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Abstract
Online advertising has become a major component of today’s Web, fueled by ad-
vanced tracking mechanisms and profiling algorithms. The boom of social media
in the mid-2000s and the exponential use of smartphones have contributed to
turning online advertising into an industry worth over $US600 Billion. However,
growing scrutiny on online privacy has led major entities to introduce defenses
against online tracking: this is showcased by the introduction of regional regula-
tions, such as the GDPR, and by defenses included in Web browsers, that limit
the tracking capabilities of advertisers. This increased scrutiny has led adver-
tisers to investigate novel tracking mechanisms. Recent years saw the growth of
browser fingerprinting as a tracking technique, which exploits the software and
hardware’s diversity of devices roaming the Web. This constant rush for more
precise tracking is not without consequences and amplifies the online advertising
industry’s demand for data centers, processing power, and better network infras-
tructure, to collect a constantly growing flow of data and distribute increasingly
richer content, increasing the environmental impact of online advertising.

In this thesis, I shed light on different aspects of the online tracking and adver-
tising ecosystem by introducing three contributions.

1. First, we introduce DrawnApart, a technique that leverages unique
properties in the GPU stack to identify individual devices. Using Drawn-
Apart, we show that we are capable of differentiating between identical
devices, with success rates reaching over 95% in a controlled environment.
Through a crowd-sourced data collection on the AmIUnique platform,
we evaluated our technique on 2, 550 unique devices and 370, 392 finger-
prints and found that it can significantly extend the tracking time of the
state-of-the-art fingerprint-based tracking algorithm, FP-Stalker.

2. As smartphones have found their way into the pockets of the vast majority
of the world’s population, we investigated the tracking ecosystem of games
on Android. Our analysis of a dataset comprised of 6, 355 free games and
396 paid games shows that paid games are effectively less prone to online
tracking compared to their free counterpart, but were still subject to a
significant amount of tracking in some cases. We also investigated the
Teachers Approved program and found that it significantly reduced the
number of trackers and advertising in games, highlighting the importance
of enforcement on the privacy ecosystem.

3. Finally, we introduce an end-to-end measurement methodology of the car-
bon impact of the online advertising industry. We find that browsing the
Web while allowing all types of trackers and advertising leads to a 144%
increase in carbon emissions. Our results also show that the impact of
guidelines and regulations can have positive environmental effects: we in-
strumented cookie banners and found that refusing cookies can lead to a
significant decrease in the carbon impact of the browsing session.
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Resumé
Alimentée par des méthodologies de traçage complexes et avancées, la publicité
en ligne est devenue un élément majeur du Web tel que nous le connaissons
aujourd’hui. L’explosion de l’usage des réseaux sociaux au milieu des années
2000 et l’adoption exponentielle des smartphones ont contribué à transformer
le domaine de la publicité en ligne en une industrie valant plus de 600 mil-
liards de dollars US. Cependant, les problématiques de vie privée sur le Web
prenant de l’ampleur depuis quelques années ont poussé les acteurs principaux
du Web à introduire des défenses contre le traçage en ligne. Des régulations
régionales, comme le RGPD, et des défenses directement incluses dans les navi-
gateurs poussent ainsi les publicitaires à rechercher de nouvelles méthodologies
de suivi, moins connues mais maintenant une efficacité élevée. C’est notamment
le cas du traçage par empreinte de navigateur, qui exploite la configuration
logicielle et matérielle des appareils naviguant le Web pour les identifier. Cette
course perpétuelle vers un suivi toujours plus précis n’est pas sans conséquences
et amplifie la demande de l’industrie de la publicité en ligne pour une infras-
tructure Web toujours plus capable et toujours plus gourmande en ressources
afin d’accommoder un flux de données en augmentation constante et des pub-
licités toujours plus riches en contenu, ce qui contribue à augmenter l’impact
environnemental de la publicité en ligne.

À travers cette thèse, je mets en lumière différents aspects du traçage en ligne
et de l’industrie de la publicité en introduisant trois contributions majeures :

1. Dans un premier temps, nous introduisons DrawnApart, une technique
qui exploite des propriétés uniques des cartes graphiques afin d’identifier
des appareils identiques. Nous montrons ainsi que notre algorithme est
capable de différencier des appareils avec la même configuration logicielle
et matérielle, avec des taux de succès dépassant les 95% en environnement
contrôlé. Nous évaluons également DrawnApart sur 2 550 appareils
uniques et 370 392 empreintes de navigateurs collectés sur la plateforme
AmIUnique et montrons que nous sommes capables d’allonger de manière
significative le temps de traçage par empreinte de navigateur de l’état de
l’art, FP-Stalker.

2. Les smartphones ont trouvé leur place dans les poches de la majeure partie
du globe. Dans cette optique, nous avons analysé l’écosystème du suivi au
sein des jeux Android. Notre analyse d’un jeu de données composé de 6 355
jeux gratuits et 396 jeux payants montre que les jeux payants ont effective-
ment moins de traceurs, mais ceux-ci restent malgré tout prévalents dans
certains cas. Nous avons investigué le programme ”Teachers Approved”
de Google et montrons ainsi que le nombre de traceurs et de publicités est
significativement réduit dans les jeux portant cette mention, soulignant
l’importance de l’application des règles dans l’écosystème de la vie privée.

3. Finalement, nous introduisons une méthodologie de calcul de bout en bout
de l’impact carbone de l’industrie de la publicité en ligne. Nous montrons
que le fait de naviguer sur le Web en autorisant les traceurs et la pub-
licité peut être responsable d’une augmentation du coût carbone de plus
de 144%. Nos résultats montrent également que les régulations ont un im-
pact positif au niveau environnemental : en instrumentant les bannières



4

à cookies, nous mettons en avant que le fait de refuser tous les cookies
introduit une baisse significative de l’empreinte carbone de la session Web
dans la majorité des cas.
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Chapter 1

Introduction

1.1 Motivations
The Web is a constantly evolving organism. In 1990, Tim Berners-Lee was
sharing the first Web page that showcased the hyperlink system on his NeXT
computer at CERN. Today, the Web is home to countless websites and has
a user base of over 5.3 billion users, that access their businesses, have social
interactions, and create new content every day. All of what we currently witness
on the Web has one starting point: Tim Berners-Lee’s NeXT computer. It was
the starting point for the creation of a constantly expanding infrastructure that
currently handles an estimated 328.77 million terabytes each day. Nowadays,
Web applications are being developed for multiple use and new devices are
being connected to the Web every day. The smartphone boom in the early
2010s further pushed the Web into the very palms of Internet users, making it
even more present in their lives: in their 2019 survey, Shimray et al. found out
that almost 40% of their respondents spent one to three hours daily on their
mobile phones [3], showcasing the prominence of the technology in our lives. The
advent of modern smartphones has allowed democratized access to the Internet,
with even more users being able to explore new social media platforms, play
online video games, or simply gain access to new streams of information.

The success and exponential growth of the Web have also attracted many busi-
ness actors that thrived through the monetization of their platform’s content.
Online advertising was born little after the creation of the first Web browsers:
in 1994, the HotWired online magazine had allotted multiple square spaces for
advertisers, which in turn helped finance their activities. Online advertising
grew to become engrained in every facet of the Web: search engines, social
media, shopping websites, and simple blogs all include advertising as a way to
generate more revenue. Consequently, the advertising ecosystem evolved far
from simple online banners to a complex and intermingled technical landscape,
encompassing multiple techniques to precisely target and profile Internet users.
Smartphones and connected devices in general have offered advertisers a simple
and improved way to target users even more precisely: these devices are usually
carried almost everywhere and are used to perform a wide range of personal
activities. As such, mobile devices introduced an entirely novel perspective for
the tracking industry. The information went from static and periodic to moving
and constant. Consequently, the online tracking industry steadily evolved its
techniques over the years to constantly improve its targeting accuracy on all
devices. Today, two main forms of online tracking are prevalent on the Internet:
stateful and stateless tracking.

11
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Stateful tracking was enabled by the introduction of persistent storage under
the mechanisms of browser cookies by the Netscape Navigator back in 1994 [4].
Their initial purpose was already related to tracking: website owners needed a
simple way to identify recurring from one-time users. Today, there are multiple
ways to take advantage of stateful tracking due to the diversity and multiplic-
ity of browsers’ APIs, and the simple process of saving tracking-related cookies
for the benefit of a single website has evolved into complex and intermingled
techniques that allow advertisers to precisely track users throughout multiple
websites and browsing sessions, and even multiple devices, enabling them to
build a precise advertising profile for each person they target. On the other
hand, stateless tracking does not persist any information on the user’s device.
Mayer [5] first hypothesized in 2009 that the diversity of devices could be used
to generate a fingerprint of Web users. Following in Mayer’s footsteps, Ecker-
sley [6], with the collaboration of the Electronic Frontier Foundation (EFF)1,
performed the first large-scale study of browser fingerprinting in 2010. The pri-
vacy implications of this technique have been further studied over the years in
various works [7, 8, 9]. However, while browser fingerprinting has been estab-
lished as an efficient means of identification in the short term, the instability
of the used attributes significantly decreases its tracking efficiency for longer
timespans.

The complexity of current ads, and ever more complex tracking techniques not
only has a cost on the privacy of Internet users, but it also represents a significant
share of the carbon emissions of the IT industry. According to the United States
Environmental Protection Agency,2 global greenhouse gas (GHG) emissions have
increased by 43% between 1990 and 2015. Data centers, which host the majority
of the content being accessed online, are estimated to account for 1% of global
electricity demand. Therefore, it can be assumed that the constantly richer
ads and compute-heavy tracking techniques introduce a major strain on the
worldwide IT infrastructure, contributing to the rise of the IT industry’s carbon
impact.

Over the years, increased awareness about online tracking led to the devel-
opment and democratization of privacy-preserving initiatives. Consequently,
multiple tools have been developed that attempt to reduce the privacy risks on
the Web: ad-blockers, such as AdBlock Plus3 and uBlock Origin4, have gained
significant popularity over the years. Both rely on community-developed fil-
ter lists to block online trackers and advertisements from websites. In 2021, it
was estimated that 42.7% of Internet users have relied on an ad-blocker [10].
Following public outcry, the browser industry has also introduced major initia-
tives, with Apple’s Safari leading the way in 2017 with their Intelligent Tracking
Protection (ITF) functionality, which focused on blocking third-party trackers.
Mozilla enabled by default their Enhanced Tracking Protection (ETP) program
in the Firefox browser in 2019. ETP’s standard protection focuses on block-
ing third-party trackers, while their strict mode includes a browser fingerprint-
ing protection, based on a list of known fingerprinting domains. Microsoft’s
Edge privacy initiative was also introduced the same year. Microsoft Tracking

1https://www.eff.org/
2https://www.epa.gov/
3https://adblockplus.org/
4https://ublockorigin.com/

https://www.eff.org/
https://www.epa.gov/
https://adblockplus.org/
https://ublockorigin.com/
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Protection (MTP), behaves similarly in functionality to Mozilla’s ETP. Google
Chrome, which accounts for over 63% of the desktop’s browser market, cre-
ated the SameSite specification in 2016, which was originally created to restrain
first-party cookies from being used by third parties. More recently, Google intro-
duced the Privacy Sandbox to gradually replace the use of third-party cookies,
while still maintaining the ability for the advertisers to target their ads.

This increased awareness of privacy on the Internet also extends to the mobile
industry. Due to the growing scrutiny on privacy, Google gradually introduced
a series of recommendations and guidelines on their Android ecosystem, that
are targeted at offering more transparency for users and more customization
options to give users more control over which data they choose to share with
individual applications. Apple, on the other hand, set in motion a series of
privacy-preserving changes in their iOS ecosystem, most notably with the Apple
Tracking Transparency (ATT). This change imposed a strong requirement for
apps on the App Store to explicitly request permission before performing any
tracking. Finally, DNS-blocking is available on both platforms, either through
the use of dedicated applications, such as AdGuard5 or NextDNS6, or through
the configuration of a custom DNS server, with the help of open-source projects,
such as Pi-Hole7.

As the cat-and-mouse game goes on between advertisers and a part of the Web
community, new tracking techniques are constantly being developed and coun-
tered. Novel tracking techniques may take advantage of the fast development
of browser APIs to introduce novel attributes to enrich browser fingerprinting.
While filter-list based ad-blockers remain efficient today, they require a substan-
tial amount of collective contributions, as advertising domains are constantly
tailored to evade the blocking rules. CNAME cloaking [11] allows advertisers
to evade cookie-related defenses by disguising requests through DNS and sub-
domain manipulation, allowing them to set third-party cookies as first-party
cookies. This constant adaptation raises the question of how many tracking
techniques are already implemented but yet to be discovered by the Web com-
munity.

I personally witnessed the time during which the Web and the online advertising
industry were gaining traction. My first encounter with online advertising was
materialized by simple sparse banners, that quickly grew more invasive on the
early websites I visited. Website owners attempted to generate revenue with
advertising and tried to reserve a significant amount of space for ads on their
pages. A few years later, pop-up ads became more prominent, to the point where
it was hardly possible to navigate the Web without the annoyance of dozens of
windows opening before or while navigating to the expected content. I have then
witnessed the shift of the online advertising industry to targeted ads, thanks to
more capable browsers and the advent of social media advertising. Finally,
and most significantly, I witnessed the Web evolve from a mainly decentralized
digital world to a centralized space dictated by the major Web actors.

This thesis is driven by my desire to shed light and improve the understanding
of the online advertising ecosystem on both mobile and desktop, by investigat-

5https://adguard.com/
6https://nextdns.io/
7https://pi-hole.net/

https://adguard.com/
https://nextdns.io/
https://pi-hole.net/
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ing and identifying novel tracking techniques and studying their stability and
efficiency. Furthermore, the growing and increasingly visible menace of climate
change motivated me to delve into energy efficiency by estimating the carbon
impact of online advertising. Therefore, this thesis aims to answer the following
loosely related research questions that attempt to improve our understanding of
digital privacy, novel tracking techniques, and the underlying ecological impact
of our decision to drive the Web through advertising:

• Can low-level browser APIs that rely on hardware acceleration be lever-
aged to improve and increase the reliability of browser fingerprinting?

• To what extent do free and paid mobile games differ in their inclusion of
trackers and requests for permissions, and what are the privacy implica-
tions of these differences?

• What are the long-term environmental implications of the ever-increasing
demand for data and extensive tracking algorithms of the online advertis-
ing industry?

1.2 Contributions
1.2.1 Exploring GPU fingerprinting as a stable and re-

silient tracking attribute
Browser fingerprinting has been gaining ground in the tracking ecosystem over
the recent years. With Google announcing the end of third-party cookies for the
end of 2024,8 advertisers are tempted to look for tracking alternatives. Browser
fingerprinting, while highly efficient at discriminating different devices from each
other at a given time, suffers from the instability of many of its attributes,
making it unsuitable for long-term tracking. Users might decide to use an
external screen, install a new font, or update their browser. These changes
lead to a new fingerprint being generated. Furthermore, the tracking accuracy
of browser fingerprinting is affected by the existence of devices with similar
hardware and software configurations. Through a set of heuristics and machine-
learning based decisions, Vastel et al. [12] showed that the limitations of browser
fingerprinting can be overcome. In FP-Stalker, Vastel et al. effectively tracked
users for up to 2 months by evaluating changes in their fingerprints. In this
work, we argue that the Graphical Processing Unit (GPU) of a device can be
used to discriminate nominally identical devices.

We identify small differences among the Execution Units (EU) that constitute a
modern GPU and fingerprint the GPU stack through WebGL. We find that our
method can tell apart identical hardware configurations both in a controlled lab
setup and in the wild. Our lab configuration is composed of 88 devices from nine
distinct hardware classes, comprised of both desktops and mobile devices. We
find that our technique can accurately identify identical devices with an accuracy
of up to 95.8%. We further evaluate DrawnApart in the wild on a collection
of 370, 392 fingerprints from 2, 550 unique devices through the AmIUnique
platform. We find that a standalone evaluation of our technique introduces a
significant improvement over the base rate. We implemented Vastel et al. [12]

8https://developers.google.com/privacy-sandbox/blog/cookie-countdown-2023oct

https://developers.google.com/privacy-sandbox/blog/cookie-countdown-2023oct
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FP-Stalker and evaluated DrawnApart in conjuncture with other attributes
and found that our technique extends the median tracking time by up to 66.66%.

1.2.2 Investigating the privacy impact of paid and free
games on the Android ecosystem

Smartphones have reached their way into the pocket of over 80% of the world
population, allowing people to access information at any time, work, or ulti-
mately, play games independently of their location. Even before the advent of
smartphones, mobile video games were prevalent and constituted a strong sell-
ing point for phones. Today, it is a huge industry worth over US$273 billion and
over 2 billion players worldwide. The continuous growth of the mobile gaming
market is pushing developers to follow multiple ways to monetize their games:
in-app purchases, one-time fees, or subscription-based payments are among the
currently adopted strategies. On the Play Store, most games are displayed as
free, while the remaining are mostly cheaply priced, with most games costing
under US$10. The targeted population for the mobile industry is wide, encom-
passing adults, teenagers, and even children. In the era of privacy awareness, it
is important to understand the privacy implications that are introduced by the
mobile gaming industry.

In our work, we built a pipeline to collect 6, 355 free games and 396 paid games
and used the Exodus Privacy tool to analyze each of these applications individ-
ually. For each game, we collected its metadata, which includes the game genre,
the amount of downloads, or whether it contains in-app purchases. We find
that paid games effectively contained fewer trackers and required fewer permis-
sions from the users compared to free games, but there were instances where the
amount of included trackers was still substantial. We identified multiple games
that requested access to unneeded permissions, such as the camera or the loca-
tion, that could be used for tracking purposes. Our analysis showed that the
price of games is not correlated to the presence and amount of trackers they
included, with many games priced on the cheaper side including fewer track-
ers than more expensive games. We further analyzed the type of trackers that
games contained and found that advertisement-related trackers were prevalent
in free games while analytics trackers dominated in paid games. Finally, we
find that Google’s Teachers Approved program effectively reduced the number
of trackers and advertising in the games that included the mention, showcasing
that strong and enforced guidelines have a positive impact on privacy.

1.2.3 Estimating the end-to-end carbon impact of online
advertising

The Internet is constantly attracting new users. With over 5 billion users access-
ing the Web in various ways each day, the Internet is under constant pressure,
with quintillions of bytes created daily. Advertisers seek to take advantage of this
constant data flow and the ever-growing number of Internet users to distribute
more ads and improve their tracking practices. This constant cycle of improve-
ment puts a significant strain on the current infrastructures. In the current time
and age, the stakes related to climate change are well-defined and affect every
industry: data centers, which host most of the Internet content, are estimated to
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be responsible for 1% of worldwide electricity usage. In 2008, Taylor et al. [13]
estimated that every million ad impressions produced 676kgCO2eq. By 2023,
tracking techniques heavily rely on complex algorithms and ads have become
richer to capture the attention of users as quickly as possible, increasing the
environmental impact of online advertising.

Thus, we propose AdCarbon, an end-to-end pipeline to perform fine-grain mea-
surements of the carbon impact of the online advertising industry. In particular,
the pipeline uses Smartwatts [14] and Chrome’s Devtools to extract the carbon
impact of each request individually, on the client side. It performs network
measurements to estimate the share of the network in the total carbon emis-
sions of a single request. And finally, through simulations, it estimates the data
center ’s environmental cost associated with the request. The pipeline is used
to perform various crawls that span over 3 months. We find that browsing the
Web without an ad-blocker leads to 144% more carbon emissions than having
an ad-blocker. During our crawls, scripts were responsible for the vast majority
of the carbon emissions, followed by images. We find that on the client side,
the impact of the ad-bidding process is marginal and does not significantly in-
crease the carbon cost of a browsing session. Finally, we find that accepting
cookies on a website leads to a significant increase in the carbon cost of the
session, leading to the conclusion that the GDPR’s impact is globally positive
both from a privacy standpoint and from an environmental standpoint. In this
contribution, we provide recommendations for reducing the carbon impact of
the online advertising industry.

1.3 Scientific publications
During my doctorate, I co-published the following papers:

[15] Tomer Laor9, Naif Mehanna9, Antonin Durey, Vitaly Dyadyuk, Pierre
Laperdrix, Clémentine Maurice, Yossi Oren, Romain Rouvoy, Walter
Rudametkin and Yuval Yarom. DRAWNAPART: A Device Identification Tech-
nique based on Remote GPU Fingerprinting. Network and Distributed System
Security Symposium, Feb 2022, San Diego, United States.
Core rank: A* / Google Scholar (Computer Security & Privacy): #6 / Accep-
tance Rate: 16.2%

DrawnApart was awarded first place at the CSAW’22 MENA Applied Re-
search competition and was cited in various newspaper outlets in multiple coun-
tries.91011

[16] Pierre Laperdrix, Naif Mehanna, Antonin Durey, Walter Rudametkin. The
Price to Play: a Privacy Analysis of Free and Paid Games in the Android
Ecosystem. ACM Web Conference 2022, Apr 2022, Lyon, France.

9Co-first authors with equivalent contributions.
9https://www.forbes.com/sites/daveywinder/2022/02/05/the-next-graphics-card-c

risis-could-be-the-most-worrying-yet/
10https://www.01net.com/actualites/ces-chercheurs-ont-trouve-comment-nous-ide

ntifier-sur-le-Web-grace-aux-cartes-graphiques-de-nos-pc-2054214.html
11https://www.heise.de/news/Browser-Fingerprinting-PCs-Smartphones-Co-lassen-s

ich-ueber-die-GPU-tracken-6345233.html

https://www.forbes.com/sites/daveywinder/2022/02/05/the-next-graphics-card-crisis-could-be-the-most-worrying-yet/
https://www.forbes.com/sites/daveywinder/2022/02/05/the-next-graphics-card-crisis-could-be-the-most-worrying-yet/
https://www.01net.com/actualites/ces-chercheurs-ont-trouve-comment-nous-identifier-sur-le-Web-grace-aux-cartes-graphiques-de-nos-pc-2054214.html
https://www.01net.com/actualites/ces-chercheurs-ont-trouve-comment-nous-identifier-sur-le-Web-grace-aux-cartes-graphiques-de-nos-pc-2054214.html
https://www.heise.de/news/Browser-Fingerprinting-PCs-Smartphones-Co-lassen-sich-ueber-die-GPU-tracken-6345233.html
https://www.heise.de/news/Browser-Fingerprinting-PCs-Smartphones-Co-lassen-sich-ueber-die-GPU-tracken-6345233.html
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Core rank: A* / Google Scholar (Databases & Information Systems): #1 /
Acceptance Rate: 17.7%

The Price to Play was selected for presentation at the 1st CNIL Privacy Day in
Paris.

[17] Naif Mehanna and Walter Rudametkin. Caught in the Game: On the
History and Evolution of Web Browser Gaming. ACM Web Conference 2023,
Mar 2023. Austin, TX, United States.
Core rank: A* / Google Scholar (Databases & Information Systems): #1 /
Acceptance Rate: 19.2%

[18] Naif Mehanna, Walter Rudametkin, Pierre Laperdrix, Antoine Vastel. Free
Proxies Unmasked: A Vulnerability and Longitudinal Analysis of Free Proxy
Services. MADWeb 2024 (colocated with NDSS), Mar 2022, San Diego, CA,
United States.
Best paper award.

The following paper is currently under submission:

Naif Mehanna, Walter Rudametkin, Mohamed-Chakib Belgäıd, Pierre Laper-
drix and Romain Rouvoy. Ad-Carbon: An End-to-End Analysis of the Carbon
Footprint of Advertising on the Web. Submitted to IEEE Transactions on Sus-
tainable Computing.

1.4 Scientific vulgarization
Throughout my academic journey, I presented my work at the following confer-
ences, workshops, and events:

• Workshop presentation of DrawnApart at the LASER Workshop —
San-Diego, CA, United-States (Remote) — March 2022

• Presentation of DrawnApart and “The Price to Play” at the 12ème
Atelier sur la Protection de la Vie Privée (APVP 2022) — Châtenay-sur-
Seine, France — June 2022

• Presentation of “The Price to Play” to the CNIL Privacy Day — Paris,
France — June 2022

• Presentation of AdCarbon to the French Ministry of Finances (PEReN
team) — Paris, France — July 2022

• Presentation of DrawnApart and AdCarbon to the DiverSE team —
Rennes, France — October 2022

• Thesis presentation to the LIFO Research team — Bourges, France —
Nov. 2022

• Presentation of the “Caught in the Game” paper at TheWebConference
2023 — Austin, TX, United-States — April 2023

• Presentation of AdCarbon at the 13ème Atelier sur la Protection de la
Vie Privée (APVP 2023) — Arc-et-Senans, France — June 2023
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• Presentation of AdCarbon to the Direction Générale des Entreprises
(DGE) — Remote — Dec. 2023

• Presentation of Free Proxies Unmasked at the MADWeb workshop, colo-
cated with NDSS 2024 — San-Diego, CA, United-States — March 2024

I have been an Artifact Evaluation reviewer for NDSS’24, and a reviewer for
the IEEE Transactions of Games journal. I also sub-reviewed an estimated 10
papers for various venues including top-level conferences.

1.5 List of Tools and Prototypes
Our work on DrawnApart is publicly available in the following repository:
https://github.com/drawnapart/drawnapart and a brief description is
provided on the AmIUnique blog .12 It includes the JavaScript and GLSL col-
lection code for the online, offline, and GPU-based fingerprinting techniques.
The machine-learning pipeline, along with various required datasets for repro-
ducibility is also provided.

Our work on the privacy of games on the Android ecosystem can be found at
https://github.com/antonin-durey/the-price-to-play and contains:

• The list of game IDs used for our study.

• The script to collect metadata from the Play Store.

• The scripts to collect APKs from AndroZoo and the Play Pass.

The artifacts of our AdCarbon contribution are available at https://github
.com/naifmeh/adcarbon. It contains:

• The automatized pipeline for measuring the carbon impact of individual
requests.

• The crawling scripts used to visit websites and instrument the measure-
ments.

The dataset and testing tool set used in the Free Proxies Unmasked is also
available at https://github.com/naifmeh/free_proxies_unmasked.

1.6 Outline
This thesis is organized as follows.

Chapter 2 introduces the context of this thesis. I first present an overview of
the past and current state of the online advertising ecosystem and discuss what
led the online advertising industry to become today’s Web behemoth. I then
define the important notions of this thesis, by going through global mechanisms
of online tracking and online advertising. Finally, I introduce the context of
carbon measurements on the Internet and how it can be applied to measure the
carbon emissions of online advertising.

12https://blog.amiunique.org/an-explicative-article-on-drawnapart-a-gpu-finge
rprinting-technique/

https://github.com/drawnapart/drawnapart
https://github.com/antonin-durey/the-price-to-play
https://github.com/naifmeh/adcarbon
https://github.com/naifmeh/adcarbon
https://github.com/naifmeh/free_proxies_unmasked
https://blog.amiunique.org/an-explicative-article-on-drawnapart-a-gpu-fingerprinting-technique/
https://blog.amiunique.org/an-explicative-article-on-drawnapart-a-gpu-fingerprinting-technique/
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Chapter 3 presents my study on GPU fingerprinting. The state-of-the-
artpresents no simple methods to distinguish between devices with identical
software and hardware configurations. In this work, along with my co-authors,
I introduce DrawnApart, our GPU fingerprinting technique, which is capable
of distinguishing between identical devices by exploiting small differences in the
execution speed of elementary operations on the GPU. I present the evaluation
of our method in controlled settings, showing that DrawnApart is capable of
distinguishing between devices issued from the same production line. In this
chapter, a one-shot pipeline that leverages DrawnApart and can be used in
the wild, with little overhead, is also introduced. The performances of the one-
shot pipeline are measured against a crowd-sourced real-world dataset obtained
through AmIUnique.

Chapter 4 investigates the privacy implications of paying for games, compared
to playing their free counterpart on the Android ecosystem. To this end, I
present in this chapter our collection methodology, which leverages alternative
stores to bypass Android’s PlayStore restrictions while still retrieving the official
application’s metadata. Our pipeline then extracts analytical insights using the
Exodus module. Later on, through our analysis, we show the prevalence of
trackers and the relevance of requested permissions in both types of applications
and measure their prominence per game type. We look at whether in-game
purchases and the initial game’s price have an impact on the presence of trackers.
Finally, we provide an extensive analysis of one category of games that are
specifically tailored for kids.

Chapter 5 explores the carbon impact of the online advertising ecosystem. No
existing work has attempted to perform a fine-grain measurement of the car-
bon impact of individual advertising requests. In my work, titled AdCarbon,
I present a measurement pipeline capable of estimating the carbon impact of
individual network requests through a combination of real-world measurements
and estimations that take into consideration the client’s device, the network,
and the data centers’ costs. Our overall theoretical model is also defined. In
the following sections, I introduce the results obtained through the measure-
ment pipeline and outline the carbon impact per country, per data type, and
per website category. Next, I look at how the cookie banners impact the overall
carbon cost of the webpage and whether header-bidding introduces a significant
carbon overhead when employed.

Finally, in Chapter 6, I conclude this thesis by summarizing my contributions,
proposing future works, and discussing the current and potential future trends
of a more privacy-preserving online advertising ecosystem.



Chapter 2

Background & Context

2.1 Evolution of the Internet
The Internet as we know it today is the result of a steady technological evolution
that was initiated in 1969 with the creation and first use of the ARPANET.
Similarly to the reasons we use the Internet today, the ARPANET was born from
the desire to share information over great distances, in a decentralized manner.
At its beginnings, the ARPANET only hosted four nodes on US soil. But
the reliability and ease of communication that the system introduced led more
computers to join the network, and by 1984, over 1000 hosts were connected.
What stemmed from the desire to share scientific research seamlessly between
computers became the basis of what is known today as the Internet: ARPANET
was the pioneer of packet-based communication and the TCP/IP protocol suite,
which are the foundation of today’s Internet. ARPANET’s nodes were not only
used for scientific research but also for games and direct messaging. As the
popularity of the network grew, it quickly became apparent that a much larger
network was needed to accommodate the exponential growth of users, leading
to the ARPANET being decommissioned in 1990, leading to the creation of
the Internet. Even before it was decommissioned, the success of the network
led multiple entities to develop their own concurrent network: an example of
such a network is the privately owned Transpac network [19], created in 1978,
which led to the ephemeral success of the French Minitel [20]. However, most
concurrent networks were ultimately interrupted by the quick adoption of the
Internet.

As the ARPANET was being decommissioned, the academic community was
still desperate for a simple way to share information universally. In 1989, Tim
Berners-Lee came up with a proposal showcasing his hypertext project, which
described the Web as the collection of multiple documents that were intercon-
nected through hyperlinks. This proposal was the basis for what is known today
as the World Wide Web (WWW). By the end of 1990, Tim Berners-Lee im-
plemented the first Web server on his NeXT computer. This first Web page
was coded using a basic version of the Hypertext Markup Language, which is
commonly known today as HTML, and could be accessed through the World
Wide Web browser, which was initially limited to NeXT computers. The suc-
cess of Berners-Lee’s vision led to the quick adoption of the Web, and a year
later, the Mosaic browser1 was created, showcasing color graphics in addition
to regular text. In 1993, the Mosaic browser was used by over a million peo-
ple. It evolved to become known as the highly successful Netscape Navigator.
The Netscape Navigator introduced many of the features that can be found in

1https://archive.org/details/mosaic-ncsa-evolt_browsers

20

https://archive.org/details/mosaic-ncsa-evolt_browsers
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today’s browsers: the Cascading Style Sheets, which allowed publishers to alter
the looks of their pages, and most notably, the Javascript scripting language,
which introduced interactivity in Web pages. Due to the commercial success
of the Netscape Navigator, Microsoft decided to introduce their own navigator
with the creation of Internet Explorer, leading to the first browser war.

The browser wars that involved Internet Explorer and the Netscape Navigator
along with its successor, Mozilla Firefox, was a period of rapid development in
browsers, driven by a fight for the most market share. Browsers went from a
simple means of accessing Web pages, to a central tool that could encompass
all the user’s needs: from the simple task of accessing a static Web page to
playing games or creating 3D objects, browser developers introduced many new
APIs that enabled Web page publishers to attract users to their websites. The
Web was now home to rich applications, enabled by the growing capabilities
of Javascript and the plugin system that allowed browsers to execute arbitrary
programs if they provided a compatible plugin. Java applets and the Flash
plugin were two significant examples of such plugins. The Web had evolved and
with it, various new threats were put to light.

This rapid development of browsers was often done without much regard to
security: as such, many new APIs were introduced with major security flaws.
In 1997, Dean et al. [21] were already hinting toward major security flaws that
were enabled by the introduction of Java applets in the browser. De Paoli et
al. [22] listed various attacks that were possible in browsers in 1998: more
notably, they also outlined the risks of specific features, such as the recent
introduction of cookies and the extended system privileges of applets, regarding
user privacy. As pointed out by De Paoli’s study, browsers at the time already
included tools aimed at protecting the privacy of users on the Internet.. Such
tools included the ability to disable the execution of Java and Javascript or alert
when a Web page attempted to save a cookie. Interestingly, Internet Explorer
4.0 introduced the ancestor of the Site Isolation feature,2 by isolating websites
into four zones which included different levels of security and limitations. In
2000, Felten et al. [23] describe various timing attacks and privacy risks on
Web browsers. More precisely, Felten et al. studied the role of caching in timing
attacks and deplored that most of these can hardly be mitigated by browsers,
because they are mainly due to basic properties of Web browsers. They further
note that such attacks greatly hindered user privacy on the Web, by allowing
attackers to learn about users’ browsing history through the measurement of
the time it took to access a cached or non-cached resource. The authors also
note that caching attacks are not limited to cached resources but can also be
extended to DNS requests, by measuring the time it takes to resolve a cached
and non-cached domain name, and cached cookies, which are an invasive form
of web cookies that are stored in the user’s cache without the user’s knowledge.

By the early 2010s, only a few years after its introduction, Google Chrome over-
took Internet Explorer and then Mozilla Firefox as the most popular browser,
which still holds true to this day. As of August 2023, Chrome holds over 63% of
the market share. This domination is arguably the result of the improvements
that were introduced by the Chromium engine, which introduces significant per-

2https://www.chromium.org/Home/chromium-security/site-isolation/
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formance (mainly because of its V8 JavaScript engine3) and security gains over
its predecessors [24, 25]. This widespread adoption contributed to an increased
focus on the security of the newly introduced features.

In the meantime, the Internet, which was initially limited to desktop computers,
witnessed the introduction and exponential growth of the mobile industry. The
first truly mobile and commercially successful phone was presented to the public
in 1973 by Motorola. The phone delivered the usual phone features: calling and
receiving calls, but with the distinction that phone calls could now be taken
anywhere and were not limited by the location of the device. But it wasn’t until
2007 with the unveiling of the first iPhone by Steve Jobs that smartphone usage
became common. Prior to that, various attempts to introduce Internet-enabled
devices to the public varied in success depending on the device: Blackberry, for
example, pushed their Web-enabled device in 2002 and managed to win over
a business-oriented public with promises to boost productivity by using their
mobile phones which provided facilitated usage of emails, notes, faxing and text
messaging [26]. The iPhone was the first smartphone that was directly targeted
at consumers with its ease of use, while also providing an advanced infrastructure
for software developers, which fueled the boom of dedicated applications [27].

Motivated by the great success and promises of the new generation of smart-
phones, the Android ecosystem emerged as a strong competitor to Apple’s iOS
in 2008. As opposed to iOS, Android was set to be open-source and could
be used and modified by any smartphone constructor. By 2015, over 24, 000
different models of Android-based smartphones were available to the public,
showcasing the quick adoption and success of the operating system. Following
in Apple’s footsteps, Android also introduced the Android SDK, a suite of tools
for software developers wishing to develop applications for the operating system:
convinced by the operating system’s adoption rate, the number of applications
grew rapidly, reaching over 3, 550, 000 applications in 2022. On the other side,
the App Store accounted for over 1, 642, 000 applications in the same year. This
lower number is at least partially explained by the stricter access conditions
of the App Store, which requires developers to follow a strictly enforced set
of guidelines [28] and has a higher cost [29], compared to the Play Store [30].
The success of both ecosystems can easily be shown through their adoption
numbers: by 2023, Apple and Android both concentrated over 99% [31] of the
mobile market share.

As specifications continue to improve, the bridge between desktop computers
and smartphones is shrinking: smartphones represent a cheaper alternative,
with the availability of a wide range of financially accessible models, that can
perform most of what could only be performed on a desktop computer. Appli-
cations have adapted to offer the same, or even better services for their mobile
versions than their desktop or Web versions. For example, the world-renowned
image editor, Adobe Photoshop, previously available only on computers, was in-
troduced to the mobile ecosystem in 2016. Some applications are even entirely
restricted to the mobile ecosystem. Online shoppers are also favoring mobile
platforms for their purchases: in 2022, Faverio et al. [32] found that about
three-quarters of US citizens report buying things online through a smartphone,
and this trend is particularly pronounced among younger people.

3https://v8.dev/

https://v8.dev/
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Silver et al. [33], in a study conducted in 2019, found that smartphone ownership
is high even in emerging countries with low income. They found that smartphone
ownership reached 97% among adults in Vietnam, with a median percentage of
89% among the 11 countries concerned by the study. Similarly to Faverio et
al. ’s findings, the younger generation was found to be more prone to possess a
smartphone than older people. These figures are particularly noteworthy given
the fact that in all the studied countries but one, personal computers were owned
by less than half the population.

In conclusion, from the start of the ARPANET to the widespread use of browsers
such as Google Chrome and the surge in smartphone ownership, multiple trans-
formations have shaped the way we use the Internet. These changes have ef-
fectively impacted the way we communicate, access information, and go about
our daily routines. However, as our lives increasingly rely on digital platforms,
a special emphasis should be placed on understanding and acknowledging the
privacy issues on the Web.

2.2 Online advertising
Early in the Internet’s lifespan, online advertising was mostly frowned upon,
both by users and infrastructure pioneers: the ARPANET, among its accept-
able use policies, banned the presence of commercial activities by for-profit
institutions.4 These guidelines, while not entirely preventing various forms of
advertising on these networks, greatly limited and postponed the introduction
of online advertising to the Internet. However, some website owners and busi-
nesses argued that monetization of the Internet was necessary for its growth
and continuity. Among those websites, the HotWired blog was the first to allo-
cate space for what are deemed to be the first online ads. The first advertising
slot, a 460x60 pixels rectangle on top of the page, was referred to as an ”ad
banner” and was sold to AT&T for 3 months at an upfront fee of US$30, 000.
The tremendous success of the ad, which showcased a click-through rate of
over 42% [34], initiated the exponential growth of online advertising. Many
websites started adopting the same business model, offering multiple slots on
their pages to advertisers, in a bid to finance their activities. Early Internet
users were reticent to the presence of online advertising on the Web for many
reasons that remain closely aligned to today’s user sentiments toward ads: in
the era of dial-up modems, it was proven that graphical ads slowed down web-
sites. This sentiment was further exacerbated by the fact that many websites
placed an extensive amount of ads, drowning their actual content and confusing
users [35, 36].

After these first experimentations, advertisers were quick to look for other means
of distributing advertisements to the online community. The exponential growth
of the Web in the 1990s saw the rise in popularity of search engines and with it
the beginning of search-based advertising. Websites were looking for a way to
advertise their presence and the early search engines provided a way to promote
them for a fee. Goto.fr was one of those search engines and allowed websites

4https://www.ccexpert.us/network-mask/origins-and-recent-history-of-the-inter
net.html
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to bid for a better placement when users were searching for an associated key-
word [34]. This advertising strategy pioneered the Pay-Per-Click model, which
allowed advertisers to only pay when a click ratio had been met. However, this
model made search engines unreliable and led to poor results being displayed,
as websites that could pay more money were always guaranteed to be on top,
regardless of their relevance.

The introduction of browser cookies by the Netscape Navigator in 1994 brought
significant promises to the booming online advertising industry. Cookies were
originally created with traceability in mind: before their introduction, website
owners had no way to differentiate returning users from new users, and therefore,
no possibility to customize their experience. This limitation was particularly
problematic for online stores, which could not keep track of items in a user’s
shopping cart across multiple sessions without requiring explicit user login.

The creation of cookies was meant to allow websites to improve the user ex-
perience by making them traceable across a single website. The public was
quick to note the privacy issues that came with this new feature: in 1996, the
Financial Times published an article titled “This Bug in Your PC is a Smart
Cookie”, [37] raising awareness about the privacy risks of cookies. However, in
the early years of the Web, privacy was relegated to second place, to the ben-
efit of quick innovation and improved business models. The online advertising
industry quickly realized that cookies had the potential to be used to precisely
target users across various websites. The birth of ad-exchanges paved the way,
while first-party cookies mostly allowed website owners to improve the usability
of their website, third-party cookies were exploited by advertisers to track users
across browsing sessions. Advertisers could use the reach of their ad exchange to
build a profile on the users based on their activity over the Web. Consequently,
the ads that they displayed were precisely tailored to the needs and wants of
the tracked user, leading to bigger benefits for the advertisers.

During the 2010s, the advertising industry spread in many directions: video
advertising took off as Youtube5 was created, social-media advertising showed
great promises thanks to the growing popularity of social networking and mo-
bile advertising started to appear as smartphones were becoming popular. So-
cial media advertising turned out to be one of the most impactful directions
taken by the advertising industry, generating a significant share of the online
advertising revenue6: advertisers now had a way to connect and interact with
groups of persons, giving brands the possibility to have an identity on the social
network. Furthermore, due to the success of social media, existing platforms
could acquire a significant amount of data, which they could leverage to build
improved and more precise profiling and targeting algorithms. Meta7 (previ-
ously Facebook), thanks to its success and popularity, became the most popular
platform for hyper-targeted advertisement [38], which is the use of detailed user
data and automation to display highly targeted and personalized messages ads.
Thanks to the number of interactions happening daily on its platform, Meta
became a leading actor in hyper-targeted advertising [38], arguing that users

5https://youtube.com/
6https://www.iab.com/insights/internet-advertising-revenue-report-full-year-2

022/
7https://facebook.com/
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were more prone to respond to relevant ads rather than when displaying a large
number of ads. Today, Meta remains one of the major actors in the online
advertising ecosystem with tracking technologies, such as the Meta Pixel and
the Meta Conversions API, allowing them to identify users even outside their
platform [39].

Growing fears for privacy and over-exposure to ads led the online community
to look for ways to limit the risks and disturbances associated with online ads.
From these initiatives, ad-blockers were born. In 1996, the first ad-blocker,
named Internet Fast Forward, was published as a paid plugin but was quickly
discontinued due to fears of potential lawsuits. In 2003, the popular Adblock
was released and later led to the creation of Adblock Plus.8 Noting the growing
popularity of the ad-blocker, Google initiated a legal battle against AdBlock
Plus in 2014, which ultimately resulted in the German Supreme Court ruling in
favor of AdBlock Plus, further motivating different actors on the Web to join the
ad-blocking train. In a recent study, Yan et al. [40] estimates that ad-blockers
are being adopted by up to 43.2% of users, showcasing the growing defiance
toward ads and the increased consciousness on Web privacy [41]. However, con-
ventional list-based ad-blockers remain mainly prevalent on desktop browsers,
as not many of their mobile counterpart include support for browser extensions
in their mobile version. Furthermore, the majority of the most popular websites
provide an app in both the Play Store and the App Stores, leading many users
to use the application rather than the website version when on mobile, pre-
venting the usage of conventional ad-blockers, and allowing the app developers
to include tracking and advertising directly in the app. This offers significant
incentives for advertisers to invest in mobile advertising: by 2024, it is expected
that advertisement spending will increase to almost US$400 Billion, more than
doubling compared to 2018 [42].

Today, online advertising as an industry is worth over US$638 billions [43] and
spans across the entirety of the Web: from video-based ads to search advertising,
online advertising’s spending is expected to keep growing in the future years as
more and more users get access to the Internet. Improved algorithms also lead
advertisers to create better profile users and provide increasingly more targeted
ads, that are tailored to the users’ likes and wants, which in turn increases the
advertising revenue.

2.3 Environmental impact of the Internet
Climate change is a defining challenge of our current era, dictating and weighing
over most of our actions, both on the personal and global levels. More notably,
the last decade has witnessed the consequences of global warming, with an
increase in extreme weather phenomena. Climate change is not new, it first
occurred in the minds of scientists over a century ago that our activities were
causing a steady change in the climate of our planet. In reality, the change in our
climate started back in the 18th century, with the advent of the Industrial Rev-
olution. Human activities were and are still largely based on fossil fuels, which
in turn increase the concentration of gases in the atmosphere at an unprece-
dented rate in more than 10, 000 years [44], such as carbon dioxide, methane,

8https://adblockplus.org/

https://adblockplus.org/


CHAPTER 2. BACKGROUND & CONTEXT 26

or nitrous oxide. Starting from the 1950s, advances in computers and a better
understanding of climate science allowed scientists to report and warn about the
consequences of human activities. However, awareness remained low among the
public and authorities. Global consciousness only happened relatively recently:
in 1985, it was found that the protective ozone layer in Earth’s atmosphere was
reporting abnormally low levels of ozone over the South Pole [45]. Media cov-
erage and easier access to information at that time led to a global shockwave
that contributed to helping the public acknowledge the inherent risks of climate
change. Following this acquired consciousness, multiple world agencies started
cooperating to counteract the effects of climate change and in 1988, the Inter-
governmental Panel on Climate Change (IPCC) was founded with the objective
of providing research on climate change. The IPCC reports consistently proved
that the planet is warming due to the release of greenhouse gases by human
activities. These reports led to the current actions that are being taken to this
day: in 2015, based on the reports, 195 countries agreed to limit global warming
to less than 2 °C above pre-industrial levels. Governments also started acting
against climate change by introducing a series of measures dedicated to reducing
the use of fossil fuels following scientific recommendations, by promoting the use
of sustainable energies, and by local awareness campaigns.

As a result of the global consciousness, the literature started employing the
term carbon footprint as a measurement of the greenhouse gas emissions that
are emitted by an activity. The search for solutions to limit the environmental
impact of the world requires a better understanding of the impact of our individ-
ual activities, which might encompass the simple activities of cooking, browsing
the internet, or reading emails. The carbon footprint measurements allow us
to have a semantically simple estimation of how much impact this activity has
on the environment. As opposed to what its name potentially indicates, the
measurement accounts for the release of a number of different gases with a high
climate warming potential, which includes methane, nitrous oxide, fluorinated
gases, or carbon dioxide. It is expressed as a measure of the carbon dioxyde
equivalent (CO2eq) [46, 47, 48]. While the carbon footprint presents the ad-
vantage of offering one centralized metric to estimate the GHG emissions of an
activity, various means of calculating it are provided in the literature [49, 50, 51],
offering little coherence to the metric. As shown by various studies [48, 52], dis-
agreements exist in the selection of gases, and the order of emissions that are
to be included in the carbon footprint calculations. Different methodological
issues also affect the calculation of the metric, as several methods have been
established by national and international standards, but recent scrutiny has
motivated efforts to provide a standardized method of calculation [46]. Today,
the carbon footprint has been widely adopted by the scientific community as the
way to measure the carbon impact of human activities. Multiple online tools
exist to estimate the carbon footprint of a wide range of activities both at the
industrial and individual levels [53, 54].

As Information and Communication Technologies (ICT) are concentrating an
increasing amount of individual’s time [55, 56, 57], many of the carbon foot-
print online calculators focus on Internet activities. At the same time, multiple
studies have also shed light on the carbon footprint of online activities, such
as the development and sales of online games [58], social media [59] or movie
streaming [60], among others. The growing number of users of the Internet, and
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ICT in general, calls for a better understanding of the carbon impact of digi-
tal individual activities: connected-device ownership is reaching all-time highs
year over year and the increasingly connected world we live in is promising no
decrease in this trend. Personal sensitization to the carbon impact of these
appliances can be passed through two points: the life-cycle assessment of the
appliance, which describes the environmental impact of a product from its con-
ception to the day it is discarded, and the carbon footprint of the appliance’s
usage [61]. While the life-cycle assessment might lead users to limit purchases
of highly emitting products, ownership of some connected devices, such as a
smartphone or a personal computer, remains necessary in the current world. A
study by Belkhir et al. [62] performed in 2018 expects the share of greenhouse
gases emitted by the ICT industry to increase by 14% over the 2016 greenhouse
gases emissions, mainly due to the continuous growth of smartphone usage,
data-centers and communication networks. Their findings confirm the results
from Biczok et al. ’s [63] study, which forecasted a significant growth of the ICT
carbon footprint, from 86 MtCO2e in 2007 to 235 MtCO2e by 2020.

Due to the broadness of the ICT sector, it is difficult to go above the estimations
and provide more fine-grain measurements of its carbon footprint. As such, the
carbon impact of different sectors of the Web has been under-explored in the
literature. More specifically, one of the biggest share of Web traffic is linked to
online advertising [64, 65, 66]. Englehardt et al. [65] in their measurement of
online tracking on a dataset of 1-million websites, have shown that over 35% of
performed requests were related to online advertising. Vallina-Rodriguez [66]
found that about 18% of web traffic was specifically related to mobile adver-
tising, back in 2012. This number is expected to be significantly higher as the
adoption of smartphones has grown in the subsequent years.By exploring the
carbon footprint and bridging the existing gap in the literature, it is possible to
motivate a collective effort to mitigate the mounting environmental cost of the
Web.

2.4 Online Tracking & Advertising
2.4.1 Online Tracking
Stateful Tracking

To properly function, browsers provided websites with multiple storage options.
Authentication identifiers can be persisted thanks to browser cookies. Web re-
sources can load faster if they are saved in a browser cache. However, advertisers
and website developers were quick to notice that such tools could be used to
track users. Today, stateful tracking is arguably the most effective and the most
used form of tracking on the Web.

Cookies are the most commonly used technology that permits user tracking.
They are textual data that are stored in the client’s device. Two types of cook-
ies exist: 1st-party cookies, which are cookies set by the visited website. And
3rd-party cookies, which are set by external entities that are included on the
website. Third-parties might represent JavaScript libraries or font providers,
analytics companies, or advertising companies. Initially, 1st-party cookies were
used to reidentify users upon return to the website, while 3rd-party cookies were
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employed to track users across various websites on which the third party is im-
planted. In 2016, Englehardt et al. [65] performed a large-scale measurement of
the prevalence of online tracking: their findings show that a limited set of com-
panies are prevalent on the vast majority of the websites they visited. Google,
for instance, is present on almost 70% of the websites. By being present on a
vast amount of websites, entities such as Google and Meta are able to build a
browsing history for each tracked user, which in turn permits the construction of
precise user profiles. Third-party tracking has been around since the early days
of the Internet and has therefore been extensively covered [4, 65, 67, 68, 69, 70].
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Figure 2.1: Overview of the cookie syncing process. (1) The user requests
the siteB.com website, which performs first-party requests to its backend and
gets a first-party cookie in response (2). The trackerB.com third-party initi-
ates its GET request and includes a third-party cookie in its response (3). (4)
TrackerB.com communicates to trackerA.com that the user visited siteB.com
and transmits its ID. (5) Both first-party and third-party cookies are saved in
the user’s device.

For entities that have a more reduced presence on the Web, information shar-
ing has been employed to build more precise user profiles. In fact, different
third-parties might provide access to their cookie IDs in order to re-identify
users on the websites they cover. As an attempt to limit this practice and the
privacy risks it introduces, the Same-Origin Policy (SOP) [71] was introduced
to reduce the amount of shared information by limiting access to cookies to the
same origin as the creator. However, the advertising industry strongly relied
on information sharing: one of its most notable uses was dedicated to Real-
Time Bidding (section 2.4.2). To circumvent the limitations introduced by the
SOP, the advertisers initiated the cookie syncing practice [72]. To illustrate
the working principles of cookie syncing, assume a user visits siteA.com, which
includes trackerA and trackerB. Both trackers create their own cookies with
their own tracking ID. The user then goes to siteB.com, in which only trackerB
is present. As part of agreements, trackerB answers to its third-party request
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with an HTTP REDIRECT to a URL provided by trackerA, with information
stating that the user visited siteB.com. The cookie syncing mechanism happen-
ing in siteB.com is illustrated in Figure 2.1. In their study, Papadopoulos et
al. [72] found that 97% of users, including mobile users, were subject to cookie
syncing, corroborating the results by Englehardt et al. [65], with an average
of one synchronization for each 68 HTTP request. Worryingly, they found that
through the cookie syncing process, not only are tracking ID shared, but various
Personally Identifiable Information (PII) are also leaked, such as the user’s city,
phone number, or gender. Beyond the privacy risks that it introduces, cookie
syncing also hinders existing regulations (section 2.4.3), making it significantly
harder for users to exercise their GDPR rights.
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Figure 2.2: Overview of the cookie respawning process through browser fin-
gerprinting, as described in [1]: (1) The user proceeds to delete their existing
cookies; (2) The user accesses siteB.com, which contains a script collecting the
device’s browser fingerprint (3); (4) The browser fingerprint is transmitted to
trackerA.com, which is then matched with the previously deleted cookie ID; (5)
trackerA.com responds with the respawned cookie.

Cookie respawning, is another tracking mechanism that has been introduced to
circumvent existing tracking protections. As presented in Section 2.4.3, various
measures exist to limit stateful tracking, by removing them or preventing them
from being set. Through cookie respawning, the same information is stored
twice: once as a regular cookie and again using another type of storage. When
the user returns to the website and is identified, the third-party attempts to
access the cookie: if it doesn’t exist anymore, it is respawned through the sec-
ondary storage. Multiple techniques can be used to respawn cookies. Soltani et
al. [73] first coined the term in 2010 and identified Flash cookies being used
to respawn traditional HTTP Cookies, since Flash cookies could be set with
an indefinite expiration. Later in 2011, Ayenson et al. [74] make similar ob-
servations involving HTML5 Web Storage9 and ETags10. Finally, Fouad et
al. [1] performed a large-scale study and show that 1, 150 domains of the 30, 000
crawled domains use browser fingerprints to respawn cookies, and outline how
this practice might go against the GDPR and the ePrivacy Directive. The cookie
respawning process through browser fingerprinting is depicted in Figure 2.2.

Due to their abuse and highly invasive tracking, plans to end third-parties cook-
ies have been announced by Google and are set to take place in 2024 [75]. With
this in mind, advertisers have been shown to establish partnerships with first-
parties in order to circumvent the upcoming end-of-life of third-party cookies.
Demir et al. [76] have shown that over 85% of the 15, 000 websites they analyzed

9https://developer.mozilla.org/en-US/docs/Web/API/Web_Storage_API
10https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/ETag
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performed first-party tracking and shared this information with third-parties.
In their work, they show that while it is not new, this technique has grown sig-
nificantly since 2019. Most notably, their work shed light on the main entities
misusing first-party cookies for tracking: Google, which is responsible for the
end of third-party cookies, is the biggest user of this technique, followed by Meta
and Adobe. Chen et al. [77] attempted a similar study and found that over
97% of the websites they visit include first-party cookies that are set through
third-party JavaScript code included in the loaded page.

Stateless Tracking

The public’s rising awareness of privacy issues on the Web and Google’s an-
nouncement of the end of third-parties cookies [78] are leading advertisers to
look for other techniques to track users. Stateless tracking, through browser
fingerprinting, allows advertisers to perform their tracking without leaving a
trace on the users’ browsers.

Throughout the evolution of the Web, browsers have continuously integrated
new and more advanced features in the form of browser APIs. Such APIs al-
low webpages to display 3D content, through the WebGL and the Canvas API,
sound through the WebAudio API, and even Virtual Reality content through
the WebXR API. This high diversity of APIs, many of them low-level hardware
accelerated, has been introduced as an attempt to shape and provide a stable
cross-platform user experience. But it didn’t take long for the web community
and advertisers to notice that this diversity could be taken advantage of. In his
senior thesis in 2009, Mayer [5] emitted the idea that browsing environments
could be exploited to provide identifying information on the users. Most impor-
tantly, Mayer estimated that the operating system, the browser configuration,
and the hardware could lead to the browser presenting unique features. To
test his hypothesis, Mayer collected three attributes (navigator.plugins, naviga-
tor.screen, navigator.mimeTypes) from 1328 clients and showed that 1278 could
be uniquely identified.

Since Mayer, browser fingerprinting has been extensively studied: it consists
of a set of information represented by software and hardware attributes that
are obtained through the browser. A subset of those attributes is depicted
in Table 2.1. These attributes are collected through the execution of scripts
included in webpages: some attributes can be obtained by parsing HTTP head-
ers, while most are obtained through JavaScript calls to browser APIs. When
scrutinized individually, each attribute does not represent is not particularly
unique. However, when a subsequent number of attributes are combined, they
act as a fingerprint that provides a potential identifier of the user’s device. After
Mayer, Eckersley [6] was the first to perform a large-scale measurement of the
prevalence of browser fingerprinting on the Web. Through his study, Eckers-
ley analyzed 470, 000 fingerprints collected by their PANOPTICLICK platform
and found that over 94% of browsers were unique. While they emphasize the
tracking potential of browser fingerprints, Eckersley states that the fingerprints
showed low stability over time.

Further studies investigated browser fingerprinting following Eckersley’s publi-
cation: in 2013, Nikiforakis et al. [79] assessed the tracking potential of browser
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fingerprints and showed that existing defense mechanisms, such as attribute
spoofing, potentially make the user more prone to identification. This was con-
firmed by Vastel et al. in 2018 where every tool they tested to spoof finger-
prints was easily detectable and some were severely counterproductive [12]. In
the same work, Vastel et al. show that many attributes are unstable but there
is sufficient stability and entropy to track a large set of users over time. In
their dataset, about 26% of users could be tracked over 100 days exclusively
using their browser fingerprint. When combining tracking techniques we can
only expect the situation to be much worse for privacy. Also in 2013, Acar et
al. [80] presented FPDetective, a framework to detect scripts performing browser
fingerprinting. In 2014, Acar et al. [69] measured the adoption of canvas fin-
gerprinting on 100, 000 websites and found 5, 542 of them performing canvas
fingerprinting. In 2016, Laperdrix et al. [7] analyzed over 118, 900 fingerprints
composed of 17 recent attributes and showed that the advances in web browser
technologies provided highly unique attributes that can be used to create unique
fingerprints. Al-Fannah et al. [81] crawled 10, 000 websites in 2018 as an at-
tempt to assess the usage of browser fingerprinting in the wild. Though their
definition of fingerprinting is broader than any previous work, they measure
over 6, 876 websites performing browser fingerprinting, with the vast majority
of fingerprinting being initiated by third-parties. For a complete overview of the
state-of-the-art, in 2020, Laperdrix et al. [8] surveyed the existing literature on
browser fingerprinting and present the existing countermeasures.

In 2021, Iqbal et al. [82] developed FP-Inspector, a tool that uses a combination
of static and dynamic analysis to detect fingerprinting scripts. FP-Inspector has
shown that as of 2021, browser fingerprinting was prevalent on over 10% of the
top 100, 000 websites. Fietkau et al. [83] identifies the same trend using the
FPMON tool, and find that over 19% of the top 10, 000 websites display finger-
printing patterns. In the same year, Sjosten et al. [84] introduced EssentialFP,
with the same purpose as FP-Inspector. EssentialFP make use of dynamic anal-
ysis of the Javascript scripts along with an analysis of the requested network
endpoints to identify scripts that are used to fingerprint users. More recently,
Su et al. [85] proposed an automatic tool for discovering browser APIs that are
being leveraged for constructing fingerprints. Through their work, they iden-
tified 161 APIs that are discovered uniquely through their tool and find that
the fingerprinting ecosystem is fast-paced, with 18 APIs used in fingerprinting
being identified only 11 months after their first measurement.

Although all the previous studies assess the tracking capabilities of browser
fingerprinting, most of them fail to mention the main limitation of the stateless
technique. The user environment is a constantly changing piece of information:
users might update their screen, add new browser extensions, or change their
browser language. Each of these changes introduces an update in their browser
fingerprint, hindering long-term tracking. However, Vastel et al. [12] show
through FP-Stalker that by employing a set of heuristics and automated
learning, it is possible to overcome this limitation. In their work, they show that
browsers can be tracked for 54.48 days on average, and 26% of browsers can be
tracked for more than 100 days using only their browser fingerprint (i.e., without
cookies or IP addresses). Another possibility to increase the stability of browser
fingerprinting is to exploit stable and unique hardware attributes. Existing
works have explored various attributes based on hardware features: in 2012,
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Mowery et al. [86] showed how the Canvas API could be exploited to produce
attributes with high entropy. Their technique is now commonly referred to as
canvas fingerprinting. In 2019, Queiroz et al. [87] exploited the Web Audio API
to generate an attribute capable of identifying the device type, the web browser
version, and the rendering engine. Tranpert et al. [88] attempts to fingerprint
the device’s CPU and propose six benchmarks, implemented in Javascript and
WebAssembly, that exploit side-channel information to infer CPU properties,
such as cache sizes, the number of CPU cores, and single- and multi-threaded
performance characteristics. Through a study involving 834 participants with
297 different CPU models, their benchmarks achieve accuracies of up to 100%
for inferring the mentioned microarchitectural properties.

Despite being mainly focused on the tracking abilities of browser fingerprinting,
its usages are not limited to the advertising ecosystem: browser fingerprinting
has been shown to be capable of being used to improve the user experience by
providing a more forward authentication process [89]. Durey et al. [90] scruti-
nized 1, 485 websites, with the objective of identifying security-related usages
of browser fingerprinting. Their results show that 446 domains use browser
fingerprinting for either authentication or for securing their payment processes.
Of course, browser fingerprinting for security is not without its own pitfalls.
Vastel et al. [12] show that a motivated attacker can generally defeat bot de-
tection mechanisms that rely on fingerprinting, and Lin et al. [91] describe how
attackers, through for example phishing sites, can collect fingerprints in order
to defeat security features. Some work has been done on the use of dynamic
tests to resist such replay attacks [92], but this approach does not appear to
have taken off at the moment.

To date, browser fingerprinting has established itself as a complementary tech-
nique to cookie-based tracking, especially with the upcoming deprecation of
third-party cookies.11 However, the tracking potential of browser fingerprints is
highly dependent on the presence of highly unique and stable attributes. As we
present in chapter 3, we developed a technique to fingerprint GPUs through the
WebGL API and show that it increases the effectiveness of browser fingerprint
tracking.

11https://developers.google.com/privacy-sandbox/blog/cookie-countdown-2023oct

https://developers.google.com/privacy-sandbox/blog/cookie-countdown-2023oct
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Figure 2.3: Actors of the Advertising Ecosystem

2.4.2 Advertising on the Internet
Actors of the online advertising ecosystem

The advertising ecosystem has historically been centered around physical ad
agencies, where representatives looked to purchase ad space and attracted ad-
vertisers who were willing to provide payment to display their products in these
spaces. Popular means of advertising was through newspapers or television.
For newspapers, the process looked much like the current online advertising
process: publishers (in this case, the newspaper), dedicated space that was sold
to advertising agencies, which then sold this inventory to advertisers.

Online advertising, when simplified, relies much on this same principle and can
be separated into four main interacting entities [93]:

• The advertisers, which generate the demand by their interest in promot-
ing an item or a service. Advertisers look forward to displaying their ad
on some part of a website and can either sign direct agreements with a
website or buy inventory from ad platforms. More recently, advertisers
have been able to participate directly in the advertising process through
bidding strategies, such as Real Time Bidding (RTB).

• The ad platforms represent a group of different entities that act as in-
termediaries between the demand and the supply. Their rise in popularity
has been motivated by the complex state of the web, as it was becoming
increasingly complicated for both publishers and advertisers to maximize
their reach. Ad platforms have been introduced as a way to simplify the
interaction between publishers and advertisers.

• The publishers are entities that provide space on their online application
(i.e. a web page, a mobile application). Through their content, they
draw the attention of users who then come into contact with the online
advertising ecosystem through the ad slots present in the web application.

• Finally, the users see the ad and, if attracted by the publisher’s content,
can often click on the advertising and are brought to the product or service
to potentially make a purchase.

Due to the increasing complexity of the online advertising ecosystem, ad plat-
forms are now comprised of various entities that are oriented toward specific
actors in the advertising industry and serve specific roles. We describe each of
the major entities comprising the ad platforms in the following:
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Ad Networks. Ad Networks are platforms that serve as intermediaries be-
tween publishers and advertisers. Such networks were the first brokers to appear
in the online advertising ecosystem as a consequence of the increasing complex-
ity of the Web. Today, ad networks mainly appeal to publishers that wish to sell
their remnant inventory that could not be sold through more current platforms.

Ad Exchanges. Ad Exchanges are similar to Ad Networks, as they act as a
broker between publishers and advertisers. However, Ad Exchanges sell their
inventory through an auction system, which is considered more transparent
to the publisher. The auction system also allows publishers to optimize their
revenue, as multiple advertisers have the opportunity to place a higher value on
ad-slots for a given user. The attractiveness of an Ad Exchange is mostly defined
by its tracking ability: as it provides context about the users that generate the
impression, the bids, and their values are influenced by the relevance of the
user’s profile that is shared by the Ad Exchange.

Demand-side platform (DSP). The DSP, as its name indicates, is oriented
toward advertisers and acts as an aggregator of the various Supply-side platforms
(SSPs) and Ad Exchanges by providing a single interface for advertisers to run
their advertising campaigns [94]. DSPs are key to bidding processes such as
Real Time Bidding and also provide tracking value by either providing their
own user-collected data, or by purchasing user data on the market, and can
therefore boost effectiveness for advertisers [95].

Supply-side platform (SSP). SSPs work similarly to DSPs but are oriented
toward the supply, which corresponds to publishers. SSPs are designed to help
publishers optimize their inventory management and enrich the user-tracking
information that is provided to Ad Exchanges during auctions.

These entities act to ensure that either publishers or advertisers attempt to
optimize their reach and revenue. However, with the advent of programmatic
auctions, such platforms require a significant amount of user data in order to
precisely target each ad to specific users based on their web activity and profile.
As a means to acquire this data, big actors such as Google, Meta or Amazon
make use of their web presence [96] and their platforms to track users and collect
such information. Smaller actors can also choose to purchase this data. Data
brokers have been introduced to provide standardized platforms to buy user data
that is collected or bought from various data holders. Ad platforms can then buy
such aggregated data by specifying their requirements or demographics, such as
gender, age, interest, salary, or locality. Venkatadri et al. [97] investigated
the coverage and accuracy of data brokers by leveraging Meta’s advertising and
found that a significant majority of Meta users (up to 90%) can be linked to
some data broker information, showcasing the reach of their databases. Due to
the enormous amount of data they handle, extensive literature exists on privacy
issues linked to data brokers. Pinchot et al. [98] performed an explorative
analysis of the potential impacts of data provided by data brokers and warns
against potential misuse of the collected data. Yeh et al. [99] suggests in
their study that the potential for misuse of the collected data should lead to
stronger regulations: they state that regulations in the US should model current
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European regulations, such as the GDPR (section 2.4.3), which offers strong
privacy protections against misconduct exhibited by data brokers.

Advertising methodologies

The early days of online advertising were mostly characterized by direct inter-
action between publishers and advertisers. However, the exponential growth
of the industry led to the emergence of various programmatic selling strategies
that take advantage of the newly acquired tracking capabilities. To date, there
exist four main strategies to sell and buy ad inventory. Publishers can choose
to use one or multiple strategies, or rely on a waterfall process that prioritizes
higher-yielding processes.

Direct deals. Originally, publishers and advertisers interacted directly and
established an advertising contract in case both interests were corresponding.
Advertisers establish direct deals with publishers depending on multiple vari-
ables such as the user traffic, the publisher’s area of interest, and the expected
click-through rate (CTR) (i.e. the amount of clicks on the displayed ad). How-
ever, despite remaining popular until the mid-2000s, the direct deal strategy
started showing its limits as the Web grew and became more fragmented.
Many publishers, including prestigious publishers, struggled to fill every ad slot
through direct deals, prompting the need for an improved selling strategy [100],
such as Real-Time Bidding.

Programmatic direct. Programmatic advertising emerged as a strategy to
reduce human interaction and optimize both advertisers’ and publishers’ rev-
enues. Programmatic advertising has been enabled by multiple factors, includ-
ing increasingly growing computing capabilities, less expensive data storage, or
the advent of mass online tracking [101]. It is characterized by the automa-
tion of the inventory sale process and is data-driven, enabling advertisers to
precisely target their campaigns and track their performances. Programmatic
Direct relies on the programmatic advertising principle and helps advertisers
target publishers through dedicated platforms based on various criteria, such
as the publisher’s user base and its relevance to the advertiser’s campaign. As
advertisers are able to precisely target specific groups of users, this leads to a
higher Cost Per mile (CPM) which benefits the publishers.

Real-time bidding (RTB). As the number of websites kept growing, many
Ad Networks were faced with more supply than demand, leading to lower ad-
vertising revenue for publishers that could not assign all their impressions to
interested advertisers. Advertisers attempted to overcome this issue by register-
ing with multiple Ad Networks in an attempt to find lower-priced inventories.
However, as a single advertiser subscribed to multiple Ad Networks, optimally
managing the distribution of their ads became problematic. For publishers,
subscribing to multiple Ad Networks meant a higher latency, while still not
guaranteeing that their entire inventory would be sold. This led to the birth of
Ad Exchanges during the late 2000s, which handled the increasingly complex
interaction with multiple Ad Networks (section 2.4.2). Through Ad Exchanges,
the RTB process was born and consisted of interrogating all potentially inter-
ested Ad Networks each time a user triggered an impression. RTB is based on an
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Figure 2.4: Overview of the Real-time Bidding process: (1) the user loads the
website in their browser; (2) upon loading, the ad slot initiates the RTB process;
(3) the auction begins by contacting the various advertisers and waiting for their
bids; (4) the highest bidder wins the auction and forwards his ad; (5) the winning
ad is displayed to the user.

auction process: as soon as a user accesses content from a publisher that is man-
aged by the Ad Exchange, an auction is initiated by contacting all potentially
interested DSPs. The transmitted information might contain contextual infor-
mation along with user-related tracking data. The Ad Exchange then collects
all bids from the contacted entities and picks the winner by ranking all bids and
eliminating bids under a preset floor price. The Ad Exchange then proceeds to
serve an impression of the winning ad to the publisher, which is then displayed
to the user [102]. Muthukrishnan et al. [102] outline multiple problems with
the way auctions are performed in Ad Exchanges. Notably, the authors discuss
issues such as the truthfulness of auctions [103], call out optimization [104] or
arbitrage bidding. To reduce the complexity of the entire process, advertis-
ers are currently mainly relying on DSPs (section 2.4.2) to interact with Ad
Exchanges, as they provide an aggregated interface with finer-grained impres-
sion reports and better customization abilities, allowing them to target specific
groups of users [105]. On the other hand, publishers rely on SSPs (section 2.4.2)
to handle and customize their impressions through Ad Exchanges, by providing
them with the ability to set a specific price for a specific placement or a specific
bidder. As a way of standardizing the RTB process, the RTB Project (for-
merly the OpenRTB Consortium) was created12 and introduced the OpenRTB
communication protocol, which proposes standardized and consistent ways to
communicate auctions and receive bids. The process is depicted in Figure 2.4.

While RTB allows publishers to maximize their revenues, it suffers from multiple
issues. One problem is the lack of transparency: at the end of the process,
publishers are only aware of the winning bidders, which raises transparency
issues. Another problem results from its waterfall nature: by contacting ad
exchanges sequentially, there is no guarantee that the ad slot has been sold to
the highest possible bidder. To solve this, Header Bidding (HB) [106] flattens the
process and reaches out to all registered ad exchanges or Supply-Side Platforms

12https://www.iab.com/guidelines/openrtb/

https://www.iab.com/guidelines/openrtb/
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(SSPs) at once. Header bidding also addresses the issue of transparency by
giving entire control of the process to the publisher. As such, for each ad
slot, the publisher defines which ad exchanges are contacted when an auction is
started Header bidding comes in two main forms:

• Client-side header bidding happens entirely in the client’s browser. The
publisher defines each ad-slot and each publisher they wish to contact
for each auction. When an auction starts, the client’s browser initiates
requests to the different publishers. Each request contains information
about the ad slot, the floor price, and additional cookies about the user.
Depending on their active campaigns and the provided information, the
exchanges might decide to bid. In this case, they respond with an object
containing the bid value and the ad’s content. Once all bids are collected,
the client identifies the auction winner and notifies the winning bid of the
result. The ad is then displayed on the user’s browser. While client-side
header bidding provides many benefits to the publisher, it remains limited
by the network performance of the client’s device and browser.

• Server-side header bidding solves the issues of client-side header bidding
by having the process happen entirely in a remote server rather than in the
client’s browser. The remote server remains however in complete control
of the publisher. As such, both processes are similar but the amount of
contacted exchanges is not limited by the client’s hardware and software.
However, as server-side header bidding does not happen in the client’s
browser, it doesn’t include client-related cookies and therefore transmits
a less precise profile of the user to advertisers.

Both forms of header bidding have gained increasing popularity in the last years:
in 2019, Pachilakis et al. [107] have shown that over 14% of the Top 35,000
Alexa websites implemented client-side header bidding.

Private marketplace (PMP). Despite the introduction of the RTB process,
many publishers with premium inventories felt that the RTB process did not
yield sufficient value for their ad slots. Advertisers felt similarly, estimating that
many of their ads were not displayed at premium spots and were therefore not
as impactful to users. As a solution to these issues, the Private marketplace
(PMP) process was proposed as a variation of the RTB process but based on
an invite-only system for publishers to offer their premium inventories to a
reduced amount of buyers. For publishers taking advantage of such a system,
the PMP process takes precedence over the RTB process, ensuring that all
premium inventory is sold at optimal value.

2.4.3 Regulations & Defenses
In the digital age, user privacy has gotten significant exposure thanks to grow-
ing concerns against data hoarding by the Web community. As online services
have become omnipresent, the collection and exploitation of personal informa-
tion have raised significant concerns about safeguarding fundamental rights and
freedoms. In response to this, regulations have emerged all over the world, as
an attempt to balance legitimate business practices and upholding data sanc-
tity. Among these, the European Union’s General Data Protection Regulation
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(GDPR) has ushered in a paradigm shift reverberating globally. This section
explores the intricate landscape of existing regulations and their impact, before
delving into the different possible defenses against online tracking.

Existing regulations

In light of the privacy and security threats of the Internet, various actors have
introduced regulations and tools to limit the impact of tracking and advertising.
The most renowned regulation that durably changed the face of the Web is the
General Data Protection Regulation (GDPR) [108]. The GDPR is a Eu-
ropean legislation that requires every aspect of interaction with personal data
to be carefully planned: the regulation attempts to answer all questions related
to handling, processing, and storing of personal data by introducing legislation
for all each case. While the regulation was adopted in 2016, the European regu-
lator granted businesses until May 2018 to fully comply with its principles. One
of the major advantages of the GDPR is that it is not purely limited to busi-
nesses present on European soil but covers any institution that interacts with
the personal data of European citizens, who make up a significant portion of
Internet users. Incidentally, most businesses, regardless of their location, have
been forced to comply with the GDPR. The main goal of the GDPR is to give
users control over their data, while at the same time unifying the various regu-
lations that were present in different European countries prior to the law. The
regulation is composed of six key principles that include lawful processing, pur-
pose limitation, data minimization, data accuracy, storage limitation, and data
security. One essential concept is that of consent. This implies that activities
to profile users require informed consent from the user before they can collect,
process, or sell the data.

The GDPR has been successful in introducing a change in how businesses pro-
cess personal data, due to improved coverage and the existence of significant
fines in case of non-compliance. Fines under the GDPR can reach 4% of the
total worldwide revenue of a company. These changes were outlined in various
studies: in 2019, Degeling et al. [109] analyzed the different changes that the
privacy regulation introduced in the 500 most popular websites of each Euro-
pean country and found that 15.7% of websites added new privacy policies as
a result. Their study also outlined that 16% more websites introduced a cookie
banner once the regulation was put into effect. Linden et al. [110] pursued
a similar study but also included non-European websites: their results show
that contrary to previous privacy regulations, the increased length of privacy
policies due to the GDPR has not resulted in decreased readability but instead
allowed a better coverage of relevant topics, along with better compliance to its
principles.

The post-GDPR world is filled with notices asking for explicit consent to store
various types of cookies other than strictly necessary cookies, each having differ-
ent purposes.13 Sanchez et al. [111] analyzed how the GDPR impacted cookies
and cookie notices: at the time of their study, their findings stated that 92% of
the visited websites started tracking users even before serving any sort of cookie
notice, and only 4% of them truly entirely respect the users’ choice when they

13https://gdpr.eu/cookies/

https://gdpr.eu/cookies/
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opt out of cookies. These results are further confirmed by more recent stud-
ies [112, 113, 114]. While these studies show that many websites tend to take
advantage of the GDPR’s loopholes, the regulation has durably changed the
face of the web and paved the way to better protection of personal data both
in Europe and the World. It led to multiple countries developing their own
privacy regulations: in California (US), the California Consumer Privacy
Act (CCPA) was enacted around the same time as the GDPR but came into
effect only in 2020. Inspired by the GDPR, the law introduced tight regula-
tions [115], including the right to know what information businesses collect and
share about users, to opt-out, and to ultimately delete this data. The exertion
of these rights is also subject to the right of non-discrimination, as stated in the
regulation. In Brazil, the General Data Protection Law (LGPD) started
in August 2020, with close key principles to the GDPR’s.

Nevertheless, the GDPR is not the first regulation to frame the use of per-
sonal data of European citizens: in 2002, the European Parliament enacted the
ePrivacy Directive, which ensured that all communications over public net-
works maintain respect fundamental rights. Its principles were broader than
the current GDPR. The directive states the right for individuals to determine
for themselves what is communicated to others, might they be businesses or
individuals. The ePrivacy Directive was amended in 2009, in light of the fast
evolution of the Internet ecosystem: since then, it has been dubbed the cookie
law because, similarly to the GDPR, it imposed websites to inform users before
storing any cookies, except for strictly necessary cookies. This led to the birth
of cookie notices, prompting users to consent. However, the scope of the di-
rective was more restrained than the GDPR’s, leading to a less visible impact.
To further adapt to the new challenges posed by the Internet, the ePrivacy
Regulation is currently being drafted as an extension to the GDPR and will
take precedence over it [116]. The ePrivacy Regulation has been in talks since
2017 and is expected to cover all electronic communication, including those that
involve no personal data. It is expected to lay down a series of rules regarding
the protection of fundamental rights and freedom of both natural and legal per-
sons. The reasoning behind the broader range of application of the upcoming
regulation lays in the fact that all potential communication might leak personal
information about the users: for instance, metadata might reveal sensitive infor-
mation such as the dialed phone numbers, visited websites or location data. It
is also expected to cover cookies and tracking in general by simplifying existing
rules. Similarly to the GDPR, the ePrivacy Regulation might lead to fines of
up to 4% of a business’s global annual turnover and is expected to help enforce
the fines more effectively.

As the digital landscape continues to evolve, new privacy-oriented regulations
attempt to find a balance between protecting user privacy and enabling le-
gitimate business practices, while also highlighting that current practices need
clear and enforceable guidelines to govern the constantly evolving data collection
practices.

Defenses Against Online Tracking.

The various threats faced by Internet users with regards to their privacy led
to increased awareness [117], which in turn encouraged various actors to take
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action. Browsers, initially focused on injecting new features without much re-
gard for the privacy implications of such features, started putting privacy in the
heart of their product. Currently, all major browsers engines come with many
privacy measures by default: the most popular is private browsing, first intro-
duced by Apple’s Webkit engine, is a standardized tool that initiates temporary
browsing sessions that are erased once the browsers’ private windows have been
closed [118]. Additionally, each of the major browsers provide options to entirely
disable third-party cookies through privacy settings that can be toggled. The
Referer-Policy HTTP header is also currently supported by all browsers and
has been designed to mitigate the capacity of third-parties to build browsing
histories of visiting users through their Referer header. Do Not Track (DNT)
is another HTTP header designed to restrict tracking on the Web. However,
this initiative did not yield the expected results. Furthermore, browser engines
have introduced other privacy-related features:

• Safari, Apple’s WebKit-based browser, provided by default on Apple prod-
ucts, originally introduced their Intelligent Tracking Prevention (ITP)
program,14 which is mainly aimed at protecting users from tracking by
preventing cross-site information sharing. ITP works by establishing an
on-device list of prevalent domains that are contacted by visited websites:
it includes a classifier that helps decide whether the contacted domain
performs cross-site tracking and a blocking decision is then reached [119].
ITP has evolved and been improved since it was first introduced in 2017:
in 2020, Apple announced that it would be integrating its CNAME-
cloacking [11] defense in its most recent version of ITP.15

• Firefox, driven by the Gecko browser engine, initially introduced its En-
hanced Tracking Prevention (ETP) feature,16 which blocs third-party
trackers and cookies based the Disconnect filter list.17 ETP comes with
three different levels of protection: Standard, Strict and Custom. In
the Strict mode, an increased number of in-page trackers are blocking
following the same principle as the Standard Mode. More recently, as an
improvement to ETP, Firefox started rolling out its Total Cookie Protec-
tion, which is presented as their strongest privacy protection to date. It
works by isolating each cookie created by a website, including third-party
cookies, to the website they were created on. This feature is currently en-
abled by default on recent versions of Firefox and presents the advantage
of not relying on filter-lists.

• Google Chrome, based on the Chromium engine, started work on its Pri-
vacy Sandbox initiative in 2019. The Privacy Sandbox is a set of experi-
mental tools that are designed to ultimately replace third-party cookies,
allowing advertisers to continue to provide targeted advertisements while
limiting the impact on user privacy at the same time. Examples of the
proposed APIs include the Topics API, which was included as a replace-
ment for the FLoC API following significant criticisms raised by online

14https://webkit.org/tracking-prevention/
15https://webkit.org/blog/11338/cname-cloaking-and-bounce-tracking-defense/
16https://blog.mozilla.org/en/mozilla/firefox-rolls-out-total-cookie-protectio

n-by-default-to-all-users-worldwide/
17https://disconnect.me/trackerprotection

https://webkit.org/tracking-prevention/
https://webkit.org/blog/11338/cname-cloaking-and-bounce-tracking-defense/
https://blog.mozilla.org/en/mozilla/firefox-rolls-out-total-cookie-protection-by-default-to-all-users-worldwide/
https://blog.mozilla.org/en/mozilla/firefox-rolls-out-total-cookie-protection-by-default-to-all-users-worldwide/
https://disconnect.me/trackerprotection


CHAPTER 2. BACKGROUND & CONTEXT 42

communities and experts. The Topics API suggests associating users to a
weekly list of topics of interest (pooled from a predefined and fixed list)
that the advertisers can later use to target their advertisements. The
Chromium engine also includes other tools that are designed to reduce
the privacy risks of Web browsing: since Chrome 85, the browser incorpo-
rates Cache Partitioning, which prevents cache-base timing attacks that
potentially reveal users’ browsing history. To do this, Chrome stopped
using the request’s URL as a key to access the cached value and now uses
a combination of the URL and a network isolation key. The cache ac-
cess strategy has also been changed from a per-resource only strategy to
a combination of both per-resource and per-website strategies. This same
version of Chrome reinforced compliance with the Referer-Policy HTTP
header by setting its default value to strict origin when cross origin,18

which specifies that the current full URL is sent in the Referer header
only when the destination URL has same origin (same scheme, hostname
and port) and uses the same protocol.

Moreover, there exists various privacy-focused browsers, such as the Brave
browser,19 which is based on a fork of the Chromium engine and integrates
an ad-blocker (Brave Shields) and various privacy preserving tools present in
the Chromium engine that are enabled by default [120]. In [121], Leith stud-
ied the telemetry transmitted by each browser during use: their findings show
that the Brave browser is the only one that shows no evidence of sending iden-
tifiable telemetry back to its servers. The Tor project20 was initiated by US
Naval Research Laboratories in 1995 [122]. It resulted in the Tor Browser, a
privacy-focused browser based on a modified version of the Gecko engine that
is altered for stricter privacy measures. The Tor browser also leverages the Tor
network to ensure the anonymity of its users. The Tor network consists of a
global network of relays that ensures anonymity of their Internet traffic. Upon
initialization, the Tor browser initiates a virtual circuit consisting of a default of
three successive relays randomly picked by the browser. Their routing informa-
tion is downloaded to the user’s node and encryption keys are exchanged using
the Diffie-Hellman key exchange protocol. Every packet that is transmitted is
encrypted multiple times using the encryption keys of each of the relay nodes.
Packets enter the network through a guard relay and are relayed through mid-
dle relays until reaching the exit relay. The packets are successively decrypted
by each node before reaching their exit relay, which obtains access to the final
destination’s information [123, 124]. In the case of HTTPs communications,
the packet’s content remains encrypted until its final destination, the website
the user is attempting to access. The virtual circuit ensures that the user’s
IP address is not known by the exit relay nor the website being accessed and
that collusion between the guard relay and exit relay is difficult. To ensure
anonymity, the Tor browser picks a new virtual circuit every 10 minutes. The
Tor browser itself also provides a series of privacy-preserving features. For in-
stance, third-party cookies are strictly isolated through double keying: through
this process, cookies are isolated both on the first and third-parties’ origins, pre-
venting third-party cookies from being accessed from different websites, while

18https://developer.chrome.com/blog/referrer-policy-new-chrome-default/
19https://brave.com
20https://www.torproject.org/
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at the same time reducing breakage, since cookies are still stored and retrieved
when requested. Browser fingerprinting is also mitigated through uniformity
measures. Some measures include disabling plugins, canvas mitigation strate-
gies, a fixed list of fonts, and click-to-play WebGL canvases, among others [125].

Browser extensions are third-party software developed using standard web tech-
nologies, such as HTML, CSS, and Javascript [126]. They introduce new features
to browsers and increase usability. Community-based efforts to improve privacy
on the web and reduce the nuisances caused by online advertising have led to sig-
nificant use of browser extensions to introduce privacy-preserving features. One
such example is ad-blockers. Ad-blockers are currently among the most popular
browser extensions on all major browsers: on the Chrome Web Store, Adblock
Plus, one of the oldest ad-blockers available, accounts for over 47, 000, 000 users.
On Firefox, over 4, 100, 100 browsers are actively using AdBlock Plus. Various
privacy-preserving extensions exist: uBlock Origin is an extension for content
filtering that is mainly used as an ad-blocker. Privacy Badger is another tracker-
blocking extension that uses automated learning techniques to block invisible
trackers and remove advertising. Decentraleyes is an extension that distribute
website’s resources from the local cache instead of collecting them from a cen-
tralized content delivery service, which would aid in tracking the user.

Most ad-blocking extensions use community-maintained filter-lists to identify
and block tracking and ad-related network requests. Filter lists are files con-
sisting of rules targeted at blocking URLs through a syntax closely related to
regular expressions. The rules can include exceptions, designed to reduce break-
age due to blocking. Traditional filter-lists include Easylist, Easyprivacy, or the
Disconnect. uBlock Origin, while supporting traditional filter list syntax, ex-
pands on those and introduces scriptlet support in their filter lists that can be
used to disable specific Javascript code on a website. An example of scriptlet
can be found in the blocking strategy employed against the Youtube platform.
Filter-lists may also be used to introduce DOM-altering rules by collapsing, re-
moving, or hiding parts of the HTML content in the page to reduce the nuisance
introduced by ads.21

Prior to the widespread use of ad-blockers, hosts files were used as a blocking
mechanism to prevent tracking requests. The structure of a hosts file consists of
two columns, the first column mentions the hostname and the second specifies
the IP address that the hostname is supposed to point to. When they are
used in order to block network requests, hostnames are mapped to a local IP
address, most commonly 127.0.0.1, causing the request to fail with very low
latency. The disadvantage of hosts files lies in the fact that they cannot block
requests at finer granularities than the subdomain, as opposed to rules in filter
lists. Despite this disadvantage, they remain a tool that is commonly used
against tracking, most notable for devices that do not support browser-based
ad-blockers, such as Smart TVs. Two popular examples of such lists are the
Peter Lowe’s list22 or the MVPS hosts file.23

21https://github.com/gorhill/uBlock/wiki/Static-filter-syntax
22http://pgl.yoyo.org/adservers/
23http://winhelp2002.mvps.org/hosts.htm
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DNS sinkholes, such as Pi-hole24 or the AdGuard DNS,25 are also commonly
used for ad-blocking in unconventional devices, such as smart TVs. They act
as blockers at the DNS-level by preventing DNS requests from resolving when
used as the device’s DNS server. These tools can be self-hosted for private use
and source their advertising and tracking domains’ database from popular hosts
files.

Ad-blockers that do not perpetuate the filter list usage have also been made
available. One such example is Privacy Badger, which uses automated learning
to detect tracking behaviors that are not listed in common filter lists. These
ad-blockers use heuristics and machine learning to identify domains that are
frequently contacted by the browser and then block them.

Moreover, ad-blockers are not the only available extensions whose purpose is
to improve privacy and reduce annoyances on the web. For example, cookie
editors allow users to alter and set up automatic deletion of their cookies af-
ter a browsing session. Furthermore, extensions such as Consent-o-matic26 use
community-maintained lists to explicitly refuse specific categories of cookies.
I Don’t Care About Cookies is an extension designed to automatically remove
cookie banners without explicitly refusing them. It uses a series of selectors
to generate click sequences that remove cookie banners on a selection of web-
sites. As this extension might sometimes accept cookies, it should be used in
conjunction with a cookie eraser.

Other recent developments of ad-blocking have explored the potential of per-
ceptual ad-blockers, which leverage visual features to detect advertisements on
webpages [127], but such methods are prone to adversarial evasion techniques
and are generally perceived as less robust than the traditional filter-lists based
blocking techniques [128].

Finally, Virtual Private Networks (VPNs) and proxies can also be used as
privacy-preserving tools by hiding the users’ IP addresses and even blocking
requests at the network level. VPNs from trusted vendors [129] offer an addi-
tional layer of privacy by routing the user’s internet traffic through an encrypted
tunnel, protecting it from potential surveillance and eavesdropping attempts.

Despite the efficiency of these tools, advertisers have been shown to make use of
circumvention techniques to bypass the various protections. One such example
is known under the name of CNAME Cloaking [11, 130], in which the CNAME
record is altered to hide the true destination of tracking requests, effectively
masking the identity of third-party services. In most cases, the third-party
service is cloaked under an alias or subdomain of the visited website, evading
detection by ad-blocking tools.

In their study, Chen et al. [131] exploited the Blink and V8 Engine in Chrome
to construct signatures of JavaScript functions, in an attempt to detect evasion
techniques in the tracking ecosystem. They find that most evasion techniques
consist of moving the tracking URL to another URL that has not been flagged
yet by ad-blockers. Inlining code is also a common evasion technique consisting

24https://pi-hole.net/
25https://adguard-dns.io/
26https://consentomatic.au.dk/
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of including tracking scripts directly into the webpage’s HTML code, removing
the need to perform any HTTP requests that can be blocked. However, some
ad-blockers, such as uBlock Origin include scriplet blocking, which can mitigate
this technique. Finally, trackers might bundle malicious code with benign code,
leading to page breakage if ad-blockers prevent the resource from loading.

2.5 Carbon Impact of Online Advertising
It is estimated that the Internet uses over 10% of global electricity and the
trend is rising [132, 133]. However, measuring the carbon impact of Internet
services remains a difficult task. The reasons behind this difficulty include a lack
of access to relevant and up-to-date information, along with a high diversity of
materials and infrastructure used worldwide. The Internet runs mainly on black
boxes: services are requested and distributed to the requester. Requests are
routed through non-deterministic paths in the network, depending on various
parameters such as traffic load and availability. The requested content can be
cached or computed on the fly, without much information on the underlying
software. Finally, it is impossible to remotely identify every device, material,
computer router or node being used in every step of an HTTP request without
being granted access by those responsible for this infrastructure.

Nevertheless, a few studies have attempted to estimate the carbon impact and
electricity consumption of the Internet. In most studies, the Internet is sepa-
rated into three main components: the client devices, the network infrastruc-
ture, and the server (data centers) infrastructure. Baliga et al. [134] used data
from major equipment vendors to model the carbon impact of the network in-
frastructure. Using their model, which takes into consideration switching and
transmission equipment, they estimated in 2009 the energy consumption of the
Internet in Australia to be about 75 KWh per ISP subscriber yearly, translating
to 81 kgCO2eq every year . In 2010, Malmodin et al. [135] performed a life-
cycle assessment (LCA) of the Information and Communication Technologies
(ICT) industry in Sweden using data obtained from Swedish operator TeliaSon-
era. Lifecycle assessments provide a global view of the environmental impact
of devices from cradle to destruction. Furthermore, the scope of the study is
quite large, encompassing end users’ devices along with network infrastructure
and data centers. Their study finds that 1.5 MtCO2e is emitted for the ICT
industry in Sweden , which represents approximately 160 kgCO2e per Swedish
citizen . They estimate that user devices are the biggest source of environmental
impact, with over 50% of the total carbon impact being attributed to them. In
2013, Corcoran & Andrae [136] present the electricity consumption trend for
consumer ICT and estimate that new devices are expected to drive the con-
sumption of ICT down from 7.4% of the total global electricity consumption
in 2012, to 6.9% by 2017. In their worst-case scenario. However, this number
could rise to 12% due to the expansion of networks and data centers. In 2018,
Malmodin et al. [137] extended their analysis to estimate the global carbon
impact of the ICT industry, along with the entertainment and media industries,
from 2010 to 2015. They estimate that the worldwide ICT industry consumed
805 TWh in 2015, which equals to 730 MtCO2e, representing 1.4% of worldwide
carbon emissions. However, Malodin et al. expect this number to decrease, as
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both hardware and software are gaining in efficiency. Today, it is estimated that
the Internet uses over 10% of global electricity, and while some work forecast a
decrease of this share, others expect this percentage to keep rising in the future
years [132, 133].

While the previous studies provide a glimpse into the macro-environmental im-
pact of the Internet, the literature is lacking when it comes to the carbon foot-
print of the online advertising industry. To date, two studies present life cycle
assessments of the industry. In 2008, Taylor et al. [13] were the first to attempt
to measure the carbon footprint of online advertising. Their work provides
a range for the carbon impact of the industry, between 256 kgCO2e and 676
kgCO2e per million impressions. In 2018, Pärssinen et al. [138] perform a more
extended lifecycle assessment providing insights into both the global carbon im-
pact of the ICT and the carbon footprint of the online advertising industry.
They find that online advertising is responsible for electrical consumption rang-
ing between 791 and 1334 TWh. Using a global averaged emission factor of
0.5656 kgCO2e/kWh, they find that the industry is responsible 60 MtCO2e of
emissions. Pärssinen et al. also estimated the share of ”fraudulent advertising”
to 13.87 MtCO2e in 2016. While both of these studies provide significant
insight into the share of online advertising in the total carbon consumption of
the ICT, these results are difficult to use or interpret at finer granularities, for
example, at the scale of browser requests.

To solve this issue, and motivated by the need to provide a comprehensive
framework to raise awareness on the carbon footprint of the Internet, the 1byte
Model was presented by The Shift Project.27 Their model basically breaks down
the whole system into three major parts: the client’s device, the network, and
the data center. Each of these components is assigned a constant value that
represents their average electrical consumption per byte. However, as can be
expected, these models lack precision as they remove a lot of variables from the
equation. For example, user devices are diverse and their consumption varies
greatly. Data-center consumption might not only be based on the amount of
information they handle but also on the time they spend handling this infor-
mation. Finally, network usage includes many variables, with the number of
routers a packet is sent through being just one of them. Due to the difficulty in
handling these variables, very few studies have provided a fine-grained look at
the carbon impact of the online advertising industry. In 2020, CarbonTag [139]
provides one of the first glimpses into the carbon footprint of ads at the network
request granularity: based on various ads measurements, the authors design a
machine-learning model that estimates the carbon footprint of an ad-related
request. Through their measurements, they estimate that a single ad emits
between 5e-7 and 1e-5 gCO2e. While this study provides interesting and novel
results, its scope is limited and focuses only on the client’s device. In their paper,
the authors acknowledge the need for a framework that covers the end-to-end
ad process.

In Chapter 5, we leveraged client, network, and data-center measurements to
introduce AdCarbon, a tool to estimate the end-to-end carbon cost of individ-
ual network requests, which we use to estimate the carbon footprint of online
advertising.

27https://theshiftproject.org/en/home/
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Chapter 3

GPU Fingerprinting

Privacy is dignity. It is a human right. In the domain of web browsing, the
right to privacy should prevent websites from tracking user browsing activity
without consent. This is the case in particular for cross-site tracking, in which
website owners collude to build browsing profiles spanning multiple websites over
extended periods of time. Unfortunately for users, the right to privacy conflicts
with business interests. Website owners are highly interested in tracking users
for the purpose of showing them ads they are more likely to click on, or to
recommend products they are more likely to purchase.

As stated in Chapter 2, a significant difficulty of fingerprint-based tracking is
that browser fingerprints evolve. As shown by Vastel et al. [140], fingerprints
change frequently, sometimes multiple times per day, due to software updates
and configuration changes. To track a user, an adversary must link fingerprint
evolutions into a single coherent chain. This process is made difficult by the
existence of devices with identical hardware and software configurations. It
is difficult for an adversary to correctly link a fingerprint if there is a set of
identical devices to which it might belong. This limits the adversary’s tracking
duration. In Vastel et al. ’s evaluation over a dataset of nearly 100, 000 finger-
prints collected from 1, 905 distinct browser instances, with a wide variety of
fingerprinting attributes, their state-of-the-art machine learning technique was
able to deliver a median tracking time of less than two months.

In this work, we bring a new insight to the challenge of browser fingerprint-
ing identical computers, by observing that even nominally identical hardware
devices have slight differences induced by their manufacturing process. These
manufacturing variations are shown to enable the extraction of unique and ro-
bust fingerprints from a variety of devices, both large and small, in other set-
tings [141, 142]. If an adversary were able to extract such a hardware fingerprint
from the user’s device, it would significantly extend the adversary’s ability to
track them. Extracting a hardware fingerprint from a browser, however, is far
from trivial—since the attacker has little control. In particular, the attacker
can only interact with the system through unprivileged JavaScript code and
WebGL graphics primitives—the attacker has no control over the runtime envi-
ronment of the system, including background processes and simultaneous user
activity—and the attacker has very limited exposure to the system, making
classical machine learning pipelines that rely on long training phases all but
useless. Thus, in this chapter, I present our work on DrawnApart and show
that browser fingerprinting can work on devices with similar hardware and soft-
ware configuration.

DrawnApart measures small differences among the Execution Units (EUs)
that make up a modern Graphics Processing Unit (GPU). By fingerprinting the
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GPU stack, DrawnApart can tell apart devices with nominally identical con-
figurations, both in the lab and in the wild. In a nutshell, to create a fingerprint,
DrawnApart generates a sequence of rendering tasks, each targeting different
EUs. It times each rendering task, creating a fingerprint trace. This trace is
transformed by a deep learning network into an embedding vector that describes
it succinctly and points the adversary towards the specific device that generated
it.

We evaluate DrawnApart in two main scenarios. First, to validate the
method’s ability to distinguish nominally identical configurations, we perform a
series of controlled experiments under lab conditions. We experiment with mul-
tiple sets of identical devices from vendors including Intel, Apple, Nvidia and
Samsung, and demonstrate that DrawnApart consistently improves identifica-
tion of these nominally identical devices, achieving high identification accuracy
in multiple hardware configurations, even though state-of-the-art browser-based
fingerprinting methods cannot tell them apart. Second, to show that Drawn-
Apart affects user privacy, we integrate the technique into Vastel et al. ’s state-
of-the-art fingerprinting algorithm from IEEE S&P 2018 [140], which uses ma-
chine learning to link browser fingerprint evolutions. We show that the median
tracking duration is improved by up to 66.66% once we add the DrawnApart
fingerprint.

This chapter is organized as follows: in Section 3.2, we design and implement
DrawnApart, a GPU fingerprinting technique based on the relative speed of
EUs, that observes minute differences between GPUs. Then, in Section 3.5,
we integrate DrawnApart into Vastel et al. ’s fingerprinting algorithm and
show, through a large-scale crowd-sourced experiment with over 2,500 unique
devices and almost 371,000 fingerprints, that DrawnApart delivers consider-
able gains to the tracking accuracy of this state-of-the-art approach. Finally, we
conclude in Section 3.6.2, by suggesting possible countermeasures against our
fingerprinting technique, and discuss their advantages and drawbacks.

3.1 Background
3.1.1 Browser Fingerprinting
Mowery et al. [143] discuss fingerprinting on the Web. As they state, fingerprint-
ing can be applied constructively or destructively. An example of constructive
use of fingerprints would be to identify fraudulent users trying to log in while
masquerading as legitimate users. Browser fingerprinting can be used to detect
bots [144, 145, 146], or support authentication, where the fingerprint is used
in addition to a traditional authentication mechanism [147, 148]. A destructive
use might involve tracking users without consent [149, 150]. In this scenario,
fingerprinting is used to augment or replace cookies—e.g. to track across mul-
tiple domains, or when users disable or delete cookies. Our technique can be
applied to either scenario.

Many fingerprinting techniques exist in the wild [151, 152, 86, 153]. They rely
heavily on differences in devices’ hardware and software characteristics found
in HTTP header fields and JavaScript attributes. The key challenge is to iden-
tify features and attributes that further discriminate devices and allow for their
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unique identification, and to overcome the tendency of these features to evolve
over time because of changes to the user’s software, configuration, or environ-
ment.

3.1.2 GPU Programming
The Graphics Processing Unit (GPU) is specialized hardware for rendering
graphics. GPUs have highly parallel architectures that are composed of multi-
ple Execution Units (EUs), or shader cores, which can independently perform
arithmetic and logic operations. Most consumer desktop and mobile processors
from the past decade have on-chip GPUs with multiple EUs. For example, the
UHD Graphics 630 GPU—integrated into Intel Core i5-8500 CPUs—includes
24 EUs, while the Mali-G72 GPU—integrated into the Samsung Exynos 9810
chipset used in Galaxy S9, S9+, Note9, and Note10 Lite devices—includes 18
EUs.

Web Graphics Library (WebGL) is a cross-platform API for rendering 3D graph-
ics in the browser [154]. WebGL is implemented in major browsers including
Safari, Chrome, Edge, and Firefox. Derived from native OpenGL ES 2.0, a
library designed for developing graphic applications in C++, WebGL imple-
ments a JavaScript API for rendering graphics in an HTML5 canvas element.
WebGL takes a representation of 3D objects as a list of vertices in space and
information on how to render them, and translates them into a two-dimensional
raster image that can be displayed on screen. WebGL abstracts this process as
a pipeline. Two pipeline steps which are of interest to this work are the vertex
shader, which places the vertices in the two-dimensional canvas, and the frag-
ment shader, which determines the color and other properties of each fragment.
The vertex and fragment shaders can run user-supplied programs, written in a
C-derived programming language named GL Shading Language (GLSL).

3.2 GPU Fingerprinting
3.2.1 Motivation
Similar to past work [152, 155], we aim to uniquely identify devices. How-
ever, unlike previous work, which rely on the diversity of hardware and software
configurations, we focus on distinguishing identical devices. As we show ex-
perimentally, this additional distinguishing power can considerably enhance the
tracking capabilities of existing fingerprinting methods. To do so, we incor-
porate techniques similar to the arbiter-based Physically Unclonable Function
(PUF) concept of Lee et al. [156]. In an arbiter PUF, the statistical delay vari-
ations of wires and transistors across multiple instances of the same integrated
circuit design are used to uniquely identify individual instances of the integrated
circuit. In our case, we harness the statistical speed variations of individual EUs
in the GPU to uniquely identify a complete system.

3.2.2 Design
With unfettered access to the GPU, an adversary could measure the speed
of each EU and use those measurements as a fingerprint. However, websites
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Figure 3.1: Overview of our GPU fingerprinting technique: (1) points are ren-
dered in parallel using several EUs; (2) the EU drawing point i executes a
stall function (dark), while other EUs return a hard-coded value (light); (3) the
execution time of each iteration is bounded by the slowest EU.

only have limited access to the GPU through the JavaScript and WebGL APIs.
WebGL provides a high-level abstraction that makes it a challenge to target
specific EUs and to time computations accurately.

We overcome this challenge by using short GLSL programs executed by the
GPU as part of the vertex shader (cf. section 3.1.2). We rely on the mostly
predictable job allocation in the WebGL software stack to target specific EUs.
We observe that, when allocating a parallel set of vertex shader tasks, the
WebGL stack tends to assign the tasks to different EUs in a non-randomized
fashion. This allows us to issue multiple commands that target the same EUs.
Finally, instead of measuring specific tasks, we ensure that the execution time
of the targeted EU dominates the execution time of the whole pipeline. We do
so by assigning the non-targeted EUs a vertex shading program that is quick
to complete, while assigning the targeted EUs tasks whose execution time is
highly sensitive to the differences among individual EUs. As shown in fig. 3.1,
our fingerprint is created by executing a sequence of drawing operations. We
measure the time to draw a sequence of points with carefully chosen shader
programs. The technique consists of three main steps:

Render. We instruct the WebGL API to draw a number of points in parallel.
Points are the simplest object that WebGL can draw, and each consists of only
a single vertex. Using points minimizes the noise from the pipeline and its
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interference with our technique. The position of each point is determined by an
attacker-controlled vertex shader.

Stall. For most points, the attacker-controlled vertex shader returns a hard-
coded value. For a specific subset of the points the shader applies a function,
which we call a stall function, to compute the point’s position. The manner
in which the entire graphics stack distributes the points to be drawn to the
EUs allows us to influence which EU is chosen to run the stall function. It takes
much longer to compute the position with the stall function than the hard-coded
value. As a result, the time needed to render the entire set of points corresponds
to the time taken by the EUs running the stall function.

Trace Generation. We execute the drawing command several times, each
time selecting a different vertex to stall. For each execution, we store the time
taken. The fingerprint output by our technique is therefore a vector, named a
trace, which contains the sequence of timing measurements.

We note that prior browser fingerprinting techniques extract deterministic
fingerprints, which remain identical as long as the device’s software and confi-
guration have not changed. Our technique, in contrast, is based on timing mea-
surements and, as such, is non-deterministic—multiple measurements made
on the same device will return different values due to the effects of measurement
noise, quantization, and the impact of other tasks running at the same time.

3.2.3 Implementation
We now describe the implementation of each design step.

Render. The WebGL API exposes the drawArrays() function, which al-
lows dispatching multiple drawing operations in parallel to the GPU. We invoke
drawArrays() several times, each time rendering multiple points in parallel.
Listing 3.1 describes our main render loop. We execute the rendering process
by calling drawArrays (line 5). For each iteration, we save the time to execute
drawArrays into the trace array. We evaluated several ways of measuring the
rendering time, as explained further in section 3.4.1. Briefly put, the onscreen
measurement method executes a relatively small number of computationally
intensive operations, while the offscreen and GPU measurement methods ex-
ecute a larger number of less computationally intensive operations. The full
source code for these settings can be found in our artifact repository.1 After
point count iterations, the code sends the trace array to our back-end server
(line 15), and terminates the loop.

Stall. In the current implementation of WebGL, a single call to drawArrays()
generates multiple drawing operations in the underlying graphics API, which ap-
pear to assign vertices to EUs in a deterministic order during vertex processing.
The operations are differentiated by a global variable, named gl VertexID. This
special variable is an integer index for the current vertex, intrinsically generated
by the hardware in all of the graphics APIs used to implement WebGL as it ex-
ecutes gl.drawArrays. We created a vertex shader in GLSL that examines the
gl VertexID identifier, and executes a computationally intensive stall function

1https://github.com/drawnapart/drawnapart

 https://github.com/drawnapart/drawnapart
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1function render_loop () {
2if ( point_index < point_count ) {
3// Stall the current point
4gl. uniform1i ( shader_stalled_point_id , point_index );
5gl. drawArrays (gl.POINTS ,0, point_count );
6// Save the rendering time
7var dt = performance .now () - prev_time ;
8prev_time = performance .now ();
9trace .push(dt);
10// Prepare to stall the next point
11point_index ++;
12requestAnimationFrame ( render_loop );
13} else {
14// Finish and send the trace to the server
15send_trace ();
16}
17}

Listing 3.1: Main Render loop, onscreen setting (JavaScript).

only if it matches an input variable named shader stalled point id provided
by the JavaScript code running on the CPU. Listing 3.2 describes the vertex
shader code.

1uniform int shader_stalled_point_id ;
2void main(void) {
3// Stall on this vertex ?
4if( shader_stalled_point_id == gl_VertexID ) {
5gl_Position = vec4( stall_func () ,0, 1 ,1);
6} else {
7gl_Position = vec4 (0, 0, 1 ,1);
8}
9gl_PointSize = 1.0;
10}

Listing 3.2: Vertex shader with stall function, onscreen setting (GLSL).

In the onscreen setting, the vertex shader checks if shader stalled point id
equals gl VertexID. In the offscreen and GPU settings, the vertex shader treats
shader stalled point id as a bit mask and checks if bit 1 << gl VertexID
is set. In both cases, if the point is selected the vertex shader program executes
the stall function (line 5). Otherwise, the shader exits quickly.

Trace Generation. By executing this parallel drawing operation multiple
times, each with a different value for shader stalled point id, we iterate over
the different EUs and measure the relative performance of each. The output is
a trace of multiple timing measurements, corresponding to the time taken by
the targeted EU to draw the scene.

3.2.4 Raw Traces
Before evaluating DrawnApart, we tested whether we can visually distinguish
devices. fig. 3.2 shows traces collected from two Gen 3 devices. We collect 50
traces from each device, each trace consisting of 176 measurements of 16 points.
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Figure 3.2: Raw traces from two different Gen 3 devices.

The measurements are divided into 16 groups of 11, where in each group we stall
a different point. The color of a point indicates the rendering time, ranging from
virtually 0 (white) to 90 ms (blue). Red vertical bars indicate group boundaries.
As we can see, the rendering time in the first half of the traces is significantly
lower than in the second half. Moreover, while there are some timing variations
in the traces of the same device, the traces display patterns that are distinct
between devices, allowing us to distinguish them.

3.3 Evaluation Overview
3.3.1 Motivation
We claim that our new method provides a tangible advantage over deterministic
GPU-based fingerprinting. To establish this claim, we evaluate our system in a
lab setting and in the wild.

In the lab setting, we assume the attacker can collect training traces from a set
of identical machines (same hardware and software), running under identical en-
vironmental conditions. Next, the attacker is given a single trace and is tasked
with identifying the machine that generated the trace. Our primary metric
of evaluation in this setting is the accuracy gain, which measures the multi-
plicative gain in accuracy of a classifier that incorporates our non-deterministic
method, when compared to a classifier which only uses deterministic inputs. An
accuracy gain of 1 means that the classifier provides no advantage over tradi-
tional methods, while higher values show that it gives the attacker an advantage.
The lab setting provides the most advantageous conditions for our classifier, for
several reasons. First, existing deterministic schemes cannot tell apart iden-
tical devices, as we demonstrate experimentally, resulting in a very low base
rate. Second, the attacker can tailor the attack to the particular class of devices
to be discriminated, and thus choose optimal parameters for the target hard-
ware. Third, the workload on the target machines is controlled, minimizing
measurement noise. Finally, the attacker is not concerned with detectability
or compatibility, and can run an experiment that takes a long time, that uses
partially supported hardware features, or that is noticeable to the user.

We also evaluate our system in the wild. More specifically, we evaluate how our
method can be applied to track devices from a set of over 2,500 machines with
1,605 distinct GPU configurations, recruited through a crowd-sourcing experi-
ment. We first perform a standalone evaluation of our method, in the absence
of additional identifying features. We then provide additional deterministic fea-
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tures to the classifier, including the browser version, screen dimensions, HTTP
headers, and other similar attributes. State-of-the-art fingerprinting techniques
can produce unique browser fingerprints through the consideration of these sig-
nals, but these fingerprints are not ideal for tracking users since they evolve over
time [140]. We therefore measure the added distinguishing power our method
provides to existing browser fingerprinting schemes, with the primary metric
of evaluation being the additional tracking time made possible through the
combination of our novel technique with existing schemes.

The in-the-wild setting is more challenging. First, the technique must per-
form well across a large number of devices, precluding tailored attacks, and the
attacker is prohibited from using any trace collection method that is overly in-
trusive or time-consuming. Second, the attacker’s choice of machine learning
pipelines is constrained. In particular, the attacker cannot use a long training
phase since this does not make sense in the context of browser fingerprinting—
the fingerprint should be useful at once, and not depend on the victim spending
hours on the attacker’s website. The attacker must also be able to accommo-
date new devices joining the dataset in real-time, and should not be required to
spend multiple CPU hours retraining the classifier every time a new device is
detected. Finally, the attacker cannot control the runtime characteristics of the
machine being fingerprinted. Our method will have to be tolerant to workload
variations, GPU payloads from other tabs, browser and system restarts, and so
on.

In the following section, we study the lab setting to demonstrate an upper bound
on our classifier’s potential accuracy gain, and to investigate parameter choices
and their trade-offs on accuracy, compatibility and performance. In section 3.5,
we select a single set of parameters and launch a large-scale crowd-sourced
experiment in the wild, showing the advantage of our method in a realistic
setting.

3.3.2 Machine Learning Pipelines
We use two machine learning approaches to evaluate our fingerprinting tech-
nique. In the lab setting, we cast our fingerprinting problem as a conventional
multinomial classification task, where the input is the trace of N rendering
times, and the output is the label of the device assumed to have generated this
trace. We evaluated several classical machine learning models suitable for this
task, including tree-based classifiers, k-Nearest Neighbors classifiers, Linear Dis-
criminant Analysis, and Support Vector Machines. We ultimately chose to use
the Random Forest ensemble classification algorithm [157, 158], as it empirically
delivered the best classification results in terms of accuracy. We did not apply
any feature engineering, submitting the raw traces into the classification algo-
rithm. To make sure we did not overfit our model, we applied a 5-fold train-test
split to the data, and collected the mean accuracy reported by the folds, as well
as the standard deviation among folds.

To evaluate our system in the wild, we needed a more elaborate pipeline for
the reasons listed in section 3.3.1. Our method relies on neural networks and
consists of several steps:
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1. We preprocessed our traces by normalizing and reshaping them into matrix
form.

2. We trained a convolutional neural network (CNN ) to solve the multinomial
classification task.

3. We transformed the classification network into an embedding network us-
ing the semi-hard triplet loss algorithm of Schroff et al. [159].

The resulting network is capable of transforming our trace into a representation
called an embedding. Because of the way the network is designed, the Euclidean
distance between two traces from the same device will be small, while the Eu-
clidean distance between traces from different devices will be large. This allows
the inference part of the classification to use the k-Nearest Neighbors classifier—
given an unknown trace, measure the distance between its embedding and the
embeddings of all known traces, and output the label of the embedding at the
shortest distance. The simplicity of this classifier means the adversary can add
new devices to the dataset simply by recording a few new traces and without
retraining the entire network, a desirable property known as few-shot learning.

To ensure we did not overfit our in-the-wild model, we split our training dataset
into two mutually exclusive parts, each with different labels, performed the
evaluation on each part in isolation, and observed that the accuracies for each
split were roughly the same. More details about the training process and dataset
splits can be found in section 3.5.

3.4 Lab Setting
The objective of the lab setting is to discover DrawnApart’s highest accuracy,
and assumes that the attacker customizes the attack to the class of device and
ignores aspects of detectability, compatibility or performance.

Evaluated Devices. Table 3.1 lists the devices used in the lab setting. We
used 88 devices from nine distinct hardware classes, including desktops and
mobile devices. The desktops include multiple generations of Intel processors,
all running Windows 10, as well as a set of Apple Mac mini devices with an Apple
M1 chip, running MacOS X Version 11.1. Other than the Gen 10 devices, which
had discrete Nvidia GTX1650 GPUs, all desktops used integrated graphics.
For each class, the devices were purchased through the same order, configured
with our University’s official operating system image, and located in the same
temperature-controlled lab. The mobile devices include multiple generations
of Samsung Galaxy devices, all sourced through the Samsung Remote Test
Lab [160]. All the mobile devices were Android-based and featured Samsung
Exynos CPUs and Mali GPUs.
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Comparison With Prior Fingerprinting Techniques. Before evaluat-
ing our technique, we reproduced and tested several state-of-the-art web-based
fingerprinting techniques.

UniqueMachine, presented by Cao et al. at NDSS 2017 [161], collects a
“browser fingerprint”, with mutable properties such as window size and IP ad-
dress, and a more permanent “computer fingerprint”. The UniqueMachine web-
site offers a demo that outputs both fingerprints as 32-character hashes. We
collected the fingerprints of all of the computers in our Gen 3, Gen 4, Gen 8,
and Gen 10 corpora using UniqueMachine, and confirmed that all computers in
the same corpus were assigned the same computer fingerprint. Interestingly, the
Gen 4 and Gen 10 PCs shared the same computer fingerprint despite having
different hardware configurations.

Fingerprint JS (FPJS) is a commercial API offering “browser fingerprint-
ing as a service”. The paid-for version, called FPJS Pro, claims to provide
“unparalleled accuracy, ease of use, and security” [162]. FPJS Pro outputs a
20-character hash. The website provides a demo of FPJS Pro. We collected the
fingerprints of all computers in our Gen 3, Gen 4, Gen 8, and Gen 10 corpora
using the demo website. In the Gen 3 dataset, all but one computer had the
same fingerprint. Similarly to UniqueMachine, all of the computers in the Gen 4
and Gen 10 corpora had identical FPJS fingerprints. Finally, FPJS divided the
Gen 8 corpus into three clusters: two clusters with seven computers each, and
the final cluster with one computer.

Clock around the Clock, proposed by Sánchez-Rola et al. at CCS 2018 [163],
is an alternative to GPU-based fingerprinting. This method is designed to ex-
ploit “small, but measurable, differences in the clock frequency” by measuring
the precise execution times of a series of CPU-intensive operations. To calculate
the fingerprint, the computer invokes the cryptographic random number gen-
erator crypto.getRandomValues 1,000 times for 50 different input sizes, then
generates a vector of the most common timing value, or mode, for each of the
input sizes. We reproduced the web-based variant of the method, and tested it
on our Gen 4 corpus. We found that the modes did not contain any data useful
for fingerprinting. This is likely because since July 2018 Chrome contains coun-
termeasures designed to prevent fine-grain timing measurements, as part of the
wider fallout of the Spectre attacks [164, 165, 166, 167]. All our measurements
returned either zero or five microseconds (with some added randomness). We
conclude that, currently, the method presented by Sánchez-Rola et al. is not
practical.

3.4.1 Tuning the Trace Parameters
We search for the parameter settings that provide the optimal accuracy gain for
the different hardware configurations.

Stall Function Operator Selection. Each model and generation of GPU
has a different micro architecture. For example, the third-generation Intel in-
tegrated GPU has a single arbiter, which dispatches tasks to all EUs, while
fourth-generation GPUs adopt a hierarchical micro-architecture with multiple
arbiters. Intel GPUs also have Advanced Math (AM) Units, which are tasked
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with executing less common operations such as trigonometric operations. The
amount and location of these AM units differs among GPU generations, and
even within different GPU types from the same generation. The design of GPUs
by Nvidia, ARM and Apple is obviously different as well. We hypothesize that,
due to these differences, the accuracy gain provided by our method will vary,
depending both on the choice of stall functions and target hardware. To test
this, we evaluated a representative set of operators, including trigonometric
operations, logical bit-wise operations, and general floating-point operations.

We report the complete evaluation of the selected set of operators for 600 traces,
20 points, and 5 iterations per point in the online setting, for the Gen 3 (ta-
ble 3.2), Gen 4 (table 3.3), and Gen 8 (table 3.4) datasets.

Table 3.2: Evaluation for the Gen 3 dataset, depending on the operators. The
baseline is 10%

Operator Accuracy
Median

time
(ms)

mul 93.5%± 0.7% 3,097
sinh 89.5%± 1.4% 8,757
abs 88.4%± 1.0% 4,532
pow 87.5%± 0.3% 4,663
log 87.1%± 1.2% 9,839
exp2 87.0%± 0.6% 7,532
shl 86.3%± 1.7% 6,799
atanh 81.8%± 1.4% 11,184
inversesqrt 80.1%± 0.7% 6,799
trunc 67.1%± 1.4% 1,667

Table 3.3: Evaluation for the Gen 4 dataset, depending on the operators. The
baseline is 4%

Operator Accuracy
Median

time
(ms)

mul 32.7%± 0.3% 6,361
abs 29.3%± 0.5% 3,295
shl 28.7%± 0.4% 6,483
inversesqrt 28.2%± 0.7% 6,485
exp2 27.8%± 1.0% 6,528
trunc 26.6%± 1.1% 3,161
log 25.3%± 1.0% 7,673
pow 23.3%± 0.6% 9,370
sinh 19.5%± 0.5% 8,953
atanh 19.1%± 0.6% 10,099
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Table 3.4: Evaluation for the Gen 8 dataset, depending on the operators. The
baseline is 6%

Operator Accuracy
Median

time
(ms)

exp2 43.6%± 1.2% 3,172
inversesqrt 39.4%± 0.9% 3,181
pow 36.6%± 1.4% 4,698
log 33.6%± 0.5% 3,299
sinh 32.4%± 0.9% 4,569
abs 30.9%± 0.6% 3,174
mul 30.9%± 1.0% 3,173
atanh 30.6%± 0.5% 5,935
trunc 28.7%± 0.6% 3,174
shl 26.9%± 1.1% 3,172

Timing Measurement Method. Scene rendering is performed in the GPU
context, which is asynchronous to the CPU context. Simply measuring the
time it takes the CPU to execute the draw operation, for example by calling
performance.now() immediately before and after the call, does not provide
any usable insight about the GPU. We therefore considered three measurement
methods that are capable of measuring the actual drawing time of the GPU.

In the onscreen method, we render the scene to a standard HTML can-
vas element and then call Window.requestAnimationFrame. This function
is passed a callback function that is called after the rendering is complete.
Timing information is then extracted from within the callback. The onscreen
method is the most compatible of those we evaluated, but browsers do not call
requestAnimationFrame at a rate higher than the browser’s maximum frame
rate, which is typically 60 Hz. Thus, using this method requires that each it-
eration of our rendering operation take at least 16 ms to provide us with useful
information. Even though the canvas element is on screen, it can be made zero-
size or invisible via styling, making the fingerprinting operation invisible to the
user. Collecting the fingerprint does cause a noticeable slowdown for the user
since it runs in the browser’s main context.

In the offscreen method we use a worker thread and render the scene to an
OffscreenCanvas object. This does not affect the user’s main context and does
not slow down the user. After rendering the scene, we call the convertToBlob
method of the OffscreenCanvas, causing it to execute all instructions currently
in the WebGL pipeline, and ultimately return a binary object representing the
image contained in the canvas. We measure the time it takes to execute this
command. Since there is no frame rate limit in this setting, each iteration of the
rendering operation can take less time, allowing us to use more iterations. At
the time of writing, OffscreenCanvas is supported on Chrome browsers, hidden
behind a flag on Firefox, and partially supported in the Technical Preview build
of Safari.
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The GPU method is the third method we evaluate. It is a modification of the
offscreen method that does not measure timing on the CPU side. Instead, the
WebGL disjoint timer query method is used to directly measure the duration
of a set of graphics commands on the GPU side. To perform this measure-
ment, we call beginQuery, issue the drawing operations, and call endQuery.
Using getQueryParameter, we retrieve the elapsed time on the GPU side. This
disjoint timer query command was previously used for side-channel attacks by
Frigo et al. in their work in IEEE S&P 2018 [168]. As a result, support for
this timer was disabled in Chrome version 65. However, with the introduction
of Site Isolation [169], it was deemed safe to be re-enabled in Chrome version
70 [170]. In contrast to CPU-side timers, whose resolutions have been severely
reduced to a few microseconds with jitter to mitigate against transient execution
attacks [171], the GPU-side timer offers microsecond resolution with no jitter
even on the most modern versions of Chrome [172]. This GPU-based timer thus
has the potential to be the most accurate and the least sensitive to activity on
the CPU side. On the other hand, its accuracy varies dramatically between dif-
ferent GPU architectures, and it is not supported by the commonly used Google
SwiftShader renderer.

Number Of Points To Render. Our fingerprinting scheme relies on multiple
iterations of a drawing command, where each iteration exercises a certain subset
of the EUs while leaving the other EUs idle. The number of iterations and
the time each iteration takes to run will determine the total execution time.
However, it is reasonable to assume that capturing more data will provide better
accuracy, and that relatively long workloads will mitigate the impact of the
low-resolution timers available through JavaScript. We ran two experiments
to capture this trade-off. The first was run in the onscreen setting, using the
Gen 3 corpus. The frame rate requirement of the onscreen setting limits each
iteration to at least 16 ms, as explained above. The second experiment was run
in the offscreen setting using the Gen 4 corpus. This setting allowed us to use
much shorter workloads and to increase the number of iterations that can be
run in a reasonable time period. Thus, instead of assigning the stall function
for each point only once per iteration, we tried all 2n possible subsets of the set
of points, allowing us to measure the contention between EUs, as well as their
individual speeds.

3.4.2 Results
Table 3.1 summarizes the accuracy gains obtained in the lab setting using dif-
ferent timing methods. The mobile devices were evaluated using the onscreen
method only due to limited access to those devices. Gen 3 and Gen 4 are not
evaluated using the GPU timer method since their hardware does not support
it. All devices within each hardware class were sampled the same amount of
times. We observed that our Random Forest-based classifier approaches peak
accuracy as the size of the training data set approaches 500 traces per label. As
the table shows, our scheme delivered significant accuracy gains, well above the
base rate, in all scenarios, both for desktop and mobile devices. The parameter
choices, however, did affect the performance of our scheme.
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Effect Of Stall Function. As expected, each of the operators we evaluated
performed differently on the different hardware targets. Specifically, in the
onscreen setting, the mul operator delivered the best accuracy gains for the
Gen 3 and Gen 4 corpora, while exp2 was the best performer for the Gen 8
corpora, as described in more detail in section 3.4.1. The different mobile device
corpora, which were also evaluated in the onscreen setting, also had different
optimal operators: pow for Galaxy S8/S8+ and Galaxy S9/S9+, atanh for
Galaxy S10e/S10/S10+ and mul for Galaxy S20/S20+/S20 Ultra.

In the offscreen setting, the sinh operator was consistently the best performer
for the Gen 4 and Gen 8 corpora, while mul was better than sinh for the
Gen 10 corpora. We hypothesize that since the offscreen setting allowed us to
trigger multiple execution units at the same time, and the amount of advanced
math units that handle trigonometric operations is lower than the amount of
EUs, the conflicts and race conditions that arise inside the GPU gave this op-
erator additional discriminating power.

Effect Of Timing Measurement Method. As stated above, the offscreen
method allowed us to execute more iterations than the onscreen method, al-
lowing us to capture data about EU contention, as well as on the timing of
individual EUs. We were also interested in comparing the relative performance
of the offscreen method, which measured time on the CPU side, and the GPU
method, which used disjoint timer queries to measure performance on the GPU
side. We hypothesizes that the GPU method would be superior to the offscreen
method, since the GPU-side timer has higher accuracy than the CPU-side timer,
and is not affected by the timing jitter introduced by inter-process communi-
cations (IPC) between the GPU and the CPU. In practice, we discovered that
this is not always the case. As shown in table 3.1, the GPU timer is better
than the CPU timer for the Intel Gen 10 and Apple M1 corpora, has equivalent
accuracy to the CPU timer on the Gen 8 corpus, and is actually less accurate
than the CPU timer on the Intel Gen 4 corpus. To make matters worse, the dis-
joint timer query WebGL extension is not supported on several popular WebGL
stacks, most significantly the software-based Google SwiftShader. Thus, the
GPU-based timer is not appropriate for use in a large-scale experiment where
the hardware configuration is not known beforehand.

Accuracy vs. Capture Time. Figure 3.3 shows the accuracy gain as a
function of trace capture time, both for the Gen 3 corpus using the onscreen
collection method, and for the Gen 4 using the offscreen collection method. As
the Figure shows, the accuracy gain of both methods approaches its optimal
point when samples are collected for around 2 seconds. This is reached after
about 80 iterations in the onscreen method and 1024 iterations in the offscreen
method.

Swapping Hardware. To reinforce our claim that the classification results
are due to differences in the behavior of the GPUs, and not due to some residual
differences among the computers, we selected two Gen 3 computers, physically
swapped their hard drives, and re-ran the fingerprinting classifier. As expected,
the fingerprinting classifier was not misled by the hard disk transplant, and was
still able to label each of the two computers according to their CPU. Next, we
returned the hard drives to their original locations, and physically swapped the
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Figure 3.3: Accuracy gain as a function of trace capture time

CPUs with integrated graphics of the two systems. As expected, the classifier
followed the transplanted CPU, even though all other hardware was unmodified.

3.4.3 Evaluation on Additional Browsers.
We collected and evaluated traces from 16 devices from the Gen 4 corpora us-
ing multiple additional browsers: Brave browser [173] (version 81.0.4044.113),
Edge [174] (version 96.0.1054.43), Opera [175] (version 82.0.4227.23) and Yan-
dex browser [176] (version 21.11.3.927), all using the offscreen method. The ac-
curacy showed a significant improvement over the base rate, which lies at 6.25%,
with Edge, Brave, Opera and Yandex, delivering accuracies of 34.6±0.6%,
31.0±0.3%, 31.6±0.7%, and 31.1±0.3%, respectively.

We evaluated the stability of DrawnApart over 21 devices of the Gen 4 cor-
pora for an extended period of time. We collect data for both Chrome and
Firefox. For Chrome, we use the onscreen and offscreen methods. For Firefox,
which does not currently support the offscreen method, we are limited to the
onscreen method. We also chose to stall the EU for twice as many operations
under Firefox, compared to Chrome, to account for the lower timer resolution
found in Firefox.

For 24 days, we repeatedly launched the browser, collected traces for 20 minutes
using the offscreen method and for 40 minutes using the onscreen method, then
quit the browser and idled for 4 hours. The first 4 cycles were used to train
the Random Forest classifier, while the remaining cycles over the experiment’s
24 days were used to evaluate its performance. The results are summarized
in Figure 3.4 and show the accuracy to be above the base rate for each point
in time. We observed that the offscreen method yields slightly higher accuracy
than onscreen, and that the accuracy of both methods on Chrome slightly decay
over time, while the accuracy of the onscreen method on Firefox remains stable.
Finally, the accuracy in this experiment is lower compared to the results reported
in Table 3.1. It is possibly due to repeatedly restarting the browser over the
course of the experiment, as we discuss in Section 3.6.3.
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Figure 3.4: Additional Browsers – Lab Evaluation

3.4.4 Summary
Our results show that DrawnApart can tell apart identical computers in a
controlled lab setting. Our next objective was to a realistic setting, in which
the attacker has less control over the devices to be fingerprinted. We did so by
first evaluating DrawnApart in a standalone setting, and then integrating it
with a state-of-the-art browser fingerprinting algorithm.

3.5 In-the-Wild Setting
Performing browser fingerprinting in the wild presents different challenges com-
pared to what we experienced with the lab setting:

1. The lab evaluation assumed a closed list of devices. In the real world,
new devices can be added at any time during the collection period, but
we cannot re-train the model whenever it happens.

2. The lab evaluation assumed we had a long time to collect data and train
over the devices. In the real world, we do not have unlimited access to a
device so the collection of data must be fast.

3. Finally, the lab evaluation assumed the devices were idle and in a con-
trolled environment. In the real world, we have to contend with variable
computing loads, restarts, and updates to both the browser and the oper-
ating system.

In order to understand the potential impact of DrawnApart in the real world,
we collected 370, 392 traces from 2, 550 devices over 7 months and performed
the two following evaluations:

• Standalone evaluation: Considering only DrawnApart traces with-
out any other information, we aim to see how our method performs at
reidentifying a device among others. In section 3.5.2, we propose a one-
shot learning pipeline whose aim is to match a new trace with another
known trace present in our dataset.

• Tracking over time: Browser fingerprints evolve [152]. Vastel et al. de-
veloped two algorithms to track evolutions and link fingerprints that be-
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long to the same device [177]. In section 3.5.4, we show how Drawn-
Apart can improve the FP-Stalker algorithms, which are the current
state-of-the-art tracking algorithms, by increasing the duration users can
be tracked. Our main metric to evaluate the gain of our technique will be
the median tracking time. Contrary to the standalone evaluation, we
use all the attributes listed in appendix A.1 as well as the DrawnApart
traces.

3.5.1 Dataset constitution

Large-scale Experiment. To show DrawnApart’s practical advantages
over traditional deterministic fingerprinting methods as used in FP-Stalker,
we launched a large-scale experiment with diverse hardware and software. We
integrated our DrawnApart technique into the Chrome browser extension
from the AmIUnique crowd-source experiment [155]. The extension period-
ically collects the browser fingerprints of thousands of volunteers, allowing us
to track their evolution.

DrawnApart Collection Parameters. The crowd-sourced experiment con-
strained our choices. Most importantly, we wanted to be as non-intrusive as pos-
sible, as to not cause any user-perceivable slowdowns. In addition, we wanted to
be compatible with various rendering stacks we encounter in the wild. Finally,
we were interested in selecting a stall function that discriminates a wide variety
of hardware. With these constraints, we selected the offscreen timing method,
which is supported by all desktop versions of Chrome. The onscreen method
was not selected as it causes slowdowns, and the GPU method was not selected
since it is not supported by the Google SwiftShader renderer. We chose the sinh
stall function operator, which provided good performance during our tests. We
render all possible subsets of 10 points in each trace, for a total of 210 = 1, 024
iterations per trace. This fingerprint takes a median time of 1.6 seconds to run.
It is collected by the extension using a worker thread, without affecting the
user’s interactions with the browser. To increase our trace count, we repeated
each collection seven times, for a median total run time of approximately 12
seconds. We collected the traces every four hours.

Dataset Preparation. Our dataset contains 370, 392 fingerprints from 2, 550
unique devices. In each fingerprint, we collect the attributes listed in ap-
pendix A.1, together with 7 DrawnApart traces. We identify devices with
the same GPU by looking at the WebGL renderer string property. Over 90%
of the devices shared a renderer string with at least one additional device. The
largest observed group with same renderer string consisted of 534 unique de-
vices.

We split our dataset into three subsets, divided by measurement time: 1MP
contains 109, 375 samples collected between 3-Jan-2021 and 7-Feb-2021, 2MP
contains 46, 293 samples collected between 7-Feb-2021 and 31-Mar-2021, and
3MP contains 214, 724 samples collected from 3-May-2021 to 8-Jul-2021. We
randomly choose 65% of the devices in 1MP that have more than 28 samples,
and refer to this subset as 1MP65. The rest of 1MP will be referred to as 1MPrest
The limit of 28 samples, or 196 DrawnApart traces, was chosen to make sure
the neural network will generalize well, by preventing it from overfitting on
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a small amount of traces of a specific device. We normalized each trace and
reshaped a vector of length 1024 into a 32x32 matrix.

3.5.2 Standalone evaluation
Before integrating our model with FP-Stalker, we first evaluate it in isolation
using only DrawnApart traces and ignoring the other attributes. In contrast
to the classical ML model used in the lab setting, we used a neural network
pipeline for the in-the-wild setting. The ultimate goal of the pipeline is to
generate quality embeddings in Euclidean space, which express the distance be-
tween traces. We begin the process by creating a Convolutional Neural Network
(CNN)-based multinomial classifier. The structure we selected for the classi-
fier is inspired by Picek [178], and includes N convolution blocks followed by a
flatten layer, a dense layer, another L2-normalized dense layer without activa-
tion, and concluding with a fully connected layer with softmax activation. Each
convolution block contains a convolution layer, a dropout layer, and an average
pooling layer. We used scikit-optimize’s Bayesian optimization [179] to search
for the best parameters, using 80% of the traces in 1MP65 for training, and the
remainder of 1MP65 for validation. The chosen hyperparameters are listed in
Table 3.5. The parameter search took 48 hours on a server with four NVIDIA
GEFORCE RTX 2080 Ti GPUs, two Intel Xeon Silver 4110 CPUs, and 128 GiB
of RAM. The run yielded 79 valid neural networks. The best network achieved
a training accuracy of 35.57% and a validation accuracy of 33.82%.

Table 3.5: Hyperparameters for the CNN classifier

Hyperparameter Value Space

Embedding size 256 32–256
Number of convolution blocks 3 1–10
Batch size 32 32–1024
Convolution filter size 128 8–128
Convolution kernel size 4 2–5
Dropout rate 0.119510 0–0.5
Activation relu relu, sigmoid

Semi-Hard Triplet Loss Model. The next step in our ML pipeline is
the transformation of the multinomial classifier into an embedding, using the
triplet loss method. Triplet loss minimizes the distance between an anchor
and a positive, both of which have the same label, and maximizes the distance
between the anchor and a negative of a different label. Semi-hard triplet loss
means that we only use triplets that have a negative that is farther from the
anchor than the positive, but still produces a positive loss [159]. We took our
trained classification model, removed its last layer, and trained it again for 30
epochs on the same dataset as before, this time with a bigger batch size of 1024
preprocessed traces and with semi-hard triplet loss. Batch size is important to
the triplet mining process since we need sufficient examples in the batch to find
enough semi-hard triplets. We took the weights of the epoch that yielded a
model with the best accuracy using a 1-Nearest Neighbor classifier. The end-
product of this process is a model that accepts preprocessed DrawnApart
traces as input and produces embeddings in a Euclidean space. Labels are
not involved in this process—we can take any DrawnApart trace, even from a
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device that the model was not trained on, feed it into the triplet loss model, and
get Euclidean space embeddings. We note that we optimized for the accuracy
of the classification model, instead of the 1-Nearest Neighbor, to reduce the
running time of our parameter search.

Evaluating The Classifier. The use of embeddings mandates using a
k-Nearest Neighbors classifier for analyzing the outputs of the network. Our
metric for evaluation is the top-k accuracy, which stands for the probability
that the correct answer is one of the k nearest neighbors of the selected trace,
for k = 1, 5, and 10, according to the distance metric output by the model.

Base Rate Calculation. The accuracy of a classifier should be compared
to the base rate obtained by a naive classifier with no access to the features.
In the case of a classical learning problem, the naive classifier can observe the
training data and learn the apriori probabilities of each label. Then, to get the
best accuracy, this naive classifier will output the label of the most commonly
observed device, or the n most commonly observed devices for a top-n setting.
The base rate in that case is therefore the cumulative proportion of these devices
in the dataset. In the case of a k-shot learning problem, the classifier does not
know the apriori probabilities of each label, since it gets an equal amount of
training data for each label. The naive classifier in this case will just output a
random label, or n random labels for a top-n setting. The base rate in that case
is only n ∗ (#devices)−1.

Train-Test Split Evaluation. We evaluated our model in two ways: ran-
dom train-test split, and k-shot learning. In the train-test split evaluation, we
randomly split each of the 1MP65, 1MPrest and 2MP datasets into two parts,
using 80% for memorizing and 20% for testing. We first used 1MP65 for eval-
uation. On this subset, the base rate is 1.00% for top-1 accuracy, 3.51% for
top-5 accuracy and 6.15% for top-10 accuracy. To show that our network can
generalize and work on traces it has never seen before, we next considered the
performance of the network on 1MPrest . On this subset, the base rate is 1.22%
for top-1 accuracy, 4.42% for top-5 accuracy and 7.2% for top-10 accuracy. To
show that our network generalizes to more devices and new traces, we evaluate
it on 2MP. 2MP contains devices from 1MP, meaning that the neural network
was trained on some of the devices in 2MP, but not all of them, but it was never
trained on any traces from 2MP. On this subset, the base rate is 0.64% for top-1
accuracy, 2.78% for top-5 accuracy and 4.38% for top-10 accuracy. The results
in table 3.6 demonstrate that our model accuracies are significantly better than
the base rate for all of the three datasets. The accuracies on 1MP65 and 1MPrest

datasets are roughly the same, showing the model responds well to new devices.
The small drop in the accuracy of 2MP despite a base rate of approximately
half the other datasets, the addition of more devices and new traces and being
collected at a later date, shows the model has generalized well.

k-shot Learning Evaluation. The k-shot learning evaluation was performed
on the 2MP dataset. We chose 2MP to evaluate k-shot learning because we
used the traces from 1MP65 to train our triplet loss model, which would bias
the results. While some of the devices in this subset also appear in 1MP, none
of the traces in 2MP were used to train or validate the neural network. In the
memorizing phase, we memorize the first k collections (k × 7 DrawnApart
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Table 3.6: Standalone Performance of DrawnApart In the Wild Using The
Random Split (RS) and k-shot Methods

Evaluation Method Accuracy (Base rate)
(Dataset) Top-1 Top-5 Top-10
RS (1MP65) 28.88% (1.00%) 56.36% (3.51%) 68.70% (6.15%)
RS (1MPrest) 28.28% (1.22%) 55.09% (4.42%) 67.15% (7.20%)
RS (2MP) 23.33% (0.64%) 47.23% (2.78%) 58.83% (4.38%)
1-Shot (2MP) 5.44% (0.05%) 14.10% (0.26%) 19.95% (0.51%)
5-Shot (2MP) 7.11% (0.05%) 19.34% (0.26%) 26.75% (0.51%)
10-Shot (2MP) 9.22% (0.05%) 22.77% (0.26%) 31.09% (0.51%)

traces) of each device in 2MP. The rest of the traces of 2MP are used in the
testing phase, again using a k-Nearest Neighbors classifier. This is an evaluation
that is close to real-world use. An attacker would like to identify users with as
few collections as possible. This evaluation is harder than the previous one due
to the small amount of data available for the memorizing phase. In addition,
the time difference between 1MP and 2MP requires the network to deal with
concept drift. As mentioned above, the base rate in this setting is very small,
because the attacker cannot learn anything about the distribution of the devices
in the test set. The results can be found in table 3.6. As expected, they show
a decrease in accuracy compared to the evaluation using random split, but our
model still delivers significant accuracy beyond the base rate. We thus conclude
that DrawnApart can be used for few-shot learning.

We leave the 3MP dataset to be used in the evaluation process of FP-Stalker
to test the model on a truly unseen dataset that reproduces in-the-wild condi-
tions.

Visualizing Euclidean Distances. To visualize the performance of our
few-shot learning pipeline, we computed the Euclidean distances between pairs
randomly sampled from 2MP from the three following populations: Embeddings
from the same device, embeddings from different devices that share the same
renderer string, and finally embeddings from different devices with different
renderer strings. To eliminate correlations between traces in the same collection,
we used only the first trace in the collections that we sampled from. It means
that we measured the distance between traces from different collections only.
fig. 3.5 presents the probability density of the different distributions. As the
figure shows, embeddings from the same device get a lower Euclidean distance
compared to embeddings from different devices, even if the device has the same
GPU. Of interest is that embeddings from different devices that share the same
renderer string have a lower Euclidean distance compared to different devices
that do not share the same renderer string. This confirms that DrawnApart
indeed fingerprints the GPU stack or an element correlated with the GPU stack.
We can also observe that if two traces have a Euclidean distance of less than
0.65, we can be almost certain that both traces came from the same device. This
is a strong property, we use it in the next section to improve FP-Stalker.
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Figure 3.5: Performance of the DrawnApart embedding function. A Euclidean
distance below 0.65 indicates that the traces are likely to be from the same
device.

3.5.3 Evaluation on additional browsers in the wild.
While approximately 93.8% of the traces found in our in-the-wild dataset 2MP
come from users running the Google Chrome browser, some users submitted
traces using other Chromium-based browsers. We isolated non-Chrome users by
filtering the traces according to their user-agent, and analyzed the effectiveness
of our standalone machine learning pipeline on these browsers as well. The
non-Chrome traces came from users running Edge, Opera and Yandex, which
represented 5%, 0.7% and 0.5% of the traces respectively. We run the evaluation
pipeline described in section 3.5.2 for each browser, independently. Our results
show that the standalone pipeline’s accuracy for Edge, Opera and Yandex is
52.6%, 79.3%, and 89.7%, respectively. The smaller amount of traces in this
subset of the data results in a higher base rate when compared to the entire 2MP
dataset—3% for Edge, 17.9% for Opera, and 27.6% for Yandex. These results,
with the lab setting results, indicate that our fingerprinting technique identifies
browsers from multiple vendors. More details can be found in appendix A.2.

Summary. The results of the standalone evaluation, as summarized in Ta-
ble 3.6, show a significant improvement over the base rate, demonstrating that
DrawnApart is effective on its own. However, it can be observed that the
classifier’s effectiveness is significantly reduced in the k-shot model, where the
attacker has a limited trace budget to be used for training. Putting these num-
bers into context is important. In the world of browser fingerprinting, no single
attribute differentiates all devices. While some attributes are more discrimi-
nating than others, it is their combination that is key to differentiating one
device from another. The standalone evaluation of DrawnApart shows that
our method has the potential to significantly contribute to fingerprinting accu-
racy. In the following subsection, we empirically measure this contribution by
using our method in conjunction with additional fingerprinting attributes.
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3.5.4 Integrating DrawnApart with FP-Stalker
FP-Stalker is the state-of-the-art fingerprint linking algorithm [140]. In this
section, we show that DrawnApart can be used to improve the state-of-the-
art.

Hybrid Algorithm. FP-Stalker has two distinct algorithms: one en-
tirely rule-based, while the other combines rule-based constraints and machine-
learning. Vastel et al. demonstrated that their hybrid variant of yielded better
results on their dataset, but was slower than its rule-based counterpart. As
we are trying to prove the effectiveness of DrawnApart in a real-world sce-
nario, we chose to implement and optimize the hybrid FP-Stalker algorithm,
regardless of its speed.

FP-Stalker consists in:

1. a preprocessing step that discards fingerprints that contain inconsistencies
or have been spoofed and cannot be normally found in the wild,

2. a training phase, in which the Random Forest algorithm is trained on a
balanced dataset,

3. an inference phase, in which the trained model, combined with rules, com-
pares incoming fingerprints to a pool of previously classified fingerprints
and attempts to link them.

The linking algorithm is presented in Algorithm 1.

Improving The Algorithm. As mentioned in section 3.5.2, the output
of the embedding network consists of 256 L2-normalized points that allow us
to use a Euclidean distance to compute the similarity between embeddings.
fig. 3.5 shows that the Euclidean distance is efficient, to an extent, in differ-
entiating devices. Based on the results obtained in section 3.5.2, which show
that DrawnApart can correctly classify devices with an acceptable accuracy,
we decided to introduce the use of the generated embeddings as a complement
to the machine-learning side of FP-Stalker. We note that the results of our
nude FP-Stalker cannot be fully compared to the results obtained by Vastel et
al. for two main reasons:

1. Their dataset spans for longer than the dataset we use in our experiments.

2. Flash-related attributes no longer exist,[180], negatively impacting FP-
Stalker’s effectiveness.

Integrating DrawnApart as a complement to FP-Stalker’s machine-learning
model is motivated by the fact that FP-Stalker uses a series of conditions on
the output of the Random Forest that makes its decisions too restrictive. FP-
Stalker’s original code includes a function to optimize the threshold used by
the Random Forest, which we adapted and ran on our dataset. The resulting
threshold yielded similar results, consequently comforting our observation that
the rules associated to the output of the Random Forest are too restrictive,
and discard too many fingerprints coming from the same browser instance. On
the other side, fig. 3.5 shows that even though the Euclidean distances can
be used to efficiently differentiate devices with a relatively low threshold, its
usage alone may yield an unacceptable rate of false linkages due to a little
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Function FingerprintMatching (F, fu, λ, ϵ)
for fk ∈ F do

if FingerPrintHasDifferences(fk, fu, rules) then Fksub ← exact
∪ < fk > ;

else
exact ← exact ∪ ¡fk¿

end
end
if |exact| > 0 then

if SameIds(exact) then return exact[0].id ;
else return GenerateNewId() ;

end
for fk ∈ Fksub do

cosine sim ← GetSimilarity(fu.avg embedding,
fk.avg embedding);
if cosine sim > ϵ then

return fk.id
end
< x1, x2, .., xm > = FeatureVector(fu, fk);
p ← P(fu.id = fk.id | < x1, x2, .., xm >)
if p ≥ λ then

candidates ← candidates ∪ < fk, p >
end

end
if |candidates| > 0 then

if |GetRankAndFilter(candidates)| > 0 then return
candidates[0].id ;

end
return GenerateNewId()

Algorithm 1: Hybrid matching algorithm with the DrawnApart addition
highlighted in red

percentage of different devices having low Euclidean distances. To use Drawn-
Apart embeddings in FP-Stalker, we average the seven embeddings that are
collected with each fingerprint and we output an average embedding. We used
the previously generated averaged embeddings to compute the cosine similarity
of the two compared fingerprints. The resulting similarity is compared to a
threshold we chose based on an analysis on the train dataset. This process is
explained in the next paragraphs. If the similarity of the two embeddings is
above the chosen threshold, we classify the fingerprint as similar to the one
being compared without further steps. The algorithm with the DrawnApart
additions, is available in appendix A.1.

Choosing The Epsilon Threshold. We chose the threshold by performing an
analysis over similar and different devices on the train dataset. We generate an
equally balanced dataset from the training set comprising the cosine similarity
of similar devices and different devices, and compare different percentiles of the
distance of each group. As opposed to the Euclidean distance used in fig. 3.5,
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Table 3.7: Average tracking time by collection period

Collection Period Tracking duration in days ImprovementNude FPS FPS+DA
2 days 17 26 +52.94%
3 days 17.25 25.5 +47.82%
4 days 17 28 +64.70%
5 days 17.5 27.5 +57.14%
6 days 18 30 +66.66%
7 days 17.5 28 +60.00%

was chose the cosine similarity for FP-Stalker because it is bounded by a more
natural interval of [−1; 1]. Our experiments showed that our threshold on the
cosine similarity yielded better results than our Euclidean distance threshold.
Following our analysis, we noticed that the 5th-percentile of similar devices are
all comprised below a similarity of 0.10. Consequently, we chose a threshold of
0.15 in our experiments to account for a safety margin.

Results. We executed our revisited FP-Stalker with its DrawnApart
addition on the dataset described in section 3.5.1. We first trained the Ran-
dom Forest model on fingerprints in the 1MP subset. We then executed the
lambda optimization in order to run FP-Stalker with its optimal parameters,
as required by the original paper. Finally, we executed the inference phase on
3MP, which is unseen by the training phase of both FP-Stalker and the em-
bedding’s network. We execute both FP-Stalker without our contribution,
and our revisited version with DrawnApart, on the same dataset for collec-
tion periods ranging from two to seven days. table 3.7 presents the average
tracking duration obtained for each collection period, with a top improvement
of 66.66% compared to the original FP-Stalker on a collection period of six
days. fig. 3.6 presents the average tracking duration with a collection period of
seven days, as presented in the original paper, which represents tracking a user
who visits a website once a week. As the figure shows, adding DrawnApart to
FP-Stalker increases the tracking time, raising the median average tracking
time by 10.5 days, from 17.5 days to 28 days. This is a substantial improve-
ment to stateless tracking, obtained through the use of our new fingerprinting
method, without making any changes to the permission model or runtime as-
sumptions of the browser fingerprinting adversary. We believe it raises practical
concerns about the privacy of users being subjected to fingerprinting.

3.6 Discussion
3.6.1 Ethical Concerns
We integrated our fingerprinting algorithm into the Chrome browser extension
from the AmIUnique crowd-sourced experiment in January 2021. On the in-
stallation page, users are informed of its purpose and of the data that is collected.
To safeguard users’ privacy, collected traces are only associated with a random
identifier created when the extension is installed, and participants can delete all
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Figure 3.6: Differences in Average Tracking Time between FP-Stalker (Nude
FPS) and FP-Stalker with DrawnApart (FPS+DA)

their data by submitting their extension ID. Out of an abundance of caution,
we decided not to publish the weights of the triplet loss model trained on these
users, since it can enable an attacker to track these users. The extension and the
handling of collected data conform to the IRB recommendations we received.

3.6.2 Fingerprinting countermeasures
Countermeasures can be divided into three groups.

Blocking Scripts. Filter lists block resources known to be a threat to user
privacy. This is the case of Brave’s Shield mechanism [181] and extensions, such
as Ghostery [182] or Privacy Badger [183]. However, filter lists against trackers
and fingerprinting have been shown to lack exhaustiveness [184, 185].

API Blocking. Tor Browser, by default, and Firefox, with specific configura-
tion, prevent web pages from reading out the contents of the canvas for privacy
reasons. Our technique does not examine the canvas content, but rather mea-
sures the time required to draw different graphics primitives. Snyder et al. [186]
consider the WebGL specification a “low-benefit, high-cost standard”, which is
required by less than 1% of the Alexa Top 10k websites. This may lead some peo-
ple to consider the extreme option of completely blocking WebGL, as possible
way of preventing GPU fingerprinting. Disabling WebGL, however, would have
a non-negligible usability cost, especially considering that many major websites
rely on it, including Google Maps, Microsoft Office Online, Amazon and IKEA.
As a form of compromise, we note that Tor Browser currently runs WebGL in
a “minimum capability mode”, which allows some WebGL functionality while
preventing access to the ANGLE instanced arrays API used by our attack.

Changing Attribute Values. Defenses can change an attribute value either
to make it similar with common values shared by a large proportion of users, or
to add noise to it. For example, Tor Browser unifies the values of many attributes
for all users so that their fingerprint is identical, and some browser extensions
add noise to rendered canvas images [177]. Wu et al. [187] introduced a coun-
termeasure that eliminates the differences in floating point operations during
the rendering process to eliminate the differences in the rendering composition
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of WebGL. Blurring defenses on canvas and WebGL focus on changing values.
Our technique does not directly rely on the differences in images in a rendering
process, and therefore is not affected by the countermeasure of Wu et al. [187].

There are three elements that are crucial to our fingerprinting technique: the
ability to issue drawing operations in parallel. The entire graphics stack ten-
dency to deterministically choose which EU will render each vertex. And the
ability to measure the time it takes to render. Disrupting any of these elements
could affect the accuracy of our technique.

Preventing Parallel Execution. To block our method, graphics stack could
limit each web page to a single EU, or disable hardware-accelerated render-
ing altogether and use a deterministic software-only pipeline [187]. However,
this would severely affect usability and responsiveness, because WebGL is built
around massive parallelism. Existing graphics APIs do not also support parti-
tioning execution to a subset of EUs at the moment.

Preventing Deterministic Dispatching. Adding a randomization step to
the GPU’s dispatcher would make it impossible for the web page to choose which
EU receives which vertex. Assuming the dispatcher still attempts to fill up all
available EUs, the effect on performance can be minimized. We note that this
countermeasure is not perfect, since a permuted trace still contains data about
the system being fingerprinted.

Preventing Time Measurements. Countermeasures that reduce, or even
disable, the availability of timer APIs can affect our technique, but completely
blocking timing measurements from the web is known to be a futile task [188,
189].

3.6.3 Limitations and Insights

Experimental Limitations. The in the wild, crowd-sourced experiments
demonstrate that DrawnApart can work successfully in a variety of condi-
tions that are not under the attacker’s control. However, our lab experiments
only cover a limited set of conditions. Specifically, we only evaluated the impact
of temperatures between 26.4 ◦C and 37 ◦C, demonstrating no impact on the re-
sults. Hence, we cannot preclude the possibility that temperatures outside this
range do not affect the results. Similarly, our lab experiments do not control for
GPU voltage variations, which could affect our fingerprinting capability. These
limitations notwithstanding, the results of the crowd-sourced experiments do
provide confidence that DrawnApart is effective in normal operating condi-
tions.

Approach Limitations. We evaluate the effect of device restarts on finger-
printing accuracy by training a model on the Gen 3 devices, and testing the
model against traces collected after rebooting the devices. We obtain an overall
accuracy of 50.3%. We observe that the accuracy drop is not uniform. That
is, some devices maintain stable fingerprints across restarts, whereas the finger-
prints of others change significantly each restart. We note that we do not track
reboots in our in-the-wild experiments. Hence, these already account for the
potential accuracy drop associated with restarts.
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We evaluate our technique across ten Chrome versions, from 80.0.3987.116 to
81.0.4044.138. These ten versions consist of two groups: the v80 group which
includes six minor versions, and the v81 which includes four minor versions.
We train our classifier on the latest v80 version (80.0.3987.163) and test all ten
versions. We obtain an accuracy of around 90% on all v80 versions, but sig-
nificantly lower accuracy, of around 60%, when we test the trained model on
v81. We hypothesize some changes in Chrome between v80 and v81 affected the
entire WebGL stack. Observing the changelog for the Chromium code reposi-
tory reveals more than 10,000 commits between the two versions with several
hundreds affecting the GPU and the WebGL API [190]. An additional experi-
ment we conducted show that an attacker with a limited trace capture budget
can maintain an up-to-date classification model by training a combined model
with traces from multiple versions and obtaining a consistently high accuracy
of 90±% across all ten versions.

3.6.4 Future Work

In-depth Root Cause Analysis. We shared our work with a committee
of WebGL experts in an effort to investigate the root cause of DrawnApart.
They acknowledged that the results reported in the paper offer insight on the
tracking implications that WebGL can introduce and that our method can high-
light differences introduced by the hardware manufacturing process. They pro-
pose additional hypotheses for the mechanism through which manufacturing
variations enable DrawnApart. Specifically, the two propsals are that:

1. DrawnApart might be uncovering differences in power consumption. A
study by von Kistowski et al. [191] noticed differences in power consump-
tion from identical CPUs under the same load but it remains to be seen
if and how this could translate to GPUs and WebGL.

2. The effect might be induced by a difference in the response to temperature
curves.

Validating either hypothesis requires detailed knowledge of the design and the
manufacturing process, which are only available to the manufacturers, and are
likely beyond the scope of a typical academic research.

Next-Generation GPU APIs. DrawnApart currently only uses the
WebGL API, limiting its speed and accuracy. Upcoming Web-based compute-
specific GPU interfaces may allow for far more efficient fingerprinting. There
are two compute-specific GPU APIs for web browsers: WebGL 2.0 Compute
and WebGPU. WebGL 2.0 Compute was integrated into Chrome but disabled
in 2020 [192], and its development has been subsumed by WebGPU [193]. We-
bGPU is currently under active development, and is not supported in the stable
edition of any browser, but preliminary implementations can be found in the
canary versions of Firefox, Chrome, and Edge.

These APIs introduce compute shaders, a form of computational pipeline that
coexists with the existing graphics pipeline. One significant feature offered
to compute shaders is the ability to synchronize among different work units,
by using atomic functions, message queueing or shared memory. We used
this synchronization primitive to prototype a faster fingerprinting technique
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for WebGL 2.0 Compute. In our prototype, all workers race to acquire a mu-
tex, and we record the order in which the different work units were granted
the mutex. We tested this fingerprinting technique on our Gen 3 corpus, after
enabling WebGL 2.0 Compute support in Chrome through a command-line pa-
rameter. This compute-based fingerprint delivered a near-perfect classification
accuracy of 98%, while taking only 150 milliseconds to run, much faster than
the onscreen fingerprint which took a median time of 8 seconds to collect. We
believe that a similar method can also be found for the WebGPU API once it
becomes generally available. The effects of accelerated compute APIs on user
privacy should be considered before they are enabled globally.

3.7 Related work

Web-based Fingerprinting. Eckersley [152] was the first to show that it
is possible to fingerprint browsers based on their features and configurations.
Mowery et al. [143] classified web fingerprinting use as constructive or destruc-
tive. Constructive fingerprinting can detect bots [144, 145, 146], or help to
protect sign-in processes [147, 148]. Conversely, destructive use can track users
and their browsing habits. Many browser attributes are considered parts of a
browser fingerprint, including navigator and screen properties [152, 155], font
enumeration [194], audio rendering [150], and the WebGL canvas [86]. These
techniques are all unable to tell apart identical devices.

Mobile Fingerprinting. Mobile devices have less hardware and soft-
ware diversity compared to desktops [195]. However, they possess addi-
tional fingerprinting sources such as sensors [196, 197, 198, 199, 200], micro-
phones [201, 202, 203, 204, 205] and cameras [206, 207]. Manufacturing varia-
tions can also manifest as differences in the radio frequency (RF) behavior of
networked devices [208, 209]. These techniques are tailored to mobile and RF
environments, while our technique works in all browsers that support WebGL,
without requiring permissions, additional sensors or RF hardware.

Physically Unclonable Functions. The silicon-based physically unclonable
function (PUF) concept is based on the idea that, even if a set of several inte-
grated circuits is created through an identical manufacturing process, each cir-
cuit is actually slightly different due to normal manufacturing variability. This
variability can be used as a unique device fingerprint based on hardware. Exam-
ples of silicon PUF sources include logic race conditions [141, 142], Rowhammer
behavior [210], and SRAM initialization data [211, 212]. Ruhrmair et al. [213]
defined a fingerprint as “a small, fixed set of unique analog properties”, and
explain that the fingerprint should be measured quickly and preferably by an
inexpensive device. In this work the GPU is used as a PUF, and our challenge
is how to successfully capture the PUF behavior while using the limited APIs
available to a web browser.

Responsible Disclosure. We shared a preliminary draft of our work with
Intel, ARM, Google, Mozilla and Brave during June-July 2020 and continued
sharing our progress with them throughout 2020 and 2021. In response to the
disclosure, the Khronos group responsible for the WebGL specification has es-
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tablished a technical study group to discuss the disclosure with browser vendors
and other stakeholders.



Chapter 4

A Privacy Analysis of
Games in Android

Smartphones are in the pockets of 6.3 billion users, which represents more than
80% of the worldwide population [214]. As every single one of these devices has
the capacity to play games, the potential market for mobile gaming is huge. In
2021, 2.66 billion mobile gamers [215] spent collectively more than $116 billion
USD on mobile games [216], surpassing the revenue of all other gaming sectors
combined [217]. As users were faced with a global pandemic, they spent more
time at home and on mobile games [218] with a lasting effect and further gains
that can already be observed in 2021 [219].

Amidst this booming market, publishers are exploring different ways to mon-
etize their games, as detailed by Tang [220]. More than 95% of games on the
Google Play Store are free [221], while the others can be accessed for a rela-
tively small price with most paid games being priced under $10 USD. Games
can also earn revenue by showing personalized ads to players or by selling in-
app purchases (IAP) (e.g., to unlock levels, buy in-game currency). Inspired
by streaming services, some games also offer subscriptions in the form of battle
passes [222] that offer in-game rewards (e.g., extra content, boosts, skins, new
levels). Although each of these methods contribute to generating revenue, as
detailed by Unity’s Game Report [223], ads and IAPs capture the lion’s share of
the revenue with IAP slowly starting to surpass advertising revenues in different
markets.

Interestingly, at a time when online privacy is at the forefront of discussions
regarding the Web, with the development of anti-tracking technologies [224,
225, 226], the upcoming deprecation of third-party cookies [78] and the design
of privacy friendly tracking alternatives [227], mobile gaming seems to be have
been saved from these discussions. On the one hand, users care about data
privacy with 79% willing to spend time and money to protect their data [228].
On the other hand, the pervasiveness of ads and trackers in mobile games seems
to be the complete opposite, where users accept opaque data collection and
data sharing operations performed by a lot of unknown tracking companies. A
survey of US gamers conducted in 2018 revealed that 82% of users preferred
free mobile games with ads compared to paid mobile ones without [229]. 74%
would also watch an in-game ad if they get an in-app perk in return.

As ads are an integral part of mobile gaming, what implications does it have on
users’ privacy? What is the true privacy cost of free games? Does paying for a
game up front truly ensures better privacy guarantees?

77
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In order to answer all these questions, we analyze in this work 6, 751 games,
including 396 paid games, and compare the trackers present in them. Section 4.1
describes the related work. Section 4.2 introduces the pipeline that we built to
collect our dataset of games. Section 4.3 presents the result of our analysis
by considering different dimensions like the number of trackers, the included
permissions, the category of a game, its base price and its intended audience.
Section 5.5 discusses our findings while Section ?? concludes our paper.

4.1 Related work
In the field of Android security, there is an extensive literature on how to an-
alyze apps, through the use of static analyses to dynamic approaches or even
instrumenting firmware or proxying traffic. Some examples include using taint
tracking like Flowdroid [230], Taintdroid [231] or AndroidLeaks [232] to capture
data leaks, explore how permissions can be circumvented to collect sensitive
data [233], or simply look at detecting malware [234]. However, only a handful
of studies look at the presence of trackers in mobile applications and if there are
differences between free and paid applications.

Tracking in mobile applications Razaghpanah et al. studied the mobile
advertising and tracking ecosystem by analysing real-world mobile network traf-
fic [235]. Thanks to an app called Lumen, installed directly on users’ devices,
they were able to capture where the data from mobile apps was being sent. They
also traced back the parent companies behind many different tracking services
and found, in particular, that Alphabet was present in over 73% of the 14,599
apps in their dataset. Finally, they discovered that 39% of the tracking services
they identified were also present as third-parties in at least one of the Alexa
Top 1,000 websites.

Reyes et al. analyzed 5,855 of the most popular free children’s apps on Android
to see if they were compliant with the Children’s Online Privacy Protection Act
(COPPA) [236]. They instrumented the APIs that access sensitive resources
and used Lumen to detect if data from those APIs was sent over the wire.
Their results showed that 19% of tested apps collected identifiers or personally
identifiable information that should never have been transmitted.

Kollnig et al. compared the same 12k apps on both Android and iOS to see if
there were any differences in terms of privacy [237]. In the end, they found no
significant differences between the two platforms despite different architectures
and requirements from both app stores. 88% of Android apps had at least one
tracking library, while 79% of iOS apps did. In both stores, about 3% of apps
had more than ten trackers. Android apps asked for more permissions compared
to their iOS counterparts, but this was mainly due to platform differences where
some resources on iOS were not gated behind a permission, contrary to Android.

Studying paid applications There are few studies that include paid appli-
cations in their datasets, arguably because of the budget required to purchase
them. In 2015, Seneviratne et al. collected the top 100 free and paid apps on
Android in 4 countries [238]. They found that 60% of the paid apps included
at least one third-party tracking library compared to 85% of the free ones.
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Moreover, the tracking behaviours of free apps were about the same as for paid
ones since they found the same types of trackers in both. In 2019, Han et al.
compared 1,505 free Android apps with their paid versions to see if differences
could be observed in terms of privacy [239]. About half had an identical set of
permissions and third-party libraries between the free and paid version.

More recently, Watanabe et al. performed a large-scale analysis of 2M free apps
and 30K paid ones to detect software vulnerabilities [240]. The price of paid
apps they studied ranged from $1 USD to $200 USD. By using vulnerability
scanners and checking for dead code, they found that 70% of the vulnerabilities
in free apps stem from software libraries, compared to 50% for paid ones.

Finally, Ishii et al. looked at the apps present in 13 different Android market-
places [241]. They observed that some paid apps can be found for free in other
marketplaces, with some even having their license verification library removed
so that the pirated copy could bypass the control for an existing license.

Our work In this work, we investigate the tracking ecosystem in mobile games
as we believe their unique economic models can have an impact on the tracking
and advertising libraries that are embedded in them. As the studies discussed
above perform measurements on all types of apps without differentiation, we
focus here on doing measurements specifically for mobile games. Notably, we
want to see if paying for games up front is more privacy friendly than playing
free games.

4.2 Dataset
In this section, we detail the dataset that we used to perform our privacy anal-
ysis, how we collected it and why we did it that way.

4.2.1 Collecting Android applications
Challenges Collecting mobile games directly from the Play Store is not an
easy task. Google provides no list of all the games available on the Play Store.
Querying the store through the search bar returns no more than 200 applica-
tions. The lists of top applications in different categories are also limited to
200 results. And to make an exhaustive search more difficult, rate limiting is
applied on requests coming from the same account and the same IP address.
Viennot et al. highlight how complicated it can be to actually collect apps on
a large scale with their PlayDrone crawler [242]. They paid participants on
Amazon’s Mechanical Turk to create legitimate Google accounts to circumvent
rate limiting. They also rented Amazon servers to have different IP addresses
and queried the store using a 1 million word dictionary to extensively explore
the application space.

Collecting free games Because of the limitations imposed by the Play Store
and how costly it can be to setup a crawling infrastructure, we relied on the
AndroZoo dataset provided by the University of Luxembourg to collect free
games [243]. This dataset is regularly updated and, in 2021, contains more than
17 million Android Package Kits (APK) with more than 14 million originating
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Figure 4.1: A representation of our pipeline to collect the applications and
metadata required for our analysis.
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from the Play Store. For this study, we selected all of the free games from 2021
collected in the AndroZoo dataset, which includes games with as few as a dozen
active users, up to popular games with millions.

Collecting paid games In order to investigate paid games on the Play Store,
we relied on Google’s Play Pass [244], a subscription service for games akin to
Subscription Video On Demand (SVOD) services like Netflix. By paying a fixed
monthly fee, users get access to hundreds of apps and games as part of their sub-
scription and they are all “completely free of ads and in-app purchases” [245].
Through the subscription, paid games can be accessed for free and free games
become devoid of in-game ads and in-game purchases. For this study, we col-
lected the 716 games included in Play Pass in November 2021. It should be
added that the games downloaded as part of Play Pass are identical to those
downloaded by non-Play Pass users. APKs are not built specifically for Play
Pass users, everyone downloads the same APK that contains the same code and
the same third-party libraries. The only difference is that the Google billing sys-
tem recognizes if a user has a subscription and provides direct access to games
and specific in-app products for no additional charge. This detail is especially
important since we want to identify trackers that most users would be subject
to and Play Pass gives us access to the proper APKs for our analysis.

4.2.2 Presentation of the hybrid pipeline
Figure 4.1 provides an overview of the pipeline we put in place to collect both
free and paid games and analyse their content to identify trackers in them.

Step 1: Collection of free games As detailed in the previous section, we
relied on the AndroZoo dataset [243] to collect free games. We downloaded
the full list of 17M+ APKs present [246] and identified the 111, 035 applica-
tions added from the Google Play Store in 2021. This includes apps released
in 2021 but also updates to apps released before 2021. Because the metadata
in the AndroZoo dataset only includes the app ID, we used a scraper called
Google-play-scraper [247] to collect additional metadata for each APK di-
rectly from the Play Store, such as the app’s name, rating and categories. We
discarded all apps that were not games and removed the ones that were no
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longer available from the store. Our final list includes the APKs and metadata
of 6, 035 free games available from the Play Store in 2021.

Step 2: Collection of games from Google’s Play Pass The biggest
difficulty to collect all the games that are part of Play Pass is to get the actual
list of what is included in the service. As Google does not provide access to
the Play Pass catalogue from a Web browser, we used a Pixel 3 phone and
manually added each Play Pass game to the account’s wishlist. This way, we
could use a Web browser to extract the IDs of all the games that are part
of the service directly from the wishlist. Then, for each ID on this list, we
used adb, the Android Debug Bridge, to direct the Pixel 3 phone to open the
corresponding page on the Google Play Store and simulated a tap to proceed
to the installation. After the game is downloaded, we extracted it from the
phone for further analysis and uninstalled it. At the same time, we used the
Google-play-scraper to collect the metadata available on the Play Store for
each game, just as we did for the free games we collected. In total, we collected
from this step 716 APKs, with 396 of them belonging to paid games.

Step 3: Analysis of APKs with Exodus We sent all the APKs we collected
in the first two steps to a local instance of Exodus, a privacy auditing platform
for Android applications [248]. It statically analyses the content of an APK
and returns the list of embedded trackers it has found by identifying specific
third-party libraries or URLs associated with tracking companies [249]. It also
provides the list of the permissions required by the application. In this study,
we adopt the same definition of tracker that Exodus uses: “a tracker is a piece of
software meant to collect data about you or what you do”. As this definition is
broad, it means that the trackers reported by Exodus present different levels of
privacy intrusions. An ad company that collects the user’s geolocation to serve
personalized ads is more intrusive than a tracker that only collects bug fixing
information when a game crashes. All in all, to paint a better picture of the
privacy ecosystem in mobile games, we rely on the 6 different tracker categories
that Exodus provides:

• Advertisements for trackers whose aim is to serve ads;

• Analytics for trackers who collect usage data;

• Crash reporters for trackers that report application crashes;

• Identification for trackers responsible for determining your digital identity.
One example is logging into an app with a Facebook account through
Facebook Login;

• Location for trackers who determine your geographical location;

• Profiling for trackers that are focused on collecting as much information
as possible on the user.

Overview of our dataset Table 4.1 provides an overview of the games we
collected from our two sources: the free games from the AndroZoo dataset and
both free and paid games from Google’s Play Pass subscription service. For
each game, we have the following data:
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Table 4.1: Source of the games present in our dataset.

Free games Paid games Total
AndroZoo 6, 035 0 6, 035
Play Pass 320 396 716

Total 6, 355 396 6, 751

Table 4.2: Overview of the presence of trackers in the games of our dataset

Percentage of
games with trackers

Average number
of trackers per game

Standard
deviation

Free 86.79% 6.11 6.65
Paid 65.31% 1.80 2.38

• the APK with all of the game’s files;

• the Exodus report with both the list of embedded trackers and the list of
permissions requested by the game;

• the Play Store listing information with the game’s name, the age rating,
the review scores, the presence of ads, the presence of in-app purchases
and the number of installations.

4.3 Analysis
In this section, we aim to understand how various characteristics of a game,
such as its economic model, revenue streams, genre, price or target audience
influence the presence of trackers. We look at the presence of ads, the initial
price of the game, its age rating and its number of users to provide insights into
the tracking ecosystem in mobile games.

4.3.1 Impact of the economic model on tracking
Trackers

We find that about 2/3 of paid games have trackers, a 21% reduction compared
to free games, and paid games, on average, have fewer trackers than free games.
Table 4.2 provides an overview of the presence of trackers in all the games present
in our dataset. The majority of free games have between 1 ∼ 12 trackers, while
the majority of paid games have between 0 ∼ 4. Looking more precisely at
the distribution of trackers in Figure 4.2, 10% of free games have more than 15
embedded trackers, with the highest having 36. For paid games, the top 10%
have more than 5 trackers with the highest being 16. These results show as a
general trend that paying for games is in general better, from a privacy point
of view, but there are examples of paid games with plenty of trackers.

Permissions

As detailed by the official Android documentation [250], permissions are divided
into groups with the two main ones being normal and dangerous (also called
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Figure 4.2: Distribution of trackers across free and paid games.

Table 4.3: Top 10 normal and dangerous permissions for free and paid games.
Additional information on each permission can be found in the official Android
documentation [2].

Normal Dangerous
Free Paid Free Paid

Permission % Permission % Permission % Permission %
internet 95.32 internet 94.44 write external storage 52.22 read external storage 31.31

access network state 92.43 access network state 81.31 read external storage 32.66 write external storage 31.31
wake lock 65.69 wake lock 43.69 read phone state 19.18 get accounts 4.80

access wifi state 53.19 access wifi state 34.34 access fine location 15.49 read phone state 2.02
vibrate 37.88 vibrate 21.97 access coarse location 15.36 write settings 1.77

receive boot completed 32.43 foreground service 11.36 write settings 10.57 access fine location 0.76
foreground service 13.28 change wifi multicast state 7.07 record audio 6.28 camera 0.51

bluetooth 9.00 receive boot completed 5.56 get accounts 6.09 read contacts 0.25
change wifi state 7.17 bluetooth 2.53 camera 4.16 record audio 0.25

get tasks 5.93 modify audio settings 2.27 read contacts 0.29 access coarse location 0.25

runtime permissions). A normal permission enables access to data and actions
that present little risk to the user’s privacy, while a dangerous one, like the
user’s location, or contact list, requires explicit consent. We analysed what
permissions are used by both paid and free games, with a particular focus on
dangerous ones:

• Free games: 9.16 permissions on average with 1.52 being dangerous ones.

• Paid games: 6.03 permissions on average with 0.73 being dangerous ones.

Table 4.3 shows the top permissions accessed by most free and paid games. The
top 10 normal permissions shows some differences between the two. For example,
the receive boot completed permission shows a 27% difference. According to
an official Google forum [251], a change in a dependency in the Google Mobile
Ads SDK caused this permission to appear automatically in a lot of applications.
Since this SDK is used for Google AdMob, the most popular tracker in our
dataset (see Table 4.5), this results in a high use of this permission. We expect
this number to even go up as developers update their SDK to the newer version
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that includes this dependency change. Other differences exist but the main
takeaway is that free apps, on average, request the top 10 normal permissions
more often.

For dangerous permissions, access to external storage is at the top for both free
and paid games. As mobile games can require extra storage space for textures
and assets, it is common for developers to add support for external storage to
free up the internal storage. To provide some indication of how large some
Android games can be, a popular game called Genshin Impact requires more
than 14GB of storage. Location access is high for free games with about 15%
of them accessing it, while it is less than 1% for paid games. read phone state
is also high, with 19% of free games asking for this permission. This enables
the game to access information like the user’s phone number or the current
cellular network. Finally, the write settings permission can also prove to be
dangerous as the game can modify system settings. In general, we see that
paid games ask for less permissions than free games, resulting in less access to
sensitive information.

In-game ads and in-app purchases

Table 4.4 splits our dataset into categories based on the presence or absence of
in-game ads and in-app purchases (IAPs). First, the presence of either ads or
IAPs shows an increase in the overall number of trackers, with an additional
increase when both are present. The increase is smaller and more restrained for
paid games as can be seen with the smaller averages and standard deviations.
Second, there’s a strong difference when free games are devoid of ads and IAPs,
only 35% of them contain at least one tracker, compared to between 56% and
96% with at least one tracker for other categories. This may indicate that
developers looking to monetize their apps are more likely to introduce a third-
party tracker. Third, we see that the majority of paid games do not have ads or
IAPs, which likely is in accordance with the expectations of consumers who pay
up front for a game. However, the majority still do contain trackers. Finally,
a curious observation is the presence of advertising trackers in the games that
claim they do not contain any ads on the Play Store. This is possibly a limit of
the static analysis which we discuss in Section 5.5. Some games might include
advertising trackers without using them.



CHAPTER 4. A PRIVACY ANALYSIS OF GAMES IN ANDROID 85

Ta
bl

e
4.

4:
O

ve
rv

ie
w

of
th

e
pr

es
en

ce
of

ad
s

an
d

in
-a

pp
pu

rc
ha

se
s

(I
A

P)
in

ga
m

es

Pr
ic

e
C

on
ta

in
s

A
ds

O
ffe

rs
IA

P
N

um
be

r
of

ga
m

es
N

um
be

r
w

ith
tr

ac
ke

rs
Av

g
nu

m
be

r
of

tr
ac

ke
rs

St
an

d.
D

ev
.

of
tr

ac
ke

rs
N

um
be

r
w

ith
ad

ve
rt

isi
ng

tr
ac

ke
rs

Av
g

nu
m

be
r

of
ad

ve
rt

isi
ng

tr
ac

ke
rs

Fr
ee

N
o

N
o

69
4

24
3

(3
5.

0%
)

2.
00

3.
90

15
6

(2
2.

5%
)

0.
74

Ye
s

51
2

42
1

(8
2.

2%
)

5.
20

4.
11

23
7

(4
6.

3%
)

0.
92

Ye
s

N
o

36
27

33
94

(9
3.

5%
)

6.
15

6.
79

33
39

(9
2.

1%
)

3.
12

Ye
s

14
69

14
12

(9
6.

1%
)

8.
26

7.
07

13
75

(9
3.

6%
)

3.
79

Pa
id

N
o

N
o

31
1

20
6

(6
6.

2%
)

1.
68

2.
13

77
(2

4.
7%

)
0.

38
Ye

s
58

33
(5

6.
9%

)
1.

78
2.

55
18

(3
1.

0%
)

0.
50

Ye
s

N
o

8
5

(6
2.

5%
)

2.
12

2.
47

3
(3

7.
5%

)
0.

37
Ye

s
19

15
(7

8.
9%

)
3.

63
4.

39
9

(4
7.

4%
)

1.
58



CHAPTER 4. A PRIVACY ANALYSIS OF GAMES IN ANDROID 86

Price of games and IAP

Our dataset includes paid games with prices ranging from $0.99 USD to $35.99
USD. The vast majority of games are priced at less than $10 USD. We expected
to see a significantly higher number of trackers for cheaper games, for which
the price could be justified by higher expected advertising revenues, while more
expensive games would need less advertising revenue due to their higher ex-
pected sales revenue. However, Figure 4.3 shows that the average number of
trackers is not correlated to game prices. Indeed, both free and paid games
include monetized content to increase revenue. While we previously noted that
IAPs, on average, lead to the presence of a higher number of trackers in games,
Figure 4.4 shows that the maximum IAP price does not seem to impact the
number of trackers in the game. Similarly, with IAP prices ranging from $1.39
USD to $400 USD, the average number of trackers does not seem to be impacted
by the pricing.
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Figure 4.3: Number of trackers per game price.
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Figure 4.4: Number of trackers per maximum IAP price.

4.3.2 Tracker categories
Figure 4.5 provides an overview of the distribution of trackers across free and
paid apps (see Section 4.2.2 for a short description of each category of trackers).
The first observation is that advertising trackers are 5 times less present in paid
games than in free games. Analytics is the most prominent category of trackers
in paid apps compared to advertisements for free games. Then, regarding both
profiling and identification trackers, there is a little use of them in free games
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Figure 4.5: Average number of trackers per categories for paid and free games.

and almost non-existent use in paid ones. Finally, Table 4.5 reports on the top
10 most popular trackers across all games. Google has 4 different entries, with
each tracker having its own well-defined purpose: Google AdMob serves ads
directly in games, Google Firebase Analytics is analytics mainly targeted for
developers, Google Analytics 4 is aimed at marketers and includes a ”Games
report” analysis to provide data on user acquisition, retention, engagement and
monetization [252], and Google Tag Manager for managing the tracking tags in
a game. Facebook follows closely with two of their own trackers: Facebook Ads
and Facebook Login. All in all, the trackers in mobile games are predominately
for advertisement and analytics.

4.3.3 Game categories
The Play Store groups games into various categories that the developers choose
based on the game’s content. Our dataset holds games from 17 categories, with
the least represented being the Casino category, with a total of 88 games, and
the most represented being the Casual and Puzzle categories, each containing
respectively 1168 and 1099 games. Figure 4.6 shows the average number of
trackers based on the game categories. Casual, Sports and Casino games are at
the top while Arcade, Music and Educational games are at the bottom.

One aspect highlighted by this graph is that the game genre has an impact on
the economic model behind a game. The Casual category, which is the most
represented in our dataset, also includes the highest number of trackers, with
an average of over 8 trackers per game. This high number can likely be linked
to what Casual games offer in terms of gameplay experience. They tend to be
played more opportunistically for shorter sessions and they are uninstalled more
frequently. They suffer from a lack of player fidelity and higher churn [253], thus
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Table 4.5: Top 10 most popular tracker across all games

Tracker name Categories Games with
this tracker

Google AdMob Advertisement 4622
Google Firebase

Analytics Analytics 4110

Unity3d Ads Advertisement 2203
Google Analytics 4 Analytics 1968

Facebook Ads Advertisement 1758

AppLovin
Analytics, Profiling,

Identification,
Advertisement

1256

Google Tag Manager Analytics 1158
IAB Open

Measurement
Identification,
Advertisement 1115

AdColony Advertisement 1114
Facebook Login Identification 1106

introducing maybe the need or the possibility for developers to compensate by
serving more ads, more aggressively, to increase revenue quickly. In contrast,
game genres where players are more invested long-term, typically include a
lower number of trackers. This is the case of the Action and Strategy categories,
which normally capture users for longer sessions. Finally, the Educational games
are shown to include the least amount of trackers, likely due to the nature of
their content and the targeted audience. As detailed in Section 4.3.5, Google
imposes strict policies on what can be included in a game targeted for a younger
audience. Moreover, to maintain a playful aspect and provide a solid learning
environment, game makers may opt to provide less ads to limit disturbances
compared to other categories aimed at a more mature audience.

4.3.4 Top 10 games with the most revenue
To dive deeper into how different economic models may impact tracking, we
look at the top 10 games with the most revenue on the Play Store in October
2021. Table 4.6 provides the details on these games. Surprisingly, only 3 games
out of 10 contain ads, which means they rely mostly on IAPs or subscriptions for
revenue. IAPs have a very wide price range, many are under $1 USD with one
being as high as $374.99 USD. Regarding trackers, the numbers observed are
similar to the average numbers seen in Section 4.3.1 with all of them including
analytics and 8 including an identification tracker. Regarding permissions, the
numbers vary between the ten games but they all access APIs needed for various
features, like access to external storage to download additional assets or to
the microphone for multiplayer games that provide audio exchanges during the
game. For Pokemon GO, it has the highest number of dangerous permissions
but this is also inherent to how the game works. Pokemon GO relies on the
player’s location to spawn creatures and it uses the device’s camera heavily
for its augmented reality interface. Both permissions are gated behind explicit
prompts because they are considered sensitive for users.
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Figure 4.6: Average number of trackers per game genre.

Finally, we can see that the game’s category affects the game’s source of revenue.
For example, there are 3 RPGs in the top 10 that, despite having less than
10M users (compared to Candy Crush Saga’s 1B+ users), have no ads and
rely entirely on IAPs. This indicates that the type of mobile game can attract
different player bases with different spending habits.

In the end, the top 10 provides a glimpse at how popularity and genre can impact
the economic model of a game. While less popular games may rely on ads and
trackers to bring in revenue, more popular games can also sustain themselves
exclusively on IAPs, even in cases when they are otherwise free games.

4.3.5 Google’s ”Teacher Approved” games
With children increasingly relying on technology for both education and enter-
tainment, Google has recently unveiled a new gaming section labelled Teacher
Approved. Apps that are designed for children must participate in a larger De-
signed for Families program [254], which opens their eligibility to be rated for
the Teacher Approved program, without being guaranteed of inclusion. The
program includes stricter policies that apps must follow in order to obtain the
certification. These policies are verified by a panel of U.S based specialists,
which includes teachers, and requires that the app’s content and functionality
be accessible and appropriate for children. Another major point of the Designed
For Families program is that it imposes limits on advertising and tracking for
children. Developers must follow the Family Policy when targetting children
with ads, they can either take on these additional responsibilities when using
in-house advertising, or they may use one of the self-certified ad SDKs [255].
Naturally, given these restrictions, approved apps are expected to contain less
tracking and advertising libraries.

Our dataset includes 181 games with the Teacher Approved label, of which 110
are available for free. Our analysis shows that 75% of those games include at
least one tracker, with almost 47% including at least one advertising tracker.
As these results may look surprising, they are not unexpected as Google does
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not restrict approved apps from including trackers, but rather requires them
to abide to stricter tracking and advertising practices, including using certified
ads [256].
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Teacher Approved apps still include a significantly lower number of trackers,
with, on average, 2.12 trackers per game compared to 6.11 trackers for free
games. We also note that the top three trackers used in Teacher Approved games
make use of Google’s APIs, namely, Google Firebase Analytics, followed by
Google AdMob and Google Analytics. We notice however that other advertiser’s
APIs are also served. Although Google requires that only self-certified ad SDKs
are authorized to serve ads to children in certified apps [255], we do note that 29
Teacher Approved games include trackers flagged by Exodus as Advertisement
trackers that are not present in the list of Google’s self-certified ad SDKs.

Figure 4.7 provides an overview of the average number of trackers split by
different categories. It can be seen that even though profiling goes against the
guidelines, trackers within this category can still be found in Teacher Approved
games. We can however notice that the vast majority of trackers belong to
the Analytics category, which follows with our previous observations. Overall,
Teacher Approved games do seem to provide, from a privacy point-of-view, a
better experience, with less ad and tracker frameworks.

4.4 Discussion
4.4.1 Summary of findings and privacy implications
In this study, we saw that a variety of economic models are being used to mon-
etize mobile games. Some games favour ads and in-app purchases for revenue,
while others rely on the more classical approach of being purchased for an up
front fee. Our analysis reveals that paying for a mobile game leads to, on aver-
age, a smaller number of trackers and little to no ads. Analytics are the most
prominent form of tracking in paid games, while advertisement is very promi-
nent in free ones. Different genres also have an effect on the number of trackers
as the ways they engage users and encourage spending can vary greatly, as can
be seen by the revenue models between a match-3 puzzle game and a fantasy
RPG.

Yet, one of the most important results from our study is how developed the
tracking industry is in mobile gaming. Out of 6,751 games, more than 85% had
at at least one tracker embedded in it. In terms of privacy, this number paints
a bleak picture as a lot of data is being collected on what the players do and
how they play. Even though not all collected data pertains to the player’s exact
identity, a lot of it is still linked to a virtual identity and likely passed around for
analyses and monetization between many companies. This shows that users are
under constant scrutiny when using their smartphones for gaming, as a single
tracker has the capacity to record anything from the smallest gestures up to
getting the user’s list of contacts.

Discussing monetization in mobile games would not be complete without men-
tioning the current state of the ad industry. As privacy is being put at the
forefront of discussions about users’ digital well-being, alternatives are being
designed to protect users from invasive tracking techniques and it is leading to
strong changes in the mobile ad ecosystem. A first example is the AppTracking-
Transparency framework by Apple [257]. When launching a new app, the user
can chose not to share their device’s advertising identifier, which means trackers
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Figure 4.7: Average number of trackers per categories for Teacher Approved and
regular games.

cannot link the activity of the user across different apps on the same device.
While this does not prevent the collection of information, it limits the creation
of very large user profiles based on the data from dozens of apps. Another ex-
ample leading to changes is the return of contextual advertising [258]. Instead
of personalizing an ad using all the information collected on the user, the ad
will be based on the content of the page that the user is seeing. The intrusive-
ness of this technique on user’s privacy is minimal as companies do not need to
build and maintain user profiles based on behaviour, purchasing habits or other
factors. In the end, it remains to be seen the impact that these changes will
have on trackers in mobile apps and if it will indeed lessen the heavy scrutiny
that users are subject to, often without their knowledge.

4.4.2 Limitations and future work
A first avenue for future research is to use dynamic analysis to go deeper into the
analysis of tracking in mobile games. While static analysis reveals the presence
of specific trackers, we do not capture how they are actually used in games and
if they are triggered at all. Using a tool, such as Lumen [235, 236], combined
with complex scenarios to exercise the game and explore as many options as
possible, would likely help us identify the information being sent, how sensitive
it is, and what the final destination is.

A second avenue is to look at games provided by marketplaces other than
Google’s Play Store, and platforms other than Android. As each marketplace
has its own requirements when submitting an app, tracker analysis would reveal
if players from different marketplaces are subject to less or more tracking than
those who rely on the more popular Play Store.
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Finally, a third avenue is to integrate the future evolution of the Android plat-
form in a tracking analysis. Google has just announced that in February 2022,
they will show a Data Safety Section on apps in the Play Store to indicate what
user data each app collects and shares [259]. Integrating this data into our study
could help refine its findings. Another evolution is the new Android App Bundle
(AAB) format for Android applications [260]. Designed to be more flexible than
the traditional APKs, apps delivered with the AAB format will be optimized
for the user’s device based on its configuration and language. What remains to
be seen is how tracking companies will utilize this mechanism, for example, to
deliver different trackers based on the device used by the user.



Chapter 5

Environmental Impact of
Online Ads

5.1 Introduction
As of July 2023, there were over 5.19 billion Internet users in the world [261].
This ever-increasing online population demands new services and new content to
be delivered at the highest quality and lowest latencies possible. In 2018, it was
estimated that over 2.5 quintillion bytes of data were being created daily [262].
And interestingly, much of the Internet is free for users to access, financed
indirectly through advertising. To increase revenue, the advertising industry
has evolved from simple banners to a complex ecosystem that relies on tracking
and profiling users [263, 264].

However, the prevalence and invasiveness of ads increasingly questions their
sustainability. Indeed, during much of the same period that online advertising
developed, the consequences of climate change have become better understood
and more visible. According to the United States Environmental Protection
Agency global greenhouse gas (GHG) emissions have increased by 43% between
1990 and 2015 [265]. Data centers (DC) host the majority of the content being
accessed online and account for over 1% of global electricity demand [266]. As
such, many previous works have focused on assessing and optimizing DC carbon
footprint [267, 268, 269, 270].

Little has been done to assess the carbon footprint of online advertising. Tay-
lor et al. [13] estimated in 2008 that every million ad impressions produces
676 kgCO2e. In 2018 Pärssinen et al. [138] proposed a layered model and re-
ported that digital advertising is responsible for 60 MtCO2e. To date, these
two studies are the most extensive estimates of the carbon footprint of the ad-
vertising ecosystem. However, they are based on estimates and simulations and,
to the best of our knowledge, no real-world measurements have assessed their
conclusions.

In Ad-Carbon we report on a real-world measurement of the carbon impact of
the advertising ecosystem. Our contributions are:

1. An approach that leverages end-to-end measurements to estimate the car-
bon footprint of advertisements. Specifically, we propose a model that
quantifies the carbon footprint of the client device through fine-grain per-
event profiling and energy consumption monitoring, the network through
routing data and latency measurements, and the server-side through re-
sponse time measurements, allowing us to estimate the carbon emissions
of individual requests. Our model factors in the electricity mix of the

95
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country through which the request is routed. We assess the stability of
our approach through four crawls performed between June and October
2023.

2. We provide an end-to-end estimate of the carbon footprint of different
categories of websites by visiting over 31, 300 webpages from over 10, 500
domains of the Tranco list [271]. Our crawls are done both with and
without ad-blocking, as well as with and without consenting to cookie ban-
ners. We find that advertisements are responsible for an increase of 144%
of the carbon footprint of our crawls. We identify scripts to be responsi-
ble for the majority of CO2eemissions of our crawls, with 41.36 kgCO2e
emitted.

3. Through prebid.js, we leverage client-side header bidding to estimate the
carbon footprint of ad auctions and show they generate an additional
0.16 gCO2e, on average, per visit.

4. We instrument cookie banners to show that the acceptance of cookies (and
trackers) produces 90% more CO2e.

5.2 Background & Motivations
Advertisements generated over $209B in 2022 [272], an increase of 10.8% over
2021, which increased again by 36% over 2020. Advertising is present in every
aspect of the Web. From search engines to video streaming platforms, resource-
consuming ads are pervasive and constantly require new infrastructure to keep
up with the demand. In 2015, Pujol et al. [273] estimated that over 18% of
HTTP requests performed by Web pages were related to advertising. These
results are confirmed by Gui et al. [274], whose work shows that ”apps with ads
consume, on average: 48% more CPU time, 16% more energy, and 79% more
network data.” These studies help to understand the impact of advertising on
the end user’s device, but do not account for the network and backend costs of
advertising.

Much of online advertising relies on profiling and tracking [263, 264]. Cookies,
cookie sharing [69, 72], trackers [65], as well as browser fingerprinting [6, 8, 15]
directly increase energy consumption and carbon emissions on the user’s device,
on servers and on networks. Interestingly, a study in 2020 showed that uBlock
Origin1, a popular ad-blocker [275], reduces page load times by over 28% and
could save users over 100h of electricity each year, a significant reduction to
their carbon footprint [276]. This is a lower bound as they do not account for
network or server-side resources.

5.2.1 Ad bidding
Real-Time Bidding (RTB) [277], introduced in the late 2000s, allows advertisers
to purchase individual ad impressions on publishers’ websites through an ad
exchange platform using an auction-based protocol. Advertisers choose to bid
based on the user’s profile. Bids are sequentially collected from Demand-Side
Platforms (DSPs), in a waterfall process, and the winning bid is displayed in
the publisher’s slot.

1https://ublockorigin.com/

https://ublockorigin.com/
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This sequential process makes it easy to miss higher bids. Header Bidding
(HB) [106] flattens the process and reaches out to all registered ad exchanges
or Supply-Side Platforms (SSPs) at once. Header bidding comes in two main
forms:

• Client-side header bidding runs in the client’s browser. The publisher
defines slots and the exchanges for each auction. The client’s browser ini-
tiates the auction through requests to different exchanges. The exchanges
then might decide to bid. The exchanges respond with an object contain-
ing the bid value, if any, and the ad’s content. Once all bids are collected
or the timeout is reached, the client identifies the winner and notifies the
result. While client-side header bidding provides many benefits to the
publisher, including cookie syncing and re-targeting, it remains limited by
the client device’s network performance.

• Server-side header bidding is newer and solves the resource issues of client-
side header bidding by running in a server. Both processes are similar but
latency is improved and the number of exchanges is not limited by the
client’s device, potentially increasing the top bid. As server-side header
bidding does not happen in the client’s browser, it does not include client-
related cookies and, therefore, a less precise profile of the user is sent to
the advertisers.

Pachilakis et al. [107] show that over 14% of the Top 35,000 Alexa websites
implemented client-side header bidding, and that header bidding significantly
increases the time to display an ad. Our study relies on client-side header
bidding to estimate the carbon footprint of the auction process by analyzing
events through prebid.js,2 an open-source bidding platform. Based on prebid.js,
Pachilakis et al. [107] show that despite reaching more ad exchanges, publishers
collaborate with fewer, more efficient exchanges. Cook et al. [278] leverage
prebid.js to build a model to infer data-sharing between trackers and advertisers
that are missed by cookie syncing.

5.2.2 Impact of advertisement
It is estimated that the Internet user over 10% of global electricity and is ris-
ing [132, 133]. This is a significant carbon footprint. As the advertising industry
has evolved into a core component of the Web, we provide estimates of the car-
bon footprint of online advertising. Few studies have taken a look at the energy
consumption and carbon footprint of online advertising [13, 138]. These publi-
cations lack detail, mostly depicting the industry’s carbon footprint from a high
level. The reasons for the lack of literature are multiple:

• Researchers rarely have access to the infrastructure used by advertisers
and cannot measure their activities. Therefore, we rely on estimates with
high degrees of uncertainty.

• Due to the increasingly complex processes of the advertising ecosystem
and the reliance on real-time bidding, ads often involve many network
requests, each contributing to the ad’s carbon footprint.

2https://prebid.org/

https://prebid.org/
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Gonzalez et al. recently released CarbonTag [139], a framework that at-
tempts to measure the carbon emissions of individual advertising units from
CodeCarbon [279] measurements. Their approach relies on a trained ML
model that approximates the emissions of the rendering process of a displayed
advertisement unit. CarbonTag achieves high accuracy but remains limited
to the client’s device. Nonetheless, the authors acknowledge the need for a
framework that covers the end-to-end ad process. To the best of our knowledge,
CarbonTag is the closest work to our study to date.

Our work is, therefore, motivated by the need to estimate the end-to-end carbon
emissions of the online advertising industry. We show that through the use
of SmartWatts [14] on end devices, large coordinated crawls to access Web
pages and detect advertisements, and the instrumentation of client-side header
bidding, we can accurately measure the carbon footprint on the client device
and approximate the network and data center costs through both an extensive
study of the state-of-the-art and collected measurements.

5.3 Measurement Methodology
We propose a model that estimates the end-to-end carbon footprint of online
advertising. We rely on Web crawls and detailed client-side instrumentation
to identify ad-based network requests, while monitoring client-side energy con-
sumption. We estimate the server-side energy consumption of ad requests by
stress-testing a mock-up website running on standard rack servers and observ-
ing power consumption on different loads. Finally, we complete our model with
network measurements to estimate the network costs of ad requests. In partic-
ular, we note that our approach gains new insights thanks to client-side header
bidding, which makes the bidding process more transparent. In practice, we
perform two crawls:

1. In the Regular crawling session we crawl over 10,000 of the top domains
of the Tranco list, twice, once with and once without blocking ads. This
process is repeated four times to assess the stability of our measurements.
We compare the crawls with and without ad blocking to calculate the
carbon footprint of advertising, and we use instrumentation to estimate
the cost of header bidding.

2. The Cookies crawling session focuses on the carbon footprint of consenting
to targeted advertising and trackers through cookie banners. We crawl a
selection of domains from the Tranco list, twice. Once accepting the
banner (which generates additional activity like ads and trackers), and
another without. We compare them to estimate the carbon footprint of
accepting banners.

Seeding the profile Previous research shows that advertisers are more prone
to display ads to users with an established browsing history and profile [278,
280, 281, 282]. To build a profile for our crawls, we sequentially visit three pages
from each random website from the top 20,000 most popular domains from the
Tranco list [271] (version 25L99 ). We start the profile from a clean state—i.e.,
no cookies, empty cache. Over 24 hours, we visit each website, scroll the page
and open a URL of the same domain in a new tab. We scroll again and open
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a third page for each domain. The seeded profile is used for the main crawling
sessions, which are parallelized. Our approach can be summarized as:

1. Seed a profile for 24 hours to signal advertisers, and crawl over 10, 000
domains from the Tranco list (section 5.3.1).

2. Extract client-side power and network measurements to compute the car-
bon footprint for each requested ad and estimate its server and network
energy (section 5.3.3).

3. Perform an additional crawl, with and without ad blocking, to estimate
the carbon footprint of cookie banners (section 5.3.1).

Figure 5.1 gives an overview of the infrastructure.3 For all our crawls, we use
the following three devices:

• One Intel NUC10i7FNH with a 12-core Intel i7-10710 CPU and 32 GB
of RAM, running on a minimal version of Ubuntu 22.04.2 LTS (kernel
5.15.0-75-generic)

• One Intel NUC9i7QNB with a 12-core Intel i7-9750H CPU and 32 GB
of RAM, running on the same minimal version of Ubuntu (kernel version
5.15.0-73-generic)

• The main node, which instruments the crawls and hosts the database,
runs on a server with two 24-core Intel Xeon Gold 5118 CPUs and 188
GB of RAM.

First, the main node curates a set of websites and instructs devices to crawl
them. Each device starts the power consumption probes, using Smart-
Watts [14], and launches parallel browser instances to crawl the websites. We
use unique IP addresses for each device to reduce the risk of being flagged as
a bot. Finally, we collect the resulting crawl data and compute the CO2eq
emissions associated with each request.

3The research artifact accompanying this work can be found at https://github.com/nai
fmeh/adcarbon

https://github.com/naifmeh/adcarbon
https://github.com/naifmeh/adcarbon
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Figure 5.2: Visual sample of a tracing file in Google Chrome

5.3.1 Web crawling protocol

We use Puppeteer4 and instrument Google Chrome (version 114.0.5735.106 )
for all our crawls. Our choice is motivated by Chrome’s market share of over
64%.5 Instrumenting browsers other than Chrome is out of the scope of our
study. Following best practices [283, 284], we use the Puppeteer extra stealth
add-on.6 which provides tools to make Puppeteer look like a genuine browser
and reduce the risk of being blocked. We use Chrome’s Tracing API to record
a trace file with fine-grained data about each event on the page, as well as
its execution stack. This allows us to measure how long it takes to render an
image and which process was used. The trace file contains information about
interpreting and compiling scripts, and all function calls and their stack traces.
We correlate this information with our SmartWatts measurements for a fine-
grained estimate of the impact of each request on the client’s device. A sample
tracing file can be observed in Figure 5.2.

We use browser profiles to save the browser’s state. For the Regular crawling
session, each crawl uses the same seeded profile. Because profiles can not be
shared by browser instances, we clone the profile on each device n times, with n
being the number of parallel instances (in practice, we use 8). For the Cookies
crawling session, we use clean profiles. n profiles are used for the execution of
the first scenario in which the crawler does not interact with the cookie banner,
and another n profiles are used in the scenario that accepts the cookie banner.

Power consumption We use SmartWatts [14], a state-of-the-art self-
calibrating software-based power monitoring system to measure the energy con-
sumption of every browser instance. SmartWatts supports per-process mea-
surements, meaning we can run parallel browser instances with minimal impact
on the measurements. We isolate each browser in a new control group (cgroup).7
At the end of each crawl, we retrieve the power measurements for the cgroup
the browser was affected to.

4https://developer.chrome.com/docs/puppeteer/
5https://gs.statcounter.com/browser-market-share/desktop/worldwide
6https://github.com/berstend/puppeteer-extra/tree/master/packages/puppeteer-e

xtra-plugin-stealth
7https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v1/cgroups.html

https://developer.chrome.com/docs/puppeteer/
https://gs.statcounter.com/browser-market-share/desktop/worldwide
https://github.com/berstend/puppeteer-extra/tree/master/packages/puppeteer-extra-plugin-stealth
https://github.com/berstend/puppeteer-extra/tree/master/packages/puppeteer-extra-plugin-stealth
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v1/cgroups.html
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Proxy We implement a Man-In-The-Middle (MITM) proxy in Rust to opti-
mize for performance. Our proxy parses request headers and forwards requests
from crawled webpages to the Redis queues. The proxy also acts as a network
ad-blocker, intercepting requests containing the block attribute that was added
by our modified ad-blocker (described in the next paragraph). Additionally,
for each request, the proxy logs information to calculate the carbon footprint,
such as the total number of bytes transmitted, the duration of the request in
nanoseconds, and the type of resource.

Cookies & Ads We use a modified version of uBlock Origin [285] to identify
and tag advertisement requests. To achieve this, we disable uBlock’s ad-blocking
mechanism and instead modify uBlock to tag the request’s header attributes if
it’s an ad. This header is later used by the proxy to either allow or block the
request, depending on whether we want the webpage version with or without
ads. Furthermore, the Easylist Cookie List filter list contains known selectors
for various cookie banners. We use these to detect banner prompts whenever
possible. We use a two-step pipeline to interact with the banners: first, for
each selector matched on a given page, we click on occurrences or variations
of consent sentences for all 24 official languages of the European Union. We
focus on European languages because they are more likely to implement cookie
banners due to the GDPR.8 Second, if no selector is found, we look for exact
occurrences of a set of consent wordings that we manually collected from two
of the top 10 websites of each EU country. This methodology is motivated by
previous works on consent banners [286].

Network For each page we visit, we instrument the crawler to collect infor-
mation on every request and response. Requests are processed in the proxy and
added to three Redis9 queues:

1. The first queue resolves the domain’s IPv4 and uses Telize and Max-
mind’s City GeoIP2 database10 to obtain the country and region where
the request is sent. The IP is then forwarded to the two next queues.

2. The second queue uses Hping3 to perform a simple TCP SYN ping and
measure the time it took to reach the IP. This value is later used to
differentiate the server’s processing time from the network latency.

3. The third and final queue uses the traceroute command to issue TCP
probes (as opposed to ICMP probes) that aim to trace the different hops
a packet has to perform before reaching its destination. For each hop
we identify, the IP address is forwarded to the first queue to identify its
origin. This IP does not continue to the second and third queues since it’s
a router and not a server.

Header bidding For each page we visit, we collect bidding data through
the header bidding mechanism. Following previous work [287, 280], we collect
bidding data on domains that use the prebid.js library. Before closing each page,
we leverage prebid.js to get the page’s ad units, all the bids that were performed,
their respective bidders, and the winning bids.

8https://gdpr-info.eu/
9https://redis.io/

10https://www.maxmind.com/en/geoip2-city

https://gdpr-info.eu/
https://redis.io/
https://www.maxmind.com/en/geoip2-city
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Browsing scenario For the two crawling scenarios, we set a timeout value of
60 seconds upon the firing of the networkidle2 event. We wait 5 seconds before
interacting with the page. We visit over 10, 000 domains from the top 20, 000
domains of the Tranco list. We crawl 3 pages for each domain. All pages must
succeed in loading to consider the crawl successful.

The two crawling sessions differ slightly in their course:

• For the Regular crawling session, we visit 3 pages for each domain without
blocking advertisement requests. The sequence is stored. We then enable
ad-blocking, through the proxy, and reproduce the visit. When possible,
we click cookie banners to accept all cookies otherwise some websites do
not activate the ad-bidding process.

• The Cookies session is similar with the exception that the ad-blocking tool
is never enabled. We perform the same visit scenario twice, once without
interacting with the cookie banner and the second accepting all cookies
where possible.

5.3.2 System boundaries
The Internet’s complexity makes precise measurements complicated when con-
trol of each part of the pipeline is not possible. Therefore, the literature defines
system boundaries [288, 138], which typically include a data center and a sim-
plified network consisting of a few nodes (routers), but exclude the terminal
device. We consider the following three main subsystems (which can be visual-
ized graphically in Figure 5.3): 1. the client device used to access and process
Web pages, 2. the network, from the user’s router to the data center’s entry
point, and 3. the data center that serves the user’s requests and resources.

Client device

Datacenter

Client access network

IP core network

Datacenter access
network

12

3

Figure 5.3: System boundaries underlying our study. We consider three main
subsystems consisting of 1⃝ the client device, 2⃝ a simplified network, and 3⃝
the data center. The arrows represent the data flow.
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Figure 5.4: High-level representation of the carbon footprint computation
method for each request. In this example, the request is emitted from Por-
tugal and transits multiple European countries before reaching its destination
in Hungary.

5.3.3 Carbon footprint model
Visiting a given website generates a set of requests R to remote servers (generally
in data centers). Therefore, the carbon emissions of a website visit of duration
d is given by the sum of the carbon emissions of each emitted network request
r:

Carbonuse
visit(d) =

∑
r∈R(d)

Carbonuse
visit(r) (5.1)

Figure 5.4 shows a high-level depiction of the flow of a network request. As such,
the in-use carbon footprint of a single request r can be modeled as the sum of
the client device (cd), network (net), and data center (dc) carbon emissions:

Carbonuse
visit(r) = Carbonuse

cd (r) + Carbonuse
net(r) + Carbonuse

dc (r) (5.2)

The client device’s carbon emission Carbonuse
cd (r) for each request r can be

estimated by multiplying the measured power usage, defined by P cd (obtained
from the SmartWatts software probe), the response’s latency (time it took to
parse and interpret the response) Ltcclient(r), and the client country’s energy
mix Emix(Src(r)) at the time of the request:

Carbonuse
cd (r) = P cd × Ltcclient(r)× Emix(Src(r)) (5.3)

SmartWatts estimates the power consumption of a process and is not fine-
grain enough to estimate the energy consumed by a single request. To overcome
this challenge, we use Chrome’s built-in Trace Event Profiling Tool, or more simply,
tracing API. The tracing API provides a very fine-grain report of the execution
sequence of a visited page. It outlines the different processes, threads and the tasks
they execute at the microsecond granularity. For instance, as a script is requested,
it is possible to extract information about the script’s parsing time, the compilation
time, and its complete stack trace, which includes every function called and their
duration. For each data point, it is possible to obtain the associated thread and
process. Thus, for each request r, we estimate Pcd and Ltcclient(r) by identifying
all the related events from the tracing file, their duration, and their process ID
(PID). We evenly distribute the measured consumption of SmartWatts for the
event durations among all the processes that are active simultaneously.
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The in-use carbon emission of the network involved in a request r can be estimated
as the sum of the carbon emissions of all hops H in a network route (obtained via
a TCP traceroute):

Carbonuse
net(r) =

∑
h∈H(r)

GBytes(r)× P router × Emix(Hop(r)) (5.4)

where the energy mix is assumed to be the country’s (obtained through MaxMind
GeoCity2 database) energy mix of each IP that corresponds to each hop and
GBytes(r) is the number of bytes that transit through each router. P router is
defined by Schien et al. ’s mean consumed power per gigabyte of transmitted data
for metro routers [289]. This constant is expressed in kWh/GB and is equal
to 3.56 · 10−5kWh/GB. Since the first N hops will always transit through our
local Renater network, we use the constant that was estimated by Ficher et
al. in their Renater carbon footprint report [290]. This constant is set to 3.68 ·
10−4 kWh/GB.
We’re unable to report a more accurate value of Carbonuse

dc (r) that would suit each
and every data center due to the opacity of the Internet’s backend. Therefore, we
estimate the data center’s carbon footprint for a request r as:

Carbonuse
dc (r) = P dc × Ltcdc(r)× Emix(Dst(r)) (5.5)

where P dc is the average power consumption of the server and Ltcdc(r) is the time
spent on the server. We estimate data center latency, Ltcdc(r), by subtracting the
latency of a TCP SYN ping to the server and the total latency of the request. We
chose to use TCP SYN ping instead of a simple ICMP ping because it provides a
more accurate representation of the time a packet transits the network, as ICMP
pings are often given low priority or discarded. Finally, Emix(Dest(r)) captures the
energy mix consumed by the remote server, which can be obtained by determining
the location of the server (e.g., via the IP address) and the energy mix of the
associated region.
As we do not have control over the chosen server, we estimate P dc through a series
of measurements on a remote server under our control consisting of 2 Intel Xeon
E5-2630 v4 CPUs, 256 GB of RAM and running a minimal version of Debian 9 to
minimize the impact of other processes. We implemented a control website using
multiple web application backends and selected NodeJS as our reference since it
exhibits the median performance. Appendix B.1 compares the behavior of other
backends. The average power of the web server evolves based on the number of
concurrent clients. After putting the server through a warm-up phase, for each fixed
number of concurrent clients, we stress the server with millions of requests during
20 seconds. Then, we approximate Pdc as:

P dc = P measured

Nclients
(5.6)

where P measured is the average power measured during the stress test and Nclients

is the number of concurrent clients. Moreover, our measurements show that be-
yond 32 concurrent clients, the web server starts to be saturated, and the power
consumption remains constant above this point. Hence, we set Nclients = 32 for
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our measurements. Our experiments led us to set P measured to 103 watts. Addi-
tionally, we multiply the result of the previous formula by an average Power Usage
Effectiveness (PUE) of 1.12, as estimated by Liu et al. [291].
For each contacted domain, we collect its geolocation using the GeoIP2 City
database.11 We collect the daily energy mix and resulting carbon intensity from
ElectricityMap [292] and OurWorldInData [293]: for countries and regions covered
by ElectricityMap, we collect the corresponding carbon intensity hourly. As for
other countries, we use the latest known carbon intensity from OurWorldInData’s
database.

5.4 Empirical Measurement Results
We present the results of our crawling sessions. First, we report on the estimated
carbon footprint of advertising observed in Regular sessions (section 5.4.1) and then
extract the carbon overhead introduced by client side header bidding (section 5.4.2).
Then, we show consenting or refusing cookie banners has a significant impact on
the carbon footprint of websites (section 5.4.3).

5.4.1 Advertisement on the web
Our results are obtained by crawling 31, 394 pages from 10, 562 domains twice: once
with and once without our ad-blocker enabled. For more accuracy, this process is
repeated four times, resulting in 230, 734 page visits (when accounting for unre-
sponsive domains or CAPTCHAs). We execute the first three crawls consecutively
with the hardware settings described in Section 5.3. To further validate the stability
of our approach, we performed a fourth crawl after a period of three months that
shows similar results.
In Figure 5.5, we show a log-scale cumulative distributive function (CDF) of
CO2eemissions per website for each crawl. It can be observed that our measure-
ments remain stable over time, as the values related to the latest crawl are almost
identical to those of the second crawl, albeit some variations can be seen between
the first and third crawls.

Table 5.1: Crawled domains per category, including the total number of requests
and the ratio of ad-based requests.

Category Domains Page visits Requests Ad ratio
News 1,095 3285 2,970,600 55.18%
Technology 2,268 6804 2,860,591 33.69%
Business 983 2949 1,388,919 33.19%
Entertainment 370 1110 763,048 47.44%
Education 923 2769 1,038,587 31.81%
Shopping 487 1461 910,604 34.41%
Games 272 816 528,996 42.83%
Health 288 864 427,268 42.84%
Finance 369 1107 473,390 34.37%
Others 3,310 9930 4,030,588 33.83%

11https://www.maxmind.com/en/geoip2-city

https://www.maxmind.com/en/geoip2-city


CHAPTER 5. ENVIRONMENTAL IMPACT OF ONLINE ADS 107

10 4 10 3 10 2 10 1 100 101 102

Carbon emissions per website (gCo2e)

0.0

0.2

0.4

0.6

0.8

1.0

P(
x)

Crawl #1 - Early June 2023
Crawl #2 - Early June 2023
Crawl #3 - Mid June 2023
Crawl #4 - Mid October 2023

Figure 5.5: CDF of CO2e emissions per website for each crawl.

On average, we find that 29.94% of requests per website are due to advertising.
This number includes both ads and trackers. Figure 5.6 compares the average
CO2eemissions per website when blocking or allowing ads. We observe that 86% of
websites emit more when accepting ads, the remaining 14% generated insignificant
or undetected advertisement-related network traffic. Additionally, ad-based traffic
from 38.15% of websites doubled their CO2eemissions. A share of websites emitted
over 1, 000% more when accounting for their ads. We discuss the implications of
these results in Section 5.5.
We collected each domain’s category through Symantec’s WebPulse Site Re-
view [294] database. Table 5.1 shows that a significant share of requests belong to
advertising. The News group has the highest ratio of ad-based requests (over 55%),
which is likely due to many news websites relying extensively on ad revenue [295].
Figure 5.7 presents the CO2eemissions per category. Ads from the News group rep-
resent the biggest share: over 7.91 kgCO2e for ad-related content. Categories, such
as Games, emitted among the lowest ratio of ad-based CO2ewith 0.86 kgCO2e,
representing 34.76% of the total emissions of the crawls for this group. One ex-
planation is that the gaming industry generates most of its revenue through game
sales, microtransactions, or in-game ads [296], which we did not measure since they
are not found on their websites.

Cost of advertisement per country We looked at the geographical distri-
bution of the advertising domains. For consistency, we chose domains that perform
more than 200 requests (more than 91% of the domains in our dataset meet this
criterion). We find that, on average, 15.35% of total ad domains were located in
the US, closely followed by Russia (13.48%) and France (12.56%). This ranking
correlates with the popularity of domains on Tranco. Figure 5.8 shows the results
for the Top 10 countries with the most requests and their respective CO2eemissions.
The carbon footprint for US-based servers represents 11.17% of the total carbon
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Figure 5.6: CDF of CO2e emissions (log-scale X-axis)

emissions of our crawls, putting the US in 5th position for highest CO2eemitters.
However, many of the data centers present on US soil are affiliated with major
technology firms [297] that claim to be moving their data centers towards greener
sources of energy that emit less CO2e. Since we were unable to verify such claims or
obtain specific energy mix values, we did not adjust the data from ElectricityMap12,
potentially overestimating the impact for some data centers. France and Russia are
second and third in emissions, with 13.03 % and 12.03%, respectively. And Hungary
takes the lead as the highest CO2eemitter with 15.35% of the CO2eshare, despite
handling 11.47% of all advertisement requests.

Carbon emissions per resource type Figure 5.9 presents the total car-
bon footprint per resource type. As expected, scripts make up the majority of
the CO2eemissions of our crawls. With 4, 614, 562 requested scripts in total
(1, 862, 395 flagged as an advertisement or tracking-related), they emitted a total
of 41.36 kgCO2e during our crawls (18.71 kgCO2e for advertisement or tracking-
related scripts). Images come second in terms of advertising-related CO2eemissions,
with a total of 1.26 kgCO2e emitted for advertising purposes. This can be expected
as images are the most common form of visual advertisement detected in our crawls
with over 1, 989, 028 requests, representing 34.57% of the total displayed images.
We estimated the footprint of a single image to be 6.35 ·10−4gCO2e, while a single
script emits an average of 1.00 · 10−2gCO2eq. This difference is explained by the
fact that most scripts cause more activity on a web page (by initiating new requests
or executing resource-consuming instructions), while images require less CPU time
to be decoded and rasterized, most of the time. Furthermore, for each request, we
collected whether it was, or wasn’t, initiated by an advertisement-related script. In
total, our crawls emitted 68.34 kgCO2e when the ad-blocker was disabled. How-
ever, 11.74 kgCO2e could have been saved if advertisement-related scripts did not

12https://electricymaps.net

https://electricymaps.net
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Figure 5.7: CO2e emissions per category

request multiple additional resources. Finally, out of 47, 427 video media requests,
only 13.75% were related to advertisements with the emission of 2.89 gCO2e for
advertisement purposes during our crawls. This low number compared to the other
types can be explained by the fact that our crawls did not trigger many video
advertisements, as they potentially require direct interaction.

5.4.2 Overhead of header bidding
We have crawled 10, 535 domains and found that 1, 098 of them included prebid.js.
After filtering every auctionInit event, we identified auctions on 845 domains and
1, 863 pages from over 463 bidders. We then identified the requests associated with
the bids by looking for the auction endpoint or by matching the URLs with the
bidders’ known domains and auction-related keywords. For all domains (regardless
of whether they include prebid.js), we further analyzed the content of each network
request for occurrences of auction-related keywords and found an additional 309
domains that initiated auctions without including prebid.js. We compute the carbon
emissions of each bid using the formula from Section 5.3.3.
Through the described methodology, we identified over 125, 215 requests associated
with the bidding process. We find that, on average, the bidding process represents
an increase of 3.5% of carbon emissions, with an additional 0.16 gCO2e emitted per
domain. We note that only 7 domains saw an increase of over 40% of their gCO2e
emissions due to header bidding. In total, we estimate that the bidding process has
emitted over 190 gCO2e during our crawls. While the carbon footprint’s increase
due to the bidding process is not significant, we assume that these numbers propose
a lower bound on the real emissions of the bidding process, as some auction-related
events are harder to identify and might have been missed by our script. In particular,
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Figure 5.8: Requests & CO2e emissions per country

our carbon model optimistically assumes that only one server is involved in the
bidding process, which might not be the case in practice.

5.4.3 Impact of cookie banners
As stated in Section 5.3, during the Cookies crawling session, we visited domains
on which we detected a cookie banner in the Regular crawling session. We detected
4, 052 such domains, of which 3, 608 were responsive at the time of our Cookies
session. We crawled each domain with a clean profile, twice: once accepting the
cookie banner and once without interacting with it. Figure 5.10 shows the CDF of
CO2eemissions of individual domains when accepting, or ignoring the cookie ban-
ner. On average, each website emits 0.37 more gCO2e when cookies are accepted,
with multiple domains emitting over 10 more gCO2e. In addition, we observed that
accepting the cookie banner resulted in an average of 128 additional requests, a
38% increase. More precisely, 104 of those requests are related to advertisements.
Additionally, of the 3, 608 responsive websites, 38.8% saw an increase of over 50%
of their network requests once we allowed all cookies. In total, our crawls emitted
1.50 kgCO2e when ignoring cookie banners in contrast to 2.85 kgCO2e when con-
senting. Advertisement accounted for 0.39 kgCO2e and 1.02 kgCO2e, respectively.
As the difference is significant, it outlines that websites respecting user consent due
to the GDPR or GDPR like legislation generate less network activity, resulting in
lower use of the client’s resources and a lower toll on the data centers.
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Figure 5.9: CO2e emissions per resource type

5.5 Discussion
5.5.1 Implication of measurements
Our study shows that ads significantly impact the carbon footprint of a Web page,
with, on average, 29.94% of requests per website related to advertising, and as
high as 90% for some domains in our dataset. At a time when energy savings are
critical, it is important to understand the hidden costs of ads on the Web. Since
ads are essential to the Web’s economy, changes have important implications, but
progress should be made to limit their carbon footprint and understand that the
costs are shared, end-to-end. One optimization might be to adjust ads around peak
times, when the electric grid is reaching peak energy consumption, ad usage could
be throttled to limit its impact: the resolution of video ads could be lowered or
replaced by static images, bidding prices on ads could increase so websites display
fewer ads without sacrificing revenue, tracking scripts could be simplified or removed
to be less resource intensive, cookie syncing could be paused, etc. Interestingly,
some sources [298] argue that targeted ads reduce emissions by reducing pointless
impressions. Considering the cost of tracking and profile users, running all of the
scripts, as well as the fact that websites fill in the ad space with cheaper ads, we feel
it’s highly unlikely that this is true. They might reduce the cost of an ad campaign,
but they’re unlikely to reduce the cost of the online advertising ecosystem. Finally,
our measurements should not be taken out of context. They are averaged over our
crawls, run in controlled environments, using models to estimate consumption, and
are better interpreted through ranges and proportions than exact values of CO2e.

5.5.2 Evolution of the Internet
We see that, thanks to the General Data Protection Reglement (GDPR), not con-
senting to cookie banners can significantly reduce our carbon footprint. GDPR-like
legislation in other countries would help to avoid some of the environmental impact
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Figure 5.10: CO2e additional emissions from accepting cookie banners (log-scale
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of advertising, profiling and ad-based tracking. The use of dark patterns [299] to
obtain consent unwillingly, as well as the fatigue that leads to consenting for quick
access to the page, should be more closely addressed by researchers and legislators.
It’s worth mentioning that Google has announced that third-party cookies will be
retired in 2024 [300].Client-side header bidding will be directly affected as cookies
are sent directly to ad exchanges. Moreover, such a major change will impact stud-
ies like this one and others focused measuring ads, tracking or energy consumption
on the Web. Nevertheless, at the time of writing, not a single alternative currently
being discussed by Google, Mozilla, Apple or Meta has been designed with reduced
energy consumption in mind. Current proposals focus on privacy and how adver-
tisers can learn enough about users without being ”too privacy invasive”, but none
seem to be considering the carbon footprint as a primary challenge to be solved. It
takes a decade for a change of this magnitude to move from design to ubiquity, we
hope that the opportunity to design solutions that reduce the carbon footprint of
online advertising is not missed.

5.5.3 Limitations
Although we performed our measurements as realistically as possible, the numbers
we present in this study are the result of measurements and estimates based on
our model. For data centers, we estimated the cost of processing data but it
is known that optimized data center architectures can lead to improvements in
energy consumption [301]. As established in the literature, we considered the power
consumed by a single router to be a function of the network traffic but various
other factors could impact the power consumption. Finally, our study only initiated
crawls from one location. We acknowledge that the carbon emissions of a network
may vary depending on the source location, the destination, and the route taken by
the request, as does the energy mix. Therefore, we suggest that a multi-location
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study should be conducted to obtain a more accurate understanding of the carbon
footprint of the advertising industry.



Chapter 6

Conclusions

Since its creation by Tim Berners-Lee, the Web has evolved and grown to become
ingrained in our everyday lives. Today’s Web is a platform for everyone: children
get access and are accustomed to the Web at a young age, many aspects of their
education is also moving towards the Web, adults use the Web for leisure, work, and
hobbies, and the older generation, for whom the Web arrived later in life, benefit
from the many aspects it has to offer. One of the reasons why the Web is getting
more popular every year can be attributed to the democratization of devices that
provide access to the Internet: smartphones are increasingly more accessible and
more powerful. Smartwears, such as smartwatches, are also capable of bringing
the Internet to our wrists. Smart appliances, such as smart fridges or smart TVs
connect our homes to the Internet and provide a constant interface with the Web.
This constantly growing pool of users, as well as the increasing time we spend on
the Web, provides the online advertising industry with a constant source of revenue:
advertisers distribute their ads everywhere, at any time, all the time, and tailor their
ads to individual users through programmatic advertising. This also translates to a
quick and steady growth in revenue, which further entices advertising companies to
focus their efforts on improved and novel tracking techniques to more extensively
profile users and tailor ads, despite increased scrutiny on the associated privacy risks.
At a time when user awareness of privacy is rising and regulations are introduced to
ensure that Web tracking remains limited, governments are also growing increasingly
suspicious of total anonymity on the Web. One such example can be found in
the United-Kingdom, where the government has attempted to pass a regulation
destined to prevent end-to-end encryption under the UL’s Online Saftey Bill.1 This
is a rehashing of many such arguments and discussions against anonymity from the
90s,2 but it is interesting that some of these arguments are regaining traction in
public discourse.
Through Web browsers, users have the opportunity to access all types of content
on the Internet. In 25 years, browsers evolved from being limited to displaying text
to providing features that perform a wide range of operations, such as playing 3D
games, watching virtual-reality videos, or performing 3D-modelling. All this is made
possible by the constant availability of new and improved APIs, such as the WebGL
API, the WebVR API, or the Canvas API. However, the demand for new features
also provides a growing attack surface for advertisers, with various APIs that can
be exploited to track users. Browser fingerprinting is an example of misuse of the
diversity of existing browser APIs. As third-party cookies, on which advertisers
currently rely for cross-site tracking, are expected to be deprecated in Chrome

1https://www.privateinternetaccess.com/blog/uk-leads-the-charge-against-end-t
o-end-encryption-calls-on-tech-companies-to-nerd-harder/

2https://www.nytimes.com/1996/12/19/business/judge-rules-against-us-in-encry
ption-case.html
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this year (2024)3, the use of stateless tracking techniques and forms of browser
fingerprinting are, arguably, set to grow. Along those lines, users expect faster,
more powerful, more innovative experiences on the Web, which pushes browser
developers to maintain a regular flow of new APIs, which can further enrich browser
fingerprints. Despite the transient nature of a browser fingerprint, APIs that provide
access to hardware features, such as WebGL, can be exploited to make browser
fingerprints contenders to replace third-party cookies for Web tracking.
The advent of smartphones and smart wear prompts children to be in close contact
with the Web from a young age [302]. Attracted by a world of easily accessible
video-games, and child-oriented content, combined with the ease of use of today’s
devices, children and young Internet users are spending more and more time ac-
cessing the Web. This highly vulnerable pool of population represents significant
revenue sources for advertisers: most apps on the App Store for the Apple ecosys-
tem and the Play Store for the Android ecosystem are available for free, driven by
an ad-oriented business model. Games are very representative of this model and are
the main target for younger users. However, due to their business model, and par-
ticularly when offered for free, these apps present serious privacy risks, with various
studies, including our work, assessing the presence of a high number of trackers and
advertising when compared to their paid counterparts. This is especially worrying
knowing their target population. Despite the existence of regulations and policies
to protect children, unscrupulous Web developers are taking advantage of the lack
of strict enforcement to continue their practices.
Thankfully, both the Web community and ruling bodies have introduced regulations
and rules to limit the privacy impact of the online advertising community. Ad-
blockers, such as uBlock Origin, are readily available on browsers and provide serious
protection against tracking resources. Browsers that are entirely oriented toward
privacy and anonymity, such as the Tor Browser, remain a very good alternative to
limit the privacy intrusions on the Web. Upcoming regulations, in the form of the
ePrivacy Regulation, are expected to introduce stricter rules toward non-consented
data collection. Finally, due to the outcry of the community and raising awareness,
even advertisers are seeking potentially more privacy-respecting measures. This last
point is important, as advertising is deeply ingrained in today’s Web: it is here to
stay, and seeking privacy-respecting alternatives should be the priority of the various
concerned entities.
At a time when the effects of climate change are more visible, Internet usage is
peaking each year, leading to more data being created and distributed, prompting
the need for upgrading and building more infrastructure. The online advertising
industry is a key contributor to global infrastructure use: through programmatic
advertising, algorithms are constantly solicited to identify the most tailored ad for
the requesting user, as fast as possible. Environmental issues are currently being
scrutinized, with data centers adopting more environmentally friendly cooling sys-
tems and optimized devices are being developed with the objective of reducing their
Power Usage Efficiency (PUE).
In conclusion, from the creation of the web by Tim Berners-Lee to its current
constant presence in our lives, its evolution has been characterized by the democ-
ratization of access through a wide range of smart devices. This accessibility has

3https://developers.google.com/privacy-sandbox/blog/cookie-countdown-2023oct
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fuelled the growth of the online advertising industry, which benefits from the con-
stant stream of users and their increasing time spent online. However, privacy
concerns and regulatory scrutiny have prompted discussion and action to better
protect user data. Despite these challenges, the web continues to evolve, offering
innovative experiences through advances in browser technologies and APIs. As we
examine the complexity of the tracking and online advertising ecosystem and its
environmental impact, it becomes increasingly important for major companies like
GAFAM to prioritize privacy policies and sustainable practices to ensure a safer web
for all users. In this thesis, I provide an overview of the tracking impact of the online
advertising industry by revealing a stable and novel hardware-based attribute, inves-
tigating the embedded tracking in the Android gaming ecosystem, and providing a
global overview and the first end-to-end measurement of the carbon impact of the
advertising ecosystem.

6.1 Contributions
6.1.1 Drawnapart
In Chapter 3, I introduced an effective technique to create a browser fingerprint that
relies on minor manufacturing variations in GPUs. To date, this is the first work
that exploits hardware accelerated APIs to challenge privacy in this context by suc-
cessfully distinguishing between identical devices. Our fingerprinting technique can
tell apart devices that are otherwise completely indistinguishable by current state-
of-the-art methods, while remaining robust to changing environmental conditions.
Our technique works well on both desktops and mobile devices, has a practical of-
fline and online runtime, and does not require access to any extra permissions or
sensors, such as the microphone, camera, or gyroscope.
Since its introduction in 2011, the WebGL API has been shown to be vulnerable
to multiple fingerprinting techniques, such as the Canvas Fingerprinting or through
the constants provided by the API. Through DrawnApart, this fingerprinting
potential is pushed even farther, showcasing the fingerprinting potential of APIs
that empower the browsers’ capabilities.
Due to the physical constraints on power consumption and speed of existing pro-
cessors and materials, modern designs are increasingly relying on massively parallel
architectures to improve performance. At the same time, as the capabilities of GPU
hardware become increasingly exposed to untrusted Web applications through APIs,
such as WebGPU, hardware and software designers must be aware of the risks to
privacy raised by hardware fingerprinting, and take care to design software, drivers
and hardware stacks in ways that protect user privacy.

6.1.2 A Privacy Analysis of Games in Android
Games on mobile devices generate revenue in different ways: by showing in-game
ads, by offering in-app purchases, or by having an up-front cost on the store. We
investigated how these economic models can impact user tracking by analyzing the
trackers present in 6,355 free and 396 paid mobile games. Overall, we found that
free games have on average 3.4 times more trackers than the studied paid games,
and they request twice as many dangerous permissions. While the main trackers
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in free games are for advertisement purposes, analytics are the most prominent
trackers in paid games. We also look at games aimed at a younger audience with
the ”Educational” game category and the presence of a ”Teacher Approved” badge.
We find that the stricter policies imposed by Google have had a positive effect
on tracking as there are fewer trackers in these games than in the other studied
categories.

6.1.3 Environmental Impact of Online Advertising
The advertising industry makes up a significant share of Internet traffic due to
its prevalence on the Web. In this chapter, we analyzed the carbon footprint of
advertisements by crawling over 31, 394 pages and 10, 562 domains. Overall, we
found that advertisements were responsible for an increase of over 144% of the
carbon footprints of our crawls, with a total of 68.34 kgCO2e emitted when allowing
advertisements. We also looked at the increased carbon footprint generated by
cookie banners and found that accepting all cookies emitted 90% more gCO2e and
38.8% more advertisement requests on average. Finally, through an analysis of
header-bidding processes, we discovered that advertising auctions emit a negligible
amount of additional gCO2e (on the client’s device), leading us to believe that the
associated carbon cost of header bidding is mostly situated on the servers.

6.2 Future work
6.2.1 Automating the Investigation of Cookie Banners
Google’s announcement of the deprecation of third-party cookies in Chromium-
based browsers triggered various reactions in the tracking and advertising ecosystem,
leading the different actors to look for different tracking techniques that provide a
similar tracking efficiency. While third-party cookies reigned in the online tracking
industry, cookies banners became widespread, due to the RGPD and other privacy
regulations’ impulse. The deprecation of third-party cookies might seem like cookie
banners will not be as required as previously, however, I believe that their usage
will remain widespread, as the industry is strongly incentivized to move to server-
side tracking, which leverages first-party cookies. One example of such tracking
technique is found in Meta’s Pixel API, as explained by Bekos et al. [39]. In their
study, Bekos et al. find that Meta is capable of overcharging its Pixel’s request
with an identifier that is set through first-party cookies, limiting Meta’s reliance on
third-party cookies.
Therefore, with updated regulations that encompass this new usage of first-party
cookies, cookie banners will remain a useful tool to limit the impacts of online track-
ing. As such, it is important for the research community to have a varied toolset to
understand and monitor the privacy implications of the different choices available in
cookie banners. Previous works have already explored automating the interaction
with cookie banners: Khandelwal et al. [303] have developed CookieEnforcer, an
automated framework that leverages a T5 model to disable all non-essential cookies.
Gundelach et al. [304] proposed Cookiescanner, which identifies the color differ-
ence in buttons to identify the option for declining cookies. Nouwens et al. [305]
developed Consent-O-Matic, a browser extension to select specific options in cookie
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banners. Using their tool, they perform a large-scale study of 10, 000 websites to
identify dark patterns and measure CMP’s compliance with existing regulations.
However, these tools present one major flaw: due to the dynamic aspect of web-
sites, they fail to scale to new cookie banner’s design. CookieEnforcer, which is
based on a T5, is trained to refuse all non-necessary cookies and does not provide
the users with choices on which type of cookies they want to allow. Furthermore,
T5 models are limited by their context size, which can be significantly higher than
the token capacity of many LLMs that run on consumer devices. Consent-O-Matic
is capable of navigating cookie banners and selecting specific options, but it re-
lies on community-provided configuration files, which need verification and are not
guaranteed to exist for specific websites and CMPs.
In this future work, I suggest the development of an automated tool that is capable
of fully interacting with the cookie banner, by identifying and selecting different
options, or by selecting individual third-parties, and analyzing whether the choices
are respected by the website. However, such a tool showcases multiple challenges:
First, the tool should be capable of comprehending the flow of clicks required to
select specific options. For example, the tool should be able to remember previous
actions, as cookie banners typically require users to go through multiple steps in
order to alter the default selection. It should be able to understand the meaning
of the used wording in cookie banners. For this challenge, I suggest that a LLM is
appropriate. However, LLMs that are capable of running on typical user hardware
mostly have a limited context window, limiting the amount of information that it is
capable of handling at once. Such a tool should be able to parse the Privacy Policy
of each website and identify cases where the offered choices in cookie banners are
not in compliance. Finally, it should be able to track third-party requests and link
the different network requests and page events to the sequence of actions that the
automated tool performed. Using such a tool, a large-scale study would help unveil
and prevent violations of non-consented data sharing.

6.2.2 Assessing the fingerprinting ability of Web hardware
APIs

The WebGL API is set to be replaced by the WebGPU API, which is expected
to provide better compatibility with newer GPUs, along with faster operations and
access to more advanced GPU features.4 The WebGL API has been shown to be
used for fingerprinting using multiple techniques: canvas fingerprinting is an example
of such usage. In this thesis, I contributed to unveil the tracking capabilities of
WebGL through DrawnApart, showcasing that the WebGL API, by itself, can
be used to re-identify devices, but in conjunction with classic browser fingerprinting
techniques, is quite effective at doing so.
With the upcoming release of the WebGPU API and the advanced capabilities it
introduces compared to the current WebGL API, it is essential to investigate whether
its usage allows for it to be used for fingerprinting. Thus, I propose to investigate
existing WebGL-based tracking techniques on WebGPU, and assess the presence of
potentially identifiable features. In particular, in the future, I plan to investigate
whether more advanced capabilities and access to modern APIs can make the GPU

4https://developer.mozilla.org/en-US/docs/Web/API/WebGPU_API
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more prone to be used in browser fingerprinting, by deriving stable, robust, and
unique attributes.
Finally, this approach can be extended to the relatively recent WebXR5, as it inter-
faces with various hardware, such as Virtual Reality and Augmented Reality gears.
Due to its relatively recent release (February 2022), the security implications of
WebXR are still not investigated enough and could benefit from an increased focus
from the research community: to date, the only work that is closely related to the
security of the new WebXR API has been performed by Lee et al. [306], in which
they investigate how potential attackers can infer the users’ inputs by analyzing
the VR controller’s movements obtained through the WebVR API (predecessor of
WebXR).

6.2.3 Exploring the Impact of Browser Configuration on
Browser Fingerprints

To date, studies on browser fingerprints have focused on attributes that can be
obtained on the user’s default configuration. However, different use cases might lead
users to alter their configuration through one or multiple parameters, for example,
by editing command line switches, by accessing the standard settings from the
browser, or by editing experimental flags. Changes to default settings can alter the
way that the browser parses the DOM, and it can add or remove attributes and
functions from the APIs that the browser exposes , or even change the browser’s
performance. Furthermore, different versions of browsers, such as Google Chrome
or any of its many variants, can be compiled with different settings, also introducing
fingerprint-altering changes.
We make multiple observations:

• As a countermeasure to tracking using browser fingerprinting, it’s possible that
users can alter their fingerprint through browser settings that have little impact
on usability. Such settings will not impact the overall user experience but,
if successful, should sufficiently alter the fingerprint to make re-identification
more difficult.

• On the other side, advertisers might take advantage of the fingerprint evo-
lutions due to parameter changes to discover potentially highly unique at-
tributes. Advertisers might also potentially uncover the different settings used
by analyzing specific changes to fingerprints, which can be used to make a
fingerprint more unique.

I argue that an automated tool that explores the impact of browser configurations
should be developed. Using such a tool, additional awareness can be provided to
browser developers on the privacy and security implications of the changes they
introduce. Such development tools should increase privacy at development time
before the novel functionalities get shipped, popularized, and exploited.

5https://developer.mozilla.org/en-US/docs/Games/Techniques/3D_on_the_web/WebX
R
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6.2.4 Establishing new standards for environmental im-
pact measurements

Through AdCarbon, I presented the first end-to-end measurement of the carbon cost
of online advertisement at the network request granularity. Our study is based on
real measurements from the user’s device, and a combination of measurements and
heuristics for network and server-side measurements. One of the biggest limitations
of our study is the lack of access to the backends of Web services and to routers. I
believe that this opacity is the main reason why the field is lacking such end-to-end
studies, especially given the timeliness of environmental considerations.
As a solution, I propose to investigate the creation of a standard for computing
the carbon cost related to each network request. I envision this proposal as an
HTTP header entry that would relay the request’s associated carbon footprint. The
industry standard should also define a set of precise rules for computing the carbon
cost, based on a software power meter, such as SmartWatts [14], and not intro-
duce any significant strain on the host’s resources. The standard should also take
into account the privacy considerations linked to sharing carbon-cost measurements
for each request, which can potentially lead malicious users to infer the hardware
configuration of the server or its location.
Therefore, I argue that a set of standards related to the sharing of the environmental
impacts of both servers and routers should be established, which in turn will open
multiple possibilities for both academia and the industry to study, optimize, and
reduce the environmental impact of the Web.

6.3 Future of online advertising
Public outcry against tracking on the Web has led advertisers to question their
practices and motivated official bodies to introduce new and stricter regulations.
The future of online advertising, and tracking on the Web, is naturally expected to
be shaped by such measures. Google, through their Privacy Sandbox initiative, has
proposed multiple standards for advertising: using the Topics API, advertisers are
able to tailor their ads to specific categories that describe the user’s interests. The
Protected Audience API enables ad auctions to be performed on the device, much
like client-side header bidding. The difference is that it sources profile information
directly on the device, reducing the reliance on third-party data. While these
measures show that advertisers are looking for alternatives to third-party cookies
for profiling users, even these less privacy-intrusive alternatives can be abused and
have been shown that, despite their initial vision, they can be used to track users
further than their announced scope. For example, the FLoC6 API was a proposal
by Google that was aimed at replacing cookies with a behavioral-based tracking
method: an identifier was to be attributed to each browser’s history, and would be
classified into a cohort. The Web community was quick to point out the weaknesses
and privacy issues related to the proposal, such as the potential usage of the FLoC
API to enrich browser fingerprints.
Despite growing scrutiny on the security of new browser APIs, they remain vulnerable
to fingerprinting. Current browser fingerprints typically rely on many attributes to

6https://github.com/WICG/floc
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create an accurate identifier of users. However, through DrawnApart, we have
shown that this requirement can be overlooked, and identifying single robust, stable
and unique attributes is enough to construct a fingerprint . Thus, with the increased
focus on browser fingerprinting as a tracking alternative to third-party cookies, I
argue that the amount of attributes used in future fingerprints will decrease, and be
replaced by a limited number of stable attributes with high entropy. As shown by
Botvinnik et al. [307], WebAssembly’s support on browsers could open the door to
the discovery of robust attributes based on hardware characteristics. The usage of
WebAssembly to perform hardware fingerprinting is also showcased in [88], in which
the authors adopt a series of benchmarks that leverage Javascript and WebAssembly
to fingerprint the CPU. Some of the proposed benchmarks are capable of being
exploited by attacker due to their speed, with timings ranging from about 2 seconds
for the fastest benchmark.

1

4

news.com

GET
trackerA.com?c_id=userA

User A

Interests: Food, Soccer,

Mountains, Reading

User A

trackerA.com

2

3

Figure 6.1: An example of a generative AI-based advertising process: (1) The
user accesses news.com, which includes scripts belonging to trackerA; (2) The
script triggers a request to trackerA.com and includes a user-specific identifier;
(3) The tracker pulls the user’s recorded interests and generates a tailored ad
using generative models; (4) The tailored ad is displayed to the user.

Moreover, recent years have seen the explosion of usable Large Language Models
(LLMs) and more generally, of generative AI, and their capabilities are being used in
various fields: arts, code generation or chatbots are examples of such applications.
It can be expected that the future of online advertising will be strongly shaped by
the evolutions of generative AIs, either during the ad-creation process, with adver-
tisers using the artistic capabilities of such models to lower the costs of ad creation.
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Or to shape and generate ads on the fly for the users. For example, while using
search engines , existing ads can be manipulated to advertise specific products in
their responses based on the user’s search queries. One example of such an appli-
cation has been investigated by Feizi et al. [308] in a recent study that shows how
LLMs’ outputs can be automatically altered to include subtle ads into the generated
responses. They propose a framework composed of multiple modules to alter the
original responses and initiate an auction process, which allows the advertisers to
bid on having their ads included in the altered response. Their framework can be
integrated into search engines, such as Bing, which currently leverages LLM-based
results The generative AI-supported creative process is already a possibility. Google
already includes AI-powered ads processes7, with the automatically created assets
for Search Ads, which generates ads headlines based on contextual information. The
recently introduced models also offer the possibility for ad creatives to present a
tailored version of their ads to individual users: models can expand from a general
idea and product to promote and tailor the creative for the likes of the user they
are targeting. An example of such a process is depicted in Figure 6.1 However,
in order for these models to be efficient, enormous amounts of training data are
required, leading to increased data collection. If these types of AI-generated ad-
vertisements turn out to be profitable, this might lead advertisers to research and
identify more potentially invasive practices to harvest more data, despite ongoing
efforts to increase privacy on the Web.
Finally, the explosion of connected devices significantly improves the reach of
advertisers. Smart TVs are able to collect information about our entertainment
habits, smart fridges are able to keep track of the brands we purchase, and
smartwatches are capable of tracking day-to-day activities thanks to the multiple
embedded sensors. Advertising on these devices is already present, and advertisers
can link and correlate data obtained from multiple devices to provide cross-device
advertising. Perhaps one of the changes that will benefit advertisers in the future
is their ability to measure the impact of their advertising campaigns through
feedback from all the connected devices that are owned by individual users. One
of the biggest issues that advertising is currently facing is the reduction of relevant
signals regarding their ad campaigns: it is currently difficult to assess whether an
ad campaign is the cause of a purchase that occurred days, weeks, or months later.
Through the proliferation of smart devices that are able of collecting and analyzing
significant amounts of information , advertisers will be able to more thoroughly
assess the impact of their ad campaigns, and in consequence, target users more
precisely. On the other hand, these benefits to the advertisers come at the expense
of privacy. I argue and even hope, that while advertisers will be able to benefit
from this pool of data, it is likely to be short-lived before strong regulations and
community-based efforts address the privacy risks linked with such practices.

To conclude, my thesis provides a set of contributions related to privacy on the Web,
where the underlying theme, often below the surface of my individual contributions,
is online advertising. I have studied advanced tracking techniques that may replace
third-party cookie tracking, the impact of economic models on tracking in Android
apps, as well as the environmental impact of online advertising.

7https://blog.google/products/ads-commerce/ai-powered-ads-google-marketing-l
ive/
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Piessens, and Bart Preneel. Fpdetective: dusting the web for fingerprint-
ers. In Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security, pages 1129–1140, 2013.

[81] Nasser Mohammed Al-Fannah, Wanpeng Li, and Chris J Mitchell. Beyond
cookie monster amnesia: Real world persistent online tracking. In Information
Security: 21st International Conference, ISC 2018, Guildford, UK, September
9–12, 2018, Proceedings 21, pages 481–501. Springer, 2018.

[82] Umar Iqbal, Steven Englehardt, and Zubair Shafiq. Fingerprinting the finger-
printers: Learning to detect browser fingerprinting behaviors. In 2021 IEEE
Symposium on Security and Privacy (SP), pages 1143–1161. IEEE, 2021.

[83] Julian Fietkau, Kashyap Thimmaraju, Felix Kybranz, Sebastian Neef, and
Jean-Pierre Seifert. The elephant in the background: A quantitative ap-
proachto empower users against web browser fingerprinting. In Proceedings
of the 20th Workshop on Workshop on Privacy in the Electronic Society,
pages 167–180, 2021.
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Tommy Torjesen, Ángel Cuevas, Antonio Pastor, and Mikko Kotila. Car-
bontag: A browser-based method for approximating energy consumption of
online ads. IEEE Transactions on Sustainable Computing, 2023.

[140] Antoine Vastel, Pierre Laperdrix, Walter Rudametkin, and Romain Rouvoy.
FP-Stalker: tracking browser fingerprint evolutions. In IEEE SP, pages 728–
741, 2018.

[141] Charles Herder, Meng-Day (Mandel) Yu, Farinaz Koushanfar, and Srinivas
Devadas. Physical unclonable functions and applications: A tutorial. Pro-
ceedings of the IEEE, 102(8):1126–1141, 2014.

[142] G. Edward Suh and Srinivas Devadas. Physical unclonable functions for device
authentication and secret key generation. In DAC, pages 9–14, 2007.

[143] Keaton Mowery, Dillon Bogenreif, Scott Yilek, and Hovav Shacham. Finger-
printing information in JavaScript implementations. In Proceedings of W2SP,
volume 2, 2011.

[144] Elie Bursztein, Artem Malyshev, Tadek Pietraszek, and Kurt Thomas. Pi-
casso: Lightweight device class fingerprinting for web clients. In SPSM@CCS,
pages 93–102, 2016.

[145] Hugo Jonker, Benjamin Krumnow, and Gabry Vlot. Fingerprint surface-based
detection of web bot detectors. In ESORICS, pages 586–605, 2019.

[146] Antoine Vastel, Walter Rudametkin, Romain Rouvoy, and Xavier Blanc. FP-
Crawlers: Studying the resilience of browser fingerprinting to block crawlers.
In MADWeb, 2020.

[147] Furkan Alaca and Paul C. van Oorschot. Device fingerprinting for augmenting
web authentication: classification and analysis of methods. In ACSAC, pages
289–301, 2016.

[148] Pierre Laperdrix, Gildas Avoine, Benoit Baudry, and Nick Nikiforakis. Morel-
lian analysis for browsers: Making web authentication stronger with canvas
fingerprinting. In DIMVA, pages 43–66, 2019.



BIBLIOGRAPHY 133

[149] Gunes Acar, Christian Eubank, Steven Englehardt, Marc Juárez, Arvind
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Technical report, Tech. Rep., 2021.[Online]. Available: https://ecoinfo. cnrs.
fr/wp-content . . . , 2021.

[291] Yanan Liu, Xiaoxia Wei, Jinyu Xiao, Zhijie Liu, Yang Xu, and Yun Tian.
Energy consumption and emission mitigation prediction based on data cen-
ter traffic and pue for global data centers. Global Energy Interconnection,
3(3):272–282, 2020.

[292] Electrictiymap. https://electricymaps.net, 2023.

https://www.iab.com/guidelines/openrtb/
https://codecarbon.io/
https://ublockorigin.com/
https://electricymaps.net


BIBLIOGRAPHY 142

[293] Carbon intensity per country – ourworldindata. https://ourworldindata
.org/grapher/carbon-intensity-electricity, 2023.

[294] Symantec’s webpulse site review. https://sitereview.bluecoat.com,
2023.

[295] Sacha Wunsch-Vincent. Online news: Recent developments, new business
models and future prospects. The Changing Business of Journalism and its
Implications for Democracy, pages 25–37, 2010.

[296] Chin Osathanunkul. A classification of business models in video game industry.
International Journal of Management Cases, 17(1):35–44, 2015.

[297] Brian Daigle. Data centers around the world: A quick look. United States
International Trade Commission: Washington, DC, USA, 2021.

[298] Robin Clayton. How advertisers can take the lead in reducing carbon emis-
sions. https://martech.org/how-advertisers-can-take-the-lead-i
n-reducing-carbon-emissions/, 2023.

[299] Colin M Gray, Cristiana Santos, Nataliia Bielova, Michael Toth, and Damian
Clifford. Dark patterns and the legal requirements of consent banners: An
interaction criticism perspective. In Proceedings of the 2021 CHI Conference
on Human Factors in Computing Systems, pages 1–18, 2021.

[300] Anthony Chavez. Expanding testing for the privacy sandbox for the web –
google blog. https://blog.google/products/chrome/update-testing
-privacy-sandbox-web/, 2022.

[301] How to stop data centres from gobbling up the world’s electricity – nature.
https://www.nature.com/articles/d41586-018-06610-y, 2018.

[302] Donell Holloway, Lelia Green, and Sonia Livingstone. Zero to eight: Young
children and their internet use. 2013.

[303] Rishabh Khandelwal, Asmit Nayak, Hamza Harkous, and Kassem Fawaz. Au-
tomated cookie notice analysis and enforcement. In 32nd USENIX Security
Symposium (USENIX Security 23), pages 1109–1126, 2023.

[304] Ralf Gundelach and Dominik Herrmann. Cookiescanner: An automated tool
for detecting and evaluating gdpr consent notices on websites. In Proceedings
of the 18th International Conference on Availability, Reliability and Security,
pages 1–8, 2023.

[305] Midas Nouwens, Rolf Bagge, Janus Bager Kristensen, and Clemens Nyland-
sted Klokmose. Consent-o-matic: Automatically answering consent pop-ups
using adversarial interoperability. In CHI Conference on Human Factors in
Computing Systems Extended Abstracts, pages 1–7, 2022.

[306] Jiyeon Lee, Hyosu Kim, and Kilho Lee. Vrkeylogger: Virtual keystroke infer-
ence attack via eavesdropping controller usage pattern in webvr. Computers
& Security, 134:103461, 2023.

[307] Marina Botvinnik, Tomer Laor, Thomas Rokicki, Clémentine Maurice, and
Yossi Oren. The finger in the power: How to fingerprint pcs by monitoring
their power consumption. In International Conference on Detection of In-
trusions and Malware, and Vulnerability Assessment, pages 24–45. Springer,
2023.

[308] Soheil Feizi, MohammadTaghi Hajiaghayi, Keivan Rezaei, and Suho Shin.
Online advertisements with llms: Opportunities and challenges. arXiv preprint
arXiv:2311.07601, 2023.

https://ourworldindata.org/grapher/carbon-intensity-electricity
https://ourworldindata.org/grapher/carbon-intensity-electricity
https://sitereview.bluecoat.com
https://martech.org/how-advertisers-can-take-the-lead-in-reducing-carbon-emissions/
https://martech.org/how-advertisers-can-take-the-lead-in-reducing-carbon-emissions/
https://blog.google/products/chrome/update-testing-privacy-sandbox-web/
https://blog.google/products/chrome/update-testing-privacy-sandbox-web/
https://www.nature.com/articles/d41586-018-06610-y


Appendix A

Drawnapart

A.1 Deterministic attributes collected for the
in-the-wild dataset

1cookies and session support ,
2HTTP headers : [Accept , Accept -Encoding , Language , User - Agent ],
3navigator : [DNT , platform , plugins ],
4screen : [width , height ]
5timezone ,
6WebGL : [vendor , renderer ]

A.2 Evaluation of the standalone pipeline on ad-
ditional browsers in the wild

Table A.1: Standalone Performance of DrawnApart over multiple browsers

Browser Accuracy (Base rate)
Top-1 Top-5 Top-10

Chrome 24.31% (0.7%) 49.12% (2.9%) 60.80% (4.7%)
Edge 52.60% (2.9%) 85.48% (15.6%) 93.86% (29.7%)
Opera 79.28% (17.9%) 99.41% (50.7%) 100.0% (77.5%)
Yandex 89.69% (27.6%) 98.36% (85.9%) 99.76% (94.1%)
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Appendix B

AdCarbon

B.1 Server power measurements
Figure B.1 depicts the average power consumption of various backend Web stacks
based on the number of simultaneous clients. Power consumption increases with the
number of clients. However, for most Web servers, the average power consumption
tends to plateau after 32 simultaneous clients.
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