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Résumé

Ensemble Learning est une méthode puissante pour améliorer les performances des modeles
d’apprentissage automatique en combinant les prédictions de plusieurs modeles de base. L’idée
derriere I’apprentissage d’ensemble est qu’en combinant les points forts de différents modeles
de base, I’ensemble dans son ensemble peut obtenir de meilleures performances que n’importe
quel modele de base unique. Des études empiriques ont montré que la méthode d’ensemble est
particulierement efficace lorsque les modeles de base sont diversifiés, un exemple réussi étant les
arbres de décision aléatoires. En raison de ses avantages, Ensemble Learning est largement util-
isé dans diverses applications, notamment les problémes de détection de fraude. Plus en détail,
les avantages d’Ensemble Learning tiennent a deux points principaux : i) ’ensemble combine
les points forts de ses modeles de base, rendant chaque modele complémentaire 1’'un de I'autre,
et ii) il neutralise le bruit et les valeurs aberrantes parmi tous les modeéles de base, réduire
leur impact sur les prévisions finales. Dans cette these, nous utilisons ces deux idées d’Ensemble
Learning pour différentes applications dans ’apprentissage automatique et 'industrie financiere.
Nos principales contributions dans cette these sont triples. Tout d’abord, nous démontrons com-
ment P’apprentissage d’ensemble et les techniques de sous-échantillonnage peuvent étre utilisés
pour traiter efficacement le scénario difficile du probleme de déséquilibre des données dans le
domaine de l'apprentissage automatique, en particulier dans le cas de mégadonnées extréme-
ment déséquilibrées. Deuxiémement, nous proposons de maniére appropriée 'utilisation de la
validation croisée des séries chronologiques et de 'apprentissage d’ensemble pour résoudre un
probleme de sélection d’estimateurs de matrice de covariance dans le commerce quantitatif. En-
fin, nous montrons comment 'apprentissage d’ensemble peut étre utilisé pour réduire 'impact
des valeurs aberrantes dans les estimations de la matrice de covariance, augmentant ainsi la
stabilité des portefeuilles. Dans ’ensemble, nos recherches mettent en évidence le potentiel
de I'apprentissage d’ensemble pour améliorer les performances de diverses applications dans le

domaine de 'apprentissage automatique et de la finance.

Mots clés : apprentissage d’ensemble, sous-échantillonnage, validation croisée, estimation de

matrice de covariance
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Abstract

Ensemble Learning is a powerful method for improving the performance of machine learning
models by combining the predictions of multiple base models. The idea behind ensemble learning
is that by combining the strengths of different base models, the ensemble as a whole can achieve
better performance than any single base model. Empirical studies have shown that the ensemble
method is particularly effective when the base models are diversified, one successful example is
random decision trees. Because of its advantages, Ensemble Learning is widely used in various
applications, including fraud detection problems. In more detail, the advantages of Ensemble
Learning are due to two main points: i) the ensemble combines the strengths of its base models,
making each model complementary to one another, and ii) it neutralizes the noise and outliers
among all base models, reducing their impact on the final predictions. In this thesis, we use
these two ideas of Ensemble Learning for different applications in the machine learning and the
finance industry. Our main contributions in this thesis are threefold. Firstly, we demonstrate
how ensemble learning and undersampling techniques can be used to efficiently deal with the
hard scenario of imbalance data problem in the machine learning field, particularly in the case of
extremely imbalance big data. Secondly, we propose appropriately the use of time-series cross-
validation and ensemble learning to resolve a covariance matrix estimator selection problem in
quantitative trading. Lastly, we show how ensemble learning can be used to reduce the impact of
outliers in covariance matrix estimations, thereby increasing the stability of portfolios. Overall,
our research highlights the potential of ensemble learning for improving the performance of

various applications in the field of machine learning and finance.

Keywords : ensemble learning, undersampling, cross-validation, covariance matrix estimation

iii



Contents

Acknowledgements i
Résumé ii
Abstract iii
List of Figures vii
List of Tables X
1 Introduction 1
1.1 Context . . . . . . e e e 1
1.2 Scientific challenges and contributions . . . . . . ... .. ... ... ... .. 4
1.3 Outlines . . . . . . . e 7
2 Preliminaries 11
2.1 Machine Learning . . . . . . . . . ... 12
2.1.1 Decision tree learning . . . . . . . . ... o e 13
2.1.2 Emnsemble learning . . . . . . . . ... 13
2.1.3 Random Forest . . . . . . . . ... 16
2.1.4 Evaluation metrics . . . . . . . . ... e 17
2.2 Financial Machine Learning . . . . . . . . . . . . . ... ... ... ... 21
2.2.1 Modern Portfolio Theory . . . . . .. . . .. .. ... ... ... . 22
2.2.1.1 Efficient Frontier . . . . . . . . . ... 22
2.2.1.2 Mean-Variance Portfolio. . . . ... ... ... ... ....... 23
2.2.2  Global Minimum Variance Portfolio . . .. ... ... ... ........ 24
2.2.3 Shrinkage covariance matrix estimations . . . . .. ... ..o 0L L. 28
2.2.3.1 Shrinkage to the identity matrix . . . . . . ... ... ... ... 32
2.2.3.2  Shrinkage to the single-index model . . . . . . .. .. ... ... 32
2.2.3.3 Shrinkage to the constant-correlation model . . . . . . ... .. 33
2.2.4  Portfolio performance metrics . . . . . . . ..o 34
2.2.5 Backtesting . . . . ... 38
2.2.5.1 Introduction . . ... .. ... 38
2.2.5.2  Architecture . . . . ... ... . 38

3 Adaptive Extreme Imbalance: A combination of Undersampling and Ensem-

ble Learning for Extreme Imbalance Big Data Classification 51
3.1 Imtroduction . . . . . . . . . . . e 52
3.2 Imbalance problem in traditional data . . . . . .. ... ... ... ........ 55

iv



Contents

3.2.1 Datalevel methods . . . . . . . . . . ... ... 56
3.2.1.0.1  Undersampling . . . . . . ... ... ... ... .. o7

3.2.1.0.2 Oversampling . . . ... ... ... ... . 57

3.2.1.03 SMOTE. .. .. ... .. e 57

3.2.2  Algorithmic level methods . . . . . . .. .. ... .. ... ... ... .. 60
3.2.3 Evaluation measures . . . . . . . . . . . ... 64

3.3 Imbalance problem in bigdata . . . .. .. .. ... o oL 66
3.4 Recent works on the extreme imbalance in big data classification . . . . .. . .. 68
3.5 Methodology . . . . . . . . 72
3.6 Results and discussions . . . . . . . .. Lo 75
3.7 Conclusion . . . . ... 75

4 Voting Ensemble for linear Shrinkage Covariance Matrix Estimations in the

Portfolio Optimization 87
4.1 Introduction . . . . . . . . . . e e e e e e e e 88
4.2 Related works . . . . . . Lo 89
4.3 Our proposed approach . . . . . . . . . . . e 90
4.3.1 Shrinkage Intensity in Covariance Estimation . . . . . .. ... ... ... 90
4.3.2 Main evaluation measure . . . . . . .. ..o 91
4.3.3 Voting algorithm for Shrinkage Intensity selection . . .. .. .. .. ... 91

4.4 Experimental Results. . . . . . . . . . oo 94
441 Data . . . . oo 94
4.4.2 Portfolio Performance measures . . . . . . .. ... ... ... ....... 94
4.4.3 Analysisofresults . . . . ... ... L 95

4.5 Conclusions . . . . . . . . . e e e e e 96

5 Ensemble Covariance Estimation for the Global Minimum Variance Portfolio100

5.1 Introduction . . . . . . . . . e e 101
5.2 Background . . . ... 103
5.2.1 Linear shrinkage estimation . . . . . . . . .. ... ... ... ... 103

5.2.2  Emnsemble learning and undersampling . . . . . . .. .. ... 104

5.3 Methodology . . . . . . . e 104
5.4 Dataset and Evaluation Metrics . . . . . . . . . . . ... 107
5.4.1 Dataset . . . . . . e e 107

5.4.2 Evaluation Metrics . . . . . . . . . .. . 107

5.5 Results and discussions . . . . . . . . . e e e 108
5.6 Conclusions . . . . . . . e e e e 113

6 Conclusions and Future Works 116
6.1 Conclusion . . . . . . . . e 116
6.2 Future Works . . . . . . . e e 117
List of publications 119
Appendices 120
A Source code of the portfolios above . . . . . . .. ... .. L. 122

B Source code of the Global Minimum Variance Portfolio . . . . . . ... ... ... 123

C  Source code of the Shrinkage to the single-index model . . . . . . . ... ... .. 124

D Source code of the Shrinkage to the constant correlation model . . . . . .. ... 127

E Résumé . . . . . . e 129



Contents

E.1

E.2

E.3

E.4

E5

Introduction . . . . . . . ... 129
E.1.1 Contexte . . . . . . . 129
E.1.2 Défis et contributions scientifiques . . . . . . .. ..o 130
S’adapter a ’Extreme Imbalance: Une combinaison d’Undersampling et
d’Ensemble Learning pour la Big Data Classification . . . . . .. ... .. 130
E.2.1 Introduction . . . . . . ... .. L 130
E.2.2 Probleme de déséquilibre dans les données traditionnelles . . . . 131
E.2.3 Probléeme de déséquilibre dans les big data . . . . . . .. .. .. 132
E.2.4 Travaux récents sur le déséquilibre extréme dans la classification
des bigdata . . ... ... ... L 133
E.2.5 Méthodologie . . . . . . . ... 135
E.2.5.1 K-Segments Under Bagging (K-SUB) . . . .. ... .. 135
E.2.5.2 Mesure d’évaluation . . . . ... ... ... ... ... 135
E.2.5.3 Ensembles de données . . . . ... ... ... L. 135
E.2.6 Résultats et discussions . . . . . . . ... ... ... 136
E.2.7 Conclusion . . . . . . . . . . . e 136
Ensemble de vote pour les estimations de matrices de covariance a rétré-
cissement linéaire dans 'optimisation de portefeuille . . . . . . .. .. .. 136
E.3.1 Introduction . . . . . . .. .. 136
E.3.2 Travaux CONNEXES . . . v v v v v v v v e e e e e 137
E.3.3 Notre approche proposée . . . . . . . . ... ... ... ..... 138
E.3.3.1 Intensité de rétrécissement dans ’estimation de la co-
VATIANCE . . . . . . o e e e e e e e e e e e e 138
E.3.3.2 Principale mesure d’évaluation . . . . . ... ... ... 138
E.3.3.3 Algorithme de voting pour la sélection de I'intensité de
Shrinkage . . . . . ... oo 139
E.34 Résultats expérimentaux . . . . . . . . ... oL 140
E.3.4.1 Données. . . . . . . . . . .. .. 140
E.3.4.2 Mesures de performance du portefeuille . . . . . .. .. 140
E.3.4.3 Annual Return & Volatility, Sharpe Ratio. . . . . . .. 140
E.3.4.4 Portfolio Turnover . . . . . . .. ... ... ... .... 141
E.3.4.5 Alpha . . . .. . 141
E.3.4.6 Analyse des résultats . . . . ... ... 141
E.3.5 Conclusions . . . . . . . . . . . . e 141
Estimation de covariance d’ensemble pour le Global Minimum Variance
Portfolio . . . . . . . . . 142
E4.1 Introduction . . . . . . .. ... . 142
E.4.2 Contexte . . . . . . . . e 143
E.4.2.1 Ensemble learning et Undersampling . . . . . .. .. .. 143
E.4.3 Méthodologie . . . . . . . .. 144
E.4.4 Ensemble de données et métriques d’évaluation . . . . . . . . .. 146
E4.4.1 Ensemble de données . . . . ... ... 146
E.4.4.2 Métriques d’évaluation . . . . . .. ... L. 146
E.4.5 Résultats et discussions . . . . . . .. ... ... L. 147
E.4.6 Conclusions . . . . . . . . . . . e 149
Conclusions . . . . . . . . o e e 150

vi



List of Figures

1.1

2.1

2.2

2.3

24
2.5
2.6

2.7

2.8

2.9

2.10

A semi-log plot of transistor counts for microprocessors against dates of introduc-
tion, nearly doubling every two years. Source: Wikipedia contributors (2022d).

One example of decision tree that estimates who lived or died among those on
board the Titanic vessel. This is an example with only three attributes such as
age, gender and a number of family members. Summarizing: a passenger had a
high chance of survival if i) the passenger were female or ii) the passenger were
male at least 9.5-year old with strictly greater than 3 siblings. Source: Wikipedia
contributors (2017). . . . . . ...
Mlustration of bagging ensemble (also known as bootstrap aggregating). It draws
bootstrap samples (75);=1,....m randomly with replacement from an original dataset.
Each sample is used to train a separate model, it could be regression or classi-
fication. Then prediction outputs of those models (F;);—1, .. are ensembled by
Majority Voting for classification tasks or by Weighted Average for regression
tasks. Source: Raschka (2015) . . . . . . . . .. ... Lo o
Illustration of boosting ensemble. It is an ensemble learning method that com-
bine several weak learners into one strong learner. A sample of data is carefully
selected, and is used to train a model. Sequentially, a next sample is selected to
improve the performance of previous models. Source: (Raschka, 2015) . . . . ..
Stacking ensemble. Source: (Raschka, 2015) . . . . . ... ... ... ... ...
Precision and recall. Source: Wikipedia (2018a). . . . . ... ... ... ... ..
A confusion matrix is a special kind of contingency table, also known as an error
matrix. It is used to visualize the performance of an Machine Learning algorithm.
Source: Wikipedia contributors (2022a). . . . . . . . ... ... ...
A Receiver Operating Characteristic (ROC) curve was utilized to evaluate the
performance of three predictors in determining peptide cleavage within the pro-
teasome. Source: Wikipedia (2018b). . . . . . . ... ... oL
Efficient Frontier, also known as "Markowitz bullet". Source: Wikipedia contrib-
utors (2022b). . . . .. L
The Global Minimum Variance Portfolio is a starting point for all other portfolios
in Markowitz’s portfolio selection. It is on the Efficient Frontier curve and is the
most left point. The y-axis is the portfolio expected return and the x-axis is the
portfolio volatility. Source: Golosnoy, Gribisch, et al. (2022). . . ... ... ...
Cash loss due to estimation errors in the input parameters of the Markowitz
portfolio. The estimation error in the means (expected returns) is higher several
times than in the variance or in the covariance. Among these input parameters
of the Markowitz portfolio, the covariance estimation has lowest estimation error.
Source: Chopra et al. (2013). . . . . . . . . . . L

vii

19



List of Figures

2.11 Sorting all stocks in the U.S stock market from 1929 to 2020 by their volatilities.

Low-volatility stocks surprisingly yield higher returns than high-volatility stocks.

This observation of low risk but high return is known as low-volatility anomaly.

Source: Wikipedia contributors (2022c). . . . . . . .. ... L. 26
2.12 The shrinakge estimation is interpreted as a trade-off between bias and variance.

The shrinkage intensity is from zero to one. The shrinkage intensity zero means

it uses only the sample covariance matrix. And the shrinkage intensity one means

it uses only the target matrix. Source: Olivier Ledoit et al. (2004a). . . ... .. 28
2.13 Optimal shrinkage intensity of the linear shrinkage to single-index model on the

U.S stock market through 23-year data. This is the weight placed on the target

matrix, which is the covariance matrix of the single-index model in this case. On

the U.S stock market, it is stably high (around 80%). Source: Olivier Ledoit et al.

2.14 Visualization of the cumulative returns of the Equally-Weighted (EW) portfolio on

all stocks in the HOSE from 2013 to the end of 2019. A red line is the cumulative

returns of the benchmark (VN-Index), and a blue line is the cumulative returns

of the EW portfolio. The unit of the left axis is the percentage. . . . . . . .. .. 44
2.15 Visualization of the yearly Annual returns of the Equally-Weighted portfolio on

all stocks in the HOSE from 2013 to the end of 2019. Comparing to the yearly

Annual returns of the benchmark (VN-Index). The unit of the left axis is the

percentage. . ... ... Lo e 45
2.16 Visualization of the Maximum Drawdown of the Equally-Weighted portfolio on

all stocks in the HOSE from 2013 to the end of 2019. The unit of the left axis is

the percentage. . . . . . . . . L 45
2.17 Visualization of top five largest Maximum Drawdown of the cumulative returns

over the time from 2013 to the end of 2019 of the Equally-Weighted portfolio on

all stocks in the HOSE. . . . . . .. . o o 46
2.18 Visualization of the daily turnover of the Equally-Weighted portfolio on all stocks

in the HOSE from 2013 to the end of 2019. A possible maximum value of the

daily turnover is two, i.e. 200%. . . . . . ... .. 46
2.19 Visualization of the weights of all stocks in the Equally-Weighted portfolio from
2013 to the end of 2019. The unit of the left axis is the percentage. . . . . . . . . 47

3.1 Ilustrations of three common sampling methods. These methods include under-
sampling, oversampling, and SMOTE (Synthetic Minority Over-sampling Tech-
nique). The positive and negative signs in the illustrations denote the minority
and majority classes respectively, and the new data points created by oversam-
pling methods are represented in red. Source: Dal Pozzolo, Caelen, Waterschoot,
et al. (2013). . . . . 58

3.2 The figure illustrates the K-Segments Under Bagging (K-SUB) approach for han-
dling highly imbalanced data. The majority class is split into K segments, and
each segment is combined with the whole minority class to create a new sample.

This results in K samples with a reduced imbalance ratio of % and smaller data
size roughly by %, allowing for more effective training of the model. . . . . . .. 73

4.1 An intuitive visualization of the time-series cross-validation process in our ap-
proach. From a time-series stock data D(t), we use W data points before a
testing point ty — i + 1 to construct a portfolio then evaluate its performance on
the testing point. There are V' folds for validation, i.e. V testing points. . . . . . 93

viii



List of Figures

5.1

E1

E.2

Visualization in details of our K-covariance approach. In finance, the traditional
weekly dataset to estimate the covariance matrix take only those last trading
day in each week. In K-covariance, we undersampling randomly a trading day
in each week. From those weekly datasets, with any given covariance estimator,
we estimate K covariance matrices. Then using weighted average ensemble to
combine those matrices into one final covariance matrix. This matrix is used in
the portfolio optimization of the GMVP as normal. . . . . . . .. ... ... ...

Une visualisation intuitive du processus de Cross-Validation en série temporelle
dans notre approche. A partir d’une série temporelle de données boursiéres D(t),
nous utilisons W points de données avant un point de test tg—7+1 pour construire
un portefeuille puis évaluer sa performance sur le point de test. Il y a V' plis pour
la validation, c’est-a-dire V points de test. . . . . . . . .. ...
Visualisation de notre approche K-covariance. Les ensembles de données hebdo-
madaires traditionnels utilisent le dernier jour de bourse de chaque semaine pour
I'estimation de la covariance. Dans la K-covariance, nous sélectionnons aléatoire-
ment un jour de bourse chaque semaine. A partir de ces ensembles de données
hebdomadaires, nous estimons K matrices de covariance en utilisant n’importe
quel estimateur de covariance donné. Nous combinons ensuite ces matrices en
une matrice de covariance finale en utilisant un ensemble de moyenne pondérée.
Cette matrice est utilisée dans 'optimisation du portefeuille GMVP. . . . . . ..

ix



List of Tables

2.1
2.2

3.1

3.2

3.3
3.4

3.5

4.1
4.2
4.3

5.1

5.2

5.3

5.4

Descriptions of seven parameters in the backtesting system. . . . . . . ... ...
The out-of-sample performance results of the Equally-Weighted portfolio on the
Vietnam stock market from 2013 to the end of 2019. . . . . . . ... .. ... ..

A survey of 30 studies and datasets which are highly imbalanced or big data.
The COCO dataset is imbalanced because of the extreme imbalance between
background and foreground concepts. . . . . . . ... ...
A sample cost matrix in fraud detection systems to evaluate the cost of different
outcomes. It is similar to a confusion matrix used in Machine Learning, but
instead of treating all fraud cases as equal, each transaction is evaluated based on
its specific cost. Typically, a loss of money from a fraudulent transaction would
have a different cost than an investigation fee for a non-fraudulent transaction.
The cost matrix helps determine if the cost of investigating a possible fraud is less

than the potential loss, in which case it would not be worth further investigation.

Acost matrix. ... Lol
A confusion matrix is a table that is used to define the performance of a classi-
fication algorithm. The table is composed of four different cells, which are true
positives, false positives, true negatives, and false negatives. Each of these cells
represents the number of times the algorithm predicted a certain outcome and
compares it to the actual outcome. . . . . . .. ... o L.
Summary of eleven imbalanced datasets and the experimental results. . . . . . .

Experimental results carried out with N =50 assets. . . . . . ... ... ... ..
Experimental results carried out with N =100 assets. . . . . .. ... ... ...
Experimental results carried out with NV =200 assets. . . . . ... ... .. ...

Statistical summary of the historical data on the HOSE exchange from 2013 to

Out-of-sample portfolio performances of eleven Global Minimum Variance Port-
folios with different covariance matrix estimations. All available stocks on the
HOSE exchange are considered. . . . . . . . .. .. ... o o
Out-of-sample portfolio performance of eleven Global Minimum Variance Port-
folios with different covariance matrix estimations. Only the top one hundred
assets by market capitalization are considered (N =100). . ... ... ... ...
p-value of the Annual Volatility for each pair of covariance matrix estimators
in the Global Minimum Variance Portfolio with all assets in the Vietnam stock
market in the k-cov approach. . . . . . . . . ... Lo

43

61

74



List of Tables

9.5

5.6

5.7

5.8

5.9

E1
E.2

E.3

p-value of the Sharpe ratio for each pair of covariance matrix estimators in the
Global Minimum Variance Portfolio with all assets in the Vietnam stock market
in the k-cov approach. . . . . . . . . . . .. e
p-value of the Portfolio Turnover for each pair of covariance matrix estimators
in the Global Minimum Variance Portfolio with all assets in the Vietnam stock
market in the k-cov approach. . . . . . . . .. ..o oL
p-value of the Annual Volatility for each pair of covariance matrix estimators in
the Global Minimum Variance Portfolio with only top N = 100 market cap assets
in the Vietnam stock market in the k-cov approach. . . . ... .. ... ... ..
p-value of the Sharpe ratio for each pair of covariance matrix estimators in the
Global Minimum Variance Portfolio with only top N = 100 market cap assets in
the Vietnam stock market in the k-cov approach. . . . . . .. .. ... ... ...
p-value of the Portfolio Turnover for each pair of covariance matrix estimators in
the Global Minimum Variance Portfolio with only top N = 100 market cap assets
in the Vietnam stock market in the k-cov approach. . . . .. ... ... .. ...

Résumé statistique des données historiques sur la bourse HOSE de 2013 & 2019. .
Performances hors échantillon de onze portefeuilles de variance minimale glob-
ale avec différentes estimations de matrice de covariance. Toutes les actions
disponibles sur la bourse HOSE sont considérées. . . . . . . .. .. ... ... ..
Performance hors échantillon de onze portefeuilles de variance minimale globale
avec différentes estimations de matrice de covariance. Seuls les cent premiers
actifs par capitalisation boursiere sont considérés (N =100). . . . ... ... ..

Xi

146

148



Chapter

Introduction

1.1 Context

Moore’s Law, first proposed by Gordon Moore, states that the number of transistors on a
microchip doubles approximately every two years (Moore et al., 1965; Moore et al., 1975).
Recent studies suggesting that the growth rate could potentially be even higher in the future
(Mack, 2011; Theis et al., 2017). Figure 1.1 shows that the number of transistors on microchips
doubles every two years. This exponential increase in computing power over time has enabled
computers to solve a wide range of previously unsolvable problems. One such example is Spam
Detection in Emails, which involves classifying unwanted emails in order to improve the user
experience. With the sheer volume of emails sent and received daily, it is not feasible for humans
to handle this task manually. However, with the help of computers, we can classify emails as
spam or non-spam with a high degree of accuracy by detecting common words and patterns in
spam emails. Machine Learning algorithms, such as Logistic Regression or Decision Tree, are

commonly used for this purpose (Cormack, 2008).
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Figure 1.1: A semi-log plot of transistor counts for microprocessors against dates of introduction,
nearly doubling every two years. Source: Wikipedia contributors (2022d).

The utilization of Machine Learning techniques in the field of finance has gained significant
attention in recent years, due to the exponential increase in computing power and the avail-
ability of large amounts of data. Researchers have turned to Machine Learning algorithms to
gain insights and make predictions about financial markets. For example, many studies try
to predict stock prices in next days by using historical data (Rapach et al., 2013), financial
statements (Hirshleifer et al., 2004) or sentiment analysis (Pagolu et al., 2016). However, the
financial market is a complex and chaotic system, making accurate prediction a challenging task
(Kuhlmann, 2014). There are countless agents who invest in sophisticated multi-layer financial
services, even with a small interaction of a single participant, could drastically switch the market
regime (Bishop, 2011). Therefore, understanding the characteristics of the financial markets and
building predictive models in that chaotic environment are challenging topics.

Despite these challenges, the field of finance continues to explore the use of Machine Learning
techniques to gain insights and make predictions about the financial markets. One of the key
advantages of Machine Learning in finance is its ability to process large amounts of data and
identify patterns that may not be immediately apparent to human analysts. Furthermore,
Machine Learning can also be used to improve the efficiency of financial decision-making by
automating certain tasks and reducing the need for human intervention. However, there are
also limitations to be considered, such as the risk of overfitting and the interpretability of
Machine Learning models. Additionally, Machine Learning models can only make predictions
based on the patterns they have learned from the data and may not account for unexpected

events or changes in market conditions. In order to fully benefit from Machine Learning in
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finance, it is essential to have a well-designed and robust approach for the financial machine
learning problems.

Applying Machine Learning to Finance is a new field and it has gained significant attention
in recent years. It is also known as Financial Machine Learning or Financial Data Science. The
Financial Machine Learning field aims to extract order from chaotic environments under the
perspective of data. One recent example in this field is industry classification, which involves
grouping companies into various sectors based on different criteria, such as production. However,
traditional standard classification systems, which have been developed since 1937, may not
accurately classify the large and diverse companies present in today’s markets. To address
this issue, Bonne et al. (2022) have proposed a data-driven industry peer grouping system
that clusters similar companies at different levels of granularity by using artificial intelligence to
extract features from various data sources and learn relationships. It can identify companies that
are similar in terms of their risk-return profile. While these data-driven industry classification
systems may not become standard, they have broad applications in finance and economics, as
they address the limitations of traditional industry classification systems.

A similar approach to finance is an Econophysic, which is an interdisciplinary research field
to solve problems in finance and economics by utilizing theories and methods initially developed
from physics. The term Econophysics was started in the 1990s , as physicists recognized the
similarities between economics and physics and the availability of large amounts of financial
data in the 1980s. They observed that there are many shared characteristics between economics
and physics. One example is a Random Matrix Theory, which is used to identify noise in
financial correlation matrices and improve their applications. Olivier Ledoit et al. (2012) and
Olivier Ledoit et al. (2015) applied an original concept of Random Matrix Theory to deal with
noise in large-dimensional covariance matrices and proposed non-linear shrinkage covariance
matrix estimations, which have been applied in portfolio optimization. These estimations have
demonstrated significant improvements in portfolio performances, and there is potential for
further advancements through other approaches.

Portfolio management is a crucial field within finance which includes various subtopics such as
asset allocation, portfolio construction, portfolio optimization, risk management, performance
measurement and backtesting methodologies. It is also one of the main focuses of Financial
Machine Learning, and it is greatly benefited from the advancement of Artificial Intelligence
research. In this thesis, one of our research topic focuses on applications of portfolio optimization,
particularly a Global Minimum Variance Portfolio which uses only the covariance matrix to
estimate a portfolio with the lowest variance. By applying approaches of statistics and machine
learning, such as undersampling techniques and ensemble learning, our research demonstrates
the effectiveness of these methods in significantly improving portfolio optimization. Our research
highlights the potential for further advancements in this area through the application of other
advanced methods.

In this thesis, we use two types of data. The first part contains eleven imbalanced datasets
that were downloaded from the UCI Machine Learning Repository and various online sources.

These datasets cover a wide range of characteristics, including variations in size and degree
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of imbalance. These datasets include those from the imbalanced-learn library (Lemaitre et
al., 2017), a real-world credit card fraud detection dataset (Dal Pozzolo, 2015) and a network
intrusion detector KDD-99 dataset (Bay et al., 2000). A second part makes use of historical
stock prices from the Ho Chi Minh Stock Exchange (HOSE), an emerging market in Asia. These
stock prices are publicly available on the HOSE website and our research focuses on a normal
period of the market, spanning from 2011 to the end of 2019. It is important to note that market
crises such as the COVID-19 pandemic in 2020 fall outside of the scope of this thesis as they

represent a different context and require a separate analysis.

1.2 Scientific challenges and contributions

In this thesis, we explore the use of Machine Learning techniques and their applications to
financial problems. The specific topics of our research include:

First of all, we start with our observation in a Fraud Detection problem which tries to
classify fraudulent transactions in credit card transactions datasets. Financial institutions, such
as banks, lose billions of dollars annually due to credit card fraud, and this issue has been on the
rise in recent years. Therefore this is an important for the banking industry to develop effective
methods for detecting and preventing fraud. In our previous work, we have observed that an
imbalance ratio in this case is abnormally higher than in common cases (T. Tran, 2022). Several
studies show their imbalance ratios, which is a ratio of the number of majority class instances
to the number of minority class, from 19 to 99. It means for every 100 data points, there are 1
to 5 positive data points. While in a dataset of two-day credit card transactions captured from
a European bank in September 2013, there are only 492 fraudulent transactions out of 284807
transactions, and its imbalance ratio is roughly 578. In other problems, it could be higher
than 10%. Most research studies for imbalance problems only deal with an easy case, i.e. low
imbalance ratio. Only a few studies mentioned the extreme case in their experiments, however
imbalance ratios of their extreme imbalance datasets usually not excess 100. A higher imbalance
ratio easily leads to a bigger dataset, it presents a unique challenge for traditional approaches
that are designed to handle low-imbalance and small-dataset problems. For example, the credit
card transactions dataset above is two-day data, roughly 50 million transactions per year and
containing only 0.17% fraudulent transactions. To the best of our knowledge, this gap between
the extreme imbalance problem and big dataset problem has not been addressed in previous
research. A challenge in this gap is that we not only deal with the problematic imbalance data
but also process the large-scale dataset in order to classify the minority class accurately and
quickly. In other words, we need an approach more efficiently for this new problem.

In our study, we consider the issue of extreme class imbalance, characterized by an imbalance
ratio of 100 or more, where there is only one positive data point for every 100 negative data points
or more. Instead of building more complex models, we propose the use of an undersampling
technique to reduce the complexity of the problem, which is the imbalance ratio in this case.
This is achieved by building models using lower-imbalance subsets and then combining these

models through ensemble learning techniques such as Voting Ensemble. Our approach involves
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the use of a small number of subsets, such as 3, 5 or 10, to reduce training time, and the
sampling process is done without replacement to further reduce the size of the training set. This
sampling approach in the context of big data does not affect the accuracy of the models. We
conduct experiments on a variety of datasets, from minuscule to exceedingly large datasets and
imbalance ratios from minimal to exceptionally high. The highest imbalance ratio in our study
is nearly 10° and the dataset contains nearly 5 million data points. Our results demonstrate
that our approach is effective not only in the extreme-imbalance big-data cases but also in less
challenging scenarios. We presented this new gap of the extreme imbalance problem in big
data and our experimental results in a paper titled “K-Segments Under Bagging approach: An
experimental Study on Extremely Imbalanced Data Classification” (T. Tran, L. Tran, et al.,
2019).

Secondly, we address the problem of model selection in the context of portfolio optimiza-
tion, which is a key topic in finance. Modern Portfolio Theory, as proposed by Markowitz (H.
Markowitz, 1952; H. M. Markowitz, 1968), provides a framework for investors to optimize their
portfolios based on the returns and covariance of assets, known as the Mean-Variance portfo-
lio. However, the returns of assets are known to be difficult to predict and more volatile than
the covariance matrix. As a result, Markowitz’s portfolio performs poorly during market crash
periods, such as the 2007-2008 Financial Crisis. Among all feasible portfolios on the efficient
frontier of Modern Portfolio Theory, there is a special case with minimum variance, known as
the Global Minimum Variance portfolio. This portfolio uses only the covariance matrix to op-
timize the portfolio, with the goal of minimizing risk. While the goal of this portfolio is not to
maximize profit, it has been shown to have higher long-term returns than the Mean-Variance
portfolio over a long-term investment horizon. This phenomenon is known as the low volatility
anomaly. There are studies that attempt to explain this anomaly, but it falls outside the scope
of this thesis. A standard covariance matrix estimation in Markowitz portfolios is the sample
covariance matrix estimation, which is simple but has many problems. One of the most criti-
cal issues is its singularity, particularly in high-dimensional data when the number of assets is
greater than the number of observations. As a result, the sample covariance matrix is often
not invertible, leading to suboptimal Markowitz portfolios. To address this issue, the shrinkage
technique in statistics has been proposed, which combines the sample covariance matrix with
another invertible matrix, resulting in a significant improvement in the Global Minimum Vari-
ance portfolio. However, various matrices have been proposed for use in shrinkage estimation,
such as the identity matrix or a constant-correlation matrix, each with different advantages in
different market scenarios. This raises the question of estimation selection for investors, and
investors need a mechanism to select the best estimation among various possible solutions for a
given set of data and investment objectives.

Under the data perspective, the optimal intensity of shrinkage estimations are in-sample
results, i.e. the results on the training data, and those results could be overfitted on the training
data or underfit on the future data. With only the in-sample results, the covariance matrix
estimations are incomparable. Moreover, to avoid the overfitting problem in covariance matrix

estimation, we propose to use the Cross-Validation technique to estimate the portfolios’ perfor-
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mances on the testing data and then let them vote for their best estimator by Voting Ensemble.
With the time series data of stock prices, a typical K-Fold method and shuffling in the Cross-
Validation are not appropriate. Therefore we use a rolling Leave-One-Out Cross-Validation
without shuffling. Within the scope of our study, we consider three kinds of shrinkage estima-
tors which have been proposed by Ledoit and Wolf such as Shrinkage to identity matrix (Olivier
Ledoit et al., 2003), Shrinkage to single-index model (Olivier Ledoit et al., 2004b), Shrinkage to
constant correlation model (Olivier Ledoit et al., 2004a). We estimate the performances of those
estimators by a Sharpe ratio which indicates a tradeoff between profit and risk of a portfolio.
In other words, we assume the main objective of investors is to select an estimator with the
highest Sharpe ratio. Testing our approach with those shrinkage estimators on the Vietnam
stock market, particularly on the HOSE exchange, from 2013 to the end of 2019 shows that
our approach could adapt quickly to the market changes and produce better portfolio perfor-
mances significantly. It suggests that the investors could follow our selection mechanism with
several estimations and their objectives to choose a single best estimation for their portfolios.
We described our approach and the results in a paper titled “Voting shrinkage algorithm for
Covariance Matrix Estimation and its application to portfolio selection” (T. Tran, N. Nguyen,
T. Nguyen, and Mai, 2020).

Thirdly, we we address the issue of outliers in the covariance matrix estimations for the
Global Minimum Variance Portfolio (GMVP). The GMVP has only one input parameter, the
inverse of the covariance matrix, and thus it requires an invertible and stable covariance matrix.
The most common covariance matrix estimation for the GMVP is the sample covariance matrix
estimation, which has a critical problem of singularity. When the number of observations is
greater than the number of variables, the sample covariance matrix is singular. Then the GVMP
is non-optimal and unreliable. At the present time, the number of companies is increasing faster
than the number of dates. Therefore, we will easily face with a singular problem in many
cases. Various research studies focus on the singular problem, such as the linear shrinkage
technique in statistics, which optimally combines the sample covariance matrix with another
well-structured matrix. The optimal linear shrinkage estimations show significant improvements
for portfolio optimization in the GMVP. This approach goes further with many variants or more
complex estimations, such as non-linear shrinkage estimations. From another point of view, some
studies argue that the significant improvement of shrinkage estimations is because of combining
with another matrix, not because of their optimal combinations. They showed that facultative
combinations of the sample covariance matrix and different matrices have the same level of
portfolio performance with the optimal shrinkage estimations, at least on the portfolio volatility.
However, the sample covariance matrix estimation or even more advanced estimations, such as
linear shrinkage estimations, are also sensitive to outliers. The problem of outliers receives
less attention than the singularity or robustness of the covariance matrix. However, a robust
covariance matrix estimation is not robust if it is sensitive to outliers. Therefore, the research
community should focus not only on the singular problem but also on the outliers problem.

We address the problem of outliers in covariance matrix estimations for the Global Minimum

Variance Portfolio (GMVP) by utilizing Machine Learning techniques such as undersampling and
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ensemble learning. These techniques have been shown to be effective in reducing the impact
of outliers on the output of Machine Learning models. Specifically, we use the undersampling
technique to sample several smaller subsets from the original dataset and train a single model for
each subset. These models are then ensembled into a final model. In the context of GMVP, we
consider the covariance matrix estimation as a model and the covariance matrix as its output.
Additionally, a common procedure in the GMVP is that the daily stocks return dataset is
extracted to a weekly stocks returns dataset by taking the last return values in each week. Then
the covariance matrix is estimated from this weekly dataset. In our context, we we propose a
modification to the traditional GMVP procedure, where we under-sample the daily stock returns
dataset to several weekly datasets by randomly and with replacement taking return values in
each week. These weekly datasets are then used to estimate the covariance matrix using any
given estimation method, such as the sample covariance matrix estimation or linear shrinkage
estimations. These estimated covariance matrices are then ensembled into a final covariance
matrix and used in the portfolio optimization process of GMVP. Those weekly datasets have the
same size as each other and the same as the weekly dataset in the traditional procedure, similarly
to those covariance matrices. Our approach reduces the fluctuation of the covariance matrix by
manipulating the input data, while other approaches such as shrinkage estimations operate at
the model level. Empirical results on the Vietnam stock market from 2013 to the end of 2019
show that applying our approach to the sample covariance matrix estimation improves it to the
level of the shrinkage estimations. Similarly, on the Shrinkage to single-index model, it shows
that this shrinkage estimation is also impacted by the outliers and other shrinkage estimations
are not sensitive to the outliers. We presented those results in a paper titled “k-Covariance: An
Approach of Ensemble Covariance Estimation and Undersampling to Stabilize the Covariance
Matrix in the Global Minimum Variance Portfolio” (T. Tran, N. Nguyen, and T. Nguyen, 2022).

1.3 Outlines
This thesis consists six chapters, as follows:

e Chapter 1: We introduce the field of Financial Machine Learning, which is an interdisci-
plinary area that encompasses both machine learning and finance. We then outline the
scientific challenges and the contributions of our research to both machine learning and

financial problems.

e Chapter 2: In this chapter, we provide a background on the topic of Financial Machine
Learning, covering both machine learning and finance concepts. Specifically, we present
formal definitions, terms and formulas that are essential for understanding the later chap-

ters.

e Chapter 3: In this chapter, we explore the new challenge of dealing with extreme imbalance
data and big data, and propose an approach using undersampling and ensemble learning

to effectively address this issue.
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e Chapter 4: In this chapter, we examine the problem of selecting estimators for covari-
ance matrix estimation in quantitative investment, and propose an approach using cross-

validation and ensemble learning to predict the best estimator for portfolio optimization.

e Chapter 5: In this chapter, we investigate the impact of outliers on covariance matrix
estimation and the resulting portfolio performance. We propose an approach using under-
sampling and ensemble learning to reduce the impact of outliers and stabilize the covariance

matrix.

e Chapter 6: Finally, we summarize our contributions and discuss the limitations of our

research. Based on these limitations, we suggest potential directions for future work.
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Chapter

Preliminaries

Objectives

In this chapter, we will provide a comprehensive background on the fundamental
concepts of both Machine Learning and Quantitative Finance. This will serve as a
foundation for the later chapters.
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Chapter 2. Preliminaries

2.1 Machine Learning

Artificial Intelligence enables computers to perform tasks that normally require human intelli-
gence. And a subfield of Artificial Intelligence that allows computers to learn from data with
little human involvement is called Machine Learning (Samuel, 2000; Koza et al., 1996). ML has
many applications in domains where it is difficult or impractical to write explicit rules, such
as email filtering or recommendation systems. Machine Learning also overlaps with computa-
tional statistics, which uses statistical methods to discover patterns in data and build predictive
models. Machine Learning algorithms can be formally defined as follows, according to Mitchell
(Mitchell et al., 1997):

"A computer program learns from experience E with respect to a class of tasks T and
a performance measure P if its performance on tasks in T, measured by P, improves

with experience E."

Machine Learning methods can be grouped into three main categories based on the avail-
ability of the “label” or the desired output in the data used by the learning algorithm (Russell
et al., 1995):

e Supervised learning: the data have input features and their corresponding output values
as labels. The supervised learning algorithm aims to learn a general rule that maps the
input features to the labels. Supervised learning algorithms can be of various types, such

as regression, classification, active learning or similarity learning.

e Unsupervised learning: the data does not have any output values or labels. In this case,
the learning algorithms explore and discover hidden structures in the data. If some output
values are missing in the data, it is called semi-supervised learning. If the output values
are limited, noisy or imprecise, it is called weakly supervised learning instead of semi-

supervised learning.

e Reinforcement learning: there is no data or labels in this case. Instead, it interacts with a
dynamic environment to achieve a pre-defined goal. Through the interactions, the learning
system observes the environment as its input and receives feedback from the environment
as its label. The reinforcement learning algorithm tries to maximize the rewards from the

environment for its goal.

The most common task in machine learning is supervised learning, where we learn a function
that maps input data to output labels (Mohri et al., 2012). A supervised-learning function
g : X — Y maps an input space X (matrix of feature vectors) to an output space Y (matrix of
labels) for a set of N data points (z1,41),..., (zN,yn), where each z; is a feature vector and
each y; is its corresponding label. The function g can either belong to a function class G, or it
can be expressed as a scoring function f : X x Y — R that gives the highest score to the output

label y: g(x) = argmax f(x,y). For instance, a possible model for conditional probability is

]
g(x) = P(y | =), which can be exemplified by logistic regression (Walker et al., 1967; Cox, 1958).

12
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And an example for the function f can be a joint probability model f(z,y) = P(x,y) such as
naive Bayes(Russell et al., 1995).

To evaluate the performance of the learned function, we use a loss function L : Y x Y — R
to measure how well the learned function performs. The learned function g has a risk function

R(g) that represents its expected loss. The risk can be estimated by Equation 2.1.
=~ 1
R(g) =  >_ L(yir 9(w:)) (2.1)
i

2.1.1 Decision tree learning

Decision tree learning is a popular supervised learning method in Machine Learning because of
its simplicity and interpretability (Rokach and Maimon, 2014). The goal is to create a model
that estimates values based on a hierarchical structure of choices. For example, Figure 2.1
shows a decision tree that predicts the survival of passengers on the Titanic ship based on three
attributes (Wikipedia, 2017).

A decision tree learner is a supervised learning method that can divide the input data into
smaller groups based on a certain criterion. This splitting process is done recursively from top
to bottom until all or most of the data points belong to a specific class label. In data mining,

decision trees can be used for two main purposes:

e C(lassification tree: a technique that predicts discrete classes for the input data,

e Regression tree: a technique that predicts continuous values for the input data.

Both types of techniques are also known as Classification and Regression Tree (CART)
analysis (Breiman et al., 1984). Some of the well-known algorithms for decision tree learning

are:

o ID3 (Iterative Dichotomiser 3) (J. Ross Quinlan, 1986),

o (C4.5: an improvement of ID3 algorithm (J Ross Quinlan, 2014).

Decision tree algorithms use various criteria to decide which feature is the most suitable for
dividing the data into smaller groups. These criteria measure how similar the outcomes are
within each group. A decision tree learning algorithm can use various criteria to split the data,

such as Entropy, Information Gain and Gini.

2.1.2 Ensemble learning

An ensemble learning is a machine learning approach that improves accuracy by combining
different learning algorithms is called ensemble learning (Opitz et al., 1999; Rokach, 2010).
Using a single base learner, ensemble methods produce various models. Three most popular

kinds of ensemble learning are bagging, boosting, and stacking.
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Survived
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0.05 2% Lot A e

Figure 2.1: One example of decision tree that estimates who lived or died among those on board
the Titanic vessel. This is an example with only three attributes such as age, gender and a
number of family members. Summarizing: a passenger had a high chance of survival if i) the
passenger were female or ii) the passenger were male at least 9.5-year old with strictly greater
than 3 siblings. Source: Wikipedia contributors (2017).

Bagging Bagging (see Figure 2.2), also called bootstrap aggregating, is an ensemble tech-
nique that combines multiple learnings by their equal weight votes. It trains each model from a
subset that is randomly drawn with replacement to lower the model variance. One of the most
popular applications of bagging is the Random Forest method that employs decision trees with

random features as fundamental learners.

Boosting Boosting is a way of enhancing the performance of machine learning models by
using a set of base learners that are trained sequentially on weighted versions of the training
dataset (see Figure 2.3). Boosting aims to correct the errors made by previous learners by
giving more weight to misclassified data points. Some cases may require boosting to achieve
higher accuracy than bagging, but the boosting models tend to fit the training data too closely.
Adaboost (Freund, R. Schapire, et al., 1999) is the most common algorithm for boosting.

Stacking Stacking is a way of improving the accuracy of machine learning models by using
another model to learn how to best combine the outputs of different base models (see Figure
2.4). These base models are built independently on the given training data, and then a single
meta-model is built on their predictions. The meta-model can be any type of model, but often
logistic regression or linear regression are used. Stacking can potentially represent any ensemble

technique, depending on the choice of base and meta-models.

14



2.1. Machine Learning
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Figure 2.2: Illustration of bagging ensemble (also known as bootstrap aggregating). It draws
bootstrap samples (7;);=1,... ,m randomly with replacement from an original dataset. Each sample
is used to train a separate model, it could be regression or classification. Then prediction
outputs of those models (P;);=1,...m are ensembled by Majority Voting for classification tasks or
by Weighted Average for regression tasks. Source: Raschka (2015)
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Figure 2.3: Illustration of boosting ensemble. It is an ensemble learning method that combine
several weak learners into one strong learner. A sample of data is carefully selected, and is used
to train a model. Sequentially, a next sample is selected to improve the performance of previous

models. Source: (Raschka, 2015)
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Figure 2.4: Stacking ensemble. Source: (Raschka, 2015)

2.1.3 Random Forest

Random Forest (Breiman, 2001) is a type of ensemble learning that uses many trees, such as
decision trees, for classification or regression tasks. It combines the outputs of these trees by
taking the most common class for classification task or the average output for regression task.

There are two components in the Random Forest model:

1. Base learner: there are several trees in the forest but they are from a same base learner,

which is a weak tree-based model with high variability,

2. Ensemble learning: it combines the outputs of multiple base models to produce a final

prediction.

Tree-based methods tend to fit too closely to their training sets, meaning that they have low
error but high instability. To overcome this problem, Random Forest combines the predictions
of many trees that are trained on random samples from the dataset. This way, it reduces the
variance and improves the generalization performance of the model. The algorithm can be
summarized as follows: given a dataset of N datapoints X = x1,...,xn and output values
Y = y1,...,yn respectively. For B times, randomly choose a sample from X and train a tree
on this sample, then aggregate the predictions of all trees (see Algorithm 1).

One way to combine the predictions from different trees in Random Forest is to use an
average function for regression tasks or a majority vote for classification tasks, as suggested by
the creators of Random Forest (Breiman, 2001). However, other combination functions are also
possible. The advantage of bootstrapping is the model’s variance decreases without affecting
its bias. We can measure how confident the model’s prediction is by computing the standard

deviation of the predictions from each individual tree. (see Equation 2.2).
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Algorithm 1 Tree bagging
Input: XY, B
Output: A forest with B trees f
1: forb=1: B do
2: A subset of (X,Y) with N data points is (Xp, Y})
3:  Build a tree-based model f; for classification or regression using the sample Xy, Y
4: end for

S @) = )
a\/ “B_l (2.2)

The Random Forest algorithm is a variant of the bagging method that modifies the decision
trees to use a random sample of features at each split. This reduces the correlation among the
trees and improves the generalization performance. The dataset has p features and the number
of features used for each split is usually /p for classification and p/3 for regression, as suggested

by the original authors (Friedman et al., 2001).

2.1.4 Evaluation metrics

In this section, we describe some most common evaluation metrics in Machine Learning that

are used to measure how well an algorithm performed the task of classification.

Accuracy

Accuracy is a statistical measure that shows how close a single measurement is to the true or
accepted value of a quantity (BiPM et al., 2008). In machine learning, accuracy is often used
to evaluate the performance of a classifier or a predictor. It is calculated as the ratio of correct
predictions to the total number of predictions made by the model. A higher accuracy indicates
that the model can correctly identify or classify the input data, while a lower accuracy suggests

that the model makes more errors or misclassifications.

Suppose we have 2 sets with N datapoints: the desired values Y = yi,...,y, and our
predicted values Y = Y1, .-, ¥Yn, then we can compute accuracy as follows:
1 n
accuracy = — » 1, 2.3
2Ly (23)

Precision and recall

Two common metrics in binary classification, information retrieval and pattern recognition are
recall and precision. Recall (also referred to as sensitivity) measures the proportion of relevant
data points that are retrieved out of the total number of relevant data points, while precision
(also known as positive predictive value) measures the proportion of relevant data points among

the given data points (see Figure 2.5).
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Figure 2.5: Precision and recall. Source: Wikipedia (2018a).

Perry et al. (1955) introduced precision and recall in the context of information retrieval as
two sets: one containing the retrieved elements and another containing the relevant elements.

The ratio of relevant documents that are retrieved for a query is called precision:

| elements that are relevant and retrieved |

recision = 24
P | elements that are retrieved | (24)
The recall measures how many of the relevant elements are retrieved successfully:
elements that are relevant and retrieved
recall = | | (2.5)

| elements that are relevant |

The precision and recall metrics are based on four terms in classification tasks: true positives
(TP), true negatives (TN), false positives (FP), and false negatives (FN). According to Olson
et al. (2008), precision is defined as the ratio of TP to TP plus FP, which means how many of
the predicted positive cases are actually positive. Recall is defined as the ratio of TP to TP
plus FN, which means how many of the actual positive cases are correctly predicted. They are

calculated as follows:

TP

preCiSion = m (26)
TP

l=———— 2.7

reca TP + PN (2.7)
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Confusion matrix

A confusion matrix is a tool that helps to evaluate and validate a classification model. It is also
known as an error matrix. It shows the number of data points that belong to a certain class
(true class) and the number of data points that are predicted to belong to that class (predicted
class). The name confusion matrix comes from the fact that it makes it easy to identify where

the model is making mistakes between classes (see Figure 2.6).

Predicted condition

Total
population Positive (PP) Negative (PN)
=P+N
False negative
True positive (TP), FN),
Positive (P) P (TP) (FN)
g hit type Il error, miss,
:"é underestimation
o
o
E
2 False positive (FP), True negative
Negative (N) type | error, false alarm, (TN),
overestimation correct rejection

Figure 2.6: A confusion matrix is a special kind of contingency table, also known as an error
matrix. It is used to visualize the performance of an Machine Learning algorithm. Source:
Wikipedia contributors (2022a).

Receiver operating characteristic (ROC)

A ROC curve, or receiver operating characteristic curve, is a graphical plot that illustrates how
well a binary classifier system can distinguish between two classes at various threshold levels.
ROC analysis helps to choose a suitable threshold for models by plotting the true positive
rate (TPR) versus the false positive rate (FPR). An example of an ROC curve plot for three

predictors of peptide cleavage in the proteasome is given in Figure 2.7.

Area under the ROC curve (AUC)

A common way to summarize the performance of a binary classifier system at different threshold
levels is to plot the ROC curve, which is a graphical representation of how well the system
discriminates between classes. The ROC curve covers a proportion of the unit square, which is

called the area under the curve (AUC). The AUC value can vary from 0 to 1, but any realistic
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Figure 2.7: A Receiver Operating Characteristic (ROC) curve was utilized to evaluate the
performance of three predictors in determining peptide cleavage within the proteasome. Source:
Wikipedia (2018b).

classifier should have an AUC above 0.5, which is the baseline performance for random guessing.
The AUC metric indicates how close the ROC curve is to the point of perfect discrimination.

The AUC metric has been widely adopted in Machine Learning for comparing models (Hanley
et al., 1983). However, some recent studies have identified some limitations and drawbacks
of using AUC as a classification measure (Hanczar et al., 2010) and some other studies have
highlighted significant problems in comparing models based on AUC (Lobo et al., 2008; Hand,
2009).

F-score

The F-score (also called F-measure or F) score) is a metric that combines precision and recall

by calculating their harmonic mean.

Fl—2. pre(iis.ion - recall (2.8)
precision + recall

For any positive real number 3, a more general formula of Fg-score is:

precision - recall

Fs= (144 (2.9)

(B2 - precision) + recall

Van Rijsbergen (1979) suggests that the Fj could be interpreted as “measures the effective-
ness of retrieval with respect to a user who attaches § times as much importance to recall as

precision”. When the dataset is imbalanced, the F-score metric is a common choice in machine
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learning because it does not suffer from the imbalance problem.

2.2 Financial Machine Learning

Machine Learning is making our lives better with various applications in every aspect of the
world. In finance, Machine Learning started to change the financial industry with several dis-
ruptive technologies, it is also known as fin-tech (financial technology). More particularly in
quantitative investment, Machine Learning is changing the way how we invest our capital. In
the stochastic stock markets, it is hard to build a predictive model under a high uncertainty
environment even with a group of financial experts. But with the help of Machine Learning, we
are able to analyze terabytes of data from various sources and extract undiscovered hidden pat-
terns in the data automatically. Therefore, Financial Machine Learning is an important subject
for the investment community.

In another point of view, Financial Machine Learning is a gap between Financial Mathematics
and standard Machine Learning. The Financial Mathematics use elegant mathematics with
multiple strict assumptions to model the formula for the financial world. That world may not
exist in a physical sense even if their theorem is true in a logical sense. The Econophysics
which we described above is reversed, they re-use existing theorem in the physical sense and
apply to the financial world just because those worlds have multiple shared characteristics.
On another side, the Machine Learning community applies their algorithms or techniques to
financial applications by an inappropriate way. They misuse mathematical concepts or financial
assumptions, which makes their models’ results overfit and will fail in the real world. In the
Financial Machine Learning topic, it aims to apply the Machine Learning properly to solve
financial problems with real assumptions of the world. Without an appropriate approach, every
Machine Learning models are non-sense even if they significantly outperform others.

There are many examples of inappropriate Machine Learning applications in finance, such
as brute-force search. (De Prado, 2018) showed that we could easily discover a (false) trading
strategy, i.e. a false positive case, with a significance level of .05. Typically, with just around
20 iterations to find a small subset in a massive dataset which matches with the above (false)
strategy. Therefore, they suggest that a study must report how many trials to discover a strategy,
and then they proposed an approach to estimate an overfit probability for that strategy. The
brute-force search methodology is considered as a scientific fraud and is mentioned in a ethical
guidelines of (Wallman, 1993).

In this thesis, we focus on the applications of the Machine Learning in the Modern Portfolio
Theory of Markowitz which is one of the main topics in the Quantitative Finance. Particularly,
we will show how investors could use the Machine Learning techniques such as ensemble learning,
under-sampling or cross-validation to improve Markowitz’s portfolios. In this section, we will
describe background knowledge of mathematical finance which is necessary for understanding

later chapters.
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2.2.1 Modern Portfolio Theory

In a 1952 essay, Harry Markowitz introduced a mathematical framework for portfolio selection
(H. Markowitz, 1952) and this groundbreaking work changed the whole financial industry, today
it is known as Modern Portfolio Theory. The Modern Portfolio Theory extends and formularizes

a diversification in investing with two ideas:

o Investing on different financial assets is less risky than on a single asset. For a definition of
the risk, Markowitz uses the standard deviation of asset’s returns as a proxy of the asset’s

risk,

e Both risk and return of an asset should not be evaluated by themselves. In a portfolio of
different financial assets, they should be assessed by how much that asset contributes to

the overall risk and return of the portfolio.

In the Modern Portfolio Theory, Markowitz assumes that all investors are risk aversion which
means that between two portfolios with similar expected returns, they will prefer the less risky
portfolio. Therefore, if investors expect a higher expected return then they must accept more
risk in their portfolios. Consequently, a rational investor will prefer a portfolio with the lowest
risk among all portfolios with the same expected returns. The investors assess a risk-expected

return profile of a portfolio by two components:

 Portfolio expected return E[Rp| = >, w;E[R;],

« Portfolio volatility op = /0%,

where Rp is the return of a portfolio P, R; is the return of an asset ¢ in the portfolio P, w; is
the weighting of the asset i, 0% is the variance of portfolio P’s return values which is calculated

as follows:

2 2 _2
op =D wioy + ) D wiwjoiopi;
i

e
= Z Zwiwjaiajpm (2.10)
)

=D wiw;oi
i g

where o; is the standard deviation of the asset i’s returns, p; ; is the correlation coefficient
of the returns between asset ¢ and asset j and o0;; = 0;0;p;; is the covariance of the returns

between asset ¢ and asset j.

2.2.1.1 Efficient Frontier

With all possible combinations of assets, each of them is a different portfolio, if we plot them in

a risk-expected return space then a collection of those portfolios specifies a region in this 2-D
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Figure 2.8: Efficient Frontier, also known as "Markowitz bullet". Source: Wikipedia contributors
(2022b).

space. In this space, an efficient frontier is the set of portfolios such that with the same level of
risk then there is no other portfolio with a higher expected portfolio return. Similarly, given an
expected return for a portfolio, there is only one "efficient" portfolio which has lowest risk and
that portfolio lies on the efficient frontier curve. The efficient frontier is illustrated in Figure
2.8, a left boundary of the region is parabolic.

2.2.1.2 Mean-Variance Portfolio

The Modern Portfolio Theory, also known as a mean-variance portfolio, which compares the
expected return, i.e. mean, with the risk of the portfolio, i.e. variance (or equivalent, standard
deviation). All feasible portfolios lying on the efficient frontier curve indicate the "efficient"
combinations which offer the best possible expected return for the given risk level.

Given an expected risk ¢ € [0,00), i.e. risk tolerance of an investor, the mean-variance
portfolio for a universe of N assets is calculated by minimizing the following equation:

@@ — gRTw (2.11)

where:

« R is a vector of assets’ expected returns,

o W= [wy,ws,...,wy] is a vector of portfolio weights such that va w; = 1,

e X is a covariance matrix of the returns of IV assets,

o WIS is a portfolio variance,

e« Rlwisa portfolio expected return.
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Another way to calculate the mean-variance portfolio is by using the investor’s expectation
of portfolio return @TR. Given an expected portfolio return p, the mean-variance portfolio is

calculated by minimizing the following equation:

W X (2.12)
subject to
=T =y
w R=p
2.13
{le =1 (213)

A tangent to the upper part of the efficient frontier curve is a special portfolio of Markowitz’s
mean-variance portfolios, it is named as a tangency portfolio. The tangency portfolio not only
is the "efficient" portfolio but also has the highest Sharpe ratio (i.e. a trade-off between portfolio
return and portfolio volatility). A most left point in the efficient frontier curve is a portfolio

with minimum variance (i.e. portfolio’s risk), it is named as global minimum variance portfolio.

2.2.2 Global Minimum Variance Portfolio

Input parameters in Markowitz’s mean-variance portfolio are the return, the risk and also the
covariance matrix. The calculations for those parameters are based on the assets’ expected
returns to represent statistical features in the future. However, estimated parameters from the
historical data often do not capture the true features due to the massive fluctuation in the
chaotic financial markets. Large estimation error leads to an unstable mean-variance portfolio
and also degrades significantly the portfolio performances.

Several studies point out the impact of those estimation errors. For example, Michaud
(1989) and Chopra et al. (2013) show that mean-variance portfolio optimization is sensitive to
the estimation errors, and small changes in the input parameters could lead to large changes in
portfolio weights of the optimal mean-variance portfolio. Especially, the estimation error in the
expected returns is greater substantially than in the variances and covariances (see Figure 2.10).
They concluded that for a low-risk tolerance investor, minimizing the variance of the portfolio
is more crucial than looking for the additional expected return. Therefore, a portfolio with
lowest risk (i.e. variance) is an important topic for those low-risk tolerance level investors. And
that portfolio is a starting point for all other portfolios and also known as the global minimum
variance portfolio (see Figure 2.9).

In practice, the mean-variance portfolio has shown a worse performance in the 2008-2009
crisis period while the global minimum variance portfolio showed a stable and better performance
in the same period. After that time, the applicability of the mean-variance portfolio is questioned
by both the research community and fund managers that why the optimized expected-return
portfolio has a lower return than the non-optimized one. In most stock markets, we observe
that low-volatility financial assets have higher returns than high-volatility financial assets over
the long investment horizon (see Figure 2.11). This market anomaly is also known as the low-

volatility anomaly. There are several studies trying to explain this phenomenon but there is no
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Figure 2.9: The Global Minimum Variance Portfolio is a starting point for all other portfolios in
Markowitz’s portfolio selection. It is on the Efficient Frontier curve and is the most left point.
The y-axis is the portfolio expected return and the x-axis is the portfolio volatility. Source:

Golosnoy, Gribisch, et al. (2022).
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Figure 2.10: Cash loss due to estimation errors in the input parameters of the Markowitz
portfolio. The estimation error in the means (expected returns) is higher several times than in
the variance or in the covariance. Among these input parameters of the Markowitz portfolio,
the covariance estimation has lowest estimation error. Source: Chopra et al. (2013).
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Figure 2.11: Sorting all stocks in the U.S stock market from 1929 to 2020 by their volatili-
ties. Low-volatility stocks surprisingly yield higher returns than high-volatility stocks. This
observation of low risk but high return is known as low-volatility anomaly. Source: Wikipedia
contributors (2022c).

clear answer yet.

In the global minimum variance portfolio, there is only one parameter: the covariance matrix.
Therefore, it does not face with the estimation error problem in the mean. Computing portfolio
weights for the global minimum variance portfolio is slightly different from the calculation of
the mean-variance portfolio, there is no desired portfolio return and we are only concern about
minimizing the portfolio variance. Similarly to the Equation 2.12, the optimization problem for

the global minimum variance portfolio is defined as follows:

—

min WS
w

(2.14)
st wll=1.
This minimization problem could be solved by using the Lagrange form as follows:
1
L@@ ) =5 5T — A (w1 - 1). (2.15)

We will derive two first order conditions of the above minimization problem as follows:

%:Zw—Allzo, (2.16)
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o 4.

From Equation 2.16, we will have:

W= \12"!

(2.18)
< w17 =171

From Equation 2.17 and Equation 2.18, we will have:

1=M1T12"1
1 (2.19)
A=
<M= 1Ty

Finally, let us substitute Equation 2.19 into Equation 2.18 to get a solution of the optimiza-

tion problem:

»11
1Ty-11

where X is the covariance matrix of assets’ returns. However, the true covariance matrix of

w0 =

(2.20)

stocks is unknown and it is usually replaced by the sample covariance matrix S.

Let us denote X as an N x T matrix of T observations of N random variables with entries
are denoted by x;;. In the financial context, X represents a dataset of 17" returns on a universe
of N assets. Assets’ returns are assumed as independent and identically distributed random
variables, even though it is not true in the real financial world but it is typically acceptable for
mathematical calculations. A sample mean p and a sample covariance matrix S are defined as

follows:

1
T=—XI,

T

. 1 Nt (2.21)
S=_X(I1--11T)X

T< T )

where 1 denotes a vector of ones and I denotes an identity matrix. A sample average of the
returns of asset 7 is T;. = %Zthl Tit.

One critical problem of the sample covariance matrix is a singular problem. In the Equation
2.20, the solution of the global minimum variance portfolio requires an inverse of the covariance
matrix. However, in a high-dimensional space, i.e. when N > T', the sample covariance matrix
is not invertible. Equation 2.21 shows that the rank of S is less than or equals T"— 1. If N
exceeds T'— 1 then the sample covariance matrix is singular, in other words, there is not enough
information in the input data to estimate the covariance matrix. In this case, the inverse of this

ill-conditioned covariance matrix will amplify the estimation error into a solution of the portfolio
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Figure 2.12: The shrinakge estimation is interpreted as a trade-off between bias and variance.
The shrinkage intensity is from zero to one. The shrinkage intensity zero means it uses only
the sample covariance matrix. And the shrinkage intensity one means it uses only the target
matrix. Source: Olivier Ledoit et al. (2004a).

selection, i.e. portfolio weights. In a typical stock market, there are thousands of companies
to select from, but usually using maximum of ten years of monthly data, i.e. N >> 1000 and
T = 120 (although N >> T, N is assumed to be fixed and finite while T — o0). Therefore,
covariance matrix estimation is a central research topic of the global minimum variance portfolio

which focus on building a robust and invertible covariance matrix.

2.2.3 Shrinkage covariance matrix estimations

In order to improve the estimation of the covariance matrix for the portfolio selection in the
high-dimensional space, Olivier Ledoit et al. (2003) propose to combine two estimators, the
sample covariance matrix and another covariance matrix, by an optimal weighted average. This
approach is known as a shrinkage technique in statistics and is used in many domains such as
decision theory. A main idea of this shrinkage approach is that the sample covariance matrix is
ill-structured and ill-conditioned in a large-dimensional estimation, therefore we could impose
its structure to make it be well-conditioned and also invertible. It will shrink an unbiased but
has a lot of estimation error (e.g. the sample covariance matrix) to a biased but less estimation
error. Thus, the output is an invertible and well-conditioned covariance matrix which is well-
defined for estimating the inverse covariance matrix. A beauty of this method is that a proper
combination of two extreme estimators could perform better than either of them, this is a
fundamental principle in statistics and machine learning is that there is an interior optimum in
the trade-off between approximation error and estimation error (bias-variance tradeoff). Figure

2.12 illustrates this trade-off and the shrinkage intensity.
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There are three components in the shrinkage estimator, the sample covariance matrix S with
entries (sij)ij=1,., N, a pre-defined target matrix F with entries (fi;)ij=1,. .~ and an optimal
shrinkage intensity « € [0,1]. The linear shrinkage covariance matrix 3 is defined as a linear

combination below:

3 =aF +(1-a)S. (2.22)

The pre-defined target matrix F is an invertible, well-conditioned and biased covariance
matrix estimator. Also, it has the same shape as the sample covariance matrix S. It is invertible
while the sample covariance matrix S maybe not, therefore, the shrinkage matrix 3 will be
invertible definitely. It is well-conditioned while the sample covariance matrix S is numerically
ill-conditioned (even in the case that S is invertible), therefore, the shrinkage matrix 3 could
inherit the good conditioning properties of the target matrix. Typically, the target matrix is
domain-specific. Different applications have different feasible target matrices, and each of them
is used to express its perspective of the true (unobservable) structure of the covariance matrix

for a particular domain. The target matrix F has some weak assumptions such as:

o Asset returns are independent and identically distributed (i.i.d.) through time,
¢ The number of variables (i.e. assets) is fixed and finite: N € NT,
e The number of observations goes to infinity: T — oo,

o First fourth moments of the asset returns are finite: E[|lxyxjzrian|] < oo Vi, j,k, 1t €
N*[i <N,j<N,k<NJI<N,t<T.

The shrinkage intensity « is "optimal" in a sense of similarity between the estimated shrinkage
covariance matrix and the true (unobservable) covariance matrix. To measure that similarity,
Olivier Ledoit et al. (2003) used a mean squared error which is a common loss function in
statistics and machine learning. Using a Frobenius norm of the distance between those two

matrices, we have a quadratic loss function below:

L(a) = |IZ - 2|

(2.23)
= ||aF + (1 —a)S — 3||%

in which, ||-||r denotes the Frobenius norm of a squared matrix. For example, with a N x N

matrix A with entries (ai;); j=1,.. n, the Frobenius norm is calculated by:

N N
N (2.24)

i=1j=1

|AllF =

Obtaining the optimal shrinkage intensity by minimizing an expected value of the loss func-

tion L(«r), we define a risk function R(«) as follows:

29



Chapter 2. Preliminaries

R(a) = E [L(o)]

[lloF + (1 - )S - 3|7

I
E =

E [Oéfij + (1 — Oé)SZ‘j — Uz'j]Z

.
hE

== (2.25)
N N )
=3 Var(afij+ (1 - a)si) + (E [afij + (1 — @)sij — 035])
i=1 j=1
N N
= Z Z aZVar(fij) +(1- a)QVar(sij) + 201 — ) Cov( fij, 5i5) + a2(¢i]~ — aij)Q.
i=1j=1
Then, the first and second derivatives of the risk function R(«) are
OR N N
0= 22 Z aVar(fi;) + (1 — a)Var(s;;) + (1 — 2a)Cov( fij, sij) + a(dij — Uij)z,
==l (2.26)
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We have an optimum value a* by letting B0 = 0 and it is verified as a minimum value
o

2
because ‘3712% >0 Va € R.

o = argmin R(«)
a€R

1 o Var(sg;) — Cov(fij, $i5)
S S Var(fij — sij) + (635 — 0ij)?

(2.27)

With the assumption of 7' — oo while N is fixed and finite, Olivier Ledoit et al. (2003)
proved that the "optimal" shrinkage intensity a* has a form of x/T" and by using an assumption
that the asset returns have finite fourth moments, they showed that the constant x converges

to:

R (2.28)

where

N N
=33 avVar[vTs;), (2.29)

=1 J:

N N
- Z Z aCov ffljv \/Tsz]]a (2.30)
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v=> (¢ —0ij)? (2.31)

N
=1y

=1

<

in which aVar and aCov denote an asymptotic variance and an asymptotic covariance op-
erators respectively. However, the x is unknown in practice and must be estimated through
estimating the triple elements < m, p, v >.

Firstly, an estimated element for « is

N N
F=>3 H (2.32)
i=1j=1
with
1 & 2
frij = T Z ((xzt - fi.)(l‘jt — Tj.) — Sij) . (233)
t=1

Secondly, an estimated element for p is

N N N 7 S~ Sii A

p=D_Fat+ 3 ( i + \/uﬁjj,ij)- (2.34)
: : . T . Sii Sjj

in which, 7 is an average sample correlation and 9;; ;; is an estimated value for aCov{[v/Ts;;, VT sij].

They are calculated as follows:

2 N-1 N
F=— > oy, (2.35)
(N-1)N i=1 j=i+1
. 1 &
ﬁii,ij = T Z ((5Uzt — fi.)g — Siz‘) (({L‘@t — fi.)(l'jt — fj.) — Sij), (2.36)

t=1

where 7;; is a sample correlation between the returns of asset ¢ and j and it is defined as:

Tij = Sij . (237)

Thirdly, an estimated element for - is

N N
v = Z > (fij — sij)* (2.38)

Finally, an estimated constant « is

(2.39)

Under the assumption of finite sample, there are scenarios that the ratio /T ¢ [0,1]. In
those scenarios, we could simply clip the ratio in the interval of [0,1]. Therefore, the optimal

shrinkage intensity is

31



Chapter 2. Preliminaries

4" = max (0, min (; 1)) (2.40)

2.2.3.1 Shrinkage to the identity matrix

A simplest model for covariance matrix estimation is just a scalar multiple of the identity matrix
pI. In which, it assumes that all variances are the same to one another and all covariances are
the same to one another. The identity matrix is one of the most well-structured, well-conditioned
and always invertible. Therefore, it is a prefered target matrix in various domains. In general, the
identity matrix is used in general cases in any domain because of its simplicity for mathematical
computations or whenever we have no perspective about the true structure of the covariance
matrix.

Using the identity matrix as the target matrix, the shrinkage covariance matrix imposes
the structure of the sample covariance matrix toward the identity matrix (Olivier Ledoit et al.,
2004a). From another point of view, this shrinkage estimation is a linear combination of the
sample portfolio and an equally-weighted portfolio which is an extreme example of a diversified
portfolio(DeMiguel, Garlappi, et al., 2009). Although the identity matrix seems to be a non-
optimal choice for the target matrix because of its little information, but interestingly, it yields
a good shrinkage matrix or at least significantly better than the sample covariance matrix.

Therefore, the shrinkage to the identity matrix is used as a baseline for other studies.

2.2.3.2 Shrinkage to the single-index model

In a single-index model, Sharpe (1963) assumed that the asset returns xz;; are correlated with

market returns xq; as follows:

it = o + Bixor + €t (2.41)

in which residuals ¢;; are independent of one another and a variance of each asset is assumed

as constant (Var(e;) = 0;; and d = (45)i=1,...n). The implied covariance matrix is:

® =0588T+ A (2.42)

in which o3, is the variance of the market returns xq;, 3 is the vector of slopes and A =
diag(d) is a square diagonal matrix containing residual variances.

Applying ordinary least square regression, we obtain the estimated slope vector b with
entries (bi)i:h_,, ~ and the estimated residual variance vector d with entries (dii)izl,m, ~- Then,

the covariance matrix estimated from the single-index model is:

F = s3,bb™ + D (2.43)

in which sZ, is the sample variance of the market returns and D = diag(d).
Using the target matrix F above, this shrinkage estimator is known as the shrinkage to the

single-index model (Olivier Ledoit et al., 2003). This target matrix contains a perspective of
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Figure 2.13: Optimal shrinkage intensity of the linear shrinkage to single-index model on the
U.S stock market through 23-year data. This is the weight placed on the target matrix, which
is the covariance matrix of the single-index model in this case. On the U.S stock market, it is
stably high (around 80%). Source: Olivier Ledoit et al. (2003).

the whole stock market, but it is specific for the financial domain. Because of containing the
information of the market, it is usually better than the shrinkage to the identity matrix.
Figure 2.13 shows the estimated shrinkage intensity of the U.S stock market through the 23-
year data by the shrinkage to the single-index model. It is remarkably stable through time and
fairly high (around 80%). It means it uses 80% structure of the single-index model covariance
matrix and uses only 20% structure of the sample covariance matrix. It suggests that the
estimation error in the sample covariance matrix is four times as there is bias in the single-index

model.

2.2.3.3 Shrinkage to the constant-correlation model

The target matrix has two requirements: i) a small number of free parameters to estimate a lot
of structure of the covariance matrix and ii) represent (multiple) important characteristics of the
true (unobservable) covariance matrix. The single-index model above is a single-factor model
to represent the whole stock market, while the industry standard in finance is multiple-factor
models such as three, five or fifty factors. The more factors in the model, the more flexibility
and accuracy for it. Its bias is reduced while estimation error is increased.

Similarly, another choice for the target matrix is a constant-correlation model. Simply taking
an average of all the sample correlations and that constant is assumed as the correlation for all
pairwise assets. Let us define the target matrix F with entries (f;;)i j=1,.,n by means of the

sample variances and the average sample correlation:
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Sii ifi=j
fi=13" S (2.44)

T'\/SiiSj4 if 4 75 ¥
Using the constant-correlation model as the target matrix is known as the shrinkage to
the constant-correlation model (Olivier Ledoit et al., 2004b). An advantage of the constant-
correlation model is that it yields comparable performance but is easier to implement than the

single-index model.

2.2.4 Portfolio performance metrics

In this section, we describe three most common metrics to evaluate a portfolio’s performance
that how well did it perform in a given period of time: portfolio annual return, portfolio annual
volatility and Sharpe ratio. However, there is no single metric that could indicate which portfolio
is better. Therefore, in order to have a bigger view for the investors, we also describe in details
various portfolio performance metrics. They are useful to analyze the portfolio’s advantages and
disadvantages.

Let us consider a portfolio in a period [Ty, T (To < T') with its portfolio values P and its

portfolio returns R, the portfolio return R; at date ¢ is:

_ P =P

R
! P,

(2.45)

Cumulative return

The portfolio’s cumulative return is a total profit or loss of the portfolio for a given period of

time. In a period of time [Ty, T] where Ty < T', the cummulative return is calculated as follows:

Pr—-P
Cumulative return = ——— 10 (2.46)
P,
In details, we could compute the cummulative return by using daily portfolio returns as
follows:
T
Cumulative return = H (Re+1)—1 (2.47)
t=Tp+1

in which R; is the portfolio return at date ¢ where Ty <t <T.

Annual return

Annual return is a standardized portfolio return to make it comparable to other portfolios.
The annual return could be defined as a yearly profit or loss of the portfolio. Its formula is as

follows:

Annual return (Rp) = (Cumulative return + 1) oyears L (2.48)
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in which mo_ years is a number of years of a backtesting period. Assuming this is a daily
T-Tp

252
In detail, the portfolio return of a portfolio with several financial assets is the proportion-

backtesting and there is 252 trading days in one year, then no_ years =
weighted combination of those assets’ annual returns by a following equation:

Rp =) wiR; (2.49)

where R; is the return of asset ¢ in the period [Ty, T'| and w; is the proportion (i.e. weighting)

of the asset 4 in the portfolio such that ), w; = 1.
Annual volatility

Annual volatility indicates the risk of an investment portfolio in a period of time. However,
there is no definition for the risk of portfolio. Therefore we need an alternative approach and
Markowitz uses the standard deviation on the portfolio returns to show the uncertainty of the

portfolio. The annual volatility is calculated as follows:

Annual volatility (op) = oc(R)v252 (2.50)

in which o¢(R) denotes the standard deviation of the portfolio return series R and it calcu-

lated as follows:

N } (2.51)

where o; ; is the co-variance of two assets ¢ and j.
Sharpe ratio

The portfolio annual return and annual volatility are the two most common portfolio metrics

to measure the performance of portfolio. However, considering a portfolio with higher volatility
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but has a better return than another portfolio, in this case, investors need to evaluate a trade-off
between risk and expected return to know that: is an additional return worth for an increasing
risk level? In 1994, Sharpe (1994) introduced a Sharpe ratio to measure the performance of an
investment compared to its risk, after adjusting by a risk-free asset. This ratio is determined as

follows:

ER — Ry]

E[R — Ry] (2.52)
\/ Var[R — Ry]

where R is the investment’s return, Ry is the risk-free rate in the same investment horizon

Sharpe ratio (SR) =

such as a return of a short-term government treasury bond. R — Ry is an excess return series.
ER — Ry] and o are the expected value and the standard deviation of the excess return. A

portfolio with a higher Sharpe ratio is more attractive to investors.
Max drawdown

The maximum drawdown is also an important indicator for portfolio efficiency evaluation.
This indicator reflects the portfolio’s level of risk in the impoverished and complicated market

situation. The maximum drawdown can be calculated as follows:

arg max (Pt_Ptﬂ (2.53)

Max drawdown (M DD) = arg max
t€[To,1] Py

t*€[To,T)]

Clearly, a lower maximum drawdown will attract investors because it shows that the invest-

ment strategy is less risky.
Daily Value at Risk

Value at Risk (VaR) estimates the risk of loss of the portfolio. It answers a question “How

much a set of investments might lose®. Its formula is as follows:

VaRy(X) = —inf{z € R: Fx(z) > a} (2.54)

in which, X is a distribution of the portfolio’s profit and loss, F'x is a cumulative distribution
function of random variable X and a € (0,1) is a level of risk we are considering. Common
levels of « are 1% and 5% in a time horizon of one day or two weeks (Pearson, 2011). In default

of the VaR in our system, we use daily Value at Risk at level 5%.

Daily turnover
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This indicator shows the stability of the portfolio at a a time when the portfolio is changing
its status according to an optimal strategy. Therefore, the investors will prefer a lower turnover,
because this shows that the liquidity risks will reduce and the transaction costs are also going

lower. The portfolio turnover is defined as follows:

T-1 N
1
Portfolio Turnover = Wo—l tZTO ; (|Wt+1,i - Wt,i|) (2.55)

in which, wy; is a weight value of asset i at date ¢.
Alpha

This metric is a measure of the portfolio’s superior return to the theoretical expected return.
The theoretical expected return is calculated by Capital Asset Pricing Model (CAPM), which
relies on the Beta coefficient and the average market return. The metric is also generally known

as Jensen’s alpha and is identified as follows:

o = Rp — [Ry + B(Ry — Ry)] (2.56)

in which Rp is the average return of the portfolio, Ry is the risk-free rate, 3 is beta coefficient
of the portfolio and often estimated by Ordinary Least Square and Rjs is the average market

return.

Beta

In finance, a Beta () measures a co-movement of a portfolio and the market. In other
words, the Beta could be seen as the similarity of the portfolio and the market. We denote the

variance and covariance operators as Var and Cov respectively. Its formula is as follows:

B Cov(R,Rnm)

b= Var(Rm) (257)

Winning rate

Winning rate is the fraction of bets has won. In a trading context, it is the number of positive

returns over the number of returns. Its formula is as follows:

T
Rt >0
Winning rate (WR) = W (2.58)
— 1o

Running time

This indicator measures a total running time in seconds of a given trading strategy. In the
investment industry, a strategy has to be optimized to run faster. Therefore, we also describe

this indicator.
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2.2.5 Backtesting

In order to evaluate a trading strategy on the time-series of stock data precisely, we rely on
our backtesting system which accurately handles every event through the time-series dataset.
In this section, we comprehensively describe our backtesting system and show an example of

usage.

2.2.5.1 Introduction

Instead of using a simple portfolio evaluation approach with a few lines of code which is easy to
implement, easy to use but impractical. Investors need to have a reliable portfolio performance
in order to compare trading strategies. Therefore, the backtesting system is important in the
investment industry. Given a trading strategy, the backtesting system estimates the portfolio
performance and also reveals the disadvantages of that strategy in the future scenarios of the
real market. We built our backtesting system to automatically evaluate our research ideas and
simplify our processes, in which we only focus on the calculation for portfolio selection and the
backtesting system does the rest for us.

Assuming we could invest an infinite amount of money into a "trash' stock which has only
one transaction of one share to increase its price from one cent to two cents, definitely we will
have an impossible return and significantly beat the market!. This assumption and many other
simple assumptions are integrated into our backtesting system. There are some assumptions we
have to simplify because they need more research on their effects, e.g. market impact, and are
out of the scope of this thesis.

There are many aspects that need to be considered in building the backtesting system. For
example, a portfolio calculation cannot see the future data®. To make our results more reliable,
we handle these problems carefully and systematically. In this section, we will discuss about

challenges of the backtesting system.

2.2.5.2 Architecture

Similar to the microservice architecture, the backtesting system is designed with multiple mod-
ules and each module has different purpose. They communicate with each other or use the

results from other modules. Including:

o A source code of trading strategy. In the outside of the backtesting system, the users (i.e.

we) focus only on their trading strategy or their portfolio. It has two stages:

— Initialization stage: The strategy could define its initial parameters or any calculation
before actually running the backtesting process. This is an optional stage for the

strategy,

— Handling stage: The strategy has to define a function to calculate its portfolio. From a

given dataset as its input, an output of this function is its portfolio weights which will

1t is called Paper Trading, but our example is an extreme case.
2In short, this is Look-Ahead Bias.
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be translated automatically to long/short orders, and those orders will be submitted

to the system.

o A core backtesting module: At each time point in the original dataset, the system will
prepare a subset from the beginning of the original dataset up to the current time point.
Then it feeds this subset to the handling function above and receives the orders. Those
orders will be matched with the prices at a next time point then it repeats the backtesting
process. Finally, we have all information about the portfolio’s behaviours and their results,

then we compute various portfolio performance metrics,

o An API module to receive a source code file and other parameters then execute the core
module. With the detailed results from the core module, it easily visualizes the portfolio

performances.

Formal description

We formally describe the backtesting process and also summarize it as a pseudo-code in Algo-
rithm 0. Moreover, we want to make the backtesting results as reliable, therefore we integrate
any regulations of real markets into our system. For example, instead of assuming no impact
of the risk-free rate Ry, our backtesting system on the Vietnam stock market will practically
consider Ry as a 10-year interest rate of Vietnam government bonds.

Let’s consider N assets from the beginning of the market (¢ = 0) to the present time point
(t = T), we denote the stock prices of all assets ]D)f(\)]:T} and the traded volume Vfg:T]. Suppose
that we want to perform backtesting in the period [T7, 73], such that 0 < T} < Ty < T°, with an
initial capital Pz, and the first return value Ry, = 0, the backtesting process for each timepoint
t € [T1,Ty], including two phases, is describes as follow.

In the first phase, we calculate all the necessary information for the portfolio. In more detail,
with the current actual vector of volume V,_; (i.e., real holding assets at timepoint ¢t — 1) and

their latest prices data Dy, we compute a current portfolio value by P, = Dy - V;_; and a current

P
P ! _ 1. Please note that at the first timepoint t = 77, the first value of
t—1

portfolio and portfolio return are P7, and 0 respectively. We then derive the matched number

portfolio return R; =

of shares by taking the minimum value of the previous ordered volume V;_; and the current real
traded volume V;*. Now the actual volume at present V; is determined by the previous actual
volume (at timepoint ¢ — 1) plus the matched shares. The backtesting system automatically
handles this phase base on previous input information before switching to the next phase.

In the second phase, the goal is to determine a target portfolio from the currently available
data ID)fg: 1 (the data from the beginning to the timepoint t). We start by using the shrinkage
weights W, to estimate the vector of weights at timepoint ¢ of N assets w; and then the target
volume vy = Pywi. To move the portfolio from current position V; to the target position

v¢, we place an order number of shares V; = vy — V; (negative values mean selling orders).

3The Ty # 0 because at the first timepoint ¢ = 0 there is no data for the calculation.
4To simplify the process, we assume that we can buy/sell up to the maximum volume of the real market and
no effect of market impact to our trading strategies.
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When all computational steps are finished at timepoint ¢, the backtesting system will repeat
the whole process at the next timepoint ¢ + 1, and so on, until the end of the backtesting
period. Finally, once we have all related information at every timepoint, such as returns R, the
system will calculate and output the performance indicators of the portfolio. One of the essential
advantages of our backtesting system is that it can carry out the whole process sequentially and
precisely in a real-time manner to ensure that we do not get any mistakes in time series testing

(e.g., Look-Ahead Bias).

Algorithm 2 Backtesting process for trading strategies from historical stock data.

Input: Historical daily prices of N assets ]ng:T], historical daily traded volumes of N assets
Vfg:T], initial portfolio capital Py, backtesting period [T1,75], historical daily returns of
benchmark B[O;T]F)

Output: List of various portfolio performance indicators

1: Ry =0, VT1 =0
2: fort=1T,: 15 do
3. if (¢t > T1) then

4: P,=D;-V;_4
P,

5: R; = —1

TP
6: Vi = Vf(\)f:T] ‘t
T Vmatched = (mln(V%7 ’Vt171|)7 shy min(VfV, |Vt]X1D)
8: Vt - Vt—l + Sign (Vt—1> O] Vmatched
9: end if

0. we=w. (5(Df,) Dfy)

11: v = Pywy

12: Vi =vi — Vy

13: end for

14: Compute respectively the quintuple of portfolio’s indicators (R, o, SR, PT, ) by equations
4.6, 4.7, 4.5, 4.8, 4.9.

15: Return (R, o, SR, PT, «)

Utility functions

The source code of trading strategy should focus on its calculation part. Therefore, there are
some utility functions in our system to help it reduce its length and remove repeated code. Two

common utility functions are:

e get_wuniverse: at any timepoint in the backtesting period, this function gets all valid asset

tickers in the universe® then returns them as a list object,

e rebalance__portfolio: with a weights object as its input parameters, this function will con-

vert the assets’ weights from percentages to their expected positions. Comparing to their

5They are listed assets but for some reason, the regulator marks them as untradable. Therefore, their data are
still available in the dataset but we have to ignore them.
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current positions and by taking into account the commission fee, this function will place

long/short orders to fulfil the portfolio’s positions.

Code example

We illustrate the efficiency of our backtesting system by using the simplest trading strategy,
the Equally-Weighted (EW) portfolio. A Python code of this strategy is less than ten lines as

follows:

1: from backtest.api import get_universe, rebalance_portfolio

2: def initialize(context):

3 pass

4: def handle_data(context, data):

5: universe = get_universe(context, data)

6: weights = {asset: 1/len(universe) for asset in universe}
7: rebalance_portfolio(context, data, weights)

In which:

A first line is to import two functions we will use later,

A second line is a static line to define a function that will be executed before running the

backtesting process,

o And a next line is to skip the initialization function above because we don’t have any

parameter to define or calculate at this time,

e Similarly, a fourth line is a static line to define a handling function which will be executed

at each timepoint in the backtesting period. It has two fixed parameters:

— context: this object contains information about current context, e.g. we could get a

current timepoint by using command contezt.datetime,

— data: this is a subset that contains the data up to current time point.

o A fifth line is to get all valid assets’ tickers in our universe at current timepoint by using

function get universe,
o At a sixth line, the EW portfolio’ weights for all assets is one over the number of assets,

o Finally, we rebalance our EW portfolio by using the function rebalance portfolio from the

weights object.
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Backtesting parameters

There are many customizable parameters in the backtesting system in which some of them are
required. Their descriptions and default values are in Table 2.1.

We will test the above Equally-Weighted portfolio with following parameters:

Starting date is 2013-01-01,

o Ending date is 2019-12-31,

Initial capital is 10? (i.e. one billion VND),

e Benchmark is VN-Index.

Dataset

We briefly describe a dataset in this experiment for the EW portfolio above. We use daily
historical data of the Vietnam stock market, particularly is HOSE exchange. Backtesting period
is from 2013 to the end of 2019 with 1744 trading days, prior to 2013 is for computing preparation.
The number of assets varies across backtesting period between minimum N = 303 and maximum

N = 387.

Output

Table 2.2 reports final portfolio performances of the EW portfolio above. Figure 2.14 visualizes
the cummulative returns of the EQ portfolio and the benchmark over time. Figure 2.15 compares
annualized returns of them over each year. Figure 2.16 visualizes the maximum drawdown of
the EW’s returns over time. Figure 2.17 visualize top five periods that have largest drawdown
of the EW portfolio. Figure 2.18 and Figure 2.19 visualize daily turnover and portfolio weights
of the EW portfolio over time.
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Table 2.1: Descriptions of seven parameters in the backtesting system.

Parameter Required field | Default value | Description

Starting date of the backtesting
process, at the first date the prior
data up to this date are provided to
the portfolio calculation function,

start Required N/A

Ending date of the backtesting
process,

end Required N/A

Initial capital of the portfolio at the
first date, default is one billion
VND. This amount is chosen
because it is not too high or too low.
A portfolio with high capital, e.g.
institutional investors, is out of the
scope of this thesis because there are
many aspects they have to consider,
e.g. portfolio liquidity. A portfolio
with low capital, e.g. retail
investors, is not easy to analyze the
portfolio characteristics because
they don’t have enough money to
invest in portfolio tail,

capital__base Optional 106

Benchmark for the portfolio, default
is VN-Index. The benchmark
returns are the same period as the
portfolio (i.e. from starting date to
ending date). This could be another
market index or another asset. In
this scope of this thesis, we are using
the Vietnam stock market, therefore
we chose the Vietnam index as our
benchmark,

bm_ ticker Optional VN-Index

An universe for the portfolio, default
is HOSE - the biggest stock
exchange in Vietnam. At each date,
the portfolio will receive the data of
universe Optional HOSE all listing assets in the universe and
all delisted assets will be removed
from the dataset, therefore the
portfolio calculation doesn’t have to
deal with these changes,

A trading unit of the market.
Particularly for the Vietnam stock
market, a unit for an order is 10
shares according to their regulations,

trading_ unit Optional 10

A commission fee for each order,
commission_ fee | Optional 0.03% default is 0.03% according to
Vietnam regulations.
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Table 2.2: The out-of-sample performance results of the Equally-Weighted portfolio on the
Vietnam stock market from 2013 to the end of 2019.

Indicator Result
Annual return 15.4273%
Cumulative returns | 169.9080%
Annual volatility 10.1984%
Sharpe ratio 1.1072
Max drawdown -19.9252%
Daily value at risk | -1.2259%
Daily turnover 1.3885%
Alpha 0.0654
Beta 0.5056
Winning rate 58.4289%
Running time 2728

Figure 2.14: Visualization of the cumulative returns of the Equally-Weighted (EW) portfolio on
all stocks in the HOSE from 2013 to the end of 2019. A red line is the cumulative returns of
the benchmark (VN-Index), and a blue line is the cumulative returns of the EW portfolio. The
unit of the left axis is the percentage.
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Figure 2.15: Visualization of the yearly Annual returns of the Equally-Weighted portfolio on all
stocks in the HOSE from 2013 to the end of 2019. Comparing to the yearly Annual returns of
the benchmark (VN-Index). The unit of the left axis is the percentage.
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Figure 2.16: Visualization of the Maximum Drawdown of the Equally-Weighted portfolio on all
stocks in the HOSE from 2013 to the end of 2019. The unit of the left axis is the percentage.
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Figure 2.17: Visualization of top five largest Maximum Drawdown of the cumulative returns
over the time from 2013 to the end of 2019 of the Equally-Weighted portfolio on all stocks in
the HOSE.
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Figure 2.18: Visualization of the daily turnover of the Equally-Weighted portfolio on all stocks
in the HOSE from 2013 to the end of 2019. A possible maximum value of the daily turnover is
two, i.e. 200%.
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Figure 2.19: Visualization of the weights of all stocks in the Equally-Weighted portfolio from
2013 to the end of 2019. The unit of the left axis is the percentage.
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Chapter

Adaptive Extreme Imbalance: A combination
of Undersampling and Ensemble Learning for

Extreme Imbalance Big Data Classification

Objectives

Imbalanced datasets can be found in various real-world applications, such as fraud
detection and cancer detection. While many methods have been proposed in the
past to handle imbalanced data classification problems, there is a lack of research
specifically addressing the issue of extremely imbalanced data. Additionally, im-
balanced data are increasingly prevalent in big data analysis, where the volume of
data is increasing rapidly. To address these challenges, we propose a combination of
under-sampling and ensemble learning as a method to adapt effectively to different
scenarios of extreme imbalance. Through experimental analysis on 11 datasets from
various sources, we demonstrate that our proposed method is not only competitive
with commonly used methods such as Under Bagging and RUSBoost but also demon-
strates superior performance, particularly in the context of extremely imbalanced big
data classification problems.
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3.1 Introduction

Imbalanced datasets are a common issue in many real-world domains, such as fraud detection
and cancer detection. The task in these cases is to identify a small number of positive data
points (minority class) among a large number of redundant data points (majority class). For
example, in a classification task with an imbalance ratio (IR) of 99, where only 1 out of 100
samples is a positive sample. This presents a significant challenge for the Machine Learning
algorithms. Let us imagine that if they maximize their accuracy, then in the worst case, they
always have an accuracy of 99% by doing nothing. This lazy classifier marks all samples in
our dataset as the majority class, and it has very high accuracy but misclassifies all minority
samples. Several studies have reported that they lose performance with the imbalance datasets
(C. Chen et al., 2004; X.-w. Chen et al., 2005; J. Wang et al., 2006; Hong et al., 2007).

To address the challenge of imbalanced data, several methods have been proposed, which can
be broadly grouped into two levels: algorithmic level and data level. At the algorithmic level, new
classifiers are designed or existing algorithms are modified to handle imbalanced data (Bradford
et al., 1998; Cieslak et al., 2008). At the data level, pre-processing techniques are applied to the
original imbalanced data before applying it to standard classification algorithms. The three most
common techniques are under-sampling, over-sampling (Drummond et al., 2003), and Synthetic
Minority Over-sampling Technique (SMOTE) (N. V. Chawla, Bowyer, et al., 2002). Several
studies (Weiss and F. Provost, 2001; Laurikkala, 2001; Estabrooks et al., 2004) have shown that
using a balanced training set with standard algorithms can give better performance. Another
approach is the cost-sensitive approach (Ling, Q. Yang, et al., 2004), which aims to minimize
misclassification costs, particularly for data points in the minority class. However, this approach
requires additional information about the costs, which may not always be available.

In the era of the computing world, the rapid advancement of computer technologies has led to
an exponential increase in the volume of data, such as in genome biology or banking systems. Big
data, often consisting of millions or billions of records, pose a significant challenge for traditional
solutions, particularly in the context of imbalanced data classification (Del Rio et al., 2014;
Triguero, Galar, Vluymans, et al., 2015; Fernandez et al., 2017). Traditional methods have been
found to be ineffective in handling such large datasets, either due to resource constraints or
poor performance. In recent years, the problem of imbalanced data in the big data context has
received more attention (Triguero, Rio, et al., 2015; Krawczyk, 2016).

In many practical applications, datasets are not only large in scale but also highly imbal-
anced, such as in the case of fraud detection where the imbalance ratio is often greater than 1000
(Juszczak et al., 2008; Shuhao Wang et al., 2017; W. Yang et al., 2019; Mekterovi¢ et al., 2021; X.
Zhang et al., 2021). This scenario of two challenging problems, namely big and extremely imbal-
anced data classification, requires an effective solution that addresses both issues simultaneously.
In this study, we demonstrate that a simplified combination of the under-sampling technique
and ensemble learning can effectively handle this extremely imbalanced big data classification
problem. Our proposed method provides a promising solution for addressing the challenges of

large and imbalanced datasets, offering improved performance over traditional approaches.
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3.1. Introduction

The organization of this chapter is as follows: Section 3.2 surveys traditional approaches for
handling imbalanced data. Section 3.3 surveys several approaches for handling imbalanced data
in a big data context. Section 3.4 presents an overview of recent research related to the topic
of extremely imbalanced data, imbalance big data classification and the gap between them.
In Section 3.5, we present our proposed methodology, including detailed explanations of the
experimental design and results. The chapter concludes with a summary of the key findings and

a discussion of future research directions in Section 3.7.
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3.2. Imbalance problem in traditional data

3.2 Imbalance problem in traditional data

One of the main challenges in data mining and machine learning is the problem of imbalanced
data, as it is popular in many real-world applications. Such as fraud detection in telephone
calls (Fawcett et al., 1997) and credit card transactions (Chan et al., 1999). In these cases, the
minority class (i.e. fraudulent transactions) is heavily outnumbered by the majority class (i.e.
legitimate transactions). For example, in a dataset where only 1% of the data belongs to the
minority class and the remaining belongs to the majority class. This classifier always predicts
the majority class will achieve an accuracy of 99%. However, this classifier would be essentially
useless as it would not be able to detect any instances of the minority class. This highlights
the importance of developing effective methods for addressing imbalanced data classification
problems.

There are various methods that have been proposed to address the problem of imbalanced
data, which can be broadly categorized into two levels: those that operate at the data level and
those that operate at the algorithmic level (N. V. Chawla, Japkowicz, et al., 2004). Algorithms
that operate at the algorithmic level are specifically designed to handle the minority class by
themselves, while algorithms that operate at the data level use sampling strategies to re-balance
the data prior to applying traditional Machine Learning algorithms.

At the data level, methods used to tackle imbalanced datasets can be broadly categorized
into five main groups: sampling, ensemble, cost-based, distance-based, and hybrid. The sam-
pling techniques focus on balancing the dataset by either removing or replicating data points.
Ensemble methods, on the other hand, combine multiple classifiers to enhance performance.
Cost-based methods balance the data by adjusting the sample size of each class in accordance
with the costs associated with each class. In contrast, distance-based methods focus on the
minority class by reducing the distance between the minority and majority classes. Hybrid
methods, as the name implies, combine different techniques to achieve a balanced dataset.

One algorithmic approach to handle imbalanced data is to use classifiers that are specifically
designed for this problem. Another approach is to use classifiers that minimize the total cost of
classification errors by assigning different costs to the minority and majority classes. These are
called cost-sensitive classifiers. Additionally, another way to convert a cost-insensitive classifier
into a cost-sensitive one is to use wrapper methods that adjust the classifier’s decision threshold.

Both data-level and algorithm-level methods that are sensitive to costs can deal with imbal-
anced data by assigning different costs to the minority and majority classes at both the data
and algorithm levels. At the data level, these methods use cost-based techniques to change the
sample size of each class so that the costs of each class are balanced (Zadrozny et al., 2003).
At the algorithm level, these methods directly minimize costs by using a loss function that is
specific to costs. In addition, wrapper methods can convert a cost-insensitive classifier to a
cost-sensitive one by adjusting the decision threshold (Domingos, 1999). These methods have
been shown to be effective in handling imbalanced data in various applications.

In the context of the class imbalance problem, we focus on the imbalance in class frequency,

particularly the imbalance between different classes. However, the class imbalance can also
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exist within a single class due to small clusters of examples (Japkowicz, 2001; Jo et al., 2004).
The existence of infrequent instances that are hard to categorize is frequently associated with
this (Weiss, 1995). This problem is known as small disjuncts, and it can hinder classification
performance (Jo et al., 2004; Japkowicz and Stephen, 2002; Japkowicz, 2003; Prati et al., 2004).
Rules that encompass a minor group of instances originating from inadequately represented
ideas are known as small disjuncts (Weiss, 2004; Rokach and Maimon, 2005; Holte et al., 1989).
Although small disjuncts are not the focus of this study, further information can be found in
S. Chen et al. (2013).

In this section, we review the various methods for addressing the imbalanced data problem,
including resampling techniques, cost-sensitive learning, and ensemble methods. Our focus is
on binary classification, because we could decompose multi-class classification problems into a
set of binary classification problems. The strengths and limitations of these methods will be

discussed.

3.2.1 Data level methods

In the context of imbalanced datasets, methods at the data level aim to modify the dataset prior
to applying any classifiers. These techniques are designed to re-balance the training distribution
of classes in order to decrease the level of imbalance or reduce noise, e.g. mislabeled samples
or anomalies. Several studies have shown that utilizing a balanced training set can improve the
performance of traditional algorithms (Weiss and F. Provost, 2001; Laurikkala, 2001; Estabrooks
et al., 2004). In this section, we will review some common techniques at the data level, such
as oversampling the minority class, undersampling the majority class, or generating synthetic

samples of the minority class (see Figure 3.1).

Sampling techniques

Sampling methods are a popular approach to addressing the class imbalance in datasets. Studies
have demonstrated that classifiers tend to perform better when trained on a balanced training
set (Weiss and F. Provost, 2001; Laurikkala, 2001; Estabrooks et al., 2004). Sampling techniques
are straightforward to implement, as they do not take into account any class information when
removing or adding observations. These methods are easy to understand and provide a simple
solution for rebalancing datasets.

Van Hulse et al. (2007) performed an experimental comparison of eleven machine learning
algorithms and seven sampling techniques. The models were evaluated using six performance
metrics on thirty-five benchmark data sets. The results indicated that the performance of the
sampling techniques was highly dependent on both the learning algorithm and the evaluation
metric used. The study found that random undersampling performed well overall, outperforming
random oversampling and other intelligent sampling methods in most cases. However, the study
also suggests that no single sampling method is guaranteed to perform best in all problem

domains, and it is recommended to use multiple performance metrics when evaluating results.
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3.2.1.0.1 Undersampling Undersampling (Drummond et al., 2003) is a popular technique
used to balance an imbalanced dataset by reducing the number of instances in the majority
class. The method works by randomly removing instances from the majority class with the
assumption that some of these instances are redundant (see Figure 3.1). However, this method
has its limitations. Since the process is unsupervised, there is a risk of dropping important
instances which may negatively impact the performance of the classifier. Additionally, a perfectly
balanced dataset is not always the optimal solution for undersampling as it may not provide
enough information to train the classifier effectively (Dal Pozzolo, Caelen, Johnson, et al., 2015).
Despite these limitations, undersampling is widely used in practice due to its simplicity and

efficiency in speeding up the training phase.

3.2.1.0.2 Oversampling Oversampling (Drummond et al., 2003) is a method used to ad-
dress the problem of imbalanced datasets by increasing the number of instances of the minority
class. This is done by duplicating instances from the minority class at random, with the goal of
balancing the class distribution and making it more similar to the majority class (see Figure 3.1).
However, oversampling can also increase the risk of overfitting by biasing the classifier towards
the minority class. Additionally, oversampling does not add any new information for minority
instances, and it also slows down the training phase. Despite these drawbacks, oversampling is
a widely used technique in imbalanced datasets as it can help improve the performance of classi-
fiers by providing more data for the minority class. However, this can be particularly ineffective

when the original dataset is fairly large.

3.2.1.0.3 SMOTE SMOTE (Synthetic Minority Over-sampling Technique) is an oversam-
pling method used in imbalanced datasets to generate synthetic samples of the minority class
(N. V. Chawla, Bowyer, et al., 2002). It combines both oversampling and undersampling tech-
niques by creating synthetic samples of the minority class that are similar to actual instances
but not identical to any of them (see Figure 3.1). This method is effective in increasing the
accuracy of classifiers by creating clusters around each minority instance and building larger
decision regions. It is a widely-used technique in machine learning and has been shown to be
effective in various applications. However, it has some drawbacks, such as the risk of increasing
the overlapping area between the classes by creating new minority instances without considering
their neighbourhood (B. Wang et al., 2004).

Variations of the SMOTE have been proposed to address its disadvantages. Borderline-
SMOTE, as introduced by Han et al. (2005), and Safe-Level-SMOTE, as proposed by Bunkhumporn-
pat et al. (2009), both consider the majority class neighbours in their approach. Borderline-
SMOTE focuses on samples close to the class borders, while Safe-Level-SMOTE defines safe
regions to avoid over-sampling in noisy or overlapping regions. These modifications aim to

improve the effectiveness of the original SMOTE algorithm.
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Figure 3.1: Hlustrations of three common sampling methods. These methods include undersam-
pling, oversampling, and SMOTE (Synthetic Minority Over-sampling Technique). The positive
and negative signs in the illustrations denote the minority and majority classes respectively, and
the new data points created by oversampling methods are represented in red. Source: Dal Poz-
zolo, Caelen, Waterschoot, et al. (2013).
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Cost-based sampling

Cost-based methods are a type of sampling technique that takes into account the misclassification
cost associated with each instance. These methods assign different values to each instance based
on the cost of misclassifying them. Unlike the random sampling techniques described above,
cost-based sampling methods assign a higher weight to the minority class instances than to
the majority class instances. This allows for a more balanced dataset, which can improve the
performance of classifiers. Cost-based methods are an important approach to consider when
dealing with imbalanced datasets, as they allow the user to assign different costs to different
instances, taking into account the specific characteristics of the problem at hand.

Zadrozny et al. (2003) proposed Costing, a cost-based undersampling technique that draws
instances with an acceptable probability greater than a pre-defined threshold. Furthermore,
Klement et al. (2009) proposed a more sophisticated and effective approach which combines cost-
based random under-sampling and ensemble learning. The cost-based methods are promising
when dealing with imbalanced datasets. However, determining the misclassification cost for each

class may not be straightforward in real-life scenarios.
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Distance-based sampling

Distance-based methods are a different approach to handle imbalanced datasets compared to
cost-based methods. Instead of considering the cost of misclassification, these methods take
into account the distance between instances in the imbalanced dataset in order to undersample
or remove noise and borderline instances of each class. These methods are computationally
more expensive than other techniques as they require the computation of the distance between
instances. However, distance-based methods have been found to be effective in some cases.

Tomek (1976) proposed a method to improve class separation by removing instances from
the majority class that are close to the minority class. The technique takes into account two
examples x; and x; from separate classes and computes their distance d(x;, ;). A Tomek link
is formed between two examples when there is no other example that is closer to either of them.
This indicates that one of the examples may be noisy or both are borderline cases. By removing
these instances, the majority class is reduced, which can be useful in datasets with noise or
overlapping problems as it can prevent misclassifications by the classifier. This approach is
particularly useful in noisy datasets or datasets with overlapping issues, as it can prevent the
classifier from making misclassifications (Suman et al., 2005).

Condensed Nearest Neighbor (CNN) (Hart, 1968) is a technique used to select a subset
of data from an imbalanced dataset that is consistent with the original dataset when using
the one-nearest neighbour rule (1-NN). The goal of this technique is to remove instances from
the majority class that are far from the decision boundary because they may be deemed less
significant for the learning process. However, CNN is highly sensitive to noise in the dataset, as
many noisy samples will be added to the subset, leading to the misclassification of subsequent
test examples (D. R. Wilson et al., 2000). It is important to note that this method can be used
to reduce the size of the dataset, making it more manageable for the classifier to handle and
improve performance.

One Sided Selection (OSS) (Kubat et al., 1997) combines the Tomek links and Condensed
Nearest Neighbor (CNN). It is particularly useful in datasets that contain a high degree of noise
or overlapping problems. The method first uses Tomek links to remove noisy and borderline
examples from the majority class. This is followed by using CNN to select a subset of the
majority class that is consistent with the original unbalanced set by eliminating examples that
are distant from the decision border (Suman et al., 2005). The OSS method is sensitive to
noise and aims to remove examples that may not be relevant to learning. The objective of
this approach is to remove instances belonging to the majority class that are remote from the
decision boundary, as such instances may be deemed less pertinent to the learning process.

Edited Nearest Neighbor (ENN) (D. L. Wilson, 1972) is a method that aims to remove
instances from the majority class that are misclassified by at least two of their three nearest
neighbours. This approach is particularly advantageous in situations where data is noisy or when
datasets exhibit overlapping issues. The ENN technique eliminates instances located within the
minority region as well as isolated minority instances. To prevent the loss of pertinent minority
instances, the ENN is adapted to only remove negative instances that are incorrectly classified

by their three closest neighbors.
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Neighborhood Cleaning Rule (NCL) is an extension of the ENN method that places a greater
emphasis on data cleaning. NCL initially eliminates negative instances that are incorrectly
classified by their three closest neighbors and subsequently removes majority class instances
that are neighbors of each positive instance. By removing both noisy instances and points
located near the border, the decision boundary is smoothed, thereby reducing the likelihood of
overfitting (Suman et al., 2005).

F. Provost (2000) proposed a cluster-based oversampling method that aims to tackle the
problem of small disjuncts in the data. The method involves clustering the positive and negative
groups using the K-means algorithm and then applying oversampling to each cluster individually.
This improves both the imbalance within the class as well as the imbalance between the classes.

Furthermore, alternative hybrid approaches can be developed by combining sampling, en-

semble, or distance-based methods to tackle imbalances present within datasets.

3.2.2 Algorithmic level methods

These algorithms are adaptations or extensions of existing methods for classification that can
deal with datasets that are imbalanced by increasing the importance of the minority class or
decreasing the importance of the majority class. Typically, these modifications involve taking
class penalties or weights into consideration or shifting the decision threshold to reduce bias
towards the negative class. They can be broadly categorized into three styles: imbalanced
learning, cost-sensitive learning and hybrid/ensemble methods. Imbalanced learning algorithms
attempt to improve the accuracy of the minority class prediction. On the other hand, cost-
sensitive learning algorithms focus on minimizing the cost of wrong predictions by assigning
different misclassification costs to different classes. Hybrid/ensemble methods are approaches
that combine other methods. However, all of these algorithmic-level methods are often tailored
to specific imbalanced datasets, making it important to select the appropriate algorithm based
on the characteristics of the data. Additionally, it is worth noting that these algorithms may also
be used in combination with data-level techniques, such as under-sampling and over-sampling,

to achieve better performance in imbalanced classification tasks.

Imbalance learning

Using Information Gain as a criterion for splitting, Decision Tree (for instance, C4.5 (J Ross
Quinlan, 2014)) aims to maximize the number of instances that can be predicted in each node.
However, this approach can lead to a bias towards the majority class. To address this issue,
Cieslak et al. (2008) proposed splitting with Hellinger Distance (HD), which they found to be
skew-insensitive and resulted in improved performance compared to the standard C4.5 algorithm.
This bias towards the majority class is not limited to decision trees (He et al., 2009; Japkowicz
and Stephen, 2002), but also affects other popular algorithms such as Neural Network (Japkowicz
and Stephen, 2002; Visa et al., 2005), k-Nearest Neighbor (kNN) (Kubat et al., 1997; Mani et al.,
2003; Batista et al., 2004) and Support Vector Machines (SVMs) (Yan et al., 2003; Wu et al.,
2003).
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In the family of SVMs, one such method is the optimization of SVMs directly in terms of
F-measure, as presented by Callut et al. (2005). Another approach is the use of SVMs with
Radial Basis Function (RBF) kernels as the base classifier for AdaBoost, as proposed by X.
Li et al. (2008). Within the group of lazy learning classifiers, W. Liu et al. (2011) proposed
a k-Nearest Neighbors (kNN) weighting strategy, called CCW-kNN (Class Confidence Weights
kNN), designed specifically for handling the problem of class imbalance. This algorithm can
rectify the intrinsic unfairness towards the positive class in original kNN classifiers.

Association rule mining is a technique used to discover relationships between variables in
large datasets. It can be applied to address the issue of imbalanced classes by setting distinct
support thresholds for each class, taking into account the disparities in class distribution (B.
Liu et al., 1999). Rule-based classifiers, such as SPARCCC, developed by Verhein et al. (2007),
are specifically designed to handle unbalanced classification. These algorithms aim to enhance
the performance of the negative class by modifying the original classifier. According to Weiss
(2013), these algorithmic solutions should be preferred over data-level methods because they

can directly address class imbalance without biasing the classifier towards one class.

Cost-sensitive learning

In classification tasks where imbalanced datasets are present, accurately predicting the minority
class is crucial as it often holds greater significance than the majority class. The traditional
classifiers may not perform well in identifying the minority class, as they assume that the cost of
misclassifying the minority and majority classes is the same. For example, in credit card fraud
detection, the cost of a true prediction is zero, while failing to detect a fraudulent transaction
results in financial loss. On the other hand, misclassifying a non-fraudulent transaction as
fraudulent incurs the cost of investigation and correction. To address this challenge, cost-
sensitive learning approaches can be employed, which assign different costs to the prediction of
each class (see Table 3.2 for illustration of a cost matrix that can be used to evaluate the cost-
sensitive fraud detection system). This allows for the handling of wrong-prediction costs without
the need for modifying the dataset. And highlights the importance of utilizing cost-sensitive

approaches.

Table 3.2: A sample cost matrix in fraud detection systems to evaluate the cost of different
outcomes. It is similar to a confusion matrix used in Machine Learning, but instead of treating
all fraud cases as equal, each transaction is evaluated based on its specific cost. Typically, a loss
of money from a fraudulent transaction would have a different cost than an investigation fee
for a non-fraudulent transaction. The cost matrix helps determine if the cost of investigating
a possible fraud is less than the potential loss, in which case it would not be worth further
investigation.

Non-fraud Fraud
Predict non-fraud 0 amount of money
Predict fraud investigation fee 0

Integrating cost information into tree-based classifiers is one straightforward approach to

cost-sensitive learning. These classifiers can incorporate cost-based criteria during the process
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of splitting the tree in order to reduce misclassification costs, as stated in Ling, Q. Yang, et al.
(2004). Additionally, tree pruning techniques can also be used to minimize loss, as demonstrated
in Bradford et al. (1998).

In cost-sensitive learning, the penalties for each class are defined by the cost matrix. By
assigning a higher cost to the minority group, it becomes more important to the algorithm, and
thus, the chances of misclassifying instances from this group are reduced (Krawczyk, 2016). In
Table 3.3 is an example of binary cost matrix for classification task (Elkan, 2001). Each element
of the table, ¢;;, represents the cost of predicting class 7 when the true class is j. Typically, the
cost for correctly classifying an instance is set to zero on the diagonal of the matrix. By adjusting
the costs for false positive and false negative errors, the desired results can be achieved.

According to Ling and Sheng (2008), there are two main categories of cost-sensitive methods:
direct methods and meta-learning methods. Instead of minimizing total error, direct methods
modify the basic algorithm of a learner to take costs into account during the learning process,
which changes the optimization objective to minimizing total cost. On the other hand, any
cost-insensitive learner could be transformed to cost-sensitive learner by using meta-learning
methods. One example of this is Metacost, a method developed by Domingos (1999), which
transforms non-cost-sensitive algorithms into cost-sensitive algorithms.

A study by Loépez et al. (2012) compared how well cost-sensitive learning and over-sampling
methods handled class imbalance. The results showed no significant difference between the two
approaches. The over-sampling methods were SMOTE and a combination of SMOTE with ENN
(Edited Nearest Neighbor by D. L. Wilson (1972)). Their cost-sensitive learners included various
adaptations of C4.5, Support Vector Machine, k-Nearest Neighbors, or FHGML methods (Fuzzy
Hybrid Genetics-Based Machine Learning). These methods were integrated through a wrapper
classifier. In SMOTE+ENN, ENN removed any instances that were incorrectly classified by
their three nearest neighbours in the training dataset after applying SMOTE.

Additionally, a new threshold, denoted by ¢*, can be determined by using the cost matrix, for
cost-insensitive classifiers that generate posterior probability estimates. This threshold allows
for the adjustment of costs associated with false negative and false positive errors, leading to
desired results.

§r= 0 (3.1)
10 + Co1

One way to convert a cost-insensitive method to a method that considers the costs of predic-
tion errors (and possibly other costs) is to adjust the decision threshold (e.g. by Equation 3.1).
This technique, known as thresholding, uses §* (Equation 3.1) to change the output threshold
for classifying samples as per Ling and Sheng (2008).

A key challenge in cost-sensitive learning is defining a suitable cost matrix which base on
previous experiences or through the knowledge of domain experts. Alternatively, the cost of
false negatives can be fixed while the cost of false positives is varied and determined through a
validation set. This method has the benefit of allowing for the exploration of a range of costs.
However, it could be too costly or unrealistic when dealing with large datasets or a large number
of features. (Maloof et al., 1997).
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Table 3.3: A cost matrix.

Actual negative | Actual positive
Predicted negative | C(0,0) = coo C(0,1) = cox
Predicted positive | C(1,0) = cio C(1,1) =c11

Hybrid and ensemble methods

In the literature, various ways of combining data-level and algorithm-level methods have been
proposed to tackle class imbalance problems (Krawczyk, 2016). A possible strategy is to first
apply sampling methods directly on the training data to lower the imbalance ratio between
classes, and then use thresholding techniques or cost-sensitive learning to minimize bias towards
the dominant group. Sun et al. (2007) developed three variants of AdaBoost method that com-
bine with the cost-sensitive approach. They progressively amplify the impact of the positive
class by adding cost factors to the weight calculations in each iteration of the AdaBoost algo-
rithm. These methods have been proven to perform better than plain boosting methods in most
situations.

Two of the most popular methods for aggregating classifiers are Bagging (Breiman, 1996)
and Boosting (Freund, R. E. Schapire, et al., 1996). These methods combine an unbalanced
strategy with a classifier to explore the distribution of majority and minority classes. Balance-
Cascade (X.-Y. Liu et al., 2008) is a supervised technique that reduces the size of the majority
class by iteratively eliminating instances that are accurately identified by a boosting algorithm.
The underlying principle of this method is that observations from the majority class that are
easy to classify are not necessary, and by removing them, the algorithm can concentrate on
more challenging cases. However, a disadvantage of this approach is that it requires multiple
applications of the classification algorithm, increasing computational demands.

EasyEnsemble (X.-Y. Liu et al., 2008) and UnderBagging (Shuo Wang et al., 2009) are
methods that integrate multiple models, each of which captures unique characteristics of the
original majority class. These techniques operate by generating several balanced training sets
through undersampling, training a model on each set, and then combining the predictions in a
manner akin to bagging. EasyEnsemble also incorporates boosting, which allows the method
to take advantage of both boosting and bagging. Additionally, several studies have integrated
undersampling and oversampling in ensembles of support vector machines (SVMs) to improve
performance (Vilarino et al., 2005; Kang et al., 2006; Y. Liu et al., 2006; Benjamin X Wang
et al., 2010).

SMOTEBoost (N. Chawla et al., 2003) combines boosting with the SMOTE and DataBoost-
IM (Guo et al., 2004) generates synthetic samples within the boosting framework to improve
the predictive accuracy of both the majority and minority classes. RareBoost (Joshi et al.,
2001) modifies the boosting algorithm to increase accuracy on the rare class by emphasizing
the difference of true negatives from false negatives and true positives from false positives at
each iteration. JOUS-Boost (Mease et al., 2007) generates duplicates of the minority class with

oversampling and also introduces perturbations (jittering) by adding independent and identically
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distributed noise to minority examples.

Akbani et al. (2004) propose an approach that integrates a modified version of SMOTE
and an error cost technique with SVM. They do this to deal with the poor performance of the
original SVM when working with highly imbalanced data. They show that their method gave
higher performance than random under-sampling (RUS), SMOTE and SVM. Tang et al. (2008)
introduce GSVM-RU, which is a modified version of their earlier granular computing-based
learning framework Support Vector Machine (GSVM). The method employs under-sampling to
address the issues that arise when using an SVM with data that is significantly imbalanced. They
compared the GSVM with three other hybrid learners that also use SVMs: SVM-SMOTE, SVM-
Weight, and SVM-RANDU. On average, GSVM-RU performs better than the other methods
in terms of classification accuracy, as shown by the results. Ahumada et al. (2008) suggest a
method that uses clustering in conjunction with an SVM classifier can help to tackle the issue
of class imbalance. In the clustering stage, data points from the positive class are split into
two distinct clusters. This division is repeated until the datasets produced are either evenly
distributed or readily identifiable. The outcome of the clustering process can be represented as
a directed acyclic graph, also known as a decision tree. The results indicate that the majority
of scenarios show superior performance using their methodology compared to ROS.

Ensemble methods have become a widely used solution for addressing the challenge of class
imbalance due to their flexible nature, as reported in previous studies [24, 29]. Some of the well-
known methods are Bagging, AdaBoost, and Random Forest (Bekkar et al., 2013; Khoshgoftaar
et al., 2007). To improve performance, variations of Bagging such as RUSBagging, Asymmetric
Bagging, ROSBagging, and SMOTEBagging have been proposed. Boosting-based ensemble
approaches, such as AdaBoost, also have their own variations, such as RUSBoost (Seiffert et al.,
2009), ROSBoost (Bekkar et al., 2013), and SMOTEBoost [31]. The Random Forest classifier,
which combines bagging with random feature subspace selection, has been adapted to handle
class imbalance through variants like Balanced Random Forest and Weighted Random Forest (C.
Chen et al., 2004). Additionally, the Balanced Weight Extreme Learning Machine (BWELM)
[5] and Extreme Learning Machine (EWELM) [7] are examples of ensemble methods that assign
dynamic weights to training samples, with higher weights for misclassified samples and lower
weights for correctly classified samples.

Studies suggest that ensemble-based techniques are generally more effective than data sam-
pling methods in addressing the class imbalance, as noted by Galar et al. (2012). They found
that SMOTEBagging, RUSBoost, and UnderBagging showed better results compared to other
ensemble classifiers, with SMOTEBagging exhibiting a slight advantage. The performance of an
ensemble method depends on how well the individual approaches that it combines work together

and outperform them individually.

3.2.3 Evaluation measures

Accuracy (see Equation 2.3) is the most common metric for evaluating performance. The error
rate (see Equation 3.2) is the opposite of accuracy. However, these metrics are not suitable when

the classes are imbalanced, as the larger group, i.e., the negative class, influences the results. For
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example, a simple classifier can label all examples as negative and still achieve a 99% accuracy
score in a dataset where the positive group makes up only 1% of the data. To prevent misleading

results, it’s important to use more appropriate evaluation metrics.

Error rate = 1 — Accuracy (3.2)

Precision (Equation 2.6) checks how many positive samples were labelled correctly by a
model. It is affected by imbalanced classes because it counts negative samples that were la-
belled wrongly as positive. Precision alone is not enough to understand the performance of
a model, as it does not look at positive samples that were labelled as negative. The model’s
ability to correctly identify positive samples out of all positive samples is measured by Recall
(Equation 2.7). Recall only focuses on the positive group and is not affected by class imbal-
ance. However, it does not account for negative samples that were wrongly classified as positive.
Selectivity (Equation 3.3), also known as True Negative Rate (TNR), measures how well your
model correctly predicts all possible negative observations. It takes the total number of correctly

predicted negative data points and divides it by the total number of all negative data points.

True Negative

Selectivity = (3.3)

True Negative + False Positive

G-Mean = VTNR * TPR (3.4)

1
Balanced Accuracy = 5 (TNR = TPR) (3.5)

The F-Measure (Equation 2.9), also known as the Fij-score, is a metric that combines Pre-
cision and Recall to give a balanced view of the model’s performance. The relative weights of
both the Precision and the Recall can be adjusted using a coefficient, 5. The G-Mean (Equation
3.4) combines the True Negative Rate (TNR) and the True Positive Rate (TPR) by taking the
square root of their product to give an overall performance measurement. A performance mea-
sure that takes into account both TPR and TNR values and is more attentive to the minority
group is Balanced Accuracy (Equation 3.5), which is similar to G-Mean. Despite being superior
to Accuracy and Error Rate, these metrics are not effectively evaluating different classifiers and
distributions.

A common evaluation method that plots the true positive rate versus the false positive rate
is the ROC curve, which was proposed by F. J. Provost et al. (1997). This method illustrates
a trade-off between precisely identifying positive instances and wrongly identifying negative
instances. Considering a model that outputs continuous probabilities, a threshold could be
applied to generate a progression of data points along the ROC curve (He et al., 2009). The
area under the ROC curve (AUC) can then be computed as a single metric to compare different
models. Weng et al. (2008) also developed a weighted AUC metric that takes into account any
cost biases that may affect the calculation of the area.

Davis et al. (2006) argue that ROC curves can overestimate the performance of classifiers on
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greatly unbalanced datasets. They suggest using Precision—Recall (PR) curves instead of ROC
curves. The authors show that a classifier can only have a higher ROC curve than another if
it also has a higher PR curve. This follows from the observation that the false positive rate in
ROC, FPR = F'P , becomes less responsive to changes in FP as the negative class size increases.

Seliya et al. (2009) recommended evaluating machine learning models using multiple perfor-
mance metrics. In their study, they evaluated two classifiers on 35 different datasets using 22
different performance metrics. To reduce redundancy and improve performance interpretation,
they used a statistical technique called common factor analysis to group the metrics. They
found that certain metrics complement each other, such as AUC, Brier Inaccuracy (Boichu et

al., 2013), and accuracy.

3.3 Imbalance problem in big data

Generally in the class imbalance problem, the strategies for traditional and big data are similar,
with solutions implemented either at the algorithm level or the data level. The difference arises
from the unique characteristics of big data, such as the need to process a large amount of data
using a big data processing framework that distributes computation across many servers. This
requires the solution to be implementable in a distributed computing environment. As a result,
many class imbalance approaches are not appropriate for big data contexts as they are overly
complex for low imbalance problems and cannot be implemented in large-scale systems.

Big data analysis and processing often demand specialized computing systems and algorithms
that can leverage parallelism and distributed computing. Some of the well-known frameworks
for dealing with big data are MapReduce (Dean et al., 2008), Apache Hadoop (Shvachko et al.,
2010) and Apache Spark (Zaharia et al., 2010). MapReduce breaks down the data into smaller
chunks that are more manageable to process, and then aggregates the results to obtain the final
prediction. Apache Hadoop is a variant and open-source of the Map Reduce. While Apache
Spark processes large data sets faster than MapReduce by using in-memory operations instead
of the split-and-merge strategy. Spark can operate on Hadoop, but it’s not required. Apache
Mahout is a distributed large-scale machine learning library that is open-source and developed by
the Apache Foundation organization. It can be executed on Apache Spark or Apache Hadoop
platforms and provides various classification model implementations. A framework for linear
algebra that is distributed in nature and utilizes the Scala language for programming.

In the context of big data, the issue of class imbalance can be particularly challenging when
utilizing the MapReduce framework. This is due to the fact that within this framework, certain
difficulties such as small disjuncts and insufficient data can become more pronounced. The study
compared three techniques for balancing class imbalance: RUS, ROS, and SMOTE. They used
two subsets extracted from the ECBDL14 dataset (Evolutionary Computation for Big Data
and Big learning workshop data mining competition 2014: self-deployment track 2014), with
one subset having 12 million instances and the other with 600000 instances, both with a class
imbalance ratio of approximately 49. The study used the Decision Tree learners and also the

Random Forest algorithm on Apache Hadoop (MapReduce) and Apache Spark frameworks. The
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findings indicated that the SMOTE was outperformed by both Random Under-Sampling (RUS)
and Random Over-Sampling (ROS). However, RUS yielded better results with a smaller number
of partitions while ROS performed better with a larger number of partitions. In general, models
using Apache Spark performed better than those using Hadoop, and the best overall performance
was achieved by using ROS.

Tsai et al. (2016) compared three different machine learning frameworks: a single machine
framework, a learning framework that is distributed and utilizes data parallelism, and a frame-
work for MapReduce that is based in the cloud. The authors tested the frameworks on four
datasets, including two datasets with binary classes: Protein Homology and Breast Cancer. They
used SVMs in all three frameworks. For the Breast Cancer data, the MapReduce framework
had a lower classification accuracy of 58% compared to the baseline and distributed frameworks
which both achieved an accuracy of 99.39% for the Breast Cancer dataset. With the Protein
Homology dataset, it was found that three different frameworks yielded comparable classification
accuracy of around 99%. However, when the quantity of nodes was raised from 10 to 30, both
MapReduce and distributed frameworks experienced a slight decline in accuracy. The study
emphasizes that relying solely on accuracy as a measure of classification performance may not
provide a complete picture since it does not account for True Negative Rate and True Positive
Rate values for SVMs. A more informative comparison could have been made by including
Apache Spark in the analysis as it has been shown to outperform MapReduce.

Triguero, Galar, Merino, et al. (2016) proposed to use Evolutionary Under-Sampling (EUS)
to address the issue of severe class imbalance in big data. They discovered that EUS was effective
in traditional data and applied it to the Apache Spark framework, comparing its performance
to their previous implementation using the MapReduce and Apache Hadoop frameworks. The
C4.5 decision tree algorithm in both implementations was employed as the base learner, with
EUS attempting to strike a balance between reducing training data and enhancing classification
performance. The researchers modified the Apache Spark framework to handle majority and
minority class instances separately, allowing for a larger quantity of instances belonging to the
minority class were preserved within each subset. There are two big datasets: KDD Cup 1999
and ECBDL’14, with three variants of the latter being used, each featuring combinations of two
distinct classes of DOS vs. U2R or PRB or R2L. The approximate class imbalance ratios for these
datasets were 95, 3450, and 74680 respectively. The results indicated that the Apache Spark
framework was found to have reduced execution times and the EUS outperformed 