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Abstract

Speech has always been a dominant mode of social connection and communication.
However, speech processing and modeling have been challenging due to its variability.
Classic speech technologies rely on cascade modeling, i.e. transcribing speech to
text with an Automatic Speech Recognition (ASR) system, processing transcribed
text using Natural Language Processing (NLP) methods, and converting text back to
speech with a Speech Synthesis model. This method eliminates speech variability but
requires a lot of textual datasets, which are not always available for all languages.
In addition, it removes all the expressivity contained in the speech itself.

Recent advancements in self-supervised speech learning (SpeechSSL) have enabled
the learning of good discrete speech representations from raw audio, bridging the
gap between speech and text technologies. This allows to train language models on
discrete representations (discrete units, or pseudo-text) obtained from the speech
and has given rise to a new domain called TextlessNLP, where the task is to learn
the language directly on audio signals, bypassing the need for ASR systems. The
so-called Spoken Language Models (Speech Language Models, or SpeechLMs) have
been shown to be working and offer new possibilities for speech processing compared
to cascade systems.

The objective of this thesis is thus to explore and improve this newly-formed do-
main. We are going to analyze why these discrete representations work, discover
new applications of SpeechLMs to spoken dialogues, extend TextlessNLP to more
expressive speech as well as improve the performance of SpeechLMs to reduce the
gap between SpeechLMs and TextLMs.

Keywords: Spoken Language Model, Language Model, Unsupervised Speech Learn-
ing, TextlessNLP, Speech Processing
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Résumé
La parole a toujours été un mode dominant de connexion sociale et de communi-
cation. Cependant, le traitement et la modélisation de la parole sont difficiles en
raison de la variabilité le parole. Les technologies classiques de la parole reposent
sur une modélisation en cascade, c’est-à-dire la transcription de la parole en texte
avec un système de reconnaissance automatique de la parole (ASR), le traitement
du texte transcrit à l’aide de méthodes de traitement du langage naturel (NLP) et la
conversion du texte en parole avec un modèle de synthèse vocale. Cette méthode
élimine la variabilité de la parole mais nécessite beaucoup de jeux de données
textuelles, qui ne sont pas toujours disponibles pour toutes les langues. De plus, elle
supprime toute l’expressivité contenue dans la parole elle-même.

De récentes avancées dans le domaine de l’apprentissage auto-supervisé de la parole
(SpeechSSL) ont permis d’apprendre de bonnes représentations discrètes de la parole
à partir du signal audio, comblant ainsi le fossé entre les technologies de la parole et
du texte. Cela permet d’entraîner des modèles de langue sur des représentations
discrètes (unités discrètes ou pseudo-texte) obtenues à partir de la parole et a
donné naissance à un nouveau domaine appelé TextlessNLP, où la tâche consiste
à apprendre la langue directement sur les signaux audio, sans avoir recours à des
systèmes ASR. Les modèles de langue parlé (SpeechLMs) ont été montrés comme
faisables et offrent de nouvelles possibilités pour le traitement de la parole par
rapport aux systèmes en cascade.

L’objectif de cette thèse est donc d’explorer et d’améliorer ce domaine nouvellement
formé. Nous allons analyser pourquoi ces représentations discrètes sont efficaces,
découvrir de nouvelles applications des SpeechLMs aux dialogues parlés, étendre le
TextlessNLP aux paroles plus expressives ainsi qu’améliorer les performances des
SpeechLMs pour réduire l’écart entre les SpeechLMs et les TextLMs.

Mots-clés: Modèle de langue parlée, Modèle de langue, Apprentissage non supervisé
de la parole, TextlessNLP, Traitement de la parole
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Introduction 0
0.1 General Introduction

From the beginning of human society, speech has always been the dominant mode
of human social bonding and information exchange, and has always been included
in most communication technologies such as telephone, radio, television, and the
Internet (Huang et al., 2001). However, modeling speech has not always been
an easy task due to its variability (speaker’s voice, accent, dialect), its ambiguity
(homophones, contextual dependency) as well as the background noise contained
in the speech itself. Modeling human spoken dialogues is, therefore, much more
challenging and requires a great deal of effort, but it still remains not fully solved.

Classic cascaded speech systems (including popular systems like Siri, Alexa, or
Google Assistant) rely on transcribing speech to text using an Automatic Speech
Recognition (ASR) system and applying Natural Language Processing (NLP) systems
on transcribed text. This approach removes the variability and ambiguity in the
speech, but depends highly on the performance of the ASR system. In addition, the
ASR system can potentially remove all the expressivity contained in the input speech
and also in the output speech.

Recent years have witnessed the widespread of Large Language Models (LLMs),
which heavily impacted not only the particular domain of NLP but also the whole
field of Artificial Intelligence (AI). LLMs have been found to capture a general
knowledge and understanding from a large amount of text corpora, and are able
to perform various tasks without fine-tuning on single specific tasks in contrast to
previous NLP systems (Brown et al., 2020). ChatGPT, one particular success of LLMs’
applications, has gained gigantic attention from both the public and researchers
since its release. It’s among the first chatbot systems that can have human-like
conversations and can generally answer questions in a human-desired manner and
has been widely used as an AI assistant for daily tasks. However, LLMs have also
been criticized for their trustworthiness, bias, and other legal issues (Weidinger
et al., 2021).
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Recent progress in Speech Processing, especially in Self-Supervised Speech Repre-
sentation Learning (SpeechSSL) (Baevski et al., 2020c; Chung et al., 2021; Hsu
et al., 2021a; Oord et al., 2018) has made it possible to learn from raw audio speech
representations that are good for a variety of downstream tasks such as Automatic
Speech Recognition (ASR), Speech Classification, or Speech Diarization (Yang et
al., 2021). These methods allow learning discrete representations from speech,
creating a bridge between speech and text technologies (Nguyen et al., 2020b).
Language Models can thus be trained on the learned discrete speech representations,
making it possible to model speech from raw audio without any text supervision
(Lakhotia et al., 2021), this gives rise to a new research domain called "TextlessNLP".
These so-called "SpeechLMs," however, still lag behind "TextLMs," but they allow
for the processing of speech directly from audio with new potentials over cascaded
systems.

The subject of this thesis is thus concentrated around this research domain. I will
present our work that attempts to explore and improve the capability of SpeechLMs.
Chapter 1 gives a background on the subject as well as on Spoken Language Models
(SpeechLMs). I will then revisit the use of speech units in SpeechLMs (Chapter 2),
then I will introduce an application of speech language modeling to spoken dialogue
generation (Chapter 3), and continue to make resynthesized speech more expressive
(Chapter 4), and, finally, I will present our attempt to combine SpeechLMs and
TextLMs and close the gap between them (Chapter 5). In Chapter 6, I will talk about
general contributions as well as the discussions/directions toward better spoken
language systems.

0.2 Thesis Structure

This thesis is written with a publication-based structure. Each chapter from Chapters
2-5 represents one of my publications, generally followed by additional experiments
attempting to explore or improve the work, and each one mainly covers one im-
portant subject in the field of spoken language modeling. However, they form a
consistent body of work and can be seen as incremental efforts to build a spoken
language modeling system. This will be discussed more in the last chapter (Chapter
6). The structure of the thesis is as follows:

Chapter 1: Background and Related Work

In this chapter, we will cover the background of the thesis as well as previous
work related to the subject. We will start with a brief introduction of Language
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Models, then we’ll go through the basic knowledge of Speech Processing, followed
by self-supervised speech models, which will play an important role in SpeechLM
systems. Finally. we will give an introduction of the main subject of the thesis:
Spoken Language Modeling. We’ll start with initial work giving rise to the domain, as
well as how spoken language modeling systems are evaluated and how they compare
to text systems.

Chapter 2: Speech Tokenization Revisited

We study the question of whether tokenization is important for spoken language
modeling, as presented in the paper: Are discrete units necessary for Spoken Language
Modeling? We train language models on both tokenized and continuous speech
features extracted from a Self-Supervised Speech Model and evaluate them on our
spoken language modeling metrics. We find that tokenization is indeed important
for spoken language modeling. We further analyze the influence of speech features
as well as the number of speech tokens on the performance of different metrics.
The chapter finishes with our supplementary experiments on analyzing larger-size
speech units.

Chapter 3: Spoken Dialogue Language Modeling

This chapter covers the modelization of spoken dialogues, which is presented in
the paper: Generative Spoken Dialogue Language Modeling, where we extend the
generative spoken language modeling approach to spoken dialogues. We find that
by representing dialogues as multi-channel audio, we can effectively modelize turn-
taking in a conversation and are able to generate spoken dialogues with natural
conversational cues (overlapping, laughter, back-channeling). However, we find a
lack of semantics coherence in the generated speech, even for the cascaded model,
suggesting a lack of training dataset. In the rest of the chapter, we present our
attempts to improve the model by leveraging larger read speech datasets.

Chapter 4: Expressive Speech Resynthesis

Previous work on spoken language modeling only focused on read speech. We
attempt to extend to more expressive speech by introducing a high-quality expressive
dataset in the following work: Expresso: A Benchmark and Analysis of Discrete
Expressive Speech Resynthesis. The dataset consists of 26 different expressive styles
(e.g., angry, happy, sad, laughing, etc.). We also introduce a benchmark on expressive
speech resynthesis and provide a detailed analysis of 2 different speech tokenization
methods: HuBERT-based tokenization and EnCodec tokenization. We find that
EnCodec is excellent in resynthesis tasks, but they are not controllable (i.e., cannot
be used to resynthesize speech with other speakers or styles). Additionally, EnCodec
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units don’t capture phonetic information as well as HuBERT units. We’ll give follow-
up analyses of this work on comparing HuBERT tokens and EnCodec tokens on
spoken language modeling tasks, and on improving HuBERT tokens with more
expressive tokens.

Chapter 5: Text+Speech Language Modeling

We attempt to improve SpeechLMs by using TextLMs. We bridge the gap between
Speech and Text LMs by combining them together into a single Speech+TextLM in:
SPIRIT: Interleaved Spoken and Written Language Model. We found that LMs trained
on interleaved speech and text can learn speech and text cross-modally and are
able to generate language content in either modality. We evaluate the models with
comprehension tasks in both speech and text, and extend few-shot prompting to
speech-text tasks such as ASR, TTS or Speech Classification. We further proposed
sentiment modeling metrics on speech generation and found that our model is able
to preserve expressivity contained in the speech, in contrast to cascaded systems.

Chapter 6: Discussion and Perspectives

This chapter gives discussions on the general contributions of each chapter, which is
followed by the perspectives and possible research directions that contribute to the
domain of spoken language modeling.
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Background and Related
Work

1

In this chapter, we are going to introduce a new task called Spoken Language Modeling
(SLM), which aims to build spoken language systems directly on audio without any
textual supervision1. We are going to present SLM in section 1.4, but before that we
will learn more about language models (section 1.1), the basics of speech processing
(section 1.2) as well as fundamental knowledge of self-supervised speech models
(section 1.3).

1.1 Language Modeling

Language Models (LM) are models that are able to understand and/or generate
natural language (texts). Formally, they are defined as probabilistic models that can
assign probabilities to a sequence of words based on text corpora it was trained on
(Jurafsky and Martin, 2009). For example, given two sentences:

The cat sat on the mat
The bat sat on the mat

a good language model should assign a higher probability to the first sentence rather
than the second one. This is extremely beneficial for NLP tasks such as speech
recognition or machine translation, where the model needs to choose the most
probable output text sequence among a list of candidates (e.g. it’s more probable
to say I love you than I law view). It’s worth noting that Language Models depend
heavily on the training datasets. Return to the example above, a simple language
model based on the occurences of single words (1-gram) trained on the plot of a
Batman movie should assign higher probability to the second sentence than the first
sentence.

1This comes from the following works: ZeroSpeech2021 Benchmark (Nguyen et al., 2020b) and
GSLM (Lakhotia et al., 2021), which I contributed during my internship before this PhD.
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Statistical Language Models approximate probability of word sequences using the
chain rules:

P (The cat sat) = P (The)P (The → cat)P (The cat → sat) (1.1)

where the probability of chaining the next word can be approximated using statistics
over the training dataset. N-gram LMs (Jelinek and Mercer, 1980; Katz, 1987)
are among the most popular Statistical LMs, they assume that the probability of
predicting the next word only depends on previous n-1 words, and therefore only
consider all tuples of n consecutive words (or n-gram). For example, in the previous
example, a 2-gram model would approximate P (The cat → sat) ≈ P (cat → sat),
which is then computed by counting all the tuples starting with cat as follows

P (cat → sat) = number of cat sat
number of cat *

. (1.2)

N-gram models are simple and are, therefore, widely used even in modern language
systems. However, a drawback of n-gram is that the number of n-grams increases
on a power scale (known as curse of dimensionality), making it difficult to compute
n-gram for large n, and creating many zero-probability sequences. This later issue
can be mitigated by smoothing over unseen sequences (Kneser and Ney, 1995).

Neural Language Models employ neural networks to approximate the probability
of word sequences. Neural networks are a class of models that use a vast number of
parameters to learn or estimate a given objective function. Similar to statistical lan-
guage models, neural language models compute the probability of word sequences
using the chain rules:

P (w1, w2, . . . , wt) = P (w1)P (w2|w1)P (w3|w1, w2) . . . P (wt|w1, w2, . . . , wt−1) (1.3)

and the probability P (wt|w1, w2, . . . , wt−1) is also approximated within a context
of n words P (wt|w1, w2, . . . , wt−1) ≈ P (wt|wt−n, . . . , wt−1). Unlike n-gram models,
neural networks permit to estimate efficiently P (wt|wt−n, . . . , wt−1) even for large
n with its huge number of parameters. Bengio et al. (2000) was probably the
earliest neural language model, which used a shallow network to estimate the
probability of a word given n previous context words. At the beginning of the deep
learning era (2010s), neural language models became much more popular, recurrent
neural networks (RNN, Rumelhart and McClelland, 1987; LSTM, Hochreiter and
Schmidhuber, 1997) have then become a norm for neural language models (Graves,
2014; Mikolov et al., 2010).
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Since the apparition of Transformer (Vaswani et al., 2017), language models have
proven to possess a good comprehension of texts given enough training data and
computing resources. BERT (Devlin et al., 2019) and GPT (Radford et al., 2018)
are two notable examples of Transformer-based language models. BERT utilizes
a special Masked Language Modeling (MLM) task to predict the masked words
in a sentence using a Transformer Encoder architecture (Masked LM), while GPT
employ the classic Language Modeling task which consists of predicting the next
word in the sentence using a Transformer Decoder architecture (Autoregessive LM).
These models are widely used as pre-train models for fine-tuning specific domains
or specific downstream tasks in NLP. Other popular Transformer-based LMs include
RoBERTa (Liu et al., 2019), XLNET (Yang et al., 2019), Electra (Clark et al., 2020),
BART (Lewis et al., 2020a), T5 (Raffel et al., 2020).

Large Language Models (LLM) have become a standard in NLP since the release
of GPT-3 (Brown et al., 2020). They found that scaling autoregessive language
models on billions of parameters (175B) with massive datasets helps to achieve
general-purpose language understanding and generation, and that the models can
solve new tasks by giving only a few examples in the prompt, or model input (few-
shot prompting). This enables solving a number of NLP tasks just by appropriately
setting the prompt without requiring to fine-tune the model as before (e.g. Chain-of-
Thought prompting technique, Wei et al., 2022b). Since then, a number of LLMs
have been developed (Chowdhery et al., 2022; Hoffmann et al., 2022; Touvron et al.,
2023a; Zhang et al., 2022). Notably, LLaMA (Touvron et al., 2023a) showed that
smaller LLMs (7B parameters) can achieve very good performance when training
longer on more data using optimal-compute scaling laws (Kaplan et al., 2020),
making LLMs more accessible for NLP research. It has been shown that larger LLMs
tend to possess more abilities that smaller models don’t have (emergent abilities).
For example, GPT-3 model can perform 3-digit addition at 13B parameters but can
only perform 4-digit addition at 175B parameters (Wei et al., 2022a).

ChatGPT (OpenAI, 2022) is probably the most successful system since the ap-
parition of LLMs. They found that LLMs fine-tuned on Human Instructions using
Reinforcement Learning with Human Feedback (RLHF, Ouyang et al., 2022) can
become a powerful chatbot system and is able to generate human-like conversation
and assist users on many tasks (Bowman, 2023). This has gained much attention
from not only researchers but also from the public. Since then, a huge number of
works have included RLHF in their LLMs, and many companies have integrated
ChatGPT into their systems or developed their own chat-LLM systems. Despite

1.1 Language Modeling 9



being popular for their success, chat-LLM systems also suffer from many critics
(Deshpande et al., 2023). People can use them to help with harmful use cases.
Hallucination is also a huge problem for LLMs. As they are probability-based, their
generated texts are not truthful. Generation from LLMs could also be socially toxic.
As their performance depends on the training dataset, these models can generate
discriminative texts or be biased on some subjects. As part of Generative AI, LLMs
could also be used to generate fake news or information, which is dangerous as soon
as it becomes widespread. Whether LLMs are able to understand what they said is
also a debatable question.2 People were scared that one day, LLMs could achieve
general understanding and could harm people.

Multimodal LM is another interesting direction since the LMs era. People are using
LLM not only on text, but also extend on other modalities (image, audio, speech,
video) to LLMs. Flamingo (Alayrac et al., 2022) is one of the first works to combine
Text+Image in an LLM. Their method relies on integrating image features into LLM
using an image encoder (e.g., CNN) and fine-tuning the model on image captions
so that the model is able to understand the content of the images. Parti (Yu et al.,
2022) tokenizes images into tokens with an image tokenizer and trains an LLM
that is able to generate images from the text description. For speech modality,
Lakhotia et al. (2021) introduced GSLM, a generative spoken language model that
is able to generate speech from raw audio using a speech tokenizer obtained from
self-supervised speech models. Since then, many speech and audio language models
have also been introduced (Agostinelli et al., 2023; Borsos et al., 2023; Kreuk et al.,
2023; Rubenstein et al., 2023).

1.2 Speech Processing

1.2.1 How Speech Signal is represented

Raw Audio Waveform Raw audio signal is represented as a sequence of numbers
(or samples) indicated as the amplitude of the audio over time. The number of
samples every second is called the sample rate and is measured in Hz (hertz). A
higher sample rate means the speech is of higher resolution and quality. In speech
processing, the general sample rate is 16Khz or 16,000 speech samples per second.
This sample rate is enough for models to perceive the information in speech. For

2https://twitter.com/geoffreyhinton/status/1728490334336770138
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more diverse audio (e.g. music), the sample rate is much higher, the standard sample
rate for general audio is 44.1Khz and 48Khz.3 Each audio sample can be stored
in digital format using certain possible amplitude values. The number of possible
amplitude values is called audio bit depth. For example, each sample of 4-bit audio
can have 24 = 16 different values. The most common bit depths are 16-bit, 24-bit
or 32-bit. Most speech datasets are stored in 16-bit, which means 65 536 different
amplitude values. Finally, an audio file can have only one channel (mono), where
there is only one waveform representing the audio, or two channels (stereo), one
waveform for the sound coming from the left and one for the right, which resembles
how we hear in real worlds and creates a 3-D effect on the audio. This means
that speech signals contain a lot of information and are costly to store, especially
compared to text. For example, to store an audiobook of the first volume of Harry
Potter, one needs 7 hours of speech,4 or 400M speech samples at 16Khz, which
takes 800 MB (megabytes)5 in disk space. In contrast, the text version of the book
contains about 76K words,6 which takes up 400KB (kilobytes) in disk space, 2,000
times smaller than that of speech!

Spectrogram Raw audio signals contain only amplitude information of the speech
but not other information (e.g. pitch, phonetic). The spectrogram is another rep-
resentation of audio signals that contain the visual information of the frequencies
(or pitches, measured in Hz) contained in the speech or audio. The spectrogram is
a sequence of spectrum, or a decomposition of different frequencies contained in
a short audio segment (or window), over time.7 The spectrum is calculated using
a special "frequency-analysis" operator, usually known as Fourier transform, and
contains a density over a frequency bin (e.g. 0-10,000Hz). For example, a segment of
a female voice will have a spectrum concentrated on around 200Hz, while a segment
of a male voice will be around 100Hz. The spectrums are calculated over consecutive
small segments in the speech (e.g., 0-100ms, 50-150ms, 100-150ms, ..), and are
concatenated to form a single spectrogram of the speech, which can be visualized
as a frequency-time image. In speech processing, frequencies in spectrogram are
usually scaled (or converted) using a mel scale so that the scaled frequencies corre-
spond with human-perceived frequencies, this is called the mel-spectrogram. MFCC
(Mel Frequency Cepstral Coefficients) is another type of spectrogram representation
where the mel frequencies are further converted using a discrete cosine transform,

3https://www.izotope.com/en/learn/digital-audio-basics-sample-rate-and-bit-depth.
html

4https://www.youtube.com/watch?v=h72Mlk94wrQ
5https://www.colincrawley.com/audio-file-size-calculator/
6https://wordcounter.io/blog/how-many-words-are-in-harry-potter
7https://www.phon.ucl.ac.uk/courses/spsci/acoustics/week1-10.pdf
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this representation can allow for better representation of speech8, and is commonly
used in speech and audio processing.

Speech Features While speech models can take the raw audio signal or spectro-
gram as input and directly optimize the given tasks (e.g., recognition or classification)
in the output (called end-to-end models), many speech systems use learned features
or representations, from speech to help to learn meaningful information from the
speech. Classic speech recognition systems use speech features extracted from spec-
trogram to learn the acoustic or phonetic information from the speech (Alim and
Rashid, 2018). Later, some classic statistical models (e.g., Hidden Markov Model or
HMM) are used to learn speech features from the speech (Jelinek, 1976; Levinson
et al., 1983). Recent speech systems use learned speech features or representations
using neural networks. x-vector (Snyder et al., 2018) and ECAPA-TDNN (Desplan-
ques et al., 2020) capture speaker representation from the speech using deep neural
networks, and are commonly used to extract speaker features, or embeddings, from
the speech. With the development of self-supervised speech models (Wav2vec 2.0
Baevski et al., 2020c; HuBERT Hsu et al., 2021a; wavLM Chen et al., 2022), speech
features obtained from these models can capture various meaningful speech rep-
resentations, from paralinguistic (e.g. speaker, emotion), acoustic (e.g. phonetic)
to higher linguistic levels (e.g. words, sentences). For example, in this thesis, we
will introduce discrete representations (called speech units, or pseudo-text), which
are quantized representations from self-supervised features that capture phonetic
information from speech. T-modules (Duquenne et al., 2022) used wav2vec2.0 to
embed the speech into a joint speech-text space to obtain sentence-level speech
representations.

1.2.2 Speech Processing Tasks

In this section, we will introduce several significant speech processing tasks among
the many that exist in the field.

Automatic Speech Recogntion (ASR) is probably the most well-known speech pro-
cessing task and is the most popular research domain in speech processing. The task
of ASR is to automatically transcribe the speech into text. ASR plays a vital role in
most speech systems as it transforms user input into text so that the systems can
apply NLP systems on transcribed texts. The history of ASR dates back to the year

8https://en.wikipedia.org/wiki/Mel-frequency_cepstrum
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1950s (Juang and Rabiner, 2005) with early systems using formant frequencies to
recognize spoken digits (Davis et al., 1952). Classic ASR systems require a complex
combination of speech feature analysis, statistical acoustic models (e.g. HMM),
and language models (e.g. LSTM). Since 2010s, neural network ASR systems have
outperformed classic ASR systems and have become the standard in ASR for their
simplicity. While classic ASR systems treat speech from spectrogram representations
to extract useful information from speech, recent deep ASR systems show the possi-
bility of training end-to-end and processing speech from the raw waveform by using
convolution layers to extract low-level representations from the speech (Amodei
et al., 2016; Sainath et al., 2015). Self-attention networks (Vaswani et al., 2017)
also contribute significantly to current state-of-the-art ASR systems (Baevski et al.,
2020c; Gulati et al., 2020; Radford et al., 2023). The most recent one, Whisper, has
gained huge attention and success for its extreme performance in multilingual, noisy
speech, achieving human performance in speech recognition.

Speech Synthesis, or Text to Speech (TTS), is another main research field in Speech
Processing. As inverse to ASR, the task of TTS is to synthesize natural, human-like
speech from a given text. From an answer from your home assistant, a train
announcement to news you are listening to, synthetic speech (the output of a TTS
system) can appear everywhere nowadays. One early known TTS system is Voder
(Dudley, 1940), which is a complex machine that generates speech from hundreds
of combinations of sounds and requires a trained person to perform the synthesis
(similar to playing the piano, but more difficult!). Classic speech synthesis models
were based on complex speech features such as formant frequencies or based on
articulatory modeling. Similar to the ASR task, deep TTS models (neural network-
based) have been well studied and surpassed the performances of classic TTS systems.
Neural TTS models can either be composed of 2 stages: text-to-spectrogram (Ren
et al., 2022; Shen et al., 2018) and spectrogram-to-waveform (also called vocoder,
Kong et al., 2020; Prenger et al., 2019) or generate directly waveform from text
(end-to-end) (Kim et al., 2021).

Speech Diarization is a special speech processing task where the goal is to distin-
guish each speaker from a speech recorded in a multi-speaker environment (e.g. a
dialogue or a party). This task is important for robust ASR systems as it can help to
differentiate the speaker’s voice from a noisy speech input.
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Speech Classification Tasks Speech Classification refers to a wide range of speech
processing tasks where the goal is to predict the label of a speech input. Some exam-
ples of speech classification tasks include Speech Command Recognition, Speaker
Recognition, Emotion Classification, or Language Identification. Recently, with the
development of self-supervised speech systems, Speech Classification tasks could be
done by fine-tuning pre-trained self-supervised speech models, which gives excellent
results (Yang et al., 2021). Now we are going to discuss more about self-supervised
speech models in the next section.

1.3 Self-supervised Speech Learning

Training a supervised speech system (e.g. ASR system) requires a lot of human-
annotated labels, which can be very costly to obtain, especially for large-scale
speech datasets. Self-supervised Speech Learning is a solution to this problem.
Self-supervised speech models learn speech representations (or features) in an
unsupervised manner, making use of large-scale unlabeled speech datasets to learn
the underlying structure of the speech.

1.3.1 Self-supervised Learning

Self-supervised Learning (SSL) In Machine Learning, Self-supervised Learning
methods refer to training methods where the training labels come from the data itself
rather than from human-annotated labels. Therefore, it is an unsupervised learning
method (learning without using labels, as contrasted with supervised learning). The
trained model would be expected to learn a good representation of the data and
can be used to extract data information or further fine-tune (continue to train) on
specific downstream tasks (e.g. Image Classification for Images, Sentiment Analysis
for Text, or Speech Recognition for Speech). SSL is often used to first leverage large
amounts of unlabeled data and consequently applied on fewer sets of labeled data.
It is therefore considered as the bridge between unsupervised learning (Rani et al.,
2023).

Self-supervised Learning Objectives Without labels that act as targets for the pre-
diction task, SSL needs a pretext task, or objective, to train the network. The SSL
objectives can be classified into contrastive and non-contrastive. Contrastive SSL
methods aim to learn data representations such that similar instances are close
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together in the representation space, while dissimilar instances are far apart.9 In
the contrastive objective, there is often one target (or positive sample) sample and
one (or multiple) negative samples, and the goal is to maximize the similarity of
the output representation (or anchor), with the positive sample, while minimizing
the similarity with the negative ones. In Computer Vision, the positive sample
could be a crop of the input image, while negative ones are sampled across the
dataset (Chen et al., 2020). Non-constrastive SSL methods often use a prediction task
to either reconstruct the input or to predict other representations from the input.
Auto Encoder models (models that encode input data to a hidden space and decode
back to reconstruct the input), notable Variational Auto Encoder (VAE, Kingma and
Welling, 2014), fall into non-constrative SSL methods. Language Models can also
be considered as SSL methods as they also use input text as their training labels
(e.g. BERT predicts the masked words in the input sentence, while GPT uses the next
words as their prediction targets).

1.3.2 Self-supervised Speech Models

In Speech Processing, SSL models have been widely studied and introduced recently
and are mostly employed for downstream speech recognition or speech classification
tasks (Mohamed et al., 2022). We will introduce some popular Self-supervised
Speech (SpeechSSL) models that will be discussed later in this thesis, please have a
look at Mohamed et al. (2022) for a comprehensive review of SpeechSSL models.

CPC Contrastive Predictive Coding (Oord et al., 2018) (CPC) learns audio rep-
resentations by predicting the future in hidden space using autoregressive mod-
els. The CPC model consists of a temporal convolutional encoder (CNN, LeCun
et al., 1989) and an autoregressive predictor (LTSM, Hochreiter and Schmidhu-
ber, 1997). The CNN Encoder takes the raw waveform x and produces hidden
features z = (z1, . . . , zT ) of much lower rate (generally 100Hz) than the input wave-
form (16Khz). At each timestep t, the LSTM Predictor predicts the next k features
(zt+1, . . . , zt+k) given the past (z1, . . . , zt) with a contrastive objective. The negative
samples are randomly sampled from the other hidden features (either the same or
other sequences). The CPC model has been shown to capture speaker and acoustic
information from the speech depending on how the negative samples are chosen
(Oord et al., 2018; Rivière et al., 2020).

9https://paperswithcode.com/task/contrastive-learning
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wav2vec 2.0 The wav2vec 2.0 (Baevski et al., 2020c) model learns speech repre-
sentations by predicting the masked quantized features in the hidden space using a
Transformer encoder (Vaswani et al., 2017). Similar to CPC, the wav2vec 2.0 model
also consists of a CNN Encoder which extracts the hidden features z = (z1, . . . , zT )
from the speech. Inspired from BERT (Devlin et al., 2019), the hidden features z are
partially masked (zt is replaced with a masked feature vector ẑMask for all time steps
t in TMask ⊂ {1, . . . , T}) and then fed into a Transformer Encoder which captures
the information from the whole sequence. The Transformer Encoder is trained with
a contrastive objective to predict the quantized embeddings of the masked features
{qt = emb (gq(zt)) | t ∈ TMask} where gq is a quantization module (Gumbel-Softmax,
Jang et al., 2017). This quantization step has been shown to benefit the learned
representations in prior work (vq-wav2vec, Baevski et al., 2020b). The negative
samples are uniformly sampled from the other quantized masked features of the
same sequence. The wav2vec 2.0 model showed for the first time the powerful of
Speech SSL model by achieving excellent preformances on ASR task by fine-tuning
on only 10 minutes of labeled speech.

HuBERT The HuBERT (Hsu et al., 2021a) model has the same architecture as the
wav2vec 2.0 model with a CNN Encoder followed by a Transformer Encoder. Unlike
CPC and wav2vec 2.0 that use a contrastive loss, HuBERT is trained with a prediction
objective to predict the target labels obtained from teacher representations. Similar
to wav2vec 2.0, the speech is encoded to hidden features z = (z1, . . . , zT ) which are
partially masked and fed to the Transformer Encoder. The teacher representations
y = (y1, . . . , yT ) are clustered using k-means (MacQueen et al., 1967) and the cluster
ids at the mask time steps are used as the target labels of the Transformer Encoder
{lt = cluster_id(yt) | t ∈ TMask}. The training of HuBERT model is done in multiple
iterations, where the quality of the teacher y is improved in each iteration. The
teacher of the first iteration are MFCC features. The next iterations use the hidden
features of previous iterations as teacher. The hidden features are extracted from
an intermediate layer of the Transformer Encoder, which was chosen to maximize
phonetic mutual information metrics. HuBERT model therefore captures good
semantic information from the speech and have excellent results, especially in
speech recognition tasks.

1.3.3 Evaluation of Self-supervised Speech Models

There exist many metrics and benchmarks used to evaluate self-supervised speech
models. The metrics can be evaluated by fine-tuning the models on downstream
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tasks (e.g. SUPERB, Yang et al., 2021; LeBenchmark, Evain et al., 2021) or by
extracting models’ outputs (e.g. Zero Resource Speech, Dunbar et al., 2019, 2017,
2020; Versteegh et al., 2015)

SUPERB The SUPERB benchmark (Yang et al., 2021) is a collection of tasks used
to evaluate the quality of speech reprentation of self-supervised speech models. It
consists a wide range of downstream speech processing tasks ranging from con-
tent (PR, ASR, KS, QbE) and speaker identity (SID, ASV, SD) to semantics (IC,
SF) and paralinguistic (ER). The speech SSL models are fine-tuned and evaluated
on each task, and can be compared with other models through an active online
leaderboard.10

Zero Resource Speech Challenge The Zero Resource Speech (ZeroSpeech) Chal-
lenge (Dunbar et al., 2019, 2017, 2020; Versteegh et al., 2015) is a series of
benchmarks that evaluates the progress of speech systems that work without any
textual supervisions. The series began since 2015 and the long-term objective was
broken down into four incremental tasks: Acoustic Unit Discovery, Spoken Term
Discovery, Discrete Resynthesis, and Spoken Language Modeling. The metrics can be
evaluated in an unsupervised manner (without fine-tuning) by probing the systems’
outputs directly. Similar to SUPERB, ZeroSpeech metrics and benchmarks are made
available11 which enable comparison and tracking progress of spoken language
systems.

1.4 Spoken Language Modeling from Raw Audio

Classic approaches on speech generation rely on cascaded systems, i.e. transcribe
speech to text with an ASR model, then generate text responses and convert it back
to speech with a speech synthesis model. These approaches work well but they
heavily depend on the performance of ASR systems, in addition normalize speech
to text remove all acoustic information contained in speech (voice characteristics,
expressivity) and can make the synthesized speech unnatural. In this section, we
are going to introduce a new task called spoken language modeling from raw audio
(Lakhotia et al., 2021; Nguyen et al., 2020b), where the goal is to perform language
modeling on speech directly without passing through text. This can open up new

10https://superbbenchmark.org/leaderboard
11https://www.zerospeech.com/
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possibilities of speech modeling, such as expressive speech modeling, multichannel
speech modeling, or even general audio modeling.

1.4.1 Spoken Language Models (SpeechLMs)

Language Models work very well on text, but how about speech? As previously
discussed, there are some main disavantages of speech compared with text for the
task of language modeling:

• Speech waveforms are extremely long compared with text. For example, the
sentence one day the park plays is presented as 5 text tokens, but is worth
64,000 audio frames. This long-term context dependency is a main issue for
current language models, and therefore can severely affect the performance of
LM on speech.

• Speech signals are continuous, making it hard for language modeling task.
Text, on the other hand, is tokenized to discrete tokens, and can therefore be
embedded to a vocabulary which is optimized both LM input and prediction
stages.

• Speech contain various information compared with text: linguistic content,
voice characteristics, background noise, etc. Training a language model on
speech can be very difficult since LM doesn’t know which information of speech
to learn from.

To deal with the issues mentioned above, Nguyen et al. (2020b) and Lakhotia et al.
(2021) proposed a simple yet effective approach to train language models on speech:
Tokenize speech into discrete units of lower frame rate which contain linguistic
information of the speech, and then train a language model on the discrete units
(Figure 1.1).

1.4.1.1 ZeroSpeech 2021 Baseline System

In Nguyen et al. (2020b), we proposed a baseline system for the task of Spoken
Language Modeling which consists of 3 composite systems: a self-supervised speech
model (CPC), a clustering module (k-means) and a language model (BERT).
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Fig. 1.1: Baseline Speech Language Models (SpeechLMs) ZeroSpeech 2021 Baseline
System (left) and GSLM system (right). In both systems, the input speech is
transformed into discrete units by clustering continuous speech representations
obtained from self-supervised speech models. Then a language model is trained on
discrete units. The ZeroSpeech 2021 Baseline system uses a Transformer Encoder
with a masked prediction objective, while GSLM uses a Transformer Decoder
with an autoregressive objective. GSLM further employs a Text-to-Speech model
(Tacotron 2) to convert discrete units back to speech.

Acoustic Speech Features Extraction. Previous work (Niekerk et al., 2020; Rivière
et al., 2020) show that representations from self-supervised speech models like CPC
capture well phonetic information from the speech. Following this, we trained a
CPC model to extract meaningful representations from the speech. The CPC model
consists of a 5-layer 1D-CNN Encoder followed by a multi-layer LSTM Autoregres-
sive network. We perform an in-depth analysis of phonetic quality over hidden
representations of the CPC model using the ABX metrics 12 (Schatz et al., 2013) and
extract the speech features from the hidden layer of the autoregressive network of
the CPC model which has the best ABX. The final extracted speech features have a
frame-rate of 100Hz (160 times smaller than the actual sample rate of 16KHz) and
contain phonetic-like information in its representation.

Speech Feature Quantization. Quantizing speech features has been shown to be
beneficial for acoustic unit discovery (Niekerk et al., 2020) and speech recognition
(Baevski et al., 2020a). We also followed this and quantized the continuous speech
features using the k-means clustering method. The clustering is done on the col-

12The ABX metrics will be presented in detail in section 1.4.2
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lection of all the output features at every time step of all the audio files in a given
training set. After training the k-means clustering, each feature is then assigned to a
cluster, and each audio file can then be discretized to a sequence of discrete units
corresponding to the index of the assigned clusters. We initially explored various
numbers of clusters and evaluated the phonetic quality of the discrete units using
the ABX metrics. We also included multiple-group clustering in our experiences as
similar to Baevski et al. (2020b). We found that doing k-means with 50 clusters
gives the best results in our case.

Language Modeling on Quantized Speech Units. With the speech feature quantiza-
tion, we now have a discrete version of speech with low-level linguistic information
(phonetic) and, therefore, can finally train a language model on the discrete units to
capture high-level language properties from the speech. Following Baevski et al.,
2020b, we trained a BERT (Devlin et al., 2019) model on the units with only the
masked token prediction objective. We also followed Baevski et al. (2020b) by
masking a span of tokens in the input sequence instead of a single token (otherwise,
the prediction would be trivial to the model as discretized units tend to replicate).

This composite system partly solves the issues mentioned at the beginning of the
section, as it discretizes speech into coarser tokens containing linguistic content and
permits us to learn a language model on speech effectively. We will show in section
1.4.3 that the system is indeed able to learn useful information from the speech and
that it is possible to perform language modeling from raw audio.

1.4.1.2 GSLM: Generative Spoken Language Modeling

The previous systems allow us to learn language models directly on raw speech,
but they are not generative as they used a Transformer Encoder architecture. In
addition, generating new speech requires a system that can generate speech back
from the discrete units. In Lakhotia et al. (2021), we extend Nguyen et al. (2020b)
to generative speech modeling. We propose GSLM (Generative Spoken Language
Model), a system that can perform speech generation by training an autoregressive
language model on the discrete units and synthesizing speech from the generated
units using a TTS system.

The GSLM consists of 3 components: a Speech-to-unit (S2u) model that encodes
speech to discrete units (or pseudo-text), a unit-Language Model (uLM) to per-
form generative modeling of the speech, and a unit-to-Speech (u2S) model that
synthesizes speech from pseudo-text.
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Speech-to-Unit (S2u) Similar to Nguyen et al. (2020b), the S2u model is composed
of a speech feature extractor followed by a quantization module. We employed
various self-supervised speech models as feature extractors, including CPC, wav2vec
2.0, and HuBERT. We also included a log Mel filter-bank baseline (with 80 frequency
bands, computed every 10ms) to analyze the importance of the speech extractor
quality. For the quantization, we used k-means to convert continuous speech features
into discrete representations by training on the train-clean-100 subset of LibriSpeech.
We experimented with different codebooks that have 50, 100, and 200 units.

unit-Language Model (uLM) We use a decoder Transformer architecture to train a
language model on sequences of pseudo-text units. The Transformer model has 12
layers, 16 attention heads, an embedding size of 1024, an FFN size of 4096, and a
dropout probability of 0.1. The uLM is trained on “clean” 6k hours sub-sample of
LibriLight used in Rivière et al. (2020), transcribed with corresponding discrete units.
Unlike Nguyen et al. (2020b), the discrete units are deduplicated13 before being
fed to the language model. In preliminary experiments, we found that removing
sequential repetitions of units improves performance. We hypothesize that this
simple modification allows us to use the Transformer’s limited attention span more
efficiently as in Hsu et al. (2021b).

Unit-to-Speech (u2S) We adopt the Tacotron-2 model (Shen et al., 2018) such that
it takes pseudo-text units as input and outputs a log Mel spectrogram. To enable
the model to synthesize arbitrary unit sequences, including those representing
incomplete sentences, we introduce two modifications. First, we append a special
“end-of-input” (EOI) token to the input sequence, hinting the decoder to predict the
“end-of-output” token when attending to this new token. However, this modification
alone may not be sufficient, as the decoder could still learn to ignore the EOI
token and correlate end-of-output prediction with the learned discrete token that
represents silence as most of the speech contains trailing silence. To address this,
we train the model using random chunks of aligned unit sequence and spectrogram,
and append the EOI token to unit sequence chunks, such that the audio does not
always end with silence. We implement chunking in the curriculum learning fashion,
where the chunk size gradually grows (starting with 50 frames with an increment of
5 per epoch) to increase the difficulty of the task. For waveform generation, we use
the pre-trained flow-based neural vocoder WaveGlow (Prenger et al., 2019). This
model outputs the time-domain signal given the log Mel spectrogram as input. All
u2S models were trained on LJ Speech (LJ) Ito and Johnson, 2017.
13For example, a pseudo-text 10 11 11 11 21 32 32 32 21 becomes 10 11 21 32 21.
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We will see in section 1.4.3 that it is possible to train a generative language model
from quantized units and that the GSLM system can generate new speech in both
prompted (given input speech) and unprompted (no input speech given) conditions.
However, we first need to see some evaluation methods of spoken language models
in the following section.

Note that in the following of this thesis, we will call these systems that perform
language modeling on raw speech Spoken Language Models, or Speech Language
Models, or SpeechLMs interchangeably. The same thing for classic Language
Models, or Text Language Models, or TextLMs.

1.4.2 Spoken Language Models Evaluation Metrics

1.4.2.1 Zero-shot Comprehension Metrics

Inspired by textual evaluation metrics of language models, speech language models’
comprehension can be evaluated using black-box tests. This involves providing
speech inputs and computing model performances based on their outputs.

In Nguyen et al. (2020b), we proposed 4 metrics used to probe the understanding
of speech language models at different linguistic level: Phonetics (Libri-light ABX
Metrics), Lexicon (sWUGGY Spot-the-word Metrics), Syntax (sBLIMP Acceptability
Metrics) and Lexical Semantics (sSIMI Similarity Metrics).

Phonetics: The Libri-light ABX Metrics. The ABX discriminability metric evaluates
the speech representations in terms of phonetic quality, it can be simply seen as an
unsupervised, contrastive version of phoneme classification accuracy and has been
introduced in Schatz et al. (2013). Given a pair of similar triphones (e.g. ‘aba’-‘apa’)
and an intervening sound (either ‘aba’ or ‘apa’), the model has to tell which sound
has a closer representation to the intervening sound. The ABX metric is reported
as the error rate in which the model fails to choose the correct triphone. Formally,
given two speech categories A and B (e.g. triphones ‘aba’ and ‘apa’), we compute
the following asymmetric error score:

êABX(A, B) := 1
nA(nA − 1)nB

∑
a,x∈A
x ̸=a

∑
b∈B

[
1d(b,x)<d(a,x) + 1

21d(b,x)=d(a,x)

]
(1.4)
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Tab. 1.1: Summary description of the Spoken Zero-shot Comprehension Metrics. The
metrics in light blue use model’s representations to compute a pseudo-distance
(distance d or similarity ŝM ) between input embeddings, the metrics in light
orange use a pseudo-probability P computed over the entire input sequence.

Linguistic Level Metrics Data Task Example
acoustic-phonetic ABX (a, b, x) d(a, x) < d(b, x)? (apa, aba, apa)

lexicon sWUGGY (w, nw) P (w) > P (nw)? (brick, blick)
(squalled, squilled)

syntax sBLIMP (cor, inc) P (cor) > P (inc)? (dogs eat meat, dogs eats meat)
(the boy can’t help himself, the boy can’t
help herself)

lexical semantics sSIMI (w1, w2, sH) ŝM (a, b) ∝ sH(a, b)? (abduct, kidnap, 8.63)
(abduct, tap, 0.5)

contextual semantics T-StoryCloze (cont, cor, inc) P (cont, cor) > P (cont, inc)? (Shyanne had a spelling test. She wanted to
pass it. She studied hard. She made a 100.,
Shyanne was overjoyed.,
Their mom enjoyed her new, broken vase.)

commonsense reasoning S-StoryCloze (cont, cor, inc) P (cont, cor) > P (cont, inc)? (Shyanne had a spelling test. She wanted to
pass it. She studied hard. She made a 100.,
Shyanne was overjoyed.,
She was heartbroken.)

where nA, nB are the cardinalities of A, B respectively; a and x are two different
sounds belonging to category A and b belonging to B (in this example a and x

are the same triphones ‘aba’ and b is ‘apa’); and d(a, b) is a distance between the
representations of a and b computed as the average cosine distance along the
Dynamic Time Warping path of the two representations. The ABX error score is
symmetrized and aggregated across all minimal pairs of triphones like (‘aba’, ‘apa’),
where the change only occurs in the middle phoneme. This score can be computed
within speaker (in which case, all stimuli a, b and x are uttered by the same speaker)
or across speaker (a and b are from the same speaker and x from a different speaker).
The ABX metric is agnostic to the dimensionality of the embeddings, can work with
discrete or continuous codes, and has been used to evaluate acoustic features in
the Zero-Ressource Challenge Series (Dunbar et al., 2019, 2017, 2020; Versteegh
et al., 2015). The Libri-light ABX metrics are computed on the pre-existing Libri-light
dev and test sets, which have already been used to evaluate several self-supervised
models (Kahn et al., 2020; Rivière et al., 2020).

Lexicon: The sWUGGY Spot-the-word Metrics. Unlike most text-based Language
Models, where the text inputs are tokenized at word or sub-word levels, speech
language models have much more fine-grained input features and therefore can
struggle at recognizing words. Inspired by Godais et al. (2017), who used ‘spot-the-
word’ task to evaluate character-level Language Models, we proposed the sWUGGY
metric which evaluates model’s capability to detect an existing word against a
similar pseudo-word. In this task, the models are presented with a pair of sounds:
an existing word and a matching nonword (e.g. ‘brick’ – ‘blick’), and are evaluated
on their capacity to attribute a higher probability to the existing word. The sWUGGY
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spot-the-word metric corresponds to the accuracy of correctly classifying the words
across all pairs:

scoreswuggy := 1
nD

∑
(w,nw)∈D

[
1P (w)>P (nw) + 1

21P (w)=P (nw)

]
(1.5)

where D is the set of all pairs of existing word and nonword (w, nw); nD is the
number of pairs; and P (w) is a pseudo-probability given by the model for the input
slimuli w. The nonwords are created with WUGGY (Keuleers and Brysbaert, 2010),
which generates for a given word a list of candidate nonwords best matched in
phonotactics and syllabic structure. The matching nonwords are carefully chosen
from the candidates to ensure high-quality speech synthesis (i.e. all nonwords should
sound plausible) and to match unigram and bigram phoneme frequencies. The word
pairs are then synthesized to speech using a TTS system with 4 different speakers.
The sWUGGY dataset consists of 2 subsets: an in-vocab-sWUGGY subset with the
existing words being part of the LibriSpeech train vocabulary and an OOV-sWUGGY
subset with existing words which do not appear in the LibriSpeech training set.

Syntax: The sBLIMP Acceptability Metrics. The sBLIMP metrics are adapted from
BLIMP (Warstadt et al., 2020), a dataset of linguistic minimal sentence pairs of
matched grammatical and ungrammatical sentences (e.g. ‘He love eating pizza’ -
‘He loves eating pizza’). Similarly to the sWUGGY metrics, the task is to decide
which of the two members of the pair is grammatical based on the probability of
the sentence. The sBLIMP acceptability metric is thus computed as the accuracy
that the model assigns a higher probability to the grammatical one. The sBLIMP
dataset was created by adapting the code used for generating the BLIMP dataset
(Warstadt et al., 2020), specifically tailored for speech purposes. In BLIMP, sentences
are divided into twelve broad categories focusing on different linguistic paradigms
in the fields of syntax, morphology, or semantics. These categories are themselves
divided into 67 finer linguistic subcategories, containing 1000 sentence pairs each,
automatically generated using expert hand-crafted grammar. To make the sBLIMP
dataset ’speech-ready’, 5 subcategories were discarded, and the grammar of 9
additional subcategories was slightly modified in order to avoid any difficulty in
generating a prosodic contour for the ungrammatical sentences. Words not found in
the LibriSpeech training set were excluded from the sBLIMP vocabulary. Compound
words and homophones, which could cause further understanding issues during
synthesis, were also removed. Finally, the generated texts are synthesized using a
multi-speaker TTS system similar to sWUGGY.
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Lexical Semantics: The sSIMI Similarity Metrics. The sSIMI metric assesses model
comprehension of lexical semantics through its output representations. Here, the
task is to compute the similarity of the representation of pairs of words (e.g. ‘cat’ –
‘dog’) and compare it to human similarity judgements. Formally, the sSIMI score is
computed as the correlation of the similarity given by models compared with human
similarity scores:

scoressimi := 1
nD

∑
Di∈D

ρ
(
{ŝM (w1, w2)}(w1,w2)∈Di

; {sH(w1, w2)}(w1,w2)∈Di

)
(1.6)

where D contains all datasets Di of word pairs (w1, w2); nD is the number of datasets;
sH(w1, w2) is the simlarity score given by human; ŝM (w1, w2) is a similarity com-
puted from output representations of w1 and w2; and ρ is the Spearman’s rank
correlation coefficient. Based on Chung and Glass (2018), a set of 13 existing seman-
tic similarity and relatedness tests was used to construct the sSIMI benchmark. The
similarity-based datasets include WordSim-353 (Yang and Powers, 2006), WordSim-
353-SIM (Agirre et al., 2009), mc-30 (Miller and Charles, 1991), rg-65 Rubenstein
and Goodenough, 1965, Rare-Word (or rw) (Luong et al., 2013), simLex999 (Hill
et al., 2015), simverb-3500 (Gerz et al., 2016), verb-143 (Baker et al., 2014), YP-
130 Yang and Powers, 2006 and the relatedness-based datasets include MEN (Bruni
et al., 2012), Wordsim-353-REL (Agirre et al., 2009), mturk-287 (Radinsky et al.,
2011), mturk-771 (Halawi et al., 2012). All scores were normalized on a 0-10
scale, and pairs within the same dataset containing the same words in a different
order were averaged. Pairs containing a word absent from the LibriSpeech train set
were discarded. Two versions of sSIMI were created, one synthetic and one natural.
The synthetic subset was generated using a multi-speaker TTS system as similar
to sWUGGY and sBLIMP. For the natural subset, audio segments corresponding to
different words were obtained from the LibriSpeech dataset following the process
presented in Chung and Glass (2018). The natural subset is comparatively smaller
than the synthetic one due to the exclusion of pairs not present in the LibriSpeech
test and dev sets. However, in this natural subset, each word can appear in multiple
audio segments providing phonetic diversity; duplicated scores are averaged in the
analysis step.

Previous metrics mainly focus on lower linguistic levels such as phonetic (ABX),
lexical (sWUGGY, sSIMI), or single-sentence (sBLIMP) and therefore could hardly
assess model capability to capture contextual semantics (at multi-sentence level).
Later in Hassid et al. (2023), we introduced other zero-shot metrics used to evaluate
the comprehension of speech language models at a broader level: Contextual
Semantics and Commonsense Reasoning (T-StoryCloze and S-StoryCloze).
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Commonsense Reasoning: The T-StoryCloze and S-StoryCloze Metrics. To better
evaluate the capabilities of speech language models in capturing fine-grained tex-
tual nuances and continuation coherence, two spoken versions of the StoryCloze
textual benchmark (Mostafazadeh et al., 2016), denoted by Spoken StoryCloze
(S-StoryCloze) and Spoken Topic StoryClose (T-StoryCloze), were introduced. The
StoryCloze dataset contains five-sentence commonsense stories, each story consists
of a four-sentence ‘context’ and two alternative endings, called ‘right ending’ and
‘wrong ending’. The goal of the model is to choose the right ending over the wrong
ending given the context. To generate the spoken benchmarks, the stories from the
textual dataset are generated using a single-speaker TTS system. The S-StoryCloze
follows the original StoryCloze samples, and evaluates the models’ capabilities to cap-
ture fine-grained causal and temporal commonsense relations. For the T-StoryCloze,
or Spoken Topic StoryCloze, the wrong ending was sampled randomly from the
dataset and could therefore be unrelated to the context. This version of StoryCloze
aims to evaluate continuation coherence given a spoken prompt and is far easier.
However, it has been shown that the T-StoryCloze task is still challenging for modern
speech language models. Similar to sWUGGY and sBLIMP, the T-StoryCloze and
S-StoryCloze metrics are computed as the percentage of examples where the model
assigns a higher probability to the correct sample than the incorrect one.

1.4.2.2 Speech Resynthesis and Generation Metrics

Apart from the comprehension metrics, in Lakhotia et al. (2021) we proposed
metrics used to assess the output of generative speech models in terms of resynthesis
intelligibility, quality and diversity of the newly generated speech.

Speech Resynthesis Intelligibility: ASR-PER. Unlike text tokenizers in TextLMs,
where the output texts are identical to the input texts (as text tokenizers are in-
versible), speech information can be loss during the tokenization-detokenization
process (e.g. speech → units → resynthesized speech). The Speech Resynthesis
Intelligibility metrics therefore aim to evaluate if the resynthesized output speech
has the same content as the input speech. The ideal metric for intelligibility would
be to use humans to transcribe the resynthesized speech and compare the text to
the original input. However, an automatic proxy can be obtained by using a state-of-
the-art ASR system pretrained on a large corpus of real speech. The resynthesized
speech is thus transcribed to text with the ASR system, and then is compared with
the original text of the input speech using any ASR metrics such as Phoneme Error
Rate (PER), Character Error Rate (CER) or Word Error Rate (WER).
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Speech Generation Quality and Diversity: AUC over Perplexity and VERT. In this
scenario, the model is used to generate new speech using either a speech prompt
(conditional generation) or no input (unconditional generation), and the generated
speech is evaluated in terms of meaningfulness. Similar to previous metrics, the
generated speech is transcribed to text using an ASR system and text-based genera-
tion metrics are then employed. Text generation evaluation typically involves two
axes: the quality and diversity of the generated text (Hashimoto et al., 2019). Text
quality can be automatically evaluated by computing the perplexity, or probability,
of text using a reference language model trained on natural texts. A lower perplexity
assumes a more probable generated sentence. However, a flaw of Natual Language
Model-based perplexity is that a sentence contain of repeated words will likely have
very low perplexity but is implausible in real life. The diversity metrics somewhat
remedy this problem by computing how the generated texts are diverse in terms of
vocabulary. In Lakhotia et al. (2021), we introduced VERT (diVERsiTy), a metrics
used to compute the diversity of generated texts by calculating the geometric mean
of self-BLEU and auto-BLEU. Self-BLEU (Zhu et al., 2018) evaluates how similar
one sentence is compared to other generated sentences, while auto-BLEU measures
within-sentence diversity. Low self-BLEU and auto-BLEU scores indicate higher
diversity of the produced sentences. Typically, there is a trade-off between Perplexity
and VERT based on the temperature hyperparameter used for sampling from the
language model, whereby at low temperature, the system outputs good sentences
(low Perplexity) but not varied (high VERT), and at high temperatures, it outputs
varied sentences (low VERT), but not very good (high Perplexity). This results
in model comparison being either based on 2D plots with lines representing the
trade-off between quality and diversity, or estimation of how close these plots are to
oracle (ground-truth text) Perplexity and VERT by computing the area under the
curve (AUC).

Human Evaluation Metrics: MOS. Despite the practical of previously mentioned
automatic metrics, they are still dependent on off-the-shelf ASR and scoring LM
systems, and might not reflect the true quality of the generations as listened by
humans. Human evaluations therefore still play an important role in the assessments
of speech generation. Mean Opinion Scores (MOS) is a commonly used method for
human evaluation, and is widely used to evaluate the quality of audiovisual data or
systems (Streijl et al., 2016). In MOS, the humans are asked to give their opinions,
generally scores from 1-5 with 1 being Bad and 5 being Excellent, over an audio
file. The scores are then averaged over all humans and all files to obtain a mean
opinion score. Depending on how the humans are instructed, the MOS score can be
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used to evaluate one particular aspect of the speech such as intelligibility (MOS) or
meaningfulness (MMOS).

1.4.3 Performances of Spoken Language Models

The overall performances of the described spoken language models systems over
Zero-shot Comprehension Metrics and Speech Generation Metrics are shown in Table
1.2 and Figure 1.2 respectively. We will discuss here some key insights obtained
from the results.

Tab. 1.2: Spoken Zero-shot Comprehension Metrics Performances. Scores are taken
from Nguyen et al. (2020b) and Lakhotia et al. (2021). The speech features are
evaluated with the ABX within and ABX across metrics, while spoken language
modeling performances are evaluate with sWUGGY, sBLIMP, and sSIMI metrics.
The systems are described in section 1.4.1 and the metrics are described in section
1.4.2. ∅ denotes unobtainable scores, while – denotes scores not reported. The
best scores for each speech and text systems are bold.

ABX within ↓ ABX across ↓ sWUGGY ↑ sBLIMP ↑ sSIMI ↑
Feature nb units LM clean other clean other (invocab) synth. libri.

ZeroSpeech 2021 Systems (Nguyen et al., 2020b)
Low-budget Baseline Systems

CPC
50 BERT-small 6.38 10.22 8.26 14.86 65.81 52.91 3.88 5.56
50 LSTM 6.38 10.22 8.26 14.86 66.13 53.32 4.42 7.56

High-budget Baseline Systems
CPC-small 50 BERT 10.26 14.24 14.17 21.26 70.69 54.26 2.99 6.68

CPC 50 BERT 6.38 10.22 8.26 14.86 75.56 56.14 6.25 8.72
Text Topline Systems

Aligned-phone 40 BERT 0.00 0.00 0.00 0.00 92.19 63.72 7.92 4.54
Phone 39 BERT ∅ ∅ ∅ ∅ 97.90 66.78 9.86 16.11

Sub-word 50K RoBERTa large ∅ ∅ ∅ ∅ 96.58 81.56 32.28 28.96
GSLM Systems (Lakhotia et al., 2021)

Baseline MFCC Features

LogMel
50 GPT 23.95 – 35.86 – 51.48 53.22 – –
100 GPT 24.33 – 37.86 – 51.88 53.17 – –
200 GPT 25.71 – 39.65 – 50.38 52.24 – –

Self-supervised Speech Features

CPC
50 GPT 5.50 – 7.20 – 67.82 54.57 – –
100 GPT 5.09 – 6.55 – 68.28 55.65 – –
200 GPT 5.18 – 6.83 – 62.60 54.81 – –

HuBERT-L6
50 GPT 7.37 – 8.61 – 67.12 55.94 – –
100 GPT 6.00 – 7.41 – 68.70 57.06 – –
200 GPT 5.99 – 7.31 – 63.48 52.97 – –

wav2vec2-L14
50 GPT 22.30 – 24.56 – 48.08 54.25 – –
100 GPT 18.16 – 20.44 – 49.76 54.03 – –
200 GPT 16.59 – 18.69 – 55.32 54.30 – –

Topline Text System
ASR-text – GPT ∅ ∅ ∅ ∅ 96.88 70.98 – –
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1.4.3.1 Spoken Language Modeling is Feasible

For the zero-shot comprehension metrics (Table 1.2), we see that the best-performing
speech models show better-than-chance performances in all tasks, although there is
substantial variation between tasks. We see excellent performances at the acoustic-
phonetic level (6-8% error rate for the best model on ABX-across), good perfor-
mances at the lexical level (around 70% for best models), and poor results at larger
linguistic levels (syntactic and lexical semantics). Overall, this still shows that
the discrete units could capture acoustic information from speech, and training a
language model on them can leverage language comprehension from raw speech.

Looking at Figure 1.2, we can see that the best GSLM systems perform well at the
resynthesis task (speech → units → synthesized speech, with around 10% PER).
On the speech generation tasks, we see that they obtain very good human MMOS
scores (averaged on both prompted and unprompted generations), which correlate
well with the automatic AUC metrics. This shows that it is possible to generate new
speech without any text supervision using discrete units.

These results show the feasibility of both spoken language modeling and generative
spoken language modeling tasks.

1.4.3.2 Quality of Speech Features is Important

We observe that speech features have critical impacts on the performances of spoken
language modeling systems. LogMel features, which are not supposed to capture
strong linguistic information of speech, have high ABX errors (around 20-40%),
especially compared to CPC and hidden HuBERT features (under 10%). This is
further reflected in spoken language modeling metrics like sWUGGY and sBLIMP,
where features with very good ABX scores (CPC and HuBERT) tend to have better
performances. This is also true for Speech Resynthesis and Generation Metrics.

The number of clusters also influences the performances of SpeechLMs. Interestingly,
increasing the number of clusters helps improve Speech Resynthesis tasks (PER,
MOS), but not for other comprehension tasks (ABX, sWUGGY, sBLIMP). There seems
to be a sweet spot for CPC and HuBERT features at 100 units.

It’s worth noting that autoregressive LMs (GPT, LSTM) are not as performant as
encoder-based LMs like BERT, which is commonly observed in classic text LMs.
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Fig. 1.2: Overall results of GSLM systems on comprehension and generation metrics
(from Lakhotia et al., 2021). The results are presented with 4 speech encoders
(LogMel, CPC, HuBERT and wav2vec 2.0) varying in number of k-means units (50,
100, 200). The metrics are described in section 1.4.2. Negative human opinion
scores are shown for ease of comparison with automatic metrics (lower is better).
The generation metrics have been averaged across LS and LJ (PER and MOS;
resynthesis task) and across prompted and unprompted generations (AUC and
MMOS; speech generation task). The LogMel-based systems were not evaluated
by humans in the speech generation task.

1.4.3.3 There is a gap between SpeechLMs and TextLMs

In both encoder-based and decoder-based spoken language modeling systems, we
see a clear gap in the performances of Text-based language models compared with
their speech counterparts. This could be caused by many factors such as: i) the
linguistic (phonetic) quality of the speech units; ii) the granularity of the speech
units compared to text; and iii) the quantity of speech data compared to the vast
amount of text data. To better disentangle these factors, we trained language models
on two text levels: forced-aligned phonemes (which could be seen as perfect speech
units with 0 ABX error), and normal phonemes (generally deduplicated phonemes,
without SIL tokens) and compared them with a pre-trained text LM on large-scale
dataset (RoBERTa). We see that each factor effectively contributes to the discrepancy
between SpeechLMs and TextLMs. Going from speech to aligned-phone boosts a lot
on lexical and syntactic tasks, but not on lexical semantics task. The sSIMI task is
improved by using phonemes instead of aligned phones, and using large-scale data
with sub-word tokens yields the best syntactic and lexical semantics scores.
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There is also another factor of speech that can hinder their performance compared
with text which is the absence of lexical information (e.g. word boundary). In
Nguyen et al. (2020a), we analyzed this factor by comparing various LMs on
character and phoneme levels with and without boundary information. We found
that models without word boundaries underperform models that have boundaries
which can rely on higher-order units like words or BPEs, and that part of this
decrement can be compensated by using automatically generated word boundaries
using unsupervised word segmentation.

The results show that there is still a lot of room for improvement for SpeechLMs, and
more work could be done to bridge the gap between SpeechLMs and TextLMs.

1.4.3.4 Lacking Expressivity in Speech Generation

One huge advantage of SpeechLMs compared to cascaded systems is the possibility
of learning and generating paralinguistic information (e.g. pitch, expressivity) in
the speech. However, by listening to the speech examples generated by GSLM,14 we
can observe that although the generated speech contains good linguistic content, it
still lacks natural intonation and expression.

This naturally comes from the fact that the models are trained on read speech
datasets, which limits their ability to generate expressive speech. Having more
expressive datasets could possibly improve the generation quality of SpeechLMs.
In addition, the use of discrete speech units obtained from self-supervised speech
features also contributes to this lack of expressivity. We have been optimizing the
speech units using linguistically-based metrics (ABX, PNMI), which could inadver-
tently strip away paralinguistic cues from the speech. Using other speech features
containing acoustic information could, therefore, provide SpeechLMs with expressive
information and thus generate more natural speech.

1.4.4 Discussions

1.4.4.1 Applications of Spoken Language Models

TextlessNLP The previous works opened up the possibility of applying language
models directly to audio inputs, sidestepping the need for textual resources or Au-
tomatic Speech Recognition (ASR), which leads to a new research domain called

14https://speechbot.github.io/gslm/index.html
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TextlessNLP15. Polyak et al. (2021) further analyzed the speech resynthesis task by
extracting disentangled discrete representations for speech content, prosodic infor-
mation, speaker identity and managed to synthesize speech from discrete units in a
controllable manner. Following this, Kharitonov et al. (2022b) introduced pGSLM,
a multi-stream SpeechLM which jointly learns “pseudo-text” tokens together with
quantized prosodic features (i.e. duration and F0). Kreuk et al. (2022) performed
the speech emotion conversion task using discrete speech representations. Nguyen
et al. (2023b) extended GSLM to multi-channel speech and performed a spoken
dialogue language modeling task (dGSLM). Leveraging general audio neural codecs
(SoundStream, Zeghidour et al., 2021), Borsos et al. (2023) proposed AudioLM,
a speech language modeling system that can generate coherence speech with the
“pseudo-text” speech units (called semantic tokens) while preserving paralinguistic
information (e.g. speaker identity, prosody) with the audio codecs (called acoustic
tokens).

Speech Translation Lee et al. (2022a) proposed using discrete speech units as
target to perform direct speech-to-speech translation with an encoder-decoder archi-
tecture. Following this, Popuri et al. (2022) proposed pre-training a BART (Lewis
et al., 2020a) model on the speech units and fine-tune on the speech translation task.
Following AudioLM, AudioPaLM (Rubenstein et al., 2023) utilizes speech tokens
to perform Speech Recognition and Translation tasks while keeping input speaker
identity. Recently, Seamless (Communication et al., 2023a,b) proposed expressive,
real-time Speech Translation systems that work for hundreds of languages.

Multimodal Speech Systems There is an intrinsic relation between text and speech,
and therefore it is natural to bind SpeechLMs with TextLMs. Hassid et al. (2023)
found that it is beneficial to continue training speech units on pre-trained TextLMs.
Zhang et al. (2023a) proposed a spoken question-answering model, SpeechGPT,
that utilizes speech units as a proxy to go from speech to text. Lastly, Nguyen et al.
(2024) introduced Spirit-LM, a combined speech and text generative language model
that can generate content cross-modally and allows speech-text few-shot in-context
learning. In the audiovisual domain, Hsu et al. (2023b) proposed ReVISE which
combines self-supervised audiovisual model (Shi et al., 2022) with speech units for
the audiovisual generation task.

15https://speechbot.github.io/

32 Chapter 1 Background and Related Work

https://speechbot.github.io/


Downstream Speech Tasks SpeechPrompt and SpeechPrompt-v2 (Chang et al.,
2022, 2023b) explored the performance of GSLM and pGSLM systems on a variety of
downstream speech classification tasks from Superb (Yang et al., 2021) using prompt
tuning technique inspired from prefix-tuning (Li and Liang, 2021). Hsu et al. (2023a)
found that GSLM systems do not have the in-context learning (ICL) capability, but
are able to perform ICL on unseen tasks after warm-up training. SpeechGen (Wu
et al., 2023) extended this prompting technique to Speech Translation, Speech
Inpainting and Speech Genration tasks using the unit-mBART model in Popuri et al.
(2022).

1.4.4.2 Concurrent Related Work

Audio Generation with Discrete Representations Oord et al. (2017a) applied their
proposed VQ-VAE model to obtain discrete latent representations of audio. They
show that the discrete representations can capture the speech content and can be
used to reconstruct audio or to generate new audio using the WaveNet Decoder (van
den Oord et al., 2016). Jukebox (Dhariwal et al., 2020) employed multi-scale VQ-
VAE to compress audio to multi-level discrete codes and trained language models on
the codes to perform music generation conditioned on artists, genres, and optionally
lyrics. With the introduction of high-quality neural audio codecs (SoundStream,
Zeghidour et al., 2021, Encodec, Défossez et al., 2022), more audio generation
systems are introduced. VallE (Wang et al., 2023a) and SpearTTS (Kharitonov et al.,
2023) performed the voice-conditioning (voice-cloning) TTS task by translating text
to audio codec tokens. In the same spirit, Kreuk et al. (2023) proposed AudioGen,
which employs a Transformer decoder to model text and Encodec units, permitting
the generation of audio samples from text captions. Following AudioLM, Agostinelli
et al. (2023) introduced MusicLM, a system that can generate music from text
descriptions using a hierarchical sequence-to-sequence modeling task. MusicGen
(Copet et al., 2023) allows the generation of high-quality music from both text
descriptions and melody using a single language model operating on multiple
streams of discrete tokens.
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Speech Tokenization
Revisited

2
We have seen in the first chapter that discrete units play an essential role in
SpeechLMs systems by transforming the continuous speech representations into a
discrete space, which made it possible to perform spoken language modeling from
raw audio. However, we didn’t really provide an analysis as to why such speech
tokenization, or discretization, works, and what is contained in these discrete speech
units. In this chapter, we are going to deal with these questions on the importance
of discretization on our provided spoken language modeling metrics.

This chapter presents the following paper, which was published in IEEE Journal of
Selected Topics in Signal Processing:

Tu Anh Nguyen, Benoit Sagot, and Emmanuel Dupoux (2022a). “Are Discrete Units
Necessary for Spoken Language Modeling?” In: IEEE Journal of Selected Topics in
Signal Processing 16.6, pp. 1415–1423

It is followed by Section 2.6, where I present my additional experiments on trying to
improve SpeechLMs by using larger speech units.

Statement of contribution:

I implemented all the models as well as performed the experiments mentioned in this
chapter, with the ideas and suggestions obtained from discussions with my supervisors
as well as feedback from reviewers.
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Publication: Are discrete units necessary for
Spoken Language Modeling?

Tu Anh Nguyen⋄,†, Benoît Sagot†, Emmanuel Dupoux⋄,‡

⋄Meta AI Research, †Inria, Paris, ‡EHESS, ENS-PSL, CNRS, Paris

{nguyentuanh208, emmanuel.dupoux}@gmail.com, benoit.sagot@inria.fr

Abstract

Recent work in spoken language modeling shows the possibility of learning a lan-
guage unsupervisedly from raw audio without any text labels. The approach relies
first on transforming the audio into a sequence of discrete units (or pseudo-text)
and then training a language model directly on such pseudo-text. Is such a discrete
bottleneck necessary, potentially introducing irreversible errors in the encoding of
the speech signal, or could we learn a language model without discrete units at
all? In this work, we study the role of discrete versus continuous representations
in spoken language modeling. We show that discretization is indeed essential for
good results in spoken language modeling. We show that discretization removes
linguistically irrelevant information from the continuous features, helping to improve
language modeling performances. On the basis of this study, we train a language
model on the discrete units of the HuBERT features, reaching new state-of-the-art
results in the lexical, syntactic and semantic metrics of the Zero Resource Speech
Challenge 2021 (Track 1 - Speech Only).

2.1 Introduction

Pre-training language models on large-scale text data have achieved tremendous
success in natural language understanding and have become a standard in Natural
Language Processing (NLP) (Brown et al., 2020; Devlin et al., 2019; Liu et al., 2019;
Radford et al., 2018, 2019). Recently, Brown et al. (2020) showed that very large
language models are actually few-shot learners, and manage to perform well even
in zero-shot settings.

36 Chapter 2 Speech Tokenization Revisited



Large-scale self-supervised pre-training for speech data has also become more and
more popular as a method to boost the performance of Automatic Speech Recognition
(ASR) (Baevski et al., 2020c; Chung et al., 2021; Hsu et al., 2021a). However,
these models mostly rely on fine-tuning, which requires more training and text
labels, to either improve the model or evaluate the learned representations of
the speech. Lately, Nguyen et al. (2020b) introduces a new unsupervised task:
Spoken language modeling, the learning of a language unsupervisedly from raw
audio without any text labels, along with a suite of 4 zero-shot metrics probing
for the quality of the learned models at different linguistic levels: phonetic, lexical,
syntactic, semantic. The metrics are evaluated using the representations extracted
from the model (phonetic, semantic) or pseudo-probability scores given by the
model (lexical, syntactic). Their proposed baseline approach relies on transforming
the audio into a sequence of frame-by-frame discrete units (or pseudo-text) and
training a language model on the pseudo-text. The trained models displayed better-
than-chance performances on nearly all the evaluation metrics of the challenge
(Dunbar et al., 2021; Nguyen et al., 2020b). However, this paradigm creates a
discrete bottleneck between a speech encoder and a language model which could
be a potential source of error, and in addition requires multiple training phases
(learning an acoustic representation, clustering it, and learning a language model).
Is such a discrete bottleneck necessary?

One way in which discrete units could help language modeling stems from the
fact that in contrast to text, audio data contains a lot more details, some of which
are linguistically relevant (intonation, rhythm, non verbal vocalization), others
not so (background noise, reverberation, speaker identity, etc). To the extent
that discretization effectively removes linguistically irrelevant information from the
continuous features (Niekerk et al., 2021), it could indeed help language modeling.
Of course, this potential gain could be counterbalanced by the fact that discretization
could also make errors and remove useful information.

In this work, we analyse the importance of discretization in spoken language mod-
eling. We employ a pre-trained acoustic model to obtain either continuous or
discretized features from audio data. We then train BERT language models with
a Masked Language Modeling (MLM) objective on both discrete and continuous
features used either as inputs or as targets and evaluate the resulting systems on
zero-shot spoken language modeling metrics. We also evaluate HuBERT (Hsu et al.,
2021a), a single model trained from raw waveform with discrete targets, on these
metrics and compare the results with our best models.

Our contributions can be listed as follows:
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Fig. 2.1: Overview of the trained BERT models. The BERT model takes as input either
the continuous features extracted from CPC or the sequences of frame-by-frame
discretized units obtained from k-means, and tries to predict either continuous
target features (with L1, L2 or NCE loss) or discrete target units (with NLL loss).

• We show experimentally that discretization is beneficial for spoken language
modeling, but we can get rid of discrete bottlenecks by using low-level contin-
uous inputs so long as we still use discrete targets.

• We show that discretization disentangles linguistic information from non-
linguistic signals, forcing the transformer to focus on linguistic ones.

• We show that a self-supervised model trained with a MLM objective on discrete
targets like HuBERT achieves very good results on spoken language modeling
metrics, showing that it can learn not only acoustic but also high-level linguistic
information.

2.2 Related Work

Discretization in Self-Supervised Approaches Self-supervised models for learning
speech representation have become more and more popular as an effective pre-
training method for downstream Automatic Speech Recognition (ASR) task, notably
wav2vec2.0 (Baevski et al., 2020c) and HuBERT (Hsu et al., 2021a). Both mod-
els comprise a feature extractor (CNN Encoder) followed by a feature encoder
(Transformer Encoder), and are trained with a MLM objective like BERT. However,
wav2vec2.0 discretizes the latent features obtained by the CNN Encoder and uses
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them as the target for the Transformer Encoder using a contrastive loss against
negative samples in the sentence. On the other hand, HuBERT discretizes fixed
features obtained from a teacher model and uses these fixed discrete units as the
target for the Transformer Encoder using a cross-entropy loss. Finally, our work is
mostly similar to Baevski et al. (2020a), where they compare BERT models training
on discrete units obtained from vq-wav2vec (Baevski et al., 2020b) and continuous
features obtained from wav2vec (Schneider et al., 2019) on the ASR task. They
found that training BERT model on discrete vq-wav2vec units is more effective for
ASR.

Spoken Language Modeling Following the huge success of language models on
text data (Brown et al., 2020; Devlin et al., 2019; Radford et al., 2019), the Zero Re-
source Speech Challenge 2021 (Dunbar et al., 2021; Nguyen et al., 2020b) opens up
new possibilities for learning high-level language properties from raw audio without
any text labels. They introduced 4 zero-shot evaluation metrics at different linguistic
levels (phonetic, lexical, syntactic, semantic), along with composite baseline systems
consisting of an acoustic discretization module (Contrastive Predictive Coding, or
CPC+k-means) followed by a language model (BERT or LSTM) on the discretized
units. The CPC model takes the raw audio as input and produces phonetic repre-
sentations at a lower frame rate of 100Hz, helping the language model to learn
high-level information from the raw audio. In the same spirit, Lakhotia et al. (2021)
introduced Generative Spoken Language Modeling (GSLM), the task of learning and
generating spoken language from raw audio only. They provided baseline systems
consisting of a discrete speech encoder (CPC, wav2vec 2.0, HuBERT), a generative
language model (GPT-like model), and a speech decoder (Tacotron-2, Shen et al.,
2018). The models are evaluated on spoken language modeling metrics (Nguyen
et al., 2020b), ASR-based generation metrics (Lakhotia et al., 2021) as well as
human evaluation metrics.

2.3 Experimental Setup

In this section, we first present the evaluation metrics as well as the dataset used
to train and evaluate the models. We then explain our models and the inference
methods for model evaluation.
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2.3.1 Evaluation Metrics

We evaluate our models with the ZeroSpeech 2021 Benchmark Metrics (Nguyen
et al., 2020b), consisting of 4 zero-shot tests probing for the quality of spoken
language models at four linguistic levels: phonetic (Libri-light ABX metrics), lexical
(sWUGGY spot-the-word metrics), syntactic (sBLIMP acceptability metrics) and
semantic (sSIMI similarity metrics).

Libri-light ABX metrics Given a pair of similar triphones (e.g., ‘aba’-‘apa’) spoken by
a same speaker and an intervening sound (either ‘aba’ or ‘apa’), the model has to tell
which sound has a closer representation to the intervening sound. The ABX metrics
is reported as the error rate that the model fails to choose the correct triphone.

sWUGGY spot-the-word metrics Given a pair of a word and a similar non-word
(e.g., ‘brick’-‘blick’), the model has to tell which is the word based on their probability.
The spot-the-word metrics is reported as the accuracy that the model assigns a higher
probability to the word.

sBLIMP acceptability metrics Given a linguistic minimal sentence pair of matched
grammatical and ungrammatical sentences (e.g., ‘he loves it’-‘he love it’), the model
has to tell which is the grammatical sentence. The acceptability metrics is reported
as the accuracy that the model assigns a higher probability to the grammatical
sentence.

sSIMI similarity metrics Given a pair of words (e.g., ‘happy’-‘joyful’), the model has
to compute a similarity score based on their representations. The similarity metrics
is reported as the Pearson correlation coefficient (PCC) between model scores and
human judgements. In this work, the sSIMI scores are weighted across different
subsets according to their sizes and averaged across LibriSpeech and synthetic
subsets to make it more accurate and consistent. We reported it as wSIMI.

2.3.2 Datasets

Training Dataset We train our models on LibriSpeech (Panayotov et al., 2015), an
English corpus containing 1000 hours of read speech based on public domain audio
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books. The models are validated on LibriSpeech dev-clean and dev-other subsets,
comprising 10 hours of speech in total.

Metrics Datasets The metrics datasets are either extracted sounds from LibriSpeech
(ABX, sSIMI) or synthesised using Google API1 (sWUGGY, sBLIMP, sSIMI). The
datasets containing words or sentences were filtered to only contain the LibriSpeech
vocabulary2 (except sWUGGY non-words), and are split into dev and test sets. The
dev sets have been made publicly available at the ZeroSpeech 2021 Challenge
website 3.

2.3.3 Models

ZeroSpeech 2021 Baseline The ZeroSpeech 2021 Baseline System (Nguyen et al.,
2020b) is a composite of three components: an acoustic model (CPC, Oord et al.,
2018; Rivière et al., 2020), a clustering module (k-means) and a language model
(BERT, Devlin et al., 2019). The CPC model is first trained to obtain good phonetic
representations of the speech, which are then discretized into sequences of units
with the k-means model. The BERT model is finally trained on these discrete units
to better learn linguistic information.

As we only focus on the language modeling system in this work, we shall use the
best CPC model in the ZeroSpeech 2021 Baseline System, which comprises a 5-layer
1D-CNN Encoder followed by a 4-layer LSTM autoregressive model. The features are
extracted from the 2nd layer (unless otherwise specified) of the LSTM model, with a
rate of 100Hz, and are either discretized with a 50-unit k-means model (discrete) or
left unchanged (continuous).

BERT with discrete and continuous features We modify the BERT model so that it
is able to take as input either discrete units obtained from k-means or continuous
features extracted from CPC, in which case the masking is done by replacing the
features with a masked embedding vector. We also allow the model to predict
either discrete target units or continuous target features, with multiple choices
of an appropriate objective for each case. When predicting discrete targets, we
use a cross-entropy objective (Negative Log-Likelihood, or NLL loss) but with two

1https://cloud.google.com/text-to-speech
2In this work, we only evaluated the sWUGGY metrics on the in-vocab subset, which contain the

words from the LibriSpeech vocabulary.
3https://zerospeech.com/tasks/task_4/benchmarks_datasets/
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Training hyperparameters Inference hyperparameters
n units (if discrete) feat. masking num prob. est. SIMI librispeech SIMI synthetic

id input target stride length prob. updates M ∆t layer pooling layer pooling

BERT Models on CPC-big Features
1 50 50 10ms 10 0.5 250k 15 5 11 max 1 min
2 50 50 10ms 10 0.5 250k 15 5 5 min 7 mean

11 50 50 10ms 10 0.5 250k 15 5 11 mean 10 min
12 50 50 10ms 10 0.5 250k 15 5 9 mean 1 min

3 - 50 10ms 10 0.5 250k 35 5 6 min 4 max
4 - 50 10ms 10 0.5 250k 35 5 8 mean 11 min

13 - 50 10ms 10 0.5 250k 25 5 10 max 10 min
14 - 50 10ms 10 0.5 250k 35 5 4 max 6 mean

5 - - 10ms 10 0.5 250k 45 5 8 max 1 mean
15 - - 10ms 10 0.5 250k 35 5 11 max 11 mean
16 - - 10ms 10 0.5 250k 45 5 12 mean 12 mean
6 - - 10ms 10 0.5 250k 35 5 1 mean 12 mean

17 - - 10ms 10 0.5 250k 25 5 12 min 12 max
18 - - 10ms 10 0.5 250k 35 5 1 mean 12 mean
7 - - 10ms 10 0.5 250k 35 5 3 mean 1 mean

8 50 - 10ms 10 0.5 250k 25 5 12 mean 5 min
19 50 - 10ms 10 0.5 250k 25 5 8 mean 4 min
20 50 - 10ms 10 0.5 250k 25 5 8 mean 11 mean
9 50 - 10ms 10 0.5 250k 15 5 12 max 12 min

21 50 - 10ms 10 0.5 250k 15 5 11 mean 7 min
22 50 - 10ms 10 0.5 250k 15 5 4 mean 12 max
10 50 - 10ms 10 0.5 250k 15 5 10 max 12 max

HuBERT Base Models
23 - 100 20ms 10 0.65 250k 15 5 2 max 5 min
24 - 500 20ms 10 0.65 400k 15 5 1 mean 9 max
25 - 500 20ms 10 0.65 400k 15 5 10 mean 6 max

BERT Models on HuBERT Discrete Units
26 - 500 20ms 10 0.5 250k 10 5 7 mean 8 mean

Tab. 2.1: Training and Inference hyperparameters of models trained in the paper. The
id corresponds to the model index in other tables.

slightly different implementations. We could simply employ a linear classification
head at the output of the BERT model as usual (which we denote by linear NLL, or
NLL-l) or force the BERT output features to be similar to the embedding vectors
of the target units as for HuBERT (cf. equation (3) from Hsu et al., 2021a, we
denote this by embedding NLL, or NLL-e). In the case of continuous targets, it can
be a reconstruction objective (L1 loss or L2 loss) or a contrastive objective (Noise
Contrastive Estimation, or NCE loss). In the latter case, the predicted features are
contrasted with 100 negative features sampled from the same phrase (similar to
continuousBERT, Baevski et al., 2020a).

We use a BERT base model, which comprises a 12-layer Transformer Encoder. Our
implementation is based on the wav2vec2.0 (Baevski et al., 2020c) Transformer
Encoder 4 using fairseq (Ott et al., 2019). Each input sequence contains the features
of a full audio file, and we consider at most 15.6 seconds of audio per file. We

4https://github.com/pytorch/fairseq/tree/main/examples/wav2vec
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trained all models for 250k update steps on 32 GPUs, with a batch size of 175s
per GPU. The learning rate was warmed up to a peak value of 1 × 10−5 after 32k
steps. For the masking, we masked M consecutive tokens for each span, where
M ∼ N (10, 10), with a total masking coverage of roughly half of the input tokens
(spans may overlap).

2.3.4 Model Inference for Evaluation

ABX Distance For the ABX metrics, we extract frame-by-frame representation fea-
tures for each audio file. Then, the ABX distance between two files is computed as
the average angular distance of the representations along the realigned Dynamic
Time Wrapping path. Given two audio files x and y with two sequences of represen-
tation rx = rx

1 , . . . , rx
T and ry = ry

1 , . . . , ry
S respectively, the ABX distance between x

and y is computed as follows:

dABX(x, y) = 1
|pathDTW(rx, ry)|

∑
(i,j)∈pathDTW(rx,ry)

sim(rx
i , ry

j ), (2.1)

where sim(rx
i , ry

j ) is the angular distance (in radian) between the embeddings rx
i

and ry
j .

We note that in this paper the ABX metrics are mainly used to evaluate the input
and target features of the BERT model, and therefore the ABX distances are mostly
performed on the CPC features without using the BERT model.

Probability Estimation For sWUGGY and sBLIMP metrics, we compute for each
audio file a model-based pseudo log-probability (m-PLP) of the trained BERT model.
Given an audio file x with the input and target features for the BERT model x1...xT

and x̂1...x̂T respectively, the m-PLP is computed as follows:

m-PLP(x) =
⌊(T −M)/∆t⌋∑

j=0
i=j∆t

M∑
m=1

PLP (x̂i+m|xi+1..xi+M ), (2.2)

where M is a chosen size of a sliding window, ∆t is a chosen step of the sliding
window and PLP (x̂i+m|xi+1..xi+M ) is a pseudo log-probability of the target x̂i+m

given by the BERT model with M -span masked inputs x1..xim..mxi+M+1..xT (m

represents a masked feature).
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For models with NLL or NCE loss, PLP (x̂i|xi+1..xi+M ) is computed as the log value
of the probability given by the softmax layer of the BERT model (in the NLL case,
the probability is computed over all tokens, while in the NCE case it is computed
over all sampled negative examples). For models with L1 or L2 loss, we compute
PLP (x̂i|xi+1..xi+M ) as the negative reconstruction loss of the predicted feature
and the target feature x̂i. The negativity ensures that a correct target has a higher
m-PLP.

The m-PLP extends the span-masked pseudo probability (span-PP) (Nguyen et al.,
2020b) to BERT models with continuous targets. It is derived from the pseudo-
loglikelihood score (PLL) for MLMs (Wang and Cho, 2019), which was shown to be
an effective sentence scoring method for BERT models in many scenarios (Salazar
et al., 2020).

The choice of M and ∆t is determined for each model using the dev sets, and is
given in Table 2.1. In our experiments, we always consider ∆t = 5 and vary M in
{15, 25, 35, 45, 55}. For models trained on HuBERT features (section 2.4.3), we vary
M in {5, 10, 15, 20, 25} as the frame rate is 50Hz instead of 100Hz as for CPC.

Similarity Score For the sSIMI metrics, we extract a fixed-length representation for
each audio file by applying a pooling function (mean, max, min) over hidden features
from one layer of the Transformer Encoder. The similarity score of two audio files is
computed as the cosine similarity between the two corresponding representations.
The choice of the hidden layer and the pooling function is determined for each
model using the dev sets and is given in Table 2.1.

2.4 Results

2.4.1 Discrete bottleneck seems to be essential for spoken
language modeling

Table 2.2 reports the performances of our BERT models, trained with either continu-
ous or discrete CPC features of the LibriSpeech 960h dataset, on lexical (sWUGGY),
syntactic (sBLIMP) and semantic (wSIMI) metrics.

We first examine how the continuity of the input and target features affects the
quality of the BERT model on the evaluation metrics. By comparing the best scores
in each case, we see that having discrete inputs helps the model learn better lexical
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id input target loss
sWUGGY↑

sBLIMP↑ wSIMI↑
(invocab)

discrete input, discrete target

1 disc. disc. NLL-l 79.28 59.71 6.32
2 disc. disc. NLL-e 80.02 59.86 7.87

continuous input, discrete target

3 cont. disc. NLL-l 60.36 53.23 8.39
4 cont. disc. NLL-e 60.20 52.78 9.49

continuous input, continuous target

5 cont. cont. NCE 56.84 52.62 9.16
6 cont. cont. L1 59.23 53.12 7.85
7 cont. cont. L2 60.56 53.33 6.55

discrete input, continuous target

8 disc. cont. NCE 65.69 57.24 9.33
9 disc. cont. L1 73.93 56.02 10.69

10 disc. cont. L2 74.22 55.75 5.97

Tab. 2.2: Discrete vs Continous Performances. Performances on the dev sets of sWUGGY,
sBLIMP, wSIMI metrics of BERT models using either continuous ZeroSpeech CPC
features (layer 2 of the LSTM module of CPC-big) or discretized features (with a
50-unit k-means model) as inputs and targets. Best scores in each category are in
bold, best scores overall are underlined.

and syntactic information, whereas models with continuous inputs do have better
than chance performance on the lexical task. We observe that the best models on the
language model tasks are obtained with discrete inputs and discrete targets, which
is the classic configuration of BERT. Predicting continuous targets from discrete
inputs, where the model acts as an autoencoder decoder, is also beneficial and nearly
catches up with the best models. It is interesting, still, to note that it is possible to
acquire some language information without any discretization. The wSIMI scores
are still quite low, but we see in general that having continuous information does
help.

2.4.2 Is continuous input always bad?

We observe during our training experiments that the masked prediction objective
is too easy for some models with continuous inputs and could quickly lead to
overfitting. This could be explained by the fact that the input and target features
are extracted from the same layer of the LSTM autoregressive module of CPC. As
a consequence, we try using the input features from different layers of the LSTM
module, while maintaining the same target layer. We keep using the NLL-e loss for
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ABX within↓ ABX across↓
clean other clean other

layer 0
cont. 11.50 14.09 18.53 24.70
disc. 21.46 24.21 30.77 34.91

layer 2
cont. 3.41 4.84 4.20 7.65
disc. 6.38 10.22 8.22 14.86

layer 4
cont. 9.49 11.95 10.01 15.70
disc. 19.81 21.64 24.39 28.04

Tab. 2.3: Layer-wise Analysis on Feature Quality. Within and Across Speaker ABX error
(lower is better) on Libri-light dev-clean and -other for continuous and discretized
features of different layers of the LSTM autoregressive module of CPC-big model.
Layer 0 means the output of the CNN Encoder module.

discrete targets while using NCE and L1 loss for continuous targets. The results are
reported in Table 2.4.

We observe that using continuous input features from a different layer does reduce
overfitting during training, which significantly improves the performances of the
models on LM metrics, especially for sWUGGY scores. Interestingly, we note that
using continuous input features from a lower LSTM layer (layer 0, where the ABX
errors are high, cf. Table 2.3) to predict target features from a higher LSTM layer
(layer 2) is more beneficial to the model than using high quality continuous input
features from the same or higher layer as the target features (layer 2, layer 4). This
is not the case, however, for discrete input models, where the model benefits from
good quality input units.

More analysis on the ABX errors of the trained BERT models’ hidden features is
reported in Table 2.5. We see that well-trained models with good language modeling
scores (models 1,2,13,15,17,8,9,10) seem to have very good ABX errors compared
to the others. By looking at the best hidden features of each model, we see that
models with discrete targets (models 1,2,13) are able to reconstruct hidden features
which are better than the targets, while this is not the case for most models with
continuous targets (except model 10).

Overall, we observe that discrete-discrete model (with the same input and tar-
get units) yields the best performance when the quality of discrete units is good.
Continuous-discrete is also a great choice when using low-level input features. When
there are no discrete units at all, the LM performances are still limited, even if using
a NCE loss could help a bit with syntactic and semantic metrics.
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id input target
sWUGGY↑

sBLIMP↑ wSIMI↑
(invocab)

discrete input, discrete target, NLL-e loss
2 layer 2 layer 2 80.02 59.86 7.87

11 layer 0 layer 2 64.91 52.45 7.48
12 layer 4 layer 2 70.68 55.06 8.61

continuous input, discrete target, NLL-e loss
4 layer 2 layer 2 60.20 52.78 9.49

13 layer 0 layer 2 77.19 55.30 7.25
14 layer 4 layer 2 67.41 54.13 8.06

continuous input, continuous target, NCE loss
5 layer 2 layer 2 56.84 52.62 9.16

15 layer 0 layer 2 65.53 55.20 6.17
16 layer 4 layer 2 59.81 52.93 8.32

continuous input, continuous target, L1 loss
6 layer 2 layer 2 59.23 53.12 7.85

17 layer 0 layer 2 67.83 53.59 7.25
18 layer 4 layer 2 63.68 53.26 6.90

discrete input, continuous target, NCE loss
8 layer 2 layer 2 65.69 57.24 9.33

19 layer 0 layer 2 58.55 52.31 8.07
20 layer 4 layer 2 58.61 54.48 7.72

discrete input, continuous target, L1 loss
9 layer 2 layer 2 73.93 56.02 10.69

21 layer 0 layer 2 62.98 53.47 5.20
22 layer 4 layer 2 65.92 53.94 7.01

Tab. 2.4: Changing Model Input Features. Performances on the dev sets of sWUGGY,
sBLIMP, wSIMI metrics of BERT models using the input features from different
layers of the LSTM module of CPC-big model. Layer 0 means the output of the
CNN Encoder module. Best scores in each category are in bold, best scores overall
are underlined.

2.4.3 Varying the number of discrete units

Here, we address the question as to why discrete units are better than continuous
ones. One hypothesis is that discrete units manage to remove linguistically irrelevant
information and force the transformer to focus on linguistic ones. To test this, we
run a speaker discrimination probe on the discrete units and continuous features. In
addition, we run a new experiment varying the number of discrete units from 20
to 2000. Hypothetically, when the number of units is too small (eg, smaller than
the number of phonemes), the resulting phonetic confusions should degrade the
learning of higher linguistic representations. Conversely, when the number of units is
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id input feature target feature loss input layer 3 layer 6 layer 9 layer 12 target

BERT Models on CPC-big Features
1 CPC-l2+km50 CPC-l2+km50 NLL-l 7.3 5.90 6.13 5.64 3.87 7.3
2 CPC-l2+km50 CPC-l2+km50 NLL-e 7.3 5.36 6.97 5.40 3.95 7.3

11 CPC-l0+km50 CPC-l2+km50 NLL-e 26.11 15.08 12.16 10.63 7.01 7.3
12 CPC-l4+km50 CPC-l2+km50 NLL-e 22.1 13.57 9.40 10.05 6.06 7.3

3 CPC-l2 CPC-l2+km50 NLL-l 3.81 8.87 15.30 14.91 9.10 7.3
4 CPC-l2 CPC-l2+km50 NLL-e 3.81 8.47 16.82 21.47 12.84 7.3

13 CPC-l0 CPC-l2+km50 NLL-e 15.01 6.57 4.74 4.04 4.07 7.3
14 CPC-l4 CPC-l2+km50 NLL-e 9.75 7.03 8.78 10.49 4.98 7.3

5 CPC-l2 CPC-l2 NCE 3.81 6.47 6.83 6.09 5.98 3.81
15 CPC-l0 CPC-l2 NCE 15.01 7.45 5.63 4.73 5.93 3.81
16 CPC-l4 CPC-l2 NCE 9.75 6.82 7.19 5.46 5.50 3.81
6 CPC-l2 CPC-l2 L1 3.81 7.41 7.81 10.31 12.87 3.81

17 CPC-l0 CPC-l2 L1 15.01 6.64 4.73 4.71 5.48 3.81
18 CPC-l4 CPC-l2 L1 9.75 5.89 5.27 4.80 5.38 3.81
7 CPC-l2 CPC-l2 L2 3.81 6.35 6.58 7.65 9.20 3.81

8 CPC-l2+km50 CPC-l2 NCE 7.3 6.49 5.50 6.87 5.37 3.81
19 CPC-l0+km50 CPC-l2 NCE 26.11 15.93 12.85 10.55 9.09 3.81
20 CPC-l4+km50 CPC-l2 NCE 22.1 12.88 10.17 10.18 8.81 3.81
9 CPC-l2+km50 CPC-l2 L1 7.3 5.25 5.71 4.89 10.96 3.81

21 CPC-l0+km50 CPC-l2 L1 26.11 13.13 10.87 9.81 15.40 3.81
22 CPC-l4+km50 CPC-l2 L1 22.1 11.44 9.91 7.65 11.88 3.81
10 CPC-l2+km50 CPC-l2 L2 7.3 5.42 5.09 4.20 3.68 3.81

HuBERT Base Models
23 waveform MFCC+km100 NLL-e - 7.13 4.18 5.03 9.05 27.88
24 waveform H1-l6+km500 NLL-e - 6.83 4.71 4.42 3.53 6.97
25 waveform H2-l12+km500 NLL-e - 6.66 4.43 4.48 3.78 6.26

BERT Models on HuBERT Discrete Units
26 H2-l12+km500 H2-l12+km500 NLL-e 6.26 5.32 6.51 6.74 4.43 6.26

Tab. 2.5: ABX of Hidden Transformer Features. Average (within and across) dev-clean
ABX error of input features, target features and features from different hidden
layers of Transformer model. CPC-lx stands for layer x of CPC-big, Hj-lx stands
for layer x of HuBERT j’th iteration.

too large, the quantization step would start to leak other-than-phonetic information
into the representation, hence making it closer to the continuous representations.

To support our hypothesis, we run kmeans on the continuous features of both CPC
and HuBERT models, and vary k to be 20, 50, 100, 200, 500, 1000, and 2000,
after which we train a discrete-discrete BERT model. For the CPC features, we
take the layer 2 features of the CPC-big model as usual. For the HuBERT features,
we train our own HuBERT base model as described in Section 2.4.4, we then take
the features from layer 12 of the Transformer Encoder after the 2nd iteration,
which have the best ABX (cf. Table 2.5). Following Kharitonov et al. (2022a), we
train a speaker classifier in the following way: We randomly split LibriSpeech dev-
clean utterances into train/valid/test (80%/10%/10%) sets and train a two-layer
Transformer classifier on the sequences of discrete units or continuous features of
the utterances. The classification head is performed on the first token (bos, or
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unit quality language modeling on units

model n units spk prb↑ ABX↓ sWUGGY↑
sBLIMP↑ sSIMI↑

(invocab)

CPC

20 30.40 12.66 71.71 58.97 4.72
50 34.00 9.89 80.02 59.86 7.87
100 49.20 9.56 80.47 59.47 6.09
200 56.00 9.72 79.90 58.90 4.45
500 64.00 10.72 79.66 59.72 6.37
1000 61.60 11.99 79.86 58.46 6.78
2000 67.60 14.24 78.46 58.25 5.94
cont. 98.00 5.02 -

HuBERT

20 24.40 14.04 62.89 57.06 7.80
50 38.00 9.19 76.79 61.12 8.61
100 48.00 8.34 81.09 62.47 5.19
200 61.60 7.57 81.54 62.78 7.03
500 68.40 7.73 83.06 62.89 9.73
1000 74.40 9.04 82.58 61.55 8.64
2000 73.20 11.00 81.61 62.85 10.66
cont. 99.60 4.23 -

Forced Phones 40 10.00 0.00 92.19 63.72 6.23

Tab. 2.6: Discrete Unit quality (Speaker probing and ABX) and Performance of the BERT
models trained on Discrete Units on the dev sets of LM scores (sWUGGY, sBLIMP,
wSIMI) for different numbers of clusters on CPC and HuBERT features. The ABX
is averaged on dev-clean and dev-other within and across subsets.

begin-of-sentence) of the transformer outputs. For this speaker probing task, there
are 40 classes (speakers). The models are trained for 20 epochs and are validated
on the valid set. We finally report the test accuracy. For reference, we also include
the forced phonemes units (frame-by-frame phonemes). As the forced phonemes
contain a silence, there are 40 units in total.

The results are reported in Table 2.6 and illustrated in Figure 2.2. As expected
speaker classification accuracy increases with the number of clusters, and the con-
tinuous features yield the best classification. We can observe a U-shaped curve in
performance across the different language metrics as a function of the number of
units. Interestingly, the optimum number of units seems to be different across the
model features (CPC, HuBERT) and linguistic levels. HuBERT features are better
than CPC features in most cases, and seem to benefit from more clusters than CPC
features. In general, we see that the language model scores seem to decrease slowly
compared to ABX as the number of clusters becomes bigger. It is also interesting
to note that the language model scores become steadily good as soon as the num-
ber of clusters is higher than the number of phonemes (40 units). This could be
seen in Figure 2.3, where we analyze to what extent the discrete units obtained
with different numbers of clusters correlate with the gold phonemes. Using the
phoneme alignments of Librispeech available from Nguyen et al. (2020b), we collect
all unit-phoneme pairs from the utterances of the dev-clean subset and compute the
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Fig. 2.2: Varying Number of Units. ABX of Discrete units and Error rate on the dev sets
of LM scores (sWUGGY, sBLIMP) for different numbers of clusters for CPC and
HuBERT features. The ABX is averaged on dev-clean and dev-other within and
across subsets.

probability of each phoneme given a discrete unit. Figure 2.3 (top, middle, bottom)
shows this unit-phone alignment for discrete units obtained from CPC features with
20, 50 and 500 clusters respectively. The phoneme order is obtained by clustering
the rows of the 50-unit model with a hierarchical clustering method. We observe a
limited unit-phoneme correspondence when having only 20 discrete units; but as
soon as the number of clusters reaches 50, we see a clear correspondence between
the units and the phonemes, although several "hard" phonemes are still dispersed
and don’t correspond to a single unit (e.g. ch, oy, th, uh); when there are 500 clus-
ters, there are more units representing a single phoneme, and most "hard" phonemes
are now assigned by certain units.

These results support the hypothesis that the superiority of the discrete units is due
to the fact that they block the propagation and amplification of non-linguistic signals
that may be present (even if attenuated) in continuous representations.
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Fig. 2.3: Unit-Phoneme Alignments. Probability that each discrete unit belongs to possi-
ble phonemes P (phoneme | unit) for discrete units obtained by clustering CPC
features with different numbers of clusters: 20 (top-left), 50 (top-right) and 500
(bottom). Unit-Phoneme alignments are collected on Librispeech dev-clean subset.
The phoneme order is obtained by clustering the rows of the 50-unit model with a
hierarchical clustering method.

2.4.4 Comparison with state-of-the-art systems

We evaluate the HuBERT model on the zero-shots metrics and compare the results
with our trained BERT models. The HuBERT model is trained iteratively, using
clustering units from features of previous iteration as the teacher. We trained a
HuBERT base model, which comprises a 7-layer CNN Encoder followed by a 12-
layer Transformer Encoder, on the Librispeech 960h dataset for 3 iterations. The
teachers for each iteration are MFCC features (100 units), Transformer’s layer6
of 1st iteration (500 units) and Transformer’s layer12 of 2nd iteration (500 units)
respectively. Architecturally, the Transformer Encoder of the HuBERT model is very
similar to our model 13 (continuous input layer 0, discrete target layer 2, NLL-e loss)
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ABX (target features)↓
sWUGGY↑ sBLIMP↑ wSIMI↑Systems within across

id input target loss clean other clean other (invocab)

ZeroSpeech 2021 Best Baseline System (Nguyen et al., 2020b)
CPC-layer2+km50 CPC-layer2+km50 NLL-l 6.71 10.62 8.41 15.06 75.51 56.16 2.05

ZeroSpeech 2021 Text Topline Systems (Nguyen et al., 2020b)
Forced phones Forced phones NLL-l 0.00 0.00 0.00 0.00 91.88 63.16 4.44
Phones Phones NLL-l - - - - 97.67 66.91 12.80

BERT Models on CPC-big Features
2 CPC-layer2+km50 CPC-layer2+km50 NLL-e 6.71 10.62 8.41 15.06 80.29 59.93 6.56

13 CPC-layer0 CPC-layer2+km50 NLL-e 6.71 10.62 8.41 15.06 77.22 55.62 6.61
17 CPC-layer0 CPC-layer2 L1 3.28 4.81 4.31 7.92 68.37 53.95 5.68
9 CPC-layer2+km50 CPC-layer2 L1 3.28 4.81 4.31 7.92 74.46 55.38 6.17

HuBERT Base Models
23 waveform MFCC+km100 NLL-e 20.22 24.97 33.42 40.45 62.74 54.11 5.58
24 waveform H-iter1-layer6+km500 NLL-e 6.29 7.51 8.76 12.82 79.13 58.89 5.45
25 waveform H-iter2-layer12+km500 NLL-e 5.87 7.15 6.96 10.73 80.19 59.29 5.87

BERT Models on HuBERT Discrete Units
26 H-iter2-layer12+km500 H-iter2-layer12+km500 NLL-e 5.87 7.15 6.96 10.73 83.29 61.93 9.73

Tab. 2.7: Overall Results. Comparison on the test sets of the 4 ZeroSpeech 2021 metrics
of our BERT models trained on continuous or discrete CPC features, BERT model
trained on HuBERT discrete units and HuBERT Base models with ZeroSpeech
2021 Baseline and Topline Systems. For each continuous/discrete combination,
we choose the best performing model on the dev set as reported in Table 2.4.
We trained the HuBERT model for 3 iterations. The targets used to train the 3
iterations are discretized MFCC features (100 units), discretized features from
Transformer’s layer6 of 1st iteration (500 units) and discretized features from
Transformer’s layer12 of 2nd iteration (500 units) respectively. All models were
trained on the LibriSpeech 960h dataset. For the ABX metrics, we report the
scores on the target features used to train the model. Best scores in each category
are in bold, best scores overall are underlined.

where they both take as input the continuous features of the CNN Encoder and
predict discrete targets obtained from features of a higher level with a NLL-eloss.

Overall performances on the ZeroSpeech 2021 test sets are reported in Table 2.7.
For each of discrete/continuous combinations, we choose the best performing model
on the dev set as reported in Table 2.4. We also include the discrete-discrete model
trained on HuBERT Discrete Units (500 units), which was reported to have the
best LM scores in section 2.4.3. We first observe a huge improvement of model 2
compared with the baseline system, even if they both use the same units for the
BERT model. This improvement greatly comes from the reimplementation of the
BERT model, which uses the wav2vec2 Transformer Encoder model5. Changing the
NLL-l loss to NLL-e loss also improves a little bit (cf. Table 2.2).

5One main difference between the two Transformer models is that wav2vec2 uses a Convolutional
Positional Embedding instead of the standard Sinusoidal Positional Embedding. However, we did
not study the effect of this difference in this paper.
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It seems that using good quality discrete units as targets is very beneficial for the
language models, achieving better scores than using continuous targets in all the
metrics. The HuBERT model performs surprisingly well, approaching our best model
on the language model tasks. This means that the Transformer Encoder of HuBERT
acts as a language model as well. We see that as soon as the discrete targets have
better quality, the HuBERT model manages to have better results on spoken language
modeling metrics. We see that the discrete-discrete model on HuBERT Discrete Units
(model 26) further improves the scores on all the metrics, confirming again our
finding that it’s better to train a discrete-discrete model when we have good quality
units.

Comparing the results with the ZeroSpeech 2021 Systems, we observe that our
models are closing the gap between spoken and text-based language models.

2.5 Conclusion

This work analyses the importance of discretization in spoken language modeling.
We experimentally show that discretization is essential for spoken language modeling,
although high-quality discrete units are required to obtain good performances.
We also show the possibility of learning high-level language properties of a self-
supervised speech representation learning model like HuBERT. Finally, we obtain
state-of-the-art results on 3 out of 4 metrics of the Zero Resource Speech Challenge
2021 (Track 1 - Speech Only), bridging the gap between speech and text-based
systems. Note though that because HuBERT requires a teacher that learns a discrete
representation, the overall training of HuBERT is not end-to-end, because the training
of the teacher is not (in fact, requires several iterations). Further work is needed
to simplify this kind of training loop to learn language directly from speech inputs.
Further work is also needed to assess whether the present results can generalize to
other languages and datasets.
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Additional Results

This part presents my supplementary experiments concerning the exploration of
using larger speech units in SpeechLMs.

2.6 Exploration of Larger Speech Units

units quality language modeling on units

Unit type n units unit/sec 1-hot ABX↓ Centroids ABX↓ LM data
sWUGGY↑

sBLIMP↑
(invocab)

Base units
base (no dedup) 500 49.9 8.40 4.85 libri-light 6k 73.89 55.55

base+dedup 500 29.6 8.40 4.85
libri-light 6k 74.32 56.01
libri-light 60k 77.45 58.41

BPE-based units

base+dedup+BPE30k 30k 9.6 44.14 -
libri-light 6k 71.32 55.08
libri-light 60k 75.84 57.57

base+dedup+BPE30k+BC2k 2k 9.6 36.77 -
libri-light 6k 69.00 54.44
libri-light 60k 72.09 56.58

Subsampled units

base+subsampled by 2 500 21.0 13.72 6.29
libri-light 6k 76.67 59.18
libri-light 60k 78.78 60.50

base+subsampled by 3 500 15.5 22.87 10.00 libri-light 6k 79.12 59.51
base+subsampled by 4 500 12.1 32.27 17.32 libri-light 6k 76.79 60.37

Text controls
asr character (w/ boundary) 28 14.9 - - libri-light 6k 97.70 70.81
asr BPE30k 30k 2.9 - - libri-light 6k 96.58 69.06

Tab. 2.8: BPE-based and Subsampled Speech Units Performances. The base units are
inspired from Elkahky et al. (2023), which are the average features of layers
7-9 from the HuBERT Base followed by k-means 500. Following Elkahky et al.
(2023), the deduplicated base units are processed with byte-pair encoding (BPE,
Sennrich et al., 2016) with a vocabulary size of 30k, and are further applied
Brown Clustering (Brown et al., 1992) to reduce the number of possible units to
2k. The subsampled units are sampled (i.e., take one unit for every n unit) to
reduce the unit rate (unit/sec, the average number of units per second calculated
on the LibriSpeech dev-clean set). The 1-hot and Centroids ABX are computed
on 1-hot and centroids vectors of units, respectively, and are averaged over the
within- and across- tasks on LibriSpeech dev-clean and dev-other subsets. We then
further train a 12-layer transformer decoder LM on the units with either the clean-
6k subset of libri-light as in Lakhotia et al. (2021) or the full libri-light dataset.
The reported sWUGGY and sBLIMP scores are calculated with unnormalized log-
likelihood of speech stimulus (not divided by number of tokens).

One issue of speech units is their small granularity, possibly making it hard for LM to
learn long context. Although SpeechSSL models downsample speech features from
16Khz to 50hz, and deduplication also reduces substantially the number of units,
the rate of speech units is still high compared to text tokens. Following Elkahky
et al. (2023), we tried to reduce the frame rate of speech units by applying BPE
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(Sennrich et al., 2016), and possibly further Brown Clustering (Brown et al., 1992),
on the units and evaluate their quality in terms of spoken language model metrics
(sWUGGY, sBLIMP). The results are reported in Table 2.8.

We note that BPE-based units, although have better frame rate than the character
control, don’t have a good ABX as well as LM metrics. We see that BPE30k units
have worse performance than the deduplicated base units, and applying Brown
Clustering is not helpful. It is however interesting to note that scaling the LM dataset
from 6k to 60k hours of speech is beneficial, and help to boost the performances of
BPE units by a great deal. This could suggest that BPE units could benefit scaling
much more data. The results are a little bit contradictory to a recent work (Chou
et al., 2023), where they found doing BPE on speech units is beneficial for spoken
language modeling. However, they trained their speech language model jointly with
text and mainly evaluated the models on speech generation tasks. At the time of the
experiements, we didn’t have the chance to scale the models with more data and
probe them with more semantic tasks such as StoryCloze. We leave this to possible
further work.

Additionally, we tried to reduce the unit rate naively by subsampling the speech
units (i.e. take one unit for every n unit) and then train language models on the
subsampled units (cf. Table 2.8) and interestingly found that this helps to improve the
performance of language models. This show that larger units could be beneficial for
SpeechLMs and 50Hz seems not to be an optimal value. However, doing subsampling
could probably loss information from the speech and we actually observed a loss
in the resynthesis quality. This leads to our next experiments where we designed
HuBERT models specifically with smaller frame rates.

Inspired from the previous results, we trained new HuBERT model with smaller
speech rates to obtain a better speech tokenizer for our SpeechLMs. We compare the
50hz speech units obtained from HuBERT Base with HuBERT Mix, trained on a mix
of Vox Populi, Common Voice, MLS, People, Spotify, Fisher, with varying number
of features rate (50hz, 25hz, 16.6hz, 12.5hz) in the last iteration. We then tried
different number of clusters for each rate and compared the speech unit quality (with
ABX on LibriSpeech and Fisher) and spoken language modeling metrics (sWUGGY
and sBLIMP). The scores are reported in Table 2.9.

We first observe that speech units obtained from HuBERT Mix have better phonetic
quality than HuBERT Base, especially on natural datasets like Fisher. This results
in better performances on spoken language modeling metrics (HuBERT Base 50hz
vs HuBERT Mix 50hz). Concerning different frame rates of HuBERT Mix, we
see a similar trend from the previous experiment, where reducing the frame rate
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units quality LM on units

n units
unit/sec 1-hot ABX↓ Centroids ABX↓ sWUGGY↑

sBLIMP↑
Tokenizer (dedup) LS Fisher LS Fisher (invocab)

HuBERT Base 50hz
HuBERT Base 50hz+km100 100 26.1 8.74 16.62 6.84 13.85 71.61 56.82
HuBERT Base 50hz+km200 200 28.3 8.53 16.57 5.94 12.76 72.60 56.32
HuBERT Base 50hz+km500 500 31.9 8.66 17.22 5.04 11.67 72.76 56.06

HuBERT Mix 50hz
HuBERT Mix 50hz+km100 100 27.4 7.23 11.57 6.42 10.47 72.42 57.61
HuBERT Mix 50hz+km200 200 28.2 6.70 10.43 5.29 8.88 74.78 58.36
HuBERT Mix 50hz+km500 500 29.6 7.24 10.19 4.67 7.63 75.26 56.88
HuBERT Mix 50hz+km1024 1024 33.1 8.18 10.65 4.38 7.09 74.42 57.03

HuBERT Mix 25hz
HuBERT Mix 25hz+km200 200 18.4 10.17 14.85 6.87 11.28 79.13 59.63
HuBERT Mix 25hz+km500 500 19.7 11.10 15.26 5.80 9.81 81.22 59.26
HuBERT Mix 25hz+km1024 1024 20.8 12.81 16.26 5.17 8.85 78.98 59.14
HuBERT Mix 25hz+km500+robust 501 19.0 10.46 14.75 - - 82.23 60.62

HuBERT Mix 16.6hz
HuBERT Mix 16.6hz+km200 200 13.9 16.50 21.86 10.73 16.26 73.91 58.92
HuBERT Mix 16.6hz+km500 500 14.5 17.16 22.42 8.34 14.03 78.79 59.94
HuBERT Mix 16.6hz+km1024 1024 15.0 19.98 23.88 7.28 12.38 79.11 59.24

HuBERT Mix 12.5hz
HuBERT Mix 12.5hz+km200 200 10.9 22.44 26.71 15.87 20.67 75.70 58.09
HuBERT Mix 12.5hz+km500 500 11.3 24.78 27.67 13.13 17.68 78.33 59.00
HuBERT Mix 12.5hz+km1024 1024 11.5 26.89 29.12 11.40 15.92 77.67 59.10

Tab. 2.9: HuBERT Tokenizers with Different Framerates. We compare speech units
obtained from HuBERT Base (trained on LibriSpeech, from (from Hsu et al.,
2021a) and HuBERT Mix (trained on a mix of Vox Populi, Common Voice, MLS,
People, Spotify, Fisher, from Hassid et al., 2023). The HuBERT Mix models are
trained for 4 iterations, with the 4th iteration varying in downsample sizes (50hz,
25hz, 16.6hz, 12.5hz). The HuBERT features are clustered with different number
of clusters. The HuBERT Mix 25hz+km500+robust line corresponds to applying
augmentation invariant method in Gat et al. (2023) to HuBERT Mix 25hz+km500
units, resulting in 501 units. We evaluate speech units quality in terms of 1-hot
ABX and Centroids ABX, calculated on LibriSpeech (dev-clean and dev-other) and
Fisher (valid) datasets. We then train a 12-layer Transformer Decoder LM on the
clean-6k subset of libri-light, and evaluated on zerospeech metrics. The reported
sWUGGY and sBLIMP scores are calculated with unnormalized log-likelihood of
speech stimulus (not divided by number of tokens).

substantially improves the sWUGGY and sBLIMP metrics. We observe that going
beyond 25hz doesn’t help much in this case, and using 500 units for 25hz gives the
best performance in general. We then decided to further improve this tokenizer by
applying the augmentation method in Gat et al. (2023) to make the speech units
more robust. This speech tokenizer is later used in Hassid et al. (2023) and in the
work of Chapter 5.
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Spoken Dialogue Language
Modeling

3
Spoken dialogue has always been an essential part of human conversation. Modeling
such dialogues is not only important but also very challenging due to the richness
of human speech. Following the “textless” approach, we could extend to spoken
dialogue modeling, where we consider dialogues as parallel streams of audio. This
enables us to not only modelize spoken dialogues but also generate them. We’ll see
in this chapter how we could deal with such spoken dialogues.

This chapter presents the following paper that was published in the Transactions of the
Association for Computational Linguistics (TACL):

Tu Anh Nguyen, Eugene Kharitonov, Jade Copet, Yossi Adi, Wei-Ning Hsu, Ali
Elkahky, Paden Tomasello, Robin Algayres, Benoît Sagot, Abdelrahman Mohamed,
and Emmanuel Dupoux (Mar. 2023b). “Generative Spoken Dialogue Language
Modeling”. In: Transactions of the Association for Computational Linguistics 11,
pp. 250–266

It is followed by Section 3.7, which consists of my preliminary experiments in order
to improve the dGSLM model.

Statement of contribution:

I implemented all the models as well as performed the experiments mentioned in this
chapter, with the ideas and suggestions obtained from discussions with my colleagues as
well as feedback from reviewers.
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Publication: Generative Spoken Dialogue
Language Modeling

Tu Anh Nguyen⋄,†, Eugene Kharitonov⋄1, Jade Copet⋄, Yossi Adi⋄, Wei-Ning Hsu⋄,
Ali Elkahky⋄, Paden Tomasello⋄, Robin Algayres⋄1, Benoît Sagot†, Abdelrahman
Mohamed⋄, Emmanuel Dupoux⋄,‡

⋄Meta AI Research, †Inria, Paris, ‡EHESS, ENS-PSL, CNRS, Paris

{ntuanh, abdo, dpx}@meta.com

Abstract

We introduce dGSLM, the first “textless” model able to generate audio samples of
naturalistic spoken dialogues. It uses recent work on unsupervised spoken unit
discovery coupled with a dual-tower transformer architecture with cross-attention
trained on 2,000 hours of two-channel raw conversational audio (Fisher dataset)
without any text or labels. We show that our model is able to generate speech,
laughter and other paralinguistic signals in the two channels simultaneously and
reproduces more naturalistic and fluid turn taking compared to a text-based cascaded
model.2,3

3.1 Introduction

In natural conversations, speakers spontaneously coordinate who is currently speak-
ing and when the other person will speak next. As a result, conversations end up
being a fluent succession of turns without much overlapping speech or long stretches
of silence. Of course, silences and overlaps also occur naturally and they carry
significant information which is interpreted within the conversation setting. For
instance, when overlapping speech occurs it often contains content-neutral verbal
information (e.g. “hmm”, “yeah”) or non-verbal vocalization (e.g. laughter), used to
convey a listening attitude (back-chanelling) (Schegloff, 1982; Yngve, 1970). Short

1Work done while at Meta.
2Generation samples can be found at https://speechbot.github.io/dgslm
3Code and pre-trained models are made available at https://github.com/facebookresearch/

fairseq/tree/main/examples/textless_nlp/dgslm
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silences between turns do occur and show both cross-cultural variations and uni-
versal dependence on dialogue related variables, for instance, straight and positive
answers to questions are typically faster than non-responses or negative responses
(Stivers et al., 2009).

All of this turn-taking coordination is natural to humans, and starts to be learned at
an early age by infants (Nguyen et al., 2022b). In contrast, it remains a challenging
area of research in human/machine interactions (Skantze, 2021). One of the reason
is that much of the research into natural dialogue modeling is taking place with text-
based interfaces. Here, the coordination problem is primarily focused on semantic
coherence and appropriateness of the artificial agent in interaction with a human
(see Ni et al., 2021 for a review). The turn-taking problem itself is being taken care
of by an artificially imposed walkie talkie arrangement; each agent is writing in turn
and signalling the end of it’s turn by pressing carriage return.

Within speech-based systems, it is very similar, as current spoken assistants like
Siri or Alexa are triggered by a predetermined wake word, and wait for the end
of an utterance followed by sufficient silence to segment the turns of the human
interlocutor. This may give rise to slow and unnatural conversations. In fact, in
human-human conversation, pauses within speaker turns tend to be on average
longer than gaps between speaker turns (Brady, 1968; Heldner and Edlund, 2010;
Ten Bosch et al., 2005), indicating that silence may not be the main cue for humans
to switch turns. Because most speech-based systems are based on Automatic Speech
Recognition (ASR), and that many significant aspects of speech like prosody and
nonverbals are typically not annotated in naturalistic speech dialogues, current
dialogue systems have been struggling with generating naturalistic dialogue.

Here we capitalize on recent progress in self-supervised learning and textless speech
processing (Borgholt et al., 2022; Borsos et al., 2023; Lakhotia et al., 2021) to
investigate the possibility to directly train a spoken dialogue model from raw audio,
bypassing the need for text or ASR. Briefly, we build on self-supervised discrete
speech representations models, which we train on spontaneous conversations with
each speaker having his or her own audio channel. After training, the speech units
come to represent not only verbal but also nonverbal materials. We can now encode
a conversation between two interlocutors as two parallel streams of discrete tokens.
We then introduce a novel dual-tower transformer architecture, where each channel
is processed by one "tower" of the model which learn via an autoregressive loss, but
the two towers also communicate via cross-attention in their hidden units. This
cross-attention is critical for the correct synchronization of the two channels and
result in a naturalistic distribution of turns, overlap and pauses. While this system
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Fig. 3.1: General Schema for dGSLM: A discrete encoder (HuBERT+kmeans) turns each
channel of a dialogue into a string of discrete units (c1, ..cN ). A Dialogue Language
Model (DLM) is trained to autoregressively produce units that are turned into
waveforms using a decoder (HifiGAN).

is not trained on enough data to capture deep syntactic and semantic aspects of
dialogue, and indeed scores below a text-based cascaded ASR+LM+TTS model
on semantic content, it does capture better surface characteristics of chitchat in
mimicking accurately turn-taking and backchanneling. This can be seen as a proof
of principle that previously difficult to capture aspects of spontaneous conversations
can be captured with minimally modified language modeling techniques. Finally, our
model opens up new possibilities to create more natural naturalistic human-machine
dialogue systems in the future.

3.2 Related work

Unsupervised Spoken Language Modeling. Recently great advances have been
achieved in the area of representation learning from raw audio. Models trained with
either autoencoder objectives (Ondel et al., 2016; Oord et al., 2017a) or masked
objectives (CPC: Oord et al., 2018; APC: Chung and Glass, 2020; wav2vec 2.0:
Baevski et al., 2020c; HuBERT: Hsu et al., 2021a; MockingJay: Liu et al., 2020)

60 Chapter 3 Spoken Dialogue Language Modeling



from raw speech can learn audio representation that can be used for a variety of
downstream tasks (Yang et al., 2021), see Borgholt et al. (2022) for a review.

Most of these models build a codebook of discrete units, either as latent represen-
tation or as targets. The discrete representation can in turn be fed to a standard
autoregressive language model, which can then be sampled to generate new speech
sequences (Dieleman et al., 2021; Lakhotia et al., 2021). An interesting aspect of this
procedure is that it can capture aspects of speech that are typically not available in
written transcriptions and can therefore model prosody and intonation (Kharitonov
et al., 2022b), or non verbal vocalizations typical of emotional speech (Kreuk et
al., 2022). Up to now, however, no such model has been applied to multi-party
conversational speech.

Dialogue Generation. Since the early work on end-to-end neural dialogue gener-
ation (Li et al., 2015; Serban et al., 2016; Vinyals and Le, 2015), empowered by
scalable methods for language representation (Lewis et al., 2020a; Radford et al.,
2018), there has been enormous progress in the area of dialogue generation (Adi-
wardana et al., 2020; Roller et al., 2020; Zhang et al., 2019). More recent research
focused on utilizing retrieval augmented generation methods (Lewis et al., 2020b)
for long-context, multi-session conversations (Xu et al., 2021a), and grounding
responses on fresh information from the internet (Komeili et al., 2021; Shuster
et al., 2022). However, all the progress in this research work centered around text
dialogues leaving out non-lexical information (Ang et al., 2002; Schuller et al.,
2013) in human-human dialogues, e.g., emotion, pauses, laughter, hesitation, and
interruption. Our work builds on end-to-end techniques while taking a speech-first
approach to address this shortcoming, where prompts and generated sequences
are represented as self-supervised discrete speech representations (Lakhotia et al.,
2021). As a result, the capacity of our models is constrained by the amount of
publicly available speech dialogues; for example, the LDC English Fisher dialogues
corpus (Cieri et al., 2004) contains roughly 12M words compared to tens of billions
of words in the case of text-based dialogue systems. There have been recent calls
for large-scale end-to-end benchmarks and datasets with spoken input to fill this
gap (Faruqui and Hakkani-Tür, 2021).

Turn-taking Modeling. Decades-long research on conversation analysis (Duncan,
1972; Gravano and Hirschberg, 2011; Levinson and Torreira, 2015; Sacks et al.,
1974; Schegloff, 2000; Ward, 2019) has shown that human turn-taking relies on a
variety of complex signals, or cues, including prosodic cues, linguistic cues and even
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Fig. 3.2: Illustration of the Dialogue Transformer Language Model (DLM). Left: DLM
Training Objectives. During training, the loss is applied only to edge units and
their durations. During generation, the model duplicates the units with the
corresponding predicted durations. Right: The Cross-Attention Transformer Layer
Architecture.

non-verbal cues such as gaze or gestures, making turn-taking modeling a challenging
problem. Simple turn-taking models using finite-state machines have been proposed
to predict the distribution and durations of turn-taking events (Cassell et al., 2001;
Raux and Eskenazi, 2009; Thórisson, 2002). More recently, more sophisticated
machine learning-based models of turn-taking have been introduced (Masumura
et al., 2018; Meena et al., 2014; Roddy et al., 2018; Skantze, 2017). These models
used multi-modal features including simple linguistic features and prosodic features
extracted from the speech to predict turn shifts. Most recently, Ekstedt and Skantze
(2020) has shown the possibility of turn-taking prediction in spoken dialogue using
only linguistics features (text input). We use these definitions of turn-taking events
to analyse the output of our models.

3.3 Approach

Our approach is based on the availability of a dataset constructed along the Fisher
Telephone conversation collection protocol (Cieri et al., 2004) where each conver-
sation involves two speakers, and each speaker is recorded in a separate audio
channel while having a very casual conversation. We follow the textless generative
spoken language modeling pipeline of Lakhotia et al. (2021), which decomposes the
problem of speech generation into three components: a Speech-to-Units encoder,
a Units-to-Units language model and a Units-to-Speech decoder. For the encoder
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we adopt HuBERT, (Hsu et al., 2021a) followed by k-means clustering; for the
decoder network we use a modified Hifi-GAN neural vocoder (Kong et al., 2020),
similarly to Polyak et al. (2021). These models are trained on single channel data
from the Fisher dataset and applied to each channel separately, which do not model
cross-channel interactions. For the language model, we introduce our new Dialogue
Transformer Language Model, or DLM. Figure 3.1 presents an overview of our
system. The following sections (Sections 3.3.1–3.3.3) will present at a high level
each component of our model and review the turn-taking terminology in this study
(Section 3.3.4).

3.3.1 Discrete Phonetic Representation

Conversational speech contains casual expressions (filler words like ’hmm’) and a
variety of non verbal sounds (e.g., laughter) that do not appear in formal or read
speech. We therefore train a HuBERT model (Hsu et al., 2021a) directly on our
conversation dataset in order to obtain domain-appropriate phonetic representation.
Specifically, it is trained on the collection of voice segments extracted of all speakers
in the dataset. The discrete units are then obtained by clustering the representation
of the HuBERT model using the k-means algorithm. At inference time, the two-
channel speech waveform is encoded channel-wise into two time-aligned streams of
discrete units.

In Table 3.1, we compare the HuBERT Base model (Hsu et al., 2021a) trained on
2000h of Fisher dataset versus 1000h of Librispeech dataset on the machine-ABX
phonetic test. We used Libri-light ABX (Kahn et al., 2020) for the Lirispeech test.
For the Fisher, we generated a Fisher ABX dataset using the phonetic alignments
obtained from Fisher development set. The results clearly show a domain effect,
whereby the Fisher dataset is a better training set than the Librispeech dataset for
ABX discriminations in Fisher.

Tab. 3.1: Within and Across-Speaker ABX error on Fisher dev and LibriSpeech dev-clean
datasets for HuBERT Base and HuBERT Fisher models.

Fisher LibriSpeech
within↓ across↓ within↓ across↓

HuBERT Base 7.77 12.57 3.95 4.69
HuBERT Fisher 5.50 8.35 11.17 14.70
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3.3.2 Waveform Generation

For the waveform generation, we used the discrete unit-based HiFi-GAN vocoder
from Polyak et al. (2021) trained on a small subset of high quality single-channel
voice segments of our conversation dataset, using discrete units obtained from the
HuBERT model and 1-hot speaker information from the dataset. During generation,
we generate each channel of discrete units with one different speaker, and combine
the audio generated from the two channels. Voices for the waveform generation are
chosen from the speakers in the HifiGAN training set.

3.3.3 Dialogue Transformer Language Model

We introduce our Dialogue Transformer Language Model (DLM), which is a two-
tower transformer network with Cross-Attention and shared weights trained with
Edge Unit Prediction and Delayed Duration Prediction objectives. The model is
illustrated in Figure 3.2 and its components will be detailed below, and we will
perform ablations to test for the effects of each of these components.

We will also compare the two-tower model with a simpler single-tower model with
dual inputs. This last model is inspired by previous work in multi-stream language
model (Kharitonov et al., 2022b). It consists of a single transformer, with two
embedding heads in the input and two softmax heads in the output. This model
combines very early the two speaker channels at the embedding layer and models
them jointly, only to separate them again in the last layer. We call this model MS-TLM
(Multi-Stream Transformer Language Model)

Cross-Attention Transformer Layer. When modeling separate channels of dialogue,
we would like the LM to not only get information from the history of each channel
itself, but also have information from other channels as well. As a result, we add
an additional Muti-Head Cross-Attention block after the Multi-Head Self-Attention
block to share information between different channels (cf. Figure 3.2, right). We
train a single Transformer model which we clone into the two towers with shared
weights, which allows the model to be speaker-independent without having to do
permutation invariant training.
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Edge Unit Prediction. Previous work (Kharitonov et al., 2022b) disentangles the
content modeling problem from the duration modeling problem by training the
language model on deduplicated discrete units and the corresponding unit durations
with different objectives. However, in our setting, units from different channels are
time-aligned and there would be no easy way to keep the alignment if we were to
deduplicate each input stream. On the other hand, training a language model on
duplicated units is more difficult as content and duration information are entangled
and learnt simultaneously, resulting in a poor modeling performance. From this
point of view, we introduce an edge unit prediction objective, which forces the model
to predict the next unit only if it is different from the current one (i.e. edge unit).
We use cross-entropy loss for this objective, and the edge unit prediction loss is then
defined as:

LEU =
2∑

c=1

∑
t

u
(c)
t ̸=u

(c)
t−1

log p(u(c)
t | u

(1,2)
1:t−1; θ),

where u
(c)
t represents the discrete unit from channel c at time t and θ denotes the

model parameters.
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Fig. 3.3: Illustration of turn-taking events: IPU (Interpausal Unit), Turn (for speaker A
and Speaker B, resp), P. (within-speaker Pause), Gap, Overlap and Backchannel.

Delayed Duration Prediction. Besides the unit prediction objective, DLM models
the duration of the edge units with a duration prediction objective. As unit durations
are highly varied, we output a continuous duration prediction and employ an L1
loss. Due to the high correlation between the duration and the unit itself, we follow
Kharitonov et al. (2022b) and perform a delayed unit duration prediction, which
predicts the duration of an edge unit at time t given the first t − 1 + ∆ units, where

3.3 Approach 65



∆ is a delay factor (∆ ≥ 0). The delayed duration prediction loss is then defined
as:

LED =
2∑

c=1

∑
t

u
(c)
t ̸=u

(c)
t−1

∣∣∣d(c)
t − d̂

(c)
t

(
u

(1,2)
1:t−1+∆; θ

)∣∣∣ ,

where d
(c)
t represents the target duration (number of repetitions) of the edge unit

u
(c)
t and d̂

(c)
t is the continuous duration prediction of the DLM model.

Training objective. The training loss of DLM is the sum of the edge unit prediction
loss and the delayed duration prediction loss:

LDLM = LEU + LED. (3.1)

Model Inference for Generation. For generation, we autoregressively generate edge
units and the corresponding durations in both channels. Even though the loss is
applied only at the edge units, the model may generate spurious and inconsistent
data at other non-edge time steps. We give precedence to the predicted duration
associated with the first edge unit predicted in each channel and overwrite the
network output with this edge units for the corresponding number of steps. It is this
overwritten content which is used as input to the network till the next edge unit.
For example, if we predict a unit u

(c)
t at time t and the corresponding duration d

(c)
t

at time t + 1, we replace the next d
(c)
t units of channel c by u

(c)
t and only alter the

unit at time t + d
(c)
t . The duration prediction is rounded during generation.

3.3.4 Definitions of turn-taking metrics

Because our model generates two audio channels in parallel, it is possible to use
simple Voice Activity Detection (VAD) tools on the output to derive turn-taking
metrics. Following Figure 3.3, we define an Inter-Pausal Unit (IPU) as continuous
stretch of speech in one speaker’s channel, delimited by a VAD silence of more
than 200ms on both side. We define silence as sections of the recording with no
voice signals on either channel and overlap as sections where there are voice signals
on both channels. Silences can be subdivided into gaps (when it occurs between
two IPUs by distinct speakers) and pauses (when they occur for the same speaker).
Successive IPUs by the same speaker separated by a pause are regrouped into a turn.
Overlap could also theoretically be subdivided into backchannel (when it is rather
short IPU contained within an IPU of the other speaker) and interruption (when it
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starts within an IPU of the other channel and continues after its end), but the exact
definition is dependant on high-level linguistic features, which we will not attempt
to extract here. In our analysis, we will therefore tally the distribution of duration of
IPUs, gaps, pauses and overlaps in the training corpus and in generated dialogues of
our various models.

3.3.5 Cascaded Dialogue Baseline System

We compare our textless-based dialogue models with a traditional cascaded dialogue
system which consists of an ASR model, followed by a text-based language model
and a Text-To-Speech (TTS) module. We first transcribe each channel of the dialogue
with the ASR model, we then combine the transcribed text into a turn-based conver-
sation,4 we ignore any turns that are completely contained inside an other turn. We
train a Transformer Language Model on these conversations and we finally employ a
TTS module to synthesize the generated text into a turn-based conversation.

3.4 Experimental Setup

3.4.1 Training Set

We use in this work the Fisher Dataset (Cieri et al., 2004), a conversation corpus con-
sisting of more than 16,000 English telephone conversations averaging ten-minutes
in duration and focusing on various topics. The audio was recorded separately in
two channels resulting in 2000 hours of transcribed speech.5

For the training of HuBERT and HifiGAN models, we follow the preprocessing steps
of Kuchaiev et al. (2019)6 to obtain a collection of single-channel voice segments
of the Fisher dataset. The segments vary mostly from 10–15 seconds, with a total
duration of about 1,800 hours. We divide the Fisher dataset into train/valid/test
sets with a 98/1/1 split (different speakers in each split).

4Example: <A> hi <B> hi how you doing <A> great <B> good good my name is marine.
5The transcription was done using the Quick Transcription specification (Cieri et al., 2004), resulting

in some inaccuracies and untranscribed portions. Here, we only used the transcriptions to obtain
speech segments containing vocal activity to train the HifiGan and HuBERT model. The DLM was
trained on the unsegmented raw data.

6https://gitlab.nrp-nautilus.io/ar-noc/nemo/-/blob/master/scripts/process_fisher_data.py
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Tab. 3.2: Unit Prediction loss (NLL) & Accuracy metrics of DLM models as a function of
number of Cross-Attention layers. When the number of cross-attention layers is
less than 6, they are put on top of self-attention layers. The models are trained
with the Next-step Unit Prediction Objective on the parallel unit streams of the
Fisher stereo audio dataset.

n cross layers NLL↓ Acc↑

0/6 1.387 71.77
2/6 1.341 72.06
4/6 1.338 72.10
6/6 1.337 72.11

3.4.2 Model Training

We train a HuBERT Base model (Hsu et al., 2021a) from raw audio. The encoder
contains seven 512-channel CNN layers with strides [5,2,2,2,2,2,2] and kernel
widths [10,3,3,3,3,2,2], converting the signal rate from 16,000 samples/sec down
to 50 frames/sec. It is followed by 12 Transformer blocks. The model is trained
with a masked objective for 3 iterations following the same recipe as in (Hsu et al.,
2021a). The model alternates between feature extraction/quantization and masked-
prediction training in each iteration. We used the k-means algorithm with codebook
sizes of 100, 500, and 500 to quantize the MFCC features, the 6th transformer
layer features, and the 9th transformer layer features for the three HuBERT training
iterations. After training, we quantize the final transformer layer features into
500 units for the DLM training. We choose a large codebook size of 500 to model
various kinds of vocalizations beyond broad phonetic classes. Following Hsu et al.
(2021a), we use 250k training updates in the first iteration and 400k model updates
in subsequent training iterations using 32 V100 32GB GPUs. As the transformer
does not change the input frame rate, the encoded discrete units have a frame rate
of 50 units per second (one every 20ms). We show in Table 3.1 that our HuBERT
model trained on the Fisher dataset learns better phonetic information suitable for
conversations than the publicly available HuBERT model trained on audiobooks
(Hsu et al., 2021a).

We train the HifiGAN model on a small subset of the Fisher dataset segments
consisting of 120 speakers with 10 minutes each. These speakers were selected to be
of high intelligibility using the average perplexity of a phone recognizer trained on
the clean Librispeech 100h training subset (Rivière and Dupoux, 2021). The model
is trained to generate the audio waveform given HuBERT units of a segment and a
speaker embedding vector.
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For the DLM models, we use a transformer model consisting of 6 layers, with 8
attention heads per layer, and an embedding size of 512. When cross-attention is
used, it is added to the top 4 transformer layers. We show in Table 3.2 the effect of
the number of cross-attention layers on language modeling metrics. We find that
more layers give better scores, but that 4 layers of cross-attention give almost the
same performance as 6 for less complexity. We train the DLM model on the parallel
unit streams encoded from 2000 hours of stereo audio, each sample contains up to
6144 unit pairs, an equivalent of 123 seconds. The models are trained on a total of
32 V100 32GB GPUs, with a batch size of 370 seconds of audio per GPU for a total
number of 250k steps. We used an Adam optimizer (Kingma and Ba, 2015) with a
max learning rate of 5 × 10−4. The implementation of the DLM model is done using
the fairseq (Ott et al., 2019) toolkit. It took us 66 hours on average to train 100k
steps of DLM models without edge unit prediction, and 95 hours with additional
edge unit prediction objective.

We also train a Multi-Stream Transformer Language Model (MS-TLM, Kharitonov
et al., 2022b), a single transformer model taking two streams of units as input and
autoregressively predict the next units in both streams. It is a standard Transformer
Language Model, with 6 layers, 8 attention heads per layer and an embedding size of
512, with the difference that the embedding layer concatenates the two embeddings
of the two parallel units, and the output layer produces two softmax layers to predict
the next units in both streams. We train the MS-TLM model similarly to the DLM
models as previously mentioned. Training 100k steps of MS-TLM model took us 40
hours.

For the cascaded system, we use a pre-trained ASR model7 to decode the Fisher
dataset. We then train a standard 6-layer Transformer Language Model on the turn-
based conversations obtained from the ASR. We pre-process the text using a byte
pair encoding (BPE, Sennrich et al., 2016) with 20k iterations and limit each sample
to have 512 tokens. We trained the language model for 100k steps on 32 V100
32GB GPUs with a batch size of 2048 tokens per GPU. We use the same optimizer
as for other models. Finally, we use the Google TTS API to synthesize generated
conversations, with two different voices indicating two different speakers.

7We use the robust wav2vec2-large model fine-tuned on Switchboard dataset (Hsu et al., 2021c). For
decoding, we use the 4-gram KenLM language model trained on Switchboard dataset.
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3.4.3 Evaluation Metrics

This section presents the evaluation metrics used to assess our dialogue models on
two dimensions: Training and Generation.

Tab. 3.3: Training Metrics across the DLM models that differ in Cross-Attention Layer (CA),
Edge Unit Prediction (EP), Duration Prediction (DP) and Duration Delayed Factor
(∆). The MS-TLM model used a single transformer with two input and output
streams.

Edge Unit Duration
Id CA EP DP ∆ NLL↓ Acc↑ MAE↓ Acc↑

MS-TLM
0 - - - - 3.05 34.14 - -

DLM
1 ✕ ✕ ✕ - 3.07 34.13 - -
2 ✓ ✕ ✕ - 2.95 35.68 - -
3 ✓ ✓ ✕ - 2.49 48.36 - -
4 ✓ ✓ ✓ 0 2.26 54.09 1.47 51.90
5 ✓ ✓ ✓ 1 2.25 54.27 1.23 58.18

3.4.3.1 Training Metrics

These metrics evaluate the dialogue modeling performance in each channel sep-
arately using metrics close to the training loss. They are computed by encoding
files from the development set and extracting statistics on the predicted outputs at
each time steps. They are used to compare the different versions of the DLMs and
therefore not applied to the cascaded model.

Edge Unit Prediction. We report the Negative Log-Likelihood (NLL), or Cross En-
tropy loss when predicting edge units. We also compute the Prediction Accuracy.

Edge Duration Prediction. We use the Mean Absolute Error (MAE), or L1 Loss
when evaluating edge duration prediction (a MAE of 1 corresponds to 20ms of
error). The Duration Accuracy is also reported.
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Fig. 3.4: Distributions of durations of turn-taking events in prompted continuations
across models, compared to the prompts’ continuation ground truth segments (see
models ids in Table 3.3). The green line and the red triangle represent the mean
and the median of the events respectively.

3.4.3.2 Dialogue Generation Metrics

We evaluate the generation properties of our models using descriptive statistics,
automatic metrics and human-based judgements. Unless otherwise written, we
perform conditional generation and generate 90-second long continuations using
117 30-second long prompts extracted from the development set and use the default
generation temperature of 1.0. We generate the units by sampling among the top 20
possible units.

Turn-taking Event Statistics. We compute the turn-taking events as defined in
section 3.3.4 using the samples generated by the models with a Voice Activity
Detection (VAD) using pyannote library8 (Bredin et al., 2020). We then analyse the
statistics of these turn-taking events (number of events and their durations) across
different models.

Turn-taking Event Consistency. We evaluate the model’s capacity to generate con-
sistent conversations in terms of turn-taking events. We measure the Pearson corre-
lation between the total duration of events in each prompt and in the corresponding
continuation.

8https://github.com/pyannote/pyannote-audio
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Tab. 3.4: Number of turn-taking events and cumulated durations per minute across
models for prompted continuations, compared to ground truth continuations, and
to the same statistics in the training set.

Number of occurrences / min Cumulated duration /min
Id Model IPU Pause Gap Overlap IPU Pause Gap Overlap

0 MS-TLM 19.4 10.6 5.1 3.3 49.4s 8.9s 2.9s 1.3s

1 DLM-1 17.7 7.9 3.9 5.5 41.4s 13.8s 10.7s 6.1s
2 DLM-2 20.0 10.4 5.5 3.6 48.9s 9.1s 3.6s 1.7s
3 DLM-3 19.0 1.8 4.9 11.7 65.0s 1.1s 1.8s 8.1s
4 DLM-4 18.9 3.2 5.6 9.4 60.7s 2.4s 2.9s 6.1s
5 DLM-5 24.2 5.4 7.2 10.9 59.1s 3.6s 2.9s 5.8s

6 Cascaded 17.5 0.0 14.9 0.0 54.8s 0.0s 5.3s 0.0s

Ground Truth 21.6 7.0 7.5 6.5 53.5s 5.5s 4.4s 3.6s
Training Set 25.9 7.2 8.6 10.0 54.5s 5.6s 4.6s 4.7s

Natural Dialogue Event Statistics. We evaluate the naturalness of the generated
speech by focusing on the Speaking Rate (WPM, words per minute), Laughter
Frequency (LPM, laughs per minute), Filler Word Rate (FWR, filler words per 100
words) and Floor Transfer Offset (duration between two consecutive turns of the
two speakers, a positive FTO represents a gap while a negative FTO represents an
overlap). For this evaluation, we use the same ASR model used to decode the Fisher
dataset7 to transcribe the generated speech. To detect laughs in the speech, we use
an open-source model described in Gillick et al. (2021).9 To compute the FWR, we
use the following filler words set: {’uh’, ’um’, ’like’, ’i mean’, ’you know’}.

Semantic Evaluation. We use two evaluation metrics proposed in Lakhotia et al.
(2021), perplexity (PPL) and VERT, to assess the generation quality and diversity of
the models. We first transcribe the generated speech using the ASR system. As these
metrics are calculated on text sequences, we combine the text from two channels into
a single turn-based text sequence4, ignoring any turns that are completely contained
inside an other turn. We employ the open-source DialoGPT model10 (Zhang et al.,
2019) to compute the perplexity on the turn-based sequences. We simply replace
the speaker tokens (<A>, <B>) with the <|endoftext|> token, indicating a turn
switch. For the VERT metrics, we also compute the self-BLEU and auto-BLEU on the
turn-based text sequences. As the conversation texts contain a lot of repetitions, we
report the VERT-4 score instead of VERT-2 score as in Lakhotia et al. (2021).

Since the PPL and VERT scores highly depend on the generation temperature,
we perform generation on different temperatures ranging from 0.3–2.0. We then

9https://github.com/jrgillick/laughter-detection
10https://huggingface.co/microsoft/DialoGPT-medium
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Tab. 3.5: Natural Dialogue Event Statistics. Speaking Rate (WPM, words per minute),
Laughter Frequency (LPM, laughs per minute) and Filler Word Rate (FWR, filler
words per 100 words) of the prompted continuation speech across models, com-
pared to ground truth continuations.

Id Model WPM LPM FWR

0 MS-TLM 139.17 1.88 9.36

1 DLM-1 123.60 1.98 9.39
2 DLM-2 141.09 2.06 10.36
3 DLM-3 281.41 7.08 3.40
4 DLM-4 244.13 6.05 3.38
5 DLM-5 211.98 3.62 5.50

6 Cascaded 216.73 0.00 7.08

Ground Truth 181.46 3.60 7.25

compute the PPL and VERT for each temperature and fit the points corresponding
to different temperatures with an exponential line and report the PPL@GT (PPL
with respect to the ground truth VERT) score (cf. Figure 3.7). For the conditional
generation case, we compute instead the conditional perplexity (cond. PPL), which
is the perplexity of the generated sequence given the concatenation of the prompt
sequence and generated sequence as input to the DialoGPT model.

Human Opinion Score. We perform a human evaluation on the generated examples.
The opinions are based on two dimensions: N-MOS (naturalness Mean Opinion Score)
representing naturalness and turn-taking conversationality, and M-MOS (meaning-
fulness Mean Opinion Score) for meaningfulness and content quality. For N-MOS, we
asked the participants to concentrate on the fluidity and naturality of the interaction
as well as the expressiveness of the speakers regardless of meaning. For M-MOS,
they should focus on what is being said and if it is semantically coherent. For
these two evaluations, we used a scale of 1-5 (1: worst, 5: best). The CrowdMOS
package (Ribeiro et al., 2011) was used for all subjective evaluations using the
recommended recipes for detecting and discarding inaccurate scores. Indeed, we
remove all workers whose correlation with the mean scores is lower than 0.25, and
then filter out outlier workers whose correlation with the mean scores is lower than
0.6. We enforced at least six raters for each of the generated samples. Participants
were recruited using a crowd-sourcing platform.
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Fig. 3.5: Correlation between the duration of events in the prompts and in the con-
tinuations across models, compared to ground truth (GT), where the correlation
is computed between the first 30 seconds and the following 90 seconds of the
samples.

3.5 Results

3.5.1 Content and Duration Modeling

Table 3.3 reports the modeling evaluation metrics on our development subset of
the Fisher dataset. In rows Id 1-5, we compare different DLM models, while row
Id 0 represents the MS-TLM model, which takes as input multiple unit streams
from different channels, and predicts the next-step units only. We note that for
models Id 1-3, the next-step unit prediction objective is also included in the training
process, but when the duration prediction objective is employed (models Id 4-5),
the next-step unit prediction objective is omitted.

We observe that by using the self cross-attention layers, the edge unit prediction
metrics slightly improve (u NLL: 3.07 vs 2.95). On considering models Id 2 & 3, we
observe a huge improvement in edge unit NLL & Accuracy when introducing the
edge unit prediction objective (u NLL: 2.95 vs 2.49). By introducing the duration
prediction objective and removing the next-step unit prediction objective, we see
that the model performs even better on the edge unit prediction metrics (u NLL:
2.26), and finally the duration metrics greatly improves when we apply a delayed
duration prediction (d MAE: 1.47 vs 1.23).

On comparing with the MS-TLM model, we see that our best DLM model perform
much better on content modeling. The reason, we believe, is related to the entangled
modeling of content and duration in the MS-TLM model.
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Fig. 3.6: Histogram of Floor Transfer Offset (FTO) in the generated speech across models,
compared to ground truth continuations and the training set.

3.5.2 Turn-taking Event Statistics

In this section, we analyse the distribution of the turn-taking events (as described in
section 3.3.4) in the dialogue continuations generated by our models. The statistics
are computed over 3 hours of generated speech per model.

Figure 3.4 shows the distribution of each of the 4 turn-taking events: IPU, pause, gap
and overlap. In this figure, the Ground truth corresponds to the true continuation
of the prompts in the original corpus. Despite having a reasonably good modeling
score (cf. Table 3.3), DLM-1, which has no cross-attention layers between the two
transformer towers, has poor performance on turn-takings events, except for the
IPU event. The lack of communication between the two channels during generation
creates huge gaps and overlaps in the generated samples. The MS-TLM and DLM-2
models have similar distributions of shorter overlaps and longer pauses and gaps.
They were trained using the next-step prediction loss on duplicated unit sequences,
which could lead to repeated unit generation, causing a slow pace and more extended
silences in the generated audio. The opposite effect happens when we introduce the
edge unit prediction (DLM-3-5). These models manage to generate more overlaps,
with pauses and gaps of shorter duration. These observations are further reinforced
in Table 3.4, which details the number of events and their total durations per
minute. It is interesting to note that all models, except DLM-1, manage to capture
the empirical fact that intra-turn pauses tend to be longer than between-turn gaps
(Brady, 1968; Heldner and Edlund, 2010; Ten Bosch et al., 2005).
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Fig. 3.7: PPL vs VERT scores with unconditioned generation for MS-TLM, DLM-5 and
Cascaded models compared to ground truth transcriptions. The sizes of the points
correspond to the temperature used for generation (0.3–2.0), squares mean default
temperature 1.0. The turn-based sequences are limited to 50 words.

The cascaded model only produces alternating speech turns and therefore has almost
no overlap and pause. This also results in low variance in the gap distribution,
making the geneation sounds like machine conversation.

3.5.3 Turn-taking Event Consistency

Figure 3.5 shows the correlation between the total duration of turn-taking events in
the prompts and in the generated continuations. For the ground truth, we compute
the correlation of the events’ duration between the first 30 seconds and the folowing
90 seconds in each sample. We observe that in general all models except DLM-1
and cascaded have good correlations, showing their ability to maintain the dialogue
consistency. Unsurprisingly, the cascaded model has no correlation with the prompt
events, except for the gaps, which are proportional to the number of turn changes.

3.5.4 Natural Dialogue Event Statistics

Table 3.5 reports the naturalness statistics on the generated samples of our models.
We first notice that, compared to ground truth, models that don’t have edge unit
prediction (MS-TLM, DLM-1–2) tend to produce speech with less information and
more hesitations (lower rate, less laughter, more filler words) than those with
edge unit prediction (DLM-3–5). Adding duration prediction can effectively help to
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Tab. 3.6: Semantic Evaluation. Perplexity of ASR-transcribed generated speech at default
temperature (@t1) and at ground truth VERT (@GT) in both unconditional and
conditional generation across models compared to ground truth transcriptions.
We limit the transcribed turn-based sequences to 50 words.

unconditional conditional

PPL↓ cond. PPL↓
Id Model @t1 @GT @t1 @GT

0 MS-TLM 190.59 144.82 741.86 -

1 DLM-1 145.85 - 195.89 -
2 DLM-2 218.30 - 453.73 -
3 DLM-3 155.17 161.58 463.27 329.74
4 DLM-4 290.07 231.00 693.48 314.49
5 DLM-5 179.65 187.16 605.84 365.08

6 Cascaded 32.23 80.80 45.93 117.06

Ground Truth 100.85 100.85 65.00 65.00

produce more natural speech, but it still produces more words than ground truth.
The cascaded model is unable to produce laughter as the ASR and TTS modules
are not able to capture these information, it also generate nearly "non-stop" speech
at a faster rate than natural speech. Looking at Figure 3.6, we see indeed that the
cascaded model has no negative FTO (overlap), and the positive FTOs (gaps) fall
mostly in the range of one second. In general, other models seem to have good FTO
distribution compared to the reference ground truth and training set.

3.5.5 Semantic Evaluation

For semantic metrics, we perform both conditional and unconditional generations.
For conditional generation, we select 50 10-second long prompts in the validation set.
For each model and temperature, we generate 50 samples and limit the transcribed
turn-based text sequences to 50 words.

We found that certain models is not possible to obtain PLL@GT as they tend to
generate repeated units at low temperatures, creating complete noise in the synthesis.
We therefore report the PPL scores for the default temperature 1.0 (@t1). As shown
in Table 3.6, we see that the dialogue models fail to generate semantically coherent
speech, resulting in high perplexity, especially in prompted generation. The cascaded
model has a very good perplexity as the language model was trained on word
and sub-word levels, it even has a higher PPL@GT than the ground truth in the
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Tab. 3.7: Human Evaluations. Conversation Naturalness (N-MOS) and Conversation
Meaningfulness (M-MOS) on a 5 point scale (5 is best) with 95% CI.

Id Model N-MOS↑ M-MOS↑

0 MS-TLM 3.31 ± 0.43 2.29 ± 0.49

1 DLM-1 2.25 ± 0.60 1.70 ± 0.44
2 DLM-2 2.95 ± 0.37 2.24 ± 0.47
3 DLM-3 3.29 ± 0.43 2.20 ± 0.44
4 DLM-4 3.36 ± 0.44 2.18 ± 0.46
5 DLM-5 3.70 ± 0.46 2.48 ± 0.49

6 Cascaded 2.38 ± 0.63 2.70 ± 0.38

Ground Truth 4.23 ± 0.26 4.21 ± 0.25

unconditional case. When it comes to conditional generation, the cascaded model
has a good PPL, but is still way below the ground truth.

3.5.6 Human evaluation

For this evaluation, we filter the prompts to contain genuine alternations between
the two interlocutors and balanced gender. We retained 50 10-second long prompts
and generated 10 20-second long continuations for each prompt. Human evaluation
results are reported in Table 3.7. The naturalness and meaningfulness MOS scores
correlate well with results in previous sections. The DLM-5 model has the best
performance among dialogue models, while the DLM-1 performs significantly worse
on both scores. Interestingly, whereas there is a large gap between our best model
and ground truth on meaningfulness (1.73 points on the 5-point scale) this gap
is much reduced on turn-taking (.53 points). The cascaded model shows a lack
of naturalness, while having better scores on meaningfulness than all dialogue
models. However, it is still far below the ground truth despite having a very good
semantic scores. Overall, our models can generate dialogues mimicking natural
turn-taking, while fail maintaining cross-sentence meaningfulness. We believe the
lack of semantic coherence in generated dialogues results from the fine-grained
acoustic units used for modeling and the small training corpus size.
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3.6 Conclusion and Future Work

We have presented dGSLM, the first model for spoken dialogue generation trained
from raw audio. This model has been shown to reproduce naturalistic intelligible
speech, while trained on only 2k hours of audio from telephone conversations.
Informal inspection of the generated samples2 shows that it is able to reproduce non-
verbal vocalizations (laughter, backchannels). Detailed analysis of the turn-taking
events show that the model is able to reproduce accurate synchronization including
distribution and duration of turn-taking events like IPU, gaps, pauses and overlaps.
In particular, it is able to reproduce the rather puzzling observation that inter-turn
pauses tend to be on average longer than between turn gaps, suggesting the pauses
alone are not a sufficient signal to indicate a change of turn.

Although the model lacks the ability to produce semantically coherent speech, it
paves the way for the construction of more naturalistic human-machine dialogue
systems. The logic and timing of turn-taking which has been up to now very difficult
to model artificially emerges naturally from our system, while it is clearly not yet
able to process speech at a deep semantic level. This indicates that a model that
correctly predicts synchronization between turns can be learned from relatively
a small amount of data. This is surprising given that one major paralinguistic
information, intonation, was not explicitely encoded in the input (or the output)
of the system. Further work incorporating pitch (Kharitonov et al., 2022b) could
potentially improve the current results. Results from the cascaded system also
suggest that either using larger linguistic units (like BPE) from raw audio (Borsos
et al., 2023) or combining our model with text-based models would create systems
which could generate more natural and meaningful conversations.
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Additional Results

This part presents my supplementary experiments concerning the exploration of
improving dGSLM models.

3.7 Improve dGSLM with large-scale single-channel
speech dataset

As discussed, we found that even the cascaded system struggled to generate a
meaningful conversation, suggesting the insufficient of 2000 hours of Fisher dataset.
Therefore, a natural direction of improvement is to make use of large-scale datasets
(e.g., 60K hours of Libri-light). However, most available large-scale speech datasets
are single-channel, meaning that they can’t produce parallel streams of units as the
Fisher dataset.

Actually, the shared-weight dual tower architecture of DLM allows pre-training single
tower on single-channel audio, with the cross-attention now becomes self-attention,
and using the learned weights to initialize the multi-channel training on Fisher
dataset. We follow this and perform the pre-training of the DLM on the Libri-light
60k dataset. Training metrics and learning curves of the models are shown in Table
3.8 and Figure 3.8.

Fisher Valid LibriSpeech Dev
Duration

Dataset
Unit Edge Unit Duration Edge Unit Duration

Loss Rate PPL↓ Acc↑ MAE↓ Acc↑ PPL↓ Acc↑ MAE↓ Acc↑

DLM model trained on HuBERT Fisher units
dGSLM (DLM-5) MAE Fisher 50hz 4.75 54.27 1.23 58.18 22.36 31.29 0.53 61.89

DLM model trained on HuBERT Mix units
dGSLM MAE Fisher 25hz 6.95 48.01 1.43 69.95 11.04 39.45 0.28 78.08
+Cross-Entropy Duration Loss CE Fisher 25hz 6.58 49.22 0.83 71.76 11.17 39.98 0.54 79.15
Train on LL60K CE LL60k 25hz 11.44 39.80 0.94 70.08 5.76 51.17 0.46 81.47
+Fine-tune on Fisher CE Fisher 25hz 6.56 49.17 0.83 71.74 11.67 39.10 0.54 79.37
Mixed Train on LL60K+Fisher CE Fisher+LL60k 25hz 7.91 45.60 0.86 71.09 5.76 51.18 0.46 81.43

Tab. 3.8: Modeling Metrics on Fisher Valid and Librispeech Dev sets for DLM models
trained on HuBERT Mix units compared with the DLM-5 model which was trained
on HuBERT Fisher units. The HuBERT Mix units are 25hz+km500+robust in
Table 2.9. We replace the MAE loss for Duration Prediciton in dGSLM by a Cross-
Entropy loss over discrete durations. We also pre-train DLM on the libri-light
60k hours dataset with a single tower architecture and self-attention, and then
fine-tune on the Fisher dataset with cross-attention. We also train DLM model on
a mix of mono and stereo datasets (LL60k+Fisher). All models are trained on a
100k steps, except DLM-5 where it was trained on 250k steps.
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Fig. 3.8: Training Curves of DLM models on modeling metrics. All the models are
trained using HuBERT Mix 25hz units on the Fisher dataset for 100K iterations.
The reported metrics are evaluated on the Fisher valid dataset. The blue curve
corresponds to the same dGSLM model, the green curve corresponds to dGSLM
model with Cross-Entropy Duration Prediction loss instead of MAE loss, the pink
curve corresponds to the model initialized from a pretrained model on the Libir-
light 60K dataset.

In preliminary experiments, we found that HuBERT Fisher units, although have
good resynthesis quality for Fisher dataset, perform badly on resynthesizing audio
from Libri-light (this is further confirmed by the bad ABX of HuBERT Fisher on
LibriSpeech, cf. Table 3.1). We then decided to use the HuBERT Mix 25hz robust
units as mentioned in Section 2.6, which have been shown to have good ABX in both
LibriSpeech and Fisher. We then first re-train the dGSLM model using the 25hz units.
We observe that the model trained on this new units has higher training perplexity
on the Fisher valid set, which comes from the difference in the frame rate of speech
units as well as training steps, but has much better perplexity on the LibriSpeech
dev set, even if the model doesn’t see any Libri-light data during training.

Another small improvement of dGSLM model is the use of the Cross-Entropy loss
over the duration prediction objective. In our experiments, we found that the
duration prediction loss of dGSLM overfits very quick due to the use of the MAE loss
(Figure 3.8 top-left blue curve), we then replaced the MAE loss with the CE loss,
where we consider duration as discrete targets. This substantially improves not only
the duration modeling of DLM, but also the content modeling with a gain in both
perplexity and edge unit prediction accuracy.
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Now comes to the main part, where we first pre-train the DLM model with a single
tower architecture on the Libri-light 60k dataset, and then fine-tune the model on
the Fisher dataset. Looking at Table 3.8, we see that the model initialized from
pre-trained model doesn’t perform better than the model trained from scratch, even
on the LibriSpeech metrics. However, when looking at the training curves in Figure
3.8, we see indeed that the fine-tuned model learns much faster at initial iterations
and eventually converges to the same points as the model from scratch, indicating
that there is still a transfer between the pre-trained model on the large-scale single-
channel dataset to multi-channel ones.

Finally, the DLM model also allows training on a mix of single-channel and multi-
channel datasets. We make use of this and train a model on a combination of
Libri-light 60k and Fisher. We see that this helps to achieve good modeling metrics
on both Fisher and LibriSpeech datasets. This shows the potential of training a
large-scale model on the mix of different datasets.

We did not really evaluate the models in terms of speech generation metrics because
the training metrics are not much improved. The obtained results suggest that even
60k hours of Libri-light is not enough to train a good pre-trained SpeechLM for
fine-tuning on Fisher, which led us to the priority of scaling and improving SpeechLM
systems so that they can be later fine-tuned on dialogue datasets. This led to the
efforts in Chapter 5.
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Expressive Speech
Resynthesis

4
Previous work focus on using speech units obtained from self-supervised speech
models and resynthesizing the speech with a vocoder model trained on read or
casual speech datasets, which can potentially remove all expressivity contained in
the input speech. A critical problem for expressive speech generation is the lack
of high-quality datasets used for training speech synthesis models. In this chapter,
we are going to introduce a new open-source expressive dataset that can be used
to train discrete unit-based speech synthesis models along with a benchmark on
discrete expressive speech resynthesis.

This chapter presents the following paper that was published in the Proceedings of
Interspeech 2023 :

Tu Anh Nguyen, Wei-Ning Hsu, Antony D’Avirro, Bowen Shi, Itai Gat, Maryam
Fazel-Zarani, Tal Remez, Jade Copet, Gabriel Synnaeve, Michael Hassid, Felix Kreuk,
Yossi Adi, and Emmanuel Dupoux (2023a). “Expresso: A Benchmark and Analysis of
Discrete Expressive Speech Resynthesis”. In: Proc. INTERSPEECH 2023, pp. 4823–
4827

It is followed by Section 4.7 and Section 4.8, where I present my experiments
considering the disentanglement of expressive speech units and the comparison of
language modeling on HuBERT and Encodec units, respectively.

Statement of contribution:

In this work, I pre-processed the collected Expresso dataset, trained all the vocoders
mentioned in the paper, evaluated the quality of the speech units, performed the speech
resynthesis, and created the emotion classification benchmarking. The additional
experiments of the chapter are performed by myself, with the help of Bokai, Maha and
Sravya mostly for the expressive tokenizer evaluation.
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Abstract

Recent work has shown that it is possible to resynthesize high-quality speech based,
not on text, but on low bitrate discrete units that have been learned in a self-
supervised fashion and can therefore capture expressive aspects of speech that are
hard to transcribe (prosody, voice styles, non-verbal vocalization). The adoption of
these methods is still limited by the fact that most speech synthesis datasets are read,
severely limiting spontaneity and expressivity. Here, we introduce EXPRESSO, a high-
quality expressive speech dataset for textless speech synthesis that includes both read
speech and improvised dialogues rendered in 26 spontaneous expressive styles. We
illustrate the challenges and potentials of this dataset with an expressive resynthesis
benchmark where the task is to encode the input in low-bitrate units and resynthesize
it in a target voice while preserving content and style. We evaluate resynthesis quality
with automatic metrics for different self-supervised discrete encoders, and explore
tradeoffs between quality, bitrate and invariance to speaker and style. All the dataset,
evaluation metrics and baseline models are open source1.

∗,+Core contribution as first and last authors
1https://speechbot.github.io/expresso/
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4.1 Introduction and related work

Speech synthesis has been traditionally approached as a mapping between text
and speech. This has a series of limiting consequences: text is an impoverished
representation of language, that does not specify many expressive dimensions:
rhythm, intonation, emotion, emphasis, and often fails to encode non-verbals like
laughter, cries, lip smacks, etc. As a result, speech synthesizers typically resort to
standard read speech as the main target, which severely limits the expressivity of AI
systems.

Everything changed with the advent of Self Supervised Learning (SSL) speech
models (Chung et al., 2021; Hsu et al., 2021a), which enabled to build discrete
representations for speech without needing any textual annotation (Borsos et al.,
2023; Gat et al., 2023; Lakhotia et al., 2021). Because such representations can be
learned from much more diverse audio than read speech (conversational, casual
speech), this opens up the possibility to build more expressive systems based on SSL
units instead of text. Recently, Kharitonov et al. (2023) and Wang et al. (2023a)
utilize neural audio codecs (Défossez et al., 2022; Zeghidour et al., 2021) to encode
speech features into codes and generate natural speech from textual input. However,
these models still rely on large-scale read speech that lacks expressivity. One of
the roadblocks in building such expressive systems is the lack of datasets that are
sufficiently expressive and of high audio quality for learning a synthesizer. Most
existing expressive datasets (e.g., EmoV, Adigwe et al., 2018) have used expressive
reading, where voice actors read a (neutral) sentence in different expressions (happy,
sad, etc.). This method puts the voice actors in an artificial situation, resulting in
not very plausible rendering of these expressions. In this work, we also reproduced
this protocol to create an expressive speech dataset but added a section based on
conversational improvisation. The two actors are prompted with a situation and a
character (e.g., two drivers involved in a car accident, a parent and a child, etc.)
and improvise a dialogue impersonating their characters. This yields much more
realistic and casual speech, with spontaneous hesitations, laughter, etc., that would
be extremely hard to transcribe accurately, but, which can be in principle captured
by SSL units.

Next, we illustrate the potential of this dataset by setting up the task of discrete
expressive resynthesis. As in discrete resynthesis (Maimon and Adi, 2022; Polyak
et al., 2021), it consists in taking audio as input, encoding it in low bitrate discrete
units, and synthesizing the same content with a different target voice. In this
work, we additionally include the task of preserving expressive style. We introduce
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automatic metrics for content and style preservation and evaluate a HuBERT (Hsu
et al., 2021a) encoder trained on a masked prediction objective followed by k-means
clustering, which we compare to Encodec (Défossez et al., 2022), a compression
model which acts as a high bitrate baseline. We compare different pretraining sources
for the HuBERT units based on public datasets of read speech and/or spontaneous
speech. Synthesis is done with a units-based HiFi-GAN vocoder (Polyak et al., 2021)
conditioned on speaker or speaker and style.

4.2 The Expresso dataset

The EXPRESSO dataset consists of 47 hours of expressive speech from 4 speakers of
North American English. The dataset is divided into two main sections: an expressive
reading section (37% of the corpus) where actors read short prompts in a parallel
fashion in 7 different styles, with additional long-form and emphasis material (see
4.2.1), and an improvised dialog section (72% of the corpus) where pairs of actors
are prompted to improvise a conversation in a fictive setting that illustrates one of
25 specified styles (see 4.2.2). In a small additional singing section, actors sing a
few of their favorite songs.

The 26 different styles were chosen for their universality/recognizability (i.e. com-
mon emotions like happiness, sadness), utility for current/anticipated speech appli-
cations (i.e. whispered, enunciated speech), and to elicit the large range of possible
vocalizations of the human voice (including addressing or imitating a child or an
animal, and non-verbals like grunting, coughing, whistling, etc., see Table 4.1 for a
full list).

Data was recorded in a professional recording studio with minimal background noise
at 48kHz/24bit. The files for read speech and singing are in a mono wav format;
and for the dialog section in stereo (one channel per actor), where the original flow
of turn-taking is preserved.

4.2.1 Expressive reading

Seven of the styles (confused, default, enunciated, happy, laughing, sad, whisper)
were applied in a parallel fashion to the same set of prompts, so content did not
necessarily reflect the emotion being conveyed, and we relied on the actor’s expertise
to convey the desired style. Written instructions were delivered for each style
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Tab. 4.1: EXPRESSO’s expressive styles. * singing is the only improvised style that is not
in dialogue format.

Style Read
(min)

Improvised
(min)

total hours

angry - 82 1.4
animal - 27 0.4
animal_directed - 32 0.5
awe - 92 1.5
bored - 92 1.5
calm - 93 1.6
child - 28 0.4
child_directed - 38 0.6
confused 94 66 2.7
default 133 158 4.9
desire - 92 1.5
disgusted - 118 2.0
enunciated 116 62 3.0
fast - 98 1.6
fearful - 98 1.6
happy 74 92 2.8
laughing 94 103 3.3
narration 21 76 1.6
non_verbal - 32 0.5
projected - 94 1.6
sad 81 101 3.0
sarcastic - 106 1.8
singing* - 4 .07
sleepy - 93 1.5
sympathetic - 100 1.7
whisper 79 86 2.8

describing the upper and lower performative bounds of the style, some including
video examples.

Aside from a small corpus of shared essential lines (greetings, common phrases,
numbers, letters), each speaker had a unique script in order to maximize linguistic
diversity across the entire dataset. In total, the written corpus contains roughly
21,000 words over 2,400 unique lines. Material was scraped from open-source
datasets like Wikipedia and commissioned datasets containing voice-assistant style
utterances and then proofread and scrubbed for PII. Although not specifically bal-
anced for phonetic coverage, the corpus was tuned both overall and per-speaker for
a desired ratio of statements, questions, exclamations, jokes, etc.

Contrastive emphasis. We enclose certain words/spans in asterisks to denote
emphasis, designed to convey contrastive focus in the reading of an utterance.
Actors were trained to read this syntax with the desired prosodic effect. These
occur in isolation throughout the read-speech corpus, but also in a subset of each
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speaker’s lines labeled “emphasis” where the same line is repeated 2 to 4 times with
contrastive emphasis placed on different words/spans.

Long-form material. To capture longer-range prosodic dependencies, each speaker’s
script contains one news article (read in the “default” style) and one long-form nar-
rative piece (read in the “narration” style), roughly totalling 100 lines per speaker.

4.2.2 Improvised dialogs section

Dialogs were elicited via a set of situational prompts designed to evoke the desired
styles or emotions. Some prompts resemble voice-application domains such as
reporting the weather, navigation, information retrieval, while others are more
open-ended scenarios; some of them were proposed by the actors.

Tradeoffs were made to capture usable data while preserving the feel of natural
conversation, i.e. actors were recorded in separate booths but watching each other
over video conference. A small number of dialogs (<10) were interrupted by the
studio director to provide notes. These dialogs were edited to remove the pause and
maintain a more natural flow.

4.2.3 Singing section

Each speaker recorded several versions of popular nursery rhymes and public domain
songs. The original recording had more data (93 minutes total) but could not be
shared because the songs turned out not to be in the public domain.

4.2.4 Data preparation

The raw dataset contains mostly pre-cut segments of 3-4 seconds for the read section,
except for long-form ones, and long waveforms ranging from 2 to 10 minutes for
dialogs section. For the purpose of speech synthesis, we cut long files into segments
of 15 seconds. We split the dataset into train/dev/test subsets such that each speaker-
style contains roughly 60s in dev/test splits, resulting in 1.5 hours of speech in each
subset.
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4.3 Method

Additional datasets. We refer to the read section of EXPRESSO as Exp-R and the
improvised section as Exp-I. To train the units and vocoder, and to evaluate the
results, we use additional open source datasets: LJspeech (Ito and Johnson, 2017)
(LJ), VCTK (Veaux et al., 2017), Librispeech dev-other (Panayotov et al., 2015) (LS),
Fisher (Cieri et al., 2004) and EmoV-DB (EmoV) (Adigwe et al., 2018).

Evaluation metrics For evaluating the discrete units, we compute their bitrate, ABX
discrimination (the probability that the DTW distance between minimally different
triphones like /bit/ versus /bet/ are more distant to one another than two instances
of the same triphone, Schatz et al., 2013) both on the 1-hot representations (as
in Nguyen et al., 2020b), and using the dense embedding corresponding to the
centroid of the units, and PNMI (phone-normalized mutual information between
units z and ground truth phonemes y: I(y; z)/H(y) as in Hsu et al., 2021a).

For evaluating the quality of resynthesized speech, we build automatic metrics for
the preservation of content, pitch, and expressivity. As in Polyak et al. (2021),
content preservation is evaluated by running a publicly available Automatic Speech
Recognition (ASR) model (Xu et al., 2021b) on the resynthesized sentence and
computing the Word Error Rate (WER) relative to the transcription of the input
sentence2. We run this on in-domain inputs (LJ, VCTK and Exp-R) and out-of-domain
inputs (LS and Fisher). Pitch preservation is evaluated by computing F0 Frame
Error (FFE), which measures the percentage of frames with a deviation of more
than 20% in pitch value between the input and resynthesized output. Expressivity
preservation is computed by training an expressive style classifier3 on the train set
of EXPRESSO and applying it to resynthesized versions of its dev set. These classifiers
are also run on the original data for comparison.

4.4 Models

4.4.1 Unit encoding

For unit encoding, we compared three models: two HuBERT-based, one Encodec-
based. The HuBERT models use the same architecture (HuBERT base with 12

2https://dl.fbaipublicfiles.com/fairseq/wav2vec/wav2vec_vox_960h_pl.pt
3We fine-tune the wav2vec2 base model (Baevski et al., 2020c) on a 26 style classes audio classification

task (as in the SUPERB benchmark, Yang et al., 2021) using Huggingface transformers library
(Wolf et al., 2020).
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Tab. 4.2: Encoder and Tokenizer used for our discrete units. Bitrate is log2(codebook
size) × n units per sec in BPS. Mean within- and across-speaker ABX discrim-
ination scores, resp., on 1-hot vectors and units’ centroids. PNMI is mutual
information between units and phonemes. For Encodec RVQ8, we concatenate
multiple codebooks for ABX. PNMI is not available for this tokenizer.

Model Tokenizer BPS
ABX 1-hot (↓) ABX-centr. (↓) PNMI (↑)

LS Fisher LS Fisher LS Fisher

HuBERT
(LS960)

KM500 (LS960) 450 8.98 15.45 5.28 10.84 67.57 48.42
KM2000 (Expr) 550 11.00 17.81 4.32 9.07 73.23 56.33

HuBERT
(Mix1)

KM2000 (Mix1) 550 10.27 14.96 4.92 8.93 72.36 55.77
KM2000 (Expr) 550 10.50 15.27 4.39 8.04 74.37 59.14

Encodec
RVQ1 500 45.47 44.29 26.10 29.57 21.42 13.17
RVQ8 4000 41.38 40.50 20.20 25.60 - -

Tranformer layers), but are trained on different corpora. HuBERT-LS960 was trained
on LibriSpeech 960 as in Lakhotia et al. (2021). We used the available model
in textless-lib (Kharitonov et al., 2022a). We use HuBERT-Mix1 from Hsu et al.
(2023b), which was trained with a more varied mixture of datasets: an 8 language
subset of VoxPopuli (Wang et al., 2021) (167K h), Common Voice (Ardila et al.,
2020) (4K h) and Multilingual LibriSpeech (MLS) (Pratap et al., 2020) (50K h),
totalling 221K hours. For quantization, we trained k-means models on HuBERT
features either on a subset of HuBERT pre-training dataset or on EXPRESSO, with
k=500 on LS960 or k=2000 on other datasets. The Encodec model is from Défossez
et al. (2022), we used two models with 1 and 8 codebooks of cardinality 1024,
which were trained on VoxPopuli400k English, People’s Speech (Galvez et al., 2021),
LibriSpeech 960, LibriLight (Kahn et al., 2020) and Spotify (Clifton et al., 2020).
Training hyperparameters were identical to Défossez et al. (2022) except for having
no audio normalization and using zero padding instead of reflect.

4.4.2 Vocoder

For HuBERT units, we produce the waveform using HiFiGAN, which we train on the
units presented above. For each set of units, we train either on LJ and VCTK, or on
LJ, VCTK and EXPRESSO. The vocoder is either conditioned on speaker ID (using a
look-up table), or on speaker ID and expression ID (also using a look-up table). We
distinguish the read and improvised versions of the expressions, yielding a total of
34 expressions. For Encodec units, we used the Encodec decoder to directly produce
the waveform, and compared systems with 1 and 8 codebooks.
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Tab. 4.3: Content preservation evaluation: WERs (%) of speech resynthesized by our
models. We bold the best HuBERT or best Encodec model within each column.
We denote speaker conditioning as S, and speaker with expression conditioning
as S_E. Results are reported for Expresso (E), VCTK (V) and Fisher (Fish).

In Domain Source Out of Domain Source
Same Speaker Swapped Speaker

Src. LJ V E V E LS Fish LS Fish LS Fish LS Fish
Tgt. LJ V E V E LJ LJ V V E E Orig Voices

Model Tokenizer Data Cond. WER
Original audio _ _ _ 2.04 1.74 14.76 _ _ _ _ _ _ _ _ 3.55 30.26

HuBERT
(LS960)

KM500
(LS960)

LJ+V S 3.12 6.85 _ 7.20 _ 11.56 50.13 10.83 48.26 _ _ _ _
E+LJ+V S 3.22 7.19 24.21 6.80 24.34 11.61 49.24 10.42 46.63 10.93 47.18 _ _
E+LJ+V S_E 3.65 6.76 23.65 7.79 24.82 12.00 50.49 10.75 47.72 10.57 46.57 _ _

KM2000 (E)
LJ+V S 2.98 7.15 _ 7.09 _ 10.95 47.44 9.98 47.06 _ _ _ _
E+LJ+V S 3.41 7.09 21.64 7.01 22.80 10.80 46.90 10.20 45.79 10.61 46.77 _ _
E+LJ+V S_E 2.83 6.48 22.35 6.56 21.92 10.34 45.93 9.72 45.08 9.52 43.13 _ _

HuBERT
(Mix1)

KM2000 (Mix1)
LJ+V S 2.60 6.98 _ 7.60 _ 9.60 41.78 8.34 40.53 _ _ _ _
E+LJ+V S 2.80 6.84 21.25 7.20 22.52 9.17 40.61 8.38 38.91 9.76 42.87 _ _
E+LJ+V S_E 2.85 7.17 20.36 7.33 20.81 9.50 41.09 8.92 40.82 8.39 38.47 _ _

KM2000 (E)
LJ+VCTK S 2.77 5.60 _ 5.89 _ 9.48 41.42 8.39 40.81 _ _ _ _
E+LJ+V S 2.95 4.85 20.64 5.07 21.01 9.04 39.62 7.91 38.45 8.46 39.84 _ _
E+LJ+V S_E 3.05 5.48 19.52 5.59 20.27 9.20 38.79 7.75 37.48 8.00 36.67 _ _

Encodec (RVQ-1) _ None 5.52 17.46 34.36 _ _ _ _ _ _ _ _ 18.88 60.68
Encodec (RVQ-8) _ None 2.20 2.52 16.85 _ _ _ _ _ _ _ _ 4.62 35.64

4.5 Results

Table 4.2 shows the phonetic quality metrics across different SSL units. The HuBERT
encoders trained on the larger and noisier corpus (Mix1) tend to have overall better
results than when trained on LS960 only, especially when tested on Fisher. The ABX-
centroid and PNMI metrics gave better results when k-means clustering was run on
EXPRESSO (a small high quality, high diversity dataset) than on the large dataset used
to train HuBERT itself. This was not the case, however with the ABX 1-hot metric,
so further study is necessary to confirm this result. The Encodec units gave poor
results, which is not surprising given that Encodec units are generic representations
trained for audio compression that also encodes non-phonetic variations whereas
HuBERT units are trained with a masked language modeling objective.

Table 4.3 shows the result of content preservation for the resynthesis task (WER),
distinguishing the case where the input sentences are drawn from the same distri-
bution as the vocoder training sets (In-domain Source: LJ, VCTK and Exp-R) and
when the input sentences are from different datasets (Out-of-domain Source: LS
and Fisher). For in-domain, we further distinguish the cases where the input voice is
the same as the target voice (Same Speaker) and when the target voice is randomly
sampled from the same training set (Swapped Speaker; not applicable to LJ speech).
We find that swapping speakers costs on average only a small decrement in WER
(3% relative), suggesting that the units are well (although not totally) disentangled
from speaker information. On average, the HuBERT units trained on Mix1 give
better performances (about 10% relative) than units trained on LS960, a result con-
sistent with the phonetic quality metrics. As for the vocoder, the training voices and
conditioning (either speaker alone or speaker+style) did not give systematic results.
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Tab. 4.4: Expressive style classification accuracy using a pre-trained emotion classifica-
tion model. We denote speaker conditioning as S, and speaker with expression
conditioning as S_E. Results are reported for Expresso (E) and VCTK (V).

Same Swapped Zero-shot Out of dom.
Src. E_R E_I E_R E_I E_R E_I E_R E_I EmoV
Tgt. E E E E LJ LJ V V E

Model Tokenizer Data Cond. Accuracy
Original Audio _ _ _ 92.47 75.69 _ _ _ _ _ _ 27.46

HuBERT
(LS960)

KM500
(LS960)

LJ+V S - - _ _ 13.36 9.14 26.42 12.43
E+LJ+V S 33.18 14.99 29.80 13.53 8.45 10.79 28.26 10.97 11.56
E+LJ+V S_E 81.57 58.68 81.26 56.12 23.96 36.93 56.07 28.15 43.35

KM2000 (E)
LJ+V S - - _ _ 5.22 10.42 27.04 11.70
E+LJ+V S 39.17 23.95 33.95 19.38 11.67 12.07 27.34 14.63 9.25
E+LJ+V S_E 78.34 62.16 76.96 54.11 22.12 39.31 55.76 32.54 46.24

HuBERT
(Mix1)

KM2000 (Mix1)
LJ+V S - - _ _ 7.99 9.32 27.50 11.52
E+LJ+V S 25.81 17.73 28.57 15.72 5.53 8.96 27.65 11.33 11.27
E+LJ+V S_E 78.80 61.06 81.41 58.14 31.64 40.77 40.86 31.63 48.27

KM2000 (E)
LJ+V S - - _ _ 7.68 10.24 27.80 12.07
E+LJ+V S 37.02 16.82 35.33 16.09 5.99 9.69 26.73 11.52 14.45
E+LJ+V S_E 72.81 62.16 73.12 55.76 31.18 39.85 55.61 28.52 49.71

Encodec (RVQ-1) _ None 57.76 44.42 _ _ _ _ _ _ 22.25
Encodec (RVQ-8) _ None 78.65 64.53 _ _ _ _ _ _ 26.88

Overall, the best HuBERT results on the same speaker showed a drop in performance
compared to the original audio files (between 30% relative to more than double the
error), and compared to the Encodec-8 units. Regarding out-of-domain resynthesis,
the HuBERT-Mix1 units again generally outperform the HuBERT-LS960 units (19%
relative). In addition, the tokenizer trained on EXPRESSO tend to be better by a
small margin (3% relative). The best resynthesis models suffer from a large drop
in WER compared to original audio and Encodec-8 for LS (twice the errors) but a
much smaller drop for Fisher. Encodec-1 consistently underperform HuBERT-based
resynthesis, indicating that one Encodec codebook of size 1024 is not enough to
fully capture linguistic content.

Tables 4.4 and 4.5 show the results on style and pitch preservation, respectively;
these experiments are exclusively ran on EXPRESSO inputs (in-domain) or EmoV
inputs (out-of-domain). We group the in-domain results in 3 conditions. The first
two are similar to the same-speaker and swapped speaker conditions discussed
above. Unsurprisingly, for both style and pitch, the results are uniformly better
when the vocoder was conditioned on speaker+expression than in speaker alone.
Note, though, that even without expression conditioning, the style classification
score is much higher than the chance level (3.8%), suggesting that style is partly
transmitted through the units. The results on swapped speakers are slightly worse
than on same speaker (cost around 10% relative accuracy on style and 20% rel. on
pitch error). Globally, the style scores of Encodec-8 are on par or better than the
best HuBERT resynthesis models, but much better for pitch preservation (6-fold).
Next, we explored whether expressivity could be transferred to voices that were only
trained in the default read speech style (VCTK and LJ). This change cuts the style
score in half, still remaining way above chance, and better than the EXPRESSO voices
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Tab. 4.5: F0 Frame Error (FFE). Bold best absolute scores. We denote speaker conditioning
as S, and speaker with expression conditioning as S_E. Results are reported for
Expresso (E), Expresso Read (E_R), Expresso Improvised (E_I), LJ, VCTK (V), and
EMOV.

Same Swapped Zero-shot OOD
Src. E_R E_I E_R E_I E_R E_I E_R E_I EMOV
Tgt. E E E E LJ LJ V V E

Model Tokenizer Data Cond. FFE

HuBERT
(LS960)

KM500
(LS960)

E+LJ+V S 0.31± 0.10 0.33± 0.12 0.37± 0.12 0.38± 0.13 0.34± 0.10 0.35± 0.12 0.38± 0.11 0.38± 0.14 0.27± 0.08
E+LJ+V S_E 0.27± 0.13 0.30± 0.13 0.34± 0.16 0.36± 0.15 0.33± 0.15 0.35± 0.14 0.34± 0.16 0.36± 0.15 0.25± 0.09

KM2000 (E)
E+LJ+V S 0.31± 0.12 0.33± 0.13 0.36± 0.13 0.36± 0.13 0.35± 0.09 0.35± 0.11 0.38± 0.11 0.38± 0.14 0.26± 0.09
E+LJ+V S_E 0.26± 0.13 0.29± 0.13 0.34± 0.16 0.36± 0.15 0.31± 0.14 0.33± 0.13 0.33± 0.16 0.35± 0.15 0.26± 0.09

HuBERT
(Mix1)

KM2000(Mix1)
E+LJ+V S 0.32± 0.11 0.33± 0.13 0.38± 0.12 0.37± 0.13 0.36± 0.09 0.35± 0.11 0.38± 0.12 0.38± 0.14 0.26± 0.09
E+LJ+V S_E 0.28± 0.14 0.29± 0.13 0.34± 0.16 0.36± 0.15 0.32± 0.15 0.34± 0.14 0.34± 0.16 0.36± 0.15 0.27± 0.09

KM2000 (E)
E+LJ+V S 0.31± 0.10 0.32± 0.12 0.37± 0.12 0.37± 0.13 0.35± 0.09 0.35± 0.11 0.38± 0.11 0.37± 0.14 0.26± 0.08
E+LJ+V S_E 0.27± 0.13 0.30± 0.13 0.34± 0.16 0.36± 0.14 0.32± 0.14 0.34± 0.14 0.34± 0.16 0.36± 0.15 0.25± 0.09

Encodec (RVQ-1) _ None 0.08± 0.04 0.11± 0.07 _ _ _ _ _ _ 0.09± 0.06
Encodec (RVQ-8) _ None 0.04± 0.02 0.05± 0.03 _ _ _ _ _ _ 0.04± 0.02

not conditioned by expression, showing that expressive styles can, to a certain
extent, generalize to untrained voices in a zero-shot fashion. Finally, we tested
expressive resynthesis could be applied out-of-domain, using input data from EmoV.
This dataset uses 5 expressions (neutral, amused, angry, sleepy, disgust) which we
mapped based on the description to EXPRESSO’s neutral, laughing, angry, sleepy and
disgusted. The performance of the classifier was much lower than in the in-domain
case, and unexpectedly higher for resynthesis than the original file. Inspection of
the errors pattern showed some systematic style confusions across datasets. For
instance, original EmoV voices in angry style were classified as “projected” by our
classifier, but as “angry” once resynthetized with the “angry” conditioning. This
suggests discrepancies in style rendering across the two datasets for identical labels
(e.g., anger rendered as shouting in one versus cold rage in the other). This also
suggests that the style-conditioned vocoder can to a certain extent remap input
styles to different ones (confirmed by a style swapping experiment not reported in
the table). More research and expressive datasets are needed to develop a dataset-
independent and speaker-independent expressive style classifiers. Despite these
limitations, the results were congruent with in the in-domain case, with better
than chance performance and improved performance with expression-conditioned
vocoders.

4.6 Conclusion

We presented a new dataset for expressive discrete resynthesis, and analysed content
and style preservation for several baseline discrete SSL models. We showed that
Encodec systems which are designed for general audio compression are generally
better for resynthesis, although they lack the controllability in output voices and style
made possible by the fact that HuBERT units are disentangled from speaker identity
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and (partially) from expressivity. Further work is needed to improve HuBERT-based
expressive resynthesis, and reach the quality of Encodec units, while retaining
controllability. In particular, improved performance on pitch preservation could
be obtained by conditioning the vocoder on discrete pitch units, as in Polyak et al.
(2021).
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Additional Results

This part presents my supplementary experiments concerning the exploration of
better expressive speech units as well as comparing language modeling performances
of HuBERT and Encodec units.

4.7 Disentangled Expressive Speech Units

We see that HuBERT units only don’t capture pitch information from the speech, and
we don’t always have the ground truth style of the audio to condition the HifiGAN
model. Therefore, it is natural to think of generating pitch and style units capturing
the intonation and expressivity in the speech and then condition the HifiGAN model
on these pitch and style units in addition to the HuBERT units.

Following Polyak et al. (2021), we trained a VQ-VAE (Oord et al., 2017b) model on
the F0 of the speech to obtain pitch units capturing the intonation in the speech. For
the style units, we extract Speechprop’s features (Duquenne et al., 2023), which is
supposed to contain the expressivity style of the speech. We further fine-tune the
features to predict Expresso styles in order to reinforce the expressivity captured
in the features as well as remove unnecessary speaker information. We finally
performed a k-means clustering on the features to obtain the style units. Based on
the assumption that pitch and style change at a lower rate than the phonetic content
of speech, we take the pitch units and style units with a lower frame rate (12.5hz for
pitch and 1hz for style), with the hope that more compressed units will potentially
be beneficial for language models. We then trained a HifiGAN model conditioned
on the 3 types of units: HuBERT, pitch and style and evaluated the resynthesized
speech using the Expresso benchmark. The results are shown in Table 4.6.

We can see effectively that using additional pitch and style units helps to improve
the expressivity and pitch preservation metrics. On content preservation, the model
shows good results, largely surpassing Encodec with 1 codebook. We see that using
style units indeed allows capturing the expressive style from the input speech without
relying on the ground truth style, reaching the performances of Encodec with 1
codebook. Finally, using the pitch units effectively reduce substantially the F0 Frame
Error compared with using only HuBERT units. We see, in general, that we have
succeeded in extracting disentangled speech units with good expressive resynthesis
quality while reducing the bitrate of previous models by a large margin. This later
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Bitrate Content Expressive Style Pitch
Metrics BPS Word Error Rate (WER)↓ Classification Accuracy↑ F0 Frame Error (FFE)↓

Model E. Read LS Fisher E. Read E. Imp. EmoV E. Read E. Imp. EmoV

Original Audio - 14.76 3.55 30.26 92.47 75.69 27.46 - - -

Expresso models
HuBERT + HifiGAN 550 20.64 8.46 39.84 37.02 16.62 14.45 0.31 0.32 0.26
HuBERT + HifiGAN cond. on GT Style 550 19.52 8.00 36.67 72.81 62.16 49.71 0.27 0.30 0.25
Encodec (RVQ=1) 500 34.36 18.88 60.68 57.76 44.42 22.25 0.08 0.11 0.09
Encodec (RVQ=8) 4000 16.85 4.62 35.64 78.65 64.53 26.88 0.04 0.05 0.04

HuBERT Mix 25hz Tokenizers
HuBERT + HifiGAN 225 22.90 11.66 35.64 28.25 19.78 13.29 0.41 0.43 0.36
(HuBERT, Pitch, Style) + HifiGAN 307 22.35 10.60 36.58 56.02 47.66 20.52 0.16 0.17 0.16

Tab. 4.6: Expressive Speech Resynthesis Evaluation with Disentangled Speech Units.
Performances of resynthesized speech using HifiGAN model trained on Expresso
dataset using either HuBERT (robust 25hz with codebook size of 501) units only
or HuBERT, Pitch and Style units compared with HuBERT (Mix1+km2000E) +
HifiGAN (with and without conditioning on the Ground Truth Style) and Encodec
(with 1 and 8 codebooks) systems of Expresso. The resynthesis is done with the
same input speaker for Expresso subsets and with random Expresso speaker for
other datasets. The bitrate is bit-per-second (BPS) computed as log2(codebook
size) × n tokens per second. The Pitch units are obtained by training a VQ-VAE
model on the F0 extracted from the speech and have a vocab of 64 and a frame
rate of 12.5hz. The Style units are obtained by clustering the features extracted
from Speechprop (Duquenne et al., 2023) and have a vocab of 100 and a frame
rate of 1hz.

became the speech tokenizer for the SPIRIT-LM-EXPRESSIVE model which will be
introduced in Chapter 5.

4.8 Comparison of HuBERT and Encodec on Spoken
Language Modeling

Encodec units show excellent results in audio compression and have recently been
widely used for Speech- and Audio-LMs (Borsos et al., 2023; Kreuk et al., 2023;
Wang et al., 2023a). However, we have seen in this work that Encodec units don’t
have good phonetic quality. This suggests that the language models trained on
Encodec will have poor results compared with HuBERT units.

To confirm this hypothesis, we trained language models on Encodec and HuBERT
units and evaluated the model performances on spoken language modeling metrics.
Following Hassid et al. (2023), we initialized the SpeechLMs with the LLAMA 1.5B
model to quicken the training and trained the models on 140k hours of speech
datasets, including Librilight, Spotify, and People’s Speech, for 30k steps. The
HuBERT units are deduplicated HuBERT Mix 25hz mentioned in Section 2.6, and
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the Encodec units are the Encodec with 1 codebook used in Expresso. The results
are illustrated in Figure 4.1.

Fig. 4.1: Comparison of SpeechLMs trained on HuBERT vs Encodec units. The language
models are initialized from the TextLM LLAMA 1.5B, and are trained for 30k
iterations on Librilight, Spotify and People’s Speech datasets, totaling 140k hours
of speech. For HuBERT, we used the deduplicated HuBERT Mix 25hz units. For
Encodec we used the Encodec with 1 codebook from Expresso. We additionally
trained a model on the mix of HuBERT and Encodec units, where the units
are interleaved and sorted with time. We plot the training loss (top) as well
as evaluation metrics (bottom) of the models during training. The reported
evaluation scores are calculated with normalized log-likelihood of speech stimulus
(divided by the number of tokens).

We see that the model trained on HuBERT units has better loss than the Encodec one,
which may be due to the frame rate and the codebook size of the units. However,
when looking at the evaluation metrics, we see a clear gap between the two model.
The Encodec LM seems to perform near chance at almost all metrics, lagging behind
HuBERT LM by a large margin. We further tried to train a language model on a mix
of HuBERT and Encodec units (the two kinds of units are interleaved and sorted by
time stamps) and interestingly found that this model performs in-between HuBERT
and Encodec on most tasks (except sBLIMP), where the performances are almost at
chances. This indicates that the semantic HuBERT units acutually guide the Encodec
units to perform better in spoken language modeling tasks, and that the frame rate
is not the issue for Encodec in this case.

These results further confirmed that Encodec units, while being excellent at capturing
acoustic information from the speech, perform poorly for SpeechLMs, and that
HuBERT units are still desirable for SpeechLMs to learn semantic information in

4.8 Comparison of HuBERT and Encodec on Spoken Language
Modeling
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the speech. It is also the reason why AudioLM (Borsos et al., 2023) employed a
cascaded multi-stage language modeling scheme, where they first train a language
model on semantic units (w2v-BERT), then train other language models to translate
semantic units to fine-grain acoustic units (SoundStream). However, doing this will
possibly remove all acoustic information in the semantic modeling stage. We will
see in the next chapter that by using disentangled speech units presented in the
previous section, the language model can also capture expressive information while
generating semantic content appropriately.
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Text+Speech Language
Modeling

5
In a prior work (Hassid et al., 2023), we found that SpeechLMs benefit from TextLMs.
However, we didn’t focus on continuing training on text, and therefore, the trained
model loses its capacity in text, which is undesirable. In this chapter, we are going
to combine "textless" with text. We will analyze the best way to combine text and
speech modalities in one single language model so that it can benefit from both
textual semantics and speech expressivity.

This chapter presents the following paper that was published in arxiv, it is a preprint
version of a work in progress :

Tu Anh Nguyen, Benjamin Muller, Bokai Yu, Marta R. Costa-jussa, Maha Elbayad,
Sravya Popuri, Paul-Ambroise Duquenne, Robin Algayres, Ruslan Mavlyutov, Itai
Gat, Gabriel Synnaeve, Juan Pino, Benoit Sagot, and Emmanuel Dupoux (2024).
SpiRit-LM: Interleaved Spoken and Written Language Model. arXiv: 2402.05755
[cs.CL]

Statement of contribution:

I initiated the Speech-Text LLM project, pre-processed training speech and speech-text
datasets as well as “zero-shot” evaluation datasets, implemented the interleaving scheme,
and trained most ablation models. I then experimented with pitch and style units and
also trained the expressive models.
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Publication: SPIRIT-LM: Interleaved Spoken
and Written Language Model

Tu Anh Nguyena,+,†, Benjamin Mullera,+, Bokai Yua,+, Marta R. Costa-jussab,+,
Maha Elbayadb,+, Sravya Popurib,+, Paul-Ambroise Duquenneb,+,†, Robin Algayresb,‡,
Ruslan Mavlyutovb,+, Itai Gatb,+, Gabriel Synnaevec,+, Juan Pinoc,+, Benoît
Sagotc,†, Emmanuel Dupouxc,+,‡

+ Meta AI, † Inria, Paris, ‡ EHESS, ENS-PSL, CNRS, Paris

{ntuanh, benjaminmuller, bokai, dpx}@meta.com

Abstract

We introduce SPIRIT-LM, a foundation multimodal language model that freely mixes
text and speech. Our model is based on a pretrained text language model that
we extend to the speech modality by continuously training it on text and speech
units. Speech and text sequences are concatenated as a single set of tokens, and
trained with a word-level interleaving method using a small automatically-curated
speech-text parallel corpus. SPIRIT-LM comes in two versions: a BASE version that
uses speech semantic units and an EXPRESSIVE version that models expressivity using
pitch and style units in addition to the semantic units. For both versions, the text is
encoded with subword BPE tokens. The resulting model displays both the semantic
abilities of text models and the expressive abilities of speech models. Additionally,
we demonstrate that SPIRIT-LM is able to learn new tasks in a few-shot fashion
across modalities (i.e. ASR, TTS, Speech Classification)1.

5.1 Introduction

Prompting Large Language Models (LLMs) has become a standard in Natural Lan-
guage Processing (NLP) since the release of GPT-3 (Brown et al., 2020). Scaling
language models to billions of parameters with massive datasets helps to achieve
general-purpose language understanding and generation. Additionally, large-scale
language models can solve new tasks by providing the model with a few examples

a,b,c Equally contributed as co-first, co-second and co-last authors, resp.
1Generation samples can be found at: https://speechbot.github.io/spiritlm
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Fig. 5.1: a. The SPIRIT-LM architecture. A language model trained with next token
prediction; tokens are derived from speech or text with an encoder, and rendered
back in their original modality with a decoder. SPIRIT-LM models are trained on
a mix of text-only sequences, speech-only sequences, and interleaved speech-text
sequences. b. Speech-text interleaving scheme. Speech is encoded into tokens
(pink) using clusterized speech units (Hubert, Pitch, or Style tokens), and text
(blue) using BPE. We use special tokens [TEXT] to prefix text and [SPEECH] for
speech tokens. During training, a change of modality is randomly triggered at
word boundaries in aligned speech-text corpora. Speech tokens are deduplicated
and interleaved with text tokens at the modality change boundary. c. Expressive
Speech tokens. For SPIRIT-LM-EXPRESSIVE, pitch tokens and style tokens are
interleaved after deduplication.

through in-context few-shot learning. Since then, a number of LLMs have been
developed (Chowdhery et al., 2022; Hoffmann et al., 2022; Touvron et al., 2023a;
Zhang et al., 2022). Notably, LLaMA (Touvron et al., 2023a) showed that smaller
LLMs can achieve very good performance when training longer on more data using
optimal-compute scaling laws (Kaplan et al., 2020), making LLMs more accessible
for NLP research.

Speech Language Models (SpeechLMs), i.e. language models trained directly on
speech, have been introduced (Algayres et al., 2023; Borsos et al., 2023; Lakhotia et
al., 2021) and have recently become an active field of research (Hassid et al., 2023;
Nguyen et al., 2023b; Rubenstein et al., 2023; Wang et al., 2023a). These models
are either trained on speech-only datasets or datasets of specific tasks, e.g. Text-To-
Speech (TTS), Automatic Speech Recognition (ASR), or Speech Translation, making
the LMs focus on certain modality or tasks potentially loosing their generalization
capabilities.

Given the increasing quality of text-only LLMs (Brown et al., 2020; Touvron et al.,
2023b), one successful approach to generate speech has been to build pipelines
that first transcribe input speech with ASR, then generate text using a text-only
LLM and finally synthesize the generated text into speech with TTS. However, with
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Inference
SPIRIT-LM generations

Prompt Generation

SPIRIT-LM-BASE

S→S [SPEECH][Hu34][Hu301][Hu280]..[Hu34] [Hu28][Hu41][Hu123]..[Hu254]
 a b c d e  f g h i j k l m n o p q r c s t u v

T→S [TEXT]The largest country in the world is [SPEECH][Hu34][Hu20][Hu340]..[Hu489]
 Russia. It has about 150 millions inhabitants..

T→S [TEXT]Here’s a story about a llama that [SPEECH][Hu12][Hu41][Hu123]..[Hu254]
can speak:  This little llama had a friend named dobby...

S→T [SPEECH][Hu34][Hu71][Hu405]..[Hu34]
 Yellowstone national park is an american
national park located in

[TEXT] the northwest corner of Wyoming. It is lo-
cated in the Greater Yellowstone area...

S→T [SPEECH][Hu34][Hu301][Hu280]..[Hu34] [TEXT] 6 7 8 9 10...
 one two three four five

SPIRIT-LM-EXPRESSIVE

S →T [SPEECH][St3][Pi0][Hu34][Hu103]..[Hu22]
 Are you really going to do that <Angry>

[TEXT] he said in a voice that was almost a scream
i’m afraid

S →T [SPEECH][St5][Pi5][Hu34][Hu409]..[Hu24]
 Are you really going to do that <Disbe-
lief>

[TEXT] she said turning her head quickly and putting
out her hand for the glasses

T→S [TEXT]I am so deeply saddened [SPEECH][Hu34][St2][Pi9][Hu371][Hu20]..[Hu89]
 ...this moment is very very hard to me... <Sad>

T→S [TEXT]Your actions have made me incredi-
bly angry

[SPEECH][Hu37][St1][Pi3][Hu38][Hu111]..[Hu98]
 So what you think you could talk about it to me <Angry>

Tab. 5.1: SPIRIT-LM generations with text (T) or speech (S) prompt and elicited to generate
text (marked with special token [TEXT]) or speech (marked with special token
[SPEECH]). We report the transcripted speech examples under the speech se-
quence indicated with  and < > (e.g., <Angry>) is appended when the speech
is presented with the associated emotion. SPIRIT-LM models are Llama-2 7B
models (Touvron et al., 2023a) fine-tuned with text (BPE) and speech tokens
where Hubert token (cf.§ 5.3.1) is denoted as [Hu], while [Pi] and [St], used
exclusively in SPIRIT-LM-EXPRESSIVE (cf.§ 5.3.2), represent the Pitch token and
the Style token, respectively. SPIRIT-LM models enable semantically consistent
multimodal generations, few-shot learning for text and speech tasks, cross-modal
inference (text to speech and speech to text) and expressive generations. The
samples can be found at our demo webpage1.

such pipelines, modeling and generating expressive speech is constrained out of the
language model, leading to poor generation from an expressive point of view.

In this work, we aim to combine the generative abilities and pretrained knowledge
of text LLMs with the expressive capacities of speech-language models. We show that
LLMs trained on interleaved speech and text can learn speech and text cross-modally
and are able to generate language content in either modality. We evaluate the
models with comprehension tasks in both speech and text, and extend few-shot
prompting to speech-text tasks such as ASR, TTS or Speech Classification. We further
extend the semantic speech tokens with expressive tokens that capture the pitch
and style of the speech, and evaluate the models with newly introduced sentiment
modeling tasks. Our contributions are the following:
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• We introduce SPIRIT-LM, a single language model that can generate both
speech and text. SPIRIT-LM is based on continuously pretraining LLAMA 2
with interleaving speech and text data.

• Similarly to text LLMs, we find that SPIRIT-LM can learn new tasks in the
few-shot setting in text, speech and in the cross-modal setting (i.e. speech to
text and text to speech).

• To evaluate the expressive abilities of generative models, we introduce the
SPEECH-TEXT SENTIMENT PRESERVATION BENCHMARK (noted STSP) that mea-
sures how well generative models preserve the sentiment of the prompt within
and across modalities for both spoken and written utterances.

• Finally, we propose an expressive version of SPIRIT-LM (SPIRIT-LM-EXPRESSIVE).
Using STSP, we show that SPIRIT-LM is the first language model that can
preserve the sentiment of text and speech prompts both within and across
modalities.

The rest of the paper is structured as follows: We describe relevant related work
(Section 5.2), our methods for model training and evaluation (Section 5.3), text
and speech understanding evaluation results (Section 5.4), sentiment modeling
evaluation (Section 5.5), an in-depth responsible AI evaluation of SPIRIT-LM with a
focus on spoken and written toxicity detection (Section 5.6), and finally the broader
impact of this work (Section 5.7).

5.2 Related Work

Textless NLP Recent progress in Self-Supervised Speech Representation Learning
(SSL) (Baevski et al., 2020c; Chen et al., 2022; Chung et al., 2021; Hsu et al.,
2021a) has made it possible to learn from raw audio speech representations that
are good for a variety of downstream tasks (Yang et al., 2021). In addition, these
methods can be used to derive discrete tokens that operate as a kind of pseudo-text
and can be used to learn a language model from raw audio (Lakhotia et al., 2021)
which is able to capture both the linguistic content and the prosody (Kharitonov
et al., 2022b), giving rise to a host of applications: emotion conversion (Kreuk et al.,
2022), dialogue generation (Nguyen et al., 2023b), speech classification (Chang
et al., 2023b). Even though these models are good at capturing expressivity, they
trail text models in capturing semantics when trained with comparable amounts
of data (see Nguyen et al., 2023b, 2020b). In this work, we use semantic speech
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Hours
N Tokens

P Samp. Epochs
Speech Text

Speech-only 458K 28.2B 33.3% 1.24
Speech+Text 111K 7.0B 1.4B 33.3% 3.81
Text-only 307B 33.3% 0.11

Tab. 5.2: Statistics of training data. P Samp. is the Sampling Proportion of each subset for
a training batch. Epochs is the number of epochs seen for each subset after 100K
training steps or equivalently 100B tokens. For Speech+Text datasets, Epochs can
be varied for different training tasks as speech & text tokens can be dropped.

tokens extracted from HuBERT (Hsu et al., 2021a), possibly combined with pitch
and style tokens (as in Kharitonov et al., 2022b), and supplement the model training
with textual bpe-units.

Speech and Speech+Text LMs There has been an increasing number of SpeechLMs
since GSLM (Lakhotia et al., 2021). AudioLM (Borsos et al., 2023) utilizes two types
of discrete speech tokens: semantic tokens (derived from w2v-BERT, Chung et al.,
2021), and acoustic tokens (derived from SoundStream, Zeghidour et al., 2021) to
capture semantic and acoustic information from speech respectively. They model
speech in a multi-stage fashion (semantic → coarse acoustic → fine-grained acoustic)
in order to generate speech in the same acoustic style as the prompt while being se-
mantically coherent. Vall-E (Wang et al., 2023a) models speech with acoustic tokens
(Encodec, Défossez et al., 2022) and perform TTS task by translating phonemes
to tokens using an autoregressive LM. Hassid et al. (2023) found that fine-tuning
pre-trained TextLMs helps boost the performance of SpeechLMs. SpeechGPT (Zhang
et al., 2023a) further fine-tune speechLMs on cross-modal tasks (ASR, TTS) and
chain-of-modality Question-Answering (QA) task (Q-speech → Q-text → A-text →
A-speech) to perform spoken QA tasks. Similar to SpeechGPT, Spectron (Nachmani
et al., 2023) utilizes text as a proxy for spoken QA and speech continuation tasks
(speech-prompt → text-prompt → text-continuation → speech-continuation). Unlike
previous work, they represent speech using a spectrogram and employ a pre-trained
speech encoder (USM, Zhang et al., 2023b) to extract speech features. In the same
spirit, Fathullah et al. (2023) propose replacing the text questions with their speech
versions during the fine-tuning of a chat LLAMA 2 model to obtain an end-to-end
model able to perform speech question answering, speech translation, and audio
summarization tasks. AudioPALM (Rubenstein et al., 2023) and VioLA (Wang et al.,
2023b) both train autoregressive language models on text and speech in a multi-task
fashion and focus on Speech Recognition (ASR), Speech Synthesis (TTS) and Speech
Translation (AST, S2ST) tasks. Most recently, VoxtLM (Maiti et al., 2023) and SUTLM
(Chou et al., 2023) jointly trained speech and text LMs on ASR, TTS, and speech/text
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Model #shots Accuracy ↑
T→T T→S S→S S→T

SPIRIT-LM-BASE 0 0.69 0.33 0.33 0.32
SPIRIT-LM-EXPRESSIVE 0 0.68 0.43 0.48 0.33

Few-Shot Prompting

SPIRIT-LM-EXPRESSIVE

3 0.67 0.34 0.42 0.34
6 0.70 0.36 0.45 0.37
9 0.63 0.36 0.46 0.34

Random Predictor 0.33 0.33 0.33 0.33
Cascade Topline

(ASR) + LLAMA 2 + (TTS) 0 0.64 0.34 0.32 0.36
Prompt Performance 0 0.86 0.96

Tab. 5.3: Zero-Shot and Few-Shot Performance on the SPEECH-TEXT SENTIMENT

PRESERVATION BENCHMARK. SPIRIT-LM models (trained for 100k steps) are
presented with prompts expressing a positive, negative or neutral sentiment. In
the speech modality the sentiment is in the audio quality (laughter, cries, etc),
and in text it is in the semantic content. The continuation is then elicited across
modalities or, as a control, in the same modality, and tested with pretrained
classifiers. The last row (Prompt Performance) presents the performance when
we apply the classifier directly on the text or speech prompt.

continuation tasks. Our work is mainly similar to Chou et al. (2023) in the training
tasks but with the additional capacity of performing cross-modal generation and
expressive speech and text generation. We also study larger models and evaluate
their zero-shot and in-context learning capabilities.

5.3 Methods

SPIRIT-LM models are based on continuously pretraining a text-pretrained language
model on a combination of text and speech (Figure 5.1.a). Following Hassid et al.,
2023, we continuously pretrain LLAMA 2 (Touvron et al., 2023b) using a collection
of text-only datasets, speech-only datasets and aligned speech+text datasets fed
to the model with interleaving. We evaluate all our models on speech and text
comprehension metrics (sWUGGY, sBLIMP, Nguyen et al., 2020b; sStoryCloze,
tStoryCloze, Hassid et al., 2023; MMLU Hendrycks et al., 2021) and downstream
tasks such as ASR, TTS and speech classification.

SPIRIT-LM comes in two versions: SPIRIT-LM-BASE and SPIRIT-LM-EXPRESSIVE.
SPIRIT-LM-BASE models speech using HuBERT tokens (Hsu et al., 2021a) while
SPIRIT-LM-EXPRESSIVE uses the concatenation of HuBERT, pitch and style tokens.
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Model Task
WUGGY↑ BLIMP↑ Topic-StoryCloze↑ StoryCloze↑ MMLU↑

T S T S T S T→S S→T T S T→S S→T T

Previous Work
GSLM (Lakhotia et al., 2021) ∅ 64.8 ∅ 54.2 ∅ 66.6 ∅ ∅ ∅ 53.3 ∅ ∅ ∅
AudioLM (Borsos et al., 2023) ∅ 71.5 ∅ 64.7 ∅ – ∅ ∅ ∅ – ∅ ∅ ∅
Voxtlm (Maiti et al., 2023) 80.3 66.1 74.2 57.1 – – – – – – – – –
TWIST (Hassid et al., 2023) ∅ 74.5 ∅ 59.2 ∅ 76.4 ∅ ∅ ∅ 55.4 ∅ ∅ ∅

Ours
SPIRIT-LM-BASE 80.3 69.0 73.3 58.3 98.0 82.9 72.7 88.6 79.4 61.0 59.5 64.6 36.9
SPIRIT-LM-EXPRESSIVE 75.8 65.0 73.6 54.2 97.9 75.4 61.6 73.2 78.9 56.9 54.6 58.8 33.3

Cascade Topline
(ASR +) LLAMA 2 84.1 79.2 72.8 71.6 98.5 94.76 94.76 94.76 81.9 75.7 75.7 75.7 46.2

Tab. 5.4: Zero- and few-shot comprehension evaluation. Reporting accuracy based on
negative-log-likelihood – normalized by the number of tokens – minimization
prediction. MMLU is evaluated in the 5-shots prompting setting. The other tasks
are evaluated in the zero-shot setting. T refers to the text modality and S to the
Speech modality. We fill with ∅ the task and modality that are not supported by
the reported system, and with _ the scores that are not publicly available.

5.3.1 SpiRit-LM-Base

The SPIRIT-LM-BASE model is based on the 7B version of LLAMA 2 trained on
Text-only, Speech-only, and aligned Speech+Text datasets.

Speech Encoder We use the same HuBERT model as in TWIST (Hassid et al.,
2023), which is trained on a mixture of datasets: Multilingual LibriSpeech (Pratap
et al., 2020), Vox Populi (Wang et al., 2021), Common Voice (Ardila et al., 2020),
Spotify (Clifton et al., 2020), and Fisher (Cieri et al., 2004). The HuBERT model was
trained for 4 iterations, with a downsampling factor of 640, resulting in a sample
rate of 25hz. For the quantization, we utilized k-means 500 units from TWIST as
base units and trained a feed-forward quantizer using data-invariant augmentation
technique from Gat et al. (2023). We finally obtained a vocabulary of 501 semantic
speech tokens.

Speech and Text Tokenization We tokenize text with the default LLaMA’s tokenizer
and speech with the HuBERT tokenizer described above. Following previous work,
HuBERT tokens are deduplicated for betting modeling quality. For uni-modal
datasets (Text-only and Speech-only), we tokenize the data and prepend them
with the corresponding modality token, i.e. "[TEXT]this is a text sentence" or
"[SPEECH][Hu262][Hu208][Hu499][Hu105]".
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Interleaving Speech and Text For the aligned Speech+Text datasets, we mix text
and speech by interleaving speech and text at the word level (Figure 5.1.b), making
the input look like this "[TEXT]the cat [SPEECH][Hu3][Hu7]..[Hu200][TEXT]the
mat"2. Our hypothesis is that interleaving training will help the model learn an
alignment between speech and text tokens, unlocking better text to speech transfer.
The speech and text spans within the sentences are sampled randomly at each
training step.

Speech Decoder As for speech synthesis from speech tokens, we train a HifiGAN
(Kong et al., 2020; Polyak et al., 2021) vocoder on the Expresso dataset. The HifiGAN
model is conditioned on HuBERT speech tokens and 1-hot speaker embedding from
one of 4 Expresso’s voices.

5.3.2 SpiRit-LM-Expressive

Previous work shows that HuBERT tokens can capture good semantic information
from speech but perform badly at expressivity (Nguyen et al., 2023a). Our goal is
to have a model that can understand and preserve the emotion in the input speech
while being biometric-free. We therefore supplement semantic speech tokens from
HuBERT with additional pitch tokens and style tokens and include them in language
model training so that our trained SPIRIT-LM-EXPRESSIVE model can capture and
generate more expressive speech.

Pitch Tokens Following Polyak et al. (2021) and Kharitonov et al. (2022b), we
produce pitch tokens using a VQ-VAE (Oord et al., 2017b) model trained on the
F0 of the input speech. Following the implementation of Polyak et al. (2021)3, we
trained a VQ-VAE model on the Expresso (Nguyen et al., 2023a) dataset with a
codebook size of 64 and a downsampling rate of 128, resulting in 12 pitch tokens
per second. For training the pitch quantizer, the F0 is extracted using pyannote4.
However, for the language model training, we extract F0 using FCPE5, a fast pitch
estimator using Transformer, for inference speed.

2with "[Hu3][Hu7]..[Hu200]" being the tokenization of the spoken utterance "sat on"
3https://github.com/facebookresearch/speech-resynthesis
4https://github.com/pyannote/pyannote-audio
5https://github.com/CNChTu/FCPE
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Style Tokens We extract speechprop features from Duquenne et al. (2023), which
capture speech input’s expressive style. The features were pooled with average
pooling over input segments of 1 second, making one feature every one second. In
order to keep style tokens biometric-free, we further remove speaker information
from speechprop features by fine-tuning the features to predict the expressive style
on the Expresso dataset which serves as a normalization step to obtain the style
features. We finally train a k-means clustering on the normalized features of Expresso
dataset with 100 units.

Expressive Speech Tokenization We mix the 3 types of tokens (HuBERT tokens at
25hz, pitch tokens at 12.5hz, style tokens at 1hz) into a single sequence of tokens by
sorting the tokens with their corresponding timestamps (Figure 5.1.c). Similar to
SPIRIT-LM-BASE, we deduplicate HuBERT tokens as well as pitch tokens, making the
input sequence look like this: "[SPEECH][St10][Pi0][Hu28][Hu22][Pi14][Hu15]
[Pi32][Hu78][Hu234][Hu468]"

Apart from the speech tokenization, the training details of SPIRIT-LM-EXPRESSIVE

are the same as for SPIRIT-LM-BASE.

Expressive Speech Decoder We train a HifiGAN model conditioned on HuBERT
tokens, pitch tokens, style tokens and 1-hot speaker embedding from Expresso’s
voices.

5.3.3 Training Details

Our SPIRIT-LM models are trained on a combination of speech, text and aligned
speech+text sequences. We report in Table 5.2 the amount and sampling proportion
of each type of data and list the datasets we use here:

Text-only datasets We include a subset of LLaMA (Touvron et al., 2023a) training
datasets, where we exclude datasets that are unrelated to speech, like code, totaling
300B text tokens.

Speech-only datasets We employ open-sourced large-scale speech datasets, total-
ing 460K hours of speech or 30B speech tokens.
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Model Task
WUGGY↑ BLIMP↑ Topic-StoryCloze↑ StoryCloze↑ MMLU↑

T S T S T S T→S S→T T S T→S S→T T

SPIRIT-LM variants
SPIRIT-LM-BASE 80.3 69.0 73.3 58.3 98.0 82.9 72.7 88.6 79.4 61.0 59.5 64.6 36.9
- No Interleaving 74.7 67.1 72.6 57.2 97.7 74.0 57.5 71.9 78.2 60.1 54.2 56.4 32.1
- Randomly-initialize 78.1 69.9 72.9 58.8 97.6 81.8 70.2 88.1 73.7 58.0 58.2 62.5 25.8
- Rope θ default 78.2 69.5 73.3 57.7 98.2 82.0 72.0 88.3 78.9 60.9 59.8 65.5 34.3
- +ASR+TTS 76.8 68.7 71.7 57.2 97.7 81.6 71.6 86.1 77.4 59.9 58.8 63.5 31.4

Parallel Data Training
Word-level transcription 74.7 67.1 72.6 57.2 98.0 80.3 57.5 71.9 78.2 60.1 54.2 56.4 32.1
ASR+TTS-only 76.5 69.8 73.3 57.6 97.3 74.9 63.5 71.8 76.3 54.6 53.9 54.0 34.4

Unimodal Models
Speech Only 67.1 69.5 53.7 58.0 54.8 72.9 52.2 49.4 53.7 54.8 52.6 49.3 27.2
Text Only 72.6 46.8 73.9 52.6 98.2 51.7 47.5 51.7 79.0 50.2 47.3 52.1 40.1

Tab. 5.5: Ablation experiments in Zero- and few-shot comprehension evaluation. All
the models reported are initialized from LLAMA 2 7B (except Randomly-initialize
one) and are trained for 100k steps. Reporting accuracy based on negative-
log-likelihood – normalized by the number of tokens – minimization prediction.
MMLU is evaluated in the 5-shots prompting setting. The other tasks are evaluated
in the zero-shot setting. T refers to the text modality and S to the Speech modality.
For a full comparison of unnormalized and normalized scoring accuracy, refer to
Table 5.10.

Aligned Speech+Text datasets We use a small subset of speech datasets that came
along with text transcriptions. We then collect speech-text alignments at word-level
either through the provided dataset or by performing an alignment at the word level
using aligner tool from Pratap et al. (2023)6. All the alignments are automatically
curated, and thus, possible errors in the alignments are admitted. The speech+text
datasets comprise of 110K hours of speech or 7B speech tokens (HuBERT) and 1.5B
text tokens.

In total, we have 570K hours of speech. As the number of tokens differs a lot in
different modalities, we tuned the sampling weights of the datasets so that the
model sees each modality (speech, text, speech+text) roughly equal number of
times during training.

Optimization Following Rubenstein et al. (2023), we extend the embeddings of
LLaMa vocabulary with new speech tokens and modality tokens. The new tokens’
embeddings are initialized randomly. We then continue to pre-train the 7B LLAMA

2 model with the constant final learning rate of 3.0e−5, a sequence length of 4k
(equivalent to 200 seconds of speech only), and a batch size of 4 per GPU. We trained
the model on 64 A100 GPUs, making an efficient batch size of 1M tokens, for 200K
steps. Following Xiong et al. (2023) and Rozière et al. (2024), we make a small

6https://pytorch.org/audio/main/tutorials/ctc_forced_alignment_api_tutorial.html
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Model Task LS clean (10 shots) LS other (10 shots) IC (30 shots)
ASR↓ TTS↓ ASR↓ TTS↓ ↑

SPIRIT-LM variants
SPIRIT-LM-BASE 21.9 45.5 29.2 43.8 71.9

+ASR+TTS 6.0 6.7 11.0 7.9 75.8
SPIRIT-LM-EXPRESSIVE 37.9 52.0 50.0 53.6 66.2

Parallel Data Training
Word-level transcription 113.2 85.2 111.6 75. 2 22.6
ASR+TTS only 7.7 8.1 11.9 9.4 7.4

Cascade Topline
(WHISPER +) LLAMA 2 (+MMS TTS) 3.7 4.0 7.2 4.9 89.6

Tab. 5.6: Few-shot tasks. We evaluate SPIRIT-LM models for Automatic Speech Recogni-
tion (ASR) and Text-to-Speech (TTS) Evaluation on LibriSpeech (LS) and Intent
Classification (IC). ASR scores correspond to Word-Error-Rate (% WER) evaluated
in the 10-shots setting with a max context length of 1024. TTS scores correspond
to the Character-Error-Rate (% CER) in the 10-shots setting with a max context
length of 2048. IC scores correspond to accuracy in the 30 shots setting.

modification to the RoPE positional encoding by increasing the “base frequency” θ

of ROPE from 10,000 to 100,000, which has been shown to benefit long-context
modeling. Finally, for the speech-text interleaving sampling strategy, we randomly
select the word spans so that each text sequence contains 10-30 words and each
speech sequence contains 5-15 words, we do this in order to balance the portion of
speech tokens and text tokens in the input sequences7.

5.3.4 Evaluation

We evaluate SPIRIT-LM checkpoints in a large number of scenarios and use cases.
First, to showcase the semantic abilities of our models in speech, we report the
transcript of speech generations collected by prompting the model with text or speech
sequences. As illustrated in Table 5.1, SPIRIT-LM is able to generate semantically and
expressively consistent speech when prompted with speech tokens or text tokens.

Second, we evaluate our models quantitatively with an extensive collection of
benchmarks that require generating text or speech tokens:

Speech- and Text- only Tasks We use sWUGGY, sBLIMP, StoryCloze, and speech
classification tasks. All these tasks take as input a sequence of speech tokens and
measure if the model is able to find the correct sequence among two choices.

7In our initial experiments, we found that changing the length of word spans has little impact on our
evaluation metrics, but we do expect a more detailed analysis of this on longer context metrics in
further work.
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sWUGGY and sBLIMP are described in detail in Nguyen et al. (2020b). Briefly,
sWUGGY measures if the model can discriminate between existing spoken words
and non-words (e.g., “brick” vs. “blick”). sBLIMP measures if the model can
distinguish between a spoken grammatically correct sentence and an ungrammatical
spoken variant of the same sentence (e.g., “cats are lazy” vs. “cats is lazy”). Given
the beginning of a short spoken story, StoryCloze measures if the model can find
the plausible ending among two sentences, which typically requires some high-level
semantic understanding and common sense (Mostafazadeh et al., 2017). We use the
spoken version of the original storycloze (S-StoryCloze) and the topic-Storycloze
(T-StoryCloze) assembled by Hassid et al. (2023) based on simpler negative samples.
All of these tasks have a random baseline performance of 50%. All these tasks are
evaluated in the 0-shot prompting setting. We predict the sample with the highest
likelihood of the two choices. In addition to speech, these benchmarks are also
available in the text modality. We, therefore, measure the text-modeling abilities
of SPIRIT-LM on these. In addition, we evaluate SPIRIT-LM on MMLU (Hendrycks
et al., 2021), a popular evaluation benchmark for LLMs in the text modality. Finally,
we evaluate SPIRIT-LM on the Intent-Classification task from Chang et al. (2023b).

Speech-to-Text and Text-to-Speech Tasks SPIRIT-LM is trained in both speech and
text. For this reason, it has the ability to model tasks that require both text and
speech modeling. We evaluate SPIRIT-LM for ASR. We report the Word-Error-Rate
(WER) between the generated and the gold transcriptions. For text-to-speech (TTS),
we consider our system’s ability to generate the audio corresponding to the inputted
text. We measure the performance by transcribing the generated audio with Whisper
(Radford et al., 2023), a state-of-the-art ASR model, and we compare it with the
original text with Character-Error-Rate. Both these tasks are evaluated in English
with Librispeech clean and other test sets.

5.3.5 Baselines

We compare our results with previously published generative speech systems. All
these methods use one or several Transformer (Vaswani et al., 2017) decoder-only
models trained on speech units. They differ in how they are trained (pretrained
from scratch or fine-tuned), the types of speech units they model, and their amount
of training data. GSLM (Lakhotia et al., 2021) is based on speech units (e.g.
Hubert) and trained from scratch on speech-unit modeling. TWIST (Hassid et al.,
2023) is a textually pretrained speech model based on Llama-13B (Touvron et al.,
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2023a). AudioLM (Borsos et al., 2023) is a cascade system made of a semantic
sequence model (using w2v-BERT, Chung et al., 2021) combined with coarse-
acoustic and fine-acoustic models (using SoundStream units, Zeghidour et al., 2021).
In contrast with SPIRIT-LM, the approach mentioned above only relies on speech
units during training, making them speech-only models (i.e. they do not support
text understanding nor generation).

We also compare our models to VoxtLM (Maiti et al., 2023), a concurrent work on
speech and text language modeling. We report the best scores from the original
published papers for all the mentioned methods.

As a top-line comparison, we compare our models with cascade models that use
LLAMA 2 as a text generative model. For text-to-text (T→T), we only rely on LLAMA

2-7B. For speech-to-speech (S→S), we utilize the cascade model, ASR from WHISPER-
MEDIUM (Radford et al., 2023), followed by LLAMA 2, synthesized by MMS-TTS
(Pratap et al., 2023).

5.4 Speech and Text Understanding

5.4.1 Lexical, Grammatical and Semantic Knowledge in Text and
Speech

We find that SPIRIT-LM-BASE competes with the baselines for WUGGY, BLIMP, and
Storycloze in the speech modality while preserving competitive text performance (cf.
Table 5.4). More specifically, SPIRIT-LM-BASE outperforms the baselines by a large
margin on StoryCloze, which requires the most advanced speech semantic abilities
compared to the other reported benchmarks.

Interleaving is critical We run ablation experiments (cf. Table 5.5) to understand
what leads to this performance by controlling for the training budget and ablating a
large number of training parameters. We set the training budget at 100k training
steps or 100B tokens.

We compare SPIRIT-LM-BASE to a LLAMA 2 model continuously pretrained with two
parallel data training settings. First, the ASR+TTS-only model consists of training
with pairs of semantically equivalent sequences of speech and text (e.g. “[TEXT] the
cat jumped by the window [TTS][Hu12]..[Hu54]” or “[SPEECH][Hu12]..[Hu54][ASR]
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Fig. 5.2: Alignments of features obtained from Text and Speech Inputs. Bottom:
Similarity of speech and text features extracted from different layers of SPIRIT-LM
compared with the model training without speech-text interleaving. The similarity
is computed as the maximum similarity over speech and text features of the same
words and is averaged over a test set. Top: Pairwise cosine similarity between text
features and speech features of the same sentence extracted from different layers
of SPIRIT-LM.

the cat jumped by the window”8). Second, the Word-level Transcription model con-
sists of training on sequences of pairs of textual and spoken words (e.g. “[TEXT] the
[SPEECH][Hu12]..[Hu34] [TEXT] cat [SPEECH][Hu454]..[Hu90]...[TEXT] window
[SPEECH][Hu15]..[Hu54]”). Additionally, we compare SPIRIT-LM-BASE to models
trained on a single modality (speech or text) and with speech+text but without any
interleaving data (cf. No Interleaving in Table 5.5).

Based on these experiments, we conclude that interleaving training is the primary
factor leading to good-quality speech generation. Fine-tuning LLAMA 2 on parallel
data leads to lower performance on tasks such as StoryCloze and BLIMP. Notably,
fine-tuning the model on speech-only tokens leads to a much lower performance (e.g.
more than 6 points difference with SPIRIT-LM on spoken Storycloze). This shows
that interleaving training not only helps preserve the text generation abilities of the
model but also leads to better speech understanding and generation performance.
We measure the importance of the amount of aligned data used for interleaving
training in Figure 5.3. We find that the model’s performance in speech (T-StoryCloze)
steadily increases with the amount of aligned data.

As shown in Table 5.4, SPIRIT-LM-EXPRESSIVE performs lower than SPIRIT-LM-BASE

on these tasks, indicating that the expressive speech units lead to moderate lexical,
grammatical, and semantic understanding degradation. We explain this with the
following intuition. Modeling a given raw speech for SPIRIT-LM-EXPRESSIVE is more

8with “[Hu12]..[Hu54]” being the tokenization of the spoken utterance “the cat jumped by the
window”
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Fig. 5.3: Performance of SPIRIT-LM-BASE on Topic-StoryCloze in speech and text with
regard to the sampled amount of aligned speech+text data from 0% to 100% out
of the 8.4B tokens aligned tokens. (1.4B text tokens and 7B tokens speech tokens.)

costly than for SPIRIT-LM-BASE. Indeed, in contrast with SPIRIT-LM-BASE, SPIRIT-
LM-EXPRESSIVE is based on integrating expressive speech units in the sequence
during training, in addition to Hubert-tokens. This leads to extending the sequence
length in the number of tokens for a fixed raw input speech. This added complexity
leads to a degradation of speech modeling performance.

In the text modality, despite being fine-tuned on billions of speech tokens, SPIRIT-LM
still performs decently on MMLU (above 33%) and degrades by less than 2 points
on WUGGY, BLIMP, and StoryCloze compared to LLAMA 2.

Finally, on these tasks, the cascade approach (ASR with WHSIPER followed by LLAMA

2) is above SPIRIT-LM by a large margin.

5.4.2 Cross-Modal Evaluation

SPIRIT-LM can also model sequences that are made of both speech and text tokens.

Cross-Modal StoryCloze Based on the text and speech versions of StoryCloze, we
build a speech to text (S→T) and text to speech (T→S) Storycloze for which the
context is in one modality (e.g. speech) and the hypothesis is in the other modality
(e.g. text). As seen in Table 5.5, we find the performance of SPIRIT-LM-BASE in
the text to speech direction (T→S) on par with the speech only performance (S). In
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contrast, the (S→T) direction is about 5 points above the speech performance (S).
This suggests that the model performs better at text generation compared to speech
generation even when it is conditioned on a speech sequence.

ASR & TTS Similarly to text language models, SPIRIT-LM can be prompted with
few-shot examples to perform specific tasks. We illustrate this with ASR and TTS.
We show in Table 5.6 that SPIRIT-LM models reach non-trivial performance in ASR
and TTS. We find that few-shot prompting leads to the best performance with 10
shot prompting (cf. Figure 5.4).9 Our best SPIRIT-LM-BASE model is at 21.9 Word-
Error-Rate in Librispeech clean and 45.5 in Character-Error-Rate in TTS. We observe
that when we add parallel ASR and TTS examples during training (cf. +ASR+TTS
in Table 5.6), we can improve the performance from a very large margin. We note
that adding ASR and TTS data has a very moderate impact on the rest of the tasks.
We report the detailed prompting used for ASR and TTS in Section 5.9.1.

Cross-Modal Alignment To understand better the hidden mechanism that enables
SPIRIT-LM to deliver good cross-modal performance while only being trained on
interleaved data and raw speech and text, we look at the token-level similarity of
the model’s features from input sequences of HuBERT tokens and the corresponding
BPE tokens. We illustrate this in Figure 5.2 (bottom), where we compute the
maximum similarity over the same words of speech and text features extracted from
different layers of SPIRIT-LM. We find that the similarity between spoken and written
sequences inside the model increases from layer 2 and layer 20. In comparison,
this alignment does not occur when the model is trained without interleaving (cf.
Figure 5.2 bottom). This suggests that interleaving enables the model to map speech
sequences with corresponding text sequences. Figure 5.2 (top) shows the alignments
of BPE tokens and HuBERT tokens of the sentence Timothy saw the gray mouse quite
plainly on layers 1, 19, 32. We see that the middle layers of SPIRIT-LM capture
the same semantics information from both input modalities, with high alignments
towards the end of each word (last BPE tokens, late HuBERT tokens).

5.4.3 Downstream Speech Classification

Finally, we report in Table 5.6 the abilities of SPIRIT-LM to perform speech classifica-
tion task. We experiment with Intent-Classificaton (IC). We find that the accuracy

9We note that above 20 shots, we reach the maximum number of tokens that fit in the context for
ASR and TTS.
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improves with the number of shots (cf. Figure 5.4). Our best SPIRIT-LM model
reaches up to 79% accuracy (compared to 89% of the topline performance). The
detailed prompting used for IC is given in Section 5.9.1.

Pretrained Knowledge is Essential for Few-Shot Learning We report in Figure 5.6
the task-specific performance of SPIRIT-LM-BASE with regard to the number of
training steps compared to a randomly initialized model trained in the same setting.
After only 25k training steps, SPIRIT-LM-BASE reaches more than 75% accuracy on
Intent Classification while the randomly initialized model is below 20%. This means
that starting from a pretrained LLAMA 2 model is essential for few-shot in-context
learning and that our method successfully transfers the pretrained few-shot learning
abilities of the model to the speech modality.
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Fig. 5.4: SPIRIT-LM-BASE performance with regard to the number of shots presented to the
model context for Intent Classification, ASR and TTS.

5.5 Expressivity Evaluation

One of the core contributions of this work is the expressivity modeling. To measure
the expressivity of our model we first evaluate the quality of the introduced pitch
and style tokens (§ 5.5.1). Second, we evaluate our SPIRIT-LM models on the newly
introduced SPEECH-TEXT SENTIMENT PRESERVATION BENCHMARK (§ 5.5.2).
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5.5.1 Style and Pitch Tokens Evaluation

We model expressive speech by complementing semantic speech tokens (HuBERT)
with Pitch and Style tokens. To evaluate the quality of our tokenization, we use
the speech resynthesis task from Nguyen et al. (2023a). It measures how well the
resynthesized speech is compared with the original audio in terms of preserved
content, expressive style, and pitch.

Table 5.7 shows the performance of SPIRIT-LM-BASE and SPIRIT-LM-EXPRESSIVE

tokenizers compared to Encodec and Hubert-only baselines. We see the SPIRIT-
LM-EXPRESSIVE tokenizer can capture good expressive style and pitch from the
input speech. Additionally, we observe a very large improvement in Style and
Pitch resynthesis when we compare SPIRIT-LM-BASE tokenizer with SPIRIT-LM-
EXPRESSIVE.

Bitrate Content Style Pitch
Model Metrics BPS↓ WER↓ EMO↑ FFE↓

Original Audio - 16.2 65.2 -

Expresso models (Nguyen et al., 2023a)
Hubert + HifiGAN 550 23.0 22.7 0.30
Hubert + HifiGAN w/ GT Style 550 21.4 61.6 0.27
Encodec (RVQ=1) 500 38.0 41.5 0.09
Encodec (RVQ=8) 4000 19.0 56.7 0.04

SPIRIT-LM Tokenizers
SPIRIT-LM-BASE 225 23.4 20.4 0.40
SPIRIT-LM-EXPRESSIVE 307 23.2 41.4 0.16

Tab. 5.7: Expressive Speech Resynthesis Evaluation. Performances of SPIRIT-LM To-
kenikers on the Expresso Benchmark (Nguyen et al., 2023a) compared with their
systems. The scores are averaged across datasets. For the detailed scores, refer to
Table 4.6.

5.5.2 The Speech-Text Sentiment Preservation Benchmark
(STSP)

To evaluate how well our SPIRIT-LM models can understand and generate expres-
sive speech and text, we introduce the SPEECH-TEXT SENTIMENT PRESERVATION

BENCHMARK. It is made of a collection of speech and text prompts in the positive,
negative or neutral sentiment. Given a spoken or written prompt , the task consists
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The SPEECH-TEXT SENTIMENT PRESERVATION BENCHMARK

Prompt origin EXPRESSO-READ EXPRESSO-ASR EMOV
Prompt Type Speech Text Speech
#Samples 1020/60/54 1373/479/462 1053/351/351
#Speakers 4 - 3
Classes Positive(33%) / Negative(33%) / Neutral(33%)

Tab. 5.8: Statistics of the SPEECH-TEXT SENTIMENT PRESERVATION BENCHMARK. (#Samples
indicates the number of samples in each train/dev/test split.)

in generating a text or speech sequence of tokens that preserves the sentiment of
the prompt.

For instance, in the text-to-X direction (T→T and T→S), given a written sentence
bearing sadness, we check if the spoken generated text/utterance is also sad. On
the other hand, the direction speech-to-X (S→S and S→T), given a spoken happy-
sounding utterance, we check whether the model generates a positively written text
or positive utterance.

5.5.2.1 Sentiment-Rich Spoken and Written Prompts

Speech Prompt In order to have the read speech of different expressive styles
(e.g. he’s done it again in happy/sad style). We utilize two datasets: 1) Expressive
reading from EXPRESSO(Nguyen et al., 2023a) consisting of 47 hours of expressive
North American English speech where 7 different styles are applied on the same
content that does not reflect the emotion being conveyed. We use only the speech
from 3 emotions: "happy", "sad" and "default". (we will refer to this dataset as
EXPRESSO-READ) 2) EMOV (Adigwe et al., 2018), composed of emotional speech
from 5 different speakers and 2 languages (North American English and Belgian
French). We select only the English speech from 3 speakers when the same content
is recorded in three different emotions: "Amused", "Angry" and "Neutral".

Text Prompt In order to have expressive text (e.g. he’s such an amazing player for
positive) as prompt, we transcribe10 improvised dialog from EXPRESSOfor 4 emotions:
"happy", "angry", "sad" and "default" to obtain an aligned Speech-Text dataset. Then
we filter the samples if the transcription has less than 10 words (separated by space)
or it has one word appearing more than 10 times. We refer to this aligned dataset
by EXPRESSO-ASR.

10The transcription is done by WHISPER-MEDIUM (Radford et al., 2023).
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Sentiment Mapping To unify different sets of emotional classes, we associate the
emotions "happy"/"Amused", "sad"/"Angry" and "default"/"Neutral" to the "positive",
"negative" and "neutral" sentiments.

Data Splits We split the datasets into train/dev/test subsets for later usage. Ta-
ble 5.8 presents a comprehensive statistical overview of the datasets used. For
EXPRESSO-READ, we use the original train/dev/test splits; while for the EMOV,
we split it randomly into train/dev/test subsets with the ratios of 60/20/20. The
EXPRESSO-ASR dataset is also divided into train/dev/set with the ratios of 60/20/2011.
We use the train and dev subsets to train the sentiment classifiers and the test subset
to prompt the SPIRIT-LM models.

5.5.2.2 Evaluation Metrics

For both tasks, we check if the generated utterance has a sentiment that is consistent
with the sentiment of the prompt. We assess the sentiment of the produced utterance
using sentiment classifiers and report its accuracy. The accuracy for speech-to-X
directions is averaged over EXPRESSO-READ and EMOV.

We obtain text and speech sentiment classifiers by fine-tuning pre-trained text
and speech models respectively. For the speech classifier, similar to Nguyen et al.
(2023a), we fine-tune the wav2vec2 model12 on the training sets of EXPRESSO-READ,
EXPRESSO-ASR13 and EMOV. For the text classifier, we fine-tune the 3-classes senti-
ment classifier from Hartmann et al. (2021) on the transcriptions of the EXPRESSO-
ASR training set.

5.5.2.3 Evaluation Settings

We tune the generation parameters on the dev sets. In terms of the maximal number
of generated tokens, we use 50 for T→T and S→T, 200 for T→S, and 300 for S→S.
We use a temperature of 0.8 and nucleus sampling (Holtzman et al., 2020) with a
top_p of 0.95 for all the directions. All the SPIRIT-LM models reported have been
trained for 100k steps.

11We don’t use the original data splits because the amount of data in the dev and test subsets is not
enough.

12https://huggingface.co/facebook/wav2vec2-base
13We use only the speech data
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Zero-Shot We prompt SPIRIT-LM using positive, negative or neutral text/speech
input from the test sets of the datasets described in section 5.5.2.1. Then 1) for S→S
and T→S, we classify the generated speech with the speech classifier. 2) for T→T
and S→T, we assess the text continuation with the text classifier.

In-context Few-Shot We also evaluate SPIRIT-LM in a few-shot setting by construct-
ing a set of few-shot examples (see section 5.9.2) and feed them as the in-context
prompt.

5.5.2.4 Results

We report the results evaluated on the test sets in Table 5.3. For zero-shot perfor-
mance, SPIRIT-LM-EXPRESSIVE surpasses SPIRIT-LM-BASE in all directions, with the
exception of T→T where they perform comparably. Compared to the cascade base-
line, SPIRIT-LM-EXPRESSIVE outperforms it over all the directions except S→T.

In the case of few-shot results, we observe that few-shot is only beneficial when the
output modality is text.

For both zero-shot and few-shot, the sentiment continuation is better preserved
within the same modality than across different modalities. Among all the directions,
S→T scores the lowest.

The final row of Table 5.3 also includes an evaluation of performance directly on the
input prompt. All prompts receive high scores, suggesting a significant potential for
improvement in the preservation of expressivity.

5.6 Responsible Evaluation in Speech and Text

Responsible AI is at the core of our research. This section discusses and evaluates
responsibility aspects from SPIRIT-LM. Speech language models (SpeechLMs) have
the potential to bring the same benefits as text-based language models (textLMs),
such as access to various downstream applications like search, language generation,
summarization, translation, chatbots, etc. in the audio modality. This can increase
their reach to more use cases and languages, including those that are not written or
sparsely written.
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Quantifying and working on user safety is a key aspect from generative model
development. These models can inadvertently generate content that is harmful,
offensive, or inappropriate is essential for generative language models (Deshpande
et al., 2023; Touvron et al., 2023a). While safety is a broad concept, we focus on
the specific problem of added toxicity in the generation of the SPIRIT-LM. Inspired
by conditional language models’ previous studies (Communication et al., 2023b),
we define added toxicity as a toxicity increase in the generation compared to the
initial source utterance.

5.6.1 Data

We use the HOLISTICBIAS dataset (Smith et al., 2022) and its synthesized speech
extension (Communication et al., 2023b). This dataset has been shown to trigger
toxicity for conditional language models (Costa-jussà et al., 2023). The dataset
consists of over 472k English sentences. Sentences are created by combing a sentence
template, such as "What do you think about PLURAL NOUN PHRASE]?", a noun (e.g.
parents) and a descriptor (e.g., disabled), covering a list of 26 templates and 600
descriptors across 13 demographic axes (e.g., ability, race or gender). We utilize the
dataset as the prompt for generating text (T→T) and speech (S→S), respectively.

Task
T→T S→S

ETOX ↓ MUTOX ↓ ASR-ETOX ↓ MUTOX ↓
SPIRIT-LM-BASE 1.19 2.69 1.06 3.75
(ASR) + LLAMA 2 + (TTS) 1.22 2.63 1.17 2.70

Tab. 5.9: Added Toxicity Detection. The proportion of sentences with added toxicity
divided by the total number of sentences. For the LLAMA 2 baseline, we use a
cascaded pipeline made of WHISPER for ASR and MMS for TTS; for SPIRIT-LM-
BASE, we use the model trained for 200k steps.

5.6.2 Evaluation Metrics

Similar to Seamless M4T V2 (Communication et al., 2023a), we use MUTOX and
ETOX14 (Costa-jussà et al., 2023) as our toxicity classifiers. For speech, we simply
run ASR and evaluate toxicity with ETOX (we refer to this as ASR-ETOX). MUTOX

can be directly applied on both text and speech generations, without the need for an
ASR system.

14Freely available at https://github.com/facebookresearch/seamless_communication
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Fig. 5.5: Toxicity Distribution Relative Distribution of added toxicity over the 13 demo-
graphic axes for T→T and S→S generations. The number of added toxicities are
normalized by the number of occurrences in each demographic axis.

To compute the added toxicity, we evaluate toxicity at the sentence level, both in the
input utterance/prompt and in the generated output. We report the proportion of
sentences with added toxicity divided by the total number of sentences. For ETOX
and ASR-ETOX, a sentence has added toxicity when there are more toxic words
found in the generated content than in the prompt. For MUTOX, a sentence has
added toxicity when the MUTOX scores are more than 0.7 higher in the generated
content than in the prompt.

5.6.3 Results

We report results in Table 5.9. In terms of ETOX, both SPIRIT-LM and (WHISPER)
+ LLAMA 2 + (MMS-TTS) have comparable results. When evaluated with MUTOX,
however, SPIRIT-LM shows higher added toxicity especially in S→S. This might
come from the fact that there exists more toxic contents in our speech training
dataset. We leave the mitigation to future work.

Figure 5.5 shows the distribution of added toxicity in SPIRIT-LM in terms of the 13
demographic axes represented in HOLISTICBIAS and how they vary in modality. We
observe that Gender and sex and Sexual orientation tend to generate more added
toxicity than the rest of demographic axes, while ability and nationality tend to be
among the ones that generate the least. There is no big difference in distribution
across modalities or metrics.
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5.7 Limitations and Broader Impacts

Harmful applications SPIRIT-LM also shares the same risks as its generative model
predecessors (Touvron et al., 2023a), such as intentionally harmful applications like
fake news and spamming as well as unintentionally harmful ones like unfair or biased
results, toxic or untrustworthy generations. These risks can be assessed and mitigated
using watermarking e.g Kirchenbauer et al. (2023) or existing reinforcement learning
from human feedback (RLHF) e.g. Bai et al. (2022). In addition to these traditional
text risks, SPIRIT-LM, being a speech model, also extends risks associated with
this modality with intentionally harmful applications like impersonating a specific
speaker by continuing short speech segments while maintaining speaker identity and
prosody. Mitigation measures for this risk include similar ones as with text (speech
watermarking Communication et al., 2023a and RLHF). Similarly to text models,
unintentionally harm may arise such as the lack of speaker robustness where the
model can generate speech continuations inconsistent with the prompt in terms of
accent and dialect only for underrepresented groups in the training data. Among
the mitigation strategies, we can include: increasing the variety of the dataset,
compensating for bias in representation of different demographics.

Future Work In this paper, we showed how combining style and pitch tokens
with semantics tokens and continuously pretraining a text language model delivers
very promising multimodal semantic abilities while enabling expressive speech
generations. However, several architectural and training improvements could further
progress in speech generation.

First, training multimodal models remains a challenge. In this work, we observed
that despite training on both speech and text, our SPIRIT-LM models do not perform
as well as the initial LLAMA 2 model in text generation. Refining the training
procedure could potentially reduce this gap. Second, we restricted our evaluation
to English. SPIRIT-LM models were trained on a large amount of non-English
data. More investigation is needed to assess the quality and safety of the model
in non-English languages. Third, we only experimented with 7B models. Scaling
our experiments beyond 7B could lead to much better performance. Finally, the
introduced SPIRIT-LM models are foundational models. This means that more
work is needed to make them safe and aligned with user expectations. As it is now
commonly done with text (Ouyang et al., 2022; Touvron et al., 2023b), fine-tuning
a model with instructions and preference data in speech could potentially unlock
new experiences such as fully expressive dialog systems.
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5.8 Conclusion

We introduced SPIRIT-LM, a speech + text generative language model based on
LLAMA 2 that can generate both speech and text in a cross-modal manner. We
showed that by alternating speech and text in the input sequence during training,
the model is able to generate the content fluidly by changing from one modality
to another. We evaluated our models on a collection of speech and text metrics.
We plan to make future improvements both in the area of model capability and in
transparency and safety.

5.9 Additional Material

5.9.1 Few-Shot Prompts

Speech Recognition (ASR)
For ASR, we prompt the model and add special start and end flags. Indeed, we find
that without these flags the model tends to hallucinate after transcripting the input
sequence.

For SPIRIT-LM, we use the following prompting. We find that 10 examples leads
to the best performance. We illustrate the prompting of SPIRIT-LM for ASR with a
single few-shot example:

[SPEECH] Speech token sequence

[TEXT] <START Transcript> Text transcript <END>

[SPEECH] Speech token sequence

[TEXT]

For the models trained with parrallel ASR data (e.g. SPIRIT-LM-BASE +ASR+TTS),
[SPEECH] is replaced with the [ASR] special token to trigger the transcription
prediction as seen during training.

Text-to-Speech (TTS)
We find that prompting SPIRIT-LM with 10-shots leads to the best performance
in TTS. We illustrate the prompting with a single example for few-shot learning:
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[TEXT] Input Text ’stop’

[SPEECH] Speech token sequence <speech:STOP>

[TEXT] Input Text ’stop’

[SPEECH]

With <speech:STOP>, the spoken utterance “stop” tokenized into speech tokens15.
For models trained with parallel TTS data (e.g. SPIRIT-LM-BASE +ASR+TTS), the
token [SPEECH] is replaced with [TTS].

Intent Classification
For Intent Classification, we illustrate the prompting used in SPIRIT-LM-BASE with
single example for few-shot:

[SPEECH] Speech token sequence [TEXT]

A:activate lights bedroom

[SPEECH] Speech token sequence [TEXT]

A:

For both ASR, TTS and Intent Classification, we postprocess the output of the model
using the special tokens and beginning/end of sequence flags in order to extract the
predicted text or speech sequence.

5.9.2 Construction of Few-Shot examples for Sentiment
Continuation

We use S→T as an illustration, the identical process is applied to the remaining
modality directions.

1. From the EXPRESSO-READ training set, we select only the speech samples
where the waveform length exceeds 200,000, dividing each into two equal
parts. The speech in the second segment is then transcribed.16

15For SPIRIT-LM-BASE, the spoken word “stop” is tokenized as [Hu481][Hu149][Hu40][Hu48]
[Hu315][Hu242][Hu428][Hu494][Hu75][Hu497][Hu188][Hu388][Hu109][Hu23][Hu338]
[Hu23][Hu481]

16The transcription is done by WHISPER-MEDIUM (Radford et al., 2023).
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2. We apply the fine-tuned speech classifier and text classifier mentioned in
5.5.2.2 to the speech of the first segment and the transcription of the second
segment, respectively. We retain only those pairs where the sentiment of the
transcription in the second segment matches that of the speech in the first
segment.

3. At the start of each run, we randomly select 3/6/9 samples from the above
subset, ensuring a balanced distribution of samples for each sentiment. These
samples are then combined to form the in-context prompt, which is reused for
all subsequent iterations.

Model Task
WUGGY↑ BLIMP↑ Topic-StoryCloze↑ StoryCloze↑

T S T S T S T→S S→T T S T→S S→T

Previous Work
GSLM (Lakhotia et al., 2021) ∅ 65.4/64.8 ∅ 57.2/54.2 ∅ 56.3/66.6 ∅ ∅ ∅ 51.0/53.3 ∅ ∅
AudioLM (Borsos et al., 2023) ∅ – / 71.5 ∅ – / 64.7 – – ∅ ∅ ∅ – ∅ ∅
Voxtlm (Maiti et al., 2023) – / 80.3 – / 66.1 – / 74.2 – / 57.1 – – – – – – ∅ ∅
TWIST (Hassid et al., 2023) ∅ – / 74.5 ∅ – / 59.2 – – / 76.4 ∅ ∅ ∅ – / 55.4 ∅ ∅

SPIRIT-LM variants
SPIRIT-LM-BASE 95.1/80.3 71.4/69.0 75.7/73.3 63.2/58.3 94.5/98.0 69.2/82.9 66.6/72.7 83.8/88.6 76.6/79.4 56.2/61.0 56.2/59.5 64.3/64.6

+ASR+TTS 94.5/76.8 71.8/68.7 74.3/71.7 62.4/57.2 93.1/97.7 69.1/81.6 66.0/71.6 81.6/86.1 75.3/77.4 55.5/59.9 55.5/58.8 63.5/63.5
Rope θ default 95.2/78.2 71.7/69.5 75.8/73.3 62.9/57.7 94.5/98.2 69.5/82.0 66.1/72.0 83.5/88.3 76.6/78.9 56.3/60.9 56.4/59.8 64.1/65.5

SPIRIT-LM-EXPRESSIVE 95.2/75.8 66.2/65.0 76.6/73.6 58.7/54.2 94.3/97.9 58.2/75.4 57.7/61.6 81.3/73.2 75.7/78.9 51.8/56.9 52.5/54.6 61.4/58.8
Parallel Data Training

Word-level transcription 94.7/74.7 71.2/67.1 75.9/72.6 62.8/57.2 94.3/98.0 68.1/80.3 53.9/57.5 67.0/71.9 75.8/78.2 55.0/60.1 51.0/54.2 55.1/56.4
ASR+TTS 94.0/76.5 72.6/69.8 75.7/73.3 62.2/57.6 92.7/97.3 62.7/74.9 56.9/63.5 67.8/71.8 73.6/76.3 50.7/54.6 49.9/53.9 53.5/54.0

Unimodal Ablations
Speech Only 67.4/67.1 71.8/69.5 54.1/53.7 63.0/58.0 49.7/54.8 62.2/72.9 48.3/52.2 49.0/49.4 48.2/53.7 51.0/54.8 48.1/52.6 49.2/49.3
Text Only 94.5/72.6 53.1/46.8 77.3/73.9 54.6/52.6 94.5/98.2 48.0/51.7 47.3/47.5 51.5/51.7 76.1/79.0 47.0/50.2 47.1/47.3 50.3/52.1

Cascade Topline
(WHISPER) + LLAMA 2 – / 84.1 – / 79.2 – / 72.8 – / 71.6 – / 98.5 – / 94.76 – / 94.76 – / 94.76 – / 81.9 – / 75.7 – / 75.7 – / 75.7

Tab. 5.10: Zero-shot Comprehension Evaluation in Speech (S) and Text (T). We report
Accuracy / Accuracy-token for all the SPIRIT-LM models. Both metrics are based
on selecting the hypothesis (among two choices) with the highest log-likelihood
according to the model. The log-likelihood is based on the sum of each token
likelihood in the sequence. The Accuracy is computed based on the prediction
that maximizes the log-likelihood of the hypothesis. Accuracy-token adds a
normalizing step of the log-likelihood by the number of tokens in the hypothesis.
The related work performance (except GSLM) comes from the original published
papers of each reported system. We recomputed the scores of GSLM on our
metrics.
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Fig. 5.6: Comparing SPIRIT-LM-BASE to a randomly initialized model trained in the same
way and to a model trained with no Interleaving data. (i.e. the model is only
trained on sequences of raw speech or raw text data without any interleaved
aligned data.)
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Discussion and Perspectives 6
6.1 General Contributions

Chapter 1 introduced SpeechLMs and discussed their new capabilities compared
to more traditional cascaded systems: multichannel speech modeling (discussed
in Chapter 3) and expressive speech modeling (discussed in Chapter 4). We also
discussed different factors that could hinder SpeechLMs compared to TextLMs
including the quality of speech units (discussed in Chapter 2) and the small scale
of Speech Datasets and Language Models compared with Textual counterparts
(discussed in Chapter 5).

In Chapter 2, we analyzed the importance of discretization in spoken language
models. We compared discrete speech units and continuous speech features which
were used to train SpeechLMs, and evaluted the LMs on zero-shot spoken language
modeling metrics. We found that while discrete units yielded systematically superior
results in lexical and syntactic zero-shot metrics, the gap between discrete and
continuous representations was not large, suggesting that it is possible to learn
lexical and syntactic information with continuous units only. We further analyzed
the discrete speech units, and found that discretization indeed removes non-linguistic
information (e.g. speaker information) from continuous speech features, which
potentially helped the LM to focus on learning high-level semantic information
from the language rather than focus on the acoustic levels. We also found that the
phonetic quality of the units as mesured by the ABX metrics is a reliable predictor of
the performance of LMs trained on these units. In addition, we also explored larger
speech units using BPE-based methods as well as downsampling methods. We found
that bitrate also has a huge impact on the quality of SpeechLMs.

In Chapter 3, we introduced dGSLM, an application of SpeechLMs to spoken dia-
logues. We found that by modeling the spoken dialogue as multi-channel audio,
we could generate conversations with natural turn-takings as well as paralinguistic
cues such as laughter or back-channeling. However, the model was not able to
generate semantically coherent speech, which possibly came from the quality and
granularity of speech units as well as the limited amount of the speech dataset.
We further tried to improve the dGSLM model by fine-tuning it on a SpeechLM
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pre-trained on a larger single-channel dataset and found that this helped to acceler-
ate the training of dialogue LM, suggesting a transferability from LMs trained on
large-scale speech datasets to conversational dialogues. This led to the need to have
large-scale SpeechLMs trained on more datasets, which was studied in Chapter 5
(SPIRIT-LM).

In Chapter 4, we introduced EXPRESSO, a high-quality expressive speech dataset,
along with an expressive resynthesis benchmark. We compared different discrete
units for expressive speech resynthesis task: Encodec units (audio compression-
based unit) and HuBERT units (SpeeechSSL-based unit that was studied in previous
SpeechLMs). We found that Encodec units, despite having excellent resynthesis
results, are not good at capturing phonetic information from speech (as measured by
ABX and PNMI metrics), which is undesirable for SpeechLMs. We further confirmed
this by training language models on Encodec and HuBERT units and evaluated
their performances. We found that LM trained on HuBERT units achieved better
results than LM trained on Encodec units in all zero-shot speech metrics. In addition,
Encodec units encode speech information in an entangled fashion of phonetic
content, speaker characteristics, pitch and expression, meaning that they cannot be
used for speaker- and style-conditional speech generation. HuBERT units, on the
other hand, only capture phonetic content but not pitch or expression, resulting in
poor quality in pitch preservation and emotion preservation metrics. We further
extended this with additional expressivity units, one for pitch, one for style to
complement HuBERT units and enable jointly represent these dimensions in a
disentangled fashion, which was later used in Chapter 5 (SPIRIT-LM-EXPRESSIVE).

In Chapter 5, we introduced SPIRIT-LM, a large language model that combines
both speech and text. We find that training a LM on speech and text using an
interleaved task helps the model to learn text and speech cross-modally. SPIRIT-LM
had comparable results in zero-shot speech metrics compared with previous speech-
only LMs, and achieved state-of-the-art results in spoken StoryCloze metrics while
being almost on par with LLAMA 2 on text reasoning metrics like textual StoryCloze
or MMLU. In addition, SPIRIT-LM is able to perform cross-modal few-shot learning
on speech-text tasks such as ASR, TTS or Speech Intent Classification, and is able to
generate speech and text cross-modally while preserving the expressivity contained
in the speech. We additionally introduced a benchmark on speech-text sentiment
preservation, which probes the capability of SpeechLMs to generate consistent
expressivity both within and across modalities. We found that while the cascaded
model can produce consistent expressivity in text-text generation, it is not capable
of processing and producing the correlates of expressivity in the speech modality.

130 Chapter 6 Discussion and Perspectives



We found that our SPIRIT-LM-EXPRESSIVE model, however, can produce better than
chance consistent expressivity both within and across modalities.

6.2 Towards a Unified Spoken Language System

Each piece of work in this thesis covers one important aspect of spoken language
modeling with the ultimate aim to develop a unified spoken language system. SPIRIT-
LM is the first attempt to integrate Speech LLMs, Text LLMs and Expressivity but
more work is required to reach the final goal. In this section, I’ll open up some
research questions and a few possible directions that can be considered in order to
achieve better spoken language systems.

6.2.1 On the Improvement of SpeechLMs

A first direction is to focus on improving the quality of speech units. In Chapter 2,
we have found that speech unit quality is critical for the performance of SpeechLMs,
and we have explored the improvements of speech units by training different speech
encoders (CPC, HuBERT) and adjusting frame rates and number of units. It would
be interesting to try other SpeechSSL models (wavLM, Chen et al., 2022; w2v-BERT,
Chung et al., 2021; dinoSR, Liu et al., 2023), which have been claimed to be good
at capturing phonetic information. We also explored methods to make the units
robust to noise or disruptions with augmentation methods as in Gat et al. (2023), but
would be worth trying other speaker-invariant methods for self-supervised speech
features (ContentVec, Qian et al., 2022; Spin, Chang et al., 2023a) or normalizing
speech units as in Lee et al. (2022b). It is worth noting that there is currently a
trade-off between resynthesis quality and language modeling quality. Fine-grained
units tend to have better resynthesis but perform poorly on language modeling
(cf. poor performances of LM trained on Encodec units on zero-shot speech metrics).
It is therefore natural to explore units that both work well for language modeling
and resynthesis tasks. Finally, another possible direction for improving discrete units
could be using soft-discrete units, i.e. using probability-based speech vectors (over a
discrete codebook) instead of one-hot discrete vectors, which have been shown to
benefit discrete-based TTS models (Niekerk et al., 2022).

In the same direction, improving the TTS module could also help to improve
the quality of speech generation. We mainly focused on using HifiGAN in this
thesis, which is only a speech vocoder, but other TTS models could be considered
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like FastSpeech 2 (Ren et al., 2022), VITS (Kim et al., 2021) or diffusion-based
models such as Voicebox (Le et al., 2023). Speech codec-based methods could also
be considered, where the speech units are first converted to speech codec units
(SoundStream, Zeghidour et al., 2021; Encodec, Défossez et al., 2022) before being
translated to audio waveform (Borsos et al., 2023; Kharitonov et al., 2023; Wang
et al., 2023a).

Another topic worth exploring is the disentanglement of speech units. In Chapters
4 and 5, we found that speech can be decomposed into disentangled units repre-
senting phonetic content, prosodic, and expressive style, respectively, which can be
fed to SpeechLMs achieving better results than units like Encoder which contain
the same information in an entangled fashion. One could speculate that the success
of disentanglement comes into enabling a low bitrate representation, where the
total bitrate is the sum of the bitrates of the individual channels, instead of being
the product in the case of an entangled representation. Yet, the units we proposed
are not perfect. It is possible that speaker or pitch information is still present in
SSL representations (e.g. Seyssel et al., 2022). It thus would be useful to improve
further speech disentanglement to achieve even better compression quality and
language modeling. First, each component of the disentangled units (content, pitch,
style) could be improved by making them more invariant to the other sources of
information (as well as from speaker identity). Second, a single multitask speech
tokenizer model could be trained via a reconstruction loss to directly decompose
speech into different streams of units, each corresponding to one type of information.
This is similar to Zhang et al. (2024), but they did not try to disentangle further
non-semantic units to other information contained in the speech (e.g. pitch, style,
speaker).

On the language modeling part, one question is what is the best way to integrate
Speech Units into SpeechLMs? When speech is represented as one single sequence
of units, we can simply treat them as text tokens and train language models on speech
units (Lakhotia et al., 2021). However, it’s more complicated when speech units
are composed of multiple unit types (e.g. HuBERT, pitch, duration units in pGSLM,
Kharitonov et al., 2022b) with possibly different sampling rates (e.g. HuBERT,
pitch, style units in SPIRIT-LM). pGSLM dealt with this by training a multi-stream
transformer LM with multiple streams of input and multiple output heads predicting
each stream. In SPIRIT-LM, we simply interleaved different unit types and considered
them as one stream of speech units. However, we found that doing this can be
harmful to the SpeechLM as the unit rate increases with additional units. Further
work is therefore needed to determine the best way to integrate speech units into
SpeechLMs.
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It is also worth re-visiting the question: Is using continuous speech features
always bad for SpeechLMs? Along this thesis, we have been using discrete speech
representations as input for SpeechLMs for their simplicity and efficiency. In Chapter
2, we found that training language models on continuous speech features is not
as good as discrete speech units on zero-shot speech metrics. However, the study
was mainly done with CPC features and encoder-based LMs (e.g. BERT). Recently,
Algayres et al. (2023) found that autoregressive LMs trained on word-size continu-
ous speech features could achieve good performances in zero-shot speech metrics.
However, one specific problem with training autoregressive LMs on continuous
speech features is how to perform generation. Algayres et al. (2023) employed a
pre-defined lexical vocab and looked for the nearest neighbors of the generated
features in the lexical space. Nachmani et al. (2023) proposed a Spoken Question
Answering system (Spectron) that uses spectrograms to represent speech in both
input and output. They used text as an intermediate proxy to help the language
model learn speech content (speech prompt → text prompt → text continuation →
speech continuation) and employed both a cross-entropy loss to predict the next
words and a regression loss to predict the speech continuation output.

Scaling the language model is a viable direction to improve the performances of
SpeechLMs. In SPIRIT-LM, we have just experimented with 7B models. Going for
bigger models (30B, 70B, 150B) could improve the spoken as well as cross-modal
aspects even more, as they have shown to have excellent results and possess many
emergent abilities in TextLLMs (Wei et al., 2022a). However, scaling speech and
multimodal LMs could be challenging as they require a lot of engineering effort (e.g.,
stabilizing training, introducing smoothly new modalities into the models, etc.). This
also comes with larger speech (and speech-text) datasets that would not sacrifice
quality, which will be discussed shortly.

Integration of an end-to-end SpeechLM is one of our ultimate goals. Most
SpeechLMs at the moment rely on independent components (Speech Encoder, Lan-
guage Model, Speech Decoder) that involve multiple training stages. Having an
end-to-end model not only facilitates the training efforts but also helps each sub-
component to be optimized toward the final objective (e.g. speech tokenizer focused
on producing speech units with excellent linguistic information). In our initial
experiments, we found that this goal is not easy to achieve as the model tends to
collapse (i.e., producing only zero tokens). One possible solution could be first to
train each component with independent objectives and then start to train the whole
model. We can also think of ways to add multiple objectives in order to avoid mode
collapse during training.

6.2 Towards a Unified Spoken Language System 133



6.2.2 Rethinking Evaluation Metrics and Datasets

Is ABX always a good metric to evaluate the quality of speech units? We
have been relying on ABX to evaluate the quality of speech units, and we have
seen in Chapter 2 that it reflects the linguistic quality of units and, eventually, the
language modeling performances. However, we also learned that ABX is not an
absolute indicator of how well the units perform on language modeling tasks. For
example, HuBERT 50Hz units have much better ABX than HuBERT 25Hz units, but
perform less well on spoken language modeling tasks. It is, however, safe to say
that a low ABX means that the units are more phonetic-like, and it is most likely
comparable if the units are in the same condition (e.g. comparing units that have
same rate, vocab size). There are also other metrics used to evaluate speech unit
quality at phonetic levels such as PNMI (as in Hsu et al., 2021a and Nguyen et al.,
2023a) or without-context ABX (Hallap et al., 2023). It is also worth noting that
there are more metrics that focus on higher-level linguistic information that can
be considered such as ABXsem and ABXPOS (Algayres et al., 2022) which have been
used in Algayres et al. (2023) to evaluate speech embeddings in terms of lexical
semantic and Part-Of-Speech (POS) tagging.

It is also important to think of having more and better metrics for SpeechLMs.
The current evaluation metrics for SpeechLMs cover a wide range of linguistic
levels (from phonetic to commonsense reasoning). However, they are still very
limited compared with the evaluation metrics for TextLLMs (Liang et al., 2023;
Srivastava et al., 2023). An interesting direction could be to speechify appropriate
text benchmarks and create a benchmark for SpeechLMs using TTS systems. It would
also be interesting to evaluate the performances of SpechLMs on self-supervised
speech benchmarks like SUPERB (Yang et al., 2021). Of course, if most speech
evaluation datasets are generated with TTS systems, this could bias the SpeechLMs
towards synthesized speech, and not reflect their performance on real speech input.
It is, therefore, important to build evaluation datasets based on real speech. Finally,
as more and more SpeechLMs are produced, it could be beneficial to have a unified
evaluation pipeline for SpeechLMs, which is currently missing.

Data quality is an important factor to consider when scaling speech LMs on in-
creasingly larger corpora. We currently do not know what kinds of tradeoffs exist
between data quality and quantity when it comes to speech LMs. In Chapter 4, we
found that it is critical to have good-quality datasets for the speech synthesis as well
as the k-means modules. However, we have found (in Section 2.6 and later in Hassid
et al., 2023) that having more speech datasets is beneficial for the language models.
Later, in Chapter 5, we found that aligned speech-text data, although of low quality,
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is crucial not only for multimodal speech-text language modeling but also for speech
language modeling. More research on the scaling laws regarding data quantity and
data quality are needed for SpeechLMs.

Multilinguality. SPIRIT-LM was trained on limited multilingual datasets and showed
some promising results with other languages. However, we did not really probe
the models on multilingual tasks. This comes from several factors: First, English is
still dominant in the training datasets compared to other languages. In addition,
our SLM metrics (such as sWUGGY, sBLIMP, StoryCloze) only exist in English, and
would need to be translated to evaluation speechLMs in other languages. Finally,
we would need to find or build open-source expressive multilingual TTS datasets
to train the vocoder. It is necessary to address all of these roadblocks to unlock the
possibility of developing a high-quality multilingual speech LM.

6.2.3 Towards Better Dialogue Systems

In Chapter 3, we discussed the need for a good SpeechLM to fine-tune the dialogue
datasets and partly solved this problem in Chapter 5. Therefore, a straightforward
direction for future work would be to fine-tune SPIRIT-LM on dialogue datasets.
The fine-tuning could be done either on instruction-tuning datasets (Ouyang et
al., 2022) to create a reliable and helpful spoken chatbot system or on Fisher-like
datasets to create a conversational agent or on a mix of both. The model should be
able to transfer knowledge to dialogue-based datasets and perform well on these
tasks. The advantage of SPIRIT-LM is it’s cross-modal abilities, allowing the fine-
tuning to be done not only using speech-only instruction datasets (as in Zhang et al.,
2023a) but also text datasets and speech-text datasets.

A question that arises from this is how to deal with multichannel dialogues. The
DLM model in Chapter 3 uses a dual-tower transformer architecture with cross-
attention, and has been designed to be adaptable to single-channel speech. Inversely,
adapting the transformer decoder architecture of SPIRIT-LM to multichannel speech
is not straightforward, and may require some modifications in architecture. In
addition, SPIRIT-LM utilizes deduplicated speech units, while the DLM model expects
duplicated speech units in inputs, which may cause inconsistency in model fine-
tuning. Another way to deal with multichannel dialogues is to mix them to single-
channel speech. This can be done in two fashions: The first approach consists of
mixing the multichannel audio into single-channel audio. The second approach
considers dialogues as consecutive turns of speech and concatenates the segments
of each channel into one single stream of audio. The advantage of the first approach
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is that it allows the modelization of natural turn-taking with overlapping and back-
channeling. However, the synthesis model will struggle to disentangle the speakers
in overlapping segments. The second approach permits to efficiently modelize the
content of the dialogue and synthesize multiple people in the conversation. It will,
however, remove the naturalness of the conversation. This later approach has been
shown to work well in recent work (SpeechGPT, Zhang et al., 2023a; USDM, Kim
et al., 2024)

Safe Speech System. Responsible AI is a vital aspect of text-LLM systems. Spoken
models can contain even more risks as i) speech contains biometric information
from the speakers ii) spoken language is much more colloquial compared with
written language. Developing a safe spoken system is therefore crucial but also very
challenging. Among the possible directions could be fine-tuning the models with
human instructions and preference speech datasets (Ouyang et al., 2022) so that the
model answer could be more safe and instructive. In addition, adding watermarking
to generated speech so that they can be easily detected is an interesting approach
(San Roman et al., 2024). Finally, biometric-free model can be obtained by using
disentangled speech units (as in SPIRIT-LM-EXPRESSIVE) that remove any speaker
information before feeding to the SpeechLMs.

Going towards an Embedded Dialogue System is also an ultimate goal of spoken
language modeling. It requires however solving many questions in order to achieve
this goal. We can first think of an interactive dialogue agent that can interact with
humans in real time. Following Communication et al. (2023a), this can be solved
using streaming transformer architecture (Ma et al., 2023). Another interesting
direction of an embedded dialogue system is the integration of visual features. This
could be done by using features obtained from self-supervised audiovisual models
(Hsu et al., 2023b; Shi et al., 2022).

6.3 It is only the Start of a Journey

This thesis was such a beautiful and memorable journey for me, and I am really
grateful to be a part of it! However, I know that it is just the beginning of the
development of SpeechLMs, and many things still need to be done in order to have
a powerful spoken language system.

I hope that this thesis will be somewhat useful for the community, and I really look
forward to excellent speech systems in the future!!
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