
HAL Id: tel-04648958
https://theses.hal.science/tel-04648958v1

Submitted on 15 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Détection des éléments générés automatiquement
Contenu académique

Vijini Pilana Liyanage

To cite this version:
Vijini Pilana Liyanage. Détection des éléments générés automatiquement Contenu académique. Com-
puter science. Université Paris-Nord - Paris XIII, 2024. English. �NNT : 2024PA131014�. �tel-
04648958�

https://theses.hal.science/tel-04648958v1
https://hal.archives-ouvertes.fr


UNIVERSITÉ PARIS XIII - SORBONNE PARIS NORD

École Doctorale Galilée
Laboratoire d’Informatique de Paris Nord

Detection of Automatically Generated
Academic Content

Doctoral thesis

Defended by

Vijini LIYANAGE

For obtaining the degree of

Doctor in Computer Science

Defend on 16/05/2024 before the jury composed of:

Cyril LABBÉ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Rapporteur
Didier SCHWAB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Rapporteur
Karen FÖRT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Examiner
Adeline NAZARENKO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thesis Director
Davide BUSCALDI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thesis co-supervisor





I would like to dedicate this thesis to my loving husband . . .

ii Vijini Liyanage





I hereby declare that except where specific reference is made to the work of others, the
contents of this dissertation are original and have not been submitted in whole or in part

for consideration for any other degree or qualification in this, or any other university.
This dissertation is my own work and contains nothing which is the outcome of work

done in collaboration with others, except as specified in the text and Acknowledgements.

Vijini Liyanage iii





Acknowledgement

First of all, I would like to thank my esteemed supervisors Prof. Davide Buscaldi and
Prof. Adeline Nazerenko for their invaluable supervision, support and tutelage during
the course of my PhD degree. Especially prof. Davide should be further appreciated
for the immense assistance he has provided us from day one in France, not only for
my PhD, but also in building our lives in Paris. I also could not have undertaken this
journey without my defense committee, who generously provided knowledge and expertise.
Additionally, this endeavor would not have been possible without the generous support
from the Institute of Technology at University Sorbonne Paris Nord and its staff. Moreover
I would like to express my gratitude to all the colleagues of Laboratoire d’Informatique
de Paris Nord for a cherished time spent together in the lab, and in social settings.

I would be remiss to not mention my family, especially I am so grateful to my hus-
band, Mr. Ruchira Jayathunga, for all the sacrifices he made in keeping my spirits and
motivation high during this process. Without his support this would have only been a
dream. I would also like to thank my parents for believing in me and helping me which
were crucial in making me what I am today. Moreover, I would like to extend my grat-
itude to my parents in law, our brothers and our friends for the immense support they
have provided throughout this journey. I would also like to thank my three dogs for all
the entertainment and emotional support. Furthermore, I cannot forget my grandmother
who took care of me in my childhood. I am grateful to her as well.

Moreover, I would like to thank all the teachers and lecturers who have guided me up
to this day, in shaping me for what I am today. I would like to thankfully mention Sacred
Heart Convent pre-school, Southlands College, University of Moratuwa and University
Sorbonne Paris Nord for being the pillars in providing me all the opportunities to become
what I am today. Last but not least I would like to mention my sincere gratitude to all
the beautiful people in Sri Lanka and France with whom tax money my education was
financed since primary school.

iv Vijini Liyanage





Abstract

The emergence of State of the art (SOTA) deep learning models have paved the way
for massive improvements in the field of Natural Language Processing (NLP). Especially,
when it comes to Natural Language Generation, latest models such as GPT-4 are capable
enough to produce text that looks as if they are written by a human. This is beneficial
for humans in composing text. But on the other hand, such technologies can be leveraged
for malicious tasks. Principally when focused on the academic domain, these tools can be
involved in article generation, plagiarism etc. Thus it is vital to distinguish automatically
generated text from human written content. Detection of machine generated text has won
the attention of many researchers. But regarding the detection of automatically generated
academic content, only a few researches are concentrated on the task. Thus there is
a demanding requirement in building models/ technologies that supports in detecting
automatically generated academic text.

In this thesis, we have focused our interest on identifying technologies /methodologies
in detecting artificially generated academic content. The principal contributions of this
thesis are threefold. First, we built several corpora that are composed of machine gener-
ated academic text. In this task we utilized several latest NLG models for the generation
task. These corpora contain contents that are fully generated as well as contents that
are composed in a hybrid manner (with human intervention). Then, we employed several
statistical as well as deep learning models for the detection of generated contents from
original (human written) content. In this scenario, we considered detection as a binary
classification task. Thus several SOTA classification models were employed. The mod-
els were improved or modified using ensembling techniques to gain higher accuracies in
detection. Moreover, we made use of several latest detection tools to identify their capa-
bility in distinguishing machine generated text. Finally, the generated corpora were tested
against knowledge bases to find any mismatches that could help to improve the detection
task. The results of this thesis underline the importance of mimicking human behavior
in leveraging the generation models as well of using realistic and challenging corpora in
future research aimed at detecting artificially generated text. Finally, we would like to

v



highlight the fact that no matter how advanced the technology is, it is always crucial to
concentrate on the ethical aspect of making use of such technology.

Keywords : Natural Language Generation, Automatically Generated text, Detection,
Classification, Knowledge bases

vi Vijini Liyanage



Résumé

L’émergence de modèles d’apprentissage profond (State of the art, SOTA) a ouvert
la voie à des améliorations massives dans le domaine du traitement du langage naturel
(NLP). En particulier, en ce qui concerne la génération de langage naturel, les modèles
les plus récents, tels que GPT-4, sont capables de produire des textes qui ont l’air d’avoir
été écrits par un être humain. C’est un avantage pour les humains lorsqu’ils composent
des textes. Mais d’un autre côté, ces technologies peuvent être utilisées à des fins malveil-
lantes. Principalement dans le domaine universitaire, ces outils peuvent être utilisés pour
la création d’articles, le plagiat, etc. Il est donc essentiel de distinguer le texte généré
automatiquement du contenu écrit par l’homme. La détection des textes générés par
des machines a attiré l’attention de nombreux chercheurs. Cependant, seules quelques
recherches se sont concentrées sur la détection du contenu académique généré automa-
tiquement. Il est donc nécessaire d’élaborer des modèles/technologies qui permettent de
détecter les textes académiques générés automatiquement.

Dans cette thèse, nous nous sommes intéressés à l’identification des technolo-
gies/méthodologies permettant de détecter les contenus académiques générés artificielle-
ment. Les principales contributions de cette thèse sont triples. Premièrement, nous avons
construit plusieurs corpus composés de textes académiques générés par des machines.
Dans cette tâche, nous avons utilisé plusieurs modèles NLG récents pour la tâche de
génération. Ces corpus contiennent des contenus entièrement générés ainsi que des con-
tenus composés de manière hybride (avec intervention humaine). Ensuite, nous avons
utilisé plusieurs modèles statistiques ainsi que des modèles d’apprentissage profond pour
la détection des contenus générés à partir du contenu original (écrit par l’homme). Dans
ce scénario, nous avons considéré la détection comme une tâche de classification binaire.
Plusieurs modèles de classification SOTA ont donc été utilisés. Les modèles ont été
améliorés ou modifiés à l’aide de techniques d’assemblage afin d’obtenir une plus grande
précision dans la détection. En outre, nous avons utilisé plusieurs outils de détection
récents afin d’identifier leur capacité à distinguer les textes générés par des machines.
Enfin, les corpus générés ont été testés par rapport à des bases de connaissances afin de

vii



détecter toute inadéquation susceptible d’améliorer la tâche de détection. Les résultats de
cette thèse soulignent l’importance d’imiter le comportement humain pour tirer parti des
modèles de génération ainsi que d’utiliser des ensembles de données réalistes et difficiles
dans les futures recherches visant à détecter les textes générés artificiellement. Enfin,
nous aimerions souligner le fait que, quel que soit le degré d’avancement de la technolo-
gie, il est toujours crucial de se concentrer sur l’aspect éthique de l’utilisation d’une telle
technologie.

Mots clés : Génération de langage naturel, textes générés automatiquement, détec-
tion, classification, bases de connaissances

viii Vijini Liyanage



Table of Contents

Dedication ii

Declaration iii

Acknowledgement iv

Abstract v

Résumé vii

Table of Contents ix

List of Figures xi

List of Tables xii

List of Abbreviations xiv

Introduction 1

1 Related Work 6

1.1 Natural Language Generation . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.2 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.3 Transformer Models on Natural Language Generation . . . . . . . . 8
1.1.4 Text Generation with GPT models . . . . . . . . . . . . . . . . . . 11

1.2 Ethical Implications and Challenges of Natural Language Generation in AI
Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3 Detection of Automatically Generated Text . . . . . . . . . . . . . . . . . 19
1.3.1 Existing Research on Detection of Automatically Generated Text . 21

ix



TABLE OF CONTENTS

1.3.2 Existing Research on Detection of Automatically Generated Aca-
demic Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2 Construction of Corpora Composed of Machine Generated Academic
Text 28
2.1 D1: Dataset of Fully Generated Articles (generated with a temperature

parameter of 0.7). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2 D2: Dataset of Fully Generated Articles (generated with a temperature

parameter of 0.9). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.3 D3: A hybrid dataset composed by a mix of machine generated and human

written content. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.4 D4: A dataset composed of generated abstracts (using pre-trained GPT-2

model) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.5 D5: A dataset of hotel reviews generated by GPT-2 and GPT-3 models. . . 42
2.6 D6: Dataset published by DAGPap22 shared task. . . . . . . . . . . . . . . 44
2.7 D7: WikiGPT dataset composed of wikipedia introductions. . . . . . . . . 46

3 Methodology Adopted in Detecting Artificial Text 48
3.1 Evaluation of the Quality of the Artificially Generated Text. . . . . . . . . 49
3.2 Detection as a Binary Classification Task . . . . . . . . . . . . . . . . . . . 51

3.2.1 Statistical Models and Their Ensembles Employed in Classification 51
3.2.2 Recurrent Network Models and Their Ensembles Employed in Clas-

sification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2.3 Transformer Architectures and Their Ensembles Employed in Clas-

sification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.3 Leveraging Detection Tools to Distinguish Machine Generated Content

from Human Written Content . . . . . . . . . . . . . . . . . . . . . . . . . 60

4 Results and Evaluation 64
4.1 BLEU and ROUGE Scores . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2 Results Produced by Classification Models . . . . . . . . . . . . . . . . . . 66

4.2.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.2.2 Results Produced by Classification Models on the Benchmark Dataset 67
4.2.3 Results Produced by Classification Models on Various Corpora . . . 68
4.2.4 Results Produced by Classification Models & Their Ensembles on

ALTA Shared Task Data . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2.5 Results Produced by Classification Models on Hotel Review Data . 71

x TABLE OF CONTENTS Vijini Liyanage



TABLE OF CONTENTS

4.3 Results Generated by Detection Tools . . . . . . . . . . . . . . . . . . . . . 72
4.3.1 Visualizations Produced by GLTR . . . . . . . . . . . . . . . . . . 72
4.3.2 Results Produced by DetectGPT . . . . . . . . . . . . . . . . . . . 73
4.3.3 Results Produced by GPTZero and GPT-2 Output Detector . . . . 74

5 Further Experiments on Detection Task 75
5.1 Examining the Influence of Attention Feature of Transformer Based Models

on Classification Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2 Cross Validation Performed on Classification Task . . . . . . . . . . . . . . 78
5.3 Examining the Log Probabilities to Further Understand the Classification

Results of the Hotel Review Dataset . . . . . . . . . . . . . . . . . . . . . 80

6 Concluding Remarks & Future Perspectives 85

7 List of Publications 89

Appendices 99

A Code Segments 100
A.1 Code to Generate Text by Fine-tuning GPT-2 Model . . . . . . . . . . . . 100
A.2 Code to Generate Text by Pre-trained GPT-2 model . . . . . . . . . . . . 104
A.3 Code to Classify Text Using Transformer-based Models . . . . . . . . . . . 105
A.4 Code to Produce Ensemble Architectures . . . . . . . . . . . . . . . . . . . 107

Vijini Liyanage TABLE OF CONTENTS xi





List of Figures

1.1 Transformer Architecture (Source: [Vas+17]) . . . . . . . . . . . . . . . . . 10
1.2 Tokens Produced by GPT Tokenizer for an Example Sentence . . . . . . . 11
1.3 Embeddings Produced by GPT-2 Pre-trained Model for the Word "Dog" . 12
1.4 Attention weights of the token (BertViz attention-head view) . . . . . . . . 13

2.1 Architecture Followed in Generating Research Articles using Fine-tuned
GPT-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2 Architecture Followed in Composing Hybrid Dataset . . . . . . . . . . . . 39

3.1 Architecture of DeBERTa/ SciBERT + BERT Ensemble . . . . . . . . . . 57
3.2 Architecture of Transformer-CNN Ensemble (Here, the “input type ids,"

“input masks," and “input ids" are the components used to prepare and
encode the input data for the transformer model.) . . . . . . . . . . . . . . 58

4.1 GLTR Outputs for Excerpts of Corpora. . . . . . . . . . . . . . . . . . . . 72

5.1 Attention Head View of BERT Model . . . . . . . . . . . . . . . . . . . . . 76
5.2 Attention Head View of DistilBERT Model . . . . . . . . . . . . . . . . . . 77
5.3 Attention Head View of RoBERTa Model . . . . . . . . . . . . . . . . . . . 77
5.4 Precision and recall for each class on the GPT3 dataset vs. original reviews,

varying the proportion of test and training data. The error bar indicates
the standard deviation calculated over 10 experiments. . . . . . . . . . . . 83

5.5 Precision and recall for each class on the GPT3 paraphrased dataset vs.
the original reviews, varying the proportion of test and training data. . . . 84

xii





List of Tables

2.1 Statistics of the dataset sections (AWPA: Average Words Per Article, FG:
Fully Generated, t=temperature) . . . . . . . . . . . . . . . . . . . . . . . 30

2.2 Excerpts of a paper and its generated versions from the different dataset
sections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3 Some examples of original vs. generated papers in the “fully generated"
corpus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4 Some examples of original vs. generated abstracts from the “hybrid" corpus. 38
2.5 Some examples of original vs. generated abstracts from the “hybrid" corpus. 41
2.6 Excerpts Extracted from DAGPap22 Dataset . . . . . . . . . . . . . . . . . 45
2.7 Excerpts Extracted from WikiGPT Dataset . . . . . . . . . . . . . . . . . 47

4.1 Average BLEU and ROUGE Scores . . . . . . . . . . . . . . . . . . . . . . 64
4.2 Hyper Parameter of the Classification Models . . . . . . . . . . . . . . . . 67
4.3 Classification Results for Fully Generated Dataset and Hybrid Dataset

(BoW: Bag of Words) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.4 Classification Results Comparison for Bi-LSTM, BERT and DistilBERT

models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.5 F1 Scores Produced by Models on Classification Task . . . . . . . . . . . . 69
4.6 Classification Scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.7 F1 Scores obtained by Classification Models on Hotel Review Data . . . . 71
4.8 Z-scores Produced by DetectGPT . . . . . . . . . . . . . . . . . . . . . . . 73
4.9 Results Produced by GPTZero and GPT-2 Output Detector . . . . . . . . 74

5.1 Cross Validation Results (Metric: Accuracy /Fraction Correct) . . . . . . . 79
5.2 The 20 most discriminating words for each category (GPT-3 dataset) with

their log-probability difference (delta). . . . . . . . . . . . . . . . . . . . . 81
5.3 The 20 most discriminating words for each category (Fine-tuned GPT-2

generated academic dataset) with their log-probability difference (delta). . 82

xiii





List of Abbreviations

AI . . . . Artificial Intelligence

NLP . . Natural Language Processing

NLG . . Natural Language Generation

ML . . . Machine Learning

SOTA . State-of-the-art

GPT . . Generative Pre-training model

RNN . . Recurrent Neural Networks

ANN . . Artificial Neural Networks

CNN . . Convolutional Neural Networks

LSTM . Long Short Term Memory Networks

GRU . . Gated Recurrent Unit

NB . . . Naive Bayes

PA . . . Passive Aggressive

SVM . . Support Vector Machine

BERT . Bidirectional Encoder Representations from Transformers

RoBERTa Robustly Optimized BERT-Pretraining Approach

DeBERTa Decoding-enhanced BERT with Disentangled Attention

ELECTRAEfficiently Learning an Encoder that Classifies Token Replacements Accu-
rately

RoFT . Real or Fake Text

GLTR . Giant Language model Test Room

CTRL . A Conditional Transformer Language Model for Controllable Generation

ULMFit Universal Language Model Fine-tuning

Tf-idf . Term frequency-inverse document frequency

Word2Vec Word to Vector

BoW . . Bag of Words

CPCO . Consistency of anti preceding sentence using Cosine words Overlapping

CICO . Consistency of opposing Input sentences using Cosine words Overlapping



LIST OF TABLES

PCFG . Probabilistic Context Free Grammar

LED . . Longformer Encoder-Decoder

KPA . . Key Point Analysis

BLEU . Bilingual Evaluation Understudy

ROUGE Recall-Oriented Understudy for Gisting Evaluation

Vijini Liyanage LIST OF TABLES xv



Introduction

Natural Language Generation (NLG) is the process of producing natural language with
the help of artificial intelligence. Currently this is widely used for many tasks such as
report generation, image captioning, creative writing (eg: poems, stories) and in chatbots.
From rule based programs such as ELIZA [Wei83] which was developed in 1960s, NLG has
been a popular domain in Natural Language Processing (NLP). The integration of neural
networks around 2014 [GB+14] marked a significant advancement in Natural Language
Generation(NLG).

Currently with the emergence of sophisticated deep learning techniques such as trans-
former model [Vas+17], NLG has reached its limitless advancements. Since then, various
forms of state-of-the-art (SOTA) transformer models such as the Generative Pre-training
model (GPT) [Rad+18], BERT [KT19] and Transformer-XL [Dai+19] have been intro-
duced and utilized for a diverse amount of NLP tasks. To cite some, Natural Language
Generation (NLG) [Rad+19], text classification [Yan+19], machine translation [CL19] and
text summarization [Lew+20]. The aforementioned research show that the transformer
models are capable of producing outstanding results.

One of the most notable breakthroughs in recent years is the evolution of OpenAI’s
GPT models which are capable of generating text that looks as if they are written by a
human. Especially, latest models such as ChatGPT (GPT4)[Ach+23] have won global
attention such that they are the first thing that comes to mind of a person who wants to
find a solution to even a very general problem such as cooking a meal, solving an equation,
writing a novel and the list continues.

Moreover, within academic circles, there has been a discernible trend wherein an
increasing number of researchers are embracing these SOTA models. This trend is par-
ticularly pronounced in tasks requiring sophisticated language generation, such as article
writing. The adoption of GPT models in academia attests to their efficacy in address-
ing complex linguistic tasks and underscores their role in advancing research capabilities
across various disciplines. As these models continue to push the boundaries of what is
achievable in natural language understanding and generation, their impact resonates not

1



only in practical applications but also in shaping the trajectory of scholarly pursuits.

2 CHAPTER 0. INTRODUCTION Vijini Liyanage



Motivation

Regardless of the valuable contribution provided by these state-of-the-art models for
the betterment of NLP in general, some concerns have been raised about the potential
risks associated with such models. These models can be misused for malicious tasks such
as fake news generation [Zel+19], [VRA18], fake review generation [Ade+20] and viral
story generation [Far+17], [WD17].

Recently, some of these models have been applied for the computer-assisted writing of
research papers [Wan+19], reviews [Wan+20] or theses [AGM+19]. Despite the advan-
tages in alleviating researchers’ workload, a risk for misuse of these technologies exists.
Recent works ([CL21], [CLM21] shows that old textual generation models, are being ac-
tively used in academic publishing, although their detection is relatively easy since they
tend to contains "fingerprints" – words sequences specific to PCFG generators – or non-
sense like "tortured phrases" – weirdly paraphrased versions of scientific terms.

Furthermore, ethical considerations arise when individuals fail to disclose their use of
artificial models or tools for generating academic text. This lack of transparency intro-
duces a potential ethical dilemma, particularly in the evaluation and review of articles.
Unfairness may ensue, as writers who have painstakingly created authentic content may
find themselves at a disadvantage when compared to those who leverage automated tools.
Disclosure of the use of artificial assistance becomes crucial not only for transparency but
also to ensure fairness and equity in the assessment of scholarly contributions.

Therefore, immediate research on detection of academic texts that are artificially gen-
erated is imperative. In this way, researchers will also have a tool to determine whether
these powerful models were used in a responsible way or not. This serves as the primary
motivation behind the focus of this thesis, which centers on the detection of automatically
generated academic content. By focusing on detection methodologies, the research aims to
contribute not only to the academic community’s awareness but also to the establishment
of ethical guidelines surrounding the utilization of cutting-edge language models. Through
this endeavor, the thesis endeavors to fortify academic practices, ensuring that techno-
logical innovations align harmoniously with principles of responsibility, transparency, and
scholarly authenticity.

Vijini Liyanage CHAPTER 0. INTRODUCTION 3





Research Problem

At the commencement of our research journey, a significant hurdle confronted us—the
quest for an appropriate dataset housing generated academic content. Given the nascent
nature of the domain at that time, a dedicated and readily available corpus proved elusive.
Faced with this challenge, our initial focus pivoted towards the creation of a benchmark
dataset tailored to our research objectives. Recognizing the absence of a pre-existing cor-
pus suitable for our purposes, we embarked on the foundational step of generating a com-
prehensive and representative benchmark corpus. This pivotal phase laid the groundwork
for our subsequent investigations and underscored the necessity of building foundational
resources to propel research in the evolving landscape of generated academic content.

Among the straightforward and widely employed methods, leveraging a pre-trained
model to generate content emerged as a common approach. However, upon scrutiny
of the samples generated by these pre-trained models, a notable discrepancy became
evident—namely, the generated content frequently deviated from the context provided
(indicating a misalignment with the seed texts used). In response to this challenge, a
strategic decision was made to fine-tune the models despite the inherent time and effort
demands associated with this process. This deliberate choice aimed at refining the models
to better align with the desired context, ensuring that the generated content would exhibit
a closer coherence with the seed texts. The investment of additional time and effort in
the fine-tuning process was deemed essential to enhance the contextual fidelity of the
generated academic content and meet the specific requirements of our research objectives.

Subsequent to the generation of corpora, a crucial phase in our research involved the
evaluation of the content quality and detectability of the generated material. To gauge
the intrinsic quality of the generated text, we devised a plan to utilize n-gram-based scor-
ing metrics. These metrics facilitated the measurement of n-gram similarity between the
original and the generated text, providing a quantitative assessment of the textual coher-
ence. Simultaneously, the assessment of detectability emerged as a pivotal aspect, aiming
to accurately classify a given text as either generated or original. This task presented a
notable challenge, particularly when dealing with cases where the generated text closely
resembled the original. In such instances, high n-gram similarity indicated good quality,
but it posed a challenge for detectability. Striking a balance between these two criteria
became imperative, as it allowed us to assess not only the quality of the generated con-
tent but also its susceptibility to detection, ensuring a comprehensive evaluation of the
effectiveness of our generated corpora.

4 CHAPTER 0. INTRODUCTION Vijini Liyanage





Outline

Under this section, we present the general context of our work. This thesis mainly
aims at improving the detectability of automatically generated academic content, which
is important in preserving the authenticity of texts and determining whether these tools
can be considered lawful writing support or instead computer-assisted plagiarism. Thus
the rest of the manuscript is organized as follows:

— Chapter 1: This section provides existing work regarding detection of automati-
cally generated text.

— Chapter 2: Methodologies adopted in composing corpora and related statistics
are explained under this section.

— Chapter 3: This chapter elaborates the methods, models and technologies that
were employed in detecting machine generated text and the respective results ob-
tained.

— Chapter 4: Under this section the results and evaluations are described.

— Chapter 5: This section is dedicated to explain further experiments that were
carried out regarding the detection task.

— Chapter 6: Finally this chapter concludes this manuscript by providing conclusion
remarks and future perspectives of this research.

Vijini Liyanage CHAPTER 0. INTRODUCTION 5





Chapter 1

Related Work

1.1 Natural Language Generation

1.1.1 Overview

Text generation by models refers to the process in which computer algorithms, often
powered by advanced machine learning techniques, generate human-like text based on
input data or prompts. These models are trained on vast amounts of textual data and
learn patterns, styles, and structures present in the training data. The generation process
involves predicting the next word or sequence of words based on the context provided,
creating coherent and contextually relevant text.

There are various approaches to text generation, with some models utilizing recurrent
neural networks (RNNs), long short-term memory networks (LSTMs), and more recently,
transformer models. Notable examples include OpenAI’s GPT (Generative Pre-trained
Transformer) models and recurrent models like LSTM and GRU (Gated Recurrent Unit).

Text generation finds applications in diverse areas, including natural language in-
terfaces, chatbots, content creation, code generation, language translation, and more.
These models have demonstrated the ability to produce human-like text, leading to ad-
vancements in various fields and opening up new possibilities for creative and practical
applications. However, ethical considerations and challenges, such as ensuring the au-
thenticity and responsible use of generated content, are crucial aspects that researchers
and developers continue to address in the evolving landscape of text generation models.

6



1.1. NATURAL LANGUAGE GENERATION

1.1.2 History

The history of natural language generation (NLG) can be traced back to the early
days of artificial intelligence (AI) research. The roots of NLG can be found in the 1960s
when researchers began exploring the idea of using computers to generate human-like
language. Initial efforts focused on rule-based systems, where explicit linguistic rules
were programmed to produce text based on input data.

In the 1980s and 1990s, NLG saw advancements with the development of expert
systems and knowledge-based approaches. These systems aimed to generate coherent and
contextually relevant text by leveraging domain-specific knowledge and rules. Rule-based
NLG systems were applied in fields such as weather reporting and financial journalism.

The late 20th century witnessed the emergence of statistical and machine learning ap-
proaches to NLG. With the advent of large datasets and improved algorithms, researchers
explored the use of statistical models and probabilistic methods for language generation.
These approaches marked a shift from rule-based systems to more data-driven and adap-
tive NLG techniques.

The 21st century brought about significant breakthroughs in NLG with the rise of neu-
ral network architectures. Recurrent Neural Networks (RNNs), Long Short-Term Memory
(LSTM) networks, and Transformer models revolutionized natural language processing
tasks, including language generation. OpenAI’s GPT (Generative Pre-trained Trans-
former) models, which was introduced in 2018, demonstrated the capability of pre-trained
models to generate coherent and contextually rich text.

Today, NLG continues to evolve with the development of advanced language models,
including transformer-based architectures. These models leverage massive amounts of pre-
existing text data to generate human-like content, enabling applications such as chatbots,
content creation, summarization, and more. The history of NLG reflects a journey from
rule-based systems to sophisticated, data-driven models, showcasing the ongoing quest
for more accurate, creative, and contextually aware language generation.

Vijini Liyanage CHAPTER 1. CHAPTER 1 7



1.1. NATURAL LANGUAGE GENERATION

1.1.3 Transformer Models on Natural Language Generation

Text generation with Transformer models involves utilizing the architecture’s self-
attention mechanism to generate coherent and contextually relevant sequences of text.
The Transformer model, introduced by [Vas+17], has demonstrated remarkable success
in various natural language processing tasks, including text generation.

Figure 1.1 shows the overall encoder-decoder architecture of the Transformer model
and the following is a step-by-step explanation of how text generation occurs with it:

1. Input Representation: The input to the Transformer model is typically a se-
quence of tokens representing the context or prompt for text generation. These to-
kens can be words, subwords, or characters, depending on the tokenization scheme
used.

2. Embedding Layer: The input tokens are passed through an embedding layer to
convert them into continuous vector representations. This layer learns distributed
representations of the input tokens, capturing their semantic meanings.

3. Positional Encoding: Since Transformer models lack inherent sequential infor-
mation, positional encoding is added to the embedded vectors to provide informa-
tion about the position of each token in the input sequence. This helps the model
understand the order of the tokens.

4. Encoder Stack: The encoded input is then processed through a stack of en-
coder layers. Each encoder layer in the stack consists of sub-layers: a multi-head
self-attention mechanism and a feedforward neural network. The self-attention
mechanism allows the model to weigh the importance of different tokens in the
input sequence for each position.

5. Decoder Stack: For text generation, a decoder stack is employed after the en-
coder stack. The decoder generates tokens autoregressively, attending to the en-
coder’s output and its own previously generated tokens.

6. Attention Masking: During text generation, attention masking is applied to pre-
vent the model from attending to future tokens, ensuring a left-to-right generation
process.

7. Softmax Activation: The final layer in the decoder outputs a probability distri-
bution over the vocabulary. The softmax activation function is applied to obtain
probabilities for each token in the vocabulary.

8 CHAPTER 1. CHAPTER 1 Vijini Liyanage



1.1. NATURAL LANGUAGE GENERATION

8. Sampling or Beam Search: During generation, a decoding strategy is employed
to select the next token. This can involve sampling from the probability distribu-
tion or using beam search to find the most probable sequence of tokens.

9. Repeat: The process is repeated iteratively to generate the desired length of the
text or until a specific stopping criterion is met.

The attention mechanism in the Transformer model is a key innovation that signifi-
cantly enhances the model’s ability to capture long-range dependencies and relationships
within sequences of data. Following is an in-detailed description on how attention mech-
anism plays a pivotal role throughout the transformer architecture,

1. Self-Attention Mechanism: The attention mechanism allows the model to
weigh the importance of different elements in the input sequence when process-
ing a particular element. In the context of the Transformer, this is referred to as
the self-attention mechanism. Given an input sequence, each element (or token)
can attend to all other elements, and the attention weights are computed based on
their relevance.

2. Scaled Dot-Product Attention: The self-attention mechanism in the Trans-
former uses the scaled dot-product attention mechanism. For each element in the
sequence, attention scores are computed by taking the dot product of the query,
key, and value vectors. These scores are then scaled to prevent saturation issues.

3. Multi-Head Attention: To capture different aspects of relationships, the self-
attention mechanism is used in multiple parallel operations, known as attention
heads. Each attention head learns different aspects of the relationships within the
sequence. The outputs of these heads are concatenated and linearly transformed.

4. Cross-Attention in Decoder: In the decoder part of the Transformer, a similar
attention mechanism is used, but with an additional cross-attention component.
This allows the decoder to attend to the encoder’s output, aligning the generated
output with the input context.

In summary, the attention mechanism in the Transformer model plays a pivotal role
in capturing contextual information, handling long-range dependencies, and improving
the model’s overall performance in various natural language processing tasks. Its inno-
vative design has contributed to the success and widespread adoption of the Transformer
architecture in the field of deep learning.

Vijini Liyanage CHAPTER 1. CHAPTER 1 9



1.1. NATURAL LANGUAGE GENERATION

Figure 1.1 – Transformer Architecture (Source: [Vas+17])

10 CHAPTER 1. CHAPTER 1 Vijini Liyanage



1.1. NATURAL LANGUAGE GENERATION

1.1.4 Text Generation with GPT models

GPT (Generative Pre-trained Transformer) models stand out for their adeptness in
comprehending and generating natural language, a feat that has garnered widespread
recognition. Developed by OpenAI, these models harness the potent Transformer archi-
tecture, empowering them to analyze and produce text by considering pertinent contex-
tual cues embedded within extensive training datasets. Preceding their deployment, these
models undergo rigorous pre-training on expansive collections of textual data sourced from
the internet, a process that equips them with a nuanced understanding of linguistic struc-
tures and semantics. With the capability for fine-tuning across various tasks or domains,
GPT models demonstrate versatility in adapting their knowledge to generate contextu-
ally fitting text, thereby serving diverse applications spanning language translation, text
completion, and dialogue generation.

In the text generation process, the GPT models break down the text into bite-sized
pieces, which are termed as tokens. Each of these tokens are allocated a token ID to
identify them. Following Figure 1.2 represents the tokens generated by the GPT tokenizer
regarding the example sentence "Text Generation with GPT models". How the model
break down language into tokens can vary, but the key thing to grasp is that we end up
with special codes (token IDs) for each of these language bits.

Afterwards, these tokens are encoded before them being fed to the language model.
The models employ one-hot encoding, a method which converts categorical data, such as
words in text or categories in a dataset, into binary vectors. Each category is given a
distinct index, and subsequently, it is transformed into a binary vector. In this vector,
all elements are set to zero except for the one that corresponds to the index of the
category, which is set to one. This approach facilitates the algorithm in comprehending
and manipulating categorical data with greater efficiency, as it transforms the data into
a format that aligns well with mathematical algorithms.

Figure 1.2 – Tokens Produced by GPT Tokenizer for an Example Sentence

Then, each vector possess a length which is equal to the total number of tokens in

Vijini Liyanage CHAPTER 1. CHAPTER 1 11



1.1. NATURAL LANGUAGE GENERATION

the considered language. For example, if it contains 50k tokens, each token has a special
vector of length 50k, where only one spot is marked with a 1, and the rest are zeroes.
Since every vector has just one non-zero element, this makes it a sparse representation
and an inefficient mechanism which wastes a lot of memory. Moreover, it fails to convey
the meanings of the words. For instance, if we consider the word "party", it is uncertain
whether it refers to a a celebration or a political group.

To eliminate the aforementioned issues, the GPT models utilize embeddings, which
provides a compact way to represent tokens with lots of information packed in. In the
embedding layer of the models, each token is transformed into a fixed-size continuous
vector. For example, in GPT-2, every token gets its own vector made up of 768 numbers.
Initially, these numbers are random picked, but during the training phase, the model
figures out the best values for these numbers. Figure 1.3 shows an excerpt from the
embedding representation produced by the GPT-2 Pre-trained model for the word "Dog".

Figure 1.3 – Embeddings Produced by GPT-2 Pre-trained Model for the Word "Dog"

The new vectors are significantly more memory-efficient, with dimensions of 50,000 *
786, a considerable reduction compared to the one-hot encoding’s dimensions of 50,000 *
50,000. Consequently, these vectors, known as embedding vectors, serve as inputs for the
model. Additionally, if two tokens share similar meanings, their embedding vectors act
akin to neighbors, as they tend to be closer to each other in the vector space.

In addition to the token embeddings, the GPT models employ self attention mechanism
to intricate complexities of the meanings hidden in human language. Here, each token
"pays attention" to every other token in the input sentence, even itself, and works out a
set of attention weights which are known as "contextual embeddings". What it essentially

12 CHAPTER 1. CHAPTER 1 Vijini Liyanage



1.1. NATURAL LANGUAGE GENERATION

does is assign a fresh set of numbers (attention weights) by calculating the importance
of words in the input sentence based on the token embeddings. Ultimately, each word is
given a score based on how crucial it is in the sentence.

Following Figure 1.4 is a visualisation which demonstrates the “attention” of the token
“cats” to the rest of the tokens in the sentence. The strength of the connection indicates
how important or relevant the tokens are.

Figure 1.4 – Attention weights of the token (BertViz attention-head view)

In the attention mechanism, we craft a fresh set of weight matrices – specifically, the
Query, Key, and Value matrices (simply q, k, v). These matrices, arranged in cascades
of the same size (usually smaller than the embedding vectors), join the architecture to
capture the intricacies within language units. The attention parameters are learned to un-
ravel the connections between words, pairs of words, and even more complex combinations
like pairs of words.

A crucial innovation introduced by transformers involves incorporating positional en-
codings into vector embeddings. This addition is driven by the need to capture the
positional information of words, aiming to improve the accuracy of predicting the next
token within the genuine sentence context. This inclusion proves essential because, in
many instances, altering the order of words can completely alter the contextual meaning.

All these mathematical techniques we’ve delved into at a foundational level serve a
common purpose: predicting the next token based on the sequence of input tokens. GPT,

Vijini Liyanage CHAPTER 1. CHAPTER 1 13



1.1. NATURAL LANGUAGE GENERATION

fundamentally, undergoes training on a straightforward task—text generation, or more
precisely, predicting the next token. Essentially, at its core, we assess the likelihood of a
token appearing, considering the sequence of tokens that precede it.

14 CHAPTER 1. CHAPTER 1 Vijini Liyanage



1.2. ETHICAL IMPLICATIONS AND CHALLENGES OF NATURAL LANGUAGE
GENERATION IN AI SYSTEMS

1.2 Ethical Implications and Challenges of Natural

Language Generation in AI Systems

Natural Language Generation (NLG) is a swiftly evolving branch of artificial intel-
ligence that allows machines to create text resembling human writing with impressive
precision and fluency. This technology is transforming numerous sectors, from producing
news articles and automating customer support to crafting personalized content. However,
these advancements bring about notable ethical concerns and challenges. This section ex-
amines the ethical issues associated with NLG, including bias, misinformation, privacy
risks, and intellectual property dilemmas, while also addressing the broader challenges
posed by these technologies. By tackling these concerns, we can more effectively manage
the integration of NLG into society in a responsible and ethical manner.

Large Language Models (LLMs) have the potential to amplify biases inherent in their
training data, resulting in unfair or harmful outputs. As these models are trained on
extensive datasets that mirror human language and societal norms, they may uninten-
tionally perpetuate and even exacerbate stereotypes and prejudices. This can lead to
biased decision-making, discriminatory content, and the spread of misinformation, pre-
senting considerable ethical and social challenges.

NLG system designers need to exercise great care regarding the data shaping their
generated text. Ensuring diversity and representativeness during the initial gathering and
preparation of training data is vital. This means capturing a broad spectrum of human
experiences and viewpoints. While efforts are underway to explore technical fixes like
de-biasing algorithms and better representative data, they’re not silver bullets. What’s
becoming increasingly clear is the necessity for interdisciplinary collaboration, blending
technological progress with perspectives from the social sciences to craft algorithms that
are ethically robust.

Additionally, transparency in the training and auditing of models is crucial, as is
involving affected communities in the development process. Furthermore, transparent
communication about the capabilities and limitations of LLMs, including their vulnera-
bility to bias, is essential. Establishing mechanisms for accountability that enable users
to evaluate and challenge AI-generated content can also help mitigate bias in LLMs.

LLMs have the capability to generate content that closely resembles human writing.
This ability facilitates the swift production of false or misleading information, eroding
public trust and fueling social discord. Misinformation refers to false information shared
without harmful intent, while disinformation involves false information shared deliber-

Vijini Liyanage CHAPTER 1. CHAPTER 1 15



1.2. ETHICAL IMPLICATIONS AND CHALLENGES OF NATURAL LANGUAGE
GENERATION IN AI SYSTEMS

ately to deceive. With the aid of LLMs, both misinformation and disinformation can
spread widely and rapidly. In today’s age, where misinformation proliferates swiftly via
social media and other digital avenues, the seamless generation of such content by LLMs
amplifies the difficulty in distinguishing fact from fiction. This issue is especially pressing
in critical scenarios such as elections, public health emergencies, and financial markets,
where the dissemination of false information can yield profound societal repercussions,
spanning from the erosion of public confidence to tangible harm.

For example, in academia LLM generated papers could pollute the body of scholarly
work, making it difficult for researchers to rely on published materials. Additionally,
the generation of fake reviews for products or services can distort consumer choices and
market dynamics. The stakes are equally high for democratic processes. Democracy
depends on an informed electorate making decisions grounded in accurate information.
The dissemination of misinformation and disinformation through LLMs undermines this
foundation, potentially swaying election results, referendums, and public policies based
on falsehoods.

To mitigate these potential risks, various tools and models are currently employed to
distinguish AI-generated content from human-written content. However, given the rapidly
advancing capabilities of LLMs, these tools alone are not sufficient. Regulatory frame-
works could also help by mandating that machine-generated content be clearly labeled
to inform readers of its origin. Additionally, ethical guidelines for the responsible use of
LLMs, especially in high-risk areas prone to misinformation, could provide an extra layer
of protection.

The use of LLMs brings significant privacy concerns to the forefront. These models are
trained on extensive datasets that often contain personal information, sometimes without
the knowledge or consent of those involved. Consequently, LLMs can unintentionally gen-
erate text that discloses sensitive or private details. The risk of data breaches and misuse
of generated content further intensifies these privacy issues. Despite efforts to clean and
anonymize data, the complexity and scale of these models make it challenging to ensure
that no sensitive information is inadvertently included. This concern is especially critical
in applications demanding high confidentiality, such as healthcare and legal services.

When users interact with LLMs, privacy concerns become more pronounced. These
interactions often involve the collection and processing of user inputs, which can include
personal or sensitive information. The main risks revolve around how this data is stored,
used, and potentially incorporated into future training cycles.

To address these concerns effectively, it’s crucial to implement robust data protection
measures and adhere to privacy regulations. Specifically, organizations developing these

16 CHAPTER 1. CHAPTER 1 Vijini Liyanage



1.2. ETHICAL IMPLICATIONS AND CHALLENGES OF NATURAL LANGUAGE
GENERATION IN AI SYSTEMS

models should follow industry best practices for safeguarding data. Additionally, it’s
important to provide users with education about the potential privacy risks linked to
engaging with these models.

The black box nature of LLMs tends to make these models less transparent and more
complex in terms of understanding the logic behind their operations. In contexts like
healthcare, where accountability is paramount, the inability to justify decisions made by
an LLM can carry significant consequences. The opacity of these models further compli-
cates efforts to pinpoint and rectify biases or errors, potentially perpetuating unfair or
harmful behaviors. Developing techniques such as model interpretability and explainabil-
ity can help illuminate the decision-making processes of these intricate models.

Moreover, it is of paramount importance to understand how the usage of LLMs can
affect human creativity and logical thinking power. Currently, many individuals choose
to depend on LLMs to generate content, be it an article, an essay, a quote or even
an aesthetic product such as a song or or a verse. Although this seems to be efficient
in terms of time, the creativity and thinkability of individuals can be hugely affected.
Furthermore, the adoption of LLMs carries profound economic ramifications, especially
within labor markets. Industries like customer service and journalism that heavily reliant
on language-based tasks are particularly susceptible to this transition. These sectors might
shift to significant automation through the implementation of chatbots powered by LLMs,
potentially displacing human labour. These shifts not only have economic consequences
but also bear social implications. Job displacement and economic uncertainty can fuel
societal challenges, including mental health issues and heightened economic disparity.

Determining ownership of LLM-generated content has become a complex endeavor.
It’s not clear-cut to ascertain the authors of such content—whether it’s the language
model itself, the users interacting with the model, or the developers who created it. Con-
sequently, attributing copyright to the author is ambiguous, raising significant challenges
in identifying accountability for the generated content. For instance, in crucial fields like
healthcare and law, if decisions rely on machine-generated outputs, it remains unclear
who bears responsibility for the outcomes stemming from those decisions.

The creation and implementation of LLMs require significant computational resources
and expertise, often making them expensive and inaccessible to individuals or smaller
organizations. Access to advanced LLMs may be limited to well-resourced entities, widen-
ing inequalities across sectors like healthcare, education, and commerce. Geographic and
demographic disparities also affect access, with technologically advanced countries and

Vijini Liyanage CHAPTER 1. CHAPTER 1 17



1.2. ETHICAL IMPLICATIONS AND CHALLENGES OF NATURAL LANGUAGE
GENERATION IN AI SYSTEMS

dominant languages benefiting disproportionately. Additionally, LLMs may offer limited
utility for minority languages or cultures, exacerbating marginalization.

To address inequality in accessing LLMs, one approach is to open-source and offer
pre-trained models and tools that demand fewer resources for implementation. Addition-
ally, educational initiatives targeting underrepresented regions or disadvantaged groups to
enhance expertise in machine learning and LLMs could help bridge the gap. Furthermore,
deliberate efforts to incorporate a wider range of languages and cultural contexts in the
training data can enhance the universality of these models.

In conclusion, the vast potential of NLG comes with significant ethical complexi-
ties that demand a comprehensive approach. Collaboration among stakeholders, robust
regulatory frameworks, and continual research and development efforts are essential to
address these challenges effectively. By placing a premium on ethical considerations, we
can leverage the benefits of NLG while proactively managing its risks, thus facilitating a
more inclusive and ethically sound integration into society.

18 CHAPTER 1. CHAPTER 1 Vijini Liyanage



1.3. DETECTION OF AUTOMATICALLY GENERATED TEXT

1.3 Detection of Automatically Generated Text

Detection of Automatically Generated Text is a critical field of research with increas-
ing relevance in our technologically advanced era. As the capabilities of language mod-
els, particularly generative models like GPT, continue to advance, the need for robust
mechanisms to distinguish between machine-generated and human-written text becomes
imperative.

The timely importance of this research stems from the widespread use of language
models in various domains, from content creation and journalism to customer service and
academic writing. As these models become more sophisticated, there is a growing concern
about the potential misuse of AI-generated content, ranging from misinformation and
propaganda to unethical practices such as ghostwriting or automated essay generation.

Detecting automatically generated text holds substantial benefits for society. One of
the primary advantages is in combating the spread of misinformation. By accurately
identifying content created by AI models, we can better assess the reliability of infor-
mation circulating online and in various media. This is crucial in an age where fake
news and manipulated content pose significant challenges to the integrity of information
dissemination.

Moreover, detection of automatically generated text is essential for upholding academic
and journalistic standards. Ensuring that scholarly articles, research papers, news articles,
and other written content are genuinely human-authored is vital for maintaining the
credibility and authenticity of these sources. Academic institutions, publishers, and media
outlets can benefit from automated tools that help verify the authenticity of the content
they publish.

In the realm of content creation, detecting automatically generated text is pivotal
for preserving the uniqueness and originality of human-authored works. Plagiarism, in-
tentional or unintentional, can be mitigated by employing robust detection mechanisms,
fostering an environment that values creativity and individual expression.

The societal implications of accurate text detection extend to legal and ethical con-
siderations. As AI-generated content becomes more prevalent, establishing norms and
regulations around its use becomes imperative. Detection tools can assist in enforcing
ethical guidelines, ensuring transparency, and holding individuals or organizations ac-
countable for their use of AI-generated content.

Vijini Liyanage CHAPTER 1. CHAPTER 1 19



1.3. DETECTION OF AUTOMATICALLY GENERATED TEXT

In conclusion, the Detection of Automatically Generated Text is not merely a tech-
nological challenge but a societal necessity. It plays a crucial role in safeguarding the
integrity of information, upholding academic and journalistic standards, and navigating
the ethical landscape of AI-generated content. By advancing research in this domain, we
contribute to the responsible and ethical deployment of language models, promoting a
future where technology serves humanity with transparency and accountability.

20 CHAPTER 1. CHAPTER 1 Vijini Liyanage



1.3. DETECTION OF AUTOMATICALLY GENERATED TEXT

1.3.1 Existing Research on Detection of Automatically Gener-

ated Text

The prevailing research efforts dedicated to the detection of machine-generated text
can be systematically classified into two distinct categories, each addressing the challenge
from a unique perspective. These categories are elucidated in the subsequent sub-sections,
providing a comprehensive delineation of the methodologies employed in human-based
detection and automatic detection.

— Human-Based Detection: In the realm of human-based detection, the focus of
research lies in leveraging human evaluators or annotators to discern and classify
text as either machine-generated or human-written. This approach involves sub-
jective assessments and qualitative judgments from individuals trained to identify
linguistic nuances and patterns indicative of automated text generation. Human-
based detection brings a qualitative dimension to the evaluation process, incorpo-
rating human intuition and contextual understanding. However, it also introduces
potential biases and scalability challenges associated with manual assessments.

— Automatic Detection: In contrast, automatic detection methodologies aim to
develop computational models and algorithms capable of autonomously distin-
guishing between machine-generated and human-written text. This approach in-
volves the application of various machine learning and natural language processing
techniques to extract features, patterns, and characteristics indicative of the text’s
origin. Automatic detection systems often rely on statistical analyses, linguistic
features, or neural network architectures to make predictions with a higher degree
of scalability. While automatic detection methods offer efficiency and scalability
advantages, they also present challenges related to the evolving nature of language
models and the need for diverse and representative training datasets.

This dichotomy in research categorization underscores the multifaceted nature of the
machine-generated text detection challenge. The nuanced exploration of both human-
based and automatic detection approaches provides a holistic view of the ongoing efforts
to address this critical aspect of natural language processing.

Vijini Liyanage CHAPTER 1. CHAPTER 1 21



1.3. DETECTION OF AUTOMATICALLY GENERATED TEXT

Human Detection of Machine Generated Text

Numerous research endeavors have delved into the domain of human-based detection
of machine-generated text, exploring diverse perspectives and methodologies. Bakhtin
et al. [Bak+19] approach human detection as a ranking task, scrutinizing the impact of
factors like sampling method and text excerpt length. Ippolito et al. [Ipp+19] delve into
the efficacy of human detectors, particularly in identifying semantic errors in machine-
generated text. Gehrmann et al. [GSR19] assert that human detection accuracy, without
any auxiliary tools, stands at a modest 54%. [ÇB20] propose an innovative methodology
automating the human evaluation of machine-generated news.

In the exploration of human-centric evaluation, Ippolito et al. [Ipp+20] highlight the
human inclination toward semantic errors, contrasting this with discriminative models like
fine-tuned BERT, which emphasize statistical artifacts. The introduction of RoFT (Real
or Fake Text) by [Dug+20] unveils the capability of text generation models to deceive
humans, demonstrating instances where a few sentences can mislead evaluators. Recent
findings by [Cla+21] indicate that training humans on GPT-3 generated text evaluation
tasks only marginally improves overall accuracy, reaching up to 50%.

Despite the extensive exploration of human detection capabilities, the landscape is
marked by a noticeable gap in research focusing on the development of automated tools
designed to discern machine-generated text from its human-written counterpart. This
underscores the need for more concerted efforts in automating the detection process and
advancing the capabilities of tools in this critical domain.

22 CHAPTER 1. CHAPTER 1 Vijini Liyanage



1.3. DETECTION OF AUTOMATICALLY GENERATED TEXT

Automatic Detection of Machine Generated Text

The introduction of the statistical model GLTR (Giant Language model Test Room)
[GSR19] can be considered as a major milestone for the detection of automatically gen-
erated text. The authors consider the stylometric details of texts by incorporating three
types of tests: the probability of the word, the absolute rank of a word and the entropy of
the predicted distribution. Afterwards, they compute per-token likelihoods and visualize
histograms over them to support humans in detection of automatically generated content.
A recent research [AL20] has extended the work done in GLTR by feeding the output of
GLTR to a Convolutional Neural Network, which automatically classifies whether the
input reviews are human written or machine generated.

Another turning point is the establishment of the GROVER [Zel+19], in which its
architecture is a combination of a generation model and detection model. News are
generated using a transformer based model which has an architecture similar to GPT-
2 [Rad+19]. But [Rad+19] has used conditional generation (on article metadata) and
nucleus sampling. Afterwards, a zero shot detection is performed using a simple linear
classifier on top of the pre-trained GROVER model. The authors have experimented de-
tection with existing other models as well (fastText [Boj+17] and BERT[KT19]) reporting
the highest accuracy for their own GROVER model and claiming that the best models
in forming fake content are also the best models in detection. Their results show that
the highest accuracy is reported by their GROVER model itself. Therefore they have
claimed that best models in forming fake content are the best models in detection as well.
Contrary to that, Uchendu [Uch+20] shows, however, that GROVER cannot correctly
detect texts generated by language models other than GROVER itself.

Lots of research has leveraged the RoBERTa system [Liu+19], a masked and non-
generative language model to detect automatically generated text. [Sol+19] has proved
that the discriminative model of RoBERTa outperforms generative models such as GPT-
2 in detection tasks. Such findings contradict with GROVER authors’ claim that the
generative model is better in detecting text generated by itself. [Fag+21] reveals that
the RoBERTa can defeat traditional machine learning models, such as bag of words, and
neural network models, such as RNNs and CNNs, regarding the detection of automati-
cally generated tweets. Moreover, [Uch+20] shows that RoBERTa outperforms existing
detectors in detecting automatically generated news articles and product reviews which
are generated by state of the art models like GPT-2. Despite the success of RoBERTa,
recent research [JML20] shows that its dependence on large amounts of data limits its

Vijini Liyanage CHAPTER 1. CHAPTER 1 23



1.3. DETECTION OF AUTOMATICALLY GENERATED TEXT

use for detection. [Wol20] challenges the RoBERTa model by exposing it with homoglyph
and misspelling attacks and their results show a drastic drop in recall. This shows that
the future detection models should be robust against such attacks. To test and evaluate
such models, it is of key importance to have a dataset that incorporates such attacks or
traps, if possible independent of any specific detection method.

[Sch+19] has identified the weaknesses in provenance based detection methods (e.g.
[Zel+19]) for fake news detection highlighting the importance of veracity in addition
to style and source as well as the importance of fact-verification models. In order to
mitigate the limitations in provenance based models, [Zho+20] presents a neural graph
based reasoning approach (FAST) which considers the factual structures of documents.
They believe with their approach the limitations in coarse grained models are eliminated.
The approach is experimented on two datasets, a news-style dataset and a webtext-
style dataset, with better results than the RoBERTa. The fake data for their research
is generated by GPT-2 and GROVER. Moreover, [Sch+20] highlights the limitations of
stylometric approaches in detection of machine generated fake news since they highly
depend on distributional features. As a remedy for this, [JML20] advocates the use in
detection models of external resources such as knowledge bases and diffusion networks in
addition to the source itself.

Many of the research on detection assumes that the generator is known ([GSR19],
[Zel+19]). Therefore their approaches are incapable in generalizing the settings so that
it works well when the generator architectures and corpora are different in training and
testing stages. However, in real world settings, a detection model faces indeterminate
and evolving data. This issue has been addressed to a certain level by [Bak+19], which
provides a thorough experimental setup and quantitative results. [Ipp+20] fine-tunes
the BERT model for detection and analyzes how factors like sampling strategies and
text excerpt length impact the detection task. Another research [VKS20] produces a
formal hypothesis testing framework and sets error exponents limits (in terms of perplexity
and cross-entropy) for large scale models, such as GPT-2 and CTRL, in order to find
limits in detecting text generated by them. One of the latest research [MSS21] leverages
transformers to detect headlines generated by GPT-2 model. In this approach, the models
learn from the datasets and classify text as machine generated text or human-written text.
It makes use of 4 types of classifiers: Baselines (Logistic Regression, Elastic Net), Deep
learning (CNN, Bi-LSTM, Bi-LSTM with Attention), Transfer learning via ULMFit and
Transformers (BERT, DistilBERT) for the detection task. The results show that BERT
scores an overall accuracy of 85.7%.

24 CHAPTER 1. CHAPTER 1 Vijini Liyanage



1.3. DETECTION OF AUTOMATICALLY GENERATED TEXT

In addition to transformer based models many research works conducted for the de-
tection make use of other types of deep learning models as well as statistical models.
[Vij+20] experiments with numeric representation such as Tf-idf and word2vec, as well as
neural networks such as ANNs and LSTMs on detection of fake news. A latest research
[HBC21] suggests two approaches – CPCO (Consistency of anti preceding sentence using
Cosine words Overlapping), and CICO (Consistency of opposing Input sentences using
Cosine words Overlapping) –, which utilize sentence coherence for the detection task. Also
[Jaw] leverages different discourse models for detection. By exposing style-based classi-
fiers to syntactic and semantic permutations, [BP20] shows the limitations of style-based
classifiers which highly rely on provenance to detect fake text. Furthermore, [Pér+18]
highlights the importance of linguistic features such as semantic, syntactic and lexical
features in distinguishing the machine generated news from human written news.

Vijini Liyanage CHAPTER 1. CHAPTER 1 25



1.3. DETECTION OF AUTOMATICALLY GENERATED TEXT

1.3.2 Existing Research on Detection of Automatically Gener-

ated Academic Content

Although there is lots of research conducted for the detection of automatically gen-
erated content such as newspaper articles, reviews, tweets, headlines and so on, only
a limited number of detection research is dedicated to academia. These works [XH09;
LK10] have mainly focused on the authenticity of the references. [Ama15] has examined
topological properties in natural and generated papers as a source for detection. [WG15]
has proposed various measures in detecting generated academic content.

SciDetect [NL16] is another research which considers inter-textual distance using all
the words and nearest neighbour classification for detection. The authors have analyzed
the existing methods for detecting automatically generated papers and relied on Proba-
bilistic Context Free Grammar (PCFG) to detect fake academia. However, their approach
relies on the fact that, for PCFG based generators, word distributions are dissimilar to
that of human written content, an assumption that is less obvious for more recent language
models

A recent research [CL21] proposes a rule based detection mechanism which leverages
third party search engines to distinguish automatically generated papers based on improb-
able word sequences found in them, but their approach can only detect grammar based
computer generated papers. However, among all the works dealing with the detection
of automatically generated text, there is too few research dedicated to the academic or
scholarly domain, despite the availability of such data and the potential danger in the
misuse of generative models in this domain.

In order to leverage the deep learning models to detect automatically generated re-
search content from human written content, a corpus of artificially generated academic
content is required. Many latest research [CL21], [XH09] have leveraged SCIgen to gen-
erate a dataset for their research. But SCIgen generates nonsense (because it focuses on
amusement rather than coherence) using context free grammar.

DAGPap22 [Kas+22] is a shared task targeted at detecting automatically generated
academic text. The competition was aimed at two tasks, 1. To distinguish machine
generated content from human written content, and 2. To identify from which models
the fake contents were generated. Their dataset consists of original abstracts extracted
from “Microprocessors and microsystems (MICPRO)” journal and abstracts copied from
papers related to UN’s Sustainable Development Goals and fake abstracts generated using
summarization and generative models. By utilizing an ensemble of the three models

26 CHAPTER 1. CHAPTER 1 Vijini Liyanage



1.3. DETECTION OF AUTOMATICALLY GENERATED TEXT

SciBERT, RoBERTa and DeBERTa, Glazkova and Glazkov., 2022 [GG22] have gained an
F1 score of 99.24% on DAGPap22 data. SynSciPass [Ros22] is another latest approach
that facilitates the detection of automatically generated scientific content by providing
labels for the type of technology adapted for generation. They also used the SciBERT
model for detection and obtained an F1 score of 98.3% for DAGPap22 data. Rodriguez
et al. [Rod+22] experimented cross-domain applicability of detectors. In their work, they
have studied the detectability of tampered (created by a mix of original and generated
paragraphs) research papers using BERT-based models and reported accuracies ranging
from 86 to 95% across the domains, depending on the configurations.

Although the aforementioned researches have obtained higher results in terms of the
detectability of academic text, their considered datasets aren’t composed in a manner
that a human would possibly employ NLG models in composing a research article.

Vijini Liyanage CHAPTER 1. CHAPTER 1 27



Chapter 2

Construction of Corpora Composed of
Machine Generated Academic Text

To assess the detectability of artificially generated academic text, a prerequisite is a
challenging dataset comprising such content. At the initiation of our research, we encoun-
tered a significant gap – there was no existing corpus specifically curated for artificially
generated academic content. This lack of a suitable dataset prompted us to embark on the
creation of a challenging benchmark corpus tailored to address this specific need. There-
fore we have composed several corpora (D1, D2, D3, D4 and D5) by adopting various
mechanisms to make sure there are substantial amounts of variations among the datasets.
Furthermore, throughout the course of my PhD journey, numerous researchers have con-
tributed by publishing several corpora, including D6 and D7, which proved invaluable for
our experimental endeavors. In this chapter, we describe the following corpora which we
used in our experiments,

1. D1: A dataset composed of fully generated articles (using fine-tuned GPT-2
model).

2. D2: Second dataset of fully generated articles with an improved level of creativity
in the generated content.

3. D3: A hybrid dataset composed by a mix of machine generated and human written
content.

4. D4: A dataset composed of generated abstracts (using pre-trained GPT-2 model)

5. D5: A dataset of hotel reviews generated by GPT-2 and GPT-3 models.

6. D6: Dataset published by DAGPap22 shared task [Kas+22].

7. D7: WikiGPT dataset composed of wikipedia introductions. [Bha23]

28



The statistics of the considered corpora are provided in Table 2.1. Moreover, some
excerpts extracted from academic corpora that we built, are included in Table 2.2.
Each of the aforementioned datasets are further explained in the subsections. All
the produced data are available at the following URL: https://github.com/vijini/
Detection-of-Automatically-Generated-Academic-Text.git.

Vijini Liyanage CHAPTER 2. CHAPTER 2 29

https://github.com/vijini/Detection-of-Automatically-Generated-Academic-Text.git
https://github.com/vijini/Detection-of-Automatically-Generated-Academic-Text.git


Dataset Generation model No.of articles AWPA(Approx.)
D1: FG full paper GPT-2 (fine-tuned) 200 1250
(t=0.7)
D2: FG full paper GPT-2 (fine-tuned) 200 1250
(t=0.9)
D3: Hybrid Abstract GPT-2 (fine-tuned 200 150
(t=1.0) on ArXiv-NLP)
D4: FG Abstarct GPT-2 (pre-trained) 200 125
(t=0.7)
D5: FG Hotel reviews GPT-2 (fine-tuned), 200 150
(t=0.7) GPT-3 (pre-trained)
D6: DAGPap22 SCIgen 5350 160
D7: WikiGPT GPT(Curie) 1000 125

Table 2.1 – Statistics of the dataset sections (AWPA: Average Words Per Article, FG:
Fully Generated, t=temperature)

Origin of text Excerpt
Original paper Moreover, when temporal word embeddings provide words’ repre-

sentations that are more inclined towards their literal core mean-
ing (and not the metaphorical one), models exploiting end up cor-
rectly identifying metaphors more easily. Furthermore, embed-
dings of words belonging to some language domains in spe-
cific time periods can be biased towards their metaphori-
cal meaning, leading to words being used in metaphorical
contexts way more than in literal ones. This would pre-
vent neural models from correctly identifying the words as
metaphors.

30 CHAPTER 2. CHAPTER 2 Vijini Liyanage



D1 (fine-tuned
GPT-2, temp =
0.7)

Moreover, when temporal word embeddings provide words’ repre-
sentations that are more inclined towards their literal core meaning
(and not the metaphorical one), models exploiting end up correctly
identifying metaphors more easily. One way to investigate these
hypotheses further is to explore the nearest neighbors of
a word in the word embeddings used in a figurative way
inside a sentence, both in a static (atemporal) word embed-
ding space, e.g., obtained with GloVe [Jeffrey Pennington,
2014] and in a decade-specific temporal space, e.g., ob-
tained from the CoHa1 corpus with Procrustes [Edouard
Grave, 2018].

D2 (fine-tuned
GPT-2, temp =
0.9)

Moreover, when temporal word embeddings provide words’ repre-
sentations that are more inclined towards their literal core meaning
(and not the metaphorical one), models exploiting end up correctly
identifying metaphors more easily. One way to investigate these
hypotheses further is to explore the nearest neighbors of
a word in the word embeddings used in a figurative way
inside a sentence, both in a static (atemporal) word em-
bedding, i.e., a decade, time period, and/or a temporal
(osfringes) word embedding, i.e., a decade, time period.

D3 (ArXiV-NLP
fine-tuned GPT-
2, temp = 0.7)

Moreover, when temporal word embeddings provide words’ repre-
sentations that are more inclined towards their literal core mean-
ing (and not the metaphorical one), models exploiting end up
correctly identifying metaphors more easily. In contrast to
sentence embeddings, the method of segmentation also
exploits the concept of end-to-end (or equivalence) for
metaphors and the corresponding temporal word embed-
dings. In this work, we conduct a multidisciplinary in-
vestigation of a well-known technique for identifying and
segmenting metaphors.

Vijini Liyanage CHAPTER 2. CHAPTER 2 31



D4 (GPT-2
without fine-
tuning, temp =
0.7)

Moreover, when temporal word embeddings provide words’ repre-
sentations that are more inclined towards their literal core meaning
(and not the metaphorical one), models exploiting end up correctly
identifying metaphors more easily. For example, if a model is
able to identify a metaphor that is more likely to be as-
sociated with the literal meaning of a word, then it will
be more accurate in identifying the metaphor in the con-
text of the word itself. In this paper, we present a novel
approach to the identification of metaphors in language.

Table 2.2 – Excerpts of a paper and its generated versions from the different dataset
sections.

32 CHAPTER 2. CHAPTER 2 Vijini Liyanage



2.1. D1: DATASET OF FULLY GENERATED ARTICLES (GENERATED WITH A
TEMPERATURE PARAMETER OF 0.7).

2.1 D1: Dataset of Fully Generated Articles (generated

with a temperature parameter of 0.7).

To test methods and encourage research in detection of automatically generated aca-
demic content, by the time we started our research, there was a greatest requirement of a
dataset composed of artificial academic content. Thus we proposed a benchmark corpus
of academic papers, which is explained under this section. Architecture of the overall
approach is presented in Figure 2.1.

Figure 2.1 – Architecture Followed in Generating Research Articles using Fine-tuned
GPT-2

We chose the GPT-2 124M parameter model [Rad+19] for generation since it was
by then the most advanced Generative Pre-training Transformer (GPT) model that was
available for generation.

Initially, the model was fine-tuned by feeding it with papers extracted from ArXiv 1.
We specifically selected the Computation and Language domain and the 100 latest papers
(as of April 2021) were chosen to make sure that the papers we considered were not used
to train the original GPT-2 model. Moreover, papers with IEEE citation style were
not selected to train the model, because this style represents citations only as numbers,
which does not allow a reader to verify whether the citations are appropriate (we do not
consider the “References" section for model training). For clarity purposes, we ignored

1. https://arxiv.org

Vijini Liyanage CHAPTER 2. CHAPTER 2 33

https://arxiv.org


2.1. D1: DATASET OF FULLY GENERATED ARTICLES (GENERATED WITH A
TEMPERATURE PARAMETER OF 0.7).

the sections such as methodology, results and evaluation and discussion which contain
diagrams, tables, equations.

Each paper was separately used to fine-tune the GPT-2 model. Afterwards, by choos-
ing the first 50 words of each original paper as the seed text, a new paper which is of the
same length as the original paper was generated using the fine-tuned model. Likewise,
100 novel papers were generated. The temperature parameter was set to 0.7 to make sure
that the generated content is neither too random nor too much like the original paper.
This process corresponds to the situation in which a malicious author would create a
full text to submit, in a similar way to Sci-Gen. Their length is variable as they can be
composed from the abstract alone to more sections such as introduction, related work and
conclusion.

Few examples showing content from the original paper and the respective generated
paper are available in Table 2.3. Here the original papers correspond to the papers
which were used as prompts for the models to perform generation. To obtain a proper
comparison between the original and generated articles, two n-gram based scores, BLEU
and ROUGE were calculated and the respective results are provided in Section 4.

34 CHAPTER 2. CHAPTER 2 Vijini Liyanage



2.1. D1: DATASET OF FULLY GENERATED ARTICLES (GENERATED WITH A
TEMPERATURE PARAMETER OF 0.7).

Original Paper Generated Paper
A possible alternative would be to re-
quire each model to set its own mini-
mum confidence threshold to determine
if an input argument should not be
matched to any KP. Finally, in this
task, we used comparative evaluations
to determine the quality of the sets
of generated KPs. Obviously, this
results with rankingbased evalu-
ation. Establishing an absolute
evaluation metric in this context
merits further investigation. We
thank all participating teams for
taking the time to participate in
this challenging new shared task.
We believe that these contribu-
tions, along with the data col-
lected and shared in this report,
will be valuable to further advance
the research around KPA and re-
lated tasks.

A possible alternative would be to require
each model to set its own minimum con-
fidence threshold to determine if an input
argument should not be matched to any
KP. Finally, in this task, we used compar-
ative evaluations to estimate the quality
of the sets of generated texts. We ex-
pect the task and the findings reported
in this paper to be relevant for re-
searchers working on text summariza-
tion and argument mining. Introduc-
tion Key Point Analysis (KPA) was in-
troduced in BarHaim et al. (2020a,b)
as a challenging NLP task with tight
relations to Computational Argumen-
tation, Opinion Analysis, and Summa-
rization, and with many practical ap-
plications (Bar-Haim et al., 2021).

We show that the mixed-domain trans-
fer learning approach does not always
work well. We found the com-
bination of the non-graph DSM
(for capturing local relationships)
and CNN (for extracting global
relationships) to be a promis-
ing approach towards creating a
gener- alizable solution for detect-
ing COVID-19 online misinforma-
tion. In the future, we plan to
investigate the gener- alizability
of the DSM models created using
deep learning architectures such
as BERT.

We show that the mixed-domain trans-
fer learning approach is more effective
across most of the dimensions of the
COVID-19 data. Specifically, we show
that the shallow mixed-domain trans-
fer learning approach is more effective
across the following dimensions of the
COVID-19 data: granular (grained),
shallow (skewed), and deep (deeper).
We show that the shallow mixed-
domain transfer learning approach is
more effective across the following di-
mensions of the COVID-19 data: tem-
poral dimension (the context in the
dataset evolves), length dimension.

Table 2.3 – Some examples of original vs. generated papers in the “fully generated" corpus.

Vijini Liyanage CHAPTER 2. CHAPTER 2 35



2.2. D2: DATASET OF FULLY GENERATED ARTICLES (GENERATED WITH A
TEMPERATURE PARAMETER OF 0.9).

2.2 D2: Dataset of Fully Generated Articles (generated

with a temperature parameter of 0.9).

Since the seed text which was used in generating the D1 dataset represents an im-
portant lead for the generation process, the generated articles contain a lot of content
from the respective original paper. Thus to address this issue, we tried to introduce more
randomness in the models’ output. In language models, one way to introduce more ran-
domness is to increase the temperature τ of the softmax that is used to determine the
probabilities of the following token w:

exp
(

hT ew
τ

)
∑

wi∈V exp
(

hT ewi

τ

) (2.1)

where hT are the outputs of a hidden layer in the LM, and ew are embeddings of the w

token in the vocabulary V . Since increasing the temperature increases the probability of
generating more variations in the text with respect to the original, we built a new dataset
of fake articles by increasing the temperature of the model to 0.9 instead of the original
temperature of 0.7). For this generation process, we followed the same steps applied
in composing the D1 dataset. We leveraged BLEU and ROUGE scores to measure the
novelty of the generated articles when compared with the original ones and the respective
results are provided under Section 4.

36 CHAPTER 2. CHAPTER 2 Vijini Liyanage



2.3. D3: A HYBRID DATASET COMPOSED BY A MIX OF MACHINE
GENERATED AND HUMAN WRITTEN CONTENT.

2.3 D3: A hybrid dataset composed by a mix of ma-

chine generated and human written content.

This corpus is a collection of abstracts which are composed of a combination of original
content and machine generated sentences. It corresponds to a situation in which an author
would recur to language generation to fill in certain parts of hers paper. To compose this
corpus, we ignored papers containing the name of the proposed model, product or project
in the proposal statement of the abstract, as the Arxiv-NLP model might suggest a name
that would not be consistent with the rest of the abstract (the sentences extracted from
the original abstract), thus making the generated abstract too easily distinguishable from
human written abstracts. Table 2.4 shows some examples of the original abstracts and
their corresponding generated abstracts. For this task we utilized some of the latest
abstracts from Artificial Intelligence domain in ArXiv.

Original Abstract Generated Abstract
Our experiments suggest that mod-
els possess belief-like qualities to
only a limited extent, but up-
date methods can both fix incor-
rect model beliefs and greatly im-
prove their consistency. Although
off-the- shelf optimizers are surpris-
ingly strong belief- updating baselines,
our learned optimizers can outperform
them in more difficult settings than
have been considered in past work.

Our experiments suggest the importance
of model beliefs in learning models,
and we show that the approach outper-
forms automatic model updating sys-
tems using word representations. Al-
though off-the- shelf optimizers are surpris-
ingly strong belief- updating baselines, our
learned optimizers can outperform them in
more difficult settings than have been con-
sidered in past work.

Vijini Liyanage CHAPTER 2. CHAPTER 2 37



2.3. D3: A HYBRID DATASET COMPOSED BY A MIX OF MACHINE
GENERATED AND HUMAN WRITTEN CONTENT.

Simultaneously evolving morphologies
(bodies) and controllers (brains) of
robots can cause a mismatch between
the inherited body and brain in the off-
spring. To mitigate this problem, the
addition of an infant learning period
by the so-called Triangle of Life frame-
work has been proposed relatively long
ago. However, an empirical assessment
is still lacking to-date. In this paper
we investigate the effects of such a
learning mechanism from different
perspectives.

Simultaneously evolving morphologies (bod-
ies) and controllers (brains) of robots can
cause a mismatch between the inherited body
and brain in the offspring. To mitigate this
problem, the addition of an infant learn-
ing period by the so-called Triangle of Life
framework has been proposed relatively long
ago. However, an empirical assessment is still
lacking to-date. In this paper , we present
a method to evaluate the effect of an
algorithm based on the development
of a hybrid human/bot learning frame-
work, which combines the development
of both a hybrid robot and a human
model on the same domain.

Table 2.4 – Some examples of original vs. generated abstracts from the “hybrid" corpus.

38 CHAPTER 2. CHAPTER 2 Vijini Liyanage



2.3. D3: A HYBRID DATASET COMPOSED BY A MIX OF MACHINE
GENERATED AND HUMAN WRITTEN CONTENT.

Figure 2.2 – Architecture Followed in Composing Hybrid Dataset

As represented in Figure 2.2, each hybrid abstract is made of 4 parts. The initial
content is extracted from an original abstract up to the point where it reveals about
the proposal (e.g. “In this paper,”, “We propose”, “Here we”). The next sentence is
generated until the first full-stop, using the Arxiv-NLP provided by the Huggingface
team [Wol+20a]. Then, the rest of the original abstract is copied until the point that
corresponds to the conclusion (e.g. “We conclude”, “Our results show that” ). Again, using
the Arxiv-NLP, the rest of the abstract is generated. Likewise 100 new abstracts were
composed. The temperature parameter was set to 1 and top-p was 0.9. This generation
is done with human intervention, so that it is biased towards the objective strategy of
making the generated content difficult to detect.

Vijini Liyanage CHAPTER 2. CHAPTER 2 39



2.4. D4: A DATASET COMPOSED OF GENERATED ABSTRACTS (USING
PRE-TRAINED GPT-2 MODEL)

2.4 D4: A dataset composed of generated abstracts

(using pre-trained GPT-2 model)

This dataset of abstracts is built using OpenAI’s pre-trained GPT-2 English model
without fine-tuning. This dataset corresponds to the way most of the previous works have
introduced the generated data in their detection experiments. The GPT-2 model that we
used has 24 layers, 1024-hidden states, 16-heads and 345M parameters. The temperature
of the model at this generation was set to 0.7. The model has been pre-trained on
abstracts from the Arxiv-NLP domain. To prevent the model from repeating the output
tokens starting from the beginning, we had to set the early stopping feature of the model
to true, which makes the generated abstracts shorter in length than the original abstract
lengths. Furthermore, when examining the generated abstracts, we could see that they
contain sentences that can be factually incorrect. This is expected since the model is not
fine-tuned.

Few examples of this corpus are provided in Table 2.5. As per the first example, we
can see that when the model is not fine-tuned, it tends to generate text that can be out of
the context (more general in nature). For an example the statement “developing a model
that can be used to train a large number of models on a single dataset.” is just a general
sentence which does not add any information specific to the context, that is focused in
the abstract. Thus such generations make it easy to detect them from their respective
original contents.

40 CHAPTER 2. CHAPTER 2 Vijini Liyanage



2.4. D4: A DATASET COMPOSED OF GENERATED ABSTRACTS (USING
PRE-TRAINED GPT-2 MODEL)

Original Abstract Generated Abstract
Unsupervised pre-training is now the
predominant approach for both text
and speech understanding. Self-
attention models pre-trained on large
amounts of unannotated data have
been hugely successful when fine-tuned
on downstream tasks from a variety of
domains and languages. This paper
takes the universality of unsupervised
language pre-training one step further,
by unifying speech and text pre-
training within a single model.
We build a single encoder with the
BERT objective on unlabeled text
together with the w2v-BERT ob-
jective on unlabeled speech.

Unsupervised pre-training is now the pre-
dominant approach for both text and speech
understanding. Self-attention models pre-
trained on large amounts of unannotated
data have been hugely successful when fine-
tuned on downstream tasks from a vari-
ety of domains and languages. This paper
takes the universality of unsupervised lan-
guage pre-training one step further, devel-
oping a model that can be used to
train a large number of models on a
single dataset. The model can then
be applied to a wide range of real-
world tasks, including speech recogni-
tion, natural language processing, and
machine translation.

This paper presents an approach to
measuring business sentiment based on
textual data. Business sentiment has
been measured by traditional surveys,
which are costly and time-consuming
to conduct. To address the issues, we
take advantage of daily newspaper ar-
ticles and adopt a self-attention-based
model to define a business sentiment
index, named S-APIR, where out-
lier detection models are investi-
gated to properly handle various
genres of news articles. Moreover,
we propose a simple approach to
temporally analyzing how much
any given event contributed to the
predicted business sentiment in-
dex.

This paper presents an approach to mea-
suring business sentiment based on textual
data. Business sentiment has been measured
by traditional surveys, which are costly and
time-consuming to conduct. To address the
issues, we take advantage of daily newspa-
per articles and adopt a self-attention-based
model to define a business sentiment index,
i.e. a measure of how people perceive
the state of the economy. We find that
the index is highly correlated with the
stock market, with a correlation coeffi-
cient (r) of 0.78.

Table 2.5 – Some examples of original vs. generated abstracts from the “hybrid" corpus.

Vijini Liyanage CHAPTER 2. CHAPTER 2 41



2.5. D5: A DATASET OF HOTEL REVIEWS GENERATED BY GPT-2 AND GPT-3
MODELS.

2.5 D5: A dataset of hotel reviews generated by GPT-2

and GPT-3 models.

While our primary focus was on detecting artificially generated academic content, we
decided to diversify our approach by creating a corpus of hotel reviews. The objective was
to explore and evaluate the challenges posed by detection of generated academic content
in contrast to detection of other types of generated content.

This corpus consists of AI-generated hotel reviews of 20 Chicago hotels. The origi-
nal reviews were extracted from the famous Myle Ott’s opinion spam dataset [Ott+11]
[OCH13]. Despite the fact that our research is aimed at detecting academic content, we
created this dataset since it is easier to build a model of the hotel as a knowledge graph
(e.g; it has a swimming pool, gym) from the true ones and compare with the fake ones,
than to do that with academic content. Thus it was our step one in the process of making
use of knowledge bases for detection.

For this task, we leveraged the 124M-parameter GPT-2 and GPT-3 models. GPT-2
was finetuned with the original reviews. Then, following the same methodology that we
used in generating D1 corpus, 400 new reviews (20 for each hotel) were generated. GPT-3
was not fine-tuned, instead the pre-trained model was used for generation. In this task,
the first 10 words of the original reviews from the Myle Ott Opinion Spam corpus were
used as the seed text. And the rest is generated using the GPT-3 model, to complete
for a length comparable to the length of the original review. Likewise 20 reviews were
generated for each hotel making a total of 400 reviews. The original and generated hotel
reviews are available at 2.

Furthermore, adopting the counter-detection strategy as outlined by [Sad+23], we con-
structed a final dataset using paraphrasing techniques. Specifically, a T5 model fine-tuned
on paraphrases generated by chatGPT, accessible on Hugging Face 3, served as the chosen
paraphrasing model. For each original review, we generated five distinct paraphrases and
randomly selected one from the set. Employing this approach, we applied paraphrasing
to the reviews generated by the GPT-3 model, resulting in an additional set comprising
800 fake reviews. This method allowed for a diverse and varied collection of paraphrased
content to enhance the robustness of the dataset for experimentation and analysis.

2. https://github.com/dbuscaldi/op_spam_GPT3
3. https://huggingface.co/humarin/chatgpt_paraphraser_on_T5_base

42 CHAPTER 2. CHAPTER 2 Vijini Liyanage

https://github.com/dbuscaldi/op_spam_GPT3
https://huggingface.co/humarin/chatgpt_paraphraser_on_T5_base


2.5. D5: A DATASET OF HOTEL REVIEWS GENERATED BY GPT-2 AND GPT-3
MODELS.

Below are examples of negative reviews:
— Original review: This hotel must have originally been an ordinary downtown

hotel in a not very nice neighborhood. The owners have painted it over and fixed
up the lobby to make it an "upscale" overpriced boutique hotel. But it’s still just
an ordinary hotel with a paint job. Stay here if you want to experience staying in
a flophouse, but with all the sleaze removed. Definitely stay at the chain’s other
location, the Burnham, for a much, much nicer hotel.

— Fine-tuned GPT-2 generated review: We stayed in hotel Allegro and it was
bad. Although the rooms are decent, they are not called “The Best in a Hilliard"
and are not suited with insole. The bathroom was very small and has anearth and
mineral salts. The pipes and sinks were old and the shower and tub are in need of a
major overhaul. The hotel charges for internet and/or rental for 5 internet sessions
a day. If you sign up for wireless internet, they do not fund wireless internet so
slow and un-favorable wireless speeds.

— Pre-trained GPT-3 generated review: This hotel must have originally been
an ordinary downtown hotel but now it is hardly more than a shabby motel. The
walls are dirty and the furniture is worn, with some broken pieces. My room
smelled musty and the carpets had stains. The bed was uncomfortable and the
linen was old and threadbare. The staff were not particularly helpful and I felt like
I was an inconvenience to them.

— Paraphrased GPT-3 review: I’m sure the hotel was once a regular downtown
hangout, but it’s now resembles ruins. The walls are unclean, the furniture is old
and scratchy, there are stains in every room, an uncomfortable bed, and lifeless
linens.

Vijini Liyanage CHAPTER 2. CHAPTER 2 43



2.6. D6: DATASET PUBLISHED BY DAGPAP22 SHARED TASK.

2.6 D6: Dataset published by DAGPap22 shared task.

DAGPap22 [Kas+22]’s original data is comprised of excerpts extracted from “Mi-
croprocessors and microsystems (MICPRO)” journal and abstracts copied from papers
related to UN’s Sustainable Development Goals 4. Its fake (generated) content are com-
posed of abstracts generated by GPT, GPT-neo and GPT3 models (The initial sentence
of each original abstract is chosen as the prompt), summarized abstracts produced by
Longformer Encoder-Decoder (LED) text summarization model (aforementioned original
papers were used as the inputs), abstracts paraphrased with Spinbot 5 and excerpts that
are taken from retracted papers of the MICPRO journal. Altogether their training set
contains 5327 records in which around 69% is fake. Few examples of the dataset are
provided in Table 2.6.

Origin of ex-
cerpt

Excerpt

Original excerpt In this paper we propose a low-error approximation of the sigmoid
function and hyperbolic tangent, which are mainly used to acti-
vate the artificial neuron, based on the piecewise linear method.
Here, the hyperbolic tangent is alternatively approximated by ex-
ploiting its mathematical relationship with the sigmoid function,
showing better results. Special attention has been paid to study
the minimum number of precision bits to achieve the convergence
of a multi-layer perceptron network in finite arithmetic machine.
All the approximation results show lower mean relative and abso-
lute error than those reported in the state-of-the-art. Finally, the
sigmoid digital implementation is discussed and assessed in terms
of work frequency, complexity and error in comparison with the
state-of-the-art.

4. https://sdgs.un.org/2030agenda
5. https://spinbot.com

44 CHAPTER 2. CHAPTER 2 Vijini Liyanage



2.6. D6: DATASET PUBLISHED BY DAGPAP22 SHARED TASK.

Fake excerpt
(Summarized)

In this paper, the aim of the study is to determine the effect of trans-
planting islets from the stomach into the gastroesophageal space via
a gastric gastroscopical gastroscopy and then performing an endo-
scopic surgical procedure to extract an islet-derived tissue from the
gastric mucous membrane. The primary goal of this paper is to
explore the effects of this surgical procedure on the sensitivity of
the islet tissue to inflammatory drugs and to determine if the pro-
cedure can be safely performed without incurring an adverse effect
on the patient’s blood-clotting immune system by inducing an in-
flammatory response.

Table 2.6 – Excerpts Extracted from DAGPap22 Dataset

Vijini Liyanage CHAPTER 2. CHAPTER 2 45



2.7. D7: WIKIGPT DATASET COMPOSED OF WIKIPEDIA INTRODUCTIONS.

2.7 D7: WikiGPT dataset composed of wikipedia in-

troductions.

“GPT wiki intro" is a dataset introduced by [Bha23], which is composed of human
written Wikipedia introductions and GPT(Curie) generated introductions. For the gen-
eration, the first seven words of the original introduction are fed to the model as the
seed text. In this task, they have considered 150k different topics from various domains
(including academia). For our experiments, we extracted 500 original introductions and
their respective 500 generated introductions from the original dataset. Table 2.7 provides
several examples of this corpus.

Origin of in-
troduction

Introduction

Original
wikipedia in-
troduction

In mathematics, specifically differential calculus, the inverse func-
tion theorem gives a sufficient condition for a function to be in-
vertible in a neighborhood of a point in its domain: namely, that
its derivative is continuous and non-zero at the point. The theo-
rem also gives a formula for the derivative of the inverse function.
In multivariable calculus, this theorem can be generalized to any
continuously differentiable, vector-valued function whose Jacobian
determinant is nonzero at a point in its domain, giving a formula
for the Jacobian matrix of the inverse. There are also versions of
the inverse function theorem for complex holomorphic functions, for
differentiable maps between manifolds, for differentiable functions
between Banach spaces, and so forth. Statement For functions of
a single variable, the theorem states that if is a continuously dif-
ferentiable function with nonzero derivative at the point ; then is
invertible in a neighborhood of , the inverse is continuously differen-
tiable, and the derivative of the inverse function at is the reciprocal
of the derivative of at :

46 CHAPTER 2. CHAPTER 2 Vijini Liyanage



2.7. D7: WIKIGPT DATASET COMPOSED OF WIKIPEDIA INTRODUCTIONS.

Generated
wikipedia intro-
duction

In mathematics, specifically differential calculus, the inverse func-
tion theorem states that for every real-valued function there exists
an inverse function that satisfies the following two conditions:
1. The inverse function is continuous at every point where the
original function is continuous. 2. The inverse function is unique
up to a constant multiple of the given function’s derivative at any
given point.

Table 2.7 – Excerpts Extracted from WikiGPT Dataset

Vijini Liyanage CHAPTER 2. CHAPTER 2 47



Chapter 3

Methodology Adopted in Detecting
Artificial Text

This chapter is dedicated to the main contribution of our research, the detection
of automatically generated content. We considered detection as a binary classification
task. In our work, several SOTA classification models as well as novel detection tools
were leveraged for the detection task. Moreover, the attention of classification models
was examined to understand their performance levels. Thus the rest of this chapter is
organized as follows,

1. Evaluation of the quality of the artificially generated text.

2. Detection as a binary classification task.

(a) Statistical models and their ensembles employed in classification.

(b) Recurrent network models and their ensembles employed in classification.

(c) Transformer architectures and their ensembles employed in classification.

3. Leveraging detection tools to distinguish machine generated content from human
written content.

48



3.1. EVALUATION OF THE QUALITY OF THE ARTIFICIALLY GENERATED
TEXT.

3.1 Evaluation of the Quality of the Artificially Gener-

ated Text.

We present a double approach to evaluate the utility of the produced corpora for the
task of classifying artificially generated and human written academic texts in a context
where neural-based generation models have become common. We first evaluate the in-
trinsic quality of the generated texts, assuming that the more natural they seem the more
difficult and the more misleading they are for the detection methods. We also perform an
application-based evaluation using a panel of state-of-art detection models to assess the
difficulty of the classification task and to check that our benchmark is not biased towards
a specific detection approach.

To assess the intrinsic quality of our benchmark, we leveraged two measures: BLEU
(Bilingual Evaluation Understudy) [Pap+02] and ROUGE (Recall-Oriented Understudy
for Gisting Evaluation) [Lin04] to compare the generated contents with their respective
original contents. BLEU and ROUGE are two traditional measures used to compare
the candidate (generated) text with the reference (original) text. They are traditionally
considered as fluency measures that indicate how natural and artificial text is compared
to a natural original one. BLEU is a precision-based score while ROUGE is based on
recall. We calculated the BLEU score at uni-gram and sentence levels and ROUGE at
uni-gram (1), bi-gram (2) and Longest Common Sub-sequence (L) levels.

BLEU is a measure commonly used to evaluate machine-translated text, which can
be leveraged to quantify the similarity between original and generated sentences. BLEU
score is calculated by considering the similarity of the candidate sentence (eg: regarding
our task, the machine generated text) with the reference sentence (original text) and it
can take values ranging from 0 to 1. A value of 0 means that the candidate output has
no overlap with the reference sentence while a value of 1 means there is perfect overlap
with the reference.

As shown in the following equations (3.1, 3.2), the brevity penalty penalizes generated
contents that are too short compared to the closest reference length with an exponential
decay. The n-gram overlap counts how many unigrams, bigrams, trigrams, and four-grams
(i=1,...,4) match their n-gram counterpart in the reference contents. This term acts as a
precision measure.

Vijini Liyanage CHAPTER 3. CHAPTER 3 49



3.1. EVALUATION OF THE QUALITY OF THE ARTIFICIALLY GENERATED
TEXT.

BLEU = min
(
1, exp

(
1− reference-length

output-length
))

︸ ︷︷ ︸
brevity penalty

( 4∏
i=1

precisioni

)1/4

︸ ︷︷ ︸
n-gram overlap

(3.1)

with

precisioni =

∑
snt∈Cand-Corpus

∑
i∈snt min(mi

cand,m
i
ref )

wi
t =

∑
snt’∈Cand-Corpus

∑
i′∈snt’ m

i′
cand

(3.2)

where
mi

cand is the count of i-gram in candidate matching the reference content mi
ref

is the count of i-gram in the reference content wi
t is the total number of i-grams in

candidate content.

As depicted in equation 3.3, ROUGE-N is an n-gram recall between a candidate con-
tent and a set of reference contents.

ROUGE −N =

∑
snt∈references

∑
gramn∈snt countmatch(gramn)∑

snt∈references
∑

gramn∈snt count(gramn)
(3.3)

where n stands for the length of the n-gram, gramn, and countmatch(gramn) is the
maximum number of n-grams co-occurring in a candidate summary and a set of reference
summaries.

50 CHAPTER 3. CHAPTER 3 Vijini Liyanage



3.2. DETECTION AS A BINARY CLASSIFICATION TASK

3.2 Detection as a Binary Classification Task

We considered detection as a binary classification task for which we employed sev-
eral statistical as well as deep learning models to experiment detectability of the consid-
ered corpora. Leveraging a variety of classification models helps us in verifying that the
datasets composed in our work are not biased towards a specific model type. Methodology
adapted with each model and the respective results are elaborated under the following
subsections.

3.2.1 Statistical Models and Their Ensembles Employed in Clas-

sification

Standalone Statistical Models for Classification

In our research we leveraged several statistical classification models based on Bag of
Words [Har54] and tf-idf such as Multinomial Naive Bayes, Passive Aggressive Classi-
fier Multinomial Classifier with Hyper-parameter (alpha) algorithms and Support Vector
Machine (SVM) [CV95]. For the vocabulary, we considered not only single words but
n-grams of size 1-3 words.

The "Bag of Words" (BoW) is a representation technique used to transform text data
into numerical vectors that can be processed by machine learning algorithms. In a "bag
of words" representation, the text is treated as an unordered collection (or "bag") of
words, and the frequency of each word in the text is counted. The order of the words
and the grammar of the text are disregarded; only the occurrence of words matters. This
representation is particularly useful for tasks like text classification.

Term Frequency-Inverse Document Frequency (TF-IDF) is a numerical statistic used
in natural language processing and information retrieval to evaluate the importance of a
word within a document relative to a collection of documents, known as a corpus. TF-IDF
is calculated by multiplying two values: Term Frequency (TF), which measures how often
a term appears in a document, and Inverse Document Frequency (IDF), which measures
how unique or rare a term is across the entire corpus. The idea is that a term is considered
significant if it appears frequently in a specific document but is not overly common across
the entire collection.

Vijini Liyanage CHAPTER 3. CHAPTER 3 51



3.2. DETECTION AS A BINARY CLASSIFICATION TASK

Naive Bayes is a probabilistic classification algorithm based on Bayes’ theorem and it is
widely used for tasks such as spam detection. It assumes that the features are conditionally
independent given the class label. Passive Aggressive is a type of algorithm that aims
to make aggressive updates when it encounters a misclassified point and passive updates
when the point is correctly classified. SVM is a powerful supervised machine learning
algorithm used for classification and regression tasks. It is a popular algorithm in text
classification tasks.

Ensemble Architectures Formed with Statistical Classification Models

We harnessed the capabilities of ensembles comprising the aforementioned statistical
models, applying various ensemble methodologies such as voting, stacking, bagging, and
boosting. By amalgamating the predictions of multiple models, ensemble techniques aim
to enhance the overall predictive power of our system.

1. Voting: combines the outputs through a majority or weighted decision.

2. Stacking: involves training a meta-model on the predictions of base models.

3. Bagging: leverages bootstrapped subsets of data for training individual models.

4. Boosting: iteratively adjusts model weights to prioritize difficult-to-classify in-
stances.

Through these ensemble strategies, we sought to extract richer insights from our data
and attain improved classification performance.

52 CHAPTER 3. CHAPTER 3 Vijini Liyanage



3.2. DETECTION AS A BINARY CLASSIFICATION TASK

3.2.2 Recurrent Network Models and Their Ensembles Employed

in Classification

Recurrent models, a subset of neural network architectures, are models designed to
capture temporal dependencies and patterns within sequences.

Standalone Recurrent Network Models for Classification

We conducted experiments with Long Short-Term Memory (LSTM) and Bidirectional
Long Short-Term Memory (Bi-LSTM) models, which are specialized recurrent neural
network (RNN) architectures designed to address the challenges of capturing long-range
dependencies in sequential data.

LSTM is a type of RNN that mitigates the vanishing gradient problem, allowing it
to capture and remember information over long sequences more effectively. Traditional
RNNs struggle with maintaining information over time due to the nature of gradient
updates during training. LSTM introduces a memory cell and gating mechanisms that
control the flow of information, facilitating the retention of relevant information over ex-
tended periods. This makes LSTMs particularly well-suited for tasks involving sequences
with long-term dependencies, such as natural language processing and time series analysis.

Bi-LSTM enhances the capabilities of the LSTM by processing input sequences in
both forward and backward directions. This bidirectional approach allows the network
to consider context from both preceding and succeeding elements in the sequence. By
capturing information from both directions, Bi-LSTM is better equipped to understand
the context and dependencies within the entire sequence, leading to improved performance
in tasks requiring a comprehensive understanding of the input data. This architecture
is commonly used in applications like speech recognition, sentiment analysis, and named
entity recognition.

In summary, while LSTM addresses the challenges of capturing long-term dependencies
in sequential data, Bi-LSTM further enhances this capability by processing information
bidirectionally, providing a more comprehensive understanding of the context within the
input sequence.

Ensemble Architectures Formed with Recurrent Neural Network Models

In order to enhance the classification accuracies of our models, we employed an en-
semble strategy by integrating them with a Convolutional Neural Networks (CNNs) ar-

Vijini Liyanage CHAPTER 3. CHAPTER 3 53



3.2. DETECTION AS A BINARY CLASSIFICATION TASK

chitecture. This novel hybrid approach, combining Recurrent Neural Networks (RNNs)
with CNNs, aims to leverage the inherent strengths of each model in capturing temporal
dependencies and spatial features, respectively.

The integration of the proposed RNN-CNN ensemble contributes to an overall im-
provement in predictive capabilities. RNNs are well-suited for understanding temporal
relationships within sequential data, while CNNs excel in extracting spatial features from
input data. By combining these strengths, our approach seeks to create a more robust
and comprehensive model for classification tasks.

Importantly, we conducted end-to-end training of the entire ensemble. This holistic
training approach allows the network to autonomously learn how to optimally combine
the distinctive features extracted by both the LSTM (Long Short-Term Memory) and
CNN components. This adaptability ensures that the ensemble model optimally exploits
the synergies between temporal and spatial information, leading to enhanced classification
performance. The end-to-end training methodology facilitates seamless integration, pro-
moting synergy between the constituent models and enabling the ensemble to effectively
learn and leverage the complementary aspects of both RNN and CNN architectures.

54 CHAPTER 3. CHAPTER 3 Vijini Liyanage



3.2. DETECTION AS A BINARY CLASSIFICATION TASK

3.2.3 Transformer Architectures and Their Ensembles Employed

in Classification

Standalone Transformer Architectures for Classification

For our classification experiments, we leveraged cutting-edge transformer models,
namely BERT, DistilBERT, SciBERT, DeBERTa, XLNet and ELECTRA. These state-
of-the-art architectures have demonstrated exceptional proficiency in a wide spectrum of
natural language processing tasks, including classification.

BERT (Bidirectional Encoder Representations from Transformers) [KT19] is based
on the Transformer architecture, which uses self-attention mechanisms to weigh the im-
portance of different words in a sentence adaptively. The model is pre-trained on vast
amounts of diverse text data, learning to predict missing words in a sentence. After
pre-training, BERT can be fine-tuned for specific NLP tasks such as text classification,
named entity recognition, question answering, and more. One of BERT’s notable features
is its ability to generate contextualized embeddings, providing a dynamic representation
of words based on their context within a sentence. This contextual awareness has made
BERT a cornerstone in various NLP applications, and its pre-trained representations often
serve as a starting point for fine-tuning on domain-specific tasks. BERT has significantly
advanced the state of the art in natural language understanding and has become a widely
adopted model in the NLP community.

DistilBERT [San+19] is a distilled version of the BERT model, developed by Hugging
Face. The primary goal of DistilBERT is to provide a more computationally efficient and
lightweight alternative to the original BERT while maintaining competitive performance
in natural language processing (NLP) tasks. The distillation process involves training
DistilBERT to mimic the behavior of the larger BERT model by leveraging its knowl-
edge and representations. This allows DistilBERT to capture the essential contextual
information and semantic understanding present in BERT but in a more compact form.

SciBERT [BLC19], a model tailored for scientific text and domain-specific language
understanding. The key distinction of SciBERT lies in its pre-training on large-scale
scientific corpora, including research papers from disciplines such as computer science,
biology, chemistry, and physics. This domain-specific pre-training allows SciBERT to
grasp the unique vocabulary, syntax, and context prevalent in scientific texts. As a
result, it excels in tasks related to scientific document analysis, information retrieval, and
understanding specialized terminology.

Vijini Liyanage CHAPTER 3. CHAPTER 3 55



3.2. DETECTION AS A BINARY CLASSIFICATION TASK

DeBERTa (Decoding-enhanced BERT with Disentangled Attention) [He+20] intro-
duces enhancements for better decoding and disentangled attention. One key feature
of DeBERTa is its ability to dynamically adjust attention during both pre-training and
fine-tuning phases, allowing the model to capture dependencies more effectively. By disen-
tangling attention mechanisms, DeBERTa can better focus on relevant parts of the input
sequence, enhancing its performance in tasks such as natural language understanding
and generation. DeBERTa has demonstrated improvements in various downstream tasks,
including text classification, question answering, and language modeling. The model’s fo-
cus on disentangled attention aims to address challenges related to capturing long-range
dependencies and understanding complex contextual relationships within text.

XLNet [Yan+19] introduces the concept of permutation language modeling, combining
the strengths of both autoregressive and autoencoding models. Unlike BERT, which
masks random words in a sentence for prediction during training, XLNet considers all
words but still maintains the bidirectional context. It achieves this by leveraging the
idea of permuting the order of words in a sequence and training the model to predict the
original order. This approach allows XLNet to capture bidirectional context information
while avoiding the limitations of purely autoregressive or autoencoding methods.

ELECTRA, short for "Efficiently Learning an Encoder that Classifies Token Replace-
ments Accurately," [Cla+16] is a pre-training language model designed to improve the
efficiency of large-scale language representation learning. ELECTRA follows the masked
language model paradigm, similar to BERT (Bidirectional Encoder Representations from
Transformers), but with a novel approach for training efficiency. In ELECTRA, a small
portion of input tokens is replaced with incorrect ones, and the model is trained to distin-
guish between the original and replaced tokens. This approach is in contrast to BERT’s
masked language model, where some tokens are randomly masked, and the model learns
to predict those masked tokens. ELECTRA’s method is more computationally efficient
as it avoids the need to predict every masked token, focusing on discriminating between
genuine and replaced tokens instead.

56 CHAPTER 3. CHAPTER 3 Vijini Liyanage



3.2. DETECTION AS A BINARY CLASSIFICATION TASK

Ensembles Formed with Transformer Architectures for Classification

We mainly built two forms of ensembles by utilizing transformer architectures,

1. Ensembles created by combining the capabilities of SciBERT and De-
BERTa models with the foundational BERT model.

As represented in architectural diagram 3.1, ensembling involves combining the
individual capabilities of these models to achieve a more robust and accurate overall
prediction.

Figure 3.1 – Architecture of DeBERTa/ SciBERT + BERT Ensemble

The process begins by channeling the input data through each base model sep-
arately. Each base model consists of a transformer block, a crucial component
in transformer architectures for capturing contextual information in the data, fol-
lowed by a max pooling layer. The transformer block is responsible for processing
and contextualizing the input sequence, while the max pooling layer helps extract
the most salient features from the processed data.

After passing through the transformer block and max pooling layer of each base
model, the outcomes from these individual models are collected and concatenated.
This concatenation generates a unified representation that encapsulates the unique
insights and features extracted by each model. This combined representation forms
a richer and more comprehensive understanding of the input data.

Subsequently, the unified representation is channeled into a linear classification
layer. This layer is responsible for making refined predictions based on the aggre-
gated information from the ensemble of models. The linear classification layer uses

Vijini Liyanage CHAPTER 3. CHAPTER 3 57



3.2. DETECTION AS A BINARY CLASSIFICATION TASK

the concatenated features to generate a final output, which is interpreted as the
model’s prediction for the given input.

By ensembling SciBERT, DeBERTa, and BERT in this manner, we aim to capital-
ize on the diverse strengths of each model, capturing a broader range of contextual
and semantic information from the input data. This ensemble approach enhances
the overall predictive performance, making the model more robust and effective in
handling a variety of natural language processing tasks.

2. Ensembles created by incorporating the transformer model with Con-
volutional Neural Networks (CNNs) layers.

The architectural diagram referenced as 3.2 illustrates the configuration of this com-
bined model.

Figure 3.2 – Architecture of Transformer-CNN Ensemble (Here, the “input type ids,"
“input masks," and “input ids" are the components used to prepare and encode the input
data for the transformer model.)

In developing the Transformer-CNN ensemble architecture, we followed a similar ap-
proach to what Andrew Fogarty have proposed in their article 1. The process begins with
the transformer model, which is employed to generate embeddings for the input data.
These embeddings capture the contextual information and semantic features of the input
sequence, providing a rich representation of the data. Instead of utilizing nn.Embedding
layers and a lookup table, as is often done in traditional approaches [Kim14], we directly
use the transformer-generated embeddings as the input for the subsequent CNN layers.

The CNN component consists of three stacked convolutional layers, designed to cover
a substantial portion of the input data and extract relevant features through convolutional

1. http : //seekinginference.com/appliednlp/bert− cnn.html

58 CHAPTER 3. CHAPTER 3 Vijini Liyanage



3.2. DETECTION AS A BINARY CLASSIFICATION TASK

operations. This hierarchical stacking allows the model to capture different levels of ab-
straction in the input sequence. Following the convolutional layers, the output undergoes
a dropout operation, introducing a form of regularization to prevent overfitting.

Next, a max pooling layer is applied to the output of the convolutional layers. Max
pooling helps retain the most salient features by selecting the maximum value within
specific regions of the data. Another dropout layer is introduced after max pooling to
further enhance the model’s robustness.

The processed data is then fed into a dense layer for the final classification. The
dense layer is responsible for transforming the features extracted by the transformer and
CNN components into a format suitable for the desired classification task. The absence
of nn.Embedding layers in our approach reflects the seamless integration of the trans-
former and CNN components, with the embeddings directly serving as the input for the
subsequent CNN layers.

Overall, this ensemble architecture, combining the strengths of transformers and
CNNs, is tailored to effectively capture both contextual information and local features in
the input data. The resulting model exhibits enhanced performance, making it well-suited
for a variety of natural language processing tasks.

Vijini Liyanage CHAPTER 3. CHAPTER 3 59



3.3. LEVERAGING DETECTION TOOLS TO DISTINGUISH MACHINE
GENERATED CONTENT FROM HUMAN WRITTEN CONTENT

3.3 Leveraging Detection Tools to Distinguish Machine

Generated Content from Human Written Content

Currently, there is a numerous number of detection tools which can be employed to
distinguish machine generated text from human written text. These tools leverage ad-
vanced algorithms, linguistic analyses, and anomaly detection techniques to scrutinize
various aspects of the text, such as writing style, language patterns, and contextual co-
herence. Ranging from stylometric analysis to rule-based systems, these tools play a
crucial role in addressing the challenges posed by the proliferation of machine-generated
content, providing valuable resources to verify the authenticity of textual information in
diverse contexts. Researchers and practitioners can choose from a diverse array of these
tools, each offering unique capabilities and methodologies, to enhance the accuracy and
reliability of discerning between human and machine-generated text. In our work, we
employed the following detection tools,

1. GLTR (Giant Language Model Test Room) [GSR19]:

In our evaluation process, we utilized GLTR , a visualization tool designed to as-
sist humans in distinguishing between text generated by large language models and
human-written content. It analyzes the probability distribution of tokens gener-
ated by a language model, highlighting those that are most likely to be machine-
generated. The tool provides visualizations where different colors represent the
likelihood of a token being among the top-ranked predictions by the model. For
instance, tokens in green are among the top 10 most probable, facilitating a quick
and intuitive assessment of the generated text’s authenticity. GLTR is particu-
larly useful for evaluating the naturalness and distinguishability of text produced
by language models, aiding researchers and practitioners in understanding and
mitigating the challenges associated with automated content generation.

2. DetectGPT[Mit+23]:

DetectGPT is a tool that assesses whether a given text has been generated by a
GPT (Generative Pre-trained Transformer) model or if it originates from human-
written content. The evaluation is based on a Z-score calculation, which is a
statistical measure indicating how many standard deviations a particular data
point is from the mean of a group of data. Here’s a breakdown of the process:

60 CHAPTER 3. CHAPTER 3 Vijini Liyanage



3.3. LEVERAGING DETECTION TOOLS TO DISTINGUISH MACHINE
GENERATED CONTENT FROM HUMAN WRITTEN CONTENT

— Original Log Probability: DetectGPT starts by computing the log probability
of the tokens in the original text. The log probability provides a measure of
how likely each token is according to the language model.

— Perturbed Log Probability: Perturbation involves introducing slight modifica-
tions or noise to the original text. DetectGPT computes the log probability of
the perturbed text tokens.

— Z-Score Calculation: The Z-score is then calculated by finding the difference
between the original log probability and the average perturbed log probabil-
ity. This difference is divided by the standard deviation of the perturbed log
probability.

— Thresholds for Claiming Generation: If the resulting Z-score is greater than
1, DetectGPT asserts that the text is likely generated by a GPT model. A
Z-score greater than 1 indicates that the original log probability significantly
deviates from the perturbed log probability. Conversely, if the Z-score is lower
than 0.25, DetectGPT claims that the text is not generated by a GPT model.
A Z-score below 0.25 suggests that the original log probability is well within
the range of perturbed log probabilities expected for human-generated text.

In summary, DetectGPT uses statistical analysis through Z-scores to quantify the
likelihood that a given text is machine-generated by a GPT model. This approach
considers the deviation of the original log probability from the average perturbed
log probability, providing a threshold-based classification for the origin of the text.

3. GPT-2 Output Detector[Sol+19]:

GPT-2 Output Detector is a model introduced by OpenAI concurrently with the
release of the weights for the largest GPT-2 model. It is designed by fine-tuning
a RoBERTa model with the outputs of the 1.5B-parameter GPT-2 model. This
detector indicates the fake token percentage of a given text and the tool claims
to have an accuracy around 95% for detecting GPT-2 generated text. One can
run this detector model either by launching their web UI or even by training the
model on a new dataset. The tool examines your text and shows the chance
it was written by a human or an AI. It uses green for real content and red for
AI-generated. Nevertheless not much details about this detector architecture are
publicly available.

Vijini Liyanage CHAPTER 3. CHAPTER 3 61



3.3. LEVERAGING DETECTION TOOLS TO DISTINGUISH MACHINE
GENERATED CONTENT FROM HUMAN WRITTEN CONTENT

4. GPTZero 2:

GPTZero, a language model designed to distinguish between human-written con-
tent and material generated by AI models. Trained on a diverse corpus [TC23]
encompassing both human and AI-generated text, with a focus on English prose,
GPTZero introduces three key features:

— Multi-Level Classification: GPTZero offers users the ability to assess the AI-
generated content within a document at multiple levels—sentence, paragraph,
and document. On a sentence level, it adeptly identifies portions crafted by
AI or human authors, enabling a precise evaluation of the proportion of AI-
generated content in the document. For documents yielding mixed outcomes,
GPTZero furnishes a score indicating the likelihood that the entire document
was AI-generated.

— Perplexity Score: The Perplexity Score serves as a measure reflecting how ef-
fectively a language model can predict a sequence of words.
Perplexity is defined as the exponentiated average negative log-likelihood of a
sequence. If we have a tokenized sequence X = (x0, x1, ..., xt),

then the perplexity of X is,

PPL(X) = exp{−1

t

t∑
i

logpθ(xi|x<i)} (3.4)

where logpθ(xi|x<i) is the log-likelihood of the ith token conditioned on the
preceding tokens x<i according to the considered model 3.
GPTZero computes this score for each document, providing insights into the
model’s uncertainty when distinguishing between human and AI-generated con-
tent. A low perplexity score indicates high confidence in the model’s predic-
tions, while a higher score implies a degree of uncertainty, offering valuable
information on the model’s text classification accuracy.

— Burstiness Score: GPTZero introduces the Burstiness Score, a metric gauging
the recurrence of similar phrases or topics within a document. This score helps
determine the level of similarity between different sections.
Burstiness can be calculated using the following formula:

B = (λ− k)/(λ+ k) (3.5)

2. https://gptzero.me/
3. https://huggingface.co/docs/transformers/en/perplexity

62 CHAPTER 3. CHAPTER 3 Vijini Liyanage

https://gptzero.me/


3.3. LEVERAGING DETECTION TOOLS TO DISTINGUISH MACHINE
GENERATED CONTENT FROM HUMAN WRITTEN CONTENT

where, B = Burstiness, λ = Mean inter arrival time between bursts and k =
Mean burst length 4.
A higher burstiness Score suggests increased chances of AI involvement in text
generation, as machine-generated content often exhibits repetitive patterns.

However, [WF23] claims that by introducing spelling mistakes in generated
content and processing them with QuillBot 5 can make the results of GPT-2
Output Detector and GPTZero less accurate.

4. https://ramblersm.medium.com/exploring-burstiness-evaluating-language-dynamics-in-llm-
generated-texts

5. https://quillbot.com

Vijini Liyanage CHAPTER 3. CHAPTER 3 63



Chapter 4

Results and Evaluation

This chapter provides scores generated using various evaluation measures employed
by different models and tools.

4.1 BLEU and ROUGE Scores

As previously mentioned in Chapter 3, BLEU and ROUGE scores were used to eval-
uate the quality of the generated corpora, in comparison to the original (human written)
content.

We calculated BLEU and ROUGE scores for full article-datasets, which were generated
using the fine-tuned GPT-2 models, the abstract dataset generated using pre-trained
GPT-2 and the hybrid dataset. The respective average BLEU and ROUGE scores are
provided in Table 4.1.

Corpus U-BLEU S-BLEU Rouge-1 Rouge-2 Rouge-L
D1: Fine-tuned 0.867 0.809 0.853 0.810 0.853
GPT-2(temp = 0.7)
D2: Fine-tuned 0.858 0.766 0.834 0.810 0.834
GPT-2(temp = 0.9)
D3: Hybrid dataset 0.824 0.792 0.882 0.840 0.881
D4: GPT-2 without 0.467 0.356 0.533 0.509 0.533
fine-tuning(temp = 0.7)

Table 4.1 – Average BLEU and ROUGE Scores

64



4.1. BLEU AND ROUGE SCORES

Rouge-1 and Rouge-L scores are almost similar when they are rounded off to three
decimal places. But when we consider more decimal places, it can be seen that the Rouge-
1 scores are slightly higher than the Rouge-L scores. If we consider overall Unigram vs.
sentence BLEU, as the unigram BLEU score is more tolerant than the sentence one, it is
normal that the sentence BLEU scores, although quite high, are lower than the unigram
BLEU scores.

It can be seen that the average BLEU scores are always higher in the fully generated
dataset compared to hybrid dataset, which means the fully generated dataset has a better
precision (that is, a good portion of the generated n-grams are also in the original text).
On the other hand, it can be seen that the average ROUGE scores of the fully generated
dataset is lower than the hybrid dataset. This means that the recall of the hybrid dataset
is at a better level compared to the other dataset (this is expected, as parts of the original
text are included in the generated one). The minimum scores are relatively high for both
BLEU and Rouge, indicating that there is a good degree of similarity between the texts
even when they are most dissimilar.

Despite the trade-off between precision and recall, the overall results show that the
academic contents that are generated with fine-tuned models have gained quite high (more
than 0.8), which indicates that those contents are quite similar to their respective natural
ones. Of course, some of the generated texts could be identified as “copies" of the original
texts but they have nevertheless been artificially generated and it is interesting to evaluate
the detection models against these texts that “look" natural.

It can be seen that the n-gram scores are decreased when the model temperature is
increased. This is justifiable since the more the randomness is the more the differences in
the generated text in comparison to the original. Moreover, there is a significant decrease
of scores in data produced by the pre-trained model, manifesting the fact that when a
generation model is not fine-tuned, it tends to output more random (out of the context)
content.

Vijini Liyanage CHAPTER 4. CHAPTER 4 65



4.2. RESULTS PRODUCED BY CLASSIFICATION MODELS

4.2 Results Produced by Classification Models

4.2.1 Experimental Setup

The text underwent initial processing, which included the removal of stopwords and
stemming, before being fed into either statistical or neural network architectures. After
this preprocessing, the data was converted into numerical vectors using Bag of Words
(BoW) or tf-idf encoding techniques. These numerical representations were then used as
inputs for the statistical models. All the statistical models, along with their corresponding
ensemble methods, were implemented using the Scikit-learn library.

To construct Long Short-Term Memory (LSTM) and Convolutional Neural Network
(CNN) models, the relevant layers were imported from the TensorFlow’s Keras module.
The training process for these recurrent models, including those integrated with CNN
ensembles, involved running 10 epochs. For the LSTM and Bidirectional LSTM (Bi-
LSTM) architectures, training was performed with batch sizes of 64 and 128, respectively.
This comprehensive approach encompassed both traditional statistical methodologies and
advanced neural network architectures for a thorough exploration of text data.

Concerning transformer architectures and their associated ensembles, pre-trained mod-
els from Hugging Face [Wol+20b] were imported and subsequently fine-tuned using Simple
Transformers 1. An overview of the transformer models utilized in our work is provided in
Table 4.2. Consistency was maintained across all models by using the BERT tokenizer.
The fine-tuning process comprised 3 epochs, a batch size of 16, and a maximum sequence
length of 128. Utilizing the T4 GPU Hardware accelerator, the average training time for
models was approximately 30 minutes. For standalone models, the input consisted of un-
processed text, while ensembles underwent pre-processing, including punctuation removal
and conversion to lowercase. This meticulous approach ensured the effective integration
of transformer models and their ensembles into the overall methodology.

The datasets were split into 60:20:20 for training, testing and validation. To assess the
classification performance of the models under consideration, the F1 score was employed.
This score, being a balanced combination of precision and recall, offers a comprehen-
sive evaluation. Each model underwent a total of five experimental iterations, and the
resultant average F1 scores are presented in the following tables.

1. https://simpletransformers.ai

66 CHAPTER 4. CHAPTER 4 Vijini Liyanage

https://simpletransformers.ai


4.2. RESULTS PRODUCED BY CLASSIFICATION MODELS

Model Vocab (K) Hidden Size Layers Batch Size Parameters(M)
BERTbase 30 762 12 64 110
DistilBERT 30 768 6 16 66
SciBERTbase 30 768 12 16 110
RoBERTalarge 50 1024 16 16 355
DeBERTalarge 50 1024 24 16 350
Electrabase 30 768 12 16 110
XLNetbase 32 768 12 16 110

Table 4.2 – Hyper Parameter of the Classification Models

Classification Model Fully Generated Hybrid
BoW, Multinomial Naive Bayes Algorithm 19.7 24.2
BoW, Passive Aggressive Classifier Algorithm 31.8 30.3
BoW, SVM 37.9 37.9
LSTM model 59.1 50.0
Bi-LSTM (Latest Paper) 40.9 47.0
BERT 52.5 50.0
DistilBERT 62.5 70.2

Table 4.3 – Classification Results for Fully Generated Dataset and Hybrid Dataset (BoW:
Bag of Words)

4.2.2 Results Produced by Classification Models on the Bench-

mark Dataset

As we explained in Chapter 2, our benchmark dataset is comprised of two corpora:
one containing automatically generated papers and another hybrid dataset which contains
original (human written) abstracts in which some sentences are substituted with machine
generated sentences.

The classification results are presented in Table 4.3. As per the results, the highest
classification score was obtained by the DistilBERT model regarding both datasets: the
scores are 62.5% and 70.2% for the fully generated dataset and the hybrid dataset, re-
spectively. These results show that the generated corpora are competent enough to be
used as a baseline datasets to experiment detection.

As expected, the scores differs from one model to the other, the deep learning based
models having higher accuracy scores than the statistical models. The higher scores are
obtained by DistilBERT model on both datasets: 62.5% and 70.2% for the fully generated

Vijini Liyanage CHAPTER 4. CHAPTER 4 67



4.2. RESULTS PRODUCED BY CLASSIFICATION MODELS

Model Fully Generated Dataset Hybrid Dataset Maronikolakis et al., 2020
Bi-LSTM 40.9 47.0 82.8
BERT 52.5 50.0 85.7
DistilBERT 62.5 70.2 85.5

Table 4.4 – Classification Results Comparison for Bi-LSTM, BERT and DistilBERT mod-
els

dataset and the hybrid dataset, respectively. Interestingly, if most models perform slightly
better on the Hybrid Dataset, it is not the case of LSTM model which achieves a much
better score on the Fully Generated Dataset and of BERT and passive aggressive classifier
at lesser degrees. This is an argument for including both datasets and different types of
generated data in our benchmark. Despite these differences, we observe globally that the
accuracy scores are not very high, even for DistilBERT. This is the most important point
to assess the quality of our benchmark in terms of classification difficulty.

We did a comparison of our results to the latest research works [MSS21] and the
results are depicted in Table 4.4. The overall accuracies regarding our datasets are lower
when compared with the aforementioned research. This may be due to the fact that
Maronikolakis et al. focus on the generation of short content (headlines) but it shows that
our datasets are more difficult to classify than theirs, which makes it a better benchmark
proposal.

4.2.3 Results Produced by Classification Models on Various Cor-

pora

We experimented detectability of the considered corpora by classifying them using
transformer models. All the models were trained for 3 epochs and the average F1 scores
are presented in Table 4.5.

In the overall comparison, data derived from WikiGPT, DAGPap22, and the original
GPT2-generated dataset without fine-tuning exhibit superior F1 scores when compared
to the other two datasets produced using a GPT2 model that underwent fine-tuning. This
indicates that distinguishing the generated content from the original is more challenging
in the latter cases. The difficulty arises because, during fine-tuning with original data,

68 CHAPTER 4. CHAPTER 4 Vijini Liyanage



4.2. RESULTS PRODUCED BY CLASSIFICATION MODELS

Model WikiGPT DAGPap22 Fine-tuned Fine-tuned GPT2 without
GPT2 (0.7) GPT2 (0.9) finetuning (0.7)

SciBERT 92.97 95.02 84.65 79.16 94.99
RoBERTa 97.00 96.87 67.83 33.33 84.85
DeBERTa 98.50 97.17 67.03 48.13 95.00
Electrabase 81.95 96.64 56.16 48.13 95.00
XLNetbase 84.12 95.67 56.36 59.60 97.50

Table 4.5 – F1 Scores Produced by Models on Classification Task

the GPT2 model adapts to the original content, enabling it to generate text that closely
resembles the input. Notably, SciBERT achieves the highest classification results for the
fine-tuned datasets. This can be attributed to SciBERT being pre-trained on extensive
scientific domain corpora, allowing it to better capture the nuances and context specific to
scientific language. As a result, SciBERT demonstrates a heightened capability to discern
and classify content generated by a fine-tuned GPT2 model, particularly in domains with
specialized and technical language.

4.2.4 Results Produced by Classification Models & Their Ensem-

bles on ALTA Shared Task Data

Each model underwent a total of five experimental iterations, and the resultant average
F1 scores are presented in Table 4.6.

In general, the ensemble architectures have exhibited superior performance compared
to their corresponding original models. Our best-performing solution is the combination
of DeBERTalarge with CNN, achieving an F1 score of 98.36%.

Considering that baseline models such as Naïve Bayes and tf.idf weighting obtain
scores close to 90%, it is clear that the dataset is not well balanced. In fact, looking
at the Multinomial Naïve Bayes and the log probabilities differences for all features,
we observed a thematic bias. Specifically, the top most probable words in the negative
category (human-generated) are law-oriented: “plaintiff", “defendant", and “judgment".
On the other hand, LLM-generated text contains words like “round", “league", “players",
etc. Therefore, it is not clear whether these results are generalizable to the general task
of detecting artificial text.

Vijini Liyanage CHAPTER 4. CHAPTER 4 69



4.2. RESULTS PRODUCED BY CLASSIFICATION MODELS

Model F1
Statistical Models
NB + BoW 89.04
PA + BoW 84.07
SVM + BoW 87.51
NB + tf-idf 89.02
NB + tf-idf 91.00
NB + tf-idf 91.42
Ensembles of Statistical Models
Voting (NB + PA + SVM) + BoW 90.29
Stacking (NB + PA + SVM) + BoW 88.23
Bagging (NB + PA + SVM) + BoW 91.56
Boosting (NB + PA + SVM) + BoW 90.28
Recurrent Models
LSTM 49.08
Bi-LSTM 90.58
Ensembles of RNNs
LSTM + CNN 49.08
Bi-LSTM + CNN 90.02
Transformer Models
BERTbase 90.81
SciBERT 94.89
DeBERTalarge 96.67
XLNetlarge 93.62
Ensembles of BERT models
BERTbase + SciBERT 97.80
BERTbase + DeBERTalarge 97.47
Ensembles of transformers with CNN
BERTbase + CNN 97.42
SciBERT + CNN 97.56
DeBERTalarge + CNN 98.36
XLNetbase + CNN 97.44

Table 4.6 – Classification Scores

70 CHAPTER 4. CHAPTER 4 Vijini Liyanage



4.2. RESULTS PRODUCED BY CLASSIFICATION MODELS

4.2.5 Results Produced by Classification Models on Hotel Review

Data

The dataset was split into an 80:20 ratio for training and testing. Each model un-
derwent three experimental iterations, and the average F1 scores resulting from these
experiments are provided in Table 4.7. It can be seen that the F1-scores for the GPT-3
generated dataset and paraphrased dataset are higher in general, indicating that they are
easier to detect than the GPT-2 based one, which was built with fine-tuning to be less
predictable, generating reviews that are more similar in style to the human-written ones.
Among all LLMs, BERTbase seems to be the most effective in detecting the generated
content.

Model GPT-2 GPT-3 paraphrased
Statistical Models
NB + BoW 89.04 90.45 92.31
PA + BoW 84.07 88.73 88.03
SVM + BoW 87.51 90.24 90.33
NB + tf-idf 83.07 87.23 88.01
PA + tf-idf 91.00 92.45 92.31
SVM + tf-idf 91.42 93.25 94.67
Ensembles of Statistical Models
Voting (NB + PA + SVM) + BoW 90.29 92.23 90.43
Stacking (NB + PA + SVM) + BoW 88.23 89.01 90.67
Bagging (NB + PA + SVM) + BoW 91.56 90.87 90.45
Boosting (NB + PA + SVM) + BoW 90.28 92.00 92.53
Recurrent Models
LSTM 49.08 53.98 55.04
Bi-LSTM 90.58 91.24 92.03
Ensembles of RNNs
LSTM + CNN 49.08 50.03 52.45
Bi-LSTM + CNN 90.02 91.28 92.34
Transformer Models
BERTbase 97.83 99.38 98.29
SciBERT 93.66 93.75 97.62
XLNetlarge 87.87 92.70 95.32
ELECTRA 92.49 93.49 95.37
Ensembles
BERTbase + CNN 98.32 99.01 96.41
SciBERT + CNN 94.05 95.27 99.79
XLNetbase + CNN 93.21 92.70 98.23
ELECTRAsmall + CNN 93.40 93.82 90.45

Table 4.7 – F1 Scores obtained by Classification Models on Hotel Review Data

Vijini Liyanage CHAPTER 4. CHAPTER 4 71



4.3. RESULTS GENERATED BY DETECTION TOOLS

Figure 4.1 – GLTR Outputs for Excerpts of Corpora.

4.3 Results Generated by Detection Tools

4.3.1 Visualizations Produced by GLTR

Since GLTR[GSR19] is a visualization tool to support humans in distinguishing artifi-
cially generated text, we leveraged it to examine the detectability of the various corpora.
Figure 4.1 shows visualizations provided by GLTR for a few excerpts extracted from sev-
eral datasets. Here, in green it represents text that belongs to the 10 most probable
tokens produced by GPT-2, which means they are very likely to be automatically gener-
ated. Likewise, the tool shows tokens belonging to the 100 most probable ones in yellow,
top 1, 000 in red and in violet those who fall outside the 1, 000 most probable tokens.
Therefore, according to GLTR, the excerpt produced by the pre-trained model is highly
distinguishable from the original one. On the contrary, the other two excerpts which were
generated by fine-tuned models have similar visualizations to the original text.

72 CHAPTER 4. CHAPTER 4 Vijini Liyanage



4.3. RESULTS GENERATED BY DETECTION TOOLS

Model WikiGPT DAGPap22 Fine-tuned Fine-tuned GPT2 without
GPT2 (0.7) GPT2 (0.9) finetuning (0.7)

Z-score 1.747 0.240 -0.351 -0.192 0.911

Table 4.8 – Z-scores Produced by DetectGPT

4.3.2 Results Produced by DetectGPT

Since the majority of our considered data are generated using GPT models, we lever-
aged the latest DetectGPT[Mit+23] to check the detectability of our generated data.
DetectGPT calculates a Z-score which is computed by considering the difference of the
original log probability of text tokens and the average perturbed log probability as a pro-
portion of the standard deviation of the perturbed log probability. If the score is greater
than 1, then the text is claimed to be generated, if it is lower than 0.25, then the text is
claimed to be not generated by a GPT model. We ran the experiments with 20% of the
generated data from each dataset (due to time constraints) for 3 runs and the average
score is represented in Table 4.8.

The highest z-score gained by the WikiGPT dataset proves its high detectability. Also,
the abstracts generated by the GPT2 without fine-tuning gained a low score demonstrat-
ing the likelihood of being detected. Low z-score for DAGPap22 data, states that they
are not generated by a GPT model (although some of its data are generated so). This
might be due to the reason that the generated text in DAGPap22 dataset is produced by
several other models in addition to GPT models, thus making the average Z-score slightly
lower than 0.25. Surprisingly the two other datasets which are generated using fine-tuned
GPT2 are recognized as not containing data generated by a GPT model. Therefore, it is
important to note that when a GPT model is fine-tuned, the generated data is difficult
to be distinguished by DetectGPT itself.

Vijini Liyanage CHAPTER 4. CHAPTER 4 73



4.3. RESULTS GENERATED BY DETECTION TOOLS

Model DAGPap22 Fine-tuned
GPT2 (0.7)

GPT2 O/P detector 99.98% 0.03%
(Fake token %)
GPTZero 15.20 87.18
(Avg Perplexity Score)

Table 4.9 – Results Produced by GPTZero and GPT-2 Output Detector

4.3.3 Results Produced by GPTZero and GPT-2 Output Detec-

tor

We conducted an experiment to assess the detectability of two tools, GPTZero and the
GPT-2 Output Detector, on two distinct corpora: the DAGPap22 dataset and a dataset
entirely generated by the GPT-2 model. The outcomes, as outlined in Table 4.9, unveil
intriguing insights. Notably, the DAGPap22 dataset exhibits a high percentage of fake
tokens and a low perplexity score, indicating the prevalence of synthetic text. In contrast,
the fully generated dataset shows a low fake token percentage and a high perplexity score,
challenging the tools’ claims of the absence of generated content in this corpus.

This discrepancy in results underscores the complexity of accurately detecting
machine-generated text, particularly when such text is created using a fine-tuned model.
Despite the purported high accuracies of these detection tools, they encounter difficulties
in distinguishing machine-generated content correctly, emphasizing the need for further
refinement and comprehensive evaluation in real-world scenarios.

74 CHAPTER 4. CHAPTER 4 Vijini Liyanage





Chapter 5

Further Experiments on Detection Task

5.1 Examining the Influence of Attention Feature of

Transformer Based Models on Classification Task

Transformer architectures have revolutionized natural language processing by incor-
porating attention mechanisms that assign varying degrees of importance to different
input tokens during sequence processing. Thus in our research we wanted to examine the
relationship between the attention features and their consequences on the outcomes of
classification tasks.

The study likely involves a multifaceted approach, encompassing experimental design,
data analysis, and interpretation of results. Researchers are expected to scrutinize the at-
tention mechanisms at various levels of the Transformer model, potentially including self-
attention patterns and layer-wise attention distributions. By delving into the attention
mechanisms, the goal is to discern patterns, understand their influence on classification
decisions, and identify factors contributing to both accurate and erroneous classifications.

In the course of this undertaking, we harnessed the capabilities of Bertvitz [Vig19],
an interactive visualization tool meticulously designed for the analysis of attention mech-
anisms within Transformer language models like BERT, GPT-2, or T5. Bertvitz offers
an insightful interface that enables a comprehensive examination of attention patterns
exhibited by these advanced language models. This tool serves as a valuable asset, facili-
tating a better exploration of the intricate attention mechanisms present in Transformer
architectures during the analysis of textual data.

75



5.1. EXAMINING THE INFLUENCE OF ATTENTION FEATURE OF
TRANSFORMER BASED MODELS ON CLASSIFICATION TASK

Bertvitz provides three types of views regarding attention namely head view, model
view and neuron view. For our experiments we chose the head view since it is easier
in understanding the attention distribution of tokens. The attention head view visual-
izes attention for one or more attention heads in the same layer. Following diagrams
5.1, 5.2 and 5.3 represent the attention head view of the layer one of the three models
BERT, DistilBERT and RoBERTa regarding two sentences (an original sentence and its
corresponding generated sentence) extracted from the corpus containing fully generated
articles (D1).

Upon analyzing the attention head views of the examined BERT variants, a notewor-
thy pattern emerged. Specifically, when a specific word, such as "poorer," is selected,
all models exhibit heightened attention on identical tokens, such as "CLS" and "perfor-
mance." However, it’s crucial to note that the attention for these tokens occurs in distinct
layers, as indicated by the varying color bands. This discrepancy across layers could
potentially contribute to the observed differences in classification accuracies among the
BERT variants concerning the detection task.

Figure 5.1 – Attention Head View of BERT Model

76 CHAPTER 5. CHAPTER 5 Vijini Liyanage



5.1. EXAMINING THE INFLUENCE OF ATTENTION FEATURE OF
TRANSFORMER BASED MODELS ON CLASSIFICATION TASK

Figure 5.2 – Attention Head View of DistilBERT Model

Figure 5.3 – Attention Head View of RoBERTa Model

Vijini Liyanage CHAPTER 5. CHAPTER 5 77



5.2. CROSS VALIDATION PERFORMED ON CLASSIFICATION TASK

5.2 Cross Validation Performed on Classification Task

Cross-validation stands as a fundamental and widely embraced methodology in ma-
chine learning, particularly within the realm of classification tasks. Its significance lies in
its pivotal role in evaluating model performance, ensuring generalizability, and safeguard-
ing against the pitfalls of overfitting or underfitting. The crux of cross-validation lies in
its capability to furnish a more robust and dependable estimate of a model’s proficiency
compared to a singular train-test split.

Overfitting, a common challenge, arises when a model becomes overly attuned to
the training data, capturing noise and outliers that lack relevance to new data. Cross-
validation serves as a potent tool in identifying and mitigating overfitting by scrutinizing
the model’s performance across diverse subsets, thereby reducing the risk of being misled
by the nuances of a singular train-test partition.

Beyond this, cross-validation plays a vital role in uncovering data variability. Given
that datasets often manifest variability, a solitary random division into training and test-
ing sets may inadequately encapsulate the complete spectrum of patterns within the data.
Employing multiple folds in cross-validation reveals the model’s ability to generalize across
distinct data distributions, ensuring resilience and insensitivity to the peculiarities of a
specific subset.

Moreover, cross-validation proves invaluable in the realm of hyperparameter tuning.
By executing cross-validation for various hyperparameter configurations, one can pinpoint
the set of hyperparameters that elicits optimal average performance across multiple folds.
This process contributes to the development of a more robust and broadly applicable
model, enhancing its effectiveness in real-world applications.

In our study, we incorporated cross-validation as a pivotal strategy to enhance the
precision of our classification task outcomes. Employing a five-fold validation approach
on our dataset, the ensuing Table 5.1 encapsulates the cross-validation results for three
distinct datasets: the fully generated article corpus with a temperature of 0.7, the fully
generated article corpus with a temperature of 0.9, and the hybrid corpus. Here we have
considered the Accuracy or the Fraction correct which is used in binary classification,

Accuracy =
TP + TN

TP + TN + FP + FN

where, TP = True positive, FP = False positive, TN = True negative and FN =
False negative

78 CHAPTER 5. CHAPTER 5 Vijini Liyanage



5.2. CROSS VALIDATION PERFORMED ON CLASSIFICATION TASK

Classification Fully Generated Fully Generated Hybrid
Model (temp = 0.7) (temp = 0.9)
BoW, Multinomial Naive Bayes 12.0 14.4 16.4
BoW, Passive Aggressive 22.4 18.0 23.2
BoW, SVM 33.6 27.2 32.8
LSTM 62.5 57.5 12.5
Bi-LSTM 17.5 42.5 12.5
BERT 49.5 47.0 41.5
DistilBERT 49.0 53.0 52.0
RoBERTa 13.5 12.0 14.5

Table 5.1 – Cross Validation Results (Metric: Accuracy /Fraction Correct)

According to the shown results, all the models have comparatively low scores. Thus
we considered inverse classification to evaluate the results.

Inverse classification, also known as reverse classification, involves swapping the roles
of the target and predictor variables in a machine learning task. In the context of cross-
validation, inverse classification is essential for assessing the robustness and reliability of
a model by examining its ability to perform effectively in both forward and backward
scenarios. Thus, in terms of the inverse classification, RoBERTa model outperforms the
other considered models.

Vijini Liyanage CHAPTER 5. CHAPTER 5 79



5.3. EXAMINING THE LOG PROBABILITIES TO FURTHER UNDERSTAND THE
CLASSIFICATION RESULTS OF THE HOTEL REVIEW DATASET

5.3 Examining the Log Probabilities to Further Under-

stand the Classification Results of the Hotel Review

Dataset

To assess the detectability of fake reviews, we employed a diverse set of classifica-
tion models. Our initial approach involved utilizing a basic Multinomial Naïve Bayes
model with tf-idf weights, excluding lemmatization and stopwords removal. The model
underwent evaluation using an 80:20 random split for training and testing. Remarkably,
this model yielded highly favorable results, achieving an impressive F-1 score of 96%,
suggesting that discerning fake reviews could be accomplished solely by examining the
vocabulary.

To delve deeper, we conducted a comparative analysis of the log-probabilities associ-
ated with words in the generated and non-generated classes, calculating the differences.
The findings are presented in Table 5.2, showcasing the 20 most discriminating words for
both classes.

The analysis reveals a distinct pattern in the most discriminative words for the gen-
erated category, predominantly encompassing attributes like "unhelpful," "terrible," "de-
licious," and "outdated." Conversely, the discriminating words for the non-generated
category exhibit associations with objects or places, such as "door," "floor," "coffee,"
"Michigan," and "Ave," along with personal pronouns like "she," "he," and "your."

In further exploration, we conducted similar experiments utilizing bi-grams and tri-
grams as features instead of individual words. This shift accentuated the stylistic differ-
ences even more prominently. Notably, the most critical trigrams for the generated class
displayed a recurring pattern of "X was/were Y," where X typically denotes a service or
an aspect of the hotel, and Y represents an adjective. In contrast, the most representa-
tive trigrams for the non-generated class comprised phrases like "in the room," "in the
bathroom," and "the first night." This contrast in stylistic preferences aligns with expec-
tations, as prior research on generated text detection, such as [Ant+23], has highlighted
the propensity of Language Models to produce recurrent patterns in their output.

As shown in table 5.3 ,upon conducting a comparative analysis of log-probabilities
within corpora comprised of academic text, we noted that a similar level of difference in
vocabulary that we observed for the hotel review is not detectable in the academic texts.
This observation suggests that while regularities in style and vocabulary are generally

80 CHAPTER 5. CHAPTER 5 Vijini Liyanage



5.3. EXAMINING THE LOG PROBABILITIES TO FURTHER UNDERSTAND THE
CLASSIFICATION RESULTS OF THE HOTEL REVIEW DATASET

Generated Authentic
Word delta Word delta
unhelpful 2.889 door -1.694
incredibly 2.620 floor -1.680
delicious 2.609 coffee -1.656
outdated 2.402 next -1.636
terrible 2.306 your -1.557
accommodating 2.257 concierge -1.513
anyone 2.229 she -1.478
uncomfortable 2.129 ave -1.468
amenities 1.907 mile -1.420
musty 1.873 etc -1.402
enjoyable 1.725 call -1.387
unprofessional 1.546 michigan -1.384
notch 1.539 he -1.358
experience 1.535 corner -1.339
variety 1.533 use -1.334
looking 1.515 river -1.333
food 1.504 if -1.321
amazing 1.492 park -1.318
maintained 1.485 quiet -1.317
atmosphere 1.484 parking -1.290

Table 5.2 – The 20 most discriminating words for each category (GPT-3 dataset) with
their log-probability difference (delta).

Vijini Liyanage CHAPTER 5. CHAPTER 5 81



5.3. EXAMINING THE LOG PROBABILITIES TO FURTHER UNDERSTAND THE
CLASSIFICATION RESULTS OF THE HOTEL REVIEW DATASET

Generated Authentic
Word delta Word delta
future 2.134 new languages -1.282
conclusion 2.121 <BIAS> -1.174
model 2.021 introduction -1.007
results 1.936 natural language -0.897
work 1.533 natural -0.876
future work 1.410 languages data -0.855
new language 1.397 term -0.833
topic 1.333 original -0.778
addition 1.302 autoregressive -0.767
sentiment 1.253 achieved -0.764
relationship 1.251 model model -0.745
framework 1.167 rosales nunez -0.724
interesting 1.146 nunez et -0.724
module 1.137 nunez -0.724
hope 1.118 transformer model -0.708
shot 1.113 summaries -0.707
performance 1.110 sentence -0.707
better 1.105 computational costs -0.705
approach 1.059 dialog -0.692
models 1.059 qa -0.692

Table 5.3 – The 20 most discriminating words for each category (Fine-tuned GPT-2
generated academic dataset) with their log-probability difference (delta).

detectable, the task becomes more challenging for language models when replicating texts
with a more intricate structure, such as academic content.

To substantiate the significance of vocabulary overlap in detection, we conducted an
experiment involving the manipulation of the training and test data proportions. It’s
noteworthy that in practical scenarios, training data is typically unbalanced, given that
annotated corpora represent only a fraction of the vast number of reviews available on
platforms. Our study comprised 10 experiments for each variation in the ratio of test to
training data. The outcomes, delineating recall and precision for each class, are illustrated
in Figure 5.4.

The observed trend reveals a noteworthy pattern in the precision and recall metrics.
Specifically, the precision for non-generated texts consistently appears to be lower com-
pared to that for generated texts, while the recall exhibits the opposite trend. This pattern
suggests the prevalence of false negative examples, signifying instances where the model is

82 CHAPTER 5. CHAPTER 5 Vijini Liyanage



5.3. EXAMINING THE LOG PROBABILITIES TO FURTHER UNDERSTAND THE
CLASSIFICATION RESULTS OF THE HOTEL REVIEW DATASET

Figure 5.4 – Precision and recall for each class on the GPT3 dataset vs. original reviews,
varying the proportion of test and training data. The error bar indicates the standard
deviation calculated over 10 experiments.

inclined to misclassify machine-generated text as human-written, particularly when train-
ing data is limited. This phenomenon aligns with findings reported by [Wan+24], who
similarly noted analogous challenges in experiments related to cross-domain and language
classification. The implication is that the model’s performance, particularly in identifying
non-generated texts, may be impacted by the scarcity of diverse training data, emphasiz-
ing the need for robust and extensive datasets for more accurate and reliable classification
outcomes.

Considering the inclusion of the paraphrased corpus, it is noteworthy that both pre-
cision and recall maintain relatively high levels. However, a discernible sensitivity in the
accuracy of detection becomes apparent with respect to the availability of training data,
as depicted in Figure 5.5. This suggests that the task of detecting fake reviews becomes
subtly more challenging when faced with insufficient training data, particularly in the
context of paraphrased content. The reliance on paraphrasing introduces an additional
layer of complexity, reinforcing the importance of ample and diverse training datasets for
enhancing the robustness and accuracy of fake review detection models.

Vijini Liyanage CHAPTER 5. CHAPTER 5 83



5.3. EXAMINING THE LOG PROBABILITIES TO FURTHER UNDERSTAND THE
CLASSIFICATION RESULTS OF THE HOTEL REVIEW DATASET

Figure 5.5 – Precision and recall for each class on the GPT3 paraphrased dataset vs. the
original reviews, varying the proportion of test and training data.

84 CHAPTER 5. CHAPTER 5 Vijini Liyanage



Chapter 6

Concluding Remarks & Future
Perspectives

The central focus of this thesis lies in addressing the research problem associated with
the detection of automatically generated academic content. At the inception of our in-
vestigation, we encountered a notable gap in available datasets specifically tailored for
machine-generated text. To lay the foundation for our work, we took the initiative to
construct a benchmark corpus, leveraging cutting-edge generation models. This com-
prehensive dataset comprised two distinct corpora: one featuring fully generated articles
produced through the fine-tuned GPT-2 model, and the other adopting a hybrid approach.
In the hybrid corpus, select sentences from original abstracts were replaced with sentences
generated by the arxiv-NLP model. To gauge the quality of our dataset, we conducted
thorough evaluations utilizing n-gram-based measures such as BLEU and ROUGE.

Subsequently, we approached the detection task as a binary classification problem,
treating the identification of machine-generated content as the primary objective. Em-
ploying a variety of classification models, we systematically evaluated the detectability
of our generated corpus. This involved a comprehensive exploration of precision, recall,
and other relevant metrics to ascertain the performance and robustness of our detection
methods. This iterative process aimed at not only addressing the initial absence of suit-
able datasets but also at establishing a rigorous foundation for the subsequent phases of
our research.

Upon scrutinizing the fully generated article dataset, it became evident that the gen-
erated content exhibited a tendency to replicate material from the original articles used
during the fine-tuning process. Motivated by a desire to elevate the level of creativity
in our dataset, we embarked on the creation of a novel set of fully generated articles.
Employing the same approach as the one utilized for constructing the aforementioned

85



dataset, we introduced a crucial modification by incorporating a higher model temper-
ature. This adjustment aimed to inject a greater degree of variability and originality
into the generated content. Consequently, the resulting dataset reflected a heightened
level of creativity in comparison to its predecessor. However, this increase in creativity
came at the expense of detectability, as the generated articles displayed lower similar-
ity to the original human-written articles. This delicate balance between creativity and
mimicry underscored the nuanced challenges in crafting machine-generated content that
not only demonstrates innovation but also aligns with the characteristics of authentic
human writing.

Over the course of time, it became apparent that several fellow researchers had also
undertaken the creation of corpora containing machine-generated academic content. In-
triguingly, these researchers adopted diverse approaches in constructing their datasets. In
response to this evolving landscape, we embarked on a comparative analysis to evaluate
the detectability of these alternative datasets in contrast to our own. Utilizing the same
classification models employed in our prior experiments, we scrutinized the results and
noted that the datasets produced by other researchers exhibited a higher susceptibility to
detection. Keen to comprehend the factors contributing to this disparity, we hypothesized
that the approach used in building these corpora might play a pivotal role. To investigate
this, we designed and constructed another dataset using a similar methodology, relying
solely on a pre-trained generation model without fine-tuning. Subsequently, we subjected
this new dataset to experimentation to assess its detectability. Confirming our conjec-
ture, the results illustrated that academic content generated using a pre-trained model
(without fine-tuning) was more readily detectable compared to content generated through
the fine-tuning approach. This nuanced exploration underscored the importance of the
underlying methodology in shaping the detectability characteristics of machine-generated
academic content.

In our pursuit of a deeper comprehension regarding the challenges associated with
detecting fake academic content in contrast to other content genres, we ventured into
constructing a novel dataset focused on hotel reviews. Employing the same fine-tuned
and pre-trained models utilized in our prior generation tasks, we generated synthetic ho-
tel reviews. The subsequent evaluation of the detectability of this corpus, employing our
classification models, unveiled intriguing insights. It emerged that the hotel review data
exhibited a comparatively higher susceptibility to detection when compared to academic
content. Notably, the analysis of the generated content’s style alone proved effective in dis-
tinguishing fake hotel reviews from their authentic counterparts, showcasing a discernible
contrast with the complexities inherent in distinguishing between genuine and machine-

86 CHAPTER 6. CHAPTER 6 Vijini Liyanage



generated academic text. This comparative exploration underscored the nuanced nature
of detecting fakery across distinct content domains, shedding light on the unique chal-
lenges posed by academic content.

Given the introduction of various cutting-edge detection tools purported to excel in
distinguishing machine-generated text, we decided to assess their efficacy in gauging the
detectability of our corpora. However, to our astonishment, the results revealed that
these state-of-the-art models were unable to accurately identify machine-generated con-
tent within our datasets. This unexpected outcome prompted a deeper investigation into
the inherent characteristics and nuances of our generated content, highlighting potential
areas for improvement and suggesting that the performance of these advanced tools might
be contingent on specific contextual factors or dataset intricacies.

To this point, our classification efforts had relied solely on existing state-of-the-art
models. Recognizing the potential for enhanced accuracy in terms of detectability, we
endeavored to elevate our approach. To achieve this objective, we delved into the creation
of several ensemble architectures, amalgamating diverse model components. Among these
varied architectures, those fusing the transformer architecture with Convolutional Neural
Network (CNN) layers emerged as particularly promising, consistently yielding the highest
results in terms of classification accuracy. This strategic integration of different neural
network elements aimed to harness the complementary strengths of each, fostering a more
robust and nuanced approach to the intricate task of detecting machine-generated content.

Our research yields a dual set of key conclusions. Firstly, discerning automatically
generated academic content proves to be a formidable challenge, particularly when juxta-
posed with the detection of other types of generated content. This underscores the unique
intricacies and subtleties embedded in machine-generated academic text, demanding spe-
cialized methodologies for effective identification.

Secondly, a notable finding emerges when considering the manner in which academic
content is generated. Specifically, when academic content is crafted in a manner aligning
with how a typical human might utilize generation models, such as through fine-tuning,
the content becomes inherently more challenging to detect. This complexity contrasts
with the detection of content prevalent in many existing datasets, where the generation
process relies on a more straightforward utilization of pre-existing pre-trained models. The
nuanced interplay between the intricacy of the generation approach and the detectability
of the content highlights the need for tailored detection strategies, especially in the context
of academic text generation.

Thus, through this research we could deliver the following main contributions,

1. Compilation of diverse corpora consisting of automatically generated academic

Vijini Liyanage CHAPTER 6. CHAPTER 6 87



content.

2. Recognition of detection as a binary classification task, employing state-of-the-art
models for this purpose.

3. Evaluation of the classification models’ performance in terms of their ability to
detect machine-generated academic content.

4. Development of multiple ensemble architectures to enhance detection capabilities.

Last but not least, we aspire to enhance the efficacy of our research by incorporating
additional knowledge into the detection of academic content. Recognizing the dynamic
nature of academic discourse and the evolving strategies employed by content manipu-
lators, our ongoing efforts include exploring interdisciplinary collaborations. Integrating
expertise from fields such as information retrieval, citation analysis, and domain-specific
nuances can offer a nuanced perspective on distinguishing authentic academic content
from potentially deceptive practices. Embracing advancements in machine learning tech-
niques tailored for academic integrity, alongside staying abreast of emerging scholarly
communication trends, is crucial. Through a holistic approach that amalgamates domain
expertise and cutting-edge technologies, we aim to fortify the robustness of our detec-
tion methods and contribute to the ongoing efforts to maintain the integrity of academic
discourse.

88 CHAPTER 6. CHAPTER 6 Vijini Liyanage



Chapter 7

List of Publications

Our work has resulted in five research articles and an extended abstract:

1. Vijni Liyanage, Davide Buscaldi, Adeline Nazerenko, "A benchmark corpus for
the detection of automatically generated text in academic publications",
In proceedings of LREC 2022

In this article, we thoroughly outline the steps taken to create our benchmark
dataset. Additionally, we delve into the specifics of the experiments conducted to
assess both the quality and the detectability level of the dataset.

2. Vijni Liyanage, Davide Buscaldi, "Detecting Artificially Generated Aca-
demic Text: The Importance of Mimicking Human Utilization of Large
Language Models", In proceedings of NLDB 2023

In this article, we assess how difficult is to detect our corpora compared to several
similar ones. Despite the high classification accuracies reported by other corpora,
this article emphasizes the significance of constructing corpora in a way that mirrors
how humans would use generation models.

3. Vijni Liyanage, Davide Buscaldi, "La détection de textes générés par des
modèles de langue: une tâche complexe? Une étude sur des textes
académiques", In proceedings of CORIA TALN RJCRI RECITAL 2023

This article explains the challenges and complexities faced in detecting academic
content.

4. Vijini Liyanage, Davide Buscaldi, "An Ensemble Method Based on the Com-
bination of Transformers with Convolutional Neural Networks to Detect
Artificially Generated Text", In proceedings of ALTA 2023

89



This research paper explains our approaches followed in creating ensemble archi-
tectures for the classification task. The results produced by the ensemble archi-
tectures prove that they perform better than the corresponding standalone models
regarding the detection task.

5. Vijini Liyanage, Davide Buscaldi, Pénelope Forcioli "Are AI-enhanced Opinion
Spambots Worrisome?
A study on GPT-generated Hotel Reviews", ECNLP at LREC-COLING
2024

This article compares detectability of generated hotel reviews against the de-
tectability of generated academic contents.

Extended Abstract Vijini Liyanage, "Is it an Easy Task to Accurately Detect Automatically
Generated Academic Content?", WiNLP-EMNLP 2023

90 CHAPTER 7. CHAPTER 7 Vijini Liyanage



Bibliography

[AGM+19] E. Abd-Elaal, S. Gamage, J. Mills, et al. “Artificial intelligence is a tool
for cheating academic integrity”. In: 30th Annual Conference for the Aus-
tralasian Association for Engineering Education (AAEE 2019): Educators
Becoming Agents of Change: Innovate, Integrate, Motivate. Engineers Aus-
tralia. 2019, p. 397.

[Ach+23] O. J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman,
et al. GPT-4 Technical Report. 2023.

[Ade+20] D. Adelani, H. Mai, F. Fang, H. Nguyen, J. Yamagishi, and I. Echizen. “Gen-
erating sentiment-preserving fake online reviews using neural language mod-
els and their human-and machine-based detection”. In: International Confer-
ence on Advanced Information Networking and Applications. Springer. 2020,
pp. 1341–1354.

[Ama15] D. R. Amancio. “Comparing the topological properties of real and artificially
generated scientific manuscripts”. In: Scientometrics 105.3 (2015), pp. 1763–
1779.

[Ant+23] W. Antoun, V. Mouilleron, B. Sagot, and D. Seddah. Towards a Robust De-
tection of Language Model-Generated Text: Is ChatGPT that easy to detect?
2023.

[Bak+19] A. Bakhtin, S. Gross, M. Ott, Y. Deng, M. Ranzato, and A. Szlam. “Real
or Fake? Learning to Discriminate Machine from Human Generated Text”.
In: ArXiv abs/1906.03351 (2019).

[BLC19] I. Beltagy, K. Lo, and A. Cohan. “SciBERT: A Pretrained Language Model
for Scientific Text”. In: (2019), pp. 3615–3620.

[Bha23] A. Bhat. GPT-wiki-intro (Revision 0e458f5). 2023.

91



BIBLIOGRAPHY

[BP20] M. M. Bhat and S. Parthasarathy. “How Effectively Can Machines Defend
Against Machine-Generated Fake News? An Empirical Study”. In: Proceed-
ings of the First Workshop on Insights from Negative Results in NLP. 2020,
pp. 48–53.

[Boj+17] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov. “Enriching word vectors
with subword information”. In: Transactions of the Association for Compu-
tational Linguistics 5 (2017), pp. 135–146.

[CL21] G. Cabanac and C. Labbé. “Prevalence of nonsensical algorithmically gen-
erated papers in the scientific literature”. In: Journal of the Association for
Information Science and Technology 72.12 (2021), pp. 1461–1476.

[CLM21] G. Cabanac, C. Labbé, and A. Magazinov. “Tortured phrases: A dubious
writing style emerging in science. Evidence of critical issues affecting estab-
lished journals”. In: arXiv preprint arXiv:2107.06751 (2021).

[ÇB20] E. Çano and O. Bojar. “Human or Machine: Automating Human Likeliness
Evaluation of NLG Texts”. In: ArXiv abs/2006.03189 (2020).

[Cla+21] E. Clark, T. August, S. Serrano, N. Haduong, S. Gururangan, and N. A.
Smith. “All That’s ‘Human’Is Not Gold: Evaluating Human Evaluation of
Generated Text”. In: (2021), pp. 7282–7296.

[Cla+16] K. Clark, M.-T. Luong, Q. V. Le, and C. D. Manning. “ELECTRA: PRE-
TRAINING TEXT ENCODERS AS DISCRIMINATORS RATHER THAN
GENERATORS”. In: ELECTRA 85 (2016), p. 90.

[CL19] A. Conneau and G. Lample. “Cross-lingual language model pretraining”. In:
vol. 32. 2019.

[CV95] C. Cortes and V. Vapnik. “Support-vector networks”. In: Machine learning
20.3 (1995), pp. 273–297.

[Dai+19] Z. Dai, Z. Yang, Y. Yang, J. Carbonell, Q. Le, and R. Salakhutdinov.
“Transformer-xl: Attentive language models beyond a fixed-length context.”
In: Proceedings of the 57th Annual Meeting of the Association for Computa-
tional Linguistics. 2019, pp. 2978–2988.

[Dug+20] L. Dugan, D. Ippolito, A. Kirubarajan, and C. Callison-Burch. “RoFT:
A Tool for Evaluating Human Detection of Machine-Generated Text”. In:
(2020), pp. 189–196.

[Fag+21] T. Fagni, F. Falchi, M. Gambini, A. Martella, and M. Tesconi. “TweepFake:
About detecting deepfake tweets”. In: Plos one 16.5 (2021), e0251415.

92 BIBLIOGRAPHY Vijini Liyanage



BIBLIOGRAPHY

[Far+17] R. Faris, H. Roberts, B. Etling, N. Bourassa, E. Zuckerman, and Y. Benkler.
“Partisanship, propaganda, and disinformation: Online media and the 2016
US presidential election”. In: Berkman Klein Center Research Publication 6
(2017).

[GSR19] S. Gehrmann, H. Strobelt, and A. M. Rush. “GLTR: Statistical Detection
and Visualization of Generated Text”. In: Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics: System Demon-
strations. 2019, pp. 111–116.

[GG22] A. Glazkova and M. Glazkov. “Detecting generated scientific papers using
an ensemble of transformer models”. In: Proceedings of the Third Workshop
on Scholarly Document Processing. 2022, pp. 223–228.

[GB+14] E. Grefenstette, P. Blunsom, et al. “A convolutional neural network for mod-
elling sentences”. In: The 52nd Annual Meeting of the Association for Com-
putational Linguistics, Baltimore, Maryland. Vol. 1. 2014, pp. 655–665.

[HBC21] A. Harada, D. Bollegala, and N. P. Chandrasiri. “Discrimination of human-
written and human and machine written sentences using text consistency”.
In: 2021 International Conference on Computing, Communication, and In-
telligent Systems (ICCCIS). IEEE. 2021, pp. 41–47.

[Har54] Z. S. Harris. “Distributional structure”. In: Word 10.2-3 (1954), pp. 146–162.

[He+20] P. He, X. Liu, J. Gao, and W. Chen. “DEBERTA: DECODING-
ENHANCED BERT WITH DISENTANGLED ATTENTION”. In: (2020).

[Ipp+19] D. Ippolito, D. Duckworth, C. Callison-Burch, and D. Eck. “Human and
automatic detection of generated text”. In: arXiv preprint arXiv:1911.00650
(2019).

[Ipp+20] D. Ippolito, D. Duckworth, C. Callison-Burch, and D. Eck. “Automatic De-
tection of Generated Text is Easiest when Humans are Fooled”. In: (2020),
pp. 1808–1822.

[Jaw] G. Jawahar. “Detecting human written text from machine generated text by
modeling discourse coherence”. In: ().

[JML20] G. Jawahar, M. A. Mageed, and V. Laks Lakshmanan. “Automatic Detection
of Machine Generated Text: A Critical Survey”. In: (2020), pp. 2296–2309.

[AL20] S. Al-Kadhimi and P. Löwenström. Identification of machine-generated re-
views: 1D CNN applied on the GPT-2 neural language model. 2020.

Vijini Liyanage BIBLIOGRAPHY 93



BIBLIOGRAPHY

[Kas+22] Y. Kashnitsky, D. Herrmannova, A. de Waard, G. Tsatsaronis, C. Fennell,
and C. Labbé. “Overview of the DAGPap22 shared task on detecting au-
tomatically generated scientific papers”. In: Third Workshop on Scholarly
Document Processing. 2022.

[KT19] J. D. M.-W. C. Kenton and L. K. Toutanova. “Bert: Pre-training of deep
bidirectional transformers for language understanding”. In: Proceedings of
naacL-HLT. Vol. 1. 2019, p. 2.

[Kim14] Y. Kim. “Convolutional Neural Networks for Sentence Classification”. In:
Proceedings of the 2014 Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP). Ed. by A. Moschitti, B. Pang, and W. Daele-
mans. Doha, Qatar: Association for Computational Linguistics, Aug. 2014,
pp. 1746–1751.

[LK10] A. Lavoie and M. Krishnamoorthy. “Algorithmic Detection of Computer
Generated Text”. In: stat 1050 (2010), p. 4.

[Lew+20] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy, et
al. “BART: Denoising Sequence-to-Sequence Pre-training for Natural Lan-
guage Generation, Translation, and Comprehension”. In: Proceedings of the
58th Annual Meeting of the Association for Computational Linguistics. 2020,
pp. 7871–7880.

[Lin04] C.-Y. Lin. “Rouge: A package for automatic evaluation of summaries”. In:
Text summarization branches out. 2004, pp. 74–81.

[Liu+19] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, et al. “RoBERTa: A Ro-
bustly Optimized BERT Pretraining Approach”. In: ArXiv abs/1907.11692
(2019).

[MSS21] A. Maronikolakis, H. Schütze, and M. Stevenson. “Identifying Automatically
Generated Headlines using Transformers”. In: (2021), pp. 1–6.

[Mit+23] E. Mitchell, Y. Lee, A. Khazatsky, C. D. Manning, and C. Finn. “Detectgpt:
Zero-shot machine-generated text detection using probability curvature”. In:
(2023), pp. 24950–24962.

[NL16] M. T. Nguyen and C. Labbé. “Engineering a tool to detect automatically gen-
erated papers”. In: BIR 2016 Bibliometric-enhanced Information Retrieval.
2016.

94 BIBLIOGRAPHY Vijini Liyanage



BIBLIOGRAPHY

[OCH13] M. Ott, C. Cardie, and J. T. Hancock. “Negative Deceptive Opinion Spam”.
In: Proceedings of the 2013 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies.
Atlanta, Georgia: Association for Computational Linguistics, June 2013,
pp. 497–501.

[Ott+11] M. Ott, Y. Choi, C. Cardie, and J. T. Hancock. “Finding Deceptive Opinion
Spam by Any Stretch of the Imagination”. In: Proceedings of the 49th Annual
Meeting of the Association for Computational Linguistics: Human Language
Technologies. Portland, Oregon, USA: Association for Computational Lin-
guistics, June 2011, pp. 309–319.

[Pap+02] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. “Bleu: a method for auto-
matic evaluation of machine translation”. In: Proceedings of the 40th annual
meeting of the Association for Computational Linguistics. 2002, pp. 311–318.

[Pér+18] V. Pérez-Rosas, B. Kleinberg, A. Lefevre, and R. Mihalcea. “Automatic De-
tection of Fake News”. In: (2018), pp. 3391–3401.

[Rad+18] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever. “Improving lan-
guage understanding by generative pre-training”. In: OpenAI, 2018.

[Rad+19] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever. “Lan-
guage models are unsupervised multitask learners”. In: vol. 1. 8. 2019, p. 9.

[Rod+22] J. Rodriguez, T. Hay, D. Gros, Z. Shamsi, and R. Srinivasan. “Cross-Domain
Detection of GPT-2-Generated Technical Text”. In: Proceedings of the 2022
Conference of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies. 2022, pp. 1213–1233.

[Ros22] D. Rosati. “SynSciPass: detecting appropriate uses of scientific text gener-
ation”. In: Proceedings of the Third Workshop on Scholarly Document Pro-
cessing. 2022, pp. 214–222.

[Sad+23] V. S. Sadasivan, A. Kumar, S. Balasubramanian, W. Wang, and S. Feizi.
Can AI-Generated Text be Reliably Detected? 2023.

[San+19] V. Sanh, L. Debut, J. Chaumond, and T. Wolf. “DistilBERT, a distilled ver-
sion of BERT: smaller, faster, cheaper and lighter”. In: ArXiv abs/1910.01108
(2019).

[Sch+19] T. Schuster, R. Schuster, D. J. Shah, and R. Barzilay. “Are We Safe Yet?
The Limitations of Distributional Features for Fake News Detection”. In:
ArXiv abs/1908.09805 (2019).

Vijini Liyanage BIBLIOGRAPHY 95



BIBLIOGRAPHY

[Sch+20] T. Schuster, R. Schuster, D. J. Shah, and R. Barzilay. “The limitations of
stylometry for detecting machine-generated fake news”. In: Computational
Linguistics 46.2 (2020), pp. 499–510.

[Sol+19] I. Solaiman, M. Brundage, J. Clark, A. Askell, A. Herbert-Voss, J. Wu, et al.
“Release Strategies and the Social Impacts of Language Models”. In: ArXiv
abs/1908.09203 (2019).

[TC23] E. Tian and A. Cui. GPTZero: Towards detection of AI-generated text using
zero-shot and supervised methods. 2023.

[Uch+20] A. Uchendu, T. Le, K. Shu, and D. Lee. “Authorship attribution for neu-
ral text generation”. In: Conf. on Empirical Methods in Natural Language
Processing (EMNLP). 2020.

[VKS20] L. R. Varshney, N. S. Keskar, and R. Socher. “Limits of detecting text gen-
erated by large-scale language models”. In: 2020 Information Theory and
Applications Workshop (ITA). IEEE. 2020, pp. 1–5.

[Vas+17] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, et
al. “Attention is all you need”. In: Advances in neural information processing
systems. 2017, pp. 5998–6008.

[Vig19] J. Vig. “A Multiscale Visualization of Attention in the Transformer Model”.
In: Proceedings of the 57th Annual Meeting of the Association for Computa-
tional Linguistics: System Demonstrations. Florence, Italy: Association for
Computational Linguistics, July 2019, pp. 37–42.

[Vij+20] S. Vijayaraghavan, Y. Wang, Z. Guo, J. Voong, W. Xu, A. Nasseri,
et al. “Fake news detection with different models”. In: arXiv preprint
arXiv:2003.04978 (2020).

[VRA18] S. Vosoughi, D. Roy, and S. Aral. “The spread of true and false news online”.
In: Science 359.6380 (2018), pp. 1146–1151.

[Wan+19] Q. Wang, L. Huang, Z. Jiang, K. Knight, H. Ji, M. Bansal, et al. “Pa-
perRobot: Incremental Draft Generation of Scientific Ideas”. In: (2019),
pp. 1980–1991.

[Wan+20] Q. Wang, Q. Zeng, L. Huang, K. Knight, H. Ji, and N. F. Rajani. “Re-
viewRobot: Explainable paper review generation based on knowledge syn-
thesis”. In: (2020), pp. 384–397.

96 BIBLIOGRAPHY Vijini Liyanage



BIBLIOGRAPHY

[Wan+24] Y. Wang, J. Mansurov, P. Ivanov, J. Su, A. Shelmanov, A. Tsvigun, et al.
M4: Multi-generator, Multi-domain, and Multi-lingual Black-Box Machine-
Generated Text Detection. 2024.

[WD17] C. Wardle and H. Derakhshan. “Information disorder: Toward an interdis-
ciplinary framework for research and policy making”. In: Council of Europe
27 (2017).

[Wei83] J. Weizenbaum. “ELIZA — a Computer Program for the Study of Natural
Language Communication between Man and Machine”. In: Commun. ACM
26.1 (Jan. 1983), pp. 23–28.

[WG15] K. Williams and C. L. Giles. “On the use of similarity search to detect
fake scientific papers”. In: International Conference on Similarity Search and
Applications. Springer. 2015, pp. 332–338.

[Wol+20a] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, et al.
“Transformers: State-of-the-Art Natural Language Processing”. In: Proceed-
ings of the 2020 Conference on Empirical Methods in Natural Language Pro-
cessing: System Demonstrations. Online: Association for Computational Lin-
guistics, Oct. 2020, pp. 38–45.

[Wol+20b] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, et al.
“Transformers: State-of-the-art natural language processing”. In: Proceedings
of the 2020 conference on empirical methods in natural language processing:
system demonstrations. 2020, pp. 38–45.

[Wol20] M. Wolff. “Attacking Neural Text Detectors”. In: ArXiv abs/2002.11768
(2020).

[WF23] H. Wu and T. Flanagan. “The Limits of AI Content Detectors”. In: Journal
of Student Research 12.3 (2023).

[XH09] J. Xiong and T. Huang. “An effective method to identify machine auto-
matically generated paper”. In: 2009 Pacific-Asia Conference on Knowledge
Engineering and Software Engineering. IEEE. 2009, pp. 101–102.

[Yan+19] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. Salakhutdinov, and Q. V. Le.
“Xlnet: Generalized autoregressive pretraining for language understanding”.
In: vol. 32. 2019.

[Zel+19] R. Zellers, A. Holtzman, H. Rashkin, Y. Bisk, A. Farhadi, F. Roesner, et al.
“Defending against neural fake news”. In: Advances in neural information
processing systems 32 (2019).

Vijini Liyanage BIBLIOGRAPHY 97



BIBLIOGRAPHY

[Zho+20] W. Zhong, D. Tang, Z. Xu, R. Wang, N. Duan, M. Zhou, et al. “Neural
Deepfake Detection with Factual Structure of Text”. In: (2020), pp. 2461–
2470.

98 BIBLIOGRAPHY Vijini Liyanage



Appendices

99



Appendix A

Code Segments

A.1 Code to Generate Text by Fine-tuning GPT-2

Model

!pip install -q gpt-2-simple

import gpt_2_simple as gpt2

from datetime import datetime

from google.colab import files

!nvidia-smi

gpt2.download_gpt2(model_name="124M")

from google.colab import drive

drive.mount(’/gdrive’, force_remount=True)

from google.colab import drive

drive.mount(’/content/drive’)

gpt2.mount_gdrive()

file_name = ’N01-1009.txt’

gpt2.copy_file_from_gdrive(file_name)

#get the length of the dataset and the first k =50 words

file = open(file_name, encoding=’latin1’)

data = file.read()

100



A.1. CODE TO GENERATE TEXT BY FINE-TUNING GPT-2 MODEL

words = data.split()

print(’Number of words in text file :’, len(words))

substring = data.split()[0:50]

#print(substring)

seed = ’ ’.join(substring)

print(seed)

#fine-tuning

sess = gpt2.start_tf_sess()

gpt2.finetune(sess,

dataset=file_name,

model_name=’124M’,

steps=1000,

restore_from=’fresh’,

run_name=’run1’,

print_every=10,

sample_every=1000,

save_every=500

)

gpt2.copy_checkpoint_to_gdrive(run_name=’run1’)

String_final=’’

output_seed = seed

while True:

with open(’Output_final.txt’, ’a’) as f:

f.write(String_final)

f.close()

gen_file = ’Output.txt’

gpt2.generate_to_file(sess,

destination_path=gen_file,

length=1023,

Vijini Liyanage APPENDIX A. CODE SEGMENTS 101



A.1. CODE TO GENERATE TEXT BY FINE-TUNING GPT-2 MODEL

temperature=0.7,

prefix=output_seed,

nsamples=1,

batch_size=1

)

output_file_name = ’Output.txt’

output_file = open(output_file_name, encoding=’latin1’)

output_data = output_file.read()

output_words = output_data.split()

print(’Number of words in output file :’, len(output_words))

output_substring = output_words[-51:-1]

output_seed = ’ ’.join(output_substring)

#print(output_seed)

final_substring = output_words[-len(output_words):-52]

String_final = ’ ’.join(final_substring)

#print(String_final)

output_final_file = open(’Output_final.txt’, encoding=’latin1’)

output_final_data = output_final_file.read()

output_final_words = output_final_data.split()

print(’Number of words in final output file :’, len(output_final_words))

if (len(output_final_words) > len(words) ):

break

#code to make the fake file length equal to original file length

difference = len(output_final_words) - len(words)

#print(difference)

first = len(output_final_words)

last = difference

Final_fake_text = output_final_words[-first:-last]

Final_fake_text_for_the_fake_file = ’ ’.join(Final_fake_text)

print(Final_fake_text_for_the_fake_file)

with open(’Final_fake_file.txt’, ’w’) as f:

102 APPENDIX A. CODE SEGMENTS Vijini Liyanage



A.1. CODE TO GENERATE TEXT BY FINE-TUNING GPT-2 MODEL

f.write(Final_fake_text_for_the_fake_file)

f.close()

files.download(gen_file)

Vijini Liyanage APPENDIX A. CODE SEGMENTS 103



A.2. CODE TO GENERATE TEXT BY PRE-TRAINED GPT-2 MODEL

A.2 Code to Generate Text by Pre-trained GPT-2

model

!pip install transformers

from transformers import GPT2LMHeadModel , GPT2Tokenizer

tokenizer = GPT2Tokenizer.from_pretrained(’gpt2-medium’)

model = GPT2LMHeadModel.from_pretrained(’gpt2-medium’ ,

pad_token_id = tokenizer.eos_token_id)

seed = " This allows the entity pair to automatically generate labels to train deep-learning models. However, similar to many NLP tasks, biomedical RE suffers from a long-tail distribution of fact triples, where many a triples relationship is formed by interactions between an entity pair. For instance, with the near-exponential growth of microbiome "

input_ids = tokenizer.encode(seed, return_tensors = ’pt’)

output = model.generate(input_ids,

max_length = 250,

num_beams = 5,

no_repeat_ngram_size = 2,

early_stopping = True)

generated= tokenizer.decode(output[0])

print(generated)

104 APPENDIX A. CODE SEGMENTS Vijini Liyanage



A.3. CODE TO CLASSIFY TEXT USING TRANSFORMER-BASED MODELS

A.3 Code to Classify Text Using Transformer-based

Models

import os

import math

import random

import csv

import sys

import numpy as np

import pandas as pd

from sklearn import metrics

from sklearn.metrics import f1_score, precision_score, recall_score

from sklearn.metrics import classification_report

import statistics as stats

df = pd.read_csv(’Hotel_Reviews_Dataset_GPT3_paraPhrased.csv’)

df.head()

from sklearn.model_selection import train_test_split

# split the data into train and test set since there is no separate test set yet

train_df, test_df = train_test_split(df, test_size=0.4, random_state=42, shuffle=True)

X = train_df[’text’]

y = train_df[’label’]

train_df.shape

!pip install simpletransformers

from simpletransformers.classification import ClassificationModel, ClassificationArgs

import pandas as pd

import logging

from sklearn.metrics import f1_score, recall_score, precision_score

model_args = ClassificationArgs(num_train_epochs=3, overwrite_output_dir=True, \

no_save = True, max_seq_length=128, sliding_window=True, train_batch_size = 16)

Vijini Liyanage APPENDIX A. CODE SEGMENTS 105



A.3. CODE TO CLASSIFY TEXT USING TRANSFORMER-BASED MODELS

model = ClassificationModel(

’bert’, ’bert-base-uncased’, args=model_args, use_cuda=True

#"bert", "allenai/scibert_scivocab_cased", args=model_args, use_cuda=True

#"roberta", "roberta-large", args=model_args, use_cuda=True#, weight = list(class_weights)

#"deberta", "microsoft/deberta-large", args=model_args, use_cuda=True

#ELECTRA_base

model = ClassificationModel(’electra’, ’google/electra-base-discriminator’, args=model_args, use_cuda=True)

#XLNet

model = ClassificationModel(’xlnet’, ’xlnet-base-cased’, args=model_args, use_cuda=True)

)

model.train_model(df)

import logging

from sklearn.metrics import f1_score, recall_score, precision_score

test_df.head()

X_test = test_df[’text’]

y_test = test_df[’label’]

test_df.shape

predictions, raw_outputs = model.predict(list(X_test))

f1 = f1_score(predictions, y_test, average = ’macro’)

print(f1)

106 APPENDIX A. CODE SEGMENTS Vijini Liyanage



A.4. CODE TO PRODUCE ENSEMBLE ARCHITECTURES

A.4 Code to Produce Ensemble Architectures

!pip install transformers

!pip install optuna

import torch

import torch.nn as nn

import torch.nn.functional as F

from transformers import get_linear_schedule_with_warmup, AdamW

from torch.utils.data import TensorDataset, random_split, DataLoader, RandomSampler, SequentialSampler

import time, datetime, random, optuna, re, string

import pandas as pd

import numpy as np

from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score

import matplotlib.pyplot as plt

import seaborn as sns

from optuna.pruners import SuccessiveHalvingPruner

from optuna.samplers import TPESampler

from torch.cuda.amp import autocast, GradScaler

from sklearn.model_selection import train_test_split

from collections import Counter

from transformers import BertModel, BertTokenizer

SEED = 15

random.seed(SEED)

np.random.seed(SEED)

torch.manual_seed(SEED)

torch.backends.cudnn.deterministic = True

torch.cuda.amp.autocast(enabled=True)

device = torch.device("cuda")

df = pd.read_csv(’CV_ArxivDataset_trainSet_FULL_edited.csv’)

df.head()

def clean_df(df):

# strip dash but keep a space

df[’text’] = df[’text’].str.replace(’-’, ’ ’)

Vijini Liyanage APPENDIX A. CODE SEGMENTS 107



A.4. CODE TO PRODUCE ENSEMBLE ARCHITECTURES

# prepare keys for punctuation removal

translator = str.maketrans(dict.fromkeys(string.punctuation))

# lower case the data

df[’text’] = df[’text’].apply(lambda x: x.lower())

# remove excess spaces near punctuation

df[’text’] = df[’text’].apply(lambda x: re.sub(r’\s([?.!"](?:\s|$))’, r’\1’, x))

# remove punctuation -- f1 improves by .05 by disabling this

#df[’body’] = df[’body’].apply(lambda x: x.translate(translator))

# generate a word count

df[’word_count’] = df[’text’].apply(lambda x: len(x.split()))

# remove excess white spaces

df[’text’] = df[’text’].apply(lambda x: " ".join(x.split()))

return df

df = clean_df(df)

# instantiate BERT tokenizer with upper + lower case

tokenizer = BertTokenizer.from_pretrained(’bert-base-uncased’)

word_map = dict(zip(tokenizer.vocab.keys(), range(len(tokenizer))))

word_map.get(’the’) # find index value

list(tokenizer.vocab.keys())[2000:2010]

len(tokenizer)

# tokenize corpus using BERT

def tokenize_corpus(df, tokenizer, max_len):

# token ID storage

input_ids = []

# attension mask storage

attention_masks = []

# max len -- 512 is max

max_len = max_len

# for every document:

for doc in df:

108 APPENDIX A. CODE SEGMENTS Vijini Liyanage



A.4. CODE TO PRODUCE ENSEMBLE ARCHITECTURES

# ‘encode_plus‘ will:

# (1) Tokenize the sentence.

# (2) Prepend the ‘[CLS]‘ token to the start.

# (3) Append the ‘[SEP]‘ token to the end.

# (4) Map tokens to their IDs.

# (5) Pad or truncate the sentence to ‘max_length‘

# (6) Create attention masks for [PAD] tokens.

encoded_dict = tokenizer.encode_plus(

doc, # document to encode.

add_special_tokens=True, # add ’[CLS]’ and ’[SEP]’

max_length=max_len, # set max length

truncation=True, # truncate longer messages

pad_to_max_length=True, # add padding

return_attention_mask=True, # create attn. masks

return_tensors=’pt’ # return pytorch tensors

)

# add the tokenized sentence to the list

input_ids.append(encoded_dict[’input_ids’])

# and its attention mask (differentiates padding from non-padding)

attention_masks.append(encoded_dict[’attention_mask’])

return torch.cat(input_ids, dim=0), torch.cat(attention_masks, dim=0)

# create tokenized data

input_ids, attention_masks = tokenize_corpus(df[’text’].values, tokenizer, 512)

# convert the labels into tensors.

labels = torch.tensor(df[’#label’].values.astype(np.float32))

import math

from torch import default_generator, randperm

from torch._utils import _accumulate

from torch.utils.data.dataset import Subset

Vijini Liyanage APPENDIX A. CODE SEGMENTS 109



A.4. CODE TO PRODUCE ENSEMBLE ARCHITECTURES

def random_split(dataset, lengths,

generator=default_generator):

r"""

Randomly split a dataset into non-overlapping new datasets of given lengths.

If a list of fractions that sum up to 1 is given,

the lengths will be computed automatically as

floor(frac * len(dataset)) for each fraction provided.

After computing the lengths, if there are any remainders, 1 count will be

distributed in round-robin fashion to the lengths

until there are no remainders left.

Optionally fix the generator for reproducible results, e.g.:

>>> random_split(range(10), [3, 7], generator=torch.Generator().manual_seed(42))

>>> random_split(range(30), [0.3, 0.3, 0.4], generator=torch.Generator(

... ).manual_seed(42))

Args:

dataset (Dataset): Dataset to be split

lengths (sequence): lengths or fractions of splits to be produced

generator (Generator): Generator used for the random permutation.

"""

if math.isclose(sum(lengths), 1) and sum(lengths) <= 1:

subset_lengths: List[int] = []

for i, frac in enumerate(lengths):

if frac < 0 or frac > 1:

raise ValueError(f"Fraction at index {i} is not between 0 and 1")

n_items_in_split = int(

math.floor(len(dataset) * frac) # type: ignore[arg-type]

)

subset_lengths.append(n_items_in_split)

remainder = len(dataset) - sum(subset_lengths) # type: ignore[arg-type]

# add 1 to all the lengths in round-robin fashion until the remainder is 0

110 APPENDIX A. CODE SEGMENTS Vijini Liyanage



A.4. CODE TO PRODUCE ENSEMBLE ARCHITECTURES

for i in range(remainder):

idx_to_add_at = i % len(subset_lengths)

subset_lengths[idx_to_add_at] += 1

lengths = subset_lengths

for i, length in enumerate(lengths):

if length == 0:

warnings.warn(f"Length of split at index {i} is 0. "

f"This might result in an empty dataset.")

# Cannot verify that dataset is Sized

if sum(lengths) != len(dataset): # type: ignore[arg-type]

raise ValueError("Sum of input lengths does not equal the length of the input dataset!")

indices = randperm(sum(lengths), generator=generator).tolist() # type: ignore[call-overload]

return [Subset(dataset, indices[offset - length : offset]) for offset, length in zip(_accumulate(lengths), lengths)]

# prepare tensor data sets

def prepare_dataset(padded_tokens, attention_masks, target):

# prepare target into np array

target = np.array(target.values, dtype=np.int64).reshape(-1, 1)

# create tensor data sets

tensor_df = TensorDataset(padded_tokens, attention_masks, torch.from_numpy(target))

# 80% of df

train_size = int(0.8 * len(df))

# 20% of df

val_size = len(df) - train_size

# 50% of validation

test_size = int(val_size - 0.5*val_size)

# divide the dataset by randomly selecting samples

train_dataset, val_dataset = random_split(tensor_df, [train_size, val_size])

# divide validation by randomly selecting samples

new_size = int(0.1 * len(df))

Vijini Liyanage APPENDIX A. CODE SEGMENTS 111



A.4. CODE TO PRODUCE ENSEMBLE ARCHITECTURES

val_dataset, test_dataset = random_split(val_dataset, [new_size, new_size])

#torch.utils.data.random_split(dataset, [int(0.8 * len(dataset)), int(0.2 * len(dataset))])

return train_dataset, val_dataset, test_dataset

# create tensor data sets

train_dataset, val_dataset, test_dataset = prepare_dataset(input_ids,

attention_masks,

df[’#label’])

# helper function to count target distribution inside tensor data sets

def target_count(tensor_dataset):

# set empty count containers

count0 = 0

count1 = 0

# set total container to turn into torch tensor

total = []

# for every item in the tensor data set

for i in tensor_dataset:

# if the target is equal to 0

if i[2].item() == 0:

count0 += 1

# if the target is equal to 1

elif i[2].item() == 1:

count1 += 1

total.append(count0)

total.append(count1)

return torch.tensor(total)

# prepare weighted sampling for imbalanced classification

def create_sampler(target_tensor, tensor_dataset):

# generate class distributions [x, y]

class_sample_count = target_count(tensor_dataset)

# weight

weight = 1. / class_sample_count.float()

112 APPENDIX A. CODE SEGMENTS Vijini Liyanage



A.4. CODE TO PRODUCE ENSEMBLE ARCHITECTURES

# produce weights for each observation in the data set

samples_weight = torch.tensor([weight[t[2]] for t in tensor_dataset])

# prepare sampler

sampler = torch.utils.data.WeightedRandomSampler(weights=samples_weight,

num_samples=len(samples_weight),

replacement=True)

return sampler

# create samplers for just the training set

train_sampler = create_sampler(target_count(train_dataset), train_dataset)

# time function

def format_time(elapsed):

’’’

Takes a time in seconds and returns a string hh:mm:ss

’’’

# round to the nearest second.

elapsed_rounded = int(round((elapsed)))

# format as hh:mm:ss

return str(datetime.timedelta(seconds=elapsed_rounded))

# create DataLoaders with samplers

train_dataloader = DataLoader(train_dataset,

batch_size=8,

sampler=train_sampler,

shuffle=False)

valid_dataloader = DataLoader(val_dataset,

batch_size=8,

shuffle=True)

test_dataloader = DataLoader(test_dataset,

batch_size=8,

Vijini Liyanage APPENDIX A. CODE SEGMENTS 113



A.4. CODE TO PRODUCE ENSEMBLE ARCHITECTURES

shuffle=True)

def train(model, dataloader, optimizer):

# capture time

total_t0 = time.time()

# Perform one full pass over the training set.

print("")

print(’======== Epoch {:} / {:} ========’.format(epoch + 1, epochs))

print(’Training...’)

# reset total loss for epoch

train_total_loss = 0

total_train_f1 = 0

# put both models into traning mode

model.train()

kim_model.train()

# for each batch of training data...

for step, batch in enumerate(dataloader):

# progress update every 40 batches.

if step % 40 == 0 and not step == 0:

# Report progress.

print(’ Batch {:>5,} of {:>5,}.’.format(step, len(dataloader)))

# Unpack this training batch from our dataloader:

#

# As we unpack the batch, we’ll also copy each tensor to the GPU

#

# ‘batch‘ contains three pytorch tensors:

# [0]: input ids

114 APPENDIX A. CODE SEGMENTS Vijini Liyanage



A.4. CODE TO PRODUCE ENSEMBLE ARCHITECTURES

# [1]: attention masks

# [2]: labels

b_input_ids = batch[0].cuda()

b_input_mask = batch[1].cuda()

b_labels = batch[2].cuda().long()

# clear previously calculated gradients

optimizer.zero_grad()

# runs the forward pass with autocasting.

with autocast():

# forward propagation (evaluate model on training batch)

outputs = model(input_ids=b_input_ids, attention_mask=b_input_mask)

hidden_layers = outputs[2] # get hidden layers

hidden_layers = torch.stack(hidden_layers, dim=1) # stack the layers

hidden_layers = hidden_layers[:, -4:] # get the last 4 layers

logits = kim_model(hidden_layers)

loss = criterion(logits.view(-1, 2), b_labels.view(-1))

# sum the training loss over all batches for average loss at end

# loss is a tensor containing a single value

train_total_loss += loss.item()

# Scales loss. Calls backward() on scaled loss to create scaled gradients.

# Backward passes under autocast are not recommended.

# Backward ops run in the same dtype autocast chose for corresponding forward ops.

scaler.scale(loss).backward()

# scaler.step() first unscales the gradients of the optimizer’s assigned params.

# If these gradients do not contain infs or NaNs, optimizer.step() is then called,

# otherwise, optimizer.step() is skipped.

Vijini Liyanage APPENDIX A. CODE SEGMENTS 115



A.4. CODE TO PRODUCE ENSEMBLE ARCHITECTURES

scaler.step(optimizer)

# Updates the scale for next iteration.

scaler.update()

# Update the scheduler

scheduler.step()

# calculate preds

_, predicted = torch.max(logits, 1)

# move logits and labels to CPU

predicted = predicted.detach().cpu().numpy()

y_true = b_labels.detach().cpu().numpy()

# calculate f1

total_train_f1 += f1_score(predicted, y_true,

average=’weighted’,

labels=np.unique(predicted))

# calculate the average loss over all of the batches

avg_train_loss = train_total_loss / len(dataloader)

# calculate the average f1 over all of the batches

avg_train_f1 = total_train_f1 / len(dataloader)

# training time end

training_time = format_time(time.time() - total_t0)

# Record all statistics from this epoch.

training_stats.append(

{

’Train Loss’: avg_train_loss,

’Train F1’: avg_train_f1,

’Train Time’: training_time

}

116 APPENDIX A. CODE SEGMENTS Vijini Liyanage



A.4. CODE TO PRODUCE ENSEMBLE ARCHITECTURES

)

# print result summaries

print("")

print("summary results")

print("epoch | trn loss | trn f1 | trn time ")

print(f"{epoch+1:5d} | {avg_train_loss:.5f} | {avg_train_f1:.5f} | {training_time:}")

#torch.cuda.empty_cache()

return None

def validating(model, dataloader):

# capture validation time

total_t0 = time.time()

# After the completion of each training epoch, measure our performance on

# our validation set.

print("")

print("Running Validation...")

# put both models in evaluation mode

model.eval()

kim_model.eval()

# track variables

total_valid_accuracy = 0

total_valid_loss = 0

total_valid_f1 = 0

total_valid_recall = 0

total_valid_precision = 0

total_bert_valid_loss = 0

# evaluate data for one epoch

Vijini Liyanage APPENDIX A. CODE SEGMENTS 117



A.4. CODE TO PRODUCE ENSEMBLE ARCHITECTURES

for batch in dataloader:

# Unpack this training batch from our dataloader:

# ‘batch‘ contains three pytorch tensors:

# [0]: input ids

# [1]: attention masks

# [2]: labels

b_input_ids = batch[0].cuda()

b_input_mask = batch[1].cuda()

b_labels = batch[2].cuda().long()

# tell pytorch not to bother calculating gradients

with torch.no_grad():

# forward propagation (evaluate model on training batch)

outputs = model(input_ids=b_input_ids, attention_mask=b_input_mask)

hidden_layers = outputs[2] # get hidden layers

hidden_layers = torch.stack(hidden_layers, dim=1) # stack the layers

hidden_layers = hidden_layers[:, -4:] # get the last 4 layers

logits = kim_model(hidden_layers)

loss = criterion(logits.view(-1, 2), b_labels.view(-1))

# accumulate validation loss

total_valid_loss += loss.item()

# calculate preds

_, predicted = torch.max(logits, 1)

# move logits and labels to CPU

predicted = predicted.detach().cpu().numpy()

y_true = b_labels.detach().cpu().numpy()

118 APPENDIX A. CODE SEGMENTS Vijini Liyanage



A.4. CODE TO PRODUCE ENSEMBLE ARCHITECTURES

# calculate f1

total_valid_f1 += f1_score(predicted, y_true,

average=’weighted’,

labels=np.unique(predicted))

# calculate accuracy

total_valid_accuracy += accuracy_score(predicted, y_true)

# calculate precision

total_valid_precision += precision_score(predicted, y_true,

average=’weighted’,

labels=np.unique(predicted))

# calculate recall

total_valid_recall += recall_score(predicted, y_true,

average=’weighted’,

labels=np.unique(predicted))

# report final accuracy of validation run

avg_accuracy = total_valid_accuracy / len(dataloader)

# report final f1 of validation run

global avg_val_f1

avg_val_f1 = total_valid_f1 / len(dataloader)

# report final f1 of validation run

avg_precision = total_valid_precision / len(dataloader)

# report final f1 of validation run

avg_recall = total_valid_recall / len(dataloader)

# calculate the average loss over all of the batches.

global avg_val_loss

avg_val_loss = total_valid_loss / len(dataloader)

# capture end validation time

Vijini Liyanage APPENDIX A. CODE SEGMENTS 119



A.4. CODE TO PRODUCE ENSEMBLE ARCHITECTURES

training_time = format_time(time.time() - total_t0)

# Record all statistics from this epoch.

valid_stats.append(

{

’Val Loss’: avg_val_loss,

’Val Accur.’: avg_accuracy,

’Val precision’: avg_precision,

’Val recall’: avg_recall,

’Val F1’: avg_val_f1,

’Val Time’: training_time

}

)

# print result summaries

print("")

print("summary results")

print("epoch | val loss | val f1 | val time")

print(f"{epoch+1:5d} | {avg_val_loss:.5f} | {avg_val_f1:.5f} | {training_time:}")

return None

def testing(model, dataloader):

print("")

print("Running Testing...")

# capture test time

total_t0 = time.time()

# put both models in evaluation mode

model.eval()

kim_model.eval()

# track variables

120 APPENDIX A. CODE SEGMENTS Vijini Liyanage



A.4. CODE TO PRODUCE ENSEMBLE ARCHITECTURES

total_test_accuracy = 0

total_test_loss = 0

total_test_f1 = 0

total_test_recall = 0

total_test_precision = 0

# evaluate data for one epoch

for batch in dataloader:

# Unpack this training batch from our dataloader:

# ‘batch‘ contains three pytorch tensors:

# [0]: input ids

# [1]: attention masks

# [2]: labels

b_input_ids = batch[0].cuda()

b_input_mask = batch[1].cuda()

b_labels = batch[2].cuda().long()

# tell pytorch not to bother calculating gradients

with torch.no_grad():

# forward propagation (evaluate model on training batch)

outputs = model(input_ids=b_input_ids, attention_mask=b_input_mask)

hidden_layers = outputs[2] # get hidden layers

hidden_layers = torch.stack(hidden_layers, dim=1) # stack the layers

hidden_layers = hidden_layers[:, -4:] # get the last 4 layers

logits = kim_model(hidden_layers)

loss = criterion(logits.view(-1, 2), b_labels.view(-1))

# accumulate validation loss

total_test_loss += loss.item()

Vijini Liyanage APPENDIX A. CODE SEGMENTS 121



A.4. CODE TO PRODUCE ENSEMBLE ARCHITECTURES

# calculate preds

_, predicted = torch.max(logits, 1)

# move logits and labels to CPU

predicted = predicted.detach().cpu().numpy()

y_true = b_labels.detach().cpu().numpy()

# calculate f1

total_test_f1 += f1_score(predicted, y_true,

average=’weighted’,

labels=np.unique(predicted))

# calculate accuracy

total_test_accuracy += accuracy_score(predicted, y_true)

# calculate precision

total_test_precision += precision_score(predicted, y_true,

average=’weighted’,

labels=np.unique(predicted))

# calculate recall

total_test_recall += recall_score(predicted, y_true,

average=’weighted’,

labels=np.unique(predicted))

# report final accuracy of test run

avg_accuracy = total_test_accuracy / len(dataloader)

# report final f1 of test run

avg_test_f1 = total_test_f1 / len(dataloader)

# report final f1 of test run

avg_precision = total_test_precision / len(dataloader)

# report final f1 of test run

avg_recall = total_test_recall / len(dataloader)

122 APPENDIX A. CODE SEGMENTS Vijini Liyanage



A.4. CODE TO PRODUCE ENSEMBLE ARCHITECTURES

# calculate the average loss over all of the batches.

avg_test_loss = total_test_loss / len(dataloader)

# capture end testing time

training_time = format_time(time.time() - total_t0)

# Record all statistics from this epoch.

test_stats.append(

{

’Test Loss’: avg_test_loss,

’Test Accur.’: avg_accuracy,

’Test precision’: avg_precision,

’Test recall’: avg_recall,

’Test F1’: avg_test_f1,

’Test Time’: training_time

}

)

# print result summaries

print("")

print("summary results")

print("epoch | test loss | test f1 | test time")

print(f"{epoch+1:5d} | {avg_test_loss:.5f} | {avg_test_f1:.5f} | {training_time:}")

return None

# instantiate BERT model with hidden states

#model = BertModel.from_pretrained(’bert-base-uncased’, output_hidden_states=True).cuda()

model = BertModel.from_pretrained(’allenai/scibert_scivocab_cased’, output_hidden_states=True).cuda()

#model = BertModel.from_pretrained(’microsoft/deberta-large’, output_hidden_states=True).cuda()

#model = BertModel.from_pretrained(’roberta-large’, output_hidden_states=True).cuda()

# instantiate CNN config

class config:

def __init__(self):

Vijini Liyanage APPENDIX A. CODE SEGMENTS 123



A.4. CODE TO PRODUCE ENSEMBLE ARCHITECTURES

config.num_classes = 2 # binary

config.output_channel = 16 # number of kernels

config.embedding_dim = 768 # embed dimension

config.dropout = 0.4 # dropout value

return None

# create config

config1 = config()

# instantiate CNN

kim_model = KimCNN(config1).cuda()

# set loss

criterion = nn.CrossEntropyLoss()

# set number of epochs

epochs = 4

# only train the last 4 layers; saves ~600mb of GPU mem and 30s of compute

BERT_parameters = []

allowed_layers = [11, 10, 9, 8]

for name, param in model.named_parameters():

for layer_num in allowed_layers:

layer_num = str(layer_num)

if ".{}.".format(layer_num) in name:

BERT_parameters.append(param)

# set optimizer

optimizer = AdamW([{’params’: BERT_parameters, ’lr’: 2e-5}], weight_decay=1.0)

# set LR scheduler

total_steps = len(train_dataloader) * epochs

scheduler = get_linear_schedule_with_warmup(optimizer,

124 APPENDIX A. CODE SEGMENTS Vijini Liyanage



A.4. CODE TO PRODUCE ENSEMBLE ARCHITECTURES

num_warmup_steps=0,

num_training_steps=total_steps)

# create gradient scaler for mixed precision

scaler = GradScaler()

# create training result storage

training_stats = []

valid_stats = []

best_valid_loss = float(’inf’)

# for each epoch

for epoch in range(epochs):

# train

train(model, train_dataloader, optimizer)

# validate

validating(model, valid_dataloader)

# check validation loss

if valid_stats[epoch][’Val Loss’] < best_valid_loss:

best_valid_loss = valid_stats[epoch][’Val Loss’]

# save best model for use later

torch.save(model.state_dict(), ’bert-cnn-model1.pt’) # torch save

model_to_save = model.module if hasattr(model, ’module’) else model

model_to_save.save_pretrained(’./model_save/bert-cnn/’) # transformers save

tokenizer.save_pretrained(’./model_save/bert-cnn/’) # transformers save

# organize results

#pd.set_option(’precision’, 3)

df_train_stats = pd.DataFrame(data=training_stats)

df_valid_stats = pd.DataFrame(data=valid_stats)

df_stats = pd.concat([df_train_stats, df_valid_stats], axis=1)

df_stats.insert(0, ’Epoch’, range(1, len(df_stats)+1))

df_stats = df_stats.set_index(’Epoch’)

df_stats

# test the model

Vijini Liyanage APPENDIX A. CODE SEGMENTS 125



A.4. CODE TO PRODUCE ENSEMBLE ARCHITECTURES

test_stats = []

model.load_state_dict(torch.load(’bert-cnn-model1.pt’))

testing(model, test_dataloader)

df_test_stats = pd.DataFrame(data=test_stats)

df_test_stats

126 APPENDIX A. CODE SEGMENTS Vijini Liyanage


	Dedication
	Declaration
	Acknowledgement
	Abstract
	Résumé
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Related Work
	Natural Language Generation
	Overview
	History
	Transformer Models on Natural Language Generation
	Text Generation with GPT models

	Ethical Implications and Challenges of Natural Language Generation in AI Systems
	Detection of Automatically Generated Text
	Existing Research on Detection of Automatically Generated Text
	Existing Research on Detection of Automatically Generated Academic Content


	Construction of Corpora Composed of Machine Generated Academic Text
	D1: Dataset of Fully Generated Articles (generated with a temperature parameter of 0.7).
	D2: Dataset of Fully Generated Articles (generated with a temperature parameter of 0.9).
	D3: A hybrid dataset composed by a mix of machine generated and human written content.
	D4: A dataset composed of generated abstracts (using pre-trained GPT-2 model)
	D5: A dataset of hotel reviews generated by GPT-2 and GPT-3 models.
	D6: Dataset published by DAGPap22 shared task.
	D7: WikiGPT dataset composed of wikipedia introductions.

	Methodology Adopted in Detecting Artificial Text
	Evaluation of the Quality of the Artificially Generated Text.
	Detection as a Binary Classification Task
	Statistical Models and Their Ensembles Employed in Classification
	Recurrent Network Models and Their Ensembles Employed in Classification
	Transformer Architectures and Their Ensembles Employed in Classification

	Leveraging Detection Tools to Distinguish Machine Generated Content from Human Written Content

	Results and Evaluation
	BLEU and ROUGE Scores
	Results Produced by Classification Models
	Experimental Setup
	Results Produced by Classification Models on the Benchmark Dataset
	Results Produced by Classification Models on Various Corpora
	Results Produced by Classification Models & Their Ensembles on ALTA Shared Task Data
	Results Produced by Classification Models on Hotel Review Data

	Results Generated by Detection Tools
	Visualizations Produced by GLTR
	Results Produced by DetectGPT
	Results Produced by GPTZero and GPT-2 Output Detector


	Further Experiments on Detection Task
	Examining the Influence of Attention Feature of Transformer Based Models on Classification Task
	Cross Validation Performed on Classification Task
	Examining the Log Probabilities to Further Understand the Classification Results of the Hotel Review Dataset

	Concluding Remarks & Future Perspectives
	List of Publications
	Appendices
	Code Segments
	Code to Generate Text by Fine-tuning GPT-2 Model
	Code to Generate Text by Pre-trained GPT-2 model
	Code to Classify Text Using Transformer-based Models
	Code to Produce Ensemble Architectures


