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M. Lefèvre Pascal Professeur Université d’Artois Rapporteur
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Title: The Littlewood problem and non-harmonic Fourier series.

Abstract: We investigate trigonometric polynomials both in the harmonic and the non-
harmonic (non-periodic) case. More precisely, we are interested in lower bounds for L1-
norms or B1-norms (Besicovitch-norms) of such polynomials.

We study harmonic trigonometric polynomials with quadratic frequencies. We extend
previous results for polynomials having only zero or one as coefficients to polynomials with
complex coefficients. Furthermore, we obtain that up to a multiplicative constant, the
square root is a lower bound for the L1-norms of polynomials with monotone and uniformly
bounded coefficients.

Next, we give explicit lower bounds for L1 and B1-norms of non-harmonic trigonometric
polynomials. If the polynomials have only zero or one as coefficients, we deduce a logarith-
mic lower bound for its L1 or B1-norms with respect to the number of terms.

Afterwards, we look at non-harmonic trigonometric polynomials with gaps (between the
frequencies) going to infinity. We give lower bounds for the L1-norm of such polynomials.

Finally, we investigate two particular trigonometric polynomials: Lacunary and polyno-
mials with frequencies having multidimensional structure. We extend multiple results from
the integer to non-integer case. We obtain lower bounds for B1-norms of such polynomials.

Keywords: Littlewood conjecture, Besicovitch norm, non-harmonic Fourier series, lacu-
nary series.
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Titre: Le problème de Littlewood et les séries de Fourier non-harmoniques.

Résumé: Nous étudions les polynômes trigonométriques à la fois dans le cadre har-
monique et non-harmonique (non-périodique). Plus précisément, nous nous intéressons
aux bornes inférieures au sens de la norme L1 et de la norme B1 (de Besicovitch) de ces
polynômes.

D’abord, nous considérons les polynômes trigonométriques avec des fréquences quadra-
tiques et des coefficients complexes. Nous étendons ainsi les résultats précédents sur les
polynômes ayant seulement zéro ou un comme coefficients. Pour les polynômes à coeffi-
cients monotones et uniformément bornés, nous obtenons une minoration de la norme L1

par la racine du nombre de termes.
Ensuite, nous donnons aussi des bornes inférieures explicites pour les normes L1 et B1

de tels polynômes. Lorsque les polynômes n’ont que zéro ou un comme coefficients, nous
en déduisons une minoration de la norme L1 ou B1 par le logarithme du nombre de termes.

Nous nous intéressons aussi aux polynômes trigonométriques non-harmoniques tels que
les différences successives entre les fréquences tendent vers l’infini. Nous donnons des mi-
norations de la norme L1 pour de tels polynômes.

Enfin, nous étudions deux types de polynômes trigonométriques. D’une part ceux dont
les fréquences sont lacunaires et d’autre part, ceux dont les fréquences ayant une structure
multidimensionnelle. Nous étendons plusieurs résultats du cas entier au cas non-entier.
Nous obtenons des bornes inférieures pour la norme B1 pour de tels polynômes.

Mots-clés: Conjecture de Littlewood, norme de Besicovitch, series lacunaires, séries de
Fourier non-harmoniques.
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Chapter 1

Introduction

English version

In this thesis, we consider trigonometric polynomials of the form

N∑
k=0

ake
2iπλkt, (1.0.1)

where (ak)k=0,...,N is a sequence of complex numbers and (λk)k=0,...,N is a sequence of real
numbers commonly known as frequencies. We focus on lower bounds of the L1-norm or the
Besicovitch B1-norm of non-harmonic (non-periodic) trigonometric polynomials of the form
(1.0.1). Recall that, for 1 ≤ p < +∞, the Besicovitch Bp-norms are defined by

∥Φ∥pBp
= lim

T→+∞

1

T

∫
[−T/2,T/2]

|Φ(x)|p dx.

Those norms can be seen as a substitute to Lp([−1/2, 1/2])-norms to investigate non-
harmonic trigonometric polynomials.

The starting point of this thesis is the investigation by Littlewood [26] of the properties
of the trigonometric polynomials having only 0 or 1 as coefficients

N∑
k=0

e2iπnkt,

where the nk’s are distinct integers. In particular, Littlewood conjectured that

LN := inf
n0<n1,<···<nN

∫ 1/2

−1/2

∣∣∣∣∣
N∑
k=0

e2iπnkt

∣∣∣∣∣ dt ≥ C ln(N + 1) (1.0.2)

for some constant C ≤ 4

π2
.

The first non-trivial estimate was obtained by Cohen [4] who proved that

LN ≥ C(ln(N + 1)/ ln ln(N + 1))1/8

1



CHAPTER 1.

for N ≥ 3. Subsequent improvements are due to Davenport [5], Fournier [7] and crucial
contributions by Pichorides [33, 34, 35, 36] leading to

LN ≥ C ln(N + 1)/(ln ln(N + 1))2.

Finally, Littlewood’s conjecture was proved independently by Konyagin [24] and McGehee,
Pigno, Smith [27] in 1981. In both papers, Littlewood’s conjecture is actually obtained as
a corollary of a stronger result (and they are not consequences of one another). Here, we
are particularly interested in the result of McGehee, Pigno and Smith [27, 20]:

Theorem 1.0.1 (McGehee, Pigno & Smith). For n0 < n1 < · · · < nN integers and
a0, . . . , aN complex numbers,∫ 1

2

− 1
2

∣∣∣∣∣
N∑
k=0

ake
2iπnkt

∣∣∣∣∣ dt ≥ CMPS

N∑
k=0

|ak|
k + 1

where CMPS is a universal constant (CMPS = 1/30 would do).

Taking the ak’s to have modulus 1, one thus obtains a lower bound

LN ≥ C ln(N + 1).

The year after, Stegeman [38] and Yabuta [41] independently suggested some modifications
of the argument in [27] that lead to a better bound of LN , namely:

Theorem 1.0.2 (Stegeman, Yabuta). Let N ≥ 3. For n0 < n1 < · · · < nN integers∫ 1/2

−1/2

∣∣∣∣∣
N∑
k=0

e2iπnkt

∣∣∣∣∣ dt ≥ 4

π3
ln(N + 1).

Our first results concern the study of finite trigonometric polynomials with quadratic
frequencies λk = k2, which appear for example, in the solution of the Schrödinger’s equation.
Let a = (ak)k=0,...,N be a sequence of complex numbers, we write

E
[
|a|2
]
=

1

N + 1

N∑
k=0

|ak|2.

Thus for the constant sequence ak = 1, k = 0, . . . , N , Zalcwasser’s result [43] can be written
as ∫ 1

2

− 1
2

∣∣∣∣∣
N∑
k=0

e2iπk
2x

∣∣∣∣∣ dx ≥ C
√
N
(
E[|a|2]

)1/2
, (1.0.3)

for some positive constant C. Our first result is an extension of this estimate to trigono-
metric polynomial with complex coefficients ak. It is written in terms of the l1-norm of the
increments of the sequence a:

∥∂a∥1,N = |a0|+
N∑
k=1

|ak − ak−1|,

and can be stated as follows

2



CHAPTER 1.

Theorem 1.0.3. For every ε > 0 there exists a constant Cε such that if (ak)k=0,...,N is a
sequence of complex numbers, then

∫ 1
2

− 1
2

∣∣∣∣∣
N∑
k=0

ake
2iπk2x

∣∣∣∣∣ dx ≥ Cε

√
N

(E[|a|2]) 1
2

∥∂a∥1,N

2+ε

(E[|a|2])
1
2 . (1.0.4)

The proof is an adaptation of that of Zalcwasser and is based on an approximate func-
tional equation obtained with the residue Theorem, combined with continued fractions
decomposition of irrational numbers.

We now compare our result, Theorem 1.0.3, with Zalcwasser’s and McGehee, Pigno,
Smith’s results respectively by giving two examples:

1. Let α, β > 0 and (ak)k=0,...,N be an increasing sequence such that α < ak < β. For N
large, we have ∫ 1

2

− 1
2

∣∣∣∣∣
N∑
k=0

ake
2iπk2x

∣∣∣∣∣ dx ≥ β
(α
β

)(3+ε)√
N.

2. let α ∈ R and ak = (1 + k)α for k = 0, . . . , N . When looking at the asymptotic
behavior, if −1/6 < α < 0, the lower bound in Theorem 1.0.1 behaves as constant

while the lower bound in Theorem 1.0.3 grows as N
1
2
+α(3+ε).

For non-integer frequencies, the first result has been obtained by Hudson and Leckband [14]
who used a clever perturbation argument to prove the following:

Theorem 1.0.4 (Hudson & Leckband). For λ0 < λ1 < . . . < λN real numbers and
a0, . . . , aN complex numbers,

lim
T→+∞

1

T

∫ T/2

−T/2

∣∣∣∣∣
N∑
k=0

ake
2iπλkt

∣∣∣∣∣ dt ≥ CMPS

N∑
k=0

|ak|
k + 1

where CMPS is the same constant as in Theorem 1.0.1.

A further extension is due to Nazarov [30] who showed that such a result holds not only
when T → +∞ but as soon as T > 1:

Theorem 1.0.5 (Nazarov). For T > 1, there exists a constant CT such that, for 0 < λ0 <
· · · < λN real numbers verifying |λk − λℓ| ≥ |k − ℓ|(or equivalently λk+1 − λk ≥ k) and
a0, . . . , aN complex numbers,∫ T/2

−T/2

∣∣∣∣∣
N∑
k=0

ake
2iπλkt

∣∣∣∣∣ dt ≥ CT

N∑
k=0

|ak|
k + 1

. (1.0.5)

Note that the constant in Nazarov’s proof is not explicit. We will improve on Nazarov’s
proof to obtain a more precise and explicit estimate of the constant CT . This also allows
us to directly obtain the result of Hudson and Leckband:

3



CHAPTER 1.

Theorem 1.0.6. Let λ0 < λ1 < · · · < λN be real numbers and a0, . . . , aN be complex
numbers. Then

i. we have

lim
T→+∞

1

T

∫ T/2

−T/2

∣∣∣∣∣
N∑
k=0

ake
2iπλkt

∣∣∣∣∣ dt ≥ 1

26

N∑
k=0

|ak|
k + 1

.

ii. If further a0, . . . , aN all have modulus larger or equal to 1, |ak| ≥ 1 then

lim
T→+∞

1

T

∫ T/2

−T/2

∣∣∣∣∣
N∑
k=0

ake
2iπλkt

∣∣∣∣∣ dt ≥ 4

π3
ln(N + 1).

iii. Assume further that for k = 0, . . . , N − 1, λk+1−λk ≥ 1, then, for every T > 1, there
exists a constant C(T ) such that, for every a0, . . . , aN ∈ C,

1

T

∫ T/2

−T/2

∣∣∣∣∣
N∑
k=0

ake
2iπλkt

∣∣∣∣∣ dt ≥ C(T )
N∑
k=0

|ak|
k + 1

. (1.0.6)

Moreover,

(a) for T ≥ 72 we can take C(T ) =
1

122
;

(b) for 1 < T ≤ 2, C(T ) = O
(
(T − 1)15/2

)
.

Remark. For 2 < T < 72, (1.0.6) follows from the case (b) with T = 2, but the constant
is not explicit.

The proof is related to the one implemented by McGehee, Pigno and Smith as extended
by Nazarov to prove Theorem 1.0.5. Here we follow constants more closely by introducing
and optimizing various parameters throughout the proof.

Theorem 1.0.6 can be used to lower bound a curve length of trigonometric polynomials.
Let λk+1 ≥ λk + 1 and consider a curve in the complex plane of the form

Γ = {z = P (t), t ∈ [0, T ]} with P (t) =
N∑
k=0

ake
2iπλkt.

Figure 1.1 shows two such curves.

Fig. 1.1 – Left: 1 + e4iπt + e20it and right 1 + e16it + e24it + e34it both for t = 0 to 5.

4
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Since

P ′(t) = 2iπ
N∑
k=0

akλke
2iπλkt,

it follows from Theorem 1.0.6 that, when T ≥ 72, the length of Γ is lower bounded by

ℓ(Γ) =

∫ T

0

|P ′(t)| dt ≥ T

20

N∑
k=0

|λk||ak|
k + 1

.

Next, we investigate the L1-norms of non-harmonic trigonometric polynomials with fre-
quencies forming a sequence with gaps going to infinity. Those polynomials were studied
in the L2-case by Kahane [22] who improved on a result by Ingham [15]. Our main result
here is an L1-analogue of Kahane’s result.

We first recall several well-known results in the L2-setting:

Theorem 1.0.7 (Ingham). Let γ > 0 and T >
1

γ
. Then there exist constants 0 <

A2(T, γ) ≤ B2(T, γ) such that
– for every sequence of real numbers Λ = {λk}k∈Z such that λk+1 − λk ≥ γ,
– for every sequence (ak)k∈Z ∈ ℓ2(Z,C),

A2(T, γ)
∑
k∈Z

|ak|2 ≤
1

T

∫ T/2

−T/2

∣∣∣∣∣∑
k∈Z

ake
2iπλkt

∣∣∣∣∣
2

dt ≤ B2(T, γ)
∑
k∈Z

|ak|2

Then Kahane showed that the condition T >
1

γ
can be lifted if λk+1 − λk → +∞ when

k → ±∞:

Theorem 1.0.8 (Kahane). Let Λ = {λk}k∈Z such that λk+1 − λk → +∞ when k → ±∞.
Then, for every T > 0, there exist constants 0 < A2(T,Λ) ≤ B2(T,Λ) such that

A2(T,Λ)
∑
k∈Z

|ak|2 ≤
1

T

∫ T/2

−T/2

∣∣∣∣∣∑
k∈Z

ake
2iπλkt

∣∣∣∣∣
2

dt ≤ B2(T,Λ)
∑
k∈Z

|ak|2

holds for every sequence (ak)k∈Z ∈ ℓ2(Z,C).

Here, our main result concern the L1-case and states as follows

Theorem 1.0.9. Let Λ = (λk)k∈Z be an increasing sequence with λk+1 − λk → +∞ when
k → ±∞. Then, for every T > 0, there exists a constant Ã1(T,Λ) > 0 such that, if
(ak)k∈N ⊂ C is a sequence of complex numbers, and N ≥ 1, then

Ã1(T,Λ)
N∑
k=0

|ak|
1 + k

≤ 1

T

∫ T/2

−T/2

∣∣∣∣∣
N∑
k=0

ake
2iπλkt

∣∣∣∣∣ dt. (1.0.7)

5
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If further
∑
k∈Z

1

1 + |λk|
converges, then there also exists a constant A1(T,Λ) such that, for

every (ak)k∈Z ⊂ C and every N ≥ 1,

A1(T,Λ) max
k=−N,...,N

|ak| ≤
1

T

∫ T/2

−T/2

∣∣∣∣∣
N∑

k=−N

ake
2iπλkt

∣∣∣∣∣ dt. (1.0.8)

The main difficulty in the proof of this result is that Kahane’s argument cannot be
adapted directly. Indeed, Kahane used in a crucial way that in Ingham’s Inequality the
L2-norm of a trigonometric polynomial is both lower and upper bounded by the ℓ2-norm
of its coefficients. In the L1-case, the upper bound is in terms of the ℓ1-norm of the coeffi-
cients and does not match the lower bound, which is given in terms of a weighted l1 norm.
Instead, our proof uses Nazarov’s Theorem, a compactness argument and a trick allowing
us to benefit from Kahane’s result.

In the end, we investigate the Besicovitch B1-norms of lacunary trigonometric polyno-
mials and polynomials with frequencies having multidimensional structure. Indeed, non-
harmonic lacunary polynomials are trigonometric polynomials

∞∑
k=0

ake
2iπλkt,

with
λk+1

λk
> q > 1.

Our main result is an extension to real setting of a result in the integer case done by
Zygmund [44] and states as follows

Theorem 1.0.10. Let q > 1 and (λk)k≥0 be a sequence of real numbers verifying

λ0 > 1 and λk+1 ≥ qλk

and a0, . . . , aN be a sequence of complex numbers. Then for 1 ≤ p <∞, there exists positive
constant Ap,q, Bp,q such that

Ap,q

(
N∑
k=0

|ak|2
)1/2

≤ lim
T→+∞

(
1

T

∫ T/2

−T/2

∣∣∣∣∣
N∑
k=0

ake
2iπλkt

∣∣∣∣∣
p

dt

) 1
p

≤ Bp,q

(
N∑
k=0

|ak|2
)1/2

.

Next let A be a finite subset of R, we say that A is (δ;m,n) strongly 2-dimensional in
R if there exists two real numbers d and D with D > (2 + δ)d such that

A =
⋃
k∈I

(Ak + kD) (1.0.9)

for some set I containing m integers and real subsets Ak ⊆ [−d, d] verifying |Ak| ≥ n.
We extend a result by Hanson [10] from the integer to the non-integer case, we obtain

the following

6
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Theorem 1.0.11. Let δ > 0 and m,n be two positive integers satisfying

m ≥ π3221C3
MPS ln(m)3 ln(n)3 and n ≥ π3221C3

MPS ln(n)
3,

where CMPS is the constant in Theorem 1.0.1. Suppose A is (δ;m,n) strongly 2-dimensional
subset of R. Then

lim
T→∞

1

T

∫ T/2

−T/2

∣∣∣∣∣∑
a∈A

e2iπat

∣∣∣∣∣ dt ≥ C2
MPS

(29π)2
(
2 + ln(1 + 2

δ
)
) ln(m) ln(n).

Both proofs rely on an argument of Hudson and Leckband [14] used to extend the so-
lution to the Littlewood conjecture from integer to real setting. Indeed, the idea is to
approximate real numbers by rational numbers via a Lemma of Dirichlet.

Manuscript organization

In Chapter 2, we recall some classical results such as Ingham’s inequalities, asymptotic
estimate of the L1-norm of the Dirichlet kernel and Trigub’s Theorem which is indeed a
solution to Littlewood’s Conjecture 1.0.2.

In Chapter 3, we focus on the particular case of harmonic trigonometric polynomials
whose frequencies are quadratic. We extend Zalcwasser’s result (1.0.3) to trigonometric
polynomials with complex coefficients.

In Chapter 4, we are interested in non-harmonic trigonometric polynomials. Depending
on the integration interval, we give quantitative versions of Nazarov’s Theorem 1.0.5.

In Chapter 5, we study non-harmonic trigonometric polynomials whose increment be-
tween frequencies tends towards infinity and we give an L1-version of Kahane’s Theorem
1.0.8

In Chapter 6, we extend results by Zygmund and Hanson concerning respectively bounds
for the L1-norm of lacunary harmonic polynomials and harmonic polynomials whose fre-
quencies have multidimensional structure to the non-harmonic framework.
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Version française

Dans cette thèse, nous considérons des polynômes trigonométriques non-harmoniques (c’est
à dire non-périodiques) de la forme

N∑
k=0

ake
2iπλkt, (1.0.10)

où (ak)k=0,...,N est une suite de nombres complexes et les λk sont des nombres réels ap-
pelés fréquences. Nous nous intéressons aux bornes inférieures de la norme L1 ou B1 (de
Besicovitch) de ces polynômes trigonométriques.

Rappelons que lorsque 1 ≤ p < +∞, les normes de Besicovitch Bp sont définies par

∥Φ∥pBp
= lim

T→+∞

1

T

∫
[−T/2,T/2]

|Φ(x)|p dx.

Ces normes peuvent être considérées comme un substitut aux normes Lp([−1/2, 1/2]) pour
étudier les polynômes trigonométriques non-harmoniques.

Le point de départ de cette thèse est l’étude par Littlewood [26] des propriétés des
polynômes trigonométriques n’ayant que, 0 ou 1 comme coefficients

N∑
k=0

e2iπnkt,

où les nk sont des entiers distincts. En particulier, Littlewood a conjecturé que

LN := inf
n0<n1,<···<nN

∫ 1/2

−1/2

∣∣∣∣∣
N∑
k=0

e2iπnkt

∣∣∣∣∣ dt ≥ C ln(N + 1) (1.0.11)

pour une constante C ≤ 4

π2
.

La première minoration non triviale a été obtenue par Cohen [4] qui a démontré que

LN ≥ C(ln(N + 1)/ ln ln(N + 1))1/8

pour N ≥ 3. Des améliorations ultérieures sont dues à Davenport [5], Fournier [7] et aux
contributions de Pichorides [33, 34, 35, 36] menant à

LN ≥ C ln(N + 1)/(ln ln(N + 1))2.

Enfin, la conjecture de Littlewood a été démontrée indépendamment par Konyagin [24] et
McGehee, Pigno, Smith [27] en 1981. Dans ces deux articles, la conjecture de Littlewood
est obtenue comme corollaire d’un résultat plus fort (et ils ne sont pas des conséquences
l’un de l’autre). Ici, nous nous intéressons particulièrement au résultat de McGehee, Pigno
et Smith [27, 20] :

8
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Théorème 1.0.1 (McGehee, Pigno et Smith). Pour toute suite finie d’entiers n0 < n1 <
· · · < nN , et toute suite finie de nombres complexes a0, . . . , aN ,∫ 1

2

− 1
2

∣∣∣∣∣
N∑
k=0

ake
2iπnkt

∣∣∣∣∣ dt ≥ CMPS

N∑
k=0

|ak|
k + 1

où CMPS est une constante universelle (CMPS = 1/30 convient).

Si pour 0 ≤ k ≤ N , ak est de module 1, on obtient

LN ≥ C ln(N + 1).

Stegeman [38] et Yabuta [41] ont indépendamment modifié l’argument de [27] et ils ont
obtenu une meilleure borne de LN :

Théorème 1.0.2 (Stegeman, Yabuta). Soient N ≥ 3 et n0 < n1 < · · · < nN une suite
d’entiers, alors ∫ 1/2

−1/2

∣∣∣∣∣
N∑
k=0

e2iπnkt

∣∣∣∣∣ dt ≥ 4

π3
ln(N + 1).

Notre premier résultat concerne l’étude des polynômes trigonométriques avec fréquences
quadratiques λk = k2, qui apparaissent par exemple dans la solution de l’équation de
Schrödinger. Soit a = (ak)k=0,...,N une suite de nombres complexes, on pose

E
[
|a|2
]
=

1

N + 1

N∑
k=0

|ak|2.

Lorsque la suite ak = 1, k = 0, . . . , N , le résultat de Zalcwasser [43] peut s’écrire de la
manière suivante ∫ 1

2

− 1
2

∣∣∣∣∣
N∑
k=0

e2iπk
2x

∣∣∣∣∣ dx ≥ C
√
N
(
E[|a|2]

)1/2
, (1.0.12)

où C est une constante positive. Notre premier résultat est une extension de cette inégalité
à des polynômes avec des coefficients ak complexes. On pose

∥∂a∥1,N = |a0|+
N∑
k=1

|ak − ak−1|,

nous obtenons le théorème suivant

Théorème 1.0.3. Pour tout ε > 0, il existe une constante Cε > 0 telle que pour toute suite
a = (ak)k=0,...,N de nombres complexes, on a

∫ 1
2

− 1
2

∣∣∣∣∣
N∑
k=0

ake
2iπk2x

∣∣∣∣∣ dx ≥ Cε

√
N

(E[|a|2]) 1
2

∥∂a∥1,N

2+ε

(E[|a|2])
1
2 .
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La démonstration est une adaptation de celle de Zalcwasser et est basée sur une équation
fonctionnelle approchée obtenue par le théorème des résidus et sur la décomposition en
fractions continues de nombres irrationnels.

Comparons maintenant notre résultat, le théorème 1.0.3, avec les résultats de Zalcwasser
et McGehee, Pigno, Smith respectivement en donnant deux exemples:

1. Soient α, β > 0 et (ak)k=0,...,N une suite croissante telle que α < ak < β. Pour N
grand, on a ∫ 1

2

− 1
2

∣∣∣∣∣
N∑
k=0

ake
2iπk2x

∣∣∣∣∣ dx ≥ β
(α
β

)(3+ε)√
N.

2. Soient α ∈ R et ak = (1 + k)α pour k = 0, . . . , N . Pour N grand et −1/6 < α < 0,
la borne inférieure du théorème 1.0.1 se comporte comme une constante tandis que la
borne inférieure du théorème 1.0.3 crôıt comme N

1
2
+α(3+ε).

Pour les fréquences non-entières, le premier résultat a été obtenu par Hudson et Leck-
band [14] qui ont utilisé un argument de perturbation pour démontrer le théorème suivant:

Théorème 1.0.4 (Hudson & Leckband). Pour λ0 < λ1 < . . . < λN nombres réels et
a0, . . . , aN nombres complexes,

lim
T→+∞

1

T

∫ T/2

−T/2

∣∣∣∣∣
N∑
k=0

ake
2iπλkt

∣∣∣∣∣ dt ≥ CMPS

N∑
k=0

|ak|
k + 1

où CMPS est la même constante que dans le théorème 1.0.1.

Nazarov [30] a montré qu’un tel résultat est valable non seulement lorsque T → +∞
mais aussi dès que T > 1:

Théorème 1.0.5 (Nazarov). Pour T > 1, il existe une constante CT telle que, pour toute
suite 0 < λ0 < · · · < λN de réels avec |λk − λℓ| ≥ |k − ℓ| et toute suite a0, . . . , aN de
complexes, on a ∫ T/2

−T/2

∣∣∣∣∣
N∑
k=0

ake
2iπλkt

∣∣∣∣∣ dt ≥ CT

N∑
k=0

|ak|
k + 1

. (1.0.13)

La constante CT dans le théorème de Nazarov n’est pas explicite. Nous améliorons la
démonstration de Nazarov pour obtenir une estimation explicite de la constante CT . Cela
nous permet également d’obtenir directement le résultat de Hudson et Leckband:

Théorème 1.0.6. Pour toute suite λ0 < λ1 < · · · < λN de réels et toute suite a0, . . . , aN
de complexes,

1. on a

lim
T→+∞

1

T

∫ T/2

−T/2

∣∣∣∣∣
N∑
k=0

ake
2iπλkt

∣∣∣∣∣ dt ≥ 1

26

N∑
k=0

|ak|
k + 1

.
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2. Si a0, . . . , aN sont tous de module supérieur à 1, |ak| ≥ 1, alors

lim
T→+∞

1

T

∫ T/2

−T/2

∣∣∣∣∣
N∑
k=0

ake
2iπλkt

∣∣∣∣∣ dt ≥ 4

π3
ln(N + 1).

3. Si de plus, pour k = 0, . . . , N − 1, λk+1 − λk ≥ 1, alors, pour tout T > 1, il existe une
constante C(T ) telle que, pour chaque a0, . . . , aN ∈ C,

1

T

∫ T/2

−T/2

∣∣∣∣∣
N∑
k=0

ake
2iπλkt

∣∣∣∣∣ dt ≥ C(T )
N∑
k=0

|ak|
k + 1

. (1.0.14)

De plus,

(a) Pour T ≥ 72, on a C(T ) =
1

122
;

(b) Pour 1 < T ≤ 2, C(T ) = O
(
(T − 1)15/2

)
.

Remarque. Pour 2 < T < 72, l’inégalité (1.0.14) reste vraie et se déduit du cas (b) avec
T = 2, mais la constante n’est pas explicite.

La démonstration est liée à celle introduite par McGehee, Pigno, Smith et étendue par
Nazarov pour démontrer le théorème 1.0.5. Ici, nous nous focalisons les constantes en
introduisant et en optimisant divers paramètres tout au long de la démonstration.

Comme application, considérons une courbe dans le plan complexe de la forme

Γ =

{
z = P (t) =

N∑
k=0

ake
2iπλkt, t ∈ [0, T ]

}
avec λk+1 ≥ λk + 1.

La Figure 1.2 montre deux de ces courbes.

Fig. 1.2 – Gauche: 1 + e4iπt + e20it et droite 1 + e16it + e24it + e34it pour t = 0 à 5.

Par le théorème 1.0.6, et lorsque T ≥ 72, la longueur de Γ est bornée par

ℓ(Γ) =

∫ T

0

|P ′(t)| dt ≥ T

20

N∑
k=0

|λk||ak|
k + 1

.
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Nous étudions ensuite les normes L1 des polynômes trigonométriques non-harmoniques
dont les fréquences forment une suite avec des écarts tendant vers l’infini. Ces polynômes
ont été étudiés dans le cas L2 par Kahane [22] qui a amélioré un résultat d’Ingham [15].
Notre résultat principal est un analogue L1 du résultat de Kahane.

Nous rappelons d’abord les résultats d’Ingham et de Kahane;

Théorème 1.0.7 (Ingham). Soient γ > 0 et T >
1

γ
. Alors il existe deux constantes

positives 0 < A2(T, γ) ≤ B2(T, γ) telles que

– pour toute suite Λ = {λk}k∈Z de réels vérifiant λk+1 − λk ≥ γ,

– pour toute suite (ak)k∈Z ∈ ℓ2(Z,C),

A2(T, γ)
∑
k∈Z

|ak|2 ≤
1

T

∫ T/2

−T/2

∣∣∣∣∣∑
k∈Z

ake
2iπλkt

∣∣∣∣∣
2

dt ≤ B2(T, γ)
∑
k∈Z

|ak|2

Kahane a ensuite montré que la condition T >
1

γ
peut être levée si λk+1 − λk → +∞

lorsque k → ±∞ :

Théorème 1.0.8 (Kahane). Soit Λ = {λk}k∈Z tel que λk+1 − λk → +∞ quand k → ±∞.
Alors, pour tout T > 0, il existe deux constantes 0 < A2(T,Λ) ≤ B2(T,Λ) telles que

A2(T,Λ)
∑
k∈Z

|ak|2 ≤
1

T

∫ T/2

−T/2

∣∣∣∣∣∑
k∈Z

ake
2iπλkt

∣∣∣∣∣
2

dt ≤ B2(T,Λ)
∑
k∈Z

|ak|2

est valable pour toute suite (ak)k∈Z ∈ ℓ2(Z,C).

Nous nous intéressons ici au cas L1. Notre résultat principal est le suivant

Théorème 1.0.9. Soit Λ = (λk)k∈Z une suite croissante qui vérifie λk+1 − λk → +∞
lorsque k → ±∞. Alors, pour tout T > 0, il existe une constante Ã1(T,Λ) > 0 telle que, si
(ak)k∈N est une suite de nombres complexes, et N ≥ 1, on a

Ã1(T,Λ)
N∑
k=0

|ak|
1 + k

≤ 1

T

∫ T/2

−T/2

∣∣∣∣∣
N∑
k=0

ake
2iπλkt

∣∣∣∣∣ dt. (1.0.15)

Si de plus
∑
k∈Z

1

1 + |λk|
converge, alors il existe aussi une constante A1(T,Λ) telle que, pour

toute suite (ak)k∈Z ⊂ C et tout N ≥ 1,

A1(T,Λ) max
k=−N,...,N

|ak| ≤
1

T

∫ T/2

−T/2

∣∣∣∣∣
N∑

k=−N

ake
2iπλkt

∣∣∣∣∣ dt. (1.0.16)
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La difficulté principale de la démonstration est que l’argument de Kahane ne peut pas
être adapté directement. En effet, Kahane a utilisé le fait que dans l’inégalité d’Ingham, la
norme L2 d’un polynôme trigonométrique est bornée inférieurement et supérieurement par
la norme ℓ2 de ses coefficients. Dans le cas L1, la borne supérieure est exprimée en termes
de norme ℓ1 des coefficients et ne correspond pas à la borne inférieure, qui elle, est donnée
en terme d’une norme l1 pondérée. Notre démonstration utilise le théorème de Nazarov, un
argument de compacité, ainsi qu’une astuce permettant de nous ramener au théorème de
Kahane.

Nous conclurons par l’étude des normes B1 de Besicovitch des polynômes trigonométriques
lacunaires et des polynômes avec des fréquences ayant une structure multidimensionnelle.
En effet, un polynôme trigonométrique non-harmonique est lacunaire s’il est de la forme
suivante

∞∑
k=0

ake
2iπλkt, avec

λk+1

λk
> q > 1.

Notre résultat principal est une extension au cas réel d’un résultat dans le cas entier obtenu
par Zygmund [44], nous obtenons

Théorème 1.0.10. Soient q > 1 et (λk)k≥0 une suite de nombres réels vérifiant

λ0 > 1 et λk+1 ≥ qλk

et a0, . . . , aN une suite de nombre complexes. Alors pour 1 ≤ p < ∞, il existe deux con-
stantes positives Ap,q, Bp,q telles que

Ap,q

(
N∑
k=0

|ak|2
)1/2

≤ lim
T→+∞

(
1

T

∫ T/2

−T/2

∣∣∣∣∣
N∑
k=0

ake
2iπλkt

∣∣∣∣∣
p

dt

) 1
p

≤ Bp,q

(
N∑
k=0

|ak|2
)1/2

.

Ensuite, concernant les polynômes trigonométriques avec fréquences dont la structure
est multidimensionnelle. Soit A un sous ensemble fini de R, on dit que A est (δ;m,n)
fortement 2-dimensionnel dans R, s’il existe deux nombres réels d et D > (2 + δ)d tels que

A =
⋃
k∈I

(Ak + kD) (1.0.17)

où I est un ensemble d’entiers de cardinal m et les Ak ⊂ [−d, d] sont des sous-ensembles de
R et de cardinal supérieur ou égal à n.

On étend un résultat de Hanson [10] du cas entier au cas non entier et on obtient le
théorème suivant

Théorème 1.0.11. Soient δ > 0 et m,n deux entiers positifs tels que

m ≥ π3221C3
MPS ln(m)3 ln(n)3 et n ≥ π3221C3

MPS ln(n)
3,

où CMPS est la constante du théorème 1.0.1. Soit A un ensemble (δ;m,n) fortement 2-
dimensionnel de R. On a

lim
T→∞

1

T

∫ T/2

−T/2

∣∣∣∣∣∑
a∈A

e2iπat

∣∣∣∣∣ dt ≥ C2
MPS

(29π)2
(
2 + ln(1 + 2

δ
)
) ln(m) ln(n).
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Les deux démonstrations sont basées sur un argument de Hudson et Leckband [14] utilisé
pour étendre la solution de la conjecture de Littlewood du cadre entier au cadre réel. En
effet, l’idée est d’approcher des nombres réels par des nombres rationnels via un lemme de
Dirichlet.

Organisation du manuscrit

Dans le Chapitre 2, on rappelle certains résultats classiques comme les inégalités d’Ingham,
une estimation asymptotique de la norme L1 du noyau de Dirichlet et le théorème de Trigub
qui propose une solution à la Conjecture de Littlewood 1.0.2.

Dans le Chapitre 3, on se focalise sur le cas particulier des polynômes trigonométriques
harmoniques dont les fréquences sont quadratiques. On étend le résultat de Zalcwasser
(1.0.12) à des polynômes trigonométriques avec coefficients complexes.

Dans le Chapitre 4, on s’intéresse aux polynômes trigonométriques non-harmoniques.
Selon l’intervalle d’intégration, on donne des versions quantitatives du théorème de Nazarov
1.0.5.

Dans le Chapitre 5, on étudie les polynômes trigonométriques non-harmoniques dont
l’incrément entre les fréquences tend vers l’infini et on donne une version L1 du théorème
de Kahane 1.0.8

Dans le Chapitre 6, on étend les résultats de Zygmund et de Hanson au cadre non-
harmonique. Ces résultats concernent respectivement des bornes pour la norme L1 des
polynômes harmoniques lacunaires et les polynômes harmoniques dont les fréquences ont
une structure multidimensionnelle.
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Chapter 2

Some classical results

In this chapter, we recall some known results which will be used repeatedly in this thesis.
It is divided into two main parts. We first study the L2-estimates of exponential sums with
real frequencies. In this setting, the results are due to Ingham who, under conditions on
the length of the interval of integration, have extended Parseval’s identity to non-integer
setting.

In the second part, we look at the L1-case. We start by recalling the L1-norm of Dirichlet
kernel and end with Trigub’s solution to the Littlewood problem.

2.1 Ingham’s inequalities

A non harmonic Fourier series is an expression of the type
∑

k ake
2iπλkt, in which the fre-

quencies λk are real and not all integers. Paley and Wiener [31] and Levison [25] were
among the first to study such series. Their main interest was to characterize the sets of
frequencies for which, for each real function f(t) of a given class, one can find an expression
(a sum of exponentials) as defined above, summable to f for almost every −1/2 ≤ t ≤ 1/2.

Not long after Paley and Wiener, Ingham [15] showed that, under a uniform gap condi-
tion on the frequencies, and up to a constant, the L2-norm of a non harmonic Fourier series
is lower bounded by the l2-norm of its coefficients. In the same paper, he showed an inverse
inequality and hence extended Parseval’s identity to the real frequencies setting. Later,
Ingham’s inequalities were also extended to complex valued sequences by Haraux [11] and
others [1],[42].

The aim of this section is to show the following: let Λ = {λk}k∈Z ⊂ R be a 1-separated
sequence; |λk − λℓ| ≥ 1 if k ̸= ℓ. Let P(Λ) be the set of (non-harmonic) trigonometric
polynomials

P(Λ) =

{
P (t) :=

∑
k∈Z

ake
2iπλkt : (ak)k∈Z ⊂ C with finite support

}
.

Since the set of function {t → e2iπλt}λ∈R is linearly independent over any interval, we can
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then define two natural norms on P(Λ), namely

∥P∥L2([−T/2,T/2]) :=

(
1

T

∫ T/2

−T/2

|P (t)|2 dt

) 1
2

and ∥P∥ℓ2 :=

(∑
k∈Z

|ak|2
) 1

2

.

We will show that, when T > 1, these two norms are equivalent. This is done by proving
two inequalities. The first one is the direct inequality:

2.1.1 Ingham’s direct inequality

Proposition 2.1.1. Let γ > 0. Let (ak)k∈Z be a finitely supported sequence of complex
numbers and (λk)k∈Z be a sequence of real numbers with λk+1 − λk ≥ γ. For every T > 0,

1

T

∫ T/2

−T/2

∣∣∣∣∣∑
k∈Z

ake
2iπλkt

∣∣∣∣∣
2

dt ≤ 2
γT + 1

γT

∑
k∈Z

|ak|2. (2.1.1)

Proof. By the change of variable t = s/γ we may assume that γ = 1. We consider the
function h on R defined by

h(x) =

cosπx when |x| ≤ 1

2
0 otherwise

.

As h is real and even, its Fourier transform is given by

ĥ(t) =

∫ 1
2

− 1
2

cos(πx)e−2iπtx dx =
2

π

cos(πt)

1− 4t2
.

with the understanding that ĥ(1/2) =
1

2
. From this, one shows that ĥ(t) ≥ 1

2
for |t| ≤ 1

2
.

Finally, let

g(x) = h ∗ h(x) =


sin π|x| − π(|x| − 1) cosπx

2π
when |x| ≤ 1

0 otherwise
.

One easily shows that g is even, non-negative, supported in [−1, 1] and that g(0) =
1

2
.

Further its Fourier transform is ĝ(t) = ĥ(t)2. In particular, ĝ(t) ≥ 0 and ĝ(t) ≥ 1

4
for

|t| ≤ 1

2
.
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But then, if (ak)k∈Z is finitely supported and P (t) =
∑
k∈Z

ake
2iπλkt,

∫ 1/2

−1/2

|P (t)|2 dt ≤ 4

∫ 1/2

−1/2

ĝ(t)|P (t)|2 dt

≤ 4

∫
R
ĝ(t)

∣∣∣∣∣∑
k∈Z

ake
2iπλkt

∣∣∣∣∣
2

dt

= 4
∑
j,k∈Z

ajak

∫
R
ĝ(t)e2iπ(λj−λk)t dt

= 4
∑
j,k∈Z

ajakg(λj − λk).

Note that the sums are actually finite. Further, if j ̸= k then |λj − λk| ≥ 1 and, as g is
supported in [−1, 1], we then have g(λj − λk) = 0. This implies that∫ 1/2

−1/2

|P (t)|2 dt ≤ 4g(0)
∑
k∈Z

|ak|2

so that the inequality is proven for T = 1 since 4g(0) = 2.
For T < 1 we simply write

1

T

∫ T/2

−T/2

|P (t)|2 dt ≤ 1

T

∫ 1/2

−1/2

|P (t)|2 dt ≤ 2

T

∑
k∈Z

|ak|2.

To conclude, notice first that, if I = [a− 1/2, a+ 1/2] and P (t) =
∑
k∈Z

aje
2iπλkt then

∫
I

|P (t)|2 dt =

∫ 1/2

−1/2

|P (a+ t)|2 dt =
∫ 1/2

−1/2

∣∣∣∣∣∑
k∈Z

ake
2iπλkae2iπλkt

∣∣∣∣∣
2

dt

≤ 2
∑
k∈Z

|ake2iπλka|2 = 2
∑
k∈Z

|ak|2

from the case T = 1.
Now let T > 1 and cover the interval [−T/2, T/2] by K = ⌈T ⌉ ≤ T + 1 intervals

I1, . . . , IK of length 1. Then

1

T

∫ T/2

−T/2

|P (t)|2 dt ≤ 1

T

K∑
k=1

∫
Ik

|P (t)|2 dt ≤ 2
T + 1

T

∑
k∈Z

|ak|2.

This completes the proof.

We now show that a converse inequality also holds, but for T >
1

γ
:

17



Ingham’s inequalities CHAPTER 2.

2.1.2 Ingham’s converse inequality

Proposition 2.1.2. Let γ > 0. Let (ak)k∈Z be a finitely supported sequence of complex

numbers and (λk)k∈Z be a sequence of real numbers with λk+1 − λk ≥ γ. For every T >
1

γ
,

C(T, γ)
∑
k∈Z

|ak|2 ≤
1

T

∫ T/2

−T/2

∣∣∣∣∣∑
k∈Z

ake
2iπλkt

∣∣∣∣∣
2

dt (2.1.2)

with

C(T, γ) =


π2

8

(γT )2 − 1

(γT )3
for

1

γ
< T ≤ 2

γ
π2

64
for T ≥ 2

γ

. (2.1.3)

Proof. Changing variable t = s/γ we find that C(T, γ) = C(γT, 1) so that we may assume
that γ = 1. We will prove this inequality in three steps. We first establish this inequality
for 1 < T ≤ 2.

As in the previous proof, let h be again defined by h(x) = 1[−1/2,1/2](x) cosπx. Notice
that, as h is non-negative, even, continuous with support [−1/2, 1/2], then h ∗ h is non-
negative, even, continuous with support [−1, 1].

Next h ∈ H1(R) with h′ = −π1[−1/2,1/2] sin πx and

ĥ′(t) = 4it
cos πt

1− 4t2

thus
ĥ′ ∗ h′(t) = −(2πt)2ĥ2(t)

We now consider kT = π2T 2h ∗ h + h′ ∗ h′ so that kT is continuous, real valued, even and
supported in [−1, 1].

k̂T (t) = π2
(
T 2 − 4t2

)
ĥ2(t)

is even (so kT is the Fourier transform of k̂T ) and in L1. Further k̂T is non-negative on
[−T/2, T/2] and negative on R \ [−T/2, T/2].

This implies that∫ T/2

−T/2

k̂T (t)

∣∣∣∣∣∑
k∈Z

ake
2iπλkt

∣∣∣∣∣
2

dt ≥
∫
R
k̂T (t)

∣∣∣∣∣∑
k∈Z

ake
2iπλkt

∣∣∣∣∣
2

dt

=
∑
k,ℓ∈Z

akaℓ

∫
R
k̂T (t)e

2iπ(λk−λℓ)t dt

=
∑
k,ℓ∈Z

akaℓkT (λk − λℓ) =
∑
k∈Z

|ak|2kT (0).

In the last line, we use that |λk − λℓ| ≥ 1 when k ̸= ℓ thus kT (λk − λℓ) = 0.

18
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Now, for ξ ∈ [−T/2, T/2],

k̂T (ξ) = π2(T 2 − 4ξ2)ĥ2(ξ) ≤ π2(T 2 − 4ξ2)ĥ2(0) ≤ 4T 2

while

kT (0) = π2

∫ 1/2

−1/2

T 2 cos2 πt− sin2 πt dt =
π2

2
(T 2 − 1)

which leads to ∫ T/2

−T/2

∣∣∣∣∣∑
k∈Z

ake
2iπλkt

∣∣∣∣∣
2

dt ≥ π2

8

T 2 − 1

T 2

∑
k∈Z

|ak|2. (2.1.4)

For 2 ≤ T ≤ 6, we simply write∫ T/2

−T/2

∣∣∣∣∣∑
k∈Z

ake
2iπλkt

∣∣∣∣∣
2

dt ≥
∫ 1

−1

∣∣∣∣∣∑
k∈Z

ake
2iπλkt

∣∣∣∣∣
2

dt ≥ 3π2

32

∑
k∈Z

|ak|2

where the second inequality is (2.1.4) with T = 2, establishing (2.1.2) with C =
3π2

32T
≥ π2

64
.

Now let T ≥ 6 and MT = [T/2] so that MT ≥ T

2
− 1 ≥ T

3
. For j = 0, . . . ,MT − 1, let

tj = −T/2+ 2j +1 so that the intervals [tj − 1, tj +1[ are disjoint and

MT−1⋃
j=0

[tj − 1, tj +1[⊆

[−T/2, T/2] thus∫ T/2

−T/2

∣∣∣∣∣∑
k∈Z

bke
2iπλkt

∣∣∣∣∣
2

dt ≥
MT−1∑
j=0

∫ tj+1

tj−1

∣∣∣∣∣∑
k∈Z

bke
2iπλkt

∣∣∣∣∣
2

dt

=

MT−1∑
j=0

∫ 1

−1

∣∣∣∣∣∑
k∈Z

bke
2iπλktje2iπλkt

∣∣∣∣∣
2

dt.

Now, apply (2.1.4) with ak = bke
2iπλktj and T = 2 to get

1

T

∫ T/2

−T/2

∣∣∣∣∣∑
k∈Z

bke
2iπλkt

∣∣∣∣∣
2

dt ≥ 3π2

32

MT

T

∑
k∈Z

|ak|2 ≥
π2

32

∑
k∈Z

|ak|2,

establishing (2.1.2) with C =
π2

32
.

Finally, we notice that, with a change of variable, and a simple limiting argument to
remove the condition on the support of (ak), we have just proved the following;

Theorem 2.1.3 (Ingham). Let γ > 0 and T >
1

γ
and let C(T, γ) be given by (2.1.3). Then

– for every sequence of real numbers Λ = {λk}k∈Z such that λk+1 − λk ≥ γ;

19
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– for every sequence (ak)k∈Z ∈ ℓ2(Z,C),

C(T, γ)
∑
k∈Z

|ak|2 ≤
1

T

∫ T/2

−T/2

∣∣∣∣∣∑
k∈Z

ake
2iπλkt

∣∣∣∣∣
2

dt ≤ 2
γT + 1

γT

∑
k∈Z

|ak|2. (2.1.5)

We now show that the condition T >
1

γ
can not be fully removed for (2.1.2) to hold for

every Λ and every P ∈ P(Λ).

2.1.3 Ingham’s counterexample

Proposition 2.1.4 (Ingham). Let γ > 0. There exists a real sequence {λk}k∈Z with λk+1−
λk ≥ γ and a family of sequences

(
ak(α)

)
k∈Z,0<α<1/2

such that, if

C
N∑

k=−N

|ak|2 ≤
∫ 1/2γ

−1/2γ

∣∣∣∣∣
N∑

k=−N

ake
2iπλkt

∣∣∣∣∣
2

dt (2.1.6)

holds for every N ≥ 1 and every c−N , . . . , cN ∈ C, then C = 0.

In other words, the condition T >
1

γ
is necessary in Ingham’s inequality to obtain a

meaningful lower bound.

Proof. After scaling we again assume that γ = 1. Let 0 < α < 1/2 and define, for |z| < 1,

gα(z) = (1 + z)−α =
exp

(
−iα arctan ℑ(z)

1+ℜ(z)

)
|1 + z|α

, |z| < 1.

Of course, we may also write gα as a power series

gα(z) =
+∞∑
n=0

(−α)n
n!

zn

where (α)0 = 1, (−α)n = −α(−α− 1) · · · (−α− n+ 1).
Next define

fα(r, t) = 2ℜ
(
eiπ(α+1)tgα(re

2iπt)
)

= eiπ(α+1)tgα(re
2iπt) + e−iπ(α+1)tgα(re

−2iπt)

=
+∞∑
n=0

(−α)n
n!

rne2iπ(n+
α+1
2 )t +

+∞∑
n=0

(−α)n
n!

rne−2iπ(n+α+1
2 )t.

Now set Λ = {λj}j∈Z with λj = j +
α + 1

2
when j ≥ 0 and λj = j + 1 − α + 1

2
for

j ≤ −1, then λj+1 − λj ≥ 1 (and even = 1 excepted for |λ0 − λ−1| = 1 + α). In particular,
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if we set

Pm,r(t) =
m∑

n=0

(−α)n
n!

rne2iπ(n+
α+1
2 )t +

m∑
n=0

(−α)n
n!

rne−2iπ(n+α+1
2 )t

:=
∑
k∈Z

am,r(k)e
2iπλkt ∈ P(Λ)

and Pm,r → fα when m→ +∞, uniformely over t ∈ [−1/2, 1/2].
Further, Parseval’s relation reads

+∞∑
n=0

∣∣∣∣(−α)nn!
rn
∣∣∣∣2 = ∫ 1/2

−1/2

∣∣∣∣∣
+∞∑
n=0

(−α)n
n!

rne2iπnt

∣∣∣∣∣
2

dt =

∫ 1/2

−1/2

|gα(re2iπt)|2 dt

thus

lim
m→+∞

∑
k∈Z

|am,r(k)|2 = lim
m→+∞

2
+∞∑
n=0

∣∣∣∣(−α)nn!
rn
∣∣∣∣2 = 2

∫ 1/2

−1/2

|gα(re2iπt)|2 dt.

It follows that, if we had ∫ 1/2

−1/2

|Pm,r(t)|2 dt ≥ C
∑
k∈Z

|am,r(k)|2 (2.1.7)

then, letting m→ +∞, we would also have∫ 1/2

−1/2

|fα(r, t)|2 dt ≥ 2C

∫ 1/2

−1/2

|gα(re2iπt)|2 dt (2.1.8)

for every 0 < r < 1 and every 0 < α <
1

2
.

But, if we fix t ∈]− 1/2, 1/2[ then, when r → 1,

gα(re
±2iπt) =

1(
1 + re±2iπt

)α → 1(
1 + e±2iπt

)α =
e∓iαπt

2α cosα πt

(this is where we use that T ≤ 1) while

|gα(re±2iπt)|2 = 1(
(1− r)2 + 4r cos2 πt)α

≤ 1

4 cos2α πt

for 1
2
< r < 1. Similar bounds follow for fα(r, t):

fα(r, t) = eiπ(α+1)tgα(re
2iπt) + e−iπ(α+1)tgα(re

−2iπt) → eiπt + e−iπt

2α cosα πt
=

1

2α−1 cosα−1 πt

while

|fα(r, t)|2 ≤
1

cos2α πt
.
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When 2α < 1 the majorants are integrable so that we can let r → 1 in (2.1.8). This
leads to

22−2α

∫ 1/2

−1/2

dt

cos2α−2 πt
≥ 21−2αC

∫ 1/2

−1/2

dt

cos2α πt
. (2.1.9)

Letting α → 1

2
, the left hand side stays bounded while the right hand side goes to +∞

unless C = 0.

2.1.4 Ingham’s estimate in L1

In the same paper [15], Ingham also proved an L1-estimate for trigonometric sums:

Theorem 2.1.5 (Ingham). Let γ > 0. Let (λk)k∈Z be a sequence of real numbers such that

λk+1 − λk ≥ γ. Let (ak)k∈Z be a sequence of complex numbers. Then, for T >
1

γ
and every

N ,

2(T 2γ2 − 1)

πT 2γ2
max

k=−N,...,N
|ak| ≤

1

T

∫ T/2

−T/2

∣∣∣∣∣
N∑

k=−N

ake
2iπλkt

∣∣∣∣∣ dt.
Ingham’s estimate is a bit weaker than Nazarov’s estimate (Theorem 4.1.5) when the

sum is one sided, i.e. if ak = 0 for k = −N, . . . ,−1. On the other hand, the estimate by
McGehee, Pigno and Smith and thus also the one in Nazarov’s inequality are not valid for
every two sided trigonometric polynomial (see Subsection 4.2.5).

Proof. We first prove the result for γ > 1 and T = 1.
Thus, take γ1 > 1 and a sequence (λk)k∈Z such that λk+1 − λk ≥ γ1 thus for k ̸= ℓ,

|λk − λℓ| ≥ γ1|k − ℓ| > 1. (2.1.10)

We then fix N ≥ 1 and a finite sequence (ak)k=−N,...,N . We take ℓ so that |aℓ| =
maxk=−N,...,N |ak|.

Note that if h ∈ L1(R),∫
R
h(t)

N∑
k=−N

ake
2iπλkte−2iπλℓt dt =

∫
R

N∑
k=−N

akh(t)e
2iπ(λk−λℓ)t dt

=
N∑

k=−N

akĥ(λk − λℓ)

= aℓĥ(0) +
∑

k∈{−N,...,N}\{ℓ}

akĥ(λk − λℓ).

As for Ingham’s L2-estimate, we consider h(t) = 1[−1/2,1/2](t) cosπt. As h is supported in
[−1/2, 1/2] and |h| ≤ 1, and as |ak| ≤ |aℓ| we obtain

|aℓ|

|ĥ(0)| −
∑

k∈{−N,...,N}\{ℓ}

|ĥ(λk − λℓ)|

 ≤
∫ 1/2

−1/2

∣∣∣∣∣
N∑

k=−N

ake
2iπλkt

∣∣∣∣∣ dt.
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On the other hand, by definition of h, ĥ(0) =
2

π
and, for |t| ≥ 1, |ĥ(t)| ≤ ĥ(0)

4t2 − 1
. With

(2.1.10) we thus get∑
k∈{−N,...,N}\{ℓ}

|ĥ(λk − λℓ)| ≤ ĥ(0)
∑

k∈{−N,...,N}\{ℓ}

1

4γ21(k − ℓ)2 − 1

≤ 2ĥ(0)

γ21

+∞∑
j=1

1

4j2 − 1
=
ĥ(0)

γ21
.

We thus obtain

2(γ21 − 1)

πγ21
max

k∈{−N,...,N}
|ak| ≤

∫ 1/2

−1/2

∣∣∣∣∣
N∑

k=−N

ake
2iπλkt

∣∣∣∣∣ dt.
For the general case, γ > 0 and T >

1

γ
, (λk)k∈Z a sequence such that λk+1 − λk ≥ γ,

N ≥ 1 and a finite sequence (ak)k=−N,...,N , by the change of variable t = Ts

1

T

∫ T/2

−T/2

∣∣∣∣∣
N∑

k=−N

ake
2iπλkt

∣∣∣∣∣ dt =

∫ 1/2

−1/2

∣∣∣∣∣
N∑

k=−N

ake
2iπTλks

∣∣∣∣∣ ds
≥ 2(T 2γ2 − 1)

πT 2γ2
max

k∈{−N,...,N}
|ak|

since Tλk+1 − Tλk ≥ γ1 := Tγ > 1.

Letting T → +∞ we obtain:

Corollary 2.1.6. Let γ > 0. Let (λk)k∈Z be a sequence of real numbers such that λk+1−λk ≥
γ. Let (ak)k∈Z be a sequence of complex numbers. Then, for every N ,

2

π
max

k∈{−N,...,N}
|ak| ≤ lim

T→+∞

1

T

∫ T/2

−T/2

∣∣∣∣∣
N∑

k=−N

ake
2iπλkt

∣∣∣∣∣ dt.
In particular, for every N ,

2

π
max

k∈{−N,...,N}
|ak| ≤

∫ 1/2

−1/2

∣∣∣∣∣
N∑

k=−N

ake
2iπkt

∣∣∣∣∣ dt.
Another corollary of Theorem 2.1.5 is the following

Corollary 2.1.7. Let γ > 0. Let (λk)k∈Z be a sequence of real numbers such that λk+1−λk ≥
γ. Let (ak)k∈Z be a sequence of complex numbers with finite support. Then for T >

1

γ
, every

N and every η > 1, there a positive constant C = Cη,γ,T such that

N∑
k=−N

|ak|
(1 + |k|)η

≤ C

T

∫ T
2

−T
2

∣∣∣∣∣
N∑

k=−N

ake
2iπλkt

∣∣∣∣∣ dt (2.1.11)
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Remark 2.1.8. Fejer kernel shows that the condition η > 1 is mandatory. However if
ak = 0 for k < 0 then 2.1.7 holds for η = 1.

The next part is dedicated to the L1-case, we start by the L1-norm of Dirichlet kernel.

2.2 Littlewood conjecture in the periodic case

2.2.1 The L1 norm of the Dirichlet kernel

Recall that the Dirichlet kernel is given by

DN(t) =
N∑

k=−N

e2iπkt =
sin(2N + 1)πt

sinπt
.

The following is a classical estimate of the L1-norm of this kernel, which is called the
Lebesgue constant.

Theorem 2.2.1. When N → +∞,

∥DN∥1 :=
∫ 1/2

−1/2

|DN(t)| dt =
4

π2
lnN +O(1).

Proof. The proof is based on the following inequality which is easy to establish: for −π
2
≤

s ≤ π

2
, |s|

(
1− s2

3!

)
≤ | sin s| ≤ |s|. In particular, for |t| ≤ 1

2
,

1

π|t|
≤ 1

| sin πt|
≤ 1

π|t|
1

1− π2t2/6
≤ 1

|πt|
+
π|t|
3

since 1
1−u

≤ 1 + 2u for u ≤ 1

2
. It follows that

∫ 1/2

−1/2

| sin(2N + 1)πt|
|πt|

dt ≤
∫ 1/2

−1/2

| sin(2N + 1)πt|
sin πt

dt

≤
∫ 1/2

−1/2

| sin(2N + 1)πt|
|πt|

dt+

∫ 1/2

−1/2

| sin(2N + 1)πt|π|t|
3

dt.

As ∫ 1/2

−1/2

| sin(2N + 1)πt|π|t|
3

dt ≤
∫ 1/2

−1/2

π|t|
3

dt =
π

12

we get

∥DN∥1 =
∫ 1/2

−1/2

| sin(2N + 1)πt|
|πt|

dt+O(1).
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Using parity and the change of variable s = (2N + 1)πt we obtain∫ 1/2

−1/2

| sin(2N + 1)πt|
|πt|

dt = 2

∫ 1/2

0

| sin(2N + 1)πt|
|πt|

dt =
2

π

∫ Nπ+π/2

0

| sin s|
s

ds.

Note that ∫ Nπ+π/2

Nπ

| sin s|
s

ds ≤
∫ Nπ+π/2

Nπ

ds

s
= ln

Nπ + π/2

Nπ
= O(1/N)

while ∫ π

0

| sin s|
s

ds ≤
∫ π

0

1 ds = π.

It remains to estimate

2

π

∫ Nπ

π

| sin s|
s

ds =
2

π

N−1∑
j=1

∫ (j+1)π

jπ

| sin s|
s

ds

=
2

π

N−1∑
j=1

∫ π

0

| sin s|
s+ jπ

ds

=
2

π

N−1∑
j=1

∫ π

0

sin s

s+ jπ
ds

as sin s ≥ 0 on [0, π]. But then

2

(j + 1)π
=

∫ π

0

sin s

π + jπ
ds ≤

∫ π

0

sin s

s+ jπ
ds ≤

∫ π

0

sin s

jπ
ds =

2

jπ
.

Writing
N−1∑
j=1

1

j + 1
=

N∑
j=1

1

j
− 1 =

N−1∑
j=1

1

j
− 1 +

1

N
,

it follows that

2

π

∫ Nπ

π

| sin s|
s

ds =
4

π2

N∑
j=1

1

j
+O(1) = lnN +O(1),

as stated.

2.2.2 Solution to the Littlewood conjecture

In this section, we will present Trigub’s solution [39] to the Littlewood problem (1.0.2). The

proof given below will give C =
1

112
which is not the best possible. For simplicity, we take

a0 = 0.
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Theorem 2.2.2 (Trigub). For any increasing sequence of positive integers (nk)
∞
k=1 and any

complex sequence (ak)
∞
k=1, there exists an absolute positive constant C such that∫ 1

2

− 1
2

∣∣∣∣∣
∞∑
k=1

ake
2iπnkt

∣∣∣∣∣ dt ≥ C
∞∑
k=1

|ak|
k

(2.2.1)

Proof. Let I =
[
−1

2
, 1
2

]
and ∥f∥p be the norm of a function f in Lp(I), p ≥ 1. We denote

by ak(f) the kth Fourier coefficient of f . For any sequence (ck)
∞
k=1, we define the following

(finite) norm

∥c∥ := sup
k

2k
∑

2k−1≤s<2k

|cs|2
1/2

.

Let b = (bk)
∞
1 and bk = ank

(f). For any ε > 0 and any sequence (ck), we will construct a
function f = fc,ε with the following properties

1. ∥f∥∞ ≤ 1
ε

2. ∥b− c∥ ≤ 14ε∥c∥2.

Suppose that such f is given, then we can conclude as follows

ε

∣∣∣∣∣
∞∑
k=1

bkak

∣∣∣∣∣ =
∣∣∣∣∣ε
∫ 1

2

− 1
2

f(t)
∞∑
k=1

ake
2iπnkt dt

∣∣∣∣∣ ≤
∫ 1

2

− 1
2

∣∣∣∣∣
∞∑
k=1

ake
2iπnkt

∣∣∣∣∣ dt,
then, if

a = (ak)
∞
1 and ∥a∥′ = sup

∥c∥≤1

∣∣∣∣∣
∞∑
1

ckak

∣∣∣∣∣ <∞,

by choosing c in a special way for ∥c∥ = 1, we obtain∫ 1
2

− 1
2

∣∣∣∣∣
∞∑
k=1

ake
2iπnkt

∣∣∣∣∣ dt ≥ ε
∣∣∣∑ ckak

∣∣∣− ε
∑

|bk − ck| |ak|

≥ ε∥a∥′ − ε∥a∥′∥b− c∥ ≥ ∥a∥′ε(1− 14ε).

By taking ck = 2−s+1/2 for 2s−1 ≤ k < 2s − 1, we get

∥a∥′ ≥ sup
∥c∥≤1

∞∑
s=1

2s−1∑
k=2s−1

|ck| |ak| ≥
1

2

∞∑
k=1

|ak|
k
.

Setting ε = 1/28, we obtain the required inequality with C =
1

112
.

Let us now construct f with the desired properties. For any sequence c = (ck)k, we set, for
k ≥ 1

fk(t) =
∑

2k−1≤s<2k

cse
2iπnst.
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We then write the Fourier series of each |fk| ∈ L2(I) as

|fk(t)| =
∑
s∈Z

as(|fk|)e2iπst

to which we associate hk ∈ L2(I) defined via its Fourier series as

hk(t) = a0(|fk|) + 2
−1∑

s=−∞

as(|fk|)e2iπst = a0,k + 2
−1∑

s=−∞

as,ke
2iπst.

Since |fk| is real, a0,k is also real and as,k = −as,k. We also have ℜ(hk) = |fk|.
For any ε > 0, we set

f = fc,ε =
∞∑
k=1

fke
−ε
∑

j≥k hj .

By Parseval’s identity, we have

∑
j≥1

∥hj∥2 =
∑
j≥1

(
a20,j + 4

−1∑
s=−∞

|as,j|2
)1/2

≤
∑
j≥1

(
2a20,j + 2

∞∑
s=1

|as,j|2 + 2
−1∑

s=−∞

|as,j|2
)1/2

= 2
∑
j

∥fj∥2 = 2
∑
j

 ∑
2j−1≤s<2j

|cs|2
1/2

≤ 2∥c∥
∑
j

2−j/2 =
2√
2− 1

∥c∥. (2.2.2)

Let xk = −
∑

j≥k |fj|, we have

|f | ≤
∞∑
k=1

|fk||e−ε
∑

j≥k hj | ≤
∞∑
k=1

|fk|e−ε
∑

j≥k |fj |

=
∞∑
k=1

eεxk(xk+1 − xk) ≤
∫ 0

−∞
eεx dx =

1

ε
.

then f ∈ L∞. It remains to prove that

∥b− c∥ ≤ 14ε∥c∥2

where b = (bk) and bk = ank
(f). Since for ℜ(z1) ≤ 0 and ℜ(z2) ≤ 0 the inequality

|ez1 − ez2 | ≤ |z1 − z2|
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holds, and by (2.2.2), it follows that

∥∥∥e−ε
∑∞

s hj − e−ε
∑N

s hj

∥∥∥
1
≤ ε

∥∥∥∥∥
∞∑

j=N+1

hj

∥∥∥∥∥
1

≤ ε

∞∑
j=N+1

∥hj∥1 ≤ ε
∞∑

j=N+1

∥hj∥2 → 0, N → ∞.

Next we define the spectrum of a function F by spec(F ) = {k ∈ Z; ak(F ) ̸= 0}. Then

spec(e−ε
∑

hj) ⊂]]−∞, 0]] and spec(fk) ⊂ [[2k−1, 2k[[.

Therefore, if p ∈ [[2s−1; 2s[[, then

bp = anp(f) =
∞∑
k=1

anp

(
fke

−ε
∑

hj
)
=

∞∑
k=s

anp

(
fke

−ε
∑

hj
)
. (2.2.3)

Indeed, let us show that anp

(
fke

−ε
∑

hj
)
= 0 for p ∈ [[2s−1, 2s[[ and k ≤ s− 1. If it is not the

case, then
np ∈ spec

(
fke

−ε
∑

hj
)
⊂ [[2k−1, 2k[[ + ]]−∞, 0]],

hence np < 2k ≤ 2s−1. Since (np)p is an increasing sequence of integers, np ≥ p ≥ 2s−1

implying the result.
Furthermore, since bp = anp(f) and anp(fk) = cp, then using the inequality |ak(g)| ≤ ∥g∥1
and Cauchy Schwarz inequality

|bp − cp| =

∣∣∣∣∣
∞∑
k=s

anp(fke
−ε
∑

j≥k hj − fk)

∣∣∣∣∣ ≤
∞∑
k=s

∥fk(e−ε
∑

j≥k hj − 1)∥1

≤
∞∑
k=s

∥∥∥∥∥fkε∑
j≥k

hj

∥∥∥∥∥
1

≤ 2ε
∑
k≥s

∥fk∥2
∑
j≥k

∥fj∥2

= 2ε
∑
k≥s

 ∑
2k−1≤s<2k

|cs|2
1/2∑

j≥k

 ∑
2j−1≤q<2j

|cq|2
1/2

≤ 2ε∥c∥2
∑
k≥s

2−k/2
∑
j≥k

2−j/2 ≤ 4
√
2√

2− 1
ε∥c∥22−s.

Hence

∥b− c∥ = sup
s

2s
∑

2s−1≤p<2s

|bp − cp|2
1/2

≤ 4
√
2√

2− 1
ε∥c∥2 < 14ε∥c∥2,

and the Theorem is proved.
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Chapter 3

Quadratic frequencies

3.1 Introduction

In this chapter, we estimate

sn(x) =
n∑

k=0

ake
iπk2x,

where the ak’s are complex numbers. We give a lower bound to the L1-norm of this sums
and then we give results similar to the one proved by Hardy and Littlewood concerning the
asymptotic behavior of this sum for x irrational.

For any sequence a = (ak)k=0,...,n of complex numbers, we define

1. The l1-norm of the increment of a

∥∂a∥1,n = |a0|+
n∑

k=1

|ak − ak−1|.

Note that ∥a∥∞ ≤ ∥∂a∥1,n.

2. The arithmetic mean of |a| = (|a0|, |a1|, . . . , |an|)

E [|a|] = 1

n+ 1

n∑
k=0

|ak|.

Zalcwasser [43] gave a lower bound of L1-norm of sn when ak = 1 for all k. Here we are
interested in the case where a is not necessarily constant. More precisely, we will prove the
following result

Theorem 3.1.1. For every ε > 0 there exists a constant Cε such that if a = (ak)k=0,...,n is
a sequence of complex numbers, then

∫ 1
2

− 1
2

∣∣∣∣∣
n∑

k=0

ake
2iπk2x

∣∣∣∣∣ dx ≥ Cε

√
n

(E[|a|2]) 1
2

∥∂a∥1,n

2+ε

(E[|a|2])
1
2 . (3.1.1)
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Remarks

1. When ak = 1 for all k, we obtain Zalcwasser’s result [43]:

∫ 1
2

− 1
2

∣∣∣∣∣
n∑

k=0

e2iπk
2x

∣∣∣∣∣ dx ≥ C
√
n
(
E[|a|2]

)1/2
. (3.1.2)

2. By a change of variable, the inequality (3.1.1) reads

∫ 2

0

∣∣∣∣∣
n∑

k=0

ake
iπk2x

∣∣∣∣∣ dx ≥ Cε

√
n

(E[|a|2]) 1
2

∥∂a∥1,n

2+ε

(E[|a|2])
1
2 . (3.1.3)

Hence, as one can reduce the problem to only x between 0 and 1 instead of 0 and 2
(see remark before Lemma 3.5.3), it is simpler to prove (3.1.3).

Examples

Let us now compare our result, Theorem 3.1.1, with McGehee, Pigno and Smith’s Theorem
1.0.1, by giving two examples. More precisely we will investigate the behavior of the lower
bounds in both theorems when n is large. That is

An :=
n∑

k=0

|ak|
k + 1

and Bn :=

√
n

∥∂a∥2+ε
1,n

(
1

n+ 1

n∑
k=0

|ak|2
) 3+ε

2

,

where ε > 0.

1. Let α, β > 0 and let (ak)k=0,...,n be an increasing sequence such that α < ak < β. For
n large, we have

Bn ≥ β
(α
β

)(3+ε)√
n ≥ β ln(n) ≥ An.

In other words, we have∫ 1
2

− 1
2

∣∣∣∣∣
n∑

k=0

ake
2iπk2x

∣∣∣∣∣ dx ≥ β
(α
β

)(3+ε)√
n,

hence Theorem 3.1.1 extend (3.1.2) to more general trigonometric polynomials.

2. Let α ∈ R and ak = (k + 1)α, k = 0, . . . n.

(a) If α ≥ 0, then Bn ∼ nα+ 1
2 , An ∼ ln(n) if α = 0 and An ∼ nα if α > 0, thus our

result is better.
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(b) If α < 0, then An is only a constant. For Bn, we distinguish different cases. If

−1
6
< α < 0 then Bn ∼ n

1
2
+α(3+ε), which is better than An. In the other case,

Bn goes to 0. Indeed

Bn ∼


ln(n)

3+ε
2 n− 2+ε

2 if α = −1

2
,

n
1
2
+α(3+ε) if −1

2
< α < −1

6
,

n− 2+ε
2 if α < −1

2
.

Thus, we see that our result is better when α > −1

6
.

3.2 Strategy of the proof

The starting point is to establish an approximate functional equation (A.F.E). Since the
Lebesgue measure of the set of all rational numbers is zero, without loss of generality, one
can reduce the study to the case of only irrational x’s. Moreover, we will see that one can
also reduce the proof to irrationals between 0 and 1 instead of 0 and 2. Hence, subsection
3.4 is dedicated to the study of irrational numbers in ]0, 1[ , more precisely we recall some
known properties regarding continued fraction to be used in order to deliver a more practical
form of our approximate functional equation.

The second step (subsection 3.5) consists in iterating this new A.F.E (that is why we
say it is more practical) to obtain the following; for x ∈]0, 1[,∣∣∣∣∣

n∑
k=0

ake
iπk2x

∣∣∣∣∣ ≤ |a0|
n

√
qs

+ C∥∂a∥1,n
√
qs,

where C is an absolute positive constant and qs is the s−th convergent of the continued
fraction expansion of x.

We then use the previous upper bound with some properties of the continued fraction
expansion of x to find C, such that for t > 0

λ

(
{x ∈ [0, 1] :

∣∣∣∣∣
n∑

k=0

ake
iπk2x

∣∣∣∣∣ > t
√
n∥∂a∥1,n}

)
≤ ct−4, (3.2.1)

where λ is the Lebesgue measure on [0, 1]. In order to benefit from (3.2.1), we use the layer
cake representation to prove that, for p ∈]2, 4[∥∥∥∥∥

n∑
k=0

ake
iπk2x

∥∥∥∥∥
Lp([0,1])

≤ Cp∥∂a∥1,n
√
n

Then by log-convexity of Lp-norms, we interpolate 2 between 1 and p and using Parseval’s
identity, one can conclude the proof.
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3.3 The approximate functional equation

In the following, we will investigate more general sums and henceforth we set

sn(x, t) =
n∑

k=0

ake
iπk2x+2iπkt and s1n(x, t) =

n∑
k=0

eiπk
2x+2iπkt,

where n is a non-negative integer, ak are complex numbers, x and t are real numbers with

0 < x < 2 and 0 ≤ t ≤ 1.

Let [x] be the integral part of x. When nx is not an integer, we define the sum snx by
snx := s[nx].

The aim of this section is to establish the following theorem.

Theorem 3.3.1 (Approximate Functional Equation). For 0 < x < 2 and 0 ≤ t ≤ 1, we
have

sn(x, t) = a0
eiπ/4√
x
e−iπt2

x s1nx

(
−1

x
,
t

x

)
+R(x, t), (3.3.1)

where |R(x, t)| ≤ C√
x
∥∂a∥1,n and C is an absolute constant.

To prove this theorem, we will follow the same steps used by Mordell [28] to demonstrate
the approximate functional inequality in the case an = 1 for all n. This proof is simpler
than that of Hardy and Littlewood [13]. We will now fix the sequence (an) and without loss
of generality, we assume that ∥∂a∥1,n = 1 so that |an| ≤ 1 for all n. We also fix x, t with
0 < x < 2 and 0 ≤ t ≤ 1.

We will need some preliminary notions and results. Let

gx,t(z) = eiπz
2x+2iπzt and fx,t(z) =

1

e2iπz − 1

n−1∑
k=0

akgx,t(z + k).

When it is unnecessary to indicate the dependency on the variables x, t, we will simply
write g = gx,t and f = fx,t. Thus, we have

s1n−1(x, t) =
n−1∑
k=0

gx,t(k) and sn−1(x, t) =
n−1∑
k=0

akgx,t(k).

By the Residue Theorem, if γ is a closed contour such that the index of 0 with respect to
γ is 1, the other poles of f ( i.e., the non-zero integers) being of index zero, we have

sn−1(x, t) =
n−1∑
k=0

akgx,t(k) =

∫
γ

fx,t(z) dz.

Let γ be the following parallelogram ABCD
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0 d

C

B

D

A

−1
2

1
2

dei
π
4•

−deiπ4
•

2d

More precisely:

• AB is parametrised by z = γAB(u) = eiπ/4d+ u, u from
1

2
to −1

2
,

• BC is parametrised by z = γBC(u) = −1

2
+ eiπ/4u, u from d to −d

• CD is parametrised by z = γCD(u) = −eiπ/4d+ u, −1

2
≤ u ≤ 1

2
,

• DA is parametrised by z = γDA(u) =
1

2
+ eiπ/4u,−d ≤ u ≤ d.

As a result∫
γ

f(z) dz =

∫
AB

f(z) dz +

∫
BC

f(z) dz +

∫
CD

f(z) dz +

∫
DA

f(z) dz

= I(AB) + I(BC) + I(CD) + I(DA).

Lemma 3.3.2. For all n ≥ 1, sn−1(x, t) = lim
d→+∞

∫
CB

(fx,t(z + 1)− fx,t(z)) dz.

Proof. We start by proving that

I(AB) −→
d→+∞

0 and I(CD) −→
d→+∞

0.

Since

f(z) =
1

e2iπz − 1

n−1∑
k=0

akg(z + k),

and |ak| ≤ ∥a∥∞ ≤ ∥∂a∥1,n ≤ 1, we have

|f(z)| ≤ 1

|e2iπz − 1|

n−1∑
k=0

|g(z + k)|.
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then ∣∣∣∣∫
AB

f(z) dz

∣∣∣∣ =
∣∣∣∣∣
∫ −1/2

1/2

f(eiπ/4d+ u) du

∣∣∣∣∣ ≤
n−1∑
k=0

∫ 1
2

− 1
2

∣∣∣∣g(deiπ/4 + u+ k)

e2iπ(deiπ/4+u) − 1

∣∣∣∣ du.
It is therefore enough to show that∣∣∣∣g(deiπ/4 + u+ k)

e2iπ(deiπ/4+u) − 1

∣∣∣∣ −→
d→+∞

0

uniformly in u ∈
[
−1

2
,
1

2

]
. But

|g(deiπ/4 + u+ k)| = |eiπ(deiπ/4+u+k)2x+2iπ(deiπ/4+u+k)t|
= e−πd2x−sin(π/4)2(u+k)dπx−2πd sin(π/4)t.

Using the inequality
|eζ − 1| ≥

∣∣|eζ | − 1
∣∣ = ∣∣eℜ(ζ) − 1

∣∣,
we then obtain that∣∣∣∣g(deiπ/4 + u+ k)

e2iπ(deiπ/4+u) − 1

∣∣∣∣ ≤ e−πd2x+
√
2π((k+1/2)x+t)d

|e−π
√
2d − 1|

−→
d→+∞

0

which allows us to conclude for the integral over the segment AB. The integral over CD is
obtained in the same way. Thus

sn−1(x, t) = lim
d→+∞

(∫
DA

fx,t(z) dz −
∫
CB

fx,t(z) dz

)
.

Since DA = CB + 1, we have∫
DA

f(z) dz =

∫ d

−d

f(γDA(u))γ
′
DA(u) du

=

∫ d

−d

f(γBC(u) + 1)γ′BC(u) du

=

∫
CB

f(z + 1) dz.

As a result,

sn−1(x, t) = lim
d→+∞

∫
CB

(fx,t(z + 1)− fx,t(z)) dz,

as stated.

Lemma 3.3.3. We can decompose

sn−1(x, t) = an−1Jn(x, t)− a0J0(x, t) + In(x, t)

where
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• Jk(x, t) = lim
d→+∞

∫
CB

gx,t(z + k)

e2iπz − 1
dz,

• In(x, t) = lim
d→+∞

n−1∑
k=1

(
(ak−1 − ak)

∫
CB

gx,t(z + k)

e2iπz − 1
dz

)
.

Proof. We want to decompose

lim
d→+∞

∫
CB

(f(z + 1)− f(z)) dz.

But, Abel’s summation shows that

n−1∑
k=0

ak
(
g(z + 1 + k)− g(z + k)

)
= an−1g(z + n)− a0g(z) +

n−1∑
k=1

(ak−1 − ak)g(z + k).

Since e2iπ(z+1) = e2iπz and by definition of f , we deduce that

f(z + 1)− f(z) = an−1
g(z + n)

e2iπz − 1
− a0

g(z)

e2iπz − 1
+

n−1∑
k=1

(ak−1 − ak)
g(z + k)

e2iπz − 1
.

By integrating over CB and passing to the limit when d −→ +∞, we obtain the desired
decomposition.

Lemma 3.3.4. Suppose that µ :=

(
n− 1

2

)
x+t ∈ [0, 1] then there exists a uniform constant

C > 0 such that |Jn(x, t)| ≤
C√
x
.

Remark. Until further notice, we will look at µ ∈ [0, 1] and we will see at the end of the
proof how to overcome this condition.

Proof. In the definition of J the integral is over z of the form z = γBC(u) = −1

2
+ ueiπ/4

with u ∈ [−d, d]. But, for these z,

g(z + n) = eiπ(z+n)2x+2iπ(z+n)t = eiπ(−
1
2
+ueiπ/4+n)2x+2iπ(− 1

2
+ueiπ/4)t

= eiπ[(n−1)2+u2eiπ/2+2(n− 1
2
)ueiπ/4]x−iπt+2iuπeiπ/4t

= eπ[i(n−1)2−u2+
√
2(n− 1

2
)u(−1+i)]x−iπt+

√
2(−1+i)uπ.

Subsequently,

|g(z + n)| = e−πxu2−π
√
2(n− 1

2
)ux−uπ

√
2t = e−πxu2−uπ

√
2[(n− 1

2
)x+t]

= e−πxu2−uπ
√
2µ.
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Since 0 ≤ µ ≤ 1, we deduce the estimate

∣∣g(γBC(u) + n
)∣∣ ≤

{
e−πxu2

if u ≥ 0

e−πxu2
(e−uπ

√
2) if u < 0

≤

{
e−πxu2

if u ≥ 0

e−πxu2 |e2iπγBC(u)| if u < 0

since |e2iπγBC(u)| = |e−2πℑ
(
γBC(u)

)
| = e−

√
2πu. We deduce that, when z = γBC(u)∣∣g(γBC(u) + n

)∣∣
|e2iπγBC(u) − 1|

≤ e−πxu2

M(u)

where M(u) =


1

|e2iπγBC(u) − 1|
if u ≥ 0

|e2iπγBC(u)|
|e2iπγBC(u) − 1|

if u ≤ 0
.

Note that

|e2iπz − 1|2 = e2iπ(z−z̄) − (e2iπz + e−2iπz̄) + 1

= e−4πℑ(z) + 2e−2πℑ(z) cos 2πℜ(z) + 1

and hence

|e2iπγBC(u) − 1|2 = e−2
√
2πu − 2e−

√
2πu sin

√
2πu+ 1.

Since

e−
√
2πu sin

√
2πu→ 0 when u→ 0,

there exists u0 such that, if |u| < u0,

2e−
√
2πu sin

√
2πu < 1,

then

|e2iπγBC(u) − 1|2 ≥ e−2
√
2πu0 .

For u > u0,

|e2iπγBC(u) − 1|2 ≥ e−2
√
2πu − 2e−

√
2πu + 1 = (1− e−

√
2πu)2 ≥ (1− e−

√
2πu0)2

while, for u < −u0,

|e2iπγBC(u) − 1|2 ≥ e−2
√
2πu − 2e−

√
2πu + 1 = (e−

√
2πu − 1)2 ≥ (e

√
2πu0 − 1)2.

The denominator in the definition of M is therefore lower bounded by a strictly positive
quantity and M is continuous. Moreover, M is bounded on [0,+∞). For u → −∞,
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|e2iπγBC(u)| → +∞ so M(u) =
|e2iπγBC(u)|

|e2iπγBC(u) − 1|
→ 1 when u → +∞. Thus M is bounded on

R and ∣∣g(γBC(u) + n
)∣∣

|e2iπγBC(u) − 1|
≤ ∥M∥∞e−πxu2

.

But then Jn(x, t) =

∫ +∞

−∞

gx,t
(
γBC(u) + k)

e2iπγBC(u) − 1
γ′BC(u) du converges and is bounded by

∫ +∞

−∞
∥M∥∞e−πxu2

du =
∥M∥∞√

x
,

as announced.

Lemma 3.3.5. Let µ =

(
n− 1

2

)
x + t, and suppose that µ ∈ [0, 1]. For at least one λ

among [nx] and [nx] + 1, we have

−J0(x, t) =
ei

π
4

√
x

λ−1∑
k=0

e−iπ(t+k)2/x + J̃0(x, t) with |J̃0(x, t)| ≤
C√
x
,

where C is a uniform constant.

Proof. We fix a non-negative integer λ, to be adjusted later on. Since

λ−1∑
k=0

e2iπzk =
1

1− e2iπz
− e2iπzλ

1− e2iπz
,

we can write

−
∫
CB

g(z)

e2iπz − 1
dz =

λ−1∑
k=0

∫
CB

g(z)e2iπzk dz +

∫
CB

g(z)e2iπzλ

1− e2iπz
dz.

We are going to show that each term in the sum does indeed converge to a term of the
desired form and that the last integral does indeed converge to a remainder J̃0.

First, we start with the terms in the sum. For z = γBC(u),

g(z)e2iπzk = eiπz
2x+2iπz(t+k) = eiπx(z+

t+k
x )

2
− iπ(t+k)2

x

= e−
iπ(t+k)2

x eiπx(ue
i π4 − 1

2
+ t+k

x )
2

= e−
iπ(t+k)2

x e−πx(u+v)2

with v = −iei
π
4

(
t+ k

x
− 1

2

)
. It follows immediately that

∫
CB

g(z)e2iπzk dz −→
d→+∞

ei
π
4 .e−

iπ(t+k)2

x

∫
R
e−πx(u+v)2 du
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since this integral is convergent. It is easy to show that the function ϕ : w →
∫
R
e−πx(u+w)2 du

is an entire function, when w is real ϕ(w) =

∫
R
e−πxu2

du =
1√
x
using a change of variable.

By uniqueness of the analytic continuation, we conclude that

ϕ(w) =
1√
x
for all w ∈ C

and so

lim
d→+∞

∫
CB

g(z)e2iπkz dz =
ei

π
4

√
x
e−iπ(t+k)2/x.

Let us now show that the last term is indeed a remainder term when λ is well chosen.
First, as in the proof of Lemma 3.3.4, when z = γBC(u),

|g(z)e2iπzλ| = e−πxu2−
√
2πu(−x

2
+t)e−πλ

√
2u = e−πxu2−

√
2πu(−x

2
+t+λ).

Let λ ∈ N such that 0 ≤ t+ λ− x

2
≤ 1. Equivalently,

−t+ x

2
≤ λ ≤ 1− t+

x

2
. (3.3.2)

Note that one of the 2 integers [nx] and [nx] + 1 satisfies (3.3.2). Otherwise we would have
only one of the following cases

• 1− t+
x

2
≤ [nx] ≤ nx which contradicts µ ≤ 1,

• [nx] + 1 ≤ −t+ x
2
which contradicts 0 ≤ µ.

We then choose among [nx] and [nx] + 1 an integer λ which satisfies (3.3.2) and the same
reasoning as in the proof of Lemma 3.3.4 shows that, when d→ +∞,∫

CB

g(z)e2iπzλ

1− e2iπz
dz

converges to a term J1(x, t) satisfying |J1(x, t)| ≤
C√
x
with C a uniform constant.

Lemma 3.3.6. Let n ∈ N and µ =

(
n− 1

2

)
x+ t. If 0 ≤ µ ≤ 1, then

|In(x, t)| ≤
C√
x
∥∂a∥1,n,

with C a uniform constant.
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Proof. Again, when z = γBC(u) = −1

2
+ eiπ/4u,∣∣g(γBC(u) + k
)∣∣ = e−πxu2−2π sin(π

4
)u[(k− 1

2
)x+t].

For k = 1, . . . , n − 1, let µk =

(
k − 1

2

)
x + t, and notice that 0 ≤ µk ≤ µ ≤ 1. As in the

proof of Lemma 3.3.4, we have∣∣∣∣∣g
(
γBC(u) + k)

e2iπγBC(u) − 1

∣∣∣∣∣ = e−πxu2

M(u)

and the function M is bounded on R. Finally,

|In| =

∣∣∣∣∣ limd→+∞

n−1∑
k=1

(
(ak−1 − ak)

∫
CB

g(z + k)

e2iπz − 1
dz

)∣∣∣∣∣
≤

n−1∑
k=1

|ak−1 − ak|
∫
R

∣∣∣∣g(z + k)

e2iπz − 1

∣∣∣∣ dz
≤ C√

x
∥∂a∥1,n,

since
n∑

k=0

|ak − ak−1| ≤ ∥∂a∥1,n.

Lemma 3.3.7. If 0 ≤ µ ≤ 1, then

sn(x, t) = a0
ei

π
4

√
x

[nx]∑
k=0

e−
iπ(t+k)2

x +R(x, t) where |R(x, t)| ≤ C√
x
∥∂a∥1,n.

Proof. Recall that |ak| ≤ ∥∂a∥1,n for all k ≥ 0. According to the Lemmas 3.3.3, 3.3.4, 3.3.5
and 3.3.6,

sn−1(x, t) = a0
ei

π
4

√
x

λ−1∑
k=0

e−
iπ(t+k)2

x +R0(x, t) where |R0(x, t)| ≤
C√
x
∥∂a∥1,n,

and λ is either [nx] or [nx] + 1. First, we write sn(x, t) = sn−1(x, t) + ane
iπn2x+2iπnt. Since

0 < x < 2 and |an| ≤ ∥∂a∥1,n, we have
∣∣∣aneiπn2x+2iπnt

∣∣∣ ≤ √
2√
x
∥∂a∥1,n. We can therefore

write sn instead of sn−1 by replacing R0(x, t) by R1(x, t) = R0(x, t) + ane
iπn2x+2iπnt.

When λ = [nx] + 1, the lemma is established. When λ = [nx], we write

a0
ei

π
4

√
x

[nx]−1∑
k=0

e−
iπ(t+k)2

x = a0
ei

π
4

√
x

[nx]∑
k=0

e−
iπ(t+k)2

x − a0
ei

π
4

√
x
e−

iπ(t+[nx])2

x .

Since |a0| ≤ ∥∂a∥1,n, the last term is absorbed into R1.
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It remains to prove the theorem without the restriction on µ.

Proof of Theorem 3.3.1. Let p = −
[
(n− 1

2
)x+ t

]
= −

[
nx− x

2
+ t
]
such that

0 ≤ (n− 1

2
)x+ t+ p ≤ 1. (3.3.3)

By applying the Lemma 3.3.7 for s = t+ p instead of t, we obtain

n∑
k=0

ake
iπk2x+2iπks = a0

ei
π
4

√
x

nx∑
k=0

e−iπ(s+k)2/x +R(x, s) where |R(x, s)| ≤ C√
x
∥∂a∥1,n.

In the first sum, we notice that e2iπks = e2iπkt and in the second, we make a change of
summation index j → p+ k and we get

n∑
k=0

ake
iπk2x+2iπkt = a0

ei
π
4

√
x

p+[nx]∑
j=p

e−iπ(t+j)2/x +R(x, t− p). (3.3.4)

where |R(x, t− p)| ≤ C√
x
∥∂a∥1,n.

We will now replace the sum over j going from p to p+ [nx] by a sum going from −[nx]

to 0. Since −1 ≤ −x
2
+ t ≤ 1 and p = −

[
(n− 1

2
)x+ t

]
= −

[
nx− x

2
+ t
]
, there are at

most 2 terms to remove to go from p to −[nx] and 2 terms to add to go from p + [nx] to

0. Each of these terms has modulus
|a0|√
x

≤ ∥∂a∥1,n√
x

and can therefore be absorbed in the

remainder term R.

Thus (3.3.4) writes

n∑
k=0

eiπk
2x+2iπkt = a0

ei
π
4

√
x

0∑
j=−[nx]

e−iπ(t+j)2/x +R(x, t− p)

= a0
ei

π
4

√
x

[nx]∑
j=0

e−iπ(t−j)2/x +R(x, t− p)

= a0
ei

π
4 e−iπt2/x

√
x

[nx]∑
k=0

e−iπk2/x+2iπkt/x +R(x, t− p)

= a0
ei

π
4

√
x
e−iπt2/xs1[nx]

(
−1

x
,
t

x

)
+R(x, t− p)

with |R(x, t− p)| ≤ C√
x
∥∂a∥1,n and C a constant independent of x, t, p.
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3.4 Continued fraction

The following method essentially consists of extending Euclid’s algorithm to the case of
irrational numbers. For more details on this part, we refer to the book by Choimet and
Queffélec [3]. Suppose that x irrational of ]0, 1[ and t an element of [0.1],

x = ω0,
1
ω0

= v′1 = v1 + ω1, with v1 ∈ N∗, 0 < ω1 < 1,
1
ω1

= v′2 = v2 + ω2, with v2 ∈ N∗, 0 < ω2 < 1,
...
1
ωn

= v′n+1 = vn+1 + ωn+1, with vn+1 ∈ N∗, 0 < ωn+1 < 1,
...

. (3.4.1)

As x is irrational, the process never stops. The vn are called the partial quotients of
the continued fraction expansion of x. The convergents of this expansion are the rationals
pn
qn

(n ≥ 0) defined by the following sequences of integers (pn)n≥−1 and (qn)n≥−1:{
p−1 = 1, p0 = 0 and pn+1 = vn+1pn + pn−1 for n ≥ 0,

q−1 = 0, q0 = 1 and qn+1 = vn+1qn + qn−1 for n ≥ 0.

For n ≥ 1, we have
pn
qn

=
1

v1 +
1

v2 +
1

v3+
.. .

vn−1+
1

vn
.

Finally let hn = pn−1qn − pnqn−1 for n ≥ 0.

Remark. We have:

1. Every irrational number (more generally positive real number x [6]) can be represented
in precisely one way as an infinite continued fraction. The continued fraction is finite
if and only if x is rational.

2. ωj satisfies the following inequality:

ωjωj+1 ≤
1

2
for all j. (3.4.2)

Indeed, since vj ≥ 1 for all j,

ωj =
1

vj+1 + ωj+1

≤ 1

1 + ωj+1

,
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and then

ωjωj+1 ≤
ωj+1

1 + ωj+1

≤ 1

2
,

since 0 ≤ ωj+1 < 1 and the function x −→ x

1 + x
is increasing on [0, 1].

The following result relates the ωn to the convergents.

Lemma 3.4.1. For all n ≥ 0, we have

(−1)nω0ω1 . . . ωn = qnx− pn.

Proof. Let βn = (−1)nω0ω1 . . . ωn for n ≥ 0. We proceed by induction on n. β0 = ω0 = x =

q0x + p0 and β1 = −ω0ω1 = −ω0(
1

ω0

− v1) = v1ω0 − 1 = v1x − 1 = q1x − p1. Suppose the

lemma is true up to order n.

βn+1 = −βnωn+1 = −βn(
1

ωn

− vn+1) = vn+1βn −
βn
ωn

= vn+1βn + βn−1

= vn+1(qnx− pn) + qn−1x− pn−1

= x(vn+1qn + qn−1)− (vn+1pn + pn−1)

= qn+1x− pn+1

by construction of the sequence (pn, qn).

Lemma 3.4.2. For all n ≥ 0, on a hn = (−1)n.

Proof. By induction on n, h0 = p−1q0 − p0q−1 = 1 and if hn = (−1)n then

hn+1 = pnqn+1 − pn+1qn = pn(vn+1qn + qn−1)− qn(vn+1pn + pn−1)

= vn+1pnqn + pnqn−1 − vn+1pnqn − qnpn−1

= pnqn−1 − qnpn−1

= −hn

which is indeed (−1)n+1 with the induction hypothesis.

Lemma 3.4.3. For all n ≥ 0, we have x =
v′n+1pn + pn−1

v′n+1qn + qn−1

.

Proof. For n = 0,
v′1p0 + p−1

v′1q0 + q−1

=
1

v′1
= ω0 = x.
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Moreover,

v′n+2pn+1 + pn
v′n+2qn+1 + qn

=

pn+1

ωn+1

+ pn

qn+1

ωn+1

+ qn
=

vn+1pn + pn−1

ωn+1

+ pn

vn+1qn + qn−1

ωn+1

+ qn

=
pn(vn+1 + ωn+1) + pn−1

qn(vn+1 + ωn+1) + qn−1

=
v′n+1pn + pn−1

v′n+1qn + qn−1

= x.

The result is then established by induction.

Lemma 3.4.4. Let q′n+1 = v′n+1qn + qn−1. For all n ≥ 0,

|qnx− pn| =
1

q′n+1

.

Proof. By Lemma 3.4.3,

qnx− pn = qn

(
v′n+1pn + pn−1

v′n+1qn + qn−1

− pn

)
=

qn(v
′
n+1pn + pn−1)− pn(v

′
n+1qn + qn−1)

q′n+1

=
qnpn−1 − pnqn−1

q′n+1

=
hn
q′n+1

.

hence |qnx− pn| =
1

q′n+1

.

Corollary 3.4.5. For all n ≥ 0, we have

qn+1 ≤ q′n+1 ≤ 2qn+1

and
1

2qn+1

≤ ω0ω1 . . . ωn ≤ 1

qn+1

.

Proof. By Lemmas 3.4.1 and 3.4.4, we have

ω0 . . . ωn = |(−1)nω0 . . . ωn| = |qnx− pn| =
1

q′n+1

.

So, the second inequality follows from the first one. However,

v′n+1 = vn+1 + ωn+1 with 0 < ωn+1
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hence
v′n+1 ≥ vn and q′n+1 ≥ qn+1.

Moreover, ωn+1 < 1 then v′n+1 ≤ vn+1 + 1, and we have

q′n+1 = v′n+1qn + qn−1

≤ (1 + vn+1)qn + qn−1

= qn + qn+1

≤ 2qn+1,

since the sequence (qn)n≥0 increases. This implies the result.

3.5 Intermediate results

We will proceed by combining two essential ingredients: the approximate functional equa-
tion (3.3.1) that we will give in a more practical form, well suited to an iteration and the
continued fraction expansion of irrational numbers as described in section 3.5 (see [12]).

Lemma 3.5.1. Let t ∈ [0, 1] and 0 < x < 2. We define ω1 =
1

x
−
[
1

x

]
, then there exists

u = u(x, t) ∈ C of modulus 1 and t̃ = t̃(x, t) ∈ [0, 1] such that

sn(x, t) = a0
u√
x
s1[nx](ω1, t̃ ) +R(x, t).

where |R(x, t)| ≤ C√
x
∥∂a∥1,n with C a uniform constant.

Proof. Let θ = − t

x
and

1

x
= v1 + ω1 with v1 =

[
1

x

]
and ω1 =

1

x
−
[
1

x

]
. By Theorem 3.3.1

sn(x, t) = a0
eiπ/4√
x
e−iπt2/xs1nx

(
−1

x
,
t

x

)
+R

= a0
u√
x
s1[nx](−v1 − ω1,−θ) +R,

with u = ei
π
4 .e−iπt2

x and |R| = |R(x, t)| ≤ C√
x
∥∂a∥1,nwhere C is a uniform constant.

Since (−1)k
2
= (−1)k = eiπk when k is an integer, then, for any integer m, s1m satisfies

another (non approximate) functional equation;

s1m(x− 1, t) =
m∑
k=0

eiπk
2(x−1)+2iπkt =

m∑
k=0

(−1)k
2

eiπk
2x+2iπkt

=
m∑
k=0

eiπk
2x+2iπkt+iπk = s1m

(
x, t+

1

2

)
.

44



Intermediate results CHAPTER 3.

By iterating, we obtain more generally that, for all integers ℓ,m, s1m(x−ℓ, t) = s1m

(
x, t+

ℓ

2

)
.

In particular, we have

sn(x, t) = a0
u√
x
s1[nx](−ω1,−θ +

v1
2
) +R.

If we define t̃ = θ − v1
2

−
[
θ − v1

2

]
∈ [0, 1], then by 1-periodicity of s1[nx] in the second

variable
sn(x, t) = a0

u√
x
s1[nx](−ω1,−t̃ ) +R.

We conclude by noticing that s1[nx](−ω1,−t̃ ) = s1[nx](ω1, t̃ ).

Theorem 3.5.2. Let x be an irrational in the interval ]0, 1[ and t ∈ [0, 1]. Then, for
n, s ≥ 1, we have

|sn(x, t)| ≤ |a0|
n

√
qs

+ C∥∂a∥1,n
√
qs,

where C > 0 is an absolute constant, qs denotes the denominator of the s-th convergent of
the continued fraction expansion of x.

Proof. This proof is similar to the one by Zalcwasser [43] and consists in iterating Lemma
3.5.1. Here, C is the constant of the Lemma 3.5.1 and the ωj have been defined in (3.4.1).

Since x = ω0, by Lemma 3.5.1, if we take n1 = [nω0], t1 = t̃(x, t) and u1 = u(x, t), we
have

sn(x, t) = a0
u1√
x
s1n1

(ω1, t1) +R1 = a0
u1√
ω0

s1n1
(ω1, t1) +R1

where |R1| = |R(x, t)| ≤ C√
x
∥∂a∥1,n.

Again, by Lemma 3.5.1, writing t2 = t̃(ω1, t1),

sn(x, t) = a0
u1√
ω0

[
u2√
ω1

s1[n1ω1]
(ω2, t2) +R(ω1, t1)

]
+R1

= a0
u1u2√
ω0ω1

s1[n1ω1]
(ω2, t2) + a0

u1√
ω0

R(ω1, t1) +R1

= a0
u1u2√
ω0ω1

s1[n1ω1]
(ω2, t2) +R2.

But since |R(ω1, t1)| ≤
C

√
ω1

, (note that here, we apply the Lemma 3.5.1 to the constant

sequence 1 = (1, . . .) and that ∥∂1∥1,n = 1 ), we have

|R2| =
∣∣∣∣a0 u1√

ω0

R(ω1, t1) +R1

∣∣∣∣ ≤ C
√
ω0ω1

|a0|+
C

√
ω0

∥∂a∥1,n

≤ C

(
1

√
ω0

+
1

√
ω0ω1

)
∥∂a∥1,n.
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Then, by induction, we define the sequence nj by nj+1 = [njωj] and since nj+1 ≤ njωj

then npωp ≤ nω0 · · ·ωp.

By applying p+ 1 times the Lemma 3.5.1, we deduce that

sn(x, t) = a0
u1 · · ·up+1√
ω0 . . . ωp

s1[npωp](ωp+1, tp+1) +Rp+1

where

– tp+1 = t̃(ωp, tp);

– the uj are complex numbers of modulus 1;

– Rp+1 ≤ C

(
1

√
ω0

+ · · ·+ 1
√
ω0 . . . ωp

)
∥∂a∥1,n.

Since |s1[npωp]
| ≤ [npωp] ≤ nω0 · · ·ωp, we obtain

|sn(x, t)| ≤ |a0|
nω0 . . . ωp√
ω0 . . . ωp

+ C

(
1

√
ω0

+ . . .
1

√
ω0 . . . ωp

)
∥∂a∥1,n

≤ |a0|n
√
ω0 . . . ωp +

C
√
ω0 . . . ωp

(1 +
√
ωp +

√
ωpωp−1 + . . .

√
ωp . . . ω1)∥∂a∥1,n.

By Inequality (3.4.2), we have

|sn(x, t)| ≤ |a0|n
√
ω0 . . . ωp +

C
√
ω0 . . . ωp

(
1 + 1 +

1√
2
+

1√
2
+

1

2
+ . . .

)
∥∂a∥1,n

≤ |a0|n
√
ω0 . . . ωp +

(
7C

√
ω0 . . . ωp

)
∥∂a∥1,n,

since 2
∞∑
k=0

(
1√
2

)k

=
2
√
2√

2− 1
≤ 7. We now select p = s − 1 and use Corollary 3.4.5 to

obtain the bound

|sn(x, t)| ≤ |a0|
n

√
qs

+ 7
√
2C

√
qs∥∂a∥1,n

as stated.

Let

Sn(x) = sn(x, 0) =
n∑

k=0

ake
iπk2x

Since |Sn(2 − x)| = |
∑n

k=0 ake
iπk2x| and ∥∂a∥1,n = ∥∂a∥1,n, the study of Sn(x), x ∈]0, 2[ is

reduced to the case x ∈]0, 1[.

Lemma 3.5.3. There exists an absolute constant c such that, for t > 0 we have

|{x ∈ [0, 1] : |Sn(x)| > t
√
n∥∂a∥1,n}| ≤ ct−4.
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Proof. Let C be the constant appearing in Theorem 3.5.2. We fix t > 0 and n ∈ N∗, and
denote E the set of irrationals numbers x in ]0, 1[ such that |Sn(x)| > t

√
n∥∂a∥1,n. Let x

in E and qj, as previously, the denominator of the convergents in the continued fraction
expansion of x. We distinguish 2 cases:

• First case, q1 >
t2n

4C2
. Then,

x <
1

v1
=

1

q1
≤ 4C2

t2n
,

in other words x ∈
]
0, 4C

2

t2n

]
.

• Second case, q1 ≤
t2n

4C2
. By the hypothesis and Theorem 3.5.2, we have for s ≥ 1:

t
√
n∥∂a∥1,n < |Sn(x)| ≤ |a0|

n
√
qs

+ C∥∂a∥1,n
√
qs.

Subsequently

either |a0|
n

√
qs
>
t
√
n∥∂a∥1,n

2
or C

√
qs >

t
√
n

2
.

Since |a0| ≤ ∥∂a∥1,n, then for all s ≥ 1, we have the following alternative:

either qs <
4|a0|2n
t2∥∂a∥21,n

≤ 4n

t2
or qs >

t2n

4C2
. (3.5.1)

Since we assumed that q1 ≤
t2n

4C2
and qs −→

s→+∞
∞, there exists an integer s0 ≥ 0 such

that

qs0 ≤
t2n

4C2
≤ qs0+1.

In this case, by Lemma 3.4.4 and Corollary 3.4.5,

|qs0x− ps0| =
1

q′s0+1

<
1

qs0+1

,

thus ∣∣∣∣x− ps0
qs0

∣∣∣∣ ≤ 1

qs0qs0+1

≤ 1

qs0

4C2

t2n
,

so that

x ∈
[
ps0
qs0

− 1

qs0

4C2

t2n
,
ps0
qs0

+
1

qs0

4C2

t2n

]
.
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In summary if x ∈ E we have

x ∈
]
0,

4C2

t2n

]
∪
[
ps0
qs0

− 1

qs0

4C2

t2n
,
ps0
qs0

+
1

qs0

4C2

t2n

]
.

Moreover,

|{x ∈ [0, 1] : |Sn(x)| > t
√
n∥∂a∥1,n}| ≤ 4C2

t2n
+

2

qs0

4C2

t2n

≤ 4C2

t2n
+

8C2

t2n
=

12C2

t2n
,

since qs0 ≥ 1.
Finally, since t

√
n∥∂a∥1,n ≥ 2n∥∂a∥1,n > |Sn|, if t > 2

√
n,

|{x ∈ [0, 1] : |Sn(x)| > t
√
n∥∂a∥1,n}| ≤ |{x ∈ [0, 1] : |Sn(x)| > 2n∥∂a∥1,n}| = 0.

Furthermore, if t ≤ 2
√
n i.e if

1

n
≤ 4

t2
we find

|{x ∈ [0, 1] : |Sn(x)| > t
√
n∥∂a∥1,n}| ≤

48C2

t4

as stated.

Lemma 3.5.4. Let p be a real number in ]2, 4[. There exists a constant Cp depending on p
such that ∥∥∥∥ Sn√

n

∥∥∥∥
Lp([0,1])

≤ Cp∥∂a∥1,n.

Proof. Let X =
|Sn|√
n∥∂a∥1,n

. By Lemma 3.5.3, λ(|X| > t) ≤ min(1, ct−4) then

∥X∥pp =

∫ ∞

0

ptp−1λ(|X| > t) dt

≤
∫ 1

0

ptp−1 dt+

∫ ∞

1

ptp−1ct−4 dt

≤ 1 + c
p

4− p
:= Cp

p

as stated.

3.6 Last step

We can now now prove the main theorem.
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Proof of Theorem 3.1.1. Let p ∈]2, 4[. The end of the proof consists in applying Lemma
3.5.4 and Holder’s Inequality. By Lemma 3.5.4,

∥Sn∥pLp([0,2]) =

∫ 2

0

∣∣∣∣∣
n∑

k=0

ake
iπk2x

∣∣∣∣∣
p

dx =

∫ 1

0

∣∣∣∣∣
n∑

k=0

ake
iπk2x

∣∣∣∣∣
p

dx+

∫ 1

0

∣∣∣∣∣
n∑

k=0

ake
iπk2x

∣∣∣∣∣
p

dx

≤ Cp∥∂a∥1,n
√
n,

since both terms in the right hand side satisfy Lemma 3.5.4. Next, we interpolate 2 between
1 and p we thus write

1

2
=
η

1
+

1− η

p
(3.6.1)

By Holder’s Inequality, or equivalently log convexity of Lp norms

∥Sn∥2 ≤ ∥Sn∥1−η
p ∥Sn∥η1 ≤ C1−η

p n
1−η
2 ∥∂a∥1−η

1,n ∥Sn∥η1,

but
∥Sn∥L2([0,2]) =

√
2∥a∥ℓ2 ,

then
∥a∥ℓ2 ≤ C1−η

p n
1−η
2 ∥∂a∥1−η

1,n ∥Sn∥ηL1([0,2])

and we get

∥Sn∥L1([0,2]) ≥
Cp,η

n
1−η
2η ∥∂a∥

1−η
η

1,n

∥a∥
1
η

ℓ2 .

From (3.6.1), one can write p as a function of η. Let ε > 0, since 0 < η < 1
3
, one can write

η =
1

3 + ε
, yielding the result.

3.7 Estimations of the uniform norm

We finish this chapter with two upper bounds for

sup
0≤t≤1

|sn(x, t)|

when x ∈]0, 1[ is a fixed irrational number. The proof depends heavily on the Diophantine
properties x, and is a direct application of Theorem 3.5.2.

Corollary 3.7.1. Let x be an irrational in ]0, 1[ and a be a sequence of complex numbers

verifying
∞∑
k=0

|ak − ak−1| <∞. Then

1. We have
sup
0≤t≤1

|sn(x, t)| = o(n) as n→ ∞.
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2. If further x has bounded partial quotients, that is, if the sequence (vk)k≥1 is bounded,
then

sup
0≤t≤1

|sn(x, t)| = O(
√
n) as n→ ∞.

Proof. Let Mn = sup
0≤t≤1

|sn(x, t)|.

1. Theorem 3.5.2 gives, for n, s ≥ 1:

Mn

n
≤ |a0|√

qs
+
C∥∂a∥1,n

√
qs

n

but then, for s fixed, by letting n goes to infinity and then s goes to infinity we obtain
the result.

2. Let n be an integer greater than 1. As n ≥ 1 = q0, and since (qk)k is an increasing
sequence, there exists an integer s ≥ 1 such that qs−1 ≤ n ≤ qs. Since vs ≥ 1 and by
definition of qs

qs = vsqs−1 + qs−2 ≤ 2vsqs−1 ≤ 2vsn.

Now the upper bound of the Theorem 3.5.2 gives

|sn(x, t)| ≤ |a0|
√
n+ C∥∂a∥1,n

√
2vsn.

But since x has bounded partial quotients vs, say |vs| ≤M , we have

|sn(x, t)| ≤
√
n∥∂a∥1,n(1 + C

√
2M),

which is indeed
sup
0≤t≤1

|sn(x, t)| = O(
√
n),

yielding the corollary.
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Chapter 4

Littlewood problem and
non-harmonic Fourier series

4.1 Introduction

In the fifties, Littlewood [26] suggested that, up to a constant, the log function is a nice
lower bound for L1-norm of trigonometric polynomials having only 0 or 1 as coefficients and
integer frequencies (a question referred to as the Littlewood problem):

∫ 1/2

−1/2

∣∣∣∣∣
N∑
k=0

e2iπnkt

∣∣∣∣∣ dt ≥ C ln(N + 1),

where C is independent of N .

Nearly 40 years later, Konyagin [24], and independently McGehee, Pigno and Smith [27]
affirmed that Littlewood’s thoughts were correct. Both obtained the solution as a corollary
of a stronger result. Here we are interested in the latter result [27] which states as follows

Theorem 4.1.1 (McGehee, Pigno, Smith). For n0 < n1 < · · · < nN integers and a0, . . . , aN
complex numbers, ∫ 1

2

− 1
2

∣∣∣∣∣
N∑
k=0

ake
2iπnkt

∣∣∣∣∣ dt ≥ CMPS

N∑
k=0

|ak|
k + 1

,

where CMPS is a universal constant (CMPS = 1/30 would do it).

The year after, Stegeman and Yabuta independently improved on the result of McGehee,
Pigno and Smith using some modified version of their proof:

Theorem 4.1.2 (Stegeman [38], Yabuta [41]). Let N ≥ 3. For n0 < n1 < · · · < nN integers

∫ 1/2

−1/2

∣∣∣∣∣
N∑
k=0

e2iπnkt

∣∣∣∣∣ dt ≥ 4

π3
ln(N + 1).
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Next, one can ask the same question as Littlewood but for real frequencies. The problem
is quite different since we lose periodicity of the exponential sums as well as the orthogo-
nality. The first result in this direction was by Hudson and Leckband who used a clever
perturbation argument based on a lemma by Dirichlet ([44, p 235], [8]) to prove the following

Theorem 4.1.3 (Hudson & Leckband [14]). For λ0 < λ1 < . . . < λN real numbers and
a0, . . . , aN complex numbers,

lim
T→+∞

1

T

∫ T/2

−T/2

∣∣∣∣∣
N∑
k=0

ake
2iπλkt

∣∣∣∣∣ dt ≥ CMPS

N∑
k=0

|ak|
k + 1

where CMPS is the same constant as in Theorem 4.1.1.

Not long after, and using the same method, Nazarov [30] showed that one can extend the
estimate to the case of non-integer frequencies. However, and to be able to do so, Nazarov
slightly enlarged the interval of integration; he replaced [−1

2
, 1
2
] by [−T

2
, T
2
] for T > 1.

Theorem 4.1.4 (Nazarov [30]). For T > 1, there exists a constant CT such that, for
0 < λ0 < · · · < λN real numbers such that |λk − λℓ| ≥ |k − ℓ| and a0, . . . , aN complex
numbers, ∫ T/2

−T/2

∣∣∣∣∣
N∑
k=0

ake
2iπλkt

∣∣∣∣∣ dt ≥ CT

N∑
k=0

|ak|
k + 1

. (4.1.1)

It is worth mentioning that the constants in Nazarov’s proof are not explicit and that
the problem is still open for T = 1.

Furthermore, its not clear that Ingham’s counter-example [15] for the L2-case can be
used to prove that the theorem does not hold for T = 1. From here, one can see that, when
tackling the problem of finding explicit constant, one should deal with multiple cases.

The first part concerns Nazarov’s theorem for large enough intervals [17], the aim is to
improve on Nazarov’s proof to obtain a quantitative version of his result, that is an estimate
of the constant CT . By doing so, one can recover previous results for both integer, and real
frequencies. Moreover, we obtain the best constants known today.

The second part is dedicated to the case where T is sufficiently small i.e T is near 1
[20]. Our aim remains the same, to obtain an estimate of the constant CT . Combining the
two cases, our main result states as follows

Theorem 4.1.5. Let λ0 < λ1 < · · · < λN be distinct real numbers and a0, . . . , aN be complex
numbers. Then

i. we have

lim
T→+∞

1

T

∫ T/2

−T/2

∣∣∣∣∣
N∑
k=0

ake
2iπλkt

∣∣∣∣∣ dt ≥ 1

26

N∑
k=0

|ak|
k + 1

.

ii. If further a0, . . . , aN all have modulus larger than 1, |ak| ≥ 1 then

lim
T→+∞

1

T

∫ T/2

−T/2

∣∣∣∣∣
N∑
k=0

ake
2iπλkt

∣∣∣∣∣ dt ≥ 4

π3
ln(N + 1).
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iii. Assume further that for k = 0, . . . , N − 1, λk+1−λk ≥ 1, then, for every T > 1, there
exists a constant C(T ) such that, for every a0, . . . , aN ∈ C,

1

T

∫ T/2

−T/2

∣∣∣∣∣
N∑
k=0

ake
2iπλkt

∣∣∣∣∣ dt ≥ C(T )
N∑
k=0

|ak|
k + 1

. (4.1.2)

Moreover,

(a) for T ≥ 72 we can take C(T ) =
1

122
;

(b) for 1 < T ≤ 2, C(T ) = O
(
(T − 1)15/2

)
.

Remark. For 2 < T < 72, (4.1.2) follows from the case (b) with T = 2, but the constant
is not totally explicit.

Let us make a few comments on the result. First, the limit in the statement of the result

are well-known to exist and are the Besicovitch norms of
N∑
k=0

ake
2iπλkt. Further, when the

λk’s are all integers, then

lim
T→+∞

1

T

∫ T/2

−T/2

∣∣∣∣∣
N∑
k=0

ake
2iπλkt

∣∣∣∣∣ dt =
∫ 1/2

−1/2

∣∣∣∣∣
N∑
k=0

ake
2iπλkt

∣∣∣∣∣ dt
so that we recover Theorems 4.1.1 and 4.1.2 (with the best constants as of today). As the
constants in Theorem 4.1.5 are the best known for CMPS we also recover Theorem 4.1.3
while at this stage, we only recover Theorem 4.1.4 for large enough T which is due to the
strategy of proof (see below).

Further, note that the left hand side in Theorem 4.1.5i) and ii) is unchanged if one
replaces the λk’s by αλk + β. In the proof we will thus assume that |λk − λℓ| ≥ |k − ℓ|
(or equivalently that λk+1 − λk ≥ 1). In Theorem 4.1.5iii) this restriction only affects the
critical T for which our proof works.

4.2 Quantitative version for large T

We are going to prove the first part of Theorem 4.1.5, that is i, ii and iii a).

4.2.1 Strategy of the proof

Without loss of generality one can suppose a0 = 0 i.e. the sums start from one. This
proof is closely related to the one implemented by McGehee, Pigno and Smith as extended
by Nazarov to prove Theorem 4.1.4, but we here follow constants more closely. Further,
we introduce various parameters which will be optimized in the last step. We fix a (non-
harmonic) trigonometric polynomial

ϕ(t) =
N∑
k=1

ake
2πiλkt and S =

N∑
k=1

|ak|
k
. (4.2.1)
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We then write |ak| = akuk with uk complex numbers of modulus 1 and introduce

U(t) =
N∑
k=1

uk
k
e−2πiλkt.

Using the orthogonality relation

lim
T→+∞

1

T

∫ T/2

−T/2

e2iπλte−2iπµt dt = δλ,µ (4.2.2)

we see that

S = lim
T→+∞

1

T

∫ T/2

−T/2

ϕ(t)U(t) dt. (4.2.3)

The second step will consist in correcting U into V in such a way that ∥V ∥∞ ≤ A where A
is a numerical constant (that does not depend on N or T ) and so that, for each k,

lim
T→+∞

1

T

∣∣∣∣∣
∫ T/2

−T/2

(
U(t)− V (t)

)
e2iπλkt dt

∣∣∣∣∣ ≤ α

k

with α < 1. In particular, if we multiply by ak and sum over k, we get

lim
T→+∞

1

T

∣∣∣∣∣
∫ T/2

−T/2

(
U(t)− V (t)

)
ϕ(t) dt

∣∣∣∣∣ ≤ αS.

Then, writing

S = lim
T→+∞

1

T

∫ T/2

−T/2

ϕ(t)V (t) dt+ lim
T→+∞

1

T

∫ T/2

−T/2

ϕ(t)
(
U(t)− V (t)

)
dt

we would obtain

S ≤ ∥V ∥∞ lim
T→+∞

1

T

∫ T/2

−T/2

|ϕ(t)| dt+ αS

that is

S ≤ A

1− α
lim

T→+∞

1

T

∫ T/2

−T/2

|ϕ(t)| dt

as desired.
The difficulty in implementing this strategy lies in the fact that one must control ϕ, U, V

over the entire real line. We will instead fix a large T and use an auxiliary function adapted
to [−T/2, T/2] so as to only do the computations over this interval while controlling errors.
Here we will exploit the fact that T is large that allows us to change Nazarov’s auxiliary
function into a better behaved one. The first task is then to estimate the error made when
replacing the limit in (4.2.3) with the mean over [−T/2, T/2]. The second step is then the
correction of U into a bounded V . This correction is only made over the interval [−T/2, T/2]
and is roughly done the same way as was originally done by McGehee, Pigno, Smith, but
implementing the improvements made by Stegeman and Yabuta and again controlling errors.

The remaining of the section is devoted to the proof that is divided into three steps, a
subsection being devoted to each of them.
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4.2.2 An auxiliary function and the estimate of U

We now introduce several notations and parameters that will be fixed later:
– a parameter δ ≥ 2 and the sequence (βj)j≥0 given by β0 = 1, βj+1 = βj + δj that is

βj =
∑j−1

k=0 δ
k = δj−1

δ−1
. Up to enlarging N , we can assume that N = βn+1−1 for some n ≥ 2.

We then define
Dj = {k ∈ Z : βj ≤ k < βj+1}

so that |Dj| = δj. Note that for every ℓ ∈ {1, . . . , N} there is a unique jℓ ∈ {1, . . . , n} such

that ℓ ∈ Djℓ . Further, this allows to write
∑N

k=1 in the form
∑n

j=0

∑
k∈Dj

. Note also that
if k ∈ Dj,

1

k + 1
≤ 1

k + 1
δ−1

≤ (δ − 1)δ−j (4.2.4)

– a sequence of real numbers (λk)k=1,...,N such that for every k, ℓ |λk − λℓ| ≥ |k − ℓ| (or
equivalently λk+1 ≥ λk + 1 for k = 1, . . . , N − 1);

– a sequence of complex numbers (ak)k=1,...,N and we write |ak| = akuk with (uk)k=1,...,N

a sequence of complex numbers of modulus 1;

– an integer p ≥ 4 and an interval Ip =

[
−p

2 + p

2
,
p2 + p

2

]
of length |Ip| = p2 + p.

We then define inductively φ1 = 1[−p2/2,p2/2] ∗ 1[−1/2,1/2] and φj+1 = φj ∗ 1[−1/2,1/2].
Note that, φj is even, non-negative and ∥φj∥∞ ≤ 1 while ∥φj∥1 = p2. We then define

φ =
p2 + p

p2
φp so that φ is supported in Ip, is bounded by 2 and has Fourier transform

F [φ](λ) :=

∫
R
φ(t)e−2iπλt dt = (p2 + p)

sin p2πλ

p2πλ

(
sin πλ

πλ

)p

.

We will mainly need that,

∥φ∥∞ =
p2 + p

p2
, F [φ](0) = |Ip| and |F [φ](λ)| ≤ |Ip|

(πλ)p
. (4.2.5)

Finally, we will write

ϕ(t) =
N∑
k=1

ake
2iπλkt,

U(t) =
n∑

j=0

1

|Dj|
∑
k∈Dj

uke
−2iπλkt,

S =
n∑

j=0

1

|Dj|
∑
k∈Dj

|ak|.

Note that in view of (4.2.4),

N∑
k=1

|ak|
k + 1

≤ (δ − 1)S (4.2.6)

55



Quantitative version for large T CHAPTER 4.

so that it is enough to bound S.
The following is the key estimate in this section:

Lemma 4.2.1. With the previous notation, there is a p(δ) ≥ 2 such that, when p ≥ p(δ)
then for 1 ≤ ℓ ≤ N and jℓ be the unique index for which ℓ ∈ Djℓ, we have

n∑
j=0

1

|Dj|
∑

k∈Dj\{ℓ}

|F [φ](λk − λℓ)| ≤
1

2
δ−jℓ . (4.2.7)

Proof. Write

E :=
n∑

j=0

1

|Dj|
∑

k∈Dj\{ℓ}

|F [φ](λk − λℓ)|

=
n∑

j=jℓ−1

1

|Dj|
∑

k∈Dj\{ℓ}

|F [φ](λk − λℓ)|+
jℓ−2∑
j=0

1

|Dj|
∑
k∈Dj

|F [φ](λk − λℓ)|

= E+ + E−.

For the estimate of E+, as |λk − λℓ| ≥ |k − ℓ|, |F [φ](λk − λℓ)| ≤
|Ip|
πp

1

|k − ℓ|p
and

E+ ≤ |Ip|
πp

δ−(jℓ−1)

n∑
j=jℓ−1

∑
k∈Dj\{ℓ}

1

|k − ℓ|p
≤ 2|Ip|

πp
δ−(jℓ−1)

∞∑
m=1

1

mp
≤ 4|Ip|

πp
δ−(jℓ−1)

since δ > 1 and the last series is bounded by
∞∑

m=1

1

m2
=
π2

6
≤ 2. It remains to notice that

4δ|Ip|
πp

=
4δ(p2 + p)

πp
≤ 1

4
when p is large enough to get

E+ ≤ δ−jℓ

4
. (4.2.8)

For the second sum, note that it is only present when jℓ ≥ 2. So, if k ∈ Dj with j ≤ jℓ−2
then

ℓ− k ≥ βjℓ − βjℓ−1 = δjℓ−1

thus

|F [φ](λk − λj)| ≤
|Ip|

πpδ(jℓ−1)p
.

It follows that

E− ≤
jℓ−2∑
j=0

∑
k∈Dj

|Ip|
πpδ(jℓ−1)p

≤ βjℓ−1
|Ip|

πpδ(jℓ−1)p
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since there are at most βjℓ−1 terms in this sum. But βjℓ−1 ≤
δjℓ−1

δ − 1
so that

E− ≤ |Ip|δ
πp(δ − 1)δ(jℓ−1)(p−2)

δ−jℓ ≤ 1

4
δ−jℓ (4.2.9)

when p is large enough to have
|Ip|δ

πp(δ − 1)
≤ 1

4
since δ(jℓ−1)(p−2) ≥ 1.

It remains to put (4.2.8)-(4.2.9) into (4.2.8) to obtain the result.

Remark 4.2.2. The proof shows that p(δ) is the smallest integer such that

4δ(p2 + p)

min(1, δ − 1)πp
≤ 1

4
.

For instance, if we choose δ = 4, we will obtain p(δ) = 8.

From this, we deduce the following:

Corollary 4.2.3. With the notations above, for ℓ = 1, . . . , N∣∣∣∣∣ 1

|Ip|

∫
Ip

U(t)e2iπλℓtφ(t) dt− uℓ
δjℓ

∣∣∣∣∣ ≤ 1

2|Ip|
1

δjℓ
(4.2.10)

Proof. Indeed

1

|Ip|

∫
Ip

U(t)e2iπλℓtφ(t) dt =
n∑

j=0

1

|Dj|
∑
k∈Dj

uk
1

|Ip|

∫
Ip

e−2iπλkte2iπλℓtφ(t) dt

=
1

|Ip|

n∑
j=0

1

|Dj|
∑
k∈Dj

ukF [φ](λk − λℓ)

= uℓδ
−jℓ

F [φ](0)

|Ip|
+

1

|Ip|

n∑
j=0

1

|Dj|
∑

k∈Dj\{ℓ}

ukF [φ](λk − λℓ).

As F [φ](0) = |Ip|, we get∣∣∣∣∣ 1

|Ip|

∫
Ip

U(t)e2iπλℓtφ(t) dt− uℓ
δjℓ

∣∣∣∣∣ ≤ 1

|Ip|

n∑
j=0

1

|Dj|
∑

k∈Dj\{ℓ}

|F [φ](λk − λℓ)|

and Lemma 4.2.1 gives the result.

This allows us to obtain the approximation of S by an integral of ϕ(t)U(t).

Proposition 4.2.4. Under the previous notation

S ≤ 2|Ip|
2|Ip| − 1

∣∣∣∣∣ 1

|Ip|

∫
Ip

U(t)ϕ(t)φ(t) dt

∣∣∣∣∣.
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Proof. According to (4.2.10),∣∣∣∣∣ 1

|Ip|

∫
Ip

U(t)e2iπλℓtφ(t) dt− uℓδ
−jℓ

∣∣∣∣∣ ≤ 1

2|Ip|
δ−jℓ .

Multiplying the expression in the absolute value by aℓ, we get∣∣∣∣∣ 1

|Ip|

∫
Ip

U(t)aℓe
2iπλℓtφ(t) dt− |aℓ|

δjℓ

∣∣∣∣∣ ≤ |aℓ|
2|Ip|

δ−jℓ .

The triangle inequality then gives∣∣∣∣∣ 1

|Ip|

∫
Ip

U(t)ϕ(t)φ(t) dt− S

∣∣∣∣∣ ≤ 1

2|Ip|
S.

The result follows with the reverse triangular inequality.

4.2.3 Construction of V

Before we start this section, let us recall Hilbert’s inequality (see e.g. [3, Chapter 10]).

Lemma 4.2.5 (Hilbert’s inequality). Let λ1, . . . , λN be real numbers with |λk − λℓ| ≥ 1
when k ̸= ℓ, and let z1, . . . , zN be complex numbers. We have∣∣∣∣∣∣∣∣

∑
1≤k,ℓ≤N

k ̸=ℓ

zkzℓ
λk − λℓ

∣∣∣∣∣∣∣∣ ≤ π
N∑
k=1

|zk|2.

We will now decompose U into Dj-blocs fj. More precisely, we set

f̃j(t) =
∑
k∈Dj

uke
−2iπλkt, fj =

1

|Dj|
f̃j

so that

U(t) =
n∑

j=0

1

|Dj|
∑
k∈Dj

uke
−2iπλkt =

n∑
j=0

fj(t).

Our aim in this section is to modify U in such a way that we obtain a trigonometric
polynomial V that is in a sense still similar to U but satisfies an L∞ bound that is uniform
in N .

We start by estimating the norms of the fj’s:

Lemma 4.2.6. With the above notation, we have

1. ∥fj∥L2(Ip) ≤ δ−j/2
√

|Ip|+ 1;
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2. ∥fj∥∞ ≤ 1.

Proof. For the second bound, obviously ∥f̃j∥∞ ≤ |Dj| = δj. For the first bound, we have

∥f̃j∥2L2(Ip)
=

∫
Ip

f̃j(t)f̃j(t) dt =

∫
Ip

∑
k,ℓ∈Dj

ukuℓe
−2iπ(λk−λℓ)t dt

= |Ip|
∑
k∈Dj

|uk|2 +
∑

k,ℓ∈Dj

k ̸=ℓ

ukuℓ

∫ |Ip|/2

−|Ip|/2
e−2iπ(λk−λℓ)t dt

= |Ip| |Dj|+
∑

k,ℓ∈Dj

k ̸=ℓ

ukuℓ

(
ei|Ip|π(λk−λℓ) − e−i|Ip|π(λk−λℓ)

2iπ(λk − λℓ)

)
.

Now, set z±k = uke
±i|Ip|πλk so that |z±k | = 1. We have just shown that

∥f̃j∥2L2(Ip)
= |Ip| |Dj|+

1

2iπ

∑
k,ℓ∈Dj

k ̸=ℓ

z+k z
+
ℓ

λk − λℓ
− 1

2iπ

∑
k,ℓ∈Dj

k ̸=ℓ

z−k z
−
ℓ

λk − λℓ
.

Applying Hilbert’s Inequality to the last two sums, we get

∥f̃j∥2L2(Ip)
≤ |Ip| |Dj|+

1

2

∑
k∈Dj

|z+k |
2 +

1

2

∑
k∈Dj

|z−k |
2 = (|Ip|+ 1)|Dj|.

The bound for ∥fj∥2L2(Ip)
follows.

Note that the proof also shows that ∥fj∥L2(Ip) ≥ δ−j/2
√
|Ip| − 1.

Notation 4.2.7. For a function F ∈ L2(Ip) and s ∈ Z, we write

cps(F ) =
1

|Ip|

∫
Ip

F (t)e
−2iπ st

|Ip| dt

for the Fourier coefficients of F . Its Fourier series is then

F (t) =
∑
s∈Z

cps(F )e
2iπ st

|Ip|

and Parseval’s relation reads

1

|Ip|

∫
Ip

|F (t)|2 dt =
∑
s∈Z

|cps(F )|2.

We then write the Fourier series of each |fj| ∈ L2(Ip) as

|fj|(t) =
∑
s∈Z

cps(|fj|)e
2iπ st

|Ip|

to which we associate hj ∈ L2(Ip) defined via its Fourier series as

hj(t) = cp0(|fj|) + 2
∞∑
s=1

cps(|fj|)e
2iπ st

|Ip| .
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Lemma 4.2.8. For 0 ≤ j ≤ n, the following properties hold

1. Re(hj) = |fj| ≤ 1;

2. ∥hj∥L2(Ip) ≤
√
2∥fj∥L2(Ip).

Proof. First, as |fj| is real valued, cp0(|fj|) is also real, and cps(|fj|) = cp−s(|fj|) for every
s ≥ 1. A direct computation then shows that Re(hj) = |fj| which is less than 1 by Lemma
4.2.6 while Parseval shows that ∥hj∥2 ≤

√
2∥fj∥2.

We now define a sequence (Fj)j=0,...,n inductively through

F0 = f0 and Fj+1 = Fje
−ηhj+1 + fj+1

where 0 < η ≤ 1 is a real number that we will fix later. Further set

Eη := sup
0<x≤1

x

1− e−ηx
=

1

η
sup

0<x≤η

x

1− e−x
=

1

1− e−η
.

Lemma 4.2.9. For 0 ≤ j ≤ n, ∥Fj∥∞ ≤ Eη.

Proof. By definition of Eη, if C ≤ Eη and 0 ≤ x ≤ 1, then Ce−ηx + x ≤ Eηe
−ηx + x ≤ Eη.

We can now prove by induction over j that |Fj| ≤ Eη from which the lemma follows.
First, when j = 0, from Lemma 4.2.6 we get

∥F0∥∞ = ∥f0∥∞ ≤ 1 ≤ Eη.

Assume now that ∥Fj∥∞ ≤ Eη, then

|Fj+1(t)| = |Fj(t)e
−ηhj+1(t) + fj+1(t)| ≤ |Fj(t)|e−ηℜ

(
hj+1(t)

)
+ |fj+1(t)|

= |Fj(t)|e−η|fj+1(t)| + |fj+1(t)|.

As |fj+1(t)| ≤ 1 and |Fj(t)| ≤ Eη, we get |Fj+1(t)| ≤ Eη as claimed.

Lemma 4.2.10. For 0 ≤ ℓ ≤ n and j = 0, . . . , k, let gj,k = e−ηHj,k with

Hj,k =

{
hj+1 + . . .+ hk when j < k

0 when j = k
.

Then Fk =
k∑

j=0

fjgj,k. Moreover

∥Hj,k∥L2(Ip) ≤
√

2(|Ip|+ 1)√
δ − 1

δ−j/2.
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Proof. For the first part, we use induction on k. First, when k = 0, H0,0 = 0 thus g0,0 = 1
and, indeed, we have

F0 = f0 = f0g0,0.

Assume now that the formula has been established at rank k − 1 and let us show that

Fk =
k∑

j=0

fjgj,k. By construction, we have

Fk = Fk−1e
−ηhk + fk =

(
k−1∑
j=0

fjgj,k−1

)
e−ηhk + fk.

with the induction hypothesis. It remains to notice that gk,k = e−ηHk,k = 1 and that,
for j = 0, . . . , k − 1, Hj,k = Hj,k−1 + hk thus gj,k = gj,k−1e

−ηhk so that, indeed, we have

Fk =
k∑

j=0

fjgj,k.

Next, it is enough to estimate Hj,k when j < k in which case

∥Hj,k∥L2(Ip) ≤
k∑

r=j+1

∥hr∥L2(Ip) ≤
√
2

k∑
r=j+1

∥fr∥L2(Ip)

with Lemma 4.2.8. But then, from Lemma 4.2.6 we get

∥Hj,k∥L2(Ip) ≤
√

2(|Ip|+ 1)
k∑

r=j+1

δ−
r
2 ≤

√
2(|Ip|+ 1)

δ−
j+1
2

1− δ−1/2
=

√
2(|Ip|+ 1)√
δ − 1

δ−j/2

as claimed.

Next, we will need the following well-known lemma:

Lemma 4.2.11. If H ∈ H∞ and Re(H) ≥ 0, then e−H ∈ H∞ and

∥e−H − 1∥2 ≤ ∥H∥2.

Proof. Since H∞ is a Banach algebra, the partial sums
n∑

k=0

(−1)k
Hk

k!
of e−H are elements

of H∞. Moreover, since H is bounded, these sums converge uniformly toward e−H , with
e−H ∈ H∞. Finally, if z ∈ C and ℜ(z) ≥ 0,∣∣e−z − 1

∣∣ = ∣∣∣∣∫ 1

0

ze−tzdt

∣∣∣∣ ≤ ∫ 1

0

|z|e−tℜ(z)dt ≤ |z|.

In our case z = H(t), and we have ∣∣e−H(t) − 1
∣∣ ≤ |H(t)|

and by integration we have the desired inequality.
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Lemma 4.2.12. Let 0 ≤ k ≤ n and 0 ≤ j ≤ k, then

1. the negative Fourier coefficients of gj,k(t)− 1 vanish so that its Fourier series writes

gj,k(t)− 1 =
∑
s≥0

cps(gj,k − 1)e
iπ st

|Ip| ;

2. ∥gj,k − 1∥L2(Ip) ≤ η

√
2(|Ip|+ 1)√
δ − 1

δ−j/2.

Proof. When j = k, gk,k(t) − 1 = 0 and there is nothing to do. When j < k, ℜ(Hj,k) =
k∑

r=j+1

ℜ(hr) ≥ 0 so from the previous lemma, we obtain the first statement and that

∥gj,k − 1∥L2(Ip) := ∥e−ηHj,k − 1∥L2(Ip) ≤ η∥Hj,k∥L2(Ip).

We then conclude with Lemma 4.2.10.

Recall that

U =
n∑

j=0

fj

and we set

V η = Fn =
n∑

j=0

fjgj,n

where the dependence on η comes from the definition of the gj,n’s. In particular,

∥V η∥∞ ≤ Eη. (4.2.11)

The key estimate here is the following:

Proposition 4.2.13. Let 0 < ε ≤ 1, N ≥ 1 and δ ≥ e then there exists P such that, if
p ≥ P , there exists η = η(p) ∈ (0, 1) such that, for 1 ≤ ℓ ≤ N and jℓ the unique index for
which ℓ ∈ Djℓ ∣∣∣∣∣ 1

|Ip|

∫
Ip

(
U(t)− V η(t)

)
e2iπλℓtφ(t) dt

∣∣∣∣∣ ≤ εδ−jℓ . (4.2.12)

Moreover, when p→ +∞, η(p) → η∞ =
(δ − 1)(

√
δ − 1)√

2δ
ε.

Proof. To simplify notation, we write gj = gj,n and V = V η. Then

R :=
1

|Ip|

∫
Ip

(
U(t)− V (t)

)
e2iπλℓtφ(t) dt

=
1

|Ip|

∫
Ip

∑
0≤j≤jℓ−2

fj(gj − 1)e2iπλℓtφ(t) dt+
1

|Ip|

∫
Ip

fjℓ−1(gjℓ−1 − 1)e2iπλℓtφ(t) dt

+
1

|Ip|

∫
Ip

∑
jℓ≤j≤n

fj(gj − 1)e2iπλℓtφ(t) dt

:= R− +R0 +R+.
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Let us first bound R− (which is only present when jℓ ≥ 2). For this, notice that if s ∈ Z,∫
Ip

f̃j(t)φ(t)e
2iπλℓte

−2iπ s
|Ip|

t
dt =

∫
Ip

∑
r∈Dj

urφ(t)e
−2iπ(λr−λℓ+

s
|Ip|

)t
dt

=
∑
r∈Dj

urF [φ]

(
λr − λℓ +

s

|Ip|

)
.

It follows that∫
Ip

f̃j(gj − 1)e2iπλℓtφ(t) dt =

∫
Ip

f̃j(t)φ(t)e
2iπλℓt

∑
s≥0

cps(gj − 1)e
2iπ st

|Ip| dt

=
+∞∑
s=0

cps(gj − 1)

∫
Ip

f̃j(t)φ(t)e
2iπλℓt+

2iπst
|Ip| dt

=
+∞∑
s=0

cps(gj − 1)
∑
r∈Dj

urF [φ]

(
λr − λℓ −

s

|Ip|

)

=
∑
r∈Dj

ur

∞∑
s=0

cps(gj − 1)F [φ]

(
λr − λℓ −

s

|Ip|

)
.

Finally, we get

R− =
1

|Ip|
∑

0≤j≤jℓ−2

1

|Dj|
∑
r∈Dj

ur

∞∑
s=0

cps(gj − 1)F [φ]

(
λr − λℓ −

s

|Ip|

)
.

As (∑
s≥0

|cps(gj − 1)|2
)1/2

=
1√
|Ip|

∥gj − 1∥L2(Ip) ≤ η

√
2(|Ip|+ 1)/|Ip|√

δ − 1

we get with Cauchy-Schwarz

|R−| ≤ η

√
2(|Ip|+ 1)/|Ip|√

δ − 1

∑
0≤j≤jℓ−2

1

|Dj|
∑
r∈Dj

(
∞∑
s=0

1

|Ip|2

∣∣∣∣F [φ]

(
λr − λℓ −

s

|Ip|

)∣∣∣∣2
)1/2

.

We will first estimate the innermost sum. We will use the following simple estimate
valid for u ≥ 1:

+∞∑
s=0

1

(s+ u)2p
=

1

u2p
+

+∞∑
s=1

1

(s+ u)2p
≤ 1

u2p
+

∫ +∞

s=0

ds

(s+ u)2p

=
1

u2p
+

1

(2p− 1)u2p−1
≤ 2

u2p−1
.

Here u = |Ip|(λℓ − λr).
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First, for 0 ≤ j ≤ jℓ − 2, if r ∈ Dj then r < βj+1 and βℓ ≤ ℓ < βℓ+1 we first get

|Ip|(λℓ − λr) ≥ |Ip|(βℓ − βj+1) = |Ip|
δjℓ − δj+1

δ − 1
≥ |Ip|

2
δjℓ−1

for all 0 ≤ j ≤ jℓ − 2. This then implies that

Er :=
∞∑
s=0

1

|Ip|2

∣∣∣∣F [φ]

(
λk − λr +

s

|Ip|

)∣∣∣∣2 ≤
∞∑
s=0

1[
π
(
λk − λr +

s
|Ip|

])2p
=

(
|Ip|
π

)2p ∞∑
s=0

1(
|Ip|(λk − λr) + s

)2p
≤ 22p|Ip|

π2p
δ−(jℓ−1)(2p−1).

It follows that

|R−| ≤ η

√
2(|Ip|+ 1)√
δ − 1

∑
0≤j≤jℓ−2

δ−(jℓ−1)(p−1/2)

(π/2)p

= η
δ
√

2(|Ip|+ 1)

(π/2)p(
√
δ − 1)

(jℓ − 1)δ−(jℓ−1)(p−3/2)δ−jℓ .

Now, simple calculus shows that, when a ≥ 1

2
, x ≥ 1,

(x− 1)e−a(x−1) ≤ xeae−ax which is decreasing (in x).

Thus, as x ≥ 2 in our case

(jℓ − 1)δ−(jℓ−1)(p−3/2) ≤ 2

e(p−
3
2
)

leading to the bound

|R−| ≤ η
2δ
√

2(|Ip|+ 1)

e(p−
3
2
)(π/2)p(

√
δ − 1)

δ−jℓ . (4.2.13)

It is crucial for the sequel to note that we can write this as

|R−| ≤ ηµ−
p δ

−jℓ with µ−
p = µ−

p (δ) → 0 when p→ +∞.

On the other hand, if j = jℓ−1, r ∈ Dj, then |Ip|(λℓ−λr) ≥ |Ip| and the same computa-

tion gives Er ≤
2|Ip|
π2p

. Repeating the computation of R− gives |R0| ≤ η
2
√
|Ip|+ 1

πp

1√
δ − 1

.

We write this in the form
|R0| ≤ ηδ−jℓµ0

p(δ, n)

where µ0
p(δ, n) → 0 when p→ +∞.
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We can now estimate R+.

|R+| ≤
∑

jℓ≤j≤n

1

|Ip|

∫
Ip

|fj(t)| |gj(t)− 1| |φ(t)| dt (4.2.14)

≤ ∥φ∥∞
∑

jℓ≤j≤n

1

|Ip|
∥fj∥L2(Ip)∥gj − 1∥L2(Ip)

≤ η

√
2√

δ − 1

p2 + p

p2
|Ip|+ 1

|Ip|
∑

jℓ≤j≤n

δ−j

≤ η

√
2δ

(
√
δ − 1)(δ − 1)

p2 + p

p2
|Ip|+ 1

|Ip|
δ−jℓ

= η

√
2δ

(
√
δ − 1)(δ − 1)

p2 + p+ 1

p2
δ−jℓ .

We write this in the form

|R+| ≤ η

( √
2δ

(
√
δ − 1)(δ − 1)

+ µ+
p

)
δ−jℓ with lim

p→+∞
µ+
p = 0

and conclude that |R| ≤ η
( √

2δ
(
√
δ−1)(δ−1)

+ µp

)
δ−jℓ with µp = µ−

p (δ) + µ0
p(δ, n) + µ+

p → 0

(depending on δ and n thus N).

Remark 4.2.14. An inspection of the proof shows that the dependence of P on N only
comes from R0. This is harmless when we let p → +∞ which then implies |Ip| → +∞ i.e.
when we prove Theorem 4.1.5 i) & ii) but is not possible when proving iii). To avoid that
issue, one can then bound R− and R0 + R+ instead of R− + R0 and R+. The same proof
works but the price to pay are slightly worse constants:

|R−| ≤ η
2δ
√
2(|Ip|+ 1)

e(p−
3
2
)(π/2)p(

√
δ − 1)

δ−jℓ .

and

|R0 +R+| ≤ η

√
2δ2

(
√
δ − 1)(δ − 1)

p2 + p

p2
|Ip|+ 1

|Ip|
δ−jℓ

since we can include R0 into the sum (4.2.14) defining R+ by starting it at jℓ − 1 instead
of jℓ. The consequence is that the δ on the numerator of the bound of R+ becomes δ2.

But then

|R| ≤ η

(
2δ
√
2(|Ip|+ 1)

e(p−
3
2
)(π/2)p(

√
δ − 1)

+

√
2δ2

(
√
δ − 1)(δ − 1)

p2 + p+ 1

p2

)
δ−jℓ .
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Taking any

η ≤ ε

2δ
√

2(|Ip|+1)

e(p−
3
2 )(π/2)p(

√
δ−1)

+
√
2δ2

(
√
δ−1)(δ−1)

p2+p+1
p2

=
ε(
√
δ − 1)(δ − 1)

2δ
√

2(|Ip|+1)(δ−1)

e(p−
3
2 )(π/2)p

+
√
2δ2 p

2+p+1
p2

will then still give (4.2.12), provided this η satisifies 0 < η < 1.
However, this quantity is too complicated to hope to be able to handle it in an optimi-

sation process. Instead, we will determine the condition on p for the parameter that almost
optimise the case p → +∞, namely ε = 1

2
and δ = 4. In this case, the smallest possible p

in the first part is p = 8. One can then do a computer check to see that, when ε = 1/2 and
p ≥ 8, (4.2.12) is valid for η = 0.058.

Corollary 4.2.15. Under the conditions of Proposition 4.2.13∣∣∣∣∣ 1

|Ip|

∫
Ip

(
U(t)− V η(t)

)
ϕ(t)φ(t) dt

∣∣∣∣∣ ≤ εS. (4.2.15)

Further, if η = 0.058 and δ = 4, then for p ≥ 8, (4.2.15) holds for ε = 1/2.

Proof. As ϕ(t) =
∑N

k=1 ake
2iπλkt, it suffices to use the triangular inequality and (4.2.12).

4.2.4 End of the proof

The end of the proof consists in applying first Proposition 4.2.4

S ≤ 2|Ip|
2|Ip| − 1

∣∣∣∣∣ 1

|Ip|

∫
Ip

U(t)ϕ(t)φ(t) dt

∣∣∣∣∣.
Then, we fix an 0 < ε < 2|Ip|−1

2|Ip| and take η < η(p) as in Proposition 4.2.13 and apply (4.2.15)
to get

S ≤ 2|Ip|
2|Ip| − 1

∣∣∣∣∣ 1

|Ip|

∫
Ip

(
U(t)− V η(t)

)
ϕ(t)φ(t) dt

∣∣∣∣∣+ 2|Ip|
2|Ip| − 1

∣∣∣∣∣ 1

|Ip|

∫
Ip

V η(t)ϕ(t)φ(t) dt

∣∣∣∣∣
≤ 2|Ip|

2|Ip| − 1
εS +

2|Ip|
2|Ip| − 1

∥V η∥∞∥φ∥∞
1

2|Ip|

∫
Ip

|Φ(t)| dt

≤ 2|Ip|
2|Ip| − 1

εS +
p2 + p

p2
2|Ip|

2|Ip| − 1
Eη

1

|Ip|

∫
Ip

|Φ(t)| dt.

We thus obtain from (4.2.16) that(
1− 2|Ip|

2|Ip| − 1
ε

)
S ≤ p2 + p

p2
2|Ip|

2|Ip| − 1
Eη

1

|Ip|

∫
Ip

|Φ(t)| dt. (4.2.16)
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Taking δ = 4, ε = 1/2, p ≥ 8 so that T = |Ip| ≥ 72 and η = 0.058, (4.2.16) reads

S ≤ 2× (72)2

71× 64

1

1− e−0.058

1

T

∫ T/2

−T/2

|Φ(t)| dt.

From (4.2.4), we finally get

N∑
k=1

|ak|
k + 1

≤ 3× (144)2

64× 142

1

1− e−0.058

1

T

∫ T/2

−T/2

|Φ(t)| dt ≤ 122

T

∫ T/2

−T/2

|Φ(t)| dt

establishing Theorem 4.1.5iii).

We will now establish Theorem 4.1.5i). To do so, let p→ +∞ in (4.2.16) to get

(1− ε)S ≤ 1

1− e−η
lim

T→+∞

1

T

∫ T/2

−T/2

|Φ(t)| dt. (4.2.17)

This relation is valid for every δ > 1, every 0 < ε < 1 and every

η < η∞ =
(δ − 1)(

√
δ − 1)√

2δ
ε.

By continuity, we can thus replace η by η∞ in (4.2.17). Further, we may use again (4.2.4)
to get

N∑
k=1

|ak|
k + 1

≤ δ − 1

(1− ε)
(
1− e−η∞

) lim
T→+∞

1

T

∫ T/2

−T/2

∣∣∣∣∣
N∑
j=0

aje
2iπλjt

∣∣∣∣∣ dt. (4.2.18)

It remains to choose the parameters δ and ε so as to minimize the factor of the Besicov-
itch norm. A computer search shows that

δ − 1

(1− ε)
(
1− e−η∞

) =
δ − 1

(1− ε)
(
1− e

− (δ−1)(
√
δ−1)√

2δ
ε)

takes its minimal value ∼ 25.1624 for some ε, δ with 0.4768 ≤ ε ≤ 0.4772 and 3.70 ≤ δ ≤
3.75. This gives the claimed inequality

N∑
k=1

|ak|
k + 1

≤ 25.2 lim
T→+∞

1

T

∫ T/2

−T/2

∣∣∣∣∣
N∑
k=1

ake
2iπλkt

∣∣∣∣∣ dt.
A somewhat better estimate is possible when |ak| ≥ 1. Indeed, in this case we proved

in (4.2.17) that

n+ 1 ≤ 1

(1− ε)
(
1− e

− (δ−1)(
√

δ−1)√
2δ

ε) lim
T→+∞

1

T

∫ T/2

−T/2

∣∣∣∣∣
N∑
k=1

ake
2iπλkt

∣∣∣∣∣ dt.
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But n was defined as N = βn+1 − 1 =
δn+1 − 1

δ − 1
− 1 that is

n+ 1 =
ln
(
1 + (δ − 1)(N + 1)

)
ln δ

since δ ≥ 2. We thus have

ln[1 + (δ − 1)N ] ≤ ln δ

(1− ε)

(
1− e

− (δ−1)(
√
δ−1)√

2δ
ε

) lim
T→+∞

1

T

∫ T/2

−T/2

∣∣∣∣∣
N∑
k=1

ake
2iπλkt

∣∣∣∣∣ dt.
and we are looking for ε, δ that minimize

ln δ

(1− ε)
(
1− e

− (δ−1)(
√
δ−1)√

2δ
ε)

and for the value of this minimum. The best value we obtain is 7.714 for ε = 0.28 and
δ = 89.254 which is essentially the same value as in [38] (note that 1/7.714 = 0.1296 is the
value given there).

We then obtain the following: if |ak| ≥ 1, then

lim
T→+∞

1

T

∫ T/2

−T/2

∣∣∣∣∣
N∑
k=1

ake
2iπλkt

∣∣∣∣∣ dt ≥ 0.1296 ln(1 + 88N).

4.2.5 Further comments

First, the inequality for a fixed T implies the inequality for the Besicovitch norm. This
follows from a simple trick already used for Ingham’s inequality. Indeed, once we establish
that

C0

∫ T0/2

−T0/2

∣∣∣∣∣
N∑
k=1

ake
2iπλkt

∣∣∣∣∣ dt ≥
N∑
k=1

|ak|
k + 1

for some T0 > 0 then, changing variable t = t0 + s we also have

C0

∫ t0+T0/2

t0−T0/2

∣∣∣∣∣
N∑
k=1

ake
2iπλkt

∣∣∣∣∣ dt = C0

∫ T0/2

−T0/2

∣∣∣∣∣
N∑
k=1

ake
2iπλkt0e2iπλks

∣∣∣∣∣ ds ≥
N∑
k=1

|ak|
k + 1

.

Next, for any integer M , covering [−MT0,MT0] by 2M intervals of length T0, we get

C0

∫ MT0

−MT0

∣∣∣∣∣
N∑
k=1

ake
2iπλkt

∣∣∣∣∣ dt ≥ 2M
N∑
k=1

|ak|
k + 1

.

Dividing by 2M and letting M → +∞ we get

C0T0 lim
T→+∞

1

T

∫ T/2

−T/2

∣∣∣∣∣
N∑
k=1

ake
2iπλkt

∣∣∣∣∣ dt ≥
N∑
k=1

|ak|
k + 1

.
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In particular, Nazarov’s result also implies the result of Hudson and Leckband (but with
worse constants).

As said, the proof is an adaptation of the proof by Nazarov. The main difference is
that we use an auxiliary function φp that depends on T = p2 + p and exploit the fact that
p→ +∞ to obtain the numerical constants.

There is a major difference between the sums that appear in Ingham’s Theorem 2.1.3
and those that appear in McGehee, Pigno, Smith 4.1.1 and Nazarov’s Theorems 4.1.4. In
the L2-case, the sums can be two sided and not in the L1-case. Indeed let T > 1 and
consider the Fejer kernel

FN(t) =
N∑

k=−N

(
1− |k|

N + 1

)
e2iπkt,

then, as FN is a positive function

1

T

∫ T
2

−T
2

FN(t) dt ≤
1

T

∫ ⌊T⌋+1
2

− ⌊T⌋+1
2

FN(t) dt ≤
⌊T ⌋+ 1

T

∫ 1
2

− 1
2

FN(t) dt ≤ 2 (4.2.19)

since ∫ 1
2

− 1
2

FN(t) dt = 1.

But
N∑

k=−N

(
1− |k|

N+1

1 + |k|

)
≥ 2

N+1
2∑

k=1

(
1− k

N+1

1 + k

)
≥

N+1
2∑

k=1

1

k + 1
→ ∞ as N → ∞,

since

1− k

N + 1
≥ 1

2
for k ≤ N + 1

2
.

In other words, one cannot find a constant C, independent of N such that Nazarov’s (or
M.P.S) theorem holds. However we have seen in Corollary 2.1.7 that a slightly weaker result
holds

Remark. In the proof of Corollary 2.1.7, the constant depends also on T . However since
we are applying the corollary for T ≥ 72 and the function T −→ CT is decreasing (when T
is large CT is bounded uniformly), we get a constant which depends only on η.

4.3 Quantitative version for T near 1.

In the previous section, we investigated Nazarov’s theorem when the length of the interval
is large enough. In this section, we will look at the opposite case. Let δ > 0 and T = 1+ δ
(this δ has nothing to do with the parameter δ used in the proof of the remaining part
of Theorem 4.1.5). We are going to prove the second part of Theorem 4.1.5 iii i.e. a
quantitative estimate of Nazarov’s theorem.
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To do so, we will follow the same steps used by Nazarov to prove Theorem 4.1.4, however,
we will explicitly define a slightly different auxiliary function φ which will allow us to follow
the constants more closely. Some proofs are similar to the previous section and hence we
will omit some details and where appropriate, refer to previous proofs.

4.3.1 An auxiliary function and the estimation of T

First, we start by some preliminary notations and results. Let δ > 0 and I = Iδ :=
[−1+δ

2
, 1+δ

2
].

Let us fix (λk)k=0,...,N ⊂ R with λk+1 − λk ≥ 1 for every k, (ak)k=0,...,N a sequence of
complex numbers and write |ak| = akuk with |uk| = 1. Let

S =
N∑
k=0

|ak|
k + 1

and ϕ(t) =
N∑
k=0

ake
2iπλkt,

so that we must find Cδ such that:

∥ϕ∥L1(I) ≥ CδS. (4.3.1)

We define

Sδ =
N∑
k=0

|ak|
k +Nδ

and Tδ(t) =
N∑
k=0

uk
k +Nδ

e−2iπλkt

where Nδ is a large integer that we will adjust through the proof. This integer will be of
the form Nδ = 2mδ . We will prove that

∥ϕ∥L1(I) ≥ BδSδ (4.3.2)

and, as k +Nδ ≤ (k + 1)Nδ, Sδ ≥
S

Nδ

so that we obtain the desired inequality (4.3.1) with

a constant Cδ =
Bδ

Nδ

.

The meaning of Nδ is the following. Consider:
– a new sequence of frequencies (λ̃j)j∈Z such that λ̃j = λj−Nδ

for j = Nδ, . . . , Nδ + N .
and then λ̃j = λ0 + j −Nδ for j < Nδ and λ̃j = λN + j −N for j > N +Nδ. In particular,
we still have |λ̃j+1 − λ̃j| ≥ 1. In other words, the sequence (λj)j=0,...,N is completed into a
sequence (λj)j∈Z that is still 1-separated and then shifted by Nδ.

– A new sequence of complex numbers (ãj)j∈Z with ãj = aj−Nδ
for j = Nδ, . . . , Nδ +N

and ãj = 0 for other j’s. In other words, the sequence (aj)j=0,...,N is completed into a
sequence (aj)j∈Z by 0-padding it and then shifted by Nδ.

Then (4.3.2) reads ∫
Iδ

∣∣∣∣∣∑
j∈Z

ãje
2iπλ̃jt

∣∣∣∣∣ dt ≥ Bδ

∑
j∈Z

|ãj|
j +Nδ

with the convention that 0/0 = 0.
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Note that, up to adding 0 terms at the end of the sequence aj, we may assume that
N +Nδ is of the form 2nδ − 1 for some integer nδ. This will allow us to write

N∑
k=0

=

nδ∑
j=mδ

∑
2j≤r+Nδ<2j+1

.

Next, as in Ingham’s proof, we will introduce an auxiliary function. Again we consider

h(t) =

cos(πt) if |t| ≤ 1
2

0 otherwise

whose Fourier transform is given by

ĥ(λ) =
2

π

cos(πλ)

1− 4λ2
.

We will need to smooth a bit this function to obtain a better decay of the Fourier transform
and thereby slightly enlarge its support. More precisely, let p = 10, q = 8 and let

fδ(t) =
p+ q

δ
1[− δ

2(p+q)
, δ
2(p+q)

](t)

and define

gδ = ∗p+qfδ,

where ∗kψ denotes the k-fold convolution of ψ by itself. More precisely,

∗2ψ(x) = ψ(x) ∗ ψ(x) =
∫
R
ψ(t)ψ(x− t) dt

and, for k ≥ 2,

∗(k+1)ψ = ∗kψ ∗ ψ.

Clearly gδ is non-negative, even and with support [− δ
2
, δ
2
]. Finally, we define φδ as

φδ =
π

2
h ∗ gδ. (4.3.3)

In the following lemma, we list the properties needed on φδ. They are all established
via easy calculus and straight forward Fourier analysis.

Lemma 4.3.1. There is a c0 > 0 and a δ0 > 0 such that, if 0 < δ < δ0 then,

1. φ̂δ(λ) =
cos(πλ)

1− 4λ2
sincp+q

(
πδλ

p+ q

)
,

2. ∥φδ∥∞ ≤ π

2
.
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3. Let Dδ = c0δ
− p+q

p+2 ≥ 1 and ν > 0 then, for |λ| ≥ max(1, Dδν
1

p+2 ),

|φ̂(λ)| ≤ ν

|λ|q

4. Let γδ =

(
sinc

πδ

p+ q

)p+q

then, for |λ| ≥ 1,

|φ̂δ(λ)| ≤
γδ

4λ2 − 1
.

From now on, we will assume that 0 < δ < 7
3π
< 1 so that Dδ ≥ 1. In particular, when

|λ| ≥ Dδ, we have |φ̂(λ)| ≤ |λ|−3.

Proof of Lemma 4.3.1. The first one is simple Fourier analysis.
For the second one, we write

∥φδ∥∞ ≤ π

2
∥gδ∥1∥h∥∞ ≤ π

2
∥fδ∥p+q

1 ∥h∥∞

and use simple calculus to conclude.
For the third one, we notice that 4λ2 − 1 ≥ 3λ2 when λ ≥ 1 thus

|φ̂δ(λ)| =

∣∣∣∣∣∣cos(πλ)4λ2 − 1

(
sin( πδλ

p+q
)

πδλ
p+q

)2p
∣∣∣∣∣∣ ≤ 1

3

(
p+ q

π

)p+q

δ−(p+q) 1

|λ|p+2

1

|λ|q
≤ ν

|λ|q
,

since |λ| ≥ 1

3
1

p+2

(
p+ q

π

) p+q
p+2

δ−
p+q
p+2ν

1
p+2 thus we get the result with c0 =

1

3
1

p+2

(
p+ q

π

) p+q
p+2

.

For the last one, we take δ0 small enough to have sinc
πδ0
p+ q

= supt≥δ0 | sinc t| and then

|ĝδ(λ)| ≤ γδ when |λ| ≥ 1. The first identity allows to conclude.

We can now state the first crucial result in this proof.

Lemma 4.3.2. There exist δ1 > 0, c1 > 0 such that, if 0 < δ < δ1, 0 < c1δ
2 < 1−√

γδ.
Moreover, let

αδ = 1−
(
c1δ

2 +
γδ

1− c1δ2

)
and let mδ be such that

Nδ = 2mδ ≥ δ−7/2.

Then, for 0 ≤ k ≤ N , ∑
0≤j≤N
j ̸=k

|φ̂(λj − λk)|
j +Nδ

≤ 1− αδ

k +Nδ

.
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Proof. The Taylor expansion when δ → 0 of 1−√
γδ is of the form

1−√
γδ = Aδ2 +O(δ4),

with A > 0. Thus, if c1 < A, for δ small enough, 0 < c1δ
2 < 1 − √

γδ. Next, notice that

0 < 1−
(
β +

γδ
1− β

)
< 1 if 0 < β < 1−√

γδ which shows that 0 < αδ < 1. For future use,

note that there is a κ > 0 such that

αδ = κδ2 +O(δ4). (4.3.4)

We will further assume that δ is small enough for

δ−7/2 ≥ max

(
c
− q+1

q−2

1 δ−2 q+1
q−2 , c2δ

−2− p+q
p+2

)
= max

(
c
− q+1

q−2

1 δ−3,
c0
c1
δ−7/2

)
since we have chosen q = 8 and p = 10.

Note that, for every ε > 0, the power 7/2 could be reduced to 3 + ε by taking p large
enough, but could not be reduced below 3 with this construction.

We can now turn to the estimate itself. Set β = c1δ
2 and split the sum in the left hand

side of the main inequality into two sums

E :=
∑

0≤j≤N
j ̸=k

|φ̂(λj − λk)|
j +Nδ

= E1 + E2

where

E1 =
∑

j+Nδ<(1−β)(k+Nδ)

|φ̂(λj − λk)|
j +Nδ

and

E2 =
∑

j+Nδ≥(1−β)(k+Nδ)
j ̸=k

|φ̂(λj − λk)|
j +Nδ

.

The result is obtained if we prove the estimates

E1 ≤
β

k +Nδ

et E2 ≤
γδ/(1− β)

k +Nδ

.

Now, as Nδ ≥
c0
c1
δ−2− p+q

p+2 , βNδ ≥ Dδ. Then, if j is an index corresponding to E1,

|λk − λj| ≥ |k − j| = (k +Nδ)− (j +Nδ) ≥ β(k +Nδ) ≥ βNδ ≥ Dδ

hence, from part 3 of Lemma 4.3.1 (with ν = 1),

E1 ≤
∑

j+Nδ<(1−β)(k+Nδ)

|φ̂(λj − λk)| ≤
∑

j+Nδ<(1−β)(k+Nδ)

1

|λj − λk|q

≤
∑

j+Nδ<(1−β)(k+Nδ)

1(
β(k +Nδ)

)q .
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But, E1 contains less than k terms so

E1 ≤
k

k +Nδ

β−(q+1)

(k +Nδ)q−2

β

k +Nδ

≤ β

k +Nδ

(4.3.5)

since Nδ ≥ β− q+1
q−2 = c

− q+1
q−2

1 δ−2 q+1
q−2 .

We shall now bound E2. In this sum,

j +Nδ ≥ (1− β)(k +Nδ) and |λj − λk| ≥ |j − k|.

Then

E2 ≤
1

(1− β)(k +Nδ)

∑
1≤j≤N
j ̸=k

γδ
4(λj − λk)2 − 1

≤ γδ
(1− β)(k +Nδ)

∑
1≤j≤N
j ̸=k

1

4(j − k)2 − 1

≤ γδ
(1− β)(k +Nδ)

∞∑
ℓ=1

2

4ℓ2 − 1
.

Since
2

4ℓ2 − 1
=

1

2ℓ− 1
− 1

2ℓ+ 1
, we obtain the expected bound E2 ≤

γδ/(1− β)

k +Nδ

.

The following lemma is a first step toward proving the last part of Theorem 4.1.5 iii and
is a consequence of Lemma 4.3.2.

Lemma 4.3.3. Let us use the notation of the Lemma 4.3.2. Then,∣∣∣∣∣
∫
Iδ

Tδ(t)

(
N∑
k=0

ake
2iπλkt

)
φ(t) dt

∣∣∣∣∣ ≥ αδ

N∑
k=0

|ak|
k +Nδ

. (4.3.6)

Proof. By definition of Tδ,∫
Iδ

Tδ(t)e
2iπλktφ(t) dt =

N∑
j=0

uj
j +Nδ

∫
Iδ

e−2iπλjte2iπλktφ(t)dt

=
N∑
j=0

uj
j +Nδ

φ̂(λj − λk)

=
uk

k +Nδ

+
∑

0≤j≤N
j ̸=k

uj
j +Nδ

φ̂(λj − λk)

thus ∣∣∣∣∫
Iδ

Tδ(t)e
2iπλktφ(t)dt− uk

k +Nδ

∣∣∣∣ ≤ ∑
0≤j≤N
j ̸=k

1

j +Nδ

φ̂(λj − λk).

74



Quantitative version for T near 1. CHAPTER 4.

By applying the Lemma 4.3.2, we obtain that∣∣∣∣ ∫
Iδ

Tδ(t)e
2iπλktφ(t)dt− uk

k +Nδ

∣∣∣∣ ≤ 1− αδ

k +Nδ

.

It follows that ∣∣∣∣ ∫
Iδ

Tδ(t)ake
2iπλktφ(t)dt− ukak

k +Nδ

∣∣∣∣ ≤ 1− αδ

k +Nδ

|ak|.

Using the fact that ukak = |ak| and the triangular inequality, we obtain∣∣∣∣ ∫
Iδ

Tδ(t)

(
N∑
k=0

ake
2iπλkt

)
φ(t)dt−

N∑
k=0

|ak|
k +Nδ

∣∣∣∣ ≤ (1− αδ)
N∑
k=0

|ak|
k +Nδ

from which the lemma follows immediately.

4.3.2 Construction of T̃δ

Recall that we defined Dj = {k ∈ N : 2j ≤ k < 2j+1}. From our assumption on Nδ and
N , we can write

Tδ(t) =
N∑
k=0

uk
k +Nδ

e−2iπλkt =

nδ∑
j=mδ

fj(t)

with
fj(t) =

∑
r+Nδ∈Dj

ur
r +Nδ

e−2iπλrt.

Next we estimate the norms of the fj’s. Lemma 4.2.8 (with δ = 2 ) also shows that

Lemma 4.3.4. For mδ ≤ j ≤ nδ,

1. ∥fj∥L2(Iδ) ≤ 2−
j
2

√
|Iδ|+ 1.

2. ∥fj∥∞ ≤ 1.

We then write again the Fourier series expansion of |fj| ∈ L2(Iδ) as

|fj| =
∑
s∈Z

as,je
2iπ
|I| t,

and define hj ∈ L2(Iδ) via its Fourier series expansion

hj(t) = a0,j + 2
∞∑
s=1

as,je
2isπ
|I| t.

Lemma 4.3.5. For mδ ≤ j ≤ nδ, the following properties hold
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1. Re(hj) = |fj|;

2. ∥hj∥2 ≤
√
2∥fj∥2;

3. hj ∈ H∞(Iδ).

This is the analogue of Lemma 4.2.8, the proof is quite similar, hence we will skip it.
We now define a sequence (Fj)j≥mδ

inductively through

Fmδ
= fmδ

et Fj+1 = Fje
−εhj+1 + fj+1

where 0 < ε < 1 is a small parameter that we will adjust later. Further set

Eε := sup
0<x≤1

x

1− e−εx
=

1

ε
sup

0<x≤ε

x

1− e−x
=

1

1− e−ε
.

From the next to last identity, it is easy to obtain the following simple bound:

1

ε
≤ Eε ≤

2

ε
.

Lemma 4.3.6. Let mδ ≤ n ≤ nδ. For j = mδ, . . . , n we define gj,n = e−εHj,n with

Hj,n =

{
hj+1 + . . .+ hn if j < n

0 if j = n
.

Then Fn =
n∑

j=mδ

fjgj,n with ∥Fn∥∞ ≤ 2
ε
. Moreover ∥Hj,n∥2 ≤

√
2(|Iδ|+ 1)√
2− 1

2−
j
2 .

Lemma 4.3.7. Assume that 0 < ε ≤
√
|Iδ|(

√
2− 1)√

2(|Iδ|+ 1)
. Then, for mδ ≤ j ≤ n ≤ nδ,

1. ∥gj,n − 1∥2 ≤ ε∥Hj,n∥2 ≤
√

2(|Iδ|+ 1)√
2− 1

ε2−
j
2

2. The Fourier series of gj,n(t)− 1 writes gj,n(t)− 1 =
∑
s≥0

cs,je
2isπ
|Iδ |

t
, with

+∞∑
s=0

|cs,j|2 ≤ 1.

Proof. By Lemma 4.2.11, ∥gj − 1∥2 ≤ ε∥Hj∥2. Then, since gj,n is analytic, its Fourier series
writes

gj(t)− 1 =
∑
s≥0

cs,je
2iπ
|Iδ |

st
.

But then, with Parseval(∑
s≥0

|cs,j|2
) 1

2

=
1√
|Iδ|

∥gj − 1∥2 ≤
ε√
|Iδ|

∥Hj∥2 ≤
ε√
|Iδ|

√
2(|Iδ|+ 1)√
2− 1

2−
j
2 ≤ 2−

j
2 < 1

which implies the claimed bound.
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Now recall that

Tδ =
∑

mδ≤j≤nδ

fj

and define

T̃δ = Fnδ
.

In particular, from Lemma 4.3.6, we have

∥T̃δ∥∞ ≤ 2

ε
. (4.3.7)

The key estimates here is the following;

Lemma 4.3.8. Once again, we use the notations of the lemma 4.3.2. There exists δ2 > 0
such that, if 0 < δ < δ2 and Nδ ≥ δ−7/2 then∣∣∣∣∣

∫
Iδ

(T̃δ − Tδ)(t)

(
N∑
k=0

ake
2iπλkt

)
φ(t) dt

∣∣∣∣∣ ≤ 2

3
αδ

N∑
k=0

|ak|
k +Nδ

. (4.3.8)

where φ is the function defined in (4.3.3).

Proof. It is enough to prove that, under the conditions of the lemma, for 0 ≤ k ≤ N we
have ∣∣∣∣∫

Iδ

(T̃δ − Tδ)(t)e
2iπλktφ(t) dt

∣∣∣∣ ≤ 2

3

αδ

k +Nδ

. (4.3.9)

Once (4.3.9) is established, it will then be enough to multiply the left hand side by ak and
to use the triangular inequality.

We fix k ∈ [0, N ] and let ℓ be the index such that k+Nδ ∈ Dℓ. We define R,R1 and R2

as follows

R =

∫
Iδ

(T̃δ,β − Tδ,β)(t)e
2iπλktφ(t) dt

=

∫
I

∑
mδ≤j≤ℓ−2

fj(t)
(
gj(t)− 1

)
e2iπλktφ(t dt+

∫
Iδ

∑
ℓ−1≤j≤nδ

fj(t)
(
gj(t)− 1

)
e2iπλktφ(t) dt

:= R1 +R2.

We will first bound R1. Note that if s ∈ Z,∫
Iδ

fj(t)φ(t)e
2iπλkte

2iπ
|Iδ |

st
dt =

∫
Iδ

∑
r+Nδ∈Dj

ur
r +Nδ

φ(t)e
2iπ(−λr+λk+

s
|Iδ |

)
dt

=
∑

r+Nδ∈Dj

ur
r +Nδ

φ̂(λr − λk −
s

|Iδ|
).
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From this, we obtain∫
Iδ

fj(t)
(
gj(t)− 1

)
e2iπλktφ(t) dt =

∫
Iδ

fj(t)φ(t)e
2iπλkt

∑
s≥0

cs,je
2isπ
|Iδ |

t
dt

=
+∞∑
s=0

cs,j

∫
Iδ

fj(t)φ(t)e
2iπλkte

2iπ
|Iδ |

st
dt

=
+∞∑
s=0

cs,j
∑

r+Nδ∈Dj

ur
r +Nδ

φ̂(λr − λk −
s

|Iδ|
)

=
∑

r+Nδ∈Dj

ur
r +Nδ

∞∑
s=0

cs,jφ̂(λr − λk −
s

|Iδ|
).

So finally we get

R1 =
∑

mδ≤j≤ℓ−2

∑
r+Nδ∈Dj

ur
r +Nδ

∞∑
s=0

cs,jφ̂(λr − λk −
s

|Iδ|
).

Let cs(r) = cs,j if r +Nδ ∈ Ij. Since φ̂ is an even function, we can write

R1 =
∑

2mδ≤r+Nδ<2ℓ−1

ur
r +Nδ

∞∑
s=0

cs(r)φ̂(λk − λr +
s

|Iδ|
) :=

∑
2mδ≤r+Nδ<2ℓ−1

ur
r +Nδ

Er.

From Lemma 4.3.1, recall that, with Dδ = c0δ
− p+q

p+2 and ν =
αδ

|Iδ|1/q
, for

|λ| ≥ max(1, Dδν
− 1

p+2 ),

we have

|φ̂(λ)| ≤ αδ

(|Iδ||λ|)q
. (4.3.10)

Now, s ≥ 0, |Iδ| ≥ 1 and, as r +Nδ < 2ℓ−1, 2ℓ ≤ k +Nδ < 2ℓ+1, λk > λr thus

|Iδ|
∣∣∣∣λk − λr +

s

|Iδ|

∣∣∣∣ = |Iδ|(λk − λr) + s ≥ λk − λr + s ≥ k − r + s (4.3.11)

= (k +Nδ)− (r +Nδ) > 2ℓ − 2ℓ−1 = 2ℓ−1 ≥ 2mδ−1.

Further, from (4.3.4) and 1 ≤ |Iδ| ≤ 2, Dδν
− 1

p+2 ≤ c3δ
− p+q+2

p+2 = c3δ
− 20

12 . Thus, choosing mδ

sufficiently large for Nδ = 2mδδ−7/2 and δ ≤ δ2 for some δ2 > 0 small enough, we are able
to apply (4.3.10) and obtain, with (4.3.11) that

|φ̂(λk − λr +
s

|Iδ|
)| ≤ αδ

(k − r + s)q
.
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We can now bound Er. Since
∞∑
s=0

|cs(r)|2 ≤ 1, the previous bound and the Cauchy-Schwarz

inequality give us

|Er| ≤
∞∑
s=0

|cs(r)|
∣∣∣∣φ̂(λk − λr +

s

1 + δ

)∣∣∣∣ ≤ αδ

(
∞∑
s=0

1

(k − r + s)2q

)1/2

≤ αδ

(
∞∑

n=k−r

1

n2q

)1/2

≤ αδ

(∫ ∞

k−r−1

dt

t2q

)1/2

=
αδ√

2q − 1(k − r − 1)q−1/2
.

But k − r > 2ℓ−1 then k − r − 1 ≥ 2ℓ−1. Since k + Nδ ∈ Dℓ i.e 2ℓ ≤ k + Nδ ≤ 2ℓ+1 we

get
1

k − r − 1
≤ 4

k +Nδ

and then

|Er| ≤
4q−1/2αδ√

2q − 1(k +Nδ)q−1/2
.

Finally, we deduce that

|R1| =

∣∣∣∣∣∣
∑

2mδ≤r+Nδ<2ℓ−1

ur
r +Nδ

Er

∣∣∣∣∣∣ ≤
∑

2mδ≤r+Nδ<2ℓ−1

|Er|
r +Nδ

≤
∑

2mδ≤r+Nδ<2ℓ−1

|Er|

≤ 4q−1/2αδ√
2q − 1(k +Nδ)q−3/2

≤ αδ

3

1

k +Nδ

.

since the last sum has at most 2ℓ−1 ≤ k +Nδ terms.

We will now bound R2.

|R2| ≤
∑

ℓ−1≤j≤nδ

∫
I

|fj(t)| |gj(t)− 1| |φ(t)| dt

≤ ∥φ∥∞
∑

ℓ−1≤j≤nδ

∥fj∥2∥gj − 1∥2.

According to the Lemmas 4.3.4 (1) and 4.3.7 (1) we get

|R2| ≤ ∥φ∥∞ε
√
2(2 + δ)√
2− 1

∑
l−1≤j≤m

2−j.

since ∑
ℓ−1≤j≤nδ

2−j ≤
∞∑

j=ℓ−1

2−j = 2−ℓ+2 = 8.2−(ℓ+1)
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and k +Nδ ∈ Il then
1

2ℓ+1
≤ 1

k +Nδ

. Consequently

∑
ℓ−1≤j≤nδ

2−j ≤ 8

k +Nδ

.

Finally, we deduce that

R2 ≤ ε∥φ∥∞
√
2(|Iδ|+ 1)√

2− 1

8

k +Nδ

and we obtain R2 ≤
αδ

3

1

k +Nδ

when ε ≤ (
√
2− 1)

24∥φ∥∞(|Iδ|+ 1)
√
2
αδ.

Note that, from (4.3.4) and |Iδ| ≤ 2, we can take ε = c4δ
2 for some c4 > 0.

It is now easy to deduce part iii of Theorem 4.1.5 using the 2 inequalities (4.3.6) and
(4.3.8).

4.3.3 End of the proof

Proof of Theorem 4.1.5 iii (b). Let Sδ =
N∑
k=0

|ak|
k +Nδ

and Φ(t) =
N∑
k=0

ake
2iπλkt as previously

defined. Recall that in (4.3.6) , we have shown that

αδSδ ≤
∣∣∣∣∫

Iδ

Tδ(t)ϕ(t)φ(t) dt

∣∣∣∣
≤

∣∣∣∣∫
Iδ

T̃δ(t)ϕ(t)φ(t) dt

∣∣∣∣+ ∣∣∣∣∫
Iδ

(
T̃δ(t)− Tδ(t)

)
ϕ(t)φ(t) dt

∣∣∣∣
≤

∣∣∣∣∫
Iδ

T̃δ(t)ϕ(t)φ(t) dt

∣∣∣∣+ 2

3
αδSδ

with (4.3.8).
It follows that

Sδ ≤ 3

αδ

∣∣∣∣∫
I

T̃δ(t)ϕ(t)φ(t) dt

∣∣∣∣
≤ 3∥T̃∥∞∥φ∥∞

αδ

∫
Iδ

|ϕ(t)| dt.

But, if δ is small enough and Nδ ≥ δ−7/2,

– from Lemma 4.3.1, ∥φ∥∞ ≤ π

2
;

– from (4.3.4), αδ = κδ2 +O(δ4)

– as ε = c4δ
2, from (4.3.7), ∥T̃∥∞ =

2

c4δ2
.
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Therefore, there are two absolute constants δ∗ and c∗ such that, if δ ≤ δ∗, then

Sδ ≤
c∗
δ4

∫
Iδ

|ϕ(t)| dt.

As noticed at the start of the proof, this implies that

N∑
k=0

|ak|
k + 1

≤ c∗

δ
15
2

∫ 1+δ
2

− 1+δ
2

∣∣∣∣∣
N∑
k=0

ake
2iπλkt

∣∣∣∣∣ dt
for every N , every sequence of real numbers (λk)k≥0 with λk+1 − λk ≥ 1 and every complex
sequence (ak)k≥0.

4.3.4 Further comments

Let us make a few comments.

• We have not fully optimized the proof, by taking q sufficiently large and p/q sufficiently
large, one can replace δ15/2 by δ7+η for any fixed η.

• One cannot seek any gain by changing the choice of gδ since the function should be
even and verifies ĝ(0) = 1.

• Changing the dyadic decomposition i.e the intervals Ij will only change the constant
A in (4.3.6). Thus it will not give any better result.

• The result depends heavily on the choice of αδ. But from the (4.3.4) we deduce that
the best choice is of order 2 (we cannot go below the power 2).

Hence, using this method, this is the best result we can aim to.
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Chapter 5

On L1-norms of non-harmonic
trigonometric polynomials with
sparse frequencies

5.1 Introduction

The aim of this chapter is to establish a lower bound of L1-norms of non-harmonic trigono-
metric polynomials with sparse frequencies [18]. The results are then applied to obtain
L1-observability estimate of certain PDEs, including the free Schrödinger equation. We
thus obtain L1-analogues of a result of Kahane [22] and Haraux [11] on the L2-norm of
sparse trigonometric polynomials while the L2-observability result was previously obtained
by Jaming and Komornik in [19].

Let us now be more precise. We first recall the well-known results in the L2-setting.
The celebrated Ingham Inequality gives a lower and upper bound of L2([−T, T ])-norms of
(non-harmonic) trigonometric polynomials and is stated as follows:

Theorem 5.1.1 (Ingham [15]). Let γ > 0 and T >
1

γ
. Then there exist constants 0 <

A2(T, γ) ≤ B2(T, γ) such that
– for every sequence of real numbers Λ = {λk}k∈Z such that λk+1 − λk ≥ γ;
– for every sequence (ak)k∈Z ∈ ℓ2(Z,C),

A2(T, γ)
∑
k∈Z

|ak|2 ≤
1

T

∫ T/2

−T/2

∣∣∣∣∣∑
k∈Z

ake
2iπλkt

∣∣∣∣∣
2

dt ≤ B2(T, γ)
∑
k∈Z

|ak|2.

Note that A2(T, γ), B2(T, γ) are explicit constants (see [23, 20]). Ingham has also shown
that the upper bound is valid for any T > 0 while the lower bound may not be true for

T ≤ 1

γ
. In his seminal work on almost periodic functions [22], Kahane has shown that this

condition can be lifted if λk+1 − λk → +∞ when k → ±∞:
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Theorem 5.1.2 (Kahane). Let Λ = {λk}k∈Z such that λk+1 − λk → +∞ when k → ±∞.
Then, for every T > 0, there exist constants 0 < A2(T,Λ) ≤ B2(T,Λ) such that

A2(T,Λ)
∑
k∈Z

|ak|2 ≤
1

T

∫ T/2

−T/2

∣∣∣∣∣∑
k∈Z

ake
2iπλkt

∣∣∣∣∣
2

dt ≤ B2(T,Λ)
∑
k∈Z

|ak|2

holds for every sequence (ak)k∈Z ∈ ℓ2(Z,C).

The constants are not explicit in [22], they were later obtained by Haraux [11] (but with
constants that are difficult to compute explicitly, see e.g. [23, 20]).

Those inequalities have found many applications in control theory. Among the numerous
results (see the book [23] for a good introduction to the subject), our starting point is a
result of Jaming and Komornik [19]. To state it, let us introduce some notation. We write
T = R/Z and H2(T) = {f ∈ L2(T) :

∑
k∈Z(1 + |k|2)2|ck(f)|2 < ∞}, where the ck(f)’s are

the Fourier coefficients of f . Then the following holds:

Theorem 5.1.3 (Jaming and Komornik). Fix (t1, x1) ∈ R2, a ∈ R and T > 0. For
u0 ∈ H2(T), let u be the solution ofut =

i

2π
uxx in R× T,

u(0, x) = u0(x) for x ∈ T.

i. There exists D2(T, a) such that, for every u0 ∈ H2(T),∫ T

0

|u(t1 + t, x1 + at)|2 dt ≤ D2(T, a)∥u0∥2L2

ii. If a /∈ Z, then there exists C2(T, a) such that, for every u0 ∈ H2(T),

C2(T, a)∥u0∥2L2 ≤
∫ T

0

|u(t1 + t, x1 + at)|2 dt (5.1.1)

also holds.

iii. If a ∈ Z, then there exists u0 ̸= 0 such that u(t0 + t, x0 + at) = 0 so that (5.1.1) fails.

Let us sketch the proof. If we write u0(x) =
∑
k∈Z

cke
2iπkx then the solution of the

Schrödinger equation can be written as a Fourier series u(t, x) =
∑
k∈Z

cke
2iπ(k2t+kx), and the

fact that u0 ∈ H2(T) implies that this series is uniformly convergent. One can thus restrict
it to a segment:

u(t0 + t, x0 + 2at) =
∑
k∈Z

cke
2iπk2(t0+t)+2iπk(x0+2at) :=

∑
k∈Z

dke
2iπλkt.
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Then one shows that the λk’s are such that Kahane’s theorem applies (provided a is not an
integer). Our aim is to extend this argument to the L1-setting.

The first task is thus to obtain an L1-version of Ingham’s inequality. An L1−ℓ∞ estimate
was obtained by Ingham [15] (and is an easy adaptation of the L2-proof) and a much more
evolved L1 to weighted ℓ1-inequality was obtained by Nazarov, inspired by the proof of
Littlewood’s conjecture by McGehee-Pigno-Smith. The results are as follows

Theorem 5.1.4. Let (λk)k∈Z be an increasing sequence of real numbers such that there
exists γ > 0 for which λk+1 − λk ≥ γ for every k. Let (ak)k∈Z be a sequence of complex
numbers.

• Ingham [16] : For T ≥ 1

γ
, there exists a constant A1(T, γ) > 0 such that, for every

N ≥ 1,

A1(T, γ) max
k=−N,...,N

|ak| ≤
1

T

∫ T/2

−T/2

∣∣∣∣∣
N∑

k=−N

ake
2iπλkt

∣∣∣∣∣ dt.
• Nazarov [30] : For T >

1

γ
, there exists a constant Ã1(T, γ) > 0 such that, for every

N ≥ 1,

Ã1(T, γ)
N∑
k=0

|ak|
1 + k

≤ 1

T

∫ T/2

−T/2

∣∣∣∣∣
N∑
k=0

ake
2iπλkt

∣∣∣∣∣ dt.
Ingham established the first inequality for T >

1

γ
in [15] and improved his result in

[16] showing that it also holds for T =
1

γ
, and that one may take A1(T, γ) =

1

2
. This was

further improved by Mordell [29]. There is a major difference between the two inequalities:
the right hand side in Ingham’s inequality is generally much smaller than in Nazarov’s
inequality (e.g. take |ak| = 1 for all k then Ingham provides a constant lower bound while
Nazarov provides a logarithmic one). On the other hand, in Nazarov’s inequality the sum

starts at 0 and may fail for symmetric sums. Also its validity for T =
1

γ
is an open question.

This result is sufficient to partially extend Theorem 5.1.3 to the L1-setting. The only
thing that would be missing is that in Theorem 5.1.3, there is no minimal time needed
thanks to Kahane’s extension of Ingham’s inequality. However, so far this is unknown in
the L1-case and our first result is precisely to prove this:

Theorem 5.1.5. Let Λ = (λk)k∈Z be an increasing sequence with λk+1 − λk → +∞ when
k → ±∞. Then, for every T > 0, there exists a constant Ã1(T,Λ) > 0 such that, if
(ak)k∈N ⊂ C is a sequence of complex numbers, and N ≥ 1, then

Ã1(T,Λ)
N∑
k=0

|ak|
1 + k

≤ 1

T

∫ T/2

−T/2

∣∣∣∣∣
N∑
k=0

ake
2iπλkt

∣∣∣∣∣ dt. (5.1.2)
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If further
∑
k∈Z

1

1 + |λk|
converges, then there also exists a constant A1(T,Λ) such that, for

every (ak)k∈Z ⊂ C and every N ≥ 1,

A1(T,Λ) max
k=−N,...,N

|ak| ≤
1

T

∫ T/2

−T/2

∣∣∣∣∣
N∑

k=−N

ake
2iπλkt

∣∣∣∣∣ dt. (5.1.3)

The main difficulty in the proof of this result is that both Kahane’s and Haraux’s
argument cannot directly be adapted. Indeed, both use in a crucial way that in Ingham’s
inequality the L2-norm of a trigonometric polynomial is both lower and upper bounded by
the ℓ2-norm of its coefficients. In the L1-case, the upper bound is in terms of the ℓ1-norm of
the coefficients and does not match the lower bound. Instead, our proof uses a compactness
argument so that we do not obtain an estimate of A1(γ, T ), Ã1(γ, T ) in this case. It would
be interesting to obtain such an estimate.

Finally, we apply this result to an observability inequality for the Schrödinger equation.
We show the following: take u0 ∈ H2(T) and write its Fourier series u0(x) =

∑
k∈Z cke

2iπkt.
Let u be the solution of ut =

i

2π
uxx in R× T,

u(0, x) = u0(x) for x ∈ T.

then, for every a /∈ Z and every T > 0, there exists a constant C(a, T ) > 0 such that

1

T

∫ T

0

|u(t0 + t, x0 + at)| dt ≥ C
∑
k∈Z

|ck|
1 + |k|

.

Similar results are then obtained for higher order Schrödinger equations.

5.2 Proof of Theorem 5.1.5

First note that replacing the sequence (λk)k∈Z by a translate λk + λ, leaves (5.1.2)-(5.1.3)
unchanged. So there is no loss of generality in assuming that λ0 > 0 > λ−1. We now fix
T > 0.

Define K to be an integer such that, if |k| ≥ K, λk+1−λk ≥
2

T
. As a consequence, from

Nazarov’s inequality, the following holds for every sequence (bk)k∈Z and every N ≥ 0:

1

T

∫ T/2

−T/2

∣∣∣∣∣
K+N∑
k=K

bke
2iπλkt

∣∣∣∣∣ dt = 1

T

∫ T/2

−T/2

∣∣∣∣∣
N∑
k=0

bk+Ke
2iπλk+N t

∣∣∣∣∣ dt
≥ Ã1

(
T,

2

T

) N∑
k=0

|bk+K |
k + 1

≥ Ã1

(
T,

2

T

)K+N∑
k=K

|bk|
k + 1

.

(5.2.1)
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While Ingham’s inequality shows that

1

T

∫ T/2

−T/2

∣∣∣∣∣∣
∑

K≤|k|≤K+N

bke
2iπλkt

∣∣∣∣∣∣ dt ≥ A1

(
T,

2

T

)
1

2
max

K≤|k|≤K+N
|bk|. (5.2.2)

We first prove (5.1.2). To do so, we will adopt the following convention. An element
of CN will be indexed starting at 0, z = (z0, . . . , zN−1). It will also be considered as an
element of CM , for M ≥ N as a sequence (zk)k≥0 by setting zk = 0 for k ≥ N . An element
of CN is thus called a vector or a sequence. On CN , we introduce two norms through

∥(a0, . . . , aN−1)∥ℓ1,−1
N

=
N−1∑
k=0

|ak|
1 + k

and

∥(a0, . . . , aN−1)∥L1
N
=

∥∥∥∥∥
N−1∑
k=0

ake
2iπλkt

∥∥∥∥∥
L1([−T/2,T/2])

:=
1

T

∫ T/2

−T/2

∣∣∣∣∣
N−1∑
k=0

ake
2iπλkt

∣∣∣∣∣ dt.
The first one is clearly a norm while for the second one, it is enough to notice that the set
{t→ e2iπλt}λ∈R is linearly independent in L1([−T/2, T/2]).

As ∥·∥ℓ1,−1
N

and ∥·∥L1
N

are both norms on the finite dimensional space CN , they are

equivalent. Thus there are κN ≤ 1 ≤ ΛN such that, for every a ∈ CN ,

κN∥a∥ℓ1,−1
N

≤ ∥a∥L1
N
≤ ΛN∥a∥ℓ1,−1

N
. (5.2.3)

Nazarov’s theorem asserts that one may choose κN independently of N provided T is large
enough. Our aim is to show that this is possible for every T under our additional condition
on (λk)k≥0.

Assume towards a contradiction that this is not the case. Then, for every integer n ≥ 1,
there exist an integer Kn and a(n) = (a

(n)
0 , . . . , a

(n)
Kn−1) ∈ CKn such that ∥a(n)∥ℓ1,−1

Kn
= 1 while

∥a(n)∥L1
Kn

≤ 1

n
. The first observation is that Kn → +∞ otherwise, we would contradict

(5.2.3) when n is large enough. Hence, without loss of generality, we will assume that

Kn+1 > Kn ≥ K for every n, where K was defined such that if |k| ≥ K, λk+1 − λk ≥
2

T
.

Next, we split a(n) into two vectors

a
(n)
− = (a

(n)
0 , . . . , a

(n)
K−1, 0, . . .) and a

(n)
+ = a(n) − a

(n)
− .

With an obvious abuse of notation, we consider that a
(n)
− ∈ CK . In particular ∥a(n)− ∥ℓ1,−1

K
≤

∥a(n)− ∥ℓ1,−1
Kn

≤ 1. Thus, up to taking a subsequence, we may assume that a
(n)
− → (a0, . . . , aK−1).

Next, define the following functions
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1. The functions φ(n) given by

φ(n)(t) =
Kn∑
k=0

a
(n)
k e2iπλkt

so that ∥φ(n)∥L1([−T/2,T/2]) ≤
1

n
→ 0 i.e. φ(n) → 0 in L1([−T/2, T/2]).

2. The functions φ
(n)
− , φ− given by

φ
(n)
− (t) =

K−1∑
k=0

a
(n)
k e2iπλkt and φ−(t) =

K−1∑
k=0

ake
2iπλkt.

This functions are in a finite dimensional subspace of L1([−T/2, T/2]) so that the

convergence a
(n)
k → ak for k = 0, . . . , K−1 implies that φ

(n)
− → φ− in L1([−T/2, T/2]).

3. The functions

φ
(n)
+ = φ(n) − φ

(n)
− =

Kn∑
k=K

a
(n)
k e2iπλkt.

Note that φ
(n)
+ → −φ− in L1([−T/2, T/2]). On the other hand, for n ≥ m we can apply

(5.2.1) to φ
(n)
+ − φ

(m)
+ leading to

1

T

∫ T/2

−T/2

|φ(n)
+ (t)− φ

(m)
+ (t)| dt =

1

T

∫ T/2

−T/2

∣∣∣∣∣
Kn∑
k=K

(
a
(n)
k − a

(m)
k

)
e2iπλkt

∣∣∣∣∣ dt
≥ Ã1

(
T,

2

T

) Kn∑
k=K

∣∣a(n)k − a
(m)
k

∣∣
k + 1

.

Using also that a
(n)
k → ak for k = 0, . . . , K−1 this shows that

(
a
(n)
k

)
k≥0

is a Cauchy sequence
in the Banach space

ℓ1,−1 =

{
(bk)k≥0 : ∥(bk)∥ℓ1,−1 :=

+∞∑
k=0

|bk|
k + 1

}
.

In particular,
(
a
(n)
k

)
k≥0

→ (ak)k≥0 in ℓ1,−1. This implies that, for all k, a
(n)
k → ak and that

1 = ∥a(n)∥ℓ1,−1
Kn

= ∥a(n)∥ℓ1,−1 → ∥a∥ℓ1,−1 .

We will thus reach a contradiction if we show that ak = 0 for all k.
To do so, we introduce further functions via

Φ
(n)
± (x) =

∫ x

0

φ
(n)
± (t) dt and Φ−(x) =

∫ x

0

φ−(t) dt =
1

2iπ

K−1∑
k=0

ak
λk

(
e2iπλkx − 1

)
.
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Note that as φ
(n)
± → ±φ− in L1([−T/2, T/2]), Φ(n)

± → ±Φ− uniformly over [−T/2, T/2]
thus also in L2([−T/2, T/2]).

Next, as (λn)n∈N is increasing with λ0 > 0 and λn+1 − λn → +∞, there exists α > 0
such that λn ≥ α(n+ 1). It follows that

+∞∑
k=0

|ak|
λk

≤ 1

α

+∞∑
k=0

|ak|
k + 1

< +∞ and
+∞∑
k=0

|a(n)k − ak|
λk

≤ 1

α

+∞∑
k=0

|a(n)k − ak|
k + 1

→ 0.

As |e2iπλkx − 1| ≤ 2, it follows that

Φ
(n)
+ =

1

2iπ

Kn∑
k=K

a
(n)
k

λk

(
e2iπλkx − 1

)
→ Φ+ =

1

2iπ

∞∑
k=K

ak
λk

(
e2iπλkx − 1

)
where the series defining Φ+ is uniformly convergent over [−T/2, T/2] and the convergence

Φ
(n)
+ → Φ+ is uniform over [−T/2, T/2], thus also in L2([−T/2, T/2]). But we also know

that Φ
(n)
+ → −Φ− in L2([−T/2, T/2]) thus Φ+ + Φ− = 0.

It remains to apply Kahane’s extension of Ingham’s Inequality to obtain that

0 =
1

T

∫ T/2

−T/2

|Φ+(t) + Φ−(t)|2 dt =
1

T

∫ T/2

−T/2

∣∣∣∣∣− 1

2iπ

+∞∑
k=0

ak
λk

+
+∞∑
k=0

ak
2iπλk

e2iπλkt

∣∣∣∣∣
2

dt

≥ A2(T,Λ)

∣∣∣∣∣ 1

2iπ

+∞∑
k=0

ak
λk

∣∣∣∣∣
2

+
+∞∑
k=0

∣∣∣∣ ak
2iπλk

∣∣∣∣2


thus ak = 0 for all k and we obtain the desired contradiction.

The proof of (5.1.3) is similar, so we give less detail. Elements of C2N+1 will be indexed
from −N to N , i.e. z = (z−N , . . . , zN) and will be considered as an element of C2M+1,
M ≥ N and also as a sequence (zk)k∈Z by setting zk = 0 when |k| > N . We again consider
two norms on C2K+1, the ℓ∞ norm and (with a small abuse of notation)

∥(a−K , . . . , aK)∥L1
N
=

1

T

∫ T/2

−T/2

∣∣∣∣∣
K∑

k=−K

ake
2iπλkt

∣∣∣∣∣ dt.
For every K there exists κ̃K such that, for every a ∈ C2K+1,

κ̃K∥a∥∞ ≤ ∥a∥L1
N
.

Ingham’s theorem asserts that one may choose κK independently of K provided T is large
enough. Our aim is again to show that this is possible for every T under our additional
condition on λk.

Assume towards a contradiction that this is not possible.
Then, for every integer n ≥ 1, there exist an integer Kn → +∞ with Kn+1 > Kn ≥ K

and a(n) = (a
(n)
−Kn

, . . . , a
(n)
Kn

) ∈ C2Kn+1 such that ∥a(n)∥∞ = 1 while ∥a(n)∥L1
Kn

≤ 1

n
. So,
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without loss of generality, we will assume that Kn+1 > Kn ≥ K for every n. Recall that we

defined K so that if |k| ≥ K, λk+1 − λk ≥
2

T
.

We split a(n) into two vectors

a
(n)
− = (. . . , 0, a

(n)
−K+1, . . . , a

(n)
K−1, 0, . . .) ∈ C2K−1 and a

(n)
+ = a(n) − a

(n)
− .

As ∥a(n)− ∥∞ ≤ ∥a(n)∥∞ = 1, there is no loss of generality in assuming that

a
(n)
− → (a−K+1, . . . , aK−1).

We again consider

φ(n)(t) =
Kn∑

k=−Kn

a
(n)
k e2iπλkt → 0

in L1([−T/2, T/2]),

φ
(n)
− (t) =

K−1∑
k=−K+1

a
(n)
k e2iπλkt → φ−(t) =

K−1∑
k=−K+1

ake
2iπλkt

in L1([−T/2, T/2]) and

φ
(n)
+ = φ(n) − φ

(n)
− =

∑
K≤|k|≤Kn

a
(n)
k e2iπλkt → −φ−

in L1([−T/2, T/2]).
Using (5.2.2) instead of (5.2.1) we get, for n ≥ m

1

T

∫ T/2

−T/2

|φ(n)
+ (t)− φ

(m)
+ (t)| dt ≥ A1

(
T,

2

T

)
max

K≤|k|≤Kn

∣∣a(n)k − a
(m)
k

∣∣
so that

(
a
(n)
k

)
k∈Z is a Cauchy sequence in ℓ∞ and we call a = (ak)k∈Z its limit. Of course

∥a∥∞ = 1 so that we will again reach a contradiction if we show that ak = 0 for all k.
To do so, we introduce again

Φ
(n)
± (x) =

∫ x

0

φ
(n)
± (t) dt and Φ−(x) =

∫ x

0

φ−(t) dt =
1

2iπ

K−1∑
k=0

ak
λk

(
e2iπλkx − 1

)
so that Φ

(n)
± → ±Φ− uniformly over [−T/2, T/2] thus also in L2([−T/2, T/2]).

Next, as λk ̸= 0 and
∑
k∈Z

1

1 + |λn|
converges so is

∑
k∈Z

1

|λn|
. As (ak) ∈ ℓ∞ and |a(n)k −ak| →

0 in ℓ∞ we get ∑
k∈Z

|ak|
λk

< +∞ and
∑
k∈Z

|a(n)k − ak|
λk

→ 0.
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As |e2iπλkx − 1| ≤ 2, it follows that

Φ
(n)
+ =

1

2iπ

∑
K≤|k|≤Kn

a
(n)
k

λk

(
e2iπλkx − 1

)
→ Φ+ =

1

2iπ

∑
|k|≥K

ak
λk

(
e2iπλkx − 1

)
where the series defining Φ+ is uniformly convergent over [−T/2, T/2] and the convergence

Φ
(n)
+ → Φ+ is uniform over [−T/2, T/2], thus also in L2([−T/2, T/2]). But we also know

that Φ
(n)
+ → −Φ− in L2([−T/2, T/2]) thus Φ++Φ− = 0. Applying again Kahane’s extension

of Ingham’s inequality we obtain ak = 0 for all k which is the desired contradiction.

5.3 Application to 1-periodic Schrödinger equation

Recall that the Wiener algebra is defined as

A(T) = {f ∈ L1(T) : ∥f∥A(T) =
∑
k∈Z

|ck(f)| < +∞}.

Theorem 5.3.1. Let u be a weak solution of the Schrödinger equationi∂tu(t, x) =
1

2π
∂2xu(t, x) t ∈ R, x ∈ T

u0 = u(0, x) x ∈ R
, (5.3.1)

with initial value u0(x) =
∑

k∈Z cke
2iπkt ∈ A(T). Let t0 ∈ R and x0 ∈ T. Then

1. For a ∈ R \ Z, for every T > 0 there exists a constant C(a, T ) > 0 such that

1

T

∫ T

0

|u(t0 + t, x0 + at)| dt ≥ C
∑
k∈Z

|ck|
1 + |k|

. (5.3.2)

2. If a ∈ Z then there exists u0 ̸= 0 such that u(t0+t, x0+at) = 0 for all t. In particular,
(5.3.2) fails.

Remark 5.3.2. Recall also that if u0 ∈ Hs(T) with s >
1

2
then, with Cauchy-Schwarz,

∥u0∥A(T) ≤

(∑
k∈Z

1

(1 + |k|2)s

)1/2(∑
k∈Z

(1 + |k|2)s|ck|2
)1/2

< +∞.

One may thus replace the condition u0 ∈ A(T) with a more familiar condition like u0 ∈
H1(T).
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Proof. Write u0(x) =
∑
k∈Z

cke
2iπkx so that u(t, x) =

∑
k∈Z

cke
2iπ(k2t+kx). This series is uniformly

convergent over R× T since
∑

|ck| converges thus u is continuous. Further

v(t) = u(t0 + t, x0 + at) =
∑
k∈Z

cke
2iπk2(t0+t)+2iπk(x0+at) =

∑
k∈Z

dke
2iπλkt

with
dk = cke

2iπ(k2t0+kx0) and λk = k2 + 2bk.

Note that |dk| = |ck|. On the other hand

λk − λm = k2 + 2ak − (m2 + am) = k2 −m2 + a(k −m)

= (k −m)(k +m+ a). (5.3.3)

Assume first that a ∈ Z. This case was already treated in [19] but let us reproduce
the proof here for completeness. In this case, the frequencies (λk) satisfy the symmetry
property λk = λ−a−k. Now fix k ̸= −a and notice that −a− k ̸= 0 so that, if we fix ck ̸= 0
we can choose c−a−k so that d−a−k = −dk that is

c−a−k = −cke2iπ
(
(k2t0+kx0)−((−a−k)2t0+(−a−k)x0)

)
= −cke−2iπ

(
a(a+2k)t0+x0)

)
.

Setting

u0(x) = ck
(
e2iπkt − e−2iπ

(
a(a+2k)t0+2ax0)

)
e−2iπ(a+k)t

)
we obtain u(t0 + t, x0 + at) = 0.

From now on, we assume that a /∈ Z so that from (5.3.3) we deduce that λk ̸= λm when
k ̸= m. It will be convenient to write a = 2b. We can then further split the sequence
(λk)k∈Z into a disjoint union, (λk)k∈Z = (λ+k )k≥0 ∪ (λ−k )k≥1 with

λ+k := λ−[b]+k = (−[b] + k)2 + 2b(−[b] + k) for k ≥ 0

and
λ−k := λ−[b]−k = (−[b]− k)2 + 2b(−[b]− k) for k ≥ 1.

By definition
λ+0 = [b]2 − 2b[b] and λ−1 = λ+0 + 1− 2(b− [b]).

We will now distinguish two cases:

First case: Assume that
1

2
< b− [b] < 1 so that λ−1 < λ+0 .

In this case, the frequencies interlace as follows:

λ−k+1 < λ+k < λ−k+2 for all k ≥ 0.

Indeed, for all k ≥ 0

λ+k − λ−k+1 = 2(2k + 1)

(
b− [b]− 1

2

)
> 0 and → ∞ as k → ∞
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and
λ−k+2 − λ+k = 4(k + 1)

(
1− (b− [b])

)
) > 0 and → ∞ as k → ∞

with our hypothesis on b− [b]. In particular, if we set µ2k = λ−k+1 = λ−[b]−k−1 and µ2k+1 =
λ+k = λ[−b]+k for k ≥ 0 then 0 < µ2k+1 − µ2k → +∞. From Theorem 5.1.5, we thus get that∫ T

0

|v(t)| dt ≥ C(T )
∞∑
k=0

(
|c−[a]−k−1|
2k + 1

+
|c−[a]+k|
2k + 2

)
.

Finally, for k ≥ 0, 2k + 1 ≤ αa(| − [a]− k− 1|+ 1) and 2k + 2 ≤ αa(| − [a] + k|+ 1) with a
constant αa depending on a only, so that∫ T

0

|v(t)| dt ≥ C(T )

αa

∑
k∈Z

|ck|
|k|+ 1

as claimed.

Second case: 0 < b − [b] <
1

2
. Note that b − [b] ̸= 0,

1

2
, 1 since a = 2b /∈ Z all cases are

covered. In this case, similar computations show that the frequencies interlace as

λ+k < λ−k+1 < λ+k+1 for all k ≥ 0

with λ−k+1 − λ+k , λ
+
k+1 − λ−k+1 → +∞. The remaining of the proof is the same and is thus

omitted.

5.4 General Case

Let x in T = R/Z and t ∈ R+, we consider the following equations
i∂tu(t, x) = 2πP

(
∂x
2iπ

)
u

u0 = u(0, x) =
∑
k∈Z

cke
2iπkx ∈ A(T)

. (5.4.1)

where
P (X) = anX

n + an−1X
n−1 + . . .+ a1X + a0

with n ≥ 2 and an ̸= 0. Note that up to replacing u by ū, there is no loss of generality in
assuming that an > 0.

If u0(x) =
∑
k∈Z

cke
2iπkx ∈ A(T), then the solution to this system is given by

u(t, x) =
∑
k∈Z

cke
−2iπP (k)te2iπkx.

Again, this is a continuous function.

93



General Case CHAPTER 5.

Let a ∈ R to be chosen later. For any (t0, x0) ∈ R× T, we define

u(t0 + t, x0 + at) =
∑
k∈Z

cke
−2iπP (k)(t0+t)+2iπk(x0+at) =

∑
k∈Z

dke
−2iπλkt

with
dk = cke

−2iπ(P (k)t0−kx0) and λk = P (k)− ak.

Note that λk − λm = (k −m)
(
Q(k,m)− a

)
with

Q(k,m) = an(k
n−1 + kn−2m+ . . .+mn−1) + an−1(k

n−2 + . . .+mn−2) + . . .+ a1

=
n∑

ℓ=1

aℓ

ℓ−1∑
j=0

kℓ−1−jmj.

Define
E = {Q(k,m) : k,m ∈ Z such that k ̸= m}

which is countable (thus of measure 0).

Theorem 5.4.1. Let u be any solution of the Schrödinger equation (5.4.1) with initial value

u0 =
∑
k∈Z

cke
2iπkx ∈ A(T). Then

1. If a /∈ E, for all T > 0 there exists a constant C(a, T ) > 0 such that

1

T

∫ T

0

|u(t0 + t, x0 + at)| dt ≥ Cmax
k∈Z

|ck|. (5.4.2)

If n is even, there also exists a constant C(a, T ) > 0 such that

1

T

∫ T

0

|u(t0 + t, x0 + at)| dt ≥ C
∑
k∈Z

|ck|
1 + |k|

. (5.4.3)

2. If a ∈ E then both (5.4.2)-(5.4.3) fail.

An L2-analogue of this result can be found in [40].

Proof. The last part of the theorem is the same as for the Schrödinger equation in the
previous section. Indeed, if a ∈ E, we can choose two indexes k ̸= m such that λk = λm and
then choose ck, cm such that dk = −dm. Taking u0 = cke

2iπkt + cme
2iπmt, the corresponding

solution u satisfies u(t0 + t, x0 + at) = 0.
We now assume that a /∈ E so that λk ̸= λm for all k,m ∈ Z. We will further show

that the (λk)
′s can be ordered as a sequence with gaps going to infinity. Here we need to

distinguish between n even or odd. We start with the odd case.

If n is odd, then λk = P (k) − ak → ±∞ when k → ±∞. Note also that, as P has

degree at least 3,
∑ 1

1 + |λk|
converges.
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Further λk+1−λk = Q(k+1, k)−a = ank
n−1+o(kn−1) → +∞ when k → ±∞. so that,

there exists K such that, for k ≥ K, λk is increasing as well as for k ≤ −K. There further
exists K ′ ≥ K such that, if k, ℓ ≥ K ′, then

λ−ℓ ≤ min
|j|≤K

λj ≤ max
|j|≤K

λj ≤ λk.

We then define (µk)|k|≤K′ as an ordering of (λk)|k|≤K′ and µk = λk for |k| > K ′. Note that
those λk’s are not one of the (µk)|k|≤K′ ’s. Then (µk)k∈Z is an increasing sequence with gaps
µk+1 − µk → +∞ when k → ±∞. We can then apply (5.1.3) to conclude.

We now assume that n = 2p is even. In this case λk = P (k)−ak → +∞ when k → ±∞
and λk+1−λk → ±∞ when k → ±∞. In this case, the ordering needs to be made differently.

The idea is rather simple, there is an oscillating part and we are going to show that,
for k, ℓ large, the λk’s and λ−ℓ’s interlace. In the generic case we actually have λk+q0 <
λ−k < λk+q0+1 for some fixed q0 and large enough k. This shows that, for some K0,
(λk)k/∈{−K0,...,K0+q0} can be rearranged in an increasing way as:

λK0+q0+1, λ−K0−1, λK0+q0+2, λ−K0−2, . . . . The finite number of remaining λk’s are rear-
ranged separately and, provided K0 is large enough, they can be put at the start and the
resulting sequence (µk)k≥0 is then increasing with gaps going to infinity. A key aspect of
this construction is that each µk is a λk′ with

∣∣k − |k′|
∣∣ ≤ CΛ depending only on Λ. The

idea is the same in the exceptional case.

−7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

The picture shows the case of a polynomial P of degree 4. The reordering here is
µ0 = λ3, µ1 = λ4, µ2 = λ−4, µ3 = λ−3 µ4 = λ2, µ5 = λ−2, µ6 = λ1, µ7 = λ1, µ8 = λ−5

(not represented to keep the picture readable), µ9 = λ−1, µ10 = λ0, µ11 = λ5, µ12 = λ−6,
µ13 = λ6 and more generally µ12+2k = λ−6−k while µ13+2k = λ6+k.

Let us now be more precise.
We again take K such that from −∞ to K, λk is decreasing while from K to +∞, λk
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is increasing and define K ′ such that if k, ℓ ≥ K ′, then

max
|j|≤K

λj ≤ λ−ℓ, λk.

Next, an easy computation shows that

ℓ∑
j=0

(−1)j =

{
1 if ℓ is even

0 if ℓ is odd
and

ℓ∑
j=0

(−1)jj =

{
ℓ/2 if ℓ is even

−(ℓ+ 1)/2 if ℓ is odd

so that

λk+q − λ−k = (2k + q)

(
2p∑
ℓ=1

aℓ

ℓ−1∑
j=0

(−1)j(k + q)ℓ−1−jkj − a

)
.

But

a2p

2p−1∑
j=0

(−1)j(k + q)ℓ−1−jkj = a2pk
2p−1

2p−1∑
j=0

(−1)j + a2pqk
2p−2

2p−2∑
j=0

(−1)jj + o(k2p−2)

= (p− 1)a2pqk
2p−2 + o(k2p−2)

and

a2p−1

2p−2∑
j=0

(−1)j(k + q)2p−2−jkj = a2p−1k
2p−2 + o(k2p−2)

so that

λk+q − λ−k =

{(
(p− 1)a2pq + a2p−1

)
k2p−1 + o(k2p−1) if p ≥ 2(

a2q + a1 − a
)
k + o(k) if p = 1

. (5.4.4)

Set αq =

{
a2q + a1 − a if p = 1

(p− 1)a2pq + a2p−1 if p ≥ 2
so that λk+q − λ−k = αqk

2p−1 + o(k2p−1).

There are now two cases:

Case 2.1 For every q, αq ̸= 0

Then there exists q0 such that αq0 > 0 and αq0−1 < 0. But then, λk+q0 − λ−k → +∞
while λk+q0−1 − λ−k → −∞.

We now take K ′′ > max(K ′ − q0, K
′) such that, for k ≥ K ′′, λk+q0 − λ−k > 0 and

λk+q0−1 − λ−k < 0, that is λk+q0−1 < λ−k < λk+q0 . The choice of K ′′ also implies that
λ−K′′+1, . . . , λK′′+q0−1 are all < min(λ−K′′ , λK′′+q0). We can thus reorder those terms as

an increasing sequence (µk)k=0,··· ,K̂ with K̂ = 2K ′′ + q0 − 2, that we then complete into
a sequence (µk)k∈N by adding successively a term λK′′+k+q0 and a term λ−K′′−k and the
resulting sequence is an increasing rearrangement of (λk) such that µk → +∞ and µk+1 −
µk → +∞. Note that if we define σ the mapping Z → N defined by µk = λσ(k) then there
is a constant CΛ such that

∣∣|k| − σ(k)
∣∣ ≤ CΛ.
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It follows from (5.1.2) that

1

T

∫ T/2

−T/2

|u(t0 + t, x0 + at)| dt =
1

T

∫ T/2

−T/2

∣∣∣∣∣∑
k∈Z

dke
−2iπλkt

∣∣∣∣∣ dt
=

1

T

∫ T/2

−T/2

∣∣∣∣∣
+∞∑
k=0

dσ−1(k)e
−2iπµkt

∣∣∣∣∣ dt
≥ Ã1(T,Λ)

+∞∑
k=0

|dσ−1(k)|
1 + k

= Ã1(T,Λ)
∑
j∈Z

|cj|
1 + σ(j)

≥ Ã1(T,Λ)

1 + CΛ

∑
k∈Z

|ck|
1 + |k|

.

Note that the series
∑

k∈Z dke
−2iπλkt is uniformly convergent so that we can re-order terms.

Case 2.2 There exists q0 such that αq0 = 0.

The proof is essentially the same, but the interlacing of the λk and λ−ℓ for k, ℓ large may
be different. This comes from the fact that the leading term in (5.4.4) is 0. Nevertheless,
αq0+1 > 0 and αq0−1 < 0 so that, for k large enough λk+q0+1−λ−k > 0 while λk+q0−1−λ−k <
0. So, for each k, either λk+q0−1 < λk+q0 < λ−k < λk+q0+1 or λk+q0−1 < λ−k < λk+q0 <
λk+q0+1 (actually only one can occur for k large enough) and we define the rearrangement
µk accordingly.
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Chapter 6

On Besicovitch norms of
non-harmonic trigonometric
polynomials with sparse frequencies

6.1 Introduction

As we already mentioned, Hudson and Leckband were the first to generalize results on
the Littlewood conjecture to the real setting, they showed that the coefficients of a non
harmonic polynomials are controlled by its Besicovitch norm;

Theorem 6.1.1 (Hudson & Leckband [14]). For λ0 < λ1 < . . . < λN real numbers and
a0, . . . , aN complex numbers

lim
T→+∞

1

T

∫ T/2

−T/2

∣∣∣∣∣
N∑
k=0

ake
2iπλkt

∣∣∣∣∣ dt ≥ 1

30

N∑
k=0

|ak|
k + 1

.

To prove this result, they mainly used a perturbation argument based on a lemma by
Dirichlet ([44, p 235], [8]) which allows them to benefit from McGehee, Pigno and Smith’s
result in the integer setting (Mc-Gehee, Pigno and Smith’s Theorem 1.0.1).

In this chapter, we give lower bounds (occasionally upper bounds too) of the Besicovitch
norm of the sums

N∑
k=0

ake
2iπλkt,

where the frequencies are real. Depending on the properties of the frequencies, we are
primarily focused on two different cases: Lacunary sums and the case where the set of
frequencies has a multidimensional structure. In each case, we will define properly the
framework, present some already established results (mainly in the integer setting) and
then we will use the technique of Hudson and Leckband to extend existing results to the
case of real frequencies.
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6.1.1 Hadamard Lacunary trigonometric series

Hadamard lacunary trigonometric series or simply lacunary series have the following form

∞∑
k=0

ake
2iπnkt, (6.1.1)

where the n′
ks are q-lacunary, meaning that, for all k, there exists a q > 1 such that

nk+1

nk

> q. (6.1.2)

Here t is a real variable in [0, 2π], n′
ks are non-zero integers, and the coefficients are complex.

In the integer setting, Zygmund showed that if

∥a∥l2(N) =
∞∑
k=0

|ak|2 <∞,

then the series (6.1.1) defines a function f ∈
⋂

1≤p<∞
Lp(0, 1), and there are positive constants

Ap,q and Bp,q such that

Ap,q∥a∥l2(N) ≤
(

1

2π

∫ 2π

0

|f(t)|p dt
)1/p

≤ Bp,q∥a∥l2(N). (6.1.3)

In Section 6.2, We will present the proof of (6.1.3) and then we will see how we can get a
similar result for the Besicovitch norms;

Theorem 6.1.2. Let q > 1 and (λk)k≥0 be real numbers verifying

λ0 > 1 and λk+1 ≥ qλk

and a0, . . . , aN be a sequence of complex numbers. Then for 1 ≤ p <∞, there exists positive
constant Ap,q, Bp,q such that

Ap,q

(
N∑
k=0

|ak|2
)1/2

≤ lim
T→+∞

(
1

T

∫ T/2

−T/2

∣∣∣∣∣
N∑
k=0

ake
2iπλkt

∣∣∣∣∣
p

dt

) 1
p

≤ Bp,q

(
N∑
k=0

|ak|2
)1/2

.

6.1.2 Sets with multidimensional structure

There are multiple notions of sets with multidimensional structure. The simplest one is sets
of dimension one which are projections of higher dimensional sets [21]. A classic example
of such sets is a finite generalized arithmetic progression of rank 2, which is a set of the
following form; let a, b ∈ Z,

GAP = {am+ bn : 1 ≤ m ≤M, 1 ≤ n ≤ N}.
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These sets can be thought of as projection of boxes in Z2: If a and b are mutually prime,
then

GAP = P (B),

where P is the surjection defined by P (m;n) = am+ bn.
Here we will adopt a more general notion; let δ > 0 and (m,n) ∈ N2. A subset A of Z

is (δ;m,n)-strongly 2-dimensional if there exists numbers d and D with D > (2 + δ)d such
that

A =
⋃
k∈I

(Ak + kD) (6.1.4)

for some set I containing at least m integers and subsets Ak ⊆ {−d, . . . , d} verifying
|Ak| ≥ n. The simplest example of sets in Z with multidimensional structure are sets which
are unions of intervals separated by a gap.

To see the relation between the two definitions, let us give an example where a generalized
arithmetic progression of rank 2, verifies the strongly multidimensional conditions. Let
A = {7, 8, 13, 14, 19, 20}. It is easy to check that, for a = 1, b = 6, the set A is a generalized
arithmetic progression of rank 2 (with M = 2 and N = 3). Furthermore, A is (1/2; 3, 2)
strongly multidimensional, since it can be seen as union of 3 interval, each containing at
least 2 integers.

4 5 6 7 8 10 11 12 13 14 16 17 18 19 20

D = 6 2d = 4

D − 2dD − 2d
A1 A2 A3

Hanson’s motivation came from the following question; Can we find a relation between
the additive structure of a set A and the L1-norm of exponential sums over the set A.
A known question in this direction is the inverse Littlewood problem; Given a positive
constant C, can we characterize the sets A for which∫ 1

0

∣∣∣∣∣∑
a∈A

e2iπat

∣∣∣∣∣ dt ≤ C ln(|A|).

Green [9] suggested that such A might be very close to being unions of a few arithmetic
progressions and if so, he pointed out to a relation with sum-free sets established by Bourgain
[2]. More discussion about multidimensional sets and relation with Littlewood problem can
be found in [32]. Before stating our main result, let us first recall Hanson’s Theorem

Theorem 6.1.3 (Hanson [10]). Let δ > 0 and m,n be two positive integers satisfying

m ≥ π3221C3
MPS ln(m)3 ln(n)3 and n ≥ π3221C3

MPS ln(n)
3, (6.1.5)
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where CMPS is the constant in Theorem 4.1.1. Suppose A is (δ;m,n) strongly 2-dimensional
subset of Z. Then

∫ 1

0

∣∣∣∣∣∑
a∈A

e2iπat

∣∣∣∣∣ dt ≥ C2
MPS

(29π)2
(
2 + ln(1 + 2

δ
)
) ln(m) ln(n)

By induction, this theorem can be generalized in a straightforward manner to r−dimensional
sets (r > 2). Combining this result with Theorem 3.3 in [37], we see that this theorem is
also best possible up to the constant.

A simple interpretation is that any set with multidimensional structure cannot verify
the Inverse Littlewood problem for small C.

Next let A ⊂ R. We say that A is (δ;m,n) strongly 2-dimensional in R if there exist
numbers d and D with D > (2 + δ)d such that

A =
⋃
k∈I

(Ak + kD) (6.1.6)

for some set I containing m integers and real subsets Ak ⊆ [−d, . . . , d] verifying |Ak| ≥ n.
The decomposition is hence the same as before, the main difference is that the sets Ak’s
can now be real. We can now state our main result:

Theorem 6.1.4. Let δ > 0 and m,n be two positive integers satisfying

m ≥ π3221C3
MPS ln(m)3 ln(n)3 and n ≥ π3221C3

MPS ln(n)
3,

where CMPS(= 1/30). Suppose A is (δ;m,n) strongly 2-dimensional subset of R. Then

lim
T→∞

1

T

∫ T/2

−T/2

∣∣∣∣∣∑
a∈A

e2iπat

∣∣∣∣∣ dt ≥ C2
MPS

(29π)2
(
2 + ln(1 + 2

δ
)
) ln(m) ln(n).

6.2 Lacunary series

We take a lacunary trigonometric series of the form

∞∑
k=0

ake
2iπnkt (6.2.1)

where the ak’s are complex numbers, and the nk’s verifies Hadamard’s condition;

nk+1

nk

> q > 1.
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6.2.1 Integer case: A result by Zygmund

First we will work in the integer setting and we aim to prove the following result [44];

Theorem 6.2.1 (Zygmund). Let q > 1 and (nk)k≥0 be a q-lacunary sequence of integers,
n0 ≥ 1 and nk+1 ≥ qnk. Let 1 ≤ p < +∞. There are two constants Ap,q, Bp,q such that, if

(ak)k≥0 ∈ ℓ2, then g(t) =
∑
k≥0

ake
2iπnkt is in Lp([0, 1]) with

Ap,q

(
+∞∑
k=0

|ak|2
) 1

2

≤

(∫ 1

0

∣∣∣∣∣
∞∑
k=0

ake
2iπnkt

∣∣∣∣∣
p

dt

) 1
p

≤ Bp,q

(
+∞∑
k=0

|ak|2
) 1

2

. (6.2.2)

Remark 6.2.2. Note that a simple change of variable also shows that, for every integer M ,

Ap,q

(
+∞∑
k=0

|ak|2
) 1

2

≤

(
1

M

∫ M/2

−M/2

∣∣∣∣∣
∞∑
k=0

ake
2iπ

nk
M

t

∣∣∣∣∣
p

dt

) 1
p

≤ Bp,q

(
+∞∑
k=0

|ak|2
) 1

2

. (6.2.3)

Also, we may assume that q → Ap,q, Bp,q are continuous.

To prove Theorem 6.2.1, we need some auxiliary lemmas;

Lemma 6.2.3. A q-lacunary sequence is a finite union of q′-lacunary sequences with q′ ≥ 3

Proof. We consider a sequence of integers (nk)k such that

nk+1

nk

≥ q > 1.

If q ≥ 3 there is nothing to prove. For 1 < q < 3, take N an integer such that qN ≥ 3 and
write

n
(ℓ)
k = nℓ+kN ,

then
(
n
(ℓ)
k

)
k
is qN -Lacunary and

{nk} =
N−1⋃
ℓ=0

{n(ℓ)
k }.

as announced.

Next, for q ≥ 3, q-lacunary sequences have a particular arithmetic property:

Lemma 6.2.4. Let q ≥ 3 and (nk)k≥0 a sequence such that n0 ≥ 1 and nk+1 ≥ qnk.
Consider two finite sequences εℓ, ηℓ ∈ {−1, 0, 1} for ℓ = 0, . . . ,m and assume that

m∑
ℓ=0

εℓnℓ =
m∑
ℓ=0

ηℓnℓ (6.2.4)

then εℓ = ηℓ for every ℓ.
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In other words, an integer can be represented in at most one way as
∑

±nℓ. Such a
sequence is called quasi-independent. Note that this result is valid when the nk’s are real,
not only for integers.

Proof. First observe that nj ≤
1

qm−j
nm =

qj

qm
nm for j = 0, . . . ,m.

Assume that (6.2.4) holds and define νℓ = εℓ − ηℓ so that

m∑
ℓ=0

νℓnℓ = 0.

Assume towards a contradiction that there is an ℓ such that νℓ ̸= 0. Without loss of
generality, we may assume that the largest such ℓ is m and, up to exchanging εℓ and ηℓ,
that νm ≥ 1.

Observe that νℓ ∈ {−2,−1, 0, 1, 2} so that we obtain the desired contradiction writing

0 =
m∑
ℓ=0

νℓnℓ = νmnm +
m−1∑
ℓ=0

νℓnℓ ≥ nm − 2
m−1∑
ℓ=0

nℓ ≥ nm − 2
m−1∑
ℓ=0

qℓ

qm
nm

=

(
1− 2

qm
qm − 1

q − 1

)
nm =

qm+1 − 3qm + 2

(q − 1)qm
nm > 0

since q ≥ 3 and nm > 0.

Now in order to prove Theorem 6.2.1, we follow closely [44, Chapter V.8] which goes
through Rademacher series. First let us introduce those series.

To start, let us denote by Dk = {[j2−k−1, (j + 1)2−k−1[, j = 0, . . . , 2k+1 − 1} the dyadic

intervals of generation k and D =
⋃
k≥0

Dk the set of all dyadic intervals. Also, if I, J ∈ D

then either I ∩ J = ∅ or I ⊂ J or J ⊂ I. The Rademacher functions of generation k are
then functions that take alternative values +1 and −1 on successive intervals in Dk, that is

rk(t) =
2k+1−1∑
j=0

(−1)j1]j2−k−1,(j+1)2−k−1[(t) = sign
(
sin(2π2kt)

)
.

The first observation is that, if I ∈ Dℓ and k > ℓ then rk takes the value +1 on half of I
and −1 on the other half so that

∫
I
rk = 0. A first consequence is that rk is orthogonal to

rℓ in L
2([0, 1]) since rℓ is constant on each I ∈ Dℓ so that

∫
I
rkrℓ = 0 and Dℓ is a covering

of [0, 1]. Moreover, as |rk| = 1, the family (rk)k≥0 is an orthonormal sequence in L2([0, 1]).
In particular, we now fix a sequence (ck)k≥0 such that (ck) ∈ l2(N), we can define

f =
+∞∑
k=0

ckrk

and this series converges in L2([0, 1]) thus f ∈ L2([0, 1]) with ∥f∥L2 = ∥ck∥l2(N). We actually
have a bit better:
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Theorem 6.2.5. Let (ck) ∈ l2(N) and f defined by

f =
+∞∑
k=0

ckrk.

Then this series converges both in L2([0, 1]) and almost everywhere.

Proof. The L2-convergence has already been established. Further, let F =
∫
f be the

indefinite integral of f and let E ⊂ [0, 1] be the set of Lebesgue points of f so that |E| = 1
and on E, F ′ exists and is finite.

Now let, Sn[f ] be the n-th partial sum of this series

Sn[f ](x) =
n∑

k=0

ckrk(x).

As Sn[f ] → f in L2([0, 1]), for every 0 ≤ a < b ≤ 1,∣∣∣∣∫ b

a

(
f(x)− Sn[f ](x)

)
dx

∣∣∣∣ ≤ ∫ 1

0

|f(x)− Sn[f ](x)| dx ≤
(∫ 1

0

|f(x)− S[f ](x)|2 dx
)1/2

→ 0.

We have just shown that, if I is an interval, then
∫
I
Sn[f ] →

∫
I
f thus also, if we fix ℓ ≥ 1,∫

I

(Sn[f ]− Sℓ−1[f ]) →
∫
I

(f − Sℓ−1[f ]).

On the other hand, if I ∈ Dℓ−1 and k ≥ ℓ, then
∫
I
rk = 0 so that

∫
I
Sn[f ] =

∫
I
Sℓ−1[f ].

Letting n→ +∞ we obtain that∫
I

f(x) dx =

∫
I

Sℓ−1[f ](x) dx for every I ∈ Dℓ−1.

Next, let x0 ∈ E not a dyadic rational (x0 ̸=
p

2q
, p, q ∈ N) and let Ik =]j2−k, (j +1)2−k[

be such that x0 ∈ E ∩ Ik. Then, as Sk−1[f ] is constant over Ik

Sk−1[f ](x0) =
1

|Ik|

∫
Ik

Sk−1[f ](x) dx =
1

|Ik|

∫
Ik

f(x) dx→ F ′(x0)

when k → +∞.

The second result is that f is actually in every Lp space:

Theorem 6.2.6. Let (ck)|k ≥ 0 ∈ ℓ2 and f =
+∞∑
k=0

ckrk. Then, for 1 ≤ p < +∞, f ∈

Lp([0, 1]). Moreover, there exist Ap, Bp, depending on p only, such that

Ap

(
+∞∑
k=0

|ck|2
) 1

2

≤
(∫ 1

0

|f(x)|p dx
) 1

p

≤ Bp

(
+∞∑
k=0

|ck|2
) 1

2

.
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Proof. Let us first notice that the theorem holds for p = 2 since

γ :=

(∫ 1

0

|f(x)|2 dx
) 1

2

=

(
+∞∑
k=0

|ck|2
) 1

2

i.e. the inequalities are equalities with A2 = B2 = 1.
Next, let us notice that this implies the lower bound when p > 2 with Ap = 1 since then,

with Hölder (∫ 1

0

|f(x)|p dx
) 1

p

≥
(∫ 1

0

|f(x)|2 dx
) 1

2

= γ.

It also implies the upper bound with Bp = 1 for p < 2 since now Hölder implies that

(∫ 1

0

|f(x)|p dx
) 1

p

≤
(∫ 1

0

|f(x)|2 dx
) 1

2

= γ.

Further, take 2(m− 1) < p ≤ 2m for some integer m ≥ 2, and assume that that the upper
bound (∫ 1

0

|f(x)|2m dx

) 1
2m

≤ B2mγ (6.2.5)

holds. Then Hölder implies that(∫ 1

0

|f(x)|p dx
) 1

p

≤
(∫ 1

0

|f(x)|2m dx

) 1
2m

≤ B2mγ

that is, Bp ≤ B2m for 2(m− 1) < p ≤ 2m.
Next, let us show that the upper bound for p = 4 implies the lower bound for p < 2.

Assume for the moment that we are able to prove that(∫ 1

0

|f(x)|4 dx
) 1

4

≤ B4γ.

Let 1 ≤ q < 2 and write 2 = qt+ 4(1− t), that is, take t =
2

4− q
. Then, from Hölder

γ2 =

∫ 1

0

|f(x)|2 dx =

∫ 1

0

|f(x)|qt|f(x)|4(1−t) dx ≤
(∫ 1

0

|f(x)|q dx
)t(∫ 1

0

|f(x)|4 dx
)1−t

≤ (B4γ)
4(1−t)

(∫ 1

0

|f(x)|q dx
)t

= (B4γ)
2−qt

(∫ 1

0

|f(x)|q dx
)t

thus (∫ 1

0

|f(x)|q dx
) 1

q

≥ B
1− 4−q

q

4 γ.
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So it remains to prove (6.2.5) for every m ≥ 2. Notice also that it is enough to prove
this inequality with real ck’s. The constant in the complex case is then multiplied by 2:
write f = fr + ifi where fr =

∑
ℜ(ck)rk and fi =

∑
ℑ(ck)rk. Then

∥f∥2m ≤ ∥fr∥2m + ∥fi∥2m ≤ BR
2m

(+∞∑
k=0

|ℜ(ck)|2
) 1

2

+

(
+∞∑
k=0

|ℑ(ck)|2
) 1

2

 ≤ 2BR
2mγ

since |ℜ(ck)|, |ℑ(ck)| ≤ |ck|.
To conclude, we write∫ 1

0

Sn[f ](x)
2m dx =

∑
ℓ0+···+ℓn=2m

Aℓ0,...,ℓnc
ℓ0
0 · · · cℓnn

∫ 1

0

rℓ00 (x) · · · rℓnn (x) dx

where ℓj ≥ 0 for every j and

Aℓ0,...,ℓn =
(ℓ0 + · · ·+ ℓn)!

ℓ0! · · · ℓj!
.

Now observe that ∫ 1

0

rℓ00 (x) · · · rℓnn (x) dx =

{
1 if all the ℓj’s are even

0 otherwise

and that (
n∑

k=0

c2k

)m

=
∑

ℓ0+···+ℓn=m

Aℓ0,...,ℓn(c
2
0)

ℓ0 · · · (c2n)ℓn .

Further, when ℓ0 + · · ·+ ℓn = m,

A2ℓ0,...,2ℓn

Aℓ0,...,ℓn

=
(m+ 1)(m+ 2) · · · 2m∏n
j=0(ℓj + 1)(ℓj + 2) · · · 2ℓj

≤ (m+ 1)(m+ 2) · · · 2m
2m

≤ mm

(with the convention that the denominator is (ℓj + 1)(ℓj + 2) · · · 2ℓj = 1 when ℓj = 0). It
follows that ∫ 1

0

Sn[f ](x)
2m dx ≤ mm

(
n∑

k=0

|ck|2
)m

.

As Sn[f ] → f a.e., we conclude that

(∫ 1

0

|f(x)|2m dx

) 1
2m

≤ m1/2

(
+∞∑
k=0

|ck|2
) 1

2

that is B2m = 2m1/2.

The estimate B2m = 2m1/2 allows to improve a bit the result:
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Corollary 6.2.7. Let (ck) ∈ ℓ2 and f =
+∞∑
k=0

ckrk. Then, for every µ > 0, exp(µ|f |2) ∈

L1([0, 1]).

Proof. Let us fix µ > 0. We first show that if γ := ∥ck∥2 is small enough, then exp(µ|f |2) ∈
L1([0, 1]). Indeed

∫ 1

0

exp(µ|f(x)|2) dx =
+∞∑
m=0

µm

m!

∫ 1

0

|f(x)|2m dx ≤
+∞∑
m=0

mm

m!
(4µγ2)m. (6.2.6)

But
mm

m!
≤

+∞∑
n=0

mn

n!
= em so that

∫ 1

0

exp(µ|f(x)|2) dx ≤
+∞∑
m=0

(4eµγ2)m =
1

1− 4eµγ2
< +∞

provided γ2 <
1

4eµ
.

Next, take any f ∈ L1(0, 1), and apply the first part to f − Sn[f ] =
+∞∑

k=n+1

ckrk. As

γ2n :=
+∞∑

k=n+1

|ck|2 → 0, for n large enough γ2n <
1

8eµ
thus exp(2µ|f − Sn[f ]|2) ∈ L1([0, 1]).

Finally, as |f |2 ≤ 2|f − Sn[f ]|2 + 2|Sn[f ]|2, we have

exp(µ|f |2) ≤ exp(2µ|f − Sn[f ]|2) exp(2µ|Sn[f ]|2) ∈ L1

since |Sn[f ]| ∈ L∞ thus also exp(2µ|Sn[f ]|2) ∈ L∞.

Next, we consider series of the form

+∞∑
k=0

cke
2iπktrk(x).

The idea is that such series are of the form
∑

±cje2iπjt, that is, choosing x ∈ (0, 1) at
random, we randomly change the sign of cj. Our first result is the following:

Theorem 6.2.8. Let (ck) ∈ ℓ2 and fx(t) =
+∞∑
k=0

ckrk(x)e
2iπkt. Then, for almost every

x ∈ (0, 1), the series converges almost everywhere in t ∈ (0, 1) and fx ∈ Lp([0, 1]) for every
1 ≤ p < +∞.
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Proof. Let E be the set of (x, t) ∈ [0, 1]2 where the series defining f converges.

According to Theorem 6.2.5, for every t ∈ [0, 1], the set E2
t = {(x, t) ∈ E} has measure

|E2
t | = 1. It follows that |E| = 1 but then, for almost every x ∈ [0, 1], E1

x = {(x, t) ∈ E}
has also measure |E1

x| = 1.

Next, set γ = ∥ck∥2 and fix n ≥ 1. As in (6.2.6),

µn

n!

∫ 1

0

|fx(t)|2n dx ≤
+∞∑
m=0

µm

m!

∫ 1

0

|fx(t)|2m dx =

∫ 1

0

exp(µ|fx(t)|2) dx ≤ 1

1− 4eµγ2
(6.2.7)

provided µ <
1

4eγ2
. It follows that

∫ 1

0

∫ 1

0

|fx(t)|2n dt dx =

∫ 1

0

∫ 1

0

|fx(t)|2n dx dt ≤
n!

(1− 4eµγ2)µn
< +∞.

But then, for every n, there is a set Fn ⊂ [0, 1] with |Fn| = 0 such that, if x ∈ [0, 1] \ Fn,∫ 1

0

|fx(t)|2n dt < +∞.

Setting F =
⋃
Fn, |F | = 0 and, for every x ∈ [0, 1] \ F , for every n, fx ∈ L2n. Using

the inclusion of L2n([0, 1]) ⊂ Lp([0, 1]) when p ≤ 2n, we obtain that, for almost every x,
fx ∈ Lp([0, 1]) for every p ≥ 1, as claimed.

We can now prove Zygmund’s Theorem

Proof. The beginning of the proof is the same as for Theorem 6.2.6. Parseval’s identity
shows that (6.2.2) is satisfied when p = 2 with A2,q = B2,q = 1. The lower bound is then
automatically satisfied for p ≥ 2 with Ap,q = 1 while the upper bound is satisfied for p ≤ 2
with B2,q = 1. Finally, if we establish the upper bound for p > 2, using Hölder’s inequality
in the same way as in the proof of Theorem 6.2.6, the lower bound follows for p < 2 with

A2,q = B
1− 4−p

p

4,q . Also, it is enough to prove the upper bound when p = 2m, m ≥ 2 and
then, if 2(m− 1) < p ≤ 2m, Bp,q ≤ B2m,q. Another reduction is that, by homogeneity, it is

enough to prove the theorem when
+∞∑
k=0

|ck|2 = 1.

A further restriction is that it is enough to prove the theorem for q ≥ 3. Indeed, for
1 < q < 3, we introduce an integer Nq such that qNq ≥ 3 and write n

(ℓ)
k = nkNq+ℓ for

ℓ = 0, . . . , Nq − 1. Then n
(ℓ)
k+1 ≥ qNqn

(ℓ)
k . If the theorem is established when q ≥ 3 then, for

each ℓ, the upper bound in (6.2.2) reads

(∫ 1

0

∣∣∣∣∣∑
k≥0

ckNq+ℓe
2iπn

(ℓ)
k t

∣∣∣∣∣
p

dt

) 1
p

≤ Bp,qNq

(
+∞∑
k=0

|ckNq+ℓ|2
) 1

2

.
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But then, with the triangular inequality in Lp,(∫ 1

0

∣∣∣∣∣∑
j≥0

cje
2iπnjt

∣∣∣∣∣
p

dt

) 1
p

=

∫ 1

0

∣∣∣∣∣
Nq−1∑
ℓ=0

∑
k≥0

ckNq+ℓe
2iπn

(ℓ)
k t

∣∣∣∣∣
p

dt

 1
p

≤
Nq−1∑
ℓ=0

(∫ 1

0

∣∣∣∣∣∑
k≥0

ckNq+ℓe
2iπn

(ℓ)
k t

∣∣∣∣∣
p

dt

) 1
p

≤ Bp,qNq

Nq−1∑
ℓ=0

(
+∞∑
k=0

|ckNq+ℓ|2
) 1

2

≤ N1/2
q Bp,qNq

(
Nq−1∑
ℓ=0

+∞∑
k=0

|ckNq+ℓ|2
) 1

2

= N1/2
q Bp,qNq

(∑
j≥0

|cj|2
) 1

2

where we have used Cauchy-Schwarz in RNq in the next to last line.
A last reduction comes from the observation that, for every k∫ 1

0

exp(µ|g(t)|2) dt =
+∞∑
n=0

µn

n!

∫ 1

0

|g(t)|2n dt ≥ µm

m!

∫ 1

0

|g(t)|2m dt

It is therefore enough to prove that there is a µ(q) and a C > 0 such that, if µ < µ(q)∫ 1

0

exp(µ|g(t)|2) dt ≤ C (6.2.8)

which would then imply that ∫ 1

0

|g(t)|2m dt ≤ C
m!

µm

as desired.

In order to prove (6.2.8), let us introduce

fx(t) =
∑
j≥0

cjrnj
(x)e2iπnjt.

Integrating (6.2.7) with respect to t and using Fubini, we deduce that∫ 1

0

∫ 1

0

exp(µ|fx(t)|2) dt dx ≤ K :=
1

1− 4eµγ2
.

But then, there is an x0 (that we can assume not to be a dyadic rational x0 ̸= 2j/k) such
that ∫ 1

0

exp(µ|fx0(t)|2) dt ≤ K.
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Next, we consider the Riesz product

Pk(x) =
k∏

j=0

(
1 + rnj

(x0) cos 2πnjt
)
=

k∏
j=0

(
1 + rnj

(x0)
e2πnjt + e−2πnjt

2

)
=
∑
j∈Z

γje
2iπjt

where the Fourier coefficients have the following property:
– γ0 = 1;

– γj = 0 if j is an integer that is not of the form
∑

±nℓ, in particular when |j| >
n∑

ℓ=0

nℓ;

– if j =
∑
εℓnℓ with εℓ ∈ {−1, 0, 1}. As q > 3, this εℓ’s are unique. Then γj =∏

εℓ ̸=0

rnℓ
(x0)

2
. In particular, γnj

=
rnj

(x0)

2
for j = 0, . . . , k and γnj

= 0 for j > k.

As a consequence, the partial sums of the Fourier series of g are given by

Snk
[g](t) :=

k∑
j=0

cje
2iπnjt =

k∑
j=0

cjrj(x0)
2e2iπnjt = 2

∫ 1

0

fx0(s)Pk(t− s) ds.

Note that Pk ≥ 0 and

∫ 1

0

Pk(t) dt = γ0 = 1 so that νk = Pk(t) dt is a probability measure.

As φ(s) = exp(µs2) is increasing and convex, we apply Jensen’s inequality (with the measure
νk) to obtain

φ

(
1

2
|Snk

[g](t)|
)

≤ φ

(∫ 1

0

|fx0(s)|Pk(t− s) ds

)
≤
∫ 1

0

φ
(
|fx0(s)|

)
Pk(t− s) ds.

Integrating over [0, 1] and using Fubini, we get∫ 1

0

φ

(
1

2
|Snk

[g](t)|
)

dt ≤
∫ 1

0

φ
(
|fx0(s)|

) ∫ 1

0

Pk(t− s) dt ds =

∫ 1

0

φ
(
|fx0(s)|

)
ds ≤ K.

Letting k → +∞, we obtain ∫ 1

0

exp
(µ
4
|g(t)|2

)
dt ≤ K

as claimed (up to µ/4 instead of µ).

6.2.2 Extension to real frequencies

We end this section with a generalization to the real (non harmonic) setting on sufficiently
large intervals. The proof is based on a lemma by Dirichlet which mainly allow us to
approximate real numbers with quotients of integers.

Theorem 6.2.9. Let q > 1 and (λk)k≥0 be real numbers verifying

λk+1 − λk > 0, λ0 > 1 and λk+1 ≥ qλk
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and a0, . . . , aN be a sequence of complex numbers. Then for 1 ≤ p <∞,

Ap,q

(
N∑
k=0

|ak|2
)1/2

≤ lim
T→+∞

(
1

T

∫ T/2

−T/2

∣∣∣∣∣
N∑
k=0

ake
2iπλkt

∣∣∣∣∣
p

dt

) 1
p

≤ Bp,q

(
N∑
k=0

|ak|2
)1/2

with Ap,q, Bp,q the constants in Theorem 6.2.1.

Proof. Let a0, . . . , aN be complex numbers, λ0 < λ1 < · · · < λN be real numbers with
λk+1 ≥ qλk and

Φ(t) =
N∑
k=0

ake
2iπλkt.

Let ε > 0. By a lemma of Dirichlet ([44, p 235], [9]), there is an increasing sequence of
integers (Mn)n≥1 and, for each n ≥ 1 a finite family of integers (Nk,n)k=0,...,N such that∣∣∣∣λk − Nk,n

Mn

∣∣∣∣ < ε

Mn

for k = 0, . . . , N

which implies that∣∣∣∣e2iπλkt − e2iπ
Nk,n
Mn

t

∣∣∣∣ ≤ 2π

∣∣∣∣λk − Nk,n

Mn

∣∣∣∣|t| ≤ 2π
ε

Mn

|t| for k = 0, . . . , N.

Define the Mn-periodic function

Ψn(t) =
N∑
k=0

ake
2iπNk,nt/Mn ,

and note that, for t ∈ [−Mn/2,Mn/2],

|Φ(t)−Ψn(t)| ≤
N∑
k=0

|ak|
∣∣∣∣e2iπλkt − e2iπ

Nk,n
Mn

t

∣∣∣∣ ≤ 2πε
N∑
k=0

|ak|.

But then∣∣∣∣∣∣
(

1

Mn

∫ Mn/2

−Mn/2

|Φ(t)|p dt

)1/p

−

(
1

Mn

∫ Mn/2

−Mn/2

|Ψn(t)|p dt

)1/p
∣∣∣∣∣∣

≤

(
1

Mn

∫ Mn/2

−Mn/2

|Φ(t)−Ψn(t)|p dt

)1/p

≤

(
2π

N∑
k=0

|ak|

)1/p

ε1/p. (6.2.9)
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We can now conclude as follows. Let q̃ = q̃(ε) = q − (1 + q)ε < q . Observe that

Nk+1,n

Mn

≥ λk+1 −
∣∣∣∣λk+1 −

Nk+1,n

Mn

∣∣∣∣ ≥ qλk −
ε

Mn

≥ q
Nk,n

Mn

− q

∣∣∣∣λk − Nk,n

Mn

∣∣∣∣− ε

Mn

≥ q
Nk,n

Mn

− (1 + q)
ε

Mn

,

that is Nk+1,n ≥ qNk,n − (1 + q)ε ≥ q̃Nk,n.
Applying (6.2.3) to nk = Nk,n and M =Mn we obtain

Ap,q̃

(
N∑
k=0

|ak|2
) 1

2

≤

(
1

Mn

∫ Mn/2

−Mn/2

∣∣∣∣∣
N∑
k=0

ake
2iπ

Nk,n
Mn

t

∣∣∣∣∣
p

dt

) 1
p

≤ Bp,q̃

(
N∑
k=0

|ak|2
) 1

2

.

From (6.2.9) we conclude that

Ap,q̃

(
N∑
k=0

|ak|2
) 1

2

−

(
2π

N∑
k=0

|ak|

)1/p

ε1/p ≤

(
1

Mn

∫ Mn/2

−Mn/2

∣∣∣∣∣
N∑
k=0

ake
2iπλkt

∣∣∣∣∣
p

dt

) 1
p

≤ Bp,q̃

(
N∑
k=0

|ak|2
) 1

2

+

(
2π

N∑
k=0

|ak|

)1/p

ε1/p.

The result follows by letting ε→ 0 so that q̃ → q, Mn →M , Ap,q̃ → Ap,q, Bp,q̃ → Bp,q since
those constants are continuous in their parameters.

6.3 2-dimensional sets

Given a set I ⊆ Z, a positive integer q, and an arbitrary integer s, we define

I(q; s) = {k ∈ I : k = s (mod q)}.

The proof of Theorem 6.1.3 is a direct consequence of the following two lemmas

Lemma 6.3.1. Let I be a set of integers with |I| ≥ 8. Then there are positive integers q
and s such that

|I| 13
8

≤ |I(q; s)| ≤ q1/2.

Proof. For each j ≥ 1, we choose any sj such that |I(4j; sj)| is maximal. But, on one hand,

I =
4j−1⋃
s=0

I(4j, s)
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and on the other hand, for j fixed, the sets I(4j; s) are disjoints, so at least one of them has
cardinality larger than 4−j|I|. In particular,

|I(4j, sj)| ≥ 4−j|I|. (6.3.1)

For j = 1, we thus have |I(4; s1)| ≥
|I|
4

≥ 2. On the other hand, if j = s mod kp then

j = s mod p so that, for any s

I(4m; s) ⊂ I(4ℓ; s) for ℓ < m,

and, for sufficiently large j we have |I(4j; sj)| = 1 ≤ 2j. Therefore, there exists a minimal
j0 such that |I(4j0 ; sj0)| ≤ 2j0 . Let q = 4j0 , and s = sj0 then using (6.3.1) and the definition
of j0

|I|
q

≤ |I(q; s)| = |I(4j0 ; sj0)| ≤ 2j0 = q
1
2 .

In particular
|I|

1
3 ≤ q

1
2 . (6.3.2)

By minimality of j0

q
1
2

2
= 2j0−1 ≤

∣∣I (4j0−1; sj0−1

)∣∣ ≤ 3∑
r=0

∣∣I (4j0 ; sj0−1 + r4j0−1
)∣∣ ≤ 4|I(4j0 ; sj0)| = 4|I(q; s)|

by definition of sj0 . We thus get

|I(q; s)| ≥ q
1
2

8
≥ |I| 13

8
,

with (6.3.2).

Lemma 6.3.2. Let δ > 0 and let d and D be positive integers with (2 + δ)d < D. Suppose
I is a finite set of integers, and let

F (t) =
∑
k∈I

fk(t)e
2iπDkt

where
fk(t) =

∑
|n|≤d

an,ke
2iπnt

Let q and s with q > 4π and suppose I(q; s) = {k1, . . . , kJ} then we have

∥F∥L1([0,1] ≥
1

32π(2 + ln(1 + 2
δ
))

J∑
j=1

∥fkj∥L1([0,1])

(
CMPS

2j
− 2πd

qD

)
.

We split the remaining of this section into two parts. In the first one, we show that
Lemmas 6.3.1 and 6.3.2 imply Theorem 6.1.5. In the second one, we prove the Lemma
6.3.2.
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6.3.1 Strongly 2 dimensional subsets of Z: A proof by Hanson

First we recall the proof of Hanson’s result

Proof of Theorem 6.1.3. Let δ > 0 m,n be two integers satisfying the conditions of the
theorem and let A be strongly (δ,m, n)-regular. Thus, there are two integers d,D with
D > (2 + δ)d, such that we can write

A =
⋃
k∈I

(Ak + kD),

with |I| ≥ m and Ak ⊂ {−d, . . . , d} with |Ak| ≥ n. We can then write

F (t) :=
∑
a∈A

e2iπat =
∑
k∈I

fk(t)e
2iπDkt

with

fk(t) =
∑
a∈Ak

e2iπat =
d∑

n=−d

an,ke
2iπnt

with an,k = 1 if n ∈ Ak and an,k = 0 otherwise.

Assume first that there exists k1 ∈ I such that

∥fk1∥L1([0,1]) ≥
CMPS

29π
ln(m) ln(n). (6.3.3)

We then choose q ≥ 16π

7CMPS

in such a way that there is an s such that I(q, s) = {k1}.
Hence by Lemma 6.3.2,

∥F∥L1([0,1]) ≥
∥fk1∥L1([0,1])

32π
(
2 + ln

(
1 + 2

δ

)) (CMPS

2
− 2πd

qD

)
≥

CMPS∥fk1∥L1([0,1])

26π
(
2 + ln

(
1 + 2

δ

)) (1− 7d

8D

)
.

As D > 2d, using (6.3.3), we conclude that, in this case

∥F∥L1([0,1]) ≥
(
CMPS

29π

)2
ln(n) ln(m)

2 + ln
(
1 + 2

δ

)
which establishes the theorem.

We will thus assume that, for each k ∈ I,

∥fk∥L1([0,1]) ≤
CMPS

29π
ln(m) ln(n). (6.3.4)

Note that, from Theorem 1.0.1,

∥fk∥L1([0,1]) ≥ CMPS ln(n)
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so that 29π ≤ ln(m), in particular, m ≥ 8. We then take q and s given by Lemma 6.3.1
applied to the set I so that J = |I(q; s)| satisfies

m
1
3

8
≤ J ≤ q

1
2 . (6.3.5)

We write
I(q; s) = {k1 < . . . < kJ}

From Lemma 6.3.2, we get that

∥F∥L1([0,1]) ≥ 1

25π
(
2 + ln

(
1 + 2

δ

)) J∑
j=1

∥fkj∥L1

(
CMPS

2j
− 2πd

qD

)
=

1

25π
(
2 + ln

(
1 + 2

δ

))
)
(T1 − T2)

with

T1 =
CMPS

2

J∑
j=1

∥fkj∥L1

j
and T2 =

2πd

qD

J∑
j=1

∥fkj∥L1 .

Next, as ∥fkj∥L1 ≥ CMPS ln(n),

T1 ≥
C2

MPS ln(n)

2

J∑
j=1

1

j
≥ C2

MPS ln(n)

2
ln J ≥ C2

MPS ln(n) ln(m)

8

with (6.3.5).
On the other hand, from (6.3.4), we get

T2 ≤
2πJd

qD

CMPS

29π
ln(m) ln(n) ≤ 2π

q
1
2

CMPS

29π
ln(m) ln(n),

since d ≤ D

2
and J ≤ q

1
2 with (6.3.4). Further, (6.3.4) also implies that

q
1
2 ≥ m

1
3

8
≥ 24πCMPS ln(m) ln(n)

with (6.1.5), leading to T2 ≤
1

213π
.

We have established that

∥F∥L1([0,1]) ≥ 1

25π
(
2 + ln

(
1 + 2

δ

)) (C2
MPS ln(m) ln(n)

23
− 1

213π

)
=

C2
MPS

(29)2π
(
2 + ln

(
1 + 2

δ

)) (210 ln(m) ln(n)− 1

C2
MPS

)
≥ C2

MPS

(29π)2
(
2 + ln(1 + 2

δ
)
) ln(m) ln(n)

since ln(m) ln(n)C2
MPS ≥ 1

210π − 1
.

116



2-dimensional sets CHAPTER 6.

Auxiliary Lemmas

The rest of this chapter consists in proving Lemma 6.3.2. The proof is quite long and is
divided into several lemmas. Throughout, we say that f is a trigonometric polynomial of
degree d if

f(t) =
∑
|k|≤d

ake
2iπkt.

Lemma 6.3.3 (Bernstein’s inequality). Let f :−→ C be a trigonometric polynomial of
degree d. Then

∥f ′∥L1([0,1]) ≤ 2πd∥f∥L1([0,1]).

Lemma 6.3.4. Let N be a positive integer. Then for any trigonometric polynomial f of
degree d ∣∣∣∣∣∥f∥L1([0,1]) −

1

N

N−1∑
j=0

∣∣∣∣f ( j

N

)∣∣∣∣
∣∣∣∣∣ ≤ 2πd

N
∥f∥L1([0,1]).

Note that, as f is 1-periodic, writing N = R + S,

1

N

N−1∑
j=0

∣∣∣∣f ( j

N

)∣∣∣∣ = 1

R + S

S−1∑
j=−R

∣∣∣∣f ( j

R + S

)∣∣∣∣,
since

N−1∑
j=0

∣∣∣∣f ( j

R + S

)∣∣∣∣ =
S−1∑
j=0

∣∣∣∣f ( j

R + S

)∣∣∣∣+ R+S−1∑
j=S

∣∣∣∣f ( j

R + S

)∣∣∣∣
=

S−1∑
j=0

∣∣∣∣f ( j

R + S

)∣∣∣∣+ −1∑
j=−R

∣∣∣∣f ( j

R + S

)∣∣∣∣
=

S−1∑
j=−R

∣∣∣∣f ( j

R + S

)∣∣∣∣
where we used the change of index J = j −N and the 1-periodicity of f in the next to last
line.
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Proof. We write, using the triangular and reverse triangular inequalities∣∣∣∣∣
∫ 1

0

|f(t)| dt− 1

N

N−1∑
j=0

∣∣∣∣f ( j

N

)∣∣∣∣
∣∣∣∣∣ =

∣∣∣∣∣
N−1∑
j=0

∫ j+1
N

j
N

(
|f(t)| −

∣∣∣∣f ( j

N

)∣∣∣∣) dt

∣∣∣∣∣
≤

N−1∑
j=0

∫ j+1
N

j
N

∣∣∣∣f(t)− f

(
j

N

)∣∣∣∣ dt = N−1∑
j=0

∫ j+1
N

j
N

∣∣∣∣∣
∫ t

j
N

f ′(s) ds

∣∣∣∣∣ dt
≤

N−1∑
j=0

∫ j+1
N

j
N

∫ t

j
N

|f ′(s)| ds dt =
N−1∑
j=0

∫ j+1
N

j
N

|f ′(s)|
∫ j+1

N

s

dt ds

≤ 1

N

N−1∑
j=0

∫ j+1
N

j
N

|f ′(s)| ds =
∫ 1

0

|f ′(s)| ds,

where we have used Fubini and the bound

∫ j+1
N

s

dt ≤ 1

N
when

j

N
≤ s ≤ j + 1

N
. We

conclude with Bernstein’s inequality.

For a finitely supported sequence
(
A(k)

)
k∈Z, we define its discrete Fourier transform (or

Z-Fourier transform) as

Fd[A](t) =
∑
k∈Z

A(k)e−2iπkt.

If A,B are two finitely supported sequences, their convolution is the sequence A∗B defined
by

A ∗B(k) = B ∗ A(k) =
∑
n∈Z

A(k − n)B(n).

The Convolution Theorem is also valid here: Fd[A∗B](t) = Fd[A](t)Fd[B](t). Two classical
examples are

– the Dirichlet kernel: set dL(k) = 1−L,...,L(k) so that

DL(t) = Fd[dL](t) =
∑
|k|≤L

e2iπkt =
sin(π(2L+ 1)t)

sin(πt)
;

– the Fejér kernel: set fL(k) =
(
1− |k|

L+1

)
1−L,...,L(k) so that

FL(t) = Fd[fL](t) =
∑
|k|≤L

(
1− |k|

L+ 1

)
e2iπkt =

1

L+ 1

(sin(π(L+ 1)t))2

(sin(πt))2
.

Lemma 6.3.5. Let M,N,R, S be integers with 2 ≤ M < N . Then there exists a function
KM,N with the following properties:

1. KM,N(k) = 1 for |k| ≤ N,

2. KM,N(k) = 0 for |k| ≥ N + 2M
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3. If further R + S ≥ 2N + 4M , then

1

R + S

S−1∑
j=−R

∣∣∣∣Fd[KM,N ]

(
j

R + S

)∣∣∣∣ ≤ 16π(2 + ln(1 +N/M)).

Proof. Define

KM,N(k) =
1

M
dN+M ∗ fM−1(k)

=
1

M

∑
n∈Z

(
1− |n|

M

)
1{−M−N,...,M+N}(k − n)1{−M+1,...,M−1}(n)

=
1

M

∑
|n|≤M−1

|n−k|≤N+M

(
1− |n|

M

)
.

First, for |k| ≤ N , if |n| ≤M − 1, then |n− k| ≤ |n|+ |k| ≤ N +M − 1, so that

KM,N(k) =
1

M

∑
|n|≤M−1

(
1− |n|

M

)
= 1,

since ∑
|n|≤M−1

(
1− |n|

M

)
=

0∑
n=1−M

(
1 +

n

M

)
+

M−1∑
n=1

(
1− n

M

)
=

M + 1

2
+
M − 1

2
=M.

On the other hand, if |k| ≥ N +2M and |n| ≤M − 1 then |k− n| ≥ |k| − |n| ≥ N +M +1
so that the sum defining KM,N is empty and KM,N = 0.

To prove the last item, the Convolution Theorem shows that

Fd[KM,N ](t) =
1

M
DN+M(t)FM−1(t).

As DN+M and FM−1 are both even, so is KM,N thus∫ 1

0

|Fd[KM,N ](t)| dt = 2

∫ 1
2

0

|Fd[KM,N ](t)| dt = 2(I1 + I2 + I3)

where

I1 =
1

M

∫ 1
N+M

0

|DN+M(t)FM−1(t)| dt

I2 =
1

M

∫ 1
M

1
N+M

|DN+M(t)FM−1(t)| dt,

I3 =
1

M

∫ 1
2

1
M

|DN+M(t)FM−1(t)| dt.
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We have

|DN+M(t)| ≤ 2(N +M) + 1, 0 ≤ FM−1(t) ≤M,

∫ 1

0

FM−1(t) dt = 1.

It follows that

I1 ≤
1

M

∫ 1
N+M

0

(2(M +N) + 1)M dt = 2 +
1

M +N
≤ 3.

since M,N are positive integers.
Using the explicit expressions of DN+M and FM−1, we have

I2 =
1

M2

∫ 1
M

1
N+M

| sin(π(2(N +M) + 1)t)| sin2(πMt)

sin3(πt)
dt

≤ 1

M2

∫ 1
M

1
N+M

sin2(πMt)

sin3(πt)
dt

≤ π2

8

∫ 1
M

1
N+M

dt

t
=
π2

8
ln

(
1 +

N

M

)
.

using that sinπt ≤ πt for t ≥ 0 and that sin πt ≥ 2t for 0 ≤ t ≤ 1

2
.

Finally, for I3, we do the same computation to bound

I3 ≤
1

M2

∫ 1
2

1
M

sin2 πMt

t3
dt =

∫ M
2

1

sin2 πs

s3
ds ≤

∫ M
2

1

ds

s3
≤ 1

2
.

Grouping all terms and slightly upper bounding the numerical constants, we obtain∫ 1

0

|Fd[KM,N ](t)| dt ≤ 8

(
2 + ln

(
1 +

N

M

))
.

By Lemma 6.3.4 (and the 1-periodicity of Fd[KM,N ]), we obtain

1

R + S

S−1∑
j=−R

∣∣∣∣Fd[KM,N ]

(
j

R + S

)∣∣∣∣ ≤ (1 + 2πd

R + S

)
∥Fd[KM,N ]∥L1([0,1]).

But d = N + 2M − 1 and R + S ≥ 2N + 4M so

2πd

R + S
≤ π(2N + 4M − 2)

2N + 4M
≤ π.

Hence we get

1

R + S

S−1∑
j=−R

∣∣∣∣Fd[KM,N ]

(
j

R + S

)∣∣∣∣ ≤ (1 + π)∥Fd[KM,N ]∥L1([0,1])

≤ 16π

(
2 + ln

(
1 +

N

M

))
,

concluding the proof.
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Lemma 6.3.6. Let R, S be positive integers and K =
(
K(−R), . . . , K(S − 1)

)
∈ CR+S.

We extend K into
– an R + S-periodic sequence K(p)

(
j(R + S) + ℓ

)
= K(ℓ), for ℓ = −R, . . . , S − 1 and

j ∈ Z;
– a finitely supported sequence K(0) by setting K(0)(ℓ) = K(ℓ) for ℓ = −R, . . . , S − 1

and K(0)(ℓ) = 0 for ℓ ≥ S and for ℓ ≤ −R− 1.
Then∫ 1

0

∣∣∣∣∣∑
m∈Z

amK
(p)(m)e2iπmt

∣∣∣∣∣ dt ≤ 1

R + S

S−1∑
ℓ=−R

∣∣∣∣Fd[K
(0)]

(
ℓ

R + S

)∣∣∣∣ ∫ 1

0

∣∣∣∣∣∑
m∈Z

ame
2iπmt

∣∣∣∣∣ dt
Proof. Write elements of CR+S as (a−R, . . . , aS−1) and the scalar product ⟨a, b⟩ =

S−1∑
ℓ=−R

aℓbℓ.

For j = −R, . . . , S − 1, denote by ek :=

[
1√

R + S
e2iπ

kℓ
R+S

]S−1

ℓ=−R

so that (ek)k=−R,...,S−1 is an

orthonormal basis of CR+S.
Write Aℓ =

∑
n∈Z

an(R+S)+ℓe
−2iπ(n(R+S)+ℓ)t for ℓ = −R, . . . , S − 1 and A = (Aℓ) ∈ CR+S.

Then, by periodicity of K(p)

∑
m∈Z

amK
(p)(m)e2iπmt =

S−1∑
ℓ=−R

K(ℓ)
∑
j∈Z

aj(R+S)+ℓe
2iπ(j(R+S)+ℓ)t

= ⟨K,A⟩ =
S−1∑
k=−R

⟨K, ek⟩⟨A, ek⟩

=
1

R + S

S−1∑
k=−R

(
S−1∑
ℓ=−R

K(ℓ)e−2iπk ℓ
R+S

)(
S−1∑
ℓ=−R

∑
n∈Z

an(R+S)+ℓe
2iπ(n(R+S)+ℓ)te2iπk

ℓ
R+S

)

=
1

R + S

S−1∑
k=−R

Fd[K
0]

(
k

R + S

)( S−1∑
ℓ=−R

∑
n∈Z

an(R+S)+ℓe
2iπ[(n(R+S)+ℓ)t+ℓ k

R+S
]

)
.

Noticing that e2iπℓ
k

R+S = e2iπ[(n(R+S)+ℓ) k
R+S

], we may write

∑
m∈Z

amK
(p)(m)e2iπmt =

1

R + S

S−1∑
k=−R

(
Fd[K

(0)]

(
k

R + S

)

×
S−1∑
ℓ=−R

∑
n∈Z

an(R+S)+ℓe
2iπ(n(R+S)+ℓ)(t+ k

R+S
)

)

=
1

R + S

S−1∑
k=−R

Fd[K
(0)]

(
k

R + S

)∑
m∈Z

ame
2iπm(t+ k

R+S
).
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From this, we deduce that∫ 1

0

∣∣∣∣∣∑
m∈Z

amK
(p)(m)e2iπmt

∣∣∣∣∣ dt
≤ 1

R + S

S−1∑
k=−R

∣∣∣∣Fd[K
(0)]

(
k

R + S

)∣∣∣∣ ∫ 1

0

∣∣∣∣∣∑
m∈Z

ame
2iπm(t+ k

R+S
)

∣∣∣∣∣ dt
=

1

R + S

S−1∑
k=−R

∣∣∣∣Fd[K
(0)]

(
k

R + S

)∣∣∣∣ ∫ 1

0

∣∣∣∣∣∑
m∈Z

ame
2iπmu

∣∣∣∣∣ du,
with the change of variable u = t+

j

R + S
and periodicity of u −→

∑
m

ame
2iπmu.

Lemma 6.3.7. Let d, D and q be positive integers with (2 + 2δ)d+ 4 ≤ D for some δ > 0
and q ≥ 4π.

Suppose I is a finite set of integers and, for each k ∈ I let fk be a trigonometric
polynomial of degree at most d. Then, for any integer s, we have:∫ 1

0

∣∣∣∣∣∣
∑

k∈I(q;s)

fk(t)e
2iπDkt

∣∣∣∣∣∣ dt ≤ 32π(2 + ln(1 + 2/δ))

∫ 1

0

∣∣∣∣∣∑
k∈I

fk(t)e
2iπDkt

∣∣∣∣∣ dt.
Proof. Assume we can prove the lemma for s = 0, that is, for any sequence (fk)k∈Z of
trigonometric polynomials of degree at most d and any finite set I,∫ 1

0

∣∣∣∣∣∑
qℓ∈I

fℓq(t)e
2iπDℓqt

∣∣∣∣∣ dt ≤ 32π(2 + ln(1 + 2/δ))

∫ 1

0

∣∣∣∣∣∑
k∈I

fk(t)e
2iπDkt

∣∣∣∣∣ dt.
Replacing I with I − s and replacing (fk) with (fk+s) we get∫ 1

0

∣∣∣∣∣∣
∑

k∈I(q;s)

fk(t)e
2iπDℓqt

∣∣∣∣∣∣ dt =

∫ 1

0

∣∣∣∣∣ ∑
s+ℓq∈I

fs+ℓq(t)e
2iπDℓqt

∣∣∣∣∣ dt
≤ 32π(2 + ln(1 + 2/δ))

∫ 1

0

∣∣∣∣∣ ∑
k∈I−s

fs+k(t)e
2iπDkt

∣∣∣∣∣ dt
= 32π(2 + ln(1 + 2/δ))

∫ 1

0

∣∣∣∣∣e−2iπDst
∑
ℓ∈I

fℓ(t)e
2iπDlt

∣∣∣∣∣ dt
which is the desired estimate since |e−2iπDst| = 1. So there is no loss of generality is assuming
s = 0.

Next, we write fk =
∑

−d≤ℓ≤d

akℓ e
2iπ(Dk+ℓ)t and

F (t) =
∑
k∈I

∑
−d≤ℓ≤d

akℓ e
2iπ(Dk+ℓ)t =

∑
m

ame
2iπmt
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where {
am = akℓ when m = Dk + ℓ, k ∈ I and |ℓ| ≤ d

0 otherwise
. (6.3.6)

Let N = d, M =

⌈
δd

2

⌉
the smallest integer larger than

δd

2
and let KM,N the sequence from

Lemma 6.3.5. Since

N + 2M ≤ d+ 2

(
δd

2
+ 1

)
= d+ δd+ 2 ≤ D

2

then we have

supp(KM,N) = [−N − 2M,N + 2M ] ⊆
[
−D

2
,
D

2

]
.

Further KM,N(m) = 1 for m ∈ [−d, d]. Next, let K(p)
M,N be the qD-periodic sequence defined

by K
(p)
M,N(jqD + ℓ) = KM,N(ℓ) for ℓ = −N − 2M, . . . , N + 2M and K

(p)
M,N(k) = 0 for all

other k’s. We take R, S > N + 2M such that R + S = qD and then K
(p)
M,N(k) = 0 for

k = −R, . . . ,−N − 2M − 1 and for k = N + 2M + 1, . . . , S − 1.

From Lemma 6.3.6, we get

∫ 1

0

∣∣∣∣∣∑
m

amK
(p)
M,N(m)e2iπmt

∣∣∣∣∣ dt ≤ 1

R + S

S−1∑
j=−R

∣∣∣∣Fd[KM,N ]

(
j

R + S

)∣∣∣∣ ∫ 1

0

∣∣∣∣∣∑
m∈Z

ame
2iπmu

∣∣∣∣∣ du
≤ 16π

(
2 + ln

(
1 +

N

M

))
∥F∥L1([0,1])

with Lemma 6.3.5.

As supp(KM,N) ⊆
[
−D

2
,
D

2

]
and K

(p)
M,N is periodic of period R + S = qD then

K
(p)
M,N(m) ̸= 0 if m = jqD + ℓ′ for j ∈ Z and |ℓ′| ≤ D

2
. (6.3.7)

Combining (6.3.6) and (6.3.7) we have that amK
(p)
M,N(m) ̸= 0 only when

m = Dk + ℓ = jqD + ℓ′.

Hence |jqD −Dk| = |ℓ− ℓ′| ≤ d+
D

2
< D. But this can only happen when jq = k, which

then also implies ℓ = ℓ′. In particular, m = jqD + ℓ with |ℓ| ≤ d and then

amK
(p)
M,N(m) = ajqD+ℓK

(p)
M,N(jqD + ℓ) = ajqD+ℓK

(p)
M,N(ℓ) = ajqDℓ .
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It follows that ∑
m∈Z

amKM,N(m)e2iπmt =
∑
j∈Z

∑
−d≤ℓ≤d

ajqD+ℓe
2iπ[(jqD+ℓ)t]

=
∑

k=0 mod q
k∈I

∑
−d≤ℓ≤d

akD+ℓe
2iπkDte2iπℓt

=
∑

k∈I(q;0)

e2iπkDt
∑

−d≤ℓ≤d

akD+ℓe
2iπℓt

=
∑

k∈I(q;0)

fk(t)e
2iπkDt.

Finally we get

∫ 1

0

∣∣∣∣∣∣
∑

k∈I(q;0)

fk(t)e
2iπKdt

∣∣∣∣∣∣ dt =

∫ 1

0

∣∣∣∣∣∑
m

amKM,N(m)e2iπmt

∣∣∣∣∣ dt
≤ 32π (2 + ln(1 +N/M)) ∥F∥L1([0,1])

≤ 32π(2 + ln(1 + 2/δ))∥F∥L1([0,1])

since
N

M
≤ 2d

δD
≤ 2

δ
.

We can now prove the lemma.

Proof of Lemma 6.3.2. Write I(q; s) = {k1, . . . , kJ} and write each kj in the form kj =
rjq + s. Applying Lemma 6.3.7 yields

∥F∥L1([0,1]) ≥ 1

32π(2 + ln(1 + 2/δ))

∫ 1

0

∣∣∣∣∣
J∑

j=1

fkj(t)e
2iπkjDt

∣∣∣∣∣ dt
=

∫ 1

0

∣∣∣∣∣e2iπDst

J∑
j=1

fkj(t)e
2iπrjqDt

∣∣∣∣∣ dt
=

1

qD

∫ qD

0

∣∣∣∣∣
J∑

j=1

fkj

(
s

qD

)
e2iπrjs

∣∣∣∣∣ ds
=

1

qD

qD−1∑
m=0

∫ m+1

m

∣∣∣∣∣
J∑

j=1

fkj

(
s

qD

)
e2iπrjs

∣∣∣∣∣ ds.
But

J∑
j=1

fkj

(
s

qD

)
e2iπrjs =

J∑
j=1

fkj

(
m

qD

)
e2iπrjs +

J∑
j=1

[
fkj

(
s

qD

)
− fkj

(
m

qD

)]
e2iπrjs
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so that

∥F∥L1([0,1]) ≥
1

32(2 + ln(1 + 2/δ))
(T1 − T2)

with

T1 =
1

qD

qD−1∑
m=0

∫ m+1

m

∣∣∣∣∣
J∑

j=1

fkj

(
m

qD

)
e2iπrjs

∣∣∣∣∣ ds,
and

T2 =
1

qD

qD−1∑
m=0

∫ m+1

m

∣∣∣∣∣
J∑

j=1

(
fkj

(
s

qD

)
− fkj

(
m

qD

))
e2iπrjs

∣∣∣∣∣ ds.
It remains to show that

T1 ≥
CMPS

2

J∑
j=1

∥fkj∥L1

j
and T2 ≤

2πd

qD

J∑
j=1

∥fkj∥L1 .

Let us start with T1: using the 1-periodicity in s,

T1 =
1

qD

qD−1∑
m=0

∫ 1

0

∣∣∣∣∣
J∑

j=1

fkj

(
m

qD

)
e2iπrjs

∣∣∣∣∣ ds,
≥ CMPS

qD

qD−1∑
m=0

J∑
j=1

∣∣∣fkj ( m
qD

)∣∣∣
j

=
CMPS

qD

J∑
j=1

1

j

qD−1∑
m=0

∣∣∣∣fkj ( m

qD

)∣∣∣∣
with Theorem 4.1.1. Applying Lemma 6.3.4 to fkj and using that

2πd

qD
<

1

2
with our

hypothesis on q and D, we get

1

qD

qD−1∑
m=0

∣∣∣∣fkj ( m

qD

)∣∣∣∣ ≥ ∥fkj∥L1

2

and the desired estimate of T1 follows immediately.

Let us now estimate T2. For s ∈ [m,m+ 1], we have∣∣∣∣∣
J∑

j=1

(
fkj

(
s

qD

)
− fkj

(
m

qD

))
e2iπrjs

∣∣∣∣∣ =

∣∣∣∣∣
J∑

j=1

∫ s
qD

m
qD

f ′
kj
(t)e2iπrjs dt

∣∣∣∣∣
≤

∫ m+1
qD

m
qD

∣∣∣∣∣
J∑

j=1

f ′
kj
(t)e2iπrjs

∣∣∣∣∣ dt.
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From the 1-periodicity in s, the integral of this quantity over [m,m+ 1] is the same as the
integral over [0, 1]. Thus

T2 ≤ 1

qD

qD−1∑
m=0

∫ m+1

m

∫ m+1
qD

m
qD

∣∣∣∣∣
J∑

j=1

f ′
kj
(t)e2iπrjs

∣∣∣∣∣ dt ds
=

1

qD

qD−1∑
m=0

∫ m+1
qD

m
qD

∫ 1

0

∣∣∣∣∣
J∑

j=1

f ′
kj
(t)e2iπrjs

∣∣∣∣∣ ds dt
=

1

qD

∫ 1

0

∫ 1

0

∣∣∣∣∣
J∑

j=1

f ′
kj
(t)e2iπrjs

∣∣∣∣∣ ds dt
≤ 1

qD

J∑
j=1

∥f ′
kj
∥L1([0,1])

≤ 2πd

qD

J∑
j=1

∥fkj∥L1([0,1])

with Bernstein’s inequality.

6.3.2 Strongly 2-dimensional subsets of R
We start by extending the definition of strongly dimensional structure to subsets of R. We
will use the same decomposition as in the case of strongly subset of Z. The main difference
with strongly subset of Z is that the sets Ak are now subsets of R instead of Z. Let δ > 0
and (m,n) ∈ N2. A finite subset A of R is (δ;m,n)-strongly 2-dimensional if there exist
two real numbers d and D with D > (2 + δ)d such that

A =
⋃
k∈I

(Ak + kD)

for some set I containing m integers and subsets Ak ⊆ [−d, d] verifying |Ak| ≥ n.

Theorem 6.3.8. Let δ > 0 and m,n be two positive integers satisfying

m ≥ π3221C3
MPS ln(m)3 ln(n)3 and n ≥ π3221C3

MPS ln(n)
3,

where CMPS(= 1/30) is the constant in Theorem 4.1.1. Suppose A is (δ;m,n) strongly
2-dimensional subset of R. Then

lim
T→∞

1

T

∫ T/2

−T/2

∣∣∣∣∣∑
a∈A

e2iπat

∣∣∣∣∣ dt ≥ C2
MPS

(29π)2
(
2 + ln(1 + 2

δ
)
) ln(m) ln(n).

Proof. The idea is similar to the proof by Hudson and Leckband 6.1.1. We will use Dirich-
let’s Lemma to approximate the real frequencies by integers and then apply Hanson’s The-
orem for strongly multidimensional subsets of Z.
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Let A be a strongly multidimensional subset of R:

A =
⋃
k∈I

(Ak + kD), Ak = {ak,1, . . . , ak,nk
},

and

Φ(t) =
∑
a∈A

e2iπat =
m∑
k=1

nk∑
j=1

e2iπ(ak,j+kD)t.

Let 0 < ε < 1. By a lemma of Dirichlet ([44, p 235], [8]), there exists an increasing

sequence of integers (ml)l≥1 and, for each l ≥ 1 finite families of integers (a
(l)
k,j)k=1,...,m and

Dl such that, for k = 1, . . . ,m and j = 1, . . . , nk∣∣∣∣∣ak,j − a
(l)
k,j

ml

∣∣∣∣∣ < ε

ml

and

∣∣∣∣D − Dl

ml

∣∣∣∣ < ε

ml

(6.3.8)

which implies that for k = 1, . . . ,m and j = 1, . . . , nk∣∣∣∣∣∣e2iπ(ak,j+kD)t − e
2iπ

(
a
(l)
k,j
ml

+ kD
ml

)
t

∣∣∣∣∣∣ ≤ 2π

(∣∣∣∣∣ak,j − a
(l)
k,j

ml

∣∣∣∣∣+ k

∣∣∣∣D − Dl

ml

∣∣∣∣
)
|t| ≤ 2(1 +m)πε

ml

|t|.

Define the ml-periodic function

Ψl(t) =
m∑
k=1

nk∑
j=1

e2iπ(a
(l)
k,j+kDl)t/ml

and note that, for t ∈ [−ml/2,ml/2],

|Φ(t)−Ψl(t)| ≤
m∑
k=1

n∑
j=1

∣∣∣∣∣∣e2iπ(ak,j+kD)t − e
2iπ

(
a
(l)
k,j
ml

+
kDl
ml

)
t

∣∣∣∣∣∣ ≤ π(1 +m)|A|ε.

but then∣∣∣∣∣
(

1

ml

∫ ml/2

−ml/2

|Φ(t)| dt

)
−

(
1

ml

∫ ml/2

−ml/2

|Ψl(t)| dt

)∣∣∣∣∣
≤

(
1

ml

∫ ml/2

−ml/2

|Φ(t)−Ψl(t)| dt

)
≤ π(1 +m)|A|ε

But
|a(l)k,j − ak,jml| ≤ ε < 1 and − d ≤ ak,j ≤ d

imply that
−dml − 1 ≤ a

(l)
k,j ≤ dml + 1
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i.e

a
(l)
k,j ∈ {−dl, . . . , dl} with dl = ⌈dml⌉+ 1.

Note also that, for each k, the a
(l)
k,j’s are distinct, provided l is large enough. On the other

hand
D

d
> 2 + δ

hence there exists δ′ such that
D

d
> 2 + δ′ > 2 + δ.

Since

|Dl −Dml| ≤ ε and ε < 1

we get

Dl > Dml − 1 ≥ (2 + δ′)dml − 1

≥ (2 + δ′)(⌈dml⌉ − 1)− 1

= (2 + δ′)dl − 5− 2δ′

then
Dl

dl
> 2 + δ,

provided l is large enough.
It follows that

n⋃
k=1

(Al + kDl) with Al = {alk,j}

is strongly (δ;m,n) strongly 2-dimensional. Then if

C =
C2

MPS

(29π)2
(
2 + ln(1 + 2

δ
)
) ,

from Hanson’s Theorem 6.1.3, we get that

C ln(m) ln(n) ≤
∫ 1

0

∣∣∣∣∣
m∑
k=1

nk∑
j=1

e2iπ(a
(l)
k,j+KDl)t

∣∣∣∣∣ dt
=

1

ml

∫ ml/2

−ml/2

∣∣∣∣∣
m∑
k=1

nk∑
j=1

e2iπ(a
(l)
k,j+KDl)t/ml

∣∣∣∣∣ dt
≤ 1

ml

∫ ml/2

−ml/2

|Φ(t)| dt+ 1

ml

∫ ml/2

−ml/2

|Φ(t)−Ψl(t)| dt

≤ 1

ml

∫ ml/2

−ml/2

|Φ(t)| dt+ π(1 +m)|A|ε
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Letting l → +∞ and then ε→ 0 we obtain Theorem 6.3.8:

lim
T→∞

∫ T/2

−T/2

∣∣∣∣∣∑
a∈A

e2iπat

∣∣∣∣∣ dt ≥ C2
MPS

(29π)2
(
2 + ln(1 + 2

δ
)
) ln(m) ln(n).
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[3] D. Choimet and H. Queffélec. Twelve landmarks of twentieth-century analysis. Cam-
bridge University Press, 2015.

[4] P. J. Cohen. On a conjecture of Littlewood and idempotent measures. Amer. J. Math.,
82:191–212, 1960.

[5] H. Davenport. On a theorem of P.J. Cohen. Mathematika, 7:93–97, 1960.

[6] J. M. De Koninck and A. Mercier. Introduction à la théorie des nombres. Modulo,
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