
HAL Id: tel-04648091
https://theses.hal.science/tel-04648091

Submitted on 15 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formal Validation of Intra-Procedural Transformations
by Defensive Symbolic Simulation

Léo Gourdin

To cite this version:
Léo Gourdin. Formal Validation of Intra-Procedural Transformations by Defensive Symbolic
Simulation. Performance [cs.PF]. Université Grenoble Alpes [2020-..], 2023. English. �NNT :
2023GRALM080�. �tel-04648091�

https://theses.hal.science/tel-04648091
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ GRENOBLE ALPES
École doctorale : MSTII - Mathématiques, Sciences et technologies de l'information, Informatique
Spécialité : Informatique
Unité de recherche : VERIMAG

Validation Formelle de Transformations Intra-Procédurales par
Simulation Symbolique Défensive
Formal Validation of Intra-Procedural Transformations by Defensive
Symbolic Simulation
Présentée par :

Léo GOURDIN
Direction de thèse :

Sylvain BOULMÉ
MAITRE DE CONFERENCES, Université Grenoble Alpes

Directeur de thèse

Frédéric PÉTROT
PROFESSEUR DES UNIVERSITES, Université Grenoble Alpes

Co-directeur de thèse

Rapporteurs :
Jean-Christophe FILLIÂTRE
DIRECTEUR DE RECHERCHE, CNRS Délégation Ile-de-France
Jens KNOOP
PROFESSEUR, Institute of Information Systems Engineering - TU Wien

Thèse soutenue publiquement le 12 décembre 2023, devant le jury composé de :
Sylvain BOULMÉ
MAITRE DE CONFERENCES, Université Grenoble Alpes

Directeur de thèse

Delphine DEMANGE
MAITRESSE DE CONFERENCES, Université de Rennes

Examinatrice

Jean-Christophe FILLIÂTRE

PROFESSEUR, Institute of Information Systems Engineering - TU Wien
Rapporteur

DIRECTEUR DE RECHERCHE, CNRS Délégation Ile-de-France
Rapporteur

Frédéric PÉTROT

PROFESSEUR DES UNIVERSITES, École Normale Supérieure
Examinateur

Jens KNOOP

PrésidentGwen SALAÜN
PROFESSEUR DES UNIVERSITES, Université Grenoble Alpes

Co-directeur de thèse

Marc POUZET
PROFESSEUR DES UNIVERSITES, Université Grenoble Alpes

Léo Gourdin: Formal Validation of Intra-Procedural Transformations by Defensive Symbolic Simulation, ©
2020-2023

À René...

FOREWORD

how to read this document?

I recommend reading a digital, or at least colored, version of this document; but a printed version
should be ok as well. Chapters, sections, or references marked with a dagger † present a personal
contribution of my PhD work. The exhaustive list of my contributions is given in §1.3. Paragraphs,
examples, or figures marked with an asterisk ∗ are partially or totally reused from another document
(paper, article, draft) to illustrate a specific concept. Important notions are emphasized in italic,
and very important ones in violet. Most folded acronyms used in the document are clickable links
pointing to their definition.

The CompCert fork from Verimag, on which I worked during my PhD, is named Chamois-
CompCert (see its brief description in §3.6). The whole Coq and OCaml code described in this
document is available online in a frozen version of the Chamois-CompCert fork dedicated to this
manuscript. See the git repository at https://framagit.org/yukit/compcert-chamois-gl-thesis.
Some types, definitions, lemmas, or theorems are given in a mathematical notation rather than in
Coq, mainly to simplify reading. Their actual implementation or documentation, when relevant to
read, is linked with symbol [�] (in the digital version).

Throughout this document, I use the term “mainline CompCert” to refer to the public version of
CompCert (3.12) distributed by AbsInt, and available on GitHub at https://github.com/AbsInt/
CompCert.

Since all the mathematical proofs presented throughout this document are formalized in the Coq
proof assistant, with their code publicly available online (URL above), I will not detail every lemma
or theorem, but I will rather give an intuition of proof decomposition.

iv

https://framagit.org/yukit/compcert-chamois-gl-thesis
https://framagit.org/yukit/compcert-chamois-gl-thesis
https://github.com/AbsInt/CompCert
https://github.com/AbsInt/CompCert

ABSTRACT

Compilers are highly complex software systems and may, therefore, contain bugs. These bugs can
result in errors during the compilation process, or, much more annoyingly, in the generation of
incorrect code. Bugs that subtly alter the semantics of generated programs are often very insidious
and challenging to trace. In certain applications, particularly in embedded, safety-critical systems
subject to stringent regulations and requirements (e.g. avionics, trains, etc.), eliminating these bugs
is of paramount importance.

Although most of these bugs are typically found in optimization passes, disabling optimizations
is not a viable option in many applications. In fact, simply turning off optimizations is insufficient
to guarantee bug-free code. Regulatory standards often necessitate the use of simple, predictable
processors, heavily reliant on the compiler for performance.

An alternative solution is to employ a certified compiler, mechanically proven correct in a proof
assistant. Such a compiler ensures that the generated assembly code faithfully preserves the source
code’s semantics. CompCert belongs to this category, and stands as the first formally verified C
compiler widely used in the industry. However, proving the correctness of intricate optimizations
remains a challenge. This is why certified compilers, including CompCert, produce code that is
significantly less performant compared to mainstream compilers like GCC or LLVM.

Translation validation offers a technique where only the result of an optimization is verified,
rather than proving the correctness of its implementation. The optimization algorithm, referred to
as an oracle, remains untrusted. Nevertheless, its results are always subjected to validation by a
proven validator designed to reject any errors.

In this thesis, we delve into the concept of guided translation validation. The principle is to allow
oracles to guide the validator by providing hints that reduce the search space, therebyminimizing the
complexity of the validation process. Specifically, we propose a formally verified symbolic interpreter
capable of validating an entire class of transformations. Our tool requests program invariants from
oracles as hints to drive the symbolic simulation of both the original and optimized code. The
proven simulation test defensively validates the applied optimizations, ensuring consistency with
the unoptimized code.

We have successfully validated several new transformations using this approach, including some
that had never been formally verified before, thanks to the communication between oracles and their
validator. Notably, we verify a strength-reduction optimization targeting 64-bit RISC-V architectures,
which show promise in the context of safety-critical embedded systems. In addition to strength-
reduction, our symbolic simulation framework also supports partial redundancy elimination, dead
code elimination, code motion, scheduling, and weak software pipelining with renaming.

We have integrated our validation mechanism into a fork of CompCert through the development
of a new intermediate language called Block Transfer Language, BTL. Translations to and from BTL
are also defensively validated, accomplished with a separate, formally verified checker capable of
validating code duplication and factorization as control-flow graph morphisms. To rigorously assess
the impact of our optimizations and the overhead introduced by their validation, we conducted
multiple experimental measurements of both compilation time and runtime performance. Platform
specific optimizations were tested on both AArch64 and RISC-V architectures. Results show a
significant improvement of the runtime performance while maintaining a reasonable compilation
time.

In the future, this same method could potentially be applied to validate other transformations,
such as the automatic insertion of security countermeasures. Our designs appear to be applicable
beyond CompCert.

Keywords: Formal verification, Translation validation, Symbolic execution, Compiler optimiza-
tions, RISC-V, the Coq proof assistant, the CompCert compiler.

v

RÉSUMÉ

Les compilateurs sont des systèmes logiciels très complexes et peuvent donc contenir des bogues.
Ces bogues peuvent se traduire par des erreurs au cours du processus de compilation ou, plus
ennuyeusement encore, par la génération d’un code incorrect. Les bogues qui altèrent subtilement
la sémantique des programmes générés sont souvent très insidieux et difficiles à retracer. Dans
certaines applications, en particulier dans les systèmes embarqués critiques pour la sécurité et sujets
à des exigences et régulations strictes (par exemple, avionique, trains, etc.), l’élimination de ces
bogues est d’une importance capitale.

Bien que la plupart de ces bogues soient typiquement situés dans les passes d’optimisation, la
désactivation des optimisations n’est pas une solution viable dans de nombreuses applications. En
fait, la simple désactivation des optimisations ne suffit pas à garantir un code exempt de bogues.
Les normes réglementaires imposent en général l’utilisation de processeurs simples et prédictibles,
dont la performance dépend largement du compilateur.

Une solution alternative est d’employer un compilateur certifié, mécaniquement prouvé correct
dans un assistant de preuve. Un tel compilateur assure que le code assembleur généré préserve
fidèlement la sémantique du code source. CompCert appartient à cette catégorie, et est le premier
compilateur C formellement vérifié et largement utilisé dans l’industrie. Cependant, prouver la
correction d’optimisations complexes reste un défi. C’est pourquoi les compilateurs certifiés, y
compris CompCert, produisent un code significativement moins performant que les compilateurs
classiques tels que GCC ou LLVM.

La validation de traduction est une technique où seul le résultat d’une optimisation est vérifié, plu-
tôt que de prouver la correction de son implémentation. L’algorithme d’optimisation, appelé oracle,
reste considéré comme non fiable. Néanmoins, ses résultats sont toujours soumis à la validation par
un validateur prouvé et conçu pour rejeter toute erreur.

Dans cette thèse, nous approfondissons le concept de validation de traduction guidée. Le principe
est de permettre aux oracles de guider le validateur en lui fournissant des indices qui réduisent
l’espace de recherche, minimisant ainsi la complexité du processus de validation. Plus précisément,
nous proposons un interpréteur symbolique formellement vérifié capable de valider toute une classe
de transformations. Notre outil demande aux oracles des invariants de programme en tant qu’indices
pour guider la simulation symbolique du code original et du code optimisé. Le test de simulation
prouvé valide défensivement les optimisations appliquées, en garantissant leur cohérence vis-à-vis
du code non optimisé.

Nous avons validé avec succès plusieurs nouvelles transformations en utilisant cette approche,
dont certaines n’avaient jamais été formellement vérifiées jusqu’alors, grâce à la communication
entre les oracles et leur validateur. Notamment, nous avons vérifié une optimisation de ”strength-
reduction” (littéralement, ”réduction de force”) ciblant les architectures RISC-V 64 bits, qui sont
prometteuses dans le contexte des systèmes embarqués critiques pour la sécurité. En plus de la
”strength-reduction”, notre outil de simulation symbolique supporte l’élimination de redondances
partielles, l’élimination du code mort, le déplacement de code, l’ordonnancement, et une forme
faible de pipeline logiciel avec renommage.

Nous avons intégré notre mécanisme de validation dans notre version de développement (fork)
de CompCert, en développant une nouvelle représentation intermédiaire nommée ”Block Transfer
Language”, BTL (littéralement “Langage de Transfert en Blocs”). Les traductions de et vers BTL
sont également validées de manière défensive, à l’aide d’un vérificateur dédié, formellement vérifié,
et capable de valider de la duplication et factorisation de code en tant que morphismes des graphes
de flux de contrôle. Pour évaluer rigoureusement l’impact de nos optimisations et le temps de
compilation supplémentaire induit par leur validation, nous avons effectué de multiples mesures
expérimentales du temps de compilation et des performances à l’exécution. Les optimisations
spécifiques à une architecture cible ont été testées sur des plateformes AArch64 et RISC-V. Les
résultats montrent une amélioration significative des performances à l’exécution tout en maintenant
un temps de compilation raisonnable.

vi

À l’avenir, cette même méthode pourrait potentiellement être appliquée pour valider d’autres
transformations, comme l’insertion automatique de contre-mesures de sécurité. Nos conceptions
semblent être applicables au-delà de CompCert.

Mots clefs : Vérification formelle, Validation de traduction, Exécution symbolique, Optimisations
de compilateur, RISC-V, l’assistant de preuve Coq, le compilateur certifié CompCert.

vii

ACKNOWLEDGMENTS

I’d like to start by expressing my deepest thanks to Sylvain. Thank you for all the help you gave
me in designing and completing this thesis, for your advice, the time you spent discussing and
reflecting with me, the many ideas and comments you contributed, and without which I wouldn’t
have been able to complete this work. Thank you for believing in me and listening to me during
these three years. Thank you for everything. I’d also like to extend the same profound thanks to
Frédéric; it hasn’t always been easy to find the time to work together at TIMA, but you’ve always
been available and willing to listen, to help, and support me. I’m truly grateful. My sincere thanks
also to David. Although you were not officially my thesis supervisor, you’ve been a great help to me
during these three years, with your many ideas, your enthusiasm, and your patience in the rigorous
proofreading of this manuscript. I’ll never have enough words to express how grateful I am to all
three of you.

I’d like to thank all the members of my thesis jury. Thank you, Jean-Christophe Filliâtre and
Jens Knoop for agreeing to read, review, and report on this manuscript, and for providing helpful
and thoughtful feedback. It’s a great honor. Most notably, Jean-Christophe Filliâtre, thank you for
your extensive notes on the manuscript; Jens Knoop, thank you for the very interesting scientific
discussion we had before the reports. Thank you also to Marc Pouzet and Gwen Salaün for accepting
to be part of my thesis jury and for your interest in my thesis. Thank you, Delphine Demange, not
only for being part of this jury but also for agreeing to follow my thesis as an external expert over
the past three years. Our exchanges were important and meaningful for me, and your outside view
helped me to have confidence in my work.

I also thank all my colleagues in the Verimag laboratory, who have given me the chance to work
in a pleasant and caring environment. I’d especially like to thank Karine for following my progress
over the last six years, and for listening to me and advising me on my decision to do a thesis three
years ago. I’m also incredibly grateful to Olivier, with whom it’s always been a pleasure to work.
Thank you for your constant good mood, the moments spent laughing, and our endless discussions.
You’re the person I knew I needed to talk to to cheer me up! I’m thankful as well to Marie-Laure,
who allows me to continue my research at Verimag and to meet the security research community.

I’d also like to extend my warmest thanks to all my friends from the academic world, for all our
moments spent together, our coffee breaks, our discussions, our odd days at Eve, and for your
essential good humor. Aina, Alban, Alexandre H. from Inria, and Alexandre B. from Verimag, Ana,
Baptiste, Basile my new office colleague, Cyril, Hadi, Lucas, Marco, Doctor Thomas M., not-yet-
doctor Thomas V. Thank you for being there. I’m really happy to have been able to meet such good
friends during this thesis, and I wish you the best. Thank you also to Abderrahmane, Benjamin,
Etienne, Oussama, and all the people I had good times with.

I’d like to give a huge thank you to my past roommates Léa and Olivier, and to my present
roommates Adrien, Tom, and Vincent. And Solenne, who is almost a roommate too. Thank you for
putting up with my changing moods, and thank you for your support, which really meant a lot to
me during these three years.

I’d like to send a special thank you to Soline. Thank you so much for being there; you’re certainly
one of the nicest people I’ve met, and my best friend.

I’d like to thank my family as well. Mom, Dad, Eric, thank you from the bottom of my heart for
all your help and love. Thank you for supporting me, listening, and thank you for allowing me to
spend these eight years at university peacefully. Christine, Stéphane, Lola, thank you for being there
in Grenoble and always available to spend time together. More generally, thank you to my whole
family for their unconditional love and kindness.

Last but not least, I’d like to send a special thank you to Leila. I can’t even express how much you
helped me. Thanks for everything, really.

viii

REMERC IEMENTS

Je voudrais commencer par exprimer mes plus sincères remerciements à Sylvain. Merci pour toute
l’aide que tu m’as apportée dans la conception et la réalisation de cette thèse, pour tes conseils, le
temps que tu as consacré à discuter et à réfléchir avec moi, les nombreuses idées et commentaires
que tu as apportés, et sans lesquels je n’aurais pas pu mener à bien ce travail. Merci d’avoir cru en
moi et de m’avoir écouté pendant ces trois ans. Merci pour tout. J’aimerais également étendre ces
remerciements sincères à Frédéric ; ce n’a pas toujours été facile de trouver le temps pour travailler
ensemble à TIMA, mais tu as toujours été disponible et prêt à écouter, à aider, et à me soutenir. J’en
suis vraiment reconnaissant. Mes remerciements les plus sincères également à David. Bien que tu
n’aies pas été officiellement mon directeur de thèse, tu m’as énormément aidé au cours de ces trois
ans, avec tes nombreuses idées, ton enthousiasme, et ta patience dans la relecture rigoureuse de ce
manuscrit. Je n’aurai jamais assez de mots pour exprimer ma gratitude envers vous trois.

Je tiens à remercier tous les membres de mon jury de thèse. Merci, Jean-Christophe Filliâtre et
Jens Knoop, d’avoir accepté de lire, de passer en revue, et de rapporter sur ce manuscrit, et pour vos
commentaires utiles et réfléchis. C’est un grand honneur. Plus particulièrement, Jean-Christophe
Filliâtre, merci pour vos nombreuses annotations sur le manuscrit ; Jens Knoop, merci pour la
discussion scientifique très intéressante que nous avons eue avant les rapports. Merci aussi à Marc
Pouzet et Gwen Salaün d’avoir accepté de faire partie demon jury et pour votre intérêt pourma thèse.
Merci, Delphine Demange, non seulement de faire partie de ce jury, mais aussi d’avoir accepté de
suivre ma thèse en tant qu’experte extérieure durant ces trois ans. Nos échanges ont été importants
et significatifs pour moi, et ton regard extérieur m’a aidé à avoir confiance en mon travail.

Je remercie aussi tous mes collègues du laboratoire Verimag, qui m’ont donné l’opportunité de
travailler dans un environnement agréable et bienveillant. J’aimerais particulièrement te remercier,
Karine, pour avoir suivi ma progression au cours des six dernières années, et de m’avoir écouté et
conseillé lorsque j’ai pris la décision de faire une thèse il y a trois ans. Je suis également incroya-
blement reconnaissant envers Olivier, avec qui il a toujours été un plaisir de travailler. Merci pour
ta bonne humeur constante, les moments passés à rire, et nos discussions interminables. Tu es
la personne avec qui je savais qu’il fallait parler pour me remonter le moral ! Je suis également
reconnaissant envers Marie-Laure, qui me permet de poursuivre ma recherche à Verimag et de
rencontrer la communauté de recherche en sécurité.

J’aimerais également étendre mes remerciements les plus chaleureux à tous mes amis du monde
académique, pour tous nos moments passés ensemble, nos pauses café, nos discussions, nos jours
impairs à Eve, et pour votre bonne humeur essentielle. Aina, Alban, Alexandre H. de l’Inria, et
Alexandre B. de Verimag, Ana, Baptiste, Basile, mon nouveau collègue de bureau, Cyril, Hadi, Lucas,
Marco, docteur Thomas M., futur docteur Thomas V. Merci d’être là. Je suis vraiment heureux
d’avoir pu rencontrer de si bons amis au cours de cette thèse, et je vous souhaite tout le meilleur.
Merci également à Abderrahmane, Benjamin, Etienne, Oussama, et à toutes les personnes avec
lesquelles j’ai passé de bons moments.

J’aimerais donner un immensemerci àmes anciens colocataires, Léa etOlivier, et àmes colocataires
actuels, Adrien, Tom, et Vincent. Et Solenne, qui est presque une colocataire aussi.Merci de supporter
mes humeurs changeantes, et merci pour votre soutien, qui a signifié vraiment beaucoup pour moi
au cours de ces trois ans.

J’aimerais envoyer un remerciement spécial à Soline. Merci beaucoup d’être là ; tu es certainement
l’une des personnes les plus gentilles que j’ai rencontrées, et ma meilleure amie.

J’aimerais également remercier ma famille. Maman, Papa, Éric, merci du fond du cœur pour toute
votre aide et votre amour. Merci de me soutenir, de m’écouter, et merci de m’avoir permis de passer
ces huit ans à l’université en toute tranquillité. Christine, Stéphane, Lola, merci d’être là à Grenoble
et toujours disponibles pour passer du temps ensemble. Plus généralement, merci à toute ma famille
pour son amour inconditionnel et sa gentillesse.

Enfin, mais non le moindre, j’aimerais envoyer un remerciement spécial à Leila. Je ne peux même
pas exprimer à quel point tu m’as aidé. Merci pour tout, vraiment.

ix

CONTENTS

1 Introduction 1
1.1 Certified Compilers . 1

1.1.1 Security and Safety of Programs and Languages 1
1.1.2 Safety-Critical Systems (SCS) & Compilers Bugs 2
1.1.3 Main Types of Intermediate Representations . 3

1.2 Purpose of This Work . 4
1.2.1 Motivations . 4
1.2.2 A Simplified Example of Global Simulation . 5

1.3 Contributions . 7
1.3.1 Exhaustive List With Links to Relevant Sections 7
1.3.2 Publications . 8

1.4 Contents of This Document . 9

i Setting & Preliminary Contributions
2 Formally Verified Defensive Programming (FVDP) 11

2.1 The Coq Proof Assistant . 11
2.2 Translation Validation . 11

2.2.1 A Classical Example . 11
2.2.2 Using “Shadow” Fields to Combine Extracted and Handwritten OCaml Code 12
2.2.3 Symbolic Execution . 12

2.3 The Principle of Defensive Programming . 14
2.4 Impure: A Safe Foreign Function Interface (FFI) . 15

2.4.1 The Risk of “Impurity” . 15
2.4.2 Motivation: FVDP of a Lightweight Hash-Consing Factory 16
2.4.3 A Coq Model of OCaml Pointer Equality? . 16
2.4.4 The May-Return Monad [�] . 17

2.5 Related Work in Translation Validation and Verified Compilation∗ 18
2.5.1 Symbolic Execution . 18
2.5.2 Other Translation Validation Approaches . 18
2.5.3 Verified Compilers . 21

3 The CompCert verified compiler 23
3.1 Architecture of CompCert . 23
3.2 Correction and Simulation Proofs . 24

3.2.1 Formalism of Program Behaviors . 24
3.2.2 Simulation Schemes . 25

3.3 CompCert Internals . 26
3.3.1 Values and Operations . 26
3.3.2 Register Sets . 26
3.3.3 Memory . 26

3.4 The Register Transfer Language Intermediate Representation 27
3.4.1 Semantics . 27
3.4.2 Limitations . 28

3.5 Errors and Bugs in CompCert∗ . 29
3.6 The Chamois-CompCert fork . 30

4 Symbolic Execution: a case study on instruction scheduling verification 31
4.1 Instruction Scheduling Optimization . 31

4.1.1 Interest: In-Order, VLIW, and Critical Systems 31
4.1.2 Tiny Example of Instruction Scheduling∗ . 32
4.1.3 Previous Attempt at Verifying Postpass Scheduling in CompCert 32
4.1.4 Prepass, Postpass, and Superblock Scheduling 32
4.1.5 Untrusted Scheduler Oracle . 33

x

https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.lib.Impure.ImpMonads.html#MayReturnMonad

contents xi

4.2 FVDP of a Postpass Optimizer . 34
4.2.1 AbstractBasicBlock: A Domain Specific Language (DSL) for Symbolic Execution 35
4.2.2 Unidirectional Translation & Simulation Proof 36
4.2.3 Extending the KVX Postpass With a Simple Peephole 38
4.2.4 Refining the AbstractBasicBlock Theory . 38
4.2.5 Formally Verified Integration of an Assembly Optimizer in Chamois-CompCert 39

4.3 Porting the Postpass Optimizer to AArch64† . 39
4.3.1 A Blockstep Assembly Semantics for AArch64 39
4.3.2 Asmblock Generation From Machblock . 41
4.3.3 OCaml Oracles for Peephole & Scheduling . 42
4.3.4 Instantiating the SE for AArch64 . 45
4.3.5 Coming Back to Asm . 46

4.4 Generalizing to Prepass Scheduling . 47
4.4.1 Decorating RTL With Path Maps: RTLpath . 47
4.4.2 Why Check the Liveness? . 49
4.4.3 An Example of Superblock SE . 49
4.4.4 Overview of the RTLpath SE Verifier . 49
4.4.5 Limitations of the Original RTLpath . 53

4.5 Improving RTlpath† . 54
4.5.1 A Full “Modulo Liveness” Comparison . 55
4.5.2 RISC-V Macro-Expansions at the RTL Level∗ . 57

4.6 Contributions & Conclusion . 60

ii Block Transfer Language
5 A block-based intermediate represention† 63

5.1 A Global Simulation Example∗ . 63
5.2 Abstract Syntax [�] . 65

5.2.1 Syntactical Block Structure . 65
5.2.2 Detailed Breakdown of Instructions . 66

5.3 Operational Semantics . 67
6 Symbolic Simulation Theory† 72

6.1 A Blockstep Forward Simulation Pass . 72
6.1.1 Simulation of Concrete BTL States Induced by Symbolic Simulation 73
6.1.2 Sketch of the Blockstep Simulation Proof . 74

6.2 Syntax of Symbolic Values and Invariants . 75
6.2.1 BTL Symbolic Values . 75
6.2.2 Representations of Invariants . 76

6.3 Concrete Semantics of Symbolic Values and Invariants 77
6.3.1 Execution Context & Evaluation . 77
6.3.2 Relation Between Abstract Invariants and Concrete Registers 79
6.3.3 Linking Symbolic Values and Invariants . 79

6.4 Symbolic Semantics of BTL Blocks . 82
6.4.1 Prerequisite: Symbolic Representations for Final Instructions and Conditions 82
6.4.2 Instantiating Contexts . 83
6.4.3 Symbolic States . 83
6.4.4 Symbolic Execution . 88

6.5 Simulation Predicate Modulo Abstract Invariants . 91
6.5.1 Simulation Scheme . 91
6.5.2 Application of Invariants on States . 92
6.5.3 Matching Simulations in a Predicate . 97

6.6 More Details on the Blockstep Simulation Proof . 99
6.6.1 Correctness of Invariants’ Transfer on Final Symbolic States 99
6.6.2 Correctness of the Modulo Liveness Relation w.r.t. Concrete States 100
6.6.3 Correspondence With the block transfer language (BTL) Operational Semantics 101

7 Symbolic Simulation Refinement and Implementation† 103

https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL.html#final

contents xii

7.1 High-Level View of the Architecture . 103
7.2 Concrete Data Structures and Operations . 104

7.2.1 Refined Symbolic States . 104
7.2.2 Model of Symbolic Register Access and Default Values 104
7.2.3 Validity and Refinement Relation . 105
7.2.4 The Hash-Consing Mechanism . 106
7.2.5 Specification of the Rewriting Engine . 110
7.2.6 Hash-Consed Symbolic Register Access . 111
7.2.7 Setting Values in a Symbolic Register . 112

7.3 Refined Execution of Symbolic Invariants . 115
7.3.1 Sequential Execution . 115
7.3.2 Assigning an Invariant’s Value to a Refined Internal State 115
7.3.3 Liveness Filtering . 116
7.3.4 Transferring Compact Invariants on a Refined State 117

7.4 Refined Symbolic Execution of BTL Blocks . 119
7.4.1 Mapping Registers to Symbolic Values and Executing Final Values 119
7.4.2 Implementation of Block Execution . 119
7.4.3 Correctness of the Hash-Consed Symbolic Execution 121

7.5 Simulation Test . 121
7.5.1 Instantiating the Framework for a Pair of Blocks 122
7.5.2 Efficient Comparison of Refined Symbolic States 122
7.5.3 Proof of Correctness w.r.t. the Theory . 123
7.5.4 Validating an Entire Target Function . 124

7.6 Applications of the Rewriting Engine . 124
7.6.1 Rules for the Expansions of Operations and Branches 125
7.6.2 Fold Right and Affine Forms . 125

8 Bilateral RTL-BTL Translation† 129
8.1 Setting: the Notion of CFG Morphisms . 129
8.2 Translation Oracles . 129

8.2.1 Block Selection Oracle, From RTL to BTL . 129
8.2.2 Flattening and Factorization, From BTL to RTL 130

8.3 Bilateral Matching: The BTL Projection Checker . 130
8.3.1 Specification of Our Validator . 130
8.3.2 BTL to RTL Proof . 133
8.3.3 RTL to BTL Proof . 136

9 Closing Review on BTL† 143
9.1 Development Size . 143
9.2 General Remarks . 144
9.3 Limitations . 145
9.4 Some Related Work . 145
9.5 In Summary . 146

iii Optimization Oracles
10 Lazy Code Transformations† 148

10.1 Introduction: Code Motion, Strength-Reduction, and RISC-V 148
10.1.1 Main Concepts and “Lazy” Transformations . 148
10.1.2 Why Does RISC-V Need More Optimization? 149
10.1.3 Why Choose the LCM & LSR Data-Flow Based Algorithms? 150
10.1.4 Limitations of LCM & LSR . 150

10.2 Lazy Code Motion . 151
10.2.1 Prerequisites for the CFG . 152
10.2.2 Detecting Code Motion Candidates . 153
10.2.3 Analyses . 154
10.2.4 Insertion Offset and Forward Propagation . 156
10.2.5 An Iterative Treatment of Candidates . 156

contents xiii

10.2.6 The Case of Trapping Instructions . 157
10.2.7 An LCT Example of Code Motion . 158

10.3 Lazy Strength-Reduction . 161
10.3.1 Extending Our LCT to Integrate the R2[LSR . 162
10.3.2 Generalizing LSR on Basic Blocks . 163
10.3.3 Affine Forms Strength-Reduction . 165
10.3.4 Details on the Forward Substitution of Auxiliary Variables 165
10.3.5 A Full Example of Lazy Code Transformations 166

10.4 Inferring Invariants From Analyses . 167
10.4.1 Preservation Points for Gluing Invariants . 167
10.4.2 Saving Constants With History Invariants . 168

10.5 Conclusion . 169
10.5.1 Algorithm Control Options . 169
10.5.2 Limitations of Our Formally Verified strength-reduction (SR) 170
10.5.3 Related and Future Work . 171

11 Integration of Other BTL Optimizations 173
11.1 Very Succinct Overview of BTL Generalizations . 173
11.2 Porting Static Analyses From RTL to BTL . 173
11.3 Improved Superblock Scheduling . 174

11.3.1 If-Lifting . 174
11.3.2 Alias Aware Superblock Scheduling . 175

11.4 Factorization . 177
11.5 Making LCT Alias Aware . 177
11.6 Store Motion . 178
11.7 Placement of BTL Passes in the CompCert Pipeline . 179

iv Evaluation & Conclusion
12 Testing and Evaluating a Formally Verified Compiler† 182

12.1 General Considerations∗ . 182
12.1.1 What Are the Purposes of Testing? . 182
12.1.2 Test Suites & Methodology . 182

12.2 Compilation Time (on RISC-V) . 184
12.2.1 BTL Translation Validation Time of LCT . 184
12.2.2 Time of Other Passes . 185

12.3 Runtime Performance . 186
12.3.1 Lazy Code Transformations . 186
12.3.2 If-Lifting . 190
12.3.3 Prepass, Postpass, and Peephole on AArch64 191

12.4 Discussion . 192
13 Conclusion 193

13.1 Short Summary . 193
13.2 Insights∗ . 193
13.3 Ongoing and Future Works . 194

Bibliography 197

L I ST OF F IGURES

Figure 1.1 Sketch of the Simulation Process of Example 1.2.1. 6
Figure 2.1 The “Certificate” Defensive Programming Style. 14
Figure 3.1 The Architecture of CompCert. 23
Figure 3.2 Simulation Diagrams Used in CompCert. 25
Figure 3.3 Syntax of the RTL IR. 27
Figure 3.4 State Semantics of RTL. 28
Figure 4.1 Three Loop-Unrollings of a “while-do” Loop. 34
Figure 4.2 Architecture of the Postpass Optimizer Solution. 35
Figure 4.3 Correctness Diagram for Theorem 4.2.2. 37
Figure 4.4 Existing Register Hierarchy of the CompCert AArch64 Backend. 40
Figure 4.5 Extract of the Asmblock Instruction Hierarchy. 40
Figure 4.6 Internal States in the RTLpath Theory: Local State (top-left), Exit State (top-

right), and Full Internal States (bottom). 50
Figure 4.7 Architecture of the RTLpath Framework. 52
Figure 4.8 Coarse Overview of the RTLpath Proof Diagram. 53
Figure 5.1 Syntax of the BTL IR. 65
Figure 5.2 A Superblock in C Syntax and its BTL Representation. 66
Figure 5.3 A Block With an Internal Join in C syntax and its BTL Representation. 66
Figure 6.1 Lock-Step Simu. 72
Figure 6.2 Diagrammatic Proof of Blockstep Simulation. 74
Figure 6.3 Symbolic Simulation of ibs by ibt. 92
Figure 7.1 Architecture of the Refinement Layers. 103
Figure 7.2 Affine Arithmetic of CompCert 64-bit Integer Operators on Values. 126
Figure 7.3 Examples of Invalid Equalities for CompCert 64-bit Integer Operators. 126
Figure 7.4 Representation of Our Affine Forms. 126
Figure 8.1 Simulation From BTL to RTL: goto case (red) and other final instructions

(green); see Lemma 8.3.2. 134
Figure 8.2 Simulation From RTL to BTL: Internal Instructions (left) and Last Instruction

(right) (Theorem 8.3.5). 137
Figure 8.3 Relation match_strong_state. 138
Figure 8.4 Decomposition of Theorem 8.3.5 into Lemmas 8.3.6 (bottom subdiagram

for final instructions) and 8.3.8 (with two match_strong_state relations for
inductive instructions). 141

Figure 10.1 AArch64 (left) vs. RISC-V (right) Addressing. 149
Figure 10.2 Code Motion Candidates’ Key Type. 153
Figure 10.3 LCT Candidates’ Value Type. 153
Figure 10.4 Four Candidates for loop-invariant code motion (LICM). 159
Figure 10.5 CSE3 Alone. 159
Figure 10.6 Unroll+LCT. 159
Figure 10.7 Full BTL control-flow graph (CFG) of Figure 10.6. 160
Figure 10.8 LCT Candidates’ Key Type. 162
Figure 10.9 Polymorphic Affine Forms Over a Type of Constants C. 165
Figure 10.10 Two Candidates for LSR. 166
Figure 10.11 Original (left) and Reduced (right) BTL Pseudocode. 167
Figure 11.1 Interleaving of Unrolled Loop-Bodies on AArch64 (pseudocode). 175
Figure 11.2 AArch64 Scheduling With Robert and Leroy [127] Analysis. 176
Figure 11.3 AArch64 Scheduling With Relative Addressing Analysis. 176
Figure 11.4 Code motion With Alias Aware LCT on AArch64 (pseudocode). 178
Figure 11.5 Source code for Figure 11.6. 178

xiv

Figure 11.6 Promotion, LCT, and Store Motion Using Load-Store Alias Analysis on RISC-
V (pseudocode). 179

Figure 12.1 LCTOracle andValidator Timesw.r.t. theNumber of Instructions (logarithmic
scale). 184

Figure 12.2 Top Ten Slowest Chamois-CompCert Passes Across Four Selected Benchmarks. 185
Figure 12.3 Chamois-CompCert Configurations for Four Selected PolyBench on Cortex-A53.187
Figure 12.4 Chamois-CompCert Configurations for Ten Selected Benchmarks vs.Mainline

CompCert on U740. 189

L I ST OF TABLES

Table 11.1 Comparison of RTL Passes BetweenMainlineCompCert andChamois-CompCert
(Verimag). 180

Table 12.1 Mean lazy code transformations (LCT) Gains on PolyBench for Two AArch64
Cores. 187

Table 12.2 Comparing LCT, Promotion, CSE3, and Prepass With GCC and Mainline
CompCert on Both Individual Benchmarks and Complete Suites, on the
RISC-V U740 Core. 188

Table 12.3 Mean Gain of Incrementally Adding Scheduling, Duplications, Renaming,
If-Lifting, LCT, and CSE3 on All Cores, for All Benchmark Suites, and Com-
paring With GCC. 190

Table 12.4 Comparing Configuration C4 and C5 From Table 12.3 for Each Benchmark
Suite. 191

Table 12.5 Mean Gain From Schedulers, Unrolling, and Redundancy Elimination Algo-
rithms on Cortex-A53, With GCC and Mainline CompCert. 191

ACRONYMS

ABI application binary interface
ALU arithmetic-logic unit
BTL block transfer language
CFG control-flow graph
CIC calculus of inductive constructions
CM code motion
CPS continuation passing style
CSE common subexpression elimination
CSASV compact sequence of assignments of symbolic values
DAG directed acyclic graph
DCE dead code elimination
DFA deterministic finite automaton
DSL domain specific language
FFI foreign function interface

xv

acronyms xvi

FPASV finite parallel assignment of symbolic values
FRE full redundancy elimination
FVDP formally verified defensive programming
GI gluing invariant
GVN global value numbering
HI history invariant
ILP instruction level parallelism
IR intermediate representation
IR-points insertion and replacement points
ISA instruction set architecture
LCT lazy code transformations
LCM lazy code motion
LHS left hand-side
LFTR linear-function test replacement
LICM loop-invariant code motion
LTL location transfer language
LSR lazy strength-reduction
OoO out-of-order
PRE partial redundancy elimination
RHS right hand-side
RSD relative standard deviation
RTL register transfer language
SCS safety-critical systems
SE symbolic execution
SMT satisfiability modulo theories
SR strength-reduction
SSA static single assignment
TCB trusted computing base
VLIW very long instruction word
WCET worst-case execution time
WLP weakest liberal precondition

1
INTRODUCT ION

The following chapter introduces the context and the motivations behind this work. Section 1.1
defines the notion of certified compilation and explains why it is necessary; I motivate the main topic
of my thesis in Section 1.2; and a list of contributions is provided in Section 1.3. Finally, Section 1.4
gives a quick outline of this document.

1.1 certified compilers

A certified compiler comes with a mechanical proof of correctness, written using a proof assistant
such as Coq1. Essentially, it means that the target program’s semantics is unchanged: assumingA language is

termed
deterministic if a

program’s
behavior in that

language is solely
determined by its
inputs, and not by

any internal
choices.

deterministic source and target languages, the observable behavior of the source must imply the
target’s one (a more formal explanation is provided in §3.2.1). Therefore, if the source program
does not crash, neither does the target.

1.1.1 Security and Safety of Programs and Languages

Programming languages are standardized in documents describing their semantics, and how the
compiler should translate them into machine code. Often, these standards are mostly written in
English, and they might be very difficult to understand completely (700 pages for the C11 ISO/IEC
9899:2011 standard). Depending on the source language, a program might be subject or not to
various security and safety issues.

safety Some languages directly integrate safety measures through the use of techniques such as
type checking: the process of verifying types’ consistency and enforcing constraints. Type checking
can be static (i.e. based on an analysis of the source code, at compile time) or dynamic (at runtime).
The aim of verifying types is to detect and avoid runtime errors, by ensuring some set of safetySince many

language
constructs are

difficult to check
statically, some

languages
combine both

static and
dynamic type

checking.

properties on all possible inputs of the program. Modern languages such as Rust include a lot
of safety checks to ensure, for instance, that an array access is never out of bounds. Oppositely,
low-level languages like C are far more permissive, and hence writing safe code is the responsibility of
the programmer. C still features some weak, static type checking, but the latter is limited (it does not
cover every language constructs, e.g. variadic functions) and it might be easily, or even inadvertently
circumvented.

The C standard lists undefined (or unpredictable) behaviors: cases where the compiler is autho-
rized to do anything, since the semantics is not well-defined. In such situations, the program may
either fail to compile, or execute incorrectly, and it is up to the compiler programmer to decide how
to compile undefined behaviors. For example, dividing a value by zero, accessing an array out of
bounds, or overflowing signed integers are all considered as undefined behaviors.

More generally, safety relates to the predictability of the program behavior, and its conformance
w.r.t. the standard’s semantics.

security Unlike safety, which is concerned with avoiding unexpected results due to the program
itself, security is concerned with the program’s isolation from the external environment. In a world
where almost every machine is connected to a network and susceptible to external attacks, it is
essential to assert the security properties of programs. Security issues might be direct consequences of
safety issues: for instance, the “heartbleed” flaw discovered in OpenSSL in 2012 was in fact a safety
exploit of the source language, C. The vulnerability arose from a malicious use of the heartbeat
protocol: normally, this mechanism allows the client to send a message and its length to the server,

1https://coq.inria.fr/

1

https://coq.inria.fr/

1.1 certified compilers 2

so that the server returns the same message (with the same length) and maintains the secure
connection open. However, due to a lack of safety checks (e.g. bounds checking), an attacker could
request a message longer than the one actually sent. The server would then naively return the
message, along with the adjacent content of its memory until reaching the requested length.

There are various methods to prevent security attacks, and one of them consists in adding coun-
termeasures inside the source code in order to ensure that some path has been taken, or some
computation executed. While adopting this preventive approach is interesting, it may prove to
be more challenging than anticipated. Indeed, since the principle is to perform additional checks
within the program, while keeping the original semantics, a clever compiler will try to simplify the
protected code to make it faster (by propagating constants, or eliminating dead-code). For instance,
many countermeasures consist in adding dead code, which is likely to be removed by optimizations.
This introduces a new problem: how can we insert countermeasures without the compiler deleting
them?

This discussion highlights the inherent conflict between safety and security measures, and the
pursuit of code optimization. For the optimization aspect, a compiler is expected to eliminate code re-
dundancies without changing the overall semantics. On the other hand, we may also need to preserve
some redundancies preventing anomalous executions for security reasons. Another typical example
is about the difference between the “official” semantics (i.e. as defined in the standard) description
of a construct, and its expected semantics from programmers. Sometimes, mainstream compilers
may even choose to favor the programmers’ expectations rather than the “official” semantics, thereby
assuming that “the use makes the norm” might be the safest strategy.

1.1.2 Safety-Critical Systems (SCS) & Compilers Bugs

The goal of a verified compiler is to minimize the risk of introducing errors in the program during
the compilation process. The compiler thus focuses on code generation and optimization, by making
strong hypotheses on the source program (e.g. no undefined behaviors). To gain confidence in these
assumptions, one can first run a (preferably verified) static analysis using a specific tool. In the case
of the C language, there exists formally proven static analyzers (e.g. Astrée [40]) enforcing many
critical runtime properties.

Bugs in compilers are relatively rare, but are also quite insidious: detecting a bug in the compilation
process that only appears at runtime is sometimes very difficult. In particular, when starting from
a correct source code and experiencing an incorrect assembly code, changing the source to fix or
isolate the bug might make it disappear.

In mainstream compilers, most bugs are found in optimization passes [136, 150]. When working
on safety-critical systems (SCS), the use of a verified compiler is a crucial consideration to avoid
these bugs. For instance, aircraft flight control software are subject to rigorous safety norms [60],
which impose traceability from the source to object code [16]. Without certified compilers, this
requirement often excludes the use of optimization passes, resulting in a suboptimal use of the
target processor. This is all the more damaging since in this context, using modern, fast cores
featuring complex mechanisms such as dynamic reordering, speculation, etc. or multicore proces-
sors, with concurrent programming issues, are not necessarily acceptable options. Indeed, these
mechanisms can significantly complicate the worst-case execution time (WCET) analysis, inducing
timing anomalies and making it much more pessimistic due to the unpredictability of execution
paths [41]. Consequently, the hypothesis of timing compositionality [103, §6.1.5] is of paramount
importance in SCS; roughly, it assumes that we can obtain an upper bound on the overall worst-case
timing behavior. Timing compositionality can be achieved by hardware design, notably by using
strictly in-order pipelines [71, §5]. Yet, optimizing the code might help in decreasing the WCET,
which is great for safety concerns (i.e. for predictability and timing guarantees). As a demonstration,
Kästner et al. [88] reported a gain of nearly thirty percent on the WCET of their programs by using
the CompCert certified compiler in comparison to an untrusted, non-optimizing compiler.

Recently, researchers have begun to examine the predictability and timing compositionality of
modern optimizing cores [69]. Gruin et al. [68] even proposed an open-source RISC-V core capable

1.1 certified compilers 3

of speculative execution, yet devoid of timing anomalies. Nevertheless, sophisticated cores carry a
higher risk of bugs and greater power consumption, which does not always make them a desirable
choice.

1.1.3 Main Types of Intermediate Representations
In this document,

we only
investigate the
first technique:

code partitioning
into blocks.

To make compilers simpler and more general, we often use specific intermediate representations.
For instance, I present in the two sections below two ways of structuring the code that facilitate
some transformations or analyses.

1.1.3.1 Decomposing the Code Into Blocks

For many optimizations, a prerequisite is to group instructions into blocks of different sizes. For
instance, a data-flow algorithm—as the one of Chapter 10—will be faster if it can solve the data-flow
equations for entire blocks rather than individual instructions2. Moreover, blocks define a frame
for the optimization to work with: it is usually a code fragment with a single entry point, so we can
reorganize its content while controlling the effects that it entails on the rest of the program. In the case
of a scheduler, the block corresponds to thewindow insidewhich the algorithm reorders instructions.

Generally, we distinguish four different types of blocks:

basic blocks: the simplest form of block. Only one entry point, and one exit point (hence, a
conditional branch, for example, would terminate the block).

For definitions of
extended basic

blocks, the reader
may refer to

(i) the Wikipedia
page3, and (ii) the

definition
from Knoop,
Rüthing, and
Steffen [85,

Footnote 15].

extended (basic) blocks: they are built as a collection of basic blocks, where only the first node
is allowed to have multiple predecessors, while the other blocks can only have a unique
predecessor, itself inside the collection. Their use is mainly for trace scheduling [142], and
common subexpression elimination (CSE). Unlike loop-free blocks, extended blocks are a
maximal tree of nodes without internal joins.

superblocks: are a particular case of extended basic blocks; they allow to have multiple exits,
but with some constraints. Each non-final conditional branch must have one branch that
goes directly out of the block, and another that continues inside. In other words, superblocks
generalize basic blocks, such that each instruction of a given block has still atmost one successor
in this block, but may also branch to another superblock [72]. Their main application is (also)
for scheduling [90]. Graphically, the control-flow graph (CFG) of instructions for superblocks
looks like a comb.

loop-free blocks: those are the largest form supported by the intermediate representation (IR),
block transfer language (see Part ii), introduced in this thesis, and represent a directed acyclic
graph (DAG) (e.g. a tree of instructions allowing internal joins).

1.1.3.2 Static Single Assignment

Another solution that helps in optimizing the code, and in particular by greatly facilitating data-
flow analysis and the implementation of optimizations, is the static single assignment (SSA) form.
This representation is widely used in popular compilers such as GCC & LLVM. Its principle is to
assign each pseudo-register exactly once, by renaming and using a fresh pseudo-register for each
assignment [43].

It is therefore much easier to build a structure of use-definition chain from an SSA graph, thanks
to this single assignment invariant. The name “static” expresses that SSA does not take into account
the runtime behavior of the program: an assignment within a loop is considered as single if its
destination is not written elsewhere, no matter if the loop is executed several times.

SSA is close to lambda calculus [7, 79], and as pointed out by Chakravarty, Keller, and Zadarnowski
[30], using this functional representation can be a solution for formalizing and reasoning about SSA

2E.g. in the case of the lazy code transformations algorithm proposed in this thesis, we use basic blocks.
3https://en.wikipedia.org/wiki/Extended_basic_block

https://en.wikipedia.org/wiki/Extended_basic_block

1.2 purpose of this work 4

forms. As of today, the most advanced work of an SSA formalization (within the CompCert compiler)
is from Demange [45]. I briefly describe it in §2.5.3.

1.2 purpose of this work

I suggest below reasons and examples that motivate this work. Notably, I sketch a high-level view
of the main contribution of this work: the idea of verifying global transformations by using a
block-based simulation modulo invariants.

1.2.1 Motivations

The problem of program equivalence is undecidable in general (Rice’s theorem). Yet, the need
for certified compilation, especially concerning critical systems, is well-established (see §1.1.2).
Offering a certified, but unoptimized compiler would not suffice to satisfy this need because typical
use-cases are often working with a restricted amount of computational power or under specific
conditions (limited memory, power consumption, etc.) As of today, CompCert [21, 92, 93] is the
only formally verified compiler used at an industrial scale [88]4. However, compared to the most
popular toolchains as GCC and LLVM, it is only moderately optimizing.

For a certified compiler to be used in industrial or other applications, as opposed to being a research
prototype or a teaching tool, its optimization capabilities are an important criterion. Furthermore,
SCS often rely on old processor architectures (such as PowerPC) that feature a simple design. Newest
architectures based on open hardware like RISC-V are promising in this domain [6, 52, 102]: the
open design is attractive for academics, and the RISC-V instruction set architecture (ISA) is also very
modular. Anyone can write a RISC-V extension, opening the possibility of specializing the ISA for
each application. On the other hand, the backend was only added recently in CompCert (in 2017),
and is not as optimized as the older ones like PowerPC.

Hence, both theoretical and practical research on verified optimizations, security measures, and
formal guarantees are essential. Innovations in this domain can help other researchers and industrials
in democratizing safe and secure solutions.

My thesis is part of this objective, focusing on the formal verification of optimizations; more
precisely, we aim to obtain a framework capable of automatically verifying the correctness of a
whole class of transformations (which do not necessarily aim at performance; e.g. the insertion of
countermeasures). This desire for a generic validation framework is motivated by the difficulties
encountered when trying to directly prove complex algorithms. Considering these difficulties, it
would surely be beneficial to reduce the proof effort. The framework I propose in this work is not
dependent on the target architecture, although I have mainly targeted the RISC-V backend with
rewrites that depend finely on the ISA.Symbolic

execution is part
of the translation

validation
techniques;

see §2.2.

The idea is to start from a well-known generic method, symbolic execution (SE), that consists
of virtually simulating the execution of programs to compare them. Usually, this method is only
useful for transformations operating within a very restrained scope (e.g. with sequential portions
of the whole code). In fact, SE might cause complexity issues if run over a program with many
execution branches5 (see §2.2.3). Similarly, how would a simulation work (and scale-up) if there are
whole loops in the code? Moreover, some semantic constraints force us to split the code into blocks
(e.g. when there is a call or a goto instruction). But what about several small simulations connected to
each other? It is precisely the point I focused on this thesis: composing local simulations to prove the
correctness of global transformations.This list is not

exhaustive, but
suggests four of

the most
important and

missing
transformations.

Optimizations missing in CompCert w.r.t. to mainstream toolchains include:

• Strength-reduction (SR), which has the potential to greatly improve the runtime performance6
of the generated code on some architectures, and in particular on embedded processors using a
less sophisticated ISA (e.g. RISC-V). The principle is to replace a costly computation with a
“cheaper” one (e.g. a right shift of n bits is less costly than a division by 2n).

4The CakeML compiler for the ML functional language is the only other example of a large scale formally verified
compiler, but is not used industrially, to the best of our knowledge.

5It is useful to visualize the program as a directed graph here.
6In terms of execution time or number of cycles.

1.2 purpose of this work 5

• Loop-invariant code motion (LICM), which involves pre-computing instructions that would be
redundant in a loop (for instance, a costly load instruction in a loop can be anticipated if its
target memory cell does not change during the loop’s iterations).

• Code motion (CM) in general to optimize the placement of instructions in the code.

• Finely dependent rewrites, to allow the replacement of complex instructions with simpler
sequences available in the target’s ISA.

Several of the above optimizations can be combined to achieve an even more efficient transforma-
tion, and are often performed by the same algorithms.

1.2.2 A Simplified Example of Global Simulation

In this section, I present a very simplified version of the simulation principle; in practice, there are a
lot more constraints to consider, see §2.2.3, §4.4.3, and §5.1. Let us take the below source pseudocode
(left-hand side) and its optimized version (right-hand side):

Example 1.2.1 (A motivating example: verifying loop-invariant code motion).
int main(int y, int z) {

Bhead:

goto Bbody;

Bbody:

if (z > 1000)

return z;

x = y * y;

z = z + x;

goto Bbody;

}

int main(int y, int z) {

Bhead:

h = y * y;

goto Bbody;

Bbody:

if (z > 1000)

return z;

z = z + h;

goto Bbody;

}

We simply applied a LICM pass to take out the “y * y” computation, since its value never changes
through iterations, by introducing a new variable h (in red). Although using a fresh variable name is
not essential in this example, it helps to avoid being blocked by dependencies in more general cases
(e.g. if x was modified just before the “goto Bbody” instruction, keeping the same variable would be
incorrect). Both codes are separated into two “blocks”: the Bhead block, which only contains a goto
at the beginning, and the Bbody block. Our simple simulation test for this example works as follows:

• For each instruction, it updates a state representing the modified variables;

• The simulation aims to virtually execute a source and a target (i.e. transformed) code fragments,
and to compare the resulting states to determine if they are equivalent;

• To simplify this introduction, we assume that data in memory can only be accessed via variables
(and not via memory addresses);

• When the code splits in multiple branches, we obtain a state for each branch;

• Variables that are not used in the successor blocks (i.e. dead variables) can be ignored (and
removed from the source’s final state), since their value does not impact the semantics. Hence,
considering that the optimized program should be able to introduce new, auxiliary variables,
the source’s final state devoid of dead variables must be included in the target’s final state.

If we apply those principles for the Bbody block of the source code, we will obtain two possible
states: either the condition “z > 1000” was true, so that z keeps its initial value and none of the
variables are modified; or it was false, and so the end of the block updates both x and z. The goal
of the simulation here is not to iterate on the loop a thousand times; we stop before looping again
(at the last goto), and we simply remember that at this point, we have “z := z + y * y” (here, we
substituted x inside z). If the “h := y * y” instruction was inserted just above the condition (thus
staying in the Bbody block), a simulation of the target block would produce the same result as in the
source (but the computation would still be inside the loop...)

1.2 purpose of this work 6

Bhead

Bbody

Ihead

Ibody

Bhead’

Bbody’

0

1

2

1

2

Simulation order:
Bhead block:
[Bhead; Ibody] (src.) vs. [Ihead; Bhead’] (tgt.)
Bbody block:
[Bbody; Ibody] (src.) vs. [Ibody; Bbody’] (tgt.)
Legend:
Straigth black (→): control-flow;
Zigzag black (): entry invariant check;
Dashed green: source simu;
Dashed red: target simu.

Figure 1.1: Sketch of the Simulation Process of Example 1.2.1.

For a transformation scoped on a single block, this method proves to be quite practical: we can
reorder or rewrite instructions, as long as the simulation result remains equivalent. Unfortunately, our
example here contains a loop, so we cannot simulate the whole program without cutting it into
blocks. Taking the Bbody block alone is not a problem, since the loop entry point is also the block
entry point, and since both branches end with a “final” instruction (return or goto). If the loop
entry point was in the middle of the block, we would have to cut it again (i.e. the only possible entry
point for a block must be its first instruction). Hence, the simulation is possible only if loop entries are
also block entries; this is why I formatted it in two blocks, but now we must propagate information
about the computation lifted in the Bhead block.The term

“invariant” here
refers to the
simulation

invariant needed
to preserve the

semantics of each
block (more

details in §9.2).

We do this by adding a notion of invariants at each block entry: these invariants define the
relationship between the target block’s variables and terms over the source’s variables. Invariants
are common to both the source and the target blocks. The simulation test executes them in the
following way:

• On the source, it executes the block first, and the invariant of the next block after;

• On the target, it is the opposite: the invariant of the block first, then the block.

The invariant for the entry block of a functionmust always be “trivial”: we verify that it includes only
identity relations of the form [x := x]. Let us take the following invariants: Ihead = [y := y; z := z]

for the Bhead block (i.e. the two input variables), and Ibody = [h := y * y; z := z] for Bbody7. Notice
the trivial assignments in these invariants: they mean that variables y and z have the same value in
both blocks (i.e. y in the target is equal to y in the source, and the same applies for z).

The execution rules defined above indicate how to verify the global simulation. The process for
Example 1.2.1 is sketched in Figure 1.1, where Bhead/Bbody are the source’s blocks, and Bhead’/Bbody’
the target’s blocks. After executing this simulation, we obtain (the correspondence with arrows of
Figure 1.1 is indicated in parentheses):

1. For the Bhead block:
• Entry (0: Bhead Ihead): we ensure that every initial state in Bhead satisfies the trivial

invariant from Ihead, since it is the function’s entry point;
• Source (1: Bhead+Ibody): nothing from Bhead (since the source’s block is just a goto), then

our invariant: we end up with “h := y * y ‖ z := z”;
• Target (1: Ihead+Bhead’): we have [y := y; z := z] from the Bhead invariant, then “h := y

* y” by executing the Bhead’ block: we obtain the same result as in the previous point,
with an additional identity assignment for y (because it is used in the Bhead’ block). The
result of the source (which does not contain dead variables) is included in the target’s
one, as expected.

2. For the Bbody block, when the condition “z > 1000” is true, both blocks exit without changing
any variables; we ignore this trivial case in the following:

• Source (2: Bbody+Ibody): we already computed Bbody above, which was “z := z + y * y”
(we omit the value of x which is not used—i.e. dead—after); and we apply the invariant

7In this section, invariants are noted as instruction sequences surrounded by brackets.

1.3 contributions 7

of the successor (which is Bbody again, so the invariant is Ibody), to finally obtain: “z := z

+ y * y ‖ h := y * y”;
• Target (2: Ibody+Bbody’): the invariant is executed first, so we end up with “z := z + y *

y ‖ h := y * y”. Again, the source’s result (without the dead variable x) is included in
the target’s one.

The “ ‖ ” notation is for parallel assignment: after simulating the block, we represent values as
if they were assigned simultaneously (e.g. “a := b ‖ b := a” means that a is swapped with b).
Thanks to this technique, we are able to obtain the same result for both the source and the target
executions! Indeed, executing well-chosen invariants placed at the entry of each block allows us to
propagate information across block boundaries. These invariants—we call them gluing invariants
(GIs)—symbolize a relation between the target block’s variables and the source’s ones: for example,
the [h := y * y; z := z] (Ibody) invariant indicates that variable h in the target block is equal to
the expression “y * y” of the source block, and that z does not change. The LICM transformation of
Example 1.2.1 thus preserves the program’s semantics.

In the rest of this document, I explain how we came up with this method and how we formally
proved it over a dedicated intermediate language, which enables us to validate several new op-
timizations (some of which had never been certified before) in the Chamois-CompCert verified
compiler.

1.3 contributions

1.3.1 Exhaustive List With Links to Relevant Sections

Contributions, approximately listed by decreasing significance:

• Introduction of a new IR, block transfer language (BTL), which is a variant of the existing
register transfer language (RTL) IR of CompCert. BTL partitions the CFG into blocks, and was
designed as a basis for the application and defensive verification of transformations. I present
BTL in Chapter 5.

• Formalization and implementation of a translation validation framework, proven correct in
Coq. This tool defensively validates transformations performed on BTL programs by symbolic
execution modulo invariants (provided by untrusted oracles) annotations at block entries.
Invariants relate the pseudo-registers of a “source” CFG to those of a “transformed” CFG,
enabling the validation of global transformations of the CFG, and typically loop optimizations.
The symbolic execution engine is parametrized by transformation-dependent rewriting rules.
The framework’s theory is formalized in Chapter 6, and its implementation is detailed in
Chapter 7.

• Design of an untrusted oracle implementing a combined, enhanced variant of the lazy code
motion (LCM) & lazy strength-reduction (LSR) algorithms over BTL. This oracle, named lazy
code transformations (LCT), is untrusted by the formal proof of correctness, but provides the
invariants necessary for the symbolic validation of its transformations. I detail my contributions
to these algorithms and the LCT implementation in Chapter 10.

• Integration of BTL between RTL passes of CompCert thanks to another translation validator
capable of validating CFG morphisms. Not only this morphism checker validates translations
to and from BTL, it also supports the validation of code duplication and factorization. See
Chapter 8.

• Implementation of a low-level expansion engine for pseudo-instructions on RISC-V, operating
over BTL. This new optimization pass performs a kind of instruction selection, and is also
translation validated by the symbolic execution I implemented (using rewriting rules). These
expansions increase the opportunities of other optimizations such as the prepass schedul-
ing and the LCT algorithm. The expansion mechanism is first detailed in Section 4.5.2 as a
preliminary contribution to another IR, and its port to BTL is explained in Section 7.6.1.

1.3 contributions 8

• A port to AArch64 of the postpass scheduling initially realized for KVX platforms by Six,
Boulmé, and Monniaux [134]. I also extended it with a peephole optimization to compact
loads and stores pairs. This is detailed in Section 4.3

• Development of a testing framework for CompCert. Its design was driven by two primary
objectives: firstly, to ensure the trusted computing base (TCB) was rigorously scrutinized
through functional tests, helping in the identification of potential bugs in the compiler’s
trusted components; and secondly, to gauge the performance impact of optimizations across
various target architectures. Detailed insights into this framework are provided in Chapter 12.

• Extension of the superblock prepass scheduling of Six et al. [135]†. In particular, the BTL
simulation engine enables validating scheduling modulo register renaming and modulo the
insertion of compensation code in intermediate exits. The oracles that achieve these extensions
have been implemented by interns I co-supervised. BTL extensions, including this one, are
covered in Chapter 11.

1.3.2 Publications

Below is an exhaustive, chronological list of my publications:

• Gourdin [63]† (June, 2021): A short paper accepted in the PhD student session of AFADL (in
French, “Approches Formelles dans l’Assistance au Développement de Logiciels”—meaning
“Formal Approaches to Software Development Assistance”). The paper (written in English)
presents my port of the Six, Boulmé, and Monniaux [134]’s postpass scheduler and the design
of a new peephole optimization on AArch64.

• Gourdin and Boulmé [67]† (July, 2021): An abstract accepted in the Coq-Workshop, accom-
panied by a presentation (in remote). Slides: https://coq-workshop.gitlab.io/2021/sli
des/Coq2021-04-01-slides-certifying-optimizations-hash-consing.pdf; Video record:
https://www.youtube.com/watch?v=T8vRRguYG4A. This work is also about the AArch64
scheduler and peephole, but is more focused on the Coq implementation using symbolic
execution and hash-consing.

• Six et al. [135]† (January, 2022): A CPP (“Certified Programs and Proofs”) paper entitled
“Formally Verified Superblock Scheduling”. It is mainly about the RTLpath IR and related
optimizations presented in Chapter 4.

• Monniaux, Boulmé, and Gourdin [107]† (June, 2023): A poster presented at the RISC-V
summit Europe, in Barcelona. Abstract: https://riscv-europe.org/summit/2023/post
ers#lo-gourdin--formally-verified-advanced-optimizations-for-risc-v; Poster:
https://riscv-europe.org/summit/2023/media/proceedings/posters/2023-06-08-L%C3%

A9o-GOURDIN-poster.pdf.

• Gourdin [64]† (July, 2023): A ICOOOLPS (“International Workshop on Implementation,
Compilation, Optimization of OO Languages, Programs and Systems”) paper about the
co-design of an improved and combined version of the Lazy Code Motion and Lazy Strength-
Reduction algorithms.

• Monniaux et al. [108]† (July, 2023): A TAP (“Tests And Proofs” conference) paper about our
development method combining tests and formal proofs to extend the CompCert formally
verified compiler.

• Gourdin et al. [65]† (October, 2023): A OOPSLA (“Object-Oriented Programming, Systems,
Languages & Applications”) paper published in the Proceedings of the ACM on Programming
Languages (PACMPL) journal. This paper concerns the main topic of my thesis: a defensive
simulation framework over the BTL IR.

https://coq-workshop.gitlab.io/2021/slides/Coq2021-04-01-slides-certifying-optimizations-hash-consing.pdf
https://coq-workshop.gitlab.io/2021/slides/Coq2021-04-01-slides-certifying-optimizations-hash-consing.pdf
https://www.youtube.com/watch?v=T8vRRguYG4A
https://riscv-europe.org/summit/2023/posters#lo-gourdin--formally-verified-advanced-optimizations-for-risc-v
https://riscv-europe.org/summit/2023/posters#lo-gourdin--formally-verified-advanced-optimizations-for-risc-v
https://riscv-europe.org/summit/2023/media/proceedings/posters/2023-06-08-L%C3%A9o-GOURDIN-poster.pdf
https://riscv-europe.org/summit/2023/media/proceedings/posters/2023-06-08-L%C3%A9o-GOURDIN-poster.pdf

1.4 contents of this document 9

1.4 contents of this document

The document is divided into four parts. Part i sets the context of this work, and presents some
preliminary contributions, the discussion of which will enable us to motivate the design choices
behind Part ii. Subsequently, Part ii focuses on the formal verification aspect by presenting our new
IR and validation framework. The transformation aspect, concerning optimization oracles, is covered
in Part iii. Finally, Part iv reviews our experimental results and concludes.

Throughout this document, I have aimed to provide a comprehensive overview of the state of
the art in translation validation and loop optimizations. I structured this overview across several
chapters and sections, as detailed below:

• Chapters 2 & 3: a state of the art on translation validation, formally verified compilation, and
in particular CompCert.

• Chapter 4: a state of the art on formally verified instruction scheduling within CompCert.

• Section 9.4 (in Part ii): complementary related work on CompCert and formal verification of
loop optimizations.

• Sections 10.1 & 10.5.3 (in Part iii): complementary related work on redundancy elimination
and strength-reduction optimizations.

Part I

S ETT ING & PREL IM INARY CONTR IBUT IONS

This thesis being part of a wide research context, the following part is necessary to not
only position the contribution presented here, but also to make the whole document
self-contained. The background is decomposed in three chapters:

• Chapter 2 on the background in formal validation and related work;
• Chapter 3 about the CompCert C verified compiler;
• Chapter 4 positioning this thesis w.r.t. previous works on scheduling and symbolic

execution in CompCert.

2
FORMALLY VER I F I ED DEFENS IVE PROGRAMMING (FVDP)

2.1 the coq proof assistant

Theorem provers are software that help in writing and verifying proofs within a formal logic.
They are generally used both for purely mathematical purposes and for developing highly reliable
software. Coq1 is an interactive proof assistant supporting higher-order logic, dependent types,
and proof automation; its formal logic is the calculus of inductive constructions (CIC) [37, 38, 118].
This formal logic is a pure functional language: functions are deterministic, without side effects
(i.e. no mutable data), and there are no imperative loops (i.e. iteration is performed via recur-
sion instead). CIC represents both programs and proofs as functions (using the Curry-Howard
isomorphism). Coq developments are written in the Gallina specification language, which enables
interactive constructions of CIC terms. In particular, Gallina features a tactic language, named Ltac,
to let the user interactively produce proof terms. Gallina comes with many common tactics, but theIn the following,

we abusively say
“Coq code” to
mean “Gallina

code”.

tactic language can be extended as needed. A kernel then ensures that the generated proof terms are
correct, that is well-typed terms of CIC. CIC acts as a voluntarily small part of the core language into
which every high-level concept is translated in (to minimize the risk of error). This is an example of
defensive design, as we will discuss in §2.3.

An important feature of the Coq proof assistant is extraction [97]: programs specified in the
language can be extracted automatically to OCaml (or Haskell, JSON, Scheme), to then being
compiled (and optimized) as verified libraries or whole programs. During this process, all the
proof related information (theorems, constraints in dependent types) is removed, and only the
computational part of the code is kept.

Several significant successes have been realized using Coq (which received the ACM Software
System Award in 2013), both in mathematics and informatics. Notably, the proofs of the four color
theorem (map coloring, in 2005) and the Feit–Thompson theorem (groups’ classification, in 2012)
were both verified in Coq. The Univalent foundations (a type-theoretic alternative to the set-theoretic
foundations of mathematics), and the related Homotopy Type Theory (initiated by the Field medalist
Vladimir Voevodsky) were also largely formalized within proof assistants; including Coq, but also
Agda. The CompCert verified compiler—which also received the ACM Software System Award
in 2021—is entirely proved in Coq; and the collection of verified software from the DeepSpec2
project—which represents a major advance in formal verification—relies heavily on Coq.

2.2 translation validation

In this dissertation, I study how translation validation—and in particular symbolic execution (SE)—is
prone to help us when writing a certified compiler relying on non-trivial optimization algorithms.
Translation validation [119, 129], and more generally a posteriori verification, is the idea of delegating
a computation to an untrusted OCaml code—that we call “oracle”—and to only formally verify its
result afterwards. By combining direct style proofs and a posteriori dynamic checks, it is possible to
a priori prove the compiler correctness, as we do in CompCert. This section gives an overview of SE
as a translation validation technique.

2.2.1 A Classical Example

The register allocator of Rideau and Leroy [123] was one of the first a posteriori validated algorithms
in CompCert (the other one being the node enumeration of LTL nodes [92, §10.2]). Directly proving

1https://coq.inria.fr/
2https://deepspec.org/main

11

https://coq.inria.fr/
https://deepspec.org/main

2.2 translation validation 12

correct the heuristic would in fact be difficult, as register allocation reduces to a graph coloring
problem, known to be NP-complete.

Fortunately, validating a posteriori the result is much easier: it involves checking some properties
on an interference graph (the candidate coloring) returned by the untrusted oracle. If the result
proposed by the oracle proves to be correct, the compiler will call the translation algorithm of the
next pass; otherwise, the proven validator will detect the issue and stop the compilation.

The Coq code being extracted as OCaml, one simply has to declare the oracle in Coq as an
axiom along with an extraction directive to specify the oracle’s OCaml function. For instance, the
declaration of the register allocator is defined as:
(* Declaring the oracle as an axiom in the result monad *)

Parameter regalloc: RTL.function → res LTL.function

(* Setting an extraction directive to specify the oracle's function *)

Extract Constant Allocation.regalloc ⇒ "Regalloc.regalloc"

Such a declaration works to call untrusted code from Coq, but it might allow some unsound
reasoning over an OCaml external function that may behave non-deterministically (e.g. because
of a hidden side effect). We discuss this risk in §2.4, and see how it can be mitigated by a proper
monadic encapsulation.

2.2.2 Using “Shadow” Fields to Combine Extracted and Handwritten OCaml Code

One of the advantage of the extraction mechanism is that we can integrate in the Coq part (to be
extracted) some information that will only be used by the untrusted part of the code (i.e. by the
handwritten OCaml). For instance, let us consider a language whose instructions are of a Coq type
“inst”, and assume that several oracles need to store and read information from an analysis on
each instruction. A solution is to wrap the type “inst” into a record, and to declare a second type,
extracted directly to the internal type used in oracles as a parameter:
Parameter analysis_info: Set

Extract Constant analysis_info ⇒ "OraclesModule.oracles_type"

Record inst_wrap := mk_iwrap {

coq_inst: inst;

oracles_stuff: analysis_info (* Shadow field *) }

With this structure, Coq does not know anything about the analysis_info type: we declare it as a
parameter (i.e. an axiom) but we cannot use it for the reasoning. This technique enables embedding
information that can only be used by the untrusted part of the code, but that can be transmitted
along the Coq parts. If we have a Coq algorithm that transforms the code between two translation-
validation steps using two different oracles, the information can be preserved seamlessly and
without any risk. We name those types that directly target an oracle’s internal type as “shadow”
fields. Of course, they are not necessarily defined in records: we can also place them in inductive
types, sum types, etc. Note that shadow fields here are the dual of “ghost” fields used in WhyML3,
Java Modeling Language4 or ANSI C Specification Language5: instead of being only visible by the
specification, shadow fields are only visible by the program (but not by the specification).

2.2.3 Symbolic Execution

Among the translation validation methods, symbolic execution [81, 130] is a generic approach to
prove the correctness of a transformation. The principle is to write and prove correct a simulation
test, asserting that the behaviors and semantics of the source program are preserved.

2.2.3.1 An Introductory Example on Basic Blocks

Symbolic execution works on program fragments, typically loop-free blocks of code, by first simu-
lating the source fragment and the target (i.e. transformed) one, and second comparing the resulting

3See https://why3.lri.fr/doc/syntaxref.html#ghost-expressions.
4See https://www.openjml.org/tutorial/Ghost.
5See https://frama-c.com/download/acsl.pdf, Section 2.12, p72.

https://why3.lri.fr/doc/syntaxref.html#ghost-expressions
https://www.openjml.org/tutorial/Ghost
https://frama-c.com/download/acsl.pdf

2.2 translation validation 13

symbolic states. These states include a symbolic representation of memory and registers, being
incrementally modified while evaluating instructions in the block. Furthermore, as informally stated
in §1.1, the symbolic execution must ensure that the target code does not contain any additional
potential trap w.r.t. to the source: inserting a new potentially trapping instruction in the code would
be incorrect. This leads to a notion of precondition, where the precondition of the target block must
be weaker (i.e. implied by) the source’s one.

In the case of basic blocks (cf. §1.1.3.1), the symbolic state resulting from the SE of each block is a
unique big symbolic term representing a parallel assignment of registers, as shown in Example 2.2.1
(I explain how SE behaves for larger blocks in §2.2.3.3).

Example 2.2.1 (Basic blocks simulation∗). Consider two basic blocks B1 and B2:
(B1) r1 := r1 + r2; r3 := load[m, r1]; r3 := r1; r1 := r1 + r3
(B2) r3 := r1 + r2; r1 := r3 + r3
Both B1 and B2 lead to the same parallel assignment:

r1 := (r1 + r2) + (r1 + r2) ‖ r3 := r1 + r2

But, B1 is preconditioned by “load[m, r1 + r2] has not trapped”, whereas the precondition of B2 is
trivially true. Hence, B2 simulates B1, but the converse is false. Above, the (empty) set of potentially
trapping terms of the target is included in the set {load[m, r1 + r2]} of such terms in the source.

Six, Boulmé, and Monniaux [134] encode such a precondition as a list of potentially trapping
terms, hence relaxing the implication of preconditions as a list inclusion.

The above example is sufficiently expressive for reordering basic blocks. I explain along this
dissertation how it can be extended to not only support larger blocks, but also to verify complex
and even inter-block optimizations.

2.2.3.2 Normalized Rewriting

Necula [116] extended the technique with normalized rewriting, but without a formal proof of the
validator (unlike the mechanically proved SE of Tristan and Leroy [142], see §4.1.3). Rewriting and
normalizing expressions during the execution allows deducing equivalences between terms that
were built differently. It reduces comparison (of symbolic values) modulo a set of equations to
structural equalities [82].

Example 2.2.2 (Rewriting symbolic values). Let us take two equivalent blocks B1 and B2:
(B1) r1 := 16; r2 := r1 × 4 and (B2) r1 := 16; r2 := r1 << 2

Now, assume we have a rewriting rule stating that “v << 2 ≡ v× 4”6. We choose to always apply
this rule in the same direction (e.g. by replacing the left part with the right one), on the target block
(the other way would also be possible). Then, values in the final states become syntactically equals:
r2 := 16× 4 ≡ r2 := 64. The replacement of the multiplication by four with an equivalent left shift is
thus correct.

Rewriting rules are only used to compute symbolic states in a canonical way—enabling syntactical
equality—but they do not change the transformed code. With the above rule, the transformed code
keeps the left shift instead of the multiplication; while in symbolic states, only the multiplication is
present on both sides thanks to the rule. Proving correct the whole validator would thus require
proving correct every rewriting rule beforehand.

2.2.3.3 An Efficient Implementation

There are two main sources of complexity with symbolic simulation techniques:

• In the execution: the size of code fragments (see §1.1.3.1), and notably the “width” of the CFG.
Indeed, a naive trace partitioning [126] execution becomes exponential over the number of
internal joins of the input block. If we consider basic blocks, superblocks, or extended blocks, it
should not be a major problem (as experimented in this thesis), since they have, by definition,
no internal joins.

∗This introductory example is reused from [134, Example 4.3] and [135, Example 2.1]†.
6A left shift being often less costly than a multiplication by a power of two.

2.3 the principle of defensive programming 14

Input Interpreter

Oracle

Output

Specifies

Certificate

Verifies

Coq
OCaml

Figure 2.1: The “Certificate” Defensive Programming Style.

• When comparing symbolic states: the execution causes term duplication, as it was the case
for “r1 + r2” in Example 2.2.1. More generally, the structural comparison of the nested symbolic
values in states is exponential.

The second point above is challenging, because without an efficient comparison method, the
verifier will not scale on large programs (for instance, the case of §4.1.3). Six, Boulmé, andMonniaux
[134] solve this issue thanks to first, pointer equalities instead of structural equalities and second,
verified hash-consing (see §2.4.2) that binds the two symbolic executions to the same pointers (i.e.
term memoization). The hash-consing compares already memoized subterms using the OCaml
pointer equality, so that the comparison remains constant-time. The formally verified hash-consing
factory is implemented with the Impure monad library, described in §2.4.

2.3 the principle of defensive programming

The name formally verified defensive programming (FVDP) was introduced by Boulmé [23] to suggest
a high-level, yet precise view of the principle that consists in testing defensively the results of an
untrusted and hidden computation to certify it. FVDP defines a set of strategies to embed oracleswithinIn short, FVDP

provides a design
style to reason

about and
decompose large,
formally verified

developments.

a proof assistant such as Coq. Translation validation could be viewed as one of these strategies. With
this method, errors in oracles that result in incorrect code are systematically turned into compilation
failures (i.e. the aim of a certified compiler is to avoid generating a wrong output, and to abort the
compilation in such a situation).
According to Boulmé [23], we distinguish three forms of certification:

1. The “autarkic” style, where there is no oracle, and with everything specified, proved, and
computed on the Coq side;

2. A “certificate” approach (Figure 2.1), where the oracle may provide (or not, depending on
the complexity of the defensive test) a certificate (a.k.a. witness or hint) to the Coq checker to
drive the verification and make it less expensive algorithmically;

3. And a lightweight style for representing witnesses, inspired by the old LCF7 prover, constrain-
ing oracles to build correct-by-construction results.

LCF style becomes
interesting when

the studied
application must
provide complex
witnesses, as in

the Verified
Polyhedron

Library (VPL)
of Boulmé [23,

§1.4.3].

Styles 2. and 3. above both introduce a representation for witnesses used in oracles. In this
document, we will mainly focus on the second one: oracles yielding or not certificates to help the
verification process. We choose to rely on this method because our witnesses are reasonably small,
so there is no point in implementing an LCF style here.

The scheduling presented in the case-study of Chapter 4 performs the verification without any
hint from the untrusted algorithm. In contrast, the BTL symbolic execution verifier proposed in
this thesis leverages the use of certificates expressing invariants (recall §1.2.2) to aggregate local
simulations into a global simulation.

Furthermore, the defensive approach is of great help to find out where oracles’ bugs are located,
and thus facilitates their development. Only two types of errors can lead to a verification failure:

7Stands for “Logic for Computable Functions”

2.4 impure: a safe foreign function interface (ffi) 15

either the oracle did something wrong (e.g. by yielding an incorrect certificate, or with an incorrect
code transformation); or the verifier is too weak to assert the correctness of the transformation (e.g.
the result is out of the supported class of transformations). The FVDP design also allows for simpler,
more modular proofs, since many optimizations can be verified; even if an oracle completely changes
internally, it will be transparent for the Coq side as long as it stays in the supported class. Of course,
any translation validation method could follow this principle. In particular, a technique very similarAn extended

discussion on
certificate-based

techniques is
proposed
in §2.5.2.

to style 2. above was suggested by Glesner [61] where certificates help in reducing the search space
for a validator which replays some analyses already performed by the untrusted optimization.

To conclude, the FVDP methodology emphasizes that formally verified testing (with, e.g. SE) helps
formally verified programming [108]†.

2.4 impure: a safe foreign function interface (ffi)

We saw in §2.2 different methods of translation validation. However, these methods should be used
with caution, as a malicious use could lead to potential flaws in the verification process.

2.4.1 The Risk of “Impurity”

Abstracting OCaml functions in Coq is a challenging problem. The standard method, used notably
for register allocation (cf. §2.2.1), is to declare the existence of a function of a certain type as an
axiom, so that the latter will be replaced at extraction.

Let us define a pathologic example; we declare an oracle and prove a wrong lemma about it’s
purity. The Coq code would be:

Axiom oracle: nat → bool. Extract Constant oracle ⇒ "foo"

Lemma oracle_pure: ∀ n, oracle n = oracle n

(* By congruence. *)

Qed

The implementation of foo being:

let foo =

let b = ref false in

fun (_:nat) -> (b:=not !b; !b)

Indeed, we see in the above example that we are hampered by the Coq constraint on purity of
functions. The Coq congruence tells us that two calls to the same oracle, using the same parameters,
are equals, but this is not the case in practice. In the foo function above, two successive calls will
return two different values. Hence, hidden side effects may make OCaml functions appear as
non-deterministic.For a deeper

discussion about
the weaknesses of

CompCert,
see [106].

Thankfully, this is not a major issue as long as the purity of oracles is never assumed in the formal
proof; for example, by deliberately calling the same oracle twice to enter an absurd case (this, of
course, is never done in CompCert). Nevertheless, it is still interesting to safely formalize this approach.
Boulmé [23]’s habilitation thesis proposes, in this objective, a Coq library to forbid formal reasoning
about the effect of such functions, leaving only the possibility to reason about non-deterministic
results. This library is based on a monad, also deeply detailed in Boulmé’s habilitation thesis. In the
latter document, several pitfalls of the “naive” axiom declaration are reported [23, §2.2.2, §2.5]. For
example, one may accidentally rely on implicit axioms: if the axiom to be extracted has a return type
A : {x : Z | x < 5}, it will be extracted to a larger type Z, that does not ensure the implicit requirement
on A (i.e. x is lower than 5). As a result, it would be possible to extract the axiom as an OCaml
function returning 7, thereby creating an absurd case. This is due to the OCaml typechecker, which
is less expressive than the Coq typechecker. It is hence very important to check the extracted type
w.r.t. the Coq one.

In practice, we continue to use the standard Coq foreign function interface (FFI) for optimiza-
tion oracles, as long as they are invoked only once during the compilation process. We resort to
the monadic method outlined above—and exemplified below—exclusively for sensitive external
functions like the hash-consing factory or pointer equality tests.

2.4 impure: a safe foreign function interface (ffi) 16

2.4.2 Motivation: FVDP of a Lightweight Hash-Consing Factory

We saw in §2.2.3 that SE requires comparing states (i.e. term trees) that may contain duplications,
as in Example 2.2.1. Hash-consing is a technique to reduce the complexity of comparisons using
pointer equality instead of structural equality. In practice, the constructors of inductive data types areFVDP of

hash-consing was
first proposed

by Boulmé and
Vandendorpe

[24], and reused
in the postpass

scheduling of Six,
Boulmé, and

Monniaux [134,
§C.4.2].

memoized to share common subtrees, so that equal terms will be allocated to the same object in the
memory, allowing pointer equality comparisons. The memoization is performed by replacing the
original constructors of the type by smart constructors with an automatically generated memoization
function from a hash-consing factory. This technique is inspired from Filliatre and Conchon [56],
but our implementation features a simple formal property of correctness, written in Coq. The hash-
consing factory is an untrusted OCaml oracle, whose results are dynamically checked during the
formally verified symbolic execution. Actually, it is sufficient for our simulation test proof to ensure
that the oracle’s memoizing functions behave observationally like the identity.

Compared with the solutions of Braibant, Jourdan, and Monniaux [26], where hash-consing is
implemented either directly in Coq or in the extracted OCaml code, our FVDP approach is weaker.
Specifically, our pointer equality implies semantic (i.e. structural) equality, but is not equivalent to it.
This weaker property is sufficient for our implementation, and allows for a lighter design.

Below, I only focus on pointer equality, because it is difficult to handle it correctly and conveniently
in Coq. During my PhD, the Impure monad has been slightly extended in order to handle such
equality more conveniently (see §7.2.4 for technical details about the instantiation of hash-consing
in our SE engine).

2.4.3 A Coq Model of OCaml Pointer Equality?

Comparing hashed terms using pointer equality requires the use of an axiom (whichwill be extracted
as the OCaml “==”) for calling the operator. Exactly as in §2.4.1, if we (naively) declare the axiom
below (e.g. aiming to compare Peano natural numbers; elements of the Coq type nat), we open the
possibility of proving false properties.

Parameter phys_eq: nat → nat → bool (* only [nat] for simplicity .*)

Extract Constant phys_eq ⇒ "(==)"

First, let us observe that in OCaml, pointer equality is true only if applied to the same physical
object: for instance, “let n = (S 0) in n == n” returns true while “(S 0) == (S 0)” returns false.
One would like to pose the hypothesis:

Hypothesis phys_eq_axiom: ∀ x, phys_eq x x = true

However, phys_eq_axiom is too strong because each x above may correspond to a distinct pointer,
allowing us to prove the wrong lemma below simply by substituting y by x.

Lemma wrong_property: ∀ x y, x = y → phys_eq x y <> false

(* By congruence. *)

Qed

The counter-example “(S 0) == (S 0) ≡ false” illustrates why the lemma is wrong: structural equal-
ity does not imply pointer equality in OCaml. Conversely, substitution of variables in Coq proposi-
tions does not preserve memory allocation.

Even using seemingly weaker alternatives of phys_eq_axiom, for example:

Hypothesis phys_eq_axiom': ∀ x y, phys_eq x y = true → x=y

does not solve this issue, again because of this substitution power:

Theorem wrong_substitution x y: x=y → phys_eq x x = phys_eq x y

(* By congruence. *)

Qed

As we have seen, Coq propositions cannot speak about pointers of OCaml executions, because
this is not compatible with Coq congruence. Thus, we need to find another way to express that
pointer equality has the power to establish some structural equalities.

2.4 impure: a safe foreign function interface (ffi) 17

2.4.4 The May-Return Monad [�]

Fouilhe and Boulmé [59] proposed a general model of OCaml functions in Coq—a FFI—to solve
reasoning issues of Sections 2.4.1 and 2.4.3. Their suggestion, embodied in the Impure library [23], is
to use a may-return monad to forbid any reasoning on the effects of OCaml functions. This approach
follows a weakest liberal precondition (WLP) style of reasoning, programmed with a special Coq
tactic [23, §2.2.1]. Formally, each OCaml function of type “A → B” is represented as a “relation”
“A→ ??B” where “ ??A” abstracts (A→ Prop) through “ A: ??A→ (A→ Prop)” such that “k a”
means “(k a)” (“computation k may return a”).

In other words, “ ??A” is the type of impure computations of type A. Moreover, since ??A is
extracted like A, the monad does not cause a runtime overhead. The “ ??.” monad only restricts Coq
congruence w.r.t. usual functions, and allows modelling in Coq non-deterministic functions that
may not terminate normally as “A→ ??B”: the reasoning on the may-return operator “ ” is limited
to partial correctness.
Type “ ??.” is bounded in a monad with the usual operators (and their axioms w.r.t. “ ”):

bind operator: extracted to “.” (i.e. the OCaml bind, sometimes also noted “>>=”) with type
“ ??A → (A → ??B) → ??B” (to compose calls). Its correctness axiom states that “∀(A B :

Type) (k1 : ??A) (k2 : A→ ??B) (b : B), (k1 . k2) b→ ∃(a : A), k1 a∧ (k2 a) b”.

unit operator: “RET : A→ ??A” (to enter the monad—i.e. lift a pure computation to an impure
one). It must satisfy “∀(A : Type) (a b : A), (RET a) b→ a = b”.

annotation operator: “∀(A : Type) (k : ??A), ??{a : A |k a}” to annotate the returned type
with the may-return relation. It allows embedding the “ ” operator into dependent types.

exit operator: noted “has_returned” of type “ ??A → bool” to exit the monad on termination.
This exit operator was added to Impure during my thesis. It enables exiting the monad to
alleviate the Coq development, as exemplified in §7.2.4.1. It transforms a pure expression into
an impure defensive test that either validates a property by terminating normally or fails by
raising an exception. From the Coq point of view, the expression appears to return a Boolean,
where a “true” value guarantees the normal termination of the impure test, but offers no guarantee
for a “false” value. Hence, the “has_returned” operator only applies for computations whose
result is Boolean. This operator must satisfy “∀(A : Type) (k : ??A), has_returned k = true→
∃r, k r”. It is extracted in OCaml as “(fun k -> k; true)”. Hence, “has_returned” reduces
non-determinism to normal termination of the calculus, its result being always deterministic
(it is overridden by “true”). We cannot write a Coq lemma falsified by this form of non-
determinism: for all k, when the computation terminates, “has_returned k” always yields the
same value.

a safe pointer equality [�] Now, we are able to model pointer equality in Coq without the
pitfalls presented earlier, by encapsulating the declaration of the axiom in the monad. The below
was proposed for the first time in [134].

Axiom phys_eq: ∀ {A}, A → A → ?? bool

Extract Inlined Constant phys_eq ⇒ "(==)"

Axiom phys_eq_correct: ∀ A (x y: A), phys_eq x y true → x=y

Here, “phys_eq x y b” could be read as “if b is true, then it has existed an allocated object o such
that x=o=y”, since we can still prove the lemma below in Coq:

Lemma ok: ∀ x y, x = y → phys_eq x x true → phys_eq x y true

(* By using the Coq substitution. *)

Qed

However, thanks to the monad, the wrong property below cannot be proved (except on empty
types):

Lemma unprovable_wrong:

∀ x y, x = y → phys_eq x x true → phys_eq x y false → False

https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.lib.Impure.ImpMonads.html#MayReturnMonad
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.lib.Impure.ImpPrelude.html#phys_eq

2.5 related work in translation validation and verified compilation∗ 18

applying the same principle to hash-consing An OCaml oracle provides the untrusted
factory with type “T → ??T”. This factory is then a posteriori certified by enforcing that each returned
term is structurally equal to its inputs: this is done by a constant-time check: if we have in input the
inductive term (c t1 ... tn) (where c is the constructor and ti the subterms) and an output term
(c ′ t ′1 ... t ′n), we compare c = c ′ (structurally) and ∀i, ti == t ′i (using pointer equality). This latter
check works in practice because of the (non-formalized) invariant stating that all ti are already
hash-consed terms.

2.5 related work in translation validation and verified compilation∗

Since Pnueli, Siegel, and Singerman [119], translation validation has become a quite intensive
research area.

The PhD dissertation of Clément [32, §8.1], which inspired me to fill this section, proposes a good
and detailed overview of translation validation techniques up to 2022.

An important point when applying translation validation is to distinguish structure-preserving
transformations from structure-altering ones [151]. Structure-preserving transformations can be
proved from structure-directed simulations, whereas this is not necessarily the case for structure-
altering ones. The former group includes optimizations such as CSE, dead code elimination (DCE),
LICM, and even loop unrollings, since these still allow to define a CFG mapping between the source
and the transformed program. Oppositely, the latter group of structure-altering transformations
contains loop nest reorganizations [39] such as loop fusion, tiling, and interchange.

In this document, we focus on structure-preserving transformations. We apply symbolic execution
(see Chapter 6) for optimizations that produce an identity CFG mapping (i.e. that only change the
block content). Transformations which fold or unfold8 the CFG by adding, removing, or duplicating
nodes are validated using separated validators (see Chapter 8).

2.5.1 Symbolic Execution

The primary purpose of symbolic execution in the seminal papers of King [81] and Samet [130] was
for testing. Yet, for several years now, SE has also been used for verifying safety properties, especiallyWhen applied to

semantic
preservation, the
goal of symbolic

execution engines
is to deduce a

simulation
relation between

program
fragments that

match on
synchronization

points (e.g.
blocks).

for critical systems [35] (2001).
In CompCert, the first formally verified symbolic simulation test experiencedwas the one of Tristan

and Leroy [142] for trace scheduling (more details in §4.1.3). Their framework was not using hash-
consing, and was designed specifically for scheduling. A few years after, they also proposed a
symbolic evaluation based framework for software pipelining [144]. However, these two validators
were never integrated in mainline CompCert9. Then, Six, Boulmé, and Monniaux [134] proposed a
similar but lighter verified validator for instruction scheduling.

Besides CompCert, several other uses of SE exist in the literature. Combined with model checking,
SE was used to validate correctness of multithreaded Java programs and to generate input tests [80].
More recently, frameworks such as KLEE [28] have been proposed to not only generate tests, but
also improve their coverage and find bugs.

Tristan, Govereau, and Morrisett [141] also suggested a (non-proven) symbolic evaluation trans-
lation validator working on value graphs. Their solution, applied directly on LLVM’s assembly
files, generates gated-SSA representations and uses symbolic evaluation with hash-consing and
normalization. Value graphs are then compared syntactically (i.e. using pointers from hash tables).

2.5.2 Other Translation Validation Approaches

specialized validators One of the most common technique of a posteriori verification, well
studied in CompCert, it to use a very specific validator that targets a single transformation. For
instance, this method was used for the CompCert register allocation of Rideau and Leroy [123], for
lazy code motion (a data-flow partial redundancy elimination optimization [84]) in the PhD of

∗Some text of this section is reused from [65]†.
8“Fold or unfold” means that it is still possible to produce a structure preserving node mapping between both CFGs.
9Source code for their extensions at https://github.com/jtristan/CompCert-Extensions.

https://github.com/jtristan/CompCert-Extensions

2.5 related work in translation validation and verified compilation∗ 19

Tristan [140, 143], and for CSE & LICM in the work of Monniaux and Six [109]. These validators use
formally verified analyses to replay some part of the optimization algorithm. As of today, only the
register allocation was integrated into the mainline CompCert version.

proof producing frameworks With their credible compiler, Rinard andMarino [124] propose an
alternative solution to a priori proven tools like CompCert. Instead of having a total correctness proof
stating that the compiler always preserves the source program semantics, their compiler “produces
a proof that it has operated correctly on the current program.” The authors describe their technique as
orthogonal to proof-carrying code [115], in the sense that it proves a correspondence between two
programs rather than a property on a single program. An explicit proof written in an ad-hoc logic
is produced in output of their credible compiler, containing two types of invariants that relate both
programs. These invariants are closely related to those I present in Chapter 6, and we consider
this simulation approach as a foundation for our work. This credible compilation method is able
to validate multiple optimizations, notably loop unrolling and dead code elimination. Note that
dynamic (a posteriori) validation by SE is a form of proof generation: the proven SE engine yields
symbolic states which, when equivalent, are evidence of semantic preservation.

Extending the idea of credible compilation, Kang et al. [77] have proposed a variant of formally
verified translation validation, called “Verified Credible Compilation” for LLVM(a.k.a. CreLLVM). They
validate the results of two existing optimizations of LLVM—register promotion and global value
numbering (GVN)—with a dedicated oracle that generates proofs in a relational Hoare logic (inspired
by Benton [17]), itself formalized in Coq. Their tool helped to find several new miscompilation bugs
in these optimizations. However, it remains unclear what guarantees are provided to final users of
the whole compiler.

invariant translation Another interesting approach is suggested in [125], in which the author
uses symbolic transfer functions to match the semantic of C and assembly programs (in order to
validate the entire compilation). The result is a translation validator based on invariant translation
(i.e. instead of proving semantic preservation, only some invariants are proved to be preserved).
The method is applied to both translation and optimization passes. Although Rival [125]’s solution
is capable of proving safety properties on the program, and is well formalized, the checker itself is
not mechanically proven. In addition, since the author relies on a first-order solver fed with abstract
interpretation, it might (fortunately, it seems to rarely happen) produce false alarms. This designates
a situation where the validator rejects a semantically correct transformation. False alarms often arise
when the applied transformation is too complex to be discharged by the checker (see §9.4).

primitives with soundness conditions Kanade, Sanyal, and Khedker [76] implemented
a trusted simulation test (in PVS10) for validating optimizations. By viewing transformations as
sequences of predefined transformation primitives, they reduce the semantic preservation problem
to soundness conditions to check on each primitive. Their framework validates multiple structure-
preserving optimizations among which we find CSE, LCM, LICM, and DCE. It works on a three address
code CFG. Primitives are used to decompose and apply the optimization (by mimicking some of
its analyses) on the program, to validate soundness conditions. These conditions must themselves
be proved sufficient to ensure semantic preservation (but, of course, we expect their—small step—
proofs to be simpler than a direct proof of the optimization algorithm).

cross-product As noticed by Zaks and Pnueli [148], one can validate transformations by
computing the cross-product of the source and target programs, so that the equivalence check is
reduced to analysis of a single, cross program. The paper presents a framework “CoVaC”, applied
to LLVM. It is implemented without a mechanical proof of correctness, in C++, and supports
intra-procedural structure-preserving optimizations (e.g. constant folding, CSE, DCE, etc.) Inferring
a bisimulation between both programs with this approach still requires finding a good alignment
between them: a good product program should help in proving equivalence [31].

10The Prototype Verification System (PVS) is an automatic theorem prover, see https://pvs.csl.sri.com/.

https://pvs.csl.sri.com/

2.5 related work in translation validation and verified compilation∗ 20

parametrized equivalence checking A generalization of translation validation that bridges
the gap between a posteriori and a priori proven transformations is the parametrized equivalence
checking (PEC) tool of Kundu, Tatlock, and Lerner [87]. They made the observation that “we
can reason about [symbolic, resulting from an interpreter] state equality even if we don’t know what the
program fragments are”. Thismeanswe can, by using parametrized programs (a.k.a. partially specified
programs, a sort of template featuring symbolic properties andmeta-variables) prove the correctness
of classes of optimizations before running them. Optimizations are represented as rewrite rules in a
domain specific language (DSL), and are proven by building and ensuring a correlation between
two parametrized CFGs. The latter validation is partially automated by calls to the Simplify[48]
automatic theorem prover. Thanks to this framework, they succeed in validating software pipelining,
and multiple loop transformations. In their following paper, Tatlock and Lerner [138] designed an
extensible CompCert—named “XCert”—applying this method, but their validator was not formally
verified, hence significantly augmenting the trusted computing base.

general-purpose predictable validators Tate et al. [137] generalized the notion of symbolic
value with e-graphs (or expression graphs): such an e-graph represents the contents of a single
variable after any arbitrary computations, even including loops. This enables reasoning on loop
transformations only by rewriting these e-graphs (e.g. without explicit invariant inference). More-
over, in order to “simultaneously explore all possible sequences of optimizations”, they applied a saturation
technique over their e-graphs. Noticing that saturation does not scale well on large programs, Tris-
tan, Govereau, and Morrisett [141] experimented with normalized rewriting instead, arguing it
is sufficient for translation validation. Indeed, they succeeded to validate many existing LLVM
optimizations, without instrumentation nor hints from these transformations. However, they ac-
knowledged that their translation validator is algorithmically complex (and thus probably difficult to
formally verify). Moreover, they did not attempt to be sound w.r.t. undefined or diverging behaviors,
whereas these cases are often complex to handle in CompCert correctness proofs.

witnessing compilation The idea of using certificates/witnesses originally comes from proof-
carrying code [115], a technique where an untrusted algorithm was expected to supply a safety
proof attesting the correctness of its result w.r.t. some policy. Later, Glesner [61] applied this idea to
translation validation, and Barthe and Kunz [15] showed how abstract interpretation was helpful to
study certificate generation and translation. Then, Namjoshi and Zuck [114] extended the approach
by representing witnesses as invariants linking the source and target program fragments. They
notably show how to define invariants for several optimizations as sets of assertions to be checked
with a satisfiability modulo theories (SMT) solver. These certificates are relatively close to our gluing
invariants (introduced in §1.2.2), and are designed to be propagated through a stuttering simulation
(see §3.2.2) witness.

This approach might work if we had a formally verified SMT solver, or at least a formally proven
verifier of certificates generated by an SMT solver (such as SMTCoq [11]). Nonetheless, that would
be a hugely laborious task and additionally, there lies the issue of the complexity of SMT solvers,
which sometimes struggle12.

language-independent validation Recently, Kasampalis et al. [78] proposed a generalization
of the Pnueli, Siegel, and Singerman [119]’s approach using a validator parametric to the input
and output languages semantics. In addition, their solution is transformation-independent thanks
to verification conditions (i.e. synchronization points) that are provided by an external component
integrated to the compiler (here LLVM). Their implementation successfully validates the LLVM’s
instruction selection applied while translating code from LLVM intermediate representation to x86
Asm. The formalization of their validator relates programs with “cut”-bisimulations. Intuitively, the
principle is to generalize the notion of bisimulation by only focusing on a set of ”cut” states that are
sufficient to witness all relevant transformations and prove equivalence. Their checker relies on a
SMT solver to validate transformations, and on verification conditions as hints that help constructing
the simulation relation.

2.5 related work in translation validation and verified compilation∗ 21

bounded and automated validation The “Alive2” framework, developed by Lopes et al.
[100], aims at automatically validating intra-procedural transformations in LLVM. It tries to find a
refinement relation between two LLVM IR functions by the mean of a SMT solver. The tool was able
to discover several bugs in LLVM. As stated by the authors, one of the primary objective was to avoid
false alarms due to solver failures. Hence, they use a bounded translation validation, that consists in
only unrolling loops up to a certain threshold and to limit, for instance, the memory consumption
or the execution time of the solver. Consequently, their tool will miss refinement failures that goes
beyond the specified bound. This automated technique appears to be a nice solution to discover
optimization bugs, but may not be suitable for a general-purpose certified compiler.

conclusion: a spectrum of translation validation approaches The register allocator
in [123] is undoubtedly one of the major success of specialized translation validation. In contrast,
the—also successful—work of Sewell, Myreen, and Klein [131] attempts to automatically match the
C source and object code of the seL4 kernel (itself proved correct w.r.t. a high-level specification);
the resulting verification conditions are discharged by a SMT solver. These two projects had very
different constraints.

The seL4 validation team had to work with an existing compiler, which was not to be modified;
but they could write the software to be compiled in a certain way that helped with the “matching”,
and they could tune per-module optimization options if needed. Their scheme is unlikely to work
with other programs, or even with other compiler versions, unless these programs or the matching
scheme are manually modified11. In contrast, CompCert was (informally) expected to compile
arbitrary source programs without failure12; but code transformations and validators were designed
together. In such a context, it is possible to have the code transformation leave hints to the validator.
The validator is then likely to be more robust (it need not guess how source and target match),
simpler, and to perform fewer computations.

However, according to Leroy [94], special-purpose translation validation is not a “silver bullet”
either. Indeed, developing specific validators is tedious and expensive: they should be formally
proved yet reasonably efficient, characteristics that may be contradictory. Moreover, between ultra-
specialized validators and fully general ones, there is a continuum that remains to be systematically
explored.

2.5.3 Verified Compilers

The CompCert project (described in Chapter 3) is not the only formally verified compiler, but, as
stated in introduction, is certainly the most advanced one. It is a C compiler, available both freely
for research purposes13 and as a commercial product14.

In practice, CompCert is often combined with other certified software such as the Astrée certi-
fied static analyzer [40]; and is integrated in many larger projects such as the Verified Software
Toolchain15. A lot of researchers have taken CompCert as their object of study, which explains the
large number of existing forks and extensions.

For example, CompCert-SSA [13, 45, 46] is an SSA formalization with some optimizations. Among
them, we find copy (moves) propagation, and global value numbering16. This interesting work reveals
how difficult it is to mechanically formalize the SSA translation algorithms (returning from SSA
without introducing too many redundancies is, according to Demange and Retana [47, §1], “a
notoriously difficult problem”). Their framework makes use of a posteriori verification for the “de-SSA”
pass [47, §5], and this seems to allow a less complex proof than with a direct verification.

Furthermore, it is common for safety-critical systems and especially control software to be specified
using block-diagrams or state machine design tools, such as Lustre [29]. The latter is a synchronous

11According to [131, §4.2], the translation validation of seL4 is very unstable w.r.t. the version of GCC.
12This is another argument against general-purpose translation validation based on SMT-solving for compilation of

many—different—and evolving code bases: SMT solvers tend to be brittle, changes in solver version or minor changes in the
source program may result in the solver timing out on validation problems that it could previously discharge.

13https://github.com/AbsInt/CompCert
14https://www.absint.com/compcert/
15https://vst.cs.princeton.edu/
16An SSA-based transformation similar (but not equivalent) to CSE for redundancy elimination.

https://github.com/AbsInt/CompCert
https://www.absint.com/compcert/
https://vst.cs.princeton.edu/

2.5 related work in translation validation and verified compilation∗ 22

data-flow programming language which served as the core language of the SCADE17 industrial
tool, used to design critical real-time reactive systems. SCADE (and Lustre) aims at specifying
programs that are then compiled into executable imperative or object-oriented languages (e.g. C or
Ada). Given their role in critical applications, it was of primary importance to obtain a formally
verified compilation toolchain for such languages. The Vélus18 [25, 27] compiler addressed this
need by providing a mechanically proven translation of Lustre into Clight, one of the first IR of
the CompCert’s pipeline (see Figure 3.1). Therefore, by combining Vélus with CompCert (or with
Chamois-CompCert), we have a complete compilation chain for the development of real-time
synchronous embedded code. In this way, our Chamois-CompCert optimizations can be connected
to the Vélus output.
See also Section 3.3.3 for related works about improvements of the CompCert memory model.

Besides CompCert, Vellvm [149] and CakeML [86] are two other compilers, formally verified
with an interactive proof assistant (respectively Coq and HOL4). To our knowledge, none of them
attempts to leverage translation validation as we do. They do not integrate the kind of formally
verified optimizations that we support.

Another—albeit much more specific—formally verified framework is Jasmin [5]. The tool, made
of both the Jasmin programming language and its compiler, aims at facilitating the development
of performant and certified cryptographic software. The Jasmin compiler currently only targets
x86/64 platforms. It is verified in Coq, and relies on the EasyCrypt [14] framework to prove security
properties about programs. The Jasmin register allocation passes are translation validated with a
Coq checker parametric to the allowed renaming class. This generic approach enables to validate
not only register allocation, but also post unrolling renaming, stack sharing, and a part of register-
array expansion (i.e. replacing array accesses with variable accesses). Albeit their compiler can
perform DCE, tunneling, and constant propagation, it does not support intricate intra-procedural
optimizations such as code motion or strength-reduction.

17Stands for “Safety Critical Application Development Environment”; see https://www.ansys.com/products/embedde
d-software/ansys-scade-suite and https://www.systerel.fr/expertises/methodes-formelles/scade/.

18https://velus.inria.fr/

https://www.ansys.com/products/embedded-software/ansys-scade-suite
https://www.ansys.com/products/embedded-software/ansys-scade-suite
https://www.systerel.fr/expertises/methodes-formelles/scade/
https://velus.inria.fr/

3
THE COMPCERT VER I F I ED COMP ILER

3.1 architecture of compcert

Compared to “mainstream” compilers (e.g. GCC & LLVM), CompCert features many intermediate
representations (IRs) (8 in the mainline version). Each representation is designed to facilitate the
proof of a specific transformation applied to the source program. An overview of this architecture
is given in Figure 3.1. The “CompCert C” IR handles most of the C99 [74] and C11 [73] standards of
the C language with only a few exceptions1, and supports multiple target backends. This subset ofSix [133] added a

CompCert
backend for the

Kalray KVX core.

C is obtained through parsing (with an LR(1) formally verified parser generated with the “Menhir”
tool) and annotating the source2.

The software is mainly written in the Coq proof assistant (cf. §2.1), except for untrusted oracles
used for translation validation, and for some expansion mechanisms that remain in the trusted
computing base (see §3.5). Coq parts are then extracted into executable OCaml code. The first pass,
translating to Clight, simplifies CompCert C expressions by removing side effects and choosing an
evaluation order. From Clight to C#minor, control structures are simplified, and type dependent
computations eliminated. The next step, leading to Cminor, allocates some (local) variables in the
stack, and simplifies switch/case patterns. The pass from Cminor to CminorSel performs instruction
selection, and hence enters the middle-end part of the compiler. Most optimizations are applied at
the register transfer language (RTL) level (see §3.4), on a single-instruction CFG. Register allocation
is then applied, and the code is translated in location transfer language (LTL), with a basic blocks
(cf. §1.1.3.1) structure; the only transformation at this level is branch tunneling (branch optimization).
The LTL to Linear translation lays out the CFG nodes in a linear order by inserting explicit control-flow
instructions. Stack frames are built in the Linear to Mach pass, before emitting the final assembly
code in Asm. Note that CompCert is not a complete toolchain: it relies on an external C preprocessor,
and the final IR, Asm, is compiled and linked into binary code using GNU-C tools.

I detailed the above information about the general architecture to highlight the special nature of
CompCert w.r.t. usual compilers such as LLVM. Indeed, in the LLVM terminology, the backend starts
with the instruction selection pass, and includes register allocation. The middle-end, in contrast, is
mostly independent of the architecture and uses a low-level representation (a CFG in static single
assignment form); while the frontend is close to the source language, and does not apply advanced

CompCert C Clight C#minor Cminor CminorSel

RTLLTLLinearMachAsm

Simplifying
expressions

Lower-level
structures

Stack
pre-allocation

Instruction
selection

CFG
construction

Register
allocation

Linearization
of CFG

Stackframes
layout

Assembly code
generation

Optimizations
Branch

tunneling

Assembling,
Linking

(untrusted)

Figure 3.1: The Architecture of CompCert.

1Notably, variable-length arrays and longjmp/setjmp are not supported in the formal semantics (they can still be used,
but without any formal guarantee).

2For more information about the structure of CompCert, please refer to https://compcert.org/man/manual001.html#

sec4.

23

https://compcert.org/man/manual001.html#sec4
https://compcert.org/man/manual001.html#sec4

3.2 correction and simulation proofs 24

optimizations. Hence, there is no real middle-end in CompCert, since instruction selection ends the
frontend part by using architecture specific patterns. On the other hand, CompCert comes with a
large parametrized part, between CminorSel and Mach, which contains most of its optimizations. The
latter can therefore be viewed as a kind of middle-end. After the Mach stage, the code representation
becomes truly specific, and is considered as the backend. Therefore, our terminology here differs
from the standard definition of frontend, middle-end, and backend, used in common compilers.

The decision to place CompCert’s instruction selection at the Cminor level (i.e. early), is due to the
necessity for a structured code. Broadly speaking, this representation facilitates the reasoning on
selection rules that replace one pattern of structured code with another. Later (see Sections 7.6.1
and 10.2.4.2), we will discuss how our validation approach enables delaying it at the RTL level.

My contributions make use of the RTL (as a basis for our new IR), Mach, and Asm (for postpass
scheduling, peephole, and code expansions) languages.

3.2 correction and simulation proofs

The goal of a correction theorem for a certified compiler is to prove, roughly speaking, that given a
source program S and a compiled program T (for target), the compilation process preserves the
semantics of S through all passes.

3.2.1 Formalism of Program Behaviors

The proven property is based on the behaviors of programs, which are classified into three categories:
convergence and divergence (whether the program terminates or not), and undefined behaviors. The
behavior—which emits an observable trace (i.e. from system calls or input/output operations)—is
abstracted as B. Here, termination means that we obtain a compiled program and a finite trace; while
a divergent program may have an infinite trace. Programs with undefined behaviors in the sense
of the C standard (crashing operation, array access out of bounds, etc.) are considered as failing
(Xavier Leroy describes them as “going wrong” in [93]), but their trace remains finite.

CompCert C (i.e. the input language, cf. Figure 3.1) has a non-deterministic semantics3 inspired
by the C standard. In the compiler chain, it is made deterministic just afterwards for having simpler
proofs. Hence, all intermediate languages considered in this thesis are deterministic. For the sake of
simplicity, we restrict ourselves to present CompCert correctness only for deterministic languages.

We denote S ⇓ B to state that we can observe behavior B when executing S (reusing the notations
of [93, §2]). Assuming deterministic source and target languages, and a deterministic execution
environment, program S (and the same applies for T) has only a single behavior B such that
S ⇓ B. Under these conditions, the semantic preservation property of CompCert tells us that if the
observable behavior B of the source program is not undefined, then the compiled program T exhibits
the same behavior. This corresponds to the safe forward simulation property: ∀B /∈Wrong, S ⇓ B =⇒
T ⇓ B.Leroy [93] also

mentions that
since memory and

type safety are
preserved, the

absence of
undefined

behaviors in the
source implies the

absence of
undefined

behaviors in the
compiled
program.

If we formalize the specification of S according to its observable behavior B as predicate S |=

Spec(B) (reads “S satisfies specification with behavior B”), we have another correctness property:
S |= Spec(B) =⇒ T |= Spec(B) (see [93, §2.1]).

Finally, the formal proof of correctness of the compiler can be thought as (for a single monolithic
program) [93, §2.4]:

∀S, T, B /∈Wrong, Comp(S) = OK(T)∧ S ⇓ B =⇒ T ⇓ B

The above theorem can be thought of as: “If programs S and T , and behavior B are devoid of
“going wrong” behaviors, and if the compilation of program S led to program T , then the unique
behavior B of S is also the behavior of T .

For more information about correctness properties, the reader can refer to the documentation
at [�] (main proof) and [�] (complements).

3Compiling such non-deterministic languages requires a more general notion of simulation than the one presented
below, known as backward simulation [92, §2.1].

https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.driver.Compiler.html
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.driver.Complements.html

3.2 correction and simulation proofs 25

Lock-step simulation

S1 S ′
1

S2 S ′
2

∼

e e

∼

Plus simulation
S1 S ′

1

S2 S ′
2

∼

e e +

∼

Star simulation
S1 S ′

1

S2 S ′
2

∼

e e +

∼

or

S1 S ′
1

S2 S ′
2

∼

e e ∗
∼

with |S2| < |S1|

Option simulation
S1 S ′

1

S2 S ′
2

∼

e e

∼

or

S1 S ′
1

S2

∼

ε
∼

with |S2| < |S1|

Figure 3.2: Simulation Diagrams Used in CompCert∗.
Transitions are annotated with e when an observable event is emitted, and with ε otherwise.

3.2.2 Simulation Schemes

From the notion of semantic preservation, one can define a compiler Comp as a total function
returning either the compiled code if everything is fine, or an error otherwise (i.e. using the error
monad [93, §2.2.1]). Thanks to the transitivity of the semantic preservation properties, and by
monadic composition, one can easily compose compilation passes, so that each pass can be proved
independently.

Considering two languages and two programs P1 and P2 in these languages, the CompCert
approach is to define a “match” relation—noted “∼”—between states of both languages (I instantiate
such a relation with my new intermediate representation in §6.1.1). Since the target assembly
languages are deterministic, the correctness of CompCert’s backend passes reduces to a forward
simulation, that is obtained in three steps:

1. Relating initial states: S1 from P1 must simulate S ′
1 from P2 (i.e. S1 ∼ S ′

1);

2. Relating final states in the same fashion as for initial states;

3. Extending the relation to transitions between states of P1 and of P2.

There are multiple ways of instantiating the third step above, known as the various simulation
schemes of CompCert, and schematized in Figure 3.2. Letter e on the figure’s arrows represents an
optional observable event4 emitted by the transition. When this event is absent, we note ε instead.
The “lock-step” diagram (top-left) is the most trivial one: it stipulates that for each step in the source
program, the target program, which emits exactly the same possible event (i.e. either the same
observational event or the same absence of event) also takes a step forward. When P2 contains more
steps than P1, the solution is to use the “plus” simulation, where the target can take several steps
while the source takes a single step. The “star” simulation (a weaker version of “plus”) allowsWe talk about

“stuttering” in a
simulation when
one program is

not moving while
the other is.

programs to stutter, as long as all sub-sequences of successive stuttering steps are finite, and that
the simulated steps do not emit observable events. The same condition applies to the “option”; the
latter is a stronger form of “star”, where a step is either synchronized (as in “lock-step”) or optional
(bottom-right of Figure 3.2). To ensure this finiteness condition, the “star” and “option” simulations
require a well-founded ordering “<” over a measure between states of the source language. In
Figure 3.2 bottom, for both schemes, the measure must decrease for each source step from S1 to S2.
This constraint enforces the absence of any infinite stuttering sequence on the target side.

∗Those diagrams are reused from [92, Figure 4].
4The CompCert’s Coq code generally denotes events with a variable t (for trace) instead of e, but it uses letter t for both

traces of events and single events. In this document, e always denotes a trace of at most one event.

3.3 compcert internals 26

3.3 compcert internals

In this section, I give an overview of the internal representations used in the compiler concerning
the memory, types, and values.

3.3.1 Values and Operations

The CompCert compiler defines a common type of values used in all intermediate representations;
a value can be either: (i) a machine integer (32- or 64-bit); (ii) a floating-point number (also in both
word sizes); (iii) a pointer, as a pair of a memory address (pointing to a memory block) and an
offset inside this block; or (iv) the Vundef value. The latter denotes an arbitrary, not observable value:E.g. if x is

uninitialized, then
y = x + 1 does

not cause an
undefined

behavior, but
printf("%d",x)

does.

observing a Vundef (e.g. in an uninitialized variable) causes an undefined behavior. Albeit the fact
that most languages in CompCert are deterministic, Vundef expresses a form of non-determinism:
it may be simulated by any value (e.g. with a “less defined” relation where Vundef is poisoning).
Values are simply implemented with the below sum-type:

Inductive val: Type :=

| Vundef: val

| Vint: int → val

| Vlong: int64 → val

| Vfloat: float → val

| Vsingle: float32 → val

| Vptr: block → ptrofs → val

The above type is equipped with the usual arithmetic operations, and a decidable equality.

3.3.2 Register Sets

In CompCert, “vectors” of registers—a.k.a. register states—are represented by a pair. Their type is
noted “regset , (v∗σ)”, where σ is a finite map from registers to values and v a default initial value5
(in other words, this representation internalizes that a register state has only a finite set of registers
with distinct values). This representation is neither extensional (i.e. Leibniz equality distinguishes
states that are extensionally equivalent) nor canonical. Indeed, associating v to register r in σ is
extensionally equivalent to remove r from σ, but produces two distinct states. Hence, the identity over
register states is often not expressive enough and extensional equality is needed instead.

3.3.3 Memory

The CompCert memory model [95, 96] is relatively basic: a collection of disjoint blocks in which
accesses are performed with an offset, so that a pointer value is defined as a pair “block + offset”.
Each address defined as such is then tied to a permission policy. Transformations of a memory state
are made through four operations: load (reading a chunk), store (writing a chunk), alloc (allocating
a new memory block), and free (invalidating a memory block). Read and write operations operate
on a specified quantity, known as the memory chunk, that contains information about the type and
size of data being addressed. Five types of permissions are supported: (i) Freeable: for exclusive
access, allowing all operations; (ii) Writable: allows for loads, stores, and pointer comparisons, but
disallows freeing; (iii) Readable: only allows for loads and comparisons; (iv) Non-empty: a valid
state only allowing comparisons; and (v) Empty: invalid (not allocated or freed), no operation
allowed.

As it is, the CompCert memory model only uses bytes as its unit of size. This means we cannot
define a single bit inside a byte (the entire byte’s value remains at Vundef), thereby limiting the
reasoning on bit fields6. Furthermore, because pointers are seen as abstract values “block + offset”,
we cannot completely manipulate pointers as if they were integers. Models of pointers as integers
have already been explored in the literature [18–20].

5In practice, the default value of register sets is Vundef.
6See https://github.com/AbsInt/CompCert/issues/418.

https://github.com/AbsInt/CompCert/issues/418

3.4 the register transfer language intermediate representation 27

i ::= Inop(pcsucc) no-operation
| Iop(op, # »regarg, regdst, pcsucc) normal operation
| Iload(trap, chk, addr , # »regarg, regdst, pcsucc) memory load (trapping or not)
| Istore(chk, addr , # »regarg, regsrc, pcsucc) memory store
| Icall(sig, (reg | id), # »regarg, regdst, pcsucc) function call
| Itailcall(sig, (reg | id), # »regarg) function call (not returning)
| Ibuiltin(ef , # »regbargs, regbdst, pcsucc) compiler built-in function call
| Icond(cond, # »regarg, pcifso, pcifnot) conditional branch
| Ijumptable(regarg,

»pcsucc) “switch” jump (multiple successors)
| Ireturn(ε | reg) function return

cfg = (pc 7→ i) RTL graph as a map

frtl = (sig, # »regarg, ssize, cfg, pcentry) RTL function

Figure 3.3: Syntax of the RTL IR.

In accordance with the C standard [73, §6.5.8p5], a comparison of pointers allocated in two
different blocks fails in CompCert.

3.4 the register transfer language intermediate representation

The RTL IR is the last before register allocation, and features an unbounded number of available reg-
isters, represented by positive integers. This makes RTL convenient for “middle-end” optimizations,
because they can easily introduce fresh (pseudo-)registers for storing intermediate results.

The code is cut into functions, where each function has its own set of pseudo-registers, and is
organized as a control-flow graph (i.e. here a finite map): a node of the graph points to a specific
instruction, and instructions syntactically contain the list of their successors nodes. The syntax of
RTL is detailed in Figure 3.3; one of its important property is its modularity: the high-level syntax of
the language is independent of the target architecture, but some constructors (e.g. the operation
op in Iop, the condition type cond , addressing modes addr , etc.) are parametrized by the type of
operations of the target. In the new IR that I present in Part ii, most of the various parameters for
loads, stores, calls, and other instructions are reused; I thus skip their decomposition in the current
section. A RTL function groups the signature, its parameters (a vector of registers), the stack size
ssize, the CFG, and the entry point node number.

3.4.1 Semantics

As many languages in CompCert, RTL features a state semantics: there are different types of states
that represent a specific status and point in the program execution. The semantics is thus defined as
an inductive predicate specifying—under a global environment of symbols—the state transitions
from an initial state to a final one, for each type of instruction. Those transitions may emit an
execution trace (for built-ins and external calls). The semantics is relatively simple (less than five
hundred lines of Coq specifications) [�].

The three types of RTL states are represented in Figure 3.4. Each of them contains an abstract call
stack as a list of frames, themselves encoded in a “Stackframe” type for still active function calls. A
“Stackframe” contains the result register, the calling function along with its stack pointer, program
counter, and register set. In addition to the call stack, states also encode the following information:

• The state “State” encodes the current function, stack pointer, program counter, register set,
and memory state. As sketched in Figure 3.4, this kind of state is for basic transitions that
describe a step within an internal function;

https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.backend.RTL.html

3.4 the register transfer language intermediate representation 28

State

CallstateReturnstate

Basic instructions

Icall/Itailcall

Ireturn Internal
call

External call

Restore caller

Figure 3.4: State Semantics of RTL.

• When a function is called, the program transitions from the normal “State” to an intermediate
“Callstate”; the latter includes the function to call, its arguments (as a list of values), a memory
state and returns the new program counter. The next step is then either a “State” changing
the context to enter the internal function called, or a “Returnstate” in the case of an external
function;

• “Returnstate” is an intermediate step before the restoration of the caller’s state. It is reached
either from an external function call, or when executing an Ireturn instruction of an internal
function.

A RTL program is then defined using a small-step semantics from an initial state to a final one. The
initial state is always a “Callstate” (themain function invocation), while the final state a “Returnstate”
(the end point of the program).

3.4.2 Limitations

RTL registers are all seen as equivalent, i.e. there are no specific registers for flags, stack pointer,
program counter, etc. Note that this model is quite limiting. First, it prevents from defining a
semantic on special registers. A clever propagation (up to the Asm level) of the information via the
operation constructors can avoid the problem in some cases, but this trick also undergoes some
constraints: we are not able, for instance, to model the stack pointer in the semantic of a given RTL
operation, because the layout of stack frames is not yet defined at this level (as briefly described
in §3.4.1, stack accesses are only handled in a very abstract way). Second, the model is designed to
assign one (and only one) destination register per operation: this is not really a problem for some
backends (like in RISC-V, where each implemented instruction is only assigning a single register);
but this becomes restrictive for some others, such as AArch64, where we cannot model, for instance,
“arithmetic-comparison” instructions7. Still on AArch64, we found a third limitation while trying to
implement sophisticated addressing modes: their semantics does not allow side effects on registers,
yet some of them, such as the post-indexed addressing, are especially designed to update a register
after the address computation. Those can thus not be supported without further modifications of
the intermediate representation.

Globally, we see that several ad-hoc instructions of the AArch64 ISA cannot be represented at the
RTL level, and must wait the Asm level to be modeled. Unfortunately, it is often a little late to take
them into account in optimizations (e.g. in instruction scheduling).

7The AArch64 ISA [9] provides instructions capable of computing an arithmetic result and updating the condition flags
based on this result—e.g. ANDS, BICS, etc.

3.5 errors and bugs in compcert∗ 29

3.5 errors and bugs in compcert∗

Although CompCert is formally proven, it is not totally infallible. This section briefly describes
the main sources of bugs in CompCert, and discusses how to detect and avoid such bugs. Please
see Monniaux and Boulmé [106] for an extensive discussion about CompCert’s TCB.

First, as stated in Monniaux et al. [108]†, an important point is to clearly differentiate compile-time
errors (when the compiler aborts and no code is produced) from miscompilations (when incorrect
code is generated). Only the second category reveals flaws in the trusted computing base, on which
the formal proof relies.
Here are the types of compile-time errors (points 1. to 3.) and miscompilations (points 4. to 6.) we
experienced:

1. Unexpected compilation failure (compiler internal error): the formal proof assumes that
compilation succeeds; always failing would trivially satisfy this criterion. Failures in CompCert
can arise by some phase signaling an issue through the “error monad”, or by an exception
raised in handwritten OCaml code. Failing when incorrect behavior occurs protects against
miscompilation, as no code is produced.

2. Compilation timeout: compilation may loop forever8 or take prohibitively long.

3. Error during assembling or linking: in some cases, the code produced could not be assembled
and linked; reasons for this range from details in the syntax comment of certain assemblers to
the use of short branch instructions9.

4. Source semantics mismatch: the C language is surprisingly complicated, and its semantics as
formally defined in CompCert may diverge from the informal one defined in the standard, or
in CompCert’s manual.

5. Assembly semanticsmismatch: the semantics of assembly language, plus platform-dependent
peculiarities (e.g. how to access global symbols), may contain unexpected pitfalls (such as
out-of-range operands resulting in a wrap-around behavior). Furthermore, some instructions
present in CompCert’s “assembly” languages are actually macros expanded by trusted (unver-
ified) OCaml code. Some of these macros were inexactly specified, for instance by forgetting a
clobbered register (for instance, bugs mentioned in §4.3.3.1)—this went unnoticed as long as
the compiler did not take advantage of the value in that register being preserved.

6. Assembly language mis-expansion or misprinting: we also found rare miscompilations in
the expansion or printing of macro-instructions. For example, I found an alignment error in
the expansion of the memory copy built-in function for AArch6410. Fortunately, since this bug
caused the GCC assembler to reject the code, it was not possible to produce an incorrect binary.
Similarly, a harmless misprinting was present on the RISC-V backend11, where the trusted
OCaml printer was expanding goto and tail call macros to assembly instructions unable to
benefit from linker relaxation. This resulted in a linking error for rare, heavy programs (once
again, this could not produce incorrect code).

The key information to remember from this section is that the main source of miscompilation
bugs is the sixth point above: the expansion of assembly macro-instructions [106]. These issues
are possible because the last formally verified part of CompCert is only an abstraction of assembly
code, whose concrete representation is generated by unverified code. The interested reader may
refer to [108, §5]† for examples of such abstractions.

∗Some text of this section is reused from [108]†.
8A compiler pass written in Coq cannot exhibit an infinite loop behavior (since Gallina programs always terminate), but

this phenomenon may arise within OCaml code (e.g. oracles).
9A short branch and its target must be close, which may be false on large functions.

10Reported at https://github.com/AbsInt/CompCert/issues/410.
11Reported at https://github.com/AbsInt/CompCert/issues/436.

https://github.com/AbsInt/CompCert/issues/410
https://github.com/AbsInt/CompCert/issues/436

3.6 the chamois-compcert fork 30

3.6 the chamois-compcert fork

All transformations presented in this manuscript were implemented in the Verimag’s fork of Comp-
Cert, named Chamois-CompCert. This fork is regularly merged with the upstream, mainline version
tomaintain its compatibility, and contains a bunch of transformations that do not exist in themainline
version. The most important ones, excluding my contributions, are: CSE3 [109], move-forwarding,A comparison

between CSE3 and
LCM is proposed

in §10.5.3.

superblock scheduling, postpass scheduling with peephole (on KVX), code duplication (various
loop unrollings), code factorization, tail recursion optimization, aggressive inlining, branch profiling,
and RTL-level tunneling (i.e. branch simplification). This list is not exhaustive. My contributions
rely on some of them, notably the code duplications, the move forwarding pass, and the CSE3.

4
SYMBOL IC EXECUT ION : A CASE STUDY ON INSTRUCT ION SCHEDUL ING
VER I F ICAT ION

This chapter aims to contextualize my work, present some preliminary contributions, and make
the transition with the core topic developed in the next parts. The first verification experiment
by symbolic execution in Chamois-CompCert was from the work of Six [133]. It resulted in a
successful verification of an instruction reordering optimization, applied directly on assembly code
for Kalray’s KVX cores. This transformation is named postpass scheduling [134], as it happens after
the register allocation phase. A generalization of this approach before register allocation—a prepass
scheduling—was proposed in [135]†.

I explain the notions of instruction level parallelism (ILP), and why scheduling is interesting
for in-order cores in Section 4.1. During my PhD, I ported the KVX postpass to AArch64 [63]†,
and I made a few improvements to the prepass [135]†. My contribution to the postpass reuses
some generic modules and IRs from the KVX implementation, that are described in Section 4.2.
Additions specific to the AArch64 port are presented in Section 4.3†. This chapter provides the
basis for understanding symbolic execution, and highlights the differences between the specialized
framework used for postpass, and its generalization for prepass scheduling in Section 4.4. I present
some preliminary contributions I made on top of the prepass scheduling in Section 4.5†, as an
introduction to the main contribution of my thesis outlined in Part ii. Lastly, Section 4.6 concludes.

4.1 instruction scheduling optimization

Most modern processors are out-of-order (OoO): they dynamically reorder instructions during the
execution. To do this efficiently, they need to be capable of speculative execution, by predicting theMore surprisingly,

we also notice a
performance

improvement on
some OoO cores;
this might be due

to a smaller
scheduling buffer

inside the chip
than the one of the

scheduler.

control-flow path. In contrast, in-order cores execute the code sequentially: their internal control logic
is simpler, and they consume less energy to achieve a given computation. Compile-time scheduling,
as introduced by Feautrier [55], Fisher [57], and Rau, Glaeser, and Picard [121], and revisited by
our research team in [135]†, aims to reorder instructions in code fragments to compensate the lack
of dynamic optimization.

4.1.1 Interest: In-Order, VLIW, and Critical Systems

A typical use of in-order cores is for safety-critical systems, because regulations often impose
constraints on the worst-case execution time [60]. The predictability of the processor is thus an
important concern in such applications, although this leaves the responsibility of generating efficient
assembly code to the compiler, by fine-tuning the synthesis w.r.t. the core’s specification. Hence,
scheduling (whether it is before or after register allocation) can greatly reduce the execution time of
the produced code. The principle is to exploit the processor pipeline, when the latter contains several
execution units—e.g. arithmetic-logic units (ALUs)—allowing it to parallelize computations (a.k.a.
superscalar pipeline, or horizontal parallelism [121]). This is complementary to pipelining (a.k.a.
vertical parallelism), where the idea is to optimize the order according to the pipeline’s stages. The
compile-time scheduler uses the core description to place instructions cleverly, taking into account
both axes of parallelism.

The Kalray KVX core is of the very long instruction word (VLIW) family [58]; each word is a bundle,
or an encoding, of multiple atomic instructions, packed by the compiler. For instance, the Kalray
KV3 core has 8-stages, 6 issue, interlocked pipeline: it can dispatch 6 instructions at a time, and,
observationally, the assembly semantics of bundle composition is sequential (the hardware is able to
dynamically stall when a dependency is not ready on time). The bundling is defined syntactically
on assembly code using a string delimiter. For a bundle to be correct, it must not rely on more
execution units than available in the pipeline. Since bundles are low-level constructs, they are built

31

4.1 instruction scheduling optimization 32

during the postpass scheduling, over a code structured in basic blocks (i.e. with a single entry point
and a single exit point, cf. §1.1.3.1). Scheduling optimizations for VLIW cores are well-documented
in the literature, with software pipelining [89] or specialized toolchains [101].

Scheduling is not only interesting on VLIW cores: any in-order, superscalar processor might benefit
from instruction reordering. For example, the AArch64 postpass scheduler port of §4.3 targets
Cortex-A53 cores. These are dual-issue in-order superscalar cores very common in mobile systems
on chip (e.g. in Raspberry Pi 3 and Nintendo Switch).

4.1.2 Tiny Example of Instruction Scheduling∗

Let us consider a small three-address code, as the one below:

I1 → r2 := r1 + r2; I2 → r3 := load(r1); I3 → r1 := r1 + r3

If we have a 3-stages, single-issue pipeline, with one ALU, and assuming that arithmetic operations
(e.g. addition and subtraction) have a latency of one cycle, while memory loads take two cycles,
the above ordering is suboptimal. Indeed, as shown in the left table below, the core will stall before
executing I3 because the value of r3 is not yet calculated.

bad scheduling I1; I2; I3

−−−−−−−−−−−→
running

tim
e

ISSUE EXEC1 EXEC2

I1

I2 I1

I3 I2

I3 stall I2

I3

good scheduling I2; I1; I3

−−−−−−−−−−−→
running

tim
e

ISSUE EXEC1 EXEC2

I2

I1 I2

I3 I1 I2

I3

One cycle is won!

With t : {I1, I2, I3, $} → N the time at each instruction, the scheduler tries to minimize t($), the
total execution time for the sequence. The proposed schedule must of course satisfy the resource
constraints, which correspond to ∀i ∈ N, | {x/t(x) = i} | 6 1 for a single-issue pipeline; and the latency
constraints, defined as: {t(I3) − t(I1) > 1; t(I3) − t(I2) > 2; t($) − t(I3) > 1}. On the above example,
the optimal solution is the schedule “I2; I1; I3”, as it avoids the stall and executes with one less cycle.

4.1.3 Previous Attempt at Verifying Postpass Scheduling in CompCert

Integrating a scheduling pass after register allocation (i.e. in postpass) has already been attempted
by Tristan and Leroy [142] (before the work of Six [133]), also relying on symbolic execution. Their
scheduler was targeting the Mach IR (see Figure 3.1), and performs either list scheduling (on basic
blocks) or trace scheduling [57] (on extended basic blocks). Operating at the Mach level is easier
from an implementation point of view, but is also less efficient: in Mach, some instructions are in fact
macros expanded into several assembly instructions (in §4.5.2, we show how to lift these expansions
at the RTL level for the prepass scheduling). Hence, a scheduler at this level would have less precise
information to complete its task than at the Asm level. Unfortunately, their work was not mergedRecall the

paragraph on SE
efficiency

of §2.2.3.3.

in a mainline CompCert release, due to complexity issues of the verifier on large programs [142,
§7][140, §6.7.1].

4.1.4 Prepass, Postpass, and Superblock Scheduling

The postpass scheduler of Six, Boulmé, and Monniaux [134] operates on basic blocks, at the Asm level.
This approach is simpler than prepass scheduling and aligns well with the bundle construction. In
contrast, the prepass scheduler is implemented directly for superblocks.

∗This example is partially reused from [23, §3.1].

4.1 instruction scheduling optimization 33

4.1.4.1 Scheduling and Register Allocation

The main advantage of a postpass scheduler (w.r.t. a prepass scheduler) is the precise knowledge it
has about real instructions: I said in §4.1.3 that scheduling at the Mach level would be less efficient;
but doing it earlier would be even worse in terms of precision (i.e. there would be more macro-
instructions). Nevertheless, an early scheduling is still interesting: when applied before register
allocation, the optimization has more freedom (e.g. it can rename registers to remove dependencies),
and can become quasi-independent of the target architecture1.

A touchy point here is that when placed before allocation, the algorithm must be aware of the
register pressure: in fact, since the number of registers is virtually unbounded, the algorithm will
tend to increase the live range of registers. The live range here corresponds to the portion in the
control-flow graph (CFG) where a register is live. If the live range of registers increases, the number ofAfter dead code

elimination, we
say that a variable
is live at program

point p if it is
read on a path

starting from p.

live registers at certain points in the code is also likely to increase; and when, at a point, this number
is greater than the physical number of available registers (in the hardware of the target processor),
then the allocator will insert “spills”. Spilling is the technique used to free some registers by storing
the content of these registers in thememory. It implies inserting loads and stores instructions, known
to be very slow on many architectures. Put differently, a prepass scheduling is facing a conflict: it
has to reduce what we call the makespan—the time at which the last value computed by the block
is available—but it must also limit the register pressure [132]. Conversely, a postpass scheduling
can reorder spills and insert other instructions between them.

The prepass scheduler we propose in [135]† avoids the spilling issue by keeping a measure of
register pressure. When only a few registers are available, it will try to choose an instruction that will
free temporary registers to decrease the pressure (or at least one that does not increase pressure).
This algorithm was implemented by Nicolas Nardino [117].

4.1.4.2 Choosing Larger Blocks

A scheduling heuristic is a makespan minimization problem, applied on a linear sequence of code;
superblocks, as defined in §1.1.3.1, correspond in a sense to a linear sequence, since non-terminal
branches (often called side-exits, or early exits) have only a single successor in the block. The
slight difference is about liveness: to safely move an instruction below a side-exit, the result of the
instruction must not be live at the side-exit. Intuitively, the live variables at a side-exit branching to
block B are simply those at the entry of B. Superblocks provide a larger optimization window for the
algorithm, and offer more scheduling opportunities than basic blocks. However, and in contrast withFor more

information about
implementing an
efficient selection

heuristic with
branch prediction,

the reader can
refer to [90],

and [133, §4.1].

basic blocks2, there are multiple ways of selecting superblocks; and this selection process is crucial
to fully leverage the interest of scheduling. Actually, a bad selection could be counterproductive if
the selected superblock corresponds to a rarely used path: a block optimized by the scheduler will
be more efficient, but this is at the detriment of the other blocks. The goal is thus to select the paths
that will be used most frequently, based on a prediction heuristic.

Similarly to the trace scheduling of Fisher [57] (and to the one of Tristan and Leroy [142]), each
superblock is a possible path which might be taken by the program at runtime.

To increase the number of opportunities (and so the scheduling performance), a well-known
method is to perform code duplications, such as loop rotation, unrolling, and tail duplication. Figure 4.1
illustrates some of these transformations. At first glance, this approach may seem counterintuitive as
it appears to increase redundancy, which is generally undesirable in program optimization. However,
as exemplified in §10.2.2, these duplications can actually facilitate the process of redundancy
elimination, especially in the case of trapping calculations. This is due to the fact that duplication
can prevent the need for proving an anticipability property on the trapping instruction, thereby
simplifying the verification process.

4.1.5 Untrusted Scheduler Oracle

The prepass and postpass scheduling oracles actually leverage the same instruction scheduler
backend. This backend abstracts the scheduling problem by viewing instructions as a combination

1It only needs to be configured by the latencies and constraints, without having to port it.
2Basic blocks are always selected in a way that maximizes the number of instructions per block.

4.2 fvdp of a postpass optimizer 34

A

B

C D

A = before the loop
B = loop-condition
C = loop-body
D = after the loop

A

B1

C

B2 D

rotate
(i.e. if-do-while)

A

B1

C1

B2

C2 D

unroll 1st iteration
(a.k.a. loop peeling)

A

B1

C1

B2

C2 D

unroll body

Figure 4.1: Three Loop-Unrollings of a “while-do” Loop.

of positions, latency, resource constraints, and two sets containing the input/output registers (read or
written by the instruction). It aims to minimize the overall makespan using one of several heuristics:
list, reverse list, greedy, integer linear programming, zigzag (alternating between list and reverse
list), and register pressure sensitive scheduling. Naturally, dedicated frontends for prepass, postpass,
and each backend are required to generate the abstract representation used by the generic backend.
These distinct frontends and the unified backend are OCaml oracles invoked via the standard Coq
foreign function interface (FFI) (recall the last paragraph of §2.4.1).

To configure the scheduler with the target core’s latency and resource constraints, we define
functions for each frontend thatmap every concrete instruction to its latency and resources. Latencies
are simply encoded as the number of execution cycles for the instruction, while resources are tuples
with each element signifying a specific processor unit. Consequently, core models are equipped
with a reference resources tuple indicating the maximum simultaneous usage of each unit.

For example, the resource tuple for the Cortex-A53 core is (issue : 2,ALU : 2,MAC : 1,LSU :

1). This means that the A53 is dual-issue, features two arithmetic-logic units, a single multiply-
accumulate (MAC) unit, and a single load-store unit (LSU).

This oracle is a contribution of Cyril Six, David Monniaux and Nicolas Nardino. More technical
details are provided in [134, §6], [135, §6]†, [133, §9], and [117].

4.2 fvdp of a postpass optimizer
(architecture-independent parts)

The four next paragraphs sketch the four steps of Figure 4.2 to give an overview of the postpass
framework. Only step (1) and a part of step (3) are architecture-independent. The block construction
of step (1), summarized below, is not described further in this document, since I did not contribute
to it, and it is not necessary to understand the rest. This section thus focuses on the language and
simulation mechanism of step (3). Steps (2) and (4), along with the translation to the language of
step (3), are covered in §4.3 for the AArch64 backend (to which I ported the postpass).

To integrate postpass scheduling, the code is first cut into basic blocks, which is challenging in
CompCert because the basic block structure is not directly recoverable at the Asm level. The issueFor a more

complete
description of this
first step, please

refer to Six,
Boulmé, and

Monniaux [134,
§7].

comes from the state semantics of Asm: in that language, jumps or indirect calls instructions allow
jumping anywhere in the code (i.e. there are no specific states for internal calls, nor return address
protection in the semantics); so one cannot prove that the execution will not jump in the middle of a
block. In contrast, Mach provides a well-separated state semantics (close to the RTL one presented
in §3.4.1, with specific cases for returns and calls), making it suitable for constructing basic blocks.
The Machblock IR (Figure 4.2), derived from Mach, is used for basic blocks construction and is shared
between the AArch64 and KVX backends.

The second step involves translating Machblock to a block-based Asm called Asmblock on which
we want to apply our optimization.

In the third step, the Asmblock code is scheduled and verified before its final translation to either
Asm for AArch64, or AsmVLIW for KVX. From the outside, the scheduling is seen as a pass from
Asmblock to itself; but the pass actually includes a translation to a DSL, AbstractBasicBlock, dedicated
to the symbolic simulation. Proving the simulation from Asmblock to itself is straightforward, while

4.2 fvdp of a postpass optimizer 35

Mach Machblock Asmblock

Asm (AArch64 & others)
AsmVLIW (KVX)

AbstractBasicBlock

(3) Intrablock postpass
optimizations

(1) Basic block
construction

(2) Assembly code
generation

(4) Forgetting
basic blocks

Without postpass optimizations

Figure 4.2: Architecture of the Postpass Optimizer Solution∗.

proving the correctness of the symbolic simulation is more complex, and relies on refinement (refer
to Boulmé [23, §1.3.2, §3.3] for an overview and example of refinement).

Finally, and fourthly, the scheduled Asmblock code is translated back to Asm (and to AsmVLIW for
KVX), forgetting the basic block structure.

The AbstractBasicBlock DSL syntax is briefly introduced in §4.2.1 (without considering refinement),
and its SE mechanism is presented in §4.2.2. Then, §4.2.3 shows how rewriting allows for a simple
peephole optimization on the KVX backend, and §4.2.4 defines the refined symbolic states. The
integration of our peephole & scheduling solution as an “Asmblock→ Asmblock” Chamois-CompCert
pass is sketched in §4.2.5.

4.2.1 AbstractBasicBlock: A Domain Specific Language (DSL) for Symbolic Execution

To facilitate the development of the symbolic execution framework, Six, Boulmé, and Monniaux
[134, §4.1] define a deeply-embedded DSL, named AbstractBasicBlock, in a generic module parametrized
according to the target architecture (see its Coq interface [�]). In their representation, an instruction
is decomposed into a list of tuples inst , # »

(reg ∗ exp) where the first element is the destination register
and exp the type of expressions. We say that type inst represents an atomic sequence of assignments.
This representation allows for assembly instructions that modify several registers at once, which is
not possible in RTL or Mach3. Hence, an abstract basic block is defined as a list of inst, # »

inst.
Expressions are trees, whose leaves are pseudo-registers (SE denotes each register with an identi-

fier) and whose nodes are either operations (parametrized with a concrete operator), or “Old(exp)”,
with exp another expression. The “Old” constructor of an expression is used to encode the input value
of a register in the surrounding AbstractBasicBlock instruction (see §4.2.3 & [134, C.1, Footnote 29]).

Definition 4.2.1 (Abstract type of expressions [�]). The mutual variant of expressions allows to
represent them as lists:

exp ::= PReg(reg) | Op(op, list_exp) | Old(exp)
with list_exp ::= Enil | Econs(exp, list_exp) | LOld(list_exp)

For instance, an instruction r1 := r2 + r3 is noted:

[(r1, Op(+, PReg(r2)@ PReg(r3)@ Enil))] with “_@_” the notation for Econs(_, _).

Notice that source and destination registers are distinguished syntactically.
The domain specific language is parametrized by an evaluation function “eval_op : op → # »val →

val option”, with val the domain of values (cf. §3.3.1). Thememory is represented as a single specific
register “rm : reg” that will remember memory writes as a stack of stores. Therefore, a symbolic
state is a nothing more than a function “sstate : reg → val”.

∗The figure is adapted from [134, Figure 3].
3This choice of representation takes advantage the fact that AbstractBasicBlock is only used to verify transformations,

and not to generate code (contrary to RTL and Mach).

https://framagit.org/yukit/compcert-chamois-gl-thesis/-/blob/master/scheduling/abstractbb/AbstractBasicBlocksDef.v#L30
https://framagit.org/yukit/compcert-chamois-gl-thesis/-/blob/master/scheduling/abstractbb/AbstractBasicBlocksDef.v#L67

4.2 fvdp of a postpass optimizer 36

In this simplistic memory model, where the whole memory is represented as a single register,
any instruction that writes to the memory is considered to overwrite it entirely. Consequently, the
verifier is unable to validate a schedule interleaving loads or stores.

Setting a value “v : val” to a register “r : reg” in a symbolic state ss is done with a function
“assign ss r v , λr ′, (r = r ′)?v : ss r ′” [�].

4.2.2 Unidirectional Translation & Simulation Proof

The untrusted scheduler that performs the optimization works directly on the Asmblock represen-
tation, and returns a reordered version of the source program. Each block of both the source andA simulation

diagram of this
block validation

process is
proposed in
Figure 4.3.

transformed programs is translated to AbstractBasicBlock for verification. The goal is then to prove
a bisimulation between the Asmblock programs and the AbstractBasicBlock ones, so that we do not
need a reverse translation. Indeed, if the SE validates the proposed schedule on AbstractBasicBlock,
then, thanks to the bisimulation theorem, we know that the schedule is also valid on the concrete
representation.

4.2.2.1 Note on the Asm Semantics

The Asm IRs of CompCert have executable semantics, based on very simple small-step state function.
An Asm (or Asmblock) state is composed of a register set rs and a memory statem, and the semanticsNote that the

Asmblock IR has
the same

semantics, but
defined in a

big-step fashion.

is a function “(rs,m)→ (rs ′,m ′) option”, where rs ′ and m ′ are the new register set and memory
after executing the instruction at4 rs#PC (the program counter). The function is in the optionmonad,
so that it returns None when it is stuck, and the next state if it succeeds. For the KVX implementation,
AsmVLIW also defines a state semantics for parallel execution of bundles. To the end of this section,
I denote concrete Asm (and Asmblock) states with type “state”, and symbolic ones, as above, with
type “sstate”.

4.2.2.2 Bisimulation Between AbstractBasicBlock & Asmblock

To show the bisimulation property, one need to compare symbolic states of AbstractBasicBlock with
concrete ones of Asmblock. This leads to the following definition:

Definition 4.2.2 (Matching symbolic and concrete Asmblock states). Let s and δ be the concrete
and symbolic states, respectively; and let rm the specific register representing memory in symbolic
states. Recall (from §3.3.2) that CompCert’s register sets are not extensional. We note “δ r” the value
of register r in symbolic state δ, and s.(rs) to access the register state contained in s.

match_states s δ , s.(m) = δ rm ∧ ∀ r, s.(rs)#r = δ r

Now,we define two functions “E : state→ bblock→ state option” and “ξ : sstate→ a_bblock→
sstate option”. The former computes the result of the concrete execution given an initial state and an
Asmblock basic block; and the latter returns the (symbolic) state obtained after symbolic execution,
also given an initial (symbolic) state, and this time an abstract basic block (in the language of Abstract-
BasicBlock). Also, we note “τABB : bblock → a_bblock” the translation function from Asmblock to
AbstractBasicBlock. To compare the output of both execution functions, we define an auxiliary
predicate:

Definition 4.2.3 (Matching concrete and symbolic executions’ outcomes). Let “os : state option”
and “oδ : sstate option” two states in the option monad.

match_outcome os oδ ,match oswith
| None→ oδ = None

| Some s→ ∃δ ′, oδ = Some δ ′ ∧match_states s δ ′

In other words, when one state is stuck, the other must be stuck too; and when both are ending on
final states, then those states must match.

4We note rs#r the content of register r in regset rs.

https://framagit.org/yukit/compcert-chamois-gl-thesis/-/blob/master/scheduling/abstractbb/AbstractBasicBlocksDef.v#L61

4.2 fvdp of a postpass optimizer 37

The two previous definitions will now help us to define the bisimulation property. They are identical
for both the AArch64 and KVX backends, and accessible here [�].

Theorem 4.2.1 (Bisimulation AbstractBasicBlock↔ Asmblock5 (AArch64 version [�])). We assume
two initial states, s the concrete one, δ the symbolic one, and a match hypothesis between them. For a basic
block bb in the Asmblock language, we have:

match_states s δ =⇒ match_outcome (E(s, bb)) (ξ(δ, τABB(bb)))

The above property expresses that given matching initial states, then the states obtained after concrete execution
on one side, and translation plus symbolic execution on the other side, match as well. The complete proof is a
decomposition for basic (internal) instructions and exit (final) ones. The original version of this theorem was
proved for the KVX backend by Six [133], and I adapted it for AArch64 by writing a translation from the
AArch64’s Asmblock to AbstractBasicBlock along with equivalent concrete and symbolic execution functions
(see §4.3).

As mentioned before, this theorem is very convenient since it avoids translating back to Asmblock
after SE.

4.2.2.3 Correctness of the Postpass SE

Before applying Theorem 4.2.1 to prove the simulation correctness, we need to define the simulation
predicates for both languages. The first one below applies to AbstractBasicBlock, and is identical on
AArch64 and KVX, while the second one, for Asmblock, depends on a concrete semantics.

As we are considering whole blocks here, both semantics are big-step. For clarity, we call such
big-step semantics “blockstep” in the remainder of this section.

Definition 4.2.4 (Simulation predicate of AbstractBasicBlock (for both AArch64 & KVX [�])). The
simulation predicate takes two abstract blocks: the source one and the transformed (scheduled)
one, abb1 and abb2, respectively (they can be obtained by using τABB). This definition is generic
under a given implementation of ξ.

a_bblock_simu abb1 abb2 , ∀δ : sstate, ξ(δ, abb1) 6= None =⇒
match ξ(δ, abb1) with
| None→ ξ(δ, abb2) = None

| Some δ1 → ∃δ2, ξ(δ, abb2) = Some δ2 ∧ ∀ r, δ1 r = δ2 r

Definition 4.2.5 (Simulation predicate of Asmblock (AArch64 version [�])).
The bblock_simu simulation predicate for Asmblock is very close to its abstract analogous, with the
sstate type being replaced with concrete state, and with ξ replaced with E.

Asmblock B tb

AbstractBasicBlock · ·

Symbolic states · ·

bblock_simu

(Def. 4.2.5)

bisimulation

bisimulation

compilations
(by τABB)

symbolic executions
with hash-consing (by ξ)

a_bblock_simu

(Def. 4.2.4)

Figure 4.3: Correctness Diagram∗ for Theorem 4.2.2.

The correctness theorem of the whole SE is
then simply an implication between the two sim-
ulation predicates. Its structure is sketched in
Figure 4.3.

Theorem 4.2.2 (Symbolic execution correctness
(AArch64 version [�])). Let bb1 and bb2 the
source and transformed blocks, respectively.

a_bblock_simu (τABB(bb1)) (τABB(bb2)) =⇒
bblock_simu bb1 bb2

Proof. We use two times Theorem 4.2.1 to show that
both blocks transition to equivalent states.

5This version of the theorem does not take into account the global environment of the program and some other details,
for the sake of simplicity.

∗This diagram is adapted from [134, Figure 7].

https://framagit.org/yukit/compcert-chamois-gl-thesis/-/blob/master/aarch64/Asmblockdeps.v#L1273
https://framagit.org/yukit/compcert-chamois-gl-thesis/-/blob/master/aarch64/Asmblockdeps.v#L2063
https://framagit.org/yukit/compcert-chamois-gl-thesis/-/blob/master/scheduling/abstractbb/AbstractBasicBlocksDef.v#L178
https://framagit.org/yukit/compcert-chamois-gl-thesis/-/blob/master/aarch64/Asmblockprops.v#L30
https://framagit.org/yukit/compcert-chamois-gl-thesis/-/blob/master/aarch64/Asmblockdeps.v#L2109

4.2 fvdp of a postpass optimizer 38

4.2.3 Extending the KVX Postpass With a Simple Peephole

Peephole optimizations [105] aim to replace some costly sequences of instructions by cheaper,
semantically equivalent ones6. Such a technique was already implemented at the assembly level for
x86 processors in a fork of CompCert, thanks to the dedicated framework of Mullen et al. [112]7.

The major advantage of the rewriting approach is that both peephole and scheduling could be
applied sequentially (in that order, to leave more scheduling opportunities after peephole) by two
distinct oracles, while being verified by a single run of the SE. Six [133] exploits this mechanism toThe Coq

implementation of
this peephole

complicates the
support for

non-consecutive
instructions; an

OCaml
implementation
would be more

efficient thanks to
the validation by

translation.

replace pairs (respectively quadruplets) of loads and stores from aligned memory locations (with
the same base register) by single quadruple-word (respectively octuple-word) instructions. Due to
the constraints of the KVX architecture, its optimization can only replace instructions with aligned—
destination (for loads) or source (for stores)—registers indices. Moreover, it can only perform the
replacement when loads (or stores) are consecutive in the assembly code. Below is an example of a
rewriting rule for quadruple loads, that illustrates the use of the “Old” AbstractBasicBlock operator:

Example 4.2.1 (Pairing two double loads into a quadruple load on KVX∗). Suppose the peephole
oracle replaced two double loads of 64-bit words with a single quadruple load of a 128-bit word.
The rewriting rule performs the reverse: it replaces the 128-bit quadruple load “qload” with a pair
of 64-bit double loads “dload”. The special register representing the memory is still (cf. §4.2.1)
noted rm, and is, by definition, distinct from other registers. We name r0 and r1 the two adequately
aligned destination registers. These two destinations are distinct from each other by construction.
However, the base register rb is not necessarily distinct from r0 or r1. Hence, in case of rb = r0, we
specify the base register of the second load using the “Old” operator to refer to its initial value.

rdst := qload(ofs) [(r0, Op(dload(ofs), PReg(rb)@ PReg(rm)@ Enil)),

(r1, Op(dload(ofs+ 8), Old(PReg(rb))@ PReg(rm)@ Enil))]

The above rule is applied during the translation from Asmblock to AbstractBasicBlock; the process
is thus transparent w.r.t. SE. In §4.5.2, I present another manner of integrating such rules, by directly
applying them during SE. In the AArch64 port presented in §4.3, I propose a more complex peephole
optimization, also targeting memory related instructions, and capable of replacing non-consecutive
sequences of loads and stores.

4.2.4 Refining the AbstractBasicBlock Theory

In contrast to the abstract states of §4.2.1, refined states do not model registers as an abstract function,
but with a concrete data structure (a dictionary of hash-consed symbolic values “hpost”, indexed
by pseudo-registers):

(* Refined symbolic states *)

Record hsmem := { hpre: list term; hpost:> Dict.t term }

To ensure the absence of any additional trapping instruction in the target, refined (symbolic)
states encode a block’s precondition as a list of “ok” symbolic values “hpre”, so that when the SE
encounters a trapping operation, it is added to the list of the current state. The transformed block
list (precondition) must thus be included in the source’s one for the simulation to be correct. The
refinement relation between the “hsmem” states above and their abstract version in the theory is then
proved correct once and for all in the AbstractBasicBlock generic module (independently of the
backend, see here [�]).

6The “peephole” name indicates that the optimization operates over a window of instructions.
7Their peephole is based on the integer representation of pointers. Such low-level optimizations are out-of-scope of our

work. In contrast, they do not support instruction reordering, nor loop optimizations. Moreover, they introduced a peephole
execution engine with formally verified rewriting rules, but in a direct style, without translation validation.

∗This example is adapted from [134, §C.1].

https://framagit.org/yukit/compcert-chamois-gl-thesis/-/blob/master/scheduling/abstractbb/ImpSimuTest.v#L262

4.3 porting the postpass optimizer to aarch64† 39

4.2.5 Formally Verified Integration of an Assembly Optimizer in Chamois-CompCert

Postpass optimizations are integrated as an internal pass on the Asmblock IR. This pass is thus specific
to each target backend. However, its structure remains similar. Initially, only KVX introduced such a
postpass, and I later ported it to AArch64.

For each block B in the source Asmblock program, a function [�] sequentially calls the postpass
oracle (e.g. combining peephole and scheduling) to obtain an optimized block B'. This function
is then proved to imply Definition 4.2.5 [�] when it succeeds. Both B and B' are then translated toA figure

illustrating this
pass is available

in [134,
Figure 6].

AbstractBasicBlock for validation. If the symbolic simulation fails, an error is raised and compilation
is aborted. Otherwise, we repeat the process with the next source block. Ultimately, if no errors were
raised, we obtain a transformed Asmblock program that preserves the semantics of the original one.

The proof of this pass uses a simple “lock-step” simulation (top-left of Figure 3.2) ensuring that
each individual step in the source block corresponds to exactly one step in the resulting block.

4.3 porting the postpass optimizer to aarch64†

To adapt the postpass optimizer, I had to proceed in five steps. These are listed below with the plan
of this section and their corresponding step in Figure 4.2.

1. Defining Asmblock (i.e. a blockstep semantics) for the AArch64 Asm (§4.3.1, (2)).

2. Writing and proving the Machblock→ Asmblock translation (§4.3.2, (2)).

3. Implementing the postpass itself. This consists in parametrizing the generic scheduler oracle
(of §4.1.5) and conceiving a peephole oracle that pairs AArch64’s loads and stores (§4.3.3,
(3)). Also, it requires porting the surrounding Coq pass that combines the optional peephole
and the scheduler oracles with their validator, as explained at §4.2.5.

4. Writing and proving the Asmblock→ AbstractBasicBlock translation (§4.3.4, (3)).

5. Writing and proving the Asmblock→ Asm translation (§4.3.5, (4)).

The table below indicates the lengths of Coq definitions and proofs in terms of significant lines of
code (noted “sloc”, excluding blank lines and comments with coqwc) for each part of this port.Column “Defs” in

this table
comprises both
Coq definitions

and types, i.e. all
extracted and

executable code
plus its

specifications.

Name Defs Proof
Asmblock IR 743 26
Machblock→ Asmblock translation 1072 15
Machblock→ Asmblock translation proof 1255 2832
AbstractBasicBlock instantiation8 1800 725
Asmblock→ Asm translation 392 0
Asmblock→ Asm translation proof 602 1510
Coq Pass 212 197
Total 6076 5305

OCaml oracles are not counted in the table. In terms of sloc of OCaml (measured with ocamlwc)
we have: 662 sloc for the postpass scheduler’s frontend (including 111 sloc of fine-tuning); 495 sloc
for the peephole oracle; and 1480 sloc for the scheduler’s backend of David Monniaux and Nicolas
Nardino. Recall that this backend is used for both prepass and postpass scheduling.

4.3.1 A Blockstep Assembly Semantics for AArch64

We present a blockstep assembly semantics for AArch64, which involves hierarchizing instructions
based on their semantics and defining well-formed basic blocks.

8Including definitions, translation, evaluation functions specific to the DSL, and proofs.

https://framagit.org/yukit/compcert-chamois-gl-thesis/-/blob/master/aarch64/PostpassScheduling.v#L107
https://framagit.org/yukit/compcert-chamois-gl-thesis/-/blob/master/aarch64/PostpassScheduling.v#L126

4.3 porting the postpass optimizer to aarch64† 40

preg (all)

dreg (normal)

crbit (flags)

PC (program counter)

iregsp

freg (floating-point)

CN (negative)
CZ (zero)
CC (carry)

CV (overflow)

ireg (integer only)
SP (stack pointer only)

ireg0 ZR (zero register)

Figure 4.4: Existing Register Hierarchy of the CompCert AArch64 Backend.

Instruction

Basic

Control
Control-flow

Jumps
Conditionals

Built-ins

Arithmetic

0 source register
1 source register
2 source registers
comparisons
modifying flags
...Loads

Stores
Stack frame
management
...

Figure 4.5: Extract of the Asmblock Instruction Hierarchy.

4.3.1.1 Hierarchizing Instructions

In order to automate Coq proofs of the translation to AbstractBasicBlock as much as possible, it is
beneficial to regroup similar instructions—in terms of semantics—by defining a type hierarchy. In
fact, we achieve a more precise regrouping by considering the existing register hierarchy [�] of the
original AArch64 Asm. The latter defines multiple types of registers, so that we restrict instructions’
arguments to a certain class of registers (see examples in §4.3.4). These classes of registers areFor a complete

overview of this
decomposition,
please see the

Asmblock Coq
code here [�].

depicted in Figure 4.4: the program counter is isolated, flags registers are grouped together, and
integer registers are distinguished from floating-point ones. A special root group, ireg0, symbolizes
the set of integer registers plus the special, read-only ZR register, whose value is always zero.

An extract of the Asmblock’s instruction hierarchy is provided in Figure 4.5. The first level splits
instructions into two main groups: basic instructions, which can only be part of the body of a basic
block; and control instructions, which can only terminate a basic block. At the second level, control
instructions are split to distinguish built-ins and control-flow instructions (and we split the latter
group at level three to distinguish jumps from conditional branches). A built-in is considered as a
control-flow instruction because it could emit a trace9. Similarly, basic instructions are divided into
several groups, which may themselves contain other subgroups; for example, arithmetic instructions
are a subgroup of basic ones, and they contain several subgroups depending on the type and number
of argument registers.

The operational semantics of Asmblock adheres to the aforementioned hierarchy. Consequently,
we obtain a concrete evaluation function for each level of Figure 4.5. These functions return a state in

9But, contrarily to the KVX implementation, we do not need to have built-ins alone in basic blocks (this requirement
stemmed from VLIW bundles).

https://framagit.org/yukit/compcert-chamois-gl-thesis/-/blob/master/aarch64/Asm.v#L36
https://framagit.org/yukit/compcert-chamois-gl-thesis/-/blob/master/aarch64/Asmblock.v

4.3 porting the postpass optimizer to aarch64† 41

the option monad, and are subroutines of the top-level blockstep concrete execution function E (see
its AArch64 implementation here [�]).

4.3.1.2 Well-Formed Basic Blocks and Operational Semantics

We formalize basic blocks as follows:

Definition 4.3.1 (Basic block [�]).

bblock , {header :
#»L ; body :

»basic; exit : control option;
correct : body 6= []∨ exit 6= None }

Where L is the type of assembly labels tied to the block, and with “[]” denoting the empty list. A
basic block is well-formed when either its body (which is a list of basic instructions) is not empty,
or if it has an exit (i.e. a control-flow or built-in) instruction.

The execution of a basic block’s body is performed through a recursive definition denoted as
“exec_body : state→ # »

basic→ state option” over the list of basic instructions. In the event that an
instruction within the body fails, the execution halts and returns None. Otherwise, the resulting state
and the remaining portion of the list are recursively passed to exec_body to ensure the execution
continues.

As the semantics is blockstep, the program counter (PC) at rs#PC must be incremented before
executing the exit instruction of the block (if it exists). The evaluation of the exit instruction modifies
the state (and may emit a trace in case of a built-in). In any case, PC is incremented by the size
of the basic block, which is the sum of the lengths of the label and instruction lists in the block,
plus one if the exit instruction exists (zero otherwise). The function “exec_exit : fasmblk → state→
control option → N∗ → state option” handles the PC increment and the evaluation of the exit
instruction. The current Asmblock function (the first argument), is necessary to recover the position
of a basic block while branching or jumping. The second parameter is the current state; the third is
an option since the control instruction may not exist; and the fourth one contains the block’s size,
needed to increment the PC.

In practice, the concrete semantics of final instructions is written in two different forms. First, as a
property that easily integrates with the CompCert’s transition semantics:

Definition 4.3.2 (Semantic property of Asmblock [�]). The property formalizes the execution of
an entire block as follows: for an initial state (rs,m) and an expected final state (rs ′,m ′), a block
execution is valid if the body’s execution successfully leads to an intermediate state (rs1,m1) from
which there is a valid exit step leading to the final state.

exec_bblock (f : fasmblk) (bb : bblock) ((rs,m) (rs ′,m ′) : state) : Prop , ∃rs1 m1,

exec_body (rs,m) bb.(body) = Some(rs1,m1) ∧

exec_exit f (rs1,m1) bb.(exit) size(bb)) = Some(rs ′,m ′)

Second, as an operational, executable version to instantiate function E of §4.2.2.2.
Note that an alternative of simulation Property 4.2.5, which was built on the executable blockstep
semantics (i.e. function E), can be posed as the implication:

bblock_simu ′ (f : fasmblk) (bb bb ′ : bblock) : Prop , ∀rs m rs ′ m ′,

exec_bblock f bb (rs,m) (rs ′,m ′) =⇒ exec_bblock f bb ′ (rs,m) (rs ′,m ′)

4.3.2 Asmblock Generation From Machblock
The whole
translation
module is

available here [�],
and its proof

here [�].

The translation is very similar to the original Mach to Asm translation. Nonetheless, proving it correct
is a difficult task.

https://framagit.org/yukit/compcert-chamois-gl-thesis/-/blob/master/aarch64/Asmblock.v#L998
https://framagit.org/yukit/compcert-chamois-gl-thesis/-/blob/master/aarch64/Asmblock.v#L393
https://framagit.org/yukit/compcert-chamois-gl-thesis/-/blob/master/aarch64/Asmblock.v#L1004
https://framagit.org/yukit/compcert-chamois-gl-thesis/-/blob/master/aarch64/Asmblockgen.v
https://framagit.org/yukit/compcert-chamois-gl-thesis/-/blob/master/aarch64/Asmblockgenproof.v

4.3 porting the postpass optimizer to aarch64† 42

4.3.2.1 Translation and Macro-Instructions

The Machblock IR defines blocks in the same fashion as Asmblock: they feature a header of labels, a
body, and an optional control instruction at the end. Both Machblock and Asmblock functions store
the code as a list of basic blocks. The translation from Machblock to Asmblock is done iteratively over
this list. After translating the entire list of blocks, the function prologue is added as a separate block
at the beginning of the list. For AArch64, the prologue includes a macro-instruction that allocates
the stack frame (expanded in the untrusted OCaml printer, cf. §3.5); and a store that saves the return
address in the stack.

A subtle issue arises regarding the application binary interface (ABI) of the target architecture. In
AArch64 (and in most systems) there is a convention that specifies the roles of certain registers. For
example, the AArch64 ABI [1] states that subroutine parameters should be passed through registers
r0 to r7; but when there are more than eight arguments, they need to be stored in the activation
record. Normally, the callee accesses these additional parameters by applying an offset on the stack
pointer. However, this is not possible using the CompCert memory representation (i.e. the list of
“block + offset” pairs, as mentioned in §3.3.3). Therefore, the prologue—more precisely, the frame
allocation macro—saves the old stack pointer in a temporary register (here r15) when entering a
subroutine. To avoid unnecessary reloading, the Asmblock generation pass keeps track of whether
r15 was clobbered or not. This optimization reduces the number of memory accesses, and is further
explained in [133, §3.3.2].

When the block to translate contains an exit instruction that terminates the current subroutine (e.g.
a return or a tail call), a function epilogue is generated. The control-flow instruction corresponding
to the return or tail call becomes the exit instruction of the generated basic block, and the epilogue is
appended to the block’s body (without being isolated like the prologue). Symmetrically to the prologue,
the epilogue restores the return address from the stack and executes a macro-instruction to free the
current stack frame.

Furthermore, conditional branches in Machblock are expanded into a sequence of assembly in-
structions during translation. In AArch64 assembly, most branches are encoded with an arithmetic
comparison instruction that sets flag registers, followed by the conditional jump itself. In certain
cases, such as immediate conditional branches, it may be necessary to load the immediate value
beforehand. These preliminary instructions are inserted into the body of the block, so that the basic
block’s exit only contains the actual conditional jump for control-flow.

4.3.2.2 Proof of Correctness

Considering that our translation expanses macros, and handles low-level constructs such as the
prologue, which involves creating an isolated basic block, the correctness proof needs to follow a
“star” simulation (bottom left of Figure 3.2). In other words, each original basic block is translatedWe have a “star”

simulation due to
a single stuttering

case on the
Machblock step

restoring the
caller state (as in
the existing Mach

to Asm proof,
see [134, A.1.2]).

into one or more Asmblock blocks. Additionally, since conditional branches are decomposed across
the body and the exit during translation, we need to divide the proof into smaller simulations for
the header, the body, and the exit parts.

I will not delve into the details of this proof in this document, as the overall proof pattern is very
similar to the one depicted by Six, Boulmé, and Monniaux [134, §7.3, Figure 14]. The proof can
be seen as a combination of the original Mach to Asm translation proof of Xavier Leroy and the
corresponding proof implementation for the KVX backend.

4.3.3 OCaml Oracles for Peephole & Scheduling

4.3.3.1 Parametrizing the Scheduler for AArch64

On the Coq side, we declare the postpass scheduler frontend as “Axiom schedule: bblock →
(list basic) * option control”. Notice that it does not directly return an instance of the bblock

type. This is because, as explained in §2.4.1, the OCaml typechecker is less expressive than the

4.3 porting the postpass optimizer to aarch64† 43

Coq one. Thus, it would be unsound to assume that the oracle can ensure the basic block proof field10 of
Definition 4.3.1.

Writing the oracle’s frontend to translate the AArch64 Asmblock to the backend’s abstract rep-
resentation was relatively simple. Our main obstacle was to obtain the most precise information
possible about instruction latencies, to accurately “tune” the oracle. This is mainly because accurately
measuring the number of execution cycles for each instruction is challenging, and the manufacturer
in the case of the Cortex-A53 (i.e. ARM) does not publicly provide such information. However,
the AArch64 LLVM backend uses a similar postpass scheduling optimization, and its source code
contains some (though incomplete) latency information. Another source we utilized is a paper
by Wiggers [146], where some latencies are manually measured. The reader can refer to §12.3.3 for
an overview of the efficiency with our current settings.

Regarding the sets of read and written registers for each instruction, these can be deduced from
the Asmblock semantics. However, an interesting point here is that during the implementation of
our solution, we discovered critical bugs in the Asm semantics: indeed, certain instructions such
as Pfmovimms/Pfmovimmd (floating-point moves for 32- and 64-bit registers) and Pbtbl (jump tables)
were incorrectly described. The two moves overwrite a scratch register before writing the result in
the destination register, and this behavior was not modeled in their operational semantics. The
opposite issue arose for the jump table, which, contrary to its described semantics, preserves a
scratch register. This issue does not result in incorrect code, but the specification was too strong and
induced inefficient code. Those three instructions are macros expanded later in the unverified printer
of CompCert (cf. §3.5), into real Asm instructions. Because their behavior was incorrectly formalized
in Coq, the two moves could lead to incorrect code by interleaving them with other macros that use
the same scratch register, and which are expanded in Coq, when translating to Asmblock (before
our scheduling). Given that instructions had never been interleaved at the Asm level before, this
bug remained undetected11. Our verifier, combined with postpass scheduling, helped identify these
errors in CompCert’s trusted computing base.

4.3.3.2 Peephole Pairing Loads and Stores Instructions

We also declare the peephole as a Coq axiom, but, unlike the scheduling frontend, the peephole
oracle only returns the list of instructions (i.e. the block’s body), since it never changes the block’s exit
instruction. TheAArch64 ISA includes specific instructions to transfer two registers simultaneously to
(store) and from (load) thememory [10, §C.3.2.3].Mainline CompCert does not assign any semantics
to those instructions. Therefore, we began by incorporating double load and store instructions into
the Asm and Asmblock IRs. This addition results in eight new instructions: four double load instructions
for 32/64-bit integers/floats, and four corresponding double store instructions.

replacement constraints The four types of double loads (and the same applies for double
stores) share the same operational semantics:

Definition 4.3.3 (Coq semantics of all double loads).

Definition exec_load_double (chk1 chk2: memory_chunk) (a: addressing)

(rd1 rd2: preg) (rs: regset) (m: mem): option state :=

if is_pair_addressing_mode_correct a then

let addr := (eval_addressing a rs) in

let ofs := match chk1 with Mint32 | Mfloat32 | Many32 ⇒ 4 | _ ⇒ 8 end in

let addr' := (eval_addressing (get_offset_addr a ofs) rs) in

match Mem.loadv chk1 m addr with

| None ⇒ None

| Some v1 ⇒
match Mem.loadv chk2 m addr' with

| None ⇒ None

| Some v2 ⇒

10In other words, according to the terminology of Boulmé [23, §2.2.2], type bblock is not permissive. It should be avoided
as an output type of oracles.

11Those three bugs were quickly fixed by Xavier Leroy in https://github.com/AbsInt/CompCert/commit/0df99dc46209

a9fe5026b83227ef73280f0dab70.

https://github.com/AbsInt/CompCert/commit/0df99dc46209a9fe5026b83227ef73280f0dab70
https://github.com/AbsInt/CompCert/commit/0df99dc46209a9fe5026b83227ef73280f0dab70

4.3 porting the postpass optimizer to aarch64† 44

Some (nextinstr ((rs#rd1 ← v1)#rd2 ← v2)) m

end

end

else None

The definition deduces the offset from the requested memory chunk; it equals four for 32-bit
words and eight otherwise. Replacement only occurs for pairs of loads (or stores) with consecutive
offsets, a constraint imposed by the AArch64 ISA specification. For two loads ld1 and ld2 with offsets
ofs1 and ofs2 (respectively), we require |ofs1−ofs2| to equal four (32-bit case) or eight (64-bit case).
For stores, we support only pairs where the second offset is greater than the first. This limitation
on stores comes from our validation mechanism: inverting stores is not supported by our naive
memory model (cf. §4.2.1). The execution semantics can merge loads of differing chunk types, as
long as their sizes match.

The operational semantics for double instructions executes the second memory operation only if
the first one succeeds, avoiding additional traps.

Double loads, unlike regular loads, lack support for embedded conversions or shifts, necessitating
a preliminary check for valid addressing mode (is_pair_addressing_mode_correct). Indeed, the
AArch64 ISA offers numerous sophisticated addressing modes [10, §C.1.3.3], not all of which Comp-
Cert implements. In fact, double loads/stores work with the classical “Base + Offset” addressing
mode and pre/post indexed modes, but the two latter are currently not supported in CompCert.
Therefore, our optimization is designed only for the case of an addition between the base register and
an immediate offset without any additional modification. This corresponds to the ADimm constructor
in the evaluation function below, which comes from the original CompCert Asm for AArch64:

(** Evaluating an addressing mode *)

Definition eval_addressing (a: addressing) (rs: regset): val :=

match a with

| ADimm base n ⇒ rs#base + (Vlong n)

| ADreg base r ⇒ rs#base + rs#r

| ADlsl base r n ⇒ rs#base + (rs#r << (Vint n))

| ADsxt base r n ⇒ rs#base + ((Val.longofint rs#r) << (Vint n))

| ADuxt base r n ⇒ rs#base + ((Val.longofintu rs#r) << (Vint n))

| ADadr base id ofs ⇒ rs#base + (symbol_low ge id ofs)

| ADpostincr base n ⇒ Vundef

end

When we actually replace a load or a store, we take the smallest of the two source offsets as the
offset for our newly generated pair instruction. Moreover, the selected offset immediate must satisfy
certain properties for the load (or store) to be a valid potential candidate for substitution. The ISA
reference manual imposes that any selected offset z satisfies: −256 6 z 6 252 ∧ z mod 4 = 0 for a
32-bit word and −512 6 z 6 504∧ z mod 8 = 0 for 64-bit. In practice, the peephole oracle disregards
instructions that do not meet these constraints. However, they are not enforced in the Coq formal
semantics. Omitting them is not a problem here, because the final assembler will raise an error in
case they are not satisfied.

Finally, we must check that the base registers for both source instructions are the same, and, for
loads, that their destination registers are different.

oracle and example The oracle is capable of replacing both consecutive and non-consecutive
loads and stores, as long as they respect the constraints enumerated above. The algorithm traverses
the instruction list in both directions. As it iterates over the list, it keeps track of all encountered
compatible loads and stores as potential candidates for peephole, and removes them if another
instruction breaks a dependency in-between. The first pass, forward, attempts to replace the last
encountered load or store with a double instruction, and substitutes the first one with a no-op
(no-operation) instruction. Conversely, the second pass, backward, does the opposite operation.
The following are examples supported by our oracle:

4.3 porting the postpass optimizer to aarch64† 45

Example 4.3.1 (Four examples of pairing loads and stores∗). In CompCert AArch64, 32-bit registers
are prefixed with letter “w” and 64-bit ones with letter “x”. Immediates are always preceded by a
pound “#”.

movz x6, #0, lsl #0

ldr w4, [x6, #0]

sxtw x3, w4

ldr w1, [x6, #4]

ldr w5, [x3, #0]

ldr w7, [x3, #4]

add w2, w4, w1

adrp x16, a

movz x6, #0, lsl #0

ldp w4, w1, [x6, #0]

sxtw x3, w4

ldp w5, w7, [x3, #0]

add w2, w4, w1

adrp x16, a

mov x0, x19

ldr x19, [sp, #16]

ldr x30, [sp, #8]

movz x1, #0, lsl #0

str w2, [x1, #0]

movz w0, #0, lsl #0

str w2, [x1, #4]

sub w0, w0, w2

mov x0, x19

ldp x30, x19, [sp, #8]

movz x1, #0, lsl #0

movz w0, #0, lsl #0

stp w2, w2, [x1, #0]

sub w0, w0, w2

On listings 1 & 2:

1. In orange color: backward load pairing, with increasing offset (the offset of the second load is
greater than that of the first one). Note that here, forward pairing would be incorrect as w4 is
read between the two source loads;

2. In lime color: consecutive load pairing, with increasing offset.

On listings 3 & 4:

1. In blue color: consecutive load pairing, with decreasing offset (the offset of the second load is
lower than that of the first one);

2. In pink color: forward store pairing, with increasing offset.

Example 4.3.3 illustrates the reverse rewriting of a double load into two normal loads performed
during the translation to the AbstractBasicBlock DSL.

4.3.4 Instantiating the SE for AArch64
The Abstract-

BasicBlock main
translation
function is

defined here [�].
Corresponding

proofs are
included in the

same file.

4.3.4.1 Translation to AbstractBasicBlock

The translation to our DSL benefits from the previously defined hierarchy, avoiding the tedious task
of describing each instruction individually. Instead, we define at least one operation for each class
of instructions in the Asmblock IR.

Example 4.3.2 (Translation of a simple arithmetic instruction). As an example, an Asmblock’s
arithmetic instruction i with one destination register rd of type dreg and one source register rs of
the same type is noted as “PArithPP i rd rs”. Various Asm instructions belong to the PArithPP class,
such as moves, conversions, or immediate arithmetic operations. AbstractBasicBlock sticks to this
hierarchy, making the translation very straightforward:

PArithPP i rd rs [(rd, Op(Arith(OArithPP i))(PReg(rs)@Enil))]

The hierarchy is directly reflected in the syntax: instruction i belongs to class OArithPP (the Abstract-
BasicBlock’s equivalent for PArithPPP), which is itself a subclass of Arith.

more complex translations Nevertheless, recall that the AbstractBasicBlock DSL syntax repre-
sents an instruction as a sequence of atomic assignments. Each element in this sequence assigns
a single register with the result of an expression containing the AbstractBasicBlock operation. In
other words, an assembly instruction that has n distinct destination registers should be translated
as a sequence of n distinct AbstractBasicBlock operations, each returning the value of the expected
register. Moreover, since input registers are explicitly listed in the syntax, each AbstractBasicBlock
operation must have a fixed number of inputs that correspond to a symbolic value in the state. This
is an issue for special read-only registers like the always zero register ZR (of class ireg0), because
they do not correspond to a symbolic state’s value.

∗This example is reused from my short publication at AFADL 2021 [63, Figure 3]†.

https://framagit.org/yukit/compcert-chamois-gl-thesis/-/blob/master/aarch64/Asmblockdeps.v#L1255

4.3 porting the postpass optimizer to aarch64† 46

Let us clarify this with a more complex example, that illustrates both above subtleties. We focus on
Asmblock instructions of the form “PArithComparisonR0R i rs1 rs2”. This class contains arithmetic
comparisons with two arguments that may write the four flags registers (class crbit). The second
argument is always an integer register (class ireg), but the first one is of class ireg0. Such compar-
isons are translated as a list of four atomic assignments writing the four possible destination flags (so
we need four AbstractBasicBlock operations). Each of these four operations must be defined in two
forms to separate the case where one argument is ZR. Hence, we end upwith eight AbstractBasicBlock
operations to model a single Asmblock instruction.

Note that the implementation of Six, Boulmé, and Monniaux [134] did not face such a problem,
because the KVX architecture features a much less complex register hierarchy (KVX has 64 general-
purpose registers usable for both integer and floating-point values, and no flag registers).

reverse rewriting the peephole’s transformations Exactly as in §4.2.3, our translation
to AbstractBasicBlock reverts the peephole rewrites by replacing double loads/stores with pairs of
their normal equivalents.

Example 4.3.3 (Translation and rewrite of the orange double load of Example 4.3.1).

rdst := ldp(0) [(w4, Op(ldr(0), PReg(x6)@ PReg(rm)@ Enil)),

(w1, Op(ldr(4), Old(PReg(x6))@ PReg(rm)@ Enil))]

The Old operator is always generated by our translation, even if here, w4 6= x6.

4.3.4.2 Semantics and Proof of Correctness

Most evaluation functions ofAbstractBasicBlock are directly reusing the concrete evaluation functions
from the Asmblock operational semantics. For complex decompositions like the eight operations
model of the above example, we sometimes had to redefine evaluation functions more adapted to
the AbstractBasicBlock syntax.

We then prove our instance of bisimulation Theorem 4.2.1 between AbstractBasicBlock and Asm-
block for AArch64 by case analysis on each kind of instruction. As claimed in §4.2.2.3, we apply
two times the latter bisimulation theorem to prove the overall correctness of the symbolic execution
framework, formalized by Theorem 4.2.2. See the code online for details.

4.3.5 Coming Back to Asm

4.3.5.1 Flattening Basic Blocks and Translating to Asm

The process of converting basic blocks to sequential assembly is quite simple. We just need to
transform the basic block structure into a list of instructions in sequential order. To achieve this,
we define an unfolding function that performs the task while checking the length of the header
dynamically. This check relies on the tunneling optimization pass previously applied at the locationThe main

unfolding
function is

available here [�].

transfer language (LTL) level of CompCert.
The tunneling optimization ensures that consecutive labels cannot be found, meaning that the

label list in a basic block header never contains more than one element. To emphasize the significance
of this check, let us define the function used in the Asmblock IR to locate the position of a label in the
code:

Fixpoint label_pos (lbl: label) (pos: Z) (lb: bblocks) : option Z :=

match lb with

| nil ⇒ None

| b :: lb' ⇒ if is_label lbl b then Some pos

else label_pos lbl (pos + (size b)) lb'

end

This function will provide an address pointing to the first instruction of the basic block. By using
the dynamic check, we can demonstrate that the label_pos function in Asm (which simply returns
the position of the label in the sequential code) will retrieve the exact same address. Maintaining

https://framagit.org/yukit/compcert-chamois-gl-thesis/-/blob/master/aarch64/Asmgen.v#458

4.4 generalizing to prepass scheduling 47

this property allows us to use a straightforward state equality in the proof. Without this header
check, we would have to handle the case where a basic block header contains multiple labels. In
such a scenario, while Asmblock.label_poswould point to the same location at the beginning of the
basic block for all labels, Asm.label_pos could return a position pointing into the original basic block.

Apart from this header check, the translation process is managed by only two functions: one for
basic instructions and another for control-flow instructions.

4.3.5.2 Forward Simulation Proof

Thanks to the previous dynamic check on labels, Asmblock and Asm share the same state definition,
comprising a register set and a memory (as briefly explained in the beginning of §4.2.2.1). This
commonality is convenient as it enables us to define the matching relation between an Asmblock
state and an Asm state using a simple structural equality.The whole Coq

proof of this
translation is

available here [�].

Our main simulation theorem thus follows the “plus” scheme (top-right of Figure 3.2), indicating
that one step of the source Asmblock program, producing an observable event trace e, can be simulated
by multiple steps of the translated Asm program, also producing the same trace e. The theorem
splits the simulation in two cases: the internal step and the external step, to account for external
calls such as built-in functions. The second case simply expresses that symbols and arguments are
preserved during such calls.

The internal case is somewhat tedious due to the change in the representation of instructions
in Asmblock. Assuming an internal function f, and a program counter pc pointing to a basic block
bb within f, we consider a successful execution “exec_block f bb (rs,m) (rs ′,m ′)” (Property 4.3.2)
that emits a trace e. Our proof demonstrates that it implies the existence of an equivalent transition
on the Asm side, occurring in at least one step: (rs,m)

e→+ (rs ′,m ′). Here, “ e→+” indicates a “plus”
transition that emits the trace e.

We also encounter two subcases here, which arise from our well-formed property. Specifically, for
a basic block to be considered valid, either the body or the exit must not be empty. Depending on
which part is non-empty, we have the following simulation strategies. (i) If the basic block’s body is
not empty, we perform a “plus” simulation for the body and a “star” simulation for the exit. This
means that we simulate the execution of the body in at least one step, while allowing zero or more
steps for the exit. (ii) Conversely, if the exit is not empty, the simulation strategy is reversed. In this
case, we need a “star” simulation for the body and a “plus” simulation for the exit.

4.4 generalizing to prepass scheduling

After working on the postpass scheduling of the previous section, Six [133] reproduced the approach
to obtain a verification framework at the RTL (cf. §3.4) level, for prepass scheduling over superblocks.
In this section, I present this work and its limitations, as a transition to my preliminary contributions.
More specifically, we will see how the idea of a modulo invariant simulation mechanism has become
clearer. I start with a quick review of the Six’s representation in §4.4.1, and of the related liveness
verification in §4.4.2. A high-level example of superblock SE is given in §4.4.3; and the verification
process, along with its integration within Chamois-CompCert are covered in §4.4.4. Finally, the
limitations are discussed in §4.4.5.

4.4.1 Decorating RTL With Path Maps: RTLpath

The original RTL IR is a CFG of single instructions. In the work of Six et al. [135, §7.1]†, it is extended
with a path map structure: each of these paths represents a superblock. Formally, paths are seen as
the traces of trace scheduling, and are not required to be disjoint (the set of path is not necessarily a
partition of the CFG)12. I mentioned in §4.1.4.2 that superblock selection was relying on a branch
prediction heuristic; paths encode this information with a notion of default successor. Basic instruc-
tions (e.g. no-ops, loads, stores, operations) always have a default successor (the original one);
while the default successor of a branching instruction is defined only if the condition was predicted.

12Notice that a superblock decomposition of the CFG exactly corresponds to the case where each node is in at most one
path.

https://framagit.org/yukit/compcert-chamois-gl-thesis/-/blob/master/aarch64/Asmgenproof.v

4.4 generalizing to prepass scheduling 48

Non-predicted branches and final instructions (e.g. calls, gotos, etc.) have no default successor, and
are thus always ending a path. That is, a path’s execution emits at most a single observable event.
RTLpath encapsulates the notion of RTL function (cf. §3.3) as follows:

(* Additional information about paths *)

Record path_info := {

psize: nat; (* Number minus 1 of instructions in the path *)

(** Live registers at the path's entry *)

input_regs: regset;

(** Live registers at the entry of the next path: *)

(** - In pre-output: without considering the result of a call or built-in *)

pre_output_regs: regset;

(** - In complete output: always considering the last instruction

NB: the output_regs field below is only used in oracles. *)

output_regs: regset

}

Definition path_map: Type := pc 7→ path_info

Definition path_entry (pm: path_map) (n: pc): Prop := pm!n <> None

Inductive wellformed_path (c:code) (pm: path_map):

nat → pc → Prop :=

| wf_last_node i pc:

c!pc = Some i →
(∀ n, List.In n (successors_instr i) → path_entry pm n) →
wellformed_path c pm 0 pc

| wf_internal_node path i pc pc':

c!pc = Some i →
default_succ i = Some pc' →
(∀ n, early_exit i = Some n → path_entry pm n) →
wellformed_path c pm path pc' →
wellformed_path c pm (S path) pc

(* all paths defined from the path_map are well-formed *)

Definition wellformed_path_map (c:code) (pm: path_map): Prop :=

∀ n path, pm!n = Some path →
wellformed_path c pm path.(psize) n

(* There is a trivial "forgetful functor" from RTLpath programs to RTL ones. *)

Record function : Type := {

fn_RTL:> RTL.function;

fn_path: path_map;

fn_entry_point_wf: path_entry fn_path fn_RTL.(fn_entrypoint);

fn_path_wf: wellformed_path_map fn_RTL.(fn_code) fn_path

}

Hence, a RTLpath function contains the original RTL function, two well-formedness properties,
and the path map (i.e. which is simply a map from positive integers13 to path_map option records).
In our Coq code, we use the “m!x” notation to access element x in map m. Observe that the above
definitions do not impose that paths have a single entry point; but this is required for the verifier
(otherwise the simulation test would probably fail). A well-formed path must respect the below
conditions (the last two are encoded in the fn_path_wf field):

• The entry point of the code must be the entry point of a path (fn_entry_point_wf);

• The successor of its last node (when size is 0) must be the entry of another path;

• Each early exit’s (a node n is an early exit if it has a default successor, and if it is a conditional
branch; i.e. when early_exit is defined) successor is also a path entry.

13Implemented using the Coq PTree library [8].

4.4 generalizing to prepass scheduling 49

In the path_info map, if a node n is defined in the map (i.e. if it is not None), then n is a path entry.
Actual (from RTL) successors are given by the “successors_instr” function, and default ones by the
“default_succ” function. Comparing with the work of Six [133], I added the pre_output_regs field
in the path_info record. The latter, input_regs, and output_regs are used for storing and verifying
information about liveness: they are introduced in §4.5.1. RTLpath offers two main bisimulation
proofs: one with the original RTL semantics; and another for “path-step” execution (a big-step
semantics that corresponds, in a sense, to the blockstep simulation of AbstractBasicBlock). I will not
detail the simulation proof between RTL and RTLpath here, nor the executable semantics of RTLpath,
since it is not relevant for understanding and already well explained by Six [133, §5.2.2]. A major
advantage of this decoration approach is that all analyses available for RTL programs should be
appliable “for free” on RTLpath programs too.

4.4.2 Why Check the Liveness?

When moving an instruction above or below a side-exit, the verifier needs to ensure that it does not
change the result of the exit part of the branch. This requires a liveness analysis: the live registers at
each exit must not be modified by the applied optimizations.

During the RTLpath generation from RTL, the live registers at the entry of each path are computed
by the oracle, and a certified (dedicated, so apart from SE) validator dynamically check their correct-
ness14. A predicate encoding the result is then propagated to the scheduling pass, to remember
the liveness property. The symbolic execution in RTLpath is thus modulo liveness of source’s live
registers, but only on side-exits15. In other words, it means the simulation test (on side-exits), which
compares symbolic states, is only performed on registers that were live in the source program.

Doing so is sufficient for superblock scheduling (see §4.4.3), but it prevents the renaming and the
introduction of auxiliary fresh registers. This is because at the end of the path, these registers would
be considered modified on the target side but not on the source side, and the verifier of Six [133]
compares every register at the final exit, including those dead registers.

4.4.3 An Example of Superblock SE

In the case of blocks having multiple exits, the result of SE is not a single state anymore, but a binary
decision tree, with symbolic states on the leaves (one per exit, whether early or not). The simulation
test compares these trees to conclude about semantic preservation.Lifting a trapping

instruction above
an early exit
would add a

potential trap if
the exit is always
taken. Moving an
instruction below

an early exit is
possible only if its
result is not live
at the early exit

output.

The source liveness based simulation, in addition to allowing the movement of (non-trapping)
instructions above or below side-exits, alleviates the simulation test by reducing the number of
variables to compare.

Example 4.4.1 (Superblocks simulation). Consider two superblocks B1 and B2:
We assume the ⊗ operator to be potentially trapping.
(B1) r1 := r1 ⊗ r2; if (r2 > 0) goto L;
(B2) if (r2 > 0) goto L; r1 := r1 ⊗ r2;
B2 simulates B1 if r1 not live at L; B1 simulates B2 if r1 not live at L and “OK(r1 ⊗ r2)”.

This example shows how the modulo liveness simulation can validate the reordering of side-exits.
I clarify in §4.4.5 why it would be even better to support the introduction of fresh registers (by
making the whole simulation modulo liveness, not just side-exits).

4.4.4 Overview of the RTLpath SE Verifier
Although these
concepts are not

essential to
understand the

rest of this
document, they

establish the
framework for this

study.

Just like the AbstractBasicBlock symbolic execution, the RTLpath framework is defined with first
a simplified theory, which is then refined a first time to comply with concrete specifications, and
a second time to include implementation related tools such as hash-consing specific constructors
(introduced in §2.4.2).

14It has no impact on the semantics, but it aborts the compilation if it fails.
15On the final exit of the superblock, the simulation is strict; see §4.4.5.

4.4 generalizing to prepass scheduling 50

sistate_local ,
{ si_pre : regset → mem → Prop;

si_sreg : reg → sval;
si_smem : smem }

sistate_exit ,
{ si_cond : condition;

si_condargs : list_sval;
si_elocal : sistate_local;
si_ifso : pc }

sistate , { si_pc : pc; si_exits : # »sistate_exit; si_local : sistate_local }

Figure 4.6: Internal States in the RTLpath Theory: Local State (top-left), Exit State (top-right), and Full Internal
States (bottom).

4.4.4.1 The RTLpath Theory

Verifying superblocks requires to execute them one by one, and then to compare the resulting
symbolic states (as it was done in §4.2.1 for basic blocks). Nevertheless, since RTL (and RTLpath,
and more generally CompCert) proves the simulation over a program decomposed into functions,
the verifier correctness must consider a whole function (as explained in the end of this section) and
its surrounding stack frame16.

Definition 4.4.1 (Mutually inductive symbolic values). The theory module first inductively defines
a type for symbolic values as follows:

sval ::= Sinput(reg) | Sop(op, list_sval, smem)

| Sload(smem, trap, chk, addr , list_sval)
with list_sval ::= Snil | Scons(sval, list_sval)

with smem ::= Sinit | Sstore(smem, chk, addr , list_sval, sval)

This type is mutually inductive, to also model lists of symbolic values (e.g. for arguments of
operations) and memory (which is nothing more than a sequence of affectations—“Sstore”—over
an initial state “Sinit”). Thus, a symbolic store contains the previous symbolic memory, the type
of chunk and addressing mode (as in RTL), a list (of type list_sval) of symbolic arguments to
compute the address, and the symbolic value (of type sval) to be stored. A symbolic value is either
an input “Sinput” (i.e. the initial value of a register r in the path); an operation “Sop” with op the
type of RTL operations (depending on the backend), a list of symbolic values (arguments), and
a symbolic memory (of type smem); or a load “Sload”, again containing symbolic memory and
arguments, along with other information (trapping mode, chunk, and address) from RTL. Observe
that the above type does not define final values: these are handled by a specific type, sfval (stands
for “symbolic final value”) which abstracts each type of final instruction (e.g. call, return, etc.)

A (mutually) inductive function of evaluation σ, with type “σ : (sval | list_sval | smem)

→ regset→ mem→ val option”17, is then defined: any symbolic value can be evaluated, but the
evaluation is not guaranteed (i.e. it can fail and return None). This function takes a symbolic value,
and updates initial registers andmemory states, before eventually returning a value if the evaluation
succeeded.

symbolic states Internal states, as represented in Figure 4.6, contain the identifier of the current
node (i.e. a positive natural number), a list of exit states, and the current local internal state. Such a
complex decomposition is needed because the SE framework is built around the superblock structure,
and expect side-exits to be in a specific format18. Furthermore, a symbolic state must represent the
concrete output state w.r.t. to the concrete input state; and to simplify the proofs, it is preferable for
this function to be deterministic. Hence the need of preserving the order of side-exits, and having
a quite specialized data structure. At the end of SE, exit states of the source and target blocks are

16The stack frame simulation proof on BTL illustrates how delicate such a proof can be, see §6.1.
17Here, I voluntarily omit the global environment and stack pointer for the sake of simplicity.
18They must always be oriented the same (the “ifso” branch exits) and there must be at most one exiting condition per

sistate (since the execution of the current block stops when the exit is true).

4.4 generalizing to prepass scheduling 51

compared, and conditions (with their arguments) must match syntactically. Moreover, the verifier
ensures that the “ifso” branch points to a valid superblock in the CFG.This choice of

modelling finely
the superblock
structure was

certainly made to
simplify the proof

work.

The full notion of symbolic state is obtained by combining an internal state with a final symbolic
value: sstate , { internal : sistate; final : sfval }.

Each type of state comes with its own semantics properties: either it is correct, and a specific
property holds, or something went wrong, and an “abort” property holds, indicating that we must
stop the compilation19. I give below a formal definition for the local internal states correctness
property, while the others are outlined informally:

• Local internal states: for an initial pair (rs0,m0) and state “s : sistate_local”, the pair (rs,m)

is a possible valid final state if and only if: “ssem_local , s.(si_pre)∧
σ(s.(si_smem), rs0,m0) = Some m ∧ ∀(r : reg), σ(s.(si_sreg) r, rs0,m0) = Some rs#r”. Intu-
itively, it means that a state transition is valid if the precondition still holds, and if both
memory and registers evaluate correctly.
If the precondition is false, or if either the memory or the registers’ evaluation fails (the “forall”
becomes a “there exists” in the abort property), then the semantics property does not hold,
but the abort property does.

• Exit (internal) states: first, let us assume that side-exits of superblocks are always on the “ifso”
branch (it is the case in RTLpath, so that “reversed” conditions have been swapped during block
selection). The semantics of an exit internal state is defined only for exitswhose condition evalu-
ates to “Some true”; in that case, for an exit state sexit branching to pc, “ssem_local sexit rs0 m0

rs m” must hold, and sexit.(si_ifso) must be equal to pc.
When the condition fails to evaluate, or when the abort property of the internal local state
sexit.(si_elocal) holds, the abort property of the exit state holds.

• Internal states: if no early exit was taken, then all exits must evaluate to “Some false” (i.e.
execution fall through), and the local internal state semantics property must hold. Otherwise,
only the exit up to the taken one must be in “fall through”, and the taken early exit semantics
property must hold.
There are thus two possible failure cases: either no early exit wasmet, but the execution aborted
on a local state, or the evaluation of one early exit aborted.

Final symbolic values also have a semantics definition (which is linked to the concrete semantics
of RTL). Global symbolic states sstate still follow the superblock structure in their semantics split in
two cases:

• An early exit semantics: if the code took a side-exit, then the sstate semantics is reduced to
the internal state semantics;

• A final state semantics: combining both the internal state semantics and the one of the final
value sfval.

The theory provides two proofs about the SE semantics: a correctness proof, stating that each
concrete execution can be executed on the symbolic state—i.e., the SE is a correct over-approximation; and an
exactness proof, stating that each execution of a symbolic state represents a concrete execution—i.e., the SE
is exact.

main simulation property The main objective in such a framework is to prove that when
the SE succeeds and returns without error, then a property linking the source and target RTLpath
programs is valid. In the case of RTLpath, this property is defined using the SE theory. In contrast,
the final correctness theorem must be defined after the whole implementation, since it assumes (as
a hypothesis) that the execution returned without errors.

Definition 4.4.2 (Simulation property of RTLpath). Let fsrc be the CFG of the source function, and
let pcsrc and pctgt the entry points of the source and target functions, respectively. The symbolic

19The correctness and the abort properties are mutually exclusive.

4.4 generalizing to prepass scheduling 52

RTL RTLpath RTL

RTLpath generation &
Liveness + WF checking

Superblock scheduling &
Liveness + WF checking &

Symbolic Execution

Projection to RTL

Figure 4.7: Architecture of the RTLpath Framework.

execution function is noted “ξ : function→ pc→ sstate option”, and symbolic states with letter δ.
The simulation correctness property states that:

∀δsrc, ξ(fsrc, pcsrc) = Some δsrc =⇒
∃δtgt, ξ(ftgt, pctgt) = Some δtgt ∧ ∀ctx, δtgt 'ctx δsrc

Where the “'” operator indicates that symbolic states are equivalent modulo liveness of the source
on side-exits, and have the same (syntactically) final instruction.

This simulation property is not symmetric (as we saw in the example of §4.4.3), and must be
valid under any context of execution (the notion of context is further detailed in §6.3.1).

4.4.4.2 Formally Verified Integration Within Chamois-CompCert

Figure 4.7 schematizes how RTLpath was integrated into the Chamois-CompCert compiler: the RTL
program is first decorated into a RTLpath program, pass during which an external oracle selects
superblocks, and analyzes live variables. The liveness information and well-formedness (WF) areThe liveness and

WF properties are
in fact verified

together (by the
same Coq
checker).

verified as soon as the block selection oracle returns. Once in RTLpath, the code is passed through
another oracle for scheduling; at this point, the oracle potentially changes the path map and the
entry point of the RTLpath function20. Because the path map has been modified, the WF check must
be run again21; if it is still well-formed, the semantic equivalence is verified using SE. Finally, if the
verifier did not abort, the code is projected back to RTL.

Each RTLpath related pass has its own simulation proof, and everything is linked together in the
main compiler proof. A (simplified) overall diagram about RTLpath proofs is provided in Figure 4.8.
“Translations”22 passes are at the extremities of the figure, and correspond to a standard simulation
diagram (Figure 3.2). First, the RTL program P1 is decorated into a RTLpath program P2, following a
star simulation on the left side starting from initial states S1 and T1. The RTL programmoves forward
while the RTLpath one stutters, and this until the last step where the RTLpath program makes a
single big-step to reach its final state T2 equivalent to the RTL one T1. Likewise, when coming back
to RTL, the RTLpath program P3 only makes a single step from S3 to S4, whereas the RTL program
P4 advances of several steps from T3 to T4; so we have a plus simulation on the right side. Indeed, as
RTLpath works with a big-step semantics, a single RTLpath step corresponds to many RTL steps; so
the simulation needs to stutter on the RTLpath side (the internal RTLpath state is in fact progressing,
but the visible RTLpath big-step needs to wait for the RTL steps to terminate). Note that the SEMy goal here is to

give an overview
of the global proof
architecture, this
is why I mixed

both simulations
and SE in
Figure 4.8.

bisimulates (by combining correctness and exactness theorems) the RTLpath semantics. For the sake
of simplicity, I represented the SE↔ RTLpath transitions with red edges. Those labeled “concretizes”
represent the concretization of symbolic states δi to RTLpath states, and the symbolic simulation
itself is performed on edges labeled with the ξ function (for both the source program P2 and the
scheduled program P3). In other words, program P2 (obtained by decorating P1) is given as an
input to the scheduling oracle, yielding P3. The optimized program P3 is compared by symbolic

20The oracle builds a reverse mapping from new path entries to old ones, to communicate its changes to the Coq side (a
Coq function checks that the pairs of this mapping point to paths of their CFG).

21Here, only the WF check is needed, but since liveness and WF properties are verified together, the liveness is (uselessly)
re-checked.

22I put in quotes the “translations” name because the RTLpath generation is, as shown, closer to a decoration (or en-
capsulation) of RTL than to an actual translation. Similarly, “translating” back to RTL is simply the process of forgetting
superblocks.

4.4 generalizing to prepass scheduling 53

S1

S2

T1

T2

δ0

δ1 δ2 S4

S3 T3

T4

RTL
(P1)

RTLpath
(P2)

RTLpath
(P3)

RTL
(P4)

∼

∗

1
∼

1

ξ(P2) ξ(P3)

concretizes

concretizes

concretizes

concretizes∼

∼

1
∼

+

∼ / side-exits liveness(P2)

∼ / side-exits liveness(P2)

decoration WF check + scheduling
forgetting
blocks

Figure 4.8: Coarse Overview of the RTLpath Proof Diagram.

execution to the source one. Since the SE only considers live registers from the source on side-exits
(and considers all registers on the final exit), the concrete states T1 and T2 are respectively simulated
by states S3 and S4 over the live variables of P2’s side-exits (and over all variables on the final exit).
Figure 4.8 expresses this—incomplete on the final exit—modulo liveness relation by the wavy lines
in light blue.

4.4.5 Limitations of the Original RTLpath

The RTLpath representation outlined until here corresponds to the original version implemented
by Six [133]. In this section, I list the limitations of this approach as a transition to the preliminary
contributions of §4.5, and to motivate the work of Part ii.

Firstly, as quickly mentioned in §4.4.2, the original RTLpath liveness handling poses several
problems:

1. The simulation is modulo liveness only for side-exit states (the idea was to support the
reordering of side-exits) but is strict over final states. This prevents us to introduce fresh
variables. One of my objective was to leverage normalized rewrites to perform instruction
selection (or, more generally, strength-reduction), but doing so often requires new variables.
For instance, replacing a single instruction by a sequence of three operations will be easier
if we can store intermediate results in new variables. Furthermore, optimizations such as
common subexpression elimination often need such auxiliary variables to remember a previous
computation. A real modulo liveness simulation is both more efficient, since it reduces the
number of variables to compare; and more expressive, as assignments of non-live registers
are ignored. Generalizing the modulo liveness comparison was thus one of my first preliminary
contribution (see §4.5.1).

2. The liveness information considered, even if we extend the modulo liveness comparison to
final exits, is still the one of the source program. However, the target liveness is more expressive:
it validates “for free” a DCE. In fact, if a variable of the source program is dead, the oracle
(which provides the liveness information to be verified) just have to omit the dead variables,
so that if the validation succeeds, dead code removal is validated for free. The new IR I present
in Part ii takes advantage of this opportunity.

3. Liveness is verified with a separated algorithm, while merging it with symbolic execution
would be more efficient in terms of execution time. Nonetheless, this “preprocessing” ver-
ifier algorithm (see [133, §5.3.2]) is not dedicated to liveness, as it also ensures a well-
foundedness condition over paths. When it returns without errors, we have a proof that
the wellformed_path_map property of §4.4.1 holds. My preliminary contribution to solve prob-
lem 1. above is notably based on a modification of this algorithm. In Part ii, I go further, and I
completely integrate liveness verification within symbolic execution.

4.5 improving rtlpath† 54

Those issues about liveness are mostly restrictive on the class of supported transformations (only
the third one above is also performance related), but they are not the only obstacles to circumvent in
order to widen this class. I suggest below a list of some other (but at least as important) limitations:

1. Cannot perform if-lifting: the idea of creating a decorated IR based on RTL, resulting in a
“forgetful functor” seems very smart, and, considering the difficulty of such an implementation
when starting from scratch, it was probably necessary. Nevertheless, the path structure of the IR,
and, more importantly, the SE verifier’s level of specialization forces us to always keep the same
structure, which sometimes proves to be a hindrance. A typical example, described in greater
details in §11.3.1, is what we call the “if-lifting”: the idea is to allow the superblock scheduler
to lift side-exits in superblocks, to optimize their overall makespan. Except that moving an
instruction below a condition (either in the “ifso” or in the else branch) might not be possible
without inserting compensation code in the other branch. Indeed, if the variable written by the
instruction is live on the other branch, we must also compute it there. The subtlety here comes
from the structure of blocks: if the branch needing compensation is a side-exit, then inserting
the actual code inside would break the superblock structure (the side-exit would no longer be
just an exit)! This is, of course, not supported by the RTLpath symbolic verifier because of its
dependence on the (super)block structure.
Justus Fasse [75] proposed an experimental solution based on an intricate sequence of passes,
combining ad-hoc validators. The more general representation proposed in Part ii is able to
support a much simpler implementation, realized by Alexandre Bérard [4].

2. Inflexible block structure in general: this point is closely related to the previous one, but with
other use-cases. Indeed, every optimization on RTLpath must be compatible with the (either
basic or super) block structure. In particular, a scheduler working on larger blocks would be
unsupported, and all optimizations are limited to a single superblock. This is limiting not only
when a transformation changes the structure, but also for any extended block based algorithm.

3. Even more generally, no global optimizations: as oracles are only authorized to optimize
locally inside blocks, the framework is unable to validate global transformations (i.e. over
the whole function). Yet, common subexpression elimination and code motion algorithms
are important optimizations for an efficient compilation, and operate globally. Of course,
symbolically executing the entire function (containing calls, loops, etc.) would be extremely
difficult (surely impossible as it is, and certainly too complex algorithmically), and this
especially in the CompCert semantics. I demonstrate with block transfer language (see Part ii)
that “synchronizing” information between blocks is possible, and helpful to reach this goal.

4. A not very practical rewriting system: the rewriting mechanism implemented in RTLpath is
sufficient for a few simplification rules, but becomes difficult to use when there are many and
complex rules used for a specific optimization oracle. This drawback is not a major concern,
but it would be better to create a more modular rewriting engine. Precisely, I propose in the
BTL IR to use configurable sets of normalization rules for specific oracles (see §7.6).

4.5 improving rtlpath†

This section aims to serve as a transition to the next part, by introducing the first (preliminary)
contributions I made over RTLpath:

• Liveness improvement (§4.5.1): I generalized the modulo liveness simulation to whole
superblocks and not only side-exits;

• Normalization rules for RISC-V (§4.5.2): I lifted some macro-expansions that were done at
the Asm level to RTLpath in order to increase scheduling opportunities (on RISC-V only).

In Part ii, we replace RTLpath with a new IR, and the above listed contributions thus become obsolete.
A frozen version of RTLpath with my contributions is available on a dedicated branch [�].

https://framagit.org/yukit/compcert-chamois-gl-thesis/-/tree/CPP_2022

4.5 improving rtlpath† 55

4.5.1 A Full “Modulo Liveness” Comparison

The decoration from RTL to RTLpath is defined as a specific Coq pass, which calls an untrusted
oracle. The resulting RTLpath code and its attached liveness information are a posteriori verified by
a dedicated checker introduced in §4.5.1.1. Originally, the oracle was only returning the liveness
information at the entry of each block, and the verification was limited to this information. Sec-
tion 4.5.1.2 details why this information is not enough to obtain a modulo liveness SE, and §4.5.1.3
how I modified the framework to extend this liveness checking at superblocks’ end points.

4.5.1.1 Preliminary Presentation of the “Input” Liveness Check

Recall the definition of a RTLpath function from §4.4.1: the only field which must be generated is
the path map, since the well-formedness properties are obtained by the verification, and the only
other field is the RTL function (which is not modified by the RTLpath generation). The path_info

record does not contain any RTL instructions, since they are already accessible in the fn_RTL field of
a function. The generation is thus simply the process of building a RTLpath function record, with a
new path map, and ensuring the well-formedness conditions. Therefore, the oracle has the following
signature:
Axiom build_path_map: RTL.function → path_map

For each selected superblock, the oracle fills the path map with an information record about the
path. The path_info.output_regsfield is only used by the untrusted scheduler, but has no semantics in
the Coq part (i.e. it does not need to be formally verified). The pre_output_regs field is what I use to
generalize the liveness (see §4.5.1.3); so we are left with the path size (used in the well-formedness
condition) and the input_regs set. The latter set contains, for each path, the list of live registers (a.k.a.
input registers) at the beginning of the path.

Let f be the original RTL function and pm the returned path map. The first step is trivial: ensuring
the path_entry property, by checking if “pm!(f.(fn_entrypoint)) <> None”. The second part of the
verification applies on every pair (pc, pi) in pm, and operates in two steps:

1. A decreasing loop starts from the path size (i.e. psize) to zero (and since psize is filled
with the number of instructions in the path minus one, the loop stops just before the final
instruction), and maintains an “alive” regset, whose initial value is the input_regs field. For
each instruction (except the final one), the liveness is verified w.r.t. the current “alive” set (i.e.
the instruction arguments must be live), and the “alive” set is updated accordingly (i.e. the
instruction destination becomes live). If the instruction is a side-exit to a new superblock, the
function checks if the target superblock is well-defined in the path map, and if its input_regs
field is a subset of the current “alive” set. If everything is fine, it returns a pair with the current
“alive” set, and the map address (in the original RTL code) of the last instruction in the path.
Otherwise, the compilation is aborted.

2. The last instruction (whose address in the CFG is returned by step 1.) is retrieved. If it is
a terminal instruction23, the function simply checks that the arguments are alive in the set
(also returned by step 1.); else, the same check as for side-exits is performed: verifying if the
input_regs field of the next superblock is included in the “alive” set updated with the last
instruction.

There is finally a theorem proving that if the two checks above were executed successfully, then
the well-formedness conditions hold, and the liveness information is correct.

A predicate “liveness_ok_function” remembering the validity of the path checker for each path
in the map is also saved for later, in order to prove the SE correctness (which assumes, of course, a
correct liveness information).

4.5.1.2 Why Does Not This Achieve Our Goal?

From the details provided in the previous paragraph, it could be presumed that the necessary
liveness information is already available to generalize the simulation at the final exits of superblocks.

23Here, “terminal” means without any successor (e.g. returns or tail calls).

4.5 improving rtlpath† 56

Indeed, with the “alive” set computed earlier and the inclusion test with the input set of the next
block (if it exists), it may seem feasible to enhance the simulation test. Actually, there is a subtletyWhile the actual

verification would
enable the

validation of the
“output_regs”

field, it is not
exactly what we

want.

here: the “alive” set obtained after updating with the last instruction (step 2. of §4.5.1.1), is the
complete set of output variables; in other words, this set is equivalent to the union of the input sets of
each superblock in the successors of the block’s last instruction24. The problem is that taking this
output set for our modulo liveness simulation would be inaccurate when the last instruction is a call
or a built-in. These external functions do not share any registers with the caller, and renaming their
result register is prohibited. Keeping their result registers in the output set would work, but would
induce unnecessary comparisons of symbolic values. By the way, the actual verifier already checks,
independently of the liveness information, that result registers remain unchanged.

Therefore, the idea of the output set above goes in the right direction, but should be slightly
adapted to fit with the real semantics. Precisely, the information we need is the one of this output
set, except for calls and built-ins, where we should remove the result register from the output set.
Put another way, the set we need is exactly the output set when the final instruction is neither a call
nor a built-in, and the output set minus the result register of the final instruction otherwise.

Fortunately, computing this set from the oracle is trivial. The liveness analysis for input sets is
computed by a data-flow analysis (i.e. fixpoint), and the output sets by the union of the successors’
inputs. To obtain the right output set, we simply have to apply one more time the data-flow transfer
function on the last instruction, if the latter is neither a basic instruction nor a conditional branch. In
our formalism, we name this set “pre-output regs”, since it is “almost” the complete output set.

4.5.1.3 Generalizing the Liveness Check

To summarize, two changes need to be realized in order to have a modulo liveness analysis: (i) a
posteriori verifying this pre-output set; and (ii) adapting the simulation test and theory to compare
final states modulo this new liveness information.

modifying the rtl → rtlpath oracle Rather than computing and returning the output set
(which is only used by the scheduler but not on the Coq side) as below:

let outputs = List.fold_left Regset.union Regset.empty list_input_regs in outputs

we apply again the transfer function [�].

let outputs = List.fold_left Regset.union Regset.empty list_input_regs in

let por = match last_instruction with

| Icall (_, _, _, res, _) -> Regset.remove res outputs

| Ibuiltin (_, _, res, _) -> Liveness.reg_list_dead (AST.params_of_builtin_res res)

outputs

| Itailcall (_, _, _) | Ireturn _ ->

assert (outputs = Regset.empty); (* defensive check for performance *)

outputs

| _ -> outputs

in (por, outputs)

Observe that while the verifier adds the result register of instructions to the “alive” set (by moving
forward through the code), the oracle’s analysis does the opposite. Above, the result register of calls
and built-ins is removed from the output set (and the liveness analysis fixpoint is run backward).

adapting the coq part in consequence Concerning the Coq part, the modifications are
a bit more complex. For the liveness verifier, we only modify the second step of the algorithm
outlined in §4.5.1.1. For non-terminal instructions, instead of performing the update and checking
the inclusion with the “alive” set, it is done using the pre-output set. Additionally, we verify that
the pre-output set is a subset of the final “alive” set, no matter the type of the superblock’s final
instruction.

We need to prove that our pre-output register set is correct; intuitively, this corresponds to the
proof that concrete states obtained after the SE of the last instruction (starting from the same initial

24In practice, the only terminal instructions with multiple successors are conditionals and jump tables.

https://framagit.org/yukit/compcert-chamois-gl-thesis/-/blob/CPP_2022/scheduling/RTLpathLivegenaux.ml#L227

4.5 improving rtlpath† 57

regset and memory) are equivalent no matter the final (output) regset (but keeping the same final
memory), as long as those regsets are equivalent modulo liveness. Technically, the link between symbolic
and concrete states is made by an inductive predicate. Under the program global environment (since
we need to define a semantics for calls), and given a stack and a stack pointer, the program counter,
the RTLpath function, and the initial regset and memory states, the predicate defines the new regset
and memory obtained by executing the last instruction. It also gives the observable trace and the
concrete RTLpath state resulting from this final step, as formalized below:

Definition 4.5.1 (Semantics of final symbolic values on concrete states [�]). Let G the global
environment, and sp the stack pointer. We have:
ssem_final G sp pc stack f rs0 m0 : sfval→ regset→ mem→ trace→ state→ Prop

We now reuse the above predicate to prove our set of live variables correct:

Theorem 4.5.1 (Pre-output register set is correct [�]). Our theorem assumes a correct liveness check
(i.e. that the liveness_ok_function predicate holds), an existing path p located at pc in the CFG of a function
f, and a state δ resulting from the SE of p (here, SE is assumed to succeed, not to be correct). For all global
environment G, stack pointer sp, stack stk, initial and final regsets rs0 and rs1, initial and final memories
m0 and m1, trace e (recall the formalism of §3.2.1), and concrete state s, we have:

liveness_ok_function f =⇒
f.(fn_path)!pc = Some p =⇒
ξ(f, pc) = Some δ =⇒
ssem_final G sp δ.(internal.(si_pc)) stk f rs0 m0 δ.(final) rs1 m1 e s =⇒
rs1 ≡por rs1 ′ =⇒
∃s ′, ssem_final G sp δ.(internal.(si_pc)) stk f rs0 m0 δ.(final) rs1 ′ m1 e s ′ ∧

s ≡input_regs s ′

Where the notation ≡E means equivalent over the domain of variables of E (i.e. it is our modulo liveness
comparison)25. In the above, we state that if the ssem_final predicate holds for a final regset rs1 and with
concrete state s, and if there is another regset rs1 ′ equivalent to rs1modulo liveness, then there exists a concrete
state s ′ such that the predicate still holds for rs1 ′ with state s ′, and that concrete states s and s ′ are equivalent
modulo liveness.

Be aware that the register sets equivalence is checked over our computed pre-output set, while the concrete
state equivalence is over the input registers of the path.

I proved Theorem 4.5.1 in Coq by case analysis on final symbolic values, along with additional
intermediate lemmas that I will not detail here. Comparing to the Coq implementation, I voluntarily
omitted some details to facilitate understanding: for instance, we have a supplementary hypothesis
on stack frames since the equivalence modulo liveness on concrete states is based on the RTL state’s
semantics of §3.4.1.

Finally, I modified the SE strict comparison for final exits into a modulo liveness one in both the
theory and the refined (implementation) parts. This is only a slight change, since themodulo liveness
comparison on hashed symbolic register sets was already defined and proved (for side-exits).

While implementing this complete liveness verifier, I took the opportunity to add a separated
well-formedness check, so that the verification performed after the scheduling only focuses on WF
and avoids the redundant liveness check mentioned (in footnote) in §4.4.4.2.

4.5.2 RISC-V Macro-Expansions at the RTL Level∗

On the CompCert RISC-V backend, some RTL level instructions are macros to be expanded at the
Asm level (during the Mach to Asm translation, see Figure 3.1). A macro is an abstract instruction,
that may be turned into a sequence of real instructions, depending on the arguments. On RISC-V,
these macros are always related to immediate constants, as the immediate value might facilitate (or

25The interested reader can find its definition here [�] for register sets and here [�] for concrete states.
∗The example (4.5.1) and some sentences of this section are reused from our CPP publication [135]†.

https://framagit.org/yukit/compcert-chamois-gl-thesis/-/blob/CPP_2022/scheduling/RTLpathSE_theory.v#L935
https://framagit.org/yukit/compcert-chamois-gl-thesis/-/blob/CPP_2022/scheduling/RTLpathSchedulerproof.v#L318
https://framagit.org/yukit/compcert-chamois-gl-thesis/-/blob/CPP_2022/scheduling/RTLpathLivegenproof.v#L185
https://framagit.org/yukit/compcert-chamois-gl-thesis/-/blob/CPP_2022/scheduling/RTLpathLivegenproof.v#L436

4.5 improving rtlpath† 58

complicate) the code generation. For example, an addition between a register and an immediate
might be translated as either:

• An immediate add (the normal case) translated as the RISC-V “addi” instruction;

• An immediate load of the high part of the source immediate (with the “lui” instruction),
whose destination is added with the low part (as an immediate, again with “addi”). The whole
result is then added with the source register, so this last addition is performed between two
registers (instruction “add”);

• An immediate load of the (whole) source immediate in a register (using “ld” from a literal
label), itself added with the source register (“add” again).

Applying these expansions earlier—typically, at the RTL level—is better in terms of performance,
for at least two reasons: (i) the scheduling will be more efficient, as it will precisely know theI ported the

expansion
mechanism to

BTL. The
associated

limitations and
implementation

challenges in both
RTLpath and

BTL are discussed
in §7.6.1.

latency of these sequences (rather than having an estimation depending on how the macro will be
expanded); and (ii) the expanded code will be optimized by redundancy elimination, allowing to
eliminate some duplicated instructions from expansions. A typical example of redundancies is the
loading of constants: many macro-expansions first load an immediate constant in a register, and a
simple common subexpression elimination pass would suffice to simplify the generated code.

Moreover, CompCert also has similar macros for conditional branches: for instance, immediate
long comparisons require loading the immediate beforehand, but this step can (and should) be
skipped if the immediate value is zero. Indeed, the RISC-V architecture features a specific register
“x0” whose value is always zero, but it does not feature immediate branching instructions. Hence,
if the immediate to compare with is zero, the generated Asm should directly compare with x0;
otherwise, the immediate is loaded in a scratch (i.e. temporary) register, by adding it with the x0
register.

4.5.2.1 A Rewriting Preprocessor

To illustrate the rewriting mechanism, we simply have to take an example involving immediates
(i.e. “hard-coded” constants). From the source code on the left column below, I compare the
code compiled with the mainline version of CompCert (3.12) (in the middle) and our version
with normalized rewrites (on the right); both in RISC-V 64-bit assembly. We omit the prologue and
epilogue for the sake of simplicity.

Example 4.5.1 (Expanding instructions in the scheduler’s preprocessor).

if (x + *t < 7)

if (y < 7)

return 421;

lw x7,0(x12)

; x7 MAY STALL

addw x6,x10,x7

addiw x31,x0,7

bge x6,x31,.L10

addiw x31,x0,7

bge x11,x31,.L10

lw x7, 0(x12)

addiw x12, x0, 7

addw x6, x10, x7

bge x6, x12, .L10

bge x11, x12, .L10

Both assembly codes represent a single superblock. Registers x10, x11, and x12 respectively corre-
spond to variables x, y, and t of the input program. Mainline CompCert does not feature scheduling,
and the pipeline is not reordered. Thus, the load that dereferences variable t in x7 may induce a
pipeline stall, because x7 may not be ready when executing the second instruction (the first add,
on the left code). Loading a value from the memory often takes several cycles, and if the addition
reading x7 is issued directly after the load, the processor will have to wait. Moreover, conditional
branch expansions (which—in mainline CompCert—happen during the Asm translation) load the
value to compare by adding it with x0. The translation is naive, and does not attempt to eliminate
redundancies, so when the second branch is translated, the immediate is unnecessarily loaded again
in the scratch register x31.
The rewriting engine I proposed works as follows:

1. An untrusted rewriting algorithm is called in the preprocessing of the prepass scheduler, and
expanses RTL instructions into sequences of special operations (specific to RISC-V, since RTL is

4.5 improving rtlpath† 59

a parametrized IR). These new operations do not need to be expanded when translating to
Asm since they already represent “real” operations of the target instruction set architecture.
The oracle performs an expansion of comparisons with an immediate (branching or not), and
of some other instructions (arithmetic operations on immediates, casts, loads of constants,
and length conversions). Intermediate values generated by expansions are stored into fresh
pseudo-registers, and the untrusted preprocessor uses a dynamic value numbering system to
avoid redundant instructions. The latter is a CSE limited to the superblock’s scope.

2. The prepass scheduler is called normally: thanks to the previous expansions, the scheduling
has more opportunities.

3. The transformed (expanded & scheduled) code is returned to the SE verifier to ensure correct-
ness.

Thanks to this light preprocessing pass of the scheduler, Chamois-CompCert produces the code on
the right side above. There are two improvements in this result: first, the expansion oracle allocates
the load of immediate 7 inside a fresh variable x12 (rather than the scratch register x31), so that x12
is reused for both conditional instructions; second, the scheduler interleaves the immediate load with
the addition into x6 to avoid the stall we observed on the unoptimized code. Each of these changes
potentially saves one cycle, so the resulting code has a potential gain of two cycles (we saved one
instruction with the former, and avoided a stall with the latter). In the general case, because the
scope of our preprocessing is limited to a superblock, this memoization of immediates should only
have a limited impact on register pressure.

Furthermore, our rewriting oracle adds only a light overhead since (exactly like in §4.2.3) it does
not require an additional SE run: both the preprocessor and the scheduler are applied sequentially,
and verified in a single run of SE.

4.5.2.2 Rewriting Symbolic Values On-The-Fly

We validate expansions of Example 4.5.1 during SE using a single normalization rule:

“(LTs i)[v] LT [v; Sop(Oaddiwx0 i, [],m)] ′′

This implies that conditionals in the form v < i, where i an immediate and v a symbolic variable,
get normalized into v < (x0 + i), with x0 being the always zero register. In the above rule, “LTs”
stands for less than (immediate), with suffix s to indicate that it is not yet expanded. The constructor
directly includes the immediate, and (between brackets) the list—here of one element—of symbolic
values to compare with. The rewrite turns condition “LTs” into “LT”, a different operator on which
the rule no longer applies. The symbolic memorym of the newly generated symbolic operation (Sop)
represents the memory state as it is when the execution reaches the conditional branch. Variable
v can be instantiated with any symbolic value. Then, every time the SE reaches a condition of this
type, it will try to apply the rule.

Let us apply this principle to our example. Without the normalization rule, the SE outcome of the
code on the left side of Example 4.5.1, would be (in pseudocode with symbolic values)26:

if (LTs 7)[Sop(Oadd, [Sinput(x10); Sload(m0, ..., [Sinput(x12)])],m0)]

if (LTs 7)[Sinput(x11)]

Sreturn(...)

The first condition’s single argument contains the symbolic value associated with x6, that is the
result of the addition between x10 (variable x in the source) and the load dereferencing x12 (variable
t in the source). The second condition compares the same immediate value, but this time with
variable x11 (variable y in the source), which has remained unmodified since the block’s entry
(Sinput).

26Normally (cf. footnote of §4.4.4.1), early exits are reoriented in RTLpath. For the sake of simplicity, we write them in
the same direction as in the source here (rewrites apply symmetrically).

4.6 contributions & conclusion 60

With the implementation of our normalization rule, the SE outcome would be:

if LT [Sop(Oadd, [Sinput(x10); Sload(m0, ..., [Sinput(x12)])],m0);
Sop(Oaddiwx0 7, [],m0)]

if LT [Sinput(x11); Sop(Oaddiwx0 7, [],m0)]

Sreturn(...)

As expected, our rule on conditions transforms the SE result of the source, such that it aligns precisely
with the outcome we would obtain by symbolically executing the rewritten code (i.e. right side
of Example 4.5.1). The symbolic trees of both the (normalized) source and target programs are
syntactically identical, indicating that we have successfully validated our rewriting example through
the simulation test.

Please note that we prefer to refer to these rules as normalization rules rather than rewriting rules,
as they are specifically designed to directly transform symbolic values into their normal forms (i.e.
that are never rewritten again in the subsequent SE).

In contrast to the peephole of §4.2.3, where normalization is applied on the transformed code (i.e.
reverting the oracle’s changes) during the translation to AbstractBasicBlock; the RTLpath rewriting
engine operates on the source, and this during symbolic execution. Thus, RTLpath normalizations
reproduce the oracle’s rewrites.

Verifying that the untrusted preprocessor’s rewrites correctly handle fresh registers is just a
particular case of the simulation test modulo liveness: the expansion on the right-hand side of
Example 4.5.1 is correct because x12 is not live at label .L10. Embedding the normalization rules
within SE allows the proof of these rules to ignore liveness issues. In contrast, expressed in a
preprocessing of the simulation test as in the postpass, normalization rules would need to satisfy a
bisimulation modulo register liveness.

Another interest of applying rules directly on symbolic values is to alleviate their proofs of
correctness. Indeed, the inductive structure of symbolic values allows expressing an entire sequence
of operations in a single symbolic term. Hence, proving a normalization rule simply reduces to
showing that both sides evaluate to the same value for all inputs.

4.6 contributions & conclusion

The work of Six [133] on the KVX backend, and its generalization to prepass over a decorated RTL
representation was an important experiment to deeply understand the technique, and in particular
its limitations. I list below the preliminary contributions presented in this chapter, along with a
key-points summary.
Contributions:

1. A port of the formally verified postpass validator from KVX to AArch64. This SE framework
at the Asm level validates a postpass scheduling and an improved peephole optimization,
targeting in particular the Cortex-A53 in-order core.
See §4.3 for information on development size.

2. A complete modulo-liveness symbolic simulation: I extended the liveness checker originally
used in RTLpath to support the modulo liveness comparison on final states (at superblocks’
end points). This contribution enabled the verification of rewriting optimizations, notably
through the possibility of introducing fresh variables with oracles.

3. Directly using contribution 2., I added a rewriting engine to RTLpath, able to process conditions
and operations. I use this engine to lift some late macro-expansions on the RISC-V backend, in
order to increase the scheduler’s performance and produce a less redundant assembly code.

Points 2. and 3. are smaller contributions compared to the postpass. The longest part is the rewrit-
ing engine, whose code is reused in our new IR, BTL. See §9.1 for an idea of its size directly in BTL.

4.6 contributions & conclusion 61

Key points to remember from this chapter:

1. Optimizing at the Asm level is often more accurate, but requires an important amount of work
to be adapted on several architectures;

2. Symbolic execution is an efficient method to validate scheduling, peephole, and expansion
optimizations;

3. The scaling problem can be solved by using hash-consing;

4. The decoration approach raised several research questions:
• Could we extend this approach to larger forms of blocks?
• Can we generalize the rewriting engine used for expansions to other applications?
• Is there a way of using SE to verify inter-block (i.e. global) optimizations?
• Can we integrate the liveness check within the SE, and adapt it to verify the target

program’s liveness instead of the source’s one?

5. Starting with a specific approach like RTLpath was certainly a necessary step before engaging
in further work.

Part II

BLOCK TRANSFER LANGUAGE

This part delves into the primary contribution of my PhD thesis: our new BTL interme-
diate representation and its symbolic simulation test. This contribution was presented
in [65]†. Here, I give much more detail on the Coq development. This part is intended to
be a comprehensive reference documentation for my Coq code. It aims to help readers
interested in building upon or extending this work. My goal was not to merely para-
phrase the code, which is available online, but rather to explain its detailed design and
the choices we made.
Adopting a “backward style” of presentation, I start with the main ideas, followed by
technical details. Those unfamiliar with Coq or CompCert might find it helpful to initially
consult the [65]† article to avoid being overwhelmed by the Coq formalism.
The aforementioned paper also addresses extensions of BTL and its validator, contributed
by Benjamin Bonneau. These are not in my online code or in this part to clearly delineate
my contributions. Bonneau’s extensions get a brief introduction in Chapter 11 and can
be found in the Verimag Chamois-CompCert repository (refer to the start of Chapter 11).
They are also incorporated in the experimental evaluation of Chapter 12.
The content is divided in five chapters:

• Chapter 5 presenting block transfer language;
• Chapter 6 on the formalization of our symbolic execution theory in Coq;
• Chapter 7 refining the aforementioned theory as a concrete and efficient implemen-

tation;
• Chapter 8 about the integration of BTL in the existing CompCert pipeline, and in

particular on the translation from and back to RTL;
• Chapter 9 concludes on the BTL defensive validation framework.

5
A BLOCK-BASED INTERMEDIATE REPRESENT ION†

Block transfer language (BTL) is a new intermediate representation close to RTL, and dedicated to
defensive certification of middle-end optimizations (before register allocation). Its main feature is a
syntactical representation of blocks: informally, a block is a fragment of loop-free code, with a single
entry point. A BTL program partitions a RTL program into such blocks (in opposition to RTLpath
whose paths were potentially overlapping). Each block is run in one (big-)step, emitting at most a
single observational event. The local optimizations (i.e. preserving locally the semantics of such blocks)In Part ii, we

always refer to
such big-step
semantics for

blocks as
“blockstep”.

are checked by symbolic execution with normalization rules. Global optimizations (i.e. preserving
globally the semantics but not always locally) require invariants annotations at each block entry.
BTL is specifically designed for symbolic execution modulo invariants, and gives a structured view
of RTL code.

In this chapter, I introduce more formally the notion of invariants with an example in Section 5.1,
and I detail the BTL abstract syntax and semantics in Sections 5.2 and 5.3.

5.1 a global simulation example∗

We saw in Chapter 4 how symbolic simulation was effective in validating liveness based intra-block
optimizations. Actually, liveness is global information on the CFG. Thus, dead code elimination and
superblock scheduling are not pure intra-block optimizations, but global ones. In order to validate
more inter-block transformations, we generalize the live sets (associated to each block entry point)
into invariants relating source registers to target ones. I progressively explain this idea, and formalizeNote that for now,

we only consider
arithmetic

computations on
long. This choice

is clarified
in §10.5.2.

the reasoning given in the example of §1.2.2, with the help of the more complex Example 5.1.1, still
providing a transformation on a C pseudocode.

Example 5.1.1 (Simulation modulo invariants to verify a simple strength-reduction).

long main(long i, long n) {

Bhead:

long s = 0;

long a = 7;

goto Bbody;

Bbody:

if (i > n)

return s;

s += i * a;

i += 3;

goto Bhead;

}

long main(long i, long n) {

Bhead:

// G : i := i ‖n := n

long s = 0;

long i_a = i * 7;

goto Bbody;

Bbody:

// H : a := 7

// G : i_a := i× a ‖ s := s ‖
// i := i ‖n := n

if (i > n)

return s;

s += i_a;

i_a += 21;

i += 3;

goto Bbody;

}

Both the source and the target code are CFGs of two extended blocks, labeled by Bhead for the entry
part and Bbody for the loop part. The target is obtained after a combination of constant propagation
(from a = 7) and strength-reduction (SR)1: the multiplication originally within the loop is moved
to Bhead and reduced in Bbody to an addition on a fresh register i_a (in red), and register a is
eliminated. Substitutions and compensation code are colored green.

∗This example is adapted from our OOPSLA’23 paper [65]†.
1The complete transformation of Example 5.1.1 is handled by the LCT algorithm of Chapter 10.

63

5.1 a global simulation example∗ 64

In order to prove the simulation block-by-block, one need two types of invariants:Our “gluing
invariant” have
similarities with
the “simulation

invariants”
of Rinard and
Marino [124],

and our “history
invariant” with
their “standard

invariants”.

a gluing invariant (gi): equalities between some target registers and terms over source reg-
isters2 (e.g. an invariant [x := y * y] means that the x variable of the target block has the
(symbolic) value y * y interpreted in the source block). They are used to anticipate non-
trapping computations, to remember already computed trapping calculus, and to eliminate
dead code (i.e. because they encode a liveness information). The term “gluing invariant (GI)”
is inspired from [3].

a history invariant (hi): equalities between some source registers (that are eliminated in the
target, such as “a” in Example 5.1.1) and terms over source registers. Indeed, using only GIs
would not suffice to remember that a variable in the source has some value, while this is
important for certain transformations like CSE. History invariants (HIs) thus aim to share a
common execution past. In the case of a CSE pass, they would propagate information about an
already computed value to replace.

On Example 5.1.1, invariants generated by our oracle are attached to each block of the target code
(preceded by an orange double-slash). Instead of the sequential representation of Example 1.2.1
(e.g. with [I1 ; I2 ; ...]), GI and HI are denoted as parallel assignments G and H, respectively3.
In our SE validator, we efficiently check these invariants by restricting them to be preconditioned
parallel assignments of symbolic expressions, similar to those resulting of the symbolic executions of
basic blocks in Example 2.2.1 (except that in Example 5.1.1, all preconditions are trivially true).

As in Example 1.2.1, the GI gives the target input registers of its associated block: they are those
syntactically assigned by the invariant. In fact, the trivial (i.e. identity) assignments visible in these
examples encode a liveness information: even if the variable is not modified, the identity assignment
indicates that it is live. Semantically, such a pair of invariants represents a relation of the form
“H(rs,m)∧ rt ≡t G(rs,m)” from a source state (rs,m) to a target state (rt,m) which keeps memory
state m unchanged, but turns register state rs into register state rt. Here, “≡t” is equality of registers
sets only for target live registers (this explains the inclusion of the source register state devoid of
dead variables into the target one, as claimed in §1.2.2). More generally, “≡E” is equality of register
sets over frame E. See Definition 6.4.9. In Example 5.1.1, the live (target) registers at label Bhead are
the function parameters i and n, and the live registers at label Bbody are i_a, s, i, and n.

The symbolic validator performs the simulation modulo invariants similarly as in Example 1.2.1,
since the CFG structures are identical, except that this time, we also consider HIs. Their verification is
performed over the source state, by first (symbolically) executing the input history invariant, then
the source block, and finally the output history invariant. Note that since HIs replay a summary of
the past execution of the source, the input H must also be applied before the verification of both the
source and the target states. Roughly speaking, it reduces to the comparisons (with invariants in
brackets):

1. Bhead/Bbody H: “s = 0; a = 7; [a := 7]” (source Bhead + Bbody H) simulates “s = 0; a =

7” (source Bhead alone) on register frame {a};

2. Bhead + Bbody G: “[i := i ‖ n := n]; s = 0; i_a = i * 7” (Bhead G + target Bhead) simu-
lates “s = 0; a = 7; [i_a := i * a ‖ s := s ‖ i := i ‖ n := n]

(source Bhead + Bbody G) on frame {i_a,s,i,n};

3. Body/Body H: “[a := 7]; s += i * a; i += 3; [a := 7]” (Bbody H + source Bbody + Bbody
H again) simulates “[a := 7]; s += i * a; i += 3” (Bbody H + source Bbody) on frame {a};

4. Body/Bbody G: “[a := 7]; [i_a := i * a ‖ s := s ‖ i := i ‖ n := n];

s += i_a; i_a += 21; i += 3” (Bbody H + Bbody G + target Body) simulates
“[a := 7]; s += i * a; i += 3; [i_a := i * a ‖ s := s ‖ i := i ‖ n := n]”
(Bbody H + source Bbody + Bbody G) on frame {i_a,s,i,n};

5. Bbody return: “[a := 7]; [i_a := i * a ‖ s := s ‖ i := i ‖ n := n]; return s” (Bbody H

+ Bbody G + target Body exit) simulates “[a := 7]; return s” (BbodyH + source Bbody exit).
2Those are the invariants presented in Example 1.2.1.
3Both representations are equivalent, see §6.2.2 for a more detailed comparison between them.

5.2 abstract syntax [�] 65

final ::= Bgoto(pcsucc) ≈ branch to [pcsucc]

| Breturn(ε | reg) function return♠

| Bcall(sig, (reg | id), # »regarg, regdst, pcsucc) function call♠

| Btailcall(sig, (reg | id), # »regarg) function call (not returning)♠

| Bbuiltin(ef , # »regbargs, regbdst, pcsucc) compiler built-in♠

| Bjumptable(regarg,
»pcsucc) “switch” jump♠

iblock ::= BF(final, iinfo) final instruction (of the block)
| Bnop(ε|iinfo) no-operation
| Bop(op, # »regarg, regdst, iinfo) normal operation
| Bload(trap, chk, addr , # »regarg, regdst, iinfo) memory load (trapping or not)
| Bstore(chk, addr , # »regarg, regsrc, iinfo) memory store
| Bseq(iblock1, iblock2) inductive sequence of iblock
| Bcond(cond, # »regarg, iblock ifso, iblock ifnot, iinfo) inductive conditional branch

iblock_info = { entry : iblock; binfo : binfo } record encapsulating blocks

cfg = (pc 7→ iblock_info) BTL graph as a map

fbtl = { fn_sig : sig; fn_params : # »regarg; BTL function
fn_stacksize : ssize; fn_code : cfg;
fn_entrypoint : pcentry;
fn_gm : gm; fn_info : finfo}

Figure 5.1: Syntax of the BTL IR (gm, finfo, binfo and iinfo will be defined later on).

To prove the preservation of the loop (Bbody) GI on register i_a, the SE uses a rewritingmechanism
that normalizes affine expressions (see §7.6.2). Hence, “(i× 7)+ 21” and “(i+ 3)× 7” are normalized
into “21+ (7× i) ′′. The rewriting engine within SE is similar to the one presented in [135]†, with a
more modular implementation allowing each transformation to define its own normalization rules,
and a specific feature for symbolic affine forms. The complete syntax of both types of invariants is
introduced along with the SE theory, in Chapter 6.

5.2 abstract syntax [�]

BTL instructions are defined inductively, so that a block is a kind of compound instruction. In practice, we
only use BTL blocks such that each branch ends on a final instruction. A BTL function is a control-flow
graph where each node is a block, represented by structured code.

5.2.1 Syntactical Block Structure

The abstract syntax is defined in Figure 5.1; instructions whose description is marked with a “♠”
symbol are syntactically identical to their RTL equivalent (all final instructions except the Bgoto). In
this syntax, we group final instructions in a specific subtype (with the BF constructor) of “classical”
(i.e. non-final) instructions: iblock defines every classical instructions, along with the inductive
sequences and conditionals; and final encodes instructions that terminate the block (or the function)
execution4. To be compatible with the CompCert forward simulation proofs, calls are required to be
final instructions.

This representation facilitates the traversal of blocks: one just have to run through execution paths
starting from the (unique) entry point; the block separation is clear, and embedded syntactically

4If no final instruction is present, the block cannot step (see Definition 5.3.6).

https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL.html#final
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL.html#final

5.2 abstract syntax [�] 66

if (x >= y) goto L;

x = z << 2;

return x;

Bseq(Bcond(_>=_, [x;y], BF(Bgoto(L)), Bnop),

Bseq(Bop(_<<2, [z], x),

BF(Breturn(x))))

Figure 5.2: A Superblock in C Syntax and its BTL Representation (without shadow fields).

if (i == 0) x = a;

else x = b;

return x;

Bseq(Bcond(_=0, [i], Bop(Omove, [a], x),

Bop(Omove, [b], x)),

BF(Breturn(x)))

Figure 5.3: A Block With an Internal Join in C syntax and its BTL Representation (without shadow fields).
The Omove operation simply copies its (unique) argument to its destination.

without the need for an additional structure (like the RTLpath “path maps”). Moreover, instructions
do not need to encode their successor(s) directly in their constructors (as in RTL) anymore, since the
successorship relation is structural (constructed using Bseq or Bcond, that compose two sub-blocks).
Comparing to RTL (and RTLpath), the BTL syntax adds two new types of fields:

1. The finfo, binfo, and iinfo shadow fields: those are records implemented directly in OCaml,
which have no semantics on the Coq side (cf. §2.2.2). They are used as a means of transmitting
information about functions, blocks, and instructions (respectively) between oracles. For
instance, finfo contains a Boolean to indicate if the BTL function is partitioned in basic blocks.
Blocks’ binfo fields record various data including the block number, a “visited” Boolean
enabling to tag blocks, or even lists of successors and predecessors blocks. For instructions,
the iinfo field’s signification changes according to the type of instruction. For example, an
“option bool” field is used to remember prediction information on branches, and this same
field remembers the initial trapping mode on loads. Instructions’ shadow fields also contain
an ID, and a tag Boolean.

2. The gm field of BTL functions (stands for gluemap) maps program points pc to records
containing the gluing and history invariants; these do not impact the semantics of BTL blocks,
but only their symbolic execution to “synchronize” information (see §6.2.2.2). The gluemap
is only filled by oracles: in other words, it is a certificate used to drive the formally verified
defensive programming mechanism (recall §2.3).

A RTL “Inop(pcsucc)” ending a block’s branch is encoded by “Bseq(Bnop, BF(Bgoto(pcsucc)))”; when
it is in the middle of a branch, it is simply encoded by “Bnop”5. The same trick appears for all basic
instructions, and for conditions. As visible in Figure 5.1, BTL iblock are not directly stored in the
code tree, but rather encapsulated in a record (where we remember the first iblock instruction as
the entry) containing the binfo shadow field. Figures 5.2 & 5.3 show examples of blocks of different
sizes encoded in BTL.

5.2.2 Detailed Breakdown of Instructions

We saw in §3.4 that RTL is a parametrized representation; the same applies for BTL. Exhaustively,
the architecture dependent constructors are:

• op (used in Bop instructions): the type of arithmetic operations;

• cond (in Bcond): the type of comparison instructions;

• addr (in Bload and Bstore): the type of addressing modes.

All the other instruction parameters are common to every target. Below is a brief description of
their syntax as well as their role:

5The iinfo shadow field is hidden here to make the code easier to read.

https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL.html#final

5.3 operational semantics 67

• sig (in Bcall, Btailcall, and fbtl): the signature of functions, defined as a record containing
the list of arguments’ types, the return type, and a model of the calling convention;

• id (in Bcall and Btailcall): the function invoked by a call is either determined by a pointer
found in a register, or by a name (i.e. an identifier id). This explains the (reg|id) parameter of
those instructions;

• ef (in Bbuiltin): built-ins call an external function ef having a predefined signature (e.g. for
volatile loads and stores, mallocs, memcpys, annotations, etc.);

• # »regbargs and regbdst: arguments and destination registers for built-ins are encoded as specific
inductive types, that can embed values or registers.

5.3 operational semantics

The dynamic semantics of BTL is very similar to RTL (recall §3.4.1), except that the step of one
instruction is generalized into the run of one iblock. From here, we note v the type of CompCert
values (defined in §3.3.1). The global environment associated with the program is still noted G. BTL
stack frames and states are defined analogously to the RTL ones6:

Definition 5.3.1 (BTL stack frames and states [�]).
A stack frame is defined as Σ , (r, f, sp, pcsucc, rs), where, from left to right, we have: the result
register r, the calling function f (the caller), its stack pointer sp, the program counter of the calling
function pcsucc (i.e. the returning address after the call), and its regset rs (which saves the state of
the caller).
From the above, we define the three types of states as follows:

S ::= S(
#»
Σ, f, sp, pc, rs,m) State

| C(
#»
Σ, fdef ,

»rarg,m) Callstate
| R(

#»
Σ, v,m) Returnstate

I give the below
definitions

directly in Coq to
facilitate

understanding,
using the same
notations for

states and stack
frames.

The internal step execution of an iblock is first defined as a relation transition between a pair
(rs,m) of an initial register set and memory state to the resulting pair (rs ′,m ′), under the global
environment: G ` (rs,m) → (rs ′,m ′). In coherence with the rs#r notation to access register r in
regset rs, we note rs##args to access the list of registers args in rs.

Definition 5.3.2 (Relational semantics of internal BTL instructions). In the Coq code below, the
evaluation functions (whose name is starting with “eval_”) and the has_loaded predicate (which
defines the result of loads according to their trapping mode) are from the RTL module, and can be
reused transparently. Those are hypotheses about the current instruction, and they must hold for
the corresponding semantics rule to be defined.
Inductive iblock_istep G sp:

regset → mem → iblock → regset → mem → option final → Prop :=

| exec_final rs m fin iinfo:

iblock_istep G sp rs m (BF fin iinfo) rs m (Some fin)

| exec_nop rs m oiinfo:

iblock_istep G sp rs m (Bnop oiinfo) rs m None

| exec_op rs m op args res v iinfo

(EVAL: eval_operation G sp op rs##args m = Some v)

: iblock_istep G sp rs m (Bop op args res iinfo) (rs#res ←v) m None

| exec_load rs m trap chunk addr args dst v iinfo

(LOAD: has_loaded G sp rs m chunk addr args v trap)

: iblock_istep G sp rs m (Bload trap chunk addr args dst iinfo) (rs#dst ←v) m None

| exec_store rs m chunk addr args src a m' iinfo

(EVAL: eval_addressing G sp addr rs##args = Some a)

(STORE: Mem.storev chunk m a rs#src = Some m')

: iblock_istep G sp rs m (Bstore chunk addr args src iinfo) rs m' None

6In particular, BTL states also obey to the diagram of Figure 3.4.

https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL.html#stackframe

5.3 operational semantics 68

| exec_seq_stop rs m b1 b2 rs' m' fin

(EXEC: iblock_istep G sp rs m b1 rs' m' (Some fin))

: iblock_istep G sp rs m (Bseq b1 b2) rs' m' (Some fin)

| exec_seq_continue rs m b1 b2 rs1 m1 rs' m' ofin

(EXEC1: iblock_istep G sp rs m b1 rs1 m1 None)

(EXEC2: iblock_istep G sp rs1 m1 b2 rs' m' ofin)

: iblock_istep G sp rs m (Bseq b1 b2) rs' m' ofin

| exec_cond rs m cond args ifso ifnot b rs' m' ofin iinfo

(EVAL: eval_condition cond rs##args m = Some b)

(EXEC: iblock_istep G sp rs m (if b then ifso else ifnot) rs' m' ofin)

: iblock_istep G sp rs m (Bcond cond args ifso ifnot iinfo) rs' m' ofin

The transition relation takes a stack pointer sp and a BTL instruction; its last parameter, which is of
the “final option” type, is None when the instruction does not directly end the execution. Otherwise,
for the exec_final and exec_stop rules, the option type embeds the terminating instruction. Observe
that exec_stop applies when the first block (i.e. b1) of a Bseq is final: in such a situation, the second
block b2 is thus dead-code (i.e. it will never been reached). Oppositely, the exec_seq_continue rule
imposes that the first block does not finish the execution. When the instruction is a conditional
branch, the presence of a final instruction does not matter (i.e. rule exec_cond).

The relation of Definition 5.3.2 is a partial function; when writing proofs, having a pure functional
variant is sometimes very useful to facilitate the reasoning. To implement such a variant, we start by
defining the outcome of a block execution:
Record outcome := out { _rs: regset; _m: mem; _fin: option final }

In the following, we use a Coq notation to simplify the binding with the option monad:

Definition 5.3.3 (Option monad binder).
Notation "'SOME' X ← A 'IN' B" :=

(match A with Some X ⇒ B | None ⇒ None end)

(at level 200, X name, A at level 100, B at level 200) : option_monad_scope

We then redefine the relation as a Coq function using this notation:

Definition 5.3.4 (Functional semantics of internal BTL instructions). The functional variant is
implemented as a fixpoint (having the same signature as in Definition 5.3.2):
Fixpoint iblock_istep_run G sp ib rs m: option outcome :=

match ib with

| BF fin _ ⇒
Some {| _rs := rs; _m := m; _fin := Some fin |}

(* basic instructions *)

| Bnop _ ⇒
Some {| _rs := rs; _m := m; _fin := None |}

| Bop op args res _ ⇒
SOME v ← eval_operation G sp op rs##args m IN

Some {| _rs := rs#res ← v; _m := m; _fin := None |}

| Bload TRAP chunk addr args dst _ ⇒
SOME a ← eval_addressing G sp addr rs##args IN

SOME v ← Mem.loadv chunk m a IN

Some {| _rs := rs#dst ← v; _m := m; _fin := None |}

| Bload NOTRAP chunk addr args dst _ ⇒
match eval_addressing G sp addr rs##args with

| Some a ⇒
match Mem.loadv chunk m a with

| Some v ⇒ Some {| _rs := rs#dst ← v; _m := m; _fin := None |}

| None ⇒
Some {| _rs := rs#dst ← Vundef; _m := m; _fin := None |}

end

| None ⇒
Some {| _rs := rs#dst ← Vundef; _m := m; _fin := None |}

5.3 operational semantics 69

end

| Bstore chunk addr args src _ ⇒
SOME a ← eval_addressing G sp addr rs##args IN

SOME m' ← Mem.storev chunk m a rs#src IN

Some {| _rs := rs; _m := m'; _fin := None |}

(* composed instructions *)

| Bseq b1 b2 ⇒
SOME out1 ← iblock_istep_run G sp b1 rs m IN

match out1.(_fin) with

| None ⇒ iblock_istep_run G sp b2 out1.(_rs) out1.(_m)

(* stop execution on the 1st final instruction *)

| _ ⇒ Some out1

end

| Bcond cond args ifso ifnot _ ⇒
SOME b ← eval_condition cond rs##args m IN

iblock_istep_run G sp (if b then ifso else ifnot) rs m

end

The functional Definition 5.3.4 returns None to represent every case where Relation 5.3.2 does not
hold. This is proved by Lemma 5.3.1 (iblock_istep_run_equiv).

Lemma 5.3.1 (Proof that Relation 5.3.2 is a partial function [�]).

Lemma iblock_istep_run_equiv G sp rs m ib rs' m' ofin:

iblock_istep G sp rs m ib rs' m' ofin ↔
iblock_istep_run G sp ib rs m = Some {| _rs :=rs'; _m :=m'; _fin :=ofin |}

Proof. Trivial induction on ib, in both directions.

The semantics for final instructions is also defined as a transition relation, but in a slightly more
complex way since this time, we go from an initial (rs,m) pair to a final state: G ` (rs,m)

e→ S.
Letter e over the transition relation denotes the emitted trace (i.e. observable event) from some final
instructions (e.g. built-ins). When an instruction does not produce any observable event, we note it
with an ε.

Definition 5.3.5 (Relational semantics of final BTL instructions). Since final instructions include
calls to other functions, the relation must take into account the call stack (i.e. the list of stack frames
#»
Σ), and the current function f.

Inductive final_step G
#»
Σ f sp rs m: final → trace → state → Prop :=

| exec_Bgoto pc:

final_step G
#»
Σ f sp rs m (Bgoto pc) ε (S

#»
Σ f sp pc rs m)

| exec_Breturn or stk m':

sp = (Vptr stk Ptrofs.zero) →
Mem.free m stk 0 f.(fn_stacksize) = Some m' →
final_step G

#»
Σ f sp rs m (Breturn or) ε (R

#»
Σ (regmap_optget or Vundef rs) m')

| exec_Bcall sig ros args res pc' fd:

find_function ros rs = Some fd →
funsig fd = sig →
final_step G

#»
Σ f sp rs m (Bcall sig ros args res pc')

ε (C (Σ(res, f, sp, pc', rs) ::
#»
Σ) fd rs##args m)

| exec_Btailcall sig ros args stk m' fd:

find_function ros rs = Some fd →
funsig fd = sig →
sp = (Vptr stk Ptrofs.zero) →
Mem.free m stk 0 f.(fn_stacksize) = Some m' →
final_step G

#»
Σ f sp rs m (Btailcall sig ros args) ε (C

#»
Σ fd rs##args m')

| exec_Bbuiltin ef args res pc' vargs e vres m':

eval_builtin_args G (λ r ⇒rs#r) sp m args vargs →
external_call ef G vargs m e vres m' →
final_step G

#»
Σ f sp rs m (Bbuiltin ef args res pc')

https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL.html#iblock_istep_run_equiv

5.3 operational semantics 70

e (S
#»
Σ f sp pc' (regmap_setres res vres rs) m')

| exec_Bjumptable arg tbl n pc':

rs#arg = Vint n →
list_nth_z tbl (Int.unsigned n) = Some pc' →
final_step G

#»
Σ f sp rs m (Bjumptable arg tbl) ε (S

#»
Σ f sp pc' rs m)

Here also, the relation is only partial, and some final instructions have a defined semantics only
when their hypotheses are satisfied. In the case of a return instruction (leading to a return state),
the stack pointer must be a pointer with offset zero, and the callee’s stack freed. Calls and tail calls
are defined only if their target function exists, and lead to a call state. For calls, a new stack frame is
allocated in the call stack; and for tail calls, the hypotheses are similar as those of the return case. The
semantics for built-ins is the only one emitting an observable trace. There are also two hypotheses
about the arguments’ evaluation (they must evaluate correctly to values), and the external call itself
(which instantiates the relation between the input and output memories). The execution of built-ins
leads to a normal state. Finally, both gotos and jump tables end in a normal state, but while the
former’s rule makes no assumptions, the latter’s rule requires a valid argument and an existing
destination address in the table.

The whole blockstep execution is then defined as a conjunction between Relations 5.3.2 and 5.3.5,
where the former must end with a final instruction (handled by the latter):

Definition 5.3.6 (Blockstep execution of one iblock). Given an initial global environment G, call
stack #»

Σ , BTL function f, stack pointer sp, register set and memory state rs and m (respectively), an
iblock ib, a trace e, and a final (output) state s, we have:

Definition iblock_step G
#»
Σ f sp rs m ib e s: Prop :=

∃ rs' m' (fin: final), iblock_istep G
#»
Σ rs m ib rs' m' (Some fin) ∧

final_step G
#»
Σ f sp rs' m' fin e s

By construction, such a blockstep ends just after the RTL style small-step of a final instruction, due
to the final_step requirement.

The execution property of Definition 5.3.6 is parametrized by the output state, because we need
this information to declare the transitions between BTL states. Those are presented as an inductive
predicate split in four cases:

Definition 5.3.7 (Step transition predicate to integrate the BTL semantics in Chamois-CompCert).
Lastly, we obtain the complete state relation G ` S

e→ S ′ between an initial state S to a final one S ′

with a possible trace e.

Inductive step G: state → trace → state → Prop :=

| exec_iblock
#»
Σ ib f sp pc rs m e s

(PC: (fn_code f)!pc = Some ib)

(STEP: iblock_step G
#»
Σ f sp rs m ib.(entry) e s)

:step G (S
#»
Σ f sp pc rs m) e s

| exec_function_internal
#»
Σ f args m m' stk

(ALLOC: Mem.alloc m 0 f.(fn_stacksize) = (m', stk))

:step G (C
#»
Σ (Internal f) args m)

ε (S
#»
Σ f (Vptr stk Ptrofs.zero) f.(fn_entrypoint)

(init_regs args f.(fn_params)) m')

| exec_function_external
#»
Σ ef args res e m m'

(EXTCALL: external_call ef G args m e res m')

:step G (C
#»
Σ (External ef) args m) e (R

#»
Σ res m')

| exec_return
#»
Σ res f sp pc rs vres m

:step G (R (Σ(res, f, sp, pc, rs) ::
#»
Σ) vres m)

ε (S
#»
Σ f sp pc (rs#res ←vres) m)

The above code still uses the “exclamation point” notation for map accesses.

The execution of a BTL iblock requires a valid location in the code through the “PC” hypothesis, and
starts from a normal state. Depending on the final instruction, the transition will end up in an output

5.3 operational semantics 71

state given by Property 5.3.6. The exec_iblock rule being only applicable from normal states, the step
predicate of Definition 5.3.7 also defines three more transitions: (i) exec_function_internal goes
from a call state to a normal state without emitting a trace, but assuming a correct stack allocation;
(ii) exec_function_external handles terminating calls, that go from a call state to a return state while
emitting an observable trace; and (iii) exec_return simply comes back to a normal state from a return
state, by popping off the callee and setting the result.

The execution of a whole program is described as sequences of transitions from an initial state (P,C)

to a final state (R, r). An initial state is a call state C corresponding to the invocation of the “main”
function of the program P without arguments and with an empty call stack. A final state is a return
state R with an empty call stack and a return value r of type int. Each transition is thus a blockstep
(i.e. big-step) following Definition 5.3.7.

6
SYMBOL IC S IMULAT ION THEORY†

I formalize in this chapter the theory of the symbolic simulation framework modulo invariants. In
order to facilitate the proof decomposition, the theory reasons on a high-level representation of
symbolic states, and the SE is defined without hash-consing. I explain in Chapter 7 how we refine
this theory in a concrete, efficient implementation.

Our main objective here is to construct a simulation predicate between (the source and target)
BTL blocks implied by the implementation, and implying the semantic simulation between BTL
programs (actually, the forward simulation of the source program by the transformed one). I start by
presenting this goal in Section 6.1 as a blockstep simulation diagram encompassing the SE predicate of
simulation; it gives an overview of the proof scheme, and sketches a specification of that simulation
predicate. The remaining parts of the chapter gradually introduce the necessary notions to build the
latter predicate: Section 6.2 defines the syntax for symbolic values and invariants. Subsequently, their
semantics in terms of concrete values is formalized in Section 6.3. The symbolic semantics of execution
for blocks over symbolic states is presented in Section 6.4; and we show how to apply invariants to
establish the final simulation predicate in Section 6.5. Lastly, Section 6.6 gives additional theorems
that complete the initial proof diagram of Section 6.1.

6.1 a blockstep forward simulation pass

Our symbolic simulation test over BTL programs enables formally proving a generic pass parametri-
zed by an oracle. The oracle is declared as an OCaml function expecting as argument a source BTL
function fbtl (as defined in Figure 5.1), and returning a triplet (cfg,finfo, gm) where cfg is the target
CFG, finfo is the shadow field for functions, and gm is the gluemap—see Definition 6.2.5—filled
with invariants. When the checker validates the oracle’s results on all the functions of a source BTL
program, the pass returns the target BTL program. Otherwise, the pass fails. Moreover, our generic
pass is also configured with a type indicating the set of normalization rules—type R below—that
will be available during SE (see §7.6). In practice, the oracle and the set of rules are encapsulated in
a Coq module type:

Module Type BTL_BlockSimulationConfig

(** External oracle *)

Parameter btl_optim_oracle: fbtl → cfg * finfo * gm
(** Set of normalization rules for SE *)

Parameter btl_rrules: unit → R
End BTL_BlockSimulationConfig

S1 S ′
1

S2 S ′
2

∼gm

e e

∼gm

Figure 6.1: Lock-Step
Simu.

The blockstep simulation pass is thus a functor that we prove correct for
any instance of the above type:
Module BTL_BlockSimulation (B: BTL_BlockSimulationConfig). It is formally
proven to perform a lock-step forward simulation, as pictured in Figure 6.11:
for any blockstep on source concrete states S1 →e S2 (emitting a possible
observational event e), for any target state S ′

1 related to S1 by the gluemap,
relation written S1 ∼gm S ′

1, there exists a blockstep on target concrete states
S ′
1 →e S ′

2 such that S2 ∼gm S ′
2.

Defining the “∼gm” relation is not completely straightforward because we
need to express that the source call stack is simulated by the target call stack through the gluemap
of each caller function. This is necessary even if the analysis and the transformation are performed
separately for each function: a simulation invariant on stack frames is needed to establish that the

1This diagram follows the usual convention: solid lines are hypotheses of the theorem, dashed lines are conclusions. It
resembles to the lock-step diagram on the top left of Figure 3.2, except that horizontal matching lines are specified to be
“modulo gluemap”.

72

6.1 a blockstep forward simulation pass 73

invariant is still true when returning from a function call. The complete relation is formalized in
Definition 6.1.3 below.

6.1.1 Simulation of Concrete BTL States Induced by Symbolic Simulation

First, we define a match_function relation between a source BTL function f and a target one f'

expressing that f' is a symbolic simulation of f.

Definition 6.1.1 (Specification to verify between the source and target BTL functions).

Record match_function (f f': fbtl) : Prop := {

preserv_fnsig: fn_sig f = fn_sig f';

preserv_fnparams: fn_params f = fn_params f';

preserv_fnstacksize: fn_stacksize f = fn_stacksize f';

preserv_entrypoint: fn_entrypoint f = fn_entrypoint f';

trivial_histinv_entrypoint:

only_liveness (history (f'.(fn_gm) (fn_entrypoint f)));

trivial_glueinv_entrypoint:

only_liveness (glue (f'.(fn_gm) (fn_entrypoint f)));

match_sexec_ok: ∀ pc ib, (fn_code f)!pc = Some ib →
∃ ib', (fn_code f')!pc = Some ib' ∧

instantiate_context match_sexec_si

f'.(fn_gm) (entry ib) (entry ib') pc;

}

In other words, the signatures, the functions’ parameters, the stack sizes, and the CFG entry points
are identical (from the four first conditions). The gluing and history invariants at the entry point
only contain liveness assignments: I explain why, and formalize the corresponding only_liveness

property in §6.3.3.4. And, as expressed by condition match_sexec_ok, for any source block ib at label
pc, there is a target block ib' at label pc such that the simulation predicate—introduced in §6.5.3—is
satisfied. Notice that the latter is itself given to an instantiate_context function (Definition 6.4.4)
that universally quantifies the simulation context.

Second, the match_stackframes predicate relates a source and a target stack frame under a global
environment G (recall Definition 5.3.1 of BTL stack frames).

Definition 6.1.2 (Specification of the matching relation between stack frames).

Inductive match_stackframes G: Σ → Σ → Prop :=

| match_stackframe_intro sp res f pc rs rs' f'

(TRANSF: match_function f f')

(MATCHI: ∀ v m, match_invs (mk_iblockctx(G, sp, (rs#res ←v), m))

(f'.(fn_gm) pc) (rs'#res ← v))

: match_stackframes G (Σ res f sp pc rs) (Σ res f' sp pc rs')

Hence, match_stackframes describes how the source stack frame is simulated by a target stack frame:
the target caller is symbolic simulation of the source one (condition TRANSF); and, condition MATCHI, for
any returned value v assigned to register res, then the source register state “rs#res ← v” is mapped
to the target register state “rs'#res ← v” through the invariants at pc.

Above, the match_invs predicate characterizes—under the initial execution context—the semantics
of our invariants (see Definition 6.3.11). The different notions of context, and in particular the block
level context built by function mk_iblockctx are explained in §6.3.1; the semantics of invariants under
such a context is specified in §6.3.3.3.

Third, the relation between a source and a target concrete state is given by the match_states

predicate below, for each type of state of Definition 5.3.1.

Definition 6.1.3 (Specification of the matching relation “∼gm” between concrete states).

Inductive match_states G: S → S → Prop :=

| match_states_intro
#»
Σ f pc sp rs rs' m

#»
Σ ′ f'

(TRANSF: match_function f f')

6.1 a blockstep forward simulation pass 74

stk stk stk ′ stk ′ stk ′

f f f ′ f ′ f ′

S1

(1) Correctness of
Symbolic Exec.

over ibs

S2

Isiss Isist

ε

(0) Symbolic Simu.
of ibs by ibt

(Figure 6.3)

ssH �s sss ssG �t sst

S ′
1

(4) Exactness of
Symbolic Exec.

over ibt

S ′
2

SG ≡t S ′
G

(2) Correctness of
Symbolic Exec.
over G & H

(3)

(3): Correctness of the modulo liveness relation

e

e

e

ee
≡t∼gm

ibs

ciG

ciH

G

H

ibt

Figure 6.2: Diagrammatic Proof of Blockstep Simulation.

(MATCHI: match_invs (mk_iblockctx(G, sp, rs, m)) (f'.(fn_gm) pc) rs')

(STACKS: list_forall2 (match_stackframes G)
#»
Σ

#»
Σ ′)

: match_states G (S
#»
Σ f sp pc rs m) (S

#»
Σ ′ f' sp pc rs' m)

| match_states_call
#»
Σ

#»
Σ ′ f f' args m

(STACKS: list_forall2 (match_stackframes G)
#»
Σ

#»
Σ ′)

(TRANSF: match_fundef f f')

: match_states G (C
#»
Σ f args m) (C

#»
Σ ′ f' args m)

| match_states_return
#»
Σ

#»
Σ ′ v m

(STACKS: list_forall2 (match_stackframes G)
#»
Σ

#»
Σ ′)

: match_states G (R
#»
Σ v m) (R

#»
Σ ′ v m)

Condition STACKS expresses that each stackframe of #»
Σ is simulated by the corresponding one in #»

Σ ′

(thanks to the list_forall2 predicate from Coqlib). The MATCHI condition of the match_states_intro

case expresses that when the execution has reached label pc, source register state rs is mapped to
target register state rs' through the invariants at pc. Note that because our gluing invariants cannot
transform the memory but only the registers, then the target and the source memories are identical
(both written m). For calls, the match_fundef hypothesis states that only internal functions are subject
to change under the match_function relation; external calls must remain identical.

6.1.2 Sketch of the Blockstep Simulation Proof

In Figure 6.1, the “∼gm” relation applies invariants on concrete states. The symbolic simulation test
applies them to symbolic states instead. In order to prove the diagram of Figure 6.1 for normal
blocksteps, we thus need to transform the relations over symbolic states resulting from the SE
into relations over concrete states. Figure 6.2 sketches this proof: the expected diagram is built
by composing the diagram of the simulation predicate (that I detail in §6.5.1, Figure 6.3) with 4
other subdiagrams, each of them being an intermediate lemma. In the figure, a thick arrow ss →e S

means that—in the current block execution context—the symbolic state ss evaluates into a concrete
state matching S while emitting the observable event e. Similarly, a thick arrow sis → S means
that (still under the block execution context) symbolic internal state sis evaluates into a concrete
state matching S. In order to evaluate any symbolic state, we need to consider a well-chosen block
execution context, and in particular a well-chosen call stack. This information is given at the top
in Figure 6.2: the context switch from the source context to the target context is performed while
applying G to (symbolic or concrete) states2.

Here is the sketch of the proof. Under the assumptions that S1 →e S2 is a normal blockstep and
that proposition S1 ∼gm S ′

1 holds, we first deduce (from the TRANSF condition of Definitions 6.1.2
& 6.1.3) that the symbolic simulation test represented at diagram (0) succeeds. The first lemma

2Below, “source” and “target” modes refer to the variable domain used in the matching relation. See §6.4.

6.2 syntax of symbolic values and invariants 75

(6.4.11)—the correctness of symbolic execution in source mode, at diagram (1)—states that given
a valid blockstep S1 →e S2, there exists an initial source symbolic internal state Isiss and a final
symbolic state sss, both evaluating to concrete states S1 and S2, respectively. Then, a second lemma
(6.6.1)—the correctness of invariants application on the source, at diagram (2)—establishes that
symbolic state ssG evaluates (while emitting observational event e) to a concrete state SG such
that S2 ∼gm SG. We then mimic the comparison ssG �t sst on concrete states with a third lemma
(6.6.2)—at diagram (3)—which proves the correctness of the modulo liveness relation. This gives a
concrete state S ′

G such that symbolic state sst →e S ′
G and SG ≡t S

′
G: both concrete states coincide on

live registers of the target program (see the variant of “≡E” for states [�]). A last (and fourth) lemma
(6.4.12)—the exactness of symbolic execution in target mode, at diagram (4)—establishes that there
exists a blockstep S ′

1 →e S ′
2 such that S ′

2 ≡t S
′
G. Finally, we prove S2 ∼gm S ′

2 from S2 ∼gm SG ≡t S
′
2.

I describe the proof in more details in §6.6, after the introduction of the simulation predicate
corresponding to diagram (0) in Figure 6.2.

6.2 syntax of symbolic values and invariants

The preliminary step to formalize invariants is to define symbolic values analogously3 as RTLpath,
with a few improvements (most of the RTLpath limitations we overcome are not due to changes
in the type of symbolic values but rather to the invariants and the—more general—representation
of symbolic states). We then propose two possible representations for invariants: an abstract oneIt is common to

separate types for
theory and

implementation:
we often want
“naive” (but

intuitive) theory,
and “clever”,

efficient
implementation.

for simplifying Coq proofs, and another one more adapted for concrete computations (both in the
oracles and in the checker).

6.2.1 BTL Symbolic Values

The aim is to represent the value of a register after a sequence of concrete BTL assignments. In RTLpath,
there were two representations of symbolic values. An abstract representation for simulation theory;
and a refined representation for the implementation. In use, this duplication of representations
proved to be cumbersome and not very useful.

We have chosen here to simplify the approach by using directly in the simulation theory, the
representation of the symbolic values used by the implementation. This choice has of course a defect:
it exposes constructions which are only useful in the implementation and not in the theory. But this
defect seems less annoying in use than the duplication of representation à la RTLpath.

These useless constructions in the theory are: the hash identifiers used for hash-consing and the
Sfoldr constructor for rewriting affine forms (introduced in §7.6.2).

Definition 6.2.1 (BTL mutually inductive symbolic values [�]). Our theorywill always instantiate the
hash-consing identifiers (“hid” below) with a special value unknown_hid (see §7.2.4 for an extended
explanation about the hash-consing mechanism). We will not use Sfoldr. The Sop constructor does
not include the memory (operations do not modify it, and it is kept in a global context, see §6.3.1)4.

sval ::= Sinput(reg, hid) | Sop(op, list_sval, hid)
| Sfoldr(op, list_sval, sval, hid) | Sload(smem, trap, chk, addr , list_sval, hid)

with list_sval ::= Snil(hid) | Scons(sval, list_sval, hid)
with smem ::= Sinit(hid) | Sstore(smem, chk, addr , list_sval, sval, hid)

To build the symbolic values of the theory, I use “fake constructors” that set hid fields to unknown_hid. InSection 7.2.4.3
describes how we

project fake
symbolic values to
normal ones with

hash-consing.

fact, it is also interesting in the implementation, to simplify the proofs on the rewrites of hash-consed terms.
From here, I note those fake constructors using the same names as for symbolic values with an “f” prefix (e.g.
fSinput, fSop, ...).

In our Coq code, we also define a mutually inductive scheme that is useful for proofs, and a
decidable equality over symbolic values.

3Symbolic instructions are mostly close to concrete ones (they mimic BTL instructions, which are themselves semantically
close to RTL ones).

4In RTLpath, the memory was removed from the Sop only in the refined representation—it simplifies in fact to remove it
from the theory.

https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEtheory.html#eqlive_states
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_Invariants.html#sval

6.2 syntax of symbolic values and invariants 76

6.2.2 Representations of Invariants

As introduced in §5.1, our invariants themselves represent preconditioned parallel assignments of
symbolic values. However, Example 2.2.1 illustrates on block (B2) that such parallel assignments maySee Example 6.2.1

for a comparison
of both

representations.

contain (exponential) term duplications w.r.t. a sequential representation. Because invariants are
syntactically provided by the oracle under validation, we design a compact, simpler syntax, which
represents them as sequences of assignments. The parallel assignments are never really built by
the simulation test; it performs instead a hash-consed SE of the compact invariants. Nevertheless,
having a parallel representation facilitates reasoning in the formal proof.

6.2.2.1 Parallel Form

We name this abstract representation “finite parallel assignment of symbolic values (FPASV)”:

Definition 6.2.2 (Syntax of abstract invariants [�]). Such invariants relate a finite set of “output”
variables in function of “input” variables and an “input” memory (here, “input” means “at the
block entry”) through fpa_reg; they also express that symbolic values in fpa_ok do not trap (e.g. as
with blocks’ preconditions of Example 2.2.1).

fpasv , { fpa_ok :
»sval; fpa_reg :> reg 7→ sval option;

fpa_wf : ∀r sv, fpa_reg!r = Some sv =⇒ sv 6= Sinput =⇒ sv ∈ fpa_ok }

Where the “:>” notation indicates the default field to coerce with the record’s type.

The wellformedness condition fpa_wf expresses that if a value is defined in the invariant, and if
it is not a trivial Sinput, then it is in fpa_ok, and thus does not trap.
To compare FPASVs, we define the equality relation:

fpa_eq si1 si2 , ∀r, r ∈ si1.(fpa_ok) ⇐⇒ r ∈ si2.(fpa_ok) ∧
si1.(fpa_reg) = si2.(fpa_reg)

6.2.2.2 Compact Form

The sequential, concrete representation is slightly more complex, since we want to distinguish
registers with an “input” prefix, indicating that the input (at the block entry) value is considered
instead of the current (i.e. last) one within the assignment sequence. A sequential invariant is thus
either a register, prefixed with input or last, or an operation involving current or input registers, or a
load from the current memory.

Definition 6.2.3 (Invariant registers, operations and values [�]). The type for registers represents
this prefix with a Boolean:

Record ireg := { force_input: bool; regof:> reg }

(** Constructors of both register types *)

Definition input (r:reg) := {| force_input := true; regof := r |}

Definition last (r:reg) := {| force_input := false; regof := r |}

Operations supported by invariants are first defined without arguments:

root_op ::= Rop(op) | Rload(trap, chk, addr)

We call this abstraction “root” symbolic values, as it encodes the essential, generic informationThe notion of
“root” values is
inspired by the

thesis of Six [133,
§7.3.3]; here, we

extend its usage to
invariant’s values.

about basic (i.e. non-branching) instructions on registers. A root value is either an operation or
a load (whether concrete or symbolic). Root values are intended to be completed with symbolic
arguments and memory, allowing to directly convert them to (“fake”) symbolic values by using
smart constructors:

https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_Invariants.html#fpasv
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_Invariants.html#ireg

6.3 concrete semantics of symbolic values and invariants 77

Definition root_apply (o : root_op) (args : list_sval) (sm : smem) : sval :=

match o with

| Rop op ⇒ fSop op args

| Rload trap chunk addr ⇒ fSload sm trap chunk addr args

end

And to specify a type of invariant values relying on ireg (instead of symbolic arguments), able to
encode the distinction between input and current values:

ival ::= Ireg(ireg) | Iop(root_op, # »ireg)

The compact representation is named “compact sequence of assignments of symbolic values
(CSASV)”:

Definition 6.2.4 (Syntax of sequential invariants [�]). First, aseq is the sequence itself, and second,
we export a finite set output that distinguishes live registers. Lazily, the simulation test considers that
the set of registers r such that “r = fSinput(r)” is those not defined in aseq (i.e. it suffices to include
them in output). In §6.3.12, we characterize CSASVs which only constrain liveness with a property
being true when the aseq list is empty; hence, oracles must not set trivial “input” assignments
(e.g. like “r = fSinput(r)”) in aseq, because it would lead the verifier to reject the invariant while
checking this “only liveness” constraint.

csasv , {aseq :
»

(reg ∗ ival); output : regset }

Example 6.2.1 (Link between both invariants’ representations). The two following compact invari-
ants (CSASVs) “([a := y[5]; z := a + input x; x := a + input z], {x, z, t})” and “([z := y[5]; x

:= z + input z; z := z + input x], {x, z, t})” both represent parallel assignment (FPASV) “x :=

y[5] + z ‖ z := y[5] + x ‖ t := t” with precondition “OK(y[5])”.

The gm field of BTL functions (Figure 5.1) is then a map from program points pc to invariant
records with a CSASV for gluing invariants (GIs) and another one for history invariants (HIs).

Definition 6.2.5 (Symbolic invariant mapping).

Record invariants := {

history: csasv; (* history (on the source) *)

glue:> csasv (* gluing (relating the source and the target) *)

}

Definition gluemap := pc 7→ invariants. (* symbolic invariant map *)

6.3 concrete semantics of symbolic values and invariants

Symbolic values have an evaluation semantics that corresponds to concrete CompCert values,
and which is dependent on the (symbolic) execution context. Abstract invariants (i.e. FPASVs)
are dictionaries from registers to symbolic values, and are contextually evaluated using the same
mechanism. On the other hand, compact invariants (i.e. CSASVs) restrict the set of possible operations
to encode (with the ival type). Defining their contextual evaluation semantics thus implies a prior
conversion into their abstract representation.

I present the contextual evaluation of symbolic values in §6.3.1, and the semantic relation for
abstract invariants w.r.t. concrete register sets in §6.3.2. The translation of concrete to abstract
invariants (i.e. to trees of symbolic values), and especially their concrete semantics is detailed in §6.3.3.

6.3.1 Execution Context & Evaluation

To alleviate the definitions of our framework, we parametrize the semantics of our SE by the context
of execution of an iblock, encapsulating the common parameters:

https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_Invariants.html#csasv

6.3 concrete semantics of symbolic values and invariants 78

Definition 6.3.1 (Execution context at block level [�]).

iblockctx , { cG : BTL.genv; csp : val; crs0 : regset; cm0 : mem }

It contains the global environment cG, the stack pointer of the current function csp (of type val for
CompCert values, defined in §3.3.1), and the initial states for registers and memory crs0 and cm0,
respectively. We note “mk_iblockctx(G, sp, rs,m)” the function that builds a record of this type.

This context helps us to define symbolic states (see §6.4.3), and to instantiate the semantics of
symbolic values (below); for the semantics of final symbolic values (see §6.4.1.1), we will also need
the current BTL function (e.g. to allocate/deallocate on the stack). This led us to encapsulate the
block context in order to specify it with the associated function:

Definition 6.3.2 (Encapsulated execution context with the BTL function [�]).

fct_iblockctx , { cf : fbtl; cc :> iblockctx }

Non final symbolic values are contextually evaluated as follows:

Definition 6.3.3 (Evaluation of symbolic values [�]). Our symbolic values are evaluated with a
partial function “σsv : iblockctx → sval → val option”. It is also defined for list_sval and smem types,
again in a mutually inductive way: the list signature σlsv returns a “ # »

val option”, and the memory
signature σsm a “mem option”, with mem being the internal CompCert type used to represent the
memory (cf. §3.3.3).

For instance, the definition of σsv to evaluate input symbolic values looks like:Here, I use the “_”
wildcard to avoid
noting the hid,

since the
definition ignores

hash codes.

σsv(ctx, Sinput(r, _)) , Some(ctx.(crs0)#r)

Of course, the evaluation of symbolic values relying on an existing type—such as operations or
loads—is close to their corresponding BTL semantics, and reuses the existing CompCert functions.
As another example, with b.cC denoting the concrete BTL evaluation semantics (e.g. for operations,
it would be the “eval_operation” function visible in Definition 5.3.2) under a context C, operations
evaluate in the following way5:

σsv(ctx, Sop(op, lsv, _)) , SOME args← σlsv(ctx, lsv) IN b(op, args)cctx

remark on the memory dependency of symbolic operations In Definition 6.2.1, I explained
that unlike RTLpath, arithmetic operations (in fact it also applies to unsigned conditions) in BTL
symbolic values do not need to depend on the current memory of the block. This improvement
is possible thanks to Lemma 6.3.1 below, stating that their semantics only depend on the initial
memory of the block.

Lemma 6.3.1 (Symbolic memory preserves valid pointers [�]). The Mem.valid_pointer property returns
true if the memory address at (b,ofs) has at least the “non-empty” permission (cf. §3.3.3, knowing that
freeable, writable, and readable imply non-empty6) in (cm0 ctx), and false if it is empty.

Hence, the lemma states that the aforementioned pointer validity w.r.t. an initial memory of a given context
still holds after evaluating a new symbolic memory under the same context (assuming the evaluation succeeds):

Lemma valid_pointer_preserv ctx sm:

∀ m b ofs, σsm(ctx, sm) = Some m →
Mem.valid_pointer (cm0 ctx) b ofs = Mem.valid_pointer m b ofs

Proof. By using the fact that memory stores preserve valid pointers.

5We reuse the option monad notation introduced by Definition 5.3.3.
6For more information about this, please refer to the documentation at [�].

https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEtheory.html#iblock_common_context
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEtheory.html#iblock_function_context
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEtheory.html#eval_sval
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEtheory.html#valid_pointer_preserv
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.common.Memory.html

6.3 concrete semantics of symbolic values and invariants 79

6.3.2 Relation Between Abstract Invariants and Concrete Registers

We first define a matching relation between a symbolic register state—simply defined as a function
“reg → sval option”—and a concrete one, under a block level execution context:

Definition 6.3.4 (Matching relation between a symbolic and a concrete regset [�]). The symbolic
regset sreg and concrete regset rs match if and only if:

match_sreg (ctx : iblockctx) (sreg : reg → sval option) (rs : regset) ,
∀r sv, sreg r = Some sv =⇒ σsv(ctx, sv) = Some(rs#r)

Second, we write a validity predicate on FPASVs (still under the block level context):

Definition 6.3.5 (“Ok” predicate for the trapping values of a FPASV [�]).

si_ok ctx si , ∀sv, sv ∈ si.(fpa_ok) =⇒ σsv(ctx, sv) 6= None

Lastly, the combination of Predicates 6.3.4 and 6.3.5 forms the relation:

Definition 6.3.6 (Matching relation between a FPASV and a concrete regset [�]).

match_si ctx si rs , si_ok ctx si ∧ match_sreg ctx si rs

When the predicate’s relation is true, it means that the trapping instructions of si are evaluating
correctly and that they match the concrete regset.

This relation serves us to define the semantics of concrete invariants in §6.3.3.3.

6.3.3 Linking Symbolic Values and Invariants

Wenowdefine functions to access, set and substitute symbolic valueswithin invariants, and especially
convert sequential invariants into their abstract (i.e. tree) representation with symbolic values. The
semantics of concrete invariants, based on this conversion, is formalized subsequently, along with
some basic and syntactic properties needed to perform the symbolic test.

6.3.3.1 Substitutions in Concrete Invariants

Compact invariants are defined as a sequence of pairs where the first element is a register, and the
second one a value of type ival (from Definition 6.2.3). This dedicated type is practical for oracles to
generate, but we still need to convert ival values to symbolic ones in order to give them a semantics.

We start by considering ireg, the simplest case: it should either be translated as an input symbolic
value; or as a more complex symbolic term taking into account previous assignments in the invariant
sequence, according to its force_input field’s value.

Definition 6.3.7 (Invariant registers substitution). For an ireg, and given the substitution function
to apply (I explain in §6.3.3.2 how to instantiate the latter), we have:
Definition ir_subst (subst: reg → sval) (ir: ireg): sval :=

if ir.(force_input) then fSinput ir else subst ir

From here, we can easily extend the process to list of invariant registers (into list_sval):
Fixpoint lsvof (subst: reg → sval) (l: list ireg): list_sval :=

match l with

| nil ⇒ fSnil

| ir::l ⇒ fScons (ir_subst subst ir) (lsvof subst l)

end

These constructs are immediately reused to handle the invariant operation type:

Definition 6.3.8 (Invariant operations substitution). Given an invariant operation of type root_op,
the translation to a (non hash-consed) symbolic value is simply obtained by first substituting the
arguments and second converting it with the root_apply function of Definition 6.2.3.

https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEtheory.html#match_sreg
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEtheory.html#si_ok
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEtheory.html#match_si

6.3 concrete semantics of symbolic values and invariants 80

Definition rop_subst (subst: reg → sval) (rop: root_op) (lr: list ireg): sval :=

let lsv := lsvof subst lr in

root_apply rop (lsvof subst lr) fSinit

Finally, the conversion for an ival is simply:

Definition 6.3.9 (Invariant values substitution).

Definition iv_subst (subst: reg → sval) (iv: ival): sval :=

match iv with

| Ireg ir ⇒ ir_subst subst ir

| Iop rop args ⇒ rop_subst subst rop args

end

6.3.3.2 Coerce From Concrete to Abstract Invariants

Even if having both forms of invariants is interesting in practice, one would like to avoid proving
some properties twice by defining a coercion between them. It is this coercion that reduces the
semantic specification of compact invariants to the one of abstract invariants.For a formal

definition of this
conversion from

sequential to
parallel

invariants, please
refer to the online

Coq code.

The goal is to transform, exactly as shown in Example 6.2.1, a CSASV into its FPASV equivalent.
Firstly, we need a function to set a value inside a FPASV: to satisfy the wellformedness property
fpa_wf, the new symbolic value must be added to both the fpa_ok list and the fpa_reg map. This
results in a “si_set : reg→ sval→ fpasv→ fpasv” function [�].
Secondly, given a compact invariant csi, we decompose its conversion in two steps:

1. A naive accumulation “exec_seq :
»

(reg ∗ ival) → fpasv → fpasv” [�] from the sequence of
assignments to the new FPASV. The idea is to build the FPASV by accumulation, starting with an
empty FPASV. For each (r, iv) tuple of the sequential invariant, the function updates the value r

of the current FPASV (i.e. the accumulator) with the result of iv_subst on iv. The substitution
function given to iv_subst is an extension of the accumulator’s fpa_reg as a total function,
returning fSinput(r) for any undefined register r in the map.

2. A filtering step based on the csi.(output) set of live variables “build_alive : (subst : reg →
sval) → regset → (reg 7→ sval option)” [�]. In fact, step 1. took every assignment from the
csi.(aseq) list, but only those whose result register appears in the “output” set must be added
to fpa_reg. Hence, build_alive creates a new, filtered fpa_reg map from a total function of
the map built in the first step, and the “output” register set of the sequential invariant.

Definition 6.3.10 (Conversion from CSASV to FPASV [�]). Following the two steps from above,
we name siof the semantics of the compact representation as abstract symbolic invariants. Below,
we note “χ : (reg 7→ sval option) → reg → sval” the function that extends an abstract invariant’s
symbolic regset as a total function (with the behavior described in step 1. above).

Program Definition siof (csi: csasv): fpasv :=

let si := exec_seq csi.(aseq) si_empty in

{| fpa_ok := fpa_ok si;

fpa_reg := build_alive (χ si) csi.(outputs) |}

Discharging the proof’s obligation here is trivially done by using lemmas from the Coq PTree library
(used for the fpa_reg implementation) and list induction.

6.3.3.3 Concrete Semantics of Our Invariants

From a record of sequential invariants (Definition 6.2.5), we leverage the coercion of §6.3.3.2 to
reuse the matching relation of Definition 6.3.6 for each kind of invariant. The HI is supposed to
match the initial regset from the context (which corresponds to that of the source concrete BTL state),
while the GI is expected to match the final regset (the one of the target BTL state).

https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_Invariants.html#si_set
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_Invariants.html#exec_seq
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_Invariants.html#build_alive
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_Invariants.html#siof

6.3 concrete semantics of symbolic values and invariants 81

Definition 6.3.11 (Matching relation between both invariants and a concrete regset [�]).

match_invs (ctx : iblockctx) (csix : invariants) (rs : regset) ,

match_si ctx csix.(history) ctx.(crs0) ∧

match_si ctx csix.(glue) rs.

Recall the concrete state Relation 6.1.3: ctx is instantiated with the register set of the source state,
and rs with the one of the target (i.e. transformed) state.

6.3.3.4 Liveness and Freedom Properties

Before simulating block-by-block a BTL function transformed by an oracle, we need to ensure that
invariants at the CFG entry point do not constrain any register, except liveness (of the function
parameters). This is because in RTL and BTL semantics, registers except function parameters have an
undefined initial value. And in our intra-procedural verification, the value of parameters must be
considered as unknown. Technically, it means that entry invariants (both GIs & HIs) can only contain
live variables (in the output field of CSASVs) but the sequence of assignments must be empty (the
corresponding check is done just after returning from an oracle, see §7.5.4). More formally, entry
invariants must satisfy:

Definition 6.3.12 (“Only liveness” property [�]). We chose to write this definition on abstract
invariants to facilitate future generalizations, but the actual test implementation operates on the
compact form. In addition, such high-level characterization is easier to manipulate in the simulation
proof. Given a parallel invariant si, we pose:

only_liveness si , si.(fpa_ok) = [] ∧

∀r sv, si.(fpa_reg)!r = Some sv =⇒ sv = fSinput(r)

Considering the conversion from a CSASV, if the above property holds, nothing was added to
fpa_ok because the assignment sequence was empty; and variables from output were necessarily
mapped to input symbolic values (by definition of build_alive). We implemented the trivial checker
to validate this property and proved that if it succeeds, then the above definition holds.

Furthermore, in the presence of calls or built-ins, we also need to check that the applied invariant
(i.e. the output one, after the block’s SE) does not constrain the output register of the final instruction.
Indeed, in the concrete execution, the value of this register will surely be clobbered by the callee, so
we have to consider it as unknown. If the FPASV does not constrain a register r, we say it is free of r:

Definition 6.3.13 (Invariant freedom for a given register [�]). Let si be the abstract invariant; it is
free of register “r” if and only if:

sifree(si, r) , ∀sv, sv ∈ si.(fpa_ok) =⇒ svfree(sv, r) ∧

∀r ′ sv, si.(fpa_reg)!r ′ = Some sv =⇒
∀ hc, sv 6= Sinput(r ′, hc) =⇒ svfree(sv, r)

Incidentally, the constraint also applies to the memory, since the callee might modify it:Both freedom
definitions accept
constraints like

∀hc, r =

Sinput(r,hc)

in the invariant
because they are

viewed as the
trivial equation

r = r.

Definition 6.3.14 (Invariant freedom for the memory [�]). Likewise, the abstract invariant si is said
free from the memory if and only if:

sifreem(si) , ∀sv, sv ∈ si.(fpa_ok) =⇒ svfreem(sv)

Where svfree [�] (respectively svfreem [�]) is a recursive property over a symbolic value sv that
holds when sv does not depend on the given register (respectively the memory). Fortunately, simple
syntactic verifications on the compact invariant are sufficient to validate or not both properties: we
only have to ensure that the destination register of the call or built-in (or a memory dependent
operation) does not appear in the sequence of assignments. Of course, the register may be live (i.e. in
the “output” register set of the invariant). Here again, the defensive check must be performed on
both types of invariants. This is done before applying the output invariant on the final symbolic

https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEtheory.html#match_invs
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_Invariants.html#only_liveness
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_Invariants.html#sifree
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_Invariants.html#sifreem
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_Invariants.html#svfree
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_Invariants.html#svfreem

6.4 symbolic semantics of btl blocks 82

state—if the final instruction is a call or a built-in—by a syntactic checker ensuring that the invariant
is free from the memory and from the result register of the instruction.

The compatibility of a CSASV w.r.t. a call/built-in result register is defined by grouping the freedom
properties with a weaker only-live property concerning the result only (i.e. and not all registers as
in Definition 6.3.12).

Definition 6.3.15 (Clobbered register compatibility with compact invariant [�]). Observe that our
property coerces compact to abstract invariants with siof below:

clobbered_compat (csi : csasv) (res : reg) ,

sifree(siof(csi), res) ∧ sifreem(siof(csi)) ∧

∀sv, siof(csi)!res = Some sv =⇒ sv = fSinput(res)

This illustrates how switching between representations can be handy to formalize properties that
help writing proofs. Of course, neither clobbered_compat nor siof are executed (nor extracted)
during the compilation process, since the actual compatibility check operates directly on CSASVs.

6.4 symbolic semantics of btl blocks
(in relation to their concrete semantics)

Our theory of symbolic execution improves upon Six et al. [135]†’s with mainly two features. First,
liveness checking is optionally performed during symbolic execution. Indeed, we will see in §6.5
that the SE of the source block is performed without any liveness checking (similarly to [135]†),
while the SE of the target block raises an error as soon as an undefined register is read: with the few
additional checks given in §6.3.3.4, this suffices to validate the liveness information implicitly given
by invariants. In the following, we thus distinguish between the “source” and the “target” mode.
Only the latter involves liveness checking. Second, BTL SE supports arbitrary nested sequences of
“if-then-else” instead of superblocks only. This required both a more general representation of the
symbolic states generated by the SE and a kind of trace-partitioning within it.

We know sketch these ideas: §6.4.1 starts by introducing the symbolic syntax and semantics of
BTL final values, and the evaluation function for conditional branches. Then, the simulation context
instantiation is explained in §6.4.2, the syntax of symbolic states is provided in §6.4.3, and §6.4.4
details the execution semantics.

6.4.1 Prerequisite: Symbolic Representations for Final Instructions and Conditions

6.4.1.1 Syntax and Semantics for Final Symbolic Values

For BTL final instructions (of Figure 5.1), we define a separated symbolic type:

Definition 6.4.1 (Final symbolic values [�]). Their syntax mimics the BTL final type:

sfval ::= Sgoto(pcsucc) | Scall(sig, (sval | id), list_sval, regdst, pcsucc)

| Stailcall(sig, (sval | id), list_sval) | Sbuiltin(ef , # »svalbargs, regbdst, pcsucc)

| Sjumptable(svalarg,
»pcsucc) | Sreturn(ε | sval)

except that source registers are replaced by symbolic values.

The semantics for values of the sfval type [�] is very similar to the BTL final values’ semantics (of
Definition 5.3.5), except that it is parametrized by the function context of Definition 6.3.2:
Inductive sem_sfval (ctx: fct_iblockctx)

#»
Σ: sfval → regset → mem → trace → state → Prop

Moreover, when the final instruction to evaluate contains symbolic values (e.g. the optional re-
turn value of Sreturn; the arguments of a Scall, Stailcall, or Sbuiltin; and the index value
of a Sjumptable) then the semantics assumes they evaluate correctly. In the same fashion, the
find_function from Definition 5.3.5 is replaced by a symbolic equivalent, that either evaluates the
symbolic value containing the target function or searches for the identifier (according to the sum

https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_Invariants.html#clobbered_compat
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEtheory.html#sfval
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEtheory.html#sem_sfval

6.4 symbolic semantics of btl blocks 83

type (sval |id)) in the global environment of the execution context. Note that we had to define specific
evaluation functions for built-ins’ arguments and result registers since their type is an inductive def-
inition as briefly described in §5.2.2 (i.e. we have a symbolic evaluation property eval_builtin_sargs

semantically equivalent to the concrete eval_builtin_args from mainline CompCert).

6.4.1.2 Conditional Branches

Observe that conditions are not directly represented in symbolic values, since branching is implicitly
encoded by the structure of the binary decision tree formed during SE (see §6.4.3). Hence, we define
the evaluation of conditions apart from the σ function, as:

Definition 6.4.2 (Evaluating symbolic conditions).

Definition eval_scondition ctx (cond: condition) (lsv: list_sval): option bool :=

SOME args ← σlsv ctx lsv IN eval_condition cond args (cm0 ctx)

6.4.2 Instantiating Contexts

We saw in §6.3.1 that evaluation was operating under a context of execution for the block, itself
encapsulated into a larger context including the current function for the semantics of final symbolic
values. Following this principle, we instantiate the whole symbolic simulation under a context to
remember the global environments of both the source and target blocks:

Definition 6.4.3 (Simulation context [�]).

simuctx , { sG1 : BTL.genv; sG2 : BTL.genv;
sG_match : ∀s, find_symbol(sG1, s) = find_symbol(sG2, s);
ssp : val; srs0 : regset; sm0 : mem }

Here, the sG_match dependent property indicates that both environments have the same set of
symbols (i.e. identifiers).

The (refined) implementation of the simulation test (Chapter 7) thus implies the main simulation
predicate for any context; with the instantiate_context predicate visible in Definition 6.1.1 and
defined below:

Definition 6.4.4 (Instantiating the global context of simulation [�]).

instantiate_context (P : simuctx → gm → iblock → iblock → pc → Prop) (gm : gm)

(ib1 ib2 : iblock) (pc : pc) , ∀(ctx : simuctx), P ctx gm ib1 ib2 pc

In other words, the initial values of the various contextual elements (e.g. register set, memory,
etc.) do not matter, but are required to theoretically reason on the SE framework. When applying theSymbolic values’

evaluation and
states’

preconditions are
expected to be

preserved by the
context switch.

gluing invariant (more information is provided in §6.5.3), a context switch is performed from the
source context to the target one7. Both block level contexts are built from this simulation context,
using sG1 for the source global environment and sG2 for the target. In the following, we note Bctx1
and Bctx2 [�] the functions building those contexts from a simulation context.

6.4.3 Symbolic States

A symbolic state represents all possible blocksteps of a given BTL block. Formally, we define them
as binary decision trees: each branch of the tree represents one possible execution path of the block.

Definition 6.4.5 (Symbolic states syntax [�]). Type sstate is thus inductive on Scond, and has
two kinds of leaves: either “Sabort” as an error case (e.g. the concrete branch never reaches a
final instruction, or the liveness information is incorrect) or “Sfinal(sistate, sfval)” for final states.

7Such a switch is required to prove the overall block forward simulation of §6.1, as illustrated at the top of Figure 6.2.

https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEtheory.html#simu_proof_context
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEtheory.html#instantiate_context
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEtheory.html#bcctx1
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEtheory.html#sstate

6.4 symbolic semantics of btl blocks 84

In the latter, sistate—a symbolic internal state—represents the preconditioned parallel assignments
realized by the sequence of basic instructions of the branch, and sfval—a symbolic final value, from
Definition 6.4.1—represents the final instruction run by the block (where registers have been
substituted by their final symbolic values).

sstate ::= Sfinal(sistate, sfval) | Scond(cond, list_sval, sstateso, sstatenot) | Sabort

Internal states are characterized in a quite abstract way (w.r.t. their refined variant of §7.2.1):

Definition 6.4.6 (Symbolic internal states syntax [�]). An internal state includes a precondition
which must hold under the initial block execution context, and a dependent property ensuring the
preservation of this precondition from context switching:

sistate , { sis_pre : iblockctx → Prop; sis_sreg :> reg → sval option;
sis_smem : smem;
sis_pre_preserved : ∀(pctx : simuctx),

sis_pre(Bctx1 pctx) ⇐⇒ sis_pre(Bctx2 pctx) }

Observe that both the precondition and the register set are abstract (the former being in Prop, and
the latter devoid of a concrete data structure, unlike the map of FPASVs).

Property sis_pre_preserved of such states appears in every Coq Program’s proof obligation defining
a new state, and is deduced from three trivial lemmas on the mutual variants of symbolic values
(sval , list_sval , and smem). They are summarized by lemma:

Lemma 6.4.1 (Sigma-evaluations are preserved by context switching [�]).

∀(ctx : iblockctx) sv, σ(sv|lsv|sm)(Bctx1 ctx, sv) = σ(sv|lsv|sm)(Bctx2 ctx, sv)

Proof. By mutual induction on sv, then by rewriting existing preservation properties about the evaluation of
addressing modes and operations when the global environment changes.

If we only consider a single execution path (terminated by a Sfinal leaf of an sstate), the outcome
of the simulation is a record:

Record soutcome := sout { _sis: sistate; _sfv: sfval }

obtained by recursively evaluating the considered path of the symbolic state:

Definition 6.4.7 (Computing the outcome of a symbolic state).

Fixpoint get_soutcome ctx (ss:sstate): option soutcome :=

match ss with

| Sfinal sis sfv ⇒ Some (sout sis sfv)

| Scond cond args ifso ifnot ⇒
SOME b ← eval_scondition ctx cond args IN

get_soutcome ctx (if b then ifso else ifnot)

| Sabort ⇒ None

end

This function is partial, so that it returns None if the SE failed with an Sabort state.

In the simulation proof on concrete execution (which is formalized in paragraph §6.4.3.2), we
reason (by case analysis) on a single blockstep. The latter step corresponds to the selection of an
execution path of the symbolic state from the initial context: this is precisely what this function does.
It is therefore very practical, because it will serve us to link symbolic and concrete executions (e.g.
in Lemmas 6.4.6 and 6.4.7).

6.4.3.1 A Theory of Liveness Frames

The liveness of variables in our theory is simply encoded by their presence in the symbolic regset.
Hence, we say that a register is alive if the below notation (which determines a property) is true:

https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEtheory.html#sistate
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEtheory.html#eval_sval_preserved

6.4 symbolic semantics of btl blocks 85

Definition 6.4.8 (Alive notation and frame construction).

Notation "'alive' o" := (o = None → False) (at level 0)

Definition build_frame {A} (si: reg → option A) (r: reg): Prop := alive (si r)

Given a gluing invariant si (that defines the live variables of the target block) , we name “frame”
the abstract liveness property obtained with “build_frame si”. This partial application gives us a
type reg → Prop that we can reuse to formalize the notion of regset equality modulo live registers as:

Definition 6.4.9 (Equality of regsets “≡E” under a given frame).

Definition eqlive_reg (frame: reg → Prop) (rs1 rs2: regset): Prop :=

∀ r, (frame r) → rs1#r = rs2#r

This relation is reflexive, transitive, andmonotonic [�] (i.e. if ∀ r, frame1 r → frame2 r then ∀ rs1 rs2,

eqlive_reg frame2 rs1 rs2 → eqlive_reg frame1 rs1 rs2). It is reused to define the modulo liveness
equality over stack frames and concrete states (of Definition 5.3.1).

Moreover, if we have a valid instance of the relation for a frame that does not mention a register r,
then updating r with a value v in both register sets and in the initial frame preserves the property:

Lemma 6.4.2 (Frame-scoped equality of regsets is preserved by updates [�]).

Lemma eqlive_reg_update (frame: reg → Prop) rs1 rs2 r v:

eqlive_reg (λ r1 ⇒ r1 <> r ∧ frame r1) rs1 rs2 →
eqlive_reg frame (rs1 # r ← v) (rs2 # r ← v)

Proof. By rewriting get/set lemmas on register sets.

For instance, the trivial frame hypothesis of an internal state sis (i.e. supposing every register as
live) is built by ∀ r, build_frame sis r.

To verify the liveness information in target mode (as stated at the beginning of this section), the
simulation must ensure that every register marked as live in the successor blocks are indeed live
when reaching the final instruction of the current block. For that, we characterize the frame of a final
symbolic value using the gluemap stored in the BTL function (that the oracle is supposed to have
filled):

Definition 6.4.10 (Building the output frame with GIs). Let f be the current function, and sfv the
final value of the block. It’s output frame is built as:

Definition sfv_frame f sfv: reg → Prop :=

match sfv with

| Sgoto pc ⇒ build_frame (f.(fn_gm) pc)

| Sreturn _ | Stailcall _ _ _ ⇒ λ r ⇒ False

| Scall _ _ _ res pc ⇒ λ r ⇒ r <> res ∧ build_frame (f.(fn_gm) pc) r

| Sjumptable _ tbl ⇒ λ r ⇒ ∃ pc, List.In pc tbl ∧ build_frame (f.(fn_gm) pc) r

| Sbuiltin _ _ bres pc ⇒ λ r ⇒ (∀ res, reg_builtin_res bres = Some res → r <> res)

∧ build_frame (f.(fn_gm) pc) r

end

Knowing that we want to verify the set of output registers, we can eliminate the cases where there
are no successors (e.g. for returns and tail calls), since the set of variables that should be alive is
obviously empty if there is no code supposed to read them. That is why the frame returns False in
those situations.

For a built-in without result register or a goto instruction jumping at pc, the frame is simply the
set of live variables at the entry of the block located at pc. Built-ins featuring a result register and
calls follow the same principle, but (as we are computing the frame before the final symbolic value’s
execution), they exclude this—dead because of the affectation—result register, no matter the content
of the GI.

Finally, the most subtle case is for jump tables: as long as there exists a pc in tbl such as the frame
built with the invariant at pc contains a register r, then it is in the frame of the jump table. Put
another way, the output frame of a jump table is the union of the input frames of all successors (I
come back to this concept of union in §6.5.2.2).

https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEtheory.html#eqlive_reg_monotonic
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEtheory.html#eqlive_reg_update

6.4 symbolic semantics of btl blocks 86

6.4.3.2 Intermediate Properties

To prove correct our simulation test, we need some simple properties about the validity of symbolic
states, and about their matching relation w.r.t. concrete states. All those properties depend on the
(block) execution context (type iblockctx).

validity For a state sis to be valid, it has to satisfy three properties. Firstly, its precondition
must hold; secondly, its symbolic memory must evaluate (through the σ function) without errors;
and thirdly, the values of its symbolic regset must also evaluate correctly. Below are the validity
predicates for symbolic regsets and internal states.

Definition 6.4.11 (“Ok” predicate for a symbolic regset [�]).

sreg_ok ctx sreg , ∀r sv, sreg r = Some sv =⇒ σsv(ctx, sv) 6= None

Definition 6.4.12 (“Ok” predicate for a symbolic internal state [�]).

sis_ok ctx sis , sis.(sis_pre ctx) ∧ σsm(ctx, sis.(sis_smem)) 6= None ∧ sreg_ok ctx sis

matching relations between symbolic and concrete states Matching a symbolic internal
state w.r.t. a concrete pair (rs,m) of a regset and a memory (still under context ctx), also necessitates
a valid precondition. However, it entails stronger properties concerning the symbolic memory and
regset. This time, the memory has to not only evaluate correctly, but also the result must be exactly
m. Similarly, the symbolic regset must match the concrete one (i.e. reusing Definition 6.3.4).
We define the valid relation between an internal state and a concrete pair as follows:

Definition 6.4.13 (Semantic “ok” predicate for an internal state w.r.t. a concrete state [�]).

sem_sistate ctx sis rs m : Prop , sis.(sis_pre) ctx
∧ σsm(ctx, sis.(sis_smem)) = Some m

∧ match_sreg ctx sis rs

Note that for the purpose of comparing symbolic internal states, we want to reason modulo
extensionality w.r.t. register sets (as explained in §3.3.2):

Lemma 6.4.3 (The semantic relation between symbolic internal and concrete states is determinis-
tic [�]). Let sis be a state for which sem_sistate holds for two pairs (rs1,m1) and (rs2,m2):

sem_sistate ctx sis rs1 m1 =⇒ sem_sistate ctx sis rs2 m2 =⇒
eqlive_reg (build_frame sis) rs2 rs1 ∧ m1 = m2

Proof. By rewriting the match_sreg property of the second hypothesis.

Furthermore, observe that for any context, state, regset, and memory, if property 6.4.13 is valid, it
always implies property 6.4.128:

Lemma 6.4.4 (Semantic “ok” implies valid “ok” [�]).

∀ctx sis rs m, sem_sistate ctx sis rs m =⇒ sis_ok ctx sis

Proof. By construction.

By extension of Definition 6.4.13, one can deduce the semantic relation between a full symbolic
state “ss : sstate” and a concrete CompCert transition. The latter being a pair (cs, e) of a concrete state
and an observable trace that might be produced by ss under the initial (wrapped with function)
context “ctx : fct_iblockctx”.

Definition 6.4.14 (Semantic “ok” predicate for state transition). To make this relation usable in
both source and target reasoning, the symbolic value final frame (“SVFF”) is passed as a parameter.
In addition to the trace e, the concrete state cs, and the symbolic state ss, the predicate takes into
account the call stack #»

Σ .
8And we have, logically, the same kind of implication between predicate 6.3.4 and 6.4.11 [�].

https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEtheory.html#sreg_ok
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEtheory.html#sis_ok
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEtheory.html#sem_sistate
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEtheory.html#sem_sistate_determ
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEtheory.html#sem_sis_ok
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEtheory.html#match_sreg_ok

6.4 symbolic semantics of btl blocks 87

Inductive sem_sstate (SVFF: function → sfval → reg → Prop)

(ctx: fct_iblockctx)
#»
Σ e cs: sstate → Prop :=

| sem_Sfinal sis sfv rs m

(SIS: sem_sistate ctx sis rs m)

(LIVEOK: ∀ r, SVFF (cf ctx) sfv r → build_frame sis r)

(SFV: sem_sfval ctx
#»
Σ sfv rs m e cs)

: sem_sstate SVFF ctx
#»
Σ e cs (Sfinal sis sfv)

| sem_Scond b cond args ifso ifnot

(SEVAL: eval_scondition ctx cond args = Some b)

(SELECT: sem_sstate SVFF ctx
#»
Σ e cs (if b then ifso else ifnot))

: sem_sstate SVFF ctx
#»
Σ e cs (Scond cond args ifso ifnot)

(* NB: Sabort: fails to produce a transition *)

additional properties on matching relations Oppositely to the above relations, the below
property catches situations where the SE fails:

Definition 6.4.15 (SE failure [�]). (The context being at the block level again)

abort_sistate ctx sis : Prop , ¬(sis.(sis_pre) ctx)
∨ σsm(ctx, sis.(sis_smem)) = None

∨ ∃r sv, sis r = Some sv ∧ σsv(ctx, sv) = None

If either (i) the precondition does not hold; or (ii) the memory does not evaluate correctly; or
(iii) there exists an assigned register whose symbolic value does not evaluate correctly, then the
simulation aborts.

Naturally, we want to be sure that Properties 6.4.13 and 6.4.15 exclude each other:

Lemma 6.4.5 (Semantic “ok” and “ko” properties are mutually exclusive [�]).

∀ctx sis rs m, sem_sistate ctx sis rs m =⇒ abort_sistate ctx sis =⇒ False

Proof. By congruence and rewriting the match_sreg relation of sem_sistate.

Two other lemmas follow intuitively the definition of sem_sstate. First, assuming a valid semantic
relation between a concrete and a symbolic state, it always exists an outcome (in the sense of
Definition 6.4.7) as a pair (“sout sis sfv”) forwhich the three properties of the sem_Sfinal constructor
hold (Lemma 6.4.6). Second, and conversely, assuming the same outcome and the three properties
of sem_Sfinal, it is always possible to reconstruct a valid sem_sstate predicate (Lemma 6.4.7).

Lemma 6.4.6 (The semantic “ok” relation with a concrete state implies a valid SE run [�]).

Lemma sem_sstate_run (SVFF: function → sfval → reg → Prop) (ctx: fct_iblockctx)
#»
Σ ss e cs:

sem_sstate SVFF ctx
#»
Σ e cs ss →

∃ sis sfv rs m,

get_soutcome ctx ss = Some (sout sis sfv) ∧ sem_sistate ctx sis rs m ∧

(∀ r, SVFF (cf ctx) sfv r → build_frame sis r) ∧ sem_sfval ctx
#»
Σ sfv rs m e cs

Proof. Trivial induction on the first hypothesis.

Lemma 6.4.7 (A valid SE run implies the semantic “ok” relation with a concrete state [�]).

Lemma run_sem_sstate (SVFF: function → sfval → reg → Prop) (ctx: fct_iblockctx) ss sis sfv:

get_soutcome ctx ss = Some (sout sis sfv) →
∀ rs m

#»
Σ cs e,

sem_sistate ctx sis rs m →
(∀ r, SVFF (cf ctx) sfv r → build_frame sis r) →
sem_sfval ctx

#»
Σ sfv rs m e cs →

sem_sstate SVFF ctx
#»
Σ e cs ss

Proof. Trivial induction on ss.

https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEtheory.html#abort_sistate
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEtheory.html#sem_sistate_exclude_abort
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEtheory.html#sem_sstate_run
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEtheory.html#run_sem_sstate

6.4 symbolic semantics of btl blocks 88

6.4.3.3 Writing in Internal States

Two operations are needed on symbolic states: assigning a value to a register and setting the memory.

Definition 6.4.16 (Assign a symbolic value to a register in a sistate [�]). Here again, the Coq
definition use the Program keyword to maintain the preservation property:

Program Definition set_sreg (r:reg) (sv:sval) (sis:sistate): sistate :=

{| sis_pre := (λ ctx ⇒ (∀ sv, sis r = Some sv → σsv(ctx, sv) <> None)

∧ (sis.(sis_pre) ctx));

sis_sreg := λ y ⇒ if r = y then Some sv else sis y;

sis_smem := sis.(sis_smem)|}

In the above, we ensure that the assigned symbolic value evaluates correctly, to preserve the
semantic validity of the state (according to Definition 6.4.13). This is proved by:

Lemma 6.4.8 (Correctness of the register assignment function on internal states [�]).

Lemma set_sreg_correct ctx dst sv sis (rs rs': regset) m:

sem_sistate ctx sis rs m →
(σsv(ctx, sv) = Some (rs'#dst)) →
(∀ r, build_frame sis r → r <> dst → rs'#r = rs#r) →
sem_sistate ctx (set_sreg dst sv sis) rs' m

Proof. It consists of three cases (those of Definition 6.4.13):

• Precondition preservation: the new precondition is easily proved using both the old precondition and
the old regset matching property of the first hypothesis;

• The memory has not changed so it still evaluates well;

• And here we have two subcases: either dst = r and this is trivial by applying the second hypothesis; or
dst 6= r and we can use the liveness equivalence on the frame (the third hypothesis) to solve the goal.

Overwriting the memory also requires updating sis_pre, but this time we do not have to check if
it is live, since memory is always live:

Definition 6.4.17 (Assign a new memory to a sistate [�]).

Program Definition set_smem (sm:smem) (sis:sistate): sistate :=

{| sis_pre := (λ ctx ⇒ σsm(ctx, sis.(sis_smem)) <> None ∧(sis.(sis_pre) ctx));

sis_sreg := sis.(sis_sreg); sis_smem := sm |}

In the same way, the memory assignment is proved correct by:

Lemma 6.4.9 (Correctness of the memory assignment function on internal states [�]).

Lemma set_smem_correct ctx sm sis rs m m':

sem_sistate ctx sis rs m →
(σsm(ctx, sm) = Some m') →
sem_sistate ctx (set_smem sm sis) rs m'

Proof. By rewriting the second hypothesis (properties 1 and 3 of sem_sistate are trivial).

6.4.4 Symbolic Execution

Before introducing the recursive SE of BTL blocks, we begin with intermediate functions for executing
lists of concrete arguments, final symbolic values and some BTL basic instructions.

https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEtheory.html#set_sreg
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEtheory.html#set_sreg_correct
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEtheory.html#set_smem
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEtheory.html#set_smem_correct

6.4 symbolic semantics of btl blocks 89

6.4.4.1 Arguments and Liveness Checking

For concrete instructions featuring a list of arguments (i.e. pseudo-registers) args, we transform it
into a list of symbolic values (of the list_sval type). This computation may fail if a register does not
evaluate correctly. Moreover, in target mode, when args contains a dead register, the transformation
returns None, which is then implicitly propagated to the rest of the execution by the SOME monadic
binder (from notation in Definition 5.3.3).

Definition 6.4.18 (Mapping a register list to a symbolic value list using a symbolic regset).

Fixpoint lmap_sv {A} (sreg: A → option sval) (l: list A): option list_sval :=

match l with

| nil ⇒ Some (fSnil)

| r::l' ⇒ SOME sv ← sreg r IN SOME lsv ← lmap_sv sreg l' IN Some (fScons sv lsv)

end

We say that the above function is correct if, given a matching relation between a symbolic regset
sreg and a concrete regset rs under context ctx, for all lists of registers l, the result of lmap_sv on l

evaluates to rs##l 9.

Lemma 6.4.10 (Correctness of the arguments’ execution [�]). With ctx, sreg, l and rs, we have:

match_sreg ctx sreg rs =⇒ ∀lsv, lmap_sv(sreg, l) = Some lsv =⇒
σlsv(ctx, lsv) = Some(rs##l)

Proof. By simple induction on l.

6.4.4.2 Final Values

Given a final BTL instruction and a symbolic regset sreg, the execution is a partial function producing
an sfval (in the option monad):

Definition 6.4.19 (SE for final instructions).

Definition sexec_final_sfv (i: final) (sreg: reg → option sval): option sfval :=

match i with

| Bgoto pc ⇒ Some (Sgoto pc)

| Bcall sig ros args res pc ⇒
SOME svos ← sum_left_optmap sreg ros IN

SOME sargs ← lmap_sv sreg args IN

Some (Scall sig svos sargs res pc)

| Btailcall sig ros args ⇒
SOME svos ← sum_left_optmap sreg ros IN

SOME sargs ← lmap_sv sreg args IN

Some (Stailcall sig svos sargs)

| Bbuiltin ef args res pc ⇒
SOME sargs ← bamap_opt (map_builtin_arg_opt sreg) args IN

Some (Sbuiltin ef sargs res pc)

| Breturn None ⇒ Some (Sreturn None)

| Breturn (Some r) ⇒
SOME sv ← sreg r IN

Some (Sreturn (Some sv))

| Bjumptable reg tbl ⇒
SOME sv ← sreg reg IN

Some (Sjumptable sv tbl)

end

Here, sreg is supposed to be the symbolic regset resulting from the execution of previous instructions
in the block. Above, cases for gotos, returns, and jump tables are trivial. For calls and tail calls, we use
an auxiliary function sum_left_optmap: ∀ A B C : Type, (A → option B) → A + C → option (B + C)

9Recall notation rs##_ used to access a list of arguments in rs.

https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEtheory.html#eval_lmap_sv

6.4 symbolic semantics of btl blocks 90

that transforms the ros argument (which is a sum type reg + ident) into type svos: sval + ident.
The SE of lists of concrete arguments is delegated to function lmap_sv (Definition 6.4.18). In the
built-in case, we use an equivalent transformation from built-ins’ registers to built-ins’ symbolic
values.

6.4.4.3 Block Execution

Let sis be the current symbolic internal state. Assuming a BTL “Bop op args dst _” instruction, its
SE corresponds to the function:
Definition sexec_op op args dst (sis: sistate): option sistate :=

SOME args ← lmap_sv sis args IN

Some (set_sreg dst (fSop op args) sis)

Likewise, the SE functions for Bload and Bstore are:
Definition sexec_load trap chunk addr args dst (sis: sistate): option sistate :=

SOME args ← lmap_sv sis args IN

Some (set_sreg dst (fSload sis.(sis_smem) trap chunk addr args) sis)

and
Definition sexec_store chunk addr args src (sis: sistate): option sistate :=

SOME args ← lmap_sv sis args IN

SOME src ← sis src IN

Some (set_smem (fSstore sis.(sis_smem) chunk addr args src) sis)

Our SE model of a BTL block starts from an initial internal state and constructs (by computing
recursively over the block) a symbolic state of type sstate. Alike the SOME monadic binder notation,
we write a STBIND notation which returns Sabort in case a None value is caught in the option monad:

Definition 6.4.20 (Option monad binder to Sabort).
Notation "'STBIND' X ← A 'IN' B" :=

(match A with Some X ⇒ B | None ⇒ Sabort end)

(at level 200, X name, A at level 100, B at level 200) : option_monad_scope

By lifting None to Sabort, we implicitly propagate errors from access to dead registers.

The trace partitioning is then realized in continuation passing style (CPS) as follows:

Definition 6.4.21 (Recursive SE of a BTL block). With sinit the initial internal symbolic state, and
ib the block to simulate:
Fixpoint sexec_rec ib (sis:sistate) (k: sistate → sstate): sstate :=

match ib with

| BF fin _ ⇒
STBIND sfv ← sexec_final_sfv fin sis IN Sfinal sis sfv

(** basic instructions *)

| Bnop _ ⇒ k sis

| Bop op args res _ ⇒
STBIND sis' ← sexec_op op args res sis IN k sis'

| Bload trap chunk addr args dst _ ⇒
STBIND sis' ← sexec_load trap chunk addr args dst sis IN k sis'

| Bstore chunk addr args src _ ⇒
STBIND sis' ← sexec_store chunk addr args src sis IN k sis'

(** composed instructions *)

| Bseq ib1 ib2 ⇒
sexec_rec ib1 sis (λ sis2 ⇒ sexec_rec ib2 sis2 k)

| Bcond cond args ifso ifnot _ ⇒
let ifso := sexec_rec ifso sis k in

let ifnot := sexec_rec ifnot sis k in

STBIND args ← lmap_sv sis args IN Scond cond args ifso ifnot

end

Definition sexec ib sinit := sexec_rec ib sinit (λ _ ⇒ Sabort)

6.5 simulation predicate modulo abstract invariants 91

Continuation k represents how SE should “normally” continue on updates of the internal state.
It is initialized as “(λ _ ⇒ Sabort)” reflecting the fact that each BTL blockstep must reach a final
instruction.

To ensure that our SE function is a correct model, we prove that each concrete execution (as
defined in Chapter 5) can be executed on the symbolic state produced from sexec.

Theorem 6.4.11 (The SE is a correct over-approximation [�]).
Theorem sexec_correct (ctx: fct_iblockctx) sinit

#»
Σ ib e s:

iblock_step (cG ctx)
#»
Σ (cf ctx) (csp ctx) (crs0 ctx) (cm0 ctx) ib e s →

(* NB: the two properties below give the correctness property of

an "history invariant" *)

sem_sistate ctx sinit (crs0 ctx) (cm0 ctx) → (* prop 1 *)

(∀ r : reg, build_frame sinit r) → (* prop 2 *)

sem_sstate triv_frame ctx
#»
Σ e s (sexec ib sinit)

Proof. The proof is an induction on ib. It is quite straightforward thanks to the trivial liveness assumption.

The correctness property is exploited in §6.1.2 to justify the existence of the symbolic states corresponding
to the source concrete states (both the initial and final ones). As in source mode, the execution does not
involve liveness verification, the triv_frame above is the trivial frame for final symbolic values (i.e. a function
“λ (_: function) (_: sfval) (_: reg) ⇒True”).

To formally verify the block-by-block simulation, we will also need the reverse property, stating
that each execution of a symbolic state produced from sexec represents a concrete execution. We
thus prove it thanks to the below theorem:

Theorem 6.4.12 (The SE is exact [�]).“Inverting” an
hypothesis means
introducing a goal

for each non
self-contradictory
constructor of a
(co-)inductive

type. See the Coq
“inversion” tactic

documentation
online.

Theorem sexec_exact (ctx: fct_iblockctx)
#»
Σ ib e s1 sinit rs m:

sem_sistate ctx sinit rs m →
sem_sstate sfv_frame ctx

#»
Σ e s1 (sexec ib sinit) →

∃ s2, iblock_step (cG ctx)
#»
Σ (cf ctx) (csp ctx) rs m ib e s2

∧ s1 ≡t s2

Proof. Here also, we reason by induction on ib. The final case goal is solved by inverting the sem_sstate
hypothesis and by applying Lemma 6.4.3 to recover an extensional equality between regsets. The induction for
Bseq requires applying Lemma 6.4.5 (on the left side) to prove it does not fail. Finally, the exactness is first
shown w.r.t. iblock_istep_run and relies on Lemma 5.3.1 to reach the final goal.

Recall the “≡t” notation to indicate equality of states modulo the liveness from GIs. This exactness theorem
serves us in the same place as the correctness one (cf. §6.1.2), to prove the reverse direction: coming back
to concrete states from a symbolic state computed in target mode (and so we use the non-trivial sfv_frame
liveness function for final symbolic values).

6.5 simulation predicate modulo abstract invariants

Examples 1.2.1 (for GIs) and 5.1.1 (for both GIs & HIs) gave an idea of the simulation scheme, and in
particular on how (and when) to execute invariants. I informally describe this scheme in §6.5.1, and
its formalization in our SE theory w.r.t. symbolic states in §6.5.2. The overall simulation predicate is
finally built in §6.5.3, Definition 6.5.14.

6.5.1 Simulation Scheme

We aim to deduce the simulation between blocks from the simulation of the symbolic states produced
by their SE. The simulation of a symbolic state ss1 by a symbolic state ss2 is defined as a relation
written ss1 � ss2, which holds if and only if (i) both decision trees have the same structure with
identical conditions; (ii) their leaves are pairwise identical except for the definiteness condition: ss2
leaves may assign registers not defined in ss1—their value is simply ignored, these registers being
interpreted as dead; (iii) the trapping symbolic values in ss1 leaves include those of in ss2 leaves.

https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEtheory.html#sexec_correct
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEtheory.html#sexec_exact

6.5 simulation predicate modulo abstract invariants 92

We have seen that the set of registers defined in ss1 depends on the source or target mode. In source
mode, all registers are defined, thus the definiteness condition is trivial; it is only non-trivial in target
mode. To make this explicit, we note “�t” if ss1 is viewed in the target mode, or “�s” otherwise.

ε Isiss Isist

ssH �s sss ssG �t sst

ciH

ibs

G

ciG

ibtH

Figure 6.3: Symbolic Simulation of ibs by ibt.

We now explain how we reduce invariant preservation with liveness checking to comparison
of symbolic states. The computations performed by our symbolic simulation test are pictured in
Figure 6.3. Blocks ibs and ibt represent respectively the source and the target. Invariants ciG and
ciH are respectively the gluing and the history invariants annotating the target block entry point.
Each arrow represents a SE of either a block or some invariants. The bold dotted arrow, labelled by
ibt, means that its SE is in target mode. Otherwise, SEs are in source mode. Hence, starting from
an empty (symbolic) internal state written ε, the execution of input HI ciH produces a (symbolic)
internal state Isiss. From Isiss, the SE of ibs produces state sss. Still from Isiss, execution of ciG
produces an internal state Isist, from which execution of ibt in target mode produces sst. From sss,
executing gluing (respectively history) invariants on each exit—as represented by the G (respectively
H) arrow—produces a new state ssG (respectively ssH). Finally, we check the preservation of GIs
with the comparison ssG �t sst. And, we check—independently of GIs—the preservation of HIs with
the comparison sss �s ssH (actually, if the comparison is true then ssH = sss).

Two technical details of this big picture now need to be clarified. First, our checker validates
that GIs G do not trap. When computing sss, it also needs to remember that ciG has not trapped. In
Figure 6.3, this corresponds to consider that the may-trapping expressions of ciG & G are actually
implicitly part of ciH & H 10. Second (as stated in §6.3.3.4), when applying invariants of G (or of H)
to a call or built-in, we also need to check that they do not constrain the destination register (i.e.
ensuring property 6.3.15).

6.5.2 Application of Invariants on States

A symbolic internal state is transferred from the application of an invariant. In the theory, the transfer
is a high-level abstraction operating on FPASVs (its implementation is explained in §7.3.4), which
involves updating the state’s precondition, and changing the function of its symbolic register set.

Definition 6.5.1 (Transfering symbolic internal states [�]). Let sis and si be the state to transfer
and the FPASV, respectively. The tr_sis function below takes a Boolean sis_input_init indicating
the default initialization mode for the symbolic regset: when it is true, then every register not in the
invariant is set to its input value (i.e. source mode); otherwise, unmentioned registers are left to
None (i.e. target mode).

tr_sis sis si sis_input_init ,
{ sis_pre = λctx. sis.(sis_pre) ctx ∧ sreg_ok ctx sis ∧

∀sv, sv ∈ si.(fpa_ok) =⇒
σsv(ctx, [(sis.(sis_smem), sis)/sv]) 6= None;

sis_sreg = λr. match si!r with
| Some sv→ Some([(sis.(sis_smem), sis)/sv])

| None→ sis_input_init ? Some(fSinput(r)) : None;

10In other words, the traps of G are part of H in the “H(rs,m)∧ rt ≡t G(rs,m)” semantics given in §5.1.

https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEtheory.html#tr_sis

6.5 simulation predicate modulo abstract invariants 93

sis_smem = sis.(sis_smem); sis_pre_preserved = ρ }

Where the notation between square brackets refers to the substitution function sv_subst for parallel
symbolic invariants whose signature looks like “[(substm : smem, subst : reg → sval option)/sv :

sval]→ sval” [�]. The two parameters substm and subst are the new symbolic memory and registersIn practice,
sv_subst is a

Fixpoint

structurally (and
mutually)

recursing on sv

(which is, alike
other functions on

FPASV, never
executed in
practice).

(respectively) to substitute inside sv. When sv is a symbolic operation, fold right, load, or store,
the substitution is applied on (and thus replaces) their symbolic arguments; the mutual recursion
on list of symbolic values simply calls sv_subst on each element; and, when sv = Sinput(r, _), we
replace it by subst r. Note that we only substitute with source internal states, hence, forall r, subst r
should never return None11. Warning: this notion of substitution must not be confused with the one
of §6.3.3.1 (that aims to convert sequential invariants to their parallel representation); here, we aim
to make the FPASV values take into account the registers already defined in the current symbolic
state.

Above, when si!r is not defined (in the sis_sreg lambda function) we look at the value of
sis_input_init12 to decide if the default value (i.e. fSinput(r)) should be used or not.

The proof obligation ρ is easily proved by rewriting Lemma 6.4.1 on sigma-evaluations.

Given a concrete pair (rs,m), a context ctx, a symbolic value sv to substitute, and with the subst

and substm functions that evaluate to rs and m (respectively), the substitution on sv is correct if
the result of its evaluation corresponds to evaluating sv directly under a context updated with the
concrete pair.

Lemma 6.5.1 (Substitution is correct [�]).

σsm(ctx, substm) = Some m =⇒
∀r, subst r = Some sv ∧ σsv(ctx, sv) = Some(rs#r) =⇒
σsv(ctx, [(substm, subst)/sv]) = σsv({ ctx with crs0 = rs; cm0 = m }, sv)

Where { ctx with crs0 = rs; cm0 = m } is equivalent to mk_iblockctx(ctx.(cG), ctx.(csp), rs,m).
Proof. By mutual induction on sv.

auxiliary properties on substitution To prove that tr_sis has the expected behavior, we
need a variant of Definition 6.3.5 with substitution.

Definition 6.5.2 (“Ok” predicate for substituted symbolic invariants [�]).

si_ok_subst sis si ctx , ∀sv, sv ∈ si.(fpa_ok) =⇒
σ(ctx, [(sis.(sis_smem), sis)/sv]) 6= None

The property states that if a symbolic value exists in the “ok” list of an invariant, then its substitution
with the content of sis must evaluate without error.

The fact that invariants do not trap w.r.t. to a valid internal state used for the substitution is
encoded by the implication between Definitions 6.4.12 and 6.5.2.

Definition 6.5.3 (Validity of a SI substituted with a valid internal state [�]).

tr_sis_ok ctx sis si , sis_ok ctx sis =⇒ si_ok_subst sis si ctx

Furthermore, matching the parallel invariant with a concrete regset requires building the latter by
evaluating in ctx the result of sis on si. We decompose this goal by implementing a generic builder
function for an arbitrary map to apply on a given symbolic regset:

Definition 6.5.4 (Regset builder from correctly evaluating mapped values). Let ctx a block level
context, “map : sval → sval” a symbolic value mapping, and “si : reg 7→ sval option” a partial
map from registers to symbolic values. The goal here is to build a new register state with the same
default value (regsets are a pair of a default value and a map, as said in §3.3.2); and including, in
addition to values already present in (crs0 ctx), any correctly evaluating value of si after applying
map. More formally, we construct the register state by applying the following steps:

11In the actual definition, we return fSinput(r) in case the substitution on r is undefined. We enforce here a sval result
(instead of an sval option) to simplify proofs.

12Here, I denote this test with the syntax of ternary conditions for readability.

https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEtheory.html#sv_subst
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEtheory.html#sv_subst_correct
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEtheory.html#si_ok_subst
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEtheory.html#tr_sis_ok

6.5 simulation predicate modulo abstract invariants 94

1. Extracting the default value v0 of the concrete regset in ctx so that the resulting regset will
also have v0 as default;

2. Mapping si’s symbolic values to concrete values: ∀r, si!r = Some sv,
ifσsv(ctx,map sv) = Some v, thenwe take v as the concrete value; otherwise,we take (crs0 ctx)#r.
The result of this map is named rsmap;

3. Performing the union of (crs0 ctx) and rsmap, with priority given to the latter: if a value is
defined in both concrete regsets, we pick the version of rsmap.

In Coq, this corresponds to the following definition:“PTree.t sval”
is the type

corresponding to
“reg 7→

sval option”,
from the PTree

library.

Definition eval_map_sreg (ctx:iblock_common_context)

(map: sval → sval) (si : PTree.tree sval): regset :=

(* (1) Extract the default value from (crs0 ctx) *)

let default := fst (crs0 ctx) in

(* (2) Mapping to create rsmap *)

let rsmap := PTree.map (λ r sv ⇒
match eval_sval ctx (map sv) with

| Some v ⇒ v

| None ⇒ (crs0 ctx)#r end) si

(* (3) Union with priority given to rsmap *)

in (default,

PTree.combine (λ oa ob ⇒
match ob with

| Some x ⇒ Some x

| None ⇒ oa

end) (snd (crs0 ctx)) rsmap)

Thanks to this generic definition, building the concrete regset we need is now trivial. For each
symbolic value sv defined in a given si for register r, the concrete regset will contain either the result
of the evaluation after substituting with (a given) sis; or (if the evaluation is not defined) the value
ctx.(crs0)#r. We simply construct this regset by instantiating the above builder as:

Definition 6.5.5 (Regset builder from correctly evaluating values in invariant after substitution with
an internal state [�]).

eval_subst_si : iblockctx → sistate → (reg 7→ sval option)→ regset ,
eval_map_sreg ctx (sv_subst sis.(sis_smem) sis)

Notice how we partially apply the substitution: by fixing the memory and register set to use in
sv_subst, the second argument (passed to eval_map_sreg) becomes a map of type sval → sval as
required by the generic builder (Definition 6.5.4).

Its correctness property is provided by lemma:

Lemma 6.5.2 (Builder of invariant substitution with internal state is correct [�]).I specified this
lemma to give an

idea of the
behavior of the

function. Notice
that it only covers
the case where r is

defined in si.

Lemma eval_subst_si_correct ctx sis (si:fpasv) sv r:

si!r = Some sv →
(eval_subst_si ctx sis si)#r =

match σsv(ctx, [sis.(sis_smem), sis/sv]) with

| Some v ⇒ v

| None ⇒ (crs0 ctx)#r

end

Proof. Only by using the correctness lemmas of the PTree library for map and combine.

correctness of the symbolic state transfer for a given fpasv Assuming an initial source
(i.e. with a trivial frame) internal state sis matching a concrete pair (rs,m) under ctx, and for a valid
si in the sense of Definition 6.5.3, we have:

https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEtheory.html#eval_subst_si
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEtheory.html#eval_subst_si_correct

6.5 simulation predicate modulo abstract invariants 95

Lemma 6.5.3 (tr_sis is correct [�]).

sem_sistate ctx sis rs m =⇒
∀r, build_frame sis r =⇒ tr_sis_ok ctx sis si =⇒
sem_sistate ctx (tr_sis sis si false) (eval_subst_si ctx sis si) m ∧

match_si { ctx with crs0 = rs; cm0 = m } si (eval_subst_si ctx sis si)

Proof. First, we exploit Lemma 6.4.4 so we know that sis is valid from the first hypothesis. Then, the
match_sreg relation of sem_sistate is proved using map and combination properties of the PTree library
(used in the implementation of FPASV’s maps). Thematch_si conclusion is easily solved by using Lemma 6.5.1.
Other subgoals are trivial.

6.5.2.1 Input Invariants and Initial States

The base for building the initial symbolic internal states Isiss and Isist is to define the empty state ε.

Definition 6.5.6 (Empty symbolic internal state [�]).

ε , { sis_pre = λ(_ : iblockctx). True; sis_sreg = λ(r : reg). Some(fSinput(r));
sis_smem = fSinit; sis_pre_preserved = ρ }

Property sis_pre_preserved is trivially solved for an empty state.

Let “csix : invariants” be the invariants at the current pc, and let us note sisH and sisHG the
states (sequentially) obtained by “tr_sis ε csix.(history) true” and “tr_sis sisH csix.(glue) true”,
respectively. At first sight, following the informal explanation of §6.5.1, we would expect Isiss to be
exactly the application of ciH on ε (i.e. that Isiss = sisH). In fact, only the symbolic regset of Isiss
is equal to the one of sisH, but the precondition and the symbolic memory are assigned with the
value of sisHG

13. More formally, we have:

Definition 6.5.7 (Source initial state [�]).

Isiss , { sis_pre = sisHG.(sis_pre); sis_sreg = sisH; sis_smem = sisHG.(sis_smem) }

This stems from the first technical detail mentioned in the end of §6.5.1: our checker must consider
the trapping instructions of ciG (and G) as part of ciH (and H).

Each initialization
is a Coq

Program asking
for a proof of

context
preservation
(ommited for
simplicity).

Intuitively, the target initial state Isist is thus built using sisHG, and by filtering the symbolic
regset to eliminate registers that are not live in the gluing invariant (this is needed because sisHG

was constructed with sis_input_init = true):

Definition 6.5.8 (Target initial state [�]).

Isist , { sis_pre = sisHG.(sis_pre);
sis_sreg = λr. SOME sv← csix.(glue) r IN sisHG r;
sis_smem = sisHG.(sis_smem) }

6.5.2.2 Output Invariants and Final States

The internal state application from the previous section serves us to build initial states; but, when
the SE is finished (as pictured in Figure 6.3), the output invariants (i.e. either for GI or HI) must be
applied on all the final symbolic values of a sstate. A fixpoint named “tr_sstate : iblockctx → (invs :Here again, these

functions are not
intended to be

executed.

pc 7→ csasv) → sstate → sstate” [�] is dedicated to the transfer of a binary decision tree with an
output FPASV. Its “invs” parameter being a map (of invariants, built from the original gluemap)
from a CFG node to either HIs or GIs, so the method works for both kinds of invariants. For each
Sfinal(sis, sfv) leaf (the Sabort case is just the identity), it calls a function “si_sfv : iblockctx →
sistate → (invs : pc 7→ csasv) → sfval → fpasv option” [�], where the internal state and the final

13The memory, however, is still equal to the one of ε, since it is untouched by tr_sis.

https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEtheory.html#tr_sis_correct
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEtheory.html#sis_empty
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEtheory.html#sis_source
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEtheory.html#sis_target
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEtheory.html#tr_sstate
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEtheory.html#si_sfv

6.5 simulation predicate modulo abstract invariants 96

value are instantiated with sis and sfv (respectively). After having computed the tree of invariants
corresponding to the leaf with si_sfv, tr_sstate delegates its application to tr_sis (Definition 6.5.1).

When the final instruction is a Sgoto(pc), si_sfv simply returns the FPASV representation of the
invariant at “gm pc” (i.e. thanks to Definition 6.3.10). For tail calls and returns (which have no
successors), the function’s result is the empty FPASV. Calls and built-ins cases are a bit more complex,
and require checking that their result register—when applicable14—is not mentioned (i.e. using the
“cloberrable” property of 6.3.15) in the invariant of their (unique) successor (otherwise si_sfv is
undefined and returns None). In addition, if they feature a result register, then it must be removed
from the “output” set of the invariant before converting it to a FPASV. Finally, and as indicated in
Definition 6.4.10, the application for jump tables requires computing the union of the successors’
invariants. For the list of successors lpc, we apply a map with gm to obtain a list of CSASVs, and we
perform the unions—by accumulation, after converting the current compact invariant to its parallel
form—until reaching the empty list (and thus performing the union with the empty FPASV at the
end).

side-note on the union of fpasvs [�] Formally defining this union in Coq was in fact a quite
difficult part. To illustrate that, let us consider two FPASVs’ trees fpa1 and fpa2 that we want to
combine into a new tree fpa3. For a register r, is the combination of fpa1!r and fpa2!r possible, and if
so, which value should we keep? Naturally, if neither of them has a value for r, the combination is trivial
(fpa3 also not defines a value for r); similarly, if only one of them has a value for r, there is no choice
to make, so we keep the value (i.e. fpa3 is the result of a “most-defined” relation). On the other
hand, when both trees have a mapping for r (e.g. fpa1!r = sv1 and fpa2!r = sv2), we have to ensure
consistency w.r.t. the final internal state (and under the block level context). From a theoretical
point of view, the following function must be true for sv1 and sv2:

(* A notion of symbolic equality over substitution for invariants' unification. *)

Definition symbolic_eq (ctx: iblockctx) sis (sv1 sv2: sval): bool :=

match σsv(ctx, [(sis.(sis_smem), sis), sv1]), σsv(ctx, [(sis.(sis_smem), sis), sv2]) with

| Some v1, Some v2 ⇒ Val.eq v1 v2

| Some _, None | None, Some _ ⇒ false

| None, None ⇒ true

end

The principle is to compare the values obtained after evaluating the substitution of the symbolic
memory and register set of sis in sv1 and sv2. The Boolean output of symbolic_eq indicates if the
union is possible or not. If it is true, then we can keep either sv1 or sv2 (they are equivalent after
substitution). In the above, when both evaluations succeed, the comparison is reduced to the equality
over concrete values; when both fail, values are undefined, so we can consider them equal (it does
not matter anyway). Otherwise, if one value has evaluated correctly after substitution but not theThe jump tables

case took me about
two weeks of

full-time work,
and is a typical
example of why,
in formal proof,

we often say that
“the devil lies in

the details”.

other, it means that the invariant is inconsistent. In such a situation, the union cannot be computed,
and the combine operation will fail (and the whole validation as well, see §7.3.4.2).

The fpa_reg field of FPASVs being implemented using the PTree library [8], we had to formalize
a notion of error-prone combination of such trees. Indeed, even if the library already features
a “combine” function15, we cannot use it directly because its return type imposes that it must
always succeed. To solve this issue, I extended their library with a “may combine” operation
inside the option monad [�], so that it returns None in case of combination failure. In addition,
my extension also provides an implementation in the Impure monad [�] to maintain compatibility
with the verifier’s implementation. Overall, these two versions of “may combine” and their proof
of correctness represent about 450 new sloc (significant lines of Coq code) in the library. In the
theory, the correctness proof of the FPASVs’ unification represents about 200 sloc (excluding the
implementation proof, which is quite the same except for the Impure monad bureaucracy).

14Calls always have a destination register, but it is not always the case for built-ins.
15Which is already quite complex, since the naive implementation consists of 49 cases and must be simplified using the

“views” design-pattern [8, §5].

https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEtheory.html#symbolic_eq
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.lib.Maps.html#TREE.combine_mostdef
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.lib.Maps.html#TREE.combine_imp_mostdef

6.5 simulation predicate modulo abstract invariants 97

6.5.3 Matching Simulations in a Predicate

The symbolic execution success is encoded by a predicate yielding, from a block level context and a
binary decision tree of type sstate, the final internal state and its associated final symbolic value:

Definition 6.5.9 (“Ok” predicate for SE [�]).

symb_exec_ok ctx ss sis sfv , get_soutcome ctx ss = Some(sout sis sfv)∧ sis_ok ctx sis

The get_soutcome function from Definition 6.4.7 retrieves the pair (sis, sfv) from state ss. For the
predicate to hold, sis must be valid in the sense of Definition 6.4.12.

To check the invariant application in the global simulation predicate, we specify a variant of
predicate 6.5.9 using existential quantifiers:

Definition 6.5.10 (“Ok” predicate for symbolic state transfer [�]).

trss_ok ctx ss , ∃sis sfv, symb_exec_ok ctx ss sis sfv

For final symbolic values, we define the simulation predicate syntactically. Actually, this trick isIn the hash-consed
implementation,
we replace the

structural
comparisons used
for reasoning with

efficient pointer
equalities.

needed to avoid a circularity issue: the semantic simulation on final values involves concrete states,
and here, we aim to provide a notion of simulation to be used with such states. With the abstraction
level of our theory, this syntactical comparison is just an inductive predicate “sfv_simu : iblockctx →
sfval → sfval → Prop” [�]. The constructors of both sfval must of course be the same, and, for each
pair of parameters which are not symbolic values (i.e. neither list_sval or smem), the comparison is
structural. Symbolic values and their mutual variants are compared after evaluationwith σ under ctx.

In contrast, symbolic internal states are compared semantically:

Definition 6.5.11 (Simulation predicate for internal states [�]). Given two states sis1 and sis2 under
ctx, we have:

sistate_simu ctx sis1 sis2 , ∀rs1 m, sem_sistate ctx sis1 rs1 m =⇒
∃rs2, sem_sistate ctx sis2 rs2 m ∧

eqlive_reg (build_frame sis1) rs1 rs2

It may seem confusing to observe that the modulo liveness equality here is performed on sis1, but
in fact, sis1 in this definition is intended to be instantiated (in Relation 6.5.12) with the internal state
after having applied the GI (so that variables dead in the target will have already been filtered)16.

Both executed blocks ssG (the source SE plus the output invariants) and sst (the input invariants
plus the target SE), must satisfy:

Definition 6.5.12 (Modulo liveness relation “�t” for both blocks [�]). Verifying the SE result, the
liveness information, and the final values’ equality together:

match_sexec_live ctx ssG sst , ∀sisG sfvG, symb_exec_ok ctx ssG sisG sfvG =⇒
∃sist sfvt, get_soutcome ctx sst = Some(sout sist sfvt) ∧

(∀r, build_frame sisG r =⇒ build_frame sist r) ∧

sistate_simu ctx sisG sist ∧

(∀rs m, sem_sistate ctx sisG rs m =⇒ sfv_simu ctx sfvG sfvt)

This relation states that for all pairs (sisG, sfvG) obtained from the source execution ssG, there exists
a pair (sist, sfvt) that can be retrieved from the target’s execution sst. The first conclusion ensures,
with get_soutcome, that sst indeed leads to a target pair, and is correct. Second, the implication
between the source and the target frames models the fact that the live variables from ssG (already
filtered with the assignments of the GI) are also live in sst (a bi-implication is not needed here,

16The predicate is also used in Relation 6.5.13 for the HI, but the latter does not impact liveness checking.

https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEtheory.html#symb_exec_ok
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEtheory.html#trss_ok
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEtheory.html#sfv_simu
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEtheory.html#sistate_simu
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEtheory.html#match_sexec_live

6.5 simulation predicate modulo abstract invariants 98

meaning that the sst execution might set more live variables than those filtered in the GI). Third,
both final internal states must simulate in the sense of Definition 6.5.11, and fourth, for all concrete
pairs (rs,m) such that Relation 6.4.13 holds with sisG, final symbolic values sfvG and sfvt must be
syntactically equal.

With this relation on simulated blocks, we enforce the GIs’ correctness (and thus the liveness
information). In Figure 6.3, predicate 6.5.12 corresponds to verifying that ssG �t sst holds given
both states. Nevertheless, we still need a predicate to model the ssH �s sss relation of our simulation
scheme:

Definition 6.5.13 (“Redundancy” relation “�s” for the source’s output history invariant [�]). The
output HI is correct if the symbolic state ssH obtained after executing it is redundant with the
symbolic internal state siss from sss (note that checking the final symbolic value is useless, because
we know that it is not changed by applying the HI on sss). Hence, the relation focuses on internal
states:

match_sexec_redundant ctx ssH siss , ∀sisH sfvH,

get_soutcome ctx ssH = Some(sout sisH sfvH) =⇒ sistate_simu ctx sisH siss

Finally, the complete verification function details how states are built and how the previous
relations aggregate together to capture the simulation scheme of Figure 6.3.

Definition 6.5.14 (Simulation modulo abstract symbolic invariants). For a simulation context “ctx :

simuctx”, a gluemap gm, the source and target BTL blocks ibs and ibt (respectively), and the current
program counter pc, the whole simulation consists of:

1. Building the initial source state Isiss;

2. Executing Isiss with “sexec ibs Isiss” to obtain sss,
and Isist with “sexec ibt Isist” to obtain sst;

3. Computing “ssH = tr_sstate (Bctx1 ctx) (λpc ′. (gm pc ′).(history)) sss” and
“ssG = tr_sstate (Bctx2 ctx) (λpc ′. (gm pc ′).(glue)) sss”;

4. Defining the predicate:

match_sexec_si ctx ssH ssG sss sst : Prop , ∀siss sfvs

symb_exec_ok (Bctx1 ctx) sss siss sfvs =⇒
trss_ok (Bctx1 ctx) ssH ∧ trss_ok (Bctx1 ctx) ssG ∧

match_sexec_redundant (Bctx1 ctx) ssH siss ∧

match_sexec_live (Bctx2 ctx) ssG sst

In Coq, this corresponds to the following definition:
Definition match_sexec_si ctx gm ibs ibt pc: Prop := ∀siss sfvs,

let sss := sexec ibs Isiss in

symb_exec_ok (Bctx1 ctx) sss siss sfvs →
let ssH := tr_sstate (Bctx1 ctx) (λ pc ⇒ history (gm pc)) sss in

let ssG := tr_sstate (Bctx2 ctx) (λ pc ⇒ glue (gm pc)) sss in

trss_ok (Bctx1 ctx) ssH ∧ trss_ok (Bctx1 ctx) ssG ∧

match_sexec_redundant (Bctx1 ctx) ssH siss ∧

match_sexec_live (Bctx2 ctx) ssG (sexec ibt Isist)

Notice the context switch appearing at step 3.: the (output) HI is executed on the source block
context, while we take the target context for applying the (output) GI (as explained in §6.1.2). The ok
predicate validating the transfer of symbolic states concerns only the source side, so it always takes
the source context. The same applies for the redundancy relation. On the other hand, the modulo
liveness relation being specifically designed to check the target liveness, it has to be instantiated
with the target context.

Recall that in the match_function Relation 6.1.1, we universally quantify the input ctx of the above
predicate using Definition 6.4.4.

https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEtheory.html#match_sexec_redundant

6.6 more details on the blockstep simulation proof 99

6.6 more details on the blockstep simulation proof

We proved in §6.4.4.3 that the symbolic execution theory was both correct and exact w.r.t. concrete
BTL states. Hence, two of the four lemmas needed to complete the blockstep proof of Figure 6.2 remainThe proof

presented here is
not essential for a

correct
understanding of

this thesis.

to be proved: the correctness of invariants’ application and the correctness of the modulo liveness
relation. Below, §6.6.1 focuses on the former, and §6.6.2 on the latter; finally, the full simulation
theorem is proved in §6.6.3.

6.6.1 Correctness of Invariants’ Transfer on Final Symbolic States

We want to prove the subdiagram at label (2) of Figure 6.2. The lemma assumes a valid semantic
relation between source concrete final state S2 and final symbolic state sss (in the sense of Defi-
nition 6.4.14), and a successfully terminating SE (i.e. whose outcome from function 6.4.7 is a pair
of an internal state and a final symbolic value “sout siss sfvs”). Moreover, since the relation on
the source and target BTL functions (i.e. the match_function of 6.1.1) is expected to hold17, we know
that both tr_sstate applications from step 3. in simulation Property 6.5.14 led to valid ssH and ssG
symbolic states according to Property 6.5.10. The simulation predicate assumption also implies that
ssH is redundant w.r.t. siss (from Relation 6.5.13). Under these hypotheses, the invariants transfer is
correct if there exists a concrete state SG (using the same names as in Figure 6.2) resulting from the
evaluation of ssG, and if the matching Relation 6.1.3 holds for S2 and SG.

Theorem 6.6.1 (The transfer of invariants after symbolic execution is correct [�]). Let f1 and f2 the
source and target BTL functions, respectively; and let G the global environment. Under a simulation context
ctx : simuctx , we build the function contexts of f1 and f2 as fctx1 : fct_iblockctx = { cf = f1; cc =

Bctx1 ctx } and fctx2 : fct_iblockctx = { cf = f2; cc = Bctx2 ctx }, respectively. Then, for all source and
target call stacks #»

Σ and #»
Σ ′, trace e, concrete state S2, symbolic internal state siss, final symbolic value sfvs,

and symbolic states sss, ssH, and ssG, we have:

sem_sstate triv_frame fctx1
#»
Σ e S2 sss =⇒

get_soutcome (Bctx1 ctx) sss = Some(sout siss sfvs) =⇒
tr_sstate (Bctx1 ctx) (λpc ′. (f2.(fn_gm) pc ′).(history)) sss = ssH =⇒
tr_sstate (Bctx2 ctx) (λpc ′. (f2.(fn_gm) pc ′).(glue)) sss = ssG =⇒
match_sexec_redundant (Bctx1 ctx) ssH siss =⇒
trss_ok (Bctx1 ctx) ssH =⇒ trss_ok (Bctx1 ctx) ssG =⇒

list_forall2 (match_stackframes G)
#»
Σ

#»
Σ ′ =⇒

match_function f1 f2 =⇒

∃SG, sem_sstate sfv_frame fctx2
#»
Σ ′ e SG ssG ∧

match_states G S2 SG

Proof. By induction on the first hypothesis: the Sabort case is thus directly eliminated. The inductive case on
Scond is easily demonstrated by exploiting the induction hypothesis, which becomes applicable by showing
that solving the goal for an Scond state is equivalent to solving it for the successor’s state that results from the
evaluation of the condition (Definition 6.4.2).
When the state is of type Sfinal, each kind of final symbolic value must be considered. All of those share

the same initial step: the idea is to exploit tr_sis_correct with the appropriate instance of FPASV (variable
“si” in Lemma 6.5.3). The “si” instance must correspond to the FPASV built by si_sfv (the function described
in §6.5.2.2) for the final value of the current goal.
Hence, mimicking the description of si_sfv, if the final value has no successor, “si” must be instantiated

with the empty FPASV si_empty (e.g. for tail calls and returns). Otherwise, the theorem must be instantiated

17In practice, the matching relation between BTL functions is the main check performed by our validator. One may
notice that since it already contains the complete simulation property in match_sexec_ok, some other hypotheses are thus
redondant (because they follow from this main matching relation). Albeit relevant, we usually prefer to ignore this remark
and keep redundancies in the proof’s signature when they avoid to repeat some bureaucratic proof steps and facilitate the
overall understanding.

https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_BlockSimulationproof.html#BTL_BlockSimulationproof.tr_sstate_correct

6.6 more details on the blockstep simulation proof 100

with the symbolic invariant of the successor, from which the result register of the final value has been removed
beforehand (if applicable, i.e. for built-ins featuring a result register or calls). For gotos instructions and
built-ins without result register, the FPASV of the successor is taken as is. Last, the jump table case simply
instantiates “si” with the union of the successors’ invariants.

The rest of the proof does not contain any subtleties, and is only about either making use of assumptions or
rewriting with intermediate preservation properties on context switching. For example, it is necessary (for all
Sfinal cases) to show that if Predicate 6.4.13 holds for the source context, then it also holds for the target
one. The latter property trivially follows from the constraint sis_pre_preserved on internal symbolic states
(Definition 6.4.6) and from Lemma 6.4.1 (preservation of sigma-evaluations).

6.6.2 Correctness of the Modulo Liveness Relation w.r.t. Concrete States

Given the assumption that the match_sexec_live predicate from Definition 6.5.12 holds for the
source symbolic state after applying the output GI (ssG) and the target symbolic state after executing
ibt (sst) in Figure 6.2, the goal is to prove the subdiagram at label (3). The second importantImplications

between
implemented
checks and
theoretical

relations (as the
modulo liveness

one, or the
syntactical
equalities of

Definition 6.1.1)
are detailed
in §7.5.3.

hypothesis is exactly the first conclusion of the previous theorem, stating that concrete state SG is the
result obtained by semantically evaluating symbolic state ssG (i.e. the sem_sstate relation). And of
course, we still have the matching relation over BTL functions (of Definition 6.1.1), as in the previous
theorem17. The two first hypotheses correspond to the top horizontal relation (ssG �t sst) and the
left vertical concretization (ssG →e SG) of subdiagram (3) of Figure 6.2, respectively. Therefore, in
order to complete the subdiagram, we must show that the modulo liveness relation on symbolic
states is correct if there exists a concrete state S ′

G resulting from the evaluation of the target symbolic
state (i.e. the concretization step sst → S ′

G) and if both concrete states SG and S ′
G are equivalent

modulo the target program liveness (i.e. relation ≡t).

Theorem 6.6.2 (The modulo liveness relation is correct [�]). Again, we name f1 and f2 the source and
target BTL functions, respectively. This time, we only need the function level context of the target function
fctx2 : fct_iblockctx = { cf = f2; cc = Bctx2 ctx }, built from the simulation context ctx. Indeed, subdiagram
(3) being about concretizing symbolic states after the application of the gluing invariant, the context already
switched. For the same reason, the theorem only considers the target call stack #»

Σ ′ here. The trace emitted by
the program is still noted e. Given the concrete state SG, and symbolic states ssG and sst, the theorem is:

match_sexec_live (Bctx2 ctx) ssG sst =⇒

sem_sstate sfv_frame fctx2
#»
Σ ′ e SG ssG =⇒

match_function f1 f2 =⇒

∃S ′
G, sem_sstate sfv_frame fctx2

#»
Σ ′ e S ′

G sst ∧ SG ≡t S
′
G

Proof. The initial step is to deduce a valid symbolic execution from the sem_sstate assumption on ssG, thanks
to Lemma 6.4.6, leading to an outcome “sout sisG sfvG” and characterized by sem_sistate. After that, we ex-
ploit Lemma 6.4.4 on the resulting sem_sistate hypothesis. This gives us property “sis_ok (Bctx2 ctx) sisG”,
which is needed, along with the get_soutcome from the initial step, to exploit the match_sexec_live as-
sumption.

All the conclusions of Definition 6.5.12 are now available: the result of the SE of sst as a pair “sout sist sfvt”,
the implication between frames of sisG and sist (respectively), the simulation predicate of those two internal
states, and the implication, for any pair (rs,m), between the “ok” predicate for sisG and the “sfv_simu

(Bctx2 ctx) sfvG sfvt” simulation property on final symbolic values. The latter implication is trivial to
resolve since we already know from the first step that there is a valid concretization of sisG (the previous
sem_sistate).
Next, we exploit simulation predicate sistate_simu (Bctx2 ctx) sisG sist (Definition 6.5.11) that we

got after decomposing 6.5.12. Its prerequisite is exactly, here also, the valid concretization from the first step.
This step proves the existence of a target regset resulting from the concrete evaluation of sist, and its modulo
liveness equivalence with the corresponding one for sisG.

In other words, the evaluation sst → S ′
G is demonstrated until the second last instruction, but we still have

to prove it for the final instruction. The rest of the proof is thus by case analysis on final symbolic values: we
split the main goal by inverting the sfv_simu hypothesis.

https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_BlockSimulationproof.html#BTL_BlockSimulationproof.match_sexec_live_correct

6.6 more details on the blockstep simulation proof 101

To construct the whole sst → S ′
G transition, which is encoded by the sem_sstate predicate, each final case

must exploit Lemma 6.4.7. Doing so allows us to define the concrete state S ′
G to instantiate the existential

quantifier of the conclusion. This solves the left part of the goal for all final cases. The equality modulo liveness
on concrete states—i.e. the right part of the goal—is easily proved by eventually rewriting (according to the
considered final case) the monotonicity (cf. §6.4.3.1) and update (Lemma 6.4.2) properties of the frame-scoped
regset equality, and by assumption from the previously decomposed sistate_simu predicate.

6.6.3 Correspondence With the BTL Operational Semantics

Let us explain how we put it all together to obtain the complete proof of diagram 6.2. In the
blockstep transition predicate of the BTL IR, defined in 5.3.7, the diagram actually corresponds to the
exec_iblock transition. Hence, I start by proving the latter as a separate theorem, before constructing
the entire blockstep proof covering the three other types of transitions (for internal/external function
calls, and return states).

6.6.3.1 Normal Blockstep Transition Simulation

We assume a valid blockstep execution of a source block ib1 : iblock_info (in the sense of Defini-
tion 5.3.6), located at pc in the source BTL function f1, and leading to concrete state S2. As before,
we know from the validator check that match_function (Definition 6.1.1) holds between f1 and the
target function f2. In addition, since the standard forward simulation scheme assumes that initial
(concrete) states match (i.e. that they are related by Definition 6.1.3), we add as hypothesis the
concrete invariant semantics (thematch_invs Relation 6.3.11). Still from the concrete state matching
relation, call stacks are expected to match (two-by-two with list_forall2 and Definition 6.1.2). The
goal is therefore to show the existence of a target block, located at the same pc in f2, and whose
blockstep execution results in a concrete state S ′

2, related to S2 by match_states.
Theorem 6.6.3 (Iblock step simulation (Figure 6.2) [�]). With G1 and G2 the source and target global
environments (respectively), #»

Σ and #»
Σ ′ the call stacks, f1 and f2 the source and target functions (respectively),

sp the stack pointer, rs1 and rs2 the source and target initial regsets (respectively),m the memory, e the trace,
and ib1 the source block located at pc and leading to state S2, we write:

iblock_step G1
#»
Σ f1 sp rs1 m ib1.(entry) e S2 =⇒

(fn_code f1)!pc = Some ib1 =⇒
match_function f1 f2 =⇒
match_invs (mk_iblockctx(G1, sp, rs1,m)) (f2.(fn_gm) pc) rs2 =⇒

list_forall2 (match_stackframes G1)
#»
Σ

#»
Σ ′ =⇒

∃ib2 S ′
2, (fn_code f2)!pc = Some ib2 ∧

iblock_step G2
#»
Σ ′ f2 sp rs2 m ib2.(entry) e S ′

2 ∧

match_states G1 S2 S ′
2

Proof. To rely on the simulation test performed by the validator, we exploit the match_sexec_ok property
of match_function (see Definition 6.1.1). We then demonstrate subdiagram (1) of Figure 6.2 thanks to
Theorem 6.4.11. This requires proving two intermediate goals: first, that the transition Isiss → S1 is valid;
and second, that the initial frame of Isiss is well-defined. The former relation is deduced from thematch_invs
hypothesis, and the frame needed for the second goal is trivial from the definition of Isiss.

At that point, we apply Theorems 6.6.1 and 6.6.2 to complete subdiagrams (2) and (3), respectively. Finally,
the exactness of symbolic execution (Theorem 6.4.12) gives us the proof for subdiagram (4). Its application
requires, symmetrically to the correctness subdiagram, to show that transition Isist → S ′

1 is valid. The only
(little) subtlety here concerns the transitivity of the modulo liveness regset equality (cf. §6.4.3.1): indeed,
such a property is needed at the end of the proof to state that SG ≡t S

′
G ≡t S

′
2.

6.6.3.2 Overall Forward Step Simulation

The forward simulation of the whole symbolic execution blockstep pass is following a classical
lock-step scheme (Figure 6.1):

https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_BlockSimulationproof.html#BTL_BlockSimulationproof.iblock_step_simulation

6.6 more details on the blockstep simulation proof 102

Theorem 6.6.4 (BTL Block simulation proof [�]). Sticking to the notations of Figure 6.1, let S1 and S2
the source initial and final states, and S ′

1 and S ′
2 the target initial and final states. The trace is still noted e,

and the source and target global environments G1 and G2, respectively.

step G1 S1 e S2 =⇒ match_states G1 S1 S ′
1 =⇒

∃S ′
2, step G2 S ′

1 e S ′
2 ∧ match_states G1 e S2 S ′

2

Proof. The step hypothesis is destructed to obtain the four kinds of transitions. The exec_iblock case is
straightforward by applying Theorem 6.6.3, and the exec_return transition is solved using constructors from
both conclusions.
The external call case (i.e. exec_function_external) requires showing that call symbols are preserved

between G1 and G2, and this is trivial considering that our validation mechanism do not change them at all.
When the transition is an internal call (i.e. exec_function_internal), the preservation of the stack size gives

us the step conclusion directly, thanks to the preserv_fnstacksize field of Relation 6.1.1. The state matching
is also resolved using properties of match_function: the two properties on invariants at the entry point of the
function (i.e. trivial_glueinv_entrypoint and trivial_histinv_entrypoint), and the preservation checks
for parameters and the entry point (i.e. preserv_fnparams and preserv_entrypoint, respectively).
Property preserv_fnsig is also needed in the proof to show that given S1, the target initial state S ′

1 exists
and matches the former.

Thanks to the above theorem, the symbolic simulation validator is fully integrated and proved as
a normal Chamois-CompCert pass from BTL to BTL. By sequentially combining it with the translation
passes between RTL and BTL (Chapter 8), we get a classical RTL to RTL pass that can be placedwherever
we want in the existing RTL sequence of passes.

https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_BlockSimulationproof.html#BTL_BlockSimulationproof.step_simulation

7
SYMBOL IC S IMULAT ION REF INEMENT AND IMPLEMENTAT ION†

This chapter describes how the symbolic execution theory (of Chapter 6) is refined and efficiently im-
plemented using normalized rewriting, hash-consing, and concrete data structures. The refinementThis chapter only

sketches proofs of
the main SE

theorems and
lemmas; see the
complete Coq
proof online.

of a high-level specification by a lower-level one is inspired by the RTLpath approach (cf. §4.4.4).
As documented in §9.1, compared to RTLpath and other prior experiments, this refinement is
much more intricate. The main novelties are the generalized block structure, the invariants, and the
rewriting methods employed, such as the affine forms essential for strength-reduction validation.
Figure 7.1 and Section 7.1 below give an outline of this chapter.

7.1 high-level view of the architecture

The primary goal of our refinement technique is to circumscribe the reasoning on impure computa-
tions as much as possible. These computations mainly concern the hash-consing mechanism, which
is managed through the Impure monad (presented in §2.4). The implementation—i.e. the code that
will be actually extracted and executed—is split into four modules:

prelude: the base module defining refined states and their (refinement) relation with theoretical
ones, generic operations over refined states, and common hash-consing tools to manipulate
and compare data;

symbolic execution: simulation functions for BTL blocks, and in particular refined versions of
definitions from §6.4.4;

symbolic invariants: functions to transfer invariants on refined symbolic states, and related
properties;

test: main refined simulation test, that implies Definition 6.5.14 of the theory.

The overall architecture is pictured in Figure 7.1, where the plain arrowdenotes the refinement step
(e.g. A→ B means A refines B) and dashed arrows represent dependencies between Coq modules.
Notice that the executionmodule is independent of the symbolic invariants one. Normalization rules
applied during SE are written and proven in an architecture dependent module, that is specified
in §7.2.5 and implemented for two specific optimizations in §7.6.

remark on the refinement strategy In order to reason on concrete types and to make the
link with the theory without being hindered by the monadic encapsulation of Impure while writing
proofs, some parts of our implementation can be refined in two steps. The idea is to incrementally
refine certain functions by separating the concrete data structure refinement from the hash-consing
encapsulation. It results in an intermediate refinement layer which is easier to prove, and whose

Theory (Chapter 6) Implementation prelude (§7.2)

Execution module (§7.4) Invariants module (§7.3)

Simulation test (§7.5)

Architecture Dependent
Rewriting module (§7.2.5 & §7.6)

Refines

Figure 7.1: Architecture of the Refinement Layers.

103

7.2 concrete data structures and operations 104

proof scheme is often applicable to the fully refined layer defined within the monad. However, this
strategy being time-consuming to maintain when Coq proofs evolve, we only exploited it for a few
proofs. A typical example is given with functions accessing a register in a symbolic state: function
sis_sreg of the theory is refined with Definitions 7.2.3 and 7.2.9.

7.2 concrete data structures and operations

The types for symbolic values, whether final or not, are the same between the theory and the
refinement. Only internal and final symbolic states are subject to changes. Refined states, discussed
in §7.2.1, are related to their theoretical models in §7.2.3. Section 7.2.2 outlines an intermediate
refinement model for accessing a refined symbolic regset. The hash-consing mechanism and a
function to hash-cons “fake” symbolic values are presented in §7.2.4, supporting the specification of
the rewriting engine functions in §7.2.5. An efficient implementation of this getter model, utilizing
hash-consing, is found in §7.2.6. Finally, §7.2.7 breaks down the process of setting and rewriting a
value within a refined, hash-consed symbolic regset.

7.2.1 Refined Symbolic States

We propose a refined version of the theoretical internal states from Definition 6.4.6, where the
precondition is replaced by a list of potentially trapping symbolic values, and with concrete data
structures in place of the reg → sval abstract register state.

Definition 7.2.1 (Refined symbolic internal states [�]). The memory representation stays the same:
ris_smem contains the current symbolic memory evaluation. Registers are now stored in a concrete
map from positive integers to symbolic values (with the PTree library) in ris_sreg. This map being
finite, we keep a ris_input_init Boolean to indicate if registers should have a default value or not.
The states’ precondition from our theory is encoded as a list ok_rsval of “ok” values.

ristate , { ris_smem : smem; Same type as in theory.
ris_input_init : bool; When true, the state is in “source” mode.
si_mode : bool; When true, any trapping value assigned to

ris_sreg must be included in ok_rsval.
ok_rsval : # »sval; List of seen trapping values.
ris_sreg : reg 7→ sval option } Symbolic register state.

Final symbolic states (i.e. binary decision trees) are refined simply by replacing theoretical internal
states by concrete ones:

Definition 7.2.2 (Refined symbolic states [�]).

rstate ::= Rfinal(ristate, sfval) | Rcond(cond, list_sval, rstateso, rstatenot) | Rabort

Exactly as in the theory, we define a “get_routcome : iblockctx → rstate → routcome option” [�]
where routcome has the same definition as soutcome but with a refined internal state instead of a
theoretical one.

7.2.2 Model of Symbolic Register Access and Default Values

To imitate the abstract sis_sreg field of theoretical symbolic states, we define a function, called
ris_sreg_get, which returns the symbolic value possibly associated with a register in a certain
ristate. This function seeks the ris_sreg dictionary. If the accessed register is defined, it returns its
value; otherwise, the behavior depends on the ris_input_init Boolean. When the Boolean is true
in a refined symbolic internal state, accessing an undefined symbolic register r returns the default
“input” symbolic value. Otherwise, accessing r results in a validation failure. In other words, the
getter function is total in source mode, and partial in target mode. The definition uses an assert
notation Notation "'ASSERT' A 'IN' B" := (if A then B else None) for the option monad.

https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEsimuref.html#ristate
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEsimuref.html#rstate
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEsimuref.html#get_routcome

7.2 concrete data structures and operations 105

Definition 7.2.3 (Intermediate refinement of the symbolic register getter).
Definition ris_sreg_get (ris: ristate) r: option sval :=

match ris.(ris_sreg)!r with

| None ⇒ ASSERT ris_input_init ris IN Some (fSinput r)

| Some sv ⇒ Some sv

end

This definition is not the getter of the actual implementation (defined in §7.2.6): it corresponds to
an intermediate refinement layer, devoid of hash-consing. Hence, when ris_input_init is true, the
above returns the “fake” symbolic value using fSinput. From here, register accesses through this
intermediate layer are coerced as “ris r”. It is part of our semantics of ristate, as defined below by the
ris_refines relation.

7.2.3 Validity and Refinement Relation

In order to encode the relation between theoretical and refined symbolic internal states, we adapt
the validity property of Definition §6.4.12 as follows:

Definition 7.2.4 (Refined version of the “sis_ok” predicate [�]). Given a refined symbolic internal
state ris, and under the block level context ctx, we impose that all values defined in ok_rsval evaluate
without error.

ris_ok ctx ris , σsm(ctx, ris.(ris_smem)) 6= None ∧

∀sv, sv ∈ ris.(ok_rsval) =⇒ σsv(ctx, sv) 6= None

The theory’s version of validity is stronger, as it imposes that all defined registers evaluate correctly.
For the symbolic memory, we keep the same constraint.

We now build the refinement relation as the conjunction of four properties:

Definition 7.2.5 (Refinement relation between symbolic internal states [�]). Still under a block
context ctx, and considering ris and sis as the two internal states:

ris_refines ctx ris sis , sis_ok ctx sis ⇐⇒ ris_ok ctx ris ∧

ris_ok ctx ris =⇒ σsm(ctx, ris.(ris_smem)) =

σsm(ctx, sis.(sis_smem)) ∧

ris_ok ctx ris =⇒ ∀r, ris r = None ⇐⇒ sis r = None ∧

ris_ok ctx ris =⇒ ∀r, |σsv|(ctx, ris r) = |σsv|(ctx, sis r)

For ris to be a valid refinement of sis, the equivalence of their validity predicates is necessary.
Furthermore, assuming that ris is a valid refined state:

• both symbolic memories from ris and sis must evaluate to the same concrete value;

• any dead register in ris must also be dead in sis, and vice-versa;

• conversely, any live register in ris must also be live in sis, and evaluate to the same concrete
value, and vice-versa.

In the last clause, we encapsulate the σsv function into a new one |σsv| [�], of type “iblockctx →
sval option→ val option”. It returns σsv(ctx, sv) when the option argument is “Some sv”, and None

otherwise.

Note that we cannot decompose this refinement relation into an abstraction function ristate →
sistate and an equivalence relation between the result and the original state. Indeed, any symbolic
register of a valid abstract state evaluates correctly. This is generally not true for refined states (i.e. their
validity condition is weaker) unless, precisely, the refinement relation holds. An alternative design
that would enable the definition of ris_refines as the composition of an abstraction function and an
equivalence on sistate would involve adding a wellformedness field to both the abstract and the
refined types.

Extending Relation 7.2.5 for rstate is straightforward with an inductive property:

https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEsimuref.html#ris_ok
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEsimuref.html#ris_refines
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEtheory.html#eval_osv

7.2 concrete data structures and operations 106

Definition 7.2.6 (Refinement relation between symbolic states). We parametrize the property with
a Boolean, so we can instantiate it for either the source or target states. In the inductive case, we
reuse the evaluation of conditions from Definition 6.4.2.

Inductive rst_refines (input_init: bool) ctx: rstate → sstate → Prop :=

| Reffinal ris sis rfv sfv

(RIS: ris_refines ctx ris sis)

(RIS_init: ris_input_init ris = input_init)

(RFV: ris_ok ctx ris → rfv_refines ctx rfv sfv)

: rst_refines input_init ctx (Rfinal ris rfv) (Sfinal sis sfv)

| Refcond rcond cond rargs args rifso rifnot ifso ifnot

(RCOND: eval_scondition ctx rcond rargs = eval_scondition ctx cond args)

(REFso: eval_scondition ctx rcond rargs = Some true →
rst_refines input_init ctx rifso ifso)

(REFnot: eval_scondition ctx rcond rargs = Some false →
rst_refines input_init ctx rifnot ifnot)

: rst_refines input_init ctx (Rcond rcond rargs rifso rifnot)

(Scond cond args ifso ifnot)

| Refabort

:rst_refines input_init ctx Rabort Sabort

Here, “rfv_refines : iblockctx → sfval → sfval” [�] represents the refinement relation for final values.
It features one constructor per final symbolic value, and holds if (i) both final values are of the same
type; (ii) their symbolic arguments evaluate to the same concrete values; (iii) other arguments (e.g.
call identifiers) are structurally equal.

The validity predicate, along with the refinement relations for internal states and final values, are
preserved during context switching1.

7.2.4 The Hash-Consing Mechanism

Knowing that storing and comparing structurally symbolic values is very costly due to duplications,
our implementation leverages a hash-consing factory, enabling us to share identical subtrees and
providing a constant-time pointer equality check. To ensure the safety of this latter check, as justified
in §2.4.3, we embed it within the Impure monad, which prevents unsafe reasoning about the purity
of functions. I have already briefly introduced the defensively checked hash-consing in §2.4.2, as
well as the generic method to compare terms in §2.4.4. When applied to symbolic values, we only
use pointer equality to compare subterms (i.e. of type sval , list_sval , and smem). Other data types
(e.g. Coq constructors, registers’ IDs, etc.) are compared structurally.

notations for the impure monad In this chapter, I keep the “ ” and “RET” notations for the
may-return and unit operators of §2.4.4. Any function within Impure (i.e. with a may-return type
??A) can either succeed by yielding a result (with “RET”), or fail and abort the whole compilation
process. In the following sections, we denote “FAILWITHmsg” the latter, to abort with errormessage
msg. From the caller’s point of view, a “DO x f; ; C” notation attempts to extract the Impure result
of f into x before executing C, and aborts execution if the function has failed. Technically, the failing
case is extracted to a raise instruction in OCaml.
For a full description of Impure, please refer to Boulmé [23, Chapter 2]’s habilitation thesis.

7.2.4.1 Equality Checkers

To parametrize the hash-consing factory and implement the simulation test, we use two equality
checks from Impure: the physical (pointer) equality (cf. §2.4.4), and a structural check with a
stronger correctness property.

1These simple demonstrations are available at [�] (validity); [�] (refinement relation for internal states); [�] (refinement
relation for whole states); [�] (refinement relation for final values).

https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEsimuref.html#rfv_refines
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEsimuref.html#ris_ok_preserved
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEsimuref.html#ris_refines_preserved
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEsimuref.html#rst_refines_trsis_final_preserved
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEsimuref.html#rfv_refines_preserved

7.2 concrete data structures and operations 107

structural equality Unlike the physical equality’s partial correctness axiom, which only gives
information when the result is true (but does not allow concluding anything when the result is
false), the structural equality covers both cases. It is defined as an axiom extracted to the standard
OCaml equality:
Axiom struct_eq: ∀ {A}, A → A → ?? bool

Extract Inlined Constant struct_eq ⇒ "(=)"

Axiom struct_eq_correct: ∀ A (x y:A), struct_eq x y b → if b then x=y else x<>y

Note the difference with phys_eq: when the structural equality returns false, we know that both
values are different w.r.t. the Coq (i.e. Leibniz) equality2. From here, physical equality is denoted
with operator “==”.

pure pointer equality In the upcoming discussions, we will identify a need for a more stream-
lined and efficient approach to working with the Impure monad. Specifically, in §7.6.2, we propose a
normalization procedure for affine forms that necessitates a total order over symbolic values. Addi-
tionally, in §7.2.4.3, we will find that it is advantageous for our rewriting engine (which goes beyond
the affine normalization) to avoid working inside the Impure monad. Addressing these needs, we
introduce a significant improvement: a pure pointer equality as seen from a Coq perspective.
To implement this idea, we start by defining a notion of impure assertion:Type “pstring”

here abstracts
strings from the
Coq and OCaml

standards
together; it is

defined by
Impure.

Definition assert_k (k: ?? bool) (msg: pstring): ?? unit

:= DO b k;; if b then RET tt else FAILWITH msg

This mechanism extracts the impure computation as an assertion that either returns ??tt (“tt” being
the “unit” type in Coq) or fails. It satisfies:
Lemma assert_k_correct (k: ?? bool) (msg: pstring):

assert_k k msg _ → k true

(* Trivial by definition of assert_k. *)

Qed

Then, we define the notion of a safe exit coercion from the monad as:
Definition safe_coerce (k: ?? bool) (msg: pstring): bool := has_returned (assert_k k msg)

By encapsulating the assertion into the Impure’s termination operator (for Boolean functions),
“safe_coerce” exits the monad and returns a Boolean result. At runtime, the result is never false
(recall the definition of “has_returned” in §2.4.4): the only alternative is non-termination (an abort
inside the impure computation). Hence, when “safe_coerce” yields true, we prove that the impure
computation terminated successfully:
Lemma safe_coerce_correct (k: ?? bool) (msg: pstring):

safe_coerce k msg = true → k true

(* By unfolding safe_coerce and exploiting the has_returned correctness axiom

The remaining goal corresponds to lemma assert_k_correct above. *)

Qed

Deducing the pure pointer equality we aim at using this safe coercion is quite easy:

Definition 7.2.7 (A fast, pure pointer equality test).
Definition very_fast_eq_msg: pstring := "very_fast_eq failed"

Definition very_fast_eq {A} (x:A) (y:A): bool := safe_coerce (phys_eq x y) very_fast_eq_msg

Here again, the above definition is pure since it can never return false. If x is different from y, function
very_fast_eq will abort the compiler.

2Please note, declaring this polymorphic struct_eq as a pure function would amount to positing the axiom that Coq’s
polymorphic equality is decidable, which is a very strong and potentially dangerous assumption. With the Impure monad,
those axioms have a very simple model in Coq: the function that never returns. The struct_eq_correct axiom is also
presumably consistent with extraction to OCaml even if function equality is axiomatized as extensional (which is the case in
CompCert). This is because OCaml’s structural equality raises an exception in case of function comparisons.

Technically, we could completely do away with struct_eq, with the usual technique in Coq consisting of defining
decidable monomorphic equalities. It is just a convenience when we are already computing in the Impure monad. And it is
probably also a bit more efficient.

7.2 concrete data structures and operations 108

Let me explain why doing so is interesting in practice. Knowing that pointer equality always
implies structural equality, we can prove that:

Lemma 7.2.1 (Very fast equality is correct).

Lemma very_fast_eq_correct {A} (x y: A): very_fast_eq x y = true → x=y

Proof. By unfolding very_fast_eq and exploiting the safe_coerce_correct lemma, we reduce the goal to
exactly lemma phys_eq_correct (from §2.4.4).

total order over symbolic values The above enhanced pointer equality solves two issues:
its purity avoids the monad, and when used in conjunction with hash-consing, it enables to define
a total order over symbolic terms. In fact, each symbolic value stores an integer in its root, which
is expected to uniquely identify it [23, §3.3.2]. This identifier provides a simple and efficient total
order over symbolic values that we do not even need to prove correct.

In Impure, unique hash-consing identifiers are abstracted in a type called “hashcode” [�]. This
type is declared as a Coq axiom (i.e. stating that there exists an opaque type called “hashcode”),
and is extracted to the OCaml type used by hash-consing oracles (the integer—“int”—type). The
comparison of hash codes must also be performed via axioms, as this type is abstract for Coq:

Axiom hashcode_eq: hashcode → hashcode → bool

Extract Inlined Constant hashcode_eq ⇒ "(=)"

Axiom hashcode_lt: hashcode → hashcode → bool

Extract Inlined Constant hashcode_lt ⇒ "(<)"

Observe the return type of these axioms: contrarily to structural and pointer equalities, we use a
pure Boolean value here.

In theory, two values identified with the same unique hash code should always be equal. Nonethe-
less, deducing pointer equality from the equality of hash codes could be dangerous in case of a poor
management of the hash-consing mechanism. Our framework never relies on hash codes to infer
equality: even when hash codes are equal, pointer equality is still upheld:

Definition fast_eq {A} (h: A → hashcode) (x y: A): bool :=

if hashcode_eq (h x) (h y) then very_fast_eq x y else false

Lemma fast_eq_correct A (h: A → hashcode) (x y: A):

fast_eq h x y = true → x=y

(* By congruence for the case where (h x) <> (h y),

and by applying very_fast_eq_correct otherwise. *)

Qed

With the fast_eq definition, we are now able to provide a full comparison for hash codes. The
latter is used exclusively for the normalization process of our rewriting engine.

Definition 7.2.8 (A total order over symbolic, hash-consed terms).

Definition fast_cmp {A} (h: A → hashcode) (x y: A): comparison :=

if fast_eq h x y then Eq

else if hashcode_lt (h x) (h y) then Lt else Gt

Lemma fast_cmp_Eq_correct A (h: A → hashcode) (x y: A):

fast_cmp h x y = Eq → x=y

(* For the ifso case, by applying fast_eq_correct, and by congruence otherwise. *)

Qed

Similarly to [23] & [135]†, the correctness of our normalization modulo hash-consing is therefore
only derived from a soundCoqmodel of OCaml pointer equality. Note that a bug in the hash-consing
mechanism makes—at worse—the verifier fail to prove some expected equalities.

However, the impure version of physical equality is not entirely replaced in the framework.
Indeed, the pure test, which aborts the program in case of unequal values, is not suitable for use in the
hash-consing factory, where it is necessary to compare values without aborting the program.

https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.lib.Impure.ImpPrelude.html#hashcode

7.2 concrete data structures and operations 109

7.2.4.2 Instantiating the Factory

The Impure library provides a polymorphic hCons : hashP A → ??(hashConsing A) factory that
creates a hash-consing function for any type A. To do so, it requires three pieces of information
about the type to be hash-consed, transmitted with the hashP A record [�]:

hashP A , {hash_eq : A→ A→ ??bool;
get_hid : A→ hashcode;
set_hid : A→ hashcode→ A; }

We want to hash the three mutual variants of our symbolic values, so we have to define a hashP

record for each of them. Our three get_hid getters are very simple: they contain a pattern-matchingThe hash codes
getters and setters

are available in
Coq here [�]; and
the hash equality

functions
here [�].

on each constructor of the mutual variant considered, and return their “hid” field. The set_hid
setters also match constructors to update their “hid” field and return the new symbolic value variant.
And hash_eq must be filled with an equality function (in the monad) that compares two values of
type A. For instance, the smem mutual variant of hash_eq is defined as follows:
Definition smem_hash_eq (sm1 sm2: smem): ?? bool :=

match sm1, sm2 with

| Sinit _, Sinit _ ⇒ RET true

| Sstore sm1 chk1 addr1 lsv1 sv1 _, Sstore sm2 chk2 addr2 lsv2 sv2 _ ⇒
DO b1 lsv1 == lsv2;;
DO b2 sm1 == sm2;;
DO b3 sv1 == sv2;;
DO b4 struct_eq chk1 chk2;;

if b1 && b2 && b3 && b4 then struct_eq addr1 addr2 else RET false

| _, _ ⇒ RET false

end

Above, smem_hash_eq uses pointer equality to compare symbolic value’s variants, and structural
equality otherwise (here for chunks and addresses). Our comparison only checks addresses if
necessary to be more efficient. The sval and list_sval versions of hash_eq are similar, and do not
require recursion (e.g. for list_sval , list constructors Scons(sv, lsv) are directly compared by applying
“==” on both sv and lsv).

Oncewe have those three hashP records, applying hCons to them gives us the three corresponding
hash-consing functions hC_sv, hC_lsv and hC_sm:
Record HashConsingFcts := {

hC_sv: hashinfo sval → ?? sval;

hC_lsv: hashinfo list_sval → ?? list_sval;

hC_sm: hashinfo smem → ?? smem

}

Where hashinfo is a record containing the value and a list of hash codes corresponding to the hash
IDs of its subterms.
Record hashinfo (A : Type) : Type := Build_hashinfo { hdata : A; hcodes : list hashcode }

Lists of hash codes are built by generating—via the library hash function—the hash IDs of each
argument. For instance, a Sop symbolic value’s list of hash codes will contain the hash ID of the
operation and of its list of arguments (e.g. the hid field of type list_sval). We expect that hashinfo
values verify the equivalence ∀(x y : hashinfo),

hash_eq (hdata x) (hdata y) ⇐⇒ (hcodes x) = (hcodes y).
The correctness properties of this instantiation are proved thanks to a lemma from Impure [�],

stating that hash-consing functions obtained with hCons behave like the identity if we ignore hash
codes. In our Coq code, we group these properties in a class:
Class HashConsingHyps (HCF: HashConsingFcts) := {

hC_sv_correct: ∀ s, HCF.(hC_sv) s s' → ∀ ctx,

σsv(ctx,hdata s) = σsv(ctx,s');

hC_lsv_correct: ∀ l, HCF.(hC_lsv) l l' → ∀ ctx,

σlsv(ctx,hdata l) = σlsv(ctx,l');

https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.lib.Impure.ImpPrelude.html#HConsingDefs.hashP
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEsimuref.html#sval_get_hid
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEimpl_prelude.html#sval_hash_eq
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.lib.Impure.ImpHCons.html#HConsing.hCons_correct

7.2 concrete data structures and operations 110

hC_sm_correct: ∀ m, HCF.(hC_sm) m m' → ∀ ctx,

σsm(ctx,hdata m) = σsm(ctx,m')

}

This allows each implementation module to be parametrized by those functions: the prelude,
and both the symbolic execution and the symbolic invariants modules. They are declared as Coq
sections taking as context variables the above record and class.

7.2.4.3 Projection of “Fake” Symbolic Values

All symbolic values that will be created during SEwill be immediately hash-consed; however, to simplify
the rewriting engine specified in §7.2.5, it is easier to let it produce “fake” (i.e. partially hashed)
symbolic values, so that it does not need to operate inside the Impure monad, and will be easier to
prove correct (i.e. hash-consing is delayed). On the other hand, when these partially hashed values
return from the rewriting engine to the SE, they need to be fully hashed prior to being assigned to
a symbolic register. Moreover, supposing arbitrary rewrites, the resulting “fake” values might be
nested, which requires us to potentially hash them recursively.

The preludemodule thus defines a (recursive) projection function “fsval_proj : sval → ??sval” [�]
that transforms any partially hashed symbolic value into its hashed version. If the argument was
already hash-consed (we verify this by comparing its hid field with the default unknown_hid, equal
to −1), the value is not touched; otherwise, it is hash-consed (recursively) and equipped with
a new hid. The result is returned within the Impure monad, so that it cannot be considered as
deterministic. Function fsval_proj thus assumes that in the input term, every subterm with a hid

different from unknow_hid is fully hashed. If the rewrites do not respect this precondition, the only
possible consequence is that the verifier will fail to prove equalities, which does not contradict its
correctness.
The partial correctness theorem of our projection function states that [�]:

∀sv, fsval_proj sv sv ′ =⇒ ∀ctx, σsv(ctx, sv) = σsv(ctx, sv
′)

7.2.5 Specification of the Rewriting Engine

Our SE framework includes a rewriting engine based on proven normalization rules. We use it toTwo different
applications of
this rewriting
mechanism are

proposed in §7.6.

rewrite classical operations in §7.2.7.3 and conditional branches in §7.4.2. Rewriting occurs on both
the source and target sides of SE. For operations, rewriting also occurs on the invariants’ execution3.
The engine is called each time an operation is assigned to a symbolic register, and at each execution
of a BTL block’s conditional branch.

7.2.5.1 Our Generic Rewriting System

The rewrite_ops subroutine of Definition 7.2.11 handles operations, and has the following signature
“rewrite_ops : R → op → list_sval → sval option”. Similarly, branches are managed with the
rewrite_cbranches subroutine from Definition 7.4.2, whose specification is “rewrite_cbranches :

R → ristate → cond → # »regarg → (cond ∗ list_sval) option”. In both signatures, R is a sum type—
defined in §7.6—indicating the set of normalization rules to use. For operations, this simply means
that given a BTL operation and its list of symbolic arguments, the engine may yield a rewritten
symbolic value. The case of branches is a bit different: instead of directly taking the symbolic
arguments, we use the concrete arguments (i.e. registers) along with an instance of the current
internal state to retrieve them4. Since rewriting a conditional can not only change its (symbolic)
arguments, but also the condition type itself, rewrite_cbranchesmay return a tuple containing both
the (potentially) new condition and the new symbolic arguments.

Our normalization rules are always applied at the top of hash-consed terms, like a smart constructor.
The rewritten terms are then turned into proper hash-consed terms using the projection function
of §7.2.4.3. This both simplifies the implementation of normalization rules and its formal proof. Func-
tion rewrite_ops yields a single “fake” symbolic value, and the pair returned by rewrite_cbranches

3This is not the case for branches, since they are not represented in our invariants.
4Note that the same signature used for operation rewrites could have been applied here; the difference is merely technical.

https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEimpl_prelude.html#fsval_proj
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEimpl_prelude.html#fsval_proj_correct

7.2 concrete data structures and operations 111

contains “fake” symbolic arguments. We do not hash-cons conditions, meaning that the new pair is
directly incorporated into the symbolic binary decision tree, as visible in Definition 7.4.3.

7.2.5.2 Correctness Property to Satisfy

When implementing the rewriting mechanism by adding normalization rules specific to a given
optimization, one needs to maintain the related correctness property.
For operation rewrites, it is expressed as follows:

Theorem 7.2.2 (The rewriting procedure for operations is correct [�]). Let “R : R” the set of rules,
ctx the block level context, op the operation, and lsv its symbolic arguments. For all lsv ′ and fsv of types
list_sval and sval , respectively, and for all lists of concrete arguments (as CompCert values) # »arg, we want:

rewrite_ops R op lsv = Some fsv =⇒ σlsv(ctx, lsv) = σlsv(ctx, lsv
′) =⇒

σlsv(ctx, lsv
′) = Some

»arg =⇒ σsv(ctx, fsv) = b(op, # »arg)cctx

We first assume that the rewrite “(op, lsv)R 7→ fsv” succeeded. Second, we assume that lsv ′ is semantically
equivalent to lsv, and that evaluating lsv ′ yields the list of the operation’s concrete arguments. Then, the
theorem states that evaluating the rewritten “fake” symbolic value fsv leads to the same result as executing
the concrete operational semantics on (op, # »arg). All steps are performed under the execution context ctx.
Note that we do not even require lsv and lsv ′ to be syntactically equal here: they only need to evaluate to

the same result.

The correctness property for branch rewrites makes use of the refinement relation to prove the
mapping from concrete to symbolic arguments5. In function rewrite_cbranches, we thus retrieve
symbolic arguments by accessing the state using Definition 7.2.3.

Theorem 7.2.3 (The rewriting procedure for branches is correct [�]). We consider the rules set R,
the context ctx, the current internal refined state hrs, its theoretical equivalent sis, and the (cond, #»r) pair
containing the condition type and its concrete arguments (which is, this time, provided as a list of registers).
Then, for all rewritten pair (cond ′, flsv) with flsv a “fake” (i.e. partially hash-consed) list_sval , and for all
“lsv : list_sval”, the property to verify is:

rewrite_cbranches R hrs cond #»r = Some (cond ′, flsv) =⇒ ris_refines ctx hrs sis =⇒
ris_ok ctx hrs =⇒ lmap_sv sis #»r = Some lsv =⇒
eval_scondition ctx cond lsv = eval_scondition ctx cond ′ flsv

Here also, we assume a successful rewrite “(cond, #»r)R 7→ (cond ′, flsv)”. In addition, we need a valid
refinement relation between hrs and sis, and a valid hrs in the sense of property 7.2.4. The theorem assumes,
with the help of Definition 6.4.18, a correct mapping from concrete arguments to symbolic ones through sis,
yielding the list lsv. If these conditions are satisfied, then pairs (cond, lsv) and (cond ′, flsv) are proved to
evaluate to the same result (of type “bool option”, cf. Definition 6.4.2).

Of course, the proofs of both theorems depend on the rewrites that are actually implemented in
the backend. Normalization rules, which are in the option monad, must be proved to always yield
an output semantically equivalent to their input when they succeed.

7.2.6 Hash-Consed Symbolic Register Access

With our hash-consing instance, we can now propose a hash-consed version of Definition 7.2.3, that
builds a real hashed input term when the value to access does not exist. Of course, this forces our
new getter to be within the Impure monad.

Definition 7.2.9 (Implementation of symbolic register getter). The code is almost the same as in
the intermediate refinement version, except that the “None” case of the option monad is replaced by
the failure case of the Impure monad, which aborts the compilation process with an error.

5This is a technical detail. It comes from the fact that operations are rewritten during the assignment procedure of
symbolic regsets, which also requires symbolic arguments. We thus compute them before for operations, in Definition 7.3.4.
We could have done the same for branches, although this conception is a remnant of RTLpath.

https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.riscV.BTL_SEsimplifyproof.html#rewrite_ops_correct
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.riscV.BTL_SEsimplifyproof.html#rewrite_cbranches_correct

7.2 concrete data structures and operations 112

Definition hrs_sreg_get (hrs: ristate) r: ?? sval :=

match hrs.(ris_sreg)!r with

| None ⇒ if ris_input_init hrs then hSinput r

else FAILWITH "hrs_sreg_get: dead variable"

| Some sv ⇒ RET sv

end

Where “hSinput” constructs a hash-consed Sinput value. If the requested symbolic register ID is
undefined in target mode (when ris_input_init is false), it means that the execution tried to access
a dead variable, as indicated by the error message of the monad.

This new definition is proved correct by two separate properties. First, by relating it to the
intermediate refinement’s version:

Lemma 7.2.4 (Symbolic register access is correct [�]).

∀(hrs : ristate) r, hrs_sreg_get hrs r hsv =⇒
∀ctx (sreg : reg→ sval option), (∀r ′, |σsv|(ctx, hrs r

′) = |σsv|(ctx, sreg r ′)) =⇒
|σsv|(ctx, Some hsv) = |σsv|(ctx, sreg r)

Proof. By extracting the monad result (since the first hypothesis assumes a success) and by rewriting the
second hypothesis.

And second, by showing that if accessing register r in refined state hrs returns a value, and if hrs
is a valid refinement of theoretical state sis, then sis cannot be undefined for r.

Lemma 7.2.5 (A successful register access on refined state cannot be undefined on its abtract
equivalent [�]).

∀(hrs : ristate) r, hrs_sreg_get hrs r hsv =⇒
∀ctx sis, ris_ok ctx hrs =⇒ ris_refines ctx hrs sis =⇒
sis r = None =⇒ False

Proof. By rewriting the alive equivalence from the third hypothesis.

7.2.7 Setting Values in a Symbolic Register

7.2.7.1 Set & Reduce Operation on Refined Symbolic Regsets

When a refined internal state is in source mode, we saw that any undefined register r will be
mapped by default to “fSinput r”. Hence, executing the assignment “ris r ← fSinput r” when
“ris.(ris_input_init) = true” would be redundant with the default value. We avoid such useless
assignments using a set & reduce operation over the symbolic regset:

Definition 7.2.10 (Set and reduce value into the symbolic regset of refined states).
Definition red_PTree_set (r: reg) (sv: sval) (ris: ristate): PTree.t sval :=

match (ris_input_init ris), sv with

| true, Sinput r' _ ⇒
if r = r' then (* Remove useless assignment *)

PTree.remove r' ris.(ris_sreg)

else ris.(ris_sreg)!r ← sv

| _, _ ⇒ ris.(ris_sreg)!r ← sv

end

The function returns a new PTree that should replace the old one in ris. It features several related
properties, available in Coq online [�]; I summarize some of them below:

1. Correctness “Some”: ∀ctx (r r0 : reg) ris sv sv ′,

{ ris with sreg = red_PTree_set r sv ris } r0 = Some sv =⇒
{ ris with sreg = ris.(ris_sreg)!r← sv } r0 = Some sv ′ =⇒
σsv(ctx, sv) = σsv(ctx, sv

′)

https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEimpl_prelude.html#hrs_sreg_get_correct
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEimpl_prelude.html#hrs_sreg_get_nofail
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEimpl_prelude.html#red_PTree_set_correct

7.2 concrete data structures and operations 113

2. Correctness “None”: ∀ctx (r r0 : reg) ris sv,
{ ris with sreg = red_PTree_set r sv ris } r0 = None ⇐⇒
{ ris with sreg = ris.(ris_sreg)!r← sv } r0 = None

3. Refines “Some”: ∀ctx (r r0 : reg) ris sis sv sv ′ osv,

σsv(ctx, sv) = σsv(ctx, sv
′) =⇒

ris_ok ctx ris =⇒ ris_refines ctx ris sis =⇒
{ ris with sreg = red_PTree_set r sv ris } r0 = osv =⇒
|σsv|(ctx, osv) = |σsv|(ctx, r = r0 ? Some sv ′ : sis r0)

4. Refines “None”: ∀ctx (r r0 : reg) ris sis sv sv ′,

ris_ok ctx ris =⇒ ris_refines ctx ris sis =⇒
{ ris with sreg = red_PTree_set r sv ris } r0 = None ⇐⇒
set_sreg r sv ′ sis r0 = None

7.2.7.2 Root Symbolic Values as Right-Hand Sides of Affectations

The set & reduce operation of Definition 7.2.10 assigns a symbolic value to a refined internal state,
producing a new symbolic regset. Nonetheless, our symbolic simulation is designed to handle either
executing BTL blocks (i.e. BTL instructions of Figure 5.1) or compact symbolic invariants (i.e. values
of type ival from Definition 6.2.3). Therefore, we require an operation that can assign both types of
values—BTL instructions and ival—to a given internal state, by transforming them into symbolic
values beforehand.

Since only two types of BTL instructions modify the symbolic register set (arithmetic operations
and memory loads6, cf. §6.2.2.2), our solution defines an assignment operation working with the
root symbolic values of Definition 6.2.3. An ival of type Iop is natively compatible (as it directly
includes a root_op), and type Ireg trivially reduces to a symbolic value (it suffices to retrieve the
value attached to its register, see §7.3.2). For BTL’s arithmetic operations and loads, the conversion
to root_op is a natural abstraction.

In the next section, we convert these root symbolic values to actual ones while simplifying them
(with eventual rewrites). The resulting sval is then assigned to the symbolic regset. However, poten-
tially trapping symbolic values must be appended to the list of “ok” values of the state without being
rewritten. Doing so require a preserving (without rewriting) conversion from root_op to sval . In
the theory, this was the role of function root_apply; its implementation—namely root_happly [�]—is
almost the same except that it replaces “fake” constructors (fSop and fSload) with hash-consing
ones. Consequently, its old sval return type becomes ??sval .

7.2.7.3 Simplifying Right-Hand Sides Before Writing in the State

To validate the replacement of an instruction sequence with an equivalent, more efficient sequence,
we must rewrite symbolic values before they are assigned to the symbolic state. For this purpose,
we define a simplification function, which transforms a root symbolic value into an actual one while
potentially rewriting it. Below, hSop and hSload are the hash-consed constructors for operations and
loads, respectively.

Definition 7.2.11 (Simplify a root symbolic value).

Definition simplify (rsv: root_op) (lsv: list sval) (lhsv: list_sval) (sm: smem): ?? sval :=

match rsv with

| Rop op ⇒
match is_move_operation op lsv with

| Some arg ⇒ fst_lhsv_imp lhsv

| None ⇒
match rewrite_ops R op lsv with

| Some fsv ⇒ fsval_proj fsv

| None ⇒ hSop op lhsv

6We do not consider final values because these are handled differently with their symbolic equivalent and are never
applied to internal symbolic states.

https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEimpl_prelude.html#root_happly

7.2 concrete data structures and operations 114

end

end

| Rload _ chunk addr ⇒ hSload sm NOTRAP chunk addr lhsv

end

Given a root value rsv, two representations of its arguments (here lsv and lhsv), and a symbolic
memory:The mini rewrites

for moves and
loads originate

from the
RTLpath

implementation
of Six [133,

§7.3.3].

• When rsv represents an arithmetic operation, we check if it is a move (a copy from a register
to another) by examining op and the number of symbolic arguments (which should be exactly
one). If it is indeed a move, we directly replace it with its first symbolic argument to lighten
the symbolic state (function fst_lhsv_imp [�] extracts the head of lhsv). Otherwise, we call
the rewriting engine for operations rewrite_ops with op, lsv, and a normalization rules policy
R (see §7.6). If no rewriting applies on the operation, the function will yield None as the option
result and will simply convert rsv to a hash-consed symbolic value (mimicking the behavior of
root_happly). Otherwise, a partially hashed rewritten value is yielded, before being projected
to its fully hashed equivalent with fsval_proj.

• When rsv is a memory load, we build a corresponding hash-consed symbolic value with the
“trapping” flag set to NOTRAP (i.e. false). This mini-rewriting allows to normalize the loads
assigned in the symbolic register state (they are always marked as non-trapping) and does
not cause any issues since trapping loads are in the precondition (list ok_rsval) anyway.

The list of symbolic arguments is passed in two formats because it is simpler, and avoids multiple
conversions7.

7.2.7.4 Assigning a Root Symbolic Value to a Refined Internal State

The assignment of a root_op to a ristate is split in two functions: one for the potentially trapping
case, and one for the non-trapping case. Both functions take the two representations of arguments,
the root value, the refined state, and the destination register r. Assigning a non-trapping value
is quite simple, and only requires computing the rewritten symbolic value with Definition 7.2.11
before setting the result in the state:

Definition 7.2.12 (Non-trapping root symbolic value assignment [�]).

hrs_rsv_set_notrap r (lsv :
»sval) (lhsv : list_sval) rsv hrs : ??ristate ,

DO simp simplify rsv lsv lhsv hrs.(ris_smem); ;
RET {hrs with sreg = red_PTree_set r simp hrs }

For values that may trap, the procedure is a bit more complex: in addition to calling the simplifica-
tion procedure, we might have to modify the state’s precondition. In fact, it depends on the si_mode

Boolean, which is false by default, and true only when applying the (history or gluing) invariant on
a final state (i.e. in output). Intuitively, this simply encodes the fact that transferring an invariant
after symbolic execution must not add a potential failure (i.e. an operation that may trap) to the
final state. In our definition, we enforce this constraint by verifying that the value to assign is already
present in the precondition of hrs (when si_mode = true). When we apply the input invariant, or
during SE (i.e. when si_mode = false), we only append the value to ok_rsval.

Definition 7.2.13 (Possibly-trapping root symbolic value assignment [�]).

hrs_rsv_set_trap r (lsv :
»sval) (lhsv : list_sval) rsv hrs : ??ristate ,

DO sv root_happly rsv lhsv ris.(ris_smem); ;
DO ok_lsv (

if ¬hrs.(si_mode) then RET (sv :: hrs.(ok_rsval)) else (

if sv ∈ hrs.(ok_rsval) then RET hrs.(ok_rsval)
7For instance, the is_move_operation comes from a RTL module, and requires a Coq list, while our hash-consed

constructors operate with the inductive list_sval type.

https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEimpl_prelude.html#fst_lhsv_imp
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEimpl_prelude.html#hrs_rsv_set_notrap
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEimpl_prelude.html#hrs_rsv_set_trap

7.3 refined execution of symbolic invariants 115

else FAILWITH “adding potential failure”)); ;
DO simp simplify rsv lsv lhsv hrs.(ris_smem); ;
RET {hrs with sreg = red_PTree_set r simp hrs; ok_rsval = ok_lsv }

Technically, the inclusion test compares (within the Impure monad) iteratively each value of
hrs.(ok_rsval) with sv using the efficient pointer equality check [�]. We could probably reduce the
cost of this test to a constant amortized cost with a more efficient representation of the ok_rsval list.
However, we have not observed any efficiency issues in our experiments so far.

7.3 refined execution of symbolic invariants

The goal is to execute our sequential, compact symbolic invariants equivalently to the tr_sis function
of the theory (Definition 6.5.1). Especially, when applying an invariant on a refined state, one must
take into account the current symbolic regset.

A compact sequence of assignments of symbolic values, as formalized in §6.2.2.2, contains values
of type ival, whose arguments (of type ireg) refer to either the input value or to the current one
(depending on their force_input Boolean). When the invariant is applied to a (whether final or not)
state, taking the “input” value of an argument means taking the value as defined in this state. On
the other hand, the “current” value means the one from the state in which we have already applied
some part of the sequence. In any case, if an invariant’s value depends on symbolic values defined
in the initial or current symbolic state, those must be retrieved and substituted within the invariant’s
value for the result to be correct.

7.3.1 Sequential Execution

Our idea is to start by duplicating the refined state onwhich wewant to apply the sequential invariant:
one version will never be modified, and will serve us as the “input” reference, and the other will
change incrementally by executing invariants in the sequence.

In point 1. of §6.3.3.2, I explained how to build the finite parallel assignment of symbolic values by
accumulating sequential assignments, with the “exec_seq” function. Now, we define exec_seq_imp

as the implementation of this accumulation for refined symbolic internal states:

Definition 7.3.1 (Sequential execution of compact invariants on refined states).

Fixpoint exec_seq_imp (hrs hrs_old: ristate) (l: list (reg*ival)): ?? ristate :=

match l with

| nil ⇒ RET hrs

| (r,iv)::l ⇒
DO hrs' hrs_ival_set hrs hrs_old r iv;;

exec_seq_imp hrs' hrs_old l

end

We iterate over the list of invariants l (it should come from the aseq field of a CSASV), and with
the two refined states hrs and hrs_old that are expected to be initially equal (i.e. they should be
instantiated with the state to transfer). Then, function hrs_ival_set yields a new state hrs' by
assigning to r the current invariant iv, and we recurse with the remaining sequence, and with hrs'

in place of hrs (but hrs_old stays the same).

7.3.2 Assigning an Invariant’s Value to a Refined Internal State

The behavior of hrs_ival_set depends on iv: if the invariant is of type “Ireg ir”, we retrieve “regof ir”
from either hrs or hrs_old. Otherwise, the “root_op” inside “Iop” has to be executed after possibly
substituting arguments. We define it as follows, with the help of Definitions 7.3.3 and 7.3.4 below:

https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEimpl_prelude.html#lsv_in_imp

7.3 refined execution of symbolic invariants 116

Definition 7.3.2 (Setter for an invariant value [�]).

hrs_ival_set (hrs hrs_old : ristate) (r : reg) (iv : ival) : ??ristate ,
match iv with
| Ireg ir→ DO sv hrs_ir_get hrs hrs_old ir; ;

{hrs with sreg = red_PTree_set r sv hrs }

| Iop rop args→ hrs_rsv_set r args rop hrs hrs_old

Where hrs_ir_get is a simple wrapper around the normal getter function over symbolic regset of
Definition 7.2.9:

Definition 7.3.3 (Access to an invariant register by selecting the right refined state).

Definition hrs_ir_get hrs hrs_old ir: ?? sval :=

if force_input ir then hrs_sreg_get hrs_old (regof ir) else hrs_sreg_get hrs (regof ir)

To manage the list of ireg arguments of an Iop, we implement a recursive function “hrs_lir_get :
ristate → ristate → ireg → ??(# »sval ∗ list_sval)” [�]. It converts, relying on Definition 7.3.3, the vector
of ireg into two representations of lists of symbolic values: a Coq list (of sval), and a list_sval
inductive list. Both contain the same elements, in the same order, and are built simultaneously.

Then, hrs_rsv_set delegates the assignment to Definitions 7.2.12 & 7.2.13. To do so, it determines
if the root symbolic value may trap or not, and converts the ireg list into both formats of symbolic
value lists, as required by the assignment functions.

Definition 7.3.4 (Generic root symbolic value assignment [�]). The may_trap function below is
true when rsv is either a trapping load or a trapping operation, see [�].

hrs_rsv_set r (lir : # »ireg) rsv hrs hrs_old : ??ristate ,
DO (lsv, lhsv) hrs_lir_get hrs hrs_old lir; ;
if (may_trap rsv lir) then hrs_rsv_set_trap r lsv lhsv rsv hrs

else hrs_rsv_set_notrap r lsv lhsv rsv hrs

Symbolic values in lists lsv and lhsv are therefore either from hrs or hrs_old, in function of the
force_input value of their corresponding ireg.

7.3.3 Liveness Filtering

The refined symbolic state obtained by sequentially executing a CSASV contains, in its symbolic
regset, all the values assigned by the invariant sequence. To comply with the simulation theory, we
now have to filter this symbolic regset to only keep variables defined as live in the “output” set of
the CSASV. In other words, the idea is to provide an implementation for the “build_alive” function
outlined in point 2. of §6.3.3.2.

Definition 7.3.5 (Building a symbolic regset of the compact invariant’s live variables). Given
loutputs a list made from the “output” regset of a CSASV, and hrs the state on which we executed the
CSASV’s sequence (i.e. its “aseq” field), we build—from an empty symbolic regset PTree.empty—the
filtered symbolic regset as follows:

Fixpoint build_alive_imp (loutputs: list reg) (hrs: ristate): ?? (PTree.t sval) :=

match loutputs with

| nil ⇒ RET (PTree.empty sval)

| r :: tl ⇒
DO sreg build_alive_imp tl hrs;;

DO hsv hrs_sreg_get hrs r;;

RET (sreg!r ← hsv)

end

https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEimpl_SI.html#hrs_ival_set
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEimpl_prelude.html#hrs_lir_get
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEimpl_prelude.html#hrs_rsv_set
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEsimuref.html#may_trap

7.3 refined execution of symbolic invariants 117

7.3.4 Transferring Compact Invariants on a Refined State

7.3.4.1 Applying a Single Compact Invariant

Grouping the sequential execution and the liveness filtering together gives us the invariant transfer
function for a single CSASV on a symbolic (refined) internal state:

Definition 7.3.6 (Single compact invariant transfer function [�]).

tr_hrs_single hrs (csi : csasv) : ??ristate ,
DO hrs ′ exec_seq_imp hrs hrs csi.(aseq); ;
DO sreg build_alive_imp (Regset.elements csi.(outputs)) hrs ′; ;
RET {hrs ′ with sreg = sreg }

7.3.4.2 Iteratively Unifying Compact Invariants

Nevertheless, when applying the output invariant to a BTL block having several successors (e.g.
with a jump table), the successors’ invariants must be unified. In practice, we iteratively apply
each successor’s invariant on the final state, while ensuring that the resulting union is consistent: a
symbolic register should never be defined with two different symbolic values.

In accordance with what I wrote in §6.5.2.2, we use a specific “most-defined” relation over
symbolic values to perform the union of symbolic regsets. If both hold a value for the same register,
we compare the two values by pointer equality and fail in case of a negative result:

Definition 7.3.7 (Symbolic equality implementation for union of symbolic regsets [�]).

symbolic_eq_sv_imp sv1 sv2 : ??sval ,
if sv1 == sv2 then RET sv1

else FAILWITH “symbolic_eq_sv_imp: no more defined symbolic value”

Notice how this implementation is much simpler than the symbolic_eq function from §6.5.2.2: here,
we directly compare sv1 and sv2 without prior substitution or evaluation. Below, I note “sreg1∪mostdef
sreg2” the most-defined union operation for sreg1 and sreg2 using this consistency check to solve
conflicting cases.

To unify output invariants, we implement a recursive transfer function working with a list of
CSASVs. The latter is intended to be used only on final symbolic values. Input invariants on initial
states never require a union8, and are executed using Definition 7.3.6.

Definition 7.3.8 (Recursive compact invariants transfer function [�]).

tr_hrs_rec hrs (lcsi : # »csasv) : ??ristate ,
match lcsi with
| []→ DO hrs ′ tr_hrs_single hrs {aseq = []; outputs = ∅ }; ;

RET {hrs with ris_input_init = false }

| [csi]→ DO hrs ′ tr_hrs_single hrs csi; ;
RET {hrs with ris_input_init = false }

| csi :: lcsi ′ →
DO hrsr tr_hrs_rec hrs lcsi ′; ;
DO hrsl tr_hrs_single hrs csi; ;
DO sreg hrsl.(ris_sreg) ∪mostdef hrsr.(ris_sreg); ;
RET {hrsr with sreg = sreg;

ok_rsval = hrsl.(ok_rsval) ++ hrsr.(ok_rsval) }

8Since each block has its own input invariant.

https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEimpl_SI.html#tr_hrs_single
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEimpl_SI.html#most_defined_sv_imp
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEimpl_SI.html#tr_hrs_rec

7.3 refined execution of symbolic invariants 118

When lcsi is empty (e.g. for tail calls), the transfer is performed with the empty CSASV; otherwise,
when it contains a unique compact invariant, we rely on Definition 7.3.6. The (head-)recursive case
computes the transfer for the remaining list of CSASVs and for the current one. Then, it applies the
most-defined union on their regsets, and concatenates their preconditions (with operator “++”).

After the execution of an output invariant, we do not want to keep the default value for dead
variables (precisely because we just filtered them with the invariant’s output set). Hence, terminal
cases of tr_hrs_rec switch the state to target mode by setting its ris_input_init field to false.

Finally, proving the correctness of the output invariants’ transfer requires showing that it is only
called on states which are in source mode, and whose si_mode Boolean is true. Indeed, output
invariants are always applied on the source symbolic state, and must never be able to add a potential
failure. We verify this constraint by wrapping our recursive transfer function into a “tr_hrs” function
with the same signature [�], that raises an error and aborts the simulation in case one of the two
Booleans is not true.

7.3.4.3 Application on Final Symbolic Values & States

Section §6.5.2.2 of the simulation theory gave the signature of a si_sfv function that models the
building method of an output FPASV according to a final symbolic value. Its Coq implementation
(i.e. with a CSASV) is written as follows:

Definition 7.3.9 (Applying output invariants for a refined internal state).

Definition tr_sfv hrs (gm_select: pc → csasv) sfv: ?? ristate :=

match sfv with

| Sgoto pc ⇒ tr_hrs hrs [gm_select pc]

| Scall sig svid args res pc ⇒
if test_clobberable (gm_select pc) res then

tr_hrs hrs [(csi_remove res (gm_select pc))]

else FAILWITH "ri_sfv: Scall res not clobberable"

| Sbuiltin ef args bres pc ⇒
match reg_builtin_res bres with

| Some r ⇒
if test_clobberable (gm_select pc) r then

tr_hrs hrs [(csi_remove r (gm_select pc))]

else FAILWITH "ri_sfv: Sbuiltin res not clobberable"

| None ⇒
if test_csifreem (gm_select pc) then

tr_hrs hrs [gm_select pc]

else FAILWITH "ri_sfv: Sbuiltin memory dependent"

end

| Stailcall sig svid args ⇒ tr_hrs hrs []

| Sreturn osv ⇒ tr_hrs hrs []

| Sjumptable sv lpc ⇒ tr_hrs hrs (List.map (λ pc ⇒ gm_select pc) lpc)

end

The partial application gm_select is expected to be instantiated with either HIs or GIs. For each
kind of final value, we call the tr_hrs transfer function accordingly. As indicated in §6.5.2.2, the goto
case consists simply of executing the invariant of the successor at pc, while tail calls and returns
instantiate the transfer function with an empty list (because they are devoid of successors). The list
of successors of a jump table is mapped to a list of CSASVs via gm_select. For calls and built-ins, we
must still verify that neither their destination register nor the memory is clobbered (i.e. overwritten)
by the invariant. Above, test_clobberable validates both requirements by iterating on the invariant’s
sequence of assignments; it implies property 6.3.15 when its result is true. We can use this check for
calls, and for built-ins featuring a result register. If the built-in does not have a result register, we
only ensure the invariant’s freedom for the memory with test_csifreem; which, conversely, implies
property 6.3.14.

To execute CSASVs over binary decision trees (i.e. whole refined states), we concretize function
tr_sstate sketched in §6.5.2.2:

https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEimpl_SI.html#tr_hrs

7.4 refined symbolic execution of btl blocks 119

Definition 7.3.10 (Applying output invariants on the binary decision tree leaves).

Fixpoint tr_hstate (gm_select: pc → csasv) (hst: rstate): ?? rstate :=

match hst with

| Rfinal hrs sfv ⇒
DO hrs' tr_sfv {hrs with si_mode = true } gm_select sfv;;

RET (Rfinal hrs' sfv)

| Rcond cond args ifso ifnot ⇒
DO ifso' tr_hstate gm_select ifso;;

DO ifnot' tr_hstate gm_select ifnot;;

RET (Rcond cond args ifso' ifnot')

| Rabort ⇒ RET Rabort

end

The function being designed for output invariants, it sets the value of the si_mode Boolean to true
for each leaf before calling tr_sfv.

7.4 refined symbolic execution of btl blocks

In this section, we refine the symbolic execution with continuation of Definition 6.4.21.

7.4.1 Mapping Registers to Symbolic Values and Executing Final Values

The map operation from a register list to a symbolic value list (Definition 6.4.18) is implemented
by iteratively calling our getter hrs_sreg_get (Definition 7.2.9) on each argument, with a function
named hlist_sreg_get [�].

Next, we refine the execution of final symbolic values with a function “hrexec_final_sfv : final →
ristate → ??sfval” [�]. The latter is very similar to Definition 6.4.19, except that it uses the hash-
consed symbolic register getters to retrieve symbolic values, and is incorporated in the Impure
monad. In particular, we had to adapt the auxiliary transformations for calls, tail calls, and built-ins’
arguments (e.g. the sum_left_optmap and the mapping for built-ins’ registers) to port them in the
monad as well.

The execution of final values is proven correct w.r.t. the theory by showing that if we have two
states hrs and sis such that hrs is valid (in the sense of property 7.2.4) and refines sis (in the sense
of Relation 7.2.5), then the result of hrexec_final_sfv on a BTL instruction fi over hrs refines the
one from the theoretical execution of fi over sis.

Lemma 7.4.1 (The refined SE of BTL final values is correct [�]). For any block level context ctx:

hrexec_final_sfv fi hrs sfv =⇒ ∀sfv ′,

ris_ok ctx hrs =⇒ ris_refines ctx hrs sis =⇒
sexec_final fi sis = Some sfv ′ =⇒
rfv_refines ctx sfv sfv ′

Proof. By case analysis on fi, and by inverting the third and fourth hypotheses, it suffices to apply the right
constructor of rfv_refines.

7.4.2 Implementation of Block Execution

To alleviate the proofs of our framework, our symbolic register assignment method reuses Def-
inition 7.3.4. We wrap this definition so that both internal states are instantiated with the same
parameter, and the list of ireg is built with an always true force_input Boolean:

Definition 7.4.1 (“Input” mode root symbolic value assignment [�]).

hrs_rsv_set_input r (args : # »reg) rsv hrs : ??ristate ,
hrs_rsv_set r (map input args) rsv hrs hrs

https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEimpl_SE.html#hlist_sreg_get
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEimpl_SE.html#hrexec_final_sfv
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEimpl_SE.html#hrexec_final_sfv_correct
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEimpl_prelude.html#hrs_rsv_set_input

7.4 refined symbolic execution of btl blocks 120

Here, both the hrs and hrs_old parameters of the invariant value setter are instantiated with the
same current state hrs, and the list of reg arguments is mapped into an ireg list through function
input from Definition 6.2.3.

Following the way paved by our theory, we start by implementing an execution function for store
instructions:
Definition hrexec_store chunk addr args src hrs: ?? ristate :=

DO hargs hlist_sreg_get hrs args;;

DO hsrc hrs_sreg_get hrs src;;

DO hm hSstore hrs chunk addr hargs hsrc;;

RET (rset_smem hm hrs)

With hSstore being the constructor for hash-consed Sstore symbolic memory values.
The efficient block symbolic execution for a whole BTL block resembles the theoretical definition,

except for conditional branches instructions, that are rewritten on-the-fly. The latter rewriting is
performed by function cbranch_expanse below [�], which returns a pair containing a new type of
condition and new (symbolic) arguments. If no rewriting applies, the returned pair is identical to
the original condition’s parameters.

Definition 7.4.2 (Rewriting branches during SE). Exactly as function rewrite_ops from Defini-
tion 7.2.11, function rewrite_cbranches below takes a normalization rules policy R (see §7.6).
Definition cbranch_expanse (prev: ristate) (cond: condition)

(args: list reg): ?? (condition * list_sval) :=

match rewrite_cbranches R prev cond args with

| Some (cond', vargs) ⇒
DO vargs' @fsval_list_proj HCF vargs;;

RET (cond', vargs')

| None ⇒
DO vargs hlist_sreg_get prev args ;;

RET (cond, vargs)

end

Definition 7.4.3 (Implementation of the recursive block SE). Alike its equivalent in the theory, the
SE works in continuation passing style. Below, hrinit is the initial (refined) symbolic internal state
to start with.
Fixpoint hrexec_rec ib hrs (k: ristate → ?? rstate): ?? rstate :=

match ib with

| BF fin _ ⇒
DO sfv hrexec_final_sfv fin hrs;; RET (Rfinal hrs sfv)

| Bnop _ ⇒ k hrs

(** Invoke the rewriting engine for ops/loads *)

| Bop op args dst _ ⇒
DO next hrs_rsv_set_input dst args (Rop op) hrs;; k next

| Bload trap chunk addr args dst _ ⇒
DO next hrs_rsv_set_input dst args (Rload trap chunk addr) hrs;; k next

| Bstore chunk addr args src _ ⇒
DO next hrexec_store chunk addr args src hrs;; k next

| Bseq ib1 ib2 ⇒
hrexec_rec ib1 hrs (λ hrs2 ⇒ hrexec_rec ib2 hrs2 k)

| Bcond cond args ifso ifnot _ ⇒
(** Invoke the rewriting engine for conditions *)

DO res cbranch_expanse hrs cond args;;

let (cond, vargs) := res in

DO ifso hrexec_rec ifso hrs k;;

DO ifnot hrexec_rec ifnot hrs k;;

RET (Rcond cond vargs ifso ifnot)

end

Definition hrexec ib hrinit := hrexec_rec ib hrinit (λ _ ⇒ RET Rabort)

https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEimpl_SE.html#cbranch_expanse

7.5 simulation test 121

7.4.3 Correctness of the Hash-Consed Symbolic Execution

We prove two separate properties on Definition 7.4.3. Both of them assume a BTL block ib, an initial
internal state hrinit refining the abstract internal state sinit, a block level context ctx, and a final
symbolic state hst resulting from “hrexec ib hrinit”.

Lemma 7.4.2 (Refined Block SE is correct on the source side [�]). We assume a source initial refined
state, whose ris_input_init Boolean is true, and successful refined and theoretical SEs of ib from initial
states hrinit and sinit, respectively. If sis, the internal state resulting from the theoretical execution, satisfies
validity property 6.4.12, and if hrinit is a valid refinement of sinit, then the result of the hash-consed
execution must be a valid refinement of the one from the theoretical execution.

hrexec ib hrinit hst =⇒
get_soutcome ctx (sexec ib sinit) = Some (sout sis sfv) =⇒
sis_ok ctx sis =⇒ ris_refines ctx hrinit sinit =⇒
hrinit.(ris_input_init) = true =⇒
rst_refines true ctx hst (sexec ib sinit)

Proof. We reason by induction on ib. The final case is solved by exploiting Lemma 7.4.1. Other non-inductive
instructions are proved in a similar fashion, using the fact that executing an instruction never changes the
ris_input_init Boolean. The operation and load cases require an additional intermediate property stating
that hrs_lir_get (from §7.3.2) and Definition 6.4.18 are equivalent when concrete arguments were mapped to
input (i.e. to invariant values with a true force_input Boolean) beforehand. The Bseq and Bcond cases are
solved using induction hypotheses, and by ensuring that the recursive SE preserves validity property 6.4.12.

Lemma 7.4.3 (Refined Block SE is correct on the target side [�]). The target lemma is similar, but
assumes a false ris_input_init Boolean for hrinit. Moreover, instead of expecting a valid theoretical SE
outcome, the hypothesis concerns the refined execution. Of course, since we reason on the target state, the
refinement relation rst_refines is instantiated with a false input_init Boolean, contrary to the previous
lemma.

hrexec ib hrinit hst =⇒
get_routcome ctx hst = Some (rout hrs rfv) =⇒
ris_ok ctx hrs =⇒ ris_refines ctx hrinit sinit =⇒
hrinit.(ris_input_init) = false =⇒
rst_refines false ctx hst (sexec ib sinit)

Proof. The proof follows the same scheme as the previous lemma, but requires additional “no-fail” properties
for hrexec_final_sfv, and the concrete to symbolic registers mapping. These “no-fail” lemmas are of the
form of Lemma 7.2.5: they demonstrate that if an implementation’s function succeeds on a state which is a
valid refinement of a theoretical state, then the theory’s equivalent function cannot fail. Here also, we exploit
Lemma 7.4.1, and preservation lemmas about the validity relation and the ris_input_init Boolean.

7.5 simulation test

The implementation of our simulation test exploits the hash-consed SE for invariants and blocks in
order to produce the binary decision trees of both blocks to compare.

We unfold this impure test backward, starting with a detailed examination of the main simulation
test for a specific pair of blocks in §7.5.1. Subsequently, we describe the underlying comparison for
final symbolic states in §7.5.2. The correctness proof of our implementation, which implies the
simulation property of our theory, is briefly sketched in §7.5.3. Finally, §7.5.4 explains how we
elevate this simulation test to validate the source and target functions.

https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEimpl_SE.html#hrexec_correct1
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEimpl_SE.html#hrexec_correct2

7.5 simulation test 122

7.5.1 Instantiating the Framework for a Pair of Blocks

The preliminary step of the Coq implementation is to instantiate hash-consing functions and hy-
potheses (cf. §7.2.4.2). These are then set as global parameters for the current simulation instance.
Hence, each pair of blocks to simulate starts with three empty hash tables for the three kinds of symbolic
types (values, lists of values, and memories).

Our implementation also requires a refined notion of an empty symbolic internal state, as given
by Definition 7.2.1:

Definition 7.5.1 (Empty refined symbolic internal state [�]).

εref , { ris_smem = fSinit; ris_input_init = true; si_mode = false;
ok_rsval = []; ris_sreg = PTree.empty sval }

Let us name ibs and ibt the source and target BTL blocks, respectively. Given these two blocks,
the rewriting policy R, the current program counter pc, and the gluemap gm provided by the oracle,
we define the test as follows:

Definition 7.5.2 (Main refined simulation test [�]). First, we compute the application of both gluing
and history invariants on the empty refined state as intermediate results:

DO hrsH tr_hrs_single εref (gm pc).(history); ;
DO hrsHG tr_hrs_single hrsH (gm pc).(glue); ;

Second, we manipulate these two states to construct the source and target initial states Ihrss and
Ihrst, respectively:

Ihrss = {hrsHG with sreg = hrsH.(ris_sreg) }
Ihrst = {hrsHG with ris_input_init = false }

As intended, those two states correspond the theoretical ones of Definitions 6.5.7 & 6.5.8. Finally,
we simply reproduce the simulation diagram from Figure 6.3:

simu_check_single R ibs ibt pc gm : ??unit ,
DO hsts hrexec ibs Ihrss; ; DO hstt hrexec ibt Ihrst; ;
DO hstH tr_hstate (λpc. (gm pc).history) hsts; ;
DO hstG tr_hstate (λpc. (gm pc).glue) hsts; ;
DO _ rst_simu_check true hstH hsts; ; rst_simu_check false hstG hstt.

This definition makes the link with the theory. Initial states Ihrss and Ihrst refine Isiss and Isist,
respectively. States hsts and hstt correspond to sss and sst, respectively. States hstH and hstG
correspond to ssH and ssG, respectively.

In line with Figure 6.3, two properties require verification, namely hstH �s hsts for source mode
and hstG �t hstt for target mode. They are checked by the two calls to function rst_simu_check,
which recursively compares symbolic binary decision trees.

7.5.2 Efficient Comparison of Refined Symbolic States

The comparison is defined as a fixed point that recurses over both symbolic states. It expects
both trees to have exactly the same structure, and their branches and leaves should be structurally
equal. This requirement on the structure of symbolic states forbids transformations that would
change the control flow: both states must be composed of the same execution paths. Thanks to
hash-consing, we know that structurally equal symbolic terms will always share a common hash
table cell, and be bound to the same pointer. Hence, structural comparison of symbolic terms is
reduced to constant-time pointer equality.

https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEsimuref.html#ris_empty
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEimpl_check.html#simu_check_single

7.5 simulation test 123

Definition 7.5.3 (Recursive comparison of refined symbolic states).
Fixpoint rst_simu_check (src_mode: bool) (hst1 hst2: rstate) :=

match hst1, hst2 with

| Rfinal hrs1 sfv1, Rfinal hrs2 sfv2 ⇒
hrs_simu_check src_mode hrs1 hrs2;;

sfval_simu_check sfv1 sfv2

| Rcond cond1 lsv1 rsL1 rsR1, Rcond cond2 lsv2 rsL2 rsR2 ⇒
struct_eq cond1 cond2;;

lsv1 == lsv2;;

rst_simu_check src_mode rsL1 rsL2;;

rst_simu_check src_mode rsR1 rsR2

| _, _ ⇒ FAILWITH "rst_simu_check: simu_check failed"

end

If the structures of hst1 and hst2 differ, the validation fails. When both states are Rcond nodes,
their conditions and arguments must be syntactically (i.e. structurally) equal. Conditions are
compared using a real structural equality (since they are not hash-consed), while lists of symbolic
values are compared by pointer equality. Finally, we compare leaves in two steps. First, we ensure
the modulo invariants relation for internal states with Definition 7.5.4 below. Second, we check
their final symbolic value syntactically with function sfval_simu_check [�]. The latter implements
syntactical property sfv_simu from§6.5.3 anduses pointer equality to compare final values’ symbolic
arguments9.

For refined internal states, our test distinguishes the source and target modes with the src_mode

Boolean:

Definition 7.5.4 (Matching refined symbolic internal states in both modes [�]).

hrs_simu_check (src_mode : bool) (hrs1 hrs2 : ristate) : ??unit ,
hrs1.(ris_smem) == hrs2.(ris_smem); ;
(if src_mode then hrs1.(ris_input_init) = false

else (hrs1.(ris_input_init) = hrs2.(ris_input_init) = false; ;
hrs2.(ok_rsval) v hrs1.(ok_rsval))); ;

hrs1.(ris_sreg) v hrs2.(ris_sreg)

This pseudocode gives an easy-to-read overview of the comparison: in any case, both symbolic
memories must be structurally (using pointer equality) equal, and the register set from the first
state must be included in the second one. Implicitly, this second constraint encodes the fact that
hrs2 might define new variables that were dead in hrs1. Note that here, we expect hrs1 to be free of
variables dead in hrs2 (such dead variables are removed by the tr_hstate transfer function).

The rest of the test depends on the src_mode Boolean. If true, we only ensure that the source state
was switched to target mode (i.e. with ris_input_init = false). If false, the constraint is stronger:
both states must have been switched to target mode, and the list of trapping operations from the
target state must be included in that of the source state. The latter inclusion prevents the transformed
code from having more traps than the source one.

7.5.3 Proof of Correctness w.r.t. the Theory

We want to prove that when our implemented simulation test from Definition 7.5.2 succeeds, then
it implies the theoretical simulation property from Definition 6.5.14.

Theorem 7.5.1 (The refined simulation test is correct [�]). Given the same variables ctx, gm, ibs, ibt,
and pc, as in Definition 6.5.14, and under any simulation context (using Definition 6.4.4), we pose:

simu_check_single R ibs ibt gm pc _ =⇒
instantiate_context match_sexec_si_ref gm ibs ibt pc

9For the sake of conciseness, we do not provide its definition here as it is essentially a straightforward syntactic check.

https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEimpl_check.html#sfval_simu_check
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEimpl_check.html#hrs_simu_check
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEimpl_check.html#simu_check_single_correct

7.6 applications of the rewriting engine 124

I do not detail the proof here, as it basically consists in decomposing simu_check_single and linking it with
the theory. Roughly, we compose other correctness proofs of this chapter to show that our implementation
correctly refines the theory. Notably, we exploit Lemmas 7.4.2 and 7.4.3 for both the source and target SEs.

7.5.4 Validating an Entire Target Function

After each application of Definition 7.5.2, we leave the Impure monad using the exit operator
for Boolean computations. This allows us to lift the simulation test inside the result monad of
Coq: if “has_returned (simu_check_single R ibs ibt gm pc)” is true, we safely return the “OK”
result; otherwise, an error is raised [�]. The lifted, pure version of our simulation test is named
“simu_check”. It takes the same arguments as its impure equivalent.

To guarantee the match_sexec_ok property of Definition 6.1.1, we encapsulate simu_check into a
function check_symbolic_simu that invokes it over all pairs of blocks.

Definition 7.5.5 (Transfer function of a BTL pass). After translating a RTL function to BTL, the
whole Coq pass is implemented as follows:

Definition transf_function (f: BTL.function) :=

let (tcfi, gm) := btl_optim_oracle f in

let (tc, fi) := tcfi in

let tf := BTL.mkfunction (fn_sig f) (fn_params f) (fn_stacksize f) tc

(fn_entrypoint f) gm fi in

do _ ← check_only_liveness tf;

do _ ← check_symbolic_simu f tf;

OK tf

The source function f is first given to the oracle (which is a parameter of the pass, cf. §6.1). It
yields three elements: the new CFG tc (stands for Transformed Code), the new shadow field of the
function fi (used only to propagate information between untrusted oracles), and the gluemap gm

(containing invariants). A new function tf is built from these three elements; but the other fields
stay the same. Two checks are then performed in the result monad to satisfy matching Relation 6.1.1
between BTL functions. First, that both GIs & HIs contain only pure liveness affectations, to ensure
conditions trivial_glueinv_entrypoint and trivial_histinv_entrypoint. Second, that our simulation
test succeeds for all pairs of blocks of f and tf to guarantee match_sexec_ok. The latter check retrieves
the list of nodes of the source function—i.e. in f.(fn_code)—as a list of “pc” (program counters that
identify a block in the CFG). It then checks, for all pc, that both f.(fn_code)!pc and tf.(fn_code)!pc

are defined, aborting otherwise. If this is the case, it invokes the simulation test for the current pair
of blocks (by calling the pure simu_check function mentioned above). This process continues until
either a simulation failure, or after having compared all block pairs.

Both check_only_liveness and check_symbolic_simu above are proved by induction over the list of
block pairs. The former is demonstrated using the correctness lemma of the only liveness checker,
which implies Definition 6.3.12; and the latter by applying Theorem 7.5.1.

7.6 applications of the rewriting engine

Our term rewriting system is applied on both sides of the simulation using the same set R of
normalization rules. In the current implementation, we define two possible sets of rules (in addition
to the empty set, where nothing is rewritten): one for the expansion oracle, and another for the lazy
code transformations (LCT) oracle. The expansion oracle is a BTL port of my preliminary contribution
to RTLpath (cf. §4.5.2).

Recall from §4.5.2.2 that our rules are designed to always transform symbolic values to their
normal forms. Final symbolic states are therefore always built canonically, enabling their syntactic
comparison in the simulation test. Technically, to indicate the set of rules to rewrite, the SE framework
is configured with an element of the following sum type [�]: R , RRexpansions | RRlct | RRnone.

In the following, §7.6.1 presents the expansions for operations and branches. The affine normal-
ization mechanism used for the LCT is formalized in §7.6.2.

https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEimpl_check.html#simu_check
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEsimuref.html#rrules_set

7.6 applications of the rewriting engine 125

7.6.1 Rules for the Expansions of Operations and Branches

When the expansion oracle is enabled, macro-instructions of the source block are replaced with
their assembly level equivalent in the target block. As in RTLpath, we aim to take advantage of these
earlier expansions to eliminate their eventual redundancies (as in Example 4.5.1) and schedule
them intelligently. The principle is exactly the same: normalization rules are applied on the source
block’s SE. In practice, rewrites are performed each time a non-expanded operation or branch is
encountered during SE.

I will not go into detail into the specifics of these previous Asm-level expansions, but the interested
reader can find online the exhaustive lists for operations [�] and branches [�].

Furthermore, the expansion mechanism is also a way for us to delay the (early) CompCert’s
instruction selection at the BTL level. Indeed, some middle-end optimizations are more efficient or
easier to program if we keep a high-level representation of instructions. For instance, a CSE pass
may be unable to eliminate certain redundancies after selection, when it could have done so before.

limitations & workaround for unexpected values With this expansion mechanism—
whether we consider its preliminary version on RTLpath or this port to BTL—we moved most of the
assembly expansions expressed during the Mach to Asm translation to the RTL (here BTL) level. This
required us to overcome a little issue: while the forward simulation proof of Mach to Asm supports
that expansions replace the Vundef value by any other value, this is not supported in the proof of
our rewriting rules. To accept this type of rewriting, we would need to specialize the correction
property of the normalization according to the side where it is applied (source side or target side).
This would be more expressive, but would likely significantly increase the size of the simulation
test proof.

In CompCert, Vundef represents a potential undefined behavior that has not yet been observed
(cf. §3.3.1). In our case, Vundef may appear when evaluating some RISC-V macro-operations on
unexpected immediate arguments (e.g. the shrximm macro-operation used to model division by a
power of two, expanded into a sequence of right shifts and additions). The Mach to Asm expansion
typically replaces Vundef by a silent arithmetic overflow. Our simple workaround is to introduce
within normalization rules some dedicated pseudo-instructions able to generate the necessary
Vundef (hence, acting like defensive tests): these extra pseudo-instructions are further removed
in the Mach to Asm pass. Note that these extra pseudo-instructions do not disturb the prepass
scheduling because they are assigned 0 latency and 0 resource. On complex ISAs, such as AArch64,
many expansions of Mach to Asm pass cannot be expressed at RTL level. This is due to limitations
of RTL, which does not allow instructions modifying several pseudo-registers in parallel, such as
instructions with side effects on flags (recall §3.4.2). Even on RISC-V, expansions that involve stack-
accessing instructions cannot really be expressed at RTL level, still because of the IR’s limitations.

7.6.2 Fold Right and Affine Forms

Example 5.1.1 illustrated the different (but equivalent) terms produced by a strength-reduction
transformation, due to the order of calculations. We focus on the SR of multiplications by a long

constant only (see §10.5.2); typically, the verifier will have to (automatically) prove equations of the
form “(i+ c)× f = (i× f) + c ′ ”, where f is the multiplication factor, c the constant added at each
loop iteration, and with “c ′ = f× c”. To do this, our idea is to normalize both terms in a canonical
affine form “c ′ + (f× i)”. Nonetheless, such a representation is not generic enough to support every
kind of multiplication SR, considering that calculations may be nested and involve additions. For
instance, one would need to normalize a decomposed multiplication (i× f1 + c1) + (i× f2 + c2) into
(c1 + c2) + (f1 × i) + (f2 × i). The latter can be viewed, intuitively, as a fold right operation: we want
to sum a list of terms (e.g. multiplications) to produce the final result.

The high-level Coq formalization of affine forms is available here [�]; and its lower level specifica-
tion for the RISC-V architecture here [�]. For simplicity, this section presents our affine normalization
engine from a high-level point of view.

https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.riscV.BTL_SEsimplify.html#rewrite_ops
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.riscV.BTL_SEsimplify.html#rewrite_cbranches
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTL_SEtheory.html#Scale
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.riscV.BTL_SEsimplify.html#op_aff64_rv

7.6 applications of the rewriting engine 126

c · (v1 + v2) = (c · v1) + (c · v2) c1 · (c2 · v) = (c1c2) · v c1 · c2 = c1c2

v1 + v2 = v2 + v1 (v1 + v2) + v3 = v1 + (v2 + v3) 0+ (v1 + v2) = v1 + v2

0+ (c · v) = c · v (c1 · v) + (c2 · v) = (c1 + c2) · v (c · v) + v = (c+ 1) · v v+ v = 2 · v

Figure 7.2: Affine Arithmetic of CompCert 64-bit Integer Operators on Values.

0+ v = v 0 · v = 0 1 · v = v (v+ v) − v = v+ (v− v)

Figure 7.3: Examples of Invalid Equalities for CompCert 64-bit Integer Operators.

π ::= v | c · v φ ::= v | c+ Σn
i=1πi where n > 0 and (πi)i>1 is strictly increasing

Figure 7.4: Representation of Our Affine Forms.

7.6.2.1 Equational Theory

Our SR is validated in the variant of affine arithmetic given in Figure 7.2, where c represents a
64-bit integer constant and v is a CompCert value. Actually, we consider this theory extended with
specific operators such as v « c = 2c · v. However, note that some usual equations—such as those
given in Figure 7.3—do not hold. For example, if one of their argument is not a long integer or
not a pointer—e.g. a float—64-bit integer operations return the absorbing Vundef value. Moreover,
operation “+” also performs pointer arithmetic in the abstract CompCert model of pointers (and
our SR leverages this opportunity). In this model, on a 64-bit architecture, if v is a pointer, then
v + v ′ 6= Vundef if and only if v ′ is a 64-bit integer (in this case, v ′ is seen as a relative offset w.r.t.
v). And c · v = Vundef if v is a pointer. This explains why we never identify v and 1 · v. But, if v is a
pointer, then v+ v = Vundef and we still have v+ v = 2 · v. Last, if v and v ′ are two pointers in the
same block, then v− v ′ determines their relative offset. Thus, if v is a pointer, then v+ (v− v) = v but
(v+ v) − v = Vundef 10.

7.6.2.2 Normal Forms

Since our symbolic values are evaluated to CompCert values (for a given block execution context),
Figure 7.2 also induces semantic equalities about symbolic values. As noticed in §2.2.3.2, normalized
rewriting (when applicable) reduces such semantic equalities to structural equalities. Our repre-
sentation of normal (i.e. canonical) forms is given in Figure 7.4, where v represents now a variable
(representing itself a symbolic value). Due to the commutativity of “+”, normal forms depend on a
total order over variables. Let us assume such an order. Because 1 · v may not be v, we introduce a
notion of pseudo-product, written π (see Figure 7.4). We then lift the total order over variables into a
total preorder over pseudo-products. At that point, we define a normal form, written φ, as either a
variable v or as the sum of a scalar c (possibly null) with a strictly increasing sequence (possibly
empty) of pseudo-products (see Figure 7.4). Last, the affine normalization is mainly reduced to
two operations “c · φ” and “φ1 + φ2” preserving normal forms by applying Figure 7.2 equations.The list_sval

type is
represented into
square brackets

here for the sake of
simplicity.

To facilitate the proof of recursive operations over affine forms and future extensions, we encode
them in symbolic values (Definition 6.2.1) with the “Sfoldr(op, lsv, sv0, hid)” dedicated constructor,
which is semantically equivalent to “Sop(op, [sv0, Sop(op, [sv1, . . .])], hid)”. This enables us to repre-
sent affine forms written “c + Σ #»π” in Figure 7.4 as a fold right “Sfoldr(+, #»π , c, hid)” within our
implementation.

10This lack of associativity of operator “−” w.r.t. the additive operator (for pointers) explains why it is not yet supported
in our SR.

7.6 applications of the rewriting engine 127

7.6.2.3 Normalization Process and Correctness

Our affine normalization needs to integrate affine forms with symbolic values that do not represent
pure affine computations. In particular, affine variables in Fig. 7.4 actually reify symbolic values
whose root is not an affine computation (i.e. neither a 64-bit immediate, nor a “·”, nor a “+”). In
practice, we do not introduce explicit affine variables, but rather use the total order of Definition 7.2.8
on reified symbolic values.

In order to normalize an affine operation “c · sv” or “sv1 + sv2”, we first define a function A [�],
which maps any symbolic value sv to an affine form and satisfies the below theorem.

Theorem 7.6.1 (Affine form construction properties). For any block execution context ctx:

σsv(ctx, c · sv) = σsv(ctx, c ·A(sv)) σsv(ctx, sv1 + sv2) = σsv(ctx,A(sv1) +A(sv2))

In other words, within the context of an affine operation, the normal forms returned byA preserve the semantics.
Because of the invalid equations in Figure 7.3, it would be too strong to simply require “σsv(ctx,A(sv)) =

σsv(ctx, sv)”. Those properties are easily proved using auxiliary lemmas about the semantics of CompCert
values (defined in §3.3).

In practice, the normalization is applied after each assignment, so A only needs to perform a
simple case analysis on the root of its argument:

Definition 7.6.1 (Affine form construction).

A(sv) ,

sv if sv matches Sfoldr(+, _, _, _)

fSfoldr(+, [], c) if sv matches Sop(c, [], _) where c is a 64-bit integer

fSfoldr(+, [sv], 0) otherwise

Then, the normalization of “c ·A(sv)” (respectively “A(sv1) +A(sv2)”) reduces to a computation ofUsing classical
Coq definitions,

pattern-matching
with wildcards on

sum-types
featuring many

constructors often
generates many

identical goals; to
circumvent this

issue, a solution is
to rely on the
Function

keyword.

the form “c · fSfoldr(+, #»π , c0, hc)” (respectively “Sfoldr(+, # »π1, c1, hc1) + Sfoldr(+, # »π2, c2, hc2)”).

Observe that Definition 7.6.1 and Theorem 7.6.1 are not architecture-independent: they must be
overridden for each backend to specify the underlying additive andmultiplicative RTL operations. In
this thesis, the work was done on the RISC-V 64-bit architecture. Nevertheless, operations on affine
forms (i.e. scaling with a constant & adding and merging to affine terms) are defined once and
for all by our theory thanks to a template module parametrized by the additive and multiplicative
operations and their related properties. Therefore, porting the SR normalization rules to another
backend should require minimal amount of work.

scale operation The computation of “c · Sfoldr(+, #»π , c0, hc)” returns “fSfoldr(+, c · #»π , c c0)”
where “c · #»π” is an instance of a “list-map” operation over pseudo-product list #»π (and is verified by
applying the three equalities at the top line in Figure 7.2).

add & merge operations The computation of “Sfoldr(+, # »π1, c1, hc1) + Sfoldr(+, # »π2, c2, hc2)”
returns “fSfoldr(+, # »π1 +

»π2, c1 + c2)”, where “ # »π1 +
»π2” is very similar to the merging of sorted lists

»π1 and # »π2 for the pseudo-product preorder, except that when two compared pseudo-products are
equivalent for the preorder, they are themselves merged by an operation described just below.

Definition 7.6.2 (Testing the equivalence induced by the preorder over pseudo-products).

equiv(π1, π2) ,

sv1 == sv2 if (π1, π2) matches (c1 · sv1, c2 · sv2)

sv == sv ′ else if (π1, π2) matches (sv, c · sv ′) or (c · sv, sv ′)

π1 == π2 otherwise

The equivalence test on pseudo-products uses pointer equality “==” to validate that two pseudo-
products can be merged.

https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.riscV.BTL_SEsimplify.html#foldrof_aff64_rv

7.6 applications of the rewriting engine 128

In Figure 7.2, the three equations on the bottom line (from left to right) correspond to the
three cases of equiv (from top to bottom). Each of these cases in equiv is thus associated with a
normalization rule that merges the pseudo-products by applying the corresponding equation from
left to right. For instance, supposing we have equiv(π1, π2) = true for the third case, then the merge
of these two pseudo-products is 2 · π1, because then we know that π1 = π2 and that π1 is a “reified”
symbolic value (i.e. not having an affine computation at its root).

8
B ILATERAL RTL -BTL TRANSLAT ION†

This chapter presents our translation from RTL to BTL and back. In particular, it details the design of
a defensive translation validator able to verify translations in both directions. These translations
perform some structural transformations involving code duplications/factorizations (according to
the direction) and insertion of so-called synthetic nodes. In Section 8.1, we briefly introduce the idea
of morphisms as a generic abstraction to prove such duplications, factorizations, or translations be-
tween RTL & BTL control-flow graphs. Applying this principle, Section 8.2 describes two oracles that
perform the translations between RTL & BTL in both directions. These oracles produce a morphism
as a certificate to guide the projection checker of Section 8.3, which then validates their result.

8.1 setting: the notion of cfg morphisms

I explained in §4.1.4.2 that to increase the number of scheduling opportunities, it was of great interest
to perform code duplications to widen the size of the optimization window. As detailed in [65, §2.1]†
(and previously in [135, §4.4]† & [133]), we specialized the notion of graph homomorphism into CFG
morphisms between two RTL CFGs. We proposed a translation validation of CFG restructurings, given
a mapping (i.e. an FVDP certificate provided by the oracle) between nodes of both CFGs. For instance,
duplications like those of Figure 4.1 have a CFG morphism corresponding to the mapping that forgets
numeric indices on node contents [133, Figure 6.1]. Thismapping, guiding the validationmechanism,
is expected to maintain the integrity of instruction contents, successor relationships, successor order,
and the CFG entry point. These criteria are checked syntactically by comparing instructions obtained
through the mapping across both CFGs. Proving such a validator is almost trivial: two CFGs related
by a CFG morphism are semantically equivalent and, consequently, bisimulable.

This morphism checker was implemented by Cyril Six on RTL to validate the various kinds of code
duplications depicted in Figure 4.1; and is still used in the current version of Chamois-CompCert1.
Yet, when conceiving BTL, we noticed that the reverse transformations—i.e. code factorizations—can
also be verified using the same mechanism (thanks to the reverse simulation). See §8.2.2.

Moreover, loops are not the only interesting code fragments to duplicate. In particular, codemotion
(CM) algorithms on BTL can greatly benefit from the insertion of empty blocks—called synthetic
nodes—due the event-based correctness model of CompCert (I justify this in Example 10.2.1).

Therefore, we generalized Cyril Six’s morphism checker to validate a bisimulation between RTL
and BTL (in both directions), synthetic nodes’ insertion, and a CFG factorization pass.

8.2 translation oracles

Each translation direction is performed by a dedicated oracle.

8.2.1 Block Selection Oracle, From RTL to BTL

When partitioning the RTL control-flow graph to translate it to BTL, we can arbitrarily choose how
to select blocks (as long as they respect BTL’s structure of loop-free blocks).
In Chamois-CompCert, we implemented three different block selections:I do not detail

these block
selection

processes, but
their code is

available here [�].

straightforward basic blocks: simply cut the code into basic blocks, by running forward
through the RTL program and instantiating a new block each time a final instruction (of
type final) or a branch is encountered.

1We have not ported Six’s duplications to BTL, as applying them on RTL is quite flexible in practice (there is no need to
translate to another language, and they can be applied between two existing RTL passes), but doing this port would be very
simple using the projection checker of this chapter.

129

https://framagit.org/yukit/compcert-chamois-gl-thesis/-/blob/master/scheduling/RTLtoBTLaux.ml

8.3 bilateral matching: the btl projection checker 130

basic blocks with synthetic nodes: same principle, but this time the oracle inserts a synthetic
node on every edge leading to a join point in the RTL CFG. Synthetic nodes are empty blocks
that only contain a Bgoto instruction pointing to the detected join point. They are necessary
for our LCT algorithm, see §10.2.1.1.

superblocks: this last option was ported from [133, §5.3.1]. In contrast to basic block selectors,
here we allow predicted branches to appear in superblocks.

Hence, the Coq pass is parametrized by one of the three oracles mentioned above. In addition to
the block selection, the translation oracle also applies a post-order renumbering of the BTL code2
(see its code online [�]), and builds the morphism mapping needed to drive the validation.

All those three untrusted oracles share the same Coq signature:

Parameter rtl2btl: frtl → cfgbtl * pc * finfo * (pc 7→ pc option)

Given a RTL function, the oracle yields a tuple of the BTL translated CFG, its entry point of type pc, a
fresh shadow field for function’s information, and the morphism as a map from BTL to RTL nodes.

Generating the mapping for the RTL to BTL translation is trivial: we only insert identity mappings.
When using the synthetic nodes generation, we simply leave synthetic nodes undefined in the
mapping, since they do not have a RTL equivalent (see §8.3).

8.2.2 Flattening and Factorization, From BTL to RTL

For the resulting RTL code to be as close as possible to the original one, we start by renumbering the
BTL code using the old indices that were stored in shadow fields during the initial selection. This is
a preserving approach; however, if many changes were made to the BTL CFG, the regenerated RTL
structure will be different. Translating a BTL program to RTL then simply involves flattening blocks
to rebuild a single instruction CFG. After the translation, we optionally apply a CFG minimization
pass which mimics Moore’s algorithm for deterministic finite automaton (DFA) minimization.

Both the flattening and the optional factorization are performed by the same oracle, which has
the following type:

Parameter btl2rtl: fbtl → cfgrtl * pc * (pc 7→ pc option)

The result is a tuple of the new RTL CFG, entry point, and mapping. Without factorization, the CFG
morphism trivially maps BTL block IDs to their first corresponding instruction in the RTL graph.

The code factorization pass was designed and implemented by Alexandre Bérard [4, §4]: an
example is given in §10.2.7, and a more complete description is provided in §11.4.

8.3 bilateral matching: the btl projection checker

We use a variant of the duplications’ morphism checker [135, §4.4]†—called the BTL projection checker,
to validate both directions of translation between RTL and BTL.

Below, we outline the relational specification of this validator in a backward manner in §8.3.1,
before proving it correct for both directions in Sections 8.3.2 and 8.3.3.

8.3.1 Specification of Our Validator

At the top level, we expect a matching relation between a BTL function fB and a RTL one fR:

Definition 8.3.1 (Matching relation between BTL and RTL at the function level). Given the mapping
m (provided by a translation oracle as a certificate), and a Boolean “indirect” that enables the supportThe morphism m

is implemented
using the PTree

library.

of synthetic nodes (i.e. if false, the validator will reject new empty blocks in the BTL function)3, we
set:

2This renumbering has two purposes: first, it accelerates work-list based fixed points in optimizations (see Chapter 10);
second, it eases the translation back to RTL by remembering the old indices in the instructions’ shadow fields.

3We enable this Boolean only for the RTL to BTL direction, and only when the chosen oracle is the “basic blocks with
synthetic nodes” one.

https://framagit.org/yukit/compcert-chamois-gl-thesis/-/blob/master/scheduling/BTL_Renumber.ml

8.3 bilateral matching: the btl projection checker 131

Record match_function (m: pc 7→ pc option) (fB: fbtl) (fR: frtl) (indirect: bool): Prop := {

map_correct: match_cfg m (BTL.fn_code fB) (RTL.fn_code fR) indirect;

map_entrypoint: match_nodes m (BTL.fn_code fB) indirect

(BTL.fn_entrypoint fB) (RTL.fn_entrypoint fR);

preserv_fnsig: BTL.fn_sig fB = RTL.fn_sig fR;

preserv_fnparams: BTL.fn_params fB = RTL.fn_params fR;

preserv_fnstacksize: BTL.fn_stacksize fB = RTL.fn_stacksize fR

}

The function’s signature, parameters, and stack size are expected to be preserved. Entry points and
other CFG nodes from the two functions should be related using the mapping: this is ensured by
properties match_nodes and match_cfg above, respectively.

Let us continue with the relation for nodes:

Definition 8.3.2 (Matching relation between nodes).

Inductive match_synthetic_node (m: pc 7→ pc option) (cfgB: cfgbtl): bool → pc → pc → pc → Prop :=

| mn_direct pcB pcR indirect:

m ! pcB = Some pcR →
match_synthetic_node m cfgB indirect pcB pcB pcR

| mn_indirect pcX pcB pcR ib iinfo:

m ! pcX = None →
cfgB ! pcX = Some ib →
ib.(entry) = BF (Bgoto pcB) iinfo →
m ! pcB = Some pcR →
match_synthetic_node m cfgB true pcX pcB pcR

Definition match_nodes m cfgB indirect pcX pcR :=

∃ pcB, match_synthetic_node m cfgB indirect pcX pcB pcR

We voluntarily
isolate the

existential binder
here, so that we

can instantiate the
relation for a

specific pcB (see
Definition 8.3.10).

In other words, given two nodes pcX and pcR, two alternatives are possible: either (mn_direct) there is
a direct mapping between the BTL and the RTL node in m, or (mn_indirect) there is no mapping from
pcX in m, but pcX points to an intermediate—synthetic—node in cfgB whose immediate successor
leads to a program point pcB mapped to the RTL node in m. The second clause is conditioned by the
indirect Boolean.

Relating entry points from both functions using the above definition allows us to insert a synthetic
node before the original RTL entry point. This is useful in case the RTL’s CFG entry was also a loop
header: indeed,without such an empty pre-header, it would be impossible to anticipate loop invariant
code in that situation (which remain, however, quite rare).

Beside these indirections, our projection checker also needs to relate the content of all blocks with
their corresponding RTL instructions. We achieve this by enforcing an inductive relation for every
BTL block:

Definition 8.3.3 (Matching all BTL blocks with the right RTL sequence).

Definition match_cfg m (cfgB: cfgbtl) (cfgR: cfgrtl) indirect: Prop :=

∀ pcB pcR, m!pcB = Some pcR →
∃ ib, cfgB!pcB = Some ib ∧

match_iblock m cfgB cfgR indirect true pcR ib.(entry) None

Meaning that for each defined node in the CFG morphism, the node must also be defined in the BTL
CFG itself, and satisfies match_iblock:

An essential difference between RTL and BTL is that in RTL, each instruction designates at least
one explicit successor in the CFG, whereas in BTL, only final instructions (of type final) indicate a
successor in the CFG. Some BTL final instructions like the Bgoto have no direct RTL analogue: typically,
Bgoto actually designates the successor (in another BTL block) of a certain RTL instruction. So, to
correspond to RTL code, a Bgoto instruction must necessarily be preceded (in its block) by another
BTL instruction. This preceding instruction corresponds to the “beginning” of a RTL instruction.

8.3 bilateral matching: the btl projection checker 132

Another important concern is no-operation instructions. In Figure 5.1, the syntax for Bnop optionally
defines an iinfo field. We actually use the presence of this shadow field to distinguish no-ops that
must be kept in RTL (when the field is set) from those that we want to forget during the translation.
To illustrate these differences, let us examine the RTL codes corresponding to Figures 5.2 and 5.3:

Example 8.3.1 (Correspondence between RTL and BTL syntaxes). For Figure 5.2, if we assume
the conditional branch to be at position pc2 in the RTL graph, the RTL pseudocode (in post-order
numbering) would look like:

pc2: Icond(_>=_, [x;y], L, pc1)

pc1: Iop(_<<, [z], x, pc0)

pc0: Ireturn(x)

where L could point to any CFG node. In this example, the branch (at pc2) is a RTL Icond instruction
which contains syntactically the addresses of its two possible successors. The BTL Bgoto, “Bnop None”
(in Figure 5.2, the None argument was omitted for simplicity), and Bseq instructions have no RTL
equivalent and are thus absent in the above translation. The sole purpose of the Bgoto in the BTL
version of the code was to encode the fact that one branch exits the block. In contrast, the BTL Bnop of
the “else” branch was simply there to “fill” the “else” block, since the actual “else” code in Figure 5.2
is stored in the enclosing Bseq.

This dummy Bnop in the “else” branch of Figure 5.2 could theoretically be removed by directly
replacing it with the sequence of both the shift and the return. On the other hand, if we consider a
variant of this example, the presence of the dummy Bnop becomes essential to avoid code redundan-
cies. Imagine a situation where, instead of the Bgoto(L) of the if branch, we would have an arithmetic
operation such as “z = z * 2”. In that case, not using the dummy Bnop would force us to duplicate
the “else” branch both in the right part of the condition and in the enclosing sequence!

Another argument, though less consequential but aesthetic, is that since BTL is heavily used to
represent superblocks, combining a dummy Bnopwith a goto provides a convenient way to represent
side-exits as a single instruction, which is easier to manipulate in oracles.
As a simpler example, the internal join from Figure 5.3 would be translated as:

pc3: Icond(_==0, [i], pc1, pc2)

pc2: Iop(Omove, [b], x, pc0)

pc1: Iop(Omove, [a], x, pc0)

pc0: Ireturn(x)

where the only BTL instructions skipped during translation are those of type Bseq.

I now explain how to define a matching relation between both syntaxes encoding those differences.

Definition 8.3.4 (Inductive relation between a single BTL block and its corresponding RTL sequence).
Here “match_iblock m cfgB cfgR indirect (isfst: bool) pcR ib (opc: option pc)” means that ib

matches a RTL code sequence starting at pcR (in the RTL CFG). Parameter isfst, when true, indicates
that no RTL step in the surrounding block has been started before entering pcR, i.e. this encodes an
“input” information. This information is used to forbid certain BTL code that are not transformable
in RTL, e.g. Bgoto not preceded by the beginning of a step. Conversely, opc is an “output” information:
it is equal to None when all branches of the block end on a final instruction, and to “Some pcR'” when
all branches (of the block), that do not end on a final BTL instruction, join on pcR' in the RTL CFG.

Inductive match_iblock (m : pc 7→ pc option) (cfgB : cfgbtl) (cfgR : cfgrtl) (indirect: bool):

bool → pc → iblock → (option pc) → Prop :=

| mib_BF isfst fi pcR i iinfo:

cfgR!pcR = Some i →
match_final_inst m cfgB indirect fi i →
match_iblock m cfgB cfgR indirect isfst pcR (BF fi iinfo) None

| mib_nop_on_rtl isfst pcR pcR' iinfo:

cfgR!pcR = Some (Inop pcR') →
match_iblock m cfgB cfgR indirect isfst pcR (Bnop (Some iinfo)) (Some pcR')

| mib_nop_skip pcR:

match_iblock m cfgB cfgR indirect false pcR (Bnop None) (Some pcR)

| mib_op isfst pcR pcR' op lr r iinfo:

8.3 bilateral matching: the btl projection checker 133

cfgR!pcR = Some (Iop op lr r pcR') →
match_iblock m cfgB cfgR indirect isfst pcR (Bop op lr r iinfo) (Some pcR')

| mib_load isfst pcR pcR' trap m0 a lr r iinfo:

cfgR!pcR = Some (Iload trap m0 a lr r pcR') →
match_iblock m cfgB cfgR indirect isfst pcR (Bload trap m0 a lr r iinfo) (Some pcR')

| mib_store isfst pcR pcR' m0 a lr r iinfo:

cfgR!pcR = Some (Istore m0 a lr r pcR') →
match_iblock m cfgB cfgR indirect isfst pcR (Bstore m0 a lr r iinfo) (Some pcR')

| mib_exit pcX pcR iinfo:

(* NB: on RTL side, we exit the block by a "basic" instruction (or Icond)

Thus some step should have been executed before [pcX] in the RTL code. *)

match_nodes m cfgB indirect pcX pcR →
match_iblock m cfgB cfgR indirect false pcR (BF (Bgoto pcX) iinfo) None

| mib_seq_Some isfst b1 b2 pcR1 pcR2 opc:

match_iblock m cfgB cfgR indirect isfst pcR1 b1 (Some pcR2) →
match_iblock m cfgB cfgR indirect false pcR2 b2 opc →
match_iblock m cfgB cfgR indirect isfst pcR1 (Bseq b1 b2) opc

| mib_cond isfst c lr bso bnot pcso pcnot pcR opc1 opc2 opc i iinfo:

cfgR!pcR = Some (Icond c lr pcso pcnot i) →
match_iblock m cfgB cfgR indirect false pcso bso opc1 →
match_iblock m cfgB cfgR indirect false pcnot bnot opc2 →
is_join_opt opc1 opc2 opc →
match_iblock m cfgB cfgR indirect isfst pcR (Bcond c lr bso bnot iinfo) opc

Above, values of ib that correspond to the beginning of a RTL instruction (i.e. all BTL instructions
except Bseq, Bgoto, and “Bnop None”) are syntactically compared with their RTL equivalent match at
pcR. When ib is a branch (Bcond) or a sequence (Bseq), the relation is defined inductively over sub-
blocks. For sequences, rule mib_seq_Some prohibits the presence of dead code sequentially following
a final instruction. Such a restriction simplifies the formal proof and ensures that no unnecessary
code is generated.

In the following, we call real node a BTL node which is an actual RTL node, and not a synthetic
node. As sketched before, BTL gotos cannot be isolated in a block—as implied by the false value
of isfst in rule mib_exit, except in synthetic nodes (which are not bound in the morphism). In
fact, this is encoded by the match_nodes prerequisite: a goto terminating a real node can be followed
by a synthetic node4. A synthetic node may also follow non-returning final instructions (i.e. calls,
built-ins, and jump tables). Predicate match_final_inst [�] compares final values5 syntactically and
checks that each exit of a final instruction leads to a real node modulo at most one indirection by a
synthetic node (e.g. with Definition 8.3.2).
Finally, the Bcond case enforces a special is_join_opt output property for branches:

Inductive is_join_opt {A}: (option A) → (option A) → (option A) → Prop :=

| ijo_None_left o: is_join_opt None o o

| ijo_None_right o: is_join_opt o None o

| ijo_Some x: is_join_opt (Some x) (Some x) (Some x)

We implemented a functional checker proved to imply the specification of Relation 8.3.1 when
the result is true (this step being very simple, I do not describe it, see [�]).

8.3.2 BTL to RTL Proof

Proving the translation back to RTL is the simplest: synthetic nodes in the checker are always
disabled (i.e. indirect = false). The simulation is following a variant of “plus” scheme (cf. top-
right of Figure 3.2), meaning that a single BTL blockstep is simulated by at least one instruction on
the RTL side. Proofs below are presented in a backward style.
More formally, we relate RTL and BTL states as follows (assuming a successful validation to obtain
match_function from Relation 8.3.1):

4The RTL to BTL oracle thus never generates an isolated goto which is not a synthetic node.
5Except gotos, that are already handled in match_iblock since not present in RTL.

https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTLmatchRTL.html#match_final_inst
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTLmatchRTL.html#verify_node_eq

8.3 bilateral matching: the btl projection checker 134

Definition 8.3.5 (Mathing relation between stack frames—BTL to RTL).

Inductive match_stackframes: ΣB → ΣR → Prop :=

| match_stackframe_intro m res fB sp pcB rs0 fR pcR

(TRANSF: match_function m fB fR false)

(HMAP: m!pcB = Some pcR)

: match_stackframes (ΣB res fB sp pcB rs0) (ΣR res fR sp pcR rs0)

Definition 8.3.6 (Matching relation between states—BTL to RTL).States for RTL
and BTL below

are denoted as in
Definition 5.3.1.

Inductive match_states: BTL.S → RTL.S → Prop :=

| match_states_intro m
»
ΣB

»
ΣR fB fR sp pcB pcR rs0 m0

(STACKS: list_forall2 match_stackframes
»
ΣB

»
ΣR)

(TRANSF: match_function m fB fR false)

(HMAP: m!pcB = Some pcR)

: match_states (BTL.S
»
ΣB fB sp pcB rs0 m0) (RTL.S

»
ΣR fR sp pcR rs0 m0)

| match_states_call
»
ΣB

»
ΣR fB fR args m0

(STACKS: list_forall2 match_stackframes
»
ΣB

»
ΣR)

(TRANSF: match_fundef fB fR)

: match_states (BTL.C
»
ΣB fB args m0) (RTL.C

»
ΣR fR args m0)

| match_states_return
»
ΣB

»
ΣR v m0

(STACKS: list_forall2 match_stackframes
»
ΣB

»
ΣR)

: match_states (BTL.R
»
ΣB v m0) (RTL.R

»
ΣR v m0)

S1

S2

S3

S ′
1

S ′
2

S ′
3

BTL RTL

∼ match_states

ε body ε +

ε

goto

e

final
except
goto

e

ε ∗

Figure 8.1: Simulation From BTL to RTL:
goto case (red) and other
final instructions (green); see
Lemma 8.3.2.

The simulation proof of internal calls, external calls, and
returns is trivial: it demonstrates a lock-step between the
BTL blockstep and the RTL instruction; so I do not detail
it here (see [�]). When the step is of type exec_iblock (cf.
Definition 5.3.7), a BTL step decomposes into the execu-
tion of a sequence of non-final instructions (the body), fol-
lowed by a final instruction. Two possibilities arise. (i) Ei-
ther this final instruction exists in RTL, and we simulate
the body’s execution by a “star” step (potentially empty)
of BTL instructions. The simulation of the final instruction
then corresponds to exactly one RTL step. Or (ii) this final
instruction is a goto and the matching conditions of Def-
inition 8.3.4 ensure that the body’s execution contains a
BTL instruction corresponding to the beginning of a RTL
instruction just before the goto. In this situation, the body
execution is simulated by a “plus” step6 of RTL instruc-
tions, and the simulation of the goto is already done at the
end of this plus step. Put another way, the goto simulation
represents a stuttering step on the RTL side.
We encode that using a variant of star RTL step (see Figure 8.1):

Definition 8.3.7 (Conditional variant of the RTL star simulation). The difference with the classical
star step is that here, the stuttering case requires that proposition P holds.

Inductive cond_star_step (P: Prop): RTL.S → trace → RTL.S → Prop :=

| css_refl s: P → cond_star_step P s ε s

| css_plus s1 e s2: plus RTL.step tge s1 e s2 →
cond_star_step P s1 e s2

Notice that it implies the star simulation:

Lemma 8.3.1 (Conditional reflexive step or plus step imply star step [�]). Let us note Definition 8.3.7
from state S1 to state S2 as “S1 C→ S2”. Star and plus steps are noted “S1 ∗→ S2” and “S1 +→ S2”, respectively.

6The validator here expects the CFG to be free of synthetic nodes, that is why the simulation is “plus” and not “star”.

https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTLtoRTLproof.html#BTLtoRTL_Translationproof.plus_simulation
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.BTLtoRTLproof.html#BTLtoRTL_Translationproof.css_star

8.3 bilateral matching: the btl projection checker 135

In the css_refl case, for all P, we always have “S ∗→ S”, as no step is performed. It is hence a particular case
of star simulation. Conversely, for all S1 and S2, “S1 +→ S2 =⇒ S1

∗→ S2”, meaning that a plus simulation
is also a particular case of star simulation. Hence, “S1 C→ S2 =⇒ S1

∗→ S2”.

Lemma 8.3.2 (BTL block plus step simulation is correct). This simulation property decomposes the body
(hypothesis IBIS below) and the final instruction (hypothesis FS) of block ib.

Lemma iblock_step_simulation sp m
»
ΣB

»
ΣR fB fR ib rs0 m0 rs1 m1 pcR0 fin e s2

(STACKS: list_forall2 match_stackframes
»
ΣB

»
ΣR)

(TRANSF: match_function m fB fR false)

(IBIS: iblock_istep GB sp rs0 m0 ib rs1 m1 (Some fin))

(MIB: match_iblock m (BTL.fn_code fB) (RTL.fn_code fR) false true pcR0 ib None)

(FS: final_step GB

»
ΣB fB sp rs1 m1 fin e s2)

: ∃ s2', plus RTL.step GR (RTL.S
»
ΣR fR sp pcR0 rs0 m0) e s2' ∧ match_states s2 s2'

Proof. We handle the body using Lemma 8.3.3 (defined later in this section), so that we obtain a new
match_iblock property with the final instruction of ib, and a conditioned star step (cf. Definition 8.3.7) for
the execution of the body. The former has an unknown value for isfst, used to define the P predicate of the
latter cond_star_step as “true = isfst”. Hence, P never holds for gotos and no-op that should be skipped.
This leads to two cases:

• The final instruction is not a goto: we can apply Lemma 8.3.4 that gives us the single RTL step corre-
sponding to the final instruction, and a matching property between s2 and s2'. We thus discharge the
existential quantifier with this new s2', and prove the match_states goal. We know from a CompCert’s
existing theorem that our “S2 +→ S ′

2” step can be decomposed into “∃S2i, S2 ∗→ S2i ∧ S2i → S ′
2” (i.e.

right unfolding). The star result is proved by Lemma 8.3.1 above, and the single step goal is exactly the
RTL step of the last instruction.

• The final instruction is a goto, so P is “true = false” and reduces to a plus simulation from the
conditional star hypothesis. This plus instantiates s2' perfectly and solves the first goal. Since indirect
is false, we deduce the “m!pcB = pcR” equality needed to prove the matching between s2 and s2'.

Lemma 8.3.3 (Conditional star step simulation of the body is correct). In case of a final instruction in
ofin below, it must be matched with the corresponding RTL one located at pcR1; predicate P for cond_star_step
is then defined as the equality between isfst (at the block entry) and isfst' (at the last instruction). This
predicate might be true e.g. if the only instruction in the block is a non-goto but final instruction. Otherwise,
when “ofin = None’, we just impose (in addition to the conditional star step) that opc from the relation in
assumption equals “Some pcR1”.

Lemma iblock_istep_simulation sp m
»
ΣR fB fR rs0 m0 ib rs1 m1 ofin

(IBIS: iblock_istep GB sp rs0 m0 ib rs1 m1 ofin): ∀pcR0 opc isfst

(MIB: match_iblock m (BTL.fn_code fB) (RTL.fn_code fR) false isfst pcR0 ib opc),

match ofin with

| None ⇒ ∃ pcR1,(opc = Some pcR1) ∧

cond_star_step (isfst = false) (RTL.S
»
ΣR fR sp pcR0 rs0 m0) ε

(RTL.S
»
ΣR fR sp pcR1 rs1 m1)

| Some fin ⇒ ∃ isfst' pcR1 iinfo,

match_iblock m (BTL.fn_code fB) (RTL.fn_code fR) false isfst' pcR1 (BF fin iinfo) None ∧

cond_star_step (isfst = isfst') (RTL.S
»
ΣR fR sp pcR0 rs0 m0) ε

(RTL.S
»
ΣR fR sp pcR1 rs1 m1)

end

Proof. We proceed by induction on IBIS, and obtain eight subcases (cases for Bop, Bload, and Bstore are
merged below):

• “ib = BF (fin iinfo)”. For both the mib_BF and mib_exit cases, opc is equal to None. As there is a final
instruction, we must prove the matching relation for pcR1, which is exactly MIB. The predicate P is thus
“isfst = isfst”, so we apply constructor css_refl and prove P by reflexivity.

8.3 bilateral matching: the btl projection checker 136

• “ib = Bnop oiinfo”. We invert hypothesis MIB to distinguish the Some and the None cases. In the former,
pcR1 is instantiated with the successor of the RTL corresponding no-op, and by applying the css_plus
constructor, we prove there exists a plus one (i.e. single step) simulation matching the RTL step.
Conversely, in the latter case, “pcR1 = pcR0” and “isfst = false”, so that we apply the css_refl

constructor emitting no step.

• “ib = Bop or Bload or Bstore”. Here, pcR1 is always instantiated with the RTL successor of the instruc-
tion. We always perform a single step using the css_plus simulation. Those three cases require proving
some usual properties about the preservation of symbols, which are trivial.

• “ib = (Bseq b1 b2)” when b1 ends with a final instruction (i.e. meaning b2 is dead code). We invert
MIB to obtain the inductive relation for b1, and directly apply the induction hypothesis from IBIS (which
contains the Some conclusion).

• “ib = (Bseq b1 b2)” with b1 at pcR0 continuing to b2 at pcR1. Again, we invert MIB for constructor
mib_seq_Some and exploit the inductive relation for b1. This shows the existence of a step “pcR0 C→ pcR1”
(as we know that b1 does not end with a final instruction). Then, exploiting the inductive relation
for b2 gives us the second step starting from pcR1 to a next RTL program counter named pcR2. Two
cases are possible depending on if b2 ends with a final instruction or not. If so, we know that the last
instruction of b2 satisfy a match_iblock relation with the RTL one at pcR2. We use this relation to prove
the corresponding goal. The remaining objective is to demonstrate “pcR0 C→ pcR2” with P being the
equality between the isfst Booleans for b1 and for the last instruction of b2. By transitivity of the C→
relation, this amounts to prove “pcR0 C→ pcR1∧ pcR1

C→ pcR2”. These two clauses correspond exactly
to the two steps obtained from the induction hypotheses on b1 and b2, respectively.
Otherwise, when b2 does not end with a final instruction, we still know the existence of a pcR2 and of a
transition pcR1

C→ pcR2. The whole transition is proved by transitivity following the same pattern.

• “ib = (Bcond bso bnot)”. By destructing the conditional test and exploiting the induction hypothesis,
we obtain the step for either the bso or the bnot block. Each time, we also destruct ofin to distinguish
the case where the (considered) branch ends with a final instruction. For both branches, when there
is a final instruction, we already have the matching relation from the induction hypothesis, and we
prove the conditional star step by transitivity. The is_join_opt hypothesis from MIB gives us, for both
non-ending (i.e. with a final instruction) branches, two goals: one where both branches join on the same
PC, and one where only the left (for bso) or the right (for bnot) branch continues. All the four cases
are proved by transitivity of relation C→.

Lemma 8.3.4 (Final step simulation is correct).
Lemma final_simu_except_goto sp m

»
ΣB

»
ΣR fB fR rs1 m1 pcR1 fin e s

(STACKS: list_forall2 match_stackframes
»
ΣB

»
ΣR)

(TRANSF: match_function m fB fR false)

(FS: final_step GB stack fB sp rs1 m1 fin e s)

(i: instruction)

(ATpc1: (RTL.fn_code fR) ! pcR1 = Some i)

(MF: match_final_inst m (BTL.fn_code fB) false fin i)

: ∃ s', RTL.step GR (RTL.S
»
ΣR fR sp pcR1 rs1 m1) e s' ∧ match_states s s'

Proof. We split cases by inverting MF and FS. We obtain five goals depending on the final instruction, which
cannot be a goto (by definition of MF). All cases are proven in a similar fashion: first by applying the RTL step
constructor of the current final instruction and some preservation properties concerning the stack size, the
function’s signature, and symbols; second, by constructing the matching relation between states from the
hypotheses.

8.3.3 RTL to BTL Proof

The RTL to BTL direction is much more complex. Indeed, whereas for the forward simulation of
each BTL step by RTL steps at the previous section, we only had to define the simulation relation at

8.3 bilateral matching: the btl projection checker 137

block entries, in the reverse direction, we need to define the simulation relation between each RTL
step; that is, after each internal instruction. Hence, our simulation theorem comprises two cases,
as illustrated in the two diagrams of Figure 8.2. Moreover, we also need to deal with indirections
due to synthetic nodes. Thus, while the simulation seems quite obvious, its formal proof is rather
intricate. I also present this proof backward.

8.3.3.1 Matching Relations and Normalization

For internal instructions, the simulation is of the “star” type. It does not emit observable events, and
is shown to be well-founded with a decreasing measure “|ib|” [�] of the number of remaining BTL
instructions in block ib (excluding Bseq and Bcond).

As previously explained, a Bgoto represents either the remainder of a RTL instruction that ends
a block, or a synthetic node (which does not exist in RTL). In our simulation relation, we impose
that the RTL state never matches a Bgoto. In this way, both executions remain easily synchronized. In
particular, the RTL state never matches a synthetic node.

When a synthetic node follows a real node on the BTL side, the BTL simulation takes two steps,
whereas the matching RTL final instruction (emitting event e) is executed in one step. Hence, the
final case follows a “plus” simulation to allow for either one (direct) or two (indirect) steps on the
BTL side.

S1

S2

S ′
1

RTL BTL

∼ match_states [oib]

ε

with |oib'| < |oib|

match_states [oib’]

S1

S2

S ′
1

S ′
2

RTL BTL

∼ match_states

e e +

Figure 8.2: Simulation From RTL to BTL: Internal Instructions (left) and Last Instruction (right) (Theo-
rem 8.3.5).

The matching relation between stack frames is very similar to Definition 8.3.5, except that the
direct matching hypothesis “m!pcB = Some pcR” is replaced with match_nodes:

Definition 8.3.8 (Mathing relation between stack frames—RTL to BTL).

Inductive match_stackframes: ΣR → ΣB → Prop :=

| match_stackframe_intro m indirect res fR sp pcR rs0 fB pcX

(TRANSF: match_function m fB fR true)

(MN: match_nodes m (fn_code fB) indirect pcX pcR)

: match_stackframes (ΣR res fR sp pcR rs0) (ΣB res fB sp pcX rs0)

If a synthetic node was inserted, then match_stackframes holds for the pc corresponding to it.

To make the simulation proof simpler, we start by normalizing BTL blocks. This normalization
does not change the semantics, and preserves the match_iblock relationship (of Definition 8.3.4): it
just reduces the proof to a smaller subset of BTL blocks than syntactically allowed.

Definition 8.3.9 (Normalizing the struture of BTL blocks).
We define the following formal specification:

Inductive is_normRTL: iblock → Prop :=

| norm_Bseq ib1 ib2:

is_RTLbasic ib1 = true →
is_normRTL ib2 →
is_normRTL (Bseq ib1 ib2)

| norm_Bcond cond args ib1 ib2 i:

is_normRTL ib1 →
is_normRTL ib2 →

https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.RTLtoBTLproof.html#RTLtoBTL_Translationproof.measure

8.3 bilateral matching: the btl projection checker 138

is_normRTL (Bcond cond args ib1 ib2 i)

| norm_others ib:

is_RTLatom ib = true →
is_normRTL ib

Where is_RTLbasic identifies all non-final RTL instructions (i.e. everything except Bseq, Bcond,
“Bnop None”, and “BF _ _”); andwhere is_RTLatom does the same but including final (BF) instructions.

The principle of this transformation is to orientate all Bseq the same way: given a sequence
(Bseq ib1 ib2), ib1 is expected to correspond to the “beginning” of a RTL basic instruction (but ib2
can contain another Bseq).

Our implementation of this specification operates in continuation passing style, and removes all
no-operations marked as not needed in RTL (i.e. those whose argument is None)7.

(* NB: [k] is a "continuation" (e.g. semantically [normRTLrec ib k] is like [Bseq ib k]). *)

Fixpoint normRTLrec (ib: iblock) (k: iblock): iblock :=

match ib with

| Bseq ib1 ib2 ⇒ normRTLrec ib1 (normRTLrec ib2 k)

| Bcond cond args ib1 ib2 iinfo ⇒
Bcond cond args (normRTLrec ib1 k) (normRTLrec ib2 k) iinfo

| BF fin iinfo ⇒ BF fin iinfo

| Bnop None ⇒ k

| ib ⇒ Bseq ib k

end

Definition normRTL ib := normRTLrec ib (Bnop None)

We proved two preservation lemmas about normRTL: w.r.t. first, the functional semantics of BTL
internal instructions (Definition 5.3.4) [�]; and second, Relation 8.3.4 [�]. Furthermore, under a
valid match_iblock hypothesis and for any block ib, “is_normRTL (normRTL ib)” holds [�].

(pcR0,rs0,m0)

Partial execution of block starting at ib0 until ib
Red: optional step for pre indirection
Green: match_strong_state hypotheses

(pcR1,rs1,m1)

(ib?,pcX,rs0,m0)

(ib0,pcB,rs0,m0)

(ib,pcB,rs1,m1)

RTL BTL
MSN

ε
∗
RTL_RUN

MSN

match iblock
BTL_RUN

Figure 8.3: Relation match_strong_state.

Formalizing a matching relation between
states that stutters (with a decreasing measure)
on the BTL side requires decomposing a BTL block-
step into multiple small RTL steps. This implies
defining an internal correspondence relation be-
tween RTL and BTL states: on the RTL side, each
step leads to a new state; while on BTL, we want
a notion of internal state that corresponds to a
partial block execution.

Figure 8.3 sketches a relation (defined just be-
low) that corresponds to the simulation invari-
ant between each instruction in a (normalized)
block. It expresses the fact that we are accumu-
lating small RTL steps that were simulated by the
start of execution of the BTL block (i.e. by a par-
tial execution). In this manner, the relation determines the sub-block that remains to be executed in
order to continue the simulation.

Definition 8.3.10 (Matching relation between states—RTL to BTL). We start by defining the auxiliary
predicate match_strong_state pictured in Figure 8.3, thatmatches each single RTL instructionwithin a
blockstep to a BTL instruction (i.e. block) ib. It represents the aforementioned sub-block of remaining
instructions to simulate. The current matching instruction ib is extracted from a surrounding BTL
block called ib0, itself at label pcB (hypothesis ATpcB below), where pcB matches (after a possible
indirection from pcX) the RTL entry point of the block at label pcR0; the RTL instruction corresponding
to ib being at label pcR1. The MSN hypothesis (below and in Figure 8.3) has two roles: it makes the
link between pcR0 and pcX; and it tells us if either pcX is an indirection with a synthetic node pointing
to pcB or if pcX is a real node (meaning that pcX=pcB).

7This transformation exponentially increases the number of instructions in the worst case. However, this is not a problem
here, since we do not use this transformation for compilation: its sole purpose is to facilitate reasoning.

https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.RTLtoBTLproof.html#RTLtoBTL_Translationproof.normRTL_preserves_iblock_istep_run
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.RTLtoBTLproof.html#RTLtoBTL_Translationproof.normRTL_matchiblock_correct
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.RTLtoBTLproof.html#RTLtoBTL_Translationproof.is_normRTL_correct

8.3 bilateral matching: the btl projection checker 139

Inductive match_strong_state

m
»
ΣR

»
ΣB fR fB sp rs1 m1 rs0 m0 pcX pcB pcR0 pcR1 ib ib0 isfst: Prop :=

| match_strong_state_intro indirect

(STACKS: list_forall2 match_stackframes
»
ΣR

»
ΣB)

(TRANSF: match_function m fR fB)

(MSN: match_synthetic_node m (fn_code fB) indirect pcX pcB pcR0)

(ATpcB: (fn_code fB)!pcB = Some ib0)

(MIB: match_iblock m (fn_code fB) (RTL.fn_code fR) indirect isfst pcR1 ib None)

(IS_EXPD: is_normRTL ib)

(RTL_RUN: star RTL.step GR (RTL.S
»
ΣR fR sp pcR0 rs0 m0) ε (RTL.S

»
ΣR fR sp pcR1 rs1 m1))

(BTL_RUN: iblock_istep_run GB sp ib0.(entry) rs0 m0 = iblock_istep_run GB sp ib rs1 m1)

: match_strong_state m
»
ΣR

»
ΣB fR fB sp rs1 m1 rs0 m0 pcX pcB pcR0 pcR1 ib ib0 isfst

In the RTL_RUN
hypothesis, GR is

the RTL global
environment. We
set GR (and GB

for BTL) as
parameters for the
entire Coq proof

module.

Letmedetail the other hypotheses of match_strong_state. As for any normal state simulation,we need
the matching relations for stack frames and functions as prerequisites. In addition, MIB must hold
for ib and its matching program counter pcR1. This requires defining what was already simulated in
ib0 (i.e. all instructions from ib0 up to—and excluding—ib). Therefore, we have two hypotheses
RTL_RUN and BTL_RUN that relate both executions. For RTL, it states that n steps (where n can be 0,
since it is a star simulation) were already executed, starting from an initial state (pcR0,rs0,m0) to
a current state (pcR1,rs1,m1). These steps are internal, so their trace should be empty (i.e. “ε”).
Similarly, the BTL run stipulates that starting the execution from a state (ib0,pcB,rs0,m0) leads to
the same state as the one obtained starting from (ib,pcB,rs1,m1) (cf. Definition 5.3.4). On the BTL
side, the current pc stays pcB since we do not change block. Both the RTL and BTL run hypotheses
are drawn in Figure 8.3.

Finally, notice the IS_EXPD hypothesis. The latter ensures that current sub-block ib respects the
canonical form specified in Definition 8.3.9. This requirement is of great help to prove the lemmas
depicted in Figure 8.4.

Since we want ib to always start with the beginning of a RTL instruction, and since our strong
matching property handles the simulation step for a possible previous synthetic node, ib must
always be a real block in match_states, as ensured with the NGOTO assumption below.Note that the call

and return cases
are almost

identical to those
of Definition

8.3.6.

Inductive match_states: (option iblock) → RTL.S → BTL.S → Prop :=

| match_states_intro m
»
ΣR

»
ΣB fR fB sp rs1 m1 rs0 m0 pcX pcB pcR0 pcR1 ib ib0 isfst

(MSTRONG: match_strong_state

m
»
ΣR

»
ΣB fR fB sp rs1 m1 rs0 m0 pcX pcB pcR0 pcR1 ib ib0 isfst)

(NGOTO: is_goto ib = false)

: match_states (Some ib) (RTL.S
»
ΣR fR sp pcR1 rs1 m1) (BTL.S

»
ΣB fB sp pcX rs0 m0)

| match_states_call
»
ΣR

»
ΣB fR fB args m0

(STACKS: list_forall2 match_stackframes
»
ΣR

»
ΣB)

(TRANSF: match_fundef fR fB)

: match_states None (RTL.C
»
ΣR fR args m0) (BTL.C

»
ΣB fB args m0)

| match_states_return
»
ΣR

»
ΣB v m0

(STACKS: list_forall2 match_stackframes
»
ΣR

»
ΣB)

: match_states None (RTL.R
»
ΣR v m0) (BTL.R

»
ΣB v m0)

In match_states above, the “option iblock” parameter represents the current BTL execution state.

8.3.3.2 Proof Sketch

The forward simulation requires proving that: (i) the measure is well-founded, which is trivial and
already proved in CompCert for any “less than” based measure; (ii) initial states match; (iii) final
states match; and (iv) moving a step forward on the RTL side preserves Relation 8.3.10.

Proving the correctness for initial and final states is really straightforward, so I omit that here
(see the Coq lemmas [�]). Let us rather focus on main theorem:

Theorem 8.3.5 (Forward simulation between RTL and BTL).

Theorem opt_simu s1 e s2 oib s1':

RTL.step GR s1 e s2 →

https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.RTLtoBTLproof.html#RTLtoBTL_Translationproof.transf_initial_states

8.3 bilateral matching: the btl projection checker 140

match_states oib s1 s1' →
∃ (oib' : option iblock), (|oib'| < |oib| ∧ e=ε ∧ match_states oib' s2 s1')

∨ (∃ s2', plus step GB s1' e s2' ∧ match_states oib' s2 s2')

Proof. The left and right alternatives of this theorem’s conclusion correspond to the left and right schemes
of Figure 8.2, respectively. By decomposing the match_states hypothesis, we obtain cases for normal, call,
and return states. The call state is itself decomposed in two for internal and external calls. For internal calls,
external ones, and return states, the proof requires splitting the direct and indirect cases, and taking the right
alternative (i.e. either a plus one or a plus two simulation).
Most of the complexity here lies in the normal state simulation. After unfolding the match_strong_state

hypothesis, we obtain a match_iblock hypothesis where the last parameter is None (since in Definition 8.3.10,
we only match blocks whose execution ends with a final instruction). This leads to a new decomposition in
four cases: final (mib_BF), goto (mib_exit), sequence (mib_seq_Some) and branch (mib_cond):

• mib_BF. We first exploit Lemma 8.3.6 below to show the existence of oib', s2', a BTL hypothesis BSTEP
from s1' to s2', and a matching relation MS between s2 and s2'. Since we reason on final instructions,
we take right conclusion alternative for each of them. The plus step is either direct, which corresponds
exactly to BSTEP; or indirect in two steps. In the latter case, the first step is the synthetic node (i.e.
semantically, the identity), solved by application of Lemma 8.3.7, and the second is BSTEP again. For
both the direct and indirect cases, the matching relation between states is exactly MS.

• mib_exit. Contradiction with hypothesis NGOTO.

• mib_seq_Some. Let “ib = (Bseq b1 b2)”. By discriminating constructors of the IS_EXPD hypothesis,
we ensure that b1 matches a non-final equivalent RTL instruction, and that b2 is correctly normalized.
As we are in the sequences inductive case, we have a match_iblock hypothesis for both b1 and b2. Consid-
ering that “is_RTLbasic b1 = true”, inverting Definition 8.3.4 leads to four cases: “Bnop (Some _)”,
Bop, Bload, and Bstore.
To solve them, we use the match_strong_state property for inductive instructions of Lemma 8.3.8.
The measure to prove is “|b2| < |b2| + 1”, which is trivial. The strong matching for b1 is proved by
assumption, and the step by using the RTL operational semantics for the considered instruction. When
b1 is an operation or memory operation, the strong matching for b2 requires proving that the semantics
is preserved by switching from GR (the RTL global environment) to GB (the BTL one). This is trivial
since symbols are preserved by translation.

• mib_cond. Here also, we know that both the bso (true) and the bnot (false) blocks are in their normal
form. In addition, as we match a terminating (i.e. with a final instruction) block, the is_join_opt
property from match_iblock tells us that both branches end with a final instruction.
According to b the Boolean result of the condition, we apply Lemma 8.3.8 with the current Bcond as
ib1 and with either bso or bnot for ib2. To demonstrate the strong matching hypothesis, we simplify
the BTL run hypothesis by splitting cases for b. Finally, we prove the trivial decay of the measure
“|if b then bso else bnot| < |bso| + |bnot|”.

Lemma 8.3.6 (Correctness of the real final blockstep5).

Lemma opt_simu_direct

m indirect
»
ΣR

»
ΣB fR fB sp rs1 m1 rs0 m0 pcB pcR0 pcR1 ib0 s2 e (fin: final) inst iinfo

(TRANSF: match_function m fR fB)

(STACKS: list_forall2 match_stackframes
»
ΣR

»
ΣB)

(STEP: RTL.step GR (RTL.S
»
ΣR fR sp pcR1 rs1 m1) e s2)

(NGOTO: is_goto (fin iinfo) = false)

(MAP: m ! pcB = Some pcR0)

(MFI: match_final_inst m (fn_code fB) indirect fin inst)

(ATpcB: (fn_code fB) ! pcB = Some ib0)

(RTL_RUN: star RTL.step GR (RTL.S
»
ΣR fR sp pcR0 rs0 m0) ε

(RTL.S
»
ΣR fR sp pcR1 rs1 m1))

(BTL_RUN: iblock_istep_run GB sp (entry ib0) rs0 m0 =

8.3 bilateral matching: the btl projection checker 141

iblock_istep_run GB sp (fin iinfo) rs1 m1)

(PC: (RTL.fn_code fR) ! pcR1 = Some inst)

: ∃ oib' s2', step GB (BTL.S
»
ΣB fB sp pcB rs0 m0) e s2' ∧ match_states oib' s2 s2'

Proof. We split the goal for each final instruction in match_final_inst5. Every case is discharged using a
similar pattern. We assume that oib' and s2' exist, to then split the goal with on one side, the step relation,
and on the other, the matching relation.
By construction, proving step reduces to prove Definition 5.3.6: the relational semantics for the block

body and final instruction. The body, encoded by Relation 5.3.2 as a predicate iblock_istep, goes from
state (rs0, m0) to (rs1, m1) for the current final instruction. In fact, this is simply the relational form of
hypothesis BTL_RUN, which we can convert using Lemma 5.3.1. For the final instruction, it suffices to apply
the final_step (cf. Relation 5.3.5) constructor corresponding to the current instruction, and to discharge its
prerequisites (for instance, if the final instruction is a return, one need to prove that the function’s stack frame
was freed: “Mem.free m0 stk 0 (fn_stacksize fB) = Some m0'”). These prerequisites being identical to their
RTL version, we obtain them by inverting STEP. Nonetheless, when they depend on the function’s attributes
(e.g. the stacksize, the signature, etc), it is needed to first rewrite preservation properties from match_function.

Solving the final step goal gives a concrete instantiation of s2', so that we demonstrate match_states by
construction.

Lemma 8.3.7 (Correctness of the synthetic node blockstep).

Lemma opt_simu_indirect m indirect
»
ΣB fB sp rs0 m0 pcX pcB ib (fin: final) inst iinfo

(PC: (fn_code fB) ! pcX = Some ib)

(BLK: entry ib = Bgoto pcB iinfo)

(MFI: match_final_inst m (fn_code fB) indirect fin inst)

: step GB (BTL.S
»
ΣB fB sp pcX rs0 m0) ε (BTL.S

»
ΣB fB sp pcB rs0 m0)

Note that here,
proving only the

case where
indirect is

true would suffice
to complete the

proof, but general
case also holds.

Proof. Inverting MFI splits the goal in all final5 instructions. By construction, the step for an iblock (cf.
Definition 5.3.7) requires proving two properties. First, the block’s existence in the CFG (i.e. that
“(fn_code fB) ! pcX = Some ib)”. This is exactly hypothesis PC. Second, a valid iblock_step relation: this
is trivial by rewriting hypothesis BLK, and by repeated application of the inductive types’ constructors.

(pcR1,rs1,m1)

(pcR2,rs2,m2)

(ib?1,pcX,rs1,m1)

(ib1,pcB,rs1,m1)

(ib2,pcB,rs2,m2)

(ib?2,pc?,rs2,m2)

For inductive instructions e.g. Bseq/Bcond(ib1,ib2))
Red: optional steps for pre/post indirections
pcX → pcB only if indirection
pcB → pc? only if ib2=BF (Bgoto pc?)

RTL BTL
∼ match strong

state 1

ε

GOAL: match states

∼ match strong
state 2

Figure 8.4: Decomposition of Theorem 8.3.5 into Lemmas 8.3.6 (bottom subdiagram for final instructions)
and 8.3.8 (with two match_strong_state relations for inductive instructions).

Lemma 8.3.8 (Simulation property for inductive instructions).

Lemma match_strong_state_simu

m
»
ΣR

»
ΣB fR fB sp rs2 m2 rs1 m1 rs0 m0 pcX pcB pcR0 pcR1 pcR2 isfst ib1 ib2 ib0 n s2

(EQs2: s2=(RTL.S
»
ΣR fR sp pcR2 rs2 m2))

(STEP: RTL.step GR (RTL.S
»
ΣR fR sp pcR1 rs1 m1) ε s2)

(MSS1: match_strong_state m
»
ΣR

»
ΣB fR fB sp rs1 m1 rs0 m0 pcX pcB pcR0 pcR1 ib1 ib0 isfst)

(MSS2: match_strong_state m
»
ΣR

»
ΣB fR fB sp rs2 m2 rs0 m0 pcX pcB pcR0 pcR2 ib2 ib0 false)

(MES: |ib2| < n)

: ∃ (oib' : option iblock), (|oib'| < n ∧ match_states oib' s2 (BTL.S
»
ΣB fB sp pcX rs0 m0))

∨ (∃ s2', plus step GB (BTL.S
»
ΣB fB sp pcX rs0 m0) ε s2'

∧ match_states oib' s2 s2')

8.3 bilateral matching: the btl projection checker 142

See the proof
scheme of
Figure 8.4.

Proof. We first destruct equality “ib2 = BF (Bgoto s iinfo)”.

• When ib2 is a goto, four cases are possible. Node ib1 can be preceded or not by a synthetic node; while
node ib2 can be followed or not by a synthetic node (i.e. according to the content of its successor s).
Assuming a successful run of our validator, we know that the real, non-synthetic successor of ib2 is
always mapped in m to the RTL node at pcR2 (cf. the prerequisite of Definition 8.3.3). Hence, we pose two
trivial auxialiary lemmas: match_states_entry_direct [�] that guarantees the matching relation forThe proofs of these

two secondary
lemmas are made
simpler thanks to
is_normRTL .

states in the direct case; and its equivalent for indirect paths named match_states_entry_indirect [�].
The former is correct by construction, and the latter by applying the former and by construction also.
From here, we prove the four cases as follows: oib' and s2' are assumed to exist, and we always chose
the second goal. For the two cases where ib2 is not followed by a synthetic node, we prove the matching
relation with lemma match_states_entry_direct. Otherwise, when there is a synthetic node after ib2,
we apply match_states_entry_indirect.
Conversely, the “plus step” conclusion requires a single step when ib1 is not preceded by a synthetic
node; and two steps otherwise.
Then, by assumption and by applying Lemma 5.3.1, we finish the step demonstration for all goals.

• When ib2 is any other instruction, we state that “oib'= Some ib2”. We focus on the left conclusion
alternative: we already know by hypothesis that “|ib2| < n”, and match_states is proved correct by
applying the “intro” constructor.

https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.RTLtoBTLproof.html#RTLtoBTL_Translationproof.match_states_entry_direct
https://yukit.frama.io/compcert-chamois-gl-thesis/html/compcert.scheduling.RTLtoBTLproof.html#RTLtoBTL_Translationproof.match_states_entry_indirect

9
CLOS ING REV IEW ON BTL†

The last four chapters introduced two defensive and formally verified translation validators for the
block transfer language intermediate representation: a symbolic execution engine, and a CFG mor-
phism checker. This chapter concludes our work on BTL∗. We review some features and limitations
of this approach, and some possible future improvements that would be interesting to work on.
Finally, we position BTL w.r.t. related work, and summarize the key points of this part.

9.1 development size

Here is a summary of code size for the whole BTL framework presented in this part (again, in
significant lines of code, sloc). Concerning OCaml oracles, the RTL to BTL one fits in approximately
200 sloc, and the BTL to RTL one is slightly longer, near 300 sloc (comprising the factorization
of §8.2.2).As in §4.3,

column “Defs”
comprises both
Coq definitions

and types.

Project Defs Proofs
BTL IR 252 20
BTL projection checker (Section 8.3.1) 296 121
RTL→ BTL (Section 8.3.3) 313 377
BTL→ RTL (Section 8.3.2) 146 249
BTL SE theory (Chapter 6) 1844 1862
BTL SE refinement (Chapter 7) 1612 1411
BTL rewriting engine (RISC-V only, Section 7.6) 1209 1038
BTL passes module (Section 11.7) 122 60
Total 5794 5138

comment on our cfg morphism of chapter 8 Tristan and Leroy [142] proposed a “graph-of-
trees” intermediate representation for validating some trace scheduling over Mach programs. Their
“graph-of-trees” are close to our normalized BTL CFG (see is_normRTL in Definition 8.3.9). Actually,
our conversion between RTL and BTL generalizes their conversion between Mach programs and
graph-of-trees (§5.4 of their paper) on several points: a more general notion of block; support of
(un)foldings through CFG morphisms (their implicit CFG morphism is identity); support of synthetic
nodes. Despite these generalizations, our Coq code (755 sloc of definitions and types plus 747 sloc
of proofs, i.e. by summing both columns for the projection checker and translation directions in the
above table) seems significantly simpler that their one (986 sloc of definitions and types + 2418 sloc
of proofs—cf. §6 of their paper). In particular, the complexity of their code leads them to conclude:
“the part labeled “tree semantics” [in their Figure 5], which includes the definition and semantics of trees plus
the validation of the conversion from list-of-instructions to graph-of-trees, is the largest and most difficult part
of this development.” We suspect that their conversion proof was much harder, because Mach (being
the last IR before assembly) represents a program as a list-of-instructions instead of an explicit CFG.
This illustrates that the complexity of proofs is very dependent on data representations. In our
development, the conversion between RTL and BTL was much smaller and easier than the symbolic
simulation test, which we discuss below.

comment on the intricacy of chapters 6 & 7 The technique of refining (in Coq) an efficient
symbolic simulation test using hash-consing from a purely functional model was introduced by
Sylvain Boulmé in the design of AbstractBasicBlock [23, §3.3]. Given that the simulation theory of

∗Some text of this chapter is reused from our OOPSLA’23 paper [65]†.

143

9.2 general remarks 144

AbstractBasicBlock is relatively simple (less than 350 sloc) described by two pages in [23, §3.3.1],
its refinement can be summarized in under two pages, see [23, §3.3.3]. Later, this technique was
substantially generalized by Cyril Six for RTLpath: the theory of near 1.8K sloc, is detailed in 26
pages [133, §7.1, §7.2]. The refinement (of around 1.5K sloc) is summarized in 16 pages. It has
almost no rewriting rules, except for trapping loads. In the case of BTL, the theory is even more
intricate (mainly because of invariants). It takes 3.7K sloc (see the above table) described in roughly
30 pages (Chapter 6). Its refinement takes around 3K sloc for the core engine, plus 2K sloc for
normalized rewritings. In summary, it has become complicated to give a simple description of this
implementation without hiding too many details.

9.2 general remarks
In Chapter 10, we
will see that basic

blocks fit very
well for complex
optimizations.

blocks’ size Thanks to our intra-procedural simulation technique illustrated through this part,
the need to select larger and larger blocks to extend the scope of optimizations became less important.
Nonetheless, this need still exists in some situations: for instance, our simulation test modulo
invariants cannot reason on conditions, hence the necessity of selecting superblocks for if-lifting
(see §9.3 below). Actually, using a block structure larger than superblocks would tend to increase the
simulation’s complexity (cf. §2.2.3.3 and §9.3 below), which is of course not desirable. Furthermore, it
is for instance not clear what would be a scheduling optimization on non-linear code sequences,
while it is well defined on basic and superblocks. Invariants enable applying most intra-procedural
transformations on a code cut in basic blocks.

partitioning The idea of using blocks to perform global optimizationsmight be counter-intuitive
at first sight, but in fact it has the advantage of drastically limiting the amount of invariants to verify:
without blocks, one would need to enforce the correctness of invariants at each instruction, which
would obviously be much more expensive.

simulation invariant I wrote in the margin notes of §1.2.2 that the name “invariant” was
referring to the simulation invariant. In RTLpath, this simulation invariant was defined as the
equality between the source and target states (that is, the registers—eventually modulo liveness—
and memory) at the entry of each block.

Inter-block transformations cannot be validated using this invariant for two reasons. Firstly, a
transformation only needs to consider initial states at the block entry that are reachable by the
program, whereas the RTLpath simulation test requires proving the preservation for any values of
the registers and memory at the block (in fact, path) entry. Secondly, the source and target states
at the entry of the block do not need to be equal. For instance, DCE only maintains the equality of
the live registers; and some transformations use auxiliary registers, which hold meaningful values
only in the target program. Indeed, recall that the original RTLpath, as presented in [133], could
validate neither DCE nor the introduction of fresh registers. With the extension I proposed in §4.5.1,
validating the introduction of fresh registers became possible, but DCE remained unsupported. This
is because RTLpath only validates a weak liveness analysis of the source program.

In contrast, we do not use an ad-hoc validation of register liveness. While our oracles generate
only invariants for live registers of the target program, the validation of this liveness analysis
implicitly results from the preservation of gluing invariants between source and target registers.
This corresponds to a generalization of the RTLpath’s simulation invariant. An incorrect liveness
analysis will result in an invariant that is invalid after substitution of the target registers, because it
will still involve a target register not itself bound to a symbolic expression of source registers.

Usually, we fill our invariants with a strong liveness information computed using the standard data-
flow algorithm. Doing so forces us to apply DCE before executing the simulation test, as the liveness
validation would fail otherwise. Ultimatly, one could still provide a weaker liveness information in
the invariants to avoid applying DCE, albeit this does not seem to be very useful in practice.

dead code elimination The DCE already provided by CompCert was directly proved to be
correct. In contrast, in this work, we validate our DCE “for free” as a block transformation with
our symbolic simulation test, which illustrates the versatility of that approach. Nevertheless, the

9.3 limitations 145

existing DCE of CompCert is slightly more powerful than ours, because it also eliminates some
redundant conditions. Validating exactly CompCert’s DCE with our validator would require a non-
trivial extension, not of priority interest. Our DCE oracle was designed to be light and to eliminate
directly useless assignments generated by our SR oracle (see §10.4).

9.3 limitations

Our simulation test has two kinds of limitations: performance ones (impacting CompCert running
times) and expressivity ones (restricting the class of simulations that can be validated).

performance In theory, any piece of code without loops may be represented as a BTL block.
However, we saw in §2.2.3.3 that in practice, due to our naive trace partitioning, SE is exponential
over the number of internal joins of the input block. But, as we currently only apply our checker to at
most extended blocks1, which, by definition, do not have such joins, this is not an issue. Furthermore,
for blocks with a bounded number of internal joins, and without rewriting rules, our symbolic
execution is linear in the size of invariants and blocks. In the general case, its cost depends on the
normalization system. For example, for the normalization of affine forms (for SR), it is expected to
be quadratic in the worst case. Lastly, the comparison of symbolic states costs O((l+ t)× e) where l

is the maximal number of liveout registers and t is the maximal number of trapping instructions,
both per execution path, and with e the number of execution paths (coinciding with the number of
exits for blocks without internal joins). Block selection is a way to finely control e, and thus checker
performance.

expressivity The relative simplicity and efficiency of our checker comes at a price: its expressive
power is limited. (i) Our invariants only support equations of the form “r = sv” but not the
more general “sv1 = sv2”: this limitation avoids the need of costly saturation techniques. (ii) Our
simulation test performs no reasoning on conditions. It simply checks that the two symbolic states
under comparison have the same binary decision tree structure, with syntactically equals conditions
on nodes. Future works include supporting conditions within invariants with a more expressive
comparison of decision trees and preconditioned rewriting rules. (iii) Our invariants implicitly
express that their trapping expressions are actually safe in the execution context. This forbids the
target to anticipate traps w.r.t. the source. Avoiding this restriction would require prophecies [2]
ensuring that these traps will eventually be observed on the source before any subsequent observable
event. Besides generalizing the semantics of our invariants, this would need introducing a notion
of “decreasing variant” forbidding never-realized prophecies. Currently, we partly overcome this
restriction with the help of CFG morphisms (e.g. see §10.2.6.2). (iv) Our symbolic simulations cannot
deal with invariants over an abstract domain. It seems however desirable to at least enable symbolicPossible solutions

for points (iv),
(v) and (vi) are

provided in §11.2.

simulations to benefit from previous formally verified static analyses. (v) Our memory model is
very limited: the whole memory is considered as a single variable. It seems however desirable
to integrate a finer memory model, with some alias analyses. (vi) Our invariants cannot express
transformations over memories. This forbids for example validating the loop-invariant code motion
of a memory update after a loop. Alias analysis is a prerequisite for such a feature.

9.4 some related work
Refer to §2.5 for a

more complete
state of the art.

As explained in §2.5.2, our approach induces very different concerns than classical approaches of
translation validation like those in [31, 78] based on SMT solving.

a co-design strategy In our work, “synchronization points” and “invariants” between source
and target code (aka “program alignment”) are directly given by the oracles that actually perform
the translations. Generating this information inside the transformation phase is not very difficult: it
requires quite simple refinements of translation algorithms; in contrast, reconstructing them from
compiler output is hard. We thus do not really experience “false alarms”, because our translations

1We use basic blocks for code motion & strength-reduction, superblocks for scheduling, and extended blocks for
if-lifting—see §11.3.1.

9.5 in summary 146

are designed with the validator limitations in mind. In addition, the design of our validators is
very constrained, because we want them to be formally verified, lightweight at compile-time (i.e.
quasi-linear in practice), and predictable on “false alarms”. This prevents us from using SMT-solvers
in the current state of the art.

formally verified ssa optimizations The Coq-verified translation validators for SSA opti-
mizations proposed in [45–47] for CompCert rely on strong SSA invariants (e.g. dominator sets). In
an alternative design, we could imagine extending BTL with optional parallel moves of registers at
exit points. This would allow representing (partial) SSA forms within BTL using Appel [7]’s repre-
sentation: without explicit φ-nodes, but rather by encoding them with explicit parallel moves on
joining edges. The validator would completely ignore SSA-invariants, but would be able to compare
SSA forms with non-SSA ones. Moreover, only SSA oracles would have to maintain SSA-invariants,
without need of formal proof of this.

loop optimizations As I explain in §11.3.1, our framework validates superblock scheduling
which interleaves the computations of successive iterations within a loop. Tristan and Leroy [144]
showed that symbolic simulation is able to validate even more advanced scheduling techniques,
such as software pipelining [89]. It remains however to understand how their technique could be
integrated to our framework.I discuss existing

work about
redundancy

elimination in
conclusion of
Chapter 10.

Clément and Cohen [33]’s work on validating optimizations in the polyhedral model supports
much more advanced loop transformations than our does; but we support a much wider class of
input programs within a general-purpose compiler. While special-purpose translation validation is
in the spirit of CompCert’s design, it seems very challenging (but very interesting) to integrate such
advanced techniques within a formally verified general-purpose compiler.

9.5 in summary

We mainly combine two kinds of translation validators: the first one, described in Chapter 8, targets
code duplications or factorizations; the second one, described in Chapters 6 & 7, targets what
we call inter-block transformations. At high-level, each of our optimizations can be viewed as a
composition of several transformations on the RTL code, with generally “preprocessing passes” (e.g.
loop-unrolling or register renaming), the core of the optimization (e.g. superblock scheduling)
and possibly some “post-processing passes” (e.g. code factorization). Each transformation must
be checked by a validator. Distinct transformations may be checked by the same validator. If each
transformation in a sequence can be checked by the same validator, then the oracles performing
them can sometimes be composed into a single oracle requiring a single validator run at the end.

1. BTL is an IR close to RTL, and it shares the same semantic limitations as those listed in §3.4.2. On
the other hand, this similarity simplify the compatibility with RTL and the related translations
passes between both IRs.

2. Structuring the CFG with syntactically defined blocks related by invariants is a way to gen-
eralize the RTLpath representation, and to avoid the trade-off between local—but scoped—
optimizations (e.g. scheduling) and the need for global ones (e.g. SR or CSE).

3. The generic block format leaves optimizations free to change the block type: the “if-lifting”
limitation of RTLpath (recall §4.4.5) is no longer a problem with BTL.

4. More generally, all limitations (and their consequences) mentioned in §4.4.5 are no longer a
concern in BTL.

5. Comparing to the explicit liveness validation of RTLpath, the implicit validation in BTL is
strictly more expressive (i.e. by allowing both DCE and the introduction of fresh registers).

6. Validation is helped by hints provided by oracles: information easy for the oracle to yield, but
that would be hard to have the validators reconstruct.

Part III

OPT IM IZAT ION ORACLES

I present in this part my secondmain contribution: a codemotion and strength-reduction
algorithm named lazy code transformations. This new optimization is detailed in Chap-
ter 10 and is verified with the framework presented in Part ii.
Then, Chapter 11 examines other optimizations that demonstrate the versatility of our
defensive validation approach.

10
LAZY CODE TRANSFORMAT IONS†

We combined and enhanced the lazy code motion (LCM) & lazy strength-reduction (LSR) algo-
rithms of Knoop, Rüthing, and Steffen. The resulting oracle, that we named lazy code transforma-
tions (LCT) [64]†, is implemented in OCaml, and was co-designed with the validation framework
presented in the previous part. LCT operates over BTL basic blocks, and generates invariant annotations
from data-flow analyses as certificates for our defensive validator. It is, as far as we know, and at the
time of writing, the first formally verified strength-reduction of loop-induction variables.
We introduce several refinements w.r.t. the original papers, that I explain in this chapter∗.

The main contributions suggest a generalization of LSR: (i) that operates over basic blocks by
adapting the analysis of Knoop, Rüthing, and Steffen [85], as it was done in [83] for LCM; (ii) per-
formed together with LCM in a single transformation; (iii) which integrates a rewriting procedure to
widen the scope of strength-reduction over sequences of operations, rather than on each instruction
independently; (iv) inferring the invariants needed for the translation validation from data-flow
equations (including liveness analysis).

Below, Section 10.1 motivates our choice for LCM & LSR and shows the limitations we overcame
w.r.t. the original algorithms. Then, LCM is presented in Section 10.2 along with our improved LCT
implementation; and Section 10.3 explains howwe refine this enhanced codemotion to also integrate
LSR. The method we use to generate history and gluing invariants is detailed in Section 10.4. Finally,
Section 10.5 discusses related work and concludes.

10.1 introduction: code motion, strength-reduction, and risc-v

We saw in §4.1 that reordering instructions was effective and important for simple cores (“simple”
in the sense of embedded, in-order, or featuring a reduced ISA). Here, I give a short introduction to
code motion (CM) & strength-reduction (SR), and explain why these optimizations are important
for simple cores. In addition, the section details the reasons that motivate our choice for LCM & LSR,
and the challenges it brings.

From here, we note “LCM” & “LSR” to refer to the original algorithms of Knoop et al., and “LCT” to refer to
our new oracle—which combines and improves LCM & LSR—implemented in Chamois-CompCert.

10.1.1 Main Concepts and “Lazy” Transformations

Code motion consists in anticipating some instructions in order to remove redundant computations.
For example, by data-flow analysis, we may detect expressions remaining constant within a loop and
anticipate their computation before the loop: this is loop-invariant code motion (LICM). However,
if done carelessly, this transformation may anticipate a loop-invariant expression that traps (e.g.
a memory load from a potentially invalid pointer, or a division operation on some architectures),
whereas this computation is unreachable in the original loop. Safe elimination of such computations—
that are redundant on some but not all program paths—is called partial redundancy elimination (PRE).
In contrast, full redundancy elimination (FRE) eliminates computations that are redundant on all
paths. According to Bodík, Gupta, and Soffa [22], “to achieve a complete PRE, control flow restructuring
must be applied. However, the resulting code duplication may cause code size explosion.” They propose to
guide these CFG restructuring with path-profiling and data-flow frequency analysis.

Lazy code motion [84] performs safe and optimal PRE without CFG unrolling, while limiting
the register pressure induced by code motion. In fact, lifting operations in the CFG of the program
certainly allows removing common subexpressions, but it can also increase the live range (i.e. the
interval during which a variable is live). Instructions are safely anticipated but not earlier than

∗A large part of this chapter is adapted from my ICOOOLPS’23 paper [64]†, and a smaller part from our OOPSLA’23
paper [65]†.

148

10.1 introduction: code motion, strength-reduction, and risc-v 149

ldr x0,[x0,w1,sxtw#3]

slli x6,x11,3

add x6,x10,x6

ld x6,0(x6)

Figure 10.1: AArch64 (left) vs. RISC-V (right) Addressing.

the minimum necessary—hence the name “lazy”—to reach computational optimality (i.e. with a
minimal average running time for PRE without CFG unrolling). In the words of Knoop, Ruthing, and
Steffen [83], “the point of this algorithm [LCM] is to place computations as late as possible in a program, while
maintaining computational optimality.” Essentially, among computationally optimal code motions,
LCM selects those that minimize register pressure.

Extending their work on code motion, Knoop, Rüthing, and Steffen [85] proposed a lazy strength-
reduction algorithm and an implementation-oriented paper about LCM [83]1.

Rather than just moving instructions, or simply replacing (sequences of) computations by seman-
tically equivalent—but more efficient—ones, we tackle a much more advanced approach: LSR. It is a
generalization of LCM that moves instructions (e.g. out of a loop) modulo insertion of compensation
code (e.g. within the loop), in order to operate a strength-reduction: to replace the moved instructions
by simpler (e.g. faster at runtime) ones. In other words, LSR reduces computations while moving
them. To get a more concrete idea of the kind of transformations performed by LCM and LSR, the
reader can refer to Example 5.1.1, which was obtained by applying our LCT oracle. More complex
examples are provided in Sections 10.2.7 and 10.3.5. Note that simpler forms of SR, which for instance
replace a multiplication by a power of two with a left shift, are already implemented in CompCert.

10.1.2 Why Does RISC-V Need More Optimization?

Despite the fact that RISC-V is rising for safety-critical systems (SCS) applications (cf. §1.2.1), Comp-
Cert is still less efficient than GCC on this architecture. Indeed, the instruction set architecture being
truly reduced [145], the compiler must be clever to generate efficient assembly code.

Some architectures provide instructions or addressing modes for commonly found patterns, such
as array addressing. For example, on KVX, AArch64, and x86 (this list is not exhaustive), there are
addressing modes that directly implement array accesses: given a base pointer a and index i, load
or store a[i], they automatically compute the address “a+ si” where s, also known as the stride, is
the size of the data type (number of bytes). They may even perform a signed or unsigned extension
over i, since i is typically a 32-bit integer while a is 64-bit on architectures with 64-bit pointers. InIf load from L1

cache takes 3
cycles, and each
basic arithmetic
instruction takes

1 cycle, the overall
sequence could
take 5 or even 7

cycles whereas on
other architectures

it would take 1.

truly reduced instruction sets like RISC-V, these patterns instead result in a multi-cycle sequence of
instructions, amenable to SR. Figure 10.1 shows the single AArch64 load generated for array access
“x = a[i]” (with an addressing mode that shifts an index by three bits and adds it to a base address)
compared to the succession of RISC-V instructions that shift, add, then load. The sequence can even
contain five instructions if an unsigned extension is needed!

As another example, on most architectures, extending a 32-bit unsigned integer value to 64-bit
takes one instruction; but on RISC-V it takes two instructions (a logical left shift of 32-bit followed
by a logical right shift of 32-bit)2.

The lack of SR for such sequences may explain why CompCert performs poorer compared to
GCC on RISC-V than on other architectures. When such a triplet of instructions appears in a loop,
strength-reduction becomes particularly beneficial in order to minimize the number of cycles per
iteration.

1This paper proposes a realistic and practical approach to integrate LCM in an existing compiler.
2The integer promotion pass of Benjamin Bonneau, briefly described in §11.2, performs an interval analysis and then

replaces unsigned conversions over numbers that anyway are always non-negative with signed conversions, whose cost is
null on RISC-V since 32-bit operations after the upper bits as though their results were signed.

10.1 introduction: code motion, strength-reduction, and risc-v 150

10.1.3 Why Choose the LCM & LSR Data-Flow Based Algorithms?

The principle of a data-flow algorithm like LCM or LSR is to infer information from data-flow analyses
on a CFG. This consists in assessing the validity of certain predicates for each potential candidate
detected by the algorithm. A candidate designates an expression (i.e. an instruction) of the underlying
intermediate representation—here BTL—that will possibly be optimized (e.g. by code motion or
strength-reduction). The LCM & LSR predicates define a Boolean value for each candidate instruction,
at each CFG node.

These algorithmswere originally designed for single instruction CFGs in [84, 85]. Later, the authors
adapted LCM for basic blocks in [83]. To our knowledge, such a work was never published for LSR.Our focus was on

demonstrating
our defensive

validation
mechanism rather

than exploring
various

optimization
algorithms. For an

overview of
state-of-the-art

loop SR
algorithms, refer

to §10.5.3.

Our choice to adapt, combine, and implement LCM & LSR rather than another similar algorithm is
mainly motivated by three reasons:

1. They operate over basic blocks, which lowers the amount of hints (i.e. invariants) needed for
the validation compared with single instruction based algorithms. Hence, the communication
between the oracle and the validator is more efficient, as well as the validator itself. Moreover,
the basic block structure reduces the number of nodes in the CFG, as nodes become blocks,
thereby reducing the length of predicates to store;

2. The data-flow approach helps in generating invariants (see §10.4);

3. They are among the most efficient algorithms of this family (CM and SR of loop-induction
variables) not based on static single assignment (SSA). Actually, as mentioned in §2.5.3 for the
de-SSA pass, and as expressed by Demange [45, §5.1.1, §5.11] for the translation to SSA, “they
[SSA generation algorithms] rely on complex properties of graphs, that are difficult to justify formally.”

The code of our LCT oracle is split in three parts. Their online documentation is available here:
(i) core module containing high-level types and operations [�]; (ii) main module containing all
analyses and rewriting procedures [�]; (iii) backend specific module for the SR part on RISC-V [�].

10.1.4 Limitations of LCM & LSR

We want to combine the basic block LCM with LSR; this requires generalizing the latter to operate
on basic blocks. Indeed, due to the discrepancy in the representations supported by these two
algorithms, one might be compelled to redo some computations already performed by LCM (on
basic blocks) in the implementation of LSR, which relies on the same base of logical predicates.

On another note, the original algorithms do not specify any order of treatment for candidate
instructions, and insert a move in place of each replaced instruction. The problem with this behavior
is that it prevents them from moving or reducing sequences of operations. In real compilers, these
sequences are often generated by instruction selection. For example, on RISC-V, a multiplication
c = i× 10 can be replaced with the less costly sequence “a = i << 1;b = i << 3; c = a+ b”. Usually,
in a compiler like GCC or LLVM, this would not really be an issue since one could still apply the
optimization before the selection. However, to facilitate its formal proof of correctness, the instruction
selection pass in CompCert operates on a structured intermediate representation, placed upstream
of most other optimizations (cf. Figure 3.1). Our LCT, which works on BTL, is located downstream.
Let us imagine a loop containing the above sequence: an addition of the results of two shifts3, where
i is an induction variable incremented by 3 at each iteration. One would like to take out of the
loop the whole sequence, and to insert an addition c = c+ 30 instead (i.e. 30 = 3 · 21 + 3 · 23). The
increment on i would not be modified, and the resulting code would be much more efficient. But,
the insertion of moves constrains the analyses by creating new dependencies and makes LCM & LSR
unable to handle such sequences.

In practice, instruction selection is not the only source of reducible sequences: they may also
appear directly in the source code, or be produced for calculations of memory addresses during
translations (like the left shift of Figure 10.1).

Our goal in this chapter is to co-design an enhanced version of LSR, one that integrates LCM,
overcomes those limitations, and is capable of providing the validator with the expected, correct

3This pattern is actually implemented in the mainline CompCert for RISC-V.

https://yukit.frama.io/compcert-chamois-gl-thesis/html/ocaml/LazyCodeCore.html
https://yukit.frama.io/compcert-chamois-gl-thesis/html/ocaml/LazyCodeOracle.html
https://yukit.frama.io/compcert-chamois-gl-thesis/html/ocaml/LazyCodeBackend.html

10.2 lazy code motion 151

invariants. We have measured that adding these optimizations significantly improves the perfor-See Chapter 12 for
an experimental
evaluation of the

runtime
performance of the

generated code.

mance of the code generated by CompCert on 64-bit RISC-V, without degrading compilation times
(including formally verified defensive checks).

10.2 lazy code motion

For LCM, candidates can be either arithmetic operations or loads (i.e. Bop or Bload). We do not aim at
moving stores, no-operations, conditionals, and final instructions. Predicates can be of two types:
either global, if their value at node n depends on the other nodes of the graph; or local, if their
value at node n can be determined only by examining n. Global predicates are obtained either by
data-flow analysis (i.e. computed as a fixed point), or by logical combinations (i.e. conjunction and
disjunction) of other predicates. LCM is built on the seminal work of Morel and Renvoise [111]4.

side-note about data-flow complexity One significant advantage of LCM (and therefore
of LCT) over many other similar code motion algorithms (and notably to Morel and Renvoise [111]),
is that it exclusively relies on unidirectional data-flow analyses. Unidirectional here means that
the fixed point computation steps either forward with the “successor” relation or backward with
the “predecessor” relation, but not both. Data-flow equation systems involving both directions are
referred to as bidirectional.

Intuitively, onemight expect that unidirectional fixed points are less complex. According to Knoop,
Ruthing, and Steffen [83], “Bidirectional algorithms, however, are in general conceptually and computa-
tionally more complex than unidirectional ones: e.g., in contrast to the unidirectional case, where reducible
programs can be dealt with inO(n log(n)) bit vector steps, where n characterizes the size of the argument pro-
gram (e.g., number of statements) [in our case, in a BTL function], the best known estimation for bidirectional
analyses is O(n2) (cf. [49, 50]).”

In their paper, Knoop et al. clarify these claims in a footnote: “In [51], the complexity of bidirectional
problems has been estimated by O(n×w), where w denotes the width of a flowgraph.” This notion of width
does not solely depend on the flowgraph structure, but also on the considered bit vector problem.
In particular, and as stipulated in the same footnote, the width is “larger for bidirectional problems
than for unidirectional ones, and in the worst-case it is linear in the size of the flowgraph.”

Roughly, LCM performs the following steps:

1. Preparing the CFG (§10.2.1): in order for the data-flow analysis to function correctly, some
pre-processing of the CFG is necessary;

2. Detecting candidates (§10.2.2): by examining each basic block, the algorithm detects all
candidate expressions that might be moved or reduced;

3. Computing local and global predicates (§10.2.3);

4. Effectively rewriting the graph (§10.2.4): depending on the results of the analyses for each
candidate expression, we apply the needed transformations in the code.

The original papers from Knoop et al. focus on explaining and proving analyses, and leave out many
details. I do not repeat the proof work here, nor the detailed explanation of the data-flow equations,
except on the points where they differ from the original papers. Please refer to those papers for
details. Fundamentally, translation validation saves us from having to formalize in Coq the theory
of these algorithms—described in those papers, which seems to be a very substantial task.

Apart from that, the authors mentioned the preparation, detection, and rewriting phases (points
1., 2., and 4. above) but, since they depend on the intermediate representation, their technical
implementation is not covered. In this section, we specify all four steps in the frame of BTL. Further-
more, §10.2.5 suggests an alternative, more efficient way of managing candidates; §10.2.6 explains
how we adapted LCM to our validation constraints; and §10.2.7 exemplifies the code motion part of
LCT on a realistic example.

4Which performs a loop-invariant code motion and common subexpression elimination in a single computation.

10.2 lazy code motion 152

10.2.1 Prerequisites for the CFG

In their implementation paper, Knoop et al. presuppose a CFG with a single exit point. However, in
practice, some embedded programs are modeled using an infinite loop; thus, their main function
contains no exit point. Moreover, a C function might contain multiple return statements. Hence, we
assume working on a control-flow graph G = (B, E, s) with B the set of nodes (basic blocks), E the
set of edges, and s the unique entry point of the function. Contrary to Knoop et al., we do not impose
any restriction on exit points. We note succ(n) , {m | (n,m) ∈ E } and pred(n) , {m | (m,n) ∈ E }, the
functions that give the sets of immediate successors and predecessors of node n, respectively.

10.2.1.1 Insertion of Synthetic Nodes

Another important constraint of LCM concerns critical edges [83, §2.2]: edges going from nodes with
multiple successors to nodes with multiple predecessors. In some cases, such edges may block
the code motion process. Rüthing [128] experimented an approach to still perform code motion
in the presence of critical edges, while keeping unidirectional analyses. On the other hand, its
conclusion does not encourage one to leave critical edges: “Although this may sound like an advocacy for
the non-splitting of critical edges it should kept in mind that the computational quality of expression motion
in the absence of critical edges is unexcelled when compared to the situation where critical edges are present.”

The common practice, applied in the LCM implementation paper, involves splitting critical edges
by incorporating synthetic nodes, essentially empty blocks. In reality, within BTL, simply splitting
critical edges proves to be insufficient: we illustrate this with an example below.

Example 10.2.1 (BTL has stronger constraints on critical edges).
Consider the trivial CFG on the right, where x3 is an argument
of the function. LCM would want to lift the “x2 * x2” before the
loop, as it is loop invariant. However, altering the result register
of calls is prohibited by our validator, and by construction, it is
unfeasible to have a call in the middle of a block5. Thus, in this
example, we would be hindered by the constraints of our IR to
perform the optimization. Additionally, splitting critical edges
would not suffice here, as the only critical edge in this scenario is
the back edge from block 2 to itself.

x1 = 0
x2 = f()

x3 = x2 * x2
x1 = x1 + x3
x1 >? 100

ret x11

2

3

Our approach involves a more aggressive split: rather than merely cutting critical edges, we cut
every edge that leads to a join point. In this case, block 2 is a join point for edges (3, 2) and (2, 2),
meaning that our technique would introduce a synthetic node before the loop entry, and following
block 3. Our oracle can then leverage this empty node to lift the invariant instruction without being
blocked.

As well explained by Knoop, Ruthing, and Steffen [83, Lemma 2.1], a CFG devoid of critical edges
invariably satisfies the following two properties: (i) ∀n ∈ B, |pred(n)| > 2 =⇒ succ(pred(n)) = {n}

and (ii) ∀n ∈ B, |succ(n)| > 2 =⇒ pred(succ(n)) = {n}.
The insertion of synthetic nodes is performed during the RTL to BTL translation validation pass

(cf. §8.2.1). Synthetic nodes that remained unused for inserting a new computation are conveniently
removed by the subsequent “tunneling” passes of CompCert [92, §9].

10.2.1.2 Unrolling the CFG
Proving the

anticipation of
trapping

instructions
would require an

anticipability
(a.k.a.

inevitability)
analysis during
the validation
(see §10.5.3).

Recall that our validator restricts the anticipation of trapping instructions like loads (point (iii)
of §6.5.1). Indeed, we cannot anticipate a trapping instruction w.r.t. to the source, since doing
so would add a potential trap in the code. Hence, we were compelled to modify LCM to prevent it
from anticipating those instructions. Fortunately, we can still mitigate this limitation thanks to CFG
restructurings (duplications), as the ones depicted in Figure 4.1 (and whose verification is outlined
in Chapter 8). Example 10.2.2 shows how this technique applies in practice.

5In the BTL semantics, a call in the middle of a block exits the block (to a return block encoded in the instruction, cf.
Figure 5.1). Any code that sequentially follows a call in the same block is actually unreachable (recall explanations in §5.2).

10.2 lazy code motion 153

Regardless of this limitation to move trapping instructions, unrolling the CFG improves the LCM
efficiency. In addition, factorizing the CFG (using the pass in §8.2.2) enables us to undo certain
superfluous duplications (see the example of §10.2.7).

10.2.1.3 Preliminary CSE and Conceptual Refinement of Basic Block Predicates

In order for the basic block based LCM (and consequently LCT) to perform solely unidirectional
analyses, it needs to conceptually split basic blocks into two parts, for each candidate. An entry
part containing every instruction up to and including the last modification of the candidate’s
dependencies; and an exit part, consisting of all remaining statements [83, §2.3, Figure 4]. A block’s
entry part contains at most one computation of the candidate before the first modification of its
dependencies. When such a computation exists, we denote it as the entry computation. The same
applies for exit parts: they must also contain at most one computation of the candidate, namely the
exit computation.

For these virtual, internal borders of basic blocks to be well-defined, LCM requires a prior local
common subexpression elimination on each basic block (e.g. to avoid having more than one en-
try/exit computation). This was not a problem for us, thanks to the trivial CSE of CompCert, applied
automatically before reaching BTL. This conceptual refinement of basic blocks into two parts6 is used
in two ways. First, to compute data-flow equation systems, which, as a result, feature two equations:
one for each conceptual part. Second, to compute the ideal insertion offset for a new, anticipatedThe calculation of

insertion offsets is
detailed

in §10.2.4.

computation within a block. In [83], the authors rely on this decomposition to formalize LCM, and
they demonstrate that offset points computed with this method guarantee a locally minimal lifetime
of registers.

10.2.2 Detecting Code Motion Candidates

We want the lazy code motion part of LCT to be independent of the target architecture. An important
point here is to distinguish trapping instructions in our candidate model; the fact is some operations
can be trapping on certain backends (e.g. divisions by zero), and there also exists backends where
loads can be non-trapping (e.g. on KVX [134]). In the specific case of RISC-V, none of the BTL
operations can fail, and loads are always trapping.

For our oracle to work with both operations and loads, we define a type representing right hand-
sides (RHSs) of register assignments in Figure 10.2, that serves as a key to a hash table whose values,
in Figure 10.3, record candidate information (bold fields are mutable). The candidates’ hash table is
defined as: “candidates : cm_key_t 7→ cand_t”.

cm_ckey_t ::=
| CMop(trap, op, # »regarg)

| CMload(trap, chk, addr , # »regarg)

Figure 10.2: Code Motion Candidates’
Key Type.

cand_t , {

lhs : pc 7→ Sofs; Left hand-sides positions
state : predicates; Record of bit vectors
vaux : reg option; Candidate’s fresh variable
memdep : bool; Memory read dependency
was_reduced : bool; SR confirmation
updated_args : # »regarg option; Substituted arguments
orig_args : # »regarg; } Original arguments

Figure 10.3: LCT Candidates’ Value Type.

Thanks to this structure, we rebuild BTL instructions from candidates’ keys, and match right
hand-sides of instructions to existing candidates efficiently using the hashed key. Note that bothOther fields of

Figure 10.3 will be
introduced as they

are explained.

constructors of Figure 10.2 include a Boolean to indicate if the candidatemay trap or not. Furthermore,
some operations are subject to a memory-read dependency that is not syntactically modeled by

6Knoop, Ruthing, and Steffen [83, §2.3] refer to this concept as a “refined flowgraph” used only for reasoning.

10.2 lazy code motion 154

BTL (encoded by the memdep Boolean of Figure 10.3). Predicates are stored in the state field of each
candidate’s record (Figure 10.3). They are encoded as bit vectors, such that each bit corresponds to
a CFG node and indicates if the predicate holds or not.

The detection phase of our LCT traverses each block and inserts a newmapping for every operation
or load. The lhs—stands for left hand-side (LHS)—field of Figure 10.3 is a map from block IDs (i.e.
positions “pc” in the CFG) to sets of offsets (i.e. positions in a given block), recording the points
where the candidate was seen (assigned to a LHS) in the CFG. So if a candidate is detected in multiple
places, we simply update the lhs map with the new position. Once the detection phase is completed,
candidates are sorted first by their appearance block, and second by their offset within that block.
Sorting is made possible thanks to a prior post-order CFG renumbering, which also accelerates fixed
point calculations. They are then handled one by one in this topological order by the oracle. SortingYet, sorting

candidates is not
sufficient. We

must also apply
modifications

iteratively: this is
the topic

of §10.2.5.

candidates topologically is a simple but powerful improvementw.r.t. the original LCM: in particular, this
technique is the first step towards the reduction of sequences like the one mentioned in §10.1.4. By
processing both code motion and strength-reduction candidates in that order, one can avoid being
blocked in optimizing a candidate because its dependencies were not treated before.

10.2.3 Analyses

The base of the LCT algorithm reproduces the same analyses as the basic block LCM. Every predicate
P (except transparency, see below), concerns either the entry (noted dPe) or the exit (noted bPc)
part of a block, w.r.t. the considered candidate instruction.

10.2.3.1 Local Predicates

Recall (from the beginning of this Section, §10.2), that “local” here means w.r.t. a block: the calculus
of a local predicate only depends on the considered block.

The simplest local information to calculate is transparency, denoted as TRANSP. This predicate
relates to an entire basic block and is true when the dependencies of the candidate under consideration
are not clobbered within the block. If a candidate’s input register, or memory (in case the candidate
depends on it), is modified in the block, TRANSP is false.

The other two local predicates, namely “dCOMPe” and “bCOMPc”, are variations of the local antic-
ipability and availability of Morel and Renvoise [111], respectively. These predicates, instead ofObtaining the

three local
predicates

described here is
easily done by

running through
each block, for
each candidate.

considering these properties across an entire basic block (such as those of Morel and Renvoise), uti-
lize the conceptual entry and exit parts. By definition, each part can contain at most one occurrence
of the candidate. If the targeted candidate appears in the entry part of a block, it indicates that it is
also locally anticipable (i.e. its dependencies are not modified before the occurrence). Symmetrically,
if it is present in the exit part, we know that it is locally available (i.e. its dependencies are not
modified after the occurrence). Therefore, “dCOMPe” and “bCOMPc” simply hold when the candidate
is computed in the entry and exit parts, respectively.

10.2.3.2 Global Predicates

Data-flow predicates are denoted with a prefix “↑” or “↓” according to whether they require a
backward or forward analysis, respectively. Predicates without any prefix in front of their names are
not data-flow based (like local properties above, but there are also global, non data-flow predicates).
The finite conjunction and disjunction over sets of successors and predecessors (from functions succ
and pred) are noted7 with “

∏
” and “

∑
”, respectively. The negation of a predicate P is noted P. All

data-flow predicates’ bit vectors are initialized to false. Applied over an empty set,
∏

is always true,
while

∑
is always false. Recall that “s” is the entry point of the graph.

Below is the list of all global properties solved by the LCM. Note that we did not adapt those
equations in the LCT; I only provide them for completeness of this document.

7Reusing the notations of Knoop, Ruthing, and Steffen [83].

10.2 lazy code motion 155

up-safety: (noted U-SAFE, a.k.a. availability in [111]) holds if a computation at node n does not
introduce a new value for every path leading at n; it is computed by forward data-flow analysis:

↓

dU-SAFEe(n) ,

false if n = s∏
m∈pred(n)(bCOMPc(m)∨ bU-SAFEc(m))

bU-SAFEc(n) , TRANSP(n)∧ (dCOMPe(n)∨ dU-SAFEe(n))

down-safety: (noted D-SAFE, a.k.a. anticipability in [111]) holds if a computation at node n does
not introduce a new value for every path starting from n; computed backward:

↑

dD-SAFEe(n) , dCOMPe(n)∨ TRANSP(n)∧ bD-SAFEc(n)

bD-SAFEc(n) , bCOMPc(n)∨
∏

m∈succ(n)(dD-SAFEe(m))

earliestness: (EARL) is true if the candidate cannot be safely placed earlier; it does not require a
data-flow analysis and is obtained from safety and transparency properties:

dEARLe(n) ,
dD-SAFEe(n)∧∏

m∈pred(n)(bU-SAFEc(m)∨ bD-SAFEc(m))

bEARLc(n) , bD-SAFEc(n)∧ TRANSP(n)

delayability: (DELAY) encodes the possibility to safely move the inserted value from its earliest
down-safe point (i.e. the computation is delayable); computed forward:

↓

dDELAYe(n) , dEARLe(n)∨

false if n = s

∏
m∈pred(n)

 bCOMPc(m)∧

bDELAYc(m)

bDELAYc(n) , bEARLc(n)∨ dDELAYe(n)∧ dCOMPe(n)

latestness: (LATEST) represents the optimality of delayability, the maximum delay; without data-
flow from the latter:

dLATESTe(n) , dDELAYe(n)∧ dCOMPe(n)

bLATESTc(n) , bDELAYc(n)∧

 bCOMPc(n)∨∑
m∈succ(n)(dDELAYe(m))

We noticed a

minor
discrepancy in the
isolation equation
system from [83,

Table 7]: the entry
part equation is

missing the
“bCOMPc(n)”
clause, likely a

typo, as it is not
reflected in the
authors’ proof.

isolation: (ISOL) detects the case where a computation inserted at a given node would only be
used (i.e. isolated) in this node; computed backward:

↑

dISOLe(n) , bEARLc(n)∨ bCOMPc(n)∧ bISOLc(n)

bISOLc(n) ,
∏

m∈succ(n)

 dEARLe(m)∨

dCOMPe(m)∧ dISOLe(m)

note on the implementation The whole LCT is implemented in OCaml. To compute data-flow
equations8, we use a polymorphic work-list based algorithm that solves any of the above data-
flow equation systems. The code of this fixed point solver is accessible here [�]. For non data-flow
predicates, we apply efficient logical bitwise operations over bit vectors.

10.2.3.3 Insertion and Replacement Points

Finally, the LCM insertion and replacement points (IR-points) are deduced using the formulas below9:
8Which are encoded as bit vectors using the “Bitv” library of Jean-Christophe Filliâtre: https://github.com/backtrack

ing/bitv.
9Either for entry or exit parts by substituting predicates accordingly.

https://framagit.org/yukit/compcert-chamois-gl-thesis/-/blob/master/scheduling/LazyCodeOracle.ml#L518
https://github.com/backtracking/bitv
https://github.com/backtracking/bitv

10.2 lazy code motion 156

• INSERT(pc) , LATEST(pc)∧ ISOL(pc)

• REPLACE(pc) , COMP(pc)∧ (LATEST(pc)∧ ISOL(pc))

When INSERT is true, the candidate is stored in its allocated, unique auxiliary variable (i.e. fresh
register), specified in the vaux field of Figure 10.3. In every node marked as REPLACE, LCM replaces
the candidate with a move from vaux into the original destination.

10.2.4 Insertion Offset and Forward Propagation

We compute insertion offsets of candidates within blocks exactly as LCM [83, §2.4], but our replace-
ment method (i.e. for nodes satisfying REPLACE for a given candidate) is more general.

10.2.4.1 Finding the Internal Insertion Offset

Given a candidate c that must be inserted at node n, we encounter two scenarios: c must either be
inserted in the entry part (if dINSERTe(n)) or in the exit part (if bINSERTc(n)). In the former situation,
the optimal offset is immediately before the entry computation, if such computation exists. If not, it
is immediately before the first modification of the candidate’s dependencies, if applicable. If there
is neither an entry computation nor a modification, then it is at the end of the entry part. For the
latter situation, when inserting in the exit part, the optimal offset is immediately before the exit
computation if applicable, or at the end of the exit part otherwise.

10.2.4.2 Substituting Auxiliary Variables and Delaying the Move

In the case of a sequence of instructions, the ordered treatment of candidates would cause LCT
to lift the first instruction of the sequence. Nevertheless, following the LCM method for replacing
candidates, we would replace the original occurrence with a move, and then be blocked by the
dependencies to handle the second candidate.

To avoid that, we propose a new algorithm to substitute a candidate’s auxiliary variable within the
subsequent instructions, and delay the move insertion as late as possible in the block (we describe
it in §10.3.4). When the auxiliary variable is not used anywhere after substitution, and is not live
in the successor blocks, the move is even removed by dead code elimination. This improvement
requires adapting the LCM stages compared with the four steps at the beginning of this section
(§10.2). Combined with the topological treatment of candidates mentioned earlier, our LCT becomes
capable of reducing instruction sequences, and thus improves CompCert’s instruction selection. This
substitution process unlocks many new instruction movements that were previously inaccessible,
for both CM and SR.

10.2.5 An Iterative Treatment of Candidates

In fact, instead of computing predicates (step 3.) for all candidates, and then rewrite the CFG for
all of them in step 4., we loop through steps 3. and 4. for each candidate (again, recall the four
LCM steps). In other words, we perform iteratively the analysis and rewriting steps, candidate by
candidate. Hence, when a candidate is moved, its newly inserted occurrence and the substitution of
its auxiliary variable are effectively written into the CFG. This will then benefit upcoming candidates,
whose analysis phase will take previous changes into account.

After having detected and sorted candidates from the hash table as a list of (key, value) pairs,
our LCT repeats the four steps below for each pair.

1. Update the current candidate: if its original arguments (stored in the orig_args field of Fig-
ure 10.3) were modified by previous substitutions (through the updated_args field), then its
key (cf. Figure 10.2) is modified with the substituted arguments10.

2. Predicates’ initialization (with their default values) and local analysis;
10We replace the candidate in the hash table (and take the updated key in the sorted list). If a candidate with the new

arguments already exists, the new one is merged with the old one (by unifying their lhs fields).

10.2 lazy code motion 157

3. Data-flow analysis;

4. Rewrite the CFG if the candidate was moved.

10.2.6 The Case of Trapping Instructions

IR-points of §10.2.3.3 let LCM anticipates trapping instructions, while our validator only allows one to
move them if they were already computed before in the source.

10.2.6.1 Restricting IR-Points for Trapping Instructions

We sketch a restrictive algorithm to calculate IR-points for trapping instructions. The idea is to start
by computing the set of block IDs where we may replace a trapping candidate11. We traverse the
CFG from its entry point s, and remember each block ID satisfying two necessary conditions: (i) the
candidate appears in the entry part; and (ii) the entry part is “up-safe”. Indeed, as stated by (i), we
cannot eliminate a trapping instruction if its dependencies are modified: this means that replaceable
trapping candidates are located in entry parts of blocks. Point (ii) reflects the availability condition
(we cannot eliminate an unavailable computation). The result is returned by the compute_pot_rep(s)
function as a set P = {pcp | dCOMPe(pcp)∧ dU-SAFEe(pcp)} in Algorithm 1.

From there, we need to ensure that these points are actually reachable from a previous calculation
of the candidate. For a given pcp ∈ P, filter_comp_blocks(pcp) finds the set I of available previous
calculations (e.g. usable to factorize the candidate). It is defined as the set of pci such that pci 6=
pcp ∧ (dCOMPe(pci) ∨ bCOMPc(pci)), and such that there exists a path from pci to pcp preserving the
transparency property of the candidate. Thus, I groups nodes where we should insert and replace
the candidate.

Algorithm 1 Insertion and Replacement Points for Trapping Instructions [�].
1: procedure compute_lcm_targets_trap(s : pc, cand : cand_t)
2: st← cand.state

3: P ← compute_pot_rep(s)
4: for pcp ∈ P do
5: I← filter_comp_blocks(pcp)
6: if |I| > 0 then
7: st.dREPLACEe(pcp)← true
8: if st.bCOMPc(pcp) then
9: st.bINSERTc(pcp)← true

10: st.bREPLACEc(pcp)← true
11: for pci ∈ I do
12: if st.dCOMPe(pci) then
13: st.dINSERTe(pci)← true
14: st.dREPLACEe(pci)← true
15: else if st.bCOMPc(pci) then
16: st.bINSERTc(pci)← true
17: st.bREPLACEc(pci)← true

Using those two functions, we define in Algorithm 1 the main procedure used to compute
restricted variants of INSERT and REPLACE. When I = ∅, we abandon the potential replacement
in block at pcp (equivalently to the isolation predicate). Otherwise, dREPLACEe(pcp) is set to true.
Moreover, if the block also contains an exit computation of the candidate, then the latter must be
saved into its auxiliary variable12 (lines 8-10 in Algorithm 1). Finally (lines 11-17), both INSERT and
REPLACE predicates are set to true for all pcI ∈ I (we set their entry variant if the node has an entry
computation, and their exit one otherwise).

11We only factorize trapping candidates with a previous computation of the instruction, so insertion points are also
replacement points.

12The candidate being present in both block parts, it probably needs to be recalculated: otherwise it would have been
removed by the CompCert’s CSE beforehand.

https://framagit.org/yukit/compcert-chamois-gl-thesis/-/blob/master/scheduling/LazyCodeOracle.ml#L724

10.2 lazy code motion 158

10.2.6.2 Restructuring the CFG to Enable Load Anticipation

A code duplication pass was implemented in CompCert by Six [133, §6]. The objective was initially
to lengthen superblocks, in order to widen the scope of scheduling. Nonetheless, Monniaux and
Six [109] suggested a very interesting alternate use of this pass. Their paper presents a common
subexpression elimination algorithm, named “CSE3”, that leverages the code duplication pass to
perform loop-invariant code motion. Our LCT uses the same technique to circumvent the anticipation
limitation of §10.2.1.2, as exemplified below:

Example 10.2.2 (Unrolling the first loop iteration to lift loop invariant trapping instructions). Let us
consider the C source code depicted below on the left. We ran a loop peeling (on the first iteration)
prior to applying LCT, as shown with the BTL CFG before optimization in the middle column. The
result, after executing LCT, is visible in the right column. Synthetic nodes are framed with a thick
border. All nodes are numbered—in violet—in a post-order fashion. New assignments to fresh
variables are denoted in red, and compensation code or substitutions in green.

int foo(int *x, int n) {

int s = 0;

while (s < n)

s += *x * *x;

return s;

}

x3 = 0
x1 <=? 0

x6 = load[x2 + 0]
x5 = x6 * x6
x3 = x5

goto

x3 >=? x1

x6 = load[x2 + 0]
x5 = x6 * x6
x3 = x3 + x5

goto

goto

goto

ret x3

9

8

7

6

5

4

3

2

1

x3 = 0
x1 <=? 0

x7 = load[x2 + 0]
x8 = x7 * x7
x3 = x8

goto

x3 >=? x1

x3 = x3 + x8

goto

goto

goto

ret x3

9

8

7

6

5

4

3

2

1

Observe what happened here: the load of the source variable x was duplicated by loop unrolling.
Its first occurrence, in block 8, is now outside the loop. Thanks to Algorithm 1, LCT ensures that
the load of the loop body—in block 5—is reachable from the duplicated one. Then, it allocates a
fresh pseudo-register x7 to save the value of the duplicated load, and eliminate the redundancy.
Leveraging the substitutionmethod of §10.2.4.2 to delay themove, and the iterative process of §10.2.5,
the elimination of the load leads to an intermediate state of the loop body “x5 = x7 * x7; x3 = x3

+ x5; x6 = x7”. As expected, in this intermediate code, x7 was substituted in the multiplication
(replacing x6) and the move “x6 = x7” was delayed at the end of the block.

In addition to this simplification of the load, the topologically ordered treatment of candidates
allows us to continue the process and eliminate the “*x * *x” calculation (i.e. “x7 * x7” in the
intermediate code), which is also loop invariant! Hence, fresh register x7 is used to compute the
multiplication into fresh register x8 in block 8, out of the loop. Again, the substitution is applied, so
that variable x8 is used in place of x5 in the addition “x3 = x3 + x8” of the body. The move from x8The next section

explains why LCT
is more powerful

than CSE3 to
perform that kind

of anticipation.

to x5 is also delayed at the end, but, since both the x7 and x8 moves are dead at this point, they are
removed by the subsequent DCE pass (and they do not appear in the right column above).

It should be noted that to make this optimization evident, we had to disable CSE3; otherwise, CSE3
would have eliminated the load redundancy before LCT could in this example.

10.2.7 An LCT Example of Code Motion

We present below an application of our formally verified LCT: §10.2.7.1 shows how it optimizes the
example in Figure 10.4; §10.2.7.2 details the validation of our LCT oracle on this example; and §10.2.7.3
provides additional information on the computed predicates for one of the example’s candidates.

10.2 lazy code motion 159

10.2.7.1 Performing LICM by PRE

double approx(double *a) {

double r = 2;

if (a[0] < 2) return 2;

while (r < a[1])

if (r >= a[2]) r -= a[0];

else r *= 7;

return r;

}

Figure 10.4: Four Candidates for LICM.

Figure 10.5 presents an extract of the RISC-V code pro-
duced by CompCert with CSE3 of [109, 110] activated for
the source C code in Figure 10.4. The computation of a[0]
has been factorized in register f3 over the whole program.
But, computations (in red color) of a[1] in f0, a[2] in f2,
and loading of floating-point 7 in f1 are performed at each
iteration of the loop of label .L102.

In contrast, in Figure 10.6 (the four first lines are omitted
because identical), after unrolling the first iteration, our
LCT moves all these computations before the loop, starting
now at label .L106. Notice that if the condition of the loop
is initially false, a[2] is not computed by the original loop, but may trap if the address is invalid.
Thus, unrolling is necessary here to anticipate the computation of a[2] before the loop. However,
it may not suffice. For example, if the test “a[0] < 2” was omitted, then simply unrolling the first
iteration would not suffice to allow a[0] to be moved before the loop. Indeed, if “r < a[2]” at the first
iteration, then a[0] is not computed and may still trap afterward. Actually, following Bodík, Gupta,
and Soffa [22], we may find an unrolling (validated by the CFG morphism checker of Chapter 8)
that enables it. But this would cost even more code duplications than those of Figure 10.6.

fld f3,0(x10)

fld f10,.L100,x31

flt.d x31,f3,f10

bne x31,x0,.L101

.L102: ; Loop Entry

fld f0,8(x10)

flt.d x31,f10,f0

beq x31,x0,.L101

fld f2,16(x10)

fle.d x31,f2,f10

bne x31,x0,.L103

fld f1,.L104,x31

fmul.d f10,f10,f1

j .L102

.L103:

fsub.d f10,f10,f3

j .L102

.L104: ...; 7.0 in hexa

.L100: ...; 2.0 in hexa

Figure 10.5: CSE3 Alone.

... ; Same prolog

fld f0,8(x10)

flt.d x31,f10,f0

beq x31,x0,.L101

fld f2,16(x10)

fle.d x31,f2,f10

bne x31,x0,.L103

fld f10,.L105,x31

j .L102

.L103:

fsub.d f10,f10,f3

.L102:

fld f1,.L104,x31

.L106: ; Loop Entry

flt.d x31,f10,f0

beq x31,x0,.L101

fle.d x31,f2,f10

bne x31,x0,.L107

fmul.d f10,f10,f1

j .L106

.L107:

fsub.d f10,f10,f3

j .L106

.L105: ...; 14.0 in hexa

.L104: ...; 7.0 in hexa

Figure 10.6: Unroll+LCT.

Let us now explain why LCT is more powerful than CSE. Applying CSE3 after unrolling produces
almost the same code as the one of Figure 10.6 except that the load of floating-point 7 is not
factorized13. This is due to the fact that some execution path of the first iteration does not load
floating-point 7 into f1. Indeed, CSE3 can only eliminate computations that are available on all
incoming paths. Thus, CSE3 only performs some full redundancy elimination: it misses FRE if the
same value is available on different incoming paths, but in different registers (because unlike LCT,

13The original CSE of CompCert does not even eliminate the redundant “a[0]”. This contrast with “gcc -O1” (version
9.4.0) which performs a PRE with slightly less code duplications than ours on this example. However, the original CSE of
CompCert factorizes the load of floating-point 2 into register “f10”.

10.2 lazy code motion 160

CSE3 does not introduce any fresh register). In contrast, LCT is able to perform any FRE and even
non-trapping PREwithout unrolling. On Figure 10.4 example, the load of floating-point 7 is anticipated
even without any loop unrolling. In the original version of [83], LCT also safely moves a[1] out of the
loop without any loop transformation: this is a FRE, since a[1] is present in the condition of the loop,
which is at least run once. Nevertheless, since our simulation test forbids the anticipation of trapping
code, our LCT can only eliminate a[1] within the loop, after at least a loop rotation (see Figure 4.1).
This is not an issue on this very simple example: thanks to the CFG minimization applied when
returning to RTL (cf. §8.2.2), we still finally achieve the FRE of a[1] without any code duplication.

10.2.7.2 Validating LCT on Our Example

The CFG of the example is represented in Figure 10.7, using the same color code as in Example 10.2.2.
The four candidates detected by the oracle have been inserted at their optimal points, by assigning
them to a fresh variable.

x2 = 2f
x9 = load[x1+0]
x8 = x9
x8 <? x2

x10 = load[x1+8]
x7 = x10
x2 not(<)? x7

x11 = load[x1+16]
x6 = x11
x2 >=? x6

x2 = 14f

x12 = 7f

x2 = x2 - x8

x12 = 7f

x7 = x10
x2 not(<)? x7

x6 = x11
x2 >=? x6

x2 = x2 * x12

goto
x2 = x2 - x9

goto

goto

goto

x3 = x2

goto

x3 = x2

goto

ret x31

2

3

4

5

6

7

8

9 10

11

12

13

14

15

16

17

18

19

20

Figure 10.7: Full BTL CFG of Figure 10.6.

For instance, the load of floating-point 7 illustrates this
“lazy” behavior of LCT as it is inserted in two different
blocks (14 and 16) to minimize the live range. The calcu-
lation is therefore duplicated on two branches, and both
chosen blocks are the last possible ones before the loop.
However, this code duplication does not appear in the
final assembly code of Figure 10.6, because it is factorized
by our subsequent CFG minimization pass (cf. §8.2.2). In
Figure 10.7, it also appears that some fresh variables, such
as x10 and x11, are duplicated through a compensation
move (in green). Note that these pseudo-register duplica-
tions do not increase the actual live range since they will
be removed by the subsequent register allocator.

Now let us detail which invariants are generated by our
LCT oracle before sending the whole result to the verifier.
Code motion only requires gluing invariants (GIs): thus,
history invariants (HIs) remain trivially empty here. In-
variants are generated in their sequential representation
(cf. §6.2.2.2). As explained in §6.3.3.4, the invariant of the
entry block (here block 20) is always reduced to a liveness
set. Besides liveness sets, invariants are updated for each
candidate just after they appear in code: at the entry of
block 19, we have “([x9 := load[x1+0]], {x1,x2,x8,x9})”
to remember the load, and because these four variables
are live. The second (respectively third) load is added to
the gluing invariant at block 18 (respectively blocks 15 and 17). Thus, for all blocks with a label in
14 . . . 17, the invariant contains the same sequence of assignments (but the sets of live variables are
different): “x9 := load[x1+0]; x10 := load[x1+8]; x11 := load[x1+16]”. From block 13 and down to
block 8 (included), we append to this list the assignment “x12 := 7f”. Finally, blocks 1 to 7 only
contain pure liveness invariants, as the verification need not remember the values of candidates
anymore.

Example 10.2.3 (Validating symbolic simulation for block 14).
G(14) = ([x9 := load[x1+0]; x10 := load[x1+8]; x11 := load[x1+16]], {x2,x9,x10,x11})

This leads to the following initial states:

siss = { sis_pre = ϕ; sis_sreg = λr. None; sis_smem = Sinit }

sist = { sis_pre = ϕ; sis_sreg =

x2 := x2 ‖ x9 := load[x1+0] ‖ x10 := load[x1+8] ‖ x11 := load[x1+16] ; sis_smem = Sinit }

where ϕ = OK(load[x1+0]) ∧ OK(load[x1+8]) ∧ OK(load[x1+16])

After the symbolic execution of the blocks:

ibs = BF(Bgoto(13), _) and ibt = Bseq(Bop(7f, [], x12, _), BF(Bgoto(13), _))

10.3 lazy strength-reduction 161

we obtain:

sss = Sfinal(siss, Sgoto(13))

sst = Sfinal((ϕ, x2 := x2 ‖ x9 := load[x1+0] ‖ . . . ‖ x12 := 7f), Sgoto(13))

The two decision trees have the same structure and their unique leaves match. In particular, the
gluing invariant of the successor block 13 is satisfied:
G(13) = ([x9 := load[x1+0]; x10 := load[x1+8]; x11 := load[x1+16]; x12 := 7f],

{x2,x9,x10,x11,x12})

For instance, the right hand-side expression for x9 evaluates to load[x1+0] in sss, which matches
the value of x9 in sst.

10.2.7.3 Observation of the LCT Predicates for One Candidate of Our Example

Let us focus on the immediate (i.e. not memory-dependent) load of floating-point 7, relocated
in blocks 14 and 16 in the optimized CFG of Figure 10.7. In the source CFG, its was originally in
the entry of block 11, inside the loop (so that dCOMPe is true for block 11 and false otherwise, and
bCOMPc is always false). Since it has no input registers, it is transparent in all blocks, and its earlier
possible insertion point is the entry part of the entry block. Hence, dEARLe is true for node 20 and
false otherwise, and bEARLc is always false. For all nodes n, the candidate’s dependencies are never
redefined in a path starting from n; so dD-SAFEe and bD-SAFEc are always true. In contrast, the
candidate is defined on all paths leading to n only in node 10, and in the exit part of node 11, so
dU-SAFEe is true only for node 10 and bU-SAFEc for nodes 10 and 11. Considering that we need the
immediate for the comparison in node 13, the immediate load is not delayable (neither dDELAYe
nor bDELAYc) in the loop body; blocks 8 . . . 13. Consequently, its latest useful positions are the exit
(the entry would not be latest) parts of nodes 14 and 16; so bLATESTc is true for these blocks and
false otherwise, and dLATESTe is always false14. The isolation analysis is false (both in entry and exit
parts) for all nodes whose ID is less than or equal to 7.

Therefore, the only conceptual parts of nodes that are latest but not isolated are the exit parts of
blocks 14 and 16; so dINSERTe is always false, and bINSERTc true only for these nodes. Similarly, the
only conceptual part which contains an occurrence, and is neither latest nor isolated is the entry
of node 11; meaning that dREPLACEe is true for this node and false otherwise, and that bREPLACEc is
always false.

10.3 lazy strength-reduction

Akin to Knoop, Rüthing, and Steffen [85], we refined our code motion into a strength-reduction
algorithm. Lazy strength-reduction candidates are multiplications (in the broadest sense, including
e.g. left shifts) of the form “v × c”, between a variable v and a constant c. The LSR principle is to
weaken the LCM notion of transparency by considering that additions v = v+ c ′ with a constant c ′ do
not break the transparency. Such additions are named injuring operations. Thus, multiplications are
moved as if theywere CM candidates. To compensate the effect of additions on v, the algorithm inserts
update assignments: for a candidate relocated in auxiliary variable v ′, an addition “v ′ = v ′ + (c× c ′)”
may be inserted in each block containing an injuring addition.

In [85], Knoop et al. first introduce a “simple” LSR working with only three data-flow analy-
ses. Then, they refine their—non basic block based—LSR in three stages to overcome some of its
limitations:

1. R1: avoids inserting an update addition (i.e. an increment of the SR variable) if a multiplication
(i.e. the candidate itself) must be inserted on the same path. In such cases, a multiplication
might be saved at the cost of both a new multiplication, and an update addition, which is even
worse than doing nothing.

2. R2: finds the “best” insertion point (for the multiplication), considering lifetime using the
delay, latest, and isolation analyses.

14I say “useful positions” because in fact, dDELAYe and bDELAYc are also true for nodes 2, 3, 6, and 14 . . . 20, and bLATESTc
is true for nodes 2 and 6. See how the isolation equations exclude these nodes.

10.3 lazy strength-reduction 162

3. R3: avoids having multiple update additions on the same path for the same variable by
accumulating them into a single update.

R1 and R2 concern insertion and replacement points: the former finds substitutes for the original
insertion points (without changing replacement points); and the three additional analyses of the
latter minimize the live range induced by code motion. R3 does not change IR-points, but tries to
accumulate update assignments. Knoop, Rüthing, and Steffen [85, §3.1.3] first compute a naive
code motion (where INSERT = D-SAFE∧ EARL), and then apply R1, R2, and R3 (in that order). Our
basic block implementation of §10.2 (inspired from Knoop, Ruthing, and Steffen [83]), includes R2
without R1 (noted R2[) “for free” by unifying the code motion part of predicate inference15. Rather
than using R3 directly, we suggest an alternative, generic representation based on affine forms (as in
the rewriting engine of §7.6.2). Last, we exploit the new substitution technique briefly described
in §10.2.4.2 for CM to propagate results locally from previous iterations, as a fourth refinement R4
(coming after R3).

Unlike the original LSR, we refine our code motion LCT as follows:
R2[(§10.3.1)→ R1 (§10.3.2.1)→ R2 (§10.3.2.2)→ alternative R3(§10.3.3)→ new R4 (§10.3.4).
A complete example of LCT with both code motion and strength-reduction is given in §10.3.5.

10.3.1 Extending Our LCT to Integrate the R2[LSR

We extend our lazy code transformations algorithm of §10.2, which only includes LCM, to perform
both algorithms together. The state field (Figure 10.3) now contains either the “real” transparency
(TRANSP) for code motion candidates, or the weak transparency (noted SR-TRANSP) for strength-
reduction ones. Specific SR predicates are also stored in state.

10.3.1.1 Constants and Injuring Predicate

As LSR targets multiplications with a constant, we perform a simple constant detection before the
candidate detection of §10.2.2. This small preliminary step builds a hash map reg 7→ (pc, op) from
destination registers (left hand-sides), to a pair containing the constant immediate load of type op
and its position (i.e. its block ID of type pc). An instruction is considered constant as long as its
destination register is never rewritten16.

In the local analysis, we add an “injuring” predicate (noted INJURED) to the state being true
when an argument is only “injured” by an additive operation (preserving SR-TRANSP). The TRANSP
predicate (still needed in R1) is rebuilt trivially knowing that TRANSP = SR-TRANSP ∧ INJURED.
Executing the analyses of §10.2.3 with this notion of weak transparency gives us the R2[IR-points.

10.3.1.2 Additive Candidates for Strength-Reduction

sr_t ::= SRmul | SRadd

ckey_t ::= CCM(cm_ckey_t)
| CSR(sr_t, op, # »regarg)

Figure 10.8: LCT Candidates’ Key Type.

Our LCT, in contrast to LSR, considers additions as strength-
reduction candidates, as long as: (i) they do not modify
the input of a multiplicative candidate (but they can mod-
ify its output), and (ii) they operate over the result of
another SR candidate. Example 10.3.1 highlights the differ-
ence between multiplicative and additive SR candidates,
and the separation with LCM-only candidates. In practice,
we encapsulate the type of Figure 10.2 with the new can-
didate key defined in Figure 10.8.

Example 10.3.1 (Sequence reduction of a multiplicative candidate and an additive candidate).
CompCert’s instruction selection tries to decompose multiplications into a sequence of one or two left
shifts (powers of two). When there are two shifts, an addition of their results is appended to the
sequence. Consider the decomposition “x1 = 5× x2” into “x3 = x2 << 2; x1 = x2+ x3”, and assume

15In other words, our algorithm naturally includes (and infers) R2[, while R1 is calculated only when necessary, and
after R2[.

16If the same constant is assigned several times to a given register, we keep the oldest (topologically) occurrence.

10.3 lazy strength-reduction 163

it is inside a loop with an injuring increment over x2 (i.e. x2 = x2+ 1). The reduction starts by lifting
the shift out of the loop in an auxiliary variable xA, and inserts an update assignment xA = xA+ 4

just before the increment.
Then, we improve this first transformation by noticing that in most cases, the shift’s intermediate

result is only used to compute the addition. If applicable, we thus lift the addition too using an
auxiliary variable xA ′, and apply the update (i.e. adding 5, as “4 · 1 · x2+ x2 = 5 · x2”) on xA ′.

Hence, LCT is capable of strength-reducing additions that follow an already reduced multiplica-
tion. Other additions are “downgraded” to a normal code motion candidate. After updating the
arguments of the candidate to optimize in step 1. of §10.2.5, we check if: (i) the candidate is an
addition; (ii) none of its input registers is an auxiliary variable of a previously reduced multiplica-
tive candidate. Indeed, thanks to the replacement with substitutions of §10.2.4.2, if an additive
candidate has for argument a reduced multiplication, then its corresponding register should have
been substituted with the multiplication’s fresh variable. If not, we know that the addition does not
operate with any SR multiplication, and can be relegated to a simple code motion candidate.

Compensatory additions (i.e. updates assignments) are always inserted in blocks containing
an injuring operation on the candidate, but not necessarily in all of them. More specifically, an
injured node must receive an update assignment either if it contains an occurrence of the candidate
(whether in its entry or exit part), or if it has at least one successor not marked as an insertion point
(for both the entry and exit parts) but identified as an update point. These blocks are characterized
by the least solution of the below equation, which covers a whole basic block:

↑ UPDATE(n) ,
dCOMPe(n)∨ bCOMPc(n)∨∑

m∈succ(n)

(
dINSERTe(m)∧ bINSERTc(m)

∧ UPDATE(m)

)

After having inserted and replaced candidates, LSR inserts update additions in every node satisfy-
ing both INJURED and UPDATE.

10.3.2 Generalizing LSR on Basic Blocks

Remind Example 5.1.1: a multiplication inside the loopwas replaced by an addition. To keep the code
correct, the multiplication had to be inserted before the loop. In some complex cases (e.g. the nested
loops of Knoop, Rüthing, and Steffen [85, Figure 3]), such an insertion of the multiplication may
itself need to be compensated by an addition. This is precisely what R1 seeks to avoid: not placing a
multiplication too early, so that a supplementary addition is unnecessary. The applicability of R1
depends on the candidate kind: since additive strength-reduction candidates are always preceded
by a multiplication (otherwise we downgrade them as code motion candidates), they do not require
R1. The latter is therefore only computed for multiplicative SR candidates.

Technically, the first refinement (R1) of Knoop, Rüthing, and Steffen [85] computes a set of
critical points from which there exists a path with no other occurrence of the candidate before the injuring
operation. Then, critical-insertion points are both critical and marked as insertion (in the sense of
R2[), and represent places where the “naive” (without R1) LSR would place both a multiplication
and an update assignment on the same path. To optimize this inefficiency, the authors define a new
predicate substitution-critical that encodes the set of substitutes (i.e. alternatives) of critical-insertion
points. Intuitively, R1 delays critical-insertion points until their first reachable, non-critical point.

10.3.2.1 New Data-Flow Equations for R1

SR additive candidates keep R2[IR-points from the first step; while the state of SRmul candidates
is extended with results of R1. Our method to compute R1 on top of R2[leads to insertion points
equivalent to the original R2. We adapted the original (backward) “critical” predicate below:

↑ CRIT(n) , COMP(n)∧ (TRANSP(n)∨
∑

m∈succ(n)

(CRIT(m)))

10.3 lazy strength-reduction 164

to a basic blocks based analysis by splitting it into:

↑

dCRITe(n) , dCOMPe(n)∧ (TRANSP(n)∨ bCRITc(n))

bCRITc(n) , bCOMPc(n)∧
∑

m∈succ(n)(dCRITe(m))

Deducing the above equations is straightforward; the first step is to duplicate the original predicate
in two variants with dCOMPe and bCOMPc. Since it must be solved backward (i.e. it depends on the
successor relationship), the existential

∑
in the first equation is replaced with bCRITc. For the exit

equation, we remove the transparency term (as it does not depend on basic blocks parts, and is
already present in the entry equation); finally, noticing that the successor of an exit part is obviously
an entry part, the disjunction over successors is updated with the entry equation.

The bitwise “and” between the entry or exit variants of R2[INSERT and CRIT gives us the entry or
exit “critical-insertion” points noted dCRITINSe or bCRITINSc (i.e. CRITINS = INSERT∧ CRIT). Those
are needed to adapt the original “substitution-critical” forward equation below, in the same fashion
as before.

↓ SUBSTCRIT(n) , CRITINS(n)∨∑
m∈pred(n)(COMP(m)∧ SUBSTCRIT(m))

which is decomposed, from a reasoning symmetrical to that of the CRIT predicate, into:

↓

dSUBSTCRITe(n) ,

dCRITINSe(n)∨

∑
m∈pred(n)

 bCOMPc(m)∧

bSUBSTCRITc(m))

bSUBSTCRITc(n) ,

bCRITINSc(n)∨

(dCOMPe(n)∧ dSUBSTCRITe(n))

10.3.2.2 Pushing Critical Insertion Points Forward

We now update R2[insertion points based on R1, in order to obtain an INSERT predicate equivalent
to the one of R2. Recall that replacement points are not impacted by R1.

Algorithm 2 R2 Insertion Points From R1 & R2[[�].
1: procedure find_crit_targets_rec(n : pc, cand : cand_t)
2: st← cand.state

3: visit(pc)
4: for n ∈ succ(pc) do
5: if st.dCRITe(n)∧ st.dSUBSTCRITe(n) then
6: st.dINSERTe(n)← true
7: else if st.bCRITc(n)∧ st.bSUBSTCRITc(n) then
8: st.bINSERTc(n)← true
9: else if ¬visited(n) then

10: find_crit_targets_rec(n, cand)
11: procedure find_crit_targets_gen(cand : cand_t, p_ins, p_ins_crit)
12: reset_visited_blks(void)
13: for pc ∈ {pci | p_ins_crit(pci) = true} do
14: p_ins(pc)← false
15: find_crit_targets_rec(pc, cand)

The find_crit_targets_gen procedure of Algorithm 2 pushes forward (in the direction of the
control-flow) insertion points for SR candidates. For each of them, the procedure is called only when
R1’s dCRITINSe (respectively bCRITINSc) is not full of zeros. If the entry or exit critical insertion vector
is always false, we do not need to push the respective entry or exit insertion points. Parameters p_ins
and p_ins_crit of find_crit_targets_gen are instantiated with either dINSERTe and dCRITINSe (for
entry parts) or with bINSERTc and bCRITINSc (for exit parts). If there are both entry and exit critical

https://framagit.org/yukit/compcert-chamois-gl-thesis/-/blob/master/scheduling/LazyCodeOracle.ml#L650

10.3 lazy strength-reduction 165

type C affine_form ::= Aff_term(C, reg, C affine_form) | Aff_const(C)

Figure 10.9: Polymorphic Affine Forms Over a Type of Constants C.

insertion points, the procedure is thus invoked two times. First, it sets the insert predicate (which
can be either the entry or exit one) to false for every block satisfying the given (entry or exit) critical-
insertion predicate (line 13 and 14). Second, the find_crit_targets_rec procedure replaces insertion
points: it recurses over successors of the critical-insertion block, and stops when encountering an
already visited block. For entry and exit parts, if a successor is not critical but is a valid substitute
(i.e. that satisfies the “substitution-critical” predicate, lines 5 and 7 of Algorithm 2), then its related
(entry or exit) INSERT predicate is set to true. This makes our insertion points equivalent to the
second refinement of Knoop, Rüthing, and Steffen [85, §4.1].

10.3.3 Affine Forms Strength-Reduction

The third refinement of Knoop, Rüthing, and Steffen [85] accumulates update assignments when
the source includes multiple injuring operations (as illustrated in Example 10.3.1). Their solution
is to first record program points where an accumulated update should be inserted, and second to
define a function that calculates the accumulation effect. Nonetheless, this idea involves a prior
detection of extended basic blocks [85, footnote 15]. Mimicking this technique would be possible
with our block-based LSR, even if it seems a bit heavy in our formally verified defensive framework.
Moreover, this mechanism is subsumed by noticing that candidates can either multiply or add
values, which amounts to manipulate affine forms (like our validator). We simply define addition
and scalar multiplication of affine terms (forming a semimodule [62]), to accumulate “injuries”
over induction variables, to reduce products between constants, and to factorize additions on the
same variable (cf. the sequence in Example 10.3.1).

Hence, we improve R3 (but only for basic blocks) with the affine forms of Figure 10.9, where C

is the type for constants (e.g. on my RISC-V implementation, C is int64). They model sequences
of the form “c0 · r0 + c1 · r1 + . . . + cN · rN + c” (a sum of multiplications between a constant of
type C and a register, whose last element is a final constant c). The oracle maintains a hash table
(pc, reg) 7→ (C affine_form), so we map (block ID, register) pairs to affine values. The detection
phase applies operations over these forms as they occur, and the local substitution mechanism
of §10.2.4.2 (which is further detailed in the next section) keep the table up-to-date with auxiliary
variables. When inserting the update assignment, we invoke a function that takes a list of block
IDs and the candidate’s auxiliary destination register (fresh register) to retrieve the compensation
amount that needs to be added (by seeking in our affine forms table).

10.3.4 Details on the Forward Substitution of Auxiliary Variables

Let us propose a more complete description of the substitution mechanism of §10.2.4.2, which
handles candidates satisfying the REPLACE predicate. The idea is to enable the propagation ofThe code of this

forward
substitution is

available here [�].

candidates’ fresh variables locally inside the block in which we replace them. For SR candidates, this
process also enables the propagation of their associated affine expression.

Let pct and off t be the target block ID and an offset inside this block (respectively) where we are
going to replace the candidate17. The function traverses the basic block starting from the entry, and,
depending on the current offset off c:

• If off c < off t (meaning that we have not yet reached the original occurrence); simply continue
and increment off c.

17Here, we ignore blocks’ conceptual parts, and work directly using off t. In other words, either dREPLACEe(pct) or
bREPLACEc(pct) is true.

https://framagit.org/yukit/compcert-chamois-gl-thesis/-/blob/master/scheduling/LazyCodeOracle.ml#L938

10.3 lazy strength-reduction 166

• If off c = off t; ensure a match between the current instruction and the candidate to replace,
replace it by a no-op (no-operation) instruction (rather thandirectly by amove), and continue18.
The algorithm saves the original destination of the replaced instruction.

• If off c > off t (meaning the candidate was already replaced by a no-op); there are two possible
subcases:

– A final case when either (i) the auxiliary variable or the original destination of the
candidate is rewritten; (ii) the current instruction is another occurrence of the candidate
or an injuring operation; (iii) we are reaching the end of the block.
If so, we insert the move from the auxiliary variable and stop the substitution algorithm;

– A recursive case otherwise, where we substitute the previously saved original destination
by its auxiliary variable within the updated_args field of the current candidate.

10.3.5 A Full Example of Lazy Code Transformations

We specialized our LCT algorithm in order to strength-reduce multiplicative and additive compu-
tations on the RISC-V (64-bit) backend. Note that for the SR part of LCT, both types of invariants
are exploited, because the simulation have to remember the value of constants when verifying
the correctness of newly inserted instructions. Since the feasibility of SR for a given candidate is
conditioned by the existing dependencies on its variables, we apply a pass of move forwarding in the
first place. The latter removes read-after-write dependencies coming from move instructions, that
might be obstacles to LCT.

void init_slice(long *x, long n, long i) {

long l = 10;

for(; i < n; i++) x[i] = l * i;

}

Figure 10.10: Two Candidates for LSR.

TheC code of Figure 10.10 initializes a slice [i,n) of
a vector xwith scalar “l * i”, and contains two candi-
dates to be reduced. Indeed, in addition to the prod-
uct itself, the addressing computation to access x[i]
can be rewritten as well. The original and optimized
BTL codes are set side-by-side in Figure 10.11. The or-
ange comment on the left gives the correspondence
between registers and variables from the source C
program. The multiplication “l * i” corresponds to “x1 * x4” in both codes, and, on the left code,
the sequence “x8 = x1 << 3; x6 = x3 + x8” calculates into x6 the address of x[i]. Synthetic nodes
have their ID in bold typeface, while fresh variables are still in red, and compensation code in green.
We omitted blocks 14 and 1 in the optimized BTL code, as they are identical.

After moving the left shift instruction from block 9 to block 12, the old destination (here x8) is
replaced in the instructions following the original position of the candidate (in block 9) with the
newly allocated variable (x9)19. This enables then to also strength-reduce the addition originally
assigning to x6 in block 9 (it is moved to block 12 as the assignment to x10). Note that the substitution
of x8 by x9 is fundamental here: if we had simply inserted a move directly in place of the shift
instruction, the data-flow analysis over the addition would have been blocked because of the write
access to one of the arguments within the block. The multiplication “x1 * x4” originally in block 9

is moved out as in the standard way of Knoop, Rüthing, and Steffen [85].
Of course, it is necessary to update the registers of all these anticipated computations as the x1

argument is incremented inside the loop. To handle this, we seek into the map from registers to
affine forms which is updated during the candidates’ detection phase (cf. §10.3.3). For example, the
left shift operation associates x9 (formerly x8) to affine form “8 · x1” (knowing that x << n = 2n · x).
When the subsequent addition is selected as a candidate, a new affine form for x10 (formerly x6) is
created, and by substitution of existing affine forms, its value is “x3 + 8 · x1”. The normalization of
affine forms in the oracle follows the theory given in §7.6.2.1.

Finally, every affine form “injured” within the loop needs to be incremented (respectively decre-
mented) by the product of the constant factor—within the form—of the concerned variable by its
increment (resp. decrement) step in the “injuring” operation (e.g. the loop induction variable). In

18At this point, we also update the tables of affine values and constants by copying the previous mapping (if existing) to
a new one bound to the auxiliary variable of the candidate.

19The original variable being dead in the loop, the compensation move (from x9 to x8) was eliminated (cf. §10.2.4.2).

10.4 inferring invariants from analyses 167

// Variables: x1 = i;

// x2 = n; x3 = x; x4 = l

14: x4 = 10L

goto 12

12: goto 11

11: if (x1 >= x2)

goto 1

goto 9

9: x8 = x1 << 3

x6 = x3 + x8

x7 = x1 * x4

int64[x6+0] = x7

x1 = x1 + 1

goto 3

3: goto 11

1: return

H : ([x4 := 10], {x4})

G : ([], {x1,x2,x3,x4})

12: x9 = x1 << 3

x10 = x3 + x9

x11 = x1 * x4

goto 11

H : ([x4 := 10], {x4})

G : ([x9 := x1 << 3; x10 := x3 + x9;

x11 := x1 * x4], {x1,x2,x3,x10,x11})

11: if (x1 >= x2) goto 1

goto 9

H & G : see block 11

9: int64[x10+0] = x11

x10 = x10 + 8

x11 = x11 + 10

x1 = x1 + 1

goto 3

H & G : see block 11

3: goto 11

Figure 10.11: Original (left) and Reduced (right) BTL Pseudocode.

this specific example, incrementing x1 by one corresponds to increment the affine forms of x9 and
x10 by 8. Thus, the oracle inserts assignments “x9 = x9 + 8” and “x10 = x10 + 8” in the loop, before
the injuring operation. The exact same method applies to the affine form “10 · x1” associated to x11

(formerly x7).
This updating phase of our LCT oracle does not need to track whether the x9 variable is read

afterward (either in the current block or in a successor), since DCE will remove it. In this example,
the update “x9 = x9 + 8” is safely removed.

10.4 inferring invariants from analyses

Once the main loop of LCT—consisting of the four steps described in §10.2.5—terminates, each
possible LCT optimization was applied on the CFG. Before generating invariants annotations, we
perform first a liveness analysis and then a dead code elimination (validated along with LCT thanks
to our target liveness symbolic execution). Dead moves or update assignments generated by LCT are
thus always eliminated.

Invariants annotations are inferred from both the liveness and the LCT analyses. This process is
done for each pair (ckey, cand) in the list L of candidates (the same list as in §10.2.5) with a defined
auxiliary variable (i.e. not None) in cand.vaux (of Figure 10.3). In other words, we iterate over the
set C of candidates defined on line 2 of Algorithm 3. In fact, a defined auxiliary variable means that
the candidate was moved or strength-reduced and so the validator will need invariants to ensure the
transformation’s correctness. The gluemap gm in Algorithm 3 contains both the history and gluing
compact sequences of assignments of symbolic values (cf. Definition 6.2.5). The gluing invariants
mapping in gm is already initialized with the above-mentioned liveness analysis results (so the
“alive” sets at each node are filled).

Below, §10.4.1 explains how we infer preservation points for GIs; and §10.4.2 details our method
for placing HIs in order to “save”—in a shared execution past—constants.

10.4.1 Preservation Points for Gluing Invariants

Given a pair (ckey, cand), the vector of block IDs where a gluing invariant about the candidate must
be preserved is named G (line 5 in Algorithm 3). Preservation points depend on four predicates for

10.4 inferring invariants from analyses 168

Algorithm 3 Generation of Invariants Annotations [�].
1: function build_invariants(s : pc, L : (ckey_t, cand_t) list, gm : gm, constants : reg 7→ (pc, op))
2: C← {(ckey, cand) ∈ L | cand.vaux 6= None}

3: for (ckey, cand) ∈ C do
4: st← cand.state

5: G← ((st.dREPLACEe∧ st.dINSERTe)∨ (st.bREPLACEc∧ st.bINSERTc))∨ (st.ISOL∧ st.DELAY)

6: if is_trapping(ckey) then
7: G← G∧ st.dU-SAFEe
8: const_prod ← is_constant_product(ckey)
9: ok_reduced ← cand.was_reduced

10: for pc ∈ CFG do
11: if pc 6= s∧ const_prod ∧ ok_reduced then
12: rc ← constant_reg(ckey)
13: cop, cpc ← constants[rc]

14: ok_fresh ← ¬is_fresh_var(rc)
15: A← live_inputs(gm, pc)

16: if pc < cpc ∧ ok_fresh ∧ (G(pc)∨ rc ∈ A) then
17: gm← add_hi(gm, pc, rc, cop)

18: if G(pc) then
19: op ← get_ckey_op(ckey)
20: gm← add_gi(gm, pc, cand.vaux, op)
21: return gm

non-trapping candidates, and five otherwise. G is efficiently calculated with bitwise operations on
predicates.

There are two types of nodes inwhichwemust insert a GI: one for each alternative of line 5. The first
(in blue) groups blocks where candwas replaced, but not inserted. In this case, the target simulation
must retrieve the candidate’s value from the input gluing invariant (recall the target simulation: the
input GI is applied before executing the target block). For instance, in Figure 10.11, a gluing invariant
assignment of the multiplication “x1 * x4” in x11 is needed for block 9, where the candidate is
replaced (in entry) but not inserted. Conversely, a counter-example (where the alternative is false),
arises in block 12: actually, an input gluing invariant would be wrong to remember the multiplication
in x11, since it is not yet executed on the target side. However, this first alternative is not sufficient
because the candidate’s value must also be preserved in the gluing invariant if the auxiliary variable
is live after (e.g. across loops). Thus, we define a second alternative (in orange) to insert an input
gluing invariant on every node which is neither isolated nor delayed. Indeed, an isolated candidate
is by definition (of INSERT) never used for insertion (ISOL(n) is true if an insertion at n would be
only used at n itself). Moreover, it must not be delayed: if cand is delayed at node n, we know that its
potential insertion can only happen after n (further in the CFG). Still in the example of Figure 10.11,
the loop block 11 satisfies these conditions for the multiplicative candidate (neither isolated nor
delayed); thus, in the source side simulation of block 11, the multiplication “x1 * x4” will be defined
when executing the output gluing invariant, as expected (recall the source simulation: the output GI
is applied after executing the source block).

The disjunction encoded by G suffices to obtain preservation points for non-trapping candidates,
but is not strong enough for trapping ones (e.g. loads). Hence, we restrict G (line 7 of Algorithm 3)
by conjunction with the entry up-safety predicate (as for condition (ii) of potential replacement
points in §10.2.6.1). In Figure 10.7, this stronger version of G holds on the “load[x1+0]” candidate
for blocks 8 to 19, thus allowing to insert the necessary invariants for x9.

A GI assignment of the candidate’s operation (in ckey) into the auxiliary register cand.vaux is
therefore inserted for every block pc such as pc ∈ G (lines 18-20 of Algorithm 3).

10.4.2 Saving Constants With History Invariants

Code motion transformations made by our LCT never require history invariants. The only use
of history invariants is to remember the value of constants in strength-reduction multiplicative

https://framagit.org/yukit/compcert-chamois-gl-thesis/-/blob/master/scheduling/LazyCodeOracle.ml#L1201

10.5 conclusion 169

candidates. In the example of §10.3.5, this use appears with the multiplication “x1 * x4”: the x4

argument contains the constant 10, which is saved by an HI. On the other hand, for the shift “x1 << 3”
(still in the example of Figure 10.11), the constant is directly encoded as an immediate inside the BTL
operation, so no HI is needed.

The is_constant_product(ckey) function (line 8 in Algorithm 3) returns true if the candidate is of
type SRmul, and if its constant is in a register (by seeking in the constants’ table of §10.3.1.1). Inserting
an history invariant is relevant only if the multiplicative candidate was effectively strength-reduced:
this is indicated by the cand.was_reduced Boolean (defined in Figure 10.3, and read at line 9 in
Algorithm 3). Furthermore, as the CFG entry must only include pure liveness invariants (cf. §6.3.3.4);
the condition of line 11 checks that the current block is not the entry point20, along with the two
conditions defined above. Nevertheless, some additional checks are required before inserting an
history invariant: (i) the constant must be defined in a previous block (if it is defined in the current
block, no need for an HI); (ii) the constant must not be in an auxiliary variable (otherwise it will be
handled by GIs); and (iii) either the current block must appear in G, or the constant’s register live
in the block (if these two conditions are false, there is no need to propagate the constant’s value).
The algorithm first gathers the constant register (line 12), and the constant operation and block
of appearance (line 13) from the constant table. The comparison pc < cpc then checks condition
(i) above; and the negation of function is_fresh_var(rc) (line 14) ensures (ii). The set A of live
variables in the block (line 15) was already computed before the DCE pass; here, we simply retrieve
this information from gm. Finally, line 16 (the disjunction corresponds to condition (iii)) verifies
that the three requirements are satisfied. If so, the algorithm inserts an history invariant assignment
of the constant operation cop into its associated variable rc, and add rc in the “alive” set of history
invariant at block pc (line 17).

Notice that since the alive set for GIs was already filled by the liveness analysis, we only add
information to the alive set for history invariants here. In the end, the oracle returns both the new
BTL code and the “gluemap” to our certified validator.

10.5 conclusion

We suggested LCT, an enhanced version of the LCM & LSR of [84, 85] within Chamois-CompCert,
validated by our formally verified general purpose framework. Our adaptation of the original
data-flow analyses facilitates the defensive validation by symbolic execution of those algorithms.
Overall, the LCT implementation represents about 2000 significant lines of OCaml code.

10.5.1 Algorithm Control Options

In order to let the user of Chamois-CompCert have some control over our implementation, the LCT
pass proposed in this chapter recognizes a few command line options.

A “-flct” option to activate or not (with “-fno-lct”) the CM part; a “-flct-trap” option to activate
or not the CM of trapping instructions in particular; and a “-flct-sr” option to activate or not the SR
part. The second and third options can be set only when the first is also set.

Moreover, two ways of bounding the LCT algorithm are proposed. The first option is by limiting
the maximum number of candidates to a threshold n ∈ N∗. When activated, candidates are sorted
after the detection phase and only the n candidates with the highest potential performance gain are
kept. This procedure prioritizes SR candidates by sorting them in their topological order; while CM
candidates are sorted by decreasing predicted latency w.r.t. to the pipeline model of the target core,
if applicable. The final lists of candidates are then concatenated, with first SR ones (from earliest
to latest) and second CM ones (from slowest to fastest). By default, in Chamois-CompCert, this
threshold is set to 64.

Our second option is to limit the LCT execution time to a threshold s, in seconds. When set, our
algorithm stops its analysis when the running time reaches s, thus abandoning the optimization
and retuning the original version of the code. This option is more aggressive, since its either all or
nothing (there is no notion of partial LCT application with this method). That is why we do not
activate it by default. Of course, both limitations can be combined.

20For GIs, this was implicitly ensured by the formula of G.

10.5 conclusion 170

Finally, I added a sixth option that decides if a tunneling pass should be performed after the LCT
pass. This tunneling pass eliminates any unnecessary branches, if any, and is applied on RTL using a
port of the LTL tunneling specific to Chamois-CompCert (it does not exist in the mainline version).

10.5.2 Limitations of Our Formally Verified SR

For now, the SR part of our LCT algorithm is restricted to affine arithmetic on long for RISC-V 64 bits
architectures.

In addition to the inherent limitations resulting from the data-flow approach (see §10.5.3 below),
our LCT is also subject to other restrictions because of the surrounding verification environment.

For example, as detailed in §7.6.2.1, we do not fully support the standard affine arithmetic. It
seems that we could recover more powerful equations by considering a multi-sorted equational
theory. But, BTL, inspired by RTL, is an untyped language which makes this way difficult. Let us
now discuss other limitations of our SR.

integer size I mentioned in §7.6.2 that our affine normalization was only focused on long
integers. This is because in addition to its architecture dependent aspect, the affine normalization is
also type dependent. Indeed, due to the CompCert’s encoding of values (recall §3.3.1), the entire
normalization process would have to be proved again to handle int values. For sure, developing
this proof would not be very hard, as it should resemble a lot to the existing one for long.

Nonetheless, on 64-bit architectures, this would only work for int multiplications unrelated to
addressing calculations. This is because the compiler would need to insert a cast of the 32-bit index
to 64-bit before scaling and adding it to the base address. Due to overflows, it can be wrong to
strength-reduce the scaling. We thus opted for an alternative, more general solution: rather than
applying SR on int, we prefer promoting them to long with a prior, dedicated pass.

Not only does this save us from having to prove normalization a second time, it also saves cycles
on 64-bit architectures! In particular, on KVX, and even on certain AArch64 processors (e.g. the
ARM Cortex-A53), the sign extension used to cast the value to a long makes us lose one cycle in
latency. When this additional computation is inserted inside a loop, this may dramatically hinder
code performance.

In fact, solving this problem with LICM is not that trivial, because the other loop instructions will
probably block the lifting process if they expect a 32-bit argument. A promotion pass is therefore of
great interest in that situation to pre-perform the sign extension and convert dependent operations
to their 64-bit equivalent. Promoting is of course not always possible, and requires results from an
interval analysis to be proven correct. See §11.2.

targeting 32-bit architectures As just explained, the reduction of array addressing is cur-
rently limited to 64-bit architectures: either by directly applying SR on long indexes, or relying on
an prior promotion for int ones. Porting it to a 32-bit architecture seems rather straightforward.
Actually, combining 32-bit and 64-bit arithmetic on a 32-bit architecture seems easier than the
opposite because truncation commutes with most long operations (in modular arithmetic). It would
only require a little generalization of the syntax of our history invariants for allowing the source
registers to be defined as symbolic expressions of target registers. But, this generalization does not
seem difficult because our semantics of invariants already enables it.

dynamic constants and parameters Currently, our LCT is unable to strength-reduce any
dynamic constant (i.e. whose value is unknown, like function’s parameters). This limitation is
due to two reasons. First, the oracle would need to insert an additional multiplication for any non-
literal constant multiplied by an induction variable whose increment is greater than one. Second,
validating the result implies a non-trivial extension of our affine rewriting engine to integrate
support of multiplications between two arbitrary symbolic values.

eliminating/reducing loop counters (linear-function test replacement, lftr) Let us
consider the code generated by “gcc -O1” for RISC-V 64 bits on the source in Figure 10.10. It is quite
similar to the reduced code generated by Chamois-CompCert, represented at Figure 10.11 except

10.5 conclusion 171

that the loop is rotated (cf. Figure 4.1); and the increment “x1 = x1 + 1” is eliminated from the
loop. GCC compensates for this elimination by replacing the loop condition “x1 >= x2” by condition
“x10 == x12” where x12 is a fresh variable initialized by “x12 = x2 << 3; x12 = x3 + x12”, before the
loop. In other words, GCC replaces the source condition “i < n” by “x + i != x + n”.

We cannot prove such a transformation with our validator. Indeed, such a transformation seems
difficult to verify in CompCert. First, note that the replacement of condition “i < n” by “x + i < x +

n” would be incorrect because of possible overflows (but, in modular arithmetic, “i != n” implies
“x + i != x + n”). Second, justifying the replacement of condition “i < n” by “i != n” requires
inferring the loop invariant “i <= n”: proving such an invariant, and allowing to rewrite—under
this invariant—the condition “i < n” into “i != n” require non-trivial extensions of our validator.
Last, in the CompCert memory model (as in the C standard), the comparison “x + i != x + n” is
only well-defined if “x + i” and “x + n” are valid and point within the same allocated block (or
just after the end of the block). Hence, it is highly non-trivial to prove that if the source program
has no undefined behavior then “x + i != x + n” is also well-defined. See the discussion on BTL
expressivity limitations in §9.3.

This example illustrates that some seemingly simple optimizations of “gcc -O1” are still difficult
to formally justify within CompCert21.

10.5.3 Related and Future Work
See §2.5 for

general related
work on

translation
validation

and §9.4 for those
concerning BTL.

history of loop strength-reduction As Cooper, Simpson, and Vick [36] rightly explained,
strength-reduction of loops has several positive effects: it minimizes the number of instructions
in loops, can minimize the number of needed registers, replaces multiplications with additions,
and gives the scheduler more freedom when there are multiple arithmetic-logic units (ALUs)22. The
authors even explain that for those reasons, they “expect that strength reduction will remain a useful
transformation, even if the costs of addition and multiplication become identical.”

There are twomain ways of strength-reducing loop induction variables [36, §2]: methods working
“a single loop at a time”, seeking for loop induction variables [34] (e.g. SSA based techniques of GCC
and LLVM, see below); and data-flow approaches [111] (e.g. LSR), which do not require control-flow
analyses, and are mostly inspired by code motion and partial redundancy elimination. The absence
of control-flow analysis makes data-flow methods simpler, but they only detect literal constants.
See this explanation from [36]: “This forces them [the data-flow methods] to use a much simpler notionRefer to §10.2 for

information about
the LCT

complexity.

of region constant—they detect only simple literal constants. Thus, they miss some opportunities that the
ACK-style [for Allen, Cocke, and Kennedy—i.e. the first approach] methods discover, such as reducing i× j

where i is the induction variable of the innermost loop containing the instruction and j is an induction
variable of an outer loop. These algorithms must be repeated to handle second-order effects. Their placement
techniques avoid lengthening execution paths; algorithms in the ACK family, including our own [their
Operator Strength-Reduction (OSR) algorithm], cannot make the same claim.”

Although the above quote does not argue in favor of data-flow algorithms, we still chose this
method because it fits well with our validation framework. Indeed, as we demonstrated it, data-flow
equations can help in generating invariants. Moreover, the OSR algorithm of Cooper, Simpson, and
Vick [36] is only operating on SSA graphs, which we do not yet support in BTL (cf. §9.4).

in today compilers Strength-reduction designates various transformations, from replacing
single instructions to linear-function test replacement (LFTR). The only form of SR in mainline Comp-
Cert is a form of peephole23, divided among instruction selection and constant propagation.Modern,
untrusted compilers rather implement straight-line SR (SLSR), a more powerful transformation
targeting code sequenceswith arithmetic statements24, that simplifies complex sequences unhandled
by loop SR algorithms. The expansion mechanism for RISC-V of §7.6.1 could be, as a future work,

21This limitation of CompCert ’s memory model may seem overly stringent, but is difficult to relax while preserving the
many necessary properties of the memory model.

22Because it is common to have more add than multiply units, so additions are often less constraining to parallelize.
23Replacing an instruction sequence by a more efficient pattern.
24In LLVM: https://github.com/llvm/llvm-project/blob/main/llvm/lib/Transforms/Scalar/StraightLineStreng

thReduce.cpp; In GCC: https://github.com/gcc-mirror/gcc/blob/master/gcc/gimple-ssa-strength-reduction.cc.

https://github.com/llvm/llvm-project/blob/main/llvm/lib/Transforms/Scalar/StraightLineStrengthReduce.cpp
https://github.com/llvm/llvm-project/blob/main/llvm/lib/Transforms/Scalar/StraightLineStrengthReduce.cpp
https://github.com/gcc-mirror/gcc/blob/master/gcc/gimple-ssa-strength-reduction.cc

10.5 conclusion 172

extended to perform SLSR as well. See this online review on the LLVM website for a reference and
motivating example: https://reviews.llvm.org/D7310.

The loop nests SR algorithms in GCC & LLVM are SSA based25, and might be very difficult to
adapt in a formally verified context. They can reduce induction variables, but also perform LFTR (i.e.
completely eliminate the original induction variable). Furthermore, GCC and LLVM use a scalar
evolution (SCEV) analysis, an efficient technique to find induction variables in specific code regions
(e.g. loops). Proving correct such an analysis would nonetheless be interesting, knowing that it is
subject to implementation bugs [147, §3.7, LLVM Bug #4].

Two important earlier works on CompCert are comparable to our LCM, and are examined below.

comparison with the verified lcm of tristan and leroy Tristan and Leroy [143] proposed
a Coq-verified translation validator for LCM, based on two formally verified data-flow analyses,
availability and anticipability. These analyses have quite high algorithmic complexity (cubic for
availability). In contrast, our validator does not use them. The availability analysis is replaced by our
gluing invariants which are themselves provided “for free” by the oracle: we hence avoid replaying
a data-flow analysis already performed by the oracle. Hence, from the analysis of §9.3 over the
case of our LCM (with a bounded number of candidates in invariants, without rewriting rules and
working on basic blocks—i.e. with a bounded number of block exits), our validator is quasi-linear
in practice: its worst-case complexity is O(n× l) where n is the size of the code and l the number of
maximal simultaneously live registers.

Moreover, we combine LCM with CFG restructuring, which validates some PRE of trapping instruc-
tions (a feature that they did not provide). Our CFG restructurings also partly compensate the lack
of anticipability checking that is necessary to validate FRE of trapping instructions. In future works,
our symbolic simulations might check the anticipability of trapping instructions, with a dedicated
notion of prophecy (cf. item (iii) in §9.3).

Another difference between our setting for loop optimizations and theirs is that we operate at the
level of large blocks while they operate at instruction granularity. Technically, their validator expects
that any anticipated instruction is assigned with a fresh auxiliary register. When comparing the
source and the target, a target instruction assigning a register that is dead for the source code can be
skipped. But a source instruction assigning a register r can only be changed for a move instruction
to r (from an appropriate auxiliary register). Thus, their validator seems less general purpose than
ours. In particular, it would neither support the reduction of instruction sequences (contribution
(iii) at the start of the chapter), nor instruction reordering modulo code compensation (that we
explain in §11.3.1); while our validator does.

comparison with the cse3 of monniaux and six Monniaux and Six [109, 110] proposed three
dedicated and formally verified passes to produce an efficient CSE optimization with LICM integrated
into Chamois-CompCert. After loop unrolling (as we do), they run an untrusted analysis to collect
inductive invariants in hash-consed sets, whose inductiveness is checked by a proven verifier, before
eliminating redundant computations. This last phase actually consists of three sub-steps: replacing
computations by move operations; and replacing moves from a variable to itself by “no-op”; then
apply an existing DCE pass. On the one hand, their decomposition simplifies the formal proofs of
each single pass. On the other hand, it can only validate some redundancy elimination. In contrast,
our approach aims at validating a wider class of transformations, e.g. including scheduling and
strength-reduction. However, their optimization includes an elimination of redundant conditions, a
feature we leave to future work.

25LoopSR in LLVM: https://github.com/llvm/llvm-project/blob/main/llvm/lib/Transforms/Scalar/LoopStreng
thReduce.cpp; IVOPTS in GCC: https://github.com/gcc-mirror/gcc/blob/master/gcc/tree-ssa-loop-ivopts.cc.

https://reviews.llvm.org/D7310
https://github.com/llvm/llvm-project/blob/main/llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp
https://github.com/llvm/llvm-project/blob/main/llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp
https://github.com/gcc-mirror/gcc/blob/master/gcc/tree-ssa-loop-ivopts.cc

11
INTEGRAT ION OF OTHER BTL OPT IM IZAT IONS

Beside my work on the LCT algorithm, several other BTL optimizations have been developed in
collaboration with three of my colleagues at Verimag: Alexandre Bérard, Benjamin Bonneau, and David
Monniaux.Those

developments are
available on the

Verimag
repository1.

Some transformations presented in this chapter∗ are included in the experimental evaluation of
Chapter 12. Note that their detailed specification is out-of-scope of this document.

Section 11.1 explains how to adapt BTL to support memory optimizations, and Section 11.2 intro-
duces an abstract interpretation framework for BTL and a related promotion pass. Then, I sequentially
present three applications validated using—for some of them, a generalized version of—our defen-
sive simulation technique: an enhanced superblock scheduling in Section 11.3; the graph factorization
in Section 11.4; an enhanced LCT in Section 11.5; and store motion in Section 11.6. Finally, Section 11.7
details how we set up our BTL passes in the existing CompCert pipeline.

11.1 very succinct overview of btl generalizations

Among the new optimizations of this chapter, some are using memory access analyses to simplify
the code. This required several generalizations of our SE framework, and notably of its memory
model. All of them have been implemented by Benjamin Bonneau (during a six months internship
for the ENS-PSL school):

memory invariants: are a list of abstract stores added to the “gluemap” invariant mapping
(Definition 6.2.5). These stores are encodedwith a special type similar to ival (Definition 6.2.3).
Memory invariants are evaluated in the target initial state of the simulation, after history and
gluing ones. The resulting symbolic memory is then replaced in the source initial state.

symbolic clauses: Bonneau also extended the inductive type of symbolic values with a mutual
type of clauses representing propositions. These clauses can be evaluated as a Boolean, and
are used instead of the symbolic state precondition (Definition 6.4.6). They are represented
as propositions in the theory, and as a list of clauses in the implementation. This approach is
very modular, since a new kind of clause can be defined if needed to encode some specific
information. For now, clauses are used, among other things, for propagating information
about live variables, promotable operations and conditions, and valid memory accesses.

memory rewrites: the symbolic memory of our framework has kept its representation based on a
stack of symbolic stores (Definition 6.2.1). For the simulation test on final states to succeed,
symbolic memories must be rewritten during the (symbolic) execution. This is managed by a
specific set of normalization rules applied with the rewriting engine of our framework (§7.6).

11.2 porting static analyses from rtl to btl

Mainline releases of CompCert run multiple analyses over the RTL intermediate representation.
Since BTL has almost the same vision of the execution state (pseudo-registers and memory) as RTL,
the same abstract transfer functions can be used.

Leveraging this similarity, Benjamin Bonneau and David Monniaux defined an interface (as a
Coq module type) that provides the abstract states and transfer functions of an analysis (as well as
proofs of their correctness). Given an implementation of this interface, one obtains a proven abstract
analysis that can be run both on RTL and BTL.

1https://gricad-gitlab.univ-grenoble-alpes.fr/certicompil/Chamois-CompCert
∗Many parts and examples of this chapter are adapted from our article about BTL [65]† (including appendices).

173

https://gricad-gitlab.univ-grenoble-alpes.fr/certicompil/Chamois-CompCert

11.3 improved superblock scheduling 174

Then, Bonneau made BTL annotatable with results of verified static analyses instantiated in this
new interface. These analyses are directly written and proven correct in Coq (i.e. without any kind of
translation validation), and are generalizations of existing analyses of CompCert. Hence, annotations
produced are formally guaranteed and usable both by the oracle and the simulation test. The BTL
semantics take them into account as assertions (cf. the clauses of §11.1) utilized to justify some
rewrites. For their part, oracles try to exploit annotations to optimize more efficiently.

value & alias analyses Bonneau and Monniaux ported into this framework the existing value
analysis2 of Robert and Leroy [127], which includes an alias analysis. This analysis abstracts values
within an (infinite) lattice of finite height, and also abstracts the contents of memory blocks. One
important difference is that the original abstract execution of a single instruction in RTL produces
one single abstract state (made of an abstract register state and an abstract memory state), which is
propagated to all successors of the instruction (only branching instructions havemultiple successors),
whereas the framework of Bonneau and Monniaux allows branching instructions to provide a
different abstract state for each successor. They took this opportunity to slightly improve on the
approach implemented in the original analysis, which did not implement transfer functions for
conditions (thus, for instance, it did not track that “i = 0” after a branch with condition “i = 0” is
taken). They added transfer functions to conditions (only, so far, for equality tests), and they also
added propagation of the value of the branching variable through jump table instructions.

interval analysis & promotion Bonneau used the same framework to implement the interval
analysis needed for the integer promotion pass (cf. §10.5.2).

Thanks to their work, we overcame the LCT limitation on long by combining two steps: (i) their
formally verified interval analysis to justify the absence of overflow—for instance, under a loop
condition of the form “i < n” for some n, then we know that the increment of i cannot overflow3;
(ii) the use of the intervals found by this static analysis within an oracle (also realized by Bonneau)
in order to validate the promotion of int variables as long: if there are no overflows, sign extension
(or zero extension) and addition commute. The transformation performed by this oracle is itself
validated by the generalized, annotatable symbolic simulation.

11.3 improved superblock scheduling

During my thesis, I ported the superblock scheduler of Six et al. [135]† from RTLpath to BTL. Based
on the model of §4.1.4.2, it attempts to minimize the running times of the execution path covering
the whole superblock, even if it may increase running times of early exiting paths. The schedule
is provided by an oracle and validated by our BTL simulation test. Among the two enhancements
presented below, the first one (§11.3.1) is directly supported by the simulation test of Chapter 6,
while the second one (§11.3.2) requires the generalizations of §11.1.

11.3.1 If-Lifting

Lifting conditional branches, especially when combined with code duplications, is a way to perform
a weak form of software pipelining [89]. However, due to the inflexible block structure of RTLpath
(cf. §4.4.5), applying if-lifting was difficult [135, Footnote 10]†. Alexandre Bérard [4] adapted and
integrated the if-lifting of Justus Fasse [75] in BTL.The ARM

Cortex-A53 is a
dual-issue

in-order processor
with two ALUs

(already
introduced in
Chapter 4).

Let me show the effectiveness of if-lifting in parallelizing loop calculations on the Cortex-A53
(AArch64) core. In Figure 11.1, we optimize the top source C code by parallelizing computations
between two successive iterations of the loop body. The left-hand side represents the BTL code of
the loop body, after a loop-rotate and unroll-body (cf. Figure 4.1). Hence, the “Loop” superblock
(which is a loop body containing two iterations of the original loop) is scheduled as the BTL block
represented on the right-hand side: the two floating-point computations of the first iteration (in

2https://compcert.org/doc/html/compcert.backend.ValueAnalysis.html
3In C, overflow has undefined behavior in signed arithmetic, so if the loop index is signed (int), as it often is, we

could simply assume overflow does not occur. Signedness information is however not available at that stage in CompCert
(overcoming this limitation would require propagating type information from the frontend to RTL, a non-trivial work).

https://compcert.org/doc/html/compcert.backend.ValueAnalysis.html

11.3 improved superblock scheduling 175

violet color, annotated as A and B) have been moved below the intermediate exit in order to be
interleaved with those of the second iteration. The scheduler predicts4 that the target loop body
will run in at most 22 cycles instead of 32 cycles for the original one (e.g. more than 30% gain of
running time). However, preserving the semantics requires register renaming with fresh registers
(whose first occurrence in a branch is denoted in red color) and insertion of compensation code at the
intermediate exit. Compensation instructions and fresh variable substitutions are colored green.
Because of this insertion, the target block becomes an extended block.

This whole transformation is validated seamlessly by our simulation test, with GIs reduced to a
conjunction of identity liveness assignments for all registers of the live sets given on the right-hand
side (in orange color).

The oracle implementation of Alexandre Bérard [4] is also quite simple. First, a preliminary
pass performs a backward register renaming (avoiding the forward renamings of [135, §5.3]†
because they tend to pollute the superblock under scheduling with compensation renamings).
Then, the scheduling solver is invoked on a fake superblock, with an empty live set on intermediate
side exits. Last, the necessary compensation code is inserted in the side exits, following Justus
Fasse [75]’s heuristic. Bérard’s heuristic then compares the makespan (total estimated time) of
this scheduling to the standard one (computed on the original superblock with correct liveness and
without compensation code). If the ratio of the size of the compensation code over the makespan
gain is greater than a given threshold, the standard one is retained instead. Hence, compiler users
may control this scheduling heuristic by tuning the threshold on the command line.

double sumsq(double *x, unsigned long len) {

double s = 0.0;

for (unsigned long i=0; i<len; i++) s+=x[i]*x[i];

return s;

}

Loop:

x7 = float64[x2+x3<<3]

x6 = x7 * x7 // A

x4 = x4 + x6 // B

x3 = x3 + 1

if (x3 >= x1)

goto Exit

// start second iteration

x7 = float64[x2+x3<<3]

x6 = x7 * x7

x4 = x4 + x6

x3 = x3 + 1

if (x3 >= x1)

goto Exit

goto Loop

Exit:

return x4

Loop: // live: x1, x2, x3, x4

x11 = float64[x2+x3<<3]

x8 = x3 + 1

if (x8 >= x1) {

x10 = x11 * x11 // A

x9 = x4 + x10 // B

x4 = x9

goto Exit // live: x4

}

x3 = x8 + 1

x7 = float64[x2+x8<<3]

x10 = x11 * x11 // A

x6 = x7 * x7

x9 = x4 + x10 // B

x4 = x9 + x6

if (x3 >= x1)

goto Exit // live: x4

goto Loop

Figure 11.1: Interleaving of Unrolled Loop-Bodies on AArch64 (pseudocode).
The case where “len = 0” is omitted for simplicity.

11.3.2 Alias Aware Superblock Scheduling

Benjamin Bonneau andDavidMonniaux investigated the benefits of alias analyses for the superblock
scheduler, and they refined it with reordering of non-interfering load or store w.r.t. store.

4This estimation occurs at an abstract level and thus cannot be precise. First, the subsequent register allocation could
introduce unexpected spills. Second, this estimation assumes that there is no cache miss. Third, the pipeline model is inexact.

11.3 improved superblock scheduling 176

extern void foo(int *u);

void bar(int *t) {

int u[3];

u[0] = t[0]+1;

u[1] = t[1]+1;

u[2] = t[2]+1;

foo(u);

}

ldr w2, [x0, #0]

add w2, w2, #1

str w2, [sp, #16]

ldr w4, [x0, #4]

add w6, w4, #1

str w6, [sp, #20]

ldr w3, [x0, #8]

add w5, w3, #1

str w5, [sp, #24]

ldr w2, [x0, #0]

ldp w3, w4, [x0, #4]

add w6, w2, #1

add w5, w3, #1

add w4, w4, #1

stp w6, w5, [sp, #16]

str w4, [sp, #24]

Figure 11.2: AArch64 Scheduling With Robert and Leroy [127] Analysis.

void incr3(int *x) {

x[0] ++;

x[1] ++;

x[2] ++;

}

ldr w1, [x0, #0]

add w5, w1, #1

str w5, [x0, #0]

ldr w4, [x0, #4]

add w1, w4, #1

str w1, [x0, #4]

ldr w3, [x0, #8]

add w2, w3, #1

str w2, [x0, #8]

ldp w1, w5, [x0, #0]

ldr w3, [x0, #8]

add w4, w1, #1

add w1, w5, #1

stp w4, w1, [x0, #0]

add w2, w3, #1

str w2, [x0, #8]

Figure 11.3: AArch64 Scheduling With Relative Addressing Analysis.

Alias analyses allow swapping storeswith other non overlappingmemory accesses. To achieve this,
Bonneau andMonniaux implemented another version of the system of constraints for the scheduling
problem. They run some alias analyses on memory accesses. A dependency is inserted between
a read and a subsequent write (write-after-read dependency), a write and a subsequent write
(write-after-write), a write and a subsequent read (read-after-write) only if according to analyses,
they may interfere. It is sufficient that one analysis proves noninterference for the dependency not to
be inserted. Bonneau and Monniaux used two alias analyses.

The first alias analysis runs the per-function value analysis discussed in §11.2, and uses the
noninterference predicate provided by the value domain inmainline CompCert releases. For instance,
if a pointer is proved to always point inside some global variable, and another pointer to always
point inside some other global variable, then they cannot interfere—recall that attempting to move,
through pointer arithmetic, between different variables has undefined behavior in C, and this is
reflected by CompCert’s memory model that each variable lives in a distinct memory block. This is
a direct port of an existing analysis in CompCert [127].

In practice, the most useful noninterference case seems to be between contents of the current stack
frame (Stack in the value domain), and anything outside the current stack frame (Nonstack in the
value domain), such as anything pointed to by function parameters—indeed, a parameter pointer
cannot point into the current stack frame, because the block of the current stack frame does not exist
yet when the pointer is created. Consider the source code in Figure 11.2 left frame. Without alias
analysis, the AArch64 code produced appears in the Figure 11.2 middle frame. The three memory
assignments are not reordered by the scheduler (neither in prepass nor in postpass) because of a
potential interference. They are carefully preserved in sequence, each as load (ldr), addition (add),
store (str). This sequence will result in pipeline stalls, since every load takes multiple cycles even
if available in the first level cache. With alias analysis, it is known that t[.] and u[.] cannot alias,
because the former is outside the current stack frame and the latter is inside. Thus, the scheduler
can first perform the three loads, then the three additions, then the three stores.

The assembly code in Figure 11.2 right frame is obtained in two steps. Firstly, the alias aware
prepass—which operates on BTL—groups loads and stores together as just described. And secondly,
noninterfering loads and stores to consecutive addresses are fused (into ldp and stp) by the postpass
instruction rewriter—which operates on assembly code—of §4.3.3.2.

The second alias analysis addresses the cases where noninterference can be established because
two pointers point to non-overlapping data chunks within the same object, for instance different

11.4 factorization 177

fields inside the same structure. It performs a local abstract interpretation within the superblock.
Abstract values for pointers are of the form “vi + o”, where i is an integer index, vi designates a
“symbolic value”, and o is a constant integer offset; we also have abstract values consisting only of a
constant integer. When a value comes from the starting point of the superblock, or is computed by
an operation inside the superblock that is not handled by the abstraction (e.g. multiplication), that
value is abstracted by “vi + 0” where vi is fresh (the index i has never been used so far). When a
value is computed by adding a pointer abstracted by “vi + o” to an integer constant c, the result is
abstracted by “vi + (o+ c)”. Chunks of size s1 and s2 pointed to by pointers abstracted by “vi + o1”
and “vi+o2” (note the same base pointer vi) respectively are deemed not to interfere if the intervals
[o1, o1 + s1) and [o2, o2 + s2) do not overlap.

Consider the source program of Figure 11.3 left frame. Without alias analysis—see Figure 11.3
middle frame—the scheduler is faced with the same issue as in the previous example: the three
memory increments are kept in sequence, and the pipeline stalls. With alias analysis, like in the
previous example, the scheduler can swap and group loads and stores. See Figure 11.3 right frame.
The only difference comes from the criteria to ensure nonaliasing. In Figure 11.3, we consider offset
relatively to the same base, whereas in Figure 11.2, we consider the allocation class of the pointers.

While both analyses are appealing, and indeed improve code on examples such as the above,
experiments showed that, often, the improvement is not noticeable even on examples where the
schedule is altered by activating these analyses. Performance is improved markedly only in specific
benchmarks. Bonneau’s generalized version of our BTL symbolic validator (cf. §11.1) fully supports
the first analysis but only a restricted version of the second analysis. Since the latter is only used by
the scheduler and for marginal gains, we postponed its complete integration in the checker.

11.4 factorization

Many of our optimizations rely on code duplications to improve their efficiency or even circumvent
certain limitations, as the anticipation of trapping instructions in my lazy code transformations
algorithm (cf. §10.2.1.2). Leaving such a high amount of unrolled code in the generated assembly is
nonetheless not desirable, as code size matters (especially on memory limited systems).

The factorization pass—written by Alexandre Bérard [4]—is performed by an oracle running on
RTL code. This oracle post-processes the BTL to RTL oracle. Its result is checked by the morphism
validator of §8.2.2 (the oracle must therefore calculate the CFG morphism corresponding to its
transformation). Instead of targeting a given subset of loops (that could have been tagged as “to
reroll” in previous passes), this solution tries to apply a variant of the standard DFA minimization
by identifying equivalence classes on the CFG.

The obvious advantage in this approach is its independence from the other compiler pass, as the
minimization does not need any information to process. Nevertheless, this genericity comes at a
price: the generic factorization is easily hampered by small changes in the CFG. For instance, it cannot
be applied along with if-lifting, because renaming alters the code syntax. The same phenomenon
appears with scheduling which produces a reordered code harder to factorize. We consider this
optimization to be still in the prototype stage.

In contrast, the factorization effect is great for pinpoint optimizations like LCT, since the code is
less refactored and its structure untouched. As in the example of §10.2.7, where factorizing allows
us to undo the first iteration unrolling whose only purpose was to circumvent the anticipability
limitation of LCT.

11.5 making lct alias aware

The (absolute) alias analysis ported to BTL and the associated rewrites in the symbolic simulation
engine can also be used to improve LCT. I modified (code available in the Verimag repository1) the
code motion part of our LCT to leverage noninterference information.

Taking account aliases was very straightforward: it suffices to slightly adapt the transparency local
analysis so that load candidates stay transparent w.r.t. to noninterfering stores. This modification
represents only a few lines of OCaml to check that both abstract addresses, which are now available
as annotations in a special field of loads and stores, are disjoint.

11.6 store motion 178

#define n 100

void bar(int *x);

int b;

void foo() {

int x[n];

int i = 0;

int s = b;

while (i < n) {

x[i] = b;

s += b;

i++;

}

b = s;

bar(x);

}

x2 = 0

x1 = int32["b" + 0]

goto Loop

Loop:

if (x2 >=s 100)

goto Exit

x3 = stack(0) // Allocate x[.]

x5 = int32["b" + 0]

int32[x3 + sext(x2) << 2] = x5

x1 = x1 + x5

x2 = x2 + 1

goto Loop

Exit:

int32["b" + 0] = x1

x4 = stack(0)

bar(x4)

x2 = 0

x6 = int32["b" + 0]

x1 = x6

x7 = stack(0)

goto Loop

Loop:

if (x2 >=s 100)

goto Exit

int32[x7 + sext(x2) << 2] = x6

x1 = x1 + x6

x2 = x2 + 1

goto Loop

Exit:

int32["b" + 0] = x1

x4 = x7

bar(x4)

Figure 11.4: Code motion With Alias Aware LCT on AArch64 (pseudocode).

Figure 11.4 is a simple example—here onAArch64, but it alsoworks on other platforms—involving
the motion of a load above a disjoint store. The source code in the left frame of Figure 11.4 already
contains a load of variable b before the loop, so that we do not need any unrolling to anticipate
it. Then, Figure 11.4 middle frame shows the RTL pseudocode obtained after the “classical” LCT
without alias analysis, and Figure 11.4 right frame contains the result of the alias aware LCT. Instruc-
tions to eliminate are in violet, fresh variables in red, and compensation code or substitutions in
green. Concluding noninterference is trivial here, as b is global while x[.] is allocated on the stack.
Exploiting this information, LCT eliminated the load of b from the loop body by introducing a fresh
variable x6 to remember the equivalent load of the header (originally in x1). It also factorized the
stack access “stack(0)” in a fresh variable x7.

11.6 store motion

We recently integrated a store motion optimization into the Verimag Chamois-CompCert fork,
developed by Benjamin Bonneau. This optimization involves moving down stores located in loop
bodies, when applicable, to reduce the number of memory accesses. Specifically, store motion can
permute a store with loads or other stores and eliminate redundant stores.

extern void init(int *src, int n);

void foo(int* p) {

int src[100];

init(src, 100);

*p = 0;

for (int i = 0; i < 100; ++i)

*p += src[i];

}

Figure 11.5: Source code for Figure 11.6.

An example combining sequentially LCT and store mo-
tion (in this order) on the C source code of Figure 11.5
is provided. The example involves a pointer *p, which
accumulates each value of the src array, initialized by the
init external function. This is reflected in Figure 11.6 left
frame, which displays the RTL pseudocode after unrolling
the first loop iteration. By means of the promotion pass
of §11.2, the loop induction variable i and the address-
ing calculation are of type long (as visible in instruction
“x7 = 1L”). Figure 11.6 middle frame illustrates how LCT
leverages this promotion to strength-reduce the shift and
the addition needed to calculate the array address. Lastly, the impact of store motion is illustrated in
Figure 11.6 right frame, where the store is removed from the loop body by moving it across the load.

The color code in the Figure remains consistent, with fresh variables in red and compensation
code in green. Note that store motion in this example requires prior loop unrolling for the same
anticipation reason as in LCT: to avoid adding any potential trap, the store to eliminate must have
been encountered earlier in the source to ensure it is a valid pointer. Memory stores that were

11.7 placement of btl passes in the compcert pipeline 179

x2 = stack(0)

x3 = 100

init(x2,x3)

x4 = 0

int32[x1 + 0] = x4

x5 = int32[stack(0)]

x6 = x4 + x5

int32[x1 + 0] = x6

x7 = 1L

goto Loop

Loop:

x8 = x7 << 2

x9 = x2 + x8

x5 = int32[x9 + 0]

x6 = x6 + x5

int32[x1 + 0] = x6

x7 = x7 + 1

if (x7 >= 100)

goto Exit

goto Loop

Exit:

ret

x2 = stack(0)

x3 = 100

init(x2,x3)

x4 = 0

int32[x1 + 0] = x4

x5 = int32[stack(0)]

x6 = x4 + x5

int32[x1 + 0] = x6

x7 = 1L

x10 = x7 << 2

x11 = x2 + x10

goto Loop

Loop:

x5 = int32[x11 + 0]

x6 = x6 + x5

int32[x1 + 0] = x6

x11 = x11 + 4

x7 = x7 + 1

if (x7 >= 100)

goto Exit

goto Loop

Exit:

ret

x2 = stack(0)

x3 = 100

init(x2,x3)

x4 = 0

x12 = x4

x5 = int32[stack(0)]

x6 = x4 + x5

x12 = x6

x7 = 1L

x10 = x7 << 2

x11 = x2 + x10

goto Loop

Loop:

x5 = int32[x9 + 0]

x6 = x6 + x5

x12 = x6

x11 = x11 + 4

x7 = x7 + 1

if (x10 >= 100)

goto Exit

goto Loop

Exit:

int32[x1 + 0] = x12

ret

Figure 11.6: Promotion, LCT, and Store Motion Using Load-Store Alias Analysis on RISC-V (pseudocode).

previously before and inside the loop are replaced with assignments in a fresh variable x12, and the
memory write is delayed until the Exit label with a compensation store.

Overall, this example effectively demonstrates the impact of combining oracles. Not only have
unrolling and store motion simplified memory accesses, but the integer promotion and LCT have also
reduced the array addressing calculation. All these optimizations are validated using our defensive
simulation.

Practically, the store motion oracle can be considered the dual of LCT: instead of lifting compu-
tations to achieve computational optimality while minimizing the live range, store motion pulls
down memory writes only if it reduces the overall number of stores on a path. Bonneau noted that
this duality is recognized in the literature [99]. Furthermore, like LCT, store motion also operates on
basic blocks and requires a CFG free of critical edges5 (recall §10.2.1.1).

The store motion validation in BTL required reordering stores inside symbolic memories to ensure
they appear in the same order on both the source and target sides. This reordering is justified thanks
to memory rewrites, and the effect of stores is propagated through memory invariants (cf. §11.1).

11.7 placement of btl passes in the compcert pipeline

I implemented a Coq module to manage BTL passes and abstract them from the rest of the compiler
pipeline: from the high level point of view of RTL passes, a sequence of BTL passes is a single opaqueInformation given

here is for
illustrative

purpose. The
actual order of
passes changes

regularly as
development
progresses.

pass from RTL to itself. The internal content of these sequences of passes is controlled in a very
modular way, so that we can change it without modifying proofs. See our module in the Verimag
repository here [�] (my manuscript repository contains a lighter variant of this module).

Table 11.1 compares the list of RTL passes of mainline CompCert and of the Verimag Chamois-
CompCert (including the opaque sequences of BTL passes). Passes that are specific to Chamois-
CompCert are colored red.

5Store motion depends on unidirectional data-flow fixed points inspired by those computed for LCT.

https://gricad-gitlab.univ-grenoble-alpes.fr/certicompil/Chamois-CompCert/-/blob/master/scheduling/BTLpasses.v

11.7 placement of btl passes in the compcert pipeline 180

(1) Tail calls recognition (19) Integers promotion
(2) Tail recursion optimization (20) Renumbering pre CSE
(3) Inlining (21) Common Subexpression Elimination
(4) Profiling data insertion (22) Common Subexpression Elimination 2
(5) Profiling data use (23) Common Subexpression Elimination 3
(6) Renumbering pre CSE (24) Kill useless moves after CSE3
(7) Common Subexpression Elimination (25) Forwarding moves
(8) Static Prediction + inverting conditions (26) Dead Code Elimination
(9) Loop peeling (unrolling one iteration) (27) RTL Branch Tunneling
(10) Renumbering pre tail duplication (28) Set loads as non-trapping
(11) Performing tail duplication (29) Unused globals
(12) Renumbering pre unroll body (30) Renumbering pre BTL (BB)
(13) Unrolling loop body (31) BTL BBpasses
(14) Renumbering pre rotate (32) RTL Tunneling post LCT
(15) Loop Rotate (33) Renumbering pre BTL (SB)
(16) Renumbering pre constant prop. (34) BTL SBpasses
(17) Constant propagation (35) Final renumbering
(18) Interval propagation (36) Register allocation

Table 11.1: Comparison of RTL Passes Between Mainline CompCert and Chamois-CompCert (Verimag).

We have many more RTL passes. However, not all of them are activated by default. For instance,
duplications passes such as loop peeling, loop body unrolling, tail duplication and loop rotationmust
be manually enabled with a command line option. In the table, numbers (31) and (34) correspond to
sequences of BTL passes. The former operates on basic blocks and the latter on superblocks. Usually,
the BTL basic block pass applies lazy code transformations, the expansion of macro-instructions,
and store motion; while the superblock one is dedicated to our improved scheduling (including
if-lifting).

This quick overview reveals how difficult it is to find an efficient order of passes. First, a given pass
may undo the work of previous ones (e.g. LCT inserts moves while move forwarding removes them).
Second, a pass may be less efficient or even impossible to apply if not preceded by some other pass
(e.g. even if LCT adds moves, it benefits a lot from being placed after move forwarding). Third, many
passes alter the CFG structure and thus require applying multiple time restructuring tools (e.g. the
renumbering of RTL nodes which can be applied nine times if everything is activated).

Of course, we do not claim that the suggestion of Table 11.1 is optimal (it certainly is not).
Nonetheless, considering our experiments, this order seems quite effective in improving code
performance at runtime (as suggested by our experimental evaluation of Chapter 12).

Part IV

EVALUAT ION & CONCLUS ION

This (final) part comprises two chapters.
Chapter 12 introduces our evaluation framework and methodology, and reviews the
compile time and runtime measurements we conducted.
Chapter 13 summarizes our work and concludes.

12
TEST ING AND EVALUAT ING A FORMALLY VER I F I ED COMP ILER†

We explain in this chapter our testing process. Section 12.1 motivates the need for testing, and reports
on our methodology. We then perform multiple experiments to evaluate both compilation time and
runtime performance in Sections 12.2 and 12.3, respectively. Finally, Section 12.4 takes a step back
on this experiment and concludes.

12.1 general considerations∗

12.1.1 What Are the Purposes of Testing?

Testing is a very important part of the development, especially concerning verified compilers. It has
at least three main objectives:

detecting compile-time errors CompCert ’s formal proof ensures partial correctness: if com-
pilation succeeds, then it is correct, but there is no formal proof that it succeeds. Remember §3.5: a
compiler that always fails would trivially satisfy the partial correctness (formal) property. Hence,
the first role of testing is to find and understand compile-time errors.

In particular, there is no formal guarantee that our checkers will succeed in validating our untrusted
oracles (we prove their correctness, but not their completeness). Testing is therefore even more
important considering the formally verified defensive programming approach: we want our oracles
to be extensively tested on many kinds of source programs.

achieving reasonable compilation times Of course, we can consider normal that a fully
verified compiler such as CompCert is a little slower than its unverified rivals. Nonetheless, the
overall compilation time must remain acceptable and never explode even on huge source programs.
Testing is needed to ensure this, notably because it allows to finely observe which passes are slowing
down compilation.

measuring runtime performance Finally, experimentally evaluating the effect of our opti-
mizations is also a form of testing. It is necessary for us to get an idea of the performance of our
generated code and to compare ourselves with mainstream compilers. Industrials using CompCert are
mostly working with safety-critical systems, limited in their dynamic optimization power. Proposing
a certified, yet optimizing compiler is thus highly desirable in many applications.

12.1.2 Test Suites & Methodology

We distinguish two types of tests: functional correctness oriented tests and representative, perfor-
mance oriented tests.

12.1.2.1 For Compiler Correctness

AbsInt markets a version of CompCert suitable for qualification for safety-critical applications, e.g.
nuclear power plants and avionics [88]. To our knowledge, this involves a large test suite, including
the standard compliance suite SuperTest1. This test suite is not publically available.

The mainline, public releases of CompCert (on GitHub) also feature a test suite2, composed of:
(i) a few applications (a ray-tracer, the first-order prover Spass…); (ii) handwritten regression tests

∗Some text in this section is adapted from our “Tests And Proofs” paper [108]†.
1See https://www.absint.com/ and https://solidsands.com/products/supertest.
2See directory “test” of https://github.com/AbsInt/CompCert/.

182

https://www.absint.com/
https://solidsands.com/products/supertest
https://github.com/AbsInt/CompCert/

12.1 general considerations∗ 183

checking certain features (in the case of programs that are supposed to be able to be compiled
and executed, the expected results are provided and compared with the results obtained); (iii) a
program generator for testing application binary interface compatibility of data structure layout. We
extended it with tests produced by off-the-shelf random generators, a form of compiler fuzzing [104],
as well as the GCC “torture test” suite. For each program generator i (items 1. and 2. below), Ni

programs are generated by varying the random seed of the generator from 0 to Ni − 1, ensuring
reproducibility. In summary, we added the following functional tests:

1. Csmith 2.3.0 & YarpGen 1.13. The produced code—which is supposed to be compilable and
devoid of undefined behaviors—is compiled with both CompCert and GCC and run on the
target processor or an instruction set simulator (e.g. QEMU). The results are then compared
(differential testing). Yet this code may fail to terminate, thus a timeout is used; the test is
considered valid if both programs yield the same value, or fail to terminate within the timeout.
The timeout value is large enough to avoid cases where only one program, better optimized,
terminates while the other does not, but would with more time.

2. CCG4. Its programs are not expected to run correctly, so we simply test that they compile
correctly.

3. GCC 12.2.0 tests. Finally, we added GCC’s C torture tests, both for compilation only and for
compilation + execution, except those that relied on GCC-specific extensions (such as SIMD5

vectors), GCC-specific behaviors on undefined or unspecified cases, and those that tested the
limits of the compiler (i.e. very large number of declarations).

Each newly added generator or suite triggered new bugs (in our own extensions, or in upstream
recent extensions not yet covered by AbsInt’s tests). The full test suite, including the three itemsSee our TAP’23

paper (from
which this section

is inspired) for
more on these
topics [108]†.

above, is launched in our continuous integration for a variety of targets6.

reducing bugs Generally, test cases that triggered bugs had to be reduced before the bug could
be investigated. Random and application test cases are often too large for the compiler developer to
identify bugs. Finding a reduced test case that exhibits the same bug is the first step for understand-
ing what went wrong (as recommended by the GCC bug reporting guidelines). Reducing cases by
hand is tedious and error-prone; we thus automated this task using C-Reduce7.

By detecting compilation failures, testing gives us greater confidence in the ability of our validators
to accept transformations of our oracles. In addition, tests helped to discover miscompilations and
intolerable compilation running-times.

12.1.2.2 For Performance

Developing a new pass requires ensuring that its results are not only beneficial on every target, but
also that it does not interfere with existing optimizations [42]. Since most instruction set simulators
are not capable of counting cycles, we measure and compare the code performance of various
CompCert configurations directly on the target core.

Firstly, such measures are often subject to many subtle biases [113], among which are the runtime
environment, the size of the benchmarks, as well as decisions by the operating system kernel:
frequency scaling, migration between cores, etc. We address this by running multiple execution of
each test, and by forcing the process to remain on the same core (e.g. with taskset), under the same

3https://github.com/csmith-project/csmith [147] with packed structures (GCC extension) disabled. https:
//github.com/intel/yarpgen [98] (One random seed value is excluded because on ARM it leads to register allocation
causing out of memory. Large auto-generated programs causing resource exhaustion in the compiler is not considered a
bug [91].)

4https://github.com/Mrktn/ccg. We disabled the generation of ternary conditional operators with omitted middle
operand, a GCC extension not supported by CompCert.

5Single Instruction Multiple Data.
6x86, x86-64, AArch64, ARMv7 with software and hardware floating-point, 32-bit PowerPC, 64-bit RISC-V, KVX. This

even led us to find bugs in QEMU for PowerPC.
7C-Reduce [122] is a software able to reduce a source program given an interestingness predicate (e.g. a shell script)

that indicates if the pruned source still contains the bug.

https://github.com/csmith-project/csmith
https://github.com/intel/yarpgen
https://github.com/intel/yarpgen
https://github.com/Mrktn/ccg

12.2 compilation time (on risc-v) 184

shell environment. Then, we average out the different executions to filter them when the relative
standard deviation (RSD) exceeds a certain threshold (noise elimination), so that too small or unreliable
tests are removed.

Secondly, for the comparison to GCC or Clang to be fair, we have to compare compilers on a
common basis of applicable transformations. Notably, we disable options that would not be correct
in the CompCert semantics—e.g. “fast-math”, or replacing “a× b + c” by a fused multiply-add8,
and instruction set extensions that CompCert cannot use—e.g. vector (SIMD5) instructions. In
contrast, options that enable finely-dependent processor optimizations, e.g. “-march=armv8-a+nosimd
-mtune=cortex-a53” for the AArch64 Cortex-A53 core or “-march=rv64imafdc -mcpu=sifive-u74 -

mtune=sifive-7-series” for the RISC-V SiFive U740 core, are left active.
For the measure to be representative and to avoid concluding on an overfitted subset of benchmarks,

we combine five benchmarks suites: (i) a subset of the widely diversified LLVMtest suite9; (ii) a
subset of the MiBench [70] embedded system oriented suite; (iii) the full polyhedral, computational
oriented PolyBench [120] suite; (iv) the full TACLeBench [53] WCET specialized suite; and (v) our
own test suite at Verimag featuring various concrete applications.

We developed a performance measuring toolkit10 (this is a joint work with Olivier Lebeltel—a
research engineer at Verimag—and myself), based on a JSON configuration that details, for each
compiler to measure, sets of options to compare. Shell scripts then automatically (i) build; (ii) copy
to the target machine (e.g. via rsync); (iii) run N times on a fixed core; and (iv) gather tests results
as CSV files. Finally, a Python/Pandas script filters and analyses CSVs to yield (in text or as a plot)
the observed gains w.r.t. a reference compiler with its set of options.

12.2 compilation time (on risc-v)

In this section, I focus on measuring the compilation time of CompCert on various tests and for
various optimizations. I only present the experiment for RISC-V, as the results we obtained on other
architectures are similar.

12.2.1 BTL Translation Validation Time of LCT

100 1000 10000 100000 1000000
Total number of BTL instructions

0.0001

0.001

0.01

0.1

1.0

10.0

100.0

Av
er

ag
e

tim
e

of
 o

ne
 ru

n
(s

)

SE Validator
LCT Oracle
slope of 1

Figure 12.1: LCT Oracle and Validator Times w.r.t. the
Number of Instructions (logarithmic scale).

To ensure that our validator scales well even on
large applications, we instrumented the OCaml
code generated from Coq to time both the LCT
oracle and the symbolic execution engine. The
validator is run 10 times for every function of ev-
ery source program, so that we average timings
to getmore accurate results. For this experiment,
we activated the full LCT (including its SR com-
ponent), with a fixed maximum of candidates
(to 64). Loop peeling and integer promotion
were also enabled.

We tested this setting over every performance
benchmark from our five suites. Figure 12.1
graphically represents those timings measures
w.r.t. the total number of BTL instructions, includ-
ing assignments in history and gluing invariants. Each point in the figure correspond to a single
benchmark whose (average) timings and number of instructions were summed for all its BTL
functions.

The worst validation time was of approximately 10 seconds. This timing occurred on the GLPK
benchmark (a run of the GNU Linear Programming Kit with a large input); LCT took 66 second
to optimize this benchmark (i.e. much longer that the time required to validate its result). The

8An “fma” rounds differently from a multiplication followed by an addition. Replacing the latter by the former thus is a
semantic change, which runs afoul of CompCert’s soundness criteria.

9Accessible at https://github.com/lac-dcc/Benchmarks.
10Our benchmarks and toolkit: https://gricad-gitlab.univ-grenoble-alpes.fr/certicompil/chamois-benchs.

https://github.com/lac-dcc/Benchmarks
https://gricad-gitlab.univ-grenoble-alpes.fr/certicompil/chamois-benchs

12.2 compilation time (on risc-v) 185

second-longest validation time was on Spass and took 8 seconds (40 seconds for LCT). The two
following ones were LLVM benchmarks: MAFFT (Multiple Alignment using Fast Fourier Transform,
a bioinformatics program) and SMG2000 (a semi-coarsing multigrid solver for linear systems,
known as “ASCI purple”) whose validation took 4 and 2 seconds, respectively (21 and 11 seconds
for LCT, respectively). All the remaining 201 benchmarks were validated in less than 2 seconds, and
took less than 10 seconds to optimize with LCT (this mainly indicates that the four aforementioned
benchmarks are outliers11).

We observe an almost perfect linear correlation between the validator’s and the LCT oracle’s
execution times, near 99%. Put another way, with the threshold on the number of LCT candidates,
the oracle seems linear in the number of instructions per BTL function. On average, the validator
seems a bit faster than the oracle for a given benchmark size.

12.2.2 Time of Other Passes

CompCert already include an option (-timings) to measure the execution time of each compiler pass.
In this section, we compare the overhead induced by BTL passes w.r.t. other passes (cf. Table 11.1).

I manually selected four benchmarks among those with the longest compilation time, with the
following passes enabled: the CSE3 of Monniaux and Six [109], the RISC-V macro-expansions
of §7.6.1, the promotion of Benjamin Bonneau of §11.2, the alias aware superblock scheduling
(without if-lifting) of §11.3.2, and my LCT optimization of Chapter 10.

ASCI_Purple/ mafft/ glpk-4.65/ spass/
0

50

100

150

200

250

Ti
m

e
(s

)

11

17
11

12 11
12

32

32

12

18
24

13

26

46
65

17 24

71 49

19 11

29

15

Scores
Parsing
Redundancy elimination
BTL SBpasses
Interval propagation
Constant propagation
Int promotion
CSE
CSE3
BTL BBpasses
Register allocation

Figure 12.2: Top Ten Slowest Chamois-CompCert Passes
Across Four Selected Benchmarks.

The result is plotted as a stacked his-
togram in Figure 12.2. For the sake of read-
ability, I only represented the 10 slowest
passes. Each colored block in the histogramColored blocks in

Figure 12.2 are
ordered by
decreasing

execution times of
the first column

(bench ASCI
purple).

corresponds to the execution time of a
specific pass during compilation. Colored
blocks of passes that took more than ten
seconds to execute have their total execu-
tion time annotated in white, in the mid-
dle of the block (i.e. which is equal to
the block’s height). For example, the orig-
inal CompCert CSE (in pink color) took
eighteen seconds to execute on bench-
mark GLPK (from our custom suite at Ver-
imag), while it took at most ten seconds
on MAFFT (from LLVMtest). The total
height of a histogram column thus corre-
sponds to the total compilation time of the
corresponding benchmark—e.g. approxi-
mately one hundred seconds for ASCI pur-
ple (LLVMtest again).

It appears that each time, four passes are taking more than half of the compilation time. Our
sequence of BTL passes in basic blocks comes out on top for the GLPK benchmark, and CSE3 comes
first on both MAFFT and Spass (Verimag’s suite). The situation is a bit different on ASCI purple,
where register allocation is the slowest pass. The original CompCert’s CSE and the integer promotion
passes are also among the slowest, and are even taking more time than register allocation on Spass.

Globally, we are fairly satisfied of these results, because they demonstrate that our basic block
passes (comprising two translations, macro-expansions, LCT, and SE validation) operate in a reason-
able amount of time w.r.t. other passes. Seeing compilation times between one and five minutes
for these four benchmarks may seem excessively long. This is true when compared to GCC, which
takes around eight times less time to compile them. Nevertheless, it should be borne in mind that
CompCert is written in Coq and OCaml (i.e. languages less optimized than C++), and that the

11The compilation time analysis proposed in our OOPSLA’23 and ICOOOLPS’23 papers [64, 65]† did not include the
Verimag custom benchmark suite. That is why their worst-case validation time is only 4 seconds (and their worst-case LCT
optimization time is approximately 10 seconds).

12.3 runtime performance 186

four programs chosen are very heavy (e.g. ∼75k significant lines of code for GLPK). This slow
compile time could also be attributed to the use of inefficient data structures in the oracles, as it the
case, for instance, in some parts of the CSE3’s implementation. Since most embedded programs are
significantly smaller, compilation time is rarely an issue in practice.

There are several ways to improve LCT execution time. For instance, we could implement a
parallelized version of the data-flow analyses; set a lower threshold for the maximum number of
candidates; use more efficient data structures; or work on reducing the algorithmic complexity of
certain parts.

It is important to remember that our goal when implementing LCT was mainly to make a proof
of concept of our validation technique: we do not paid much attention to its execution time. Now
that we are convinced of the applicability of our solution, it could be interesting to research more
efficient solutions in terms of both execution time and optimization power.

12.3 runtime performance

Following the methodology sketched in §12.1.2.2, we run each benchmark 10 times, setting the
relative standard deviation threshold to 2%. Typically, when executing benchmarks on small cores,And, when using

LCT, we bound the
number of

candidates to 64.

the deviation remains relatively minor, leading to the exclusion of only a few benchmarks or none
at all. However, this threshold proves invaluable for larger cores, where some benchmarks finish
almost instantaneously, leading to less precise measurements.

All our results reflect the runtime performance gain, expressed as a percentage w.r.t. a reference
version. A lower number indicates slower execution, and vice versa. The term runtime performance
gain is used to compare the outcomes of a specific configuration against a reference version. These
outcomes are execution times measured in number of CPU clock cycles for a given benchmark. Let C
represent the result from the specific configuration and R denote the outcome from the reference
version (both in cycles). The gain is then calculated using the formula: gain(C) = ((R−C)/C)× 100.
The latter gives the evolution rate (in percentage) relatively to R. In essence, it computes how much
C deviates from R as a percentage of C. For instance, if R = 1000 and C = 500 cycles—so C is twice
faster—then gain(C) = 100%; in contrast, if R = 500 and C = 1000—so C is twice slower—we have
gain(C) = −50%.

The gain for a complete series of benchmarks is derived from either the mean or the median cycle
count of each benchmark.

hardware platforms We conducted our performance evaluation over three architectures. For
AArch64, a Cortex-A53 in-order dual-issue core (Raspberry Pi 3 Model B+ Rev 1.3), and a Cortex-
A72 out-of-order three-issue core (Raspberry Pi 4 Model B Rev 1.1). Both cores are superscalar,
but the Cortex-A72 is less dependent on compiler optimizations thanks to its OoO pipeline and its
speculative execution capability. And for RISC-V, a SiFive in-order dual-issue U740 core (HiFive
Unmatched).

software versions Throughout this section, we consistently use specific versions of three
distinct compilers for comparison. “Mainline” CompCert designates the mainline CompCert version
(3.12) from the AbsInt GitHub repository12. GCC, for both AArch64 or RISC-V, is in version 11.4.0.
And Chamois-CompCert is the version of the Verimag repository13, including the optional extensions
of Chapter 11. Our experiments always juxtapose these three compilers. The aim is to discern the
improvements already realized over the mainline CompCert and to gauge the distance we need to
cover to match the performance of GCC.

12.3.1 Lazy Code Transformations

We focus here in evaluating the LCT algorithm on both AArch64 and RISC-V.

12Commit hash 35feefd229792e6b560ccf156465a6e309bc1d98.
13Same URL as in Chapter 11: https://gricad-gitlab.univ-grenoble-alpes.fr/certicompil/Chamois-CompCert.

https://gricad-gitlab.univ-grenoble-alpes.fr/certicompil/Chamois-CompCert

12.3 runtime performance 187

Setup (versus “Base1”) Cortex-
A53

Cortex-
A72

GCC −O1 +54.7% +35.5%
GCC −O2 +69% +99.5%
Mainline CompCert −18.5% −1.9%
Base1+Prepass +4% +0.2%
Base1+LCM +10.4% +10.2%
Base1+Prepass+LCM +14.4% +10.2%
Base1+Prepass+LCT (CM & SR) +17% +12.7%

Table 12.1: Mean LCT Gains on PolyBench for Two
AArch64 Cores.

symm 3mm gramschmidt nussinov

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

Speed relatively to Base1
Prepass
LCM
Prepass+LCM
Prepass+LCT (CM & SR)

Figure 12.3: Chamois-CompCert Configurations for
Four Selected PolyBench on Cortex-A53.

12.3.1.1 On AArch64

The SR backend of LCT was ported to AArch64 by Hugo Strappazzon, a Verimag intern I co-
supervised. This work consisted firstly in writing the oracle’s module allowing to detect and reduce
SR candidates, and secondly in formalizing and proving the associated affine normalization rules
for AArch64 instructions. It took much less time to realize this port than the first implementation
on RISC-V, as most of the affine normalization engine is defined in a polymorphic way.

Unfortunately, we have not yet ported the integer promotion of Benjamin Bonneau to this archi-
tecture, meaning that the new SR backend can only operate on variables defined as long in the C
source. Because of this restricted scope, the performance measurements on our benchmarks suites
do not show any significant gain. In order to still observe the impact of this SR port, I adapted the
PolyBench suite by replacing (in a very ugly way) int variables with long. This rather dirty method
is just to show that the optimization works and is useful.

Results are listed in Table 12.1, for both the Cortex-A53 and the Cortex-A72 cores. The referenceRecall that gains
are the average

over 10
executions, after

RSD filtering.

configuration is called “Base1” and corresponds to Chamois-CompCert without CSE3, prepass,
or LCT, but with the postpass scheduler of §4.3. This notably explains why the performance of
mainline CompCert is much slower than “Base1” on the Cortex-A53 (which is in-order). In contrast,
the postpass being almost ineffective on OoO cores14, mainline CompCert and Chamois-CompCert
produce comparable results on the Cortex-A72 (1.9% difference).

This behavior does not apply to lazy code motion, which speeds up the runtime performance
of approximately 10% on both cores. LSR, for its part, produces a less important improvement on
average, but which is still encouraging considering its embryonic stage.Prepass

scheduling in this
experiment is the

one with alias
analyses

from §11.3.2.

Furthermore, if we look at the results in details, it appears that albeit LSR is not effective on every
benchmark (hence the small difference in average), its effect is significant when actually applied.
Figure 12.3 demonstrates this claim on four individually selected benchmarks for the Cortex-A53. To
make this plot easier to read, only Chamois-CompCert configurations are displayed (compared rela-
tively to “Base1”). For example, the performance gain on benchmark Nussinov (kernel computation
for molecule origami) jumps from 17.5% to 53.2% by applying strength-reduction.

12.3.1.2 On RISC-V

Since the RISC-V backend benefits from the integer promotion pass, we were able to benchmark the
LCT’s strength-reduction on a larger set of benchmarks, and without needing to manually modify
sources.

14In practice, we still observe a small gain (usually around 2% difference). As said in margin of §4.1, this may be due to a
small reordering buffer in the physical core. In addition to the postpass, the Chamois-CompCert improvement in Table 12.1
may also be due to move-forwarding. For that same reason of dynamic reordering, we can see that prepass scheduling is
only significant on the Cortex-A53 (without postpass, the small scheduling improvement would have been gained by the
prepass).

12.3 runtime performance 188

Setup (versus “Base2”) GCC −O1 Mainline
CompCert

C1 =Base2
+Prepass

C2 =

C1+LCM
C3 = C2+

Promotion+
LCT (CM &

SR)

C3+CSE3

LLVMtest/CrystalMk +50.8% +0.3% +12.9% +15.5% +27.3% +29%
LLVMtest/fl-dhrystone +86.8% −5% +6.8% +12.3% +12.7% +2.2%
LLVMtest/fp-convert +24.2% +0% +7.9% +13.4% +17.1% +17.1%
LLVMtest/nbench-num −9.2% −9.3% +6.3% +5.6% +5.8% −9.8%
LLVMtest/nbench-str +17.7% −7.8% +1.9% +7.5% +9.5% +10.2%
LLVMtest/nbench-bit +75.1% +0% +12% +33.5% +33.5% +33.7%
LLVMtest/nbench-id +14.7% −2.9% +0% −0.1% +9.2% +12.4%
PolyBench/* +64.9% −1.2% +21.7% +25.7% +32.7% +41.7%
MiBench/stringsearch +134.6% +0.1% −0.5% +15.9% +38.3% +39.3%
MiBench/blowfish +11.4% −1.3% +7% +8.9% +9.6% +12.2%
MiBench/sha +93.4% +0.3% +36.6% +35% +38.8% +53%
TACLeBench/* +37.4% −3% +12% +16% +20.2% +21.3%

Table 12.2: Comparing LCT, Promotion, CSE3, and Prepass With GCC and Mainline CompCert on Both Indi-
vidual Benchmarks and Complete Suites, on the RISC-V U740 Core.

Nevertheless, our SR is still inapplicable tomany benchmarks. The primary obstacle is the limitation
of our promotion pass, which cannot access signedness information in RTL (cf. §11.2). Under these
conditions, observing the SR effect on a full benchmark suite can obscure its true impact in the
average. Considering this difficulty, we opted, when relevant, to investigate results on individual
benchmarks where the optimization could be applied. Our results in Table 12.2 list some individual
benchmarks, except for PolyBench and TACLeBench. We retained the entire suites for these as they
appear to be very well-supported by our LCT and promotion passes.

To prevent any misattribution, we added optimizations incrementally: first prepass scheduling,
then CM, followed by promotion and SR, and finally CSE3. The reference version, named “Base2”, is
thus defined as “Base1” from §12.3.1.1 but without postpass, since it does not yet exist for RISC-V.
We intentionally group integer promotion and SR together because applying them separately does
not always yield benefits. Specifically, promoting variables without strength-reducing them can
improve results in some cases, but it can also significantly hinder performance. Conversely, applying
our 64-bit restricted SR without promotion also yields varied outcomes. We generally achieve the
best performance by combining both optimizations.

From the measures in Table 12.2, we draw the following conclusions: (i) the “Base2” version
is nearly equivalent to mainline CompCert; (ii) the effect of optimizations varies considerably
depending on the benchmark; (iii) overall, both prepass scheduling and LCT are generally effective
and significantly enhance runtime performance; (iv) CSE3, which is applied before BTL, is generally
effective, but there are exceptions, such as in LLVMtest/fl-dhrystone or LLVMtest/nbench-num;
(v) In most cases, we are still notably behind gcc -O1.

12.3.1.3 Comparative Analysis and Challenges of Our LCT Implementation

Another interesting result to consider is the comparative impact of our best configurations w.r.t. the
mainline CompCert version. To this end, we plotted the runtime gains of four incremental setups
in Figure 12.4. First, we consider the combination of prepass, CSE3, and loop peeling; next, we
introduce LCM, followed by integer promotion; finally, we add LSR. For this evaluation, I handpicked
ten pertinent benchmarks.

My goal with this comparison is to highlight that our lazy code transformations algorithm is not
always beneficial, and preemptively determining its potential inefficacy is complex. Notably, there
are instances where LCT has negligible effect, primarily due to its reliance on promoted integers; and
there are also instances where it can adversely impact runtime performance. Such a predicament
manifests in “stringsearch” benchmark from MiBench, revealing two distinct challenges:

12.3 runtime performance 189

AMGmk huffbench jpeg stringsearch correlation 2mm mvt gramschmidt lift xor_and_mat c7

-10.00%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%
Speed relatively to Mainline CompCert

Prepass+CSE3+Peeling
Prepass+CSE3+Peeling+LCM
Prepass+CSE3+Peeling+Promotion+LCM
Prepass+CSE3+Peeling+Promotion+LCT (CM & SR)

Figure 12.4: Chamois-CompCert Configurations for Ten Selected Benchmarks vs. Mainline CompCert on U740.

1. A scope problem: this benchmark searches for substrings within strings. For each string in
the input dataset, it starts by initializing an array structure. This procedure is executed by a
function invoked for each string. At theoretical level, the optimization applied by LCT appears
advantageous: it removes a left shift and an addition instruction from a loop, substituting
the sequence with a single immediate addition as compensation code. Moreover, given that
we can determine the number of iterations in advance, which is capped by UCHAR_MAX (255
on 64-bit RISC-V), and considering the shift’s one cycle latency, a gain of 255 cycles seems
plausible. However, several unforeseen inefficiencies emerge. The removed addition existed
between a load and a store, which were three instructions apart. The subsequent store depends
on the preceding load. Due to the addition elimination, the gap between the two memory
accesses is reduced to two instructions, each bearing one cycle latency. Loads on the U740
exhibit a three cycles latency, and this gap, left unaddressed by scheduling, nullifies the cycle
saved, causing the core to stall. Additionally, the compensation code, incorporated into the
unrolled first loop iteration (recall the application of loop peeling here), also loses two cycles
due to suboptimal scheduling. This, combined with the introduction of two new instructions
each costing one cycle, results in the function shedding at least four cycles in the loop header.
Combined again with the loop body new stall, and coupled with slightly more than two
thousands, six hundreds invocations of the initialization function, the outcome drops to the
poor result we observed.
Intriguingly, this complication arises solely when loop peeling is active (though SR remains
functional without it), and the cycle reduction is not discernible on all RISC-V cores. We only
observed this on the U740. In contrast, when I assessed the same optimized code on a RISC-V
Rocket chip (Berkeley design, emulated on FPGA15), it did not exhibit a similar performance
loss. This discrepancy is likely attributed to the Rocket core’s single issue pipeline, which
renders scheduling less impactful for its performance.
Ultimately, this suboptimal result can be imputed to flawed optimization hypotheses. Our
heuristic postulates that: (i) the scheduler will accommodate the voids left by partial redun-
dancy elimination; (ii) positioning compensation code before the loop, even if it leads to
four additional cycles, would be inconsequential relative to potential gains in the loop body.
Ineluctably, our oracle remained oblivious to the vast number of invocations.
In prospective endeavors, if we achieve the implementation of inter-procedural transforma-
tions, specific addressing calculations in this benchmark might be wholly extricated from the
initialization function, significantly enhancing its runtime performance.

15Field-Programmable Gate Arrays are versatile integrated circuits predominantly employed for prototyping.

12.3 runtime performance 190

Setup (versus Mainline CompCert) Cortex-A53
(AArch64)

Cortex-A72
(AArch64)

SiFive U740
(RISC-V)

GCC −O1 +50.8% +35.1% +47.4%
GCC −O2 +73% +51.5% +65.9%
C1 =Prepass[+Postpass for AArch64] +17.9% +1.1% +18.5%
C2 = C1+Unroll body +26.8% +9.8% +24.4%
C3 = C2+Loop rotate +29% +10.8% +25.4%
C4 = C3+Register renaming +33.9% +11.6% +28.1%
C5 = C4+If-lifting +34.6% +11.1% +30.6%
C6 = C5+LCM[+LSR+Promotion for RISC-V] +37.4% +12.6% +35.4%
C7 = C6+CSE3 +39.3% +14.7% +37.2%

Table 12.3: Mean Gain of Incrementally Adding Scheduling, Duplications, Renaming, If-Lifting, LCT, and CSE3
on All Cores, for All Benchmark Suites, and Comparing With GCC.

2. A register pressure problem: the “stringsearch” benchmark (and this observation extends
to other benchmarks) grapples with elevated register pressure, exacerbated by loop peeling.
This primarily arises due to the static initialization of the dataset within the main function.
This challenge can be addressed in two ways. First, gauging the dataset initialization, which is
executed only once, is arguably superfluous (this differs from the array initializationmentioned
in the preceding point). Secondly, this complication is easilymitigated by bounding the number
of LCT candidate to a threshold, so that it does not increase register pressure over the critical
point.
In the future, we believe that it would nonetheless be beneficial to create a register pressure
sensitive LCT, as Nicolas Nardino [117] did for superblock scheduling.

Apart from these situations, which are admittedly difficult to anticipate, the strength-reduction
applied by LCT is proving highly effective in the selection of Figure 12.4. The gain of CM is less
pronounced in this handpicked set than it was in the results of Table 12.2 (and of Table 12.1 for
AArch64); but this is explained by its application post-CSE3, which, when coupled with loop peeling,
already addresses most redundancy eliminations.

12.3.2 If-Lifting

In this section, we evaluate the impact of register renaming and if-lifting of [4]. In conjunction with
loop body unrolling, these three transformations emulate the weak form of software pipelining
detailed in §11.3.1. We also add loop rotation, as it is known to help in hoisting conditionals.

Acts of unrolling loop bodies and rotating loops are expected to amplify the opportunities for
LCT, scheduling, and CSE3. We incrementally integrated them into our set of configurations, which
means our comparison, while primarily focused on, is not solely confined to if-lifting.

To make easier the comparison between the AArch64 and RISC-V backends, all performance
gains assessed in this section reference the mainline CompCert as the baseline. We conducted
measurements on our three target processors: Cortex-A53, Cortex-A72, and U740. I have collated
the results from our five benchmark series by calculating the mean gain for each configuration, as
showcased in Table 12.3.

At a glance, both GCC optimization levels yield significant performance improvements across all
processors, with the Cortex-A72 exhibiting a notably lesser gain compared to the others. This is
expected considering its inherent hardware capabilities for speculation and reordering. Beginning
with configuration C1, which incorporates scheduling, we observe a marked performance uplift
on both in-order cores. The layering of subsequent configurations highlights a steady increase in
performance for all cores. Interestingly, naive code duplications like C2 and C3 in the table suffice
by themselves to produce an improvement, thanks to the opportunities they offer. The introduction
of the LCM along with the LSR and promotion (only for RISC-V) in C6 and the final incorporation of
CSE3 in C7 intensifies these gains further.

12.3 runtime performance 191

Setup of LLVMtest MiBench PolyBench TACLeBench Verimag
Tbl. 12.3 A53 U740 A53 U740 A53 U740 A53 U740 A53 U740
C4 +25.8% +23.4% +19.6% +15.7% +62.9% +35.2% +32.5% +17.5% +33.7% +44.6%
C5 +27% +24.5% +23.1% +20.9% +64.6% +37.3% +37.6% +21.1% +34.2% +48.3%

Table 12.4: Comparing Configuration C4 and C5 From Table 12.3 for Each Benchmark Suite.

Setup (versus “Base3”) LLVMtest MiBench PolyBench TACLeBench Verimag
GCC −O1 +50.2% +13.1% +107.8% +38.3% +12%
GCC −O2 +65.4% +42% +130.7% +88.4% +47.4%
Mainline CompCert +1% +0.3% −0.4% −0.1% −1%
C1 =Postpass+Peephole +7.2% +8.7% +29.6% +4.2% +10.4%
C2 =Prepass +11.8% +12.6% +34.6% +12.2% +13.5%
C3 = C1 +C2 +13.1% +13.7% +37.4% +14.1% +15.5%
C4 = C3+Loop peeling +14.3% +14.9% +38.7% +16.6% +16.8%
C4+CSE3+LCM +18.7% +24% +65% +23.8% +18%

Table 12.5: Mean Gain From Schedulers, Unrolling, and Redundancy Elimination Algorithms on Cortex-A53,
With GCC and Mainline CompCert.

To delve deeper into the influence of if-lifting (C5), we sharpened our analysis by examining
its impact on individual benchmark suites. Table 12.4 offers such a breakdown, built upon the
same data as Table 12.3. This analysis omits other optimizations to strictly spotlight the distinction
between configurations C4 and C5. We have sidestepped the Cortex-A72 platforms for this particular
comparison, because it brings nothing more than the global one—i.e. almost no effect or even small
losses on every suite.

From this granular perspective, it is evident that if-lifting is indeed beneficial for in-order cores,
albeit with some variations across benchmark suites. The most pronounced effect appear in the
MiBench and TACLeBench suites, with an increase of approximately 4%.

Finally, each incremental enhancement contributes mostly positively to the performance across
all target processors, reinforcing the potency of the evaluated transformations.

12.3.3 Prepass, Postpass, and Peephole on AArch64

We tested our postpass scheduling and peephole optimizer on AArch64. Since the Cortex-A72 has
an OoO pipeline, the effect of any scheduling, whether in prepass or in postpass, is negligible14. This
section thus only presents results on the Cortex-A53 core.

The experiment was carried out on all five benchmark series, with a “Base3” reference configura-
tion corresponding to Chamois-CompCert without CSE3, prepass, postpass, or LCT. In addition to
comparing both schedulers, we observe the effect of combining loop peeling with LCM and CSE3.

Our measurements are given in Table 12.5, grouped by benchmarks series. Mainline CompCert is,
as expected, approximately equivalent to our Chamois-CompCert fork when every important pass
is disabled.

side-note on the peephole (of §4.3.3.2) Note that here, I grouped the application of the
postpass schedulingwith its peephole optimizer pairing loads and stores. I did so because the Cortex-
A53, although dual-issue, has only a single load-store unit. The peephole pairing has, therefore, no
significant effect on performance. In some rare cases, it is still able to slightly increase performance
by offering new opportunities after pairing. Another interest of this peephole is its capacity to reduce
code length: such considerations are sometimes important in embedded systems.

Anyway, we did not design the peephole only for loads and stores pairing but also to use a larger
part of the ISA, and as a foundation for later similar peepholes. For instance, one would like to
implement the ANDS or BICS instructions, which are not supported in RTL because of the language
limitations (recall §3.4.2, and especially Footnote 7: the peephole can help us circumvent the RTL
unicity limitation on destination registers).

12.4 discussion 192

side-note on the alias aware prepass (of §11.3.2) As for all results of this chapter, the
prepass scheduling we use includes the relative and absolute alias analyses. While I do not present
the gains resulting from these analyses compared to the “naive” prepass, we generally observe an
improvement on the order of approximately 2%.

Coming back to our results, the postpass+peephole configuration seems less efficient than the
prepass alone. Indeed, the prepass being applied on superblocks, and being aware of aliases, this
result is not surprising. Despite this, Table 12.5 demonstrates a complementarity between these
two schedulers: in fact, this is certainly due to the postpass ability in reordering spills. We then
incrementally add loop peeling, resulting in a small gain on every suite; and both CSE3 & LCM,
resulting this time in a much more considerable gain. The latter increase is made possible by the
former loop peeling, enabling CSE3 & LCM to perform loop-invariant code motion of potentially
trapping instructions.

Overall, our best Chamois-CompCert configuration (last line of Table 12.5) outperforms “gcc -O1”
on two benchmark suites. However, we still lag behind GCC’s performance on other suites, and the
gap widens when compared to “gcc -O2”; a lot of work thus remains to be done.

12.4 discussion

We saw that our optimization framework based on block transfer language was able to validate many
optimizations in a reasonable amount of time. Our optimizations target mainly AArch64 and RISC-V
platforms, with specific attention given to in-order processors. Nonetheless, the lazy code motion
component of our LCT pass, as well as scheduling related optimizations, are also applicable for other
architectures that are used in embedded systems (e.g. ARMv7, PowerPC, etc.) As demonstrated in
Tables 12.1 and 12.3, some of our optimizations even benefit out-of-order cores like the Cortex-A72.

In summary,we observed important performance gains (close to 40%) compared tomainline Comp-
Cert on both the AArch64 and RISC-V in-order cores. Albeit our optimizations are in general less
effective for OoO processors, we still succeeded to obtain significant increases thanks to duplications,
CSE3, and especially code motion. We largely reduced the gap with the first GCC’s optimization
level, and our optimizations even outperformed it on some benchmarks. Our formally verified SR,
albeit only targeting 64-bit integers or requiring a prior promotion, already yields very promising
results encouraging us to extend its application.

Continuing this work would thus imply adding more complex optimizations, including finer
alias analyses, linear-function test replacement, and more accurate pipeline models. In addition,
we believe that extending the ISA support is also desirable. On AArch64, some features are not yet
exploited by Chamois-CompCert (e.g. pre and post addressing modes, arithmetic-comparisons)
and on RISC-V, we could implement ISA extensions designed for SCS applications.

Finally, our experiments show that the BTL validation mechanism can help in producing more
efficient code formultiple architectures, as long aswe succeed to implement and validate the relevant
transformations for the architecture.

In the context of our OOPSLA’23 paper [65]†, we published an artifact [66]† allowing anyone to
reproduce these results. The artifact contains both a version of our Chamois-CompCert fork and our
benchmarking toolkit. It provides a step-by-step explanation on how to reproduce the effects of our
optimizations on specific handcrafted examples, and on how to benchmark Chamois-CompCert on
specific hardware (AArch64 & RISC-V).

13
CONCLUS ION

This chapter summarizes my work, our insights on the translation validation by symbolic execution
topic, and opens the door to future works.

13.1 short summary

Proving compiler optimizations correct is a challenging task. In the well-established research area
of translation validation, the mainline approach initiated by Pnueli, Zuck et al. uses verification con-
dition generators with theorem proving. A less-investigated alternative, pioneered by Necula, only
combined static analyses with symbolic execution and normalized rewriting. Yet, recent advances
in applying this technique within industrial scale certified compilers inspired further exploration,
with the ambitious aim of formally validating intra-procedural optimizations.

Our work realized this goal, demonstrating that SE is indeed a viable strategy to improve the
optimization capabilities of formally verified compilers. We selected the CompCert formally verified
compiler by Xavier Leroy as our object of study, which is recognized as one of the most successful
projects in this field.

Benefiting from the substantial research embodied in this project, we developed and integrated a
formally verified SE framework. This tool leverages a defensive simulation test, modulo invariants
provided by optimization oracles. Through a co-design development of this validator and oracles,
we successfully validated code motion and strength-reduction, two optimizations that were missing
in CompCert. Moreover, thanks to the work of other researchers, notably my colleagues at Verimag,
we had the opportunity to test our validation tool over several more optimizations. These include
alias aware scheduling, elimination of redundant stores, code factorization, and even a weak form
of software pipelining.

Considering rising architectures in safety-critical systems, such as AArch64 and RISC-V, we
tailored our work towards in-order, predictable processors.

The results indicated significant runtime performance enhancements on these platforms. Our
version of CompCert, named Chamois-CompCert, now rivals the first optimization level of GCC.

The designs we proposed throughout this thesis seem applicable beyond CompCert.
Although we are admittedly far from closing the gap with the most powerful optimization levels

of mainstream compilers, our approach has enabled us to learn important lessons about the way
forward. I summarize those insights in the following section.

A compact overview of the development size in this thesis, in number of significant lines of codes
(excluding blank lines and comments), per project, is given in the table below:

Project Ocaml Coq
BTL oracles & framework 3332 10 932
AArch64 scheduling & peephole 1157 11 171
Total 4489 22 103

For BTL, the items included in the “oracles” count are LCT, expansions (of macro-instructions),
translators (from and to RTL, including factorization), liveness analysis, renumbering algorithm,
and shadow fields type definitions (which are all my contributions).

13.2 insights∗

With this thesis, we argue that advanced compiler optimizations can be implemented with a formal
proof of correctness by:

∗Those insights are adapted from our OOPSLA’23 paper Gourdin et al. [65]†.

193

13.3 ongoing and future works 194

• splitting them into individual phases with well-defined, easy to understand functionality and
independent correctness proofs (e.g. one phase that reorganizes code followed by one phase
that leverages this reorganization to perform simplifications);

• splitting complex phases into:
– an untrusted oracle, which computes the transformed code, or at least some mapping

between the original and transformed code, and possibly some extra annotations such as
invariants;

– a formally verified interpreter, which uses and checks these mappings and annotations
to establish simulation between the original and transformed code (the oracle must be
designed so that everything it does is understood by the interpreter).

By construction, such an interpreter must redo some computations originally done by the oracle.
“Only do simple computations in the formally verified interpreter” is our motto. In particular,
complex computations should be avoided by appropriate hints (a.k.a. certificates) from oracles. It is
indeed much easier and more efficient to directly extract correctness arguments from the existing
computations of the oracle, than to rediscover them a posteriori from scratch in the interpreter. The
lazy code transformations oracle of Chapter 10 is a perfect example. In summary, this motto leads us
to design interpreters that are efficient while keeping a manageable proof of correctness. Moreover,
such simple designs often lead to interpreters that are appliable to various kinds of transformations,
and not just a single one.

In order to formally prove the transformations, the semantic arguments used for correctness
must be precisely identified. They will be turned into invariants and “match” relations used for
simulation proofs. This remains nontrivial work. Some unexpected semantic issues may arise about
seemingly trivial matters. For instance, one may think that “(a+ b) − b = a”; but this is incorrect
in pointer arithmetic, because if “a+ b” exceeds the bounds of the block to which a points, then
“a+ b” is undefined, and thus “(a+ b) − b = a” too is undefined; what is true is that if the left-hand
side of this equation has defined value, then it is equal to the right-hand side. This makes seemingly
trivial computations on linear expressions actually tricky. One could argue that such complexity
is unneeded since anyway all pointers are integers at the machine level, but this may be wrong in
some contexts (pointers with capabilities) and anyway involves changing the semantics to reflect
this, as in CompCertS [19].

Certain optimizations may be impossible inside a verified compiler that cannot change one
well-defined value into another. For instance, the C standard [74, §6.5.8] allows “x * y + z” to be
replaced by fma(x, y, z), despite the two expressions possibly yielding different results (the former
computes “r(r(x× y) + z)”, the latter “r(x× y+ z)” where r is the current floating-point rounding
function). This has to be taken into account when benchmarking.

Certain assumptions made by compilers may have unsuspected importance. For instance, GCC byObserve how this
contradicts with

the tendency
described in
conclusion

of §1.1.1: this
time, it is the

verified compiler
that makes usage

the norm.

default assumes, as the C standard allows it to do, that signed integer arithmetic does not overflow.
This, in turn, allows it to easily promote 32-bit integers to 64 bits. CompCert does not make this
assumption: its designers preferred to err on the side of caution, because many industrial embedded
programs contain old code. Some programmers used to assume that the compiler would not take
advantage of signed arithmetic having undefined behavior, and that integer arithmetic was thus
just modular arithmetic. Our version of CompCert partially compensates this by running a static
analysis for ranges, but there are cases in which it cannot perform optimizations that GCC does,
because they would be incorrect in its semantic model.

Information needed for optimizations must be formally available in the semantics of the in-
termediate representation. Unlike an unverified compiler, we cannot assume, while at a specific
optimization pass, that certain things cannot happen because they are ruled out by the way the
preceding optimization passes work. (We can, however, run a procedure to check that the code fed
to the pass satisfies certain properties and refuse to run the optimization if it does not.)

13.3 ongoing and future works

Some feasible future improvements would involve extending the application of optimizations
presented throughout this thesis. Specifically, Antoine Combet, an undergraduate intern at Verimag,

13.3 ongoing and future works 195

started to port the postpass scheduler of Chapter 4 to the RISC-V CompCert backend. At the time of
writing, this port is not yet finished. Nonetheless, having such an optimization on RISC-V would be
useful to reorder spills possibly introduced by prepass scheduling and LCT.

Similarly, it would surely be beneficial to port the SR backend of LCT to other architectures, such
as ARMv7, as it was done by Hugo Strappazzon for AArch64. Notably, Alexandre Bérard, who
realized the if-lifting pipelining optimization of §11.3.1, recently started a thesis at Verimag, aiming
to improve CompCert’s performance on the ARMv7 architecture. This thesis, in collaboration with
Framatome company1, is expected to lead to further developments, with potentially an industrial
use of Chamois-CompCert.

Benjamin Bonneau, who generalized certain BTL constructs to allow for the validation of alias
aware optimizations and store motion (see Chapter 11), also started a thesis at Verimag2, super-
vised by David Monniaux. Although less connected to CompCert, this thesis aims to propose a
dedicated framework able to use guaranteed properties on source programs for optimized com-
pilation. Bonneau is especially interested in memory separation properties, provided either by
language semantics, static alias analyses, deductive verification (e.g. in separation logic), or even
user annotations. Typically, the Verified Software Toolchain (VST), which I mentioned in §2.5.3,
includes program analysis tools capable of delivering such guaranteed properties. It offers a com-
pletely verified chain—built upon CompCert and integrated with Coq—from the formal proof of
C program in separation logic to its assembly code. Like VST, the FRESCO project3 seeks to build
a Coq-integrated environment on top of CompCert for formally verified programming, but for a
domain specific language tailored to efficient mathematical computations. In particular, this DSL
would restrict aliasing. This would indeed not only facilitate optimized compilation, but also reduce
the proof effort. The experience with Why34 suggests that limiting aliasing decreases the annotation
effort in proofs for imperative programs.

Concerning RISC-V, a lot of work remains to be done, from exploring the integration of new finely
dependent optimizations to extending the instruction set architecture coverage by implementing
ISA official or community extensions. Given the limited availability of RISC-V chips in the market
(in Europe as of 2023), testing these new instruction sets can be challenging. However, a possible
solution would be to rely on hardware simulators such as gem55 to assess the positive impact of
optimizations on various kinds of core pipelines.

Another interesting idea, quickly mentioned in introduction, is to use our formally verified
defensive validator to prove correct the hardening of programs with countermeasures against
software or hardware fault injections. In essence, this would entail using our validator to verify the
insertion of redundancies (i.e. defensive monitoring) rather than their elimination. From October
2023, I am starting a research contract6 centered on this topic. We mainly want to focus on two
related objectives.

First, the automatic insertion of such countermeasures, proving (using the BTL SE engine) that
they preserve program behaviors in the absence of attacks. A previous work by Torrini and Boulmé
[139] proposed a CompCert backend for the IntrinSec architecture which extends RISC-V with
hardware support to protect programs and their data7. Their backend uses this hardware support to
protect programs against control-flow attacks. They conclude that their “manual” proof of semantic
preservation was really painful. Alternatively, translation validation could really remove the need
of such “manual” proofs.

Second, we would like to obtain security guarantees that some countermeasures protect programs
against certain abstract attack models (e.g. single fault attack on a sensitive pseudo-register). In the
latter approach, attacker models could be encoded as a program transformation of the hardened

1https://www.framatome.com/en/
2https://www.theses.fr/s366351
3https://fresco.gitlabpages.inria.fr/
4https://why3.lri.fr/
5https://www.gem5.org/
6In the context of the Arsene project, see https://www.pepr-cyber-arsene.fr/.
7This CompCert extension is publicly available at https://gricad-gitlab.univ-grenoble-alpes.fr/certicompil/co

mpcert-intrinsec.

https://www.framatome.com/en/
https://www.theses.fr/s366351
https://fresco.gitlabpages.inria.fr/
https://why3.lri.fr/
https://www.gem5.org/
https://www.pepr-cyber-arsene.fr/
https://gricad-gitlab.univ-grenoble-alpes.fr/certicompil/compcert-intrinsec
https://gricad-gitlab.univ-grenoble-alpes.fr/certicompil/compcert-intrinsec

13.3 ongoing and future works 196

programs. With little generalizations, our BTL symbolic simulation test could validate a simulation
between the original (unprotected) program and the attacked, hardened one.

More generally, many security properties (e.g. noninterference8) are actually hyperproperties
of programs, similar to liveness, which the validator proposed in this document can already han-
dle. Recently, research on relational SE has emerged as an effective technique for exposing these
hyperproperties. By symbolically executing two different programs with different inputs (as we
do), Farina, Chong, and Gaboardi [54] aim to generate verification conditions that feed a satisfia-
bility modulo theories solver. Thus, instead of proving program simulation (our primary goal for
validating optimizations), they prove (and also interactively refute) relational properties. Since
they do not yet employ invariant synthesis, their framework requires users to annotate programs
(e.g. with loop invariants). Because of the known lack of reliability of SMT solving, they sometimes
experience failure in discharging verification queries (but this seems to remain rare according to
their experimental evaluation [54, §8]). Essentially, given specifications in the form of Hoare triples,
their paper highlights the potential of relational SE in validating various kinds of hyperproperties.

Using such relational SE on top of the Binsec binary analysis tool, Daniel, Bardin, and Rezk [44]
proposed a compiler agnostic verification tool for constant time. Note that formally verified constant
time compilation has been also established on a CompCert variant [12].

Our simulation test also being relational thanks to our invariants, we wonder whether only a
small amount of generalizations—that we already started to investigate, as mentioned in Chapter 11
and in [65]†—would be needed to achieve similar goals.

The long-term goal would be to build a secure compiler, i.e. according to the PriSC workshop9,
“secure compilation aims to protect high-level language abstractions in compiled code, even against adversarial
low-level contexts, and to allow sound reasoning about security in the source language.”

8Proving that secret variables do not interfere with public ones depending on inputs.
9Principles of Secure Compilation, see https://popl19.sigplan.org/track/prisc-2019.

https://popl19.sigplan.org/track/prisc-2019

B IBL IOGRAPHY

[1] AArch64 Procedure Call Standard ABI for the ARM 64-bit Architecture. Online. Arm, 2022. url: h
ttps://github.com/ARM-software/abi-aa/blob/2022Q3-release/aapcs64/aapcs64.rst.

[2] Martín Abadi and Leslie Lamport. “The existence of refinement mappings.” In: Theoretical
Computer Science 82.2 (1991), pp. 253–284. issn: 0304-3975. doi: https://doi.org/10.1016
/0304-3975(91)90224-P. url: https://www.sciencedirect.com/science/article/pii/0
30439759190224P.

[3] Jean-Raymond Abrial. The B-book - assigning programs to meanings. Cambridge University
Press, 1996. isbn: 978-0-521-02175-3. doi: 10.1017/CBO9780511624162.

[4] Alexandre Bérard. “Moving side-exits despite code duplications for better Superblock
scheduling in CompCert.” Master Intership Report. Université Grenoble Alpes, 2022. url:
https://www-verimag.imag.fr/~boulme/CompCert_reports/Berard_Alexandre_M1repor

t_2022.pdf.
[5] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Arthur Blot, Benjamin Grégoire,

Vincent Laporte, Tiago Oliveira, Hugo Pacheco, Benedikt Schmidt, and Pierre-Yves Strub.
“Jasmin: High-Assurance and High-Speed Cryptography.” In: Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security. CCS ’17. Dallas, Texas, USA:
Association for Computing Machinery, 2017, pp. 1807–1823. isbn: 9781450349468. doi: 10.1
145/3133956.3134078. url: https://doi.org/10.1145/3133956.3134078.

[6] Jan Andersson. “Development of a NOEL-V RISC-V SoC Targeting Space Applications.”
In: 2020 50th Annual IEEE/IFIP International Conference on Dependable Systems and Networks
Workshops (DSN-W). 2020, pp. 66–67. doi: 10.1109/DSN-W50199.2020.00020.

[7] Andrew W. Appel. “SSA is Functional Programming.” In: SIGPLAN Not. 33.4 (Apr. 1998),
pp. 17–20. issn: 0362-1340. doi: 10.1145/278283.278285. url: https://doi.org/10.1145/2
78283.278285.

[8] AndrewAppel and Xavier Leroy. “Efficient Extensional Binary Tries.” In: Journal of Automated
Reasoning 67 (Jan. 2023). doi: 10.1007/s10817-022-09655-x. url: https://hal.inria.fr
/hal-03372247v2/file/extensional.pdf.

[9] Arm A64 Instruction Set for A- profile architecture. en. 2012. url: https://developer.arm.com
/documentation/ddi0602/2022-12?lang=en.

[10] Arm Architecture Reference Manual Armv8, for Armv8-A architecture profile. version G.a. ARM.
Jan. 2021. url: https://developer.arm.com/documentation/ddi0487/ga/?lang=en
(visited on 03/22/2021).

[11] Michael Armand, Germain Faure, Benjamin Grégoire, Chantal Keller, Laurent Théry, and
Benjamin Werner. “A Modular Integration of SAT/SMT Solvers to Coq through Proof
Witnesses.” In: Proceedings of the First International Conference on Certified Programs and Proofs.
CPP’11. Kenting, Taiwan: Springer-Verlag, 2011, pp. 135–150. isbn: 9783642253782. doi:
10.1007/978-3-642-25379-9_12. url: https://doi.org/10.1007/978-3-642-25379-9_12.

[12] Gilles Barthe, Sandrine Blazy, Benjamin Grégoire, Rémi Hutin, Vincent Laporte, David
Pichardie, and Alix Trieu. “Formal verification of a constant-time preserving C compiler.”
In: Proceedings of the ACM on Programming Languages 4.POPL (Jan. 2020), pp. 1–30. doi:
10.1145/3371075. url: https://hal.univ-lorraine.fr/hal-02975012.

[13] Gilles Barthe, Delphine Demange, and David Pichardie. “A Formally Verified SSA-Based
Middle-End.” In: Programming Languages and Systems. Ed. by Helmut Seidl. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2012, pp. 47–66. isbn: 978-3-642-28869-2. url: https://in
ria.hal.science/hal-01110783.

197

https://github.com/ARM-software/abi-aa/blob/2022Q3-release/aapcs64/aapcs64.rst
https://github.com/ARM-software/abi-aa/blob/2022Q3-release/aapcs64/aapcs64.rst
https://doi.org/https://doi.org/10.1016/0304-3975(91)90224-P
https://doi.org/https://doi.org/10.1016/0304-3975(91)90224-P
https://www.sciencedirect.com/science/article/pii/030439759190224P
https://www.sciencedirect.com/science/article/pii/030439759190224P
https://doi.org/10.1017/CBO9780511624162
https://www-verimag.imag.fr/~boulme/CompCert_reports/Berard_Alexandre_M1report_2022.pdf
https://www-verimag.imag.fr/~boulme/CompCert_reports/Berard_Alexandre_M1report_2022.pdf
https://doi.org/10.1145/3133956.3134078
https://doi.org/10.1145/3133956.3134078
https://doi.org/10.1145/3133956.3134078
https://doi.org/10.1109/DSN-W50199.2020.00020
https://doi.org/10.1145/278283.278285
https://doi.org/10.1145/278283.278285
https://doi.org/10.1145/278283.278285
https://doi.org/10.1007/s10817-022-09655-x
https://hal.inria.fr/hal-03372247v2/file/extensional.pdf
https://hal.inria.fr/hal-03372247v2/file/extensional.pdf
https://developer.arm.com/documentation/ddi0602/2022-12?lang=en
https://developer.arm.com/documentation/ddi0602/2022-12?lang=en
https://developer.arm.com/documentation/ddi0487/ga/?lang=en
https://doi.org/10.1007/978-3-642-25379-9_12
https://doi.org/10.1007/978-3-642-25379-9_12
https://doi.org/10.1145/3371075
https://hal.univ-lorraine.fr/hal-02975012
https://inria.hal.science/hal-01110783
https://inria.hal.science/hal-01110783

bibliography 198

[14] Gilles Barthe, François Dupressoir, Benjamin Grégoire, César Kunz, Benedikt Schmidt, and
Pierre-Yves Strub. “EasyCrypt: A Tutorial.” In: Foundations of Security Analysis and Design
VII: FOSAD 2012/2013 Tutorial Lectures. Ed. by Alessandro Aldini, Javier Lopez, and Fabio
Martinelli. Cham: Springer International Publishing, 2014, pp. 146–166. isbn: 978-3-319-
10082-1. doi: 10.1007/978-3-319-10082-1_6. url: https://doi.org/10.1007/978-3-319-
10082-1_6.

[15] Gilles Barthe and César Kunz. “An Abstract Model of Certificate Translation.” In: ACM
Trans. Program. Lang. Syst. 33.4 (2011). issn: 0164-0925. doi: 10.1145/1985342.1985344. url:
https://dl.acm.org/doi/10.1145/1985342.1985344.

[16] Ricardo Bedin França, Sandrine Blazy, Denis Favre-Felix, Xavier Leroy, Marc Pantel, and Jean
Souyris. “Formally verified optimizing compilation in ACG-based flight control software.”
In: ERTS2 2012: Embedded Real Time Software and Systems. Toulouse, France: AAAF, SEE, Feb.
2012. url: https://hal.inria.fr/hal-00653367 (visited on 09/19/2020).

[17] Nick Benton. “Simple Relational Correctness Proofs for Static Analyses and Program Trans-
formations.” In: Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. POPL ’04. Venice, Italy: Association for Computing Machinery,
2004, pp. 14–25. isbn: 158113729X. doi: 10.1145/964001.964003. url: https://doi.org/10
.1145/964001.964003.

[18] Frédéric Besson, Sandrine Blazy, and Pierre Wilke. “A Concrete Memory Model for Com-
pCert.” In: Interactive Theorem Proving - 6th International Conference, ITP 2015, Nanjing, China,
August 24-27, 2015, Proceedings. Ed. by Christian Urban and Xingyuan Zhang. Vol. 9236.
Lecture Notes in Computer Science. Springer, 2015, pp. 67–83. doi: 10.1007/978-3-319-221
02-1_5.

[19] Frédéric Besson, Sandrine Blazy, and Pierre Wilke. “CompCertS: A Memory-Aware Verified
C Compiler using Pointer as Integer Semantics.” In: ITP 2017 - 8th International Conference
on Interactive Theorem Proving. Vol. 10499. ITP 2017: Interactive Theorem Proving. Brasilia,
Brazil: Springer, Sept. 2017, pp. 81–97. doi: 10.1007/978-3-319-66107-0_6. url: https://i
nria.hal.science/hal-01656875.

[20] Frédéric Besson, Sandrine Blazy, and Pierre Wilke. “A Verified CompCert Front-End for
a Memory Model Supporting Pointer Arithmetic and Uninitialised Data.” In: J. Autom.
Reason. 62.4 (2019), pp. 433–480. issn: 0168-7433. doi: 10.1007/s10817-017-9439-z. url:
https://people.rennes.inria.fr/Frederic.Besson/compcert-front-end.pdf.

[21] Sandrine Blazy, Zaynah Dargaye, and Xavier Leroy. “Formal Verification of a C Compiler
Front-End.” In: FM 2006: Formal Methods, 14th International Symposium on Formal Methods,
Hamilton, Canada, August 21-27, 2006, Proceedings. Vol. 4085. Lecture Notes in Computer
Science. Springer, 2006, pp. 460–475. doi: 10.1007/11813040_31. url: https://doi.org/10
.1007/11813040_31.

[22] Rastislav Bodík, Rajiv Gupta, and Mary Lou Soffa. “Complete Removal of Redundant
Expressions.” In: Proceedings of the ACM SIGPLAN 1998 Conference on Programming Language
Design and Implementation. PLDI ’98. Montreal, Quebec, Canada: Association for Computing
Machinery, 1998. isbn: 0897919874. doi: 10.1145/277650.277653. url: https://doi.org/10
.1145/277650.277653.

[23] Sylvain Boulmé. “Formally Verified Defensive Programming (efficient Coq-verified compu-
tations from untrusted ML oracles).” See also http://www-verimag.imag.fr/~boulme/hd

r.html. Habilitation à diriger des recherches. Université Grenoble-Alpes, Sept. 2021. url:
https://hal.science/tel-03356701.

[24] Sylvain Boulmé and Thomas Vandendorpe. “Embedding Untrusted Imperative ML Oracles
into Coq Verified Code.” This preprint has been largely rewritten and integrated into Sylvain
Boulmé’s Habilitation in 2021, See http://www-verimag.imag.fr/~boulme/hdr.html. July
2019. url: https://hal.science/hal-02062288.

[25] Timothy Bourke, Lélio Brun, and Marc Pouzet. “Mechanized Semantics and Verified Com-
pilation for a Dataflow Synchronous Language with Reset.” In: Proc. ACM Program. Lang.
4.POPL (2019). doi: 10.1145/3371112. url: https://doi.org/10.1145/3371112.

https://doi.org/10.1007/978-3-319-10082-1_6
https://doi.org/10.1007/978-3-319-10082-1_6
https://doi.org/10.1007/978-3-319-10082-1_6
https://doi.org/10.1145/1985342.1985344
https://dl.acm.org/doi/10.1145/1985342.1985344
https://hal.inria.fr/hal-00653367
https://doi.org/10.1145/964001.964003
https://doi.org/10.1145/964001.964003
https://doi.org/10.1145/964001.964003
https://doi.org/10.1007/978-3-319-22102-1_5
https://doi.org/10.1007/978-3-319-22102-1_5
https://doi.org/10.1007/978-3-319-66107-0_6
https://inria.hal.science/hal-01656875
https://inria.hal.science/hal-01656875
https://doi.org/10.1007/s10817-017-9439-z
https://people.rennes.inria.fr/Frederic.Besson/compcert-front-end.pdf
https://doi.org/10.1007/11813040_31
https://doi.org/10.1007/11813040_31
https://doi.org/10.1007/11813040_31
https://doi.org/10.1145/277650.277653
https://doi.org/10.1145/277650.277653
https://doi.org/10.1145/277650.277653
http://www-verimag.imag.fr/~boulme/hdr.html
http://www-verimag.imag.fr/~boulme/hdr.html
https://hal.science/tel-03356701
http://www-verimag.imag.fr/~boulme/hdr.html
https://hal.science/hal-02062288
https://doi.org/10.1145/3371112
https://doi.org/10.1145/3371112

bibliography 199

[26] Thomas Braibant, Jacques-Henri Jourdan, and David Monniaux. “Implementing and Rea-
soning About Hash-consed Data Structures in Coq.” In: J. Autom. Reasoning 53.3 (2014),
pp. 271–304. doi: 10.1007/s10817-014-9306-0.

[27] Lélio Brun. “Mechanized semantics and verified compilation for a dataflow synchronous
language with reset.” Theses. Université Paris sciences et lettres, July 2020. url: https://th
eses.hal.science/tel-03068862.

[28] Cristian Cadar, Daniel Dunbar, and Dawson Engler. “KLEE: Unassisted and Automatic
Generation of High-Coverage Tests for Complex Systems Programs.” In: Proceedings of the
8th USENIX Conference on Operating Systems Design and Implementation. OSDI’08. San Diego,
California: USENIX Association, 2008, pp. 209–224.

[29] P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice. “LUSTRE: A Declarative Language for
Real-Time Programming.” In: Proceedings of the 14th ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages. POPL ’87. Munich, West Germany: Association for
Computing Machinery, 1987, pp. 178–188. isbn: 0897912152. doi: 10.1145/41625.41641. url:
https://doi.org/10.1145/41625.41641.

[30] Manuel M.T. Chakravarty, Gabriele Keller, and Patryk Zadarnowski. “A Functional Perspec-
tive on SSA Optimisation Algorithms.” In: Electronic Notes in Theoretical Computer Science
82.2 (Apr. 2024), pp. 347–361. issn: 15710661. doi: 10.1016/S1571-0661(05)82596-4.
url: https://linkinghub.elsevier.com/retrieve/pii/S1571066105825964 (visited on
03/08/2021).

[31] Berkeley Churchill, Oded Padon, Rahul Sharma, and Alex Aiken. “Semantic Program Align-
ment for Equivalence Checking.” In: Proceedings of the 40th ACM SIGPLAN Conference on
Programming Language Design and Implementation. PLDI 2019. Phoenix, AZ, USA: Association
for Computing Machinery, 2019, pp. 1027–1040. isbn: 9781450367127. doi: 10.1145/3314221
.3314596. url: https://doi.org/10.1145/3314221.3314596.

[32] Basile Clément. “Translation Validation of Tensor Compilers.” Theses. École Normale Supé-
rieure (Paris), Sept. 2022. url: https://theses.hal.science/tel-03903895.

[33] Basile Clément and Albert Cohen. “End-to-End Translation Validation for the Halide Lan-
guage.” In: Proc. ACM Program. Lang. 6.OOPSLA1 (2022). doi: 10.1145/3527328. url:
https://doi.org/10.1145/3527328.

[34] John Cocke and Ken Kennedy. “An algorithm for reduction of operator strength.” en. In:
Communications of the ACM 20.11 (Nov. 1977), pp. 850–856. issn: 0001-0782, 1557-7317. doi:
10.1145/359863.359888. url: https://dl.acm.org/doi/10.1145/359863.359888 (visited
on 08/25/2021).

[35] Alberto Coen-Porisini, Giovanni Denaro, Carlo Ghezzi, and Mauro Pezzé. “Using Sym-
bolic Execution for Verifying Safety-Critical Systems.” In: Proceedings of the 8th European
Software Engineering Conference Held Jointly with 9th ACM SIGSOFT International Symposium
on Foundations of Software Engineering. ESEC/FSE-9. Vienna, Austria: Association for Com-
puting Machinery, 2001, pp. 142–151. isbn: 1581133901. doi: 10.1145/503209.503230. url:
https://doi.org/10.1145/503209.503230.

[36] Keith D. Cooper, L. Taylor Simpson, and Christopher A. Vick. “Operator strength reduction.”
In: ACM Trans. Program. Lang. Syst. 23 (2001), pp. 603–625.

[37] Thierry Coquand and Gérard Huet. “Constructions: A higher order proof system for mech-
anizing mathematics.” en. In: EUROCAL ’85. Ed. by G. Goos et al. Vol. 203. Series Title:
Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 1985, pp. 151–184. isbn:
978-3-540-15983-4 978-3-540-39684-0. doi: 10.1007/3-540-15983-5_13. url: http://link
.springer.com/10.1007/3-540-15983-5_13 (visited on 01/23/2023).

[38] Thierry Coquand and Gérard Huet. “The calculus of constructions.” In: Information and
Computation 76.2 (1988), pp. 95–120. issn: 0890-5401. doi: https://doi.org/10.1016/0890-
5401(88)90005-3. url: https://www.sciencedirect.com/science/article/pii/0890540
188900053.

https://doi.org/10.1007/s10817-014-9306-0
https://theses.hal.science/tel-03068862
https://theses.hal.science/tel-03068862
https://doi.org/10.1145/41625.41641
https://doi.org/10.1145/41625.41641
https://doi.org/10.1016/S1571-0661(05)82596-4
https://linkinghub.elsevier.com/retrieve/pii/S1571066105825964
https://doi.org/10.1145/3314221.3314596
https://doi.org/10.1145/3314221.3314596
https://doi.org/10.1145/3314221.3314596
https://theses.hal.science/tel-03903895
https://doi.org/10.1145/3527328
https://doi.org/10.1145/3527328
https://doi.org/10.1145/359863.359888
https://dl.acm.org/doi/10.1145/359863.359888
https://doi.org/10.1145/503209.503230
https://doi.org/10.1145/503209.503230
https://doi.org/10.1007/3-540-15983-5_13
http://link.springer.com/10.1007/3-540-15983-5_13
http://link.springer.com/10.1007/3-540-15983-5_13
https://doi.org/https://doi.org/10.1016/0890-5401(88)90005-3
https://doi.org/https://doi.org/10.1016/0890-5401(88)90005-3
https://www.sciencedirect.com/science/article/pii/0890540188900053
https://www.sciencedirect.com/science/article/pii/0890540188900053

bibliography 200

[39] Nathanaël Courant and Xavier Leroy. “Verified code generation for the polyhedral model.”
In: Proc. ACM Program. Lang. 5.POPL (2021), 40:1–40:24. doi: 10.1145/3434321.

[40] Patrick Cousot, Radhia Cousot, Jerôme Feret, Laurent Mauborgne, Antoine Miné, David
Monniaux, and Xavier Rival. “The ASTREÉ Analyzer.” en. In: Programming Languages and
Systems. Ed. by David Hutchison et al. Vol. 3444. Series Title: Lecture Notes in Computer
Science. Berlin, Heidelberg: Springer, 2005, pp. 21–30. isbn: 978-3-540-25435-5 978-3-540-
31987-0. doi: 10.1007/978-3-540-31987-0_3. url: http://link.springer.com/10.1007/9
78-3-540-31987-0_3 (visited on 01/11/2023).

[41] Christoph Cullmann, Christian Ferdinand, Gernot Gebhard, Daniel Grund, Claire Maiza,
Jan Reineke, Benoît Triquet, and Reinhard Wilhelm. “Predictability Considerations in the
Design of Multi-Core Embedded Systems.” en. In: Proceedings of Embedded Real Time Software
and Systems. 2010. url: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf
&doi=94c507ff47f765a932a7208cd8558733d327d660.

[42] Charlie Curtsinger and Emery D Berger. “STABILIZER: Statistically Sound Performance
Evaluation.” In: ASPLOS’2013. ACM, 2013, pp. 219–228. doi: 10.1145/2451116.2451141.

[43] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck.
“Efficiently Computing Static Single Assignment Form and the Control Dependence Graph.”
In: ACM Trans. Program. Lang. Syst. 13.4 (Oct. 1991), pp. 451–490. issn: 0164-0925. doi:
10.1145/115372.115320. url: https://doi.org/10.1145/115372.115320.

[44] Lesly-Ann Daniel, Sébastien Bardin, and Tamara Rezk. “Binsec/Rel: Efficient Relational
Symbolic Execution for Constant-Time at Binary-Level.” In: 2020 IEEE Symposium on Security
and Privacy (SP) (2019), pp. 1021–1038. url: https://leslyann-daniel.fr/ressources/pa
pers/2020_SP_binsecrel.pdf.

[45] Delphine Demange. “Semantic Foundations of Intermediate Program Representations.”
EAPLS Best PhD Dissertation Award 2012. Gilles Kahn PhD Thesis Award 2013. PhD thesis.
École Normale Supérieure de Cachan, France, Oct. 2012. url: http://people.irisa.fr/De
lphine.Demange/papers/DemangePhD.pdf.

[46] Delphine Demange, David Pichardie, and Léo Stefanesco. “Verifying Fast and Sparse SSA-
based Optimizations in Coq.” In: 24th International Conference on Compiler Construction, CC
2015. London, United Kingdom, 2015. doi: 10.1007/978-3-662-46663-6_12.

[47] Delphine Demange and Yon Fernandez de Retana. “Mechanizing conventional SSA for a
verified destructionwith coalescing.” In: 25th International Conference on Compiler Construction.
Barcelona, Spain, Mar. 2016. doi: 10.1145/2892208.2892222. url: https://hal.archives-
ouvertes.fr/hal-01378393.

[48] David Detlefs, Greg Nelson, and James B. Saxe. “Simplify: A Theorem Prover for Program
Checking.” In: J. ACM 52.3 (May 2005), pp. 365–473. issn: 0004-5411. doi: 10.1145/1066100
.1066102. url: https://doi.org/10.1145/1066100.1066102.

[49] D. M. Dhamdhere. “Practical Adaption of the Global Optimization Algorithm of Morel and
Renvoise.” In: ACM Trans. Program. Lang. Syst. 13.2 (1991), pp. 291–294. issn: 0164-0925. doi:
10.1145/103135.214520. url: https://doi.org/10.1145/103135.214520.

[50] D. M. Dhamdhere and Harish Patil. “An Elimination Algorithm for Bidirectional Data Flow
Problems Using Edge Placement.” In: ACM Trans. Program. Lang. Syst. 15.2 (1993), pp. 312–
336. issn: 0164-0925. doi: 10.1145/169701.169684. url: https://doi.org/10.1145/169701
.169684.

[51] Dhananjay M. Dhamdhere and Uday P. Khedker. “Complexity of Bi-Directional Data Flow
Analysis.” In: Proceedings of the 20th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. POPL ’93. Charleston, South Carolina, USA: Association for Com-
puting Machinery, 1993, pp. 397–408. isbn: 0897915607. doi: 10.1145/158511.158696. url:
https://doi.org/10.1145/158511.158696.

[52] Stefano Di Mascio, Alessandra Menicucci, Eberhard Gill, Gianluca Furano, and Claudio
Monteleone. “Leveraging the Openness and Modularity of RISC-V in Space.” In: Journal of
Aerospace Information Systems 16 (2019), pp. 1–19. doi: 10.2514/1.I010735.

https://doi.org/10.1145/3434321
https://doi.org/10.1007/978-3-540-31987-0_3
http://link.springer.com/10.1007/978-3-540-31987-0_3
http://link.springer.com/10.1007/978-3-540-31987-0_3
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=94c507ff47f765a932a7208cd8558733d327d660
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=94c507ff47f765a932a7208cd8558733d327d660
https://doi.org/10.1145/2451116.2451141
https://doi.org/10.1145/115372.115320
https://doi.org/10.1145/115372.115320
https://leslyann-daniel.fr/ressources/papers/2020_SP_binsecrel.pdf
https://leslyann-daniel.fr/ressources/papers/2020_SP_binsecrel.pdf
http://people.irisa.fr/Delphine.Demange/papers/DemangePhD.pdf
http://people.irisa.fr/Delphine.Demange/papers/DemangePhD.pdf
https://doi.org/10.1007/978-3-662-46663-6_12
https://doi.org/10.1145/2892208.2892222
https://hal.archives-ouvertes.fr/hal-01378393
https://hal.archives-ouvertes.fr/hal-01378393
https://doi.org/10.1145/1066100.1066102
https://doi.org/10.1145/1066100.1066102
https://doi.org/10.1145/1066100.1066102
https://doi.org/10.1145/103135.214520
https://doi.org/10.1145/103135.214520
https://doi.org/10.1145/169701.169684
https://doi.org/10.1145/169701.169684
https://doi.org/10.1145/169701.169684
https://doi.org/10.1145/158511.158696
https://doi.org/10.1145/158511.158696
https://doi.org/10.2514/1.I010735

bibliography 201

[53] Heiko Falk, Sebastian Altmeyer, Peter Hellinckx, Björn Lisper, Wolfgang Puffitsch, Christine
Rochange, Martin Schoeberl, Rasmus Bo Sørensen, Peter Wägemann, and Simon Wegener.
“TACLeBench: A Benchmark Collection to Support Worst-Case Execution Time Research.”
In: 16th International Workshop on Worst-Case Execution Time Analysis (WCET 2016). Ed. by
Martin Schoeberl. Vol. 55. OpenAccess Series in Informatics (OASIcs). Dagstuhl, Germany:
Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2016, 2:1–2:10.

[54] Gian Pietro Farina, Stephen Chong, and Marco Gaboardi. “Relational Symbolic Execution.”
In: Proceedings of the 21st International Symposium on Principles and Practice of Declarative
Programming. PPDP ’19. Porto, Portugal: Association for Computing Machinery, 2019. isbn:
9781450372497. doi: 10.1145/3354166.3354175. url: https://doi.org/10.1145/3354166
.3354175.

[55] Paul Feautrier. “Dataflow Analysis of Array and Scalar References.” In: International Journal
of Parallel Programming 20 (Aug. 1996). doi: 10.1007/BF01407931.

[56] Jean-Christophe Filliatre and Sylvain Conchon. “Type-Safe Modular Hash-Consing.” en. In:
ACM Press, 2006. doi: 10.1145/1159876.1159880.

[57] J. Fisher. “Trace Scheduling: A Technique for Global Microcode Compaction.” In: IEEE
Transactions on Computers 30.07 (1981), pp. 478–490. issn: 0018-9340. doi: 10.1109/TC.1981
.1675827.

[58] Joseph A. Fisher, Paolo Faraboschi, and Cliff Young. Embedded Computing: A VLIW Approach
to Architecture, Compilers and Tools. Electronics & Electrical. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2005. isbn: 9780080477541. url: https://books.google.fr/boo
ks?id=R5UXl6Jo0XYC.

[59] Alexis Fouilhe and Sylvain Boulmé. “[FouilheB14] A Certifying Frontend for (Sub)polyhe-
dral Abstract Domains.” In: Verified Software: Theories, Tools and Experiments. Ed. by Dimitra
Giannakopoulou and Daniel Kroening. Vol. 8471. Series Title: Lecture Notes in Computer
Science. Cham: Springer International Publishing, 2014, pp. 200–215. isbn: 978-3-319-12153-6
978-3-319-12154-3. doi: 10.1007/978-3-319-12154-3_13. url: http://link.springer.com
/10.1007/978-3-319-12154-3_13 (visited on 05/25/2020).

[60] Ricardo Bedin França, Denis Favre-Felix, Xavier Leroy, Marc Pantel, and Jean Souyris. “To-
wards Formally Verified Optimizing Compilation in Flight Control Software.” In: Bringing
Theory to Practice: Predictability and Performance in Embedded Systems, DATE Workshop PPES
2011, March 18, 2011, Grenoble, France. Ed. by Philipp Lucas, Lothar Thiele, Benoit Triquet,
Theo Ungerer, and Reinhard Wilhelm. Vol. 18. OASICS. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, Germany, 2011, pp. 59–68. doi: 10.4230/OASIcs.PPES.2011.59.

[61] Sabine Glesner. “Using Program Checking to Ensure the Correctness of Compiler Imple-
mentations.” In: JUCS - Journal of Universal Computer Science 9.3 (2003), pp. 191–222. issn:
0948-695X. doi: 10.3217/jucs-009-03-0191. url: https://doi.org/10.3217/jucs-009-03
-0191.

[62] Jonathan S. Golan. “Semimodules over Semirings.” en. In: Semirings and their Applications.
Dordrecht: Springer Netherlands, 1999, pp. 149–161. isbn: 978-90-481-5252-0 978-94-015-
9333-5. doi: 10.1007/978-94-015-9333-5_14. url: http://link.springer.com/10.1007/9
78-94-015-9333-5_14 (visited on 11/09/2022).

[63] LéoGourdin. “Formally verifiedpostpass schedulingwith peephole optimization forAArch64.”
In: 20èmes journées Approches Formelles dans l’Assistance au Développement de Logiciels, AFADL
2021. June 2021. url: https://www.lirmm.fr/afadl2021/papers/afadl2021_paper_9.pdf.

[64] Léo Gourdin. “Lazy Code Transformations in a Formally Verified Compiler.” In: Proceedings
of the 18th ACM International Workshop on Implementation, Compilation, Optimization of OO
Languages, Programs and Systems. ICOOOLPS 2023. Seattle, WA, USA: Association for Com-
puting Machinery, 2023, pp. 3–14. isbn: 9798400702488. doi: 10.1145/3605158.3605848.
url: https://hal.science/hal-04108775.

https://doi.org/10.1145/3354166.3354175
https://doi.org/10.1145/3354166.3354175
https://doi.org/10.1145/3354166.3354175
https://doi.org/10.1007/BF01407931
https://doi.org/10.1145/1159876.1159880
https://doi.org/10.1109/TC.1981.1675827
https://doi.org/10.1109/TC.1981.1675827
https://books.google.fr/books?id=R5UXl6Jo0XYC
https://books.google.fr/books?id=R5UXl6Jo0XYC
https://doi.org/10.1007/978-3-319-12154-3_13
http://link.springer.com/10.1007/978-3-319-12154-3_13
http://link.springer.com/10.1007/978-3-319-12154-3_13
https://doi.org/10.4230/OASIcs.PPES.2011.59
https://doi.org/10.3217/jucs-009-03-0191
https://doi.org/10.3217/jucs-009-03-0191
https://doi.org/10.3217/jucs-009-03-0191
https://doi.org/10.1007/978-94-015-9333-5_14
http://link.springer.com/10.1007/978-94-015-9333-5_14
http://link.springer.com/10.1007/978-94-015-9333-5_14
https://www.lirmm.fr/afadl2021/papers/afadl2021_paper_9.pdf
https://doi.org/10.1145/3605158.3605848
https://hal.science/hal-04108775

bibliography 202

[65] Léo Gourdin, Benjamin Bonneau, Sylvain Boulmé, David Monniaux, and Alexandre Bérard.
“Formally Verifying Optimizations with Block Simulations.” In: Proc. ACM Program. Lang.
7.OOPSLA2 (2023). doi: https://doi.org/10.1145/3622799. url: https://hal.science
/hal-04102940.

[66] Léo Gourdin, Benjamin Bonneau, Sylvain Boulmé, David Monniaux, and Alexandre Bérard.
“Artifact of the ”Formally Verifying Optimizations with Block Simulations” OOPSLA’23
paper.” In: Proceedings of the ACM on Programming Languages (Sept. 2023). doi: 10.5281/zen
odo.8314677. url: https://doi.org/10.5281/zenodo.8314677.

[67] Léo Gourdin and Sylvain Boulmé. Certifying assembly optimizations in Coq by symbolic execution
with hash-consing. en. Online. Coq Workshop, June 2021. url: https://coq-workshop.gitla
b.io/2021/abstracts/Coq2021-04-01-certifying-optimizations-hash-consing.pdf.

[68] Alban Gruin, Thomas Carle, Christine Rochange, Hugues Cassé, and Pascal Sainrat. “MINO-
TAuR: a Timing Predictable RISC-V Core Featuring Speculative Execution.” In: IEEE Trans-
actions on Computers 72.1 (2023), pp. 183–195. doi: 10.1109/TC.2022.3200000. url: https:
//ut3-toulouseinp.hal.science/hal-03773263.

[69] Alban Gruin, Thomas Carle, Christine Rochange, and Pascal Sainrat. “Enabling timing
predictability in the presence of store buffers.” In: 31st International Conference on Real-Time
Networks and Systems (RTNS 2023). Dortmund, Germany: ACM, June 2023, pp. 1–10. doi:
10.1145/3575757.3593653. url: https://hal.science/hal-04082519.

[70] M.R. Guthaus, J.S. Ringenberg, D. Ernst, T.M. Austin, T. Mudge, and R.B. Brown. “MiBench:
A free, commercially representative embedded benchmark suite.” en. In: Proceedings of
the Fourth Annual IEEE International Workshop on Workload Characterization. WWC-4 (Cat.
No.01EX538). Austin, TX, USA: IEEE, 2001, pp. 3–14. isbn: 978-0-7803-7315-0. doi: 10.11
09/WWC.2001.990739. url: http://ieeexplore.ieee.org/document/990739/ (visited on
04/19/2021).

[71] Sebastian Hahn. “On Static Execution-Time Analysis—Compositionality, Pipeline Abstrac-
tion, and Predictable Hardware.” PhD thesis. Universität des Saarlandes, 2019. url: https:
//d-nb.info/1187241180/34.

[72] Wen-mei Hwu et al. “The Superblock: An Effective Technique for VLIW and Superscalar
Compilation.” In: The Journal of Supercomputing 7 (May 1993), pp. 229–248. doi: 10.1007
/BF01205185.

[73] ISO. C11 Standard. ISO/IEC 9899:2011. 2011. url: http://www.open-std.org/jtc1/sc22/wg
14/www/docs/n1570.pdf.

[74] International standard—Programming languages—C. Tech. rep. ISO/IEC, 9899:1999.
[75] Justus Fasse. “Code Transformations to Increase Prepass Scheduling Opportunities in Com-

pCert.” Master Thesis of Science. Université Grenoble Alpes, Aug. 2021. url: https://www-
verimag.imag.fr/~boulme/CPP_2022/FASSE-Justus-MSc-Thesis_2021.pdf.

[76] A. Kanade, A. Sanyal, and U. Khedker. “A PVS Based Framework for Validating Compiler
Optimizations.” In: Fourth IEEE International Conference on Software Engineering and Formal
Methods (SEFM’06). 2006, pp. 108–117. doi: 10.1109/SEFM.2006.4.

[77] Jeehoon Kang et al. “Crellvm: Verified Credible Compilation for LLVM.” In: Proceedings of
the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation. PLDI
2018. Philadelphia, PA, USA: Association for Computing Machinery, 2018, pp. 631–645. isbn:
9781450356985. doi: 10.1145/3192366.3192377. url: https://sf.snu.ac.kr/publication
s/crellvm.pdf.

[78] Theodoros Kasampalis, Daejun Park, Zhengyao Lin, Vikram S. Adve, and Grigore Roşu.
“Language-Parametric Compiler Validation with Application to LLVM.” In: Proceedings of
the 26th ACM International Conference on Architectural Support for Programming Languages and
Operating Systems. ASPLOS ’21. Virtual, USA: Association for Computing Machinery, 2021,
pp. 1004–1019. isbn: 9781450383172. doi: 10.1145/3445814.3446751. url: https://doi.org
/10.1145/3445814.3446751.

https://doi.org/https://doi.org/10.1145/3622799
https://hal.science/hal-04102940
https://hal.science/hal-04102940
https://doi.org/10.5281/zenodo.8314677
https://doi.org/10.5281/zenodo.8314677
https://doi.org/10.5281/zenodo.8314677
https://coq-workshop.gitlab.io/2021/abstracts/Coq2021-04-01-certifying-optimizations-hash-consing.pdf
https://coq-workshop.gitlab.io/2021/abstracts/Coq2021-04-01-certifying-optimizations-hash-consing.pdf
https://doi.org/10.1109/TC.2022.3200000
https://ut3-toulouseinp.hal.science/hal-03773263
https://ut3-toulouseinp.hal.science/hal-03773263
https://doi.org/10.1145/3575757.3593653
https://hal.science/hal-04082519
https://doi.org/10.1109/WWC.2001.990739
https://doi.org/10.1109/WWC.2001.990739
http://ieeexplore.ieee.org/document/990739/
https://d-nb.info/1187241180/34
https://d-nb.info/1187241180/34
https://doi.org/10.1007/BF01205185
https://doi.org/10.1007/BF01205185
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf
https://www-verimag.imag.fr/~boulme/CPP_2022/FASSE-Justus-MSc-Thesis_2021.pdf
https://www-verimag.imag.fr/~boulme/CPP_2022/FASSE-Justus-MSc-Thesis_2021.pdf
https://doi.org/10.1109/SEFM.2006.4
https://doi.org/10.1145/3192366.3192377
https://sf.snu.ac.kr/publications/crellvm.pdf
https://sf.snu.ac.kr/publications/crellvm.pdf
https://doi.org/10.1145/3445814.3446751
https://doi.org/10.1145/3445814.3446751
https://doi.org/10.1145/3445814.3446751

bibliography 203

[79] Richard A. Kelsey. “A Correspondence between Continuation Passing Style and Static
Single Assignment Form.” In: Papers from the 1995 ACM SIGPLAN Workshop on Intermediate
Representations. IR ’95. San Francisco, California, USA: Association for ComputingMachinery,
1995, pp. 13–22. isbn: 0897917545. doi: 10.1145/202529.202532. url: https://doi.org/10
.1145/202529.202532.

[80] Sarfraz Khurshid, Corina S. Păsăreanu, andWillem Visser. “Generalized Symbolic Execution
for Model Checking and Testing.” In: Proceedings of the 9th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems. TACAS’03. Warsaw, Poland: Springer-
Verlag, 2003, pp. 553–568. isbn: 3540008985.

[81] James C. King. “Symbolic Execution and Program Testing.” In: Commun. ACM 19.7 (1976),
pp. 385–394. doi: 10.1145/360248.360252.

[82] Claude Kirchner and Hélène Kirchner. “Equational logic and rewriting.” In: Handbook of
the History of Logic. Ed. by Dov M. Gabbay, Jörg H. Siekmann, and John Woods. Vol. 9.
History of Logic and Computation in the 20th Century Chap.8. Elsevier, Mar. 2014. url:
https://hal.inria.fr/hal-01183817.

[83] Jens Knoop, Oliver Ruthing, and Bernhard Steffen. “Optimal Code Motion: Theory and
Practice.” In: ACM Transactions on Programming Languages and Systems 16 (Sept. 1995). doi:
10.1145/183432.183443.

[84] Jens Knoop, Oliver Rüthing, and Bernhard Steffen. “Lazy code motion.” en. In: Proceedings of
the ACM SIGPLAN 1992 conference on Programming language design and implementation - PLDI
’92. Most Influential PLDI Paper 2002 Award, https://www.sigplan.org/Awards/PLDI/.
San Francisco, California, United States: ACM Press, 1992, pp. 224–234. isbn: 978-0-89791-
475-8. doi: 10.1145/143095.143136. url: http://portal.acm.org/citation.cfm?doid=14
3095.143136 (visited on 09/21/2021).

[85] Jens Knoop, Oliver Rüthing, and Bernhard Steffen. “Lazy Strength Reduction.” In: Journal of
Programming Languages 1 (1993), pp. 71–91.

[86] Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott Owens. “CakeML: A
Verified Implementation ofML.” In:Proceedings of the 41st ACMSIGPLAN-SIGACTSymposium
on Principles of Programming Languages. POPL ’14. San Diego, California, USA: Association
for Computing Machinery, 2014, pp. 179–191. isbn: 9781450325448. doi: 10.1145/2535838.2
535841. url: https://doi.org/10.1145/2535838.2535841.

[87] Sudipta Kundu, Zachary Tatlock, and Sorin Lerner. “Proving Optimizations Correct Using
Parameterized Program Equivalence.” In: Proceedings of the 30th ACM SIGPLAN Conference
on Programming Language Design and Implementation. PLDI ’09. Dublin, Ireland: Association
for Computing Machinery, 2009, pp. 327–337. isbn: 9781605583921. doi: 10.1145/1542476
.1542513. url: https://cseweb.ucsd.edu/~lerner/papers/pldi09-pec.pdf.

[88] Daniel Kästner, Jörg Barrho,UlrichWünsche,Marc Schlickling, Bernhard Schommer,Michael
Schmidt, Christian Ferdinand, Xavier Leroy, and Sandrine Blazy. “CompCert: Practical
Experience on Integrating and Qualifying a Formally Verified Optimizing Compiler.” In:
ERTS2 2018 - 9th European Congress Embedded Real-Time Software and Systems. 3AF, SEE, SIE.
Toulouse, France, Jan. 2018, pp. 1–9. url: https://hal.inria.fr/hal-01643290.

[89] M. Lam. “Software Pipelining: An Effective Scheduling Technique for VLIW Machines.”
In: Proceedings of the ACM SIGPLAN 1988 Conference on Programming Language Design and
Implementation. PLDI ’88. Atlanta, Georgia, USA: Association for Computing Machinery,
1988, pp. 318–328. isbn: 0897912691. doi: 10.1145/53990.54022.

[90] M. Lee, P. Tirumalai, and T. Ngai. “Software pipelining and superblock scheduling: com-
pilation techniques for VLIW machines.” In: [1993] Proceedings of the Twenty-sixth Hawaii
International Conference on System Sciences. Vol. i. 1993, 202–213 vol.1. doi: 10.1109/HICSS.19
93.270744.

[91] Xavier Leroy. Answer to CompCert bug #137. url: https://github.com/AbsInt/CompCert
/issues/137#issuecomment-243353529.

https://doi.org/10.1145/202529.202532
https://doi.org/10.1145/202529.202532
https://doi.org/10.1145/202529.202532
https://doi.org/10.1145/360248.360252
https://hal.inria.fr/hal-01183817
https://doi.org/10.1145/183432.183443
https://www.sigplan.org/Awards/PLDI/
https://doi.org/10.1145/143095.143136
http://portal.acm.org/citation.cfm?doid=143095.143136
http://portal.acm.org/citation.cfm?doid=143095.143136
https://doi.org/10.1145/2535838.2535841
https://doi.org/10.1145/2535838.2535841
https://doi.org/10.1145/2535838.2535841
https://doi.org/10.1145/1542476.1542513
https://doi.org/10.1145/1542476.1542513
https://cseweb.ucsd.edu/~lerner/papers/pldi09-pec.pdf
https://hal.inria.fr/hal-01643290
https://doi.org/10.1145/53990.54022
https://doi.org/10.1109/HICSS.1993.270744
https://doi.org/10.1109/HICSS.1993.270744
https://github.com/AbsInt/CompCert/issues/137#issuecomment-243353529
https://github.com/AbsInt/CompCert/issues/137#issuecomment-243353529

bibliography 204

[92] Xavier Leroy. “A formally verified compiler back-end.” In: Journal of Automated Reasoning
43.4 (2009), pp. 363–446. doi: 10.1007/s10817-009-9155-4. url: http://xavierleroy.org
/publi/compcert-backend.pdf.

[93] Xavier Leroy. “Formal verification of a realistic compiler.” In: Communications of the ACM
52.7 (2009). doi: 10.1145/1538788.1538814.

[94] Xavier Leroy. “Verified squared: does critical software deserve verified tools?” In: POPL’11.
Austin, TX, USA: ACM, Jan. 2011, pp. 1–2. doi: 10.1145/1926385.1926387. url: https://xa
vierleroy.org/publi/popl11-invited-talk.pdf.

[95] Xavier Leroy, AndrewW. Appel, Sandrine Blazy, and Gordon Stewart. The CompCert Memory
Model, Version 2. Research Report RR-7987. INRIA, June 2012, p. 26.

[96] Xavier Leroy and Sandrine Blazy. “Formal Verification of a C-like Memory Model and Its
Uses for Verifying Program Transformations.” In: J. Autom. Reason. 41.1 (2008), pp. 1–31. doi:
10.1007/s10817-008-9099-0.

[97] Pierre Letouzey. “Extraction in Coq: An Overview.” en. In: Logic and Theory of Algorithms.
Ed. by Arnold Beckmann, Costas Dimitracopoulos, and Benedikt Löwe. Vol. 5028. Series
Title: Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg,
2008, pp. 359–369. isbn: 978-3-540-69405-2 978-3-540-69407-6. doi: 10.1007/978-3-540-69
407-6_39. url: http://link.springer.com/10.1007/978-3-540-69407-6_39 (visited on
01/23/2023).

[98] Vsevolod Livinskii, Dmitry Babokin, and John Regehr. “Random Testing for C and C++
Compilers with YARPGen.” In: Proc. ACM Program. Lang. 4.OOPSLA (2020). doi: 10.1145
/3428264. url: https://doi.org/10.1145/3428264.

[99] Raymond Lo, Fred Chow, Robert Kennedy, Shin-Ming Liu, and Peng Tu. “Register Promotion
by Sparse Partial Redundancy Elimination of Loads and Stores.” In: Proceedings of the ACM
SIGPLAN 1998 Conference on Programming Language Design and Implementation. PLDI ’98.
Montreal, Quebec, Canada: Association for Computing Machinery, 1998, pp. 26–37. isbn:
0897919874. doi: 10.1145/277650.277659. url: https://doi.org/10.1145/277650.277659.

[100] Nuno P. Lopes, Juneyoung Lee, Chung-Kil Hur, Zhengyang Liu, and John Regehr. “Alive2:
Bounded Translation Validation for LLVM.” In: Proceedings of the 42nd ACM SIGPLAN
International Conference on Programming Language Design and Implementation. PLDI 2021.
Virtual, Canada: Association for ComputingMachinery, 2021, pp. 65–79. isbn: 9781450383912.
doi: 10.1145/3453483.3454030. url: https://doi.org/10.1145/3453483.3454030.

[101] P Geoffrey Lowney, Stefan M Freudenberger, Thomas J Karzes, W D Lichtenstein, Robert P
Nix, John S O’Donnell, and John C Ruttenberg. “The Multiflow Trace Scheduling Compiler.”
en. In: (1992), p. 83.

[102] Tao Lu. A Survey on RISC-V Security: Hardware and Architecture. en. arXiv:2107.04175 [cs].
July 2021. url: http://arxiv.org/abs/2107.04175 (visited on 09/26/2022).

[103] Claire Maiza, Hamza Rihani, Juan M. Rivas, Joël Goossens, Sebastian Altmeyer, and Robert I.
Davis. “A Survey of Timing Verification Techniques for Multi-Core Real-Time Systems.” In:
ACM Comput. Surv. 52.3 (June 2019). issn: 0360-0300. doi: 10.1145/3323212. url: https://w
ww-users.york.ac.uk/~rd17/papers/ACMCSUR2019SurveyTimingVerification.pdf.

[104] Michaël Marcozzi, Qiyi Tang, Alastair F. Donaldson, and Cristian Cadar. “Compiler Fuzzing:
How Much Does It Matter?” In: Proc. ACM Program. Lang. 3.OOPSLA (2019). doi: 10.1145
/3360581. url: https://doi.org/10.1145/3360581.

[105] W. M. McKeeman. “Peephole optimization.” en. In: Communications of the ACM 8.7 (July
1965), pp. 443–444. issn: 0001-0782, 1557-7317. doi: 10.1145/364995.365000. url: https:
//dl.acm.org/doi/10.1145/364995.365000 (visited on 12/09/2022).

[106] David Monniaux and Sylvain Boulmé. “The Trusted Computing Base of the CompCert
Verified Compiler.” In: Programming Languages and Systems (ESOP 2022). Ed. by Ilya Sergey.
Vol. 13240. Munich, Germany: Springer, Apr. 2022, pp. 204–233. doi: 10.1007/978-3-030-9
9336-8_8. url: https://hal.archives-ouvertes.fr/hal-03541595.

https://doi.org/10.1007/s10817-009-9155-4
http://xavierleroy.org/publi/compcert-backend.pdf
http://xavierleroy.org/publi/compcert-backend.pdf
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/1926385.1926387
https://xavierleroy.org/publi/popl11-invited-talk.pdf
https://xavierleroy.org/publi/popl11-invited-talk.pdf
https://doi.org/10.1007/s10817-008-9099-0
https://doi.org/10.1007/978-3-540-69407-6_39
https://doi.org/10.1007/978-3-540-69407-6_39
http://link.springer.com/10.1007/978-3-540-69407-6_39
https://doi.org/10.1145/3428264
https://doi.org/10.1145/3428264
https://doi.org/10.1145/3428264
https://doi.org/10.1145/277650.277659
https://doi.org/10.1145/277650.277659
https://doi.org/10.1145/3453483.3454030
https://doi.org/10.1145/3453483.3454030
http://arxiv.org/abs/2107.04175
https://doi.org/10.1145/3323212
https://www-users.york.ac.uk/~rd17/papers/ACMCSUR2019SurveyTimingVerification.pdf
https://www-users.york.ac.uk/~rd17/papers/ACMCSUR2019SurveyTimingVerification.pdf
https://doi.org/10.1145/3360581
https://doi.org/10.1145/3360581
https://doi.org/10.1145/3360581
https://doi.org/10.1145/364995.365000
https://dl.acm.org/doi/10.1145/364995.365000
https://dl.acm.org/doi/10.1145/364995.365000
https://doi.org/10.1007/978-3-030-99336-8_8
https://doi.org/10.1007/978-3-030-99336-8_8
https://hal.archives-ouvertes.fr/hal-03541595

bibliography 205

[107] DavidMonniaux, Sylvain Boulmé, and Léo Gourdin. Formally Verified Advanced Optimizations
for RISC-V. Barcelona, Spain, 2023.

[108] David Monniaux, Léo Gourdin, Sylvain Boulmé, and Olivier Lebeltel. “Testing a Formally
Verified Compiler.” In: Tests and Proofs. Ed. by Virgile Prevosto and Cristina Seceleanu. Cham:
Springer Nature Switzerland, 2023, pp. 40–48. isbn: 978-3-031-38828-6. url: https://hal.s
cience/hal-04096390/.

[109] David Monniaux and Cyril Six. “Simple, light, yet formally verified, global common subex-
pression elimination and loop-invariant code motion.” In: LCTES ’21: 22nd ACM SIGPLAN
/ SIGBED International Conference on Languages, Compilers, and Tools for Embedded Systems,
Virtual Event, Canada, 22 June, 2021. Ed. by Jörg Henkel and Xu Liu. ACM, 2021, pp. 85–96.
doi: 10.1145/3461648.3463850.

[110] David Monniaux and Cyril Six. “Formally Verified Loop-Invariant Code Motion and As-
sorted Optimizations.” In: ACM Trans. Embed. Comput. Syst. (Mar. 2022). issn: 1539-9087.
doi: 10.1145/3529507. url: https://amu.hal.science/IMAG/hal-03628646v1.

[111] E. Morel and C. Renvoise. “Global optimization by suppression of partial redundancies.” en.
In: Communications of the ACM 22.2 (Feb. 1979), pp. 96–103. issn: 0001-0782, 1557-7317. doi:
10.1145/359060.359069. url: https://dl.acm.org/doi/10.1145/359060.359069 (visited
on 08/25/2021).

[112] Eric Mullen, Zachary Tatlock, Daryl Zuniga, and Dan Grossman. “Verified Peephole Opti-
mizations for CompCert.” en. In: (June 2016), p. 15.

[113] Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and Peter F Sweeney. “Producing
Wrong Data Without Doing Anything Obviously Wrong!” en. In: ASPLOS’2009. ACM, 2009,
pp. 265–276. doi: 10.1145/1508244.1508275.

[114] Kedar S. Namjoshi and Lenore D. Zuck. “Witnessing Program Transformations.” In: Static
Analysis. Ed. by Francesco Logozzo and Manuel Fähndrich. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2013, pp. 304–323. isbn: 978-3-642-38856-9. url: https://kedar-namjosh
i.github.io/papers/Namjoshi-Zuck-SAS-2013.pdf.

[115] George C. Necula. “Proof-Carrying Code.” In: Proceedings of the 24th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. POPL ’97. Paris, France: Association for
Computing Machinery, 1997, pp. 106–119. isbn: 0897918533. doi: 10.1145/263699.263712.
url: https://doi.org/10.1145/263699.263712.

[116] George C. Necula. “Translation Validation for an Optimizing Compiler.” In: Proceedings of the
ACM SIGPLAN 2000 Conference on Programming Language Design and Implementation. PLDI
’00. Vancouver, British Columbia, Canada: Association for Computing Machinery, 2000,
pp. 83–94. isbn: 1581131992. doi: 10.1145/349299.349314.

[117] Nicolas Nardino. “Register-Pressure-Aware Prepass-Scheduling for CompCert.” Bachelor
Thesis of Science. ENS de Lyon, Aug. 2021. url: https://www-verimag.imag.fr/~boulme
/CPP_2022/NARDINO-Nicolas-BSc-Thesis_2021.pdf.

[118] Christine Paulin-Mohring. “Introduction to the Calculus of Inductive Constructions.” In: All
about Proofs, Proofs for All. Ed. by Bruno Woltzenlogel Paleo and David Delahaye. Vol. 55.
Studies in Logic (Mathematical logic and foundations). College Publications, Jan. 2015, p. 14.
url: https://inria.hal.science/hal-01094195.

[119] A. Pnueli, M. Siegel, and E. Singerman. “Translation validation.” In: Tools and Algorithms for
the Construction and Analysis of Systems. Ed. by Bernhard Steffen. Red. by Gerhard Goos, Juris
Hartmanis, and Jan van Leeuwen. Vol. 1384. Series Title: Lecture Notes in Computer Science.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1998, pp. 151–166. isbn: 978-3-540-64356-2
978-3-540-69753-4. doi: 10.1007/BFb0054170. url: http://link.springer.com/10.1007
/BFb0054170 (visited on 08/18/2021).

[120] Louis-Noël Pouchet. the Polyhedral Benchmark suite. 2012. url: http://web.cs.ucla.edu/~po
uchet/software/polybench/ (visited on 05/12/2020).

https://hal.science/hal-04096390/
https://hal.science/hal-04096390/
https://doi.org/10.1145/3461648.3463850
https://doi.org/10.1145/3529507
https://amu.hal.science/IMAG/hal-03628646v1
https://doi.org/10.1145/359060.359069
https://dl.acm.org/doi/10.1145/359060.359069
https://doi.org/10.1145/1508244.1508275
https://kedar-namjoshi.github.io/papers/Namjoshi-Zuck-SAS-2013.pdf
https://kedar-namjoshi.github.io/papers/Namjoshi-Zuck-SAS-2013.pdf
https://doi.org/10.1145/263699.263712
https://doi.org/10.1145/263699.263712
https://doi.org/10.1145/349299.349314
https://www-verimag.imag.fr/~boulme/CPP_2022/NARDINO-Nicolas-BSc-Thesis_2021.pdf
https://www-verimag.imag.fr/~boulme/CPP_2022/NARDINO-Nicolas-BSc-Thesis_2021.pdf
https://inria.hal.science/hal-01094195
https://doi.org/10.1007/BFb0054170
http://link.springer.com/10.1007/BFb0054170
http://link.springer.com/10.1007/BFb0054170
http://web.cs.ucla.edu/~pouchet/software/polybench/
http://web.cs.ucla.edu/~pouchet/software/polybench/

bibliography 206

[121] B. Ramakrishna Rau, Christopher D. Glaeser, and Raymond L. Picard. “Efficient code gener-
ation for horizontal architectures: Compiler techniques and architectural support.” en. In:
ACM SIGARCH Computer Architecture News 10.3 (Apr. 1982), pp. 131–139. issn: 0163-5964.
doi: 10.1145/1067649.801721. url: https://dl.acm.org/doi/10.1145/1067649.801721
(visited on 12/07/2022).

[122] John Regehr, Yang Chen, Pascal Cuoq, Eric Eide, Chucky Ellison, and Xuejun Yang. “Test-
case reduction for C compiler bugs.” In: ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’12, Beijing, China - June 11 - 16, 2012. Ed. by Jan Vitek, Haibo
Lin, and Frank Tip. ACM, 2012, pp. 335–346. doi: 10.1145/2254064.2254104.

[123] Silvain Rideau and Xavier Leroy. “Validating register allocation and spilling.” In: Compiler
Construction (CC 2010). Vol. 6011. Springer, 2010, pp. 224–243. url: http://gallium.inria
.fr/~xleroy/publi/validation-regalloc.pdf.

[124] Martin C. Rinard and Darko Marino. “Credible Compilation with Pointers.” In: Proceedings
of the FLoC Workshop on Run-Time Result Verification. 1999. url: https://people.csail.mit
.edu/rinard/paper/credibleCompilation.html.

[125] Xavier Rival. “Symbolic Transfer Function-Based Approaches to Certified Compilation.”
In: Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. POPL ’04. Venice, Italy: Association for Computing Machinery, 2004, pp. 1–13.
isbn: 158113729X. doi: 10.1145/964001.964002. url: https://doi.org/10.1145/964001.96
4002.

[126] Xavier Rival and Laurent Mauborgne. “The trace partitioning abstract domain.” en. In: ACM
Transactions on Programming Languages and Systems 29.5 (Aug. 2007), p. 26. issn: 0164-0925,
1558-4593. doi: 10.1145/1275497.1275501. url: https://dl.acm.org/doi/10.1145/12754
97.1275501 (visited on 12/21/2022).

[127] Valentin Robert and Xavier Leroy. “A Formally-Verified Alias Analysis.” In: Certified Programs
and Proofs - Second International Conference, CPP 2012, Kyoto, Japan, December 13-15, 2012.
Proceedings. Ed. by Chris Hawblitzel and Dale Miller. Vol. 7679. Lecture Notes in Computer
Science. Springer, 2012, pp. 11–26. doi: 10.1007/978-3-642-35308-6_5. url: https://doi
.org/10.1007/978-3-642-35308-6_5.

[128] Oliver Rüthing. “Codemotion in the presence of critical edgeswithout bidirectional data flow
analysis.” In: Science of Computer Programming 39.1 (2001). Static Program Analysis (SAS’98),
pp. 3–29. issn: 0167-6423. doi: https://doi.org/10.1016/S0167-6423(00)00016-2. url:
https://www.sciencedirect.com/science/article/pii/S0167642300000162.

[129] Hanan Samet. “Automatically proving the correctness of translations involving optimized
code - research sponsored by Advanced Research Projects Agency, ARPA order no. 2494.”
PhD thesis. Stanford University, 1975. url: http://www.cs.umd.edu/~hjs/pubs/compilers
/CS-TR-75-498.pdf.

[130] Hanan Samet. “Compiler testing via symbolic interpretation.” In: Proceedings of the 1976
Annual Conference, Houston, Texas, USA, October 20-22, 1976. Ed. by John A. Gosden and
Olin G. Johnson. ACM, 1976, pp. 492–497. doi: 10.1145/800191.805648.

[131] Thomas Arthur Leck Sewell, Magnus O. Myreen, and Gerwin Klein. “Translation validation
for a verified OS kernel.” In: ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’13, Seattle, WA, USA, June 16-19, 2013. Ed. by Hans-Juergen Boehm and
Cormac Flanagan. ACM, 2013, pp. 471–482. doi: 10.1145/2491956.2462183.

[132] Ghassan Shobaki, Maxim Shawabkeh, and Najm Eldeen Abu Rmaileh. “Preallocation In-
struction Scheduling with Register Pressure Minimization Using a Combinatorial Optimiza-
tion Approach.” In: ACM Trans. Archit. Code Optim. 10.3 (Sept. 2013). issn: 1544-3566. doi:
10.1145/2512432. url: https://doi-org.ins2i.bib.cnrs.fr/10.1145/2512432.

[133] Cyril Six. “Optimized and formally-verified compilation for a VLIW processor.” PhD thesis.
Université Grenoble Alpes, July 2021. url: https://hal.archives-ouvertes.fr/tel-0332
6923.

https://doi.org/10.1145/1067649.801721
https://dl.acm.org/doi/10.1145/1067649.801721
https://doi.org/10.1145/2254064.2254104
http://gallium.inria.fr/~xleroy/publi/validation-regalloc.pdf
http://gallium.inria.fr/~xleroy/publi/validation-regalloc.pdf
https://people.csail.mit.edu/rinard/paper/credibleCompilation.html
https://people.csail.mit.edu/rinard/paper/credibleCompilation.html
https://doi.org/10.1145/964001.964002
https://doi.org/10.1145/964001.964002
https://doi.org/10.1145/964001.964002
https://doi.org/10.1145/1275497.1275501
https://dl.acm.org/doi/10.1145/1275497.1275501
https://dl.acm.org/doi/10.1145/1275497.1275501
https://doi.org/10.1007/978-3-642-35308-6_5
https://doi.org/10.1007/978-3-642-35308-6_5
https://doi.org/10.1007/978-3-642-35308-6_5
https://doi.org/https://doi.org/10.1016/S0167-6423(00)00016-2
https://www.sciencedirect.com/science/article/pii/S0167642300000162
http://www.cs.umd.edu/~hjs/pubs/compilers/CS-TR-75-498.pdf
http://www.cs.umd.edu/~hjs/pubs/compilers/CS-TR-75-498.pdf
https://doi.org/10.1145/800191.805648
https://doi.org/10.1145/2491956.2462183
https://doi.org/10.1145/2512432
https://doi-org.ins2i.bib.cnrs.fr/10.1145/2512432
https://hal.archives-ouvertes.fr/tel-03326923
https://hal.archives-ouvertes.fr/tel-03326923

bibliography 207

[134] Cyril Six, Sylvain Boulmé, and David Monniaux. “Certified and efficient instruction schedul-
ing: application to interlocked VLIW processors.” In: Proc. ACM Program. Lang. 4.OOPSLA
(2020), 129:1–129:29. url: https://hal.archives-ouvertes.fr/hal-02185883.

[135] Cyril Six, Léo Gourdin, Sylvain Boulmé, DavidMonniaux, Justus Fasse, andNicolas Nardino.
“Formally Verified Superblock Scheduling.” In: Certified Programs and Proofs (CPP ’22).
Philadelphia, United States, Jan. 2022. doi: 10.1145/3497775.3503679. url: https://hal.a
rchives-ouvertes.fr/hal-03200774.

[136] Chengnian Sun, Vu Le, Qirun Zhang, and Zhendong Su. “Toward understanding compiler
bugs in GCC and LLVM.” en. In: Proceedings of the 25th International Symposium on Software
Testing and Analysis. Saarbrücken Germany: ACM, July 2016, pp. 294–305. isbn: 978-1-4503-
4390-9. doi: 10.1145/2931037.2931074. url: https://dl.acm.org/doi/10.1145/2931037
.2931074 (visited on 06/17/2022).

[137] Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. “Equality Saturation: A New
Approach to Optimization.” In: Log. Methods Comput. Sci. 7.1 (2011). doi: 10.2168/LMCS-7(1
:10)2011. url: https://doi.org/10.2168/LMCS-7(1:10)2011.

[138] Zachary Tatlock and Sorin Lerner. “Bringing Extensibility to Verified Compilers.” In: Proceed-
ings of the 31st ACM SIGPLAN Conference on Programming Language Design and Implementation.
PLDI ’10. Toronto, Ontario, Canada: Association for ComputingMachinery, 2010, pp. 111–121.
isbn: 9781450300193. doi: 10.1145/1806596.1806611. url: https://doi.org/10.1145/1806
596.1806611.

[139] Paolo Torrini and Sylvain Boulmé. “A CompCert Backend with Symbolic Encryption.” In:
Sixth workshop on Principles of Secure Compilation (PriSC’22), part of the 49th ACM SIGPLAN
Symposium on Principles of Programming Languages (POPL 2022). Philadelphia, Pennsylvania,
United States, Jan. 2022. url: https://hal.science/hal-03555551.

[140] Jean-Baptiste Tristan. “Formal verification of translation validators.” PhD thesis. Université
Paris 7 Diderot, Nov. 2009.

[141] Jean-Baptiste Tristan, Paul Govereau, and Greg Morrisett. “Evaluating Value-Graph Transla-
tion Validation for LLVM.” In: Proceedings of the 32nd ACM SIGPLAN Conference on Program-
ming Language Design and Implementation. PLDI ’11. San Jose, California, USA: Association
for Computing Machinery, 2011, pp. 295–305. isbn: 9781450306638. doi: 10.1145/1993498.1
993533. url: https://doi.org/10.1145/1993498.1993533.

[142] Jean-Baptiste Tristan and Xavier Leroy. “Formal verification of translation validators: A case
study on instruction scheduling optimizations.” In: 35th ACM Symposium on Principles of
Programming Languages (POPL 2008). ACM. San Francisco, United States: ACM Press, Jan.
2008, pp. 17–27. doi: 10.1145/1328438.1328444. url: https://hal.inria.fr/inria-00289
540.

[143] Jean-Baptiste Tristan and Xavier Leroy. “Verified Validation of Lazy Code Motion.” In: 2009,
pp. 316–326. url: http://gallium.inria.fr/~xleroy/publi/validation-LCM.pdf.

[144] Jean-Baptiste Tristan and Xavier Leroy. “A simple, verified validator for software pipelining.”
In: 2010, pp. 83–92. url: http://gallium.inria.fr/~xleroy/publi/validation-softpipe
.pdf.

[145] Andrew Waterman, Yunsup Lee, David Patterson, Krste Asanovic, Volume I User level Isa,
AndrewWaterman, Yunsup Lee, and David Patterson. “The RISC-V instruction set manual.”
In: Volume I: User-Level ISA’, version 2 (2014).

[146] Thom Wiggers. “Energy-Efficient ARM64 Cluster with Cryptanalytic Applications: 80 Cores
That DoNot Cost You an ARM and a Leg.” In: July 2019, pp. 175–188. isbn: 978-3-030-25282-3.
doi: 10.1007/978-3-030-25283-0_10.

[147] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. “Finding and understanding bugs in
C compilers.” In: 2011, pp. 283–294. doi: 10.1145/1993498.1993532.

[148] Anna Zaks andAmir Pnueli. “CoVaC: Compiler Validation by ProgramAnalysis of the Cross-
Product.” In: FM 2008: Formal Methods. Ed. by Jorge Cuellar, Tom Maibaum, and Kaisa Sere.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 35–51. isbn: 978-3-540-68237-0.

https://hal.archives-ouvertes.fr/hal-02185883
https://doi.org/10.1145/3497775.3503679
https://hal.archives-ouvertes.fr/hal-03200774
https://hal.archives-ouvertes.fr/hal-03200774
https://doi.org/10.1145/2931037.2931074
https://dl.acm.org/doi/10.1145/2931037.2931074
https://dl.acm.org/doi/10.1145/2931037.2931074
https://doi.org/10.2168/LMCS-7(1:10)2011
https://doi.org/10.2168/LMCS-7(1:10)2011
https://doi.org/10.2168/LMCS-7(1:10)2011
https://doi.org/10.1145/1806596.1806611
https://doi.org/10.1145/1806596.1806611
https://doi.org/10.1145/1806596.1806611
https://hal.science/hal-03555551
https://doi.org/10.1145/1993498.1993533
https://doi.org/10.1145/1993498.1993533
https://doi.org/10.1145/1993498.1993533
https://doi.org/10.1145/1328438.1328444
https://hal.inria.fr/inria-00289540
https://hal.inria.fr/inria-00289540
http://gallium.inria.fr/~xleroy/publi/validation-LCM.pdf
http://gallium.inria.fr/~xleroy/publi/validation-softpipe.pdf
http://gallium.inria.fr/~xleroy/publi/validation-softpipe.pdf
https://doi.org/10.1007/978-3-030-25283-0_10
https://doi.org/10.1145/1993498.1993532

bibliography 208

[149] Jianzhou Zhao, Santosh Nagarakatte, Milo M.K. Martin, and Steve Zdancewic. “Formal-
izing the LLVM Intermediate Representation for Verified Program Transformations.” In:
Proceedings of the 39th Annual ACMSIGPLAN-SIGACT Symposium on Principles of Programming
Languages. POPL ’12. Philadelphia, PA, USA: Association for Computing Machinery, 2012,
pp. 427–440. isbn: 9781450310833. doi: 10.1145/2103656.2103709. url: https://doi.org
/10.1145/2103656.2103709.

[150] Zhide Zhou, Zhilei Ren, Guojun Gao, and He Jiang. “An empirical study of optimization
bugs in GCC and LLVM.” en. In: Journal of Systems and Software 174 (Apr. 2021), p. 110884.
issn: 01641212. doi: 10.1016/j.jss.2020.110884. url: https://linkinghub.elsevier.com
/retrieve/pii/S0164121220302740 (visited on 06/17/2022).

[151] L Zuck, A Pnueli, and R Leviathan. Validation of Optimizing Compilers. Tech. rep. Computer
Science Department, NYU, 2001.

https://doi.org/10.1145/2103656.2103709
https://doi.org/10.1145/2103656.2103709
https://doi.org/10.1145/2103656.2103709
https://doi.org/10.1016/j.jss.2020.110884
https://linkinghub.elsevier.com/retrieve/pii/S0164121220302740
https://linkinghub.elsevier.com/retrieve/pii/S0164121220302740

	Dedication
	Foreword
	Abstract
	Résumé
	Acknowledgments
	Remerciements
	Contents
	List of Figures
	List of Tables
	Acronyms
	1 Introduction
	1.1 Certified Compilers
	1.1.1 Security and Safety of Programs and Languages
	1.1.2 Safety-Critical Systems (SCS) & Compilers Bugs
	1.1.3 Main Types of Intermediate Representations

	1.2 Purpose of This Work
	1.2.1 Motivations
	1.2.2 A Simplified Example of Global Simulation

	1.3 Contributions
	1.3.1 Exhaustive List With Links to Relevant Sections
	1.3.2 Publications

	1.4 Contents of This Document

	 Setting & Preliminary Contributions
	2 Formally Verified Defensive Programming (FVDP)
	2.1 The Coq Proof Assistant
	2.2 Translation Validation
	2.2.1 A Classical Example
	2.2.2 Using ``Shadow'' Fields to Combine Extracted and Handwritten OCaml Code
	2.2.3 Symbolic Execution

	2.3 The Principle of Defensive Programming
	2.4 Impure: A Safe Foreign Function Interface (FFI)
	2.4.1 The Risk of ``Impurity''
	2.4.2 Motivation: FVDP of a Lightweight Hash-Consing Factory
	2.4.3 A Coq Model of OCaml Pointer Equality?
	2.4.4 The May-Return Monad [◇]

	2.5 Related Work in Translation Validation and Verified Compilation*
	2.5.1 Symbolic Execution
	2.5.2 Other Translation Validation Approaches
	2.5.3 Verified Compilers

	3 The CompCert verified compiler
	3.1 Architecture of CompCert
	3.2 Correction and Simulation Proofs
	3.2.1 Formalism of Program Behaviors
	3.2.2 Simulation Schemes

	3.3 CompCert Internals
	3.3.1 Values and Operations
	3.3.2 Register Sets
	3.3.3 Memory

	3.4 The Register Transfer Language Intermediate Representation
	3.4.1 Semantics
	3.4.2 Limitations

	3.5 Errors and Bugs in CompCert*
	3.6 The Chamois-CompCert fork

	4 Symbolic Execution: a case study on instruction scheduling verification
	4.1 Instruction Scheduling Optimization
	4.1.1 Interest: In-Order, VLIW, and Critical Systems
	4.1.2 Tiny Example of Instruction Scheduling*
	4.1.3 Previous Attempt at Verifying Postpass Scheduling in CompCert
	4.1.4 Prepass, Postpass, and Superblock Scheduling
	4.1.5 Untrusted Scheduler Oracle

	4.2 FVDP of a Postpass Optimizer
	4.2.1 AbstractBasicBlock: A Domain Specific Language (DSL) for Symbolic Execution
	4.2.2 Unidirectional Translation & Simulation Proof
	4.2.3 Extending the KVX Postpass With a Simple Peephole
	4.2.4 Refining the AbstractBasicBlock Theory
	4.2.5 Formally Verified Integration of an Assembly Optimizer in Chamois-CompCert

	4.3 Porting the Postpass Optimizer to AArch64†
	4.3.1 A Blockstep Assembly Semantics for AArch64
	4.3.2 Asmblock Generation From Machblock
	4.3.3 OCaml Oracles for Peephole & Scheduling
	4.3.4 Instantiating the SE for AArch64
	4.3.5 Coming Back to Asm

	4.4 Generalizing to Prepass Scheduling
	4.4.1 Decorating RTL With Path Maps: RTLpath
	4.4.2 Why Check the Liveness?
	4.4.3 An Example of Superblock SE
	4.4.4 Overview of the RTLpath SE Verifier
	4.4.5 Limitations of the Original RTLpath

	4.5 Improving RTlpath†
	4.5.1 A Full ``Modulo Liveness'' Comparison
	4.5.2 RISC-V Macro-Expansions at the RTL Level*

	4.6 Contributions & Conclusion

	 Block Transfer Language
	5 A block-based intermediate represention†
	5.1 A Global Simulation Example*
	5.2 Abstract Syntax [◇]
	5.2.1 Syntactical Block Structure
	5.2.2 Detailed Breakdown of Instructions

	5.3 Operational Semantics

	6 Symbolic Simulation Theory†
	6.1 A Blockstep Forward Simulation Pass
	6.1.1 Simulation of Concrete BTL States Induced by Symbolic Simulation
	6.1.2 Sketch of the Blockstep Simulation Proof

	6.2 Syntax of Symbolic Values and Invariants
	6.2.1 BTL Symbolic Values
	6.2.2 Representations of Invariants

	6.3 Concrete Semantics of Symbolic Values and Invariants
	6.3.1 Execution Context & Evaluation
	6.3.2 Relation Between Abstract Invariants and Concrete Registers
	6.3.3 Linking Symbolic Values and Invariants

	6.4 Symbolic Semantics of BTL Blocks
	6.4.1 Prerequisite: Symbolic Representations for Final Instructions and Conditions
	6.4.2 Instantiating Contexts
	6.4.3 Symbolic States
	6.4.4 Symbolic Execution

	6.5 Simulation Predicate Modulo Abstract Invariants
	6.5.1 Simulation Scheme
	6.5.2 Application of Invariants on States
	6.5.3 Matching Simulations in a Predicate

	6.6 More Details on the Blockstep Simulation Proof
	6.6.1 Correctness of Invariants' Transfer on Final Symbolic States
	6.6.2 Correctness of the Modulo Liveness Relation w.r.t. Concrete States
	6.6.3 Correspondence With the BTL Operational Semantics

	7 Symbolic Simulation Refinement and Implementation†
	7.1 High-Level View of the Architecture
	7.2 Concrete Data Structures and Operations
	7.2.1 Refined Symbolic States
	7.2.2 Model of Symbolic Register Access and Default Values
	7.2.3 Validity and Refinement Relation
	7.2.4 The Hash-Consing Mechanism
	7.2.5 Specification of the Rewriting Engine
	7.2.6 Hash-Consed Symbolic Register Access
	7.2.7 Setting Values in a Symbolic Register

	7.3 Refined Execution of Symbolic Invariants
	7.3.1 Sequential Execution
	7.3.2 Assigning an Invariant's Value to a Refined Internal State
	7.3.3 Liveness Filtering
	7.3.4 Transferring Compact Invariants on a Refined State

	7.4 Refined Symbolic Execution of BTL Blocks
	7.4.1 Mapping Registers to Symbolic Values and Executing Final Values
	7.4.2 Implementation of Block Execution
	7.4.3 Correctness of the Hash-Consed Symbolic Execution

	7.5 Simulation Test
	7.5.1 Instantiating the Framework for a Pair of Blocks
	7.5.2 Efficient Comparison of Refined Symbolic States
	7.5.3 Proof of Correctness w.r.t. the Theory
	7.5.4 Validating an Entire Target Function

	7.6 Applications of the Rewriting Engine
	7.6.1 Rules for the Expansions of Operations and Branches
	7.6.2 Fold Right and Affine Forms

	8 Bilateral RTL-BTL Translation†
	8.1 Setting: the Notion of CFG Morphisms
	8.2 Translation Oracles
	8.2.1 Block Selection Oracle, From RTL to BTL
	8.2.2 Flattening and Factorization, From BTL to RTL

	8.3 Bilateral Matching: The BTL Projection Checker
	8.3.1 Specification of Our Validator
	8.3.2 BTL to RTL Proof
	8.3.3 RTL to BTL Proof

	9 Closing Review on BTL†
	9.1 Development Size
	9.2 General Remarks
	9.3 Limitations
	9.4 Some Related Work
	9.5 In Summary

	 Optimization Oracles
	10 Lazy Code Transformations†
	10.1 Introduction: Code Motion, Strength-Reduction, and RISC-V
	10.1.1 Main Concepts and ``Lazy'' Transformations
	10.1.2 Why Does RISC-V Need More Optimization?
	10.1.3 Why Choose the LCM & LSR Data-Flow Based Algorithms?
	10.1.4 Limitations of LCM & LSR

	10.2 Lazy Code Motion
	10.2.1 Prerequisites for the CFG
	10.2.2 Detecting Code Motion Candidates
	10.2.3 Analyses
	10.2.4 Insertion Offset and Forward Propagation
	10.2.5 An Iterative Treatment of Candidates
	10.2.6 The Case of Trapping Instructions
	10.2.7 An LCT Example of Code Motion

	10.3 Lazy Strength-Reduction
	10.3.1 Extending Our LCT to Integrate the R2♭ LSR
	10.3.2 Generalizing LSR on Basic Blocks
	10.3.3 Affine Forms Strength-Reduction
	10.3.4 Details on the Forward Substitution of Auxiliary Variables
	10.3.5 A Full Example of Lazy Code Transformations

	10.4 Inferring Invariants From Analyses
	10.4.1 Preservation Points for Gluing Invariants
	10.4.2 Saving Constants With History Invariants

	10.5 Conclusion
	10.5.1 Algorithm Control Options
	10.5.2 Limitations of Our Formally Verified SR
	10.5.3 Related and Future Work

	11 Integration of Other BTL Optimizations
	11.1 Very Succinct Overview of BTL Generalizations
	11.2 Porting Static Analyses From RTL to BTL
	11.3 Improved Superblock Scheduling
	11.3.1 If-Lifting
	11.3.2 Alias Aware Superblock Scheduling

	11.4 Factorization
	11.5 Making LCT Alias Aware
	11.6 Store Motion
	11.7 Placement of BTL Passes in the CompCert Pipeline

	 Evaluation & Conclusion
	12 Testing and Evaluating a Formally Verified Compiler†
	12.1 General Considerations*
	12.1.1 What Are the Purposes of Testing?
	12.1.2 Test Suites & Methodology

	12.2 Compilation Time (on RISC-V)
	12.2.1 BTL Translation Validation Time of LCT
	12.2.2 Time of Other Passes

	12.3 Runtime Performance
	12.3.1 Lazy Code Transformations
	12.3.2 If-Lifting
	12.3.3 Prepass, Postpass, and Peephole on AArch64

	12.4 Discussion

	13 Conclusion
	13.1 Short Summary
	13.2 Insights*
	13.3 Ongoing and Future Works

	 Bibliography

