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Title: The Littlewood problem and non-harmonic Fourier series.

Abstract: We investigate trigonometric polynomials both in the harmonic and the non-
harmonic (non-periodic) case. More precisely, we are interested in lower bounds for L!-
norms or Bj-norms (Besicovitch-norms) of such polynomials.

We study harmonic trigonometric polynomials with quadratic frequencies. We extend
previous results for polynomials having only zero or one as coefficients to polynomials with
complex coefficients. Furthermore, we obtain that up to a multiplicative constant, the
square root is a lower bound for the L'-norms of polynomials with monotone and uniformly
bounded coefficients.

Next, we give explicit lower bounds for L! and B;-norms of non-harmonic trigonometric
polynomials. If the polynomials have only zero or one as coefficients, we deduce a logarith-
mic lower bound for its L' or B;-norms with respect to the number of terms.

Afterwards, we look at non-harmonic trigonometric polynomials with gaps (between the
frequencies) going to infinity. We give lower bounds for the L!'-norm of such polynomials.

Finally, we investigate two particular trigonometric polynomials: Lacunary and polyno-
mials with frequencies having multidimensional structure. We extend multiple results from
the integer to non-integer case. We obtain lower bounds for Bi-norms of such polynomials.

Keywords: Littlewood conjecture, Besicovitch norm, non-harmonic Fourier series, lacu-
nary series.



Titre: Le probleme de Littlewood et les séries de Fourier non-harmoniques.

Résumé: Nous étudions les polynomes trigonométriques a la fois dans le cadre har-
monique et non-harmonique (non-périodique). Plus précisément, nous nous intéressons
aux bornes inférieures au sens de la norme L' et de la norme B; (de Besicovitch) de ces
polynomes.

D’abord, nous considérons les polynomes trigonométriques avec des fréquences quadra-
tiques et des coefficients complexes. Nous étendons ainsi les résultats précédents sur les
polynomes ayant seulement zéro ou un comme coefficients. Pour les polynomes a coeffi-
cients monotones et uniformément bornés, nous obtenons une minoration de la norme L'
par la racine du nombre de termes.

Ensuite, nous donnons aussi des bornes inférieures explicites pour les normes L' et B;
de tels polynomes. Lorsque les polynomes n’ont que zéro ou un comme coefficients, nous
en déduisons une minoration de la norme L' ou B; par le logarithme du nombre de termes.

Nous nous intéressons aussi aux polynomes trigonométriques non-harmoniques tels que
les différences successives entre les fréquences tendent vers 'infini. Nous donnons des mi-
norations de la norme L' pour de tels polynomes.

Enfin, nous étudions deux types de polynomes trigonométriques. D’une part ceux dont
les fréquences sont lacunaires et d’autre part, ceux dont les fréquences ayant une structure
multidimensionnelle. Nous étendons plusieurs résultats du cas entier au cas non-entier.
Nous obtenons des bornes inférieures pour la norme B; pour de tels polynomes.

Mots-clés: Conjecture de Littlewood, norme de Besicovitch, series lacunaires, séries de
Fourier non-harmoniques.
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Chapter 1

Introduction

English version

In this thesis, we consider trigonometric polynomials of the form

N
> ape? (1.0.1)
k=0

where (ay)r—o.. N 1S a sequence of complex numbers and (A;)r—o__n is a sequence of real
numbers commonly known as frequencies. We focus on lower bounds of the L'-norm or the
Besicovitch B'-norm of non-harmonic (non-periodic) trigonometric polynomials of the form

(1.0.1)). Recall that, for 1 < p < +o0, the Besicovitch B,-norms are defined by

1

17, = lim —/ 1®(z)]? de.
Bp T—+oo T [-T/2,T/2)

Those norms can be seen as a substitute to LP([—1/2,1/2])-norms to investigate non-
harmonic trigonometric polynomials.

The starting point of this thesis is the investigation by Littlewood [26] of the properties
of the trigonometric polynomials having only 0 or 1 as coefficients

N
E e?zﬂ'nkt’
k=0

where the n;’s are distinct integers. In particular, Littlewood conjectured that

N

1/2
LN = inf E
no<ny,<---<ny _1/2 om0

e?iﬂnkt

dt > Cln(N + 1) (1.0.2)

for some constant C < —-
T

The first non-trivial estimate was obtained by Cohen [4] who proved that
Ly > C(In(N +1)/Inln(N + 1))%/8
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for N > 3. Subsequent improvements are due to Davenport [5], Fournier [7] and crucial
contributions by Pichorides [33], 34, [35, 36] leading to

Ly >Cln(N +1)/(Inln(N + 1))

Finally, Littlewood’s conjecture was proved independently by Konyagin [24] and McGehee,
Pigno, Smith [27] in 1981. In both papers, Littlewood’s conjecture is actually obtained as
a corollary of a stronger result (and they are not consequences of one another). Here, we
are particularly interested in the result of McGehee, Pigno and Smith [27, 20]:

Theorem 1.0.1 (McGehee, Pigno & Smith). For ng < ny < --- < ny integers and
ag, .. .,ayn complex numbers,
S o]
227rnkt t> ak
/é 2 ape CMPSZ

where Cyrps is a universal constant (Cyrps = 1/30 would do).
Taking the a;’s to have modulus 1, one thus obtains a lower bound
Ly > Cln(N +1).

The year after, Stegeman [38] and Yabuta [41] independently suggested some modifications
of the argument in [27] that lead to a better bound of Ly, namely:

Theorem 1.0.2 (Stegeman, Yabuta). Let N > 3. Forng <mn; < --- < ny integers

172 | N
>

k=0

2imngt

4

Our first results concern the study of finite trigonometric polynomials with quadratic
frequencies \, = k?, which appear for example, in the solution of the Schrodinger’s equation.
Let a = (ag)k—o....n be a sequence of complex numbers, we write

E [|af’] N+12|ak|2

Thus for the constant sequence ax, = 1, k =0, ..., N, Zalcwasser’s result [43] can be written

as
1| N

/ ? Z ik
1

~3 | k=0

for some positive constant C'. Our first result is an extension of this estimate to trigono-
metric polynomial with complex coefficients ay. It is written in terms of the /!-norm of the
increments of the sequence a:

dz > CVN (E[ja]?])""*, (1.0.3)

N
[0al|1,n = [ao| + Z lax — a1,
k=1

and can be stated as follows
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Theorem 1.0.3. For every € > 0 there exists a constant C. such that if (ay)k—o,. N 5 @
sequence of complex numbers, then

2+¢

(E[Ja]?])z. (1.0.4)

1

/.

T2

N

1.2
E ak6217rk T

k=0

(E[[a[?))?

|0al[1,n

dz > C.vV/N

The proof is an adaptation of that of Zalcwasser and is based on an approximate func-
tional equation obtained with the residue Theorem, combined with continued fractions
decomposition of irrational numbers.

We now compare our result, Theorem [1.0.3] with Zalcwasser’s and McGehee, Pigno,
Smith’s results respectively by giving two examples:

1. Let o, 8 > 0 and (ag)k=o,.. n be an increasing sequence such that a < a; < 5. For N

large, we have
1| N
2 . 2
/ § ake%wk T

1
2 | k=0

¢r25(%)““Kﬁv

2. let @« € Rand ap, = (1 +k)* for £k = 0,...,N. When looking at the asymptotic
behavior, if —1/6 < a < 0, the lower bound in Theorem [I.0.1] behaves as constant
while the lower bound in Theorem m grows as Na2te(+e),

For non-integer frequencies, the first result has been obtained by Hudson and Leckband [14]
who used a clever perturbation argument to prove the following:

Theorem 1.0.4 (Hudson & Leckband). For Ay < Ay < ... < Ay real numbers and
ao, - .., ayn complexr numbers,

|ax|
k-+1

2w ARt

N
age dt > Cups Z
k=0

where Cyrpg 1s the same constant as in Theorem [1.0. 1.

A further extension is due to Nazarov [30] who showed that such a result holds not only
when 7" — +o00 but as soon as T > 1:

Theorem 1.0.5 (Nazarov). For T > 1, there exists a constant Cr such that, for 0 < Ay <
- < Ay real numbers verifying |\, — A¢| > |k — £](or equivalently N\t — A\ > k) and
ag, . ..,ayn complex numbers,

T/2 | N
/T/2 Z

k=0

N

||

dt > Cry : (1.0.5)
i+ 1

€2i7r)\kt

Qg

Note that the constant in Nazarov’s proof is not explicit. We will improve on Nazarov’s
proof to obtain a more precise and explicit estimate of the constant Cr. This also allows
us to directly obtain the result of Hudson and Leckband:
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Theorem 1.0.6. Let \y < A\ < --- < Ayx be real numbers and ag,...,an be complex
numbers. Then

1. we have

eQiﬂ)\kt

1 [T
TETOO?/T/z Zak

1 o lail
dt>—§ M
_ 20 k+1
k=0 k=0

ii. If further ay,...,ayn all have modulus larger or equal to 1, |ag| > 1 then

N

ay 6217r)\kt

4
dt > —In(N +1).

11i. Assume further that for k =0,...,N —1, \gy1 — A\ > 1, then, for every T > 1, there
exists a constant C(T') such that, for every ay,...,ay € C,

_ are T AR dt Z C(T) X (106)
T -T/2 =0 — kE+1
Moreover,
1
(a) for T > 72 we can take C(T) = @;

(b) for 1 <T <2, C(T)=O0((T —1)"7?).

Remark. For 2 < T < 72, (1.0.6) follows from the case (b) with T' = 2, but the constant
18 not explicit.

The proof is related to the one implemented by McGehee, Pigno and Smith as extended
by Nazarov to prove Theorem [1.0.5 Here we follow constants more closely by introducing
and optimizing various parameters throughout the proof.

Theorem [1.0.6| can be used to lower bound a curve length of trigonometric polynomials.
Let A\p11 > A\ + 1 and consider a curve in the complex plane of the form

N
D={z=Pt), te[0,T]} with P(t)=) ape”™™"
k=0

Figure [I.1) shows two such curves.

Fig. 1.1 — Left: 1+ %™ 4 €20 and right 1 + 6% 4 24t 1 ¢34 hoth for t = 0 to 5.
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Since
N
P(t) = 2im Y aphee™™,
k=0
it follows from Theorem that, when T > 72, the length of I" is lower bounded by

E(F):/T|P’ |dt>_ZM’“”a‘“|
; =204~ k+1°

Next, we investigate the L'-norms of non-harmonic trigonometric polynomials with fre-
quencies forming a sequence with gaps going to infinity. Those polynomials were studied
in the L%-case by Kahane [22] who improved on a result by Ingham [15]. Our main result
here is an L'-analogue of Kahane’s result.

We first recall several well-known results in the L2-setting:

1
Theorem 1.0.7 (Ingham). Let v > 0 and T > —. Then there exist constants 0 <
f)/

Ay(T,~) < Bo(T, ) such that
— for every sequence of real numbers A = {\}rez such that Ay — M\ > 7,
— for every sequence (ay)rez € (*(Z,C),

2 T/ 2zwAkt
Ao(T7) Y lawf® < Za e

k€EZ keZ

dt <:£h y Y j{:|akP

kEZ

1
Then Kahane showed that the condition 7" > — can be lifted if A\ ; — A\ — 400 when
8
k — Zoo:

Theorem 1.0.8 (Kahane). Let A = { A\ }rez such that A1 — Ay — 400 when k — +oo.
Then, for every T > 0, there exist constants 0 < Ay(T,A) < By(T, A) such that

(T, \) Z lax]? < —/ Za 62M)‘kt

keZ T/2 |kez,

T/2
dt < By(T,A) > |ax|”

kEZ

holds for every sequence (ay)rez € (*(Z,C).
Here, our main result concern the L'-case and states as follows

Theorem 1.0.9. Let A = (M\g)rez be an increasing sequence with Agy1 — A — +00 when
k — “4oo. Then, for every T > 0, there exists a constant A;(T,\) > 0 such that, if
(ar)ken C C is a sequence of complex numbers, and N > 1, then

T/)2 | N
ST

k=0

N
20w ARt

dt. (1.0.7)

ar€

(@4
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1
If further Z T converges, then there also exists a constant A(T,A) such that, for
keZ

every (ag)gez C C and every N > 1,

N

E ay 6217r)\kt

k=—N

1 (T2
A(T, A) kzlin]\??_(,NMH < —/ dt. (1.0.8)

T J 1)

The main difficulty in the proof of this result is that Kahane’s argument cannot be
adapted directly. Indeed, Kahane used in a crucial way that in Ingham’s Inequality the
L?norm of a trigonometric polynomial is both lower and upper bounded by the ¢?-norm
of its coefficients. In the L'-case, the upper bound is in terms of the /!-norm of the coeffi-
cients and does not match the lower bound, which is given in terms of a weighted /' norm.
Instead, our proof uses Nazarov’s Theorem, a compactness argument and a trick allowing
us to benefit from Kahane’s result.

In the end, we investigate the Besicovitch Bi-norms of lacunary trigonometric polyno-
mials and polynomials with frequencies having multidimensional structure. Indeed, non-
harmonic lacunary polynomials are trigonometric polynomials

00
E ay 6217r)\kt7
k=0

with

Ak+1

Ak
Our main result is an extension to real setting of a result in the integer case done by
Zygmund [44] and states as follows

>q>1.

Theorem 1.0.10. Let ¢ > 1 and (\g)k>0 be a sequence of real numbers verifying
A >1 and Mgy > gl

and ag, . ..,ay be a sequence of complex numbers. Then for 1 < p < oo, there exists positive

constant A, 4, By, such that
p v N 1/2
dt) < B,, (Z |ak|2> :
k=0

N 1/2 B
b (L) < (5]
k=0 —T/2

Next let A be a finite subset of R, we say that A is (0;m,n) strongly 2-dimensional in
R if there exists two real numbers d and D with D > (2 + §)d such that

N

E ak6227r)\kt

k=0

A= JA + kD) (1.0.9)

kel

for some set I containing m integers and real subsets A, C [—d, d] verifying |Ax| > n.
We extend a result by Hanson [I0] from the integer to the non-integer case, we obtain
the following
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Theorem 1.0.11. Let § > 0 and m,n be two positive integers satisfying
m > 128 C8 peIn(m)® In(n)®  and n > 7*2%C3 e In(n)?,

where Cypgs is the constant in Theorem|1.0.1. Suppose A is (0;m,n) strongly 2-dimensional
subset of R. Then

Chrp
dt > CEden 1115(1 17 In(m) In(n).

Both proofs rely on an argument of Hudson and Leckband [14] used to extend the so-
lution to the Littlewood conjecture from integer to real setting. Indeed, the idea is to
approximate real numbers by rational numbers via a Lemma of Dirichlet.

Manuscript organization

In Chapter [2| we recall some classical results such as Ingham’s inequalities, asymptotic
estimate of the L'-norm of the Dirichlet kernel and Trigub’s Theorem which is indeed a
solution to Littlewood’s Conjecture [1.0.2

In Chapter [3, we focus on the particular case of harmonic trigonometric polynomials
whose frequencies are quadratic. We extend Zalcwasser’s result to trigonometric
polynomials with complex coefficients.

In Chapter [d], we are interested in non-harmonic trigonometric polynomials. Depending
on the integration interval, we give quantitative versions of Nazarov’s Theorem [1.0.5|

In Chapter b, we study non-harmonic trigonometric polynomials whose increment be-
tween frequencies tends towards infinity and we give an L!'-version of Kahane’s Theorem
0.8

In Chapter[6] we extend results by Zygmund and Hanson concerning respectively bounds
for the L'-norm of lacunary harmonic polynomials and harmonic polynomials whose fre-
quencies have multidimensional structure to the non-harmonic framework.
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Version francaise

Dans cette these, nous considérons des polynomes trigonométriques non-harmoniques (c’est
a dire non-périodiques) de la forme

N

D apet ™, (1.0.10)

k=0

ot (ag)g—o,. N est une suite de nombres complexes et les Ay sont des nombres réels ap-
pelés fréquences. Nous nous intéressons aux bornes inférieures de la norme L! ou B! (de
Besicovitch) de ces polynomes trigonométriques.

Rappelons que lorsque 1 < p < 400, les normes de Besicovitch B, sont définies par

1
|@l, = Jim / ()] da
[(-T/2,T/2]

T—4o00 T

Ces normes peuvent étre considérées comme un substitut aux normes LP([—1/2,1/2]) pour
étudier les polynomes trigonométriques non-harmoniques.

Le point de départ de cette these est I’étude par Littlewood [26] des propriétés des
polynomes trigonométriques n’ayant que, 0 ou 1 comme coefficients

N
E 6217rnkt,

k=0
ou les ny sont des entiers distincts. En particulier, Littlewood a conjecturé que

N

1/2
Ly = inf g
no<ni,<--<ny _1/2 =0

62i7rnkt

dt > Cln(N +1) (1.0.11)

pour une constante C' < —-
T

La premieére minoration non triviale a été obtenue par Cohen [4] qui a démontré que
Ly > C(In(N +1)/InIn(N 4 1))"/8

pour N > 3. Des améliorations ultérieures sont dues a Davenport [5], Fournier 7] et aux
contributions de Pichorides [33, [34] 35, 36] menant a

Ly > Cln(N +1)/(Inln(N + 1))

Enfin, la conjecture de Littlewood a été démontrée indépendamment par Konyagin [24] et
McGehee, Pigno, Smith [27] en 1981. Dans ces deux articles, la conjecture de Littlewood
est obtenue comme corollaire d'un résultat plus fort (et ils ne sont pas des conséquences
I'un de l'autre). Ici, nous nous intéressons particulierement au résultat de McGehee, Pigno
et Smith [27, 20] :
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Théoréme 1.0.1 (McGehee, Pigno et Smith). Pour toute suite finie d’entiers ng < n; <
- < np, et toute suite finie de nombres complexes ag, ..., ay,

/ § ag 627,7rnkt

k=0
ou Cyps est une constante universelle (Cyps = 1/30 convient).

di > CMPSZ ‘a’“‘

1
2

Si pour 0 < k < N, a est de module 1, on obtient
Ly > Cln(N +1).

Stegeman [38] et Yabuta [4I] ont indépendamment modifié 'argument de [27] et ils ont
obtenu une meilleure borne de Ly:

Théoréme 1.0.2 (Stegeman, Yabuta). Soient N > 3 et ng < ny < -+ < ny une suite

d’entiers, alors
N

1/2
)

k=0

2imngt

4
dt Z FID(N—F 1).

Notre premier résultat concerne ’étude des polynomes trigonométriques avec fréquences
quadratiques A\, = k2, qui apparaissent par exemple dans la solution de 1’équation de
Schrodinger. Soit a = (ag)k—o,.. ny une suite de nombres complexes, on pose

N
E [|af’] Z [
k:

Lorsque la suite a, = 1, k = 0,..., N, le résultat de Zalcwasser [43] peut s’écrire de la

maniere suivante
1| N
2 2 27,7rk:2
_1
2 | k=0

ou C' est une constante positive. Notre premier résultat est une extension de cette inégalité
a des polynomes avec des coefficients a; complexes. On pose

dz > CVN (E[|al?)"?, (1.0.12)

N
19l x = laol + > lax — axl,

k=1
nous obtenons le théoréme suivant

Théoreme 1.0.3. Pour tout € > 0, il existe une constante C, > 0 telle que pour toute suite
a = (ax)k—o,..n de nombres complezes, on a

/

2+¢

ar > o/ [ ELE)T) gyt

|0al[1,n

N

1.2
E ak6217rk T

k=0

=

1
2



CHAPTER 1.

La démonstration est une adaptation de celle de Zalcwasser et est basée sur une équation
fonctionnelle approchée obtenue par le théoreme des résidus et sur la décomposition en
fractions continues de nombres irrationnels.

Comparons maintenant notre résultat, le théoreme|1.0.3] avec les résultats de Zalcwasser
et McGehee, Pigno, Smith respectivement en donnant deux exemples:

1. Soient o, 8 > 0 et (ax)g—o.. n une suite croissante telle que o < ap < . Pour N

grand, on a
1| N
? Z 2irk?x
arpe
1
2 | k=0

2. Soient @ € R et ap = (1 + k)* pour k =0,...,N. Pour N grand et —1/6 < a < 0,
la borne inférieure du théoreme se comporte comme une constante tandis que la
1
borne inférieure du théoreme [1.0.3] croit comme NzteB+e),

dr > p <%> o V'N.

Pour les fréquences non-entieres, le premier résultat a été obtenu par Hudson et Leck-
band [14] qui ont utilisé un argument de perturbation pour démontrer le théoréme suivant:

Théoréme 1.0.4 (Hudson & Leckband). Pour Ay < Ay < ... < Ay nombres réels et
ag, . . .,an nombres complezxes,

1 (772 N

- k=0

|a|

29T\t
€
k+1

dt > Cups

Qg

WE

B
Il

0

ot Cyps est la méme constante que dans le théoréme [1.0.1]

Nazarov [30] a montré qu'un tel résultat est valable non seulement lorsque 7" — +o0
mais aussi des que T' > 1:

Théoréme 1.0.5 (Nazarov). Pour T' > 1, il existe une constante Cr telle que, pour toute
suite 0 < Ng < -+ < Ay de réels avec | A\, — N\g| > |k — {] et toute suite ay,...,ay de

complexes, on a
N

T/2
>

k=0

20w At

ar€

N
|ax|
dt > Cry - (1.0.13)
41

La constante C7 dans le théoreme de Nazarov n’est pas explicite. Nous améliorons la
démonstration de Nazarov pour obtenir une estimation explicite de la constante C'r. Cela
nous permet également d’obtenir directement le résultat de Hudson et Leckband:

Théoreme 1.0.6. Pour toute suite \g < Ay < --- < Ay de réels et toute suite ag,...,an
de complezes,

1. ona
N

1 T/2
lim —/ E
T—>+OOT T/2

- k=0

ak6217r)\kt

1 o ]
&>—§ Kl
T 264~ k+1

10
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2. St ag,...,an sont tous de module supérieur a 1, |ax| > 1, alors
1 TRE 2imApt 4
lim — AR At > — In(N + 1).
TffooT/T/2 ;“ke 2 (N +1)

3. Si de plus, pour k =0,...,N —1, A\gy1 — A\ > 1, alors, pour tout T' > 1, il existe une
constante C(T) telle que, pour chaque ay,...,an € C,

1 (72| X by N ]
T > are®™H dt > O(T . 1.0.14
T /T 2 @ke - ( )Z kx + 1 ( )
/2 k=0 k=0
De plus,
1
(a) PourT > 72, on a C(T) = o3

(b) Pour 1 <T <2, C(T)=O0((T —1)"?).

Remarque. Pour 2 < T < 72, l'inégalité (1.0.14) reste vraie et se déduit du cas (b) avec
T =2, mais la constante n’est pas explicite.

La démonstration est liée a celle introduite par McGehee, Pigno, Smith et étendue par
Nazarov pour démontrer le théoreme Ici, nous nous focalisons les constantes en
introduisant et en optimisant divers parametres tout au long de la démonstration.

Comme application, considérons une courbe dans le plan complexe de la forme

N
I' = {z = P(t) = Zake%’”kt, te [O,T]} avec Api1 > A\ + 1.
k=0

La Figure montre deux de ces courbes.

Fig. 1.2 — Gauche: 1+ e*™ + 2% et droite 1 + 10 + 24 4 34 pour t = 0 4 5.

Par le théoreme [1.0.6] et lorsque T' > 72, la longueur de I' est bornée par

r T o |\l
() = P(t)|dt > — —_—
0= [ 1Pl 5350

11



CHAPTER 1.

Nous étudions ensuite les normes L' des polynomes trigonométriques non-harmoniques
dont les fréquences forment une suite avec des écarts tendant vers I'infini. Ces polynomes
ont été étudiés dans le cas L? par Kahane [22] qui a amélioré un résultat d’Ingham [I5].
Notre résultat principal est un analogue L' du résultat de Kahane.

Nous rappelons d’abord les résultats d’Ingham et de Kahane;

1
Théoréme 1.0.7 (Ingham). Soient v > 0 et T > —. Alors il existe deuzr constantes

fy
positives 0 < Ax(T',v) < Bo(T, ) telles que
— pour toute suite A = {\}rez de réels vérifiant M1 — A > 7,
— pour toute suite (ay)rez € (*(Z,C),

2

dt < B2(Ta 7) Z |ak’2

kEZ

T/2

2 ak6217r)\kt

kEZ

9 1
AT )Y P <

kez =T/2

1
Kahane a ensuite montré que la condition 7' > — peut étre levée si A\py1 — Ay — 400

lorsque k — 400 :

Théoréme 1.0.8 (Kahane). Soit A = {\;}rez tel que A\py1 — Ay — +00 quand k — +oo.
Alors, pour tout T > 0, il existe deux constantes 0 < Ay(T,N) < Bo(T, A) telles que

2

dt < By(T,A) > |ax|?

kEZ

T/2

5 1
AT Y P < g [

keZ =T/2

E ak62wr)\kt

keZ

est valable pour toute suite (ay)rez, € (*(Z,C).
Nous nous intéressons ici au cas L'. Notre résultat principal est le suivant

Théoréme 1.0.9. Soit A = (Ai)rez une suite croissante qui vérifie A1 — A\ — +00
lorsque k — to00. Alors, pour tout T > 0, il existe une constante A1(T,A) > 0 telle que, si
(ax)ren est une suite de nombres complexes, et N > 1, on a

~ N |ak| 1 T/2 N
< —
et/ 1S

~T/2 [k=0

2im At

axe dt. (1.0.15)

1
St de plus Z converge, alors il existe aussi une constante Ay (T, \) telle que, pour
v L Al
toute suite (ax)rez, C C et tout N > 1,

N

E ay 6217r)\kt

k=—N

1 [T/2
Au(T,A) | max Jag| < —/

dt. (1.0.16)
T J 1)

12



CHAPTER 1.

La difficulté principale de la démonstration est que I'argument de Kahane ne peut pas
étre adapté directement. En effet, Kahane a utilisé le fait que dans 'inégalité d’Ingham, la
norme L? d’un polyndme trigonométrique est bornée inférieurement et supérieurement par
la norme ¢? de ses coefficients. Dans le cas L', la borne supérieure est exprimée en termes
de norme ¢! des coefficients et ne correspond pas & la borne inférieure, qui elle, est donnée
en terme d’une norme /' pondérée. Notre démonstration utilise le théoréme de Nazarov, un
argument de compacité, ainsi qu'une astuce permettant de nous ramener au théoreme de
Kahane.

Nous conclurons par 1’étude des normes B; de Besicovitch des polynomes trigonométriques
lacunaires et des polynomes avec des fréquences ayant une structure multidimensionnelle.
En effet, un polynome trigonométrique non-harmonique est lacunaire s’il est de la forme

suivante
o0

, A
Z et avec ML q>1.
Ak
k=0
Notre résultat principal est une extension au cas réel d'un résultat dans le cas entier obtenu
par Zygmund [44], nous obtenons

Théoréme 1.0.10. Soient ¢ > 1 et (A\g)k>0 une suite de nombres réels vérifiant
A>1 et Ay > gl

et ag, . ..,an une suite de nombre complexes. Alors pour 1 < p < oo, il ewiste deux con-

stantes positives A, ,, B, , telles que
N 1/2
dt) <B, (Z yakF) :
k=0

N 1/2 T/
A, |ax|? < lim /
P (;0 T—+oo /2

Ensuite, concernant les polynomes trigonométriques avec fréquences dont la structure
est multidimensionnelle. Soit A un sous ensemble fini de R, on dit que A est (§;m,n)
fortement 2-dimensionnel dans R, s’il existe deux nombres réels d et D > (2 + §)d tels que

A= J(As + kD) (1.0.17)

kel

E g e?lﬂ)\kt

k=0

ou [ est un ensemble d’entiers de cardinal m et les Ay C [—d, d] sont des sous-ensembles de
R et de cardinal supérieur ou égal a n.

On étend un résultat de Hanson [10] du cas entier au cas non entier et on obtient le
théoreme suivant

Théoreme 1.0.11. Soient 6 > 0 et m,n deux entiers positifs tels que
m > 128 CY psIn(m)? In(n)® et n > 7322'C3,pgIn(n)?,

ou Cyrps est la constante du théoréme |1.0.1. Soit A un ensemble (5;m,n) fortement 2-
dimensionnel de R. On a

2imat

Clips
dt > @72+ (1 + 2) In(m) In(n).

13
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Les deux démonstrations sont basées sur un argument de Hudson et Leckband [14] utilisé
pour étendre la solution de la conjecture de Littlewood du cadre entier au cadre réel. En
effet, I'idée est d’approcher des nombres réels par des nombres rationnels via un lemme de
Dirichlet.

Organisation du manuscrit

Dans le Chapitre 2] on rappelle certains résultats classiques comme les inégalités d’Ingham,
une estimation asymptotique de la norme L' du noyau de Dirichlet et le théoreme de Trigub
qui propose une solution & la Conjecture de Littlewood [I.0.2

Dans le Chapitre 3, on se focalise sur le cas particulier des polynomes trigonométriques
harmoniques dont les fréquences sont quadratiques. On étend le résultat de Zalcwasser
(1.0.12) & des polynomes trigonométriques avec coefficients complexes.

Dans le Chapitre [4] on s’intéresse aux polynomes trigonométriques non-harmoniques.
Selon 'intervalle d’intégration, on donne des versions quantitatives du théoreme de Nazarov
05

Dans le Chapitre 5, on étudie les polynomes trigonométriques non-harmoniques dont
I'incrément entre les fréquences tend vers l'infini et on donne une version L' du théoréme
de Kahane [L.O.8

Dans le Chapitre [0, on étend les résultats de Zygmund et de Hanson au cadre non-
harmonique. Ces résultats concernent respectivement des bornes pour la norme L' des
polynomes harmoniques lacunaires et les polynomes harmoniques dont les fréquences ont
une structure multidimensionnelle.

14



Chapter 2

Some classical results

In this chapter, we recall some known results which will be used repeatedly in this thesis.
It is divided into two main parts. We first study the L2-estimates of exponential sums with
real frequencies. In this setting, the results are due to Ingham who, under conditions on
the length of the interval of integration, have extended Parseval’s identity to non-integer
setting.

In the second part, we look at the L!-case. We start by recalling the L!-norm of Dirichlet
kernel and end with Trigub’s solution to the Littlewood problem.

2.1 Ingham’s inequalities

A non harmonic Fourier series is an expression of the type >, axe*™ ! in which the fre-
quencies Ay are real and not all integers. Paley and Wiener [31] and Levison [25] were
among the first to study such series. Their main interest was to characterize the sets of
frequencies for which, for each real function f(t¢) of a given class, one can find an expression
(a sum of exponentials) as defined above, summable to f for almost every —1/2 < ¢ < 1/2.

Not long after Paley and Wiener, Ingham [15] showed that, under a uniform gap condi-
tion on the frequencies, and up to a constant, the L?-norm of a non harmonic Fourier series
is lower bounded by the [?>-norm of its coefficients. In the same paper, he showed an inverse
inequality and hence extended Parseval’s identity to the real frequencies setting. Later,
Ingham’s inequalities were also extended to complex valued sequences by Haraux [11] and
others [1],[42].

The aim of this section is to show the following: let A = {A\x}rez C R be a 1-separated
sequence; |Ap — A¢g] > 1if k # £. Let P(A) be the set of (non-harmonic) trigonometric
polynomials

PA) = {P(t) = Zaw%”’\’“t : (ag)rez C C with finite support} .

kEZ

Since the set of function {t — ¢*™}, g is linearly independent over any interval, we can

15
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then define two natural norms on P(A), namely

L [T
| Pl (=7 /2,1/2)) = (T/ ’P(t)|2dt>
—1/2

We will show that, when 7" > 1, these two norms are equivalent. This is done by proving
two inequalities. The first one is the direct inequality:

N =

1
2
and || P = <Z|ak|2> .

keZ

2.1.1 Ingham’s direct inequality

Proposition 2.1.1. Let v > 0. Let (ax)rez be a finitely supported sequence of complex
numbers and (Ap)kez be a sequence of real numbers with Apy1 — A\ > 7. For every T > 0,

L
7).

keZ

2i7T>\kt

2
YT +1 9
dt < 2 e > Jax)*. (2.1.1)

arpe

Proof. By the change of variable t = s/7 we may assume that 7 = 1. We consider the
function A on R defined by

1
cosmx when |z| < =
h(z) = 2.
0 otherwise

As h is real and even, its Fourier transform is given by

D=

2 cos(7t)
w1l — 482

E(t) = / cos(mx)e ™ dx =

1
2

~ 1 ~ 1
with the understanding that h(1/2) = 5 From this, one shows that h(t) > 5 for [t| <
Finally, let
sin|x| — w(|x| — 1) cosmx
g(x) = h*h(z) = 2
0 otherwise

when |z| <1

N | —

One easily shows that ¢ is even, non-negative, supported in [—1,1] and that ¢(0) =

~ 1
Further its Fourier transform is g(t) = h(t)?. In particular, g(¢) > 0 and g(¢) > 1 for
1
<3
2

16
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But then, if (a)kez is finitely supported and P(t Z e
keZ

1/2 1/2
/ |P(t)]Pdt < 4/ G(t)|P(t)|? dt

1/2 1/2
E ag eQzﬂAkt

S /
keZ

— 4 Z ajazk;/ 2Z7T )\ )\k)t dt

7,k€EZ

= 4 Z aja_kg(/\j - )\k)

7,kEZ

Note that the sums are actually finite. Further, if j # k then [A\; — A\¢| > 1 and, as g is
supported in [—1, 1], we then have g(A\; — A;) = 0. This implies that

1/2
[ pora <50 Y jak?

1/2 keZ

so that the inequality is proven for 7" = 1 since 4¢(0) = 2.
For T' < 1 we simply write

T/2

1 2 1 12 2 2
o TR OIS pi

—T/2 —-1/2 ez

To conclude, notice first that, if I = [a —1/2,a 4+ 1/2] and P(t Z a;e* ™ then

kEZ
1/2 1/2 ' | 2
/|P(t)|2dt = / ]P(a+t)|2dt:/ ZakBQZWAkaQZzW)\kt At
! 12 —1/2 ez,
< O3 e -2 Y
keZ keZ

from the case T' = 1.
Now let T > 1 and cover the interval [-T/2,T/2] by K = [T] < T + 1 intervals
Ii,..., Ik of length 1. Then

T/2
—/ |2dt<—2/ Pt |2dt<2—2|ak|2

T/2 keZ

This completes the proof. [

1
We now show that a converse inequality also holds, but for 7" > —:

17
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2.1.2 Ingham’s converse inequality

Proposition 2.1.2. Let v > 0. Let (ag)rez be a finitely supported sequence of complex

numbers and (A\p)gez be a sequence of real numbers with A1 — A\ > 7. For every T > —,
fy

T/2
Y al” < —/ > ay e%“kt (2.1.2)
keZ T/2 | gez,
with ) )
T —1 1 2
%% for — <T < —
C(T,y) = (vT) v 5 v (2.1.3)
— forT > —
64 v

Proof. Changing variable t = s/v we find that C(T,~) = C(y7, 1) so that we may assume
that v = 1. We will prove this inequality in three steps. We first establish this inequality
for 1 < T <2.

As in the previous proof, let h be again defined by h(x) = 1[_1/2,1/9(z) cosmz. Notice
that, as h is non-negative, even, continuous with support [—1/2,1/2], then h % h is non-
negative, even, continuous with support [—1, 1].

Next h € HY(R) with ' = —7w1[_1/2,1/9 sinmx and

~ cos Tt
h'(t) = 4it
(t) = ditT—1

thus - R
B x B (t) = —(27t)*R% ()
We now consider kr = 72T%h * h + I/ * b’ so that kp is continuous, real valued, even and
supported in [—1, 1].
kr(t) = (T? — 4t%) h*(t)

is even (so kr is the Fourier transform of %;) and in L'. Further %; is non-negative on
[—T/2,T/2] and negative on R\ [-T/2,T/2].
This implies that
T/2
2w At 20 At
aie > / ae
JCCHS Dy

keZ kEZ
— § akaf/kT 217r (A=)t dt
ke
= E CLkCLgk'T /\k — )\g E |ak| ]{IT
ke kEZ

In the last line, we use that |\, — A¢| > 1 when k # ¢ thus kp(A\y — X)) =0

18
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Now, for { € [-T/2,T/2],
Fr(€) = m*(T? — 46%)R*(€) < 7(T? — 4€%)h*(0) < 4T*

while
1/2 2
kr(0) = 7r2/ T? cos® mt — sin® it dt = 7(T2 —1)

1/2
T/2
>

kEZ

which leads to

20 ARt

2
T2 -1
age dt > = > Jax)*. (2.1.4)

For 2 < T < 6, we simply write

T/2 ‘ 2 1 ‘
/ Z e dp > / Z a2
~T/2 1

keZ kEZ kEZ
3 2
where the second inequality is 4)) with T' = 2, establishing (2.1.2]) with C' = B;TT > 76T4
T T
Now let T' > 6 and My = [T'/2] so that My > 5—1 > 3 For j =0,..., My — 1, let
Mp—1
t; = —T/242j+1 so that the intervals [t; — 1,¢; + 1] are disjoint and U —1,t;+1[C
7=0
[—T/2,T/2] thus
T/2 ' 2 Mr—1
/ S ettt dr > Z / S e emm &t
~T/2 |kez tj kEZ
Mp—1 2
_ Z / S bredimuts 2imet |y
kez

Now, apply (2.1.4) with a; = bpe*™ i and T = 2 to get
2
/2 37r My
= dt > = Dl = 55 ),
TS DMLY
2

establishing (2 with C' = 33 O

Finally, we notice that, with a change of variable, and a simple limiting argument to
remove the condition on the support of (ax), we have just proved the following;

2z7r)\kt

kEZ

1
Theorem 2.1.3 (Ingham). Let v > 0 and T > — and let C(T,~y) be given by (2.1.3). Then
Y

— for every sequence of real numbers A = { A\ }rez such that A1 — Mg > 75

19
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~ for every sequence (ay)rez € (*(Z,C),

T ’Y)Z lax|* < %/ Za 2Tkt

keZ T/2 | ez

T/2 T 1
dt<27 + 3 Jaxf? (2.1.5)
keZ

1
We now show that the condition 7" > — can not be fully removed for (2.1.2)) to hold for
f‘)/
every A and every P € P(A).

2.1.3 Ingham’s counterexample

Proposition 2.1.4 (Ingham). Let v > 0. There exists a real sequence {\}rez with A\giq —

A > v and a family of sequences (ak(a))kez 0<a<i/2 such that, if

2 ag €2z7r/\kt

k=

2
1/2v

C > al g/ (2.1.6)

k=—N /2y

holds for every N > 1 and every c_n,...,cy € C, then C = 0.

1
In other words, the condition 7" > — is necessary in Ingham’s inequality to obtain a

~
meaningful lower bound.

Proof. After scaling we again assume that v = 1. Let 0 < a < 1/2 and define, for |z| < 1,

exp (—z’a arctan 13&;)

14 2] ’

ga(2) = (1+2)7" = 2| < 1.

Of course, we may also write g, as a power series

where (a)g =1, (—a), = —a(—a—1)---(—a—n+1).
Next define

fa(T,t) — 2%( im(a+1) ga(r€2i7rt))

_ ezﬂ(a—i—l) ga<re2i7rt) +€—i7r(oz+1)tga(r€—2i7rt)

o )n re 24 n+a+1 § :

TL n —2z7r<n+a—+1)t

1
ot for

1
Now set A = {\;},ez with A, :j+% when j > 0 and A, = j + 1 —
Jj < —1, then \j1; —\; > 1 (and even = 1 excepted for |\g — A_1| = 1 + ). In particular,
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if we set

n=0
Z am,r(k)GZM)\kt e 'P( )

kEZ

and P,,, — f, when m — o0, uniformely over ¢t € [-1/2,1/2]
Further, Parseval’s relation reads

B 2 12 |40 Nk 1/2 4
Z ( O'é)nrn _ / Z ( Cf)n,r,nemwnt dt = / |ga (7'62mt)’2 dt
e B -1/2 =y ™ —1/2

thus

lim E | (K
m——+00

It follows that, if we had

“+oo (—Og)
lim 2 ‘ S
m——+00

2 1/2 '
9 / (g (re2™) 2 .

1/2

1/2
—1/2

kEZ
then, letting m — +o00, we would also have

1/2 1/2
[ intopaz e [ g rempa (2.18)
—-1/2 —1/2

1
for every 0 < r <1 and every 0 < a < —
But, if we fix ¢ €] — 1/2,1/2] then, when r — 1,
) 1 1 eIiomt
+2imt
re = — — — =
ga( ) (1 +T€i2zwt) (1 + e:tQZTrt)
(this is where we use that 7' < 1) while

2% cos® 7t

. 1 1
|ga(7"ei2m)|2 — <
((1—=r)2+4rcos?mit)> ~ 4dcos® 7t

for 2 < r < 1. Similar bounds follow for f,(r,?):

] ) ] ) it —imt 1
alrt)=c¢e galTe +e galre —>6 ¢
rt im(a+1)t 2imt im(a+1)t 2imt +

20 cos® it 201 cose—1 7t
while

Falr D < —

cos2 Tt

21
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When 2« < 1 the majorants are integrable so that we can let » — 1 in (2.1.8]). This

leads to 1/2 /2
dt dt
22 / — >2l7%C / : (2.1.9)

1/2 cos?o= 2t 1/2 COS?* Tt

1
Letting a — 3 the left hand side stays bounded while the right hand side goes to +oo
unless C' = 0. [

2.1.4 Ingham’s estimate in L'
In the same paper [15], Ingham also proved an L!-estimate for trigonometric sums:
Theorem 2.1.5 (Ingham). Let v > 0. Let (Ag)kez be a sequence of real numbers such that
Aier1 — Ak > . Let (ag)kez be a sequence of complex numbers. Then, for T > 1 and every
N, Y
2.2 T/2
Hd o e < 7 o

Ingham’s estimate is a bit weaker than Nazarov’s estimate (Theorem W4. when the
sum is one sided, i.e. if ap =0 for k = —N,...,—1. On the other hand, the estimate by
McGehee, Pigno and Smith and thus also the one in Nazarov’s inequality are not valid for
every two sided trigonometric polynomial (see Subsection [4.2.5)).

E : ag 6217r)\kt

k=—N

Proof. We first prove the result for v > 1 and T' = 1.
Thus, take 7 > 1 and a sequence (Ag)kez such that Ay 1 — A\x > 1 thus for k # ¢,

yAk—M >y lk— 0] > 1. (2.1.10)

.....

.....

Note that if h e L'(R),

N

N
/h(t) Z ae2iT b2 / Z aph(t)em XAt gy
. R =N

k=—N

N ~
= Z CL]JL()\k - /\g)

k=—N

= CL[f;(O) + Z a;;f;()\k - /\g)

ke{=N,...N}\{¢}

As for Ingham’s L*-estimate, we consider h(t) = Lj_1/2,1/9(t) cosmt. As h is supported in
[—1/2,1/2] and |h| < 1, and as |ag| < |as| we obtain

al [ROI- S -] < /

ke{—N,..N}\{¢} 1/2

12 | N

20T ARt

dt.

ai€
k=—N
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~

~ 9 ~
On the other hand, by definition of h, h(0) = — and, for |t| > 1, |h(t)] < % With
’7'[_ —_—
(2.1.10) we thus get

S he-Ml £ B0 Y

ke{—N,..N}\{¢} ke{—N,..N}\{¢} i
2h(0) *i 1 h0)
o 42 =1 7
We thus obtain
2(~2 — 1 /2 | N ‘
(71 : ) ma: |ak| < / Z akemﬂ)\kt dt.
Y1 kG{*N ..... —1/2 —

1
For the general case, v > 0 and T" > —, (A\g)rez @ sequence such that A\ 1 — Ap > 7,
Y

.....

1 T/ 2im ARt 12 Y 20T A s
— ape ™ dt = aie k3 ds
T J oz k=—N -1/2 |p=_N
2(T?7? — 1
TT2y2  kef N N}
since TA\p 1 —TAp >y =Ty > 1. O

Letting T" — +o00 we obtain:

Corollary 2.1.6. Lety > 0. Let (\x)rez be a sequence of real numbers such that Ajy1— A >
v. Let (ag)rez be a sequence of complex numbers. Then, for every N,

) 1 (T2 ,
—max ]ak| < lim —/ ape2™t| dt.
T k€{—N,..., T=too T =T/2 |j=_N
In particular, for every N
5 1/2 | N ,
—  max |ay] S/ ae? ™| dt.
T k€e{-N,....,N} =1/2 |j—_nN

Another corollary of Theorem [2.1.5]is the following
Corollary 2.1.7. Lety > 0. Let (\x)rez be a sequence of real numbers such that Agr1—A\, >
1
. Let (ax)rez be a sequence of complex numbers with finite support. Then for T > —, every
8

N and every n > 1, there a positive constant C' = C, ., v such that

E a 6217r>\kt

k=—N

N

|ag|
2 (14 |K[)m __/

k=—N

(2.1.11)
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Remark 2.1.8. Fejer kernel shows that the condition n > 1 is mandatory. However if
ar =0 for k <0 then[2.1.7 holds for n = 1.

The next part is dedicated to the L!-case, we start by the L'-norm of Dirichlet kernel.

2.2 Littlewood conjecture in the periodic case

2.2.1 The L' norm of the Dirichlet kernel
Recall that the Dirichlet kernel is given by

N .
i sin(2N + 1)«t
DN(lf) _ Z e2 kt _ ( ) '

sin 7t
k=—N

The following is a classical estimate of the L'-norm of this kernel, which is called the
Lebesgue constant.

Theorem 2.2.1. When N — +o0,
1/2 4
IDxlli= [ 1Dx(]dt = 5N+ 0(0)
—1/2 m

Proof. The proof is based on the following inequality which is easy to establish: for —g <

T s . .
s < ok Is| {1 — 3 < |sins| < [s]. In particular, for || <

N | —

1 1 1 1 1l
< — <
w|t] = |sinwt| T w|t| 1 — w22/6 ~ |nt| 3

1
since ﬁ <14 2uforu< 3 It follows that

dt

/1/2 [sm@N + Dt] /1/2 |sin(2N + 1)7t|

1/2 |rt] 12 sin 7t

/1/2 |sin(2N + 1)7t|

1/2 ‘ ’/T‘t’
dt + |sin(2N + 1)7wt|— dt.
1/2 || - 3

1/2

As

1/2 ¢ 2 it
/ (sin(@N + 1)rt ™ g g/ i
_1/2 3 _1/2 3 12

we get

12 1 5in 2N + 17wt
||DN||1:/ [sin LU

1/2 |7t |
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Using parity and the change of variable s = (2N 4 1)t we obtain

/1/2 | sin(2N + 1)mt| 4 — 2/1/2 |sin(2N + 1)7t]| g — 2 /N7r+7r/2 |sin s N
_ 0 0

Note that

Nn+7/2 Nr+m/2
/ ]sms|d </ %:1 N7r—|—7r/2 O(1/N)
Nm S N S Nr

/'Sms|ds§/ 1ds = .
0 S 0

2 N7 | o3 2 N-L o(+Dm |
_/ | sin s Qs — —Z/ | sin s ds
T ), s T~ Jir s

7=1
N-1 .
2 m

_ _Z/ |Sm§\ s
7'('] Y Jo sHT
2 1/7T sin s

- Iy [ e
7r] +Jo sS4 gm

while

It remains to estimate

as sins > 0 on [0, 7]. But then

2 T sins T sins Tsin s 2
—_ = —ds < —ds < —ds = —.
(j+ D 0o T+ T 0 SH+gm o Jm g

Writing
N-1 N N-1
1 1 1
SIS SR
lej lej lej N
it follows that
2 N7 |sins| 131
— d — -+0 InN+0O
S e S =m0
as stated. O

2.2.2 Solution to the Littlewood conjecture

In this section, we will present Trigub’s solution [39] to the Littlewood problem (|1.0.2). The

proof given below will give C' = 112 which is not the best possible. For simplicity, we take

aon.
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Theorem 2.2.2 (Trigub). For any increasing sequence of positive integers (ng)2>, and any
complex sequence (ay)52,, there exists an absolute positive constant C' such that

ZakGQW"’“t t>C i‘? (2.2.1)

k=1 k=1

1

/

1
2

Proof. Let I = [—1,1] and ||f||, be the norm of a function f in LP(I), p > 1. We denote

by ax(f) the kth Fourier coefficient of f. For any sequence (c)%2,, we define the following

(finite) norm
1/2

el = sup {2 37 Jef

2k—1< g2k

Let b = (b)7° and by = a,, (f). For any ¢ > 0 and any sequence (cj), we will construct a
function f = f.. with the following properties

L fllee <2
2. ||b—c| < 14e||c|*
Suppose that such f is given, then we can conclude as follows

k=1 2 k=

_1
2

o

§ 217rnkt
k=

then, if

a=(ay);” and |a]|'= sup < 00,

flell<1

E CrQf

by choosing ¢ in a special way for ||c|| = 1, we obtain

/21 thE‘Z@ak‘—ezwk—ckHaﬂ

> ellall” —ellal/|[b = cll = [[a]"e(1 — 14¢).
By taking ¢, = 275tY/2 for 2571 < k < 2° — 1, we get

2imngt

oo 2%-1 [e'S)
1S law
Jolf 2 sip 3= 3 el el 2 527
s=1 k=2s—1 k=1
1
Setting ¢ = 1/28, we obtain the required inequality with C' = 1

Let us now construct f with the desired properties. For any sequence ¢ = (¢ )k, we set, for

k> 1 |
fk(t) _ Z 086217rn5t‘

2k—1< gk
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We then write the Fourier series of each |fi| € L*(I) as

O] = as(| ful)e*™

s€Z
to which we associate hy € L*(I) defined via its Fourier series as
() = ao(|fol) +2 D aa(| i)™ = aor +2 Y agpe®™.

Since | fx| is real, agy is also real and @y = —asx. We also have R(hy) = | fi|.
For any € > 0, we set

f=Fee =) fre el
k=1

By Parseval’s identity, we have

_1 1/2
Sl - 3 <az,j+4 5 |as,j12)

i>1 i>1 s=—o00
00 1 1/2
S (z|| > |as,j|2)
7j>1 s=1 §=—00
1/2

=23k =2 Y ek

J 21-1<s5<24
, 2
< 2l Y272 = lell (2.2.2)
J V2-1

Let xp = — 3,5, 5], we have

[e.e] (e}
f< D [ fulle =2kl <Y 7 fulem= 2z il
k=1 k=1

0

G 1
= E e (g1 — i) < / e dr = -
9

k=1 -

then f € L*. It remains to prove that
16— c|| < 14e]lc||?
where b = (by) and by, = a,, (f). Since for R(z;) < 0 and R(22) < 0 the inequality

21

le*t — e*] < |21 — 29|
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holds, and by (2.2.2), it follows that

> by

j=N+1

<e 3 Inlhi<e S Il =0, N = oo,

1 j=N+1 j=N+1

He*EZZo hj _ g=eX by

Next we define the spectrum of a function F' by spec(F) = {k € Z; ax(F) # 0}. Then
spec(e c2h1) ] — 00, 0] and spec(fi) C 2571, 2.

Therefore, if p € [2571; 25[, then

by = an,(f) = Za”p (fke_szhj) = Zanp (fke_ezhj) : (2.2.3)

k=1 k=s

Indeed, let us show that a,,, (fke_azh-f) =0forpe [2°71,2°[ and k < s— 1. If it is not the
case, then
n, € spec (fke_ezhj) C [2FY 2 + ] — o0,0],

hence n, < 2% < 2571, Since (n,), is an increasing sequence of integers, n, > p > 257!
implying the result.

Furthermore, since b, = a,,(f) and a,,(fr) = ¢,, then using the inequality |ax(g)| < ||g]x
and Cauchy Schwarz inequality

by — | = Zanp fre™e izl — fi)l < Z | fe(e™= 2ozt — 1)),
k=s
< fkeZh <2eZ||fk|| > Uil
k=s i>k k>s ji>k
1/2 1/2
=23 > ) X X el
k>s \2k—1<s<2k j>k \2i-1<q<2J
< 2T e < o
k>s >k
Hence
1/2
s 2 42 2 2
el =sup |2 30 el | < el < Laclel?
$ 23_1§p<23 -
and the Theorem is proved. O
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Chapter 3

Quadratic frequencies

3.1 Introduction

In this chapter, we estimate
n

sn(@) =Y ™,

k=0
where the a;’s are complex numbers. We give a lower bound to the L!'-norm of this sums
and then we give results similar to the one proved by Hardy and Littlewood concerning the
asymptotic behavior of this sum for x irrational.
For any sequence a = (ax)g—o,..» of complex numbers, we define

1. The [*-norm of the increment of a
n
10l = laol + > lax — ax-l.
k=1

Note that ||al|s < ||0a]|1n-

2. The arithmetic mean of |a| = (|agl, |a1|, .- -, |an]|)

n

1

E[Jof) = ——

|ag|.
k=0

Zalcwasser [43] gave a lower bound of L'-norm of s, when a = 1 for all k. Here we are
interested in the case where a is not necessarily constant. More precisely, we will prove the
following result

Theorem 3.1.1. For every € > 0 there exists a constant C. such that if a = (ag)g=o,. n S
a sequence of complex numbers, then

1 n
2 —
/ E ak6217rk T

1
2 | k=0

2+e

(GG R NEY (3.1.1)

dr > C.
2 OV |
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Remarks
1. When a; = 1 for all k, we obtain Zalcwasser’s result [43]:
1

/.

T2

n

§ 62i7rk2x

k=0

dz > Cv/n (Ellal?)"?. (3.1.2)

2. By a change of variable, the inequality (3.1.1)) reads

/

Hence, as one can reduce the problem to only z between 0 and 1 instead of 0 and 2

(see remark before Lemma [3.5.3)), it is simpler to prove (3.1.3)).

2+e
n

)
§ akemk T

k=0

(E[[a[2))®

[EZT (Ellal’])2. (3.1.3)

dr > CE\/E

Examples

Let us now compare our result, Theorem |3.1.1] with McGehee, Pigno and Smith’s Theorem
1.0.1} by giving two examples. More precisely we will investigate the behavior of the lower
bounds in both theorems when n is large. That is

3+e
— Jax] vn RN o)
A, = and B, = 5Tz Z |ax] :
~k+1 [0ally \n+1 e

where € > 0.

1. Let o, 8 > 0 and let (ag)r—=o
n large, we have

-----

In other words, we have

hence Theorem extend ([3.1.2)) to more general trigonometric polynomials.
2. LetaeRand ap = (k+1)* k=0,...n.

(a) If @ > 0, then B, ~ n°t2, A, ~In(n) if « = 0 and A, ~ n® if & > 0, thus our
result is better.
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(b) If @ < 0, then A, is only a constant. For B,, we distinguish different cases. If
—% < a < 0 then B, ~ n2 T3+ which is better than A,. In the other case,
B, goes to 0. Indeed

In(n) = n~"2 if a= —1,

2
B, ~{ nzte+o if 1 <a< —1,
_24e i 6

n-z if a<—3.

Thus, we see that our result is better when o > s

3.2 Strategy of the proof

The starting point is to establish an approximate functional equation (A.F.E). Since the
Lebesgue measure of the set of all rational numbers is zero, without loss of generality, one
can reduce the study to the case of only irrational x’s. Moreover, we will see that one can
also reduce the proof to irrationals between 0 and 1 instead of 0 and 2. Hence, subsection
is dedicated to the study of irrational numbers in |0, 1] , more precisely we recall some
known properties regarding continued fraction to be used in order to deliver a more practical
form of our approximate functional equation.

The second step (subsection consists in iterating this new A.F.E (that is why we
say it is more practical) to obtain the following; for x €]0, 1],

n

§ a 6i7rk2x

k=0

n
+ C|0al|1,n/Gs»
N |0all1,nv/as

S

< |ag|

where C' is an absolute positive constant and ¢, is the s—th convergent of the continued
fraction expansion of x.

We then use the previous upper bound with some properties of the continued fraction
expansion of x to find C', such that for t > 0

n

1.2
E akemk T
k=0

where A is the Lebesgue measure on [0, 1]. In order to benefit from (3.2.1]), we use the layer
cake representation to prove that, for p €]2,4[

n

1.2
§ akezﬂ'k T
k=0

Then by log-convexity of LP-norms, we interpolate 2 between 1 and p and using Parseval’s
identity, one can conclude the proof.

A ({x €[0,1] :

> t\/ﬁHaaHLn}) <t (3.2.1)

< Glldallinv/n

Lr([0,1])
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3.3 The approximate functional equation

In the following, we will investigate more general sums and henceforth we set

n
1.2 ; 2
— § akeurk 42wkt and S iL’ t E 6z7rk: a:+217rk‘t
k=0

where n is a non-negative integer, a; are complex numbers, x and ¢ are real numbers with
O<z<?2 and 0<t<1.

Let [z] be the integral part of x. When nx is not an integer, we define the sum s,, by
Snx = S[na]-
The aim of this section is to establish the following theorem.

Theorem 3.3.1 (Approximate Functional Equation). For 0 < z < 2 and 0 <t < 1, we
have A
ez7r/4

NZ

where |R(z,t)| < \/_||8a||1n and C' is an absolute constant.

2
_imtt q

e sk (—i %) + R(x,1), (3.3.1)

Sn(x> t) = Qo

To prove this theorem, we will follow the same steps used by Mordell [28] to demonstrate
the approximate functional inequality in the case a,, = 1 for all n. This proof is simpler
than that of Hardy and Littlewood [13]. We will now fix the sequence (a,) and without loss
of generality, we assume that ||0all,, = 1 so that |a,| < 1 for all n. We also fix z,¢ with
O<ax<2and 0 <t <1,

We will need some preliminary notions and results. Let

Goa(2) = €mFTHUT and f(2) = €2WZ — Zakgﬂ z+ k).

When it is unnecessary to indicate the dependency on the variables z,t, we will simply
write ¢ = ¢, and f = f; ;. Thus, we have

n—1
8:1—1(x7t) = ng,t(k) and Sp— 1 x, t Za'k:gxt
k=0

By the Residue Theorem, if 7 is a closed contour such that the index of 0 with respect to
v is 1, the other poles of f ( i.e., the non-zero integers) being of index zero, we have

Sn_1(z, 1) Zakgxt ):/fx,t(z)dz

Let v be the following parallelogram ABC'D
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More precisely:
1

4 1
e AB is parametrised by z = yap(u) = ™4d + u, u from 3 to —5

1 ,
e BC' is parametrised by z = ypc(u) = —3 + e™/*u, u from d to —d

. 1 1
e CD is parametrised by z = vop(u) = —e™*d + u, ) <u< 27
1 .
e DA is parametrised by z = vpa(u) = 3 + ey, —d < u < d.
As a result
/f(z)dz = (z)dz—l—/ f(z)dz+ f(z)dz+ f(z)dz
v AB BC cD DA

— I(AB)+ I(BC) + I(CD) + I(DA).
Lemma 3.3.2. Foralln > 1, s,_1(x,t) = lim (fet(z4+1) = foi(2))dz.
d—+oo Jop

Proof. We start by proving that
I(AB) — 0 and I(CD) — 0.

d—+oo d——+oo
Since
1 n—1
F2) = 5 kz_oakg(z + k),

and |ag| < ||a|le < [|0all1, < 1, we have

n—1

£(2)] < mZm(zmr.

k=0
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then
-1/2 n—1 % in/4
« g(de’™* +u+ k)
f(z)dz| = / f(e™d 4+ u) du| < / —— du.
AB 1/2 kz:; _% e2im(de /Aru) _ 1
It is therefore enough to show that
im/4
g(de | +u+ k) 0
e2im(de™/ 4 +u) _ 1 | ds+oo
iformly i € L1 But
o —=, =
uniformly in u 55 u
‘g(deiﬂ*/4 +u4 ]{Z)| — |eiﬂ(dei"/4+u+k)2x+2i7r(de”/4+u+k)t|

6—7rd2;L’—sin(7r/4)2(u+k)d7ra:—27rd sin(w/4)t

Using the inequality
¢ — 1] > €] — 1] = "9 —1],

we then obtain that

0

g(dei”/4 +u+k) o~ T2 e+V/2m((k+1/2)a+t)d
e2im(det™/4u) _ 1 ' <

—
|6_7T\/§d — 1| d——+o0

which allows us to conclude for the integral over the segment AB. The integral over C'D is
obtained in the same way. Thus

Sp—1(z,t) = lim < fur(z)dz — fot(2) dz> .
DA CB

d—~+00

Since DA = CB + 1, we have

f(z)dz = / FOmA) ) du

DA

d
= | fOme( + Dol du

= fz+1)dz.
CB

As a result,

Sp_1(x,t) = lim (fer(z4+1) = foi(2))dz,

as stated. O

Lemma 3.3.3. We can decompose
Sp_1(z,t) = an_1Jp(x,t) — agJo(x, t) + I, (z,t)

where
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v k
L] Jk(a:,t) = dhm g’2t<z——i_1)
—+o00 Jop € Tz

e I,(z,) = lim nil ((akl—ak)/c wdz).

d—+o00 B 62i7rz -1
k=1

dz,

Proof. We want to decompose

lim [ (f(z+1) = f(2)) dz.

But, Abel’s summation shows that

—

3
|

—

3

ap(g(z+1+k)—g(z+ k) =an_19(z+n) —agg(z) + » (ar—1 — ar)g(z + k).

i

0

T

Since 27>+ = €27 and by definition of f, we deduce that

9(z+n) 9(z) N

—1
flz+1) = f(z) = an o2imz — 1 M0 2 _q T £ (ar-1 — ax)

g(z+ k)
62i7rz _ 1

By integrating over C'B and passing to the limit when d — +o00, we obtain the desired
decomposition. O

1
Lemma 3.3.4. Suppose that p == (n — 5) x+t € [0, 1] then there exists a uniform constant

C > 0 such that |J,(z,t)] < %

Remark. Until further notice, we will look at u € [0,1] and we will see at the end of the
proof how to overcome this condition.

1
Proof. In the definition of J the integral is over z of the form z = ypo(u) = —3 + ue

with u € [—d, d]. But, for these z,

i /4

g(Z+’I’L) _ eiﬂ(z+n)2cc+2i7r(z+n)t _ eiTr(—%+uei”/4+n)2$+2i7r(—%—‘ruei"’/‘l)t
eiﬂ[(n—1)2+u26”/2+2(n—%)uei"/4]a:—i7rt+2iu7rei7"/4t
_ ew[i(n—l)Q—u2+\/§(n—%)u(—l+i)]a¢—i7rt+\/§(—l+i)u7r
Subsequently,

|g(z + n)| _ 6—7rxu2—7r\/§(n—%)uar—u7r\/§t _ e—7r:cu2—u7r\/§[(n—%)x+t]

_ e—wxu2 —u7r\/§u
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Since 0 < p < 1, we deduce the estimate

l9(vpo(u) +n)| < o e
9(vBC T e (e ™V?) ifu <0
e—mcu2 ifu Z 0
= o— U’ |€2i7r'yBc(U)| ifu<0

since |e2imBc(W)| = |¢72T (cw) | = e V2™ We deduce that, when z = ygc(u)

|g('YBC(U) +”)‘
|62iW’YBC(U) — ]_|

S efTrquM(u)

1
| 2imypc (u) 1| ifuZO
e VXIS u)
where M (u) = |e2imimo(w)] . :
|e2imie(v) — 1| Hu=0
Note that
’e2i7rz . 1‘2 — €2i7r(z72) o <€2i7rz + 6721‘772) 41
e 4m3R) 4 96723 o5 27 R (2) + 1
and hence
e2imyBe () _ 1|2 — e 2V2mu _ 9o—V2mu iy Vomu + 1.
Since

eV sin /2y — 0 when wu — 0,

there exists ug such that, if |u| < uy,
2¢ V2™ sin v/ 21u < 1,

then
’62’”’730(“) . 1’2 > 672\/577110'

For u > wuy,
|62i7r730(u) . 1|2 > 6—2\/§7ru i 26—\/§7ru +1= (1 . 6—\/§7ru)2 > (1 . e—ﬁwuo)Q
while, for u < —uy,

|€2i7r'yBc(u) . 1|2 Z 672\/§7ru . 267\/§7Tu + 1 = (efﬂﬂ’u . 1)2 Z (e\/iﬂ‘uo . 1)2

The denominator in the definition of M is therefore lower bounded by a strictly positive
quantity and M is continuous. Moreover, M is bounded on [0, +o00). For u — —oo,
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2imypo(u)
|e2imrEc (| — 400 s0 M(u) = | 2|€VBC |1| — 1 when v — +o00. Thus M is bounded on
e 1T —
R and
‘9(730 u) + ”)|

2
|62z7r'yBc u) _ 1| < HMHOOe e

T g, w) +k
But then J,(z,t) = / g ;(7235 )) . )'ygc(u) du converges and is bounded by
oo e 17T w) __

+oo M
. V)

as announced. O]

1
Lemma 3.3.5. Let p = (n — 5) x +t, and suppose that p € [0,1]. For at least one A

among [nx] and [nz] 4+ 1, we have

>

A1
el

ENE]

e~ T L T (1) with | Jo(z, t)| <

—J()(l’,t) = . T

§

where C' is a uniform constant.

Proof. We fix a non-negative integer A, to be adjusted later on. Since
A—1 2imz\

eQiﬂ’zk —_ 1 e

k=0

242z
_/ - Z/ 2z7rzkdz+/ g(z)eg dz
CB@”Z— CB cp 1 —em

We are going to show that each term in the sum does indeed converge to a term of the
desired form and that the last integral does indeed converge to a remainder .Jj.
First, we start with the terms in the sum. For z = ypc(u),

1 — e2irz o 1 — e2imz’

we can write

. .9 . . t+k 2_i7r(t+k:)2
g(z)e2mzk — iz r+2imz(t+k) _ emrx(z—l— - ) —
im(t+k)2 . i T 1, k)2
_ T pima(uet T -4 )
; 2
_ e,w —ra(utv)?
t+k

with v = —ie's (
x

1
2). It follows immediately that

iz _im(t+k)? . 2
/ g(2)e?™Fdy — elie @ /e me(utv)” gy
CB R

d—~+00
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since this integral is convergent. It is easy to show that the function ¢ : w — / e~ tw)® qy
R
1
is an entire function, when w is real ¢(w) = / e T qy = 7 using a change of variable.
x

R
By uniqueness of the analytic continuation, we conclude that

p(w) = % for all w € C

and so
: 2imkz ei% —in(t+k)?/x
lim g(z)e dz = —e :

Let us now show that the last term is indeed a remainder term when A is well chosen.
First, as in the proof of Lemma [3.3.4] when z = ypc(u),

Ig(z)e%ﬂz)\| — 6*7F33u27\/§ﬂ'u(7%+t) 6—7T>\\/§u — efwzuzfx/iﬂ'u(f%#»tqt)\).

IﬁtAeNsmhﬂmt0§t+A—gf§LEhmmhmw,

—t+§§A§1—t+§. (3.3.2)

Note that one of the 2 integers [nz] and [nz] + 1 satisfies (3.3.2]). Otherwise we would have
only one of the following cases

o 1 —t+ g < [nx] < nz which contradicts p < 1,

o [nz]+1< —t+ 5 which contradicts 0 < p.

We then choose among [nz| and [nx] + 1 an integer A which satisfies (3.3.2)) and the same
reasoning as in the proof of Lemma shows that, when d — 400,

g(z)e%mz)\ q
1— 622'7rz <
CB

converges to a term Ji(z,t) satisfying |J;(z,t)| < with C' a uniform constant. O

S0

1
Lemma 3.3.6. Letn € N and u = (n—§) x+t. If0<pu<1, then

<
NG

[ In(z, )] < —=[|0al[1.n,

with C' a uniform constant.
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1 .
Proof. Again, when z = vp¢o(u) = -3 + eim/4q,
—rzu? 27 sin( T )u[(k— 1)z
|g(’YBc(u) —l—k)’ — e—meu?=2msin(f)ul(k—3)a+t]
1
Fork=1,...,n—1, let ux = k—§>x+t, and notice that 0 < pp < p < 1. As in the
proof of Lemma [3.3.4], we have

9(vse(u) + k)

eQiW’YBC (u) — 1

= e‘”“zM(u)

and the function M is bounded on R. Finally,

n—1
B ) g(z + k)
il = | 5 (-0 [, B
g(z+ k)
S Z|ak1—(l|/ 21#2_1‘
C
< — 8 ns
= \/EH a’HL
since Y _ |ag — ax_1| < [|0al1 0. O

Lemma 3.3.7. If0 < u <1, then

ix [nw
v Z — ity + R(z,t) where |R(x,t)| < %”aa”m-

Proof. Recall that |ay| < ||0al1,, for all £ > 0. According to the Lemmas [3.3.3] [3.3.4} |3.3.5|

and [3.3.6,

>

i A1

a
E}

z7r(t+k

C
e~ + Ro(z,t) where |Ro(z,t)] < ﬁH@aHLn,

Sn—1(x,t) = ag

§

0

and A is either [nx] or [nz] + 1. First, we write s,(z,t) = s, x, t) + apefmrrinet - Gince

%A

0 <z < 2and |a,| < |dall1n, we have ’ane”" ot 2imni H@aHln We can therefore

<

write s, instead of s,_; by replacing Ro(z,t) by Ry(x,t) = Ro(x,t) + ape’™ #+2mnt,

When A = [nz] + 1, the lemma is established. When A = [nx], we write
i [na]—=1 i i
vy z7r(t+k)2 ta 171'(t+k ta _'Lﬂ'(t+[na:])2
k=0
Since |ag| < ||0al|1,n, the last term is absorbed into R;. O

39



The approximate functional equation CHAPTER 3.

It remains to prove the theorem without the restriction on pu.

1
Proof of Theorem |53.5.1. Let p = — [(n — §)$ + t} = — [nx — g + t} such that

1
Og(n—i)x—i—t—i—pgl. (3.3.3)

By applying the Lemma for s = ¢t + p instead of ¢, we obtain

n P

. . z C
Zakemk%+2mks _ 4 o (s+k)2/x 4 R(SL’ S) where |R(J}, S)| < _”aaHln
vV ’
k=0
In the first sum, we notice that e*™* = 27 and in the second, we make a change of

summation index 7 — p + k and we get

p+(na]

e~ DT L Rt — p). (3.3.4)

M:!

n
- 1.2 : 6
§ akemk x+2imkt = ag

E

Jj=p

where |R(z,t —p)| < —||0al|1n.

We will now replace the sum over j going from p to p+ [nz] by a sum going from —[nz]

1
to 0. Since —1 < —g +t<1landp= —[(n— 5)93—1—4 = —[naz—g—i-t], there are at
most 2 terms to remove to go from p to —[nz| and 2 terms to add to go from p + [nx] to
oallin .
0. Each of these terms has modulus |a_0| < |9al, and can therefore be absorbed in the

Ve o Jr

remainder term R.

Thus (3.3.4) writes

0

- ink?c+2imkt € m(t+5)%/x _
kzzge —aoﬁZe + R(x,t — p)

j==[nz]

= aof/E A e L Rzt — p)
7=0
eige—iwﬁ/x [na] 2 -
= ap Zefm Jx+2inkt/x + R(x,t—p)

R
e's . 1t
= aOTe_”tQ/xs[lm] (—— —) + R(x,t — p)

l’ﬂ?

with |R(z,t — p)| < \/_||8a|]1 » and C' a constant independent of z, ¢, p. O
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3.4 Continued fraction

The following method essentially consists of extending Fuclid’s algorithm to the case of
irrational numbers. For more details on this part, we refer to the book by Choimet and
Queffélec [3]. Suppose that x irrational of |0, 1] and t an element of [0.1],

(

T = Wo,
w%):vi:vl—l—wl, With’UlEN*,O<UJ1<1,
wllzyé:UQ—l—wg, WithUQEN*,0<w2<1,

(3.4.1)

, .
— = U, = Upy1 + Wny1, With v, € N* 0 <wpq <1,

\ °

As z is irrational, the process never stops. The v, are called the partial quotients of

the continued fraction expansion of x. The convergents of this expansion are the rationals

bn (n > 0) defined by the following sequences of integers (pp)n>—1 and (gn)n>—1:

n

po1=1, po=0 and pui1 = Vpr1Pp + Pp_y for n >0,
qg-1=0, q=1 and ¢uy1 =Vp41Gn + @1 forn >0.

Pn 1
For n > 1, we have — =
n 1
v +

Vo +
2 vat

Un—1+ - -
n

Finally let A, = pn_1¢n — Pnqn—1 for n > 0.
Remark. We have:

1. Every irrational number (more generally positive real number x [6]) can be represented
in precisely one way as an infinite continued fraction. The continued fraction is finite
if and only if x is rational.

2. w; satisfies the following inequality:
1 .
wiwjpr < 3 for all 7. (3.4.2)

Indeed, since v; > 1 for all j,

1 1
Wy = S 5
Vi1 +wiprr — 1+ win
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and then
Wit1 1
Wildirq < —ITL <
J J+1_1+wj+1_27
since 0 < wjyy <1 and the function x — n is increasing on [0, 1].
x

The following result relates the w, to the convergents.
Lemma 3.4.1. For all n > 0, we have
(—1)"wows - . - Wy = @uT — Py
Proof. Let B, = (—1)"wows . . .w, for n > 0. We proceed by induction on n. fy = wy =z =
Gox + po and B = —wow; = —wo(— —v1) = viwp — 1 = viz — 1 = g1x — p;. Suppose the

Wo
lemma is true up to order n.

Bor1 = —Buawnyi = —Bu(— — Vny1) = Vny1Bn — &
W, Wn
= 'Un-i-lﬂn + Bt
= Up41(Ga® — Pn) + @12 — P
= (V19 + Gn-1) = (Vns1Pn + Pn1)
= qn+1T — Pn+1
by construction of the sequence (p, ¢n)- ]

Lemma 3.4.2. For alln >0, on a h, = (—1)".
Proof. By induction on n, hg = p_1qo — pog—1 = 1 and if h,, = (—1)" then

Pot1t = Podnt1 — Pot1dn = Pa(Vnt1Gn + @n-1) — @u(Vn1Pn + Po-1)
= Un+t1Pnqn + PnGn—-1 — Un+1PnGn — qnPn—1
= DPnln-1 — GnPn—1
—h,

which is indeed (—1)"*! with the induction hypothesis. O

,U;H-lpn + Pn—1

Lemma 3.4.3. For alln >0, we have x = — .
Un+1Qn + anl

Proof. For n =0,
vipo + p-1 1 _
— = - =Wy = .
vigo +q-1 vy
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Moreover,
v + Dn—
) Pn+1 + Dn n+1Pn Prn-1 + Dn
Un+2Pn+1 + Dn _ Wna1 _ Wnt1
UpioGni1l + Gn In+1 + qn Un+1qn + Gn—1 ta
Wn+1 Wn+1

pn(vn-i-l + wn—i—l) + Pn—1
Qn(vn—i-l + Wn—i—l) + dn—-1
U;L+1pn + Pn—1

Uy 1Gn + Gn—1

The result is then established by induction.
Lemma 3.4.4. Let q), .| = V), ¢y + qn—1. For alln >0,
1

IQn-T _pn‘ =
n+1

Proof. By Lemma [3.4.3]

U;z+1pn + Pn—1 —p )
vvlz-}-lCZn + qn—1 "
qﬂ(U;erlpn + Pno1) — pn(U;wrl% + Gn-1)

Gn® — Pn = Qn<

QZ+1
— GnPn—1 — Pnln—1
Q;L+1
Q';L-Fl'
1
hence |g,x — p,| = —
n+1

Corollary 3.4.5. For all n > 0, we have

In+1 < Q;H—l < 2qn 41

and

< Wowq ... .wy < .
QQn—I—l Gn+1

Proof. By Lemmas [3.4.1| and [3.4.4] we have

1

wo ... .Wp = ’(_1)%}0 . -Wn| = ‘an _pn| =7
n+1

So, the second inequality follows from the first one. However,

/ .
Un—f—l = Un+1 + Wn+1 with 0 < Wn+1
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hence
! !
Upy1 = Un and  Gnyq = uoit-

Moreover, w41 < 1 then v),,; < v,41 + 1, and we have

q7/z+1 = U%+1Qn + qn—1
S (1 + Un—l—l)qn + gn—1
= Gn+ qnt1
S QQn-i-la
since the sequence (g, ),>0 increases. This implies the result. O

3.5 Intermediate results

We will proceed by combining two essential ingredients: the approximate functional equa-
tion (3.3.1)) that we will give in a more practical form, well suited to an iteration and the
continued fraction expansion of irrational numbers as described in section [3.5] (see [12]).

1 1

Lemma 3.5.1. Let t € [0,1] and 0 < x < 2. We define w, = — — [—], then there exists
x x

u = u(x,t) € C of modulus 1 and t = t(x,t) € [0,1] such that

u ———————————=—
%S[lnx] (wl, t) + R(ﬂf, t)

sp(x,t) = ag

where |R(z,t)| < |0al|1 ., with C a uniform constant.

|

t 1 1 1 1
Proof. Let § = —— and — = vy + w; with vy = [—] and w; = — — [—} By Theorem |3.3.1
x x x x x

im/4 ] 1 ¢
sp(x,t) = ao%e”ﬁ/xsim (——, —> +R
x

r T
u

\/—S[nx] (

- 2
with u = ¢'i.e" and |R| = |R(z,t)| <

agp w1, —9) + R,

\/_Hé?aHl nwhere C' is a uniform constant.
Since (—1)¥ = (—1)* = €™ when k is an integer, then, for any integer m, s! satisfies
another (non approximate) functional equation;

m m

1 _ ink?(x—1)+2irkt __ k? ink?x+2inkt
sp(x—1,t) = E ekl = E (—1)%e
k=0 k=0
= 1
— E :elﬂk z+2irkt+irk _ 57177, z, t+ =),
k=0 2

44



Intermediate results CHAPTER 3.

14
By iterating, we obtain more generally that, for all integers £, m, sl (z—£,t) = s}, (m,t + 5) )

In particular, we have

ﬂ)+R.

Sn(xa t) ap——= ° 2

7

If we define i = 0 — 2% — [6’ — ﬂ} € [0,1], then by l-periodicity of s[lm] in the second

S[nx]( w1, —6 +

, 2 2
variable u

Sp(x,t) = ag—= sm( wy,—t) + R.
We conclude by noticing that s[lm](—wl, —t) = [m] (wy,1). O

Theorem 3.5.2. Let x be an irrational in the interval 10,1[ and t € [0,1]. Then, for
n, s> 1, we have

|sn(z,t)| <

ds;

where C' > 0 is an absolute constant, qs denotes the denominator of the s-th convergent of
the continued fraction expansion of x.

Proof. This proof is similar to the one by Zalcwasser [43] and consists in iterating Lemma
3.5.1] Here, C'is the constant of the Lemma and the w; have been defined in (3.4.1).

Since x = wy, by Lemma [3.5.1} if we take n; = [nwo|, t1 = t(z,t) and u; = u(x,t), we
have

N — u N —
(wl,tl) +R1 \/;—87111<w1’t1) +R1
0

\/_ ™
where |R;| = |R(z,t)| < —xHaaHl,w

Sp(x,t) = ag—=

Again, by Lemma [3.5.1] writing to = #(wy, 1),

u u
Sn(‘xat) = aO\/:TO |\\/_(f)_15[1n1w1}(WQ7t2)+R<w17t1) +R1

UUz 4

Uy
= ao\/ms[nlwﬂ(w%@)+CL0\/CTOR(UJ1,151)+R1
Ut q

= Q S[nlwﬂ(WQ,tQ)—f—RQ.

\/ WoW1

But since |R(wi,t1)| < (note that here, we apply the Lemma [3.5.1| to the constant

sequence 1 = (1,...) an t 1011, =1 ), we have

u
‘R2| = ao\/—:TR(wl,tl) + R1
0
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Then, by induction, we define the sequence n; by n;41 = [njw;] and since nj; < njw,
then n,w, < nwp - - - w,,.
By applying p + 1 times the Lemma [3.5.1] we deduce that

ul...up+1 1

sp(z,t) = ag e

}(Wp+1a tpr1) + Ryt

where

“lpr1 = E(Wp’ tp);
— the u; are complex numbers of modulus 1;

<C( ! +- 4 ! )Ha I
— ... _— a/ n-
P = v/ Wo VWo .. Wy b

Since \s[lnpwp]\ < [npwp] < nwp - - - wy, we obtain

nwo . . . Wy 1 1
)] < el Lo ) 0l
o] < o ( . ) ol

< ag|nywo - wp + —— (1—1-\/ o+ A Opwp1 F . Sy - w1)][0al]1 .

By Inequality (3.4.2)), we have

¢ <1+1+1 ! 1 )Haau
V0w, AR AR b

C
< aolny/wo - w, + (\/0:%) 19all1.n,

lsn(x,t)] < |aglny/wo - - wp + ——

k

2

since 2 g ( > = V2 < 7. We now select p = s — 1 and use Corollary [3.4.5( to
V2 -1

obtain the bound
qs

|sn(2,1)] <

as stated. O

Let

n

Sp(2) = 8p(,0) = Z a,e’ ™

k=0

Since [S,(2 — z)| = | Sr_, @™ *| and ||0a||1,, = ||0al|1n, the study of S,(z), = €]0,2] is
reduced to the case z €]0, 1].

Lemma 3.5.3. There exists an absolute constant ¢ such that, for t > 0 we have

{z €[0,1] : [Su(@)] > tv/nl|Oallin}] < ct™.
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Proof. Let C be the constant appearing in Theorem [3.5.2l We fix t > 0 and n € N*, and
denote E the set of irrationals numbers z in ]0, 1[ such that |S,(x)| > ty/n||0a||1,. Let x
in £/ and g¢;, as previously, the denominator of the convergents in the continued fraction
expansion of x. We distinguish 2 cases:
. t2n
e First case, ¢ > —. Then,

4C2°

in other words z € }0 402} .

) 2n

2

t
e Second case, ¢; < 4—07; By the hypothesis and Theorem |3.5.2, we have for s > 1:

n

tvnl|dallin < |Su(@)] < lagl —= + C|0all1nv/gs.

S

Subsequently

n - tv/nl|0all1
2

S

C\/@>¥.

either |ao

Since |ag| < ||0al|1,n, then for all s > 1, we have the following alternative:

4)ap|?n 4n t*n

ith <z S oo > —.
T Eag, e T Ao

(3.5.1)

2

t‘n

Since we assumed that ¢; < —— and ¢ — 00, there exists an integer sq > 0 such
402 s—400

that

t’n
Iso < 4—02 < Gsp+1-

In this case, by Lemma [3.4.4] and Corollary [3.4.5]

1 1
50T — Pso| = K < Goors’
thus
‘$ _ Ps < 1 < i4—02
Gso | — GsoQso+1 — dso 1210
so that

0so  Gso 121 G5y Qs 1212
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In summary if x € E we have

402 s 1 402 S 1 402
re |0, 5— P _ a. 2n’ ot
t’n Qso s 210 Qs sy £210
Moreover,
40?2 407
|{ZE e [07 1] . |Sn<q;)| > t\/ﬁ||8a||1,n}| < 20 % 2n
_ o4t s 1207

t2n 2n  2n

since g5, > 1.
Finally, since ty/n||0al|1, > 2n||0al|1, > [Sal, if t > 24/n,

{z €[0,1] : [Su(2)] > tv/nl|dall1n}] < [{z €[0,1] : [Sp(x)] > 2n[dalli.}] = 0.
. | 4
Furthermore, if t < 2/n i.eif — < 2 we find
n

48C*
t4

{z € [0,1] = [Su(2)] > tv/nlldall1n}| <
as stated. O

Lemma 3.5.4. Let p be a real number in |2,4[. There exists a constant C, depending on p
such that

< CpHaaHLw
Lr([0,1])

S
NG

|50

Proof. Let X = —————
Vnl|dally

. By Lemma [3.5.3, A(|X| > t) < min(1,ct™*) then

Xl = [ etax] > e
0

1 o)
< / ptP~Ldt + / ptP et dt
0 1

p
< 1
< +c4_p

=Cy

as stated. O

3.6 Last step

We can now now prove the main theorem.
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Proof of Theorem[3.1.1. Let p €]2,4[. The end of the proof consists in applying Lemma
and Holder’s Inequality. By Lemma [3.5.4]
Zake”k Tl dx +/
0

21 n p 1
ink?z
HSnH[]ip([og}) :/ Zake g de = /
0 k=0 0 k=0
< Glloallinvn,

since both terms in the right hand side satisfy Lemma[3.5.4 Next, we interpolate 2 between
1 and p we thus write

p p

dx

n n

ar emrk T

k=0

I n 1-n
— =4y 3.6.1
5=71% 5 (3.6.1)

By Holder’s Inequality, or equivalently log convexity of LP norms

_ _p 1=m —
1Sallz < 1Sull~1Sall? < G~ 7= [|ally " [ISall7,

but
1Sl z2(0.2n = V2|alle,
then )
_ Emi/} —
lallee < Gy = |0ally ) 1S 0.2
and we get
Cpﬁ 5
1Sulliqoy =2 ——— = llall -

i-n n
n=([Oall

From (3.6.1]), one can write p as a function of 7. Let € > 0, since 0 < n < %, one can write

1
= ——, yielding th It. [
i 5o yielding the resu

3.7 Estimations of the uniform norm

We finish this chapter with two upper bounds for

sup [sn(z,1)]
0<t<1

when z €]0, 1] is a fixed irrational number. The proof depends heavily on the Diophantine
properties x, and is a direct application of Theorem |3.5.2]

Corollary 3.7.1. Let x be an irrational in ]0,1[ and a be a sequence of complex numbers

o
verifying Z lax — ar_1| < co. Then
k=0

1. We have

sup |sp(z,t)| = o(n) as n — oo.
0<t<1
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2. If further x has bounded partial quotients, that is, if the sequence (vg)r>1 is bounded,

then
sup [sp(z,t)] = O(v/n) as n — oo.
0<t<1

Proof. Let M, = sup |s,(x,t)|.
0<t<1

1. Theorem |3.5.2| gives, for n,s > 1:

My _ ool , Cloal/

noT /4 n

but then, for s fixed, by letting n goes to infinity and then s goes to infinity we obtain
the result.

2. Let n be an integer greater than 1. As n > 1 = ¢g, and since (gi)x is an increasing
sequence, there exists an integer s > 1 such that ¢,_; < n < ¢,. Since v, > 1 and by
definition of ¢

0s = Vsqs—1 + Gs—2 < 205Gs—1 < 20,M.
Now the upper bound of the Theorem [3.5.2] gives

|5, (z,1)| < lao|v/n + Cl|0al|y nyv/2vsn.

But since z has bounded partial quotients vy, say |vs| < M, we have

|5, (z,t)] < v/nlldall1.(1+ CV2M),
which is indeed
sup |sn(z,t)| = O(v/n),

0<t<1

yielding the corollary. O
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Chapter 4

Littlewood problem and
non-harmonic Fourier series

4.1 Introduction

In the fifties, Littlewood [26] suggested that, up to a constant, the log function is a nice
lower bound for L!'-norm of trigonometric polynomials having only 0 or 1 as coefficients and
integer frequencies (a question referred to as the Littlewood problem):

12 | N
>

k=0

eQiﬂ'Tth

dt > CIn(N + 1),

where C' is independent of N.

Nearly 40 years later, Konyagin [24], and independently McGehee, Pigno and Smith [27]
affirmed that Littlewood’s thoughts were correct. Both obtained the solution as a corollary
of a stronger result. Here we are interested in the latter result [27] which states as follows

Theorem 4.1.1 (McGehee, Pigno, Smith). Forny < ny < --- < ny integers and ag, . .. ,ayn
complex numbers,
/é iakezmnkt dt > C Si ’@k‘
= VMP 3
=3 | k=0 i

where Cyrps is a universal constant (Cyrps = 1/30 would do it).

The year after, Stegeman and Yabuta independently improved on the result of McGehee,
Pigno and Smith using some modified version of their proof:

Theorem 4.1.2 (Stegeman [38], Yabuta [41]). Let N > 3. Forng < nj < --- < ny integers
12 | N
>

k=0

2imngt

4
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Next, one can ask the same question as Littlewood but for real frequencies. The problem
is quite different since we lose periodicity of the exponential sums as well as the orthogo-
nality. The first result in this direction was by Hudson and Leckband who used a clever
perturbation argument based on a lemma by Dirichlet ([44, p 235], [8]) to prove the following

Theorem 4.1.3 (Hudson & Leckband [14]). For \g < A\ < ... < Ayx real numbers and
ag, . . .,an complex numbers,

1 [7/2 N

im 7 [ 1S

- k=0

20w ARt

areé |ak|
F E+1

N
dt > Cyps Z
k=0

where Cyrps is the same constant as in Theorem [4.1.1]

Not long after, and using the same method, Nazarov [30] showed that one can extend the
estimate to the case of non-integer frequencies. However, and to be able to do so, Nazarov

slightly enlarged the interval of integration; he replaced [—31,1] by [-Z, T] for T > 1.

Theorem 4.1.4 (Nazarov [30]). For T > 1, there exists a constant Cr such that, for

0 < X < -+ < Ay real numbers such that |\, — X\e| > |k — | and ag,...,an complex
numbers,
/T/2 i Qiﬂ)\kt dt > C i ‘ak| (4 1 1)
ar€ = Ur . .
-1/2 |10 o k+1

It is worth mentioning that the constants in Nazarov’s proof are not explicit and that
the problem is still open for T' = 1.

Furthermore, its not clear that Ingham’s counter-example [I5] for the L?-case can be
used to prove that the theorem does not hold for 7= 1. From here, one can see that, when
tackling the problem of finding explicit constant, one should deal with multiple cases.

The first part concerns Nazarov’s theorem for large enough intervals [I7], the aim is to
improve on Nazarov’s proof to obtain a quantitative version of his result, that is an estimate
of the constant Cr. By doing so, one can recover previous results for both integer, and real
frequencies. Moreover, we obtain the best constants known today.

The second part is dedicated to the case where T is sufficiently small i.e T is near 1
[20]. Our aim remains the same, to obtain an estimate of the constant Cp. Combining the
two cases, our main result states as follows

Theorem 4.1.5. Let \y < A\ < --- < Ay be distinct real numbers and aq, . .., an be complex
numbers. Then

1. we have v v
1 [T . 1 |a|
lim — / ape? ™ dr > — .
ii. If further ag, ... ,ayn all have modulus larger than 1, |ag| > 1 then
I 1 [T/? i 2| gy > 4 In(N + 1)
k=0
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1. Assume further that for k =0,...,N —1, A\gx1 — A\p > 1, then, for every T > 1, there
exists a constant C(T') such that for every ag,...,ay € C,

e 2Tkt |ag|
— AR dE > C(T) R (4.1.2)
—T/2 k 0 prdliie
Moreover,
1
(a) for T > 72 we can take C(T) = T35

(b) for 1 <T <2, C(T) =0T —1)"7?).

Remark. For2 < T < 72, (4.1.2)) follows from the case (b) with T' = 2, but the constant
15 not totally explicit.
Let us make a few comments on the result. First, the limit in the statement of the result
N
are well-known to exist and are the Besicovitch norms of Z ape?™ ! Further, when the

k=0
Ar’s are all integers, then

T/2
1i _
T~1>5I’100T /T/2

so that we recover Theorems |4.1.1| and [4.1.2| (with the best constants as of today). As the
constants in Theorem [4.1.5| are the best known for C'y;ps we also recover Theorem [4.1.3
while at this stage, we only recover Theorem for large enough 7" which is due to the
strategy of proof (see below).

Further, note that the left hand side in Theorem [1.1.5i) and i) is unchanged if one
replaces the Ay’s by a), + 5. In the proof we will thus assume that |\, — As| > |k — ¢
(or equivalently that A\g1; — Ay > 1). In Theorem z'z' ) this restriction only affects the
critical T for which our proof works.

12 | N
=X

k=0

ak6217r)\kt

dt

E ag 6217r)\kt

k=0

4.2 Quantitative version for large T

We are going to prove the first part of Theorem {4.1.5 that is i, ii and iii a).

4.2.1 Strategy of the proof

Without loss of generality one can suppose ay = 0 i.e. the sums start from one. This
proof is closely related to the one implemented by McGehee, Pigno and Smith as extended
by Nazarov to prove Theorem [£.1.4] but we here follow constants more closely. Further,
we introduce various parameters which will be optimized in the last step. We fix a (non-
harmonic) trigonometric polynomial

N N |CL |
— 2midt and S =Y Al 421
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We then write |ay| = axuy with u, complex numbers of modulus 1 and introduce

N
U(t) — %6_2m>\kt.
k=1 k
Using the orthogonality relation
1 (72 R
: - 29wt | —2imut _
TLHEOO T /T/ze e dt =9y, (4.2.2)
we see that
1 (T2
S= lim — o(t)U(t) dt. (4.2.3)

The second step will consist in correcting U into V' in such a way that ||V||. < A where A
is a numerical constant (that does not depend on N or T) and so that, for each k,

«Q
< =
—k

/ " (Ut) = V(t))e* ™" dt
—T/2

with a < 1. In particular, if we multiply by a; and sum over k, we get

. 1 T/2
Tlirfoo = /_T/Q(U(t) —V(t)o(t) dt| < asS.
Then, writing
T/2 T/2
S = Tlilfoo 7)o d(t)V (t) dt + TLHEOO T/ o(t)(U(t) — V(1)) dt

we would obtain

1 (T2
S<IVie tim 7 [ 16Wlat+as

that is

T/2
<2 jim l/ ()| dt

1 — o T—+o0 T 7T/2

as desired.

The difficulty in implementing this strategy lies in the fact that one must control ¢, U, V'
over the entire real line. We will instead fix a large T and use an auxiliary function adapted
to [=T/2,T/2] so as to only do the computations over this interval while controlling errors.
Here we will exploit the fact that T is large that allows us to change Nazarov’s auxiliary
function into a better behaved one. The first task is then to estimate the error made when
replacing the limit in with the mean over [—7'/2,7T/2]. The second step is then the
correction of U into a bounded V. This correction is only made over the interval [—1/2,T'/2]
and is roughly done the same way as was originally done by McGehee, Pigno, Smith, but
implementing the improvements made by Stegeman and Yabuta and again controlling errors.

The remaining of the section is devoted to the proof that is divided into three steps, a
subsection being devoted to each of them.
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4.2.2 An auxiliary function and the estimate of U

We now introduce several notations and parameters that will be fixed later:
- a parameter ) 2 2 and the sequence (;);>0 given by By = 1, 8,41 = 8; + ¢’ that is
Z] 1 5k —
We then deﬁne

Dj:{kEZS ﬁj§k<ﬁj+1}
so that |D;| = &7. Note that for every £ € {1,..., N} there is a unique j, € {1,...,n} such
that ¢ € D;,. Further, this allows to write 35, in the form > o > _kep,- Note also that
if k € D;,
1 1
kE+1— k: + 5=
— a sequence of real numbers (A;)x=1. ~ such that for every k,¢ |\, — A\¢| > |k — €| (or
equivalently Apy1 > M+ 1fork=1,...,N —1);
— a sequence of complex numbers (ax)r=1..n and we write |ax| = apur with (ug)g=1
a sequence of complex numbers of modulus 1

< (6 —1)577 (4.2.4)

PP+p pP+p
2 72
We then define inductively o1 = 1_p2/9,2/9 * L—1/2,1/2) and @j1 = ©; * L_1/2,1/9)

Note that, ¢; is even, non-negative and [l¢;|| . < 1 while [|p;]], = p*>. We then define

2
+ . . . .
Y= %gop so that ¢ is supported in I, is bounded by 2 and has Fourier transform

— an integer p > 4 and an interval I, = [— ] of length |I,| = p* + p.

Fle() = /R o(t)e 2 dt = (p? 4 p) SHETA (Sin“)p

P2 TA
We will mainly need that,

_ PPty _ ||
el pea Flel(0) = [I,] and |Fle](A)] < (A (4.2.5)
Finally, we will write
N
¢(t) _ Zakezm)\kt>
U(t) _ Z Zu 6—217r)\kt7
keD;
~ 1
S = ZW > Jal.
5=0 keD;
Note that in view of (4.2.4)),
o o)
k
<(6—-1 4.2.
S <6-1s (4.2.6)
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so that it is enough to bound S.
The following is the key estimate in this section:

Lemma 4.2.1. With the previous notation, there is a p(d) > 2 such that, when p > p(J)
then for 1 <{ < N and j, be the unique index for which { € D;,, we have

Z | ]| Y IFlE =)l < %5_”- (4.2.7)

keD;\{£}

Proof. Write

= 1
E o= D | FLe] (A = o)l
i [Pl keD;\{¢}
n 1 Je—2
= D] > 1Fl) )\eHZ ZU‘“ (M — o)
J=je—1 """ keDj\{£} keD;
For the estimate of E, as |[\x — N\e| > |k — €], |Flo](Ax — Ao)| < L/ and
+ k= A 2 ; e A S T T

|I| 1) Pl c—(jo—1) - —(je—1)
po<lBlyue 37 5 s Al L Al

J=Je—1 keD;\{¢}

1 2
since 0 > 1 and the last series is bounded by Z — = T < 2. It remains to notice that
—m 6
461 44 1
|5 = w* —|—p) — when p is large enough to get
P P 4
§ e
E, < T (4.2.8)

For the second sum, note that it is only present when j, > 2. So, if k € D; with 7 < j,—2
then
=k =B, = Bjp—1 = et

thus 1)
I
IFlel = )l < =<5
It follows that
5 o<Soy Bl 11,
Zo Z p§e—1p < Bi-1 3G e mPUe—1)p
j=0 keD;
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Je—1
since there are at most 3;,_; terms in this sum. But 3;,_; < 51 so that
‘[ |5 —Je 1 —Je
= (5 = 1900 De Y 07t < 15 (4.2.9)
. |£p[0 1 jo—1)(p—2
when p is large enough to have ﬂ < 1 since U~ DP=2) > 1,
7T —
It remains to put (4.2.§ - into (4.2.8) to obtain the result. O
Remark 4.2.2. The proof shows that p(d) is the smallest integer such that
45(p* + p) 1
min(1,§ — 1)7P 4'

For instance, if we choose § = 4, we will obtain p(J) = 8.
From this, we deduce the following:

Corollary 4.2.3. With the notations above, for £ =1,... N

1 - 1
— [ U@ty dt — 2| < — 4.2.10
51, VO = 5 < 210
Proof. Indeed
1 29T At - 1 1 —2im ARt 21T At
p P ]:0 e J p P
1 « 1

= k:f[ (A = Ae)

ke
1 1
= b ”() Y Y wFlp) (A — ).
|| pr| 0|Dj| o

As Flpl(0) = |1, we get

1 : I «— 1
_/ U )P ™ p(t) dt — < < =0 3 s [ Flel(Ae = A
|Ip‘ Ip ode ’[p| i ‘Dj’ ]
=0 keD;\{£}
and Lemma gives the result. O

This allows us to obtain the approximation of S by an integral of ¢(¢)U(t).

Proposition 4.2.4. Under the previous notation

1

1| Ji,

<L -1 U(t)o(t)p(t) dt|.
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Proof. According to (4.2.10)),

1 / , . 1 .
— | Ut)e*™ e p(t) dt — udt| < 5.
| Jr, 2|1,
Multiplying the expression in the absolute value by a,, we get
L/ U(t)ae®™ M p(t) dt — M < o] 5.
Il Jr, §ie | = 2|L
The triangle inequality then gives
! / Ute)et)dt — S| < ——8
— (P —_— ~ — .
| Jr, 2|1,
The result follows with the reverse triangular inequality. O

4.2.3 Construction of V
Before we start this section, let us recall Hilbert’s inequality (see e.g. [3, Chapter 10]).

Lemma 4.2.5 (Hilbert’s inequality). Let Aj,...,Ax be real numbers with |\, — A\g| > 1
when k # £, and let zq, ..., zy be complex numbers. We have

_ N

Zk2e 2

<7 A

)3 Mo— M| Zk:1|’“’

1<k(<N
kAL

We will now decompose U into Dj-blocs f;. More precisely, we set

f'](t) _ Z ukef2i7r)\kt, fj _ _fj

keD, Dl

so that

n

=5 gy e =50
J:

keD; =0

Our aim in this section is to modify U in such a way that we obtain a trigonometric
polynomial V' that is in a sense still similar to U but satisfies an L® bound that is uniform
in N.

We start by estimating the norms of the f;’s:

Lemma 4.2.6. With the above notation, we have

1o\ fillzaer,y < 6792\/1L] + 1;
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2. 1 fjlloe < 1.
Proof. For the second bound, obviously H fillse < |D;| = 7. For the first bound, we have

T / S e TR

Ip k0eD;
[Ip|/2 A
= |1 Z |ug|® + Z Ukuz/ e~ 2m A=At gy
keD; kLeD; [1pl/2
kA

it e=Ae) _ o—ilIplm(As—Xe)

e e
ERIRITIED S uu—( | )

kleD; QZW()\k - )\g)

kA

Now, set 2 = upetII™k 50 that |z,:f| = 1. We have just shown that

} 1 2z
12 111D, Zk:ZE - k=t )
1l = 1D + 5~ TR ves v ) DA v
B J
oy, k0

Applying Hilbert’s Inequality to the last two sums, we get
- 1 1 _
1fillzeq,y < 1l D5l + 5 POREA S 3 Do la P = (Ll + 1Dy
keD, keD;

The bound for || fj||%2( 1,y follows.

Note that the proof also shows that || f;||r2(1,) > 67/2\/],| — 1.
Notation 4.2.7. For a function F € L*(I,) and s € Z, we write
1
15l /s,
for the Fourier coefficients of F. Its Fourier series is then

Z Cp 217r

SEZL

@(F) = F(t)e Tl dt

s

and Parseval’s relation reads

|I| I FEFd= Z|Cp

SEZ

We then write the Fourier series of each |f;| € L*(1,) as

il ZCP 1)) Q’Wup\

SEZL

to which we associate h; € L*(I,) defined via its Fourier series as

hi(t) = (151 +2 3 () f])e
s=1

29
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Lemma 4.2.8. For 0 < j <mn, the following properties hold
1. Re(hy) = |f;| < 1;

2. [hjllz2,) < ﬁHfjHLQ(Ip)'

Proof. First, as |f;| is real valued, c5(|f;]) is also real, and &(|f;|) = (| f;]) for every
s > 1. A direct computation then shows that Re(h;) = |f;| which is less than 1 by Lemma
while Parseval shows that ||A;]l2 < V2| f;ll2- O

FO = fO and Fj+1 = F‘je_nhj_"l + fj+1
where 0 < 7 <1 is a real number that we will fix later. Further set

T 1 T 1
E,:= sup ———— = — sup = .
0<z<1 L — €71 Nocg<yl —e™® 1 —e

Lemma 4.2.9. For 0 < j <n, ||Fj|le < E,.

Proof. By definition of E,, if C' < E, and 0 <z <1, then Ce ™ + o < E e + 2 < E,,.

We can now prove by induction over j that |F;| < E, from which the lemma follows.
First, when j = 0, from Lemma [4.2.6| we get

[Folloc = Il folloo <1< B,
Assume now that || Fj||o < E,, then
Fra@] = B0 40 + @] < Bl ™0m0) 1500
- |Fj(t>’efn\fj+1(t)l + £ @)

As |fi(t)] < 1 and |Fj(t)| < E,, we get |Fj1(t)| < E, as claimed. O

Lemma 4.2.10. For 0 <{<n and j=0,...,k, let gj), = e "+ with

hjii+ ...+ hy when j <k
H;,= . .
0 when j =k

k
Then F), = Z 1395 k- Moreover
=0

VIR

15kl 22,y < 51
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Proof. For the first part, we use induction on k. First, when k = 0, Hyo = 0 thus goo = 1
and, indeed, we have

Fy=fo= fogo,o-
Assume now that the formula has been established at rank £ — 1 and let us show that
k
F, = Z figjk- By construction, we have
j=0
E—1
Fp=Fp e 4 fi, = <Z fjgj,k:—l) e~k 4 £
=0
with the induction hypothesis. It remains to notice that gy, = e "+ = 1 and that,

for j =0,....,k—1, Hjj, = Hj,_1 + hi thus gj = gjr_1e”""* so that, indeed, we have
k
Fy = ijgj,k-
§=0

Next, it is enough to estimate H;j, when j < k in which case

k k
1Hskll2 < Y ellzzay < V2 ) Il

r=j+1 r=j5+1
with Lemma [£.2.8] But then, from Lemma we get

Jj+1

k
_r 0= 2,1 +1) .
WHoplliey < 2000+ 1) S 675 < (20, + 1) _ VALY o

— 512
r=j+1 1 0 \/5 —1

as claimed. n
Next, we will need the following well-known lemma:
Lemma 4.2.11. If H € H*® and Re(H) > 0, then e~ € H* and
le™™ =1l < | H]>-

Proof. Since H* is a Banach algebra, the partial sums Z(—l)k o of e™ are elements
k=0 '

of H*®. Moreover, since H is bounded, these sums converge uniformly toward e ¥, with
e H € H*®. Finally, if z € C and R(z) > 0,

1 1
/ ze_tzdt‘ < / |z]e @ at < |z).
0 0

In our case z = H(t), and we have

e 1] =

le 70 — 1] < |H(¢)

and by integration we have the desired inequality. O]
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Lemma 4.2.12. Let 0 < k <n and 0 < 5 <k, then
1. the negative Fourier coefficients of g;x(t) — 1 vanish so that its Fourier series writes

Gin(t) =1 =3 (gix — 1),

s>0
2| Iy +1)

2. \lgje = Ulr2a,) < UT(S "2,
Proof. When j = k, gxx(t) — 1 = 0 and there is nothing to do. When j < k, R(H, ;) =

k
Z JR(h,) > 0 so from the previous lemma, we obtain the first statement and that
r=j+1

195 = Lllz2cryy = lle™* = lra,y < nllHjwllz2ar,)-

We then conclude with Lemma [£.2.101 O

Recall that

and we set .
V= Fn = ijgj,n
§=0

where the dependence on 7 comes from the definition of the g;,’s. In particular,
Voo < Ey. (4.2.11)
The key estimate here is the following:

Proposition 4.2.13. Let 0 < e < 1, N > 1 and § > e then there exists P such that, if
p > P, there exists n = n(p) € (0,1) such that, for 1 < ¢ < N and j, the unique index for
which € D,

|[—1p| /I (U(1) — V(1)) e iip(t) dt
P11
V26 '

Proof. To simplify notation, we write g; = g;, and V' = V". Then

<ed i (4.2.12)

Moreover, when p — 400, n(p) = Moo =

1 )
R = /. (Ut) = V(1)) eX™ o(t) dt
p p
1 . 1 .
= 0 Y filg = Do) dt+ — | fia(g1 — DeFp(t) dt
ol J1, 05y | Jr,
1 .
+—/ Z filg; — De*™lp(t) dt
5l /1, je<j<n
- R_ + RO + R+
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Let us first bound R_ (which is only present when j, > 2). For this, notice that if s € Z,

e it = [ 3w N 0
IP

= Z u, Fl] ()\r — A+ i) :
|1,
It follows that

Filg; = Vet dt = / Fie(t)e# ™y gy — 1)’ dt
Ip Iy

s>0

2imst

+oo
= Z k(g —1) fj(t)QO(t)e%TrAet-i_Tp\ dt
s=0 Iy

:f;dz(gj —1) S wFl (Ar e m)

T‘E'Dj

> “ricﬁ(%’ —1)F (] <Ar — A\ — IIip!> .

reD; s=0

Finally, we get

— _uricﬁ(gj—l)}_m (A’”_)\é_ﬁ).

As

v 1 V211 +1)/15)]
E (g — D) — 12y < d d
( ’ s(g] )l ) ng HL Ip) = n \/S— 1

we get with Cauchy-Schwarz

R | < p Y20+ DT v L (Z 1

, 2
Vo1 0<5<je—2 D] reD; \s=0 [l

Flol (AT - ﬁ) 2) 1/2.

We will first estimate the innermost sum. We will use the following simple estimate
valid for u > 1:

i’f 1 _1+§ 1 <1+/+°° ds
C(stu)r wr H(stu)r T owr o fg (stu)

1 1 2

uzp + (2]7 _ 1)u2p—1 < u2p—1’

Here u = [I,|(Ae — A;).
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First, for 0 < j < j, — 2, if r € D; then r < ;11 and By < £ < 41 we first get

Sie _ gt A

5Je1
6—1 — 2

[Tp|(Ae = Ar) = | (Be = Bisa) = ||

for all 0 < 5 < j, — 2. This then implies that

e 2l (- )

2

)” :
(I, — Ar) + )™

§—Ge=1)(2p=1)

IA

It follows that

|R-|

IN

1/ ‘[H_ §—Ge=1)(p=1/2)
2. T

0<5<j,—2

n 5\/ |I ‘ +1 1)5—0‘2—1)(17—3/2)5—]'2'
(m/2)7(V/6 —

x> 1,

)
1
Now, simple calculus shows that, when a > 257

(z —1)e™ @Y < ze%9% which is decreasing (in ).

Thus, as > 2 in our case

15U Dr-3/2) <
(]5 )5 — e(p_%)

leading to the bound
2(11p[ +1)
ew=2)(m/2)P (V5 — 1)

It is crucial for the sequel to note that we can write this as

|R_| <n 5. (4.2.13)

|R_| <, 677 with = p, (6) — 0 when p — +oo0.

On the other hand, if j = j,— 1, r € Dj, then |[,|(A\¢—\,) > |I,| and the same computa-
L +1 1

P Vo—1

Ip!

tion gives F, < . Repeating the computation of R_ gives |Ry| <17

We write this in the form .
|Rol < 3 4(6,m)

where p(0,n) — 0 when p — +00.
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We can now estimate 7.

R < / £ 955 — 1] [9(t)] (4.2.14)

£<]<n ‘ p’

lelle > |]—

I fill 2y lgs — Ulz2qay)
|
Je<j<n 7P

IN

2 Pl el s
Vo1 Ll 52
V26 P’ +pl|L]+1
Vo—1© -1 |
V20 pPP+p+1
Vo-DE-1) P

IA

5

IN

Ui

5.

=1

We write this in the form

V26 .
R.|< i L ith i =0
| +|_n<(\/€5—1)(5—1)+“” with T pi,

and conclude that |R| < n (W{% +up> 677 with p, = g, (0) + pp(d,n) + pf — 0

(depending on § and n thus N). O

Remark 4.2.14. An inspection of the proof shows that the dependence of P on N only
comes from Ry. This is harmless when we let p — +00 which then implies |I,| — 400 i.e.
when we prove Theorem i) € i) but is not possible when proving iii). To avoid that
1ssue, one can then bound R_ and Ry + Ry instead of R_ + Ry and Ry. The same proof
works but the price to pay are slightly worse constants:

o
v (r/2p(V5 — 1)
and
262 2 I 1.
Bo+ Ry| <Y pAplhlt

WVo—-1)(0-1) p»* L)

since we can include Ry into the sum (4.2.14) defining R by starting it at j, — 1 instead
of je. The consequence is that the 6 on the numerator of the bound of R, becomes 2.
But then

20/2(|1,] + V202 pPap )
'R'S"(szw TR R )5'
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Taking any

204/2(|Ip|+1) + /252 p2+p+1
P D (rj2r(Vi—1) | (Vo-1(-1) PP
(Vo —1)(6-1)
26\/W(5 1) \/_5217 +p+1

=8 (r /21

will then still give , provided this n satisifies 0 < n < 1.

Howewver, this quantity is too complicated to hope to be able to handle it in an optimi-
sation process. Instead, we will determine the condition on p for the parameter that almost
optimise the case p — +00, namely € = % and 6 = 4. In this case, the smallest possible p
in the first part is p = 8. One can then do a computer check to see that, when ¢ =1/2 and

p > 8, (4.2.12)) is valid for n = 0.058.
Corollary 4.2.15. Under the conditions of Proposition [{.2.13

’[—t' /1 (U(t) = V(1)) b(t)(t) dt| < 5. (4.2.15)

Further, if n = 0.058 and 6 = 4, then for p > 8, (4.2.15) holds for e = 1/2.
Proof. As ¢(t) = Z]kvz1 ape?™ kit suffices to use the triangular inequality and (4.2.12)).

4.2.4 End of the proof
The end of the proof consists in applying first Proposition [4.2.4]

2|1, 1 /
S< oo | Uet)e(t)dt.
2L, = 1| 5| /i,
Then, we fixan 0 < € < 2|2I‘p1|;1 and take n < n(p) as in Proposition |4.2.13|and apply (4.2.15))
to get
2|, 1 2|, 1
S < gt [ OO - Vie)emen ) + gl [ vieme a
ARSI ) -1,
2|, 2|, 1 /
< P _eS v — [ |®(t)]dt
< S gl Hoouso|roo2|f| (1)
2|1, P’ +p 2|5 /
S ()] dt.
S TAES AR AR AN
We thus obtain from (4.2.16]) that
2|I,| ) PP +p 2| 1
1-—F2—¢)S5< E,— [ [®(t)]dt. 4.2.16
(- a1 ), ) 1210
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Taking 0 =4, ¢ =1/2, p > 8 so that T'=|I,| > 72 and n = 0.058, (4.2.16|) reads

2 x (72)? 1 1 [1/2
S < - (1) dt.
= 71x64 1— 670'058 T /T/2 I ( )|

From (4.2.4), we finally get

=z

<3 X

k+1— 64 x 1421 — ¢ 0088 T @M dt < = ()] dt
k=1

(144)2 1 1 /T/2 122 [T/
—1/2 T J 7

establishing Theorem W.1.5(ii).
We will now establish Theorem |4.1.5(). To do so, let p — +oo in (4.2.16]) to get

1 T/2
lim ~ / D (1)| dt. (4.2.17)

(1—-¢)S<

This relation is valid for every 6 > 1, every 0 < ¢ < 1 and every
0—1)(vo—1
yer =D
V26

By continuity, we can thus replace 1 by 7, in (4.2.17). Further, we may use again (|4.2.4]
to get

|CLk| < 6—1 r/2

— E+17— (1—5)(1—6*’700) T—>+O°T/T/2

i\t
Z%

It remains to choose the parameters ¢ and € so as to minimize the factor of the Besicov-
itch norm. A computer search shows that

(4.2.18)

0—1 B 6—1
(1=)(1 —em) (1—e)(1—e "7V )

takes its minimal value ~ 25.1624 for some ¢, with 0.4768 < ¢ < 0.4772 and 3.70 < § <
3.75. This gives the claimed inequality

=z

1 [7/2 N

k=1 - k=1

20w At

dt.

ar€

A somewhat better estimate is possible when |ax| > 1. Indeed, in this case we proved

in (4.2.17) that

1 1 [T
n+1< lim —/

G-1(/o-1) o
(1—e)(1—e va o) Tt Jorp

20T\t

dt.

ar€
k=1
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(5n+1 _
But n was defined as N = f8,,1 — 1 = 1 1 that is
(140 —-1)(N+1))

1 =
ne Ind

since 0 > 2. We thus have

Iné 1 [T
In[l + (§ — 1)N] < R lim —/

N
20T ARt

dt.

ae
k=1

and we are looking for €, that minimize

Iné

1) (Vo
(1-e)(1—e " Vi )

and for the value of this minimum. The best value we obtain is 7.714 for ¢ = 0.28 and
d = 89.254 which is essentially the same value as in [3§] (note that 1/7.714 = 0.1296 is the
value given there).

We then obtain the following: if |ax| > 1, then

N

ake2’m’)\kt

dt > 0.1296In(1 + 88N).

4.2.5 Further comments

First, the inequality for a fixed T implies the inequality for the Besicovitch norm. This
follows from a simple trick already used for Ingham’s inequality. Indeed, once we establish
that

%”§:2Wt ﬁﬂ%
O()/ ag€ AR At Z

~To/2 | =1 okt
for some Ty > 0 then, changing variable ¢t = t; + s we also have

t0+T()/2 N
%/
to—To/? Z

k=1

N

To/2
mzc/
’ ~Tp/2 Z

k=1

62i7r)\kt 62i7T>\kt0 62’i7l')\ks

Qg ag

N
|ax]
dSZ;kJrl'

Next, for any integer M, covering [—M Ty, MTy| by 2M intervals of length Ty, we get

MTy | N
“ /—MTO Z

k=1

N
|ax|
dt > 2MZ .
k1

eQiTl’)\kt

Qg

Dividing by 2M and letting M — 400 we get

N

1 T/2
CoTp lim — / Z

T—+o00 T —T/2 1

ak€2m)\kt

N
|a|
dtz;kﬂrl'
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In particular, Nazarov’s result also implies the result of Hudson and Leckband (but with
worse constants).

As said, the proof is an adaptation of the proof by Nazarov. The main difference is
that we use an auxiliary function ¢, that depends on 7' = p? + p and exploit the fact that
p — 400 to obtain the numerical constants.

There is a major difference between the sums that appear in Ingham’s Theorem [2.1.3
and those that appear in McGehee, Pigno, Smith and Nazarov’s Theorems [£.1.4] In
the L%-case, the sums can be two sided and not in the L!-case. Indeed let 7' > 1 and
consider the Fejer kernel

N
F _ 1 o |k| 2imkt
——N

then, as Fly is a positive function

1 (% 1 7| +1 (2
— [ Py dt < = Fy(t)dt < Fy(t)dt <2 4.2.19
p [ mas g [ Eas S s (12.19)
since )
/QFN(t)dtzl
_1
But
N ok Sk 2
Z N+l > 2 N+l > —— — 00 as N — oo,
1+ |k 1+k E+1
k=1 k=1
since e 1 N+1
— > - f <
Ni1ogp lor k 2

In other words, one cannot find a constant C, independent of N such that Nazarov’s (or
M.P.S) theorem holds. However we have seen in Corollary that a slightly weaker result
holds

Remark. In the proof of Corollary the constant depends also on T'. However since
we are applying the corollary for T > 72 and the function T — Cq is decreasing (when T
is large Cr is bounded uniformly), we get a constant which depends only on 1.

4.3 Quantitative version for T near 1.

In the previous section, we investigated Nazarov’s theorem when the length of the interval
is large enough. In this section, we will look at the opposite case. Let 6 >0 and T'=149
(this § has nothing to do with the parameter § used in the proof of the remaining part

of Theorem {4.1.5). We are going to prove the second part of Theorem il i.e. a
quantitative estimate of Nazarov’s theorem.
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To do so, we will follow the same steps used by Nazarov to prove Theorem [4.1.4] however,
we will explicitly define a slightly different auxiliary function ¢ which will allow us to follow
the constants more closely. Some proofs are similar to the previous section and hence we
will omit some details and where appropriate, refer to previous proofs.

4.3.1 An auxiliary function and the estimation of T

First, we start by some preliminary notations and results. Let § > 0 and I = [5 :=
- 1'557 22
Let us fix (Ag)k=o,.nv C R with A\pyy — Ay > 1 for every k, (ax)r—o,. .~ a sequence of

complex numbers and write |ay| = aguy with |ug| = 1. Let

Pl ) = CsS. (4.3.1)

We define

where Nj is a large integer that we will adjust through the proof. This integer will be of
the form N5 = 2™5. We will prove that

@1 (ry = BsSs (4.3.2)

and, as k + N5 < (k+ 1)Ns, S5 > ]\% so that we obtain the desired inequality with
a constant Cs = &.
Ns

The meaning of Ny is the following. Consider:

— a new sequence of frequencies (5\ )jez such that )\ = A\j_n, for j = N5,...,Ns+ N.
andthen)\ = X +J — N; for j < N; and A; —/\N+j—Nf0rj > N + Nj. Inpartlcular
we still have |)\j+1 i ;| > 1. In other Words the sequence (\;);—o,.. n is completed into a
sequence () ez that is still 1-separated and then shifted by Njs.

— A new sequence of complex numbers (a;);ez with a; = a;_n, for j = Ns,...,Ns+ N
and a; = 0 for other j’s. In other words, the sequence (a;);—o,. ~ is completed into a
sequence (a;);ez by O-padding it and then shifted by N;.

Then (4.3.2)) reads
/ S 4 Q2imht
Is

JET

with the convention that 0/0 = 0.

w2 By oty e
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Note that, up to adding 0 terms at the end of the sequence a;, we may assume that
N + Njs is of the form 2" — 1 for some integer ngs. This will allow us to write

N

IEDIDS

k=0  j=ms 2i <r4+Ns<2i+1

Next, as in Ingham’s proof, we will introduce an auxiliary function. Again we consider

cos(mt) if [t < 3

h(t) =
0 otherwise
whose Fourier transform is given by
~ 2 cos(mA)
h(\) = — .
() w1l —4)\2

We will need to smooth a bit this function to obtain a better decay of the Fourier transform
and thereby slightly enlarge its support. More precisely, let p = 10, ¢ = 8 and let

p+q
=29
1s(?) 5 - or e Tor) (t
and define
95 = *pyqfs,

where %1 denotes the k-fold convolution of 1 by itself. More precisely,

ra(z) = /w bz —t)d

and, for £ > 2,
(k1) = *xt) * 7).

Clearly gs is non-negative, even and with support [—g, g} Finally, we define s as

™
s = 5l gs. (4.3.3)

In the following lemma, we list the properties needed on ys. They are all established
via easy calculus and straight forward Fourier analysis.

Lemma 4.3.1. There is a c¢o > 0 and a 69 > 0 such that, if 0 < § < dg then,

_ cos(m\) TOA
1 \) = p+q
P =T e <p+CJ)’
T
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3. Let Ds = 005_% > 1 and v > 0 then, for |A\| > max(l, D(;VP%),

) p+q
4. Let s = (sinc ) then, for |\ > 1,
p+q

80

From now on, we will assume that 0 < § < % < 1 so that Ds > 1. In particular, when
IA| > Ds, we have |Z(\)| < |A|73.

Proof of Lemmal[{.3.1. The first one is simple Fourier analysis.
For the second one, we write

s ™
loslloe < Sllgsllililloe < ST Al

and use simple calculus to conclude.
For the third one, we notice that 4\? — 1 > 3\? when \ > 1 thus

. oA 2p
G| = SN (G L (pr g\ g L1 v
AN 1\ =™ =3\ 7 [A[PF2|AJe — [AJe

p+q

ptq p+q
1 pr2 1 g
since [A] > — (p i q) §~» 3y thus we get the result with c = (p ki q) :

1
352 s 3542 7r

7r
For the last one, we take 8, small enough to have sinc —— = SUp;ss, | sinct| and then

|g5(\)| < 75 when |A] > 1. The first identity allows to conclude. O
We can now state the first crucial result in this proof.

Lemma 4.3.2. There exist 6; > 0, ¢; > 0 such that, if 0 <6 < 1, 0 < 162 <1 — Vs

Moreover, let
Vs
=1- 24—
(6% (01 + 1— 0152)

Ny =2ms > §77/2,

and let mgs be such that

Then, for 0 < k < N,
Z [P =M 1 —as
j+N5 _k—l-Ng'

0<j<N
77k
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Proof. The Taylor expansion when § — 0 of 1 — /75 is of the form
1— /s = A8 + O(8Y),
with A > 0. Thus, if ¢; < A, for ¢ small enough, 0 < ¢;6* < 1 — ,/75. Next, notice that
Vs
0<1—
(B+1—B

note that there is a K > 0 such that

<1if0 < B <1— /75 which shows that 0 < as < 1. For future use,

a5 = K62+ O(5Y). (4.3.4)

We will further assume that ¢ is small enough for

67 > max (c;gtédﬁg, 62(52%) = max (cl_gtéé_g, @5_7/2)
1
since we have chosen ¢ = 8 and p = 10.
Note that, for every ¢ > 0, the power 7/2 could be reduced to 3 + ¢ by taking p large
enough, but could not be reduced below 3 with this construction.
We can now turn to the estimate itself. Set 3 = ¢;6% and split the sum in the left hand
side of the main inequality into two sums

odon I TN
J#k
where SO
B, = Z |90(. i~ )]
. J+ Ns
J+Ns<(1-p)(k+Ns)
and S
B, — 3 6 = M)l
. J+ Ns
J+Ns=(1-8)(k+N5s)
itk
The result is obtained if we prove the estimates
5 vs/(1 = B)
E < t By < —————=,
SEEN, O TP RN,

Now, as Ny > 0—05_2_%3, BNs > Ds. Then, if j is an index corresponding to F,
C1
A — Al = |k —jl = (k+ Ns) — (j + Ns) = B(k + Ns) > BNs > Ds

hence, from part [3| of Lemma (with v = 1),

~ 1
D D [N DR v

J+Ns<(1—pB)(k+Ns) J+Ns<(1—pB)(k+Ns)

1
< —_—
Z)(kwa) (B0 + N))

J+Ns<(1-8
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But, E; contains less than k terms so

k 5—(q+1) B B

E < < 4.3.5
"= k4 Ny (k+Ng)i2k+ N;s — k+ Ny (4:3.5)
since N5 > 8™« - = T 25_2q+1
We shall now bound F,. In this sum,
J+Ns> 1 —=p5)(k+N;s) and |N—Ne| > |7 — K|
Then
1 Vs
Ey, <
=Bk + Ny) ZN 10y — W
7k
Vs 1
< ‘—
=S T=AkTN) K]Zwm By
J#k
Vs — 2
< .
— (1= B)(k+ Ns) ;462— 1
2 1 1 1-—
Since = — , we obtain the expected bound Fy < M. O

47 -1 20—-1 2041 k + Ns

The following lemma is a first step toward proving the last part of Theorem iii and
is a consequence of Lemma [4.3.2]

Lemma 4.3.3. Let us use the notation of the Lemmal[4.3.3. Then,

/1 5 Ts(t) (i 22””) t)dt

(4.3.6)

k=0

Proof. By definition of Ty,

N
T (2™ () df — Uj /6—2i7r/\jt62i7r)\kt Dt
| o) i (1)
N
] ~
= Z PN — Ar)
= ]+ N
D Dl A
= PN = An)
k + N OSjSN‘] + N,
i7k

thus
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By applying the Lemma we obtain that

11—«
27,7r)\kt tdt— Uk )
‘\/1\5 ) k+N5 - k+N5
It follows that
) 1«
Ts(H)ane®™ Mto(t)dt — Ukak O \a
| Bttty — O <

Using the fact that ugay = |ag| and the triangular inequality, we obtain

/I Tg(t) (Z ak€2i7r)\kt> Z

k=0

from which the lemma follows immediately. O]

4.3.2 Construction of T(;

Recall that we defined D; = {k € N : 2/ <k < 27"}, From our assumption on N; and
N, we can write

N
_ Z —217r/\kt Z f
J
k=0 Jj=ms
with u
3 t — T —2i7r)\7~t'
f]( ) Z r + N5€
T—‘,—NgE'D-

Next we estimate the norms of the f;’s. Lemma {4.2.8| (with § = 2 ) also shows that
Lemma 4.3.4. For ms < 7 < ng,
L fillay < 278 /T] +1
2 filloe < 1.
We then write again the Fourier series expansion of |f;| € L*(I5) as
|fil = Z%a‘@%ta
SEZ

and define h; € L?(I5) via its Fourier series expansion

h]<t> = Qp,j + 2 Z CLSJGZ\ZIIS\W

s=1

Lemma 4.3.5. For ms < 7 < ng, the following properties hold

75



Quantitative version for T near 1. CHAPTER 4.

1. Re(hy) = |f5l;
2. |Ihlla < V2| fil2
3. hj € H>(I5).
This is the analogue of Lemma [4.2.8] the proof is quite similar, hence we will skip it.
We now define a sequence (F});>m, inductively through
= fing €t Fjpq = Fye™™ + fi

where 0 < € < 1 is a small parameter that we will adjust later. Further set

x 1 x 1
E.:= sup —— = — sup = .
0<z<1 1 — €7 ggcpcel—e® 1 —e7¢

From the next to last identity, it is easy to obtain the following simple bound:

1 2
- <E.<Z
€ g
Lemma 4.3.6. Let ms <n < ns. For j =ms,...,n we define gj, = e~=Hin with

hj+1—|—...+hn ifj<n
Hj,n: i . .
0 ifj=n

J

20+ 1),

Then F, = Z fiGim with |Fyllse < 2. Moreover ||Hj, |z < 51

Jj=ms

VILI(v2 - 1)

2([L[+1)

2(|1s] + 1)
1. ||9j,n — 12 < 5||Hj,n||2 = T

Lemma 4.3.7. Assume that 0 < e < Then, for ms < j <n < ng,

J

€272

2. The Fourier series of gjn(t) — 1 writes g;,(t) —1 = Z Cs ;€ Uk , with Z lca ;2 < 1.

s>0

Proof. By Lemma4.2.11] ||g; — 1||2 < €[|H/||2. Then, since g;,, is analytic, its Fourier series

writes .
g](t) — 1= chge|15| st

s>0
But then, with Parseval
: £ e 2L+
\Cs,j\2> = lg; = 12 £ —==I[IH;ll> < 2722l
(Ser) = VS
which implies the claimed bound. [
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Now recall that

ij

ms<j<ns
and define
Ty = F,,.
In particular, from Lemma |4.3.6, we have
- 2
T5loe < = (4.3.7)

The key estimates here is the following;

Lemma 4.3.8. Once again, we use the notations of the lemmal[{.3.2. There exists oy > 0
such that, if 0 < 6 < 99 and Ng > 5772 then

/ Z a eQzﬂAkt dt
Is

where @ is the function defined in (4.3.3)).

N

2
ggz

(4.3.8)

Proof. 1t is enough to prove that, under the conditions of the lemma, for 0 < k£ < N we
have

(4.3.9)

[ @ =Tyt di

‘ 2 as
Is

o 31{:—|—N§

Once ([4.3.9) is established, it will then be enough to multiply the left hand side by a; and
to use the triangular inequality.

We fix k € [0, N] and let ¢ be the index such that k + Ny € D,. We define R, R; and Ry
as follows

R = / (Tss — Top) (™ oo(t) dt

/ > i) (g(t) — 1)t dt + > Fit)(gi(t) — 1)) dt

ms<j<f—2 Is p_1<j<ng

= R1 + RQ.

We will first bound R;. Note that if s € Z,

; Zim g i (— s
fiDp(t)e ™ et t - = / > o(t)e AT g
Is Is r+ N5
+NseD

U s
= O\ — A — ——
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From this, we obtain

. . 2ism
| £ = Dot dt = [ [ ™Y el dt
] 5

s>0

I . 297
= > [ et
s=0 Is

—+00

So finally we get

R1 = Z Z . _T;LTN(S ch’ja()\r — >\k: — ’[_85|)

ms<j<l—2 r+Ns€D; s=0

Let ¢5(r) = ¢, if 7+ Ns € I;. Since @ is an even function, we can write

[e.e]

Uy ~ S Uy
Ry = s A — A + =) = E,.
1 Z r_,_NéZC(r)(P( k +|[5|) Z r + Nj

2ms <r+4+Ns<2¢—1 =0 2ms <p4+Ng<2¢-1

From Lemma [4.3.1] recall that, with Ds = 00572% and v = for

as
|]5|1/q ’

|A| > max(1, D(;I/_Ti?),

we have N
P\ < —2—. (4.3.10)
(Hsl[AD9
Now, s >0, |I5] > 1 and, as r + N5 < 2°71, 2 <k + N5 < 21\, > )\, thus
11| )\k—)\T+|[—S|‘ = L= A F s> A=At s>k —rts (4.3.11)
é

= (k+Ns)— (r+Ns) >20 =207 =207 > gme—t,
Further, from (4.3.4) and 1 < |I5| < 2, D(;z/_pﬁ < 035_;7;51;2 = 30713, Thus, choosing my
sufficiently large for N5 = 2§~7/2 and 6 < §, for some J, > 0 small enough, we are able

to apply (4.3.10)) and obtain, with (4.3.11]) that

S Qs

GO — A+ )< B
|90( k ‘L;|)|_ (/{Z—T—i-S)q
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We can now bound E,. Since Z |lcs(r)|* < 1, the previous bound and the Cauchy-Schwarz
5=0

fle-ro )= (S )

inequality give us

B <> Je(r)
s=0

IA
S
A~
LM
%[~
5
—
IS

a5

o gp\ /2
< — = .
= (/krl t2q> V2q =TIk —r—1)11/2

But/f—r>2g_ilthenk—r—122E_1. Since k+ N5 € Dy i.e 2¢ < k 4+ Ny < 201 we

¢ < d th
o 1Sk,

4‘]71/2&6

V2q —1(k + Ny)—1/2"

|E| <

Finally, we deduce that

U E
Rl = | ¥ P D N oo
r 4+ Ns r + Ns
275 <y 4 Ng<20—1 275 <y 4 Ny<20—1 275 <y N<26—1
4‘1_1/2045 O 1

V2¢ — 1(k + N5)a=3/2 = 3 k+ N;’

since the last sum has at most 267! < k 4+ Ny terms.
We will now bound Rs.

Rl < 3 [ 150100 - 1)

1—1<j<ns

< el D fillallgs = 1l

{—=1<j<ns
According to the Lemmas (1) and (1) we get
V2(2 +9)
Ral < llollee =72 > 27
B 1—1<j<m

since

Z 2_3 < f: 2_3 — 2—Z+2 — 8.2_(€+1)

(-1<j<ns j=t—1
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1

1
and k + Ns € I; then 51 < A Consequently
D
~1<j<n; + N
Finally, we deduce that
V2(II;| +1) 8
R < el 200 2 D
V2—1 k+ Ns
1 (V2 —1)

as. ]

and we obtain R S — when ¢ <
<3N 2419l (73] + 1)v/2

Note that, from and |I5] < 2, we can take e = 462 for some ¢4 > 0.
It is now easy to deduce part it of Theorem using the 2 inequalities (4.3.6]) and
(14.3.8]).

4.3.3 End of the proof
il N
Proof of Theorem_ iii (b). Let S5 = Z TN and P(t Zakem”kt as previously
J k=0

defined. Recall that in (4.3.6) , we have shown that
asSs < | [ Tattolt)o(t)d

< [~wwwmwa+

[«mw—%@w@mwﬂ

< [wawwww+3%&

3
with (E33).
It follows that
3 .
s < 2| [Twosa
Qs | Jr
3(| T oo Il 0
< el [ 01
as Is

But, if § is small enough and N5 > §~7/2,

— from Lemma 4.3.1} ||¢||c0 < g;
— from (4.3.4), as = k6% + O(6?)
—as e = 407, from [@37), [Tl = 5
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Therefore, there are two absolute constants ¢, and ¢, such that, if § < d,, then

Ss < < [ (1) dt.

=5,
As noticed at the start of the proof, this implies that
N
k=0

for every N, every sequence of real numbers (A\;)g>o with Agy1 — Ap > 1 and every complex
sequence (ag)g>0- O

146

ol o [
E+1~ 5% 1+6

2

20w At

dt

N
ap€
k=0

4.3.4 Further comments

Let us make a few comments.

e We have not fully optimized the proof, by taking ¢ sufficiently large and p/q sufficiently
large, one can replace §'%/2 by §7t" for any fixed 7.

e One cannot seek any gain by changing the choice of gs since the function should be
even and verifies g(0) = 1.

e Changing the dyadic decomposition i.e the intervals I; will only change the constant

A in (4.3.6). Thus it will not give any better result.

e The result depends heavily on the choice of ay. But from the (4.3.4]) we deduce that
the best choice is of order 2 (we cannot go below the power 2).

Hence, using this method, this is the best result we can aim to.
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Chapter 5

On L!-norms of non-harmonic
trigonometric polynomials with
sparse frequencies

5.1 Introduction

The aim of this chapter is to establish a lower bound of L'-norms of non-harmonic trigono-
metric polynomials with sparse frequencies [I8]. The results are then applied to obtain
L'-observability estimate of certain PDEs, including the free Schrodinger equation. We
thus obtain L'-analogues of a result of Kahane [22] and Haraux [11] on the L?-norm of
sparse trigonometric polynomials while the L2-observability result was previously obtained
by Jaming and Komornik in [19].

Let us now be more precise. We first recall the well-known results in the L2-setting.
The celebrated Ingham Inequality gives a lower and upper bound of L?([—T,T])-norms of
(non-harmonic) trigonometric polynomials and is stated as follows:

1
Theorem 5.1.1 (Ingham [I5]). Let v > 0 and T' > —. Then there exist constants 0 <

Y
As(T, ) < Bo(T,~) such that
— for every sequence of real numbers A = { A\ }rez such that A1 — Mg > 75
— for every sequence (ay)rez € (*(Z,C),

1 [T/2 A
AT P <3 [ 1S aerm

keZ —T/2 | ez

2

dt < By(T,7) ) |axl*.

keZ

Note that As(T, ), B2(T,~y) are explicit constants (see [23, 20]). Ingham has also shown
that the upper bound is valid for any 7" > 0 while the lower bound may not be true for

T < —. In his seminal work on almost periodic functions [22], Kahane has shown that this

g
condition can be lifted if A\yy; — A\p — 400 when k£ — +oo:
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Theorem 5.1.2 (Kahane). Let A = {A\g}rez such that \gr1 — A\p — 400 when k — to00.
Then, for every T > 0, there exist constants 0 < Ay(T,A) < Bo(T,A\) such that

1
A T,A akQS_/ a627,7r)\kt
DR ) o

k€EZ keZ

2

dt < By(T,A) ) |axl?

kEZ

holds for every sequence (ag)rez € (*(Z,C).

The constants are not explicit in [22], they were later obtained by Haraux [11] (but with
constants that are difficult to compute explicitly, see e.g. [23] 20]).

Those inequalities have found many applications in control theory. Among the numerous
results (see the book [23] for a good introduction to the subject), our starting point is a
result of Jaming and Komornik [19]. To state it, let us introduce some notation. We write
T =R/Z and H*(T) = {f € L*(T) : > cz(1 + |k[*)?|ce(f)|* < oo}, where the ¢x(f)’s are
the Fourier coefficients of f. Then the following holds:

Theorem 5.1.3 (Jaming and Komornik). Fiz (t;,21) € R*, a € R and T > 0. For
ug € H*(T), let u be the solution of

1 ‘
Up = —Ugy m R x T,
27

u(0,z) = up(x) forx e T.

i. There exists Do(T,a) such that, for every uy € H?*(T),
T
/hmﬁ¢%+mmﬁgmgmwmé
0
. If a & 7, then there exists Co(T, a) such that, for every ug € H*(T),

T
CQ(T, Q)HUOH%Q S / |U(t1 + t, T+ Clt)|2 dt (511)
0

also holds.
iii. If a € Z, then there exists ug # 0 such that u(ty +t,x¢ + at) = 0 so that (5.1.1) fails.

Let us sketch the proof. If we write ug(z) = che%’r’“’” then the solution of the
kEZ
Schrédinger equation can be written as a Fourier series u(t, x) Z cpe2 ™ k) and the

kezZ
fact that ug € H?(T) implies that this series is uniformly convergent. One can thus restrict

it to a segment:

2
u(to + t, o + 2at) E :c 2Tk (to-+) +2imk(z0+-2at) Z ), 2t
keZ keZ
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Then one shows that the \;’s are such that Kahane’s theorem applies (provided a is not an
integer). Our aim is to extend this argument to the L'-setting.

The first task is thus to obtain an L!-version of Ingham’s inequality. An L' —/{ estimate
was obtained by Ingham [15] (and is an easy adaptation of the L*-proof) and a much more
evolved L' to weighted ¢!-inequality was obtained by Nazarov, inspired by the proof of
Littlewood’s conjecture by McGehee-Pigno-Smith. The results are as follows

Theorem 5.1.4. Let (Ap)gez be an increasing sequence of real numbers such that there
exists v > 0 for which A\gr1 — A > 7y for every k. Let (ax)rez be a sequence of complex
numbers.

e Ingham [16]: For T >
N>1,

1
—, there exists a constant A1(T,~) > 0 such that, for every
Y

T/2
A(T,v) . lax] < = /

E ay 6217r/\kt

T/2 [T

1 .
e Nazarov [30]: For T > —, there exists a constant Ay(T,~) > 0 such that, for every
g

N>1,
1 /T/2 N
< =
T J 1) Z

k=0

=

2i7r)\kt

dt.

are

1
Ingham established the first inequality for 77 > — in [I5] and improved his result in
Y

1 1
[16] showing that it also holds for T'= —, and that one may take A;(T,7) = 5 This was

further improved by Mordell [29]. There is a major difference between the two inequalities:
the right hand side in Ingham’s inequality is generally much smaller than in Nazarov’s
inequality (e.g. take |ag| =1 for all k£ then Ingham provides a constant lower bound while
Nazarov provides a logarithmic one). On the other hand, in Nazarov’s inequality the sum

starts at 0 and may fail for symmetric sums. Also its validity for "= — is an open question.

This result is sufficient to partially extend Theorem to thePyLl—setting. The only
thing that would be missing is that in Theorem [5.1.3] there is no minimal time needed
thanks to Kahane’s extension of Ingham’s inequality. However, so far this is unknown in
the L'-case and our first result is precisely to prove this:

Theorem 5.1.5. Let A = (A\p)rez be an increasing sequence with A\j11 — Ay — +00 when
k — too. Then, for every T > 0, there exists a constant A;(T,A) > 0 such that, if
(ax)ren C C is a sequence of complex numbers, and N > 1, then

N T/2 N
<7 [onl

k=0

20w ARt

age dt. (5.1.2)




Proof of Theorem [5.1.5 CHAPTER 5.

1
If further Z —_—
vz Lt Al

every (ag)gez C C and every N > 1,

converges, then there also exists a constant A(T,A) such that, for

HTARL) ¢, (5.1.3)

T/2
A (T, A) . Inax N\ak| < —/ age

The main difficulty in the proof of this result is that both Kahane’s and Haraux’s
argument cannot directly be adapted. Indeed, both use in a crucial way that in Ingham’s
inequality the L?-norm of a trigonometric polynomial is both lower and upper bounded by
the ¢2-norm of its coefficients. In the L'-case, the upper bound is in terms of the ¢*-norm of
the coefficients and does not match the lower bound. Instead, our proof uses a compactness
argument so that we do not obtain an estimate of A;(v,T), A1(y,T) in this case. It would
be interesting to obtain such an estimate.

Finally, we apply this result to an observability inequality for the Schrédinger equation.
We show the following: take ug € H*(T) and write its Fourier series ug(z) = Y, cre® ™.
Let u be the solution of

Up = — Ugy in R xT,
u(0,2) = up(x) for x € T.
then, for every a ¢ Z and every T' > 0, there exists a constant C'(a,T’) > 0 such that

e |k
— u(tog +t,xg + at dtZCE :
T/o [ulto 1,0 + at) £ T+ k]

Similar results are then obtained for higher order Schrodinger equations.

5.2 Proof of Theorem [5.1.5

First note that replacing the sequence (A;)rez by a translate Ay + A, leaves ((5.1.2)-(5.1.3))
unchanged. So there is no loss of generality in assuming that A\g > 0 > A_;. We now fix
T > 0.

2
Define K to be an integer such that, if |k| > K, A\gr1 — g > T As a consequence, from

Nazarov’s inequality, the following holds for every sequence (by)rez and every N > 0:

T/2 T/2
_/ / Z bk K€2’L7r)\k+Nt
T/2 T/2

k=0

( ) i: ’b’“”(‘ (5.2.1)

() 548

K+N
217T)\kt

dt

k=K
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While Ingham’s inequality shows that

— / bre® ™ At > A, (T, T) b (5.2.2)

2 K<|k <K+N
T/2 K<|k|<K+N ‘ |

We first prove . To do so, we will adopt the following convention. An element
of CV will be indexed starting at 0, z = (zp,...,2ny_1). It will also be considered as an
element of CM, for M > N as a sequence (2;)x>0 by setting 2, = 0 for K > N. An element
of C¥ is thus called a vector or a sequence. On C¥, we introduce two norms through

N-1

||
H(a(b s 7aN71)”£}\}—1 - Z 141k
k=0
and
N— 1 T/2 N—-1
”(Clo,.. , AN-1 HLI = Z 2z7r/\kt — _/ Zake%ﬂ)\kt dt.

k=0 1 T =T/2 | .=
(=7/2,1/2]) 0

The first one is clearly a norm while for the second one, it is enough to notice that the set
{t — ¥} g is linearly independent in L'([-T/2,T/2]).

As ||| ¢~ and Il |l 11, are both norms on the finite dimensional space CV, they are
equivalent. Thus there are ky < 1 < Ay such that, for every a € CV,

exllally < lally, < Avllall g (523

Nazarov’s theorem asserts that one may choose xy independently of N provided T is large
enough. Our aim is to show that this is possible for every T" under our additional condition

on (/\k)kZO‘
Assume towards a contradiction that this is not the case. Then, for every integer n > 1,
there exist an integer K, and a™ = (a\”, ... a% _,) € CXn such that [ja™ H o1 =1 while

1
|a™|| ri. < —. The first observation is that K, — +oc otherwise, we would contradict

(5.2.3) when n is large enough. Hence, without loss of generality, we will assume that
2
Kny1 > K, > K for every n, where K was defined such that if |k| > K, A1 — A > T

Next, we split a(™ into two vectors

™ = (agn), . a%) 1+0,...) and agf) —q™ _ ™

With an obvious abuse of notation, we consider that a'™ € CX. In particular ||a )|| At <

(n)

Ha_ He}(»—l < 1. Thus, up to taking a subsequence, we may assume that >’ — (ag,...,ax_1).

Nextn, define the following functions
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1. The functions ¢™ given by

1 , :
so that ”Sp(n)HLl([*T/Q,T/ﬂ) < ﬁ — 0 z.e. gp(”) — 0 in Ll([—T/Q,T/Q])

2. The functions go(,n), p_ given by

k=0 k=0

This functions are in a finite dimensional subspace of L'([—T/2,T/2]) so that the

convergence aggn) —s ay for k = 0,..., K—1 implies that o™ — ¢_ in LY[-T/2,T/2)]).

3. The functions

Ky
k=K

Note that go(f —> —p_ in LY([=T/2,T/2]). On the other hand, for n > m we can apply
(-2.1) to 4,0( - g0+ ) leading to

e (m) e ” (m)Y 23
7o -emia = o[l - o) ar
~T/2 T/2 |2 K
Kn (n) (m)
> A (T. = -~ 1
> ,T)z

k=K

Using also that a,(cn) — ay for k=10, ..., K—1 this shows that ( EC ))
in the Banach space

150 18 @ Cauchy sequence

2 = L 00l =3 A
k)k>0 - k)¢t . k—|—1 .

k=0

(n)

In particular, (aj, — (ax)g>o in £271. This implies that, for all &, a ) —5 4y and that

)kzo
1= a® g = [ s > aflos.

We will thus reach a contradiction if we show that a; = 0 for all k.
To do so, we introduce further functions via

: : 1 |
o (x) = / ot (t)dt and ®_(z)= / o (t)dt = o %(emmkx ).
0 0
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Note that as ¢ — +¢_ in LY ([-T/2,T/2)]), o — +&_ uniformly over (—T/2,T/2]
thus also in L*([-T/2,T/2]).

Next, as (Ay)nen is increasing with A\g > 0 and A, — A\, — 400, there exists a > 0
such that A, > a(n + 1). It follows that

—<
A —

+
%L boo and Z’% %l Z'“’“ ul g

k+1 — k+1

b

1<
o}

TTMg

e
Il
o

As ‘62”)"“1 — 1] < 2, it follows that

(n

n 1 = ITA LT 1 Ooak’ ITA LT
00 g B e Sy

where the series defining @, is uniformly convergent over [—T/2,T/2] and the convergence
o) — &, is uniform over [~T/2,T/2], thus also in L2([—T/2,T/2]). But we also know
that " — —®_ in L2([~T/2,T/2]) thus &, + d_ = 0.

It remains to apply Kahane’s extension of Ingham’s Inequality to obtain that

T/2 1 (T2
—7 [ e ppra - o f
—1/2 T J 1)

2

dt

—+00 —+00

1 ar, T 2image
2ir Z:: N ; 2iThe

2 +o0 a
k
2
k=0

Vv
&
=

227T>\k

thus a; = 0 for all £ and we obtain the desired contradiction.

The proof of is similar, so we give less detail. Elements of C*"*! will be indexed
from —N to N, i.e. z = (2_p,...,2x) and will be considered as an element of C*M+1
M > N and also as a sequence (2x)rez by setting z = 0 when |k| > N. We again consider
two norms on C?25+1 the > norm and (with a small abuse of notation)

T/2
ookl = 3 [ 3w
T/2

k:i
For every K there exists /&y such that, for every a € C2£+1,

Frcllall < llallpy -

Ingham’s theorem asserts that one may choose ki independently of K provided T is large
enough. Our aim is again to show that this is possible for every T" under our additional
condition on .

Assume towards a contradiction that this is not possible.

Then, for every integer n > 1, there exist an integer K, — +oo with K, 1 > K

and o™ = (a(_nl)(n a&?)) € C?Kn*1 guch that |||/, = 1 while ||a(”)||L}K <

> K
So,

3

S
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without loss of generality, we will assume that K, .; > K,, > K for every n. Recall that we
2
defined K so that if |k| > K, M\er1 — A\p > T

We split a™ into two vectors
o™ = (... ,O,a(_TLI)<+1, e ,a%)_l,O, ..)eC* ™1 and af) =a™ — o™,

As [[a™ | < []a™|| = 1, there is no loss of generality in assuming that

(n)
ar’ = (a—fgq1,-- -5 QK1)
We again consider

Ky
— E a/](cn)€2”r>\kt N 0
k=—Kp

in LY([-T/2,T/2)),

K-1 K-1
SO(ZL) (t) — Z a’(cn) 62’L7r)\kt N SD— (t) — Z ak62i7r)\kt
k=—K+1 k=—K+1

in LY([-T/2,T/2]) and

P = o™ o = ST ey
K<|k|<K,

in LY([-T/2,T/2)).
Using (5.2.2) instead of (5.2.1)) we get, for n > m

L[ (m) 2 m)
f/ o3 (1) — @7 (1) dE > Ay (T,?) max _|ay"” — af"|

—T/2 K<|k|<Kn

so that (a;"))kez is a Cauchy sequence in > and we call a = (ay)gez its limit. Of course
la]|s = 1 so that we will again reach a contradiction if we show that a; = 0 for all k.
To do so, we introduce again

K-1

n * n z 1
q>§t>(:c):/ P (t)dt and cI)(x):/ o = S B rimna )
0 0 2im P

??‘

so that @Y — £&_ uniformly over [—1/2,T/2] thus also in L*([-T/2,T/2)).

Next, as A\x, # 0 and Z As (ay) € £ and |a§€") —ay| —

converges so is E

1+|A| kezm

0 in (> we get

Z' too and YoMl
< +00  an Z )\k — U.

keZ kEZ
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As |e¥™ e — 1| < 2, it follows that

n 1 a(n) VAL T VTAL T
o = > L(Qkk—l)—“h—ﬁz (e —1)

A
K<|k|<Kn k> K

where the series defining @ is uniformly convergent over [—7'/2,T'/2] and the convergence
<I>(+”) — @, is uniform over [—T/2,T/2], thus also in L*([~T/2,7/2]). But we also know
that @Sf) — —®_in L*([-T/2,T/2]) thus &, +®_ = 0. Applying again Kahane’s extension
of Ingham’s inequality we obtain a; = 0 for all £ which is the desired contradiction.

5.3 Application to 1-periodic Schrodinger equation

Recall that the Wiener algebra is defined as

A(T) ={f € LMT) = |[fllamy =D len(f)] < +o0}-

kEZ

Theorem 5.3.1. Let u be a weak solution of the Schriodinger equation

1
i0pu(t, ) = 2—8§u(t, r) teRzeT
s

, (5.3.1)
ug = u(0, x) reR
with indtial value uo(x) = Yo cue®™ € A(T). Let to € R and g € T. Then
1. Fora € R\ Z, for every T > 0 there exists a constant C(a,T) > 0 such that
1 T
T/ |u (t0+t:v0—|—at)]dt>02 !k\ (5.3.2)
0

keZ

2. If a € Z then there exists ug # 0 such that u(to+t, zo+at) = 0 for all t. In particular,

(5.3.2) fails.

1
Remark 5.3.2. Recall also that if ug € H*(T) with s > 3 then, with Cauchy-Schwarz,

1/2 1/2
1 S
[[uollam) < (Z W) (Z(l + [k[) !ck]2> < +o0.
ke

kEZ

One may thus replace the condition ug € A(T) with a more familiar condition like uy €

H\(T).
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Proof. Write ug(x) = E cre® ™ 5o that u(t, x) = E cre® ™K kT) This series is uniformly
keZ keZ
convergent over R x T since > |¢x| converges thus u is continuous. Further

’U(t) — U(to + t, To + Cbt) _ Z Ck€2i7rk2(t0+t)+2i7rk(xo+at) — Z dk62i7r)\kt
keZ kez
with
: 2
dy, = cpe®™*totkzo) and A, = k% + 20k.
Note that |dg| = |ck|. On the other hand

Me— A = k> +2ak — (m® +am) = k> —m* + a(k — m)
= (k—m)(k+m+a). (5.3.3)
Assume first that a € Z. This case was already treated in [19] but let us reproduce
the proof here for completeness. In this case, the frequencies (\;) satisfy the symmetry

property Ay = A_,_x. Now fix k # —a and notice that —a — k # 0 so that, if we fix ¢ # 0
we can choose c_,_j, so that d_,_, = —d}, that is

Ck€2i7r((k2t0+ka:0)—((—a—k)2t0+(—a—k)xo)) —2ir (a(a+2k)to+0)) '

C_qg—k — — = —Cge€

Setting
uo(x) = ¢k (ezi”kt _ 6*21'7" (a(a+2k)to+2amo)) 6—2i7r(a+k)t)
we obtain u(ty + ¢, xo + at) = 0.

From now on, we assume that a ¢ Z so that from (5.3.3]) we deduce that Ay # A, when
k # m. It will be convenient to write a = 2b. We can then further split the sequence
(Ak)keZ into a diSjOiIlt UHiOH, ()\k)kez = ()\z)kzg U (A];)kZI with

A= A = (=0 + k)2 + 2b(=[b] + k) for k>0

and
A=Ak = (—[0] — k)* +2b(=[b] — k) for k>1.

By definition
A o= [0 —2bb] and A] =M +1—2(b—[b]).

We will now distinguish two cases:

1
First case: Assume that 5 < b— [b] < 1so that A\] < \{.

In this case, the frequencies interlace as follows:
A1 < )\: < Ay forall k£ >0.
Indeed, for all k> 0

1
)\;—)\;+1:2(2k+1)<b—[b]—§>>() and —oo as k— o0
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and

Moo = A =4k +1)(1—=0—-1[b]))) >0 and —oo as k— oo

with our hypothesis on b — [b]. In particular, if we set g = A1 = A_ppl—k—1 and piopy1 =
A = Alcpsk for k& >0 then 0 < poji1 — pog — +00. From Theorem [5.1.5) we thus get that

l[a]—k—1 la]+k
dt > / E + .

k=0

Finally, for £ >0, 2k +1 < a,(| — [a] =k — 1|+ 1) and 2k + 2 < o, (| — [a] + k| + 1) with a
constant o, depending on a only, so that

r c(T c
[ wla= S0yl
0 ¢ kez

as claimed.

1 1
Second case: 0 < b — [b] < 5 Note that b — [b] # 0, Y 1 since a = 2b ¢ Z all cases are

covered. In this case, similar computations show that the frequencies interlace as
No< A1 < )\,J;rl forall k>0

with A\, — A5, AL — Apyy — 400, The remaining of the proof is the same and is thus
omitted. [

5.4 General Case

Let 2 in T =R/Z and ¢t € RT, we consider the following equations

iOwu(t,x) = 2P (é) u

um
uy = u(0,z) = che%ﬂ“ e A(T)

kEZ

(5.4.1)

where
P(X)=a, X"+ ap 1 X"+ ...+ X +ag

with n > 2 and a, # 0. Note that up to replacing u by @, there is no loss of generality in
assuming that a, > 0.
If up(z) = Z cre?™* ¢ A(T), then the solution to this system is given by
keZ

U(t, JT) _ E Cke—2z7rP(k)t627,7rk:x‘
keZ

Again, this is a continuous function.
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Let a € R to be chosen later. For any (to,xo) € R x T, we define

u(to + t, xo + at) — Z Ckefziﬂp(k)(t0+t)+2iﬂ'k(l'()+at) — Z dk672iﬂ')\kt
kEZ keZ

with A
dy, = cpe” 2 PEto—kzo)  anq )\, = P(k) — ak.

Note that A, — Ay, = (k —m)(Q(k,m) — a) with
Qk,m) = ap(E" P +E" Pm4 .+ m D dan (K M)

n

(-1
= E WE El=imd
0

=1 =

Define
E ={Q(k,m): k,m € Z such that k # m}

which is countable (thus of measure 0).
Theorem 5.4.1. Let u be any solution of the Schridinger equation (5.4.1)) with initial value

uy = che%”km € A(T). Then
keZ

1. Ifa ¢ E, for all T > 0 there ezists a constant C(a,T) > 0 such that

1 T
— > . A.
T/o ulty + .20+ ar)| dt > Cmax | (5.4.2)

If n is even, there also exists a constant C(a,T) > 0 such that

1 |Ck|
— to+t,xo+at)|dt > g . 4.
/0 |u( 0 , Lo+ a )] > C'kez 1 \k:| (5 3)

2. If a € E then both (5.4.2)-(5.4.3)) fail.

An L2-analogue of this result can be found in [40].

Proof. The last part of the theorem is the same as for the Schrodinger equation in the
previous section. Indeed, if a € F, we can choose two indexes k # m such that A\, = \,, and
then choose ¢y, ¢,,, such that di, = —d,,. Taking uy = cxe?™ + ¢,,e?™™* the corresponding
solution w satisfies u(ty + ¢, x¢ + at) = 0.

We now assume that a ¢ E so that Ay # A, for all k,m € Z. We will further show
that the (\;)’s can be ordered as a sequence with gaps going to infinity. Here we need to
distinguish between n even or odd. We start with the odd case.

If n is odd, then \y = P(k) — ak — +oo when k — *oo. Note also that, as P has

degree at least 3, ) T converges.

| Akl

94



General Case CHAPTER 5.

Further \py1 — M = Q(k+1,k) —a = a,k" ' +o(k" ') — +o00 when k — 400. so that,
there exists K such that, for £ > K, \; is increasing as well as for £ < —K. There further
exists K’ > K such that, if k,/ > K’, then

Ao < min A; < max A < Ay
liI<K lil<K

We then define (yu)kj<x as an ordering of (Ag)k<xs and p, = Ay, for |k| > K'. Note that
those \i’s are not one of the (yu)k<x+’s. Then (ux)rez is an increasing sequence with gaps
frs1 — pg — +00 when k — f+00. We can then apply (5.1.3) to conclude.

We now assume that n = 2p is even. In this case \, = P(k) —ak — 400 when k — £oo
and A\py1—Ap — 0o when k£ — +o00. In this case, the ordering needs to be made differently.

The idea is rather simple, there is an oscillating part and we are going to show that,
for k, ¢ large, the A\y’s and A_,’s interlace. In the generic case we actually have \jy, <
Ak < Aktgot+1 for some fixed gy and large enough k. This shows that, for some K,
(/\k)kgé{_;(o,_,’;(ﬁqo} can be rearranged in an increasing way as:

AKo+qot+1s A—Ko—15 ANKo+qo+2: A—Ko—2, - - - - Lhe finite number of remaining \;’s are rear-
ranged separately and, provided K| is large enough, they can be put at the start and the
resulting sequence (u)r>o is then increasing with gaps going to infinity. A key aspect of
this construction is that each py is a Ay with |k — |k H < O} depending only on A. The
idea is the same in the exceptional case.

i~

The picture shows the case of a polynomial P of degree 4. The reordering here is
Mo = A3, fi1 = A4y flo = A_g, f3 = A3 flg = Ao, fis = A=2, lig = A1, fir = A1, fig = A_5
(not represented to keep the picture readable), g = A_1, p10 = Ao, 11 = As, f12 = A_g,
pis = A¢ and more generally f11240p = A_g_p While 13419, = Ae4x-

Let us now be more precise.

We again take K such that from —oo to K, Ay is decreasing while from K to +oo, A
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is increasing and define K’ such that if k,¢ > K’, then

max )‘j S /\_g7 /\k
1<K

Next, an easy computation shows that

¢ e ¢ e
; 1 if £ is even , 0/2 if ¢ is even
—1)V = d —1)7 =
21 {o risoqq M 21 {—(£+1)/2 if £ is 0dd

3=0 §=0
so that
2p 1 . ..
Metq — Ak = (2k +q) (Z a Yy (1) (k+q)" "7k — a) :
=1  j=0
But
2p—1 2p—1 2p—2
azp Y (17 (k+q) K = apk® > (=1 + aggk™ Y (=15 + o(k*?)
§=0 §=0 §=0
= (p—1Dagqk® >+ o(k*?)
and
2p—2
Q2p—1 Z (—1)J<l€ + q)2p—2_jk:j = agp_1k2p_2 + 0(]€2p_2)
7=0
so that
-1 _ k‘2p71 k,2p71 f > 9
Nevg — A — 4 (0= Dz a2 )+ ok i p 22 (5.4.4)
(a2q+a1—a)k+0(k) ifp=1
aq +ay—a ifp=1 _ _
Set a, = ' so that M\eiy — A = a k?P~1 + o(k?~1).
I {(p — 1)agyq + asp—1 ifp>2 a ¢ ( )

There are now two cases:
Case 2.1 For every q, ag # 0

Then there exists ¢p such that ag, > 0 and ag—1 < 0. But then, A\pyq — Ay — +00
while Ajyg9—1 — A — —00.

We now take K” > max(K’ — qo, K') such that, for & > K", ANygy — Aox > 0 and
Aitgo—1 — Aok < 0, that is Apygo—1 < Ak < Ajtq- The choice of K" also implies that
ACK7415 oy Ak4go—1 are all < min(A_gr, Agryq,). We can thus reorder those terms as
an increasing sequence (Nk>k:o,...,f< with K = 2K” + qo — 2, that we then complete into
a sequence (ug)gen by adding successively a term Agwipiq, and a term A_g»_j and the
resulting sequence is an increasing rearrangement of (\;) such that pp — +oo and gy —
py — +00. Note that if we define o the mapping Z — N defined by jix = As(x) then there
is a constant Ci such that ||k| — o (k)| < Cy.
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It follows from (5.1.2)) that

1 [T LT |
_/ |uto +t, 9 +at)|dt = _/ S dye 2| a
! o r 172 |kez
1 /‘T/2 fd 672i7rukt dt
- = i
T —-T/2 k=0 ()

Vv

+oo
1 |drl(k)| 1 \C'\
AT, A)Y T8 = AT N —L
! )k:o ETE. )jeZHOU)

Al(T?A)Z ’ck’
1+ Cy kezl+|k:|'

Note that the series D, , dpe~ 2™t is uniformly convergent so that we can re-order terms.

Case 2.2 There exists qp such that ag, = 0.

The proof is essentially the same, but the interlacing of the A\, and A_, for k, ¢ large may
be different. This comes from the fact that the leading term in is 0. Nevertheless,
ago+1 > 0 and agy—1 < 0 so that, for k large enough Agyg94+1 — Ak > 0 while A1 —Ap <
0. So, for each k, either A\gigo—1 < Mirgo < Aok < Mitgot1 OF Aiggom1 < Aok < Appgy <
Mi+qo+1 (actually only one can occur for k large enough) and we define the rearrangement
1 accordingly:. O
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Chapter 6

On Besicovitch norms of
non-harmonic trigonometric
polynomials with sparse frequencies

6.1 Introduction

As we already mentioned, Hudson and Leckband were the first to generalize results on
the Littlewood conjecture to the real setting, they showed that the coefficients of a non
harmonic polynomials are controlled by its Besicovitch norm:;

Theorem 6.1.1 (Hudson & Leckband [14]). For \g < A\ < ... < Ax real numbers and
ag, - - ., any complex numbers

1 [T/? N
im [ 1S

- k=0

ak€217r)\kt

1 o~
dt>—§ Rl
S04k

To prove this result, they mainly used a perturbation argument based on a lemma by
Dirichlet ([44] p 235], [8]) which allows them to benefit from McGehee, Pigno and Smith’s
result in the integer setting (Mc-Gehee, Pigno and Smith’s Theorem [1.0.1]).

In this chapter, we give lower bounds (occasionally upper bounds too) of the Besicovitch

norm of the sums
N
E :akemﬂ')\kt,
k=0

where the frequencies are real. Depending on the properties of the frequencies, we are
primarily focused on two different cases: Lacunary sums and the case where the set of
frequencies has a multidimensional structure. In each case, we will define properly the
framework, present some already established results (mainly in the integer setting) and
then we will use the technique of Hudson and Leckband to extend existing results to the
case of real frequencies.
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6.1.1 Hadamard Lacunary trigonometric series

Hadamard lacunary trigonometric series or simply lacunary series have the following form

> agerm, (6.1.1)
k=0

where the n)s are g-lacunary, meaning that, for all k, there exists a ¢ > 1 such that

Ng+1
N

> q. (6.1.2)

Here t is a real variable in [0, 27], n} s are non-zero integers, and the coefficients are complex.
In the integer setting, Zygmund showed that if

o0

lalleay =D laxl* < oo,

k=0
then the series (6.1.1]) defines a function f € (] LP(0, 1), and there are positive constants

1<p<oo
A, , and B, , such that

1 27 1/p
Ayallallooy < (52 [ 170P ) < Byglaley (6.3

In Section , We will present the proof of (6.1.3) and then we will see how we can get a
similar result for the Besicovitch norms;

Theorem 6.1.2. Let ¢ > 1 and (A\g)k>0 be real numbers verifying
XA >1 and Mgy > g

and ag, . ..,ayn be a sequence of complex numbers. Then for 1 < p < oo, there exists positive

constant qu, B, , such that
N 1/2
dt) <B, <Z |ak\2> :
k=0

N 1/2 /2
A, |ax|? < lim /
pa (z; T4 00 /2

6.1.2 Sets with multidimensional structure

E ag 6227r/\kt

k=0

There are multiple notions of sets with multidimensional structure. The simplest one is sets
of dimension one which are projections of higher dimensional sets [21]. A classic example
of such sets is a finite generalized arithmetic progression of rank 2, which is a set of the
following form; let a,b € Z,

GAP ={am+bn:1<m<M,1<n<N}
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These sets can be thought of as projection of boxes in Z?: If a and b are mutually prime,
then
GAP = P(B),

where P is the surjection defined by P(m;n) = am + bn.

Here we will adopt a more general notion; let 6 > 0 and (m,n) € N2. A subset A of Z
is (9; m, n)-strongly 2-dimensional if there exists numbers d and D with D > (2 + §)d such
that

A= J(A + kD) (6.1.4)
kel
for some set I containing at least m integers and subsets Ay, C {—d,...,d} verifying

|Ax| > n. The simplest example of sets in Z with multidimensional structure are sets which
are unions of intervals separated by a gap.

To see the relation between the two definitions, let us give an example where a generalized
arithmetic progression of rank 2, verifies the strongly multidimensional conditions. Let
A ={7,8,13,14,19,20}. It is easy to check that, for a = 1, b = 6, the set A is a generalized
arithmetic progression of rank 2 (with M = 2 and N = 3). Furthermore, A is (1/2;3,2)
strongly multidimensional, since it can be seen as union of 3 interval, each containing at
least 2 integers.

o © o o o ®
4 d 6 7, 8 10 11 12 13,4 14 16 17 18 19 4 20
1 } 27, ; 3
D —2d D —2d

Hanson’s motivation came from the following question; Can we find a relation between
the additive structure of a set A and the L'-norm of exponential sums over the set A.
A known question in this direction is the inverse Littlewood problem; Given a positive
constant C', can we characterize the sets A for which

1
/ E : €2i7rat
0

acA
Green [9] suggested that such A might be very close to being unions of a few arithmetic
progressions and if so, he pointed out to a relation with sum-free sets established by Bourgain
[2]. More discussion about multidimensional sets and relation with Littlewood problem can
be found in [32]. Before stating our main result, let us first recall Hanson’s Theorem

dt < Cln(A)).

Theorem 6.1.3 (Hanson [10]). Let 6 > 0 and m,n be two positive integers satisfying

m > 7213 peIn(m)®In(n)®  and n > 722 C3 e In(n)?, (6.1.5)
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where Cyrps is the constant in Theorem/|4.1.1. Suppose A is (6;m,n) strongly 2-dimensional
subset of 7. Then
1
J

By induction, this theorem can be generalized in a straightforward manner to r—dimensional
sets (r > 2). Combining this result with Theorem 3.3 in [37], we see that this theorem is
also best possible up to the constant.

A simple interpretation is that any set with multidimensional structure cannot verify
the Inverse Littlewood problem for small C'.

Next let A C R. We say that A is (§;m,n) strongly 2-dimensional in R if there exist
numbers d and D with D > (2 + 0)d such that

§ : eQiﬂat

a€A

Chrp
dt = (297)2(2 + 15(1 +2)) n(m) In(n)

A= JA + kD) (6.1.6)
kel
for some set I containing m integers and real subsets Ay C [—d,...,d] verifying |Ax| > n.

The decomposition is hence the same as before, the main difference is that the sets Ay’s
can now be real. We can now state our main result:

Theorem 6.1.4. Let 6 > 0 and m,n be two positive integers satisfying
m > 122 CY ps In(m)* In(n)?  and n > 7322'CF pg In(n)?,

where Cyps(= 1/30). Suppose A is (§;m,n) strongly 2-dimensional subset of R. Then

Clrp
dt > T+ lrf(l 1T In(m) In(n).

6.2 Lacunary series

We take a lacunary trigonometric series of the form

D apem (6.2.1)
k=0

where the a’s are complex numbers, and the n;’s verifies Hadamard’s condition;

Ni41

>q > 1.
ng
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6.2.1 Integer case: A result by Zygmund
First we will work in the integer setting and we aim to prove the following result [44];

Theorem 6.2.1 (Zygmund). Let ¢ > 1 and (ng)r>0 be a g-lacunary sequence of integers,
ng > 1 and ng1 > qng. Let 1 < p < +o00. There are two constants A, 4, By, such that, if

(ar)r>o0 € (%, then g(t) = Z are®™™ ! s in LP([0,1]) with
k>0

1 1
oo 2 1] o0 p P +00 2
Apg (Zm!?) < ( /0 D apem dt) < B,, (Zm,ﬁ) . (6.2.2)
k=0 k=0 k=0

Remark 6.2.2. Note that a simple change of variable also shows that, for every integer M,

400 % 1 M2 | o L p % +00 %
Ay <Z yak|2> < (M/ > ape? ot dt) < B,, (Zm,ﬁ) . (6.2.3)
k=0 —M/2 | = k=0

Also, we may assume that ¢ — A, 4, B, , are continuous.
To prove Theorem [6.2.1] we need some auxiliary lemmas;
Lemma 6.2.3. A g-lacunary sequence is a finite union of ¢'-lacunary sequences with ¢' > 3

Proof. We consider a sequence of integers (ny)x such that

Nk+1
Ny

>q>1.
If ¢ > 3 there is nothing to prove. For 1 < ¢ < 3, take N an integer such that ¢"¥ > 3 and

write
© _
N = Ny4kN,

then (n,(f)) . 18 ¢"-Lacunary and

) = J (0},

as announced. O]
Next, for ¢ > 3, g-lacunary sequences have a particular arithmetic property:

Lemma 6.2.4. Let ¢ > 3 and (ng)r>o a sequence such that nog > 1 and ng1 > qny.
Consider two finite sequences e4,my € {—1,0,1} for £ =0,...,m and assume that

Z EMy = Z NNy (624)
£=0 =0

then €, = ny for every (.
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In other words, an integer can be represented in at most one way as »_ +n,. Such a
sequence is called quasi-independent. Note that this result is valid when the ny’s are real,
not only for integers.

qj
N = ——Nyy for 7 =0,...,m.

Proof. First observe that n; < .
m—j

Assume that (6.2.4]) holds and define vy = ¢y — 7 so that

m
E Viny = 0.
£=0

Assume towards a contradiction that there is an ¢ such that v, # 0. Without loss of
generality, we may assume that the largest such ¢ is m and, up to exchanging ¢, and 7y,
that v, > 1.

Observe that v, € {—2,—1,0,1,2} so that we obtain the desired contradiction writing

m m—1 m—1 m—1 Y
q
OZZl/gng = anm—i‘zwnean—QZnean—QZ—mnm
=0 (=0 (=0 =0 4
2q"—1 m— 3™ 42
- (1——q )nm:q e S0
qm q—1 (g—1)gm
since ¢ > 3 and n,, > 0. ]

Now in order to prove Theorem we follow closely [44] Chapter V.8] which goes
through Rademacher series. First let us introduce those series.
To start, let us denote by Dy = {[j27%L, (j +1)27%7Y, j =0,...,281 — 1} the dyadic
intervals of generation k£ and D = U Dy, the set of all dyadic intervals. Also, if I,J € D
k>0
then either INJ =0 or I C J or J C I. The Rademacher functions of generation k are
then functions that take alternative values +1 and —1 on successive intervals in Dy, that is

ok+1_1q

re(t) = > (=1 Tjjpken (jayp-no1((t) = sign(sin(272%)).
=0

The first observation is that, if I € D, and k > ¢ then r; takes the value 41 on half of [

and —1 on the other half so that [ ;7 = 0. A first consequence is that 7 is orthogonal to

re in L*([0,1]) since ry is constant on each I € D, so that f[ rere = 0 and Dy is a covering

of [0,1]. Moreover, as |ry| = 1, the family (73)x>0 is an orthonormal sequence in L?([0, 1]).
In particular, we now fix a sequence (cx)g>0 such that (ci) € (*(N), we can define

= chrk

k=0

and this series converges in L*([0,1]) thus f € L*([0,1]) with || f]|z2 = ||ck|lizqy). We actually
have a bit better:
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Theorem 6.2.5. Let (c;,) € I*(N) and f defined by

+oo
f = Z CrT.
k=0

Then this series converges both in L*([0,1]) and almost everywhere.

Proof. The L*-convergence has already been established. Further, let F = [ f be the
indefinite integral of f and let £ C [0, 1] be the set of Lebesgue points of f so that |E| =1
and on F, F' exists and is finite.

Now let, S,,[f] be the n-th partial sum of this series

= Z i ()

As S,[f] = fin L3([0,1]), for every 0 < a < b < 1,

/ab(f() Sn| ) dz /|f |dx<(/ |f(z )|2dx)1/2—>0.

We have just shown that, if I is an interval, then [, S,[f] — [; f thus also, if we fix £ > 1,

/I (Sulf] = Ser[f]) = / (f — Sealf).

On the other hand, if I € Dy_y and k > ¢, then [,r; = 0 so that [, S,[f] = [; Si—1[f]
Letting n — +o00 we obtain that

/f(:v) dr = /Sg_l[f](x) dz for every I € Dy_;.

Next, let xy € E not a dyadic rational (zg 7& -+ p,q € N) and let I, =]527% (5 +1)27¥
be such that g € E N I;. Then, as S,_1[f] is Constant over I,

1 1
S der = —
’Ik‘ I k— 1[f]( ) ‘Ik| L

when k — +o0. O]

Si—1[f](xo) = f(x)dz — F'(x0)

The second result is that f is actually in every LP space:

+00
Theorem 6.2.6. Let (c;)|k >0 € (2 and [ = chrk. Then, for 1 < p < 400, f €

k=0
L?([0,1]). Moreover, there exist A,, By, depending on p only, such that

4, (f) < (/ If(x)!pdx>; <B, (f )

k=0
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Proof. Let us first notice that the theorem holds for p = 2 since

V= (/01 \f(rflr)\2d$>é = CZO:Cﬁ)é

i.e. the inequalities are equalities with Ay = By = 1.
Next, let us notice that this implies the lower bound when p > 2 with A, = 1 since then,

with Holder s R
( [ dx) z( [ 1 dx) .

It also implies the upper bound with B, =1 for p < 2 since now Holder implies that

([ \f(x)\pdx); ([ !f(w)\zdx)% -

Further, take 2(m — 1) < p < 2m for some integer m > 2, and assume that that the upper

bound
([ 1w as)

holds. Then Holder implies that

(/01 |f(a:)|pdx)11’ S (/01 |f($)|2md$>21n b

that is, B, < Ba,, for 2(m — 1) < p < 2m.
Next, let us show that the upper bound for p = 4 implies the lower bound for p < 2.
Assume for the moment that we are able to prove that

(/ 1 |f<:zc>|4dx)‘i < By,

2
Let 1 < ¢ < 2 and write 2 = gt + 4(1 — t), that is, take t = Rt Then, from Holder
-9

= @) = / @I )00 do < ( / 1 |f($)|qu)t ( / 1 !f(fﬁ)l“dx)l_
ey ([ 1) = wore ([ @)

1

(/ 1 fpar)’ > 8"
0
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So it remains to prove (6.2.5) for every m > 2. Notice also that it is enough to prove
this inequality with real ¢;’s. The constant in the complex case is then multiplied by 2:
write f = f. +if; where f, = > R(cp)ry and f; = > (¢ )rk. Then

1 1
+oo 2 +o0o 2

£ lam < [ follom + [ fill2m < Ba, (E W%)P) + (E I%(cwlz) < 2By,
k=0 k=0

since |R(ck)|, |S(ex)| < |exl-
To conclude, we write

1 1
/Sn[f](w)mdwz > A encg’---CfQ"/ rg’ (@) -+ (@) d
0 0

where ¢; > 0 for every j and

Now observe that

0 otherwise

{1 it all the ¢;’s are even

and that .
(Z Ci) = D> Apen (@) (@)
k=0 lo+-+ln=m
Further, when ¢y + --- + ¢, = m,
Aoty 20,  (mA1)(m+2)---2m < (m+1)(m+2)---2m <y
Apg, ot Thoo(l + 1) +2) 2205 2m B

(with the convention that the denominator is (¢; + 1)(¢; +2)---2¢; = 1 when ¢; = 0). It

follows that m
1 n
/ S,ulf](x)*™ dz < m™ (Z |ck|2> .
0

k=0
As S, [f] — f a.e., we conclude that

1 ﬁ +00 %
([ 1 ac)” < (zw)
0 k=0

that is Ba,, = 2m'/2. O

The estimate Bs,, = 2m'/? allows to improve a bit the result:
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+00
Corollary 6.2.7. Let (c;) € (? and [ = chrk. Then, for every u > 0, exp(u|f]?) €

LM([0,1]). .

Proof. Let us fix u > 0. We first show that if  := ||cx||2 is small enough, then exp(u|f|?) €
L'([0,1]). Indeed

1 +to m rl +oo mm
| entus@Pras = 32 [P as < 37 ) (6:26)

mm R mn
But — < E — = €™ so that
m! ‘ n!
-

1 +oo
1
2 2ym __
/O exp(u|f(z)|?) de < (depy®)™ = T de? +00
m=0
: 9 1
provided v < —.
dep
+o0o
Next, take any f € L'(0,1), and apply the first part to f — S,[f] = Z crrg. As
k=n+1
+00 1 !
V2= Z lek|? — 0, for n large enough 72 < Sen thus exp(2ulf — S.[f]1?) € L*([0,1]).
ep
k=n+1
Finally, as | 2 < 21f — S,[f] + 218, [/][2, we have
exp(ul fI*) < exp(2ulf — Sulf]?) exp(2ulS,[f]|*) € L
since |S,[f]| € L*> thus also exp(2u|S,[f]|*) € L*. O

Next, we consider series of the form

—+00

Z cke%”ktrk(x).

k=0

The idea is that such series are of the form Y +c¢;e?™* that is, choosing = € (0,1) at
random, we randomly change the sign of ¢;. Our first result is the following:

+oo

Theorem 6.2.8. Let (c;) € (2 and f.(t) = chrk(x)e%”kt. Then, for almost every
k=0

x € (0,1), the series converges almost everywhere in t € (0,1) and f, € LP([0,1]) for every

1 <p<+o0.
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Proof. Let E be the set of (z,t) € [0,1]> where the series defining f converges.

According to Theorem [6.2.5] for every ¢ € [0,1], the set E? = {(x,t) € E} has measure
|E2| = 1. Tt follows that |E| = 1 but then, for almost every = € [0,1], E} = {(z,t) € E}
has also measure |El| = 1.

Next, set v = ||ck|l2 and fix n > 1. As in (6.2.6)),

n 1 +too  m 1 1 1
%/0 |fo(t) " da < ZO%/O |fx(t)|2mdx:/0 exp(pl fo () dr < ———— (6.2.7)

— depry?

It follows that

1
provided p < 1

ey?’

1 1 1 1 7’L'
fau(t %duu:i/(/ f(t)*" dxdt < < +o00.
/0 /0 £a(6) o Jo £a(2) (1 —depy*)p”

But then, for every n, there is a set F,, C [0,1] with |F,| = 0 such that, if z € [0,1] \ F,,

1
/ | fo(t)[?" dt < +oo0.
0

Setting F' = |JF,, |F| = 0 and, for every z € [0,1] \ F, for every n, f, € L*". Using
the inclusion of L**(]0,1]) C LP([0,1]) when p < 2n, we obtain that, for almost every z,
fz € LP(]0,1]) for every p > 1, as claimed. O

We can now prove Zygmund’s Theorem

Proof. The beginning of the proof is the same as for Theorem [6.2.6, Parseval’s identity
shows that is satisfied when p = 2 with Ay, = By, = 1. The lower bound is then
automatically satisfied for p > 2 with A, , = 1 while the upper bound is satisfied for p < 2
with By, = 1. Finally, if we establish the upper bound for p > 2, using Holder’s inequality
in the same way as in the proof of Theorem [6.2.6], the lower bound follows for p < 2 with

1_4=p

Asy = B,, " . Also, it is enough to prove the upper bound when p = 2m, m > 2 and

then, if 2(m — 1) < p < 2m, B, , < By Another reduction is that, by homogeneity, it is
+oo

enough to prove the theorem when Z |lek]? = 1.

k=0
A further restriction is that it is enough to prove the theorem for ¢ > 3. Indeed, for

1 < q < 3, we introduce an integer N, such that ¢™s > 3 and write ng) = ngn,+¢ for
¢=0,...,N;— 1. Then n,(fll > qNQn,(f). If the theorem is established when ¢ > 3 then, for

each ¢, the upper bound in (6.2.2)) reads

1 P % +oo
(/0 dt) < B, ,Nq (Z |Cqu+z|2>

k=0

N

(@)
2imn, 't
E CkNg+0€” "k

k>0
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But then, with the triangular inequality in LP,

3=

1 |Ng—1 p
Qzﬂn]t . 217rn

cje dt = ChN, 1€ ¥ dt

>0 =0 k>0
Ny—1 1 p >
o (€)

S E (/ E cqu_MeQMrnk t dt)

(=0 0 |x>0

qul 400 %
2
< B, N E E |k +el
(=0 \k=0

Nl=

Nq—l —+o00
< qu/zprqu Z Z kNl )

(=0 k=0

1
3
= qu/zprqu Z |Cj|2>

320

where we have used Cauchy-Schwarz in R™e in the next to last line.
A last reduction comes from the observation that, for every k

1
/emwm )dt = 2: /m W&>—j/w (1) at
0

It is therefore enough to prove that there is a p(gq) and a C' > 0 such that, if u < u(q)

(Ammwwmwsc (6.2.8)

which would then imply that
1 !
[ latoprar< o
0 I

as desired.
In order to prove (6.2.8)), let us introduce

227rn
E Cj T’n] it

7>0

Integrating (6.2.7)) with respect to ¢ and using Fubini, we deduce that

//FWWE®WMMSK:
0 Jo

But then, there is an zy (that we can assume not to be a dyadic rational zg # 27 /k) such
that

1
1 —deun?

AewwmwﬁﬁﬁK
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Next, we consider the Riesz product

e27rnjt + e—27rnjt

k k
Pi( H 1 + T, (x0) cos 27(77,] = H (1 + Tnj o) 5 ) _ Z,yjezmjt

Jj= JEL

where the Fourier coefficients have the following property:

“n =1
—7; = 01if j is an integer that is not of the form ) £+ny, in particular when [j| > Z ng;
=0
—if 7 = > emy with ¢, € {—1,0,1}. As g > 3, this g/’s are unique. Then v, =
Tn, (T . T \T . .
Hgﬁéo %. In particular, v,, = J; 0) for j=0,...,k and ~,, =0 for j > k.

As a consequence, the partial sums of the Fourier series of g are given by

1
J2e2imnst _ 9 / Foo(5)Palt — 5) ds.
0

Mw

Suulgl(®) == 3" et

1
Note that P, > 0 and / Py(t)dt = o = 1 so that v, = Py (t)dt is a probability measure.

0
As p(s) = exp(us?) is increasing and convex, we apply Jensen’s inequality (with the measure
k) to obtain

o (315u15101) <o ([ 1Pt = )05) < [ o8l But = ).

Integrating over [0, 1] and using Fubini, we get

/Olso(%lsm[g](tﬂ) dtS/0190(|f:c0(3)|)/Olpk(t—s)dtds:/Olgp(|fx0(5)|)d5SK‘

Letting k — +o00, we obtain

[ e (Blaor) ar< x

as claimed (up to u/4 instead of p). O

6.2.2 Extension to real frequencies

We end this section with a generalization to the real (non harmonic) setting on sufficiently
large intervals. The proof is based on a lemma by Dirichlet which mainly allow us to
approximate real numbers with quotients of integers.

Theorem 6.2.9. Let ¢ > 1 and (A\g)k>0 be real numbers verifying

Ait1 — A > 0, X >1 and N > gl
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and ag, . ..,ayn be a sequence of complex numbers. Then for 1 < p < oo,
N 1/2 L TR X P . N 1/2
2 . 2imApt 2
o DOITTE I D SR IR B D9l
with Apq, Bpgq the constants in Theorem[6.2.1]
Proof. Let aq,...,an be complex numbers, \g < \; < --- < Ay be real numbers with

Ak4+1 = g\, and
N
(I)(t) _ Z ak€2i7r/\kt.
k=0

Let € > 0. By a lemma of Dirichlet ([44, p 235], [9]), there is an increasing sequence of

integers (M, ),>1 and, for each n > 1 a finite family of integers (N ,,)k—o,.. n such that
N
Ak_f\z Min for k=0,...,N
which implies that
. - N N
AT _ HTIEI < o Ak — ]\;n t] < QWMin|t| for k=0,...,N.
Define the M,,-periodic function
N
an(t> — Z akeQiﬂ—Nk’nt/Mn,
k=0
and note that, for t € [-M,, /2, M, /2],
N . . Nkn N
|B(t) — Wy (1) < || — 2T < 2me > Jay.
k=0 k=0

But then
1 M /2 1/p 1 My /2 1/p
(E /_Mn/2 |D(t) dt) — (E /_Mn/2 W, (t)[" dt)
1 M /2 1/p
< (ﬁ / B = a0 dt)

N 1/p
< <27TZ |ak\> elr(6.2.9)
k=0
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We can now conclude as follows. Let § = ¢(¢) = ¢ — (14 ¢q)e < ¢ . Observe that

Niiin Nitim
]k\}l’ > Nt — Mg — — Zq)\k—Mi
Nk,n Nk,n €
S A | v R VA
Nkn g
> (14 q)—

that is NkJrl,n > qu,n - (1 + Q)e > qu,n
Applying (6.2.3)) to ny = N, and M = M, we obtain

N 3 1 Mn/2 | N p N
2 2
Apg (Z|Gk| ) < (E /_M P > dt) < By <Z|ak| )
k=0 n k=0
From (6.2.9) we conclude that

k=0
N % N 1/p Mn/2
(L) () s ([ o
k=0 k=0 n
2 N 1/p
SBM<Z|CL;€|2) +(27r2|ak|> el/r,
k=0 k=0

The result follows by letting e — 0 so that ¢ — ¢, M,, =+ M, A, 5 = Ap 4, Bpg — B, 4 since

those constants are continuous in their parameters. O

1

RS

. Nk,n
ake2z7rmt

2 a eQzTr/\kt

k=0

6.3 2-dimensional sets

Given a set [ C Z, a positive integer q, and an arbitrary integer s, we define
I(g;s)={ke€l:k=s(modq)}.

The proof of Theorem [6.1.3]is a direct consequence of the following two lemmas

Lemma 6.3.1. Let I be a set of integers with |I| > 8. Then there are positive integers q
and s such that

W=

1|

L <11 9) < ¢

Proof. For each j > 1, we choose any s; such that |1(47; s;)| is maximal. But, on one hand,
471

I=|]JI14,s)

s=0
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and on the other hand, for j fixed, the sets (47

, ) are disjoints, so at least one of them has
cardinality larger than 477|I|. In particular

18, 5)] = 477]1] (631
I
For 7 = 1, we thus have |I(4; 81)| 2 | l

T > 2. On the other hand, if j = s mod kp then
j=s mod p so that, for any s

1(4™;s) C 1(4%5)

for £ <m,
and, for sufficiently large j we have |I(47;s;)] = 1 < 27. Therefore, there exists a minimal
Jjo such that |I(47°; s;,)| < 2. Let ¢ = 4%°, and s = s;, then using (6.3.1)) and the definition
of jo
1|

g = |[1(q; 5)| = [1(47;85)] < 2° = q2.
In particular

1[5 < g2,
By minimality of 7

(6.3.2)

L)
o[

3
:2‘701 ‘[(Jolsjol SZ
r=0

% 8o+ AT [ < AT(40;55)] = 4[1(g; 5))|
by definition of s;,. We thus get

e E
I >
11(q;s)| > T2 g
with (6.3.2]).

L]
Lemma 6.3.2. Let § > 0 and let d and D be positive integers with (2 + §)d < D. Suppose
I is a finite set of integers, and let

t) _ Z fk: (t)GZikat

kel
where

fk(t) _ Z amke%ﬂ'nt

In|<d
Let q and s with ¢ > 47 and suppose 1(q; s)

s) ={ki,...,ks} then we have

OMPS 2mwd
F > .
P01 2 S o 22 ank lorgoay (T2 - 275

We split the remaining of this section into two parts
6.3.

. In the first one, we show that
Lemmas 1] and [6.3.2] imply Theorem [6.1.5] In the second one, we prove the Lemma
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6.3.1 Strongly 2 dimensional subsets of Z: A proof by Hanson
First we recall the proof of Hanson’s result

Proof of Theorem[6.1.5, Let § > 0 m,n be two integers satisfying the conditions of the
theorem and let A be strongly (6, m,n)-regular. Thus, there are two integers d, D with
D > (2 + §)d, such that we can write

A=JA + kD),

kel

with |I| > m and Ay C {—d,...,d} with |Ax] > n. We can then write

F(t) — Z €2i7rat — Z fk(t)€2i7ert

a€A kel
with
d
fk:(t) _ Z e2z7rat _ Z an,k€2”mt
a€Ay n=—d
with a,, = 1if n € A; and a,; = 0 otherwise.
Assume first that there exists k; € I such that

C
il oy = =55 In(m) In(n). (6.3.3)

We then choose g > " in such a way that there is an s such that I(q,s) = {ki}.
7Crups

Hence by Lemma [6.3.2]

2md
I E 2oy = [ fr: 121 0.1 (CMPS T )

2r(2+m(1+2)\ 2 ¢D
Cups|| frllzr o) <1 B 7_d>
207 (2+1In (1+2)) 8D )"

As D > 2d, using (6.3.3]), we conclude that, in this case

CMps) ? In(n) In(m)
Fll 1 >
1| 2o,y = < 29 2 +1n (1 + %)

which establishes the theorem.
We will thus assume that, for each k € I,

C
I Fellaz o < =55 W(m) In(n) (6.3.4)
Note that, from Theorem [1.0.1]

| fellL1qo,1)) = Camps In(n)
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applied to the set I so that J

so that 2%7 < In(m), in particular, m > 8. We then take ¢ and s given by Lemma m
= |1(q; s)| satisfies

=

m

o <7< q:. (6.3.5)
We write
I(g;s) ={k1 < ... <ky}
From Lemma [6.3.2] we get that
CMPS 2md

Flla > _ - -

IPlown 2 G Z I s (S - 25
- 1 (T~ 1)
- 27 (2+1n (14 2))) b

with ;
Cups | fi; 1 22 27rd
I = y == Z [ e, l2-
2 = ]
Next, as || fx, |21 > CupsIn(n),
J
1 s Clirsn(e) §~ 1 Clinghn(n) ;- Chps ) o)
2 = 2 3
with (6:33).
On the other hand, from (6.3.4]), we get
T2 S 2w Jd OMPS

2 Cyps
< —
qD 297 In(m)In(n) < =

1 1
T m ).
since d < — and J < ¢z with (6.3.4). Further, (6.3.4)) also implies that

1
with - ), leading to 75 < T
T
We have established that

|1F || o 1 (012\4135 In(m) In(n) .
L([0,1]) 27 (2+In(1+2))

2
C’M PS

lonm n\n) — 1
@)r (2 +In (14 2)) (2 n(m) In() )

2
C’M PS

2
CMPS

(297)2 (2 + In(1 + 2)) )
since In(m) In(n)C%, !

ps 2 2107 — 1"
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Auxiliary Lemmas

The rest of this chapter consists in proving Lemma [6.3.2, The proof is quite long and is
divided into several lemmas. Throughout, we say that f is a trigonometric polynomial of
degree d if

— 2 ake2z7rkt )

|kl<d

Lemma 6.3.3 (Bernstein’s inequality). Let f :— C be a trigonometric polynomial of
degree d. Then

1 N 2o,y < 2md]| f1] Lro,0))-

Lemma 6.3.4. Let N be a positive integer. Then for any trigonometric polynomial f of

degree d

Note that, as f is 1-periodic, writing N = R+ S,

()]s 2

R
¥
§=0

N—

'||f||L1([o,1]> Z

7=0

2md
< —||f||L1 ([0,1])-

(sl

since

N-1 ] S—1 ] R+S-1 j
P f(R+S>‘ - g ]E(J%M)‘Jr — f<R+S)‘
- S B ()
4L R+S R+S
7=0 j=—R
- )
T \R+S

where we used the change of index J = j — N and the 1-periodicity of f in the next to last
line.
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Proof. We write, using the triangular and reverse triangular inequalities

1 1 N-1 j N-1 % j
[ isnae- 53 f(N)H [ (ror-1r (%))
j=0 j=0 YN
N-1 % j N—-1 % t
<> [T o= (5)a=X [ ][ reaa
j=0 YN j=0 YN N
N—-1 Litl N—1 i+l J+1
N N N
<> [ el =3 [ Tirer [T aas
=0 7% % j=0 7 % s
N-1 J+1 1
1 N / !
<33 [ s = [1re)s
- J 0
j=0 YN
. N 1 J Jj+1
where we have used Fubini and the bound dt < N when N < s < T We
conclude with Bernstein’s inequality. ’ O

For a finitely supported sequence (A(k)) we define its discrete Fourier transform (or

Z-Fourier transform) as

kez’

FalAl(t) =D A(k)e ™.
kEZ
If A, B are two finitely supported sequences, their convolution is the sequence A * B defined
by
AxB(k) = BxA(k) =Y _ A(k —n)B(n).
nez

The Convolution Theorem is also valid here: F4[Ax*B](t) = Fq[A](t)Fq[B](t). Two classical
examples are

— the Dirichlet kernel: set dr (k) = 1_L (k) so that

oinke  SIN(m(2L +1)t)

I

Dy(t) = Faldr](t) = ) e

s sin(7t)

I+1 ) “ L

Fu(t) = Fii)) = 3 (1 - ﬂ) it _ L (sin(m(L+1)1)*

- : )
0= L+1 L+1  (sin(wt))

— the Fejér kernel: set f7 (k) = < - ﬂ) 1_5..r(k) so that

Lemma 6.3.5. Let M, N, R, S be integers with 2 < M < N. Then there exists a function
Ky n with the following properties:

1. KM,N<k) =1 fOT |k’| S N,
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3. If further R+ S > 2N + 4M, then
S—1

1
Ris 2

J
F K < < .
Proof. Define

1
KM,N(k) = MdN+M*ﬁM71<k)

1 n
= i ( —%) Vn-n, vy (B = ) Loars, 13 (n)

I n
- 7 2 (‘M)'
In|<M—1
In—k|<N-+M

First, for |k| < N, if [n] < M — 1, then |n — k| < |n|+ |k] < N+ M — 1, so that

Kyn(k) = % > (1 - %) =1,

In|<M-1
since
In| 0 n M—1 n
H) - e
> (1-5) = X (e X (g

M+1 M-—1
= = M.
2 + 2
On the other hand, if |k| > N +2M and |n| < M — 1 then |k —n| > |k| —|n| > N+ M +1
so that the sum defining K n is empty and Ky = 0.

To prove the last item, the Convolution Theorem shows that

FilKara)t) = 37D oaelt) Far -+ (1)

As Dyyy and Fyy—q are both even, so is Kj; v thus

/0 FulKn (1)) dt = 2 /0 \Ful K] dt = 201 + I + Iy)

where
1 [~
I = M/ | Dy () Ear—q ()| dt
0

1
1 [
Iy = M/ . |Dvnr(8) Far-a(t)| dt,

N+M

1

1 /3
h= / Dvont (6) Fag 2 (8)] I

574
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We have
1
D] S 20N+ M) +1, 0.5 Fya) < M, [ () =1.
0
It follows that

< 3.
M+ N —

1 N+ M
IISM/ M+ N)+1)Mdt =2+
0

since M, N are positive integers.
Using the explicit expressions of Dy, and Fp; 1, we have

1 [ |sin(zr(2(N + M) + 1)t)| sin?(7 M)

I, = — dt
? M? 1 sin®(rt)
1 )
< L M sin®(mMt) gt
sin®(7rt)
N+]V
dt =« N
< — — = —1 1
< / (1+37)
N+M
1
using that sinnt < «t for t > 0 and that sinzwt > 2t for 0 < ¢ 5

Finally, for I3, we do the same computation to bound

1 M

1 3 sin® T Mt 2 sin?7s 2 ds
< — —d = d — <
3_]\/[2/ t3 /1 53 s /1 §3 =

Grouping all terms and slightly upper bounding the numerical constants, we obtain

' N
/ | Fal K n](t)]dt <8 (2 +1In (1 + M)) :
By Lemma 4] (and the 1-periodicity of F4[K s n]), we obtain
1 — J 2md
R—|— Sj:Z_R .Fd[KM,N] (R+ S)‘ § <1 + R—l—S) H‘Fd[KM,N]HLl([OJ})-

Butd=N+2M —1and R+ S5 > 2N +4M so
2nd < 7(2N +4M — 2)
R+S — 2N +4M -

l\DI»—t

.

Hence we get
5—

Z

J
(R+S)’ < (L + m)[Fal K]l oo,

167 | 2 +1 1+N
s n i ,

IN

concluding the proof.
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Lemma 6.3.6. Let R, S be positive integers and K = (K(—R),...,K(S — 1)) € C*9,
We extend K into

~an R+ S-periodic sequence KP (j(R+ S)+ () = K({), for { = —R,...,S — 1 and
JEL

— a finitely supported sequence K by setting K (¢) = K({) for { = —R,...,S — 1
and K©() =0 for £ > S and for { < —R — 1.

d
R R+ S
S—1

Then
S—1
Proof. Write elements of Cf*% as (a_p, ..., ag_1) and the scalar product {a,b) = Z agby.

1
5 2 |[FalK
{=—R

2immt

/ Z a K p) 217rmt dt <

meZ

(=—R
1 VR R
For j = —R,..., S —1, denote by ¢ := [\/R:—i—SeQWML:_R so that (ex)g=—p.. s—11s an

orthonormal basis of CEtS,
Write A, = Zan(R+s)+ge_2”(”(R+S)+e)t for { = —R,...,S—1and A = (A;) € CE+5,
nez
Then, by periodicity of K®

> an KP (m)e* ™ = Z K(0) Y (s s)4ee?m B +08

meZ jez
S5—1
= <K’ A> = Z <K7 €k><A, €k>
k=—R
S— S—1
Z ( K (f)e_mﬂkRis> (Z Y tn(ris) ™™ ”(R+S>+@t62”’“zﬁs>
=—R \=— R nezZ
1 5—1 i k
= — FIKO( —— n( 2i7r[(n(R+S)+z)t+eR+S} '
s 570 () (S S e

2imlphs o2 (n(R+S)+0) k

Noticing that e "l we may write

> an K (m)e* ™ = Ly Falk O] (2
" R+S ~—, R+S

meZ
51 .
X Z Zan(R+S)+z€2m(n(R+S)+€)(t+R+S))

{=—R n€Z
1 ! k k
- F K(O) v . 2i7rm(t+m).
5 2,71 (i) Do

121



2-dimensional sets CHAPTER 6.

From this, we deduce that

/

Z amK(p) (m)e%wmt

meZ

dt

dt

1
]-"d[K(O)] <—R _]T_ S) / Z ame%“m(“ﬁs)
0 m

k ! ,
fd[K(O)] <R+S> Zame%ﬁmu
0

meZ
and periodicity of u —» Z A €2 m

m

du,

with the change of variable u =t + 7 i 5

Lemma 6.3.7. Let d, D and q be positive integers with (2 + 20)d + 4 < D for some § > 0
and q > 4m.

Suppose I 1is a finite set of integers and, for each k € I let fi be a trigonometric
polynomial of degree at most d. Then, for any integer s, we have:

Z f 27,77Dkt

kel

/ > (e ™M) dt < 32m(2 + In(1 + 2/6)) /

0 kel(g;s)

Proof. Assume we can prove the lemma for s = 0, that is, for any sequence (fi)kez of
trigonometric polynomials of degree at most d and any finite set I,

/ Z f 217rD€qt Z f 227ert

dt < 327(2+In(1 4+ 2/9)) /

qtel kel
Replacing I with I — s and replacing (fx) with (fxis) we get
1 .
/ Z Filt)e2imPtat — / Z Forea(t)eX™Plat| 4t
0 kel(qg;s) 0 s-+lgel
1
< 327(2+In(1 + 2/5))/ Z Forn(t)e2mDRt| 4
O Jker—s

1
= 327(2 + In(1 + 2/4)) / e (1) D
0

el

which is the desired estimate since |e=2"P%!| = 1. So there is no loss of generality is assuming
s =0.
Next, we write f; = Z ake?mDEOt and
—d<t<d
_ Z Z algezm(DkM)t _ Z am€2i7rmt
kel —d<t<d m
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where

(6.3.6)

am =aj whenm=Dk+/(¢ kel and [(<d
0 otherwise '

d od
Let N =d, M = 7—‘ the smallest integer larger than 5 and let K n the sequence from
Lemma [6.3.5] Since

d D
N+2M§d+2(%+1) =d+dd+2< 7
then we have
D D
supp(Ky ) = [-N —2M,N +2M] C [—?75}

Further Ky ny(m) = 1 for m € [—d, d]. Next, let KJ(\?N be the ¢ D-periodic sequence defined
by K%\ (jgD + 0) = Kyn(f) for £ = =N —2M,...,N +2M and K} (k) = 0 for all

other k’s. We take R,S > N + 2M such that R + S = ¢D and then K](\?N(k) = 0 for
k=-R,...,—N—-2M —1andfork=N-+2M+1,...,5—1.
From Lemma [6.3.0, we get

1 S— . 1
(») 29mmt J 2iTmu
/0 ;amKMVN(m)e dt < S Z FalK v N] <R+S> mge:zame du
¢ a3 o
with Lemma [6.3.5
D D
As supp(Kpn) C [_E’ 5] and K](\?N is periodic of period R 4+ S = ¢D then
(») : . , . D
Kyn(m) #0 if m=jgD+¢ for je€Z and [{'|< 5 (6.3.7)

Combining (6.3.6) and (6.3.7) we have that amK](w n(m) # 0 only when

m = Dk + (= jqD + ('

D
Hence |j¢D — Dk| = [{ = 0| < d+ 5 < D. But this can only happen when jq = k, which
then also implies ¢ = ¢'. In particular, m = jqgD + ¢ with |¢| < d and then
jab

K)o (m) = ajqp 1 K8y (D + 0) = ajep K8 (0) = af
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It follows that

I NI S S

meZ jez —d<e<d

2iwk Dt _2imlt
= E E Ak D+40€ €

k=0 mod q —d<¢<d
kel

— § eerth E akD+£€2”r&

kel(q;0) —d<t<d

_ Z fk (t)eQiﬂth.

kel(g;0)

Finally we get

/01 Z Folt)e2mKat| g — /01

kel(q;0)

Z amKM,N(m)ezmmt dt

< 327 (24 In(1 + N/M)) | F |l 1o
< 32m(2 4 In(1 + 2/0))|| F| £ o,

We can now prove the lemma.

Proof of Lemma[6.3.2. Write I(q;s) = {ki,...,k;} and write each k; in the form k; =
rjq + s. Applying Lemma yields

J

Z fkj (t>62i7rijt

j=1

1 1
327(2 + In(1 + 2/9)) /0

:/01

1F 2oy = dt

dt

J
621'7rDst Z fkj (t)Ginrqut
=1

51 ds.

But

J

4 ITT ;S m 1T S 4 S m iTT ;S
2. I (o) =20 (75) ’*Z}[f'fﬂ' (o) =1 (35)]

Jj=1
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so that
F h=1
1Fleon 2 o rma ey @ )
with
1 qD-1 m+1 | J m I
T = — / kaj (—D) e2imTys dS,
v =5 Jm Jj=1 1
and
1 9Dl emar| S ( (s) <m))
oL | 5 B ‘ e 62171'7“]8 dS.
= - > ), ]Z:; fx, D Jr; )

It remains to show that

Carps o= i ll 2nd
Liz=3=) ——— and T<—Z||fk||y

Let us start with 7: using the 1-periodicity in s,

( > 62i7rrjs

qD—-1

T = Z/

ds,

> CMP Dzi J‘(ﬂﬂ
et ()

2md 1
with Theorem (4.1.1L  Applying Lemma [6.3.4] to fi, and using that e < 3 with our
qD—1

DZ ( )‘ kaHL

and the desired estimate of 77 follows immediately.

hypothesis on g and D, we get

Let us now estimate 7. For s € [m,m + 1], we have

J J s
S m 2imr;s ab ! 2imr;s
Z (fkj (q_D> — Ji; (q_D)) e = Z/m i, (t)e dt
7=1 7j=1
mBl
< 1 Z fk 2z7r7‘]s
ab
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From the 1-periodicity in s, the integral of this quantity over [m,m + 1] is the same as the
integral over [0, 1]. Thus

1 -1 emy1 ol
2@7rr's
Tqu—DZ_/m / ka % dtds
qD—1 77;B1

— 217rrjs ds dt
= L (t)e* ™ ds dt

1

!

< q—DZkajHLI([O,l})

2md
< —DZkajHLl([w

with Bernstein’s inequality. O

6.3.2 Strongly 2-dimensional subsets of R

We start by extending the definition of strongly dimensional structure to subsets of R. We
will use the same decomposition as in the case of strongly subset of Z. The main difference
with strongly subset of Z is that the sets Ay are now subsets of R instead of Z. Let 6 > 0
and (m,n) € N2 A finite subset A of R is (§;m,n)-strongly 2-dimensional if there exist
two real numbers d and D with D > (2 + 0)d such that

A= JA + kD)
kel

for some set I containing m integers and subsets Ay C [—d, d] verifying |A| > n.
Theorem 6.3.8. Let 6 > 0 and m,n be two positive integers satisfying
m > 122'CY peIn(m)? In(n)?  and n > 7322'CF, g In(n)?,

where Cyps(= 1/30) is the constant in Theorem |4.1.1. Suppose A is (§;m,n) strongly
2-dimensional subset of R. Then

1 T/2
lim — / e
T—o0 T —T/2 (LGZA

2imat

Clips
dt > @2+ (i + 2) In(m) In(n).

Proof. The idea is similar to the proof by Hudson and Leckband [6.1.1] We will use Dirich-
let’s Lemma to approximate the real frequencies by integers and then apply Hanson’s The-
orem for strongly multidimensional subsets of Z.
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Let A be a strongly multidimensional subset of R:

A= U(Ak+kD)7 Ar = a1, kny )

kel
and
m N
(ID(t) _ E 6217rat _ E E 62z7r(ak,]-+kD)t'
acA k=1 j=1

Let 0 < € < 1. By a lemma of Dirichlet ([44, p 235], [§]), there exists an increasing

sequence of integers (m;);>1 and, for each [ > 1 finite families of integers (al(f’)j)kzl ,,,,, m and
Dy such that, for k=1,...,mand j =1,...,n4
O]
a,’ D
ar— —1 <= and ‘D e (6.3.8)
my my my my
which implies that for k =1,... . mand j =1,...,n4
2m<a’(“lv)j+w>t all D 2(1 4+ m)me
Xmlon TR o\ < o ( arg— 2| + k'D o ) [t < i1
my my my
Define the m;-periodic function
m  ng
Wi(t) = Y D eHmen kP
k=1 j=1
and note that, for t € [—my/2,m; /2],
x0)
m.on , 2m<7’f;]+"’fl)t
D(t) — Wy(t)] < D3 |eHmlens kDI o AT < (14 m)|Ale.
k=1 j=1
but then
1 ml/2 1 ml/2
[ et = (o [ we)ar
My J —my /2 M J—my /2
1 ml/2
<= () — Wy(t)| dt
My —my /2
<m(1+m)|Ale
But
|a,§% —a,my <e <1 and —d<a,; <d
imply that

—dm; — 1< a,(f,)j <dm;+1
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le

ak] S { dl,...,dl} with d; = fdmﬂ + 1.
Note also that, for each k, the a%’s are distinct, provided [ is large enough. On the other
hand

D
—>2+90
7 > 2+

hence there exists ¢’ such that

D
—>2446>240.

d
Since
|D; — Dmy| < e and e<1
we get
D, > Dmy—12> (2—|—(5’)dml—1
> 248 ([dn]—1)—1
= (2+440)d; —5—2¢
then D,
— > 249,
a > 2+

provided [ is large enough.
It follows that

n

U +kDy)  with A = {d};}
k=1

is strongly (9; m,n) strongly 2-dimensional. Then if

Cirps
(Wﬂ%2+mu+§»’

from Hanson’s Theorem [6.1.3] we get that

m
2 : § :€2z7r ag) +KD))t

k=1 j5=1

Cln(m)In(n) < / dt

m

my/2
— i/ g Zzem (al) +KDy)t/my
My J—my /2

k=1 j=1

my /2 my/2
[ ewtae o [ e - wo)

M J—my/2 My J—my /2

dt

IN

IN

1 ml/2
——/ B(1)] dt + 7(1 + m)| Ale

My J—m, /2
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Letting [ — 400 and then ¢ — 0 we obtain Theorem [6.3.8}

T/2
hm 2imat
T— o0 7T/2

02
dt > MPS In(m) In(n).

Ze - (297r)2(2 +1In(1 + %))

a€A
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