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Abstract

Despite being introduced over 60 years ago, PCF remains of interest. Though the quest for a
satisfactory fully abstract model of PCF was resolved around the turn of the millennium, new
models of PCF still frequently appear in the literature, investigating unexplored avenues or using
PCF as a lens or tool to investigate some other mathematical construct. In this thesis, we build
upon our knowledge of models of PCF in two distinct ways: Constructing a brand new model,
and building upon existing models.

Addressing Machines are a relatively new type of abstract machine taking inspiration from
Turing Machines. These machines have been previously shown to model the full untyped λ-
calculus. We build upon these machines to construct Extended Addressing Machines (EAMs)
and endow them with a type system. We then show that these machines can be used to obtain
a new and distinct fully abstract model of PCF: We show that the machines faithfully simulate
PCF in such a way that a PCF term terminates in a numeral exactly when the corresponding
Extended Addressing Machine terminates in the same numeral. Likewise, we show that every
typed Extended Addressing Machine can be transformed into a PCF program with the same
observational behaviour. From these two results, it follows that the model of PCF obtained by
quotienting typable EAMs by a suitable logical relation is fully abstract.

There exist a plethora of sound categorical models of PCF, due to its close relationship with
the λ-calculus. We consider two similar models (which are also models of Linear Logic) that
are based on semirings: Weighted models, using semirings to quantify some internal value, and
Multiplicity models, using semirings to linearly model functions (model the exponential !). We
investigate the intersection between these two models by investigating the conditions under which
two monads derived from specific semirings distribute. We discover that whether or not a semir-
ing has an idempotent sum makes a large difference in its ability to distribute. Our investigation
leads us to discover the notion of an unnatural distribution, which forms a monad on a Kleisli
category. Finally, we present precise conditions under which a particular distribution can form
between two semirings.
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Resumé

Bien qu’elle ait été introduite il y a plus de 60 ans, PCF reste intéressante. Bien que la quête
d’un modèle satisfaisant et totalement abstrait de PCF ait été résolue au tournant du millénaire,
de nouveaux modèles de PCF apparaissent encore fréquemment dans la littérature, explorant
des voies inexplorées ou utilisant PCF comme une lentille ou un outil pour étudier une autre
construction mathématique. Dans cette thèse, nous nous appuyons sur notre connaissance des
modèles de PCF de deux manières distinctes : En construisant un tout nouveau modèle, et en
s’appuyant sur les modèles existants.

Les machines d’adressage sont un type relativement nouveau de machine abstraite qui s’inspire
des machines de Turing. Il a déjà été démontré que ces machines peuvent modéliser l’ensemble
du λ-calcul non typé. Nous nous appuyons sur ces machines pour construire des machines
d’adressage étendues (EAM) et les doter d’un système de type. Nous montrons ensuite que ces
machines peuvent être utilisées pour obtenir un nouveau modèle entièrement abstrait et distinct de
PCF : Nous montrons que les machines simulent fidèlement PCF de telle sorte qu’un terme PCF
se termine par un chiffre exactement lorsque la machine d’adressage étendue correspondante se
termine par le même chiffre. De même, nous montrons que chaque machine d’adressage étendue
typée peut être transformée en un programme PCF avec le même comportement d’observation.
De ces deux résultats, il découle que le modèle de PCF obtenu en quotientant les EAM typables
par une relation logique appropriée est totalement abstrait.

Il existe une pléthore de modèles catégoriels solides de PCF, en raison de sa relation étroite
avec le λ-calcul. Nous considérons deux modèles similaires (qui sont aussi des modèles de
logique linéaire) qui sont basés sur des sémirings : Les modèles pondérés, qui utilisent les sémi-
rations pour quantifier une valeur interne, et les modèles de multiplicité, qui utilisent les sémi-
rations pour modéliser linéairement des fonctions (modèle de l’exponentielle !). Nous étudions
l’intersection entre ces deux modèles en examinant les conditions sous lesquelles deux monades
dérivées de sémirings spécifiques se distribuent. Nous découvrons que le fait qu’un semi-anneau
ait ou non une somme idempotente fait une grande différence dans sa capacité à distribuer. Notre
étude nous conduit à découvrir la notion de distribution non naturelle, qui forme une monade
sur une catégorie de Kleisli. Enfin, nous présentons des conditions précises sous lesquelles une
distribution particulière peut se former entre deux semis.
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Introduction

The language Programming Computable Functions (PCF) was originally introduced by Gordon
Plotkin in 1977 as an abstract programming language based on the Logic of Computable Func-
tions (LCF) [Plo77]. It has stood the test of time as a language that is still highly of interest today,
melding simplicity and desirable characteristics. It is commonly used as a lens to contextualise
more abstract mathematical concepts to the field of computer science, and has spawned a number
of useful tools and concepts via inspiration and analysis.

This work presents new models of PCF constructed from the intersections between various
works from other authors. We will be taking a journey of sorts, discussing formal systems, explicit
substitution, abstract machines, and category theory, with the overall goal of constructing models
that are simultaneously meaningful with respect to PCF and have intrinsic value of their own.

Over the course of this journey we will be having short discussions on the origins, relevance,
and work related to the subject at hand. This is at odds with the common approach found in
papers of providing these discussions in the introduction, with the aim of giving you, the reader,
a gentler and smoother reading experience.

Contributions and Layout

The content of this thesis can be divided into two parts: constructing a fully abstract model of
PCF from a type of abstract machine known as Addressing Machines (AMs), and studying the
intersection between two known models of Classical Linear Logic. As knowledge of Linear Logic
is not necessary to understand the second part, and may in fact be a distraction to some readers,
references to it outside of the introduction have been omitted. Instead, as both of the models in the
second part are also models of PCF, the work is presented by using PCF as a lens. Each chapter
begins by presenting some of the key notions used in said chapter, often through introducing some
new preliminaries or concepts.

Chapter 1 is used as a “joint preliminary” between the two halves, introducing PCF through
the λ-calculus. To readers familiar with PCF, the main interest of this chapter is in the fixing
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2 Notations and Symbols

of notations and conventions. This chapter was written with the aim of being approachable for
readers unfamilar with the concepts presented, while being useful for referring back to when
reading the remainder of the work.

A fully abstract model using Addressing Machines

The result that we aim to present is a fully abstract model of PCF using a variant of abstract
machine called Extended Addressing Machines (EAMs). To arrive at this result, a lot of necessary
buildup and introductions are presented first. Some of the work presented here was published
previously in “Extended Addressing Machines for PCF, with Explicit Substitutions” [BMM23],
and certainly some credit for the results of this section go to my co-authors on that paper.

Chapter 2 begins by introducing explicit substitutions in Section 2.1, discussing some of the
history of the concept. Later in Section 2.2, we construct a variant of PCF that we call EPCF
which makes use of explicit substitutions, albeit in a very unconventional way, with all explicit
substitutions forced to be closed. Explicit substitutions can be treated as modelling the internal
behaviour of abstract machines, and EPCF makes this more apparent than most – being designed
to mirror EAMs as closely as possible is the source of their strange definition. The consequence of
this is very obvious merely when looking at Definition 2.2.1 where EPCF is defined – specifically
at the definition of free variables in EPCF terms. We take care to ensure that this variant of
PCF behaves well – we define both a small-step and a big-step reduction, and then prove their
equivalence in Proposition 2.2.9. We show that terms can be typed in a meaningful manner in
Lemma 2.2.13. Finally, crucially, we prove that PCF and EPCF coincide in Theorem 2.2.20.

Chapter 3 begins with a discussion of abstract machines more generally, introducing the
reader to some of the most notable examples of abstract machines. We have a brief discus-
sion on the origins of Addressing Machines, but do not go into detail on their definition – to do
so would involve a lot of unnecessary overlap with the definition of Extended Addressing Ma-
chines. Instead, when defining EAMs, we make explicit the (few) differences between these and
Addressing Machines. The main components of Extended Addressing Machines are defined in
Definitions 3.3.1, 3.3.2, and 3.3.5. We define their behaviour in Definition 3.3.11, and show that
this behaviour is deterministic and consistent. Finally, in Definition 3.3.16, we introduce a type
system along with an typing algorithm for these machines. We show that both of these behave
well.

Chapter 4 contains the work linking PCF, EPCF, and EAMs together to construct the desired
models. We begin by defining a translation from EPCF to Extended Addressing Machines. We
show that this translation preserves typing in Theorem 4.1.6. Showing that the translation faith-
fully simulates behaviour is a bit more involved, but is proven after some additional definitions
in Theorem 4.1.11. To construct a model from the translation, we define a equivalence relation
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in Definition 4.2.1, equating machines which have the same meaning. We construct a model in
Definition 4.2.16 by quotienting this relation – showing that two terms are equivalent whenever
their corresponding machines are equivalent. To prove that this model is fully abstract, we also
define a translation from Extended Addressing Machines to EPCF, and show that it is consistent
regarding typing and equivalence in Proposition 4.2.22 and Theorem 4.2.23 respectively. This
then neatly leads us to our conclusion.

Models constructed from semiring monads

The work presented here was done with the aim of finding new distributions between monads
constructed from semirings. Such distributions would likely be models of classical Linear Logic,
and as a consequence models of PCF, its variants, and similar formal systems. This work was
done in collaboration with my supervisor Flavien Breuvart.

The first chapter of this half, Chapter 5, is dedicated to providing the categorical preliminaries
necessary. Though many of the concepts presented are common knowledge in this field, the con-
tent is presented in a manner that makes it comprehensible to a reader with little to no knowledge
of category theory. This allows it to also function as a reference for notations and concepts, much
like Chapter 1. The later parts of the chapter contain more specialised background knowledge. In
Section 5.1, we introduce the categories that model PCF piecewise, intuitively explaining how
such categories are suitable for such models along the way. Section 5.2 is dedicated to the more
specialist knowledge of semirings and semiring monads required to understand the following
chapter – readers familiar with category theory are encouraged to skip Section 5.1, yet still read
5.2. Of particular importance are the notions of complete semiring, multiplicity semiring, and
the definition of a monad constructed from a semiring – for many semirings, there are in fact two
monads that can be constructed, though we often use them interchangeably.

Chapter 6 presents a subcase of the overarching problem – one where we restrict one of
the semirings chosen to have an idempotent sum. Section 6.1 in particular is quite dry with a
lot of definitions and proofs of lemmas – this is unfortunately unavoidable due to the technical
nature of the content. Theorem 6.1.16 is the result, showing how some new distributions can be
constructed. Later in Section 6.2, we provide more intutition and justification for the separation
of the problem into an idempotent and non-idempotent half. In particular, Proposition 6.2.4 leads
us to the conjecture that there cannot be a distribution between our types of semirings in the
non-idempotent case.

Chapter 7 provides an alternative method of obtaining categories that have the potential to
model PCF from two semirings without utilising a distribution. We define the concept of an
“unnatural distributive law“ in Definition 7.1.4 after providing some justification for the concept.
We then prove in Theorem 7.1.5 that this causes a monad to arise. Finally, we provide all the
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properties required to form a monad from either an unnatural or a standard distribution in Defini-
tion 7.2.1, and prove that this is the case in Theorem 7.2.8.



Chapter 1

Programming Computable Functions

Before defining Programming Computable Functions (PCF), we should first define and discuss
the λ-calculus, to provide terminology and get a better idea of why PCF is interesting.

1.1 The λ-calculus

The untyped λ-calculus [CHU41] is a formal system with the key concept of having functions
as primitive objects. The only notions present are those of application, the process of applying
arguments to a function, and λ-abstraction, which is the process of creating a function from an
expression. This formal system is Turing complete [Tur37], from which its interest in computer
science arises. The untyped λ-calculus is also incredibly simple,1 and as a result of the above
properties is often used as the foundation of other formal systems.

1.1.1 λ-terms

We fix a countably infinite set Var of variables, the elements of which are typically referred to
as x, y, z, . . . or x1, x2, x3, . . . . The set Λ of λ-terms is defined inductively by the following
grammar [Bar84]:

M,N ::= x | λx.M |MN

λ-terms of the form λx.M are referred to as abstractions, and λ-terms of the formMN are re-
ferred to as applications. We write λx1.λx2 . . . λxn.M as short for λx1. (λx2. (. . . (λxn.M) . . . ))

and assume that application associates to the left, i.e.

M1M2M3 · · ·Mn stands for (· · · ((M1M2)M3) · · · )Mn

Abstraction is given priority over application, i.e. λx.MN = λx.(MN).

1Whether it is the simplest Turing complete system depends on your interpretation of “simple” [Cur30, Jay19].

5
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We will use the compact notation λx1x2.M to denote λx1.λx2.M . When considering a list
of variables x1, . . . , xn, we refer to the entire list as x⃗.

Definition 1.1.1 (Free and bound variables).
The set FV(M) of free variables of a λ-term M are defined by induction:

FV(x) := {x}, FV(λx.M) := FV(M) \ {x}, FV(MN) := FV(M) ∪ FV(N)

A λ-term M where FV(M) = ∅ is said to be closed. Such λ-terms are also called combinators,

and the set of all combinators is typically denoted Λ0.

When given an abstraction λx.M , all free occurrences of x in M are said to be bound by the
abstraction λx. A variable is thus free if it is not bound by any abstraction. We say that a variable
y is fresh for M if it does not occur in M .

Example 1.1.2.
A few examples of well-known combinators which will be used throughout this work are the

following:
I := λx.x 1 := λxy.xy

T := λxy.x F := λxy.y

D := λx.xx Ω := DD

Some examples of λ-terms with free variables are the following:

xyz λx.xy λxy.z yI

Definition 1.1.3 (Capture-free Substitution).
Given λ-terms M and N , the capture free substitution of N for x in M , written M [N/x], is a

λ-term defined by induction on the shape of M :

x[N/x] = N, y[N/x] = y, if y ̸= x, (λx.M ′) [N/x] = λx.M ′,

(λy.M ′) [N/x] = λz. (M ′[z/y][N/x]) , if y ̸= x,

where z ∈ Var \ ({y}∪FV(M ′N)),

(M1M2) [N/x] = (M1[N/x])(M2[N/x])

Definition 1.1.4 (α-equivalence).
Terms which differ only in the naming of their bound variables are said to be α-equivalent. This

equivalence, denoted =α, is axiomatised as follows:

λx.M = λy. (M [y/x]) , where y is fresh for M .
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Two λ-terms are α-equivalent if and only if they are provably equal via the above rule. Essentially,

the names we give to bound variables has no effect on the meaning of a term.

As a consequence, we can adopt the variable convention of giving all bound variables max-
imally distinguished names. In other words, when we write M1 = λx.x and M2 = λy.xy, then
the x occurring in M1 is different from both the x and the y occurring in M2.2

Definition 1.1.5 (β-reduction).
The β-reduction allows the application of arguments to a function to be “resolved”. We define a

basic reduction using capture free substitution

(λx.M)N →b M [N/x]

Using inference rules we then define β-reduction as follows:

M →b M
′

M →β M
′

M →β M
′

λx.M →β λx.M
′

M →β M
′

MN →β M
′N

N →β N
′

MN →β MN ′

We write M ↠β N if there exists n ∈ N such that M →β M1 →β · · · →β Mn−1 →β N . In

other words, ↠β is the transitive-reflexive closure of→β . Subterms of the form (λx.M) · N are

called redexes.

Regarding β-reduction, the untyped λ-calculus is known to be confluent – the order in which
redexes are evaluated does not affect the final result. A λ-term is said to be in normal form if
it cannot reduce via β-reduction. The non-deterministic nature of β-reduction results in multi-
ple strategies that one can use to produce a deterministic reduction. Of particular note is head
reduction:

Definition 1.1.6 (Head reduction).

(1) A redex (λx.M1)M2 is said to be in head position in a term M if M has the following

shape:

λy1 . . . yn.(λx.M1)M2N1 · · ·Nm, wheren,m ∈ N

A β-reduction is a head reduction if it reduces the redex in head position. A λ-term is in

head normal form if it does not have a redex at head position.

(2) A weak head reduction is a head reduction which does not reduce under an abstraction. In

other words, we can define weak head reductions→whβ ⊂ →β as

M →b M
′

M →whβ M
′

M →whβ M
′

MN →whβ M
′N

A λ-term is in weak head normal form if it cannot reduce via a weak head reduction step.
2This variable convention is typically attributed to Henk Barendregt [Bar84].
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1.1.2 The simply typed λ-calculus

Thus far we have discussed the untyped λ-calculus. The λ-calculus can be seen as an abstract

programming language, and like many programming languages, it can be adorned with typing
information. The simplest way of doing so results in what is known as the simply typed λ-calculus

[BDS13, Part I.1].

Definition 1.1.7 (Simple types).
Consider fixed a set of base types B. The set of all simple types TB is defined as:

α, β ::= α→ β | o, where o ∈ B

In the above, α and β are called type variables while o is a base type. The arrow operator

associates to the right, in other words we write α1 → · · · → αn → β for α1 → (· · · (αn →
β) · · · ) (= α⃗→ β, for short). If n = 0 then α1 → · · · → αn → β = β.

Types are then assigned to λ-terms via typing judgements.

Definition 1.1.8 (Typing Contexts).

(1) A typing context Γ is a partial function from Var to TB such that the domain of Γ is finite.

(2) Γ is often denoted as x1 : α1, . . . , xn : αn, meaning that for all i ≤ n, Γ(xi) = αi. This

notation is also used to define new typing contexts; Γ, y : β is a typing context where

dom(Γ, y : β) = dom(Γ) ∪ {y}

(Γ, y : β)(x) =

β if x = y,

Γ(x) otherwise.

A typing context can also be understood as a finite set of assignments/pairs; a dictionary.
Typing contexts are sometimes referred to as environments.

Definition 1.1.9 (Simple Typing Judgements).
A typing judgement for the simply typed λ-calculus consists of a λ-termM , a type α, and a typing

context Γ, and are written Γ ⊢ M : α. The type inference rules for the simply typed λ-calculus

are:

Γ, x : α ⊢ x : α

Γ, x : β ⊢M : α

Γ ⊢ λx.M : β → α

Γ ⊢M : β → α Γ ⊢ N : β

Γ ⊢MN : α

A typing derivation is a finite tree built bottom-up in such a way that the root has shape Γ ⊢M : α

and every node is an instance of one of the above rules. When writing Γ ⊢ M : α, we mean that

this typing judgement is derivable.

Many terms have multiple valid types which can be derived. For example, the term λx.x

can be typed with (α → β → γ) → (α → β → γ) or (α → β) → (α → β). The reason
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for this is that if a type has at least one type variables, the type can be made more specific by
substituting all occurrences of a type variable with any other type. For example, if a term is
typable with α → bool → α, all occurrences of α could be replaced with β1 → β2, forming the
type (β1 → β2) → bool → (β1 → β2). Typable terms always have a most general type, which
is the least specific type assignable – the type which consists of a minimal amount of base types
and type variables, and base types are replaced by type variables whenever possible. For λx.x,
the most general type is α→ α.

The simply typed λ-calculus is, unlike the untyped λ-calculus, strongly normalising – all
terms reduce to a normal form regardless of the order in which one chooses redexes [BDS13,
Part I.2]. Naturally, this means it cannot be Turing complete. This can be seen when attempting
to type the terms in Example 1.1.2.

Example 1.1.10.
The following typing judgements for the examples found in Example 1.1.2 are derivable:

⊢ I : α→ α x : α→ β → γ, y : α, z : β ⊢ xyz : γ

⊢ T : α→ β → α z : γ ⊢ λxy.z : α→ β → γ

⊢ 1 : (β → α)→ β → α y : β ⊢ λx.xy : (β → α)→ α

⊢ F : α→ β → β y : (α→ α)→ β ⊢ yI : β

D and Ω are not typable. Attempting to construct a typing derivation for D results in the following

tree:
x : β ⊢ x : γ → α x : β ⊢ x : γ

x : β ⊢ xx : α

⊢ λx.xx : β → α

For the tree to “resolve”, γ → α would have to be the same as γ, which is not possible due to the

differing number of arrows. Ω is not typable as it features D as a subterm.

A term is weakly normalising if there exists a particular order of reductions allowing it to
reach a normal form. An example of such an object in the untyped λ-calculus would be (λx.y)Ω.
Reduction strategies which do not reduce arguments or under an abstraction are called weak head

reduction strategies, as they reduce to a weak head normal form where possible and then do not
reduce further.
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1.2 Programming Computable Functions

The Logic of Computable Functions was proposed by Dana Scott in 19693 with the goal of having
a logical calculus for computable functions. This work introduced the type system which inspired
PCF. At the time, PCF was quite distinct from languages in common use. Logic of Computable
Functions inspired the language ML, which PCF could be seen as a simplification of, and in turn
inspired modern functional languages such as Haskell and OCaml. PCF is the foundation upon
which typed functional languages are built.

The simplest approach to working with PCF is to consider it in terms of its constituent parts.
Essentially, PCF is a language obtained from the simply typed λ-calculus upon adding features
to regain Turing completeness. It could (debatably) be called the simplest typed Turing complete
declarative programming language.

PCF can be informally described as the simply typed λ-calculus with numerical constants,
arithmetic operators, conditional branching, and a fixed point operator.4

Definition 1.2.1 (PCF terms).
The set ΛPCF of PCF terms is defined by induction as follows:

P,Q,Q′ ::= x | λx.P | PQ | fixP | 0 | predP | succP | ifz(P,Q,Q′) (ΛPCF)

where λx.P represents the abstraction, PQ the application, fix the fixed point operator, 0 the

constant zero, pred and succ the predecessor and successor (respectively), and ifz the condi-

tional test on zero (namely, ‘is zero?-then-else’).

As a matter of notation, we write n for succ n(0), repeating succ n-many times on 0.

PCF inherits terminology, notations, and conventions – but not definitions – from the λ-
calculus. For example, the concept of free variables in PCF remains the same as in λ-calculus,
but the definition changes to account for additional cases.

Definition 1.2.2 (PCF Free Variables).
The set FV(P ) of free variables of P ∈ ΛPCF is defined as

FV(x) := {x}, FV(0) := ∅
FV(λx.P ) := FV(P ) \ {x}, FV(PQ) := FV(P ) ∪ FV(Q)

FV(predP ) := FV(P ) FV(succP ) := FV(P )

FV(ifz(P,Q1, Q2)) := FV(P ) ∪ FV(Q1) ∪ FV(Q2) FV(fixP ) := FV(P )

We will refer to PCF terms which are closed as PCF programs.
3Though the work remained unpublished until 1993.
4The simply typed λ-calculus together with a fixed point operator is not Turing complete [Sta02].



1.2. Programming Computable Functions 11

Definition 1.2.3 (Capture Free Substitution for PCF).
Given PCF terms P and Q, the capture free substitution of Q for x in P , written P [Q/x], is a

PCF term defined by induction on the shape of P :

x[P ′/x] = P ′, (predP ′)[Q/x] = pred (P ′[Q/x]),

y[P ′/x] = y, if y ̸= x, (succP ′)[Q/x] = succ (P ′[Q/x]),

(fixP ′)[Q/x] = fix (P ′[Q/x]), (λx.P ′) [Q/x] = λx.P ′,

(P1P2) [Q/x] = (P1[Q/x]) (P2[Q/x]) ,

(ifz(P1, P2, P3))[Q/x] = ifz(P1[Q/x], P2[Q/x], P3[Q/x]),

(λy.P ′) [Q/x] = λz. (P ′[z/y][Q/x]) , if y ̸= x,

where z ∈ Var \ ({y} ∪ FV(P ′Q)).

The α-equivalence is defined as in the λ-calculus. Hereafter, PCF terms are considered up to
α-conversion.

As an abstract programming language, PCF is generally considered with deterministic re-
duction strategies. As with the λ-calculus, there exist multiple strategies to choose from. The
most prominent of these are call-by-name and call-by-value. Here we will focus on a variant
of call-by-name PCF, which is usually referred to simply as PCF. We introduce the small-step

operational semantics of PCF.

Definition 1.2.4 (Small Step Operational Semantics of PCF).
The basic reduction rules of PCF are the following:

(λx.P )Q →p P [Q/x], fix (P ) →p P (fix (P )),

pred (succ (n)) →p n, pred (0) →p 0,

ifz(0, P1, P2) →p P1, ifz(n+ 1, P1, P2) →p P2,

The weak head reduction →PCF ⊆ ΛPCF × ΛPCF is defined as follows:

P →p P
′

P →PCF P
′

P →PCF P
′

PQ→PCF P
′Q

P →PCF P
′

ifz(P,Q1, Q2)→PCF ifz(P ′, Q1, Q2)
P →PCF P

′

predP →PCF predP ′
P →PCF P

′

succP →PCF succP ′

The multistep reduction ↠PCF is defined as the transitive-reflexive closure of→PCF.

Remark 1.2.5.
There are some call-by-name elements present in the handling of the numerals. This is a techni-

cal choice required for later parts of this work – exploring other reduction strategies including

“pure” call-by-name is left for future work.
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Example 1.2.6.
All of the λ-terms listed in Example 1.1.2 are also PCF terms, as Λ ⊂ ΛPCF. Here are some

examples of terms which are PCF terms but not λ-terms.

(1) For all n ∈ N, n is a PCF term representing a number.

(2) succ1 = λx.succx, representing the successor function.

(3) succ2 = (λsn.s(sn))succ1, a double successor function

(4) is_one = λx.ifz(predx, 0, 1), a function which outputs 0 or 1 depending on whether an

input is greater than 1.

(5) add = fix (λfxy.ifz(x, y, f(predx)(succ y))), a function which computes addition.

(6) ΩPCF = fix (I), the looping program using fix .

Example 1.2.7.
As an example of a PCF reduction, we present the reduction of add 1 2:

add12 →PCF (λfxy.ifz(x, y, f(predx)(succ y)))add 1 2

→PCF (λxy.ifz(x, y, add(predx)(succ y)))1 2

→PCF (λy.ifz(1, y, add(pred 1)(succ y)))2

→PCF ifz(1, 2, add(pred 1)(succ 2))

→PCF add(pred 1)(succ 2)

→PCF (λfxy.ifz(x, y, f(predx)(succ y)))add(pred 1)(succ 2)

→PCF (λxy.ifz(x, y, add(predx)(succ y)))(pred 1)(succ 2)

→PCF (λy.ifz((pred 1), y, add(pred (pred 1))(succ y)))(succ 2)

→PCF ifz((pred 1), (succ 2), add(pred (pred 1))(succ (succ 2)))

→PCF ifz(0, (succ 2), add(pred (pred 1))(succ (succ 2)))

→PCF succ 2 = 3

This deterministic reduction strategy is weak as it does not reduce under abstractions.

Proposition 1.2.8 (PCF Values).
A PCF value is either a numeral or an abstraction. The set of PCF values is defined by:

ValPCF = {n | n ∈ N} ∪ {λx.P | P ∈ ΛPCF}

We will use U , occasionally with indicies, as the meta-variable for PCF values.
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Definition 1.2.9 (Big Step Operational Semantics of PCF).
The big step reduction ⇓ ⊆ ΛPCF × ΛPCF maps a PCF term to a PCF value:

U ∈ ValPCF

U ⇓ U (val)
P ⇓ 0

predP ⇓ 0
(pr0)

P ⇓ n+ 1

predP ⇓ n (pr)

P ⇓ 0 Q ⇓ U1

ifz(P,Q,Q′) ⇓ U1
(ifz0)

P ⇓ n+ 1 Q′ ⇓ U2

ifz(P,Q,Q′) ⇓ U2
(ifz>0)

P ⇓ n
succP ⇓ n+ 1

(sc)

P (fixP ) ⇓ U
fixP ⇓ U (fix)

P ⇓ λx.P ′ P ′[Q/x] ⇓ U
PQ ⇓ U (βval)

It is well-known that the big-step and small-step semantics of PCF are equivalent on PCF
programs, i.e for M ∈ ΛPCF and N ∈ ValPCF, M ↠PCF N if and only if M ⇓ N . For a proof of
this equivalence, see e.g. [Mit96, Chapter 2].

Definition 1.2.10 (Types for PCF).
The set T of (simple) types over a ground type int is defined by:

α, β ::= int | α→ β (T)

Again, PCF inherits terminology, notations, and conventions but not definitions from the
simply typed λ-calculus regarding typing.

Definition 1.2.11 (Typing PCF terms).
The following are the type derivation rules for PCF.

Γ ⊢ 0 : int
(0)

Γ, x : α ⊢ x : α
(ax)

Γ ⊢ P : α→ α
Γ ⊢ fixP : α

(Y)
Γ, x : α ⊢ P : β

Γ ⊢ λx.P : α→ β
(→I)

Γ ⊢ P : int
Γ ⊢ predP : int

(−) Γ ⊢ P : int
Γ ⊢ succP : int

(+)

Γ ⊢ P : α→ β Γ ⊢ Q : α

Γ ⊢ P ·Q : β
(→E)

Γ ⊢ P : int Γ ⊢ Q : α Γ ⊢ Q′ : α

Γ ⊢ ifz(P,Q,Q′) : α
(ifz)

Remark 1.2.12.
All the normal forms of typed PCF programs are PCF values.

Example 1.2.13.
The type derivation rules for PCF is a superset of the rules for the simply typed λ-calculus, so

the examples found to be typable in Example 1.1.10 remain typable with the same types. The

additional terms named in Example 1.2.6 are typable with the following judgements.
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(1) ⊢ n : int.

(2) ⊢ succ1 : int→ int.

(3) ⊢ succ2 : int→ int.

(4) ⊢ is_one : int→ int.

(5) ⊢ add : int→ int→ int.

(6) ⊢ ΩPCF : α, for all α ∈ T. In particular, we have ⊢ ΩPCF : int.

Clearly, a λ-term is typable if and only if it is typable as a PCF term.

1.3 Modelling PCF

1.3.1 Observational Equivalence

Determining whether two programs are equivalent is fundamental to computer science. For ex-
ample, ensuring that optimisations performed by a compiler do not affect the overall outcome. In
formal systems based on the λ-calculus, we usually consider two terms equivalent when they are
observationally equivalent [Mor69]. The idea of observational equivalence is that two terms have
the same “meaning” if they can be substituted for one another without changing an observable
outcome, for some set of observable outcomes.

To define observational equivalence formally, we must first introduce the idea of a context.
Essentially, a context is a term with exactly one “hole” occurring as a subterm. We define contexts
for PCF.

Definition 1.3.1 (PCF Contexts).

(1) PCF contexts C with a hole □ are defined inductively with the following grammar:

C□ ::= □ | λx.C□ | P · C□ | C□ ·Q | predC□ | succC□
| ifz(C□, P,Q) | ifz(P,C□, Q) | ifz(P,Q,C□) | fixC□

(2) We write C[P ] for the PCF term formed by substituting P for the hole □ in C□.

(3) When substituting P for □ in C□, we do not perform capture-free substitution. For exam-

ple, if C□ = λx.□ and P = x, then C[P ] = λx.x.

(4) Given a PCF context C□, a typing context Γ, and types α, β ∈ T, we write C□ : (Γ, α)→
β if for all P such that Γ ⊢ P : α, ⊢ C[P ] : β.



1.3. Modelling PCF 15

For PCF, observational equivalence is defined with the set of observable outcomes being N.
We observe termination at ground type as we do not reduce under an abstraction. For example,
we would consider λx.0 and λx.((λy.y) · 0) to have the same meaning, as once any argument is
applied they would both reduce to 0.

Definition 1.3.2 (Observational Equivalence).
Let P, P ′ be two PCF terms such that for a given typing context Γ and type α, Γ ⊢ P : α and

Γ ⊢ P ′ : α. We say that P and P ′ are observationally equivalent, written P ≡obs P ′, if the

following holds:

For all contexts C□ : (Γ, α)→ int, C[P ] ⇓ n if and only if C[P ′] ⇓ n.

Working with observational equivalence directly can be a bit difficult, but for the specific case
of PCF there exists the notion of applicative equivalence which can (mostly) be used instead.

Definition 1.3.3 (Applicative Equivalence).
Given two PCF programs P, P ′ such that ⊢ P : α1 → · · · → αk → int and ⊢ P ′ : α1 → · · · →
αk → int, for k ∈ N, α1, . . . , αk ∈ T, the following are one and the same.

(1) P and P ′ are applicatively equivalent, written P ≡app P ′;

(2) For all PCF programs ⊢ Q1 : α1, . . . ,⊢ Qk : αk, P · Q1 · · ·Qk ⇓ n if and only if P ′ ·
Q1 · · ·Qk ⇓ n.

Note that applicative equivalence is only defined on PCF programs, while observational
equivalence is defined on all PCF terms.

Proposition 1.3.4 ([Mil77], [Ong95]).
For all PCF programs P, P ′ of type α, we have:

P ≡obs P ′ ⇔ P ≡app P ′

1.3.2 Denotational Semantics of PCF

When defining an abstract programming language, it has become the norm to consider both the
operational and denotational semantics for programs in the language. While operational seman-
tics describe how terms in a language are executed, such as the previously defined small-step
and big-step reductions, denotational semantics aim to describe the “meaning” of a term. This
involves an assignment from programs to some values of a mathematical structure. Identifying a
denotational semantics for a programming language is also referred to as constructing a model of
said programming.



16 Programming Computable Functions

The interest in constructing models of a language lies in the ability to use mathematical
“tools” from whichever domain the model was constructed in. For example, it is well known
that any cartesian closed category5 can be used to model the simply typed λ-calculus. Regarding
models of the untyped λ-calculus, refer to Giulio Manzonetto’s PhD thesis [Man08]. We will
define models of PCF.

Definition 1.3.5 (Models of PCF [Mil77]).
A model of PCF is a triple M = ⟨(Mα)α∈T, ( ·α,β)α,β∈T, J−K⟩ where:

• (Mα)α∈T is a type-indexed collection of sets;

• ( ·α,β) : Mα→β ×Mα → Mβ is a well-typed operation called application;

• J−K is an interpretation function mapping a derivation of x1 : β1, . . . , xn : βn ⊢ P : α to

an element Jx1 : β1, . . . , xn : βn ⊢ P : αK ∈ Mβ1→···→βn→α.

Due to syntax-directedness of PCF type system, we can simply write JP KΓ,α for JΓ ⊢ P : αK.

For the sake of readability, we write a · b for a ·α,β b when α, β are clear from the context.

When constructing a model, we require a certain level of “correctness”. At the very minimum,
we would like the model to be consistent in the sense that it does not equate all programs, and
that it be sound in that it equates inter-convertible terms. Ideally, we would like to find a model
which equates all terms displaying the same computational behaviour.

Definition 1.3.6 (Properties of a Model).
Let L be an arbitrary language, and let ≡L be a an equivalence between terms in L. Let M be a

model of L, whose interpretation function is J−K.

(1) The model is said to be adequate if for all A,B ∈ L,

A ≡L B ⇐ JAK = JBK

(2) The model is said to be complete if for all A,B ∈ L,

A ≡L B ⇒ JAK = JBK

(3) A model which is both adequate and complete is said to be fully abstract.

Full abstraction is the strongest notion of correctness between a language and a model. The
quest to find a fully abstract model of PCF was put forward in the same paper in which it was

5Cartesian closed categorys are defined in a later chapter.
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introduced [Plo77]. It also showed that the classical approach [Sco70], while producing a model
that is adequate, was not complete. Robin Milner later found a solution by constructing a fully
abstract model based on continuous functions [Mil77]. However, his model is syntactic in nature,
essentially constructed directly from the operational semantics, and is thus generally seen as
unsatisfactory as a result [Ong95]. His results are still of value though, as he also shows that all
fully abstract models of PCF are isomorphic to one another – though this intuitively makes sense,
it is not the case for all language [Bre15].

Over the years, many attempts at finding a more satisfactory fully abstract model were made,
and around the turn of the century it was one of the longest standing problems in the semantics of
programming languages [AMJ94, Cur07]. This was at least partially due to some disagreement
about what constitutes a “satisfactory” model. At the very least, a decoupling of the model from
the syntax and operational semantics of PCF is desired [OR95, AMJ94]. Some have also argued
that the model should be represented as a (CPO-enriched) cartesian closed category6 [AMJ94,
JS93]. The fully abstract models which one might discuss today can be (roughly) separated into
three groups:

• The classic variant based on continuous functions by Milner [Mil77];

• Models based on game semantics. [AMJ94, Nic94, HO00]

• Every other model, such as those based on realisability techniques [MRS99] or on Kripke
logical relations [OR95].

Today, a common consensus has been reached that the game semantics models are indeed “sat-
isfactory” [Cur07]. This is partially as they satisfy the demands mentioned earlier, and partially
due to a result from Loader [Loa01] that the observational equivalence of (the strongly normal-
ising fragment of) PCF is undecidable, limiting how effectively a fully abstract model can be
presented.

One common “flaw” of the game semantics and operational models is their reliance on a
“quotient” to construct their model. Essentially, there are PCF terms which are observationally
equivalent, yet distinct in the structure upon which the model is based. Only after a semantic
quotienting action, stating that two objects in the model are equal based on some other property
in the source structure, is full abstraction obtained. There do exist models which do not make use
of such a quotient, though [OR95, CLM10].

Regardless of the perceived intrinsic value of new fully abstract models of PCF for better
understanding of PCF, all such models being isomorphic means that new models can still have
value by furthering our understanding of the tools and systems used to construct such models in

6This type of model is defined in a later chapter.
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the past. Indeed, in [Loa01], Loader argues that it is precisely these techniques resulting from the
study of PCF that are important, moreso than the results obtained from PCF itself.



Chapter 2

Explicit Substitutions

2.1 Explicit Substitutions in the λ-Calculus

Substitution is an integral part of the λ-calculus and its derivatives. Presented as it has been
in Definition 1.1.3, it appears to be very simple, but this presentation hides its unusual aspects.
When reading a substitution M [N/x], it is implied that N replaces all occurrences of x in M
simultaneously regardless of the shape of M or the number of occurrences of x.

Implementations of substitution (usually) take a different approach. Depending on the num-
ber of occurrences of x and the size of N , an immediate resolution of the substitution could result
in a “size explosion”. The substitution is instead typically delayed and stored alongside the term
– N is then substituted for x whenever x is used during the evaluation.

2.1.1 The λσ-Calculus

To reconcile this difference between presentation and implementation, Abadi et. al. introduced
the notion of explicit substitutions [ACCL91]. The general idea is to introduce substitutions as a
part of the syntax rather than as a meta-notation. These substitutions are then stored alongside the
term as it reduces, with elements being substituted only when necessary. This results in a calculus
which not only corresponds more closely to how implementations would commonly be designed,
but acts in a manner quite similar to common abstract machines.

Definition 2.1.1 (The λσ-calculus [ACCL91]).

(1) Define the set Λσ of λσ terms by extending the grammar of the λ-calculus with a case

19
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representing an explicit substitution as follows1:

M,N ::= x |MN | λx.M |M⟨N/x⟩

(2) We give substitution priority over abstraction and application and assume that explicit

substitution associates to the left, i.e.

λx.M⟨N/y⟩ = λx.(M⟨N/y⟩)

M1M2⟨N/y⟩ = M1(M2⟨N/y⟩)

M⟨N1/x1⟩ · · · ⟨Nn/xn⟩ = (· · · ((M⟨N1/x1⟩)⟨N2/x2⟩) · · · )⟨Nn/xn⟩

(3) The set FV(M) of free variables of a λσ term is defined as in the λ-calculus, with the

addition of the below case.

FV(M⟨N/x⟩) := (FV(M) \ {x}) ∪ FV(N)

(4) Capture free substitution is defined by extending the capture free substitution of the λ-

calculus with a case for the explicit substitution.

(M⟨N/x⟩)[L/y] =

M⟨N/x⟩ if x = y,

M [L/y]⟨N [L/y]/x⟩ otherwise.

(5) α-equivalence and the variable convention are defined as in the λ-calculus, making use of

the capture free substitution case defined above.

(6) Reduction is defined through a collection of reduction rules.

(λx.M)N →σ M⟨N/x⟩ (β)

x⟨M/x⟩ →σ M (Var1)

y⟨M/x⟩ →σ y, where x ̸= y (Var2)

(MN)⟨L/x⟩ →σ (M⟨L/x⟩)(N⟨L/x⟩) (App)

(λx.M)⟨L/x⟩ →σ λx.M (Abs1)

(λy.M)⟨L/x⟩ →σ λz.(M⟨z/y⟩⟨L/x⟩), where x ̸= y, z /∈ FV(ML) (Abs2)

We finish the definition of the →σ reduction with the addition of the following inference

1The λσ-calculus was originally presented primarily using de Bruijn notation [Bru72]. This presentation uses
traditional variables instead and is slightly different from the presentations shown in the paper.
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rules:

M →σ M
′

λx.M →σ λx.M
′

M →σ M
′

MN →σ M
′N

N →σ N
′

MN →σ MN ′

M →σ M
′

M⟨N/x⟩ →σ M
′⟨N/x⟩

N →σ N
′

M⟨N/x⟩ →σ M⟨N ′/x⟩

This definition can be extended with further →σ reduction rules, eliminating unnecessary
substitutions. Of particular interest is a rule which would allow substitutions to be reordered. With
the current definition it is not possible to evaluate substitutions independently from one another
– terms with multiple consecutive substitutions such as t⟨x/y⟩⟨u/t⟩ necessitate the evaluation of
⟨x/y⟩ before ⟨u/t⟩. This rule would be

M⟨N/x⟩⟨L/y⟩ →σ M⟨L/y⟩⟨N⟨L/y⟩/x⟩,where x /∈ FV(L) by α-equivalence.

The introduction of this rule also resolves a mismatch between the reductions of the λσ-calculus
and its capture free substitutions. However, a degeneracy arises – as the reduct has the shape of
the redex, the new rule loops by itself. The addition of side conditions results in other pitfalls, as
shown by Melliès [Mel95]. This means that many terms which would be strongly normalising in
the untyped λ-calculus are now only weakly normalising.

2.1.2 The Linear Substitution Calculus

Over the years, a number of different calculi based on explicit substitutions were introduced to
improve the rewriting issues, or provide the calculus with nicer properties regarding confluence
and normalisation [LM99, CHL96, BBLRD95, DCK97]. Finally, in recent years a new calcu-
lus was introduced which resolves Melliès’ degeneracy and has all the properties (confluence,
full composition, preservation of strong normalisation, . . . ) one would desire of a calculus with
explicit substitutions – the Linear Substitution Calculus (LSC) [Acc18, AK10].

Definition 2.1.2 (Linear Substitution Calculus).

(1) The terms and contexts of the Linear Substitution Calculus are defined as follows:

LSC Terms M,N ::= x | λx.M |MN |M⟨N/x⟩

Contexts L□ ::= □ | λx.L□ | L□M |ML□

| L□⟨M/x⟩ |M⟨L□/x⟩

Substitution Contexts S□ ::= □ | S□⟨M/x⟩
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(2) There are three rewriting rules present in the Linear Substitution Calculus.

The α-equivalence is used when necessary to avoid variable capture occurring.

Distant B S[λx.M ]N →dB S[M⟨N/x⟩]
Linear Substitution L[x]⟨M/x⟩ →ls L[M ]⟨M/x⟩

Garbage Collection M⟨N/x⟩ →gc M, wherex /∈ FV(M)

These reductions are closed under LSC contexts. For a ∈ {dB, ls, gc},

M →a M
′

L[M ]→a L[M
′]

Essentially, reduction of an explicit substitution M⟨N/x⟩ occurs by substituting N for one
occurrence of x inM with each reduction step, regardless of where x appears inM . This approach
makes explicit the duplication of arguments native to the λ-calculus. It also separates the concepts
of searching for free occurrences of x from reducing the term.

This does come with a downside, however – the search for and substitution of x at any depth
does not come naturally from within the language. This is very different from how substitutions
are handled in abstract machines with local environments – unlike classic explicit substitutions,
which “push” explicit substitutions through their terms much like how such abstract machines
function.

2.2 Explicit Substitutions for PCF

2.2.1 Extending PCF with Explicit Substitutions

Unlike the λ-calculus, when considering explicit substitutions for PCF one can simply sidestep
most of the issues. PCF is generally considered with a deterministic reduction strategy, so one
does not need to concern themselves with confluence, and preservation of strong normalisation
boils down to not diverging from standard PCF. To simplify working with explicit substitutions,
we can also (ab)use the type system to force our explicit substitutions to be closed. We shall call
PCF endowed with closed explicit substitutions EPCF. These explicit substitutions will in fact
be immutable, and as a consequence we need to use a non-standard definition of the set of free
variables of a term – intuitively, we take the standard definition, and adjust it so that free variables
inside explicit substitutions can no longer be captured. We will define the set first, and provide a
more detailed explanation later.
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Definition 2.2.1 (EPCF).

(1) The set ΛE of EPCF terms is defined by the grammar (for x ∈ Var):

L,M,N ::= x |MN | λx.M | fixM |M⟨N/x⟩ |
| 0 | predM | succM | ifz(L,M,N)

(ΛE)

(2) When considering a (possibly empty) list of explicit substitutions

σ = ⟨N1/x1⟩ · · · ⟨Nn/xn⟩

we assume that the variables x⃗ in σ are pairwise distinguished. Given σ as above, we let

dom(σ) = {x1, . . . , xn} be the domain of σ and write σ(xi) = Ni, for xi ∈ dom(σ). Note

that, unlike in previous systems, the order of the explicit substitutions does not matter.

(3) Given M ∈ ΛE, we write Mσ for M⟨N1/x1⟩ · · · ⟨Nn/xn⟩.

(4) The set ValE of EPCF values contains abstractions under substitutions and numerals, i.e.

ValE = {n | n ∈ N} ∪ {(λx.M)σ |M ∈ ΛE}

(5) Given M ∈ ΛE, we define TFV(M) ⊂ {0, 1} × Var the set of all free variables of M with

an additional “tracker” by induction on M . The tracker is necessary to differentiate free

variables which occur in EPCF substitutions, as these free variables cannot later be bound

by an abstraction or substitution. We define two functions exclude and forget:

exclude

({
(0, x1), . . . , (0, xn),

(1, y1), . . . , (1, ym)

})
= {(1, x1), . . . , (1, xn), (1, y1), . . . , (1, ym)}

forget

({
(0, x1), . . . , (0, xn),

(1, y1), . . . , (1, ym)

})
= {x1, . . . , xn, y1, . . . , ym}

TFV(x) := {(0, x)},
TFV(0) := ∅,

TFV(λx.P ) := TFV(P ) \ {(0, x)},
TFV(PQ) := TFV(P ) ∪ TFV(Q),

TFV(predP ) := TFV(P )

TFV(succP ) := TFV(P ),

TFV(ifz(P,Q1, Q2)) := TFV(P ) ∪ TFV(Q1) ∪ TFV(Q2)

TFV(fixP ) := TFV(P ),

TFV(M⟨N/x⟩) := (TFV(M) \ {(0, x)}) ∪ exclude(TFV(N)).

The set FV(M) is defined with respect to TFV(M).

FV(M) = forget(TFV(M))
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We define α-equivalence as usual, with the introduction of an additional case.

M⟨N/x⟩ =α M [y/x]⟨N/y⟩, where y is fresh forM and N

(6) Capture free substitution as defined for PCF is extended with an additional case for the

explicit substitution, namely:

(M⟨N/x⟩)[L/y] = (M [z/x][L/y])⟨N/z⟩, where y is fresh forM,N, and L

(7) An EPCF term M is called an EPCF program, written M ∈ PE, if it is closed (i.e.

FV(M) = ∅).

Notice that, in an EPCF program, all subterms of the form M⟨N/x⟩ must have N ∈ PE.
Clearly ΛPCF ⊊ ΛE, moreover all PCF programs belong to PE. The immutability of the explicit
substitutions causes the free variables found within an explicit substitution to essentially be “per-
manently” free – they cannot be captured by an external abstraction. The non-standard definition
of free variables arises from this unusual property. The immutability property is certainly not in-
tuitive, and the resulting definitions can only hold for weak head reduction strategies – reduction
under abstraction would otherwise lead to the “creation” of free variables. We will go into further
detail on this after defining the operational semantics of EPCF.

Example 2.2.2.
All PCF terms introduced previously are also EPCF terms. Some examples of EPCF programs

that are not PCF terms are x⟨1/x⟩ and λx.(ifz(x, y, z)⟨1/y⟩⟨2/z⟩).

We endow EPCF with a small-step call-by-name operational semantics capturing weak head
reduction.

Definition 2.2.3.

(1) The computation reduction→cr on EPCF terms is defined as:

(λx.M)σN →cr Mσ⟨N/x⟩, pred0 →cr 0,

ifz(0,M,N) →cr M, pred (succ (n)) →cr n,

ifz(n+ 1,M,N) →cr N, fix (M) →cr M(fix (M)).

(2) The percolation reduction→pr on EPCF terms is defined as (where σ is non-empty):

xσ →pr N, if σ(x) = N, 0σ →pr 0,

yσ →pr y, if y /∈ dom(σ), (MN)σ →pr MσNσ,

(pred (M))σ →pr pred (Mσ), (succ (M))σ →pr succ (Mσ),

(ifz(L,M,N))σ →pr ifz(Lσ,Mσ, Nσ), (fix (M))σ →pr fix (Mσ).
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(3) The reductions→cr and→pr are closed under head contexts, namely (for a ∈ {→cr,→pr}):

M →a M
′

MN →a M
′N

M →a M
′

predM →a predM
′

M →a M
′

ifz(M,N1, N2)→a ifz(M
′, N1, N2)

M →a M
′

succM →a succM
′

(4) The (one step) weak head (w.h.) reduction →wh is defined as the union of→cr and→pr.

(5) As it is customary, we denote by ↠wh the transitive-reflexive closure of→wh.

(6) We define↔wh as the symmetric, transitive and reflexive closure of→wh.

EPCF is a language primarily designed with EPCF programs in mind. Making explicit
substitutions immutable simplifies them significantly, while losing some of their flexibility. This
does result in some interactions which appear strange at first glance, such as λx.(y⟨x/y⟩) not
being equivalent to λx.x. An example using reduction would be the following:

(λx.(y⟨x/y⟩))0→wh y⟨x/y⟩⟨0/x⟩ →wh x

These interactions seem a bit less unexpected when one considers that

λx.(y⟨x/y⟩) =α λz.(y⟨x/y⟩)
(λx.(y⟨x/y⟩))0 =α (λz.(y⟨x/y⟩))0

Essentially, when given a term M⟨N/x⟩, the free variables of N are stuck in a sort of “limbo”.
Despite being free variables, they cannot be captured by any abstraction or substitution. Thus the
only valid reduction strategies are weak head reduction, as reducing under an abstraction would
instantly lead to loss of confluence and require a change in the definition of α-equivalence and
FV(M) (using→wrong for this hypothetical reduction strategy):

(λx.(λy.y)x)0→wrong (λx.y⟨y/x⟩)0→wh y⟨y/x⟩⟨0/x⟩ →wh x

(λx.(λy.y)x)0→wrong (λx.y⟨y/x⟩)0→wrong (λx.x)0→wh x⟨0/x⟩ →wh 0

(λx.(λy.y)x)0→wrong (λx.y⟨y/x⟩)0 =α (λz.y⟨y/x⟩)0→wrong (λz.x)0→wh x⟨0/z⟩ →wh x

We will later rely on the type system to forbid free variables in explicit substitutions.

This strange inherent property is why EPCF cannot claim to be a completely satisfactory
presentation of PCF with explicit substitutions – for a satisfactory system, one would expect to
turn to the Linear Substitution Calculus for inspiration. However, when one is only interested in
observational equivalence, EPCF is perfectly sufficient.

Lemma 2.2.4.
Given M,N ∈ ΛE such that M →wh N , FV(N) ⊆ FV(M).
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Proof. By induction on a derivation of M →wh N .

• M = (λx.M ′)σN ′: Let σ = ⟨L1/y1⟩ · · · ⟨Ln/yn⟩. Then we have

FV((λx.M ′)σN ′) = forget

[
(TFV(M ′) \ {(0, x), (0, y1), . . . , (0, yn)})
∪TFV(N ′) ∪ exclude(TFV(L1 · · ·Ln))

]

= forget

[
(TFV(M ′) \ {(0, x), (0, y1), . . . , (0, yn)})
∪exclude(TFV(N ′L1 · · ·Ln))

]
= FV((M ′)σ⟨N ′/x⟩) = FV(N)

• All other cases not closed under head contexts are trivial. As an example of a case where
FV(N) ⊊ FV(M), see (0)σ →wh 0.

• M =M1M2 andN = N1M2. We haveM1 →wh N1, so by IH we have FV(N1) ⊆ FV(M1)

and conclude as FV(N) = FV(N1) ∪ FV(M2) ⊆ FV(M1) ∪ FV(M2) = FV(M).

• All other head context cases are analogous.

Corollary 2.2.5.
The set PE is closed under→wh, hence under ↠wh as well.

Remark 2.2.6.

(1) The w.h. reduction is deterministic: N1 wh←M →wh N2 implies N1 = N2.

(2) Immutable explicit substitution, while valid for systems with a deterministic weak head re-

duction, would result in the loss of confluence for the λ-calculus – one needs only consider

((λx.x)y)⟨z/y⟩ for an example.

As a consequence, we can safely write |M ↠wh N | to denote the length n of the unique
reduction sequence M =M1 →wh M2 →wh · · · →wh Mn = N .

Lemma 2.2.7.
The following hold for EPCF terms which reduce to values.

1. If MN ↠wh V , then there exist M ′, σ such that M ↠wh (λx.M
′)σ;

2. If predM ↠wh V , then M ↠wh n, for some n ∈ N;

3. If succM ↠wh V , then M ↠wh n, for some n ∈ N;

4. If ifz(M,N1, N2) ↠wh V , then M ↠wh n, for some n ∈ N;
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Proof. We will prove the statement forMN ↠wh V by induction on the length k of the reduction.

Case k = 0: Vacuous, as MN is not a value.

Case k > 0: There are two subcases.

Subcase M ∈ {(λx.L)σ | L ∈ ΛE}: M has the form desired by the statement, so we are
done.

Subcase M /∈ {(λx.L)σ | L ∈ ΛE}: Then MN →wh M
′N and so M →wh M

′. We apply
the IH on M ′N ↠wh V and conclude.

All other statements are analogous.

Definition 2.2.8.
From →wh and mirroring the big-step reduction of PCF, we can derive a big-step reduction
⇓E ⊆ ΛEPCF × ValE relating an EPCF term with an EPCF value:

n ∈ N
(n)σ ⇓E n

(natE)
(λx.M)σ ⇓E (λx.M)σ

(λE)
σ(x) = N N ⇓E V

xσ ⇓E V
(varE)

Mσ ⇓E 0

(predM)σ ⇓E 0
(pr0

E)
Mσ ⇓E n+ 1

(predM)σ ⇓E n
(prE)

Mσ ⇓E n
(succM)σ ⇓E n+ 1

(scE)

Lσ ⇓E 0 Mσ ⇓E V1
(ifz(L,M,N))σ ⇓E V1

(ifz0
E)

Lσ ⇓E n+ 1 Nσ ⇓E V2
(ifz(L,M,N))σ ⇓E V2

(ifz>0
E)

Mσfix (Mσ) ⇓E V
(fixM)σ ⇓E V (fixE)

Mσ ⇓E (λx.M ′)σ
′

(M ′)σ
′⟨Nσ/x⟩ ⇓E V

(MN)σ ⇓E V
(βE

v )

Proposition 2.2.9.
Given an EPCF program M and an EPCF value V , we have

M ⇓E V ⇐⇒ M ↠wh V.

Proof. We prove both halves independently.

(⇒) We refer to the statement M ⇓E V ⇒M ↠wh V as IH and proceed by induction on the
height of a derivation of M ⇓E V :

• (n)σ ⇓E n: Base case, by percolation (n)σ ↠wh n holds.

• (λx.M)σ ⇓E (λx.M)σ: Base case, as above.

• xσ ⇓E V : As σ(x) = N , we have xσ →wh N . Conclude by applying the IH to N ⇓E V .
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• (predM)σ ⇓E 0: We have (predM)σ →wh pred (Mσ). By IH we get Mσ ↠c 0, so we
can conclude as pred0→wh 0.

• (predM)σ ⇓E n: proceed as above, using pred (succ (n))→wh n.

• (succM)σ ⇓E n+ 1: (succM)σ →wh succ (Mσ). By IH, Mσ ↠wh n, so we conclude,
remembering that n = succ n(0).

• (ifz(L,M,N))σ ⇓E V1: (ifz(L,M,N))σ →wh ifz(L
σ,Mσ, Nσ). By IH we haveLσ ↠wh 0,

so ifz(Lσ,Mσ, Nσ) ↠wh M
σ. Conclude, as by IH Mσ ↠wh V1.

• (ifz(L,M,N))σ ⇓E V2: Proceed as above.

• (fixM)σ ⇓E V : We have (fixM)σ →wh fix (Mσ)→wh M
σfix (Mσ). Conclude by IH.

• (MN)σ ⇓E V : We have (MN)σ →wh M
σNσ. By IH, we have Mσ ↠wh (λx.M ′)σ

′ . As
(λx.M ′)σ

′
Nσ →wh (M

′)σ
′⟨Nσ/x⟩, we conclude using the IH.

(⇐) We refer to the statement M ⇓E V ⇐M ↠wh V as IH and proceed by induction on the
length k = |M ↠wh V |.

Case k = 0. Then M = V . Apply either (natE) or (λE), depending on the shape of V .

Case k > 0. Then M →wh N ↠wh V , for some N ∈ ΛE with |N ↠wh V | = k − 1 < k. We
proceed by induction on the shape of M .

• Subcase M = x does not apply, as x does not reduce to a value.

• Subcases M = 0 and M = λx.M are already values and do not reduce.

• Subcase M =M1M2: Since M ↠wh V , we use Lemma 2.2.7 to obtain

M1M2 ↠wh (λx.M
′
1)
σM2 →wh M

′σ
1 [x/M2] ↠wh V

with M1 ↠wh (λx.M ′
1)
σ and M ′σ

1 [x/L] ↠wh V shorter than k. Using the IH, we obtain
M1 ⇓E (λx.M ′

1)
σ and M ′σ

1 [x/L] ⇓E V , so we conclude by (βE
v ).

• Subcase M = (M ′)σ. There are 9 (sub)subcases.

– M ′ = (λx.M ′′) is already a value, and does not reduce.

– M ′ = x and σ(x) = N : By IH we obtain N ⇓E V . We apply (varE) to infer xσ ⇓E V .

– M ′ = y, where y /∈ dom(σ), does not apply as it is neither a value nor does it reduce.

– M ′ = 0: We apply (natE) to infer (0)σ ⇓E 0.
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– M ′ = predL and N = pred (Lσ): (predL)σ →pr pred (Lσ), at which point our
reducing term is no longer at head position. We proceed in the same manner as in the
subcase where M = predM ′ to conclude that pred (Lσ) ⇓E n, from which we can
infer (predL)σ ⇓E n.

– Proceed as in the above case for the remaining four cases.

• Subcase M = predM ′. We use Lemma 2.2.7 to obtain

predM ′ ↠wh predn→wh

0 if n = 0,

n− 1 otherwise.

with |M ′ ↠wh n| shorter than k. By IH we get M ′ ⇓E n, so we conclude by applying either
(prE) or (pr0E).

• Subcase M = succM ′. Analogous to the above.

• Subcase M = ifz(M ′, N1, N2). We use Lemma 2.2.7 to obtain

ifz(L,N1, N2) ↠wh ifz(n,N1, N2)→wh

N1 if n = 0,

N2 otherwise.

with |M ′ ↠wh n| shorter than k. We then have the following, depending on the value of n:

– (n = 0) By IH we get M ′ ⇓E 0 and N1 ⇓E V1, so we conclude by applying (ifz0
E).

– (n > 0) By IH we get M ′ ⇓E n and N2 ⇓E V2, so we conclude by applying (ifz>0
E).

• Subcase M = fixM ′. Then N = M ′(fixM ′). By IH we obtain M(fixM) ⇓E V . We
apply (fixE) to infer fixM ⇓E V .

EPCF terms can be typed in a manner very similar to PCF terms.

Definition 2.2.10.
An EPCF typing judgement is, like in PCF, a triple of Γ ⊢M : α. The rules for typing an EPCF
term are as follows:

Γ ⊢ 0 : int
(0)

Γ ⊢M : α→ β Γ ⊢ N : α

Γ ⊢MN : β
(→E) Γ, x : α ⊢ x : α

(ax)

Γ ⊢M : int
Γ ⊢ succM : int

(+)
Γ, x : β ⊢M : α ⊢ N : β

Γ ⊢M⟨N/x⟩ : α (σ)
Γ, x : α ⊢M : β

Γ ⊢ λx.M : α→ β
(→I)

Γ ⊢M : int
Γ ⊢ predM : int

(−) Γ ⊢ L : int Γ ⊢M : α Γ ⊢ N : α
Γ ⊢ ifz(L,M,N) : α

(ifz) Γ ⊢M : α→ α
Γ ⊢ fixM : α

(Y)

The only change compared to PCF typing rules is the introduction of the (σ) rule. In this
rule, we rely on the fact that in a program of shape M⟨N/x⟩, the subterm N must be closed and
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remove the typing environment in ⊢ N : β. This is not standard when considering more general
notions of explicit substitutions, but simplifies our definitions later.

Remark 2.2.11.
As in PCF, all normal forms of typed EPCF programs are EPCF values.

Example 2.2.12.
The running examples can be typed without the use of the (σ) rule, as they are PCF terms. For

an EPCF exclusive term, as an example, we type x⟨succ 0/x⟩:

x : int ⊢ x : int
(ax) ⊢ 0 : int

(0)

⊢ succ 0 : int
(+)

⊢ x⟨succ 0/x⟩ : int (σ)

The following lemma summarizes the main properties of the type assignment system.

Lemma 2.2.13.
Let M ∈ ΛE, α, β ∈ T and Γ be a typing environment.

(1) (Syntax directedness) Every derivable judgement Γ ⊢ M : α admits a unique derivation,

up to the most general types chosen during applications of (→E) and (σ).

(2) (Weakening) Γ, x : β ⊢M : α with x /∈ FV(M) holds if and only if Γ ⊢M : α does. Thus,

an EPCF program M is typable if it is typable in the empty environment.

(3) (Subject reduction) For all M ∈ PE, ⊢M : α and M →wh M
′ entail ⊢M ′ : α.

Proof. (1) (Syntax directedness) Trivial proof by inspection – there exists only one case for
each shape of the term, (→E) and (σ) are the only cases where a new type variable is
introduced, and we force said type variable to be the most general one possible, so there is
only one choice.

(2) (Weakening) An easy proof by induction on the shape of M proves this in both directions
– the statement holds for Γ, x : β ⊢ 0 : int and Γ, x : β ⊢ y : α (as y ̸= x due to
x ̸∈ FV(M)), and all other cases are derived from those two. We will prove the case for
M = λx.M ′ as an example.

(⇐) We have Γ ⊢ λx.M ′ : β → α, from which we derive Γ, x : β ⊢ M ′ : α. By IH,
we have Γ, y : γ, x : β ⊢ M ′ : α such that y /∈ FV(M ′), from which we can infer
Γ, y : γ ⊢ λx.M ′ : β → α.

(⇒) We have Γ, y : γ ⊢ λx.M ′ : β → α such that y /∈ FV(M)′, from which we derive
Γ, y : γ, x : β ⊢ M ′ : α. By IH, we have Γ, x : β ⊢ M ′ : α, from which we can infer
Γ ⊢ λx.M ′ : β → α. Note that if y = x, then from Γ, x : γ ⊢ λx.M ′ : β → α we
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directly derive Γ, x : β ⊢ M ′ : α without the use of the IH and conclude in the same
manner.

(3) (Subject reduction) We will prove this by induction on a type derivation of ⊢M : α. There
are only two interesting cases, namely M = (λx.N1)

σN2 and M = M ′⟨N/x⟩, as all other
cases are identical to PCF where subject reduction holds.

• Case M = (λx.N1)
σN2: Then (λx.N1)

σN2 →wh N
σ
1 ⟨N2/x⟩. From the judgement

⊢ (λx.N1)
σN2 : α we obtain the judgement y1 : γ1, . . . , yn : γn, x : β ⊢ N1 : α

alongside the judgements ⊢ N2 : β, ⊢ σ(y1) : γ1, . . . ,⊢ σ(yn) : γn via a single
application of the (→E) rule followed by repeated applications of the (σ) rule. Using
all of these judgements we can then derive the judgement ⊢ N1⟨N2/x⟩ : α, through
n+ 1 applications of the (σ) rule.

• Case M =M ′⟨N/x⟩: There are 8 subcases.

– SubcaseM = xσ, where σ(x) = N : Using (σ) we obtain the judgement ⊢ N : α.

– Subcase M = yσ, where y /∈ dom(σ): Does not apply, as this term is not closed.

– Subcase M = 0σ: Trivial, as this has the type int and 0 has the type int.

– Subcase M = (predN)σ: We obtain y1 : γ1, . . . , yn : γn ⊢ N : int alongside
the judgements ⊢ σ(y1) : γ1, . . . ,⊢ σ(yn) : γn. We can reassemble these to form
the judgement ⊢ Nσ : int, from which we derive ⊢ pred (Nσ) : int.

– All other subcases proceed identically to (predN)σ.

2.2.2 PCF and EPCF

We now move on to proving that PCF and EPCF operational semantics coincide on closed terms
of type int. For this purpose, we first introduce the collapse M † of an EPCF term M defined by
performing all of the internal explicit substitutions. While we define the general case, note that
inconsistencies can occur when M is not a program.

Definition 2.2.14.

(1) Given an EPCF term M , define a PCF term M † ∈ ΛPCF as follows:

x† = x 0† = 0

(MN)† = M †N † (predM)† = predM †

(λx.M)† = λx.M † (succM)† = succM †

(fixM)† = fix (M †) (ifz(L,M,N))† = ifz(L†,M †, N †)

(M⟨N/x⟩)† = M †[N †/x]
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(2) The head size ⌊−⌋ : ΛE → N of an EPCF term is defined as follows:

⌊x⌋ = ⌊0⌋ = 1 ⌊M⟨N/x⟩⌋ = ⌊M⌋ · (⌊N⌋+ 1)

⌊MN⌋ = ⌊M⌋+ 1 ⌊λx.M⌋ = ⌊M⌋+ 1

⌊predM⌋ = ⌊M⌋+ 1 ⌊fixM⌋ = ⌊M⌋+ 1

⌊succM⌋ = ⌊M⌋+ 1 ⌊ifz(L,M,N)⌋ = ⌊L⌋+ 1

(3) The map ⌊−⌋ is extended to explicit substitutions σ = ⟨N1/x1⟩ · · · ⟨Nn/xn⟩, by setting

⌊σ⌋ =
n∏
i=1

(⌊Ni⌋+ 1).

Proposition 2.2.15.

(1) If M ∈ PE then M † is a PCF program.

(2) If P ∈ ΛPCF then P † = P .

Proof.

(1) A trivial proof by structural induction on M .

(2) A trivial proof by structural induction on P .

Proposition 2.2.16.

(1) Let M,N ∈ PE be such that M →cr N . Then M † →PCF N
†.

(2) Let M,N ∈ PE be such that M →pr N . Then M † = N †.

Proof.

(1) By induction on a derivation of M →cr N .

• Base cases.

– Case M = (λx.L1)
σL2 and N = Lσ1⟨L2/x⟩ where, say, σ = ⟨Y⃗ /y⃗ ⟩ with x /∈ y⃗.

Then, we have:

M † = (λx.L†
1)[Y⃗

†/y⃗ ]L†
2

= (λx.L†
1[Y⃗

†/y⃗ ])L†
2 →PCF L†

1[Y⃗
†/y⃗ ][L†

2/x]

= (Lσ1⟨L2/x⟩)†

= N †

– Case M = ifz(0, N, L). Then L† = ifz(0, N †, L†)→PCF N
†.

– Case M = ifz(n+ 1, L,N). Then L† = ifz(n+ 1, L†, N †)→PCF N
†.
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– All other base cases hold trivially.

• Case M = M1M2 and N = N1M2 with M1 →cr N1. By induction hypothesis, we
have M †

1 →PCF N
†
1 . Therefore M † =M †

1M
†
2 →PCF N

†
1M

†
2 = (N1M2)

† = N †.

• Case M = ifz(M1, L1, L2) and N = ifz(N1, L1, L2) with M1 →wh N1. By induction
hypothesis, we have M †

1 →PCF N
†
1 . Thus we obtain

M † = ifz(M †
1 , L

†
1, L

†
2)→PCF ifz(N †

1 , L
†
1, L

†
2) = (ifz(N1, L1, L2))

† = N †

• Case M = predM1 and N = predN1 with M1 →cr N1. By applying the IH, we
have M †

1 →PCF N
†
1 . Thus M † = pred (M †

1)→PCF pred (N †
1) = (predN1)

† = N †.

• Case M = succM1 and N = succN1 with M1 →cr N1. Analogous.

(2) By induction on a derivation of M →pr N .

• Base cases.

– Case M = (xσ1⟨N/x⟩)σ2 . Since N ∈ PE, we have FV(N) = ∅. Thus we arrive
at M † = x[N †/x] = N †.

– Case M = yσ, where y /∈ dom(σ) does not apply, as then M /∈ PE.

– All other base cases hold trivially.

• Case M = M1M2 and N = N1M2 with M1 →pr N1. By induction hypothesis, we
have M †

1 = N †
1 . Therefore M † =M †

1M
†
2 = N †

1M
†
2 = (N1M2)

† = N †.

• Case M = ifz(M1, L1, L2) and N = ifz(N1, L1, L2) with M1 →pr N1. By induction
hypothesis, we have M †

1 = N †
1 . Thus we have

M † = ifz(M †
1 , L

†
1, L

†
2) = ifz(N †

1 , L
†
1, L

†
2) = (ifz(N1, L1, L2))

† = N †

• Case M = predM1 and N = predN1 with M1 →pr N1. By induction hypothesis,
we have M †

1 = N †
1 . Thus M † = pred (M †

1) = pred (N †
1) = (predN1)

† = N †.

• Case M = succM1 and N = succN1 with M1 →pr N1. Analogous.

Corollary 2.2.17.
Let M ∈ PE be such that M ↠wh n. Then M † ↠PCF n.

Proof. By induction on the length of the reduction sequence ℓ = |M ↠wh n|.

Case ℓ = 0. Then M = n =M †, so this case follows by reflexivity of ↠PCF.

Case ℓ > 0. Then there exists N ∈ PE such that M →wh N ↠wh n where |N ↠wh n| < ℓ.
By Proposition 2.2.16, we have M † ↠PCF N

†. By induction hypothesis, we obtain N † ↠PCF n.
By transitivity, we conclude M † ↠PCF n.
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Lemma 2.2.18.
The percolation reduction→pr on EPCF terms is strongly normalising. More precisely:

M →pr N ⇒ ⌊M⌋ > ⌊N⌋

Proof. By induction on a derivation of M →pr N . In the following we consider a non-empty list
of explicit substitutions σ = ⟨N1/x1⟩ · · · ⟨Nn/xn⟩, i.e. n > 0.

It follows that ⌊σ⌋ > 1.

• Base cases.

– Case M = xσi and N = σ(xi) = Ni. Then ⌊xσi ⌋ = 1 · ⌊σ⌋ > ⌊Ni⌋ = ⌊N⌋.

– Case M = 0σ and N = 0. Then ⌊0σ⌋ = 1 · ⌊σ⌋ > 1 = ⌊0⌋.

– Case M = yσ, with y /∈ dom(σ), and N = y. Then ⌊yσ⌋ = 1 · ⌊σ⌋ > 1 = ⌊y⌋.

– Case M = (M1M2)
σ. Then we have

⌊(M1M2)
σ⌋ = (⌊M1⌋+ 1) · ⌊σ⌋ > ⌊M1⌋ · ⌊σ⌋+ 1 = ⌊Mσ

1M
σ
2 ⌋

– Case M = (predM ′)σ. Then we have
⌊(predM ′)σ⌋ = (⌊M ′⌋+ 1) · ⌊σ⌋ > ⌊M ′⌋ · ⌊σ⌋+ 1 = ⌊pred (M ′)σ⌋

– Case M = (succM ′)σ. Then we have
⌊(succM ′)σ⌋ = (⌊M ′⌋+ 1) · ⌊σ⌋ > ⌊M ′⌋ · ⌊σ⌋+ 1 = ⌊succ (M ′)σ⌋

– Case M = (ifz(M1,M2,M3))
σ. Then we have

⌊(ifz(M1,M2,M3))
σ⌋ = (⌊M1⌋+ 1) · ⌊σ⌋ > ⌊M1⌋ · ⌊σ⌋+ 1 = ⌊ifz(Mσ

1 ,M
σ
2 ,M

σ
3 )⌋

– Case M = (fixM ′)σ. Then we have
⌊(fixM ′)σ⌋ = (⌊M ′⌋+ 1) · ⌊σ⌋ > ⌊M ′⌋ · ⌊σ⌋+ 1 = ⌊fix (M ′)σ⌋

• Case M = M1M2 and N = N1M2 with M1 →pr N1. By induction hypothesis, we have
⌊M1⌋ > ⌊N1⌋. Therefore ⌊M1⌋+ 1 > ⌊N1⌋+ 1.

The remaining cases follow analogously from the induction hypothesis.

Proposition 2.2.19.
Let (Mn)n∈N be an infinite sequence of EPCF programs such that Mn→wh Mn+1. Then for all

i ∈ N there exists an index j > i such that Mi ↠wh Mj and M †
i →PCF M

†
j .

Proof. Consider an arbitrary Mi. As a consequence of Lemma 2.2.18, Mi ↠pr Mk for some
k ≥ i such that Mk is in →pr-normal form. Therefore Mk →wh Mk+1 must be a computation
step, i.e. Mk →cr Mk+1. By Proposition 2.2.16, M †

i = M †
k →PCF M

†
k+1. Conclude by taking

k = k + 1 > i.
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Theorem 2.2.20.
For a PCF program P having type int, we have:

P ↠PCF n ⇐⇒ P ↠wh n

Proof. (⇐) Assume P ↠wh n. Since P is a PCF program it also belongs to PE. By Corol-
lary 2.2.17 we have P † ↠PCF n. Conclude since, by Proposition 2.2.15((2)), P † = P .

(⇒) We prove the contrapositive: for all n ∈ N, P ̸↠PCF n⇐ P ̸↠wh n. From (⇐) we cannot
have P ↠wh m and P ↠PCF n for m ̸= n. By Subject Reduction (Lemma 2.2.13((3)))
and Remark 2.2.11, as numerals are the only EPCF programs having type int which do not
reduce, P must have an infinite→wh reduction path. By Proposition 2.2.19, P † must have
an infinite→PCF reduction path. Conclude since, by Proposition 2.2.15((2)), P † = P .





Chapter 3

Addressing Machines

3.1 Abstract Machines

An abstract machine is a theoretical model of how a computer system functions. Abstract ma-
chines differ from (abstract) programming languages in that they not only specify the program to
be executed, but also how it is executed step by step. Their “abstract” nature comes from omitting
many details of how the computation would proceed on actual hardware. Turing Machines are
the first and most fundamental abstract machines in literature [Tur37]. With them and physical
computers as inspiration, a large number of abstract machines have been presented in literature
[DHS00, FW87, Cre91, Lan07, Ler90, GMR89, Can01].

Abstract machines are typically used for one of two purposes:

• As a tool to study the computational complexity of algorithms, or make more general state-
ments about computability;

• To demonstrate how terms in a language could be evaluated – abstract machines used as an
intermediate step or source/target by a compiler or interpreter is an application of this use.

Along the second line of thought, one could separate abstract machines by which type of pro-
gramming language they are most suitable to emulate [DHS00]. We will discuss three examples
of abstract machines in literature which have a strong link to functional languages.

3.1.1 The SECD Machine

The SECD Machine was described by Peter J. Landin in “The Mechanical Evaluation of Expres-
sions” [Lan64]. The letters stand for Stack, Environment, Control, Dump. This machine was

37
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the first abstract machine designed to interpret λ-terms, and in doing so introduced a number of
concepts which we now take for granted when discussing functional languages – among others
closures, thunks, circular definition, partial evaluation, call-by-need, and the more general use of
the λ-calculus as a meta-language for writing programs [Dan05]. We will informally present the
SECD machine with a focus on its use of closures.

The SECD machine consists of four parts:

• A Stack of intermediate values;

• An Environment, which is a dictionary (set of pairings) from variable names to values;

• A Control list of expressions to be evaluated;

• A Dump stack, which contains triples of all three of the above and is used to “save” the
current state of the machine, to allow it to evaluate a different expression.

Landin specifies that the Environment and the Dump would be unnecessary if λ-expressions
(first class functions) were prohibited. The environment is necessary to define closures.

A closure is triple of (expression, Environment, bound variables) which represents a function.
When a λ-expression is to be constructed, a closure is created encapsulating the local variables of
the expression, the variables(s) bound by the λ-expression, and the instructions of the expression.
The Environment is necessary to allow the capture of local variable assignments.

When an argument is applied to a closure, the Dump stack comes into effect. The machine’s
current state is saved to Dump, minus the closure, argument, and application instruction. Then
the machine is free to calculate the outcome of the application, without any potential conflicts
occurring in the environment. Another issue that is solved via the use of the Dump is that the
value returned from the function may be an application, which then first needs to be evaluated
before it can be returned.

First class functions through the use of closures automatically result in permitting thunks,
partial evaluation, and call-by-need (the SECD machine is natively call-by-value). We also
mentioned circular definition – a self-referential definition, such as x = (1, x, x) which pro-
duces a triple of infinite depth (1, (1, (. . . ), (. . . )), (1, (. . . ), (. . . ))). The SECD machine allows
such definitions by rearranging the definition to first form an abstraction over the self-reference
λx.(1, x, x) and then taking the fixed point of the resulting abstraction.
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3.1.2 KAM

The Krivine Abstract Machine (KAM) was first described by Jean-Louis Krivine sometime in
the 1980’s, though a dedicated paper was not published until 2007 [Kri07].1 The purpose of the
machine, according to Krivine, was to execute programs obtained via the translation of mathe-
matical proofs into the λ-calculus through the Curry-Howard correspondence [How80]. Its more
general interest is that the Krivine Abstract Machine is a very simple machine which directly
executes untyped λ-terms with a call-by-name evaluation strategy. In doing so, it takes inspira-
tion from the SECD machine in that it also makes use of closures to handle first order functions.
The Krivine Abstract Machine uses the λ-calculus in de Bruijn notation [Bru72] as its instruction
language – we will skip over the details of this notation and give a description of the Krivine
Abstract Machine more informally.

The Krivine Abstract Machine consists of three parts:

• A term area, where an untyped λ-term to be evaluated is placed;

• A stack to collect arguments, referred to simply as the stack;

• A list of variable assignments, referred to simply as the environment.

Both the stack and the environment collect exclusively closures – here, a closure is a pairing of a
λ-term with an environment. The Krivine Abstract Machine has (vaguely) three execution rules,
one for each potential shape of a λ-term:

• If the term is an application MN , then the pairing of N with the current environment is
pushed to the stack and we continue evaluating M .

• If the term is an abstraction λx1.M , then we first check the length of continuous abstractions
in the term, i.e. M = λx2. . . . λxn.N . We then attempt to pop n arguments from the stack
and append these arguments to the current environment, before then evaluating N .

• If the term is a variable, then we identify which closure in our environment list corresponds
to said variable2 and set the current term and environment to those found within said clo-
sure.

Compared to the SECD machine, the Krivine Abstract Machine is a lot simpler. This is
partially due to its instruction language being a simpler, but also partially due to its “all objects
are closures” approach.

1As one can imagine, the difference in time between the first description and the first paper resulted in many
different presentations and slight variations on what is essentially the same machine. We will focus on the one
described in the paper.

2De Bruijn notation makes matching variables to environment closures easy, as variables are represented by
numbers and so the correct closure is identified via the index.
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3.1.3 MAM

The Milner Abstract Machine (MAM) is a far more recent machine than either of the two, in-
troduced by Accattoli et. al. in “Distilling Abstract Machines” [ABM14]. It is one of a number
of machines introduced in said paper as variants of existing machines, with the Milner Abstract
Machine as a variant of the Krivine Abstract Machine. These variants were introduced by in-
vestigating the link between abstract machines and the Linear Substitution Calculus – to quote
from the paper, “Traditionally, calculi with explicit substitutions simulate machines. The Linear
Substitution Calculus, instead, distills them.”. What is meant by distilling abstract machines is
the separation of the search for redexes from the action of substitution – essentially, the Linear
Substitution Calculus has the same relationship with common abstract machines as it does with
explicit substitutions.

The Milner Abstract Machine, then, is one of several abstract machines designed by taking
inspiration from the Linear Substitution Calculus. The Milner Abstract Machine takes a differ-
ent approach to first order functions than either of the previously named machines – rather than
closures, all variables are global variables. Variables which were previously local are then distin-
guished from one another via an explicit α-equivalence operation. The inspiration here is from
the “β-reduction at a distance” part of the Linear Substitution Calculus. Without going into the
details, one can roughly picture the functionality of the Milner Abstract Machine by replacing
the deletion portion of the variable reduction from the Krivine Abstract Machine with a renaming
step instead, and removing environments from closures.

3.2 Addressing Machines

Now that we have introduced some background on abstract machines, we can move on to the
machines of interest for this thesis. Addressing Machine were introduced by Della Penna et. al. in
“Addressing Machines as Models of λ-Calculus” [DIM22].3 Their purpose was the construction
of the first model of the λ-calculus based on abstract machines – though Turing machines and
the λ-calculus are equivalent, constructing a model of the λ-calculus using Turing machines is
extremely convoluted, and we know of no successful attempts.

Addressing Machines differ from other abstract machines in a number of ways. When one
discusses Addressing Machines, one is really referring to a “network” of Addressing Machines.
Most abstract machines can be thought of as a single object, which takes in an expression in a
language and then executes said expression. Addressing Machines, on the other hand, rely on a
“communication” process between them in order to perform most computations.

3A preliminary version of Addressing Machines appeared in Della Penna’s MSc thesis [Del97].
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Intuitively, an addressing machine consists of three parts:

• A fixed number of registers, which can each contain a single address;

• A list of (imperative) program instructions;

• An input tape, which is a list of addresses that functions as a queue.

Each addressing machine has an address. Addressing Machines can read addresses from their
tape, store addresses in registers, pass addresses as arguments to other AMs, and transfer the
computation to another Addressing Machine. The internal design takes inspiration from Turing
machines and register machines (such as the RASP machine [ER64]), while the communication
process takes inspiration from the behaviour of λ-terms. This communication process differs
significantly from that of systems focused on the analysis of communication, such as the π-
calculus [Mil99], as AMs are not designed for this purpose.

The machines discussed previously in Section 3.1 were chosen to highlight one particular
point – if one wishes to design an abstract machine with first class functions, then the method
which allows for said first class functions is the primary source of complexity for the machine.
Addressing Machines take a novel approach to this problem in that the problem is, in a way,
ignored. Addressing Machines themselves can represent functions in a way that reminds one of
closures, and their addresses can be manipulated as a data type. They take the opposite approach
to the Milner Abstract Machine – all variables are local, rather than global.

3.3 Extended Addressing Machines

We will be extending the Addressing Machines from [DIM22] with instructions for performing
arithmetic operations and conditional testing. These Addressing Machines will be called Ex-
tended Addressing Machine.

To enable the arithmetic operations, natural numbers are represented by particular EAMs
playing the role of numerals.

3.3.1 Main Definitions

We consider fixed a countably infinite set A of addresses together with a distinguished countable
subset X ⊂ A, such that A − X remains infinite.4 Intuitively, X is the set of addresses that

4Addressing Machines do not require the presence of a distinguished countable subset, it is only necessary for
EAMs to have machines representing the natural numbers.
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we reserve for the numerals, therefore hereafter we work under the hypothesis that X = N, an
assumption that we can make without loss of generality.

Definition 3.3.1 (Addresses and Registers).

(1) Let ∅ /∈ A be a “null” constant representing an uninitialised register. Set A∅ = A ∪ {∅}.

(2) An A-valued tape T is a finite ordered list of addresses T = [a1, . . . , an] with ai ∈ A for all

i (1 ≤ i ≤ n). When A is clear from the context, we simply call T a tape. We denote by TA
the set of all A-valued tapes.

(3) Let a ∈ A and T, T ′ ∈ TA. We denote by a :: T the tape having a as first element and T as

tail. We write T @T ′ for the concatenation of T and T ′, which is an A-valued tape itself.

(4) Given an index i ≥ 0, an A∅-valued register Ri is a memory-cell capable of storing either

∅ or an address a ∈ A. We write !Ri to represent the value stored in the register Ri. (The

notation !Ri is borrowed from ML, where ! represents an explicit dereferencing operator.)

(5) Given A∅-valued registers R0, . . . , Rr for r ≥ 0, an address a ∈ A and an index i ≥ 0,

we write R⃗[Ri := a] for the list of registers R⃗ where the value of Ri has been updated by

setting !Ri = a. Notice that, whenever i > r, we assume that the contents of R⃗ remains

unchanged, i.e. R⃗[Ri := a] = R⃗.

Intuitively, the contents of the registers R0, . . . , Rr constitutes the state of a machine, while
the tape correspond to the list of its inputs. Every address refers to a particular machine in a
particular, fixed state. One could understand an address as the encoding of a machine. When
reducing a machine, its address thus changes, with the previous address still referring to the
machine in its previous state.

Addressing Machines are endowed with three instructions (i, j, k, l range over indices of reg-
isters):

(1) Load i : If the tape is non-empty, ‘pops’ the address a from the input tape a :: T and stores
a in the register Ri. If Ri does not exist then a is discarded. If the tape is empty then the
machine halts its execution.

(2) k � App(i, j) : Let a1 and a2 be the addresses stored in Ri and Rj respectively. This
instruction applies a1 to a2 by extending the tape of the machine of address a1 with the
address a2. The address of the resulting machine (it has an address distinct from a1, as it is
no longer the same machine) is then stored in Rk. The address produced by the application
is not calculated internally, but rather obtained calling an external application map denoted
a1 · a2.
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(3) Call i : The computation is transferred to the machine having as address the value stored
in Ri, whose tape is extended with the remainder of the current machine’s tape.

As a general principle, writing on a non-existing register does not cause issues as the value is
simply discarded—this is in fact the way one can erase an argument. Attempts to read an unini-
tialized register can be avoided statically (see Lemma 3.3.4). Notice that, as the execution of an
instruction changes the state of a machine, the execution of an instruction will also change the
address which points to a machine.

To obtain the instruction set for EAMs, we enrich the above set of instructions with arithmetic
operations mimicking the ones present in PCF:

(4) l � Test(i, j, k): implements the “is zero?” test on !Ri. Assuming that the value of Ri is
an address n ∈ N, the instruction stores in Rl the value of Rj or Rk, depending on whether
n = 0.

(5) j � Pred(i): if !Ri ∈ N, the value of Rj becomes !Ri ⊖ 1 = max(!Ri − 1, 0).

(6) j � Succ(i): if !Ri ∈ N, then the value of Rj becomes !Ri + 1.

Notice that the instructions above need Ri to contain a natural number to perform the correspond-
ing operation. However, they are also supposed to work on addresses of machines that compute
a numeral. For this reason, the machine whose address is stored in Ri must first be executed,
and only if the computation terminates with a numeral is the arithmetic operation performed. If
the computation terminates in an address not representing a numeral, then the machine halts. We
will see that these terminations can be avoided using a type inference algorithm (see Proposi-
tion 3.3.21, below).

Definition 3.3.2 (Programs).

(1) A program P is a finite list of instructions generated by the following grammar, where ε

represents the empty string and i, j, k, l are indices of registers:

P ::= Load i; P | A

A ::= k � App(i, j); A | l � Test(i, j, k); A | j � Pred(i); A | j � Succ(i); A | C

C ::= Call i | ε

Thus, a program starts with a list of Load’s, continues with a list of App, Test, Pred, Succ,

and possibly ends with a Call. Each of these lists may be empty, in particular the empty

program ε can be generated.

(2) In a program, we write Load (i1, . . . , in) as an abbreviation for the instruction sequence

Load i1; · · · ; Load in. For a given instruction ins, we write insa for the repetition of ins

a-many times.
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(3) Let P be a program, r ≥ 0, and I ⊆ {0, . . . , r − 1} be a set of indices corresponding to

the indices of initialized registers. Define the relation I |=r P , whose intent is to specify

that P does not read uninitialized registers, as the least relation closed under the rules:

I |=r ε
i ∈ I

I |=r Call i

I ∪ {j} |=r A i ∈ I j < r

I |=r j � Pred(i); A

I ∪ {i} |=r P i < r

I |=r Load i; P

I |=r P i ≥ r

I |=r Load i; P

I ∪ {j} |=r A i ∈ I j < r

I |=r j � Succ(i); A

I ∪ {k} |=r A i, j ∈ I k < r

I |=r k � App(i, j); A

I ∪ {l} |=r A i, j, k ∈ I l < r

I |=r l � Test(i, j, k); A

(4) A program P is valid with respect to R0, . . . , Rr−1 ifR |=r P holds for

R = {i | Ri ̸= ∅ ∧ 0 ≤ i < r}

Example 3.3.3.
For each of these programs, we specify its validity with respect to R0 = 7, R1 = a,R2 = ∅ (i.e.,

r = 3).

P1 = 2 � Pred(0); Call 2 (valid)

P2 = Load (2, 8); 0 � Test(0, 1, 2); Call 0 (valid, discarding an argument)

P3 = Load (0, 2, 8); Call 8 (calling the non-existent register R8, thus not valid)

P4 = 0 � Succ(2); Call 1 (reading from the uninitialized register R2, thus not valid)

P5 = 8 � Pred(0); Call 0 (storing in non-existent register R8, thus not valid)

Lemma 3.3.4 (Program Validity).
Given A∅-valued registers R⃗ and a program P it is decidable whether P is valid w.r.t. R⃗.

Proof from [DIM22]. Decidability follows from the syntax directedness of Definition 3.3.2((3)),
and the preservation of the invariant I ⊆ {0, . . . , r − 1}, since I is only extended with k < r.
The grammar in Definition 3.3.2(1) is right-linear, so it is decidable whether P is a production.
Also, r ∈ N and therefore the set R in Definition 3.3.2(4) is finite. Since P is also finite, the
set R remains finite during the execution of R |=r P . Decidability follows from these proper-
ties, together with the fact that the first instruction of P uniquely determines which rule from
Definition 3.3.2(3) should be applied (and these rules are exhaustive).

Hereafter, we will focus on EAMs having valid programs.

Definition 3.3.5 (Extended Addressing Machines).

(1) An extended addressing machine (Extended Addressing Machine) M over A (having r + 1

registers) is given by a tuple M = ⟨R0, . . . , Rr, P, T ⟩ where
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• R⃗ are A-valued registers,

• P is a program valid w.r.t. R⃗, and

• T ∈ TA is an (input) tape.

(2) We denote byMA the set of all Extended Addressing Machines over A.

(3) Given an Extended Addressing Machine M, we write M.R⃗ for the list of its registers, M.Ri

for its i-th register, M.P for the associated program and M.T for its input tape.

(4) Given M ∈MA and T ′ ∈ TA, we write M@T ′ for the machine

⟨M.R⃗,M.P,M.T @T ′ ⟩.

Definition 3.3.6 (Special Machines).

(1) For n ∈ N, the n-th numeral machine is defined as n = ⟨R0, ε, []⟩, with !R0 = n.

(2) For every a ∈ A, define the following extended addressing machine:

Ya = ⟨R0 = ∅, R1 = ∅, Load (0, 1); 0 � App(0, 1); 1 � App(1, 0); Call 1, [a]⟩.

We now enter into the details of the addressing mechanism which constitutes the core of this
formalism.

Definition 3.3.7 (Address Table Map).
Recall that N stands for an infinite subset of A, here identified with the set of natural numbers,

and that Ya has been introduced in Definition 3.3.6(2).

(1) SinceMA is countable, we can fix a bijective function # : MA → A which satisfies the

following conditions:

(a) (Numerals) ∀n ∈ N .#n = n, where n is the n-th numeral machine;

(b) (Fixed point machine) ∃a ∈ A− N .#(Ya) = a.

We call this function an address table map

(2) We write Y for the Extended Addressing Machine Ya satisfying #(Ya) = a (which must

exist by 3.3.7.(1)(1)b).

(3) Given M ∈ MA, we call the element #M the address of the EAM M. Conversely, the

Extended Addressing Machine having as address a ∈ A is denoted by #−1(a). In other

words, #−1(a) = M ⇐⇒ #M = a.
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(4) Define the application map (·) : A× A→ A by setting

a · b = #(#−1(a)@ [b] ).

I.e., the application of a to b is the unique address c of the Extended Addressing Machine

obtained by appending b at the end of the input tape of the Extended Addressing Machine

#−1(a).

In general, there are uncountably many possible address table maps of arbitrary computa-
tional complexity. A natural example of such maps is given by Gödelization, which can be
performed effectively. The framework is however more general and allows to consider non-
recursively enumeral sets of addresses like the complement Kc of the halting set

K = {(i, x) | the program i terminates when run on input x}

and a non-computable function #:MKc → Kc as a map.

A practical application of alternate address table maps would be the encoding of some addi-
tional quantitative information about Addressing Machines, such as a cost value for calling the
machine.

In an implementation of EAMs the address table map should be computable—one can choose
a fresh address from A whenever a new machine is constructed, save the correspondence in some
table and retrieve it in constant time.

Notation 3.3.8 (Numbers).
A quick overview of the different numeric notations:

• n is used to refer to the number n ∈ N ⊂ A

• n is used refer to the PCF term succ n(0). Note that 0 = 0.

• n is used to refer to the corresponding numeral machine. Note that #n = n, and #−1(n) =

n

We will use both #−1(n) and n, depending on whether there are clarity issues with writing n. For

example, we tend to write n to refer to the n-numeral machine, but #−1(n + 1) for the (n + 1)-

numeral machine.

Remark 3.3.9 (Address Table Map Peculiarities).

(1) MA is countably infinite.

(2) SinceMA and A are both countable, the existence of 2ℵ0 address table maps follows from

cardinality reasons. This includes effective maps as well as non-computable ones.
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(3) Depending on the chosen address table map, there might exist infinite (static) chains of

EAMs, e.g., EAMs (Mn)n∈N satisfying Mn = ⟨R0, ε, []⟩ with !R0 = #Mn+1.

(4) Depending on the chosen address table map, there could exist EAMs with varying degrees

of circular references – for EAMs we guarantee the presence of the numeral machines and

the fixed point machine which have access to their own address. There could be more,

but there could also be “loops” of references of various sizes, i.e. M having access to the

address of N while simultaneously N having access to the address of M.

(5) Regardless of the chosen address table map, all finite “trees” of machines are defined.

The results presented in this work are independent from the choice of the address table map,
subject to the constraints mentioned previously.

Example 3.3.10.
The following are examples of EAMs (whose registers are assumed uninitialized where unspeci-

fied, i.e. R⃗ = ∅⃗).

(1) I := ⟨R0 = ∅, Load 0; Call 0, []⟩,

(2) For some a ∈ A, ⟨R0 = a,R1 = ∅, 0 � App(1, 0); Call 1, []⟩

(3) Succ1 := ⟨R0, Load 0; 0 � Succ(0); Call 0, []⟩.

(4) Succ2 := ⟨R0, R1, Load 0; Load 1; 1 � App(0, 1); 1 � App(0, 1); Call 1, [#Succ1]⟩.

(5) Add_aux := ⟨R⃗, P, []⟩ with Add_aux.r = 5 and P = Load (0, 1, 2); 3 � Pred(1); 4 �
Succ(2); 0 � App(0, 3); 0 � App(0, 4); 0 � Test(1, 2, 0); Call 0.
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3.3.2 Operational semantics

The operational semantics of Extended Addressing Machines is given through a small-step rewrit-
ing system. The reduction strategy is deterministic, since the only applicable rule at every step is
univocally determined by the first instruction of the internal program, the contents of the registers
and the head of the tape.

Definition 3.3.11 (Reduction of EAMs).

(1) Define a reduction strategy →c on EAMs, representing one step of computation, as the

least relation→c ⊆MA ×MA closed under the following rules:

Unconditional rewriting rules

⟨R⃗, Call i, T ⟩ →c #−1(!Ri)@T

⟨R⃗, Load i;P, a :: T ⟩ →c ⟨R⃗[Ri := a], P, T ⟩
⟨R⃗, k � App(i, j);P, T ⟩ →c ⟨R⃗[Rk := !Ri · !Rj], P, T ⟩

Under the assumption that !Ri ∈ N.

⟨R⃗, j � Pred(i);P, T ⟩ →c ⟨R⃗[Rj := !Ri ⊖ 1], P, T ⟩,
where n⊖ 1 := max{n− 1, 0}

⟨R⃗, j � Succ(i);P, T ⟩ →c ⟨R⃗[Rj := !Ri + 1], P, T ⟩

⟨R⃗, l � Test(i, j, k);P, T ⟩ →c

⟨R⃗[Rl := !Rj], P, T ⟩, if !Ri = 0,

⟨R⃗[Rl := !Rk], P, T ⟩, otherwise.

Under the assumption that #−1(!Ri)→c M.

⟨R⃗, j � Pred(i);P, T ⟩ →c ⟨R⃗[Ri := #M], j � Pred(i);P, T ⟩
⟨R⃗, j � Succ(i);P, T ⟩ →c ⟨R⃗[Ri := #M], j � Succ(i);P, T ⟩

⟨R⃗, l � Test(i, j, k);P, T ⟩ →c ⟨R⃗[Ri := #M], l � Test(i, j, k);P, T ⟩
(2) The multistep reduction ↠c is defined as the transitive-reflexive closure of→c.

(3) The conversion relation ↔c is the transitive-reflexive-symmetric closure of→c.

(4) Given M,N,M ↠c N, we write |M ↠c N| for the set of lengths of reduction paths from

M to N. We write |M ↠c N| < |M′ ↠c N′| to mean that there exists i ∈ |M ↠c N| and

j ∈ |M′ ↠c N
′| such that i > j.

(5) For n ≥ 0, we write M ↠n
c N whenever M ↠c N and n ∈ |M ↠c N| hold.

As a matter of terminology, we say that an Extended Addressing Machine M:

• is stuck if its program has shape M.P = Load i;P but M.T = [];
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• is in final state if M is not in an error state, but cannot reduce further, i.e. M ̸→c;

• is in an error state if its program has the shape M.P = ins;P ′ for some particular instruc-
tion ins ∈ {j � Pred(i), j � Succ(i), l � Test(i, j, k)}, but !Ri /∈ N and #−1(!Ri)

cannot reduce further.

• reaches a final state (resp. raises an error) if M ↠c M′ for some M′ in final (resp. error)
state; M does not terminate, otherwise.

Given an Extended Addressing Machine M, the first instruction of its program, together with
the contents of its registers and tape, univocally determine which rule is applicable (if any). When
M tries to perform an arithmetic operation in one of its registers, say Ri = a, it needs to wait until
the Extended Addressing Machine #−1(a) has been reduced to a final state. If it does then the
success of the operation depends on whether the result is a numeral, otherwise M is in an error
state.

Allowing some machines to reduce inside the registers of other machines seems a bit strange
at a glance. It is a technical choice, albeit one that is not too surprising – this functionality bears
some similarities to the Dump of the SECD machine. Some limited method of “returning” from
a function call appears to be a necessity for arithmetic and branching to behave well.

Lemma 3.3.12 (Reduction Consistency).

(1) The strategy→c is deterministic: N c← M→cN
′ implies N = N′.

(2) The reduction→c is Church-Rosser: M↔c N⇔ ∃Z ∈MA .M ↠c Z c↞ N.

(3) If M ↠c M
′, then M@ [#N] ↠c M

′@ [#N] .

(4) If M is in a final state and is not stuck, then M.P = ϵ.

Proof.

(1) Trivial: There is at most one applicable reduction rule for each state.

(2) Trivial as a consequence of (1).

(3) By induction on the length of M ↠c M
′. We will use k as a variable referring to the number

of steps in the reduction.

Case k = 0 is trivial.

Case k > 0: Then M→c M1 ↠c M
′ for some M1. We will be showing that

M@ [#N] →c M1@ [#N] ↠c M
′ @ [#N] by cases on the first instruction of M.P .

Subcase M.P = Call i. We have M1 = #−1(!M.Ri)@M.T . From the rewriting rules we
obtain

〈
M.R⃗, Call i,M.T @ [#N]

〉
→c #

−1(!M.Ri)@M.T @ [#N] and conclude.
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Subcase M.P = Load i;P ′. As M is not in a final state, M.T = a :: T ′ for some a ∈ A
and T ′ ∈ TA. We have M1 =

〈
M.R⃗[Ri := a], P ′, T ′

〉
. From the rewriting rules we obtain〈

M.R⃗, Load i;P ′, a :: T ′ @ [#N]
〉
→c

〈
M.R⃗[Ri := a], P ′, T ′ @ [#N]

〉
and conclude.

All other subcases are trivial as they do not affect the tape.

(4) An easy proof by contradiction on the first instruction of M.P , relying on program validity.

Corollary 3.3.13 (Multiple Reduction Lengths).
Given M,N such that M ↠c N, |M ↠c N| contains more than one element if and only if there is

a reduction path N →c N1 →c N2 →c · · · →c N, i.e. the machine loops. When this is the case,

|M ↠c N| is infinite.

Proof. This is a direct consequence of Lemma 3.3.12(1).

Note that if we only have singletons then |M ↠c N| contains a single natural number, so <

between singleton sets is a strict total order.

Example 3.3.14.
See Example 3.3.10 for the definition of I, Succ1, Succ2, Add_aux.

(1) For some a ∈ A, I@ [a] →c ⟨R0 = a, Call 0, []⟩ →c #
−1(a)

(2) Succ1@ [0] =
〈
R0, Load 0; 0 � Succ(0); Call 0, [0]

〉
→c

〈
R0 = 0, 0 � Succ(0); Call 0, []

〉
→c

〈
R0 = 1, Call 0, []

〉
→c #−1(1)

(3) Succ2@ [1] =

〈
R0, R1, Load 0; Load 1; 1 � App(0, 1);

1 � App(0, 1); Call 1, [#Succ1, 1]

〉

→c

〈
R0 = #Succ1, R1, Load 1; 1 � App(0, 1);

1 � App(0, 1); Call 1, [1]

〉
→c

〈
R0 = #Succ1, R1 = 1, 1 � App(0, 1); 1 � App(0, 1); Call 1, []

〉
→c

〈
R0 = #Succ1, R1 = #Succ1 · 1, 1 � App(0, 1); Call 1, []

〉
→c

〈
R0 = #Succ1, R1 = #Succ1 · (#Succ1 · 1), Call 1, []

〉
→c

〈
R0, Load 0; 0 � Succ(0); Call 0, [#Succ1 · 1]

〉
→c

〈
R0 = #Succ1 · 1, 0 � Succ(0); Call 0, []

〉
↠c

〈
R0 = 2, 0 � Succ(0); Call 0, []

〉
→c

〈
R0 = 3, Call 0, []

〉
→c #−1(3)
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(4) Define Add = Y@ [#Add_aux] , an Extended Addressing Machine performing the addition.

We show:

Add@ [1, 3] →c

〈
(R0 = #Y, R1 = #Add_aux), 0 � App(0, 1);

1 � App(1, 0); Call 1, [1, 3]

〉

↠c

〈
R⃗, Load (0, 1, 2); 3 � Pred(1); 4 � Succ(2); 0 � App(0, 3);

0 � App(0, 4); 0 � Test(1, 2, 0); Call 0, [#Add, 1, 3]

〉

↠c

〈
R0 = #Add, R1 = 1, R2 = 3, R3, R4, 3 � Pred(1); 4 � Succ(2);

0 � App(0, 3); 0 � App(0, 4); 0 � Test(1, 2, 0); Call 0, []

〉

↠c

〈
R0 = #(Add@ [0, 4] ), R1 = 1, R2 = 3,

R3 = 0, R4 = 4, 0 � Test(1, 2, 0); Call 0, []

〉

↠c

〈
R0 = #(Add@ [0, 5] ), R1 = 0, R2 = 4,

R3 = 0, R4 = 5, 0 � Test(1, 2, 0); Call 0, []

〉
↠c #

−1(4)

3.3.3 Typing Extended Addressing Machines

We now show that certain EAMs can be typed, and that typable machines do not raise an error.
EAMs share the same set of types T as PCF and EPCF.

Definition 3.3.15 (Extended Addressing Machine Typing Contexts).

(1) A typing context ∆ is a finite set of associations between indices and types, represented as

a list i1 : α1, . . . , ir : αr. The indices i1, . . . , ir are not necessarily consecutive.

(2) We denote by ∆[i : α] the typing context ∆ where the type associated with i becomes α.

Note that dom(∆[i : α]) = dom(∆)∪{i}. If i is not present in ∆, then ∆[i : α] = ∆, i : α.

Intuitively, registers act as “internal free variables” for an Addressing Machine. Extended
Addressing Machine typing contexts are used to assign types to registers based on the addresses
stored in them. The types assigned to registers must be updated during the analysis of a machine’s
program, to reflect changes which may occur during the execution of the machine.

Definition 3.3.16 (Extended Addressing Machine Typing Judgements).
Let ∆ be a typing environment, M ∈ MA, r ≥ 0, R0, . . . , Rr be registers, P be a program,

T ∈ TA and α ∈ T. We define the typing judgements

M : α ∆ ⊩r (P, T ) : α R0, . . . , Rr |= ∆

by mutual induction as the least relations closed under the rules in Figure 3.1, where the rules

(nat) and (fix) are given priority.
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n : int
(nat)

Y : (α→ α)→ α
(fix)

R0, . . . , Rr |= ∆ ∆ ⊩r (P, T ) : α

⟨R0, . . . , Rr, P, T ⟩ : α
(R⃗)

R0, . . . , Rr−1 |= ∆ !Rr = ∅
R0, . . . , Rr |= ∆

(R∅)
R0, . . . , Rr−1 |= ∆ #−1(!Rr) : α

R0, . . . , Rr |= ∆, r : α
(RT)

∆[i : β] ⊩r (P, []) : α

∆ ⊩r (Load i;P, []) : β → α
(load∅)

∆[i : β] ⊩r (P, T ) : α #−1(a) : β

∆ ⊩r (Load i;P, a :: T ) : α
(loadT)

(∆, i : int)[j : int] ⊩r (P, T ) : α

∆, i : int ⊩r (j � Pred(i);P, T ) : α
(pred)

(∆, i : int)[j : int] ⊩r (P, T ) : α

∆, i : int ⊩r (j � Succ(i);P, T ) : α
(succ)

(∆, i : int, j : β, k : β)[l : β] ⊩r (P, T ) : α

∆, i : int, j : β, k : β ⊩r (l � Test(i, j, k);P, T ) : α
(test)

(∆, i : α→ β, j : α)[k : β] ⊩r (P, T ) : δ

∆, i : α→ β, j : α ⊩r (k � App(i, j);P, T ) : δ
(app)

M1 : α1 · · · Mn : αn
∆, i : α1 → · · · → αn → α ⊩r (Call i, [#M1, . . . ,#Mn]) : α

(call)

Figure 3.1 EPCF typing judgement rules

A machine M is called typable if the judgement M : α is derivable for some α ∈ T.

The process of typing an Extended Addressing Machine is best thought of as an algorithm
where one reasons bottom-up. To give a machine M a type α, one needs to derive the judgement
M : α, which proceeds roughly as follows:

• The machines n and Y are recognizable from their addresses, and one immediately applies
rule (nat) or (fix) respectively when encountered.

• For all other cases:

– One begins by giving all the registers a type using the rule (R⃗), applying (RT) or (R∅)

for each register. During the process of doing so, one recursively types all machines
whose addresses are present in the registers.

– Once all registers have been given an initial type, one needs to derive a judgement
of the form i1 : βi1 , . . . , in : βin ⊩r (P, T ) : α, where P and T are the program
and the input tape of the original machine respectively. This is done by verifying the
coherence of the instructions in the program with the types of the registers and of the
values in the input tape.

Remark 3.3.17.

(1) Extended Addressing Machine typing judgements are deterministic only with the additional

priority given to the (nat) and (fix) rules.

(2) With the additional priority given to the (nat) and (fix) rules, each machine has a unique

type derivation for each type that it is typable with.
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(3) Aside from the numerals, all typable machines have their program ending with a Call i.

(4) Typable machines in a final state are numerals or stuck.

(5) For all M ∈MA and α ∈ T, we have M : α if and only if there exists a ∈ A such that both

#−1(a) : α and #M = a hold.

(6) If #M /∈ N ∪ {#Y}, then M : α ⇐⇒ ∃∆ . [∆ |= M.R⃗ ∧ ∆ ⊩r (M.P,M.T ) : α]

(7) The superscript r ≥ 0 in ⊩r keeps track of the initial amount of registers, i.e. i⃗ ∈ {0, . . . , r}.

(8) The algorithm does not differentiate between addresses in the tape which are stored in

registers and those which are discarded – the machines found at addresses whose only fate

is to be discarded must still be typable for the overall machine to be typable.

(9) While in many typing systems terms which are not typable typically feature unusual be-

haviour, there exist a number of untypable EAMs that are well behaved. In particular, the

empty machine
〈
R0, ϵ, []

〉
is not typable.

For a machine to be typable one needs to be able to construct a finite typing derivation tree,
thus by default any machines which feature circular references or infinite chains as mentioned in
Remark 3.3.9 are not typable. Thus the (nat) and (fix) rules are necessary to allow those machines
to be typable. It is necessary for the (nat) to have priority to allow the numerals to be typable
as their program does not have any instructions. The (fix) rule having a higher priority does not
modify the set of typable machines, but guarantees the syntax-directedness of the system.

As a final consideration, notice that the rules presented in Definition 3.3.16 can only be con-
sidered as an algorithm when the address table map is effectively given. Otherwise, the algorithm
would depend on an oracle deciding a = #M.

Example 3.3.18.
The following are some examples of derivable typing judgements.

(1) I can be typed with α→ α for any α ∈ T:

!R0 = ∅
R0 |=

0 : int ⊩1 ⟨Call 0, []⟩ : α
⊩1 ⟨Load 0; Call 0, []⟩ : α→ α

⟨R0 = ∅, Load 0; Call 0, []⟩ : α→ α

(2) Succ1 can be typed with int→ int:

!R0 = ∅
R0 |=

0 : int ⊩1 ⟨Call 0, []⟩ : int
0 : int ⊩1 ⟨0 � Succ(0); Call 0, []⟩ : int

⊩1 ⟨Load 0; 0 � Succ(0); Call 0, []⟩ : int→ int

⟨R0 = ∅, Load 0; 0 � Succ(0); Call 0, []⟩ : int→ int
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(3) Succ2 : int→ int and Add : int→ int→ int are also derivable typing judgements, but the

full trees are omitted due to being unreasonably large.

Lemma 3.3.19 (Typing Decidability).
Let M ∈MA, α ∈ T. Assume that # : M→ A is effectively given.

(1) If M = ⟨R⃗ = ∅, P, []⟩ then the typing algorithm is capable of deciding whether M : α

holds, for some α ∈ T.

(2) In general, the typing algorithm semi-decides whether M : α holds.

Proof.

(1) By the rules (R⃗) and (R∅), M : α holds if and only if ⊩r (M.P, []) : α does. We prove the
more general statement “Given a typing environment ∆, a program P , r ∈ N, α ∈ T, the
typing algorithm is capable of deciding whether ∆ ⊩r (P, []) : α holds.”

We will proceed by induction on the length of P , using k as a meta-variable representing the
length. We will collect a list of constraintsC on the types while performing the induction, to
conclude with at the end (We will reuse the list notation used for the tape when discussing
C). We also introduce an infinite set of type variables VarT. We will begin by setting
C := [(α, δ)], where δ is fresh, and then commence the induction.

Case k = 0: There is no case for the empty program, hence ∆ ⊩r (ϵ, []) : α does not hold.

Case k = 1: There is only one subcase of note: P = Call i. Let β be a fresh type variable.
Let ∆ = ∆′, i : β. As the tape is empty, and we know that ∆′, i : δ ⊩r (Call i, []) : δ holds
using rule (call), we set C := (β, δ) :: C and conclude that any type substitution which
respects the constraints found in C produces a correct typing. For all other subcases we
immediately conclude that ∆ ⊩r (P, []) : α does not hold by Remark 3.3.17(3).

Case k > 1: We have five subcases:

• P = Load i;P ′: Let β, γ be fresh type variables. We apply the induction hypothesis
to identify whether or not ∆[i : β] ⊩r (P ′, []) : γ holds and set C := (β → γ, δ) :: C.
By (load∅), ∆ ⊩r (Load i;P ′, []) : β → γ, so we conclude that any type substitution
which respects the constraints found in C produces a correct typing.

• P =k � App(i, j);P ′: Let β1, β2, β3 be fresh type variables. Let ∆=∆′, i : β1, j : β2.
We check whether (∆′, i : β2 → β3, j : β2)[k : β3] ⊩r (P ′, []) : δ holds by applying
the IH, and we set C = (β1, β2 → β3) :: C. Then, by (app), any type substitution
which respects the constraints found in C produces a correct typing.

• P = j � Pred(i);P ′: Let ∆ = ∆′, i : β where β is a fresh type variable. We
apply the IH to check whether (∆′, i : int)[j : int] ⊩r (P ′, []) : δ holds and we
set C = (β, int) :: C. Then, by (pred), any type substitution which respects the
constraints found in C produces a correct typing.
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• P = j � Succ(i);P ′: Analogous.

• P = l � Test(i, j, k);P ′: Let ∆ = ∆′, i : β1, j : β2, k : β3, where β1, β2, β3 are
fresh type variables. We check whether (∆′, i : int, j : β2, k : β2)[l :β2] ⊩r (P ′, []) : α

holds by applying the IH, and we set C = (β1, int) :: (β2, β3) :: C. Then, by (test),
any type substitution which respects the constraints found in C produces a correct
typing.

To check whether all of the constraints are satisfied we make use of the unification algorithm
developed by Robinson [Rob65]. 56

Proposition 3.3.20 (Robinson).
There is an algorithm U which, given a pair of simple types, either returns a substitution S

or fails. This algorithm exhibits the following properties:

• If U(α1, α2) returns S, then S unifies α1 and α2, i.e. S(α1) = α2.

• If V unifies α1 and α2, thenU(α1, α2) returns some S and there is another substitution

R such that V = RS.

Moreover, S involves only variables in α1 and α2.

When we write S(C) (a substitution applied to a list of constraints), we take this to mean
the list resulting from applying S elementwise to every element found in the list, i.e. if the
list C = [(α1, α2), (β1, β2)], then S(C) = [(S(α1), S(α2)), (S(β1), S(β2))]. We use the
algorithm to define the function maybe_satisfied which takes in a list of constraints and
returns success or fail depending on whether the list of constraints can be satisfied or not.

maybe_satisfied(C) =



success if C = [],

success if


C = (α1, α2) :: C

′,

U(α1, α2) = S,

S(C ′) = success

 ,

fail otherwise.

(2) In the rules (RT) and (loadT), one needs to show that a type for the premises exists. As
the set of types is countable, and effectively given, one can easily design an algorithm
constructing a derivation tree (by dovetailing). However, the algorithm cannot terminate
when executed on the machine M0 defined in Remark 3.3.9(3) because it would require an
infinite derivation tree.

5The general idea is to use the standard Hindley-Milner algorithm for type inference [DM82], adjusted for the
presentation given.

6The algorithm was developed for use in Robinson’s work on first order logic, but its syntactic nature makes it
widely applicable.
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Proposition 3.3.21 (Typing Properties).
Let M,M′,N,∈MA and α, β ∈ T.

(1) If M : β → α and N : β then M@ [#N] : α.

(2) If M : α and M→c N then N : α.

(3) If M : int then either M does not terminate or M ↠c n, for some n ≥ 0.

(4) If M : α then M does not raise an error.

Proof.

(1) Simultaneously, one proves that if both ∆ ⊩r (P, T ) : β → α and N : β hold, then so does
∆ ⊩r (P, T @ [#N] ) : α. We proceed by induction on a derivation of M : β → α (resp.
∆ ⊩r (P, T ) : β → α).

Case (nat) is vacuous.

Case (fix). By definition of Y (see Definition 3.3.7(2)), we have:

Y@ [#N] =
〈
R0 = ∅, R1 = ∅, Load 0; 1 � App(1, 0); 0 � App(0, 1); Call 0, [#Y,#N]

〉
Notice that, in this case, β = α→ α. We derive (omitting the (R∅) rule usages) :

0 : α, 1 : α ⊩2 (Call 1, []) : α

0 : α, 1 : β ⊩2 (1 � App(1, 0); . . . , []) : α

0 : β → α, 1 : β ⊩2 (0 � App(0, 1); . . . , []) : α ⊢ N : β

0 : β → α ⊩2 ⟨Load 1; . . . , [#N]⟩ : α Y : β → α

⊩2 ⟨Y.P, [#Y,#N]⟩ : α
Y@ [#N] : α

Case load∅. Then P = Load i;P ′, T = [] and ∆[i : β] ⊩r (P ′, []) : α. By assumption
N : β, so we conclude ∆ ⊩r (Load i;P ′, [#N]) : α by applying loadT.

All other cases derive straightforwardly from the IH.

(2) The cases M = Y or M = n for some n ∈ N are vacuous, as these machines are in final
state. Otherwise, by Remark 3.3.17(6), ∆ ⊩r (M.P,M.T ) : α for some ∆ |= M.R⃗, with r
referring to the number of registers of M. By cases on the shape of M.P .

Case P = Load i;P ′. Then M.T = a :: T ′ otherwise M would be in final state, and
N = ⟨R⃗[Ri := a], P ′, T ′⟩. From (LoadT) we get ∆[i : β] ⊩r (P ′, T ′) : α for some
β ∈ T satisfying #−1(a) : β. As R⃗ |= ∆ we derive R⃗[Ri := a] |= ∆[i : β], so as
N =

〈
R⃗[Ri := a], P ′, T ′

〉
, by Remark 3.3.17(6), N : α.
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Case P = Call i. Then i : α1 → · · · → αn → α, T = [#M1, . . . ,#Mn] and Mj : αj , for
all j ≤ n. In this case, N = #−1(!(M.Ri))@T with #−1(!(M.Ri)) : α1 → · · · → αn → α,
so we conclude by (1).

Case P = k � App(i, j);P ′. We have

∆, i : β → γ, j : β |= M.R⃗, (∆, i : β → γ, j : β)[k : γ] ⊩r (P ′,M.T ) : α

N =
〈
M.R⃗[Rk :=!M.Ri·!M.Rj],M.P,M.T

〉
By (1), #!M.Ri@ [!M.Rj] : γ, so we have

(∆, i : β → γ, j : β)[k : γ] |= M.R⃗[Rk :=!M.Ri·!M.Rj]

We conclude by Remark 3.3.17(6).

Case P = j � Pred(i);P ′. We have (∆, i : int)[j : int] ⊩r (P ′,M.T ) : α and we have
∆, i : int |= M.R⃗ . There are two subcases:

• !Ri ∈ N: Then N =
〈
M.R⃗[Rj :=!Ri ⊖ 1], P ′,M.T

〉
. We can now conclude by

Remark 3.3.17(6), as (∆, i : int)[j : int] |= M.R⃗[Rj :=!Ri ⊖ 1].

• !Ri /∈ N: Then there must exist a L such that N =
〈
M.R⃗[Rj := L],M.P,M.T

〉
and

#!Ri →c L, so we use the induction hypothesis to infer that L : int and thus we have
(∆, i : int)[j : int] |= M.R⃗[Rj := L]. We conclude by Remark 3.3.17(6).

Case P = j � Succ(i);P ′. Analogous.

Case P = l � Test(i, j, k);P ′. Analogous.

(3) Assume that M : int and M ↠c N for some N in final state. By (2), we obtain that N : int

holds. By Remark 3.3.17(4), numerals are the only machines in final state typable with int,
thus N = n.

(4) The three reduction cases where a machine can raise an error are ruled out by the typing
rules (pred), (succ) and (test), respectively. Therefore by (2), no error can be raised during
the execution.





Chapter 4

Modelling PCF

We will now move on to constructing a model of PCF based on Extended Addressing Machines,
which we will find to be fully abstract. To do so, we first define a translation from EPCF to
Extended Addressing Machines. We then prove that both the typing and the operational semantics
of EPCF programs are preserved under translation. This translation will later be used to define
the interpretation function J−K introduced in Definition 1.3.5.

4.1 Translating EPCF Terms into EAMs

4.1.1 Auxiliary EAMs

We start by defining some auxiliary Extended Addressing Machines implementing the main in-
structions of PCF.

Definition 4.1.1 (Auxiliary EAMs).
Define the following Extended Addressing Machines (for k > 0 and n ≥ 0):

Prki =
〈
R0, (Load 1)i−1; Load 0; (Load 1)k−i; Call 0; [ ]

〉
, for 1 ≤ i ≤ k;

Pred =
〈
R0, Load 0; 0 � Pred(0); Call 0; [ ]

〉
;

Succ =
〈
R0, Load 0; 0 � Succ(0); Call 0; [ ]

〉
;

Ifz =
〈
R0, R1, R2, Load 0; Load 1; Load 2; 0 � Test(0, 1, 2); Call 0; [ ]

〉
;

Applyk0 = Pr11, for k > 0. Recall that the EAM Pr11 = I represents the identity;

Applykn+1 =

〈 R0 = #Applykn, R1, . . . , Rk+2, Load (1, . . . , k + 2);

2 � App(2, k + 2); · · · ; k + 1 � App(k + 1, k + 2);

0 � App(0, 1); · · · ; 0 � App(0, k + 1); Call 0, [ ]

〉
.

59
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The registers whose values are not specified are assumed to be uninitialized.

By Remark 3.3.9(5), the above machines exist regardless of the choice of address table map.
The purpose of the machines Pred, Succ, Ifz are self-evident, trivially implementing their respec-
tive instructions in machine form. The Pr machines can be understood as “projection” machines
– extracting the i-th address from a tuple (represented as a list, or a section of a list) of length k.

The Apply machines are a bit more complex. An Applykn machine is stuck, waiting for n+k+1

arguments a, d1, . . . , dk, e1, . . . , en, where k is the arity of a and n is the arity of each di. Once
all arguments are available in the tape, Applykn applies e⃗ to each di and then feeds the machine
#−1(a) the resulting list of arguments d1 · e⃗, . . . , dk · e⃗.

Lemma 4.1.2.
For all a, b, c, d1, . . . , dk, e1, . . . , en ∈ A, the Extended Addressing Machines below reduce as

follows:

(1) Prki @ [d1, . . . , dk] ↠k+1
c #−1(di), for 1 ≤ i ≤ k > 0;

(2) Applykn@ [a, d1, . . . , dk, e1, . . . , en] ↠
(3k+4)n+2
c #−1(a)@ [d1 · e1 · · · en, . . . , dk · e1 · · · en];

(3) Pred@ [a] →c

〈
R0 = a, 0 � Pred(0); Call 0, [ ]

〉
;

(4) Succ@ [a] →c

〈
R0 = a, 0 � Succ(0); Call 0, [ ]

〉
;

(5) Ifz@ [a, b, c] ↠3
c

〈
R0 = a,R1 = b, R2 = c, 0 � Test(0, 1, 2); Call 0, [ ]

〉
;

(6) Y@ [a] ↠5
c #

−1(a)@ [#(Y@ [a] )] .

Proof. The only interesting cases are the application and fixed point combinator.

(2) Concerning Applykn, we proceed by induction on n.

• Base case. If n = 0 then Applyk0 = I, and I@ [a, d1, . . . , dk] ↠2
c #

−1(a)@ [d1, . . . , dk] .

• Induction case. Easy calculations give:

Applykn+1 @ [a, d1, . . . , dk, e1, . . . , en+1] ↠
3k+4
c Applykn@ [a, d1·e1, . . . , dk ·e1, e2, . . . , en+1]

This case follows from the IH since 3k + 4 + (3k + 4)n+ 2 = (3k + 4)(n+ 1) + 2 .
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(6) Recall that Y has been introduced in Definitions 3.3.6(2) and 3.3.7(2).

Y@ a = ⟨R0, R1, Load (0, 1); 0 � App(0, 1); 1 � App(1, 0); Call 1, [#Y, a]⟩
↠2

c ⟨R0 = #Y, R1 = a, 0 � App(0, 1); 1 � App(1, 0); Call 1, [ ]⟩
→c ⟨R0 = #Y · a,R1 = a, 1 � App(1, 0); Call 1, [ ]⟩
→c ⟨R0 = #Y · a,R1 = a · (#Y · a), Call 1, [ ]⟩
→c #−1(a · (#Y · a)) = #−1(a)@ [#(Y@ [a] )] .

This concludes the proof.

We show that the above machines are actually typable using the type assignment system. This
property is needed to show that the translation is type-preserving.

Lemma 4.1.3.
The EAMs introduced in Definition 4.1.1 can be typed as follows (for all α, βi, δi ∈ T, using the

notation δ⃗ → βi = δ1 → · · · → δn → βi):

(1) Prki : β1 → · · · → βk → βi, for 1 ≤ i ≤ k > 0;

(2) Applykn : (β1 → · · · → βk → α)→ (δ⃗ → β1)→ · · · → (δ⃗ → βk)→ δ⃗ → α;

(3) Pred : int→ int;

(4) Succ : int→ int;

(5) Ifz : int→ α→ α→ α.

Proof. It follows easily from Definition 4.1.1. We will show Applykn by induction on n. All other
cases are trivial.

Base case: if n = 1, then Applykn = Pr11, and we have Pr11 : α→ α by (1).

Induction case: We use the following notations in addition to those already named:

δ⃗′ → β = δ2 → · · · → δn → β

σ = (β1 → · · · → βk → α)→ (δ⃗ → β1)→ · · · → (δ⃗ → βk)→ δ⃗ → α

τ = (β1 → · · · → βk → α)→ (δ⃗′ → β1)→ · · · → (δ⃗′ → βk)→ δ⃗′ → α

∆ = 0 : τ, 1 : β1 → · · · → βk → α, 2 : δ⃗ → β1, . . . , k + 1 : δ⃗ → βk, k + 2 : δ1

∆′ = 0 : τ, 1 : β1 → · · · → βk → α, 2 : δ⃗′ → β1, . . . , k + 1 : δ⃗′ → βk, k + 2 : δ1

∆′′ = 0 : α, 1 : β1 → · · · → βk → α, 2 : δ⃗′ → β1, . . . , k + 1 : δ⃗′ → βk, k + 2 : δ1

Using the rules (R⃗), (R∅), and (RT), we get Applykj : τ by IH, and have to show

0 : τ ⊩k+3 (Applykj .P, [ ]) : σ
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Using k + 2 (load∅) cases, we obtain

∆ ⊩k+2

(
2 � App(2, k + 2); · · · ; k + 1 � App(k + 1, k + 2);

0 � App(0, 1); · · · ; 0 � App(0, k + 1); Call 0
, [ ]

)
: α

We use k (app) cases to obtain

∆ ⊩k+2 (0 � App(0, 1); · · · ; 0 � App(0, k + 1); Call 0, [ ]) : α

With another k + 1 (app) cases we get

∆′ ⊩k+2 (Call 0, [ ]) : α

We then conclude with a (call).

4.1.2 Translating (E)PCF programs to EAMs

Using the auxiliary EAM introduced above, we can translate an EPCF term M having x1, . . . , xn
as free variables as an EAM M loading their values from the input tape.

Definition 4.1.4 (Translation).
Let M be an EPCF term such that FV(M) ⊆ {x1, . . . , xn}. The translation of M (w.r.t. x⃗) is an

EAM |M |x⃗ defined by structural induction on M :

|xi|x⃗ = Prni , where i ∈ {1, . . . , n};

|λy.M |x⃗ = |M |x⃗,y, where wlog y /∈ x⃗;

|M⟨N/y⟩|x⃗ = |M |y,x⃗@ [#|N |] ;

|MN |x⃗ = Apply2n@ [#Pr11,#|M |x⃗,#|N |x⃗] ;

|0|x⃗ = Prn+1
1 @ [0] ;

|predM |x⃗ = Apply1n@ [#Pred,#|M |x⃗] ;

|succM |x⃗ = Apply1n@ [#Succ,#|M |x⃗] ;

|ifz(L,M,N)|x⃗ = Apply3n@ [#Ifz,#|L|x⃗,#|M |x⃗,#|N |x⃗] ;

|fixM |x⃗ =

Y@ [#|M |x⃗] , if n = 0,

Apply1n@ [#Y,#|M |x⃗] , otherwise.

Extended Addressing Machines do not really have free variables – the closest counterpart
are the internal registers, but these cannot be “accessed” externally. We take advantage of the
duality between free variables and abstractions to treat them the same in translation – they are
both “empty slots” in the input tape. Whereas we usually treat the free variables of M as a set,
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the translation sees them as list where the order is crucial to ensure that we project to the correct
machine when encountering a variable.

The multiple appearances of Applykn machines also deserves discussion. Essentially, these
machines exist to propagate free variables between terms. Rather than identifying which free vari-
ables are present within which subterm, we propagate all free variables among all sub-Extended
Addressing Machines, using the projections to obtain the machine corresponding to a variable
when a variable is encountered. This is in spirit exactly the same functionality as explicit substi-
tutions. Explicit substitutions being the internal language of Extended Addressing Machines is
very apparent when comparing the definitions of |M⟨N/y⟩|x⃗ and |MN |x⃗.

The definition of the translation also sheds additional light on some choices made earlier on
– specifically, the strange closure requirement on EPCF. To remove the closure requirement, we
would need to propagage the free variables in the explicit substitution case as well. This approach
would lead to |M⟨N/y⟩|x⃗ and |MN |x⃗ being defined in a very similar manner, so there would be
no EPCF term which corresponds to application in the Extended Addressing Machine sense. The
result of such an approach is issues appearing with the consistency of the fixed point.

Example 4.1.5.
Recall the EPCF terms introduced in Examples 1.1.2 and 1.2.6. The translation of some of said

EPCF terms produces the following machines:

(1) |I| = |x|x = Pr11.

(2) |ΩPCF| = Y@ [#|I|] = Y@ [#Pr11] .

(3) |succ1| = |λx.succx| = |succx|x = Apply11@ [#Succ,#Pr11] ,

(4) |succ2| = Apply02@ [#|s · (s · n)|s,n ·#|succ1|]

= Pr11@ [#Apply22 ·#Pr21 ·#|s · n|s,n,#|succ1|]

= Pr11@ [#Apply22 ·#Pr21 · (#Apply22 · Pr21 · Pr22),#|succ1|]

= Pr11@ [#Apply22 ·#Pr21 · (#Apply22 · Pr21 · Pr22),#Apply11 ·#Succ ·#Pr11] .

In the translation above typing information was deliberately ignored for the sake of generality.
We now show that our translation preserves the typings in the following sense.

Theorem 4.1.6.
Let M be an (E)PCF term and Γ = x1 : δ1, . . . , xn : δn. Then

Γ ⊢M : α ⇒ |M |x⃗ : δ1 → · · · → δn → α.

Proof. As the type assignment systems of EPCF and of PCF coincide on PCF terms, we prove
the above statement for EPCF and obtain PCF for free. Proceed by induction on a derivation of
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Γ ⊢ M : α, using the notation δ⃗ = δ1 → · · · → δn. We split into cases depending on the last
applied rule.

• Case (0). In this caseM = 0 and α = int. By Definition 4.1.4, we have |0|x⃗ = Prn+1
1 @ [0] .

By Lemma 4.1.3(1), we know that Prn+1
1 : int → δ⃗ → int. By rule (nat), we get 0 : int.

By Proposition 3.3.21(1), we conclude Prn+1
1 @ [0] : δ⃗ → int;

• Case (ax). Then M = xi for some xi ∈ x⃗ and |xi|x⃗ = Prni . By Lemma 4.1.3(1).

• Case (→E). Then M =M1M2 and there is β ∈ T such that Γ ⊢M1 : β → α,Γ ⊢M2 : β.
From the induction hypothesis, we obtain that |M1|x⃗ : δ⃗ → β → α and |M2|x⃗ : δ⃗ → β.
By Lemma 4.1.3(1), we get Pr11 : (β → α) → β → α. By Lemma 4.1.3(2), we know that
Apply2n : ((β → α) → β → α) → (δ⃗ → β → α) → δ⃗ → β. By Definition 4.1.4, we have
|M1 ·M2|x⃗ = Apply2n@ [#Pr11,#|M1|x⃗,#|M2|x⃗] so we conclude by Proposition 3.3.21(1).

• Case (σ). Then M = M ′⟨N/y⟩ with Γ, y : β ⊢ M ′ : α and ⊢ N : β, for some β ∈ T. By
induction hypothesis, we get |M ′|x⃗,y : β → δ⃗ → α and |N | : β. By Definition 4.1.4, we
have |M ′⟨N/y⟩|x⃗ = |M ′|y,x⃗@ [#|N |] . Conclude by Proposition 3.3.21(1).

• Case (→I). Then M = λy.N and α = α1 → α2, with Γ, y : α1 ⊢ N : α2. By Defini-
tion 4.1.4, we have |λy.N |x⃗ = |N |x⃗,y so the case follows from the induction hypothesis.

• Case (+). Then M = succN and α = int, with Γ ⊢ N : int. By induction hypoth-
esis |N |x⃗ : δ⃗ → int and, by Lemma 4.1.3(4), we have Succ : int → int. By Defi-
nition 4.1.4, |succN |x⃗ = Apply1n@ [#Succ,#|N |x⃗] . Conclude by Lemma 4.1.3(2) and
Proposition 3.3.21(1).

• Case (−). Analogous to the previous, using Lemma 4.1.3(3) instead of Lemma 4.1.3(2).

• Case (ifz). Then M = ifz(L,N1, N2) with Γ ⊢ L : int and Γ ⊢ Ni : α, for each
i = 1, 2. By induction hypothesis, we get |L|x⃗ : δ⃗ → int and |Ni|x⃗ : δ⃗ → α, for
every such i. By Lemma 4.1.3(5), we have Ifz : int → α → α → α. Since, by Defi-
nition 4.1.4, |ifz(L,N1, N2)|x⃗ = Apply3n@ [#Ifz,#|L|x⃗,#|N1|x⃗,#|N2|x⃗] we conclude by
applying Lemma 4.1.3(2) and Proposition 3.3.21(1).

• Case (Y). Then M = fixN with Γ ⊢ N : α → α. By induction hypothesis, we have
|N |x⃗ : γ⃗ → α→ α. By rule (fix) we know that Y : (α→ α)→ α. The result follows from
|fixN |x⃗ = Apply1n@ [#Y,#|N |x⃗] using Lemma 4.1.3(2) and Proposition 3.3.21(1).

Ideally, one would like that an EPCF step M →wh N becomes a reduction |M | ↠c |N |
in the corresponding EAMs. Unfortunately, the situation is more complicated—the translation
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|N | may contain auxiliary EAMs that are not generated by |M | along reduction. For example,
consider the reduction pred 0→wh 0. Translating pred 0 and reducing it we have

|pred 0| = Pr11@ [#Pred,#|0|]
= Pr11@ [#Pred,#(Pr11@ [0] )]

↠c Pred@ [#(Pr11@ [0] )]

→c

〈
R0 = #(Pr11@ [0] ), 0 � Pred(0); Call 0, [ ]

〉
↠c

〈
R0 = 0, 0 � Pred(0); Call 0, [ ]

〉
→c

〈
R0 = 0, Call 0, [ ]

〉
→c #−1(0)

|0| = (Pr11@ [0] ) which does not appear as a standalone machine in the above reduction sequence
(although its address does appear).

The property that actually holds is that the two EAMs are interconvertible |M | ↔c |N |, and
|N | is ‘closer’ to their common reduct. The next definition captures this intuition.

Definition 4.1.7 (Directional Interconvertability).
For M,N ∈MA, define the relation:

M ≻c N ⇐⇒ ∃Z ∈MA . [ (M ↠c Z c↞ N) ∧ (|M ↠c Z| < |N ↠c Z|) ].

Note that there cannot be an empty M ↠c Z reduction path. Moreover, recall that M ≻c N entails

M↔c N.

Lemma 4.1.8.

(1) |M ↠c Z| < |N ↠c Z| and Z ↠c Z
′ imply |M ↠c Z

′| < |N ↠c Z
′|.

(2) The relation ≻c is transitive.

Proof.

(1) By confluence and determinism of→c (Lemma 3.3.12).

(2) follows from (1) and Corollary 3.3.13.

Lemma 4.1.9.
|n| ↠4n+2

wh #−1(n)

Proof. By induction on n.

• n = 0: we have |0| = Pr11@0 ↠2
wh 0.
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• n > 0: we have

|n+ 1| = Pr11@ [#Succ,#|n|]
↠2

wh Succ@ [#|n|] by Lemma 4.1.2(1)

→wh

〈
R0 = #|n|, 0 � Succ(0); Call 0, [ ]

〉
by Lemma 4.1.2(4)

↠4n+2
wh

〈
R0 = n, 0 � Succ(0); Call 0, [ ]

〉
using the IH

↠2
wh #−1(n+ 1)

Conclude as 4n+ 2 + 4 = 4(n+ 1) + 2.

Proposition 4.1.10.
Given an EPCF program M of type int, we have M →wh N ⇒ |M | ≻c |N |.

Proof. By induction on a derivation ofM →wh N . As a matter of notation, we use x⃗ = x1, . . . , xn

and #σ⃗ = #|N1|, . . . ,#|Nn|.

• Case M = yσ for y /∈ dom(σ). Vacuous, since M ∈ PE.

• CaseM = xσi andN = σ(xi) = Ni. So |xσ| = Prni @ [#σ⃗] ↠n+1
c |Ni| by Lemma 4.1.2(1).

• Case M = 0σ and N = 0. On the one side, |0σ| = |0|x⃗ = Prn+1
1 @ [0,#σ⃗] whence,

by Lemma 4.1.2(1), we get Prn+1
1 @ [0,#σ⃗] ↠n+2

c #−1(0) = 0. On the other side, by
Lemma 4.1.2(1), we obtain |0| = Pr11@ [0] ↠2

c 0. Since n > 0, we conclude |0σ| ≻c |0|.

• Case M = ((λy.M1)
σ)M2 and N = Mσ

1 ⟨M2/y⟩. Wlog y /∈ dom(σ) and since M1 ∈ PE,
we must have FV(M1) ⊆ {y}. Therefore

|M | = |((λy.M1)
σ)M2|

= Apply20@ [#|Mσ
1 |y,#|M2|] , by Definition 4.1.4,

= Pr11@ [#|Mσ
1 |y,#|M2|] , since Apply20 = Pr11 by Definition 4.1.1,

↠2
c |Mσ

1 |y @ [#|M2|] , by Lemma 4.1.2(1),
= |Mσ

1 ⟨M2/y⟩|, by Definition 4.1.4.

• Case M = M1M2 and N = M ′
1M2, where M1 →wh M

′
1. By IH |M1| ≻c |M ′

1|, i.e. there
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exists an EAM X such that |M1| ↠k
c X and |M ′

1| ↠k′
c X, for some k > k′. Then we get

|M1M2| = Pr11@[#Pr11,#|M1|,#|M2|], by Definitions 4.1.4 and 4.1.1,
↠4

c |M1|@[#|M2|], by Lemma 4.1.2(2)
↠k

c X@[#|M2|]
k′
c ↞ |M ′

1|@[#|M2|]
4
c↞ Pr11@[#Pr11,#|M ′

1|,#|M2|], by Lemma 4.1.2(2),
= |M ′

1M2|, by Definition 4.1.4.

• Case M = (M1M2)
σ and N = Mσ

1M
σ
2 . Since M ∈ PE, each Mσ

i is closed, whence
FV(Mi) ⊆ {x1, . . . , xn}. On the one side, we get

|(M1M2)
σ| = Apply2n@[#Pr11,#|M1|x⃗,#|M2|x⃗,#σ⃗]

↠10n+2
c Pr11@ [#(|M1|x⃗@[#σ⃗]),#(|M2|x⃗@[#σ⃗])] , by Lemma 4.1.2(2),

↠2
c |Mσ

1 |@[#|Mσ
2 |], by Lemma 4.1.2(1).

On the other side, we get |Mσ
1M

σ
2 | = Pr11@[#Pr11,#|Mσ

1 |,#|Mσ
2 |] ↠4

c |Mσ
1 |@[#|Mσ

2 |] by
applying Lemma 4.1.2(1) (twice). Conclude as this case only applies when σ is non-empty.

• Case M = pred0 and N = 0. By Lemma 4.1.2(1) and (3), we have

|pred0| = Pr11@ [#Pred, 0] ↠2
c Pred@ [0]

→c

〈
R0 = 0, 0 � Pred(0); Call 0, [ ]

〉
→c

〈
R0 = 0, Call 0, [ ]

〉
→c 0

Conclude using Lemma 4.1.9.

• Case M = pred (succn) and N = n. Note that succn = n+ 1. We have

|pred (n+ 1)| = Pr11@ [#Pred,#|n+ 1|]
↠2

c Pred@ [#|n+ 1|] by Lemma 4.1.2(3)

→c

〈
R0 = #|n+ 1|, 0 � Pred(0); Call 0, [ ]

〉
↠4(n+1)+2

wh

〈
R0 = n+ 1, 0 � Pred(0); Call 0, [ ]

〉
by Lemma 4.1.9

↠c

〈
R0 = n, Call 0, [ ]

〉
→c n

Conclude using Lemma 4.1.9.

• Case M = ifz(0,M1,M2) and N =M1. Therefore |M | is equal to

|ifz(0,M1,M2)| = Apply30@ [#Ifz,#|0|,#|M1|,#|M2|] , by Definition 4.1.4,
= Pr11@ [#Ifz,#|0|,#|M1|,#|M2|] , by Definition 4.1.1,
↠2

c Ifz@ [#|0|,#|M1|,#|M2|] , by Lemma 4.1.2(1),
↠c |M1|.



68 Modelling PCF

• Case M = ifz(k + 1,M1,M2), for some k ≥ 0, and N =M2. Therefore |M | is equal to

|ifz(k + 1,M1,M2)|
= Apply30@ [#Ifz,#|k + 1|,#|M1|,#|M2|] , by Definition 4.1.4,
= Pr11@ [#Ifz,#|k + 1|,#|M1|,#|M2|] , by Definition 4.1.1,
↠2

c Ifz@ [#|k + 1|,#|M1|,#|M2|] , by Lemma 4.1.2(1),
↠c |M2|.

• Case M = ifz(L,M1,M2) and N = ifz(L′,M1,M2), where L→wh L
′. By IH |L| ≻c |L′|,

i.e. there is an EAM X such that |L| ↠k
c X and |L′| ↠k′

c X for some k > k′. Then we get

|ifz(L,M1,M2)|
= Pr11@[#Ifz,#|L|,#|M1|,#|M2|], by Def. 4.1.4 and 4.1.1,

↠2
c Ifz@[#|L|,#|M1|,#|M2|], by Lemma 4.1.2(2)

↠3
c

〈
R0 = #|L|, R1 = #|M1|, R2 = #|M2|,

0 � Test(0, 1, 2); Call 0, [ ]

〉
, by Lemma 4.1.2(5)

↠k
c

〈
R0 = #X, R1 = #|M1|, R2 = #|M2|,

0 � Test(0, 1, 2); Call 0, [ ]

〉
,

k′
c ↞

〈
R0 = #|L′|, R1 = #|M1|, R2 = #|M2|,

0 � Test(0, 1, 2); Call 0, [ ]

〉
3
c↞ Ifz@[#|L|,#|M1|,#|M2|], by Lemma 4.1.2(5),

2
c↞ Pr11@[#Ifz,#|M ′

1|,#|M2|], by Lemma 4.1.2(2),

= |ifz(L′,M1,M2)|, by Definition 4.1.4.

• Case M = predM ′ and N = predN ′, where M ′ →wh N
′. Analogous to the above.

• Case M = succM ′ and N = succN ′, where M ′ →wh N
′. Analogous to the above.

• Case M = (ifz(L,M1,M2))
σ and N = ifz(Lσ,Mσ

1 ,M
σ
2 ). Note that M ∈ PE entails

Lσ,Mσ
1 ,M

σ
2 closed, thus FV(L) ⊆ {x⃗} and FV(Mi) ⊆ {x⃗}. By Lemma 4.1.2(2), we get

|(ifz(L,M1,M2))
σ| = Apply3n@[#Ifz,#|L|x⃗,#|M1|x⃗,#|M2|x⃗,#σ⃗]

↠13n+2
c Ifz@ [#|Lσ|,#|Mσ

1 |,#|Mσ
2 |]

2
c↞ Pr11@[#Ifz,#|Lσ|,#|Mσ

1 |,#|Mσ
2 |]

= |ifz(Lσ,Mσ
1 ,M

σ
1 )|

Conclude as this case only applies when σ is non-empty.

• Case M = (predM ′)σ and N = pred ((M ′)σ). Analogous to the above.

• Case M = (succM ′)σ and N = succ ((M ′)σ). Analogous to the above.
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• Case M = fixM ′ and N =M ′(fixM ′). In this case, we get

|fixM ′| = Y@ [#|M |] , by Definition 4.1.4,
↠5

c |M ′|@ [#Y@ [#|M ′|] ] , by Lemma 4.1.2(6),
= |M ′|@ [#|fixM ′|] , by Definition 4.1.4,
2
c↞ Pr11@ [#|M ′|,#|fixM ′|] , by Lemma 4.1.2(1),
2
c↞ Pr11@ [#Pr11,#|M ′|,#|fixM ′|] , by Lemma 4.1.2(1),
= |M ′(fixM ′)|, by Definition 4.1.4.

• CaseM = (fixM ′)σ andN = |fix ((M ′)σ)|. By Lemma 4.1.2(2), we obtain |(fixM ′)σ| =
Apply1n@ [Y,#|M ′|x⃗,#σ⃗] ↠7n+2

c Y@ [#|(M ′)σ|] = |fix (M ′σ)|.

Since every PCF program P of type int is also an EPCF program of the same type, and in
this case the operational semantics of PCF and EPCF coincide (Theorem 2.2.20), we can use the
above proposition to prove that the EAM |P | faithfully simulates the behavior of P .

Theorem 4.1.11.
For a PCF program P having type int, the following are equivalent:

1. P ↠PCF n;

2. |P | ↠c n.

Proof. (1 ⇒ 2) Let P ↠PCF n. Equivalently, P ↠wh n (by Theorem 2.2.20). By Proposi-
tion 4.1.10, we get |P | ↔c |n| and by Lemma 4.1.9 we get |n| ↔c n. Since n is in final state,
this entails |P | ↠c n by confluence (Lemma 3.3.12(2)). (2 ⇒ 1) We prove the contrapositive.
From (1 ⇒ 2) we cannot have P ↠PCF m and |P | ↠c n for m ̸= n. Thus we assume that
⊢ P : int, but P does not reduce to a numeral. As PCF enjoys subject reduction [Ong95] and
numerals are the only PCF programs of type int in a final state by Remark 1.2.12, P must have an
infinite→PCF reduction path. By Theorem 2.2.20, this generates an infinite w.h. reduction path
P = P0 →wh P1 ↠wh Pk ↠wh · · · . By Proposition 4.1.10, this translates to an infinite ≻c-chain
|Pk| ≻c |Pk+1|, in other words we have Zk such that

P = |P0| |P1|

Z1

|P2|

Z2

|P3|

Z ′
3

· · ·

· · ·

↠
c

↠
c

↠
c

↠
c

↠
c

↠
c

↠
c

where for all k, |Pk−1 ↠c Zk| < |Pk ↠c Zk|.
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By confluence, there are Z′
k such that

P = |P0| |P1|

Z1

|P2|

Z2

|P3|

Z3

· · ·

· · ·

Z ′
1 Z ′

2 Z ′
3 · · ·

↠
c

↠
c

↠
c

↠
c

↠
c

↠
c

↠
c

↠
c

↠c ↠c ↠c

↠
c

↠
c

We will now prove by contradiction that the above diagram presents a non-terminating reduction
sequence, i.e. there cannot exist an x ≥ 0 such that Z ′

x is in a final state. Let us assume the
existence of such a Z ′

x. Then, for all y > x, we have Z ′
y = Z ′

x. Using Lemma 4.1.8(1) we obtain
||Px| ↠c Z

′
x| < ||Px+1| ↠c Z

′
x| < ||Px+2| ↠c Z

′
x| < . . . . By Corollary 3.3.13, Z ′

x either loops,
in which case it is not in final state, or we have an infinitely strictly decreasing sequence of natural
numbers, which cannot exist. Thus, relying on the reduction of Extended Addressing Machines
being deterministic, we conclude that |P | does not terminate.

4.2 The Model

4.2.1 Machine Equivalence

We now move on to the construction of the model of PCF based on Extended Addressing Ma-
chines. For a reminder of the definition of such a model, see Definition 1.3.5. The idea is to focus
on the subsetD ⊆ A containing addresses of typable EAMs, which is then stratified (Dα)α∈T fol-
lowing the inductive syntax of simple types. In other words, the set Dα contains the addresses of
those EAM having type α. The well-typedness condition allows to get rid of those EAMs contain-
ing addresses of infinite chains of ‘pointers’—a phenomenon described in Remark 3.3.9(3)—that
might exist inMA, but cannot be typed. Subsequently, we are going to impose that two addresses
a, b ∈ Dα are equal in the model whenever the corresponding EAMs exhibit the same applicative
behavior: at ground type (α = int) this simply means that either #−1(a) and #−1(b) compute the
same numeral, or they are both non-terminating. This equality is then lifted at higher order types
following the well-established tradition of logical relations [Plo73].

Definition 4.2.1 (Machine Logical Equivalence).
For all EAMs M,N of type α, define M ≡α N inductively with the following rules:

M ≡int N ⇐⇒ ∀n ∈ N .
[
M ↠c n ⇐⇒ N ↠c n

]
M ≡α→β N ⇐⇒ ∀L, L′ ∈MA .

[
L ≡α L′ ⇒ M@ [#L] ≡β N@ [#L′]

]
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We extend the notion to tapes and registers:

• Given tapes T = [a1, . . . , an], T
′ = [a′1, . . . , a

′
n], we write T ≡ T ′ to mean that there exist

types α1, . . . , αn such that #a1 ≡α1 #a
′
1, . . . ,#an ≡αn #a′n.

• Given lists of registers R⃗, R⃗′ of length r, we write R⃗ ≡ R⃗′ to mean that for 0 ≤ i ≤ r,
either !Ri =!R′

i = ∅, or there exists a type αi such that #!Ri ≡αi
#!R′

i.

We will later find that this relation is indeed an equivalence, but the proof for this is a bit
tricky. In particular, proving reflexivity of the relation with respect to the machine Y is trouble-
some due to its self-referential nature. We will sidestep the issue by introducing the notion of
approximations to Y, and making use of the approximations to show that Y is indeed reflexive.1

Definition 4.2.2.
Recall the machine |ΩPCF| = Y@ [#Pr11] from Example 4.1.5. We define the following machines

by induction on n ∈ N:
fix0 = |ΩPCF|

fixn+1 = ⟨Y.R⃗,Y.P, [#fixn]⟩

Note that for all n ∈ N and for all types α, fixn : (α→ α)→ α.

Definition 4.2.3 (Approximations to Y).
Let M : α and N : α. We define the approximation of M to N with respect to Y, M ≤α N, with the

following rules:

n ∈ N
n ≤int n

n ≤ m
fixn ≤(α→α)→α fixm

M ≤β→α M′ #−1(a) ≤β #−1(a′)

M@ [a] ≤α M′@ [a′]

Y ≤(α→α)→α Y
n ∈ N

fixn ≤(α→α)→α Y

∀i ≤ r,∃βi ∈ T.#−1(!Ri) ≤βi #−1(!R′
i)

⟨R0, . . . , Rr, P, [ ]⟩ ≤α ⟨R′
0, . . . , R

′
r, P, [ ]⟩

Definition 4.2.4.
Define the set of machines with only approximations MΩ

A as the set of machines typable when

substituting the (fix) rule with the following rules for all types α:

|ΩPCF| : α
(Ω)

Of particular note is that we can type fix0 = |ΩPCF| : (α→ α)→ α using the above rules.

Remark 4.2.5.

(1) If n ∈ N and M ≤ n or n ≤ M, then M = n.

(2) If M ≤ M′, then M.P = M′.P .
1This approach to the problem was inspired by [MP21].
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(3) If M ≤ M′ yet the length of M.T is not equal to the length of M′.T , then M = |ΩPCF|@T ′′

for some tape T ′′.

(4) For all machines M : α, there exists a M′ ∈MΩ
A such that M′ : α and M′ ≤α M.

Lemma 4.2.6 (Monotonicity).
If M ≤ N and M→c M

′, then there exist L,N′ such that M′ ↠c L, N ↠c N
′ and L ≤ N′.

Proof. By induction on M→c M
′.

• Case M.P = j � Pred(i);P ′: There are two subcases:

– Case !M.Ri ∈ N: Then !M.Ri =!N.Ri, so N′ = ⟨N.R⃗[Rj :=!N.Ri ⊖ 1], P ′,N.T ⟩.

– Case !M.Ri /∈ N: Then #−1(!M.Ri)→c #
−1(!M′.Ri) and #−1(!M.Ri)≤#−1(!N.Ri).

We use the IH to obtain L′,K such that #−1(!M′.Ri) ↠c L′, #−1(!N.Ri) ↠c K and
L′ ≤ K. We then have N′ = ⟨N.R⃗[Ri := #K], j � Pred(i);P ′,N.T ⟩ for which the
desired properties hold.

• Cases M.P = j � Succ(i);P ′ and M.P = l � Test(i, j, k);P ′ are analogous.

• Case M.P = Load i;P ′: We have two subcases:

– The length of M.T is equal to the length of M′.T : Then M.T = [a1, . . . , an] and
N.T = [b1, . . . , bn] such that for all 1 ≤ i ≤ n, #−1(ai) ≤ #−1(bi). We then have
N′ = ⟨N.R⃗[Ri := b1], P

′, [b1, . . . , bn]⟩ for which the desired properties hold.

– The length of M.T is not equal to the length of M′.T : By Proposition 4.2.5(3), for
some tape T ′′ we have M = |ΩPCF|@T ′′ . We have |ΩPCF|@T ′′ ↠7

c |ΩPCF|@T ′′

and N ↠0
c N, so we conclude.

• Case M.P = k � App(i, j);P ′: Then M.Ri ≤ N.Ri and M.Rj ≤ N.Rj . We then have
N′ = ⟨N.R⃗[Rk :=!N.Ri·!N.Rj], P

′,N.T ⟩ for which the desired properties hold.

• Case M.P = Call i: Let M.T = [a1, . . . , an] and N.T = [b1, . . . , bn]. For all 1 ≤ j ≤ n,
we have #−1(aj) ≤ #−1(bj), and we also have #−1(!M.Ri) ≤ #−1(!N.Ri). Then there is
N′ = #−1(!N.Ri)@ [b1, . . . , bn] for which the desired properties hold.

Lemma 4.2.7 (Continuity).
If M →c M′ and N′ ≤ M′, then there exists N such that N ≤ M and N →c N′. Moreover, if

N′ ∈MΩ
A, then N ∈MΩ

A.

Proof. By induction on M→c M
′.

• Case M.P = j � Pred(i);P ′: There are two subcases:
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– Case !M.Ri ∈ N: We have M ′ = ⟨M.R⃗[Rj :=!M.Ri ⊖ 1], P ′,M.T ⟩. Let a ∈ A
such that #−1(a) ≤ #−1(!M.Rj) and #−1(a) ∈ MΩ

A. We then have the machine
N = ⟨N′.R⃗[Rj := a], j � Pred(i);P ′,N′.T ⟩ for which the desired properties hold.

– Case !M.Ri /∈ N: Then #−1(!M.Ri) →c #
−1(!M′.Ri), #−1(!N′.Ri) ≤ #−1(!M′.Ri).

We use the IH to obtain L such that L ≤ #−1(!M.Ri), L →c #−1(!N′.Ri), and if
#−1(!N′.Ri) ∈ MΩ

A then L ∈ MΩ
A. We then find the desired properties hold for the

machine N = ⟨N′.R⃗[Ri := #L], j � Pred(i);P ′,N′.T ⟩.

• Cases M.P = j � Succ(i);P ′ and M.P = l � Test(i, j, k);P ′ are analogous.

• Case M.P = Load i;P ′: Then M.T = a :: T ′. Let b ∈ A such that #−1(b) ≤ #−1(!M.Ri)

and #−1(b) ∈ MΩ
A. We then have N = ⟨N′.R⃗[Ri := b], Load i;P ′, !N′.Ri :: N

′.T ⟩ for
which the desired properties hold.

• Case M.P = k � App(i, j);P ′: Consider an a ∈ A such that #−1(a) ≤ #−1(!M.Rj) and
#−1(a) ∈ MΩ

A. We then have N = ⟨N′.R⃗[Rk := a], k � App(i, j);P ′,N′.T ⟩ for which the
desired properties hold.

• Case M.P = Call i: Let r + 1 be the number of registers of M. Let a0, . . . , ar ∈ A∅ such
that for all 0 ≤ j ≤ r,

aj =

∅, if !M.Rj = ∅,

c s.t. c ∈ A,#−1(c) ∈MΩ
A,#

−1(c) ≤ #−1(!M.Rj), otherwise.

Let n and m be the lengths of M.T and N′.T respectively. Let T ′ be the list of the first
m − n addresses in N′.T and T ′′ be the list of the last n addresses in N′.T . Let b be the
address of the machine ⟨N′.R⃗,N′.P, T ′⟩. We then find the desired properties hold for the
machine N = ⟨(R0 = a0, . . . , Rr = ar)[Ri := b], Call i, T ′′⟩.

Lemma 4.2.8.
Given N : (β1 → · · · → βk → int)→ (β1 → · · · → βk → int), L1 : β1, . . . , Lk : βk, n ∈ N,

Y@ [#N,#L1, . . . ,#Lk] ↠c n ⇔ ∃m ∈ N such that fixm@ [#N,#L1, . . . ,#Lk] ↠c n

Proof. (⇐) As fixm@ [#N,#L1, . . . ,#Lk] ≤ Y@ [#N,#L1, . . . ,#Lk] , we apply Lemma 4.2.6
and conclude by Remark 4.2.5(1).

(⇒) We iterate Lemma 4.2.7 to get fixm@ [#N′,#L′1, . . . ,#L′k] ∈ MΩ
A for some m ∈ N such

that

Y@ [#N,#L1, . . . ,#Lk] ↠c n ⇒ fixm@ [#N′,#L′1, . . . ,#L′k] ↠c n

fixm@ [#N′,#L′1, . . . ,#L′k] ≤ Y@ [#N,#L1, . . . ,#Lk]
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From Remark 4.2.5(3), we have

fixm@ [#N′,#L′1, . . . ,#L′k] ≤ fixm@ [#N,#L1, . . . ,#Lk]

By yet again applying Lemma 4.2.6 and Remark 4.2.5(1), we get

fixm@ [#N,#L1, . . . ,#Lk] ↠c n

Lemma 4.2.9.
For all k ∈ N, fixk ≡(α→α)→α fixk.

Proof. Let α = γ1 → · · · → γm → int. We proceed by induction on k.

• Case k = 0: Let N0 : α→ α,N1 : γ1, . . . ,Nm : γm. We have

|ΩPCF|@ [#N0,#N1, . . . ,#Nm] ↠7
c |ΩPCF|@ [#N0,#N1, . . . ,#Nm]

As for all N0 : α→ α,N1 : γ1, . . . ,Nm : γm, we have |ΩPCF|@ [#N1, . . . ,#Nm] ̸↠c n for
all n ∈ N, we obtain |ΩPCF| ≡γ1→···→γm→int |ΩPCF|.

• Case k > 0: Let N0 ≡α→α N′
0,N1 ≡γ1 N′

1, . . . ,Nm ≡γm N′
m. We have:

fixk+1@ [#N0, . . . ,#Nm] ↠c N0@ [#(fixk@ [#N0] ),#N1, . . . ,#Nm]

fixk+1@ [#N′
0, . . . ,#N′

m] ↠c N
′
0@ [#(fixk@ [#N′

0] ),#N′
1, . . . ,#N′

m]

By IH, we have fixk@ [#N0] ≡α fixk@ [#N′
0] . As N0 ≡α→α N′

0, we have

N0@ [#(fixk@ [#N0] ),#N1, . . . ,#Nm] ↠c n

⇔

N′
0@ [#(fixk@ [#N′

0] ),#N′
1, . . . ,#N′

m] ↠c n

We conclude using determinism.

Lemma 4.2.10.
If M : β1 → · · · → βn → int and N : β1 → · · · → βn → int, then

M ≡β1→···→βn→int N

if and only if for all L1 ≡β1 L′1, . . . , Ln ≡βn L′n,

M@ [#L1, . . . ,#Ln] ↠c #
−1(m) ⇔ N@ [#L′1, . . . ,#L′n] ↠c #

−1(m)
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Proof. Trivial extension of the definition.
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Lemma 4.2.11.

(1) The relation ≡α is symmetric and transitive.

(2) The relation ≡α is reflexive.

(3) Let M,N ∈MA and α ∈ T be such that M : α and N : α. If M→c N then M ≡α N.

(4) Assume M : α→ β,N1 : α and N2 : α. If N1 →c N2 then M@ [#N1] ≡β M@ [#N2] .

Proof. The above statements hold trivially for α = int thanks to determinism (Lemma 3.3.12(1)).

(1) We prove symmetry and transitivity by induction on α.

• α = int: Holds trivially, as mentioned previously.

• α = β1 → β2:

– Transitivity:
Let M1 ≡β1→β2 M2 and M2 ≡β1→β2 M3 and let L1 ≡β1 L2 ≡β1 L3. By definition
we have M1@ [#L1] ≡β2 M2@ [#L2] and M2@ [#L2] ≡β2 M3@ [#L3] . From
IH we have M1@ [#L1] ≡β2 M3@ [#L3] , so we conclude M1 ≡β1→β2 M3.

– Symmetry:
Let M ≡β1→β2 M′ and N ≡β1 N′. By IH we have N ′ ≡β1 N . By definition we
get M@ [#N′] ≡β2 M′@ [#N] . Through another application of the IH we get
M′ @ [#N] ≡β2 M@ [#N′] , so we conclude.

(2) We prove reflexivity by proving the following statement:

Given any M : β1 → · · · → βk → int, for all L1 ≡β1 L′1, . . . , Lk ≡βk L′k, we have

M@ [#L1, . . . ,#Lk] ↠c n ⇒ M@ [#L′1, . . . ,#L′k] ↠c n

By symmetry, Lemma 4.2.10, and determinism (Lemma 3.3.12(1)) the above statement and
reflexivity are one and the same. The proof is done by induction on a type derivation of
M : β1 → · · · → βk → int. We set ≡α is reflexive as the first inductive hypothesis (IH1),
and make use of the following simultaneous sister statement (IH2):

Given ∆ ⊩r (P, T ) : β1 → · · · → βk → int, for all R⃗ |= ∆, R⃗′ |= ∆, if R⃗ ≡ R⃗′ then we
have ⟨R⃗, P, T ⟩ ≡β1→···→βk→int ⟨R⃗′, P, T ⟩.

• Case M : int: Holds trivially.

• Case M = ⟨R⃗, P, T ⟩: We have R⃗ |= ∆ and ∆ ⊩r (P, T ) : β1 → · · · → βk → int

from the type derivation, where r is the length of R⃗. From IH1 we have T ≡ T and
R⃗ ≡ R⃗, so we conclude with IH2.
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• Case P = Load i;P ′: We have ∆[i : γ] ⊩r (P ′, T ) : β2 → · · · → βk → int from the
type derivation. We have two subcases:

– T = [ ]: Then γ = β1. Let L1 ≡β1 L′1, . . . , Lk ≡βk L′k. Let R⃗, R⃗′ of length r such
that R⃗ |= ∆, R⃗′ |= ∆, R⃗ ≡ R⃗′. We use IH2 to obtain

⟨R⃗[Ri := #L1], P
′, [ ]⟩ ≡β2→···→βk→int ⟨R⃗′[R′

i := #L′1], P
′, [ ]⟩

By the definition of ≡α, we have

⟨R⃗[Ri := #L1], P
′, [L2, . . . , Lk]⟩↠c n

if and only if
⟨R⃗′[R′

i := #L′1], P
′, [L′2, . . . , L

′
k]⟩↠c n

By (3) for int and the definition of ≡α, we conclude that

⟨R⃗, Load i;P ′, [ ]⟩ ≡β1→···→βk→int ⟨R⃗′, Load i;P ′, [ ]⟩

– T = a :: T ′: We use IH1 to obtain #−1(a) ≡γ #−1(a), for some α. Let R⃗, R⃗′ of
length r such that R⃗ |= ∆, R⃗′ |= ∆, R⃗ ≡ R⃗′. We use IH2 to obtain

⟨R⃗[Ri := a], P ′, T ⟩ ≡β1→···→βk→int ⟨R⃗′[R′
i := a], P ′, T ⟩

Let L1 ≡β1 L′1, . . . , Lk ≡βk L′k. By the definition of ≡α, we have

⟨R⃗[Ri := a], P ′, T @ [L1, . . . , Lk] ⟩↠c n

if and only if
⟨R⃗′[R′

i := a], P ′, T @ [L′1, . . . , L
′
k] ⟩↠c n

By (3) for int and the definition of ≡α, we conclude that

⟨R⃗, Load i;P ′, T ⟩ ≡β1→···→βk→int ⟨R⃗′, Load i;P ′, T ⟩

• Case P = Call i: From the type derivation we have

∆[i : α1 → αj → β1 → βk → int] ⊩r (Call i, [N1, . . . ,Nj]) : β1 → βk → int

and N1 : α1, . . . ,Nj : αj . Let R⃗, R⃗′ of length r such that

R⃗ |= ∆[i : α1 → αj → β1 → βk → int]

R⃗′ |= ∆[i : α1 → αj → β1 → βk → int]

R⃗ ≡ R⃗′
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Then we have #−1(Ri) ≡α1→αj→β1→βk→int #−1(R′
i), and by IH1 we must have

N1 ≡α1 N1, . . . ,Nj ≡αj
Nj , so by Lemma 4.2.10 we have

#−1(Ri)@ [N1, . . . ,Nj] ≡β1→···→βk→int #
−1(Ri)@ [N1, . . . ,Nj]

Let L1 ≡β1 L′1, . . . , Lk ≡βk L′k. By definition, we have

#−1(Ri)@ [N1, . . . ,Nj, L1 . . . , Lk] ↠c n

if and only if
#−1(R′

i)@ [N1, . . . ,Nj, L
′
1 . . . , L

′
k] ↠c n

By (3) for int and the definition of ≡α, we conclude that

⟨R⃗, Call i, [N1, . . . ,Nj]⟩ ≡β1→···→βk→int ⟨R⃗′[R′
i := a], Call i, [N1, . . . ,Nj]⟩

• Case P = j3 � App(j1, j2);P
′: From the type derivation we have

(∆, j1 : α1 → α2, j2 : α1)[j3 : α2] ⊩
r (P ′, T ) : β1 → · · · → βk → int

Let R⃗, R⃗′ of length r such that

R⃗ |= ∆, j1 : α1 → α2, j2 : α1

R⃗′ |= ∆, j1 : α1 → α2, j2 : α1

R⃗ ≡ R⃗′

As R⃗ ≡ R⃗′, by definition, #−1(!Rj1·!Rj2) ≡α2 #
−1(!R′

j1
·!R′

j2
). Thus we can use IH2

to obtain

⟨R⃗[Rj3 :=!Rj1·!Rj2 ], P
′, T ⟩ ≡β1→···→βk→int ⟨R⃗′[R′

j3
:=!R′

j1
·!R′

j2
], P ′, T ⟩

Let L1 ≡β1 L′1, . . . , Lk ≡βk L′k. By definition, we have

⟨R⃗[Rj3 :=!Rj1·!Rj2 ], P
′, T @ L1 . . . , Lk ⟩↠c n

if and only if
⟨R⃗′[R′

j3
:=!R′

j1
·!R′

j2
], P ′, T @ L′1 . . . , L

′
k ⟩↠c n

By (3) for int and the definition of ≡α, we conclude that

⟨R⃗, j3 � App(j1, j2);P
′, T ⟩ ≡β1→···→βk→int ⟨R⃗′, j3 � App(j1, j2);P

′, T ⟩

• Cases P = j2 � Pred(j1);P
′, P = j2 � Succ(j1);P

′, P = j4 � Test(j1, j2, j3);P
′
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are analogous.

• Case M = Y. Let α = β1 → · · · → βk → int, L1 ≡β1 L′1, . . . , Lk ≡βk L′k, and
N ≡(β1→···→βk→int)→(β1→···→βk→int) N

′. We have:

Y@ [#N,#L1, . . . ,#Lk] ↠c n

⇒ Lemma 4.2.8

∃m ∈ N. fixm@ [#N,#L1, . . . ,#Lk] ↠c n

⇒ Lemma 4.2.9

fixm@ [#N′,#L′1, . . . ,#L′k] ↠c n

⇒ Lemma 4.2.8

Y@ [#N′,#L′1, . . . ,#L′k] ↠c n

Thus we can conclude that for all α, Y ≡(α→α)→α Y.

(3) By induction on α.

• α = int: Holds trivially.

• α = β1 → β2: Let L, L′ ∈ MA such that L ≡β1 L′. By Lemma 3.3.12.(3) we
have M@ [#L] →wh N@ [#L] , so by IH we have M@ [#L] ≡β2 N@ [#L] . As
N ≡β1→β2 N (reflexivity) we have N@ [#L] ≡β2 N@ [#L′] , so we have

M@ [#L] ≡β2 N@ [#L] ≡β2 N@ [#L′]

We conclude by transitivity.

(4) From (3) we have N1 ≡α N2. As M ≡α→β M by reflexivity, M@ [#N1] ≡β M@ [#N2]

by definition.

Corollary 4.2.12.
The relation ≡α is an equivalence.

Lemma 4.2.13.
For (E)PCF programs M,N1, . . . , Nn such that ⊢ M : α1 → · · · → αn → β and ⊢ Ni : αi for

all i (1 ≤ i ≤ n), we have

|M |@ [#|N1|, . . . ,#|Nn|] ≡β |MN1 · · ·Nn|.

Proof. By induction on n, the case n = 0 being trivial.

Case n > 0. By Definitions 4.1.4 and 4.1.1, we get

|MN1 · · ·Nn| = Pr11@ [#Pr11,#|MN1 · · ·Nn−1|,#|Nn|] ↠c |MN1 · · ·Nn−1|@ [#|Nn|] ,
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whence |MN1 · · ·Nn| ≡β |MN1 · · ·Nn−1|@ [#|Nn|] by Lemma 4.2.11(3). By IH, we have
|M |@ [#|N1|, . . . ,#|Nn−1|] ≡β |MN1 · · ·Nn−1|, so we conclude by Corollary 4.2.12.

Lemma 4.2.14 (Weakening for EAMs).

Let M ∈ ΛE be such that x1 : α1, . . . , xn : αn ⊢ M : β. Assume that xi /∈ FV(M) for some

i (where 1 ≤ i ≤ n). Then for all a1 ∈ Dα1 , . . . , an ∈ Dαn:

|M |x1,...,xn @ [a1, . . . , an] ≡β |M |x1,...,xi−1,xi+1,...,xn @ [a1, . . . , ai−1, ai+1, . . . , an]

Proof. By induction on a derivation of x1 : α1, . . . , xn : αn ⊢M : β. As a matter of notation, we
let Γ = x1 : α1, . . . , xn : αn and introduce the abbreviations

a⃗ = a1, . . . , an; x⃗ = x1, . . . , xn;

a⃗− = a1, . . . , ai−1, ai+1, . . . , an; x⃗− = x1, . . . , xi−1, xi+1, . . . , xn.

• Case Γ ⊢ 0 : int. We get

|0|x⃗@[⃗a] = Prn+1
1 @ [0, a⃗] , by Definition 4.1.4,

↠c #−1(0), by Lemma 4.1.2(1),

c↞ Prn1 @ [0, a⃗−] , by Lemma 4.1.2(1),
= |0|x⃗−@[⃗a−], by Definition 4.1.4.

Conclude by Lemma 4.2.11(3).

• Case Γ, y : β ⊢ y : β. Let b ∈ Dβ . By Definition 4.1.4 and Lemma 4.1.2(1), we have
|y|x⃗,y @ [⃗a, b] = Prn+1

n+1 @ [⃗a, b] ↠c #
−1(b) and |y|x⃗−,y@[⃗a−, b] = Prnn@ [⃗a−, b] ↠c #

−1(b).
Conclude by Lemma 4.2.11(3).

• Case Γ ⊢MN : β since Γ ⊢M : α→ β and Γ ⊢ N : α. Then, we have

|MN |x⃗@ [⃗a] = Apply2n@ [#Pr11,#|M |x⃗,#|N |x⃗, a⃗] , by Definition 4.1.4,
↠c |M |x⃗@ [⃗a,#(|N |x⃗@ [⃗a] )] , by Lemma 4.1.2(2).

By IH, we have |N |x⃗@ [⃗a] ≡α |N |x⃗− @ [⃗a−] and |M |x⃗@ [⃗a] ≡α→β |M |x⃗− @ [⃗a−] , so by
Lemma 4.2.11(2) (reflexivity), |M |x⃗@ [⃗a,#(|N |x⃗@[⃗a])] ≡β |M |x⃗@ [⃗a,#(|N |x⃗−@[⃗a−])] .
Conclude by Corollary 4.2.12, Lemma 4.2.11(3) and Definition 4.1.4.

• Case Γ ⊢ M⟨N/z⟩ : β with Γ, z : α ⊢ M : β and ⊢ N : α. By Definition 4.1.4 we get
|M⟨N/z⟩|x⃗@[⃗a] = |M |z,x⃗@ [#|N |, a⃗] . Conclude by applying the IH.

• Case Γ ⊢ λz.M : γ → δ since Γ, z : γ ⊢ M : δ. By Definition 4.1.4, |λz.M |x⃗ = |M |x⃗,z.
This case follows straightforwardly from the IH.
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• Case Γ ⊢ succM : int, since Γ ⊢M : int. We get

|succM |x⃗@ [⃗a] = Apply1n@ [#Succ,#|M |x⃗, a⃗] , by Definition 4.1.4,
↠c Succ@ [#(|M |x⃗@ [⃗a] )] , by Lemma 4.1.2(2).

From the IH we obtain |M |x⃗@ [⃗a] ≡int |M |x⃗− @ [⃗a−] , so by Lemma 4.2.11(2) (reflexivity),

Succ@ [#(|M |x⃗@[⃗a])] ≡int Succ@ [#(|M |x⃗−@[⃗a−])]

Conclude by Corollary 4.2.12, Lemma 4.2.11(3) and Definition 4.1.4.

• Case Γ ⊢ predM : int. Analogous.

• Case Γ ⊢ ifz(L,M,N) : β. Analogous.

• Case Γ ⊢ fixM : β since Γ ⊢M : β → β. Then,

|fixM |x⃗@ [⃗a] = Apply1n@ [#Y,#|M |x⃗, a⃗] , by Definition 4.1.4,
↠c Y@ [#(|M |x⃗@ [⃗a] )] , by Lemma 4.1.2(2).

By IH, we have |M |x⃗@ [⃗a] ≡β→β |M |x⃗− @ [⃗a−] , so by Lemma 4.2.11(2) (reflexivity) we
get

Y@ [#(|M |x⃗@ [⃗a] )] ≡β Y@ [#(|M |x⃗− @ [⃗a−] )]

Conclude by Definition 4.1.4, applying Corollary 4.2.12 and Lemma 4.2.11(3) if n > 1,
and Corollary 4.2.12 when n = 1.

Corollary 4.2.15.
Let M ∈ PE and α1, . . . , αn, β ∈ T. If ⊢ M : β then, for all x1, . . . , xn ∈ Var and ai ∈ Dαi

(1 ≤ i ≤ n), we have

|M |x1,...,xn @ [a1, . . . , an] ≡β |M | .

4.2.2 An Adequate Model

The intuitive description of our model from earlier is formalized in the following definition.

Definition 4.2.16 (Dα/≃α).

(1) For all types α ∈ T, define Dα = {a ∈ A | #−1(a) : α}.

(2) For α ∈ T and a, b ∈ Dα, we write a ≃α b whenever #−1(a) ≡α #−1(b) holds.

(3) We write [a]≃α for the equivalence class of a modulo ≃α.

(4) We let Dα/≃α = {[a]≃α | a ∈ Dα}.
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The model which is shown to be fully abstract is constructed as follows.

Definition 4.2.17.
Define the model D = ⟨(Dα/≃α)α∈T, ( ·α,β)α,β∈T, J−K⟩ where

[a]≃α→β
·α,β [b]≃α = [a · b]≃β

Jx1 : β1, . . . , xn : βn ⊢ P : αK = [#|P |x⃗]≃β1→···→βn→α

The application ·α,β is well defined by Proposition 3.3.21(1) and the interpretation function
J−K by Theorem 4.1.6. Note that two PCF programs P,Q of type α have the same interpretation
in the model D , i.e. JP Kα = JQKα, exactly when |P | ≡α |Q|. Hence, we mainly work with
translations of PCF terms modulo ≃α and draw conclusions for D at the end (Theorem 4.2.26).

Everything is now in place to prove that the model is sound and adequate.

Corollary 4.2.18 (Soundness).
For all PCF programs P1, P2 of type α, we have

|P1| ↔c |P2| ⇒ |P1| ≡α |P2|

Proof. By definition of interconvertibility↔c and Lemma 4.2.11(3).

Theorem 4.2.19 (Adequacy).
Given two PCF programs P1, P2 of type α, we have

|P1| ≡α |P2| ⇒ P1 ≡obs P2.

Proof. By Proposition 1.3.4 it is sufficient to show P1 ≡app P2. Proceed by induction on α. Base
case α = int. For i = 1, 2, we have Pi ↠PCF n ⇐⇒ |Pi| ↠c n, by Theorem 4.1.11. Then, this
case follows from the assumption |P1| ≡int |P2|, that is |P1| ↠c n ⇐⇒ |P2| ↠c n.

Case α = β1 → β2. Take any PCF program ⊢ Q1 : β1. Using Lemma 4.2.13 we get
|P1Q1| ≡β2 |P1|@ [#|Q1|] and |P2Q1| ≡β2 |P2|@ [#|Q1|] . From |P1| ≡β1→β2 |P2| and
|Q1| ≡β1 |Q1| (reflexivity), we get |P1|@ [#|Q1|] ≡β2 |P2|@ [#|Q1|] . By transitivity of≡β2 , we
get |P1Q1| ≡β2 |P2Q1| and by IH P1Q1 ≡app P2Q1. AsQ1 is arbitrary, conclude P1 ≡app P2.

4.2.3 Definability and Full Abstraction

The adequacy result established above gives one implication of the Full Abstraction property. In
order to prove the converse implication, namely completeness, we need to show that the model
does not contain any undefinable element (junk). This amounts to associate with any typable
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EAM, a PCF program of the same type exhibiting the same observational behavior (mutatis mu-

tandi). The problem is that an EAM might perform useless computations (e.g., updating the value
of a register that is subsequently never used) that could however prevent the machine from termi-
nating. To simulate the same behavior in the corresponding PCF term, we use a ‘convergency’
test Ifc(x, y) (if-converges-then) defined by: Ifc(x, y) = ifz(x, y, y). Indeed, given PCF pro-
grams P and Q such that ⊢ P : int, the program Ifc(P,Q) is observationally indistinguishable
from Q exactly when P is terminating, independently from its result.

Recall that an EAM typing context ∆ = i1 : βi1 , . . . , ik : βik is a list of associations between
indices of registers and types. Moreover, the judgments M : α, ∆ ⊩r (P, T ) : α and R⃗ |= ∆ have
been defined in Definition 3.3.16.

Definition 4.2.20 (Reverse Translation).
Let M ∈ MA, P be an EAM program, T ∈ TA, α ∈ T. Given M : α (resp. ∆ ⊩r (P, T ) : α),

we associate a PCF term LMMα (resp. LP, T M∆α ) defined by induction on the type-derivation as

follows:

LnMint = n;

LYM(α→α)→α = λx.fixx;

L⟨R⃗, P, T ⟩Mα = (λxi1 . . . xik .LP, T Mi1:βi1 ,...,ik:βikα ) · L#−1(!Ri1)Mβi1 · · · L#
−1(!Rik)Mβik ,

where R⃗ |= i1 : βi1 , . . . , ik : βik , for 1 ≤ k ≤ r;

LLoad i;P, [ ]M∆β→α = λxi.LP, [ ]M
∆[i:β]
α ;

LLoad i;P, a :: T M∆α =
(
λxi.LP, T M∆[i:β]

α

)
· L#−1(a)Mβ;

Lj � Pred(i);P, T M∆,i:intα = Ifc(xi, (λxj.LP, T M(∆,i:int)[j:int]α ) · (predxi));

Lj � Succ(i);P, T M∆,i:intα = Ifc(xi, (λxj.LP, T M(∆,i:int)[j:int]α ) · (succxi));

Ll � Test(i, j, k);P, T M∆,i:int,j:β,k:βα = Ifc(xi, (λxl.LP, T M(∆,i:int,j:β,k:β)[l:β]α ) · ifz(xi, xj, xk));

Lk � App(i, j);P, T M∆,i:β→α,j:β
γ = (λxk.LP, T M(∆,i:β→α,j:β)[k:α]

γ ) · (xi · xj);

LCall i, [a1, . . . , an]M∆,i:α1→···→αn→α
α = xi · L#−1(a1)Mα1

· · · L#−1(an)Mαn
.

It is easy to check that the PCF term associated with M : α is actually a PCF program.

Example 4.2.21.
Consider the EAMs introduced in Example 3.3.10. The reverse translation applied to said ma-

chines produces the following PCF programs:

(1) LIMα→α = LLoad 0; Call 0, [ ]Mα→α = λx0.LCall 0, [ ]M0:αα = λx0.x0.

(2) LY@ [#I] Mα = LLoad 0; Load 1; 0 � App(0, 1); 1 � App(1, 0); Call 1; [#Y,#I]Mα
= (λx0.(λx1.L0 � App(0, 1); 1 � App(1, 0); Call 1; [ ]Mα) · LIMα→α) · LYM(α→α)→α

= (λx0.(λx1.(λx
′
0.(λx

′
1.x

′
1) · (x1 · x′0)) · (x0 · x1)) · (λy0.y0)) · (λx.fixx).
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(3) LSucc1Mint→int = λx0.L0 � Succ(0); Call 0, [ ]M0:intint = λx0.Ifc(x0, (λx
′
0.x

′
0) · succx0).

(4) LSucc2Mint→int =
(
λx0.(λx1.(λx

′
1.(λx

′′
1.x

′′
1) · (x0 · x′1)) · (x0 · x1))

)
· LSucc1Mint→int.

Note that, for all PCF programs P of type int, the program LSucc1Mint→int · P is well typed and

converges to a natural number exactly when P does.

Proposition 4.2.22.

(1) Let M ∈MA and α ∈ T. If M : α then ⊢ LMMα : α.

(2) Let P be an EAM program, T ∈ TA, ∆ = i1 : αi1 , . . . , ik : αik be a type environment and

α ∈ T. Then,

∆ ⊩r (P, T ) : α ⇒ xi1 : αi1 , . . . , xik : αik ⊢ LP, T Mi1:αi1
,...,ik:αik

α : α

Proof. Both (1) and (2) follow by mutual induction on a derivation of M : α and ∆ ⊩r (P, T ) : α

and call IH1, IH2 the respective induction hypothesis.

As a matter of notation, if ∆ = i1 : αi1 , . . . , ik : αik we let ∆∗ = xi1 : αi1 , . . . , xik : αik .

(1) Case (nat). Then M = n and α = int. Conclude since LnMint = n and ⊢ n : int holds.

Case (fix). Then M = Y and α = (β → β)→ β. We type LYM∆α = λx.fixx as follows:

x : β → β ⊢ x : β → β
(ax)

x : β → β ⊢ fixx : β
(Y)

⊢ λx.fixx : (β → β)→ β
(→I)

Case (R⃗). Then M = ⟨R0, . . . , Rr, P, T ⟩ with R⃗ |= ∆ and ∆ ⊩r (P, T ) : α, for some
∆ = i1 : αi1 , . . . , ik : αik . From the former condition, by rules (R∅) and (RT), we get a
derivation of #−1(!Rij) : αij having smaller size, for all 1 ≤ j ≤ k. By applying IH1, we
obtain a derivation of ⊢ L#−1(!Rij)Mαij

: αij . From the latter condition and IH2, we have
∆∗ ⊢ LP, T M∆α : α. Therefore, we construct a derivation

∆∗ ⊢ LP, T M∆α : α

⊢λxi1 . . . xik .LP, T M∆α :αi1→ · · · → αik→ α ⊢L#−1(!Rij)Mαij
: αij 1≤j≤k

⊢ (λxi1 . . . xik .LP, T M∆α ) · L#−1(!Ri1)Mβi1 · · · L#
−1(!Rik)Mβik : α

(2) Case (load∅). Then P = Load j;P ′, T = [ ], α = β1 → β2 and ∆[j : β1] ⊩r (P ′, [ ]) : β2

has a derivation of smaller size. There are two subcases.

• Case j /∈ dom(∆), whence ∆[j : β1] = ∆, j : β1. By IH2 we get ∆∗ ⊢ LP ′, [ ]M∆,j:β1β2
:

β2. Simply apply rule (→I).
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• Case j ∈ dom(∆), say, j = ik. From the IH2 we get Γ, xik : β1 ⊢ LP ′, [ ]M∆[ik:β1]
β2

: β2

for Γ = xi1 : αi1 , . . . , xik−1
: αik−1

. By applying the rule (→I), we obtain a derivation
of Γ ⊢ λxik .LP ′, [ ]M∆[ik:β1]

β2
: β1 → β2 whence, by weakening (Lemma 2.2.13(2)), we

conclude Γ, xik : αik ⊢ λxik .LP ′, [ ]M∆[ik:β1]
β2

: β1 → β2.

Case (loadT). Then P = Load j;P ′, T = a :: T ′. Moreover, ∆[j : β] ⊩r (P ′, T ′) : α and
#−1(a) : β have a derivation of smaller size, for some β. From the former, one obtains a
derivation of ∆∗ ⊢ λxj.LP ′, T ′M∆[j:β]

α : β → α proceeding as above. By the IH1 applied
to the latter, we obtain a derivation of ⊢ L#−1(a)Mβ : β, whence ∆∗ ⊢ L#−1(a)Mβ : β

holds by strengthening (Lemma 2.2.13(2)). By applying the rule (→E), we conclude that
∆∗ ⊢

(
λxj.LP ′, T ′M∆[j:β]

α

)
· L#−1(a)Mβ : α is derivable.

Case (pred). Then P = j � Pred(i);P ′ and (∆, i : int)[j : int] ⊩r (P ′, T ′) : α has a
smaller derivation. We assume j /∈ dom(∆, i : int), otherwise proceed as in case (load∅).
By IH2, we obtain a derivation of ∆∗, xi : int, xj : int ⊢ L(P ′, T ′)M∆,i:int,j:intα : α, thus:

∆∗, xi : int ⊢ xi : int

∆∗, xi : int, xj : int ⊢ LP ′, T ′M∆,i:int,j:intα : α

∆∗, xi : int ⊢ λxj.LP ′, T ′M∆,i:int,j:intα : α

∆∗, xi : int ⊢ xi : int
∆∗, xi : int ⊢ predxi : int

∆∗, xi ⊢ (λxj.LP ′, T ′M∆,i:int,j:intα ) · (predxi) : α
∆∗, xi : int ⊢ Ifc(xi, (λxj.LP ′, T ′M∆,i:int,j:intα ) · (predxi)) : α

Case (succ). Analogous.

Case (call). Then P = Call i and T = [a1, . . . , an] with #−1(aj) : βj , for j (1 ≤ j ≤ n).
Call Γ = ∆∗, xi : β1 → · · · → βn → α. By IH1, we get ⊢ L#−1(aj)Mβj : βj whence
Γ ⊢ L#−1(a)Mβ : β holds by strengthening (Lemma 2.2.13(2)). Derive

Γ ⊢ xi : β1→ · · · → βn→ α Γ ⊢ L#−1(a1)Mβ1 : β1 · · ·Γ ⊢ L#−1(an)Mβn : βn
Γ ⊢ xi · L#−1(a1)Mβ1 · · · L#

−1(an)Mβn : α

(3) Case (app). Then P = l � App(i, j);P ′ and (∆, i : β1→β2, j : β1)[l : β2]⊩r(P ′, T ) : α

has a smaller derivation, for some β1, β2. Assume that l /∈ dom(∆, i : β1→β2, j : β1),
otherwise proceed as in case (load∅). Setting Γ′ = ∆∗, xi : β1 → β2, xj : β1, we get:

Γ, xl : β2 ⊢ LP ′, T M∆,i:β1→β2,j:β1,l:β2
α : α

Γ ⊢ λxl.LP ′, T M∆,i:β1→β2,j:β1,l:β2
α : β2 → α

Γ ⊢ xi : β1 → β2 Γ ⊢ xj : β1
Γ ⊢ xi · xj : β2

Γ ⊢ (λxl.LP ′, T M∆,i:β1→β2,j:β1,l:β2
α ) · (xi · xj) : α

Case (test). Then P = m � Test(i, j, l);P ′ and for some β ∈ T there is a smaller
derivation of (∆, i : int, j : β, l : β)[m :β]⊩r (P, T ) :α. If m ∈ dom(∆, i : int, j : β, l : β),
proceed as in case (load∅). Otherwise, letting Γ = ∆∗, xi : int, xj : β, xl : β, xm : β, we
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get:

Γ ⊢ xi : int

Γ, xm : β ⊢ LP ′, T M∆,i:int,j:β,l:β,m:β
α : α

Γ ⊢ λxm.LP ′, T M∆,i:int,j:β,l:β,m:β
α : β → α

Γ ⊢ xn : int, n ∈ {i, j, k}
Γ ⊢ ifz(xi, xj, xl) : β

Γ ⊢ (λxm.LP ′, T M∆,i:int,j:β,l:β,m:β
α ) · ifz(xi, xj, xl) : α

Γ ⊢ Ifc(xi, (λxm.LP ′, T M∆,i:int,j:β,l:β,m:β
α ) · ifz(xi, xj, xl)) : α

This concludes the proof.

Theorem 4.2.23.
For all EAMs M : α, we have |LMMα| ≡α M.

Proof. One needs to consider the additional statement:

“For all i1 : αi1 , . . . , in : αin ⊩r (P, T ) : α, ai1 ∈ Dαi1
, . . . , ain ∈ Dαin

,

|LP, T Mi1:αi1
,...,in:αin

α |xi1 ,...,xin @ [ai1 , . . . , ain ] ≡α ⟨R⃗r
ai1 ,...,ain

, P, T ⟩,

where R⃗r
ai1 ,...,ain

denotes the list of registers R0, . . . , Rr such that, for all j (0 ≤ j ≤ r), !Rj = aj

if j ∈ {i1, . . . , in}, and !Rj = ∅ otherwise.”

The two statements are proven by mutual induction on a derivation of M : α and a derivation
of ∆ ⊩r (P, T ) : α, respectively. We refer to the former induction hypothesis as IH1 and to the
latter as IH2. As a matter of notation, we let ∆ = i1 : βi1 , . . . , in : βin , x⃗ = xi1 , . . . , xin , and
a⃗ = ai1 , . . . , ain such that for all j ∈ {i1, . . . , in}, aj ∈ Dβj .

• Case k : int. We prove this case by induction on k ∈ N (and call this IH1′).

– Case k = 0: By Definition 4.1.4 we get |L0Mint| = |0| = Pr11@[0]. Conclude by
Lemmas 4.1.2(1) and 4.2.11(3).

– Case k = m+ 1, for some m ∈ N. Then by Definitions 4.1.4 and 4.2.20, we have

|LkMint| = |m+ 1| = |succm|
= Apply10@ [#Succ,#|m|] = Pr11@[#Succ,#|m|].

By IH1′ we have |m| ≡int m, so Pr11@[#Succ,#|m|] ≡int Pr11@[#Succ,m], by re-
flexivity. Conclude by Lemma 4.1.2(1),(4), Lemma 4.2.11(3), and transitivity.

• Case Y : (α → α) → α. Let a, b ∈ Dα→α such that a ≃α→α b. Since by Lemma 4.1.3(1)
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and Lemma 4.2.11(3) we have Pr11@ [a] ≡α→α #−1(a), we obtain

|LYM(α→α)→α|@ [a] = |λx.fixx|@ [a] , by Definition 4.2.20,

= Apply11@ [#Y,#Pr11, a] , by Definition 4.1.4,
↠c #−1(a)@ [#Y · (#Pr11 · a)] , by Lemma 4.1.2(6),
≡α #−1(a)@ [#Y · a] , by Lemma 4.2.11(4),
≡α #−1(a)@ [#Y · b] , by reflexivity,
≡α #−1(b)@ [#Y · b] , by Definition 4.2.16,

c↞ Y@ [b] , by Lemma 4.1.2(6).

Conclude by Lemma 4.2.11(3) and transitivity.

• Case ⟨R⃗, P, T ⟩ : α. Let R⃗ |= ∆. By Definition 4.2.20, Lemma 4.1.2, and Definition 4.1.4
we get

|L⟨R⃗, P, T ⟩Mα| = |(λxi1 . . . xin .LP, T M∆α ) · L#−1(!Ri1)Mβi1 · · · L#
−1(!Rin)Mβin |

= |LP, T M∆α |x⃗@ [#|L#−1(!Ri1)Mβi1 |, . . . ,#|L#
−1(!Rin)Mβin |]

By IH1, for all k ∈ dom(∆), we have #|L#−1(!Rk)Mβk | ≃α!Rk. Then by reflexivity,

|LP, T M∆α |x⃗@ [#|L#−1(!Ri1)Mβi1 |, . . . ,#|L#
−1(!Rin)Mβin |]

≡α |LP, T M∆α |x⃗@ [!Ri1 , . . . , !Rin ]

Conclude by IH2, Lemma 4.2.11(3), and transitivity.

• Case ∆ ⊩r (Load k;P, [ ]) : β → α. There are two subcases.

– Subcase k /∈ dom(∆). Let b, c ∈ Dβ such that b ≃β c. We get

|LLoad k;P, [ ]M∆β→α|x⃗@ [⃗a, b]

= |λxk.LP, [ ]M∆,k:βα |x⃗@ [⃗a, b] , by Definition 4.2.20,
= |LP, [ ]M∆,k:βα |x⃗,xk @ [⃗a, b] , by Definition 4.1.4,
≡α ⟨R⃗r

a⃗,b, P, [ ]⟩, by IH2,

c← ⟨R⃗r
a⃗, Load k;P, [b]⟩, by Definition 3.3.11,

≡α ⟨R⃗r
a⃗, Load k;P, [c]⟩, by reflexivity.

Conclude by Lemma 4.2.11(3) and transitivity.

– Subcase k ∈ dom(∆). Let k = im, and let b, c ∈ Dβ such that b ≃β c. We also fix
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x⃗′ = xi1 , . . . , xim−1 , xim+1 , . . . , xin and a⃗′ = ai1 , . . . , aim−1 , aim+1 , . . . , ain . We get

|LLoad k;P, [ ]M∆β→α|x⃗@ [⃗a, b]

= |λxk.LP, [ ]M∆[k:β]
α |x⃗@ [⃗a, b] , by Definition 4.2.20,

≡α |λxk.LP, [ ]M∆[k:β]
α |x⃗′ @ [a⃗′, b] , by Lemma 4.2.14,

= |LP, [ ]M∆,k:βα |x⃗′,xk @ [a⃗′, b] , by Definition 4.1.4,
≡α ⟨R⃗r

a⃗′,b
, P, [ ]⟩, by IH2,

c↞ ⟨R⃗r
a⃗, Load k;P, [b]⟩, by Definition 3.3.11,

≡α ⟨R⃗r
a⃗, Load k;P, [c]⟩, by reflexivity.

Conclude by Lemma 4.2.11(3) and transitivity.

In the cases following, we assume that k /∈ dom(∆). If k ∈ dom(∆), one proceeds as above.

• Case ∆ ⊩r (Load k;P, b :: T ) : α. By Definition 4.2.20, Lemma 4.1.2, and Defini-
tion 4.1.4, we get

|LLoad k;P, b :: T M∆α |x⃗@ [⃗a]

= |(λxk.LP, T M∆,k:βα ) · L#−1(b)Mβ|x⃗@ [⃗a]

= Apply2n@ [#Pr11,#|LP, T M∆,k:βα |x⃗,xk ,#|L#−1(b)Mβ|x⃗, a⃗]
↠c |LP, T M∆,k:βα |x⃗,xk @ [⃗a,#(|L#−1(b)Mβ|x⃗@ [⃗a] )] .

By Proposition 4.2.22, ⊢ L#−1(b)Mβ : β, so #|L#−1(b)Mβ|@ a⃗ ≃α b by Corollary 4.2.15
and IH1. By reflexivity, we obtain

|LP, T M∆,k:βα |x⃗,xk @ [⃗a,#(|L#−1(b)Mβ|x⃗@ [⃗a] )] ≡α |LP, T M∆,k:βα |x⃗,xk @ [⃗a, b] .

Conclude by IH2, Lemma 4.2.11(3), and transitivity.

• Case xi1 : βi1 , . . . , xim : int, . . . , xn : βin ⊩r (k � Pred(im);P, T ) : α. Fix the notation
M = |(λxk.LP, T M∆,k:intα ) · (predxim)|x⃗. By Definition 4.2.20 and Lemma 4.1.2 we get

|Lk � Pred(im);P, T M∆α |x⃗@ [⃗a]

= |Ifc(xim , (λxk.LP, T M∆,k:intα ) · (predxim))|x⃗@ [⃗a]

= Apply3n@ [#Ifz,#Prnim ,#M,#M, a⃗]

↠c Ifz@ [#(Prnim @ [⃗a] ),#(M@ [⃗a] ),#(M@ [⃗a] ), a⃗]

≡α Ifz@ [aim ,#(M@ [⃗a] ),#(M@ [⃗a] ), a⃗] .

There are two subcases from this point.

– Subcase #−1(aim) does not terminate. Then, by Definition 3.3.11, we have that the
machine Ifz@ [aim ,#(M@ [⃗a] ),#(M@ [⃗a] ), a⃗] and ⟨R⃗r

a⃗, l � Pred(k);P, T ⟩ cannot
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terminate either. By Definition 3.3.16, we have ⟨R⃗r
a⃗, l � Pred(k);P, T ⟩ : α. Con-

clude by Lemma 4.2.11(3) and transitivity.

– Subcase #−1(aim) ↠c t = #−1(t), for some t ∈ N. Now, easy calculations give
|LpredximM∆int|x⃗@ [⃗a] ↠c t

′ := #−1(t⊖1), from which |LpredximM∆int|x⃗@ [⃗a] ≡int t
′

follows by Lemma 4.2.11(3). Then we get

Ifz@ [aim ,#(M@ [⃗a] ),#(M@ [⃗a] ), a⃗]

↠c |(λxk.LP, T M∆,k:intα ) · (predxim)|x⃗@ [⃗a] , by Lem. 4.1.2(6),

= Apply2n@

[
#Pr11,#|LP, T M∆,k:intα |x⃗,xk ,
#|LpredximM∆int|x⃗, a⃗

]
, by Def. 4.1.4,

↠c |LP, T M∆,k:intα |x⃗,xk @ [⃗a,#(|LpredximM∆int|x⃗@ [⃗a] )] , by Lem. 4.1.2(2),
≡α |LP, T M∆,k:intα |x⃗,xk @ [⃗a, t⊖ 1, 0)] , by reflexivity,
≡α ⟨R⃗r

a⃗[Rk := t⊖ 1], P, T ⟩, by IH2,
≡α ⟨R⃗r

a⃗, k � Pred(im);P, T ⟩, by Lem. 4.2.11(3).

Conclude by Lemma 4.2.11(3) and transitivity.

• Case xi1 : βi1 , . . . , xim : int, . . . , xn : βin ⊩r (k � Succ(im);P, T ) : α. Analogous.

• Case ∆ ⊩r (k � Test(il, im1 , im2);P, T ) : α, where ∆(l) = int, ∆(im1) = β, ∆(im2) =

β. There are two subcases.

– Subcase #−1(ail) does not terminate. Proceed as in the case for
xi1 : βi1 , . . . , xim : int, . . . , xn : βin ⊩r (k � Pred(im);P, T ) : α.

– Subcase #−1(ail) ↠c #
−1(t), t ∈ N. Proceed as in the case for

xi1 : βi1 , . . . , xim : int, . . . , xn : βin ⊩r (k � Pred(im);P, T ) : α to get

|Lk � Test(il, im1 , im2);P, T M∆α |x⃗@ [⃗a]

≡α
|LP, T M∆,k:βα |x⃗, xk@ [⃗a,#(|ifz(xil , xim1

, xim2
)|x⃗@ [⃗a] )]

There are two subcases.

∗ Subcase t = 0. We have |ifz(xil , xim1
, xim2

)|x⃗@ [⃗a] ≡β #−1(aim1
) by applying

Lemma 4.2.11(3). Then we get

|LP, T M∆,k:βα |x⃗,xk @ [⃗a,#(|ifz(xil , xim1
, xim2

)|x⃗@ [⃗a] )]

≡α |LP, T M∆,k:βα |x⃗,xk @ [⃗a, aim1
] , by reflexivity,

≡α ⟨R⃗r
a⃗[Rk := aim1

], P, T ⟩, by IH2,
≡α ⟨R⃗r

a⃗, k � Test(il, im1 , im2);P, T ⟩, by Lemma 4.2.11(3).

Conclude by Lemma 4.2.11(3) and transitivity.
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∗ Subcase t > 0. We have |ifz(xil , xim1
, xim2

)|x⃗@ [⃗a] ≡β #−1(aim2
) by applying

Lemma 4.2.11(3). Then we get

|LP, T M∆,k:βα |x⃗,xk @ [⃗a,#(|ifz(xil , xim1
, xim2

)|x⃗@ [⃗a] )]

≡α |LP, T M∆,k:βα |x⃗,xk @ [⃗a, aim2
] , by reflexivity,

≡α ⟨R⃗r
a⃗[Rk := aim2

], P, T ⟩, by IH2,
≡α ⟨R⃗r

a⃗, k � Test(il, im1 , im2);P, T ⟩, by Lemma 4.2.11(3).

Conclude by Lemma 4.2.11(3) and transitivity.

• Case ∆ ⊩r (k � App(il, im);P, T ) : γ, where ∆(il) = β → α and ∆(im) = β. By
Definition 4.2.20, Definition 4.1.4, and Lemma 4.1.2(2), we get

|Lm � App(il, im);P, T M∆γ |x⃗@ [⃗a]

= |(λxk.LP, T M∆,k:βγ ) · (xil · xim)|x⃗@ [⃗a]

= Apply2n@ [#Pr11,#|LP, T M∆,k:βγ |x⃗,xk ,#|xil · xim|x⃗, a⃗]
↠c |LP, T M∆,k:βγ |x⃗,xk @ [⃗a,#(|xil · xim |x⃗@ [⃗a] )]

By Lemma 4.2.11(3) we have #Prnim @ [⃗a] ≡β #−1(aim). We then have

|xil · xim |x⃗@ [⃗a] = Apply2n@ [#Pr11,#Prnil ,#Prnim , a⃗] , by Definition 4.1.4,
↠c Prnil @ [⃗a,#(#Prnim @ [⃗a] )] , by Lemma 4.1.2(2),
≡α Prnil @ [⃗a, aim ] , by reflexivity,
≡α #−1(ail)@ [aim ] , by Lemma 4.2.11(3).

Thus we get

|LP, T M∆,k:βγ |x⃗,xk @ [⃗a,#(|xil · xim|x⃗@ [⃗a] )]

≡γ |LP, T M∆,k:βγ |x⃗,xk @ [⃗a, ail · aim ] , by reflexivity,
≡γ ⟨R⃗r

a⃗[Rk := ail · aim ], P, T ⟩, by IH2,
≡γ ⟨R⃗r

a⃗, k � App(il, im);P, T ⟩, by Lemma 4.2.11(3).

Conclude by Lemma 4.2.11(3) and transitivity.

• Case ∆ ⊩r (Call k, [b1, . . . , bm]) : α, where we have ∆(k) = γ1 → · · · → γm → α

and for all 0 < j ≤ m, bj ∈ Dγj . Let b⃗ = b1, . . . , bm. By Definition 4.2.20 we get
|LCall k, [⃗b]M∆α |x⃗@ [⃗a] = |xk · L#−1(b1)Mγ1 · · · L#

−1(bm)Mγm |x⃗@ [⃗a] . By an easy induction
on m, one shows the following:

|xk · L#−1(b1)Mγ1 · · · L#
−1(bm)Mγm|x⃗@ [⃗a] ≡α |xk|x⃗@ [⃗a, b⃗] (cf. Lemma 4.2.13).

By Definition 4.1.4 and Lemma 4.1.2(1), |xk|x⃗@ [⃗a, b⃗] = Prnk @ [⃗a, b⃗] ↠c #−1(ak)@ [⃗b] .
Conclude by Lemma 4.2.11(3) and transitivity, as ⟨R⃗r

a⃗, Call k, [⃗b]⟩ →c #
−1(ak)@ [⃗b] .
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Corollary 4.2.24.
For all a ∈ Dα, there is a PCF program ⊢ Pa : α such that |Pa| ≡α #−1(a).

Theorem 4.2.25 (Completeness).
Given two PCF programs P1, P2 of type α, we have

P1 ≡obs P2 ⇒ |P1| ≡α |P2|

Proof. Assume P1 ≡obs P2. Let α=α1 → · · · → αn → int and a1, b1 ∈ Dα1 , . . . , an, bn ∈ Dαn

be such that #−1(ai) ≡αi
#−1(bi). By Corollary 4.2.24, there are PCF programs Q1, . . . , Qn,

and Q′
1, . . . , Q

′
n such that Qi, Q

′
i have type αi and both #−1(ai) ≡αi

|Qi| and #−1(bi) ≡αi
|Q′

i|
hold, for every such i. We get

|P1|@ [a1, . . . , an] ≡int |P1|@ [#|Q1|, . . . ,#|Qn|] , as |P1| ≡α |P1| (Corollary 4.2.12),
≡int |P1 ·Q1 · · ·Qn|, by Lemma 4.2.13,

|P1 ·Q1 · · ·Qn| ↠c k ⇔ P1 ·Q1 · · ·Qn ↠PCF k, by Theorem 4.1.11,
⇔ P2 ·Q1 · · ·Qn ↠PCF k, as P1 ≡obs P2,

⇔ |P2 ·Q1 · · ·Qn| ↠c k, by Theorem 4.1.11,
|P2 ·Q1 · · ·Qn| ≡int |P2|@ [#|Q1|, . . . ,#|Qn|] , by Lemma 4.2.13,

≡int |P2|@ [b1, . . . , bn] , as |P2| ≡α |P2| (Corollary 4.2.12).

Conclude by transitivity (Lemma 4.2.114.2.12).

Adequacy and completeness together yield full abstraction.

Theorem 4.2.26 (Full Abstraction).
The model D is fully abstract for PCF.

Proof. By Definition 4.2.17, the interpretation in D is defined by JP Kα = [#|P |]≃α . Therefore,
the full abstraction property follows directly from Theorems 4.2.19 and 4.2.25.





Chapter 5

Categorical Interlude

In the previous chapters, we have focused on fully abstract models for PCF. We will now move
on to models which, while not being fully abstract, are still of interest. Due to the constraints
required of fully abstract models (they may not contain “junk”), there are many (quantitative)
aspects of program behaviour which are unable to be analysed by them – runtime, i.e. the number
of reduction steps, to name but an example. We will be presenting and analysing a particular
group of categorical models. A categorical model is a model created from a category taken from
the field of category theory. Thus, we will need to begin with an introduction to category theory.

5.1 Category Theory Preliminaries

Category theory is unto categories as set theory is unto sets. Whereas set theory focuses on the
study of objects, category theory focuses on the study of arrows – directed connections between
objects. The traditional way of presenting categories is by using set theory as a foundation. We
will encounter issues related to sizing in the definition - for a (brief) discussion on this, ZFC set
theory, and the definition of a class, please see the appendix. The sources used for the basic
definitions are [EGRS04, BW95, ML78, Com].

Definition 5.1.1 (Categories).
A category C consists of

• a class of objects Ob(C);

• for every pair of objects A,B ∈ Ob(C), a class of arrows from A to B: C(A,B). These

arrows are often depicted graphically; if φ ∈ C(A,B), then we also depict it as

A B
φ

We also require the following to be satisfied:

93
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• for every object A ∈ Ob(C), there must be an identity arrow idA ∈ C(A,A);

• for every pair of arrows f ∈ C(A,B), g ∈ C(B,C), there must be a composite arrow

f ; g ∈ C(A,C), also written g ◦ f ;

• composition must be associative: for every triple f ∈ C(A,B), g ∈ C(B,C), h ∈ C(C,D)

we must have (f ; g);h = f ; (g;h);

• the identity arrows must satisfy left and right unit laws: for every f ∈ C(A,B), we must

have idA; f = f = f ; idB.

We generally write a ∈ C to mean a ∈ Ob(C), writing φ ∈ C(A,B) when referring to
elements of an arrow class rather than elements of the objects class.

Definition 5.1.2 (Monoid).
A monoid is a triple (M, ·M , 1M) consisting of:

• A set M ;

• A binary operator ·M :M ×M →M ;

• An identity element 1M ;

such that the binary operator is associative, and the identity element acts as a left and right unit

for the operator. If the binary operator is also commutative, then the monoid is a commutative
monoid.

Example 5.1.3.
The following are some common examples of categories:

• The category Set, whose objects are (small) sets, and whose arrows are functions. Com-

position is given by function composition, and the identity arrows are identity functions.

• The category Rel, whose objects are (small) sets, and whose arrows are binary relations

– for A,B ∈ Rel, Rel(A,B) = P(A × B) the powerset of A × B. Intuitively, a relation

is a set of “valid” pairings between elements of two sets. One can also see a relation as a

matrix where A indexes the columns, B the rows, and with elements populated by “true”

if a pairing is valid and “false” otherwise. Using this perspective, composition in Rel is

given by matrix multiplication of the underlying boolean semiring1, with the identities are

given by the identity matrix.

• The category Poset, whose objects are partially ordered sets, and whose arrows are mono-

tone (order preserving/reversing) maps.2

1Semirings and the boolean semiring will be defined later.
2If the reader is unfamiliar with partially ordered sets, a definition is given later in Definition 5.1.31.
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• The category CMonoid, whose objects are commutative monoids and whose arrows are

monoid homomorphisms.

• A category can trivially be constructed from any monoid by considering a single element

set as the set of objects, the objects of the monoid as the set of arrows, and composition

given by the monoid operator.

Definition 5.1.4 (Categorical Diagrams).
A categorical diagram is a graphical representation of morphisms in a category. Let us assume

the presence of two morphisms φ, ψ ∈ C(A,B), and the diagram

A B

φ

ψ

We say that the diagram commutes if φ = ψ. This convention is extended in multiple ways; φ

and ψ could be the composite of other arrows, and multiple equalities can be expressed in the

same diagram. If we wish to name a particular diagram, then we write the name in the centre

of the diagram. The identity arrow is often replaced by a double line similar to = to increase

readability.

Example 5.1.5.
The following diagrams commute as a result of the definition of a category:

A B A B

A B C D

φ

φ

idA

α

α;β

γ

β;γ
β

idAφ

The first diagram presents the left and right unit laws. The second diagram is unnamed and

simultaneously presents composition and associativity of composition.

Definition 5.1.6 (Product Category).
Much like sets, one can define a category from the cartesian product of two categories. Given

categories C,D, the category C× D is defined with:

• Ob(C× D) = {(a, b)|a ∈ C, b ∈ D};

• C× D(A×B,A′ ×B′) = {(φ, ψ)|φ ∈ C(A,A′), ψ ∈ D(B,B′)}.

Composition, identities, and associativity are inherited from C and D.
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The cartesian product for categories is an example of a trend in category theory called cate-

gorification. It is common for notions from other branches of mathematics to be “lifted” into a
categorical setting. The original notion is then treated as a particular example of the categorified
notion. Often notions can be lifted into the categorical setting in multiple different ways to very
different outcomes - we will see some examples of this later on.

Definition 5.1.7 (Opposite Category).
Given a category C, the opposite category Cop is defined with Ob(Cop) = Ob(C), and the ar-

rows swapped Cop(A,B) = C(B,A). Composition and identities are the reversed form of the

corresponding arrows in C.

Definition 5.1.8 (Functor).
A functor is an arrow between categories which preserves their structure. That is to say, given

categories C,D a functor F : C→ D behaves as follows:

• For every A ∈ Ob(C), F (A) ∈ Ob(D);

• For every φ ∈ C(A,B), F (φ) ∈ D(F (A), F (B));

such that F preserves composition and identities, i.e.

F (A) F (B)

F (A) F (A)

F (C)

F (φ;ψ)

F (φ)

F (ψ)

F (idA)

idF (A)

Unless it causes clarity issues, we typically omit the brackets when discussing functors ap-
plied to objects, i.e. FA = F (A). Note that functors can always be composed to form another
functor.

Example 5.1.9.
A common example of functors are so-called “forgetful functors” which discard structure present

in one category. For example, there exists a forgetful functor from Poset to Set which simply

discards all orderings.

Definition 5.1.10 (Endofunctor).
An endofunctor is a functor from a category to itself.

Definition 5.1.11 (Contravariant Functor).
A contravariant functor F : C→ D is a functor from Cop to D.
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Definition 5.1.12 (Natural Transformations).
A natural transformation is an arrow between functors which preserves their structure. Given

functors F,G : C→ D, a natural transformation α : F → G, denoted

C D

F

G

α

consists of an assignment to every A ∈ C of an arrow αA ∈ D(FA,GA), such that for every

morphism f ∈ C(A,B), the following diagram commutes (in D):

FA FB

nat(α)

GA GB

αA

F (f)

G(f)

αB

When defining natural transformations it is common to write “αA : FA → GA is a natural

transformation” or even “αA : FA → GA is natural,” rather than the full definition denoted

above. Composition of natural transformations makes use of composition in D.

Definition 5.1.13 (Adjoint Functors).
Consider two categories C,D and two functors F : C→ D, G : D→ C. If we have the following:

• A natural transformation ηA : A→ GFA called the unit;

• A natural transformation ϵA : FGA→ A called the counit;

• The following diagrams commute (in D and C respectively):

FGFA GFGA

FA FA GA GA

FηA ϵFA ηGA GϵA

Then we say that F and G are adjoint functors, with F being the left adjoint to G and G the right
adjoint to F . This is written F ⊣ G, or alternatively

D C
G

F

⊣

Example 5.1.14.
Many of the forgetful functors mentioned in Example 5.1.9 have left adjoints – such functors
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are called “free functors”, and they introduce some additional structure in the simplest manner

possible. The forgetful functor from Poset to Set has such a left adjoint: It takes a set A ∈ Set

to the poset (A,≤) where for all a, b ∈ A, a ≤ b⇒ a = b, and leaves functions unchanged. Both

the unit and counit are then the identity functions in the corresponding categories.

Definition 5.1.15 (Isomorphisms).
An isomorphism is the categorification of the notion of a bijection. Given an arrow f : A → B

in a category C, we say that f is an isomorphism if there also exists an arrow f−1 : B → A such

that f ; f−1 = idA and f−1; f = idB.

If f is a natural transformation, then it is called a natural isomorphism, written f : A ≃ B.

Definition 5.1.16 (Monads).
A monad on a category C consists of:

• An endofunctor M : C→ C

• A natural transformation ηMA : A→ MA called the unit;

• A natural transformation µM
A : MMA→ MA called multiplication;

such that the following diagrams commute:

MA MMA MMMA MMA

u(M) m(M)

MMA MA MMA MA

ηMA M

µMA µMAM

MµMA

µMA

µMAµMA

MηMA

idA

We can also obtain the dual notion of a comonad by reversing the arrows.

Definition 5.1.17.
A comonad on C is a monad on Cop.

Monads can be seen as a form of categorifying monoids. The diagrams can be seen as pro-
viding the left and right unit and associativity respectively. Monads are particularly interesting
due to their close relationship with adjoint functors:

Proposition 5.1.18.
Let F ⊣ G be a pair of adjoint functors where F : C → D, with unit ηA and counit ϵA. Then

F ;G is a monad on C and G;F is a comonad on D.
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The unit of the adjunction is then the same as the unit of the monad F ;G, hence they are
given the same name.

The converse also holds, in a way. What is important for the converse is the choice of D, as
it is not given. One possibility is the so-called Kleisli Category of a monad.

Definition 5.1.19 (Kleisli Category).
Given a monad M on a category C, the Kleisli category CM of M on C is defined as follows:

• The objects of CM are the same as the objects of C;

• The morphisms of CM are of the form A→ MB in C, i.e. CM(A,B) = C(A,MB).

• Composition of morphisms f : A→ MB, g : B → MC in the Kleisli category are defined

using µM
C :

g ◦CM f = µM
C ◦C Mg ◦C f

• The identity is given by ηMA .

When C and M are both clearly stated, we will often write morphisms f : A→ MB as

f : A Bp . In other words, the two diagrams below are treated as one and the same.

A B A MB

C D MC MMD MD

g p

fp

h
p

u Mu

µMD
Mh

g

f

Proposition 5.1.20.
Let M : C → C be a monad. Then M = F ;G for some functors F : C → CM, G : CM → C,
where F ⊣ G.

Kleisli categories are not the only categories for which the above property holds, but they
are certainly the simplest. We also have co-Kleisli categories which are to comonads as Kleisli
categories are to monads.

Definition 5.1.21.
Given a comonad M on a category C, the co-Kleisli category of M on C is the category ((Cop)M)

op.
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Proposition 5.1.22 (Distribution of Monads).
Given two monads R, S, the composite functor RS can also form a monad if a distributive law

θ : SR → RS can be defined such that θ is a natural transformation and the following diagrams

commute:

SA RA

SRA RSA SRA RSA

SRRA RSRA RRSA SSRA SRSA RSSA

SRA RSA SRA RSA

SηRA

θA

ηRSA ηSRA

θA

RηSA

θA RθA

SµRA µRSA

θA

µSRA

SθA θA

RµSA

θA

In this case, ηRS
A = ηSA; η

R
A and µRS

A = RθSA;µ
R
A; Rµ

S
A.

Proposition 5.1.23.
Given two monads R, S on a category C such that RS is also a monad, then S(−); θ is a monad

on CR.

5.1.1 Modelling PCF Using Categories

With the basic notions introduced, we move on to the notions necessary for modelling PCF. We
must first discuss the categories used to model the simply typed λ-calculus, and then we can
further narrow down the requirements placed upon such categories until we can model PCF. To
model the simply typed λ-calculus, we need to represent abstraction and application in categories.

Definition 5.1.24 (Finite Products and Coproducts).
A category C has finite products if for every finite list X1, . . . , Xn of objects of C, there is an

object X1 × · · · ×Xn ∈ C and, for 1 ≤ i ≤ n, there is a map

πi ∈ C(X1 × · · · ×Xn, Xi)

such that for every object A ∈ C and every family of morphisms fi ∈ C(A,Xi), i ≤ n, there is

a unique morphism h ∈ C(A,X1 × · · · × Xn) such that for 1 ≤ j ≤ n, the following diagram

commutes:
A

X1 × · · · ×Xn Xj

h
fj

πj
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A category C has finite coproducts if Cop has finite products. Spelled out, this means that for every

finite list X1, . . . , Xn of objects of C, there is an object X1 + · · · +Xn ∈ C and, for 1 ≤ i ≤ n,

there is a map

ιi ∈ C(Xi, X1 + · · ·+Xn)

such that for every object A ∈ C and every family of morphisms fi ∈ C(Xi, A), i ≤ n, there is

a unique morphism h ∈ C(X1 + · · · + Xn, A) such that for 1 ≤ j ≤ n, the following diagram

commutes:
Xj

X1 + · · ·+Xn A
h

fj
ιj

Definition 5.1.25 (Symmetric Monoidal Category).
A symmetric monoidal category consists of a category C, together with:

• A functor ⊗ : C× C→ C, called the tensor product;

• An object 1 ∈ C, called the unit object;

• A natural isomorphism asocA,B,C : (A⊗B)⊗ C ≃ A⊗ (B ⊗ C) called the associator;

• Natural isomorphisms unlA : 1⊗ A ≃ A and unrA : A⊗ 1 ≃ A, called the left unitor and

right unitor respectively;

• A natural isomorphism symA,B : A⊗B ≃ B ⊗ A traditionally called the braiding;

such that for all A,B ∈ C, symA,B; symB,A = idA⊗B, and the following diagrams commute in

all directions:
(A⊗ 1)⊗B A⊗ (1⊗B)

A⊗B

asocA,1,B

idA⊗unlBunrA⊗idB

(A⊗B)⊗ (C ⊗D)

((A⊗B)⊗ C)⊗D A⊗ (B ⊗ (C ⊗D))

(A⊗ (B ⊗ C))⊗D A⊗ ((B ⊗ C)⊗D)

asocA⊗B,C,D asocA,B,C⊗D

idA⊗asocB,C,D

asocA,B⊗C,D

asocA,B,C⊗idD
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(A⊗B)⊗ C A⊗ (B ⊗ C) (B ⊗ C)⊗ A

(B ⊗ A)⊗ C B ⊗ (A⊗ C) B ⊗ (C ⊗ A)

asocA,B,C

symA,B⊗idC

asocB,A,C idB⊗symA,C

asocB,C,A

symA,B⊗C

Example 5.1.26.
Any category with finite products is a symmetric monoidal category, with ⊗ being given by the

cartesian product.

Notice that symmetric monoidal categories can be seen as an alternate way to categorify
commutative monoids.3

One notion of interest is that of closed categories. Informally, a category C can be called
closed if for all A,B ∈ C, C(A,B) ∈ Ob(C), or more accurately phrased for all A,B ∈ C, there
exists an objectA⊸ B ∈ Ob(C) acting as the “internal” version of C(A,B). When the category
has some additional structure, then the closedness should be compatible with said structure. Of
particular interest are symmetric monoidal closed categories.

Definition 5.1.27 (Symmetric Monoidal Closed Category).
Given any object A ∈ C, where C is a symmetric monoidal category, we can define the tensor
product endofunctor (−)⊗ A : C→ C as follows:

• For all B ∈ C, ((−)⊗ A)(B) = B ⊗ A;

• For all φ ∈ C(B,C), ((−)⊗ A)(φ) = φ⊗ idA.

If for all A ∈ C, (−)⊗A : C→ C has a right adjoint, which we will denote A⊸ (−) : C→ C,

then we say that the category is closed with respect to its tensor product. The consequence of this

closedness is that for all A,B ∈ C, C(A,B) ∈ Ob(C), which we will write as A ⊸ B when

considering the object C(A,B) rather than the collection of arrows, and for all A,B,C ∈ C,

there is a natural isomorphism C(A⊗B,C) ≃ C(A,B ⊸ C).

It is precisely this isomorphism that “enables currying” for a category – as a result, when
considering models of λ-calculus and its derivative calculi, we are generally exclusively interested
in symmetric monoidal closed categories.

Definition 5.1.28 (Cartesian Closed Category).
A cartesian closed category (CCC) is a special case of a symmetric monoidal closed category

where the tensor product is given by the cartesian product.

3There exists a similar alternative categorification, braided monoidal categories, and monoidal categories as a
more general variant of both, but these are not of interest to this work.
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Rather than checking all of the details of a symmetric monoidal closed category, a cartesian
closed category is usually identified via the following proposition:

Proposition 5.1.29.
A category C is cartesian closed if and only if it has finite products and for all A ∈ C, the

functor (−)× A : C→ C has a right adjoint.

Example 5.1.30.
The categories Set and Poset are cartesian closed. The categories CMonoid and Rel are not,

but they are symmetric monoidal closed categories.

Cartesian closed categories have a very close relationship with the simply typed λ-calculus.
One can construct a sound model of the simply typed λ-calculus using any CCC.4 As PCF is
essentially an extension of the simply typed λ-calculus, it stands to reason that to model PCF with
a category, we require a CCC with some additional restrictions that enable it to model numerals
and fixed points. The addition of numerals is comparatively simple – an object of the category
which behaves similar enough to numerals suffices. Fixed points require a bit more nuance.

Definition 5.1.31 (Complete Partial Order [BW95]).

• A partial order on a set X is a relation ⪯ between elements of X that is reflexive, anti-

symmetric, and transitive. The “order” comes from the anti-symmetry and transitivity, and

it is “partial” as not all pairs of elements of X must be related with ⪯.

• A bottom element ⊥ is an element of X such that for all a ∈ X , ⊥ ⪯ a.

• Given a subset Y ⊆ X , a supremum of Y is an element
∨
Y ∈ X such that for all a ∈ Y ,

a ⪯
∨
Y , and ∀b ∈ X if ∀a ∈ Y, a ⪯ b, then

∨
Y ⪯ b.

• A directed set D ⊆ X is a set where for every a, b ∈ D there exists a c ∈ D such that a ⪯ c

and b ⪯ c.

A complete partial order (CPO) is a partially ordered set (X,⪯) having a bottom element

and any directed subset D ⊆ Xhas a supremum
∨
D.5

Definition 5.1.32 (Scott-continuous Functions).
Structure preserving functions on CPOs are called Scott-continuous functions. Given CPOs X

and Y , a Scott-continuous function f : X → Y is a function where for every directed subset

D ⊆ X , f(
∨
D) =

∨
f(D).

Modelling fixed points, i.e. representing them in some mathematical structure, is usually
done via complete partial orders or some related work. Without going into too much detail, the

4See the appendix for proper definitions and elaborations.
5There are notions sometimes called CPOs which are weaker than this definition.
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structure of CPOs allows us to find a fixed point element x ∈ X for every Scott-continuous
function h : X → X . These fixed point elements can then be used to model recursion, giving
us fix. What remains is the task of combining the structure of complete partial orders which
cartesian closed categories. To do so, we consider the category CPO of complete partial orders
and Scott-continuous functions.

Proposition 5.1.33.
The category CPO is cartesian closed.

We can make use of the cartesian closed property to define the notion of a CCC enriched over
CPO. A category C enriched by V is, in essence, a category where the classes of arrows in C
are objects in V, and composition of arrows is given by morphisms in V. We are only interested
in the special case where C is a CCC and V is CPO. We will be referring to the arrow objects in
CPO as [A,B] rather than A⊸ B, and the unit object of CPO as ∗.

Definition 5.1.34 (CPO-enriched Cartesian Closed Categories).
A CPO-enriched cartesian closed category C consists of:

• A class Ob(C) of objects of C, where C is a cartesian closed category;

• For every A,B ∈ Ob(C), an object [A,B] ∈ Ob(CPO);

• For every A,B,C ∈ Ob(C), an arrow ;CPO
A,B,C ∈ CPO([A,B]× [B,C], [A,C]);

• For every A ∈ Ob(C), an arrow jA ∈ CPO(∗, [A,A]) called the identity element;

such that the following diagrams commute:

([A,B]× [B,C])× [C,D] [A,B]× ([B,C]× [C,D])

[A,C]× [C,D] [A,D] [A,B]× [B,D]

∗ × [A,B] [A,B]× ∗

[A,B]

[A,A]× [A,B] [A,B]× [B,B]

asoc[A,B],[B,C],[C,D]

;CPO
A,B,C×id[C,D] id[A,B]×;CPO

B,C,D

;CPO
A,C,D ;CPO

A,B,D

unl[A,B] unr[A,B]

;CPO
A,A,B

jA×id[A,B]

;CPO
A,B,B

id[A,B]×jB

Notice how the first diagram provides associativity of composition while the second provides
the left and right unit of the identity. The result is a category whose sets of arrows are CPOs in a
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manner that is internally consistent. Given a λ-function h : A → A, we can then interpret fix(h)
as the least fixed point of the arrow (−);CPO

A,A,A h ∈ CPO([1, A], [1, A]), where 1 is the cartesian
unit of C.

The final puzzle piece is the object of numerals. Strictly speaking, we are defining an object
of booleans, and then defining the object of numerals with respect to the object of booleans. This
is necessary to model “if-then-else”.

Definition 5.1.35 (Simple Object of Numerals [HO00]).
Let C be a cartesian closed category with unit object 1. Let B ∈ C such that there are two

distinct maps tt : 1 → B and ff : 1 → B in C. Let N ∈ C such that there are distinct maps

o : 1 → N, s : N → N, p : N → N, z : N → B in C. For all n ∈ N, we define the arrow

n : 1→ N as:

(n+ 1)(∗) =

o(∗), if n = 0,

s(n(∗)), otherwise.

We then say that N comes equipped with a simple object of numerals6 (relative to B, t, f ) if the

following diagrams commute:

1 N 1 N

N N

1 N 1 N

B B

o

o

p

n+1

n+1o

tt
z

ff
z

n
p

It is clear to see how such an object can represent the numerals in PCF - the object B repre-
sents the boolean hidden in ifz(−,−,−), with tt and ff being true and false respectively, and z
being “check for zero.” We then have the following:

Proposition 5.1.36 (Categorical models of PCF [AMJ94]).
Every CPO-enriched cartesian closed category equipped with a simple object of numerals is a

model of PCF.

The typical example of such a categorical model of PCF is the game semantics based one
found in [AMJ94] and [HO00], which has been brought up in previous chapters.

6An object of numerals is different from the well-known concept of a “natural numbers object” [Law63], roughly
corresponding to a weak natural number object.
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5.2 Semiring Monads and Categories

Knowing how to identify categorical models of PCF is different from the process of finding cate-
gorical models of PCF. The above proposition does not help in identifying new categories which
could be used to model PCF. The remaining work presented in this thesis can be seen as an
attempt to expand on one particular collection of categorical models of PCF by identifying the
crossover between it and a particular collection of categories which are (among other things) cate-
gorical models of the simply typed λ-calculus. We now present the notions required to understand
these collections.

5.2.1 Semirings

The categories we will be working with are all based on semirings, with multiple semirings often
being present within the same category.

Definition 5.2.1 (Semirings [DK09]).
A semiring S is a 5-tuple ⟨|S|,+S , ·S , 0S , 1S⟩ such that:

• 0S , 1S ∈ |S|;

• ⟨|S|,+S , 0S⟩ is a commutative monoid (+S is semiring addition);

• ⟨|S|, ·S , 1S⟩ is a monoid (·S is semiring multiplication),;

• for all a ∈ |S|, a ·S 0S = 0 ·S a = 0S;

• for all a, b, c ∈ |S|, a ·S (b+S c) = (a ·S b)+S (a ·S c) and (a+S b) ·S c = (a ·S c)+S (a ·S c).

S is referred to as commutative if ⟨|S|, ·S , 1S⟩ is commutative. When the semiring being used is

clear, the semiring addition and multiplication are written without the S superscript: a + b for

a+S b and a · b, or simply ab, for a · b. We also often write a ∈ S to mean a ∈ |S|.

Example 5.2.2.
Some examples of semirings:

• A semiring can trivially be constructed from the single-element set {∗};

• The semiring of natural numbers: ⟨N,+, ·, 0, 1⟩;

• Non-negative rational numbers form a semiring: ⟨Q+,+, ·, 0, 1⟩;

• Real numbers form a semiring: ⟨R,+, ·, 0, 1⟩.
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Definition 5.2.3.
Given A ∈ Set and α : A→ S, define supp(α) = {a|a ∈ A,α(a) ̸= 0}, the support of α. If the

support of α is finite, then we say that α has finite support.

Notation 5.2.4.

• Given a semiring S andA ∈ Set, χA refers to the characteristic function ofA on S, defined

as:

χA(a) =

1S if a ∈ A,

0S otherwise.

• δa,b refers to the Kronecker delta over a semiring S, which is defined as:

δa,b =

1S if a = b,

0S otherwise.

In the upcoming parts, we will encounter scenarios where we are summing over an infinite
number of elements of a semiring. We require this sum to be well-defined. Semirings with infinite
sums are also called complete semirings.

Definition 5.2.5 (Complete Semirings [DK09]).
A complete semiring S is a semiring where for every s ∈ S, every pair of index sets I, J , and

every function f : I → S:∑
i∈I

f(i) ∈ S,
∑
i∈∅

f(i) = 0S ,
∑
i∈{j}

f(i) = f(j),∑
i∈{j,k}

f(i) = f(j) + f(k), where j ̸= k,

∑
j∈J

∑
i∈Ij

f(i)

 =
∑
i∈I

f(i), if
⋃
j∈J

Ij = I and Ij ∩ Ij′ = ∅ for j ̸= j′,

∑
i∈I

(s · f(i)) = s ·

(∑
i∈I

f(i)

) ∑
i∈I

(f(i) · s) =

(∑
i∈I

f(i)

)
· s

In other words, a complete semiring is a semiring with an infinite sum operation that is:

• An extension of the finite sum;

• Associative and commutative;

• Obeys distribution rules.

If S is not complete yet we encounter a scenario where we sum over an infinite set, then the
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sum is only well-defined if it is with respect to a finitely supported function f : B → S . Given
such a function, we set

∑
b∈B f(b) =

∑
{b|b∈supp(f)} f(b), which is well-defined.

Most of the complete semirings one would commonly think of actually belong to a subset
of complete semirings called continuous semirings. To define these, we first define continuous
operators.

Definition 5.2.6 (Continuous operators [DK09]).
A (unary) operator ⋆ on cpo’s is continuous if it is monotone and preserves directed suprema,

i.e. ⋆(
∨
i∈I(xi)) =

∨
i∈I ⋆(xi). Similarly, we say that an n-ary operator ⋆ is continuous if it is

continuous in each component.

Definition 5.2.7 (Continuous Semirings [DK09]).
A continuous semiring (|S|,+S , ·S , 0S , 1S) is a semiring equipped with a partial order ⪯S such

that:

• (|S|,⪯S) is a complete partial order;

• the operators +S , ·S are continuous;

• a ⪯S b if and only if there exists a s ∈ S such that a+S s = b.

Proposition 5.2.8 ([DK09]).
Every continuous semiring is a complete semiring.

Proof. Let S be a continuous semiring with the partial ordering denoted by ⪯. Let I be an index
set and f : I → S. The set Ds(I, f) = {

∑
p∈F f(p)|F ⊆finite I} is directed – given any two

elements
∑

p∈F1
f(p),

∑
q∈F2

f(q) ∈ Ds(I, f) we have
∑

r∈F1∪F2
f(r) ∈ Ds(I, f), and since∑

r∈F1∪F2
f(r) =

∑
p∈F1

f(p) +
∑

q∈F2
f(q) by the third property of continuous semirings we

have
∑

p∈F1
f(p) ⪯

∑
r∈F1∪F2

f(r) and
∑

q∈F2
q ⪯

∑
r∈F1∪F2

f(r). As a consequence, Ds(I, f)

has a supremum in S which we can use to define the infinite sum:∑
i∈I

f(i) =
∨

Ds(I, f)

Consistency with +S and ·S is given by their continuous nature.

Example 5.2.9.
The following are all examples of continuous (and thus complete) semirings.

• The boolean semiring bool = ⟨{ff, tt},∨,∧, ff, tt⟩, with tt as the top element.;

• The natural numbers completed with a top element∞, N̄ = ⟨N ∪ {∞},+, ·, 0, 1⟩ (where

∞+∞ =∞ and for all a ∈ N, a+∞ =∞);
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• The positive real numbers completed R̄ = ⟨R+ ∪ {∞},+, ·, 0, 1⟩;

• The tropical semiring trop = ⟨R+ ∪ {∞},min,+,∞, 0⟩;

• The arctic semiring arc = ⟨R+ ∪ {−∞},max,+,−∞, 0⟩;

• For all sets U , the semiring of binary relations over U : ⟨P(U × U),∪, ⋄, ∅,∆⟩, where for

two relations R1, R2, R1 ⋄R2 = {(u1, u2)|∃(u1, u) ∈ R1, (u, u2) ∈ R2}, and

∆ = {(u, u)|u ∈ U}.

• The idempotent naturally ordered commutative semiring ⟨{0, 1, a,∞},+, ·, 0, 1⟩,
with a · a = a and ordering 0 ⪯ 1 ⪯ a ⪯ ∞.

Definition 5.2.10 (Multiplicity Semirings [CES10, BP15]).

• A positive semiring S is one where, for all s, s′ ∈ S, s+ s′ = 0⇒ s = s′ = 0.

• A discrete semiring S is one where, for all s, s′ ∈ S, s+ s′ = 1⇒ s = 0 ∨ s′ = 0.

• A semiring S has the additive splitting property if, for all a1, a2, b1, c2 ∈ S,

a1 + a2 = b1 + b2 implies that there exist n11, n12, n21, n22 such that a1 = n11 + n12,

a2 = n21 + n22, b1 = n11 + n21, b2 = n12 + n22.

• A semiring S has the multiplicative splitting property if, for all r, s, n1, n2 ∈ S,

r · s = n1 + n2 implies that there must exist r1, r2, s11, s12, s21, s22 ∈ S such that

s11 + s21 = s12 + s22 = s, r1 · s11 + r2 · s12 = n1, r1 · s21 + r2 · s22 = n2 and r1 + r2 = r.

A multiplicity semiring is a semiring which is commutative, has a multiplicative unit, and

satisfies the above 4 properties.

Proposition 5.2.11 ([CES10]).
Any multiplicity semiring contains an isomorphic copy of N.

Example 5.2.12.
The following are some examples of multiplicity semirings.

• The semiring of natural numbers N;

• The semiring of natural numbers completed with a top element∞: N̄ = N ∪ {∞};

• The semiring TwoN = ⟨(N+×N)∪{0},+, ·, 0, (1, 0)⟩, where (n, i) · (p, j) = (n · p, i+ j),
0 is neutral for +, and

(n, i) + (p, j) =


(n+ p, i), if i = j,

(n, i), if i > j,

(p, j), otherwise.
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Lemma 5.2.13 (Generalised additive splitting [CES10]).
Let S be a semiring which has the additive splitting property.

Let A,B ∈ Set, α : A→ S, β : B → S such that:

#(supp(α)) ∈ N,#(supp(β)) ∈ N∑
a∈A α(a) =

∑
b∈B β(b)

Then there exists σ : (A×B)→ S such that:

∀a ∈ A,
∑

b σ(a, b) = α(a),

∀b ∈ B,
∑

a σ(a, b) = β(b)

Proof. By induction on the cardinality of supp(α).

• #(supp(α)) = 0: Trivial.

• #(supp(α)) = 1: Simplified case of #(supp(α)) = 2, detailed below.

• #(supp(α)) = 2: By induction on the cardinality of supp(β). Here the induction hypoth-
esis is a restricted version of the overall lemma being proven.

– #(supp(β)) = 1: Trivial.

– #(supp(β)) = 2: Let supp(α) = {a1, a2} and supp(β) = {b1, b2}. By the addi-
tive splitting property, there will exist n11, n12, n21, n22 such that α(a1) = n11 + n12,
α(a2) = n21 + n22, β(b1) = n11 + n21, β(b2) = n12 + n22. Then we finish this case
by defining σ as:

σ(x, y) =



n11 if x = a1, y = b1,

n12 if x = a1, y = b2,

n21 if x = a2, y = b1,

n22 if x = a2, y = b2,

0 if (x, y) /∈ supp(α)× supp(β).

– #(supp(β)) = n+ 1, n > 1: Assume that the property holds for n.
Let supp(α) = {a1, a2} and supp(β) = {b1, . . . , bn, bn+1}. By the additive splitting
property, there exist n11, n12, n21, n22 such that

α(a1) = n11 + n12

α(a2) = n21 + n22∑n
i=1 β(bi) = n11 + n21

β(bn+1) = n12 + n22
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By induction hypothesis we can find a σn such that for all a ∈ A,
∑

b σn(a, b) = n11

and for all b ∈ B,
∑

a σn(a, b) = n21. Then we finish this case by defining σ as:

σ(ai, bj) =



σn(ai, bj) if j ≤ n,

n21 if i = 1,

n22 if i = 2,

0 if (ai, bj) /∈ supp(α)× supp(β).

• #(supp(α)) = m+1: Assume that the erty holds form. Let supp(α) = {a1, . . . , am, am+1}.
Define α′ as:

α′(ai) =


∑m

j=1 α(aj) if i = 1,

α(am+1) if i = m+ 1

0 otherwise.

We can then apply the lemma for #(supp(α′)) = 2, proven previously, to get σ1 such that

∑
b∈B σ1(a1, b) =

∑m
j=1 α(aj)∑

b∈B σ1(am+1, b) = α(am+1)

∀b ∈ B,
∑

a σ1(a, b) = β(b)

By induction hypothesis, we can obtain σ2 such that
∑

b∈B σ2((a1, b), a) = α(a) for all
a ∈ A \ {am+1}, and for all b ∈ B,

∑
a∈A\{am+1} σ2((a1, b), a) = σ1(a1, b). We then

conclude by defining σ as:

σ(ai, b) =


σ2((a1, b), ai) if i ≤ m

σ1(ai, b) if i = m+ 1,

0 if a, b /∈ supp(α)× supp(β).

The above lemma is incredibly important, as without it elements cannot be paired together in
a consistant manner. Consider a function f ∈ Rel(A,B). To evaluate f , it is necessary to give
it a pair of elements. The above property is required to pair together elements (a, b) from two
separate “collections” α : A→ S, β : B → S to then be evaluated by f .

It is useful to note that the above lemma and the additive splitting property are one and the
same:

Proposition 5.2.14.
If a semiring does not have the additive splitting property, then it also does not have the property

described in Lemma 5.2.13.
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Proof. Trivial proof by contradiction, taking the case where the cardinality of supp(α) is 2.

5.2.2 Semiring monad

Every semiring induces a monad on Set. If the semiring is complete, then we can also define a
second monad from said semiring. The second monad is simply a more general version of the
first, so we present them together.

Definition 5.2.15.
Given any semiring S, there is a functor Sfin : Set→ Set acting as follows:

• Given an object A ∈ Set, SfinA = {ϕ |ϕ : A→ S, supp(ϕ) is finite}, the set of finitely

supported functions from A to the semiring S,

• Given a function f : A→ B ∈ Set(A,B), along with left and right "inputs" to the function

ϕ ∈ SfinA, b ∈ B, Sfinf(ϕ)(b) =
∑

a∈A ϕ(a) · δf(a),b ∈ S.

If S is complete, there also exists the functor Sinf : Set→ Set:

• Given an object A ∈ Set, SinfA = {ϕ |ϕ : A→ S}, the set of functions from A to the

semiring S,

• Given a function f : A→ B ∈ Set(A,B), along with left and right "inputs" to the function

ϕ ∈ SinfA, b ∈ B, Sinff(ϕ)(b) =
∑

a∈A ϕ(a) · δf(a),b ∈ S.

We will write S to mean either Sinf or Sfin depending on context. Generally, if S is complete, we

use Sinf unless otherwise specified.

For both choices of functor, there exist identically acting unit ηSA : A → SA and multiplica-

tion µS
A : SSA→ SA natural transformations :

• Given any a, a′ ∈ A, ηSA(a)(a
′) = δa,a′ ,

• Given any φ ∈ SSA, a ∈ A, µS
A(φ)(a) =

∑
α∈SA φ(α) · α(a).

Lemma 5.2.16.
(S, ηS, µS) is a monad.

Proof. Proof proceeds by simple solving of equations.7

7When definitions are trivial or multiple definitions are used simultaneously, we omit the number.
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• Functoriality of S:

– Given φ ∈ SA, a ∈ A,

SidA(φ)(a) =
∑

a′∈A φ(a
′) · δidA(a′),a Definition

= φ(a) a = a′

= idSA(φ)(a) Definition

– Given f : A→ B, g : B → C,

S(g ◦ f)(φ)(c) =
∑

{a|g(f(a))=c} φ(a) Definition

=
∑

{a,b|f(a)=b,g(b)=c} φ(a) Function preimages are disjoint

=
∑

{b|g(b)=c}
∑

{a|f(a)=b} φ(a) Rearranged

= (Sg)(Sf(φ))(c) Definition

• Naturality of ηS: Given f : A→ B, a ∈ A, b ∈ B,

Sf(ηSA(a))(b) =
∑

a′∈A η
S
A(a)(a

′) · δf(a′),b Definition

=
∑

a′∈A δa,a′ · δf(a′),b Definition

= δf(a),b a = a′

= ηSB(f(a))(b) Definition

• Naturality of µS: Given f : A→ B, a ∈ A, b ∈ B,

µS
A(SSf(φ))(b) =

∑
β∈SB SSf(φ)(β) · β(b) Definition

=
∑

β∈SB
∑

α∈SA φ(α) · δSf(α),β · β(b) Definition

=
∑

α∈SA φ(α) · Sf(α)(b) β = Sf(α)

=
∑

a∈A
∑

α∈SA φ(α) · α(a) · δf(a),b Definition

=
∑

a∈A µ
S
A(φ)(a) · δf(a),b Definition

= Sf(µS
A(φ))(b) Definition

• Monad Diagrams:

– Diagram 1: Given α, α′ ∈ SA,

µS
A(Sη

S
A(α))(a) =

∑
α′∈SA Sη

S
A(α)(α

′) · α′(a) Definition

=
∑

α′∈SA
∑

a′∈A α(a) · δηSA(a′),α′ · α′(a) Definition

=
∑

a∈A α(a) · ηSA(a′)(a) α′ = ηSA(a
′)

= α(a) a = a′

=
∑

α′∈SA δα,α′ · α′(a) α = α′

=
∑

α′∈SA η
S
SA(α)(α

′) · α′(a) Definition

= µS
A(η

S
SA(α))(a) Definition
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– Diagram 2: Given φ̄ ∈ SSSA, a ∈ A,

µS
A(Sµ

S
A(φ̄))(a) =

∑
α∈SA Sµ

S
A(φ̄)(α) · α(a) Definition

=
∑

α∈SA
∑

φ∈SSA φ̄(φ) · δµSA(φ),α · α(a) Definition

=
∑

φ∈SSA φ̄(φ) · µS
A(φ)(a) α = µS

A(φ)

=
∑

α′∈SA
∑

φ∈SSA φ̄(φ) · φ(α′) · α′(a) Definition

=
∑

α′∈SA µ
S
SA(φ̄)(α

′) · α(a′) Definition

= µS
A(µ

S
SA(φ̄))(a) Definition

Notation 5.2.17.
Given a semiring monad S, we write µS−1

A (α) for the set {ᾱ|µS
A(ᾱ) = α}.

The Kleisli categories induced by this monad may seem familiar. If S = bool the boolean
semiring, then the corresponding Kleisli category is exactly Rel. More generally, for a given
semiring S, the Kleisli category SetS of a semiring monad has sets as objects and the arrows
φ : A → B are matrices where the columns are indexed by A, rows by B, and cells popu-
lated by elements of S. The identity is the identity matrix, and composition is given by matrix
multiplication.

SetS has a number of useful and interesting properties, two of which are particularly relevant
at this point. The first is that they are not cartesian closed, so they cannot be used to model PCF
– the cartesian product functor fails to have a right adjoint. SetS is still a symmetric monoidal
closed category, but with a different tensor product:

For A,B ∈ SetS and φ ∈ SetS(A,B), ψ ∈ SetS(C,D), we have

A⊗B = A×B (φ⊗ ψ)((a, c), (b, d)) = φ(a, b) ·S ψ(c, d)

Remark 5.2.18.
SetS

op and SetS are isomorphic. As a consequence, any monad on SetS is also a comonad on

SetS.

Corollary 5.2.19.
Given two semiring monads R, S, there is a composite functor RS:

∀A ∈ Set,RSA = {ψ|ψ : (A→ S)→ R}

∀f : A→ B ∈ Set, ψ ∈ RSA, β ∈ SB,

RSf(ψ)(β) =
∑
α∈SA

ψ(α) · δλb.∑a∈A α(a)·δf(a),b,β
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While the composite functor always exists, the composite functor may not be a monad. For
the composite to be a monad, there must be a distribution between the monads.

We are now able to present the following previous results:

• Given any continuous semiring with a commutative product R, the co-Kleisli category of
the comonad N (using finite support) on the category SetR is a CPO-enriched cartesian
closed category with an object of numerals [LMMP13].

• Given any multiplicity semiring S, S (with finite support) is a comonad on the category
Setbool [CES10]. Moreover, the resulting co-Kleisli category is a CPO-enriched cartesian
closed category with an object of numerals.8

Given the similarities between these, one could reasonably assume that they can be combined in
some way. The remainder of the work to be presented is an attempt to do so by answering the
following question:

“Given two semirings R,S and corresponding monads R, S on Set, what conditions are
necessary for RS to be a monad?”

8While this category being CPO-enriched and having an object of numerals is not stated in the source paper for
this result, it is a trivial consequence of the first paper.





Chapter 6

Semiring Monad Distributions

6.1 Idempotent Sum

We will begin by discussing the cases whereR has an idempotent sum. This significantly simpli-
fies the problem. A better intuition for why we require this restriction will be given later; from a
purely technical perspective, idempotency means that for any surjective function f : A→ B and
a β ∈ B → R, we would have ∑

a∈A

β(f(a)) =
∑
b∈B

β(b)

This is clearly not true for the non-idempotent case, but holds for the idempotent case.

For a distribution to exist, we require the semirings to interact with one another – to be
precise, we require S to act onR.

Definition 6.1.1 (Exponential Action).
Given two semirings R and S , consider fixed a function (−)− : R × S → R satisfying the

following properties (for all r ∈ R, s ∈ S):

r0 = 1 r1 = r

0s = 0 1s = 1

(rs1)s2 = rs1∗s2

∀X ⊆finite R, (
∏

x∈X x)
s =

∏
x∈X x

s

∀Y ⊆finite S,
∏

y∈Y r
y = r

∑
y∈Y y

This function mirrors the exponent in natural numbers. If R = S = N, then (−)− is exactly the

exponential action of natural numbers. This function will be referred to as the exponential action
of S onR.

117
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We also require the notion of witnesses. A witness is essentially a generalisation of what can
intuitively be described as pairing elements of multisets together. Consider a finite multiset m as
an unordered list [1, 1, 2], and another n = [1, 2, 2]. When considering the ways that we can pair
the elements of these multisets together, we arrive at the following possible multisets:

[(1, 1), (1, 2), (2, 2)][(1, 2), (1, 2), (2, 1)]

Witnesses generalise this from multisets (functions f : A → N) to any semiring S (functions
g : A→ S).

Definition 6.1.2 (Witness Sets).
Given a positive and discrete semiring S with corresponding monad S, the set of witnesses of

(α, β), denotedW(α, β), is defined as follows:

W(α, β) =

σ
∣∣∣∣∣∣∣
σ : A×B → S,
∀a ∈ A,

∑
b∈B σ(a, b) = α(a),

∀b ∈ B,
∑

a∈A σ(a, b) = β(b)


We defineW : SA× SB → P(S(A×B)) as the function taking two functions α : SA, β : SB to

their set of witnesses. We call any σ ∈ W(α, β) a witness of (α, β).

Lemma 6.1.3.
Witness sets are associative and commutative: Given

α : A→ S, β : B → S, γ : C → S,
σa,b ∈ W(α, β), ρ(a,b),c ∈ W(σa,b, γ)

there exist unique σb,a ∈ W(β, α), σa,c ∈ W(α, γ), ρ(a,c),b ∈ W(σa,c, β) such that:

∀a ∈ A, b ∈ B, σa,b(a, b) = σb,a(b, a)

∀a ∈ A, b ∈ B, c ∈ C, ρ(a,b),c((a, b), c) = ρ(a,c),b((a, c), b)

Proof. Trivial, by definition of the sets.

Lemma 6.1.4.
W is a natural transformation.

Proof. Let f : A→ B, g : C → D,α ∈ SA, γ ∈ SC. By definition,W is natural if

σ ∈ W(Sf(α), Sg(γ))⇔ ∃σ′ ∈ W(α, γ) such that S(f × g)(σ′) = σ

By Lemma 6.1.3, it suffices to prove that

σ ∈ W(Sf(α), γ)⇔ ∃σ′ ∈ W(α, γ) such that S(f × idC)(σ
′) = σ
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We will prove one direction first, and then the converse.

⇒ Let σ ∈ W(Sf(α), γ). Define for each b in the image of f a set{
σb

∣∣∣∣∣σb ∈ S(A× C), σb(a, c) ̸= 0⇒ f(a) = b,
∑
a∈A

σb(a, c) = σ(b, c)

}

The above set is always non-empty: by definition of W , if σ(b, c) ̸= 0, then we have
Sf(α)(b) =

∑
c σ(b, c) ̸= 0 as S is positive. Thus, if σ(b, c) ̸= 0, then by definition of S

there exists an a ∈ A such that f(a) = b, and so we have a σb where σb(a, c) = σ(b, c).

We can then define a σ′ ∈ W(α, γ) by selecting an arbitrary σb for each b ∈ B and setting
σ′(a, c) = σf(a)(a, c).

Then for all b ∈ B,
∑

c∈C σ(b, c) =
∑

a∈A σ
′(a, c) · δSf(a),b, so S(f × idC)(σ′) = σ.

⇐ Let σ′ ∈ W(α, γ) such that S(f × idC)(σ
′) = σ. Then λ(b, c).

∑
a∈A σ

′(a, c) · δSf(a),b
is an element of W(Sf(α), γ), and λ(b, c).

∑
a∈A σ

′(a, c) · δSf(a),b = S(f × idC)(σ
′) by

definition.

With the additional notation presented, we can also rephrase Lemma 5.2.13 to the following:

Lemma 6.1.5 (Generalised Additive Splitting).
Let S be a semiring with additive splitting, and let S be the corresponding semiring monad using

finitely supported functions. For all f ∈ SA, g ∈ SB, if
∑

a∈A f(a) =
∑

b∈B g(b), then there

exists σ ∈ W(f, g).

Lemma 6.1.6.
Let S be a semiring with additive splitting. Given two witness sets W(α, β),W(β, γ), where

α ∈ SA, β ∈ SB, γ ∈ SC, then for all σ1 ∈ W(α, β), σ2 ∈ W(β, γ) there exists τ ∈ W(σ1, γ)

such that for all b ∈ B, c ∈ C, ∑
a∈A

τ((a, b), c) = σ2(b, c)

Proof. First, by the definition of witness sets, the existence of σ1, σ2 forces∑
a∈A

α(a) =
∑
b∈B

β(b) =
∑
c∈C

γ(c)

Using Lemma 6.1.5, we have τ1 ∈ W(σ1, γ), τ2 ∈ W(α, σ2). Using symmetry and associativity,
we get σ31 ∈ W(α, γ), τ31 ∈ W(σ31, β) and σ32 ∈ W(α, γ), τ32 ∈ W(σ32, β).
Define for i ∈ {1, 2} b ∈ B the morphisms τ3i

b
∈ S(A× C):

τ3i
b
(a, c) = τ3i((a, c), b)
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Using Lemma 6.1.5, we get for each b ∈ B a morphism ρ
b
∈ W( τ31

b
, τ32
b
). We then define

ρ ∈ S(A× C × A× C ×B) as:

ρ(a1, c1, a2, c2, b) =
ρ

b
((a1, c1), (a2, c2))

We then have τ((a, b), c) =
∑

a′,c′ ρ(a, c
′, a′, c, b) satisfying our requirements.

Lemma 6.1.7 (Generalised Multiplicative Splitting [CES10]).
Let S be a multiplicity semiring with the corresponding monad S using finite support. Let A be

an arbitrary set. Given p ∈ S,m ∈ SA, f : S(A×B), if pm(a) =
∑

b∈B f(a, b), then there exist

k ∈ N, ℘ ∈ SN, ♭ ∈ S(N× A×B) such that∑
n∈N

℘(n) = p,

∀a ∈ A, n ∈ N,
∑
b∈B

♭(n, a, b) = m(a),

∀a ∈ A, b ∈ B,
∑
n∈N

℘(n) · ♭(n, a, b) = f(a, b),

∀a ∈ A, b ∈ B, ♭(n, a, b) = ℘(n) = 0, if n > k.

Proof. By induction on #supp(f).

• Cases #supp(f) = 0 and #supp(f) = 1 are trivial.

• Case #supp(f) = l + 1: Select arbitrary (a1, b1), (a2, b2) ∈ supp(f) such that we have
(a1, b1) ̸= (a2, b2) and define g ∈ S({0, 1} × A×B) such that

g(i, a′, b′) =

f(a′, b′) · χA×B\{a2,b2}, if i = 0,

f(a2, b2) · δa′,a1 · δb′,b1 , if i = 1.

We have pm(a) =
∑
b∈B

∑
i∈{0,1}

g(n, a, b) with #supp(λa, b.
∑
i∈{0,1}

g(n, a, b)) = l, so by in-

ductive hypothesis we have k ∈ N, ℘ ∈ SN, ♭ ∈ S(N× A×B) such that∑
n∈N

℘(n) = p,

∀a ∈ A, n ∈ N,
∑
b∈B

♭(n, a, b) = m(a),

∀a ∈ A, b ∈ B,
∑
n∈N

℘(n) · ♭(n, a, b) =
∑
i∈{0,1}

g(i, a, b),

∀a ∈ A, b ∈ B, ♭(n, a, b) = ℘(n) = 0, if n > k.

By Lemma 6.1.5 there exists ρ ∈ W(λn.℘(n) · ♭(n, a1, b1), λi.g(i, a1, b1)). We have

℘(n) · ♭(n, a1, b1) = ρ(n, 0) + ρ(n, 1)
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As S has the multiplicative splitting property, there exist r1, r2, s11, s12, s21, s22 ∈ SN such
that for all n ∈ N,

r1(n) + r2(n) = ℘(n),

s11(n) + s21(n) = s12(n) + s22(n) = ♭(n, a1, b1),

r1(n) · s11(n) + r2(n) · s12(n) = ρ(n, 0),

r1(n) · s21(n) + r2(n) · s22(n) = ρ(n, 1).

We will define a ℘′ ∈ SN, ♭′ ∈ S(N× A×B) as follows (for all a ∈ A, b ∈ B, n ∈ N):

℘′(2 · n) = r1(n),

℘′(2 · n+ 1) = r2(n),

♭′(2 · n, a, b) = ♭(n, a, b), if (a, b) /∈ {(a1, b1), (a2, b2)},
♭′(2 · n+ 1, a, b) = ♭(n, a, b), if (a, b) /∈ {(a1, b1), (a2, b2)},
♭′(2 · n, a1, b1) = s11(n),

♭′(2 · n+ 1, a1, b1) = s12(n),

♭′(2 · n, a2, b2) = s21(n),

♭′(2 · n+ 1, a2, b2) = s22(n).

Simple calculations show that the required properties hold true (with k′ ≥ k ∗ 2), so we
conclude.

Definition 6.1.8 (Coefficientless Expansion I).
Given two semirings R and S such that R has infinite sums and S is positive and discrete, if an

exponential action of S onR exhibits the following property (for allA ∈ Set, s ∈ S, f : A→ R)

(
∑
a∈A

f(a))s =
∑

{
α

∣∣∣∣ α∈SA,∑
a∈A α(a)=s

}
∏
a∈A

(f(a))α(a)

then we say that the exponential action has a coefficientless expansion.

The term coefficientless expansion arises from its similarity to the multinomial expansion
(generalised binomial expansion) rule in the natural numbers, but lacking the multinomial coeffi-
cient. An expansion with a coefficient that directly mirrors the natural numbers will be presented
later. If the exponent is seen as a form of product, then there is also a resemblance to Skolemiza-

tion, for readers familiar with the concept.

Notation 6.1.9 (Product of Exponents).
To improve readability,

∏
a◁α

f(a) is used as syntactic sugar for
∏
a∈A

(f(a))α(a) =
∏

a∈dom(α)

(f(a))α(a).

Intuitively,
∏
a◁α

f(a) can be thought of as “pulling” a out of α α(a)-many times, and multi-

plying f(a) with itself for each “pull”.
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Lemma 6.1.10 (Coefficientless Expansion II).
Given two semiringsR and S such that S is a multiplicity semiring with an exponential action of

S onR that has a coefficientless expansion, then (∀A,B ∈ Set, β : B → S, f : A×B → R):∏
b◁β

∑
a∈A

f(a, b) =
∑

α∈A→S

∑
σ∈W(α,β)

∏
a,b◁σ

f(a, b)

Proof.∏
b◁β

∑
a∈A

f(a, b) =
∏
b∈B

∑
{
α

∣∣∣∣α∈SA,∑
a∈A α(a)=β(b)

}
∏
a◁α

f(a, b) Definition 6.1.8

=
∏
b∈B

∑
α∈SA

δR∑
a∈A α(a),β(b)

∏
a◁α

f(a, b) rearranged

=
∑

h:B→SA

∏
b∈B

δR∑
a∈A h(b)(a),β(b)

∏
a◁h(b)

f(a, b) +R distributes

=
∑

σ∈S(A×B)

∏
b∈B

δR∑
a∈A σ(a,b),β(b)

∏
a∈A

(f(a, b))σ(a,b) rearranged

=
∑

σ∈S(A×B)

δRλb.
∑

a∈A σ(a,b),β

∏
b∈B

∏
a∈A

(f(a, b))σ(a,b) rearranged

=
∑
α∈SA

∑
σ∈W(α,β)

∏
a,b◁σ

f(a, b) Definition

Notation 6.1.11.
To improve readability,

∑
σ∈W(A,β)

f(σ) is used as a syntactic sugar for
∑
α∈SA

∑
σ∈W(α,β)

f(σ).

Lemma 6.1.12.
LetR and S be semirings such that S is a multiplicity semiring, with an exponential action of S on

R that has a coefficientless expansion. Given α : A → S, β : B → S, τ : A → R, f : A → B,

then ∑
σ∈W(α,β)

∏
(a,b)◁σ

τ(a) · δRf(a),b =
∏
a◁α

τ(a) · δRβ,Sf(α)

Essentially, because τ(a) · δf(a),b is forcing a functional relation between the elements of
α and β, there is at most one σ ∈ W(α, β) where the value does not equal 0 – where there
is a comparable functional relation between α and β, and all the elements are paired together
according to the functional relation δf(a),b.

Proof. The case where α = β = χS
∅ is trivial, as then both sides are equal to 0R.

Otherwise, considerWf (α, β)={σ|σ ∈ W(α, β),∀a ∈ A, b ∈ B, σ(a, b) ̸= 0⇒ b = f(a)}
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andW¬f (α, β) =W(α, β)/Wf (α, β). Simple arithmetic shows that∑
σ∈W¬f (α,β)

∏
a,b◁σ

τ(a) · δRf(a),b = 0

Next we show thatWf (α, β) ̸= ∅ ⇔ β = Sf(α):

⇒ Assume there exists σ ∈ Wf (α, β), and β ̸= Sf(α). By definition of Wf (α, β), there
would exist at least one a ∈ A such that σ(a, f(a)) ̸= 0 and

∑
a∈A σ(a, f(a)) ̸= β(f(a)).

This is a contradiction, as σ ∈ W(α, β) implies that for all b ∈ B,
∑

a∈A σ(a, b) = β(b).

⇐ λ(a, b).α(a) · δSf(a),b ∈ Wf (α, λb.
∑

a∈A α(a) · δSf(a),b).

In fact,Wf (α, Sf(α)) = {λ(a, b).α(a) · δSf(a),b}, a singleton set. We then have

∑
σ∈Wf (α,β)

∏
a,b◁σ τ(a) · δRf(a),b =

∏
(a,b)∈A×B(τ(a))

α(a)·δSf(a),b · δRβ,Sf(α)
=

∏
a◁α τ(a) · δRβ,Sf(α)

We conclude, asW(α, β) =Wf (α, β) ∪W¬f (α, β).

The following are some additional technical lemmas to be used later on, with R having
infinite sums, S being a multiplicity semiring, and S using finite support.

Lemma 6.1.13.
Given φ ∈ RA,α ∈ SA where α ̸= λa′.δSa,a′ for some a ∈ A, thenW(ηSRA(φ), α) = ∅.

Proof. By definition,
∑

ψ∈RA η
S
RA(φ)(ψ) = 1S . As α ̸= λa′.δSa,a′ for some a ∈ A, either

#(supp(α)) ̸= 1, or there exists an a ∈ A such that α = λa′.δSa,a′ · s, for some s ∈ S, s ̸= 1. In
the first case, as S is positive and discrete, we cannot have

∑
a∈A α(a) = 1S . In the second case,

this is by definition.

Lemma 6.1.14.
Let S be a multiplicity semiring with the corresponding monad S using finite support.

(1) Given φ ∈ SSA, β ∈ SB, σ ∈ W(µS
A(φ), β), there exist ψ ∈ SSB, τ ∈ W(φ, ψ), and

ρ ∈ SS(A×B) such that µS
A(ψ) = β, µS

A×B(ρ) = σ, and for all σ′ ∈ S(A×B),

ρ(σ′) = τ(λa.
∑
b∈B

σ′(a, b), λb.
∑
a∈A

σ′(a, b))

(2) Given ρ ∈ SS(A × B), φ ∈ SSA, β ∈ SB,ψ ∈ SSB, τ ∈ W(φ, ψ), if µS
A(ψ) = β

and for all σ ∈ S(A × B), ρ(σ) = τ(λa.
∑

b∈B σ(a, b), λb.
∑

a∈A σ(a, b)), then we have

µS
A×B(ρ) ∈ W(µS

A(φ), β).
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Proof.

(1) For each a ∈ A, we have ∑
α∈SA

φ(α) · α(a) =
∑
b∈B

σ(a, b)

By Lemma 6.1.5, for each a ∈ A we can find a ζ(a) ∈ W(λα.φ(α) · α(a), λb.σ(a, b)). We
then have (for each α ∈ SA, a ∈ A):

φ(α) · α(a) =
∑
b∈B

ζ(a)(α, b)

We apply the generalised form of multiplicative splitting (Lemma 6.1.7) for each α ∈ SA

to obtain k ∈ N, ℘(α) ∈ SN, ♭(α) ∈ S(N× A×B) such that:

∀α ∈ SA,
∑
n∈N

℘(α)(n) = φ(α),

∀α ∈ SA, a ∈ A, n ∈ N,
∑
b∈B

♭(α)(n, a, b) = α(a),

∀α ∈ SA, a ∈ A, b ∈ B,
∑
n∈N

℘(α)(n) · ♭(α)(n, a, b) = ζ(a)(α, b),

∀α ∈ SA, a ∈ A, b ∈ B, ℘(α)(n) = ♭(α)(n, a, b) = 0, if n > k.

We define ρ ∈ SS(A×B) as

ρ(σ′) =
∑

α′,a,n∈SA×A×N

℘(α′)(n) · δσ′,λa′,b′.♭(α′)(n,a′,b′)·δa,a′

Then we have

µS
A×B(ρ)(a, b) =

∑
σ′∈S(A×B)

ρ(σ′) · σ′(a, b)

=
∑

σ′∈S(A×B)

∑
α′,a,n∈SA×A×N

℘(α′)(n) · δσ′,λa′,b′.♭(α′)(n,a′,b′)·δa,a′ · σ
′(a, b)

=
∑

α′,a,n∈SA×A×N

℘(α′)(n) · ♭(α′)(n, a′, b) · δa,a′

=
∑

α′,n∈SA×A×N

℘(α′)(n) · ♭(α′)(n, a, b)

=
∑
α′∈SA

ζ(a)(α, b) = σ(a, b)

We define τ ∈ S(SA× SB), ψ ∈ SSB as follows:

τ(α′, β′) =
∑
n∈N

℘(α′)(n) · δλb.∑a∈A ♭(α
′)(n,a,b),β′

ψ(β′) =
∑
α′∈SA

τ(α′, β′)
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Then we have τ ∈ W(φ, ψ), as∑
β′∈SB

τ(α′, β′) =
∑

β′,n∈SB×N

℘(α′)(n) · δλb.∑a∈A ♭(α
′)(n,a,b),β′

=
∑
n∈N

℘(α′)(n)

= φ(α)

We also have µS
B(ψ) = β:

µS
B(ψ)(b) =

∑
β′∈SB

ψ(β′) · β′(b)

=
∑

α′,β′∈SA×SB

τ(α′, β′) · β′(b)

=
∑

α′,β′∈SA×SB

∑
n∈N

℘(α′)(n) · δλb.∑a∈A ♭(α
′)(n,a,b),β′ · β′(b)

=
∑
α′∈SA

∑
n∈N

℘(α′)(n) ·
∑
a∈A

♭(α′)(n, a, b)

=
∑
a∈A

∑
α′∈SA

ζ(a)(α, b)

=
∑
a∈A

σ(a, b) = β(b)

Finally, we need to check that for all σ′ ∈ S(A×B),

ρ(σ′) = τ(λa.
∑
b∈B

σ(a, b), λb.
∑
a∈A

σ(a, b))

This is indeed the case:

ρ(σ′) =
∑

α′,a,n∈SA×A×N

℘(α′)(n) · δσ′,λa′,b′.♭(α′)(n,a′,b′)·δa,a′

=
∑

α′,a,n∈SA×A×N

℘(λa′.
∑
b∈B

♭(α′)(n, a, b) · δa,a′)(n) · δσ′,λa′,b′.♭(α′)(n,a′,b′)·δa,a′

=
∑

α′,a,n∈SA×A×N

℘(λa′.
∑
b∈B

σ(a′, b))(n) · δσ′,λa′,b′.♭(α′)(n,a′,b′)·δa,a′

=
∑

a,n∈A×N

℘(λa′.
∑
b∈B

σ(a′, b))(n) · δσ′,λa′,b′.♭(λa′.
∑

b∈B σ(a′,b))(n,a′,b′)·δa,a′

=
∑
n∈N

℘(λa.
∑
b∈B

σ(a, b))(n) · δλb.∑a∈A ♭(λa.
∑

b∈B σ(a,b))(n,a,b),λb.
∑

a∈A σ(a,b)

= τ(λa.
∑

b∈B σ(a, b), λb.
∑

a∈A σ(a, b))

(2) This direction is comparatively significantly simpler. As τ ∈ W(φ, ψ), we have

for all α ∈ SA,
∑
β′∈SB

τ(α, β′) = φ(α),

for all β′ ∈ SB,
∑
α∈SA

τ(α, β′) = ψ(β′).
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By applying µS to both sides we get

for all a ∈ A,
∑

α,β′∈SA×SB

τ(α, β′) · α(a) = µS
A(φ)(a),

for all b ∈ B,
∑

α,β′∈SA×SB

τ(α, β′) · α(a) = β(b).

As for all (α, β′) ∈ SA× SB, τ(α, β′) ̸= 0 implies that
∑

a∈A α(a) =
∑

b∈B β
′(b), we can

use Lemma 6.1.5 to obtain

for all a ∈ A,
∑

σ∈S(A×B)

τ(λa.
∑
b∈B

σ(a, b), λb.
∑
a∈A

σ(a, b)) ·
∑
b∈B

σ(a, b) = µS
A(φ)(a),

for all b ∈ B,
∑

σ∈S(A×B)

τ(λa.
∑
b∈B

σ(a, b), λb.
∑
a∈A

σ(a, b)) ·
∑
a∈A

σ(a, b) = β(b).

By substituting ρ(σ) = τ(λa.
∑

b∈B σ(a, b), λb.
∑

a∈A σ(a, b)) and distributing the product
over the sum, we are able to conclude.

Lemma 6.1.15.
Given τ : A→ RB,α ∈ SA, β ∈ SB:∑

σ∈W(Sτ(α),β)

∏
g,b◁σ

g(b) =
∑

σ∈W(α,β)

∏
a,b◁σ

τ(a)(b)

Proof. This is a simple application of the naturality ofW (Lemma 6.1.4).∑
σ∈W(Sτ(α),β)

∏
g,b◁σ

g(b) =
∑

σ∈W(α,β)

∏
g,b◁S(τ×idB)(σ)

g(b) Lemma 6.1.4

=
∑

σ∈W(α,β)

∏
g∈RB

∏
b∈B

(g(b))
∑

a∈A σ(a,b)·δSτ(a),g Definition

=
∑

σ∈W(α,β)

∏
a∈RA

∏
g∈RB

∏
b∈B

(g(b))σ(a,b)·δ
S
τ(a),g Definition 6.1.1

=
∑

σ∈W(α,β)

∏
a∈RA

∏
b∈B

(τ(a)(b))σ(a,b) g = τ(a)

=
∑

σ∈W(α,β)

∏
a,b◁σ

τ(a)(b) Definition

Thus far, we have not really encountered idempotency, despite the title of this section. The
upcoming theorem requires that R has an idempotent sum. This is crucial, as when we are
summing over the elements of a set such asW(α, α′), for some α, α′ ∈ SA, idempotency allows
us to only consider whether a particular σ exists withinW(α, α′), not how many times a particular
σ could be created from α and α′. This would not be the case with non-idempotent sums – there
will be more on this in the next section, where we will tackle the non-idempotent case. For now,
we have all the tools necessary to form new distributions in the idempotent case.
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Theorem 6.1.16.
Let R be an arbitrary continuous commutative semiring such that +R is idempotent. Let S
be an arbitrary multiplicity semiring, with the corresponding monad S using finite support. Also

consider fixed an exponential action of S onR with a coefficientless expansion. Under these con-

ditions,R distributes over S to form the composite monad RS, with the distribution θ : SR→ RS

defined as (for all φ ∈ SRA,α ∈ SA):

θA(φ)(α) =
∑

σ∈W(φ,α)

∏
(f,a)◁σ

f(a)

Proof of Theorem 6.1.16. We prove this by solving the equations of the 5 requisite diagrams.

• θ is a natural transformation: Given φ ∈ SRA, β ∈ SB, f : A→ B,

θB(SRf(φ))(β) =
∑

σ∈W(SRf(φ),β)

∏
g,b◁σ

g(b) Definition

=
∑

σ1∈W(φ,β)

∏
τ,b◁σ1

Rf(τ)(b) Lemma 6.1.15

=
∑

σ1∈W(φ,β)

∏
τ,b◁σ1

∑
a∈A

τ(a) · δRf(a),b Definition

=
∑

σ1∈W(φ,β)

∑
α∈SA

∑
σ2∈W(α,σ1)

∏
τ,b,a◁σ2

τ(a) · δRf(a),b Definition 6.1.10

=
∑

σ∈W(φ,A)

∑
σ2∈W(σ,β)

∏
τ,b,a◁σ2

τ(a) · δRf(a),b

[
Idempotent +R

Lemma 6.1.3

]
=

∑
σ∈W(φ,A)

·δRSf(α),β ·
∏
f,a◁σ

f(a) Lemma 6.1.12

=
∑
α∈SA

θA(φ)(α) · δRSf(α),β Definition

= RSf(θA(φ))(β) Definition

In the fourth line, we rely on idempotency to allow us to adjust the sets we are summing
over – thanks to idempotency, the sizes of the sets we sum over do not matter, as long as
the content remains the same. We use Lemma 6.1.3 to guarantee that the content will not
change, enabling the step.

• θA ◦ SηRA = ηRA: Given α, α′ ∈ SA,

θ(SηRA(α))(α
′) =

∑
σ∈W(SηRA(α),α′)

∏
f,a◁σ

f(a) Definition

=
∑

σ∈W(α,α′)

∏
a,a′◁σ

ηRA(a)(a
′) Lemma 6.1.15

=
∑

σ∈W(α,α′)

∏
a,a′◁σ

δRa,a′ Definition

= δRα,α′ ·
∏
a◁α

1 Lemma 6.1.12
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= δRα,α′
∏

a◁α 1 = 1

= ηRA(α)(α
′) Definition

Here we rely on S being positive. This is not immediately obvious – Lemma 6.1.15 relies
on the naturality ofW , which requires a positive S.

• θA ◦ ηSRA = RηSA: Given φ ∈ RA,α ∈ A,

θ(ηSRA(φ))(α) =
∑
a∈A

δα,λa′.δa,a′ · θ(η
S
RA(φ))(λa

′.δa,a′) Lemma 6.1.13

=
∑
a∈A

δα,λa′.δa,a′ ·
∑

σ∈W(ηSRA(φ),λa′.δa,a′ )

∏
f,a◁σ

f(a) Definition

=
∑
a∈A

δα,λa′.δa,a′ ·
∏

f,a◁λ(φ′,a′).δφ,φ′ ·δa,a′

f(a) SingletonW

=
∑
a′∈A

φ(a′) · δRα,λa.δSa,a′
Definition

= RηSA(φ)(α) Definition

Here, we rely on the semiring S being discrete. Both of the previous two diagrams are used
to show the consistency of the units when passing through the distribution. This involves a
sort of “splitting and rearranging”, where it is important that we can only do this in one way.
If one considers the hypothetical comonad that would be induced by S, these requirements
are also quite intuitive: Using a resource a negative amount of times or a fraction of an
amount of times makes no sense.

The basic properties of the exponential action are also linked to these two diagrams, ensur-
ing a consistent mapping between the identities of R and S. Going back to the comonad
intuition, a resource which isn’t present shouldn’t have an affect, and if a resource is only
present once it shouldn’t change the value it produces. Meanwhile, 0 and 1 values should
be untouched.

• µR
SA ◦ RθA ◦ θA = θ ◦ SµR

A: Given φ ∈ SRRA,α ∈ SA,

µR
SA(RθA(θA(φ)))(α) =

∑
ψ∈RSA

RθA(θA(φ)) · ψ(α) Definition

=
∑

ψ∈RSA

∑
ρ∈SRA

θA(φ)(ρ) · δRθA(ρ),ψ · ψ(α) Definition

=
∑
ρ∈SRA

θA(φ)(ρ) · θA(ρ)(α) ψ = θA(ρ)

=
∑
ρ∈SRA

 ∑
σl∈W(φ,ρ)

∏
g,f◁σl

g(f)

 ·
 ∑
σr∈W(ρ,α)

∏
f ′,a◁σr

f(a)

 Definition

=
∑
ρ∈SRA

∑
σr∈W(ρ,α)

∑
σl∈W(φ,ρ)

( ∏
g,f◁σl

g(f)

)
·

( ∏
f ′,a◁σr

f(a)

)
+R distributes
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=
∑

σl∈W(φ,SRA)

∑
σ3∈W(σl,α)



[ ∏
g∈RRA

∏
f∈RA

(g(f))
∑

a∈A σ
3((g,f),a)

]
·R[ ∏

f∈RA

∏
a∈A

(f(a))
∑

g∈RRA σ
3((g,f),a)

]


Lemma 6.1.6

=
∑

σl∈W(φ,SRA)

∑
σ3∈W(σl,α)

∏
(g,f),a◁σ3

g(f) · f(a) Definition 6.1.1

=
∑

σ∈W(φ,α)

∑
σ3∈W(SRA,σ)

∏
f,(g,a)◁σ3

g(f) · f(a) Lemma 6.1.3

=
∑

σ∈W(φ,α)

∏
g,a◁σ

∑
f∈RA

g(f) · f(a) Definition 6.1.8

=
∑

σ∈W(φ,α)

∏
g,a◁σ

µR
A(g)(a) Definition

=
∑

σ∈W(SµRA(φ),α)

∏
f,a◁σ

f(a) Lemma 6.1.15

= θA(Sµ
R
A(φ))(α) Definition

This diagram could also be described as the “additive splitting diagram”. Alongside said
property, this diagram forces the remainder of the properties of the exponential action,
along with the coefficientless expansion. The equation on the 7th line of the proof is the
“purest” form of the equation – from our φ ∈ SRRA and α ∈ SA we need to consider all
arrangements of g ∈ RRA, f ∈ RA, a ∈ A from the contents of φ and α. This is the only
way that the equation truly “makes sense” – the other properties are then forced to ensure
that both halves meet this “middle ground”.

• RµS
A ◦ θA ◦ SθA = θA ◦ µS

RA: Given φ ∈ SSRA,α ∈ SA,

RµS
A(θA(SθA(φ)))(α) =

∑
ψ∈µS−1

A (α)

∑
τ∈W(SθA(φ),ψ)

∏
ζ,α2◁τ

ζ(α2) Definition

=
∑

ψ∈µS−1
A (α)

∑
τ∈W(φ,ψ)

∏
ψ2,α2◁τ

∑
σ∈W(ψ2,α2)

∏
f,a◁σ

f(a) Lemma 6.1.15

=
∑

ψ∈µS−1
A (α)

∑
τ∈W(φ,ψ)

∏
ψ2,α2◁τ

∑
σ∈S(RA×A)

χR
W(ψ2,α2)

(σ)
∏
f,a◁σ

f(a) Rearranged

=
∑

{
ψ,
τ

∣∣∣∣ψ∈µS−1
A (α),

τ∈W(φ,ψ)

}
∑

ρ∈W(SS(RA×A),τ)

∏
σ,(ψ2,α2)◁ρ

χR
W(ψ2,α2)

(σ)
∏
f,a◁σ

f(a) Lemma 6.1.10

=
∑

{
ψ,
τ,
ρ

∣∣∣∣ψ∈µS−1
A (α),

τ∈W(φ,ψ)

}
∑

ρ
∣∣∣∣∣∣

ρ∈W(SS(RA×A),τ),(
∀(σ,(ψ2,α2))∈supp(ρ),

σ∈W(ψ2,α2)

)

∏
σ,(ψ2,α2)◁ρ

∏
f,a◁σ

f(a) Rearranged

=
∑

{
ψ,
τ

∣∣∣∣ψ∈µS−1
A (α),

τ∈W(φ,ψ)

}
∑

ρ
∣∣∣∣∣∣
ρ∈SS(RA×A),(
∀σ∈supp(ρ) ∃(ψ2,α2)∈supp(τ)
s.t. σ∈W(ψ2,α2), ρ(σ)=τ(ψ2,α2)

)

∏
σ◁ρ

∏
f,a◁σ

f(a) +R idempotent
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=
∑

{
ψ,
τ

∣∣∣∣ψ∈µS−1
A (α),

τ∈W(φ,ψ)

}
∑

ρ
∣∣∣∣∣∣
ρ∈SS(RA×A),∀σ∈S(RA×A),

ρ(σ)=τ

(
λf.

∑
a∈A σ(f,a),

λa.
∑

f∈RA σ(f,a)

)

∏
σ◁ρ

∏
f,a◁σ

f(a) σ ∈ W(ψ2, α2)

=
∑


ψ,
τ,
ρ

∣∣∣∣∣∣∣∣
ψ∈µS−1

A (α),τ∈W(φ,ψ),
ρ∈SS(RA×A),∀σ∈S(RA×A),

ρ(σ)=τ

(
λf.

∑
a∈A σ(f,a),

λa.
∑

f∈RA σ(f,a)

)


∏
σ,f,a∈S(RA×A)×RA×A

(f(a))ρ(σ)·σ(f,a) Definition 6.1.1

=
∑


ψ,
τ,
ρ

∣∣∣∣∣∣∣∣
ψ∈µS−1

A (α),τ∈W(φ,ψ),
ρ∈SS(RA×A),∀σ∈S(RA×A),

ρ(σ)=τ

(
λf.

∑
a∈A σ(f,a),

λa.
∑

f∈RA σ(f,a)

)


∏
f,a∈RA×A

(f(a))
∑

σ∈S(RA×A) ρ(σ)·σ(f,a) Definition

=
∑

{
ψ,
τ

∣∣∣∣ψ∈µS−1
A (α),

τ∈W(φ,ψ)

}
∑

ρ
∣∣∣∣∣∣
ρ∈SS(RA×A),∀σ∈S(RA×A),

ρ(σ)=τ

(
λf.

∑
a∈A σ(f,a),

λa.
∑

f∈RA σ(f,a)

)

∏
f,a◁µSA(ρ)

f(a) Definition

=
∑

σ∈W(µSRA(φ),α)

∏
f,a◁σ

f(a) = θA(µ
S
RA(φ))(α)

[
Idempotent +

Lemma 6.1.14

]

Though this is the most complex equation, it merely introduces the requirement for mul-
tiplicative splitting – all other properties are already present. Multiplicative splitting was
originally introduced by the authors of [CES10] out of purely technical reasons [personal
communication]. We start to get a better feeling for it here – though the presentation re-
mains separate for familiarity, additive splitting and multiplicative splitting are in fact two
sides of the same coin and may be better presented through a joint “multiplicative-additive
splitting”. We discuss this in more detail later – for now, consider that the semiring µM

A

contains both an additive and multiplicative component. To “split and rearrange” this, we
need to split both components.

Conjecture 6.1.17.
There exists a definition of infinite product which, when used correctly together with the infinite

sum, allows for the finiteness requirements to be removed without affecting the results to come.
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6.2 Non-idempotent Sum

In the previous section, we have shown that it is possible to find a distribution betweenR and S,
under certain conditions. Forcing S to be a multiplicity semiring is due to the properties described
in Lemmas 6.1.5 and 6.1.14 being necessary, along with the definition of witnesses in general.
It is possible that there may be a more general definition which still allows these lemmas to be
satisfied. The monad based on S being the finitely supported version may not be mandatory – a
version without finite support would require R to have a well-defined notion of infinite product,
but there are no other obvious changes to the requirements.

The previous results presented after Corollary 5.2.19 seem to imply that idempotency is not
a requirement, as it shows that N is a (co)monad on SetR regardless of whether R has an idem-
potent sum. In the next section, we will show that idempotency is actually a requirement for the
distribution (at least, in a form akin to the previous sections) – however, there is a way to obtain
monads for the non-idempotent case despite the lack of a proper distribution.

6.2.1 Non-Idempotent Distributions are a Lie

Let us consider a particular case presented in the paper by Laird et. al. [LMMP13]: We setR = N̄
and S = N, with the corresponding R = N̄ monad using infinite sums and the S = Nf monad
using finite support. By representing multisets as unordered lists, we have (from the results in the
paper)

!N̄Nf
φ(α, [b1, . . . , bn]) =

∑
(a1,...,an)

s.t. [a1]+···+[an]=α

n∏
i=1

φ(ai, bi)

Where !N̄Nf
is the comonad produced when considering the Kleisli category SetN̄ as a Lafont

category1. This comonad uses the same functor as Nf , and when viewed as a monad (due to
(SetN̄)

op = SetN̄) has identical unit and multiplication natural transformations to Nf . This
implies that there should be a distribution θ : NfN̄→ N̄Nf , from which !N̄Nf

is constructed.

The odd presentation of the above equation is due to the tuple under the sum. Instead of
R = N̄, let us consider R = Tr, the tropical semiring. The above equation would then simplify
to

!TrNf
φ(m, [b1, . . . , bn]) =

∑
[a1,...,an]

s.t. [a1]+···+[an]=m

n∏
i=1

φ(ai, bi)

The tuple would become a multiset. Essentially, when the semiring chosen forR has an idempo-
tent sum, we are keeping track of the ways that we can pair together the elements of two multisets.

1Lafont categories have not been defined, nor is the definition relevant to this work. For those unfamilar with the
concept, it suffices to know that said comonad exists.
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If the semiring has a non-idempotent sum, then we also need to keep track of the number of ways
each pairing can occur. This is the intuitive explanation that was promised in the previous section
for why non-idempotent sums significantly complicate the issue at hand.

For the remainder of this subsection, we will assume that the exponential action between N̄
and N is the common exponent of natural numbers.

Notation 6.2.1.
Given α : A→ N, let � (α) =

∏
a∈A fact(α(a)), where fact(i) is used to denote the factorial of

i (as opposed to ! which may create confusion).

Intuitively,�(α) (pronounced “shuffle α”) is counting the number of internal rearrangements
of α. This is not the number of tuples which can be created from a multiset, simply a measure of
the “repetitions” in α. The relation to the tuples and justification for the usage of the notation is
provided with the following proposition:

Proposition 6.2.2.
Let φ : A × B → N, α : NfA, β : NfB, and let us fix an ordering (b1, . . . , bn) for β (i.e.

β = [b1] + · · ·+ [bn]). Then

∑
(a1,...,an)

s.t. [a1]+···+[an]=α

n∏
i=1

φ(ai, bi) =
∑

σ∈W(α,β)

�(β)

�(σ)

∏
a,b◁σ

φ(a, b)

The �(β)
�(σ)

part of the right hand side makes use of division of natural numbers – something
which is undefined for semirings in general.

Proof. We will separate this proof into steps, to refer back to later.

(1) To begin, let us first rearrange the left half slightly.

∑
(a1,...,an)

s.t. [a1]+···+[an]=α

n∏
i=1

φ(ai, bi) =
∑

(a1,...,an)
s.t. [a1]+···+[an]=α

∏
a,b◁[(a1,b1),...,(an,bn)]

φ(a, b)

(2) As a reminder, given an α : NfA, the number of permutations of α is fact(
∑

a∈A α(a))

�(α)
[Bru12].

In other words, we have

∑
(a1,...,an)

s.t. [a1]+···+[an]=α

1 =
fact(

∑
a∈A α(a))

�(α)

(3) As a consequence of (2), for any n∈N and any f : N̄(A1×· · ·×An) (where for all i ≤ n,

Ai = A), if f is commutative with respect to its arguments (i.e. for all a1, . . . , an ∈ A and
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all bijective functions g : {1, . . . , n} → {1, . . . , n}, f(a1, . . . , an) = f(ag(1), . . . , ag(n))),
then for all fixed orderings (a′1, . . . , a

′
n) such that [a′1] + · · ·+ [a′n] = α, we have

∑
(a1,...,an)

s.t. [a1]+···+[an]=α

f(a1, . . . , an) =
fact(

∑
a∈A α(a))

�(α)
f(a′1, . . . , a

′
n)

(4) Since the product and sum of N are commutative, the following function is also commuta-
tive:

(b1, . . . , bn)→
∑

(a1,...,an)
s.t. [a1]+···+[an]=α

∏
a,b◁[(a1,b1),...,(an,bn))]

φ(a, b)

(5) We make use of (4) to apply (3) to the right hand half of (1) to obtain

∑
(a1,...,an)

s.t. [a1]+···+[an]=α

n∏
i=1

φ(ai, bi) =
∑

(b1,...,bn)
s.t. [b1]+···+[bn]=β

�(β)

fact(
∑

b∈B β(b))

∑
(a1,...,an)

s.t. [a1]+···+[an]=α

∏
a,b◁[(a1,b1),...,(an,bn))]

φ(a, b)

Essentially, the above step is “dividing” by the ordering. We rearrange a bit to obtain

∑
(a1,...,an)

s.t. [a1]+···+[an]=α

n∏
i=1

φ(ai, bi) =
∑

((a1,b1),...,(an,bn))
s.t. [a1]+···+[an]=α,
s.t. [b1]+···+[bn]=β

�(β)

fact(
∑

b∈B β(b))

∏
a,b◁[(a1,b1),...,(an,bn))]

φ(a, b)

We apply (3) again to obtain

∑
((a1,b1),...,(an,bn))
s.t. [a1]+···+[an]=α,
s.t. [b1]+···+[bn]=β

�(β)

fact(
∑

b∈B β(b))

∏
a,b◁[(a1,b1),...,(an,bn))]

φ(a, b)

=
∑

σ=[(a1,b1),...,(an,bn)]
s.t. [a1]+···+[an]=α,
s.t. [b1]+···+[bn]=β

fact(
∑

a,b∈A×B σ(a, b))

�(σ)

�(β)

fact(
∑

b∈B β(b))

∏
a,b◁σ

φ(a, b)

For σ ∈ W(α, β) we have (
∑

a,b∈A×B σ(a, b)) = (
∑

b∈B β(b)), so by the definition of

W(α, β) the above is equal to
∑

σ∈W(α,β)

�(β)

�(σ)

∏
a,b◁σ

φ(a, b) and we conclude.

The multinomial coefficient mentioned previously also reappears here. As a reminder, the
multinomial expansion rule for the natural numbers is (for n ∈ N, f : A→ N,#(supp(f)) ∈ N):

(
∑
a∈A

f(a))n =
∑

{α|α∈NfA,
∑

a∈A α(a)=n}

fact(n)

�(α)

∏
a◁α

f(a)
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Proposition 6.2.3.
The multinomial expansion rule for the natural numbers can be generalised to the following (for

β : NfB, f : A→ N,#(supp(f)) ∈ N):

∏
b◁β

∑
a∈A

f(a) =
∑
α∈NfA

∑
σ∈W(α,β)

�(β)

�(σ)

∏
a,b◁σ

f(a)

Proof.

∏
b◁β

∑
a∈A

f(a) =
∏
b∈B

∑
{α|α∈NfA,

∑
a∈A α(a)=β(b)}

fact(β(b))

�(α)

∏
a◁α

f(a) Definition

=
∏
b∈B

∑
α∈NfA

δN∑
a∈A α(a),β(b)

fact(β(b))

�(α)

∏
a◁α

f(a) Rearranging

=
∑

h:B→NfA

∏
b∈B

δN∑
a∈A h(b)(a),β(b)

fact(β(b))

�(h(b))

∏
a◁h(b)

f(a) + distributes

=
∑

σ∈Nf(A×B)

∏
b∈B

δNλb.
∑

a∈A σ(a,b),β

fact(β(b))

�(λa.σ(a, b))

∏
a∈A

(f(a))σ(a,b) Rearranging

=
∑

σ∈Nf(A×B)

δNλb.
∑

a∈A σ(a,b),β

�(β)

�(σ)

∏
a,b◁σ

f(a) Rearranging

=
∑
α∈NfA

∑
σ∈W(α,β)

�(β)

�(σ)

∏
a,b◁σ

f(a) Rearranging

When considering �(β)
�(σ)

as it appears in Proposition 6.2.2, note that α, β, and σ are in Nf , yet
the result of the fraction is in N̄. The coefficient transforms the types from one to another, which
is hard to spot due to the similarity in their types. If one was to consider other non-idempotentR

candidates with the same S = Nf , one could write
∑�(β)

�(σ)

i=1 instead of �(β)
�(σ)

.

Let us assume now that there exists a distribution θ : NfN̄ → N̄Nf , from which !N̄Nf
is con-

structed. Then the following diagram would commute:

NfN̄A

NfN̄B N̄NfB

Nfψ

θB

!N̄Nf
ψ

Proposition 6.2.4.
The comonad !N̄Nf

is not constructed from a distribution θ : NfN̄→ N̄Nf .
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Proof. Let us assume that such a θ exists. By setting φ = idN̄A the identity function in Set in the
previous diagram, we obtain Nf idN̄A; θA = θA =!N̄Nf

idN̄A. We can make use of this to “recover”
what such a θ would be:

θA(φ)(α) = !N̄Nf
idN̄A(φ)(α)

=
∑

σ∈W(φ,α)
�(α)
�(σ)

∏
f,a◁σ idN̄A(f)(a)

=
∑

σ∈W(φ,α)
�(α)
�(σ)

∏
f,a◁σ f(a)

This definition of θ mirrors the definition used in the idempotent case. This process is, in fact,
how the definition of θ for the idempotent case was identified.

Next, consider the following choices:

A = {a1, a2}, B = {∗},
ψ = λ ∗ .1N, φ = [a1, a2], α = [∗, ∗]

Plugging these into !N̄Nf
, we obtain the following:

!N̄Nf
ψ(φ)(α) =

∑
σ∈W(φ,α)

�(α)
�(σ)

∏
f,a◁σ ψ(f)(a)

= �([∗,∗])
�([(a1,∗),(a2,∗)]) · ψ(a1)(∗) · ψ(a2)(∗)

= 2 · ψ(a1)(∗) · ψ(a2)(∗) = 2

while with θA(Nfψ(φ))(α) we obtain a different result:

θA(Nfψ(φ))(α) =
∑

σ∈W(Nfψ(φ),α)
�(α)
�(σ)

∏
f,a◁σ f(a)

=
∑

σ∈W([[∗],[∗]],[∗,∗])
�([∗,∗])
�(σ)

∏
f,a◁σ f(a)

= �([∗,∗])
�([([∗],∗),([∗],∗)]) · 1 · 1 = 1

Notation 6.2.5.
Let us denote α β

σ
= �(β)
�(σ)
· χR

W(α,β)(σ).

Proposition 6.2.6.
− −
− is not a natural transformation.

Proof. By contradiction. Let ⊥ : A → ∗ be the terminal arrow. If − −
− was a natural trans-

formation, then Nf⊥(α) β

σ
= N̄Nf(⊥ × id)(λτ.

α β

τ
)(σ). Consider α = [a1, a2], β = [b, b], σ =

[(∗, b), (∗, b)]. Then Nf⊥(α) β

σ
= �(β)
�(σ)

= 2
2
= 1, while

N̄Nf(⊥× id)(λτ.
α β

τ
)(σ) =

∑
τ∈Nf(A×B)

α β

τ
· δλ(∗,b)∑a∈A τ(a,b),σ

=
[a1,a2] [b,b]

[(a1,b),(a2,b)]

= 2
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The above proposition is the underlying reason for why N̄Nf is not a monad on Set. We are
lead to the following conjecture:

Conjecture 6.2.7.
Given two semirings R,S where R is continuous and non-idempotent, if R is the corresponding

semiring monad of R using infinite support and S is a corresponding semiring monad of S, then

there cannot exist a distribution θ : SR→ RS.23

Despite the above, we know that Nf is a monad on Set, and we obtain !Nf
from Nf , which is a

monad (and comonad) on SetN̄. We will now attempt to identify the method by which we obtain
!Nf

from Nf , and in the process of doing so discover what is happening at a more abstract level.

2It is known that the multiset monad distributes over the multiset monad [MM07]. Though this has not been put
into context with these results, it seems a reasonable conjecture that finiteness is crucial for that case.

3There is a sort of duality here with recent results from Maaike Zwart and Dan Marsden [ZM22]. They show cases
where a distribution is impossible, relying on a notion of idempotency for at least one of the monads. Meanwhile,
we require idempotency for distributions to exist in our case.



Chapter 7

Unnatural Distributions

The work presented here is a part of work in progress and subject to mistakes – what is presented
is the fragment which is expected to work, but the presentation of it is quite horrible. It is expected
that continued investigations would allow this content to be presented in a cleaner way.

7.1 Unnatural Distributive Laws

In the previous chapter, we discovered that !Nf
does not arise from the monad Nf and a distribution.

The underlying cause is that the supposed distribution which would be obtained is not natural.
However, we can still find a pattern in its "unnaturality". Consider for a moment arbitrary monads
R, S, with a distributive law θ : SR→ RS. Given the below left hand diagram, we can then form
the right hand diagram by naturality (Reminder: we write u : A Cp for u ∈ CR(A,C)).

A C SA SRC SC

nat(θ)

B D SB SRD SD

f

up

vp

Sf Sgg

Su

Sv

θCp

θD
p

SRg

In the case of Nf and !Nf
, what we have instead is an ordering in the right hand diagram.

A C NfA NfC

≤N̄

B D NfB NfD

f

up

vp

Nff Nfg

!Nf
v
p

g

!Nf
u
p

137
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This inequality can in fact be quantified, and thus corrected. To do so, we first prove a minor
technical lemma.

Lemma 7.1.1.
Let α : NfA, γ : NfC, f : A→ B. Then #(supp(W(α, γ))) = �(Nff(α))

�(α)
·#(supp(W(Nff(α), γ))).

Proof. Let us fix an order for γ: We consider (c1, . . . , cn) such that
∑n

i=1[ci] = γ. By definition,
{[(a1, c1), . . . , (an, cn)]|

∑n
i=1[ai] = α} = W(α, γ). The number of permutations of Nff(α) is∑

b∈B Nff(α)(b)

�(Nff(α))
, while the number of permutations of α is

∑
a∈A α(a)

�(α)
. Thus, #(supp(W(α, γ))) =∑

a∈A α(a)

�(α)
and #(supp(W(Nff(α), γ))) =

∑
b∈B Nff(α)(b)

�(Nff(α))
. Divide one by the other.

We now move on to the correction of the inequality. Let us define the functor Nf
ω : Set →

SetN̄:
∀A ∈ Ob(Set), Nf

ωA = NfA

∀f ∈ Set(A,B), Nf
ωf(α, β) = ηN̄B(Nff(α))(β) · �Nff(α)

�α

Proposition 7.1.2.
Given the left hand below commuting diagram, the below right hand diagram commutes.

A C NfA NfC

B D NfB NfD

Nf
ωf p Nf

ωgp

!Nf
v
p

!Nf
u
p

g

up

f

vp

Proof. Let f : A → B, g : C → D, u : A → N̄C, v : B → N̄D such that for all a ∈ A, d ∈ D,
v(f(a), d) =

∑
c∈C u(a, c) · δNg(c),d.∑

β∈NfB

!Nf
v(β)(τ) · Nf

ωf(α)(β) = !Nf
v(Nff(α))(τ) ·

�(Nff(α))

�(α)
Definition

=
∑

σ∈W(Nff(α),τ)

�(Nff(α)) ·�(τ)

�(α) ·�(σ)

∏
b,d◁σ

v(b)(d) Definition

=
∑

σ∈W(α,τ)

�(τ)

�(σ)

∏
a,d◁σ

v(f(a))(d) Lemma 7.1.1

=
∑

σ∈W(α,τ)

�(τ)

�(σ)

∏
a,d◁σ

∑
c∈C

u(a, c) · δNg(c),d Definition

=
∑

σ∈W(α,τ)

∑
γ∈NfC

∑
ρ∈W(γ,σ)

�(τ)

�(ρ)

∏
c,a,d◁ρ

u(a, c) · δg(c),d Proposition 6.2.3

=
∑

σ∈W(α,τ)

∑
γ∈NfC

δNfg(γ),τ

∑
{
ρ

∣∣∣∣∣ρ∈W(γ,σ),
ρ(c,a,d)̸=0
⇒d=g(c)

}
�(τ)

�(ρ)

∏
c,a,d◁ρ

u(a, c) g(c) = d
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=
∑
γ∈NfC

δNfg(γ),τ

∑
σ2∈W(α,γ)

∑
{
ρ

∣∣∣∣∣ρ∈W(τ,σ),
ρ(d,a,c) ̸=0
⇒d=g(c)

}
�(τ)

�(ρ)

∏
d,a,c◁ρ

u(a, c) Lemma 6.1.3

=
∑
γ∈NfC

δNfg(γ),τ

∑
σ2∈W(α,γ)

�(τ)

�(σ2)

∏
a,c◁σ2

u(a)(c) Isomorphic sets

=
∑
γ∈NfC

δNfg(γ),τ

∑
σ2∈W(α,γ)

�(Nfg(γ))

�(σ2)

∏
a,c◁σ2

u(a)(c) Nfg(γ) = τ

=
∑
γ∈NfC

δNfg(γ),τ

∑
σ2∈W(α,γ)

�(Nfg(γ)) ·�(γ)

�(γ) ·�(σ2)

∏
a,c◁σ2

u(a)(c) Arithmetic

=
∑
γ∈NfC

!Nf
u(α)(γ) · δNfg(γ),τ ·

�(Nfg(γ))

�(γ)
Definition

Note that we also have Nf
ωf =!Nf

(f ; ηRB), which would result in a trivial presentation of the
above proof.

Normally, distributions between monads are defined using a distributive law θ : SR → RS,
which allows us to identify the monad !S. In N̄ and Nf we have two monads which do not
distribute, yet almost distribute. Consider also the following proposition:

Proposition 7.1.3.
Let R be a monad on a category C. All endofunctors F : CR → CR arise from the composition

of a related functor F r : C → CR with a distributing natural transformation in CR, θ : F rR →
RF r.

Proof. Let R be a monad on a category C, and let F : CR → CR. Let T ⊣ U be adjoint functors
forming R with respect to the Kleisli category, i.e. T : C → CR, U : CR → C, T ;U = R. The
morphism idRA : RA → RA (where id is the identity morphism of C) is clearly an element of
CR(RA,A), and we apply F to it to obtain F (idRA) = θA : FRA → RFA. Meanwhile, we set
F r = T ;F . That F r; θ = F for morphisms in CR is given by functoriality of F .

By building on the above, we can define new notion of a distribution matching the scenario
before us. When we have two monads R, S such that RS is not a monad, yet there exists a monad
?S on CR that is adjacent to S (having the same objects, unit, and multiplication), then we say
that R and S unnaturally distribute, and ?S is the monad arising from said unnatural distribution.
We can define the corresponding notion of an unnatural distributive law to identify unnatural
distributions.

Definition 7.1.4 (Unnatural Distributive Law).
Given two monads R, S on C, an unnatural distributive law of R over S consists of a functor

Sr : C → CR taking f : A → B ∈ Set to Srf : SA → RSB ∈ CR, and a morphism

θA : SrR→ RSr such that
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• for all A ∈ Ob(C), SrA = SA;

• θA is a natural transformation in CR, i.e. the following diagram should commute (for all

f : A→ B):

SrRA SrA

nat(θ)

SrRB SrB

SrRf p

θAp

θB
p

Srfp

• all of the following diagrams commute:

SSA SRSB SSB SRSRA SRRSA

nat(µSr

A ) θ

SA SB SSRA SRSA

SrSrfp

µSA

Srfp

θp

µSB θ

p

SrRθp

Srθ
p

SrµRSA

p

SA SA RA SA

ηR ηS
r

SRA SA SRA SA

SrηRA
p

θA
p

θA
p

ηSRA

ηRSrAp
RηSAp

SRRA SRA SSRA SRA

SRA µR SRSA µSr

SA SA SSA SA

θRA

p

SrµRA
p

θA

p

µSA

θA

p

µSA

SrθA

p

θSA

pθA

p

SA SSSA SSA

SrηS SSA SrµS

SSA RSSA SA SA

ηSSA SrηSA

ηRSSA

µSSA

SrµSAp

µSA

µSA

ηRSA
p
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Theorem 7.1.5.
Let C be a category, and let R, S be monads on C such that there exists an unnatural distribution

(Sr, θA) of R over S. Then there exists a monad ?S on CR acting as follows:

∀A ∈ Ob(CR), ?SA = SA

∀φ ∈ CR(A,B), ?Sφ = Srφ; Rθ

η?S = ηR ◦ ηS = ηR; RηS

µ?S = ηR ◦ µS = ηR; RµS

Proof. We will prove this diagrammically. We have the following diagrams (in SetR) to check:

• Diagrams showing the functoriality of ?S:

SA SB

SA (1) SA (2)

SC

?SidAp

id?SA
p

?S(f ;g)

p

?Sfp

?Sg

p
• Diagrams showing the naturality of η?S and µ?S:

A SA SSA SA

(3) (4)

B SB SSB SB

η
?S
Ap

η
?S
Bp

f p ?S?Sf

p

µ
?S
Ap

µ
?S
Bp

?Sf

p ?Sf

p

• The monad diagrams for η?S and µ?S:

SA SSA SSSA SSA

(5) (6)

SSA SA SSA SA

η
?S
SAp

µ
?S
SA

p

?Sµ
?S
Ap

?Sη
?S
A

p

µ
?S
Ap

µ
?S
Ap

idSA
p µ

?S
A

p

µ
?S
A

p

By breaking the ?S monad into its components, we obtain the following commuting diagrams (in
Set) proving the above diagrams:
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1.

SA RSA

ηR

RSRA RRSA

SrηRA

RθA

ηRSA

µRSA

2. The unnamed square is given by composition in SetR and functoriality of Sr.

SA RSRC RRSC RSC

nat(µR)

RRSRC RRRSC

RSRB RRSRRC µR

nat(θ)

RRSB RRRSRC RRRRSC

Srf

RθB

RRSrg RRRθC

Sr(f ;g)

RSrRg

RRθC

RRSrµRC

µRSRC

RRθC

RRµRSC

RθC µRSC

µRRSC

3.

A RA RSA

nat(ηR) nat(ηS)

RB RRB RSRB

ηS
r

RRSB RSB

f

µRSB

ηRA RηSA

RηRB

RSf

RθA

Rf

RηSA

RRηSB
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4.

SSA SA

nat(µSr)

RSRSRB RRSSRB

RRSRRSB

θ RSSRB RSRB

RSRRSB

RRSRSB RSRSB RRSRSB µSr RRSB

RRSSB RSSB RSB

SrSrf

RSrRθ

µRSRRSB

RSrµRSB

µRSRSB

Rθ

µRSSB

µRSB

µSRB

µSA

Srf

Rθ

Rθ

µRSSRB

RµSRB

RSrθ

µRSRSB

5.

SA SrηS SSA

RRSRSA RSSA RSA RRSA

ηR u(R) u(R)

RRRSSA RRSSA RSSA RSA

RRθSA

RSrηRSA

ηSSA

ηRRSA

ηRSSASrηSA

RµSA

µRSSA

RηRSSA

µRSSA

idRSSA µRSAidRSA
RµSA
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6.

SSSA RSSA RRSRSA RRRSSA

u(R) ηR

SrµS RSSA RRSSA

SSA SA RSA RRSA

nat(ηR) u(R)

SSA RSSA RSA □

µSSA

SrµSA RSrηRSA

RµSA

ηRSA

RRθSA

µRSSA

ηRSA

µRSSA
RµSA

µRSAidRSA

RηRSSA

idRSSA

ηRSSA

µSA

idA

The diagrams for an unnatural distributive law closely mirror those of a standard distribution.
The main difference is that an unnatural distributive law does not need to be natural. Instead,
it is in a way partially natural, where θ is not natural but Srθ is. All distributing monads yield
an unnatural distributive law in addition to the standard distributive law. It would not be suit-
able to call them a more general form of distributions however, due to their lack of connection
with Eilenberg-Moore categories. Rather than adding a new dimension to distributing monads,
unnatural distributions exist at a sort of metaphorical “right angle” to standard distributions.

Remark 7.1.6.
Aside from the final two diagrams, all components of unnatural distributions hold for any monad

? on a Kleisli category CR. One must merely take SrA =?A and Srf =?(f ; ηRA). The final two

diagrams are only true when the monad is lifted from some natural transformations in C, i.e.

η? = ηS; ηR and µ? = µS; ηR for some natural transformations ηS, µS.

7.2 Generalising Non-idempotent Sum

Now that we have defined the notion of an unnatural distribution, we can return to the prob-
lem of obtaining semiring based (co)monads on the Kleisli category of non-idempotent semiring
monads. In the distribution of semiring monads whereR has an idempotent sum, we only needed
to fix the exponential action. For the non-idempotent case we also have a coefficient morphism,
and the coefficient and exponential action are interconnected. For simplicities sake, we will con-
tinue to impose our standard restrictions on R and the monad of S to avoid issues with infinite
products and infinite sums (R is continuous, S utilises finite support).



7.2. Generalising Non-idempotent Sum 145

Definition 7.2.1 (Semiring Interaction Pairs).
Let R and S be arbitrary semirings, where R is commutative and continuous. Let R be the

semiring monad of R, and S be the semiring monad of S restricted to functions of finite support.

We say thatR and S have an interaction pair if

• there exists an exponential action of S onR: (−)− : R× S → R;

• there exists a function − −
− : SA× SB × S(A×B)→ R that we call the coefficient;

such that the following requirements are satisfied:

(for a ∈ A, b ∈ B, f : A→ B,α, α′ ∈ SA, ᾱ ∈ SSA, β ∈ SB, γ ∈ SC, σ ∈ S(A×B))

• The coefficient exhibits the following properties:

ηS(a) ηS(b)

σ
= δηS((a,b)),σ (coef1)

ηS(a) α

σ
̸= 0⇒ ∃a′ ∈ A such that α = ηS(a′) (coef2)∑

σab∈S(A×B),
σbc∈S(B×C)

α β

σab
· β γ

σbc
=
∑

σac∈S(A×C),
σbac∈S(B×A×C)

α γ

σac
· β σac
σbac

(coef3)

α β

σ
̸= 0⇒ σ ∈ W(α, β) (coef4)

α α′

λa,a′.α(a)·δa,a′
= δα,α′ (coef5)

α SηSA(α)

λa,α′.α(a)·δ
ηS
A

(a),α

= 1 (coef6)

α̂ SµSA(α̂)

λᾱ,α.α̂(ᾱ)·δ
µS
A

(ᾱ),α

= 1 (coef7)

α Sf(α)

λ(a,b).δf(a),b·α(a)
· Sf(α) γ

σ
= RS(f × idC)(λτ.

α γ

τ
)(σ) (coef8)

α Sf(α)

λ(a,b).δf(a),b·α(a)
· γ α

σ
=

γ Sf(α)

S(id×f)(σ) ·
α S(id×f)(σ)

S(λ(c,a).(a,(c,f(a))))(σ)
(coef9)

• The coefficient and exponential action interact to satisfy the following equations:∏
b◁β

∑
a∈A

f(a, b) =
∑
α∈SA,

σ∈S(A×B)

α β

σ

∏
a,b◁σ

f(a, b) (coefexp)

µSA(ᾱ) β

σ
=
∑

β̄∈SSB,
σ̄∈SS(A×B)

δµSB(β̄),β · δµSA×B(σ̄),σ

∑
ρ∈S(SA×SB),

τ∈S(S(A×B)×SA×SB)

ᾱ β̄

ρ
· σ̄ ρ

τ

∏
σ′,α′,β′◁τ

α′ β′

σ′ (coefsplit)

Notation 7.2.2.
To improve readability, we also introduce the syntactic sugaring (for f : A → B,α : SA)

[α/Sf(α)] =
α Sf(α)

λ(a,b).δf(a),b·α(a)
.

Many of the above properties are essentially properties from the idempotent section gener-
alised to fit the coefficient. When discussing Lemma 5.2.13, the necessity of needing to pair
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individual elements together was the key justification for the necessity of the lemma. The coef-
ficient morphism quantifies the number of ways a pairing can occur, something that is irrelevant
when the sum is idempotent.

The property (coef4) ensures the validity of a collection of pairs with respect to two col-
lections of elements. The properties (coef1) and (coef2) support this by ensuring that no new
elements appear in the collection of pairs. To make this aspect a bit more obvious, we have the
following lemma:

Lemma 7.2.3.
If S is positive and discrete, then properties (coef1) and (coef2) are given by (coef4).

Proof. Proof of Lemma 7.2.3. Note that both properties can be written as one statement, namely
α ηS(b)

σ
=
∑

a∈A δ
R
ηS((a,b)),σ · δ

R
ηS(a),α. Assume that S is positive and discrete. Then

∑
b β(b) = 1

implies that there exists a unique b such that β(b) = 1. Thus by (coef4), α ηS(b)

σ
̸= 0 implies

that
∑

a∈A σ(a, b) = 1, so there exists a unique a such that σ = ηS((a, b)), which implies that
λa.
∑

b′∈A η
S((a, b′)) = α, so α = ηS(a).

Remark 7.2.4.
The converse is not directly true as a result of (coef4) being a single implication. One could define

the coefficient such that for a particular pairing (a, b) ∈ A × B,
ηSA(a) ηSB(b)

ηSA×B((a,b))
= 0. We conjecture

that such a definition would violate other properties, most likely a combination of (coefexp) and

the definition of an exponential action, but this has not been investigated in detail.

The property (coef3) is closely linked to the associativity of witnesses and Lemma 6.1.6.
(coefexp) is clearly a generalisation of the coefficientless expansion, and (coefsplit) is actually a
combination of generalised multiplicative and additive splitting, something that was hinted at in
the previous chapter.

The "new" properties are (coef5)-(coef9). The first of these acts as a sort of "identity" – if
every element is paired with itself, then there are no "choices" to make, and so the coefficient can
only equal 1 or 0 depending on whether the pairing is possible or not. Strictly speaking, one could
also write said property as α α

λa,a′.α(a)·χS
{a}(a

′)
= 1, relying on (coef4) for the case where α ̸= α′. The

following two are essentially nullifying the effects of ηSA and µS
A on the coefficient – we conjecture

that these three properties would always result from one larger property encompassing all three,
but we present them separately in case this is false.

The final two new properties exist to "realign" the coefficient, allowing us to form a morphism
that is natural from one which is not.

Before continuing, we prove some technical lemmas.

Lemma 7.2.5.
Given any α ∈ SA, [α/SidA(α)] = 1R.
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Proof. As SidA(α) = α, we have [α/SidA(α)] = α α
λa,a′.δa,a′ ·α(a)

. We conclude by (coef5).

Lemma 7.2.6.
For all f : A→ B, g : B → C, α ∈ SA, [α/Sf(α)] · [Sf(α)/Sg(Sf(α))] = [α/S(g ◦ f)(α)].

Proof. Let β ∈ SD, σ ∈ S(C ×D) such that Sg(Sf(α)) β

σ
̸= 0. We have:

[Sf(α)/Sg(Sf(α))] · [α/Sf(α)] =
α Sf(α)

λa,b.δf(a),b·α(a)
· Sf(α) Sg(Sf(α))

λb,c.δg(b),c·Sf(α)(b)

= RS(f × idC)(λτ.
α Sg(Sf(α))

τ
)(λb, c.δg(b),c · Sf(α)(b))

=
∑

τ∈S(A×C)

α Sg(Sf(α))

τ
· δS(f×id)(τ),λb,c.δg(b),c·Sf(α)(b)

=
α Sg(Sf(α))

λa,c.δg(f(a)),c·α(a)

=
α S(g◦f)(α))

λa,c.δ(g◦f)(a),c·α(a)

= [α/S(g ◦ f)(α)]

Lemma 7.2.7 (Unnatural to Natural).
Given τ : A→ RB,α : SA, β : SB, we have:

[α/Sτ(α)] ·
∑

σ∈S(RB×B)

Sτ(α) β

σ

∏
g,b◁σ

g(b) =
∑

σ∈S(A×B)

α β

σ

∏
a,b◁σ

τ(a)(b)

Proof. The lemma follows naturally from (coef8).

[α/Sτ(α)] ·
∑

σ∈S(RB×B)

Sτ(α) β

σ

∏
g,b◁σ

g(b) =
∑

ς∈S(A×B)

α β

ς

∏
g,b◁S(τ×idB)(ς)

g(b) (coef8)

=
∑

ς∈S(A×B)

α β

ς

∏
g,b

(g(b))
∑

a∈A ς(a,b)·δτ(a),g Definition

=
∑

ς∈S(A×B)

α β

ς

∏
a,b◁ς

τ(a)(b) Definition 6.1.1

We believe that the above properties suffice to form an unnatural distribution.

Conjecture 7.2.8.
Given semiring monads R, S and morphisms (−)−, − −

− forming an interactive pair between

them, an unnatural distribution is obtained of R over S with Sr defined as:

• Given A ∈ Ob(Set), SrA = SA;

• Given f : A→ B,α : SA, Srf(α) = ηRB(Sf(α)) · [α/Sf(α)];



148 Unnatural Distributions

and θA defined as

θA(φ)(α) =
∑

σ∈S(RA×A)

φ α

σ

∏
f,a◁σ

f(a)

The proof for this is a work in progress, and is missing two diagrams. Hence, it remains as
conjecture for now.

Proof. We begin by proving that Sr is a functor.

• Sr preserves the unit; SridA = ηRSA: Let α, α′ ∈ SA.

SridA(α)(α
′) = ηRSA(SidA(α))(α

′) · [α/SidA(α)] Definition

= ηRSA(SidA(α))(α
′) Lemma 7.2.5

= ηRSA(α)(α
′) Definition

• Sr preserves composition; given f : A → B, g : B → C, Srg ◦ Srf = Sr(g ◦ f): Let
α ∈ SA, γ ∈ SC.

(Srg ◦ Srf)(α)(γ)
=

∑
β∈B

ηRSB(Sf(α))(β) · ηRSC(Sg(β))(γ) · [α/Sf(α)] · [β/Sg(β)] Definition

= ηRSC(Sg(Sf(α)))(γ) · [α/Sf(α)] · [Sf(α)/Sg(Sf(α))] β = Sf(α)

= ηR(Sg(Sf(α)))(γ) · [α/Sg ◦ f(α)] Lemma 7.2.6

= Sr(g ◦ f)(α)(γ) Definition

For all objects A ∈ Ob(Set), SrA = SA is true by definition. We will first show the naturality of
θA before proving the remaining diagrams:
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• Naturality of θA: Given φ ∈ SRA, β ∈ SB, f ∈ Set(A,B),

(θB ◦ SrRf)(φ)(β) =
∑

ψ∈SRB

δψ,SRf(φ) · [φ/SRf(φ)] ·
∑

σ∈S(RB×B)

ψ β

σ

∏
g,b◁σ

g(b) Definition

= [φ/SRf(φ)] ·
∑

σ∈S(RA×B)

SRf(φ) β

σ

∏
g,b◁σ

g(b) ψ = SRf(φ)

=
∑

σ∈S(RA×B)

φ β

σ

∏
g,b◁σ

Rf(g)(b) Lemma 7.2.7

=
∑

σ∈S(RA×B)

φ β

σ

∏
g,b◁σ

∑
a∈A

g(a) · δf(a),b Definition

=
∑

σ∈S(RA×B),
ρ∈S(A×(RA×B)),

α∈SA

φ β

σ
α σ
ρ

∏
a,(g,b)◁ρ

g(a) · δf(a),b (coefexp)

=
∑


σ,
α,
ρ

∣∣∣∣∣∣∣∣∣
σ∈S(RA×B),
α∈SA,
ρ∈S(A×RA×B),
ρ(a,(g,b)) ̸=0
⇒f(a)=b



φ β

σ
α σ
ρ

∏
g,a∈RA×A

(g(a))
∑

b∈B ρ(a,(g,b))) Restricting ρ

=
∑
α∈SA,

σ∈S(RA×A)

[α/Sf(α)] · δβ,Sf(α) ·
φ α

σ

∏
g,a◁σ

g(a) (coef9)

= (Srf ◦ θA)(φ)(β) Definition

• Proving the diagram ηR: Given α, α′ ∈ SA,

(θA ◦ SrηRA)(α)(α′)

=
∑

φ∈SRA

SrηRA(α)(φ) · θA(φ)(α′) Definition

=
∑

φ∈SRA

ηRSRA(Sη
R
A(α))(φ) · [α/SηRA(α)] · θA(φ)(α′) Definition

= [α/SηRA(α)] · θA(SηRA(α))(α′) φ = SηRA(α)

= [α/SηRA(α)] ·
∑

σ∈S(RA×A)

SηRA(α) α′

σ

∏
f,a′◁σ

f(a′) Definition

=
∑

σ∈S(A×A)

α α′

σ

∏
a,a′◁σ

ηRA(a)(a
′) Lemma 7.2.7

=
∑

σ∈S(A×A)

α α′

σ
· δσ,λ(a,a′).α(a)·δa,a′ ηRA(a)(a

′), (coef4)

= α α′

λ(a,a′).α(a)·δa,a′
σ = λ(a, a′).α(a) · δa,a′

= δα,α′ (coef5)
= ηRSA(α)(α

′) Definition
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• Proving the diagram ηS
r : Given h ∈ RA,α ∈ SA,

θA(η
S
RA(h))(α) =

∑
σ∈S(RA×A)

ηSRA(h) α

σ

∏
f,a◁σ

f(a) Definition

=
∑

σ∈S(RA×A),a∈A

ηSRA(h) ηSA(a)

σ
δα,χS

{a}

∏
f,a◁σ

f(a) (coef2)

=
∑
a∈A

δα,χS{a}

∏
f,a◁ηSRA×A((h,a))

f(a) (coef1)

=
∑
a∈A

h(a) · δα,χS{a} supp(ηSRA×A((h, a)))

= RηSA(h)(α) Definition

• Proving the diagram µR: Given φ ∈ SRRA,α ∈ SA,

(θA ◦ θRA)(φ)(α)
=

∑
ψ∈SRA

θRA(φ)(ψ) · θA(ψ)(α) Definition

=
∑

ψ∈SRA,
σgf∈S(SRA×RA),
σfa∈S(RA×A)

φ ψ

σgf
· ψ α

σfa
· (
∏

g,f◁σgf

g(f)) · (
∏

f,a◁σfa

f(a)) Definition

=
∑

ψ∈SRA,
σga∈S(SRA×A),

σfga∈S(RA×SRA×A)

φ α

σga

ψ σga

σfga

[∏
g,f

(g(f))
∑

a σfga(f,g,a)

][∏
f,a

(f(a))
∑

g σfga(f,g,a)

]
(coef3)

=
∑

σga∈S(SRA×A)

φ α

σga

∑
ψ∈SRA,

σfga∈S(RA×SRA×A)

ψ σga

σfga

∏
f,(g,a)◁σfga

g(f) · f(a) Def. 6.1.1

=
∑

σga∈S(SRA×A)

φ α

σga

∏
g,a◁σga

∑
f

g(f) · f(a) (coefexp)

=
∑

σga∈S(SRA×A)

φ α

σga

∏
g,a◁σga

µR
A(g)(a) Definition

= [φ/SµRA(φ)]
∑

σ∈S(RA×A)

SµRA(φ) α

σ

∏
f,a◁σ

f(a) Lemma 7.2.7

= [φ/SµRA(φ)] · θA(SµR
A(φ))(α) Definition

=
∑

ψ′∈SRA

ηRSRA(Sµ
R
A(φ))(ψ

′) · [φ/SµRA(φ)] · θA(ψ′)(α) ψ′ = SµR
A(φ)

=
∑

ψ′∈SRA

SrµR
A(φ)(ψ

′) · θA(ψ′)(α) Definition

= (θA ◦ SrµR
A)(φ)(α) Definition

• Proving the diagram µSr : Given φ ∈ SSRA,α ∈ SA,

RµS
A((θSA ◦ SrθA)(φ))(α)
=

∑
ξ∈SRSA,
ᾱ∈SSA

δµSA(ᾱ),α · θSA(ξ)(ᾱ) · SrθA(φ)(ξ) Definition
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=
∑

ξ∈SRSA,
ᾱ∈SSA

δµSA(ᾱ),α · θSA(ξ)(ᾱ) · ηRSRSA(SθA(φ))(ξ) · [φ/SSθA(φ)] Definition

=
∑
ᾱ∈SSA

δµSA(ᾱ),α · [φ/SSθA(φ)] · θSA(SθA(φ))(ᾱ) ξ = SθA(φ)

=
∑
ᾱ∈SSA

δµSA(ᾱ),α · [φ/SSθA(φ)]
∑

ρ∈S(RSA×SA)

SθA(φ) ᾱ

ρ

∏
ζ,γ◁ρ

ζ(γ) Definition

=
∑

ᾱ∈SSA,
ρ∈S(SRA×SA)

δµSA(ᾱ),α ·
φ ᾱ

ρ

∏
ψ,γ◁ρ

θA(ψ)(γ) Lemma 7.2.7

=
∑

ᾱ∈SSA,
ρ∈S(SRA×SA)

δµSA(ᾱ),α ·
φ ᾱ

ρ

∏
ψ,γ◁ρ

∑
σ∈S(RA×A)

ψ γ

σ

∏
f,a◁σ

f(a) Definition

=
∑

ᾱ∈SSA,
ρ∈S(SRA×SA),
ς̄∈SS(RA×A),

τ∈S(S(RA×A)×(SRA×SA))

δµSA(ᾱ),α ·
φ ᾱ

ρ
· ς̄ ρ

τ

∏
σ,(ψ,γ)◁τ

ψ γ

σ

∏
f,a◁σ

f(a) (coefexp)

Due to the sheer size of the equations at this point, to aid readability we will write P(· · · )
as short for δµSA(ᾱ),α ·δµSRA×A(ς̄),ς ·

φ ᾱ

ρ
· ς̄ ρ

τ
during the rest of this proof. For the same reason,

we define the set

X = SSA×S(SRA× SA)×SS(RA× A)×S(S(RA× A)× SRA× SA)

This may cause some disconnect with the current step of the proof. The next step is essen-
tially introducing ς = µS

RA×A(ς̄), as it will be necessary later.

=
∑

ς∈S(RA×A),
(ᾱ,ρ,ς̄,τ)∈X

P(· · · )
∏

σ,(ψ,γ)◁τ

ψ γ

σ

∏
f,a◁σ

f(a) Rearranging

=
∑

ς∈S(RA×A),
(ᾱ,ρ,ς̄,τ)∈X

P(· · · )

 ∏
σ,(ψ,γ)◁τ

ψ γ

σ

 ∏
σ,(ψ,γ)◁τ

∏
f,a◁σ

f(a)

 Rearranging

=
∑

ς∈S(RA×A),
(ᾱ,ρ,ς̄,τ)∈X

P(· · · )

 ∏
σ,(ψ,γ)◁τ

ψ γ

σ

(∏
σ◁ς̄

∏
f,a◁σ

f(a)

)
Definition 6.1.1

=
∑

ς∈S(RA×A),
(ᾱ,ρ,ς̄,τ)∈X

P(· · · )

 ∏
σ,(ψ,γ)◁τ

ψ γ

σ

 ∏
f,a◁µSRA×A(ς̄)

f(a)

 Definition 6.1.1

=
∑

ς∈S(RA×A)

 ∑
(ᾱ,ρ,ς̄,τ)∈X

P(· · · )
∏

σ,(ψ,γ)◁τ

ψ γ

σ

(∏
f,a◁ς

f(a)

)
ς = µS

RA×A(ς̄)

=
∑

ς∈S(RA×A)

µSRA(φ) α

ς

∏
f,a◁ς

f(a) (coefsplit)

= θA(µ
S
RA(φ))(α) Definition
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• Proving the diagram SrηS: Given α ∈ SA, α̂ ∈ SSA, we have

SrηSA(α)(α̂) = ηRSSA(Sη
S
A(α))(α̂) · [α/SηSA(α)] Definition

= ηRSSA(η
S
SA(α))(α̂) (coef6)

• Proving the diagram SrµS: Given α̂ ∈ SSSA,α ∈ SA, we have

RµS
A(S

rµS
A(α̂))(α) =

∑
ᾱ∈SSA S

rµS
A(α̂)(ᾱ) · δµSA(ᾱ),α Definition

=
∑

ᾱ∈SSA η
R
SSA(Sµ

S
A(α̂))(ᾱ) · [α̂/SµSA(α̂)] · δµSA(ᾱ),α Definition

=
∑

ᾱ∈SSA δSµSA(α̂),ᾱ · [α̂/SµSA(α̂)] · δµSA(ᾱ),α Definition

= δµSA(SµSA(α̂)),α · [α̂/SµSA(α̂)] ᾱ = µS
SA(α̂)

= ηRSA(µ
S
A(µ

S
A(α̂)))(α) (coef7)



Conclusions, Musings, and Further Work

We have in this thesis done what we have set out to do: Present a fully abstract model of PCF
based on Extended Addressing Machines, and discovered reliable methods to combine semiring
monads.That is not to say that this work is “complete” – indeed, just as life keeps on turning,
there are always new avenues to explore and discover. Likewise, there are avenues which were
partially explored or mused about, yet set aside for the time being in the interest of completing
the goals at hand. To conclude this work, I wish to spend some time briefly discussing some of
these avenues, idle musings, and interesting curiosities which did not fit into the content or the
flow of the main body. These have not been formally proven or fully explored, but are simply
based on my own intuition and understanding.

Double Categories

There is a connection between double categories and unnatural distributions. In fact, the results
presented in Section 7.1 were discovered by using double categories as a tool. Some informa-
tion about double categories and how they link to monads are present in the appendix. Double
categories as a whole are a bit underexplored in the literature, but the results found in this thesis
provide a strong motivation for further investigation into them.

Mathematicians often prefer to utilise Eilenberg-Moore categories when working with monads,
whereas Kleisli categories are much simpler to reason about and come more naturally to com-
puter scientists. In the main body, it was mentioned that unnatural distributions sit at a sort
of right angle to the standard form of distributions. It would be interesting to see what other
sorts of structures could be found at this "right angle" – perhaps a similar structure exists for
Eilenberg-Moore categories, or perhaps there exists a different notion of distribution that sub-
sumes unnatural distributions. If Eilenberg-Moore categories were to lack this sort of structure,
then unnatural distributions would provide a motivation to investigate Kleisli categories indepen-
dently from Eilenberg-Moore categories. Regardless, I think there are interesting results to be
found from the intersection between monads, double categories, Kleisli categories, and unnatural
distributions.

153
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As an aside, I also wish to comment on the naming of “unnatural distributions” – finding a
suitable name for this version of a distribution was more annoying than expected. The distribution
is sort of “relative to” one of the semirings, yet a relative distributive law is already a concept in
the field, describing a distribution between a relative monad and a monad – a completely different
concept. Various words amounting to “almost” (Quasi, Pseudo, ...) have also been used or are
unsuitable. unnatural distribution was settled on after encountering unnatural transformations, but
the name is still somewhat unsatisfactory as the distribution is natural, just not in the category that
one would initially expect. This is more a general comment on the issue of namespace pollution
in mathematics. If a more suitable name was proposed for unnatural distributions, or a more
suitable concept for the name “Unnatural Distribution” were to arise, I would have no opposition
to it.

Linear Logic

Another link which must obviously be discussed is that to Linear Logic. As mentioned in the
introduction, one would expect that the distributions presented here can always be used to form
models of classical linear logic. When the subject of distributing semirings was first presented to
me, it was as a building block along the (endless?) road to finding every exponential in Linear
Logic. I believe that the additional separation of unnatural distributions is certainly of use to
said end goal. I do believe that the work encompasses all models of Linear Logic arising from
semirings, though I could easily be wrong about this – I merely do not see how a counterexample
could arise.

Something more specific and applied regarding Linear Logic is that models of classical linear
logic include a morphism commonly denoted with m with the type !A⊗!B →!(A ⊗ B) which
causes ! to be a symmetric monoidal functor. By currying and morphism duality, the type of
this morphism can be seen to be the same as that of the coefficient − −

− , so some time was spent
trying to see whether − −

− is a possible candidate for m, or whether the trivial choice of m –
inclusion in W – is the only possible choice. It turns out that − −

− is not natural, so it cannot
be used as m. However, a lot of the diagrams that m requires have a direct relationship with the
properties of − −

− – in particular, the property (coefsplit) is a direct algebraic expression of one
of said diagrams. In addition if we treat − −

− as having the type SA⊗ SB → RS(A⊗ B), then I
am under the belief that the following diagram holds:

SA× SB S(A×B)

SC × SD S(C ×D)

Srf×Srgp

− −
−p

− −
−p

S(f×g)p
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There is certainly something interesting that is not fully understood yet here.

Semirings

There is also more to explore down the avenue of semirings. For one, new pairings of semirings
whose monads distribute or have unnatural distributions between them were not presented. In
particular, I would expect N̄ with finite support to be a suitable choice of S for all continuous
semirings. An interesting avenue of research would be to investigate how many choices of expo-
nential action one has – clearly, if one has multiple choices, then one obtains multiple (unnatural)
distributions, but whether there exist any pairs of semirings with multiple choices of exponential
action is not known.

Likewise, what requirements semirings have to allow there to exist at least one exponential
action per pairing would be an interesting topic. I would expect that instead of multiplicative split-
ting and additive splitting, the semirings used for S would require a “multiplicative-additive split-
ting” which combines the two, but is more general than both individually. I believe there is also a
possibility that the requirements of the semiring being positive and/or discrete could be dropped
in the idempotent case – after all, the requirements of the coefficient in the non-idempotent case
still apply to the idempotent case, but in the idempotent case they were a consequence of mul-
tiplicity semirings while in the non-idempotent case they were presented independent from the
choice of semiring. The idempotent case merely simplifys the coefficient properties by requiring
that the coefficient always equals 0 or 1. It is my belief that introducing this requirement will also
forceR to be idempotent.

Finally, some investigation of semirings with “infinite products” could be interesting. Infinite
sums and complete semirings are well-understood and not too difficult to reason about, but I
do not know or have any intuitive understanding of what it would mean for a semiring to have
“infinite products” – if such a thing could exist though, then the exponentials resulting from
dropping the finite support requirement would be very interesting indeed.

Models using Semirings

We should also discuss the topic through which semiring based models were presented: Models
of PCF. The semiring S was set to N when working with weighted relations previously, but now it
could be a variety of other semirings. One of the consequences of accessing further exponentials
(to borrow the term from Linear Logic) is the ability to quantify additional aspects regarding
function application. The most intuitive vague ideas would be to track degrees of parallelism
and security. Unfortunately, the most intuitive candidate for parallelism, some form of N × N,
is not a multiplicity semiring due to not being discrete. It remains to be seen whether a valid
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exponential action and coefficient can be found despite this. Regarding security, TwoN or a
similar semiring seems like it could potentially have some applicability there - using the second
N to handle permissions.

Addressing Machines

Finally, we should return to the subject of the first half of the thesis: Addressing Machines.
Addressing Machines have not been explored much in the literature, but I feel that having a fully
abstract model of PCF is a strong justifier for their usefulness and applicability going forward. It
is not known to me how useful they will be to discover new properties of PCF, but one potential
use case would be to identify what form common and well-known data structures and algorithms
take when translated into PCF.

Rather than merely as a tool to help analyse PCF, I believe that addressing machines have
intrinsic value on their own. Addressing Machines occupy a unique space between traditional
abstract machines and lambda calculus which to my knowledge is currently unoccupied. This
positioning allows them to potentially be a very useful bridge between the two. I could see
a scenario where addressing machines are the primary bridge between the fields of complexity
theory, program semantics, and compiler theory – I believe that they are uniquely easily accessible
from all three areas. Though addressing machines were not designed for complexity theory in
mind, one could recover the missing parts of complexity theory by encoding the ”cost” of a
function call in the address of a machine – the cost would be equal to the number of registers it
has, plus a fixed cost handling the moving of tape and instruction set.

The link between addressing machines and game semantics certainly needs exploration as
well. All fully abstract models of PCF being isomorphic means that there is certainly a link
between the two, and it would be interesting and almost mandatory to see if there are any low
hanging fruit to be obtained from the intersection. Just as interesting to me is the potential link
between the two halves of this thesis – using weighted relations to quantify aspects of addressing
machines. The earlier mention of allowing the address of a machine to include a quantitative
”cost” is directly related to that. The connection to linear logic could also be interesting to inves-
tigate, as every machine instruction has a hidden duplication intrinsic to it, yet a single addressing
machine lacks the need for a full-strength !-modality as it only has a limited number of instruc-
tions and thus a fixed number of ”duplications”.
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Glossary

λ-Term – A λ-calculus term. 11–14, 18, 20, 41, 43, 45

Abstraction – A term such that applying an argument and reducing results in a substitution;
i.e. a function. 11–13, 15, 16, 18, 21, 26, 29–31, 42, 43, 66, 102

Application – A term where an argument is applied to a function; the act of applying an
argument to a function. 11, 13, 16, 26, 36, 41–43, 46, 49, 50, 64, 67, 79, 85, 102, 128, 157

Closed – A term is called closed if it has no free variables. 12, 16, 27–32, 35–37, 48, 71, 72

Combinator – A closed λ-term. 12, 64

Normal form – A term which cannot reduce. 13–15, 19, 35, 40

Head normal form – A term which does not have a redex at head position. 13

Weak head normal form – A term is in weak head normal form if there is no redex at the
leftmost outermost part of the term. 14, 15

π-Calculus – A calculus designed to model concurrency. 45

PCF term – A PCF term. 16, 17

PCF program – A PCF term which is closed. 16

Abstract machine – A model which allows for sequential execution of programs similar to a
computer system. 7, 8, 25, 28, 41, 44, 45, 158

Krivine Abstract Machine – A simple abstract machine performing weak head reduction on
λ-terms. 43, 44

Milner Abstract Machine – A variation of the KAM where all variables are global via α
equivalence. 44, 45

Register machine – An abstract machine manipulating registers containing integers
according to a set of rules. 45

SECD Machine – The first abstract machine designed to interpret λ-terms.. 41

Turing machine – An abstract machine manipulating symbols on an infinite tape according
to a set of rules. 44, 45

Abstract programming language – A formal system which resembles a programming
language and is equally capable, but abstracts away some of the nuances required of a
programming language. 7, 14, 17, 21

Address table map – A bijective function between a set of addresses and machines over said
set. 50, 51, 57, 64

Addressing Machine (AM) – An abstract machine which exists in a network with other
addressing machines, whose only data type is the addresses of machines. 7, 8, 44–46, 50,
55, 158
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Address – A value which is assigned to a particular machine in a bijective manner. 45–51,
55–57, 64, 69, 74, 77, 158

Extended Addressing Machine – An addressing machine extended with operators and
predefined machines for numeral computations and fixed point. 8, 9, 45, 47–53, 55–57,
63–70, 72–74, 85–87, 89, 155

Valid program – A program which does not read uninitialised registers. 48, 49, 54, 96, 157

Adjoint functors (adjoint) – A pair of functors which morally act as inverse to one another. 99,
100, 104, 117, 141

Counit – A particular natural transformation formed by adjoint functors. 100

Unit – A particular natural transformation formed by adjoint functors. 96, 97, 99, 100, 103,
133, 141, 150

Cartesian closed category (CCC) – A category which is cartesian closed, one where for all
objects in the category the arrows between them are also arrows in the category in a
well-behaved manner. 22, 23, 104–107, 118

Category – A formalism which exists to study the connections between objects. 7, 9, 95–98,
100–106, 108, 118, 141, 142, 156

Arrow – A morphism in a category. 95–100, 106, 107

Categorification – The act of lifting a notion from another branch of mathematics into
category theory. 100, 104

Diagram – A visual representation of commuting arrows. 97, 99–103, 106, 107, 116, 117,
129, 136, 139, 140, 142, 143, 146, 156

Circular definition – A definition is circular if it references itself in its definition. 42

Closure – A construct which pairs instructions with local variable assignments to enable
functions as a data type. 42–45

Coefficientless expansion – A method to shift from the exponent of a sum to a sum of
exponents without introducing an additional coefficient. 124, 129, 148

Complete partial order – A type of partial order which has additional requirements regarding
subsets and supremums. 105, 111

Complete semiring (complete parent) – A semiring with a well-defined infinite sum. 109,
111, 157

Confluent – Confluence is a property of a formal system; In such a formal system, the order of
reductions does not matter when considering the outcome. 13

Context – A term which has one unique hole in it where a subterm could be located. 20, 21,
27, 30, 46, 55

Denotational semantics – A mathematical interpretation of the underlying meaning of a
language. 21
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Distributive law (distribution) – A morphism causing the composite of two monads to be a
monad. 9, 10, 109, 117, 119, 128, 129, 133, 136, 139, 141, 146, 147, 150, 155–157

Unnatural distributive law – A distributive law between monads which is not natural. 141,
142, 146, 147, 155–157

Equivalence – Two programs are referred to as equivalent if they have the same meaning. Also
used to refer to an equivalence relation. 12, 19, 20, 22, 27, 74, 82, 84

α-Equivalence – Two terms are alpha equivalent if they only differ in the names of their
bound variables. 12, 13, 17, 26, 27, 29, 31, 44

Applicative equivalence – Two PCF programs are referred to as applicatively equivalent if
they always reduce to the same number when given an appropriate number of valid
arguments. 21

Observational equivalence – Two programs are referred to as observationally equivalent if
they have the same meaning, i.e. they can be substituted for one another in all
circumstances without changing the outcome. 20, 21, 23, 31

Exponential action – A function allowing one semiring to act on another in a manner similar
to an exponent. 123, 124, 129, 134, 147, 148, 157

Finite products – An attribute a category can have; related to the cartesian product. 102, 104,
157

Finite support – A function has finite support if there are only a finite number of elements in
its domain for which it does not output 0. 118, 122, 125, 129, 133, 147, 157

Formal system – A calculus in mathematical logic, given by the rules of formation of
expressions and of constructing derivations in that calculus. 7, 9, 11, 20, 22, 23

Functor – A structure preserving arrow between categories. 98–101, 103, 104, 115, 117, 133,
141, 143, 144, 150, 156

Endofunctor – A functor from a category to itself. 100, 104, 141

Interaction pair – A pair of morphisms between semiring monads allowing an (unnatural)
distribution to arise.. 147

Coefficient – A morphism forming an interaction pair together with an exponential
action.. 148, 149, 156, 157

Isomorphism – An arrow which has a perfect inverse; the categorification of bijection. 100,
103, 104

λ-Calculus – A model of computation where everything is a function. 7, 11, 14, 16, 17, 20, 25,
26, 28, 32, 42–44, 104

λσ-Calculus – A λ-calculus endowed with explicit substitutions. 25, 27

Simply typed λ-calculus – The λ-calculus adorned with simple types. 14–16, 19, 22, 102,
105, 108
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Untyped λ-calculus – A model of computation where everything is a function, without an
included type system. 11, 13–15, 22, 27

Linear Logic – A logic with restrictions on weakening and contraction; the logic of
resources. 7, 9, 156, 157

Linear Substitution Calculus (LSC) – A calculus with explicit substitutions based on Linear
Logic. 27, 31, 44

Logic of Computable Functions (LCF) – A logical calculus for computable function. 7, 16

Model – A model of a programming language is a mathematical object with a mapping from
terms to elements of the object. 7–9, 21–23, 41, 44, 63, 74, 84, 85, 94, 95, 102, 104, 105,
107, 108, 117, 155–158

Adequate model – A model is adequate if it coincides with its language on the meaning of
terms. 22, 23, 85

Complete model – A model is complete if it does not differentiate between terms which have
the same meaning. 22, 23, 85, 94, 109, 111, 114, 115, 155, 156

Fully abstract model – A model is fully abstract if it is both adequate and complete. 7–9, 22,
23, 94

Monad – A construction induced by an adjunction. Morally, a sort of “box” that objects can be
put into, where a box of a box can be flattened to be just a single box. 9, 10, 100–102,
114–118, 120, 122, 125, 129, 133, 136, 138, 139, 141–143, 146, 147, 155–157

Kleisli category – The free category induced by a monad. 101, 117, 118, 133, 141, 146, 147

Semiring monad – A monad on the category of sets and functions induced by a
semiring. 117, 121, 147, 150, 155

Monoid – A set with an associative binary operation that has an identity element. 96, 97, 100,
104, 108, 156

Natural transformation (natural) – A structure preserving arrow between functors. 99, 100,
102–104, 108, 115, 120, 123, 128, 129, 133–137, 139, 141, 142, 146, 149, 155–157

Unnatural transformation – An arrow between functors. 139, 141, 156

Operational semantics – A formal description of how a program is interpreted through a
series of computational steps. 17, 21, 23, 30, 37, 52, 63, 73

Big-step – A type of operational semantics which only describes terms and the normal form
which can be obtained from it, if one exists. 8, 19, 21, 33

Small-step – A type of operational semantics which describes every reduction a term can
make. 8, 17, 19, 21, 30, 52

Weak head reduction – A head reduction which is ‘weak’ - does not reduce inside
abstractions. 17, 30, 32
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Partial evaluation (Currying) – Allowing arguments to be passed to a function one at a time
rather than all at once. 42

Programming Computable Functions (PCF) – An abstract programming language which can
be seen as λ-calculus + types + numerals + fixed point + weak head reduction. iv, 3, 6–9,
11, 16–24, 28–31, 33, 35–40, 47, 50, 55, 63, 67, 73–76, 78, 82, 85, 86, 93–95, 102, 105,
107, 108, 117, 155, 157, 158

Programming Computable Functions with Explicit Substitutions (EPCF) – Programming
Computable Functions extended with a limited form of explicit substitutions designed for
closed terms. 8, 9, 28–33, 35–37, 39, 40, 55, 56, 63, 66–68, 70, 73

Projection – A morphism extracting individual elements from a product (tuple). 64, 67

Redex – A subterm within a term which can be reduced. 13, 15, 27, 44

Head position – A redex is at head position if it is the leftmost outermost redex, and is not
applied to another subterm. 13, 34

Reduction – A directional relation between terms, generally describing a computational step
from one term to the next. 13–15, 17, 18, 26–28, 30–33, 36, 39, 40, 44, 52, 53, 61, 68, 69,
73, 74, 95

β-Reduction – A particular reduction which substitutes a term for a bound variable. 13, 44

Big step reduction – A reduction which does not consider a particular path to an outcome,
only the end result. 14, 19

Reduction strategy – A strategy describing which redex to reduce whenever multiple are
available. 52

Call-by-name – An evaluation strategy where arguments are evaluated only when it becomes
necessary after being substituted. 17, 30, 43

Call-by-need – An evaluation strategy where arguments are evaluated only when used in a
function, but the resulting output is then saved to avoid repeated evaluation of the
argument. 42

Call-by-value – An evaluation strategy where arguments are evaluated before being
substituted. 17, 42

Head reduction – A reduction strategy which always reduces the redex at head position, if it
exists. 13

Weak head reduction – A reduction strategy which reduces to a weak head normal form
(when possible) and then terminates. 13–15

Register – A storage location for a single value. 45–49, 51–53, 55–57, 60, 64, 66, 74, 77, 85,
86, 89, 158

Relation – A subset of the cartesian product of two sets, describing whether or not elements
have a particular relation to one another. 96, 100, 105, 111, 124, 134, 156–158

Scott-continuous functions – A function which preserves complete partial orders. 105
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Semiring – A pair of monads with the same underlying set, where one monoid is commutative,
with particular interactions between the monoids. 9, 108, 109, 111, 112, 114, 115,
117–121, 123, 124, 129, 133, 134, 147, 156, 157

Continuous semiring – A semiring with a well-defined infinite sum. 109, 111, 118, 157

Multiplicity semiring – A semiring which contains the semiring of natural numbers, and
whose addition and multiplication are that of the natural numbers. 112, 118, 122, 124,
125, 129, 133, 157

Strict total order – An order which is not reflexive, where any two elements can be
compared. 54

Strongly normalising – A formal system is strongly normalising if all its terms reduce to a
normal form regardless of reduction strategy. 15, 27, 39

Substitution – The process of substituting a term N for variables in a different term M . 20,
25–29, 31, 44, 58, 59

Capture free substitution – The process of substituting a term N for variables in a different
term M , without changing the overall meaning of N . 12, 13, 17, 26, 27, 29

Explicit substitution – A substitution which is part of the syntax of a language. 7, 8, 25–32,
35, 37, 39, 44, 67

Symmetric monoidal category – A category equipped with a strongly symmetric tensor
product that acts similar to the monoidal product. 103, 104

Symmetric monoidal closed category – A symmetric monoidal category that is closed with
respect to its monoidal structure. 104, 117

Thunk – A function created to delay the execution of an expression until a later time – often
used to enable call-by-name or call-by-need evaluation in a system which is natively
call-by-value. 42

Transitive-reflexive closure – The transitive-reflexive closure of a relation acting on a set is
the smallest reflexive and transitive relation which acts on said set and contains the
original relation. 13, 17, 30, 52

Translation – A function between formal languages. 65–68, 85, 86

Turing complete – A formal system is Turing complete if it can simulate any Turing
machine. 11, 15, 16

Type – An element of a set of types that can be assigned to terms. 8, 14–16, 19–22, 28, 31,
35–37, 40, 41, 43, 45, 47, 55–59, 65, 67, 70, 73–75, 79–81, 84–87, 93, 136, 156

Typing context – An allocation of types to variable names. 14, 20, 21, 55, 86

Typing derivation – A series of typing judgements linked together via derivation rules to
prove that a term is typable with a particular type. 15, 57

Typing judgement – A statement which says that using a particular context, a term can be
given a particular type. 14, 15, 55–58
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Variable – A symbol acting as a placeholder or representative of something. 11, 12, 18, 25, 27,
28, 42–45, 53, 58, 59, 67

Bound variable – A variable is bound when it has been “captured” by an abstraction. 12, 13,
42

Free variable – A variable is free when it has not been “captured” by any abstraction. 8, 12,
16, 26, 28–31, 55, 66, 67

Fresh variable – A variable is fresh with respect to a term if it does not appear in said
term. 12, 29, 50, 58, 59

Global variable – A variable set to be permanently accessible during the runtime of a
program. 44, 45

Local variable – A variable only accessible by a particular “block” of a program. 42, 44, 45

Variable convention – Bound variables in terms always have maximally distinguishable
names. 13

Weakly normalising – A term or reduction sequence is weakly normalising if there exists at
least one reduction sequence to reduce the term to a normal form. A rewriting system is
weakly normalising if all terms are weakly normalising. 15, 27

Witness – A morphism that “witnesses” a particular way to pair two collections of elements
together. 120, 121, 133, 148



Appendix

There are three points that warrant mentioning which are not discussed in the main body of the
thesis. Two of these are quite standard discussions when the subject arises: ZFC set theory’s
connections to category theory, and modelling the simply typed λ calculus with cartesian closed
categories. Both of these were promised in the main body, and the first in particular must be given
a brief discussion. The other point to discuss is double categories – these were used as a tool when
working on Chapter 7, but are not helpful in understanding the content, so their definitions and
some brief discussion on them was moved to the appendix. Most of this content was taken from
the nlab [Com].

Set Theory and Category Theory

Category theory is defined by using sets. Thus, to define categories, we require some under-
standing of what a set is. Ideally, we could use the naive approach: a set is a potentially infinite
collection of elements that respect some defined property. However, this approach was disproven
in 1901 by what is now known as “Russell’s Paradox”: If one takes the naive approach, then one
can define a “set of all sets”. Then one could define the contradictory set

A = {X|X /∈ X}

The question of whether or notA ∈ A leads to a paradox, thus the naive approach cannot be used.
The typical approach to resolving the issue is Zermelo–Fraenkel set theory, also known as ZFC
set theory when the axiom of choice is included. There are also extensions to ZFC, in particular
von Neumann–Bernays–Gödel (NBG) set theory.

The resolution used is intuitively described as follows: Instead of defining sets the naive way,
we define sets as what is formally known as small sets. We then forbid the existence of a “small
set of all small sets”, but instead use class to describe all collections which are too “large” to be
called a “small set”. Thus all small sets are classes, but not all classes are small sets. We run into
a similar issue here, though, in that one cannot speak of the “class of all classes”. Thus we include
in our definition a sort of “levelling up” ability – when we need to work with objects which are
classes but not sets in a “dangerous” manner, we consider a type of collection “class+1” defined
as all collections which are too large to be called classes, and then rearrange our definitions – we
use “small set” to refer to what was previously called a class, and “class” to refer to what was
previously called “class+1”.

169
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Simply Typed λ Calculus and Cartesian Closed Categories

Any cartesian closed category can be used to construct a sound model of the simply typed λ
calculus. To explain what is meant by this, we need to first define some “missing” parts from our
definitions of the λ-calculus:

Definition .0.9.

• Define η-reduction as follows: λx.Mx→η M . Essentially, removing a “useless” abstrac-
tion.

• Define βη-reduction, written→βη as the union of β-reduction and η-reduction.

• Define ↠βη as the transitive-reflexive closure of→βη.

• Define βη-equivalence, written =βη, where for any two terms M,N , M =βη N if and only
if at least one of the following statements hold:

– M ↠βη N

– N ↠βη M

• Define αβη-equivalence, written =αβη, as the union of α-equivalence and βη-equivalence.

By a sound model of the simply typed λ calculus, one means that there is the presence of
some mathematical construct C containing distinct elements that can be compared to see if they
are equivalent and some interpretation function J1K which has the following behaviour

• For every element α ∈ TB, i.e. every type that a term can be assigned, JαK is an element of
C.

• For every typed term Γ ⊢M : α, JΓ ⊢M : αK is an element of C.

• For every pair of typed terms Γ1 ⊢ M1 : α1, Γ1 ⊢ M1 : α1, if M1 =αβη M2, then
JΓ1 ⊢M1 : α1K and JΓ2 ⊢M2 : α2K are equivalent in the mathematical construct.

When the mathematical construct C is a monoidal category C (symmetric monoidal category
without the braiding), then the above definition is equivalent to the following:

• For every element α ∈ TB, i.e. every type that a term can be assigned, JαK ∈ Ob(C).

• For every typed term x1 : α1, . . . , xn : αn ⊢ M : α, Jx1 : α1, . . . , xn : αn ⊢ M : αK ∈
C(Jα1K⊗ · · · ⊗ JαnK, JαK)

• For every pair of typed terms Γ1 ⊢ M1 : α1, Γ1 ⊢ M1 : α1, if M1 =αβη M2, then there is a
natural isomorphism in C between JΓ1 ⊢M1 : α1K and JΓ2 ⊢M2 : α2K.

If C is a cartesian closed category (reminder that then ⊗ = ×), then we can use the properties of
cartesian closure to inductively define such a model without any additional requirements:

• We assign to each base type o ∈ B an element JoK ∈ Ob(C).
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• Given types α, β ∈ TB, we define Jα→ βK as JαK ⊸ JβK, using the closed structure of C.

• Given the typed term x1 : α1, . . . , xn : αn ⊢ xi : αi, we define

Jx1 : α1, . . . , xn : αn ⊢ xi : αiK = πi ∈ C(Jα1K× · · · × JαnK, JαiK)

This is using the finite products of C.

• Given the typed term x1 : α1, . . . , xn : αn ⊢ λy.M : β → γ, we obtain the morphism

Jx1 : α1, . . . , xn : αn ⊢ λy.M : β → γK ∈ C(Jα1K× · · · × JαnK, JβK ⊸ JγK)

by applying the closed structure of C to the morphism given by

Jx1 : α1, . . . , xn : αn, y : β ⊢M : γK ∈ C(Jα1K× · · · × JαnK× JβK, JγK)

• Given the typed term x1 : α1, . . . , xn : αn ⊢MN : γ, we obtain the morphism

Jx1 : α1, . . . , xn : αn ⊢MN : γK ∈ C(Jα1K× · · · × JαnK, JγK)

by using the finite product structure of C on the morphisms given by

Jx1 : α1, . . . , xn : αn ⊢ λy.M : β → γK ∈ C(Jα1K× · · · × JαnK, JβK ⊸ JγK)

Jx1 : α1, . . . , xn : αn ⊢ N : βK ∈ C(Jα1K× · · · × JαnK, JβK)

This gives us a morphism

φ ∈ C(Jα1K× · · · × JαnK, JβK ⊸ JγK× JβK)

We then compose this morphism with the counit ϵA : A ⊸ B × A → B of the adjunction
providing the closed structure to obtain the desired morphism

φ; ϵA ∈ C(Jα1K× · · · × JαnK, JγK)

Double Categories

Intuitively, a double category is a type of category with two related types of morphisms. Mor-
phisms of double categories are typically presented as squares, such as the following square:

A B

C D

f

v

g

u

α

Here A,B,C,D are the objects of the double category, f, g are its vertical morphisms, u, v are
its horizontal morphisms, and α is called the “square”. Double categories can be restricted to a
standard category in every direction.

Definition .0.10 (Double Categories).
A double category C is a category internal to Cat, the category of small categories. In other
words, a double category consists of:
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• A (vertical) category Cv;

• An arrow category Ca;

• A source functor s : Ca → Cv taking a morphism u : x → y ∈ Ob(Ca) to x ∈ Ob(Cv)
and a square α ∈ Ca(A⊸ B,C ⊸ D) to a morphism f ∈ Cv(A,C);

• A target functor t : Ca → Cv taking a morphism u : x→ y ∈ Ob(Ca) to y ∈ Ob(Cv) and
a square α ∈ Ca(A⊸ B,C ⊸ D) to a morphism g ∈ Cv(B,D);

• An identity-assigning functor e : Cv → Ca which takes an object x ∈ Ob(C)v to the
identity morphism idx : x→ x ∈ Ob(C)a;

• A composition functor c : Ca × Ca → Ca acting as horizontal composition;

such that the following diagrams commute:

• Source and target of the identity morphism:

Cv Ca Cv Ca

Cv Cv

s

e e

t

• Source and target of the composition morphism:

Ca × Ca Ca Ca × Ca Ca

Ca Cv Ca Cv

s

c c

tπ1

s

π2

t

• The composition morphism is associative:

(Ca × Ca)× Ca Ca × Ca

Ca × (Ca × Ca)

Ca × Ca Ca

⟨π1◦π1,π2◦π1×idCa ⟩

idCa×c

c

c×idCa

c

• Units for composition:

Ca × Cv Ca × Ca Cv × Ca

Ca

c

e×idid×e

π1 π2

Regarding the “restriction” of a double category to various standard categories, the method
of obtaining the categories in the vertical direction is obvious from the definition. The horizontal
direction relies on the morphism c for composition, and e for the identities.
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Lemma .0.11.
Let R be a monad on a category C. We can form a double category C ⊠ CR by selecting C as
the vertical category, with the arrow category is defined using the arrows of CR as objects and
equality as morphisms.

Proof. C is a category as given. Proving that the arrow category as described is indeed a category
is trivial. For the source and target, we have (for all f ∈ CR(A,B))

s(f) = A, t(f) = B

The identity-assigning morphism e sends X ∈ Ob(Cv) to idX ∈ CR(X,X). The composition
morphism c sends a pair of morphisms f : A→ RB, g : B → RC to f ; Rg;µR

C : A→ RC.

All diagrams are then trivial to check.

Double categories allow us to redefine monads in a double-categorical setting.

Definition .0.12 (Double Functor).
A double functor is a functor between double categories. Let C and D be double categories, and
denote with Cv,Dv the corresponding vertical categories and Ca,Da the corresponding arrow
categories. A double functor F : C→ D consists of:

• A functor Fv : Cv → Dv;

• A functor Fa : Ca → Da;

such that for all A ∈ Cv, X, Y ∈ Ca,

• s(FaX) = Fv(s(X));

• t(FaX) = Fv(t(X));

• c(FaX × FaY ) = Fa(c(X × Y ));

• e(FvA) = Fa(e(A)).

We often write (Fv, Fa) for the double functor F.

From the definition of a double functor we can define the notion of a monad in a double
category.

Definition .0.13.
A double monad M in a double category C consists of:

• A monad Mv in Cv;

• A monad Ma in Ca;

such that
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• (Mv,Ma) is a double functor;

• s(ηMa) = ηMv ;

• s(µMa) = µMv .

We often write (Mv,Ma) for the double monad M.

This double-categorical framework allows for a different perspective to the distribution of
monads. We will later use this new perspective to help understand how the monads N̄ and Nf

interact.

Proposition .0.14.
Given monads R, S on C, R distributing over S (there is a distributive law θ) implies that there
exists a monad ?S on CR such that we can form a composite double monad (S, ?→S ) on C ⊠ CR

acting as follows:

A C SA SC

B D SB SD

f

up

vp

(S,?→S ) Sf

?Sup

Sg

?Sv
p

g

Proof. We set ?S to be the monad θ ◦ S. We define the monad ?→S acting on (CR)a as follows:

• Let u ∈ CR(A,B) ⊂ Ob((C⊠ CR)a). We set ?→S (u) =?S(u).

• ?→S takes commuting squares (v ◦ f = g ◦ u) ∈ (C ⊠ CR)a(A ⊸ RC,B ⊸ RD) to the
square (?Sv ◦ Sf = Sg◦?Su) ∈ (C⊠ CR)a(SA⊸ RSC, SB ⊸ RSD).

Functoriality is inherited from the functoriality of S and ?S (composition of commuting diagrams).
The unit η?→S acts on functions f : A→ B as follows:

A B

A B

SA SB

f

f

ηSA ηSB

?Sf

η?
→
S

The multiplication µ?→S acts on functions f : A→ B as:

SSA SSB

SSA SSB

SA SB

µSA

?S?Sf

?Sf

µSB
µ?

→
S?S?Sf
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The remaining checks (naturality of η?→S and µ?→S , the diagram for η?→S , and the diagram
for µ?→S ) are trivial, albeit a bit annoying to display due to the graphical representation of said
diagrams being cubes.
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