figure 3.14. From this figure we can see that as the incident ωi increases the
critical angle αc increases also. This explains the reason why in figure 3.7, as the incident angle increases, the scattering ring is
becoming smaller since the horizon is also increasing. For small incident ωi the critical alpha is much smaller and as a result,
the scattering ring is larger, with scattering data on a broad range At large ωi for example 0.6◦, the scattering ring has become
much smaller as it can be seen in figure 3.7 and we miss a number of α values.

3.2.5 Comparison of the experimental wave vector transfer q values from different
measurement techniques

Up to now we have seen three different but complementary techniques to measure the intensity scattered by the smectic layers
inside the hemicylinders. The first one is associated with the TSAXS set-up, allowing to measure the scattered signals from the
perpendicular layers on the substrate and its variation when α increases but on a small rang of α values. The second one is the
one using the measurement of intensity scattered by rotating smectic layers in the edges of the hemicylinders. We see on figure
3.7 that the signal from the huge stack of central layers is hidden by a dead area in the detector. The corresponding position of
the detector is called eix = 0. The third one is aimed at measuring the signal scattered by the central layers at α◦ = 90◦. It
is done with the detector displaced (we name the corresponding position of the detector, eix = −10). For the 180 nm thick
sample, we have extracted the curves of wave vector transfer of magnitude q as a function of orientation α. The comparison of
the q values from these three techniques is shown in figure 3.15. Different values of q are observed. The last two techniques
gave values which have similar variation as a function of α, however the eix = −10 data have an offset 0.019 nm−1 with
respect to those of eix = 0. If this offset is removed then the two values will almost perfectly superimpose. The TSAXS values
are much larger than those from both eix = 0 and eix = −10 .The fact that eix = 0 and eix = −10 q values have the same
variation as a function of α assures us that the α variation is true. The reason why the displacement of the detector ( in TSAXS
measurements, it is a 90◦ rotation of the sample) induced offsets in the q values, whereas the direct beam does not vary is not
clear. It tells us that we are only able to measure very precisely relative values but not so precisely absolute values of q. In
other words we have an uncertainty in the measurement of absolute q values. Based on figure 3.15 we can estimate the average
absolute qvalue to to be 2.01 nm−1± 0.02 nm−1. The bulk value of the wave vector transfer in literature is 1.99 nm−1 [15,
16]. If the calculated value is compared with the experimental values then it seems that the value that we measure is consistent
with the one of the literature if the uncertainty is taken into account. the one form the literature, even taking into account the
previously discussed uncertainty.
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Figure 3.15: Comparison of the qfilm values measured using different techniques. Blue is for the TSAXS
measurement. Red is for the GISAXS with the detector at position eix = 0. Black is the GISAXS with the detector
at position eix = -10

3.2.6 Extraction of maximum intensity from the scattering ring
Maximum intensity from measurement at µ = 0

The evolution of the scattered intensities obtained after the line fitting for different incident angle ω at µ = 0 are shown in figure
3.16 (where the detector was not shifted) and 3.17 (with the detector shifted). In figure 3.16(a) we see that non-normalized
intensities are not superimposed. We hypothesised that since these intensities obtained for different ω values were scattered
from the same 8CB thin film they should be similar. We have performed a normalization of these curves of intensities. This
normalization consists in determination of a factor that could superimpose all these curves. The normalized intensities are
shown in the figure 3.16(b) (for the data collected without shifting the detector) and 3.17(b) (with the detector shifted). From
all these figures, we can see that even the normalized curved from different ω values, are not all superimposed, for instance the
intensity curves of the ω = 0.6◦ and ω = 0.5◦ are not at all the same at large alpha. We will come back on them latter in
section 3.3

Figure 3.16: The evolution of (a) unnormalized intensities and normalized intensities (b) for all incident ω angles
at µ = 0.
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Figure 3.17: The non-normalized intensities (a) and normalized intensities (b) extracted with detector shifted to
allow the signal from the central part of hemicylinder to reach on the detector.

Maximum intensity from measurements with µscan

To ensure that the Bragg condition is satisfied by the scattering smectic layers inside the hemicylinders, we had to systematically
rotate our sample around the two axes: the Z-axis (vertical axis) through angle µ (we name the measurement procedure µscan)
and then rotation around the X-axis through angle ω. Note that during the experiment the beam is fixed, so the variation of
both µ and ω angles is done by rotating the sample rather than the X-ray beam. The µscan were performed between −14◦ and
14◦ using a step of 0.09◦ and counting time of 1 second. The counting for a very short time required a contrast enhancement.
This was done in two steps. Firstly, we defined the position of the scattering ring as the position of maximum intensities along
the ring that we have obtained from the extraction of data of the µ = 0. Secondly, for a given α value, we have averaged the
intensity measurements over 5 µ angles. This was possible because the scattering ring images were not shifted or rotated from
one another, i.e.,they were in the same position on the detector for all µ values.

For all α values, this lead to curves of maximum intensity as function of µ as shown in the figure 3.18 for α = 75◦ and
ω = 0.6◦. These curves were all fitted by a Gaussian function. As a result, the maximum intensity , its position (µmax), and
full width at half maximum (FWHM) ∆µ of the Gaussian peak for each α values were plotted as a function of angle α. The
curves of evolution of maximum intensities as a function of α are shown in 3.19. The normalization of these curves leads to
well superimposed curves when ω varies contrary to the their corresponding curves for µ = 0◦ shown in figures 3.16(b) and
3.17(b). The evolution of the position of the maximum intensities µmax will be discussed in section 3.3.2. The evolution of the
FWHM (∆µ) will be discussed in section 3.3.3.

Figure 3.18: Maximum intensity extracted for alpha 75◦
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(a) (b)

Figure 3.19: The evolution as a function of α for different incident angles (a) unnormalized maximum intensities
and (b) normalized intensities. They all come from the µscan.

3.3 Determination of Bragg condition
We have seen that a confined 8CB smectic liquid crystal film is distorted into array of periodic stripes. Each of them is a flattened
hemicylinder formed by various topological defects. The necessity of a more precise understanding of the hemicylinder internal
structure is inevitable and requires the ascertainment of the Bragg condition to build in return a fully accurate model of the
distorted smectic layers.

The scattering rings shown in figure 3.7 depict the intensity scattered by smectic layers whose normal is parallel to the wave
vector transfer q⃗ that is oriented at angle α. In this section we will see that not every scattering ring at whatever incident angle
ω satisfies the Bragg condition.

Moreover, during the experimental measurement, we have met with a difficulty of measuring non-perfect oriented sample
with respect to the incoming beam. In other words, despite an initial as much accurate as possible procedure of orienting the
sample with respect to the X-ray beam, we have finally not measured samples of stripes perfectly parallel to the X-ray beam.
As a result, we sometime observed asymmetric scattering rings. In this section we will also present the technique we have
developed to solve this issue of misorientation.

3.3.1 The theoretical position µBragg of Bragg intensity
We have developed two complementary procedures to determine the Bragg’s condition for the smectic layers inside the
hemicylinder. The first one is theoretical and the second one is experimental. I will first describe the theoretical procedure.
The experimental procedure consists in measuring µmax as described earlier. A theoretical µBragg Bragg’s formula has been
developed, using the two rotation matrices named Rx and Rz . The values of µBragg are the theoretical position of the Bragg
intensity for a fixed incident ω. The matrix Rx corresponds to the ω-rotation around the X-axis which is perpendicular to both
the direction of the sample stripes and Z-axis. The matrix RZ corresponds to the µscan around the Z-axis ( see Figure 3.2a ).

The final resultant rotation matrix has been found taking into account the correct rotation order during the experiment at
Soleil Synchrotron.

Rx ×Rz =

(1 0 0
0 cosω − sinω
0 sinω cosω

)(cosµ − sinµ 0
sinµ cosµ 0

0 0 1

)
(−→ex−→ey−→ez

)
=

( cosµ − sinµ 0
− cosω sinµ cosω cosµ − sinω
sinω sinµ cosµ sinω cosω

)(−→eX−→eY−→eZ

)
We have assumed that we are in Bragg condition. The reciprocal vector associated with the rotating layers whose normal is
orientated at angle αfilm from the substrate is denoted by qfilm.

−→q film = qfilm

[
cos (αfilm)−→ex + 0−→ey + sin (αfilm)−→ez

]
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where −→ex, −→ey , and −→ez are the unit vectors in the sample reference frame and −→eX , −→eY , and −→eZ are the unit vectors in the detector
reference frame (see Figure 3.8). The Bragg diffraction is obtained when the scattering wave vector or the momentum wave
vector transfer q⃗ is the reciprocal lattice vector −→q film with qxfilm = q sinα and qzfilm = q cosα. So the reciprocal wave
vector has to equate the wave vector transfer q⃗ = k⃗ef − k⃗i, where k⃗i = (0−→eX + k−→eY + 0−→eZ), since the incoming beam is
parallel to the Y-axis. However, prior to this step, we have to first write the reciprocal wave vector transfer in terms of the unit
vectors of the detector frame.

−→q film = qfilm

( cosµ − cosω sinµ sinω sinµ
− sinµ cosω cosµ cosµ sinω

0 − sinω cosω

)(cosα
0

sinα

)

−→q film = qfilm

[
(cosµ cosα+ sinω sinµ sinα)eX + (− sinµ cosα+ cosµ sinω sinα)eY + (cosω sinα)eZ

]
As we have said before, for the diffraction to be obtained or the Bragg condition to be satisfied, the momentum wave vector
transfer has to be equal to the reciprocal lattice vector. That is −→q film = q⃗ ⇐⇒ −→q film + k⃗i = k⃗f

Considering that we have elastic scattering, we can get |k⃗f | = |k⃗i| = k and |−→q film + k⃗i| = k and write

−→q film +k⃗i = qfilm

[
(cosµ cosα+sinω sinµ sinα)−→eX +(− sinµ cosα+cosµ sinω sinα+ k

qfilm
)−→eY +(cosω sinα)−→eZ

]
Using the relation |−→q film + k⃗i|2 = k2 we can get the following equation

qfilm + 2k sinα sinω cosµ+ 2k cosα sinµ = 0

where qfilm = q. From this equation We get

µBragg = arcsin (
( q

κ
) cosα± (sinα sinω)

√
(cosα)2 + (sinα sinω)2 − ( q

κ
)2

(cosα)2 + (sinα sinω)2 ) (3.25)

, where κ = 2k or κ = 4π
λ

and q = 2π
d

, d is the interlayer distance, λ is the wavelength of the X-ray beam we have used and
α is the orientation of the normal of the smectic layers.The equation 3.25 has a positive and a negative solutions. I will discuss
which solution to choose in the next subsection 3.3.2.

3.3.2 The experimental position, of Bragg intensity
Comparison of the calculated Bragg µBragg angles with the experimental µmax

We have then plotted the experimental value of the position of the maximum intensity µmax and the theoretical values µBragg

in figure 3.20a. It is showing an almost perfect superimposition of the theoretical µ-Bragg values (shown in green and blue)
obtained using equation 3.25, with the experimental µ-max values (shown in red color) for incident angle ω = 0.25. Similar
agreements were obtained also for other incident angles ω. The equation 3.25 is formed by two solutions, a positive and negative
solutions. Each of them is correct for only a particular α range. The positive solution (in blue) is superimposed with the
experimental values from α = 0◦ to α = 89.4◦ and the negative solution (in green) is superimposed with the experimental
values from α = 90.6◦ to α = 180◦. This superimposition evidences that all our experimental µmax rotation values are the
µ-Bragg angles, and their corresponding normalized intensities in 3.19b are Bragg intensities. This result evidences the reason
why the normalization in figures 3.16 and 3.17 was not superimposing the intensities for all α values. The regions where
the superimposition was not possible correspond to the regions where the data were not in Bragg condition. In contrast the
intensities shown on figure 3.19 that correspond to Imax are Bragg intensities and superimpose.

We have used the famous formulae of Bragg condition 2d sin (ω) = λ to calculate the incident Bragg angle for the 8CB
smectic liquid crystal sample. We have two main parameters to get the value of ωBragg . Notably the wavelength of the X-ray
beam of energy 18.44 KeV that we have used and the interlayer distance d = 3.16 nm−1 for 8CB smectic liquid crystal as it
was demonstrated by Leadbetter et al. [15]. Using these parameters we have obtained ωBragg = 0.6◦.

On figure 3.20, we observe that if ω is strictly smaller than 0.6◦, µBragg varies from −0.6◦ to −90◦, then from +90◦ to
0.6◦. However, if ω = ωBragg = 0.6◦ (green curve on figure 3.19b), µBragg only varies from −0.6◦ to +0.6◦.
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(a) (b)

Figure 3.20: Comparison of the evolution of the theoretical µBragg and the position of the maximum intensities
along the circle of ω = 0.25◦ as a function of α (a) and the evolution of the evolution of the µBragg curves when
omega increases from 0.25◦ to 0.6◦. (b)

3.3.3 Evolution of the width ∆µ of the diffraction ring from µscan measurement

During the sample preparation, we rubbed the 8CB thin film deposited on the PVA substrate to impose the uniform planar
anchoring (see chapter 1). The rubbing induces undulations along the hemicylinders in the direction of the stripes that can be
considered as equivalent to a mosaicity in X-ray data. This hemicylinder mosaicity was measured using theµscans measurement.
It is associated with the ∆µ , the full width at half maximum of the Bragg peak of intensity obtained during the µscans. In
figure 3.21, we can see that ∆µ is almost constant between 3◦ and 3.5◦ for all orientation α. The variations that seem to occur
for 80◦ are due to the fact that µscan are performed between −14◦ and +14◦ only, above 80◦ measurement they are not in
strictly correct. The fact that this ∆µ is independent of the α is compatible with the fact that we can attribute the ∆µ to the
undulation of the stripes. This is what is expected for a ∆µ related to a non-perfect rubbing.

Figure 3.21: Evolution of ∆µ as a function of α issued from the µscan measurement when the Eiger detector is on
position −10 (as a result the beamstop hides the values between α = 68◦ and α = 75◦)
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3.3.4 Bragg intensity
µscans obtained for each alpha values finally allowed to draw the Bragg intensity as a function of alpha (figure 3.19). However,
isn’t it possible to also draw Bragg intensity curves using the data obtained at µ = 0◦ ?. In figure 3.20b, it can been seen that for
small α values of both ω = 0.25◦ and ω = 0.6◦, µBragg = −0.6◦ ( this result is true for all ω between 0.1◦ and 0.6◦). Let’s
consider the Gaussian Bragg peak of intensity drawn as a function of µ shown in figure 3.18. It is characterized by a FWHM
width ∆µ around 3.5◦ on average. This width is shown in figure 3.21. It almost doesn’t varies until α = 80◦, remaining
between 3◦ and 3.5◦. Due to this large value of ∆µ, the intensity at µ = 0 is close to the Bragg intensity until α = 70◦, since
µ = 0◦ is close enough to µ = −0.6◦. Figure 3.20a indeed shows that it is only around α = 70◦ that muBragg becomes
significantly different from −0.6◦. This is indeed shown in figure 3.22, where the intensity at µ = 0 (3.22(b)) is compared to
the Bragg intensity (3.22(a)). For the case of intensity at µ = 0, for most of ω values, the superimposition after normalization is
perfect until α around 70◦. The Bragg condition is not satisfied between α around 70◦ and 90◦ for small incident ω values and
this is why in this interval the superimposition is not possible. On the other hand, if ω = 0.6◦, the green curve of figure 3.20b
shows that µBragg only varies from = −0.6◦ to = +0.6◦. In other words if ω = 0.6◦, measurements performed at µ = 0◦ will
always be in Bragg condition. Indeed on figure 3.21b the intensity at µ = 0◦ and ω = 0.6◦ are identical to the Bragg intensities
of figure 3.22(a).

To get a full evolution of the Bragg intensity for all α for the measurement at µ = 0, we consequently can combine the
values at small α ≤ 45◦ from small ω < 0.6◦ with the values at larger α ≥ 45◦ from ω = 0.6◦. In such a case, the curve of
intensity as a function of α obtained from µ = 0◦ data appear to be equivalent to Bragg intensities obtained from the µscan.

Figure 3.22: Comparison of profiles of Bragg Intensities issued for µBragg (a) and maximum intensity issued from
µ = 0 measurement (b) at different incident angles ω

Another way to get full evolution of the Bragg intensity was to perform a correction to the curves of maximum intensity
obtained at µ = 0. This correction is given by the equation 3.26 where the Imax is the maximum intensity extracted from the
scattering ring, the µBragg are the position of Bragg intensities as described in section 3.3.2 whereas the ∆µ has been described
in section 3.3.5. This correction assumes simply that the curves of intensity as a function µ can be assumed to be a Gaussian
peak of maximum intensity, µ = µBragg . For the correction we consequently have to consider the difference between µ = 0◦

and µ = µBragg and its implication in the variation of the scattered intensity.

IBragg = Imaxe
(

µBragg
∆µ

)2
(3.26)

In figure 3.23, we have compared the maximum intensities from µ = 0 (red color), their corresponding calculated Bragg
intensities (blue) and the Experimental Bragg intensities (black) obtained with the µscan. In this figure, I show that we were
able to solve the issue at large α values.

During µscan, we have measured for a given omega, 310 µ angles between µ = −14◦ and µ = 14◦. This implies that we
do not have data in the range −90◦ ≤ µ ≤ −14◦ and 14◦ ≤ µ ≤ 90◦. The evolution of µ angle as a function of α showed us
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Figure 3.23: Thin film of 180 nm: Comparison of the maximum intensities collected at µ = 0◦ (red) with Bragg
intensities (blue) calculated using equation 3.26, experimental Bragg intensities collected at µscan (Black) and for
different diffraction incident angles ω: (a) ω = 0.1◦, (b) ω = 0.15◦, (c) ω = 0.3◦.

that we can only measure up to 88◦ i.e. there is no data between α = 88◦ and α = 92◦ with the µscan. For these measurements
at very large α, we used the detector displaced at position −10. The resulting scattering ring are shown in figure 3.3. Figure
3.17 is showing the data extracted from such a ring at µ = 0.

Figure 3.24: The Bragg intensity extracted at µscan with the detector shifted to allow the signal from the central
part of the hemicylinder to reach on the detector (b) zoomed part showing the intensity from the central part of the
hemicylinder.

As explained previously we have combined the data at small omega with data at ω = 0.6◦ to get the Bragg intensity
complete at all α values. These results are shown in figure 3.24. They are crucial to obtain data at the upper part of the scattering
ring (in figure 3.3(b) ) associated with the layers in the central part of the hemicylinder. The above results imply that the µscan

measurements are not strictly necessary anymore to obtain the Bragg intensities for all alpha values.

3.3.5 Evolution of the width ∆q of the diffraction ring
During the measurement at µ = 0, we have seen that the intensity scattered from the smectic film is observed on the detector as
a ring. For a given line i on the image, the intensity extracted is a Gaussian peak and we fitted it using a Gaussian function as
we have discussed before. The real width of the scattering ring is given by a radial width calculated from the full width at half
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maximum of the Gaussian peak as discussed in section 3.2.2. Figure 3.25a exhibits curves of ∆q as a function of α for different
ω i.e ∆q(α, ω).These values depend on the value of the ω and whether or not, the Bragg condition is satisfied. It is satisfied for
all small α less or equal to 70◦ for small ω whereas it is satisfied for all α values for ω = 0.6. As we have seen for the intensity
extracted from scattering obtained at µ = 0, the value at large α value, do not correspond to the Bragg condition. If the incident
angle ω is smaller than 0.6◦. the enormous increase in value of ∆q around α = 90◦ for small ω does not correspond to the
Bragg condition. Hence, we have discarded it from our analysis. In this central area around 90◦ we have considered only the
values from ω = 0.6◦

(a) (b)

Figure 3.25: Evolution of raw width (∆q values) of the diffraction rings as a function of α extracted when the Eiger
detector was on the position 0 (a) Evolution of the width of the diffraction rings for different incident ω after the
refining procedure.

To obtain the complete profile of the curve of ∆q in Bragg condition for all α value we have combined the values of ω
0.25◦ and 0.3◦ for small α i.e α ≤ 70 and those from ω = 0.6◦ for α > 70. The resulting curve is shown in figure 3.26 below

Figure 3.26: Evolution of ∆q as a function of α which comes from the µ = 0◦ measurement when the Eiger
detector is on position 0

The ∆q values can be due to three factors:

• Finite size effect, where in our case we are considering the variation of the number diffracting smectic layers. We will
come back to this effect in chapter 4.
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• The quality of order. If somewhere in the hemicylinder, there is a not too small area with varying q values, it may affect
the average ∆q that is measured.

• Resolution which is the length of the transfer if we convert to the size.

The experimental resolution has been calculated by the Soleil-SIXS beamline team. It is smaller than 0.015 nm−1, a value two
times smaller than the measured ∆q (figure 3.25b). Then we remain with two factors affecting our experimental ∆q notably
the finite size effect and the disorder influence.

3.3.6 Integrated Bragg Intensity
The precise understanding of the intimate structure of the topological defect in the hemicylinders which constitute a thin smectic
film confined between antagonistic anchoring requires an integrated Bragg intensity. In chapter 2, we have seen that the
integrated integrated intensity is proportional to the product of the scattered Bragg intensity, ∆µ, and ∆q.

Figure 3.27: Evolution of Integrated Bragg intensity as a function of α from a combination of omega 0.25◦ and
0.6◦(b)

In previous sections we have shown that for small incident angle ω i.e (0.1◦, 0.15◦, 0.2◦, 0.25◦, 0.3◦ and 0.5◦ ) the Bragg
condition is satisfied only for small α i.e until around 70◦. For ω = 0.6◦ we are in Bragg condition for all α angle. We have
then combined the data from the small omega i.e α values between 0◦ and 70◦ and then between 70◦ and 90◦ for ω = 0.6◦.
The resulting Bragg intensity was multiplied by the ∆q and ∆µ to find the integrated intensity. The profile of the obtained
Integrated Bragg Intensity for the sample of thickness 180 nm is shown in figure 3.27. For the reconstruction of the smectic
layer structure we also need the ∆q curve in figure 3.26 and the q curve in figure 3.12b.

3.3.7 Correction of sample misorientation-based asymmetry
We have seen in the previous sections that the scattered intensity from the hemicylinder is symmetric with respect to the position
of the direct X-ray beam. For example in figure 3.22, the curves of intensity from measurement at µ = 0 as well as µscan

are symmetric. However, this was not always the case during our experimental measurements. We have sometime obtained
asymmetric scattering rings as shown in figure 3.28. In figure 3.28 (a) and 3.28 (b), we can see that the signal below the central
part of the scattering ring is not as bright and wide as the part above it. These signals are mostly from the smectic layers at the
two edges of the hemicylinder, rotating around the axis of the hemicylinder. The intensities extracted from such scattering rings
are shown in figure 3.29. We see that the intensity for α less than 90◦ is higher than those for α greater than 90◦.

We have also measured using TSAXS, the signals from perpendicular layers. Such signals are encircled in the black
rectangle in figure 3.28(c). For a given sample, I have plotted only the signals in this black rectangle to get the real shape of the
upper and the lower signals. I have then plotted the two signals in one image as shown in figure 3.30 where I have compared
the two signals for different samples. For the film sample of 180 nm thickness the result are shown in figure 3.30(a). The
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Figure 3.28: The asymmetric scattering ring from a sample of 230 nm thickness data corrected with (a) the
detector displaced (b) the detector not displaced (c) The signals from perpendicular layers from a sample of 180
nm thickness film with a majority of oily streaks. They are measured using TSAXS configuration.

signal in Lilas color corresponds to the upper signal whereas the green color corresponds to the lower signal. We can see that
the two signals are not shifted from one another but they are instead symmetric with respect to each other. This suggests that
the sample was well oriented. In contrast to this result, figure 3.30(b) which was from a film sample of 230 nm, is showing
that the upper signal (in orange color) is clearly shifted i.e asymmetric with respect to the lower signal (green). This suggest
that this sample was poorly oriented. When the TSAXS signals were perfectly symmetric the scattering ring from GISAXS

Figure 3.29: The intensity extracted from asymmetric scattering ring when (a) the detector is displaced (b) the
detector is not displaced. These data were extracted from a film of 230 thickness.

was also symmetric. This confirms that a perfect µ orientation (stripes perfectly parallel to the X-ray beam for µ = 0◦) is
absolutely necessary to obtain symmetric rings and accurate measurements of the Bragg features. Unfortunately we did not
always succeeded a perfect alignment of the stripes. The main reason was related to the large values of the ∆µ, the mosaicity,
also visible in TSAXS data, leading to a difficult orientation of the stripes. This requires to apply afterward a correction using
the understanding related with the µBragg determination previously described. This correction is based on the hypothesis that
an asymmetric ring corresponds to a bad initial µ alignment. This hypothesis is confirmed by µmax measurements performed
with the µscan for a misaligned sample (figure 3.31). This curve is not centered around µ = 0◦ as it should be (see figure 3.20
instead) This kind of measurement allows to determine µo, the value of µ-alignment.

We have already seen in equation 3.26, the formulae to calculate the Bragg intensity from intensity corresponding to
µ ̸= µBragg . It has been used for the measurement when µ was fixed at 0◦ but was misaligned by µo. The new formulae is
given in equation 3.27.

IBragg = Imaxe
(

µBragg±µo

∆µ
)2

(3.27)

The + is for the images with detector not displaced and − is for those with detector displaced. Again the µ Brag is calculated
using equation 3.25. The corrected data are shown in figure 3.32 for the two possible positions of the detector. We observe that
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Figure 3.30: The signals from perpendicular layers measured using TSAXS configuration. (a) Well oriented in a
180 nm thick film sample (b) poorly oriented 230 thick sample.

we have been able to obtain almost perfectly symmetric intensities. This kind of corrections allowed to analyze the data of all
our misaligned samples which was initially thought as impossible. To correct the asymmetric data we need to determine the
value of µo. The µo values obtained from the µscans (see figure3.31) values allow for a starting point of the correction. Then
the µo value is refined to lead to a perfect symmetric intensity. For example for the figure 3.32(a) we have found the value of
µo = 2.4◦ and ∆µ = 2.5◦ for all incident angle ω (as expected) leading to the symmetric intensity shown in figure 3.32(a). It
is consequently now possible to correct the data of most of the misorientated samples.

Figure 3.31: The evolution of the position of the experimental maximum intensity and the theoretical Bragg
intensity for a misaligned oily streak sample of 230 nm

3.4 Conclusion
The signals scattered in Bragg condition contain information on the structure of the scattering material. It is therefore crucial
to ensure that this condition is satisfied during the X-ray scattering measurements. It has been demonstrated that oily streaks
intimate internal structure is made up of smectic layers rotating around the axis of the hemicylinders. To study this internal
structure precisely, it is crucial to ascertain that Bragg condition is satisfied for all orientations α of the wave vector transfer q⃗.
This q⃗ has to be parallel to the normal of the smectic layers inside the hemicylinder. For this reason, we have developed two
different but complementary unprecedented theoretical and experimental techniques. The first one is the experimental µscan

measurement and the theoretical formula for the position of the Bragg intensity. We have found a perfect agreement between
the two. This agreement helped us to understand the critical parameter necessary to control for Bragg measurements, finally
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Figure 3.32: The corrected Bragg intensity extracted from asymmetric scattering ring (shown in figure 3.29) when
(a) the detector is displaced (b) the detector is not displaced.

allowing to find a way to obtain Bragg conditions at µ = 0◦. In addition to this Bragg intensity ascertainment, in this chapter
we have also presented new parameters that have not been used before in our group in the study of the intimate structure of the
oily streaks. These are the ∆q, the ∆µ, and the q variations with α. The former is sensitive to the presence of disorders in the
inter layer spacing of the smectic layers and so it will help in chapter 4 and 5 in the localization of the defects in our system.
Moreover since it is also associated with the finite size effect which is the number of scattering in our system, it will therefore
play a crucial role in the determination of the number of scattering smectic layers in the next chapters. The ∆µ is associated
with the mosaicity of the hemicylinder. It signifies that due to the rubbing process the produced hemicylinder are not always
perfect. Taking into account this parameter has therefore helped to take into account the effect of this mosaicity on the intensity
scattered by our hemicylinders. We have performed a calculation to correct the effects of refraction in our measurement. This
calculation concerns the determination of the value of the wave vector transfer qfilm inside the film. Its values are related to
the interlayer spacing. We demonstrated that for the curved smectic layers, this qfilm varies as a function of its orientation
αfilm inside hemicylinder. This will hence be useful in the precise determination of the intimate internal structure of the
hemicylinders in next two chapters. In most of the experimental measurements that we have performed, we were confronted
with the issue of misorientation. We have found that the main reason was the misorientation of the µmotor difficult to remove
due to the large mosaicity. The effect of this was that the measured data were deviating from Bragg condition. In this chapter we
have represented a technique to correct this misorientation. During this thesis we have applied it to data collected in different
time and experimental campaigns and the results that we have presented have shown that its effect could be annihilated. It is
therefore strongly suggests that this procedure can be used in case it becomes necessary.
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Chapter 4

Study of internal structure of a smectic
A thin film of 180nm thickness

“On ira d’autant plus loin dans la vie ... à
condition de revenir.” –

– Docteur Robert Blacher
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4.1 Introduction
In chapter 1, we have seen that smectic A liquid crystal phase is characterized by a layered structure at a given temperature.
Leadbetter et al. [1] have determined the interlayer spacing of the smectic layers and found it to be d = 31.6 Å which lead
to qm = 1.99 nm−1 for an 8CB molecular length of l = 22Å. We have confined it between homeotropic anchoring and
uniform planar anchoring. This confinement induces a competition between different energy terms, namely, the two antagonistic
anchoring energies, the surface energy at the air-8CB interface related to the surface curvature, the elastic and defect energy.
This competition distorts the 8CB layered structure into 1D pattern, the so-called oily streaks (see section in chapter 1) [2, 3].
In this chapter, I will describe the works we have done on a sample of average thickness 180 nm to study in detail the internal
structure of the oily streaks. On this sample we have studied 3 zones (ribbons of length 18 mm parallel to X-ray beam and of
width 300 µm ). As explained in chapter 3 the thickness of each zone has been carefully determined during the analysis of
optical microscopy image using the Newton tints of colors shown in the appendix A. In the following, we concentrate on the
so-called zmc = −4 of average thickness 180 nm. The two other zones giving similar results on this homogeneous sample.
The intensity diffracted by this zone was observed on a 2D Eiger detector as a scattering ring shown in figure 4.1a in figure
3.7. For µ = 0, we have done the measurement on different incident angle ω values between 0.1◦ and 0.6◦ that have been
described in chapter 3. For each ω , we obtained a scattering ring. From each ring, we have extracted its width ∆q, its radius q,
and intensity all along this ring. All these parameters were in the function of the orientation α of the normal of smectic layers
rotating around the axis of the hemicylinder. As we have said in chapter 2 section 2.6.2, the study and the reconstruction of
the oily streaks model would need an integrated Bragg intensity which is found to be proportional to the product of the Bragg
intensity, ∆q and ∆µ as explained in chapter 3 (shown in equation 4.1). The ∆µ is the full width at half maximum of the Bragg
peak of intensities obtained through the µscan around the axis perpendicular to the sample (see chapter 3 section 3.3.3). This
mosaicity comes from the rubbing process of the PVA-coated substrate: the streaks are not always perfectly orientated in the
direction parallel to their axis.

Iib = IBragg∆µ∆q (4.1)

In chapter 3 we saw that the Bragg condition can be satisfied for all orientations α for any incident angle ω either if we use the
data extraction from the µscan alone or if we only use µ = 0 data and combine the data from small ω values with those from
ωBragg = 0.6◦.

The corresponding profiles of the evolution of the integrated Bragg intensity Iib, the ∆q and ∆µ are shown in figure 4.1b,
4.2a and 4.3a respectively.

Using GISAXS and TSAXS Coursault et al. [3] have obtained the scattering ring from the 8CB smectic A liquid crystal
confined between the rubbed PVA substrate and air at µ = 0◦. The intensities extracted from the scattering ring are shown
in figure 4.4a and 4.4b. The first one for film thickness e = 100 nm was obtained at incident angle ω = 0.2◦ and is the
combination of the signal from TSAXS (sample rotation was between α −10◦ and 20◦) and GISAXS (sample rotation was
between α 30◦ and 80◦ ). The second one for film thickness e = 230 nm was obtained using TSAXS only, and the sample
was rotated between α = 0◦ and α = 70◦. I would like to highlight some issues with these intensities. Firstly, a larger part of
these two curves from α = 60◦ to α = 90◦ doesn’t satisfy Bragg’s condition since they were both extracted at small omega
0.2◦ for µ = 0◦. Secondly, the data quality was not perfect. Thirdly, there is a lack of data from α = 80◦ or α = 70◦ to α
= 90◦ respectively in the two samples studied. In particular, no measurement of the flat central layers was obtained. Finally,
the intensity was claimed to correspond to the integrated intensity due to the hypothesis that ∆q was constant. However it is
not the case as shown in figure 4.3(a).

The existing model from the 100 nm should thus be re-examined. The last but not least point is that to interpret the
integrated intensities, it has been hypothesized that for a given orientation α, the integrated intensity is proportional to the
number N(α) of diffracting smectic layers, whose normal is parallel to the wave-vector transfer q orientated at α from the
substrate. This hypothesis has been used to build the internal structure of the hemicylinder.

However, we have seen in chapter 2 that the integrated intensity is proportional to the number of scattering layers for a
system of perfectly flat layered crystals. This brings the question of whether this hypothesis is still valid in case the diffracting
layers are curved.

98



(a) (b)

Figure 4.1: (a) Scattering ring from GISAXS for ω = 0.25◦ (b) The experimental integrated Bragg intensity from
a sample of 180 nm.

(a) (b)

Figure 4.2: (a) The evolution of the ∆q as a function of α .(b)Evolution of 1/∆q the inverse of the ∆q as a function
of α .

In this chapter, we will first use the integrated Bragg intensity to calculate the number of diffracting smectic layers for
a perfect flat lamellar structure. Secondly, we will calculate the relationship between the integrated Bragg intensity and the
number of scatterers in curved smectic layers. This will put light on how this intensity is related to the number of diffracted
layers. We will then have to conclude on the hypothesis mentioned above. The data we used in this study have high quality
compared to the previous one of 2016 [3]. In addition to this, they reach α = 90◦ contrary to the previous data. We have
also measured the intensity at incident angle ω = 0.6◦, the Bragg angle for all orientation alpha. So we got a full profile of
integrated Bragg intensity using the data collected at small ω and at ωBragg = 0.6◦. After re-examining the above-mentioned
hypothesis, we will use this new data to study and reconstruct the model of the oily streaks. This will help to ascertain whether
there are other topological defects inside these oily streaks, with respect to the ones suggested in [3].

We were also interested in the understanding of the role of confinement of the 8CB layered structure on the interlayer spacing
d. When Bragg’s condition is satisfied, the value of d is related to the wave vector transfer q⃗ by d = 2π

q
. It is been considered
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(a) (b)

Figure 4.3: (a) The evolution of the ∆µ as a function of α .(b) Evolution of normalized qfilm values as a function
of α.

that q is always a constant value 1.99 nm for 8CB smectic A in [1]. In our data (figure 4.3b) q values were extracted from the
scattering ring of figure 3.7 in chapter 3.

We have leveraged the high resolution of our data (see figure 4.3b) to study how this interlayer spacing inside the linear
patterns, the so-called oily streaks evolves as a function of the orientation alpha.

(a) (b)

Figure 4.4: (a) Normalized integrated intensity for the 8CB film of 100 nm thickness, obtained by combining
the GISAXS and TSAXS signals. (b) Normalized integrated intensity for an 8CB film of 230 nm thickness was
obtained in the TSAXS configuration [3].

4.2 The perfect planar stack of smectic layers
In chapter 2, section 2.2, we have seen a calculation of diffraction intensity from a stack of perfectly flat and periodic
smectic layers. The number of diffracting smectic layers calculated using this intensity was proportional to the inverse of ∆q.

100



Furthermore, the integrated intensity was proportional to N . So, the integrated Bragg intensity( figure 4.1b) should be directly
proportional to the inverse of ∆q (figure 4.2b). To verify this proportionality, we plotted the integrated Bragg intensity as a
function of the inverse of ∆q in figure 4.5. This figure evidences no proportionality. This might be due to the fact that the data
we have used were from curved smectic layers. As a result, the proportionality that works for the flat layers might not work for
the curved smectic layers. In the next section, we will consider the case of curved diffracting smectic layers.

Figure 4.5: The comparison between the integrated Bragg intensity and the inverse of the ∆q.

4.3 The curved smectic layers
In this section, we consider a perfect quarter cylinder shown in figure 4.6(a). It is made of superimposed smectic layers where
N2 is its total number of smectic layers and N1 is the number of missing smectic layers that are supposed to be in the region
very close to the curvature center due to the expected prohibitive elastic cost of these rotating layers of small curvature radius
(figure 4.6 (c)). This number may be either 0 or not. Its value will be determined it in this chapter. We hypothesize that in the
curved smectic layers the density of scatterers along the rotating smectic layers remains constant, i.e., the linear density remains
unchanged. This is in contrast with hard crystal and is related to the fluid character of the smectic materials. Indeed we expect
smectic molecules to be able to move along the layers when they are distorted.

Let’s consider a triangular slab of smectic layers δα in a given orientation α as shown in figure 4.6(b). Let’s denote the
linear density of scatterers along the rotating smectic layers as ρ. δli is the length of a single curved layer i in the small slab. Its
radius is the product of the inter-layer distance d and ni, the number of these smectic layers.

Since the whole diffracted intensity integrated onto a Brillouin zone around a diffraction peak is always proportional to the
total number of scatters [4], we can write the integrated intensity as

N2∑
N1

ρδli ⇐⇒ δn =
N2∑
N1

ρδαnid

=⇒ δI(α) ∝ ρδαd

N2∑
N1

ni = ρδαd

[
(N2

2 −N2
1 )

2 + (N2 +N1)
2

]
(4.2)

δI(α) ∝ ρδαd

[
(N2

2 −N2
1 )

2 + (N2 +N1)
2

]
(4.3)
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Figure 4.6: (a) The quarter of the cylinder showing the number of smectic layers being considered i.e. N1 and N2
(b)A quarter of perfect hemicylinder showing a triangular slab of width δα.

The equation 4.3 is formed by a quadratic term and a linear term. The contribution from the quadratic term is dominating
over the one from the linear term. This is an unprecedented result that the integrated intensity is not proportional to the number
of curved smectic liquid crystal layers. It is due to the fluid property that is keeping the density of scatterers constant when
the flat smectic layers are curved. This equation is different from the calculation we have done in section 2.2.3 of chapter 2 for
flat smectic liquid crystals layers, where we have found that the integrated intensity is linearly proportional the number of the
scattering layers. In section 2.6.2 of chapter 2, we have discussed the hypothesis that the integrated intensity I(α) diffracted
by curved layers of a smectic liquid crystal material for a given orientation α is proportional to N2 − N1, the number of the
smectic layers, whose normal, is parallel to the wave-vector transfer, q⃗ which is orientated at the angle α from the substrate [2,
3, 5]. However, the equation 4.3 shows that for the smectic A curved layers, the above hypothesis is incorrect. This very unusual
result is directly induced by the consideration of the fluidic nature of the smectic layers. This latter indeed implies, that even
when they rotate the linear density of scatterers along the smectic layers is constant, in clear contrast with hard materials.

It strongly suggests the necessity of a new calculation of the number of diffracting smectic layers that will eventually help to
reconstruct a new model of oily streaks. In this chapter, we will analytically and numerically calculate the integrated intensity
and ∆q in Bragg’s conditions. We will then use to this number to build the new model. The experimental data that we will use
were discussed in the previous chapter. They are from a smectic liquid crystal thin film sample of 180 nm thickness.

4.4 Calculation of scattered intensity from an 8CB hemicylinder

In chapter 2 we have seen that our system is made of a 1D patterns of the so-called oily streaks where each of them is formed by
an hemicylinder. The intensity scattered by these hemicylinders shown in figure 4.1b is varying as a function of the orientation
α. It contains the interference between the scattered intensities from the neighboring hemicylinders. The interpretation and
make use of this experimental intensities to reconstruct the internal structure of each oily hemicylinder requires the use of the
calculation of the scattered amplitude from both the single perfect quarter cylinder and the two neighboring quarter cylinders
shown in the following section 4.4.1. In this section, we will firstly describe the analytical calculation of scattered amplitude
from a system of a single quarter of a hemicylinder. Secondly, we will describe the system of two neighboring hemicylinders.
Lastly, in subsection 4.4.2, we will focus on the numerical calculations and study the similarities and differences between the
calculated scattered amplitudes from the two cases. These will be useful in the determination of the evolution of the number of
scattering smectic layers N1 and N2 that constitute the internal structure of the hemicylinder. This will be achieved once we
determine the relationship between these calculated scattered values with the experimentally scattered values as described in
section 4.7.
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4.4.1 Analytical calculation
Model of single perfect quarter cylinder

Our oily streaks are formed by quarter cylinder at their edges. Let’s do the calculation for a single perfect quarter of the
hemicylinder of length L that is associated with one edge of the hemicylinder shown in figure 4.6. In figure 4.6, it can easily
be seen that the more the radius of the smectic layers increases the more its length increases which implies that the number of
the scatters increases. So, we can consider the quantity rδr as a very important parameters in calculating the total scattered
amplitude where we have to take into account both the r and eiq⃗.r⃗ .

Let’s define the density ρ of scatterers at position defined by (r, β) as shown in figure 4.6 (c)

ρ(r, β) =
N2∑
N1

δ(r − nd) (4.4)

each of the scatters gives an amplitude eiq⃗.r⃗ = eiqr cos (α−β), the amplitude scattered by the single perfect quarter cylinder is
denoted by A1 and can be obtained by

A1(q, r, α) = L

∫ π/2

β=0

∫ ∞

r=0
eiqr cos (α−β)rρ(r, β)drdβ (4.5)

where L is the length of an hemicylinder. Using 4.4 in equation 4.5 we can then get
A1(q, r, α) = L

∫ π/2

β=0

∫ ∞

r=0
eiqr cos (α−β)r

N2∑
N1

δ(r − nd)drdβ

⇐⇒ A1(q, r, α) = L

∫ π/2

β=0

∫ ∞

r=0

N2∑
N1

eiqr cos (α−β)rδ(r − nd)drdβ

(4.6a)

(4.6b)

The equation 4.6(b) is then written as

A1(q, r, α) = L

∫ π/2

β=0

N2∑
N1

ndeiqnd cos (α−β)dβ (4.7)

This has to be simplified in a such a way that the numerical calculation will be obtained.

A1(q, r, α) = L

∫ π/2

β=0

N2∑
N1

[ 1
i cos(α− β)

∂eiqnd cos (α−β)

∂q
dβ] (4.8)

⇐⇒ A1(q, r, α) = L

∫ π/2

β=0

1
i cos(α− β) [

∂
∑N2

N1
eiqnd cos (α−β)

∂q
]dβ] (4.9)

This sum is the basic summation for diffraction. Our next step is to operate the summation and then the derivatives which will
be followed by the integral over the orientation β.

N2∑
N1

eiqnd cos (α−β) =
N2∑
0

eiqnd cos (α−β) −
0∑

N1

eiqnd cos (α−β) (4.10)

Let’s note x = eiqd cos (α−β),

N2∑
N1

eiqnd cos (α−β) = eiqN1d cos (α−β)[ 1 − eiq(N2−N1)d cos (α−β)

1 − eiqd cos (α−β) ] (4.11)
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From this equation, it is easy to show that

N2∑
N1

eiqnd cos (α−β) = eiq(N1+N2−1)d cos (α−β)[
sin qd

2 (N2 −N1) cos (α− β)
sin qd

2 cos (α− β)
] (4.12)

We need to do the derivation of this summation with respect to q. To achieve this, let’s simplify the whole expression into
small parts. 

G = eiq(N1+N2−1)d cos (α−β)

H =
sin qd

2 (N2 −N1) cos (α− β)
sin qd

2 cos (α− β)

Z = qd

2 cos (α− β)

M = N2 −N1

N2 −N1 + 1 = 2N1 +M − 1

∂

∂q
(

N2∑
N1

xn) = ∂

∂q
(G ∗H) = G′H +GH ′

where

H ′ =
Z
q

(M cos (MZ) sin (Z) − Z cos (Z) sin (MZ)
sin2 Z

)

G′ = i(N1 +N2 − 1)Z
q

∗G

∂

∂q
(

N2∑
N1

xn) = i(N1 +N2 − 1)Z
q

∗G ∗H +
Z∗G

q
(M cos (MZ) sin (Z) − cos (Z) sin (MZ))

sin2 Z
(4.13)

∂

∂q
(

N2∑
N1

xn) = ZG

q

[
(M cos (MZ) sin (Z) − cos (Z) sin (MZ))

sin2 Z
+ i(N1 +N2 − 1) ∗H

]
(4.14)

Let’s divide this equation by iq cos (α− q) and replace the result in equation 4.8 we get,

A1(q, r, α) = L

∫ π/2

β=0

Gd

2 [(2 ∗N1 +M − 1) ∗H − i( (M cos (MZ) sin (Z) − cos (Z) sin (MZ))
sin2 Z

)]dβ (4.15)

A1(q, r, α) = L ∗

[∫ π/2

β=0

Gd

2 [(2 ∗N1 +M − 1) ∗ sin (MZ)
sinZ ]dβ − i

∫ π/2

β=0

Gd

2 [ (M cos (MZ) sin (Z) − cos (Z) sin (MZ))
sin2 Z

]dβ

]
(4.16)

In a more simplified way, this amplitude may be written as

A1(q, r, α) = Re+ iIm (4.17)

whereRe = L ∗
∫ π/2

β=0
Gd
2 [(2 ∗N1 +M − 1) ∗ sin (MZ)

sin Z
]dβ and Im = −L ∗

∫ π/2
β=0

Gd
2 [ (M cos (MZ) sin (Z)−cos (Z) sin (MZ))

sin2 Z
]dβ
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Model of two neighboring perfect quarter cylinders.

figure 4.7 is showing two perfect quarters (both of length L) to be associated with edges of two neighboring oily streaks.This
figure shows also that at a given orientation of the wave vector transfer, it is possible that the scattering from one hemicylinder
may affect the scattering from the other neighboring hemicylinder. So in this section we will calculate the total amplitude
scattered by the two neighboring hemicylinders. In the previous subsection 4.4.1 we have calculate the amplitude scattering by
the single perfect quarter on the left side (labeled by 1 in figure 4.7). In this section we will calculate the amplitude scattering
by the single perfect quarter on the right side (labeled by 2 in figure 4.7). Then we will calculate the total amplitude scattered
by the two neighboring perfect quarter cylinders.

Figure 4.7: Two neighboring perfect quarter cylinders that we will use to calculate the total intensity including all
possible interference from them.

r⃗ is the position of scatterers with respect to the origin 02 in the quarter cylinder number 2 whereas r⃗′ is the position of
scatterers with respect to the origin 01 in the quarter cylinder number 1. We consider an infinitesimally small slab of volume
dV = L ∗ r ∗ dr ∗ dβ shown in blue color in figure 4.7 on a particular layer. The angle β varies from 0 to π

2 for the quarter
cylinder number 1 whereas it varies from π

2 to π.
The density ρ of scatterers at position defined by (r, β) as shown in figure 4.7 on the quarter cylinder number 2 is given by

ρ(r, β) =
N2∑
N1

δ(r − nd) (4.18)

Each of the scatterers in the quarter cylinder number 2 gives an amplitude e(q⃗.r′) with respect to the origin O1. The amplitude
scattered by the quarter cylinder number 2 is given by

A2(q, r) = L

∫ ∞

r=0

∫ π

β=π/2
e(iq⃗·r⃗

′
)ρ(r, β)rdrdβ (4.19)

by replacing the r⃗
′

by r⃗ + W⃗ based on the figure 4.7, equation 4.19 can become

A2(q, r, α) = L

∫ ∞

r=0

∫ π

β=π/2
e(iq⃗·(r⃗+W⃗ )ρ(r, β)rdrdβ

=⇒ A2(q, r, α) = Le(iq⃗·W⃗ )
∫ ∞

r=0

∫ π

β=π/2
e(iq⃗·r⃗)ρ(r, β)rdrdβ
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Then, after using the dot product, this equation becomes

A2(q, r, α) = Le(iqW cos (α))
∫ ∞

r=0

∫ π

β=π/2
e(iqr cos (β−α))ρ′(r, β)rdrdβ

We then replace the density by its value as given in the equation 4.18

A2(q, r, α) = Le(iqW cos (α))
∫ ∞

r=0

∫ π

β=π/2
e(iqr cos (β−α))

N2∑
N1

δ(r − nd)rdrdβ (4.20)

which can be written in a simplified way as

A2(q, r, α) = Le(iqW cos (α))A3(q, r, α)

Where

A3(q, r, α) =
∫ ∞

r=0

∫ π

β=π/2
e(iqr cos (β−α))

N2∑
N1

δ(r − nd)rdrdβ (4.21)

The detailed calculations of equation 4.21 are given in 4.5 i.e., in the same ways for a single quarter of the cylinder except
that the integration is from β = π/2 to π and its solution is given by 4.25 where

G = eiq(N1+N2−1)d cos (α−β) (4.22)

Z = qd

2 cos (α− β) (4.23)

M = N2 −N1 (4.24)

where d is the interlayer spacing.

A3(q, r, α) =
∫ π

β=π/2

Gd

2 [(2 ∗N1 +M − 1) ∗ sin (MZ)
sinZ ]dβ − i

∫ π

β=π/2

Gd

2 [ (M cos (MZ) sin (Z) − cos (Z) sin (MZ))
sin2 Z

]dβ

(4.25)

The equation 4.20 can be written again in a simplified way after replacing the A3(q, r, α) by its value in equation 4.25 as

A2(q, r, α) = Re′ + iIm′ (4.26)

where 

Re′ =L× (cos (qW cos (α)) ×
∫ π

β=π/2

Gd

2 [(2 ∗N1 +M − 1) × sin (MZ)
sinZ ]dβ

+ sin (qW cos (α)) ×
∫ π

β=π/2

Gd

2 [ (M cos (MZ) sin (Z) − cos (Z) sin (MZ))
sin2 Z

]dβ)

Im′ =L× (cos (qW cos (α)) ×
∫ π

β=π/2

Gd

2 [ (M cos (MZ) sin (Z) − cos (Z) sin (MZ))
sin2 Z

]dβ

− sin (qW cos (α)) ×
∫ π

β=π/2

Gd

2 [(2 ∗N1 +M − 1) × sin (MZ)
sinZ ]dβ)

(4.27a)

(4.27b)

Using equation 4.17 and 4.26, we can write the real part of the total amplitude scattered by the two neighboring quarter
cylinder as Re′′ = Re′ +Re and the imaginary part as Im′′ = Im′ + Im.Hence this total amplitude can be written as

Atot(q, r) = Re′′ + iImg′′ (4.28)
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where 

Re′′ =L×
[
cos (qW cos (α)) ×

∫ π

β=π/2

Gd

2 [(2 ∗N1 +M − 1) × sin (MZ)
sinZ ]dβ

+ sin (qW cos (α)) ×
∫ π

β=π/2

Gd

2 [ (M cos (MZ) sin (Z) − cos (Z) sin (MZ))
sin2 Z

]dβ

+
∫ π/2

β=0

Gd

2 [(2 ∗N1 +M − 1) ∗ sin (MZ)
sinZ ]dβ

]
Im′′ =L×

[
cos (qW cos (α)) ×

∫ π

β=π/2

Gd

2 [ (M cos (MZ) sin (Z) − cos (Z) sin (MZ))
sin2 Z

]dβ

− sin (qW cos (α)) ×
∫ π

β=π/2

Gd

2 [(2 ∗N1 +M − 1) × sin (MZ)
sinZ ]dβ

−
∫ π/2

β=0

Gd

2 [ (M cos (MZ) sin (Z) − cos (Z) sin (MZ))
sin2 Z

]dβ)
]

(4.29a)

(4.29b)

4.4.2 Numerical calculation

Determination of the theoretical Bragg intensity

We have developed Python code to perform the calculation of the scattered amplitude from both the single perfect quarter
cylinder and the two neighboring quarter cylinders respectively in the equation 4.16 and 4.25. Both have sin(Z) function in
the denominator. During numerical integration, we could have issues of pole or singularity of the fraction when the value of Z
passes through π or zero. To explain this issue well, we have to note that the Z in the above functions contains a cos(α − β)
function which is always less than 1. If the value of qd is less than 1 then Z will have nonzero values which are always much
less than 1 for all values of α− β. The implication is that the function will never pass through the pole of the function and no
singularity issue is expected for such values of qd. However, if qd is larger than one, there will always be some value of α− β
for which the value of Z will pass through π and then the singularity issue will appear. To avoid this singularity issue, we have
done a second-order series expansion of the functions 4.16 and 4.25 to remove the singularities. The Python program used these
new functions near the singularities whenever the qd value is greater than one. Otherwise, it used the original functions. When
the Bragg condition is satisfied q = qm i.e qm = 2π

do
. The quantity qd

2 can be written as q
qm
π.

We calculated the evolution of the intensity as a function of the orientation α that could be diffracted by both the single
isolated quarter cylinder and two neighboring quarter cylinders. The thicknesses of the samples that we studied in this thesis
were between 100 and 255 nm. Their corresponding total number of smectic layers is between 32 and 80. In particular, the
sample we studied in this chapter had a thickness of 180 nm, that is 57 equally spaced smectic layers. We have therefore decided
to vary the value ofN2 −N1 between 40 and 90 for the calculation. We consider that the minimum value forN1 is 1. We have
then started by fixing values N1 = 1, N2 = 40, and the Bragg’s position q

qmo
= 1 (inducing qd

2 = π) on the hemicylinder.
Figure 4.8 shows the results for the real part and imaginary part of the amplitude in case of a single isolated quarter.
For both the real part and imaginary part the amplitude is constant for all α values far from 90◦. This constant value is zero

for α < 90◦ when the integration is done from π/2 to π and it is also zero for α > 90◦ when the integration is done from 0 to
π/2. There are high peaks of undulations of width 10◦ at integration limits i.e α = 0◦, α = 90◦, and α = 180◦. This is what
we will be referring to as the effects of the integration limits. Moreover, because of the symmetry the sum of amplitudes issued
from both the integral from 0 to π/2 and the integral from π/2 to π is constant for all α values for the real part whereas for
the imaginary part, the effects of integration limits at both α = 0 and α = π remain. For the imaginary part the undulation at
α = 90◦ becomes much smaller whereas for the real part, the effect of integration limits at α = 90◦ was completely removed.

The scattered intensity calculated using the total amplitude of a single perfect quarter cylinder is shown in figure 4.9 (a). It
has the effect of the integration limit of width α = 0 at both α = 0◦ and α = 90◦. Elsewhere, far from α = 90◦ the intensity
is constant.

Since we have to take into consideration the contribution from the two neighboring quarter cylinders, we have used the
equation 4.25. For the latter equation, we have considered that the hemicylinders in our system are identical and are connected
to each other as shown in figure 4.7, where the distance between their centers of curvature is W = 2 ∗ N2. The results are
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(a) (b)

Figure 4.8: The evolution of (a) the real part (b) the imaginary part of the theoretical scattered amplitude from
a single quarter cylinder. The green color is for the integration from β = 0 to β = π

2 , the blue color is for the
integration from β = π

2 to β = π. The red color is the summation of these two integrations. We can see that the
integration from 0 to π is perfectly equal to the sum of the integral from 0 to π/2 and the integral from π/2 to π.

Figure 4.9: The numerically calculated Bragg intensity that can be diffracted by (a) a Single isolated quarter (b)
two neighboring perfect quarter cylinders.

shown in Figure 4.9 (b). The effect of integration at α = 90◦ is significantly small can be ignored which may not be the case for
those at α = 0◦ and α = π. Most importantly, the figure 4.9 demonstrates that both the single isolated perfect quarter cylinder
and the two neighboring perfect quarter cylinders have an equal constant value of intensity between α= 10◦ and = 80◦. In the
following most of the calculations will be performed with one single quarter cylinder. One may question on the sensitivity of
W . This dependence can be analyzed in two steps:

1. for values of α far from 90◦, both the real part and the imaginary part of the amplitude due to one of the two quarter
cylinder is null. Therefore the sensitivity of the amplitude sum to W is null.

2. for values of α near 90◦, both the contribution of the two quarter cylinders are important but the dependence of the phase,
q ×W × cos(α) on W is very weak. Therefore, the fluctuation of W can be neglected on the whole a domain.
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We have calculated the Bragg intensity for different values ofN2 with a model of one single quarter. The results are shown
in figure 4.10. For all orientations α, the value of the Bragg intensity increases as N2 increases. We can see that the width
of the effect of integration limit is becoming slightly smaller as N2 increases. The intensities are constant elsewhere except
at around the integration limits. This result of constant value when α varies meets our expectation that the diffraction from a
perfect quarter cylinder would be constant since it is formed by a constant number of scattering smectic layers that do not vary
when α varies. In addition the increasing of the intensity when N2 increases is expected due to the corresponding increase of
the number of scatterers.

Figure 4.10: Evolution of the Bragg intensity from a single perfect quarter cylinder for different value of N2. In
this calculation N1 was fixed at its minimum value 1. The results are always the same for other value of N1.

Comparing these results to the evolution of the experimental intensity which varies as a function of α in figure 4.1b,
we can understand that in reality the number of smectic layers inside the hemicylinder is not constant when α varies. It is
therefore interesting to find the evolution of the number of smectic layers as a function of α inside this hemicylinder. This
result emphasizes the importance of determining the exact relationship between the number of diffracting smectic layers and
the diffracted intensity from them.

4.5 Determination of the theoretical integrated Bragg intensity
We have then studied the variation of the diffracted Bragg intensity as function of the number of diffracting smectic layers.
Using the integration 4.16 for a single quarter cylinder and integration 4.29 for two quarter cylinders at a fixed value ofN1 = 1,
for different values of N2 − N1 ranging between 0 and 60 we have calculated the total intensity (figure 4.10). This has been
calculated for different values of q

qo
between 0 and 2. We have then plotted for each value of N2 −N1 a curve of intensity as a

function of the wave-vector transfer q for all orientations α ( figure 4.11 is for α = 45◦, N1 = 1 and N2 −N1 = 60). It leads
to the peak of Bragg intensity that we always find to be positioned at q

qo
= 1. .

By fitting this peak (figure 4.11) with a Gaussian function, we obtained the Bragg maximum intensity and the width (∆q)
of the Gaussian peak as a function of q. The integrated Bragg intensity is the product of the maximum intensity, ∆q and ∆µ
(see 3, section 3.3.3). The latter is constant from our experimental data (see figure 4.3a). In agreement with equation 4.3, we
have found that this integrated intensity is not proportional to the N2 − N1 as it was hypothesized in previous works [2, 3, 5]
and calculated for flat smectic layers layers (chapter 2 2.2.3). Instead, it linearly depends onN2

2 −N2
1 . This is a new result, that
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Figure 4.11: Peak of theoretical Bragg peak for a given value of N2 − N1

underlines the very specific behavior of soft matter with respect to hard matter under X-ray irradiation. Figure 4.12 shows this
proportionality. We obtained identical results for the two cases, the single isolated perfect quarter cylinder and two neighboring
perfect quarter cylinders in agreement with results shown in figure 4.9.

Figure 4.12: Evolution of Integrated Bragg Intensity as function of N2
2 − N2

1 for different value of N1 for (a) a
Single isolated quarter (b) two neighboring perfect quarter cylinders.

The general relationship between Integrated Bragg Intensity and N2
2 −N2

1 is given by equation 4.30

Iib = Io[A(N1) ∗ (N2
2 −N2

1 ) +B(N1)] (4.30)

The slopes (A) and the intercepts (B) of this linear relationship appear to vary quadratically as a function of N1 (see appendix
A). This result highlights that N1 is an essential parameter for the interpretation of X-ray data.

We have also found that the Bragg peak’s width ∆q varies inversely proportionality as a function of N2 −N1 as shown in
figure 4.13 similarly to the case of perfectly flat smectic layers (see section in chapter 2.2 ) The general relationship between the
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width and N2 −N1 is given by equation 4.31.

1
∆Q = [C(N1) ∗ (N2 −N1) +D(N1)] (4.31)

The slope (C) of this proportionality is again varying in a quadratic way as a function of N1 whereas the intercept (D) varies

Figure 4.13: Evolution of ∆q as function of N2 − N1 for different value of N1for (a) a Single isolated quarter (b)
two neighboring perfect quarter cylinders.

linearly with it (see appendix A.2).
In the numerical calculation of the equation 4.25. we have considered that the hemicylinders in our system are identical

and are connected to each other as shown in figure 4.7, where the distance between their center of curvature is W = 2 ∗ N2.
However, in reality, two neighboring hemicylinders are connected by a curvature wall[2, 3]. The line joining the upper part of
this curvature wall to the center of curvature makes a non-zero angle as described in chapter 2. We will see in the next section
that no change in the results are expected because of the fact that the intensity is only locally related to the number of scattering
layers as discussed below.

4.6 Implication of the numerical calculation
The question to be asked now is whether we can use these calculations to interpret the experimental results. To answer this
question let’s consider two facts. Firstly, after integrating the amplitude from β = 0 to π

2 and plotted it as a function of α, we
have found that it is constant everywhere except at the integration limits.

Secondly, let’s consider a small triangular slab of width δα (see figure 4.14a) taken from a perfect quarter cylinder. This
slab is taken around an arbitrary value of α (for instance we have used 45 ◦). We integrate equation 4.16 around this fixed value
of α i.e. from β = α − γ to β = α + γ. Thirdly, we did the integration at different many value of γ (i.e varying the width
of the triangular slab ) and then we plotted as function of these γ values all the intensities as shown in figure 4.14b. We have
found that the intensity is constant everywhere except within a width of 10◦ which corresponds to the effect of integration limits
that we have identified when the integration was done for the whole quarter cylinder. Most importantly this result is the same
as those obtained for the whole single quarter cylinder. We have found similar results when the integration was made around
different arbitrary values of α other than 45◦.

From the above three points, we inferred that if the value of number N1and N2 of smectic layers are not varying rapidly
along the edges of the hemicylinder which is not a perfect quarter cylinder as the one shown on figure 4.7 we can consider that
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this edge is made of a series of connected small triangular slab like the one shown on figure 4.14a, each slab being a portion
of perfect quarter of cylinders. And we can use locally the above calculation of integrated intensity and ∆q to extract the local
values of N1 and N2 in the slab. In other word the intensity is a local quantity at the scale of 10◦. In other words, the study of
the variations of the intensity and the ∆q as a function of α should allow to appreciate the variations ofN2 andN1 with α with
a resolution of 10◦.

(a) (b)

Figure 4.14: (a) Single triangular slab. (b) Calculation of intensity scattered around a fixed value of α = 45◦. This
intensity is plotted as a function of γ.

4.7 Determination of the number of diffracting smectic layers N1 and N2

We have seen the experimental integrated Bragg intensity in figure 4.1b and the experimental ∆q in figure 4.3. During our
theoretical calculation, we have found that both the integrated intensity and the ∆q do not vary as a function of orientation
α when both N1 and N2 are kept constant. However, they vary as a function of N1 when N2 is kept constant (figure 4.13
and figure 4.12) and they also vary as a function of N2 when N1 is kept constant ( figure 4.10 ). To reconstruct the model of
the oily streaks we need the values of N1 and N2 as can be found using equations 4.32 and 4.33. I will use the experimental
measurement of intensity and ∆q combined to the calculation of integrated Bragg intensity for fixed N1 and N2 and the 1

∆q

for fixed N1 and N2 calculated in the case of prefect quarter cylinder. Based on the above discussion (in the section 4.6) where
we have shown that the intensity is locally related to the number of scattering smectic layers, we can now consider that our real
edge of quarter cylinder is made up of small triangular slabs with local values ofN1 andN2 layers. To find the evolution ofN1
and N2 as a function of orientation α, at least one of them has to vary since the number of scatters would be constant if they
are both constant. We had three hypotheses. The first one was to vary N1 and keep N2 constant for all α in agreement with the
model initially developed in our group [2, 3]. After many attempts, it was impossible to find fully identical values of N2 issued
from the integrated Bragg intensity calculation (equation 4.30) or issued from 1

∆q
calculation (equation 4.31). We have made

two other hypotheses. They are based on varying N2 and either keeping N1 constant or varying it. For the two hypotheses, we
have used the evolution of integrated Bragg intensity and ∆q given in the in equations 4.30 and 4.31 respectively, to get the
evolution of N2 as a function of α as follows

N2 =

√√√√( Iib
Io

−B(N1)
A(N1)

)
+N2

1 (4.32)
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N2 =

(
1

∆q
−D(N1)
C(N1)

)
+N1 (4.33)

where both the integrated Bragg intensity Iib and the width 1
∆ are now experimental values. The key was that we had to

find a value of N1 that would give the same N2 values from these two calculations, i.e., the curve from equation 4.32 has to
superimpose the other one from the equation 4.33.

4.7.1 Hypothesis 1: Keeping N1 constant
This hypothesis corresponds to the scheme of figure 4.15b. Starting from the hypothesis that N1 is constant, we have used
differentN1 values like 35, 30, 20, 15, 10, 8, 5 and 1 alongside the experimental value of both Iib and 1

∆q
to calculate the value

of N2. Note that the coefficient of proportionality, the slope A(N1) and the intercept B(N1) for integrated Bragg intensity and
slope C(N1) and interceptB(N1) for ∆q were already determined and are shown in both figures A.1 and A.2 respectively. We
have to determine N1 value that will give a better superimposition between the two calculations of the N2 i.e. using equations
4.32 and 4.33. However, we do not expect a perfect superimposition since we also expect some disorder in our system inducing
∆q dominated by disorder effect instead of finite size, for instance. This N1 determination was made in 4 steps for each value
of N1. The first step is the calculation of the value of Io using equation 4.34. The curves of experimental values of integrated
Bragg intensity and ∆q have constant value between α = 40◦ and α = 70◦. We expect to have a constant value ofN2 in this α
interval. We have thus taken the values of experimental integrated Bragg intensity Iib and the ∆q which corresponds to α = 50
◦, where N2 values from both the integrated Bragg intensity and ∆q are expected to be the same. I replaced them in equation
4.34 together with the chosen value of N1. Secondly, the obtained value of Io is then replaced in equation 4.32 to get N2. The
third step is to compared the two calculations of N2 (equations 4.32 and 4.33). We finally decide to retain the N1 value which
gives the best superimposition between the two N2 curves.

Io = Iib(α)

A(N1) ∗

{[
(

1
∆q

−D(N1)
C(N1) N1)2 −N2

1

]
(α) +B(N1)

} (4.34)

(a) (b)

Figure 4.15: (a) Evolution of the total number (N2) of diffracting smectic layers at constant N1 = 10 as a function
of α. The red curve was calculated using ∆q whereas the blue curve was calculated using the integrated Bragg
intensity (b) quarter of the cylinder.
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This procedure was done for different values of N1 as mentioned above. Among these N1 values, only 10 gave very close
superimposition of N2 evolution from the integrated intensity and ∆q as it can be seen in figure 4.15a. The comparison with
other N1 values shown in appendix A . Although N1 = 10 has given the best superimposition, it was not very different from
the results of N1 = 3. We could therefore suggest that N1 = 10 ± 3. We have seen in the ∆q discussion in chapter 3, section
3.3.5 that ∆q values are associated with the quality of order of diffracting smectic layers and with the finite size effect which in
our case is the number of the smectic layersN2 −N1. We can see a discrepancy between the two curves at α values below 30◦

and above 70◦. This suggested that these α values are associated with zones in the smectic film where the disorders is so high
that ∆Q is significantly increased by the corresponding variation of q. Figure 4.15a shows that there is a constant number of
smectic layers between α = 41◦ and α = 70◦. It demonstrates that there are aroundN2 = 41 layers in this α range. This value
is logical since its corresponding thickness (41 ∗ 3.16 nm) is quite close to the real thickness of the rotating smectic layers for
our smectic system. This crucial such a direct measurement of the number of smectic layers has not been done before in our
team [3, 6]. This is really because we can analyze the ∆q value for the first time that we can get quantitative information on the
number of smectic layers.

Using this N2 value and the constant N1 = 10 , we have obtained a quarter of the cylinder with one larger disordered core
area near the center of curvature of the hemicylinder shown in figure 4.15b. This is the place where curved smectic layers being
very close to the center of curvature, would be the most distorted. We can understand that such layers must be very energetically
expensive and thus should be removed. Therefore, for constant N1 value, the scheme of the quarter cylinder is shown in figure
4.15b and would be associated with a large disordered core with N1 = 10.

4.7.2 Hypothesis 2: Varying N1 as a function of α

This section is based on the hypothesis of keeping the value ofN1 varying as a function of α. The idea is to check if it is possible
to solve the above issue of prohibitive energy cost from the large disordered area through the replacement of the constant N1
value was by a varying N1(α). We put a connection of central non-curved smectic layers and curved smectic layers inside the
hole. The former are all parallel to the substrate surface. The latter are rotating around the center of curvature as all other ones
to allow for a constant interlayer spacing. This agrees with previous work [3]. We have then built a rotating grain boundary
without dislocations (in red color in fig 4.16b) with a profile given by the equation 4.35 to separate the two groups of layers.

(a) (b)

Figure 4.16: (a) Evolution of the total number (N2) of diffracting smectic layers with N1 varying as a function of
the orientation α of the wave vector transfer q⃗. The yellow curve was calculated using ∆q whereas the blue curve
was calculated using the integrated Bragg intensity. (b) The corresponding single quarter cylinder. The red line is
the rotating grain boundary without dislocation. At the top of the grain boundary, there is a dislocation defect of
Burger vector 4 shown by the purple close ellipse.
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Figure 4.17: Evolution of N1 for various combinations of xo and αc

The xo is the position of the grain boundary from the center of curvature (figure 4.16b), r(α) is the profile of the rotating
grain boundary without dislocations.

r(α) = xo

1 − sinα (4.35)

The evolution of N1(α) was found by simply dividing the above the r value given in equation 4.35 by the inter-layer distance
d = 3.16 nm.

N1(α) = xo

d(1 − sinα) (4.36)

We had therefore to calculate the position xo from the curvature center of the hemicylinder and the value of the orientation αc,
the critical α beyond which the number of diffracting smectic layers will remain constant. When α increases. αc finally defines
the position of the dislocation that is formed at the extremity of the rotating grain boundary. With different combinations of
these two parameters, we calculated a value ofN1 which gave well-superimposed profiles ofN2 from both the integrated Bragg
intensity in equation 4.32 and the full width at half maximum (∆q) of Bragg peak of intensity in equation 4.33.

The determination of the values values of αc and xo was done in four steps.
Firstly, we calculated the values of N1 for many different values of xo and αc. Example of N1 evolution is shown in figure

4.17. To calculate the value ofN2 using the experimental value of both Iib and 1
∆q

in equation 4.32 and equation 4.33, we need
to calculate the coefficient of proportionality, the slopeA(N1) and the interceptB(N1) for integrated Bragg intensity and slope
C(N1) and intercept B(N1) for ∆q.

The second step is therefore the calculation of these coefficients. We have seen that the coefficients A(N1), B(N1), and
C(N1) vary quadratically as a function of N1. The D(N1) is linearly related to N1 and the coefficients are respectively, 0.828
for its slop and 0.396 for its intercept. Hence to get the evolution ofA(N1),B(N1), C(N1), andD(N1) we were replacing the
value of N1 in these equations. Thirdly, once all these coefficients are obtained, the next step was to replace them together with
the values of N1 and the experimental value of the integrated Bragg intensity Iib and ∆q in the equations 4.32 and 4.33 to get
the N2 values. The value of Io was calculated as we did in the previous section 4.7.2. The fourth step was to compare the N2
values obtained using integrated Bragg intensity Iib and ∆q in the equations. Again, we were finding the combination of xo

and αc that was giving the best superimposition of the N2 values issued from integrated Bragg intensity Iib and ∆q.
After attempts of many different values of αc and xo, we have found that the values αc = 40◦ and xo = 10 nm have a very

good agreement between the N2 issued from integrated Bragg intensity Iib and ∆q. The result is shown in figure 4.16a. This
figure shows that a large part of the values ofN2 from the ∆q superimposes with those from integrated Bragg intensity. It gives
a rotating grain boundary without dislocation on top of which there is a single small dislocation of burger vector 4 (figure 4.16b)
which is less energetically expensive than the large disordered area that we have seen with the hypothesis N1 constant. Figure
4.16b shows this small dislocation in the blue color with the core depicted by a purple ellipse surface. The red curve is the
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rotating grain boundary without dislocation. We will discuss the systematic discrepancies for all (xo, αc) values at α above 70◦

in the next section 4.8.2. We will as well discuss the observed N2 increase for α below 40◦ in section 4.8.3. Notwithstanding
the fact that the combination (xo = 11.3 nm , αc = 40◦) has given the best superimposition of the N2 issued from integrated
Bragg intensity and the ∆q, it was not significantly differ from the combination (xo = 3 nm, αc = 60◦). Finally the exact
shape will be refined at the end of this chapter using the result of qfilm (α) in figure 4.29. We will confirm that the shape shown
in figure 4.18b is probably close to the real one.

4.8 Interpretation of the evolution of the number of diffracting smectic
layers for constructing the two edges of the hemicylinder.

4.8.1 Alpha between 40◦ and 70◦

As discussed above, the two hypotheses give similar result of superimposition of N2 calculated from ∆q and integrated Bragg
intensity. The first one has a larger disordered area which is therefore associated with a very energetically expensive model. The
second one is associated with a model which has a dislocation of Burger vector 4 and a rotating grain boundary. However, there
is no dislocations along this boundary and the disclination core size is significantly smaller than the large disordered area of the
first hypothesis. Hence we have preferred the second hypothesis over the first one since it is associated with a model which is
much less energetically expensive compared to the first one. We will come back to the choice of this second hypothesis at the
end of this chapter.

(a)
. (b)

Figure 4.18: (a) Evolution of total number (N2) diffracting smectic layers with N1 varying as a function of the
orientation α of the wave vector transfer q⃗. The yellow curve was calculated using ∆q whereas the blue curve was
calculated using the integrated Bragg intensity. (b) Two neighboring perfect quarters of 130 nm thickness. The
red line is the rotating grain boundary without dislocation. At the top of the grain boundary, there is a dislocation
defect of Burger vector 4 shown in the purple close ellipse. The curvature wall angle omega is also indicated to be
around 40◦

.

Let’s look at the evolution of the number of smectic layers from this second hypothesis. In the highlighted part between
α = 40◦ and 70◦ in figure 4.18a, the N2 issued from integrated Bragg intensity is perfectly agreeing with the N2 issued from
∆q. We can see that the number of smectic layers N2 remains constant around 40 between α = 40◦ and 70◦as shown in the
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highlighted part of figure 4.18a. This constant number of rotating smectic layers demonstrates that the two joined edges of
the hemicylinders are made of a large slab of almost perfectly rotating smectic layers. Using the number N2 of smectic layers
together with the results from the varyingN1 we have constructed the model of two neighboring perfect quarter cylinders shown
in figure 4.18b. The fact that the values of N2 issued from the integrated Bragg intensity is no longer constant for α < 40◦

shows that the curvature wall angle, Ω is around 40◦ (this angle Ω defined by that the line between the top part of the curvature
wall separating the two perfect quarter cylinder and the substrate as discussed in chapter 2). This allows to construct the model
4.18b. If we multiply this number N2 of rotating smectic layers with the interlayer spacing of the 8CB smectic A liquid crystal,
we find that the these rotating layers correspond to a thickness around 130 nm.

This result has not only allowed us to determine the structure of the model but also to get its precise thickness. This value
of N2 has never been determined before in any of the published works in our team. The value of the curvature wall angle, Ω of
around 40◦ has also never been found before, however it is not far from the published values [3]. For a 100 nm thick film, the
curvature wall angle, Ω was obviously found to be 30◦ whereas for 230 nm thick film, its value was 50◦. So our value for a
180 nm is 40◦, in the middle of the above two previously found values.

4.8.2 Alpha between 70◦ and 90◦: Disclination areas

Using Ellipsometric measurements, our collaborator, Bruno Gallas has determined the thickness of perpendicular layers that
satisfy the uniform planar anchoring on the rubbed PVA. He found that their thickness is 30 nm. This is the recent measurement
that is slightly higher than the value obtain by Coursault et al. [3]. Then for our thin film sample of 180 nm, we have already
130 nm for the rotating layers and 30 nm for the perpendicular layers. So, the remaining thickness of 180 − 30 − 130 = 20
nm is equivalent to around 6 smectic layers. In this subsection we want to add these 6 layers to the model of the previous
subsection 4.8.1.

As we approach the α range from α = 70◦ to α = 90◦, the number of the diffracting smectic layers from the integrated
Bragg intensity increases whereas the one that comes from ∆q remains constant as underlined by the red rectangle in figure
4.19a. To understand this discrepancy, we must recall what information we can get from the integrated Bragg intensity and
the ∆q. In chapter 2, the calculation we made in a general way for all crystalline materials has shown that the ∆q is inversely
proportional to the number of diffracting layers for all crystalline materials for strictly periodic materials. This is shown in
equation 2.26. The result we have found for the smectic A material agrees with this inversely proportionality for curved smectic
layers as shown in equation 4.31. However, this result responds to the strictly periodic smectic layers as well. ∆q indeed is
related to the quality of order of the smectic layers. When the disorder is high, i.e., there is q variation related to the presence
of defects and elastic distortion, the measurement from these will dominate the average value of ∆q.

This is what happens between α = 70◦ and/or α = 90◦. This is also because increase in the number of smectic layers that
we are observing in figure 4.19a associated with the increase of the integrated Bragg intensity should induce a decrease of ∆q
which may become easily dominated by elastic distortion. The results of figure 4.19a can then be explained by additional layers
between α = 70◦ and α = 90◦ associated with q variations. We need to add them to the model that we have constructed with
the 40 layers between 40◦ and 70◦.

To do this, we will need to add convex layers where the orientation of the wave vector transfer q⃗ is varying from 70◦ to
90◦ only as underlined on figure 4.19b. In other words, when the smectic layers turned towards α = 70◦, they must adopt a
convex shape like shown on figure 4.19b in order to only present orientation of their normal between α = 70◦ and α = 90◦.
We have already seen that around 6 smectic layers are remaining. After adding 6 convex layers as schematized on figure 4.19b
we evidence a − 1

2 disclination defect. Its core is shown in red point in the new model, shown in figure 4.19b. The core of
this defect is between α = 40◦ and α = 70◦. Let’s denote z2core the height position of the first layer in the disclination zone.
This height is associated with α = 70◦. Let’s denote z1core the height of the curvature wall, on top of which the disinclination
core is positioned. This height is associated with α = 40◦. Though we do not know precisely how deep the first disclination
layer sink in the core, we can only estimate with certainty that the size of the core of this disclination defect is less or equal to
the difference h = z2core − z1core = 35 nm as schematized in figure 4.20. Since z1core is 30 + 130 ∗ sin(40), z2core is
30 + 130 ∗ sin(70)), we find the size of the core to be smaller but close to 35 nm.

The strong increase of intensity most probably from α = 80◦ or α = 85◦ contain also contributions from the larger volume
of central layers of the hemicylinder.
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(a) (b)

Figure 4.19: (a) Evolution of total number (N2) of diffracting smectic layers with N1 varying as a function of the
orientation α of the wave vector transfer q⃗. The yellow curve was calculated using ∆q whereas the blue curve was
calculated using the integrated Bragg intensity. (b) Two neighboring perfect quarter cylinder of 130 nm thickness.
The red line is rotating grain boundary without dislocation. At the top of the grain boundary, there is a dislocation
defect of Burger vector 4 shown in the purple close ellipse. The red point is the core of the disinclination defect.

Figure 4.20: The schematized model of the disinclination defect core size

4.8.3 Small α less than 40◦ and Vertical grain boundary
We observe a small disagreement between the values from integrated Bragg intensity and those from ∆q atα values smaller than
40◦. It is due to the fact that for some orientation α the contribution of disorders to ∆q is significant. So this area contains some
defects. We also observe on figure 4.21a that N2 decreases from small α until around α = 40◦. This α interval corresponds to
the area of the direct junction between the two neighboring hemicylinders, i.e., along the curvature wall that separates them (see
figure 4.21b). Now, if we zoom in on the area below α = 40◦ in figure 4.19b, we get the figure 4.21b that shows empty gapes
of different sizes along the vertical curvature wall. Figure 4.22 extracted from Williams and Kléman [7]. They considered a
perfect planar sample and applied disorientation on its two edges. A small tilt creates a straight vertical curvature wall between
the tilted sides with localized dilatation of layers. When the tilt angle increases, it requires a large stress associated with the
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induced dilation. Such stress can be relaxed by adding extra smectic layers in the dilated areas (figure 4.22 (c)). These extra
layers are associated with dislocations. We can determine the number of smectic layers to fill the gaps, shown on figure 4.21b
with extra-layers in the manner shown by Williams and Kleman ( figure 4.22 [7])(c).

(a)
. (b)

Figure 4.21: (a) Evolution of total the number (N2) of diffracting smectic layers with N1 varying as a function of
the orientation α of the wave vector transfer q⃗. The yellow curve was calculated using ∆q whereas the blue curve
was calculated using the integrated Bragg intensity (b) Two neighboring perfect quarter cylinder with the zoomed
part along the curvature wall showing a zone possibly occupied by a chain of dislocations.

We obtained that the maximum number of smectic layers that can be added in relation with the presence of dislocation
defects is 17. However, N2 increases toward even larger values. This suggests that not only a possible chain of dislocations of
different Burger vectors may be created along the curvature wall (since each extra added smectic layer would be associated with
a dislocation) but also many distortions may occur in this localized area that we can not figure out from our data. This distortion
may modify the orientation of the smectic layers depending on α angle. In other words, locally around the curvature wall, we
may have now more regularly rotating smectic layers superimposed in the form of the perfect quarter cylinder.

It is due to this fact that we have started a collaboration with Hamdan, Abdalaziz and Scott Mac Lachlan from the university
of Newfoundland. Canada, Timothy Atherton from Tufts university in Boston and Patrick Farrell from University of Oxford,
UK to simulate the model of two neighboring of two quarter cylinders of imposed surface defined by the 41th layer in our model
shown on figure 4.18b. Since, the smectic order parameter is a complex quantity, it is difficult to simulate the smectic layers.
In this group, they are interested in simulating distorted smectic layers in a simple system that is almost similar to our system
of two neighboring perfect quarter cylinders. After many works they succeeded to obtain the simulation shown in figure 4.23.
This figure is promising that we can get a lot of refined results. In this simulated model, we can see in particular that they found
a quite homogeneously rotating smectic layers like in our system. Many dislocations in the region near the center of curvature
and along the curvature wall, a result which is not far from our result in figure 4.21b.

In particular they found dislocated pictures like the one proposed by Williams and Kléman [7] in figure 4.22. This suggests
that the structure leading to the increasing N2 number when α decreases from α = 40◦ may be associated with particularly
complex structures and that collaboration with simulators are absolutely necessary to understand really the corresponding
structure. The project of collaboration consists in particular to simulate from their structure the expected diffraction in order to
compare it with our experimental data.
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Figure 4.22: (a) Perfect planar sample before applying the stress to disorient its two edges. It is showing only
dilated layers without dislocations (b) The curvature wall without dislocations after applying a small stress (c) The
curvature wall with a chain of dislocations after applying a larger stress (d) the curvature wall made up of only a
chain of dislocations[7]

.

Figure 4.23: Simulation of two joined quarter of cylinders (Results from research group of Scott Mac Lachlan,
Patrick E. Farrel and Timothy James Atherton).

4.8.4 Discussion
Confined 8CB smectic A liquid crystal has been shown to be able to produce 1D patterns of defects, the so-called oily streaks.
These oily streaks are the result of the competition between anchoring energy at the boundaries of the sample, surface energy,
elastic energy, and defect energy. They have been intensively studied[2, 3, 5, 6]. The former works have demonstrated that
each oily streak is formed by an hemicylinder. Using a combination of optical microscopy, synchrotron X-ray diffraction and
ellipsometry, Coursault et al. [3] have studied the internal structure of this hemicylinder using films of a smectic liquid crystal
8CB with thicknesses in the range of 100 − 300 nm as discussed in chapter 2. In this chapter 4, I have reported the results
from a 180 nm thick film of 8CB deposited on the rubbed PVA. Using the hypothesis that the intensity scattered by rotating
smectic layers inside the hemicylinder is approximated to the integrated Bragg intensity and thus proportional to the number
N(α) of these layer , Coursault et al. [3] have build a model of flatten hemicylinder. However, we have demonstrated that this
hypothesis is only true for perfectly flat smectic layers as in normal solid. We have demonstrated that for the case of curved or
rotating smectic liquid crystal layers, the integrated intensity is instead proportional to the N2

2 −N2
1 and not to N2 −N1. This

confirmed the necessity of reconstruction of the intimate internal structure of the hemicylinder.
Furthermore, experimental intensity that was used by [3] to build the model for the 100 nm thick sample appeared to be

not in perfect Bragg conditions. In this chapter we have used integrated Bragg intensity (as discussed in chapter 3) to determine
the evolution of the number of rotating smectic layersN2 andN1 of missing layers close to the center of curvature as a function
of α. Similarly to the normal crystal material, we have found that the inverse of full width at half maximum ∆q is proportional
to the N2 − N1. This parameter has never been used before in our group. Since it is constituted of contributions from both
the disorders or fluctuations in layers and finite size effect, we have found it as an important parameter that can help to study
and localize the topological defects inside the hemicylinder system. Using the calculated relationship between both the ∆q and
N2 − N1 combined with the relationship between the number of scattering layers and the integrated Bragg intensity, we were
able to reconstruct the model of the two neighboring quarter cylinders. This model is shown in figure 4.24.

Compared to the previously constructed models [2, 3], this new model has various unprecedented features that I am going
to discuss in this section. The first feature is the rotating grain boundary without dislocations (shown in red solid line in figure
4.24). Coursault et al. [3], have reported a presence of rotating grain boundary which was formed by two parts: the lower part
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Figure 4.24: Two neighboring perfect quarter cylinder of 130 nm thickness. The red line is the rotating grain
boundary without dislocation. At the top of the grain boundary, there is a dislocation defect of Burger vector 4
shown in the purple close ellipse. The red point is the core of the disclination defect.

is formed by rotating grain boundary without dislocations and a upper part is formed by a number of small edge dislocations.
Such grain boundary was also found for 8CB film deposited on aMoS2 substrate. Like them, we have found the grain boundary
without dislocations but with only one single dislocation of Burger vector (the dislocation is localized between the two layers
shown in blue color and its core is shown in purple color) located on top of it. By this result we were able to minimize the
number of dislocations in this area close to the center of curvature. The profile of this grain boundary is formed by a number
N1 of smectic layers that is changing as a function of the orientation α. This grain boundary has two characteristic features: its
position xo from the center of curvature of the quarter cylinder and the critical angle αc above which the number of rotating
smectic layers becomes constant. The determination of both xo and αc was based on finding their combination that gives best
superimposition of N2(α) values calculated using the integrated Bragg intensity and those calculated using the ∆q. Many
combinations have given a good superimposition, however, xo = 11.3 nm and αc = 40◦ was giving the best superimposition
though not differing a lots from other combinations.

The second one is the vertical straight curvature wall that is separating the two neighboring quarter cylinders. Our results
suggest a presence of a chain of dislocation defect along this curvature wall. The curvature wall angle, Ω which is the angle that
the upper part of the curvature makes from the substrate was determined in [3]. For a 100 nm thick 8CB film this angle was
30◦. For a 230 nm, the angle was 50◦. Through our analysis, we have found an angle around 40◦ for a 180 nm. Based on this
result, it could be possible to say that the curvature wall angle, Ω varies as a function of film thickness. However, as we will see
in chapter 5, this curvature wall angle, Ω doesn’t vary when the film thickness varies, the variation observed in [3] might have
been caused by the fact that it was determined from the data which was not in Bragg’s condition.

The third feature is the − 1
2 disclination defect which has the core shown through the red point in figure 4.24. Large disorder

associated with the convex layers on top of the core has been evidenced. We have demonstrated that the size of its core is of order
of 35 nm. Since the central layers are in full rotation around the 2D central topological grain boundary, they form an overall
+ 1

2 defect. Hence the newly evidence − 1
2 disclination is balancing the total topological charge of the whole hemicylinder to

zero. This in agreement with the model suggested by Allet, Kleman, and Vidal [8], though for their case, the central part is not
flat but a normal cylinder. It is now known that the topological defects can capture and orient nanoparticles [9, 10, 11]. It would
be interesting to understand how this disclination can transfer its shape to these nanoparticles.
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4.9 Study of the central part of the hemicylinder

4.9.1 ∆α value and Evolution of the intensity
In chapter 2 the model constructed for a very thin film of 100 nm [3] lacked data associated with the central part of the
hemicylinder. The lack of data was due to the beam stop hiding this central part. In addition, we have seen in chapter 3 that this
data were not in Bragg condition for small incident angles like the ones used by Coursault et al. [3]. These two factors evidence
the necessity of a precise study of this central part. With the collaboration of the team of SIXS beamline at Soleil Synchrotron,
our team has found a new way of measuring this central part. This consists of shifting the beam stop as we have shown in
figure 3.3 in chapter 3 and also displacing the detector in order to have the detector dead area (in pink color in figure 4.25(a))
positioned not in the top of the scattering ring, the resulting image on the detector is shown in figure 4.25(a).

Figure 4.25: (a) Images from Eiger detector after shifting the beam stop in order to visualize signal scattered from
the central part of the hemicylinder (b)) The schematized internal structure of the hemicylinder [3], the wave vector
transfer q⃗ is parallel to the layer normal in the central part. The red inclined line is rotating grain boundary without
dislocation. At the top of the grain boundary, there is a dislocation defect of Burger vector 4 shown in the purple
close ellipse. The red point is the core of the disinclination defect.

This figure is showing the scattering ring after the shift of the beam stop. The ring is finally formed by two parts: the first
part is the intensity scattered by the rotating smectic layers and the second part is the intensity scattered by the smectic layers
in the central part of the hemicylinder. For a flattened hemicylinder, 8CB molecules in the central part obey the homeotropic
anchoring imposed by air. The 8CB-air strong surface energy, 30 mJm−2 [2], tends to lead to flat smectic layers. Due to the
homeotropic anchoring, the central smectic layers tend to be perfectly flat with all 8CB molecules orientated in a single direction
parallel to one wave vector transfer q⃗ that is perpendicular to the horizontal plane of the hemicylinder as shown in figure 4.25(b).

The large volume of the central flat smectic layers would give a single intensity peak at α = 90◦. The yellow vertical lines
are the walls which are separating the rotating smectic layers and the central flat layers. The horizontal green line is depicting
a 2D central grain boundary that is separating the central flat layers and the perpendicular layers on the substrate as seen in
chapter 2. It has been considered as a 2D topological defect and it traps nanoparticles [3, 9]. I will come back on it later in
section 4.9.9.

After zooming on the top part of the scattering ring from with Bragg incident angle ω = 0.6◦ we obtained the scattering as
shown in (figure 4.26 (b)). Two bright peaks were observed instead of the expected single maximum at α = 90◦. The intensity
extracted from these peaks gave two well-resolved peaks positioned respectively at α1 = 89◦ and α2 = 91◦. This implies that
the two peaks are distanced by a width of ∆α = 2◦ as shown in figure 4.26(c). Hence, the first peak is diffracted by a stack of
smectic layers whose director (normal) is parallel to the wave vector transfer q⃗1 oriented at α1 and the other one is diffracted
by a stack of smectic layers whose director (normal) is parallel to the wave vector transfer q⃗2 oriented at α2 as shown in figure
4.27. So the central part of the oily streaks in the 180 nm 8CB smectic film is not formed by perfectly flattened smectic layers.

It is instead formed by a gable roof-like structure with an inclination angle of ∆α = 2◦ at its ridge as shown in figure 4.28.
The disorientation angle θ shown in this figure equal, ∆α

2 is small.
This new structure has three features. The first one is the central curvature wall (vertical line in blue color) that is induced

by the disorientation applied to the two sides of the central smectic layers. It can be considered as a chevron. We have evidenced
this new feature in collaboration with the group of Samo Kralj and Luka Mesarec, both from University of Maribor in Slovenia.
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Figure 4.26: (b) zoom of the central part. The two brighter spots comes from central smectic layers which
have normals orientated in different directions. (c) The Bragg intensity extracted from this central part of the
hemicylinder.

Figure 4.27: The schematized internal structure of the hemicylinder , the two wave vector transfers q⃗1 and q⃗2 are
showing the two possible orientations of the smectic director of molecules in the central part.

The chevron structure in smectic is generally highlighted by the presence of two peaks as Takanishi et al. [12] as we discussed
in chapter 2, section 2.6.3. We have seen that according to William and Kleman [7], when the disorientation angle is small,
the associated stress is also small and induces curvature wall without dislocations contrary to large disorientation that induces
curvature wall with a chain of dislocations along it as shown in figure 4.22(b). The second feature is that the 2D central grain
boundary in figure 4.27 has became a 3D central grain boundary (in green color). The third feature is the yellow vertical line
that is joins smectic layers disoriented by an angle θ from each part of this wall which has become a grain boundary. In the next
section I will discuss the changes along this grain boundary between the rotating layer and the central inclined layers.

4.9.2 Evolution of the wave vector transfer q⃗ in the smectic oily streak
In order to understand the origin of the chevron structure (in figure 4.28) we need to finely study an experimental parameter,
which is the wave vector transfer q. The figure 4.29 is showing the experimental values of the magnitude of wave vector transfer
q extracted from scattering rings obtained at different incident angle ω. The way they were extracted is explained in detail in
chapter 3. It is corrected from all refraction effects as described in chapter 2.

Figure 4.29 demonstrate a very clear result that the q value at α = 89◦ (the qo on figure 4.29) is significantly larger than the
values for all α between 20◦ and 85◦. The magnitude of q is related to the interlayer spacing d, in Bragg condition, by d = 2π

q
.

The values of qo are greater than those of q′. These values correspond respectively to the do the average value of the interlayer
spacing of in the central part and d′ the average value of the interlayers spacing for all α values which are related to the rotating
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Figure 4.28: The new internal structure of the hemicylinder. The green solid triangle is a 2D topological grain
boundary The red inclined line is rotating grain boundary without dislocation. At the top of the grain boundary,
there is a dislocation defect of Burger vector 4 shown in the purple close ellipse. The red point is the core of the
disinclination defect.

smectic layers. So, the value of d′, is greater than that of do. There is a dilation of rotating smectic layers with respect to the
central ones.

Figure 4.29: The Evolution of the wave vector transfer q⃗ as a function of orientation α for both rotating and central
smectic layers.

If d′ > do, a connection between the rotating layers and the central ones must take place around the yellow curvature plane
shown on figure 4.28 a grain boundary (in yellow) must exist to connect. Geometrically, as shown in figure 4.30, a disorientation
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θ between the area of the rotating layers and one of the central layers allows for a smooth connection if

cos(θ) = (do

d′ ) (4.37)

There is dilation (for all α values) of the rotating layers with respect to the central layers. The difference in the q values in
the two parts is 0.005 nm−1. Equation 4.37 finally shows that the dilation of the rotating smectic layers with respect to the
central layers induces the disorientation θ of the central layers and consequently leads to the chevron in the center part of the
hemicylinders as shown in figure 4.30. It is a grain boundary without dislocations formation (blue color) localized in the central
part of the flattened hemicylinder in between the two tilted sides.

In addition, two other grain boundaries where the smectic layers tilt are formed and are underlined in yellow in figure 4.30
of the complete model of the internal structure of the oily streaks from a smectic A thin film of 180 nm finally emerges that
includes not only the two joined quarter cylinders with their defects but also the central part with 3 additional grain boundary.
This structure is energetically favorable compared to the bookshelf configuration shown in figure 4.25 and that clearly appears
due to the mismatch between the d′ and do.

Figure 4.30: The new internal structure of the hemicylinder. The green solid triangle is aD topological grain
boundary The red inclined line is rotating grain boundary without dislocation. At the top of the grain boundary,
there is a dislocation defect of Burger vector 4 shown in the purple close ellipse. The red point is the core of the
disinclination defect.

4.9.3 Energy minimization for rotating layers
To understand the origin of the observed dilation for the rotating layers in collaboration with Professor Randall R. Kamien from
University of Pennsylvania, who is a leading figure in the theory of topological defects in condensed matter physics, a calculation
has been performed. It relates the interlayer spacing d′ to the radius of curvature of the corresponding rotating smectic layer.

We have seen in chapter 1 that the 8CB in smectic A liquid crystals is characterized by a long-range orientational order
of the elongated molecules, which are arranged into stacks of equally spaced fluid layers. There is a large elastic energy
associated with any deformation which changes this interlayer spacing. The resulting system has to be of minimum free energy.
Determination of the minimum energy can help to explain not only the above variation of the interlayer spacing but can also
give more information on the structure of the hemicylinder.
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Let’s first recall some of the parameters that we need to do the energy minimization. We made hypothesis of extremely
strong anchoring such that smectic layers geometry on the substrate and at air is fixed. We thus minimize only the elastic energy.
Moreover, we can consider mostly perfectly rotating smectic layers by neglecting the area close to the curvature walls and the
disclination area. So the only parameters will be r in polar coordinates. From the equation 1.4 in chapter 1, we have written the
relationship between the phase field Φ(z) and the average mass density ρ(z) of the layer in an hypothesis of flat smectic layers
perpendicular to (Oz) direction:

ρ(z) = ρo + ρ1(z) cos
{
qo

[
Φ(z)

]}
(4.38)

where
Φ(z) = z + u(z)

This is for the case of a planar stack of smectic layers where the local direction of layer normals is along the z axis. u(z) is
the layer displacement from the equilibrium position z = nd and the origin is chosen at z = 0.

However, in our case, the smectic layers are rotating and therefore the local direction of the layer normal is parallel to the
radius of curvature r. The equation 4.38 becomes

ρ(r) = ρo + ρ1(r) cos
{
qo

[
Φ(r)

]}
(4.39)

where

Φ(r) = r + u(r) (4.40)

The layer displacement u(r) is from the equilibrium position r = nd with n an integer and the origin is chosen at r = 0.
We choose to use the free energy in term of the phase phi, written in chapter 1 in equation 4.41. This equation 4.41 will be

used in polar coordinates.

Υ = B

2

{∫
d2x

[
(∇Φ)2 − 1

2

]2

+ λ2(∇2 · Φ)2
}

(4.41)

An action with Lagrangian density L, can thus be accordingly written:

L(ϕ, ∂iϕ, ∂jϕ, ∂i∂jϕ) =
[

(∇Φ)2 − 1
2

]2

+ λ2(∇2 · Φ)2 (4.42)

Using the Euler-Lagrange equation in polar coordinates to minimize the distortion free energy we obtained.

∇

{
∇ϕ

[
(∇Φ)2 − 1

]}
− 2λ2∇2∇2Φ = 0 (4.43)

where ∇2 = 1
r

∂
∂r

(r ∂
∂r

)
This leads to the following equation,

3(∂Φ
∂r

)2 ∂
2Φ
∂r2 + 1

r
(∂Φ
∂r

)3 − ∂2Φ
∂r2 − 1

r

∂Φ
∂r

= 2λ2

[
(∂

4Φ
∂r4 + 2

r

∂3Φ
∂r3 − 1

r2
∂2Φ
∂r2 + 1

r3
∂Φ
∂r

]
(4.44)

Using the equation 4.40 in the equation 4.44 and considering only the smallest derivative of u(r) (considered to vary only
slightly with r), we obtain the approximate equation:

2

[
∂2u

∂r2 + 1
r

∂u

∂r

]
= 2λ2

[
1
r3

]
(4.45)
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The solution of this equation is

u(r) = λ2

r
⇐⇒ ∂u

∂r
= −λ2

r2 (4.46)

The next step is to find the value of the strain. Using equations 1.16 and 4.46 we can write

∂u

∂r
= −λ2

r2 = (do − d′

d′ ) ⇐⇒ d′ = do

1 − λ2

r2

(4.47)

Therefore

d′ = (1 + λ2

r2 ) × do (4.48)

where d
′
is the smectic interlayer spacing after the strain is applied and do is assumed to be the natural smectic interlayer spacing.

This formula 4.48 demonstrates that there will be dilation of the rotating smectic layers with respect to the radius of curvature.
The dilation tends to infinity as the radius tends to zero. This agrees with the experimentally observed values in figure 4.29.

This dilation is due the bending of the rotating smectic layers. Indeed the bending energy (∇2ϕ2(r)) increases typically as
the square of the inverse of the curvature radius. It becomes increasingly expensive when the layer becomes close to the center
of rotation. To decreases this elastic energetic cost, for each layer the radius has to increase through a dilation of that layer. This
induces a penalty related to the first term in the equation 4.41 and finally there will be a balance between the two energy terms
which lead to the observed dilation of layers. In the equation 4.48, the term of square of the ratio of the penetration depth to
the curvature radius of the rotating smectic layers is always positive. Therefore this equation 4.48 is clearly showing that the
interlayer spacing will always be greater or equal to the do, the natural value, i.e, it is showing that the there will always be a
dilation expect when the radius of the layers is infinity. the strain depends on the square of the ratio of the penetration depth to
the curvature radius of the rotating smectic layers. It increases as one approaches to the curvature center and becomes much
smaller at large radius of curvature.

In figure 4.30, the layers close to the center of the hemicylinder are very energetically expensive since their radius of curvature
r can become very small. So, as shown in equation 4.48 they have an inter-layer distance d

′
expected to be significantly larger

than the natural 8CB smectic layers distance (do). In contrast, those far from the center of curvature are cheaper in terms of
their compression energy. As the radius of curvature tends to infinity, they are expected to have an inter-layer distance very
close to do. The rotating smectic layers in the figure 4.30 are consequently expected to present different intra-layer spacing for
each layer. The largest dilation is expected for the layers close to the layer number 11th (first layer fully rotating from α = 0◦

to α = 90◦).
Using the fact that the penetration depth λ is approximately equal to the interlayer d distance and the radius of curvature r

equals d×N , the equation 4.48 can be written in terms of the wave vector transfer and the number of smectic layers as follow:

q′ = ( 1
1 + λ2

r2

) × qo ⇐⇒ q′ = ( 1
1 + 1

N2
) × qo (4.49)

The 11th layer has thus a dilation as large as 0.83%. We are going to see if this experimental values of q′ for rotating layer
indeed agree with these theoretical values.

In our experiment, we do not measure this ratio λ
r

, we instead measure the average value of the wave vector transfer q⃗.The
average is over all layers starting from those with a small r radius of curvature to those with a larger radius of curvature. The
average q

′
is the value after the perturbation and qo is the value before perturbation or the wave vectors associated with the bulk,

4.9.4 Comparison experiment-theory for α larger than 40◦

Figure 4.29 shows the evolution of the experimentally measured average values of the wave vector transfer q. For the smectic
layers rotating between orientation α = 40◦ and α = 70◦ in the two edges of the hemicylinder,the wave vector transfer is
constant q′ = 1.998 nm−1. The values for the central layers is qo = 2.0023 nm−1 at α = 89◦ and α = 91◦.

Let’s take the model of two joint quarter cylinders in figure 4.31 issued from the analysis of the integrated Bragg intensity
and full width at Half maximum ∆q. These two experimental parameters were constant in the interval α = 40◦ and 70◦. So,
the number of scattering smectic layers is constant in this α interval. These layers are from the 11th to the 41st. The fact that
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we have a constant q′ value between α = 40◦ and α = 70◦ fully agrees with this model. The q′ value of 1.998 nm−1 is a
value averaged over all superimposed smectic layers. Equation 4.49 gives the value of the wave vector transfer q′ associated to
each of these layer numbers. This implies that the wave-vector transfer q′ and its inter-layer spacing vary for each layer. Then
we can calculate their average value to see if it is equal or not to the constant average experimental value given in figure 4.29.

Figure 4.31: The model of two joint-quarter cylinders.

To do so we have considered qo = 2.0023 nm−1 as constant and we take

q′
average = ( 1

31) ∗
Ni=41∑
Ni=11

[
( 1
1 + ( 1

Ni
)2 ) × qo

]
(4.50)

Using equation 4.50, we have found q′
average = 1.998 nm−1, the value which is exactly equal to the experimental value. This

confirms three important results. Firstly, it agrees with both the experimental integrated Bragg intensity and experimental ∆q
which are constant between α = 40◦ and 70◦. This agreement between these three parameters confirms that the model of figure
4.31 is correct and in particular the presence of the 30 layers completely rotating between α = 40◦ and 70◦ is correct. We have
seen in section 4.8.1 that the N2 = 41 is the one that is obtained from the ∆q curve value together with the best superposition
between integrated intensity and ∆q, with only small variations induced when the N1 model is varied. The perfect agreement
revealed between the q′ value of figure 4.29 from alpha between α = 50◦ and 70◦ and the calculation thus confirms that the
first complete smectic layer is indeed close to the 11th one. Secondly, it confirms that the dilation of the rotating layers in figure
4.30 is induced by the radius of curvature as it was predicted by the calculation of the energy minimization in section 4.9.3.
This is to say, we understand that the rotating layers are dilated due to their proximity to the curvature centers. This is expected
to be a general feature of dilation of layers of small curvature radius. We must have probably for the first time, experimentally
revealed the dilation phenomena associated with proximity to curvature centers that can essentially be revealed only for very
thin distorted smectic films. However, in many cases the dilation must be present, for example in the well-known smectic focal
conics close to the ellipse or to the hyperbola [6, 13, 14]. The last but not the least result that it is confirmed is that the central
layers period is the one of the natural smectic interlayer spacing since this model predict the observed period mismatch with
respect to the bulk 8CB do and the measurement gives a mismatch with respect to the central layers. The rotating layers have to
adapt to these central layers.

4.9.5 Implication for the tilt angle of the central layers
We have found an experimental value of tilt angle equal to 1◦. The first hypotheses we made is that the tilt angle varies from
top to bottom all along the chevrons structure and the yellow grain boundary. Using equations 4.49 and 4.37, we can find the
expression of the tilt angle associated with each layer:

cos(θaverage) = do

d′ = ( 1
31) ∗

Ni=41∑
Ni=11

[(
1

(1 + 1
N2 )

)]
(4.51)
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The tilt angle is 7.3◦ and 1.98◦ for 11th layer and 40th layer respectively. We only measure the average value, the overall
average given by the equation 4.51 is θaverage = 3.6◦. We can see that both the maximum and minimum tilt angle are greater
than the experimentally observed value of 1◦. The calculated average value is significantly greater than the experimentally
observed value.The first observed experimental result of tilt angle 1◦ shows that the tilt angle θ is not given by cos(θ) = do

d′ .
The second result is that we can ask a question of whether the tilt angle value varies from top to bottom. The width of the

scattered intensity that we have seen in figure 4.26(c) is smaller than 1◦. The θ value of 1◦ is well defined and not associated
with values strongly varying along the connection between rotating and central layers. If the tilt angle was varying, its variation
would be of 5.32◦, we could have measured it experimentally which is not the case. This evidences that in fact the smectic
layers in the central part adopted a tilt angle that doesn’t vary from one layer to another. Indeed the energetic cost of the
associated dilation of smectic layers would have been prohibitive. However, this not varying tilt angle appears to be smaller
than all required values from the one at the connection from the 10th layer to the one at 41st layer.

This tilt angle is imposed by a competition of three different energies. To understand it we have to look at all of them.
The first one is the surface energy.When the layers are flat, the surface is of order of p, the width of the central part of the
hemicylinder. When the layers are tilted then the surface is p

cos θ
. So when the tilt angle increases the surface energy will

increase. The surface energy tends to minimize as much as it can the value of the tilt angle θ i.e tends to keep flat the central
smectic layers. The second energy that contributes to the determination of the tilt angle is the energy of the disorder of the
topological grain boundary below the gable roof-like structure (in green color in figure 4.30) which has a height given by
( p

2 ) ∗ tan(θ) where p is the period of the oily streak and its value is 400 nm and θ is the tilt angle and height is consequently
expected to be at least 3.5 nm. This energy increases when the tilt angle increases.

The third energy is the compression/dilation energy and curvature energy along the grain boundaries (in yellow in figure
4.30 ) that is separating the central layers from the rotating smectic ones. This grain boundary tends to have the tilt angle θ that
we have calculate above. The Disclination zone has also to be taken into account. Dilation is expected in the disclination zone
(see next section 4.9.6) but in the central part of the zone. At the border, the smectic layers may be following the structure of
the layers below, leading to an average decrease of the induced θ angle.

The result is that we have obtained a tilt angle that is smaller than the one predicted by the grain boundary. This tilt angle θ
minimized by the three global energies. In addition to this, it doesn’t vary clearly to avoid the prohibitive dilation energy along
the grain boundary that would be required with varying θ values along the grain boundary, in contrast with the prediction of the
varying interlayer spacing d′. The preferable system is the one that minimizes the cost of the global energy considering all the
above contributing terms, finally leading to a very small tilt.

Figure 4.32: The evolution of the ∆q as a function of α .

4.9.6 Comparison experiment-theory for α smaller than 40◦ and for α greater than 70◦

For α smaller than 40◦

Let’s recall the results we have seen in section 4.7. There are two possible models of the quarter cylinder, specifically on the part
close to center of curvature. These two models were based on the determination of the N1. The first was that the N1 number
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Figure 4.33: The model of two joint-quarter cylinders. The position of the rotating grain boundary (shown in red
curve) is xo = 11.3 nm. The critical angle αc = 40◦.

of smectic layers around the center of curvature was constant. For the second model, N1 is changing. We have chosen the best
value of N1, the one that was giving the best superimposition of the N2 calculated from the integrated Bragg intensity and the
other one from the 1

∆q
. The distinction between the two models was not obvious. However, the second model was preferred

due to low cost of elastic energy compare to the other model. Moreover, it was not obvious for the second model to choose the
best (xo, αc) parameters. In this second model shown in figure 4.30, the rotating smectic layers of number smaller than the
11th connect to the central layers at the rotating grain boundary (RGB) without dislocations (shown in the red curve ) on top of
which there is one dislocation of Burger vector 4. These rotating layers can be measured only for α angles smaller than αc as
defined in section 4.7.2. We expect this αc to be of the order of 40◦. This means that for α > αc, we expect N1 to be constant.
For α < αc, N1 decreases. The profile of the RGB along which rotating smectic layers connect (4.33) is given by

r(α) = xo

1 − sinα (4.52)

This allows to calculate N1(α) for α < αc as follow:

N1(α) = ( 1
d

) × ( xo

1 − sinα ) (4.53)

where the value xo of position of the rotating grain boundary is around 11.3 nm and d = 3.16 nm. Using the equation
4.53, the value of N1 is expected to equal to 5 and 10 respectively for α = 20◦ and α = 40◦.

If there would be no variation in N1 then no further dilation of smectic interlayer spacing would be expected for α < 40◦

and according to equation 4.49 the q′ would remain constant with the same value as the one for α > 40◦. In contrast, we
observe a clear evolution of the experimental values of q, in figure 4.29. A model of non-constant N1 is confirmed. We now
examine if the hypothesis of the presence of rotating grain boundary without dislocation is consistent with the experimental
data. Already the fact that q, decreases when α is smaller than around 35◦ is consistent with αc around 40◦. We have seen in
section 4.9.4 that the experiment q curve confirms that the 11th smectic layer is the first complete one. If αc is confirmed to be
around αc = 40◦, we can use equation 4.53 to determine xo. Indeed 11 = ( 1

d
) ∗ ( xo

(1−sin(40)) , leading to xo = 11.3. The model
that superimposes the best the two curves of N2 calculated from integrated Bragg intensity and from ∆q, with (αc = 40◦;
xo = 11.3) is confirmed to be also consistent with the result of the q curve as a function of α.

Due to the decreasing ofN1 when α decreases below αc = 40◦, new smectic layers must participate to the average q′ value
for alpha values smaller than αc. These smectic layers are highly dilated being close to the curvature centers. They consequently
decreases the q′ value as observed. However the calculation of the expected q′ is difficult. Due to the presence of the curvature
wall a lack of smectic layers (a decrease of N2) may be expected for α < 40◦. The value of N2 may decrease along the
curvature wall following the equationN2 = 41 ∗ cos(Ω)/ cos(α) (see the model without additional dislocation on figure 4.21b)
with curvature wall angle, Ω equal 40◦ as seen in section 4.8.3. Moreover, the curves of evolution of N2 calculated from the
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integrated Bragg intensity and the ∆q show that an increase of number of smectic layers for α < 40◦ that we attribute to the
presence of additional smectic layers related to the presence of dislocations along the curvature wall (see section 4.8.3). Include
these extra rotating layers around the rotating grain boundary, If we calculate the overall average q′ value without adding these
extra layer a small value is obtained (a value q′ = 1.98 nm−1 instead of the observed 1.992 nm−1 is found for α = 20◦ which
would be associated with N2 = 33 layers without extra layers). In contrast if we add these extra layers as described below, we
can calculate a q′ value close to the experimentally observed value.

In order to calculate the new average value of q for α smaller than 40◦, for example α = 20◦, equation 4.50 has thus to
be changed for two features: The first one is that the starting N is no more 11 but 5 for α = 20◦. The 5th to the 10th layers
are highly dilated and this leads to a decrease of the average q′, value. The second feature is that the ending N2 has also to be
changed due to the presence of the curvature wall. The analysis of the intensity and the ∆q has shown that more layers have to
be added along this wall. However, the number to be added is not precisely known. This makes the second feature unclear. It
may have a very small influence only if, as expected, the last layers present an interlayer spacing very close to do. Let’s thus
calculate with N = 41 and the new formula is

q′
average = ( 1

37) ∗
Ni=41∑
Ni=5

[
( 1
1 + ( 1

Ni
)2 ) × qo

]
(4.54)

The result from this calculation using equation 4.56 is q′ = 1.992 nm−1 a value which agrees with the experimental value in
figure 4.29. This result evidences that there will always be a dilation of smectic layers which are very close to the curvature
center and it indeed confirms that such layers exist. Therefore, if these layers exist then the model in figure 4.30 with a a rotating
grain boundary without dislocation which stops at α = 40◦ may be correct. This result implies also that we indeed have to add
the above extra layers suggested by the integrated Bragg intensity.

For α greater than 70◦

The evolution of the average experimental value of q in figure 4.29 is showing a decreasing in its value from around α = 70◦

until α = 80◦. The comparison of the evolution of number of scattering layers calculated from the integrated intensity with
those calculated from ∆q has shown that in this α interval, there is a disagreement between the N2 values. This was showing
that contribution from the disorder fluctuation in the interlayer spacing is large. We have then shown that this α value interval
corresponds to the disclination zone. Dilation of smectic layers was expected in this zone. The q decreasing is associated with
the dilation of smectic layers in this disclination zone. If we look in the zoomed area in red rectangular, we can realize that the
decreasing in the q average value is almost equal to the one for the values at α < 40◦. Using the q value we have calculated
the number of smectic layers between α = 20◦ and α = 40◦ and found that is around 6. This value is exactly equals to the
number of smectic layer we have estimated in the disclination zone. This result shows that the dilation of the smectic layers in
the disclination zone is of the same order than the one for the layers the closest to the center of curvature, that can reach 4%.

4.9.7 Implication for the full width at half maximum ∆q

At the beginning of this chapter, we have done a calculation of the integrated intensity that can be scattered by a perfect quarter
cylinder and its associated Bragg ∆q. This calculation we have considered a system where all smectic layers have the same
interlayer spacing d. However the results from the calculation of the minimization of the smectic distorted free energy shows
that actually our system is not periodic. Every smectic layer has its own layer spacing d. The question comes of whether we
should use the above calculation to the interpretation of the experimental results which would lead to the understanding of the
internal structure of the smectic oil streaks structure ? In particular, can we use this calculation in the determination of N2 ?.

To answer to this question we need to compare the theoretical width ∆ qtheo due to the dilation of the smectic layers and the
experimentally observed Full width at half maximum ∆ qExper . If the value of the experimental width is order of magnitude
larger than the theoretical width then our Interpretation of experimental results especially the discussion of the integration Bragg
intensity, the ∆q and the extraction of (N1, N2) will be reasonable.

Let’s look at the interval of α between 40◦ and 70◦. The smallest layers is the 11th.and the largest is the 40nd. According
the equation 4.49,

1
N2 = qo − q′

q′ = d′ − do

do
(4.55)
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Figure 4.34: The Evolution of the wave vector transfer q⃗ as a function of orientation α for both rotating and central
smectic layers.

For the 11th layer which is at α = 40◦, 1
N2 ≈ 1

100 and (qN1=41 − qN1=11 ) of the order of 0.02 nm−1. This value is the largest
possible difference between the q value and is of the same order than ∆qtheor for α between 40◦ and 70◦. Our calculation can
thus be considered as mainly correct. It worth to use it for the comprehension of the internal structure of oily streaks for this α
interval. However, we can see that this theoretical value becomes larger than the experimental value for α value less than 30◦.
In this interval we were not fully able to superimpose the curves of N2 calculated from the integrated Bragg intensity and the
∆q. This was because this area is at least partly dominated by dislocations defects and so their contribution to the value of ∆q is
significantly large. The question to be ask here is when the measurement is dominated by this kind of disorders, where does the
∆q come from, is it from the compression or dilation of smectic layers ? Further calculation would be able needed to clarify.

4.9.8 Role of the substrate
Let’s recall briefly what we did in the previous section. we have calculated the intensity that would be scattered by a perfect
quarter of the cylinder, where we have considered that the scattering from two neighboring hemicylinders would interfere with
each other. For a given orientation α of the wave vector transfer q⃗, we integrated over β, an orientation associated with the
scatters position at a distance r from the center of curvature of the quarter cylinder. We have then plotted this theoretical
intensity as a function of α . This intensity was constant for α greater than 12.5◦. Below this value there are some intensity
modulations. At α = 0, the intensity has a minimum value as shown in figure 4.38 (a). In contrast to this theoretical value,
the experimental intensity at the same α value has a maximum value (figure 4.38 (b)). Recall that the α is the orientation of
the smectic director which is parallel to the wave vector transfer q⃗ and it is measured from the substrate. When α = 0◦, the
molecule are orientated parallel to the substrate and the smectic layers are perpendicular to the substrate. The fact that during the
theoretical calculation when these perpendicular layers are not taken into account we have obtained the minimum value at this
value of α = 0◦ confirms that the experimental maximum intensity obtained at the same α value was from the perpendicular
layers. In the future it would be interesting to theoretically take into consideration the presence of these perpendicular layers.

Now we know that there are perpendicular smectic layers to the substrate to satisfy the uniform planar anchoring. Our
first hypothesis concerning the interpretation of the observed dilation of the rotating layers for α < 40◦ was that the interlayer
spacing of the perpendicular layers on the substrate may have a larger interlayer spacing induced by the substrate. In other words
the value of wave vector transfer of the perpendicular layers would be smaller than the one for both the central layers and the
rotating one.

Our experimental value show that the average q value of perpendicular layers qper is large and decreases until α = 15◦

(figure 4.36). In other words it is larger at α = 0◦ than until α = 35◦ at least. In our hemicylinder model, these perpendicular
layers have two contributions. The first contribution is from those which are below the rotating layers, this implies that their
associated q value may even be the same than for all these rotating layers. The second contribution is from those right below
the central layers. So the experimental observed value is an average value from these two parts. The complete evolution
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Figure 4.35: The evolution of the theoretical intensity from two neighboring perfect quarter cylinder (b) The
experimental intensity measured using TSAXS configuration. The maximum value at α = 0◦ was scattered
perpendicular layers on the substrate

Figure 4.36: The evolution of the wave vector transfer for the whole hemicylinder. qperd is for perpendicular layers.

of the q values as a function of orientation α is shown in figure 4.36. The experimental observed average value of qperpe,
for the perpendicular layers is 1.998 nm−1. We have seen that the the number of rotating layers below α = 40◦ is 41 due
to the presence of the curvature wall, this corresponds to a lateral distance of 31 ∗ d, where 31 is the expected number of
perpendicular layers below the rotating layers (31 = 41∗cos(40)). Considering that the lateral size of an hemicylinder plus two
quarter of hemicylinders is around 570 nm which is associated with 180 perpendicular layer, we can find that the proportion of
those perpendicular layers below the rotating layers for two neighboring quarter cylinders is 0.34. Now the central part of an
hemicylinder is associated to approximately 118 perpendicular layers below the central layers. The proportion of these layers to
the total average value of qperp is 0.65. The expected value of wave vector from the perpendicular below the the rotating layers
is 1.984 nm−1 can be calculated as follow:

q′
average = ( 1

27) ∗
Ni=31∑
Ni=5

[
( 1
1 + ( 1

Ni
)2 ) × qo

]
(4.56)

where 5 is the number of layers at α = 20◦

we can now calculated the expected q′ contribution from the perpendicular layers below the central smectic layers knowing
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that the total experimentally observed average value of qperp is given by

qperp = 0.65 ∗ qperpcentral + 0.34 ∗ qperprotate

we have found q′ = 2.036 which is around the experimentally observed qo for the central smectic layers.
Our experimental values of the wave vector transfer finally show that these perpendicular layers have a very high value of

wave vector transfer vector qper compared to the one of the rotating smectic layers q′. This result evidences that it is not the
substrate that imposes the compression of smectic layers in rotating layers and the central layers. It suggests that below the
central defect there is no dilation as expected due to the absence of curvature. this again confirms that the observed dilation in
the rotating layers is only due to the curvature and finally we may have indeed two families of perpendicular smectic layers. The
first one is made by the perpendicular layers below the rotating ones of varying interlayer spacing. The second one below the
central defect of constant and not dilated interlayer spacing.

4.9.9 Total Wall defect
We have seen that the smectic and nematic liquid crystal phases are uniaxial. However, the nematic liquid crystal phase can have
two distinguished directors perpendicular to one another.[15]. Under strong enough distortion the nematic phase can exhibit
biaxial order. We have also seen that confined liquid crystal can exhibit topological defects. Their defect core can be related to
the structural transition between uniaxial and biaxial state [16]. N. Schopohl and T. J. Sluckin [16] have been the first to publish
on such a transition.Using Landau-de-Gennes formalism, they have found that the defect core never contains isotropic matter.
In the outer core, the order is asymptotically approaching the uniaxial order in the bulk. In between is a region in which the
liquid crystal is biaxial. Furthermore, they have found a ring around which the biaxiality is maximum. The defect core would
be fully isotropic only if this ring shrinks to a point which mean that the order completely vanishes. The transition such as the
uniaxial-biaxial transition described above is called order-reconstruction (OR). This mechanism can be used to relax from the
strong distortion or mechanical stress or other external perturbations in the liquid crystal system.

The result from our experimental data leads a hemicylinder model that we have discussed in detail in this chapter. The
remaining part is the 2D topological grain boundary (central defect) which is separating the perpendicular layers on the substrate
and the central smectic layers. The intimate structure of this defect has been a subject of collaboration between our group and
the group of Samo Kralj and Luka Mesarec, both from University of Maribor in Slovenia. In this section, I will present the result
of their theoretical study on this structure. The recent ellipsometric analysis have shown the thickness for the perpendicular
layer is 30 nm. This is the position of the order reconstruction above the substrate associated with the presence of the central
defect.

To understand its structure, Samo Kralj and Luka Mesarec have used the simple geometric shown in figure 4.37(a). They
considered that a 180 nm thick film of 8CB smectic A liquid crystal is confined between a rubbed PVA glass-coated substrate
and air. They also considered that a period of smectic layers of approximately 3.16 nm, which means that there are 57 smectic
layers totally, h

d 0 = 57. The thickness of the film is h in z-axis. The rubbed PVA glass-coated substrate-liquid crystal imposes
at z = 0 a strong uniaxial planar anchoring along the y-axis on the 8CB molecules as we discussed in 1. The liquid crystal-air
interface imposes at z = h, uniaxial homeotropic anchoring condition. Moreover, at lateral walls they impose free boundary
conditions. For such boundary conditions the amplitudes of order parameters exhibit variations only along the z-axis. The
smectic layers are orientated parallel to z-axis and y-axis respectively below and above the distance hw which is the position of
the central defects. Therefore, the smectic A layer stacking exhibits discontinuous reorientation in a wall located at the distance
hw.

The structural changes are mainly enabled by spatial variations in the amplitudes of order parameters i.e both the nematic
tensor order parameter Qt and smectic complex order parameter Ψ locally within the central defect. While the smectic order
parameter is one dimensional the nematic amplitude order parameters space is two-dimensional and it is described in terms of
two variables so and Γ that measures respectively the effective nematic amplitude and the degree of biaxiality. The latter is
expressed as

β2
sn = 1 −

6[Tr
(
Q3

t

)
]2

[Tr(Q2
t )]3 = sin2(3Γ) ∈ [0, 1] (4.57)

The biaxiality is associated with βsn ≥ 1, and its maximum value is at βsn = 1 . Nematic uniaxial state is associated βsn = 0
The smectic order parameter must be melted at z = hw (i.e., Ψ(hw) = 0) to reconcile different translational order above and
below hw. The discontinuous change in smectic translational forces nematic order to make maximum change in orientation on

134



the nm length scale and this can be achieved either via order reconstruction or by locally melting nematic order. The later option
is unfavorable since room temperature is expected to be associated with smectic A phase. Hence only the order reconstruction
mechanism is preferable.

Figure 4.37: Schematic presentation of smectic A order within the cell. The frustration in translational order is
resolved by forming a wall defect at z=hw. The smectic layer periodicity above and below the wall are given by
q′ and qper respectively (a) Schematic geometric presentation of nematic order changes in the order reconstruction
transformation (b) the corresponding degree of biaxiality β2

sn (c) .

The resulting qualitative changes in mesoscopic orientational order on traversing the central defect at z = hw are depicted
in figure 4.37(b) (mesoscopic shape variations) and 4.37(c) (degree of biaxiality). The initial (1) in blue nematic state at z = 0
is positively uniaxial along the y-axis (the prolate mesoscopic shape). Along z axis, the orientation changes from uniaxial to
maximum biaxial at (2) in yellow and then at (3) blue z = hw the negative uniaxial order (resulting in cylindrically symmetric
prolate mesoscopic shape) along the x-axis is realized. The orientation becomes totally biaxial at (4) and upon further increasing
in z (5), a positive uniaxial order is reached at z = h.

The nematic structure of the wall (central defect) is characterized by two planes exhibiting maximum biaxiality, enclosing
the order reconstruction wall possessing negative nematic uniaxiality. Note that the outer planes exhibiting positive uniaxial
order (placed at z = 0 and z = h) are enabled by strong uniaxial orientational anchoring conditions. Therefore, these states
could be in real samples slightly biaxial (i.e., 0 < β2 ≪ 1). Furthermore, at the order reconstruction wall the smectic order
must be locally melted. Thus, the structure of the 2D topological grain boundary is singular both in nematic (if one monitors
orientational order using uniaxial states) and smectic order and is therefore a Total Wall topological Defect. They have used
numerically simulated this defect and the result is shown in figure 4.39. Using result in figure 4.39, we can determine the size of
the total wall defect. We know that in uniaxial nematic area, the biaxiality vanishes. Figure 4.39 suggests that total wall defect
appears at the 7th layer. Its size is approximately of 5th layer. This suggests that the defect height is even larger than the 3.5
nm estimated above.
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Figure 4.38: The evolution of the theoretical intensity from two neighboring perfect quarter cylinder (b) The
experimental intensity measured using TSAXS configuration. The maximum value at α = 0◦ was scattered
perpendicular layers on the substrate

Figure 4.39: Key features of nematic and smectic A order on crossing the wall defect. At the wall center the smectic
order is melted and the nematic order exhibits negative uniaxiality. The Total Wall Defect is located at z

d0
= 7,

while the total sample height is set as h
d0

= 57 for sample of 180 nm thickness. The solid line is for biaxiality

4.10 conclusion

This chapter aimed at studying and reconstructing the intimate internal structure of the oily streaks. We have presented the result
from a film sample of 180 nm thickness. Using the combination of experimental X-ray scattering and theoretical calculation of
the intensity scattered by rotating smectic layers inside the hemicylinder, we were able to reconstruct the intimate structure of
the oily streaks. A strong foundation of studied of oily streak had been laid before my thesis. [2, 3, 5, 17]. However, the results
that we obtained during this thesis confirm the fact that indeed a deep analysis of this oily streak structure and of the distortion of
the smectic layers was necessary. We have demonstrated that the integrated intensity scattered by this oily streak in a distorted
8CB smectic A material is not proportional to the number of scattering smectic layers inside the oily streak in contrast with
hard crystal or perfectly flat smectic layers. Moreover, we have evidenced that this integrated intensity is linearly dependent on
N2

2 −N2
1 , where N1 is the number of missing smectic layers very close to the center of curvature of the hemicylinder and N2

is the total number of this smectic layers. We have shown that this unprecedented result is related to the fluidity of the smectic
layers that leads to a constant linear density of scatterers along the smectic layers, even when they rotate. Using this relationship
together with the linearly proportionality between the 1

∆q
and the number of scattering smectic layers, we were able to determine

the evolution of the number of smectic layer as a function of the orientation α. Another new parameter that has significantly
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helped to understand the oily streak structure is the wave vector transfer q. It is inversely proportional to the interlayer spacing.
Combining the experimental results on the evolution of the integrated Bragg intensity, wave vector transfer q and its width, ∆q,
we were able to reconstruct a new model of the intimate structure of the oily streaks with major differences with respect to the
currently existing model.

The first result is that we succeeded to demonstrate the existence of almost perfectly rotating smectic layers that indeed form
a large slab of a perfect quarter cylinder inside each edge of the smectic flattened hemicylinders. The closest from the center of
curvature a rotating grain boundary is formed as postulated in previous works [3]. However its dimensions are now precisely
determined and appear different from the previous estimations [3, 5]. We find the localization of one single dislocation of
Burger vector 4 at the extremity of a rotating grain boundary without dislocation. As a result, in the edge of the hemicylinder,
the smectic layers the closest from the curvature center that fully rotate from an orientation perpendicular to the substrate to a
parallel orientation may be the 11th smectic layers.

The second result is the demonstration of a − 1
2 disclination defect at the top of the curvature wall. It is made of around 6

layers that experience a large dilation in the disclination center. We were able to estimate a large core size of the order of 35
nm. Since the smectic layers rotate around the central defect, they form a topological charge of + 1

2 . We therefore demonstrated
for the first time in our group, a topologically stable system since the − 1

2 disclination balances this + 1
2 topological charge.

The third result is the fact that the central part of the oily streak flattened hemicylinder is formed by a gable-roof like
structure with the two tilted parts forming a chevron structure in the middle of the flattened hemicylinders. We have performed
in collaboration with Randall Kamien from Pennsylvania university, a calculation on the energy minimization of the rotating
smectic layers. This calculation has given us a model of how the smectic layers in the edges of the oily streak hemicylinders
are dilated with respect to the central layers as a response to the very high bending energy close to the center of curvature. We
obtained a quantitative expression of this dilation in agreement with the experimental data, for example associated with local
dilation as high as 4% for the 5th smectic layer. This suggests that such a dilation may occur close to most of the topological
defects around which smectic layers rotate with a small radius of curvature like for example close to the ellipse of focal conics.
Therefore, this model allows to understand the origin of the gable roof-like structure associated with the chevron grain boundary.
The tilt of the central layers is thus induced by the necessary connection between dilated rotating layers and central ones along
a new grain boundary. However, whereas each rotating layers is expected to be differently dilated due to the different distance
with respect to the center of curvature of each rotating layer, we show that the tilt angle remains mostly constant along the grain
boundary at a smaller value than the one expected for a perfect connection between rotating and central layers. This is because
of competing energies. In particular the surface energy that tends to flatten the gabble-roof like central part of the hemicylinders
competes against the grain boundary energy that tend to have a perfect connection between the joined smectic layers.

The fourth result is that structure of the curvature wall between two neighboring quarter cylinders is possibly associated
with a chain of dislocations of various Burger vectors. However a precise structure is yet to be produced and for this reason we
have started collaboration with a group of mathematicians form Canada, UK and USA. to simulate the model of two neighboring
quarter cylinders and even simulate its scattering and compare it to our experimental results and their results in order to confirm
the presence of these dislocations.

The last result concerns the central topological grain boundary that separates the central smectic layers from the perpendicular
layer on the substrate. We collaborate with the group of Samo Kralj and Luka Mesare from Slovenia who have demonstrated
that it is a total wall defect. It is not only characterized by a local melting of a smectic order but also by a negative nematic
uniaxiality associated with an order reconstruction locally induced in the defect by the melting of the smectic order. As a result
the thickness of the defects could be estimated to be around 20 nm.
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Chapter 5

Study of the effect of variation of film
thickness on the oily-streak model in smectic
A sample

After all, I thank God of my fathers, For You have
given me wisdom, power and people

– Jean de Berchmas
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5.1 Thicker film sample
Film thickness plays a crucial role in the determination of material properties. For example thin films of liquid crystal may have
different structural properties than their bulk counterparts. In this chapter, I will report the results from the study I have done
on the effect of thickness of liquid crystal thin films on the structure of the oily streak model in the 8CB smectic A sample.

We have seen in the previous chapters that the understanding of the internal structure of the oily streak necessitates the
integrated Bragg intensity and the FWHM of the Bragg intensity peaks. In chapter 4, we have elaborated an unprecedented
relationship between the integrated Bragg intensity and the number of smectic scattering layers that constitute the oily streak.
We have also determined the relationship between this number of scattering layers and the FWHM of the Bragg peaks. In the
same chapter I have focused on a thin film of 180 nm thickness. In this chapter, I will describe the results on three different
zones of the same sample of film thickness 200 nm, 230 nm and 250 nm. I will also present the comparison of the results of
these three thicknesses with respect to the previous zone of another sample of thickness 180 nm .

5.1.1 Evolution of integrated Bragg intensity
In chapter 3, I have elucidated the experimental measurements that we have done. The data from thicker films were asymmetric
as it can be seen in the scattering rings of these data shown in figure 3.28 in section 3.3.7. This figure shows an asymmetric
issue that was seen on both the measurements with the detector centered (eix = 0) and when it is displaced (eix = -10) . It
has caused one part of data to be out of Bragg’s condition (figure3.31). The correction of these asymmetric data for different
incident angles was expounded in section 3.3.7. The uncorrected data are shown in figure 3.29 and the corrected data are shown
in figure 3.32 for a film of thickness of 230 nm. The same process was done on the other thicknesses. We have seen that the
data extracted at the incidence angle ω = 0.6◦ were in Bragg’s condition for all orientationα of the wave vector transfer q⃗. On
the other hand, the data extracted at incidence angle smaller than ω = 0.6◦ are in Bragg condition only for α smaller than 70◦.
In order to detect the data scattered by the layers in the central part of the hemicylinder, we had to displace the detector as shown
in figure 3.3.

Figure 5.1: The comparison of the integrated Bragg intensity from the four films of thickness 180, 200,230,255
nm.

The combination of the data at ω = 0.6◦ with those extracted from small ω has given us the full curves of intensity i.e for all
orientation (from α= 15 to α= 90◦ ). The data resulted from this combination were multiplied by the ∆q and ∆µ to obtain the
integrated Bragg intensities. These intensities for all the film thicknesses are shown in figure 5.1, where the normalization of the
integrated intensity has been performed as follow: We have first calculated the number of smectic layersN2 using 1

∆q
as shown
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in equation 4.33 for all the three thicker film and compare the results to that of 180 nm thick film. This calculation requires
only to fix the value of N1 and used the experimental values of ∆q. We have found that all curves of evolution of N2 were
superimposed without need to normalization. This superimposition was between α = 40◦ and α = 70 and no superimposition
elsewhere . This demonstrates that the value of the scattering smectic layers in this interval of α values doesn’t vary when
the film thickness changes. We can therefore expect that the scattered intensity to be the same in this α interval for all film
thicknesses. However, the curves of evolution of intensity though have the same shape of evolution as a function α, they were
not superimposed. We have then found a factor of normalization to normalize them with respect the 180 nm thickness. The
result is shown in figure 5.1. This figure is showing that the integrated intensities are similar from small α values until α = 50◦.
This implies that the corresponding part of the rotating layers in the hemicylinder that we have built for the 180 nm (figure 4.30)
is the same for all films of different thickness. It means that is independent of the film thickness. From orientation α = 50◦,
we start to see the difference, which continue until 85◦. In contrast to the rotating part (including the curvature wall and its
associated angle Ω = 40◦) which its similar for all film thickness the disclination zone is different. This zone is between 70◦

and 85◦ for the 180 nm whereas for the three thicker films, between 50◦ and 85◦.

5.1.2 N2 from both integrated Bragg intensity and ∆q

We have seen in the previous chapter 3 that the integrated Bragg Intensity is always true regardless of whether or not there are
some disorders. In contrast, the ∆q is much affected by the presence of disorder of q values. Therefore, the comparison of the
number of smectic layers N2 calculated from both integrated Bragg intensity and the ∆q for all α values can reveal the areas
with disorder or defects and/or areas where there is only few/no disorder or defect.

Figure 5.2: Comparison of the evolution of number of scattering layers calculated from integrated Bragg intensity
and ∆q as a function of thickness

The figure 5.2 shows the comparison of the evolution of the number of smectic layers N2(α) for different thicknesses. For
the film of 180 nm we have used the superimposition of the number of the scattering smectic layers N2 calculated from both
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integrated Bragg intensity and those from the ∆q for all orientation α. Together with the curve of q values, this has helped
to determine the value of critical αc above which the number of smectic layers does not change and the position xo of the
rotating grain boundary without dislocations that is separating the central layers from the rotating smectic layers which defines
the N1(alpha) curve.

The comparison shows a similar disagreement for α ≤ 30◦ . Around α = 30◦ the ∆q is dominated by disorders similar
for all thicknesses. The N2 = 41 values of rotating smectic layers in the model of hemicylinder that we have evidenced in
chapter 4 for the 180 nm appears to be conserved for the thicker films (200 nm, 230 nm, 255 nm). However if the number
of smectic layers is constant at N2 = 41 until α = 70◦ for the thickness e = 180 nm , it is only until α = 50◦ for the three
other thicknesses. This is shown by the departure towards larger integrated intensities from α = 50◦ for these three thicknesses
(figure 5.2). The values of the angle of curvature wall which equal 40◦, the critical α = 40◦ and yo = 11.3 nm that we have
found for the 180 nm thick film have the same values for these thicker films. It is interesting here to notice that we clearly
demonstrate that the curvature wall angle, Ω, does not vary when the thickness increases, at least if the disclination is present
for all thicknesses which is the case for thicknesses varying between 180 nm and 255 nm. This is in contrast with the results
claimed in [1]. This may be due to the fact that in the films as thin as 100 nm that have been studied[1] the disclination may
have disappeared. We may thus expect variations also of the rotating part and also of the Ω angle.

The difference between the values ofN2 from integrated Bragg intensity and those from ∆q, become enormous at α= 50◦

for all the thicker films, whereas it is only at α = 70◦ for the 180 nm thickness thin film. This discrepancy is due to the fact
that the ∆q is dominated by the disorder. This discrepancy suggests that the disclination area and the corresponding additional
layers with dilation or compression features starts earlier (at α around 50◦ ) for these three thicknesses with respect to e = 180
nm .This feature can be clearly seen in the figure 5.3 which is showing the comparison of the evolution of number of scattering
smectic layers as a function of α. At α = 50◦, also the values of N2 from the thicker films starts to differ from the value

Figure 5.3: Comparison of the evolution of number of scattering layers as a function of thickness

from the 180 nm film with an increasing of N2 with respect to N2 = 41 which occurs for all thicknesses. Together with the
discrepancy betweenN2 from integrated Bragg intensity andN2 from ∆q, this shows that the disclination starts at α value 50◦

with additional layers that are measured whereas they are only measured from 70◦ for the 180 nm film. This disclination area
continues until 85◦, the value where scattering of the smectic layer in the central part starts to dominate. This figure 5.3 is also
showing an increase in number of smectic layers in the disclination zone when the thickness increases from 200 to 230 and
finally 250 nm . In other words all additional layers related to the increase of thickness appear in the disclination area and not
in the area of fully rotating smectic layers that have been described extensively in chapter 4. This shows that it is energetically
cheaper to add smectic layers in the disclination area than in the rotating area of the quarter cylinders. this may be partly due to
the prohibitive energy cost of these rotating layers due to bending and dilation.

These extra layers are convex as we have seen in chapter 4. Such layers are not rotating around a center of curvature as it
was for the case of the perfect quarter of hemicylinder. This makes their precise determination not obvious using the N2 curve
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shown on figure5.3. In order to corroborate the results from the two previous sections of this chapter, we need to analyze the
wave vector transfer q curve as a function of the orientation α. This will be the focus of the next section 5.1.3.

5.1.3 Comparison of the wave vector transfer q for different film thicknesses

The extraction of the q curves for these thicker films is the same as we did for the 180 nm as described in chapter 2, where we
have also elucidated the correction of the refraction effect that has given the q values inside the film. This correction was also
applied to the q curves on these thicker films that I am reporting in this chapter.

For the central layers, the q values (α between 89◦ and 91◦) were obtained using the measurement with the detector
displaced as shown in figure 3.28(a). The rest of α orientations were obtained using the measurement without displacement of
the detector as shown in figure 3.28(b), we normalized both of these data by putting an offset of 0.0013 nm. We found that
for almost each thickness, without any normalization the 89◦ q value was almost the same. This suggests that the interlayer
distance of the central layers corresponding to this q value is the natural value of 8CB in smectic A. Hence we have normalized
all q curves for α = 89◦ at the q value is 2.0023 nm−1. The results of this procedure is shown in figure 5.4. The curve from
the 180 nm film was analyzed in details in chapter 4, precisely in sections from 4.9.2 until 4.9.4.

Figure 5.4: The comparison of the wave vector transfer q⃗ inside the film from four film of thickness 180, 200,230,255
nm.

Analysis for α < 50◦

The values of the wave vector transfer q shown on figure 5.4 are the average values from all smectic layers which have normals
are parallel to the wave vector transfer q⃗ orientated at α. Figure 5.4 shows that the decreasing is the same for all thicknesses in
agreement with a similar number of smectic layers with similar structure and orientations of the number of scattering smectic
layers. This result agrees with what we have seen in the previous subsections. The fact that all the experimental parameters
agree for α values smaller than 50◦, implies that the model we have build for the 180 nm film for this region is the same for all
the thicker films as shown in figure 5.5.
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Figure 5.5: The area below the disclination zone that this the same for all the four film of thickness 180, 200,230,255
nm.

Analysis for α > 50◦

We can see that between α = 50◦ and α = 80◦, the q values change as function of film thickness, where the thicker films are
having a q value larger than the one for 180 nm. The evolution is moreover associated with regularly increasing q values when
the thickness increases. Let’s recall that for the film of 180 nm thickness, the q values between α = 35◦ and α = 70◦ are
associated with the rotating smectic layers and are smaller than the q = 2.0023 nm value for the central layers. For this film,
we have found 41 rotating smectic layers. From α = 76◦, we start to see a decreasing in the q value. The disclination starts
at α around 70◦ as shown by the curves of ∆q and integrated Bragg intensity. The associated decrease of average q values
starts at around α = 76◦ where the dilation of smectic layers become large enough (see chapter 4, section 4.9.6). The q values
between 76◦ and 80◦ contain the contribution from the non-dilated smectic layers and from the dilated layers. In this interval,
the evolution of the q shows a decreasing for all thicknesses. This q curve shows that the contribution from the dilated layers
dominates, where the maximum dilation is at 80◦, most probably because for larger α the intensity related to central layers starts
to become non-negligible, this shows that for all thicknesses the maximum of dilation occurs around α = 90◦ as shown in the
schematized models of figure 5.7.

In Figure 5.4, the fact that the q values of the thicker films are larger than the one for 180 nm, starting from the value α
= 50◦, is caused by the increase in the number of smectic layers. This agrees with the other two parameters where the number
of smectic layers calculated from the integrated Bragg intensity suggests an increase in number of smectic layers starting from
the value α = 50◦ and those calculated from ∆q suggests a presence of a q disorder in the region. Moreover, the number of
scattering layers being added to the system increases as the film thickness increases. As a result, the disclination topological
defect that was evidenced for the film of 180 nm thickness changes when the film thickness changes. In particular, all the
parameters (N2 from the integrated Bragg intensity, N2 from the ∆q and the q evolution curves) agree with the fact that the
disclination starts at 50◦ for the thicker sample and 70◦ for the 180 nm film thickness.

Comparison experiment-theory of the disclination zone

Both evolution of N2 curves and of q curves show that only the disclination zone increases its thickness when the overall
thickness increases. It is thus interesting to more carefully study the q curves as a function of thickness to gain information on
the disclination structure. Each q curve for each thickness is shown on figure 5.6. They appear characterized by an approximately
constant q value from α = 50◦ to α = 70◦, of increasing value when thickness increases. However, the shape of the curves
are not perfectly similar, becoming in particular less constant with α when thickness increases. Together with the different
N2 curves, this shows that the structure of the disclinations might vary when the thickness increases. The first increasing of q
values that occurs between α = 50◦ and α = 70◦ for the three thicker samples shows that dilation is less present on the border
of the disclination than in the middle. The average dilation on the total number of layers probably decreases when the thickness
increases in relation with the number of layers that increases in the disclination. This is particularly obvious for the larger
thickness where the average q values can become as large as qo. It would have been interesting to more quantitatively study
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these evolutions through a more quantitative comparison between the q data and the formula 4.49. The measured variations
being average ones, they are very small , even less than one pixel. However due to the large width of the Gaussian fits allowing
to extract ∆q, we finally obtained a resolution better than one pixel as shown by the results of figure 5.4 allowing for a small
discussion on the dilation features in the disclination zone.

Figure 5.6: Comparison of curves of evolution the q values as a function of α for different film thickness.

Aiming to get more precise information on these structural variations we have performed a deep analysis of each individual
curve using the formulas 4.49 and 4.50 from the energy minimization that we have seen in the chapter 4, in section 4.9.3 and
4.9.4 respectively. These formulas have helped to calculate the average value of the q to ensure that the theoretically predicted
values agree with The experimentally observed values. In particular it allowed to confirm the size and structure of the rotating
grain boundary close to the center of curvature. This has also helped to calculate the number of rotating smectic layers and the
number of layers in the disinclination zone that are contributing to the average value of q for the orientation α greater than 50◦.

We started with the 255 nm thick film and found that the experimental average approximately constant q, value is 1.9994.
Using equations 4.49 and 4.50, the value that allows to obtain such average q′ is N2 = 64 smectic layers. This number is
constituted by 41 rotating layers and 23 layers supposed to have in the disclination zone. This calculation is based on the
hypothesis that all these additional layers have a same period close to do contribution to the average q, value. Secondly, the
230 nm thick film has an average q value 1.999, which corresponds to N2 = 58 smectic layers. This total number is made
up by the 41 rotating layers and 17 layers in the disclination zone. Finally, the 200 nm thick film has an average q value of
1.998, which corresponds to 46 smectic layers. This includes the contribution from the 41 rotating layers and 5 layers in the
disclination zone. They also have same period and contribute to the average q value.

Let’s examine the implication of the above results. All these thicker films are considered as having the same number of
rotating smectic layers (41) below the disclination zone(similarly to the film of 180 nm). Based on this fact the total thickness
of the part below the disclination zone shown in figure 5.5 is 160 nm for all films as shown by the number of rotating layers,
N2 = 41 and by ellipsometric measurements for the perpendicular layers [1]. Using the thickness measurements obtained
by Optical Microscopy, thickness for the disclination zone is 95 nm , 70 and 40 nm for the 255 nm, 230, and 200 nm film
respectively. These thicknesses correspond to the number of smectic layers that are to be added in the disclination zone. If all
these layers for each individual thickness have the same smectic period of 3.16 nm, then we find that the number of smectic
layers in the disclination zone is of order of the 30, 22, and 12 smectic layers for the 255 nm, 230, and 200 nm respectively.
These numbers are larger than those we have found using the experimental average q, value.

It is clear that the thickness values measured by Optical Microscopy are not exact. This could be firstly due to the uncertainty
related to the Optical Microscopy maps made during the X-ray campaign. However, the just described evolution when the Optical
Microscopy determined thickness increases suggest the thickness identification, or at least its increasing, might be close to be
correct. Secondly the optical index used for the thickness measurements by Optical Microscopy (see the abaque in appendix
A) are (2no+ne)

3 . It might be slightly overestimated and the thickness might thus be slightly underestimated. It consequently
allows to conclude that the numbers of layers in the disclination zone extracted above using equation 4.49 and equation 4.50 are
definitely too small for all thicknesses. This allows to conclude that the average q that has been considered for the smectic layers
of the disclination zone was too high. In other words, the average q of the disclination zone is associated with dilation with
respect to qo. Using the number of smectic layers obtained with Optical Microscopy and equation 4.49, the average dilation,
considered as roughly constant from α= 50◦ to α= 70◦ can be estimated. It is found to be 2 nm−1, 2.00178 and 2.00184 for
thicknesses 200 nm, 230 and 250 nm respectively, recalling that qois taken as 2.0023 nm−1. The average dilation decreases
when the thickness increases in agreement with a structural variation of the disclination zone when thickness increases.

As a result of the above analysis, we can propose the schematized models of the disclination zones of the oily streaks as
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shown in the figure 5.7 for different film thicknesses. In this figure we can see that the part below the disclination zone (with the
core shown in red) is the same for all the thickness. The difference is only in the disclination zone. The disclination core of the
180 nm thick film ( figure 5.7(a)) is larger than that of the thicker films (200, 230, and 255 nm as shown in figure 5.7(b), (c) and
(d) respectively). The disclination core size of the these thicker films is the same as suggested by the fact that all disclinations
start at the same alpha value of 50◦. This indeed shows that the first smectic layer in the disclination bends until its normal is at
50◦ with respect to the substrate, similarly for all thicknesses, except 180 nm. We can also see that the number of the smectic
layers in the disclination is increasing as film thickness increases.

Figure 5.7: Evolution of the disclination zone as function of film thickness

Effect of variation of film thickness on the disclination core

Now we understand that the disclination zone starts at around α = 70◦ for the film of 180 nm and at around 50◦ for the thicker
films. This result has an unprecedented implication that the disinclination core changes as a function of film thickness. To
explain this, let’s recall the two following features: the first one is that all the part below the disclination zone is the same for
all thicknesses, even the curvature wall is the same for all films regardless of their thickness. The second fact is that we have to
curve the smectic layers in the disclination zone until 50◦ for the thicker sample and 70◦ for the 180 nm film. What does this
imply ? why the 180 nm thick film cannot have the disclination that starts at 50◦? To respond to this questions, I have taken a
prototype of the oily steak zone from the first layer in the disclination zone to the last layer which is the closest to the surface (
shown in figure 5.8). The h is the undulation height of the first layer. D2 is the distance between this first layer to the surface,
d2 is the average interlayer spacing for the smectic layers in the central part of the disclination zone supposed to be larger than
do as suggested by the q curves for all thicknesses where the largest dilation features appears close to 90◦ (taking into account
that really close to 90◦, the central layer signal hides the one of the disclination). The last layer is drawn on figure is drawn on
figure 5.8 as fully flat which is optimal for the surface energy. In fact it has been shown by AFM measurements with oily streaks
on MoS2 substrate [2] that the undulations remain always of the order of 10 nanometers, whereas here, the undulation of the
top of the rotating layers can be calculated to be 41 ∗ do ∗ (1 − sin(40)) = 46nm. It is clear from figure5.8 that for the thicker
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film if the surface undulation is smaller than h, this requires dilation in the center of the disclination zone.

Figure 5.8: Prototype of the area in the disclination zone. The h is the undulation of the first layer in this zone.

If all the smectic layers Ndisc have the same period perfectly defined as do at the border, the only way to have a flat surface
is to increase the period (from do to d2) in the central part but at the same time keeping constant the do on the left and right part
of the disclination zone. This new period is given by

d2 = h

Ndisc
+ do (5.1)

where Ndisc is the number of smectic layers of the disclination zone. This means that to flatten the surface with a non too high
dilation (d2 not too high) the distance h has to be the smallest as possible, and this particularly if Ndisc is small. The Ndisc

layers in the center are dilated with respect to the Ndisc layers on the other two side of the disclination zone.

We have seen that the number of layers Ndisc in the disclination zone increases as the film thickness increases. This shows
that for similar D2, different dilation are expected as a function of thickness. This explains why we indeed observe an average
dilation that decreases when the thickness increases, as extracted from the q curves discussed above. If the undulation height
h is kept constant then d2 in the equation 5.1 would be smaller for the thicker films than for the 180 nm film. Now we can
consider the fact that all the films that we are reporting in this chapter are built on the same quarter cylinders shown on the
figure 5.5 so they have the same surface below the disclination zone and lateral size. The only parameter that changes is their
thickness. Therefore, their disclination core can be analyzed using the equation 5.1. For the thicker film, the value of Ndisc

is larger than the one of the 180 nm thick film. This means that we can expect that it would be very easier to have an almost
flat surface since the d2 will be smaller for the same h and the dilation energy would be smaller. A critical value of Ndisc may
thus exist that would lead to an decrease of h to avoid a too large d2 values, in other words too large dilation.. Therefore the
disclination core will be similar for thicker films (h is the same) but larger for the 180 nm film.

It has been shown on figure 4.20 (chapter 4) that the core size is managed by the h value which itself is managed by the
limit angle defining the disclination (α = 70◦ for 180 nm, α = 50◦ for the other thicknesses). Indeed h = h1 + h2 with
h1 = 41 ∗ 3.16 ∗ (1 − sin(αd)). h1 = 5 nm for 180 nm and h1 = 30 nm for the other thicknesses. For the thick films, this
leads to a core size smaller than 46 − 30 = 16 nm, 46 nm being the undulation of the top of the rotating layers, the exact size
depending on the h2 value. The available space on top of the the rotating layers to increase h2 might be slightly larger for the
180 nm of larger αd. However, if we trust AFM measurements, the top surface might not be more undulated than by 10 nm.
h would thus be at least 10 nm but not much more since the dilation of some percents for 6 smectic layers may not permit an
increase of much more than 1 nm. This would lead to a core size of the order of 35 nm for 180 nm with h2 of the order of 6
nm. This is considerably larger than the size between16 nm and 16 - h2 for the thicker films, this last one being expected not
to be larger than 6 nm.
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5.1.4 Study of the central part of the hemicylinder

Evolution of the tilt angle ∆α

Up to now, we have understood the part in the edges of the hemicylinder that form the oily streaks for different film thicknesses.
In this section, I will describe the results on the gable roof-like central part of the hemicylinder. I will in particular focus on
how the ∆α ( which is twice the tilt angle θ of the smectic layers in this roof-like central part ) evolves as a function of film
thickness. For a short review of the previous result in chapter 4, section 4.9, where we have reported on the study of the central
part of the hemicylinder for the 180 nm thick film: The ∆α was 2◦ i.e tilt angle of the central smectic layers was θ = 1◦. We
have seen that this tilt angle implies that the central part of hemicylinder is formed by a gable-roof like structure below which
there is a 3D topological grain boundary as shown in model schematized in figure 4.28 that we show again below.

Figure 5.9: The new internal structure of the hemicylinder. The green solid triangle is a 2D topological grain
boundary The red inclined line is rotating grain boundary without dislocation. At the top of the grain boundary,
there is a dislocation defect of Burger vector 4 shown in the purple close ellipse. The red point is the core of the
disinclination defect.

Along the chevron-like curvature wall in this central part (shown in blue), there was no dislocation defect due to the small
disorientation. Moreover, there is a grain boundary (shown in blue) that is separating the central tilted smectic layers and the
rotating layers of the edges of the hemicylinder.

Figure 5.10: Evolution of the tilt angle for different film thicknesses
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The model of the hemicylinder for the 180 nm thick film and that of the thicker films present many similarities. Firstly,
the quarters of cylinder below the disclination zone are the same. Secondly, they both have the gable-roof like structure in the
central part since they all have a non-zero tilt angle. The evolution of this tilt angle as a function of film thickness is shown in
figure 5.10. This figure shows that this angle decreases as film thickness increases. This mismatch in the interlayer distances is
the origin of the chevron structure. However, the models present also some dissimilarities when the thickness varies. The upper
part of the disclination zone changes for different film thickness. We have explained this in details in the previous section. In
addition to this the tilt angle decreases as film thickness increases (figure 5.10). This decreasing implies that the central part of
the hemicylinder varies as a function of the film thickness. Based on the fact that it is decreasing, one can anticipate that there
is a thickness above which this tilt angle may completely vanish. In this case, the surface would be perfectly flat.

We have seen that this tilt angle doesn’t vary from one layer to another. This tilt angle is imposed by the competition between
three different energies, particularly surface energy, energy of the disorder of the topological grain boundary below the gable
roof-like structure and compression/dilation energy together with curvature energy along the grain boundary that is separating
the central layers from the rotating smectic ones. Whereas the rotating smectic layers are characterized by an homogeneous
dilation along the layers, the dilation varies radially as shown by the model in equation 4.48, section 4.9.3 of chapter 4. In
contrast, we expect the dilation to vary along the smectic layers for the convex layers of the disclination. As shown by the results
of the previous section, we expect the dilation to be maximum in the center of the disclination and the interlayer spacing to be do

at the border. The result is that by unit of length along the grain boundary, the tilt angle induced by the difference of intra-layer
spacing decreases when the size of the disclination increases, in other words when the thickness increases. The observed
variation of the tilt angle shown on figure 5.10 is thus expected to be induced by the thickness increase of the disclination size.

5.2 Conclusion
In this chapter, we have reported the evolution of the structure of the oily streaks as a function of the film thickness. We have
demonstrated that the disclination core size varies as film thickness changes. For 180 nm it may be as high as around 35 nm
whereas it may decrease towards 10−16 nm for the thicker films of thickness varying between 200 and 255 nm. This is indeed
a significant contribution to the fundamental understanding of the structure of topological defects with a nanoscale resolution In
addition to this, we have shown that the part below the disclination zone remains unchanged when the film thickness changes.
In contrast to this part, the upper part of this zone, significantly changes when the film thickness changes. We have found that
the thicker film have a larger number of the smectic layers to be added in this zone. This shows that it is energetically cheaper
to add smectic layers in the disclination area than in the rotating area of the quarter cylinders. This may be partly due to the
prohibitive energy cost of these rotating layers due to bending and dilation. Also the possible decreasing of surface energy when
the thickness increases in the disclination zone may contribute to these observations.

We have also found that the more the film thickness increases, the more it becomes easier to obtain a flattened film surface.
Furthermore, the gable-roof like structure was also found for all film thickness. The results of the analysis of this structure
shows that it evolves as function of film thickness, where the thicker film may have a flat surface and the area below the roof is
smaller compared to the 180 nm thick film. This may be directly connected to the presence of always thicker disclination areas
when the film thickness increases. Along the grain boundary the disclination area may favor no tilt of the smectic layers.
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Chapter 6

General Summary and Perspectives

“Beyond the impossibility line, there is an infinity
possibilities, the key is in your hand if you believe
it..” –

– Jean de Dieu

One of the characteristic features of the 8CB smectic A liquid crystal is its layers structure. This allows the study of this
material using X-ray diffraction. X-ray diffraction is a powerful tool. In particular, it may allow to study how topological defects
appear when the thickness is small enough. Concerning X-ray diffraction of smectic 8CB distorted by antagonistic anchorings
with thicknesses not larger than 1 µm, analysis using Bragg condition has been considered already in the past. Notwithstanding,
interesting results that had already been obtained, they necessitate that the efforts may be continued since some questions are
still pending concerning the model of the 1D pattern that had been built previously in our group [1, 2].

The patterns was known to be made of superimposed smectic layers in flattened hemicylinders but the main questions still
pending were the following: What is the exact structure of the central part of the hemicylinders and in particular of the 2D
grain boundary area ? where are exactly the expected dislocations close to the center of curvature ?. In the area between two
neighboring hemicylinders, the bend distortion energy increases from top to bottom, this strongly suggests the appearance of
topological defects along this curvature wall, however, this has not yet been studied. Are there other topological defects inside
this oily streak configuration? For example what is the exact structure of the part at the top of the curvature wall between the
two neighboring hemicylinders? We have seen that the film thickness affects the periodic pattern of stripes. The thickness
increases can fully modify the pattern ultimately leading to a transformation into focal conics domains. It would be interesting
to study the effect of the film thickness of the intimate structure on the oily streaks. My thesis aims at responding to all of these
questions. The main goal was to reconstruct the intimate internal structure of the oily streaks.

To respond to this question, we have developed an unprecedented experimental and theoretical methodology that we have
presented in chapter4 of this manuscript. We first performed a theoretical calculation of the integrated intensity scattered by 3D
crystals and smectic liquid crystal system made up of perfectly flat layers. Similar to the 3D crystal we found that the integrated
integrated intensity was proportional to the number of scattering layers. However, we have demonstrated that for the integrated
intensity scattered by curved smectic liquid crystal layers, it is not proportional to the number of scattering smectic layers but
instead it linearly depends onN2

2 −N2
1 , whereN2 is the total number of rotating smectic layers. This result emanated from the

fluid property of the smectic liquid crystal which keeps constant the linear density of the scatters in each smectic layer.
The signals scattered in Bragg condition contain information on the structure of the scattering material as shown by the

preceding result. It is therefore crucial to ensure that this condition is satisfied during the X-ray scattering measurements. It
is has been demonstrated that oily streaks intimate internal structure is made up of smectic layers rotating around the axis of
the hemicylinders. To study this internal structure precisely, it is crucial to ascertain that Bragg condition is satisfied for all
orientation α of the wave vector transfer q⃗. This q⃗ has to be parallel to the normal of the smectic layers inside the hemicylinder.
For this reason, we have developed two different but complementary theoretical and experimental techniques that demonstrated
the necessary orientation of the sample that allows to obtain Bragg conditions during the measurement of the scattering of the
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rotating layers. In addition to this Bragg intensity ascertainment, in this chapter we have also determined new parameters that
have not been used before in our group for the study of the intimate structure of the oily streaks. These are the ∆q, the ∆µ, and
the q variations with α, α being the orientation of the normal to the smectic layers, parallel to the orientation of the wave vector
transfer. The former is sensitive to the presence of disorder in the inter layer spacing of the smectic layers, it has helped in the
localization of the defects in our system. Moreover since it is also associated with the finite size effect which is the number
of scattering smectic layers in our system, it therefore played a crucial role in the determination of the number of scattering
smectic layers in the next chapters. The ∆µ is associated with the mosaicity of the hemicylinder. Due to the rubbing process
the smectic hemicylinders are not always perfect. Taking into account this parameter has therefore helped to take into account
the effect of this mosaicity on the intensity scattered by our hemicylinders. We have calculated how to take into account the
effect of refraction in the determination of q and its variation with alpha. This allowed to obtain particularly resolved q curves
as a function of α. Together with the curves of ∆q and of Integrated intensity (I = IBragg ∗ ∆q ∗ ∆µ), the q curves were the
basis for the deep study of the oily streak structure in the following chapters.It can also be considered that the new methodology
of x-ray analysis developed in this chapter now constitutes a solid basis that may allow for a large number of future analyses
of different new smectic systems (see below for the perspectives) with a particularly good resolution, in particular for smectic
systems containing topological defects.

The results on the oily streak structure were presented in chapter 4 and 5 of this manuscript. Using the combination of
experimental X-ray scattering and theoretical calculation of the intensity scattered by the rotating smectic layers inside the
hemicylinder, we were able to reconstruct the intimate structure of the oily streaks.

The chapter 4 concerns the sample of thickness 180 nm. The first result is that we succeeded to demonstrate the existence of
almost perfectly rotating smectic layers that indeed form a large slab of a perfect quarter cylinder inside each edge of the smectic
flattened hemicylinders. Closer to the center of curvature a rotating grain boundary is formed as postulated in previous works
[2]. However its dimensions are now precisely determined and appear different from the previous estimations [2, 3]. We find the
localization of one single dislocation of Burger vector 4 at the extremity of a rotating grain boundary without dislocation. As a
result, the smectic layers the closest from the curvature center that fully rotate from an orientation perpendicular to the substrate
to a parallel orientation may be the 11th smectic layer if we count the smectic layers starting from the center of curvature.

The second result is the demonstration of a − 1
2 disclination defect at the top of the curvature wall that joins two neighboring

quarter cylinders. For the sample of thickness 180 nm, it is made of around 6 layers that experience a large dilation in the
disclination center. We were able to estimate a large core size of the order of 35 nm. If we consider the smectic layers that
rotate around the central defect, they form a topological charge of + 1

2 . We therefore demonstrated for the first time in our group,
a topologically stable system since the − 1

2 disclination balances this + 1
2 topological charge.

The third result is the fact that the central part of the oily streak flattened hemicylinder is formed by a gable-roof like
structure with the two edge of the central part forming a chevron structure. We have performed in collaboration with Randall
Kamien from Pennsylvania university, a calculation on the energy minimization of the rotating smectic layers. This calculation
has given us a model of how the smectic layers in the edges of the oily streak hemicylinders are dilated with respect to the central
layers as a response to the very high bending energy close to the center of curvature. We obtained a quantitative expression
of this dilation in agreement with the experimental data, for example associated with local dilation as high as 4% for the 5th

smectic layer which appears to be the first expected smectic layer at the basis of the rotating grain boundary. This suggests that
such a dilation may occur close to most of the topological defects around which smectic layers rotate with a small radius of
curvature like for example close to the ellipse of focal conics.

Therefore, this model allows to understand the origin of the gable roof-like structure associated with the chevron grain
boundary. The tilt of the central layers is induced by the necessary connection between dilated rotating layers and central ones
along a new grain boundary. However, whereas each rotating layers is expected to be differently dilated due to its different
distance with respect to the center of curvature, we show that the tilt angle remains mostly constant along the grain boundary at
a smaller value than the one expected for a perfect connection between rotating and central layers. This is because this tilt angle
is the result of competing energies, in particular the surface energy that tends to flatten the gabble-roof like central part of the
hemicylinders.

The fourth result is that the structure of the curvature wall between two neighboring quarter cylinders is possibly associated
with a chain of dislocations of various Burger vectors. However a precise structure is yet to be produced and for this reason
we have started collaboration with a group of simulators from Canada, UK and USA to simulate the model of two neighboring
quarter cylinders. The idea is to also simulate the scattering of their simulated structure and to compare this theoretical scattering
to our experimental results in order to confirm a presence of these dislocations.
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The fifth result concerns the central topological grain boundary that separates the central smectic layers from the
perpendicular layer on the substrate. We collaborate with the group of Samo Kralj and Luka Mesarec from Slovenia who
have demonstrated that it is a total wall defect. It is not only characterized by melting of a smectic order but also by a locally
negative nematic uniaxiality associated with an order reconstruction locally induced in the defect by the melting of the smectic
order. As a result the thickness of the defects could be estimated to be around 20 nm.

The sixth result is the reconfirmation of the existence of the perpendicular layers in the oily streak on the substrate as it
was demonstrated with ellipsometric study performed by Coursault et al. [2]. This comes from the comparison between the
theoretical calculation of the scattered intensity from smectic A material with the experimental intensity extracted using TSAXS.
The theoretical calculation was performed without considering the perpendicular layers and a minimum intensity was found on
the orientation α = 0◦. On the other side the result from the TSAXS shows a maximum intensity at this orientation. This result
also suggests that a new calculation with the consideration of the presence of perpendicular layer is needed.

We have reported the evolution of the structure of the oily streaks as a function of the film thickness in chapter 5. We have
demonstrated that the disclination core size varies as the film thickness changes. For 180 nm it may be as high as around 35
nm whereas it may decrease towards 10 − 16 nm for the thicker films of thickness varying between 200 and 255 nm. This
is indeed a significant contribution to the fundamental understanding of the structure of topological defects with a nanoscale
resolution. With a small model we have emphasized the combined role of surface energy and dilation energy to induce a critical
thickness below which the disclination core size significantly increased. In addition to this, we have shown that the part below
the disclination zone remains unchanged when the film thickness changes. In contrast to this part, the disclination zone on
top of the curvature wall significantly changes when the film thickness changes. We have found that the thicker film have a
larger number of the smectic layers to be added in this zone and that the average dilation in the disclination zone consequently
decreased when the thickness was increased. This shows that it is energetically cheaper to add smectic layers in the disclination
area than in the rotating area of the quarter cylinders. This may be partly due to the prohibitive energy cost of these rotating
layers due to bending and dilation but the expected decreasing of surface energy when the thickness increases in the disclination
zone may also contribute to these observations.

We have also found that the more the film thickness increases, the more it becomes easier to obtain a flattened film surface.
The gable-roof like structure was found for all film thickness. However, the analysis of this structure shows that it evolves as
function of film thickness, the chevron disorientation decreasing with the film thickness. As a consequence, we might expect
that particularly thick films may even present a flat surface. This may be directly connected to the presence of always thicker
disclination areas when the film thickness increases. Along the grain boundary the disclination area may favor no tilt of the
smectic layers.

From a fundamental point of view, these results may contribute to a better understanding of smectic topological defects
in smectic A liquid crystals. The coexistence of 1D defects such as dislocation, − 1

2 disclination and the 2D defect such as
the total wall defect together with two types of non topological grain boundaries all together constitute a topologically stable
system. Our study of oily streaks appears possibly complete enough to try in the near future to calculate the corresponding oily
streak energy, taking into account all the different distorted zones evidenced during my thesis. We would to try to interpret the
observed curve of period evolution of the patterns as a function of thickness. The ultimate goal would be to understand how it
is possible to stabilize such a dense array of defects and high smectic distortion. We obtained some insight on the defect core
sizes. Our results have shown that the disclination zone increases and the chevron structure tends to disappear when the film
thickness increases. However for a thickness as small as 180 nm, the disclination appears to be small, associated with around
6 layers only and with an enlarged defect core. This has been explained to be related with the necessity of keeping the surface
almost flat with not too high dilation. This suggests that there might be a critical thickness beyond which not disclination or
chevron structure could be found. For these small systems where the disclination may have disappeared it would be necessary
to decrease as much as possible the surface energy.We might consequently expect the curvature wall to become elongated with
more defects being induced and with no well-balanced topological charge.

It would be interesting in the future to carry out a study on the determination of this critical value Using the methodology
developed in chapter 3. In addition to this, our preliminary data for the structure of the large stripes described in chapter 1 suggests
a structure surprisingly different from the one of the oily streaks, even at the edge of the corresponding hemicylinders. The
number of rotating layers for the same thickness seems to have largely decreased, deserving a deep analysis of the corresponding
X-ray data to try to understand the corresponding structure[4]. We might have another thin smectic texture with large stripes
associate with smaller anchoring energy able to present different kinds of topological defects, thus allowing for a study of the
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role of the anchoring energy on the induced array of defects and smectic distortion. Finally,it would be interesting to study the
evolution of the smectic structure in presence of nanoparticles to better understand the interaction between the defects and the
nanoparticles. However, since the nanoparticle concentration is not homogeneous, this requires nano-diffraction to be performed
at ESRF. On a specific area where we would identify the nanoparticle structure we would measure the smectic signal and its
variations in presence of nanoparticles. Last March I participated to a first experiment at ID1 with encouraging results that now
need to be confirmed by a new experiment. The good new is that we have developed already during my thesis the experimental
and theoretical methodologies that are required for such studies.
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Appendix A

Calculation of the total diffracted amplitude
for a single quarter of hemicylinder

A.1 coefficient of proportionality for the theoretical Bragg intensity

(a) (b)

Figure A.1: Evolution of the coefficient of the linear relationship between Integrated Bragg intensity and N2
2 − N2

1

A.2 Determination of N1
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(a) (b)

Figure A.2: Evolution of the coefficient of the linear relationship between full width at half maximum and N2 −N1

(a) (b)

Figure A.3: Evolution of the N2 as a function of orientation α for constant N1 values
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Appendix A

Newton tints of color : Evolution of
colors observed in optical microscopy in
parallel polarizers as a function of liquid
crystal film thickness and the path difference
δ
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Figure A.1: Caption

164



List of Figures

1.1 The 4-n-Octyl-4’-Cyanobiphenyl. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.2 Nematic director . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3 Uniaxial nematic type of ordering in thermotropic liquid crystal. n⃗ is the nematic director of the 8CB molecules

depicted as in the blue ellipses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.4 Phase transitions induced by temperature in 8CB molecules. . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.5 8CB smectic A ordering in thermotropic liquid crystal. n⃗ is the smectic director and is parallel to the layer

normal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.6 Undulation (left) and compression (right) of smectic layers with corresponding wave vector for the smectic-A

phase. u(r) is the one dimensional smectic layer displacement from its equilibrium position[25]. . . . . . . . 19
1.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.8 Schematic illustration of different types of anchoring conditions of molecules. (a) Uniform planar anchoring

(b) Degenerate planar anchoring (c) Homeotropic anchoring (d) tilted anchoring. [24] . . . . . . . . . . . . . 23
1.9 Smectic disclination points with different strength Q which is defined as the number of time the vector field

winds around the defect core in anticlockwise sense. For the red defect core, m = 3 and the Q = − 1
2 . For the

green defect core, m = 1 and Q = − 1
2 [29, 40, 41] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.10 The screw dislocation in smectic materials. (a) small screw dislocation showing a Burger vector parallel to the
defect line. Figure reprinted from [24]. (b) The giant screw dislocation formed by a pair of two dislocation lines
(shown in green color) of topological charge + 1

2 . Figure reprinted from [39]. . . . . . . . . . . . . . . . . . 25
1.11 The dislocation in smectic materials. (a) small edge dislocation with a Burger vector defect line. [24]. (b) The

giant edge dislocation in smectic with a core splits into a pair of disclination lines. These dislocations lines have
a topological charge of + 1

2 (green point) and - 1
2 (red point) respectively. Figure reprinted from [39]. . . . . . . 26

1.12 The focal conics domains. (a) The plane of that contains the ellipse is orthogonal to the plane that contain the
hyperbola. [49] (b) Model of the 2d pattern non-toroidal FCDs (c) FCPEM image of a 2d pattern of non-toroidal
FCDs [50]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.13 (a)The uniform planar sample (b) after applying a small disorientation angle, with no dislocation (c) curvature
wall for larger disorientation angle. It has some dislocations. (d) when the disorientation is increasing further
beyond 25◦ the wall is full of dislocations only[44] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.14 Tilt wall between two grains achieved by a system of confocal domains (Grandjean boundary) [44] . . . . . . 28
1.15 Rubbing machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.16 3D schematized model of (a) oily streak and (b) large streak. Smectic layers are curved in flattened hemicylinders

with the molecular orientation shown in yellow. The 2D cross-section view of (a) oily streaks (d) large stripes
have the same expected structure in the edges of the hemicylinder but the central part of large streak is larger
than that of the oily streaks. [60]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.17 Propagation of light through a polarizer, a uniaxial slab, and analyzer. The image reused from the book:Soft
matter Physics, an introduction, by Maurice Kleman and Oleg D.Lavrentovich, 2003 [27] . . . . . . . . . . . 30

1.18 (a) Periodic array of the flattened hemicylinders in the 8CB film confined between unidirectional anchoring
(on the MoS2 single crystalline substrate) and the homeotropic anchoring on the film-air interfaces. In the
highlighted part, the 8CB molecules are depicted in orange color. (b) Optical microscopy image between
crossed polarizers of size 165 µm × 123µm obtained on a sample of thickness 0.20 µm. [55, 60]. . . . . . . 31

1.19 Image of optical microscopy in reflection mode between parallel polarizers of sample in average of 120 nm
thick film. It has a large majority of oily streaks. The images was obtained from Lamya Essaoui. Inset graph:
Stripe period as a function of film thickness. The red line is a linear fit [38]. . . . . . . . . . . . . . . . . . . 32

1.20 Schematized model of the internal structure of the oily streak for 8CB film of 220 nm [38] . . . . . . . . . . 33
1.21 Schematized model of the internal structure of the oily streak for 8CB film of 1µm deposited on muscovite mica

substrate. [59] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.22 Bidimensional lattice of focal conics domains in a 8CB mica for a 8CB thickness of the order of 1.5 µm. [51]. 34

165



2.1 (a) A schematic of the most important components of a third-generation synchrotron. Electrons from a source
(e.g. a heated filament in an electron gun) are accelerated in a linear accelerator (linac) into an evacuated booster
ring (the black ring inside the storage ring), where they undergo further acceleration. Accelerated electrons
in the evacuated storage ring emitting electromagnetic (synchrotron) radiation as their direction is changed by
bending magnets, wigglers, or undulators [2]. (b) Synchrotron radiations range from the far infrared to the hard
X-ray regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.2 Schematized illustration of scattering from an infinitesimal volume dv. The electric field dED is calculated on
an arbitrary point M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.3 The calculated of intensity as function the magnitude wave vector transfer q with N = 5. . . . . . . . . . . . 50
2.4 Simulated true Bragg peak (dashed line) and experimentally measured (solid circle) line profile of intensity

from 1.5mm thick 8 OCB in smectic A liquid crystal phase [14] . . . . . . . . . . . . . . . . . . . . . . . . 55
2.5 Line profile of first-order diffraction intensity from a 1mm thick rectangular COB in smectic A liquid crystal

phase [19]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.6 Measured X-ray integrated scattered intensity as function of temperature where the SBragg(q⃗) is the X-ray

structure factor of the aerogel-8CB system. It is from 0.36 g
cm3 silica aerogel-8CB composite [22]. . . . . . . 58

2.7 (a). X-ray scattering intensity for a sample of thickness 450 nm measured by continuously rotating the wave
vector transfer q between α = 0◦ to α = 80◦.The inset corresponds to a zoom on the intensity values around
α = 90◦. (b) The hemicylinder mode that agrees with this measured intensity. . . . . . . . . . . . . . . . . 59

2.8 (a) The scattering ring observed on 2D XPAD detector using GISAXS (b) Normalized integrated intensity for
the 8CB film of 100 nm thickness, obtained by combining the GISAXS and TSAXS signals (c) Normalized
integrated intensity for an 8CB film of 230 nm thickness obtained in the TSAXS configuration [30]. . . . . . 60

2.9 The hemicylinder model for the oily-streak in the 8CB deposited on the rubbed PVA on film of (a) 100 nm
thickness (b) 230nm thickness [30]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.10 (a) The profile of rotating grain boundary extracted from experimental data (in black color) and for the oily-streak
in the 8CB film of 100 nm thickness deposited on the rubbed PVA substrate (with a calculated grain boundary
without dislocation in green) (b) Profile of the rotating grain boundary from data obtained for 8CB films of
different thicknesses deposited on MoS2 substrate [30, 31]. . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.11 The X-ray diffraction intensity from smectic A 8CB thicker film deposited on mica (thickness around 1µm (a)
The model of the internal structure of the oily streaks observed with mica (b) [32]. . . . . . . . . . . . . . . 61

2.12 X-ray scattering intensity as a function of the orientation α of the wave vector transfer q⃗ with respect to the
substrate for 8CB thin thickness [e = 70, 150, and 200 nm (full red triangles, black crosses, and open blue
circles, respectively)] deposited on (a) MoS2 [31] (b) muscovite mica thickness not precisely known) [33]. (c)
Rubbed PVA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.13 X-ray scattering of 8CB smectic A sample of 25 µm thickness. The tilt angle is the angle between the glass-plate
normal and a layer direction [34]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.14 (a) Chevron structure scheme in homogeneously aligned 8CB Smectic sample. The tilt angle is between the
direction of the layers and the normal to the bounding plate (b) non-deformed Bookshelf structure in smectic A
where the molecules are perpendicular to the layers. The layers are normal to the bounding plates that induce
planar anchoring. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.1 The experimental setup at SIXS beam line of Soleil synchrotron facilities. . . . . . . . . . . . . . . . . . . . 71
3.2 Grazing incident Small Angle X-ray Scattering set up and the diffraction image (a)Transmission Small Angle

X-ray Scattering set up and the signal (the comma in the zoomed part) scattered from the perpendicular layer (b). 71
3.3 Images from Eiger detector (a) before (b) after shifting the detector in order to visualize the signal scattered

from the central part of the hemicylinder. The part highlighted in black is the central part of the hemicylinder.In
red the position of the beam-stop that hides the direct beam is visible. . . . . . . . . . . . . . . . . . . . . . 72

3.4 The image showing the intensity scattered by the perpendicular layers. It is obtained from TSAXS set-up with
a 8CB zone of thickness 185 nm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.5 The maximum intensity scattered from perpendicular layers (a) The position of the maximum intensity from
perpendicular layers (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.6 Fitting of intensity at line Z = 105 pixels along the scattering ring . . . . . . . . . . . . . . . . . . . . . . . 74
3.7 Evolution of the diffraction ring as a function angle of incidence . . . . . . . . . . . . . . . . . . . . . . . . 74

166



3.8 (a) Refraction of the beam impinging on the 8CB film. The sample coordinate system is (x, y, z) and the
detector coordinate system is (X,Y, Z) (b) Refraction of the scattered beam on the 8CB-air interface. This
figure is in sample frame where the blue line is depicting the sample surface. The blue point is depicting the
8CB film that is diffracting the X-ray beam. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.9 The comparison between the variation of the center of the ring and the shift of the direct beam due to its
refraction on the air-film interface. The solid red circle is showing the shift of the direct beam for all values of
the incident angle ωi. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.10 The wave vector transfer on the detector for the different omega values shown in different colors. . . . . . . . 77
3.11 Grazing-incident in reflection geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.12 (a) The raw value of the wave vector transfer on the detector (b) The wave vector transfer inside the 8CB film. 79
3.13 Evolution of normalized qfilm values as a function of α . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.14 Evolution of the critical orientation α as a function of the incident angle ω. . . . . . . . . . . . . . . . . . . 81
3.15 Comparison of the qfilm values measured using different techniques. Blue is for the TSAXS measurement.

Red is for the GISAXS with the detector at position eix = 0. Black is the GISAXS with the detector at position
eix = -10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.16 The evolution of (a) unnormalized intensities and normalized intensities (b) for all incident ω angles at µ = 0. 82
3.17 The non-normalized intensities (a) and normalized intensities (b) extracted with detector shifted to allow the

signal from the central part of hemicylinder to reach on the detector. . . . . . . . . . . . . . . . . . . . . . . 83
3.18 Maximum intensity extracted for alpha 75◦ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.19 The evolution as a function of α for different incident angles (a) unnormalized maximum intensities and (b)

normalized intensities. They all come from the µscan. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.20 Comparison of the evolution of the theoretical µBragg and the position of the maximum intensities along the

circle of ω = 0.25◦ as a function of α (a) and the evolution of the evolution of the µBragg curves when omega
increases from 0.25◦ to 0.6◦. (b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.21 Evolution of ∆µ as a function of α issued from the µscan measurement when the Eiger detector is on position
−10 (as a result the beamstop hides the values between α = 68◦ and α = 75◦) . . . . . . . . . . . . . . . . 86

3.22 Comparison of profiles of Bragg Intensities issued for µBragg (a) and maximum intensity issued from µ = 0
measurement (b) at different incident angles ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.23 Thin film of 180 nm: Comparison of the maximum intensities collected at µ = 0◦ (red) with Bragg intensities
(blue) calculated using equation 3.26, experimental Bragg intensities collected at µscan (Black) and for different
diffraction incident angles ω: (a) ω = 0.1◦, (b) ω = 0.15◦, (c) ω = 0.3◦. . . . . . . . . . . . . . . . . . . . 88

3.24 The Bragg intensity extracted at µscan with the detector shifted to allow the signal from the central part of
the hemicylinder to reach on the detector (b) zoomed part showing the intensity from the central part of the
hemicylinder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.25 Evolution of raw width (∆q values) of the diffraction rings as a function of α extracted when the Eiger detector
was on the position 0 (a) Evolution of the width of the diffraction rings for different incident ω after the refining
procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.26 Evolution of ∆q as a function of α which comes from the µ = 0◦ measurement when the Eiger detector is on
position 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.27 Evolution of Integrated Bragg intensity as a function of α from a combination of omega 0.25◦ and 0.6◦(b) . 90
3.28 The asymmetric scattering ring from a sample of 230 nm thickness data corrected with (a) the detector displaced

(b) the detector not displaced (c) The signals from perpendicular layers from a sample of 180 nm thickness film
with a majority of oily streaks. They are measured using TSAXS configuration. . . . . . . . . . . . . . . . . 91

3.29 The intensity extracted from asymmetric scattering ring when (a) the detector is displaced (b) the detector is not
displaced. These data were extracted from a film of 230 thickness. . . . . . . . . . . . . . . . . . . . . . . . 91

3.30 The signals from perpendicular layers measured using TSAXS configuration. (a) Well oriented in a 180 nm
thick film sample (b) poorly oriented 230 thick sample. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.31 The evolution of the position of the experimental maximum intensity and the theoretical Bragg intensity for a
misaligned oily streak sample of 230 nm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.32 The corrected Bragg intensity extracted from asymmetric scattering ring (shown in figure 3.29) when (a) the
detector is displaced (b) the detector is not displaced. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

167



4.1 (a) Scattering ring from GISAXS for ω = 0.25◦ (b) The experimental integrated Bragg intensity from a sample
of 180 nm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.2 (a) The evolution of the ∆q as a function of α .(b)Evolution of 1/∆q the inverse of the ∆q as a function of α . 99
4.3 (a) The evolution of the ∆µ as a function of α .(b) Evolution of normalized qfilm values as a function of α. . 100
4.4 (a) Normalized integrated intensity for the 8CB film of 100 nm thickness, obtained by combining the GISAXS

and TSAXS signals. (b) Normalized integrated intensity for an 8CB film of 230 nm thickness was obtained in
the TSAXS configuration [3]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.5 The comparison between the integrated Bragg intensity and the inverse of the ∆q. . . . . . . . . . . . . . . . 101
4.6 (a) The quarter of the cylinder showing the number of smectic layers being considered i.e. N1 and N2 (b)A

quarter of perfect hemicylinder showing a triangular slab of width δα. . . . . . . . . . . . . . . . . . . . . 102
4.7 Two neighboring perfect quarter cylinders that we will use to calculate the total intensity including all possible

interference from them. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.8 The evolution of (a) the real part (b) the imaginary part of the theoretical scattered amplitude from a single

quarter cylinder. The green color is for the integration from β = 0 to β = π
2 , the blue color is for the integration

from β = π
2 to β = π. The red color is the summation of these two integrations. We can see that the integration

from 0 to π is perfectly equal to the sum of the integral from 0 to π/2 and the integral from π/2 to π. . . . . 108
4.9 The numerically calculated Bragg intensity that can be diffracted by (a) a Single isolated quarter (b) two

neighboring perfect quarter cylinders. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.10 Evolution of the Bragg intensity from a single perfect quarter cylinder for different value of N2. In this

calculation N1 was fixed at its minimum value 1. The results are always the same for other value of N1. . . . 109
4.11 Peak of theoretical Bragg peak for a given value of N2 −N1 . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.12 Evolution of Integrated Bragg Intensity as function ofN2

2 −N2
1 for different value ofN1 for (a) a Single isolated

quarter (b) two neighboring perfect quarter cylinders. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.13 Evolution of ∆q as function of N2 − N1 for different value of N1for (a) a Single isolated quarter (b) two

neighboring perfect quarter cylinders. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.14 (a) Single triangular slab. (b) Calculation of intensity scattered around a fixed value of α = 45◦. This intensity

is plotted as a function of γ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.15 (a) Evolution of the total number (N2) of diffracting smectic layers at constantN1 = 10 as a function of α. The

red curve was calculated using ∆q whereas the blue curve was calculated using the integrated Bragg intensity
(b) quarter of the cylinder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.16 (a) Evolution of the total number (N2) of diffracting smectic layers with N1 varying as a function of the
orientation α of the wave vector transfer q⃗. The yellow curve was calculated using ∆q whereas the blue curve
was calculated using the integrated Bragg intensity. (b) The corresponding single quarter cylinder. The red line
is the rotating grain boundary without dislocation. At the top of the grain boundary, there is a dislocation defect
of Burger vector 4 shown by the purple close ellipse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.17 Evolution of N1 for various combinations of xo and αc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
4.18 (a) Evolution of total number (N2) diffracting smectic layers withN1 varying as a function of the orientation α

of the wave vector transfer q⃗. The yellow curve was calculated using ∆q whereas the blue curve was calculated
using the integrated Bragg intensity. (b) Two neighboring perfect quarters of 130 nm thickness. The red line is
the rotating grain boundary without dislocation. At the top of the grain boundary, there is a dislocation defect
of Burger vector 4 shown in the purple close ellipse. The curvature wall angle omega is also indicated to be
around 40◦ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.19 (a) Evolution of total number (N2) of diffracting smectic layers withN1 varying as a function of the orientation
α of the wave vector transfer q⃗. The yellow curve was calculated using ∆q whereas the blue curve was calculated
using the integrated Bragg intensity. (b) Two neighboring perfect quarter cylinder of 130 nm thickness. The
red line is rotating grain boundary without dislocation. At the top of the grain boundary, there is a dislocation
defect of Burger vector 4 shown in the purple close ellipse. The red point is the core of the disinclination defect. 118

4.20 The schematized model of the disinclination defect core size . . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.21 (a) Evolution of total the number (N2) of diffracting smectic layers with N1 varying as a function of the

orientation α of the wave vector transfer q⃗. The yellow curve was calculated using ∆q whereas the blue
curve was calculated using the integrated Bragg intensity (b) Two neighboring perfect quarter cylinder with the
zoomed part along the curvature wall showing a zone possibly occupied by a chain of dislocations. . . . . . . 119

168



4.22 (a) Perfect planar sample before applying the stress to disorient its two edges. It is showing only dilated layers
without dislocations (b) The curvature wall without dislocations after applying a small stress (c) The curvature
wall with a chain of dislocations after applying a larger stress (d) the curvature wall made up of only a chain of
dislocations[7] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.23 Simulation of two joined quarter of cylinders (Results from research group of Scott Mac Lachlan, Patrick E.
Farrel and Timothy James Atherton). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.24 Two neighboring perfect quarter cylinder of 130 nm thickness. The red line is the rotating grain boundary
without dislocation. At the top of the grain boundary, there is a dislocation defect of Burger vector 4 shown in
the purple close ellipse. The red point is the core of the disclination defect. . . . . . . . . . . . . . . . . . . 121

4.25 (a) Images from Eiger detector after shifting the beam stop in order to visualize signal scattered from the central
part of the hemicylinder (b)) The schematized internal structure of the hemicylinder [3], the wave vector transfer
q⃗ is parallel to the layer normal in the central part. The red inclined line is rotating grain boundary without
dislocation. At the top of the grain boundary, there is a dislocation defect of Burger vector 4 shown in the purple
close ellipse. The red point is the core of the disinclination defect. . . . . . . . . . . . . . . . . . . . . . . . 122

4.26 (b) zoom of the central part. The two brighter spots comes from central smectic layers which have normals
orientated in different directions. (c) The Bragg intensity extracted from this central part of the hemicylinder. 123

4.27 The schematized internal structure of the hemicylinder , the two wave vector transfers q⃗1 and q⃗2 are showing
the two possible orientations of the smectic director of molecules in the central part. . . . . . . . . . . . . . . 123

4.28 The new internal structure of the hemicylinder. The green solid triangle is a 2D topological grain boundary
The red inclined line is rotating grain boundary without dislocation. At the top of the grain boundary, there
is a dislocation defect of Burger vector 4 shown in the purple close ellipse. The red point is the core of the
disinclination defect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.29 The Evolution of the wave vector transfer q⃗ as a function of orientation α for both rotating and central smectic
layers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.30 The new internal structure of the hemicylinder. The green solid triangle is aD topological grain boundary
The red inclined line is rotating grain boundary without dislocation. At the top of the grain boundary, there
is a dislocation defect of Burger vector 4 shown in the purple close ellipse. The red point is the core of the
disinclination defect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.31 The model of two joint-quarter cylinders. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
4.32 The evolution of the ∆q as a function of α . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
4.33 The model of two joint-quarter cylinders. The position of the rotating grain boundary (shown in red curve) is

xo = 11.3 nm. The critical angle αc = 40◦. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
4.34 The Evolution of the wave vector transfer q⃗ as a function of orientation α for both rotating and central smectic

layers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
4.35 The evolution of the theoretical intensity from two neighboring perfect quarter cylinder (b) The experimental

intensity measured using TSAXS configuration. The maximum value at α = 0◦ was scattered perpendicular
layers on the substrate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.36 The evolution of the wave vector transfer for the whole hemicylinder. qperd is for perpendicular layers. . . . . 133
4.37 Schematic presentation of smectic A order within the cell. The frustration in translational order is resolved by

forming a wall defect at z=hw. The smectic layer periodicity above and below the wall are given by q′ and
qper respectively (a) Schematic geometric presentation of nematic order changes in the order reconstruction
transformation (b) the corresponding degree of biaxiality β2

sn (c) . . . . . . . . . . . . . . . . . . . . . . . . 135
4.38 The evolution of the theoretical intensity from two neighboring perfect quarter cylinder (b) The experimental

intensity measured using TSAXS configuration. The maximum value at α = 0◦ was scattered perpendicular
layers on the substrate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

4.39 Key features of nematic and smectic A order on crossing the wall defect. At the wall center the smectic order is
melted and the nematic order exhibits negative uniaxiality. The Total Wall Defect is located at z

d0
= 7, while

the total sample height is set as h
d0

= 57 for sample of 180 nm thickness. The solid line is for biaxiality . . . 136

5.1 The comparison of the integrated Bragg intensity from the four films of thickness 180, 200,230,255 nm. . . 142
5.2 Comparison of the evolution of number of scattering layers calculated from integrated Bragg intensity and ∆q

as a function of thickness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
5.3 Comparison of the evolution of number of scattering layers as a function of thickness . . . . . . . . . . . . . 144

169



5.4 The comparison of the wave vector transfer q⃗ inside the film from four film of thickness 180, 200,230,255 nm. 145
5.5 The area below the disclination zone that this the same for all the four film of thickness 180, 200,230,255 nm. 146
5.6 Comparison of curves of evolution the q values as a function of α for different film thickness. . . . . . . . . . 147
5.7 Evolution of the disclination zone as function of film thickness . . . . . . . . . . . . . . . . . . . . . . . . . 148
5.8 Prototype of the area in the disclination zone. The h is the undulation of the first layer in this zone. . . . . . . 149
5.9 The new internal structure of the hemicylinder. The green solid triangle is a 2D topological grain boundary

The red inclined line is rotating grain boundary without dislocation. At the top of the grain boundary, there
is a dislocation defect of Burger vector 4 shown in the purple close ellipse. The red point is the core of the
disinclination defect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.10 Evolution of the tilt angle for different film thicknesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

A.1 Evolution of the coefficient of the linear relationship between Integrated Bragg intensity and N2
2 −N2

1 . . . . 161
A.2 Evolution of the coefficient of the linear relationship between full width at half maximum and N2 −N1 . . . 162
A.3 Evolution of the N2 as a function of orientation α for constant N1 values . . . . . . . . . . . . . . . . . . . 162

A.1 Caption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

170


	Table of Contents
	Introduction to liquid crystals phase and topological defects
	Introduction
	Nematic phase
	Smectic A phase 
	Nematic distortion free energy density
	Smectic distortion free energy density
	Anchoring and surface energy

	Topological defects in smectic liquid crystal phase
	Disclination
	Dislocations
	Focal conics domain
	2D defect: Grain boundaries in smectics

	Study of the oily-streak in 8CB smectic A thin film 
	sample preparation 
	Polarized optical microscopy study
	Structural Evolution of the smectic stripe as function film thickness.

	Conclusion and objectives
	Conclusion


	X-ray diffraction of smectic liquid crystal 
	Introduction
	X-ray diffraction from a 3D structure
	Scattered intensity from a single isolated atom
	Scattered intensity from an ensemble of atoms
	3D crystal

	Peierls-Landau instability
	X-ray scattering of perfectly oriented smectic A liquid crystal
	Finite-size Effects on the structure factor of the smectic A liquid crystal 
	The X-ray scattering of distorted smectic A liquid crystal films 
	Smectic ordering in a silica aerogel
	Review on the construction of the oily-streak model
	Chevron structure evidenced using X-ray diffraction in thick films

	Conclusion

	Experimental technique and data analysis
	Introduction 
	Experimental set up

	Data treatment technique and analysis for measurement at = 0 
	Extraction of the data from perpendicular layers
	Extraction of Data from rotating smectic layers
	Determination of the Direct beam position
	Calculation of the correction of the refraction effects on the diffracted beam from the 8CB film
	Comparison of the experimental wave vector transfer q values from different measurement techniques
	Extraction of maximum intensity from the scattering ring

	Determination of Bragg condition
	The theoretical position mu of Bragg intensity 
	The experimental position, of Bragg intensity
	Evolution of the width  of the diffraction ring from  measurement
	Bragg intensity
	Evolution of the width  of the diffraction ring
	Integrated Bragg Intensity 
	Correction of sample misorientation-based asymmetry

	Conclusion

	Study of internal structure of a smectic A thin film of 180 nm thickness 
	Introduction
	The perfect planar stack of smectic layers
	The curved smectic layers
	Calculation of scattered intensity from an 8CB hemicylinder
	Analytical calculation
	Numerical calculation

	Determination of the theoretical integrated Bragg intensity
	Implication of the numerical calculation
	Determination of the number of diffracting smectic layers N1 and N2
	Hypothesis 1: Keeping N1 constant 
	Hypothesis 2: Varying N1 as a function of  

	Interpretation of the evolution of the number of diffracting smectic layers for constructing the two edges of the hemicylinder.
	Alpha between 40 and 70
	Alpha between 70 and 90: Disclination areas
	Small  less than 40 and Vertical grain boundary
	Discussion 

	Study of the central part of the hemicylinder
	 value and Evolution of the intensity
	Evolution of the wave vector transfer  in the smectic oily streak
	Energy minimization for rotating layers
	Comparison experiment-theory for  larger than 40 
	Implication for the tilt angle of the central layers
	Comparison experiment-theory for  smaller than  40 and for  greater than  70
	Implication for the full width at half maximum q
	Role of the substrate
	Total Wall defect

	conclusion

	Study of the effect of variation of film thickness on the oily-streak model in smectic A sample
	Thicker film sample
	Evolution of integrated Bragg intensity
	N2 from both integrated Bragg intensity and q
	Comparison of the wave vector transfer q for different film thicknesses 
	Study of the central part of the hemicylinder

	Conclusion

	General Summary and Perspectives
	Calculation of the total diffracted amplitude for a single quarter of hemicylinder
	coefficient of proportionality for the theoretical Bragg intensity 
	Determination of N1

	Newton tints of color : Evolution of colors observed in optical microscopy in parallel polarizers as a function of liquid crystal film thickness and the path difference  
	List of figures

