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Abstract

This dissertation focuses on the field of multimedia information retrieval, and more specifi-
cally on video-text retrieval. In the era of vast and diverse multimedia content on the internet,
finding relevant videos or texts has become a challenging problem. Before 2012, traditional
keyword-based approaches for video-text retrieval were inefficient and relied heavily on hu-
man annotations. With the advent of deep learning models, the performance of video-text
retrieval systems has greatly increased. In this thesis, we delve into three approaches for
video-text retrieval: the concept based approach, using pre-defined visual concepts and con-
cept bank; the concept free approach, which directly extracts patterns from multimedia data;
and the hybrid approach, which combines elements from both concept-based and concept-
free strategies.

The core objective of this thesis is to train and develop a hybrid model based on la-
tent space and concept space that performs simultaneously retrieval and classification tasks,
while providing the causal explanations for retrieved results. This causality-based retrieval
model aims to enhance user understanding of the decision-making process without impacting
accuracy.

We explore the fundamental elements of video-text retrieval, highlighting the challenges
of aligning and retrieving the information across multiple modalities. In video-text retrieval,
ambiguity in the queries and pre-defined concept banks can make it difficult to accurately
understand the user’s intention. In order to better understand the intention of user query and
to overcome the issue of ambiguity, in the second part of this thesis, we extend a hybrid state
of the art approach by integrating the Part-of-Speech (PoS) tags into their dual encoding
model for video-text retrieval. We explore the impact of PoS-tags on the performance and
explainability of video-text retrieval results and show the advantages of using PoS-tags to
enhance retrieval accuracy, precision, and overall system performance.

In the third part of PhD, we introduced a general framework for analyzing the rela-
tionships and the complementarity between different representation spaces in hybrid ap-
proaches, namely the (non-explainable) latent space and the (explainable) concept space,
in a way to assess to which extend explainable spaces differ from non-explainable ones.
Additionally, the thesis embarks on a comprehensive exploration of the complementarity be-
tween these spaces. Hybrid models like dual encoding model [1] or interpretable embedding
model [2] train two common spaces (latent and concept) in order to find the similarity be-
tween video and text for retrieval purpose, but these models lack the analysis of inter and

i



ii

intra-relationship between those spaces.
In the pursuit of explainability, the concept based part of the hybrid model plays a criti-

cal role. It identifies and extracts semantic concepts from video and textual data, visualized
through tag clouds, making the retrieval process more interpretable and comprehensible.
Current state of the art models provide explanations using tag-clouds, but the provided ex-
planations are not causal. We addressed the problem of providing causal and interpretable
visual explanations for video-text retrieval. By providing a visual representation of the causal
relationships between the query and the retrieved results, tag clouds enhance user trust and
support applications where accountability and insight are paramount.
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Résumé

Cette thèse se penche sur le domaine de la recherche d’informations multimédias, avec un ac-
cent particulier sur la recherche conjointe de vidéos et de textes, appelée vidéo-texte. À l’ère
du contenu multimédia vaste et diversifié sur Internet, la recherche de vidéos ou de textes per-
tinents est devenue un problème difficile. Avant 2012, les approches traditionnelles basées
sur les mots-clés pour la recherche de vidéos et de textes étaient inefficaces et dépendaient
fortement des annotations humaines. Avec l’avènement des modèles d’apprentissage pro-
fond, la performance des systèmes de recherche de vidéos et de textes a largement aug-
menté. Dans cette thèse, nous examinons trois approches pour la recherche de vidéo-textes :
l’approche basée sur les concepts, qui utilise des concepts visuels prédéfinis et une banque de
concepts ; l’approche sans concept, qui extrait directement des modèles à partir de données
multimédias ; et l’approche hybride, qui combine des éléments des stratégies basées sur les
concepts et des stratégies sans concept.

L’objectif principal de cette thèse de doctorat est de former et de développer un modèle
hybride basé sur l’espace latent et l’espace conceptuel et d’effectuer les tâches de recherche
et de classification simultanément, tout en fournissant des explications causales pour les
résultats obtenus. Ce modèle de recherche basé sur la causalité vise à améliorer la com-
préhension du processus de prise de décision par l’utilisateur sans impacter négativement les
performances.

Cette thèse explore les éléments fondamentaux de la recherche vidéo-texte, en soulignant
les défis que posent l’alignement et la recherche d’informations à travers des modalités mul-
tiples. Dans la recherche vidéo-texte, l’ambiguïté des requêtes et les banques de concepts
prédéfinies peuvent rendre difficile la compréhension précise de l’intention de l’utilisateur.
Afin de mieux comprendre l’intention de la requête de l’utilisateur et de surmonter le prob-
lème de l’ambiguïté, dans la deuxième partie de cette thèse, nous étendons une approche
hybride état de l’art en intégrant les balises Part-of-Speech (PoS) dans le modèle d’encodage
double pour la recherche de vidéotexte. Nous étudions l’impact des balises PoS sur les
performances et l’explicabilité des résultats de la recherche de vidéo-texte et montrons les
avantages de l’utilisation des balises PoS pour améliorer la précision de la recherche, la
précision et les performances globales du système.

Les modèles hybrides tels que le modèle d’encodage double [1] ou le modèle d’intégration
interprétable [2] forment deux espaces communs (latent et conceptuel) afin de trouver la sim-
ilarité entre la vidéo et le texte à des fins d’extraction, mais ces modèles manquent d’analyse

iii



iv

des relations inter et intra entre ces espaces. Dans la troisième partie de ce travail, nous pro-
posons un cadre général pour l’analyse des relations entre les différents espaces de représen-
tations d’approches hybrides, l’espace (non-explicable) latent et l’espace (explicable) con-
ceptuel, afin de comprendre dans quelle mesure les espaces explicables se différencient des
non-explicables. En outre, la thèse se lance dans une exploration complète de la complémen-
tarité entre ces espaces.

Dans l’exploration sur l’explicabilité, la partie des modèles hybrides basée sur les con-
cepts joue un rôle primordial. Elle identifie et extrait des concepts sémantiques à partir de
données vidéo et textuelles, visualisées par des nuages de tags, ce qui rend le processus
de recherche plus facile à interpréter et à comprendre. Les modèles actuels de l’état de l’art
fournissent des explications à l’aide de nuages de mots-clés, mais les explications fournies ne
sont pas causales. La dernière partie de cette thèse aborde le problème des l’explications vi-
suelles causales et interprétables pour la recherche vidéo-texte. En fournissant une représen-
tation visuelle des relations causales entre la requête et les résultats récupérés, les nuages de
tags renforcent la confiance des utilisateurs et soutiennent les applications où la responsabil-
ité et la perspicacité sont primordiales.
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Chapter 1

Introduction

In the current era of big data, we are surrounded by information systems and applications
that generate and collect millions of data from diverse sources at an unprecedented rate. On
the one hand, this big data can help us better understand the world and foster innovations
in various domains, whereas on the other hand, is making it more challenging and time-
consuming to locate the desired content. Indeed, such data are of no value if it cannot
be searched efficiently; for that, it must be appropriately indexed to be retrievable among
billions of other videos in a matter of seconds.

To leverage big data, machine learning techniques, especially deep learning, emerged as
powerful tools for analyzing and utilizing data on various tasks, such as image classification,
information retrieval, and natural language processing. This thesis focuses on one such task:
multimedia information retrieval for multi-modal data. Cross-modal retrieval allows users
to find relevant data of different modalities (e.g., texts, videos) given a query of another
modality (e.g., texts or videos). This thesis is in particular related to video-text retrieval. In
the past, video representations primarily relied on keywords provided by content creators.
However, relying on such information is no longer suitable as malicious uses have become
increasingly prevalent on the internet: for instance, a user uploading a promotional video
could purposely use incorrect keywords to attract more viewers. Moreover, given the scale
and time constraints involved, manual operations like keyword-based annotation, represen-
tation, and searching of videos are not feasible. Deep learning models gain a lot of attention
due to its efficiency and effectiveness in cross-modal retrieval field. Typically, a deep re-
trieval model would map data items from their original modal spaces to a common space,
where their similarity can be easily computed. This way, users can retrieve desired data
from different modalities with a query of one modality. Due to its high practical value, deep
learning-based multi-modal retrieval has attracted much attention and become a fundamental
task in both industry and academia.

The deep learning field has proposed several methods for computing compact data rep-
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2 1.1. VIDEO-TEXT RETRIEVAL

(a) Text-to-Video Retrieval (b) Video-to-Text Retrieval

Figure 1.1: Video-Text Retrieval

resentations, including designing visual descriptors such as Convolutional Neural Networks
(CNNs) [1, 14, 2], Recurrent Neural Networks (RNNs) [1, 15], and Transformers [16, 17]
for extracting spatial or temporal information from video frames. Moreover, for textual rep-
resentations Word2Vec [18], Glove [19], LSTMs [20], and sequence models [1, 21] have
been proposed. We will provide an overview of these approaches in this report.

1.1 Video-Text Retrieval
To address the exponential growth of multimedia data (i.e., videos and texts) for efficient
retrieval, Video-Text Retrieval (VTR) approaches are proposed. VTR [1, 8, 2, 16, 22, 23]
involves analyzing a given sentence to identify the most suitable video from a collection
(namely text-to-video, or TTV), and vice versa (namely video-to-text, or VTT), as illustrated
in Figure 1.1. Figure 1.1a presents one example of text-to-video retrieval: a given text query
is used to retrieve a list of videos and rank them according to their relevancy score. The
Figure 1.1b shows a video-to-text retrieval example, where the query is a video, and the
goal is to retrieve pre-existing relevant captions and rank them in the same manner in any
retrieval task. A any retrieval task, the overall objective is to retrieve relevant elements, and
Figure 1.1 presents the relevant videos for text-to-video retrieval and the relevant captions
for the video-to-text within red boxes.

Any VTR requires analyzing a vast number of video-text pairs, extracting multi-modal
information, and determining whether the two modalities can be aligned. While visual tasks
such as visual classification, object detection, and semantic segmentation have been exten-
sively studied, and have achieved remarkable results, VTR is still a relatively new area that
requires further exploration. Although the performance of VTR has improved gradually,
there are still challenges and issues that require further investigation.

In recent years, deep neural networks have received significant attention from the re-
search community due to their outstanding performance in various fields, particularly in
computer vision. For cross-modal retrieval in particular VTR, deep neural networks have
resulted in considerable performance improvements, making them the primary choice for
solving retrieval problems. TTV and VTT retrieval involve retrieving information between
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text and video modalities. As described earlier, a TTV retrieval is the task of retrieving a
relevant video based on a textual query (shown in Figure 1.1a). For example, given a textual
description of a scene, the system should retrieve a video clip that best matches the descrip-
tion. Such task is commonly used in applications such as video search, video summarization,
and video recommendation. For a VTT retrieval, on the other hand, the goal is to find rele-
vant textual information based on a video query (shown in Figure 1.1b). For example, given
a video clip, the system should retrieve relevant textual description for the video. This task
is commonly used in applications such as video captioning and video indexing.

These two tasks involve matching the features extracted from the text and video modal-
ities and ranking the results based on their relevance to the query. TTV and VTT are chal-
lenging tasks due to the heterogeneity and high dimensionality of the modalities involved.
State of the art VTR systems require sophisticated techniques such as deep learning-based
approaches to achieve high performance. More generally, cross-modal retrieval relies mainly
on three types of approaches: concept-based approach – a method that uses concept Bank
or vocabulary (which is a set of pre-defined concepts and thier classifiers) to build the con-
cept representations of video and text using a classification task. The similarity between the
videos and texts is measured using a concept space, where video & text is represented by a
prediction vector, concept-free approach – a method that learns and extracts embedding di-
rectly from the video and text and matches the features in common latent space, and hybrid

approach – a method that combines both concept-based (concept space) and concept-free
(latent space) methods. We will review these approaches into detail in the next upcoming
chapter 2.

1.2 Explainable Video-Text Retrieval
A compelling need of video-text cross-modal retrieval is the pursuit of explainability – the
ability to justify why certain retrieval results are obtained. As the complexity of models and
the amount of data increase, it becomes crucial to provide non-technical or technical users
with insights into the decision-making process of cross-modal retrieval systems. Explain-
able video-text retrieval strives to offer transparency and interpretability, enabling users to
understand which aspects of the video or text influenced the retrieval outcome. This not
only enhances user trust but also supports applications where accountability and insight into
system behavior are essential, for instance, medical diagnosis and patient education, and
recommendation systems.

In traditional video-text retrieval systems, the matching between the query and the item
is based on the similarity between the low-level features of both. However, these methods
lack transparency and do not provide insights into how the results are generated. Explainable
video-text retrieval aims to overcome this limitation by using advanced techniques, such as
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deep learning, natural language processing, and attention mechanisms, to not only retrieve
relevant items but also provide explanations for why the retrieved items are relevant to the
query. The explanations generated by explainable video-text retrieval systems can take dif-
ferent forms, such as tag clouds (shown in Figure 1.2), texts or heatmaps, and can provide
insights into the specific aspects of the video/text content that match the query. An explana-
tion can also highlight the objects, scenes, or actions in the video frames that are relevant to
the query and show how they relate to the query using heatmaps.

1.3 Objective
In this thesis, our focus is to train an explainable hybrid model comprised of a dual space,
composed of one latent space and one concept space, and able to perform dual tasks i.e.
Retrieval and Classification. To be more precise, we aim at designing and training multiple
encoding networks based on deep learning, capable of efficient video-text retrieval and justi-
fication of retrieved results at the same time. For instance, when provided with the text query,
we would like to retrieve the relevant videos from the dataset, and vice versa. Additionally,
the system should provide an explanation for the retrieved results in the form of tag clouds.
The explanation should be more reliable and satisfiable than current state-of-the-art systems.
Given a query, our model should therefore be able to explain why the list of videos is similar
to the given query and vice versa, and the explanation provided should resemble the major
portion of the decision-making process of the retrieval system.

Figure 1.2: Text-to-video Retrieval. Tag clouds in front of each (query, video item) for justifying the
retrieved results for one query (from [1]).

For explaining the retrieved results of a hybrid model, the concept space part of the
hybrid approach model is used. The explainable video-text retrieval model involves iden-
tifying and extracting semantic concepts from both video and textual data to enable more
interpretable and explainable retrieval of information. The approach aims to improve trans-
parency and interpretability of the retrieval process by associating the retrieved results with
specific concepts, making it easier for users to understand how the system arrived at the
results. For example, a concept-based retrieval system may analyze video and text data to
identify concepts such as “play”, “volleyball,” “basketball”, and “game,” and use these con-
cepts to guide the retrieval process. By highlighting predicted concepts in query and videos
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using tag clouds, as shown in Figure 1.2, users can better understand how the system works,
why certain results were returned, and why a certain video is matched to the query. This
approach can be particularly useful in applications where transparency and interpretability
are important, such as in legal, medical, or security contexts.

We will evaluate the retrieval and explanation capabilities of our models on two tasks:
text-to-video retrieval and video-to-text retrieval. In the remainder of this section, we will
introduce these tasks and their associated challenges.

1.4 Challenges & Motivation
In the field of video-text retrieval, we face challenges that involve processing the two het-
erogeneous modalities: video and text. Videos capture dynamic, temporal sequences, while
text provides a static, sequential representation. Bridging this gap requires addressing is-
sues related to the fundamentally distinct nature of these modalities, as well as the need to
effectively align and interpret them. Additionally, the intrinsic complexity of multimedia
data further complicates the task of extracting meaningful features from visual and textual
modalities in large-scale video-text datasets.

Figure 1.3: Video-text Annotated Dataset (Image courtesy of Lin et al. [3])

One of the primary challenges in video-text retrieval is scale, as the video and text col-
lection to retrieve from can contain millions or billions of videos and text, and the best video
candidates should be provided to the user in less than a second. To overcome this constraint,
offline computation of video and text representations is used that could be re-used for each
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query (text or video). Mapping text and video to a joint embedding space allows computation
of a similarity score via a single dot product, hence achieve retrieval speed [1, 24].

Another challenging aspect of this field is the temporality of video. It is important to pay
attention to the relative order of events in a video to understand a scene. Videos can also vary
greatly in duration, and it is necessary to encode videos of variable durations into a fixed-
size representation without discarding the temporal information. This can make it difficult
to encode and retrieve captions for videos with variable durations and complex temporal
structures.

Last but not least, ambiguity is another challenge for video-text retrieval task especially
in the case of concept-based and hybrid-based approaches where the concepts may or may
not contain multiple meanings. This can result in incorrect classification, and because of
which irrelevant videos or captions will be retrieved for the query. The performance of
the model trained for either of the task is evaluated on a video-caption dataset as shown in
Figure 1.3. Hence, efficient VTR system requires encoding models trained on a large dataset
of video-captions pairs, which is both difficult and expensive to annotate.

This thesis aims to address the critical challenges of scale, temporality, and ambiguity
in video-text retrieval, advancing the efficiency, accuracy and explainability of multime-
dia search systems. By developing innovative techniques that leverage shared embedding
spaces, offline computations, and cross-modal understanding, this research seeks to enhance
both quality of retrieved results and explanation provided by the retrieval system, ultimately
improving user accessibility, search experiences, and the interpretation of complex multime-
dia content.

1.5 Contributions
The following contributions will be presented in this document:

1.5.1 Development of PoS-tag dual encoding model

Chapter 3 of this dissertation significantly extends the research presented in Dong et al.’s
work [1] by integrating Part-of-Speech (PoS) tags into their dual encoding model for video-
text retrieval. Unlike many state-of-the-art retrieval models [1, 2, 25, 26] that overlook syn-
tactic information during the encoding of high-level semantics, this chapter recognizes the
value of syntactic cues in pinpointing specific user needs and intentions. The contributions
encompass: i) the integration of PoS tags in textual encoding pipeline and alongside class la-
bels as shown in Figure 1.4, ii) an exploration of the impact of PoS-tag integration on perfor-
mance and explainability, and iii) a comparative evaluation that underscores the advantages
of using PoS tags to enhance retrieval accuracy, precision, and overall system performance.
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A man/noun is

measure/verb the

size of a

copperhead/noun

snake/noun with

the tape/noun

measure/noun

PoS-tag Concept space

man/n

measure/n

measure/v

Figure 1.4: Proposed PoS-tag based Dual Encoding Architecture with PoS-tagged “text” & “concept
space” (inspired from [1])

These contributions are pivotal in bridging the gap between linguistic structures and visual
content, leading to a more robust and interpretable video-text retrieval system capable of cap-
turing the nuanced semantics of language and visuals. This, in turn, is expected to elevate
user satisfaction and the quality of retrieval outcomes.

1.5.2 General framework for analysis of complementarity in hybrid ap-
proach

The analysis of relationships between different spaces, such as the latent space and concept
space (as shown in Figure 1.5), bears significance in investigating complex data patterns
and designing efficient retrieval systems. Chapter 4 brings forth noteworthy contributions
in this realm. Firstly, it introduces a general analysis framework that acts as a navigational
tool for investigating the relationship between latent space and concept space, and how these
spaces work together, particularly within the domain of cross-modal video search employing
a dual encoding model as its baseline. This framework offers strategic guidance to explore
the collaboration between spaces in hybrid approaches, ensuring their effectiveness and in-
terpretability. Secondly, the chapter embarks on a comprehensive exploration of the com-
plementarity between these spaces. This investigation pursues two discrete pathways: ana-
lyzing the representation power of both spaces, and complementarity analysis via Canonical
Correlation Analysis (CCA) and ensemble learning. This general framework showcases the
complementarity between the latent and concept spaces in cross-modal video search tasks.

7



8 1.6. THESIS ORGANIZATION

Figure 1.5: Intra and Inter relationship analysis in Dual Encoding Architecture [1]

1.5.3 Causal inference in Video-Text Retrieval

Chapter 5 addresses the problem of providing causal and interpretable visual explanations
for multimedia retrieval systems that use human-readable tags. We first introduce a new
evaluation measure that quantifies the degree of causality (how many tag(s) in concept based
representation of video and text contributed to the retrieval decision) in visual tag-cloud ex-
planation for concept based dual encoding video retrieval. Then, we apply this measure to a
state-of-the-art video retrieval system that uses a deep neural network to generate tags from
videos. We propose to enhance the causality of the state-of-the-art system by modifying the
way the tag scores are computed, using a generalized sigmoid function that increases the
relative effect of the top relevant tags. We conduct experiments on benchmark datasets and
show that our method improves the causality measure by up to an order of magnitude, while
maintaining comparable accuracy to the original system. We also analyze the trade-off be-
tween causality and accuracy, and discuss the challenges and limitations of achieving 100%
causality in visual explanations. This research on causal based explanation is a preliminary
work that opens new perspectives for improving the interpretability and trustworthiness of
multimedia retrieval systems.

1.6 Thesis Organization

Chapter 2

This chapter surveys the existing methods and techniques for representing and retrieving
multimedia content, as well as for providing explanations for the retrieval results. It also
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identifies the limitations and challenges of the current state of the art, and highlights the
research gaps that this thesis aims to fill.

Chapter 3
In Chapter 3, we introduce a new model for video-text retrieval that uses part-of-speech
(PoS) tags to encode the syntactic information of text queries. It shows that by using PoS
tags, the model can better capture the semantic relevance between videos and text queries,
and improve the retrieval performance over existing models.

Chapter 4
A general framework for analyzing the complementarity of different approaches for video-
text retrieval, namely concept-based, concept-free and hybrid approaches, is presented in
Chapter 4. It also evaluates the effect of different fusion strategies on the retrieval results,
and provides insights into the strengths and weaknesses of each approach.

Chapter 5
This chapter proposes a new evaluation measure, which is a way of providing causality in
visual explanations for video-text retrieval systems. It shows that by using counterfactual
reasoning, the measure can quantify the degree of causality between the tags prediction and
the retrieval decision. It also applies the measure to a state-of-the-art video retrieval system,
and proposes a method to enhance the causality of the system by modifying the tag scores
computation. It discusses the trade-off between causality and accuracy, and the challenges
and limitations of achieving 100% causality in visual explanations.

Chapter 6
We summarize in this chapter the main findings and contributions of the thesis, and suggest
some possible directions for future research in video-text retrieval and explainability.
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Chapter 2

State of the Art

As described in the Section 1.1, cross-modal retrieval aims at retrieving a ranked list of
relevant items in one modality from a dataset for a given query in another modality. These
modalities can be text, images, or videos. Most of the proposed models in cross modal
retrieval field fall under one of the following approaches: (i) latent based approach, (ii)
concept-based approach, or (iii) interpretable embedding based hybrid approach.

The end goal of this dissertation is to be able to enhance the richness in justification of
retrieval models, specifically video-to-text (VTT) retrieval and text-to-video (TTV) retrieval,
without any loss in accuracy. This requires understanding the content and semantics of both
video and text modalities that have different representations and challenges. Video is a rich
and complex medium that contains visual, audio, and temporal information, whereas text
is a symbolic and structured medium that conveys semantic and syntactic information. To
bridge the gap between these two modalities, various techniques have been proposed (i) for
representing the content of both modalities individually, and (ii) strategies to build a model
for finding the match between two heterogeneous data.

Objective

In this chapter, we will begin by examining the state-of-the-art techniques employed
in image, video, and text representation. Subsequently, we will explore the approaches
introduced in the field of cross-modal retrieval. Additionally, we will delve into the
methods utilized for explaining the decisions made by deep learning and retrieval
models. The entirety of this discussion directly relates to the contributions made in
this thesis.

11
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2.1 Content Representation

2.1.1 Image Representation

An image is a 2D matrix of pixels. The fundamental information in an image is contained
in the gradient of pixel intensity, which is highest at the corners, edges, and areas with high
contrast in the 2D pixel grid. Before 2012, conventional methods for image representation
relied on manually crafted visual descriptors. Examples include the Histogram of Oriented
Gradients (HOG) [27] and the Scale Invariant Feature Transform (SIFT) [28], which com-
puted gradient histograms for different image regions. These descriptors were subsequently
fed into classifiers such as the k-nearest neighbors (k-NN) [29] and Support Vector Machine
(SVM) [30] algorithms for image classification.

Around a decade ago, Artificial Neural Networks (ANNs) regained interest due to re-
cent advancements in large training datasets and computational power. ANNs were initially
introduced with the Perceptron model [31] in 1958 by Rosenblatt inspired by the biologi-
cal neural network, and have evolved into Multilayer Perceptrons [32] in late ′80s, which are
considered the first deep learning architectures capable of approximating any function. Back-
propagation [33], a technique for training ANNs, was popularized in 1986 and involves op-
timizing model parameters using gradient descent. These advancements have revolutionized
image representation and paved the way for further developments in deep learning-based ap-
proaches. With diversified research directions, Convolutional Neural Networks (CNNs) have
emerged as a powerful variant of ANNs for image processing, utilizing convolution opera-
tions to reduce parameters while maintaining input transformation equivariance, an example
of which is the Neocognitron model [34], an early CNN model. Le Cun et al. introduced
LeNet [35], a CNN model that was specifically designed to identify handwritten alphanu-
meric characters. CNN models are trained in an end-to-end fashion, where the model weights
are optimized using back-propagation [33], while the design of the architecture is a manual
task. Unlike handcrafted descriptors, CNNs can automatically determine the optimal filters.
In a multi-layer CNN, the first layers usually identify low-level features like edges, enabling
the subsequent layers to learn higher semantics such as recognizing a car (Figure 2.1). The
advent of large-scale datasets, such as ImageNet [36], has paved the way for deep learning
approaches in computer vision. AlexNet [37], introduced in the 2012 ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) [38], was one of the first deep learning models to
surpass traditional approaches in image classification. Since then, deep learning approaches,
including deeper CNNs, with skip connections in residual blocks [39], have dominated the
field of computer vision.

In addition to CNNs, the Transformer architecture [40], originally designed for language
processing, has recently been adapted to computer vision. The Transformer model uses self-

12



State of the Art 13

Figure 2.1: The reconstructed images are the result of projecting the feature maps of a Convolutional
Neural Network (CNN) to pixel space using the deconvolutional network method [4].

attention instead of convolutions, allowing for less inductive biases. Various strategies, such
as the Vision Transformer (ViT) [41] and the Perceiver [42], have been proposed to process
pixels directly with Transformers at a reasonable computational cost.

To summarize, classical handcrafted descriptors like HOG [27] and SIFT [43] have been
widely used but struggle to capture complex patterns and variations in data. Whereas, deep
learning-based approaches, particularly CNNs, automatically learn hierarchical features and
excel at capturing complex patterns, although they require large labeled datasets and high
computational power. Additionally, transformers offer an alternative approach, but they are
still a relatively new area of research in computer vision and often require more data and com-
putational resources [41]. To date, deep learning methods, especially CNNs, have emerged
as the leading choice due to their ability to achieve state-of-the-art results [1, 2], while the
full potential of Transformers is still being explored.

2.1.2 Video Representation

Video features extraction refers to a method of representing the content of video. As video is
the sequence of frames/images, the video processing methods have been heavily influenced
by image representation techniques that were introduced in the previous section. However,
processing videos is much more computationally expensive than processing images, as it
involves analyzing many frames/images. Additionally, neighboring frames in videos are of-
ten highly similar, resulting in a highly redundant representation. The evolution of video

13



14 2.1. CONTENT REPRESENTATION

processing methods has followed a similar path than still images, starting with manually
designed descriptors and moving towards end-to-end trained convolutional neural networks
(CNNs). Compared to images which only contain spatial data, videos contain additional
information due to the inclusion of a temporal dimension. This provides short-term motion
information as well as long-term scene transitions, making it possible to capture dynamic
changes over a period of time. Current research focuses on learning spatial and temporal
representations, as well as multi-modal feature extraction due to the multiple modalities con-
tained in videos [8, 14, 44, 45]. With the increase in computing resources and the availability
of large-scale data, deep learning methods have become a popular approach for capturing
video features. We discuss below deep learning approaches for video features extraction as
they are the bases of this dissertation, including spatial features (section 2.1.2.1), temporal
features (section 2.1.2.2).

2.1.2.1 Spatial Features Extraction

To represent a video, the first step typically involves identifying its keyframes (Figure 2.2).
Several methods can be used for this, including random sampling (e.g., taking multiple
frames per second) [46, 5, 47], uniform sampling of a fixed number of frames [48], or
sparse sampling [49]. Once the keyframes are selected, the next step is to extract frame
level features from them. The spatial features from such frames can be extracted similarly
as described in Section 2.1.1, which are then concatenated in order to obtain video level fea-
tures (as depicted in Figure 2.2). Our literature review focuses on CNNs for spatial feature
extraction [50, 51, 5, 8], while also studying “transformer-based” spatial feature extractors.

Video
key-Frames Spatial

Encoder
Frame Level

Features Video Feature

Video

Figure 2.2: Video Feature Extraction

CNN-based methods have emerged as the state-of-the-art for various computer vision
tasks, such as object recognition, image classification, and scene understanding. These meth-
ods leverage pre-trained CNNs to extract features from images, proving highly effective in
capturing spatial patterns and features. Several CNN architectures, including AlexNet [37],
VGGNet [52], GoogLeNet [53], ResNet [39], ResNeXt [54, 55], and DenseNet [56], are
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commonly used for feature extraction from video frames. VGGNet [52], proposed by Si-

monyan and Zisserman in 2014, is widely used and consists of 16 and 19 layers of con-
volutional and pooling layers. Another popular CNN architecture is ResNet [39], which
introduced residual connections to facilitate gradient propagation in deep networks. Incep-
tion [53] is another widely adopted architecture that combines convolutional layers with
different filter sizes to capture features at multiple scales. Other CNN architectures for video
spatial feature extraction, such as MobileNet [57], and EfficientNet [58] have been designed
to be computationally efficient, making them suitable for resource-constrained devices like
smartphones. Additionally, some methods learn feature representations from scratch using
autoencoders or generative adversarial networks (GANs), which generate images from latent
vectors that can serve as feature representations for downstream tasks [59, 60].

Indeed, CNN-based spatial feature extraction methods have revolutionized computer vi-
sion by providing powerful feature representation tools in the field of computer vision. How-
ever, transformer-based methods [40], particularly in the realm of visual transformer net-
works, have also made significant progress in recent years. Transformers differ from tradi-
tional neural networks by employing stacked encoder-decoder blocks that utilize multi-head
self-attention, multi-layer perceptron, and layer normalization. Various transformer-based
models, such as VSRNet [61], BiC-Net [62] and ViT [41], have been developed for video
or image feature extraction, and classification. ViT [41], in particular, has gained popularity
due to its exceptional performance on different datasets. However, transformer-based ar-
chitectures are computationally expensive, making them less suitable for large-scale video
datasets [1]. So, we focus in this dissertation on CNN-based methods for the task of video
spatial representation, because of their lower complexity and computation time while build-
ing cross-modal video retrieval system.

2.1.2.2 Temporal Feature Extraction

Temporal feature extraction from videos involves capturing the temporal patterns and dy-
namics present in a sequence of frames. These features provide information about the mo-
tion, action, and temporal context within the video data. Once the spatial features have been
extracted from videos, mean pooling or max pooling can be used to model their temporal
interaction. However, more advanced architectures like, recurrent neural networks (RNNs),
and convolutional neural networks (CNNs) including 2D and 3D CNNs are being used to
capture temporal features. Moreover, transformers have also been utilized in recent studies
to generate more complex temporal features.

In the case of RNNs, researchers have drawn inspiration from their success in natural
language processing (NLP) and applied them to capture long-range temporal features in
videos [8, 63, 1]. For example, Dong et al. [8, 1] employed bidirectional Gated Recurrent
Unit (biGRU) networks to extract temporal information from both forward and backward
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16 2.1. CONTENT REPRESENTATION

directions, followed by mean pooling to generate a comprehensive representation of video
along the temporal dimension. Similarly, Yang et al. [64] used ResNet152 [39] to extract
spatial features, which were then transformed into GRU to capture temporal features from
video frames, and an attention module was applied to aggregate these features. However,
RNNs are time-consuming to train, particularly for videos with long duration.

Other than RNNs, CNNs have also demonstrated remarkable performance in encoding
temporal information. The Temporal Shift Module (TSM) [65] was introduced to shift chan-
nels between frames in the temporal dimension, effectively fusing temporal information from
multiple frames. The Separable Self-Attention Network (SSAN) [66] learns spatial correla-
tions before extracting temporal correlations, leading to improved video feature represen-
tation. For spatio-temporal feature extraction, 3D CNNs have also been widely employed.
Res3D [67], SlowFast [68], and I3D [69] are examples of methods that extend 2D CNNs
to 3D CNNs. They incorporate a temporal dimension while traversing channels, allow-
ing them to capture spatio-temporal information effectively. Since 3D CNNs are computa-
tionally very intensive, pseudo-3D CNNs which contain spatial 2D CNNs and temporal 1D
CNNs [70, 71, 72] replace 3D CNNs as an alternative to reduce the computational load.
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Figure 2.3: Multi-modalities representation of a video (inspired from [5])

Beside all kinds of CNNs, transformer-based models also have a strong ability to cap-
ture temporal relationships across long distances. CLIP2Video [73] models motion features
between adjacent frames using a temporal transformer. COOT [46] introduces a temporal
transformer to successively capture frame and clip feature interactions. X-CLIP [74] uses a
three-layer transformer to encode frame features, averaging them to obtain video features.
All these transformer-based models are used in various research works, for instance, Han

et al. proposed BiC-Net [62], utilizes a multi-layer transformer to capture spatial features
between adjacent frames and uses an attention-aware feature aggregation layer to fuse fea-
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tures into a comprehensive representation. Additionally, CLIP [75] provides four layers of
temporal transformer blocks (with frame position embedding and residual connection) that
are widely used in various works [76, 77, 78]. For the past few years, researchers have ex-
plored novel transformer networks that learn both spatial and temporal features. Frozen [45]
proposes stack of space-time transformer blocks that learn both temporal and spatial posi-
tions, while TimeSformer [79] investigates different spatio-temporal combinations and finds
the divided space-time scheme to achieve superior performance. Ge et al. [47] apply divided
space-time self-attention blocks to obtain fine-grained video information.

Videos contain not only spatio-temporal characteristics, but also various types of informa-
tion, such as audio, optical characters, and motion. Hence, various models namely “ex-
perts” (as shown in Figure 2.3) are used to extract relevant features from each modality,
which are then concatenated to form the final representation of a video, known as “Multi-
Modal video feature extraction method” [80, 22, 14, 16]. For instance in [16], authors
included DenseNet161 [56] for scene embeddings, SSD [81] for face features, S3D [82],
SlowFast [68], I3D [69], a 34-layer R(2+1)D [72] for motion features, VGGish [83] for au-
dio features, pixel-link text detection [84] for OCR features, and Google Cloud Speech to
Text API for speech transcripts, and aggregate all of them to generate video representations
composed of multiple experts features.

The discussion of encoding spatial, temporal, and multi-modal information in videos
is crucial for effective semantic representation in cross-modal video-text retrieval systems.
Different techniques, such as CNNs, RNNs (including biGRU networks), and transformers,
have been explored. CNNs excel at capturing spatial and temporal patterns but struggle with
short-term dependencies across frames. RNNs, particularly biGRU networks, are effective
in modeling long-range dependencies. Transformers offer complex temporal relationship
capture but come with increased computational complexity. Additionally, the multiple ex-
perts approach, which extracts features from videos and merges multiple sources, has shown
promise but requires high computational resources. Understanding these strengths and limi-
tations helps in selecting appropriate methods for video-text representation. In summary, for
the goal of this thesis, transformers and multiple experts approach is not preferred because
of the need of high computational resources for large-scale video-text datasets.

2.1.3 Text Representation

Textual representation aims to extract features from language sentences. The primary chal-
lenge is to model the sequential relationships accurately to capture comprehensive semantic
information. For text representation, earlier bag-of-words (BoW) remains common [85, 86,
87]. BoW consists in counting the occurrence frequency of each word (token) in the text to

17



18 2.1. CONTENT REPRESENTATION

obtain a histogram. This histogram can then be used as a text-level representation to calcu-
late similarities between documents, or provided as input to a classifier. The simplicity of
BOW is counter-balanced by several drawbacks, mainly sparsity and insensitivity to word
order. With the advent of deep neural networks in NLP, the capability of processing text has

Figure 2.4: Two-dimensional PCA projection of Word2Vec embeddings of countries and their capital
cities [6].

improved significantly. Word embeddings have been developed to obtain text representations
at the word level instead of at the text level. Word embeddings associate each word with a
vector that encodes its semantics, such that relative similarity between embeddings in vector
space correlate with words’ semantic similarity. An unsupervised approach for learning word
embeddings from the unlabeled text was introduced by Mikolov et al. with Word2Vec [88].
Leveraging the skip-gram architecture, Word2Vec embeddings are randomly initialized and
iteratively optimized using the representation of a given word to predict its context words.
Using word embeddings, a text can then be transformed into a sequence of vectors to be
processed by a language model to obtain a text-level representation. Word embeddings have
been used in two ways; (i) as input features to a language model (frozen features), and (ii)
as initialization of its first layer lookup table (fine-tuned features). Figure 2.4 demonstrates
how the Word2Vec model effectively positions words in a vector space, allowing for con-
cepts like ’city = capital(country)’ to be represented through vector addition. This illustration
highlights the capability of Word2Vec to capture semantic relationships between words.

Despite their performance, the main drawback of these methods is ignoring the sequen-
tial order in text. Another way to text representation is by using Recurrent neural networks
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Figure 2.5: RNN-based textual feature extraction

(RNN) based techniques, which have been instrumental in capturing long-term dependencies

in sequential data (as shown in Figure 2.5) and are well-suited for tasks where the context
and order of the input sequence matter. RNNs, including variants like Long Short Term
Memory (LSTM) and GRU, have proven effective in modeling the sequential relationships
of text and capturing comprehensive semantic information. LSTM, introduced by Hochre-

iter and Schmidhuber [20], addresses the vanishing gradient problem associated with tradi-
tional RNNs. It allows the network to retain important information and discard irrelevant
information, making it suitable for processing long sequences. GRU, proposed as a simpli-
fied version of LSTM by Chung et al. [89], combines input and forget gates into an update
gate, offering computational efficiency while still capturing long-term dependencies. Re-
searchers have explored various approaches to leverage RNNs for text representation, such
as using bidirectional LSTMs for context-aware word embeddings and employing hierar-
chical attention networks (HANet) [25] to select features corresponding to verbs and nouns
at individual-level representations. The combination of modified relational graph convolu-
tional networks (GCNs) with bidirectional LSTMs has been effective in obtaining local and
global-level representations [90]. Additionally, the Tree-structured LSTM [91] which cap-
tures semantic features based on the relationship between word nodes in a tree structure,
has also been successful in extracting meaningful textual representations. These RNN-based
techniques are especially useful for tasks such as language modeling and machine transla-
tion, where capturing long-term dependencies and context is crucial.

In recent years, transformers emerged as an alternative to RNNs in the NLP field. Trans-
formers address the limitations of RNNs and capture global semantic information by em-
ploying self-attention mechanisms. With the introduction of Bidirectional Encoder Repre-
sentations from Transformer (BERT) [92], the development of NLP has taken a huge leap
forward. BERT utilizes a combination of Multi-Head Attention, Add & Norm, Feed For-
ward, and Residual Connection, and has become a popular choice for extracting textual
features in many applications, including video-text retrieval tasks [22, 14], with BERT-Base
being the most commonly applied encoder [14, 46, 93]. Due to the excellent performance
achieved by BERT and its variants, several BERT-like architectures have been proposed,
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such as RoBERTa [94], ALBERT [95], and DistilBERT [96].

As temporal modeling in text refers to capturing and modeling the sequential or temporal
relationships between elements in a sequence. Among so many different techniques for text
representation in cross-modal video-text retrieval system, RNN-based textual representation
techniques could be preferable over CNN text representation, due to their ability to capture
long sequential dependencies and contextual information in videos [97, 98]. Whereas, trans-
formers excel in capturing the overall context or relationships between different elements in
a sequence and are designed to process sequences as a whole, allowing them to capture long-
range dependencies and contextual information effectively. However, transformers may not
possess the same level of inherent temporal modeling capabilities as RNNs [92, 40]. This
limitation becomes significant in cross-modal video-text retrieval, where the temporal align-
ment between video frames and text is crucial. Studies such as [99, 100] have demonstrated
the effectiveness of RNN-based models in capturing temporal dynamics and generating ac-
curate video descriptions.

With the noticeable introduction of image, video, and text representation, we have ob-
served in recent years a convergence of machine learning models to process these different
modalities. In the next section, we study the training of cross-modal video-text retrieval
systems in the state-of-the-art based on some of these representation techniques.

2.2 Cross-Modal Retrieval
In the previous sections, we extensively investigated visual and textual representation or
encoding techniques utilizing CNNs, RNNs, and transformers for both modalities. Building
upon these foundational encoding methods, our focus now transitions to an in-depth study
of the state-of-the-art cross-modal (video-text) retrieval models proposed in recent years. As
already mentioned, such models can be categorized into three main approaches: (i) concept-
based approach, (ii) concept-free approach, and (iii) hybrid approach. The examination of
these models serves several purposes: (a) to identify the cutting-edge techniques employed,
(b) to establish performance benchmarks, and (c) to gain insights into the current landscape
of cross-modal retrieval systems. This knowledge is critical for the rigorous evaluation of
our proposed system and for meaningful comparisons against existing methods in subsequent
chapters.

2.2.1 Concept-based Approaches

Concept-based video-text retrieval aims to bridge the gap between textual queries and video
content by utilizing a predefined set of visual concepts (textual keywords to describe the im-
age or video). The main idea behind concept-based approach is to build “concept bank”,
consisting of tens of thousands of pre-trained or newly trained Convolution Neural Networks
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detectors trained on visual concepts i.e. C = {c1,c2,c3,c4, ...,cd}. These detectors are re-
sponsible for detecting visual concepts in videos or text e.g. “book, cat, dog, dance and
so on”, in order to generate “concept-based video representation” and “concept-based text
representation” as shown in Figure 2.6.

Figure 2.6: concept-based video retrieval framework proposed by Lu et al. [7].

Let V = {ν1,ν2, ...,νm} be the set of m videos in the database and each video νi is
indexed by visual concept present in C and represented by a vector as νi ∈ Rd , where d is
the total number of visual concept detectors in Concept Bank C. The core of the framework
is a large concept bank containing detectors of objects, scenes, actions, and activities.

There are two phases “offline” and “online”: In the offline phase, all videos in V are
represented by visual concepts in concept bank using trained concept classifiers. Each di-
mension in Rd indicates the likelihood of the presence of a specific concept in the video νi.
In the online phase, when a text query is provided, such as “cleaning an appliance” with a
detailed description, the noun and verb phrases within the query are extracted as individual
tokens. These tokens are then matched to a predefined set of concepts to select as many rel-
evant concept classifiers as possible, resulting in a concept-based query representation also
known as a “semantic query” (see Figure 2.6). Semantic query generation is the process,
that selects the concepts from concept bank C relevant to the query and generate internal
query representation, namely “semantic query”. Finally, for each video, a score is calculated
for the query sentence by integrating the scores from multiple concept classifiers which are
detected for the given query [7, 101].

In many real-world video retrieval systems, such as YouTube1, text matching plays a

1https://www.youtube.com/
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significant role, in which titles and tags provided by video uploaders facilitate matching and
retrieval. The multimedia research community has been actively promoting the advancement
of video content understanding, aiming to enable machines to search based on visual con-
cepts and high-level semantics without relying solely on human annotations. Notable efforts
in this direction include TRECVid AVS challenge that conducts benchmark evaluation for
this task [102]. In this challenge, among top performing solutions often employed concept-
based approach by using visual concept classifiers to describe video content and linguistic
rules to identify concepts in textual queries [101, 103, 104, 105, 106].

Concept-based approaches rely heavily on the trained detectors, where each detector has
to be learned on large training sets. Examples of concept-based approaches are [101, 103,
106], in which authors utilize multiple pre-trained Convolution Neural Networks (CNN)
models to detect multiple objects and activities in videos. As for concept-based query repre-
sentation, the approaches design relatively complex linguistic rules to extract relevant con-
cepts for a given query.

Other than user-defined linguistic rules for concept-based query representation, the vi-
sual concept classifiers for a given textual query, are also either selected manually (humanly
annotated) or automatically (text embedding like Word2Vec [88], BERT [92] or using part-
of-speech (POS) tagging). Waseda et al. [103] used both methods; manual selection of
the related visual concept classifiers for the query keywords, and automatic selection using
“Word2Vec” algorithm [88], to represent query in concept-based representation. They ex-
panded their concept bank to include over fifty thousand (50K) concepts, and they trained
SVM classifiers to automatically annotate video content along with the pre-trained CNN
models. Snoek et al. [107] utilized a model called VideoStory [108] to represent videos using
ImageNet concepts [36], and then embed concept-based video representation on a concept
space by a linear transformation, while they still represented the textual query by selecting
concepts based on part-of-speech tagging heuristically. Then, the video-text similarity is im-
plemented as the cosine similarity between their concept vectors. In [26], the authors use
query interpretation to perform the concept-based search. The idea is to use the BERT-based
concept selection module to extract semantic concepts from a text query, and then use the
query encoder to embed these concepts into the common latent space where the similarity
between video and query can be calculated.

Part-of-speech tagging attempts to determine which tag a word has in the sentence e.g. “I

play/verb the main character/noun in a play/noun”. This can be used to build a concept bank
as well as for concept-to-query mapping. In [109], Shen et al. assign a part-of-speech label
to each word in a sentence, and filter out words that are unlikely to be visual objects to let
their proposed text-guided object detector (TGOD) focuses more on distinguishing between
possible object words. Other than just identifying the POS tags for words in order to build a
concept bank, it also helps in disambiguation while mapping visual concepts to queries. The
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problem is very challenging and complicated, as the part of speech can often be dependent
on the meaning of the word in a sentence. For example, the sentence “I play/verb the main

character/noun in a play/noun” highlights how the word “play” is used twice each having
a different meaning, and parts of speech tag. The first occurrence of play is a “verb”, and
the second is a “noun”. The concept to query mapping can be more accurate when knowing
the POS tag of each concept in the concept bank, and each word in a sentence in case of
mapping.

No doubt, concept-based approaches have good performance in TTV tasks when the con-
cepts required for the textual query can be accurately identified. However, human interven-
tion is often required in practice, in order to filter concepts after automatic mapping [7, 110],
and it is also challenging to capture the rich sequential information in both video and query
using only a few selected concepts. Moreover, [111] proposed to train classifiers for a com-
bination of concepts (one joint-classifier) composed by Boolean logic operations such as
“AND", “OR", etc. They call these logical combinations “composite concepts” and defined
them as the logical composition of primitive concepts. The combination of concepts with
Boolean logic operations makes the results of the retrieval even more explainable. How-
ever, the problem of ambiguity occurs when considering a large vocabulary of concepts to
represent the complex information in the query. Despite these disadvantages, the paradigm
has the merit of making retrieved results justifiable, as both the video and text modality is
represented by concepts that are human-understandable.

2.2.2 Concept-free Approaches

To address the challenges posed by the ambiguity of large concept vocabularies in concept-
based approaches, subsequent models have emerged based on the concept-free approach.
The core idea of concept-free approach is to map the encoded (vectorized) representation of
sentence/query (s), and video (v ∈ V) onto the learned common embedding space (present
in the right part of Figure 2.7).

Given a query s expressed by a natural-language sentence of l words (w ∈W, where
W= {w1,w2, ...,wl}), the aim is to build a video search system that retrieves videos relevant
to the query from a collection of m unlabeled videos {v1,v2, ...,vm}. The key problem is to
construct a cross-modal similarity function f (s,v) ∈ R, such that the similarity score of a
relevant sentence-video pair (s,v+) will be larger than the similarity score of an irrelevant
sentence-video pair (s,v−), and then v+ will be ranked ahead of the irrelevant v− in the
search results.

For these kinds of approaches, the model designed for encoding the video and text plays
a vital role and is as important as learning latent space for similarity calculation. A good
video-text encoder should be chosen for more accurate retrieval results. The detailed liter-
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Figure 2.7: Proposed methodology using concept-free approach [8].

ature review on visual and textual representation is also given in Section 2.1.2 and 2.1.3.
concept-free approaches have been proven effective in improving retrieval performance in
terms of accuracy and efficiency and a significant amount of research has been carried out
in the cross-modal retrieval based on concept-free approach [1, 8, 14, 22, 112, 113]. All the
approaches used various video-text encoders (see Section 2.1.2 and 2.1.3) and their combi-
nations to encode spatial and temporal information of video and text. The dual encoding
model proposed by Dong et al. [8] aims to address zero-example video retrieval. The goal
is to retrieve videos that are semantically relevant to a given text query without having any
positive example of the target video. The authors propose a dual encoding framework that
leverages multi-level encoding to capture global, local, and temporal patterns in both videos
and sentences (Figure 2.7). At the first level, a pre-trained 2D-CNN such as ResNet-152
is used to extract frame-level features. These features are then processed through a multi-
scale temporal pooling module to aggregate information from multiple frames and obtain
a fixed-length video-level representation. The second level of encoding further refines the
video-level representation by incorporating temporal information using a Bi-directional GRU
network. Whereas, the final level of encoding involves 1-D convolutional networks on top
of the Bi-directional GRU to enhance local patterns. By concatenating the outputs from all
three levels, the model achieves multi-level encoding of the input video.

Furthermore, Torabi et al. [113] propose a joint embedding model for video understand-
ing, and retrieval. Their approach focuses on two main tasks; video annotation and retrieval,
and text generation for videos. To achieve this, the authors introduce a joint neural network
architecture that consists of two sub-networks: a visual network, and a language network.
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The visual network extracts spatial features from video frames, while the language network
generates embeddings from natural language descriptions using a recurrent neural network
(RNN). A joint attention mechanism allows the visual and language networks to attend to
each other’s outputs during training. Mithun et al. [112] presents an approach for learning
a joint embedding space that captures the relationship between video and text modalities.
Their objective is to retrieve relevant videos given a text query and vice versa. Their mul-
timodal embedding model consists of a visual feature extractor and a text feature extractor,
with a multimodal fusion approach to learn a joint embedding space.

Another concept-free approach “collaborative experts” [80] (also known as multi-modal

video feature extraction as discussed in Section 2.1.2), utilizing multiple pre-trained clas-
sifiers, is used to extract specific video features such as scenes, objects, faces, and speech.
Collaboration among the experts enhances the importance of relevant features, resulting in
improved accuracy. The video-query similarity is calculated by a weighted sum of each ex-
pert’s video-query similarity. Multi-Modal Transformers (MMT), proposed by Gabeur et

al. [14], proposed to use BERT for query representation and a Multi-Modal Transformer
with stacked transformer layers. This approach jointly encodes diverse video features for
video representation. They used the collaborative experts approach [80] and generated the
representation of video and text by using different experts

Concept-free approaches leverage large video captioning datasets such as MSCOCO,
MSVD, MSR-VTT, and TGIF. Various models based on the concept-free approach, includ-
ing Video Story [87], VSE++ [114], Word2VisualVec (W2VV) [115], and dual encoding
model [8], encoded videos and text into a common latent space. These models use triplet
ranking loss functions or their variants for space training. Additional loss functions, such as
contrastive loss and reconstruction loss, have also been utilized to further constrain the la-
tent space [15]. Moreover, recent research work has focused on using multiple CNN feature
extractors to encode video and text, learning multiple latent spaces for each CNN encoder
[16, 21, 80, 112, 116].

All these approaches show promising results but lack the interpretation and justification
of retrieved results, as the latent space does not directly correspond to specific concepts
or semantic meanings. Moreover, as the models are completely black box models, hence
detailed analysis of the learned embeddings or joint embedding space could be valuable in
understanding how the model is encoding and using the multimodal information.

2.2.3 Hybrid Approach

The combination of Concept-Based and Concept-Free approaches in video retrieval has
shown potential for improving retrieval results [1, 2, 104]. Ueki et al.[104] conducted a
study comparing the effects of these approaches, finding that their combination led to im-
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proved video retrieval performance. Dong et al. proposed a dual encoding model [1] based
on dual space (latent and concept space) and dual task (classification and retrieval) in 2021,
which is the extension of their prior work proposed in 2019 [8].

Figure 2.8: Dual encoding model based on hybrid approach [1]

This extended dual encoding model [1] is based on a hybrid approach, which extracts
the video-text embedding using multi-level encoding model and simultaneously performs
video-text retrieval and video and text classification tasks, as shown in Figure 2.8. This
approach have shown to enhance retrieval accuracy of retrieved results [1]. The dual en-
coding model handles two distinct modalities: videos and sentences and has two different
pipelines, i.e. i) video encoding pipeline, and ii) text encoding pipeline. It employs a dual
encoding network to encode videos and sentences in parallel, facilitating latent space learn-
ing and concept space learning. Multi-level encodings are performed for each modality in
their respective pipelines, including global, temporal, and local encodings. The resulting en-
codings, φ(v) for videos and φ(s) for sentences, describe the modalities in a coarse-to-fine
fashion (Figure 2.8). These multi-level encodings (φ(v) and φ(s)) are mapped to latent space
using affine transformation, where the similarity between these two heterogeneous data can
be computed. As the concept space is based on multi-label classification learning whose
dimensions are aligned with a set of “concepts” or “tags” defined in vocabulary, the encod-
ing (φ(v) and φ(s)) are mapped to concept space using a sigmoid function. The extended
dual encoding network is trained by minimizing the combination of the latent-space loss
and the concept space loss. The final similarity between a video and a query is computed
as the weighted sum of their latent-space similarity and concept-space similarity in order to
perform the video-text retrieval.

Another similar hybrid space model proposed by Wu et al. [2], who uses dual encoding
network proposed in 2019 [8] for the multi-level representation of video and text and latent
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Figure 2.9: Interpretable embedding model based on hybrid approach [2]

space learning as shown in Figure 2.9 (Task-1). Wu et al. learned concept space and extended
latent space based dual encoding model (Task-2). The difference between Wu et al.’s [2]
and Dong et al.’s work in 2021 [1] lies in the training strategy of concept space. The final
similarity between a video and a query is the weighted sum of both spaces (latent and concept
space).

As already mentioned, TRECVid AVS conducts benchmark evaluation for video-text re-
trieval task, in TRECVid-2019, several proposed video-text retrieval models were based on
hybrid approach [2, 15, 104]. Ueki et al. [104] compared the usage of concept-based ap-
proach and concept-free approach individually, and their combined effect for video retrieval
from large-scale video databases using textual query sentences. For the former approach,
the authors also built the concept bank comprising several concept types such as persons,
objects, scenes, and actions to deal with various forms of query sentences. Using this con-
cept bank, all concept scores for all videos were calculated. They also experimented with
the latter approach and even also with the combination of these two approaches, and showed
that the video retrieval results can even improve with a combination of these two techniques.

To sum up, the hybrid approach combines the strengths of concept-based and concept-
free approaches, making it more comprehensive and effective. It can enhance retrieval ac-
curacy and provide some level of interpretability and explainability. However, the hybrid
approach may introduce additional complexity and computational overhead. It also relies on
the availability and quality of concept annotations and concept vocabulary, which can vary
in different datasets or domains. Thus, careful consideration and evaluation are necessary
when adopting the hybrid approach in video-text retrieval tasks. Next, we will now explore
various approaches proposed for explaining the decision-making process of deep learning
models across different tasks.
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2.3 Explainability

In recent years, the sophistication and complexity of machine learning models have increased
significantly, leading to challenges in understanding their behavior and decision-making pro-
cesses. These models are often viewed as black boxes, where only the input and output are
known, and the internal process remains obscure. Therefore, the field of explainability in
machine learning and/or deep learning models has gained considerable attention. The con-
cept of explainability in machine learning is explained in different ways, as evidenced by
the examples in [12, 117, 118, 119]. In [118], the authors stated that “. . . explainability is a
broader concept referring to all actions to explain. . . ”. Arrieta et al. state in [117] that “. . .
explainability is associated with the notion of explanation as an interface between humans
and a system that is, at the same time, both an accurate proxy of the system and compre-
hensible to humans. . . ”. Another distinction is drawn in [119], stating that “. . . explanation
provides information that gives insights to users as to how a model came to a decision. . . ”.
These points of views highlight conflicts in the specific definitions and understanding of the
concept of explainability: While Markus et al. [118] emphasize the broad nature of explain-
ability, Arrieta et al. [117] emphasize on accuracy and human comprehensibility, and Akata

et al. [119] focus on providing insights into the decision-making process. In [12], Saeed et

al. aims to clarify the notion of explainability by offering the following definition which
is similar to Akata et al. [119]: “. . . Explainability provides insights to a user to fulfill a
need. . . ”. In this dissertation, we will stick to the definition of explainability provided by
Saeed et al. [12].

This approach of explainability in machine learning is formally referred to as Explain-
able AI (XAI), which applies to all areas of artificial intelligence. The ultimate goal of XAI
is to enable researchers, developers, domain experts, and users to better understand the com-
plex and non-linear behavior of deep learning models while preserving their high accuracy
and performance. However, achieving explainability in deep learning models remains a sig-
nificant challenge due to the complexity and non-linearity of these systems. As a result,
researchers and developers are actively exploring novel methods and techniques to enhance
the explainability of these models. The growing demand for XAI emphasizes the importance
of understanding the decision-making process of deep learning models, particularly as they
continue to play an increasingly important role in our lives.

There is usually a tradeoff between model accuracy and model explainability [117].
However, various XAI techniques can be found in the literature, and most of these are ded-
icated to deep learning models. Generally, machine learning models can be classified into
two major categories (as shown in Figure 2.10): (i) interpretable/transparent models, and (ii)
opaque models. Approaches such as Decision Trees, K-Nearest Neighbors, Bayesian Models

etc. are part of transparent models and can easily achieve explainability, while opaque mod-
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Explainability

Opaque Models Transparent
Models

Post-Hoc Methods

Model Specific

Model Agnostic

Concept Based

Figure 2.10: The modified high-level ontology of explainable artificial intelligence approaches in-
spired from [9]

els consisting of approaches like Ensemble Method, Support Vector Machine, Deep Neural

Network etc. require post-hoc approaches to make them explainable. Post-hoc explainability
refers to the process of explaining the behavior and decision-making process of a machine
learning model after it has been trained and deployed. Figure 2.10 depicts the ontology of
the XAI taxonomy, along with the categories of post-hoc approaches. Moving forward, we
will review some of the main XAI techniques and methods that can be used to explain differ-
ent types of opaque ML models, with respect to their characteristics provided in Table 2.1.
These methods are:

• Model specific methods: These methods are tailored to specific types of ML models.
These methods are not applicable to all ML models, but only to a specific type or group
of models, such as DeepLIFT [120], GRAD-CAM [121], by exploiting the inherent
structure or properties of the models to generate explanations (see Section 2.3.1).

• Model agnostic methods: These are methods that can be applied to any type of ML
model, regardless of their internal structure or complexity. They treat the models as
black boxes and generate explanations based on their inputs and outputs. LIME [122],

Anchor [123], Counterfactual [124] etc. are some examples of model agnostic meth-
ods (see Section 2.3.2).

• concept-based methods: These are methods that generate explanations based on high-
level concepts or features that are meaningful to humans. They aim to bridge the gap
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between the low-level representations used by the models and the high-level semantics
understood by humans (see Section 2.3.3).

2.3.1 Model Specific Methods
Model-specific methods are tools for explanation of a machine learning model, but their
scope is limited to specific types of models for which the explanation methods are devel-
oped. These methods exploit the structure or properties of the model to generate explana-
tions, hence they are not inherently coherent because their coherence or consistency depends
on the specific characteristics and decision-making processes of each individual model being
explained. Imagine you have a convolutional neural network that can classify images into
different categories, such as animals, plants, or vehicles. How do you know which regions in
the image are most relevant for the network to make its predictions?. One way to find out is
to use model-specific methods with heatmaps-based visualization techniques. For instance,
DeepLIFT [120] assigns importance scores to pixels in an image by comparing the activation
of each neuron in the network with the input image to a reference image. Backpropagation
is then used to calculate the contribution of each pixel to the difference in activation, re-
vealing the relevant pixels for the network’s decision. Similarly, Class Activation Mapping
(CAM) [125] identifies discriminative regions in convolutional neural networks (CNNs) by
applying global average pooling to create a class activation map. This map highlights the
regions used for classification.

Figure 2.11: Activation Map for Class Siberian Husky (ImageNet Class #250)2

As shown in Figure 2.11, we can interpret the class activation map as a heatmap in which
the regions in red are the most salient for a particular prediction, and the regions in blue
are the least salient. While CAM has limitations for tasks like visual question answering
(VQA) because of global average pooling layer, Gradient-weighted Class Activation Map-
ping (Grad-CAM)[121] overcomes them by extending CAM using gradient information to
generate a localization map.

2https://www.pinecone.io/learn/class-activation-maps/

30

https://www.pinecone.io/learn/class-activation-maps/


State of the Art 31

Other model-specific methods offer alternative perspectives; such as Guided Backprop-
agation [126] that visualizes regions that activate specific neurons within a CNN, but may
overlook negative input features and produce noisy heatmaps. Integrated Gradients [127] at-
tribute importance to pixels or features by integrating gradients along a path from a baseline
to the target image, but it can be computationally expensive, and is limited to retrospective
explanations. SmoothGrad [128] aims to reduce noise in attribution maps but has downsides
like over-smoothing and inefficiency, particularly for larger datasets or complex models.

Overall, all these methods, while trustworthy and valuable for explaining image-based
tasks, have limitations in terms of high time complexity and no simplicity in understanding
the explanations, user-friendliness, and applicability to videos. Moreover, these methods also
require a certain level of domain expertise to interpret the provided explanation. Hence, the
research lays the foundation for exploring alternative approaches to achieve interpretability
in video-text retrieval systems.

2.3.2 Model Agnostic Methods

Model-agnostic methods for explainable AI (XAI) aim to provide insights into the inner
workings of machine learning models by producing quantitative visualizations of how the
model predictions are calculated. The scope is not limited and can be applied to any ma-
chine learning model, regardless of its internal structure or algorithm. These methods aim
to produce quantitative visualizations of how model predictions are calculated, making it
easier and simple for humans to understand and somewhat trust the decision-making pro-
cess of these models. LIME [122] and Kernel SHAP [129] are two of the most commonly
cited post-hoc model-agnostic techniques in the literature [130]. Local Interpretable Model-
agnostic Explanations (LIME) [122] is a technique that aims to provide explanations for the
predictions made by any classifier, irrespective of its complexity. It achieves this by creating
an interpretable model that approximates the original classifier, specifically for a given input,
and generates local explanations by perturbing the input sample within a neighborhood of
a local decision boundary. This allows for the identification of the most influential features
that contributed to the classifier’s decision for that particular input.

As illustrated in Figure 2.12, the prediction for the original image is first calculated using
a deep learning model i.e. P(tree frog = 0.54), then it is divided into interpretable components
(contiguous superpixels), and a dataset of perturbed instances is generated by turning some
of the interpretable components “off” (in this case, making them gray). For each perturbed
instance, the probability is calculated according to the deep learning model. After that,
a new locally weighted linear model is learned on this perturbed dataset. In the end, the
superpixels with the highest positive weights are presented as an explanation graying out
everything else. Moreover, LIME enables the replacement of the underlying “black box”
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Figure 2.12: Local Interpretable Model-Agnostic Explanations (LIME)3

model while keeping the same local interpretable model for the explanation. LIME can
work for various types of data, including tabular, text, and images. However, as LIME is
an approximation model, and when learned it can provide a good approximation of local
behavior, but it may not have a good global approximation, a characteristic known as local
fidelity. Additionally, there is no consensus on the boundary of the neighborhood for the local
model, and sometimes, it provides very different explanations for two nearby data points.
Besides, an extension of LIME called Anchor [123] uses a rule-based approach to overcome
some of the limitations of LIME. Anchor maximizes the likelihood of how a certain feature
contributes to a prediction, and it introduces “IF-THEN” rules as explanations, along with
the concept of coverage, which helps the decision-maker understand the range within which
the generated explanations are valid. SHAP (SHapley Additive exPlanations) proposed by
Lundberg et al. [129] is another local explanation based model-agnostic method. It is based
on game theory and shapley values for model interpretability. The SHAP method explains
the contribution of individual features to a model prediction by treating the data features as
players in a coalition game, and using shapley values to distribute the payout fairly. This
method can be applied to individual categories in tabular data or groups in images. One
limitation is that it requires calculating all possible permutations of the input features, which
can become computationally expensive for high-dimensional datasets. Researchers have
also improved the SHAP method by addressing its limitations, such as generating counter-
intuitive explanations and handling dependent features [131, 132, 133].

Counterfactual Explanations utilize the General Data Protection Regulation (GDPR) to
provide counterfactual explanations for automated decisions made by machine learning mod-
els [124]. The authors, Wachter et al., propose an intervention-based framework that gener-
ates explanations without accessing the black box model. By identifying interventions that
could have led to different outcomes and comparing them with the actual outcome, trans-
parency and accountability in automated decision-making systems can be improved while
addressing GDPR-related concerns [124]. However, challenges such as the need for accu-

3https://tinyurl.com/3e8w6j6b
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rate data, reliability, and the identification and testing of interventions exist. Nonetheless,
Counterfactual Explanations contribute significantly to the field of explainable AI, particu-
larly in the context of data privacy and protection [124].

In short, model-agnostic approaches have drawbacks that can affect their effectiveness
and reliability. Firstly, these techniques often rely on approximations, which means they may
not accurately represent the behavior of the original model. Secondly, defining the bound-
ary of the local model can be challenging, leading to inconsistent and moderately coherent

explanations for nearby data points. They may also sacrifice performance for interpretabil-
ity, resulting in decreased predictive accuracy. Additionally, model-agnostic methods can
be computationally expensive with low-to-moderate time complexity, especially for high-
dimensional video datasets. Visualization of such explanations is also not feasible in the
case of video-text retrieval based on classification tasks.

2.3.3 Concept-based Methods

concept-based methods, based on classification task, are also used in the literature to provide
justification for retrieved results.

Section 2.2.3 already mentioned that the combination of Concept-Based and Concept-
Free approaches (section 2.2.1 and 2.2.2) holds promise for improving video retrieval re-
sults while achieving explainability of retrieved results. In concept-based approaches (sec-
tion 2.2.1), the video-text features are in-fact probability scores corresponding to visual con-
cepts or tags, which are understandable to human. Using probability scores for similarity
calculation, provide some level of explanation of retrieved results with low-to-moderare

complexity and high simplicity. Hence, the late fusion of concept-based and concept-free
spaces, namely hybrid approach (section 2.2.3), has become the norm in TRECVid bench-
marking [1, 2, 103, 104, 134, 135, 136] that support partial explainability (as results coming
from latent space are opaque). The scope of these kinds of explanation methods are not lim-
ited to one model only. These methods are generalized and can be applied to model based
on classification task.

Liao et al. [10] addressed this issue and presents an explainable hybrid based method for
retrieving fashion products based on a combination of visual and textual information. The
main idea is to use a hierarchical structure of fashion concepts, called EI (Exclusive and
Independent) tree, to guide the end-to-end learning of the model. The EI tree organizes the
fashion concepts into multiple semantic levels and imposes exclusive and independent con-
straints on the sibling concepts. For example, at the category level, a product can only belong
to one category (exclusive), and the categories are independent of each other (independent).
The EI tree helps to learn an explicit hierarchical similarity function that can measure the
semantic similarities among fashion products at different levels. The paper also integrated
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the concept-level feedback from users in their interpretable fashion retrieval model. For ex-
ample, if a user searches for a dress with a floral print, the system can show the most relevant
results and also allow the user to refine the search by selecting or deselecting some concepts,
such as color, style, or material.

Figure 2.13: Concept localization examples [10]

The proposed approach [10] contains two main components: a “joint embedding module”
and a “weight matrix module”. The joint embedding module is responsible for generating
embeddings that capture both visual and textual features of fashion products. The weight
matrix module is used to assign weights to different features learned from EI concept tree
and used to weigh the contributions of different features to the embeddings. This enables
the generation of explainable embeddings. By analyzing the weight matrix, one can gain
insights into which features are most important for the embeddings and how they contribute
to the retrieval process. The authors validated the learning of multi-level concepts using
heatmaps, as shown in Figure 2.13. The authors argue that this provides a more explainable
approach to concept-based multimodal retrieval. The explainability visualization technique
of [10] only explains concepts on one image at a time: in case of concept explanation on
video-level, such approach is not feasible, as highlighting regions in all frames of videos can
be computationally expensive.

Figure 2.14: Tag clouds for justifying the retrieved results for one query [1]
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Wu et al.[2] and Dong et al. [1] propose an interpretable hybrid space model for video-
text retrieval which support explainability. In the concept space of hybrid model, video-text
matching is implemented using only the concept classification scores, the system operation
is then explainable as retrieval decisions (based on similarities) use only classification scores
corresponding to tags meaningful to humans. These kinds of concept-based justification can
be visualized with the help of tag clouds (as shown in Figure 2.14). By looking at the tag
clouds for query and each retrieved video in Figure 2.14, the user can evaluate the common
visual concepts between video and query, and on the basis of similar concepts, the user
can judge why such video is retrieved. As the visual concepts in the tag cloud are human-
understandable, a user can interpret the results and is not required to have domain expertise.

2.4 From Explainability to Interpretability and Causality
As seen above with the concept of explainability, there is also a lack of consensus in the lit-
erature regarding the meaning of the term “interpretability”. While the term “explainability”
and “interpretability” are frequently used interchangeably, some papers [117, 118, 119, 137,
138, 139] make a distinction between them. Four such definitions from [117, 118, 119, 12]
are already presented in Section 2.3. The complete definition for explainability and inter-
pretability are as follows: In [118], Markus et al. stated that “we consider interpretability
a property related to an explanation and explainability is a broader concept referring to all
actions to explain”. Arrieta et al. [117] stated that, “interpretability is the ability to explain
or to provide the meaning in understandable terms to a human, while explainability is as-
sociated with the notion of explanation as an interface between humans and a system that
is, at the same time, both an accurate proxy of the system and comprehensible to humans”.
Another distinction is drawn in [119] by Akata et al., in which the authors stated that “In the
case of interpretation, abstract concepts are translated into insights useful for domain knowl-
edge (for example, identifying correlations between layers in a neural network for language
analysis and linguistic knowledge). An explanation provides information that gives insights
to users as to how a model came to a decision or interpretation”.

The definitions provided in these papers are not entirely clear, and general for all users
and applications. There is still a significant amount of uncertainty. In [12], Saeed et al.

aims to clarify the difference between explainability and interpretability by offering the fol-
lowing distinction: “Explainability provides insights to a user to fulfill a need, whereas
interpretability is the degree to which the provided insights can make sense for the user’s
domain knowledge”. In this dissertation, we will use this definition of explainability and
interpretability provided by Saeed et al. [12].

As the definition provided by Saeed et al. [12], clearly states that the aim of explainability
is to provide “insights” that help the “users” to fulfill a specific “need”, here “Insights” refer
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Figure 2.15: Process of machine learning based prediction with an additional XAI component to
explain the results to the users (taken from [11])

to the output generated from explainability techniques like tag-clouds, text explanations, fea-
ture relevance, and local explanations. These insights are provided to a “user”, which could
include domain experts or non-technical/common users of the application. The “need” for
these insights could be to address various concerns, such as justifying decisions, discovering
new knowledge, improving black-box AI models, or ensuring fairness. In Figure 2.15, XAI
component, which tries to use models to explain the results to the end user. Here insights

are being used to fulfill the need of improving the training of model. On the other hand,
interpretability is concerned with whether the provided explanations are consistent with the
user’s knowledge?, if they make sense to the user?, if the user can reason and infer based
on the explanations to support decision-making?, and whether the provided explanations are
reasonable for the model’s decision?. To ensure interpretability, a model must provide ex-
planations that are logical to decision-makers and accurately reflect the true reasons for the
model’s decisions, and those should make sense to the end user.

Currently, XAI models that attempt to interpret a pre-trained black-box model (known as
model-agnostic models) build interpretable models around local interpretations by approxi-
mating the predictive black-box instead of reflecting the true underlying mechanisms of the
black box [122, 129]. This approximation is based on computing correlations between indi-
vidual features, and it may lead to suboptimal or even erroneous explanations for decision-
makers because it cannot disentangle correlation from causation [140]. However, finding
causal relationships between features and predictions in observational data is a challenging
task that is essential for explaining predictions [141]. Humans rely heavily on causality in
their understanding of the environment [142].

Causability is defined as “the extent to which an explanation of a statement achieves
a specified level of causal understanding with effectiveness, efficiency, and satisfaction in
a specified context of use” [141]. Thus, causality, the inherent relationship between cause
and effect, can be viewed as a property of human intelligence, whereas explainability is a
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Figure 2.16: The notion of causality: given a predictive black box model, the goal is to create
interpretable and explainable methods that will provide the user a causal understanding of why certain
features contributed to a specific prediction [12]

property of artificial intelligence [143]. Figure 2.16 illustrates the concept of causability and
causality in the context of XAI. In contrast, AI systems have been primarily designed to solve
pattern recognition problems, rather than building causal models of the world that support
explanation and understanding [144]. Therefore, there is a growing emphasis on developing
AI systems that can build causal explainable models to support explanation and understand-
ing [145]. However, the challenge lies in making computer-generated explanations causally
understandable to humans [141].

Causality is explored in different research domains, such as activity classification from
video pairs and providing explanations for machine learning model decisions [146, 147,
148]. [148] introduced a causality-inspired Video-Moment Retrieval (VMR) framework
that builds a structural causal model to capture the true effect of query and video content on
the prediction. Moreover, along with causality, interpretability is also necessary for explain-
ability, since a clear understanding of the model’s decision-making process and the factors
that influence it are essential for providing a meaningful explanation. The concepts of in-
terpretability, causality, and explainability are not mutually exclusive, and they can coexist
in the same model or system. However, there may be cases where a model is interpretable
and causal, but still difficult to explain due to the complexity or size of the model, or the
difficulty of translating technical information into a more accessible format.

In the case of cross-modal video-text retrieval, the end user can be a computer scientist or
non-technical user, the way of explaining the retrieved results, for example using heatmaps
in model-specific methods (Figure 2.13), or just showing tag-clouds in concept-based meth-
ods (Figure 2.14) with misleading text sizes or colors, the explanation may not represent
the causality between tag-clouds and decision-making process of system in the explanation.
Moreover, it is up to the user to compare the tag-clouds of queries and videos and build
an understanding of the justification provided by the system. The authors of [1] provided
justification with the help of tag-clouds, but there is no information present in the tag-cloud
related to the contribution of each tag in making the whole retrieval decision. No causality
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analysis has been conducted between (i) the classification module of the system, and (ii) the
retrieval results based on concept space.

2.5 Discussion
In this chapter, we discuss methods for generating content representations of images, videos,
and text for cross-modal retrieval (Section 2.1). Various approaches are employed to ob-
tain video representations, considering spatial and temporal aspects. Architectures based on
CNNs, Transformers, or RNNs are used to process features extracted from video frames,
with the aim of capturing fine-grained interactions. RNNs extract long-range features but
suffer from gradient issues, while CNNs enable parallel computation but struggle with long-
distance features. Transformers are powerful but lack interpretability. For text represen-
tation, RNNs suffer from context dependence, while CNNs are efficient but struggle with
long-distance features. Transformers are preferred for their ability to extract long-term fea-
tures, but they are not explanation-friendly.

The cross-modal retrieval system focuses on tasks like TTV and VTT, employing concept-
based or concept-free approaches. While concept-based approaches provide explanations,
they may not capture rich sequential information and pre-defined concept bank introduce
ambiguity. Nonetheless, recent studies [7, 101] have expanded the concept bank to include
more concepts and utilized text embedding algorithms like Word2Vec and BERT to automat-
ically select related visual concept classifiers for the query keywords to overcome these is-
sues. Furthermore, hybrid approaches that combine different spaces and tasks have emerged
as promising solutions in the field of video retrieval. These approaches have demonstrated
that the combination of the latent space and the concept space leads to improved accuracy
compared to using each space individually. It is claimed that the concept space not only
provides interpretability to the retrieved results but also complements the latent space, en-
hancing the overall performance of the retrieval system [1]. Hence, the potential weakness
to consider is the lack of detailed analysis of the learned embedding spaces or feature
representations to support such a claim. This detailed analysis could also be valuable in
understanding how the hybrid model is encoding and using multimodal information, leading
to high accuracy. However, despite these advancements, there is still an issue of ambiguity
when defining concepts within the concept vocabulary. This ambiguity not only affects the
classification of video and text but also hampers the interpretation of the retrieved results.

For “explainability”, “interpretability”, and “causality”, various methods were discussed
based on three main methods: model-specific, model-agnostic, and concept-based methods.
Explainability helps developers understand how a model works, while interpretability pro-
vides users with transparent and trustworthy results by explaining the causal mechanisms be-
hind the model’s output. Each explainability method has its own advantages and limitations
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Characteristic Model-Specific Model-Agnostic concept-based

Explainability
Heatmaps,

decision trees
LIME, SHAP,

anchor explanations
Tag clouds,

topic models

Scope
Limited to

specific models
Applicable to

any model
Applicable to
any domain

Coherence N/A High High
Simplicity N/A High High
Granularity High Low Low
Causality N/A Moderate N/A
Trust High Moderate Low
Domain Expertise High Low to Moderate High
Scalability Low to Moderate High High
Time Complexity High Low to Moderate Low to Moderate

Quantitative Analysis
Limited to

model-specific
metrics

Can be applied to
both model-specific

and model-agnostic metrics
N/A

Table 2.1: Comparison of model-specific, model-agnostic, and concept-based explainability tech-
niques in machine learning and AI.

(see Table 2.1) and can be applied to different scenarios and applications. Model-specific
methods identify important features or inputs for a model’s predictions, providing insights
into the decision-making process and highlighting potential biases or areas for improve-
ment. However, they may not capture complex feature interactions or the non-linearity of the
model, thus limiting their ability to provide causal explanations. On the other hand, Model-
agnostic methods can be applied to any machine learning model, offering local explanations
for individual predictions or global explanations for overall model behavior. However, these
methods may not provide faithful explanations or a complete understanding of how the model
works. Explanations from model-agnostic methods are approximations, making them less
reliable, which also means the original model cannot be fully trusted. Additionally, model-
agnostic methods may not generate intuitive or human-interpretable explanations.

To generate more human-friendly explanations, concept-based methods have been pro-
posed. These models use high-level concepts or abstract representations to provide in-
sights into the decision-making process. They focus on semantically meaningful explana-
tions rather than low-level features or parameters. Some concept-based methods, such as
those based on hybrid space [1, 2], utilize visual concepts to guide learning and retrieval
mechanisms of model, offering interpretable and semantic explanations for retrieved re-
sults. Current concept space methods for generating tag-cloud explanations [1] lack thor-
ough causality-based explanations, including the extent of tag(s) contribution to retrieval
decisions and how the concepts are derived or learned.

To sum up, there is no single method that can provide perfect explanations for all scenar-
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ios and applications. Therefore, it is important to consider the trade-offs between different
methods and techniques, and choose the most suitable one for the task of TTV and VTT
retrieval for instance tag-cloud based explanations [1]. Furthermore, it is also important to
evaluate the quality and effectiveness of the explanations generated by different methods,
and compare them with human expectations and preferences.

As a result, several questions arise with this discussion:

1. Can we enhance the concept vocabulary to minimize ambiguity in visual concepts?

2. Is the idea of complementarity between the concept space and the latent space truly valid?

3. What will be the effect of causality integration in tag-cloud based explanation for video-
text retrieval?

In the upcoming chapters, we will delve into these questions and explore the evidence that
supports or challenges the notion of complementarity between the concept space and the
latent space. By doing so, we aim to gain a deeper understanding of the strengths and limi-
tations of these hybrid approaches in video retrieval.
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Chapter 3

The Role of PoS-tagging in Multimedia
Retrieval and Explainability

3.1 Introduction

This chapter builds upon the dual encoding model based on hybrid approach proposed by
Dong et al. [1], which provides a framework based on latent space and concept space for
cross-modal retrieval (see Section 2.2.3). In this chapter, we extend the dual encoding
model [1] by exploring the impact of incorporating Part-of-Speech (PoS) tags in the text
encoding pipeline for training the dual encoding model in order to overcome the issue of
ambiguity in vocabulary of concept space. PoS-tagging is a crucial process that assigns
specific tags to words, representing their syntactic categories. By incorporating PoS-tags,
we aim to leverage the syntactic and grammatical information they provide to overcome the
ambiguity and enhance the performance, relevance, and explainability of video-text retrieval.

For instance by utilizing PoS-tags in the query “A man is measuring the size of a copper-

head snake with the tape measure”, the visual concept “measure” is present as both a verb
and a noun. The presence of “measure” as a verb and noun in the query, forces the retrieval
system to focus on the videos where the measuring activity and measuring objects both are
present and are likely to show relevant videos. The PoS-tags provide clarity regarding the
intended action and highlight the relevance of videos that depict this specific activity.

Similarly, in other cases for instance “a person is watering his flowers while people walk

under the water”, and “a man and a woman cooking on a cooking show”, the presence of
PoS-tags helps disambiguate the verb or noun words like water in former and cooking in
latter, and also helps in identifying the singular or plural nouns e.g. people or person. This is
expected to lead to more precise and relevant video retrieval results aligned with the intended
meaning of the query.

From the above examples, it is clearly shown that the inclusion of PoS-tags offers several
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benefits in the context of video-text retrieval. Firstly, it helps address ambiguity in concepts
within the vocabulary of concept space. For instance, if the “measure” concept will not be
distinguished according to its PoS-tag (verb and noun), it is likely that the retrieval system
will focus more on the measuring objects rather than the measuring activities while retrieving
the videos. By considering the syntactic categories of words, we can disambiguate their
meanings and improve the accuracy of classification. This is particularly useful in scenarios
where multiple interpretations or senses are possible. Secondly, PoS-tagging contributes to
the interpretability of the retrieved results, currently bounded to technical users only. By
incorporating PoS-tags, we can analyze and explain the influence of words with PoS-tags in
retrieval process. Furthermore, the integration of PoS-tags enables a deeper analysis of the
textual content. By considering the syntactic structure of sentences, we gain insights into the
relationships between words and their roles within the sentence. This additional information
can aid in capturing the nuances and context of the text, thereby improving the performance
of video-text retrieval.

Through a comparative evaluation, we will assess the impact of incorporating PoS-tags
in the dual encoding model for video-text retrieval. We will compare the performance of
the dual encoding retrieval system with and without the utilization of PoS-tags, focusing on
metrics such as accuracy, precision, and explainability. This investigation will contribute to
a better understanding of the potential benefits and implications of incorporating PoS-tags in
the dual encoding model, advancing the existing knowledge presented by Dong et al. [1].

In summary, this chapter aims to extend the dual encoding model by incorporating PoS-
tags in the text encoding pipeline. By leveraging the syntactic and grammatical information
provided by PoS-tags, we aim to improve the accuracy, precision, and explainability of the
video-text retrieval system. The investigation will specifically address ambiguity within the
concept vocabulary and enhance the system’s ability to provide meaningful explanations.

Objective

The goal of Chapter 3 is to investigate the potential benefits and implications of in-
tegrating Part-of-Speech (POS) tags in text encoding pipeline of the dual encoding
model for video-text retrieval with the idea of reducing the ambiguity in visual con-
cepts bank. The chapter aims to analyze how the inclusion of PoS-tags impacts the
retrieval accuracy, precision, explainability, and overall performance by leveraging
syntactic and grammatical information.

3.2 Methodology
Formally, we are given a set of videos V = {v1,v2, ...,vn} and a set of captions S = {s1,s2, ...,sm}
where n ≤ m, and represents the total number of videos V and captions S in the dataset re-
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spectively. Each video vi is described by set of captions Ci
p = {ci

1,c
i
2, ...,c

i
p} where Ci

p ⊂ S
belongs to one video vi. The primary objectives of dual encoding model [1] are

1. To learn two mapping functions f () and g() for visual and textual encodings in two
spaces i.e. latent space encodings ( f (vi), f (si)) and concept space encodings (g(si),g(vi)).

2. To learn two similarity functions in order to compute the similarity between video
vi ∈ V and caption s j ∈ S such that it yields a high value if i = j (i.e., the caption
s j ∈ Ci

p correspond to the same video vi) and a low value if i ̸= j (i.e. caption s j

does not correspond to video vi) using simlat(vi,s j) for similarity in latent space and
simcon(vi,s j) for similarity in concept space.

Accurate representations of both the video and caption are vital for accurately estimating
this similarity, as detailed in Sections 3.2.2.1 and 3.2.2.2. The main aim of this chapter is
to integrate the PoS-tags in text encoding pipeline of dual encoding model [1] and learn a
similarity function sim(v,s) to determine the similarity between text s and video v in latent
space simlat(v,s) and concept space simcon(v,s).

VideoPOS tagged
Sentences

Frame-Level CNNsOne-hot Encoding

Dual Encoding Model

Video-Text Probabilities

1. Concept level Annotation & Vocabulary Building 2. POS Tag based Classification and Retrieval

Training Captions

Preprocessing

Sentence Tokenizing

POS Tagged Sentences

Concept level Annotation POS Tagged
Concept Vocabulary

Latent Space

Video-Text Embedding

Concept Space

Figure 3.1: Proposed Architecture for Dual Encoding with Part-of-Speech (POS) Tagging in Concept
Classification and Video-Text Retrieval

Our overall approach is centered around two steps as shown in Figure 3.1, 1) PoS-tag-
based concept level annotation & vocabulary building, and 2) PoS-tag-based classification
and retrieval. The first step is responsible for annotating the videos with concepts or tags
along with their corresponding PoS-tags. In the second step, the concept level annotation
and vocabulary are then used to train the concept space of the hybrid model using PoS-
tagged captions/sentences. As depicted in step 2 of Figure 3.1, the video and text modality
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are first represented on frame and word level respectively, which are then passed to dual
encoding model to generate video and sentence level encodings respectively. Subsequently,
during text-to-video (or video-to-text) retrieval, we rank all the videos (or captions) in the
dataset based on their combined weighted similarity in latent space and concept space. In
the following discussion, our proposed model will be referred to as a “PoS-tag based dual
encoding model”.

Following, we provide a detailed description of all the steps and processes essential for
dual encoding model [1] and integrating PoS-tags within the process. The dual encoding
model is based on two spaces (latent and concept). To train the concept space, we need
concept-level annotation and vocabulary. So, in Section 3.2.1, we will first discuss the pro-
cedure we used to build the: a) “PoS-tags based concept level annotations”, and b) “PoS-tags
based tag/concept-vocabulary”. Then, we provide a comprehensive overview of the feature
extraction process from both video and text data (Sections 3.2.2.1 and 3.2.2.2), as described
by Dong et al. [1]. Finally, we will see in detail the hybrid space learning and evaluation in
Sections 3.2.3 and 3.3, respectively.

3.2.1 Concept-level Annotation & Concept Vocabulary building

Concept-level annotations and vocabulary building is done automatically for each training
video. As already mentioned that for a specific training video vi, we have access to p sen-
tences/captions {ci

1, ...,c
i
p}, that describe the video vi content.

For concept-level annotations or ground truth building for each video, the method in-
volves analyzing the p sentence descriptions and determining the frequency of each con-
cept/word except stopwords to that video based on its occurence in those p sentences. For
instance, Dong et al. [1] annotated the videos vi with visual concepts by computing the rel-
evance of a specific concept by its occurrence in p sentences corresponds to video vi. Li

et al. [149] suggest that a concept appearing in multiple sentences is usually more impor-
tant than those presented once. Hence, rather than using binary labels as in [2], Dong et

al. used soft labels based on concept frequency to obtain a more nuanced understanding of
the importance of different concepts. So, the K-dimensional ground-truth vector for video v

is represented by yv where yv = [yv1,yv2, ...,yvi, ...,yvk]. The value of its ith dimension, i.e.,
yvi ∈ R+), is defined as the frequency of the ith concept divided by the maximum frequency
of all concepts within the p sentences of a video vi, and k represents the numbers of concept
classes in vocabulary.

To obtain the concept vocabulary, Dong et al. [1] conducted part-of-speech tagging by
NLTK toolkit on all training sentences, and only keep the nouns, verbs and adjectives. All
the English stopwords also removed. Besides, words are also lemmatized, making dog and
dogs to be a same concept. Finally, the top k = 512 frequent words are selected as the final
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concept vocabulary.
Instead of using soft labels, another way of building concept vocabulary and ground-truth

is to use binary labels. Wu et al. [2] constructed a k-dimensional concept vocabulary from the
training set, which included words that appeared in at least five descriptions and excluded
words from the NLTK stopword list. For a video v, the words that appear in its captions
are identified as ground-truth labels yv = [yv1,yv2, ...,yvi, ...,yvk], where yvi ∈ {0,1} indicates
whether a word is present in the captions of v. The k-dimensional concept vocabulary is
compiled from the training set, by including the words that appear in at least five descriptions
and removing the words in the NLTK stopword list, where and k = 11,147.

Both of these approaches then extend relevant video-sentence to a triplet training instance
by adding the K-dimensional ground-truth vector, creating a supervised learning framework
for concept space learning of the hybrid space model which is described into detail in Sec-
tion 3.2.3.

Concept level Annotation & Vocabulary Building

Training Captions

Preprocessing

Sentence Tokenizing

POS Tagged Sentences

Concept level
Annotation

POS Tagged
Concept Vocabulary

video8078#enc#5 A man is measuring the size of a
copperhead snake with the tape measure

video8078#enc#5 A man/noun is measure/verb the size of
a copperhead/noun snake/noun with the tape/noun

measure/noun

a man is measuring the size of a copperhead
snake with the tape measure

man, measure, size, copperhead, snake, tape,
measure

video8078   man/noun:14 measure/verb:7
copperhead/noun:5 snake/noun:4 tape/noun:2

measure/noun:2

video2960    game/noun:15 video/noun:12 run/verb:9
ice/noun:8 animal/noun:5 face/noun:2

show/noun:2 people/noun:2 

video4311    wrestle/v:13 men/n:8 people/n:6
person/n:2 

...

"man/noun", "woman/noun",
"talk/verb",

"play/verb", "game/noun",
"person/noun", "video/noun",

"people/noun", "measure/verb",
"girl/noun", "car/noun",

"sing/verb",
"men/noun", "cartoon/noun",

"measure/noun",
...

1

1

2

3 4

Figure 3.2: Workflow for Building a PoS-tag-based Vocabulary and Concept-Level Annotation

PoS-tag based Annotation & Vocabulary: In our case, the difference lies in annotating
the videos with visual concepts along with their PoS-tags. An example of this is given in
Figure 3.2. Given an input sentence s, we apply preprocessing on sentence s and tag each
word w of the sentence with its PoS-tag and only keep the nouns (n), verbs (v), adverb (a),
adjectives (j), and preposition (p). (see step1-2 in Figure 3.2). English stopwords are also
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excluded in this pre-processing. Besides, we also lemmatize the words, making “scene/n”
and “scenes/n” to be the same concept. For concept-level annotations (step-3 in Figure 3.2)
of each video v, the process is the same as in dual encoding model [1] i.e. let y be a K-
dimensional ground-truth vector for video v. The value of its ith dimension, i.e., yi, is defined
as the frequency of the ith PoS-tagged concept divided by the maximum frequency of all
PoS-tagged concepts within the p sentences. As the words in sentences are tagged with their
PoS-tags, the annotation is based on PoS-tagged words. Finally, the top K frequent words
selected from step-3 are chosen as the final PoS-tag based concept vocabulary in step 4.

3.2.2 PoS-tag based classification and retrieval

In this section, we discuss the representation procedure of video and text in PoS-tag dual
encoding model.

3.2.2.1 Video Representation

A man/noun is

measure/verb the

size of a

copperhead/noun

snake/noun with

the tape/noun

measure/noun

PoS-tag Concept space

man/n

measure/n

measure/v

Figure 3.3: Proposed PoS-tag based Dual Encoding Architecture with PoS-tagged “text” & “concept
space” (inspired from [1])

The second part of our approach, as shown in Figure 3.1, achieves training dual encod-
ing network for classification and retrieval. We are based on the same architecture as the
dual encoding network [1] to extract the multi-level video features. The video encoding
pipeline consists of three levels, and each serving a specific purpose, as shown in Figure 3.3.
Initially, for a given video v, a sequence of n frames is selected, with each frame spaced
at a predetermined interval. For each frame, the spatial features are extracted using deep
CNN [85, 106, 150]. As a result, the video from the collection can be represented as a se-
quence of feature vectors {v1,v2, ...,vn}, where vt represents the deep feature vector of the tth
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frame. Then these frame-level video features are passed to a multi-level encoding network.
It is important to note that this multi-level representation captures the visual characteristics
of the video at different time points.

Level 1. Global Encoding by Mean Pooling: At this stage, the objective is to capture
the overall information encompassing all frames in a video using mean pooling. Mean pool-
ing has been widely favored for video-text retrieval, as highlighted in the literature review
by Dong et al. [1]. This pooling technique represents a video by computing the average of
the features extracted from its frames. Consequently, it effectively captures visual patterns
that consistently appear throughout the video content. Such patterns typically have a global
scope. The resulting encoding at this level is denoted as f 1

v .

f 1
v =

1
n

n

∑
t=1

vt (3.1)

Level 2. Temporal-Aware Encoding by biGRU: In the dual encoding model, the second
level of visual encoding pipeline focuses on extracting the temporal information of the video
using the bidirectional GRU (biGRU) [151]. Let

−→
ht and

←−
ht be their corresponding hidden

states at a specific time step {t = 1, ...,n.}. The hidden states are generated as

−→
ht =

−−→
GRU(vt ,

−−→
ht−1)

←−
ht =

←−−
GRU(vn+1−t ,

←−−
ht−1)

(3.2)

The forward-GRU and backward-GRU, denoted as
−−→
GRU and

←−−
GRU respectively, capture the

past and future contextual information in the video sequence. The hidden states of the for-
ward and backward GRUs at a specific time step t, represented by

−→
ht and

←−
ht respectively,

contain the encoded information from their respective directions. To combine the informa-
tion from both directions,

−→
ht and

←−
ht are concatenated, resulting in the biGRU output ht . This

concatenated vector is denoted as v = [
−→
ht ,
←−
ht ]. By considering all the time steps, we obtain

a d-dimensional feature map Hv = {h1
v ,h

2
v , ...,h

n
v} where each h j

v ∈ Rd . The feature map Hv

then has a shape of d×n, where n represents the number of time steps in the video. To obtain
the single vector temporal representation of the video, mean pooling to the feature map Hv

along the row dimension is applied. This mean-pooled representation, denoted as f 2
v , serves

as the biGRU-based encoding of the video.

f 2
v =

1
n

n

∑
t=1

ht (3.3)
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Level 3. Local-Enhanced Encoding by biGRU-CNN: The final layer further extracts the
local information in the temporal sequence of the video by performing 1D CNN on top of
the biGRU features from the second level. The input of the 1D CNN is the feature map Hv

generated by the previous biGRU module. Let Conv1d(k,r) be a 1D convolutional block that
contains r = 512 filters of size k, with k≥ 2. Feeding Hv, after zero padding, into Conv1d(k,r)
produces an n× r feature map. Non-linearity is introduced by applying the ReLU activation
function on the feature map. The number of frames n varies for videos, max pooling to
compress the feature map to a vector ck of fixed length r is further applied. More formally,
the above process can be expressed as:

cv
k = max-pooling(ReLU(Conv1d(k,r)(Hv))). (3.4)

A filter with k = 2 allows two adjacent rows in Hv to interact with each other, while a filter
of larger k means more adjacent rows are exploited simultaneously. In order to generate a
multi-scale representation, multiple 1D convolutional blocks with k = 2,3,4,5 are employed.
Their outputs are concatenated to form the biGRU-CNN based encoding.

The multi-level encoding of the input video is achieved by combining the outputs from
different levels of encoding pipeline i.e. global ( f 1

v ), temporal ( f 2
v ), and local ( f 3

v ) extracted
from these sub-networks. The final visual embedding is denoted as

φ(v) = [ f 1
v , f 2

v , f 3
v ]. (3.5)

3.2.2.2 Text Representation

The multi-level encoding network described above for video representation is adapted for the
PoS-tag based text modality. In our case, each word w of the sentence s is first tagged with
its respective PoS-tag as {w1/PoS,w2/PoS, . . . ,wm/PoS} as shown in step 2 of Figure 3.2. A
sequence of one-hot vectors is generated for s, where wt indicates the vector representation
of the t-th word.

For “Level 1. Global Encoding by Mean Pooling ( f s
1)”, the text representation is obtained

by averaging all the individual vectors in the sequence of one-hot vectors, which corresponds
to the classical bag-of-words representation. To compute the “Level 2. Temporal-Aware en-
coding by biGRU”, each word is first converted to a dense vector by multiplying its one-hot
vector with a word embedding matrix. The matrix is initialized using a pre-trained word2vec
model [88] provided by [115], which was trained on English tags from 30 million Flickr im-
ages. The subsequent steps follow a similar approach as in the video counterpart. Denoting
the level 2 encoding of the sentence as f s

2 , and the Local-Enhanced Encoding by biGRU-
CNN as level 3 encoding f s

3 , where three 1D convolutional blocks with k = 2,3,4 is utilized
for the latter. The multi-level encoding of the sentence is obtained by concatenating the
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encoding results from all three levels in the dual network. Specifically, it is expressed as:

φ(s) = [ f s
1, f s

2, f s
3]. (3.6)

3.2.3 Hybrid Space Learning

As ϕ(v) and ϕ(s) have not been correlated, they are not directly comparable. For video-text
similarity computation, the vectors need to be projected into a common space, so the next
step is to train the model in order to map the visual and textual encoding to the hybrid space
i.e. d-dimensional latent space and K-concept space. It is worth noting that except for the
image CNNs used as an input for the dual encoding network, the dual encoding network is
trained in an end-to-end manner.

3.2.3.1 Learning a Latent Space

Given the encoded video vector ϕ(v) and PoS-tag based encoded sentence vector ϕ(s), the
encodings are mapped to the latent space of d-dimension by using affine transformations (i.e.
fully connected layer and a batch normalization layer) as:

f (v) = BN(W1ϕ(v)+b1)

f (s) = BN(W2ϕ(s)+b2)
(3.7)

where W1 and W2 are the weights and b1 and b2 are the bias of the fully connected layer in the
visual and encoding network respectively. Both f (v) and f (s) are d-dimensional vectors and
are directly comparable. Finally the similarity of the video-text in latent space simlat(v,s) is
computed using cosine similarity as:

simlat(v,s) =
( f (v) · f (s))

(|| f (v)|||| f (s)||)
(3.8)

The visual-textual encoding matching task is done in latent space, and it is trained in an
end-to-end manner by using the improved triplet ranking loss function. Given a relevant
video-sentence pair (v,s) in a mini-batch, its loss Llat(v,s) is:

Llat(v,s) = max(0,m+ simlat(v,s−)− simlat(v,s))

+max(0,m+ simlat(v−,s)− simlat(v,s))
(3.9)

where m is the margin, s− and v− is the negative sample for video v and sentence s re-
spectively which is not chosen randomly from the current mini-batch, but instead, the most
similar yet negative sentence and video are chosen.

49



50 3.2. METHODOLOGY

3.2.3.2 Learning a Concept Space

As video and text can be described using multiple concepts, hence the task of learning con-
cept space is a multi-label classification problem. Given the encoded video vector ϕ(v) and
PoS-tag based encoded sentence vector ϕ(s), the encodings are mapped to the concept space
of K-dimension by using a similar network to the network used for latent space learning.
That is,

g(v) = σ(BN(W3ϕ(v)+b3))

g(s) = σ(BN(W4ϕ(s)+b4))
(3.10)

In Eq. 3.10, the sigmoid function is used to generate the probabilistic output of K-dimensions,
where each dimension of g(v)i denotes the probability of the concept being relevant to the
video v. Similarly, g(s) for sentence s is obtained. The similarity between video and text
concept representation vector in concept space simcon(v,s) is computed using generalized
jaccard similarity as:

simcon(v,s) =
∑

K
i=1 min(g(v)i,g(s)i)

∑
K
i=1 max(g(v)i,g(s)i)

(3.11)

Learning concept space is done using binary cross-entropy (BCE) loss function. Given the
video-sentence pair (v, s), their probability scores (g(v),g(s)), and its ground truth y (see
Section 3.2.1), the loss is computed as:

Lbce(v,s,y) =−(
K

∑
i=1

[yi log(g(v)i)+(1− yi) log(1−g(v)i)]

+
K

∑
i=1

[yi log(g(s)i)+(1− yi) log(1−g(s)i)])

(3.12)

As the purpose of concept space is not limited to multi-label classification problem, but it is
also used for improving video-text matching in case of video-text retrieval. Hence, improved
triplet ranking loss function is also minimized in concept space.

Lcon,rank(v,s) = max(0,m+ simcon(v,s−)− simcon(v,s))

+max(0,m+ simcon(v−,s)− simcon(v,s))
(3.13)

The concept is learned in parallel to latent space, and is learned by minimizing the combina-
tion of Lbce and Lcon,rank

Lcon = Lbce +Lcon,rank (3.14)

3.2.3.3 Joint Learning & Inference

The dual encoding network is trained by minimizing the combination of the latent space loss
Llat and the concept based loss Lcon. In particular, given a training set D = (v,s,y), the aim
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is to find the optimal parameters θ that minimize the objective function:

argmin
θ

(Llat(v,s)+Lcon(v,s,y)) , (3.15)

In the inference stage, for each video v ∈V in the collection, the dual encoding model is
used to extract its latent space embedding and concept space embedding using Eq. 3.7 and
Eq. 3.10. As a result, each video v in the dataset is associated with an embedding f (v) ∈ Rd

and a predicted concept vector g(v) ∈ RK . Given a test query s in textual form, the text
pipeline of the dual encoding model is utilized to encode the query as a textual embedding
in latent space as f (s) ∈ Rd and in concept space as g(s) ∈ RK . The similarity scores will
be calculated in each space simlat and simcon between each video v in collection and query s.
Hence, the overall similarity is a weighted sum of similarity in two spaces i.e. latent space
and concept space, given as:

sim(v,q) = α.simlat(v,s)+(1−α).simcon(v,s) (3.16)

The rank-list of videos for the given query is obtained based on the combined similarity score
obtained. where α is a hyper-parameter to balance the importance of two spaces, ranging
within [0, 1]. Note that raw values of simlat(v,s) and simcon(v,s) reside in distinct scales.
Hence, they are rescaled separately by min-max normalization before being combined. Also
note that in the inference stage, the multi-level encoding at the video side i.e. f (v) can
be performed independently. Hence, for a large-scale video collection, their hybrid-space
features f (v),g(v) can be pre-computed, allowing to answer ad-hoc queries on the fly.

3.3 Experiments & Evaluation
In our evaluation, we compared our PoS-tagged dual encoding model with the dual encod-
ing model [1] on five video-text datasets, covering text-to-video retrieval and video-to-text
retrieval tasks. To ensure a comprehensive analysis, we carefully selected diverse datasets
and utilized rigorous evaluation metrics. Additionally, we focused on assessing the impact
of the PoS-tagged model on both retrieval accuracy and explainability. We also conducted
comparable experiments using different PoS-taggers, namely TreeTagger (TT)1, WordNet
(WN) [152], and Spacy2. By investigating these factors, we aimed to gain valuable insights
into the performance and potential advantages of our PoS-tagged dual encoding model for
video-text retrieval. The datasets used in the experiments are listed in Table 3.1. Our pro-
posed PoS-tag model is trained and validated on captioning datasets, which are also utilized
by other approaches but not limited to W2VV++ [18], dual encoding model [1, 8] and inter-

1https://pypi.org/project/treetaggerwrapper/
2https://github.com/explosion/spaCy
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Dataset #Video #Caption AVS Test Query
Training set

MSR-VTT 10,000 200,000 -
TGIF 100,855 124,534 -

Validation set
TV2016TRAIN 5 200 400

AVS test set
IACC.3 335,944 90
V3C1 1,082,659 90

Table 3.1: Datasets information.

pretable embedding model [2]. The number of captions per video varies across the datasets,
ranging from 2 in TV2016TRAIN [102] to as many as 20 in MSR-VTT [13]. The MSR-VTT
dataset [13] was initially created for video captioning and comprises 10,000 Web video clips
along with 200,000 natural sentences that describe the visual content of these clips. Each
video clip has around 20 sentences associated with it. Different versions of data partition
have been proposed in the literature for this dataset [5, 51, 13]. The official partition [13]
divides the dataset into 6,513 clips for training, 497 clips for validation, and the remaining
2,990 clips for testing. In our experiments, we used official partition of MSRVTT [13] for
training and evaluation of POS-tagged dual encoding model.

To assess the performance of POS-tagged dual encoding model on Ad-Hoc Video Search
(AVS) model, we evaluate it on three large video collections. These collections are part
of the TRECVid benchmarked datasets, with i) IACC.3 [102] a dataset used from 2016 to
2018, consists of approximately 4,600 Internet Archive videos. It has a size of around 144
GB, totaling 600 hours of video content. These videos are in MPEG-4/H.264 format and
come with Creative Commons licenses. The duration of the videos ranges from 6.5 minutes
to 9.5 minutes, with an average duration of almost 7.8 minutes. Additionally, most videos in
this dataset have metadata provided by the donor, such as title, keywords, and description.
ii) V3C1 [153] is a subset derived from a larger V3C video dataset [154], used from 2019 to
2021. V3C1 comprises 7,475 Vimeo videos with Creative Commons licenses. The dataset
size is approximately 1.3 TB, spanning a total duration of 1,000 hours. The videos in V3C1
have a mean duration of 8 minutes. Metadata, including title, keywords, and description, is
available for all videos in JSON files. The dataset is further segmented into 1,082,659 short
video segments based on provided master shot boundary files. Keyframes and thumbnails
for each video segment have also been extracted and made available.

3.3.1 Implementation Details

Prior to conducting our experiments, we provide a comprehensive overview of the common
implementations employed in our study, including text preprocessing, video feature extrac-
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tion, concept vocabulary extraction, and model training. Most of these implementations were
adopted from the dual encoding model [1].

For sentence preprocessing, we performed several steps. Firstly, we converted all words
to lowercase and then assigned each sentence its corresponding Part-of-Speech (PoS) tags.
Additionally, we replaced words occurring less than five times in the training set with a
special token to handle infrequent words effectively. Regarding video features, we utilized
frame-level ResNeXt-101 [54, 55], and ResNet-152 [39] features provided by Dong et al [1].
These features were concatenated to create a combined 4,096-dimensional CNN feature
known as ResNeXt-ResNet. To construct the concept vocabulary as already explained in
Section 3.2.1, we employed part-of-speech tagging using different taggers such as WordNet
(WN), TreeTagger (TT), and the Spacy toolkit on all training sentences. From the tagged sen-
tences, we retained nouns, verbs, adverbs, adjectives, prepositions, and conjunctions while
removing all English stopwords. Additionally, we performed lemmatization to ensure words
with similar meanings, such as “dog/noun” and “dogs/noun”, were treated as the same con-
cept. Finally, we selected the top K = 512 most frequent words as our concept vocabulary,
with the option of including or excluding PoS-tags. These detailed implementations lay the
foundation for our experiments and enable us to evaluate the effectiveness of our PoS-tagged
dual encoding model accurately. For frame level visual encoding, n frames are extracted
from each video, spaced at a predetermined interval of 0.5 seconds, similar to dual encoding
model [1].

3.3.2 Impact on Video-Text Retrieval

3.3.2.1 MSR-VTT Experiments

Metrics. In order to evaluate the accuracy of TTV and VTT retrieval system, we used the
proportion of the queries for which at-least one correct document is retrieved among top-K
results (R@K, with K = 1,5,10), the median rank of first relevant item (Med R), the mean
Average Precision (mAP) and sum of R@K for TTV and VTT (SumR). Higher R@K and
lower median rank represents better performance of system.

Results. Table 3.2 presents the results of the MSR-VTT experiments, focusing on text-to-
video (TTV) and video-to-text (VTT) retrieval tasks. Each method is evaluated based on
metrics defined above, which measure the accuracy and ranking performance of the retrieval
system. The first section in the “Hybrid training” of Table 3.2 presents the reported results
by Dong et al. [1] in various platforms and papers. The 2nd and 3rd section showcases vari-
ous configurations of the Dual Encoding model, including different dimensions and taggers.
The (1536+ 512)-d Dual Enc. configurations represent the Dual Encoding model evalu-
ated using a weighted similarity approach. This approach combines the 1536-dimensional
latent space and the 512-dimensional concept space to leverage their respective strengths.
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Method Text-to-Video Retrieval Video-to-Text Retrieval SumR
R@1 R@5 R@10 Med r mAP R@1 R@5 R@10 Med r mAP

Hybrid training

Dual Encoding TPAMI [1] 11.6 30.3 41.3 17 21.2 22.5 47.1 58.9 7 10.5 211.7
Dual Encoding GitHub [1] 11.8 30.6 41.8 17 21.4 21.6 45.9 58.5 7 10.3 210.2
Dual Enc. (Conf. Ver. 2048-d)[1]) 11.0 29.2 39.8 19 20.2 18.8 42.7 56.2 8 9.3 197.7
Dual Enc. (Conf. Ver. 1536-d)[1]) 11.0 29.3 39.9 19 20.3 19.7 43.6 55.6 8 9.3 199.0

(1536+512)-d Dual Enc. Re-Run 11.78 31.00 42.08 16.10 21.52 20.70 45.10 57.74 7.00 10.13 208.40
(1536+512)-d Dual Enc. (TT) 12.09 31.39 42.50 16.10 21.87 20.68 45.32 58.12 6.90 10.32 210.10
(1536+512)-d Dual Enc. (WN) 12.02 31.44 42.59 16.00 21.84 20.56 45.60 58.28 6.90 10.36 210.50
(1536+512)-d Dual Enc. (Spacy) 11.84 31.07 42.08 16.40 21.59 20.29 45.00 57.78 7.00 10.22 208.05

512-d Dual Enc. (Concept Space) 9.9 26.8 37.4 23 18.7 17.9 41.5 53.9 8 9.0 187.40
512-d Dual Enc. (Concept Space - TT) 10.10 27.09 37.31 22.65 18.86 18.64 41.83 54.79 8.50 9.14 189.74
512-d Dual Enc. (Concept Space - WN) 10.14 27.23 37.53 22.40 18.94 18.54 42.25 55.19 8.00 9.11 190.87
512-d Dual Enc. (Concept Space - Spacy) 9.85 26.71 36.76 23.55 18.54 18.15 41.45 54.22 8.30 9.02 187.15

Concept only training

512-d Dual Enc. (Concept Space) 9.84 26.79 37.02 23.30 18.57 18.57 41.85 54.22 8.40 8.88 188.28
512-d Dual Enc. (Concept Space - TT) 10.15 27.33 37.65 22.10 18.98 18.82 42.32 55.22 8.15 9.17 191.49
512-d Dual Enc. (Concept Space - WN) 10.14 27.30 37.58 22.40 18.96 18.69 42.13 54.99 8.00 9.15 190.82
512-d Dual Enc. (Concept Space - Spacy) 9.96 26.92 37.18 23.00 18.71 18.39 41.59 54.52 8.50 9.04 188.55

Table 3.2: MSR-VTT experiments − Averages. Official full-size test set [13].

On the other hand, the 512-d Dual Enc. configurations in the hybrid training section indi-
cate that the model is trained in hybrid mode, but only evaluated in the 512-dimensional
concept space. These evaluations provide valuable insights into the performance of the Dual
Encoding model in different spaces, helping to identify the most effective configuration for
text-to-video and video-to-text retrieval tasks. It provides a comparative analysis of their per-
formance in both TTV and VTT retrieval tasks. The “SumR” column represents the SumR
score, which is the sum of R@1, R@5, R@10, reflecting the overall retrieval accuracy.

The “Concept only training” section explores the performance of the Dual Encoding
model using Concept Space training. Similar to the previous section, it includes different
taggers, but trained and tested on only 512-d concept space, providing insights into their
effectiveness.

Overall, the Table 3.2 allows for a comprehensive evaluation of different configurations
of the Dual Encoding model, highlighting the impact of dimensionality and the choice of
PoS-taggers on the retrieval performance. The metrics provide a clear indication of which
configurations yield better results, assisting in the selection of the most suitable setup for
text-to-video and video-to-text retrieval tasks. The results demonstrate the effectiveness of
our proposed PoS-tagged dual encoding model on the official MSR-VTT split, achieving a
SumR of 191.49 from 188.28. Among the three PoS-taggers, TreeTagger (TT) outperforms
the others. Spacy did not outperform other taggers in terms of accuracy because it exhibited
a relatively higher number of mistakes compared to the other taggers. This lower accuracy
can be attributed to the errors made by Spacy in assigning the correct PoS-tags to words in
the text.

However, the improvement, though positive, is not particularly significant, with a SumR
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of 191.49 for TreeTagger from 188.28 for original dual encoding model. Upon investigating
the reasons for this modest increase in accuracy, we noticed that only approximately≈ 1% of
the queries in the dataset contain ambiguous words (i.e., words with multiple PoS-tags). Nev-
ertheless, due to the low proportion of queries affected by PoS-tags, the results in Table 3.2
do not exhibit the significant improvements we anticipated. Our intention is to integrate
PoS-tags in a way to overcome the ambiguity in queries, so we chose to focus on the set of
queries that contain ambiguous words and evaluate the overall accuracy and explainability
of retrieval system on this set of queries.

For further insights, we extracted a subset C = {s1,s2, ...,st} of queries from the MSR-
VTT official split, which contains ambiguous words along with their corresponding videos.
Here, t represents the number of captions affected. We then evaluated the original and POS-
tagged dual encoding systems on this query set C for the TTV and VTT tasks.

Method Text-to-Video Retrieval Video-to-Text Retrieval SumR
R@1 R@5 R@10 Med r mAP R@1 R@5 R@10 Med r mAP

Concept only Training

512-d Dual Enc. (Concept Space) 29.25 56.65 67.41 4.00 41.94 26.59 49.35 58.88 5.80 34.62 288.13
512-d Dual Enc. (Concept Space - WN) 30.39 57.39 68.23 3.80 43.14 28.11 49.45 58.97 5.70 35.41 292.53
512-d Dual Enc. (Concept Space) 31.18 59.56 70.62 3.40 44.33 30.00 55.14 66.09 4.20 39.89 312.59
512-d Dual Enc. (Concept Space - TT) 32.26 60.69 71.66 3.10 45.49 31.35 56.00 67.20 4.10 40.87 319.17

Table 3.3: PoS-tagged Impacted Captions. Official full-size test set [13].

For this evaluation, we exclusively utilized the two best-performing POS-tagger (i.e.
TreeTagger (TT) and WordNet (WN)) chosen from Table 3.2. Notably, as shown in Ta-
ble 3.3, the POS-tagged dual encoding system demonstrated a significant improvement in
accuracy compared to the original system. Specifically, the SumR score increased from
312.59 to 319.17 on the C subset. This improvement underlines the effectiveness of incor-
porating POS tagging in enhancing retrieval performance.

Moreover, the reason for the larger difference in SumR values between Table 3.2 and
Table 3.3 is due to the varying number of candidate videos/queries to be retrieved in different
partitions. The official MSR-VTT partition has a larger number of candidates, making it
more challenging for the models. As a result, the performance scores of models evaluated on
the official partition are lower compared to their evaluated performance on other subset C. It
is to be noted that the PoS-tag encoding plays a vital role in concept space and is useless for
latent space, that is why in Table 3.3 and Table 3.4 we compared the results evaluated solely
on concept only training.

In Figure 3.4, we present examples of text-to-video retrieval on the MSR-VTT testing
split to visually demonstrate the impact of the POS-tagged dual encoding system. For a
query, the top 3 ranked videos and the ground-truth video (boundary with green) are shown.
In case the ground-truth video is among the top three, the fourth video will be included as
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PoS-Tag Dual Encoding Model

a man/noun is measure/verb the size/noun of a copperhead/noun
snake/noun with a tape/noun measure/noun

ba

Original Dual Encoding Model

a man is measuring the size of a copperhead snake with a tape
measure

Figure 3.4: Text-to-video retrieval examples on MSR-VTT testing set (subset C).

well. By definition, each query has only one ground-truth video. Number on the left hand
side of each video indicates the video’s rank in the retrieval result.

Figure 3.4 clearly shows that our model (POS-tagged dual encoding on the right side)
successfully ranks the correct video at the top position. This achievement can be attributed to
its accurate capture of all the described actions and entities in the query sentence. In contrast,
the original dual encoding model [1] on the left side ranks the correct video at the 8th index,
indicating a lower retrieval accuracy. These examples serve as compelling evidence of how
our POS-tagged dual encoding model improves the ranking of relevant videos, leading to
enhanced accuracy in retrieval tasks. The performance enhancements observed on the MSR-
VTT dataset [13], along with the visual examples, highlight the effectiveness of our POS-
tagged dual encoding model in augmenting accuracy and overall performance in text-to-
video retrieval scenarios.

3.3.2.2 Experiments on Ad-hoc Video Search (AVS)

The earlier experimental results on MSR-VTT dataset in Table 3.2 demonstrate that Tree-
Tagger (TT) outperformed other POS-taggers. Therefore, in our evaluation of the AVS task,
we only compared the TreeTagger-Dual encoding model with the original dual encoding
model [1]. Another model known as “Interpretable Embedding” proposed by Wu et al. [2]
based on same principle as of original dual encoding model, is also compared against our
proposed PoS-tag dual encoding model.

Metrics. The performance of the retrieval system is evaluated using the inferred Average
Precision (infAP), which is the official performance metric used in the TRECVID AVS task.
The overall performance is measured by averaging the infAP scores across all the queries,
with scores reported as percentages (%).
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Methods IACC.3 V3C1 Overall
2016 2017 2018 2019 2020 2021

Concept only Training

512-d Dual Encoding (Re-Run) 11.30 17.18 8.60 8.19 10.23 10.17 10.98
Interpretable Embedding (STconcept) [2] 13.40 13.70 6.80 10.40 - - 11.10

512-d Dual Enc. (Concept Space - TT) 11.07 18.12 8.66 7.46 11.38 11.16 11.31

Table 3.4: Experiments on TRECVID AVS 2016 - 2022. Results (infAP) are presented in %

Results. Table 3.4 shows the performance of the proposed POS-tagged dual encoding model
on TRECVID Ad-Hoc video search (AVS) 2016-2021 tasks, and the overall performance
is the mean score of the these years. The table compares different methods and their per-
formance on specific datasets from each year in concept only training and evaluation set-
ting. The Dual Encoding model with a 512-dimensional concept space is re-trained and
re-evaluated on our systems, as the authors had not reported the results with this specific
configuration in their paper. Table 3.4 also includes the results reported by Wu et al. [2], who
employed interpretable embedding with single-task (STconcept) setting (system is trained and
evaluated on concept space only). Additionally, the table highlights the performance of the
PoS-tag Dual Encoding model with a 512-dimensional concept space using TreeTagger (TT).
These findings provide insights into the relative performance of these methods in AVS, em-
phasizing the importance of the proposed PoS-tag dual encoding model.

The proposed method performs the best, with overall infAP of 11.31 for TTV task, show-
ing the slight improvement of proposed POS-tagged dual encoding model. In some years
(2017-2018, 2020-2021), the PoS-tagged dual encoding model exhibited slight improve-
ments compared to the original dual encoding model [1] and interpretable model [2], indi-
cating its effectiveness in enhancing performance. However, in certain years (2016, 2019),
there was no improvement observed. One possible reason for this lack of improvement is
the absence of ambiguous queries in those particular years. As the POS-tags are primarily
utilized to disambiguate ambiguous words, the lack of such queries may limit the benefits of
the POS-tagged dual encoding model. Additionally, it is worth noting that the introduction
of POS-tags introduce some errors in the tagging process as well, which impact the perfor-
mance in certain years (2016, 2019), leading to slight drop in performance. Overall, while
the POS-tagged dual encoding model showed slight and not significant improvement in AVS
task performance, played a crucial role in determining the extent of improvement.

3.3.3 Impact on Explainability

The integration of PoS-tagging in our dual encoding model has a significant impact on the
explainability of the retrieved results. By incorporating PoS-tags into the encoding process,
we enhance the interpretability of the model by providing insights into the syntactic struc-
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ture and grammatical relationships within the text. The PoS-tags enable us to identify the
different parts of speech in the input text, such as nouns, verbs, adjectives, adverbs, prepo-
sitions, and conjunctions. This linguistic information offers a deeper understanding of the
underlying meaning and semantic composition of the text.

The PoS-tagged dual encoding model enhances explainability by enabling technical users
to analyze the influence of different parts of speech on the retrieval process. We examine
how the presence or absence of certain PoS-tags affects the relevance of retrieved videos,
thereby gaining insights into the model’s decision-making process. For instance, in the
query “a man/noun is measure/verb the size/noun of a copperhead/noun snake/noun with

a tape/noun measure/noun” in Figure 3.4(b), the presence of PoS-tags in the query, such
as “measure/verb” and “measure/noun”, provides significant benefits in the explainability of
the retrieval process. When we have distinct PoS-tags for different senses of a word, such
as “measure” being tagged as both a verb and a noun, it allows us to capture the intended
meaning more accurately.

If we only have the word “measure” without any specific PoS-tags in vocabulary, the
interpretability of the retrieval results is compromised. Without the PoS-tags, the model
treat “measure” as a generic term without considering its verb or noun sense. This lead
to mixed or less precise retrieval results. As shown in Figure 3.4(a), the model does not
fully understand the intended action associated with “measure”, and listed the videos related
to “snake”, “man” on the top of list. However, with the PoS-tagged dual encoding model
(Figure 3.4(b)), the presence of PoS-tags like “measure/verb” and “measure/noun” provides
clarity and precision. By considering these specific PoS-tags, the model distinguish between
the verb and noun senses of “measure” and retrieve videos that align more closely with the
intended meaning of the query. This targeted retrieval based on the PoS-tags improves the
overall accuracy and relevance of the results, leading to a more effective and interpretable
retrieval system.

By incorporating PoS-tags, technical users or developers better understand whether the
relevance of the retrieved videos is based on the verb or noun. This information allows us to
assess the accuracy and alignment of the results with the query’s intended meaning. When
retrieving results using our PoS-tagged dual encoding model, the presence of PoS-tags in
the output help explain why certain videos are considered relevant or irrelevant. Overall, the
incorporation of PoS tagging in our dual encoding model enhances the explainability of the
retrieved results by providing linguistic context, highlighting relevant linguistic features, and
enabling the analysis of the impact of different parts of speech on retrieval decisions. This
improved explainability can be valuable in various applications, such as content recommen-
dation systems, information retrieval, and understanding user preferences and intents.

While the PoS-tagged dual encoding model provides valuable insights for technical users
or developers, visualizing PoS-tags in tag-cloud based explanations for normal end users can
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pose challenges. The main issue is the potential confusion that arises from displaying words
with multiple PoS-tags like “measure/verb” and “measure/noun” in the tag-cloud. For non-
technical users, the inclusion of PoS-tags in the tag-cloud can be difficult to interpret without
proper guidance. The presence of multiple PoS-tags for a single word may lead to confusion
about the different senses and interpretations associated with that word.

Imagine a tag-cloud that includes both “measure/verb” and “measure/noun” as prominent
tags. Non-technical users may struggle to comprehend the distinction between these senses
and how they relate to the retrieved videos. This complexity can hinder their understanding
of the underlying meaning and make the explanation less accessible and intuitive.

To address this challenge, it becomes crucial to develop user-friendly visualization tech-
niques that simplify the presentation of PoS-tags in tag-cloud explanations in a more user-
friendly manner, so that the non-technical users can more easily grasp the meaning behind the
retrieval results and make informed interpretations without being overwhelmed by the com-
plexity of PoS-tags. Currently, the challenge of effectively visualizing PoS-tags in tag-cloud
based explanations for non-technical users remains unaddressed. While we recognize the
potential confusion that can arise from displaying PoS-tags like “measure/verb” and “mea-
sure/noun” in the tag-cloud, we have not yet developed specific solutions to simplify the
presentation of these tags for better user understanding.

3.4 Discussion
In this chapter, we study the impact of incorporating PoS-tags within the dual encoding
model proposed by Dong et al. [1] for TTV and VTT tasks. This research aims to provide
valuable insights into the significance of considering syntactic information for enhancing the
accuracy and relevance of video-text retrieval systems. The PoS-tagged dual encoding model
represents an innovative approach to enhancing the accuracy and explainability of video-text
retrieval systems. The experiments conducted on various datasets, including the MSR-VTT
dataset for TTV and VTT retrieval tasks, as well as the AVS datasets IACC.3 and V3C1,
provide valuable insights into the performance and potential advantages of the PoS-tagged
model.

One of the key findings from the experiments is the improvement in retrieval accuracy
achieved by the PoS-tagged dual encoding model. In the MSR-VTT experiments, the model
exhibited a modest increase in the SumR score, indicating a higher proportion of queries for
which at least one correct document is retrieved among the top-K results. Although the
improvement was not particularly significant, it is worth noting that only a small percentage
of queries in the dataset contained ambiguous words that could benefit from PoS tagging.
This suggests that the impact of PoS tagging on retrieval accuracy may be more pronounced
when dealing with queries that have a higher proportion of ambiguous words or complex
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linguistic structures.

However, when evaluating a subset of queries specifically designed to contain ambiguous
words, the PoS-tagged model demonstrated a substantial improvement in retrieval accuracy.
The SumR score increased significantly, highlighting the effectiveness of incorporating PoS
tagging in enhancing the ranking of relevant videos. This finding is important as it demon-
strates that the PoS-tagged model is particularly beneficial when dealing with queries that
require disambiguation or where the presence of specific parts of speech is crucial for accu-
rate retrieval. Visual examples of text-to-video retrieval in Figure 3.4(b) further illustrated
the enhanced ranking accuracy achieved by the PoS-tagged model.

Furthermore, the experiments conducted on the AVS datasets provide additional evi-
dence of the PoS-tagged dual encoding model’s effectiveness. The model outperformed
the original dual encoding model in terms of inferred Average Precision (infAP) for the
TRECVID AVS 2018 tasks. Although the performance varied across different years, with
the PoS-tagged model achieving the best performance in 2018, the overall results indicate
that incorporating PoS tagging can lead to improved retrieval accuracy in the AVS task as
well.

In addition to enhancing retrieval accuracy, the integration of PoS tagging in the dual
encoding model has a significant impact on the explainability of the retrieved results. By
providing linguistic context and highlighting relevant linguistic features, the PoS-tags en-
able a deeper understanding of the underlying meaning and semantic composition of the
text. This improved explainability is valuable in various applications where understanding
the reasons behind the retrieval decisions is important. For instance, in content recommenda-
tion systems, being able to explain why certain videos were recommended based on specific
linguistic features can enhance user trust and satisfaction. Moreover, the PoS-tagged dual
encoding model enables analysis of the impact of different parts of speech on retrieval deci-
sions. By examining how the presence or absence of certain PoS-tags affects the relevance of
retrieved videos, insights can be gained into the model’s decision-making process. This level
of analysis and interpretability is especially valuable in domains where precise control over
the retrieval process is required, such as in specialized video search applications or when
catering to specific user preferences.

Despite the promising results and advantages of the PoS-tagged dual encoding model,
there are certain limitations and potential areas for improvement. One limitation is the
reliance on external PoS taggers, such as TreeTagger and WordNet, which may introduce er-
rors or inconsistencies in the tagging process. Integrating more advanced and accurate PoS
tagging techniques or exploring domain-specific PoS taggers could potentially improve the
overall performance of the model. Additionally, the experiments showed that the improve-
ment in retrieval accuracy achieved by the PoS-tagged model was more pronounced when
dealing with queries containing ambiguous words. Further research could explore techniques
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to automatically identify and prioritize queries that are likely to benefit from PoS tagging,
allowing for more targeted and efficient use of the model.

Moreover, in future research, it is also crucial to consider the expansion of the concept
vocabulary by incorporating meaningful phrases rather than solely relying on single-word
concepts. For instance, phrases like “video game” or “measuring tape” carry specific seman-
tic associations that are only captured when these words are analyzed together. By incorpo-
rating noun-verb phrases in the concept vocabulary, the retrieval system can achieve more
accurate classification and provide clearer explanations to non-technical end- user. How-
ever, expanding the concept vocabulary to include phrases on a large scale requires efficient
parsing techniques to avoid introducing unnecessary noise. By addressing this challenge,
we can significantly enhance the accuracy and explainability of video-text retrieval systems,
ultimately improving the user experience and enabling applications in diverse domains.

In conclusion, the PoS-tagged dual encoding model proposed by Dong et al. [1] demon-
strates its effectiveness in enhancing the accuracy and explainability of video-text retrieval
systems. The experiments conducted on multiple datasets provide evidence of improved
retrieval performance, particularly for queries containing ambiguous words, and highlight
the model’s ability to provide linguistic context and insights into the decision-making pro-
cess. The integration of PoS tagging in the dual encoding model opens up new directions for
enhancing the interpretability of video-text retrieval systems.

However, despite this improvement, the concept space does not surpass the latent space

in terms of performance. To address this limitation, further analysis and exploration are
required to understand the relationship between the latent space and concept space more
deeply. This will be explored in the next chapter.
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Chapter 4

A General Framework for
Complementarity Analysis of Dual Space
Models

4.1 Introduction

Hybrid models that combine the similarity results between video-text from latent space and
concept space representations in order to get final weighted similarity between video-text
pair have been introduced in multimedia processing and retrieval [1, 2] (see Section 2.2.3).
The results of hybrid approaches have demonstrated improved performance compared to
using either concept-based (Section 2.2.1) or concept-free (Section 2.2.2) models alone.
This suggests that concept-based and concept-free approaches are taking benefit from each
other [1]. However, no specific study has thoroughly investigated the complementarity or
relationship of such hybrid approaches. Understanding their complementarity, by explor-
ing how they can mutually enhance each other’s effectiveness and insights, is of paramount
importance (see Section 2.5).

We have seen in Chapter 3.3 that, despite the complementarity between these two spaces,
the concept space alone does not surpass the accuracy of latent space. Hence, the major
drawback of the proposed models (i.e. dual encoding model [1, 2]) is the lack of analysis
and human interpretability in the visual or textual encoding process, making it challenging
to analyze the representations in latent or concept space. This lack of interpretability and
analysis poses issues in debugging the embedding model, understanding relationships be-
tween spaces, detecting biases, analyzing their representation power, and explaining system
decisions.

To address the challenge of interpretability, this chapter aims to provide a general frame-
work for a detailed analysis of hybrid approaches, employing various visual and statistical
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methods. The analysis explores the inter and intra-relationships of latent spaces and concept
spaces. Inter-relationship analysis investigates connections and similarities between different
spaces i.e latent space and concept space.

In [155], Dosovitskiy and Brox propose a method to generate images using perceptual
similarity metrics based on deep networks, highlighting the inter-relationship between vi-
sual representations and perceptual qualities. However, intra-relationship analysis focuses
on the internal structure of individual space, revealing patterns, clusters, and relationships
between data points within the same space. The methods to interpret the internal structure
and representation includes t-Distributed Stochastic Neighbor Embedding (t-SNE) [156],
Principal Component Analysis (PCA), or Uniform Manifold Approximation and Projection
(UMAP) to project high-dimensional data into a 2D space [17]. This allows observation of
clusters and comparison between the original and latent spaces to verify if the properties of
the original data are preserved in the latent vectors. Additionally, domain-specific methods
are used to visualize semantic meanings in latent space, such as creating attribute vectors
for opposing concepts [157] or clustering latent variables based on hierarchical structures in
documents [158].

Our hypothesis aims to verify the complementarity between latent space and concept
space in the proposed hybrid-based retrieval models [1, 2]. Additionally, we seek to in-
vestigate whether these hybrid models are indeed based on ensemble learning algorithms.
Ensemble learning [159, 160] is a general and reliable technique, mostly used for classifi-
cation, which co-ordinates the outputs of multiple supervised learning algorithms with the
same architecture trained with different initializations using diversified data. Different ini-
tializations allow the machine learning models to have different learning paths, reducing
the overall error by averaging out the individual error due to diversity of results and errors.
There are two ways to design ensemble learning algorithms. The first approach is to train
the machine learning models independently several times in such a way that the resulting
set of models are accurate and diverse. The second approach [161] designs the ensemble
algorithm in a coupled fashion, where the models are trained jointly and weighted scores
for each model gives a good fit to the data [162, 163]. As our analysis is based on a dual
encoding pipeline, which consists of CNN, hence, the ensemble learning technique in our
case is applied to CNN-based models. In the case of hybrid approach models, we want to
see if the latent space and concept space can be the same space with different initialization.

Despite its importance, the analysis of latent spaces and concept spaces poses several
challenges. One fundamental challenge is the selection of an appropriate embedding tech-
nique. Numerous methods exist for constructing latent spaces, such as principal component
analysis (PCA), autoencoders, and generative adversarial networks (GANs). Each technique
has its strengths and limitations, and the choice depends on the specific data characteristics
and analysis objectives. As we are based on dual encoding model proposed by Dong et
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al. [1], we will be using the same encoding models and training strategy as the authors used.
However, another model i.e. “Interpretable Embedding model” proposed by Wu et al. [2] is
also based on a similar technique as of dual encoding model, hence the observations made
could be valid on their interpretable model as well.

Another challenge is evaluating and validating the quality of the embeddings. It is crucial
to assess how well the latent space or concept space captures the relevant information and
preserves the essential structure of the data. This accuracy is critical because any shortcom-
ings in this representation could potentially result in inaccurate or ineffective outcomes in
subsequent tasks, including classification and retrieval. Additionally, the curse of dimension-
ality poses a challenge in analyzing latent spaces. As the dimensionality of the data increases,
the available sample density decreases exponentially, making it difficult to accurately cap-
ture the underlying distribution. Understanding this challenge underscores the importance
of maintaining data quality and interpretability. It helps to identify potential issues that arise
when dealing with high-dimensional data. Techniques like dimensionality reduction aim
to address this challenge by mapping high-dimensional data into lower-dimensional spaces
while preserving relevant information. However, striking a balance between dimensionality
reduction and retaining meaningful features remains a constant challenge.

Objective

The goal is to explore the intra and inter-relationships between latent space and con-
cept space. By examining how these spaces interact and complement each other,
we can gain deeper insights into the strengths and limitations of the dual encoding
model [1]. This analysis will provide valuable guidance for developing more effective
cross-modal retrieval systems.

4.2 General framework for Latent and Concept Space Anal-
ysis

In this section, we present the methodology employed to analyze the complementarity be-
tween the latent space and concept space in the dual encoding model [1]. The aim is to
understand the extent to which these models complement each other in terms of represen-
tation capabilities and information content. The methodology is designed to address the re-
search questions, which are designed to provide insights into the intra and inter-relationship
between latent space and concept space, as well as their synergy.
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4.2.1 Research Questions

4.2.1.1 Optimal Dimensionality Analysis

The first research question (R1) aims to determine if the concept and latent spaces have sim-
ilar optimal dimensions when learned independently. By exploring the optimal dimensions
of each space separately, the chapter investigates whether these spaces possess similar rep-
resentation capabilities. This question is important for understanding if the complementarity
between these spaces arises from inherent differences in their representation, or if they share
common characteristics. This leads to our first research question:

R1: Is the number of optimum dimensions the same in both the concept and

latent spaces for two subtasks of cross-modal video-text retrieval, Text-to-Video

(TTV) and Video-to-Text (VTT)?

To answer R1, we employed two techniques: one that does not rely on PCA (Principal Com-
ponent Analysis) and one that does. Without PCA, we trained the latent space and concept
space with varying number of dimensions in order to find the optimal dimensions in both
space. In the case of with PCA, we utilized the initially learned high dimensional latent
and concept space and employs Principal Component Analysis to explore the salient linear
dimensions and their variance in lower dimensional space.

4.2.1.2 Complementarity Analysis

Moving on to the complementarity analysis between the latent and concept spaces, we study
the complementarity from two points of view, i) Correlation Analysis, and ii) Ensemble
learning. The second research question (R2) focuses on assessing whether these spaces
represent complementary information considering the correlation between them. Hence, our
2nd research question is as follows:

R2: Do the latent and concept spaces represent complementary information?

This question aims to understand if the latent and concept spaces capture different as-
pects of the data or if they represent similar kinds of information. To address R2, the chapter
employs Canonical Correlation Analysis (CCA) to study the correlation between the two
high-dimensional feature spaces. By examining the correlation, the chapter can determine
the extent to which these spaces complement each other in terms of the information they
capture.

The third research question (R3) explores the complementarity of the latent and concept
spaces through ensemble learning. This question investigates whether using ensemble
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learning techniques in these spaces results in improved performance and demonstrates their
complementarity. Ensemble learning allows for the combination of multiple models or rep-
resentations with different initialization, and if the performance of the ensemble model is
comparable to using either space independently, it suggests that the spaces are indeed sim-
ilar and do not exhibit strong complementarity. The 3rd and last research question to be
answered is:

R3: Does ensemble learning exhibit complementarity on the latent and concept

spaces?

By addressing R3, the chapter can assess the effectiveness of ensemble learning in ex-
ploiting the complementarity between the latent and concept spaces

4.3 Experiments
In this section, we provide an overview of the experimental context and the conducted ex-
periments in our study. The experiments consist of three main components: the dimension
study, the correlation study using Canonical Correlation Analysis (CCA), and the ensemble
learning analysis.

4.3.1 Experimental Context

Dataset & Evaluation Measures. Similar to Section 3.3.2.1, we performed all of our exper-
iments on the official split of the MSR-VTT dataset [13] and used all important performance
evaluation metrics provided for the evaluation of MSR-VTT dataset.

Implementation Details. We chose the dual encoding model proposed by Dong et al. [1]
for the mapping of visual and textual representation in hybrid space, i.e. shared latent and
concept space, as it achieves state-of-the-art performance. We use the PyTorch code provided
by the dual coding model1 to set up the basic architecture of a visual encoding network and
a textual encoding network. We employ the frame-level video features of 4,096 dimensions
for each video frame provided by the authors, extracted using the pre-trained ResNet-152
and ResNext-101. For the video-text concept features, the concept list is compiled from the
training set captions of MSR-VTT. We use a learning rate of 0.0001 and Adam optimizer to
train the model, with a batch size of 128.

4.3.2 Optimal Dimension Study without PCA

In the initial phase of our analytic experiments we aim to answer the first research ques-
tion (R1), we focus on exploring the optimal number of dimensions for both the latent and

1https://github.com/danieljf24/hybrid_space
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concept spaces. These optimal regions indicate the dimensions at which the performance
of latent and concept space reaches its peak. The goal is to identify these optimal regions
by evaluating the dual encoding model across different numbers of dimensions in the latent
space and concept space. Subsequently, we compare the two spaces to determine if they
exhibit similarity in terms of their respective optimal dimensions.

To carry out this analysis, we employ the dual encoding model proposed by Dong et
al. [1]. This model enables us to extract video and text features and map them into both
the latent and concept spaces. For the latent space investigation, we systematically vary the
number of dimensions and evaluate the performance of the dual encoding model at each
dimension. This process allows us to pinpoint the optimal regions where the model achieves
its highest performance.

Similarly, for the concept space examination, we make modifications to the provided
code to focus solely on training and testing the dual encoding model using concept space
features. We vary the number of dimensions in the concept space and assess the model’s
performance to identify the regions of optimal performance.

By conducting these experiments and comparing the performance of both spaces, we aim
to gain deeper insights into how the dimensionality affects the effectiveness of the latent and
concept representations. Additionally, we seek to determine whether both spaces share sim-
ilar optimal dimensions or if they diverge in their ideal configurations. This comprehensive
investigation will also provide valuable knowledge on how to fine-tune and leverage the la-
tent and concept spaces effectively in multimedia processing and retrieval tasks, ultimately
leading to more accurate and interpretable models.

4.3.3 Optimal Dimensionality Study using PCA

In the second part of our optimum dimensionality study, we utilize PCA for re-verification
of the optimum dimensions in the latent and concept spaces found in Section 4.3.2. PCA
allows us to identify the most significant linear dimensions that capture the variability of the
data in these high-dimensional feature spaces.

We apply PCA to the high-dimensional latent and concept features, projecting them onto
a lower-dimensional space. From this lower-dimensional representation, we extract the top
K principal components for both the latent and concept spaces. These components capture
the most significant variability in the data. By estimating the variance of these top K prin-
cipal components, we can evaluate whether the previously identified optimum dimensions
in section 4.3.2 remain consistent when considering the dominant dimensions found through
PCA.

The combination of the initial analytic experiments (Section 4.3.2) and the PCA-based re-
verification provides us with a comprehensive understanding of the optimal dimensionality
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in the latent and concept spaces. Overall, this thorough investigation contributes to building
more accurate and interpretable deep learning models for practical applications.

4.3.4 Complementarity Analysis using CCA and Ensemble Learning

We study here the complementarity between the latent and concept spaces. This is done
using two approaches. The first one is to analyze the correlation between two different high
dimensional feature spaces using Canonical Correlation Analysis (CCA). This will evalu-
ate the similarity in their representations and will answer the question R2. The second one
is to compare the performances of these two spaces used independently and jointly, using
ensemble learning: if the results using ensemble learning are the same than assuming com-
plementarity, this will show that the two spaces hold same information.

Correlation between Vector Spaces using CCA. Using the notation of [1], consider the set
of video features f (v) and text features f (s) in latent space as Xl ∈RN×p and the set of video
features g(v) and text features g(s) in concept space as Xc ∈RN×q, with dimensions p and q

respectively, where N number of videos and text/captions in the dataset. The feature vector
for ith video or text in latent and concept spaces can be denoted as Xi

l and Xi
c respectively.

In this section, we investigate the relationships between the feature vectors of all video-text
in latent space (Xl) and in concept space (Xc) using Canonical Correlation Analysis (CCA).

Consider M-Dimensional CCA transformed latent space features Xi
l ∈ Xl and concept

space features Xi
c ∈ Xc for ith video-text as X̃i

l ∈ RN×M and X̃i
c ∈ RN×M respectively, where

M being chosen as minimum of the latent space dimension p and concept space dimension
q, mathematically M = min(p,q). We define the highly correlated feature vectors (X̃l, X̃c)

as the projection of Xl and Xc onto CCA basis vectors, along with which the correlation was
above the threshold Th. Let us denote two linear transformation matrices corresponding to
these ith correlated basis vectors (X̃i

l and X̃i
c) by Ai

l and Ai
c respectively for latent space and

concept space. The correlated projections of X̃i
l , and X̃i

c are given by:

X̃i
l = Ai

lX
i
l

X̃i
c = Ai

cXi
c

(4.1)

Here X̃i
l , and X̃i

c can be considered as correlated components embedded in Xi
l , and Xi

c.
Hence, using these correlated components, we want to observe the correlation measure be-
tween variables of latent space vectors and concept space vectors.

If there are groups with high correlation amongst variables which cover a good amount
of variance, then there might be overlapped feature representation amongst the spaces, which
answers R2.
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Ensemble Learning. Ensemble learning of neural networks is a reliable technique to in-
crease the performance of models for a task. Due to the presence of several local min-
ima, multiple trainings of the exact same neural network architecture with and without same
hyper-parameters can reach a different distribution of errors in model training. Hence, com-
bining their outputs lead to improved performance on the overall task. In order to answer the
R3, i.e. to study the reason of performance gain in hybrid approaches, we deeply analyze the
model [1] with ensemble learning approach.

The complementarity analysis consists of training the dual encoding model in three dif-
ferent ways: (i) Homogeneous non-coupled model: where the latent space model and con-
cept space model are trained independently with same configuration and hyper-parameters,
then the retrieval accuracy is combined using weighted average of two models; (ii) Homo-

geneous coupled model: where the latent space and concept space are trained jointly with
same hyper-parameters; and (iii) Heterogeneous coupled model: in which the latent space
and concept space are trained jointly with a) similar hyper-parameters for both spaces, b)
different hyper-parameter for each space (similar to the hyper-parameter setting in baseline
model [1]). Hence, with all these model training scenarios, we want to observe the correla-
tion in the behaviour of latent space and concept space when learned in similar or different
settings. We also want to see if the performance gain in TTV and VTT task is either due to
ensemble learning or something else.

4.4 Results & Discussion
Within this section, we provide a comprehensive analysis of the results obtained, and the ob-
servations made during our investigation into latent and concept space exploration. We delve
deeply into the discourse surrounding the complementarity that exists between two separate
high-dimensional feature vectors. This rigorous examination enables us to effectively ad-
dress and answer the three specific research questions that were posited as the focus of this
study.

To effectively address our research question (R1) on optimum dimensionality (presented
in Section 4.2.1.1), we systematically manipulate the dimensions of both the latent space and
the concept space. The aim here is to identify the regions that yield the most optimal results,
as elaborated in Section 4.3.2. The dynamics of the mean Average Precision (mAP) for both
the TTV and VTT retrieval tasks, with respect to the varying number of dimensions in the
latent space, are graphically depicted in Figure 4.1(a) and (b). Furthermore, Figure 4.1(c)
provides an insightful overview of the average mAP across both the TTV and VTT retrieval
tasks.

In order to comprehensively explore the impact of dimensions, we sample latent dimen-
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Figure 4.1: Results for latent-only training and latent-only decoding.

sions across a logarithmic scale range, spanning from 16-D to 65536-D. This sampling in-
volves 10 measurements per octave, resulting in a sequence such as 16, 17, 18, 19, 21, 22,
and so forth, up to 65536. Mean and standard deviation in the stable region are shown with
the green line and box. It’s intriguing to note that the performance stabilizes and reaches
a plateau around the 200-dimension mark, maintaining this level of stability until approx-
imately, 8000 dimensions (Figure 4.1(c)). Beyond this threshold, there’s a gradual decline
in performance, at a relatively slow rate. This detailed analysis allows us to gain valuable
insights into the behavior of the model across varying dimensions and sheds light on the
optimal region for our analysis.
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Figure 4.2: Results for concept-only training and concept-only decoding. Mean Average Precision
(mAP) metric as a function of the number of concept dimensions.

Figure 4.2(a) and (b) shows the evolution of the mAP for the TTV and VTT retrieval
tasks as a function of the number of concept space dimensions. Figure 4.2(c) shows the
evolution of the avegare mAP for the combined TTV and VTT retrieval tasks. This number
is sampled between from 16-D to 6983-D (i.e., the maximum number of selected concepts),
also on a log scale with 10 samples per octave. Mean and standard deviation in the stable
region of the latent space are shown for comparison with the green line and box. Means and
standard deviations in the optimal regions for the Text-to-Video and Video-to-Text retrieval
tasks in the concept space are shown with lines and boxes in red and cyan, respectively.
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Figure 4.3: Results for concept-only training and concept-only decoding. SumR metric as a function
of the number of concept dimensions.

This time, the plots for the TTV and VTT tasks are very different and are shown in
Figure 4.2(a) and (b). There are different optimal regions for the TTV and VTT tasks and
these optimal regions are much narrower, around 200 for the TTV task and overall and
beyond 500 for the VTT task. The difference is even clearer on the sumR metric shown in
Figure 4.3. The asymmetry between the TTV and VTT task’s behaviors can be explained by
the asymmetry in the ratio of captions to videos in the MSR-VTT dataset [13].

Overall, the optimum number of dimensions is around 200 for both the latent and concept
spaces, and this is much lower than the numbers used by Dong et al. in dual encoding
model [1] (1536-D and 512-D). The performance using concepts is a bit lower, but not much
for the optimal values. The fact that the values are lower and even more outside the optimal
region can be explained by the fact that the classification task associated with the concept
space places strong constraints on it. On all curves, fluctuations are observed due to the
effect of the random initialization in the training, and they are at the same level as what is
observed when running the same experiments multiple times.
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Figure 4.4: PCA performance analysis for latent space. The X-axis represents the number of principal
components, whereas Y-axis represents the normalized variance in (a) and the all-average mAP in %
in (b).

The research question R1 is also studied using PCA to re-verify the number of optimum
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dimensions in latent space, as mentioned in Section 4.3.3. For the sake of simplicity, we
only analyse here the latent space. Figure 4.4(a) shows the decrease of the values of the
normalized variances as a function of the eigen dimensions for multiple latent space trainings
with a variable number of latent dimensions, ranging from 11 to 4096 on a log scale and
with two samples per octave (11, 16, 22, 32, 45, 64 . . . 1024, 1448, 2048, 2896, 4096).
Curves are shown with different colors and the number of latent dimensions used for training
can be inferred from the point at which the curve stops on the right side. As can be seen,
whatever the initial number of latent dimensions, there is no significant variances beyond a
few hundred eigenvalues (around 27− 29 eigenvalues). The cumulative variance continues
to increase beyond (not shown) but this likely corresponds to noise.

Figure 4.4(b) shows the evolution of the performance (all averag mAP) of the same mul-
tiple trainings when reducing the size of the latent representations by keeping only the com-
ponents with the highest variances. The difference in the initial performance (at the point
which is most on the right for each curve) likely comes again from the random initialization
and is also in the standard deviation obtained with multiple identical experiments. However,
the variation of performance on each single curve corresponds to a same initialization and is
expected to be significant. We see that for those starting with a high number of dimensions
there is a slight increase in performance, confirming that the components with lowest vari-
ances contain mostly noise. The best performance seems to be reached by training with a
number of dimensions larger than the optimum value found either directly (without PCA) or
indirectly (with PCA) and then reducing the space size using PCA, e.g., 4096→ 256.

As the number of optimum dimensions with and without PCA are very close for the
latent space, these experiments show that even with dimensionality reduction of latent rep-
resentation, the optimum regions of both spaces are still the same with the slight increase in
performance due to noise reduction, which shows that (i) the properties of original high di-
mensional latent space are preserved in reduced dimensional space, and (ii) the observation
holds that these two spaces may have a lot in common, leading to answer yes to R1.

To answer this question R2 as described in Section 4.2.1.2, we rely on a CCA study, in
order to find out the correlation and complementarity between two spaces.

One large difference between the latent space and the concept space is that the concept
space is associated with a classification task, while the latent space is not. If the classifi-
cation task is removed, the concept space becomes just a second latent space with different
characteristics (e.g., using a Jaccard similarity instead of a cosine). So, in our analysis, we
consider four possible combinations of latent and/or concept spaces (as also mentioned in
Section 4.3.4): (i) two identical latent spaces independently trained and lately fused (i.e., ho-
mogeneous non-coupled), (ii) two identical latent spaces jointly trained (i.e., homogeneous
coupled), (iii) two different latent spaces (respectively with cosine and Jaccard similarities)
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Figure 4.5: CCA analysis: Top 256 canonical correlation of independent (non-coupled), coupled
homogeneous, coupled heterogeneous and coupled heterogeneous concept training’s.

jointly trained (i.e., heterogeneous coupled), and (iv) the same with additionally a classifi-
cation task on the second latent space, which turns it into a concept space, and the overall
system as the regular hybrid one (coupled heterogeneous concept). For better comparisons,
we used 512 as the dimension for all spaces. Figure 4.5 plots the top-256 canonical correla-
tions of the latent-latent or latent-concept mappings in the four configuration just mentioned.
Most correlated is coupled homogeneous training of two spaces; whereas least correlated
is independent training of two spaces. The correlations are all quite high with similar pro-
files but still small differences. The independent training is the least correlated, the coupled
homogeneous one is the most correlated, the other two, coupled heterogeneous and cou-
pled heterogeneous concept (hybrid) are in between and almost identical, indicating that the
classification task makes no difference in the correlation.

The experiments with CCA showed that there is high correlation between the latent space
and concept space when considering the same hyperparameters, for instance same distance
metrics for calculating similarity in two spaces. There is the least correlation when consider-
ing independent training of two spaces, as the spaces are not optimized with the constraints
present in the other space. Overall, we can answer No to R2.

To answer question R3 (Section 4.2.1.2), we report a quantitative evaluation of the four
combinations described above used in ensemble learning experiments.

The first part of the table 4.1 represents the evaluation of dual encoding model only on
one space (i.e. latent space), whereas the second part of table 4.1 shows the evaluation of
the four combinations on the both spaces fused using the standard MSR-VTT metrics for
both first and second part, the last row of the second part corresponding to the regular dual
encoding hybrid system [1]. The values correspond to the average of 10 identical runs with
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Table 4.1: Ensemble learning Experiments on MSR-VTT. Larger R@{1,5,10}, mAP, and smaller
Med r indicate better performance.

Method Text-to-Video Retrieval Video-to-Text Retrieval SumR
R@1 R@5 R@10 Med r mAP R@1 R@5 R@10 Med r mAP

Evaluation on a single space:
Latent independent 1536 (10) 10.94 29.12 39.73 19.30 20.21 19.00 42.60 54.81 8.10 9.26 196.20
Latent independent 512 (20) 10.88 29.06 39.73 19.25 20.15 19.42 42.91 55.20 7.95 9.30 197.21
Latent-latent coupled homogeneous (10) 11.17 29.83 40.58 18.10 20.63 19.95 43.77 56.31 7.60 9.57 201.61
Latent-latent coupled heterogeneous (10) 11.37 30.25 41.11 17.80 20.93 19.85 43.70 56.26 7.60 9.63 202.54
Latent-concept coupled heterogeneous (10) 11.42 30.29 41.16 17.70 21.00 19.65 43.24 55.84 7.90 9.57 201.60

Evaluation on two spaces:
Latent-latent indep. homogeneous (10) 11.50 30.30 41.22 17.55 21.04 20.92 44.78 56.99 7.25 9.89 205.71
Latent-latent coupled homogeneous (10) 11.41 30.31 41.16 17.70 20.98 20.30 44.57 56.85 7.10 9.80 204.60
Latent-latent coupled heterogeneous (10) 11.78 31.12 42.28 16.20 21.60 21.23 45.65 58.08 7.00 10.36 210.14
Latent-concept coupled heterogeneous (10) 11.76 30.98 42.10 16.40 21.52 20.25 44.74 57.48 7.10 10.09 207.31

different random initialization so that we can get an estimate of the statistical significance
of the differences between the experiments using a Z-test. The first part of the table shows
the performance when performing the task using the first latent space only and the first line
is inserted for showing that there is no statistically significant difference between a 1536-D
latent space and a 512-D one.

When considering evaluation on fused spaces, there is no statistically significant differ-
ence between the independent and coupled trainings for the homogeneous latent spaces. The
main best performance is achieved by the latent-latent coupled heterogeneous method that
uses latent spaces of different types (with cosine and Jaccard similarities). The experiments
on latent-latent coupled homogeneous underperform latent-latent coupled heterogeneous:
there is a decrease in performance if cosine similarity is used in concept space. There is a
slight decrease in performance when adding the classification task but the statistical signifi-
cance is marginal.

The ensemble learning experiments show that there is no significance difference in per-
formance of two independent latent space with different dimensions. The significant im-
provement in retrieval comes from training two latent spaces with different similarity com-
putation techniques. This analysis leads us also to answer No to R3.

4.5 Discussion

The conducted study in this chapter aimed to delve into the relationship and complementarity
between latent and concept spaces within the context of cross-modal video-text retrieval.
The comprehensive analysis and experimental results shed light on the optimal dimensions
of these spaces, their potential complementarity, and the impact of ensemble learning. The
discussion below summarizes the key findings and their implications.
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4.5.1 Optimal Dimensions and PCA Analysis (R1)

The investigation into the optimal dimensions of both the latent and concept spaces revealed
intriguing insights. Through a systematic exploration of the mAP and SumR metric with
varying dimensions, it was established that the optimal regions of both spaces align around
200 dimensions. This optimal dimensionality is significantly lower than the dimensions used
in the dual encoding model, highlighting the potential for dimensionality reduction without
substantial performance loss.

The PCA-based analysis provided further validation of these findings. By reducing the
dimensionality of the latent space and observing the preservation of optimal regions and
performance and even a slight gain in performance because of noise reduction using PCA. It
became evident that the key properties of the original latent space are retained even in lower
dimensions. This conclusion reaffirmed that the latent and concept spaces share a significant
commonality in terms of their optimal dimensions.

4.5.2 Correlation and Complementarity (R2)

To assess the complementarity between the latent and concept spaces, Canonical Correlation
Analysis (CCA) was employed. The results of the CCA analysis indicated a high correlation
between the latent and concept spaces when considering the same hyperparameters. How-
ever, the correlation decreased when spaces were independently trained, emphasizing that
the spaces are not optimized to complement each other when trained separately.

The finding that the correlation between the spaces increases when they are trained jointly
highlights the potential for these spaces to leverage shared information for cross-modal re-
trieval tasks. However, the lack of significant differences between coupled homogeneous and
coupled heterogeneous settings suggested that the classification task in the concept space
does not strongly contribute to the complementarity between the spaces.

4.5.3 Ensemble Learning and Complementarity (R3)

The study further explored ensemble learning to determine whether it exhibits complemen-
tarity between latent and concept spaces. The results showed that there is no significant
difference in performance between independent latent spaces with different dimensions. The
most substantial improvement was observed when training two latent spaces using differ-
ent similarity computation techniques (i.e Latent space with cosine and Concept space with
Jaccard Coefficient). This indicates that the unique characteristics of the latent and concept
space contribute more significantly to complementarity than the classification task of con-
cept space.

By conducting rigorous research in the analysis of latent spaces and concept spaces, the
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aim is to enhance the understanding of data distribution. The analysis of the latent space
and concept space provides deeper insights into the underlying structure and distribution of
the data. By exploring these spaces, researchers can gain a better understanding of how data
points are represented, organized, and related to each other. This understanding is crucial
for various tasks such as data visualization, clustering, classification, and retrieval. The pro-
posed framework in this chapter allows for exploring the complementarity between the latent
space and concept space in order to leverage complementarity for improved performance. By
understanding how these spaces can mutually enhance each other’s effectiveness, researchers
can develop hybrid models or fusion techniques that leverage the strengths of both spaces.
This complementary approach has the potential to significantly improve the performance and
accuracy of various tasks, such as cross-modal retrieval, recommendation systems, and data
fusion. The analysis of latent space and concept space using the proposed framework con-
tributes to the advancement of research and development in various domains. By exploring
the inter-relationships, complementarity, and redundancy between these spaces, researchers
can uncover new insights, develop novel techniques, and propose improvements to exist-
ing models. This contributes to the overall progress of the field, leading to more efficient
and effective solutions in areas such as machine learning, computer vision, natural language
processing, and data analytics.

In summary, analyzing the latent space and concept space using the proposed framework
is important for gaining a deeper understanding of data distribution, improving model se-
lection and configuration, leveraging complementarity for enhanced performance, achieving
explainability and interpretability of results, and advancing research and development in rel-
evant domains. This analysis provides valuable insights and guidance for developing more
accurate, robust, complementary and interpretable models and systems.
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Chapter 5

Causal Inference in Video-Text Retrieval

5.1 Introduction
So far we have learned, especially from the chapter 4, that in hybrid approaches like [1]
the concept and latent spaces share similar representation capabilities. Given that the con-
cept space is solely accountable for the explainability of retrieved results in these hybrid
approaches, it is plausible to assume that relying solely on the concept space may be able to
support both high quality retrieval and explainability. However, the actual causal effect of
explanation on retrieval decision has not been discussed or analyzed in state-of-the-art. This
chapter introduces two elements to address this: firstly, a method to assess the causal contri-
butions of concept detection scores in the retrieval decision of state-of-the-art system [1]; and
secondly, a strategy to enhance the tag(s) contributions in retrieval decision using modified
concept probability scores, thus generating more causal explanation in this way.

Figure 5.1: Tag clouds for justifying the retrieved results for one query (from [1]).

Regarding current state-of-the-art methods, Figure 5.1 (excerpts from [1]) illustrates how
explanation/justification can be provided to a user using a hybrid approach: tag clouds show
the concepts found to be the most relevant (with sizes related to their estimated importance)
for the query and for the 4 top-ranked retrieved documents. A user is then supposed to eval-
uate to what extent these tag clouds are actually relevant to the query and to the documents,
and to what extent they match. However, it’s important to note that these tag-clouds do not
provide information about their relative contribution to the overall retrieval decision, and are
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then far from reflecting the retrieval causality. Hence, the work in this chapter takes place
before such displays: we study how to measure the concept’s detections scores’ causal contri-
bution in retrieval decisions, and we propose ways to evaluate and improve such causality on
such state-of-the-art system, when focusing primarily on the concept representation space.

Therefore, this chapter focuses on evaluation and enhancement of the causality in tag-
cloud-based explanations of dual encoding model [1], by quantifying and augmenting the
causal contribution of tags, specifically those employed in tag-cloud explanations. By as-
signing greater weight to fewer relevant concepts, we seek to amplify their causality in the
retrieval decision-making process without impacting retrieval accuracy.

Objective

This chapter aims to assess the causal impact of concept classification on retrieval
decisions within dual encoding model [1], with the aim of enhancing the quality of
explanations provided to users within the system. By introducing a new method for
assessing causal contributions and proposing strategies to optimize tag contributions,
the objective is to offer more interpretable and effective retrieval models while con-
sidering the broader principles of parsimony and model interpretability in the machine
learning context.

The concept of assigning varying degrees of importance to elements within a model’s
decision-making process aligns with the broader goals of parsimony. Similar to our con-
cept weighing approach proposed in this chapter, a few papers [164, 165] propose methods
to enhance the plausibility of attention maps in RNN or transformer-based models, which
are commonly used to explain classification model decisions. The approaches aim to pro-
vide more reliable explanations using fewer important words/tokens by giving them greater
weight, thus addressing the concept of “parsimony” in attention maps. Additionally, Liao et

al. [166] develop frameworks for automatically learning compact and parsimonious repre-
sentations by focusing on a small subset of informative features while disregarding irrelevant
or redundant ones. This leads to more compact and interpretable representations. Although
Liao et al.’s work differs in the specific context of classification or retrieval, it aligns with
the idea of achieving parsimony and interpretability in models.

Apart from the parsimonious models, researchers have explored causality in machine
learning to gain a deeper understanding of the classification models [148, 167, 168, 169].
Our study also differs from Yang et al. [148], who propose a causality-inspired framework
for Video-Moment Retrieval, employing a structural causal model to analyze the impact of
queries and video content on prediction outcomes. However, we aim to quantify the true
causal effect of a set of predicted concepts on retrieval decisions, rather than focusing on the
effect of queries and video content on prediction. To the best of our knowledge, we are the
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first to provide a quantitative measure of the causal contribution of visual concept classes in
retrieval explanations, contributing to a better understanding and interpretation of retrieval
models.

For the study of causality in visual explanation in the form of tag-clouds for video-text
retrieval, we rely again on the dual stream implementation of [1], which uses a dual space,
and a dual task learning approach, where the system simultaneously performs video-text
retrieval and video and text classification tasks (see more details in Section 2.2.3). Addition-
ally, we detail some problems in the dual task approach [1], e.g. issues in learning of several
detectors and that the target task ground truth features lower the evaluation measures.

5.2 Analysis of causality

5.2.1 Quantifying causality

If we consider the interpretable embedding model of [2] or only the concept space part of
a dual space dual encoding model of [1], video and text samples are eventually represented
only by the detection scores of the selected concepts / tags. Then, for either a VTT or a VTT
retrieval task, the ranking of the test samples is performed only on the basis of the similarity
of these concept-based representations to that of the query in the other modality. [1] uses by
default the Jaccard similarity function for the concepts between a video sample v and a text
sample s:

simcon(v,s) =
∑

i=K
i=1 min(g(v)i,g(s)i)

∑
i=K
i=1 max(g(v)i,g(s)i)

(5.1)

with g being the function projecting v and s into the concept space with g(x)i being the
detection score for tag i for the sample x, and K being the number of dimensions of the
concept space, which is also the number of selected tags. The g function contains a final
sigmoid function that normalizes the concept detection scores between 0 and 1 (used also in
the binary cross-entropy during the concept classification training).

The cosine similarity function may also be considered, as it is already used by default on
the latent space of [1]. Such cosine similarity is defined as:

simcon(v,s) =
h(v).h(s)

∥h(v)∥.∥h(s)∥
=

∑
i=K
i=1 h(v)i.h(s)i

∥h(v)∥.∥h(s)∥
(5.2)

with h being the function projecting v and s into the concept space without the final sigmoid
function. In principle, It is also possible to use the cosine similarity on the post-sigmoid
detection scores but this would not be consistent with how the cosine similarity is used in the
latent space and the pre-sigmoid (logit) values equally represent the likeliness of presence of
a tag in a sample in a way is easily understandable by humans.
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82 5.2. ANALYSIS OF CAUSALITY

We now propose to quantify the causality of a group of tags (which may be those pre-
sented using clouds as in figure 5.1) in a similarity value used for ranking of retrieved results
by the sum of their relative overall contribution to this similarity value. The idea of measur-
ing the contribution of each tag aligns with the notion of “feature importance” [170, 171].
Feature importance methods, as defined in [170], quantify the contribution of a feature to
the model performance. However, in our particular case the feature corresponds to tags, and
we seek to quantify the relative contribution of tags through which we will be able to assess
the contribution of tags to the overall retrieval decision. Consequently, we consistently refer
“relative contribution” as “feature importance” in the following. We observe that in the sim

functions presented above (equations (5.1), and (5.2)), the numerators are based on a sum
of per-tag terms. As we are interested in the relative importance of individual tags or of a
group of tags, we may get rid of the sim denominators and normalize the terms so that the
sum of their absolute values is equal to one (all values are positive in the Jaccard case but not
necessarily in the cosine one). This gives, respectively for the Jaccard and cosine, individual
tag contributions or feature importance:

wi(v,s) =
min(g(v)i,g(s)i)

∑
j=K
j=1 min(g(v) j,g(s) j)

or
|h(v)i.h(s)i|

∑
j=K
j=1 |h(v) j.h(s) j|

(5.3)

Based on equation (5.3), the causal effect, defined in [0,1], of a set of tags G in the similarity
computed between a video sample v and a text sample s is defined as:

c(G,v,s) = ∑
i∈G

wi(v,s) (5.4)

We define the “causality at k” as the causality defined as in equation (5.4) with G correspond-
ing to the k tags contributing the most to the computation of the similarity score:

ck(v,s) = max
G⊂J1,KK,|G|=k

∑
i∈G

wi(v,s) (5.5)

From this measure defined for one pair (v,s), we derive global statistical measures on a
whole cross-modal collection by computing statistics such as the mean (equation (5.6)) and
the standard deviation of this value on a set of pairs P.

Ck(P) =
1

|P| ∑
(v,s)∈P

ck(v,s) (5.6)

P may be the set of all possible pairs in the collection or only the set of matching pairs.
We can also consider the set of pairs obtained using all the text queries and, for each of them,
the top-n retrieved videos, or the opposite using video queries and retrieved texts.
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In our case, causality in explanations/justifications relies only on the detection scores for
the displayed tags. This is the case by design for the dimensions in a concept space, but
not for the dimensions in a purely latent space as these have no meaning for humans. The
causal weight of any element coming from the latent space in the concept-based visual expla-
nation/justification should then be strictly zero. In the latent-space-only approach, no con-
cept detection scores are available anyway for displaying tag clouds. However, such scores
are available in hybrid approaches, as the decision is made partly on similarities simlat(v,s)

coming from the latent space and partly on similarities simcon(v,s) coming from the con-
cept space. The overall similarity is a weighted sum (after a global scale normalization)
sim(v,s) = α.simlat(v,s) + (1−α).simcon(v,s). The overall causality should logically be
a weighted sum based only on the concept scores multiplied by the (1−α) factor, as the
causality on the latent part, should be zero.

5.2.2 Evaluating causality of the target system

We have evaluated the tag-detection-score-to-similarity causality using the pre-trained hy-
brid model provided by the authors of [1] on the MSR-VTT dataset [13]. In this hybrid
model, the concept-based similarity accounts for 40% of the global score, As described
above, the causal weight of the concepts is reduced accordingly.
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Figure 5.2: Individual and cumulative contribution (mean ± standard deviation), of the tags ranked
by decreasing contributions.

Figure 5.2 shows the mean and standard deviations of the both individual contribution
wk(v,s) and cumulative ck(v,s) contributions of the tags. The tags are ranked by decreasing
contributions for the matched pairs (associated videos and captions). The same curves (indi-
vidual and cumulative contribution of the tags) for “Text to Video Top-n” and “Video to Text
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84 5.2. ANALYSIS OF CAUSALITY

Top-n” looks very similar, while the curves for all possible combinations gives lower and
more spread out values. It’s important to note that six distinct sets, denoted as P, containing
pairs of (v,s) are considered in this analysis. It’s worth emphasizing that the mean value of
ck(v,s) across a set P aligns with the concept of Ck(P) as defined in equation (5.6).

The “Text to Video Top-n” (resp. “Video to Text Top-n”) corresponds to the sets of the
pairs formed from all the caption queries (resp. video queries) with the corresponding top-n
retrieved videos (resp. retrieved captions), with n = 1 and n = 10. “Matched” corresponds
to the set of all videos with their associated captions and “Random” to a set of 100,000
randomly samples (v,s) pairs from all possible combinations. We observe from these curves
that:

• The sets of pairs labeled as “Text to Video Top-n”, “Video to Text Top-n”, and “Matched”
produced highly similar outcomes. This alignment in results was anticipated because,
in each of these scenarios, the textual content and the associated videos in the pairs
share similarities. On the other hand, when we “randomly” selected pairs, a different
pattern emerged. In these cases, the texts and videos generally lacked substantial sim-
ilarity, leading to a more evenly distributed pattern of individual contributions. This
outcome was in line with our expectations. For the remainder of our analysis, we will
focus exclusively on examining causality within the “Matched” pairs, as explanations
primarily related to pairs with significant similarities, while the other scenarios yield
somewhat lower causality values due to their inherent dissimilarity.

• Even when considering the Matched (v,s) pairs in Figure 5.2, it is noteworthy that
the individual and cumulative causal contributions of the first few tags (i.e. top-k) are
very small. Specifically, the first tag’s contribution amounts to less than 0.5%, and
the accumulated contribution of the first 10 tags remains below 4%. This observation
highlights a very important point: that the actual causality in visual explanations such
as illustrated in figure 5.1 is very limited. when considering solely concept space of
dual encoding model, the overall causality is only 4%. In the case of the comprehen-
sive hybrid approach, this causality figure further reduces to a mere 1.6%. The same
behavior is observed for all the Pairs P.

• A large majority of the tags have a significant contribution to the similarity measure
and therefore play a crucial role in the ranking decision. Notably, we also observed
that, if we only include the initial tens of tags within Jaccard similarity computation,
the retrieval performance is very degraded (as illustrated in Figure 5.3). For instance,
considering top-10 tags showed in tag-cloud (Figure 5.1) for similarity computation
and retrieval, we see that mean average precison (mAP) is downgraded significantly
i.e. close 0.3 from 14.46 (considering all 512 concepts in concept vocabulary) (see

84



Causal Inference in Video-Text Retrieval 85
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Figure 5.3: Effect of considering limited tags for Jaccard similarity computation on retrieval perfor-
mance

Figure 5.3).

Even if the displayed tags seems relevant to both the caption query and the retrieved
video, it’s essential to recognize that the primary factors influencing the ranking deci-
sion extend beyond the initial set of tags. In other words, the ranking determination
relies heavily on terms and elements beyond the first few tens of tags.

Later on, we computed the causality for the baseline dual encoding model [1] using
Equation (5.6) for quantitative evaluation. Table 5.1 presents the retrieval performance and
the causality at 10 and at 30 of the original hybrid approach from [1], as well as of a num-
ber of variants aiming at improving the performance and/or the causality values. “2048-d
latent” corresponds to a latent-space only version; “1536d+512d hybrid” is the original hy-
brid (GitHub) version “512-d (hyb. train.)” is the same hybrid system in which only the
concept-based part is used for the ranking.

Table 5.1: Comparison on the MSR-VTT task [13] for the original hybrid approach [1] and for some
selected variant. mAP (3rd last column) represents average of the TTV and VTT mAPs and last two
“C@n” columns for the causality at n on the matched pairs. Metrics are same as in [1] except “C@n”,
and described in Section 5.4.

Method Text-to-Video Retrieval Video-to-Text Retrieval SumR mAP C@10 C@30
R@1 R@5 R@10 Med r mAP R@1 R@5 R@10 Med r mAP

2048-d latent [1] 11.0 29.2 39.8 19 20.2 18.8 42.7 56.2 8 9.3 197.7 14.0 n/a n/a
1536d+512d hybrid 11.8 30.6 41.8 17 21.4 21.6 45.9 58.5 7 10.3 210.2 15.8 1.6 4.0
512-d (hyb. train.) 9.7 26.2 36.2 25 18.2 19.3 43.8 56.0 8 9.2 191.1 13.7 3.9 10.0
512-d Jaccard 10.4 28.2 39.1 20 19.5 19.8 42.4 55.0 8 9.4 194.8 14.5 4.0 10.0
256-d Jaccard 10.9 29.2 40.2 18 20.3 18.2 41.3 53.4 9 9.1 193.2 14.7 8.2 19.6
512-d cosine 10.6 28.8 39.2 20 19.9 20.3 44.0 56.6 7 9.9 199.6 14.9 10.4 23.5
256-d cosine 11.0 29.5 40.4 18 20.5 19.8 44.2 56.2 8 9.8 201.0 15.1 17.4 37.8

In the quantitative experiments, we explored the concept of causality in various scenarios
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86 5.3. IMPROVING CAUSALITY

using five distinct variations. These variations involved two important aspects: the inclusion
and exclusion of latent space from dual encoding model [1], and the use of different vo-
cabulary size for the concept space, specifically 512-d Jaccard (original dual encoding con-
figuration for concept space), and 256-d Jaccard. Additionally, we conducted experiments
with concept-only training, replacing the Jaccard similarity metric with cosine similarity,
while still using the same vocabulary sizes of "512-d cosine" and "256-d cosine," which are
typically used in the context of latent space.

We considered five different variants in order to assess the behavior of causality in dif-
ferent scenarios. We looked at five different approaches, considering whether to include a
latent space and using different vocabulary sizes. We also replaced one similarity metric
with another while keeping the vocabulary sizes the same. This allowed us to analyze the
impact of these variations on our results.

Regarding causality, we chose the causalities at 10 and 30 as they correspond to practi-
cally useful values in the sense that 10 is the number of tags that a user can grasp simulta-
neously, e.g.; [172] mentions that human are unable to process more than a few, typically
7±2, stimulus at one time, and 30 is a reasonable bound on the number of tags that could be
validly assigned to a given caption or video. In fact, explanations involving more than these
numbers are unlikely to be causally correct and the components beyond them would likely
be used just as latent dimension in a quite opaque way.

The “512-d (hyb. train.)” case corresponds to the curves displayed in figure 5.2; the
causality for “2048-d latent” would be 0 (or rather n/a); and the causality for “1536d+512d
hybrid” is in between. The causality for “512-d cosine” is significantly higher because the
decreasing of the sorted component values happens to be much faster in this case. For both
the Jaccard and cosine versions there is a significant increase in the causality when the vo-
cabulary size is decreased, which is expected as the relative weight values automatically
increase when their count decreases.

The causality analysis study reported here focuses only on the dual encoding model pro-
posed by Dong et al. [1] in 2021. However, there are other interpretable models, Wu et al. [2],
that use similar methods. So, it’s likely that these alternative models will show similar be-
havior.

Our approach, focused on causality, is generalized and can be applied to retrieval models
based on classification tasks, offering a broader understanding of their behavior and perfor-
mance.

5.3 Improving causality
We have seen above that the causality in the actual visual explanations is very low, because
instead of having the causal weights mostly distributed on only a few tags as it would be
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expected if only relevant tags were detected with significant scores, we have quite the op-
posite with most tags being detected with similar and non-negligible scores, as can be seen
in Figure 5.2. While this effect is somewhat reduced when using cosine similarity function
in concept space instead of Jaccard similarity, but the causality at 10 and 30 is still rela-
tively low. However, when we reduced the number of tags from 512 to 256, we noticed a
significant improvement in causal relationships, without a notable drop in performance and
sometimes even a slight improvement. Nonetheless, it’s important to highlight that even with
this reduction, the causal relationships are still not particularly strong.

The reason behind the spread of causal weight across all the tags instead of having the
causal weights mostly distributed on only a few tags is because nearly all tags are consis-
tently detected with average probability score of 0.4. On an average, about 200 concepts are
always detected with high probability out of 512, which should not be the case as it is much
higher than what we would expect based on average tag frequency in training data. This
phenomenon likely occurs because the detection scores depend on two different loss func-
tions: one for the classification task and another for the retrieval task. The latter loss function
appears to disrupt the balance of the former, leading to an over-detection of tags. More gen-
erally, the detectors are not trained independently, and their scores are highly influenced by
both an estimated tag probability and latent component (unrelated to the classification task).
This dual influence add noise to the detection scores. Additionally, we also observed that
several detectors are quite bad (see section 5.6), possibly due to insufficient and/or incon-
sistent training data, or to the fact that the retrieval loss function forced the detector to learn
something useful for the retrieval task regardless of the detector classification performance,
or due to both.

There are several ways through which the causality can be improved but, unsurprisingly,
they have some impact on the retrieval accuracy. Generally, users are interested in explain-
ability, but not at the expense of the accuracy or with only a negligible reduction in accuracy.
Therefor, we will first propose methods for increasing the causality without sacrificing the
accuracy. We will also propose methods for increasing further the causality, possibly up to
100%, with possibly also a significant drop in accuracy. This might be interesting for users
insisting for having a fully causal explanation (for this part) and accepting the associated cost
in accuracy, and for researchers interested in understanding the limits of the approach.

5.3.1 Improving causality by tag detection score transformation

In order to improve the causality from the first few tags, we propose to modify the detection
scores by applying a transformation function to them so that the causal weight becomes
more concentrated on the first few tags. There are several ways to do this. First, considering
the tag probabilities used in the Jaccard similarity (equation (5.1)), simply applying a power
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transformation with an exponent p greater than 1 automatically increases the relative weights
of the first terms. Second, the tag probabilities g(v) or g(s) are obtained by applying a
sigmoid function to “raw” detection scores h(v) or h(s); we can then apply a bias b (shift)
and/or a gain a (scale) to these raw scores before applying the sigmoid function, performing
a kind of Platt normalization [173], possibly correcting the influence of the retrieval loss in
the classification calibration. Combining transformations, we replace probability score i.e.
g(x)i = σ(h(x)i) by: (

g(a,b,p)(x)
)

i = (σ(a(h(x)i−b)))p (5.7)

with σ being the sigmoid (expit) function and x being either a video sample v or a text
sample s. The original function in case of original dual encoding model [1] corresponds
to (a,b, p) = (1,0,1). In practice, we did not investigate all the possible combination and
considered varying either only a and b or only p, as p and a have similar effects. Similarly, in
order to improve the causality from the first few tags with the cosine similarity (equation 5.2),
we replace h(x)i (which is non-sigmoid detection scores) by:

(
(h(a,b,p)(x)

)
i = (a(h(x)i−b))p (5.8)

The main difference with formula (5.7) being that the sigmoid transform is not used with the
cosine similarity. Again, the original function corresponds to (a,b, p) = (1,0,1) but it can
be noted that, as a scale factor, the a parameter has no effect in the cosine similarity, which
is related to an angle between vectors. We will then keep a = 1 in this case.

For appropriate values of the a, b and p parameters, the transformations described in
equations (5.7) and (5.8) increase the contrast between the values used for the similarity
computation and therefore increase the causality over the first few most contributing tags.
Indeed, these transformations do impact the retrieval performance of the system as well,
sometimes positively and sometimes negatively, depending upon the choice of the a, b and p

parameters. These parameters should then be chosen in order to obtain the best compromise
between causality and accuracy. This is done by giving preference first to the accuracy −as
we generally do not want to sacrifice it to causality− and second to the causality as long as
this does not hurt accuracy. The corresponding optimal a, b and p parameters are obtained by
direct search on the validation set, one at a time, and iteratively. Optimizations are done on
the overall mAP (mean of TTV and VTT mAPs) as it is more stable than the SumR metrics,
and it leads to very similar results.

5.3.2 Improving causality further by dropping tags

We will explore three main and simple ways through which the causality can be improved
with a cost in accuracy:
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1. The first one is applicable when a hybrid system combining a latent (fully opaque)
space and a concept (partly explainable) is used. In this case, dropping the latent
component and using the “concept only” part of the system will significantly increase
the causality with a possible non-negligible cost in accuracy;

2. The second way consists in applying the approach described in section 5.3.1 while
increasing the values of the p, a and/or b beyond the optimal values for maintaining
the accuracy;

3. The third way consists in modifying the Jaccard or cosine score used for ranking the
retrieved results so that it takes into account fewer tags.

5.4 Experiments
Dataset. Similar to Section 3.3.2.1, we performed all of our experiments on the official split
of the MSR-VTT dataset [13] for the experimentation and evaluation of causality based dual
encoding model.

Implementation details. We used PyTorch code1 provided by the authors of [1]. In order to
assess the performance and quality of retrieval results and explanation of baseline model [1]
using causal parameters, we used the five variants of concept space which are described in
Section 5.2.2. More specifically, we trained and evaluated the concept space for causality
and retrieval performance in the following different settings: (i) Concept-Hybrid: where the
concept space is trained in hybrid mode (latent and concept both), for testing of causality
and retrieval, only concept space part is used, (ii) Concept-Jaccard: In this setting the dual
encoding model is trained and tested on concept space part only with Jaccard coefficient as a
similarity metric along with two different vocabulary sizes and dimensions of concepts space
(512-d, 256-d), and (iii) Concept-cosine: As we have seen in Table 5.1 (row-8), there is slight
improvement in accuracy when using cosine similarity in concept space, so we also reported
results for “concept-cosine” setting again with two different vocabulary sizes (512-d, 256-d).

Performance Metrics. Similar to Section 3.3.2.1, we evaluated all of our experiments by
using all important retrieval performance evaluation metrics provided for the evaluation of
MSR-VTT dataset i.e. the mean Average Precision (mAP) and sum of R@K for TTV and
VTT (SumR). To evaluate the causality, we proposed the formula (Equation 5.6) for calcu-
lating the averaged causal effect of a group of concepts G over the top-n results of all the
queries of the dataset (refer to Section 5.2.2).

We now explore the impact of our score modifications on the causality of different vari-
ants of the system. Then, we check the impact of the proposed modifications on the accuracy.

1https://github.com/danieljf24/hybrid_space
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We finally discuss the trade-off between these two criteria.

5.4.1 Improving causality by tag detection score transformation

Impact on causality. For each combination of the a, b and p parameters, it is possible to
compute the modified tag “probabilities” or scores and to compute from them similarity val-
ues, causalities as displayed in figure 5.2 and performance metrics as displayed in table 5.1.
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Random pairsFigure 5.4: Per-tag (decreasing curves) and cumulative (increasing curves) causality for different
values of scale a.

Figure 5.4 shows how per-tag and cumulative causality curves evolve according to the
values of the scale parameters for the “512-d (hyb. train.)” system. The baseline for a = 1
correspond exactly to the “matched pairs” case of figure 5.2, except that (i) the standard
deviation is not shown (ii) a log scale is used in order to better illustrate what happens for
small numbers of selected tags and (iii) the vertical scale of the relative tag contribution is
adjusted so that all curves fit in the window. As expected, the causality always increases
with the value of the a (scale) parameter. We also observed that it similarly increases with
the values of the p (power) and b (shift) parameters. This remains for all combinations of
these parameters that we tried and is also the same for the other systems using a Jaccard
similarity (“512-d Jaccard” and “256-d Jaccard”). Regarding the systems using a cosine
similarity (“512-d cosine” and “256-d cosine”), the same behavior is observed for the p and
b parameters and, as expected, the a parameter has no effect. As we are interested in values
as high as possible for the causality at a few tens of tags, for all the systems, we should use
values as high as possible for the p, a (if applicable) and b parameters.

Impact on accuracy. Choosing values as high as possible for the p, a and b parameters
is likely to have a negative impact on retrieval accuracy. Figure 5.5 shows the evolution
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Figure 5.5: Global mAP evolution for the shift (for optimal scale) parameters for the five considered
system variants.

of the global mAP according to the parameter b (shift) of equations (5.7) and (5.8). The
baseline value is of 0.0 for those parameters We observe that, except (as expected) for the
scale parameter with cosine similarity, there is an optimum value for each parameter for the
global mAP. The optimum value generally gives a slight performance improvement over the
baseline, sometimes significant. Regarding the p and a (when applicable) parameters, the
optimum value is significantly higher than the baseline, indicating that it is possible to have
a gain simultaneously on the causality and on the accuracy. On the opposite, the optimum
value for the accuracy for the b parameter corresponds to a value lower than the baseline so
that we loose on one criterion if we optimize on the other.

Joint optimization. As previously mentioned, we favor accuracy over causality as users
generally do not want to sacrifice the former to the latter. Here, we even try to further
improve the accuracy even if we improve less on the causality. This means that we choose
the optimum values obtained from the functions displayed in the curves of Figure 5.5 except
where the curve is rather flat and the optimum value is close the baseline one, in which
case we keep the latter, which is better for the causality. Also, when relevant, we optimize
jointly the b parameter and the p or the a parameter. We don’t jointly optimize the p and
the a parameters as they have a similar effect and keep the other to the baseline value. The
optimization is done on the validation set and causalities and accuracies are measured on the
test set. We have also checked that the optimal values are quite close on the validation set
and on the test set. Table 5.2 shows the optimum value combinations found on the validation
set for the five system variants considered, and Table 5.3 compares the original and improved
accuracy values for these cases and the original hybrid version.

Discussion. We found out that there are many ways to improve the actual causality in
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Table 5.2: Optimal values for the p (power), a (scale) and b (shift) parameters on the validation set
for five system variants.

Training p a b

512-d (hyb. tr.) 1.00 2.7 0.0
512-d Jaccard 1.00 2.9 0.0
256-d Jaccard 1.00 1.8 0.0
512-d cosine 1.07 n/a -0.25
256-d cosine 0.98 n/a -0.24

visual explanations: by using only a concept space for the retrieval, either with a hybrid
training or with a concept-only training, by using a cosine similarity instead of a Jaccard
one, by using a smaller tag vocabulary size, and finally by using a transformation on the
tag probabilities or scores with optimized parameters. All of them may lead to a significant
improvement in the causality on the first few tags or tens of tags without sacrificing on the
retrieval accuracy or with even a slight increase in accuracy too with much less training

parameters, except in the first considered step which is to drop the use of the purely latent
space in the retrieval step (2nd row of Table 5.3).

Table 5.3: Causality and performance with and without our improvements for five training conditions.
C@10 and C@30 are the causality respectively for the top-10 and top-30 contributing tags. mAP is
the mean of the TTV and VTT mAPs. SumR is as defined in [1]. All values are in percentages.

Model Variants Tr. Params (in Millions) inference C@10 C@30 mAP SumR

1536d+512d hyb. 69.17 original 1.6 4.0 15.8 210.2

512-d (hyb. tr.) 69.17
original 3.9 10.0 13.7 191.1

improved 10.9 25.5 15.0 203.0

512-d Jaccard 42.23
original 4.0 10.0 14.5 194.8

improved 16.0 29.7 15.0 198.7

256-d Jaccard 37.74
original 8.2 19.6 14.7 193.2

improved 32.0 51.8 15.3 200.8

512-d cosine 42.23
original 10.4 23.5 14.9 199.5

improved 15.6 31.3 15.5 207.0

256-d cosine 37.74
original 17.4 37.8 15.1 201.0

improved 22.3 44.1 15.5 206.7

Regarding the transformations, we found that a scale-only transformation was the best for
systems using the Jaccard similarity and that a transformation based on both shift and power
was best for systems using the cosine similarity. The use of cosine similarity may lead to
better accuracy for the improved version but with a slightly lower improvement in causality
(Table 5.3 Row 5(b)). The accuracy of the improved cosine versions using a concept space
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Figure 5.6: Impact of the causal parameter on accuracy while evaluating varying numbers of ’K’
concepts using the Jaccard similarity function

only is closed to that of the original full hybrid version.

Regarding the size of the tag vocabulary, the accuracy (mAP and SumR) is comparable
for 512-tag and 256-tag versions in all cases, while the causality is greatly improved for the
latter. We tried to reduce further the tag vocabulary size in order to find the optimal values
as discussed in Section 4.4 (R1) of Chapter 4, but the accuracy begins to drop significantly
for sizes going below about 200 tags (see Figure 4.2).

One might question whether the modified tag probabilities or scores still represent well
the detection scores from the tag classifiers. Both the Jaccard- and cosine-specific transfor-
mations are actually doing a re-calibration of these. In fact, the original “tag probabilities”
are unlikely to be well calibrated because they correspond to an average detection of 40% of
the tags (i.e. ∼ 200 concepts), which is much larger than the actual average tag annotation
in the training data (i.e. over-detection of tags), and as already mentioned that the issue of
over-detection is because the calibration is biased due to the fact that the tag probabilities are
subject to two different and competing loss functions (for classification and for retrieval). By
reducing the average detection rate of the tags, it is likely that the proposed transformations
actually leads to a better calibration of the detection scores and to more meaningful “tag
probabilities”.

5.4.2 Improving causality further by dropping tags

To enhance causality further, we undertook three main and simple ways as described in
Section 5.3.2:

• Hybrid system combining a latent (fully opaque) space and a concept (partly explain-
able) for training is used. Then later on, while evaluating latent component is dropped
and using the “concept only” part of the system.
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• Experimenting with higher values for the causal parameters, specifically the scale and
power parameter, beyond the optimal range to maximize causality.

• Focusing on a selected subset of the most important concepts, denoted as the top-k
concepts, when calculating the similarity between a video sample (v) and a text sample
(s) for ranking.

In Figure 5.6, we present two subfigures: Figure 5.6a illustrates our exploration of various
values for the scale parameters and top-k concepts, where k ∈ K signifies the number of
dimensions within the concept space. In this figure, as we progressively increased the values
of the scale parameter while considering top-k concepts for similarity measurement (e.g.,
top-10 concepts), we observed that the accuracy initially improved. However, beyond k ≥
8, the accuracy started to decline. Notably, maintaining values for the causal parameter a

within the optimal range, which transforms the probability scores before considering the
top-k concepts, proved to enhance accuracy even when using a few relevant concepts (k).
Figure 5.6a demonstrates that without applying any transformation or causal parameter for
normalizing probability scores (baseline a = 1), the accuracy for top-10 concepts was at
its lowest, at 0.3mAP. Conversely, with scale values of a = 2.8 and a = 4, we achieved
substantial accuracy improvement for top-10 concepts, elevating it from 0.3mAP to 5.8mAP.

However, the pattern observed in the case of the power parameter (p) (Figure 5.6b) is
different from scale parameter a, as increasing the power p≥ 2 seems to not have significant
difference in accuracy as compared to baseline system p = 1. The accuracy improved a little
bit when considering power transformation values greater than 1 for top-k concepts ranges
approximately from (1-60) but started decreasing significantly when going beyond k ≥ 60.

From the experiments and observations several conclusions can be drawn: i) Adjusting
the scale parameter (a) can significantly impact accuracy when considering a select subset
of the most relevant concepts (top-k concepts). Increasing the scale parameter value initially
improved accuracy, but beyond a certain point (around k ≥ 8), accuracy began to decline.
Maintaining values for the causal parameter a within an optimal range proved to be effective
in enhancing accuracy, even when using a limited number of relevant concepts (k). ii) Power
Parameter: Unlike the scale parameter, increasing the power parameter (p) beyond 1 did not
have a significant impact on accuracy, except for a slight improvement in the range of top-k
concepts from 1 to 60. However, beyond k ≥ 60, accuracy started to decrease significantly.
This suggests that the power parameter may not be as influential in enhancing causality as
the scale parameter.
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Figure 5.7: Tag Clouds with Text Sizes Proportional to Prediction Score (C@10)
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5.5 Improved Tag-Cloud-Based Result Interpretation
All the experiments above consider that displays if tags will support the explanation during
retrieval. This section delves into the enhancements made using proposed causal parameters
to the tag-cloud-based explanations provided by the dual encoding model [1]. These im-
provements are illustrated through a series of tag clouds, showcasing a visual comparative
analysis of the causality in explanation between the original and improved systems with re-
spect to causality, across various training conditions. As presented in Table 5.3, the causality
based dual encoding model demonstrates a significant increase in causality (C@10, c@30)
for the improved versions, along with the increase in mean Average Precision (mAP). In this
section, we visually validate this enhanced causality (C@10 and C@30) using tag clouds as
depicted in Figures 5.7 for the top 10 tags and 5.8 for the top 30 tags. We analyze three dif-
ferent trained systems: i) 512-d Hybrid Training: Representing the explanatory quality of the
baseline system, ii) 512-d Jaccard (Improved), iii) 256-d Jaccard (Improved). Since these ex-
planations are exclusively based on the concept space, we do not consider the “1536d+512d
hyb” hybrid evaluation with 1536-d latent space and 512-d concept space for visualization.

In Section 5.1, we already discussed the usage of tag clouds to explain video retrieval
results, as presented by Dong et al.[1]. The tags in tag clouds (Figure 5.1) are meant to
highlight the most relevant tags with high prediction scores (i.e. large font size for more
relevant and important tags and small font size for less relevant tags) for a query and top four
retrieved videos. However, it’s essential to notice that the sizes of the tags in these tag clouds
provided by Dong et al., do not accurately depict their actual relative importance in the
matching process. As shown in Figure 5.7a and 5.8a, the tag sizes are very misleading and
do not truly reflect the prediction scores of tags. For instance there is very large difference
in the sizes of tags “play” and “team”, but in fact the prediction scores of these tags are not
very different with prediction score of 0.992, and 0.919 respectively. Moreover, there are
some issues of over or bad detection in original dual encoding model as well. As shown in
Figure 5.7b the detected tag “pong” is not relevant to the textual query or video, but it is
highlighted with high prediction scores in 3rd ranked video.

In Figure 5.7b, we represent the tags in tag cloud using baseline dual encoding model [1],
by actually displaying tag sizes proportionally to their prediction scores. We observe that
almost all the tags are of the same sizes with negligible difference, as they are equally relevant
and important for retrieval decision. The pattern is also evident in Figure 5.8b, where the top
30 concepts are visualized in tag clouds for explanation, which should not be the case. This
illustrates the low causality in the dual encoding model from a visual perspective, as causal
weights are distributed across a large number of tags and all tags are treated as equally
important in the retrieval decision process.

However, in Figure 5.7c, we present tag clouds based on optimal values of causal param-
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Figure 5.8: Tag Clouds with Text Sizes Proportional to Prediction Score (C@30)
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eters (p = 1.00, a = 2.9, b = 0.0) for a 512-dimensional Jaccard Improved model (selected
from Table 5.2). Here, we can see that not all tags have similar sizes, indicating that each
tag contributes differently, and not all concepts have nearly identical importance. The most
effective causality is observed when using the 256-dimensional Jaccard Improved system,
as indicated in Table 5.3. This is achieved when employing causal parameters (p = 1.00,
a = 1.8, b = 0.0), as visually depicted in Figure 5.7d. In this figure, we observe that causal
weights are primarily distributed among the most relevant tags, indicating higher causality
in the explanation compared to Figure 5.7b. This pattern is consistent for both the 512-
dimensional and 256-dimensional Jaccard Improved versions, as seen in Figure 5.8c and
Figure 5.8d.

Moreover, by accurate recalibration of the tags using transformation function given in
Equation 5.7 and 5.8, the issue of over detection of tags are tackled, and detected tags for
each query and videos are relevant with respect to the text and video content. For instance,
in Figure 5.7d, for the 4th ranked video the tag “soccer” is highlighted with high prediction
score. Even though the tag “soccer” is not relevant to the query, but it is relevant to the video
content. In the case of 256-d concept space, we do not even have the tag “volleyball” in the
vocabulary, which leads to the retrieval of soccer game video because of high similarity with
respect to other concepts in query i.e. play, player, ball, game, court etc.

Based on these findings, it is evident that generating causality based tag-cloud explana-
tions more accurately mirrors the decision-making process of retrieval systems. Furthermore,
the comparative analysis between the original dual encoding model [1] and the causality-
based dual encoding model highlights a significant enhancement in causality without com-
promising the accuracy of the retrieval systems. The optimal level of causality is achieved
with the 256-dimensional Jaccard Improved model. The choice of the best model should
be made based on the preferences of the researcher or developer, considering the trade-off
between causality and accuracy.

5.6 Additional Challenges and Issues
In this section, several major problems with original dual encoding model [1] are discussed.
To do that, we use screen dumps (as shown in Figure 5.9) of an interface specifically de-
veloped for visual analysis and explanation. In this interface, for each textual query, the
ground truth (G.T) video rank is shown. Below this, each row represents the information of
retrieved video, its ID, concept space similarity score. The first column of the table repre-
sents the keyframe of the video retrieved, concept representation of video and textual query
(2nd and 3rd column), along with the contribution (4th column) and prediction (5th column)
of each similar concept between video and query.

In addition to these features, the font size of each tag in every column, except for the
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Retrieval	Accuracy	of	MSR-VTT	Queries	(Power	1.0	and	shift	0.0	and	Scaling
Factor:	1.0)

Query	ID:	video7217#enc#14	    	Query:	man	show	a	baby	stroller	   	G.T	Rank:11
Video	Name:	video9296 Rank:	1 	Σ	Min	(Top	512):	(196.4029)	 	Σ	Max	(Top	512):	(234.6212)	 	Retrieval	Score	(Jaccard):	0.8371	 
Retrieval	Score	(Jaccard	Top	512):	(0.8371)

Middle	Frame Video	Concept-
Detection

Query	Concept-
Detection

Concept-Contrbution
(in	%) Similar	Concepts

('stroller',	99.93)
('baby',	99.5)

('review',	92.23)
('push',	89.53) ('store',
88.29) ('carry',	87.01)

('golf',	86.4) ('language',
84.85) ('feature',	82.4)

('catch',	82.07)
('demonstrate',	82.05)

('enjoy',	81.19) ('obama',
80.94) ('lift',	79.71) ('part',
78.62) ('slideshow',	77.39)

('come',	75.28) ('light',
75.16) ('clinton',	74.63)
('line',	74.35) ('mother',
73.47) ('puppy',	73.35)
('many',	73.07) ('battle',
72.84) ('remove',	72.71)

('word',	72.58) ('bar',	72.36)
('wood',	72.14) ('long',

72.02) ('describe',	71.77)

('stroller',	99.98),
('baby',	99.93),

('demonstrate',	95.46),
('review',	92.12), ('push',
90.17), ('obama',	89.89),

('carry',	89.69),
('language',	87.06),
('slideshow',	83.72),

('catch',	81.8), ('couch',
80.82), ('feature',	80.59),
('golf',	80.42), ('remove',
80.42), ('throw',	79.34),
('wood',	77.21), ('store',

77.16), ('mother',	76.23),
('come',	74.39), ('get',	74.01),

('break',	73.65), ('wheel',
73.63), ('doctor',	73.5), ('say',

73.02), ('light',	72.69),
('ready',	72.04), ('enjoy',
71.22), ('bill',	71.11), ('bra',
70.81), ('letterman',	69.38),

('stroller',	0.51),
('baby',	0.51),
('review',	0.47),

('push',	0.46), ('carry',
0.44), ('language',

0.43), ('demonstrate',
0.42), ('catch',	0.42),

('obama',	0.41),
('feature',	0.41), ('golf',

0.41), ('slideshow',
0.39), ('store',	0.39),

('come',	0.38), ('mother',
0.37), ('remove',	0.37),
('light',	0.37), ('wood',
0.37), ('enjoy',	0.36),
('couch',	0.35), ('sign',

0.35), ('craft',	0.34), ('long',
0.34), ('part',	0.34),

('throw',	0.34), ('design',
0.33), ('flag',	0.33), ('air',

0.33), ('restaurant',	0.33),
('break',	0.33),

('stroller',	99.93)
('baby',	99.5)

('review',	92.12)
('push',	89.53) ('carry',

87.01) ('language',
84.85) ('demonstrate',
82.05) ('catch',	81.8)

('obama',	80.94)
('feature',	80.59) ('golf',

80.42) ('slideshow',
77.39) ('store',	77.16)

('come',	74.39) ('mother',
73.47) ('remove',	72.71)
('light',	72.69) ('wood',
72.14) ('enjoy',	71.22)
('couch',	68.51) ('sign',

68.06) ('craft',	67.26) ('long',
67.23) ('part',	66.25)

('throw',	66.09) ('design',
65.39) ('flag',	65.29) ('air',
65.1) ('restaurant',	65.03)

('break',	64.92)

Video	Name:	video9755 Rank:	2 	Σ	Min	(Top	512):	(192.9515)	 	Σ	Max	(Top	512):	(234.9076)	 	Retrieval	Score	(Jaccard):	0.8214	 
Retrieval	Score	(Jaccard	Top	512):	(0.8214)

Middle	Frame Video	Concept-
Detection Query	Concept-Detection Concept-Contrbution

(in	%) Similar	Concepts

('stroller',	99.0)
('baby',	95.03)
('bicycle',	85.46)
('enjoy',	85.24)

('demonstrate',	84.88)
('bike',	84.79) ('push',
79.93) ('review',	79.44)

('catch',	79.26) ('rid',
77.99) ('wheel',	77.66)

('golf',	76.0) ('store',	75.21)
('long',	74.75) ('couch',
74.43) ('woman',	73.66)
('wood',	73.15) ('ride',

72.2) ('motorcycle',	71.92)
('obama',	71.9) ('come',
71.73) ('sauce',	71.51)

('word',	70.43) ('light',	70.22)
('rain',	69.9) ('throw',	69.88)

('bra',	69.29) ('product',
69.14) ('slideshow',	69.01)

('break',	67.4)

('stroller',	99.98),
('baby',	99.93),

('demonstrate',	95.46),
('review',	92.12), ('push',
90.17), ('obama',	89.89),

('carry',	89.69),
('language',	87.06),

('slideshow',	83.72), ('catch',
81.8), ('couch',	80.82),
('feature',	80.59), ('golf',

80.42), ('remove',	80.42),
('throw',	79.34), ('wood',
77.21), ('store',	77.16),

('mother',	76.23), ('come',
74.39), ('get',	74.01), ('break',

73.65), ('wheel',	73.63),
('doctor',	73.5), ('say',	73.02),

('light',	72.69), ('ready',
72.04), ('enjoy',	71.22), ('bill',

71.11), ('bra',	70.81), ('letterman',
69.38),

('stroller',	0.51),
('baby',	0.49),
('demonstrate',

0.44), ('push',	0.41),
('review',	0.41),

('catch',	0.41), ('golf',
0.39), ('store',	0.39),

('couch',	0.39), ('wheel',
0.38), ('wood',	0.38),

('obama',	0.37), ('come',
0.37), ('enjoy',	0.37),
('light',	0.36), ('throw',
0.36), ('bicycle',	0.36),

('bra',	0.36), ('slideshow',
0.36), ('break',	0.35),
('long',	0.35), ('laugh',
0.35), ('carry',	0.35),
('police',	0.34), ('flag',

0.34), ('sauce',	0.34), ('say',
0.33), ('product',	0.33), ('sign',

0.33), ('feature',	0.33),

('stroller',	99.0)
('baby',	95.03)
('demonstrate',

84.88) ('push',	79.93)
('review',	79.44)

('catch',	79.26) ('golf',
76.0) ('store',	75.21)

('couch',	74.43) ('wheel',
73.63) ('wood',	73.15)

('obama',	71.9) ('come',
71.73) ('enjoy',	71.22)
('light',	70.22) ('throw',
69.88) ('bicycle',	69.38)

('bra',	69.29) ('slideshow',
69.01) ('break',	67.4) ('long',

67.23) ('laugh',	67.06)
('carry',	67.0) ('police',

65.46) ('flag',	65.29) ('sauce',
64.68) ('say',	64.52) ('product',
64.17) ('sign',	64.03) ('feature',

63.89)

Video	Name:	video7852 Rank:	3 	Σ	Min	(Top	512):	(189.0502)	 	Σ	Max	(Top	512):	(230.31)	 	Retrieval	Score	(Jaccard):	0.8209	 
Retrieval	Score	(Jaccard	Top	512):	(0.8209)

Middle	Frame Video	Concept-
Detection Query	Concept-Detection Concept-Contrbution

(in	%) Similar	Concepts

('stroller',	97.91)
('baby',	92.21)

('demonstrate',	87.71)
('carry',	77.76)

('remove',	76.69) ('part',
75.27) ('push',	73.98)
('golf',	73.79) ('enjoy',
73.48) ('store',	73.36)

('catch',	73.07) ('come',
71.72) ('head',	69.65)

('woman',	69.01) ('language',
68.78) ('review',	68.62)
('bra',	67.76) ('product',
67.24) ('craft',	67.19)

('feature',	66.91) ('mother',
66.5) ('try',	66.02) ('break',

65.88) ('police',	65.44) ('tool',
64.52) ('obama',	64.08) ('take',
63.91) ('machine',	63.72) ('get',

63.63) ('throw',	63.14)

('stroller',	99.98),
('baby',	99.93),

('demonstrate',	95.46),
('review',	92.12), ('push',
90.17), ('obama',	89.89),

('carry',	89.69),
('language',	87.06),

('slideshow',	83.72), ('catch',
81.8), ('couch',	80.82),
('feature',	80.59), ('golf',
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0.34), ('product',	0.34),

('obama',	0.34), ('get',	0.34),
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('baby',	92.21)
('demonstrate',

87.71) ('carry',	77.76)
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Retrieval	Score	(Jaccard	Top	512):	(0.8158)

Middle	Frame Video	Concept-
Detection Query	Concept-Detection Concept-Contrbution

(in	%) Similar	Concepts

Figure 5.9: Visual Interface for Causality based Video-text retrieval

“concept-contribution” column, is directly proportional to the relative score of each tag pro-
vided within them, following the same approach proposed by Dong et al. as in [1]. For the
“concept-contribution” column, however, the font size corresponds to the relative contribu-
tion score without percentage.

5.6.1 Problems with concept selection and annotation

The process of selection of concepts and the annotation of video and text are important steps
in different domains, from image and video analysis to natural language processing. The
process of concept selection and annotation involves assigning the labels to videos and texts
to perform the retrieval and analysis. However, the inherent intricacies in these tasks can
significantly impact the quality and completeness of concept representations of video and
text. In the experiments conducted, i) one assumption is that the concepts used in the con-
cept space representation are consistent with the textual annotations. Here, such consistency
refers to the mapping between the text and the concepts selected. For instance, video anno-
tated with text containing the word “stroller” is expected to have a concept representation that
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assigns a large prediction score to the specific concept “stroller”, leading to a comprehensive
representation. ii) Second assumption is the selection of one-word concepts classifier for an-
notation and representation. For instance, consider the phrase “baby stroller”, while based on
the assumption, the phrase is divided into two visual concepts “baby” and “stroller” treated
independently. Based on these assumptions, there are two main issues that can significantly
impact the quality of these representations: specificity and exhaustivity.

• Specificity: Consider a query “a man shows the baby stroller”, as shown in Figure 5.9,
the system activated the visual concept “baby” as the second most detected concept
for video-concept detection column even though there is no baby in the video. Acti-
vating the “baby” detector is inaccurate and impacts the retrieval accuracy and causal
explanation quality. This approach fails to capture the specific meaning or intent of the
combined term “baby stroller”.

Similar cases like “video game” or “beach balls” refers to digital entertainment and
inflatable balls on the beach respectively, treating video and game alone would give
high importance to other indoor and outdoor games instead of specific digital games or
balls in general. All these cases highlights the issue of specificity in concept selection
and annotation.

• Exhaustivity: Let’s consider the example of “stroller” concept again. Experimen-
tally it is found that the concept “stroller” is highly correlated with concept “baby”
with the correlation of 55.4%, as both of these concepts are often seen together in the
videos, images, and textual sentences. In such cases the concept “baby” will also play
a large role even if the video does not contain the “baby”. This issue is more related
to the biases inherent to the collection itself and may be tackled by compensating for
correlations between concepts.

So, the “specificity” is more due to limitations in extraction of precise concepts, where
the “exhaustivity” is more related to the biases inherent to the collection itself that may
be tackled by compensating correlations between concepts. The assumptions of consistency
and one-word concept classifiers underscore the critical role of specificity and exhaustivity in
these representations, with potential implications for retrieval accuracy and causal explana-
tion quality. These challenges underscore the necessity for further research to refine methods
for concept selection and annotation, ultimately advancing the accuracy and interpretability
of multimedia retrieval systems.

5.6.2 Detectors’ Limitations
The tag-based visual explanation relies on textual and visual detectors. The visual presenta-
tion of tags associated to a text queries and to associated retrieved video samples allow a user
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to appreciate separately i) how well the detected tags match the text and the video samples
and ii) how well the detected tags support the retrieval decision. As this chapter evaluates the
causality in the explanation only for the second part, it does not take into account the causal-
ity in the tag detection process. Assessing the causality of this process is beyond the scope
of this chapter, but in this section, we are going to point out some problems with it. The two
main problems that we found are that (i) some detectors learn poorly what they are supposed
to learn and (ii) what they are supposed to learn does not always correspond to what humans
would intuitively understand by the tag label. Though this does not necessarily impact the
retrieval performance (that might even be the opposite), it does undermine the principle of
tag-based visual explanations. Whether or not the implicit annotations used for training the

Table 5.4: Performance (Mean Average Precision) of visual and textual tag detectors respectively on
the train, test and val splits of MSR-VTT.

MAP train test val

text 0.571 0.552 0.553
video 0.361 0.043 0.050

tag detectors correspond to an intuitive understanding of them by humans, it is possible to
evaluate the tag detectors relatively to these implicit annotations. Table 5.4 shows the mean
Average Precision (mAP) of visual and textual tag detectors respectively on the train, test
and val splits of MSR-VTT. The performance on the text part is far from perfect but not too
bad and quite consistent between the training set and the validation and test sets, indicating
a quite good learning and a good generalization capability. However, the performance on the
visual part is much lower, with a significantly lower mAP even on the training set and a quite
catastrophic generalization capability. The most frequent tags can still be well learned and
predicted, leading to good visual tag presentations in general.

Figure 5.10 shows three examples for which, respectively (top: man) the detector learns
well and generalize well, (middle: guitar) the detector learns something but generalize very
poorly, probably due to over-fitting on very small numbers of positive samples, and (bottom:
engine) the detector does not learn anything, even on the training set, probably due to the
fact that the classification signal is too weak compared to the retrieval one and that the cor-
responding dimension is used a purely latent one. We did not make a detailed analysis for
all concepts, but our observations showed that (i) not all cases clearly correspond to one of
these three categories but (ii) we were able to easily identify at least half a dozen tags in each
of these categories (by looking for most separated or most overlapping histograms for the
positive and negative classes in the training set and/or in the validation set).

Some detectors seem to learn and to be consistent between the training and the validation
and test sets, but the concept they are supposed to detect is unclear (e.g. the concept “air”).

101



102 5.6. ADDITIONAL CHALLENGES AND ISSUES

4 2 0 2 4 6 8 10

n: 2813, p: 3700, r: 0.76, ap: 0.9758, z: 1.31
0: -2.00, 1: 0.64, : 1.11, a: 2.15, b: 1.73, c: -0.81

0.0

0.2

0.4

0.6
1 

m
an

train

neg
pos

4 2 0 2 4 6 8 10

n: 1302, p: 1688, r: 0.77, ap: 0.8671, z: 0.67
0: -1.42, 1: 0.21, : 1.26, a: 1.03, b: 0.89, c: -0.86

0.0

0.1

0.2

0.3

test

neg
pos

4 2 0 2 4 6 8 10

n: 205, p: 292, r: 0.70, ap: 0.8439, z: 0.56
0: -1.28, 1: 0.16, : 1.31, a: 0.84, b: 0.82, c: -0.98

0.0

0.1

0.2

0.3

val

neg
pos

4 2 0 2 4 6 8 10

n: 6401, p: 112, r: 57.15, ap: 0.8956, z: 1.54
0: -0.85, 1: 1.94, : 0.48, a: 11.91, b: -10.53, c: 0.88

0.0

0.2

0.4

0.6

0.8

10
2 

gu
ita

r

neg
pos

4 2 0 2 4 6 8 10

n: 2919, p: 71, r: 41.11, ap: 0.0250, z: -0.00
0: -0.78, 1: -0.78, : 0.64, a: -0.00, b: -3.72, c: -1359.06

0.0

0.2

0.4

0.6

0.8

1.0 neg
pos

4 2 0 2 4 6 8 10

n: 493, p: 4, r: 123.25, ap: 0.0280, z: 0.42
0: -0.84, 1: -0.50, : 0.48, a: 1.54, b: -3.79, c: 2.47

0.0

0.2

0.4

0.6

0.8 neg
pos

4 2 0 2 4 6 8 10

n: 6467, p: 46, r: 140.59, ap: 0.0057, z: -0.15
0: -0.79, 1: -0.91, : 0.46, a: -0.53, b: -5.40, c: -10.13

0.00

0.25

0.50

0.75

1.00

1.25

27
8 

en
gi

ne

neg
pos

4 2 0 2 4 6 8 10

n: 2951, p: 39, r: 75.67, ap: 0.0111, z: -0.18
0: -0.79, 1: -0.95, : 0.45, a: -0.80, b: -5.02, c: -6.27

0.0

0.2

0.4

0.6

0.8 neg
pos

4 2 0 2 4 6 8 10

n: 489, p: 8, r: 61.12, ap: 0.0161, z: -0.10
0: -0.82, 1: -0.90, : 0.46, a: -0.38, b: -4.44, c: -11.66

0.00

0.25

0.50

0.75

1.00

1.25 neg
pos

Figure 5.10: Learning behavior of some tag detectors.

Finally, some detectors detect well the concept they are supposed to identify, but they ad-
ditionally reliably detect obviously unrelated concepts, probably due to a few coincidences
appearing in the training set.

For instance, if a stroller visual detector detects also baby, it is because in the training set
of stroller class there are some co-occurrences of baby and stroller (as shown in Figure 5.11a
2nd row 4th video frame), then for a query on stroller we might have a high causality for the
baby tag, even for videos that show a stroller and not a baby. Same issue can be observed
with concept baby. As in Figure 5.11b, it can be seen in 1st row 3rd video frame and last
row 3rd and 4th video frames, the stroller images with no baby at all (checked all the video
frames), affect the detector accuracy of prediction only baby with high probability (as shown
in Figure 5.11b). These problems happen mostly with the visual detectors. Even if they are
not directly related to the tag-to-similarity causality, they may clearly impact this causality,
and therefore the global validity or soundness of the explanations/justifications.

These issues are not limited but can be extended for the query related to “cat”. For
instance, if a cat visual detector detects also men or women because in the training set there
are some training images including video frames of men or women (Figure 5.11c 10th and
23rd video). This happens because of ambiguity in annotation of video with cat-related
terms like ‘cat makeup, cat outfit, cat hat, and cat snowmobile etc. For example, in case of
the query “a woman is applying make up onto her face for a cat outfit”, we might have a
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(a) Stroller classifier

(b) Baby classifier

(c) Cat classifier

Figure 5.11: Training Instances of Classifiers. The grid in a) and b) represents the training images
for the classifiers stroller and baby. The images are the first image of each video and top 15 videos
are shown for a) and b), where as first image of each video and top 28 videos are shown for c).
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high causality for the cat tag even for videos that does not even show a cat (Figure 5.11c
last row 2nd video]). All these problems happen mostly with the visual detectors. Even if
they are not directly related to the tag-to-similarity causality, they may clearly impact this
causality, and therefore the global validity or soundness of the explanations/justifications.

5.6.3 Problems with the task’s ground truth

We identified many cases in which several videos correspond to the same given caption and
vice versa, with more captions than the 20 associated ones corresponding to a given video.
For instance, for the text query “an intense volley-ball game is played” in Figure 5.1, the
“ground truth” video is ranked 2 but before it in the ranked list, the top video do match the
query and in many other cases. This indeed comes from how the collection was built and
annotated. This issue was also partly observed and discussed in [1]. The negative effect
of this is that many retrieved items are wrongly counted as false positive, while they should
instead be counted as true positive. This leads to a (possibly strong) underestimation of recall
and mean average precision (mAP) evaluation measures. This is a problem both for the test
(underestimation) and the training (noisy annotations). That might not affect the ranking of
the different approaches, as all are likely to be impacted in comparable ways, but it is more
problematic when analyzing the errors and their explanations. Correcting or evaluating this
would require some adjudication and a modification of the evaluation procedures.

Building automatically ground truth from test collections also necessitates to avoid, when
possible, biases that come from the data. In the MSR-VTT dataset, the ground truth is
composed of couples (v,S), representing for each video v its 20 textual annotations S =

{s1, ...,s20}. The input used during training and the tests come strictly from this raw ground-
truth: only the (v,s) from such ground-truth are positive and all the other pairs are negative.
This means that, even if two videos v1 and v2 have one of their descriptions s that is the
same (according to string equality), the ground-truth relating v1 and s on one side and v2 to
s on the other side do not consider such overlap. We computed such overlap on MSR-VTT
collection based on strict string quality, is equal to 8.1% in training set, 6.6% in test set and
3.8% in validation set. Several overlaps may be considered in a way to handle more or less
strict overlaps between annotations, for instance using relaxed equality of strings or Part-of-
Speech. If we compute such overlap considering Part-of-Speech (PoS) tags in the captions,
by finding a semantic match between verb-verb and object-object in textual annotations, the
percentage would be higher. It is worth noting that this issue is also addressed and tackled
using automatic process by Wray et al. [174].

Such feature has a negative impact on both the train and the test datasets. A way to cir-
cumvent such problem should be to create datasets with overlap of texts without any uncer-
tainty. Going back to our example above with v1 and v2, these two videos may be considered
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both relevant to the text annotation s. Then, less negative samples will be considered during
training, and for the test data the score will be higher.

5.7 Discussion
In this chapter, our research of video-text retrieval is centered around on fundamental concept
of Causality. Causality plays a very vital role in explainability of video-text retrieval by
determining the extent to which the specific visual concepts or tags in video and query has
contributed in retrieval decision process. The contribution in the chapter lies in the proposal
of a novel evaluation measure to quantify this causality in state of the system, and enhance it
by using the proposed transformation function in order to generate causal explanations which
should resemble the major portion of the retrieval decision process. This chapter described
an extension of state-of-the-art system, specifically by generalizing the prediction scores for
Jaccard and cosine similarity, and increasing the weight of top relevant tags for generating
the more causal explanations. The results indicate a substantial increase in causality without
a significant loss of accuracy, with potential applicability to other interpretable multimedia
retrieval systems.

5.7.1 Causality vs. Accuracy: A Uncertain Equilibrium
Our research has revealed the trade-off between causality and retrieval accuracy. In the
experiments, we have carefully examined the impact of causal function parameters i.e. power
(p), scale (a), and shift (b), in our pursuit for increasing causality. Achieving the right balance
between accuracy and causality requires critical analysis. Joint optimization of parameters
offer a good understanding and allowed us to improve the causality in visual explanation of
video-text retrieval models without sacrificing the retrieval accuracy.

5.7.1.1 Optimizing Causality and Accuracy

Joint Optimization: Moving towards the goal of increasing the causality in visual explana-
tions (Figure 5.1), we first discussed the joint optimization of the parameters i.e. p, a, and
b when transforming tag probabilities or scores of visual concepts or tags. This approach
aims to strike an equilibrium between the improvement in accuracy of retrieved results and
causality of visual explanation. By optimizing the causal parameters on a validation set
and measuring causality and accuracy on a test set, researchers can fine-tune the system to
achieve the desired level of causality without sacrificing retrieval accuracy.

Impact on Accuracy: While experimenting with the causal parameters, we discuss the im-
portance of choosing the values for causal parameters i.e. power (p), scale (a), and shift (b)
within the optimal range, when transforming the probability scores of tags. This transfor-
mation function (Equations ( 5.7) and (5.8)) aim at improving the causality of explanations
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and perform better calibration of probability score, ensuring that the presence of specific
relevant concepts aligns more closely with the textual query and contribute more in overall
retrieval decision. However, we also acknowledge the delicate balance between optimizing
for causality and accuracy. While higher values of p and a may enhance causality, they
could potentially have a negative impact on retrieval accuracy. The Table 5.3 highlights the
trade-off between causality and accuracy in multimedia retrieval systems.

Further Enhancing Causality: We then tried a few methods for further enhancing causality,
even at the cost of a slight reduction in accuracy. This includes experimenting with higher
values of the causal parameters, such as scale and power, and focusing on a select subset
of the most relevant concepts (top-k concepts) during similarity measurement while also in-
cluding and excluding the latent space (non-explainable) while evaluation of model. These
approaches emphasize the pursuit of stronger causality, ensuring that retrieved videos are
more directly related to the queried concepts. The experiments in Figure 5.3 revealed that
only considering concept space while evaluation, along with careful scale parameter tuning,
can enhance causality without sacrificing performance. The improved models achieve higher
causality and comparable accuracy while employing fewer training parameters. For instance,
the 256-dimensional Jaccard Improved model in Table 5.3, utilizes only 37.74 million pa-
rameters, 53% fewer than the 1536d+512d hybrid model with 69.17 million parameters. This
reduction in complexity is a cost-effective approach without sacrificing performance. This
reduction in parameter can also lead to saving energy and it is very important when training
and using retrieval model on large scale data.

We also observed that causality while considering only top-k concepts for similarity be-
tween video and text is improved by using causal parameters (Figure 5.6). However, ad-
justing the scale parameter improved accuracy (Figure 5.6a), while the power parameter had
a limited impact, emphasizing the importance of parameter selection in video-text retrieval
systems.

Visualization of Causal based Tag-cloud Explanation: The visual comparison of causal-
ity in original dual encoding model explanation and causality based dual encoding model
explanation is visualized through set of tag-clouds. The Visual comparisons of causality
are presented for both the original and improved systems under various training conditions.
The results, as shown in Table 5.3 and visually represented in Figure 5.7 and Figure 5.8,
indicate a notable increase of causality (C@10 and C@30) in explanations for the improved
versions. This enhancement is particularly evident in the 256-dimensional Jaccard Improved
system, suggesting that refining the concept space by reducing the dimensions can lead to
more meaningful and explanatory retrieval results.
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5.7.2 Addressing Critical Challenges
As our aim is to improve explainability in video-text retrieval systems, which is completely
based on concept space part of hybrid systems, we face two significant challenges. The
first challenge involves the limitations in training of visual detectors which are essential
for concept based video-text representations, retrieval and explanation. The second issue
concerns the complexities of concept selection & annotation and ambiguities in ground-truth
annotation in datasets, which can make evaluations difficult and uncertain.

Limitations of Visual Detectors: While improving the causality in video retrieval model,
we found some serious limitations associated with visual detectors, which are pivotal in
identifying visual concepts within videos. These limitations span various categories:

• Failure to Learn: Some visual detectors fail to learn, even on the training set, po-
tentially because the classification signal is too weak compared to the retrieval one.
The weak classifiers are then treated as a purely latent, which can highly impact the
concept representation and subsequently, causality based explanations.

• Overfitting: Certain detectors were performing well on training datasets but were
failed in generalization because of the limited positive instances, which caused over-
fitting and impact the reliability and validity of explanations.

• Unclear Concept Identification: The issue of learning the vague visual concepts also
raised a lot of questions about the learning of the classifier because the concept they
are suppose to identify is unclear. For example, detecting "air" may raise questions
about the precise representation of this concept.

• False Detections: Detectors may detect unrelated concepts due to coincidental occur-
rences in the training set. These spurious detections can introduce inaccuracies into
explanations (shown in Figure 5.11b and 5.11a).

While these limitations may not directly affect tag-to-similarity causality, they can substan-
tially impact the overall validity and reliability of explanations. Future research endeavors
should prioritize improving detector learning, enhancing generalization, and addressing is-
sues related to concept identification and vocabulary building.

5.7.3 Issues with the Ground Truth
The following issues discussed below are related to the ground truth annotation and concept
annotation.

• Concept Selection and Annotation: The consistency of concept selection and anno-
tation with training caption and relying only on single concept classifiers highlights
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the issues in the concept based video-text representations, with potential implications
for retrieval accuracy and causal explanation quality. These challenges underscore the
necessity for further research to refine methods for concept selection and annotation,
ultimately advancing the accuracy and interpretability of multimedia retrieval systems.

• Ambiguity in Ground Truth: Instances where multiple videos correspond to the same
textual caption and vice versa introduce ambiguity in the ground truth. Annotating
only one video as relevant for one caption highly impacts retrieval accuracy of the
system which is also discussed by Wray et al. [174]. This ambiguity can lead to inac-
curate evaluations of system performance. Considering the overlap between captions
of multiple videos may lead to better ground-truth annotation.

To mitigate these issues, future research could explore methods for creating ground truth
datasets with reduced ambiguity and controlled overlap. Adjudication processes and modifi-
cations to evaluation procedures may be necessary to provide more accurate assessments of
system performance.
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Chapter 6

Conclusion and Future Work

In this dissertation, we tackle the problem of explainable cross-modal retrieval systems, in
particular video-text retrieval. This research has led to a deeper understanding of cross-modal
video-text retrieval systems, focusing on the working of dual space (latent and concept)
models, complementarity between latent and concept spaces, and the explainability of video-
text retrieval systems. More specifically, we studied the importance and complexity of causal
inference in providing meaningful explanations. The following synthesis summarizes the
key contributions and insights garnered from this research and outlines their implications in
Section 6.1 and Section 6.2 respectively, and perspectives for future research in Section 6.3.

To build a more satisfiable explainable cross-modal retrieval system, we summarize our
contributions as follows:

6.1 Summaries of Contributions

6.1.1 Extension of Dual Encoding Model with PoS-Tags

This contribution of the dissertation focuses on enhancing the concept space part of the hy-
brid model by enhancing the richness of the information represented in the concept space.
In this contribution, we particularly extended the dual encoding model proposed by Dong

et al. [1] by incorporating the Part-of-Speech (PoS) tags in the text encoding pipeline of the
model and with the visual concept classes. The aim is to enhance the linguistic and syntactic
information with the text and classes in order to improve the classification accuracy, which
directly improves the retrieval accuracy. By incorporating the PoS-tags into the model, we
have improved its ability i) to understand the true intent of the textual query and ii) to catego-
rize more effectively both the text and video into relevant visual concepts. This contribution
opens many paths to explore the integration of additional linguistic features in the text encod-
ing process and deepening the connection between two heterogeneous modalities i.e. video
and text.
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6.1.2 Complementarity Analysis in Dual Space Models

The integration of PoS-tags in the aforementioned contribution revealed that despite the in-
troduction of additional linguistic features within the text encoding pipeline, there was no
substantial improvement in accuracy. This observation prompted us to conduct an in-depth
analysis of latent and concept space in hybrid models. Thus, in this contribution, we build a
general framework for analyzing the dual space models in order to find the inter and intra-
relationship between the two spaces i.e. latent space and concept space. The dissertation
conducted an extensive analysis of dual space model [1], probing into the interplay and
complementarity between latent and concept spaces within the realm of cross-modal video-
text retrieval. Three fundamental research questions were formulated and subsequently ad-
dressed, revealing insights into the optimal dimensions of these spaces, their potential com-
plementarity, and the impact of ensemble learning. It revealed the optimal dimensions for
these spaces, and their complementarity, and demonstrated that both spaces share similar
capabilities, providing insights into model design.

6.1.3 Causal Inference in Video-Text Retrieval

Building upon the dual encoding model again proposed by Dong et al. [1], this contribution
focuses on proving the causal explanation for dual encoding models’ retrieval results. In
this contribution, we have proposed an evaluation measure for quantifying the causality in
ranking for retrieval of human-readable tags used in visual explanations. Then, we extended
the dual encoding model [1] in a way to enforce a higher causality, without negatively im-
pacting the performance of the system. Our proposal relies on a modification of the tag
scores computation in order to increase the relative effect of the top tags. In such a case,
the major part of the matching function (Jaccard or cosine) is supported by a few tens of
dimensions in concept space, which is much more suitable for a causality-based explanation.
We show quantitatively and visually that our proposal increases our causality measure by up
to an order of magnitude without losing significantly on the accuracy while employing fewer
training parameters. For instance, the best causal model (256-dimensional Jaccard Improved
model in Table 5.3) utilizes only 37.74 million parameters, significantly fewer than the orig-
inal dual encoding model (1536d+512d hybrid model) with 69.17 million parameters. This
reduction in complexity is a cost-effective approach without sacrificing performance. This
reduction in parameter can also lead to saving energy, and it is very important when training
and using retrieval model on large scale data. It supports the wider aim of making large-scale
computing applications more sustainable and efficient in their use of resources.

This study has been conducted for the dual encoding model, but both the observations
and the improvements should be generalizable to other interpretable systems for multime-
dia retrieval that similarly rely on similarity in a conceptual space for instance [2]. This
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preliminary work shows that, though it is possible to significantly improve the causality in
visual explanations without sacrificing performance, a 100% causality in such visual justi-
fications/explanations is still far away. Other experiments that we conducted show that it is
possible to strictly enforce a 100% causality but with a very significant penalty on the accu-
racy. Any compromise in between is also likely to be achievable but, in general, users will
not want to trade away accuracy for causality.

6.2 Insights and Implications

The findings and contributions of this dissertation bear significant implications for the field
of cross-modal video-text retrieval and related domains:

• Leveraging PoS Tags: The integration of PoS tags into the dual encoding model rep-
resents a novel approach to enhancing cross-modal retrieval. It demonstrates the po-
tential of linguistic information in improving the understanding and retrieval of multi-
media content, opening new possibilities for more context-aware and accurate retrieval
systems.

• Understanding Complementarity: The analysis of dual space models has illumi-
nated the relationship between latent and concept spaces. The discovery that these
spaces share similar optimal dimensions challenges previous assumptions and opens
avenues for more efficient and effective model design. Understanding complementar-
ity is crucial for improving retrieval system performance based on hybrid models and
designing robust and interpretable models.

• Enhancing Explanations: The exploration of causal inference techniques has the
potential to revolutionize the way explanations are generated in video-text retrieval
systems. By focusing on the causal contribution of concept detection scores, it be-
comes possible to provide users with more interpretable and relevant explanations.
This enhancement not only aids in improving the user experience but also fosters trust
in AI-driven retrieval systems.

• Balancing Causality and Accuracy: The joint optimization strategies developed in
this dissertation offer a practical approach to balance causality and accuracy. As users
often prioritize retrieval performance, having the ability to fine-tune models to enhance
explanations without compromising accuracy is a significant advancement. This bal-
ance is essential for real-world applications where both aspects are crucial.
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6.3 Perspectives for future research
While this dissertation has made significant strides in leveraging PoS tags in video-text re-
trieval, understanding complementarity, and improving causality, there are several promising
avenues for future research.

• Expanding to Multimodal Data

By including the additional modalities such as audio could further enhance the rich-
ness of visual information in cross-modal retrieval. Investigating how causality and
complementarity manifest in multimodal settings would be an exciting direction.

• To explore ways to inspect approaches that may enforce stronger complementary
of these spaces leading to new hybrid approaches

Another direction could concentrate on frameworks that support the study of spaces
complementarity, for hybrid spaces in other contexts. Such a framework could help the
community to detail the behaviors of any hybrid spaces. The usage of the nonlinear
decomposition for the analysis of latent and concept space and correlation between the
two can also be considered, considering the complexity of the inputs.

• To improve the quality and accuracy of classifiers

One of the key challenges of tag-based visual explanations is the performance of the
tag detectors. As discussed in the Section 5.6.2, some detectors learn poorly and others
not always correspond to what humans would intuitively understand by the tag label.
Several research directions that can be pursued to improve the quality of detectors are:

– By utilizing more powerful feature representations and learning strategy. More
sophisticated learning algorithms can be used to train the tag detectors. For ex-
ample, ensemble learning methods can be used to combine the predictions of
multiple classifiers, which can improve the overall accuracy of the predictions.

– By enhancing the quality of training data. The training data used for training
of classifiers was noisy or inaccurate, the detectors will learn to make mistakes.
One way to improve the quality of the training data is to manually annotate a
large corpus of video data. However, this can be a time-consuming and expen-
sive process. An alternative approach is to use data augmentation techniques to
generate more training data from a smaller set of annotated videos.

– By leveraging natural language processing (NLP) techniques to improve the un-
derstanding of the concept behind each tag. For example, NLP can be used to
identify synonyms and hyponyms for each tag, which can help the tag detectors
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to learn more accurate and consistent representations. Additionally, NLP can be
used to analyze the annotations and identify the semantic relationships between
tags. This information can be used to develop a more comprehensive understand-
ing of the meaning represented by the tags.

• To incorporate the user feedback into the optimization process

This could involve mechanisms for users to indicate their preferences for explanations,
allowing models to adapt and provide more personalized explanations. Moreover, user
feedback can also help to evaluate the quality of explanation provided by the system.

• To consider ethical implication

As AI-driven explanations become more prevalent, it is essential to consider the ethical
implications of causality, complementarity, and the use of linguistic information in
retrieval systems. Research on fairness, bias, and transparency in these models is
crucial to ensure responsible AI deployment.

Overall, this dissertation has contributed significantly to the evolving landscape of cross-
modal video-text retrieval. It has advanced our understanding of complementarity in dual
space models, enhanced causal inference techniques, and showcased the potential of lever-
aging linguistic information through PoS tags. These insights offer a brighter future for
AI-driven content recommendations, search engines, and more, emphasizing both accuracy
and user understanding. As the field continues to evolve, the research presented here serves
as a foundation for future innovations that prioritize both accuracy and user-centric explana-
tions.
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132 A.1. INTRODUCTION

A.1 Introduction

À l’ère actuelle de la génération et de la collecte de données à grande échelle sur Internet,
l’indexation et la recherche efficaces sont difficils. Avec des millions de vidéos et de textes
téléchargés quotidiennement sur Internet, le défi consiste à localiser les informations perti-
nentes. Ce défi met en évidence l’importance du domaine de la recherche cross modale où,
pour une requête donnée dans n’importe quelle modalité (vidéo, image ou texte), la tâche
consiste à trouver des informations pertinentes dans la même modalité ou dans une autre
modalité. Le travail de recherche de cette thèse est basé en particulier sur la recherche vidéo-
textuelle (VTR) [175, 29, 27, 14, 16, 22, 23, 43], qui permet aux utilisateurs d’exprimer leurs
besoins d’information en langage naturel et de retrouver des vidéos pertinentes ou vice versa.

Depuis une dizaine d’années, les réseaux neuronaux profonds ont gagné en popularité
dans le domaine de l’indexation et de la recherche multimédia, ce qui en fait un choix popu-
laire pour le développement et l’évaluation de tels systèmes. La figure A.1 illustre les deux
principales sous-tâches de VTR : la recherche de texte à vidéo (TTV) et la recherche de vidéo
à texte (VTT).

(a) Text-to-Video Retrieval (b) Video-to-Text Retrieval

Figure A.1: Recherche cross modale vidéo-texte

La recherche TTV consiste à utiliser une requête textuelle pour retrouver une liste de
vidéos pertinentes, tandis que la recherche VTT fait l’inverse, en récupérant les légendes
textuelles pertinentes pour une requête vidéo donnée en requête. Ces tâches sont difficiles
à réaliser en raison de l’hétérogénéité inhérente et de la haute dimensionnalité des données
multimédias. Pour s’attaquer à la VTR, les chercheurs ont exploré trois approches princi-
pales : les méthodes basées sur des concepts, les méthodes sans concepts et les méthodes
hybrides. Les approches basées sur les concepts utilisent des concepts ou des catégories
prédéfinis pour représenter les informations sémantiques dans les vidéos et les textes, et les
font correspondre sur la base de la similarité des concepts dans l’espace conceptuel. Les
approches sans concept extraient directement les enchâssements des vidéos et des textes,
en faisant correspondre les caractéristiques dans un espace latent commun. Les approches
hybrides combinent les méthodes basées sur les concepts et les méthodes sans concept.

La recherche TTV A.1a présente un exemple de recherche "texte-vidéo (TTV)". Ici,
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une requête textuelle donnée est utilisée pour récupérer une liste de vidéos et les classer en
fonction de leur score de pertinence. Alors que dans VTT A.1b, la requête est sous forme
de vidéo, et il récupère les légendes pertinentes et les classe de la même manière. Les
vidéos et les légendes pertinentes sont encadrées en rouge. Répondre à ces tâches nécessite
des techniques sophistiquées telles que les approches basées sur l’apprentissage profond
pour obtenir des performances élevées. La recherche multimodale (en particulier la VTR)
implique principalement trois types d’approches : approche basée sur les concepts [7, 103,
104, 111] – méthode qui utilise des concepts ou des catégories prédéfinis pour représenter
les informations sémantiques des vidéos et des textes, puis les fait correspondre sur la base
de leur similarité conceptuelle dans espace conceptuel, approche sans concept [8, 21, 25]
– une méthode qui apprend et extrait l’intégration directement de la vidéo et du texte et
fait correspondre les caractéristiques en commun espace latent, et approche hybride – une
méthode qui combine à la fois les méthodes basées sur les concepts (espace conceptuel) et
les méthodes sans concept (espace latent).

Une extension importante de la VTR est la recherche de l’explicabilité, permettant aux
utilisateurs de comprendre pourquoi des résultats de recherche spécifiques ont été obtenus.
Avec l’augmentation de la complexité des modèles et de la quantité de données, il est de-
venu crucial de fournir aux utilisateurs non techniques ou techniques des informations sur le
processus de prise de décision des systèmes de recherche de vidéotextes. La recherche ex-
plicative de vidéos et de textes s’efforce d’être transparente et interprétable, permettant aux
utilisateurs de comprendre quels aspects de la vidéo ou du texte ont influencé le résultat de la
recherche. Cela permet non seulement de renforcer la confiance des utilisateurs, mais aussi
de soutenir les applications dans lesquelles la responsabilité et la compréhension du com-
portement du système sont essentielles. Les explications fournies peuvent prendre la forme
d’un texte en langage naturel, de cartes thermiques, ou bien d’un nuage de tags (comme le
montre la figure A.2) .

Figure A.2: Recherche texte à vidéo. Les nuages de tags (sous la requête) et à gauche des vidéos
justifient les résultats results de la requête [1]

Nous concentrons notre travail de thèse sur la création d’un modèle hybride explica-
ble composé d’un espace double composé d’un espace latent (non explicable) et d’un espace
conceptuel (explicable), et capable d’effectuer une double tâche : la recherche et la classifica-
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tion. L’espace conceptuel est supposé non seulement supporter l’interprétabilité des résultats
récupérés mais également compléter l’espace latent, améliorant la performance globale de
l’approche hybride [1]. Etayer une telle affirmation nécessite d’étudier de manière détaillée
les espaces d’intégration appris ainsi que leurs caractéristiques. Cette analyse détaillée
serait également utile pour comprendre comment le modèle hybride, très efficace, représente
et utilise les informations multimodales.

Dans cette thèse, nous visons non seulement à augmenter la précision et l’efficacité du
modèle de recherche, mais aussi à améliorer la fiabilité et la satisfaction des explications
basées sur un nuage de tags lorsque des vidéos pertinentes sont récupérées pour une requête
textuelle ou vice versa. Cependant, la partie explicable du modèle hybride, basée sur les
concepts, ne règle pas les problèmes d’ambiguïté dans le vocabulaire de ses concepts. Nous
cherchons à minimiser en intégrant les informations d’extraction de groupes morphosyn-
taxiques dans le vocabulaire des concepts. Notre objectif est d’améliorer la précision et
l’explicabilité du modèle hybride en affinant l’espace conceptuel afin de garantir la sélection
de classificateurs de concepts visuels pertinents.

En outre, ce travail vise également à intégrer la causalité dans les explications basées sur
le nuage de tags afin de fournir une compréhension plus profonde des décisions d’extraction.
Globalement, notre recherche aborde les questions suivantes :

1. Pouvons-nous améliorer le vocabulaire conceptuel pour minimiser l’ambiguïté des con-
cepts visuels ?

2. L’idée de complémentarité entre l’espace conceptuel et l’espace latent est-elle vraiment
valable ?

3. Quel sera l’effet de l’intégration de la causalité dans l’explication basée sur le nuage de
balises pour la recherche vidéotextuelle ?

Ces questions portent sur des lacunes importantes dans la littérature de recherche actuele,
et notre thèse vise à fournir des idées et des solutions pour améliorer la recherche de texte
vidéo et son explicabilité.

A.2 Modèle de double encodage basé sur les balises PoS
Comme première contribution à cette thèse, nous étendons le modèle de codage double [1] en
explorant l’impact de l’incorporation des balises morphosyntaxiques, aussi appelées Part-of-
Speech (PoS), dans le pipeline de codage de texte pour l’entraînement du modèle de codage
double. L’étiquetage PoS est un processus crucial qui attribue des étiquettes spécifiques
aux mots, représentant leurs catégories syntaxiques. En incorporant les balises PoS, nous
visons à réduire l’ambiguïté des concepts visuels présents dans le vocabulaire conceptuel et
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à exploiter les informations syntaxiques et grammaticales fournies par les balises PoS afin
d’améliorer les performances, la pertinence et l’explicabilité de la recherche vidéotextuelle.

A.2.1 Motivation

Considérons une requête textuelle “Un homme mesure la taille d’un serpent à tête de cuivre

avec un mètre ruban”, le concept visuel "mesure" est présent à la fois en tant que verbe et
en tant que nom. La présence de "mesure" en tant que verbe et nom dans la requête oblige
le système de recherche à se concentrer sur les vidéos où l’action de mesurer et les objets
à mesurer sont tous deux présents, ce qui est susceptible d’afficher des vidéos pertinentes.
Les balises PoS clarifient l’action prévue et mettent en évidence la pertinence des vidéos qui
décrivent cette activité spécifique.

De même, dans d’autres cas, par exemple "une personne arrose ses fleurs tandis que
des gens marchent sous l’eau" et "un homme et une femme cuisinant dans une émission
culinaire", la présence de balises PoS permet de désambiguïser le verbe ou le nom, comme
l’eau dans le premier cas et la cuisine dans le second, et d’identifier les noms singuliers
ou pluriels, par exemple les gens ou la personne. Cela permet d’obtenir des résultats de
recherche vidéo plus précis et plus pertinents, conformes au sens de la requête.

Les exemples ci-dessus montrent clairement que l’inclusion de balises PoS offre plusieurs
avantages dans le contexte de la recherche de textes vidéo. Tout d’abord, elle permet d’aborder
ambiguïté dans les concepts au sein du vocabulaire de l’espace conceptuel. Par exemple, si
le concept de "mesure" n’est pas distingué en fonction de son étiquette PoS (verbe et nom),
il est probable que le système de recherche se concentrera davantage sur les objets de mesure
que sur les activités de mesure lors de la recherche des vidéos. En tenant compte des caté-
gories syntaxiques des mots, nous pouvons désambiguïser leur signification et améliorer la
précision de la classification. Cela est particulièrement utile dans les scénarios où plusieurs
interprétations ou sens sont possibles. Deuxièmement, l’étiquetage du PoS contribue à la in-
terprétabilité des résultats récupérés, actuellement réservés aux utilisateurs techniques. En
incorporant les balises PoS, nous pouvons analyser et expliquer l’influence des mots avec
des balises PoS dans le processus de recherche.

En outre, l’intégration des balises PoS permet une analyse plus approfondie du contenu
textuel. En examinant la structure syntaxique des phrases, nous obtenons des informations
sur les relations entre les mots et leurs rôles dans la phrase. Ces informations supplémen-
taires peuvent aider à saisir les nuances et le contexte du texte, améliorant ainsi les perfor-
mances de la recherche vidéotextuelle.
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A.2.2 Formulation
Formellement, étant donné un ensemble de vidéos V= {v1,v2, ...,vn} et un ensemble corre-
spondant de légendes S = {s1,s2, ...,sm}, où n et m représentent le nombre total de vidéos
et de légendes dans l’ensemble de données, notre modèle vise à atteindre deux objectifs
principaux :

1. deux fonctions de mise en correspondance, f () et g(), pour les encodages visuels
et textuels dans deux espaces : les encodages de l’espace latent ( f (vi), f (si)) et les
encodages de l’espace conceptuel (g(si),g(vi)).

2. Apprendre deux fonctions de similarité pour calculer la similarité entre la vidéo vi et
la légende s j : simlat(vi,s j) pour la similarité dans l’espace latent et simcon(vi,s j) pour
la similarité dans l’espace conceptuel PoS-tag.

Dans cette section, nous nous concentrons sur l’intégration des balises PoS dans le pipeline
d’encodage de texte du modèle d’encodage double et sur l’apprentissage des fonctions de
similarité sim(v,s) pour déterminer la similarité entre le texte s et la vidéo v à la fois dans
l’espace latent et dans l’espace conceptuel.

VideoPOS tagged
Sentences

Frame-Level CNNsOne-hot Encoding

Dual Encoding Model

Video-Text Probabilities

1. Concept level Annotation & Vocabulary Building 2. POS Tag based Classification and Retrieval

Training Captions

Preprocessing

Sentence Tokenizing

POS Tagged Sentences

Concept level Annotation POS Tagged
Concept Vocabulary

Latent Space

Video-Text Embedding

Concept Space

Figure A.3: Architecture de codage double avec balises PoS pour la classification et la recherche
vidéotextuelle

Notre approche globale s’articule autour de deux étapes, comme le montre la figure A.3,
i) l’annotation au niveau du concept basée sur les balises PoS & la construction du vocabu-
laire, et ii) la classification et l’extraction basées sur les balises PoS. Dans un premier temps,
nous annotons les vidéos avec des concepts ou des balises, ainsi qu’avec les balises PoS cor-
respondantes. Nous construisons ensuite un vocabulaire de concepts basé sur ces annotations
de balises PoS. Dans un deuxième temps, nous utilisons les annotations et le vocabulaire au
niveau des concepts pour former l’espace conceptuel de notre modèle hybride. Lors de la
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recherche, nous classons les vidéos ou les légendes en fonction de leur similarité pondérée
combinée dans l’espace latent et l’espace conceptuel.

A.2.3 Résultats

Dans notre évaluation, nous avons comparé notre modèle de double encodage marqué par le
PoS avec le modèle de double encodage [1] sur cinq ensembles de données vidéo et texte,
couvrant les tâches de recherche de texte à vidéo et de recherche de vidéo à texte. Pour
garantir une analyse complète, nous avons soigneusement sélectionné divers ensembles de
données et utilisé des mesures d’évaluation rigoureuses. En outre, nous nous sommes con-
centrés sur l’évaluation de l’impact du modèle étiqueté PoS sur la précision de la recherche
et l’explicabilité. Nous avons également mené des expériences comparables en utilisant
différents PoS-taggers, à savoir TreeTagger (TT) 1, WordNet (WN) [152], et Spacy 2. En
étudiant ces facteurs, nous avons cherché à obtenir des informations précieuses sur les per-
formances et les avantages potentiels de notre modèle de double encodage étiqueté PoS pour
la recherche vidéotextuelle.

Les performances d’un modèle de codage double avec étiquette PoS pour les tâches
de recherche texte-vidéo (TTV) et vidéo-texte (VTT) ont été évaluées à l’aide de diverses
mesures. Les mesures comprenaient des paramètres tels que R@K, le rang médian (Med R),
la précision moyenne (mAP) et SumR pour différentes configurations du modèle, en mettant
l’accent sur la dimensionnalité et les méthodes d’étiquetage PoS.

Méthode Recherche Texte vers Vidéo Recherche Vidéo vers Texte SumR
R@1 R@5 R@10 Med r mAP R@1 R@5 R@10 Med r mAP

Apprentissage Hybride

Dual Encoding TPAMI [1] 11.6 30.3 41.3 17 21.2 22.5 47.1 58.9 7 10.5 211.7
Dual Encoding GitHub [1] 11.8 30.6 41.8 17 21.4 21.6 45.9 58.5 7 10.3 210.2
Dual Enc. (Conf. Ver. 2048-d)[1]) 11.0 29.2 39.8 19 20.2 18.8 42.7 56.2 8 9.3 197.7
Dual Enc. (Conf. Ver. 1536-d)[1]) 11.0 29.3 39.9 19 20.3 19.7 43.6 55.6 8 9.3 199.0

(1536+512)-d Dual Enc. Re-Run 11.78 31.00 42.08 16.10 21.52 20.70 45.10 57.74 7.00 10.13 208.40
(1536+512)-d Dual Enc. (TT) 12.09 31.39 42.50 16.10 21.87 20.68 45.32 58.12 6.90 10.32 210.10
(1536+512)-d Dual Enc. (WN) 12.02 31.44 42.59 16.00 21.84 20.56 45.60 58.28 6.90 10.36 210.50
(1536+512)-d Dual Enc. (Spacy) 11.84 31.07 42.08 16.40 21.59 20.29 45.00 57.78 7.00 10.22 208.05

512-d Dual Enc. (Concept Space) 9.9 26.8 37.4 23 18.7 17.9 41.5 53.9 8 9.0 187.4
512-d Dual Enc. (Concept Space - TT) 10.10 27.09 37.31 22.65 18.86 18.64 41.83 54.79 8.50 9.14 189.74
512-d Dual Enc. (Concept Space - WN) 10.14 27.23 37.53 22.40 18.94 18.54 42.25 55.19 8.00 9.11 190.87
512-d Dual Enc. (Concept Space - Spacy) 9.85 26.71 36.76 23.55 18.54 18.15 41.45 54.22 8.30 9.02 187.15

Apprentissage concept

512-d Dual Enc. (Concept Space) 9.84 26.79 37.02 23.30 18.57 18.57 41.85 54.22 8.40 8.88 188.28
512-d Dual Enc. (Concept Space - TT) 10.15 27.33 37.65 22.10 18.98 18.82 42.32 55.22 8.15 9.17 191.49
512-d Dual Enc. (Concept Space - WN) 10.14 27.30 37.58 22.40 18.96 18.69 42.13 54.99 8.00 9.15 190.82
512-d Dual Enc. (Concept Space - Spacy) 9.96 26.92 37.18 23.00 18.71 18.39 41.59 54.52 8.50 9.04 188.55

Table A.1: Résultats sur MSR-VTT, sur l’ensemble de test de [13].

Les résultats, présentés dans le tableau A.1, évalués sur l’ensemble de données MSR-

1https://pypi.org/project/treetaggerwrapper/
2https://github.com/explosion/spaCy
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VTT, montrent que le modèle de PoS-tagged proposé a légèrement amélioré la précision
de la recherche, TreeTagger étant le plus performant parmi les PoS-taggers. Cependant,
les gains n’étaient pas substantiels en raison de la présence limitée de mots ambigus dans
l’ensemble de données. L’évaluation du modèle de double codage et balises PoS sur le sous-
ensemble de requêtes sélectionnées avec plusieurs mots ambigus a montré que notre propo-
sition améliore significativement la précision par rapport au système d’origine. Plus précisé-
ment, le score SumR est passé de 312,59 à 319,17. Cette amélioration souligne l’efficacité
de l’incorporation de l’étiquetage PoS pour la recherche vidéotextuelle.

A.3 Analyse de complémentarité dans les modèles à double
espace

La deuxième contribution à cette thèse est l’étude analytique des modèles à double espace.
L’étude analytique menée dans cette section visait à approfondir la relation et la complé-
mentarité entre les espaces latents et les espaces conceptuels dans le contexte de la recherche
multimodale de textes et de vidéos. L’analyse complète et les résultats expérimentaux met-
tent en lumière les dimensions optimales de ces espaces, leur complémentarité potentielle
et l’impact de l’apprentissage d’ensemble afin de répondre aux trois questions de recherche
suivantes.

R1 : Le nombre de dimensions optimales est-il le même dans les espaces con-

ceptuels et latents pour deux sous-tâches de la recherche vidéotextuelle multi-

modale, Texte vers Vidéo (TTV) et Vidéo vers Texte (VTT)?

R2 : Les espaces latents et conceptuels représentent-ils des informations com-
plémentaires?

R3 : Est-ce que l’apprentissage par ensembles présente une complémentarité

dans les espaces latents et conceptuels ?

La discussion ci-dessous résume les principaux résultats et leurs implications.

A.3.1 Dimensions optimales et analyse ACP (R1)

La première question de recherche (R1) vise à déterminer si les espaces conceptuels et latents
ont des dimensions optimales similaires lorsqu’ils sont appris indépendamment. En explo-
rant les dimensions optimales de chaque espace séparément, nous cherchons à savoir si ces
espaces possèdent des capacités de représentation similaires. Cette question est importante
pour comprendre si la complémentarité entre ces espaces provient de différences inhérentes
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à leur représentation, ou s’ils partagent des caractéristiques communes. Nous avons util-
isé deux techniques, l’une sans ACP (analyse en composantes principales) et l’autre avec
ACP. Sans ACP, nous avons entraîné l’espace latent avec un nombre variable de dimensions
afin de trouver l’espace optimal. Dans le cas de l’ACP, nous avons utilisé l’espace latent et
conceptuel de haute dimension appris initialement et nous avons utilisé l’analyse en com-
posantes principales pour explorer les dimensions linéaires saillantes et leur variance dans
l’espace de plus faible dimension.

L’étude de la dimensionnalité dans l’espace latent et l’espace conceptuel a révélé que le
nombre de dimensions optimales pour les deux espaces est le même, ce qui est nettement
inférieur aux dimensions utilisées par Dong et al. dans des travaux antérieurs (par exemple,
1536-D et 512-D) [1]. L’espace conceptuel, bien que légèrement moins performant, présente
des valeurs optimales identiques à celles de l’espace latent. La performance inférieure peut
s’expliquer par le fait que la tâche de classification associée à l’espace conceptuel impose
de fortes contraintes à ce dernier. L’asymétrie entre les comportements TTV et VTT peut
s’expliquer par l’asymétrie du rapport entre les légendes et les vidéos. Des fluctuations
peuvent être observées sur toutes les courbes. Elles sont dues à l’effet de l’initialisation
aléatoire dans l’entraînement et sont du même niveau que ce qui est observé lorsque les
mêmes expériences sont réalisées plusieurs fois. L’analyse ACP menée a confirmé le nombre
optimal de dimensions dans l’espace latent.

A.3.2 Corrélation et complémentarité (R2)

La question de recherche R2 vise à déterminer si les espaces latents et conceptuels capturent
des informations distinctes ou similaires à partir des données. Pour répondre à cette ques-
tion, l’analyse de corrélation canonique (CCA) est utilisée pour évaluer la corrélation et la
complémentarité entre ces deux espaces de caractéristiques à haute dimension. La principale
distinction entre les deux espaces réside dans le fait que l’espace conceptuel est associé à
une tâche de classification, alors que l’espace latent ne l’est pas. Si la tâche de classifica-
tion est supprimée, l’espace conceptuel devient simplement un deuxième espace latent avec
des caractéristiques différentes (par exemple, en utilisant une similarité de Jaccard au lieu
d’un cosinus). L’analyse considère quatre combinaisons possibles d’espaces latents et/ou
conceptuels, y compris l’apprentissage indépendant (deux espaces identiques), l’homogène
couplé (apprentissage conjoint de deux espaces latents identiques), l’hétérogène couplé (dif-
férents espaces latents avec des métriques de similarité variables, et un concept hétérogène
couplé (système hybride incorporant une tâche de classification pour créer un espace con-
ceptuel). Tous les espaces sont normalisés pour avoir une dimensionnalité de 512 pour des
comparaisons significatives.

Les résultats obtenus ont révélé des corrélations élevées entre les mappages de concepts
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hétérogènes et hétérogènes couplés dans toutes les configurations, avec de légères variations.
Notamment, la formation indépendante a montré la corrélation la plus faible, tandis que la
configuration homogène couplée a montré la corrélation la plus élevée. Il est intéressant
de noter que la présence d’une tâche de classification dans la configuration de concepts
hétérogènes couplés n’a pas eu d’effet significatif sur la corrélation, car les configurations de
concepts hétérogènes couplés et hétérogènes couplés ont présenté des profils de corrélation
intermédiaires et presque identiques. Cette analyse suggère que la tâche de classification a
un impact minimal sur la corrélation entre ces espaces.

A.3.3 Apprentissage par ensembles et complémentarité (R3)
La troisième question de recherche (R3) explore la complémentarité des espaces latents et
conceptuels par le biais de l’apprentissage ensembliste. Cette question vise à déterminer si
l’utilisation de techniques d’apprentissage d’ensemble dans ces espaces permet d’améliorer
les performances et de démontrer leur complémentarité. L’apprentissage d’ensemble per-
met de combiner plusieurs modèles ou représentations, et si la performance du modèle
d’ensemble est similaire à l’utilisation indépendante de l’un ou l’autre espace, alors les es-
paces sont en effet similaires et ne présentent pas de forte complémentarité.

Méthode Recherche Texte vers Vidéo Recherche Vidéo vers Texte SumR
R@1 R@5 R@10 Med r mAP R@1 R@5 R@10 Med r mAP

Evaluation sur un espace
Latent independent 1536 (10) 10.94 29.12 39.73 19.30 20.21 19.00 42.60 54.81 8.10 9.26 196.20
Latent independent 512 (20) 10.88 29.06 39.73 19.25 20.15 19.42 42.91 55.20 7.95 9.30 197.21
Latent-latent coupled homogeneous (10) 11.17 29.83 40.58 18.10 20.63 19.95 43.77 56.31 7.60 9.57 201.61
Latent-latent coupled heterogeneous (10) 11.37 30.25 41.11 17.80 20.93 19.85 43.70 56.26 7.60 9.63 202.54
Latent-concept coupled heterogeneous (10) 11.42 30.29 41.16 17.70 21.00 19.65 43.24 55.84 7.90 9.57 201.60

Evaluation sur deux espaces
Latent-latent indep. homogeneous (10) 11.50 30.30 41.22 17.55 21.04 20.92 44.78 56.99 7.25 9.89 205.71
Latent-latent coupled homogeneous (10) 11.41 30.31 41.16 17.70 20.98 20.30 44.57 56.85 7.10 9.80 204.60
Latent-latent coupled heterogeneous (10) 11.78 31.12 42.28 16.20 21.60 21.23 45.65 58.08 7.00 10.36 210.14
Latent-concept coupled heterogeneous (10) 11.76 30.98 42.10 16.40 21.52 20.25 44.74 57.48 7.10 10.09 207.31

Table A.2: Résultats de l’apprentissage par ensembles sur MSR-VTT

En évaluant les quatre combinaisons pour l’apprentissage par ensembles, l’étude a mené
des expériences quantitatives sur les espaces fusionnés en utilisant les métriques MSR-VTT.
Dans le tableau A.2, les résultats moyennés sur 10 exécutions avec différentes initialisations
aléatoires n’ont montré aucune différence statistiquement significative entre la formation
indépendante et la formation couplée pour les espaces latents homogènes. Les meilleures
performances ont été observées dans la configuration hétérogène couplée latent-latent, qui
utilisait des espaces latents présentant des similarités différentes (cosinus et Jaccard). Les
expériences avec des configurations homogènes couplées latent-latent ont été moins perfor-
mantes, ce qui indique une diminution des performances lorsque la similarité cosinus est
utilisée dans l’espace conceptuel. L’ajout d’une tâche de classification a entraîné une légère
diminution des performances, bien que la signification statistique soit minime. La première
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partie du tableau montre qu’il n’y a pas de différence significative entre un espace latent de
1536 D et un espace latent de 512 D lors de l’exécution de la tâche en utilisant uniquement
le premier espace latent.

A.4 Inférence causale dans l’extraction de vidéotextes

Comme vu en section A.1, les explications fournies par le modèle hybride de recherche
vidéotextuelle peuvent se présenter sous la forme d’un nuage de tags. L’un de ces systèmes
est le modèle de codage double pour la recherche vidéotextuelle [1]. Ces systèmes mettent en
œuvre simultanément une tâche de mise en correspondance texte-vidéo et une tâche connexe
de classification des concepts. Il est essentiel que la mise en correspondance entre le texte et
la vidéo soit effectuée en utilisant uniquement les résultats de la classification des concepts,
ce qui impose une relation causale stricte entre la classification des concepts et l’extraction
TTV/VTT [2]. En outre, le calcul du score de similarité pour la recherche est dérivé des
scores de classification à l’aide d’une fonction simple, facile à comprendre et intuitivement
logique, en pratique la similarité de Jaccard ou de cosinus. Le fonctionnement du système
peut alors être interprété comme des décisions de recherche (basées sur des similarités) util-
isant uniquement des scores de classification correspondant à des étiquettes significatives
pour les humains et d’une manière qui l’est également pour eux.

La figure A.2 illustre une explication/justification fournie à un utilisateur à l’aide d’une
approche hybride : les nuages de tags montrent les concepts jugés les plus pertinents (avec
des tailles liées à leur importance estimée) pour la requête et pour les 4 documents les mieux
classés. L’utilisateur peut apprécier dans quelle mesure ces nuages de tags sont réellement
pertinents pour la requête et les documents, et dans quelle mesure ils correspondent. Cepen-
dant, il est important de noter que ces nuages de mots-clés ne fournissent pas d’informations
sur leur contribution relative à la décision de recherche globale. Notre travail se situe à ce
niveau, avant de tels affichages. Notre troisième contribution étudie comment mesurer la
contribution causale des scores de détection de concepts dans les décisions de recherche, et
propose des moyens d’améliorer cette causalité sur un système de l’état de l’art.

A.4.1 Analyse de la causalité

A.4.1.1 Quantification de la causalité

Nous nous concentrons sur la partie basée sur les concepts du modèle de codage double, dans
ce cas les vidéos et les requêtes sont représentées uniquement par les scores de détection
des concepts. Les vidéos sont alors classées par ordre décroissant de similarité de leurs
représentations avec celles du contenu de la requête. Dong et al. dans le modèle de codage
double [1] utilise par défaut la fonction de similarité de Jaccard pour les concepts entre v et
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s respectivement un échantillon vidéo et un échantillon de texte.

La fonction de similarité par cosinus peut également être envisagée, car elle est déjà
utilisée par défaut dans l’espace latent de [1]. Dans le cas de la similarité en cosinus, les
scores de détection sont utilisés sans fonction sigmoïde.

Nous quantifions la causalité d’un groupe d’étiquettes dans une décision de recherche
par la somme de leurs effets de caractéristiques, eux-mêmes pris comme leur contribution
globale relative dans la mesure de similarité utilisée pour le classement des résultats. On
obtient ainsi les contributions individuelles des balises Jaccard et cosinus :

wi(v,s) =
min(g(v)i,g(s)i)

∑
j=K
j=0 min(g(v) j,g(s) j)

or
|h(v)i.h(s)i|

∑
j=K
j=0 |h(v) j.h(s) j|

(A.1)

L’évaluation de la contribution relative d’un groupe d’étiquettes peut ensuite être effec-
tuée par sommation, par exemple, les k les plus importants, comme ceux qui sont affichés
dans les nuages d’étiquettes :

ck(v,s) = max
G⊂J1,KK,|G|=k

∑
i∈G

wi(v,s)

À partir de cette mesure, définie pour une unique paire (v,s), nous dérivons des mesures
globales sur une collection multimodale entière en calculant des statistiques telles que la
moyenne (équation (A.2)) et l’écart type de cette valeur sur un ensemble de paires P.

Ck(P) =
1

|P| ∑
(v,s)∈P

ck(v,s) (A.2)

P peut être l’ensemble de toutes les paires possibles dans la collection ou seulement
l’ensemble des paires correspondantes. Nous pouvons également considérer l’ensemble des
paires obtenues en utilisant toutes les requêtes textuelles et, pour chacune d’entre elles, les
premières-n vidéos retrouvées, ou l’inverse en utilisant les requêtes vidéo et les textes retrou-
vés.

Dans notre cas, la causalité dans les explications/justifications repose uniquement sur
les scores de détection des balises affichées. C’est le cas pour les dimensions d’un espace
conceptuel, mais pas pour les dimensions d’un espace purement latent, car elles n’ont pas
de sens pour les humains. Le poids causal de tout élément provenant de l’espace latent dans
l’explication/justification visuelle basée sur les concepts doit donc être strictement nul. Dans
l’approche fondée uniquement sur l’espace latent [8], aucun score de détection de concept
n’est de toute façon disponible pour l’affichage des nuages de tags. Cependant, de tels scores
sont disponibles dans les approches hybrides [1], car la décision est prise en partie sur les
similarités simlat(v,s) provenant de l’espace latent et en partie sur les similarités simcon(v,s)
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provenant de l’espace conceptuel. La similarité globale est une somme pondérée (après
une normalisation globale de l’échelle) sim(v,s) = α.simlat(v,s)+ (1−α).simcon(v,s). La
causalité globale devrait logiquement être une somme pondérée basée uniquement sur les
scores des concepts multipliés par le facteur (1−α) dans lequel, comme la causalité sur la
partie latente devrait être nulle.

A.4.2 Évaluation de la causalité du système [1]

Nous avons évalué la causalité entre le score de détection des balises et la similarité en util-
isant le modèle hybride pré-entraîné fourni par les auteurs de [1] sur l’ensemble de données
MSR-VTT [13]. Dans ce modèle hybride, la similarité basée sur les concepts représente 40
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Figure A.4: Contribution individuelle et cumulative (moyenne± écart-type), des étiquettes par valeur
de contribution décroissante

La figure A.4 présente la moyenne et les écarts types des contributions individuelles
et cumulatives des balises (représentées par wk(v,s) et ck(v,s)) dans différentes paires de
vidéos et de légendes (Top-1, Top-10, appariées et aléatoires) pour les tâches TTV et VTT.
Les résultats montrent que pour des paires similaires, les premières balises ont des causalités
individuelles et cumulatives minimales, ce qui indique que les explications visuelles reposent
principalement sur une petite partie des balises, avec seulement environ 4% d’influence pour
une similarité basée sur le concept uniquement et 1,6% si l’on considère la similarité dans
une approche hybride. Alors que la plupart des balises ont un impact significatif sur les
décisions de similarité et de classement, le fait de n’inclure que les quelques balises ini-
tiales dégrade considérablement les performances de recherche, soulignant l’importance des
termes au-delà des premières dizaines dans la distance de Jaccard.

143



144 A.4. INFÉRENCE CAUSALE DANS L’EXTRACTION DE VIDÉOTEXTES

A.4.3 Amélioration de la causalité

Nous avons vu ci-dessus que la causalité dans les explications visuelles réelles est très faible
(Figure A.4) parce que, au lieu d’avoir les poids causaux principalement distribués sur seule-
ment quelques balises comme on pourrait s’y attendre si seules les balises pertinentes étaient
détectées avec des scores significatifs, les poids causaux sont tellement répartis sur toutes
les balises disponibles avec une "probabilité" moyenne d’environ 0,4. Cela signifie qu’en
moyenne, environ 200 balises sur 512 sont détectées, ce qui n’est pas ce que l’on attend
et est beaucoup plus important que la fréquence moyenne des balises dans les données
d’apprentissage.

Afin d’améliorer la causalité des premières étiquettes, nous proposons de modifier les
scores de détection en leur appliquant une fonction de sorte que le poids de la causalité
soit plus concentré sur les premières étiquettes. Il y a plusieurs façons de procéder. Tout
d’abord, en considérant les probabilités de balises utilisées dans la similarité de Jaccard
(équation (A.1)), le simple fait d’appliquer une transformation de puissance avec un ex-
posant p supérieur à 1 augmente automatiquement les poids relatifs des premiers termes.
Deuxièmement, les probabilités de marquage g(v) ou g(s) sont obtenues en appliquant une
fonction sigmoïde aux scores de détection “bruts” h(v) ou h(s) ; nous pouvons alors ap-
pliquer un biais b (décalage) et/ou un gain a (échelle) à ces scores bruts avant d’appliquer
la fonction sigmoïde, en effectuant une sorte de normalisation de Platt [173], en corrigeant
éventuellement l’influence de la perte d’extraction dans la calibration de la classification.
Combinaison de transformations, nous remplaçons g(x)i = σ(h(x)i) par:

(
g(a,b,p)(x)

)
i = (σ(a(h(x)i−b)))p (A.3)

avec σ étant la fonction sigmoïde (expit) et x étant soit un échantillon vidéo v soit un échan-
tillon de texte s. La fonction originale correspond à (a,b, p) = (1,0,1).

De même, afin d’améliorer la causalité des premières balises avec la similarité cosinus
(equation A.1), nous remplaçons h(x)i par :(

(h(a,b,p)(x)
)

i = (a(h(x)i−b))p (A.4)

La principale différence avec Jaccard est que la transformée sigmoïde n’est pas utilisée
pour la similarité en cosinus. Encore une fois, la fonction originale correspond à (a,b, p) =

(1,0,1) mais on peut noter que, en tant que facteur d’échelle, le paramètre a n’a pas d’effet
dans la similarité en cosinus, qui est liée à un angle entre les vecteurs. Nous garderons donc
a = 1 dans ce cas.
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Figure A.5: Causalité par tag (courbe
décroissante) et cumularive (courbe crois-
sante) pour plusieurs valeurs d’échelle a
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Figure A.6: Evolution globale de ma
mAP suivant le paramètre de décalage (pour
l’échelle optimale) pour cinq variantes de sys-
tèmes

A.4.3.1 Impact sur la causalité

L’impact des paramètres de causalité, notamment a, b et p, montre que des valeurs plus
élevées de ces paramètres entraînent une causalité accrue, comme l’illustre la figure A.5.
Comme nous nous intéressons à des valeurs aussi élevées que possible pour la causalité à
quelques dizaines d’étiquettes, pour tous les systèmes, nous devrions utiliser des valeurs
aussi élevées que possible pour les paramètres p, a (le cas échéant) et b.

A.4.3.2 Impact sur la précision moyenne

Le choix de valeurs aussi élevées que possible pour les paramètres p, a et b est susceptible
d’avoir un impact négatif sur la précision de la recherche. La figure A.6 montre l’évolution
de la mAP globale en fonction du paramètre b (shift) des équations A.3 et A.4. La valeur
optimale donne généralement une légère amélioration des performances par rapport à la ligne
de base, parfois significative. En ce qui concerne les paramètres p et a (le cas échéant), la
valeur optimale est significativement plus élevée que la valeur de base, ce qui indique qu’il
est possible d’avoir un gain simultanément sur la causalité et sur la précision. A l’inverse, la
valeur optimale de la précision pour le paramètre b correspond à une valeur inférieure à la
ligne de base, de sorte que l’on perd sur un critère si l’on optimise sur l’autre.

A.4.3.3 Optimisation conjointe

Les utilisateurs ne veulent généralement pas sacrifier la qualité du système au profit de
la l’explicabilité. Pour trouver un compromis entre causalité et précision, une stratégie
d’optimisation conjointe est employée. Cette approche prend en compte les paramètres p, a

et b et leur impact sur la causalité et la précision. Nous n’optimisons pas conjointement les
paramètres p et a car ils ont un effet similaire. Les valeurs optimales des paramètres sont
sélectionnées sur la base de l’ensemble de validation, et les causalités et les précisions sont
mesurées sur l’ensemble de test. Nous avons également vérifié que les valeurs optimales sont
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146 A.5. CONCLUSION AND PERSPECTIVES

Training inference p a b C@10 C@30 mAP SumR

1536d+512d hyb. original 1.6 4.0 15.8 210.2

512-d (hyb. tr.)
original 3.9 10.0 13.7 191.1

improved 1.00 2.7 0.0 10.9 25.5 15.0 203.0

512-d Jaccard
original 4.0 10.0 14.5 194.8

improved 1.00 2.9 0.0 16.0 29.7 15.0 198.7

256-d Jaccard
original 8.2 19.6 14.7 193.2

improved 1.00 1.8 0.0 32.0 51.8 15.3 200.8

512-d cosine
original 10.4 23.5 14.9 199.5

improved 1.07 n/a -0.25 15.6 31.3 15.5 207.0

256-d cosine
original 17.4 37.8 15.1 201.0

improved 0.98 n/a -0.24 22.3 44.1 15.5 206.7

Table A.3: Résultats sur MSR-VTT en moyenne. Ensemble de test tiré de [13]

assez proches sur l’ensemble de validation et sur l’ensemble de test. Les résultats montrent
que cette stratégie d’optimisation conjointe peut aider les utilisateurs à affiner leurs mod-
èles pour améliorer les explications visuelles tout en maintenant une précision de recherche
compétitive, comme le montre le tableau A.3. Tous les modèles avec différentes dimen-
sions d’espace conceptuel et différents paramètres (c’est-à-dire Jaccard et cosinus) dans le
tableau A.3 peuvent conduire à une amélioration significative de la causalité sur les premières
étiquettes ou dizaines d’étiquettes sans sacrifier la précision d’extraction ou avec même une
légère augmentation de la précision (différence entre l’original et l’amélioré dans chaque
ligne), sauf dans la première étape considérée qui est d’abandonner l’utilisation de l’espace
purement latent dans l’étape d’extraction (les deux premières lignes).

A.5 Conclusion and Perspectives
Dans cette thèse, nous nous sommes attaqués aux défis des systèmes de recherche multi-
modale explicables, en particulier dans le contexte de la recherche vidéotextuelle. Notre
recherche a contribué de manière significative à l’amélioration de la compréhension et de la
performance de ces systèmes. Nous avons étendu le modèle de double encodage en incorpo-
rant des balises Part-of-Speech (PoS), améliorant ainsi sa capacité à interpréter les requêtes
textuelles et à catégoriser le contenu en concepts visuels. En outre, nous avons effectué une
analyse approfondie des modèles à double espace, révélant la complémentarité entre les es-
paces latents et conceptuels et ouvrant la voie à des modèles plus efficaces. En outre, nous
avons exploré des techniques d’inférence causale afin de fournir des explications significa-
tives pour les résultats de recherche, en obtenant une causalité plus élevée sans sacrifier la
précision. Ces contributions ont de vastes implications, allant de l’amélioration de la préci-
sion du système et de la confiance des utilisateurs à l’équilibre entre causalité et précision
dans les applications du monde réel.
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