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Résumé en Français

L’économie se caractérise par un réseau de millions d’entreprises connectées par des
liens physiques interagissant avec un réseau de milliards de ménages à travers une toile
compliquée de trillions de contrats. L’écologie des agents hétérogènes interagissant lo-
calement conduit à des dynamiques agrégées émergentes telles que des successions de
crises et de reprises ou de croissance économique, des régularités statistiques et des struc-
tures institutionnelles. Comme l’a dit Anderson (1972): “more is different” (plus c’est
différent) lorsqu’il s’agit de comprendre comment les dynamiques macroéconomiques
émergent des micro-agents et de leurs interactions. Un débat persistant a eu lieu sur
les approches de modélisation visant à saisir ces dynamiques (voir par exemple Vines
and Wills, 2018, 2020, pour une revue). L’utilisation de modéles multi-agents (ABM)
est une approche récente en macroéconomie qui génère ces phénomènes en simulant une
multiplicité d’agents hétérogènes en interaction. En simulant une économie “from the
bottom up” (du bas vers le haut), les ABM commencent par une population d’agents
hétérogènes (par exemple, plusieurs ménages, entreprises, institutions financières) dotés
de leurs règles comportementales pertinentes, ainsi que d’un ensemble de protocoles
pour les interactions entre agents. Ce système est ensuite simulé, en suivant l’état et
les décisions de chaque agent, à partir desquels les dynamiques agrégées peuvent ensuite
être directement calculées. L’évolution du système basée sur les règles comportemen-
tales des agents donne lieu aux dynamiques complexes qu’un modèle macroéconomique
devrait récupérer. De plus, la modularité de ces modèles implique qu’une variété de
différentes politiques publiques peuvent être explorées. La non linéairite hors équilibre
de ces modèles signifie que des solutions analytiques sont généralement irréalisables, et
les modélisateurs s’appuient sur des simulations numériques du système pour obtenir
un aperçu des phénomènes générés (Fagiolo and Roventini, 2017). Cette charge compu-
tationnelle, associée au grand nombre de paramètres et de conditions initiales, rend le
calibrage et l’exploration complète de l’espace des paramètres presque irréalisable.

Dans cette thèse, je propose une nouvelle approche pour aborder le problème de
l’exploration de l’espace des paramètres dans les modèles macroéconomiques multi-agents
en posant la question suivante :
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Quel est l’ensemble de phénomènes qualitativement différents qu’un Modèle
Multi-Agent Macroeconomique (MABM) peut générer, et qu’est-ce qui régit leurs

transitions ?

Cette thèse est divisée en plusieurs parties distinctes couvrant mes recherches sur la
question de la génération de scénarios au cours des trois dernières années. Dans la Par-
tie I, je développe une approche algorithmique pour explorer différents scénarios dans
les modèles multi-agents et montre comment elle peut récupérer l’espace des phases du
modèle multi-agents Mark-0. La Partie II de la thèse se concentre sur deux modèles
d’agents interagissant intégrés dans des cadres macroéconomiques néoclassiques pour
montrer comment les phénomènes émergents de ces interactions peuvent enrichir la
phénoménologie de ces modèles, ainsi qu’une application du MABM Mark-0 à la poussée
d’inflation post-COVID.

Une critique des modèles multi-agents est qu’ils sont perçus comme des bôıtes noires où
les mécanismes conduisant aux phénomènes émergents sont peu clairs, l’ensemble des
dynamiques qu’un modèle peut générer est illimité, et en raison du grand nombre de
paramètres, l’ajustement des phénomènes empiriques est futile. La Partie I de cette
thèse propose une méthode pour résoudre ces préoccupations et montre qu’il existe un
ensemble fini de phases qualitativement distinctes dans un ABM, et que les dynamiques
locales dépendent uniquement de quelques paramètres. Pour ce faire, le Chapitre 2 décrit
une approche pour ajuster et comprendre les modèles à grand nombre de paramètres
développés dans la littérature biophysique. Cette approche, appelée sloppiness par ses
initiateurs, met en évidence que les dynamiques générées par les modèles de grande di-
mension sont souvent sensibles à seulement quelques combinaisons de paramètres bien
contraintes. En revanche, de nombreuses autres combinaisons de paramètres sont mal
contraintes, elles peuvent varier sur plusieurs ordres de grandeur sans changement sig-
nificatif dans les observables. Identifier et classer ces combinaisons de paramètres peut
éclairer l’environnement local de sensibilité des paramètres, nous permettant d’exploiter
les directions les plus bien contraintes pour explorer l’espace des phases d’un modèle en
modifiant au maximum les dynamiques observables. Passant de la théorie à la pratique,
le Chapitre 3 quantifie ce concept pour les ABM, en prenant deux mesures distinctes
pour quantifier un changement dans les observables : premièrement, une approche basée
sur l’erreur quadratique moyenne qui compare directement les réalisations de séries tem-
porelles et est destinée à fonctionner sur des échelles de temps plus courtes intéressant
les décideurs politiques, et deuxièmement, la divergence de Kullback-Leibler symétrique
comme une approche probabiliste pour comparer la distribution des observables qui peut
être plus robuste pour les systèmes stochastiques non linéaires comme les ABM. Pour
illustrer le fonctionnement de cette approche, le modèle de “fourmis de Kirman” est
utilisé comme exemple théorique dans le Chapitre 4. Les approches basées sur l’EQM
et sur la divergence KL sont évaluées analytiquement et numériquement sur l’ensemble
des paramètres, et permettent de récupérer la combinaison de paramètres représentant
une transition de phase dans le modèle. Dans le Chapitre 5, je me tourne vers l’analyse
du modèle multi-agents Mark-0 qui a fait l’objet de notre premier article (Naumann-
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Woleske et al., 2023). Le modèle Mark-0 est un MABM simple qui affiche néanmoins un
ensemble de phénomènes qualitativement riches. En particulier, il existe quatre phases
distinctes du taux de chômage, allant du plein emploi au chômage résiduel, aux oscilla-
tions endogènes et au chômage total. L’évaluation des directions de paramètres bien con-
traintes de Mark-0 à différents points de ces phases permet généralement de récupérer les
paramètres responsables des transitions de phase, ce qui implique que les perturbations
dans ces directions peuvent être un moyen efficace de découvrir les différents scénarios
qu’un ABM peut générer. En exploitant ces paramètres dans un algorithme de montée
de gradient simple, je montre dans le Chapitre 6 qu’on peut explorer de manière effi-
cace et efficiente l’espace des phases du modèle Mark-0, non seulement en récupérant les
différentes phases mais aussi en acquérant une compréhension des sensibilités localisées
de ces dynamiques. En particulier, on peut avoir une idée de certaines des combinaisons
de paramètres qui déclenchent différentes transitions de phase.

La Partie II de cette thèse adopte une approche différente pour explorer l’économie
en tant que système complexe adaptatif. Plus précisément, je considère l’hétérogénéité
et le comportement non rationnel dans deux cadres principaux, un modèle simple de
Solow (Chapitre 7) et l’approche de l’Équilibre Général Dynamique Stochastique Néo-
Keynésien (Chapitre 8), ainsi que les effets de la confiance dans le modèle multi-agents
Mark-0 (Chapitre 9).

Les deux premiers modèles de cette partie représentent des investigations sur la manière
dont les décisions d’investissement motivées par le sentiment peuvent conduire à des
phénomènes agrégés cycliques, inspirées par l’idée que “the subjective evaluation of
prospects over aq time horizon is the major proximate basis for investment and portfo-
lio decisions, and these subjective estimates are chageable” (l’évaluation subjective des
perspectives sur un horizon temporel est la principale base immédiate pour les décisions
d’investissement et de portefeuille, et ces estimations subjectives sont changeables) (Min-
sky, 1976). Sur le plan méthodologique, cette exploration vise à réunir une approche
multi-agents et une approche équilibrée classique pour mettre en évidence comment
même de petites irrationalités et interactions des agents peuvent induire toute une série
de phénomènes qualitativement différents qui seraient autrement négligés. Il convient
de noter que ce sont des approches simples, elles ne sont pas destinées à être calibrées,
mais à démontrer que même de simples interactions peuvent conduire à des phénomènes
émergents pertinents pour l’utilisation des modèles.

Le Chapitre 7 développe un Modèle Solow Dynamique, introduisant le capital et
l’investissement dans un modèle de croissance de Solow simple, reproduisant notre tra-
vail dans Naumann-Woleske et al. (2022). L’investissement dépend d’un grand nom-
bre d’investisseurs individuels, qui forment une attente de rendements futurs en fonc-
tion de l’état de l’économie ainsi que des attentes des autres investisseurs. S’appuyant
sur des outils de la physique statistique, ce système peut être écrit comme un ensem-
ble d’équations différentielles non linéaires des résultats agrégés sur la base de micro-
interactions, où l’effet du retour d’information du sentiment des autres investisseurs
conduit à des cycles d’enthousiasme et de pessimisme de durée hétérogène. Bien qu’il
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s’agisse d’un modèle simple, nous identifions un cycle économique de fluctuations quasi-
périodiques autour d’un chemin de croissance d’équilibre stable dans une phase où
l’économie est menée par la demande d’investissement. Ces cycles peuvent être iden-
tifiés comme un mécanisme de résonance de cohérence, où le processus aléatoire exogène
conduit à des fluctuations quasi-périodiques, comme dans l’effet “small shocks, large
cycles” (petits chocs, grand cycle) de Bernanke et al. (2019). À son tour, le Chapitre 8
reproduit notre travail dans Morelli et al. (2021), en développant davantage le modèle
néo-keynésien étendu de Morelli et al. (2020), qui a développé un modèle néo-keynésien
adapté où un grand nombre de ménages sont caractérisés par un sentiment sur l’état de
l’économie. Tout comme dans le Modèle Solow Dynamique, le sentiment des ménages
est influencé par leurs voisins, ce qui conduit à un effet de “keeping up with the Joneses”
(garder le rythme avec les Jones), et, encore une fois en utilisant des outils de la physique
statistique, peut être écrit comme une approche de représentant agent modifiée avec des
attentes non linéaires. Dans ce modèle, nous introduisons également le capital comme
facteur de production, permettant au ménage comportemental d’investir l’épargne dans
un actif risqué fournissant du capital aux entreprises. Cette addition conduit à un modèle
de cycle réels (RBC) comportemental avec une riche phénoménologie, où la pénurie de
capital peut entrâıner des périodes prolongées de faible production jusqu’à ce que la
confiance soit restaurée, mettant en évidence l’importance de la communication par les
gouvernements. Plus précisément, le rôle de la confiance dans l’investissement ici est
similaire au paradoxe de l’épargne de Keynes : une confiance plus faible conduit à plus
d’épargne, exacerbant les crises économiques, ce qui signifie qu’en plus de la communi-
cation pour restaurer la confiance, les décideurs politiques peuvent envisager des plans
d’investissement directs. Le modèle est, encore une fois, un modèle simpliste destiné à
mettre en évidence la richesse de la phénoménologie macroéconomique émergeant des
interactions des agents individuels. Dans le Chapitre 9, nous examinons ensuite de plus
près la confiance dans le contexte de l’augmentation de l’inflation suite à la pandémie de
COVID-19 en 2020. Avec une inflation culminant à 9,1% aux États-Unis en juin 2022,
il existe des récits concurrents pour expliquer ce phénomène : de “too much money
chasing too few goods” (trop d’argent pour trop peu de biens) aux prix de l’énergie et
de la nourriture, en passant par l’inflation motivée par les bénéfices et l’inflation con-
flictuelle. Pour comprendre certains des scénarios inflationnistes qui pourraient survenir
et les lier à différentes explications et réponses politiques, nous étendons le modèle Mark-
0 avec un secteur énergétique stylisé et introduisons trois chocs pour simuler des moteurs
exogènes et des récits concurrents.1 Nous constatons que la reprise économique après
COVID-19 est lente en l’absence de politique publique d’atténuation, prenant au moins
plusieurs années. Cependant, il n’existe qu’un nombre restreint d’options pour une poli-
tique monétaire efficace, une réponse avec une forte hausse des taux d’intérêt entrâıne
de manière disproportionnée le chômage. D’autre part, le déracinement de la confi-
ance des agents dans la capacité de la Banque Centrale à contenir l’inflation influence
les dynamiques de l’inflation elle-même en influençant le processus de négociation des

1Y compris un choc COVID affectant la productivité et la demande, un choc de la châıne
d’approvisionnement sur la productivité, et un choc de prix de l’énergie.
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salaires, le processus de fixation des prix et les décisions de consommation des ménages,
entrâınant une inflation plus élevée et de moins bonnes performances économiques.
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Chapter 1
Introduction

The macroeconomy can be seen as a complex adaptive system (Dosi and Roventini,
2019), where a network of millions of firms connected by physical ties interacts with a
network of billions of households through a complicated web of trillions of contracts. The
ecology of heterogeneous agents interacting locally leads to emergent aggregate dynam-
ics such as successions of crises and recovery or economic growth, statistical regularities
and institutional structures. In the words of Anderson (1972): “more is different” when
it comes to understanding how macroeconomic dynamics emerge from micro-agents and
their interactions. There has been an enduring debate on modeling approaches to capture
these dynamics (see e.g. Vines and Wills, 2018, 2020, for a review), and relating them
to microscopic properties of agents. One promising approach to capture the heterogene-
ity and multiplicity of agents, their interactions, and the resulting complex dynamics
is found in agent-based computational economics (Tesfatsion, 2002; LeBaron and Tes-
fatsion, 2008; Fagiolo and Roventini, 2017; Dawid and Delli Gatti, 2018; Leijonhufvud,
2006; Haldane and Turrell, 2019; Caverzasi and Russo, 2018).

Agent-based models (ABMs) form the methodology of agent-based computational eco-
nomics and generative social science (Epstein, 1999). By simulating an economy from
“the bottom up”, ABMs start with a population of heterogeneous agents (e.g. multiple
households, firms, financial institutions) endowed with their relevant behavioral rules,
and a set of protocols for inter-agent interactions. This system is then simulated over
time, tracking each agent’s state and decision, from which aggregate dynamics can then
be directly computed. The evolution of the system based on agents’ behavioral rules
gives rise to the complex dynamics a macroeconomic model should recover. Moreover,
the modularity of these models implies that a variety of different macroeconomic policies
can be explored, including the effects of policy mixes, which is often not possible using
other modeling approaches (Van Den Bergh et al., 2021). This usefulness of ABM for
policy analysis is demonstrated in the uptake of these models in policy institutions such
as the recent CANVAS model at the Bank of Canada (Hommes et al., 2022), projects
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at the Central Banks of England (Carro et al., 2022), Italy (Catapano et al., 2021)
and Hungary (Mérő et al., 2022). However, there remain many open questions with
respect to Macroeconomic ABM (MABM hereafter). In particular their calibration to
data remains an active research area (Lamperti et al., 2018b) and there is an ongoing
debate around using MABM for timeseries forecasting (see Poledna et al., 2023, for a
first example) versus as an exploratory tool to uncover different scenarios and policy
effects (Polhill et al., 2021). The non-linear out-of-equilibrium nature of these models
means that analytical solutions are generally infeasible, and modelers rely on numerical
simulations of the system to derive insight into the generated phenomena (Fagiolo and
Roventini, 2017). This computational burden, together with the large number of param-
eters and initial conditions makes calibration and the full exploration of the parameter
space an almost intractable problem.

In this thesis, I provide a new approach to addressing the problem of parameter space
exploration in Macroeconomic Agent-based Models by asking:

What is the set of phenomena that a Macroeconomic Agent-based Model can generate?
And what determines their dynamics?

Inspired by research in physics on the ability to make predictions even when parameter
uncertainty is high (see Quinn et al., 2023, for a review), I show that also for MABMs
a given observable dynamic depends only on a handful of well-constrained parameter
combinations, while any remaining parameter combinations can vary over multiple orders
of magnitude without significantly changing the MABM’s predictions. In a second step,
I exploit these sensitive directions to sequentially perturb a MABM, thus generating
a set of maximally different dynamics (the set of possible scenarios) in an efficient and
informative way. Applying this method to the Mark-0 MABM (Gualdi et al., 2015, 2017;
Bouchaud et al., 2018; Sharma et al., 2020; Knicker et al., 2023), I show how we can
recover the full set of possible unemployment dynamics in the model.

The conclusion of these exercises is that despite their apparent complexity in terms
of emergent phenomena, the dimension of the parameter space and initial values, the
dynamics of a given observable can be efficiently explored. Moreover, the structure of the
sensitive parameter-combinations can lead to insights on potential policy levers, such as
understanding which model parameters can push the dynamics from endogeneous crises
to full employment as demonstrated in Knicker et al. (2023). Additionally, the sensitivity
of a given phenomena to only a handful of parameter-combinations means that these
models can make effective predictions if these directions are well-constrained by the data.
Individual parameter estimates can have large confidence intervals, but the model can
nonetheless make accurate forecasts.

In the remainder of this chapter, I outline what it means to view the economy as a
complex system (Section 1.1) and how this relates to current macroeconomic modeling
efforts grounded in the workhorse general equilibrium approach (Section 1.2). Section
1.3 then outlines how an agent-based approach is a fruitful alternative that has already
yielded multiple insights, yet also remains an open area of research with multiple gaps
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that should be addressed. Finally, I outline how the elements presented in this Thesis
address the overarching research question on scenario exploration in three distinct parts
(Section 1.4), thus contributing to closing the research gaps in the methodology of agent-
based models.

1.1 The Economy as a Complex System

Describing the economy as a complex system dates back to Prigogine and Stengers
(1988), though it is often attributed to discussions at the Santa Fe Institute (Anderson
et al., 1988; Arthur et al., 1997). There are multiple definitions of what it means to be
complex, from structural interpretations based on the existence of intricate institutional
structures and relationships (Pryor, 1996; Stodder, 1995), to computational ones based
on the difficulty of determining solutions to optimization problems (Leijonhufvud, 1993;
Stodder, 1997; Albin and Foley, 1998; Sargent, 1993), and philosophical perspectives
where complexity cannot be “deductively defined but can only emerge inductively” from
modeling (Rosser, 1999). Here I consider the definition based on Arthur et al. (1997) and
developed at the Santa Fe Institute. In their view, summarized by Rosser, complexity
implies six characteristics:

(1) dispersed interaction among heterogeneous agents acting locally on each
other in some space; (2) no global controller that can exploit all opportunities
or interactions in the economy even though there might be some weak global
interactions; (3) cross-cutting hierarchical organization with many tangled
interactions; (4) continual adaptation by learning and evolving agents; (5)
perpetual novelty as new markets, technologies, behaviors, and institutions
create new niches in the “ecology” of the system; and (6) out-of-equilibrium
dynamics with either zero or many equilibria existing and the system unlikely
to be near a global optimum.

Rosser (1999)

Out of these attributes, it is also noted that the system will display an “emergent global
structure from strictly local effects” (Rosser, 1999), such as the processes of economic
growth and the evolution of the institutional framework that embeds the economy. The
reason here for elaborating on the definition of what it entails for system to be complex
system is not for the purpose of demonstrating that the economic system is a complex
system, as I would venture this to be a sufficiently widely held belief, whether one uses
the terminology of complexity theory or not. Rather, it is to pose the question of how
one approaches the modeling of such a system in order to understand and explain its
dynamics, design policy, communicate a story about the systems, act on different policy
choices, predict its future path, or explore the set of possible behaviors.1 The reason for
this question being that “it is much more useful to characterize the economics profession

1These modeling purposes follow the REDCAPE principle of Page (2018), but one can also refer to
Epstein (2008).
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as a diverse evolving set of ideas, loosely held together by its modeling approach to
economic problems” (Colander et al., 2004).

1.2 The State of Macroeconomic Modeling

In many ways, the dominant approach to understanding, explaining and predicting
macroeconomic dynamics is the use of the Dynamic Stochastic General Equilibrium
(DSGE) model (Woodford, 2009). While a full description of a DSGE model is be-
yond the scope of this thesis, one might simplify to say that DSGE models are models
of macroeconomic fluctuations based on micro-foundations, encapsulating the idea that
“macro-economic behavior should be build up from the aggregation of the individual
actions of self-interested, typically optimizing, agents” (Haldane and Turrell, 2019).2 In
the simplest sense the current wave of DSGE models are based on a real business cycle
(RBC) core with New Keynesian features. The core real business cycle model gener-
ally features an “infinitely-lived representative household that seeks to maximize the
utility from consumption and leisure, subject to an inter-temporal budget constraint”
(Gaĺı, 2015), together with a continuity of firms with identical technology and subject
to exogenous shocks. The solution to this model is then a series of equilibria at each
time step, whose values are fixed by the exogenous shock process.3 The modern New-
Keynesian DSGE version adds to this monopolistic competition, nominal rigidities (also
often called sticky-prices and/or sticky-wages), and the short-run non-neutrality of mon-
etary policy (due to nominal rigiditiess, there is a role for monetary policy via changes
in the short-term nominal interest rates).

This modeling approach emerged from the critique of Lucas (1976) that structural econo-
metric models make implausible assumptions to fit the data, most famously, that they
are invariant with respect to policy interventions. Specifically, agents in these mod-
els cannot adapt their behavior when policy–and thus their incentives–change, which is
clearly important when one wishes to explain and understand the effects of a policy. To
address this, the thinking goes that models should be micro-founded, which has since
implied that they should be based on self-interested opimising agents, more commonly
known as “rational expectations” (Muth, 1961; Lucas, 1972, 1987; Lucas and Sargent,
1979; Kydland and Prescott, 1982). To this end, DSGE models were developed out
of earlier Real Business Cycle models, such that monetary policy questions could be
answered.

Not only is the use of these models standard among academics, but also among Central
Banks (Yagihashi, 2020). Indeed, their wide-spread adoption might suggest that the
issue of macroeconomic modeling has been resolved, and there is no role for agent-based

2In this thesis, I refer by DSGE to the New Keynesian variant, which is well-introduced in Gaĺı (2015),
with some seminal works of reference by Christiano et al. (2005) and Smets and Wouters (2004, 2007).

3The equilibrium solution here, representing the “Stochastic” and “General Equilibrium” parts of
DSGE, is a series of equilibria, which makes the assumption that the system is adiabatic, i.e. coordination
occurs faster than the exogenous process of shocks (Dessertaine et al., 2022).
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approaches. However, the DSGE approach has faced heavy critique, implying room for
alternative and complementary methods.

A Crisis in Macroeconomics?

The economics discipline itself is divided on the future prospects of DSGE models. Some
believe that DSGE is the only game in town (Christiano et al., 2018)4, with authors such
as Kehoe et al. (2018) stating: “[...] a disciplined debate rests on communication in the
language of dynamic general equilibrium theory”. By contrast, there is a plethora of
authors who view DSGE-approaches as a “dead end” (Dosi and Roventini, 2019) and
believe that “for more than three decades, macroeconomics has gone backwards” (Romer,
2016) by focusing on this approach. Colander et al. (2004) make the argument that the
elite of the field has been either suspicious or plainly rejected the neo-classical tenets
of rational expectations with perfect foresight, a representative agent, and equilibrium
solution, for a while or actually never accepted it but worked within the confines of the
methodology. Early examples include Kenneth Arrow, Thomas Sargent, and Leonard
Rapping, all of whom were involved in the creation of these models, later rejecting their
premises.5 What is important to note here is that this approach to macroeconomic
modeling has repeatedly failed to the point where Kirman (2010) deemed the inability
of these models to predict the 2008 financial crisis as a crisis for economic theory.6

There are multiple avenues along which these models have been critiqued, both old and
new.7 It is beyond the scope of this thesis to give a full accounting of all critiques and
their responses, for which I refer to the Rebuilding Macroeconomics project of Vines and
Wills (2018, 2020) and the works of Colander et al. (2008), Fair (2012), Romer (2016),
and Dosi and Roventini (2019). It is illustrative however to note some of the frequently
repeated criticisms because Agent-based approaches can address these well (Farmer and
Foley, 2009; Dosi and Roventini, 2019; Fagiolo and Roventini, 2017; Leijonhufvud, 2006;
Cincotti et al., 2022). Most notably these include the representative agent (Kirman,
2010, 1992, 2006) and its rationality (Sargent, 1993; Shiller, 2005), the absence of a
financial system (Vines and Wills, 2018, and references therein), their weak empirical
fits (Korinek, 2017; Romer, 2016; Fukac and Pagan, 2006)8, the use of equilibria as a
solution concept (Hendry and Muellbauer, 2018; Benhabib and Farmer, 1999; Cass and
Shell, 1983; Hirano and Stiglitz, 2022), and the ensuing contention that they have little
usefulness in policy analysis (Stiglitz, 2018; Chari et al., 2009). Practitioners of DSGE

4Christiano et al. (2018) are incidentally also known for calling non-DSGE users dilettantes in the
first draft of their paper, as recorded by Merler (2017).

5In fact Kenneth Arrow was one of the early organizers of the Santa Fe Institute workshops that
launched the field of complexity economics (Anderson et al., 1988). Current examples include Paul
Krugman, Robert Solow, George Akerlof, Joseph Stiglitz, and Larry Summers.

6Curiously, though understanding and preventing crises or taming the business cycle was a key focus of
macroeconomics, these models’ inability to forecast the 2008 great financial crisis is occasionally defended
by claiming that it was not their purpose. Note too though that within the model construction, a crisis
of such magnitude was ruled out by design (Stiglitz, 2018).

7Summers (1986) is an early critique of the RBC foundation to New Keynesian DSGE.
8Korinek (2017) actually conclude that the scientific rigor of the method is questionable.
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models may suggest that many of these critiques have been addressed, whether that be in
the form of bounded-rationality (Branch and McGough, 2018), or Heterogeneous Agent
New Keynesian (HANK) Models (Kaplan et al., 2018) and firm-network approaches
(Baqaee and Farhi, 2019), yet despite these modifications it “seems likely that some
features of economic systems will remain difficult to reproduce in a DSGE setting –
for example, crisis dynamics” (Haldane and Turrell, 2019).9 Against the backdrop of
mounting critiques and failures to predict the 2008-09 crises and post-COVID inflation,
many have called for new approaches to modeling macroeconomic phenomena (Colander
et al., 2008; Vines and Wills, 2018, 2020), or at the very least for DSGE models to be-
come “less imperialistic” (Blanchard, 2018) and step away from the “micro-foundations
hegemony” (Wren-Lewis, 2018). The aim being, at the very least, to improve accuracy
of prediction by increasing model diversity (Page, 2007; Timmermann, 2006; Stock and
Watson, 2006; Silver, 2013).

1.3 Agent-based Models: Alternative Foundations

Agent-based computational economics (ACE) involves the computational modeling of an
economy considering all aspects of a complex system, as defined in Section 1.1 (Tesfatsion
and Judd, 2006). Specifically, while a Macroeconomic Agent-based Model (MABM) is
concerned with the dynamics of aggregate variables such as production, consumption
or inflation, they “explicitly capture the micro-level interaction of different types of
heterogeneous economic agents and allow computing the aggregate variables ‘from the
bottom up‘” (Dawid and Delli Gatti, 2018) in the spirit of “if you didn’t grow it, you
didn’t explain it” (Epstein, 1999).

To construct a MABM, one specifies a large set of (multiple) types of agents (typically
firms, households, banks, and a government). These agents are heterogeneous in their
attributes, such as their endowments or their behavioral rules. Furthermore, their be-
havior is based on boundedly-rational heuristics using limited information (Sims, 1980;
Gigerenzer and Brighton, 2009; Tversky and Kahneman, 1974).10,11 These agents then
interact based on prescribed protocols influenced by the institutional structure into which
their interactions are embedded, thus being “necessarily limited to locally constructive
actions, that is, to actions constrained by their interaction networks, information, beliefs
and physical states” (Sinitskaya and Tesfatsion, 2015).

9For example, in HANK models agents generally only interact through prices as opposed to the richer
direct interactions in ABMs. Furthermore, many of the additions and adaptations seem to address one
or two of the issues, but it appears that none offer a comprehensive response.

10One may argue that ABM is exposed to the “wilderness of bounded rationality” (Sims, 1980) as
there is no axiomatic basis for behavior, but this can be counteracted by considering evolving rules,
as well as experimental (Hommes, 2013), and empirical observation of actual micro-economic behavior
(Dawid and Delli Gatti, 2018), or the comparison of behavioral rules within a fixed framework (e.g.
Sinitskaya and Tesfatsion, 2015).

11In a world of knightian uncertainty (Knight, 2012), these heuristic approaches may actually be
more ‘rational’ than the type of self-interested optimization of a DSGE model (Gode and Sunder, 1993;
Hommes, 2006).
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The MABM is then numerically simulated over a series of discrete time steps, and the
aggregate properties calculated directly from the summation over the individual agents.
A numeric Monte Carlo approach is necessary here as one needs to simulate a non-linear
stochastic process for each agent. The numeric nature also implies leaving the restriction
on complexity enforced by needing an analytical solution (Colander et al., 2008), and
does not rely on an equilibrium solution concept.12 As suggested in the properties
of a complex system, this allows for dis-equilibrium dynamics such as the emergence of
endogenous crises. A complete (agent-level) equilibrium as in DSGE remains one possible
solution, but it is much more likely that there are only system-level equilibria wherein
the system as a whole has a steady state but each agent may be continually evolving.
The importance of these disequilibrium dynamics in understanding and predicting crises
has been raised by authors such as Krugman (2011), inspired by earlier work such as that
of Minsky (1976, 2008) and Leijonhufvud (2000). Furthermore, the direct simulation of
all agents and only thereafter aggregating leads to emergent phenomena, such as self-
organization towards a long-term growth path, endogenous crises and business cycles
(no longer relying on large exogenous shocks), and persistent heterogeneity such as in
the distribution of firm sizes or incomes (Dawid and Delli Gatti, 2018).

Comparing the description of MABM from the previous paragraph to the attributes of
a complex system proposed by Rosser (1999) (see Section 1.1), one can see that each of
the six critical avenues is, to varying degrees, captured in the construction and execution
of an MABM. This is in contrast to a DSGE approach that, as highlighted in Section
1.2, covers only a small subset of these properties at a time, and whose solutions provide
insight only when the system itself is “dealing with close to equilibrium fluctuations”
(Haldane and Turrell, 2019).

In a recent review of macroeconomic modeling by Vines and Wills (2018, 2020) following
the failures in predicting and addressing the 2008-09 Financial Crises with the tools
of the time, Ghironi (2018) and Vines and Wills (2018) identify four important areas
of macroeconomics that should be addressed (see also Haldane and Turrell, 2019): (1)
Financial Systems13, (2) Heterogeneity in households14, (3) Granularity and Networks15,
and (4) Policy Interdependence.16 Farmer et al. (2015), Hafner et al. (2020) and Castro
et al. (2020) added the ability to do interdisciplinary modeling with respect to climate

12All ABMs that can be computed numerically have an explicit mathematical representation, but this
generally too complicated to be useful (Leombruni and Richiardi, 2005; Epstein, 2006).

13see Ashraf et al. (2017); Assenza and Delli Gatti (2019); Assenza et al. (2015); Banwo et al. (2019);
Botta et al. (2020); Cardaci and Saraceno (2019); Cincotti et al. (2010); Delli Gatti et al. (2010); Gabbi
et al. (2015); Popoyan et al. (2020); Raberto et al. (2019); Riccetti et al. (2021); Reissl (2021) for some
examples.

14see Caiani et al. (2019b); Mellacher and Scheuer (2020); Palagi et al. (2017, 2021); Papadopoulos
(2019); Rengs and Scholz-Wackerle (2019); Russo (2017); Russo et al. (2016) for some examples.

15see Gualdi and Mandel (2019); Wolf et al. (2013); Stellian et al. (2021); Otto et al. (2017); López
et al. (2020); Gatti et al. (2009) for some examples.

16see Borsato (2020, 2021); Fagiolo et al. (2020); D’Orazio (2019); Dosi et al. (2013, 2015, 2021, 2019,
2018); Lamperti et al. (2021, 2019a, 2018a, 2020); Raberto et al. (2008); Popoyan et al. (2017); Riccetti
et al. (2018) for some examples.
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change to this list.17 Agent-based approaches have responded to all of these key points,
with some doing so simultaneously. This alone suggests they should be part of the
general toolkit of macroeconomics.

While MABMs can model and replicate the dynamics of a complex economy, they are
no panacea, after all “all models are wrong, but some are useful” (Box, 1976). When
it comes to MABM much of the current debate surrounding the method rests around
the estimation and calibration, and their use in forecasting, with many deeming them
“black-boxes” with causal mechanisms that are hard to determine and that are extremely
sensitive to parameterization. This is complicated by the fact that many of the medium
and large MABMs are computationally very expensive, creating a high barrier to effec-
tively estimating their underlying parameters. The estimation and calibration of these
models remains an active area of research, with most models following an “indirect cali-
bration approach” (Fagiolo et al., 2019) of replicating a wide range of stylized facts (see
Haldane and Turrell, 2019, for a non-exhaustive list). Beyond this, the literature has
expanded on the replication of time series (Lamperti et al., 2018b; Barde, 2016) and es-
timation of parameters using Bayesian approaches (Platt, 2020, 2021). Similarly, in the
domain of sensitivity analysis advances have been made using meta-analysis techniques
(ten Broeke et al., 2021). It is in this domain of exploration, sensitivity and calibration
that the work presented in this thesis adds.

1.4 This Thesis

This thesis is split into multiple distinct but interrelated parts covering my research
on the question of scenario generation over the past three years. In Part I, I develop
an algorithmic approach to exploring different scenarios in Agent-based Models and
show how it can recover the phase-space of the Mark-0 Agent-based Model. Part II
of the thesis focuses on two models of interacting agents embedded within neoclassical
macroeconomic closures to show how emergent phenomena from these interactions can
enrich the phenomenology of these models, together with an application of the Mark-0
MABM to the post-COVID inflation surge.

A major critique of Agent-based Models is that they are seen to be black boxes wherein
the mechanisms that lead to emergent phenomena are unclear, the set of dynamics a
model can generate is unbounded, and due to the large number of parameters fitting
empirical phenomena is futile. Part I of this thesis provides a step towards dissolving
these concerns and shows that there is a finite set of qualitatively distinct phases in a
given ABM, and the local dynamics depend only on a few parameters. To do so, Chapter
2 outlines an approach to fitting and understanding large-parameter models developed
in the biophysics literature. This approach, dubbed sloppiness by its originators, high-
lights that the generated dynamics of high-dimensional models are often sensitive to
only a handful of well-constrained parameter combinations. On the other hand, many

17see e.g. Lamperti et al. (2019a, 2021, 2018a, 2020); Wolf et al. (2013); D’Orazio and Valente (2019);
Otto et al. (2017); Ponta et al. (2018); Safarzynska and van den Bergh (2017b, 2022).
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other parameter combinations are ill-constrained, they can vary over multiple orders of
magnitude without a significant change in observables. Identifying and classifying these
parameter-combinations can shed light on the local landscape of parameter-sensitivity,
allowing us to exploit the most well-constrained directions to explore a model’s phase
space by maximally changing the observable dynamics. Moving from theory to practice,
Chapter 3 quantifies this concept for ABMs, taking two distinct measures to quantify a
change in observables: first, a mean-squared error approach that directly compares time
series realizations and is intended to work on shorter timescales of interest to policymak-
ers, and second, the symmetric Kullback-Leibler divergence as a probabilistic approach
to compare the distribution of observables which may be more robust for non-linear
stochastic systems like ABMs. To illustrate the mechanics of this approach, Kirman’s
Ants, a model of agent-herding is used as a theoretical example in Chapter 4. Both the
MSE-based and KL-based approaches are evaluated analytically and numerically on the
whole set of parameters, and recover the parameter-combination representing a phase
transition in the model. In Chapter 5, I turn to the analysis of the Mark-0 Agent-based
Model that was the subject of our first paper (Naumann-Woleske et al., 2023). The
Mark-0 model is a simple MABM that nonetheless displays a qualitatively rich set of
phenomena. In particular, there are four distinct phases of the unemployment rate,
ranging from full employment to residual unemployment, endogenous oscillations and
total unemployment. Evaluating the well-constrained parameter directions of Mark-0 at
different points in these phases generally recovers the parameters responsible for phase
transitions, implying that perturbations into these directions may be an effective means
of uncovering the different scenarios an ABM can generate. Exploiting these parameters
in a simple gradient-ascent algorithm, I show in Chapter 6 that one can effectively and
efficiently explore the phase-space of the Mark-0 model, not only recovering the different
phases but also gaining an understanding of the localized sensitivities of these dynamics.
In particular, one can get an impression of some of the parameter combinations that
drive different phase transitions.

Part II of this thesis takes a different approach to exploring the economy as a complex
adaptive system. Specifically, I here consider heterogeneity and non-rational behavior
in two mainstream settings, a simple Solow model (Chapter 7) and New Keynesian
Dynamic Stochastic General Equilibrium approach (Chapter 8), as well as the effects of
confidence in the Mark-0 Agent-based Model (Chapter 9).

The first two models in this part represent investigations into how sentiment-driven in-
vestment decisions can lead to cyclical aggregate phenomena, as inspired by the notion
that “the subjective evaluation of prospects over a time horizon is the major proximate
basis for investment and portfolio decisions, and these subjective estimates are change-
able” (Minsky, 1976). Methodologically, this exploration aims to bring together an
agent-based and classical equilibrium-based approach to highlight how even small non-
rationalities and interactions of agents can induce a whole host of qualitatively different
phenomena that would otherwise be overlooked. Note that these are toy approaches,
they are not intended to be calibrated, but to demonstrate that even simple interactions
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can lead to emergent phenomena that are relevant for model uses. Chapter 7 develops a
Dynamic Solow Model, introducing capital and investment into a simple Solow growth
model, replicating our work in Naumann-Woleske et al. (2022). Investment depends on
a large number of individual investors, who form an expectation of future returns based
on the state of the economy as well as the expectations of other investors. Drawing
on tools from statistical physics, this system can be written as a set of non-linear dif-
ferential equations of the aggregate outcomes on the basis of micro-interactions, where
the effect of the feedback of other investors’ sentiment leads to cycles of exuberance and
pessimism of heterogeneous duration. Albeit a simple model, we identify a business cycle
of quasiperiodic fluctuations around a steady equilibrium growth-path in a phase where
the economy is led by investment demand. These cycles can be identified as a coherence
resonance mechanism, wherein the exogenous noise leads to quasiperiodic fluctuations,
as in the “small shocks, large cycle” effect of Bernanke et al. (2019). In turn, Chapter
8 replicates our work in Morelli et al. (2021), by further developing the extended New
Keynesian model of Morelli et al. (2020), who developed an adapted New Keynesian
model where a large number of households are characterized by a sentiment on the state
of the economy. Much like in the Dynamic Solow Model, households’ sentiment is in-
fluenced by their neighbors, which leads to a “keeping up with the Joneses” effect, and,
again using tools from statistical physics, can be written as a modified representative
agent approach with non-linear expectations. Into this model, we introduce capital as a
factor of production, allowing for the behavioral household to invest savings into a risky
asset providing capital to firms. This addition leads to a behavioral real business cycle
model with a rich phenomenology, wherein capital scarcity can lead to prolonged periods
of low-output until confidence is restored, highlighting the importance of messaging by
governments. Specifically, the role of confidence in investment here is similar to Keynes’
paradox of thrift: lower confidence leads to more saving, exacerbating economic down-
turns, meaning that in addition to messaging to restore confidence, policymakers may
consider direct investment plans (such as the American Rescue Plan and the Infrastruc-
ture Investment and Jobs Act in 2021) The model is, again, a bare-bones toy model
intended to highlight the richness of macroeconomic phenomenology emerging from the
interactions of individual agents. In Chapter 9 we then take a closer look at confidence in
the context of the increase in inflation following the COVID-19 pandemic in 2020. With
inflation peaking at 9.1% in the US in June 2022, there have been competing narratives
to explain this phenomenon: from “too much money chasing too few goods” to energy
and food prices, profit-driven inflation and conflict inflation. To understand some of
the inflationary scenarios that might arise and link them to different explanations and
policy responses, we extend the Mark-0 model with a stylized energy sector and intro-
ducing three shocks to simulate exogenous drivers and competing narratives.18 We find
that the economic recovery following COVID-19 is sluggish in the absence of mitigating
policy, taking at least several years. Yet, there is only a narrow window for effective
monetary policy, responding with a strong interest rate hike disproportionately raises

18Including a COVID shock affecting productivity and demand, a supply-chain shock on productivity,
and an energy-price shock.
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unemployment. On the other hand, the de-anchoring of agents’ trust in the Central
Bank’s ability to reign in inflation influences the dynamics of inflation itself by influenc-
ing the wage-bargaining process, the price-setting process and households’ consumption
decisions, leading to higher inflation and worse economic performance.
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PART I

Exploring the Parameter Space in Macroeconomic
Models
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Chapter 2
How Complex Are Complex Models

I remember my friend Johnny von Neumann used to say,
with four parameters I can fit an elephant, and with five
I can make him wiggle his trunk.

Enrico Fermi in conversation with Freeman Dyson
(2004)1

Confronted with highly parameterized models, and a limited set of observed macro and
microeconomic data, economists and other scientists can nonetheless make accurate pre-
dictions. One current example of this is the use of large neural networks for classification
tasks. Despite adding thousands of parameters per layer, the predictive performance of
these models does not appear to decline, as is typically the case when overfitting (Kaplan
et al., 2020). One reason for this phenomena may be that these models are sloppy : the
predicted phenomena depend only on a handful of parameter combinations, while the
bulk of the remaining parameter-combinations has little to no effect on the predicted
outcomes. This intuition is particularly important for macroeconomic agent-based mod-
els, which can generate complex phenomena but also often depend on a large number of
parameters, especially if one considers the initialization of a large number of heteroge-
neous agents. Understanding stiff and sloppy parameter-combinations in these models
would allow researchers to develop a deeper understanding of the space of possible model
predictions, the sensitivity of these predictions to parameter choices, and methods for
the calibration of these models.

The premise of the first part of this thesis is to build a method to approach the question:
what are the different types of dynamics that an agent-based model can generate? To an-
swer this question, one can exploit the fact that high-parameter MABMs are sloppy with

1Mayer et al. (2010) actually showed it is possible to generate elephantine shapes with four complex
numbers.
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respect to their predictions. In particular, one can use the critical sensitive parameter-
combinations to explore a model’s space of predictions and thereby develop a phase
diagram of possible phenomena in this model, and understand what each phenomena
depends on. In this chapter, I will first outline what it means for a model to be sloppy
(Section 2.1) and what this implies for the predictions and parameterization of a model.
Pursuing this, in Section 2.2, I outline how one can use the intuition of sloppy models to
approach two key challenges for macroeconomic agent-based models: first, the idea that
MABMs can generate any phenomena and obfuscate its causal mechanisms, and second,
the difficulties in calibrating MABMs. In doing so, I outline how this thesis addresses
the first of these challenges by building up an exploratory tool for MABM, and how this
complements existing methods of global sensitivity analysis in MABM.

2.1 Predictive Power Despite Uncertainty

The notion of stiff and sloppy parameter directions was first introduced by Brown and
Sethna (2003) while studying models of biochemical regulation. This type of model
has a high number of unknown parameters brought together in a large set of nonlinear
differential equations, yet it can nonetheless make accurate predictions even when there
are large uncertainties in each of the individual parameters (Brown et al., 2004). For
each of the individual parameter estimates, “95% confidence intervals each spanned
more than a factor of 50” (Gutenkunst et al., 2007). The reason that a model with
extreme individual parameter uncertainty can still provide accurate predictions is that
the model is sloppy. Specifically, Brown et al. (2004) find that there are a few stiff
parameter-combinations that are well-constrained by the data, which in turn constrain
the predictions of a model. Meanwhile, there is a large variety of sloppy parameter-
combinations that have little effect on the model’s predictions, and are generally not
well constrained, thus allowing them to vary over great ranges without affecting the
prediction. The result is that individual parameters may vary to a large degree while
predictions are constrained. Not only do the well-constrained stiff directions lead to
accurate predictions, they “reveal critical focal points in the signaling network” (Brown
et al., 2004), suggesting that their analysis can lead to a better understanding of critical
drivers of model outcomes.

Figure 2.1 presents a schematic interpretation of a sloppy model, as shown also by Brown
et al. (2004) and Gutenkunst et al. (2007). Ellipsoid lines represent points of equal loss
in the model’s prediction with respect to the optimal point Φ⋆ at the center, and axes
of these lines are generally not aligned with the bare parameters. Instead, they are
combinations, such as the ones given here by the v1 and v2 arrows. In this case, the v1
vector represents a stiff direction, where little variation is needed to drastically change
the model’s prediction as captured by a loss function. Meanwhile, the v2 direction allows
for comparatively larger variation in parameters while not changing the prediction, these
directions are deemed sloppy. In the models studied by Brown et al. (2004), it is the stiff
directions that are well-constrained by their data, and thus even with a large number of
parameters and a low number of observations they can gain accurate predictions from
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Figure 2.1 – Schematic interpretation of a two-dimensional sloppy model based on Brown et al.
(2004, Figure 4) and Gutenkunst et al. (2007, Figure 1A). Colored ellipses present equi-loss lines
for a generic loss function by which the model’s quality of fit is measured. The axes are the bare
log-parameter axes of a model with parameters log Φ1 and log Φ2. The red arrows on the axis of

the ellipse represent vectors in parameter space that are stiff (v1(Φ)) and sloppy (v2(Φ)).

their model. It is important to note here that in practical applications, this ellipse will
be of a much higher dimension, non-linear and typically have a ribbon-like structure
with wider variety in the radii of the ellipse.

Sloppiness as a feature of models is not limited to the realm of biochemical models. Since
Brown and Sethna (2003) introduced this term, research in several fields has indicated
that the stiff-and-sloppy parameter space structure appears across a wide range of mod-
els. In their review, Quinn et al. (2023) point out that this structure has been found in
cell signaling (Brown et al., 2004), radioactive decay and neural networks (Transtrum
et al., 2011), QuantumWave Functions and insect flight (Waterfall et al., 2006), the Ising
model (Machta et al., 2013), Meat Oxidation, Cosmic Microwave Background Radiation
(Quinn et al., 2019), an Energy Recovery Linear Accelerator (Gutenkunst, 2008), a
model of the circadian clock (Daniels et al., 2008), power systems, a gravitational model
and transmission loss in an underwater environment. On the flip-side, it should be
noted that not all multi-parameter models are necessarily sloppy, for instance Waterfall
et al. (2006) point out that multiple linear regression, while it has a high number of
parameters does not have a sloppy hierarchical structure. Nonetheless, for most non-
linear least-squares type problems, they suggest that this type of hierarchy of parameter
combinations emerges.

At this point, one may wonder whether it is possible to cure sloppiness by removing
sloppy directions to reduce the degrees of freedom, or reparameterizing the model. It
is very important to clarify at this point that if a model is sloppy, depending on only a
few stiff parameter combinations, this does not necessarily entail that many individual
parameters are irrelevant and that one might remove parameters not found in the stiffest
direction to reduce a model’s degrees of freedom. As pointed out by Gutenkunst et al.
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(2007), stiff directions are often vectors in parameter space that include many non-zero
elements, a finding confirmed also in later articles, such that naively removing some
parameters is infeasible. Turning instead to parameter space transformations, Waterfall
et al. (2006) point out that for some simple model structures one can transform the
parameter space to be non-sloppy; however, for many applied models this is actually
quite difficult because (a) the transformations are non-linear depending on the point in
parameter space, and (b) the natural parameterization of these models is pre-determined
by the respective science, such as through rate constants in chemistry or elasticities of
consumption in economics, while a linear combination of all model parameters has no
economic meaning.

2.2 Are Macroeconomic Agent-Based Models Sloppy?

Macroeconomic Agent-based models fit the bill of a modeling approach that is likely to
display a sloppy parameter-structure: (a) these models typically involve a large number
of parameters, especially when one also considers the possibility for each of the heteroge-
neous agents to be individually parameterized or initialized, (b) these models have a very
non-linear structure, for instance in the use of Leontief production functions (maximum
functions) or agents interacting with threshold based choices. These features of MABMs
have led many to critique this modeling strategy as “ad-hoc” black boxes, capable of
generating a multitude of phenomena, and where “the causes and mechanism driving
results are blurred” (Napoletano, 2018) (see the Introduction for more detail). A key
challenge for MABM is thus to understand how sensitive predictions are to the selection
or parameter values, and which mechanisms in the model drive the predictions. In ad-
dition, it is critical to understand the space of possible predictions for a given MABM
(Macal, 2016; Crooks et al., 2008; Magliocca et al., 2018).

The aim of this part of the thesis is to take the sloppy analysis approach outlined above
to understand the space of possible phenomena that a MABM can generate, as well as
the sensitivity of these phenomena to parameterization. Putting this in terms of sloppy
models, my aim is to explore and characterize a given MABM’s model manifold. The
concept of a model manifold arises from information geometry, where one can “view the
space of all possible model predictions as forming a manifold, whose coordinates are the
model’s parameters ” (Quinn et al., 2023). First introduced by Transtrum et al. (2010)
and Transtrum et al. (2011), the model manifold is typically a hyperribbon, an ellipsoid
shape whose size in different dimensions varies of multiple orders of magnitude. Here,
sloppy directions are short distances on the manifold, while stiff parameter combinations
form long directions along the manifold. Consequently, one could exploit stiff directions
to develop an exploratory path that intelligently samples the diversity of predictions on
the model manifold.2

2One can also traverse the sloppiest directions to determine effectively simpler theories for a given
phenomena. Transtrum (2014) developed this approach through the Manifold Boundary Approximation
method, an agnostic data-driven approach to model reduction.
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The issue of searching the parameter space of ABMs has received considerable atten-
tion in recent years, and several other global sensitivity approaches have already been
developed and applied. However, to the best of my knowledge, no other modelers have
considered the sloppy analysis approach to the problem. The surrogate-modeling ap-
proach proposed by ten Broeke et al. (2021) is the closest alternative to the sloppy
approach proposed in this thesis (see also Lamperti et al., 2018b; Zhang et al., 2020;
van der Hoog, 2019; Salle and Yıldızoğlu, 2014, for further surrogate approaches).3 In
this approach, the parameter space is sampled using quasi-random methods (e.g. Sobol
sampling). The model predictions for each of these parameter sets is then fed into a
surrogate model, such as a Support Vector Machine (ten Broeke et al., 2021) or neural
network (Lamperti et al., 2018b). In doing so, the surrogate is trained to predict the out-
comes of the underlying model, and can be used to predict the outcomes for unsampled
parameters. The advantage here is computational, as predicting with the surrogate is
computationally cheap in comparison to running the original ABM while making reason-
ably accurate predictions of model outcomes (Lamperti et al., 2018b). However, these
approaches require ex-ante insight by the modeler about which phenomena to investigate
(e.g. seeking fat-tailed GDP growth distributions in Lamperti et al. (2018b) or fishery
survival in ten Broeke et al. (2021)). By contrast, the sloppy approach remains rela-
tively agnostic, allowing for a large exploration of different phenomena before requiring
the modeler to assess how to classify these phenomena into different types of phases.
An agnostic approach is crucial when some emergent behavior is truly unexpected, as
is indeed often the case (see the detailed discussion in Gualdi et al. (2015)). In this re-
spect, starting with the exploratory approach presented in this thesis would complement
the meta-modeling approach by suggesting to modelers which phenomena appear across
the prediction space and how these relate to the model parameterization. Additionally,
MABM will benefit from the continued development of automatic differentiation tools
(see Andelfinger, 2023; Chopra et al., 2022; Quera-Bofarull et al., 2023a,b, for inspira-
tion) this means that working on parameter space exploration directly at the model level
will become computationally inexpensive itself. I show this with the Mark-0 model in
Chapter 5.

A second critique of MABM that may be addressed when considering a sloppiness ap-
proach regards model calibration and consequent use for prediction.4 While this is not
the focus of this thesis, the application of a sloppy approach to experimental design and
calibration for MABMs is nonetheless a fascinating avenue for continued research. This
is for two reasons, the first being that understanding the sloppy hierarchy of parameter
combinations can lead to an efficient design of data-based experiments to constrain all
individual parameters. Apgar et al. (2010) develop a method to constrain all parame-

3Other Global Sensitivity Analyses don’t scale well to high-parameter methods and may overlook
parameter interactions (ten Broeke et al., 2021), and might be why sensitivity analyses are not often
performed (Thiele et al., 2014).

4I am referring here to prediction of quantitative phenomena in general, though one could also narrow
this down to point-forecasts of macroeconomic time series, a point on which MABM practitioners have
been cautious as it is also often not the purpose of an ABM (Epstein, 2008).
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ters to within 10% of their value in a sloppy model, though they find that high precision
(e.g. ≤ 1% may require an infeasible amount of complementary experiments) (Hagen
et al., 2013, see also). The second relates to the use of Bayesian methods in MABM
calibration. These methods have become more popular in recent years (see Dyer et al.,
2022; Grazzini et al., 2017; Platt, 2020, 2021; Lux, 2018, 2022). The performance of
these methods relies on their choice of prior distribution, from which the estimation
procedure is started. Common priors, such as the Jeffrey’s prior, may lead to a strong
bias in models whose effective dimensionality is lower, i.e. in sloppy models (Abbott
and Machta, 2023). Instead, one can use the intuition and mechanisms of the sloppy
analysis to construct a prior focusing on the most relevant parameters and leading to an
unbiased posterior (see Mattingly et al., 2018; Abbott and Machta, 2023, for details).

Conclusion

In conclusion, the phenomena of sloppy models is common to high-parameter models
and presents itself through a hierarchy of parameter combinations driving a given model
phenomena. This has implications for understanding the mechanisms driving a phe-
nomena, and the sensitivity of a phenomena to the choice of parameters. MABMs, as
high-parameter non-linear models, fit this bill. As will be demonstrated in this thesis,
one can exploit the sloppy structure of the model to effectively traverse the space of all
possible model phenomena, thus clarifying what one can generate with an MABM.

Key Messages
• Sloppiness is common in high-parameter models, and implies there is a hi-
erarchy of parameter combinations that affect a model’s prediction.

• Data generally leads to well-constrained stiff directions, which is sufficient for
accurate model predictions. Thus even with a high-dimensional parameter
space and little data, accurate predictions can be made.

• Determining the stiff parameter combinations also means one can exploit
them to traverse the model manifold, which is the manifold of all possible
model predictions, to answer the question: what can this model generate?
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Chapter 3
Quantifying Sloppiness

A model is sloppy when there exists a hierarchy of parameter-combinations to which
the outcomes are successively less sensitive. Chapter 2 introduced the intuition behind
this property and its implications. In this chapter, I operationalize these concepts and
introduce the notation used in the remainder of Part I. In particular, we are looking for
stiff (well-constrained) parameter combinations to which the model is highly sensitive,
and sloppy (ill-constrained) parameter combinations to which model predictions are in-
sensitive. Taking a general loss function to quantify the change in model predictions due
to a change in parameters, I show that the eigendecomposition of the Hessian matrix of
this loss function yields the set of orthogonal parameter combinations and their relative
sensitivities (Section 3.1). Pursuing this, I introduce two simple loss functions that will
be used going forward: the mean-squared error for comparing directly two timeseries
(Section 3.2) and the symmetrized Kullback-Leibler divergence to compare two distri-
butions (Section 3.3). For each of these loss functions, I present their Hessians, and how
they are computed numerically, and some intuition about their relative uses.

3.1 Identifying Stiff and Sloppy Directions

Consider a loss function, L(Φ,Φ + δΦ), that quantifies the degree of change in a model
prediction x when moving from a point Φ in P-dimensional parameter space to a second
point Φ + δΦ. The second-order Taylor expansion of the loss function for a change in
parameters from Φ to Φ + δΦ evaluated at the point δΦ = 0 reads

L(Φ,Φ + δΦ) ≈ L(Φ,Φ)︸ ︷︷ ︸
=0

+ δΦ⊺∇L(Φ,Φ)︸ ︷︷ ︸
=0

+
1

2
δΦ⊺H (Φ)δΦ,

where I use the fact that by definition the loss function without parameter change is
zero to eliminate the first term, and noting that for δΦ = 0 we are by definition at a
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minimum yields ∇L(Φ,Φ) = 0, and H (Φ) is the Hessian of the loss function evaluated
at point Φ. The i, j-th element of the Hessian matrix, H (Φ), is defined as

HL
i,j(Φ) :=

d2L(Φ,Φ + δΦ)

d log Φid log Φj

∣∣∣∣
δΦ=0

= ΦiΦj
d2L(Φ,Φ + δΦ)

dΦidΦj

∣∣∣∣
δΦ=0

, (3.1)

where the derivative is taken with respect to the log-parameters to generate relative
parameter changes, which avoids issues with different parameter scales and units. The
analysis of this Hessian then “corresponds to approximating the surfaces of constant
model behavior deviation to be P-dimensional ellipsoids” (Gutenkunst et al., 2007), as
schematically presented in Figure 2.1 (Chapter 2). Of course, this represents a quadratic
approximation to the true cost surface, which may be very non-linear. But for δΦ being
close to zero, this method clearly identifies the critical directions already.

The axes of the equiloss-ellipsoids are given by the eigenvectors of the Hessian H (Φ), and
their respective widths by the eigenvalues, which can be seen when making the following
decomposition. Assuming all values in the Hessian are real (which is the case for all
models considered in this dissertation), it can be decomposed as H (Φ) = QΛQ⊺, with
Q = [v1(Φ), . . . , vP (Φ)] a matrix whose columns are the real eigenvectors vi(Φ) , and
Λ = diag(λ1(Φ), . . . , λP (Φ)) the diagonal matrix of their associated eigenvalues sorted
such that λi(Φ) > λj(Φ) ∀j > i. This implies the loss can be approximated as

L(Φ,Φ + δΦ) ≈ 1

2
δΦ⊺QΛQ⊺δΦ,

from which it becomes clear that the eigenvalue with the largest associated eigenvalue
constitutes the stiffest direction as it induces the largest change in the loss-function.
By comparison, the eigenvector with the smallest eigenvalue constitutes the sloppiest
direction. To see this, consider that a unit vector step can be expressed as a linear com-
bination of

∑
n αivi s.t.

∑
n αi = 1, which implies that the change in loss is 1

2

∑
n α

2
iλi

that is maximized for α1 = 1, αi ̸=1 = 0, and minimized for αn = 1, αi ̸=n = 0. Conse-
quently, to induce a change l in the loss implies taking a step whose size is proportional
to the eigenvalue of the chosen eigenvector direction,

L(Φ,Φ + δΦ) ≈ l for δΦ =

√
2l√

λi(Φ)
vi(Φ) (3.2)

in the direction of eigenvector i. This highlights that distance (i.e. δΦ) in the metric
space formed by the Hessian is “a fundamental measure of distinguishability of stochastic
systems” (Machta et al., 2013).

A natural question at this point is how spread out the eigenvalues need to be for a
model to be sloppy: How insensitive to sloppy directions vis-a-vis stiff directions should
a model be to be considered sloppy? The literature considers a model sloppy if the set of
eigenvalues spans multiple decades in a roughly uniform manner on a logarithmic scale.
The most common method for evaluation is the eigenvalue spectrum at a point Φ

SΦ =
λP (Φ)

λ1(Φ)
=

mini λi(Φ)

maxi λi(Φ)
, (3.3)
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where the heuristic of calling a model-parameter combination sloppy if SΦ < 10−6 is often
applied (Waterfall et al., 2006). In principle, one should adjust for the total number of
parameters here, analyzing

Sstrong
Φ =

(
λP (Φ)

λ1(Φ)

) 1
P

, (3.4)

for if SΦ is small but there are many parameters (P large) then the ratio between the

first and second eigenvalue would be of order Sadj
Φ , which may be large. Thus it would

be desirable not just for SΦ , but also Sstrong
Φ to be small, with the latter being a strong

criterion for sloppiness vis-a-vis the former. Jagadeesan et al. (2023) propose a more
general formulation to quantify the degree of sloppiness that suggests a model is (ε, δ)-
sloppy at a point Φ⋆ with respect to a subset Psloppy ⊂ P of the parameter space if for all
points in Psloppy at a distance of more than δ to Φ⋆, the loss is below a threshold ε. This

is a natural superset to the definition using SΦ (consider ε→ 0 and δ → (mini λi(Φ))−
1
2 ),

that considers an infinitesimal change in parameters by means of the Hessian. For this
thesis, I stick with the convention of using SΦ .

3.2 Non-linear Least Squares

A simple first loss-function to consider is the mean-squared error (MSE) formulation,
which has been used across a variety of applications (e.g. Brown and Sethna, 2003; Brown
et al., 2004; Gutenkunst et al., 2007). The MSE loss for a vector of K observables xs,t(Φ)
at discrete time steps t for random realization s and parameter point Φ in comparison
to xs,t(Φ + δΦ) is

LMSE(Φ,Φ+δΦ) =
1

2TS

∑

t∈T

∑

s∈S
(xs,t(Φ)− xs,t(Φ + δΦ))⊤Σ−1 (xs,t(Φ)− xs,t(Φ + δΦ)) ,

(3.5)
where, in a slight abuse of notation, we have T = {t1, . . . , tT } time steps and S =
{s1, . . . , sS} random realizations. Note too that xs,t(Φ) is a K-dimensional vector of
observations, making the prediction space for most models RK×T , with a parameter
space P ⊂ RP , and Σ is a diagonal matrix that leads to a dimensionless loss. In this
thesis, I will use Σ = diag

(
σ21, . . . , σ

2
K

)
, the diagonal matrix of the variable specific

variances evaluated across T and S for parameters Φ. In a more general case, one might
consider the K ×K covariance matrix.

A current limitation of Agent-based Models is their computational burden, in terms of
time, memory and processing power (this has also motivated other approaches such as
surrogate modeling as in ten Broeke et al., 2021; Lamperti et al., 2018b). Thus estimating
HMSE(Φ) directly would likely be prohibitive at O(SP 2) model evaluations. However,
as we are evaluating the Hessian around Φ, i.e for δΦ very small, the Hessian can be
written in terms of first-order derivatives, as in the Levenberg-Marquardt optimization
procedure (Levenberg, 1944; Marquardt, 1963). Specifically, the Hessian for the MSE
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3.2. NON-LINEAR LEAST SQUARES

loss (Eq. (3.5)) at δΦ = 0 with respect to the log-parameters is

HMSE(Φ) = ΦΦ⊤ 1

TS

∑

t∈T

∑

s∈S
J⊤
s,t (Φ)Σ−1Js,t (Φ) , (3.6)

with K × P Jacobian matrix Js,t (Φ) =
[
dxs,t(Φ)

dΦ1
, . . . ,

dxs,t(Φ)
dΦP

]
. This reduces the

computational burden to O(SP ) model evaluations to compute the Jacobian matrix

Js,t (Φ) =
dxs,t(Φ)
d log Φ (see Appendix A.1 for a full derivation). Indeed, this is a commonly

used approximation in the literature on sloppy models.

Implementation & Estimation

To estimate the Jacobian matrix numerically, the baseline approach would be to rely on
finite difference derivatives, which can be troublesome in sloppy models (Brown et al.,
2004). Applying the central difference approach to compute Js,t (Φ), with a step-size ε,
requires 2SP runs of a model to estimate HMSE(Φ) based on Eq. (3.6). A difficulty
with this approach is that ABMs are generally path-dependent, meaning one also seeks S
or T large to isolate the well- and ill-constrained directions independently of the specific
realization of the noise in a simulation. Note that S and T large are not necessarily
interchangeable as the models may be ergodic (one can apply the testing procedures of
Vandin et al. (2022) to decide whether increases in S or T are warranted).

A recent implementation of the JUNE Epidemiological ABM by Quera-Bofarull et al.
(2023a,b) showed that it is possible to implement Agent-based Models in a differentiable
manner using computational tools developed in Machine Learning. This is a promis-
ing direction for model calibration that might alleviate the burden of computing finite
differences because the model’s Jacobian is computed exactly by means of automatic
differentiation, which means only one run would be necessary to compute Js,t (Φ), re-
ducing the computational burden by a factor of 2P at the expense of a large increase in
memory requirements. The result is that despite the large number of entities and non-
linear equations that make up an ABM, the infinitesimal Jacobian, and hence Hessian,
is known. The main body of results in Chapters 5 and 6 make use of an implementation
of the Mark-0 macroeconomic ABM using the PyTorch library. Interestingly, for the
case of MABM, a comparison between finite differences and automatic differentiation
has revealed that while one would expect for δΦ → 0 that the finite difference converge
to the autodifferentiated result, the two approaches do not yield equivalent Jacobians
(see Appendix C). While the subject of ongoing research, the underlying reason is the
degree of path-dependence and noise in the model, which means that for finite difference
Hessians to yield valid results requires a large δΦ to separate signal from the underlying
noise inherent in the model. This effectively performs a form of coarse-graining on the
model that is absent when using automatic differentiation (i.e. an infinitesimally small
step size).

Once the numerical Hessian has been estimated, singular value decomposition is used to
determine the eigenvalue, eigenvector pairs for that point in parameter space. Singular
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CHAPTER 3. QUANTIFYING SLOPPINESS

Value Decomposition is more numerically stable, and thus preferable in the context
of eigenvalues spanning many orders of magnitude. These eigenvalue-eigenvector pairs
(λi(Φ), vi(Φ)) reveal the linear log-parameter combinations and their associated stiffness.

Interpretation

Already at this point, one can make inference on the type of dynamic observed at the
point Φ and the drivers of its various components. To do so, I consider the classification
proposed by Francis and Transtrum (2019) based on the dynamics of λi(Φ) as a function
of the amount of data T , under the assumption that the model that has a steady state
(leaving S fixed for now). One can apply tests derived in Vandin et al. (2022) to ascertain
this. Table 3.1 shows the different classifications of model behavior, which Francis and
Transtrum (2019) motivate based on the following:

Eigenvalue behavior Dynamics controlled by the associated
eigenvector

O(T−1) Controls behavior of the transient
O(1) Controls the steady state properties (e.g. level)
O(T 2) Controls the frequency of an oscillatory regime
O(exp(T )) Controls the chaotic behavior of the timeseries

Table 3.1 – Classification of eigenvector relation to model dynamics through eigenvalue dynamics
as a function of the total number of timesteps based on Francis and Transtrum (2019, Table 1)

1. As T grows, parameter combinations ϕ governing transient dynamics should decay:

d

dΦϕ
xs,t(Φ) ∼ 0 for t→ ∞

2. In turn, parameter combinations governing steady state features should become
constant:

d

dΦϕ
xs,t(Φ) ∼ O(1) for t→ ∞

3. For situations with fixed oscillations, the eigenvalues controlling frequency scale by
O(T 2). To see this, rewrite the steady state as a Fourier series, and again compute
the derivative

d

dΦϕ
xs,t(Φ) =

∞∑

k=−∞

dxs,t(Φ)

dαk(Φ)

dαk(Φ)

dΦϕ
+
dxs,t(Φ)

dω(Φ)

dω(Φ)

dΦϕ
for t→ ∞,

where αk(Φ) and ω(Φ) are the amplitude coefficients and oscillatory frequency.

The first term,
dxs,t(Φ)
dαk(Φ) is bounded by a constant and

dxs,t(Φ)
dω(Φ) ∼ t, implying O(T 2)

as a behavior of the eigenvalue whose associated eigenvector controls the frequency
of oscillation (see also Kramer et al., 1984; Larter et al., 1984; Wilkins et al., 2009).
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3.3. PROBABILISTIC LOSS

Though one should here make a note of caution: this approach assumes that the
behavior of the system can be described as a limit cycle, which may not be the
case for a stochastic MABM that nonetheless oscillates.

4. Finally, for chaotic series Francis and Transtrum (2019) finds a scaling behavior
where parameter controlling chaotic behavior scale exponentially in the length of
the time series

d

dΦϕ
xs,t(Φ) ∼ eλϕt for t→ ∞

Note that it is assumed here that xs,t(Φ) is a stationary series, as e.g. an expo-
nential growth path would also lead to an exponential dependency if not converted
into a stationary path of growth rates. Additionally, the exponential sensitivity
will depend on the type of dynamic studied, for instance for not perfectly periodic
oscillations, a small shift in frequency can lead to an exponential growth in the
eigenvalue as a function of T (as shown in Chapter 5). Thus, exponential scaling
is not necessarily due to a chaotic system.

3.3 Probabilistic Loss

Macroeconomic Agent-based Models (MABMs) are non-linear stochastic systems, which
suggests comparing the predicted distributions instead of the predicted time series. That
is, we use the model to produce a distribution P (x|Φ) representing the probability that
the model M with parameters Φ generates observable x. One example in the context of
MABMs would be to compare distributions of agents, such as by income or firm size at
a point in time t, or alternatively distributions of variables or their growth rates across
time, such as the GDP growth distribution. The utility of using a probabilistic approach
to the sloppy analysis is that it is less noise-dependent than an individual path xs,t(Φ)
is, indeed one would expect the distributions across runs to be comparable. This alone
may reduce the computational burden.

To compare the distributions between two parameter-sets Φ and Φ + δΦ, I apply the
symmetrized Kullback-Leibler divergence (Kullback and Leibler, 1951) (also known as
Jeffrey’s divergence (Jeffreys, 1948)), which is defined as

LsKL(Φ,Φ + δΦ) =
1

2

(
LKL(Φ,Φ + δΦ) + LKL(Φ + δΦ,Φ)

)
(3.7)

LKL(Φ,Φ + δΦ) =
∑

x

P (x|Φ) log

(
P (x|Φ)

P (x|Φ + δΦ)

)
, (3.8)

and is a global measure of distance.1 Once again, we can derive the Hessian matrix (see
Appendix A.2), which is proportional to the Fisher Information Metric (FIM) g (Φ),
which “may be thought of as measuring distance in parameter space in units of standard

1It is symmetric, LsKL(Φ,Φ + δΦ) = 0 for δΦ = 0, and can be calculated ∀δΦ.
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CHAPTER 3. QUANTIFYING SLOPPINESS

deviations, using the width of the distribution P (x|Φ) on the space of possible data”
(Quinn et al., 2023). Specifically, we can write

HSKL
i,j (Φ) = ΦiΦj gi,j (Φ) dΦidΦj (3.9)

gi,j (Φ) =
∑

x

P (x|Φ)
∂ logP (x|Φ)

∂Φj

∂ logP (x|Φ)

∂Φi
(3.10)

At this point, it is also worthwhile noting that several other loss-functions such as the
Hellinger or Bhattacharyya distances also lead to the same Hessian as many of them fall
under the category of f-divergences (Csiszár and Shields, 2004).

Unlike the MSE, there is no dynamics to the eigenvalues as a function of the number
of simulated time steps. However, the FIM has other desirable properties. In terms of
information geometry, it implies that one can measure the widths of the model manifold
in different directions by means of a geodesic (a curve of least distance that connects
two points). This provides a first intuition on the exploratory algorithm developed in
Chapter 6.

In practical terms, estimating the FIM requires an estimate for the probability dis-
tribution P (x|Φ), which is done here using Kernel Density Estimation (KDE) as a
general purpose tool for getting a smoothed estimate P̂ (x|Φ) of the probability density
P (x|Φ) based on the sample X = {xs,t(Φ)|∀s ∈ S ∀t ∈ T}. To be precise, I apply a
KDE with a Gaussian Kernel and K ×K bandwidth matrix H to estimate the density
at K-dimensional point x, which reads

P̂ (x|Φ) =
1

2 |X |
∑

xi∈X
(2π)−

K
2 |H|− 1

2 exp

{
−1

2
(x − xi)

⊤H−1 (x − xi)

}
(3.11)

The particular choice of Kernel is not crucial to the fit, allowing us to use the sim-
ple Gaussian form. The bandwidth choice H on the other hand is critical (Epanech-
nikov, 1969). For univariate cases, I apply the Improved Sheather-Jones bandwidth
estimate (Botev et al., 2010), while for multivariate cases of K dimensions I use
H = diag

(
h21, . . . , h

2
K

)
for simplicity, with hi the Improved Sheather-Jones bandwidth

estimate for the i-th variable. This allows for different variances for each variable, though
not for cross-correlations as there is only re-scaling but no rotation.2

Within the models considered, it is likely that a given variable will be bounded, such
as the unemployment rate being between 0 and 100%. This has implications for the
estimate of the KDE, as it is in an unbounded space, it will lead to biased estimates at
the boundaries. The simplest way to address this issue is to apply a transformation of
variables (Wand et al., 1991). Specifically, following Koekemoer and Swanepoel (2008), I
project the relevant variable xk,s,t ∈ xs,t(Φ) onto R using a simple logit transformation.
This means applying Y = g(X) such that P (xk,s,t|Φ) = P (g(xk,s,t)|Φ) g′(xk,s,t) with

2Wand (1994) suggests using at least H = diag
(
h2
1, . . . , h

2
K

)
as H = h2I is too restrictive, and a full

estimation might be expensive. In principle, one should of course allow for correlated variables.
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3.3. PROBABILISTIC LOSS

g(x) = log x−a
b−x where we have boundaries [ak, bk]. In a one-dimensional setting (for

simplicity), this implies

P (xk,s,t|Φ) =
bk − ak

(xk,s,t − ak)(bk − xk,s,t)
P

(
log

(
xk,s,t − ak
bk − xk,s,t

)
|Φ
)
, (3.12)

The KL-divergence is dimensionless and invariant under parameter transformations,

KL (P (x|Φ) ||P (x|Φ⋆)) = KL (P (g(x)|Φ) ||P (g(x)|Φ⋆))

and thus also its symmetrized version. This invariance also implies that the Hessian
matrix is equivalent to the non-transformed Hessian, making it a rather simple fix to
the case of a bounded variable.

With these formulas and metrics in mind, in the next chapter I present an analysis of a
simple two-dimensional model that highlights the power of such an approach. Pursuing
this, the Mark-0 model is considered, it is a complete macroeconomic Agent-based model
with a 19-dimensional parameter space.

Key Messages
• Stiff and sloppy directions are defined by the eigenvalue-eigenvector pairs
(λi(Φ), vi(Φ)) of the Hessian matrix of a given loss function L(Φ,Φ + δΦ)
comparing points Φ in parameter space.

• The largest eigenvalue corresponds to the stiffest direction, and the smallest
to the sloppiest.

• The degree of sloppiness, SΦ , is defined by the ratio of smallest to largest
eigenvalue.

• Using a mean-squared error (MSE) loss function allows us to characterize
time-series dynamics by the dynamics of the eigenvalues as a function of the
amount of time steps.

• Using a Jeffrey’s divergence (SKL) loss function, one can compare distribu-
tions generated by the model, which depend less on the specific path of the
stochastic model.
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Chapter 4
Kirman’s Ants: Understanding Sloppiness
in Two Dimensions

There are two key questions surrounding sloppiness: first, can we identify critical param-
eter combinations using this parameter space decomposition approach? Second, if we
can identify stiff and sloppy directions then how do we relate their degree of stiffness to
the degree of change we see in the loss-function when perturbing the model’s parameters
in this direction. Chapter 3 introduced two loss-functions and how to compute their
respective stiff and sloppy directions by means of decomposing the Hessian matrix. In
this chapter, I build up some intuition for this approach by applying the sloppy mod-
els decomposition to Kirman’s model of ant recruitment (Kirman, 1993). The model
describes in the simplest terms how a group of interacting agents may collectively ran-
domly switch (“herd”) between two equivalent choices. Since its conception, the model
has found multiple applications in explaining group behavior, from financial markets
(Choijil et al., 2022) to fishing (Moran et al., 2021).

Kirman’s original model was developed using two parameters. In Section 4.2 I apply the
parameter space analysis proposed in Chapter 2 and 3 by deriving the Hessian matrix
with respect to the two parameters for both the Mean-Squared as well as the sym-
metrized KL approaches. Decomposing these matrices shows that the stiffest direction
corresponds to the ratio of the parameters, which controls the steady state distribution of
the proportion of ants at one food source, while the second combination has an expected
zero eigenvalue as only the ratio of the two parameters is relevant. When perturbing the
model in the stiffest direction I find that throughout the parameter space taking step
sizes proportional to the inverse square root of the eigenvalue leads to equal changes in
the loss-function. Using this, it is a simple exercise to explore the model by following
this stiff direction to go smoothly from a bimodal to a unimodal distribution of Ants,
that is, recovering all the possible phases, here given by the distribution of ants.
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4.1. THE RECRUITMENT MODEL

4.1 The Recruitment Model

The setup of the ant model is straightforward: Consider a set of N ants facing two
equivalent infinite food sources A and B, where k is the number of ants at source A.
Each period of the model corresponds to a draw of a random ant. This ant may switch
its choice of food source with a small probability ρ ∈ [0, 1]. If this is not successful,
another ant is drawn randomly and the first ant is “recruited” by the second with a
probability µ ∈ [0, 1].

Define xt =
k
N as the fraction of ants at food source A in period t of the model. Based

on Kirman (1993) and Moran et al. (2020) we can write the dynamics of the model in
the N → ∞ case as

ẋ = ρ(1− 2x) +
√

2µx(1− x)N (0, 1) (4.1)

which can be discretized (Ito) to

xt − xt−∆t = ρ(1− 2xt−∆t) +
√
2µxt−∆t(1− xt−∆t)

√
∆tN (0, 1) (4.2)

One key consideration here is the degree of noise in the system given by the selection of
∆t,1 which determines the ability of the system to visit all possible outcomes x ∈ [0, 1],
but may also destroy the underlying dynamics of the system (i.e one recovers simply the
noise distribution).

Continuing in the large N limit and for ρ > 0, Kirman (1993) and Moran et al. (2020)
obtain that the normalized stationary distribution P (x|Φ) is a beta distribution:

P (x|Φ) =
Γ(2 ρ

µ)

Γ2( ρµ)
(x(1− x))

ρ
µ
−1 ∼ Beta

(
ρ

µ
,
ρ

µ

)
(4.3)

which displays a critical point at ρ = µ. For ρ < µ there is a unimodal stationary
distribution with a peak at x = 1

2 , and for ρ > µ there is a bi-modal distribution with
the density going to infinity at the boundaries. At the critical point ρ

µ = 1, the density
is uniform.

Figure 4.1 shows a realization for each of these cases together with their stationary
distribution. We can see clearly the difference in persistence of one dominant location
for the same random realization between the different parameter sets. Note here that in
the case of the uniform distribution (Beta(1, 1)) it takes more data for the distribution
to converge than does the bimodal or unimodal case.

4.2 Identifying Stiff and Sloppy Directions

To show that the sloppy models approach outlined in Chapter 3 correctly identifies
the stiff and sloppy directions of this model, I derive the Hessian matrix of the two
loss functions introduced: the mean-squared error (Eq. (3.5)) and the symmetric KL

1This is referred to as the temperature of the system in physics parlance.
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Figure 4.1 – Dynamics of Kirman’s ant model via Eq. (4.2) with T = 107, ∆t = 10−4, and x0 = 1
2
.

The left panel shows the dynamics for 40, 000 time steps, and the right panels show the relevant
stationary distributions. I keep µ = 1.0 fixed across the three cases

divergence (Eq. (3.7)). For this model, the distribution of the density of Ants is the
natural choice for the sKL-based loss function, while the mean-squared loss is slightly
less trivial because irrespective of the point in parameter space, the mean of a symmetric
beta distribution is 1

2 , such that the Mean-Squared Error between two realizations would
always converge to zero for T and S large. Instead, I consider here the log variance,
log V (x|Φ), of the beta distribution as the observable for the Mean-Squared Loss, each
element of the Hessian will thus refer to relative changes in the variance with respect to
relative changes in the parameters. This also allows me to drop the time subscript t, as
the variance at each point should be the same as the variance of the distribution as a
whole.

The Symmetrized KL-Divergence Approach

Beginning with the symmetric KL based Hessian as the natural approach to this model,
the continuous formulation of the ants model (recalling that x ∈ [0, 1]) converges to a
beta distribution. Recalling from Eq. (3.9) that the Hessian matrix for the symmetric
KL-divergence can be written as

HSKL
i,j (Φ) :=

d2LsKL(Φ,Φ + δΦ)

d log Φid log Φj

∣∣∣∣
εi=0

= ΦiΦj

∫ 1

0
P (x|Φ)

d logP (x|Φ)

dΦi

d logP (x|Φ)

dΦj
dx,

leads to the closed-form Hessian (see Appendix B.2 for the derivation):

HSKL(Φ) =
ρ2

µ2

[
1 −1
−1 1

](
2ψ(1)

(
ρ

µ

)
− 4ψ(1)

(
2
ρ

µ

))
(4.4)
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where ψ(1) (·) is the trigamma function. Decomposing Eq. (4.4) yields the eigenvector-
eigenvalue pairs

v1(Φ) =
1√
2

[
−1
1

]
λ1(Φ) =

ρ2

µ2

(
4ψ(1)

(
ρ

µ

)
− 8ψ(1)

(
2
ρ

µ

))

v2(Φ) =
1√
2

[
1
1

]
λ2(Φ) = 0,

where the factor 1√
2
normalizes the eigenvectors to unit length.

As expected from the derived beta distribution (Eq. (4.3)), there is only one relevant
direction: ρ

µ (eigenvector 1), whereas changes in ρ and µ that retain constant ρ
µ leave

the stationary distribution untouched (eigenvector 2). In this case, the eigenvalue is
already at zero by definition, implying that this model simplification would retain the
exact dynamics.

The Mean-Squared Error

Turning now to the mean-squared error case, the Hessian (Eq. (3.6)) for the variance
log V (x|Φ) in the S → ∞ case reads

HMSE
i,j (Φ) =

ΦiΦj

V 2(x|Φ)
dV (x|Φ)

dΦi

dV (x|Φ)

dΦj
,

where I drop the t subscript as the variance at any point t is equivalent to the variance
of the distribution for S → ∞. Similarly, k is dropped as we have only one observable
K = 1, which also eliminates any weighting (wk = 1). Noting that for the symmetric
Beta distribution, the variance is

V (x|Φ) =
1

4

(
2
ρ

µ
+ 1

)−1

the Hessian can be solved for analytically as (see Appendix B.2):

HMSE(Φ) = 2
ρ2

µ2

(
2
ρ

µ
+ 1

)−2 [
1 −1
−1 1

]
, (4.5)

yielding an eigendecomposition of

v1(Φ) =
1√
2

[
−1
1

]
λ1(Φ) =

ρ2

µ2

(
2
ρ

µ
+ 1

)−2

v2(Φ) =
1√
2

[
1
1

]
λ2(Φ) = 0,

where we recover exactly the same singular relevant direction: ρ
µ (Eigenvector 1), while

changes maintaining the ratio are irrelevant. In summary, we can note that in such a
simplified case, both the sKL and MSE approach correctly identify the critical direc-
tions. The only difference in the decomposition of the sKL and MSE Hessian lies in the
magnitude of the eigenvalues, which is due to the two different metrics and observables.
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4.3 Steps into the stiffest direction

Given that the sloppy methodology identifies correctly the critical directions in the
simple Ants model, I turn now to the second important aspect: the notion of distance
in the parameter space as measured by the loss-function for two different parameter
sets. In Chapter 2 it was shown by a second-order Taylor expansion that a step into the
direction of an eigenvector, in this case v1, in proportion to the inverse square root of
its eigenvalue, 1/

√
λ, should lead to an equal loss irrespective of the specific point in the

parameter space.

Considering now a spectrum of ρ
µ values, Figure 4.2 (left) shows that as ρ

µ increases,

one observes a non-linear decrease in the first eigenvalue of HSKL(Φ) as the difference
in trigamma functions decreases more rapidly than the increase due to the square term.
Indeed for ρ

µ → 0+, λ1 → 2 and for ρ
µ → ∞, λ1 → 1. For the MSE-based hessian, one

observes a saturation in the eigenvalue at 1
4 , and an exponential decrease when moving

away from the peak. As the ratio ρ
µ increases and the eigenvalues decrease, one can see

by studying the realizations of the symmetric KL Loss-function (Figure 4.2, right) that
one needs a proportionally larger perturbation in the direction of v1 to achieve a similar
magnitude of change in the loss function. The reverse is true for the MSE, where smaller
steps generate the same loss as ρ

µ increases.
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Figure 4.2 – Left: Eigenvalues of the sKL (top) and MSE (bottom) approach at different points
in the parameter space. Right: The sKL (top) and MSE (loss) functions using different points of

the parameter space as references.
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To quantify the step size consider the symmetric KL divergence
KLsym (P (x|Φ) ||P (x|Φ⋆)) around Φ (see Appendix B.1), which is given by

KLsym (P (x|Φ) ||P (x|Φ⋆)) = KL (P (x|Φ) ||P (x|Φ⋆)) +KL (P (x|Φ⋆)||P (x|Φ))

= 2
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(4.6)

Given this form, we define ρ⋆

µ⋆ as the result of perturbing the vector of log-parameters,
log Φ, in the direction of v1 with a step-size ε:

log Φ⋆ = logΦ + εv1 with Φ =

[
ρ
µ

]
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Figure 4.3 – The correspondence between the magnitude of the loss-function for a perturbation ε
in the first eigenvector, v1, direction and the magnitude of the eigenvalue. One can see the scaling
law ε ∝ 1/

√
λ1 for a constant loss magnitude. Left: the symmetric KL-divergence, Right: the

mean-squared error evaluated on the variance

Figure 4.3 (left) shows the magnitude of ε both in the positive and negative directions
that would lead to a KLsym (P (x|Φ) ||P (x|Φ⋆)) = 10−3. As ρ

µ increases, and with it the
eigenvalue decreases, the magnitude of ε necessary to achieve an equivalent KLsym loss
increases. Indeed, Figure 4.3 (right) shows that the increase can be described by a ratio

ε ∝ 1√
λ1
,

as shown by the second-order decomposition in Chapter 3.
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CHAPTER 4. KIRMAN’S ANTS

Key Messages
• Applying the Hessian decomposition to Kirman’s Ants correctly identifies
critical and non-critical parameter space directions for both an MSE and
SKL loss function.

• In the case of Kirman’s Ants it allows for a model reduction to one effective
parameter.

• Taking steps in the directions of the strongest loss scales with the inverse
square root of their respective eigenvalue (its degree of sloppiness), as pre-
dicted in Chapter 3.
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Chapter 5
Mark-0: Sloppiness in a Macroeconomic
Agent-Based Model

Adapted from Naumann-Woleske et al. (2023) Exploration of the Parameter Space in
Macroeconomic Agent-based Models, and significantly extended. The original paper was
joint work with M. Knicker, J-P Bouchaud and M. Benzaquen. However, while this
chapter is inspired by that work all results are new based on the differentiable Mark-0
model, which allows for a deeper analysis.

The underlying hypothesis for the first part of this thesis is that the parameter space of
Macroeconomic Agent-based models (MABMs) displays a sloppy structure with a few
well-constrained directions to which the model is sensitive, and many ill-constrained di-
rections to which the model is insensitive. In this chapter, I show that one can indeed
estimate the Hessian matrix of a MABM, and its eigendecomposition reveals the multi-
decade hierarchical parameter-structure characteristic of sloppy models. To do this, I
consider three distinct points in the Mark-0 model, each representing a different qualita-
tive dynamic (phase). The estimation at these points reveals the characteristic structure
of a sloppy model: there are a few well-constrained directions and many ill-constrained
directions. The exact directions are phase-dependent with different dynamics for the
associated eigenvalues, representing the degree of sensitivity over time.

Estimating the Hessian is not trivial. Using a C++ and PyTorch implementation of the
Mark-0 model, this chapter, and its associated Appendix C, show that finite differences
are particularly tricky as they need to deal with noise in estimation and perturbation,
while Automatic Differentiation needs to deal with noise only in the perturbation. While
finite differences can yield reasonable estimates, the results suggest that future models
should strongly consider an implementation that allows for automatic differentiation, as
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5.1. THE MARK-0 MODEL

these results are less computationally intensive and more robust.

Finally, I validate the estimation of the Hessian matrices and understand their robustness
with respect to the hyper-parameters T and S i.e. the amount and type of data. I
find here that there is little to be gained by increasing the number of Monte Carlo
repetitions, S, as with automatic differentiation for two of the phases the estimated
eigenvectors are almost invariant to the choice of S. Meanwhile, for the remaining
phase, one observes an exponential sensitivity to the most well-constrained direction due
to small shifts in the frequency of oscillation, revealing a weakness in the choice of a non-
linear least squares approach. In this case, the addition of more random realizations has
little value as the exact direction and sensitivity of the most well-constrained parameter
combination is dependent on the precise realization of the noise, which implies that a
computationally prohibitive S would be necessary to ensure all Hessians agree on the
direction and sensitivity. In the T dimension, once T = 150 time steps have occurred the
first eigenvector-eigenvalue pair has converged to its final form, suggesting that when
using automatic differentiation, computational and data requirements are relatively low.

5.1 The Mark-0 Model

The Mark-0 model is a stylized hybrid agent-based model that can generate a multiplicity
of different qualitative phenomena it can generate.1 Mark-0 was created by Gualdi et al.
(2015) as a reduction of the Mark family of models (Gaffeo et al., 2008; Gatti et al., 2011)
such that Mark-0 can still retain the dynamics of those models. It was later applied to
questions of monetary policy (Gualdi et al., 2017; Bouchaud et al., 2018) and policy
responses to the COVID-19 pandemic (Sharma et al., 2020). Most recently, we used the
model to assess the post-COVID period of high inflation (see Chapter 9 and Knicker
et al., 2023). While the aggregate behavior that one can generate with the Mark-0 model
is likely not quantitatively precise, it generates a variety of distinct, plausible and generic
macroeconomic behaviors. In most papers on Mark-0 the authors have endeavored to
provide phase diagrams, showing how the different qualitative behaviors of the model
depend on the choice of parameterization. This makes the Mark-0 model the perfect first
candidate for a sloppy-based analysis to both use and verify the parameter-sensitivities
developed manually by the original authors.

Model Overview

Mark-0 consists of an agentized firm-sector of N firms producing a composite consump-
tion good purchased by an aggregated household. In addition, there is a central bank
that sets the baseline interest rate, affecting both the firms’ and household’s decisions.
In the remainder of this section, I briefly outline the model’s main equations following
the formalism and notation of Sharma et al. (2020) where I use the notation Φi to refer

1Hybrid refers here to the characteristic that only one set of agents (firms in the Mark-0 model)
are represented by a large number of agents, while other groups (e.g. households) are modeled as an
aggregate dynamic.
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CHAPTER 5. MARK-0: SLOPPINESS IN A MABM

to parameters, where i is the original authors’ choice of notation. My purpose is not to
be mathematically complete but rather provide an intuition on the model’s mechanics
that aids the later analysis of the well-constrained and sloppy parameter-directions as
well as the phase diagrams explored. For a full detailed description, refer to Sharma
et al. (2020) and the pseudocodes of Bouchaud et al. (2018).

Firms: There are N firms producing Yi(t) units of a perishable composite consumption
good using a linear production function of only labor Li(t) at a constant unit produc-
tivity. The firms sell their goods to the household at a price pi(t), and pay a wage
rate Wi(t). Each period, a firm updates its production based on the gap between prior
production and demand Di(t) of the household in a heuristic attempt to optimize its
income

Yi(t+ 1) =





Yi(t) + min
{
η+i (t) (Di(t)− Yi(t)) , u

⋆
i (t)
}

if Yi(t) < Di(t)

Yi(t)− η−i (t) (Di(t)− Yi(t)) if Yi(t) > Di(t)

Yi(t) otherwise

(5.1)

where u⋆i (t) is the wage-dependent pool of unemployed workers firm i may access to
increase production, representing a maximum output given the unit-productivity (see
Sharma et al., 2020). The variable η±i (t) is the speed at which firms hire and fire labor,
and depends on a firm’s financial fragility, which is represented by its debt-to-payroll
ratio ϕi(t). It is important to note here that a firm will go bankrupt if its fragility rises
above a threshold Φθ (the full bankruptcy mechanism can be found in Gualdi et al.,
2017). The idea is that more fragile firms fire faster and hire slower, and vice versa.
Consequently, the hiring and firing rates for firm i can be described by

η+i = [[Φη+0
(1− Γ(t)ϕ(t))]] η−i = [[Φη−0

(1 + Γ(t)ϕ(t))], (5.2)

with [[x]] clipping x to be bound by [0, 1]. Here Γ(t) represents the sensitivity of firms to
their fragility,

Γ(t) = max {ΦαΓ (ρl(t)− π̂(t)) ,ΦΓ0} , (5.3)

which is positive in the real loan-interest rate ρl(t)− π̂(t) with a minimum of ΦΓ0 . The
expected inflation, π̂(t), is formed by a weighted sum of Φτema times an exponentially
weighted moving average of the price-level inflation with memory parameter Φτπ , and
Φτtar times the target inflation rate Φπ⋆ of the central bank. Here the underlying price
series is a production-weighted price index, p̄(t), computed across all alive firms.

Firms update their relative prices in a multiplicative process taking into account their
excess demand and expected inflation:

pi(t+ 1) =





pi(t)(1 + Φγpξi(t))(1 + π̂(t)) if Yi(t) < Di(t) ∪ pi(t) < p̄(t)

pi(t) if Yi(t) < Di(t) ∪ pi(t) ≥ p̄(t)

pi(t)(1− Φγpξi(t))(1 + π̂(t)) if Yi(t) > Di(t) ∪ pi(t) > p̄(t)

pi(t) if Yi(t) > Di(t) ∪ pi(t) ≤ p̄(t)

(5.4)
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where ξi(t) ∼ U [0, 1] is uniformly distributed and Φγp regulates the size of the price-
change.

In a similar manner, firms update their wage offering as

Wi(t+1) =

{
Wi(t) [1 + ΦγwΥ

−(1− u(t))ξ′i(t)] [1 + Φgw π̂(t)] if Yi(t) < Di(t) ∪ Πi(t) > 0

Wi(t) [1− ΦγwΥ
+u(t)ξ′i(t)] [1 + Φgw π̂(t)] if Yi(t) > Di(t) ∪ Πi(t) < 0

(5.5)
where Υ± = (1 ± Γ(t)ϕi(t)), Πi(t) is the firm’s profit, u(t) the current unemployment
rate, and ξ′i(t) ∼ U [0, 1]. In the case that a positive wage adjustment implies that a firm
would have negative profits ceteris paribus, wages are adjusted upward only to the point
where Πi(t) = 0.

The firms profits are then computed by

Πi(t) = pi(t)min {Yi(t), Di(t)} −Wi(t)Yi(t) + ρd(t)E+
i (t)− ρli(t)E−

i (t) (5.6)

where E+
i (t) = max {Ei(t), 0} and E−

i (t) = min {Ei(t), 0} are a firms debt (negative
assets) and its cash assets, respectively. Here, firms with positive profits and positive
cash balance then pay out a dividend on their cash at a rate Φδ. Consequently, the
evolution of a firm’s assets is simply Ei(t+1) = Ei(t)+Πi(t)−ΦδE+

i (t)I(Πi(t) > 0) with
I(x) = 1 if the condition x is met and zero otherwise.

Households: The model features a aggregate household with a consumption budget CB

comprising a fraction c(t) (the consumption propensity) of the households savings S(t),
wagesW (t), and interest on deposits ρd(t)S(t). The consumption propensity c(t) ∈ [0, 1]
depends on a baseline propensity Φc0 adjusted for real interest rates by Φαc :

c(t) = Φc0 (1− Φαc (ρd(t)− π̂(t))) . (5.7)

Given a budget, the household distributes its demand between all firms i by an intensity
of choice function

Di(t) =
CB(t)

pi(t)

exp (−Φβpi(t))∑
j exp (−Φβpj(t))

, (5.8)

leading to a realized consumption of

C(t) =
N∑

i

pimin (Yi, Di) ≤ CB(t) (5.9)

Finally, the household saving stock evolves based on the sum of flows

S(t+ 1) = S(t) +W (t) + ρd(t)S(t)− C(t) + ∆(t), (5.10)

with dividend income ∆(t) as a fraction Φδ of firms’ assets (if positive).
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CHAPTER 5. MARK-0: SLOPPINESS IN A MABM

Interest Rates: There is a Central bank regulating the interest rates faced by the firms
and households. The Central Bank sets the baseline interest rate based on a Taylor-like
rule to control inflation (Gualdi et al., 2017, also consider an unemployment rate term)

ρ0(t) = Φρ⋆ +Φϕπ (π̂(t)− Φπ⋆) , (5.11)

that depends on an exogenous baseline Φρ⋆ and an inflation target Φπ⋆ . This rate is
then passed on to the deposit and loan rates, with

ρl(t) = ρ0(t) + Φf
D(t)∑
i E+

i (t)
(5.12)

ρd(t) =
ρ0(t)

∑
i E−

i (t)− (1− Φf )D(t)

S(t) +
∑

i E+
i (t)

(5.13)

where D =
∑

j∈{1,...,N},ϕj(t)>Φθ
E−
j (t) is the total debt of all defaulting firms, and Φf

interpolates between the costs of default falling on borrowers (Φf = 1) or depositors
(Φf = 0). To close the model accounting, the total amount of money in circulation,
M = S(t) +

∑
i Ei(t), is kept constant.

Parameterization & Implementation

In total, the model features 19 free parameters that I investigate. The parameters are
presented in Table 5.1, which shows the baseline values of parameters based on Knicker
et al. (2023), Sharma et al. (2020) and Bouchaud et al. (2018). The table also includes
parameter boundaries, which were set either by natural limitations (such as [0, 1] for
Φf ) or by considering a variation of roughly one order of magnitude around the baseline
parameters used in previous applications. In addition to the parameters in Table 5.1,
the Mark-0 model is subject to several hyper-parameters. The first is the dimension of
a step t, which is here taken to be a month. Additionally, for this thesis, I consider the
case of N = 3000 firms across T = 300 periods, which balances size with computational
expense, and represents the relevant timescale for policy-analysis (e.g. see analysis in
Knicker et al. (2023) or Lamperti et al. (2019a) as examples).

For the purposes of our analysis here, I consider three points in the model’s parameter
space, each with a qualitatively different behavior hereafter called a phase. These points
differ only in the choice of parameters Φθ and Φρ⋆ , with the remaining parameters as
in the baseline shown in Table 5.1. For the purposes of this thesis, I consider only the
unemployment rate as a target variable as it has different phases and is representative of
the model’s overall dynamics. Figure 5.1 shows the dynamics of the unemployment rate
for a single realization of the model for each of the three parameter choices. As high-
lighted by the sample time series, the phases can be classified into four categories: Full
Employment (FE, average unemployment below 5%), Full Unemployment (FU, average
unemployment above 80%, which is not shown here), Endogenous Crisis (EC, period-
ically oscillating unemployment mostly for a standard deviation of larger than 10%),
and Residual Unemployment (RU, otherwise) by considering their mean and standard

43



5.1. THE MARK-0 MODEL

Symbol Description Baseline Lower
Bound

Upper
Bound

αc Sensitivity of consumption propen-
sity to real deposit rates

4.0 0.0 40.0

αΓ Sensitivity of firms to real loan rates 50.0 0.0 500.0
β Intensity of choice for housheolds 2.0 0.0 20.0
c0 Baseline propensity to consume 0.5 0.001 0.999
δ Dividend payout rate 0.02 0.0 0.2
η−0 Baseline firing propensity 0.1 0.01 1.0
f Share of bankruptcy burden allo-

cated to firms
0.5 0.0 1.0

Γ0 Sensitivity of firms to their fragility 0.0 0.0 5.0
γp Firm price adjustment magnitude 0.05 0.005 0.5
ϕπ Central-bank reaction to inflation

deviations
0.0 0.0 5.0

ϕ Firm Revival rate 0.1 0.01 1.0
π⋆ Inflation Target 0.002 0.0 0.02
r Ratio of wage to price-adjustment

i.e. γw = rγp

1.0 0.1 10.0

R Ratio of hiring to firing rate i.e.
η+0 = Rη−0

2.0 0.1 10.0

ρ⋆ Baseline Central Bank interest rate 0.001 0.0 0.05
τπ Exponential Moving Average

(EMA) Parameter
0.2 0.01 0.99

τmeas EMA weight in inflation expectation 0.5 0.0 1.0
τtar Central Bank target weight in infla-

tion expectation
0.5 0.0 1.0

θ Bankruptcy Threshold 4.0 0.0 10.0
gw Wage adjustment to inflation 1.0 0.1 10.0

Table 5.1 – Parameterisation of the Mark-0 model. There is no clear baseline parameterisation,
so the most common parameters were taken from Knicker et al. (2023), Sharma et al. (2020), and
Bouchaud et al. (2018). The important part in the table are the bounds, which either follow natural

parameter boundaries, or are based around a factor 10 around the baseline value.
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deviation as in Gualdi et al. (2015). While Figure 5.1 shows a timescale of ∼ 200 periods
to converge to a steady state for these three points in parameter space, hereafter the
model is initialized to the steady state computed after T = 1000 time steps.
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Figure 5.1 – Unemployment rate dynamics at three sample points of the Mark-0 model: (FE)
a full-employment situation, (RU) a residual unemployment point, and (EC) an endogenous crisis

point. All other parameters are taken from Table 5.1

5.2 Separating Signal and Noise: Estimating the MSE-Hessian

Agent-based Models are stochastic generators that generally have a strong path de-
pendence. This is an appealing feature and selling point of ABMs, as it mimics the
path-dependence of the real complex economy, however, it also makes estimation with
these models difficult as time series can be very noise-dependent. In the case of this
thesis, the challenge lies in using numerical finite difference approaches to estimate a
MSE-based loss on the time series of the unemployment rate. Intuitively, the estimation
and decomposition of the Hessian is a means to approximate the equiloss surface around
point Φ as an ellipsoid whose axes are the eigenvectors and diameters along those axes
are proportional to 1/λi(Φ) (Gutenkunst et al., 2007). The finite difference approach
applies minuscule perturbations to parameters to ascertain the first derivative of the un-
employment rate at a given time t with respect to the parameter in question. By a small
perturbation, I refer here to “standard” perturbation sizes used in finite difference ap-
proaches such as 10−9. Generally, when the landscape of the model manifold is smooth,
as for instance with an exponential decay, taking small perturbations to parameters is
sufficient for an unbiased and low-variance estimate of the derivative. However, for a
stochastic ABM like Mark-0, the effect on the time series realization of a given observable
from a small perturbation in parameters is almost indistinguishable from the effect of
noise: there is a low quality of fit for the ellipsoid on the rough manifold. The reason for
this is due to thresholds and if-else directives in the model that, even when noise is fixed,
shift the exact timing of different events irrespective of the direction in parameter space
that is taken. As shown in Appendix C, estimating the Mark-0 Hessian in three differ-
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ent phases using such a small perturbation leads to a set of eigenvector-eigenvalue pairs
where the eigenvalues are grouped within a single order of magnitude and perturbations
into the directions of the eigenvectors don’t yield an expected hierarchy of differences
(as suggested by Eq. (3.2)), with worse performance as the degree of variability in the
unemployment rate grows.

This leaves three different paths to extracting a meaningful eigenvector-eigenvalue struc-
ture when using an MSE approach on the direct time series realization of the path-
dependent model. The first, which we applied in Naumann-Woleske et al. (2023) using a
C++ implementation of Mark-0, is to use an extremely large data sample.2 Specifically,
we used T = 20, 000 time steps across S = 20 random realizations, from which an esti-
mation of the first eigenvector-eigenvalue pairs led to a change in observable dynamics
larger than that of a change in random realizations or a random direction. More data
can slowly pull apart the eigenvalue spectrum, separating eigenvalues across multiple
decades sequentially. However, this approach has several drawbacks: most notably, tens
of thousands of time steps is multiple orders of magnitude above a policy horizon of
interest, and for most models running such a large set of simulations is computationally
prohibitive. It also may not effectively resolve the signal-to-noise issue beyond identi-
fying the first eigenvector, as one can observe that eigenvalues remain closely grouped
(see Appendix C). A second approach within the numerical finite difference method is to
increase the size of the perturbation, thus applying a sort of coarse graining of the model
manifold surrounding the point of interest. The effect is to boost the signal from parame-
ter perturbations at the expense of the extracted information perhaps not being an exact
reflection of the true local Hessian (in the infinitesimal sense). Nonetheless, this allows
us to retain a reasonable timescale (T = 300 periods) and a small number of random
realizations. As shown in Appendix C, as one increases the finite difference perturbation
ε to the order of 10−2, the perturbations of the models in the computed eigenvector
directions display the characteristic hierarchy postulated in the Taylor expansion of Eq.
(3.2). That is, sequentially perturbing the model into directions associated with lower
eigenvalues leads to a decreased change in the MSE. However, it appears that even with
such a large perturbation only the first handful of eigenvalues have separated from the
bulk, suggesting that an infeasibly large perturbation combined with more data would
be needed to extract the true underlying eigenvalue distribution.

The third approach, and the one used for the computations in this and the next chap-
ter, is to apply automatic differentiation. Inspired by the differentiable ABM approaches
used in Chopra et al. (2022) and Quera-Bofarull et al. (2023a,b), Mark-0 has been ported
from C++ to a PyTorch implementation which can make use of the built-in Autograd
package (Maclaurin, 2016) to compute the exact Jacobian matrix of a given realization
of the Mark-0 model. Automatic differentiation has several advantages over finite differ-
ences, in particular, it is both numerically stable and efficient, taking roughly six minutes
for the T = 300, S = 1 case. As Mark-0 is executed, the Autograd package transforms

2A python interface to the code of Sharma et al. (2020) can be found at
github.com/KarlNaumann/Mark0.
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the Mark-0 model into a (large) sequence of primitive operations captured in a com-
putational graph. Each of the captured primitive operations has an assigned derivative
function, thus allowing for the computation of the exact Jacobian by propagating back-
ward through the computational graph from the final leaf nodes.3 The downside of this
approach remains its computational expense, not in terms of runtime but in terms of the
required memory (either RAM or GPU based), which scales in the number of time steps
T and the complexity of operations, though it makes large N possible. For instance,
using sparse-tensor calculus Chopra et al. (2022) execute a simulation of “800,000 agents
over 133 time steps in 4 seconds on a GPU (and 60 on a CPU)”. This approach leads
to the hypothesized multi-decade eigenvalue structure with a hierarchy of perturbation
effects, which will be analyzed in the following section.

At this point it is worth pointing out that one could also take a different approach by
changing the observable in question to be smoother, such as focusing on the moments
of the distribution, such as the mean or standard deviation, or applying a smoothing
function such as a moving average. However, this leaves out information, thus obscuring
interesting time series dynamics. For example, considering the mean unemployment,
the measure may be equivalent for a oscillating and non-oscillating case, or requires
some prior knowledge of the model to be effective. Instead, my ambition here is to
remain general and agnostic, simply observing directly the time series outcomes without
modification.

5.3 Disentangling the Parameter Hierarchy of Mark-0

The simple answer to the question of whether the Mark-0 model’s dynamics depend
on only a few well-constrained parameter directions, is yes: the model displays the
characteristic parameter hierarchy introduced in Chapters 2 and 3. This section first
presents the sloppy structure of Mark-0, as given by automatic differentiation, and then
proceeds to test its robustness with respect to the two hyper-parameters T and S.
Finally, I confirm the property that perturbations in eigenvector directions lead to a
hierarchy in the degree of loss (i.e. the best-constrained direction has the highest loss)
as predicted in Eq. (3.1).

Figure 5.2 gives an overview of the eigenvalue spectra, unemployment dynamics and
the first nine eigenvectors of the Hessian matrix at three points for the large data case
of S = 50 random realizations. The interpretation is clear: the eigenvalues of the
three different phases span over seven decades in a roughly uniform distribution (Left
Panel). In all cases, the first eigenvalue is separated from the remainder by at least one
order of magnitude. Turning to the eigenvectors, for each set of dynamics we observe
different parameter combinations making up the well-constrained directions, suggesting
that the dynamics of each phase are each governed by a different key mechanism (Fig.
5.2 heatmaps). For each of the three chosen points, the first nine eigenvectors represent

3Of course, not all operations truly have a derivative, but one can transform operations such as if-else
into differentiable terms by using a tanh function, and maxima using an exponential.
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combinations of parameters, with only v1(Φ) of the RU phase presenting a direction
aligned with a bare parameter axis (that of Φc0).
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Figure 5.2 – Overview of the Hessian properties of three points in the Mark-0 model. Left:
Eigenvalue spectrum λi(Φ)/λ1(Φ) for each point. Bottom: Sample dynamics of the unemployment
rate for each point, representing full employment (blue dashed, Φρ⋆ = 0.1%, Φθ = 5.0), residual
unemployment (red dotted, Φρ⋆ = 3%, Φθ = 2.0), and endogenous crises (green solid, Φρ⋆ = 9%,
Φθ = 5.0). The remaining parameters can be found in Table 5.1. Right: First nine eigenvectors
(most well-constrained directions) of the Hessian matrices at each point. Hessians were computed

with S = 50 and T = 300

The Effects of S and T on λi(Φ) and vi(Φ)

Automatic differentiation, as introduced in Section 5.2, is numerically stable and exact in
terms of computing the Jacobian. For each execution of the Mark-0 model, the extracted
Jacobian and thus Hessian should reflect the same properties of the underlying data
generating process, with only the noise terms changing from execution to execution. It
thus stands to reason that both the eigenvalues and eigenvectors should be similar across
random realizations, with differences between them primarily driven by the finite sample
size (here T = 300) and in proportion to the degree of variability in the time series as
driven by the noise.

Beginning with a study of the eigenvalues λi(Φ), for both the FE and RU phase, the
dynamics of λi(Φ) as a function of T shown in Figure 5.3 suggest that the first eigen-
value of each seed controls the steady state level of the unemployment rate based on the
classification of Francis and Transtrum (2019, see also Section 3.2). Both the level and
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Figure 5.3 – (Top) Dynamics of the largest 5 eigenvalues of three selected points as a function
of the number of time steps T in the model. The solid line represents the median realization,
with shaded areas presenting the 95% quantiles over 50 S = 1 realizations. (Bottom) Effect of the
number of random realizations S on λi(Φ) at the final time step T = 300. Shaded areas represent
the limits of the 95% quantiles for 50 samples, while solid lines represent the median eigenvalue.

This uses the PyTorch implementation with parameters from Table 5.1

dynamic of λ1(Φ) for these phases is invariant to the number of random realizations over
which the Hessian is computed, suggesting that for these phases a S = 1 Hessian com-
putation using automatic differentiation is actually sufficient to extract the sensitivities
of the underlying data generating process. In turn, the EC phase displays an exponen-
tial sensitivity to the first several eigenvector directions. The EC time series in Figure
5.2 reveals the strong periodic oscillations of this phase, with a sample size of T = 300
covering slightly more than five cycles. The structure of the MSE as a loss function
means that any small shift in the frequency of this oscillation can lead to large changes
in the loss, even if the qualitative dynamics are equivalent. Furthermore, such a small
shift will increase the loss exponentially over time as the oscillations become more out of
phase with one another. Note that here the loss-function is exponentially sensitive, but
the underlying model is not chaotic as hypothesized by Francis and Transtrum (2019).
Figure 5.3 shows that as one increases S, the spectrum of the eigenvalues converges to
what is shown in Figure 5.2, where the eigenvalues are roughly uniformly distributed in
log-space, as would be the case for a sloppy model. In this case, ill-constrained parameter
combinations take sequentially longer to converge to a steady value.

Turning to the study of the eigenvectors associated with the respective eigenvalues, Fig-
ure 5.4 shows the realization of the first eigenvector for each of 50 different random
realizations (top) as well as the pairwise cosine similarity (bottom) of the first five eigen-
vectors across these realizations. One can clearly see that the Hessian structure of the
full employment phase is invariant to changes in the noise as there is little variation
in the time series itself, while as the degree of variation increases across the residual
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Figure 5.4 – (Top) Eigenvector v1(Φ) for 50 different S = 1 realizations of Mark-0. (Bottom)
Pairwise absolute cosine similarities between random realizations for the first 5 eigenvectors. Box-
plot whiskers are the minimum and maximum, while boxes represent the first to third quantile of

the data, finally the line represents the median. Parameters are from Table 5.1, with T = 300

unemployment and endogenous crises phases finite sample properties kick in. Inciden-
tally, this structure of noise effect on the eigenvectors and eigenvalues is similar in the
finite difference approximation (see Appendix C), but significantly less pronounced. The
degree of variation in the eigenvectors also matches the variation in the eigenvalues pre-
sented in Figure 5.3: for RU only the first direction has a very tight confidence interval,
with increasing uncertainty as directions becomes ill-constrained. The same holds for
the EC phase, except here also the first eigenvector-eigenvalue pair displays a higher un-
certainty between individual realizations of the model due to the structure of the chosen
loss-function.

These observations are confirmed by Figure 5.5, which reveals that the first eigenvectors
of the FE and RU phase are equivalent irrespective of the number of seeds S, and have
converged to a fixed direction after roughly T = 150 time steps of the model realization.
This too is an important observation as it means that, even if the policy horizon of the
model is above T = 150 periods one does not need to consider those time steps when
estimating the most sensitive parameter combination. The extra data affects only the
value of λi(Φ), as shown in Figure 5.3, though even there λ1(Φ) is constant for FE
and RU for T > 150. For the EC and RU phases, Figure 5.5 suggests that even when
aggregating across multiple S, ill-constrained directions may not be in agreement. This,
again, is likely due to the higher degree of noise in these particular phases as compared
to the FE phase, reflecting the weakness of the MSE as a loss function. In fact, the
exponential sensitivity of the EC phase also implies that even for S = 50 seeds there
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is no perfect agreement on the most well-constrained direction, which for FE and RU
occurs almost immediately.
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Figure 5.5 – (Top) Mean pairwise cosine similarity of the three most well-constrained eigenvectors
at different seed counts. (Bottom) Mean pairwise absolute cosine similarities over time for 50 S = 1

Hessians. Parameters are from Table 5.1, with T = 300

At this point, I draw two conclusions: the first is that when using automatic differen-
tiation S = 1 is a sufficient approximation for fixing v1(Φ). In both the FE and RU
cases, the λ1(Φ)− v1(Φ) combination is the same across different seeds. Meanwhile, for
the exponentially sensitive EC phase it appears not much information is gained from
additional S, as the convergence is extremely slow, while the directions are roughly the
same, depending on the exact noise in the phase. The second conclusion is that for
a given S = 1 Hessian, the first eigenvalue-eigenvector combination is fixed already at
T = 150, implying that if one wanted to compute many Hessians taking T = 150 would
also be a sufficient approximation to the T = 300 Hessian.

Eigenvector Perturbations

To verify that these parameters represent more than random directions, we can study
the effect on the MSE of a perturbation of the parameters into each of the eigenvector
directions. Figure 5.6 shows the mean-squared error of a fixed perturbation ε = 10−2 in
each eigendirection vi(Φ) (bottom), as well as examples of the change in the sampled time
series when stepping into the most well-constrained and ill-constrained direction (top).
The hypothesis developed in Chapter 3 is that well-constrained directions should have
a larger effect than ill-constrained directions in proportion to their relative eigenvalues
(Eq. (3.2)). One can see here that the hierarchical effects aren’t exact, but that they
do exist at least for the first eigenvector compared to the rest. The later convergence
to similar MSEs in the different phases is due to the stochastic nature of the model, as
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Figure 5.6 – Effect of perturbations into eigendirections of the MSE-Hessian using T = 300 and
S = 50 for each of the three parameter-points. (Top) Time series realization of the unperturbed
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S = 1 Hessians. The step size for all perturbations is ε = 0.1, and T = 300.

was the case for the finite difference estimation (Appendix C): any perturbation of the
parameters shifts around stochastic effects leading at least some baseline degree of MSE.
In the Mark-0 model for instance, firm entry is stochastic which means any change to the
parameters changes the exact entry (and exit) times of firms, even if the realizations of
the noise are the same. Thus, for phases like RU and EC where there are bankruptcies,
this can lead to a baseline MSE irrespective of the direction of the perturbation. A
second aspect to this is that the eigenvectors are the infinitesimal ones whereas the
step-size used in Figure 5.6 is ε = 10−2, such that the Hessian may not be a perfect
approximation at this distance. This is such that one has a perturbation large enough
for the parameter hierarchy to become visible among the noise effect mentioned above
and to compare the different phases on an even footing. The choice of ε = 10−2 is not
necessarily aligned with the natural choice of 1/

√
λi(Φ) (Eq. (3.2)), which differs among

the different directions.4 Combining these two aspects, it is unsurprising that the ill-
constrained directions have an effect that one might consider equivalent to the baseline
MSE from a random perturbation simply because the step-size needed for them to have

4Figure 5.3 suggests selecting ε ∼ 10−1 for FE, ε ∼ 10−2 for RU, and ε ∼ 10−10 for EC for the
magnitudes of their MSE to be equivalent.
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a similar effect as v1(Φ) is not even closely reached.5 One needs to pick a ε that strikes
this middle ground between boosting signal above the noise from changes in parameters
but only so far that the infinitesimal Hessian is still a reasonable approximation of the
correct direction to take. What is important for the purposes of this thesis is that there
are directions, namely v1(Φ), that consistently display a larger loss than can be expected
of a random direction.

5.4 Dynamic Stochastic General Equilibrium Models: A Note

This far in the chapter, I have shown that the simple Mark-0 ABM displays a typically
sloppy hierarchy of directions in parameter space. Some might argue this to be a down-
side of ABMs, as their individual parameters are generally not well-constrained and thus
fitting such models to data may be futile (the reverse is true, as noted in Chapter 2).
Nonetheless, some might wish to fall back to empirically constraining the standard ap-
proach to macroeconomic modeling: Dynamic Stochastic General Equilibrium (DSGE)
models (see Chapter 1 for an introduction). This approach has a large following and a
rich literature of different models, as well as how to fit them to data and study exoge-
nous shocks. However, DSGE approaches are not immune to a sloppy parameter space.
Figure 5.7 shows the eigenvalue spectra of six DSGE models common to the literature:
three models from Gaĺı (2015) that make up the New Keynesian baseline, and three
calibrated models including Smets and Wouters (2007), Del Negro et al. (2015), and
Carlstrom et al. (2017). As can be seen in the figures, each of these models has a spec-
trum spanning more than six decades, making them sloppy models as their parameters
are also not well-constrained.
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Figure 5.7 – Eigenvalue spectrum (left) and cosine similarity to the closest bare parameter axis
(right) for six basic DSGE models: the basic models of (a) Gaĺı (2015) Chpt. 2, (b) Gaĺı (2015)
Chpt. 3, (c) Gaĺı (2015) Chpt. 8, and the estimated models of (d) Smets and Wouters (2007), (e)
Del Negro et al. (2015), and (f) Carlstrom et al. (2017). Hessians were estimated in a large data
setting with S = 100 random realizations of T = 5000 time steps and a numerical perturbation of
1e−3. Results are similar when using impulse response functions and shorter time series realizations.

Taken from Naumann-Woleske et al. (2023)

5Even for the FE case, v1(Φ) implies ε ∼ 10−1, and ε ∼ 101 for v2(Φ) to show a similar loss. For RU

this is ε ∼ 10−2 vs. ε ∼ 10−
1
2 . For EC it is even greater at ε ∼ 10−10 vs. ε ∼ 10−5. All values based on

S = 1 Hessians.
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As with the Mark-0 model studied above, the most well-constrained parameter space
directions may not correspond to individual parameter axes (see Figure 5.7 and 5.8).
Nonetheless, studying the most well-constrained directions, one notes that the param-
eters they represent are those controlling the models’ noise processes, such as their
persistence or covariance. This reflects the adiabatic structure of these models: they
are formulated as deviations around a steady state, implying that shocks dominate the
effects of any given period. Consequently, fixing the shock process means shifting other
parameter combinations has comparatively little effect on the models dynamics, whether
one is considering a time series output or an impulse response function.

(a) (b) (c)

(d) (e) (f) 100
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Figure 5.8 – Eigenvectors for six basic DSGE models: the basic models of (a) Gaĺı (2015) Chpt.
2, (b) Gaĺı (2015) Chpt. 3, (c) Gaĺı (2015) Chpt. 8, and the estimated models of (d) Smets and
Wouters (2007), (e) Del Negro et al. (2015), and (f) Carlstrom et al. (2017). Hessians were estimated
in a large data setting with S = 100 random realizations of T = 5000 time steps and a numerical
perturbation of 1e− 3. Results are similar when using impulse response functions and shorter time

series realizations.

In sum, it thus appears that equilibrium micro-foundations are not immune to the sloppy
parameter space structure, in particular as the number of parameters in these models
grows (e.g. see models c and d in Figures 5.7 and 5.8).
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Key Messages
• The Mark-0 model displays the characteristic parameter-hierarchy of sloppy
models: the eigenvalues span multiple decades in a roughly uniform manner.

• Using automatic differentiation, one can obtain a good estimate of the first
eigenvalue-eigenvector pair using only one random realization and 150 time
steps, with more ill-constrained directions requiring more data, limited more
by duration than the number of random realizations.

• Perturbing the model in the most well-constrained directions leads to a con-
sistently high MSE-loss.

• DSGE models also display a sloppy parameter-hierarchy, with eigenvalues
spanning many decades. In these models it is the parameters relating to the
exogenous noise processes that primarily drive the dynamics.
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Chapter 6
Exploration of the Mark-0 Agent-Based
Model

Adapted from Naumann-Woleske et al. (2023) Exploration of the parameter space in
Macroeconomic Agent-based Models, and significantly extended. The original paper was
joint work with M. Knicker, J-P Bouchaud and M. Benzaquen. However, while this
chapter is inspired by that work all results are new based on the differentiable Mark-0
model and an original approach to the exploration algorithm.

The observed dynamics of the Mark-0 agent-based model depend only on a few influential
parameter combinations, as alluded to in Gualdi et al. (2015) and shown in Chapter 5 by
studying the eigen-decomposition of the model’s Hessian (see Chapter 3 for methods).
Since the model’s dynamics are sensitive only to some parameter-directions, it stands
to reason that perturbing the model’s parameters into these well-constrained directions
would uncover a new dynamic that is “as different as possible” to the dynamic of the
unperturbed parameters. In models where there are multiple different phases of qualita-
tively different behavior, iterating this procedure may lead to the discovery of the entire
set of scenarios the model is able to generate. Based on our work in Naumann-Woleske
et al. (2023), in this chapter I will show that it is possible to systematically explore the
phase space of a model by taking a (not so random) walk down the well-constrained
directions.

To develop an intuition for the mechanics of such a walk, I consider first the two-
dimensional Φρ⋆-Φθ plane where all four phases of the model can be recovered (this
was originally studied in Gualdi et al., 2015). Studying the vector-field of the first
eigenvectors across different points in this field suggests that a walker traversing this
field would pass through each of the different phases present in the Mark-0 model.
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Building on this, the remainder of the chapter proceeds as follows: first, I outline a
simple heuristic algorithm to follow the well-constrained directions through the model’s
parameter space. This algorithm requires only a few key decisions, and I elaborate on
two extensions. Applying this algorithm to the Mark-0 model introduced in Chapter 5,
I show that it is possible to recover all of the phases in the Mark-0, as defined by their
original authors (see Chapter 5 and Gualdi et al., 2015). More generally, it is possible
to recover at least two phases in most realizations of the algorithms. However, there are
weaknesses to such a simple heuristic. The primary weakness being “flip-flopping” back
and forth in the parameter space, as the sign of the eigenvector is undefined. I show
how this can be addressed both by probing both directions and by restricting the angle
of travel. There are also weaknesses due to the choice of the MSE-loss function, such
as an exponential sensitivity to small shifts in the frequency of oscillation (see Chapter
5). While for Mark-0 I know a priori what the different phases are, thanks to Gualdi
et al. (2015), in general this is not the case, and the objective is to ascertain the phases
by exploring. To do so, I introduce the natural measure of pairwise MSE between the
realizations at each step of the algorithm. This measure can be used as a consistent
guidance tool for separating explorations with more variety in phases from those with
less, though it is subject to the same weaknesses as the MSE. The results in this chapter
are a proof that one can indeed effectively traverse the phase-space of a MABM using
a simple heuristic following the most well-constrained direction. Ideally one would like
to try more modularities, such as automatic step-size selection, to develop a maximally
efficient algorithm. However, this is left for future research.

6.1 Phase Transitions in Two Dimensions

The primary reason for choosing the Mark-0 model to develop an exploratory algorithm
is that the authors of the original model developed several phase diagrams (see Gualdi
et al., 2015, 2017; Bouchaud et al., 2018, for a full set). In particular, consider here the
case of the Φρ⋆-Φθ plane shown in Figure 6.1, where there are four distinct dynamics
of the unemployment rate separated by mostly second-order phase transitions. The
left panel of Figure 6.1 shows a vector field populated by v1(Φ) overlayed on the mean
unemployment rate, while the right panel shows the same vector field overlayed on the
standard deviation of unemployment.1

Considering the overlayed vector field for the unemployment rate dynamics in this two
dimensional plane, we find that the stiffest direction consistently points in the direction
of a nearby phase transition. One might remark that the majority of eigenvectors here
align with either the Φθ or the Φρ⋆ axes in Figure 6.1. This is for two reasons. The first
concerns the economic interpretation. For instance, in the full employment phase there
are no firms close to the bankruptcy threshold Φθ such that perturbing this threshold by
only a little would have zero effect, whereas a change in the interest rate Φρ⋆ changes the

1As noted earlier, picking these moments hides some facets of the dynamics (e.g. EC and RU have
similar mean values). It serves here simply to illustrate the phase-space as the classification into these
phases is based on the mean and standard deviations.
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level of consumption and thus has a non-zero effect. Accordingly, in this case the first
eigenvectors are aligned with the Φρ⋆ axis. Conversely, in the RU and EC phases there
are always firms close to the bankruptcy threshold such that Φθ gains in importance as
small shifts can lead to more or less firms entering bankruptcy throughout the model’s
realization. Since the threshold is itself very low, a small change has larger effects on
firms’ bankruptcy and revival. For the area where the threshold and interest rate are
both sufficiently large, one can then observe an interplay between the two regimes (e.g.
log10Φρ⋆ > −1.8, log10Φθ > 0). Despite the apparent simplicity of this diagram, where
relative to one another only one of the two parameters has an effect, one can still note
that following around the first eigenvector will lead one to cross at least one phase
transition, if not multiple.
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Figure 6.1 – Phase diagram of the Mark-0 unemployment rate in the Φρ⋆ -Φθ plane based on
Figure 2 of Gualdi et al. (2017). (Left) Mean level of unemployment over T = 200 periods, (Right)
Standard deviation of the unemployment rate over T = 200 periods. Black arrows are the first
eigenvectors computed by automatic differentiation, the sign of the vector is such that it has the
closest similarity to the [1, 1] vector. Parameterization as given in Table 5.1, except Φτmeas = 1.0,

Φτtar = 0.0 with N = 3000, T = 200

An important qualification to make here is that by phase transition I am referring to
second-order transitions, where there is a continuity between one phase and another,
however small. A priori, first order transitions cannot be discovered in this manner for
there is no increase in loss up until the threshold and thus the Jacobian would not be
able to capture this as there is no gradient. One can accidentally discover a first order
transition using finite differences if one happens to be close enough to the transition line
for the small perturbation used in computing the Jacobian to cross the threshold, but
this is an edge case upon which one cannot rely.
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6.2 A Simple Algorithm for Parameter space Exploration

The local parameter space decomposition at each of the points studied so far indicate
that, as expected, well-constrained directions lead to the largest change in the MSE loss-
function (Chapter 5), and are likely to cross phase boundaries if one continues traveling
along them (Section 6.1). This section outlines a simple heuristic algorithm to walk along
the well-constrained directions. The goal of this algorithm is to determine a sequence
of parameters EQ = {Φ(q)|q = 0, . . . , Q} of length Q, whose observables xs,t (Φ(q)) at
each point are as different as possible. The idea is to obtain a complete coverage of the
different dynamics that a model can generate within the user-defined parameter space
hypercube B. One way of measuring the coverage of a given exploration is to continue
using the Mean Squared Loss which I use here also for the Hessian. In this case, we can
measure the quality of a given algorithm with respect to its ability to span the space of
dynamics with as few steps as possible by the average pairwise mean-squared error

pMSE (EQ) =
1

Q(Q− 1)

∑

Φ(q1),Φ(q2)∈EQ,q1 ̸=q2

LMSE(Φ (q1) ,Φ (q2)), (6.1)

where I use an average to penalize a large number of steps. While this is self-consistent,
as with the MSE Hessian it is not foolproof: periodically oscillating phases like EC might
see small frequency shifts that lead to high MSE, even in a pairwise sense.

The simplest way of targeting pMSE (EQ) is to take steps into the direction of the first
eigenvector. By definition, this would be the vector along which the largest change in
the loss function should occur. We can thus write

Φ(q + 1) = Φ(q)± εv1 (Φ(q)) q ≥ 1 (6.2)

from which we can observe two key decisions that must be made:

1. Step size ε: Based on the observations from Chapter 5, one needs to set a step-
size large enough to change the dynamics beyond changing the exact realization of
the noise, while keeping ε small enough such that the local approximation to the
Hessian holds. At this point, one might ask whether the step-size itself should be
related to λ1(Φ), perhaps such that one targets a fixed MSE increase as suggested
in Eq. (3.2). There are two reasons I choose not to do this, the primary being that
letting ε ∼ 1/

√
λ1(Φ) means specifying a targeted amount of MSE loss, which is

intuitively more difficult than saying the maximal parameter change is ε in log-
space (e.g. ε = 0.1 would mean ∼ 10% at most). Furthermore, in cases like the EC
phase this might lead to remaining “stuck” in shifting the frequency because the
exponential λ1(Φ) scaling would imply that the parameters wouldn’t change much.
By contrast, fixing ε means that one makes sure to actually shift the parameters
significantly in this case. Of course, this approach can also lead one to miss phases
or dynamics when 1/

√
λ1(Φ) is much smaller than the fixed value. For a finite

difference approach, ε should be at least the perturbation size used in the finite

60



CHAPTER 6. EXPLORATION OF THE MARK-0 AGENT-BASED MODEL

difference Hessian, such that one can ensure that the chosen direction is the most
well-constrained.

2. Sign of the Eigenvector: Since the sign of the eigenvector is indeterminate one
must choose whether or not to traverse it in the positive or negative direction.
If the model manifold were symmetric, this would likely be irrelevant since one
obtains the same degree of loss irrespective of the sign. However, for models with
asymmetric manifolds, such as the Mark-0 model, the choice of sign can make a
large difference. Consider the case of being near a phase boundary, in one direction
one can find entirely different dynamics (i.e. a high loss), whereas its inverse leads
to more of the same (i.e. a lower loss).

3. The starting point Φ(0): ideally, the starting point of the exploration should be
roughly centered on the boundaries B of the parameter space. A reason for this
being that steps occur in log-space, which means it can take a long time to traverse
from one boundary of the hypercube to the other even if vi(Φ) is perfectly aligned
with the parameter axes. One can compute the minimal boundary traversal time by
taking the difference in log-bounds and dividing by the chosen step-size ε. However,
there is no clear ”best” heuristic here when choosing a single starting point. Of one
has the option to run multiple explorations then it would be reasonable to spread
the starting points uniformly over the hypercube made up by the boundaries.

A final consideration to take is how to determine the total number of steps Q to take
from the starting point Φ(0). The simplest response would be to keep the number of
steps fixed based on the computational budget available. A smarter approach might
be to define the stopping criterion based on the pMSE (EQ), such that when no new
information is gained, the algorithm stops exploring and one could use the remaining
part of the computational budget to launch another exploration from a different starting
point.

A Simple First-Pass Approach

The potentially simplest way of addressing these questions is to: (a) fix the sign of the
eigenvector by taking whichever sign the singular value decomposition yields, and (b)
fix the step-size to a given ε, such as 10−1 as done with the perturbations of Figure
5.6. The exception to keeping a fixed sign is if the perturbation would transgress the
boundary of the parameter space hypercube B defined by the user. Here I thus propose
that one takes the sign of the eigenvector that does not transgress the boundary, or
terminates the algorithm should both directions do so. For the remainder of the chapter
I will call this approach the SimpleAlgo , and its pseudocode implementation is given by
Algorithm 1 below.

Improving the Search Direction

The SimpleAlgo approach provides a solid first-pass approach, but, one can likely do
better along the lines of the three decisions outlined. In particular, given a likely asym-
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Algorithm 1 SimpleAlgo : Maximally Simple Eigenvector Exploration

Require: Initial parameters Φ(0), maximum step count qmax, step-size ε, boundaries B
Set q = 0
repeat

Compute the Hessian H (Φ(q)) ▷ S and T based on modeler’s choice
Decompose to determine v1(Φ)
Compute new parameters Φ(q + 1) = Φ(q) + εv1(Φ) ▷ Φ is in Log-terms
if ∃p ∈ Φ(q + 1) violating bounds B(p) then

Set Φ(q + 1) = Φ(q)− εv1(Φ) ▷ Try other direction
if ∃p ∈ Φ(q + 1) violating bounds B(p) then

Abort Exploration
end if

end if
q = q + 1

until q = qmax

metric loss landscape one can choose the sign of the eigenvector in a smarter way by
probing both directions and selecting the sign yielding a better pMSE (EQ) outcome.
This simple trick should avoid “missing” any interesting thresholds. In particular, for
a finite difference approach where Hessians take 2SP computations, suggesting that 2S
computations to determine the pMSE (EQ) increasing direction may be prudent when
parameters are numerous or computational time is long. Algorithm 2, hereafter referred
to as ProbeAlgo, outlines the modified algorithm.

6.3 Understanding the Map from Parameters to Phases

The phases of the Mark-0 model are classified using the mean and standard deviation of
the unemployment rate based on the work of Gualdi et al. (2015). To gain an intuition of
how the parameter space is split into the different phases, Figure 6.2 presents the mean
and standard deviation of N = 215 = 32, 768 simulations of a Sobol sequence in the
parameter space, together with their ensuing classifications. From Figure 6.2 emerges
the intuitive result that a uniform sampling of the parameter space is not equivalent
to a uniform sampling of the prediction space of the model. For the case of Mark-
0, one gets a large sampling of the full employment and full unemployment phases,
with a comparatively small number of samples in either the EC and RU phase. In
particular, since a Sobol sequence uniformly covers the parameter space given by B, one
can take the proportion of points belonging to each phase as an estimate of the volume
of the parameter space that is filled by one particular phenomena. In this case, the Full
Unemployment phase covers nearly half (49.7%) of the parameter space volume, with
the Full Employment covering another 27%. Thus, while Sobol sampling can recover
all phases, it might take longer to phenomena occurring for only a few parameters but
covering a large area in the prediction space to be retrieved. In the same vein, one obtains
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CHAPTER 6. EXPLORATION OF THE MARK-0 AGENT-BASED MODEL

Algorithm 2 ProbeAlgo : Improved Eigenvector Exploration

Require: Initial parameters Φ(0), maximum step count qmax, step-size ε, boundaries B
Set q = 0
repeat

Compute the Hessian H (Φ(q)) ▷ S and T based on modeler’s choice
Decompose to determine v1(Φ)
Compute candidates Φ±(q + 1) = Φ(q)± εv1(Φ) ▷ Φ is in Log-terms
if ∃p ∈ Φ(q + 1) violating bounds B(p) then

Set Φ(q + 1) = Φ(q)− εv1(Φ) ▷ Try other direction
if ∃p ∈ Φ(q + 1) violating bounds B(p) then

Abort Exploration
end if

end if
Compute probes xs,t (Φ

+(q + 1)) and xs,t (Φ
−(q + 1))

Compute pairwise MSE with previous steps: PairMSE (Φ±(q + 1))
Set Φ(q + 1) = argmax PairMSE (Φ±(q + 1))
q = q + 1

until q = qmax or PairMSE(q) < PairMSE(q − 1) < PairMSE(q − 2)

a large sampling of potentially less valuable phases, in this case the full unemployment
phase. Thus, one key characteristic of a successful algorithmic exploration would be to
recover the less likely EC and RU phases.

6.4 Recovering Mark-0’s Phases and their Transitions

Experimental Setup

Taking here the conclusions of Chapter 5 on the estimation of v1(Φ), I consider the case of
S = 1 and T = 150 for the exploratory algorithm. This is a small sample but as Chapter
5 showed, these are sufficient to estimate the first eigenvectors when using automatic
differentiation. Using the parameter boundaries defined in Table 5.1, the starting points
are chosen as a Sobol sequence of length 64 to fill the hypercube determined by the
bounds with a low discrepancy.2 This approach should reduce the sensitivity of the
ensuing results to the exact choice of initial parameters, such as starting near a phase
boundary. However, it will also likely imply that there are some realizations of the
algorithm that fail immediately as the model may crash, as with the NAN phases already
noted in Figure 6.2. I choose to exclude these starts from the ensuing analysis. Finally,
I apply a step size of ε = 0.2, whose interpretation is that the maximal perturbation for
a single parameter is ε in log-space, which, while large should make traversing the large
hypercube of parameter bounds quicker.

2See Sobol (1967) for a definition of the sequence, and Niederreiter (1988) for a definition of discrep-
ancy.
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Figure 6.2 – Mean and Standard Deviation of the Unemployment Rate for a Sobol sequence
of length 215 = 32, 768 in the parameter space hypercube B given by Table 5.1. N/A values were
assumed to mean 100% unemployment and filled accordingly, there were 7487 simulations containing
only N/A values, which implies the economy crashed during the equilibrating period (i.e. in FU).
All samples are based on S = 1 and T = 300, as with the exploration, and a equilibrating period of

T = 1000

For SimpleAlgo, the initial conditions are fixed at the steady state (T = 1000 equilibra-
tion point) of the initial parameters Φ(0), therefore, many of the differences in phase
also include a transient dynamic as the model adjusts to the shift from Φ(q) to Φ(q+1),
which may take longer than the observation period of T = 150. This approach is self-
consistent since the parameters are perturbed under the same initial conditions as the
eigenvectors were calculated, such that the only change occurring is a change in param-
eters. However, it also means that we explore both the changes in the dynamics of the
transients and differences in the model’s steady state. From a model exploration stand-
point, one might be interested more in the space of steady states than in the reaction of
the model to perturbations in parameters (i.e. moving from the initial conditions’ steady
state to the steady state of the new parameters). In this case, one can commit a slight of
hand, and re-compute the initial conditions after perturbing the parameters. The idea
being that the change in the parameters should lead to a change in steady state (recall
for example the perturbation of the FE phase in Figure 5.6), and if one is interested
solely in these steady states then one can perturb the parameters and run the model for
another T = 1000 periods to equilibrate the system. This new steady state then serve
as the initial conditions for the next computation of the Hessian. The result is that the
Hessian is computed on T = 150 periods in the Φ(q) steady state, rather than having
some periods of transition (e.g. Run 15 of ProbeAlgo in Figure 6.3 below). Recalling the
classification of Francis and Transtrum (2019) (see Chapter 3 Section 3.2), this effectively
approach removes transient eigenvectors, whose eigenvalues scale O(1/T ), from consid-
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CHAPTER 6. EXPLORATION OF THE MARK-0 AGENT-BASED MODEL

eration as the next direction, leaving only those controlling steady state levels (scaling
O(1)) and those controlling oscillations (scaling O(T 2) or in the EC case also O(expT )).
Therefore, in the remainder of this Chapter, I will distinguish between two cases of the
SimpleAlgo approach: one with fixed initial conditions, and one in which they are al-
lowed to vary with the parameters, hereafter SimpleAlgoFC for Floating Condition (the
same holds for ProbeAlgo and ProbeAlgoFC ).

Can one recover the phases?
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Figure 6.3 – Top two runs with the most phases recovered for the SimpleAlgo (first row), Sim-
pleAlgoFC (second row), ProbeAlgo (third row), and ProbeAlgoFC (fourth row) approaches with
ε = 10−2. Initial parameterizations based on Sobol sequence of length 64. Hessian hyper-parameters

are T = 150 and S = 1. Boundaries from Table 5.1

The simple answer to the question of whether one can recover all of Mark-0’s phases
by following a heuristic like SimpleAlgo is yes. From the 64 different starting points,
I obtain 47 explorations taking more than one step for SimpleAlgo and ProbeAlgo (38
for SimpleAlgoFC, and 40 for ProbeAlgoFC ). The initial parameter points that did not
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Figure 6.4 – Time series of the unemployment rate for two realizations of the SimpleAlgo heuristic.
The first corresponds to Run 38 Step 30, also shown in Figure 6.3, the second to Run 15 Step

yield explorations were infeasible (NA following the FU phase) immediately. Of the 47
SimpleAlgo explorations, 30 explorations completed all 30 steps of the computational
budget (22 for SimpleAlgoFC, 33 for ProbeAlgo and 20 for ProbeAlgoFC ), with the
primary reason for early termination being violations of the boundaries B, and in some
FU cases that the simulation crashed leading to an invalid Hessian matrix.

Figure 6.3 shows the top two realizations of the successful runs of SimpleAlgo, SimpleAl-
goFC, ProbeAlgo and ProbeAlgoFC with the most different phases recovered (at least
3, and then ranked by pMSE (EQ)). One can clearly see the wide variety of dynamics
that the Mark-0 model can generate across the different parameterizations explored by
the simple heuristic of following v1(Φ). For instance, Run 41 of SimpleAlgo and Run
15 of ProbeAlgo both display multiple qualitatively different phases from FE to RU and
EC. Indeed, there are several phases that SimpleAlgo and ProbeAlgo passed through
that, to wit, have not been studied explicitly in previous work on the Mark-0 model, or
even our own work on exploring the phase space (Naumann-Woleske et al., 2023).3 Two
such phases are highlighted in Figure 6.4, wherein there can be alternating high and low
spikes in the unemployment rate, with high peaks at ∼ 20% and lower ones at 5%. This
phase is described by an active Central Bank with a high baseline interest rate together
with firms that react sharply to inflation and interest rates through price-adjustments
and the hiring/firing of employees. The right panel of this figure shows that this type of
phase also exists with an amplified spike.

Figure 6.5 shows the projection of all of the successfully computed steps in the mean-
standard deviation plane. Due to the presence of transient dynamics, the mean and
standard deviations of the SimpleAlgo and ProbeAlgo realizations are based only on the
last 50 times steps, which have generally made the transition to the new steady state.
However, standard deviations might still be somewhat inflated, which is reflected in the
higher prevalence of explorations in the EC phase Comparing these explorations with the
Sobol approach shown in Figure 6.2 suggests that the algorithmic exploration approaches
do cover the same prediction space (here in 2D) in roughly the same density as a brute

3See Gualdi et al. (2015, 2017); Bouchaud et al. (2018); Sharma et al. (2020); Knicker et al. (2023).
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Figure 6.5 – All points traversed by SimpleAlgo (top left), SimpleAlgoFC (top right),
ProbeAlgo (bottom left) and ProbeAlgoFC (bottom right) projected into the Mean-Std. Deviation
space. Color coding indicates the step of the algorithm. Note SimpleAlgo and ProbeAlgo contain
transient dynamics, such that mean and standard deviations were based only on the last 50 time

steps to better conform with the phase definitions of Gualdi et al. (2015)

force parameter space sampling. Unlike brute force sampling however, the estimation of
the Hessians also provides an understanding of the local sensitivity landscape.

How well can we recover different phases?

The example explorations shown in Figure 6.3 are promising, but also raise questions
about the quality of this heuristic. For instance, both figures suggest that it is possible
to become trapped in a particular phase with little change, based on the plethora of
FU and FE realizations and the oscillatory regimes of SimpleAlgo run 34.4 The main
goal of the algorithm is to recover the different phases of the Mark-0 mode. However,
before analyzing the phase-discovery results, one major aspect to note here is that the
ability of the exploration to recover the different phases of the Mark-0 model here relies
on the definition of phases used in Gualdi et al. (2015) and thereafter, who consider
only the mean and standard deviation as a guideline for classifying the dynamics of the
unemployment rate. While this is a simple rule of thumb, it is also not entirely satisfying
for there are also oscillatory phases classified as RU or FE (e.g. the dynamic of Run
38 Step 30 shown in Figure 6.4 is an RU phase when it should really be an EC phase).

4The shifting frequencies is the result of the exponential sensitivity of the MSE to shifts in oscillatory
frequency, as noted in Chapter 5.
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Figure 6.6 – Number of recovered phase transition by SimpleAlgo (top left), SimpleAlgoFC (top
right), ProbeAlgo (bottom left) and ProbeAlgoFC (bottom right). The values indicate: (numerator)
the number of transitions at step q where v1 (Φ(q − 1)) · v1 (Φ(q)) > −0.9, and (denominator) the
total number of transitions found. The color code indicates the fraction of total steps described by

each type of transition

In principle, one should explore the space of qualitative dynamics and only thereafter
cluster the dynamics to determine the set of qualitative phases.

Figure 6.6 shows the prevalence of different types of transitions recovered by the different
explorations. The graph suggests that across all algorithms there is a roughly symmetric
structure to the transitions discovered, and in particular for the SimpleAlgo approach this
is due to flip-flopping. Specifically, some explorations go backwards and forwards across
the same phase boundary as v1 (Φ(q − 1)) ∼ −v1 (Φ(q)) (see Figure D.1 of Appendix D).
Adjusting for this by eliminating transitions where v1 (Φ(q − 1)) · v1 (Φ(q)) < −0.9 (the
numerators in Figure 6.6), one can see that this strongly reduces the number of transi-
tions in the SimpleAlgo case, whereas ProbeAlgo is not strongly affected.5 This means
that when using the ProbeAlgo approach, after a transition one does not immediately
transition back into the prior phase, as this decreases pMSE (EQ), as opposed to further
investigating the new phase. However, Figure 6.6 also shows that within a given phase

5This condition is equivalent to saying one places a restriction on the cosine similarity, i.e. the angle
between two P-dimensional vectors.
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over half the steps within phases violate the above condition. That is, within a phase,
both SimpleAlgo and ProbeAlgo often oscillate back and forth between two areas of the
parameter space that lie in the same phase. They may of course be numerically very
different: in the EC and RU phase this may be a shift in the frequency of oscillations or
a change in the transition dynamics, which leads the exploration to remain in the same
phase but still generate a high MSE (see Figure 6.3 top left as an example). While not
desirable from a purely exploratory point of view it does suggest a consistency of direc-
tion within a given phase: roughly the same parameter-combinations have the largest
effect within phases and, generally also lead to phase transitions.

6.5 What Drives the Phase Transitions?

One of the biggest selling points of this type of exploratory approach over other ap-
proaches such as meta-modeling, is the information gained on the local sensitivity of the
model. Section 6.4 showed that the heuristic algorithms can recover multiple different
phases within a single exploration, which implies that we know the direction in param-
eter space along which this transition occurs. This means one can pose the question of
whether there are more “general” parameter combinations that regulate between differ-
ent phases of the model. In each case, one could see the transition direction akin to the
localized normal of the hyper-surface that is the phase transition. In the same vein, the
flip-flopping of the SimpleAlgo approach also hint at a consistent underlying sensitivity
to parameter combinations in each of the respective phases.

In the case of Mark-0 for instance, one might be interested in what drives the economy
out of a full-employment phase. Figure 6.7 shows the set of v1(Φ) (and their sign) taken
by the exploration heuristics when moving within (leftmost panel) and transitioning
into and out of the Full Employment phase (right panels). While all of the directions
are parameter combinations, implying one should not jump to conclusions about the
importance of one parameter over another, one can tentatively point out the prevalence
of the firms’ price-setting Φγp , its relation to the wage adjustment Φγw through Φr =
Φγw/Φγp , as well as the wage-adjustment to inflation Φgw as key parameters governing
the changes in the unemployment within the FE phase and for transitions into and out of
the full employment phase. In line with this observation, our study on the Post-COVID
inflation dynamics (see Chapter 9 in this thesis and Knicker et al. (2023)) also highlights
the dangers of a wage-price spiral dependent on the balance of Φγp and Φγw . Taking
this point further to study also the EC transitions and FU transitions (Appendix D.2),
the parameter combinations are more mixed but nonetheless Φγp is frequently a large
component of the eigenvector leading to a transition. While these interpretations are
tentative it nonetheless suggests that if one does have a larger computing capacity to run
a higher number of explorations, one could piece together the critical relations between
these parameters that tip the economy from the full-employment phase to other phases,
thus building up a phase diagram. But even with such a small sample, one can gain
an intuition about some of the stronger drivers of the unemployment dynamics in the
Mark-0 model.
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70



CHAPTER 6. EXPLORATION OF THE MARK-0 AGENT-BASED MODEL

6.6 Distinguishing Explorations Quantitatively: the pMSE (EQ)

The previous sections evaluated the explorations on the basis of the phases discovered,
using the classifications of Gualdi et al. (2015). But, in a scenario where the phase
classifications are unknown ex-ante, it is still important to measure the quality of the
exploration by a metric capturing the variety of the dynamics that have been explored.
The natural metric for measuring an algorithm with Hessians based on the MSE-loss is
to consider the pairwise MSE, pMSE (EQ), between all steps of the exploration EQ, as
introduced in Section 6.2. This metric is naturally low when phases are equivalent, and
positive should they be different.
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Figure 6.8 – (Top) Pairwise LMSE(Φ(q1),Φ(q2)) between all steps in an exploration EQ. Red
shows pairs in the same phase, while black shows pairs in different phases. (Middle) Dynamics of
the pMSE (EQ) as a function of the number of steps, normalized to 1 for the final step, with indexes
denoting distance from final step. (Bottom) pMSE (EQ) of final step (black) and maximum point

(red) versus the number of phases discovered.

Figure 6.8 shows some of the features of the pMSE (EQ). The top panel shows the
magnitudes of the pMSE (EQ) as a function of the number of phases discovered, both
when considering the whole set of steps (black) and when stopping the algorithm at
its peak pMSE (EQ) value (red). In both cases, the pMSE (EQ) is, on average, higher
the more different phases were discovered, which is its desired behavior. However, one
can see that once at least two phases have been discovered the pMSE (EQ) of an ex-
ploration with two phases may become indistinguishable compared to one of three or
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even four. The reason for this is the inherent weakness of the MSE as a loss function.
Chapter 5 already highlighted how small shifts in an oscillation can induce large MSE
realizations, which in this case would also translate into a high pMSE (EQ) though the
phase is qualitatively equivalent. The middle panels of Figure 6.8 highlight this effect,
the MSE for a shift within the EC phase (green) has a similar distribution as the MSE
of realizations in different phases (black), while the remaining within-phase MSEs are
significantly lower. One could apply a shifting approach such as dynamic time warping
to compare the different realizations xs,t(Φ), which may be more robust to these effects,
but such approaches are left to future research.

One thing that can be done however, is to reduce computational burden by preemptively
stopping the algorithm once the pMSE (EQ) flattens. The bottom panel of Figure 6.8
highlights the development of the pMSE (EQ) as a function of the number of steps from
the final realization of the exploration. In almost all cases, one can see that there is a
peak in the pMSE (EQ) early in the exploration, often at less than 10 steps, suggesting
that for a given computational budget one should run such a heuristic for up to 10 steps
to discover most phases with the benefit of selecting a wider variety of different starting
points.

Key Messages
• Using simple heuristic approaches like SimpleAlgo and ProbeAlgo, one can
recover the whole spectrum of different phases (and more) in the Mark-0
model.

• Probing the sign of the eigenvector and placing restrictions on the direction
of travel can improve the efficiency of exploration.

• For the Mark-0 model, the dynamics within a phase are consistently sensitive
to similar parameter combinations, in particular the speed of adjustment of
the prices and wages in response to inflation, suggesting that the explorations
traverse a lower-dimensional manifold when it comes to the unemployment
rate.

• While the MSE has weaknesses, one can nonetheless distinguish more suc-
cessful runs from less-successful ones by means of a pairwise approach
pMSE (EQ).
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Chapter 7
Investment-Driven Business Cycles: A
Sentiment-driven Mechanism

Taken from Naumann-Woleske et al. (2022) Capital Demand Driven Business Cycles:
Mechanism and Effects without modification.

The field of economics has long been aware of a conceptual dichotomy between stud-
ies of short-term dynamics and models of long-term growth. An early distinction was
made between the Hicks IS-LM model (1937) and the Solow growth model (1956). The
developments in both approaches have captured important dynamics at their respec-
tive timescales, such as short-term demand effects and endogenous drivers of long-term
growth (e.g. Aghion and Howitt, 1992). Yet it is not well understood how the dynamics
at different timescales are interlinked and how medium-term disequilibrium dynamics
impact the long-term growth trend of the economy.

Since World War II, the United States of America alone has faced twelve recessions.
While the severe short-term consequences of these crises are appreciated, understanding
of the long-lasting impact on growth remains underdeveloped. The pervasive recurrence
of booms and busts has thus sparked research into the linkages between economic volatil-
ity and growth (Cooley and Prescott, 1995; Aghion and Howitt, 2006; Priesmeier and
Stähler, 2011; Bakas et al., 2019). Theoretical as well as empirical investigations have
turned out to be inconclusive, as authors disagree on both the sign and magnitude of the
ultimate effect of volatility on growth.1 Theoretical literature is divided into two dom-
inant strands that stem from either Schumpeterian notions, in which volatility is good
for growth (based on Schumpeter, 1939, 1942), or the learning-by-doing concept (based

1We suggest Bakas et al. (2019) for a comprehensive review of this literature.
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on Arrow, 1962), where volatility is detrimental to growth. The conflicting theoretical
frameworks and ambiguous empirical findings indicate that new, alternative approaches
may be needed to decipher the genuine nature of the relationship between volatility and
growth. Current literature does not generally consider the impact of the interactions
among economic agents and their collective dynamics on long-term growth. It is this
impact and its underlying mechanisms that we seek to capture and explain.

We are motivated by the micro-to-macro approach of agent-based modeling (LeBaron
and Tesfatsion, 2008; Dawid and Delli Gatti, 2018; Hommes and LeBaron, 2018) and,
especially, the Keynes-meets-Schumpeter class of models (Dosi et al., 2010, 2015) that
study the linkages between endogenous growth and demand policy. While agent-based
models successfully capture many complex phenomena, they are generally analytically
intractable, making the analysis of the precise mechanics linking volatility and growth
difficult. Our approach remains distinct as we aim to derive a tractable system of
equations for the aggregate dynamics from micro-level interactions.

This chapter’s objective is to develop a model of capital demand driven economic fluctu-
ations, in which interactions among agents to coordinate on economic outcomes lead to
periods of booms and busts, and apply it to examine how fluctuations affect the economy
across different timescales and possibly shape its long-term growth. Inspired by Keynes
(1936), our focus on capital demand is motivated by the observation that firms’ invest-
ment is both pro-cyclical and volatile (Stock and Watson, 1999), suggesting investment
decisions play a key role in business cycles. We treat investment decision-making as an
interactions-based process whereby firm managers exchange views and affect each other’s
opinions. In other words, we emphasize strategic complementarity and peer influence
that cause managers to coalign their individual expectations at the micro level. We use
the framework developed in Gusev et al. (2015) and Kroujiline et al. (2016) to describe
this interaction process mathematically and derive the macroscopic equations governing
the dynamics of aggregate capital demand. To close the economy while highlighting
the demand-driven effects, we attach these equations to a simple supply side component
represented by the Solow growth model (1956).

As a result, we obtain a closed-form dynamical system, hereafter the Dynamic Solow
model, which enables us to study a broad range of economic behaviors. The model’s
primary contribution is the identification of a new mechanism of business cycles that
captures their quasiperiodic nature characterized by one or several peaks in a wide
distribution of cycle lengths.

We show that, for economically realistic parameters, the Dynamic Solow model admits
two attracting equilibria that entrap the economy in either a contraction or expansion.2

The equilibria are indeterminate (Benhabib and Farmer, 1999) as both the path to and
the choice of equilibrium depend on the beliefs of the agents themselves. The entrapment
is asymmetric because technological progress, introduced externally, causes the econ-

2The 2008 crisis gave new impetus to revisiting the single equilibrium framework; e.g. Vines and
Wills (2020) recently made the case for moving towards a multi-equilibrium paradigm.
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omy to stay on average longer in expansion than contraction, contributing to long-term
growth. The flow of exogenous news continually perturbs the economy stochastically and
prevents it from settling at either equilibrium. Over time, the economy tends to drift
slowly towards the boundary between the contraction and expansion regions, making it
easier for a news shock to instigate a regime transition in line with the “small shock,
large business cycle” effect (Bernanke et al., 1999). This endogenous mechanism gener-
ates quasiperiodic fluctuations as it involves both deterministic dynamics and stochastic
forcing.

Such a mechanism, whereby noise applied to a dynamical system leads to a quasiperiodic
response, is known as coherence resonance (Pikovsky and Kurths, 1997). It occurs in
situations where the system has long unclosed trajectories such that even small amounts
of noise can effectively reconnect them and thus create a quasiperiodic limit cycle. Co-
herence resonance emerges naturally in bi-stable systems3, including our model.

The coherence resonance mechanism differentiates the Dynamic Solow model from pre-
ceding research that has often considered limit cycles as the endogenous source of eco-
nomic fluctuations.4 In particular, Beaudry et al. (2020) propose an extended Dynamic
Stochastic General Equilibrium model, in which the quasiperiodic character of fluctu-
ations comes from noise acting directly on a periodic limit cycle. We argue, however,
that coherence resonance may be the preferred route to generating business cycles as it
requires noise only as a catalyst, thus relying much less on random shocks to reproduce
regime variability. Furthermore, we show that the fluctuations produced by a noise-
perturbed limit cycle, which is as well recovered in a certain parameter range in our
model, dampen long-term growth and unrealistically cause capital demand to diverge
from supply in the long run.

We note that the Dynamic Solow model nests two limiting cases that match those of
previous literature. In the case where capital demand is persistently higher than supply,
the model recovers the exponential equilibrium growth of the classic Solow model. In
the opposite case, where capital demand is persistently lower than supply, the model
exhibits quasiperiodic fluctuations driven by a coherence resonance mechanism similar
to that in Kroujiline et al. (2019).

We explore the Dynamic Solow model numerically across multiple timescales, from
months to centuries, and identify business cycles as quasiperiodic fluctuations that most
frequently last 40-70 years. These fluctuations may be associated with Kondratieff cy-
cles if interpreted as investment driven.5 Korotayev and Tsirel (2010) employ spectral

3In dynamical systems, bistability means the system has two stable equilibrium states.
4The early literature comprises Hicks (1937), Kaldor (1940) and Goodwin (1951). Later reviews

include Boldrin and Woodford (1990), Scheinkman (1990), Lorenz (1993) and Gandolfo (2009). We also
note Beaudry et al. (2020) as an influential recent investigation.

5Kondratieff himself attributed these cycles to capital investment dynamics. This interpretation was
further advanced by a number of papers in the 1980s. Kondratieff cycles are, however, more commonly
linked to technological innovation. There have also been attempts to combine investment and innovation
explanations. For a review see Korotayev and Tsirel (2010).
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analysis to suggest the existence of long-term business cycles. However, the academic
community remains divided on this issue and the research has been focused primarily on
the fluctuations in the 8-12 year range. These shorter-term cycles cannot emerge in our
model because it does not include accelerators such as the financial sector or household
debt.

Currently, many macroeconomic models describe an economy in or near equilibrium.
Most prominent is the Dynamic Stochastic General Equilibrium class of models (see
Christiano et al., 2018; Kaplan and Violante, 2018, for recent reviews). While behav-
ioral limitations and various frictions have been considered, these models operate in
an adiabatic regime where equilibrium is reached more quickly than the environment
changes. In other words, there is some form of perfect coordination (e.g. market clear-
ing where supply and demand equate) among all agents at each point in time. Over long
timescales this treatment may be justified, but in the near term coordination failures are
inevitable, leading to pronounced fluctuations and persistent spells of disequilibrium.

The Dynamic Solow model enables us to study both the disequilibrium fluctuations and
the equilibrium growth. We examine the impact of fluctuations on growth and show that
fluctuations can affect economic expansion over extended time intervals. However, the
deviations from the balanced growth path disappear with time as demand and supply
converge asymptotically in the long run.

The remainder of this chapter is structured as follows. In Section 7.1 we introduce
and explain the mechanics of dynamic capital demand and the Solow growth framework
within which it rests. Section 7.2 considers two limiting cases: first, we obtain the
equilibrium growth path when capital demand exceeds supply; and second, we investigate
the demand dynamics and highlight the mechanism underlying fluctuations when capital
supply exceeds demand. Section 7.3 formulates and studies the general case of the
Dynamic Solow model, focusing on the analysis of mid-term fluctuations and long-term
growth. Finally, Section 7.4 concludes by reflecting on the work done and suggests
further avenues of research.

7.1 The Dynamic Solow Model

This section develops the Dynamic Solow model.6 The modeling framework is set out in
Section 7.1 and the equations of the model components are derived in Sections 7.1-7.1.7

6M. Gusev and D. Kroujiline formulated and presented the basic ideas behind the
model at the Macroeconomic Instability seminars of the ”Rebuilding Macroeconomics” project
(www.rebuildingmacroeconomics.ac.uk) run by the National Institute of Economic and Social Research
in London (Gusev and Kroujiline, 2020).

7The code for this model is written in Python and is available at
github.com/KarlNaumann/DynamicSolowModel.
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Model Structure

The Dynamic Solow model is illustrated in Figure 7.1. It consists of a dynamic demand
framework that we propose to describe how firms determine capital needs and make
investment decisions (right loop), to which we attach the familiar circular income flow
of the Solow growth economy (left loop).8

Capital
SupplyHousehold

Production

Investment
Capital

Capital
Demand

Capital
Market

Firm
Factories

Information

Managers

AnalystsChange in 
Production

Exogenous
News

Solow
Economy

Capital
Demand

Discovery

Figure 7.1 – A conceptual flowchart of the Dynamic Solow model. Each individual circle depicts
an entity or agent. The circles’ color indicates whether they belong to the same entity (notably,
firm managers and firm factories are both parts of the firm). Labeled black arrows define the flows
between the respective entities or agents. The orange loops highlight (i) the Solow economy (left
loop) and (ii) the dynamic demand decision-making process introduced in this section (right loop).

In the Solow economy, households supply capital through savings and firms convert
capital into output for household consumption. Both households and firms are static
decision-makers. Households save a fixed share of income and firms convert all supplied
capital into production. In contrast, we aim to describe how firms develop a strategic
business outlook based on their reading of the current economic situation and accordingly
determine their capital needs so as to adjust production capacity. Firms thus become
active decision-makers, which results in a dynamically evolving capital demand.

Organizational decision-making is a complex process with competing goals and targets,
often based on industry-standard business planning and operating procedures (Cyert
and March, 1992; Miller and Cardinal, 1994). Without needing to make firm goals
explicit, we posit that corporate decision-making can be viewed as a composite of two
distinct processes occurring on different timescales. First, there is information gathering
and analysis, characterized by the frequency with which exogenous information such as

8We choose this supply-side framework for the following reasons: (i) the capital supply dynamics
are less important on the timescales where we expect to find fluctuations and thus can be modeled
approximately; (ii) the assumption that households save a constant fraction of income is an appropriate
leading-order approximation since it is the first term in the Taylor series expansion of savings as a
general function of income; and (iii) the Solow model is a parsimonious representation of economic
growth, sharing the basics with many macroeconomic models, which may be helpful to extending our
approach to more sophisticated settings.
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ad-hoc company news, monthly statistics releases or quarterly earnings reports becomes
available. Second, there is the formation of firms’ expectations about the future based on
the analysis of collected information, which is then translated into investment decisions.
Note that the strategic aspect of investment decision-making implies longer timescales
than those of information gathering and analysis.

We model this two-tier decision-making on the microscale by introducing two classes of
agents: analysts who collect and analyze relevant information and managers who use
this analysis to develop a business outlook and make investment decisions. There are
industries where these two classes of agents actually exist (e.g. analysts and investors in
finance), whereas in other situations this division serves as a metaphor for the different
actions completed by an individual participant. Our objective is to derive the macro-level
equations for aggregate demand from this micro setting.

External information enters the decision-making process at the analyst level. Initially, we
may neglect the cost side and focus solely on revenue generation, elevating in relevance
the expectation of future consumption. Motivated by recent work on extrapolative
beliefs in finance (Greenwood and Shleifer, 2014; Kuchler and Zafar, 2019; Da et al.,
2021), we assume that analysts base their expectations primarily on the current state of
the economy by extrapolating the consumption growth into the future. As such, we wish
to carve out consumption growth as the most relevant information stream and model all
other news as exogenous noise (treating news shocks similarly to Angeletos and La’O,
2013; Angeletos et al., 2018; Beaudry and Portier, 2014). We can further simplify by
replacing consumption with production since consumption is approximated as a constant
fraction of production in the model. The resulting system acquires a feedback mechanism
as higher output growth leads to increasing expectations that cause greater investment,
inducing further increases in output growth and starting the process anew.

On the manager level, we emphasize the impact of the opinions and actions of com-
petitors on decision-making, following the growing body of research on peer influence
in business (Griskevicius et al., 2008) and strategic complementarity (Cooper and John,
1988; Beaudry et al., 2020). More specifically, we assume that managers exchange views
within their peer network with the purpose of coaligning their expectations about the
economy.

The Dynamic Solow model employs, as discussed, two different processes for capital de-
mand and supply: firms determine capital needs dynamically via individual interactions
and economic feedback while households supply capital in proportion to income. Thus,
demand and supply do not necessarily match at each point in time, which brings us to
the discussion of capital market clearing on different timescales. The dynamic demand
discovery process occurs on timescales much shorter than the timescale of technological
growth. At these short and intermediate timescales – relevant to information gathering,
investment decision-making and production adjustment – prices are rigid and we expect
demand and supply to behave inelastically. However, over long time horizons in which
the economy is advancing along the equilibrium growth path, prices become flexible and
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the capital market clears via price adjustment. Therefore, we expect that demand and
supply converge in the long run.

As such, the conceptual framework behind the model is now complete. The remainder
of Section 7.1 is as follows. First, the Cobb-Douglas aggregate production equation is
extended to include the shorter timescales at which production capacity adjusts. There-
after, the representative household and the capital motion equation are introduced.
Thereafter, we derive the equations for aggregate capital demand from the micro-level
agent-based formulation outlined above. Finally, the conditions for capital market clear-
ing are set out.

Production

We represent aggregate output by a Cobb-Douglas production function that takes in-
vested capital as an input,9 generically written as

Y = eεtKρ, (7.1)

with output Y , invested capital K, capital share in production ρ and technology growth
rate ε. Equation (7.1) implies that output adjusts immediately to any change in capital.
In other words, it is only valid on timescales longer than the time it takes to adjust
the production capacity (e.g. the construction of a new factory or installation of new
machinery). Since we are also concerned with decision-making processes that occur at
much shorter timescales than production adjustment, we introduce a dynamic form of
production

τyẎ = −Y + eεtKρ, (7.2)

where the dot denotes the derivative with respect to time and 1 ≪ τy ≪ 1/ε is the
characteristic timescale of production capacity adjustment.10 In the short run, this
equation describes the dynamic adjustment of output to new capital levels. In the long
run, we recover the Cobb-Douglas production form (7.1) as τyẎ becomes negligibly small
for t≫ τy.

Finally, we rewrite equation (7.2) with log variables k = lnK and y = lnY as

τyẏ = eρk+εt−y − 1. (7.3)

Households and Capital Supply

We consider a single representative household that is the owner of the firm and thus
receives Y as income. A fixed proportion of income, expressed as λY , is saved and the
remainder is consumed. This is a convenient simplification that allows us to focus on

9For simplicity, we normalize the initial technology level to unity and do not consider labor, which is
equivalent to normalizing the labor component to unity or taking the variables in per capita terms.

10In reality, the adjustment periods are asymmetric because it is easier to reduce capacity than to
increase it. For simplicity, we treat capacity increases and decreases as if they were symmetric. This
implies that the downturns we observe may be elongated.
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the effects of dynamic capital demand. A constant savings rate can also be viewed as
a leading-order Taylor expansion of household savings as a general function of income,
making it a sensible first approximation.

The total savings are available to firms to invest. We denote them as capital supply
Ks. The working capital used in production, K, suffers depreciation at a rate δ. As
households are the owners of the capital, the loss δK is attributed to the capital supply.
Consequently, the supply dynamics take the form

K̇s = λY − δK. (7.4)

Setting ks = lnKs, we reformulate equation (7.4) using log variables as

k̇s = λey−ks − δek−ks . (7.5)

Dynamic Capital Demand

In this section, we derive the equations for aggregate capital demand. As set out in
Section 7.1, this derivation is based on a micro-level framework that divides the firms’
investment planning into two processes occurring at different speeds: fast-paced informa-
tion gathering and analysis; and slow-paced decision-making. We model these processes
with two classes of interacting agents: analysts who collect and analyze relevant infor-
mation; and managers who use this analysis to develop their strategic business outlook
and make investment decisions.11

In mathematical terms, we consider two large groups of agents: analysts i ∈ {1, . . . , Nh}
and managers j ∈ {1, . . . , Ns}, where Nh ≫ 1 and Ns ≫ 1. Each analyst and manager
has a positive or negative expectation about the future path of production, respectively
hi = ±1 and sj = ±1. The agents interact by exchanging opinions. As a result, the
agents influence each other’s expectations and tend to coalign them. To stay general, we
assume analysts and managers interact among themselves and with each other. These
individual interactions drive the evolution of the macroscopic variables: average analyst
expectation h (information) and average manager expectation s (sentiment).

At each moment of time t, sentiment s is given by

s(t) = n+(t)− n−(t), (7.6)

where n+ = N+
s /Ns and n− = N−

s /Ns, with N+
s and N−

s representing the respective
number of optimists (sj = 1) and pessimists (sj = −1). By construction, s varies between
−1 and 1. At the leading order, we treat interaction as though each sj is affected by
the collective opinions s and h (similarly constructed), each forcing sj in their respective

11This modeling approach adapts the investor-analyst interaction framework, developed for the stock
market in Gusev et al. (2015) and Kroujiline et al. (2016), to the macroeconomic context.
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directions.12 As a result of this simplification, we can introduce the total force of peer
influence Fs acting on each manager as

Fs(s, h) = β1s(t) + β2h(t) + Es(t), (7.7)

where β1 > 0 and β2 > 0 are the sensitivities and Es denotes general exogenous influ-
ences (to be specified later). Equation (7.7) implies that as the collective expectations
of managers and analysts grow more optimistic, the stronger the force exerted on a
pessimistic manager to reverse her views (and vice versa).

In addition, managers may be affected by a multitude of idiosyncratic factors causing
them to occasionally change opinions irrespective of other participants. We treat them
as random disturbances and, accordingly, introduce the transition rates p−+ as the
probability per unit time for a manager to switch from a negative to positive opinion
and p+− as the probability per unit time of the opposite change. We can express the
changes in n+ and n− over a time interval ∆t as

n+(t+∆t) = n+(t) + ∆t
(
n−(t)p

−+(t)− n+(t)p
+−(t)

)
, (7.8)

n−(t+∆t) = n−(t) + ∆t
(
n+(t)p

+−(t)− n−(t)p
−+(t)

)
. (7.9)

Noting that n+ = (1 + s)/2 and n− = (1− s)/2, we subtract (7.9) from (7.8) to obtain
in the limit ∆t→ 0

ṡ = (1− s)p−+ − (1 + s)p+−. (7.10)

To complete the derivation, we must find out how the transition rates depend on peer
influence: p−+ = p−+(Fs) and p+− = p+−(Fs). It follows from (7.8) that in the
state of equilibrium, when n±(t + ∆t) = n±(t), the condition p−+/p+− = n+/n− =
N+

s /N
−
s holds. Thus p−+/p+− can be interpreted as the ratio of optimists to pes-

simists. We can assume this ratio changes proportionally to a change in Fs, that is
d(N+

s /N
−
s )/(N+

s /N
−
s ) = αdFs where α is a positive constant. This interpretation al-

lows us to write d(p−+/p+−)/(p−+/p+−) = αdFs, which leads to

p−+

p+− = eαFs . (7.11)

Condition (7.11) implies correctly that p−+ > p+− for Fs > 0, p−+ = p+− for Fs = 0
and p−+ < p+− for Fs < 0. To obtain the final condition required to determine p−+ and
p+− uniquely, we introduce the characteristic time τs over which individual expectations
change due to random disturbances. Since p−+ and p+− are per unit time, τs represents
the characteristic time over which the total probability for a manager to reverse her
expectation is unity:13

(p−+ + p+−)τs = 1. (7.12)

12This treatment, known as the mean-field approach, is the leading-order approximation for a general
interaction topology.

13Consider the impact of a random disturbance. At its end, the agent’s state will remain or change
to its opposite. Introduce p

′++ and p
′+− as the probabilities for the agent, in state +1, to end up in
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Together conditions (7.11) and (7.12) imply the transition rates:

p−+ =
1

τs (1 + e−αFs)
, p+− =

1

τs (1 + eαFs)
. (7.13)

Equations (7.13) allow us to rewrite (7.10) as

τsṡ = −s+ tanh (Fs) = −s+ tanh (β1s+ β2h+ Es) , (7.14)

where α/2 is absorbed into β1 and β2 without loss of generality. Note that τs acquires a
dual meaning: at the micro level, τs is akin to the manager’s average memory timespan;
at the macro level, τs is the characteristic time of variation in the aggregate expectation
of managers.

Applying this approach to model the dynamics of analyst expectations yields the same
form of the evolution equation for information h:

τhḣ = −h+ tanh (Fh) = −h+ tanh (β3s+ β4h+ Eh) , (7.15)

where τh represents the analyst’s average memory timespan on the micro level and
the characteristic time of the variation in the aggregate expectation of analysts on the
macro level. Similarly, Fh is the peer influence acting on the analysts’ expectations,
which is linear in s and h with sensitivities β3 and β4, and Eh denotes general exogenous
influences.

Equations (7.14) and (7.15) describe a generalized interactions-based process of decision-
making. We now make several assumptions to adapt it to the capital demand discovery
mechanism of the Dynamic Solow model (Figure 7.1).

First, we assume managers receive information only via analysts and accordingly set
Es = 0. Second, we assume analysts are affected, first and foremost, by the news
about economic development and only thereafter by all other news. More specifically,
we assume the average analyst projects the output trend forward in time (extrapolative
beliefs) and we treat all other relevant news as exogenous noise. Thus we set

Eh = γẏ + ξt, (7.16)

with sensitivity γ and news noise ξt acting on the timescale τξ ≪ τh. The latter implies
that changes to expectations are impacted by short-term shocks with no relation to
economic fundamentals (as suggested, for example, by Angeletos et al. (2020)).

Third, we establish separate timescales for information processing and expectation for-
mation. That is, we assume information is received and processed much faster than it

state +1 or −1, respectively, and p
′−− and p

′−+ for the agent, in state −1, to end up in state −1 or
+1, respectively. Thus, p

′++ + p
′+− = 1 and p

′−− + p
′−+ = 1. Assuming that the ending state does

not depend on the initial state, i.e. p
′++ = p

′−+ and p
′−− = p

′+−, we obtain p
′−+ + p

′+− = 1. If the
disturbances are frequent on the timescale of interest, we can transform the discrete probabilities into
continuous transition rates via p−+ = p

′−+/τs and p+− = p
′+−/τs to recover equation (7.12).
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takes managers to adapt their long-term outlook and form investment decisions. There-
fore: τh ≪ τs. Fourth, as τh is much shorter than τs, we assume direct interactions are
less important for analysts than for managers and we take β3 = β4 = 0 for simplicity.

The final step is to model the link between sentiment and capital demand. Consider a
firm whose managers have just decided on capital allocation in line with their collective
sentiment. The following day, all else being equal, the managers will not revisit this
decision unless their sentiment changes. Therefore, in the short run where t ≪ τs (that
is, over time horizons where the memory of past sentiment persists), capital demand
must be driven by change in sentiment. Conversely, over longer horizons where t ≫ τs,
the connection between previous decisions and sentiment becomes weaker and, therefore,
investment decisions must be based on the level of sentiment itself in the long run. For
lack of simpler alternatives, we superpose these two asymptotic regimes, k̇d ∼ ṡ for
t≪ τs and k̇d ∼ s for t≫ τs, and, as a result, arrive at a complete system of equations
for capital demand:

k̇d = c1ṡ+ c2s, (7.17)

τsṡ = −s+ tanh (β1s+ β2h) , (7.18)

τhḣ = −h+ tanh (γẏ + ξt) , (7.19)

where c1 > 0 and c2 > 0 represent the capital demand sensitivity to a change in sentiment
ṡ and the level of sentiment s, respectively; and γ > 0 represents the sensitivity of
information h to the state of the economy or, in other words, the strength of economic
feedback.14

Capital Market Clearing

At the relatively short time horizons relevant to information gathering, investment
decision-making and production adjustment, prices are not flexible enough to efficiently
match capital demand kd and supply ks, which are determined independently from each
other. Accordingly, we introduce an inelastic market clearing condition for log invested
capital k as

k = min (ks, kd) , (7.20)

to be satisfied at each moment in time. In contrast to the classic framework, in which all
household savings are used in production, this condition implies that only a portion of

14Gusev et al. (2015) derived equations (7.18) and (7.19) in the context of their generalized Ising model.
The derivation presented here provides a more intuitive, albeit less rigorous, treatment. Equation (7.18),
with h as an exogenous variable, was originally obtained by Suzuki and Kubo (1968) for the classic Ising
(1925) model in statistical mechanics. Following Haag and Weidlich (1983), equation (7.18) (often in its
stationary form) has frequently appeared in the socioeconomic context. For reviews of the interactions-
based approaches reliant on the statistical mechanics methods and, particularly, the applications of the
Ising model and its variants to the opinion dynamics problems in economics and finance, we recommend
Brock and Durlauf (2001), Bouchaud (2013) and Slanina (2013). We also note that, unlike equations
(7.18) and (7.19) that are derived from the micro level, equation (7.17) is obtained as a phenomenological
relation between business sentiment and capital demand. Equation (7.17) was initially suggested as a
link between investor sentiment and stock market returns in Gusev et al. (2015).
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savings will be invested should demand fall short of supply (with the remainder retained
in household savings accounts).

Equation (7.20) is a local clearing condition that reflects the short-term price rigidity.
Therefore, as was discussed in Section 7.1, this equation cannot remain valid over long-
term horizons during which prices become sufficiently flexible to match demand and
supply. As such, we supplement (7.20) with an asymptotic clearing condition that holds
in the timescale of long-term economic growth:15

ks ∼ kd for t ≥ O (1/ε) ≫ 1. (7.21)

Together, equations (7.20) and (7.21) interlink the supply and demand components and
close the Dynamic Solow model.

At this point, it may be useful to discuss the characteristic timescales in the model. The
timescales we have encountered are differentiated in length such that τξ ≪ τh ≪ τs ≪
τy ≪ 1/ε. Economically, information gathering occurs on a relatively short timescale, τh
(with the publication of, for example, monthly and quarterly corporate reports and in-
dustry data releases); investment decisions require more time, τs (as processed through,
for example, annual board meetings); and the implementation of changes to production
levels takes much longer, τy (the time needed for material adjustments such as infras-
tructure development). We set τh = 25, τs = 250 and τy = 1000 in units of business days
(250 business days = 1 year). We further assume the timespan of exogenous news events
to be on average one week and set τξ = 5 as the news noise decorrelation timescale (see
Appendix F.1). Finally, we take technology growth rate ε = 2.5 × 10−5, which implies
the timescale of 160 years.16

7.2 Demand and Supply: Two Limiting Cases

In this section, we inspect two cases that follow from the market clearing condition
(7.20): first, the supply-driven case, kd > ks such that k = ks, which recovers a Solow-
type growth economy; and, second, the demand-driven case, kd < ks such that k = kd,
in which the economic fluctuations emerge.

Supply-Driven Case kd > ks

In the supply-driven case, the market clearing condition yields K = Ks (firms use all
available capital for production)17. Consequently, the Dynamic Solow model is reduced
to equations (7.2) and (7.4) which can be expressed as a single second-order differential

15The asymptotic relation (7.21) means that the relative error between ks and kd goes to zero as t
goes to infinity.

16In equation (7.1), the term exp(εt), commonly referred to as total factor productivity, yields a growth
rate of about 0.6% p.a. for ε = 2.5× 10−5, which is not far from the estimates based on the 2005-2016
period using Fernald (2016).

17It is convenient to use the non-logarithmic variables for this analysis.
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equation:

τY K̈ + (1 + τY δ)K̇ + δK = λKρeεt. (7.22)

For t ∼ 1/ε and longer time intervals, the derivative terms in equation (7.22) become
negligibly small and we recover the equilibrium growth path. On shorter timescales, t ∼
τy, equation (7.22) describes adjustment towards the equilibrium growth path. These two
effects can be observed simultaneously by deriving an approximate solution to equation
(7.22) for t ≥ O(τy) (see Appendix F.3). The resulting production path is given by

Y =

(
λ

δ

) ρ
1−ρ

((
Be

−
(

1−ρ
τy

)
t
+ 1

) 1
1−ρ

+ e

(
ε

1−ρ

)
t − 1

)
, (7.23)

where B is the constant of integration.18 Equation (7.23) explains the output dynamics
between intermediate and long-term timescales, capturing both the long-term growth of
the classic Solow model (given by the second exponent) and the intermediate relaxation
towards the same (given by the first exponent). The approximate analytic solution (7.23)
and the exact numerical solution to equation (7.22) are compared in Figure 7.2.
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Figure 7.2 – Output Y (t) in the supply-driven case represented by the numerical solution of
equation (7.22) (dashed blue line) and the approximate solution (7.23) (solid red line). The precision
of the approximate solution is improved with a greater timescale separation τy ≪ 1/ε. Parameters:
ρ = 1/3, τy = 1000, λ = 0.15, ε = 10−5 and δ = 0.02 with an integration constant of B = 1.5. The
inset box highlights the intermediate adjustment of output from an arbitrary initial value to the

equilibrium growth path. Taken from Naumann-Woleske et al. (2022)

Demand-Driven Case kd < ks

In the demand-driven case, the market clearing condition yields k = kd. The Dynamic
Solow model is specified at this limit by equations (7.3) and (7.17)-(7.19) (in this case,

18This derivation is valid for the parameter values provided in Appendix F.2, subject to the simplifying
assumption τyδ ≫ 1 which allows us to obtain the solution in a compact form.
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equation 7.5 decouples and no longer affects production). To facilitate our analysis, we
introduce the variable z = ρkd+εt−y, which makes the model solutions bounded in the
(s, h, z)-space (see Appendix F.4). Economically, z represents the direction and strength
of economic growth. This follows from rewriting equation (7.3) as τyẏ = ez − 1, noting
that for z > 0 production expands, for z < 0 it contracts and z = 0 is a production fixed
point. Using z, we re-express the model as a three-dimensional dynamical system that
is bounded and autonomous in the absence of exogenous noise ξt:

ż = ρc1ṡ+ ρc2s− ωY (ez − 1) + ε (7.24a)

τsṡ = −s+ tanh (β1s+ β2h) (7.24b)

τhḣ = −h+ tanh (γωy (e
z − 1) + ξt) , (7.24c)

where, for convenience, ωy = 1/τy.

This dynamical system is parametrized and examined in detail in Appendix F.1. For
the relevant range of parameters it has three equilibria: a stable focus where sentiment
is positive (s > 0) and the economy is expanding (z > 0), a stable focus where sentiment
is negative (s < 0) and the economy is contracting (z < 0) and an unstable saddle
point in between.19 The location, basin of attraction and stability of the equilibria are
primarily affected by the parameters c2 (sensitivity to sentiment levels) and γ (sensitivity
to economic feedback). In particular, an increasing c2 strengthens convergence towards
the equilibria, so the system acquires greater stability.

If c2 is below a certain critical value, equations (7.24) generate a periodic limit cycle.
The idea that limit cycles provide a mechanism of economic fluctuations dates back to
Kalecki (1937), Kaldor (1940), Hicks (1950) and Goodwin (1951). The empirical irrel-
evance of periodic limit cycles led to a diminished interest in this research direction20;
however, Beaudry et al. (2020) have reinitiated the discussion by proposing that cycli-
cality can arise from stochastic limit cycles “wherein the system is buffeted by exogenous
shocks, but where the deterministic part of the system admits a limit cycle”. In our sys-
tem, exogenous news noise ξt similarly detunes limit cycle periodicity. This mechanism,
however, cannot explain the “small shock, large crisis” effect or reproduce the general
variability present in the real-world economy. At the other extreme, our system gener-
ates noise-prevailing behaviors with weak cyclicality. Neither extreme accurately reflects
empirical observations and thus we seek a sensible balance between these features in a
parameter regime that produces significant dynamic effects but precedes the limit cycle
formation (Appendix F.1).

19For convenience, we classify 3D equilibrium points using more familiar 2D terminology. As such: (i)
the stable (unstable) node has three negative (positive) real eigenvalues; (ii) the focus has one real and
two complex eigenvalues and is stable if the real eigenvalue and the real parts of complex eigenvalues are
all negative and unstable otherwise; and (iii) the saddle is always unstable as it has three real eigenvalues
that do not all have the same sign. In the figures, the stable points are green and unstable points are
red, while the nodes are marked by triangles, foci by squares and saddles by circles.

20Nevertheless, a similar line of research has been pursued in overlapping generations models and
innovation cycles. See Hommes (2013) and Beaudry et al. (2020) for references.
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(a) Coherence resonance for c2 = 7 × 10−4 and γ = 2000. This subcritical regime presents a bi-stable
configuration of equilibria: green squares denote the two stable foci and the red circle an unstable saddle.
Red trajectories terminate at the s < 0 focus in which the economy contracts and blue trajectories terminate
at the s > 0 focus in which the economy expands. The long trajectories passing near one focus and ending
at the other are of a particular interest as they provide the pathway for the economy’s regime transitions.

Taken from Naumann-Woleske et al. (2022)
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(b) Limit cycle for c2 = 1× 10−4 and γ = 4000. In this supercritical regime, only the positive (s > 0) equi-
librium point survives, having bifurcated into an unstable focus, and a large stable limit cycle emerges that
propels the economy between contraction and expansion with a constant frequency. Taken from Naumann-

Woleske et al. (2022)

Figure 7.3 – 3D phase portraits (ξt = 0) in the (s, h, z)-space: (a) the coherence resonance regime
and (b) the limit cycle regime. The long trajectories in (a) can be viewed as segments of the limit
cycle in (b), which remain unconnected for ξt = 0. Parameters other than c2 and γ are from the

base case in Appendix F.2. Taken from Naumann-Woleske et al. (2022)
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Figure 7.4 – Left: The coherence resonance phase portrait in Figure 7.3a projected on the s, z-
plane. The approximate boundary between the contraction and expansion regions is indicated by
a dashed black line. When the economy moves along the long trajectories, it traverses quickly the
distance in s between the foci. However, the movement speed declines sharply with the proximity to
equilibrium. As a result, the economy slowly ascends along the z-axis towards the left focus in the
contraction mode and slowly descends to the right focus in the expansion mode. As the economy is
undergoing this gradual drift, the distance to the boundary separating contraction and expansion
diminishes. Right: The limit cycle phase portrait in Figure 7.3b projected on the s, z-plane. Taken

from Naumann-Woleske et al. (2022)

To this end, we consider a subcritical regime with c2 above but close to its critical
value at which the limit cycle emerges. In this situation, henceforth referred to as
the coherence resonance regime, the foci are always stable, thus acting as attractors
entrapping the economy. In Figures 7.3 and 7.4, we compare the phase portraits (i.e.
the system trajectories for ξt = 0) of the coherence resonance and limit cycle regimes. In
the coherence resonance case, we take note of the unclosed largescale trajectories that
pass near one attractor and converge to the other. These trajectories, which can be
viewed as segments of a limit cycle, are the pathways along which the economy moves
between contraction and expansion.

The dynamics of business cycles for nonzero ξt are visualized in Figure 7.5. The econ-
omy’s trajectory displays distinctly bi-stable behavior as it spends most of its time near
each focus and transits swiftly between them. When captive to an attractor, the tra-
jectory follows an orbit around the corresponding focus, buffeted by exogenous noise
ξt, preventing it from settling. Simultaneously, the economy drifts slowly towards the
boundary between attracting regions (Figure 7.4(left)), making it easier for a random
news shock to thrust it across the boundary to be caught by the other attractor. The
news shocks ξt thus fulfill a dual purpose: they perturb the economy from equilibrium
and provide a trigger that alternates the economic regime between expansions and re-
cessions.

This mechanism can be classified as coherence resonance, a phenomenon whereby noise
applied to a dynamical system leads to a quasiperiodic response (Pikovsky and Kurths,
1997). Coherence resonance normally occurs in bi-stable systems that are stochastically
forced and in which key variables evolve on different timescales. The Dynamic Solow
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Figure 7.5 – A simulated economy’s path for nonzero ξt in the coherence resonance case, smoothed
by a Fourier filter to remove harmonics with periods less than 500 business days for a better visual-
ization in the 3D phase space. The regions where the trajectory is dense indicate the contraction and
expansion attractors, around which the economy spends most of its time. The relatively straight
path segments between the attractors correspond to the economic regime transitions that occur
on a relatively rapid timescale. Parameters are from the base case in Appendix F.2. Taken from

Naumann-Woleske et al. (2022)
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Figure 7.6 – Sentiment s(t) (left) and output y(t) (right) on a simulated economy’s path for nonzero
ξt in the coherence resonance regime. Output undergoes fluctuations within a general growth trend
as sentiment evolution exhibits a distinct bi-stable pattern. Parameters are from the base case in

Appendix F.2. Taken from Naumann-Woleske et al. (2022)
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model satisfies these requirements: (i) news shocks provide a stochastic force; (ii) two
stable equilibria emerge in the relevant parameter range; and (iii) the separation of char-
acteristic timescales follows from the dynamics of corporate decision-making processes.
The three-dimensionality of equations (7.24) introduces an important novel feature into
the classic two-dimensional case of coherence resonance: the above-mentioned slow drift
of the economy’s trajectory, which gradually increases the probability of regime transi-
tion.21 This novel feature nonetheless leaves the basic mechanism unchanged: exogenous
noise forces the economy across the boundary separating the regions of different dynam-
ics, effectively reconnecting the trajectories between attractors. As a result, the economy
undergoes quasiperiodic fluctuations consisting of alternating periods of expansion and
recession punctuated by sharp transitions (as in Figure 7.6).

While both coherence resonance and limit cycle occur in the economically realistic range
of parameters (see Appendix F.1), we will show that only coherence resonance is com-
patible with the long-term economic growth when studying the asymptotic convergence
of capital supply and demand in the presence of fluctuations driven by the coherence
resonance and limit cycle mechanisms in Section 7.3.

7.3 Business Cycles and Long-Term Growth in the General Case

While the supply- and demand-driven cases have been instructive for highlighting the
mechanisms underlying economic dynamics, their applicability as standalone models is
limited as supply and demand converge in the long run (equation (7.21)). As such, our
primary focus is on the general case in which supply and demand coevolve, potentially
leading to an interplay of supply- and demand-driven dynamics. We formulate the
general case in Section 7.3, study long-term growth rates in Section 7.3 and examine
economic fluctuations in Section 7.3.

Formulation of the General Case

In the general case, invested capital k can alternate between kd (demand-driven regime)
and ks (supply-driven regime) in accordance with the market clearing condition (7.20).
As discussed in Section 7.1, firms’ decision-making processes are influenced by feedback
from the economy. However, the supply-driven regime represents a special situation in
which firms’ investment decisions do not affect economic output as production is deter-
mined in this case solely by capital availability. In other words, the supply-driven regime
implies a Solow-type growth economy propelled by expectations of future consumption
so high as to induce firms to utilize all capital supplied by households in production.
Therefore, ẏ, which is positive in this regime, holds no additional information for man-
agers, who are already overwhelmingly bullish about the economy. The idiosyncratic
news ξt remains the only source of nontrivial information, thereby becoming the focus of

21This drift imposes a slow timescale t ≥ O(τy) on the frequency of the economy’s fluctuations by
modulating the probability of regime transition. This effect was first observed and explained for a similar
dynamical system in Kroujiline et al. (2019).
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managers and analysts alike. Thus, economic feedback γẏ vanishes as a decision factor
in the supply-driven regime.

Following this argument, we account for regime-dependent variation in feedback strength
by introducing a regime-specific factor H(kd, ks) that regulates the impact of feedback
in equation (7.19):

τhḣ = −h+ tanh (γẏH(ks, kd) + ξt) , (7.25)

where

H(ks, kd) =

{
1 if kd ≤ ks

0 if kd > ks
. (7.26)

The Dynamic Solow model is then represented in the general case by the following system
of equations:

τY ẏ = eρk+εt−y − 1, (7.27)

k̇s = λey−ks − δek−ks , (7.28)

k̇d = c1ṡ+ c2s, (7.29)

τsṡ = −s+ tanh (β1s+ β2h) , (7.30)

τhḣ = −h+ tanh (γẏH(ks, kd) + ξt) , (7.31)

k = min(kd, ks), (7.32)

ks ∼ kd for t ≥ O(1/ε) ≫ 1, (7.33)

where (7.27) is the dynamic equation governing production; (7.28) describes the motion
of capital supply; (7.29)-(7.31) govern the feedback-driven dynamics that link informa-
tion h, sentiment s and capital demand kd; (7.32) defines the locally-inelastic market
clearing condition; and (7.33) represents long-term market clearing that takes the form
of an asymptotic boundary condition at large t.

Growth and Convergence in the Long Run

The Dynamic Solow model (7.27)-(7.33) covers two regimes with different dynamics: a
demand-driven regime with endogenous fluctuations and a supply-driven regime without
them. Both regimes are expected to participate in the model’s general case, owing to
the convergence of supply and demand in the long run under equation (7.33).

Equation (7.33) is central to our present analysis. Based on the regime definitions,
this equation is satisfied when supply grows faster than demand in the supply-driven
regime and, conversely, when demand grows faster than supply in the demand-driven
regime. Under the demand-driven regime, the two possible mechanisms of fluctuations
– limit cycle and coherence resonance – may entail different growth rates, validating the
mechanism if demand grows fast enough to satisfy (7.33) and invalidating it otherwise.
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Figure 7.7 – A long-term simulation that captures asymptotic growth in the enforced supply-
driven regime (k = ks). Output y and supply ks grow steadily at the Solow rate R while demand kd
stagnates. As such, ks will eventually reach and exceed kd, at which point the supply-driven regime
will be succeeded by the demand-driven regime. Parameters are from the base case in Appendix

F.2.

This section aims to determine (i) the impact of fluctuations on growth; (ii) the mecha-
nism of fluctuations compatible with equation (7.33); and (iii) the actual growth dynam-
ics realized in the model. We first consider separately the supply- and demand-driven
regimes (Sections 7.3 and 7.3) and then tackle the general case (Section 7.3). Appendix
F.4 provides the derivations of the equations herein.

Asymptotic Growth in the Supply-Driven Case (kd > ks)

We show in Appendix F.4 that the economy’s long-term growth in the supply-driven
case is given by

y0 = ks0 =
ε

1− ρ
≡ R, (7.34)

kd0 = 0, (7.35)

where y0, ks0 and kd0 represent, respectively, the log output, log supply and log demand
growth rates; ρ = 1/3 is the capital share in production; and R denotes the classic Solow
growth rate. As expected, the growth rate is not influenced by demand dynamics and
matches R. These estimates are verified by numerical simulations (see Figure 7.7). Note
that supply always catches up with demand as ks0 > kd0 in this case.

Asymptotic Growth in the Demand-Driven Case (kd < ks)

We show in Appendix F.4 that the economy’s long-term growth in the demand-driven
case satisfies

y0 = ks0 = R+ ρ (kd0 −R) . (7.36)

According to this equation, output becomes dependent on demand, which itself under-
goes endogenous fluctuations, and thus demand dynamics affect the long-term behavior
of the economy. The magnitude of kd0 determines whether the economy expands faster
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or slower than the classic Solow economy: y0 > R if kd0 > R and y0 < R if kd0 < R (the
latter condition including an important case when kd0 = 0 that yields an especially slow
growth rate y0 = ks0 = ε). Next, we estimate kd0 numerically under the effect of limit
cycle and coherence resonance.

Figure 7.8 depicts the growth dynamics driven by a periodic limit cycle (ξt = 0). We
observe that kd0 stays close to zero and y0 and ks0 match ε closely in accordance with
(7.36), meaning the economy grows only through improvements in production efficiency.
Figure 7.9 displays similar dynamics for the limit cycle perturbed by exogenous noise ξt.
It follows that limit cycles, whether periodic or stochastic, lead to a growth rate of less
than R.

The above result can be explained by noting that an economy on a limit cycle trajectory
spends roughly an equal amount of time in expansion (s > 0) as in contraction (s < 0)
and, consequently, s exhibits on this trajectory a long-term average value of zero. In
Appendix F.4, we find that kd0 is proportional to the long-term average of s, implying
kd0 tends to zero as well; therefore, demand can never catch up with supply due to
the difference in their growth rates. In sum, the fluctuations generated by a limit cycle
detract from long-term growth and fail to satisfy equation (7.33).
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Figure 7.8 – A long-term simulation that captures asymptotic growth in the enforced demand-
driven regime (k = kd) powered by a periodic limit cycle (ξt = 0) with γ = 1000, c2 = 2 × 10−5

and all other parameters from the base case in Appendix F.2. Left: Production y grows at a rate
lower than the Solow rate R while demand kd stagnates (and, in fact, appears to gradually decrease,
which could be attributed to the slight asymmetry of the limit cycle with respect to s). Since ks
and y grow at the same rate (equation (7.36)), kd cannot catch up with ks. Right: Sentiment s(t)

demonstrates the limit cycle’s periodicity.

Coherence resonance induces a drastically different long-term dynamic despite the visu-
ally similar fluctuations (see Figure 7.10). Demand grows asymptotically at kd0 > R,
leading to accelerated economic growth of y0 = ks0 ≡ R⋆ > R in accordance with
equation (7.36). This fast-paced growth, made possible by excess capital, ks > kd, avail-
able for investment in the demand-driven regime, is explained by technological progress
(ε > 0), causing the economy to spend on average more time in expansion than contrac-
tion. We further observe that kd0 > R⋆; that is, demand grows faster than both supply
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Figure 7.9 – A long-term simulation that captures asymptotic growth in the enforced demand-
driven regime (k = kd) powered by a stochastic limit cycle (ξt ̸= 0) with the same parameters as in
Figure 7.8. Left: Production y grows at a rate lower than the Solow rate R while capital demand kd
stagnates (exogenous noise evidently erasing the limit cycle’s asymmetry visible in Figure 7.8). Since
ks and y grow at the same rate (equation (7.36)), kd cannot catch up with ks. Right: Sentiment

s(t) is no longer periodic due to the impact of ξt.

and output.22 Therefore, demand powered by coherence resonance always catches up
with supply.

0 4000 8000 12000 16000

Time (years)

0

100

200

300
kd

ks

y

R

R?

0 200 400 600 800

Time (years)

−1.0

−0.5

0.0

0.5

1.0

s

Figure 7.10 – A long-term simulation that captures asymptotic growth in the enforced demand-
driven regime (k = kd) powered by coherence resonance in the base case parameter regime (Ap-
pendix F.2). Left: Output y and supply ks expand at the rate R⋆ > R and demand kd grows faster
than both y and ks. As such, kd eventually reaches and exceeds ks, at which point the demand-
driven regime is succeeded by the supply-driven regime. Right: Sentiment s(t) exhibits a bi-stable

behavior typical of coherence resonance.

Asymptotic Growth in the General Case

We have shown that fluctuations affect growth in the demand-driven regime of the Dy-
namic Solow model. In particular, limit cycles generate fluctuations that contribute
negatively to growth, thus failing to satisfy the asymptotic boundary condition (7.33).

22This result is consistent with equation (7.36), which can be rewritten as kd0−R⋆ = ((1−ρ)/ρ)(R⋆−
R), so that kd0 > R⋆ since R⋆ > R and ρ < 1.
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Therefore, such fluctuations cannot be realized, which rules out limit cycles as the mech-
anism responsible for business cycles.
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Figure 7.11 – A long-term simulation that captures asymptotic growth in the general case. Left:
Output y, supply ks and demand kd grow at the Solow rate R, demonstrating the asymptotic
convergence on the economy’s trajectory. Right: The interplay of supply- and demand-driven
regimes on a subsection* of the same trajectory. Shaded segments correspond to periods when

kd > ks. Parameters are from the base case in Appendix F.2.

By contrast, coherence resonance produces fluctuations that contribute positively to
growth, so that demand always catches up with supply. As this occurs, the system
transits into the supply-driven regime in which supply grows faster than demand. Once
supply has exceeded demand, the system switches back into the demand-driven dynam-
ics. The regime cycle has thus come full circle, ensuring (7.33) is satisfied in the long
run. As such, the economy’s path realized in the general case is forged by a regime inter-
play where the supply-driven equilibrium dynamics and the demand-driven fluctuations,
powered by coherence resonance, continuously succeed one another.

Our simulations show the economy grows asymptotically at the Solow rate R. This
result is not entirely unexpected. As capital supply and demand converge over the
long run, capital invested into production during the supply- and demand-driven regime
segments of the economy’s trajectory must also match asymptotically, as follows from
(7.32). Consequently, the economy’s average growth rate across supply-driven segments
is equal to the average growth rate across demand-driven segments. As the economy
expands at R in the supply-driven regime, the same growth rate is achieved, on average,
across the demand-driven segments,23 meaning R is also the overall rate of expansion.
Figure 7.11 displays a simulation capturing the realized asymptotic growth path in the
general case and highlights the interplay of the supply- and demand-driven dynamics.

To sum up, the asymptotic growth rates in the demand-driven regime depend on the
mechanism underlying economic fluctuations. Fluctuations driven by a limit cycle cannot
be realized since they do not satisfy the convergence between supply and demand in the
long run. The economy’s trajectory realized in the general case of the Dynamic Solow
model consists of a chain of supply-driven regimes in which the economy experiences

23The demand-driven economy cannot reach the asymptotic growth rate R⋆ > R as a result of the
segments’ finite duration and an adverse growth bias due to the typical alignment of demand-driven
segments with recessionary periods.
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the equilibrium growth and demand-driven regimes in which fluctuations emerge via
coherence resonance. Overall, the economy grows asymptotically at the classic Solow
rate R. Although fluctuations can cause large excursions from this equilibrium growth
path, the deviations disappear on the large timescales relevant for the convergence of
supply and demand.

Business Cycle Dynamics

Our analysis of asymptotic growth in the preceding section has led us to conclude that
coherence resonance is the relevant endogenous mechanism underlying economic dynam-
ics as it enables the convergence of capital demand and supply over the long run. In
this section, we focus on the intermediate timescale to examine endogenous fluctuations
produced by the Dynamic Solow model (7.27)-(7.33) in the coherence resonance regime.
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Figure 7.12 – A simulation of the economy’s trajectory over the medium term in the model’s
general case, which highlights a sequence of supply- and demand-driven regimes. Shaded segments
correspond to periods during which kd > ks. Parameters are from the base case in Appendix F.2

.

Figure 7.12 depicts a typical realization of the economy’s trajectory over the medium
term. The economy undergoes a sequence of supply- and demand-driven dynamic behav-
iors, as indicated, respectively, by shaded and unshaded segments. In the demand-driven
case, in which demand is below supply, sentiment (lower panel) exhibits distinctively bi-
stable behavior, staying for long periods near the positive (expansion) and negative (con-
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traction) equilibria and traversing quickly the distance between them during economic
regime transitions. This sentiment behavior leads to fluctuations in demand (middle
panel) that, in turn, induce business cycles around the long-term growth trend (upper
panel). Conversely, during periods when supply is the limiting factor, sentiment follows
a random walk due to the absence of economic feedback and the supply-driven economy
exhibits the equilibrium growth dynamics.

The long-term simulations demonstrate that demand stays below supply on average
∼ 70% of the time. This can be interpreted as the firms’ decision to hold excess capital
(as, for example, noted in Fair, 2020) as the entire capital supply is made available to
firms, implying a capital utilization rate below 100% over extended periods.24
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Figure 7.13 – Histogram of the duration of simulated business cycles. The cycles are based on
the detrended production, y−Rt, with respect to the best fit straight line which coincides with the
equilibrium growth path, given by the Solow growth rate R (Section 7.3). Duration is calculated
as the time interval between two successive zero crossings in the same direction by detrended
production. The histogram, based on the 5 year bins, is truncated at 10 years to eliminate noise
artifacts and at 150 years to highlight its peak. The parameters are from the base case in Appendix

F.2.

Figure 7.13 is a histogram of business cycle periods simulated by the model. It displays
a wide distribution with a peak in the 40-70 year interval (with over 50% of the periods
falling into this range), indicating the presence of quasiperiodic fluctuations. To confirm
the source of these fluctuations, we inspect the distribution of the lengths of sentiment
cycles, defined as the roundtrip of sentiment between the positive and negative equilibria
(such as those depicted in the lower panel in Figure 7.12). This distribution, shown in
Figure 7.14, also peaks at 40-70 years. It follows that business cycles are, as expected,
linked to sentiment transitions from one equilibrium to the other driven by coherence
resonance. Therefore, we affirm coherence resonance is the relevant mechanism forming
the quasiperiodic fluctuations in output captured in Figure 7.13.

24The utilization rate measures current production as a proportion of potential production. In our
context, the analogous measure is the ratio of capital in production in the demand-driven regime (k = kd)
to capital available (ks). For empirical evidence of firms holding excess capital, see the FRED series
“Capacity Utilization: Total Index” (CAPUTLB50001SQ) or the Census Bureau’s National Emergency
Utilization Rate. See also Murphy (2017) for a study of the persistence of excess capital.
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Figure 7.14 – Histogram of the duration of simulated sentiment cycles. The cycles are defined as
the roundtrip of sentiment between the positive and negative equilibria. Duration is calculated as
the time interval between two successive zero crossings in the same direction by sentiment s in the
enforced demand-driven case. The histogram, based on the 5 year bins, is truncated at 10 years to
eliminate noise artifacts and at 150 years to highlight its peak. The parameters are from the base

case in Appendix F.2.

In Appendix F.1, we show that parameter c2, which defines the sensitivity of capital
demand to sentiment, is key to the business cycle duration: the lower c2, the shorter
the average duration of business cycles. We also show there that the model admits
coherence resonance only if c2 is above a certain critical value and tune the model to
be in a regime with c2 close to this value. It follows that coherence resonance – as a
mechanism of business cycles driven by firms’ investment – imposes a natural minimum
duration threshold, ruling out fluctuations with a characteristic timespan shorter than
the Kondratieff-like 40-70 years.

In current literature, business cycles are typically estimated to last 8-12 years. However,
a direct comparison of the duration would be misleading as our model, centered on
capital demand dynamics, does not include links to the faster-paced processes, such as
credit or equity market dynamics, that can accelerate business cycles through further
interactions with the real economy. In other words, our model captures capital demand
driven cycles, which are arguably just one of a number of fluctuation modes that reinforce
or otherwise affect each other to produce the business cycles observed in the real world.

On that point, we take note of Kroujiline et al. (2019) that studies combined effects in
a coupled macroeconomic system, attaching the interactions-based stock market model
of Gusev et al. (2015) (capable of producing relatively short-term endogenous cycles) to
the simple phenomenological model of the economy of Blanchard (1981) (within which
output follows slow relaxation dynamics) to obtain quasiperiodic fluctuations with the
same frequency as observed business cycles. A natural next step would be to investigate
whether a more advanced coupled system, where both the financial sector and the real
economy experience nonlinear endogenous dynamics at different frequencies can replicate
and explain observed macroeconomic behaviors in greater detail.25

25Such as the stock market model of Gusev et al. (2015) and the present Dynamic Solow model of the
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7.4 Conclusion

In this chapter we have developed the Dynamic Solow model, a tractable macroeconomic
model that captures dynamic behaviors across multiple timescales, and applied it to
study economic fluctuations and their impact on long-term growth.

Our model consists of a dynamic capital demand component, representing an
interactions-based process whereby firms determine capital needs and make investment
decisions, and a simple capital supply component in the form of a Solow growth econ-
omy. These components are interlinked via a capital market, which comprises a local
inelastic market clearing condition reflecting short-term price rigidity and an asymptotic
market clearing condition valid for timescales in which prices are sufficiently flexible to
match supply and demand. Starting from the micro-level interactions among firms, we
derived the macroscopic equations for capital demand that constitute the dynamic core
of the model and attached them to a capital motion equation for a static representative
household (providing a dynamic version of the Cobb-Douglas production equation to
capture short-term processes) and the aforementioned market clearing conditions. As a
result, we have obtained a closed-form nonlinear dynamical system that allows for the
examination of a broad range of economic behaviors.

The Dynamic Solow model admits two characteristic regimes, depending on whether
capital demand exceeds supply or not. When demand exceeds supply, supply drives out-
put and the dynamic demand component decouples from the rest of the economy, placing
the economy on the familiar equilibrium growth path. Otherwise, demand drives output
and the model is shown, for economically realistic parameters, to possess two attract-
ing equilibria, one where the economy contracts and the other where it expands. This
bi-stable geometry gives rise to business cycles manifested as endogenous fluctuations,
wherein the economy’s long entrapment in recessions and expansions is punctuated by
rapid alternations between them. We show that, in our model, the economy’s realized
trajectory is forged by an interplay of these regimes such that the supply-driven equilib-
rium dynamics and demand-driven fluctuations continuously succeed one another. We
further show that the economy spends around 70% of its time in the demand-driven
regime, indicating fluctuations represent a prevalent economic behavior.

We identify a coherence resonance phenomenon, whereby noise applied to a dynamical
system leads to a quasiperiodic response, to be the mechanism behind demand-driven
fluctuations. In our model, exogenous noise (representing news received by analysts)
instigates the economy’s transition from one equilibrium to the other, resulting in re-
current booms and busts. As such, news shocks act as a catalyst, which is compatible
with the “small shocks, large cycle” effect observed in the real-world economy. In addi-
tion, under a different range of parameter values, we obtain a stochastic limit cycle (i.e.
a limit cycle perturbed by exogenous noise) likewise capable of generating endogenous
fluctuations. We show, however, that this type of fluctuations cannot be realized as

economy, which share a similar framework for micro-level interactions.
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the growth dynamics induced by it do not allow supply and demand to converge in the
long run. While both limit cycle and coherence resonance mechanisms are hardwired in
our model, in the sense that the parameter ranges must be appropriately selected, we
conjecture that in reality the economy self-regulates towards the coherence resonance pa-
rameter ranges via long-term price adjustment responsible for the convergence of supply
and demand in the long run.

The distribution of the business cycle periods simulated by our model displays a peak
in the Kondratieff range of 40-70 years, demonstrating the quasiperiodic character of
demand-driven fluctuations. We further find coherence resonance imposes a minimum
duration threshold that rules out fluctuations peaking at shorter lengths. This result
seems sensible because our model, centered on capital demand dynamics, has no links
to faster-paced processes (such as credit or equity market dynamics) that can accelerate
fluctuations to be in line with the observed business cycles. A natural extension would
be to develop a coupled system, within which both the financial sector representing such
faster-paced processes and the real economy experience nonlinear endogenous dynamics
at different characteristic frequencies.

Our simulations show that although demand-driven fluctuations occasionally cause large
excursions from the equilibrium growth path, the deviations vanish in the long run as
supply and demand converge. In our model, the equilibrium growth path is defined by
the Solow growth rate in which technology growth appears, simplistically, as a fixed
exogenous parameter. From this perspective, endogenizing technological progress in
the model may help better understand the long-term impact of fluctuations on growth,
presenting an intriguing topic for future research.

Key Messages
• This chapter has developed the Dynamic Solow Model: adding an
interactions-based investment decision process into a simple Solow frame-
work.

• The model has two regimes: a supply-driven dynamic recovering classic ex-
ponential growth, and a demand-driven regime where endogeneous quasi-
periodic crises occur.

• The mechanism of crises is coherence resonance: small noise in the decision-
making process can push the investment outlook from converging to a posi-
tive to a negative sentiment.

• In the simple model presented, the distribution of business-cycle durations is
fat-tailed with a peak of 40-70 years, as there are no additional accelerators
such as credit constraints.
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Chapter 8
Economic Crises in a Model with Capital
Scarcity and Self-Reflexive Confidence

Taken from Morelli et al. (2021) Economic Crises in a Model with Capital Scarcity and
Self-Reflexive Confidence without modification. This work is a collaboration with F.
Morelli, M. Tarzia and J-P. Bouchaud. My main contributions in this paper include the
economic framing of sentiment in New Keynesian and DSGE models, the construction
and implementation of the extended model, and its ensuing exploration. The drafting,
analysis and review was done in collaboration with all of the authors.

The years following 2008 were marked by the great financial crisis, and with it a crisis
for economic theory (Kirman, 2010). As for the great depression of the 1930s, there
was a failure to predict the crisis among economic orthodoxy. 1 Despite its failures in
predicting the recession (Christiano et al., 2018) or the sluggish recovery (Lindé et al.,
2016), the mainstream Dynamic Stochastic General Equilibrium (DSGE) class of models
have remained the core macroeconomic framework and workhorse tool of policy (Kaplan
and Violante, 2018). While calls to reform these models have been made (Stiglitz, 2018;
Vines and Wills, 2018, 2020), the basic framework with a single rational representa-
tive agent often remains a baseline assumption when studying business cycles, although
heterogeneous agents new Keynesian models (HANK) have recently been considered as
well.2 The decisions of such a representative agent, which include capital investment
decisions, determine the trajectory of the economy and are based on the optimisation of
a utility function with static parameters, with no space for “animal spirits” or confidence

1See the extensive discussions in (Buiter, 2009; Blanchard, 2018; Dosi and Roventini, 2019; Korinek,
2017; Romer, 2016; Stiglitz, 2018), with a recent review in Fair (2020).

2For a non-exhaustive list of prominent examples see (Kaplan et al., 2018; Kaplan and Violante, 2014;
McKay and Reis, 2016).
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effects (although see Barsky and Sims (2012) and the discussion below). In such models,
“dark corners” are absent and crises can only be the result of major exogenous shocks.3

This must be contrasted with Keynes’ intuition, which, as rephrased by Minsky (1976),
was that “the subjective evaluation of prospects over a time horizon is the major prox-
imate basis for investment and portfolio decisions, and these subjective estimates are
changeable”. Expectations can indeed be subject to rapid changes, disagreement and
irrationality, as reflected in the high volatility of investment, and the abrupt nature of
expansions and recessions (Stock and Watson, 1999). The investor behavior behind these
swings are indeed often referred to as animal spirits or irrational exuberance (Shiller,
2005; Akerlof and Shiller, 2010). There is now a rich literature on irrational behavior
across economics (see Hommes (2021) for a recent review). However, it has not been
fully dovetailed into more traditional business cycle models. One can find some bound-
edly rational components in DSGE models,4 such as Cornea et al. (2019), Hommes and
Lustenhouwer (2019), or Ozden (2021), who focus on learning in expectations formation
in a single-actor model, as well as Jump and Levine (2019) and Gabaix (2020), who
use various different utility specifications in DSGE. But apart from Barsky and Sims
(2012), Deniz and Aslanoglu (2014), and Brenneisen (2020), there is surprisingly lit-
tle work attempting to factor confidence or sentiment into the DSGE framework as an
explicit variable. This is despite some empirical work suggesting that consumer confi-
dence contains important information for forecasting personal spending and consumption
(Blanchard, 1993; Carroll et al., 1994; Matsusaka and Sbordone, 1995).

The adapted New Keynesian models of Barsky and Sims (2012), and Brenneisen (2020)
consider confidence as forecasting with imperfect signals, or private news about future
technological states. In this chapter, we instead focus on Keynes’ animal spirits, and
the non-rational self-reflexive facet of confidence, which can lead to abrupt shifts like
in 1929 or 2008.5 As a first step to incorporate such effects and assess their impact
on the economy, some of us recently proposed a generalization of a simple monetary
model in which the household’s propensity to consume depends on the prior state of the
economy, which generates either optimism or anxiety (Morelli et al., 2020). This feedback
can amplify productivity shocks, and lead to the appearance of a second equilibrium
characterized by low consumption and high unemployment, as well as crises resulting
from self-induced confidence collapse. The existence of two very different macroeconomic
equilibria has also been recently suggested in another context by Carlin and Soskice
(2018).

In the present chapter, our aim is to significantly extend the work of Morelli et al.
(2020) by including capital investment as a factor determining the trajectory of the

3“Dark corners” refers to a particularly insightful piece by O. Blanchard in 2014 entitled “Where
Danger Lurks”, see Blanchard (2014).

4See Franke and Westerhoff (2017) for an early review of animal spirits in macroeconomic models.
5More recently Angeletos et al. (2018), and Angeletos and La’O (2013) consider sentiments as un-

certainty about the beliefs of others. For another strand of the literature on sudden breakdown of
confidence, see Bouchaud (2013) and Gama Batista et al. (2015) and references therein.
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Figure 8.1 – Trajectories of the OECD confidence index, changes in consumption [‰], and invest-
ment [%] in the United States over a period from the beginning of 2000 to the present. The data

were taken from FRED and OECD. Taken from Morelli et al. (2021).

economy. We assume that capital and labor are essentially non-substitutable, and posit
a behavioral rule for investment that accounts for both consumer confidence and for the
quality of the returns generated by risky capital investment. This expanded framework
allows us to investigate the joint dynamics of confidence, capital availability and output.
In a nutshell, our model attempts to capture many of the ideas so clearly expressed by
Keynes in the opening quote above, while keeping part of the scaffolding of standard
business cycle models.

Our motivations for building such behavioral business cycle models stems from the Great
Recession of 2008, sparked by Lehman’s bankruptcy, that led to a sudden collapse in the
confidence of both households and investors. This was followed by an almost immediate
downfall of both investment and consumption. These stylized facts can be observed in
Figure 8.1. It took six years to recover to prior confidence levels, even as investment
and consumption grew in the medium-term. It is difficult to believe that the Great
Recession was the result of a major exogenous shock.6 Rather, Keynes’ story assigning
the abruptness of the crisis to a shift in investment decisions may be more plausible.
Indeed, anecdotal evidence reported by prominent actors at the time strongly suggests
that confidence collapse played an essential role in the unfolding of the crisis – see the
account of Bernanke et al. (2019).

The consumption and investment trajectories generated by our model can be grouped
into four distinct categories differentiated by the prevalence of crises in consumption
and the scarcity of capital for production. We recover the bi-stable behavior obtained in
Morelli et al. (2020), alternating between enduring spells of high and low confidence. In

6Lo (2012) notes that there is no consensus narrative of the causes for the crisis. In addition, from
a DSGE model perspective, Angeletos et al. (2020) recently ruled out many of the common exogenous
DSGE shocks as explanatory candidates for business cycles.
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addition, the household’s investment behavior can lead to capital scarcity, i.e. periods
where capital is the limiting factor to output. During these instances there is an in-
creased risk of a confidence collapse and an ensuing low-consumption depression where
the household consumes a small fraction of disposable income and invests cautiously.
When compared with the results of our previous version of the model where capital is
absent (or rather, assumed to be so abundant that keeping track of it is unnecessary),
we find that low output periods can last orders of magnitude longer. This is because,
in the absence of suitable policy measures, investment remains low and capital scarcity
prevents the economy from recovering.

This multiple equilibria scenario is an attempt to move away from the over-simplified,
but still dominant single equilibrium paradigm, following recent calls to that effect Vines
and Wills (2020); Greene (2021). Note that the coexistence of different equilibria is also
the hallmark of recent agent based models, such as Gualdi et al. (2015) or Sharma et al.
(2020).

The qualitative results of our behavioral business cycle model suggests various policy
measures, in terms of narratives that may change the perception of the future of the
economy and the attractiveness of investment in productive capital (Shiller, 2019). In
particular, we emphasize the crucial need to maintain capital investment at a sufficiently
high level throughout crisis periods, in order to allow for a quick recovery when the
economic conditions improve.

The manuscript is organized as follows. In Section 8.1 we build up our business cycle
model based on Morelli et al. (2020), and outline our two novel additions. We then show
the various dynamics the model can generate an reveal its phase diagram in Section 8.2.
We discuss in particular how capital scarcity increases the probability of consumption
crises, and lead to a multi-fold increase of the recovery time (see Section 8.2). Section
8.3 concludes by discussing the policy implications of our findings, and the avenues for
possible extensions of the model.

8.1 A Behavioral Business Cycle Model

The framework presented here hybridizes some standard assumptions used in the New
Keynesian Dynamic Stochastic General Equilibrium (DSGE) model (see (Gaĺı, 2015))
with plausible behavioral assumptions about consumption propensity and investment
strategies. The environment is based on two blocks: the representative consumer and
the representative firm. At this point, we neglect inter-temporal effects and do not
attempt to model inflation dynamics and monetary policy, although these features could
be included at a later stage. Nonetheless, the phenomenology of our model is already
quite rich and needs to be streamlined before exploring further the dynamics of prices.
All variables and notations are reported in Table G.1 of Appendix G.
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Goods market
ct + Bt = Gt · It

Investments
it = (1−Gt)It

Capital market
k̇st = Ft · it

Bonds market
bt

1+rt
= (1− Ft) · it

Figure 8.2 – A schematic representation illustrating the division of income, i.e. the budget con-
straint, by the household. Taken from Morelli et al. (2021).

The Household

The household sector derives utility from a composite consumption good and provides
labor services to the firm. At each time t, the representative household maximizes its
instantaneous utility,

Ut(ct, nt) := Gt · log ct − γ · n2t , (8.1)

where ct and nt denote respectively the level of aggregate consumption and the aggregate
amount of working hours the household provides to the firm, Gt is the (time dependent)
propensity to consume out of income, and γ is the disutility of labor (which we fix to 1
for the numerical analysis).

Each period, the household faces a budget constraint given by its real income It,

It := wt · nt +
bt−1

1 + πt
+ qt−1 ·

kt−1

1 + πt
, (8.2)

which is funded by three sources: (i) the real wage rate wt paid by the firm for a unit
of labor nt, (ii) the real value of the maturating single-period bonds bt−1, purchased at
time t − 1 at the price (1 + rt−1)

−1 and paying (1 + πt)
−1 at time t, where rt is the

interest rate and πt is the inflation rate, and (iii) the realized yield qt−1 per unit of real
capital kt that the firm pays to the household in return for investment. We henceforth
assume a constant interest rate r = 0.15% and inflation π = 0.1%, keeping in mind a
unit time scale corresponding to a month or quarter.

Total spending, correspondingly, consists in good consumption (with the price of good
set to unity), purchases of new bonds and topping up the firm’s capital. Maximization
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of the household’s utility (Eq. (8.1)) leads to the familiar state equation

nt · ct −
Gt · wt

2γ
= 0 , (8.3)

describing the trade-off between consumption and labor in the current period t.

Interestingly, Eq. (8.3) can also be interpreted in a way that lends itself to a natural
generalization for investment decisions. Suppose one starts with a time independent
utility function, Eq. (8.1) with Gt ≡ 1, which is now optimized under the constraint
that the total budget devoted to consumption is a fixed fraction Gt ∈ [0, 1] of the income
It, i.e.

ct = Gt · It. (8.4)

It is easy to show that the very same equation Eq. (8.3) immediately follows. We posit
that the remaining fraction 1−Gt of income is invested in bonds and capital, i.e.

it = (1−Gt) · It , (8.5)

where a fraction Ft · it (with Ft ∈ [0, 1]) is allocated to productive capital, and the
remainder (1−Ft) · it is invested in bonds – see Fig. 8.2 for a pie chart summarizing the
household spending and investment decision.

The capital level available to the firm thus evolves as

kt = (1− δ) · kt−1 + Ft · (1−Gt) · It , (8.6)

where δ is the capital depreciation rate. The remaining investment is allocated to bonds
at price (1 + r)−1, so

bt
1 + r

= (1− Ft) · (1−Gt) · It (8.7)

The quantities Gt and Ft aim to capture confidence effects and the attractiveness of
risky capital investment, respectively, and are specified in section 8.1 below.

The Firm

The economy’s productive sector is made up of a single representative firm, which trans-
forms labor nt and capital kt into a composite good yt consumed by the representative
household. The firm’s production technology is given by a Constant Elasticity of Sub-
stitution (CES) function with constant returns to scale,7

yt = zt ·
(
α · k−ρ

t + (1− α) · n−ρ
t

)− 1
ρ
, (8.8)

7In full generality, the CES function should be written as
(
α · k−ρ

t + (1− α) · (κnt)
−ρ

)− 1
ρ , where κ

is another parameter. However, one can always set κ = 1 at the expense of re-scaling the disutility of
labor parameter according to γ → κγ.
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where α = 1/3 is the capital share in production, 1/(1+ρ) is the elasticity of substitution
between capital and labor with ρ > 0, and zt > 0 is a stationary exogenous technological
process. It is given by zt = z0e

zt , where zt follows an AR(1) process:

zt = η · zt−1 +
√

1− η2 · N (0, σ2) , (8.9)

with first-order autocorrelation η, which affects the correlation time of the technology
shocks. (In the following we will fix η = 0.5, corresponding to a correlation time of a
few months). The base level z0 corresponds to the most probable value of productivity.
Note, importantly, that z0 has units of [Time]−1, i.e. the amount of goods that can be
produced per unit time for a given level of capital and labor. As our focus is on economic
fluctuations, we abstract from production growth in the present model, i.e. the secular
dependence of z0 on time.

The CES production function nests two important limits that affect economic dynamics.
As ρ → 0+, the production function becomes perfectly elastic and recovers the Cobb-
Douglas form (yCD

t = ztn
1−α
t kαt ), whereas in the limit ρ→ +∞ the firm produces via an

inelastic Leontief function (yLt = ztmin(nt, kt)).
8 Throughout the following, we choose

ρ = 7, corresponding to a near Leontief limit, i.e. a very small amount of substitutability
between capital and labor. We will briefly comment in section 8.2 the impact of higher
substitutability.

The firm maximizes its target profit Pt

Pt = pt · yt − wt · nt − q∗t · kt , (pt ≡ 1), (8.10)

with respect to the labor supply nt and the capital level kt, where pt is set to unity
and correspondingly wt is the real wage and q∗t is the real rent on capital. Under the
assumption that the market clears, i.e.

yt = ct , (8.11)

one finds

w̃t = (1− α)

(
c̃t
nt

)1+ρ

(8.12)

q̃∗t = α

(
c̃t
kt

)1+ρ

(8.13)

where, generically, x̃ := x/z. Note that, as it should be, wages, consumption and rent
on capital are all in units of z, i.e. unit time scale (e.g. a month or a quarter).

Combining the household’s state equation, Eq. (8.3) and the equation for the real wage,
Eq. (8.12), the consumption level ct must satisfy

c̃2t =
Gt

2γ
(1− α)

2
ρ

[
1− α

(
c̃t
kt

)ρ]1+ 2
ρ

, (8.14)

8Keeping the parameter κ free (see previous footnote), the Leontief function would read yLt =
zt min(κnt, kt), i.e. κ

−1 measures the amount of labor equivalent to one unit of capital.
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Figure 8.3 – The figure shows the behavior of re-scaled consumption c̃t, wages w̃t, and rent on
capital q̃∗t as a function of kt, in the Leontief limit, i.e. ρ → +∞. Note the qualitative change of

behavior between kt >
√
Gt/2γ and kt <

√
Gt/2γ. Taken from Morelli et al. (2021).

As both sides of Eq. (8.14) are monotonous, this ensures a unique solution for any given
level of capital kt and consumption rate Gt. As expected, the consumption at time t
increases if the capital kt is increased and/or the consumption rate Gt is increased.

The Leontief Limit

In this section we discuss in detail the Leontief limit of the equations derived in the
previous section. Such an analysis will greatly help understanding the dynamics of the
model that will be described below.

Abundant Capital

Assume first that c̃t < kt and ρ→ ∞. Then (c̃t/kt)
ρ → 0 and one finds

c̃t ≈
√
Gt

2γ
(8.15)

This is only consistent with our working hypothesis when

Gt

2γ
< k2t . (8.16)

In this regime one finds, using Equation (8.3):

nt = c̃tw̃t, (8.17)

which once plugged back in Equation (8.12) leads to

w̃t = (1− α)1/(2+ρ) ≈ 1. (8.18)

Since c̃t < kt, one concludes from Eq. (8.13) that the rent on capital q̃∗t is exponentially
small. Intuitively, as labor is the limiting factor, consumption is directly proportional
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to how much the household chooses to work and the productivity at that time, while
capital has no distinct effects on the economy.

Scarce Capital

Now let us look at the regime
Gt

2γ
> k2t . (8.19)

We introduce the notation βt := 2k2t γ/Gt for further use. We hypothesise that the
solution for c̃t in this regime is of the form

c̃t = kte
−xt/ρ (8.20)

where xt = O(1) is to be determined. Plugging in Eq. (8.14), we find:

k2t e
−2xt/ρ =

Gt

2γ
(1− α)−2/ρ

(
1− αe−xt

)1+2/ρ
, (8.21)

or, for ρ→ +∞,

e−xt =
1− βt
α

. (8.22)

The equation for q̃∗t then leads to

q̃∗t = αe−xt = 1− βt, (8.23)

which indeed vanishes when βt = 1, correctly matching the regime where capital is
plentiful, whereas q̃∗t tends to unity when βt → 0, i.e. where kt → 0.

With c̃t = kte
−xt/ρ, one finds from Equation (8.3)

nt =
Gtwt

2γkt
ext/ρ. (8.24)

Finally, plugging into the equation for wages,

w̃2+ρ
t = (1− α)e−xtβ1+ρ

t , (8.25)

or in the limit ρ→ ∞,
w̃t = βt +O(ρ−1), (8.26)

and hence nt = kt+O(ρ−1). Again, this solution matches with the result w̃t = 1 obtained
for βt ≥ 1.

Discussion

A summary sketch of the above results is provided in Fig. 8.3, as available capital
kt is varied. Part of the dynamical properties of our model can be inferred from this
figure: when capital is lush, return on capital is small and investment decreases (i.e.
Ft decreases). If investment falls below the level of capital depreciation δ, then kt will
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fall until the level
√
Gt/2γ is reached. At this point, return on capital q∗t increases,

promoting investment. When consumption propensity Gt increases, kt may fall behind,
again leading to an increase of q∗t . Hence we expect a regime where the economy stabilizes
close to the point where kt ≈

√
Gt/2γ, where capital and labor are tracking each other,

and interest on capital and wages are neither very small, nor saturated to their maximum
value wmax = q∗max = z.

The Risk of Investment

Rigidity and costs to capital usage are typically introduced through adjustment costs
to capital utilization (e.g. see Smets and Wouters (2007)). In this chapter we take a
different route. Rather than empowering the household to choose the firm’s utilization
rate, we suppose the household invests in capital and gives operational control of capital
to the firm. In exchange it is promised a return q∗ per unit capital and per unit time
scale (month or quarter). However, as the volatility of the stock-market attests to, such
a return is not assured. Hence, we introduce an intrinsic state-dependent risk to the
returns on capital9 ξ ∈ [0, 1] as a modifier, such that the rate actually paid by the firm
is:

qt = q∗t · ξt ≤ q∗t , (8.27)

where ξ is distributed as

p(ξ) = a · ξa−1, (8.28)

where parameter a controls the intensity of the risk. Note indeed that E[ξ] = a/(1 + a)
and V[ξ] = a/(2+a)(1+a)2. Hence the larger the value of a, the more p(ξ) is concentrated
around ξ = 1 (full payment). This formulation of risk implies that the representative
firm pays out at most the marginal productivity of capital, but more likely only pays
a fraction of this, corresponding to an effective description of financial distress and
bankruptcy within a representative firm setup. In most simulations we set a = 15, such
that the return is on average 93.75% of the promised return. In an extended version of
the model, the parameter a could itself be a function of the state of the economy (in
particular of the availability of capital), but we will not consider this possibility here.

Spending and Investing

The model laid out in this section contains two dynamic variables, the consumption rate
Gt in Eq. (8.4) and the investment allocation rate Ft in Eq. (8.5), which have not been
specified yet. These two variables are responsible for the feedback mechanisms which
are at the core of the dynamical evolution of our model economy. Here we elaborate on
these mechanisms and provide the economic intuition behind them.

The Consumption Rate

9More sophisticated distributions can be considered. We use this simple form to keep the number of
parameters of the model as small as possible.
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As in Morelli et al. (2020) and Deniz and Aslanoglu (2014), we postulate that the con-
sumption rate Gt (or propensity, see section 8.1) is a function of the consumer confidence
index Ct, that we model as a real variable ∈ [−1, 1] and, possibly, on the difference be-
tween the expected inflation rate π̂t := Et[π] and the bond rate rt:

Gt := Gt(Ct, π̂t − rt, . . .), (8.29)

where the dependence on the second variable is a way to effectively encode the content of
the standard Euler equation without explicitly introducing an inter-temporal optimiza-
tion of utility, and where the . . . leaves room to possible additional variables. But since
in the present chapter we assume both inflation and interest rates to be constant, the
second variable will be dropped altogether. As far as the first variable is concerned, we
follow our previous work in Morelli et al. (2020), where we postulated that confidence
of a given household is impacted by the level of consumption of other households in the
previous time step. In a mean-field limit, this self-reflexive mechanism writes

Ct = tanh (θc · (ct−1 − c0)) , (8.30)

The parameter c0 is a “confidence threshold” where the concavity of C(c) changes (if
ct−1 < c0, C is closer to 1 while if ct−1 > c0, C(c) is closer to −1). Parameter θc > 0 sets
the width of the consumption interval over which the transition from low confidence to
high confidence takes place. One could introduce, as in e.g. Beaudry and Portier (2014),
Naumann-Woleske et al. (2022) or Beaudry et al. (2020), the impact of macroeconomic
news as an extra contribution to the argument of the tanh function. This would describe
how the consumer confidence index is further modulated by some exogenous shocks, but
we leave such an extension for future work.

Back to the consumption rate Gt, we write

Gt =
1

2
[Gmin +Gmax + (Gmax −Gmin) · Ct] (8.31)

where 0 ≤ Gmin < Gmax ≤ 1 are the minimum and maximum proportions of income
the household will consume. We fix Gmin = 0.05 to ensure the household will consume
whenever its income is positive (necessary consumption). Similarly, we set Gmax = 0.95
to account for a minimal form of precautionary savings in response to some uncertainty
regarding the future.

The intuition behind Eqs. (8.30) and (8.31) is that when consumption is above the
threshold, c > c0, there is high confidence in the future of the economy, thereby a large
fraction of income, Gt → Gmax, is consumed. High confidence represents the belief that
future income will be sufficient to maintain high consumption with a minimal amount of
savings to sustain capital levels. Conversely, when consumption is below the threshold,
c < c0, the consumption rate collapses, Gt → Gmin. Following a shock or deterioration
in consumption to below the confidence threshold, there is uncertainty about the future
economy and whether future consumption is assured. This induces the household to
save more for the future, effectively reducing the current demand. Economically, c0 is
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thus similar to minimal consumption: it defines the threshold beyond which there is a
panic where the household’s “survival” is in question.

The parameter θc modulates the households reaction to a breach of necessary consump-
tion, and can be described as the household’s panic polarity. For high θc, the household
requires only a relatively small shock below c0 to reduce the consumption rate to its
minimum. This leads to a bi-stable savings behavior with sharp transitions. Conversely,
as θc → 0 the household becomes unresponsive to the state of the economy, consuming
half its income regardless of high or low preceding consumption. The intermediate levels
of θc describe the smoothness of the adjustment to consumption shocks.

According to Morelli et al. (2020) there are four distinct “phases”, i.e. regions of qual-
itatively comparable dynamics, that are distinguished by the bi-stability of Gt. We
can observe in particular a phase of high persistent consumption with no crises, high
consumption with short downward spikes, or a phase with alternating periods of high
consumption (booms) and low consumption (busts).

The Investment Allocation

In each period, the household must allocate its savings between one-period bonds and
capital. It does so through an allocation decision Ft based on the household’s observation
of the economy, and its beliefs about future risk and return. The novelty of our model lies
in the behavioral foundation that determines the proportion of new investment dedicated
to bonds, Ft.

Investment beliefs are shaped by two factors: (i) an estimate of the expected risk-
adjusted excess returns to capital investment, given by a Sharpe ratio St (Sharpe, 1966),
and (ii) the current confidence level Ct about the future state of the economy.

The Sharpe ratio St is an estimate of the risk-adjusted real return, qt − δ, of investing
capital in the firm versus holding risk-free bonds (bt) paying r. It increases as the
returns to capital increase or become less volatile. We assume that estimates of the
future Sharpe ratio are only based on exponential moving averages of past (observable)
realized returns, which is a form of extrapolative beliefs.10 In other words, i.e. the mean
µq and standard deviation σq of the return stream are computed as

µqt = λ · µqt−1 + (1− λ) · qt (8.32)

(σqt )
2 = λ · (σqt−1)

2 + (1− λ) · (qt − µqt )
2 (8.33)

St := N · µ
q
t − rt − δ

σqt
(8.34)

with an exponential moving average defined by a gain parameter λ ∈ (0, 1), correspond-
ing to a memory time scale equal to Tλ := 1/|log λ|: a larger λ implies that a higher
weight is given to recent observations. The factor N ≈ 1/4 is quite arbitrary, but chosen
such that, when compared to the confidence in Eq. (8.35) below, the two terms are

10See Da et al. (2021), and Kuchler and Zafar (2019) for recent empirical work on extrapolative beliefs.

114



CHAPTER 8. ECONOMIC CRISES AND SELF-REFLEXIVE CONFIDENCE

of similar magnitude. (Note that this choice is in fact immaterial, since changing N is
equivalent to re-scaling the parameter ν defined in Eq. (8.35) below.)

The interpretation of the Sharpe ratio is as follows: a positive signal St > 0 suggests that
the expected real return to capital investment exceeds the returns to risk-free bonds. The
magnitude of St is inversely proportional to the risk of capital investment, as measured
by the estimated volatility σqt . Thus in a high-volatility environment the signal might
be positive but weak.

The second indicator potentially influencing the household investment decision is the
confidence index, Ct, as previously defined. In periods where the household has low
confidence, there is a reduced impetus to invest in risky assets because households wish
to guarantee next-period income. These are often periods of crisis with a higher volatility
in returns. Since bonds are risk-free, this leads to a higher allocation of funds to bonds,
ceteris paribus. Conversely, higher confidence about the future means more appetite for
risk, and hence a higher fraction of the savings invested in the capital of firms and a
lower fraction invested in bonds.

We postulate that the propensity, Ft, to make risky bets is a function of the overall
sentiment Σt, computed as a linear combination of the Sharpe ratio and of the confidence:

Σt = ν · St + (1− ν) · Ct, (8.35)

where ν ∈ [0, 1] is the weight the household gives to its estimates of risk-adjusted return
St and its confidence level Ct. When ν = 1, the household’s confidence plays no role in
the investment rule. For positive Sharpe ratio and confidence indicator, the sentiment
is positive, Σt > 0, indicating a willingness to invest in risky capital. But if ν < 1
sentiment can turn negative even when the Sharpe ratio is high, because of a high level
of anxiety about the future state of the economy, encoded as a negative value of Ct.
Finally, the unbounded sentiment Σt is transformed into a portfolio allocation to capital
Ft ∈ [0, 1] via,

Ft =
1

2
[Fmax + Fmin + (Fmax − Fmin) · tanh(θk · Σt)] , (8.36)

where Fmax and Fmin represent the maximum and the minimum proportion of total
investment it invested into capital. In the following, the allocation decision is bounded
between Fmin = 0 and Fmax = 1, which precludes any divestment (or short-selling) of
capital or bonds.11 The parameter θk represents the sensitivity of the portfolio allocation
to the agent’s sentiment and sets the width of the sentiment interval over which the
capital allocation goes from Fmin to Fmax, that is how polar the investment decision is.
For θk → ∞, the allocation becomes binary, leading to either Ft = Fmin when sentiment
is negative or Ft = Fmax when sentiment is positive.

11One could allow for divestment by Fmin < 0, however, this would require a more elaborate form for
Eq. (8.36).

115



8.1. A BEHAVIORAL BUSINESS CYCLE MODEL

In the following part, we fix the sensitivities to a rather high value θk = θc = 15, such
that the transitions between different regimes are sharp.

Summary & Orders of Magnitude

In this section we have set up a business cycle model incorporating two behavioural
mechanisms: a self-reflexive consumption rate decision, already advocated by Morelli
et al. (2020), and an investment allocation decision. The novelty of this chapter lies
in the behavioural foundation that determines the proportion of new risky investment
Ft, which depends directly on three key parameters, λ, ν, θk, describing the “sentiment”
of the household, i.e. its risk aversion. Ft also indirectly depends on the risk intensity
parameter a and the capital depreciation rate δ. The consumption decision depends on
two parameters c0 and θc that define the household confidence about its future welfare.

In the following we discuss how the parameters of these two feedback mechanisms
strongly affect the model’s dynamics. Note that a very important parameter of the
model is the baseline productivity z0, which fixes the scale of the consumption, wages
and rent on capital (all per unit time scale). In the following, we choose z0 = 0.05, cor-
responding to an annual productivity of capital of 20% if the unit time step is a quarter
and 60% if it is a month.12

Among all the parameters of the model, three have an interpretation in terms of time
scales:

• η, which appears in the dynamics of the productivity shocks, that we have fixed
to 0.5 throughout this study, corresponding to a time scale Tη = 1/|log η| of a few
months ;

• λ, which is the gain parameter used by investors to estimate the Sharpe ratio of
risky investments, corresponding to a time scale Tλ = 1/|log λ|. Our default value
will be λ = 0.95, corresponding to Tλ ≈ 20 or 5 years if the unit time is a quarter
or a month respectively;

• δ, the capital depreciation rate, which we choose in the range 0.001 – 0.02, corre-
sponding to a typical replacement time of capital Tδ = 1/|log(1 − δ)|≈ 12 – 250
years when the unit time is a quarter, and three times less if it is a month. Hence
δ = 0.001 means essentially no depreciation of capital.

The role and the effect of varying these timescales is studied in detail in Section 8.2. An
important remark, at this stage is that, while our choice of one quarter as the unit time
step is quite arbitrary, a combination of parameters that is crucial for the properties
of the model is the dimensionless product z0 · Tδ ≈ z0/δ, i.e. how many goods can be
produced (per unit capital) over the life-cycle of capital.

12To estimate an appropriate order of magnitude for z0, we considered the gross value added by non-
financial corporations in the U.S. divided by the current cost net stock of fixed assets together with total
wages (as a proxy for labor), which shows a downward trend to approximately 28% p.a.
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Figure 8.4 – This figure shows different sections of the phase space. The three rightmost upper
panels display the log10 probability of capital shortage Ξk as a function of the Sharpe ratio weight
ν and of the confidence threshold c0. The bottom row display the log10 probability of consumption
crises Ξc as a function of the same parameters. The dark red zones correspond to the regions where
Ξk/c > 0.99, where crises are permanent. Each column corresponds to a different choice of the
capital depreciation, from δ = 0.001 to δ = 0.02. We set a = 15 and σz = 0.15. As δ increases, the
(Hk,Hc) regimes becomes widespread. In each panel we have marked the points chosen to illustrate
the different phases of the model, together with their label (see text). The dynamics trajectories
and the corresponding histograms are reported in Fig. 8.5. The two leftmost panels show another
section of the phase space, varying log a and σz, with c0 = 0.017, ν = 1 and δ = 0.005 fixed (the
two solid dots there correspond to the same solid dots of the middle panels, in the HkHc phase).

Taken from Morelli et al. (2021).
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8.2 Crises & Phase Diagrams

In this section we first investigate numerically the phase diagram of our self-reflexive
business cycle model and highlight the different dynamical features that the model can
generate. We choose as control parameters those which govern the behavior of our two
feedback mechanisms: the consumption propensity Gt and the risky investment decision
Ft. In order to navigate through the following paragraphs, let us explain in a nutshell
what is expected to happen in the model.

If a productivity shock causes confidence to drop, consumption propensity Gt and con-
sumption both drop as well, whereas the saving rate 1−Gt increases. Because consump-
tion drops, unemployment rises and capital becomes superfluous, leading to a decrease
of the rent on capital q∗. Because the fraction of savings invested in capital Ft depends
both on q∗ (through the Sharpe ratio) and on the level of confidence (with a weight
1− ν), the amount invested in risky capital, given by (1−Gt) ·Ft · It can either increase
(if the factor 1 −Gt dominates) or decrease (if the factor Ft dominates), depending on
parameters and conditions. In the second situation, and if capital depreciation is fast,
one may face a situation where consumption is impaired and capital becomes scarce at
the same time, making recovery more difficult and leading to long periods where the
economy is trapped in a low output state.

Crises Indicators

We focus on two distinct phenomena exhibited by our model: consumption crises and
capital scarcity.

• Consumption crises occur in periods where the household’s consumption, ct, falls
below its threshold, c0. In other words, we have a low demand for consumption
which leads the economy into a stagnating low-output state. The severity of such
consumption crises is measured as

Ξc =
1

T

T∑

t=0

(
1− ct

c0

)
Θ(c0 − ct), (8.37)

where Θ(x ≥ 0) = 1 and Θ(x < 0) = 0 and T is the total simulation time. This
indicator counts the fraction of time consumption ct is low, weighted by the relative
distance between ct and c0.

• Since we are considering an economy defined by low substitutability between capi-
tal and labor (i.e. ρ≫ 1 in the CES production function), we define capital scarcity
as the periods where production is determined by capital levels, i.e. kt ≤ nt. The
severity of capital crises is similarly measured as

Ξk =
1

T

T∑

t=0

(
1− kt

nt

)
Θ(nt − kt). (8.38)
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In a sense, one can consider these two phenomena as demand and supply crises.

• In the consumption crisis state the household does not wish to spend on consump-
tion, hence we see a low aggregate demand. Provided capital depreciation is low,
this is also a state of excess capital (k > n) and low returns on capital.

• In the capital scarcity state, the firm is bound in its production by the supply of
capital, hence it can be viewed as a form of supply crisis.

Both phenomena can be more or less frequent, and at first glance unrelated, but closer
scrutiny reveals that in some regions of parameters, these two types of crises interact
with one another. To differentiate between characteristic behaviors we distinguish be-
tween four different phases in the space of the parameters defined by the values that the
indicators Ξk and Ξc take: (Lk,Lc), (Lk,Hc), (Hk,Lc), (Hk,Hc), where L and H repre-
sent the “low prevalence” and “high prevalence” of each phenomena c or k, respectively.
There is however no strict definition of the boundary between high and low prevalence
regimes. As a convention, we consider that the crisis prevalence is high when Ξ ≳ 10−2.

Given this setup, we first focus on the effects of three key parameters: the depreciation
rate δ, the weight ν of the Sharpe ratio in the investment decision, and the consumption
threshold c0. Other parameters are fixed to z0 = 0.05, λ = 0.95 (i.e. Tλ = 20), a = 15
and σz = 0.15.

Figure 8.4 presents heat-maps of the severity of capital crises log10 Ξk (top) and con-
sumption crises log10 Ξc (bottom) across parameter combinations, where red indicates
high prevalence. We show two representative sections of the parameter space: the planes
(c0, ν) (left) and (σz, a) (right). Since we present the logarithms of Ξk,c, the crossovers
between high and low prevalence of different phases are rapid but smooth, i.e. there are
no sharp phase transitions that characterize the system’s behavior. From each phase we
study a point of the line ν = 1 and different values of c0 (marked by points in Figure
8.4), with all other parameters fixed and plot the dynamics of consumption ct, labor
nt, capital kt, and the measured Sharpe ratio St in Figure 8.5. Note that changing the
value of parameters (including ν) while staying in the same phase leads to qualitatively
similar trajectories.

Prosperous Stability

As shown in Figure 8.5, leftmost column, the LkLc phase is characterized by a stable
capital surplus, low interest on capital and rare consumption crises. The depreciation
of capital δ is so small that even with a puny level of investment, capital is always in
excess and labor is the limiting factor. The stable capital surplus, in combination with
a low confidence threshold c0, means that productivity shocks zt hardly ever reach the
required magnitude to trigger a consumption crisis, and if it does, recovery is almost
immediate.

The corresponding bottom panel of Figure 8.5, shows that the consumption level has
normal fluctuations, entirely due to exogenous productivity shocks zt, around a single
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Figure 8.5 – The upper panels show sample dynamics trajectories for each phase presented in Fig.
8.4 (marked by circles). In the topmost panels the solid black line corresponds to the consumption
ct, while the dashed red and blue horizontal lines show, respectively, the confidence threshold c0
and the average consumption in the δ = 0 scenario. Grey (resp. pink) background indicate capital
scarcity (resp. consumption crisis). The middle row presents the dynamics of capital kt (solid
orange), labor nt (solid green) and Sharpe ratio St (solid grey, with levels shown on the right y-
axis). The lower panels show the histograms of consumption (black dots) and labor (green crosses)
in a log− log scale. The green (resp. grey) dashed curve corresponds to the δ = 0 baseline value for
labor (resp. consumption), with c0 indicated as a vertical red line. In the Hc phase, the histograms
of consumption and labor become bi-modal, corresponding to high output and low output regimes.
For all simulations ν = 1, a = 15, σz = 0.15. Specific parameters are LkLc: δ = 0.001, c0 = 0.001,
LkHc: δ = 0.001, c0 = 0.019, HkLc: δ = 0.02, c0 = 0.001, HkHc: δ = 0.005, c0 = 0.017. Taken

from Morelli et al. (2021).

high-consumption equilibrium. A corollary of the large capital excess is that the labor
supply is nearly constant (extremely narrow-distribution in the LkLc panel of Figure
8.5).

As the depreciation rate δ increases, the average excess of capital supply over labor
shrinks, increasing the prevalence of capital scarcity. Accordingly, the phase Lk quickly
disappears upon increasing δ, leading to a pervasive HkLc phase (see e.g. Fig. 8.4,
third column, which shows that capital is always scarce when δ = 0.02). As δ is further
increased, the Lc phase is more and more confined to small values of c0, i.e. when
confidence is intrinsically robust.
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Prevalent Capital Scarcity

The HkLc phase is characterized by persistent capital scarcity with rare consumption
crises, and is confined within a low c0 “band” in the (c0, ν) plane when δ is large enough.
Since c0 is low, confidence of is generally high and therefore the household systematically
consumes a large proportion Gt of its income, leaving only a small share for investment.
Because of capital depreciation, the economy settles in a regime where kt <

√
Gt/2γ,

meaning that production is limited by capital, wages are low and rent on capital is high
(i.e. the left region in Fig. 8.3). Hence, the average consumption level is lower than the
maximal consumption level reached in the LkLc phase – see Figure 8.5, second column.

But since ct is now closer to c0, consumption crises are lurking around and the economy
can flip into the HkHc if c0 increases and/or if productivity shocks are stronger (higher
σz). This is clearly confirmed by the phase diagram of Fig. 8.4. In fact, comparing the
phase diagrams for δ = 0.005 and δ = 0.02, we see that faster depreciation of capital
converts large swaths of HkLc phase into HkHc. Hence, in this case, investment crises
(i.e. the supply side) do trigger consumption crises (i.e. the demand side) by reducing
the difference between ct and c0 – see also the discussion in section 8.2.

Prevalent Consumption Crisis

When the depreciation rate is sufficiently small but the confidence threshold increases,
capital remains abundant but self-reflexive confidence crises can hurl the system into
a low consumption, low employment regime as a result of random productivity shocks.
This is the LkHc phase. Since capital is high, its level does not impact the level of
production, and interest on capital is small. Hence the model becomes completely equiv-
alent, in this regime, to the one studied in Morelli et al. (2020), where the dynamics is
characterized entirely by the consumption propensity Gt and is dominated by frequent
consumption crises, induced by breakdown of collective confidence.

As argued in Morelli et al. (2020) and shown in Figure 8.5, third column, consumption
then displays bi-stable dynamics, where high and low consumption regimes alternate.
Correspondingly, the distributions of consumption and labor reveal a secondary peak
centered around the low-consumption equilibrium.

Note that during consumption crises (i.e. Gt ↘) capital becomes even more abundant
relative to labor (recall that one needs to compare kt with

√
Gt/2γ) and therefore return

on capital and Sharpe ratio both fall, as can be seen in the pink shaded region of Fig. 8.5,
third column. If we are in a region where consumption crises are short enough compared
to both the time Tλ over which the Sharpe ratio is estimated and the capital depreciation
time Tδ, then one can avoid a capital crisis when confidence comes back. Otherwise, the
economy enters a turbulent HkHc phase with both capital and consumption crises.
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Capital and Consumption Crises

This final HkHc phase has both persistent capital scarcity and consumption crises. As
anticipated above, capital crises can trigger consumption crises, because capital scarcity
drives consumption closer to the confidence threshold c0, below which consumption drops
and precautionary savings increase. One can then enter a doom loop (similar to Keynes’
famous paradox of thrift) where now capital is too high and leads to a reduction of
incentive to invest away from bonds. Hence, as shown in the fourth column of Fig. 8.5,
capital and labor fluctuate around low levels, with intertwined periods of capital scarcity
(gray regions) and high unemployment (pink regions). The Sharpe ratio gyrates rather
strongly between negative values and values close to unity, with a significant negative
skewness. The economy is unstable and always far from its optimal state.

Recall that we have fixed the interest rate on bonds to a constant value. But with
a massive demand for bonds, as expected in the HkHc phase, one should expect the
government to borrow at low rates and prop up the economy with public investment, a
feature not modeled in the current framework, but certainly worth accounting for in a
later version of the model.

Summary

To summarize, we have identified four qualitatively different phases of the dynamics.
Possibly the most interesting (and novel) one is HkHc, where capital scarcity is persis-
tent, thereby triggering consumption crises. In this phase the economy is unstable, as
capital becomes scarce the likelihood of a consumption crisis increases, and vice versa,
low consumption drives rent on capital down and increases the risk aversion of investors.

We have underlined the role of the capital depreciation rate δ in determining the fate
of our model economy. In fact, when capital and infrastructure are sufficiently long-
lived such that z0 · Tδ is large, the economy reaches a stable and prosperous state LkLc,
provided self-induced confidence crises are rare enough (i.e. c0 small). Conversely, when
z0 ·Tδ is low, capital depreciates too quickly and this dents the rents that can be expected
by investors. The economy quickly becomes under-capitalized and inefficient, especially
because the dearth of capital makes confidence crises more probable, paving the way for
the existence of a dysfunctional HkHc region in the phase diagram.

Investment and Crisis Recovery

In the previous section, we have explained how capital depreciation can cause instabili-
ties, and the appearance of a HkHc phase where both capital and consumption undergo
regular crises. In this section, we want to explore the influence of the memory timescale
Tλ, which is the history span over which investors assess the Sharpe ratio of capital
investment, and of the sentiment parameter ν on the time needed for recovery when in
a crisis period. We focus on this turbulent phase of the economy. We will fix the other
two timescales Tδ, Tη defined in section 8.1 to, respectively, 200 and 2.

122



CHAPTER 8. ECONOMIC CRISES AND SELF-REFLEXIVE CONFIDENCE

°6

°5

°4

°3

lo
g

c t

T∏ = 20 T∏ = 20

0 100 200 300 400 500

Time

°3

°2

°1

lo
g

k
t
&

lo
g

n
t

0 100 200 300 400 500

Time

-1
0
1

-1
0
1

-1
0
1

C t

-1
0
1

S t

0.0 0.2 0.4 0.6 0.8 1.0

∫

0.0

0.5

1.0

1.5

2.0

2.5

lo
g 1

0
T ∏

log10 •c

T∏ =2
T∏ =10
T∏ =20
T∏ =50

0.0 0.2 0.4 0.6 0.8 1.0

∫

0.0

0.5

1.0

1.5

2.0

2.5

lo
g 1

0
T ∏

hStit
T∏ =2
T∏ =10
T∏ =20
T∏ =50

°8

°7

°6

°5

°4

°3

°2

°1

°6

°5

°4

°3

°2

°1

0

1

2

°500 °250 0

St

10°5

10°3

10°1
lo

g
fr

eq
ue

nc
y

T∏ = 2

°10 °5 0

St

T∏ = 10

°2 0 2

St

T∏ = 20

°2 0 2

St

T∏ = 50

100 102 104 106

log size

10°6

10°5

10°4

10°3

10°2

10°1

lo
g

fr
eq

ue
nc

y T∏
T±
T<

100 102 104 106

log size
100 102 104 106

log size
100 102 104 106

log size

Figure 8.6 – The upper (resp. lower) left heat-map shows log10 Ξc (resp. average Sharpe ratio) as
a function of the memory time scale Tλ and the weight parameter ν. The dark red zones correspond
to the regions where Ξc > 0.99, where crises are permanent. The right set of panels shows snapshots
of the dynamics of ct, kt and nt, corresponding to recovery (left) and crisis formation (right), both
for Tλ = 20 and ν = 0.75. The two bottom rows show the histograms of Sharpe ratio S and crisis
duration T< for four values of Tλ: 2, 10, 20 and 50, all for the same value of ν (shown as symbols in
the two heat-maps on the left). The faded grey lines show the same histograms in the benchmark
case ν = 1 that correspond to the HkHc point in Fig. 8.4. Other parameters used are: δ = 0.005,

c0 = 0.017, σz = 0.15 and a = 15. Taken from Morelli et al. (2021).

Our benchmark will thus be the HkHc point in Fig. 8.4, corresponding to λ = 0.95,
δ = 0.005, ν = 1 and c0 = 0.017 (with a and σz also fixed at their baseline values).
Looking at the statistics of the high consumption periods and of the low consumption
periods, we conclude that the prosperous periods last a time T> of the order of Tδ = 200
(data not shown), whereas crises are rather short, of the order of T< ≈ 10, see Fig. 8.6,
plain vertical lines in the third graph of the bottom row, which corresponds to Tλ = 20,
i.e. λ = 0.95. The full distribution of T< and of the Sharpe ratio S for ν = 1 are shown
in light grey, and reveals that whereas its time averaged value of S is clearly positive and
equal to ⟨S⟩t ≈ 0.71, its full distribution is uni-modal but quite broad and negatively
skewed.

Fig. 8.6, left graphs shows the consumption crisis prevalence Ξc and the average Sharpe
ratio S as 1− ν (weighing confidence in the investment allocation decision) and Tλ are
varied. One sees that decreasing ν or increasing Tλ leads to an increase of Ξc, at least in
the range shown, Tλ ≲ 300. The evolution of the average Sharpe ratio is more complex,
reflecting the non-trivial shape of its distribution function (bi-modal and skewed, see
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below). But certainly as agents pay less attention to the actual return on capital and are
more affected by the level of confidence, the average Sharpe becomes strongly negative
(red region of the diagram) and the economy gets trapped forever in a low consumption,
low investment regime where θkΣ is negative (see Eq. (8.36)).

Now, let us look at a cut along the direction ν = 0.75, corresponding to a 25% weight
given to confidence in the allocation decision, as Tλ is varied. For this particular value
of ν, the average Sharpe ratio is close to zero and only weakly depends on Tλ (Fig. 8.6,
bottom left graph). But from the bottom row of Fig. 8.6, we see that when Tλ ≳ 10,
the distribution of Sharpe ratios becomes bi-modal and with a skewness that decreases
as Tλ increases. This can be rationalized as follows:

• The peak corresponding to positive Sharpe ratios comes from prosperous periods,
where consumption is high and capital relatively scarce, leading to a positive return
on capital q∗: see Fig. 8.6, top right graphs: in the high consumption phase, the
orange line (capital) is below the green line (labor).

• The peak corresponding to zero Sharpe comes from crises periods, where capital
is in slight excess of labor, leading to a small return on capital (see again Fig. 8.6,
top right graphs, and section 8.1).

• The fat left tail corresponding to negative Sharpes comes from the transitory pe-
riods between high confidence and low confidence, when consumption and labor
collapse but capital depreciates much more slowly. In this case, return on capital
plummets and the Sharpe ratio becomes negative.

• As Tλ increases, the weight of these transitory regimes in the estimate of the Sharpe
ratio becomes small, and the fat left tail disappears, as crises become less frequent
and much longer.13

Whereas the length of the prosperous periods T> is unchanged compared to the bench-
mark ν = 1 case for all values of Tλ ≳ 10, the length of the crisis periods T< increases
by more than a 100 times as ν is decreased from 1 to 0.75 (compare the grey line and
the coloured points in bottom row in Fig. 8.6). The first observation is due to the
fact that the Sharpe ratio estimated when in a high output period is clearly in positive
territory and quite insensitive to Tλ (see the histograms in Fig. 8.6). This means that
capital supply is also independent of Tλ and that the confidence collapse mechanism
must be identical to the one described in our previous work and not triggered by a lack
of investment.14

On the contrary, the mechanism by which confidence is restored is strongly impacted
by the value of the memory time Tλ. When the economy is in a consumption crisis,

13For very large Tλ, the situation changes again, see below.
14This is not to say that the crisis frequency is not related to capital abundance. As already noted in

section 8.2, as capital depreciation δ increases, available capital decreases, which leads to a lowering of
output ct. Since the distance between ct and the threshold c0 is a crucial determinant of the probability
of a confidence crisis, the region HkHc becomes pervasive as δ increases, see again Fig. 8.4.
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the returns on capital are very small. Thus, averaged over a sufficiently long time
period, the Sharpe ratio is well defined and also small (see the narrow peaks in the
Sharpe ratio distribution in Figure 8.6). Combined with the low confidence dampener
on sentiment (1− ν) · Ct, this leads to a negligible investment flow. So whereas positive
productivity shocks should put the economy back on an even keel, the level of capital is
lagging, which creates a ceiling that prevents consumption (and hence confidence) from
increasing substantially and returning to the high consumption case.

Interestingly, the dependence of T< on Tλ is in fact non-monotonic. For very large
Tλ ≳ 1000, the memory of prosperous periods persists even during the crises, so that
the Sharpe ratio and investment always remain high. In such cases, T< abruptly drops
back to small values ≲ 5 (data not shown). With extremely small probability, however,
the system remains trapped in a crisis forever.

In the opposite case of a small enough Tλ, the short periods where consumption increases
due to productivity shocks allow sufficiently rapid increases in capital rent to encourage
immediate investment. This is enough to prop up capital and allows confidence to be
fully restored as labor and consumption will grow with the limiting factor kt. For an
example of these positive spikes of consumption, see top center panel in Fig. 8.6. The
same effect takes place if ν is increased back to 1, where only realized Sharpe affects
investment. In this case, the drag on capital due to low confidence levels is absent, and
the system is able to pull itself out of the rut much more efficiently, leading to shorter
crisis periods. But for lower values of ν (higher impact of household confidence on the
investment propensity), the dearth of capital in crisis periods is such that the economy
is unable to ever recover, i.e. T< = +∞ for all purposes.

From a policy point of view, reducing interest rates has the direct effect of increasing the
Sharpe ratio and reducing the return to bonds, thus promoting investment and making
the transition back to the high consumption state easier. However, this may require
the central bank to set interest rates r to negative values, as r which might already be
close to zero due to prior crises. Besides monetary policy, other measures that improve
confidence (e.g. central bank messaging) and/or promote investment into productive
capital would have a similar impact (for instance if the government decides on strong
fiscal measures that include investment into productive capital, such as through mission-
oriented policies or infrastructure spending).

Finally, let us mention that while the existence of consumption crisis is independent of
the substitutability parameter ρ, the duration of the low investment, low consumption
periods is also highly sensitive to substitutability effects. We have indeed found that
when ρ is sufficiently small, i.e. for production functions closer to Cobb-Douglas than
to Leontief, recovery is much faster (data not shown). This could have been expected:
lack of capital can now be compensated by labor, expediting the transition back to a
prosperous state of affairs.
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8.3 Discussion and Conclusions

We have constructed a behavioral real business cycle model in which labor and capital
are nearly unsubstitutable. In the model, consumption and investment are controlled by
(a) the confidence of households, which is self-reflexive (i.e. agents take cues from the
consumption of other agents to determine their consumption budget) and (b) the quality
of the excess real return to capital, as measured by the Sharpe ratio. As we have shown
in Morelli et al. (2020), the self-referential nature of confidence amplifies the effect of
productivity shocks on output, and can lead to crises where consumption abruptly jumps
from a high equilibrium level to a low equilibrium level. Depending on the parameters
of the model, these crises can be more or less frequent, and the low consumption periods
can be of various duration: short spikes (“V-shaped crises”) or long drawn-out phases
(“L-shaped crises”).

In the present study we investigate how the introduction of capital affects these dynam-
ical patterns. In our model, capital can either be abundant (in which case labor is the
limiting factor to production) or scarce. The main factors determining the quantity of
working capital are the depreciation rate and the propensity of the households to save
and invest, which itself depends on the return on capital. The resulting phenomenology
of the model is quite rich. Our analysis reveals the following main takeaways:

1. Higher capital depreciation rates, ceteris paribus, lead to capital scarcity and limit
production. This makes the economy more prone to confidence crises, increasing
their prevalence;

2. Increasing the influence of the level of confidence in capital allocation decisions
creates a feedback loop similar to Keynes’ paradox of thrift, destabilizing and
trapping the economy into a non-optimal low consumption state;

3. The time during which the economy remains in a low output state is highly sensitive
to the time span over which investors compute the Sharpe ratio. Increasing this
memory timescale leads to sluggish adjustments of investment.15 Consequently,
instantaneous increase of capital returns due to productivity upticks are not suf-
ficient to boost the investment propensity. This leads to a persistence of capital
scarcity, and prevents the economy from escaping the low output trap.

Our findings have different policy implications. As already emphasized in Morelli et al.
(2020), if self-reflexive feedback loops exist, then governments and monetary authorities
should not only manage inflation expectations but more broadly confidence in the future
prospects of the economy. Although confidence indices are routinely measured by polling
institutes (see e.g. Fig. 8.1), the inclusion of such indices in macroeconomic DSGE
models and the importance of narratives (Shiller, 2019) have never really been considered
seriously beyond the impact of news shocks on productivity.16

15Note however, as reported in the previous section, that extremely long memory timescales allow the
Sharpe ratio to stick to high values.

16e.g. the work of Beaudry et al. (2020) reflecting interactions and complementarity. Also Angeletos
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Beyond communication and narratives, our model suggests that monetary authorities
should also directly promote investment, in particular during recessions. This is needed
to prevent the economy being trapped in a low output, low confidence environment.
Although this conclusion looks perfectly intuitive, our model reveals that a lack of capital
can prolong crisis periods by orders of magnitude, and convert V-shaped crises into L-
shaped crises. Boosting investment in working capital can be done through traditional
channels, by lowering the risk-free interest rate (possibly making it negative) or by direct
Keynesian investments in infrastructure and in innovation, which have the double effect
of increasing the productivity of capital and propping up household confidence.

There are of course many directions in which our model should be extended and im-
proved. The first obvious one is to allow interest rates and inflation to be dynamical
variables, and to introduce an explicit monetary policy with the central bank monitoring
inflation and confidence. A fully developed DSGE model building upon the framework
proposed here would be welcome. Other relevant extensions could be to include a feed-
back mechanism between confidence and the time scale Tλ or the sentiment parameter
ν. This would allow potentially relevant panic effects to set in the model, and capture
what happened in 2008, for example.

Another possible extension is to allow the parameter a which describes the default risk
on capital to depend on the state of the economy, since bankruptcies are more frequent
when the economy is in a low output, low investment regime.

Last, but not least, we have assumed that confidence is only a function of past realized
output, but other factors should obviously be taken into account to model the dynamics
of the confidence index, in particular financial news (like in 2008) or geopolitical news.
Our framework would lead to scenarios where a shock like Lehman’s bankruptcy simul-
taneously affects both consumption and investment, leading to a deep and prolonged
recession, even in the absence of any “true” productivity shock. Conversely, good news
about the future (e.g. technology shocks) could help to recover faster from the low
output trap.

It would also be interesting to look for a “grand unification” between the type of behav-
ioral business cycle/DSGE models considered in this chapter and heterogeneous agent
based models studied in the recent literature, which generically give rise to similar crises
and bi-stable dynamics between high output and low output regimes of the economy
(see e.g. Gualdi et al. (2015) and Sharma et al. (2020)).

et al. (2020) showed that single news shocks (confidence shocks) are sufficient to fit empirically the effects
of business cycles. See also Deniz and Aslanoglu (2014).
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Key Messages
• This chapter extends the behavioral real business cycle model of Morelli et al.
(2021) by introducing capital as a factor to production, which, together with
consumption, is driven by household confidence.

• Depending on the parameterisation, multiple phases are possible: a stable
high or low equilibrium, or crises with short or long drops.

• These phases depend on model-timescales: the degree of depreciation lead-
ing to capital scarcity, the memory timescale of investors, and the degree
of influence confidence in the general state of the economy has on capital
allocation.

• The policy implications are that beyond managing the exact expectation of
inflation, policymakers must also address general confidence in the state of
the economy. A task made difficult when, as in the United States, consumer
sentiment is sharply divided by political affiliation.
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Chapter 9
Post-COVID Inflation & the Monetary
Policy Dilemma

This chapter has been taken from Knicker et al. (2023) Post-COVID Inflation & the
Monetary Policy Dilemma with only minor modifications to fit the thesis. This was a
joint work with M. Knicker, F. Zamponi, and J-P Bouchaud. My main contributions
in this paper were the economic framing of the debate on the causes of inflation, the
calibration of the shocks applied to Mark-0, and contributing to the analysis of the policy
outcomes. Overall, the drafting and analysis was done in discussion and collaboration
with all other co-authors.

Inflation has captured global attention since the onset of the COVID-19 pandemic (from
now on, simply “COVID”) in 2020. In the United States annual inflation reached 4.8%
in 2021 and peaked at 9.1% in June 2022,1 while Europe experienced highs of 11.5% in
October 2022.2 Competing narratives have emerged to explain the mechanisms driving
this inflationary surge, which has persisted longer than expected. Policymakers have
been blindsided by inadequate models, with the Bank of England admitting it had “big
lessons to learn” from failure to forecast inflation using existing models.3 This chapter
aims to explore the influence of fiscal and monetary policies on prevailing inflationary
dynamics within a complex macroeconomic environment, modeled using the Mark-0
Agent-based Model that is based on alternative modeling foundations.

1see e.g. U.S. Bureau of Labor Statistics, Consumer Price Index for All Urban Consumers: All Items
in U.S. City Average [CPIAUCSL], retrieved from FRED, Federal Reserve Bank of St. Louis; May 24,
2023.

2see e.g. Eurostat EuroIndicators, report n. 31/2023.
3see for example the Financial Times, https://www.ft.com/content/b972f5e3-4f03-4986-890d-

5443878424ac
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During the period of high inflation in 2021 and 2022, several theories emerged to ex-
plain the underlying causes of persisting inflationary trends. These interpretations led to
differing views on appropriate policy responses, ranging from monetary policy interven-
tions such as interest rate hikes to more targeted fiscal policies and price controls. Our
analysis contributes to the debate on the appropriate policy responses to post-COVID
inflation by providing a flexible framework to assess different policy options in the con-
text of various inflation drivers, including demand-pull, cost-push, and profit-driven
inflation. Our framework can accommodate varying behavioral foundations within a
complex economy, including agents’ trust in the Central Bank’s clout and the anchoring
of inflation expectations. Our main conclusions are that (i) the economic recovery after
the shocks, especially in absence of mitigating fiscal policies, can be much more sluggish
than expected – or even fall into deep recessions beyond dangerous tipping points or
“dark corners”(Blanchard, 2014); (ii) the policy response (both from the government,
the Central Bank, and other public authorities) has to navigate a narrow path, facing
the trade-off between high inflation (with the risk of a runaway scenario) and high un-
employment (with the risk of an economic collapse). In particular too weak a fiscal
stimulus is ineffective, and too large a stimulus fuels high inflation; (iii) the success of
monetary policy in curbing inflation is primarily due to expectation anchoring, rather
than to direct impact of interest rate hikes; (iv) the two most sensitive model parameters
(in terms of the inflation outcome) are those describing wage and price indexation, or in
other words the bargaining power of workers and the market power of firms.

An initially dominant view of the post-COVID inflation was based on the “too much
money chasing too few goods” theory of inflation (see e.g. de Soyres et al., 2022b,a), also
known as demand-pull inflation. This narrative focuses on the large amount of fiscal
stimulus, such as the Coronavirus Aid, Relief and Economy Security Act (the “CARES
Act”) or the American Rescue Plan in the U.S., that have led to excess demand due to
increases in disposable income while supply has not adjusted, thus pushing up prices.
Some, such as Ferguson and Storm (2023) agree with the demand-pull inflation analysis
but contend that “the final cause of the inflationary surge in the U.S., therefore, was in
large measure the unequal (wealth) effects of ultra-loose monetary policy during 2020-
2021”.

In contrast to the excess demand interpretation, scholars such as Stiglitz and Regmi
(2022) conclude that “today’s inflation is largely driven by supply shocks and sectoral
demand shifts, not by excess aggregate demand”. This claim is supported by the study
of Cavallo and Kryvtsov (2023), who present empirical evidence spanning the years 2020
to 2022, illustrating the significant inflationary consequences of unexpected disruptions
in product availability and stockouts across various sectors. In particular, the energy
and food price shocks following COVID and the Russian invasion of Ukraine in 2022
were major causes of inflation, but this time from a cost-push inflation perspective
wherein firms pass on increases in costs to consumers through prices. The strength of
the inflationary surge was in large part due to the systemically important nature of the
sectors where inflation occurred: energy and food (Weber et al., 2022). Combined with
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supply chain bottlenecks that have also made headlines after COVID, these observations
suggest an alternative cost-push scenario that is outside the realm of Central Bank’s
policy toolkit. This is also the conclusion of Bernanke and Blanchard (2023), where a
detailed decomposition of inflation over different factors is proposed.4

Finally, a recent debate has emerged around profit-driven inflation, wherein sellers have
increased prices beyond the increase in costs they face, thus expanding their profit mar-
gins. This is based on the observation that profits have increased sharply in the current
inflationary climate, as compared to the observed amount of cost increases, even when
including concerns of a wage-price spiral, and the excess demand cited by a monetarist
perspective (Glover et al., 2023; Stiglitz and Regmi, 2022). Weber and Wasner (2023)
analyzed firms’ earnings calls and posit an interpretation based on imperfect competition
and market power. Specifically, in an environment of cost increases and supply bottle-
necks, firms’ market power temporarily increases. This may be enhanced by the fact
that when inflation is high, uncertainty about prices increases, such that consumers may
be prone to accepting unreasonably high prices (an effect sometimes called “consumer
discombobulation”), thus allowing companies to enlarge their margins.

All of these different interpretations lead to different guidelines for how policy should
respond, and whether it should at all. From a standard monetarist perspective, the
Central Bank should raise interest rates in order to push down demand, thus solving the
excess demand scenario. On the other hand, in a cost-push scenario, the Central Bank’s
rate has no effect on the external cost increases and may actually harm the situation
if firms choose to pass on the increased costs of debt to consumers. On this, Stiglitz
and Regmi (2022) suggest “monetary policy, then, is too blunt an instrument because it
will greatly reduce inflation only at the cost of unnecessarily high unemployment, with
severe adverse distributive consequences”, as in their view inflation is not due to excess
demand. In reality, the U.S. Federal Reserve has hiked rates at the fastest rate since
Paul Volcker was chairman, in line with a monetarist view. Simultaneously, in 2023
inflation has begun easing, which begs the question of whether the reduction in inflation
throughout 2022 is due to monetary policy or to external factors such as the easing of
energy prices as with the oil crises of the 1970s (Blinder, 1982; Blinder and Rudd, 2013),
or else to a spontaneous tendency of inflation to self-heal due to economic forces. But
since the Central Bank’s mandate to keep inflation low and stable, they are expected
to act, generally through interest rate mechanisms and communication.5 The question
remains, to what effect? Are dips in inflation due to exogenous or endogenous factors or
to Central Bank policy? What are the consequences of raising rates in this environment?

4We became aware of this paper, dated May 23, 2023, in the last week before finalizing our own work.
Similarly to our own approach, Bernanke and Blanchard (2023) include wage bargaining, labor tightness
and trust anchoring in their framework. Among the most important differences, however, are the absence
of (i) supply-demand imbalances in the price setting mechanism and (ii) possible price gouging effects.
Furthermore, the multiple equilibria and corresponding “tipping points” found within our model do not
exist in their simplified specification.

5There is an ongoing impression that monetary policy is the “only game in town” when it comes to
inflation response.
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Are the consequences of not acting on inflation with monetary policy greater than those
when one does? After all, Bruno and Easterly (1998) found that “countries can manage
to live with relatively high – around 15-30 percent – inflation for long periods”. It is
these questions upon which we aim to shed some light by considering various scenarios
generated through an Agent-based Model, that allows us to run various counterfactual
scenarios.

To conduct our analysis, we use the Mark-0 Agent-based Model (ABM) originally pro-
posed by Gualdi et al. (2015), and extended in Gualdi et al. (2017); Bouchaud et al.
(2018) to study monetary policy and inflation, with an early application to the effects
of the COVID pandemic by Sharma et al. (2020) and a model-exploration study by
Naumann-Woleske et al. (2023, which I have extended in Part I of this thesis). The
Mark-0 ABM is a simplified model of a closed macroeconomy that nonetheless generates
a wide variety of phenomena, from stable low unemployment and inflation, to endoge-
nous crises that may oscillate regularly or punctuate long periods of recovery, or even to
runaway inflation (see Chapters 5 and 6 for an introduction to the model’s dynamics).
The philosophy behind the model is to generate qualitatively plausible scenarios. In
this context, Gualdi et al. (2017) studied the efficacy of monetary policy in maintaining
low unemployment and inflation, and “find that provided the economy is far from phase
boundaries (or ‘dark corners’ (Blanchard, 2014)) such policies can be successful, whereas
too aggressive policies may in fact, unwillingly, drive the economy to an unstable state,
where large swings of inflation and unemployment occur.” An analysis using the Mark-0
model in fact predicted, as early as June 2020, that the post-COVID recovery could be
more sluggish than expected and lead to a period of sustained inflation (Sharma et al.,
2020).

In this chapter, we present a more detailed study of the post-COVID recovery by con-
sidering three distinct shocks occurring in the Mark-0 model: (1) a COVID-shock that
negatively impacts firms productivity and consumer demand for the period of lockdowns,
(2) a supply-chain shock on firms’ productivity that mimics the after-effects of COVID
on global value chains, and (3) an energy price shock that is exacerbated by the Russian
invasion of Ukraine. Each of these shocks is calibrated to macroeconomic time-series for
the United States, such that the magnitude and duration match the observed data. We
then study the effects of these shocks under different assumptions about the activity and
efficacy of monetary policy, including the strength of monetary policy reactions to infla-
tion, the ability of the Central Bank to influence firms’ expectations, and the structure
of firm decision-making on prices and wages.

Our first results confirm that in the presence of properly calibrated shocks, the economic
recovery in absence of any mitigating policy is extremely sluggish, taking least several
years (if not much more) for the economy to return to the pre-crisis equilibrium. We
note that this happens with shocks that are calibrated on the observed post-COVID
macroeconomic time series, which already incorporate the effect of actually implemented
policies; we expect that in absence of any policies the impact would have been even
greater. This result thus points to the necessity of some sort of fiscal policy to prevent
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the economy from spiraling into a crises or sluggish recovery.

A second set of results concerns the impact of such policies. We find that the model
properly accounts for the inflation-unemployment trade-off, which leads to a narrow
window in which policy can be efficient. For example, a disproportionate response of
the Central Bank to inflation leads to unnecessary high unemployment, and an oversized
injection of Helicopter Money leads to an unnecessary high inflation. Finally, we find
that the anchoring (or de-anchoring) of economic agents’ trust in the Central Bank
strongly influences the dynamics of inflation due to the divergence in expected and
realized inflation rates, which confirms the necessity for the Central Bank to manage
inflation expectations. However, keeping expectations anchored to the Central Bank’s
target may come at a cost: if households believe that inflation is under control while
rates are going up, consumption might be hobbled. Similarly, if firms believe that
inflation is under control when it is not, wages will lag behind, again leading to a drop
in consumption. Both effects, perhaps paradoxically, lead to increased unemployment
compared to the case where expectations are floating. We conclude that each policy
must be carefully tuned to achieve the desired result, and we believe that our modeling
tool can guide policy makers in this respect.

Our primary objective is to provide possible scenarios and counterfactuals. As discussed
at length in our previous papers (Gualdi et al., 2015; Bouchaud et al., 2018; Sharma
et al., 2020), our ambition is not to provide precise predictions based on a fully calibrated
model, but rather a tool for decision makers to help them apprehend different possible
outcomes and anticipate unintended consequences and potential counter-intuitive im-
pacts of their policies. We hope that Mark-0 can be usefully added to the policymakers
toolbox and help them navigate a radically complex world (see e.g. King and Kay (2020);
Bouchaud (2021)).

The remainder of the chapter is structured as follows: Section 9.1 gives an overview of
the Mark-0 model and the adaptations made for this chapter. Pursuing this, Section
9.2 then outlines the policy channels that the model contains: interest rate, expectation
management, access to credit, Helicopter Money and Windfall Tax. Section 9.3 discusses
the model’s dynamics in absence of exogenous shocks. In Section 9.4 we calibrate our
three shocks, and show how they affect the macroeconomic dynamics with or without
an easy credit policy, but without any monetary policy interventions by the Central
Bank. In Section 9.5 we introduce and discuss monetary policy through interest rates
and expectations management, and highlight its effects. In Section 9.6 we add fiscal
policy by examining two distinct kind of stimuli, Helicopter Money and a Windfall Tax.
Section 9.7 presents a discussion of the robustness of our model to variations of its
parameters, and highlights the risk of hyperinflation. Finally, Section 9.8 summarizes
our results and lays out some perspectives and ideas for future work.
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9.1 The Mark-0 Model

The Mark-0 model was already briefly introduced in Chapter 5, with an outline of its
main equations. However, in this Chapter we extend the model to incorporate three
different shocks and study the agents’ confidence in the Central Bank. Thus we here
outline again the relevant equations for the model and explain the economic intuition
behind all of them.

Model Overview

The model comprises a large set of firms producing a homogeneous consumption good
that is purchased by a representative household sector. The household sector goes to the
market with a consumption budget CB computed as a fraction of savings, S(t), wages
W (t), payouts from the energy sector δeEe(t), and interest on deposits ρd(t)S(t),

CB(t) = c(t) [S(t) +W (t) + δeEe(t) + ρd(t)S(t)] , (9.1)

where c(t) ∈ (0, 1) is the consumption propensity out of wealth and income, defined as

c(t) = c0 [1 + αc (π̂(t)− ρd(t))] , αc ≥ 0, (9.2)

where π̂(t), specified by Eq. (9.23) below, is the expected future inflation. Eq. (9.2)
mimics the behavior of the classical Euler equation, as the household consumes more
when real interest rates, ρd(t)− π̂(t), are lower. The savings of households over time can
then be written as:

S(t+ 1) = S(t) +W (t) + ρd(t)S(t)− C(t) + ∆(t) + δeEe(t) (9.3)

with dividends received from firms profits ∆(t) and actual consumption C(t) ≤ CB(t)
that is given by the matching of demand and production.

Households choose to split their consumption budget between NF different firms (labeled
by an index i = 1, 2, · · · , NF ), based on an intensity of choice model

Di(t) =
CB(t)

pi(t)

exp(−βpi(t))∑
j exp(−βpj(t))

, s.t.
∑

i

pi(t)Di(t) ≡ CB(t), (9.4)

with a price sensitivity β.6

Because the model considers out-of-equilibrium situations, demand Di for good i and
production Yi may not match, leading to a realized consumption cRi given by min(Di, Yi).
Meanwhile, firms produce consumption goods based on a linear production function,

Yi(t) = ζ(t)Ni(t), (9.5)

6Good differentiation could easily be included at this stage by replacing pi by pi/ψi, where ψi is the
preference for good i.
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dependent only on the firm’s employed labor force Ni and time-dependent labor-
productivity ζ. The unemployment rate u(t) is then given by u(t) = 1 −∑iNi(t)/N ,
where N is the number of workers. At each time step, corresponding to one month
throughout this chapter, firms can adapt to the current economic environment by choos-
ing three firm-specific variables: the target production Yi(t), price pi(t), and wage offered
to their employees, wi(t). We describe these in turn, but note that the time step of one
month and the different update parameters γ, g are assumed to be small such that pro-
duction, prices and wages evolve slowly between t and t+1, barring the role of external
shocks of the COVID type, as discussed in section 9.4 below.

1. Production update. Production adapts to the observed gap between supply and
demand at the previous time step as follows:

If Yi(t) < Di(t) ⇒ Yi(t+ 1) = Yi(t) + min{η+i (Di(t)− Yi(t)), ζu
⋆
i (t)}

If Yi(t) > Di(t) ⇒ Yi(t+ 1) = Yi(t)− η−i [Yi(t)−Di(t)]
(9.6)

where u⋆i (t) is the maximum number of unemployed workers available to the firm
i at time t, which depends on the wage the firm pays relative to the production-
weighted average wage Wi(t)/w(t)

7

u⋆i (t) =
eβWi(t)/w(t)

∑
i e

βWi(t)/w(t)
. (9.7)

The speed at which firms hire and fire workers depends on their level of financial
fragility Φi, defined as the debt-to-sales ratio, where debt is Di(t):

8

Φi(t) =
1

Θ

Di(t)

min (pi(t)Di(t), pi(t)Yi(t))
. (9.8)

Non-indebted firms have zero fragility and Θ is the maximum debt-to-sales ratio
allowed by firms creditors, beyond which firms are declared bankrupt.9 Firms that
are close to bankruptcy (i.e. Φ ≈ 1) are arguably faster to fire and slower to hire,
and vice-versa for healthy firms. The coefficients of the hiring and firing rates η±i
for firm i (belonging to [0, 1]) are given by:

η±i =
[[
η±0 (1∓ Γ(t)Φi(t))

]]
, (9.9)

where η±0 are fixed coefficients, identical for all firms, and [[x]] = x when x ∈ (0, 1),
[[x]] = 1 for x ≥ 1 and [[x]] = 0 when x ≤ 0. The factor Γ > 0 measures how the
financial fragility of firms influences their hiring/firing policy, since a larger value
of Φi then leads to a faster downward adjustment of the workforce when the firm is
over-producing, and a slower (more cautious) upward adjustment when the firm is

7The production weighted average wage is defined as w(t) =
∑

i Wi(t)Yi(t)∑
i Yi(t)

.
8Note that this definition of fragility Φ slightly differs from that used in our previous publication, in

particular the normalization by the bankruptcy threshold Θ.
9For the detailed bankruptcy settlement, see Gualdi et al. (2017); Bouchaud et al. (2018).
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under-producing. Γ itself depends on the inflation-adjusted interest rate and takes
the following form:

Γ(t) = max
[
αΓ (ρℓ(t)− π̂(t)) ,Γ0

]
, Γ0, αΓ ≥ 0, (9.10)

where ρℓ(t) is the rate at which firms can borrow, Γ0 and αΓ are free, non negative
parameters, the latter being similar to αc that captures the influence of the real
interest rate on the hiring/firing policy of firms.

2. Price update. Compared to the previous versions of the Mark-0 model, in this
chapter the firms’ price update, ∆pi(t + 1) = (pi(t+ 1)− pi(t))/pi(t), explicitly
takes into account the demand-output gap, and a contribution for the change in
exogenous (e.g. energy) price ∆pe,ema (in %), to with:

∆pi(t+ 1) = γξi(t) ·
Di(t)

Yi(t)
+ gpπ̂(t) + ge∆pe,ema(t) if

{
Di(t) > Yi(t)

pi(t) < p(t)

(9.11)

∆pi(t+ 1) = −γξi(t) ·
Yi(t)

Di(t)
+ gpπ̂(t) + ge∆pe,ema(t) if

{
Di(t) < Yi(t)

pi(t) > p(t)

(9.12)

∆pi(t+ 1) = gpπ̂(t) + ge∆pe,ema(t) otherwise, (9.13)

where

• ξi(t) are independent uniform U [0, 1] random variables scaled up by the ac-
tual demand-output ratio Di(t)/Yi(t) (or its inverse), in order to mimic an
increased pressure on prices in case of supply (or demand) gluts. When
Di(t) ≈ Yi(t), this reduces to the rule used in previous papers, see Gualdi
et al. (2015);

• π̂(t) is the expected next-period inflation in % per month, that firms take into
account – or may even amplify – in their price setting mechanism;

• ∆pe,ema(t) is the exponentially weighted moving average (with parameter ω,
as in Eq. (9.22) below) of the exogenous price variations that are partially or
fully passed on to final customers. The weighted average reflects that changes
in energy price are not instantaneously transmitted to customers but rather
distributed gradually over several months.

The magnitudes of the corresponding price adjustments are determined by param-
eters: γ for supply-demand imbalance, gp for inflation expectations, and ge for
changes in the exogenous price. In this regard, ge can be thought of as the effec-
tive energy-share of production that firms want to pass on to customers, whereas
gp > 1 would correspond to the much discussed concept of “greedflation”.
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Note that p is the consumer price index, defined as

p =

∑
i c

R
i pi∑

i c
R
i

, cRi = min(Di, Yi) , (9.14)

with cRi the realized consumption of product i.10

3. Wage update. In similar fashion, firms update wages as

∆wi(t+ 1) = γ(1− u(t)) (1− Γ(t)Φi(t)) ξ
′
i(t) + gwπ̂(t) if

{
Di(t) > Yi(t)

Pi(t) > 0

(9.15)

∆wi(t+ 1) = −γu(t) (1 + Γ(t)Φi(t)) ξ
′
i(t) + gwπ̂(t) if

{
Di(t) < Yi(t)

Pi(t) < 0

(9.16)

∆wi(t+ 1) = gwπ̂(t) otherwise
(9.17)

with ∆wi(t+ 1) = (wi(t+ 1)− wi(t))/wi(t), and where u(t) represents the unem-
ployment rate, ξ′i(t) is a U [0, 1] random realisation, and gw is the wage sensitivity to
expected inflation, which could be seen as worker’s bargaining power. Firm profits
Pi include the cost of debt Di, the revenue on cash Ei and the cost of energy gepeYi:

Pi = pi(t)min{Yi(t), Di(t)} − wi(t)Yi(t) + ρdEi(t)− ρℓDi(t)− gepe(t)Yi(t) .
(9.18)

The conditions of wage change therefore depend on the demand-supply imbalance,
current firm profit Pi(t) and firm financial health, and also on the tension on the
labor market, since lower unemployment leads to higher wage increase. This allows
the model to reproduce Phillips curve effects. When firms experience positive prof-
its and maintain a positive cash balance, they distribute dividends to households
as a fraction δ of their cash balance:

∆(t) = δ
∑

i

Ei(t) I
(
Pi(t) > 0

)
I
(
Ei(t) > 0

)
, (9.19)

where I(E) is the indicator function of event E.

4. Energy Sector. In this chapter, we consider an exogenously varying energy price,
pe(t). Before the explicit shock introduced in Section 9.4, we consider the real
energy price to be constant and equal to the average price of goods, i.e. pe(t) =

10Here again, our present definition of p slightly differs from that used in our previous papers, where
we used a production weighted index instead of a consumption based index. We conform in this chapter
with the more standard definition of inflation based on the Consumer Price Index (CPI).
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p(t). In each period, firms pay a total amount gepe(t)
∑

i Yi(t) to the energy
sector. Subsequently, the energy sector pays a fraction of its accumulated profits
to households at a rate δe. Therefore the cash balance Ee of the energy sector
writes as

Ee(t+ 1) = Ee(t) + gepe(t)
∑

i

Yi(t)− δeEe(t) (9.20)

with the fraction δe of the energy profits that is paid out to households as income.
Here, δe can be understood as dividends, share sales, or other channels through
which energy sector profits circulate back into the economy. The way we introduce
the energy sector in this chapter as an accounting identity with exogenous prices
is arguably simplistic, and can certainly be improved in a future version of the
model.11

Inflation Expectations and Monetary Policy

The equations above depend on inflation rate expectations π̂(t), that we now define. We
consider that the measure of realized inflation is given by the change in consumption-
weighted average price,

π(t) =
p(t)− p(t− 1)

p(t− 1)
, (9.21)

where p is defined in Eq. (9.14).

In the model, agents form expectations of future inflation partly on the basis of past
realizations and partly on the basis of their trust in the Central Bank ability to enforce
its inflation target. More precisely, they use an exponentially weighted moving average
over realized inflation,

πema(t) = (1− ω)πema(t− 1) + ωπ(t), (9.22)

where ω sets a memory time over which agents perceive realized inflation, equal to
−[log(1 − ω)]−1 ≈ ω−1 for small ω. Together with the Central Bank’s communicated
inflation target, π⋆, all agents form the same inflation expectation, given by a weighted
average of πema(t) and π

⋆:

π̂(t) = (1− τT (t))πema(t) + τT (t)π⋆, (9.23)

where τT (t) is the degree to which expectations are anchored around the Central Bank’s
target.12 Consistently with the definition of πema and the long-term nature of the infla-
tion target, we interpret π̂(t) as the expectation of long-term inflation.13

11Note that in the model there is a resource constraint such that the total money M (that is created
by the Central Bank) is kept fixed during the simulation The balance sheet of the banking sector can
then be written as M = S(t)+E+−E−+Ee, with the household savings S and the cash balance of firms
E+/−.

12For empirical work on the question of trust, see e.g. Christelis et al. (2020).
13This is in contrast to the common formulations in DSGE models that operate with one-period-ahead

expectations (t→ t+ 1).
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As far as monetary policy is concerned, we assume that the Central Bank sets the baseline
interest rate, ρ0, via a classical Taylor rule based on observed (realized) inflation πema:

ρ0 = ρ⋆ + ϕπ (πema(t)− π⋆) , (9.24)

with reaction strength ϕπ. The baseline rate ρ0 is then translated into a time-dependent
rate on loans, ρℓ(t), and deposits, ρd(t), adjusting for the cost of bankruptcies (see Gualdi
et al., 2017; Sharma et al., 2020, for more details). These interest rates are defined as

ρℓ(t) = ρ0(t) + f
D(t)

E−(t)
, (9.25)

ρd(t) =
ρ0(t)E−(t)− (1− f)D(t)

S + E+(t)
(9.26)

with the positive cash balance E+(t) =
∑

imax(Ei, 0) and firms total debt E−(t) =
−∑imin(Ei, 0). The parameter f determines how the consequences of defaults are
allocated to lenders and depositors, interpolating between the costs borne entirely by
borrowers (f = 1) and those shouldered entirely by depositors (f = 0). In this chapter,
we do not consider a double mandate for the Central Bank as in Gualdi et al. (2017),
instead focusing only on inflation. We will comment about this below, as strict inflation
control may turn out to be highly detrimental to unemployment.

Finally, we allow inflation expectation anchoring to evolve dynamically via14

τT (t+ 1) = (1− ω)τT (t) + ω exp

[
−αI

|π(t)− π⋆|
π⋆ϕπ

]
. (9.27)

This equation aims at capturing the fact that the degree of expectation anchoring de-
pends on how closely the realized inflation actually matches the Central Bank target.
This is factored into an exponentially weighted moving average with memory time≈ ω−1:
realized and target inflation must differ significantly, and for sufficiently long times, for
agents to lose trust in the Central Bank. A larger αI means economic agents lose trust in
the Central Bank more abruptly as the gap between realized inflation and inflation target
becomes significant. We have included the factor ϕπ in the denominator to emphasize
the fact that stronger commitment of the Central Bank should decrease the sensitivity
of anchoring on realized inflation, but of course this extra factor can be reabsorbed into
αI .
The calibration of the parameters we choose for the model is based on the results and
studies done in the previous work around Mark0 (Gualdi et al. (2015, 2017); Bouchaud
et al. (2018); Sharma et al. (2020)). Here, we discuss only the parameters that are
relevant to the current work, in particular those identified by the sensitivity analysis in
Section 9.7. The parameters used in this study can be found in the Table H.1.

14Note that in our previous paper (Bouchaud et al. (2018)), the anchoring parameter τT was assumed
to be time independent, a case we will call “Anchored Trust” henceforth.
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9.2 Policy Channels in Mark-0

In the augmented Mark-0 model, the central authorities can influence macroeconomic
dynamics through (i) the manipulation of interest rates, (ii) anchoring inflation expecta-
tions, and (iii) regulating the amount of debt firms can accumulate. Additionally, there
is the possibility of fiscal policy in the form of direct injection of cash in the economy
(“Helicopter Money”) and Windfall Tax on the energy sector. These manipulations
take effect through firms’ financial fragility, which directly determines the probability
of bankruptcies and indirectly changes the propensity of firms to hire and fire workers,
as well as the wage setting behavior. Interest rates and cash injection also have effects
on the willingness of consumers to spend. In addition, there is an expectations channel
whereby firms and households may or may not trust the Central Bank’s communicated
inflation target depending on how close actual inflation is to the target. We now con-
sider these mechanics in turn, as these will turn out to be important in response to the
COVID related shocks that we will introduce in the next section.

The Interest Rate Channel

The Central Bank’s baseline interest rate ρ0 additively influences both deposit (ρd) and
lending (ρℓ) rates. Through this channel, the interest rate affects firms’ wages and hiring
strategies, as well as households’ spending.

The impact on households is straightforward and parallels that of the standard Euler
equation of inter-temporal substitution: higher interest rates, all else being equal, reduce
the propensity to consume out of income and wealth through parameter αc (Eq. (9.2)),
effectively decreasing current demand in favor of later consumption. This decrease leads
firms to reduce or maintain prices due to excess supply (see Eq. (9.12)), thereby lowering
inflation.

The impact of interest rates on firm behavior occurs through the coefficient αΓ, defined
in Eq. (9.10), which influences firms’ production target and wage adjustment. In all
cases αΓ affects firm behavior in combination with the firm’s fragility Φ (where Φ = 1
implies bankruptcy, see Eq. (9.8)). An increase in the baseline rate will increase Γ, which
implies that firms have stronger reactions to excess demand or excess supply. Unhealthy
firms (Φ > 0) will therefore more cautiously expand production when needed (η+), but
more abruptly fire staff in the case of excess supply (η−). Hence, an increase of the
baseline rate ρ0 will tend to decrease production and increase unemployment as fragile
firms feel the brunt of the cost of debt. For similar reasons, an increase of ρ0 implies a
stronger downward pressure on wages.

Therefore, in Mark-0 an increase of the baseline rate ceteris paribus induces a reduction
of consumption and an increase of unemployment. The success of a rate hike in curbing
inflation depends on the strength of the response of households and of firms to interest
rates, and hence on the value of the parameters αc and αΓ. If, as some authors argue
(Reis, 2022), the reaction of households and of firms to interest rates are subdued, large
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hikes would be necessary for monetary policy to have a significant effect on inflation, in
part by bringing about a recession (Stiglitz and Regmi, 2022).

The Expectation Channel

With rising global inflation, the debate about the importance of inflation expectations
for macroeconomic dynamics has been rekindled. Some, such as Rudd (2022), argue
that short-term inflation expectations play no role in macroeconomic dynamics, while
others, like Reis (2021), maintain their importance but question whether they are “de-
anchored” from Central Bank’s targets. In the present version of the Mark-0, long-term
inflation expectations π̂ play a role in price and wage settings: formally, the factor gp in
Eqs. (9.11) and (9.12) determines the fraction of expected inflation reflected in firms’
next-period prices. In a similar style, the factor gw in Eqs. (9.15) and (9.16) controls
the rate of wage adaptation to inflation in response to firms’ expected inflation, and is
thus adjacent to the idea of labor-bargaining power.

The long term inflation expectation, π̂, is determined as a mixture of past realized
inflation and the Central Bank target, with the Central Bank’s effectiveness in reaching
its target dictating the level of “anchoring” τT (see Eq. (9.23) and (9.27)). With this
formulation, economic agents lose confidence in Central Bank actions when inflation
significantly and persistently deviates from the Central Bank’s inflation target. The
parameter αI represents the sensitivity of trust to the Central Bank’s ability to control
inflation.

De-anchored beliefs imply firms’ inflation expectation is based solely on past observation,
running a risk of a wage-price spiral or a hyper-inflation runaway, depending on the
imbalance between the parameters gp and gw. The simplest case is equality in bargaining
and market power, gw = gp, which implies that on average both prices and wages are
raised in the same proportion to expected inflation, thus having no real effects on the
economy. One then faces either stable inflation when gw = gp < 1 or possible hyper-
inflation when gw = gp > 1, see section 9.7.

A more interesting case is gp ̸= gw, implying a differentiation in bargaining vs. pricing
power. For gp > gw, labor bargaining power is lower than firms pricing power. In this
case, firms raise prices by more than wages, eroding the purchasing power of workers.
This results in lower demand that makes price hikes less likely until firms’ excess demand
becomes excess supply, reversing the cycle. For gw > gp, on the other hand, an unstable
wage spiral may set in, with higher wages driving demand up, leading to further increases
of prices as firms face excess demand. The situation gp > 1, at least for firms with
a healthy balance sheet, would correspond to “greedflation”, i.e. firms trying to use
inflation to hide increases in their profits.

Credit Regulatory Policy

The last channel for the monetary authority to affect the economy within the framework
of Mark-0 is by means of the default threshold, Θ. Earlier work on the Mark-0 model
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found that the default threshold is a key parameter causing a phase transition between
a regime of high unemployment and/or endogenous crises (low Θ), and of stable full
employment (higher Θ conditional on low interest rates) (see Gualdi et al., 2015). This
is because higher thresholds give firms more time to adjust their production and price
strategy to return to a profitable state, assuming interest payments are low. Empirically,
both in the CARES act and the CAA there were relaxations of the bankruptcy laws in the
United States.15 Direct state aid to firms may also prevent bankruptcies from occurring.
In the realm of our model these policies are mimicked by increasing the bankruptcy
threshold Θ of firms during the shock and reducing it again after the shock. The “Easy-
Credit policy” proposed in Sharma et al. (2020) amounts to set the value of Θ such that
it remains commensurate to the current average firm fragility, to wit

Θ(t) = max(µ⟨ϕ⟩(t),Θ0), (9.28)

where Θ0 is the bankruptcy threshold before the shock, µ a multiplier, and ⟨ϕ⟩(t) the
firm-wide average debt-to-sales ratio at time t, meaning that only the firms whose debt-
to-sales ratio exceeds µ⟨ϕ⟩must file for bankruptcy. Throughout the following we will use
µ = 1.3 and Θ0 = 3.2, which represents a compromise between “too robust” economies
when Θ0 is large, and “too fragile” economies when Θ0 is small.

This implies that with easier credit access, firms can accumulate debt during the shock
without the fear of bankruptcy. This, in turn, affects the firing and hiring policies of
firms as they can continue with their business as usual, leading to a hiring and firing
as if they were not fragile (see Eq. (9.8)). Sharma et al. (2020) have shown that such
policy is effective in speeding up the recovery to pre-shock levels after severe COVID-like
shocks, without such policy long-lasting recessions would otherwise ensue.

Helicopter Money

When interest rates are low and access to credit is loose, but shocks nonetheless persist,
central authorities may turn to less conventional policies such as “Helicopter Money” to
address economic downturn. Introduced by Friedman (1969), this implies an injection of
money directly into the hands of economic agents to increase spending and thus economic
output.16 While some view Helicopter Money as a potential cause of hyperinflation and
currency devaluation, it can be an effective response to financial crises and pandemics by
stimulating real economic activity (Reis, 2022). In this chapter we consider Helicopter
Money as introduced by Friedman: a distribution of newly printed money by the Central
Bank directly to households, resulting in a decrease in the Central Bank’s net worth and
an increase in the net worth of households. This injection of money is modeled as a
one-time increase of savings of households by a factor κH > 1, such that S → κHS

15CARES refers to the Coronavirus Aid, Relief, and Economic Security Act, and the CAA refers to
the Consolidated Appropriations Act of 2021.

16By contrast, quantitative easing implies that money created by the Central Bank is used to pur-
chase government bonds and distributed through the government, whereas Helicopter Money is directly
distributed in the economy (Ugai et al., 2007).
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instantaneously after all shocks. The increased savings of households boost demand
through an increased consumption budget CB (see Eq. (9.4)) and finally end up on
the balance sheet of firms where it is then redistributed to households as wages and
dividends.

Windfall Tax

Whereas Helicopter Money stimulates consumption by injecting external funds into
households savings, a tax on “windfall” profits, which refer to large unforeseen profits
(Chennells, 1997), achieves a similar outcome by redistributing money through taxa-
tion. Following the Russian invasion of Ukraine, there has been a significant surge in
fossil fuel prices, leading to unexpectedly high returns for utilities and fossil fuel produc-
ing companies (Weber, 2022), and profit-driven price markups for other firms (Weber
and Wasner, 2023), leading to strong debate among policymakers about implementing
a Windfall Tax. The specific design of the Windfall Tax as a rent-sharing fiscal policy
may vary depending on the particular circumstances (Baunsgaard and Vernon, 2022).

In this chapter, we implement a “Windfall Tax” as a temporary increase of the fraction
of energy sector cash balance that is re-injected to the savings of households, i.e. δe →
δe +∆δe. This tax has a duration of two years, commencing one year prior to the end
of the price shock. The primary objective of increasing δe is to boost consumption by
enhancing households’ savings through the redistribution of the increased cash balance
in the energy sector that follow the energy price increases.

9.3 Stationary Dynamics: the Role of the Central Bank

The Economic Equilibrium Without Monetary Policy

To begin our analysis, we consider the economy without shocks. Our first choice of
parameters corresponds to a Central Bank that does not react to inflation (i.e. π⋆ =
ϕπ = 0) while maintaining low baseline interest rates (ρ⋆ = 1.2% p.a.). By consequence,
agents form inflation expectations based only on their own observations (τT = 0, see
Eq. (9.23)). In this scenario, called “Inactive CB”, and for the choice of parameters
detailed in Table H.1, the economy spontaneously evolves into a steady state of full
capacity, as evidenced by the low, oscillating unemployment rate around 0.4% (see Figure
9.1). There are small endogenous output and unemployment fluctuations of roughly two
years in duration. Simultaneously, there are stronger oscillations in the demand and
supply for goods, and in real wages. These fluctuations cause firms to adjust both their
production and prices, thus generating a small “business cycle” with periodic imbalance
between demand and output due to price adjustments. But in the absence of an active
Central Bank target, the amplitude of the resulting inflation oscillations is found to be
substantial, ranging between 1.5% and 8% p.a., suggesting that monetary policy indeed
iron out business cycles. As already found by Gualdi et al. (2015), these cycles emerge
endogenously from the oscillating feedback loop of prices, demand and savings. In this
scenario, called “Inactive CB”, and for the choice of parameters detailed in Table H.1,
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Figure 9.1 – Economic dashboard for the three Central Bank scenarios described in sections
9.3, 9.3 in absence of any policy and shock. Blue lines: Inactive Central Bank scenario (π⋆ =
ϕπ = 0, ρ⋆ = 1.2% p.a.). Orange lines: Reactive Central Bank with Anchored Trust scenario
(π⋆ = 2.4% p.a., ϕπ = 1, τT = 0.95). Green lines: Reactive Central Bank with Floating Trust
scenario. The complete parameter set can be seen in table H.1. The two insets correspond to the

demand/output ratio and the bankruptcy rate.

the economy spontaneously evolves into a steady state of full capacity, as evidenced by
the low, oscillating unemployment rate around 0.4% (see Figure 9.1). There are small
endogenous output and unemployment fluctuations of roughly two years in duration.
Simultaneously, there are stronger oscillations in the demand and supply for goods, and
in real wages. These fluctuations cause firms to adjust both their production and prices,
thus generating a small “business cycle” with periodic imbalance between demand and
output due to price adjustments. But in the absence of an active Central Bank target,
the amplitude of the resulting inflation oscillations is found to be substantial, ranging
between 1.5% and 8% p.a., suggesting that monetary policy may iron out business cycles,
as indeed found below. As already discussed in Gualdi et al. (2015), these cycles emerge
endogenously from the oscillating feedback loop of prices, demand and savings.

Note however that depending on the choice of parameters, the economy may settle into
a much less favorable state. In particular, when the hire-to-fire ratio is too small or
when the baseline interest rate is too high, the economy collapses, see Gualdi et al.
(2015); Bouchaud et al. (2018). Similarly, when the bankruptcy threshold Θ0 is too low,
unemployment remains at a relatively high level.
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Stabilizing Inflation through Monetary Policy

At this point, we introduce an active Central Bank and study its impact on inflation and
unemployment. Specifically, we set the Central Bank’s inflation target to π⋆ = 2.4% p.a.
and its reaction to inflation variation to ϕπ = 1. In this configuration, we assume that
the Central Bank works with a well-anchored inflation expectation fixed at τT = 0.95. In
the pre-COVID period core inflation was quite stable as a result of an arguably successful
monetary policy (Miles et al., 2017). Simultaneously, the Central Banks had been acting
in a transparent and measurable way despite the historically low interest rates (Reis,
2021), suggesting a high degree of trust. We call this constant τT scenario “Reactive
CB, Anchored Trust” in the following. In this case, Figure 9.1 shows that inflation is
reduced to an average of ⟨πAT ⟩ ≈ 2.7%, close to the 2.4% target, while nearly completely
suppressing the business cycle with a very low stable unemployment. On the other hand,
there is a slight reduction in real wages and higher interest rates.

Finally, we introduce a third scenario, referred to as “Reactive CB, Floating Trust”,
where we allow agents’ trust in the Central Bank to vary depending on the perceived
success of the CB to bring inflation to roost, see τT (t) defined in Eq. (9.27). We choose
as parameter values ω = 0.2 (corresponding to a memory time of 5 months) and a
sensitivity to off-target inflation of αI = 0.4. Again, all other parameters are taken from
Table H.1. In the absence of external shocks, this configuration leads to a similarly high
degree of trust in the Central Bank, and is otherwise identical to the case where trust is
anchored – simply because inflation is on target.

9.4 The COVID Shock and its Aftermath in the Absence of Monetary Pol-
icy

Modeling the Three COVID Shocks

In order to assess the effects of recovery and monetary policies in response to the events
of 2020-2022, we introduce in Mark-0 three shocks calibrated on U.S. data: (1) a COVID
shock, (2) a supply-chain shock, and (3) an energy price shock. The data was retrieved
from the Federal Reserve Bank of St. Louis, and are shown in Figure 9.2 where we have
indexed values to January 2020. We now discuss these shocks in turn:

1. COVID: The first major COVID outbreak emerged in the US in February 2020,
prompting the US government to declare a public health emergency, followed by the
implementation of stay-at-home orders in March of the same year. The COVID
outbreak led to a significant reduction in personal consumption expenditure by
households, falling by around 15% in February 2020 (Figure 9.2, dashed orange
line), which was of the same order of magnitude as the decline in the Industrial Pro-
duction Index during the same month (dashed blue line). It took about 5 months
for aggregate Personal Consumption Expenditure to recover to its pre-pandemic
level. In accordance with this, we consider a shock to the consumption propensity
c(t) of households by 15%, which appears in Eq. (9.2), recovering linearly over 5
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Figure 9.2 – Empirical Shocks: Fitting of shock scenarios to macro data from the US. The empirical
series (dashed lines) are indexed to January 2020. (Left Panel) Empirical series for the Personal
Consumption Expenditure (orange, dashed line) and Industrial Production Index (blue, dashed
line). Solid lines represent our model for the shocks to consumption propensity c (orange) and
productivity ζ (blue). Dark gray area corresponds to the COVID Shock and the gray area to the
Supply Chain Shock in the shock scenarios that we apply to Mark-0. (Right Panel) WTI Crude oil
spot price during the periods of shock (green, dashed line). Modeling of the artificial price series
(green, solid) in the Mark-0 model for a period of two years (light gray area). Data retrieved from

FRED, specifically series PCE, WTISPLC, CPALTT01USM657N, INDPRO.

periods (solid orange line in Figure 9.2).

2. Supply Chains: During the initial COVID outbreak, firms in the US laid off a
large number of workers, reducing their production to a similar degree as the per-
sonal consumption expenditure. However, while personal consumption recovered
within 5 months, it took an additional 10-15 months for industrial production to
return to its pre-pandemic state, as can be seen in the industrial production index
(dashed blue line, Figure 9.2). This was due to a plethora of idiosyncratic supply
chain disruptions, such as logistics and transportation difficulties, semiconductor
shortages, pandemic-related restrictions on economic activity, and labor shortages
that led to the slower recovery of production in the industrial sector (Attinasi et al.,
2022). In the context of this chapter, we model this by a shock to firm productivity
ζ(t) (defined in Eq. (9.5)) of an initial magnitude of 15%, with a recovery of 15
months, see solid blue line in Figure 9.2.

3. Energy Prices: Finally, we consider the energy price shock. The reduction of
demand and production throughout the pandemic led to a supply glut in energy
markets, which led to a steep decrease in energy prices, such as oil, by up to 70% for
immediate delivery of West Texas Intermediate crude oil (Figure 9.2, dashed green
line). As the recovery period began, external factors such as extreme weather
conditions in various parts of the world and maintenance work that had been
postponed during the pandemic caused a surge in demand, and the energy prices
thus rebounded quickly (Zakeri et al., 2022). Unfortunately, with the Russian
invasion of Ukraine in February 2022 this rebound was further exacerbated to a
global energy crisis, due to Russia’s position as a major global exporter of natural
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gas and oil. By June 2022, the WTI crude oil spot price had peaked, rising nearly
100% compared to pre-pandemic levels. Following this, the global recovery and
adjustment of energy markets has led to a sharp easing of energy prices. For
Mark-0, these processes are external to the model, such that we introduce here
an exogenous price shock to firms’ price update Eqs. (9.11)-(9.13). Specifically,
firms’ prices change by an additional exogenous factor ge∆pe,ema(t), where ge is
a constant factor akin to the energy-share in production, and ∆pe,ema(t) is an
exponentially weighted moving average of the time-dependent monthly percentage
change in energy prices. Thus, the transmission of the change in energy prices to
firms’ product prices is smoothed, as expected to be the case in reality.

The form of the moving average is the same as for trust in Central Bank Eq. (9.27)
and inflation expectations Eq. (9.22), with the very same memory time parameter
ω. Our artificial energy price series is shown in Figure 9.2 as the solid green line,
and is based on the WTI Spot Price.17 Alternative calibrations with the energy
component of the U.S. Consumer Price Index or the Henry Hub Natural Gas price
lead to similar shapes and magnitudes. In the following we will choose ge = 3.25%,
i.e. half of the energy share of the GDP in the US, where the factor 2 accounts
for inventories and partial substitutability. We also posit that the profits of the
energy sector are transferred back to households at an effective rate of δe = 4%
per time step, unless stated otherwise.

17Prior to the shock, we set pe(t) = p(t).
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The Effect of Shocks Without Stabilization Policies
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Figure 9.3 – Economic dashboard for the three shocks in the Inactive Central Bank scenario and
in the absence of any policies. The dynamics for the three shock scenarios, COVID only (blue),
COVID and Supply Chain shock (orange) and all shocks (green) when the Central Bank is inactive
and no policy is applied. The areas shaded in gray indicate the duration of the three shocks: the
COVID shock lasting until the end of the dark gray area, the supply chain shock until the end of
the gray area, and the energy price shock until the end of the light gray area. The dashed black
line represents pre-shock averages. In the first two cases, the economy is able to recover on its own
(although with significant fluctuations that last for a few years), but significantly gets worse when

the energy shock is turned on.

To develop some intuition, we now build three counterfactual cases where (i) only the
COVID shock, (ii) COVID + supply chain shocks and (iii) COVID + supply chain +
energy price shocks hit the Mark-0 economy, without any stabilization policy put in place.
It should be noted that this exercise is somewhat optimistic, as our shocks have been
calibrated on an economy where emergency policies were actually implemented. This
is discussed further below. Moreover, in the Inactive Central Bank scenario discussed
in this section, economic agents form their inflation expectations solely on the basis of
realized inflation, which means that there is no anchoring of expectations (τT = 0, see
Eq. (9.23)). All other parameters of this scenario can be found in Table H.1.

Case (i) After the impact of only the COVID shock, the economy remains operational with
full capacity but experiences a persistent and high inflation that peaks at 15.5%
and only starts to recede by the end of 2023, with significant fluctuations that
persist for a few years (Figure 9.3, blue). All other observables return to their
pre-shock levels by the end of 2023, with small oscillations around the steady state
in accordance with the Inactive Central Bank scenario without shocks.
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Case (i) When adding the supply chain shock (Figure 9.3, orange), the dynamics remain
very similar: the economy returns to its steady state without fiscal or monetary pol-
icy. Remarkably, inflationary dynamics are almost identical, albeit with a slightly
higher peak value (16.0%) reached slightly earlier in 2023. The biggest difference
is the prolongation of the recovery period, which leads to a steeper real wage dip.

Case (i) Taking now the energy price shock into consideration, the situation abruptly
changes. Initially, we observe a short deflation period due to the steep drop in
energy prices, increasing real wages, supply-demand imbalance and the fragility
of firms due to the decreased prices.18 Immediately following this, we observe an
explosion in inflation peaking at 23.2% mid-2023. Firms fragility increases due to
the price shock which causes bankruptcies (peaking at 3 % rate), unemployment
and a decrease of wages. In the long run, this disruption is so strong that wages
recover only very slow. This starts a feedback cycle of low demand that leads to
a decrease of output, which causes a reduction in savings and therefore demand
drops. This feedback cycle consistently increases unemployment, and decreases
savings and wages, which takes the economy significantly longer than 10 years to
recover fully with a high and persistent unemployment between 6%-8%.

In the realm of the Mark-0 model, the COVID and supply chain shocks would thus have
had a minor long term impact on output, but would have led to substantial medium term
inflation due to excess savings, as predicted using the Mark-0 model as early as June 2020
in Sharma et al. (2020). The energy price shock, however, is the last straw on the camel’s
back and, in the absence of monetary and fiscal policies, has a strongly detrimental long-
term impact on the economy. This is a consequence of the existence of discontinuous
transition boundaries (a.k.a. tipping points) in parameter space, as emphasized in Gualdi
et al. (2015) and, within the specific context of the COVID shock, in Sharma et al.
(2020). As a scenario-generating tool for policymakers, our model demonstrates that in
the absence of mitigating policies, the full sequence of COVID, supply chain and energy
shocks can trigger a negative feedback cycle, manifested as a downward wage spiral, that
results in a collapse of demand and a full blown crisis. However, we see that the first two
shocks, as modeled above, are of sufficiently mild amplitude not to trigger a complete
collapse of the economy. In the following section, we study counterfactuals with larger
“bare” (unmitigated) shock amplitudes, where mitigating policy measures are indeed
needed to prevent a catastrophic collapse of output beyond a certain tipping amplitude
of the initial COVID shock alone.
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Figure 9.4 – Counterfactual COVID shock in the Inactive Central Bank scenario and in the absence
of any policies. Unemployment (left) and inflation (right) in the Inactive Central Bank scenario
without any policy, with an amplified COVID shock by a factor κ and Supply Chain shock. κ = 1
(blue line) corresponds to the COVID shock considered in the previous section, with a very low
level of unemployment. With κ = 1.1 (red line), the unemployment and inflation dynamics change
only very slightly, as the shock is mild. As soon as κ ≥ 1.2, the economy is unable to recover

spontaneously, and output collapses as demonstrated in the κ = 1.2 case (yellow line).

Sensitivity to Shock Magnitude and the Role of Easy-Credit Policy

Our model is based on data that already incorporates policy measures, which were indeed
in place in 2020-21 to mitigate shocks. As such, it is possible that the unmitigated
shocks were actually more severe than what we observe retrospectively in data. Here,
we investigate counterfactual (ii)-scenarios with different shock magnitudes, where we
shut down the final energy shock but scale the amplitude of the observed COVID shock
by a factor κ (see Figure 9.2, left panel dark gray area). This stronger shock could have
taken place if for example the CARES act and the CAA where not authorized.19 As κ
increases, firms go progressively bankrupt due to their high financial fragility Φ, leading
to a higher unemployment rate during the shock. Households save money during the
shock, resulting in higher demand, leading to upward pressure on prices and somewhat
higher inflation. Therefore in the long run, the scenarios with intensified shocks κ ≲ 1.2
very slightly increases inflation and long-term unemployment. However, for larger κ, a
tipping point is reached, as in Sharma et al. (2020): more initial bankruptcies and firms’
hesitation to increase wages after the shock leads to a collapse of output and deflation,
see Figure 9.4 (for a full dashboard see Figure H.1 in Appendix H.2). Eventually, the
shock is too strong for the economy to recover, and the negative feedback loop of a
downward wage spiral causes the economy to collapse.

The default threshold of firms Θ, holds a pivotal role in the economic downturn; if chosen

18We consider here a direct price-shock transmission. In practice, energy is purchased in various forms
and often with inventories and financial contracts to insure against price volatility. In this respect, it
might make more sense to define the effective price of energy pe(t) in the production process as an
exponential moving average of the WTI spot price. This would smooth out the initial dip and lead to
more realistic inflation time series. We leave this for a later study.

19The supply chain shock is left unchanged in the present exercise, but we observe almost the same
phenomenon without such additional shock.
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Figure 9.5 – Economic dashboard for a stronger COVID shock in the Inactive Central Bank
scenario, with and without Easy-Credit policy. The dynamics of the Inactive CB scenario in case
(ii) (COVID and supply chain shock but no energy price shock), for a COVID shock strength of
κ = 1.2 without Easy-Credit policy (blue) and κ = 1.2 with Easy-Credit policy, µ = 1.3 (orange).
We see that policy is effective in preventing the economic collapse in the case of the stronger COVID

shock.

too low an excessive number of firm bankruptcies ensues, which can be detrimental to
the overall economy. In this case, allowing firms to accumulate more debt by easing
bankruptcy rules is highly effective to keep the economy on an even keel. In fact, as
shown in Figure 9.5, the “Easy-Credit” policy defined by Eq. (9.28) with µ = 1.3 for the
bankruptcy threshold Θ manages to substantially reduce the impact of strong COVID-
related shocks, even with an increased initial COVID shock (κ = 1.2) that would collapse
the economy on its own. With Easy-Credit policy, firms can maintain wages and do not
need to fire employees to remain solvent, allowing the economy to recover. However,
unemployment still peaks above 8% (with a second hump mid 2024) and inflation reaches
16.3% at the end of 2022. As we will discuss in section 9.7 below, the main issue with
such a period of high inflation is the risk of de-anchoring inflation expectations, opening
the path to possible hyper-inflation.

In order to control inflation, one needs to consider the effect of monetary policy. We
thus now turn to the study of the same sequence of three non-amplified shocks, with
Easy-Credit policy and with a fully active Central Bank, distinguishing between the case
of Anchored Trust and the case of Floating Trust in its ability to curb inflation.
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9.5 Monetary Policy Response to Inflationary Shocks

In the previous section, we showed that the loosening of regulatory bankruptcy policy
during severe shocks prevents the Mark-0 economy from collapsing, but does not address
the issue of high inflation rates (Section 9.4). To study inflation mitigation policies, we
now introduce a Taylor-rule based monetary policy into the mix, i.e. we combine the
situation explored in Section 9.4 (all shocks and Easy-Credit policy without Central
Bank) with the different monetary policy scenarios discussed in Section 9.3. All numer-
ical experiments henceforth are run with the Easy-Credit policy described in Eq. (9.28)
with µ = 1.3, as in Section 9.4. As the economy returns to its steady state, the Easy-
Credit policy becomes equivalent to the fixed default threshold, such that its duration
depends on the recovery period.20 Note that in what follows, we consider the three
shocks together, keeping the amplitude of the COVID shock to the one calibrated on
the observed data (i.e. κ = 1 in the language of Section 9.4). As already discussed,
such calibration may underestimate the severity of the unmitigated shock, since the US
government immediately implemented Easy-Credit and Helicopter Money measures to
alleviate the COVID shock. Note also that unemployment is not an explicit target of our
Central Bank, in the sense that the Taylor-rule is only responsive to realized inflation
and not to unemployment.

An Inactive Central Bank

We begin our study by considering again the situation with an Inactive Central Bank as
in Section 9.3, but now with all shocks together and with the Easy-Credit policy being
implemented (Figure 9.6, full blue line; see Figure H.5 in Appendix H.3 for all macroe-
conomic time series). In this case, over the first few months, the combination of shocks
causes a spike in unemployment that peaks around 8% during a deflationary phase, but
the economy quickly recovers to full employment, yet at the price of a sustained infla-
tionary period that peaks above 20% before slowly reverting to equilibrium, consistently
with the discussion of Section 9.4: the Easy-Credit policy can avoid full collapse, but
only at the price of high inflation.

Monetary Policy with Unanchored Trust

Before fully introducing trust, we consider the case where agents form their inflation
expectations without considering the Central Bank’s target inflation, but the Central
Bank is nonetheless actively pursuing monetary policy. We thus set τT = 0 such that
inflation expectations π̂(t) are simply an exponentially weighted moving average over
realized inflation. In this case, we find that the Central Bank initially decreases rates
before rapidly increases interest rates as inflation increases (see Appendix H.4 for the
relevant dashboard). However, there is no resulting effect on inflation, which displays the
same dynamics as the case where the Central Bank is inactive. However, the de-anchored

20Eq. (9.28) indeed implies Θ(t) = Θ0 in the steady state when the average fragility is low, which is
the case for the choice of parameters made in this chapter.
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expectations lead to a doubling in magnitude of the initial spike in the unemployment
rate, together with a higher (and oscillating) peak following the end of the shocks, as
compared to the case where monetary policy is inactive. We can thus draw a first con-
clusion that in the absence of any sort of expectation anchoring the effects of monetary
policy are concentrated on the unemployment rate, which is not actually the Central
Bank’s target in our model setup.

Monetary Policy with Anchored Trust

We next consider a monetary policy experiment with a responsive Central Bank in the
“Anchored Trust” scenario. In the Mark-0 model, as in real life, the Central Bank’s aim
is to keep inflation on target. Here, following Section 9.3, the inflation target is chosen to
be π⋆ = 2.4% p.a. and the Taylor rule strength is ϕπ = 1. Moreover, we optimistically
assume that the Central Bank has successfully communicated to all economic actors
that it has inflation under control, thereby convincing them to believe that long-term
inflation will be close to the Central Bank’s inflation target, with a fixed anchor weight
τT = 0.95.

In the case of Anchored Trust and variable interest rates with all three shocks (Figure 9.6,
dashed orange line), the Central Bank is successful in taming inflation: peak inflation
is lower than in the case without an active central bank (peak at 8.8% vs 23.2% in the
Inactive Central Bank scenario) and quickly tapers off. Although the inflation rate is not
in line with the Central Bank’s target throughout the crisis, it appears that monetary
policy is able to reign in inflation. The reduction in inflation is not primarily due to the
impact of interest rate policy but rather to the strong anchoring of expectations, which
significantly dampens expected (and thus realized) inflation, as upward pressure on both
prices and wages are reduced. Such anchoring moderates the price increases after the
initial COVID shock, but does not dampen the deflationary dynamics towards the end
of the energy price shock, as this is driven by a strongly increasing unemployment that
puts downward pressure on wages (see Figure H.5 in Appendix H.3 for all macroeconomic
time series).

The initial price shock in the first few months causes bankruptcies that are less numerous
with a reactive Central Bank, hence also reducing the initial unemployment spike slightly
(peak at 8.1% in the Inactive Central Bank scenario and 7.4% with Active Central Bank
with Anchored Trust). However, at the end of the shock the Central Bank effort to
control inflation results in a peak unemployment of 12.8 % in Feb 2024, 5% higher
than in the Inactive Central Bank scenario. Despite realized inflation surging during
shocks, firms inflation expectations are anchored to the central bank’s target. This
results in a substantial decline in real wages during the shock and a sluggish recovery
thereafter. Similarly, households expect a controlled level of inflation and hence reduce
consumption in response to higher interest rates that favor savings. Both effects lead
to higher unemployment, impeding the overall post-shock recovery. We see that in
the Mark-0 model, the Central Bank is stuck between a rock and a hard place with its
inflation-unemployment trade-off, meaning that in the context of these shocks, monetary
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Figure 9.6 – Unemployment and Inflation with all shocks, Easy-Credit policy, and three distinct
monetary policy scenarios. (Blue lines) Inactive Central Bank scenario. (Orange lines) Reactive
Central Bank with Anchored Trust, with anchor parameter τT = 0.95. A Taylor rule policy
successfully decreases peak inflation but increases peak unemployment. (Green lines) Reactive
Central Bank with Floating Trust. Here, trust is eroded during the high inflation period. Monetary
policy then fails at reducing inflation, with the risk of hyper-inflation lurking (see section 9.7);

unemployment remains lower because of the higher inflation.

policy is not a panacea: some form of Keynesian stimulus or “Helicopter Money” is
needed in conjunction with monetary policy to restore the economy to its pre-crisis
steady-state – see section 9.6 below. In this regard, a Central Bank with an explicit
dual-mandate would potentially navigate the trade-off better.

Monetary Policy with Floating Trust

The scenario of high and Anchored Trust in monetary policy for long-term inflation
expectations might be a good approximation during long periods of stability, but in
periods of shocks, the anchoring τT may decrease when inflation deviates strongly from
the Central Bank’s target (Reis, 2021). We model such a Floating Trust effect through
Eq. (9.27), where the anchoring parameter decreases when the spread between observed
and target inflation increases. We set αI = 0.4 and a memory time of ∼ 5 months
(ω = 0.2). These values imply that when inflation reaches 4 times the Central Bank’s
target π⋆, trust in the Central Bank falls to approximately a third of its initial value
after approximately one year. Larger values of αI would lead to an even steeper de-
anchoring of inflation expectations. Such a loss of faith in monetary authorities further
increases realized inflation as economic agents expect higher inflation in the future and
take this into account when setting prices and wages. This may lead to a self-fulfilling
feedback loop between expected inflation and real inflation through a wage-price spiral
(see section 9.7).

Compared to the Anchored Trust case, the surge of inflation after all COVID shocks
leads to a loss in trust that almost vanishes (i.e. τT → 0) during the energy price
shock. The consequence of this is a higher realized inflation rate, that reaches a peak
value only slightly below the Inactive Central Bank scenario (Figure 9.6, right).21 Un-

21For the full economic dashboard in the case of dynamic expectations, see Appendix H.3, Fig. H.4,
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employment, on the other hand, turns out to be higher than with an Inactive Central
Bank (see Figure 9.6, left), but lower than when trust is anchored. As noted above,
low expected inflation is detrimental to wages and to consumption when interest rate
are high. Therefore, perhaps paradoxically, loss of trust improves the situation in terms
of unemployment, but is of course detrimental to inflation, with the possibility of run-
away situations. This again illustrates the quandary faced by Central Banks and the
importance of a dual-mandate.

A strong factor of the loss in trust is the exogenous nature of the energy price movements.
Despite the strong hike up to a real interest rate of 3.4% per year (16.8% nominal
target rate), inflation remains far above target. Once these shocks have passed, the
Central Bank is arguably quite successful in keeping inflation closer to its steady state
value. However, similarly to the Anchored Trust case, the economy now contends with
a persistent, relatively high unemployment rate. The unemployment here is driven by
the energy price shock that causes a strong surge in inflation, which erodes household
savings and reduces real wages by 4% compared to its steady state value, thus resulting
in a drop in demand (see Figure H.4 in Appendix H.3). In contrast to the Anchored
Trust scenario, unemployment in the Floating Trust scenario recovers to full employment
faster. This paradoxical result is driven by the comparatively higher real wages, which
allows for a faster recovery of the consumption budget and consequently output. This
implies that a loss of trust may be beneficial in terms of unemployment by promoting a
faster adjustment to exogenous price levels as they occur – in a sense, a favorable aspect
of a tight wage indexation, provided of course it does not spiral out of control.

As with both the Inactive Central Bank and Anchored Trust scenario, strong exogenous
inflation outside of the Central Bank’s sphere of influence leads to a severe contraction
of the economy, which recovers only slowly. The convergence to pre-crisis equilibrium
takes more than 18 years in the Anchored Trust scenario and 11 years in the Floating
Trust scenario. This suggests that in the face of exogenous price shocks, fiscal policy
shoring up consumer’s budget or reducing energy price effects on firms and households
can be a more effective tool than monetary policy.

Sensitivity to the Strength of the Monetary Policy

In circumstances of crises, as with our shocks, Central Banks should possibly react more
strongly to inflation and keep expectations anchored. We thus consider a larger Central
Bank Taylor reactivity parameter ϕπ = 2.0 (see Appendix H.5, Figure H.7 and H.8 for
details).

In the case of Anchored Trust, an increase in ϕπ hardly changes inflation, but stronger
interest rate hikes result in significantly higher unemployment rates. Hence, stronger
monetary policy is clearly detrimental in this case. By contrast, in the Floating Trust
scenario with dynamic trust, an increase in ϕπ signals a stronger commitment of the

and compare with Fig. H.3.
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Central Bank to control inflation. Therefore, all else being the same, inflation expec-
tations are lower which, in a self-fulfilling manner, cuts realized inflation from 16.8%
to 11.2% and keeps trust better anchored. However, as in the Anchored Trust case,
the sharper interest rate hikes by the Central Bank lead to a significant increase in the
unemployment rate (from 12.8% to 20.5%) and a much longer recovery time for the
economy as a whole. Again, our model confirms and quantifies the observation made by
Stiglitz and Regmi (2022), quoted in the introduction: monetary policy interest tools
tend to be too blunt, curbing inflation at the cost of unnecessarily high unemployment.

Sensitivity to Transmission Channels

Within our modeling framework, the impact of monetary policy relies on the efficiency of
three transmission channels: (a) expectation anchoring, discussed above; (b) sensitivity
of consumption on real interest rate, through parameter αc; (c) sensitivity of firms’
hiring and wage policies on real interest rate, through parameter αΓ. We have run
some simulations to check the dependence of the state of the economy on these last
two parameters in the Anchored Trust case, see Appendix H.6. The conclusion of this
exercise is that increasing αc and αΓ has a minor direct effect on inflation but a significant
effect on unemployment, depending on the sign of the real interest rate ρ − π̂. As
expected, a raise of interest rates degrades economic activity, all the more so when the
sensitivity of firms and households to the real rate is higher. As already stated, the main
transmission channel through which monetary policy impacts inflation is expectation
anchoring, rather than directly through cost of loans or income on savings.

9.6 Fiscal Stimulus

Section 9.5 showed that in the presence of exogenous inflation drivers, the Central Bank
can reduce inflation only at the cost of high unemployment. The mechanisms responsible
for unemployment are the increased burden of debt that weighs on wages and increases
the speed at which firms lay off workers. This in turn lowers demand, an effect amplified
by the erosion of household’s purchasing power by the lingering inflation. One way to
tackle this issue is to ensure that demand does not drop as severely by increasing it
through fiscal stimulus (see Section 9.2). We test this policy device here by considering
different kinds of fiscal stimuli. Unless otherwise indicated, the fiscal stimuli are applied
on the scenario of Section 9.5, i.e. with all shocks, Easy-Credit policy, and an Active
Central Bank with Floating Trust, which we believe to be the scenario closest to reality.

The Effects of Helicopter Money

Following Sharma et al. (2020), we begin by considering a one-time increase of the house-
holds’ budget by a factor κH ∈ [0%, 60%] one months after the end of the energy price
shock (July 2023). The goal is to find an optimal multiplier κH that reduces unem-
ployment while keeping excess inflation to a minimum in amplitude and duration. Here
we find that this minimum is reached for κH ≈ 20% (see Figure 9.7 for the Reactive
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Figure 9.7 – Helicopter Money in the Reactive Central Bank with Floating Trust scenario, Easy-
Credit policy, and all shocks. Unemployment (left) and inflation (right) for a helicopter drop of
size κH times savings one month after the price shock. Already with κH ≥ 0.2 unemployment is
reduced almost to zero. A further increase of Helicopter Money only increases the duration of the
high-inflation period, without further reducing unemployment. Note the small unemployment and

inflation “ripples” persisting several years after the initial shock.

Central Bank with Floating Trust case).22 This choice of κH matches the magnitude of
the “Emergency Money for the People Act”, which entailed the US government provid-
ing direct payments of 2000 USD per month for a maximum of 12 months to support
individuals during the COVID pandemic.

In all considered scenarios, the fiscal stimulus package leads to a quick recovery of pro-
duction to its pre-shock levels and unemployment at near 0%, thus successfully elimi-
nating the steep recession and long recovery following the energy price shock, as shown
in Figure 9.7. However, policymakers face an inflation-unemployment trade-off, as the
stimulus generates a spurt of inflation. In the absence of monetary authority, inflation
due to the injection of money rises to 15.8% (see Appendix H.7, Figure H.11). However,
this is an endogenous inflation, which means that in the Floating Trust case, the Cen-
tral Bank can raise rates to curb consumption propensity and keep inflation below 10%
p.a. (Figure 9.7). Increasing the stimulus leads to a higher inflation peak and a longer
duration of high inflation.

The inflationary period after the stimulus is in part due to a short-term de-anchoring
of expectations as the demand stimulus leads to higher prices in the context of a tight
labour market preventing production increases. Yet, here one can take the position
that the economy is in good shape from a macroeconomic perspective, with near-zero
unemployment despite an above-target inflation.23 In this case, the Anchored Trust case

22See Appendix 9.6, Figures H.13, H.12 for the other two monetary policy scenarios, and Figures H.13,
H.14 and H.15 for the complete economic dashboards of all scenarios.

23Because Mark-0 treats households at the aggregate level, we do not analyze the distributional con-
sequences of inflation here, though inflation is always and everywhere differential in its effects.
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would be much more favorable as the high unemployment problem is resolved with only
a minimal rise in inflation, around 7% annualized over 8 months, as soon as κH ≳ 0.2.

The Effects of a Windfall Tax
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Figure 9.8 – Windfall Tax in the Reactive Central Bank with Floating Trust scenario, Easy-Credit
policy, and all shocks. Unemployment (left) and inflation (right) for a Windfall Tax of δe+∆δe one
year before the end of the price shock with a duration of two years. With ∆δe ≈ 4% unemployment
is reduced strongly. A further increase of tax does only increase unemployment again. For even

larger ∆δe, inflation increases because of increased demand due to increased savings.

Another stimulus that central authorities can use to alleviate the impact of the price
shock is a Windfall Tax. This policy redistributes the excess profits generated by the
energy sector as a result of rising energy prices to household savings with the aim to
stimulate consumption and consequently reduce unemployment. We test the effective-
ness of the policy, which in our modeling consists in an increase of the energy sector
payout rate δe → δe +∆δe one year before the end of the price shock with a duration of
two years, with ∆δe ∈ [0%, 12%].24

Our aim is to design the fiscal stimulus in a manner that minimizes both unemployment
and inflation. We find that for ∆δe = 2%−4% the excess profits of the energy sector are
redistributed such that unemployment is significantly reduced at all times while inflation
remains under control. Further increasing ∆δe reduces the unemployment in 2023, but
at the cost of increasing unemployment in 2024 after the Windfall Tax has ended (see
Figure 9.8).25 As long as the tax is active, the increase in δe results in higher savings,
leading to an increased consumption budget and therefore higher demand. This has the
effect of reducing unemployment as firms expand production, as well as reducing firm
fragility due to increased profitability. However, as the Windfall Tax increases in the

24We remind here that δe is the fraction of the energy sector cash balance redistributed to households
at each time step, see Eq. (9.20).

25For more detail, see Appendix H.8, Figures H.16, H.17.
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Floating Trust scenario, inflation also increases and expectations remain de-anchored
for longer, compelling the Central Bank to increase interest rates. As the tax ends, the
household’s consumption budget has been reduced to below the case without a Windfall
Tax, and the real interest rate remains high. This leads to a negative spiral of lower
demand and output, higher unemployment, leading to lower income, until the system
equilibrates again.

The inflationary effects of the increase in savings due to the Windfall Tax remain minor
for small values of ∆δe. However, once the Windfall Tax exceeds ∆δe ∼ 10%, a longer
period of high inflation after the shock is observed (see Figure 9.8 and Appendix H.8,
Figure H.20) as inflation expectations remain de-anchored for a longer period.

The Anchored Trust scenario presents a different challenge. Again, up to a threshold, the
Windfall Tax reduces the initial and long-term unemployment spike, with ∆δe = 4% still
remaining a robust choice (see Appendix 9.6, Figures H.17, H.19). However, this time at
the cost of inflation (or less deflation) on the way back to the pre-crisis steady state. In
this regard, policymakers might opt instead to minimize the volatility of inflation to let
it smoothly return to the Central Bank’s target rate, which actually suggests a higher
Windfall Tax of ∆δe = 8% for instance.

We conclude that when implementing a Windfall Tax as a fiscal stimulus, excessive
tax levels can have the unintended consequence of exacerbating long-term unemploy-
ment, while a measured approach can both reduce unemployment and smooth inflation
dynamics.

9.7 Model Sensitivity: The Dangers of a Wage-Price Spiral

To develop a deeper understanding of the reaction to shocks of our model economy, we
explore the parameter sensitivity of this configuration of the Mark-0 model using the
“sloppy model” methodology put forth in Part I of this Thesis.

With respect to both inflation and unemployment, the balance of wage indexation (bar-
gaining power) gw to price indexation (market power) gp, has by far the strongest in-
fluence on the outcome dynamics for the inactive CB and Floating Trust scenarios (see
detailed results in Appendix H.9 and H.10). Beyond inflation itself, eigenvectors are
combinations of various pricing parameters including γ, gp and ge for both unemploy-
ment and inflation. Central Bank parameters are present but not significantly. This
aligns with our findings that the Mark-0 economy always maintains a tight connection
between unemployment and inflation, indicating that it may not be possible to minimize
one without affecting the other (see Appendix H.9, Figures H.23, H.24).

Gualdi et al. (2015) have demonstrated the significance of the default threshold of firms
Θ in determining the economic phase of the Mark-0 model. This parameter exhibits
a non-linear behavior, where minimal alterations have negligible effects on the overall
dynamics until a critical “tipping point” is reached. Beyond this threshold, the dynamics
undergo substantial transformations. It is important to note that with the “sloppiness”
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Figure 9.9 – Hyperinflation tipping points. Left: Stable inflation vs. Hyperinflation in the plane
(gp = gw, τ

T ) in the Anchored Trust scenario and in absence of exogenous shocks. Note that
inflation can be stable even when gp = gw > 1 for strong enough anchoring. Middle: Stable
inflation vs. Hyperinflation in the plane (gp = gw, αI) in the Floating Trust case and in absence of
exogenous shocks. Right: inflation rate (top) and unemployment (bottom) as a function of time,
in the Floating Trust case, αI = 0.3 and different values of gp = gw, after the three COVID shocks.
When indexation is too strong, an hyperinflation regime sets in at the end of the energy price shock.

analysis, we can only identify local sensitivity in parameter combinations, where slight
deviations from these combinations result in noticeable changes in observed dynamics.
As already found in Naumann-Woleske et al. (2023), multiple phase transitions occur
along the parameter axis of Θ, although minor perturbations do not alter the curvature
of the loss function, therefore we do not find Θ to be crucial in our results. However
it is crucial to distinguish between local sensitivity, which can be determined by the
sloppiness approach, and global sensitivity to parameters, which can trigger tipping
points in the model Gualdi et al. (2015).

The Risk of a Hyperinflation Spiral

We can interpret the sensitivity to gw and gp in light of the dangers of a hyperinflation
episode resulting from a wage-price spiral. Alvarez et al. (2022) cite a concern that
hyperinflation may occur if firms increase wages in response to higher inflation, leading
to an increase in purchasing power and ultimately feeding into a wage-price spiral in the
current macroeconomic environment. This feedback loop is influenced by the indexation
of prices and wages to firms’ inflation expectations (Holland, 1988), i.e. by the value
of parameters gp and gw in our model. In the simplest case where bargaining power
and market power are equal (gp = gw), the economy reaches a stable inflationary state,
marked by cyclical fluctuations due to mismatches in supply and demand (see Figure
9.1 in Section 9.1, for which gw = gp = 0.8). When indexation is weak (gp = gw < 1),
neither wages nor prices fully incorporate inflation expectations, and fluctuations in the
inflation rate due to mismatches in demand and supply are dampened. Conversely, for
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strong indexation (gp = gw > 1), the economy may enter a state of hyperinflation,
though as wages and prices increase equally fast, there are no real effects (omitting, of
course, the cost of inflation itself due to “menu costs”). Only when gp ̸= gw does the
economy collapse.

Introducing monetary policy implies that hyperinflation can be staved off due to the
anchoring of inflation expectations. In the case of Anchored Trust, inflation remains
stable until a critical point gp = gw < g⋆ where g⋆ > 1 depends on the commitment
of the Central Bank as well as the strength of expectation anchoring to the its target
(see Figure 9.9, left panel). The same holds true with Floating Trust (middle panel).
However, in this case an interesting range of parameters where inflation remains stable
for g⋆ > gw = gp > 1, until a strong enough shock occurs, which triggers a loss of trust
in the Central Bank, tipping the economy into a hyperinflation phase (as illustrated in
Figure 9.9, right panel). This is precisely the scenario that Central Bankers want to
avoid by doing “whatever it takes”.

If bargaining and market power differ (gp ̸= gw), the effect on unemployment is signifi-
cant (see Appendix H, Figure H.26). In the Anchored Trust case, when market power
is greater than bargaining power – a.k.a. “greedflation” – (gp > gw), unemployment
increases after the shock and only slowly decreases as wages adjust at a slower pace to
pre-crisis levels, leading to sluggish demand recovery. Consequently, firms do not see
the need to increase their production faster. In contrast, if bargaining power exceeds
market power (gw > gp), wages recover more quickly, resulting in an earlier recovery of
pre-crisis purchasing power, which helps to reduce unemployment. This conclusion is in
line with the result of section 9.6 on the impact of Helicopter Money or, more generally,
of Keynesian stimulus: increasing the consumption budget of households is quite efficient
at reviving an ailing economy, but only if hyperinflation can be avoided.

9.8 Summary & Conclusions

In this chapter, we have expanded the Mark-0 Agent-based Model to assess the inflation-
ary dynamics following the COVID pandemic and energy crisis of 2020-2023. Our results
highlight the narrow path of monetary policy to balance unemployment and inflation,
as well as the benefits of joint monetary and fiscal policy packages.

We extended the Mark-0 model used in Sharma et al. (2020) in two directions (Sec-
tion 9.1): First, a dynamically evolving trust in the Central Bank’s ability to control
inflation, such that expected inflation remains anchored to the Central Bank’s target if
trust is high, but persistent off-target inflation realisations lead to a loss of trust in the
Central Bank. Second, a simple “exogenous” energy sector from which firms buy energy
that allows us to introduce an energy price, and slowly re-inject the energy profits into
the economy as dividend payouts. This slightly expanded Mark-0 model allows us to
investigate several policy channels (Section 9.2): (a) monetary policy via the manage-
ment of interest rates and expectations, (b) an Easy-Credit regulatory policy, and fiscal
policies such as (c) Helicopter Money and (d) a Windfall Tax.
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The Mark-0 steady state economy is then perturbed by three calibrated shocks (Sec-
tion 9.4): a consumption propensity drop (representing lockdowns), a productivity drop
(representing supply chains disruptions), and an energy price shock (first a drop, repre-
senting reduced demand during lockdowns, followed by a rise due do demand recovery
exacerbated by the Russian invasion of Ukraine). We show in Section 9.4 that the Easy-
Credit policy, which was one of the first emergency responses to the COVID pandemic,
is able to alleviate the impact of the shocks, but at the price of high and sustained
inflation, as observed in the data and predicted as early as June 2020 by Sharma et al.
(2020) within the Mark-0 framework.

We investigated whether monetary policy alone can control a surge of inflation, and
at what cost to unemployment (Section 9.5). Our results show that if agents’ place
no trust in the Central Bank, there is no benefit to monetary policy to tame inflation.
On the contrary, if agents’ expectations remain fully anchored, inflation remains closer
to the Central Bank target, but at the price of a strong recession leading to a wave
of unemployment. Meanwhile, if agents’ expectations evolve dynamically, inflation rises
well above target during the shock leading to de-anchored expectations. Monetary policy
is then essentially ineffective in controlling inflation while causing unemployment to
increase in comparison to a baseline case with no monetary policy at all. This is robust to
variations in parameters related to the channels of monetary policy. Our framework thus
supports the view that the efficacy of monetary policy comes at the cost of unnecessarily
high unemployment (Stiglitz and Regmi, 2022), in particular, if inflation expectations
are strongly anchored (see Section 9.5).

Within Mark-0, trust anchoring is thus a crucial determinant of the success of the Cen-
tral Bank inflation mitigation policy, far more important than the direct economic im-
pact of higher interest rates (noting that we do not model in detail a financial sector).
This resonates with Bernanke’s statement: “Expectations matter so much that a Cen-
tral Bank may be able to help make policy more effective by working to shape those
expectations”,26 and points to the importance of narratives in shaping expectations
(Shiller, 2019). In turn, fine-tuned fiscal policy combined with monetary policy can be
successful in controlling inflation while keeping unemployment around acceptable levels
(Section 9.6). However, this requires a high degree of precision to be effective: too weak
a fiscal stimulus is ineffective, and too large a stimulus leads to further high inflation.
Finally, in Section 9.7 we show that the pricing power of firms and the bargaining power
of workers play a crucial role. Depending on their relation, the economy can experi-
ence a runaway hyperinflation wage-price spiral. This points to an additional difficulty
in properly calibrating monetary and fiscal policy due to a variety of possible tipping
points or “dark corners” lurking around.

Overall, this study of the Mark-0 economy shows that (i) the economic recovery can
be very sluggish due to self-fulfilling expectations and other non-linear feedback loops,

26see Bernanke, B. (2013), “Communication and Monetary Policy”, speech at “National Economists
Club Annual Dinner”.
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(ii) there is a tension between inflation and unemployment that is robustly captured
by the model, (iii) in the Mark-0 economy, monetary policy is effective at controlling
inflation provided trust is anchored (but not because of real economic effects of higher
interest rates), and (iv) fiscal policy can alleviate some of the negative unemployment
effects of inflation-focused monetary policy. While our study did not exhaust all possible
cases and parameters, we believe that it illustrates both the realism and the richness
of the Mark-0 economy. It offers a versatile tool with which policy makers can easily
play in order to forge their intuition about what may happen if they turn this knob or
add that policy measure. Indeed, almost all possible narratives that emerged during the
recent debate about post-COVID inflation can be captured and reproduced by our model
with proper choices of parameters and shock specifications. Furthermore, the procedure
proposed in Section 9.7 can be used to rigorously establish which predictions of the
model are robust to the choice of parameters, most of which are difficult to properly
calibrate on data.

Our model is obviously incomplete and improvable on many counts. In particular, it
could be extended to include (i) considering a dual mandate central bank as in Bouchaud
et al. (2018); Gualdi et al. (2017) to address negative unemployment side-effects, (ii) a
disaggregated household sector (e.g. distinguishing wage and rent earners, and by accu-
mulated wealth) to assess distributional implications of policy, (iii) production networks
and energy supply chains with differentiated products and commodities (as in Desser-
taine et al., 2022, for instance), which introduces firm distribution effects and systemic
risk, (iv) a financial sector to more closely model interest rate pass-through, lending
choices and financial systemic risk, and (v) more detailed labour market structures to
account for the change in occupational structure post-COVID and demographic trends.
However, we do believe, as we already argued in Gualdi et al. (2015), that the Mark-0
model should already be part of the toolkit of Central Banks, if only as an inspiring
scenario generator, or “telescope for the mind”, especially in times of great modelling
uncertainty during which it is crucial to be at least “roughly right” and avoid being
blindsided by spurious Black Swans.27

27See for example Mark Buchanan, “This Economy Does Not Compute”, New York Times, October
2008, Gualdi et al. (2015); King and Kay (2020); Bouchaud (2021), or the recent Financial Times piece
cited in the introduction, https://www.ft.com/content/b972f5e3-4f03-4986-890d-5443878424ac.
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Key Messages
• This chapter extends the Mark-0 MABM to incorporate dynamic trust in
the Central Bank and an energy sector before perturbing it with shocks to
the consumption propensity, productivity and energy prices.

• With only an easy-credit policy, the model suggests high and sustained in-
flation following the COVID and energy-price shocks.

• Depending on expectation anchoring, monetary policy may be ineffective
(de-anchoring) at controlling inflation, and may exacerbate unemployment
effects.

• By contrast, adding fiscal policy such as direct transfers, can ameliorate both
inflation and unemployment if the amount is calibrated well.
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Chapter 10
Summary of Results

This chapter serves as a brief summary of what has been presented in this thesis across
the topics of parameter space exploration and the effects of confidence and collective
behavior on macroeconomic dynamics.

Exploration of the Parameter Space

Part I of this thesis developed a preliminary approach to addressing the questions of
What is the set of phenomena that an Agent-based Macroeconomic Model can generate?
And what determines their dynamics? To address this question, I have taken inspiration
from work in biophysics. Specifically, the finding that models with high-dimensional
parameter spaces can nonetheless be well-fitted with little data and make good predic-
tions. This finding, dubbed sloppiness, is based on the observation that the observations
of these models are very sensitive to only on a handful of well-constrained (stiff) com-
binations of parameters. The mechanics of this method are developed in Chapter 3 and
demonstrated on the simple example of Kirman’s Ants (Chapter 4). In Chapter 5, this
method is applied to the Mark-0 model, showing that this macroeconomic agent-based
model has a sloppy parameter hierarchy, specifically, that the observed dynamics of the
unemployment rate depend on only one or two well-constrained (stiff) parameter combi-
nations, while the remaining combinations have little effect on the outcomes. This alone
is a central result of this thesis, answering the question of what drives a given dynamic.
Moreover, it has critical implications for the calibration of ABMs. If a given dynamic
generally depends only on a handful of parameter combinations, then as long as these
combinations are well-constrained by data, the models should be able to make good
predictions (at least within sample). Moreover, these combinations often involve many
parameters implying that individual parameters can have extremely large confidence in-
tervals as long as their combination is constrained. Given the criticism of MABMs as
being hard to calibrate, this result in particular should be useful to researchers working
on calibration techniques, suggesting a potential move away from attempts to constrain
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all individual parameters to narrow confidence intervals to a focus on fitting the col-
lective behavior and stiff parameter directions.1 This approach to the construction of
models should make future exploration and calibration of ABMs significantly easier,
though perhaps not necessarily faster.

Taking the results of the sloppy analysis one step further, in Chapter 6 I develop a simple
parameter space exploration heuristic and apply it to the Mark-0 model. The principle
is simple, in a gradient-ascent style approach, one perturbs the model’s parameters in
the well-constrained sensitive directions to generate a set of parameters with maximally
different dynamics. In the case of the Mark-0 model, this heuristic can recover all of
the model’s phases as defined by Gualdi et al. (2015), and more, therewith providing an
approach to answering the first research question on determining the set of dynamics.
Introducing a self-consistent metric of algorithmic efficiency, one can see that the heuris-
tic can recover a variety of different dynamics outside of the a priori phase definitions.
Studying the set of directions in parameter space followed by all exploration attempts
suggests that the heuristic traverses a much lower-dimensional set of parameters to vary
the unemployment rate in the Mark-0 model, responding to the second research ques-
tion on the drivers of dynamics but also pointing to possible model reductions to elicit
key mechanisms in Mark-0. This simple heuristic is not free of limitations and requires
further research to improve its robustness. First, there are limitations inherent to the
choice of a mean-squared loss function, such as the sensitivity to small changes in fre-
quency of an oscillation. Second, it is unclear what the most effective strategy is for
determining the sign of the eigenvector or the exact distance to travel in the direction
of the eigenvector.

Confidence and Collective Behavior

Part II of this thesis, presents three different macroeconomic models incorporating con-
fidence effects and collective behavior. The first of these, the Dynamic Solow Model
(Chapter 7), together with the extended Real Business Cycle model (Chapter 8), focus
on the transitions of the economy between two attractors, a positive and negative one,
due to changes in the level of confidence in the state of the economy. For the Dynamic
Solow Model, we build an interactions-based process from the ground up to derive a set
of non-linear differential equations describing the aggregate confidence, information and
economic dynamics. Tuning this system leads to business cycle-like fluctuations due to
a coherence resonance phenomenon where noise, here in the form of exogenous news,
applied to a dynamical system can lead to a quasi-periodic response. Admittedly, the
economic closure in the form of a Solow model is a very simplified representation that
omits many of the additional drivers of business cycles, notably the financial system.
Turning to the extended Real Business Cycle model of Chapter 8, here too we incorpo-
rate an explicit term for confidence into economic decision-making on consumption and
investment. Here the confidence depends on the state of agents’ neighbors, leading to

1Data requirements for each direction scale with 1/
√
λi(Φ), implying extreme data requirements for

sloppy directions.
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a “keeping up with the Joneses” effect, and as with the Dynamic Solow Model, it can
be written as a non-linear aggregate agent. With the addition of capital as a factor in
production, this model generates a variety of phases, with more or less frequent crises
of various duration (short V-shaped spikes or long L-shaped recessions). As with the
Dynamic Solow Model, the occurrence of these crises is endogenous and not dependent
on any large exogenous shock pushing the economy away from equilibrium. Quoting
Bernanke et al. (2019), we see a “small shocks, large cycle” effect arise naturally in both
of these models.

Finally, Chapter 9 takes a slightly different approach to confidence, moving from the
theoretical study of simple economies to assessing the post-COVID inflationary surge.
Taking the Mark-0 model, we extend it to include three shocks resembling events of
recent years: COVID-19 related lockdowns, supply chain disruptions, and energy price
volatility. Additionally, we introduce confidence into the model in the form of the degree
of anchoring of inflation expectations to the target of the central bank, together with
a stylized energy sector. Studies done with the model indicate that in the absence of
any policy, the recovery to the full-employment steady state following the shocks is
sluggish and can last many years. The application of monetary policy by itself is akin to
walking a tight-rope due to the inflation-unemployment tradeoff of raising interest rates.
Critically, interest rate policy takes time to be effective, with an intermediate spike of
untamed inflation, partially due to the exogenous nature of the energy prices driving
inflation. In such a scenario, agents’ trust in the Central Bank diminishes temporarily,
thus exacerbating the downturn. Not only is inflation eroding agents’ purchasing power,
but their unanchored expectations lead to larger upward price and wage adjustments,
that double down on the inflationary spike. In this case, we find a positive role to be
played by fiscal interventions in the form of direct transfers to agents, as well as in the
form of profit-taxes levied on the energy sector.

A key implication across all three models presented in Part II is the importance of
confidence in the state of the economy in order to perpetuate this state, whether that is
maintaining high confidence during expansions or remaining stuck in a low-confidence
regime during recessions. From a policy perspective, this implies that messaging, such
as that of the Central Bank with respect to its actions and inflation target, is of crucial
importance to maintain a steady ship.
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Chapter 11
Conclusions and Perspectives

There are several ways in which the work presented in this thesis have already con-
tributed to ongoing research into macroeconomic agent-based models and the macroeco-
nomic implications of confidence and collective behavior (see Chapter 10 for a summary).
However, in many ways these contributions are also the start of many future research
directions. In this chapter, I will outline some of these new research directions. Some of
these have already been mentioned throughout the preceding parts, but here I wish to
expand on some of the areas that are of particular interest to me and which I believe to
be perhaps the most impactful. Specifically, Section 11.1 outlines new avenues to inves-
tigate with respect to the estimation of Hessians, and the exploration and reduction of
the parameter space in macroeconomic agent-based models. Beyond the methodological
innovations, I am also interested in the wider applications of these exploration methods,
such that phase diagrams of the various MABMs can be developed. In this regard, agent-
based approaches to modeling the economy-environment-energy nexus are of particular
interest to me. Section 11.2 presents a review of four Agent-Based Integrated Assessment
Models (ABIAMs) that could serve as a starting point for this (the section is taken from
Naumann-Woleske, 2023). Finally, Section 11.3 outlines some of the continuing research
into the effects of different inflationary mechanisms in the Mark-0 model.

11.1 Diving Deeper into the Estimation and Exploration of MABM

Probabilistic Approaches: Working with the Fisher Information Matrix

The most natural extension to the work done in this thesis is to expand on the prob-
abilistic interpretation of MABMs; such an approach should be more robust and also
yield a much smoother model manifold as it may be less prone to noise. While the
MSE is a good first approach, it has some drawbacks in its sensitivity to changes in
oscillation. By contrast, working with the probability density function, a small change
in frequency should yield a small change in the probability density. Chapter 3 intro-
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duced the symmetrized Kullback-Leibler as the measure of choice, but one could also
select the Hellinger or Bhattacharyya distance as a metric instead, as all of these met-
rics are f -divergences, implying that their Hessian is some transformation of the Fisher
Information Matrix

gi,j (Φ) =
∑

x

P (x|Φ)
∂ logP (x|Φ)

∂Φj

∂ logP (x|Φ)

∂Φi
,

whose estimation can also be troublesome. The principal reason for this being the
possibility that P (x|Φ) = 0 implying that logP (x|Φ) → −∞, which can be troublesome
when approaching this estimation numerically. For example, applying a finite difference
approach near a phase boundary might lead to points with non-zero density in one phase
but zero density in another, meaning that one would obtain an ill-defined Hessian matrix
as LsKL(Φ,Φ + δΦ) = ∞, or one would have to discard this information. In an MABM
context this occurrence may not be uncommon as there can be events taking place in one
regime but not the other. A similar problem might occur within a phase if there are rare
events happening. Secondly, estimating P (x|Φ) itself introduces additional noise due
to the Kernel Density smoothing, which is highly sensitive to the choice of bandwidth.
An additional issue is that the tails of the distribution may not be well approximated
(especially if they tend to infinite density as in Chapter 4).

One method to address this process might be to view the estimation of the FIM as a
hopping diffusion problem. When computing the derivative, instead of trying to infer
P (x|Φ) and both P (x|Φ ± ε) by means of a Kernel Density approach, one could fo-
cus only on estimating P (x|Φ) and then use the datapoint-specific dynamics Js,t (Φ),
which one can obtain by automatic differentiation, to estimate HSKL(Φ) in a diffusion
approximation.

Parameter Space Reduction: Isolating a Phase

One avenue of the sloppy models research pursued in the physics domain has been model
reduction. In particular, Transtrum (2014) developed a methodology that, unlike the
explorations in this thesis, follow the most ill-constrained directions. Rather than at-
tempting to define the set of possible phenomena, this approach takes a given phenomena
as fixed and tries to reduce the underlying model to the core parameters that have an
effect on the phenomena. This is done by sequentially perturbing the most ill-defined
direction, which, by definition should have a very small effect on the model’s prediction.
Doing this for multiple steps, Transtrum (2014) find that the most ill-defined direction
often reduces to a parameter combination involving only a handful of parameters. These
can then be analyzed and often replaced by a simpler single parameter, thus reducing
the model’s dimensionality. The simplest example of this would be a chemical reaction:
there is a forward and a backward rate. Sequentially following the ill-constrained di-
rections yields extremely large values for these rates, but keeps their ratio fixed. This
allows the modeler to define a simpler parameter, the effective rate, thus reducing the
parameter space by one dimension. Doing so sequentially can yield much simpler models
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than one started with. Based on the results of Section 6.5, one might hypothesize that
the Mark-0 model could be reduced to only the labor-market parameters for a given
unemployment rate dynamic.

The Model Phase Space: A Visual Journey

One of the aims of the MABM community is to be useful for policy-making in a complex
system by acting as a hypothetical world in which to test the effects of different policies
and understand the drivers of their outcomes. While all of the exploration and reduction
methods are valuable and interesting tools to ascertain these drivers and their potential
policy levers, their specificity may not be easy to communicate. It would be ideal to
have a visual representation of the phase space of a given model. One could develop
this manually, with a series of two-dimensional phase diagrams such as those in the
original work of Gualdi et al. (2015, 2017) and Bouchaud et al. (2018). However, this
restricts the representation of the well-constrained directions to two dimensions, which
may not be appropriate. For instance, Section 6.5 shows that in almost all cases, the
first eigenvector contains at least three significant components. Quinn et al. (2019)
developed an “Intensive PCA” method. Inspired by replica theory, the method generates
an intensive embedding that preserves local distance but allows one to visualize the
global structure of the model manifold. Applying this method to the Mark-0 model
with respect to the unemployment rate dynamics, or in a multidimensional setting, has
the potential to visualize the space of different phases such that one can understand its
boundaries (i.e. reduced form models) and understand better how the model behaves.
Such an approach might render MABMs more approachable , quite literally visualizing
the boundaries to the “ABM can generate anything” critique.

11.2 Applications: Agent-based Integrated Assessment Models

Taken from Naumann-Woleske (2023) Agent-based Integrated Assessment Models: Al-
ternative Foundations to the Environment-Energy-Economics Nexus with minor modifi-
cations to the introduction and conclusion to fit this chapter of the thesis.

Beyond the testing and evaluation of the parameter space exploration on the Mark-0
model, one major avenue of research would be the more widespread application of the
parameter space exploration to other models. In particular, I am interested in the ap-
plications of ABM to the economy-environment-energy nexus. Anthropogenic climate
change is one of the major global challenges we face as a society today, with widespread
environmental, social and economic effects (IPCC, 2022). To assess the economic impact
of climate change and develop economic policies, economists have developed Integrated
Assessment Models (IAMs) that link economic dynamics with environmental aspects
such as increasing CO2 concentrations or changes in land-use dynamics. These models
are central in assessments of climate change mitigation strategies and their implications
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(e.g. see IPCC, 2018). However, existing models have been subject to critique, espe-
cially Policy Optimization models as suggested in Farmer et al. (2015). Agent-based
Models have recently come to the fore as an alternative framework for macroeconomic
modeling, as well as environment-energy-economics modeling (Balint et al., 2017; Ciarli
and Savona, 2019; Lamperti et al., 2019b). In this section, I compare four Agent-based
Integrated Assessment Models (ABIAMs) and how they respond to the critiques of the
currently mainstream equilibrium-based IAMs. Previous reviews of the application of
complexity economics and agent-based modeling to climate issues (e.g. Castro et al.,
2020; Balint et al., 2017; Lamperti et al., 2019b) have focused on the general benefits of
these approaches, but there has been no systematic comparison of existing ABIAMs.1

For the purposes of this section, I consider an IAM to be a model with endogenous and
linked climate and economic modules. That is, there is a feedback from the climate
system back into the economy, generally in the form of a damage function. This is a
rather restricted definition as there is a wide scope of these models (Krey et al., 2019).
Furthermore, I consider primarily the cost-benefit type IAMs following the Dynamic
Integrated Climate Economics (DICE) models of Nordhaus (1992) and the process-driven
IAMs used in IPCC (2014, 2018, 2022).

The majority of the IAMs meeting this criteria consider a first-best economic system
grounded in equilibrium (general or partial) and perfect foresight (Forster et al., 2018;
Keppo et al., 2021).2 It is these models that have faced strong critique for their grounding
in equilibrium, foresight and optimization by representative agents in the macroeconomic
modules underlying IAM (see Ackerman et al., 2009; Pindyck, 2013, 2017; Stern, 2013,
2016; Weitzman, 2013; Revesz et al., 2014; Farmer et al., 2015).3 A recent review by
Krey et al. (2019) considers several distinct areas of critique specifically for IAMs:

1. The absence of heterogeneity of actors and within groups of actors, which is key
to societal transitions due to social processes emerging from interactions and co-
ordination (e.g. lifestyle change, political actions). The absence of heterogeneity
also strongly limits the analysis of distributional effects despite their importance
(Diffenbaugh and Burke, 2019).

2. Technology and its diffusion is misrepresented either by being exogenous, or, when
endogenous, being too optimistic (or pessimistic) in advances and diffusion (see
Mercure et al., 2019; Gambhir et al., 2019).

3. A lacking representation of the financial system, though it faces large risks (e.g.
see Monasterolo, 2020; Monasterolo et al., 2019) and at the same time may be a

1Lamperti et al. (2019b) showcased the usefulness of the ABIAM approach by highlighting the work
of Lamperti et al. (2018a) and Wolf et al. (2013), but did not compare models in detail.

2A main source of the critique is centered around the IAMs coming from the economics literature,
and that are based on the work of Nordhaus (1992). The IPCC review models tend to have a higher
degree of complexity and detail.

3I refer here to the introduction of this thesis for a slightly wider discussion of the DSGE approach
to macroeconomics.
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driving force in the green transition (see Campiglio et al., 2018; Caldecott, 2018).

4. Energy-economy feedback loops are not fully represented, with missing energy
system, material and economy linkages (Pauliuk et al., 2017) and an unrealistic
decoupling of economic growth from energy usage or emissions (Nieto et al., 2020).

5. Adding to this list, IAMs, particularly those based on Nordhaus (1992), are fre-
quently criticized for their ”ad-hoc” (Lamperti et al., 2018a) representation of
damages from increases in the temperature anomaly over pre-industrial levels,
thus underestimating the costs of climate change and the benefits to a low-carbon
economy (Stern, 2016; Pindyck, 2017). In these models, the gradual deterministic
reactions to mean surface temperatures omit the emergence of tipping-points, rare
events, increasing variability and decreasing predictability of climate conditions
(Wright and Erickson, 2003; Farmer et al., 2015).

The accumulation of concerns and critiques suggests that it might be beneficial to con-
sider alternative frameworks for representing the economy and the environment-economy
feedback loops. ABAIMs aim to provide an alternative methodology for modeling the
interactions of the socioeconomic system with the biosphere. Interest in the applica-
tion of Agent-based modeling to the climate-economy-energy nexus dates back to Moss
et al. (2001); Moss (2002), who argued that it can serve as a well validated description
of social and natural systems. The actual applications of Agent-based Models to the
environment-energy-economy nexus has recently been reviewed in Balint et al. (2017)
and Castro et al. (2020), and includes topics such as carbon and electricity markets, tech-
nology diffusion models, and coalition formation. In relation to the biosphere-economy
interaction, ABIAMs offer several distinct advantages such as the built in heterogeneity,
a more granular endogenous innovation and diffusion process, a granular representation
of the financial system, and agent-specific damage functions. Their modularity and de-
tail of agent-based models also allows for a closer interaction with stakeholders, such as
policymakers.

The remainder of this section proceeds as follows: first, I briefly presents the models
under consideration and their macroeconomic backbones, before comparing the energy,
resource and climate modules of these ABIAMs. Following this, I consider the policy
studies and recommendations that these models have been used for. Finally, I consider
several next steps in the ABIAM research stream. Tables E.1-E.4 in the Appendix give
a detailed comparison of the different models in the spirit of Dawid and Delli Gatti
(2018), with extensions for the energy (Table E.2) and climate (Table E.3) modules.
These tables may serve as a reference point for the current state of the models going
forward.

Agent-based Integrated Assessment Models: Four Candidates

To consider how Agent-based Models may address some of the critiques levied at Inte-
grated Assessment Models, I consider four ABIAM models: the Dystopian Schumpeter
meets Keynes model (DSK hereafter, Lamperti et al., 2018a, 2019a, 2020, 2021), the AB-
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MIAM model of Safarzynska and van den Bergh (2022), the model of Czupryna et al.
(2020) (CFHS hereafter), and the model of Gerdes et al. (2022) (GRSW hereafter). This
section introduces the models, their purposes and general macroeconomic structure.

The DSKmodel is a climate-extension of the well-established Keynes+Schumpeter model
(Dosi et al., 2010). The purpose of the DSK presented in Lamperti et al. (2018a, 2020)
is to provide an alternative to the specification of climate damages due to increases in
atmospheric CO2 concentration. The model consists of heterogeneous firms in the con-
sumption and capital goods sectors, both of which are powered by electricity from an
energy sector. Capital goods firms produce machines, with an innovation and imitation
process leading to newer capital vintages (more energy efficient, higher labor productiv-
ity) based on R&D investments. Consumption good firms invest in different machines to
produce a generic consumption good purchased by the households. These investments
are financed by through imperfect capital markets, where firms are subject to credit
limitations. The energy sector produces electricity using stylized green (renewable) and
brown (fossil) power plants, which differ in their cost structure and emissions. Again
power plants may invest in R&D and pursue an imitation-innovation strategy. Finally,
a climate module connects CO2 emissions by all sectors to a carbon cycle, and thus to
an increase in the temperature anomaly over pre-industrial times. This leads to a dis-
aster generating distribution with increasing average damage, and a higher probability
of extreme damages to firms’ capital stock and labor productivity as CO2 concentration
rises.

In Lamperti et al. (2019a, 2021), the DSK model is extended with a detailed set of het-
erogeneous banks to study the effects of changes in financial regulation on the transition
to a low-carbon economy in the presence of financial instability. Their study responds
to a growing body of literature suggesting that climate change feedback loops could be
increased by financial market instability, especially with a banking system exposed to
physical risks (Monasterolo, 2020). In doing so, they also simplify the climate module,
thus for the remainder of the section I will distinguish between the main branch of the
DSK model and the extension to a financial system, referred to as DSK-FIN.

The second model, the ABMIAM proposed by Safarzynska and van den Bergh (2022)
studies how heterogeneous agents and emerging inequalities in labor and capital income
can lead to larger estimates of the social cost of carbon than the aggregate Dynamic
Integrated Climate Economy (DICE) models based on Nordhaus (1992) that have been
subject to strong critique. Building on the work of Safarzynska and van den Bergh
(2017b,a), the ABMIAM considers a set of consumption good firms with quality differ-
entiated products, which households purchase based on a combination of quality, price
and peer-effects. Over time, firms can improve their production technology by investing
in R&D. To expand, firms may request loans from a bank which is subject to credit reg-
ulation and an inter-bank market. To produce goods, the firms apply labor, capital and
electricity. The energy sector is based on heterogeneous power plants fueled by gas, coal
or renewable energy with different cost structures, efficiencies and emission intensities.
The emissions of the energy sector lead to increases in the atmospheric stock of carbon,
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and consequent damage feedback. These were modeled like the cost-benefit DICE IAM
to compare calculations of the social cost of carbon, but unlike DICE the shocks are
distributed among agents based on their relative share of wealth similar to Dennig et al.
(2015).

Czupryna et al. (2020) propose a global ABIAMmodel including ten regions and multiple
different goods. In each region consumer and capital firms produce their respective
goods, and households purchase with preferences for price and a minimum necessary
consumption. To expand their capacities, firms receive investments from households
rather than a financial system, paying back a share of profits as returns. As in the
previous models, production requires the use of electricity which is supplied by a two-
layer energy sector. In the first instance, fuel-extraction firms mine from finite regional
stocks. The collected fossil fuels are then sold to a heterogeneous set of power plants,
who provide electricity regionally. Over time, production technology improves at an
exogenously given rate, with renewable technology costs also dropping. The combustion
of fossil fuels increases the mean temperature anomaly over pre-industrial times, which
leads to region-specific agricultural shocks (reduced productivity), labor productivity
reductions, and natural disasters (capital damage).

Finally, Gerdes et al. (2022) propose a fourth ABIAM model.4 The GRSW model
considers two regions, one with a mining sector (a stylized global south) and one with
a capital goods sector (a stylized global north). Both regions have local labor and
consumption good markets, with a lower wage in the south than the north. Households
purchase a homogeneous consumption good from their regional consumption firms, who
produce using capital and labor. The capital goods sector additionally requires resources
from the mining sector in the south. In the GRSW model, the mines cause localized
pollution that reduces workers health and thus labor productivity. Simultaneously, the
capital goods sector emits CO2 when producing machines, which causes natural disaster
shocks to hit firms across both regions. Using this model, the authors explore unequal
exchange and a double burden faced by the global south (economic dependence on the
north, resulting in lower wages, and heavy damage to the local environment).

In terms of the economic systems represented, these four models differ primarily in their
representations of the financial system, with more detail in the DSK-FIN and ABMIAM,
innovation (endogenous methods in DSK, ABMIAM and GRSW), spatial scope (country-
level vs. global), energy system (degree of detail), and policy institutions. With respect
to the climate modules, the structure in each is similar and oriented to CO2 emissions,
they differ in the types of damages andc their distribution.

By construction, each of the four main models considered in this review respond to
the IAM critique of missing heterogeneity and interactions. Even when initialized with
perfectly similar agents, over time the interactions and market protocols lead to emerging
heterogeneity, such as through differentiated innovation. Many of the models, such as

4The authors themselves do not consider it to be an IAM, however, they do link the economy and
environment both ways, so it falls under the definition of an IAM as applied here.
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the ABMIAM or CFHS initially impose some form of heterogeneity in order to study its
effects and to calibrate the model more closely to empirically observed heterogeneity. The
results indicate that this heterogeneity is indeed important. For example, Safarzynska
and van den Bergh (2022) find that reducing inequalities in labor income leads to a larger
social cost of carbon, while inequalities in capital income (rent) lead to a larger share of
the population driven into poverty, thus reducing GDP and emissions, and consequently
the social cost of carbon.

In terms of geographic and spatial heterogeneity, the considered ABIAMs lag behind
their process-based counterparts. Only the CFHS model represents multiple consump-
tion sectors and a larger number of regions, though both are still small in comparison
to some other more heterodox IAMs such as ACCLIMATE (Otto et al., 2017) or E3ME
(Mercure et al., 2018). Incorporating this might lead to a more detailed description of
the production process and the global value chains that underlie it. Agent-based Models
have already been applied successfully to production networks, and could be integrated
here as well (e.g. see the models of Wolf et al., 2013; Gualdi and Mandel, 2019).

Across the DSK, ABIAM and GRSW, innovation and technology diffusion are also en-
dogenized. For instance, through the innovation-imitation process of different firms that
lead to new technologies but also to the imitation of technology that are in use by in-
dustry leaders. However, technologies still primarily affect the productivity coefficients
of the firms’ production function, and are thus not necessarily related to specific tech-
nology paths such as those considered in process-based IAMs. It is thus unclear whether
these models are overly optimistic or pessimistic, as noted in the critiques of Krey et al.
(2019).

Finally, in terms of the financial system, both the DSK-FIN and the ABMIAM incorpo-
rate a detailed representation of imperfect capital markets that may lead to bank failures.
In particular, the DSK-FIN extension is focused around studying the financial fragility
emanating from increasing climate damages. The ABMIAM also offers a heterogeneous
banking sector, which also includes interbank loans, thus creating an implicit interbank
network that may be subject to cascading crises and the types of systemic risk that is
not captured in more common IAMs (Monasterolo, 2020).

Energy and Resource Modules

In this section, I address how the four considered models treat the energy-resource-
environment nexus. The representations range from very stylized (GRSW and DSK) to
more sophisticated (CFHS) in terms of the variety of energy sources used in electricity
production.

Beginning with the raw sources of materials and primary energy sources, the DSK and
ABMIAM models consider stylized primary energy types, involving an extracted fossil
fuel (gas and coal in ABMIAM) and a form of renewable energy that functions without
the requirement for fuel inputs. In both these models, the extraction and provision of
these fuels are outside of the model’s boundary, and are thus infinitely available with
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exogenously given price processes. While the GRSW model does not have an energy
sector and primary energy sources, it does have a mining sector that extracts material
resources in the southern region and sells them to the capital goods sector in the northern,
yet here too there are no dynamics of mine-depletion as the purpose is primarily to study
unequal exchange between north and south in the presence of local and global pollution.

CFHS goes beyond this, by considering not only the conversion of primary energy to elec-
tricity, but also the extraction of fossil fuels. In particular, they consider seven distinct
fuel types (coal, gas, oil, nuclear, hydro, wind and solar), with a regional fuel-extraction
sector. The presence of a fuel extraction sector is important, as the dynamics of reserve
depletion through extraction and the shifts in regional extraction will impact the agents
decisions about which type of power plant to invest in, what degree of emissions are
possible, and how technological innovation interacts with depletion (see debates in Höök
and Tang, 2013; Capellán-Pérez et al., 2014). In the CFHS model, each region has an
empirically determined reserve of all fossil fuels. The marginal cost of their extraction
is increasing in the cumulative amount of extraction (modelled by a Rogner curve as in
Nordhaus and Boyer (2003)), reflecting the principle that the easiest-to-extract reserves
are captured first. There is thus a regional shift as local reserves become depleted, favor-
ing those regions with more abundant resources. This is an important driver in evolving
regional inequalities, in the sense of the unequal exchange studied in the GRSW model
(though they do not include depletion dynamics), as investments and employment will
increase in those regions with the cheapest to extract resources.

Turning to the transformation of primary energy into energy carriers, the DSK, AB-
MIAM and CFHS models all consider only electricity as a final energy carrier. Notably,
the CFHS model has a demand for fuel by households, but considers this to be part of
the primary energy sector (there is no transformation to liquid fuels). All three of these
models consider heterogeneous power plants in terms of their fuel type, cost structure,
energy and emission intensity. For the DSK and ABMIAM the production is centrally
cleared in a given period: sectors present their electricity demand and power plants are
activated until this demand is met. The price is then determined as a markup on the
operating cost of the final power plant to be activated such that supply meets demand.
The CFHS model takes this one step further by considering the variability in renewable
electricity generation. They split each simulation step into a series of substeps with
alternating zero and peak production of solar. Markets are then cleared in the same
procedure as the DSK and ABMIAM but on a subperiod base, which leads to an aver-
age price per simulation step. Furthermore, fossil and nuclear plants are also considered
stochastic, activating with a beta distribution proportional to their capacity factors in
order to simulate the effects of maintenance which can lead to price jumps.5

Across all models, investment in the replacement of power plants once they become
obsolete and the decision about the type of power plant to construct are based on

5Such as simultaneous refueling and maintenance of nuclear plants in France in 2022 that increased
the electricity price in the context of the gas crisis.
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the net present value of each powerplant option, the candidate plant with the highest
expected value (lowest lifetime cost) is then selected. Where the models differ is in
how innovation in the energy-sector occurs. The DSK applies an endogenous innovation
framework, which allows for reductions in the fixed costs of renewable power plants while
for fossil-fuel plants there is an improvement in emission intensities. By contrast, the
CFHS considers an exogenous noisy decrease in the investment cost for solar and wind,
to a specified minimum, as well as an increase in the substitutability of electricity for
fuels in consumer demands. While the technology process of the DSK is endogenous,
it is unclear whether the reviewed technological innovations are overly optimistic or
pessimistic, and thus whether they adequately respond to similar critiques of process-
based IAMs (Keppo et al., 2021).

In summary, the energy sector remains rather stylized in three out of the four models,
thus limiting the description of energy source substitution and technological advances
in this respect, as well as the dynamics of fuel extraction and the multi-scale nature
of energy flows through the economy (Giampietro et al., 2012). However, the CFHS
model showed that a more detailed representation of the energy sector is feasible within
ABIAM, including an implementation of resource extraction in a multi-regional context.
Agent-based approaches have already been applied to energy-sector specific questions
elsewhere, suggesting that more detailed energy-sector representations in ABIAM should
be feasible (see Castro et al., 2020, for more information).

Climate Modules

This section addresses how ABIAMs model the environment and crucially the feedback
mechanisms between socioeconomic system and environment. Table E.3 summarizes the
climate and environmental modules of the four reviewed ABIAMs. The climate modules
of the four reviewed models use similar simplified models of the carbon cycles as in
the IAMs based on Nordhaus (2017). These climate boxes have been critiqued as over-
simplifying the carbon cycle, in particular with relation to irreversible climate tipping
points that lock-in certain temperature changes (Dietz et al., 2021).

Where the ABIAMs differentiate themselves is in modeling the damage feedback from
increasing temperature anomalies, and in the case of the GRSW model also the effects
of localised pollution. As a reference point, consider the case of Nordhaus (1992), where
a deterministic (quadratic) function of temperature gives a multiplier that is applied to
the total production. For example, a given temperature might map to a 5% reduction in
total GDP compared to an “absence-of-damages” world. This approach has been quite
heavily critiqued as underestimating damage impacts and their spatial heterogeneity,
and ignoring non-linear tipping points (Lenton et al., 2019; Steffen et al., 2018). In
contrast, each of the ABIAMs has a specific treatment of the size of the damage as
well as its distribution amongst the model agents. With the exception of the ABMIAM
model, there are also multiple types of damage, generally including damage to capital
stocks and labor reductions (the ABMIAM considers only shocks to the consumers’
budgets) that are applied at the agent-level. This approach alone already differs from
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the cost-benefit IAMs.

Turning to the calculation of damage magnitude and distribution, there is significant het-
erogeneity between the models dependent on their intended purpose. The DSK model
directly aims to address the issue of the increasing variability and risk of rare climate
events omitted in deterministic damage functions. In this spirit, the increase in tem-
perature anomaly changes the parameters of a beta distribution, leading to a higher
mean damage and a stronger skew. With each firm hit by a random draw affecting
capital and labor productivity, Lamperti et al. (2019b) conclude that “under the same
’business-as-usual’ emission scenario, roughly adherent to the Representative Concen-
tration Pathway 8.5, the average climate shock from DSK and the damage function in
DICE2013r (Nordhaus, 2014) are vaguely similar: the 2100-µ-level shock averages 5.4%
while the DICE damage function implies a GDP loss of approximately 5.2%. However,
aggregate impacts are radically different, with end-of-century projected output being
around 90% of the ’without-climate-change’ scenario in DICE while amounting to 15%
in DSK (with shocks assumed to target labor productivity)”.

The choices made across models differ. The DSK-FIN uses the deterministic damage
function from Nordhaus (2017), applying the damage perturbed with noise to all firms,
in order to facilitate comparison to the cost-benefit IAM research. Meanwhile, the AB-
MIAM and the CFHS model aim to understand how heterogeneity in agents and shocks
can lead to different results than when using the representative agent and aggregate dam-
ages. In particular, the ABMIAM looks at the social cost of carbon and its associated
optimal tax rate when shocks are distributed amongst individual agents in relation to
their wealth, finding significant impacts of wealth and rent-inequalities on the social cost
of carbon, such as increased poverty rates, leading to a deterioration of the economy.
CFHS aim to verify whether the aggregate damage functions arise when considering
different agents and empirically calibrated deterministic micro-shocks. To do so they
take literature estimates of agricultural and labor shocks, and empirically estimate the
damage of natural disasters for each of their 10 sub-regions. Running the model, they
then study the shape of the aggregate damage function to compare it to cost-benefit
type deterministic functions. They find that depending on remaining fuel availability
and the speed of renewable energy growth, the aggregate damage function can take dif-
ferent shapes, and have differing magnitudes. Finally, the GRSW model proposes that
damages are proportional to the total stock of capital, while the frequency of shocks per
period increases with the temperature anomaly. Thus increasing the probability that
one firm may be hit multiple times per period in a non-linear way. This is in conjunction
with being the only model to consider localised pollution as well. In the mining sector,
workers’ health, proxied by their labor productivity, decreases with the period of their
employment in the mine, thus requiring ever more new labor. They find that in an
accelerated climate scenario, damages outstrip efforts to repair and innovate, leading to
a long-term collapse of the economy.

In summary, ABIAMs have begun addressing the underestimation of climate damages
suggested by Stern (2016). The benefit of the modular structure of ABMs is that many
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different forms and distributions of damage can be considered, such as regional damages,
as applied in CFHS, or agent-specific damages as in the ABMIAM. Thus models can
easily incorporate on-going research on the micro-impacts of climate change (Carleton
and Hsiang, 2016) and contribute to the ongoing debate on climate damage modelling
(Diaz and Moore, 2017).

Policy Implications

The considered models differ markedly in the scope of implemented and tested policy
options, depending on the respective authors’ stated purpose. With the exception of
CFHS, each model considers some form of policy aimed at mitigating carbon emissions
and hence the negative feedback effects from increases in CO2 concentration. Overar-
chingly, the benefit of the modular ABIAMs is that policies that have been suggested
in the literature but are not typically possible in cost-benefit IAMs can be tested. To
highlight this, I consider the case of green financial regulation in the DSK-FIN model
and the implementation of a global markets institution in the GRSW model.

The literature on the climate-finance nexus suggests that an active role of financial
regulators can help shape climate related risk management (Monasterolo, 2020) and a
low-carbon transition (Campiglio et al., 2018). The DSK-FIN model has a detailed set
of heterogeneous banks that are subject to credit regulation. In this context, the authors
test three regulatory policies: (i) green Basel requirements which excludes loans to green
firms are excluded from banks capital requirements, (ii) green credit guarantees where
the government guarantees the value of loans to green firms, and (iii) carbon-adjusted
credit ratings where greener companies receive an improved credit rating. In the context
of the model, the authors find that individually none of the policies manage the trade-off
between climate mitigation and stable growth, with either a mitigation at the cost of
more frequent banking crises, or a stable economy until climate damages become extreme
enough to lead to collapse. In addition to the new financial regulations, the DSK model
also includes standard leaning-against-the wind policies such as unemployment benefits
and taxes on firm profits, as well as credit-multipliers to limit total debt.

In contrast to the financial system regulation, Gerdes et al. (2022) use the GRSW model
to explore the implications of a “civilized market institution” that has the power to fine
capital-goods companies for emissions and mines for local pollution, and redistribute
the collected fines in the form or subsidies for retrofitting firms’ capital to reduce their
pollution and emission intensities. Their results suggest that fines alone, which may
include items such as carbon taxes, are insufficient to counter natural disaster damage
nor unequal exchange, regardless of the severity of the fines. On the other hand, when
these fines are used to subsidize innovation activities in the form of retrofitting capital,
does the value chain become sustainable over the long run. All cases are cost-neutral,
as subsidies are funded by sanctions, thus converging to zero as emissions are mitigated.
They find that the most promising results include a North-South transfer as capital firms
in the north still invest in carbon reductions at the same rate, but significantly boosts
mitigation in mines. In a similar vein to the DSK, the model contains unemployment
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benefits and taxes on firm profits as well.

The ABMIAM of Safarzynska and van den Bergh (2022) considers the more common pol-
icy of carbon taxation. Specifically, they use an adapted form of the analytically derived
optimal policy by Rezai and Van der Ploeg (2016), with revenues being redistributed
as equal lump-sum payments to citizens. They then analyze to what degree these taxes
may reduce inequalities versus the same scenarios in their absence. Their findings sug-
gest that income inequality can be addressed by these policies, while consumption and
wealth inequality are not strongly affected.6

The policies highlighted in the DSK-FIN and GRSW model show the potential for
ABIAM in policy analysis because ABIAM are able to also incorporate regulatory poli-
cies and a wide array of policy mixes. This would allow for consultation with policymak-
ers to study in more expansive terms policy interactions and implications. It also allows
to address some of the critiques that a focus on carbon pricing omits the interaction
with innovation and diffusion processes (Rosenbloom et al., 2020), as well as the inter-
actions and trade-offs with other sustainable development goals such as equity (Geels
et al., 2016). At the same time, Keppo et al. (2021) note that policies alternative to
the commonplace carbon taxation or trading are also possible in process-based IAMs,
and suggest that the focus is driven by how models are meant to be used and what
policymakers have demanded.

The Path Ahead

While ABIAMs have made advances in revealing the micro-impacts of climate shocks,
the effects of inequality on policy, and the interlinkages between the economy, the fi-
nancial system and climate feedbacks, there is much yet to be done to match the detail
of process-based IAMs. In first place, the current set of ABIAMs should continue de-
veloping to incorporate features common to process-based IAMs, such as a fine-grained
representation of the energy system, as started in CFHS, a multi-sectoral structure be-
yond stylized consumption and capital goods, and a connection with land-use and change
models. Several of these areas have already been addressed by agent-based models, such
as electricity markets (see Castro et al., 2020, for references) or multi-sectoral and multi-
regional structures as in the LAGOM models (Wolf et al., 2013), ACCLIMATE (Otto
et al., 2017) or Caiani et al. (2018, 2019a). Beyond the addition of detail and combination
of these models, there are several areas worth highlighting.

Bardi and Pereira (2022) point out that “[i]n recent years, global warming and climate
change have become the main focus of the environmental movement. That may have
led to the importance of resource depletion being neglected - more evidence of the im-
portance of an integrated approach.” A review by Pollitt et al. (2010) confirms these
suspicions by reviewing 60 energy-environment-economics models and coming to the

6Consumption inequality is addressed in an unjust economy where damages are allocated to the
lowest wealth households, as this essentially functions as a non-damaged income such that households
can maintain their consumption where otherwise they would be in poverty.
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conclusion that “consumption of material inputs is largely unexplored within a dynamic
macroeconomic framework”. More recent reviews by Pauliuk et al. (2017) find that
IAMs have missing material-energy-economy linkages in their descriptions of installed
capital and infrastructures. Indeed, also in the reviewed ABIAMs only GRSW con-
sider the extraction of a physical resource to construct capital, while also not treating
its end-of-lifecycle implications. Given the scale of resource extraction and the differ-
ent required resources, even a saturation of installed capital levels would require large
quantities of new virgin materials in developing countries, and for the energy transition
(Wiedenhofer et al., 2019, 2021; Watari et al., 2019), which may make a full transition
infeasible when aiming to maintain or increase current consumption levels (Michaux,
2021). It is worth noting here that the extraction and processing of raw materials is
typically an emission-intensive process. Finally, also end-of-life waste and recycling may
become an important factor in a circular economy system with reduced virgin material
extraction, this is also underappreciated in current models (McCarthy et al., 2018). The
detailed and heterogeneous structure of ABMs would also allow modelers to incorporate
insights from industrial ecology to assess not just the socioeconomic but also the mate-
rial dimensions of a climate transition. In particular, I suggest considering modeling at
the stock-flow-practices nexus (Haberl et al., 2021), where the practices and demands
of individual consumers become important in the requirements for various materials.
Modeling individual agents also allows for interactions and social phenomena on the
demand-side that may change the path of the climate transition (e.g. see the review of
Castro et al., 2020, for some ABM-based approaches), where there are unexplored policy
avenues (e.g. see Fitzpatrick et al., 2022). All of the ABIAMs reviewed here show that
there are distributional effects of climate change, especially when considering the dif-
ferential impacts of climate feedbacks both regionally in the CFHS and GRSW models,
and among individuals in ABMIAM and DSK. More broadly, ABM-type models may
be able to incorporate more indicators and analyses relating to the interaction among
different Sustainable Development Goals such that policymakers and citizens may assess
and decide on trade-offs.

Finally, additions and enlargements of ABMs can run into computational issues. Thus
one wishes to carefully choose where to model heterogeneity to capture key aspects of the
overall system behavior (Keppo et al., 2021). To facilitate this, a process of agentization
should be considered (Guerrero and Axtell, 2011). This involves beginning the modeling
exercise with a model that captures overall system behavior at an aggregate level, and
then slowly replacing sectors or aggregations with individual agents. This would facilitate
both the computational exercise, validation, and communicability of the results of ABMs.
In particular, I am interested in the study of climate financial risk, whose importance
has been highlighted by Battiston et al. (2021a, 2023, 2021b), Monasterolo (2020) and
Monasterolo et al. (2022a,b), and how one can design policy, as was done in the DSK-
FIN, to mitigate the effects of physical and transition risks (Monasterolo et al., 2019).
To this end, there are several models incorporating climate and finance linkages already
that would be excellent starting points for agentization, such as the EIRIN flow-of-funds
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model of Monasterolo and Raberto (2018)7 or the model of Dafermos et al. (2017, 2018).).
Even in a non-agentized setup, these models already have a high number of parameters,
which may make the introduction of more agents appear to create a black-box.8 But,
as Part I of this thesis showed, only a handful of critical directions are relevant to the
observed dynamics and for the calibration of these models, suggesting this as a fruitful
avenue for research that connects macroeconomic dynamics with micro-agent behavior
in the context of climate change.

Conclusions

In sum, there are many avenues of future research to follow with respect to the explo-
ration and understanding of the parameter space in Agent-based Models: probabilistic
approaches, parameter space reduction, and visualization, together with applications to
the modeling of the economy-environment-energy nexus. To this I would like to add a
hope that future developments of ABM by their respective authors consider their differen-
tiable implementation. Many models are currently written in an object-oriented manner
using Java or using C++ to improve their execution speed. However, this complicates
their analysis, even for simple tasks such as computing finite difference derivatives, and
prevents the use of the statistical ecosystems of Python or Julia, which provide differ-
entiable libraries that may lead to the next leap in the exploration and calibration of
MABM.

11.3 Inflationary Dynamics and their Drivers

Part II of this thesis presented three different models of confidence and collective behavior
in a macroeconomic setting. Each of these models, as is the case with all models,
is generally incomplete and ripe for various extensions. For instance, including credit
dynamics in the Dynamic Solow Model to study higher frequency business cycles through
a Minskian instability approach, or including active policy in the modified DSGE of
Chapter 8 and extending it to a scope more alike to Smets and Wouters (2007). However,
the continuing research I am most interested in is the extension of the post-COVID study
using Mark-0 as presented in Chapter 9. This is because, as mentioned for the ABIAM
approaches, energy and resource price dynamics will likely grow in importance as part of
the green energy transition and our collective response to anthropogenic climate change.

The simplest extension to the model is the consideration of a dual mandate for the
Central Bank, and how this may address or fail to address spikes in the unemployment
rate. More critically would be to expand on the firm dynamics and with it the labor
market by introducing a firm-to-firm network that may dampen or amplify the shocks
we have seen. In particular, for the ongoing debate on supply-chain disruptions, having

7See also Naqvi and Monasterolo (2021); Dunz et al. (2021); Gourdel et al. (2022) for recent advances
using the EIRIN model

8more than 100 for the EIRIN version used in Gourdel et al. (2022) and more than 70 for Dafermos
et al. (2017).
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a firm-to-firm network with embedded industries would be an asset, as one can see
how these types of shocks can propagate and possible effects of profit-driven inflation.
Together with a more detailed firm-to-firm interaction can come a more detailed sectoral
employment and labor market dynamic, that may also consider a network-like structure
as in del Rio-Chanona et al. (2020). As it stands, the analysis presented in Chapter 9
is based on data for the United States, where, in contrast to the classic unemployment-
inflation tradeoff, labor markets have remained tight. The reasons behind this are mixed:
job openings have outgrown the number of unemployed rapidly, with variations by state
(Jefferson and Fuller, 2023) and industry (Birinci and Ngan, 2023). Simultaneously, the
U.S. labor force participation rate has remained below its pre-pandemic level following
a longer-term decline since the Great Financial Crisis of 2008 (Lee et al., 2023). Recent
research by Lee et al. (2023) suggests the negative impact of 2008-09 has been on the
extensive margin, as people are continuously leaving the labor market, most notably
young males without a bachelor’s degree. However, the pandemic-specific drop in annual
hours worked was primarily in the intensive margin: with educated prime-age workers
reducing the number of hours worked. Chapters 6 and 9 highlighted how critical the
labor-market dynamics and parameterization is to the overall dynamic of the Mark-
0 model. Incorporating these longer-term trends and understanding these mechanics
within the model would shed light on the high-inflation high-interest environment with
a low unemployment rate. To do so, I believe that incorporating a labor flow network
in addition to the firm-to-firm network would be the best approach, as it allows us to
maintain an otherwise aggregated household sector.

Finally, as with the ABIAMs mentioned above, one aspect I am interested in is the finan-
cial risk aspect of these shocks. The Mark-0 model already incorporates bankruptcies,
where the bankruptcy threshold can cause a phase transition out of the full employment
regime (Gualdi et al., 2015). This is already relevant as during the COVID-19 pandemic
many countries extended additional credit lines or lifted bankruptcy requirements, rais-
ing fears of a bankruptcy wave. However, the financial system is a key channel for mon-
etary policy to pass through to the economy, yet the bank in Mark-0 is currently very
stylized, setting loan-rates based on the aggregate default rates and no credit rationing.
One can extend this setup to study more closely the pass-through of monetary policy
through credit issuance by adopting the approach presented in the Post-Keynesian and
Stock-Flow Consistent (SFC) modeling literature (e.g. see the models in Caverzasi and
Godin, 2015). This would involve following a setup such as Godley and Lavoie (2006)
or Lavoie and Godley (2006), to have a bank agent that lends to the individual firms
at firm-specific lending rates, and is subject to prudential regulation. These constraints
then determine the degree to which the interest rates are passed through, and how firms
react to changes in the credit environment.
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Ayush Chopra, Alexander Rodŕıguez, Jayakumar Subramanian, Balaji Krishnamurthy, B. Aditya
Prakash, and Ramesh Raskar. Differentiable agent-based epidemiological modeling for end-
to-end learning. In ICML 2022 Workshop AI for Agent-Based Modelling, July 2022.

Dimitris Christelis, Dimitris Georgarakos, Tullio Jappelli, and Maarten Van Rooij. Trust in the
central bank and inflation expectation. Available at SSRN 3540974, 2020.

Lawrence J. Christiano, Martin Eichenbaum, and Charles L. Evans. Nominal Rigidities and the
Dynamic Effects of a Shock to Monetary Policy. Journal of Political Economy, 113(1):1–45,
2005. ISSN 0022-3808. doi: 10.1086/426038.

Lawrence J. Christiano, Martin S. Eichenbaum, and Mathias Trabandt. On DSGE Models.
Journal of Economic Perspectives, 32(3):113–140, August 2018. ISSN 0895-3309. doi: 10.
1257/jep.32.3.113.

192



BIBLIOGRAPHY

Tommaso Ciarli and Maria Savona. Modelling the Evolution of Economic Structure and Climate
Change: A Review. Ecological Economics, 158:51–64, April 2019. ISSN 0921-8009, 0921-8009.
doi: 10.1016/j.ecolecon.2018.12.008.

Silvano Cincotti, Marco Raberto, and Andrea Teglio. Credit Money and Macroeconomic Insta-
bility in the Agent-based Model and Simulator Eurace. Economics: The Open-Access, Open-
Assessment E-Journal, 4(2010-26):1, 2010. ISSN 1864-6042. doi: 10.5018/economics-ejournal.
ja.2010-26.

Silvano Cincotti, Marco Raberto, and Andrea Teglio. Why do we need agent-based macroeco-
nomics? Review of Evolutionary Political Economy, 3(1):5–29, April 2022. ISSN 2662-6144.
doi: 10.1007/s43253-022-00071-w.

David Colander, Richard Holt, and J. Barkley Rosser. The Changing Face of Mainstream
Economcis. Review of Political Economy, 16(4), 2004.

David Colander, Peter Howitt, Alan Kirman, Axel Leijonhufvud, and Perry Mehrling. Beyond
DSGE Models: Toward an Empirically Based Macroeconomics. American Economic Review,
98(2):236–40, May 2008. ISSN 0002-8282. doi: 10.1257/aer.98.2.236.

T.F. Cooley and E.C Prescott. Economic growth and business cycle. In Frontiers of Business
Cycle Research. Princeton University Press, Princeton, N.J, 1995.

Russell Cooper and Andrew John. Coordinating Coordination Failures in Keynesian Models.
The Quarterly Journal of Economics, 103(3):441–463, 1988. ISSN 0033-5533. doi: 10.2307/
1885539.

A Cornea, Cars H Hommes, and Domenico Massaro. Behavioral heterogeneity in U.S. inflation
dynamics. Journal of Business & Economic Statistics, 37(2):288–300, 2019.

Andrew Crooks, Christian Castle, and Michael Batty. Key challenges in agent-based mod-
elling for geo-spatial simulation. Computers, Environment and Urban Systems, 32(6):417–430,
November 2008. ISSN 01989715. doi: 10.1016/j.compenvurbsys.2008.09.004.

Imre Csiszár and Paul C. Shields. Information Theory and Statistics: A Tutorial. Foundations
and Trends™ in Communications and Information Theory, 1(4):417–528, 2004. ISSN 1567-
2190, 1567-2328. doi: 10.1561/0100000004.

Richard M. Cyert and James G. March. Behavioral Theory of the Firm. Wiley-Blackwell,
Cambridge, Mass., USA, 2nd edition edition, July 1992. ISBN 978-0-631-17451-6.

Marcin Czupryna, Christian Franzke, Sascha Hokamp, and Jürgen Scheffran. An Agent-Based
Approach to Integrated Assessment Modelling of Climate Change. Journal of Artificial Soci-
eties and Social Simulation, 23(3):7, 2020. ISSN 1460-7425.

Zhi Da, Xing Huang, and Lawrence J. Jin. Extrapolative beliefs in the cross-section: What can
we learn from the crowds? Journal of Financial Economics, 140(1):175–196, April 2021. ISSN
0304-405X. doi: 10.1016/j.jfineco.2020.10.003.

Yannis Dafermos, Maria Nikolaidi, and Giorgos Galanis. A stock-flow-fund ecological macroe-
conomic model. Ecological Economics, 131:191–207, January 2017. ISSN 0921-8009. doi:
10.1016/j.ecolecon.2016.08.013.

Yannis Dafermos, Maria Nikolaidi, and Giorgos Galanis. Climate Change, Financial Stability

193



BIBLIOGRAPHY

and Monetary Policy. Ecological Economics, 152:219–234, October 2018. ISSN 0921-8009.
doi: 10.1016/j.ecolecon.2018.05.011.

Bryan C Daniels, Yan-Jiun Chen, James P Sethna, Ryan N Gutenkunst, and Christopher R My-
ers. Sloppiness, robustness, and evolvability in systems biology. Current Opinion in Biotech-
nology, 19(4):389–395, August 2008. ISSN 09581669. doi: 10.1016/j.copbio.2008.06.008.

Herbert Dawid and Domenico Delli Gatti. Chapter 2 - Agent-Based Macroeconomics. In Cars
Hommes and Blake LeBaron, editors, Handbook of Computational Economics, volume 4 of
Handbook of Computational Economics, pages 63–156. Elsevier, January 2018. doi: 10.1016/
bs.hescom.2018.02.006.

François de Soyres, Ana Maria Santacreu, and Henry Young. Demand-Supply imbalance during
the Covid-19 pandemic: The role of fiscal policy. International Finance Discussion Papers
(IFDP), August 2022a.

François de Soyres, Ana Maria Santacreu, and Henry Young. Fiscal policy and excess inflation
during Covid-19: A cross-country view. Technical report, July 2022b.

Marco Del Negro, Marc P. Giannoni, and Frank Schorfheide. Inflation in the Great Recession
and New Keynesian Models. American Economic Journal: Macroeconomics, 7(1):168–196,
January 2015. ISSN 1945-7707. doi: 10.1257/mac.20140097.

R. Maria del Rio-Chanona, Penny Mealy, Mariano Beguerisse-Dı́az, François Lafond, and
J. Doyne Farmer. Occupational mobility and automation: A data-driven network model.
Journal of The Royal Society Interface, 18(174):20200898, 2020. doi: 10.1098/rsif.2020.0898.

Domenico Delli Gatti, Mauro Gallegati, Bruce Greenwald, Alberto Russo, and Joseph Stiglitz.
The financial accelerator in an evolving credit network. Journal of Economic Dynamics and
Control, 34(9):1627–1650, September 2010. ISSN 0165-1889. doi: 10.1016/j.jedc.2010.06.019.

Pinar Deniz and Erhan Aslanoglu. Consumer Confidence in a DSGE Model for Turkey. In Allied
Social Science Associations Annual Meeting, Philadelphia, PA, 2014. Allied Social Science
Associations.

Francis Dennig, Mark B. Budolfson, Marc Fleurbaey, Asher Siebert, and Robert H. Socolow.
Inequality, climate impacts on the future poor, and carbon prices. Proceedings of the National
Academy of Sciences, 112(52):15827–15832, December 2015. doi: 10.1073/pnas.1513967112.
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Resolution Agent-based Model of the Hungarian Housing Market. MNB Working Papers,
7, 2022.

Simon Michaux. The Mining of Minerals and the Limits to Growth. Technical Report 16,
Geological Survey of Finland, Finland, 2021.
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Isabelle Salle and Murat Yıldızoğlu. Efficient Sampling and Meta-Modeling for Computational
Economic Models. Computational Economics, 44(4):507–536, December 2014. ISSN 0927-
7099, 1572-9974. doi: 10.1007/s10614-013-9406-7.

Thomas J. Sargent. Bounded Rationality in Macroeconomics: The Arne Ryde Memorial Lectures.
Oxford Univ. Press, Oxford, 1993. ISBN 978-0-19-828869-5.
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Isabella Weber, Jesús Lara, Lucas Teixeira, and Luiza Nassif Pires. Inflation in Times of Over-
lapping Emergencies: Systemically Significant Prices from an Input-output Perspective. De-
cember 2022.

Martin L. Weitzman. Tail-Hedge Discounting and the Social Cost of Carbon. Journal of Eco-
nomic Literature, 51(3):873–882, September 2013. ISSN 0022-0515. doi: 10.1257/jel.51.3.873.

Dominik Wiedenhofer, Tomer Fishman, Christian Lauk, Willi Haas, and Fridolin Krausmann.
Integrating Material Stock Dynamics Into Economy-Wide Material Flow Accounting: Con-
cepts, Modelling, and Global Application for 1900–2050. Ecological Economics, 156:121–133,
February 2019. ISSN 0921-8009. doi: 10.1016/j.ecolecon.2018.09.010.

Dominik Wiedenhofer, Tomer Fishman, Barbara Plank, Alessio Miatto, Christian Lauk, Willi
Haas, Helmut Haberl, and Fridolin Krausmann. Prospects for a saturation of humanity’s
resource use? An analysis of material stocks and flows in nine world regions from 1900 to

214



BIBLIOGRAPHY

2035. Global Environmental Change, 71:102410, November 2021. ISSN 0959-3780. doi: 10.
1016/j.gloenvcha.2021.102410.

A. Katharina Wilkins, Bruce Tidor, Jacob White, and Paul I. Barton. Sensitivity Analysis for
Oscillating Dynamical Systems. SIAM Journal on Scientific Computing, 31(4):2706–2732,
January 2009. ISSN 1064-8275. doi: 10.1137/070707129.

Sarah Wolf, Steffen Fürst, Antoine Mandel, Wiebke Lass, Daniel Lincke, Federico Pablo-Mart́ı,
and Carlo Jaeger. A multi-agent model of several economic regions. Environmental Modelling
& Software, 44:25–43, June 2013. ISSN 1364-8152. doi: 10.1016/j.envsoft.2012.12.012.

Michael Woodford. Convergence in Macroeconomics: Elements of the New Synthesis. American
Economic Journal: Macroeconomics, 1(1):267–279, January 2009. ISSN 1945-7707. doi: 10.
1257/mac.1.1.267.

Simon Wren-Lewis. Ending the microfoundations hegemony. Oxford Review of Economic Policy,
34(1-2):55–69, January 2018. ISSN 0266-903X, 1460-2121. doi: 10.1093/oxrep/grx054.

Evelyn L. Wright and Jon D. Erickson. Incorporating Catastrophes into Integrated Assessment:
Science, Impacts, and Adaptation. Climatic Change, 57(3):265–286, 2003. ISSN 01650009.
doi: 10.1023/A:1022829706609.

Takeshi Yagihashi. DSGE Models Used by Policymakers: A Survey. Discussion papers, (ron333),
October 2020.

Behnam Zakeri, Katsia Paulavets, Leonardo Barreto-Gomez, Luis Gomez Echeverri, Shonali
Pachauri, Benigna Boza-Kiss, Caroline Zimm, Joeri Rogelj, Felix Creutzig, Diana Ürge-
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Appendix A
Derivations for Quantifying Sloppiness

This appendix shows the derivations referenced in Chapter 3.

A.1 Derivation of the Hessian for the MSE Loss

Recalling the MSE-Loss function from Eq. (3.5),

LMSE(Φ,Φ+δΦ) =
1

2TS

∑

t∈T

∑

s∈S
(xs,t(Φ)− xs,t(Φ + δΦ))⊤Σ−1 (xs,t(Φ)− xs,t(Φ + δΦ)) ,

I now compute the Hessian with respect to the log parameters log Φ, whose definition is
(Eq. (3.1))

HL
i,j(Φ) = ΦiΦj

d2LMSE(Φ,Φ + δΦ)

dΦidΦj

∣∣∣∣
δΦ=0

.

Define first the K × P Jacobian matrix

Js,t (Φ) =

[
dxs,t(Φ)

dΦ1
, . . . ,

dxs,t(Φ)

dΦP

]
=




dx1,s,t(Φ)
dΦ1

. . .
dx1,s,t(Φ)

dΦP
...

. . .
...

dxK,s,t(Φ)
dΦ1

. . .
dxK,s,t(Φ)

dΦP




Using this definition, the first derivative is

d

dΦ
LMSE(Φ,Φ + δΦ)

∣∣∣∣
δΦ=0

=
1

TS

∑

t∈T

∑

s∈S
J⊤
s,t (Φ)Σ−1 (xs,t(Φ)− xs,t(Φ + δΦ))

which leads to a second derivative

d2

dΦdΦ
LMSE(Φ,Φ + δΦ)

∣∣∣∣
δΦ=0

=
1

TS

∑

t∈T

∑

s∈S
J⊤
s,t (Φ)Σ−1Js,t (Φ)
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where I make use of the fact that Φ + δΦ is the object of the differentiation while the
reference Φ, and thus xs,t(Φ), is considered a constant. By definition of δΦ = 0 we are
also at a minimum implying the second-order terms vanish. This implies

HMSE(Φ) = ΦΦ⊤ 1

TS

∑

t∈T

∑

s∈S
J⊤
s,t (Φ)Σ−1Js,t (Φ) ,

where the first term accounts for the log-derivative.

A.2 Hessian for the sKL divergence

Recalling the symmetrized Kullback-Leibler divergence from Eq. (3.7),

LsKL(Φ,Φ + δΦ) =
1

2

(
LKL(Φ,Φ + δΦ) + LKL(Φ + δΦ,Φ)

)

LKL(Φ,Φ + δΦ) =
∑

x

P (x|Φ) log

(
P (x|Φ)

P (x|Φ + δΦ)

)
,

we derive the Hessian matrix

HL
i,j(Φ) = ΦiΦj

d2LsKL(Φ,Φ + δΦ)

dΦidΦj

∣∣∣∣
δΦ=0

.

Beginning with LKL(Φ,Φ + δΦ) and noting that P (x|Φ) is a constant as we work with
Φ + δΦ,

d

dΦj
LKL(Φ,Φ + δΦ)

∣∣∣∣
δΦ=0

=
d

dΦj

∑

y

P (x|Φ) log

(
P (x|Φ)

P (x|Φ + δΦ)

)

= −
∑

x

P (x|Φ)
d logP (x|Φ + δΦ)

dΦj

= −
∑

x

P (x|Φ)

P (x|Φ + δΦ)

dP (x|Φ + δΦ)

dΦj
,

from which one obtains as second derivative

d2

dΦidΦj
LKL(Φ,Φ + δΦ)

∣∣∣∣
δΦ=0

= − d

dΦi

∑

x

P (x|Φ)

P (x|Φ + δΦ)

dP (x|Φ + δΦ)

dΦj

= −
∑

x

P (x|Φ)




d2P (x|Φ+δΦ)
dΦidΦj

P (x|Φ + δΦ)
−

dP (x|Φ+δΦ)
dΦi

dP (x|Φ+δΦ)
dΦj

P (x|Φ + δΦ)P (x|Φ + δΦ)




=
∑

x

P (x|Φ)
d logP (x|Φ)

dΦi

d logP (x|Φ)

dΦj

= gi,j (Φ) dΦidΦj ,
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which is the Fisher Information Matrix. Note that I have used the following property
for δΦ = 0

−
∑

x

P (x|Φ)

d2P (x|Φ+δΦ)
dΦidΦj

P (x|Φ + δΦ)

∣∣∣∣∣∣
δΦ=0

=
d2

dΦidΦj

∑

x

P (x|Φ) =
d2

dΦidΦj
1 = 0.

We can now repeat this procedure for the second part of the SKL, LKL(Φ + δΦ,Φ),

d

dΦj
LKL(Φ + δΦ,Φ)

∣∣∣∣
δΦ=0

=
d

dΦj

∑

x

P (x|Φ + δΦ) log

(
P (x|Φ + δΦ)

P (x|Φ)

)

=
∑

x

dP (x|Φ + δΦ)

dΦj
log

(
P (x|Φ + δΦ)

P (x|Φ)

)
+
∑

x

dP (x|Φ + δΦ)

dΦj

︸ ︷︷ ︸
=0

=
∑

x

dP (x|Φ + δΦ)

dΦj
log

(
P (x|Φ + δΦ)

P (x|Φ)

)

from which one obtains also obtains the FIM as a second derivative

d2

dΦidΦj
LKL(Φ + δΦ,Φ)

∣∣∣∣
δΦ=0

=
d

dΦi

∑

x

dP (x|Φ + δΦ)

dΦj
log

(
P (x|Φ + δΦ)

P (x|Φ)

)

=
∑

x

d2P (x|Φ + δΦ)

dΦidΦj
log

(
P (x|Φ + δΦ)

P (x|Φ)

)

+
∑

x

1

P (x|Φ + δΦ)

dP (x|Φ + δΦ)

dΦj

dP (x|Φ + δΦ)

dΦi

=
∑

x

P (x|Φ)

dP (x|Φ+δΦ)
dΦi

dP (x|Φ+δΦ)
dΦj

P (x|Φ + δΦ)P (x|Φ + δΦ)

=
∑

x

P (x|Φ)
d logP (x|Φ)

dΦj

d logP (x|Φ)

dΦi

= gi,j (Φ) dΦidΦj ,

where log
(
P (x|Φ+δΦ)

P (x|Φ)

)
= 0 for δΦ = 0

This leads to a final Hessian

HSKL
i,j (Φ) = ΦiΦj gi,j (Φ) dΦidΦj

A.3 Hessian for the Hellinger divergence

The Hellinger distance between to probability distributions is

LH(Φ,Φ + δΦ) =
1√
2

√∑

x∈X

(√
P (x|Φ)−

√
P (x|Φ + δΦ)

)2
. (A.1)
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For simplicity, I denote temporarily F = P (x|Φ) and G = P (x|Φ + δΦ), where F is
treated as a constant in the derivation (only the Φ + δΦ is a variable).

Before starting, consider that the Hellinger distance can be re-written as

LH(Φ,Φ + δΦ) =

√
1

2

∑

x

(√
F −

√
G
)2

=

√∑

x

(
F +G

2
−
√
FG

)
=

√
1−

∑

x

√
FG

using the above.

Secondly, note that the squared Hellinger distance, LH2
(Φ,Φ+δΦ) =

(
LH(Φ,Φ + δΦ)

)2
,

is a f -divergence, as is the KL-divergence that we treated earlier. It turns out to be quite
general that these divergences behave quadratically for very small perturbations, and
that their local measure is the Fisher Information Metric, g (Φ). The difference between
the squared and non-squared Hellinger divergence is that the regular Hellinger divergence
is a metric, it obeys the triangle inequality, while the squared Hellinger distance, much
like the KL-divergence does not. To illustrate how one obtains the FIM with the squared
Hellinger distance, I derive below the Hessian (δΦ = 0).

The first derivative is computed simply,

d

dΦj
LH2

(Φ,Φ + δΦ)

∣∣∣∣
δΦ=0

=
∑

x

√
F

2
√
G

dG

dΦj
=

1

2

∑

x

√
FG

d logG

dΦj
,

and leads to a second derivative

d2

dΦjdΦi
LH2

(Φ,Φ + δΦ)

∣∣∣∣
δΦ=0

=
d

dΦi

1

2

∑

x

√
F√
G

dG

dΦj

where, as with the KL-divergence derivation, letting δΦ = 0 and reverting to our regular
notation we obtain

d2

dΦjdΦi
LH2

(Φ,Φ + δΦ)

∣∣∣∣
δΦ=0

=
1

4

∑

x

P (x|Φ)
d logP (x|Φ)

dΦj

d logP (x|Φ)

dΦi
,

which leads us to the familiar FIM structure (with respect to log-parameters):

HH2

i,j (Φ) =
1

4
ΦiΦjgi,j (Φ)

I have used the same property of the second-derivative as with the KL.

In most of the literature, it appears that for probabilistic models, authors choose the
symmetrized KL divergence as a measure rather than the Hellinger distance. In Quinn
et al. (2023), the authors chose the KL-divergence over the Hellinger distance when
developing embeddings for visualizing model manifolds and their hyperribbon structure.
The reason being that as their prediction space dimension increases, distributions become
more distinguishable from one another, becoming orthogonal. In this case, using the
Hellinger distance, all of the pairwise distances in a larger data-space converge to 1, the
upper limit of the Hellinger distance, whereas a SKL approach does not have such a
restriction.
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Appendix B
Derivations for Kirman’s Ants

B.1 The Kullback-Leibler Divergence

Consider Kirman’s Ants, where the stationary distribution P (x|Φ) ∼ Beta
(

ρ
µ ,

ρ
µ

)
, then

the Kullback-Leibler divergence for a perturbation P (x|Φ + δΦ) is given by:

KL (P (x|Φ) ||P (x|Φ⋆)) =

∫ 1

0
P (x|Φ) log

P (x|Φ)

P (x|Φ⋆)
,

which can be decomposed into the difference between the crossentropy
H(P (x|Φ) , P (x|Φ⋆)) between P (x|Φ) and P (x|Φ⋆) and the entropy H(P (x|Φ))
of P (x|Φ),

KL (P (x|Φ) ||P (x|Φ⋆)) =

∫ 1

0
P (x|Φ) log

1

P (x|Φ⋆)
−
∫ 1

0
P (x|Φ) log

1

P (x|Φ)

= H(P (x|Φ) , P (x|Φ⋆))−H(P (x|Φ)),

for which there is an analytical solution using the digamma function ψ (·),

H(P (x|Φ)) = −
∫ 1

0
P (x|Φ) logP (x|Φ) dx

= log

(
B

(
ρ

µ
,
ρ

µ

))
− 2

(
ρ

µ
− 1

)
ψ

(
ρ

µ

)
+ 2

(
ρ

µ
− 1

)
ψ

(
2
ρ

µ

)

H (P (x|Φ) , P (x|Φ⋆)) = −
∫ 1

0
P (x|Φ) logP (x|Φ⋆)dx

= log

(
B

(
ρ⋆

µ⋆
,
ρ⋆

µ⋆

))
− 2

(
ρ⋆

µ⋆
− 1

)
ψ

(
ρ

µ

)
+ 2

(
ρ⋆

µ⋆
− 1

)
ψ

(
2
ρ

µ

)
,

223



B.2. HESSIAN MATRICES FOR KIRMAN’S ANTS

where B(·) is the Beta function. This leads to a KL divergence of

KL (P (x|Φ) ||P (x|Φ⋆)) = log



B
(

ρ⋆

µ⋆ ,
ρ⋆

µ⋆

)

B
(

ρ
µ ,

ρ
µ

)


+ 2

(
ρ

µ
− ρ⋆

µ⋆

)(
ψ

(
ρ

µ

)
− ψ

(
2
ρ

µ

))

(B.1)
and a symmetric divergence

KLsym (P (x|Φ) ||P (x|Φ⋆)) = KL (P (x|Φ) ||P (x|Φ⋆)) +KL (P (x|Φ⋆)||P (x|Φ))

= 2

(
ρ

µ
− ρ⋆

µ⋆

)(
ψ

(
ρ

µ

)
− ψ

(
2
ρ

µ

)
+ ψ

(
ρ⋆

µ⋆

)
− ψ

(
2
ρ⋆

µ⋆

))
.

(B.2)

B.2 Hessian Matrices for Kirman’s Ants

Hessian for the symmetric KL-divergence

Based on Eq. (3.7) and the continuous formulation of the ants model (recalling that
x ∈ [0, 1]), the Hessian matrix for the symmetric KL-divergence can be written as

HL
i,j(Φ) :=

d2L(Φ,Φ + δΦ)

d log Φid log Φj

∣∣∣∣
εi=0

= ΦiΦj

∫ 1

0
P (x|Φ)

d logP (x|Φ)

dΦi

d logP (x|Φ)

dΦj
dx

(B.3)

Since we have a continuous formulation, I replace the summation with the integral over
the domain of x. Noting here that

P (x|Φ) =
1

B
(

ρ
µ ,

ρ
µ

) (x(1− x))
ρ
µ
−1

logP (x|Φ) = − log B

(
ρ

µ
,
ρ

µ

)
+

(
ρ

µ
− 1

)
log(x(1− x))

where B (·) is the Beta function. Consequently, we can note that the first derivatives of
logP (x|Φ) are

∂i logP (x|Φ) =

(
∂i
ρ

µ

)(
2ψ

(
2
ρ

µ

)
− 2ψ

(
ρ

µ

)
+ log(x(1− x))

)

with ψ (·) being the digamma function. This implies that the Hessian of the ant recruit-
ment model at any point in the (ρ, µ) space is given by

HL
i,j(Φ) = ρµ

(
∂i
ρ

µ

)(
∂j
ρ

µ

)∫ 1

0

(
2ψ

(
2
ρ

µ

)
− 2ψ

(
ρ

µ

)
+ log(x(1− x))

)2

P (x|Φ) dx

=
ρ2

µ2

[
1 −1
−1 1

] ∫ 1

0

(
2ψ

(
2
ρ

µ

)
− 2ψ

(
ρ

µ

)
+ log(x(1− x))

)2

P (x|Φ) dx
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where the integral term is a constant that scales the hessian.

Defining now

C = ψ

(
ρ

µ

)
− ψ

(
2
ρ

µ

)

I simplify
∫ 1

0
P (x|Φ) (log(x(1− x))− 2C)2 dx

=
(
4C2 − 4CEP (x|Φ)(log x(1− x)) + EP (x|Φ)

(
log2 x(1− x)

))

=
(
−4C2 + EP (x|Φ)

(
log2 x

)
+ 2EP (x|Φ) (log x log(1− x)) + EP (x|Φ)

(
log2(1− x)

))

= 2ψ(1)

(
ρ

µ

)
− 4ψ(1)

(
2
ρ

µ

)

where ψ(1)
(

ρ
µ

)
is the trigamma function (first derivative of gamma). Recombining all

of these terms yields the explicit Hessian

HL
i,j(Φ) =

ρ2

µ2

[
1 −1
−1 1

](
2ψ(1)

(
ρ

µ

)
− 4ψ(1)

(
2
ρ

µ

))
(B.4)

Hessian for the Mean-Squared Error

The Hessian for the Mean-Squared Error in the S → ∞ case reads

HMSE
i,j (Φ) = ΦiΦj

d log V (x|Φ)

dΦi

d log V (x|Φ)

dΦj
,

Noting that for the symmetric Beta distribution, the variance is

V (x|Φ) =
1

4

(
2
ρ

µ
+ 1

)−1

log V (x|Φ) = −4− log

(
2
ρ

µ
+ 1

)

Starting with the first derivatives,

d

dρ
log V (x|Φ) = − 1

2µ

(
2
ρ

µ
+ 1

)−1

d

dµ
log V (x|Φ) =

ρ

2µ2

(
2
ρ

µ
+ 1

)−1

the Hessian becomes

HMSE(Φ) =
ρ2

4µ2

(
2
ρ

µ
+ 1

)−2 [
1 −1
−1 1

]
(B.5)
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Appendix C
Numerical Estimation of MSE-based
Hessians

This appendix deals with the tricky problem of estimating the Jacobian matrix Js,t (Φ)
for the Mark-0 model by means of finite differences. The goal is to obtain a good
approximation of the Hessian of the underlying data generating process at a particular
point in the parameter space. To verify the quality of estimation, I consider the property
that when perturbing the model in the directions of the eigenvectors of the observed
Hessian, one observes a hierarchy of change: the largest change occurs in the direction
of the eigenvector with the largest associated eigenvector (the well-constrained) direction,
and sequentially thereafter. As outlined in Chapter 5, the difficulty lies in the separation
of the signal from a change in the parameters from the inherent stochasticity of the model.

To compute the finite difference (FD) Hessian, I use central difference derivatives

dxs,t(Φ)

d log Φi
=

xs,t (Φ
+)− xs,t (Φ

−)

2ε
, (C.1)

where parameters are perturbed in the log parameter space to negate effects from nat-
urally differing scales: Φ±

j = Φ ∀j ̸= i and Φ±
i = exp (log Φi ± ε). For this approach

to be correct one needs to carefully select select the perturbation size ε. In models
with a smooth manifold around Φ, one may retrieve the expected behavior that as the
perturbation size ε decreases one obtains a better estimate of the local Hessian, up to
a point where numerical precision becomes an issue. However, for stochastic models
like Mark-0 one observes the reverse case because the manifold around a given point in
parameter-space is quite rough due to the noise effects in the model.

What are these noise effects I keep mentioning? An example from Mark-0 would be firm
entry and exit from the model. Firm entry in particular is a stochastic process, with
on average, 10% of currently bankrupt firms reentering the model. Consider now what
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happens when the model is perturbed in any direction: some firms that previously went
bankrupt may not go bankrupt in this new run, or more likely, go bankrupt at a slightly
different point in time. Due to this, also the entry of firms may be shifted, with a firm
that would have entered at time t may now do so later, or not at all if it doesn’t go
bankrupt. In this regard, when there is a regular stream of firms entering and leaving
bankruptcy, a change in the parameters might shift around the firms entry and exit,
thus changing the dynamics, even if the time-realisation of all noise is fixed for every
time and firm. The resulting challenge is that there exists some amount of “baseline
loss” from any parameter perturbation, such that in order to obtain a Hessian estimate
that identifies the hierarchy of parameter combinations in the model one needs to select
a finite difference step-size that perturbs the model beyond its baseline noise amounts.

To show this numerically, consider the same three points as in Chapter 5, and the
estimation of their Hessian matrices for variable finite difference step-sizes. Figures C.1,
C.2, and C.3 show the MSEs of perturbing the parameters into the first ten eigenvector
directions (x-axis) for various distances (vertical panels). Each figure represents, Each
box represents 50 perturbations into the vi(Φ) direction of a S = 1 Hessian using the
same random realisation that the Hessian was computed on. Considering the steps with
similar magnitudes as the finite difference case, one sees that for a FD step ε = 10−3 only
the first eigenvector of FE (center) has a significantly larger impact than the remainder.
For both FE and RU, irrespective of the choice of eigenvector, there is a similar degree
of change in the model. Increasing the step-size to ε = 10−2, the RU phase begins
exhibiting the targeted hierarchy of MSE effects, together with the FE phase. However,
it is only once ε = 2×10−1 that across all phases one can see the hierarchy of directional
effects. In all cases the hierarchy also exists primarily for the first two eigenvectors
moreso than the remainder, whose effects rever to a baseline minimal MSE from any for
of parameter change (compare the top panel’s magnitudes to the last panel’s magnitudes
in Figure C.3).

One can see this effect also in the eigenvalues, as shown in Figure C.4, where only
for large stepsizes the first eigenvalues begin separating and stabilizing from the pack.
This also suggests that a future test for relevance might be to compare the eigenvalue
distribution to that of a Random Matrix. That is, developing a hypothesis test for the
H0 that λi(Φ) is random by, say, comparing it to a Marchenko-Pastur distribution with
similar parameters. This is currently under development.
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APPENDIX C. NUMERICAL ESTIMATION OF MSE-BASED HESSIANS
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Figure C.1 – Effect of perturbations into eigendirections of the MSE-Hessian using T = 300 and
S = 50 for each of the three parameter-points. Hessians were computed using central difference
derivatives with a stepsize of ε = 10−3. Plots show the distribution of the mean squared error of

the perturbation in ±vi(Φ) (x-axis) over a sample of 50 S = 1 Hessians
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Figure C.2 – Effect of perturbations into eigendirections of the MSE-Hessian using T = 300 and
S = 50 for each of the three parameter-points. Hessians were computed using central difference
derivatives with a stepsize of ε = 10−2. Plots show the distribution of the mean squared error of

the perturbation in ±vi(Φ) (x-axis) over a sample of 50 S = 1 Hessians
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Figure C.3 – Effect of perturbations into eigendirections of the MSE-Hessian using T = 300 and
S = 50 for each of the three parameter-points. Hessians were computed using central difference
derivatives with a stepsize of ε = 2× 10−1. Plots show the distribution of the mean squared error

of the perturbation in ±vi(Φ) (x-axis) over a sample of 50 S = 1 Hessians
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Figure C.4 – Eigenvalues of a S = 1 Hessian as a function of the finite difference step-size ε at
three different points in the parameter space.
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Appendix D
Additional Information for the
Exploration of the Parameter-space

D.1 Best pMSE (EQ) Explorations
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D.1. BEST pMSE (EQ) EXPLORATIONS
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Figure D.1 – Twenty runs with the highest pMSE (EQ) for the SimpleAlgo approach with ε =
10−2. Initial parameterisations based on Sobol sequence of length 64. Initial conditions are fixed and
based on a T = 1000 equilibration to the steady state at the initial point. Hessian hyperparameters

are T = 150 and S = 1. Boundaries from Table 5.1
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Figure D.2 – Twenty runs with the highest pMSE (EQ) for the SimpleAlgoFC approach with
ε = 10−2. Initial parameterisations based on Sobol sequence of length 64. Initial conditions are
parameter-point Φ(q)-specific and based on a T = 1000 equilibration to the steady state at that

point. Hessian hyperparameters are T = 150 and S = 1. Boundaries from Table 5.1
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Figure D.3 – Twenty runs with the highest pMSE (EQ) for the ProbeAlgo approach with ε = 10−2.
Initial parameterisations based on Sobol sequence of length 64. Initial conditions are fixed and based
on a T = 1000 equilibration to the steady state at the initial point. Hessian hyperparameters are

T = 150 and S = 1. Boundaries from Table 5.1
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Figure D.4 – Twenty runs with the highest pMSE (EQ) for the ProbeAlgoFC approach with
ε = 10−2. Initial parameterisations based on Sobol sequence of length 64. Initial conditions are
parameter-point Φ(q)-specific and based on a T = 1000 equilibration to the steady state at that

point. Hessian hyperparameters are T = 150 and S = 1. Boundaries from Table 5.1
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D.2 Transition Drivers
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Figure D.5 – Directions taken by the explorations (vertical) within, into and out of the EC phase
in the Mark-0 model, as defined by Gualdi et al. (2015). The vertical lines demarkate different

exploration runs.
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Figure D.6 – Directions taken by the explorations (vertical) within, into and out of the RU phase
in the Mark-0 model, as defined by Gualdi et al. (2015). The vertical lines demarkate different

exploration runs.
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Figure D.7 – Directions taken by the explorations (vertical) within, into and out of the FU phase
in the Mark-0 model, as defined by Gualdi et al. (2015). The vertical lines demarkate different

exploration runs.
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Appendix E
ABIAM Model Structures

E.1 Macroeconomic Overview

Table E.1 – Overview of the General Structure of four Agent-based Integrated Assessment Models.
Details on the energy and resource sector are in Table E.2, the climate module in Table E.3, and

policy institutions in Table E.4

DSK DSK-FIN ABMIAM CFHS GRSW

Key
References

Lamperti
et al. (2018a,
2020)

Lamperti
et al. (2019a,
2021)

Safarzynska
and van den
Bergh (2022)

Czupryna
et al. (2020)

Gerdes et al.
(2022)

Macroeconomic
Framework

K+S Model Lamperti
et al. (2018a)

Safarzynska
and van den
Bergh
(2017b,a)

No prior
framework

Influenced by
Rengs and
Scholz-
Wackerle
(2019)

General Properties

Stock-flow
Consistent

Yes Yes Unspecified Unspecified Unspecified

Timestep Quarter Quarter Year Year Monthly with
annual-only
events

Table continues on next page
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DSK DSK-FIN ABMIAM CFHS GRSW

Regions Single Single Single 10 regions:
Africa, Japan,
China, India,
Rest of Asia,
Europe,
North
America,
Central and
South
America,
Common-
wealth of
Independent
States,
Middle East

Two: Global
North (with
capital
goods),
Global South
(with mines)

Consumption

Reference Lamperti
et al. (2018a)

Lamperti
et al. (2018a)

Safarzynska
and van den
Bergh (2017a)

Czupryna
et al. (2020)

Gerdes et al.
(2022)

Goods Single
C-Good

Single
C-Good

Multiple
goods. Each
firm offers
good with
differentiated
quality
depending on
maximum
attainable
quality and
duration of
producing a
given good

Multiple
goods:
agriculture,
textiles,
chemicals,
other manu-
facturing,
transport,
and other
services

Single
C-Good

Production Constant
returns to
scale with
labour and
capital
vintages

Constant
returns to
scale with
labour and
capital
vintages

CES
production
function with
labour,
capital and
energy

CES with
capital,
labour and
energy

Leontief
function with
capital and
labour

Factor
Demand

Proportional
to target
production

Proportional
to target
production

Cost
minimization
of CES given
production
target

Cost
minimization
of CES given
production
target

Proportional
to target
production

Table continues on next page
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DSK DSK-FIN ABMIAM CFHS GRSW

Supplied
Quantity

Expected
demand with
adjustment
for inventory

Expected
demand with
adjustment
for inventory

Weighted
average of
current sales
and actual
demand

Tatonnement:
increase if
excess
demand and
price above
market
(Assenza
et al., 2015)

Target
production
depends on
expected
demand with
adjustment
for target
inventory

Pricing Variable
markup based
on market
share

Variable
markup based
on market
share

Variable
markup on
cost based on
past market
power. Costs
include
variable cost
and fixed cost
of producing
quality good

Tatonnement:
increase if
below market
and excess
demand,
decrease if
reverse
(Assenza
et al., 2015)

Tatonnement:
Price is
adjusted
downward if
strongly lower
sales, and
upward if
strong excess
demand.
Bounded from
below by
production
costs.
Adoption of a
new price is
successful
with a fixed
probability

Investment Based on
expected
demand, with
scrapping
based on
expected
gains.

Based on
expected
demand, with
scrapping
based on
expected
gains.

Based on
expected
demand

Based on
excess of
capital factor
demand over
existing
capital

Target based
on expected
demand.

Household
Demand

All income
consumed

All income
consumed

Consume
based on
target wealth-
to-permanent-
income ratio

Part of
income (fixed
propensity)
plus any
savings

Budget is
wage income
plus
proportion of
savings

Table continues on next page
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DSK DSK-FIN ABMIAM CFHS GRSW

Household
Choice

N/A N/A Intensity of
choice
function with
utility per
product.
Product-
utility is a
Cobb-Douglas
type
aggregation of
quality, price
and number
of other
buyers

Stone-Geary
utility
function over
n goods, with
a required
minimum
consumption.
Energy
consumption
is split into
electricity and
fuels based on
CES, then
fuels is split
into coal, gas
and oil based
on CES

Household
has shortlist
of preferred
firms, with
25% change
household
might change
firm to a
lower price
one. With
25% chance
household
replaces firm
that didn’t
satisfy
demand with
random
alternative

Market
Protocol

Not explicit Not explicit Not explicit Regional
clearing
except
transport and
other services.
Consumers
visit
producers
(unspecified
order)
adjusting
demands
based on
prices as
clearing
proceeds

Two
purchasing
rounds: a
fraction of
desired
demand
bought in
round one,
the remainder
in round two.
If a firm
cannot satisfy
demand, a
household
tries another
firm until
satisfied or no
supply left.

Capital

Reference Lamperti
et al. (2018a)

Lamperti
et al. (2018a)

Safarzynska
and van den
Bergh (2017a)

Czupryna
et al. (2020)

Gerdes et al.
(2022)

Capital
Goods

Multiple
vintages:
labour-
productivity,
energy-
efficiency,
emission
intensity

Multiple
vintages:
labour-
productivity,
energy-
efficiency,
emission
intensity

N/A no
explicit sector

Single type of
capital

Single type of
machine

Table continues on next page
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DSK DSK-FIN ABMIAM CFHS GRSW

Production
Technology

Constant
returns to
scale with
labour and
energy

Constant
returns to
scale with
labour and
energy

N/A CES with
capital,
labour and
energy

Leontief with
capital,
labour and
resources

Technological
Change

Nelson and
Winter (1982)
imitation-
innovation
process based
on R&D
investment
(See Dosi
et al., 2010)

Nelson and
Winter (1982)
imitation-
innovation
process based
on R&D
investment
(See Dosi
et al., 2010)

Nelson and
Winter (1982)
two-step
process for
improving
CES technical
coefficients.
Maximum
product
quality and
technical
coefficients
increase
exogenously
over time

Exogenous
noisy growth
in CES
technical
coefficients

None. Fixed
technical
production
coefficients

Prices fixed markup fixed markup N/A since not
a sector

Tatonnement:
increase if
below market
average and
excess
demand
(Assenza
et al., 2015)

Tatonnement:
Price is
adjusted
downward if
strongly lower
sales, and
upward if
strong excess
demand.
Bounded from
below by
production
costs.
Adoption of a
new price is
successful
with a fixed
probability

Quantity Proportional
to expected
demand

Proportional
to expected
demand

N/A Based on
expected
demand,
subtracting
own
requirements
first

Target
depends on
expected
demand with
an inventory
adjustment

Table continues on next page
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DSK DSK-FIN ABMIAM CFHS GRSW

Market
Protocol

Choice by
price,
productivity,
energy-
efficiency.
Can consume
froma subset
of producers.
Delivery at
end of period

Choice by
price,
productivity,
energy-
efficiency.
Can consume
froma subset
of producers.
Delivery at
end of period

N/A since not
a sector

Assenza et al.
(2015): each
consumer
connected to
fixed number
of producers,
purchasing
from lowest
producers in
order of
lowest price
first. Excess
demand is
partially
satisfied.
Once fixed
network is
completed,
additional
demand is
fulfilled by
excess supply
or
proportionally
allocated.
Adjustment
for im-
port/export:
if a region has
an export
surplus,
imports are
preferred

Consumption
good firms
have shortlist
of capital
firms,
updated every
3 months with
25% change
household
might change
firm to a
lower price
one. With
25% chance
household
replaces firm
that didn’t
satisfy
demand with
random
alternative.
Firm
attempts to
buy equal
fraction of
demand from
all sellers, if
unsatified
continues
until at least
95% satisfied
or no more
stock

Labour & Household Income

Reference Lamperti
et al. (2018a)

Lamperti
et al. (2018a)

Safarzynska
and van den
Bergh (2022)

Czupryna
et al. (2020)

Gerdes et al.
(2022)

Supply Fixed Fixed Fixed Fixed
Regionally

Fixed
Regionally

Differentiation None None None None Global south
adjusts labour
productivity
based on local
pollution and
duration of
employment

Table continues on next page
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DSK DSK-FIN ABMIAM CFHS GRSW

Wages Single market
wage based on
productivity,
price, unem-
ployment

Single market
wage based on
productivity,
price, unem-
ployment

Wages are
fixed, with a
proportional
increase when
demand
exceeds
supply of
labour

Unspecified All firms
adjust wage
based on
change in
price of their
good over
prior 12
months, with
a maximum
adjustment
rate.
Downward
rigid. Mining
employee
wages are
adjusted for
productivity

Other income None None A share of
energy of
energy and
capital rents.
Interest on
deposits.

Dividends
from
shareholdings
in companies

half of firm
profits are
distributed
regionally in
proportion to
their existing
savings.
Excess R&D
funds are
distributed
analogously

Market
Protocol

Not explicit Not explicit Randomly
allocated
workers

Randomly
allocated
within regions

Regional
markets with
random
matching.
Capital and
consumption
goods have a
maximum
amount of
new hires,
and maximum
proportion of
labour that
can be fired.
Mines

Credit & Financing

Reference Lamperti
et al. (2018a)

Lamperti
et al. (2021)
based on Dosi
et al. (2015)

Safarzynska
and van den
Bergh (2017a)

Czupryna
et al. (2020)

Gerdes et al.
(2022)

Table continues on next page
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DSK DSK-FIN ABMIAM CFHS GRSW

Credit
Demand

Desired
investment
net of cash

Desired
investment
net of cash

Desired
investment
net of cash

Desired
investment

Desired
investment
net of cash

External
Finance

Bank loans Bank loans,
and
government
bonds for
government
purchased by
banks

Bank loans Household
investment

Bank loans

Firm
Bankruptcy

Negative
liquid assets
or zero
market share.
Replaced by
firm’s
representing
industry
averages

Negative
liquid assets
or zero
market share

Inability to
pay back
loans, high
market share
firms can
extend loan
payback by
some periods.
Capital goes
to the bank,
which resells
to new
entrants with
fixed
probability

Consumer &
capital firms
go bankrupt if
there is a lack
of demand or
lack of
production
factors. Fuel
extraction
companies go
bankrupt if
all resources
are exhaused.
Ownership
covers the
losses

No
production
for 12 months

Firm Entry Replace
bankrupt firm
by industry
average firm

Replace
bankrupt firm
by industry
average

new firm
enters with
fixed
probability,
offering
random
product
quality with
production
technology
greater than
best current
technology.
Firm
demands
start-up loan
for initial
investments,
successfully
granted with
a fixed
probability.
First period
has a zero
markup price

Unspecified Unspecified

Table continues on next page
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DSK DSK-FIN ABMIAM CFHS GRSW

Credit Supply Pecking-order
based on
net-worth-to-
sales. Upper
bound to
credit based
on
debt-to-sales

Bounded by
each banks’
equity, which
is subject to a
Basel-II
capital rule.
Pecking order
based on
firm’s credit
worthiness

Firm receives
loan if below
exogenous
debt-to-equity
ratio.

Household
decide on
overall
planned
investment
(income net of
consumption)

Unbounded

Interest rate Markup on
central bank
rate

Risk premium
based on
client position
in credit
ranking
(markup is
based on
quartile
within the
banks
clientele)

The same
offer from all
banks, with
electricity
having a
lower interest
rate

No interest.
Firms pay out
profits

Fixed rate

Regulation Maximum
credit set by
credit
multiplier rule

Time-varying
capital
adequacy
ratio

Minimum
level of
reserves held
at central
bank, with
fixed
minimum and
higher
reserves
depending on
deposits

None None

Bank
Bankruptcy

None Equity (net
worth) is
negative

Equity or
reserves are
negative.
Lending
banks write
off the loans
to defaulted
banks

None None

Bank Entry None Bankrupt
bank is bailed
out by the
government.
Bailout up to
a (fraction of
the equity of
the smallest
incumbent)

None None None

Table continues on next page
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DSK DSK-FIN ABMIAM CFHS GRSW

Market
Protocol

Single bank,
pecking-order
credit

Each bank
has a pecking
order process
for its list of
clients

Loans granted
based on
debt-to-equity
ratio. If a
bank has
insufficient
funds to grant
a loan, it asks
other banks
for loans
(order of
liquidity)
until liquidity
requirements
are satisfied

Households
distribute
planned
investment
among
companies
based on their
current
ownership
shares and
value of
companies
planned
capital
increase. If
planned
investment
exceeds
demand,
money is
distributed
back to
owners

All credit
granted if
profit rate is
larger than
interest rate
adjusted for
credit-
lenience

E.2 Energy and Resource Modules

Table E.2 – Overview of the Energy and Resource Module of four Agent-based Integrated Assess-
ment Models

DSK &
DSK-FIN

ABMIAM CFHS GRSW

Reference Lamperti et al.
(2018a)

Safarzynska and
van den Bergh
(2022) based on
Safarzynska and
van den Bergh
(2011);
Safarzynska
(2012)

Czupryna et al.
(2020)

Gerdes et al.
(2022)

Energy Markets

Table continues on next page
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DSK &
DSK-FIN

ABMIAM CFHS GRSW

Primary Energy
Types

representative
fossil fuel,
representative
renewable flow

three fuels: (1)
increasing unit
cost over time,
(2) decreasing
unit costs over
time by
Brownian
motion, (3)
constant price.
Associated with
gas, coal and
renewable energy

Coal, gas, oil,
nuclear, hydro,
wind and solar

N/A

Producer
Heterogeneity

green (renewable)
and brown
(fossil) power
plants with
capital vintage
dependent
cost-structure,
thermal
efficiency,
environmental
impact.
Production
requires only
capital, and fossil
fuel for brown
power plants
(one unit per
unit electricity)

heterogeneous
plants
differentiated by:
age, productivity,
energy source,
installed
capacity,
maximum
lifespan, capacity
factor

Heterogeneous
plants: fuel type,
production
capacity, storage
capacity (solar
and wind),
lifetime, capacity
factor, operation
cost factor,
electricity
transmission loss
factor, thermal
efficiency factor

N/A

Table continues on next page
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DSK &
DSK-FIN

ABMIAM CFHS GRSW

Production
Technology

Production
requires only
capital, and fossil
fuel for brown
power plants
(one unit per
unit electricity)

Cobb-Douglas
function of
capital, labour
and fuel with
plant-specific
TFP inversely
related to
thermal efficiency
increased by
Gaussian every
period and fixed
exponents
(substitution
factors).

Fixed capacities.
Planned
electricity fixed
for nuclear, beta
distribution for
all other types
(maintenance
and weather)
with a shape
proportional to
capacity factors.
Solar has double
capacity in
daytime, and
zero at night.
Maximum supply
augmented by
storage and
reserve rates for
combustion
plants

N/A

Production
Capacity

Unitary per plant Plant-specific
chosen at
creation of plant

Plant-specific N/A

Production Cost price of fossil
fuels in relation
to thermal
efficiency for
brown plants,
zero for green
plants

cost of labour,
fixed operating
costs, fuel costs

operation cost
proportional to
production, plus
labour cost

N/A

Pricing fixed markup on
the marginal
producers cost
(supplier of last
unit)

Inverse demand
function with
markup

Market clearing
in each
sub-period, with
stress factors if
demand ¿
maximal
provision

N/A

Energy Storage No No Yes, for solar and
wind plants

N/A

Final Energy
Types

Electricity Electricity Electricity (Fuel
considered a
direct primary
purchase)

N/A

Market Structure Central authority
activating plants
until demand is
met

Cournot game:
each plant
produces to
maximize profits
given

Time split into
sub-steps
(stochastic
generation
profiles)

N/A

Table continues on next page

254



APPENDIX E. ABIAM MODEL STRUCTURES

DSK &
DSK-FIN

ABMIAM CFHS GRSW

Depreciation All plants have a
fixed lifetime

Plants have a
fixed lifetime

Plants have a
fixed lifetime,
each period
oldest part of
capacity for a
plant is
depreciated.

N/A

Physical
Investment

Cost of new
brown plant is
zero, while new
green plant has
vintage-
dependent fixed
cost. Expansion
is done when
demand exceeds
maximum
production.
Green plants are
preferred as long
as their fixed cost
is less than
present value of
the cost of the
most efficient
brown plant

Once a fixed
lifetime is
reached, a plant
exists and the
owner invests in
a new plant. The
type of fuel is
chosen based on
expected profits
from that fuel. A
new plant
receives a loan to
construct, this
has to be paid
back at the end
of its lifetime

Each period a
share of old
capacity is
replaced by
investment if
maximum
expected demand
cannot be met
post-
depreciation.
Maximal capacity
increases are
bounded from
above. Solar and
wind also invest
in storage if
electricity prices
are volatile.

N/A

Technological
Innovation

Fraction of toal
past sales
invested in R&D,
allocated in
proportion to
revenue
generated.
Nelson and
Winter (1982)
two-step process:
(1) draw for
successful
innovation, (2)
beta-distribution
draw or
proportional
improvement

None - fixed
Cobb-Douglas
exponents

Overnight
investment costs
for solar and
wind decrease to
a specified floor.
Substitution of
electricity for
fuels inreases to
match intra-fuel
substitutability

N/A

Final Demand C-Good and
K-good sectors

C-good market All sectors except
electricity
producers

N/A

Table continues on next page
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DSK &
DSK-FIN

ABMIAM CFHS GRSW

Market Protocol Plants activated
in order of cost
(green first) until
demand is met

Plants choose
production to
maximize profit
based on Cournot
game with linear
inverse demand
function
(coefficient
adapte to
guarantee i).
Factor demands
are based on
marginal
productivity

In each region,
time is in
sub-steps with
half as night (no
solar, low
demand) and half
as day (higher
demand) and
cleared each time
to develop an
average price for
the period.

N/A

Resource Markets

Types of
Resources

Representative
fossil fuel

Three stylized
fuels

Coal, Crude Oil,
Natural Gas

Representative
extracted
resource

Stock and
Extraction

Infinite stock Infinite stock Finite, regional
stocks. Marginal
costs of
extraction follow
Rogner curve.
Planned
production is
adjusted for
regional depletion
rates (easy to
extract first).

Infinite stock

Production
Technology

N/A N/A Capital gives
capacity, fixed
total labour.
Capital adjusted
based on
expected vs.
realized demand.
No innovation.

Leontief
dependent on
labour and
capital

Table continues on next page
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DSK &
DSK-FIN

ABMIAM CFHS GRSW

Price Exogenous
variable

Geometric
Brownian
Motions

Intersection of
supply and
vertical demand
(short-term
inelasticity)

Tatonnement:
Price is adjusted
downward if
strongly lower
sales, and
upward if strong
excess demand.
Bounded from
below by
production costs.
Adoption of a
new price is
successful with a
fixed probability

Market Protocol N/A N/A Centrally cleared
per fuel (coal,
crude, gas).
Supplied at the
marginal
extraction cost,
consumers bid
quantities and
acecpt market
price. If
demand¿planned
supply, the
highest price is
taken and excess
demand
distributed over
suppliers
(assuming below
maximum
extraction). If de-
mand¿max.extraction,
proportional
rationing.

Capital good
firms have
shortlist of
capital firms,
updated every 3
months with 25%
change household
might change
firm to a lower
price one. With
25% chance
household
replaces firm that
didn’t satisfy
demand with
random
alternative. Firm
attempts to buy
equal fraction of
demand from all
sellers, if
unsatified
continues until at
least 95%
satisfied or no
more stock

E.3 Climate Modules
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Table E.3 – Overview of the Implementation of Climate Modules in four Agent-based Integrated
Assessment Models

DSK DSK-FIN ABMIAM CFHS GRSW

Reference
Paper

Lamperti
et al. (2020)

Lamperti
et al. (2019a)

Safarzynska
and van den
Bergh (2022)

Czupryna
et al. (2020)

Gerdes et al.
(2022)

Climate System

Reference
Framework

C-ROADS
model of
Sterman et al.
(2012, 2013).
Similar to
Nordhaus
(1992)

Single-
equation
framework
similar to
Matthews
et al. (2009,
2012)

Nordhaus
(2017)

Petschel-Held
et al. (1999)

Single
equation
framework

Timescale Annual Quarterly
(like model)

Annual Annual Monthly

Pollution
Sources

Consumption
Goods Sector,
Capital
Goods Sector,
and Energy
Sector emit
CO2

Consumption
Goods Sector,
Capital
Goods Sector,
and Energy
Sector emit
CO2

Energy sector
(fuel-specific)
emits CO2

Energy sector
(fuel-specific).
Unclear
Emits CO2

Capital firms
in the global
North emit
CO2. Mines
in the global
South cause
local
Pollution

Table continues on next page
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DSK DSK-FIN ABMIAM CFHS GRSW

Description Two-layer
model with
two loops: (1)
increased
“natural”
primary CO2
production
with CO2
levels, (2)
oceans’
capacity to
uptake carbon
falls with
CO2
concentration
increases.
Radiative
forcing
determines
mean
temperature
increase.

Fixed ratio
for change in
temperature
following
change in
cumulative
emissions

Changes in
atmospheric
carbon
depend on
existing stock
and past
emissions
with a
permanent
and transient
part. Stock of
carbon affects
global mean
temperature
anomaly

T = ω
ln

Et
Epre

ln 2

Three-
equation
carbon cycle.
Cumulative
emissions
increase by
economy,
leading to
increase in
carbon
concentration
(cumulative +
annual
emission -
difference to
prehistoric
values).
Temperature
change is
proportional
to carbon
intensity vs.
prehistoric
and
temperature
vs.
prehistoric.
Regional
temperatures
differ, but
increase by
the same as
global mean
temperature

Emission
increases
monthly, and
decreases as a
fixed
proportion of
initial
concentration.
Local
pollution of
the global
south depends
on mine
production
rate and their
pollution
coefficients

Damage Feedback

Types of
Damage

Capital
stocks, labour
productivity,
inventories,
energy-
efficiency

Labor
productivity,
capital stocks

Consumer
budgets

Agricultural,
Labour,
Natural
Disasters

Capital
stocks, Labor
productivity
of workers in
mines due to
local pollution

Table continues on next page
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DSK DSK-FIN ABMIAM CFHS GRSW

Damage
Distribution

Beta
distribution of
damage
proportion
(uni-modal
right-skewed),
with a mean
increasing in
temperature,
and the right
tail increasing
with
temperature
variability
(higher risk of
extreme
events)

Damage
follows
Nordhaus
(2017)
deterministic
damage
function: a
quadratic
function of
temperature
levels with
two response
parameters

Total damage
proportional
to increase in
temperature(
1 + ζ1T

ζ2
t

)−1

Deterministic
functions.
Agriculture:
literature
estimates for
Europe/Africa/Rest-
of-World.
Labour:
quadratic
function of
temperature
difference to
13◦C.
Natural
disasters:
regional
regression
estimates of
USD bn. loss
per degree
increase in
temperature

Damage
magnitude is
a proportion
of total
capital level,
monthly
number of
disasters
(hits) is a
nonlinear
function of
current
emissions
compared to
the baseline,
parameterized
by an
acceleration
rate.

Damage
Allocation

Each firm is
hit with a
random draw
affecting
capital or
labour
productivity

All firms are
hit by the
aggregate
shock
modified by a
small
Gaussian
noise
parameter

Based on
modification
of Dennig
et al. (2015):
consumption
post damage
is reduced by
consumer-
specific share
of total
damage,
dependent on
the share of
wealth
(through
wealth-
elasticity of
damage)

Agricultural
damages are
reductions in
all CES
coefficients for
Agriculture
sector.
Labour
damages are
reductions to
labour
efficiency of
capi-
tal/consumer
good
companies.
Natural
disasters:
reduce all
firms’ capital,
reduce output
of consumer
and capital
good firms

Each hit hits
a random
firm (capital,
consumption
or mine)
allowing for
multiple hits
per month.
Firms lose
capital
equivalent to
the damage
value. Local
pollution per
mine
decreases the
mine’s
employees
productivity
(from 1 down
to a minimum
of 1/3).
Workers are
replaced every
30 years
(same
employer and
savings)

Table continues on next page
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DSK DSK-FIN ABMIAM CFHS GRSW

Tipping
Points

Implicit due
to higher
probability of
extreme
events

None None Non-linearity
in data, but
no tipping
points

None

E.4 Policy Studies

Table E.4 – Overview of the Policy Experiments of four Agent-based Integrated Assessment Models

DSK DSK-FIN ABMIAM CFHS GRSW

Reference Lamperti
et al. (2018a,
2020)

Lamperti
et al. (2019a,
2021)

Safarzynska
and van den
Bergh (2022)

Czupryna
et al. (2020)

Gerdes et al.
(2022)

Government

Fiscal Policy
(Outflow)

Unemployment
benefits as a
fixed fraction
of current
market wage

Unemployment
benefits as a
fixed fraction
of market
wage. Bank
bailout costs

None None Unemployment
benefits as
80% of mean
regional wage

Budget
Deficits

Taxes on firm
profits

Taxes on firm
incomes and
worker
incomes.
Government
pays interest
on its bonds
to banks and
the central
bank, which
are issued if
deficits are
positive.

None None Taxes on firm
profits

Central Bank

Interest rate fixed baseline
rate

Taylor type
rule with
target
inflation and
unemploy-
ment rate

Fixed rates None Fixed baseline
rate

Table continues on next page
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DSK DSK-FIN ABMIAM CFHS GRSW

Credit
regulation

sets credit
multiplier (on
deposits) to
limit total
debt

Bank specific
credit
multiplier
depending on
risk weighted
assets and
bank equity

Minimum
reserves and
fraction of
deposits.
Critical Debt-
to-equity
value for
loan-granting

None None

Policy Experiments

Fiscal No
Experiments

No
experiments

Carbon Tax
determined
from the
social cost of
carbon in
DICE models,
the formula
proposed by
Rezai and
Van der Ploeg
(2016).
Revenues are
distributed as
equal
lump-sum to
citizens

No
Experiments

Global
civilized
market
institution:
sets base fine
for emissions
(capital firms)
and local
pollution
(mines).
Subsidises
via: (a) no
subsidy, (b)
fines collected
are
redistributed
in region of
collection
based on
firms’ fraction
of total
capacity, (c)
Same as b,
but a share of
global north
funds is
reallocated to
the south, (d)
same as b but
funds are
multiplied by
a government
grant scheme

Monetary No
Experiments

No
Experiments

No
Experiments

No
Experiments

No
Experiments

Table continues on next page
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DSK DSK-FIN ABMIAM CFHS GRSW

Regulation No
Experiments

(1)
Carbon-risk
adjustment:
firms rank in
banks’
pecking order
becomes the
average of
their credit
rank and their
emissions
rank. (2)
Green public
guarantees:
government
backs loans to
green firms
completely.
(3) Green
Basel-II:
exclude loans
to green firms
from the
credit
mutiplier
regulation,
thus
increasing
total credit
supply

No
Experiments

No
Experiments

No
Experiments

Other Exogenous
increases to
fossil fuel
prices
mimicking a
carbon tax /
green
investment
subsidy, and
decreases
mimicking
current fossil
subsidies
(Done in
Lamperti
et al., 2020)

No
experiments

Test carbon
tax when
probability of
a electricity
plant being
renewable is
50%
exogenously
(e.g.
regulation
driven)

No
Experiments

No
Experiments
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Appendix F
The Dynamic Solow Model

F.1 Parameterisation of the Dynamic Solow Model

In this appendix, we examine the model’s parameters and discuss how they affect the
behavior of the dynamical system (7.24) in the phase space.

We begin with equation (7.24b) that describes sentiment dynamics. Parameter β1 defines
the relative importance of the herding and random behaviors of firms. In an unforced
situation (β2 = 0), the number of stable equilibrium points, to which the firms’ sentiment
s converges, doubles at β1 = 1 from one to two. For β1 < 1, random behavior prevails
since there is a single equilibrium at s = 0, meaning firms fail to reach a consensus
opinion. Conversely, for β1 > 1, herding behavior rules as equation (7.24b) generates a
polarized, bi-stable environment with one pessimistic (s < 0) and one optimistic (s > 0)
equilibrium states. It is sensible to assume β1 ∼ 1, otherwise firms would unrealistically
behave either randomly or in perfect synchronicity. We set β1 = 1.1, implying a slight
prevalence of herding over randomness. In addition, we set β2 = 1 to ensure that
analysts’ influence on firms’ managers likewise appears in the leading order.

We now consider the information dynamics in (7.24c). The terms under the hyperbolic
tangent describe the impacts of economic growth and exogenous news on the collective
opinion of analysts h. We assume these two sources of information are of equal impor-
tance. Thus, we expect that γωy = O(1) in the feedback term and we model ξt as an
Ornstein-Uhlenbeck process with an O(1) standard deviation and short decorrelation
timescale τξ. Note that ωy ≪ 1 and accordingly γ ≫ 1.

Finally, we inspect the economic dynamics in (7.24a). In this equation, different terms
determine leading behaviors on separate timescales. We show in F.4 that the last three
terms (with technology growth rate ε estimated on the basis of observed total factor
productivity) are in balance in the long run. However, if we consider short timescales, the
change in sentiment ṡ becomes dominant. Thus, equation (7.24a) can be approximated
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in the short run as ż ∼ ρc1ṡ and we set ρc1 = 1. We also note that by construction
c2 ≪ c1 to ensure that the term c2s does not contribute to capital demand dynamics on
short timescales. Hence we expect c2 ≪ 1.

As highlighted in Section 7.1, there is a segregation of characteristic timescales that
emerges naturally from the types of decisions faced by the different agents in the model:
τξ ≪ τh ≪ τs ≪ τy ≪ 1/ε. This segregation facilitates the transfer of the impact of
instantaneous news shocks ξt across multiple timescales. The estimates for the timescales
are discussed in Section 7.1.

The parameters c2 and γ are central to the system’s behavior in the phase space. In-
creasing c2 stabilizes the system, strengthening convergence towards the stable equilibria
and creating a higher barrier between attracting regions. The role of γ is twofold. As
γ grows from zero, its immediate effect is to destabilize the system due to growing eco-
nomic feedback. However, as γ continues to increase, it exerts a stabilizing effect similar
to that of c2 because of the term γc2 in the equilibrium condition:

arctanh(s)− β1s = β2 tanh (γc2s+ γε) , (F.1)

which follows from equations (7.24) for ḣ = ṡ = ż = ξt = 0. Consequently, the potential
to generate autonomous economic instability is limited. In particular, there exists a
critical value1 of c2 ∼ 10−4 below which feedback may generate a limit cycle and above
which it does not. Figure F.1 depicts the formation and subsequent destruction, for
c2 = 10−4, of the limit cycle as γ increases.

In this paper, we argue that realistic economic behaviors cannot be explained by a
stochastic limit cycle. Therefore, we proceed to study the system for c2 ≳ 10−4, which
ensures a bi-stable configuration without a limit cycle. Figure F.2 illustrates that as c2
increases, the barrier between attracting regions grows stronger, resulting in less frequent
crossings from one region to the other (i.e. cycle duration increases). We seek c2 at the
lower end of this range to reduce cycle duration.

Similarly, the barrier between attracting regions grows stronger as γ increases, resulting
in infrequent transitions between the attractors. Relatively small values of γ, however,
dampen feedback, leading to weak dynamics and stochastic-like behavior. Accordingly,
we focus on values of γ between these two extremes. Figure F.3 depicts the dynamics
under different values of γ, with balanced dynamic behaviors for a reasonably wide range
thereof.

We select c2 = 7×10−4 and γ = 2000 for the base cases studied in Section 7.2. Note that
c2 ≪ 1, γ ≫ 1 and γωy = O(1), as expected. Figure F.4 provides the base case phase
portrait (ξt = 0) projected on the (s, h)−plane, showing attracting regions around the
two stable equilibria as well as long trajectories passing near each attractor and ending
at the opposite equilibrium. These trajectories, which emerge due to strong feedback
(γ ≫ 1), allow the economy to transition quickly between expansions and contractions.

1Subject to the values set for the other parameters.
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Figure F.1 – Development of a stable limit cycle with increasing γ for ξt = 0, c2 = 1 × 10−4

and all other parameter values from the base case (F.2). The left panels show the phase portraits
projected on the (s, z)-plane and the right panels plot s(t). Classification of equilibrium points
is provided in footnote 19 in Section 7.2. As γ increases, a large stable limit cycle emerges and
then vanishes, demonstrating the destabilizing effect of γ at low values and its stabilizing effect at
high values. (i) Stable dynamics for γ = 350: red trajectories converge to the left focus and blue
trajectories converge to the right focus. (ii) The equilibria become unstable and a large stable limit
cycle emerges for γ = 1000. (iii) The left node and the saddle point vanish while the limit cycle
persists at γ = 4000. (iv) The dynamics are again stable at γ = 15000: trajectories converge to the

stable focus and the limit cycle disappears.
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Figure F.2 – The effect of c2 on the dynamics of sentiment s(t) for ξt ̸= 0. As c2 increases from
the base case value c2 = 7 × 10−4 (left) to c2 = 9.5 × 10−4 (right), the barrier separating the two
attracting regions grows stronger. The system spends more time captive to the attractors, reducing
the frequency of the crossings between them and lengthening the duration of fluctuations. Note that
the system tends to stay longer at the expansion attractor (where s > 0) owing to the asymmetry
induced by technological growth ε > 0. All other parameters are from the base case (Table F.1).
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Figure F.3 – The effect of γ on the dynamics of sentiment s(t) for ξt ̸= 0. At low γ, the system’s
behavior is dominated by noise as the barrier between the two attracting regions is weak. As
γ increases, the barrier grows stronger and the system becomes extremely bi-stable. Reasonably
balanced dynamics emerge in the range from γ = 1500 to γ = 2500. Note the asymmetry caused
by technological growth becomes exacerbated as γ increases in accordance with equation (F.1). All

other parameters are from the base case (Table F.1).
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Figure F.4 – System dynamics in the base case (F.2). Left: A phase portrait (ξt = 0) projected
on the (s, h)-plane. The portrait depicts stable foci, separated by a saddle point, and the large
trajectories relevant for regime transitions. Right: A trajectory (ξt ̸= 0) projected on the (s, h)-
plane. The stable foci are at the center of the two attracting regions, within which the trajectory is
dense. The transit of the economy between these regions corresponds to regime transitions between
contractions and expansions, occurring at much shorter intervals than the periods during which
the economy is captive to an attractor. The trajectory was smoothed by a Fourier filter to remove

harmonics with periods less than 500 business days for clean visualization.
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Figure F.5 – The effect of ε on the dynamics of sentiment s(t) for ξt ̸= 0. As ε increases from the
base case value ε = 2.5×10−5 (left) to ε = 7.5×10−5 (right), the system behavior begins to exhibit
a stronger asymmetry between the contraction and expansion attractors. All other parameters are

from the base case (Table F.1).
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The attractors are not connected and the economy cannot cross the boundary separating
them in the absence of exogenous news shocks ξt. It takes a random news event to force
the economy, entrapped by one attractor, across the boundary. Once it crosses the
boundary, the economy finds itself on the long trajectory that takes it swiftly to the
other attractor, where the economy remains captive until another news event instigates
the next regime transition by again forcing the economy across the boundary. At this
point the economy is carried back to the entrapment region where it started. This is the
coherence resonance mechanism that is at the heart of the economic fluctuations in our
model.

As a final comment, we note that if ε = 0, the equilibrium condition (F.1) is symmetric
to s → −s. Technology growth, ε > 0, causes an asymmetry2 wherein the equilibrium
at s > 0 becomes stronger than that at s < 0 (to the extent that the latter vanishes
above a certain threshold). As a result, the system tends to stay longer in the region
where economic sentiment is positive, accelerating the economy’s long-term growth. The
asymmetry, however, vanishes in the limit cycle regime, whether periodic or stochastic
(Section 7.3). Figure F.5 illustrates this asymmetric behavior.

F.2 Model Variables and Parameters

Table F.1 outlines the notation used in the Dynamic Solow Model, highlighting the set of
variables (V), constants (C) and noise (N), as well as the respective constants’ baseline
values.

2Note that γ amplifies the asymmetry via the term γε in equation (F.1).
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Table F.1 – Parameters and Notation of the Dynamic Solow Model

Definition Type Base Case

Production (Section 7.1)
Y Production V -
K Capital in production V -
y Log production V -
k Log capital in production V -
τY Production characteristic timescale (business days) C 1000
A0 Initial technology level C 1
ε Daily technology growth rate C 2.5× 10−5

ρ Capital share in production C 1/3

Capital Supply (Section 7.1)
Ks Capital supply V -
ks Log capital supply V -
λ Proportion of income saved C 0.15
δ Daily depreciation rate C 2× 10−4

Capital Demand (Section 7.1)
Kd Capital demand V -
kd Log capital demand V -
z s Sentiment level V -
h Information level V -
c1 Capital demand sensitivity to ṡ C 3
c2 Capital demand sensitivity to s C 7× 10−4

β1 Sentiment herding factor C 1.1
β2 Sentiment sensitivity to h C 1.0
γ Feedback strength factor C 2000
ξt News shocks E -
τs Sentiment characteristic timescale (business days) C 250
τh Information characteristic timescale (business days) C 25
τξ News shocks characteristic timescale (business days) C 5

Limiting Cases (Section 7.2)
z Production growth indicator V -
ωy ωy = τ−1

y C 0.001

General Case (Section 7.3)
y0 Asymptotic growth rates of y V -
ks0 Asymptotic growth rates of ds V -
kd0 Asymptotic growth rates of kd V -
R Classic Solow growth rate R = ε/(1− ρ) (daily) C 3.75× 10−5

1/ε Technology growth timescale (business days) C 4× 104
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F.3 Approximate Solution to the Supply-Driven Regime

In this appendix, we solve equation (7.22) approximately through use of the boundary
layer technique and obtain the economy’s path in analytic form in the intermediate and
long run under the supply-driven regime (K = Ks).

The starting point of our derivation is equation (7.22), for convenience repeated here:

τY K̈ + (1 + τY δ)K̇ + δK = λKρeεt. (F.2)

Recall that 1 ≪ τY ≪ 1/ε, where τY is the timescale in which output adjusts to changes
in the level of capital and 1/ε is the timescale of output growth in the long run. We
aim to capture the dynamics on these two timescales by solving equation (F.2) on the
interval t ≥ O(τy). For simplicity, we assume that τY δ ≫ 1, which implies that τY δK̇
is much larger than K̇ and τY K̈ on the interval t ≥ O(τy), allowing us to derive a more
compact solution.

First, we consider equation (F.2) for t≫ τy. In this outer region, τyK̇ ≪ K and we can
approximate the solution to (F.2) by the solution to equation:

δKo = λKρ
oe

εt, (F.3)

which is given by

Ko =

(
λ

δ
eεt
) 1

1−ρ

. (F.4)

Next, we consider equation (F.2) on the interval O(τy) ≤ t ≪ 1/ε, where eεt → 1
and τyK̇ is not necessarily substantively smaller than K. In this inner region, we can
approximate the solution to (F.2) by the solution to

τyK̇i +Ki =
λ

δ
Kρ

i . (F.5)

This is the Bernoulli equation and its solution is given by

Ki =

(
Be

−(1−ρ) t
τy +

λ

δ

) 1
1−ρ

, (F.6)

where B is the constant of integration.

Solutions Ko and Ki must match in the overlapping interval τY ≪ t ≪ 1/ε. This is

satisfied for any value of B since Ko →
(
λ
δ

) 1
1−ρ and Ki →

(
λ
δ

) 1
1−ρ , as follows from (F.4)

and (F.6). Thus, we approximate the solution to equation (F.2) in this region by

Km =

(
λ

δ

) 1
1−ρ

. (F.7)
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The approximate solution to equation (F.2) that is uniformly valid for all t ≥ O(τy) is
given by

K = Ki +Ko −Km =

(
λ

δ

) 1
1−ρ

((
Be

−
(

1−ρ
τy

)
t
+ 1

) 1
1−ρ

+ e

(
ε

1−ρ

)
t − 1

)
, (F.8)

where B has been rescaled for convenience.

As a final step, we obtain the solution for output Y by inverting the equation of capital
motion (7.4):

Y =
1

λ

(
K̇ + δK

)
. (F.9)

Note that K̇ ≪ δK on the interval t ≥ O(τY ) due to the simplifying assumption τY δ ≫ 1.
Therefore, the corresponding uniform approximation for output Y , valid for all t ≥
O(τY ), is given by

Y =

(
λ

δ

) ρ
1−ρ

((
Be

−
(

1−ρ
τy

)
t
+ 1

) 1
1−ρ

+ e

(
ε

1−ρ

)
t − 1

)
. (F.10)

F.4 Asymptotic Analysis of Long-Term Growth

In this appendix, we study the behavior of the Dynamic Solow model in the long run by
seeking y ∼ y0t, kd ∼ kd0t and ks ∼ ks0t in equations (7.27)-(7.33) at large values of t.

Asymptotic Behavior in the Supply-Driven Regime (kd > ks)

We first consider the situation where capital demand exceeds supply, which entails k = ks
under the market clearing condition (7.32), and obtain the resulting growth rates.

For t≫ 1, the production equation (7.27) becomes

e(ρks0+ε−y0)t − 1 = τyy0. (F.11)

Consequently, (ρks0 + ε− y0)t must be constant, which in turn implies that

y0 = ρks0 + ε, (F.12)

with a precision of up to O(1/t). Similarly, capital supply equation (7.28) yields

ks0 = λe(y0−ks0)t − δ, (F.13)

so that (y0 − ks0)t is constant and, therefore, with a precision of up to O(1/t):

ks0 = y0. (F.14)
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It follows from equations F.12 and F.14 that

y0 = ks0 =
ε

1− ρ
≡ R, (F.15)

where R denotes the classic Solow growth rate.3

To determine the growth rate of capital demand kd0, we average equation (7.29) with
respect to time, noting that ¯̇s = 0 since s is bounded:

kd0 = c2s̄, (F.16)

where the bar denotes the time average.

Then we average equation (7.31) while noting that
¯̇
h = 0 since h is bounded and that

H(ks, kd) = 0 from (7.26) (no feedback) to obtain

h̄ = tanh (ξt) = tanh
(
ξt
)
= 0, (F.17)

where we have assumed that fluctuations are small to allow us to take averages under
the hyperbolic tangent4. Similarly averaging equation (7.30) leads to

s̄ = tanh (β1s+ β2h) = tanh (β1s̄) . (F.18)

Equation (F.18) has three solutions for β1 > 1: s = 0, s− < 0, and s+ > 0, where
s− = −s+. Our focus is on s− and s+ as they correspond to the stable equilibrium
points5. The system spends most of its time in the attracting regions that surround
each of these two equilibria and transits rapidly between them when forced by exogenous
noise. In the long run, the time spent in transit is negligible relative to the length of
time during which the system is entrapped by the attractors. The attractors have the
same strength and are located symmetrically in s, thus the system tends to spend an
equal amount of time at each of them at large t. Therefore, its average position with
respect to sentiment s must be zero. More formally, taking s− and s+ as the attractors’
proxies, we estimate the long-term average sentiment as

s̄ =
1

2
(s− + s+) = 0. (F.19)

Hence equation (F.16) yields
kd0 = 0. (F.20)

This result is intuitively clear: the growth of demand is driven in the long run by
average sentiment, which converges to zero because its dynamics are symmetric in the
absence of feedback. We conclude that in the supply-driven regime the economy’s growth
is, as expected, independent of capital demand and matches the classic Solow growth,
y0 = ks0 = R, while capital demand is stagnating (kd0 = 0). We verify these results via
numerical simulations in Section 7.3.

3This same result also follows from equation (7.23) for t≥O(1/ε).
4This simplifying assumption does not severely restrict applicability as tanhx is approximated rea-

sonably well by a linear function for −1≤x≤1 and the noise amplitude is O(1) in (F.17).
5For the base case value β1 = 1.1, we have s± ≈ ±0.5 from (F.18).
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Asymptotic Behavior in the Demand-Driven Regime (kd < ks)

In the demand-driven regime, the market clearing condition (7.32) yields k = kd, so that
equation (7.27) becomes

e(ρkd0+ε−y0)t − 1 = τyy0. (F.21)

Consequently,
y0 = ρkd0 + ε, (F.22)

with a precision of up to O(1/t). Similarly, equation (7.28) takes the form:

ks0 = λe(y0−ks0)t − δekd−ks . (F.23)

The term δekd−ks can be neglected as it is exponentially small for kd < ks; therefore,
with a precision of up to O(1/t):

y0 = ks0. (F.24)

And finally, averaging equation (7.29) leads to

kd0 = c2s̄. (F.25)

We can rewrite equations (F.22) and (F.24) as

y0 = ks0 = R+ ρ (kd0 −R) . (F.26)

It follows that if s̄ > R
c2
, then the economy’s long-term growth exceeds the classic Solow

growth rate R. For the base case values of c2, ε and ρ in our model, we find s̄ > 0.05.

To estimate s̄, we must consider three types of characteristic behavior possible in
the demand-driven regime: noise-driven, limit cycle and coherence resonance behav-
ior. Noise-driven behavior prevails when feedback is weak. This situation is, in its limit,
equivalent to that of the supply-driven regime in which sentiment behaves symmetrically
with respect to the origin. Therefore, s̄ → 0. Thus, the noise-driven mode generates
growth y0 → ε, which is lower than R.

The growth in the two other modes is studied numerically in Section 7.3. For complete-
ness, we briefly note, first, limit cycles (periodic or stochastic) lead to s̄→ 0 and y0 → ε
(as the economy tends to spend a half of its time in the region where s > 0 and the other
half where s < 0) and, second, coherence resonance yields s̄ > 0.05 and y0 > R, owing
to the attractors’ asymmetry caused by technological growth (ε > 0) in the presence of
economic feedback (γ > 0).

As a final remark, it follows from (F.22) that, asymptotically, z ∼ z0t ∼ (ρkd0+ε−y0)t ∼
O(1). The system’s motion is therefore bounded in z. Its motion is likewise bounded in
s and h, which vary between -1 and 1, as, at the boundaries, ṡ and ḣ are directed into
the domain of motion as follows, respectively, from equations (7.30) and (7.31). Thus,
the system’s phase trajectories are bounded in the (s, h, z)-space.
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Appendix G
The Self-Reflexive DSGE Model

G.1 Table of Parameters

Description Definition Value(s)

Variables
ct Real consumption Eq. (8.1)
nt Labour Eq. (8.1)
Gt Propensity to consume from Income Eq. (8.31) [Gmin, Gmax]
It Income in period t Eq. (8.2)
wt Real wage Eq. (8.12)
bt Real income from one-period bond

purchased in t
Eq. (8.7)

kt Real capital Eq. (8.6)
qt Realised yield on capital Eq. (8.6) [0, q⋆t ]
it Real value of total investment Eq. (8.5) (1−Gt)It
Ft Allocation of investment to capital Eq. (8.36) [Fmin, Fmax]
zt Total factor productivity (TFP) Eq. (8.9) [0,∞)
q⋆t Ideal capital returns Eq. (8.13)
ξ Investment risk process Eq. (8.27) [0, 1]
µq
t Estimated expected return Eq. (8.32)
σq
t Estimated investment volatility Eq. (8.33)

St Estimated Sharpe ratio Eq. (8.34)
Ct Consumption confidence Eq. (8.30) [-1, 1]
Σt Unbounded sentiment Eq. (8.35)

Studied Parameters
δ Depreciation rate Eq. (8.6) 0.001,0.005,0.02
a Investment risk multiplier Eq. (8.28) 15
c0 Consumption confidence threshold Eq. (8.30) [0, 0.025]
λ Memory kernel for the Sharpe ratio Eq. (8.32) 0.607, 0.905, 0.951, 0.98
ν Interpolation between St and Ct Eq. (8.35) 0.75, 1.0
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Fixed Parameters
γ Disutility of labour Eq. (8.1) 1
πt Inflation rate Eq. (8.2) 0.1%
rt Real interest rate Eq. (8.2) 0.15%
pt Price level Eq. (8.2) 1
α Capital share in production Eq. (8.8) 1/3
1/(1 + ρ) Elasticity of substitution k vs. n Eq. (8.8) -7
z0 Baseline value of the total factor pro-

ductivity
Eq. (8.9) 0.05

η Autocorrelation of total factor produc-
tivity

Eq. (8.9) 0.5

θc Consumption rate transition width Eq. (8.30) 300
Gmin Minimum consumption rate Eq. (8.31) 0.05
Gmax Maximum consumption rate Eq. (8.31) 0.95
N Scaling factor for the Sharpe ratio St Eq. (8.34) 1/4
Fmin Minimum capital allocation Eq. (8.36) 0.0
Fmax Maximum capital allocation Eq. (8.36) 1.0
θk Allocation transition width Eq. (8.36) 15

Additional Parameters
Ξk Weighted proportion of time when

kt < nt

Eq. (8.38) [0, 1]

Ξc Weighted proportion of time when ct <
c0

Eq. (8.37) [0, 1]

[Lk,Hk] Low/High frequency Ξk Sec. 8.2
[Lc,Hc] Low/High frequency Ξc Sec. 8.2
Tλ Timescale of allocation St Sec. 8.1 1/|log(λ)|
Tη Timescale of TFP shock zt Sec. 8.1 1/|log(η)|
Tδ Timescale of capital kt Sec. 8.1 1/|log(1− δ)|
T< Average duration of consumption

crises
Sec. 8.2

T> Average duration of high output peri-
ods

Sec. 8.2

Table G.1 – Parameters and Notation of the Adapted DSGE model
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H.1. TABLE OF PARAMETERS

H.1 Table of Parameters

Table H.1 – Inactive Central Bank parameter set for Mark-0 Model (see Section 9.3). Parameters,
which change for the Reactive Central Bank and Anchored/Floating Trust scenarios, can be taken
from sections 9.5 and 9.5 respectively and are indicated in the table with a star. All rates are given

in monthly time scales.

Parameter description Value

R0 Ratio of hiring-firing rate (η+/η−): 2.0
Θ Maximum credit supply available to firms : 3.2
Γ0 Financial Fragility sensitivity: 0.0
ρ⋆ Baseline interest rate: 0.001*
αc Influence of deposit rates on consumption 12
ϕπ Intensity of interest rate policy of Central Bank: 0.0*
π∗ Central Bank inflation target: 0.0*
τT Inflation target parameter: 0.0*
gw Factor to adjust wages to inflation expectations: 0.8
gp Factor to adjust prices to inflation expectations: 0.8
y0 Initial production: 0.7
γp Parameter to set adjustment of prices: 0.01
η−0 Firing propensity: 0.2
αΓ Influence of loans interest rate on hiring-firing policy: 450
c0 Fraction of savings in consumption budget: 0.5
ϕ Revival probability per unit time: 0.1
ω Moving average parameter: 0.2
δ Dividend rate: 0.02
δe Fraction of energy sector’s equity redistributed: 0.04
ge Share of Energy Price share in GDP: 0.0325
µ Easy-Credit policy multiplier: 1.3
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H.2 Counterfactual Simulations
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Figure H.1 – Economic dashboard for the Inactive Central Bank scenario without any policy and
with a stronger COVID shock: The dynamics for a COVID shock strength of κ = 1.0 (blue), κ = 1.1
(orange) and κ = 1.2 (green) in the Inactive Central Bank scenario without any policy. Once the

COVID shock gets too strong, the economy collapses in the long run.
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H.3 Monetary Policy

0

2500

5000

7500

10000

12500

15000
Total Output, 〈 Y 〉

0%

2%

4%

6%

8%

10%
Unemployment, u

0.0%

10.0%

20.0%

30.0%
Inflation Rate, π (annual)

5000

10000

15000

20000

25000

30000
Savings, S

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Fragility, Φ

0.60%

0.80%

1.00%

1.20%

1.40%

1.60%

1.80%
Central Bank Interest, ρ0 (annual)

Feb-20 Feb-22 Feb-24 Feb-26 Feb-28
0.94

0.96

0.98

1.00

Real Wages, 〈 W 〉

Feb-20 Feb-22 Feb-24 Feb-26 Feb-28
9000

10000

11000

12000

13000

14000

Consumption Budget, CB

Feb-20 Feb-22 Feb-24 Feb-26 Feb-28
0.0

0.2

0.4

0.6

0.8

1.0
Expectation Anchor, τT

0.0%

0.5%

1.0%
Bankruptcy Rate

0.9

1.0

1.1
Demand
Output

Inactive CB, COVID, easy-credit Inactive CB, COVID + Supply, easy-credit Inactive CB, All Shocks, easy-credit

Figure H.2 – Dynamics for the three shocks for the Inactive Central Bank scenario: The dynamics
for the three shocks, COVID only (blue), COVID and Supply Chain shock (orange) and all shocks
(green) for the Inactive Central Bank scenario with Easy-Credit policy. The areas shaded in grey
indicate the duration of the three shocks: the COVID shock lasting until the end of the dark grey
area, the supply chain shock until the end of the grey area, and the price shock until the end of the

light grey area.
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Figure H.3 – Dynamics for the three shocks for the Reactive Central Bank with Anchored Trust
scenario: The dynamics for the three shocks, COVID only (blue), COVID and Supply Chain shock
(orange) and all shocks (green) to the scenario with reactive Central Bank and Anchored Trust of
economic agents with an Easy-Credit policy. The areas shaded in grey indicate the duration of the
three shocks: the COVID shock lasting until the end of the dark grey area, the supply chain shock

until the end of the grey area, and the price shock until the end of the light grey area.
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Figure H.4 – Dynamics for the three shocks for the Reactive Central Bank with Floating Trust
scenario: The dynamics for the three shocks, COVID only (blue), COVID and Supply Chain shock
(orange) and all shocks (green) to the scenario with reactive Central Bank and Floating Trust of
economic agents with an Easy-Credit policy. The areas shaded in grey indicate the duration of the
three shocks: the COVID shock lasting until the end of the dark grey area, the supply chain shock

until the end of the grey area, and the price shock until the end of the light grey area.
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Figure H.5 – Dynamics for all scenarios and all shocks: The full dashboard for Figure 9.6 All
dynamics are with Easy-Credit policy in the Inactive Central Bank scenario (blue), Reactive Central
Bank with Anchored trust scenario (orange) and Reactive Central Bank with Floating Trust scenario
(green). The areas shaded in grey indicate the duration of the three shocks: the COVID shock
lasting until the end of the dark grey area, the supply chain shock until the end of the grey area,

and the price shock until the end of the light grey area.
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H.4 The Effect of Anchoring
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Figure H.6 – Dynamics for all shocks: All dynamics are with Easy-Credit policy in the Inactive
Central Bank scenario (blue), Reactive Central Bank with Anchored trust scenario (orange dash)
and Reactive Central Bank with no trust scenario (red dot dash). The areas shaded in grey indicate
the duration of the three shocks: the COVID shock lasting until the end of the dark grey area, the
supply chain shock until the end of the grey area, and the price shock until the end of the light grey

area.
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H.5 Monetary Policy with Stronger Central Bank Reaction
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Figure H.7 – Economic dashboard for the stronger Reactive Central Bank with Anchored Trust
scenario and all shocks: The dynamics for a Central Bank strength of ϕπ = 1.0 (blue) and ϕπ = 2.0
(orange). A stronger central bank is not able to decrease inflation due to an external price shock,
but with stronger policies, the consumption of households reduces, which leads to an increase in

unemployment.
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Figure H.8 – Economic dashboard for the stronger Reactive Central Bank with Floating Trust
scenario and all shocks: The dynamics for a Central Bank strength of ϕπ = 1.0 (blue) and ϕπ = 2.0
(orange) with Floating Trust of economic agents. A stronger Central bank can reduce excess
inflation at the cost of increased unemployment. The central bank must maintain a balance between

falling inflation and rising unemployment.

H.6 Sensitivity of Monetary Policy to αc and αΓ
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Figure H.9 – Sensitivity of αc for the Reactive Central Bank with Anchored Trust scenario and
all shocks: As already described in Gualdi et al. (2017), larger αc lead to a greater magnification
of price trends (cet. par.). This amplification, in turn, causes the fluctuations in unemployment
and inflation. Furthermore, larger αc increases consumption which reduces unemployment due to

higher demand.
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Figure H.10 – Sensitivity of αΓ for the Reactive Central Bank with Anchored Trust scenario and
all shocks: Larger values of αΓ increases the influence of financial fragility on the hiring/firing policy
of firms (cet. par.). This in turn leads to a larger downward adjustment of the workforce which

increases unemployment.

H.7 Helicopter Money
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Figure H.11 – Helicopter Money in the Inactive Central Bank scenario and all shocks: Unemploy-
ment (left) and inflation (right) for a helicopter drop of size κHS one month after the price shock.
Already with κH ≥ 0.2 unemployment is reduced almost to zero. A further increase of Helicopter

Money only increases inflation without reducing unemployment more.
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Figure H.12 – Helicopter Money in the Reactive Central Bank with Anchored Trust scenario:
Unemployment (left) and inflation (right) for a helicopter drop of size κHS one month after the
price shock. With κH ≥ 0.3 unemployment is reduced almost to zero. A further increase of
Helicopter Money only increases inflation without reducing unemployment further. However, the

Central Bank policy manages to keep inflation under control.
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Figure H.13 – Economic dashboard for Helicopter Money in the Inactive Central Bank scenario
and all shocks: Full dynamics for scenario without Helicopter Money (blue), for Helicopter Money
with κH = 0.2 (orange) and κH = 0.6 (green) one month after the price shock and with Easy-Credit

policy.
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Figure H.14 – Economic dashboard for Helicopter Money in the Reactive Central Bank with
Anchored Trust scenario and all shocks: Full dynamics for scenario without Helicopter Money
(blue), for Helicopter Money with κH = 0.3 (orange) and κH = 0.6 (green) one month after the

price shock and with Easy-Credit policy.
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Figure H.15 – Economic dashboard for Helicopter Money in the Reactive Central Bank with
Floating Trust and all shocks: Full dynamics for scenario without Helicopter Money (blue), for
Helicopter Money with κH = 0.2 (orange) and κH = 0.6 (green) one month after the price shock

and with Easy-Credit policy.

291



H.8. WINDFALL TAX

H.8 Windfall Tax
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Figure H.16 – Windfall Tax in the Inactive Central Bank scenario: Unemployment (left) and
inflation (right) for Windfall Tax of δe + ∆δe one year before the end of the price shock with a
duration of two years. With ∆δe ≈ 4% unemployment is reduced strongly. A further increase of tax
does only increase unemployment again. For larger dividends, inflation increases because increased

demand due to increased savings.
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Figure H.17 – Windfall Tax in the Reactive CB with Anchored Trust scenario: Unemployment
(left) and inflation (right) for Windfall Tax of ∆δe one year before the end of the price shock with
a duration of two years. With ∆δe ≈ 6% unemployment is reduced strongly. A further increase of

∆δe leads to a significant resurgence of unemployment.
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Figure H.18 – Economic dashboard for Windfall Tax in the Inactive Central Bank scenario, all
shocks: Full dynamics for the Inactive Central Bank scenario without Windfall Tax (blue), for tax
of ∆δe = 6% (orange) and ∆δe = 12% (green) one year before the end of the price shock with a

duration of two years.
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Figure H.19 – Economic dashboard for Windfall Tax in the Reactive Central Bank with Anchored
Trust scenario and all shocks: Full dynamics for scenario without Windfall Tax (blue), for tax of
∆δe = 6% (orange) and ∆δe = 12% (green) one year before the end of the price shock with a

duration of two years.
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Figure H.20 – Economic dashboard for Windfall Tax in the Reactive Central Bank with Floating
Trust scenario and all shocks: Full dynamics for scenario without Windfall Tax (blue), for tax of
∆δe = 6% (orange) and ∆δe = 12% (green) one year before the end of the price shock with a

duration of two years.

H.9 Sloppiness

To assess the sensitivity of the model’s realisation we here follow the approach introduced in
Part I of this thesis, with the MSE loss function. The eigenvalue spectrum spans several decades
(Figure H.21), which indicates the sloppiness of the model at that set of parameters. Based on
the spectrum, we select the four largest eigenvectors to consider for our analysis (see Figures
H.22, H.23, H.24).
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Figure H.21 – Eigenvalue Spectrum for three scenarios and all shocks. Sloppiness parameter
ϵ = 0.01, nseeds = 50 target variable inflation (red) unemployment (blue), (a,b) Inactive Central
Bank, (c,d) Reactive Central Bank with Anchored Trust, (e,f) Reactive Central Bank with Floating

Trust.
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Figure H.22 – Eigenvectors of the Hessian matrix for the Inactive Central Bank Scenario and all
shocks: The length of the eigenvectors is normed to 1 and the colors indicate the target variables,

unemployment (blue) and inflation (red).
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Figure H.23 – Eigenvectors of the Hessian matrix for the Reactive Central Bank with Anchored
Trust scenario and all shocks: The length of the eigenvectors is normed to 1 and the colors indicate

the target variables, unemployment (blue) and inflation (red).
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Figure H.24 – Eigenvectors of the Hessian matrix for the Reactive Central Bank with Floating
Trust scenario and all shocks: The length of the eigenvectors is normed to 1 and the colors indicate

the target variables, unemployment (blue) and inflation (red).

H.10 Sensitivity to the Indexation Parameters gp and gw

Feb-20 Feb-22 Feb-24 Feb-26 Feb-28
0%

10%

20%

Unemployment, u

Feb-20 Feb-22 Feb-24 Feb-26 Feb-28

0%

5%

10%

15%
Inflation Rate, π (annual)

gp = gw = 0.8 gp = gw = 1.0 gp = gw = 1.2

Figure H.25 – Sensitivity of gp = gw = const for the Reactive Central Bank with Anchored Trust
scenario and all shocks: Increasing gp = gw increases slightly inflation (cet. par.), causing slightly
higher interest rates which leads to a reduction of consumption budget that reduces demand and

therefore increases unemployment.
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Figure H.26 – Sensitivity of
gp+gw

2
= const for the reactive Central Bank with Anchored Trust

scenario and all shocks: (blue) When gw > gw, there is a higher bargaining power of worker which
increases wages (cet. par.), therefore there is a higher consumption budget and higher demand
which decreases unemployment. (yellow) For larger market power (gp > gw), there is the reverse
effect of decreased wages causing a decrease in consumption budget and demand which therefore

increases unemployment.
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Titre: Génération et Exploration de Scénarios dans des Modèles Économiques Multi-Agents

Mots clés: Macroéconomie; Agent-based Models; Économie de la complexité

Résumé: L’économie, caractérisée par la non-linéarité,
l’adaptabilité et la dynamique hors équilibre, présente
des phénomènes émergents tels que des crises et des
inégalités, façonnés par les réactions des agents et les
politiques publiques. L’utilisation de modéles multi-agents
(ABM) est une approche récente en macroéconomie qui
génère ces phénomènes en simulant une multiplicité
d’agents hétérogènes en interaction. Bien que cette
méthode puisse mener à des phénomènes émergents,
elle a souvent été critiquée comme étant une boı̂te
noire où les mécanismes de causalité ne sont pas clairs
et où il existe un ensemble trop vaste de dynamiques
générées. Cette thèse propose une méthode pour abor-
der la question fondamentale : Quel est l’ensemble
de phénomènes qualitativement différents qu’un Modèle
Multi-Agent Macroeconomique (MABM) peut générer, et
qu’est-ce qui régit leurs transitions ?
S’inspirant de la recherche en biophysique, l’idée centrale
postule qu’il n’y a que quelques combinaisons critiques de
paramètres qui gouvernent un résultat spécifique. En ex-
ploitant ces combinaisons avec un algorithme de montée
en gradient, on peut efficacement découvrir l’ensemble de
phénomènes différents qu’un MABM peut présenter. La
pertinence de cette approche réside dans le fait de rev-
eler d’une structure plus simple sous la complexité du

MABM, ouvrant la voie à des politiques efficaces qui abor-
dent les directions critiques des paramètres. Cela suggère
également que malgré la complexité d’un MABM et le
nombre élevé de paramètres, l’ajustement de ces modèles
ne nécessite que l’ajustement des directions critiques pour
avoir un pouvoir prédictif.
La première partie de cette thèse développe les méthodes
sous-jascentes à l’algorithme, mettant en évidence son
efficacité sur les “Fourmis de Kirman”, un modèle sim-
ple de comportement des agents. L’algorithme est en-
suite démontré sur le MABM stylisé Mark-0 qui présente
une phénoménologie riche avec un ensemble connu
de phénomènes. Je montre comment nous pouvons
récupérer cet ensemble de phénomènes malgré la com-
plexité de la dynamique du modèle. La dernière par-
tie de cette thèse adopte en fait une approche in-
verse, intégrant des interactions inter-agents dans des
modèles macroéconomiques d’équilibre, dévoilant des
phases émergentes et des crises endogènes dans ces
modèles. En bref, cette thèse navigue dans le ter-
rain complexe des ABMs, dévoilant leur potentiel dans la
génération de différents scénarios qui peuvent être utilisés
pour éclairer les politiques publiques dans des systèmes
dynamiquement complexes.

Title: Scenario Discovery in a Complex Economy: Exploring the Parameter space of Agent-based Models

Keywords: Macroeconomics; Agent-based Models; Complexity Economics

Abstract: The economy, characterized by non-linearity,
adaptability, and non-equilibrium dynamics, exhibits emer-
gent phenomena, such as crises and inequalities, shaped
by agents’ reactions and policy interventions. Agent-
based Modeling (ABM) is a recent modeling approach in
macroeconomics that generates these phenomena from
the ground up by simulating a multiplicity of heteroge-
neous interacting agents. While this method can gener-
ate emergent phenomena, it has often been critiqued as
a black-box where causal mechanisms are unclear and
there too vast set of generated dynamics. This thesis pro-
poses a method to approach the fundamental question:
What is the set of qualitatively different phenomena can
an Macroeconomic Agent-based Model (MABM) generate,
and what governs their transitions?
Drawing on research in biophysics, the core idea posits
that there are only a few critical parameter combinations
that govern a specific outcome. Exploiting these with a
gradient ascent algorithm, one can effectively uncover the
set of different phenomena a MABM can recover. The sig-
nificance of this approach lies in revealing a simpler struc-

ture beneath MABM complexity, paving the way for effec-
tive policies that address critical parameter directions. It
also suggests that despite the complexity of an MABM
and the high number of parameters, fitting these models
requires only fitting critical directions to have predictive
power.
The first part of this thesis develops the methods behind
the algorithm, highlighting its power on Kirman’s Ants, a
simple model of agent-herding. The algorithm is then
demonstrated on the stylized Mark-0 MABM that has a
rich phenomenology with a known set of phenomena. I
show how we can recover this set of phenomena despite
the complexity of the model’s dynamics. The final part
of this thesis actually adopts a reverse approach, em-
bedding intra-agent interactions in equilibrium macroeco-
nomic models, unveiling emergent phases and endoge-
nous crises in these models. In its essence, this thesis
navigates the intricate terrain of ABMs, unraveling their po-
tential in generating different scenarios that can be used to
inform policy decisions in dynamically complex systems.
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