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Abstract 

Evaluating next-generation sequencing (NGS) performance suffers frequently from the 

absence of gold standard. Without gold standard, researchers often carry out replicates from 

the same individual and use concordance between replicates to evaluate NGS performance, 

whereas the appropriateness of that criterion is still debated. Furthermore, for a better 

performance, the replicates are often combined using various models to reconstruct a new 

high-performance callset. 

This work aimed to investigate these two aspects of NGS performance evaluation and 

improvement in the absence of gold standard. In the first part, we examined the contributions 

and limitations of the concordance-discordance criterion. We analyzed the relationship 

between the probability of discordance and that of error using conditional probability under 

conditional independence and conditional dependence between two sequencing results. We 

compared the probabilities of discordance and error with various combinations of sensitivity, 

specificity, and correlation between replicates, then on real results of sequencing genome 

NA12878. We examined covariate effects on discordance and error using generalized additive 

models with smooth functions. The results showed that, with conditional independence of two 

sequencing results, the concordance-discordance criterion seems acceptable; however, it 

becomes questionable in presence of high correlation because of high percentages of false 

concordant results. Covariate effects’ functional forms were close between discordance and 

error models, though the parts of covariate-explained deviance differed. 

In the second part, we investigated the statistical methods able to combine callsets from 

replicates to reconstruct a new callset. Three technical replicates of genome NA12878 were 

considered and five model types were compared (consensus, latent class, Gaussian mixture, 

Kamila–adapted k-means, and random forest) regarding four performance indicators: 

sensitivity, precision, accuracy, and F1-score. We concluded that the compared non-

supervised clustering models that combine multiple callsets are able to improve sequencing 

performance vs. supervised models previously tested elsewhere. Among the models 

compared, the Gaussian mixture model and Kamila offered non-negligible precision and F1-

score improvements. These models may be recommended for callset reconstruction (from 

either biological or technical replicates) for diagnostic or precision medicine purposes. 
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Summary 

Chapter 1 presents the general context of this work as well as some necessary background 

concepts. In Chapter 1, we first review briefly the history and principles of next-generation 

sequencing and then detail the steps of the sequencing stage and bioinformatics stage. An 

Illumina sequencing platform is used for the example that illustrate the sequencing process 

and the Burrows-Wheeler Aligners and GATK variant caller are used as main examples to 

describe the underlying statistical models of bioinformatics tools. We focus particularly on 

explaining the concepts and statistical principles as well as their evolution over time but not 

the implementation algorithms or computer programs. The generation and signification of 

output quality scores are also described as they are of great importance in quality analyses. 

Finally, recommended filtering strategies are discussed, including hard filters and soft filters 

implemented in the GATK workflow. 

Chapter 2 introduces the research question of the work; that is, the methodology used to 

evaluate and improve the quality of NGS callsets. We first discuss the sources of errors in the 

NGS process; the main stemming either from the experimental steps or the bioinformatics 

analysis. Then we discuss the currently most widely used methods to evaluate the 

performance of a given NGS data set in situations with available “gold standard” set and 

absence of “gold-standard” set. We finish with a brief review of the attempts and researchers’ 

findings regarding error detection and reduction in a variant calling output. 

Chapter 3 includes theoretical work and real-data analyses aiming to evaluate the 

appropriateness of the concordance-discordance model, a model widely used in performance 

evaluation of NGS data. In the absence of gold standard, researchers are often compelled to 

use the concordance between several sequencing results as a substitution criterion, the 

discordance results are then interpreted as errors. However, whether the discordance rate 

corresponds to the error rate remains unclear. We first analyse the theoretical relationships 

between the error rate and the discordance rate under conditional independence and 

dependence and apply the principles of performance evaluation of diagnostic tests to the 

domain of NGS where the general concept of ‘test’ refers to a NGS process. This is then 

illustrated with simulations of various situations as well as data on three NA12878 genome 
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replicates. Finally, differences between estimates of covariate effects associated with error 

and discordance are examined. 

In Chapter 3, we show that in case of conditional independence between two sequencing 

results, the overall probability of error in concordant results being negligible, the 

concordance-discordance method is acceptable. However, in settings with high correlation 

levels, the method becomes questionable because of a high proportion of false concordant 

results. With real data from NA12878 vs. GIAB benchmark set, discordance (as indicator of 

error) seemed acceptable but with caution in interpreting discordant or concordant results. 

Multivariate analyses showed substantial differences between error and discordance models; 

thus, caution is required in using the concordance criterion, especially in case of highly 

correlated results. 

Chapter 4 looks into other models implemented to obtain a combined call sets from replicates. 

We focus on exploring non-supervised models instead of supervised models because the latter 

often require high-quality training data that are not always available. The literature about 

processing replicate sequencing results with non-supervised models is rather scanty and 

available models have been rarely objectively compared. We therefore explored the main 

models of dealing with several NGS results stemming from biological or technical replicates, 

investigated their properties, and compare their key performance indicators to help choosing 

the most performant among readily implementable methods able to improve sequencing 

performance. Section 4.1 aims to present the research context and provide a literature review 

of the methodology in related works. In section 4.2, we address the question in the statistical 

world as a clustering problem and give an overview of the major categories of clustering 

models. Then we apply representative models of each category to three technical replicates of 

the NA12878 genome and compare their performances in section 4.3 to 4.5. Precisely, we 

explore the consensus model, the latent class model, the mixture model, and random forest 

regarding their abilities to produce a callset with improved quality. We also compare the main 

performance indicators of these models; i.e., precision, recall, and F1-score.  

In Chapter 4, we show that the non-supervised clustering models compared were all able to 

improve sequencing performance in terms of precision and F1-score, which is comparable to 
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what is reported about supervised models. Among the models compared, the Gaussian 

mixture model and Kamila offered improvements that made precision higher than 99% and 

F1-score close to 99%. Therefore, these models may be recommended to reconstruct new 

high-performance callsets from NGS replicates. This is of particular interest for diagnosis or 

precision medicine whenever DNA sequencing results stem from either biological replicates 

(more than one sample) or technological replicates (more than one sequencing platform or 

analysis pipeline). 
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Résumé 

Les travaux de cette thèse ont porté sur la place du modèle de concordance-discordance dans 

l’évaluation de la performance du séquençage à haut débit et sur des comparaisons de 

performance entre modèles de classification dans la reconstitution de résultats de séquençage 

haut débit à partir de réplicats techniques. 

Le premier travail a étudié le problème de l’évaluation du séquençage haut débit en l’absence 

de ‘gold’ standard et, dans ce cadre, la pertinence des critères de concordance-discordance. Il 

a examiné les relations entre le taux de discordance et le taux d’erreur dans diverses situations 

théoriques. Il a ensuite analysé les effets des covariables sur ces deux taux en utilisant un 

modèle additif généralisé avec des données réelles issues de réplicats de séquençage du 

génome NA12878. 

Le second travail a étudié le problème de la fusion de résultats de séquençage haut débit de 

réplicats techniques en vue d’obtenir un nouveau jeu de données susceptible de comporter 

moins d’erreurs. Il a évalué et comparé les aptitudes des principaux modèles de 

partitionnement à améliorer la performance finale du séquençage à partir des résultats de trois 

séquençages du génome NA12878. L’étude fournit des arguments pour choisir le modèle le 

plus convenable et utiliser ces résultats en matière de diagnostic ou de médecine de précision. 

 

Le Chapitre 1 présente le contexte général de ce travail, ainsi que certains indispensables 

concepts de base. Dans ce chapitre, nous commençons par rappeler brièvement l'histoire et les 

principes du séquençage de nouvelle génération, puis nous détaillons les étapes de la phase de 

séquençage et de la phase bioinformatique. Une plateforme de séquençage Illumina est 

utilisée pour illustrer le processus de séquençage, les aligneurs de Burrows-Wheeler (BWA) 

et l'appelant de variants GATK comme exemples principaux pour décrire les algorithmes et 

les modèles statistiques sous-jacents des outils bioinformatiques. Nous nous concentrons 

particulièrement sur l'explication des principes conceptuels et statistiques ainsi que sur leur 

évolution dans le temps, mais pas sur les algorithmes de mise en œuvre ou les programmes 

informatiques. La génération et la signification des scores de qualité des résultats sont 
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également décrites car elles sont d'une grande importance dans les analyses de la qualité. 

Enfin, les stratégies de filtrage recommandées sont également discutées, y compris les filtres 

durs et les filtres doux mis en œuvre dans GATK. 

Le Chapitre 2 présente la question de la recherche ; à savoir, la méthodologie utilisée pour 

évaluer et améliorer la qualité des callsets NGS. Nous examinons d'abord les sources d'erreur 

qui interviennent dans le processus NGS et dont les principales proviennent soit des étapes 

expérimentales, soit de l'analyse bioinformatique. Nous examinons ensuite les méthodes les 

plus largement utilisées aujourd’hui pour évaluer les performances des séquençages NGS 

dans des situations d’existence et d’absence d’un ‘gold standard’. Nous terminons par un bref 

examen des essais et des résultats des chercheurs concernant la détection et la réduction des 

erreurs inhérentes à un résultat d'appel de variants. 

Le Chapitre 3 comprend un travail théorique et des analyses de données réelles visant à 

évaluer la pertinence du modèle de concordance-discordance, un modèle largement utilisé 

dans l'évaluation des performances de données NGS. En l'absence d'étalon-or, les chercheurs 

sont souvent obligés d'utiliser la concordance entre plusieurs résultats de séquençage comme 

critère de substitution, les résultats discordants étant alors interprétés comme des erreurs. 

Toutefois, il n'est pas certain que le taux de discordance corresponde au taux d'erreur. Nous 

analysons d'abord les relations théoriques entre le taux d'erreur et le taux de discordance en 

cas d'indépendance et de dépendance conditionnelles, puis appliquons les principes 

d'évaluation de performance des tests diagnostiques au domaine de la NGS où le concept 

général de ‘test’ désigne un processus de NGS. Ceci est ensuite illustré par diverses 

simulations de situations ainsi que par des données provenant de trois réplicats du génome 

NA12878. Enfin, nous examinons les différences entre les estimations des effets des 

covariables associées à l'erreur et à la discordance. 

Dans le Chapitre 3, nous concluons qu'en cas d'indépendance conditionnelle entre deux 

résultats de séquençage, la méthode de concordance-discordance est acceptable parce que la 

probabilité globale d'erreur dans les résultats concordants est négligeable. Toutefois, lorsque 

les niveaux de corrélation sont élevés, la méthode devient discutable en raison de la 

proportion élevée de faux résultats concordants. Avec des données réelles sur NA12878 par 
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rapport à l'ensemble de référence GIAB, la discordance (en tant qu'indicateur d'erreur) semble 

acceptable, mais une prudence s’impose dans l'interprétation des résultats discordants ou 

concordants. Des analyses multivariées ont montré des différences substantielles entre les 

modèles d'erreur et les modèles de discordance ; il convient donc d'être prudent dans 

l'utilisation du critère de concordance, surtout en cas de résultats fortement corrélés. 

Le Chapitre 4 examine d'autres modèles mis en œuvre pour combiner des ensembles d'appels 

provenant de réplicats. Nous nous concentrons sur l'exploration de modèles non supervisés 

plutôt que supervisés parce que ces derniers nécessitent souvent des données d'apprentissage 

de haute qualité qui ne sont pas toujours disponibles. La littérature sur le traitement des 

résultats de séquençage de réplicats à l'aide de modèles non supervisés est plutôt rare et les 

différents modèles utilisables ont été rarement objectivement comparés. Nous avons donc 

exploré les principaux modèles destinés au traitement de résultats NGS provenant de réplicats 

biologiques ou techniques, étudié leurs propriétés et de comparé leurs principaux indicateurs 

de performance pour aider à choisir les méthodes les plus performantes parmi celles qui 

peuvent être facilement mises en œuvre et qui sont capables d'améliorer les performances de 

séquençage. La section 4.1 vise à présenter le contexte de la recherche et à fournir une analyse 

documentaire de la méthodologie utilisée dans les travaux connexes. Dans la section 4.2, nous 

positionnons la question dans le monde statistique comme un problème de regroupement et 

nous donnons un aperçu des principales catégories de modèles de regroupement. Nous 

appliquons ensuite des modèles représentatifs de chaque catégorie à trois séquençages de trois 

répliques techniques du génome NA12878 puis comparons leurs performances dans les 

sections 4.3 à 4.5. Précisément, nous avons exploré le modèle de consensus, le modèle de 

classes latentes, le modèle de mélange et la forêt aléatoire et étudié leurs capacités à produire 

résultat de meilleure qualité. Nous avons aussi comparé leurs principaux indicateurs de 

performance : précision, rappel et score F1.  

Dans le Chapitre 4, nous montrons que les modèles de partitionnement non supervisés 

comparés sont capables d'améliorer les performances de séquençage en termes de précision et 

de score F1, ce qui est comparable à ce qui est rapporté au sujet des modèles supervisés. 

Parmi les modèles comparés ici, le modèle de mélange gaussien et Kamila ont apporté des 

améliorations qui ont rendu la précision supérieure à 99 % et le score F1 proche de 99 %. Ces 
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modèles peuvent être donc recommandés pour reconstruire de nouveaux callsets performants 

à partir de réplicats NGS. Ceci est particulièrement intéressant pour le diagnostic ou la 

médecine de précision lorsque les résultats du séquençage de l'ADN proviennent soit de 

réplicats biologiques (plus d'un échantillon), soit de réplicats technologiques (plus d'une 

plateforme de séquençage ou d'un pipeline d'analyse). 

  



10 
 
 

 

 

AAcknowledgements 
 

First, I would like to thank my supervisor, Pr. Pascal Roy, for his enthusiasm, 
support, and mentorship; for giving me the confidence to undertake this thesis work; 
and for many pleasant conversations about science and culture. I am also particularly 
grateful to Pr. Gaëtan Lesca for fruitful exchanges and insights in genetics, to Dr. 
Claire Bardel for her constant help in bioinformatics, and to Dr. Jean Iwaz for his 
counselling in linguistics and science editing. 
 

I also wish to thank the members of the jury for accepting my invitation to examine 
this thesis work, especially the reviewers, Dr. Hervé Perdry and Dr. Sophie Tezenas 
du Montcel, for the time and effort put into reviewing the manuscript and 
expressing valuable suggestions. I wish also to thank the members of the Thesis 
Committee, Pr.Jacques Benichou, Pr. Damien Sanlaville, Dr. Anamaria Necsulea, and 
Dr. Nicolas Parisot for their constructive discussions and helpful suggestions during 
the annual meetings. 
 

I would like to thank all the colleagues in Service de Biostatistique of Hospices Civils 
de Lyon for their warm welcome. To those who taught the M2 B3S courses, thank 
you for introducing me to the world of biostatistics. To those in site Lacassagne, in 
particular Catherine, thank you for your encouragement during my adventure in 
French pastry. To the office neighbours, thank you for your kindness and patience 
with me. To fellow PhD students Alexandre and Corentin, thank you for the 
exchanges and advice. 
 

This thesis work was made possible with a Scholarship granted by the Chinese 
Scholarship Council (CSC). I would like to thank Shanghai Jiao Tong University School 
of Medicine, as well, for the opportunity it gave me to participate in its exchange 
program. The day I took my first French lessons, in 2014, it was beyond my 
imagination that I would pursue a Master’s then a PhD degree in France. 
 

Finally, to my parents, thank you for your encouragement in a difficult COVID time 
and for the freedom and unconditional support you gave me to pursue whatever 
interests me in life. All these years of study would never have been possible without 
you. 
  



11 
 
 

 

 

Table of contents 
1. Overview of Next-Generation Sequencing ....................................................................... 14 

1.1 Sanger sequencing and next-generation sequencing ...................................................... 14 

1.2 The Sequencing Process - from sample to reads ............................................................ 17 

1.2.1 Library preparation .................................................................................................. 17 

1.2.2 Sequencing ............................................................................................................... 18 

1.2.3 Output and quality control ....................................................................................... 18 

1.3 The Bioinformatics process – from reads to variant calls .............................................. 20 

1.3.1 Alignment ................................................................................................................ 20 

1.3.2 Post-alignment quality control and data pre-processing .......................................... 24 

1.3.3 Variant calling (SNV discovery and genotyping) .................................................... 27 

1.3.4 Filtering .................................................................................................................... 30 

1.4 Quality control of NGS ................................................................................................... 31 

2. Performance Evaluation of NGS Data .............................................................................. 33 

2.1 Error sources and reproducibility of NGS ...................................................................... 33 

2.1.1 Source of errors in NGS ........................................................................................... 33 

2.1.2 Reproducibility of NGS ........................................................................................... 34 

2.2 Evaluation method of NGS performance ....................................................................... 36 

2.2.1 Reference standard and benchmarking .................................................................... 36 

2.2.2 Performance evaluation in the presence of gold standard ....................................... 37 

2.2.3 Performance evaluation in the absence of gold standard ......................................... 39 

2.2.4 The use of technical and biological replicates ......................................................... 40 

2.3 Factors associated with NGS performance ..................................................................... 41 

2.3.1 Individual factors of NGS performance ................................................................... 41 

2.3.2 Models combining multiple factors to improve NGS performance ......................... 43 

3. Contribution and limit of the concordance-discordance model in performance evaluation 
of NGS ...................................................................................................................................... 45 

3.1 Modelling the error rate and the discordance rate .......................................................... 45 

3.1.1 Modelling the response of one test against gold standard ....................................... 45 

3.1.2 Modelling the joint response of two test .................................................................. 46 

3.1.3 Modelling correlation between two tests ................................................................. 48 

3.2 Illustration with common NGS performance indicators ................................................. 51 



12 
 
 

 

 

3.2.1 Scenario settings ...................................................................................................... 51 

3.2.2 Results under conditional independence .................................................................. 52 

3.2.3 Results under conditional dependence ..................................................................... 55 

3.3 Illustration with real data -- NA12878 replicates ........................................................... 58 

3.3.1 Material and methods ............................................................................................... 58 

3.3.2 Results ...................................................................................................................... 59 

3.4 Covariable analysis ......................................................................................................... 62 

3.4.1 Methods .................................................................................................................... 62 

3.4.2 Results ...................................................................................................................... 63 

3.5 Discussion ....................................................................................................................... 67 

3.6 Conclusions .................................................................................................................... 70 

4. Performance comparison of clustering models with NGS replicates ............................... 71 

4.1 Context – Combining multiple variant calling sets ........................................................ 72 

4.2 Overview of clustering methods in statistics .................................................................. 75 

4.2.1 Distance-based clustering ........................................................................................ 75 

4.2.2 Model based clustering ............................................................................................ 78 

4.2.3 Clustering mixed dataset (categorical and continuous data) .................................... 81 

4.2.4 Model-selection criteria ........................................................................................... 82 

4.3 Material and methods ..................................................................................................... 83 

4.3.1 The study data .......................................................................................................... 83 

4.3.2 Basic definitions and main covariables .................................................................... 84 

4.3.3 Clustering models used for NGS reconstruction ..................................................... 85 

4.3.4 Clustering choices .................................................................................................... 88 

4.3.5 Model result comparisons ........................................................................................ 88 

4.4 Results ............................................................................................................................ 89 

4.4.1 Performance indicators for calling results of individual replicates.......................... 89 

4.4.2 Comparison of model fits ......................................................................................... 90 

4.4.3 Performance comparisons ........................................................................................ 93 

4.5 Discussion ....................................................................................................................... 96 

4.6 Conclusions .................................................................................................................... 99 

References .............................................................................................................................. 100 

Annex: Communications and publications ............................................................................ 113 



13 
 
 

 

 

 

  



14 
 
 

 

 

1. Overview of Next-Generation Sequencing  

1.1 Sanger sequencing and next-generation sequencing 

DNA (deoxyribonucleic acid) is a double helix ‘ladder’ formed by base-pair ‘steps’. There are 

four different bases (or nucleotide): adenine (A), guanine (G), cytosine (C), and thymine (T). 

These bases pair up this way: A with T and C with G. Genetic information is stored by the 

order of these bases, highlighting the importance of determining the exact sequence of bases 

along the DNA chain.  

DNA sequencing consists in determining the order of these nucleotides or bases (A, T, C or 

G) in a molecule of DNA. An important property of DNA is that it can replicate. In a 

conceptually simplified form, DNA replication requires three types of molecules: a template 

strand, free bases, and a polymerase enzyme that links the free bases together one-at-a-time 

into a new strand that is complementary to the template. 

The first-generation DNA sequencing method was Sanger sequencing (developed by Fredrick 

Sanger and colleagues in 1977); it was initially known as the chain-termination method. The 

‘Sanger’ method relies on four separate polymerization reactions performed using tritium-

radio-labelled primers, where each reaction is supplied with small amounts of one chain-

terminating 2,3-dideoxynucleoside triphosphate (ddNTP) to produce fragments of different 

lengths. When the DNA polymerase incorporates a ddNTP at the 3’-end of the growing DNA 

strand, it lacks a 3’-hydroxyl group and chain elongation is terminated. The sequence is then 

deduced by comparing the sizes of the fragments.  

Automated Sanger sequencing technologies have been implemented since the early nineties. 

In high-throughput production pipelines, the DNA to be sequenced is prepared and a PCR 

amplification is carried out with primers that flank the target. The output is an amplified 

template because many PCR amplicons are present within a single reaction volume. The 

sequencing biochemistry takes place in a ‘cycle sequencing’ reaction in which cycles of 

template denaturation, primer annealing, and primer extension are performed. The primer is 

complementary to a known sequence immediately flanking the region of interest. Each round 

of primer extension is terminated by the incorporation of fluorescently-labelled 
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dideoxynucleotides (ddNTPs). In the resulting mixture of end-labeled extension products, the 

label on the terminating ddNTP of any given fragment corresponds to the nucleotide identity 

of its terminal position. Sequence is then determined by high-resolution electrophoretic 

separation of the single-stranded, end-labelled extension products in a capillary-based 

polymer gel. An ensemble of DNA molecules—all originating from the same position on the 

template but having different size due to termination at different positions—are arranged in an 

electric field which separates them by size (because DNA is negatively charged). As the 

molecules migrate in the presence of the electric field, they flow past a detector that registers 

the fluorescence intensity and colour, yielding a series of peaks. A software translates these 

readouts into DNA sequence while also generating error probabilities for each base-call. After 

three decades of gradual improvement, the Sanger biochemistry can be applied to achieve 

read-lengths of up to ~1,000 bps (base pairs) and per-base ‘raw’ accuracies are as high as 

99.999% (Shendure and Ji, 2008). Sanger sequencing led to a number of scientific 

breakthroughs, including the realization of the Human Genome Project in 2001. 

A number of sequencing technologies emerged rapidly after 2005; they are commonly 

referred to as ‘next-generation sequencing technologies’. Next-generation sequencing is 

characterized by large-scale massively parallel sequencing permitting the analysis of genome 

hundreds of times faster and over a thousand times cheaper than traditional Sanger sequencing 

(Metzker, 2010). Rather than exploit size separation to arrange the fluorescent molecules, 

NGS uses positional separation: millions of different template DNA strands bind to discrete 

positions on a glass slide and remain fixed at the same position throughout the sequencing 

reaction. Each template is then extended by a single modified base per cycle and a microscope 

captures an image that resolves both the position of each template on the glass as well as its 

fluorescent colour and intensity. 

The two technologies share a common origin: both repurpose the DNA replication machinery 

that copies DNA during every cell division. The key innovation that transforms DNA 

replication into the DNA-sequencing strategy at the core of both Sanger and NGS is the use of 

unextendable, fluorescently-labelled modified bases. In both sequencing techniques, when 

polymerase incorporates a modified base into the copied strand, the extension of the new 

strand stops, and, critically, this newly-terminated strand is uniquely colored to reflect its 
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most recently added base (Muzzey et al., 2015). The critical difference between Sanger 

sequencing and NGS is the sequencing volume. While Sanger method sequences only a single 

DNA fragment at a time, the massively parallel NGS sequences simultaneously millions of 

fragments per run. The following figure in the review by Shendure and Ji (Shendure and Ji, 

2008) illustrates well the similarities and differences between the two technologies. 

 

(Shendure and Ji 2008) 
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Next-generation sequencing technologies offer several advantages over Sanger sequencing, 

such as being faster and more sensitive due to the large number of reads generated. However, 

it also brings challenges. The short read length creates the need for sophisticated algorithms to 

determine the positions of each read (Metzker, 2010). The large amount of data with shorter 

read lengths, the higher per-base error rates, and the non-uniform coverage, together with 

platform-specific read error profiles and artefacts impose statistical and computational 

challenges for a reliable detection of variants from NGS data (Pfeifer, 2017). 

 

 

1.2 The Sequencing Process - from sample to reads 

There are several sequencing platforms (Illumina, Roche, Ion Torrent, etc.), among which 

Illumina platforms are the most widely used. According to their underlying biochemistries, 

platforms can be broadly divided into sequencing by ligation and sequencing by synthesis. 

The latter further divides into cyclic-reversible termination and single-nucleotide addition 

(Goodwin et al., 2016). 

Although diverse in their sequencing biochemistries, the workflows of sequencing platforms 

are conceptually similar. A sequencing process includes a library preparation step and a 

sequencing step. Herein, we use an Illumina sequencing platform as example to illustrate the 

sequencing process. 

 

1.2.1 Library preparation 

All NGS approaches rely on a ‘library’ preparation using native or amplified DNA. The first 

step of template1 generation is the fragmentation of the sample DNA into 200 to 500 bp short 

fragments followed by ligation to platform-specific 3’ and 5’ adapters at the end of each 

fragment. The adapters are recognized by the sequencing platform and used to distribute 

                                                 
1 Template is a DNA fragment to be sequenced (Goodwin et al., 2016).  
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spatially the fragments by immobilizing them onto a solid surface. The fragments are then 

amplified in vitro by PCR (Ilumina platforms use a bridge PCR technique). This step results 

in producing clusters consisting of identical copies of a DNA sequence. The resulting 

sequencing library is loaded on a flow cell2 and sequenced in Massive Parallel Sequencing 

reactions (Goodwin et al., 2016).  

1.2.2 Sequencing 

The sequencing technique used by Illumina is based on an optical readout of incorporated 

fluorescent nucleotides coupled to a reversible terminator by a DNA polymerase. During each 

sequencing cycle, a single fluorescently-labelled reversible terminator-bound dNTP is 

incorporated into each nucleic acid chain of the clustered fragments and the resulting 

fluorescence image of the flow cell is recorded. This image contains information on the type 

of nucleotide at a cycle for all spatially separated clusters in parallel. After imaging, the 

fluorophore attached to the freshly incorporated nucleotide is cleaved allowing a new cycle of 

synthesis and imaging to take place. Thus, after multiple cycles, the continuous sequence 

from each cluster can be obtained by translating each image taken at each cycle into a 

sequence of nucleotides. 

1.2.3 Output and quality control 

The output information of the sequencing step is stored in a FASTQ format file containing 

sequences of base calls along with the quality scores of each base. Sequencing quality scores 

are statistical measures of the probabilities that a base is incorrectly called, each base in a read 

is assigned a quality score by a phred-scaled algorithm. The quality score of a given base, Q, 

is defined by following equation: ܳ =  −10 ∗ logଵ଴ ݁ 

where e is the estimated probability of the base call being wrong. For example, a quality score 

of 20 (i.e, Q20), represents an estimated error rate of 1% (meaning every 100 bp sequencing 

read may contain an error) and a corresponding call accuracy of 99%.  

                                                 
2 Flow cell is a surface with multiple lanes to adsorb and immobilize DNA fragments through attached adapters. 
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Quality scores are calculated for each base call in a two-step process: i) For each base call, a 

number of quality predictor values are computed. Quality predictor values are observable 

properties of clusters from which base calls are extracted, such as intensity profiles and 

signal-to-noise ratios that measure various aspects of base call reliability. These predictors 

have been empirically determined to correlate with the quality of the base call (Ewing and 

Green, 1998). ii) To estimate a new quality score, the quality predictor values are computed 

for a new base call and compared to values in the pre-calibrated quality table. The quality 

table, also known as Q-table, lists combinations of quality predictor values and relates them to 

corresponding quality scores, this relationship is determined by a calibration process using 

empirical data (Illumina, 2014). The percentage of base calls with a quality score of at least 

Q30 is often used as an indicator to assess the overall sequencing run quality on the Illumina 

platforms. 

In addition to the above-presented quality scores, Illumina platforms also practice quality 

score binning in most cases; that is, the original quality scores may be compressed into fewer 

quality bins. For example, the original quality scores 20 to 24 may form one bin, and will be 

assigned a new value of 22. According to Illumina, the choice of bins is empirically optimized 

to minimize the loss of quality score resolution across the data, while minimizing the storage 

footprint. Moreover, the quality table that produces quality scores is often updated when 

significant characteristics of the sequencing platform change, such as new hardware, software, 

or chemistry versions. For example, in NovaSeq 6000 System, Quality scores are calculated 

through a process that is more streamlined than previous Illumina systems. Only three quality 

scores are possible and these quality scores represent the average error rate of a group. The 

three groups in the quality table correspond to marginal (< Q15), medium (~ Q20), and high-

quality (> Q30) base calls and are assigned specific scores of 12, 23, and 37, respectively. 

Additionally, a null score of 2 is assigned to any no-calls. The simplification aimed to have 

more efficient data storage, which translates into lower storage costs and lower bandwidth 

requirements for sequencing data (Illumina, 2017). 

Here, it is worth noting that different NGS technologies or platforms differ greatly in their 

specific characteristics due to different biochemistries, despite the commonalities in protocols. 

In fact, each platform is associated with unique biases introduced during library preparation 
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and sequencing; this results in strong differences between platforms regarding the average 

per-base error rates and the underlying reasons for the error (Pfeifer, 2017). These various 

error profiles motivate different error correction strategies in the bioinformatics analyses 

afterwards. 

 

1.3 The Bioinformatics process – from reads to variant calls 

NGS-based bioinformatics analysis can be broadly categorized into primary, secondary, and 

tertiary analyses. In brief, a primary analysis consists in processing raw sequencing 

instrument signals into nucleotide base and short-rad data. A secondary analysis involves 

mapping the short sequences of nucleotides (reads), to a reference sequence and determining 

variation from that reference. A tertiary analysis provides interpretation to the information 

generated during an NGS experiment by associating the sample-specific genomic profile with 

descriptive annotations (Oliver et al., 2015). 

In this work, we focused mainly on the secondary analysis, which includes read alignments 

and variant calling as two main steps. Read alignment is the process of aligning reads against 

a human reference genome in order to determine the position of each read. Afterwards, the 

variant calling step aims to compare the aligned read to the reference genome to identify 

potential differences; i.e., variants. Various open-source or commercial bioinformatics tools 

are available for each of the two steps. In this section, we use Burrows-Wheeler Aligners 

(BWA) and GATK variant caller as main examples to describe the algorithms and the 

underlying statistical models of these bioinformatics tools. We particularly focus on 

explaining the conceptual and statistical principles as well as their evolution over time but not 

the implementation algorithms or computer programs. 

1.3.1 Alignment 

The first step of the secondary analysis is the alignment of reads to a reference genome. 

Output reads from sequencing platforms do not contain location information; therefore, the 

goal of alignment is to map individual reads to the position in the reference genome from 

which they most likely originated. As NGS technologies can generate hundreds of millions of 
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‘short’ reads per experiment, efficiency (= speed), scalability (= storage space), and accuracy 

are all required for an alignment algorithm (Reinert et al., 2015).  

Read alignment is essentially a string match problem of large scale in which two strings3 are 

compared and scored on the basis of dissimilarity (Robinson et al., 2021). The primary metric 

to measure dissimilarity between two sequences is called ‘edit distance’. For example, 

Levenshtein distance is the minimal number of edit operations required to change one 

sequence into another (such edit could be deletion, insertion, or mismatch). The edit distance 

can then be used to calculate a similarity score with a predefined scoring system; i.e., different 

weights for matches, mismatches, insertion, or deletion. An algorithm (e.g., the Smith-

Waterman algorithm (Smith and Waterman, 1981) is then applied to find the optimal local 

alignment(s) by either minimizing the distance or maximizing the similarity score. However, 

the expense of speed and storage challenge of this kind of direct exhaustive search makes it 

impossible to be directly applied to map sequences to large reference genomes. Over the past 

decade, various read alignment tools (i.e., aligners) have been developed employing different 

indexing and compression methods to optimize the speed and the memory footprint. Early 

generation of algorithms were mostly based on hash tables4 and indexed either the query reads 

or the reference genome; later algorithms often used suffix-prefix tries or Burrow-Wheeler 

transform (BWT). The advantage of the latter is that multiple identical substrings in the 

reference genome are stored in a single path. Not having to align sequences that are identical 

makes the search process more efficient and less memory-intensive (Li and Homer, 2010).  

Another important aspect in the alignment problem is that it requires inexact matching to be 

able to cope with sequencing errors as well as true differences between the sequenced genome 

and the reference genome (Nielsen et al., 2011). An inexact match problem can be regarded as 

finding string matches with no more than k differences including insertions, deletions, and 

mismatches. To solve this problem, most aligners use a seed-and-extend approach (Baeza-

Yates and Perleberg, 1996) to find the inexact matches. The idea is that, based on pigeonhole 

lemma, an alignment of a sequence of length m with at most k differences must contain an 

                                                 
3 A string is an ordered sequence of symbols that are selected from an alphabet. 
4 A hash table is a data structure that stores information about which reads or where in the reference genome a 
particular substring or subsequence occurs. (Nielsen et al., 2011) 
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exact match at least s = m/(k+1) bp long because when a read is cut into k + 1 pieces, at least 

one piece would not contain a difference. Therefore, the algorithm searches first for an exact 

match seed with a predefined length then extends the seeds until the differences exceed a 

certain threshold. In the earlier years, alignment algorithms often required end-to-end 

alignment (i.e., every read base had to be aligned to the reference) and were developed for 

short reads that were about 36 bps in length (Li and Homer, 2010). With improved chemistry 

technologies, NGS reads became 100 bps or longer, the aligners began to allow long gaps and 

report multiple non-overlapping local hits potentially caused by structural variations or 

misassemblies in the reference genome (Li, 2013). To allow for gapped match, the algorithm 

usually assigns different weights for opening a gap, extending a gap, in addition to the 

weights for mismatches. 

The most used aligners include BWA, Bowtie2, and BWA-MEM. For example, BWA is an 

aligner based on Burrows-Wheeler Transform; it was developed to align efficiently short 

sequencing reads against a large reference genome allowing mismatches and gaps. Given a 

read of length m, BWA tolerates a hit with at most k differences (mismatches or gaps) and k is 

chosen to be < 4% of m. However, long reads with 2% uniform base error rate may contain 

more differences. Later, the BWA-MEM algorithm (Li, 2013) was developed to align 100 bps 

or longer reads, allowing for mismatches and long gaps with improved speed. It initially seeds 

an alignment with supermaximal exact matches (SMEMs) using an algorithm which 

essentially finds, at each query position, the longest exact match covering the position. This 

algorithm is reported to be more robust to sequencing errors than BWA and applicable to a 

wide range of sequence lengths from 70 bps to a few million bases. Simulation suggests that 

BWA-MEM may work well given 2% error for an 100 bp alignment, 3% error for 200 bps, 

5% for 500 bps, and 10% for 1000 bps or longer alignment (Li, 2013). Reinert et al. provide a 

comprehensive overview of the aligners’ algorithms (Reinert et al., 2015), the goal of these 

computational algorithms is to optimize speed and storage, while still have a high 

performance (especially, sensitivity). The differences between different aligners lie essentially 

in whether or how they allow for gapped match during the seeding or extension step, which 

algorithm is used for seed extension, which indexing or compression method is used, etc. 
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The alignment data are usually stored in the sequence alignment/map format (SAM) or its 

binary composed version (BAM format) containing information about the location, 

orientation, and quality of each read alignment. 

Mapping quality measures the reliability of the alignment, which may be interpreted as the 

likelihood of a read to be mapped to the correct position. Like the base quality score, the 

mapping quality score (MAPQ) is constructed as the phred-scaled probability that a read 

alignment may be wrong. For example, MAPQ = 30 implies there is a 1 in 1000 probability 

that the read is incorrectly mapped. The calculation of the mapping quality score was given in 

the following simplified form (Li et al., 2008):  

“Suppose we have a reference sequence x and a read sequence z. On the assumption that 

sequencing errors are independent at different sites of the read, the probability (ݑ,ݔ|ݖ)݌ of z 

coming from the position u equals the product of the error probabilities of the mismatched 

bases at the aligned position. For example, if read z mapped to position u has two mismatches: 

one with phred base quality 20 and the other with 10, then (ݑ,ݔ|ݖ)݌ = 10ି(ଶ଴ ା ଵ଴)/ଵ଴ =0.001. 

To calculate the posterior probability ݌௦(ݔ|ݑ, ,ݔ|ݑ)௦݌ :and, applying the Bayesian formula gives (ݔ|ݑ)݌ we assume a uniform prior distribution ,(ݖ (ݖ = ∑(ݑ,ݔ|ݖ)݌ ,ݔ|ݖ)݌ ௅ି௟ାଵ௩ୀଵ(ݒ  

where ܮ = ݈ and ݔ is the length of |ݔ| =  ௦ in the phred way, we get the mapping݌ Scaling .|ݖ|

quality of the alignment: ܳ௦(ݔ|ݑ, (ݖ = ଵ଴[1݃݋݈ 10− − ,ݔ|ݑ)௦݌  ” [(ݖ

Solving this equation requires summing over all positions on the reference. It is impractical to 

calculate the sum given a human-sized genome. In practice, the ܳ௦ were approximated by 

empirical formulas that differ between aligners. 

One particular challenge in this step is the alignment of a short read from a repetitive or low-

complexity genomic region that is longer than the read itself (Reinert et al., 2015). In this 

case, the reads often map equally well to multiple locations in the genome. Another challenge 
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is the alignment in regions with a higher level of diversity in the reference genome vs. the 

sequenced genome (e.g., the major histocompatibility complex: “a linked set of genetic loci 

encoding many of the proteins involved in antigen presentation to T cells”. 

 

1.3.2 Post-alignment quality control and data pre-processing 

Once reads have been aligned to the genome, several refinement steps are often performed. 

These steps include routinely i) flagging or filtering of duplicate reads likely to be PCR 

artefacts; ii) realignment, which leverages a collective view of reads around putative insertion 

or deletion (indels) sites to minimize erroneous alignment of reads; and, iii) base quality score 

recalibration, which aims to partially anticipate and correct certain platform-specific error 

profiles (DePristo et al., 2011). In this subsection, we describe the workflow recommended by 

the GATK best practices. The recommendations were subjected to regular updates because of 

the constant improvement of the bioinformatics algorithms and new research results; 

nevertheless, the general structure of the workflow remains similar.  

1.3.2.1 Marking duplicates 

Duplicate reads are reads that derive from the same physical DNA fragment in the sequencing 

library (Van der Auwera and O’Connor, 2020). Sequence duplications could be introduced 

during the PCR amplification step or during the sequencing step due to optical confusions 

(when a single cluster on the flowcell is called as two different reads). Duplications cause the 

reads to be a non-random sampling of the source genome and contain overrepresentation of 

certain sequences; they violate therefore the statistical assumptions of variant calling. They 

manifest as high coverage read support, often influence the coverage distribution and thus 

give rise to false positive variant calls. This is particularly tricky when a single molecule 

experiences a PCR error early in amplification because this error may be propagated and 

sampled many times during sequencing. 

Tools do exist that detect and mark reads that are probable duplicates of one another. In the 

MarkDuplicates program in the Picard suite of tools which is implemented in the GATK 

framework, duplicate reads are identified as sets of read pairs that share the same alignment 
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start and end positions and have the exact same first five bases (for computational efficiency). 

The base quality scores of each read are summed up ignoring bases with quality scores below 

Q15 then the read with the highest sum of quality scores is retained. 

Lastly, it is worth noting that this duplicate removal (de-duplication) strategy is not perfect. 

The implicit assumption is that it is unlikely (or sufficiently improbable) to sample the same 

exact molecule more than once from the source genome given that the sampling is truly 

random (Li, 2010). Thus, sequencings with very deep coverage (such as target enrichment 

sequencing) should not perform de-duplication. However, it is clear that this does occur even 

for whole genome sequencings, at various rates depending on the sequencing depth and the 

target regions. For example, for a 30× whole genome sequencing, true duplicate rates 

resulting from random sampling was estimated at 4.4%. The necessity of this de-duplication 

step has also been questioned using performance comparison of workflows with and without 

this step (Ebbert et al., 2016).  

1.3.2.2 Local Realignment  

Because alignment algorithms map reads individually to the reference genome, reads 

spanning insertions or deletions are often misaligned because most aligners have a tendency 

to introduce SNPs rather than structural variants in the mappings. Thus, at positions of 

unidentified indels, alignment artefacts result in false positive variant detections. To address 

this problem, some tools including GATK perform a realignment step to realign reads in 

suspicious regions to minimize the number of mismatching bases across all reads. 

In the early versions of GATK tools (v. 1 and 2), the local realignment algorithm begins by 

identifying regions for realignment where i) at least one read contains an indel, ii) a cluster of 

mismatching bases exists, or iii) an already known indel segregates at the site (e.g., from the 

database dbSNP5). At each region, alternative haplotypes are “constructed from the reference 

sequence by incorporating know indels at the site, indels in reads spanning the site, or from 

Smith-Waterman alignment of all reads that do not perfectly match the reference sequence” 

                                                 
5 The Single Nucleotide Polymorphism Database (dbSNP) is a free public archive for genetic variation within 
and across different species developed and hosted by the National Center for Biotechnology Information 
(NCBI). 
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(DePristo et al., 2011). For each resulting haplotype ܪ௜, reads are aligned without gaps to ܪ௜ 
and the likelihood ܮ(ܪ௜) calculated as the probability of observing all reads (see detailed 

formulas in DePristo et al., 2011). The haplotype that maximizes ܮ(ܪ௜) is selected as the best 

alternative haplotype. Next, all reads are realigned against the best alternative haplotype ܪଵ 

and the reference ܪ଴, each read ௝ܴ is assigned either to ܪଵ or ܪ଴ whichever maximizes the 

probability of observing the read ܮ൫ ௝ܴหܪ൯. If the log odds ratio of the two-haplotype model is 

better than the single reference haplotype by at least five log units, then the reads are 

realigned. 

This realignment step has later evolved and been implemented into the haplotype caller 

(GATK version 3+), in which the steps are called “Identify Active Regions” and “Assemble 

plausible haplotypes” (Poplin et al., 2017). The active regions are first defined as regions 

where the aligned reads contain evidence of potential variants. Reads from these regions are 

reassembled into candidate haplotypes using a graph-based method. A pair Hidden Markov 

Model (pair-HMM) model (Durbin et al., 1998) is constructed to calculate a matrix of 

likelihoods for each read ௝ܴ to be sequenced from each haplotype ܪ௜. In this pair-HMM 

model, the state transition probabilities (from a match “state” to an insertion or deletion 

“state”) derived from the base qualities of read bases. Here, all reassembled haplotypes (as 

opposed to one retained haplotype in the earlier version) will be used to discover potential 

variants and derive an output file as an intermediate step of variant calling. 

1.3.2.3 Base quality score recalibration 

Most variant calling algorithms incorporate the phred-scaled base quality scores into their 

probabilistic framework; however, raw base quality scores are often systematically biased and 

convey inaccurately the true base-calling error rates (Nielson 2011). Therefore, quality scores 

allocated by the sequencing platforms are often recalibrated to be effectively used in the 

variant calling step. 

One of the most widely applied base recalibration techniques has been implemented in the 

GATK (DePristo et al., 2011). Other recalibrations algorithms are used in other callers such as 

SOAPsnp (Li et al., 2009) and ReQON (Cabanski et al., 2012). The recalibration algorithm of 
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GATK takes into account several covariates such as the machine cycle and the dinucleotide 

context. For all sites that are not known to vary within a population, the bases that align to 

those sites are grouped into different categories with respect to several features: the reported 

base quality score, the position of the base (i.e., the machine cycle) in the read and the 

dinucleotide context (i.e., the two bases before the base of interest). For each category, the 

algorithm estimates an empirical quality score by using mismatches rate with respect to the 

reference genome. Recalibrated quality scores are then estimated by adding to the raw quality 

scores the residual differences between empirical quality scores and the raw quality scores 

(DePristo et al., 2011). 

As described above, this algorithm uses a set of supposedly non-polymorphic sites. As a 

result, quality score recalibration depends strongly on the quality of previous polymorphism 

data; this restricts its usage to organisms with a public variant database. (Nielsen et al., 2011). 

 

1.3.3 Variant calling (SNV discovery and genotyping) 

One of the main objectives of a NGS bioinformatics pipeline is to detect differences between 

the sequenced genome and the reference genome. Such genomic differences, also called 

‘variants’, include single nucleotide variants (SNVs), small insertion and deletions (indels), 

and larger alternations like structural variants (SVs), and copy number variants (CNV). In this 

work, we focus mainly on the detection of SNVs.  

Variant calling is usually a multistep procedure: first, positions or regions where samples 

differ from the reference sequence are identified (variant calling) and then individual alleles at 

all variant sites estimated (genotyping). 

Early methods for calling genotypes were based on counts. The analyses involve first a 

filtering step in which only high-confidence bases were kept, a commonly used cut-off is 

Phred-scaled quality score of Q20. Genotype calling would then proceed by counting the 

number of reads that supporting each allele and deciding genotypes with fixed cut-offs. For 

example, the algorithm would call a heterozygous genotype when the proportion of non-

reference alleles is between 20% and 80%, otherwise a homozygous genotype. This procedure 
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works fairly well when the sequencing depth is high (>20×). For moderate or low sequencing 

depths, genotype calling based on fixed cut-offs will typically lead to under-calling of 

heterozygous genotypes, and the use of a simple filtering based on the quality score will lead 

to a loss of information. Additionally, this calling method does not provide measures of 

uncertainty in the genotype inference. For this reason, probabilistic methods have been 

developed to utilize the quality score to provide posterior probabilities of each genotype.  

Most recent variant callers are based on different statistical approaches (Bayesian, maximum 

likelihood, or deep learning methods). Among these variant callers, a majority use Bayesian 

methods (for a summary table of implemented methods, see Pfeifer, 2017)).  

The GATK variant callers employs a Bayesian probabilistic framework. The simple Bayesian 

genotyper in the first version of GATK (McKenna et al., 2010) computes the posterior 

probability of each of the possible 10 diploid genotypes, given the pileup of sequence reads 

that cover the locus. This computation is based on the Bayesian formulation (Shoemaker et 

al., 1999): 

(ܦ|ܩ)݌ = (ܦ)݌(ܩ|ܦ)݌(ܩ)݌  

where ܦ represents the data (the read base pileup at this reference base) and ܩ represents the 

given genotype. (ܦ|ܩ)݌ is the posterior probability of the genotype, (ܩ)݌ is the prior 

probability of this genotype. The value of (ܦ)݌ is constant over all genotypes and 

(ܩ|ܦ)݌ = ෑ ௕∈௣௜௟௘௨௣(ܩ|ܾ)݌  

where b represents each base covering the locus. The probability of each base given the 

genotype (ܩ|ܾ)݌ is calculated using the quality score of the read base, which is a phred-

scaled score reflecting the error probability of each base, as presented in section 1.2. Finally, 

the assigned genotype at each site is the genotype with the highest posterior probability 

(McKenna et al., 2010).  

The prior probability here is that of a genotype without incorporation of information from 

sequencing data. This prior genotype probability may be chosen to be equal across all 
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genotypes or can be based on external information, for example, from the reference sequence, 

SNP databases, or available population data. For example, a prior could be chosen based on 

the database dbSNP. When a certain polymorphism is reported in dbSNP, the prior 

probabilities at these sites are set to be high for the reported genotype and low for all other 

genotypes; otherwise a prior of 0.001 is applied to the other sites without known variation. 

Another note is that when the sequencing and alignment error is not incorporated into (ܦ)݌, 

the algorithm makes a significant assumption that any read present at a given site is actually 

located there. However, in reality, a certain percentage of reads are misaligned. Therefore, for 

a given read base to be used in the genotype likelihood calculation, several filters were 

applied including a base quality of at least Q20 and a mapping quality of its read of at east 20 

(DePristo et al., 2011). 

In the second version of GATK, multi-sample SNP callings were also incorporated. The 

likelihood of three genotype categories (homozygous reference, heterozygous variant, and 

homozygous variant) of each sample at each site were first estimated (DePristo et al., 2011) 

instead of the 10 genotypes in the first version. In a second stage, the genotype likelihoods of 

all samples were combined to determine the most likely alternate allele frequency in the 

cohort. Genotypes of each individual at that site were then estimated and assigned 

simultaneously through a heuristic algorithm, conditional on the estimated allele frequency 

(supplementary materials in DePristo et al., 2011). 

In the third version of GATK with Haplotype caller, the algorithm was modified to perform 

joint genotyping across large numbers of samples. The variant caller performs first the local 

reassembly to construct haplotypes and assign potential variants for each sample. ‘Raw’ 

genotype likelihoods of each candidate variant are calculated using the pair-HMM model and 

stored in an intermediate variant calling file for each sample. The genotype likelihood across 

all samples is then used to perform the joint variant calling, including allele frequency 

estimation and genotype assignment. 

This type of joint variant calling has been presented as having multiple advantages through 

sharing the information across multiple samples (Van der Auwera and O’Connor, 2020). For 

example, it could have higher sensitivity to call variants at sites where one sample has poor 

coverage but other samples provide enough reads of high quality. 
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The output of a variant calling dataset is usually stored in a Variant Calling Format (VCF) 

file. It is a tab-separated columnar text format in which each variant is represented on one 

line, indexed by a genomic location. Apart from the called genotype, variant-level information 

that describes the quality of the evidence supporting the variant call is also provided (Van der 

Auwera and O’Connor, 2020). In addition to other quality-related information resulting from 

previous steps such as read depth (DP), mapping quality (MAPQ), the GATK variant caller 

also computes variant quality score (QUAL) to reflect the confidence in the existence of a 

variant across samples  and Genotype Quality (GQ) score to reflect the confidence in the 

called genotype. More specifically, the QUAL score is a phred-scaled transformation of the 

approximate posterior probability of a homozygous reference genotype. The GQ score is the 

phred-scaled probability of an incorrect genotype call, calculated as the difference between 

the phred-scaled likelihoods of the most likely genotype and the second most likely genotype. 

1.3.4 Filtering 

Initial variant calls often contain many false positive variants caused by sequencing or 

alignment errors. As a result, different filter criteria are often applied to reduce error rates 

(improve precision) in the data set. Here, we classify filtering strategies into two main 

categories: hard filtering and soft filtering. 

Hard filtering is based on the assumption that false positive calls often show unusual 

properties. GATK recommends a set of filters in the best practice protocol. The hard filters for 

SNVs include Quality by Depth (QD) < 2.0, RMSMapping Quality6 (MQ) < 40.0, 

StrandOddsRatio7 (SOR) > 3.0, FisherStrand8(FS) > 60.0 etc. 

Soft filtering usually involve statistical modelling based on a set of known high-quality 

variant calls as well as a set of presumed false calls. The model is then used to predict the 

probability of each new variant call is correct. 

Variant calling score recalibration (VQSR) (DePristo et al., 2011) is the first soft filtering 

model implemented in the GATK workflow. This algorithm is based on a Gaussian mixture 

                                                 
6 RMSMappingQuality is the root mean square mapping quality over all the reads at a given site 
7 StrandOddsRatio is an estimation of strand bias using a test similar to the symmetric offs ratio test 
8 FisherStrand is the phred-scaled probability that there is strand bias at a given site 
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model with several covariates including genotype quality, strand bias, and mapping quality. 

The model is trained on a set of high-confidence variants considered as true set, then applied 

on the whole variant set to estimate the probability of each variant call being “true”. The 

threshold of the filter can be modified by users according to the desired sensitivity. However, 

this recalibration algorithm requires well-curated training resources of know variants and is 

not suitable for small-sample-size experiments or exome sequencing (Van der Auwera and 

O’Connor, 2020). Some studies also showed that after applying VQSR, some “unvalidated 

variants” remain in the callset (O’Rawe et al., 2013). 

Later, another machine learning model using convolutional neural networks (CNN) was 

developed and implemented in the GATK workflow as the “CNNScoreVariants” tool 

(Friedman et al., 2020). This model is able to use more information, including reference 

genome context and read data, and may be applied for callset with only one sample. The 

model proved having a higher performance than VQSR (for SNVs, precision 99.9%, recall 

99.6% and F1-score 99.7%). The authors concluded that models trained on heterogenous data 

from various samples, truth sets, and sequencing platforms were found to have better 

performance and better generalizability across different genomes.  

 

1.4 Quality control of NGS 

The quality control can be performed for each of the three steps: sequencing, alignment and 

variant calling (Guo et al., 2014). 

In examining sequencing data, the most important parameters to check for quality are the base 

quality, the nucleotide distribution, the GC content distribution, and the duplication rate. 

Sequencing data generated on Illumina platforms tend to have a median base quality score 

between 35 and 40 in the Phred scale. The nucleotide distribution of the four nucleotides (A, 

T, C, and G) across cycles should remain relatively stable, except for minor fluctuations at the 

end of the read. The percentage of GC in the exome regions is expected to be 49 to 51%, 

while for whole-genome sequencing, the GC content is around 38 or 39%. An abnormal GC 
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content percentage (say, more than 10% deviation from the normal range) can indicate sample 

contamination. (Guo et al., 2014) 

For alignment quality control, the most important parameter for whole-genome sequencing is 

the average or median depth and the percentage of the genome covered by the sequencing at 

that depth. Illumina promises whole-genome sequencing with an average depth of 30 across 

98% of the genome.  

For checking the overall SNV quality in the variant calling set, the transition/transversion 

(Ti/Tv) ratio has been often used as a quality control parameter. The Ti/Tv ratio is the number 

of transition SNVs divided by the number of transversion SNVs. In substitution mutations, 

transitions are defined as the interchange of nucleotides of similar shapes: two-ring purine 

nucleobases (A ↔ G) or one-ring pyrimidine nucleobases (C ↔ T). Transversions are defined 

as interchanges of two-ring purine nucleobases and one-ring pyrimidine nucleobases (A ↔ C, 

A ↔ T, G ↔ T, G ↔ C) (Guo et al., 2014). When substitutions occur randomly, the Ti/Tv 

ratio is around 0.5 because there are two possible transitions and four possible transversions 

(Wang et al., 2015). However, in reality, transversions are more drastic than transitions 

because the former involve changes in the ring structure. Thus, in a human genome, the true 

Ti/Tv ratio is expected to be around 2.0 across the whole genome (Bainbridge et al., 2011), 

though the ratio differs by genomic regions (for example around 3.0 in exons). In the case of 

variant calling errors, this ratio should be close to 0.5 due to the equal probabilities of each 

type of substitution.  

The heterozygosity to non-reference homozygosity ratio (het/ nonref-hom) is another quality 

control parameter for a variant callset. For a given human genome position, if A represent the 

reference base and B represent the variant base, then there are three genotype categories: AA, 

AB, and BB. The het/nonref-hom ratio is the number of SNVs with AB genotype divided by 

the number of SNVs with BB genotype. When the assumption of Hardy-Weinberg 

equilibrium is applied over a large set of SNVs in one individual, this het/ nonref-hom ratio is 

expected to be 2.0. However, in real sequencing data, this ratio is found to differ between 

individuals from different ancestry groups (Wang et al., 2015). The median het/ nonref-hom 

ratios among Africans, Asians, Americans, and Europeans are around 2.0, 1.4, 1.7, and 1.6, 

respectively. 
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2. Performance Evaluation of NGS Data 

 

For a “test” with workflows as complicated as the NGS, one cannot properly evaluate or 

attempt to improve the performance without knowing the error sources. In this chapter, we 

first discuss the sources of error in the NGS process, stemming either from the experimental 

steps or the bioinformatics analysis. Then we discuss the current most widely used methods to 

evaluate the performance of a given NGS data set, in situations with available “gold standard” 

set and without “gold-standard” set. We finish with a brief review of the attempts and 

researchers’ findings regarding detection and reduction of errors in a variant calling output.  

2.1 Error sources and reproducibility of NGS 

2.1.1 Source of errors in NGS 

During sample preparation, errors can arise from a combination of human errors in sample 

handling which result in sample degradation, sample contamination, or low quantities of input 

DNA. During the preparation of sequence libraries, errors can occur when PCR amplification 

incorporates incorrect bases during synthesis cycles. Primer-mediated sequence amplification 

biases, barcode,9 or adapter errors lead to cross-contamination of samples. Furthermore, 

machine failures are among the other sources of error that originate during sequence library 

preparation (Robasky et al., 2014). 

During sequencing, user errors combined with the incorporation of additional bases during 

single sequence cycles, DNA damage, overlapping signals, strand biases, sequence 

complexity, and machine failures can contribute to sequence error. For most platforms, 

including Illumina, the number of errors increase towards the end of the read because of i) 

reductions in signal intensity caused by decreased enzyme activity (Kircher et al., 2009); ii) 

increased noise due to desynchronization between different copies of DNA templates in the 

                                                 
9 A known DNA sequence appended to the ends of DNA fragments prior to sequencing for the purpose of 
pooling samples together to reduce cost (Robasky et al., 2014). 
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same cluster caused by incomplete read extension or non-reversible termination (Kircher and 

Kelso, 2010). With Illumina platforms, substitution errors can arise when incorrect bases are 

introduced during clonal amplification of templates. These errors show a bias toward certain 

substitutions such as A ↔ C and G ↔ T (Minoche et al., 2011). Moreover, random dispersion 

of clusters onto a surface (flowcell) coupled with limited sensor resolution may result in 

overlapping signals, where signals from nearby clusters interfere with the readout 

(Laehnemann et al., 2016). Certain DNA sequence characteristics, such as long 

homopolymer10 or extremely high GC-content regions, may also increase read errors 

(Nakamura et al., 2011). 

During bioinformatics process, short-read misalignment often arise around insertions and 

deletions as well as paralogs and other repetitive sequences. The incomplete reference 

genome is another important source of error that results in misaligned reads and variant 

calling errors. Other sources of error can arise from software algorithms limitations, including 

variant calling models and filtering strategies. 

These sequencing errors could introduce bias in downstream analyses. For example, in 

genetic association studies, in the presence of genotype uncertainty, standard method for 

obtaining p-values using allelic test are not valid because of potential over-calling of 

heterozygotes or homozygotes. If the error structure is the same in cases and controls, tests 

will not suffer from excess of false positives. Nonetheless, they may suffer from reduced 

power because even a low level of genotyping errors can lead to a strong decrease in power 

(Huang et al., 2009). 

 

2.1.2 Reproducibility of NGS 

As described above, NGS is a multi-step process. Similar to error sources, one may want to 

access the reproducibility of each step, such as the reproducibility of the sequencing platform 

results, the analytical pipelines, or the overall sequencing process. 

                                                 
10 a homopolymer is a sequence of consecutive identical bases 
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The reproducibility of NGS has been improving over time. Early researches showed relatively 

low concordance and high variability between sequencing platforms or analytical pipelines 

(Cornish and Guda, 2015).  Lam et al. (Lam et al., 2012) compared the results of two 

platforms on biological replicates and found 88.1% concordance among all variants detected 

by at least one platform. O’Rawe et al. (O’Rawe et al., 2013) reported 57.4% of SNV 

concordance between the overall variant sets called by five different variant-calling pipelines 

using the same raw exome sequencing data. More recent studies have found a higher 

concordance rate (Patch et al., 2018). In a study using 15 combinations of sequencing 

platforms and variant callers, 90.39% of the SNPs were jointly identified by all 15 

combinations and 94.22% were detected by at least 10 combinations (Chen et al., 2019). More 

recently, Pan et al (Pan et al., 2022) found that 91% of the SNVs were highly reproducible 

across six different variant callers. Most of the SNVs that were not highly reproducible were 

located in regions difficult to map with short reads and in segmental duplications.  

The sources of variability and the impacts of each step in the process have been 

comprehensively assessed. Pan et al. (Pan et al., 2022) concluded that bioinformatics 

pipelines have a larger impact on variant reproducibility than sequencing platform or library 

preparation. More than 60% of the variance in sequencing results was attributed to callers as 

evaluated using gradient boosted classification trees. Aligners and sequencing platforms were 

the second and third contributor, respectively. This finding agrees with previous research 

works (Hwang et al., 2019) that attributed more variability to variant callers than to aligners. 

DNA samples of different individual genomes were found to have a limited impact on 

reproducibility; thus, Pan et al. suggested that any of the analysed publicly available DNA 

samples could be used for assessing reproducibility. Other researches led to similar 

conclusions, arguing that the reproducibility of bioinformatics tools depend primarily on the 

genomic context rather than on sample differences (Popitsch et al., 2017). 
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2.2 Evaluation method of NGS performance 

2.2.1 Reference standard and benchmarking 

For the performance evaluation of any test, a reference standard or “gold standard” is needed. 

Reference standards can be defined as control materials with known characteristics (for 

example, a known genotype) against which test performance can be measured (Hardwick et 

al., 2017). Given that reference standards can provide known “truths”, the difference between 

the expected values and the measured values can provide an empirical estimate of test 

performance. This is otherwise difficult in the multi-step NGS process with different types 

and amounts of uncertainty. A reference standard can provide a cumulative measure of 

uncertainty associated with the final output. The original human reference genome does not 

provide a biological material to use as a reference standard because it derived from an 

assembly of multiple individuals’ genome. Instead, various individual human genomes have 

been established as reference standards to benchmark NGS test performance. Stable gDNA 

from these individuals can be fairly, easily, and inexpensively sourced from transformed cell 

lines (Hardwick et al., 2017). 

NA12878, the genome of a healthy female donor with European ancestry, the daughter in a 

father-mother-child ‘trio’ has become the foremost human genome reference standard. In 

2014, the Genome In a Bottle Consortium (GIAB)11 used a range of NGS technologies to 

characterize the NA12878 genome and provide a set of high-confidence genotypes that can be 

used to benchmark germline variant-calling pipelines (Zook et al., 2014). To minimize bias 

from any specific DNA sequencing method, the dataset was sequenced separately by 14 

different sequencing experiments and 5 different platforms. This human WGS dataset is 

essentially the first near-complete human genome to have been extensively sequenced and re-

sequenced by multiple techniques, with the results weighted and analysed to eliminate as 

much variation and errors as possible. Despite these efforts, a substantial proportion of the 

genome remains refractory to sequencing analysis due to extreme GC contents, low 

complexity, or repetitive sequences. The established high-confidence region of the benchmark 

                                                 
11 The Genome In a Bottle Consortium was initiated in 2011 by the National Institute of Standards and 
Technology “to develop the technical infrastructure (reference standards, reference methods, and reference data) 
to enable translation of whole human genome sequencing to clinical practice”. 
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set covers approximately 90% of the reference genomes GRCh37 and GRCh38. Many clinical 

laboratories routinely sequence the NA12878 gDNA as a quality control for their NGS 

workflow (Linderman et al., 2014) and the identified variants can be benchmarked against 

high-confidence genotypes to assess performance. Other efforts such as the Platinum 

Genomes Project (PG) (Eberle et al., 2017) and Syndip (Li et al., 2018) have also produced 

benchmark sets using publicly available cell lines for the PG. 

The diversity of human genetic variation has also motivated the development of reference 

genomes from different ancestries. Accordingly, NIST expanded its set of supported genome 

reference to include representatives from different ethnic populations (Zook et al., 2016). 

Reference genome banks and reference standards for specific countries or ethnics have also 

been developed (Gudbjartsson et al., 2015; Seo et al., 2016; Zhang et al., 2021).  

 

2.2.2 Performance evaluation in the presence of gold standard 

In the presence of a “truth set” or reference set, the overall performance of NGS can be 

evaluated using a contingency table (or confusion matrix) by comparison to a reference set (or 

gold standard).  

Table 2.1: Performance table against reference set 

 Test result 

 Positive Negative 

Gold standard   

Positive True positives (TP) False negatives (FN) 

Negative False positives (FP) True negatives (TN) 

 

Using this contingency table, one may extract the following indicators: 

Sensitivity (or recall) = TP/ (TP + FN) 

Specificity = TN/ (TN + FP) 
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Precision (or PPV12) = TP/ (TP + FP) 

Accuracy = (TP + TN)/ Total 

F1-score = 2TP/ (2TP + FP + FN) 

Performance metrics that describe different aspects of the NGS test performance can be 

calculated using the numbers of true positives (TP), true negatives (TN), false positives (FP), 

and false negatives (FN). Performance metrics usually include sensitivity (Se) or recall, 

specificity (Sp), precision or positive predictive value (PPV), accuracy, and F1-score. In other 

medical diagnostic tests, sensitivity and specificity are the two most used metrics; however, in 

the case of NGS–here whole genome sequencing as an example–the real variants are 

relatively rare across the genome (~0.1%), i.e., the positive and negative class are unbalanced. 

Moreover, the number of true negative sites are hard to define for genomic variations 

particularly concerning structural variants, because an infinite number of potential variants 

could exist resulting in an infinite number of true negatives (Krusche et al., 2019). Thus, 

precision (also known as positive predictive value) is often used instead of specificity to 

describe the ability of a test to identify correctly the absence of variants or the absence of false 

positives. In this case, a precision-recall curve is used instead of a ROC curve to illustrate the 

trade-off between recall and precision. 

The definitions of these performance metrics are not trivial when comparing variant calls. 

Due to the complexity of the human genome and the challenge that genotype comparisons do 

not fall in a binary classification model, TP, FP, and FN could have various definitions. The 

Global Alliance for Genomics and Health (GA4GH) published in 2019 a set of best practices 

aiming to standardize benchmarking methods and the definitions of performance metrics. In 

this guideline, three definitions were proposed to define the “true positives”, from the most to 

the least stringent: i) “genotype match”: sites with matching alleles and genotypes; ii) “allele 

match”: sites with matching alleles is counted as TP, even when genotypes differ; and iii) 

“local match”: sites in the query set with a nearby true variant within a pre-defined distance 

are counted as TPs, even when alleles and genotypes differ. (Krusche et al., 2019) 

                                                 
12 PPV = Positive Predictive Value 
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It should be noted here that benchmarking against only high-confidence genotypes is likely to 

overestimate performance given the difficulty to identify variants that are in the omitted 

‘difficult’ regions. For example, only 74.6% of exonic bases in ClinVar and OMIM genes 

belonged to high-confidence regions (Goldfeder et al., 2016). Nevertheless, with the constant 

improvement of the newer versions of the reference set, this bias should be less important in 

recent studies. Also, many variant-calling algorithms identify preferentially variants at known 

polymorphic sites. Therefore, novel or rare variants in patient samples may not be identified 

with the same sensitivity as with known variants that are considered as reference samples 

such as the NA12878 genome. 

 

2.2.3 Performance evaluation in the absence of gold standard 

In real individual data, evaluating the performance of sequencing result can be complicated by 

the lack of gold standard. In these situations, evaluating sensitivity requires often external data 

as source of complete variant set (Meynert et al., 2013). To assess precision (i.e., the positive 

predictive value) or accuracy, an experimental validation via Sanger sequencing (few sites) or 

‘target enrichment sequencing’ (numerous sites) is often needed. 

Sanger sequencing has been historically used as the reference technique when evaluating 

NGS data. However, validations with Sanger sequencing have limitations; e.g., the sensitivity 

of Sanger technique has been questioned in numerous researches (Beck et al., 2016). Other 

methods that use external datasets would also yield biased Se and Sp estimates, especially in 

easy-to-sequence genome regions (Li et al., 2018). Also, these reference datasets may contain 

sequencing and calling errors (Atkinson et al., 2022). 

Evaluating performance may also be done by comparisons between results from different 

bioinformatics platforms or bioinformatics pipelines. Discordant variants imply errors, 

whereas concordant variants suggest a low error probability. For example, Reumers et al. 

(2012) defined each discordance between sequences of monozygotic twins as “error”, each 

concordance as “truth”, and carried out experiments to confirm assumptions of error or truth. 

Selected shared SNVs were all confirmed by genotyping, indicating a very low error rate 

among concordant SNVs. Later, Ratan et al. (2013) validated 92.7% of the concordant SNVs 
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and 60% of platform-specific variants providing more reliable concordant results; then, on 

three platforms, they showed a 64.7% concordance rate across platforms. This led to 

recommend evaluation by comparisons between samples from a parent-offspring trio or same 

individual (Li, 2014; Robasky et al., 2014).  

2.2.4 The use of technical and biological replicates  

Different types of replicates, including technical and biological replicates, are often used in 

NGS to mitigate user error, stochastic variability, and other experimental errors. Technical 

replicates are defined as the repeat analysis of the exact same sample whereas biological 

replicates are defined as the preparation and analysis of multiple biological samples from the 

same host under the same conditions (Robasky et al., 2014). The objective of using replicates 

is either to mitigate errors and improve accuracy or to evaluate performance metrics using the 

concordance between replicates as a substitute for the gold standard. 

Indeed, the variation in the results of a test consists in imprecision (random error) and bias 

(systematic error), the latter is defined as “the difference between the expectation of 

measurement results and the true value of the measures quantity” (Fraser, 2001; Monach, 

2012). By combining results from replicates or repeated test, one can reduce the impact of 

random errors but not that of a systematic error. In NGS, different sequencing platforms or 

bioinformatic tools use different methodologies and provide complementary information; no 

technique outcompetes others under all circumstances. Therefore, combining data sets from 

multiple platforms or bioinformatics tools is expected to achieve better performance.  

In studies with replicates, loci are often called “concordant” when variant calls in all 

replicates agree and “discordant” when variant calls in at least one of the replicates differ 

from the others. Concordant loci then represent true positive variants, whereas discordant loci 

implicate false positive variants. A decade ago, Wall et al. (2014) used biological replicates 

(blood and saliva samples) sequenced by two different platforms to estimate genotype error 

rates. The authors assumed that a genotype call is correct when a majority concordance 

criterion was met; that is, when at least three out of the four replicate samples had the same 

genotype call with GQ ≥ 40. Other researchers used replicate discordance to characterize error 
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and provide lists of low reproducible regions (Atkinson et al., 2022) where variant calls in 

clinical analysis should be treated with caution. 

 

2.3 Factors associated with NGS performance 

2.3.1 Individual factors of NGS performance 

Factors associated with the error rate have been explored by numerous studies. Here, we give 

a brief summary of existing studies regarding several site-level factors, other factors that are 

used to evaluate the overall performance of a callset were discussed in section 1.4 as “quality 

control” factors. These site-level factors can be broadly divided into factors related to the 

genome context (e.g., the first two factors in the following list) and factors related to a 

specific sequencing run, although there is no clear boundary between these two categories.  

1) GC content 

GC content is the percentage of C and G in a certain genome region, this percentage is well 

known to be correlated with the depth of coverage. Both GC-rich and GC-poor regions tend to 

be less well covered by sequencing platforms (Benjamini and Speed, 2012; Ross et al., 2013). 

This concerns mostly regions with GC content higher than 60% or lower than 25% (Rieber et 

al., 2013). 

2) Difficult regions 

Genome regions complexity and heterogeneity could result in erroneous alignment in low-

complexity repetitive DNA regions, which was identified as one of the main sources of errors 

(Li, 2014; Popitsch et al., 2017; Treangen and Salzberg, 2012) These low-complexity regions 

(LCRs) account for 2% of the human genome. 

3) Read depth or Depth of Coverage 

Read depth is one of the most studied indicators of error. Generally, a low depth of coverage 

is associated with errors and a high coverage implies higher confidence in variant calling, 
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especially for heterozygous variants; however, the relationship between read depth and error 

rate is not linear. 

Empirical models examined the relationship between read depth and sensitivity or error rate 

estimates (Ajay et al., 2011; Cornish and Guda, 2015; Meynert et al., 2013; Ratan et al., 2013; 

Reumers et al., 2012). A high sequencing coverage could overcome the error rate in easily 

sequenced regions. However, systematic sequencing errors due to sequencing artefacts and 

misalignment cannot be overcome by high coverage. Indeed, a read depth that is too high (for 

example > ݀ + 3√݀, where ݀ is the average read depth) (Li, 2014) is also an indicator of 

false positives, which are often caused by CNVs or sequences not present in the human 

reference genome. 

4) Allele balance  

Allele balance is the proportion of reads supporting an alternative base in a given position 

(alternative read count divided by total read count at the site). In a diploid genome like the 

human genome, the expected allele balance for heterozygous genotypes would be around 0.5, 

for homozygous reference near zero, and for homozygous variant near one. A large deviation 

of observed to expected allele balance is thus an indicator of less confident variant calling. 

Although this proportion has been taken into account when variant callers compute genotype 

likelihoods, it remains an important factor in post-variant calling quality assessment. It can be 

used as a hard filter for variant discovery; for example, to consider called variants with allele 

balance < 0.1 as false positives. It has also been used to discover systematic errors and 

establish genotype confidence scores. For example, by solely considering allele balance in 

population-level sequencing data, Muyas and colleagues were able to develop a filter 

reflecting recurrent bias in allele balance and identify genome sites that require caution 

(Muyas et al., 2019) 

5) Strand bias 

Strand bias occurs when the genotypes inferred from the information presented by the forward 

strand and the reverse strand are significantly different. It has been found to be correlated with 

variant calling errors (Guo et al., 2012) and are frequently employed as variant filters 

(DePristo et al., 2011). 
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6) Quality score (QUAL) 

Quality score refers to the variant quality score computed by sequencing platforms and often 

recalibrated by bioinformatics pipelines. QUAL has been considered as an important predictor 

of variant calling error (Bauer et al., 2019). 

7) Presence of nearby indels or multiple variant calls 

The proximity to other SNVs of indels or multiple other SNV calls is a factor that appears to 

have a significant importance in multiple studies. (Hofmann et al., 2017; Ratan et al., 2013; 

Reumers et al., 2012; Shringarpure et al., 2016). A high SNP frequency in a short region is an 

indication of false positives that may be caused by small insertions or deletions. GATK’s 

protocols suggest that the likelihood of a false positive is high when there are two SNPs 

within 10 bps. 

8) Genotype Quality (GQ)  

Genotype quality is a phred-scaled score of the estimated error rate estimated by the variant 

caller; thus, it is not surprising that GQ is used as an indicator of error (Kumaran et al., 2019). 

However, the true error rates were found to be far higher than those estimated by the GQ 

score (Wall et al., 2014), suggesting that the GQ alone could not predict errors accurately.  

 

2.3.2 Models combining multiple factors to improve NGS performance 

Many existing studies have modelled the relationships between several covariates and NGS 

performance: i) a generalized linear model with 23 parameters was used to separate true 

positive (TP) from false positive (FP) calls in Sandmann et al. (2017); ii) variant-free 

simulated reads explored the relationship between FP calls number and seven covariates in 

Ribeiro et al. (2015); iii) the effects of twelve factors on the error rate were combined to better 

filter errors (Reumers et al. 2012), the procedure identifies optimized combinations of 

cumulative filters based on optimal balance of estimated sensitivity and specificity; iv) 

Hwang et al. (2019) trained a two-component mixture model on reference sets to separate true 

variants from calling errors. The model included concordance rate across callsets and six 
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other factors as covariates. Random forest models were also developed to distinguish true 

variant calls from false positives (Lek et al., 2016; Shringarpure et al., 2016).  

  



45 
 
 

 

 

 

3. Contribution and limit of the concordance-discordance model in 

performance evaluation of NGS 

 

In the absence of gold standard, researchers are often obliged to use the concordance between 

multiple sequencing results as a substitute criterion. The discordance results are then 

interpreted as errors. However, whether the discordance rate corresponds to the error rate 

remains unclear. 

In this chapter, we aim to examine the appropriateness of concordance as a substitute 

criterion. We first analyse the theoretical relationships between the error rate and the 

discordance rate under conditional independence and dependence. We then illustrate it with 

simulations of various situations as well as data on three NA12878 genome replicates. Finally, 

differences between estimates of covariate effects associated with error and discordance are 

examined. 

3.1 Modelling the error rate and the discordance rate  

In this section, we apply the principles of performance evaluation in diagnostic tests to the 

domain of NGS. Here we use the general concept “test” to refer to a NGS process. The 

statistical unit or subject is a base-pair position (i.e., site) in the sequenced genome. The 

outcome is considered as binary variables (variant or non-variant). 

3.1.1 Modelling the response of one test against gold standard  

As mentioned in section 2.2.2, the basic measures of test performance are sensitivity (Se) and 

specificity (Sp). Their definitions are illustrated by a contingency table as showed in table 2.1, 

where the rows summarize the data according to the true status, and the columns summarize 

the test results. 

We denote the true status of the base pair by the indicator variable V, where V = 1 if it is a 

variant and V = 0 if it is a non-variant (i.e. reference). We denote test result by the variable T, 
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where T = 1 if it is called variant in the query variant calling set and T = 0 if it is called non-

variant. Thus the sensitivity ܵ݁ = ܲ(ܶ = 1|ܸ = 1), which is the probability that the site is 

called as variant given that the true status of the site is variant. Specificity ܵ݌ =ܲ(ܶ = 0|ܸ = 0), which is the probability that the site is called as non-variant given that the 

true status of the site is non-variant.  

An error is either a variant in the gold standard set called as non-variant by the query set (i.e., 

a false negative, FN), or a non-variant called as variant (i.e. a false positive, FP). This recalls 

the “local match” “for which any site in the query with a nearby truth variant is counted as a 

TP (true positive), even if alleles and genotypes differ” as in Krusche et al. (2019).  

The error rate for variants comes to the FN rate; i.e., (1–Se) = nr FNs/ nr variants. For non-

variants, the error rate comes to the FP rate; i.e., (1–Sp) = nr FPs/ nr non-variants. 

 

3.1.2 Modelling the joint response of two test  

When results from two NGS process are available, whether from technical replicates or 

biological replicates, they can be regarded as two tests for a population with unobserved true 

status. Here the population refers to all sites in the sequenced genome. 

We aim to model the contingency table between the two tests in the overall results (table 

3.1c). This observed table is in fact the sum of two unobserved contingency table, for the 

“variant” population (table 3.1a) and “non-variant” population (table 3.1b), respectively. The 

performance metrics are related to these two unobserved tables.  
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Table 3.1 : Conditional probabilities for results of two sequencing tests 

3.1a: Variant Table 

V=1 
B = 1 B = 0 

A = 1 
η1.11 η1.10 

 A = 0 
η1.01 η1.00 

: P (A = a, B = b | V = 1) 
 
 

3.1b: Non-variant Table 

V=0 
B = 1 B = 0 

A = 1 
η0.11 η0.10 

A = 0 
η0.01 η0.00 

 

3.1c: Total Table 

 
B = 1 B = 0 

A = 1 
P11 P10 

A = 0 
P01 P00 

Pab = P (A = a, B = b) 
Pab = π × η1.ab + (1 - π) × η0.ab   with π = P (V = 1) 
 

Suppose we have two tests (here, sequencing process) A and B, ܲ(A = a) denote the 

probability of outcome a for test ܣ, ܲ(B = b) denote the probability of outcome b for test ܤ. 

let η௩.௔௕ denote the conditional probability of sequencing result A = a (a = 0 or 1), B=b (b = 0 or 1) with v = 1 for variants and v = 0 for non-variants. For any variant, the 

probability of correct classification by A and B is ηଵ.ଵଵ, that of misclassification by A and B ηଵ.଴଴, and that of misclassification by either A or B ηଵ.ଵ଴ + ηଵ.଴ଵ (i.e., discordance between A 

and B). For any non-variant, those probabilities may be written η଴.଴଴, η଴.ଵଵ, and η଴.ଵ଴ + η଴.଴ଵ. 

Therefore, for all bps in the genome, ߨ being the prevalence of a variant ߨ = ܲ(ܸ = 1), the 

expected probability ௔ܲ௕ may be written: 

௔ܲ௕ = ܣ)ܲ = ܤ,ܽ = ܾ) = ߨ ∗ ηଵ.௔௕ + (1 − (ߨ ∗ η଴.௔௕ [1] 

The concept of this model is similar to the latent class model described by Goodman 

(Goodman, 1974), which summarizes probabilities of classification in the latent classes as 
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well as conditional probabilities of outcomes for each observed variables within each latent 

class. Here, the latent class variable is the unobserved true status of each site, and observed 

variables are the results from test A and B.  

Consequently, considering all bp results (variants and non-variants), the probability of 

concordance will be ଵܲଵ + ଴ܲ଴ and that of discordance ଵܲ଴ + ଴ܲଵ. A discordant pair of results 

means one is an error and concordant pair means both results are correct or both are errors. 

According to the proportion of ‘false concordance’ where concordant pairs are both errors, a 

criterion using pairwise agreement may be appropriate or not. If this proportion is low, the 

concordant pairs will be less concerned by errors and the pairwise agreement model will 

become appropriate. 

With same notations and under an assumption of conditional independence given the true 

status of bps (either variants or non-variants), the conditional probabilities for any variant are ηଵ.ଵଵ = ܵ ஺݁ ∗ ܵ݁஻, ηଵ.଴଴ = (1 − ܵ ஺݁) ∗ (1 − ܵ݁஻), and ηଵ.ଵ଴ + ηଵ.଴ଵ = ܵ ஺݁ ∗ (1 − ܵ݁஻) +(1 − ܵ ஺݁) ∗ ܵ݁஻. The conditional probabilities for any non-variant, the equations are the same 

but with ܵ݌஻ and ܵ݌஻ instead of ܵ ஺݁ and ܵ݁஻. 

Therefore, for all bps (Table 3.1c), the expected probabilities for ଵܲଵ, ଴ܲ଴, ଵܲ଴, and ଴ܲଵ can be 

calculated using equation [1]: 

ଵܲଵ = ߨ ∗ ܵ ஺݁ ∗ ܵ݁஻ + (1 − (ߨ ∗ (1 − (஺݌ܵ ∗ (1 − ஻) ଴ܲ଴݌ܵ = ߨ ∗ (1 − ܵ ஺݁) ∗ (1 − ܵ݁஻) + (1 − (ߨ ∗ ஺݌ܵ ∗ ஻ ଵܲ଴݌ܵ = ߨ ∗ ܵ ஺݁ ∗ (1 − ܵ݁஻) + (1 − (ߨ ∗ (1 − (஺݌ܵ ∗ ஻ ଴ܲଵ݌ܵ = ߨ ∗ (1 − ܵ ஺݁) ∗ ܵ݁஻ + (1 − (ߨ ∗ ஺݌ܵ ∗ (1 −  (஻݌ܵ

 

3.1.3 Modelling correlation between two tests 

The above-mentioned assumption of conditional independence does not correspond to real 

situations in many ways. At a certain base-pair position, because of the common covariates 

that influence the NGS accuracy, such as genomic context, the error of two NGS tests are 

expected to be correlated. In situation of non-independence, the distribution of probabilities 

η1.ab and η0.ab can be formulated using additional parameters that represent the correlation 

between the results obtained for two sequencing processes A and B.  
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Many parameters have been proposed to measure the association of two binary variables. 

Such as odds ratio, Cohen’s kappa. However, these measures could be misleading if one of 

the outcomes is very dominant, for instance the concordant negative outcome in our example 

of genome sequencing. As the vast majority of pairs will be concordant negative given the 

small error rate of NGS, these measures might be very high even if there is only a small 

proportion of concordant positive pairs among all sites in the variant calling output file (which 

contains sites called as variant by at least one test). Therefore, although measures like odds 

ratio have nice mathematical properties (such as the absence of range restrictions, regardless 

of the marginal probabilities), it is sometimes not adapted to the characteristic of interest, due 

to its symmetry treating negative-negative concordance of equal importance as positive-

positive concordance (Faes et al., 2008). In this study, we employ the correlation coefficient 

and conditional probability to model the dependency between two tests. 

 

3.1.3.1 Modelling conditional dependence with correlation coefficients 

In this study, two parameters of correlation were assigned to variants and non-variants. For a 

given combination of sequencer and variant caller, the correlation value should be stable for 

all samples or individuals. Let ݒ݋ܥଵ and ݒ݋ܥଶ denote the covariances of the two sequencing 

tests for ܸ = 1 and ܸ = 0, respectively. For variants, the conditional probabilities for the 

combination of the two test results are the following: ηଵ.ଵଵ = ܵ ஺݁ ∗ ܵ݁஻ ଵ ηଵ.଴଴ݒ݋ܥ + = (1 − ܵ ஺݁) ∗ (1 − ܵ݁஻) + ଵ ηଵ.ଵ଴ݒ݋ܥ = ܵ ஺݁ ∗ (1 − ܵ݁஻) − ଵ ηଵ.଴ଵݒ݋ܥ = (1 − ܵ ஺݁) ∗ ܵ݁஻ −  ଵݒ݋ܥ

For non-variants : η଴.ଵଵ = (1 − (஺݌ܵ ∗ (1 − (஻݌ܵ + ଶ η଴.଴଴ݒ݋ܥ ஺݌ܵ  = ∗ ஻݌ܵ + ଶ η଴.ଵ଴ = (1ݒ݋ܥ − (஺݌ܵ ∗ ஻݌ܵ − ଶ η଴.଴ଵݒ݋ܥ ஺݌ܵ = ∗ (1 − (஻݌ܵ −  ଶݒ݋ܥ

The ranges of covariance being: 

 0 < ଵݒ݋ܥ < ݉݅݊[(1 − ܵ ஺݁) ∗ ܵ݁஻,  ܵ ஺݁ ∗ (1 − ܵ݁஻)]  0 < ଶݒ݋ܥ < ݉݅݊[(1 − (஺݌ܵ ∗ ,஻݌ܵ ஺݌ܵ ∗ (1 −   [(஻݌ܵ
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The overall probabilities for all bps can be calculated using equation [1].  

ଵܲଵ = ߨ ∗ (ܵ݁஺ ∗ ܵ݁஻ + (ଵݒ݋ܥ + (1 − (ߨ ∗ [(1 − (஺݌ܵ ∗ (1 − (஻݌ܵ +  [ଶݒ݋ܥ

଴ܲ଴ = ߨ ∗ [(1 − ܵ ஺݁) ∗ (1 − ܵ݁஻) + [ଵݒ݋ܥ + (1 − (ߨ ∗ ஺݌ܵ) ∗ ஻݌ܵ + ଶ)   ଵܲ଴ݒ݋ܥ = ߨ ∗ [ܵ ஺݁ ∗ (1 − ܵ݁஻) − [ଵݒ݋ܥ + (1 − (ߨ ∗ [(1 − (஺݌ܵ ∗ ஻݌ܵ − ଶ] ଴ܲଵݒ݋ܥ = ߨ  ∗ [(1 − ܵ ஺݁) ∗ ܵ݁஻ − [ଵݒ݋ܥ + (1 − (ߨ ∗ ஺݌ܵ) ∗ (1 − (஻݌ܵ −  (ଶݒ݋ܥ

The relationships between correlation, covariance, and Se for variants and non-variants are 

then: 

ଵݎ݋ܥ = ஼௢௩௔௥௜௔௡௖௘భඥௌ௘ಲ(ଵିௌ௘ಲ)×ඥௌ௘ಳ(ଵିௌ௘ಳ) and ݎ݋ܥଶ = ஼௢௩௔௥௜௔௡௖௘మඥௌ௣ಲ(ଵିௌ௣ಲ)×ඥௌ௣ಳ(ଵିௌ௣ಳ) 
It is clear that the probability of discordance ( ଵܲ଴ + ଴ܲଵ) is lower in case of dependence than 

in the case of conditional independence, while the probability of concordance is higher. The 

probabilities of false concordance (η1.00 or η0.11) are also higher in the former than in the 

latter case 

 

3.1.3.2 Modelling conditional dependence with conditional probability 

Another way of presenting these probabilities is to use conditional probabilities rather than 

covariance or correlation, as correlation coefficients might be difficult to interpret in real 

experiment contexts. Conditional probability P(A = 0 | B = 0, V = 1) is the probability that 

test A makes a mistake given test B has made a mistake for a variant. Conditional probability P(A = 1 | B = 1, V = 0) is the probability that test A makes a mistake given test B has made 

a mistake for a non-variant. For example, the four conditional probabilities of calling results 

for variants may be written: ηଵ.ଵଵ = ܵ ஺݁ − (1 − ܵ݁஻) ∗ (1 − P(A = 0 | B = 0, V = 1)) ηଵ.଴ଵ = (1 − ܵ ஺݁) − (1 − ܵ݁஻) ∗ P(A = 0 | B = 0, V = 1)  ηଵ.ଵ଴ = (1 − ܵ݁஻) ∗ (1 − P(A = 0 | B = 0, V = 1)) ηଵ.଴଴ = (1 − ܵ݁஻) ∗ P(A = 0 | B = 0, V = 1) 

The conditional probabilities for non-variants may be written the same way. 

In case of technical replicates, assuming SeA = SeB and SpA = SpB, the relationships between 

the conditional probabilities can be written: 
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P(A = 0 | B = 0, V = 1) =  P(B = 0 | A = 0, V = 1) P(A = 1 | B = 1, V = 0) =  P(B = 1 | A = 1, V = 0) 

Relation between Cov1 and P(A = 0 | B = 0, V = 1) is:  

ܣ)ܲ = 0 | B = 0, V = 1) =  P(ܣ = 0, B = 0, V = 1 )P(B = 0, V = 1 )= P(V = 1) × P(ܣ = 0, B = 0 | V = 1 )P(V = 1) × P(B = 0 | V = 1) = η ଵ.଴଴1 − ܵ݁஻=  (1 − ܵ ஺݁)(1 − ܵ݁஻) + ଵ 1ݒ݋ܥ − ܵ݁஻  =  (1 − ܵ ஺݁) + ଵ 1ݒ݋ܥ  − ܵ݁஻ 

Under the assumption SeA = SeB = Se, the relationship between correlation, covariance, and P 

(A = 0 | B = 0, V = 1) becomes: Corଵ =  CovଵSe × (1 − Se) 

ܣ)ܲ = 0 | B = 0, V = 1) = (1 − Se) + Covଵ 1 − Se =  (1 −  Se)  +  Corଵ  ×  Se  
1 − P(ܣ = 0|B = 0, V = 1)1 −  Corଵ = Se 

 

3.2 Illustration with common NGS performance indicators 

3.2.1 Scenario settings 

For illustration, estimated performance values from the literature were used for the above-

mentioned probabilities. The Se of detecting variants is estimated at 90 to 99% (95.4% in 

Goldfeder et al., 2016, 98.66% in Krishnan et al., 2021, 99.3% in Lam et al., 2012) and Sp at 

99.9% to 99.99% in different situations (Li, 2014; Reumers et al., 2012). The total number of 

bps in the whole genome was set at 3×109. 

In the analyses under conditional independence, sensitivity was set at two values 90% and 

99% and specificity at 99% and 99.9%. The expected prevalence of any variant was set as 

0.1%; i.e., the expected number of variant bps was 3 × 106. The conditional probabilities in 

Table 1 and the probabilities in Table 2 were calculated using the above-mentioned values. 
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The positive and negative predictive values (PPVs and NPVs) are shown for each Se-Sp 

combination with the overall results. 

In the analyses with conditional dependence, adding two parameters for dependence leads to 

seven parameters in the probability model: SeA, SeB, SpA, SpB, Cor1, Cor2, and π. Here, 

sensitivity was set at 90% and 99%, specificity at 99% and 99.9%, and the expected 

prevalence of any variants at 0.1% and 0.2%. Various levels of correlation between replicates 

were considered; precisely, 30%, 50%, and 90% for low, intermediate, and high correlation 

levels, respectively. 

3.2.2 Results under conditional independence 

Here, as first example, assuming a 99% Se of calling results, for a given variant, the 

probability of discordance (P10 + P01) would be 1.98% and the probability of false 

concordance (P00) 0.1998% (Table 3.2, first row). For a given non-variant, assuming a 99.9% 

Sp, the probability of discordance (P10 + P01) would be 0.1998% and the probability of false 

concordance (P11) 0.0001% or 1/106 (Table 3.2, third row). 

For all bps, the probability of discordance would be nearly 0.1998%, with nearly 6 × 104 

variants and 6 × 106 non-variants. The number of bps called as concordant variants would be 

2.94 × 106, of which 3 × 103 bps would be actually non-variants. The number of bps called as 

concordant non-variants would be 3 × 109, of which 300 actual variants. With the above-

shown values, the probability of error for a given pair of calls can be calculated as follows. 

For a positive concordant pair, P (V = 0 | A = 1, B = 1) = 3 × 103/3 × 106 = 0.1%; i.e., PPV = 

99.9%. The probability of error for a negative concordant pair, P (V = 1 | A = 0, B = 0) = 3 × 

102/3 × 109 = 1/107; i.e., NPV = 99.99999% (Table 3.3, column 1). For a discordant pair, the 

PPV for the positive call was around 6 × 104 /6 × 106 = 1% and the NPV for the negative call 

was around 99% (See Table 3.3 for more parameter value assumptions). 
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Table 3.2 - Conditional probabilities of test results for variants and non-variants under 

various sensitivity and specificity values. 

 Concordance Discordance 

 P11 P00 P10 + P01 

Variants (V=1)    

99% sensitivity 98.01% 0.01% 1.98% 

90% sensitivity 81% 1% 18% 

Non-variants (V=0)    

99.9% specificity 0.0001% 99.8% 0.1998% 

99% specificity 0.01% 98.01% 1.98% 

Reading example: P11 is the probability of test A positive (1) and test B positive (1) for a given 

variant or non-variant. 
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Table 3.3 – Predictive values of test results according to the true base pair statuses in various 

sensitivity and specificity values.  

Test results and 

true base pair 

status 

99.0% Se & 

99.9% Sp 

99.0% Se & 

99.0% Sp 

90.0% Se & 

99.9% Sp 

90.0% Se & 

99.0% Sp 

A=0 and B=0     

V=0 99.99999% 99.999% 99.99999% 99.999% 

V=1 0.00001% 0.001% 0.00001% 0.001% 

A=1 and B=1     

V=0 0.1% 9.4% 0.1% 11.1% 

V=1 99.9% 90.6% 99.9% 88.9% 

A=1 and B=0     

V=0 99% 99.9% 91.7% 99.1% 

V=1 1% 0.1% 8.3% 0.9% 

A=0 and B=1     

V=0 99% 99.9% 91.7% 99.1% 

V=1 1% 0.1% 8.3% 0.9% 

Reading example: A=0 means test A negative and V=0 means non-variants. In all four 

conditions, prevalence π=0.1%. 
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3.2.3 Results under conditional dependence  

Table 3.4 shows the probabilities of calling results conditional on variant/non-variant status 

with various combinations of Se and Sp values and various levels of conditional correlation 

(30%, 50%, or 90%).  

For example, for a given variant, with Se = 99% and correlation = 90%, the probability of 

discordance (P10+P01) would be 0.2% and that of false concordance (P00) 0.9%.; and, for a 

given non-variant, with Sp = 99.9% and correlation = 90%, the probability of discordance 

(P10+P01) would be 0.02% and the probability of false concordance (P11) 0.09%. In this 

example, the probabilities of false concordance are much higher than those of discordance; 

this means that most errors are common to both calling results. 

With 99% Se, 99.9% Sp, 0.1% prevalence π, and assuming conditional probabilities of 

error P(A = 0 | B = 0, V = 1) = 90% and P(A = 1 | B = 1, V = 0) = 90%, the probability of 

discordance (P01+ P10) would be 0.02% (i.e., number of discordant bps = 5.9 × 105). Among 

these discordant bps, 5.9 × 103 would be variants and the others non-variants. The number of 

positive concordant bps would be 5.7 × 106, of which 2.7 × 106 would be non-variants. The 

number of negative concordant bps would be 3 × 109, of which 2.7 × 104 would be variants. 

With the above-shown values, the probability of error for a given pair of calls can be 

calculated as follows (First column of Table 3.5). For a positive concordant pair, the 

probability of error P (V = 0 | A = 1, B = 1) = 2.7 × 106 / 5.7 × 106 = 47.4%; i.e., the PPV of 

the pair = 52.6%. For a negative concordant pair, the probability of error P (V = 1 | A = 0, B = 

0) = 2.7 × 104 / 3 × 109 ≈ 1/105; i.e., the NPV of the pair ≈ 99.999%. For a discordant pair, the 

PPV for the positive call P (V=1 | A ≠ B) = 1% and the NPV for the negative call P (V=0 | A 

≠ B) = 99%.  
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Table 3.4 - Theoretical probabilities of test results for variants and non-variants under 

different conditions of sensitivity, specificity, and degree of correlation. 

Conditions Correlation 90% Correlation 50% Correlation 30% 

Variants (V = 1)    

Sensitivity 99%    

P11 98.9% 98.5% 98.3% 

P01 + P10 0.2% 1.0% 1.4% 

P00 0.9% 0.5% 0.3% 

Sensitivity 90%    

P11 89% 86% 83% 

P01 + P10 2% 8% 14% 

P00 9% 6% 3% 

Non-variants (V = 0)    

Specificity 99.9%    

P11 0.09% 0.05% 0.03% 

P01 + P10 0.02% 0.1% 0.14% 

P00 99.89% 99.85% 99.83% 

Specificity 99%    

P11 0.91% 0.51% 0.3% 

P01 + P10 0.18% 0.98% 1.4% 

P00 99.01% 98.5% 98.3% 

P11: probability of positive concordance between two tests - P00: probability of negative 

concordance - P01 + P10: probability of discordance. 
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Table 3.5 - Predictive values of test results for variants and non-variants under different 

conditions of sensitivity, specificity, correlation and variant prevalence. 

Test results and 

true base pair 

status 

Joint conditions of sensitivity, specificity, correlation, and variant 

prevalence 

 Se = 99% Se = 99% Se = 99% Se = 99% Se = 90% 

 Sp = 99.9% Sp = 99.9% Sp = 99.9% Sp = 99.9% Sp = 99% 

 Cor1 = 90% Cor1 = 50% Cor1 = 30% Cor1 = 50% Cor1 = 90% 

 Cor2 = 90% Cor2 = 50% Cor2 = 30% Cor2 = 50% Cor2 = 90% 

 π = 0.1% π = 0.1% π = 0.1% π = 0.2% π = 0.1% 

A=0 and B=0      

V=0 99.999% 99.9995% 99.9997% 99.999% 99.999% 

V=1 0.001% 0.0005% 0.0003% 0.001% 0.001% 

A=1 and B=1      

V=0 47.4% 34% 23.1% 20.3% 90% 

V=1 52.6% 66% 76.9% 79.7% 10% 

A=1 and B=0      

V=0 99.1% 99% 99% 98% 98.9% 

V=1 0.9% 1% 1% 2% 1.1% 

A=0 and B=1      

V=0 99.1% 99% 99% 98% 98.9% 

V=1 0.9% 1% 1% 2% 1.1% 

Cor1: Correlation between test A and test B for variants - Cor2: Correlation between test A and 

test B for non-variants - π: variant prevalence 
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3.3 Illustration with real data -- NA12878 replicates 

3.3.1 Material and methods 

The present study used calling results from sequencing three technical replicates of genome 

NA12878. All three procedures were carried out on Illumina NovaSeq 6000 system platform, 

samples were then aligned with Burrow-Wheeler Aligner (BWA-MEM) (Li, 2013) against 

GRCh37 version of the human reference genome. GATK duplicate marking, base quality 

score recalibration, and indel realignment were applied. The three replicates were joint-

genotyped by GATK (McKenna et al., 2010). Variant calling was performed according to 

GATK Best Practices recommendations (DePristo et al., 2011; Van der Auwera and 

O’Connor, 2020) by joint genotyping. The latest version (v4.2.1) of GIAB variant calling 

benchmark set were used as ‘gold standard’. This version has a higher coverage of the 

reference genome and includes more difficult-to-map regions than previous versions (Wagner 

et al., 2022; Zook et al., 2016). 

Analyses on real WGS data were carried out only on the bps from the GIAB benchmark 

region. Each base-pair position was considered as a statistical unit and each GIAB benchmark 

result was considered as the true status of each bp. On these bps, two types of analysis were 

performed: i) performance analysis by comparing results from each replicate with the truth set 

(Table 2.1); and, ii) concordance analysis by comparing results between any two replicates 

using a two-by-two contingency table (Table 3.1). Only performance for SNVs was analyzed 

in this study. 

Performance evaluation used the same above-provided definitions of TPs and TNs. When 

both the VCF file and the GIAB benchmark set considered a given bp as variant, that bp was 

classified as a TP. When the bp was identified as variant in the VCF file but not in the GIAB 

benchmark set, it was classified as a FP. When the bp was identified as variant by the GIAB 

benchmark set but a non-variant or a no-call in the VCF file, it was classified as a FN. Here, 

TPs + FNs = the number of variants in the Benchmark call set. When a homozygote reference 

bp in the GIAB benchmark set was considered as a non-variant or a no-call in the VCF file, it 

was classified as a TN. N being the number of homozygote reference bps in the GIAB 

benchmark call set, Se was calculated as TPs / (TPs + FNs), Sp as 1 – (FPs / N), and the PPV 

as TPs / (TPs + FPs). 
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For concordance analysis, the definition of “local match” was used. The concordance rate and 

the correlations were calculated for the real variant positions (positions called as variants in 

the truth set), the real non-variant positions (positions called ‘homozygous reference’ in the 

truth set), and all positions.  

3.3.2 Results 

The total number of bps in the GIAB benchmark region is around 2.5×109, of which 

3,238,599 variants in the gold standard set. The number of called variants within the same 

region in the joint VCF file is 3,351,415 (precisely 3,311,321; 3,308,075; 3,305,948 for the 

three replicates, respectively). 

Within the GIAB benchmark region, the estimated sensitivity for the three replicates ranged 

from 98.97 to 98.99% and specificity from 99.9958 to 99.9960%. For called variants, the PPV 

for the three replicates ranged from 96.82 to 96.95% (Table 3.6). 

In the concordance analysis, for replicates 1 and 2, the proportion of concordant bps across all 

positions in the VCF file (called as variant in at least one replicate) was 98.38%. The 

proportion of concordant bps for the variants in the benchmark set was 99.85% and that for 

the non-variants 99.9980% (Table 3.7). 

Based on the conditional two by two tables for replicates, the estimated correlation 

coefficients and the rates of false concordant bps are showed in Table 3.7. For variant 

positions, the correlation coefficients between any two replicates ranged from 92.37% to 

93.28% (with 0.94% rate of false concordant bps), whereas, for non-variants, the correlation 

coefficients ranged from 74.62% to 76.04% (with a rate of false concordant bps of 0.0031% 

to 0.0032%).  

Regarding all observed results, the PPV ranged from 97.57% to 97.66% for positive 

concordant results between any two replicates and from 8.87% to 9.57% for discordant 

results. 
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Table 3.6 - Performance in sequencing the three NA12878 replicates. 

 Replicate 1 Replicate 2 Replicate 3 

All observed positives 3,311,321 3,308,075 3,305,948 

True Positives 3,205,932 3,205,240 3,205,142 

False positives 105,389 102,835 100,806 

False negatives 32,667 33,359 33,457 

Sensitivity 98.99% 98.97% 98.97% 

Specificity 99.9958% 99.9959% 99.9960% 

Positive predictive value 96.82% 96.89% 96.95% 

Number of variants in the GIAB benchmark call set: 3,238,599. 

Number of base pairs in the GIAB benchmark region: 2,502,460,587. 

Number of non-variants in the GIAB benchmark call set: 2,499,221,988 (= 2,502,460,587 - 

3,238,599 
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Table 3.7 - Analyses of concordance between replicates 

Replicate 

comparisons 

Concordanc

e rate 

Correlatio

n 

False 

concordanc

e 

PPV for 

positive 

concordanc

e (11) 

PPV for 

discordanc

e (01 or 10) 

For variants 

(N=3,238,599) 

     

Rep 1 vs. Rep 2 99.85% 93.28% 0.94% - - 

Rep 1 vs. Rep 3 99.85% 92.87% 0.94% - - 

Rep 2 vs. Rep 3 99.83% 92.37% 0.94% - - 

For non-variants 

(N=2,502,460,587

) 

     

Rep 1 vs. Rep 2 99.9980% 76.04% 0.0032% - - 

Rep 1 vs. Rep 3 99.9980% 75.14% 0.0031% - - 

Rep 2 vs. Rep 3 99.9980% 74.62% 0.0031% - - 

For all positions in 

the VCF (N= 

3,351,415) 

     

Rep 1 vs. Rep 2 98.38% - - 97.57% 8.89% 

Rep 1 vs. Rep 3 98.34% - - 97.62% 8.87% 

Rep 2 vs. Rep 3 98.33% - - 97.66% 9.57% 
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3.4 Covariable analysis 

3.4.1 Methods 

Using the GIAB benchmark set as gold standard, generalized additive models were built with 

a logistic link to estimate covariate effects on the probabilities of discordance and the 

probability of error. Mathematically, this model may be written:  

(ܲ)ݐ݅݃݋ܮ = ଴ߚ + ∑ ௠݂൫ܺ௜௝௠൯ெ௠ୀଵ +߳௜௝  

In this formulation, i is the number of replicates, j the bp position, Xm a covariate (m = 1,…, 

M), β0 the intercept, εij the Gaussian error, and P = P (Y = 1) with Y = 1 for discordance or 

error and Y = 0 for concordance or correct call. Here, the concordance for replicate 1 was 

defined as the concordance between replicate 1 and replicate 2, the concordance for replicate 

2 as the concordance between replicate 2 and replicate 3, and the concordance for replicate 3 

as the concordance between replicate 3 and replicate 1. 

The modeling used function “bam” of R package mgcv adapted to large dataset analyses. The 

smoothing method used for this model was a natural cubic regression spline. The smoothing 

parameter estimation method was the (default) fast restricted maximum likelihood (REML) 

computation. This function uses penalized iteratively re-weighted least squares (PIRLS) with 

a single iteration in model fitting, a method similar to “performance-oriented iteration”. 

(Wood et al., 2017, 2015). 

The covariates included in this study were:  

1) The depth of coverage (DP); i.e., the number of informatics reads covering a 

given base pair. Sites with DP >100 were excluded due to high probability of 

mapping artefacts (Li, 2014). 

2) The allele balance (AB); i.e., number of reads supporting the alternative allele 

(other than the reference) divided by the number of all informatics reads at a 

specific site. 

3) The genotype quality (GQ); i.e., the Phred-scaled confidence for the called 

genotype (range: 0 to 99). 

4) The QualByDepth (QD); i.e., the site-level Phred-scaled confidence for the 

existence of variant, QUAL score, normalized (divided) by the total number of 

reads supporting the alternative allele in variant samples. 
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5) The mapping quality (MQ); i.e., the root mean square of the mapping quality of 

reads across all samples.  

Covariates DP, AB, and GQ were obtained from the VCF file for each bp in each sample 

(here, replicate). MQ and QD were obtained from the VCF file for each bp and had the same 

values across three samples.  

Both univariate and multivariate analyses were conducted. In the multivariate analyses, the 

optimal model was selected on the basis of the Akaike Information Criterion (AIC). The 

proportions of deviance explained by the models were also estimated. 

 

3.4.2 Results 

For most covariates, the functional forms that describe each covariate effect in each 

discordance or error model were quite close (Figure 3.1). As expected, overall, GQ, MQ, and 

QD had decreasing trends; i.e., the higher was the score, the lower was the probability of 

discordance or error. The DP had a V-shape effect; the lowest probability of error or 

discordance corresponded to the DP value with the highest density (Figure 3.2).  

In the error model, AB showed an M-shape effect; the three lowest probabilities of error 

corresponded to AB values close to 0, 0.5, and 1. In the discordance model, the main 

difference was that the probability of discordance did not show a minimum at AB values close 

to 0. This difference was also found in the density graphs, where the density of discordance 

increases as AB approaches 0. However, the contribution of each covariate to the deviance 

differed between discordance and error models (e.g., DP explained 11.6% of the deviance in 

discordance model vs. 22.2% in error model). GQ, AB, and QD were more correlated with 

discordance, whereas DP and MP were more correlated with error.  
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Figure 3.1 - Univariate regression models with smoothing. 

The first row is for the relationship between probability of discordance and each covariate and the 
second for the relationships between probability of error and each covariate. Each curve shows the 
estimated function for each covariate. The top right corner of each graph shows the percentage of 
deviance explained by the covariate.  
 

 
Figure 3.2 - Density functions of the covariates. 

The first row presents density functions of the covariates for concordant and discordant calling results, 
the second row presents density functions for correct and error calling results. 
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In multivariate analyses, after model selection, the two optimal regression models for 

discordance and error were the models that included all five covariates. The deviance 

explained by the model was slightly higher with the error than with the discordance model 

(69.7% vs. 67.7%) (Figure 3.3). The shapes of the estimated functions of the adjusted 

covariate effect in multivariate models differed from the univariate models for most of the 

covariates (Figure 3.3 vs. Figure 3.1). The shapes of estimated adjusted functions differed 

between discordance model and error model for some covariates, e.g. DP, AB, and MQ 

(Figure 3). DP had the similar “V” shape function form in multivariate model and univariate 

model of error; however, in the multivariate model of discordance, it had a quasi-

monotonically decreasing trend. MQ had little effect in the multivariate discordance model, 

but a similar form in both univariate and multivariate error models.  

GQ had little effect in both multivariate models for discordance and error, despite having 

clear decreasing trend in both univariate models. AB had similar functional forms in the 

univariate and the multivariate discordance model but a smaller effect in the multivariate 

model. However, in the error model, after the first peak at around 0.15, the function did not 

show the second peak of the M shape as in the univariate model, instead, the estimated error 

probability decreased as AB increased. QD had similar functional forms in the univariate and 

both multivariate models 
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Figure 3.3 - Multivariate regression models with smoothing. 

The first row uses a model for the relationships between probability of discordance and each covariate 
and the second another model for the relationships between probability of error and each covariate. 
Each curve shows the estimated function for each covariate when the other covariates in the model are 
set to their median values. The percentages of deviance explained by those models are 67.7% and 
69.7%, respectively. 
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3.5 Discussion 

In WGS studies on real data, concordance between replicates has been widely used as a 

substitute for a lacking gold standard. However, its appropriateness has been rarely 

questioned. The present study was motivated by the need to clarify the relationship between 

discordance and error in real data analyses. It used first theoretical analyses with conditional 

probabilities of error and discordance coupled with the most common WGS performance 

metrics. It analysed next real sequencing data to compare error rate and discordance rate. 

Lastly, generalized additive models with smooth functions were built to estimate the effects of 

sequencing and variant calling covariates on error and discordance. 

 

In case of conditional independence between two sequencing results, the overall probability of 

error for concordant results was found almost negligible; the concordance-discordance 

method is then an acceptable substitute for a gold standard. However, in settings with high 

levels of correlation between sequencing results, a high proportion of false concordant results 

was found among all concordant results; the concordance methods becomes questionable. 

With the real sequencing on NA12878 genome, the probability of being a variant in case of 

discordant bps between replicates ranged from 8.87% to 9.57%, indicating that in pairs of 

discordant calls, the positive call had a high probability of being a false positive. However, 

the PPV for a concordant pair of positive calls ranged from 97.57% to 97.66%, which is not 

much higher than the PPV for a single positive call (96.82% to 96.95%); thus, the error rate 

for concordant calls was non-negligible. 

In the univariate modelling analyses, the shapes of the estimated functions of most model 

covariates were quite similar; however, covariate contributions to the deviance differed 

between discordance models and error models. In the multivariate analyses, substantial 

differences were found between the error model and the discordance model. These results 

indicate that the concordance criterion should be used with caution, especially when the 

sequencing process and the calling process generate highly correlated results. 

The data used in this study feature several peculiarities. The sequencing results were 

obtained from the same sequencer and the same variant caller. This common practice for 

inaccuracy detection using replicates generates usually high correlations between two sets of 

results (Naj et al., 2019; Robasky et al., 2014). Here, the three replicates were jointly 
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genotyped by GATK (Poplin et al., 2017); which is expected to generate even higher 

correlations. The more correlated are two tests, the higher is the probability of concordant 

results between them. Correlation values may not have a great influence on the number of 

concordant bps or the proportion of errors in variants or non-variants given that Se and Sp are 

already close to 1(here, the vast majority of the 3 × 109 bps remained correct). However, 

correlation values could have a dramatic influence on the number of discordant bps, thus on 

the PPV and NPV for concordant or discordant bps. Here, the correlation levels were about 

92% among variants and about 78% among non-variants, which are high correlation levels 

versus those examined in the theoretical part of this work. These high correlation levels led 

naturally to a much higher number of concordant false negatives than the number of single 

false negatives (i.e., discordances) for variants. For true variants, the percentage of false 

negatives in each sequencing (= 1 – Se) ranged from 1.01 to 1.03%, and the percentage of 

concordant false negatives among false negatives was 0.94%; this means that nearly 92% of 

false negatives in one replicate are shared with another (0.94% of all variants). Similarly, for 

non-variants, the percentage of false positives in each sequencing (= 1 – Sp) was 0.0041% 

and the percentage of concordant false positives among false positives was 0.0031%; this 

means that nearly 76% of false positives would be concordant with another replicate.  

Comparing performance analysis with concordance analysis required NA12878 genome 

sequencing because this genome has a gold standard. However, the sequencing performance 

metrics of genome NA12878 might not be sufficiently representative of those of real 

individual genomes because the former presents pipeline-linked trend toward overfitting. In 

addition, the use of ‘local match’ instead of genotype match to build a 2 × 2 contingency table 

for performance analysis led to high performance metrics estimates. Thus, the estimates of Sp 

with the real data were higher than those seen with the theoretical data (99.996% vs. 99.9%), 

and the estimates of Se reached the highest of two values in the theoretical data (99%). These 

performance metrics are comparable to those reported by other studies. For example, i) 97% 

Se and 98.6% PPV with GATK4 for SNVs in the NA12878 genome in Supernat et al. (2018); 

ii) 98.66% Se and 99.15% PPV for whole exome regions in Krishnan et al. (2021); and, iii) 

97.17% Se and 99.999% Sp with BWA-MEM and GATK UnifiedGenotyper in Highnam et 

al. (2015) 

In this work, using discordance as indicator of error (more specifically, of false positivity) 

seemed acceptable for all calling results (variants and non-variants) because the observed 

PPV for the positive call in a discordance pair was 9% and the PPV for a positive concordant 
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pair was 97.3%. Still, interpreting discordant or concordant results requires carefulness. In 

fact, the PPV of an individual positive call was around 96.6%; thus, there was no great 

difference between the PPV of a separate positive call and that of a concordance positive call 

due to the strong correlation. 

Here, the concordance rate between replicates was 98.3 to 98.4% for all called variants and 

around 99.9980% for all positions in the benchmark region. These rates recall previous rates 

in whole genome sequences: i) 98.69% concordance rate among called SNVs in WGS 

(Adelson et al., 2019): ii) 99.49% average pairwise concordance rate between replicates 

sequenced in different centers and called by GATK pipeline (Naj et al., 2019); and, iii) 

99.998% concordance rate among all callable positions across the whole genome (Ajay et al., 

2011). 

Regarding the analysis of the covariates’ effects, the shapes of the estimated functions for 

discordance and error were comparable for most covariates, but the percentages of deviance 

explained by the models differed. GQ, AB, and QD were rather correlated with discordance 

(e.g., for GQ, 36.9% for discordance and 9.49% for error), whereas DP and MQ were rather 

correlated with error (e.g., for DP, 11.6% for discordance and 22.2% for error). This indicates 

that using discordance instead of error may lead to different model fits. In terms of functional 

forms, GQ, MQ, and QD had generally decreasing trends, whereas DP had a V shape and AB 

an M shape. The latter two forms are consistent with previous findings (Li, 2014; Muyas et 

al., 2019). For AB, different shapes appeared in the part where AB values was close to 0. 

When the AB approached 0, the estimated probability of discordance increased in the 

discordance model, whereas, it decreased significantly in the error model. This difference can 

be also found in the density graphs where the density of discordance increased when AB 

approached 0. Of note is that, in this study, covariate effect analyses were conducted on bps in 

the VCF file (i.e., called positive by at least one replicate); therefore, there were very few bps 

with AB close to 0. 

In the univariate and multivariate analyses, AB and QD were the two covariates that 

contributed the most to the deviance. While the estimated functional forms of QD were 

comparable in both analyses, the functional forms of AB showed a substantial difference, 

especially in the error model in that the second peak of the M shape tended to disappear. The 

contribution of GQ in both multivariate models and that of MQ in the discordance model were 

small: the shapes of the functional forms were almost flat. These differences in the estimated 
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functions between univariate and multivariate analyses are probably due to different 

correlation levels between covariates. AB and QD had a high level of correlation (0.9), 

whereas GQ and MQ were moderately correlated (0.4). DP had very low correlation levels 

with the other covariates; this would explain its relatively high level of contribution to the 

deviance explained by the model in the multivariate models. 

One limitation of the present study is the use of “local match” instead of a more 

accurate “genotype match” or “allele match”. Further analysis are needed to check whether 

the same conclusions may be drawn with “genotype match” or “allele match”. Nevertheless, 

the knowledge, the methods, and the applications derived from this study would still be valid. 

Another perspective would be establishing predictive models with multiple covariates to 

generate estimated error rates for individual base-pair positions. 

 

3.6 Conclusions 

In case of conditional independence between two sequencing results, the overall probability of 

error for concordant results being negligible, the concordance-discordance method is 

acceptable. However, in settings with high correlation levels, the method becomes 

questionable because of a high proportion of false concordant results. With real data from 

NA12878 vs. GIAB benchmark set, discordance (as indicator of error) seemed acceptable but 

with caution in interpreting discordant or concordant results. Multivariate analyses showed 

substantial differences between error and discordance models; thus, caution is required in 

using the concordance criterion, especially in case of highly correlated results. 
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4. Performance comparison of clustering models with NGS replicates  

 

In chapter three, we evaluated the usefulness and limitations of the concordance-discordance 

model in dealing with the NGS replicates. We showed that the concordance-discordance 

model may not be the best choice when test results are highly correlated, which is often the 

case in NGS replicates. Therefore, we looked into the literature for other models implemented 

to combine callsets from replicates. 

Indeed, many models, including sophisticated machine-learning models, have been used in 

this research field. However, some of them are supervised models that often require high-

quality training data that are not always available. Moreover, the generalization of training to 

test data sets has always been a concern in performance evaluation of these models (Wang et 

al., 2020). In case of substantial differences in data structure between the training set and the 

test set; the models may not generalize well. Therefore, we focus on exploring the non-

supervised models that do not require the use of training (or external) data and investigate 

whether they may give stable results and lead to performance improvement.  

The literature on processing replicate sequencing results with non-supervised models is rather 

scanty and the different models used have been rarely objectively compared. This work 

intends to explore the main models that deal with multiple NGS results stemming from 

biological or technical replicates, investigate their properties, and compare their key 

performance indicators to help choosing the most performant among readily implementable 

methods able to improve sequencing performance. Precisely, this work explores the consensus 

model, the latent class model, the mixture model, and random forest regarding their abilities 

to produce a callset with improved quality. It compared their main performance indicators: 

precision, recall, and F1-score. 

Section 4.1 aims to present the research context and provide a literature review of the 

methodology in related works. In section 4.2, we position the question in the statistical world 

as a clustering problem and give an overview of the major categories of clustering models. 

Then we apply representative models of each category to three technical replicates of the 

NA12878 genome and compare their performances in section 4.3 to 4.5. 
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4.1 Context – Combining multiple variant calling sets 

As presented in section 2.2, the use of replicates (either technical or biological) to mitigate 

error and obtain a more accurate result is very common in studies involving NGS. However, 

the way of using the information coming from multiple callsets of a single underlying truth 

remains debatable. Several distinct approaches have been proposed for this purpose. Table 4.1 

provides a short overview of the most relevant methods and studies designed to combine 

multiple callsets. 

One category of methods is consensus-based. For example, the consensus genotyper for 

exome sequencing (CGES) employs a two-stage voting scheme between four bioinformatics 

tools by first voting for the variant positions then for the genotype of the variants (Trubetskoy 

et al., 2015). The level of concordance required for the voting (e.g., three out of four or four 

out of four) can be specified by the user. Later, a web-based automated interface consensus 

variant calling system (CoVaCS) was developed using a similar majority voting scheme 

between three variant callers. It demonstrated a similar performance improvement to that 

brought by CGES (Chiara et al., 2018).  

Another category of algorithms is based on statistical models. For example, the BAYSIC 

(BAYeSian Integrated Caller) tool is based on a latent class analysis approach fitted with a 

Bayesian method (Cantarel et al., 2014). The threshold for posterior probability was 0.8 by 

default, but it can be modified by the user. A different combining indicator was proposed by 

Hofmann et al. (2017). The authors used the ranks of variants in terms of confidence score 

within each variant caller to form a combined ranking score on the same scale across different 

variant callers, taking into account the correlations between callers. This combined ranking 

score that ranges from 0 to 1 was interpreted as a probability of error. A threshold was then 

applied to this combined confidence score to obtain the final callset. 

One advantage of statistical models is that they often estimate posterior probabilities 

reflecting the error rates or confidence. These probabilities are intuitive and useful for the 

interpretation of model output. 

In recent years, more machine-learning or deep-learning models have been explored for NGS 

data as well. Different types of models such as random forest (RF), support vector machine 

(SVM), or convolutional neural networks (CNN) have been used for variant calling or callset 

filtration (Friedman et al., 2020; Lek et al., 2016; O’Fallon et al., 2013). These models 

developed to perform ‘classification’ tasks can be easily adapted for the classification of 
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‘errors’ and ‘true variants’ in a given callset or combining multiple callsets. For example, 

VariantMetaCaller (Gézsi et al., 2015) uses SVM to combine multiple variant callers and 

compute the estimated probabilities of called variants to be true variants. This SVM model is 

trained by using fully concordant variants as positive training examples and variants called by 

only one of the callsets (“singly-called variants”) as negative training examples. One problem 

pointed out by the authors was that a substantial proportion of the negative training set 

consisted in actually true variants. In this study, nearly 50% of the singly-called SNVs with 

above 30× coverage were true variants, whereas the percentage of variants called by all four 

methods was 99.83%. In fact, due to the sensitivity of the training data set, the drawbacks of 

machine learning models often lie in the choice of the training data, their quality, and the 

differences between the training data and the test data. In a comparison study of different 

methods that combine multiple somatic variant callers (Wang et al., 2020), the machine 

learning models showed very inconsistent performance metrics. The performances varied 

largely depending on the similarity between the training set and the test set and, in many 

cases, were not better than a simple consensus-based approach. 

One interesting advantage of machine-learning or deep-learning models is that they are often 

able to include more information as input than statistical models. This capacity of including 

more quality-related information generated by the variant callers could result in improved 

performance,  as demonstrated by Gézsi et al. (2015). 
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Table 4.1 – Overview of the most relevant methods and studies designed to combine 
multiple callsets 

Authors Algorithm Model type Reference 

Trubetskoy et 
al., 2015 

CGES Consensus Bioinformatics 2015;31(2):187. 
doi:10.1093/bioinformatics/btu591 

Wang et al., 
2020 

SomaticCombiner Consensus Sci Rep 2020;10:12898 
doi:10.1038/s41598-020-69772-8 

Chiara et al., 
2018 

CoVaCS Consensus BMC Genomics 2018;19:120. 
doi: 10.1186/s12864-018-4508-1 

Hwang et al., 
2014 

--- Consensus and logistic 
regression 

Hum Mutat 2014;35(8):936. 
doi: 10.1002/humu.22587 

Cantarel et al., 
2014 

BAYSIC Bayesian latent class 
model 

BMC Bioinformatics 2014;15:104. 
doi: 10.1186/1471-2105-15-104. 

DePristo et al., 
2011 

VQSR Gaussian mixture model Nat Genet 2011;43(5):491. 
doi: 10.1038/ng.806. 

Hwang et al., 
2019 

--- Gaussian-multinomial 
mixture model 

Sci Rep 2019;9(1):3219 
doi: 10.1038/s41598-019-39108-2 

Huang et al., 
2019 

SMuRF Random forest Bioinformatics 2019; 35(17): 3157. 
doi: 10.1093/bioinformatics/btz018 
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4.2 Overview of clustering methods in statistics 

In this section, the problem of clustering consists in partitioning a set of objects or data points 

into a fixed number of non-empty classes (clusters) that are as homogeneous as possible. 

Accoding to the indicators used to measure “homogeneity” or “similarity”, the clustering 

methods can be broadly divided into distance-based and model-based clustering models. Here, 

we did not include density-based models because they aim to separate clusters according to 

different densities and do not fit in our clustering objective.  

Another way of categorizing clustering approaches is based on the assignment of a 

‘membership’ to each data point. The methods can then be divided into hard clustering and 

soft clustering (sometimes called fuzzy clustering). In hard clustering, each observation is 

assigned to one cluster, whereas in soft clustering an observation could belong to several 

clusters with cluster-specific belonging probabilities. The approaches can also be categorized 

according to the data types that they are developed for (categorical data, continuous data, or a 

mixed of categorical and continuous data). 

In this section, we first overview distance-based and model-based methods. Then we briefly 

summary the extensions of these models to mixed data (categorical and continuous variables). 

This is relevant to our application in NGS data because the variant calling results are 

categorical and the quality-related factors are mostly continuous. Finally, we present several 

criteria for the evaluation of clustering model performance. 

 

4.2.1 Distance-based clustering 

4.2.1.1 Hierarchical clustering  

Hierarchical clustering methods can be divided into divisive (top-down) hierarchical 

clustering and agglomerative (bottom-up) hierarchical clustering. In agglomerative 

approaches, the clustering begins with each cluster containing one observation and then 

merging the two most similar atomic clusters regarding a certain similarity measure resulting 

in larger and larger clusters until all observations are included in a single cluster. Contrarily, 

divisive hierarchical clustering method first sets all data points into one initial cluster, divides 

the initial cluster into several smaller clusters, and iteratively partitions these clusters into 
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smaller ones until each cluster contains only one data point or data points within each cluster 

are similar enough (Saxena et al., 2017). 

In both types, various similarity measures based on difference distance measures may be used. 

For example, single linkage clustering defines the similarity measure between two clusters as 

the shortest distance between data points from the two clusters; ii) complete linkage uses the 

largest distance between data points from two clusters to define the similarity measure; and 

iii) group average linkage uses the average distance between data points from two clusters to 

define the similarity measure; According to James et al. (James et al., 2013), average and 

complete linkage are generally preferred over single linkage as it tends to yield more balanced 

dendrograms. 

One advantage of hierarchical clustering is that a complete hierarchy of clusters can be 

obtained; thus, the model can give multiple consistent partitions of the data by cutting at 

different levels. One common criticism of classical hierarchical clustering is that once an 

observation is assigned to a cluster, it can no more be considered in the following clustering 

steps. This means that the algorithms are not able to correct previous misclassifications. 

Besides, they are sensitive to outliers (Saxena et al., 2017). Some more advanced algorithms 

have been developed to address these disadvantages, such as Clustering Using 

Representatives (CURE) (Guha et al., 2001) and Balanced Iterative Reducing and Clustering 

Using Hierarchies (BIRTH) (Zhang et al., 1996). 

 

4.2.1.2 K-means algorithm 

Suppose X is an p-dimensional data set with n points and is divided into k clusters ܥ ,ଶܥ,ଵܥ}= … ݖ ௄ }. Letܥ, = ,ଵݖ} ,ଶݖ … ,  ௞ is the mean ofݖ ௄ } be the K cluster prototypes, whereݖ

cluster ܥ௞. The goal of k-means algorithm is to minimize the sum of the square error within 

clusters:  

(ܥ,ܺ)݀ = ෍ ෍ ௜ݔ‖ − ௞‖ଶ௫೔∈஼ೖݖ
௄
௞ୀଵ  

The k-means algorithm operates by iterating the following steps: 

1) Initialization: selects randomly a set of K data points as the initial cluster means; 

2) Assignment: assigns each data point to its closest cluster mean; 
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3) Update: calculates the new cluster means according to the assignments; 

4) Repeat of step 2 and 3 until there is no change of assignments. 

One advantage of the k-means algorithm is that it is fast and guarantees convergence to a 

local minimum. Nevertheless, one disadvantage is that it requires that the variables be 

standardized to avoid the domination of the variables having the most variation. 

 

4.2.1.3 Generalized k-means algorithms 

The generalization of k-means algorithm relies largely on two aspects: the definition of a 

cluster center and the expression of the distance function. 

The sum-of-squares type clustering criteria have been generalized in many ways in order to 

comply with different data types or cluster properties. In k-medians algorithm, the distance to 

minimize is the Mahalanobis-type one-norm distance (‖ݔ௜ −  ௞‖) instead of the Euclideanݖ

distance, where ݖ௞ is the class prototype.  

Concerning the definition of cluster center or cluster prototype, one extension of the k-means 

algorithm is the use of an actual point prototype (real data point) instead of a virtual point 

prototype such the mean. For example, in k-medoids algorithm, also referred to as 

partitioning around medoids (PAM), the algorithm searches for an optimal set of K data 

points as cluster prototypes to minimize the objective function (Kaufman and Rousseeuw, 

1990). In k-medians algorithm, the median of each cluster is chosen to be the cluster 

prototype instead of the mean. This type of algorithm is more robust to outliers than the k-

means algorithms, but it requires longer computation time. To adapt for large datasets, other 

algorithms combining sampling method and the k-medoids algorithm were also proposed to 

improve the computational efficacy, such as “Clustering LARge Application” (CLARA) 

program. It first creates multiple random samples of the data set and perform k-medoids 

clustering on each sample set. The resulting mediods are used to cluster the whole dataset and 

the solution with the minimum dissimilarity is selected. (Kaufman and Rousseeuw, 1990) 

The classical k-means algorithm works only with numeric values. To deal with categorical 

data, Huang introduced the K-modes algorithm where a simple matching measure is used as 

dissimilarity measure. The mode of each cluster is used as cluster center and updated with a 

frequency-based method (Huang 1998). 
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4.2.2 Model based clustering  

The model-based (or distribution-based) clustering approaches regard the observations as 

random samples from a finite mixture of distributions. By making assumptions about the 

forms of the distributions of mixture components, a statistical model, expressing usually the 

likelihood of observed data can be obtained. The parameters of each component distribution 

can be estimated using the maximum likelihood method. The conditional group-membership 

probabilities of each observation can then be used to obtain the clusters. 

4.2.2.1 The general Finite mixture model  

Suppose we have n observations ࢞ଵ, … , ࢞௡. For each observation, m variables are available, 

denoted ࢞௜ = ,௜ଵݔ) … ,  ௜௠). The classical probability model of the K-component mixtureݔ

distribution is a weighted average of K probability density functions (or probability mass 

functions in the case of discrete variables): 

݂(࢞௜|ࢻ,࢖) = ෍݌௞݂(࢞௜|ࢻ௞)௄
௞ୀଵ  

In this equation, the mixing proportion ݌௞ denotes the probability that variables of observation 

i were generated from the kth component, ∑ ௞௄௞ୀଵ݌ = 1. The parameters of the distribution of 

the kth component is ࢻ௞. The parameters of the model are ࢖ and ࢻ. The likelihood is:  

ℒ(࢞|ࢻ,࢖) = ෑ෍݌௞݂(࢞௜|ࢻ௞)௄
௞ୀଵ

௡
௜ୀଵ  

The majority of model-based clustering applications use the EM algorithm (Dempster et al., 

1977) for inference. The EM algorithm is an iterative algorithm where each iteration consists 

of an expectation step (E-step) and a maximization step (M-step). In this algorithm, the 

unobserved component membership of each observation is denoted ࢠ௜ = ,௜ଵݖ)  … , ௜௞ݖ ௜௞), whereݖ = 1 = 1 when observation ݅ belongs to component ݇ , and ݖ௜௞ = 0  otherwise. (࢞,ࢠ) are 

regarded as the complete data. The EM algorithm then works with the likelihood function of 

the complete data. In the E-step, the conditional expectation of the complete data log-

likelihood function is computed given the observed data and the current parameter estimates. 

In the M-step, the expected complete data log-likelihood function from the E-step is 
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maximized with respect to the model parameters. Iterating these E- and M-steps until 

convergence achieves at least a local maximum of the observed data likelihood function, 

under mild regularity conditions (Dempster et al., 1977). At convergence, the value ݖప௞ෞ , (i.e., 

the conditional expectation of ݖ௜௞) is the estimated conditional probability that observation i 

belongs to cluster k. The EM algorithm, as the k-means algorithm, is sensitive to the initial 

values and need to be run from a variety of start values to ensure that finding a global 

minimum is found. 

In the case of clustering categorical variables, methods have been developed under the name 

of Latent Class Analysis (LCA); they are mathematical equivalent to binomial or multinomial 

mixture models. When the observed variables are continuous, the most popular model is the 

Gaussian mixture model (GMM), sometimes also referred to as latent profile analysis 

(Oberski, 2016).  

One advantage of the model-based approach is that the covariables do not need to be scaled, 

and they are generally less sensitive to outliers than the distance-based models.  

 

4.2.2.2 The latent class analysis (LCA) 

The latent class analysis (LCA) model is the classical model used for clustering multivariate 

categorical data. The clustering problem can be naturally viewed as a latent variable problem 

where the cluster membership of each observation is unobserved or latent. A classical LCA 

assumes that the categorical variables are conditionally independent given the cluster 

memberships; this is known as the local independence assumption. (Goodman, 1974) 

Several extensions of the model have been proposed to relax the local independence 

assumption by introducing a conditional dependence using difference measures.  

 

4.2.2.3 The Gaussian mixture model (GMM) 

A Gaussian mixture model is a finite mixture model where the distributions of each 

component are modelled as multivariate Gaussian distributions. In such a case, ࢻ௞  .௞ and ઱௞ denote the mean and variance matrix of the kth componentࣆ where ,{௞,઱௞ࣆ}=
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Various constraints may be imposed upon the covariance structure (Banfield and Raftery, 

1993) consider eigen-decomposition of the covariance matrices of the form 

઱௞ = λ௞۲௞ઢ௞۲௞் 

where λ௞ = |઱௞|ଵ/௣ is the associated proportionality constant, ۲௞ the matrix of eigenvectors 

of ઱௞, and ઢ௞ a diagonal matrix such that |ઢ௞| = 1, that contains the normalized eigenvalues 

of eigenvalues of ઱௞ in descending order. “Geometrically, λ௞ represents the volume of the 

ellipsoid, ઢ௞ specifies the shape of the density contours, and ۲௞ determines the orientation of 

the ellipsoid” (Banfield and Raftery, 1993). The volumes, shapes, and orientations of the 

cluster densities can be constrained to be equal (E) or variable (V) across clusters resulting 

thus in a family of fourteen models named “VEV”, “EVE”, etc. The first letter denotes 

whether the volumes are constrained to be equal (E) or variable (V) across clusters; the 

second letter denotes whether the shapes are constrained to be equal (E) or variable (V) across 

clusters or the clusters are spherical (I); and the final letter refers to the clusters’ orientation: 

equal (E) or variable (V) across clusters or the clusters are axis-aligned (I). Studies showed 

that when all variables are continuous, a clustering based on the matrices of within-group 

sums of squares (e.g. k-means) corresponds to a clustering obtained from a multivariate 

Gaussian mixture distribution with constraints on the form of the Gaussian covariance matrix, 

i.e., equal within-cluster variance. (Banfield and Raftery, 1993) 

This family of models is implemented in the widely use R package mclust. (Scrucca et al., 

2016) 

4.2.2.4 Extensions of Gaussian mixture models  

In practice, the distributions of covariates within each component are often not Gaussian, to 

solve this problem, extensions of gaussian mixture models were introduced to robustly model 

the data and account for skewness, light or heavy tail, and dependency between covariates. 

The mixture of t distributions were introduced to model the heavy-tailed data (McLachlan and 

Peel, 2000); Mixtures of skew normal distributions and skew t distributions were proposed to 

model the asymmetrical data (Lee and McLachlan, 2013). Dang et al. (Dang et al., 2015) 

introduced mixture of power exponential distribution and skewed power exponential 

distribution to allow for model “components with varying levels of peakedness, skewness, 

and tail-weight”. To model the dependencies between covariates, Gaussian mixture copulas 
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have been applied. (Kasa and Rajan, 2022) The hidden Markov model and mixtures of linear 

Mixed Models are other propositions for clustering correlated data. (McLachlan et al., 2019) 

 

4.2.3 Clustering mixed dataset (categorical and continuous data) 

The models introduced above were developed to cluster variables either all categorical or all 

continuous. When the dataset group both categorical and continuous variables, several 

approaches may be used to express the similarity.  

For distance-based models, one approach is to dichotomize all of the variables and then use a 

dissimilarity measure for categorical data, or to convert the categorical variables into numeric 

variables and use a distance measure. Another approach is to construct a dissimilarity measure 

for each of the two types of variables and then use a weighting method to combine them into a 

single coefficient. For example, in k prototypes (Huang, 1998), the squared Euclidean 

distance is used as dissimilarity measure for continuous variables, the number of mismatches 

as dissimilarity measure for categorical variables, and a weighted sum of the two as the 

overall dissimilarity measure. However, the weight needs to be specified beforehand, which 

requires a prior knowledge of the data regarding the attribution of categorical variables 

compared to continuous variables. The algorithm was later extended to the W-K-prototypes 

algorithm to include the weight estimation in the model (Huang et al., 2005). Another model 

to estimate weights was proposed by Modha and Spangler (Modha and Spangler, 2003). In 

this model, the weight that minimizes the product of the continuous and categorical dispersion 

ratio is selected. 

In model-based clustering approaches, the mixed type data are typically assumed to follow a 

Gaussian-multinomial distribution (McParland and Gormley, 2016). This Gaussian 

distribution assumption could be relaxed using kernel density methods (Li et al., 2007). 

Based on a combination of generalized k-means algorithm and model-based clustering, a 

semi-parametric model termed Kamila (Kay-means for Mixed Large data sets) was proposed 

by Foss and colleagues (Foss and Markatou, 2018). In each iteration, the cluster parameters as 

well as the weight of continuous versus categorical variables are estimated, through 

maximizing the likelihood. The densities of continuous variables were estimated using kernel 

density estimation based on Euclidean distance under assumptions that the distributions are 
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spherically symmetric (Foss et al., 2016). This model showed a high performance in 

comparison study of clustering models (Preud’homme et al., 2021). 

 

4.2.4 Model-selection criteria  

The arguably most difficult methodological problem with clustering models is choosing the 

number of clusters. In this work, we fixed the number of desired clusters using biological 

prior knowledge and interpretability. Therefore, we do not discuss specifically the selection of 

an appropriate number of clusters, but only recall several general model selection criteria for 

model selection. Many indicators have been proposed for model evaluation, among which 

different information criteria. 

The model selection criteria are mainly based on the likelihoods. One way to compare models 

is to perform a hypothesis test on the likelihood, called likelihood ratio test (LRT). However, 

hypothesis for the null distribution of the LRT does not always hold. Another way is 

considering a penalized log likelihood. As the likelihood is expected to increase with 

increased model parameters, penalized log likelihood could lead to a consistent selection of 

models. Various information criteria fall into the second category. (McLachlan et al., 2019) 

The most popular information criterion for model selection is the Bayesian information 

criterion (BIC) that may be formulated as:   ܥܫܤ = −2ℓ൫ࣂ෡൯ + ݌ log݊ 

where ࣂ෡ is the maximum likelihood estimate of ࣂ, ℓ൫ࣂ෡൯ the maximized log-likelihood, and ݌  

the number of free parameters. (Schwarz, 1978) 

The theoretical assumption is based on the selection of the mostly likely model given the data. 

Using the Bayes’ theorem, this probability for a given model ܯ௝ can be formulated as : 

൯ܽݐ௝ห݀ܽܯ൫ݎܲ = ଵߣ(ଵܯ)݌௝ߣ௝൯ܯ൫݌ + ⋯+  ௞ߣ(௞ܯ)݌

Where ߣ௝ is the marginal likelihoods of model ܯ௝. Approximation for the log-likelihood with 

an increasing n gave the formula of BIC.  
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BIC is theoretically a consistent selector. Assuming one of the compared models is the true 

model, a consistent selector is one the selects the true model as the number of observations 

increasing.  

Another information criterion is the Akaike’s information criterion (AIC). (Akaike, 1973) ܥܫܣ = −2ℓ൫ࣂ෡൯ +  ݌2

It aim to choose the model that most accurately describes the true process that generate the 

data. (Dziak et al., 2020)  

AIC is not consistent because it tend to choose a complex model as number of observations 

becomes large. Other modified AIC were later proposed such as the sample-size-adjusted 

AIC, or consistent AIC, using different penalty weights.   

Some studies indicate that AIC tend to choose models with more parameters and BIC with 

less (Dziak et al., 2020). In the selection of the number of clusters, BIC is often observed to 

favour models with more components (McLachlan et al., 2019).  

 

4.3 Material and methods 

4.3.1 The study data 

The present study used calling results from sequencing three technical replicates of genome 

NA12878. NA12878 is a human DNA sample that is “thought to represent the best-

characterized diploid human genome in the world”, is “considered as a ‘reference material’ by 

the National Institute of Standards and Technology (NIST)”, and includes “near-perfect 

genome sequences for public use” as well as “truth sequences” established after repeated 

sequencings “using a wide variety of technologies and computational pipelines”. Today, more 

than 80% the NA12878 cell line’s genome is considered known with high confidence. This is 

why it is used as benchmark for assessing the performance of sequencing platforms or 

bioinformatic pipelines (Krol, 2015). 

All three sequencing procedures were carried out on Illumina NovaSeq 6000 system platform. 

The samples were then aligned with Burrow-Wheeler Aligner (BWA-MEM) (Li, 2013) 

against the GRCh37 version of the human reference genome. Genome Analysis Toolkit 

(GATK) duplicate marking, base quality score recalibration, and indel realignment were 
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applied (McKenna et al., 2010). The resulting sequencing data were deposited in the 

European Nucleotide Archive. 

Variant calling was performed by joint genotyping according to the GATK Best Practices 

recommendations (DePristo et al., 2011; Van der Auwera and O’Connor, 2020). Concordance 

rates between the calling results of the replicates were calculated. The concordance rate was 

defined as the number of sites called in the same category (see 4.3.2) by each replicate 

divided by the total number of sites called as variants by at least one of the replicates. 

The latest version (v 4.2.1) of Genome in a Bottle (GIAB) variant calling benchmark set was 

used as ‘gold standard’ (Wagner et al., 2022; Zook et al., 2016). This version has a higher 

coverage of the GRCh37 reference genome and includes more difficult-to-map regions than 

the previous version (Wagner et al., 2022). 

4.3.2 Basic definitions and main covariables 

Performance considered only bps from the GIAB benchmark region, each bp position being a 

‘statistical unit’ and each GIAB benchmark result a true status of each bp. Here, only 

performance in single nucleotide variant (SNV) analysis was considered. 

In this analysis, the variant calling results in the VCF file and the GIAB benchmark callset 

(gold standard set) were considered to belong to one of three categories: homozygous 

reference, heterozygous variants, and homozygous variants. A true positive (TP) was defined 

as a variant call in the query callset that belongs to the same category as in the gold standard 

set; i.e., both are heterozygous variants or both homozygous variants despite potential allele 

or phasing differences. A false negative (FN) was defined as a variant in the gold standard set 

called as non-variant in the query callset. A false positive (FP) was defined as a non-variant in 

the gold standard set called as variant in the query callset or a variant in the gold standard set 

called as variant in a different category. A true negative (TN) was defined as a non-variant in 

the gold standard called as non-variant in the query callset. No-calls in the VCF file were 

considered as non-variants. This recalls the “genotype match, for which only sites with 

matching alleles and genotypes are counted as TPs” (Krusche et al., 2019), though, in this 

study, the criteria for true positivity were less stringent. 

The covariables included in the models were: 
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1) The depth of coverage (DP); i.e., number of informatics reads covering a given base-pair. 

In this study, the mean DP value across the three replicates was circa 38 and the DP value 

ranged from 0 to 13,858. 

2) The allele balance (AB; i.e., the number of reads supporting the alternative allele divided 

by the number of all informatics reads at a specific site) ranged from 0 to 1. 

3) The QualByDepth (QD); i.e., the site-level Phred-scaled confidence for the existence of 

variant divided) by the number of reads supporting the alternative allele in variant 

samples. Here, the QD value ranged from 0.02 to 42.9. 

4) The genotype quality (GQ); i.e., the Phred-scaled confidence for the called genotype 

(Ranged from 0 to 99). 

5) The mapping quality (MQ); i.e., the root mean square of the MQ of reads across all 

samples. (Ranged from 20 to 60) 

Covariates DP, AB, and GQ were obtained from the VCF file for each bp in each sample 

(here, replicate), and then the mean of each of the three values was calculated. MQ and QD 

were obtained from the VCF file for each bp and had the same values across three samples.  

4.3.3 Clustering models used for NGS reconstruction 

Five types of models were selected for reconstructing NGS result from technical replicates.  

 The consensus (or concordance-based) model 

In this model, ‘strict consensus’ was considered whenever all variant calling results across all 

replicates agreed and ‘majority consensus’ whenever there was a majority of variant calling 

results across all replicates (Trubetskoy et al., 2015; Wang et al., 2020). Here, it is the 

majority consensus that was used. In case of no majority consensus, the sites were classified 

as homozygous variants. 

 The latent class model without covariables 

This type of analysis was often used to evaluate the performance of diagnostic tests in the 

absence of gold standard. A latent class analysis is a mixture model where both the observed 

and unobserved variables are categorical. A classical LCA assumes conditional independence 

between observed variables (here, called genotype categories) given the latent class (here, the 

true genotype status). 



 

86 
 

Let i represent each site in the VCF file, r the latent classes 1 to 3. ࢏ࢅ represents the calling 

results in replicates 1 to 3 for site i ( ଵܻ, ଶܻ, and ଷܻ are categorical variables with three 

categories that correspond to the three genotype categories). ݌௥ denotes the prevalence of 

latent class r. ߨ௥( ଵܻ),ߨ௥( ଶܻ), and ߨ௥( ଷܻ) are the probability mass functions of variables ଵܻ, ଶܻ, and ଷܻfor latent class r 

The equation of this model may be written: ܲ(࢖|࢏ࢅ,࣊) = ∑ ௥݌ × )௥ߨ ଵܻ) × )௥ߨ ଶܻ) × )௥ߨ ଷܻ)ଷ௥ୀଵ  [2] 

The model parameters, namely ݌௥and ߨ௝௥௞ were estimated with an expectation-maximization 

(EM) algorithm using 50 sets of random initial values. 

 The latent class model with covariables 

In this model, covariables’ effects were put on the prior probability of class membership ( ௥ܲ in 

equation [2]) and modelled using a logistic link. Covariables that are potentially correlated 

with the latent bp status were included; namely, Allele Balance (AB; the mean AB value of 

the three replicates), QualByDepth (QD), and Mapping Quality (MAPQ). Univariate models 

were first fitted for each covariable, then models were fitted with all possible pairs of 

covariables. Model parameters (࣊,࢖) were estimated using 100 sets of random initial values. 

Models with distinct covariables were compared with the Bayesian information criterion 

(BIC) as a measure of model fit. 

The latent class model without covariables and the latent class model with covariables were 

fitted using package “poLCA” (v. 1.6.0.1) in R (v. 4.1.3) (Linzer and Lewis, 2011). 

 The Gaussian mixture model 

The Gaussian mixture model assumes that the observed variables within each latent class 

follow a multivariate normal distribution. Here; it is the observed continuous covariables that 

were modelled, the calling results of each replicate were not included. The covariables 

included in the model were read depth (DP; the mean DP value of the three replicates), allele 

balance (AB; the mean AB value of the three replicates), and quality by depth (QD); and were 

assumed to be normally distributed.  



 

87 
 

Let ࢞௜ denote the vector of covariables for site i, ݌௥ the prevalence of each latent class (r=1 to 

 is the (௥ߙ|௜ݔ)௥ the parameters of the multivariate normal distribution for latent class r. ℎࢻ ,(3

probability density function for latent class r, with parameters ࢻ௥. Thus, the probability 

density function for ࢞௜ can be written as: 

݂(࢞௜|ࢻ,࢖) = ෍݌௥ℎ(࢞௜|ࢻ௥)ோ
௥ୀଵ  

The model parameters, namely ࢖ and ࢻ were estimated with an expectation-maximization 

(EM) algorithm. This model was fitted using package “mclust” (v. 6.0.0) in R (v. 4.1.3) 

(Scrucca et al., 2016). 

 Kamila model (k-means for mixed large datasets) 

Kamila is a model-based adaptation of the k-means clustering algorithm for heterogeneous 

variables (mix of categorical and continuous). It uses a kernel density estimation technique to 

model flexibly spherical clusters in the continuous domain and uses a multinomial model in 

the categorical domain (Foss et al., 2016). The model parameters were estimated with an 

iterative process similar to an EM algorithm. One advantage of this model is to include both 

types of variables at the same time without pre-specifying the weights of continuous versus 

categorical variables.  

The categorical covariables included were: the calling results of the three replicates and a 

binary covariable to indicate whether a site is present in a ‘difficult region’ (Amemiya et al., 

2019). The continuous covariables included were DP, AB, and QD. The algorithm is sensitive 

to outliers because it uses kernel density estimation and Euclidean distance for continuous 

covariables. Here, the maximum value of DP was set to 150. 

This model was applied with package “Kamila” (v. 0.1.2) in R (v. 4.1.3) (Foss and Markatou, 

2018). 

 The random forest 

An unsupervised version of the random forest model for clustering was implemented (Shi and 

Horvath, 2006). The algorithm started with an unsupervised random forest model to generate 

a synthetic dataset without correlation between covariables, and then classified the 

observations into the synthetic or the original dataset using a classical random forest. This 
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generates a proximity matrix that represents the number of times observations were classified 

into the correct dataset. A hierarchical clustering was then applied using the proximity scores 

as dissimilarity measure between observations. 

This model was applied with Package ‘RandomForest’ (v. 4.7-1.1) in R (v. 4.1.3) (Liaw and 

Wiener, 2002). Because this model is computationally expensive, only 10,000 sites from the 

VCF file were sampled for its use. The number of trees used was 1000. 

 

4.3.4 Clustering choices 

Among the six above-mentioned models, five generate clusters. As the purpose was 

identifying the three latent classes that correspond to the three genotype categories, the 

number of clusters in each model was fixed to three. The largest cluster had to correspond to 

the heterozygous variants, the intermediate cluster to the homozygous variants, and the 

smallest cluster to the homozygous reference. Also, any model that showed any cluster with < 

0.1% of the observations was considered unable to identify three clusters, and therefore not 

retained. This choice was made according to a prior knowledge about the relatively stable 

proportions of the three categories in a VCF file of WGS. The ratio of heterozygous variants 

to homozygous variants in the VCF files is expected to be around 2 (Guo et al., 2014; Wang 

et al., 2015). The reference sites (i.e.; the false positives for at least one replicate) occupy 

usually 0.1 to 10% in WGS data (Zhao et al., 2020). 

 

4.3.5 Model result comparisons 

Each callset was compared against the GIAB gold standard set. This comparison used the 

above-provided definitions of TPs, FPs, FNs, and TNs as well as the following performance 

indicators: 

i) Accuracy (or 1 – the overall classification error rate) was calculated as (TPs + TNs) / (TPs 

+ FPs + FNs + TNs); i.e., over the total number of sites in the VCF file; 

ii) Recall (or sensitivity) was calculated as TPs / (TPs + FNs); 

iii) Precision (or positive predictive value, PPV) was calculated as TPs / (TPs + FPs); 
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iv) F1-score was calculated as 2 × recall × precision / (recall + precision). 

All callsets (except the one generated from the random forest) included all sites in the VCF 

file. For the random forest callset, the total number of real variants was estimated as the 

number of variants in the gold standard set multiplied by the sampling proportion. 

 

4.4 Results 

4.4.1 Performance indicators for calling results of individual replicates 

The precisions relative to the three replicates (1 to 3) had very close values (96.7 to 96.9%) 

and the sensitivities were nearly the same (~ 98.9%) (Table 4.2). The concordance rates of 

Replicate 1 vs. Replicates 2 and 3 were 98.4% and 98.3%, respectively; whereas the 

concordance rate of Replicate 1 vs. Replicate 3 was 98.2%. The concordance rate across the 

three replicates was 97.5%. 

Thus, as expected, the three replicates had similar performance indicators and there were high 

concordance rates between replicates. However, given the number of total loci in the VCF file 

(n = 3,351,415), the number of discordant sites across replicates was not negligible (n = 

84,753). 

Among the concordant sites across the three replicates, precision differed for different 

genotype categories. For the concordant heterozygous variant sites (n = 1,993,116), the 

precision was 96.8%. For the concordant homozygous variant sites (n = 1,273,546), the 

precision was 99.6%. Among the discordant sites, 55.9% were homozygous references, 39.6% 

heterozygous variants, and 4.5% homozygous variants in the gold standard. 
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Table 4.2 – Performance indicators of the clustering models under study 

Clustering model Accuracy Precision Recall F1-score 

None 96.7 to 

96.9% 

96.7 to 

96.9% 

98.9% 97.8 to 

97.9% 

Majority consensus 97.0% 97.0% 98.9% 97.9% 

Latent class analysis without covariables 97.8% 97.9% 98.8% 98.3% 

Latent class analysis with covariables 98.0%  98.0% 98.9% 98.4% 

Gaussian mixture model  98.5% 99.3% 98.2% 98.7% 

Kamila 99.0% 99.2% 98.8% 99.0% 

Random Forest 98.2% 99.5% 97.9% 98.7% 

 

 

4.4.2 Comparison of model fits 

In this study, the five types of models used neither the same amount of information nor the 

same type of covariables: i) the consensus model and the classical latent class model used the 

categorical variant calling results from the three replicates; ii) the Gaussian mixture model 

used continuous covariables; iii) the latent class model with covariables, Kamila model, and 

random forest used categorical variant calling results as well as categorical or continuous 

covariables. It was therefore difficult to compare directly model fits across model types. This 

section presents only comparisons within each model type. 

With the latent class models with one covariable (AB, QD, or MAPQ), the effect of each 

covariable was significantly different from 0. The model with AB showed the smallest BIC 

and was therefore considered as the most fitted to the data. 

With the latent class model with two covariables, among the three models relative to the three 

pairs of covariables, the model with AB and QD had the lowest BIC. Here, it is useful to note 

that, with some models, the estimations of the parameters of the latent class model with 
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covariables were not stable. With some models, the global maxima of the log-likelihood were 

reached in only 10% of estimation attempts. The most frequent local maxima were seldom the 

global maxima and the estimated proportions of heterozygous variant, homozygous variant, 

and homozygous reference sites were substantially different between estimation attempts. 

Therefore, a large number of sets of random initial values (100 rather than 50) were necessary 

to avoid local maxima. (table 4.3 and table 4.4). 

With the Gaussian mixture model, the chosen model (the one with the lowest BIC) was the 

model with three covariables: DP, AB, and QD. 
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Table 4.3 -- Stability of the estimates obtained with the latent class analysis model with 
covariable QualByDepth. The model was fitted 1000 times using 1000 random initial values. 
The table shows the five most frequent maximum log-likelihood estimations. 

Maximum log-likelihood Number of 
occurrences 

Estimated latent class proportion (%) 

-779028 818 61.626 38.090 0.28382 

-447774* 36 59.171 38.197 2.6323 

-794167 34 59.078 38.169 2.7520 

-802348 28 61.746 38.154 0.099742 

-805528 27 61.814 38.185 2.5314 × 10-7 

* Global maximum log-likehood 

 

Table 4.4 -- Stability of the estimates obtained with the latent class analysis model with 
covariable Allele Balance. The model was fitted 1000 times using 1000 random initial values. 
The table shows the five most frequent maximum log-likelihood estimations. 

Maximum log-likelihood Number of 
occurrences 

Estimated latent class proportion (%) 

-281366* 241 59.365 38.090 2.5436 

-697800 205 61.910 38.090 3.3126 × 10-7 

-671834 189 61.868 37.972 0.15996 

-282909 160 59.364 38.059 2.5764 

-672082 66 61.831 37.979 0.18954 

* Global maximum log-likehood 
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4.4.3 Performance comparisons 

The performance indicators (accuracy, precision, recall, and F1-score) of the models are 

shown in Table 4.2. Figure 4.1 shows the precision and the recalls of callsets of individual 

replicates and clustering models. The consensus method improved the precision by 0.1% 

without much decrease of the recall. Among the five clustering models, the Gaussian mixture 

model showed the highest accuracy (98.5%). The random forest model showed the highest 

precision (99.6%) but the lowest recall (98.2%). The consensus model and the latent class 

model with covariables showed the highest recall (98.9%). The Gaussian mixture model and 

random forest had high F1-scores (98.7%). Kamila model showed the highest F1-score 

(99.0%). 

The proportions of the three genotype categories in each callset, including the gold standard 

GIAB benchmark set, are shown in Table 4.5 (Total loci: 3,351,415 in the VCF file). The first 

row shows the “true” category proportions in the GIAB benchmark set for all sites in the VCF 

file. More than 4% were classified as reference sites in GIAB set, which corresponds to the 

marginal false positive rate in the VCF file. Rows 2 to 5 show the proportions in the three 

replicates and the consensus callset. With the model-based methods (rows 6 to 10), these 

proportions were the estimated latent-class proportions. The callsets generated by the 

clustering models grouped more sites into the smallest class (interpreted as reference; thus, 

false positives) than into the consensus callset; this explains the improved precision of these 

models. With the Gaussian mixture model, the highest proportion was found in the reference 

category, which explains its higher precision and lower recall versus the other models. 
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Table 4.5 - Proportions of the three genotype categories in each callset  

 
Callset 

Homozygous 

reference 

Heterozygous 

variants 

Homozygous 

variants 

1 Gold standard (GIAB) 4.241% 57.891% 37.868% 

2 Calling results of Replicate 1 1.064% 60.800% 38.136% 

3 Calling results of Replicate 2 1.230% 60.672% 38.098% 

4 Calling results of Replicate 3 1.295% 60.618% 38.087% 

5 Majority consensus 1.287% 60.586% 38.127% 

6 Latent class analysis without covariables 2.283% 59.596% 38.121% 

7 Latent class analysis with covariables 2.632% 59.171% 38.197% 

8 Gaussian mixture model 4.426% 58.001% 37.573% 

9 Kamila 3.586% 58.310% 38.104% 

10 Random forest 5.560% 57.440% 37.000% 
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Figure 4.1 - Positive predictive values and sensitivities of callsets without and with selected 
clustering models 
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4.5 Discussion 

In this study, six clustering algorithms were run on real sequencing replicates of the NA12878 

genome to compare their abilities in allowing reconstruction of a new callset with improved 

performance: one consensus model, two latent-class models, a Gaussian mixture model, a 

Kamila (adapted k-means) model, and a random forest model. These models showed various 

advantages. For example, the consensus model improved slightly the precision (by 0.1%) 

whereas the latent class model provided a non-negligible 1% precision improvement (97% to 

98%) without compromising recall (98.9%). In comparison with no use of a clustering model, 

all six models brought ≥ 1% gain in sensitivity, which is not negligible: i) the Gaussian 

mixture and the random forest models provided callsets with high precision (> 99%) but at the 

price of lower recall; ii) Kamila increased precision (99.2%) and kept a high recall (98.8%); it 

proved having the best overall performance. 

In this work, the models were chosen to represent a range of major clustering models, from 

the most naïve (consensus) to the most sophisticated machine-learning type (random forest). 

One interest of this choice is that all models may be readily implemented with packages in R 

software. However, here, only non-supervised clustering models were compared and not 

supervised ones because the latter need high-quality training data (Sandmann et al., 2018) 

which are not usually available in clinical practice settings. The models dealt with by 

BAYSIC and SomaticCombiner or their equivalents were actually considered in the article as 

latent class model and consensus model, respectively. Indeed, in this work, the former 

algorithm was not considered because its results would be quite similar to those obtained with 

a classical latent class model and the latter is based on an approach that is close to the 

consensus model. 

Most of the models considered here have been previously used for similar purposes; i.e., 

merging several either constitutional or somatic variant calling results to obtain a new callset 

with better performance indicators (precision or recall). Previous authors used: i) the 

consensus model (Chiara et al., 2018; Di Nanni et al., 2019; Hwang et al., 2014; Trubetskoy 

et al., 2015); ii) the Bayesian latent class model (Cantarel et al., 2014); iii) the Gaussian 

mixture model (DePristo et al., 2011; Hwang et al., 2019); iv) random forest (Huang et al., 

2019; Wang et al., 2020). However, though usual, these models have been rarely compared, 

their comparison results often unclear, and the final conclusions controversial. For example, 
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the random-forest-based ensemble caller for somatic mutation has obtained higher F1-scores 

than the simple consensus approach (Huang et al., 2019); however, in a study by Wang et al. 

(Wang et al., 2020), the authors observed that the consensus method was more robust and 

stable than supervised machine-learning models. They suggested that the difference between 

the training data and the test data contributed to the poor generalizability of machine-leaning 

models. In another research on the NA12878 genome that used the GIAB benchmark set as 

gold standard, a two-component mixture-model-based method that considered results from 70 

pipelines did not significantly improve performance in terms of precision at the highest 

analytical sensitivity achievable vs. the highest performance of a single pipeline. However, 

the method led to performance improvement with another gold standard set from the ‘1000 

Genomes Project’ (Hwang et al., 2019). 

The models compared here did not include the same number of variables because of the 

hypotheses inherent to each model. Some require only continuous variables (e.g., the 

Gaussian mixture model), whereas others require only categorical variables (e.g., the latent 

class model). Thus, performance comparisons between new callsets generated by different 

models should be interpreted with this difference in mind. For example, Kamila and random 

forest models are able to include more covariables than the other models. In future works, 

comparisons between models with same covariables would be welcome. One current aim was 

to use information already available in a VCF file; however, the possibility of including more 

covariables may be interesting too. 

In some previous research works, sites in the VCF file of presumably very low quality were 

filtered out before applying merging methods; i.e., a small number of sites were considered as 

false positives and thus excluded (Sandmann et al., 2018). Here, no sites were filtered out (all 

sites from the VCF file were included in the models); this allowed a more objective evaluation 

of the overall performance of each model. However, this choice introduced some difficulties 

due to the extreme values of certain variables. For example, DP has typically a long-tailed 

distribution and the presence of extremely high values is often an indicator of sequencing 

artefacts, alignment artefacts, or copy number variations (Guo et al., 2014; Li, 2014; O’Rawe 

et al., 2013). In common practice, the solution to extreme DP values is to exclude sites with 

values higher than a threshold defined according to various formulas that use the mean and 

standard deviation of DPs (Li et al., 2018; Pan et al., 2022); for example, a threshold 120 in 

the hard filters recommended by the GATK (Van der Auwera and O’Connor, 2020).  
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In the present work, the mean DP across the three replicates was circa 38 and its maximum 

13,858 and, among the compared models, Kamila is known to be relatively sensitive to 

extreme values because it minimizes a dissimilarity measure that is partially based on 

Euclidean distance in the case of continuous variables. This might explain why it failed to 

identify the three clusters with acceptable proportions. Indeed, the model grouped a small 

number of sites with extremely high DP values into one cluster (n = 254; i.e., 0.008% of all 

sites) and, as stated in 4.3.4, models that led to any cluster with < 0.1% of the sites were 

considered unable to identify three clusters and thus not retained. One way to address this 

issue is to add one more cluster in the model (4 instead of 3). However, in this work, only 

three clusters were considered to allow model performance comparisons and allow each 

cluster to represent each genotype category. Therefore, with Kamila, the maximum DP value 

was set at 150 and higher values grouped together at 150. The other models that involved DP 

(i.e., the Gaussian mixture model and the random forest model) performed well despite the 

presence of high DP values (these were not then filtered out). 

This study focused on the VCF file (i.e., on all sites called as variants in at least one replicate) 

and not on all three billion bp positions across the human genome. This is one reason for 

which the indicators of performance kept were only recall and precision (specificity was 

ignored). There are also two other practical reasons: i) negative sites are much more numerous 

(almost 1000 times the number of sites in the VCF file) and contain less information; thus, 

using them is computationally expensive and adds little information; ii) researchers, 

especially practitioners and lab professionals, usually use only the VCF file for routine 

analyses; thus, a model that requires information from the BAM file for sites called as 

‘reference’ would not be practical. 

One limitation of this study is that it evaluated only callsets’ performance regarding SNVs. 

Further studies are worth being conducted to evaluate the performance of clustering models 

regarding copy number variations and structural variations. Also, except for Kamila, the study 

included only the most classical model from each clustering algorithm type. Some model 

features may prove more adapted to the distribution of the variables or have more convenient 

underlying hypotheses. For example, latent class models that relax the conditional 

independence between observed variables through correlation, random effects, or covariables 

with effects on the class-conditional probabilities. 
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The Gaussian mixture model used here showed good performance vs. the other five models. 

However, all components of a variable distribution might not be Gaussian. For example, i) the 

distribution of allele balance has been already modelled using a mixture of 0-inflated beta 

distribution, binomial distribution, and 1-inflated beta distribution for the homozygous 

reference, heterozygous variant, and homozygous reference categories, respectively (Muyas et 

al., 2019); ii) to take into account heavy-tails, read depth distributions have been modelled 

using a compound Poisson distribution, a negative binomial distribution, or a log-normal 

distribution (Daley and Smith, 2014; Deng et al., 2020; Robinson et al., 2010). 

From a theoretical viewpoint, a very recent article by Dang et al. (Dang et al., 2023) reviewed 

a selection of “mixture models that can deal with varying cluster tail-weight, skewness and/or 

concentration, and kurtosis” (e.g., mixtures of multivariate t-distributions, mixtures of skew-t 

distributions, mixtures of normal inverse Gaussian distributions, etc.). Furthermore, these 

authors introduced a multivariate skewed power exponential distribution that “allow for 

robust mixture models for clustering with skewed or symmetric components” and “model 

components with varying levels of peakedness, skewness, and tail-weight (light, heavy, 

Gaussian)”. In practice, the use of multivariate non-Gaussian mixture models is often difficult 

because of identifiability issues and the instability of parameter estimation. This might explain 

the rarity of applications on real data, which is worth being explored. We especially hope an 

exploration of the appropriateness of the above-mentioned models within the context of WGS 

data. 

4.6 Conclusions 

In this study, several clustering models were evaluated within the context of combining 

callsets from DNA sequencing replicates. These non-supervised clustering models proved 

able to improve sequencing performance in terms of precision and F1-score, which is 

comparable to what is reported about supervised models. Among the models compared here, 

the Gaussian mixture model and Kamila offered improvements that made precision higher 

than 99% and F1-score close to 99%. These models may then be recommended to reconstruct 

new high-performance callsets from NGS replicates. This is of particular interest for diagnosis 

or precision medicine whenever DNA sequencing results stem from either biological 

replicates (more than one sample) or technological replicates (more than one sequencing 

platform or analysis pipeline). 
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To improve the performance of individual DNA sequencing results, researchers
often use replicates from the same individual and various statistical clustering
models to reconstruct a high-performance callset. Here, three technical replicates
of genome NA12878 were considered and five model types were compared
(consensus, latent class, Gaussian mixture, Kamila–adapted k-means, and
random forest) regarding four performance indicators: sensitivity, precision,
accuracy, and F1-score. In comparison with no use of a combination model, i)
the consensus model improved precision by 0.1%; ii) the latent class model
brought 1% precision improvement (97%–98%) without compromising
sensitivity (= 98.9%); iii) the Gaussian mixture model and random forest
provided callsets with higher precisions (both >99%) but lower sensitivities; iv)
Kamila increased precision (>99%) and kept a high sensitivity (98.8%); it showed
the best overall performance. According to precision and F1-score indicators, the
compared non-supervised clustering models that combine multiple callsets are
able to improve sequencing performance vs. previously used supervised models.
Among the models compared, the Gaussian mixture model and Kamila offered
non-negligible precision and F1-score improvements. These models may be thus
recommended for callset reconstruction (from either biological or technical
replicates) for diagnostic or precision medicine purposes.

KEYWORDS

next generating sequencing, performance evaluation, clustering model, replicate
analysis, sensitivity

1 Introduction

Evaluating the performance of an individual’s DNA sequencing results is often
hampered by the lack of gold standard. A number of researchers use then replicates of
DNA sequencing results from the same individual or frommonozygotic twins to reconstruct
a set of high-quality calls (Zook et al., 2014). Sequencing results obtained from two or more
distinct samples from a same individual are called biological replicates, whereas sequencing
results obtained from two or more distinct vials of a single sample are called technical
replicates (Robasky et al., 2014). Technical replicates may stem from using different
sequencing platforms, different bioinformatics analysis tools, or repeated sequencing

OPEN ACCESS

EDITED BY

Li-Xuan Qin,
Memorial Sloan Kettering Cancer Center,
United States

REVIEWED BY

Xiangyu Luo,
Renmin University of China, China
Jian Zou,
University of Pittsburgh, United States

*CORRESPONDENCE

Yue Zhai,
ext-yue.zhai@chu-lyon.fr

SPECIALTY SECTION

This article was submitted to Statistical
Genetics and Methodology,
a section of the journal
Frontiers in Genetics

RECEIVED 19 January 2023
ACCEPTED 06 March 2023
PUBLISHED 16 March 2023

CITATION

Zhai Y, Bardel C, Vallée M, Iwaz J and
Roy P (2023), Performance comparisons
between clustering models for
reconstructing NGS results from
technical replicates.
Front. Genet. 14:1148147.
doi: 10.3389/fgene.2023.1148147

COPYRIGHT

©2023 Zhai, Bardel, Vallée, Iwaz and Roy.
This is an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Genetics frontiersin.org01

TYPE Brief Research Report
PUBLISHED 16 March 2023
DOI 10.3389/fgene.2023.1148147



with the same platform and same bioinformatics tool. With both
types of sequencing replicates, several methods have been widely
used to obtain more reliable sequencing results.

Among these methods, a simple one is the concordance-based
model where a “consensus” can be defined according to various
degrees of agreement between callsets (Trubetskoy et al., 2015).
Although this model may seem “naïve”, several investigations have
suggested that its performance may not be worse than that of a
machine-learning method (Wang et al., 2020).

Another method is latent class analysis (LCA) that is commonly
used in biology and medicine to evaluate test performance without
gold standard. In a classical latent class model, the latent variable
and the observed variables are all categorical and there is a
conditional independence between the observed variables within
each latent class. Extensions of this classical model have been
developed to account for local dependence, such as using random
effects or correlation coefficients. Other extensions included
covariables with effects on the latent variable or on the observed
variables (Huang and Bandeen-Roche, 2004). Furthermore,
Bayesian latent class analyses have been also used to provide
combinations of callsets with improved performance indicators
(Cantarel et al., 2014). A similar approach was the Gaussian
mixture model in which the categorical latent variable is the class
membership of the observations and where the observed continuous
variables within each latent class follow hypothetically a Gaussian
distribution. Finally, machine-learning methods (k-nearest
neighbors, random forest, naïve Bayes classifier, or support vector
machine) were also used to merge several callsets (Gézsi et al., 2015;
Wang et al., 2020). Table 1 provides a short overview of the most
relevant methods and studies designed to combine multiple callsets.

The literature on processing replicate sequencing results is
rather scanty and a number of methods do not satisfy specific
research needs. This work intended to explore the main ways of
dealing with multiple NGS results stemming from biological or
technical replicates, investigate their properties, and compare their
key performance indicators to help choosing the most performing
among readily implementable methods able to improve
sequencing performance. It explored the consensus model, the
latent class model, the mixture model, and random forest
regarding their abilities to produce a callset with improved
quality. It compared their main performance indicators:
precision, recall, and F1-score.

2 Methods

2.1 The study data

The present study used calling results from sequencing three
technical replicates of genome NA12878. NA12878 is a human DNA
sample that is “thought to represent the best-characterized diploid
human genome in the world”, is “considered as a ‘reference material’
by the National Institute of Standards and Technology (NIST)”, and
includes “near-perfect genome sequences for public use” as well as
“truth sequences” established after repeated sequencings “using a wide
variety of technologies and computational pipelines”. Today, more
than 80% the NA12878 cell line’s genome is considered known with
high confidence. This is why it is used as benchmark for assessing the
performance of sequencing platforms or bioinformatic pipelines
(Krol, 2015).

All three sequencing procedures were carried out on Illumina
NovaSeq 6000 system platform. The samples were then aligned with
Burrow-Wheeler Aligner (BWA-MEM) (Li, 2013) against the
GRCh37 version of the human reference genome. Genome
Analysis Toolkit (GATK) duplicate marking, base quality score
recalibration, and indel realignment were applied (McKenna
et al., 2010). The resulting sequencing data were deposited in the
European Nucleotide Archive.

Variant calling was performed by joint genotyping according to
the GATK Best Practices recommendations (DePristo et al., 2011;
van der Auwera and O’Connor, 2020). Concordance rates between
the calling results of the replicates were calculated. The concordance
rate was defined as the number of sites called in the same category
(see 2.2) by each replicate divided by the total number of sites called
as variants by at least one of the replicates.

The latest version (v 4.2.1) of Genome in a Bottle (GIAB) variant
calling benchmark set was used as ‘gold standard’ (Zook et al., 2016;
Wagner et al., 2022). This version has a higher coverage of the
GRCh37 reference genome and includes more difficult-to-map
regions than the previous version (Wagner et al., 2022).

2.2 Basic definitions and main covariables

Performance considered only bps from the GIAB benchmark
region, each bp position being a statistical unit and each GIAB

TABLE 1 Overview of the most relevant methods and studies designed to combine multiple callsets.

Authors Algorithm Model type References

Trubetskoy et al., 2015 CGES Consensus Bioinformatics 2015; 31(2):187

Wang et al., 2020 SomaticCombiner Consensus Sci Rep 2020; 10:12898

Chiara et al., 2018 CoVaCS Consensus BMC Genomics 2018; 19:120

Hwang et al., 2014 --- Consensus and logistic regression Hum Mutat 2014; 35(8):936

Cantarel et al., 2014 BAYSIC Bayesian latent class model BMC Bioinformatics 2014; 15:104

DePristo et al., 2011 VQSR Gaussian mixture model Nat Genet 2011; 43(5):491

Hwang et al., 2019 --- Gaussian-multinomial mixture model Sci Rep 2019; 9(1):3219

Huang et al., 2019 SMuRF Random forest Bioinformatics 2019; 35 (17): 3157
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benchmark result a true status of each bp. Here, only performance in
single nucleotide variant (SNV) analysis was considered.

In this analysis, the variant calling results in the VCF file and the
GIAB benchmark callset (gold standard set) were considered to
belong to one of three categories: homozygous reference,
heterozygous variants, and homozygous variants. A true positive
(TP) was defined as a variant call in the query callset that belongs to
the same category as in the gold standard set; i.e., both are
heterozygous variants or both homozygous variants despite
potential allele or phasing differences. A false negative (FN) was
defined as a variant in the gold standard set called as non-variant in
the query callset. A false positive (FP) was defined as a non-variant
in the gold standard set called as variant in the query callset or a
variant in the gold standard set called as variant in a different
category. A true negative (TN) was defined as a non-variant in the
gold standard set called as non-variant in the query callset. No-calls
in the VCF file were considered as non-variants. This recalls the
“genotype match, for which only sites with matching alleles and
genotypes are counted as TPs” (Krusche et al., 2019), though, in this
study, the criteria for true positivity were less stringent.

The covariables included in the models were:

1) The depth of coverage (DP); i.e., the number of informatics reads
covering a given base-pair. In this study, the mean DP value
across the three replicates was circa 38 and the DP value ranged
from 0 to 13,858.

2) The allele balance (AB; i.e., the number of reads supporting the
alternative allele divided by the number of all informatics reads at
a specific site) ranged from 0 to 1.

3) The QualByDepth (QD); i.e., the site-level Phred-scaled
confidence for the existence of variant divided by the number
of reads supporting the alternative allele in variant samples. Here,
the QD value ranged from 0.02 to 42.9.

4) The genotype quality (GQ); i.e., the Phred-scaled confidence for
the called genotype (ranged from 0 to 99).

5) The mapping quality (MQ); i.e., the root mean square of the MQ
of reads across all samples (ranged from 20 to 60).

Covariates DP, AB, and GQ were obtained from the VCF file for
each bp in each sample (here, replicate), and then the mean of each of
the three values was calculated. MQ and QD were obtained from the
VCF file for each bp and had the same values across the three samples.

2.3 Clustering models used for NGS
reconstruction

Five types of models were selected for reconstructing NGS result
from technical replicates.

2.3.1 The consensus (or concordance-based)
model

In this model, “strict consensus” was considered whenever all
variant calling results across all replicates agreed and “majority
consensus” whenever there was a majority of variant calling results
across all replicates (Trubetskoy et al., 2015; Wang et al., 2020).
Here, it is the majority consensus that was used. In case of no
majority consensus, the sites were classified as homozygous variants.

2.3.2 The latent class model without covariables
This type of analysis was often used to evaluate the performance

of diagnostic tests in the absence of gold standard. A latent class
analysis is a mixture model where both the observed and unobserved
variables are categorical. A classical LCA assumes conditional
independence between observed variables (here, called genotype
categories) given the latent class (here, the true genotype status).

Let i represent each site in the VCF file, r the latent classes 1 to 3.
Yi represents the calling results in replicates 1 to 3 for site i (Y1, Y2,
andY3 are categorical variables with three categories that correspond to
the three genotype categories). pr denotes the prevalence of latent class
r. πr(Y1), πr(Y2), and πr(Y3) are the probability mass functions of
variables Y1, Y2, and Y3 for latent class r.

The equation of this model may be written:

P Yi

∣∣∣∣p,π( ) � ∑3

r�1pr × πr Y1( ) × πr Y2( ) × πr Y3( ) (1)

The model parameters, namely, pr and πjrk, were estimated with
an expectation-maximization (EM) algorithm using 50 sets of
random initial values.

2.3.3 The latent class model with covariables
In this model, covariables’ effects were put on the prior

probability of class membership (Pr in Eq. 1) and modelled using
a logistic link. Covariables that are potentially correlated with the
latent bp status were included; namely, Allele Balance (AB; the mean
AB value of the three replicates), QualByDepth (QD), and Mapping
Quality (MAPQ). Univariate models were first fitted for each
covariable, then models were fitted with all possible pairs of
covariables. Model parameters (π, p) were estimated using
100 sets of random initial values. Models with distinct
covariables were compared with the Bayesian information
criterion (BIC) as a measure of model fit.

The latent class model without covariables and the latent class
model with covariables were fitted using package “poLCA” (v.
1.6.0.1) in R (v. 4.1.3) (Linzer and Lewis, 2011).

2.3.4 The Gaussian mixture model
The Gaussian mixture model assumes that the observed

variables within each latent class follow a multivariate normal
distribution. Here, it is the observed continuous covariables that
were modelled; the calling results of each replicate were not
included. The covariables included in the model were read depth
(DP; the mean DP value of the three replicates), allele balance (AB;
the mean AB value of the three replicates), and quality by depth
(QD); all were assumed to be normally distributed.

Let xi denote the vector of covariables for site i, pr the prevalence
of each latent class (r = 1, 2, or 3), αr the parameters of the
multivariate normal distribution for latent class r. h(xi|αr) is the
probability density function for latent class r, with parameters αr.
Thus, the probability density function for xi can be written:

f xi
∣∣∣∣p, α( ) � ∑

R

r�1
prh xi|αr( )

The model parameters, namely, p and α, were estimated with
an expectation-maximization (EM) algorithm. This model was
fitted using package “mclust” (v. 6.0.0) in R (v. 4.1.3) (Scrucca et al.,
2016).
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2.3.5 Kamila model (k-means for mixed large
datasets)

Kamila is a model-based adaptation of the k-means
clustering algorithm for heterogeneous variables (mix of
categorical and continuous). It uses a kernel density
estimation technique to model flexibly spherical clusters in
the continuous domain and uses a multinomial model in the
categorical domain (Foss et al., 2016). The model parameters
were estimated with an iterative process similar to an EM
algorithm. One advantage of this model is to include both
types of variables at the same time without pre-specifying the
weights of continuous versus categorical variables.

The categorical covariables included were: the calling results of
the three replicates and a binary covariable to indicate whether a site
is present in a “difficult region” (Amemiya et al., 2019). The
continuous covariables included were DP, AB, and QD. The
algorithm is sensitive to outliers because it uses kernel density
estimation and Euclidean distance for continuous covariables.
Here, the maximum value of DP was set to 150.

This model was applied with package “Kamila” (v. 0.1.2) in R (v.
4.1.3) (Foss and Markatou, 2018).

2.3.6 The random forest
An unsupervised version of the random forest model for

clustering was implemented (Shi and Horvath, 2006). The
algorithm started with an unsupervised random forest model to
generate a synthetic dataset without correlation between covariables,
and then classified the observations into the synthetic or the original
dataset using a classical random forest. This generates a proximity
matrix that represents the number of times observations were
classified into the correct dataset. A hierarchical clustering was
then applied using the proximity scores as dissimilarity measure
between observations.

This model was applied with Package ‘RandomForest’ (v.
4.7-1.1) in R (v. 4.1.3) (Liaw and Wiener, 2002). Because this
model is computationally expensive, only 10,000 sites from the
VCF file were sampled for its use. The number of trees used
was 1000.

2.4 Clustering choices

Among the six above-mentioned models, five generate clusters.
As the purpose was identifying the three latent classes that
correspond to the three genotype categories, the number of
clusters in each model was fixed to three. The largest cluster
had to correspond to the heterozygous variants, the
intermediate cluster to the homozygous variants, and the
smallest cluster to the homozygous reference. Also, any model
that showed any cluster with <0.1% of the observations was
considered unable to identify three clusters, and therefore not
retained. This choice was made according to a prior knowledge
about the relatively stable proportions of the three categories in a
VCF file of WGS. The ratio of heterozygous variants to
homozygous variants in the VCF files is expected to be around
2 (Guo et al., 2014; Wang et al., 2015). The reference sites (i.e., the
false positives for at least one replicate) occupy usually 0.1%–10%
in WGS data (Zhao et al., 2020).

2.5 Model result comparisons

Each callset was compared against the GIAB gold standard set.
This comparison used the above-provided definitions of TPs, FPs,
FNs, and TNs as well as the following performance indicators:

i) Accuracy (or 1−the overall classification error rate) was
calculated as (TPs + TNs)/(TPs + FPs + FNs + TNs);
i.e., over the total number of sites in the VCF file;

ii) Recall (or sensitivity) was calculated as TPs/(TPs + FNs);
iii) Precision (or positive predictive value, PPV) was calculated as

TPs/(TPs + FPs);
iv) F1-score was calculated as 2 × recall × precision/(recall +

precision).

All callsets (except the one generated from the random forest)
included all sites in the VCF file. For the random forest callset, the
total number of real variants was estimated as the number of variants
in the gold standard set multiplied by the sampling proportion.

3 Results

3.1 Performance indicators for calling results
of individual replicates

The precisions relative to the three replicates (1 to 3) had very
close values (96.7%–96.9%) and the sensitivities were nearly the
same (~98.9%) (Table 2). The concordance rates of Replicate 1 vs.
Replicates 2 and 3 were 98.4% and 98.3%, respectively; whereas the
concordance rate of Replicate 1 vs. Replicate 3 was 98.2%. The
concordance rate across the three replicates was 97.5%.

Thus, as expected, the three replicates had similar performance
indicators and there were high concordance rates between replicates.
However, given the number of total loci in the VCF file (n =
3,351,415), the number of discordant sites across replicates was
not negligible (n = 84,753).

Among the concordant sites across the three replicates, precision
differed for different genotype categories. For the concordant
heterozygous variant sites (n = 1,993,116), the precision was
96.8%. For the concordant homozygous variant sites (n =
1,273,546), the precision was 99.6%. Among the discordant sites,
55.9% were homozygous references, 39.6% heterozygous variants,
and 4.5% homozygous variants in the gold standard.

3.2 Comparison of model fits

In this study, the five types of models used neither the same
amount of information nor the same type of covariables: i) the
consensus model and the classical latent class model used the
categorical variant calling results from the three replicates; ii) the
Gaussian mixture model used continuous covariables; iii) the latent
class model with covariables, Kamila model, and random forest used
categorical variant calling results as well as categorical or continuous
covariables. It was therefore difficult to compare directly model fits
across model types. This section presents only comparisons within
each model type.
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With the latent class models with one covariable (AB, QD, or
MAPQ), the effect of each covariable was significantly different from
0. The model with AB showed the smallest BIC and was therefore
considered as the most fitted to the data.

With the latent class model with two covariables, among the
three models relative to the three pairs of covariables, the model with
AB and QD had the lowest BIC. Here, it is useful to note that, with
some models, the estimations of the parameters of the latent class
model with covariables were not stable. With some models, the
global maxima of the log-likelihood were reached in only 10% of
estimation attempts. The most frequent local maxima were seldom
the global maxima and the estimated proportions of heterozygous
variant, homozygous variant, and homozygous reference sites were
substantially different between estimation attempts. Therefore, a

large number of sets of random initial values (100 rather than 50)
were necessary to avoid local maxima. (Supplementary Table S1).

With the Gaussian mixture model, the chosen model (the one
with the lowest BIC) was the model with three covariables: DP, AB,
and QD.

3.3 Performance comparisons

The performance indicators (accuracy, precision, recall, and F1-
score) of the models are shown in Table 2 and Figure 1 shows the
precision and the recalls of callsets of individual replicates and
clustering models. The consensus method improved the precision by
0.1% without much decrease of the recall. Among the five clustering

TABLE 2 Performance indicators of the clustering models under study.

Clustering model Accuracy Precision Recall F1-score

None 96.7%–96.9% 96.7%–96.9% 98.9% 97.8%–97.9%

Majority consensus 97.0% 97.0% 98.9% 97.9%

Latent class analysis without covariables 97.8% 97.9% 98.8% 98.3%

Latent class analysis with covariables 98.0% 98.0% 98.9% 98.4%

Gaussian mixture model 98.5% 99.3% 98.2% 98.7%

Kamila 99.0% 99.2% 98.8% 99.0%

Random Forest 98.2% 99.5% 97.9% 98.7%

FIGURE 1
Positive predictive values and sensitivities of callsets without and with selected clustering models.
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models, the Gaussian mixture model showed the highest accuracy
(98.5%). The random forest model showed the highest precision
(99.6%) but the lowest recall (98.2%). The consensus model and the
latent class model with covariables showed the highest recall
(98.9%). The Gaussian mixture model and random forest had
high F1-scores (98.7%). Kamila model showed the highest F1-
score (99.0%).

The proportions of the three genotype categories in each callset,
including the gold standard GIAB benchmark set, are shown in
Table 3 (Total loci: 3,351,415 in the VCF file). The first row shows
the “true” category proportions in the GIAB benchmark set for all
sites in the VCF file. More than 4% were classified as reference sites
in GIAB set, which corresponds to the marginal false positive rate in
the VCF file. Rows 2 to 5 show the proportions in the three replicates
and the consensus callset. With the model-based methods (rows
6–10), these proportions were the estimated latent-class
proportions. The callsets generated by the clustering models
grouped more sites into the smallest class (interpreted as
reference; thus, false positives) than into the consensus callset;
this explains the improved precision of these models. With the
Gaussian mixture model, the highest proportion was found in the
reference category, which explains its higher precision and lower
recall versus the other models.

4 Discussion

In this study, six clustering algorithms were run on real
sequencing replicates of the NA12878 genome to compare their
abilities in allowing reconstruction of a new callset with improved
performance: one consensus model, two latent-class models, a
Gaussian mixture model, a Kamila (adapted k-means) model,
and a random forest model. These models showed various
advantages. For example, the consensus model improved slightly
the precision (by 0.1%) whereas the latent class model provided a
non-negligible 1% precision improvement (97% to 98%) without
compromising recall (98.9%). In comparison with no use of a
clustering model, all six models brought ≥1% gain in sensitivity,
which is not negligible: i) the Gaussian mixture and the random

forest models provided callsets with high precision (>99%) but at the
price of lower recall; ii) Kamila increased precision (99.2%) and kept
a high recall (98.8%); it proved having the best overall performance.

In this work, the models were chosen to represent a range of
major clustering models, from the most naïve (consensus) to the
most sophisticated machine-learning type (random forest). One
interest of this choice is that all models may be readily
implemented with packages in R software. However, here, only
non-supervised clustering models were compared and not
supervised ones because the latter need high-quality training data
(Sandmann et al., 2018) which are not usually available in clinical
practice settings. The models dealt with by BAYSIC and
SomaticCombiner or their equivalents were actually considered in
this article as latent class model and consensus model, respectively.
Indeed, in this work, the former algorithm was not considered
because its results would be quite similar to those obtained with a
classical latent class model and the latter is based on an approach
that is close to the consensus model.

Most of the models considered here have been previously used
for similar purposes; i.e., merging several either constitutional or
somatic variant calling results to obtain a new callset with better
performance indicators (precision or recall). Previous authors used:
i) the consensus model (Hwang et al., 2014; Trubetskoy et al., 2015;
Chiara et al., 2018; Di Nanni et al., 2019); ii) the Bayesian latent class
model (Cantarel et al., 2014); iii) the Gaussian mixture model
(DePristo et al., 2011; Hwang et al., 2019); iv) random forest
(Huang et al., 2019; Wang et al., 2020). However, though usual,
these models have been rarely compared, their comparison results
often unclear, and the final conclusions controversial. For example,
the random-forest-based ensemble caller for somatic mutation has
obtained higher F1-scores than the simple consensus approach
(Huang et al., 2019); however, in a study by Wang et al. (Wang
et al., 2020), the authors observed that the consensus method was
more robust and stable than supervised machine-learning models.
They suggested that the difference between the training data and the
test data contributed to the poor generalizability of machine-leaning
models. In another research on the NA12878 genome that used the
GIAB benchmark set as gold standard, a two-component mixture-
model-based method that considered results from 70 pipelines did

TABLE 3 Proportions of the three genotype categories in each callset.

Callset Homozygous References (%) Heterozygous variants (%) Homozygous variants (%)

1 Gold standard (GIAB) 4.241 57.891 37.868

2 Calling results of Replicate 1 1.064 60.800 38.136

3 Calling results of Replicate 2 1.230 60.672 38.098

4 Calling results of Replicate 3 1.295 60.618 38.087

5 Majority consensus 1.287 60.586 38.127

6 Latent class analysis without covariables 2.283 59.596 38.121

7 Latent class analysis with covariables 2.632 59.171 38.197

8 Gaussian mixture model 4.426 58.001 37.573

9 Kamila 3.586 58.310 38.104

10 Random forest 5.560 57.440 37.000
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not significantly improve performance in terms of precision at the
highest analytical sensitivity achievable vs. the highest performance
of a single pipeline. However, the method led to performance
improvement with another gold standard set from the
‘1000 Genomes Project’ (Hwang et al., 2019).

The models compared here did not include the same number of
variables because of the hypotheses inherent to each model. Some
require only continuous variables (e.g., the Gaussian mixture
model), whereas others require only categorical variables (e.g.,
the latent class model). Thus, performance comparisons between
new callsets generated by different models should be interpreted
with this difference inmind. For example, Kamila and random forest
models are able to include more covariables than the other models.
In future works, comparisons between models with same covariables
would be welcome. One current aim was to use information already
available in a VCF file; however, the possibility of including more
covariables may be interesting too.

In some previous research works, sites in the VCF file of
presumably very low quality were filtered out before applying
merging methods; i.e., a small number of sites were considered as
false positives and thus excluded (Sandmann et al., 2018). Here, no
sites were filtered out (all sites from the VCF file were included in the
models); this allowed a more objective evaluation of the overall
performance of each model. However, this choice introduced some
difficulties due to the extreme values of certain variables. For
example, DP has typically a long-tailed distribution and the
presence of extremely high values is often an indicator of
sequencing artifacts, alignment artifacts, or copy number
variations (O’Rawe et al., 2013; Guo et al., 2014; Li, 2014). In
common practice, the solution to extreme DP values is to
exclude sites with values higher than a threshold defined
according to various formulas that use the mean and standard
deviation of DPs (Li et al., 2018; Pan et al., 2022); for example, a
threshold 120 in the hard filters recommended by the GATK (van
der Auwera and O’Connor, 2020).

In the present work, the mean DP across the three replicates was
circa 38 and its maximum 13,858 and, among the compared models,
Kamila is known to be relatively sensitive to extreme values because
it minimizes a dissimilarity measure that is partially based on
Euclidean distance in the case of continuous variables. This
might explain why it failed to identify the three clusters with
acceptable proportions. Indeed, the model grouped a small
number of sites with extremely high DP values into one cluster
(n = 254; i.e., 0.008% of all sites) and, as stated in 2.4, models that led
to any cluster with <0.1% of the sites were considered unable to
identify three clusters and thus not retained. One way to address this
issue is to add one more cluster in the model (4 instead of 3).
However, in this work, only three clusters were considered to allow
model performance comparisons and allow each cluster to represent
each genotype category. Therefore, with Kamila, the maximum DP
value was set at 150 and higher values grouped together at 150. The
other models that involved DP (i.e., the Gaussian mixture model and
the random forest model) performed well despite the presence of
high DP values (these were not then filtered out).

This study focused on the VCF file (i.e., on all sites called as
variants in at least one replicate) and not on all three billion bp
positions across the human genome. This is one reason for which the
indicators of performance kept were only recall and precision

(specificity was ignored). There are also two other practical
reasons: i) negative sites are much more numerous (almost
1000 times the number of sites in the VCF file) and contain less
information; thus, using them is computationally expensive and
adds little information; ii) researchers, especially practitioners and
lab professionals, usually use only the VCF file for routine analyses;
thus, a model that requires information from the BAM file for sites
called as ‘reference’ would not be practical.

One limitation of this study is that it evaluated only callsets’
performance regarding SNVs. Further studies are worth being
conducted to evaluate the performance of clustering models
regarding copy number variations and structural variations. Also,
except for Kamila, the study included only the most classical model
from each clustering algorithm type. Some model features may
prove more adapted to the distribution of the variables or have more
convenient underlying hypotheses. For example, latent class models
that relax the conditional independence between observed variables
through correlation, random effects, or covariables with effects on
the class-conditional probabilities.

The Gaussian mixture model used here showed good
performance vs. the other five models. However, all components
of a variable distribution might not be Gaussian. For example, i) the
distribution of allele balance has been already modelled using a
mixture of 0-inflated beta distribution, binomial distribution, and 1-
inflated beta distribution for the homozygous reference,
heterozygous variant, and homozygous reference categories,
respectively (Muyas et al., 2019); ii) to take into account
heavytails, read depth distributions have been modelled using a
compound Poisson distribution, a negative binomial distribution, or
a log-normal distribution (Robinson et al., 2010; Daley and Smith,
2014; Deng et al., 2020).

From a theoretical viewpoint, a very recent article by Dang et al.
(Dang et al., 2023) reviewed a selection of “mixture models that can
deal with varying cluster tail-weight, skewness and/or concentration,
and kurtosis” (e.g., mixtures of multivariate t-distributions, mixtures
of skew-t distributions, mixtures of normal inverse Gaussian
distributions, etc.). Furthermore, these authors introduced a
multivariate skewed power exponential distribution that “allow
for robust mixture models for clustering with skewed or
symmetric components” and “model components with varying
levels of peakedness, skewness, and tail-weight (light, heavy,
Gaussian)”. In practice, the use of multivariate non-Gaussian
mixture models is often difficult because of identifiability issues
and the instability of parameter estimation. This might explain the
rarity of applications on real data, which is worth being explored.
We especially hope an exploration of the appropriateness of the
above-mentioned models within the context of WGS data.

5 Conclusion

In this study, several clustering models were evaluated within
the context of combining callsets from DNA sequencing replicates.
These non-supervised clustering models proved able to improve
sequencing performance in terms of precision and F1-score, which
is comparable to what is reported about supervised models. Among
the models compared here, the Gaussian mixture model and
Kamila offered improvements that made precision higher than
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99% and F1-score close to 99%. These models may then be
recommended to reconstruct new high-performance callsets
from NGS replicates. This is of particular interest for diagnosis
or precision medicine whenever DNA sequencing results stem
from either biological replicates (more than one sample) or
technological replicates (more than one sequencing platform or
analysis pipeline).
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