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Apprendre n’est pas savoir; il y a les
apprenants et les savants. La mémoire fait
les uns, philosophe les autres.

Alexandre Dumas. “Le Comte de
Monte-Cristo”.

D’autres avant moi ont dit, d’autres après
moi diront à quel point s’est élargi le fossé
entre les peuples nantis et ceux qui
n’aspirent qu’à manger à leur faim, boire à
leur soif, survivre et conserver leur dignité.
Mais nul n’imaginera à quel point le grain
du pauvre a nourri chez nous la vache du
riche.

Thomas Sankara.





Abstract xv

Compression and Federated Learning: an approach to frugal machine learning

Abstract

“Intelligent” devices and tools are gradually becoming the standard, as the implementation of algorithms
based on artificial neural networks is experiencing widespread development. Neural networks consist of
non-linear machine learning models that manipulate high-dimensional objects and obtain state-of-the-art
performances in various areas, such as image recognition, speech recognition, natural language processing,
and recommendation systems.
However, training a neural network on a device with lower computing capacity can be challenging, as it can
imply cutting back on memory, computing time or power. A natural approach to simplify this training is to
use quantized neural networks, whose parameters and operations use efficient low-bit primitives. However,
optimizing a function over a discrete set in high dimension is complex, and can still be prohibitively
expensive in terms of computational power. For this reason, many modern applications use a network
of devices to store individual data and share the computational load. A new approach, federated learning,
considers a distributed environment: Data is stored on devices and a centralized server orchestrates the
training process across multiple devices.
In this thesis, we investigate different aspects of (stochastic) optimization with the goal of reducing energy
costs for potentially very heterogeneous devices. The first two contributions of this work are dedicated to
the case of quantized neural networks. Our first idea is based on an annealing strategy: we formulate the
discrete optimization problem as a constrained optimization problem (where the size of the constraint is
reduced over iterations). We then focus on a heuristic for training binary deep neural networks. In this
particular framework, the parameters of the neural networks can only have two values. The rest of the
thesis is about efficient federated learning. Following our contributions developed for training quantized
neural network, we integrate them into a federated environment. Then, we propose a novel unbiased
compression technique that can be used in any gradient based distributed optimization framework. Our
final contributions address the particular case of asynchronous federated learning, where devices have
different computational speeds and/or access to bandwidth. We first propose a contribution that reweights
the contributions of distributed devices. Then, in our final work, through a detailed queuing dynamics
analysis, we propose a significant improvement to the complexity bounds provided in the literature on
asynchronous federated learning.
In summary, this thesis presents novel contributions to the field of quantized neural networks and federated
learning by addressing critical challenges and providing innovative solutions for efficient and sustainable
learning in a distributed and heterogeneous environment. Although the potential benefits are promising,
especially in terms of energy savings, caution is needed as a rebound effect could occur.

Keywords: federated learning, quantized neural networks

Laboratoire LISITE
ISEP – Sorbonne Université – – – –



xvi Abstract

Compression et apprentissage Fédéré : une approche pour l’apprentissage machine frugal

Résumé

Les appareils et outils “intelligents” deviennent progressivement la norme, la mise en œuvre d’algorithmes
basés sur des réseaux neuronaux artificiels se développant largement. Les réseaux neuronaux sont des
modèles non linéaires d’apprentissage automatique avec de nombreux paramètres qui manipulent des
objets de haute dimension et obtiennent des performances de pointe dans divers domaines, tels que la
reconnaissance d’images, la reconnaissance vocale, le traitement du langage naturel et les systèmes de
recommandation.
Toutefois, l’entraînement d’un réseau neuronal sur un appareil à faible capacité de calcul est difficile en
raison de problèmes de mémoire, de temps de calcul ou d’alimentation. Une approche naturelle pour
simplifier cet entraînement consiste à utiliser des réseaux neuronaux quantifiés, dont les paramètres et
les opérations utilisent des primitives efficaces à faible bit. Cependant, l’optimisation d’une fonction sur
un ensemble discret en haute dimension est complexe et peut encore s’avérer prohibitive en termes de
puissance de calcul. C’est pourquoi de nombreuses applications modernes utilisent un réseau d’appareils
pour stocker des données individuelles et partager la charge de calcul. Une nouvelle approche a été
proposée, l’apprentissage fédéré, qui prend en compte un environnement distribué : les données sont
stockées sur des appareils différents et un serveur central orchestre le processus d’apprentissage sur les
divers appareils.
Dans cette thèse, nous étudions différents aspects de l’optimisation (stochastique) dans le but de réduire les
coûts énergétiques pour des appareils potentiellement très hétérogènes. Les deux premières contributions
de ce travail sont consacrées au cas des réseaux neuronaux quantifiés. Notre première idée est basée
sur une stratégie de recuit : nous formulons le problème d’optimisation discret comme un problème
d’optimisation sous contraintes (où la taille de la contrainte est réduite au fil des itérations). Nous nous
sommes ensuite concentrés sur une heuristique pour la formation de réseaux neuronaux profonds binaires.
Dans ce cadre particulier, les paramètres des réseaux neuronaux ne peuvent avoir que deux valeurs. Le
reste de la thèse s’est concentré sur l’apprentissage fédéré efficace. Suite à nos contributions développées
pour l’apprentissage de réseaux neuronaux quantifiés, nous les avons intégrées dans un environnement
fédéré. Ensuite, nous avons proposé une nouvelle technique de compression sans biais qui peut être utilisée
dans n’importe quel cadre d’optimisation distribuée basé sur le gradient. Nos dernières contributions
abordent le cas particulier de l’apprentissage fédéré asynchrone, où les appareils ont des vitesses de calcul
et/ou un accès à la bande passante différents. Nous avons d’abord proposé une contribution qui repondère
les contributions des dispositifs distribués. Dans notre travail final, à travers une analyse détaillée de la
dynamique des files d’attente, nous proposons une amélioration significative des bornes de complexité
fournies dans la littérature sur l’apprentissage fédéré asynchrone.
En résumé, cette thèse présente de nouvelles contributions au domaine des réseaux neuronaux quantifiés et
de l’apprentissage fédéré en abordant des défis critiques et en fournissant des solutions innovantes pour un
apprentissage efficace et durable dans un environnement distribué et hétérogène. Bien que les avantages
potentiels soient prometteurs, notamment en termes d’économies d’énergie, il convient d’être prudent car
un effet rebond pourrait se produire.

Mots clés : apprentissage fédéré, réseaux de neurones quantifiés



Remerciements

De ma petite expérience de chercheur je retiens une chose: bien souvent les étudiant·es, famille, et
autres curieux·ses lisent en premier les Remerciements. Parfois la lecture s’arrête ici. Alors je vais
oser en profiter pour dresser un portrait plus personnel de la recherche et de son (in)adéquation
avec l’effondrement du vivant que nous vivons actuellement. Je présente par avance mes excuses
à cell·eux qui s’attendaient à lire leurs noms ici.

Les quelques lignes qui suivent ne remettent en cause ni le travail, ni les collaborations
réalisées pendant les trois dernières années, mais sont le résultat d’une réflexion à propos de
l’effet rebond. En pratique c’est un phénomène très simple que l’on voit facilement dans notre vie
de tous les jours. Avant de commencer ma thèse on m’avait présenté le sujet comme une nouvelle
méthode qui permet d’entraîner des réseaux de neurones plus rapidement, et en consommnant
moins d’énergie. Belle idée! Mais en pratique l’effet rebond est déjà là. Je prends souvent
un exemple lorsque j’explique les limites de ma thèse: prenez un service d’écoute musical en
ligne, il y a quelques années on écoutait juste de la musique en qualité standard, et on acceptait
quelques images de publicités. Aujourd’hui la même application nous propose une qualité
d’écoute profesionnelle, les publicités sont devenues des vidéos promotionnelles, et en plus on
peut avoir accès en direct aux paroles de la chanson. En définitive, pour le même service, on
consomme beaucoup plus d’énergie. Voilà une illustration de l’effet rebond: avant même que
nos nouveaux algorithms soient mis en place (pour consommer un petit peu moins d’énergie),
on se permet de consommer déjà beaucoup plus par nos usages. Au final, on consomme plus
d’énergie.

Aujourd’hui l’écologie est un mot éminemment politique. Mais on se retrouve confronté
avant tout à un problème simplement physique. On vit sur une planète finie. Qu’on le veuille
ou non il y n’y aura bientôt plus de pétrole disponible car: (i) le pétrole ne pousse pas sur les
arbres, (ii) on a déjà passé les pics de production des énergies fossiles (2008 et 2018 pour le
pétrole conventionnel1 et le gaz, respectivement). Cette consomation fossile, en plus de ses
limites physiques, a évidemment des conséquences désastreuses sur notre environnement. La
combustion des ressources fossiles accroît significativement la température du globe terrestre, et
accompagne la destruction des milieux que l’on (sur)exploite: artificialisation des sols, éradica-
tion massive des insectes pollinisateurs, chute de la qualité de l’air... Non content de ce bilan,
le mode de vie occidental (cf. citation en page xiii de ce manuscrit) pèse avant tout sur les
populations et les pays les plus pauvres, au profit des populations/pays riches.

Alors que faire? On pourrait être tenté de ne rien faire. Et de continuer à prendre à l’avion
sans réfléchir, de continuer à manger de la viande tous les jours, de continuer à acheter sans
voir les alternatives (friperies, ateliers de réparation, etc.). Ce qui paraît être une lubie de bobo
écolo n’est en fait qu’une inspiration de ce qui était la norme, même pour les personnes riches,
il y seulement quelques dizaines d’années. Aujourd’hui, on peut ausi choisir, chacun·e à son
échelle. On peut choisir politiquement (carte électorale), on peut choisir citoyennement (carte

1https://fr.wikipedia.org/wiki/Pic_pétrolier

xvii



xviii Remerciements

bancaire). D’aucun·es diront que ce sont les grandes entreprises, les élus, les institutions qui
doivent d’abord changer. Mais ces dernières ne sont bien souvent que le reflet de nos décisions
(politiques et citoyennes, encore une fois). On ne peut pas forcer les agriculteur·ices français·es à
produire en bio à leurs frais si les français·es continuent à consommer aveuglément du boeuf
élevé dans des conditions douteuses à l’autre bout de la planète. On ne peut pas demander
à une usine française de se fournir en énergies renouvelables si les français·es continuent à
(sur)consommer des habits produits à l’autre bout du monde.

Et la recherche dans tout ça? On pourrait: (i) Interdir tous les déplacements en avion
pour des conférences. La visio s’est bien implantée dans nos usages, et cela donnerait un coup
d’accélérateur à toutes les initiatives accessibles en train. On a tendance à sous-estimer les
distances que l’on peut parcourir sur voies ferrées2. (ii) Rendre obligatoire une estimation
de l’impact environnemental des articles soumis, et la prendre en compte dans la notation.
Certaines conférences prestigieuses (Aistats, Neurips) imposent déjà des “check-list” pour juger
de la reproducibilité des résultats. (iii) Proposer un cours sur les limites physiques des ressources
énergétiques à tou·tes les étudiant·es en master, futur·es chercheur·ses. (iv) Rendre accessible
tous les enseignements pour les pays/populations pauvres. Vous trouverez des propositions,
certes plus radicales, mais pour le moins étayées tant d’un point de vue scientifique que social,
ici3 et là4.

2https://www.seat61.com/
3https://polaris.imag.fr/romain.couillet/index.html
4https://vous-netes-pas-seuls.org/



Glossary and symbols

NN Neural Network

DNN Deep Neural Network

BNN Binary Neural Network

QNN Quantized Neural Network

VQ Vector Quantization

FL Federated Learning

CS Central Server

OPs Operations (arithmetic)

FLOPs Floating point Operations

BOPs Binary Operations

w Parameters (weights and biases) of a NN

:= Defined as

1 Indicator/characteristic function

R Set of real number

Rd Set of d-dimensional real-valued vectors

⟨x,y⟩ Inner product of vectors x,y ∈ Rd

x∧ y Minimum of x,y ∈ R

∥x∥ Euclidean norm of vector x ∈ Rd

E[X] Expectation of a random variable X

∇f Gradient function of f : Rd −→ Rd

n Number of nodes/clients

d Dimension (number of weights/biases)

T Number of optimization steps

|D| Number of data samples in a given dataset D

xix
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Overview of the contributions

The chapters of this manuscript (except the introductory Chapter 1) are based on the contri-
butions that were presented at scientific conferences during the doctoral program. The next 5
pages assume that the reader has a good understanding of optimization, federated learning, and
quantization mechanisms. If necessary, the reader may choose to first read Chapter 1 before
returning to this summary.

1



2 Overview of the contributions

Context

Machine Learning (ML) is an expanding discipline that is revolutionizing our relationship with
technology. Deep neural networks (DNNs) have demonstrated remarkable achievements in
various fields, such as image recognition, speech recognition, natural language processing, rec-
ommendation systems, and more. ML algorithms employ statistical and optimization techniques
to detect patterns in data, with the ultimate aim of transferring these patterns to new, unseen
data. The effectiveness of ML algorithms is highly dependent on the quality and quantity of data
used to train them.

Machine learning and frugality

Frugality is the characteristic of being mindful, cautious, judicious, and economical in the
consumption of resources, while avoiding waste, extravagance, or excess. Historically, artificial
intelligence (AI) has primarily existed in the form of cloud-based software installed on large
servers. However, the future of AI is shifting towards localization, with AI being embedded
directly on Internet of Things (IoT) devices such as sensors, and other equipment. This trend
towards moving AI off the cloud and onto the edge is becoming increasingly prevalent. In
order to be effective in critical systems with high safety, privacy, robustness, and reliability
requirements, trust must be built into the design of edge AI and validated through testing. The
deployment of edge AI in constrained, networked environments presents additional challenges,
including the need for solutions with low data, computing, memory, and power budgets, as well
as efficient, secure operation in such scenari.

It is trite to say that Deep Neural Networks (DNNs) are now present in every commercial
automated tasks. But every signal, image, or video is now automatically processed by an artificial
neural network. While low-tech equivalent models can sometimes deliver better performances
(Couillet, Trystram, and Ménissier 2022), all smartphones and computers analyse a huge amount
of data everyday through the inference phase (also known as forward phase) of their embedded
DNNs. Fine-tuning a DNN is also possible (through the computation of the backward and
updates phase) when a local dataset is available. However, training a neural network on a
unit with a reduced computing capacity is difficult, due to problems of memory, computing
time or energy requirements. A natural approach to make this training simpler is to use
Quantized Neural Networks (QNNs), whose activations and operations use efficient low-bit
primitives. Nevertheless, QNNs are by nature discrete, whereas a standard neural network is
optimized using tools with almost everywhere differentiable functions. Moreover, decreasing the
representation bits coding has a tremendous degrading effect in accuracy. For a given number
of neurons, each neuron suffers from the quantization step introduced, and therefore inherent
errors may appear.

Machine learning in a connected world

The application of machine learning (ML) algorithms presents challenges in many settings due
to data protection concerns. Personal data, such as health records, financial information, and
personal communications, can contain sensitive information that individuals may not wish to
share publicly. Furthermore, regulations such as the General Data Protection Regulation (GDPR)
restrict the ways in which companies and organizations can handle personal data.

A non-exhaustive list of scenari where machine learning can be used with sensitive data
includes mobile devices (recommendation systems, speech recognition, next-word prediction),
healthcare (effectiveness of different treatments, drug design, medical imaging), and autonomous
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driving. In these scenari, data is gathered from user interactions with mobile devices, health
institutions, and vehicles equipped with sensors. Federated learning (FL) is a distributed learning
paradigm that allows a set of decentralized devices to collaboratively train a model without ever
sharing their data. The training process is orchestrated by a central server, which does not have
access to the data. This allows for the privacy of each client to be respected. FL enables the use
of diverse and large datasets, which can improve the robustness and generalization of machine
learning models. Additionally, FL distributes the computational load of training across a large
pool of devices, making it practical and efficient.

In this work, we focus on the optimization aspect of FL and QNN. Our proposed methods
are compatible with state-of-the-art privacy-preserving protocols (Huba et al. 2022), and with
standard software. Our work enables more efficient federated and/or standard training with less
energy consumption and less computational power.

Contributions of this Thesis

We introduce and summarize our contributions in the following. In all the document, we
consider optimization problems in which the components of the objective function (i.e., the data
for machine learning problems) are distributed over n clients, i.e.,

min
w∈Q(d,M)

f (w); f (w) =
1
n

n∑
i=1

E(x,y)∼Ddata
i

[ℓ(nn(x,w), y)], (1)

where d is the number of parameters (network weights and biases), n is the total number of
clients, ℓ is the training loss (e.g., cross-entropy or quadratic loss), nn(x,w) is the DNN prediction
function, Q(d,M) ⊂ Rd is a set of constraints with finite cardinal M. We assume that each of the
n clients can sample a local dataset Di with distribution Ddata

i . In FL, the distributions Ddata
i

are allowed to differ between clients (statistical heterogeneity). This general formulation takes
into account the standard non-federated setting (by taking n = 1), and also encompasses the
unconstrained learning case (by taking Q(d,M) = Rd).

An annealing process to obtain QNN

As a first step in the efficient deep learning domain, this thesis addresses the following question
the following: is it possible to learn a neural network with quantized weights/activations, with
guarantees? By guarantee we follow the “weak”, yet standard criterion for DNN: is it possible
to obtain a first-order stationary point on a quantized grid? If yes, we hope that this stationary
point yields good performances. As such, in Chapter 2, we develop a new algorithm, Annealed
Skewed SGD - AskewSGD - for training deep neural networks (DNNs) with quantized weights.
First, we formulate the training of quantized neural networks (QNNs) as a smoothed sequence
of interval-constrained optimization problems. Then, we propose a new first-order stochastic
method, AskewSGD, to solve each constrained optimization sub-problem. Unlike algorithms with
active sets and feasible directions, AskewSGD avoids projections or optimization under the entire
feasible set and allows iterates that are infeasible. The numerical complexity of AskewSGD is
comparable to existing approaches for training QNNs, such as the straight-through gradient
estimator used in BinaryConnect, or other state of the art methods (ProxQuant, LUQ). We
establish convergence guarantees for AskewSGD (under general assumptions for the objective
function). Experimental results show that the AskewSGD algorithm performs better than or on
par with state of the art methods in classical benchmarks. Overall, our contributions are to:
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• Replace the discrete optimization (1) by an annealed sequence of differentiable inequality
constraints that converges to (1) when the annealing parameter goes to 0.

• Use a novel first-order algorithm proposed in Muehlebach and Jordan 2021 to solve the
relaxed sub-problems in the annealed sequence, leading to AskewSGD. Unlike classical con-
strained optimization algorithms, including the projection method or sequential quadratic
programming (Gill and Wong 2012), this approach relies exclusively on local approxima-
tions of the feasible set. This local approximation includes only the active constraints,
and is guaranteed to be a convex polyhedron even if the underlying constraint set is non
convex. This makes the resulting algorithm easy to implement and also ensures that the
descent is not stopped as soon as a new constraint is violated.

• Show how AskewSGD can be applied to train QNN. The complexity of the resulting al-
gorithm is similar to that of BC or LUQ (Courbariaux, Bengio, and David 2015; Chmiel
et al. 2021) and ProxQuant (Bai, Y.-X. Wang, and Liberty 2018). Our algorithm uses high
precision latent weights and uses classical backpropagation to evaluate the gradients.

• Provide convergence guarantees for AskewSGD. We stress that, as opposed to Muehlebach
and Jordan 2021, no convexity assumption on the objective function or the feasible set is
made.

• Evaluate the performance of AskewSGD on classical computer vision datasets using Con-
vNets and ResNets. Our experiments show that QNNs trained with AskewSGD achieve
accuracy very close to that of their floating-point counterparts, and outperform or are on
par with comparable baselines.

The previously mentioned contributions are detailed in Chapter 2, and have led to a publication
at the AISTATS2023 conference (Leconte, Schechtman, and Moulines 2023).

A heuristic to obtain BNN

The Quantized neural network (QNN) literature covers a very broad topic, and several signal
processing techniques can be combined to improve the training and/or inference stage of a
QNN. In Chapter 3, we focus on the restrictive, yet efficient use case of BNNs (Binary Neural
Networks). By “efficient”, we refer to the energy efficiency of the training steps. In particular,
most of the research works have been dedicated to the reduction of the arithmetic complexity,
while energy consumption is the most relevant bottleneck. In addition, the literature focus has
been on inference whereas training is several times more intense. In Chapter 3, we make use
of the Boolean neuron design (V. M. Nguyen 2023) to train deep models in the binary domain
using Boolean logic instead of gradient descent and real arithmetic. We propose a detailed
energy evaluation for both training and inference phases. Our method achieves the best results
in standard image classification tasks and consumes almost less energy (compared to a 16 bits
neural network). This energy efficiency paves the way for an edge device use, in particular for
fine-tuning large models on a dedicated task. The contributions related to this heuristic to train
BNNs are mainly technical and experimental:

• We adapt the initial Boolean strategy (V. M. Nguyen 2023) to the case of deep NNs by
introducing a learning factor inspired from brain plasticity: “neurons that fire together
wire together” (Fuchs, Flügge, et al. 2014; Hebb 2005).

• We show competitive or state-of-the-art results of this design in complex computer vision-
related tasks, including image super-resolution.
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• We show that employing pre-trained Boolean NNs for edge device fine-tuning tasks, such
as classification and segmentation, yields very good performances at low energy cost.

Under an industrial mentoring, the Boolean idea was presented in a patent (V. M. Nguyen and
Leconte 2022), and is currently under review at the CVPR2024 conference.

Efficient BNN training in the FL context

After focusing on efficient NN training on a single device, we have considered the challeng-
ing problem of training jointly a set of nodes (e.g. edge devices with low computational and
communication capacity) in the synchronous Federated Learning (FL) context. In standard
centralized FL, one assumes that (i) all nodes can compute gradients on their local dataset
(i.e. energy/memory is not a bottleneck), and (ii) all nodes are synchronous with the central
server (i.e. bandwidth and compute time are not bottlenecks). In Chapter 4 we demonstrate
how one can integrate the method introduced in Chapter 3 into the FL framework. Despite its
popularity, federated learning faces the increasingly difficult task of scaling communication over
large wireless networks with limited bandwidth. Moreover, this distributed training paradigm
requires clients to perform intensive computations for multiple iterations, which may exceed the
capacity of a typical edge device with limited processing power, storage capacity, and energy
budget. Therefore, practical deployment of FL requires a balance between energy efficiency due
to resource constraints and latency due to bandwidth constraints. In this work, we overcome
both constraints by integrating low-precision arithmetic on clients and exchanging only highly
compressed vectors during training. Here we assume nodes are edge devices with constrained
computational power, and we consider 2 options to tackle the bandwidth bottleneck: FedBool
and MajBool. Experimental results show that the proposed algorithms FedBool and MajBool

perform better than current methods on standard image classification tasks. In Chapter 4, we
will give more details about:

• FedBool, a new algorithm for federated learning with a central server, using a Boolean
neural network on clients that compute only backpropagated signals (no full accuracy
updates required).

• MajBool, another novel federated learning method where only binary vectors are ex-
changed (we propose a new aggregation rule based on majority logic to update the binary
weights of the central server).

• Experimental results to showcase that our approaches consistently perform better than
other federated baselines for quantized neural networks.

These algorithms were presented in a patent, and at the FMEC/FLTA2023 conference (Leconte,
Moulines, et al. 2023).

An unbiased quantization scheme for highly compressed FL communications

The algorithms introduced in the previous paragraph are well suited to train NNs on low capacity
devices with a small bandwidth usage. However bandwidth consumption is also a difficulty
regarding the training of full precision NNs. Indeed, the growing size of models and datasets
have made distributed implementation of stochastic gradient descent (SGD) an active field
of research. But the high bandwidth cost of communicating gradient updates between nodes
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remains an impediment; lossy compression is a way to alleviate this problem. In Chapter 5,
we present an unbiased vector quantization (VQ) method, named Stovoq, to deal with the high
bandwidth cost of communicating gradient updates between nodes. This technique has the
following characteristics:

• It relies on unitarily invariant random codebooks and on a straightforward bias compensa-
tion method.

• It presents a better distortion rate compared to existing methods in the FL literature.

• It allows significant reduction of bandwidth use while preserving performance on convex
and non-convex deep learning problems.

FL with different node computation capacities, and a central clock

In the previous paragraphs, we have introduced solutions to work with limited nodes and a
limited bandwidth in the FL context. In the final chapters, we consider the asynchronous FL
setting (see Section 1.4 for further details): we do not assume anymore that nodes contribute
to the CS at the same pace. In particular, nodes can have very different computational speeds
and/or a very different access to the bandwidth. This creates a serious impediment: in practical
scenari, one does not want to wait for the slowest node at every central server (CS) update. In
Chapter 6, we detail a novel centralized Asynchronous Federated Learning (FL) framework,
FAVANO, for training Deep Neural Networks (DNNs) in resource-constrained environments.
Despite its popularity, “classical” federated learning faces the increasingly difficult task of scaling
synchronous communication over large wireless networks. Moreover, clients typically have
different computing resources and therefore computing speed, which can lead to a significant bias
(in favor of “fast” clients) when the updates are asynchronous. Therefore, practical deployment of
FL requires to handle users with strongly varying computing speed in communication/resource
constrained setting. FAVANO is:

• an unbiased aggregation scheme for centralized federated learning with asynchronous
communication. Our algorithm does not assume that clients computed the same number
of epochs while being contacted.

• backed up with complexity bounds in the smooth non-convex setting. We emphasize that
the dependence of the bounds on the total number of agents n is improved compared to
Zakerinia et al. 2022 and does not depend on a maximum delay.

• Experimental results show that our approach consistently outperforms other asynchronous
baselines on the challenging TinyImageNet dataset (Y. Le and X. Yang 2015).

FAVANO (Leconte, V. M. Nguyen, and Moulines 2023) has been accepted for publication at the
ICASSP2024 conference.

Queuing dynamics in the context of FL with different node computation
capacities

For our final contribution, we have developed another novel method to deal with asynchronous
FL. This scheme is orthogonal to the algorithm FAVANO presented in Chapter 6. Indeed, as
detailed in Chapter 7, nodes are not interrupted by the central server (CS). However, each node
is allowed to work on models with potential delays and contribute to updates to the CS at its
own pace. We study asynchronous federated learning mechanisms with nodes having potentially
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different computational speeds. Existing analyses of such algorithms typically depend on
intractable quantities such as the maximum node delay, and do not consider the underlying
queuing dynamics of the system. In this paper, we propose a non-uniform sampling scheme
for the central server that allows for lower delays with better complexity, taking into account
the closed Jackson network structure of the associated computational graph. Our experiments
clearly show a significant improvement of our method over current state-of-the-art asynchronous
algorithms. This improvement is the results of the following steps:

• We identified key variables that affect the performance of the optimization procedure and
depend on the queuing dynamics.

• Building on the findings of our analysis, we introduced a new algorithm called Gener-

alized AsyncSGD. This algorithm exploits non-uniform agent selection and offers two
notable advantages: First, it guarantees unbiased gradient updates, and second, it improves
convergence bounds.

• To gain deeper insights, we delved into the limit regimes characterized by large concurrency.
In these contexts, our analysis showed that heterogeneity in server speeds can be balanced
by the strategic use of non-uniform sampling among agents.

• Experimental results finally showed that our approach outperforms other asynchronous
baselines on deep learning experiments.

Chapter 7 is based on the work Leconte, Jonckheere, et al. 2024.
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Chapter1
Introduction

In this chapter, we lay the foundation for the subsequent chapters by introducing and con-
textualizing the primary concepts and ideas that will be explored throughout the document.
This chapter serves as an overview of the critical areas that are essential for understanding
the contents of this thesis. We begin by providing a historical overview of statistical learning,
machine learning, and its mathematical formulation. We then move on to the quantized world,
which forms the main constraint basis of this thesis. Following that, we discuss the case of
federated learning, and specifically the efficient setting, which takes into account bandwidth
and/or device computational power limitations.

9



10 CHAPTER 1. Introduction

1.1 Statistical Learning

1.1.1 A brief historical introduction

The field of statistical learning focuses on developing and analyzing methods for making pre-
dictions or decisions based on data. Its roots can be traced back to the 19th century, with early
pioneers such as Legendre, Gauss, and Laplace introducing independent methods for regression
(Legendre 1806; Gauss 1809), and conditional probability (Laplace 1814). In the mid-20th

century, the field experienced a surge of interest in machine learning and artificial intelligence,
leading to the development of methods such as the perceptron algorithm (McCulloch and Pitts
1943) and decision trees (Hunt, Marin, and Stone 1966). However, progress in statistical learning
was hindered by limitations in computing power and availability of large datasets in the 1970s
and 1980s. The 1990s saw a resurgence of interest, with the development of methods that
could handle large datasets and complex models, such as support vector machines (Cortes and
Vapnik 1995), boosting (Freund and Schapire 1996), random forests (Breiman 2001), and neural
networks (LeCun 1985; Schmidhuber 1989; LeCun, Bottou, et al. 1998). The growth of the
internet and availability of massive amounts of data contributed to the field’s expansion, leading
to a dynamic and ever-evolving field of statistical learning. Today, statistical learning is applied
in various domains, including climate studies, finance, healthcare, robotics, social media, among
others. Researchers continue to develop methods for analyzing data and automatizing human
tasks, including deep learning (LeCun, Bengio, and G. Hinton 2015), reinforcement learning
(Sutton and Barto 2018), distributed learning (Konečný et al. 2016; B. McMahan et al. 2017), and
generative AI (A. Vaswani et al. 2017).

This thesis focuses on supervised learning, which involves predicting an output y ∈ Y based
on a new input x ∈ X , with X and Y being measurable spaces. The main tasks of supervised
learning are regression, which predicts a quantitative outcome, and classification, which predicts
a categorical outcome. The goal of supervised machine learning is to find a predictor h, a
measurable function, that predicts an output y ∈ Y for any new input x ∈ X .

1.1.2 Loss function

To measure the quality of a predictor, we select a loss function ℓ : Y ×Y → R that is measurable
and intuitively, for any (y,y′) ∈ Y2, ℓ(y,y′) is small if y and y′ are similar, and large otherwise. For
regression tasks, the squared loss ℓ(y,y′) = 1

2 (y − y′)2 is typically used, whereas for classification,
the logistic loss ℓ(y,y′) = log(1 + exp(−yy′)) (for logistic regression) or the hinge loss ℓ(y,y′) =
max{0,1− yy′} are employed. We define the risk f of a predictor h as the expected loss under the
distribution Ddata of the observations:

f (h) := E(x,y)∼Ddata [ℓ(h(x), y)]. (1.1)

The learning process aims to find the best predictor h∗ that minimizes the risk f . In most cases,
the quality of a predictor h is not measured based on its loss, but rather on the excess risk
f (h)− f (h∗), which measures how far h is from h∗ based on the chosen loss ℓ and the distribution
Ddata. To approximate h∗, the learning process involves selecting a parametric family H of
predictors and minimizing the risk over it, resulting in hH = argminh∈H f (h).

Empirical Risk Minimization (ERM) is a technique used in machine learning when the true
distribution of observations Ddata is unknown and we only have access to a dataset D of cardinal
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|D|, composed of several pairs (xk , yk)k∈{1,...,|D|} ∈ (X ×Y )|D|. The empirical risk error is defined as

fD(h) :=
1
|D|

|D|∑
k=1

ℓ(h(xk), yk). (1.2)

One approach is to minimize it instead of the true risk f :

min
h∈H

fD(h). (1.3)

However, this approach has a major pitfall: over-fitting. It occurs when the empirical risk error
is very low, but the excess risk is large. In this case, the true risk is also called the generalization
error as it measures how accurately the predictor hD trained on a dataset D is able to predict
output values for unseen data. In practice, the learning process is the same as if one could
access the true distribution of observations Ddata: from a predefined family of predictors H, one
seek to find hD that minimizes the empirical risk error fD (instead of f ). But this additional
approximation induces another term in the excess risk:

f (hD)− f (h∗) = f (hD)− f (hH)︸           ︷︷           ︸
estimation error

+ f (hH)− f (h∗)︸          ︷︷          ︸
approximation error

. (1.4)

The first term represents the estimation error, which measures how well the true risk f (h∗) is
estimated by the empirical risk fD. The second term represents the approximation error, which
measures how well the family H approximates the set of all possible predictors.

1.2 Machine Learning

The goal of machine learning is to find a solution (from a given family of predictors) to the
empirical risk minimization problem in a suitable amount of time. When the chosen family of
predictors H is small (and finite), one can solve the empirical risk minimization problem with a
brute-force method: testing all possible predictors, and selecting the one that yields the smallest
error. We give an example of such “simple” family in Section 2.4.1 and Figure A.3. But small
families of functions have high approximation errors (bias), and results in poor performances on
complex tasks. As a consequence, current state of the art family of predictors H are very large
(often infinite), and as such we rely on the Gradient Descent (GD) method to solve the empirical
risk minimization problem.

1.2.1 Gradient descent

A common practice is to parameterized the family of predictors H with some parameters w ∈ Rd
for a chosen dimension d: h := h(w). Hence, the goal of optimization (Nesterov 2013) is to find
an optimal point (not necessarily unique) that minimizes the (true or empirical) risk f :

w∗ := argmin
w∈Rd

f (h(w)) (1.5)

With a slight abuse of notation, in the subsequent chapters, we will note f (w) = f (h(w)) for any
parameters w ∈ Rd .

Gradient descent (GD) is a widely used optimization algorithm for training machine learning
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models. It is an iterative optimization algorithm that updates the model parameters by taking
small steps in the direction of the negative gradient of the loss function with respect to the model
parameters. The key advantage of GD over other optimization algorithms is its ability to handle
large datasets and high-dimensional models. Solving the risk minimization problem with an
accuracy ϵ > 0 means finding an approximate solution wT after T ∈ N iterations, such that the
error f (wT )− f (w∗) < ϵ.

Gradient descent was first introduced by Cauchy 1847, and aims at finding an optimal point
w∗ minimizing the (empirical) risk, by employing (first-order) regularity information about the
function w→ f (w). The gradient descent algorithm updates the model parameters by taking
steps in the direction of the negative gradient of the loss function f . The update rule for gradient
descent is:

wnew = wold − η ∗ ∇f (wold), (1.6)

where wnew is the new value of the model (h(w)) parameters, wold is the old value of the model
parameters, η is the learning rate (or step size), and ∇f (wold) is the gradient of the loss function
with respect to the model parameters. The step size controls the update’s magnitude. The choice
of the step size rate is fundamental and has been one of the most studied questions: taking η
“too small” slows down convergence, and η “too big” yields divergence.

The choice for η, and all related convergence guarantees are tightly related to the geometry
of the landscape of the function w→ f (w). A non-regular function may have discontinuities,
singularities, or oscillations that can cause optimization algorithms to get stuck or to converge
slowly. This is why, regularity is a desirable property for objective functions in optimization. A
standard, yet limited, regularity assumption is convexity:

A1. Convexity (in R). For all r ∈ [0,1], and for all w,ν ∈ R×R:

f (rw+ (1− r)ν) ≤ rf (w) + (1− r)f (ν). (1.7)

If in addition f is also differentiable, we have the following useful equivalent characterization
of convexity:

A2. Convexity (+ diff. in R). For all w,ν ∈ R×R:

f (ν) ≥ f (w) + (ν −w)⊤f (w). (1.8)

These property is of prime importance to study standard machine learning algorithms
such as the Least Squares Regression (LSR) problem. Every first-order stationary points are
(without uniqueness) minima for convex functions. Strong convexity assumption can additionally
ensure that the minimum is unique. However the models we consider in this thesis are highly
non-convex. Therefore we will mainly focus on finding first-order stationary points, under
smoothness assumptions:

A3. Smooth gradients (in R). The gradient ∇f of a function f is L-Lipschitz continuous for some
L > 0, i.e. for all w,ν ∈ R:

∥∇f (w)−∇f (ν)∥ ≤ L∥w − ν∥. (1.9)

In particular we will use, and study a stochastic (yet unbiased) version of the gradient descent
method: stochastic gradient descent (SGD). It is particularly useful when the size of the dataset
we consider for the empirical risk fD is large. The iteration procedure is close to the one of GD:
the model parameters takes small steps in the direction of “an unbiased approximation” of the
negative gradient of the loss function with respect to the model parameters. The update rule for
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SGD (Robbins and Monro 1951) is:

wnew = wold − η ∗ ∇f (wold ,ζ), (1.10)

where wnew is the new value of the model parameters, wold is the old value of the model
parameters, η is the learning rate, and ∇f (wold ,ζ) is an approximation of the gradient of the
loss function with respect to the model parameters. This approximation step complexifies the
method and its analysis (F. Bach and Moulines 2013). In the following chapters, we will assume
that the variance of the stochastic gradients ∇f (w,ζ) is bounded:

A4. Bounded noise (in R). There exists some σ2 > 0, such that for all w ∈ R:

E[∥∇f (w,ζ)−∇f (w)∥2] ≤ σ2. (1.11)

There are many variants of SGD that have been developed to address the limitations of the
standard SGD algorithm. Some of these variants include mini-batch gradient descent, stochastic
gradient descent with momentum, stochastic gradient descent with weight decay, and stochastic
gradient descent with adaptive learning rate methods.

1.2.2 Deep Learning

Deep Neural Networks (DNNs) are complex machine learning models that use non-linear
functions with a large number of parameters to process high-dimensional data and achieve state-
of-the-art performance. In deep learning methods, DNNs are often viewed as a composition
of functions. From the perspective of efficient inference, a DNN can be defined as a set of
computational blocks that form a directed graph where each node represents a mathematical
operation and each vertex corresponds to an actual composition. Among the most common
neural network architectures, we can classify the following nodes: convolutions, normalization
layers, activation layers, and merge layers. In this manuscript, we will focus on the optimization
and/or the quantization of convolutions and activations layers: where the computational cost is
the most important.

Convolutions also encompass fully-connected layers, which take as inputs a tensor and
perform an operation equivalent to a matrix (weights) and vector (inputs) multiplication. Nor-
malization layers, such as batch-normalization (Ioffe and Szegedy 2015) and layer normalization
(J. L. Ba, Kiros, and G. E. Hinton 2016), were introduced to improve the stability of training. The
defined operation is a sequence of affine transformations of the features that are approximations
of the expectation and standard deviation of the features. Activation layers add non-linear
transformations to the graph called activation functions, such as the sigmoid (Menon et al.
1996), softmax (Banerjee et al. 2020), ReLU (Agarap 2018), and GELU (A. Nguyen et al. 2021).
These functions enable DNNs to approximate any continuous function on a compact set to any
given precision (Cybenko 1989). Merge layers are the final set of nodes that we consider and
are extensions of skip connections (He et al. 2016). When several intermediate outputs are
considered, they should be merged using either concatenation (Ronneberger, Fischer, and Brox
2015), addition (Melekhov et al. 2017), or multiplication (A. Vaswani et al. 2017).

More formally, we will consider the training of an artificial neural network model: for an
input x ∈ X , the predictor h is denoted and parameterized as h(x) := nn(x,w). The model is
parameterized by w (the so-called weights and biases), and predicts an output y ∈ Y for each
input x ∈ X . In this work, we will focus on supervised federated learning, although all ideas
explored here can be easily extended to unsupervised or semi-supervised settings.
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1.3 Quantization

1.3.1 Compression and Quantization

Compression refers to the process of reducing the size of a signal without significantly losing its
information content. This is achieved by identifying and removing redundancies in the signal.
Compression is used in a variety of applications, including digital audio and video compression,
image compression, and data compression.

In signal processing, compression is used to reduce the amount of data that needs to be trans-
mitted or stored. This can be achieved through techniques such as wavelet transforms, Fourier
transforms, and other signal processing techniques (Shannon 1948). In wireless communications,
compression is used to reduce the amount of data that needs to be transmitted over a wireless
channel. This can help to increase the efficiency of the communication system and reduce the
amount of time required for data transmission. By reducing the size of a signal without losing
its information content, compression can help to improve the performance of communication
systems and enable the development of new technologies. Depending on the input to be com-
pressed, a vast amount of methods have been developed including matrix factorization (e.g. low
rank decomposition), sparsification, spectral analyses, or quantization. In this work, we will
focus on the latter.

Quantization is the process of discretizing continuous variables into discrete ones. It is a
fundamental technique in physics and mathematics that has played a crucial role in the develop-
ment of quantum mechanics. Quantization is also a fundamental process in signal processing
and wireless communications. It involves reducing the precision of a signal representation
to a more efficient and compact form. The goal of quantization is to maintain the essential
information of the signal while minimizing the number of bits required to represent it. There are
several types of quantization, including scalar quantization, vector quantization, deterministic
quantization, and stochastic quantization.

Deterministic quantization is a quantization technique where the quantization function is
defined by a deterministic rule. This means that the same quantization function is used for all
input signals. Deterministic quantization is simple and efficient, but it may not be optimal in
terms of the number of bits required to represent the signal. Stochastic quantization is a more
advanced form of quantization that uses probability distributions to determine the quantization
function.

Scalar quantization is the simplest form of quantization, where a continuous-time signal is
divided into discrete-time samples and each sample is quantized to a finite number of bits. This
process is used in many practical applications, such as digital audio and video compression.
A random scalar quantizer is a random map from the real line to a (scalar) codebook OQ =
{o1, . . . , oM } ⊂ R where M ≥ 2. It is assumed that −∞ < o1 < · · · < oM < ∞. The resolution (or
code rate) is P = log2(M) is the number of bits needed to uniquely specify a codeword. A scalar
quantizer is said to be uniform if for all i ∈ [M − 1], oi+1 − oi = δ, for some δ > 0. For x ∈ R
and u ∈ [0,1], consider a function SQ(x,OQ,u) ∈ OQ. If U ∼ Unif([0,1]), then SQ(x,OQ,U ) is a
random scalar quantizer. A random scalar quantizer is said to be unbiased if for all x ∈ [o1, . . . , oM ],
EU∼Unif([0,1])[SQ(x,OQ,U )] = x. A simple way to construct an unbiased scalar quantizer goes

a follows. We first compute the index j(x) ∈ [M] such that x ∈
[
oj(x), oj(x)+1

)
. Note that x =

λ∗j(x)(x)oj(x) + (1−λ∗j(x)(x))oj(x)+1 where

λ∗j(x)(x) = (x − oj(x))/(oj(x)+1 − oj(x)) ∈ (0,1] .
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For u ∈ (0,1], we set

SQ(x,OQ,u) = 1{u≤λ∗j(x)(x)}oj(x) +1{u>λ∗j(x)(x)}oj(x)+1 .

Since EU∼Unif([0,1])(U ≤ λj(x)∗(x)) = λ∗j(x) the unbiasedness follows. It is easily seen that the
distortion of a scalar quantizer is directly related to the diameter of the quantizer:

Proposition 1. For all x ∈ [o1, oM ], it holds that

EU∼Unif([0,1])[{SQ(x,OQ,U )− x}2] ≤ (1/4) sup
i∈[Q−1]

{oi+1 − oi}2 .

If the scalar quantizer is uniform,

EU∼Unif([0,1])[{SQ(x,OQ,U )− x}2] ≤ (1/4)(Q − 1)−2{oQ − o1}2 .

Proof of this proposition, and more details about scalar quantization can be found in Sec-
tion 5.3 and Appendix B.3.1.

Vector quantization is a more advanced form of quantization that is used to represent signals
in higher dimensions. It involves dividing the signal into a set of vectors and quantizing each
vector to a finite number of bits. Vector quantization is used in many applications, such as
wireless communications and image compression. The previously defined scalar quantizer can
be applied element wise to a given vector x ∈ Rd to build a basic vector quantizer:

Definition 2 (s-quantization operator). Let s ≥ 1 and p ≥ 1. Given x ∈ Rd , the s-quantization
operator Cs is defined by:

Cs(x) := ∥x∥p ×
d∑
i=1

sign(xi)
{
s−1⌊s|xj |/∥x∥p⌋+1{Ui≤s|xj |/∥x∥p−⌊s|xj |/∥x∥p⌋}

}
ei . (1.12)

where {Ui}di=1 are d-independent uniform random variables on [0,1].

A large body of literature has covered and extended the topic of vector quantization with
several strategies like gain-shape (Gersho and Gray 2012), or product quantization (Matsui et al.
2018; Stock et al. 2020). We present here the (stochastic) Delaunay quantization (also known
as dual quantization). The principle of Delaunay quantization is to map an Rd-valued vector
x onto a codebook CM using a random splitting operator Dual-VQ(x,CM ,U ) such that, for all
x ∈ ConvHull(CM ),

EU∼Unif([0,1])[Dual-VQ(x,CM ,U )] = x . (1.13)

In practice, a dual quantizer procedure amounts to define a probability distribution of CM ,
with weights (λ∗1(x), . . . ,λ∗M(x)), λ∗i (x) ≥ 0,

∑M
j=1λ

∗
j(x) = 1. Set Λ∗0(x) = 0 and for i ∈ [M], Λ∗i (x) =∑i

j=1λ
∗
j(x). Note that Λ∗M(x) = 1. If u ∈

(
Λ∗j−1(x),Λ∗j (x)

]
, j ∈ [M], we set Dual-VQ(x,CM ,u) = cj .

In such that, for all x ∈ ConvHull(CM ), we get

EU∼Unif([0,1])[Dual-VQ(x,CM ,U )] =
M∑
i=1

λ∗i (x)ci = x .

More details will be given in Appendix B.3.2.
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1.3.2 QNN

Deep neural networks (presented in Section 1.2.2) are currently used in many IoT devices with
limited computational and memory resources. This has led to a growing research area focused
on reducing the size and inference time of DNNs while maintaining accuracy. The methods used
in this area include model pruning, neural architecture search, efficient architecture design, and
low-rank decomposition. In this work, we focus on network quantization, where weights and/or
activations are quantized to lower bit widths, allowing for efficient fixed-point inference and
reduced memory bandwidth usage. Network quantization has been studied extensively, with
examples such as Courbariaux, Bengio, and David 2015; Jacob et al. 2018; Darabi et al. 2018;
Choukroun et al. 2019; Lei Deng et al. 2020; Qin et al. 2020; Bhalgat et al. 2020; Chmiel et al.
2021. These works demonstrate the effectiveness of network quantization in reducing the size
and inference time of DNNs while maintaining accuracy.

Quantized neural networks (QNNs) have attracted many research efforts. The task of learning
a quantized neural network (QNN) can be formulated as minimizing the training loss with
quantization constraints on the weights, i.e.,

min
w∈Q

f (w) , f (w) = E(x,y)∼Ddata [ℓ(nn(x,w), y)]. (1.14)

The set of quantization levels, Q, is a subset of the set of all possible values for the DNN’s
parameters. The objective of this optimization problem is to minimize the training loss ℓ, which
can be a cross-entropy or square loss function, subject to certain constraints that ensure the
quantization process is feasible. The DNN’s prediction function, nn(x,w), takes in an input
x and a set of parameters w and produces an output. The training distribution, Ddata, is
used to evaluate the performance of the DNN and to determine the optimal parameters. The
optimization problem in this program is extremely challenging due to several factors. Firstly, the
underlying function being optimized is non-convex and non-differentiable, making it difficult to
find a globally optimal solution. Secondly, the optimization problem is combinatorial in nature,
meaning that it involves selecting a subset of the quantization levels from a larger set. Finally,
the optimization problem is also constrained by the need to ensure that the quantization process
is feasible, which adds an additional layer of complexity to the problem. Given these challenges,
it is important to develop algorithms that can produce a manageable and accurate solution to this
optimization problem. While finding a globally optimal solution may not always be possible, it is
possible to develop approximation algorithms that can find a solution that is close to the optimal
solution while requiring a manageable amount of computational effort. One of the advantages
of QNNs is their computational efficiency. This is achieved by using a lower bit-width for weight
values and intermediate features, which reduces their memory footprint and the number of
individual bit operations required. While floating-point operations may be better supported by
some hardware (e.g. CPUs), fixed-point operations are more suitable for efficiency on specific
devices, such as GPUs, which can leverage them more effectively (Hettiarachchi, Davuluru, and
Balster 2020).

Floating point vs fixed point In the deep learning community, the default scalar value repre-
sentation is typically floating point on 32 bits. A floating point value is defined by three sets
of bits: one first bit to encode the sign, m bits for the significant or mantissa, and e bits for the
exponent. The size of the mantissa and exponent determines the trade-off between the level of
precision and the amount of memory used. The IEEE 754 format uses m = 8 bits for the mantissa
and e = 23 bits for the exponent, totaling 32 bits. Other formats, such as half format, have been
introduced to increase speed and decrease memory usage. However, some operations, such as
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loss computation and gradients, are still performed on 32 bits. In computer science, fixed point
representation defines a real value as a first integer multiplied by an implicit scaling factor.
However, in the quantization community, fixed point representation is assumed to be an integer
representation, often with uniform quantization (S. Zhou et al. 2016). In practice, most weight
values follow a mono-modal, almost symmetric distribution that can be modeled by a Gaussian.
Non-uniform quantizers have been proposed in Sun, N. Wang, C.-Y. Chen, Ni, Agrawal, Cui,
Venkataramani, El Maghraoui, et al. 2020; Chmiel et al. 2021 to provide better coverage of the
entire span of values. The fixed point representation must use a specific scale suited for each
tensor, which can be learned or defined layerwise. Quantization is currently difficult to work
with, especially in current deep learning frameworks. In practice, the compression community
simulates the quantization process to leverage existing optimization libraries such as PyTorch
(Paszke et al. 2019), TensorFlow (Martín Abadi et al. 2015), or Jax (Bradbury et al. 2018).

Simulated Quantization In order to simulate the quantization process using only the best
supported formats (e.g. float32 and float16), the quantization (Q()) and de-quantization (Q−1())
processes are performed before the tensor products. In practice, the standard dot-product
operation w · x, for any weight w and any input x is replaced by Q−1(Q(w)) ·Q−1(Q(x)) in the
code. The resulting quantized network is characterized by zero derivatives almost everywhere,
which makes it challenging to perform stochastic gradient descent optimization. To address this
limitation, various methods have been proposed, with post-training quantization being a popular
approach, especially for large language models (Frantar et al. 2022; J. Lin et al. 2023; J. Kim et al.
2023; H. Guo et al. 2023). Quantization-aware training (S. Gupta et al. 2015; D. Zhang et al. 2018;
Jin et al. 2021; Yamamoto 2021; C.-W. Huang, T.-W. Chen, and J.-D. Huang 2021; Umuroglu et al.
2017) and quantized training (J. Chen et al. 2020; Sun, N. Wang, C.-Y. Chen, Ni, Agrawal, Cui,
Venkataramani, Maghraoui, et al. 2020; Yukuan Yang et al. 2022; Chmiel et al. 2021) are also
commonly used techniques to obtain better quantized models. The majority of these methods
employ two main solutions to tackle the zero derivative challenge. One approach is to simply
omit the rounding step in the backward pass (straight-through estimation (Courbariaux, Bengio,
and David 2015) also known as STE), while the other is to use a soft function to approximate the
rounding step (Ajanthan, K. Gupta, et al. 2021).

A brief state of the art A special case of quantization-aware training is binarized neural net-
works (BNNs) which were first proposed by Courbariaux, Bengio, and David 2015; Courbariaux,
Hubara, et al. 2016 and have been followed by a huge amount of subsequent contributions
(Gholami et al. 2021; W. Zhao et al. 2020; Y. Guo 2018; Nagel et al. 2021). This design usually
binarizes weights and activations to obtain principal forward computation blocks in binary.
It learns binarized weights via full-precision latent ones, which are updated by the classical
gradient descent backpropagation. Many concurrent approaches (Bai, Y.-X. Wang, and Liberty
2018; Ajanthan, Dokania, et al. 2019; Ajanthan, K. Gupta, et al. 2021; M. Lin et al. 2020; Leconte,
Schechtman, and Moulines 2023) formulated the BNN learning task as a constrained optimiza-
tion problem and discussed different methods to generate binary weights from real-valued latent
ones.

Remark 3. Note that the first deep neural network considered in LeCun 1985 is an artificial neural
network with weights w ∈ {−1,+1}. We will develop and give more details about BNNs in Chapter 3.

In the context of Quantized Neural Networks (QNN), the choice of the quantizer and the
normalization of the weights play a crucial role. Several studies have focused on the development
of non-uniform or distribution-dependent quantizers, such as Banner et al. 2018; Hou and Kwok
2018; Bhalgat et al. 2020; Liang et al. 2021; Fournarakis and Nagel 2021; A. Zhou et al. 2017; Y.
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Zhou et al. 2018. While statistical quantizers are often more efficient, they are more complex to
implement and require fine-tuning (Zhaoyang Zhang et al. 2021). Several works have formulated
the quantization problem as an optimization problem (H. Li et al. 2017; F. Li, B. Zhang, and
B. Liu 2016; C. Zhu et al. 2016; Carreira-Perpinán and Idelbayev 2017; Leng et al. 2018; Polino,
Pascanu, and Alistarh 2018). However, these methods rely on certain assumptions that may
not hold for deep neural networks (Y. Guo 2018). In Moons et al. 2017; T.-J. Yang, Y.-H. Chen,
and Sze 2017; Esser et al. 2015, the QNN training is tackled as an energy efficiency problem,
whereas Gong et al. 2019 propose a Differentiable Soft Quantization (DSQ) to efficiently train
QNN. For BNN, M. Kim and Smaragdis 2016; Hubara et al. 2016; Rastegari et al. 2016 proposed
to use sign(·) function for quantizing activation functions, but this approach significantly affects
the performance. More complex quantization schemes have been considered in Choi et al.
2018 alleviating performance degradation. Hybrid formats FP8 (N. Wang et al. 2018) or INT8
(Wiedemann et al. 2020; Banner et al. 2018) were successfully employed to achieve a low
precision training. Recent works have proposed to jointly optimize the quantization parameters
(of weights and activations) and the weights parameters. This task can be done by modifying the
learning loss or by minimizing the quantization error (C. Zhu et al. 2016; D. Zhang et al. 2018;
Y. Li, Dong, and W. Wang 2019). More details will be given in Chapter 2 and Chapter 3.

1.4 Federated Learning

Federated learning is a distributed machine learning technique that allows n devices to collab-
oratively train a model without sharing their data. This approach has gained popularity due
to its potential to address privacy concerns and the limitations of centralized data storage and
processing.

We assume that each client i has a local model wi , can sample from a local dataset, and seeks
to optimize a local loss function fi(wi):

fi(wi) = E(x,y)∼Ddata
i

[ℓ(nn(x,wi), y)]. (1.15)

Without loss of generality, the goal of FL is to produce a model that optimizes the average of loss
functions (this average can be weighted based on the size of local datasets and/or based on user
preferences).

1.4.1 Synchronous Federated Learning

There are several challenges associated with federated learning, including but not limited to
communication overhead, model convergence, and computational imbalance. Communication
overhead is related to the amount of data that needs to be transmitted between devices during
the training process. Modern models (e.g. LLMs) have hundreds of billions of parameters, and a
direct transmission would not fit the bandwidth. Model convergence is the challenge of ensuring
that the global model accurately represents the local models. The implicit assumption of FL
systems is that a server can benefit from learning from multiple sources of data. Therefore, it
is assumed that the data present in each device, implicitly encoded in the loss function fi , can
be used to train a model CS that is collectively useful. Naturally, if the loss functions fi are
completely unrelated to each other (i.e. there is data heterogeneity), then there is no point in
learning a shared model. Computational imbalance occurs when devices does not share the same
computational power and/or when some devices have more data than others. These differences
can lead to unequal representation in the global model and/or to an increase of the time spent
between two consecutive CS updates.
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Remark 4. Federated learning (FL) is an approach to machine learning that utilizes data from multiple
clients in a manner that protects their privacy. To this end, ensuring provable privacy guarantees for
FL algorithms is of utmost importance. Modern FL algorithms operate by the transmission of gradients
between the server and clients (B. McMahan et al. 2017; J. Nguyen et al. 2022). A recent study
(Geiping et al. 2020) has shown how to invert gradients and reconstruct images from Convolutional
Neural Networks (CNNs) gradients. In order to protect privacy, FL protocols employ additional
security measures to prevent the recovery of sensitive data from gradients. Two main methods have
been developed to tackle this issue: Secure Aggregation (Keith Bonawitz, Ivanov, et al. 2016) and
Differential Privacy (Kairouz, B. McMahan, et al. 2021). These techniques provide mathematical
guarantees of privacy. Although our study does not make a contribution to the field of FL privacy, all
the methods we examine in this work are compatible with privacy-preserving techniques.

Federated Averaging (FedAvg) is the most widely used algorithm in the field of Federated
Learning (B. McMahan et al. 2017). FedAvg has two significant contributions to the FL field:
client sub-sampling and the importance of local steps. At each step t of training, the central
server selects a subset St of s clients for a training task. The population of devices may contain
hundreds of millions of devices. However, in B. McMahan et al. 2017, the authors observed that
choosing around s = 100 clients at every training step produces results comparable to choosing
all n clients all the time. FedAvg shows that we can gain communication efficiency and reduce
the number of training rounds if each client performs multiple local steps of Stochastic Gradient
Descent (SGD). Specifically, each client will receive a model weight from the server and update
it K times (perform K local steps):wt,0 = wt

wt,q = wt,q−1 − η∇̃f (wt,q−1) ∀q ∈ [1,K],
(1.16)

and then transmits the total update wt,K − wt,0 to the server. More details can be found in
Algorithm 1. The update zit,K = wt −wit,K is no longer a gradient. However, the intuition behind
FedAvg suggests that zit,K points in a direction that will reduce the loss fi . To incorporate
information from higher-order derivatives of fi , multiple local steps are taken. For this reason,
zit,K is called a pseudo-gradient. Several papers have validated the empirical improvement
obtained by using multiple local steps (Karimireddy, Kale, et al. 2020; B. McMahan et al. 2017; J.
Nguyen et al. 2022). Moreover, some works have shown theoretically that adding local steps can
reduce the number of communication rounds (Karimireddy, Kale, et al. 2020; Woodworth et al.
2020). However, the same work also demonstrates settings in which local steps actually harm
performance (Woodworth et al. 2020). The problem of client-drift arises when clients perform
local steps. Each client optimizes its own loss function fi , which may differ significantly from the
global loss f . The problem can be illustrated by an example where each client performs a very
large number K of local steps. In this case, for adequate learning rates, the individual models
would converge locally to the minimizers wi∗. However, the landscapes of the loss functions (fi)
can be non-convex, and the average of optima ( 1

s

∑
iw

i
∗) is not necessarily the optimum of the

average. In fact, such average of optima may correspond to a weight vector w that results in a
very bad value for the loss function f . To overcome this issue, the learning rates η that allow
FedAvg to converge to a global optimum must be tuned together with the number of local steps
K . The theoretical analysis in several works (Karimireddy, Kale, et al. 2020; J. Nguyen et al.
2022) requires that the learning rate η decreases on the same speed as 1

K .



20 CHAPTER 1. Introduction

Algorithme 1 : FedAvg over T iterations.

Input : Number of steps T , LR η, Selection Size s, Maximum local steps K ;
/* At the Central Server */

1 Initialize
2 Initialize parameters w0;
3 end
4 for t = 1, . . . ,T do
5 Generate set St of s clients ;
6 for all clients i ∈ St do
7 Server sends wt to client i;
8 Server receives update zit,K from client i;
9 end

10 Update central server model wt← wt−1 −
η
|St |

∑
i∈St z

i
t,K ;

11 end
/* At Client i */

12 Initialize
13 Client receives wt and K from the Server;
14 Set wit,0 = wt ;q = 0;
15 end
16 for q = 1, . . . ,K do
17 Compute local stochastic gradient g̃ i at wit,q−1;

18 Update local model wit,q← wit,q − ηg̃ i ;
19 end
20 Send zit,K := wt −wit,K to the server;

1.4.2 Asynchronous Federated Learning

A significant advantage of FL is the substantial number of devices collaborating to train a shared
model. As such, the development of scalable FL algorithms is a critical open issue. When
the number of devices increases, several problems arise, including synchronization issues and
device heterogeneity. In Section 1.4.1, client updates are synchronized, meaning that all clients
commence their local iterations on the same model and collectively contribute to the update
of the central server (CS). However, it is crucial to ensure that the FL training process does
not negatively impact the users’ experience when utilizing their devices. Asynchronous FL is
necessary to address device availability and heterogeneity concerns, allowing for a more seamless
and efficient training process.

Federated learning (FL) algorithms require significant computational power and memory,
and the transmission of parameters between clients and server necessitates network stability
and a substantial amount of data exchange. To address these issues, the FL protocol must adhere
to certain requirements when conducting training on a client device. The device must be idle
to avoid negatively impacting the user experience, connected to a power source due to the
energy consumption of training, and connected to an unmetered network. However, any of
these conditions may change while the client is performing a training task, which could cause
the task to be abandoned. Consequently, it is imperative to develop fault-tolerant FL protocols
that can account for potential changes in these conditions. In large-scale applications of FL,
devices with varying computing capacities will participate in the training process, and faster
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clients will finish their training tasks in a shorter time-frame than slower clients. In synchronous
settings, the time taken for each training round will be determined by the slowest client, leading
to waiting times that are undesirable. This waiting can slow training by a factor of 10: also know
as the straggler problem in the FL literature. One common solution to this issue is over-sampling,
where the server selects a larger number of clients for training and subsequently drops any
clients that take too long to respond. However, this approach has a drawback in that slow
clients will be less relevant in the training process. To address this issue, an asynchronous FL
protocol was proposed in Xie, Koyejo, and I. Gupta 2019 that does not require the waiting times
of synchronous protocols.

In Section 1.4.1, we discussed the effects of data heterogeneity on the learning process.
However, a significant challenge arises when data and device heterogeneity occur simultaneously.
Devices that are more frequently available or update quickly will contribute more to the training
process. The capabilities of a device can be complexly correlated with the data present in the
device. For instance, network reliability may vary in different geographical regions, which can
affect the availability of data. This correlation between data availability and device capability can
lead to bias in the trained model towards clients who contributed more to the training process.
A study by Huba et al. 2022 demonstrated that the shared model performs better for clients who
contributed more to training. However, in fairness-critical applications, it is unacceptable for
the trained model to favor one subset of clients over another. Therefore, it is essential to develop
FL algorithms that consider fairness and are resilient to non-iid data and device heterogeneity.
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Chapter2
An annealing process to obtain QNN

We present in this chapter our first contribution, which deals with training artificial neural
networks with weights represented with few bits. This led to the following publication (Leconte,
Schechtman, and Moulines 2023) in an international conference:

Leconte Louis, Sholom Schechtman, and Eric Moulines (2023). “AskewSGD: an annealed
interval-constrained optimisation method to train quantized neural networks”. In: International

Conference on Artificial Intelligence and Statistics. PMLR, pp. 3644–3663.

In this chapter, the weights w of the NN are represented with few bits only at the end of the
training process, i.e. for the inference phase. During the training steps (see Section 1.2.1 for
gradient descent references), the weights are represented in full-precision, and gently pushed
towards quantization values.

23
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2.1 Introduction

The use of deep neural networks (DNNs) on computing hardware such as mobile and IoT devices
with limited computational and memory resources is becoming increasingly important. This
has led to a growing area of research focused on reducing the model size and inference time
of DNNs; in this area, the overall goal is to keep the loss of accuracy below an acceptable
level compared to “full-precision” implementations (i.e.16 or 32 bits, and no reduction on
the architecture). These methods include, for example, model pruning, neural architecture
search, novel efficient architecture design, and low-rank decomposition. In this work, we focus
on network quantization, where weights and activations are quantized to lower bit widths,
allowing for efficient fixed-point inference and reduced memory bandwidth usage; see, for
example, Courbariaux, Bengio, and David 2015; Jacob et al. 2018; Darabi et al. 2018; Choukroun
et al. 2019; Lei Deng et al. 2020; Qin et al. 2020; Bhalgat et al. 2020; Chmiel et al. 2021 and
references therein. Quantized neural networks (QNNs) have attracted many research efforts.
Nevertheless, the challenge of closing the accuracy gap between full-precision and quantized
networks remains open, especially for extremely low-precision arithmetics (e.g. binary). The
task of learning a quantized neural network (QNN) can be formulated as minimising the training
loss with quantization constraints on the weights, i.e.,

min
w∈Q

f (w) , f (w) = E(x,y)∼Ddata [ℓ(nn(x,w), y)], (2.1)

where Q ⊂ Rd is the set of quantization levels, d is the number of parameters (network weights
and biases), ℓ is the training loss (e.g. the cross-entropy or square loss), nn(x,w) is the DNN
prediction function, Ddata is the training distribution. The quantization constraints in the above
program make it an extremely difficult task: the underlying optimization problem is non-convex,
non-differentiable, and combinatorial in nature. Optimization of smooth functions of integer
valued variables (and even quadratic ones like the max-cut problem in graph theory) is known
to be NP-hard (Garey and D. S. Johnson 1980). The challenge is to find algorithms that can
produce a sensible approximate solution with a manageable computational effort. Inspired by
mixed-integer nonlinear programming (MINLP) problems, several approaches using geometric,
analytic, and algebraic techniques have been proposed to transform the discrete problem into a
continuous problem. Examples include the use of global or concave optimization formulations,
semidefinite programming, and spectral theory (see e.g. Mitchell, Pardalos, and Resende 1998;
Bussieck, Drud, and Meeraus 2003; Horst and Tuy 2013; Beck and Teboulle 2000; Murray and
Ng 2010). However, these types of approaches are doomed to fail in the NN context because the
number of parameters is several orders of magnitude larger than for classical MINLP problems.

For large training data sets and number of variables d, stochastic gradient-based (first-order)
methods for finding minimizers of (2.1) are often the only manageable option (see Section 1.2.1).
Several methods have been proposed which transform the loss function (2.1) into a differentiable
surrogate (with possibly an additional penalty term) to “favor” quantized solutions. The general
approach is to introduce real-valued “latent” weights w ∈ Rd from which the quantized weights
are generated; in the binary case, it is classical to use the sign(·) function or a differentiable
surrogate thereof. The simplest method, called BinaryConnect (BC) (Courbariaux, Bengio, and
David 2015), is based on straight-through estimators (STE) that ignores the sign conversion
in computing the gradient with respect to the latent weights w. BC reaches state-of the art
performance on elementary classification tasks and is still a competitive baseline method for
more sophisticated problems. Extensions of STE has also been used for more general QNN by
Chmiel et al. 2021; Sun, N. Wang, C.-Y. Chen, Ni, Agrawal, Cui, Venkataramani, El Maghraoui,
et al. 2020; Choi et al. 2018; Z. Wang et al. 2019.
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However, despite its success in NN inference, the STE method does not rely on solid theoreti-
cal groundings and may be shown to fail on simple low-dimensional benchmarks - even with
convex objective functions; see Bai, Y.-X. Wang, and Liberty 2018. We discuss this method and
its recent improvements in the paragraph on related works.

2.2 Related works

We focus on BNN and QNN that replace floating-point multiplication and addition operations
with efficient fixed-point arithmetic. We do not consider algorithms that use low-bit computa-
tions at the learning stage; see Sakr and Shanbhag 2018; J. Chen et al. 2020. Given the abundance
of works, we focus mostly on methods used in our benchmarks.

Binary NN: The first attempt to train BNN is BinaryConnect (BC) (Courbariaux, Bengio, and
David 2015; Hubara et al. 2016) which is the first algorithm to implement Quantization Aware
Training (QAT); see (Gholami et al. 2021; W. Zhao et al. 2020; Y. Guo 2018; Nagel et al. 2021)
and the references therein. BC uses full precision latent weights. On the forward path, the latent
weights are binarized. On the backward path, classical backpropagation is applied to update
the latent weights, using a differentiable proxy of the binarization function in the gradient
calculation. The most common implementation uses the identity proxy, resulting in the straight-
through estimator (STE). Although the neural network parameters are highly compressed (and
quantization errors can be large), the BC-STE estimator and its numerous recent improvements
perform satisfactorily in many benchmarks and have become a de facto standard; see Hu, P.
Wang, and Cheng 2018; Faraone et al. 2018; H. Le et al. 2021; Anderson and Berg 2018. Some
original methods bypass the use of latent weights. Helwegen et al. 2019 updates binary weights
directly with a flipping rule based on an exponential moving average of gradients computed
by backpropagation. Such methods have recently been successfully used in Laydevant et al.
2021 with equilibrium propagation instead of backpropagation. Although these methods give
reasonable results on standard benchmarks, they do not have strong theoretical guarantees. It is
easy to find counterexamples where BinaryConnect or BinaryRelax (phase 2 in Yin et al. 2018)
do not converge.

ProxQuant (PQ) (Bai, Y.-X. Wang, and Liberty 2018), Proximal Mean-Field (PMF) (Ajanthan,
Dokania, et al. 2019), Mirror Descent (MD) (Ajanthan, K. Gupta, et al. 2021), and Rotated
Binary Neural Networks (RBNN) (M. Lin et al. 2020) formulate the task of training BNNs as
a constrained optimization problem and discuss different methods to generate binary weights
from real-valued latent weights. All of these methods have in common that they use gradual
annealing of the conversion mapping, in the sense that, unlike BC and its variants, the latent
weights are not projected onto a finite set of quantization values in the forward path. Instead, a
force is applied to gradually push the latent weights to the quantization constraints, in a manner
reminiscent of homotopy methods for solving nonlinear systems or penalty barrier in nonlinear
optimization.

BNN as Variational Inference (VI): Training binary neural networks can also be approached
with VI; see among others Raiko et al. 2015; Peters and Welling 2018; Roth et al. 2019. Instead
of optimizing binary weights, the parameters of Bernoulli distributions are learned using the VI
Bayesian learning rule; see e.g. Khan and Rue 2021. Even if unbiased estimators of the ELBO
are available, classical methods like MuProp (Gu et al. 2016) or REINFORCE with variance-
reduction baselines (Andriy Mnih and Gregor 2014) have a prohibitively high variance. The
use of Gumbel-Softmax (GS) trick (Jang, Gu, and Poole 2016; Maddison, Mnih, and Teh 2017)
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has been advocated in Meng, Bachmann, and Khan 2020, but as noted in Shekhovtsov 2021,
Section 4 there is an issue in the implementation which paradoxically enables the training. The
connections between STE algorithms and their many variants - including MD - and VI methods
are further discussed in Shekhovtsov and Yanush 2021.

Quantized NN: The STE estimator is easily adapted to QNN by adding a projection step onto
the set of quantization levels in the forward pass (S. Zhou et al. 2016); see (Choi et al. 2018;
Sun, N. Wang, C.-Y. Chen, Ni, Agrawal, Cui, Venkataramani, El Maghraoui, et al. 2020; Chmiel
et al. 2021) and the references therein. To mitigate performance loss reported in early work from
S. Zhou et al. 2016, a number of attempts has been proposed. One possible way is to increase
the NN size (Zagoruyko and Komodakis 2016), or the number of channel for convolution layers
(A. Mishra, Nurvitadhi, et al. 2017; McDonnell 2018). Knowledge distillation has also been
considered with some success (A. Mishra and Marr 2017). A teacher network (typically very
large (Z. Liu, Shen, et al. 2020) and trained in full-precision) is employed to help the QNN
training (the student network).

In QNN, the choice of the quantizer and the normalization of the weights (at each layer)
play a key role. Many works have been devoted to the design of non-uniform or statistical
(distribution dependent) quantizers; see (Banner et al. 2018; Hou and Kwok 2018; Bhalgat et al.
2020; Liang et al. 2021; Fournarakis and Nagel 2021; A. Zhou et al. 2017; Y. Zhou et al. 2018)
and the references therein. Statistical quantizers are often more efficient, but they are more
complex to implement and often require fine tuning (Zhaoyang Zhang et al. 2021).

A number of works have considered formulating the quantization problem as an optimization
problem (H. Li et al. 2017; F. Li, B. Zhang, and B. Liu 2016; C. Zhu et al. 2016; Carreira-Perpinán
and Idelbayev 2017; Leng et al. 2018; Polino, Pascanu, and Alistarh 2018), but the proposed
methods rely on assumptions which may not hold for deep neural networks (Y. Guo 2018). In
Moons et al. 2017; T.-J. Yang, Y.-H. Chen, and Sze 2017; Esser et al. 2015, the QNN training is
tackled as an energy efficiency problem, whereas Gong et al. 2019 propose a Differentiable Soft
Quantization (DSQ) to efficiently train QNN.

Activation function Quantization: We have so far described the quantization of the network
weights. But an efficient implementation also requires the quantization of the activation func-
tions. For BNN, (M. Kim and Smaragdis 2016; Hubara et al. 2016; Rastegari et al. 2016) proposed
to use sign(·) function, but this approach significantly affects the performance. More complex
quantization schemes have been considered in Choi et al. 2018 alleviating performance degra-
dation. Hybrid formats FP8 (N. Wang et al. 2018) or INT8 (Wiedemann et al. 2020; Banner
et al. 2018) were successfully employed to achieve a low precision training. Recent works have
proposed to jointly optimize the quantization parameters (of weights and activations) and the
weights parameters. This task can be done by modifying the learning loss or by minimizing the
quantization error (C. Zhu et al. 2016; D. Zhang et al. 2018; Y. Li, Dong, and W. Wang 2019).

2.3 Algorithm derivation

In this section we first introduce the Muehlebach and Jordan 2021 (MJ) algorithm for smooth
constrained optimization, initially proposed in a convex setting. We describe the algorithm in
full generality and then show how to adapt the MJ algorithm to the QNN setting.
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The MJ algorithm Consider the following optimization problem:

min
w∈C

f (w), C = {w ∈ Rd : h(w) ≥ 0} , (2.2)

where f : Rd → R denotes the objective function, h : Rd → Rnh define the inequality constraints.
We assume that the feasible set C is non-empty and compact and that the functions f and h are
continuously differentiable. We stress that neither f nor C are assumed to be convex. Standard
solutions to find a local minimizer of (2.2) use either a projected gradient descent algorithm
or “non-linear” projection like mirror descent. However, C might have a complicated form, in
which case computing the projection on C might require to solve a non-trivial optimization
algorithm in itself (and may fail to be properly defined). The basic idea behind Muehlebach and
Jordan 2021’s proposal is to “skew” the search direction in order to force the algorithm to find a
minimizer of (2.2) without constraining the sequence (wk)k∈N to the feasible set. For any w ∈ Rd ,
define by I(w) the set of active constraints

I(w) = {i ∈ {1, . . . ,nh},hi(w) ≤ 0} . (2.3)

Under mild assumptions (basically, Muehlebach and Jordan 2021 assume that Mangasarian
Fromowitz constraint qualification conditions hold everywhere and not on the feasible set only)
the tangent and normal cones of C at w ∈ C are given by:

TC(w) = {v ∈ Rd ,∇hi(w)⊤v ≥ 0, for all i ∈ I(w)} , (2.4)

NC(w) = {−
∑

i∈I(w)
λi∇hi(w),λi ∈ R+} . (2.5)

Moreover, the Karush-Kuhn-Tucker (KKT) conditions hold Borwein and Lewis 2006, Theo-
rem 7.2.9: if w∗ is a local minimizer of (2.2), then w∗ ∈ Z, where

Z := {w ∈ C : 0 ∈ −∇f (w)−NC(w)} . (2.6)

The MJ algorithm (Muehlebach and Jordan 2021) generates iterates in Rd as follows:wt+1 = wt + ηtvt
vt = argminv∈Vα(wt)

(1/2)∥v +∇f (wt)∥2 ,
(2.7)

where (ηt)t>0 is a non-increasing sequence of positive step sizes, α > 0 is an hyper-parameter,
and the sets Vα(w) are defined as:

Vα(w) = {v ∈ Rd : ∇hi(w)⊤v ≥ −αhi(w) for all i ∈ I(w)} . (2.8)

If w ∈ C and i ∈ I(w), then hi(w) = 0 and thus Vα(w) reduces to TC(w). The set Vα(w) can be
considered as an extension of the tangent cone “outside” of the feasible set. Note also that Vα(w),
for all w ∈ Rd , is a convex polyhedron whose construction includes only the active constraints.

By construction, whenever hi(wt) ≤ 0, ∇hi(wt)⊤vt ≥ −αhi(wt). Thus, in Equation (2.7), the
velocity vt is chosen to match the unconstrained gradient flow −∇f (wt) as closely as possible,
subject to the velocity constraint vt ∈ Vα(wt) (this is illustrated on a simple example in Figure 2.1,
for different values of α > 0). A striking difference from the classical projected gradient algorithm
is that the MJ approach is based on a local approximation of the feasible set. This local approxi-
mation includes only the active constraints and is guaranteed to be a convex polyhedron even
if the underlying feasible set is not convex. In “classical” constrained optimization algorithms,
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Figure 2.1: The vector field of velocities for ϵ = 0.3, and α = 0.1 (left panel) or α = 1.0 (right panel).
Here, f (w1,w2) = ((w1 − 0.5)2 + (w2 − 0.5)2)/3 and h(w1,w2)⊤ = (ϵ − ((w1)2 − 1)2,ϵ − ((w2)2 − 1)2).
The border of the set of constraints is shown in blue, and the minimizer of the constrained and
unconstrained optimization problems are shown with blue and green dots, respectively.

constraints are typically handled by direct reference to positions, meaning that the iterates wt ,
for all t ≥ 0, must lie in the constraint set C.

AskewSGD description In Muehlebach and Jordan 2021 the convergence of the MJ algorithm
was proven under the condition that the function f and the set C are convex. We now adapt this
algorithm to the QNN problem, removing the requirement that f ,C are convex and, furthermore,
replacing ∇f by a mini-batch stochastic gradient ∇̃f .

We consider f , the training loss, written as f (w) = 1
|D|

∑|D|
j=1 fj(w), where |D| is the size of the

training set, and fj is the loss associated with the j-th observation.

We relax the quantization constraints wi ∈ Q, i ∈ {1, . . . ,d}, to a sequence of “smoothed”
interval constraints. The set of quantization values Q is defined coordinate wise: {ci1, . . . , c

i
Mi },

where M i is the number of quantization values for a given coordinate i. We assume for full
generality a different scalar quantizer for each coefficient; we typically use different scalar
quantizers for each layer of the NN (but the same quantizer for the coefficients in the same layer).
For ω ∈ R such that ω ∈ [ci1, c

i
Mi ], we define

φi(ω) = (ω − ci
Qi (ω))

2(ω − ci
Qi (ω)+1)2,

where Qi(ω) is the unique index satisfying ci
Qi (ω)

≤ ω < ci
Qi (ω)+1

. If ω < ci1 we define φi(ω) =

(ω − ci1)2, and if ω > ci
Mi we define φi(ω) = (ω − ci

Mi )
2. For any ϵ ∈ [0,1] and ω ∈ R, define

ψiϵ(ω) := ϵ −φi(ω) and consider the feasible set

Cϵ = {w ∈ Rd : ∀ i ∈ {1, . . . ,d},hϵ,i(w) := ψiϵ(wi) ≥ 0} . (2.9)

For each ϵ ∈ (0,1), we consider the constrained optimization problem Pϵ : minw∈Cϵ f (w). It is
easily seen that

⋂
ϵ>0Cϵ = Q, recovering the constraints of the QNN problem. We therefore

define a decreasing sequence (ϵn)n≥0 of numbers in [0,1] such that limn→∞ ϵn = 0 and solve
(approximately) the sequence of problems (Pϵn )n∈N.

Here we must notice that the set Vα(w) is empty if and only if there is 1 ≤ i ≤ d such that
wi = (cQi (ω) + cQi (ω)+1)/2. For such a point, there is no “best” direction, so we chose it arbitrarily
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by specifying that the i-th coordinate must go to the right (see the following clipping convention).
A symmetric choice prescribing a left direction is also possible. Moreover, since the set of such w
is of Lebesgue-measure zero, we can hope that we will never stumble upon such a point (this
is further guaranteed by the fact that the iterates converge to Cϵ, implying that such points
asymptotically never occur).

We denote by Zϵ := {w ∈ Cϵ : 0 ∈ −∇f (w)−NCϵ (w)}, the set of KKT points of Pϵ. Notice that
any element of NCϵ (w) can be written as (−λ1ψ′ϵ(w1), . . . ,−λdψ′ϵ(wd)), with λi ≥ 0 and λi , 0 only
if ψϵ(wi) = 0. Therefore, w ∈ Zϵ if and only if for every i ∈ {1, . . . ,d},∇if (w) = 0 if ψϵ(wi) > 0

sign(∇if (w)) = sign(ψ′ϵ(wi)) if ψϵ(wi) = 0 ,
(2.10)

where for i ∈ {1, . . . ,d}, ∇if (w) is the partial derivative of f w.r.t. wi . In this setting, the set of
active constraints and Vα can be written down as:Iϵ(w) = {i ∈ {1, . . . ,d} : ψϵ(wi) ≤ 0} ,

Vϵ,α(w) = {v ∈ Rd : viψ′ϵ(wi) ≥ −αψϵ(wi) for i ∈ Iϵ(w)} .
(2.11)

Let w be such that wi , (cQi (ω) + cQi (ω)+1)/2 for all i ∈ {1, . . . ,d}. For u ∈ Rd , denote by

sϵ,α(u,w) = argmin
v∈Vϵ,α(w)

1/2∥v +u∥2 . (2.12)

This problem admits an explicit solution: [sϵ,α(u,w)]i = −ui if ψϵ(wi) > 0 or −ψ′ϵ(wi)ui ≥
−αψϵ(wi) ≥ 0 and [sϵ,α(u,w)]i = −αψϵ(wi)/ψ′ϵ(wi), otherwise. Note that when wi → (cQi (ω) +
cQi (ω)+1)/2, the quantity ψ′ϵ(w

i) converges to zero, and thus [sϵ,α(u,w)]i might diverge to in-
finity. To alleviate this problem, we furthermore clip the update. For (a,b) ∈ R ×R+, define
clip(a,b) equal to a if |a| ≤ b and to b sign(a) otherwise. Choose Vϵ,c > 0 and let scϵ,α be defined for
i ∈ {1, . . . ,d}, wi , (cQi (ω) + cQi (ω)+1)/2, by:

[scϵ,α(u,w)]i =

−ui if ψϵ(wi) > 0 or −ψ′ϵ(wi)ui ≥ −αψϵ(wi) ≥ 0;
clip(−αψϵ(wi)/ψ′ϵ(wi),Vϵ,c) otherwise .

(2.13)

We set by convention [scϵ,α(u,w)]i = Vϵ,c if wi = (cQi (ω) + cQi (ω)+1)/2. For given α,ϵ, AskewSGD is
summarized in Algorithm 2. Under mild assumptions, we establish the convergence of AskewSGD.

Algorithme 2 : AskewSGD algorithm

Data : sequence of step sizes (ηt); size of the mini-batch b ≤ |D|; w0 ∈ Rd
1 for t=1, . . . , T do
2 Sample a minibatch of b observations {j1, . . . jb} in {1, . . . , |D|};
3 Compute the Stochastic Gradient ∇̃f (wt) = 1/b

∑b
i=1∇fji (wt);

4 Compute the update direction vt = scϵ,α(∇̃f (wt),wt);
5 Update the parameter wt+1 = wt + ηtvt .
6 end

Consider the following assumptions.
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A5. For j ∈ {1, . . . , |D|}, the function fj is d-times continuously differentiable and has Lfj -Lipschitz
continuous gradients.

A6. The stepsizes (ηt)t≥0 are positive,
∑∞
j=0ηt =∞ and

∑∞
j=0η

2
t <∞.

Notice that A6 holds for (ηt) of the form (1/tδ), with δ ∈ (1/2,1]. A5 will ensure the stability
of AskewSGD (i.e. the iterates are bounded with probability one). Moreover, A5 implies that
f (Zϵ) is of empty interior, as a consequence of the Sard’s theorem (see Lemma 22).

Theorem 5. Assume A5-A6 and 0 < ϵ ≤ inf1≤i≤d inf1≤j≤Mi |cij − c
i
j+1|

4/16, where {cij } are the quanti-
zation levels. Then, f (wt) converges and limt→∞d(wt ,Zϵ) = 0 almost surely.

Note that the condition on ϵ ensures that the projection of Cϵ onto the i-th coordinate is a
disconnected set of M i intervals. The proof is based on a general convergence result of Davis
et al. 2020, on asymptotic behavior of stochastic approximation of differential inclusion (DI). In
our particular case, the corresponding DI is ẏ(t) ∈ −∇f (y(t))−NCϵ (y(t)) (we might notice here
that this DI is also the continuous-time limit of the projected gradient method). Definitions and
important results on DIs and their stochastic approximations can be found in Appendix A.1.1.

The proof of Theorem 5 is done in several steps (see Appendix A.1 for complete derivations).
First we prove that almost surely, the sequence of iterates (wt) converges to Cϵ (see Lemma 23).
Then we show that an update step of AskewSGD can be written as wt+1 = wt − η∇f (wt) + ηtρt+1 −
ηtut , where ρt+1 = ∇f (wt) − ∇̃f (wt) and ut approximates an element of NC(wt). We show the
convergence of

∑t
j=1ηjρj+1 in Lemma 24, and complete the proof by applying Theorem 20,

which is adapted from Davis et al. 2020, Theorem 3.2.

Forward pass quantization For completeness, we finally describe the quantization of the
activation function when AskewSGD is used to train a deep NN. During the forward pass, we
employ a round-to-nearest approach INT4 quantization methods for the activations, taken from
Chmiel et al. 2021. We make use of Statistics Aware Weight Binning (SAWB) of (Choi et al.
2018), which finds the optimal scaling factor that minimizes the quantization error based on
the statistical characteristics of activation distribution. As emphasized by (Chmiel et al. 2021;
Choi et al. 2018), non-linearities of loss and activation functions make unnecessary the use of
an unbiased scalar quantizer. After scaling, we use a uniform quantization (e.g., INT4): the
set of quantization values Q is defined coordinate wise: {ci1, . . . , c

i
Mi }. The quantization values

{ci1, . . . , c
i
Mi } are the integer from the quantization interval (e.g., {−8,−7, . . . ,8} for INT4). After

quantization, both the weights and the activation are rescaled using the scaling factor calculated
layerwise.

2.4 Experiments

We evaluate the performance of AskewSGD with weights quantized with 1, 2, and 4 bits. While
BNN performs well on some simple benchmarks, it lags significantly behind full precision NN
on more demanding tasks. QNN with higher precision and quantization of the activations offers
a trade-off between performance and computation efficiency. For simplicity, we refer to [Wx/Ay]
as a neural architecture with x-bit precision weights and y-bit precision activations. Details
of the implementations and complementary experiments are reported in Appendix A.2. In all
experiments, ϵ is annealed throughout the training process during successive episodes. Our
experiments show that the initial value for ϵ is not critical. We use a logarithmic schedule. Given
a fixed ϵ, we run the algorithm until the test error does not improve, and then reduce it by using
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the last iterates as the starting point for the next round. For example, in the experiments of
Table 2.2 and Table 2.1, the initial value for ϵ is 1, and we reduce it as K t with K = 0.88. We can
set K to different values ( 1

2 , 0.8 were tested) as long as K < 1.

2.4.1 1-bit quantization

We evaluate the performance of AskewSGD [W1/A32] on four tasks: a convex problem, a 2D toy
example and two classical image classification benchmarks.

Convex toy example We compare AskewSGD , BinaryConnect (Courbariaux, Bengio, and David
2015) and AdaSTE (H. Le et al. 2021) in a logistic regression problem. We generate |D| = 6000
feature vectors {xk}

|D|
k=1 of dimension d = 10, drawn independently from the uniform distribution

in [−1,1]. We randomly choose an optimal vector w∗ on the vertices of the hypercube and
generate the labels as follows: yk ∼ Bernoulli({1 + e−x

⊤
k w∗ }−1). For completeness, we study how a

SGD converges with full precision to the optimal point w∗ of this convex problem. All methods
are trained for 25 epochs using the SGD optimizer. The learning rate is set to 1 and the gradients
are computed on random batches of 1000 samples. For AdaSTE, we have used the code 1 with the
hyperparameters specified in the package for annealing. AskewSGD performance is on par with
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Figure 2.2: Training losses for the logistic regression problem with batches of size 1000. Bina-
ryConnect (green), AskewSGD (blue), full Precision (red), AdaSTE (purple) methods. The x-axis
represents the iteration index. Red points are made artificially bigger to help visualization.

full precision method, while the STE variants all suffer from strong oscillations (see Shekhovtsov
2021; Shekhovtsov and Yanush 2021; Bai, Y.-X. Wang, and Liberty 2018). Figure 2.2 illustrates
the effects of such oscillations on the convergence . In all settings, AdaSTE converges faster than
BC, but still all STE variants exhibit a larger loss compared to other methods. Additional results
are reported in Appendix A.2.

Non-convex toy example We consider the binary classification problem on “2 moons dataset”
presented in Meng, Bachmann, and Khan 2020. The training dataset consists of 2000 samples
(split into 2 moon-like clusters in 2 dimensions) and 200 test samples; see Appendix A.2. We
train a BNN with 9 neurons. In this low-dimensional environment, we can enumerate all
29 = 512 possible binary configurations and select the best one(s). Our method is compared
with 4 different approaches: a full precision NN, BinaryConnect (Courbariaux, Bengio, and
David 2015), AdaSTE (H. Le et al. 2021), and exhaustive search. All methods are trained for 50

1https://github.com/intellhave/AdaSTE
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epochs with logistic loss. The full precision NN is trained using the Adam optimizer (Kingma
and J. Ba 2014) with default hyperparameters, a learning rate of 0.1, and a batch of size 100. The
BinaryConnect approach is trained using the Adam optimizer with default hyperparameters,
a learning rate of 1, and a batch of size 100. The AdaSTE method is implemented using a
learning rate of 1. Our method uses the same parameters as the STE method, and we set α
to 4. For a single run, we plotted the training loss in Figure 2.3. For a fair comparison, in
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Figure 2.3: Training losses for the toy non-convex problem with batches of size 100. Bina-
ryConnect (green), AskewSGD (blue), full Precision (red), AdaSTE (purple) methods. The x-axis
represents the iteration index. Red points are made artificially bigger to help visualization

Table A.1 in Appendix A.2 we report the performance averaged on 50 random experiments of
the various methods on the test set (full precision reaches a 2.045± 0.005 loss, when exhaustive
search presents a 2.1 loss, AskewSGD reaches 2.11± 0.01, AdaSTE and STE reach 2.24± 0.10 and
2.32± 0.11 respectively).

The exhaustive search shows that different configurations lead to near-optimal performance
(see Figure A.3 in Appendix A.2). Here we chose the configuration that achieves the lowest loss
on the test set. AskewSGD outperforms AdaSTE and BC.

Computer vision tasks In this section, we benchmark AskewSGD with BC (Courbariaux, Bengio,
and David 2015; Hubara et al. 2016), Mirror Descent (Ajanthan, K. Gupta, et al. 2021), and
ProxQuant (Bai, Y.-X. Wang, and Liberty 2018) on classical computer vision datasets. To avoid
overloading the figures, the AdaSTE results are reported separately in Appendix A.2. We also
report performance with a standard full precision NN and a full precision NN projected onto
the hypersphere. We compare the different methods using the same NN architecture. We do
not add bias on any neuron. We introduce batch normalisation (without learning scale and
bias parameters) after each layer. We emphasise that our method is generic and not specific
to the classical ConvNet architecture. We have also obtained SOTA results for large ResNet
architectures (see Table 2.3).

We use the standard data augmentations and normalizations for all the methods. AskewSGD
is implemented in Pytorch, and the experiments are run on a NVIDIA Tesla-P100 GPU. Standard
multiclass cross-entropy loss is used for all experiments unless otherwise stated. We perform
cross-validation of the hyperparameters, such as the learning rate, the tradeoff between con-
straints α, the rate of increase of the annealing hyperparameter, and their respective schedules.
The search space for tuning the hyperparameters and the final hyperparameters can be found
in Appendix A.2. All models are fine-tuned for 100 epochs using the Adam (Kingma and J. Ba
2014) optimizer with dynamics of 0.9 and 0.999, and batch of size 100.



2.4. Experiments 33

The NN with full precision is trained with an initial learning rate of 0.08. The projected full
precision NN uses a projected gradient algorithm. The same hyperparameters as the “plain”
algorithm are used, except that a deterministic projection onto the hypersphere is performed
for each iteration wk+1 = Π(wk − ηk∇̃f (wk)). For BinaryConnect, we use the method described
in Courbariaux, Bengio, and David 2015. For Mirror Descent (MD), we use the code2 from
Ajanthan, K. Gupta, et al. 2021 and implement the version tanh(·) (without annealing and with
α = 0.01 and µ = 100 when training). ProxQuant was run with the parameters specified in Bai,
Y.-X. Wang, and Liberty 2018. Note ProxQuant does not initially quantize the fully-connected
layer, and add full precision biases. For fair comparison we have tested ProxQuant with all
layers binarized. The AskewSGD method is described in Algorithm 2. Multiple values for α in
[0.1,5] are considered. The precision threshold ϵ is decreased from epoch to epoch: it is set to 1
at the beginning and then exponentially annealed to .88t in the last 50 epochs, where t is the
epoch. After the last step, all weights are within an interval of length ϵfinal = 0.01 of {−1,+1}.

For AskewSGD we apply the function sign(·) to our NN before evaluating it on the test set.
For a fair comparison, each method was randomly initialized and independently executed 5
times. An intensive learning rate search was also performed independently for each method.
The learning rate at epochs [20,40] is divided by 2 for all methods.

Most neural networks use the inference accuracy of image classification as an evaluation
metric. We first compared the training/testing accuracy with the CIFAR-10 dataset (Krizhevsky,
G. Hinton, et al. 2009), which consists of 50000 training images and 10000 test images (in 10
classes). Figure 2.4 illustrates the distribution of the weights of the first convolutional layer
(the behavior is similar for other layers) at epochs 20, 39, 55, and 99. We have also tested
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Figure 2.4: Histogram of weights during the training phase of our AskewSGD [W1/A32] on
CIFAR-10.

Table 2.1: Test accuracy (average over 5 random experiments) for AskewSGD [W1/A32] at several
epochs.

Epochs ϵ CIFAR-10 TinyImageNet

50 0.88 75.77 8.74
65 0.15 88.37 31.97
90 0.006 88.84 46.96

AskewSGD [W1/A32] on the TinyImageNet dataset (Y. Le and X. Yang 2015) with a ResNet-18.
TinyImageNet has 200 classes and each class has 500 (RGB) training images, 50 validation
images, and 50 test images. To train ResNet-18 we follow the common practices used for training
NNs: we resize the input images to 64× 64 and then randomly flip them horizontally during
training. During testing we center-crop them to the corresponding sizes. In Figure 2.5, the loss
increases slightly in the final steps as the constraints become more stringent. However, this

2https://github.com/kartikgupta-at-anu/md-bnn
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Figure 2.5: Training Loss of AskewSGD [W1/A32] on CIFAR-10 (left) and TinyImageNet (right).
The x-axis represents the batch iterations and green vertical lines correspond to epochs
[50,65,90].

increase in training loss remains moderate and the final performance in both the training set
and the test set is the best among all methods. Some test accuracies are presented in Table 2.1
at several epochs (identified with green lines in Figure 2.5) with the corresponding precision
ϵ. The best test classification accuracies of the binary networks obtained with each method are
listed in Table2.2. For reproducibility none of the concurrent results are reported from existing
papers, but each approach has been independently rerun from the available codes. Compared
to other binarization algorithms, our method consistently yields better or equivalent results,
while narrowing the performance gap between binary networks and floating-point counterparts
on multiple datasets to an acceptable level. The performance of the projected gradient method
highlights the strength of our method: we do not simply project the iterates on the nearest
constraint set, but progressively push the iterates towards a smoothed version of the constraints
(see Section 2.3), which leads to better results.

Table 2.2: Best Test accuracy (average and variance over 5 random experiments) after 100
training epochs.

Method CIFAR-10 TinyImageNet

Full-precision [W32/A32] 89.46 ± 0.07 56.46 ± 0.46

BinaryConnect [W1/A32] 88.33 ± 0.29 42.35 ± 0.33
MD [W1/A32] 88.13 ± 0.25 34.89 ± 0.36

ProxQuant [W1/A32] 88.22 ± 0.28 48.79 ± 0.32

Projected gradient [W1/A32] 71.34 ± 0.46 11.78 ± 0.67
AskewSGD [W1/A32] 88.98 ± 0.35 50.23 ± 0.37

2.4.2 Low-bit quantization

We consider now low-bit weight quantization and activation quantization. To fully benefit from
low precision arithmetic, one should also tackle the problem of gradient quantization (Chmiel
et al. 2021; Sun, N. Wang, C.-Y. Chen, Ni, Agrawal, Cui, Venkataramani, El Maghraoui, et al.
2020) and accumulation. We keep the last fully connected layer in full-precision, following Z.
Liu, Shen, et al. 2020; Chmiel et al. 2021. We evaluate the performance of AskewSGD [W1/A32],
AskewSGD [W2/A4], and AskewSGD [W4/A4] on TinyImageNet and ImageNet (Russakovsky
et al. 2015) datasets with a ResNet-18 network. For AskewSGD we project NN weights onto
the set of quantization values before evaluating it on the test set. For ImageNet, we keep the
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first convolution layer in full-precision. We use the same pre-processing (centering and data
normalization) for all the methods: we resize the input images to 256× 256 and then randomly
crop them to 224× 224 while centering them to the appropriate sizes during training. Standard
multiclass cross entropy loss is used. All models are fine-tuned for 200 epochs using the Adam
(Kingma and J. Ba 2014) optimizer with dynamics of 0.9 and 0.999 and a batch of size 512. All
methods are trained with an initial learning rate of 0.06 for TinyImagenet and 0.1 for ImageNet.
The same hyperparameters are used as in the previous section for TinyImageNet. For ImageNet,
the learning rate at epochs [30,60,90] is divided by 10 for all methods. We have run the code3

from LUQ and adapted it to TinyImageNet dataset. For a fair comparison we compute neural
gradients in full precision. The results for the method Ultra-low (Sun, N. Wang, C.-Y. Chen, Ni,
Agrawal, Cui, Venkataramani, El Maghraoui, et al. 2020) are taken from Chmiel et al. 2021.

We decided not to include the regularisation-based binarization approach (Ding et al. 2019),
which addresses the activation binarization problem, in our benchmark. We have also not
included in our benchmark improvements of BC methods which have been proposed in (S. Zhou
et al. 2016; Z. Liu, B. Wu, et al. 2018; Bethge et al. 2020; Rastegari et al. 2016; Martinez et al.
2019); these methods are all based on the STE (Courbariaux, Bengio, and David 2015) optimizer
to update quantized weights. These methods have been shown to be outperformed by AdaBin
(Tu et al. 2022) and ReacNet Z. Liu, Shen, et al. 2020. The latter are currently SOTA methods for
energy-friendly inference on the ImageNet dataset. Note that these binary approaches still have
a gap in terms of full precision performance, which needs to be addressed by modifying the NN
structure (Z. Liu, Shen, et al. 2020). For ReacNet and AdaBin, we have reported the best results
of Tu et al. 2022 for ResNet-18 on ImageNet.

Table 2.3: Best Test accuracy (single run for ImageNet due to longer training time) after 200
training epochs. * indicates the results are directly reported from existing literature.

Method TinyImageNet ImageNet

Full-precision [W32/A32] 56.46 ± 0.46 69.32

ReacNet [W1/A1] (2 steps) - 65.5*
AdaBin [W1/A1] (2 steps) - 66.4*

Ultra-low [W4/A4] - 68.27*
LUQ [W2/A4] 54.14 ± 0.42 -
LUQ [W4/A4] 55.69 ± 0.32 68.41

AskewSGD [W2/A4] 53.54 ± 0.28 66.45
AskewSGD [W4/A4] 55.85 ± 0.30 68.51

AskewSGD performs better than or on par with state of the art QNN methods and offers a
shorter gap to full precision performances compared with best BNNs.

2.5 Conclusion

In this chapter, we present AskewSGD a novel framework for QNN training based on an annealed
sequence of interval-constrained nonconvex optimization problems solved by an algorithm
inspired by Muehlebach and Jordan 2021. For each of these subproblems we give theoreti-
cal guarantees. AskewSGD outperforms or is on par with other QNN training methods on all
considered tasks.

3https://openreview.net/forum?id=clwYez4n8e8
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Chapter3
A heuristic to obtain BNN

In this second chapter dedicated to Quantized Neural Networks, we move the focus toward the
training of BNNs (Binary Neural Networks). In this chapter, part of the contributions are kept
private.

As a CIFRE PhD candidate, I was advised, and working with the “Intelligent Computing
and Communications” team at Huawei Technologies France. Under this context, a heuristic for
training BNNs was developed and presented in the patent V. M. Nguyen and Leconte 2022:

Nguyen Van Minh and Louis Leconte (2022). Apparatus and method for training binary deep
neural networks. url:https://patents.google.com/patent/WO2023217370A1/.

In this chapter, we explain how this method is applied to the training and fine-tuning of DNNs,
with energy efficiency constraints. This work is currently under review.
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3.1 Introduction

Running deep models, i.e., inference, requires considerable computational resources, it is yet the
tip of the iceberg. Deep model training is an iterative process involving abundant computation
and data for learning. It incurs storing multiple temporal variables and buffers for gradient
computation and parameter optimization. This intense process is further repeated for hyper-
parameter tuning, running for weeks or months on specialized equipment, resulting in another
order of magnitude of carbon footprint and computational resource requirement (Strubell,
Ganesh, and McCallum 2019).

The vast majority of works that target the resource constrained training bottleneck focus
on the number of arithmetic operations (García-Martín et al. 2019; Qin et al. 2020) rather than
the consumed energy/memory. However, it has been shown that OPs number is meaningless,
even harmful, because it does not map directly to actual system complexity. Instead, energy
and memory consumption are the consistent and efficient measures of computing hardware
(Sze et al. 2017; Sze et al. 2020; T.-J. Yang, Y.-H. Chen, Emer, et al. 2017; Strubell, Ganesh, and
McCallum 2019). In particular, data movement dominates computing in energy consumption
and is strictly tied to system architecture, memory hierarchy, and dataflow (Kwon et al. 2019;
Sim, S. Lee, and L.-S. Kim 2019; X. Yang et al. 2020; Y.-H. Chen et al. 2016). Therefore, design
effort subjected to reducing OPs alone is inefficient. Currently, the main approach to tackle
such bottleneck is quantization. It is becoming popular for LLMs (Frantar et al. 2022; J. Lin
et al. 2023; J. Kim et al. 2023) to enable inference on affordable devices. But only post-training
quantization is available on standard GPUs. Better quantized models can be obtained through
quantization-aware training (S. Gupta et al. 2015; D. Zhang et al. 2018; Jin et al. 2021; Yamamoto
2021; C.-W. Huang, T.-W. Chen, and J.-D. Huang 2021; Umuroglu et al. 2017), and quantized
training (J. Chen et al. 2020; Sun, N. Wang, C.-Y. Chen, Ni, Agrawal, Cui, Venkataramani,
Maghraoui, et al. 2020; Yukuan Yang et al. 2022; Chmiel et al. 2021), that reduce the numeric
precision of weights, activations, and dataflow from full-precision (FP) to finite-precision format.

A special case of quantization-aware training is binarized neural networks (BNNs) which were
first proposed by Courbariaux, Bengio, and David 2015; Courbariaux, Hubara, et al. 2016 and
have been followed by a huge amount of subsequent contributions (Gholami et al. 2021; W. Zhao
et al. 2020; Y. Guo 2018; Nagel et al. 2021). This design usually binarizes weights and activations
to obtain principal forward computation blocks in binary. It learns binarized weights via full-
precision latent ones, which are updated by the classical gradient descent backpropagation.
The gradient of the binarized variables is usually approximated by a differential proxy of the
binarization function, which is most often the identity proxy. Many concurrent approaches (Bai,
Y.-X. Wang, and Liberty 2018; Ajanthan, Dokania, et al. 2019; Ajanthan, K. Gupta, et al. 2021;
M. Lin et al. 2020; Leconte, Schechtman, and Moulines 2023) formulated the BNN learning
task as a constrained optimization problem and discussed different methods to generate binary
weights from real-valued latent ones. In practice, these works showed that BNNs could achieve
state-of-the-art accuracy in study-level classification problems such as CIFAR-10 or MNIST, but
suffer significant accuracy drop on more challenging problems such as ImageNet (Rastegari et al.
2016; Qin et al. 2020). Besides the reduced network approximation capacity due to lower data
precision (S. Zhou et al. 2016), the use of full-precision optimizers for estimating binary weights
are the causes of this degradation. To compensate for this accuracy loss, most recent prominent
works (Z. Liu, Shen, et al. 2020; Nie et al. 2022; N. Guo et al. 2022) used multiple full-precision
components in the network, whereas only a few dataflows have remained binary.

In this chapter we aim to answer whether energy-friendly deep learning is possible both
for inference and training all while maintaining performance. For that, we explore Boolean
notions to define networks that are predominantly Boolean, with low energy demands, and that
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are trained in the binary domain. Extensive experimental evaluation is conducted on a set of
common vision tasks requiring moderate to higher levels of accuracy.

3.2 Related works

Energy consumption is a fundamental metric for measuring hardware complexity. However,
it requires specific knowledge of computing systems and makes it hard to estimate. Only few
results are available, though experimental-based and limited to specific tested models, e.g.,
Y. Gao et al. 2020; Shao and Brooks 2013; Mei et al. 2014; Bianco et al. 2018; Canziani, Paszke,
and Culurciello 2016; García-Martín et al. 2019. Although experimental evaluation is precise, it
requires considerable implementation efforts while not generalizing. In addition, most relevant
works are only limited to inference and not training (Y.-H. Chen et al. 2016; Kwon et al. 2019;
X. Yang et al. 2020). Therefore, developing an analytic method to efficiently estimate training
energy consumption is desirable.

Regarding NN architectures, significant advances have been made on BNNs (Binarized Neural
Networks) for the ImageNet classification task, driving their performance to higher grounds
(N. Guo et al. 2022; Z. Liu, Shen, et al. 2020; Tu et al. 2022; C. Lee et al. 2022; Y. Zhang, Zhiru
Zhang, and Lew 2022; Xing et al. 2022; Martinez et al. 2019; Y. Wang et al. 2023). These works,
which attempt to reduce the accuracy gap between BNNs and full-precision networks, typically
target the primary sources of the computational burden of CNNs, essentially convolutions,
data-streams memory (both numeric type and size) and network depth. Consequently, modern
BNNs are improved over the following three main areas.

Binarization strategy. It seeks to efficiently binarize real-valued data. The sign function is
the primary alternative to binarize data-streams, with additional constraints on the data like
clipping Y. Zhang, Zhiru Zhang, and Lew 2022; N. Guo et al. 2022. ReActNet (Z. Liu, Shen, et al.
2020) is a prominent work that proposes RSign, a more general alternative to sign, which deals
with the fact that distributions may be shifted or biased. A more recent option, Tu et al. 2022
argues that binary values {1, −1} might restrain the approximation capabilities of BNNs, which
is why they binarize activations to two real values for more representative power.

Optimization strategy. Since latent-based training (Courbariaux, Bengio, and David 2015)
remains the underlying method for updating binarized weights, a differential proxy of sign
is required. Different or modified alternatives to straight-through-estimator (STE) have been
proposed (Z. Liu, Shen, et al. 2020). Piece-wise polynomials and hyper-parameterized tanh have
been used (Nie et al. 2022). The latent-based approach requires storing both binary and real
parameters during training. Furthermore, this approach typically requires a sequential training
of multiple stages where activations and weights get progressively converted from full-precision
to binary types (N. Guo et al. 2022; Y. Zhang, Zhiru Zhang, and Lew 2022; Xing et al. 2022),
resulting in longer training times. Modern BNN methodologies (Xing et al. 2022; Z. Liu, Shen,
et al. 2020; N. Guo et al. 2022; Y. Zhang, Zhiru Zhang, and Lew 2022; Tu et al. 2022; C. Lee et al.
2022; C. Liu et al. 2022) agree on the fact that using knowledge distillation (KD) closes the gap
between BNNs and full-precision models for which additional data augmentation is needed to
reduce the common overfitting of BNNs (N. Guo et al. 2022). In most cases, a single teacher
like ResNet34 or ResNet50 suffices to significantly increase the accuracy. More recently, using
multi-KD with four teachers, BNext (N. Guo et al. 2022), reached performances not reported
before. In this sense, existing works have investigated BNNs from the perspective that network
binarization is considered as a plugin feature to an existing full-precision DNN. For KD, the
goal is to transfer the knowledge of a teacher model to a smaller student model. If trained
from scratch, the student model generally performs worse than its teacher. However, under the
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supervision of the teacher network, the binary network can preserve the learning capability and
thus obtain comparable performance to the teacher network. Consequently, the process still
requires full-precision model training, and cannot tackle the complexity problem of the network
training. Furthermore, KD-based training depends on specialized teachers on a particular task,
thus reducing functionality on new data. Helwegen et al. 2019; E. Wang et al. 2021 proposed
some heuristic and improvement of the classic BNN latent-based optimizer.

Architecture design. ResNet (Z. Liu, Shen, et al. 2020; Z. Liu, B. Wu, et al. 2018; N. Guo et al.
2022; Bethge et al. 2020) and MobileNet (Z. Liu, Shen, et al. 2020; N. Guo et al. 2022) are the
most frequent layouts. In S. Zhou et al. 2016; Rastegari et al. 2016 the authors experimented
with Alexnet. Among these methodologies, the basic blocks have been greatly transformed.
Common modifications include additional shortcuts, automatic channel scaling with Squeeze-
and-Excitation (Y. Zhang, Zhiru Zhang, and Lew 2022) or block duplication plus concatenation
in the channel domain (Z. Liu, Shen, et al. 2020; N. Guo et al. 2022). Recent alternatives
incorporate modules that better adapt the input domain to binary dataflows Xing et al. 2022,
replace standard convolutions with lighter pointwise convolutions (C. Liu et al. 2022), or propose
1-bit alternatives of linear projections (Hongyu Wang et al. 2023).

Since the release of ReActNet, the best results are obtained by alternating low-precision
dataflows to full-precision after every binary convolution within the network. These works sub-
stantially rely on real-valued dataflows during feedforward such as PReLU, Batch Normalization,
FP scaling, and further boost accuracy via KD. This highlights the need for native binary neural
networks (V. M. Nguyen 2023), and a precise complexity evaluation method to be able to assess
gains in regards of memory, energy, and latency.

3.3 Method

3.3.1 Boolean training

The design and training of Boolean layers follows the principle proposed by V. M. Nguyen 2023.
For illustration purpose, Algorithm 3 presents a pseudo code for a Boolean fully-connected layer
that uses Boolean logic B = XNOR. In the forward pass, at iteration t, input xl,t is buffered for
later use in the backward, and the jth neuron output at kth sample is computed as:

xl+1,t
k,j = wl0,j +

dI∑
i=1

B
(
xlk,i ,w

l
i,j

)
, (3.1)

∀k ∈ [1,b],∀j ∈ [1,dO] where b, dI , dO are, respectively, the training mini-batch, layer input and
output size. The processing of Boolean design includes pointwise logic followed by counting
and majority vote. Since real arithmetic has been the base of engineering systems, all existing
software tools have been optimized for supporting real arithmetic operations (in fact 16 or 32
bits). Therefore, instead of designing a Boolean processing tool, we implement real arithmetic,
and use the following map: True −→ +1

False −→ −1.
(3.2)

In practice, we use Pytorch, and all weights w have a value in the binary set {+1,−1} instead of
{True,False}. Also, all XNOR and counting are translated into pointwise multiplications and
additions. As a consequence, for the choice B = XNOR, Equation (3.1) before activation translates
into xl+1,t

k,j = wl0,j +
∑dI
i=1 x

l
k,iw

l
i,j . The sums are in the integer range and the output of the neuron
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Algorithme 3 : Pseudo-code for Boolean training with B = XNOR.

Input : Learning rate η, nb iterations T ;
1 Initialize
2 ml,0i,j = 0; β0 = 1;

3 end
4 for t = 0, . . . ,T − 1 do

/* 1. Forward */

5 Receive and buffer xl,t ;
6 Compute xl+1,t following Equation (3.1);

/* 2. Backward */

7 Receive g l+1,t ;
/* 2.1 Backpropagation */

8 Compute and backpropagate g l,t following Equation (3.3);
/* 2.2 Weight update */

9 Ctot := 0, Ckept := 0;
10 foreach wli,j do

11 Compute ql,t+1
i,j following Equation (3.4);

12 Update ml,t+1
i,j = βtml,ti,j + ηtql,t+1

i,j ;

13 Ctot← Ctot + 1;

14 if XNOR(ml,t+1
i,j ,wl,ti,j ) = True then

15 wl,t+1
i,j ←¬wl,ti,j ; /* invert */

16 ml,t+1
i,j ← 0;

17 else
18 wl,t+1

i,j ← wl,ti,j ; /* keep */

19 Ckept← Ckept + 1;
20 end
21 end
22 Release buffer xl,t ;
23 Update βt+1← Ckept/Ctot ;
24 Update ηt+1;
25 end

is given as follows: yl+1,t
k,j = 2 ·1(xl+1,t

k,j ≥ τ)− 1, where τ is a scalar threshold. In other words, in
the proposed BNN, the output of a layer is just the sign function (translated with τ) applied to
the dot product of the input and the weights.

In the backward pass, layer l receives g l+1,t from downstream layer l + 1. Then, backpropa-
gated signal g l,t (line 8 in Algorithm 3), is computed following V. M. Nguyen 2023 as:

g l,tk,i =
dO∑
j=1

1{g l+1,t
k,j wl,ti,j≥0}|g

l,t
k,i,j | −

dO∑
j=1

1{g l+1,t
k,j wl,ti,j<0}|g

l,t
k,i,j |, (3.3)

∀k ∈ [1,b],∀i ∈ [1,dI ]. Here the XNOR and counting operations have been replaced by the
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standard product and sum operations. Optimization signal at line 11 in Algorithm 3 is given
according to V. M. Nguyen 2023 as:

ql,t+1
i,j =

b∑
k=1

1{ql,ti,j,k≥0}|q
l,t
i,j,k | −

b∑
k=1

1{ql,ti,j,k<0}|q
l,t
i,j,k |, (3.4)

∀i ∈ [1,dI ],∀j ∈ [1,dO]. Finally, the weights are updated in lines 14–20 of Algorithm 3 following
the rule formulated in V. M. Nguyen 2023: a weight w is inverted only when its associated
accumulator m reaches a defined value.

3.4 Experiments

Our design was benchmarked on different computer vision tasks: classification (using CIFAR-10
(Krizhevsky, G. Hinton, et al. 2009) and ImageNet (Krizhevsky, Sutskever, and G. E. Hinton
2012)) and super-resolution (using DIV2k (Agustsson and Timofte 2017; Timofte et al. 2017),
Set5 (Bevilacqua et al. 2012), Set14 (Zeyde, Elad, and Protter 2012), BSD100 (J.-B. Huang, Singh,
and Ahuja 2015), and Urban100 (Martin et al. 2001)).

In addition, to conceal that our Boolean Logic is advantageous for edge device learning, we
explore the scenario where a pretrained model is deployed to an edge device, i.e. fine tuning. On
this regard, we analyze two tasks: classification and segmentation. For classification, the trained
Boolean VGG-Small architecture is fine-tuned over CIFAR-100. For segmentation, the trained
Boolean ResNet18 is used as backbone on DeepLabv3 (L.-C. Chen et al. 2017) and fine-tuned
over the Cityscapes (Cordts et al. 2016), and Pascal VOC 2012 (Everingham et al. n.d.) datasets.

In all benchmarks, the Boolean model was built following the sketch of the baseline full-
precision (FP) architecture such that its arithmetic layers are Boolean and removing FP-specific
components, such as ReLU, PReLU activations or BatchNorm (unless mentioned otherwise).
Following the literature (Chmiel et al. 2021), the first and the last layers were kept in FP. Adam
(Kingma and J. Ba 2014) was used as the optimizer of these FP layers, while our Boolean optimizer
was used on the remaining Boolean part. The full details of all experiments are kept private for
now.

3.4.1 Image classification

Proof of the proposed concept was initially validated on CIFAR-10 with VGG-Small (Simonyan
and Zisserman 2014) baseline. In the experiments, our boolean architecture follows the layout
of Courbariaux, Bengio, and David 2015, except that we exclude batch normalization. This
configuration obtained a top-1 accuracy of 90.29±0.09% (estimated over six repetitions), showing
similar performance to Courbariaux, Bengio, and David 2015, which has 32-bit activations and is
full-precision during training (see Table 3.1). Higher performances are obtained when including
batch normalization after convolutions and the activation from Z. Liu, B. Wu, et al. 2018 (referred
to as Boolean with BN in the table), with a classification performance equal to 92.37± 0.01%
(estimated over five repetitions) which is almost 1 point closer to the FP counterpart.

3.5 Conclusion

We have presented a method for training deep neural networks that is provably efficient for
resource-constrained environments. Our results suggest that full-precision performance can be
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Method W/A Acc.(%) Cons.(%) Gain (×)

Full-precision (D. Zhang et al. 2018) 32/32 93.80 100.00 1.00
BinaryConnect (Courbariaux, Bengio, and David 2015) 1/32 90.10 PRIVATE. PRIVATE.

XNOR-Net (Rastegari et al. 2016) 1/1 89.83 PRIVATE. PRIVATE.
BNN (Hubara et al. 2017) 1/1 89.85 PRIVATE. PRIVATE.
Boolean w/o BN (Ours) 1/1 90.29 PRIVATE. PRIVATE.
Boolean with BN (Ours) 1/1 92.37 PRIVATE. PRIVATE.

Table 3.1: Experimental results with the standard VGG-Small (ending with 3 FC layers) baseline
on CIFAR-10. Energy consumption is evaluated on 1 iteration. ‘Cons’ and ‘Gain‘ are the energy
consumption and gain w.r.t. the FP baseline.

totally recovered by enlarged Boolean models while gaining multifold complexity reduction. One
can fine-tune these energy-efficient models on edge devices for specific tasks. Our experiments
highlight that Boolean models can handle finer tasks, contrary to the misbelief that binary
models only work for image classification.
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Chapter4
Efficient BNN training in the FL
context

We tackle in the next two chapters the challenging problem of training jointly a set of nodes (e.g.
edge devices with low computational/communication capacity) in the synchronous FL context.
In standard centralized FL, one assumes that (i) all nodes can compute gradients on their local
dataset (i.e. energy/memory is not a bottleneck), and (ii) all nodes are synchronous with the CS
(i.e. bandwidth and compute time are not bottlenecks).

As a first step, in this chapter we demonstrate how one can integrate the method presented
in the previous Chapter 3 into the FL framework. Here we assume nodes are edge devices with
constrained computational power, and we consider 2 options to tackle the bandwidth bottleneck:
FedBool and MajBool. These algorithms are presented in the following patent:

Louis Leconte and Nguyen Van Minh (2023). Method and system for performing federated
learning. Filled in Sept.23, to be published.

We also had the opportunity to present our work at the FMEC/FLTA 2023 conference. This
chapter is mainly based on the corresponding publication (Leconte, Moulines, et al. 2023):

Louis Leconte, Eric Moulines, and Van Minh Nguyen. (2023). “Federated Boolean Neural
Networks Learning”. In: 2023 Eighth International Conference on Fog and Mobile Edge

Computing (FMEC). IEEE, pp. 247–253.
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4.1 Introduction

Training machine learning models can often be a very challenging process, requiring significant
computational resources and time. The advent of federated learning (FL) has generated signif-
icant interest in both academia and industry as the need for large-scale, distributed machine
learning systems grows. In particular, FL can protect privacy-sensitive data by keeping them
on local devices. In the FL paradigm, a shared central model is trained by participating agents
under the guidance of a central server, while training data is securely stored on edge devices.
This approach has been highlighted in notable studies such as Y. Zhao et al. 2018; Horváth,
Sanjabi, et al. 2022.

The inherent design of FL ensures privacy as each client participates in training on the device
and shares model updates only with the central server. However, this feature creates a major
bottleneck - communicating updates from local clients to the central server. As the number
of parameters and workers increases, this problem becomes more apparent. Addressing this
communication cost is a key issue in the quest for more efficient federated learning (Kairouz,
H. B. McMahan, et al. 2021; J. Wang, Charles, et al. 2021).

Another advantage of FL is that it distributes the computational load across the networked
agents. Although this is beneficial from a privacy perspective, implementing federated learning
algorithms in IoT systems comes with a number of challenges. For one, FL requires a level
of computational power from each agent that typically exceeds what is required for a purely
inferential task, leading to potential computational bottlenecks. A delicate balance must be
struck between the frequency of sending local updates and the performance of the central model.

The use of DNNs on computing hardware such as mobile and IoT devices is becoming
increasingly important. IoT devices often have limitations in terms of memory and computational
capacity. Quantization is a potential solution to this problem. Quantized neural networks
(QNNs) represent weights, activations, or even gradients with a small number of bits, allowing
for efficient fixed-point inference and reduced memory bandwidth usage; see e.g. (Courbariaux,
Bengio, and David 2015; Jacob et al. 2018; Lei Deng et al. 2020; Leconte, Schechtman, and
Moulines 2023; Chmiel et al. 2021; Tu et al. 2022). In this area, the general goal is to keep the
loss of precision to an acceptable level compared to floating-point implementations. But few
works address the training of QNNs in the setting of FL.

In this chapter, we take a step toward answering this question by proposing 2 FL algorithms
tailored for training clients with low computational capacity: FedBool, and MajBool.

The approach of FedBool borrows from Ji and L. Chen 2022, but without the need for full-
precision updates. Each client uses a pure Boolean network as defined by V. M. Nguyen 2023,
which facilitates the computation of inference and novel approximate backpropagation rules on
its local dataset. Importantly, FedBool does not require full precision computations or updates
on the client side. The backpropagation signals are further vector-quantized using Leconte,
Dieuleveut, et al. 2021 and then forwarded to the central server. Aggregation and optimization
on this central server follows the algorithm proposed by V. M. Nguyen 2023.

In contrast, MajBool proposes to apply the optimization rules as defined by V. M. Nguyen
2023 directly at each client. Then, the updated Boolean weights are forwarded to the central
server. We introduce a new majority rule inspired by V. M. Nguyen 2023 for aggregating the
Boolean weights of the clients and then updating the Boolean weights of the server.
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4.2 Related works

Quantization of neural networks attempts to reduce the computation bit width while maintaining
model accuracy. Several works perform DNN compression, especially with network pruning
(Han, H. Mao, and Dally 2015), efficient network design (Howard et al. 2017; H. Chen et al.
2020) or network quantization (Jin et al. 2021; Yamamoto 2021; Fei et al. 2022; Gholami et al.
2021). Network quantization is remarkably promising because it cleverly reduces both memory
and inference simultaneously. While conventional Convolutional Neural Networks (CNNs) rely
on 32-bit-wide data during inference and training, network quantization reduces the numerical
precision of data flows, weights, and activations to computationally lighter values that still have
sufficient representational power to maintain model accuracy; see Jin et al. 2021; Chmiel et al.
2021. Several works have obtained excellent results with quantized neural networks. In general,
quantized aware training (QAT) yields better performance than post training quantization (PTQ).
A special case of network quantization that offers an interesting trade-off between complexity
and performance is binary neural networks (BNNs), in which the activations and operations
use computationally-efficient binary primitives. However, designing BNNs is a difficult task
because minimizing the encoding bits of the representation often leads to a significant reduction
in accuracy. For a given number of neurons, each neuron is susceptible to potential errors due to
the introduced quantization step. Consequently, some researchers have trained neural networks
with binary constraints, while others have relaxed the bit-width constraint to multiple bits;
see Gholami et al. 2021; W. Zhao et al. 2020; Y. Guo 2018; Nagel et al. 2021. BinaryConnect
(BC) (Courbariaux, Bengio, and David 2015; Hubara et al. 2016) uses latent weights with full-
precision. On the forward path, the latent weights are quantized. On the backward path, classical
backpropagation is applied to update the latent weights, using a differentiable proxy of the
quantization function in the gradient calculation. The most common implementation uses the
identity proxy, resulting in the straight-through estimator (STE). Although the NN parameters
are highly compressed (and quantization errors can be large), the BC-STE estimator and its
numerous recent improvements perform satisfactorily in many benchmarks and have become
a de facto standard; see Hu, P. Wang, and Cheng 2018; Faraone et al. 2018; H. Le et al. 2021;
Anderson and Berg 2018. Extensions of STE have also been used for more general QNN of
Chmiel et al. 2021; Sun, N. Wang, C.-Y. Chen, Ni, Agrawal, Cui, Venkataramani, El Maghraoui,
et al. 2020; Choi et al. 2018; Z. Wang et al. 2019. However, there is very little work that addresses
binary neural network training in the context of FL. In Yuzhi Yang, Zhaoyang Zhang, and Q. Yang
2021, the updates of the local latent weights are based on maximum likelihood estimation from
the averaged value on the server side. BNNs are trained with the STE optimizer on the client
side and transmit latent or binary weights. Sihua Wang et al. 2022 also quantizes the weights
using STE, but with an adaptive number of bits. Then the quantized weights are averaged at the
server side as in FedAvg (B. McMahan et al. 2017). FedQNN (Ji and L. Chen 2022) quantizes
weights, activations, and neural gradients. It also sparsifies and quantizes gradient signals before
communicating with the base station. On the server side, the gradients (not the parameters)
are averaged for the global model update phase. Then FedQNN uses binary masks and entropy
coding to send the weights back to the clients.

FL may face severe communication bottlenecks due to the communication between the server
and the clients. Many techniques have been proposed to tackle the communication obstacle, such
as infrequent aggregation, sparse compression, and quantization. The key idea of quantization
is to use fewer bits to represent the model updates (Alistarh et al. 2017; Bernstein et al. 2018;
Leconte, Dieuleveut, et al. 2021; Gorbunov, Burlachenko, et al. 2021), which introduces a trade-
off between the communication workload and representation errors. Recently, DASHA (Tyurin
and Richtárik 2022) has improved MARINA Gorbunov, Burlachenko, et al. 2021, and the client
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always sends unaltered and compressed signals to the central server. In AQG (Y. Mao et al. 2022),
a gradient-based FL setting is described, where the number of bits for gradient transmission
is adjusted during training and for each client. AdaCGD (Makarenko et al. 2022) also allows
clients to adaptively choose arbitrary contractive compression mechanisms during training.
Jhunjhunwala et al. 2021 proposes an adaptive quantization strategy. However, their results
suggest to increase bit accuracy during training, which is in contrast to FedDQ (Qu, Song, and
Tsui 2021).

4.3 Boolean Federated Learning

In the proposed solution, local training on edge devices is based on Boolean learning V. M.
Nguyen 2023 to reduce complexity. Local gradients (FedBool) or local binary weights (MajBool)
are reported to the central server, which performs aggregation and sends the final binary weights
back to the edge devices.

4.3.1 Boolean Edge Training

Boolean learning presented in V. M. Nguyen 2023 proposes a new method for learning BNNs.
As in the previous Chapter 3, we consider a linear layer with an input of size dI . Given Boolean
weights and inputs, (w0,j , . . . ,wdI ,j,), and (x1, . . . ,xdI ), the jth Boolean neuron pre-activation is
formulated as follows:

sj = w0,j +
∑dI

i=1
xiwi,j , (4.1)

where the sums are in the integer range and the output of the neuron is given as follows:

yj = 2 ·1(sj ≥ τ)− 1, (4.2)

where τ is a scalar threshold. As explained in Chapter 3, the Boolean design {±1} replaces
real-valued weights and activations with Boolean ones, and replaces the floating point multi-
plication with Boolean logic. Computing the gradient of the loss function w.r.t. some weight w
requires to compute the derivative of the activation. During the forward pass we strictly follow
Equation (4.1) and Equation (4.2). However during the backward pass, all indicator functions 1(·)
are intertwined with tanh(σ−1

j sj ) functions, where σ2
j is a variance scaling parameter computed

layerwise (V. M. Nguyen 2023).
We briefly describe network training; more details are given in V. M. Nguyen 2023. Let us

denote nn(x;w) as the output of the Boolean neural network given an input x and binary weights
w. Following V. M. Nguyen 2023, at the k-th iteration, a mini-batch consisting of b observations,
denoted as {(yi ,xi)}i∈Bk , is selected. Then, the gradient of the loss function L on the mini-batch
gk = b−1 ∑

i∈Bk ∇L(nn(xi ;w), yi) is computed. The mini-batch gradient is then used to update the
accumulator

mk+1[i] = βk[i]mk[i] + ηgk[i], i ∈ {1, . . . ,d}, (4.3)

where η is a stepsize and βk = (βk[1], . . . ,βk[d]) ∈ [0,1]d is a vector given by

βk[i] = (1/ |Ni |)
∑
j∈Ni

1(wk[j] , wk−1[j]), (4.4)

whereNi is a predefined neighborhood of the i-th coordinate.
We set m0 = 0d×1, β0 = (β0[1], . . . ,β0[d]) = 1d×1. The individual component of the weights
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wk = (wk[1], . . . ,wk[d]) are updated component-wise according to the following rule: if wk[i] =
True and mk[i] ≥ 1, or wk[i] = False and mk[i] ≤ −1, then the weight is inverted wk+1[i]←¬wk[i]
and the accumulator is reset mk[i]← 0.

4.3.2 FedBool

Section 4.3.1 describes how to optimize a Boolean neural network on a single client. In FedBool

we choose to aggregate multiple gradients coming from different clients. We assume that n
clients are available and the central server randomly selects s of them. Each selected client i
receives at iteration k the same Boolean weight from the central server and starts computing
some optimization signals according to the rule defined in V. M. Nguyen 2023. These gradients
{g ik}i≤s are compressed and sent to the central server. We choose to use a vector quantization
technique (Leconte, Dieuleveut, et al. 2021) to reach high compression rate. More details about
this technique will be given in the next Chapter 5. The idea behind vector quantization is to
quantize a vector rather than each of its coordinates. A vector quantizer Q is a mapping which
maps x ∈ Rd to an element of a codebook CM , which is a finite subset of Rd with M elements.
Central server and clients share some random seeds that allow them to generate codebooks. Then
on the client side, one selects the closest codeword of g ik by computing argminc∈CM ∥g

i
k − c∥. Only

the index of the closest codeword is transmitted to the central server (thus consuming log2(M)
bits). At the central server, gradients {g ik}i≤s are decompressed and averaged before being fed
into the central accumulator m:

mk+1 = βkmk + η
∑s

i=1
Q−1(Q(g ik)), (4.5)

We propose to update the central model using the same MAJ logic rule from V. M. Nguyen 2023;
see Algorithm 4. One can note all costly operations are done on the central server.

4.3.3 MajBool

The first steps are similar to FedBool. We again assume n clients are available, and the central
server randomly selects s of them. Every selected client i receives the same Boolean weight from
the central server. But from this point, each client entirely performs locally the optimization
steps defined in V. M. Nguyen 2023, and sends its new Boolean weight wi to the central server.
We propose to update the central model using a similar majority logic rule (V. M. Nguyen 2023).
First, a pre-vote signal p is computed as the sum of the s client weights:

p =
∑s

i=1
wi . (4.6)

After that, a threshold activation is applied to give a Boolean vote and update the value of the
central weight:

wk+1 =


True, if p ≥ sT ,
False, if p ≤ −sT ,
wk , otherwise.

(4.7)

The pseudo-code of the proposed method is described in Algorithm 5. We assume that the
server performs a number of training epochs K ≥ 1. At each time step k ∈ {1, ...,K}, the server
holds a Boolean model wk . At initialization, the central server transmits identical parameters
w0 to all devices. At each time step k, the central server selects a subset Sk of s clients selected
uniformly at random, and the server multicasts its model to all clients in Sk . All clients in Sk
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Algorithme 4 : FedBool
Input : Number of steps T , LR η, Selection Size s, Maximum local steps E, Vector

quantizer Q ;
/* At the Central Server */

1 Initialize
2 Initialize parameters w0, and server accumulator m0 = 0;
3 end
4 for k = 1, . . . ,T do
5 Generate set Sk of s clients uniformly at random;
6 for all clients i ∈ Sk do
7 Client receives wk from server;
8 Client accumulates gradients with Bool();
9 Client quantizes accumulated gradients;

10 Client sends quantized gradients to server;
11 end
12 Update server accumulator mk+1← βkmk + η

∑s
i=1Q−1(Q(g ik));

13 if wk = True and mk ≥ 1 OR wk = False and mk ≤ −1 then
14 Flip weight wk+1←¬wk ;
15 Reset accumulator mk ← 0;
16 end
17 end

/* At Client i */

18 function Bool():
19 Initialize
20 Client receives w and E from the Server;
21 Local variables wi = w;
22 end
23 for t = 1, . . . ,E do
24 Compute local gradient g ik following V. M. Nguyen 2023 ;
25 end
26 end function

update their local models based on V. M. Nguyen 2023. Next, the contacted clients transmit
their local models {wik , i ∈ Sk} back to the server. When all requested models arrive at the server,
the server computes a pre-vote signal p according to a simple average (see Line 11). Note that,
up to this step, our method is similar to FedAvg (B. McMahan et al. 2017; J. Wang, Charles, et al.
2021) where binary weights are averaged. Then, the server updates its weight based on p and on
the threshold T .

4.4 Experiments

We test FedBool and MajBool performance on two image classification tasks: MNIST (Li Deng
2012), and CIFAR-10 (Krizhevsky, G. Hinton, et al. 2009). For the MNIST dataset, two training
sets are considered: an IID and a non-IID split. In the first case, the training images are randomly
distributed among the n clients. In the second case, each client takes two classes (out of the
ten possible) without replacement. This process introduces heterogeneity among the clients.
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Algorithme 5 : MajBool

Input : Number of steps T , LR η, Selection Size s, Maximum local steps E ;
/* At the Central Server */

1 Initialize
2 Initialize parameters w0;
3 end
4 for k = 1, . . . ,T do
5 Generate set Sk of s clients uniformly at random;
6 for all clients i ∈ Sk do
7 Client receives wk from server;
8 Client updates its weight with Bool();
9 Client sends its weight wi to server;

10 end
11 Compute pre-vote p←

∑
i∈Sk w

i ;
12 if p ≥ sT then
13 wk+1 = True ;
14 else if p ≤ −sT then
15 wk+1 = False ;
16 else
17 wk+1 = wk ;
18 end
19 end

/* At Client i */

20 function Bool():
21 Initialize
22 Client receives w and E from the Server;
23 Local variables wi = w,mi = 0;
24 end
25 for t = 1, . . . ,E do
26 Compute local gradient g following V. M. Nguyen 2023 ;
27 Update local accumulator mi ← βimi + ηg;
28 if wi = True and mi ≥ 1 OR wi = False and mi ≤ −1 then
29 Flip local weight wi ←¬wi ;
30 Reset local accumulator mi ← 0;
31 end
32 end
33 end function

For FedBool, we do not directly quantize the whole vector, but split it into buckets of size
16. Without vector quantization one would need 32 · 16 = 512 bits to transmit each bucket.
We randomly generate a codebook CM , of M = 210 elements. Thus, we only need 0.8 bits per
coordinate for transmission.

The standard evaluation measure for FL is the number of communication rounds to achieve
target accuracy. In Table 4.1, we compare the best performance obtained with FedBool and
MajBool, and the sota Federated methods BiFL (Yuzhi Yang, Zhaoyang Zhang, and Q. Yang
2021), RL-based (Sihua Wang et al. 2022), and FedQNN (Ji and L. Chen 2022). To provide a fair
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Table 4.1: Test accuracy (in %) for centralized and Federated frameworks (average and stan-
dard deviation when available), with the corresponding bit length for weight, activations and
transmitted updates (W/A/B).

Method W/A/B MNIST IID CIFAR-10
Centralized[32-bits] 32/32/− 99.32 90.12
Centralized[1-bit] 1/1/− 97.92 88.67

BiFL (Yuzhi Yang, Zhaoyang Zhang, and Q. Yang 2021) 1/1/1 89.41 −
RL-based (Sihua Wang et al. 2022) 1/1/3 < 65 < 25

FedQNN (Ji and L. Chen 2022) 1/1/4 95.67 62.08
FedQNN (Ji and L. Chen 2022) 1/1/8 96.57 70.54

FedBool 1/1/0.8 97.15± 0.13 87.58± 0.86
MajBool 1/1/1 95.09± 0.18 88.77± 0.80

comparison, we track the performance of each algorithm by evaluating the server model against
an unseen validation dataset, and average it over 10 random experiments. In all experiments,
the last fully connected layer is kept at full precision - we follow here the setting of (Z. Liu,
Shen, et al. 2020; Chmiel et al. 2021). This is not a major drawback since they only account for a
limited portion of the model parameters.

After simulating n clients, a set of s clients are sampled at random without replacement, we
follow the framework proposed in Zakerinia et al. 2022 to simulated Federated Learning. We
use the standard data augmentations and normalizations for all methods. FedBool and MajBool

are implemented in Pytorch, and experiments are performed on an NVIDIA Tesla-P100 GPU.
Standard multiclass cross entropy loss is used for all experiments. All models are fine-tuned
with n = 100 clients, and E = 5 local epochs. We fix the batch at size 128 for CIFAR-10, and 500
for MNIST.

We first report the accuracy of a tiny neural network (two convolutional layers, and two fully
connected layers) trained on MNIST. The learning rate for the last (fully connected) layer is
set to 0.01, and the Boolean learning rate is set to 10. To be fairly comparable to Yuzhi Yang,
Zhaoyang Zhang, and Q. Yang 2021; Sihua Wang et al. 2022; Ji and L. Chen 2022, the total
communication rounds is set to 300. The vote threshold in MajBool is set to T = 0 for MNIST
experiments. We also compare the performance of a VGGsmall (Simonyan and Zisserman 2014)
with the CIFAR-10 dataset (Krizhevsky, G. Hinton, et al. 2009), which consists of 50000 training
images and 10000 test images (in 10 classes). For CIFAR-10, the learning rate for the last (fully
connected) layer is set to 0.001, and the learning rate for Boolean layers is set to 20. In Figure 4.1,
we investigate the convergence of FedBool and MajBool methods on the MNIST dataset. They
both perform well, and require few server steps to close the gap w.r.t. to the full precision
centralized approach. Figure 4.2 indicates that MajBool is sensitive to data heterogeneity. When
local datasets are too heterogeneous, local weights flip and reach different points. Aggregating
this very different Boolean values results in a weight that offers poor performances. On the
other hand, FedBool aggregates gradients, and takes an optimization step after the aggregation.
This is known to perform better under data heterogeneity (B. McMahan et al. 2017; Leconte,
V. M. Nguyen, and Moulines 2023). In Figure 4.3 we analyse the effect of the voting threshold
T on the convergence behaviour. Compared to MNIST experiments, keeping T = 0 does not
work well on CIFAR-10. This dataset is challenging enough to impact performances when a
weight is flipped without a large consensus between clients. On the other hand, asking for a
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Figure 4.1: Validation accuracy on the MNIST dataset with an IID split in between n = 100 total
nodes. Central server selects s = 20 clients at each round.
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Figure 4.2: Validation accuracy on the MNIST dataset with a non-IID split in between n = 100
total nodes.

strict consensus between clients (when T = 1, all clients report the same weight) does not offer
the best accuracy. An intermediate setting (T = 0.5) allows us to get closer to the full precision
centralized performance.

4.5 Conclusion

We have provided two centralized Federated Learning methods which incorporate Boolean
neural networks. Empirical evaluation shows that FedBool and MajBool are more efficient
than synchronous state-of-the-art mechanisms on several image classification tasks. On-going
work investigate the possibility to adapt FedBool and MajBool to the asynchronous Federated
Learning setting where clients may have different computational speeds (Mishchenko, F. Bach,
et al. 2022; Leconte, V. M. Nguyen, and Moulines 2023).
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Figure 4.3: Validation accuracy for MajBool on the CIFAR-10 dataset with an IID split in between
n = 100 total nodes. Central server selects s = 10 clients at each round.



Chapter5
An unbiased quantization scheme for
highly compressed FL
communications

In the previous Chapter 4 we have mentioned the use of vector quantization (VQ) for compressing
gradient signals sent to the CS. In this chapter we present an unbiased VQ method to deal with
the high bandwidth cost of communicating gradient updates between nodes. This technique is
successfully applied to the centralized synchronous FL setting in the unpublished/ongoing work
Leconte, Dieuleveut, et al. 2021:

Louis Leconte, Aymeric Dieuleveut, Edouard Oyallon, Eric Moulines, and Gilles Pagès. (2021).
“DoStoVoQ: Doubly Stochastic Voronoi Vector Quantization SGD for Federated Learning”. In:

url:https://openreview.net/pdf?id=URc7gYBcjVn.

55
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5.1 Introduction

In this chapter, we consider the Federated Learning framework, in which a potentially large
number n of workers cooperate to solve the distributed optimization problem:

min
w∈Rd

n∑
i=1

fi(w), (5.1)

where each function fi : Rd → R represents the empirical risk on worker i ∈ [n] (where [n] =
{1, . . . ,n}) and d is the ambient dimension of our problem. Each worker potentially holds a
fraction of the data, and can share information with a central server, which progressively
aggregates and updates the model accordingly (Konečný et al. 2016; Kairouz, H. B. McMahan,
et al. 2021).

Stochastic gradient algorithms (Robbins and Monro 1951) are particularly well suited in the
large scale learning setting (Bottou 1999). The methods can easily be adapted to the distributed
(and more generally federated) learning framework; see Kairouz, H. B. McMahan, et al. 2021 and
references therein. For synchronous distributed Stochastic Gradient Descent, at every iteration,
given the current parameter wt , each worker computes an unbiased estimate gi,t+1(wt) of the
gradient of the local loss function fi . The central server then aggregates those oracles and
performs the update.

Communicating the gradients from the local workers to the central server is often a major
bottleneck. The drastic increase both in the number of parameters and of workers over the last
years, has made this problem even more acute. Alleviating the communication cost is one of
the crucial challenges of federated learning (Kairouz, H. B. McMahan, et al. 2021, Sec. 3.5). A
central idea to tackle this issue is communication compression, which consists in applying a lossy
compression to the parameters or gradients to be transmitted. The design of new compression
schemes (Seide et al. 2014; Alistarh et al. 2017; Bernstein et al. 2018; Yu et al. 2018) and
the analysis and adaptation of the learning algorithms (Karimireddy, Rebjock, et al. 2019; N.
Agarwal et al. 2018; Wangni et al. 2018; Sebastian U Stich, Cordonnier, and Jaggi 2018; A. Xu,
Huo, and H. Huang 2020; Mishchenko, Gorbunov, et al. 2019; Philippenko and Dieuleveut 2020;
Gorbunov, Burlachenko, et al. 2021; Gorbunov, Kovalev, et al. 2020; Safaryan, Shulgin, and
Richtárik 2020) are extremely active fields of research.

Our main contribution is to introduce a novel unbiased vector quantization procedure
allowing to reach high-compression rate, with a small computational overhead. More precisely,
our contributions are as follow: first, we introduce Stovoq, a vector quantization algorithm based
on unitarily invariant random codebooks to obtain directionally unbiased gradient oracles,
and introduce a scalar correction function, that makes compression operator unbiased for a
very modest computational cost. In summary, Stovoq is based on the following points, that are
developed in Section 5.2.

1. Vector quantization The input x ∈ RD is mapped onto its nearest neighbor in a codebook
CM = {ci}Mi=1.

2. Random codebook. A new codebook is sampled every time a (new) quantization operation
is performed. The proposed approach is different from classical VQ which typically uses a
random codebook, but which is sampled once and then kept fixed.

3. Bias removal. By relying on unitarily invariant distribution for the codewords generation,
the quantized value of each vector x ∈ RD is directionnally unbiased. The bias only
depends on the number and distributions of the random codewords, and on the norm of
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the vector to be quantized ∥x∥. This key property allows to derive a simple way to remove
the quantization bias.

We demonstrate the effectiveness of Stovoq by analyzing and empirically comparing its distortion
when compressing Gaussian vectors and “real” gradients. This simple but reliable metric is
one of the best way to assert the quality of a compression technique, and is only rarely used in
previous works (Saha, Pilanci, and Goldsmith 2021).
Then, we describe how to use Stovoq within any FL algorithm: this yields the Dostovoq algo-
rithms, that aim at solving the optimization problem minw∈Rd

∑n
i=1 fi(w), in dimension d. The

process is described in Section 5.4:

4. Splitting and normalizing gradients. We split each gradient into buckets (xl)1≤l≤L of
dimension D ≪ d, to apply Stovoq on each bucket.

5. Synchronisation of random sequences of codebooks. We ensure that those codebooks
are independent, at each step and between each machine, by generating a new codebook
each time. To avoid any subsequent communication cost, we synchronously generate the
codebooks on the central and local servers, by initially sharing random seeds.

Remark that point 1 was also used in Dai et al. 2019. Points 2 to 3 and 5 are novel ideas
that have not been leveraged in the FL framework. Finally, we demonstrate the effectiveness
of Dostovoq for gradient compression by extensive experiments in Section 5.5 on standard
benchmarks like CIFAR10 or ImageNet.

5.2 Stovoq algorithm

Several compression operators1 have been introduced recently as bandwidth reduction for
distributed learning became a major challenge. In this section, we first discuss the importance of
unbiasedness of compression operators in Section 5.2.1. We then present the Stovoq compression
scheme in Section 5.2.2. Finally, we compare Stovoq to competing approaches, both theoretically
and empirically on a small scale example with a high compression rate.

5.2.1 Unbiased gradient estimate to mitigate high compression rates

We first here discuss an important property to mitigate high compression rates in FL settings. A
compression operator Comp is a (random) mapping on RD . Consider the following assumption:

A7 (Unbiased Compression with relatively bounded variance). A compression operator Comp
is unbiased if for any x ∈ Rd , E[Comp(x)] = x (w.r.t. the distribution of the random compression
operator). It is said to have a ω-bounded relative variance, for some ω > 0, if it satisfies, for all x ∈ RD ,
E[∥Comp(x)− x∥2] ≤ω∥x∥2.

The most classical compressors, especially Q-SGD and Rand-H satisfy A7 with different ω, see
Section 5.3. On the other hand, some compression operators are biased, i.e., E[Comp(x)] , x for
some x ∈ R. Those operators are often deterministic, as is the case for Top-H compressor. The
most classical assumption for biased operators, is the following contractive property along the
direction of descent (Karimireddy, Rebjock, et al. 2019; Gorbunov, Kovalev, et al. 2020):

A8 (Biased Compression with contraction). For δ > 0, a compression operator is said to be
1/(1 + δ)-contractive if for any x ∈ Rd , we have E[∥Comp(x)− x∥2] ≤ (1− 1/(1 + δ))∥x∥2.

1See Section 5.3 for a detailed related work
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Constants ω and δ from these two assumptions are both positive, and become larger as the
compression rate increases. Alternative assumptions for the biased case have been introduced
in Beznosikov, Horváth, et al. 2020.

Impact of unbiasedness on the compression of a single vector. 2 To understand the
interaction between the number of workers n and the compression error, a simple situation is
the case in which the workers use independent and identically distributed compression operators
(Compi)

n
i=1 to compress the same vector x ∈ Rd . The central node aggregates {Compi(x)}ni=1 into

n−1 ∑n
i=1 Compi(x). A bias-variance decomposition of the quadratic error gives:

E[∥n−1
n∑
i=1

Compi(x)− x∥2] = ∥E[Comp1(x)]− x∥2 +n−1E[∥Comp1(x)−E[Comp1(x)]∥2]. (5.2)

The variance of the aggregated vector is reduced by a factor n−1 when averaging the messages
send by the n workers, while the bias is independent of n. For example, if we use an unbiased
compressor satisfying A 7, we get

E

n−1
n∑
i=1

Compi(x)

 = x, (5.3)

and

E

∥∥∥x −n−1
n∑
i=1

Compi(x)
∥∥∥2

 ≤ (ω/n)∥x∥2, (5.4)

while for a deterministic biased compressor, we obtain that n−1 ∑n
i=1 Compi(x) = Comp1(x) has

the same error as any of the individual compressed vector. We therefore pay particular attention
to obtaining an unbiased compressor in the following.

5.2.2 Stovoq definitions and main properties.

The basic idea behind VQ is to quantize a vector rather than each of its coordinates. A Vector
Quantizer is a mapping VQ(·,CM ) : RD → CM which maps x ∈ RD to an element of a code-
book CM , which is a finite subset of RD with M elements. The code of Stovoq is provided
in Algorithm 6, and its crucial steps are described hereafter: we introduce the notion of (a)
Voronoi quantization scheme, before describing more precisely (b) random codebooks, (c) whose
distributions are invariant by unitary transforms. Then, (d) a method to obtain an unbiased
Voronoi scheme is presented.

Algorithme 6 : Stovoq with distribution p

Input : x ∈ RD , p, M, P , seed s
Output : Codeword index ic, value ir

1 Sample CM ∼ p with seed s ; /* generate codebook with distribution p */

2 c = VQ(x,C p
M ); /* perform Voronoi quant. */

3 ic = index of c; /* get index of codeword */

4 r = rpM (∥x∥); /* find radial bias in table */

5 ir = SQ(r−1) ; /* quantize r on P bits */

2The impact of unbiasedness for obtaining optimal convergence complexities in FL is discussed in Section 5.4.
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Figure 5.1: function rpM for D =4 (dashed) and 16 (solid), p =N (0, ID ) and M = 210(orange), and
213(green).

(a) Voronoi Quantization (VQ). VQ (Pagès and Printems 2003; Pagès and Wilbertz 2018),
aims at selecting the closest codeword from CM , i.e.:

VQ(x,CM ) ≜ argmin
c∈CM

∥x − c∥ . (5.5)

Unfortunately, for any given CM , the Voronoi quantizer is not unbiased: indeed it is deterministic
and VQ(x,CM ) , x if x < CM . A classical approach to construct a bias-free VQ is to use the
optimal “dual” VQ (or Delaunay quantization) (Pagès and Wilbertz 2018), but this approach is
numerically expensive (see Section 5.3). To mitigate the bias, we rather use random codebooks.

(b) Random Codebook. A key ingredient of Stovoq is the use of a random codebook within
the quantizer. We assume CM = [C1, . . . ,CM ] where the codewords {Ci}Mi=1 are i.i.d. random vectors
distributed according to p, the codeword distribution pdf. We denote CM ∼ p and use boldface
to stress that CM is random. When quantizing a sequence of vectors {xt}∞t=0 ⊂ RD we sample
for each t ∈ N a new codebook CM,t ∼ p, compute VQ(x,CM,t) and transmit the index of the
corresponding codeword ic,t ∈ [M]. The codebook CM,t is not transmitted: the transmitter and
the receiver use the same seeds so that the same codebooks CM,t are generated on both sides.

(c) Unitary invariant Codewords. Denote by U(D) = {U,U ∗U = I} the set of unitary trans-
forms over RD . We assume in the sequel that the codeword distribution p is unitary invariant,
meaning that:

A9. The distribution of the codewords p is invariant under the unitary group, i.e. for all U ∈ U(D),
and any x ∈ RD , p(Ux) = p(x).

Examples of such distributions include isotropic Gaussian distributions (p =N (0,σ2 ID ), σ2 >
0) and the uniform distribution on the Sphere (which is specifically discussed in Appendix B.4.1).
Under A9, there exists a non-negative function prad on R+ such that, for all x ∈ Rd , p(x) =
prad(∥x∥).

(d) The quantization bias is radial. Under A9, we have the following crucial unitary
invariance property. For A ⊂ RD , U ∈U(D), we write UA = {Ux,x ∈ A}.

Lemma 6. Assume A9. For any nonnegative measurable function f , any U ∈ U(D) and x ∈ RD ,
ECM∼p[f (VQ(Ux,CM ))] = ECM∼p[f (U VQ(x,CM ))].

The proof is postponed to Appendix B.2.3. Taking f (x) = x, the previous result implies
that for any x ∈ RD and U ∈ U(D), it holds that ECM∼p[VQ(Ux,CM )] = UECM∼p[VQ(x,CM )]. A
consequence is that the quantization error is radial (proof is given in Appendix B.2.4):
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Theorem 7 (Quantization bias). Assume A9. Then, for all M ∈ N, there exists a function rpM : R+ 7→
R+ such that for all x ∈ RD , ECM∼p[VQ(x,CM )] = rpM (∥x∥)x.

In words, the quantized vector VQ(x,CM ) is directionally unbiased i.e., its expectation is
colinear to the vector x. Moreover, this radial bias only depends on ∥x∥, M and p. Consequently,
in Stovoq, we can remove the bias of VQ(x,CM ) by re-scaling the corresponding codeword by
1/rpM (∥x∥). We display rpM for p =N (0, ID ) in Figure 5.1. Though rpM is not explicitely tractable, it
is straightforward to pre-compute it using Monte-Carlo method, with arbitrary precision.

Further, we use a scalar quantizer SQ to transmit 1/rpM (∥x∥). Because the range of values taken
by 1/rpM(∥x∥) is limited, a small number of bits P is sufficient (we typically use P = 3 bits). The
total number of transmitted bits is log2(M)+log2(P ). We use a random unbiased scalar quantizer
(see e.g. Dai et al. 2019, Eq. (2)), a random mapping for R→SP an ordered subset of R with 2P

elements. A scalar quantizer is said to be unbiased if E[SQ(r)] = r for all r ∈ R. Assuming that SQ
is independent of CM , we get for all x ∈ RD , E[SQ(1/rpM(∥x∥))]ECM∼p[VQ(x,CM )] = x. Overall,
Algorithm 6 is thus unbiased. Details on scalar quantization are given in Appendix B.3.1.

5.3 Related work

We compare Stovoq with competing (random) compressors; additional details are given in
Appendix B.2.1.

QSGD. Alistarh et al. 2017 compresses each coordinate of the scaled vector x/∥x∥ on s +
1 codewords. QSGD is a scalar quantizer which requires O(

√
D log2(D)) bits in its highest

compression setting (s = 1, only two possible levels for each coordinate). The vector norm is
transmitted with full precision ∥x∥ (16 or 32 bits). This is in general substantially higher than the
number of bits used by VQ methods. In deep learning problems, it reduces the communication
cost by a factor of 4 to 7 (Alistarh et al. 2017, Sec. 5).

Top-H/Rand H. Achieving higher compression rates is possible through sparsification opera-
tors, that only transmit a few coordinates. The most popular schemes are Top-H and Rand-H
compressors, that respectively map the vector to either its H largest coordinates, or a random
subset of cardinality H , rescaled by D/H to ensure unbiasedness. Top-H is a biased operator,
and the performance of Rand-H are poor on deep learning tasks (Beznosikov, Horváth, et al.
2020, Figures 4 and 5).

Low-rank. Vogels, Karimireddy, and Jaggi 2019 propose a low rank approximation of the
gradients for deep learning. Although high compression factors (∼ 100×) are obtained on some
tasks, most methods are either biased (do not benefit from increasing the number of workers), or
with a very large variance.

HyperSphere Quantization (HSQ). HSQ was introduced by Dai et al. 2019. Two versions are
considered: (1) a - greedy- Voronoi VQ referred to as HSQ-greed in Table 5.1, which is biased,
and for which the theoretical guarantee provided in the paper (in their Lemma 3 and Theorem
3, which corresponds to a variant of A8 and the subsequent convergence rate) worsens as M
increases, making it mostly vacuous; (2) an unbiased version VQ (HSQ-span), which uses a
minimum-norm decomposition of x ∈ Span(CM ) the linear subspace generated by the codewords
- this version suffers from a large variance (see Table 5.1) and potentially an ill-conditioning.
Moreover, the performance of HSQ-span does not improve with M.

Stovoq builds on HSQ-greed, that achieves high compression factors (up to 60-100 to obtain
close to SOTA performance on CIFAR10), while preserving a good flexibility w.r.t. the compres-
sion level. Stovoq approach allows to remove its inherent bias and obviously benefits from the
number of workers n, as it is unbiased.
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Table 5.1: Distortion for Gaussian inputs, for a fixed budget of 16 bits with D = 16.

Method Sign Top-2 Rand-2 Polytope HSQ-span HSQ-greed Stovoq

# Bits (obj =16) 16 2× 8 2× 8 log2(2× 16)× 2 + 6 log2(210) + 6 log2(210) + 6 log2(213) + 3

Unbiased ✓ ✓ ✓ ✓

n = 1 6.4 8.7 110 121 147 9.1 11.0

n = 20 6.4 8.5 5.4 5.9 7.2 8.8 0.53

Dual Quantization and Cross-polytope. An approach to constructing unbiased VQ is to
use the dual VQ, also referred to as Delaunay Quantization (DQ); see Pagès and Wilbertz 2018.
DQ is unbiased for any x ∈ ConvHull(CM ), the convex hull of CM . DQ requires to compute the
barycentric coordinates for x ∈ ConvHull(CM ), that is to solve (λx1, . . . ,λ

x
M ) = argminλ1,...,λM

∥x −∑M
i=1λici∥2, under the constraints λi ≥ 0,

∑M
i=1λi = 1. The quantizer is obtained by drawing a

codeword ci with probability [λx1, . . . ,λ
x
M ]. Computing the barycentric coordinates is in general

very demanding unless CM has a very simple structure (see Appendix B.3 for details).
The Cross-Polytope method (Gandikota et al. 2021) is a simple instance of DQ, with a

codebookC CP
2D composed of the 2D canonical vectors

{
±
√
Dei = ±(0, . . . ,0,

√
D,0 . . .0), i ∈ [D]

}
, that

relies on the inclusion B2(0;1) ⊂ B1(0;
√
D) = ConvHull(C CP

2D ). The barycentric decomposition
can then easily be computed. Unfortunately, this method suffers from a large variance, as the
quantization error ∥VQCP(x,CM )−x∥ of any x is lower bounded by

√
D −1, which means the error

has the same quadratic error as the Rand-1 compressor.
Other vector quantization schemes. Vogels, Karimireddy, and Jaggi 2019 propose PowerSGD

and Yu et al. 2018 GradiVeq, which are also vector compression schemes. Yet, both schemes
result in a biased compression, and thus do not fully benefit from an increase in the number of
workers. Finally, they are supported by a “model” of the gradients to compress (low rank for
PowerSGD, highly correlated for GradiVeq). On the other hand, our method does not make any
such assumption on the gradients distribution. Lastly, Atomo (Hongyi Wang, Sievert, et al. 2018)
relies on a form of Delaunay quantization. However, this requires to solve a meta-optimization
problem at each step, resulting in substantial computational overhead.3

Numerical comparisons: In Table 5.1, we compare the average empirical distortions achieved
by the compression methods given |D| = 104 vectors in Table 5.1. For a communication budget
of 16 bits for D = 16 and assuming that the input distribution is q =N (0, ID ). The compression
factor is 32 (assuming 32 bits floating point per coordinate). Such a compression rate is out of
reach for QSGD, that requires, even for s = 1 at least

√
D log(D) +R bits, where R is the number

of bits to encode the norm (32 in Alistarh et al. 2017). For QSGD we have quantized the norm
(using an uniform quantizer) on 3 bits and obtained an averaged distortion of 36.10 (for n = 1)
and 1.82 for (n = 20) - the total number of bits is 19. We use H = 2 for Top-H and Rand-H
and use a scalar quantizer with 8 bits. For HSQ, we use 6 bits for the norm, using the unbiased
uniform quantizer given in Dai et al. 2019 and a Voronoi optized codebook for the uniform
distribution on the unit-sphere with M = 210 codewords. For Stovoq we use a random codebook
with M = 213 codewords, sampled from a N (0, (1 + 2/D) ID ), and 3 bits are allocated for the
scalar quantization of 1/rpM (the inverse of the radial bias). Finally, we average the result of
2 independent compressions for Polytope (following the replication technique described in
Gandikota et al. 2021). For Stovoq with n = 20, the codebooks of the different workers are

3Moreover, the best performance reported on test accuracy (Hongyi Wang, Sievert, et al. 2018, Fig. 3a), on CIFAR10
(with either ResNet-18 or VGG11) is below 80% (more than 10% below any of our results, with a weaker compression).
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independent.
Overall, for n = 1, Stovoq achieves the best distortion among unbiased compressors4, and is

nearly on par with biased methods, and for n = 20, Stovoq strongly outperforms all methods.

5.4 Dostovoq algorithm

We now describe how the Stovoq compression scheme can be implemented in FL. As a repre-
sentative example, we present the adaptation to Federated-SGD algorithm. At iteration t + 1, the
crucial steps are:

1. Worker i ∈ [n] computes the norm ∥gi,t+1∥ of the d × 1 gradient gi,t+1 and then splits the
scaled gradient gi,t+1×

√
d/∥gi,t+1∥ into L-buckets of sizeD: gi,t+1×

√
d/∥gi,t+1∥ = [b1

i,t+1, . . . , b
L
i,t+1].

The norm ∥gi,t+1∥ is transmitted to the central node using a high-resolution scalar quantizer.

2. Each worker quantizes the buckets {b1
i,t+1, . . . , b

L
i,t+1} using Stovoq. Independent codebooks

{CM,i,t+1}i∈[n] are used to ensure that the quantizers remain conditionally independent.
The double stochasticity (each worker uses random codebooks, independent between
workers and across iterations) motivates the name Dostovoq. At iteration t, the same
codebook is used for all buckets of worker i. Formally, for ℓ ∈ [L] we apply (in parallel)
Stovoq(bℓi,t+1,p,M,P , si,t+1), with a sequence of different seeds (si,t+1)i∈[n],t≥0. This sequence
is shared between the workers and the central node at initialization.

3. The central node computes (ĝi,t+1)i∈n from all messages received, performs the update on
wt , and broadcasts wt+1 to the workers.

Algorithme 7 : Dostovoq-SGD over T iterations

Input :T nb of steps, (ηt)t≥0 LR, w0, p, M, P ;
Output : (wt)t≥0

1 for t = 1, . . . ,T do
2 worker0 sends wt−1 and different seeds si,t to all wi ;
3 for i = 1, . . . ,n do
4 Compute local gradient gi,t at wt−1;
5 Split gi,t ×

√
d/∥gi,t∥ on [b1

i,t , . . . , b
L
i,t] ;

6 for ℓ = 1, . . . ,L (in parallel) do
7 (it,i,ℓc , it,i,ℓr ) = Stovoq(bℓi,t ,p,M,P , sk,t)
8 end
9 Send (∥gi,t∥, (i

t,i,ℓ
c , it,i,ℓr )ℓ∈[L]) to CS ;

10 end
11 Reconstruct (ĝi,t)i∈n ;
12 Update: wt = wt−1 − ηt 1

n

∑n
i=1 ĝi,t ;

13 end

4The directionally unbiased version of Stovoq (coined GRVQ in Appendix B.5, e.g. in Table B.9) achieves the lowest
distortion of 6.8 for n = 1.



5.5. Numerical experiments 63

Table 5.2: Average accuracy over 5 experiments, after 100 epochs on CIFAR-10. RBB = Raw bits
per bucket; ECF = Effective compression factor.

Alg. SGD QSGD QSGD QSGD HSQ HSQ Dos. Dos.

2 bits 4 bits 8 bits d = 16 d = 8 d = 16 d = 8

RBB 32d
√
d log(d) log(d)

ECF 1 ∼ 13 ∼ 8 ∼ 4 34 17 38 20
n = 1 91.9 91.7 92.1 91.9 92.0 92.0 92.0 92.1
n = 8 92.0 91.8 91.8 92.0 91.8 92.0 91.8 92.1

Table 5.3: Distortion on a subset G of gradients of a layer of CIFAR-10, for a budget of 16 bits
with D = 16.

Alg. Top-2 Rand-2 Polytope HSQ-span HSQ-greed Dostovoq

RBB 2× 8 2× 8 2log2(2D) + 6 log2(210) + 6 log2(213) + 3
Unbiased ✓ ✓ ✓ ✓
n = 1 0.51 5.66 7.6 7.74 0.59 0.42
n = 8 0.51 0.76 0.97 0.97 0.49 0.053

5.5 Numerical experiments

Least Squares Regression (LSR) We consider a least-squares problem with |D| = 214 samples,
a bucket size D = 16, d = 29, and n = 32 workers; each worker has access to a subset b =
211 samples (picked with replacement) to introduce a dependency in the data used by the
workers. For j ∈ [|D|], we assume Xj ∼ N (0, Id) and Yj ∼ N (X⊤j ω∗,1) where ω∗ ∈ RD . We solve

infω∈Rd
∑|
j=1D|∥Yj −X

⊤
j ω∥

2 via a gradient descent with step size 1/αL where α is fine-tuned
for each quantization method and L ≈ 2|D| is the smoothness constant. We use Dostovoq with
M = 213 codewords sampled fromN (0, (1+2/D) Id) for Dostovoq andM = 210 on the unit Sphere
for HSQ s.t. the number of bits transmitted at each round by the worker is set to 16 (see Table 5.1).
Figure 5.2 reports the excess-log of the train loss over T = 10 iterations, for a standard GD.
Dostovoq outperforms HSQ-greed: indeed the linear convergence rate of distributed GD is faster
for an unbiased compressor than for the biased approach.

Applications to Deep Neural Networks. We now describe our experimental framework for
training two standard models of Deep Neural Networks: a VGG-16 (Simonyan and Zisserman
2014) and a ResNet-18 (He et al. 2016). We follow the standard procedure of training those
models both on CIFAR-10 and ImageNet; the hyper-parameters are fine-tuned to optimize
the accuracy without quantization. We do not compress the affine constant part of the affine
convolutional layers and batch normalization layers. We apply independent Dostovoq on
batches of 32 buckets of size D = 16 (i.e. we transmit a high-resolution norm for d = 32 ·16 = 512
coefficients).

Distortion: In Table 5.3 we report the distortion of a random subset of gradients G = {gt , t ∈
[|G|]} (with |G| = 102, D = 16, d = 25 ×D) obtained from a given layer of a VGG on CIFAR-10, i.e.:

|G|−1 ∑
gt∈G

∥∥∥n−1 ∑n
i=1 ĝi,t −gt

∥∥∥2
, where (ĝi,t)i∈[n] correspond to i independent workers compressing

a stochastic gradient gt . The choice of the layer does not affect significantly the results. Even
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Figure 5.2: Comparison between GD (blue), HSQ-greed (orange) and Dostovoq (green), on a LSR
problem in dimension d = 29.

with the actual gradient distribution, Dostovoq outperforms for a given compression factor each
unbiased method. This is on pair with the observation that the gradients of a Deep Neural
Network are approximately Gaussian distributed (Banner et al. 2018; A. Xu, Huo, and H. Huang
2020; Bernstein et al. 2018). Additional experiments (e.g., gradients sampled from LSR) can be
found in Appendices B.5.1 to B.5.2.

While distortion for a fixed bit-budget is a relevant metric to compare compression5, for
completeness, we also compare on end-to-end training.

Accuracy on CIFAR-10. We use the implementation of HSQ (Dai et al. 2019): the batch size
is 256 for CIFAR-10, the total number of epochs is 100, the initial learning rate is 0.1, which
is divided by 10 and 50 at epochs 51 and 71. We report the accuracy of Dostovoq, QSGD, and
HSQ-greed in Table 5.2. By design, the compression factor of Q-SGD for D = 16 is 13, which
is significantly less than HSQ or Dostovoq. Both HSQ and Dostovoq perform similarly and the
accuracy gap between the two methods are under the sample variance (computed over 5 seeds,
about 0.2).

We provide results in Appendix B.1.2 for various other scenarios, especially 1) with a different
network architecture, 2) comparing to more methods, showing that Dostovoq outperforms Top-
k and Cross-Polytope, 3) with strong distribution heterogeneity (using Dostovoq-DIANA), 4)
with Error Feedback (gaining 1%). Furthermore, we also report computational and memory
overheads, give a sensibility analysis to the choice of D, L and M, and discuss implementation
challenges in Appendix B.1.2.

Accuracy on ImageNet. For ImageNet, we use different bucket sizes, the standard batch
size of 256, and only n = 1 worker for energy savings (recall Imagenet training last about 1
day for a single worker on academic hardware). An initial learning rate of 0.1 is divided by 10
at epoch 30 and 60, while the model is trained for 90 epochs. A ResNet here obtains 69.9%,
and with a compression factor of 8, the performance drops by 2.5%. Using D = 16, we reach a
compression factor of 38, while the Top-1 accuracy drops by only 4.8%: this is a substantially
higher compression rate than the concurrent work QSGD on the ImageNet dataset. We stress that

5“aggregated” metrics (performance of advanced algorithms, with specific hyperparameters – batch, learning rate
schedule, etc.), may not reflect the quality of a compression scheme, and highly depend on amount of tuning.
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we performed no parameter tuning for the Dostovoq run, and used exactly the same parameters
than the ones optimized for SGD.

5.6 Conclusion

In this chapter, we propose and analyze a compression technique, relying on unitarily invariant
random codebooks. Our focus is thus on analyzing its properties: we demonstrate the perfor-
mance of this compression technique, focusing on a simple but reliable metric, the distortion on the
compressed vectors, that we carefully analyze and evaluate experimentally on various sources of
vectors.

We also describe how Stovoq can be integrated within (any) Federated Learning algorithm
and demonstrate that we can leverage many of the convergence guarantees provided in the
literature.
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Chapter6
FL with different node computation
capacities, and a central clock

In the previous Chapters 4 and 5 we have presented solutions to work with limited nodes and
a limited bandwidth in the FL context. In the next chapters, we consider the asynchronous
FL setting: we do not assume anymore that nodes contribute to the CS at the same pace. In
particular, nodes can have very different computational speeds and/or a very different access to
the bandwidth. This creates a serious bottleneck: in practical scenari, one does not want to wait
for the slowest node at every CS update.

This chapter details our first solution to work with asynchronous nodes: FAVANO. The CS
follow a fixed clock for its updates, and it can interrupt/trigger any node at any time. This
work (Leconte, V. M. Nguyen, and Moulines 2023) has been accepted for publication at the
ICASSP2024 conference:

Louis Leconte, Van Minh Nguyen, and Eric Moulines (2023). “FAVAS: Federated AVeraging with
ASynchronous clients”. In: arXiv preprint arXiv:2305.16099.

67
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6.1 Introduction

Federated learning, a promising approach for training models from networked agents, involves
the collaborative aggregation of locally computed updates, such as parameters, under centralized
orchestration (Konečnỳ, B. McMahan, and Ramage 2015; B. McMahan et al. 2017; Kairouz, H. B.
McMahan, et al. 2021). The primary motivation behind this approach is to maintain privacy, as
local data is never shared between agents and the central server (Y. Zhao et al. 2018; Horváth,
Sanjabi, et al. 2022). However, communication of training information between edge devices
and the server is still necessary. The central server aggregates the local models to update
the global model, which is then sent back to the devices. Federated learning helps alleviate
privacy concerns, and it distributes the computational load among networked agents. However,
each agent must have more computational power than is required for inference, leading to
a computational power bottleneck. This bottleneck is especially important when federated
learning is used in heterogeneous, cross-device applications.

Most approaches to centralized federated learning (FL) rely on synchronous operations, as
assumed in many studies (B. McMahan et al. 2017; J. Wang, Charles, et al. 2021). At each global
iteration, a copy of the current model is sent from the central server to a selected subset of agents.
The agents then update their model parameters using their private data and send the model
updates back to the server. The server aggregates these updates to create a new shared model,
and this process is repeated until the shared model meets a desired criterion. However, device
heterogeneity and communication bottlenecks (such as latency and bandwidth) can cause delays,
message loss, and stragglers, and the agents selected in each round must wait for the slowest one
before starting the next round of computation. This waiting time can be significant, especially
since nodes may have different computation speeds.

To address this challenge, researchers have proposed several approaches that enable asyn-
chronous communication, resulting in improved scalability of distributed/federated learning
(Xie, Koyejo, and I. Gupta 2019; Y. Chen et al. 2020; Z. Chen et al. 2021; C. Xu et al. 2021). In
this case, the central server and local agents typically operate with inconsistent versions of the
shared model, and synchronization in lockstep is not required, even between participants in
the same round. As a result, the server can start aggregating client updates as soon as they are
available, reducing training time and improving scalability in practice and theory.

Our proposed algorithm FAVANO is designed to allow clients to perform their local steps
independently of the server’s round structure, using a fully local, possibly outdated version of
the model. Upon entering the computation, all clients are given a copy of the global model and
perform at most K ≥ 1 optimization steps based on their local data. The server randomly selects
a group of s clients in each server round, which, upon receiving the server’s request, submit
an unbiased version of their progress. Although they may still be in the middle of the local
optimization process, they send reweighted contributions so that fast and slow clients contribute
equally. The central server then aggregates the models and sends selected clients a copy of the
current model. The clients take this received server model as a new starting point for their next
local iteration.

6.2 Related Works

Federated Averaging (FedAvg), also known as local SGD, is a widely used approach in federated
learning. In this method, each client updates its local model using multiple steps of stochastic
gradient descent (SGD) to optimize a local objective function. The local devices then submit
their model updates to the central server for aggregation, and the server updates its own model
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parameters by averaging the client models before sending the updated server parameters to
all clients. FedAvg has been shown to achieve high communication efficiency with infrequent
synchronization, outperforming distributed large mini-batches SGD (T. Lin et al. 2019).

However, the use of multiple local epochs in FedAvg can cause each device to converge to
the optima of its local objective rather than the global objective, a phenomenon known as client
drift. This problem has been discussed in previous work; see Karimireddy, Kale, et al. 2020.
Most of these studies have focused on synchronous federated learning methods, which have a
similar update structure to FedAvg (J. Wang, Qinghua Liu, et al. 2020; Karimireddy, Kale, et al.
2020; Qu, Song, and Tsui 2021; Makarenko et al. 2022; Y. Mao et al. 2022; Tyurin and Richtárik
2022). However, synchronous methods can be disadvantageous because they require all clients
to wait when one or more clients suffer from high network delays or have more data, and require
a longer training time. This results in idle time and wasted computing resources.

Moreover, as the number of nodes in a system increases, it becomes infeasible for the central
server to perform synchronous rounds among all participants, and synchrony can degrade
the performance of distributed learning. A simple approach to mitigate this problem is node
sampling, e.g. Smith et al. 2017; Keith Bonawitz, Eichner, et al. 2019, where the server only
communicates with a subset of the nodes in a round. But if the number of stragglers is large, the
overall training process still suffers from delays.

Synchronous FL methods are prone to stragglers. One important research direction is based
on FedAsync (Xie, Koyejo, and I. Gupta 2019) and subsequent works. The core idea is to update
the global model immediately when the central server receives a local model. However, when
staleness is important, performance is similar to FedAvg, so it is suboptimal in practice. ASO-Fed
(Y. Chen et al. 2020) proposes to overcome this problem and handles asynchronous FL with local
streaming data by introducing memory-terms on the local client side. AsyncFedED (Q. Wang
et al. 2022) also relies on the FedAsync instantaneous update strategy and also proposes to
dynamically adjust the learning rate and the number of local epochs to staleness. Only one
local updated model is involved in FedAsync-like global model aggregations. As a result, a
larger number of training epochs are required and the frequency of communication between
the server and the workers increases greatly, resulting in massive bandwidth consumption.
From a different perspective, QuAFL (Zakerinia et al. 2022) develops a concurrent algorithm
that is closer to the FedAvg strategy. QuAFL incorporates both asynchronous and compressed
communication with convergence guarantees. Each client must compute K local steps and can be
interrupted by the central server at any time. The client updates its model with the (compressed)
central version and its current private model. The central server randomly selects s clients
and updates the model with the (compressed) received local progress (since last contact) and
the previous central model. QuAFL works with old variants of the model at each step, which
slows convergence. However, when time, rather than the number of server rounds, is taken
into account, QuAFL can provide a speedup because the asynchronous framework does not
suffer from delays caused by stragglers. A concurrent and asynchronous approach aggregates
local updates before updating the global model: FedBuff (J. Nguyen et al. 2022) addresses
asynchrony using a buffer on the server side. Clients perform local iterations, and the base
station updates the global model only after Z different clients have completed and sent their
local updates. The gradients computed on the client side may be stale. The main assumption is
that the client computations completed at each step come from a uniform distribution across all
clients. Fedbuff is asynchronous, but is also sensitive to stragglers (must wait until Z different
clients have done all local updates). Similarly, Koloskova, Sebastian U Stich, and Jaggi 2022 focus
on Asynchronous SGD, and provide guarantees depending on some τmax. Similar to J. Nguyen
et al. 2022 the algorithm is also impacted by stragglers, during the transitional regime at least. A
recent work by Fraboni et al. 2023 extend the idea of Koloskova, Sebastian U Stich, and Jaggi
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2022 by allowing multiple clients to contribute in one round. But this scheme also favors fast
clients. J. Liu et al. 2021 does not run on buffers, but develops an Adaptive Asynchronous
Federated Learning (AAFL) mechanism to deal with speed differences between local devices.
Similar to FedBuff, in J. Liu et al. 2021’s method, only a certain fraction of the locally updated
models contribute to the global model update. Most convergence guarantees for asynchronous
distributed methods depend on staleness or gradient delays (J. Nguyen et al. 2022; Toghani and
Uribe 2022; Koloskova, Sebastian U Stich, and Jaggi 2022). Only Mishchenko, F. Bach, et al. 2022
analyzes the asynchronous stochastic gradient descent (SGD) independently of the delays in
the gradients. However, in the heterogeneous (non-IID) setting, convergence is proved up to
an additive term that depends on the dissimilarity limit between the gradients of the local and
global objective functions.

6.3 Algorithm

We consider optimization problems in which the components of the objective function (i.e., the
data for machine learning problems) are distributed over n clients, i.e.,

min
w∈Rd

f (w); f (w) =
1
n

n∑
i=1

E(x,y)∼Ddata
i

[ℓ(nn(x,w), y)], (6.1)

where d is the number of parameters (network weights and biases), n is the total number of
clients, ℓ is the training loss (e.g., cross-entropy or quadratic loss), nn(x,w) is the DNN prediction
function, Ddata

i is the training distribution on client i. In FL, the distributions Ddata
i are allowed

to differ between clients (statistical heterogeneity).
Each client maintains three key values in its local memory: the local model wi , a counter qi ,

and the value of the initial model with which it started the iterations wiinit . The counter qi is
incremented for each SGD step the client performs locally until it reaches K , at which point the
client stops updating its local model and waits for the server request. Upon the request to the
client i, the local model and counter qi are reset. If a server request occurs before the K local
steps are completed, the client simply pauses its current training process, reweights its gradient
based on the number of local epochs (denoted by Eit+1), and sends its current reweighted model
to the server.

In Zakerinia et al. 2022, we identified the client update wi = 1
s+1wt−1 + s

s+1w
i as a major

shortcoming. When the number of sampled clients s is large enough, s
s+1w

i dominates the
update and basically no server term are taken into consideration. This leads to a significant
client drift. As a consequence, QuAFL does not perform well in the heterogeneous case (see
Section 6.5). Second, one can note that the updates in QuAFL are biased in favor of fast clients.
Indeed each client computes gradients at its own pace and can reach different numbers of epochs
while being contacted by the central server. It is assumed that clients compute the same number
of local epochs in the analysis from Zakerinia et al. 2022, but it is not the case in practice. As
a consequence, we propose FAVANO to deal with asynchronous updates without favoring fast
clients. A first improvement is to update local weight directly with the received central model.
Details can be found in Algorithm 8. Another idea to tackle gradient unbiasedness is to reweight
the contributions from each of the s selected clients: these can be done either by dividing by
the (proper) number of locally computed epochs, or by the expected value of locally computed
epochs. In practice, we define the reweight αi = E[Eit+1 ∧ K], or αi = P(Eit+1 > 0) · (Eit+1 ∧ K),
where ∧ stands for min. We assume that the server performs a number of training epochs T ≥ 1.
At each time step t ∈ {1, . . . ,T }, the server has a model wt . At initialization, the central server



6.3. Algorithm 71

Algorithme 8 : FAVANO over T iterations. In red are highlighted the differences with
QuAFL.

Input : Number of steps T , LR η, Selection Size s, Maximum local steps K ;
/* At the Central Server */

1 Initialize
2 Initialize parameters w0;
3 Server sends w0 to all clients;
4 end
5 for t = 1, . . . ,T do
6 Generate set St of s clients uniformly at random;
7 for all clients i ∈ St do
8 Server receives wiunbiased from client i;
9 end

10 Update central server model wt← 1
s+1wt−1 + ( 1

s+1
∑
i∈St w

i
unbiased);

11 for all clients i ∈ St do
12 Server sends wt to client i;
13 end
14 end

/* At Client i */

15 Initialize
16 Client receives w0 and K from the Server;
17 Local variables wi = w0,q

i = 0;
18 end
19 Loop
20 Run ClientLocalTraining() concurrently;
21 When Contacted by the Server do
22 Interrupt ClientLocalTraining();
23 Define αi following the reweighting strategy ;
24 Send wiunbiased := wiinit + 1

αi
(wi −wiinit) to the server;

25 Receive wt from the server;
26 Update wiinit← wt ,w

i ← wt ,q
i ← 0;

27 Restart ClientLocalTraining() from zero with updated variables;
28 end
29 end
30 function ClientLocalTraining():
31 while qi < K do
32 Compute local stochastic gradient g̃ i at wi ;
33 Update local model wi ← wi − ηg̃ i ;
34 Update local counter qi ← qi + 1;
35 end
36 Wait();
37 end function

transmits identical parameters w0 to all devices. At each time step t, the central server selects a
subset St of s clients uniformly at random and requests their local models. Then, the requested
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clients submit their reweighted local models back to the server. When all requested models arrive
at the server, the server model is updated based on a simple average (see Line 10). Finally, the
server multicasts the updated server model to all clients in St . In particular, all clients i < St
continue to run their individual processes without interruption.

Remark 8. In FAVANO’s setting, we assume that each client i ∈ {1, ...,n} keeps a full-precision local
modelwi . In order to reduce the computational cost induced by the training process, FAVANO can also be
implemented with a quantization function Q. First, each client computes backpropagation with respect
to its quantized weights Q(wi). That is, the stochastic gradients are unbiased estimates of ∇fi

(
Q

(
wi

))
.

Moreover, the activations computed at forward propagation are quantized. Finally, the stochastic
gradient obtained at backpropagation is quantized before the SGD update. In our supplementary
experiments, we use the logarithmic unbiased quantization method of Chmiel et al. 2021.

6.4 Analysis

In this section we provide complexity bounds for FAVANO in a smooth nonconvex environment.
We introduce an abstraction to model the stochastic optimization process and prove convergence
guarantees for FAVANO.

6.4.1 Preliminaries.

We abstract the optimization process to simplify the analysis. In the proposed algorithm, each
client asynchronously computes its own local updates without taking into account the server
time step t. Here in the analysis, we introduce a different, but statistically equivalent setting.
At the beginning of each server timestep t, each client maintains a local model wit−1. We then
assume that all n clients instantaneously compute local steps from SGD. The update in local step
q for a client i is given by:

h̃it,q = g̃ i
wit−1 −

q−1∑
s=1

ηh̃it,s

 , (6.2)

where g̃ i represents the stochastic gradient that client i computes for the function fi . We also
define n independent random variables E1

t , . . . ,E
n
t in N. Each random variable Eit models the

number of local steps the client i could take before receiving the server request. We then

introduce the following random variable: h̃it =
∑Eit
q=1 h̃

i
t,q. Compared to Zakerinia et al. 2022, we

do not assume that clients performed the same number of local epochs. Instead, we reweight the
sum of the gradients by weights αi , which can be either stochastic or deterministic:

αi =

P(Eit+1 > 0)(Eit+1 ∧K) stochastic version,
E[Eit+1 ∧K] deterministic version.

(6.3)

And we can define the unbiased gradient estimator: ȟit = 1
αi

∑Eit∧K
q=1 h̃it,q.

Finally, a subset St of s clients is chosen uniformly at random. This subset corresponds to the
clients that send their models to the server at time step t. In the current notation, each client
i ∈ St sends the value wit−1 − ηȟ

i
t to the server. We emphasise that in our abstraction, all clients

compute Eit local updates. However, only the clients in St send their updates to the server, and
each client i ∈ St sends only the K first updates. As a result, we introduce the following update
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Table 6.1: How long one has to wait to reach an ϵ accuracy for non-convex functions. For simplic-
ity, we ignore all constant terms. Each constant C_ depends on client speeds and represents the
unit of time one has to wait in between two consecutive server steps. L is the Lipschitz constant,
and F := (f (w0)− f∗) is the initial conditions term. ai ,b are constants depending on client speeds
statistics, and defined in Theorem 10.

Method Units of time

FedAvg
(
FLσ2+(1− sn )KG2

sK ϵ−2 +FL
1
2Gϵ−

3
2 +LFB2ϵ−1

)
CFedAvg

FedBuff
(
FL(σ2 +G2)ϵ−2 +FL(( τ

2
max
s2

+ 1)(σ2 +nG2))
1
2 ϵ−

3
2 +FLϵ−1

)
CFedBuf f

AsyncSGD
(
FL(3σ2 + 4G2)ϵ−2 +FLG(sτavg )

1
2 ϵ−

3
2 + (sτmaxF)

1
2 ϵ−1

)
CAsyncSGD

QuAFL 1
E2FLK(σ2 + 2KG2)ϵ−2 + n

√
n

E
√
Es
FKL(σ2 + 2KG2)

1
2 ϵ−

3
2 + 1

E
√
s
n
√
nFBK2Lϵ−1

FAVANO FL(σ2 ∑n
i
ai
n + 8G2b)ϵ−2 + n

s FL
2(K2σ2 +L2K2G2 + s2σ2 ∑n

i
ai
n + s2G2b)

1
2 ϵ−

3
2 +nFB2KLbϵ−1

equations: 
wt = 1

s+1wt−1 + 1
s+1

∑
i∈St (w

i
t−1 − η

1
αi

∑Eit∧K
s=1 h̃it,s),

wit = wt , for i ∈ St ,
wit = wit−1, for i < St .

(6.4)

Assumptions and notations.

A10. Uniform Lower Bound: There exists f∗ ∈ R such that f (w) ≥ f∗ for all w ∈ Rd .

A11. Smooth Gradients: For any client i, the gradient ∇fi is L-Lipschitz continuous for some L > 0,
i.e. for all w,ν ∈ Rd : ∥∇fi(w)−∇fi(ν)∥ ≤ L∥w − ν∥.

A12. Bounded Variance: For any client i, the variance of the stochastic gradients is bounded by some
σ2 > 0, i.e. for all w ∈ Rd : E[

∥∥∥g̃ i(w)−∇fi(w)
∥∥∥2

] ≤ σ2.

A13. Bounded Gradient Dissimilarity: There exist constants G2 ≥ 0 and B2 ≥ 1, such that for all

w ∈ Rd :
∑n
i=1
∥∇fi (w)∥2

n ≤ G2 +B2∥∇f (w)∥2.

We define the notations required for the analysis. Consider a time step t, a client i, and a
local step q. We define

µt =

wt +
n∑
i=1

wit

 /(n+ 1) (6.5)

the average over all node models in the system at a given time t. The first step of the proof is
to compute a preliminary upper bound on the divergence between the local models and their

average. For this purpose, we introduce the Lyapunov function: Φt =
∥∥∥wt −µt∥∥∥2

+
∑n
i=1

∥∥∥wit −µt∥∥∥2
.

Upper bounding the expected change in potential. A key result from our analysis is to upper
bound the change (in expectation) of the aforementioned potential function Φt :

Lemma 9. For any time step t > 0 we have:

E [Φt+1] ≤ (1−κ)E [Φt] + 3
s2

n
η2

n∑
i=1

E
∥∥∥ȟit+1

∥∥∥2
, (6.6)
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with κ = 1
n

(
s(n−s)

2(n+1)(s+1)

)
.

The intuition behind Lemma 9 is that the potential function Φt remains concentrated around
its mean, apart from deviations induced by the local gradient steps. The full analysis involves
many steps and we refer the reader to Appendix C.1 for complete proofs. In particular, Lem-
mas 44 and 46 allow us to examine the scalar product between the expected node progress∑n
i=1 ȟ

i
t and the true gradient evaluated on the mean model ∇f (µt). The next theorem allows us

to compute an upper-bound on the averaged norm-squared of the gradient, a standard quantity
studied in non-convex stochastic optimization.

6.4.2 Convergence results

The following statement shows that FAVANO algorithm converges towards a first-order stationary
point, as T the number of global epochs grows.

Theorem 10. Assume A10 to A13 and assume that the learning rate η satisfies η ≤ 1
20B2bKLs

. Then
FAVANO converges at rate:

1
T

T−1∑
t=0

E
∥∥∥∇f (µt)

∥∥∥2 ≤ 2(n+ 1)F
T sη

+
Ls
n+ 1

(
σ2

n

n∑
i

ai + 8G2b)η +L2s2(
720σ2

n

n∑
i

ai + 5600bG2)η2, (6.7)

with F := (f (µ0)− f∗), and 
ai = 1

P(Eit+1>0)2 (
P(Eit+1>0)

K2 +E[
1(Eit+1>0)
Eit+1∧K

]),

b = maxi (
1

P(Eit+1>0)
),

(6.8)

for αi = P(Eit+1 > 0)(Eit+1 ∧K), or 
ai = 1

E[Eit+1∧K]
+

E[(Ei+1∧K)2]
K2E[Eit+1∧K]

,

b = maxi (
E[(Eit+1∧K)2]
E[Eit+1∧K]

),
(6.9)

for αi = E[Eit+1 ∧K].

Note that the previous convergence result refers to the average model µt . In practice, this
does not pose much of a problem. After training is complete, the server can ask each client
to submit its final model. It should be noted that each client communicates sT

n times with the
server during training. Therefore, an additional round of data exchange represents only a small
increase in the total amount of data transmitted.

The bound in Theorem 10 contains 3 terms. The first term is standard for a general non-
convex target and expresses how initialization affects convergence. The second and third terms
depend on the statistical heterogeneity of the client distributions and the fluctuation of the
minibatch gradients. Table 6.1 compares complexity bounds along with synchronous and
asynchronous methods. One can note the importance of the ratio s

n . Compared to J. Nguyen
et al. 2022 or Koloskova, Sebastian U Stich, and Jaggi 2022, FAVANO can potentially suffer
from delayed updates when s

n ≪ 1, but FAVANO does not favor fast clients at all. In practice,
it is not a major shortcoming, and FAVANO is more robust to fast/slow clients distribution
than FedBuff/AsyncSGD (see Figure 6.2). We emphasize both FedBuff and AsyncSGD rely on
strong assumptions: neither the queuing process, nor the transitional regime are taken into
account in their analysis. In practice, during the first iterations, only fast clients contribute. It
induces a serious bias. Our experiments indicate that a huge amount of server iterations has
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to be accomplished to reach the stationary regime. Still, under this regime, slow clients are
contributing with delayed information. J. Nguyen et al. 2022; Koloskova, Sebastian U Stich, and
Jaggi 2022 propose to uniformly bound this delay by some quantity τmax. We keep this notation
while reporting complexity bounds in Table 6.1, but argue nothing guarantee τmax is properly
defined (i.e. finite). All analyses except that of Mishchenko, F. Bach, et al. 2022 show that the
number of updates required to achieve accuracy grows linearly with τmax, which can be very
adverse. Specifically, suppose we have two parallel workers - a fast machine that takes only
1 unit of time to compute a stochastic gradient, and a slow machine that takes 1000 units of
time. If we use these two machines to implement FedBuff/AsyncSGD, the gradient delay of the
slow machine will be one thousand, because in the 1 unit of time we wait for the slow machine,
the fast machine will produce one thousand updates. As a result, the analysis based on τmax
deteriorates by a factor of 1000.

In the literature, guarantees are most often expressed as a function of server steps. In the
asynchronous case, this is inappropriate because a single step can take very different amounts
of time depending on the method. For example, with FedAvg or Scaffold (Karimireddy, Kale,
et al. 2020), one must wait for the slowest client for each individual server step. Therefore, we
introduce in Table 6.1 constants C_ that depend on the client speed and represent the unit of
time to wait between two consecutive server steps. Finally, optimizing the value of the learning
rate η with Lemma 40 yields the following:

Corollary 11. Assume A10 to A13. We can optimize the learning rate by Lemma 40 and FAVANO

reaches an ϵ precision for a number of server steps T greater than (up to numerical constants):

FL(σ
2

n
∑n
i a
i + 8G2b)

ϵ2 +
FL2(K2σ2 +L2K2G2 + s2σ2

n
∑n
i a
i + s2G2b)

1
2

ϵ
3
2 s/n

+
FB2KLb
ϵ/n

, (6.10)

where F = (f (µ0)− f∗), and (ai ,b) are defined in Theorem 10.

The second term in Corollary 11 is better than the one from the QuAFL analysis (Zakerinia
et al. 2022). Although this (n+ 1) term can be suboptimal, note that it is only present at second
order from ϵ and therefore becomes negligible when ϵ goes to 0 (Lu and De Sa 2020; Zakerinia
et al. 2022).

Remark 12. Our analysis can be extended to the case of quantized neural networks. The derived
complexity bounds also hold for the case when the quantization function Q is biased. We make
only a weak assumption about Q (we assume that there is a constant rd such that for any x ∈ Rd
∥Q(x)− x∥2 ≤ rd), which holds for standard quantization methods such as stochastic rounding and
deterministic rounding. The only effect of quantization would be increased variance in the stochastic
gradients. We need to add to the upper bound given in Theorem 10 an “error floor” of 12L2rd ,
which remains independent of the number of server epochs. For stochastic or deterministic rounding,
rd = Θ(d 1

22b ), where b is the number of bits used. The error bound is the cost of using quantization as
part of the optimization algorithm. Previous works with quantized models also include error bounds
(H. Li et al. 2017; Zheng Li and Sa 2019).

6.5 Numerical Results

We test FAVANO on three image classification tasks: MNIST (Li Deng 2012), CIFAR-10 (Krizhevsky,
G. Hinton, et al. 2009), and TinyImageNet (Y. Le and X. Yang 2015). For the MNIST and CIFAR-
10 datasets, two training sets are considered: an IID and a non-IIID split. In the first case,
the training images are randomly distributed among the n clients. In the second case, each
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Table 6.2: Final accuracy on the test set (average and standard deviation over 10 random
experiments) for the MNIST classification task.

Methods IID split
non-IID split

( 2
3 fast clients)

non-IID split
( 1

9 fast clients)

FedAvg 93.4± 0.3 38.7± 7.7 44.8± 6.9
QuAFL 92.3± 0.9 40.7± 6.7 45.5± 4.0
FedBuff 96.0± 0.1 85.1± 3.2 67.3± 5.5
FAVANO 95.1± 0.1 88.9± 0.9 87.3± 2.3

client takes two classes (out of the ten possible) without replacement. This process leads to
heterogeneity among the clients.

The standard evaluation measure for FL is the number of server rounds of communication
to achieve target accuracy. However, the time spent between two consecutive server steps
can be very different for asynchronous and synchronous methods. Therefore, we compare
different synchronous and asynchronous methods w.r.t. total simulation time (see below). We
also measured the loss and accuracy of the model in terms of server steps and total local client
steps (see Appendix C.2.3). In all experiments, we track the performance of each algorithm by
evaluating the server model against an unseen validation dataset. We present the test accuracy
and variance, defined as

∑n
i=1 ∥w

i
t −wt∥2.

We decide to focus on non-uniform timing experiments as in J. Nguyen et al. 2022, and we
base our simulation environment on QuAFL’s code1. After simulating n clients, we randomly
group them into fast or slow nodes. We assume that at each time step t (for the central server),
a set of s clients is randomly selected without replacement. We assume that the clients have
different computational speeds, and refer to Appendix C.2.2 for more details. We assume that
only one-third of the clients are slow, unless otherwise noted. We compare FAVANO with the classic
synchronous approach FedAvg (B. McMahan et al. 2017) and two newer asynchronous methods
QuAFL (Zakerinia et al. 2022) and FedBuff (J. Nguyen et al. 2022). Details on implementing
other methods can be found in Appendix C.2.1.

We use the standard data augmentations and normalizations for all methods. FAVANO is
implemented in Pytorch, and experiments are performed on an NVIDIA Tesla-P100 GPU.
Standard multiclass cross entropy loss is used for all experiments. All models are fine-tuned
with n = 100 clients, K = 20 local epochs, and a batch of size 128. Following the guidelines of
J. Nguyen et al. 2022, the buffer size in FedBuff is set to Z = 10. In FedAvg, the total simulated
time depends on the maximum number of local steps K and the slowest client runtime, so it is
proportional to the number of local steps and the number of global steps. In QuAFL and FAVANO

on the other hand, each global step has a predefined duration that depends on the central server
clock. Therefore, the global steps have similar durations and the total simulated time is the sum
of the durations of the global steps. In FedBuff, a global step requires filling a buffer of size Z.
Consequently, both the duration of a global step and the total simulated time depend on Z and
on the proportion of slow clients (see Appendix C.2.2 for a detailed discussion).

We first report the accuracy of a shallow neural network trained on MNIST. The learning
rate is set to 0.5 and the total simulated time is set to 5000. We also compare the accuracy of
a Resnet20 (He et al. 2016) with the CIFAR-10 dataset (Krizhevsky, G. Hinton, et al. 2009),
which consists of 50000 training images and 10000 test images (in 10 classes). For CIFAR-10, the
learning rate is set to 0.005 and the total simulation time is set to 10000. In Figure 6.1, we show

1https://github.com/ShayanTalaei/QuAFL
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FAVANO

Figure 6.1: Test accuracy on the MNIST dataset with a non-IID split in between n = 100 total
nodes, s = 20.

the test accuracy of FAVANO and competing methods on the MNIST dataset. We find that FAVANO
and other asynchronous methods can offer a significant advantage over FedAvg when time is
taken into account. However, QuAFL does not appear to be adapted to the non-IID environment.
We identified client-side updating as a major shortcoming. While this is not severe when each
client optimizes (almost) the same function, the QuAFL mechanism suffers from significant
client drift when there is greater heterogeneity between clients. FedBuff is efficient when the

FAVANO

FAVANO

Figure 6.2: Test accuracy and variance on the MNIST dataset with a non-IID split between
n = 100 total nodes. In this particular experiment, one-ninth of the clients are defined as fast.

number of stragglers is negligible compared to n. However, FedBuff is sensitive to the fraction
of slow clients and may get stuck if the majority of clients are classified as slow and a few are
classified as fast. In fact, fast clients will mainly feed the buffer, so the central updates will be
heavily biased towards fast clients, and little information from slow clients will be considered.
Figure 6.2 illustrates this phenomenon, where one-ninth of the clients are classified as fast. To
provide a fair comparison, Table 6.2 gives the average performance of 10 random experiments
with the different methods on the test set.

In Figure 6.3a, we report accuracy on a non-IID split of the CIFAR-10 dataset. FedBuff and
FAVANO both perform better than other approaches, but FedBuff suffers from greater variance.
We explain this limitation by the bias FedBuff provides in favor of fast clients. We also tested
FAVANO on the TinyImageNet dataset (Y. Le and X. Yang 2015) with a ResNet18. TinyImageNet
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FAVANO
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Figure 6.3: Test accuracy on CIFAR-10 and TinyImageNet datasets with n = 100 total nodes.
Central server selects s = 20 clients at each round.

has 200 classes and each class has 500 (RGB) training images, 50 validation images and 50 test
images. To train ResNet18, we follow the usual practices for training NNs: we resize the input
images to 64× 64 and then randomly flip them horizontally during training. During testing, we
center-crop them to the appropriate size. The learning rate is set to 0.1 and the total simulated
time is set to 10000. Figure 6.3b illustrates the performance of FAVANO in this experimental setup.
While the partitioning of the training dataset follows an IID strategy, TinyImageNet provides
enough diversity to challenge federated learning algorithms. Figure 6.3b shows that FAVANO
scales much better on large image classification tasks than any of the methods we considered.

Remark 13. We also evaluated the performance of FAVANO with and without quantization. We ran the
code 2 from LUQ (Chmiel et al. 2021) and adapted it to our datasets and the FL framework. Even when
the weights and activation functions are highly quantized, the results are close to their full precision
counterpart (see Figure C.4 in Appendix C.2).

6.6 Conclusion

We have presented FAVANO the first (centralised) Federated Learning method of federated
averaging that accounts for asynchrony in resource-constrained environments. We established
complexity bounds under verifiable assumptions with explicit dependence on all relevant
constants. Empirical evaluation shows that FAVANO is more efficient than synchronous and
asynchronous state-of-the-art mechanisms in standard CNN training benchmarks for image
classification.

2https://openreview.net/forum?id=clwYez4n8e8



Chapter7
Queuing dynamics in the context of
FL with different node computation
capacities

In this final chapter, we detail a new method to deal with asynchronous FL. This scheme is
orthogonal to the algorithm FAVANO presented in the previous Chapter 6. Indeed, in all this
chapter, nodes are not interrupted by the CS. However, each node is allowed to work on models
with potential delays and contribute to updates to the CS at its own pace. This chapter is based
on the work Leconte, Jonckheere, et al. 2024:

Leconte Louis, Matthieu Jonckheere, Sergey Samsonov, and Eric Moulines. (2024). “Queuing
dynamics of asynchronous Federated Learning”. In:International Conference on Artificial

Intelligence and Statistics. PMLR.
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7.1 Introduction

Federated learning (FL) is a distributed learning paradigm that allows agents to learn a model
without sharing data (Konečnỳ, B. McMahan, and Ramage 2015; B. McMahan et al. 2017).
A central server (CS) coordinates the entire process. In most implementations, the CS uses
synchronous operations. During each epoch, the CS communicates with a subset of clients
and waits for their “local updates”. The CS then uses these local updates to update the global
model; B. McMahan et al. 2017; Shaobo Wang et al. 2021. Nevertheless, different computational
speeds, latencies, and/or transmission bandwidths lead to a cascade of issues such as delays and
stragglers. In each epoch, CS must keep up with the pace of the slowest agent.

A solution called FedAsync eliminates the structured rounds of CS interaction and transitions
to asynchronous optimization (Xie, Koyejo, and I. Gupta 2019). This approach, along with subse-
quent works in this direction (Y. Chen et al. 2020; Z. Chen et al. 2021; C. Xu et al. 2021), enables
asynchronous operation for the CS and agents. FedAsync facilitates the aggregation of agents
updates through the CS, rendering the solution highly scalable. More recently, Mishchenko,
F. Bach, et al. 2022 has expanded the theoretical comprehension of purely asynchronous SGD
within a homogeneous framework where all agents can access identical data; certain limitations
still persist in heterogeneous scenarios.

In practical applications of asynchronous federated learning (FL), interactions between agents
and the CS require the use of queues for processing (potentially) multiple jobs. The distribution
of processing delays varies significantly across agents, and this variability has been shown to
have a negative impact on optimization processes. In this chapter, we significantly improve
the analysis delineated in Koloskova, Sebastian U Stich, and Jaggi 2022, exploring in depth an
asynchronous algorithm—AsyncSGD. This algorithm empowers nodes to queue tasks, initiating
communication with the central server upon task completion. The subsequent analysis adheres
to a virtual iterates sequence under standard non-convex assumptions. However, previous
studies made overly simplistic assumptions about the dynamics of queues, choosing to represent
them with an upper bound on the processing delays encountered by the CS. In contrast, our
theory intricately models the queuing dynamics using a stationary closed Jackson network.
This approach allows capturing precisely the queuing dynamics - number of buffered tasks,
processing delay, etc. . . -, as a function of agents speed. We integrate assumptions about the
service time distributions, enabling us to define the explicit stationary distribution of the number
of in-service tasks.

7.2 Related works

Up to this point, the focus has been on synchronous federated learning techniques, as evidenced
by notable contributions such as (J. Wang, Qinghua Liu, et al. 2020; Qu, Song, and Tsui 2021;
Makarenko et al. 2022; Y. Mao et al. 2022; Tyurin and Richtárik 2022). However, synchronous
methods often suffer from suboptimal resource allocation and long training times. Moreover, as
the number of participating agents grows, coordinating synchronous rounds with all participants
becomes an increasingly difficult task for the central server (CS).

Synchronous federated learning methods are particularly vulnerable to the challenge of
stragglers, prompting the emergence of research endeavors rooted in the principles of FedAsync
and its subsequent extensions, as elucidated by Xie, Koyejo, and I. Gupta 2019. The core concept
revolves around updating the global model upon receiving a local model at the central server
(CS). ASO-Fed (Y. Chen et al. 2020) introduces memory-based mechanisms on the local client
side. AsyncFedED (Q. Wang et al. 2022), drawing inspiration from FedAsync’s instantaneous
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update strategy, proposes dynamic adjustments to the learning rate and the number of local
epochs to mitigate staleness.

Looking at the problem from a different perspective, QuAFL (Zakerinia et al. 2022) introduces
a concurrent algorithm that aligns closely with the FedAvg strategy. QuAFL seamlessly integrates
asynchronous and compressed communication methods while ensuring convergence. In this
approach, each client is allowed a maximum of K local steps and can be interrupted. To address
the variability in computational speeds across nodes, FAVANO (as discussed by Leconte, V. M.
Nguyen, and Moulines 2023) strikes a balance between the slower and faster clients.

FedBuff (J. Nguyen et al. 2022) addresses asynchrony and concurrency by incorporating a
buffer on the server side. Clients conduct local iterations, with the CS updating the global model
solely upon completion by a predefined number of different clients.

Similarly, the work presented by Koloskova, Sebastian U Stich, and Jaggi 2022 revolves
around Asynchronous SGD (AsyncSGD), offering guarantees contingent on the maximum delay.
Recent developments by Fraboni et al. 2023 expand upon the ideas presented by Koloskova,
Sebastian U Stich, and Jaggi 2022, allowing multiple clients to contribute within a single round.
J. Liu et al. 2021 diverges from the buffer-centric approach and develops Adaptive Asynchronous
Federated Learning (AAFL) to address speed disparities among local devices. Similar to FedBuff,
J. Liu et al. 2021’s method entails only a fraction of locally updated models contributing to the
global model update. Convergence guarantees within asynchronous distributed frameworks
commonly rely on an analysis contingent upon the maximum delay (J. Nguyen et al. 2022;
Toghani and Uribe 2022; Koloskova, Sebastian U Stich, and Jaggi 2022), which substantially
exceeds the average delay.

Tyurin and Richtárik 2023 introduces a novel asynchronous algorithm, presenting optimal
convergence guarantees under the assumption of fixed computational speeds among workers
over time. Notably, Mishchenko, F. Bach, et al. 2022 conducts an independent analysis of
asynchronous stochastic gradient descent that does not rely on gradient delay. However, in the
context of a heterogeneous (non-i.i.d.) setting, convergence is guaranteed up to an additive term
linked to the dissimilarity limit between the gradients of local and global objective functions.

AsGrad (Islamov, Safaryan, and Alistarh 2023) is a recent contribution that proposes a general
analysis of asynchronous FL under bounded gradient assumption, and adapt random shuffling
SGD to the asynchronous case. Most of standard asynchronous baselines can be expressed in
the general form proposed in Islamov, Safaryan, and Alistarh 2023, and strong convergence
guarantees are provided. But all derivations assume delays are finite quantities.

While an impressive body of research has been dedicated to establishing theoretical tools
for the performance evaluation of communication networks, including the development of
intricate scheduling mechanisms and models (as exemplified in Malekpourshahraki et al. 2022;
Stavrinides and Karatza 2018 and references therein), the predominant focus has revolved
around performance metrics such as delays/completion times (measured in terms of physical
time per node), queue lengths, and throughputs. When it comes to modeling federated learning,
the application of stochastic network paradigms is significant, based on a wealth of results in
the field. However, it is important to recognize that the key metrics to be computed in FL are
significantly different from traditional network metrics, as we will discuss in more detail shortly.
In particular, the measurement of delay in this context must take into account server steps,
which introduces a more complicated dependence on the dynamics of each queue within the
network. Moreover, optimizing these novel metrics may require completely different resource
allocation paradigms.
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7.3 Problem statement

We consider the optimization problem:

minw∈Rd
∑n
i=1E(x,y)∼Ddata

i
[ℓi(nn(x,w), y)] . (7.1)

Here d is the number of parameters (network weights and biases), n is the total number of
clients, ℓi is the local loss function, nn(x,w) is the DNN prediction function, Ddata

i is the training
data distribution on node i. In FL, the distributions Ddata

i are allowed to differ between clients
(statistical heterogeneity). Let us denote by

fi(w) := E(x,y)∼Ddata
i

[ℓi(nn(x,w), y)] (7.2)

the local function optimized on node i and f := 1
n

∑n
i=1 fi . Each node i does not compute the true

gradient of the function fi , but has access to a stochastic version of the gradient, denoted by g̃i .
We consider the task as a computation of a gradient (or possibly stochastic gradient) on one

of the clients. We assume that n clients process a fixed number of tasks C ≤ n in parallel, and the
total number of CS steps is T . Once a task is completed by an agent, the corresponding update is
sent to the CS, which updates the global model and then passes the updated parameters to a new
agent with probabilities (pi)

n
i=1. The selected agent might already be busy computing a previous

update. When the agent is busy, the new job enters a queue that is serviced on a first-in-first-out
basis (FIFO). To perform this analysis, we must establish the following definitions:

• Jk ∈ [1,n] is the node completing a task at the k-th CS epoch (or step),

• Kk+1 ∈ [1,n] is the node selected at step k ∈ [1,T ],

• Xi,k is the number of tasks in node i at step k, i ∈ [1,n], k ∈ [1,T ].

All these random variables can be constructed as deterministic functions of the i.i.d. sequence
(Rl)l∈N which stands for the routing decisions and the sequences (ξ il )l∈N,i=1,...,n which stand for the
service times (durations) of the tasks in each node. These two i.i.d. sequences are independent.

We denote by MT
i,k the number of CS steps between the time that a task is sent to node i and

the time it is completed:

MT
i,k = 1{i}(Kk+1)

∑T

r=k
1(

∑r
l=k 1Jl=i

)<Xi,k
(7.3)

Finally, for k ∈ {0, . . . ,T } we define

ITk =
∑k
l=0 l ·1{k−l}(

∑n
i=1 MT

i,ℓ) , (7.4)

which is the CS step corresponding when the task was dispatched to node Jk .
Direct analysis of the server iterate (wk)k≥0 is difficult because we do not have access to the

joint distribution of (Jk)k≥0, (MT
i,k)k≥0 and (ITk )k≥0. Koloskova, Sebastian U Stich, and Jaggi 2022

assumes an upper bound on the number of gradients that are pending at step k but have not
yet been applied. Koloskova, Sebastian U Stich, and Jaggi 2022 proposes to select new nodes
with uniform probability. In Generalized AsyncSGD (see Algorithm 9), we add some degree of
freedom by allowing the central server to select a new node Kk+1 with (possibly non-uniform)
probability p = (pj )

n
j=1.

We denote

mT
i,k := E[MT

i,k] , and mT
k :=

n∑
i=1

mT
i,k /(n

2p2
i ) .
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Algorithme 9 : Generalized AsyncSGD

Input : Number of server steps T , Number of tasks C ;
/* At the Central Server */

1 Initialize
2 Initialize parameters w0;
3 Select initial set of clients S0, with |S0| = C ;
4 Server sends w0 to each client in S0;
5 All clients in S0 compute gradients on w0 ;
6 Compute optimal (p,η) by minimizing (7.8) ;
7 end
8 for k = 0, . . . ,T do
9 Server receives stochastic gradient g̃Jk (wIk ) ;

10 Update wk+1← wk −
η
npJk

g̃Jk (wIk ) ;

11 Sample a new client Kk+1 with prob. pKk+1
;

12 Send new model wk+1 to Kk+1 ;
13 end
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k
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Figure 7.1: Evolution of mT
i,k w.r.t. k, for two networks of size n = 10,50 initialized with full

concurrency.

It is worth noting that mT
i,k depends on the sampling probability pi , but for simplicity, we prefer

not to index explicitly by p := (pj )
n
j=1. We will show in Section 7.5 that, limk→∞ limT→∞mT

i,k = mi

(these expectations become stationary) see Proposition 16. Of course, the analysis of the transient
behavior is very complex: simple upper bounds can be computed, but these are generally not
expressive and hide the influence of key parameters. In Figure 7.1, we simulate n = 10 and
n = 50 nodes with C = n initial tasks. In this simulation, nodes {0,1,2,3,4} are 10 times faster
than the other nodes to compute a task. Without loss of generality, we focus on the first node
(i = 1), and we plot the value of mT

i,k with respect to k, for T = 500. The value of mT
i,k becomes

stationary when k > 50 and k > 150, for n = 10 and n = 50, respectively.

In our analysis, in line with the approach presented in Koloskova, Sebastian U Stich, and
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Jaggi 2022 (but the same idea was applied earlier), we introduce the virtual iterates µk as follows:
µ0 = w0,

µ1 = µ0 − η
∑
i∈S0

1
npi
g̃i(w0),

µk+1 = µk −
η

npKk
g̃Kk (wk) , k ≥ 1 .

(7.5)

In fact µk is defined as if the selected client Kk was instantaneously contributing to the server
update. Note that the gradients are computed on wk , not on µk . The difference between µk and
wk consists of all the gradients computed (on potentially outdated w’s) and not applied yet,
µk −wk =

∑
(i,j)∈Ik

−1
npi
g̃i(wj ), with Ik = {(i, j) ∈ [1,n]× [1, k]|(Xi,k , 0) and (

∑n
i=1 MT

i,j > k − j)}.

7.4 Non-convex bounds

Following the setting considered in Koloskova, Sebastian U Stich, and Jaggi 2022, J. Nguyen
et al. 2022, we focus on the scenario of the optimization problem (7.1) with L-smooth and
nonconvex objective functions fi . Proofs are detailed in Appendix D.2. Our analysis is based on
the following assumptions:

A14. Uniform Lower Bound: There exists f∗ ∈ R such that f (w) ≥ f∗ for all w ∈ Rd .

A15. Smooth Gradients: For any client i, the gradient ∇fi is L-Lipschitz continuous for some L > 0,
i.e. for all w,µ ∈ Rd : ∥∇fi(w)−∇fi(ν)∥ ≤ L∥w − ν∥.

A16. Bounded Variance: For any client i, the variance of the stochastic gradients is bounded by some
σ2 > 0, i.e. for all w ∈ Rd : E[∥g̃i(w)−∇fi(w)∥2] ≤ σ2.

A17. Bounded Gradient Dissimilarity: There exist constantG, such that for allw ∈ Rd : ∥∇fi(w)−∇f (w)∥2 ≤
G2.

The assumption A16 can be generalized to the strong growth condition (S. Vaswani, F. Bach,
and Schmidt 2019):

E[∥g̃i(w)−∇fi(w)∥2] ≤ σ2 + ρ2 ∥∇fi(w)∥2 ,

following Beznosikov, Samsonov, et al. 2023. Full details are given in the appendix.

Theorem 14. Assume A14 to A17 and let the learning rate η satisfy η ≤ ηmax(p), where

ηmax(p) =:
1

4L

(
C−1/2 max

k≤T
{mT

k }
−1/2 ∧ 2/

∑n

i=1

1
n2pi

)
. (7.6)

Then Generalized AsyncSGD converges at rate:

T∑
k=0

E[∥∇f (wk)∥2]
8(T + 1)

≤
E[f (µ0)− f (µT+1)]

η(T + 1)
+
ηLB

n

∑n

i=1

1
npi

+
η2L2BC

n

∑n

i=1

∑T
k=0m

T
i,k

np2
i (T + 1)

, (7.7)

where B = 2G2 + σ2.

The upper bound in Theorem 14 includes three distinct terms. The first term is a standard
component associated with a general nonconvex objective function; it expresses how the choice
of initialization affects the convergence process.
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The second and third terms depend on the statistical heterogeneity within the client distri-
butions and the fluctuations of the minibatch gradients. If we assume uniform probabilities,
the second term agrees with that of FedAvg: this is the bound that would be obtained with
synchronous optimization. In contrast, the third term encapsulates the unique challenge posed
by optimization within an asynchronous framework.

Before moving on to the main study, it is important to analyze the behavior of this bound.
Note first that the upper bound is minimized by T →∞ if we set η =O(T −1/2). In this setting,
the third term of the upper bound, which is proportional to η2, becomes negligible. To obtain
the optimal probability value p, one should minimize

∑n
i=1 1/pi in this regime, subject to the

condition
∑n
i=1pi = 1. This minimization is achieved when pi = 1/n. Thus, with T → ∞, a

uniform distribution of weights turns out to be a reasonable choice.

A worked-out example For regimes other than T →∞, the bound given by Eq. (7.7) proves dif-
ficult to handle due to the complicated relationship between mT

i,k and the sampling distribution
p. In the next section, we will apply queuing theory methods to shed light on these quantities.
However, before diving into this detailed analysis, we will first examine the behavior of the
bound using a simple example. We choose the sampling probabilities p and the step size η by
solving the constrained optimization problem minp,ηG(p,η) as a function of η ≤ ηmax(p), where

G(p,η) =
A

η(T + 1)
+
ηLB

n

∑n

i=1

1
npi

+
η2L2BC

n

∑n

i=1

∑T
k=0 mT

i,k

np2
i (T + 1)

, (7.8)

and where A = E[f (µ0)− f (µT+1)]. To better understand this bound, let us examine a simple case.
Suppose we have n = 100 clients that are classified as either "fast" or "slow". There are nf = 90
fast clients and n − nf = 10 slow clients, which are assumed to have the same characteristic
(within each group). We will focus on how the proposed bound behaves based on the ratio of
the processing speed of the "fast" and "slow" clients, the proportions of fast and slow clients,
and the concurrency. We will also examine two situations: one in which the processing time
for gradient requests is fixed, and another in which it follows an exponential distribution. By
default, slow clients process a gradient in a time unit of 1 (on average in the random case), while
fast clients take 1

µf
≤ 1 units on average. Let p ∈ (0,1). We denote p the probability to select one

of the fast clients, and q = 1
n−nf − p

nf
n−nf the probability of selecting one of the slow clients (we

need nf p + (n−nf )q = 1). The parameters are L = 1, B = 20 (to assess the effects of gradient noise
and statistical heterogeneity), A = 100 (to highlight the impact of initial conditions). The number
of tasks is varied C = 10,50,100, to assess the impact of concurrency. For the total number of
CS iterations, we consider T = 104. We plot the selection probability p versus µf , ranging from
2 to 16 in Figure 7.2. Furthermore, we graphically illustrate the relative improvement of the
upper bound when compared with the uniform selection problem in Figure 7.3. The results
show that a significant improvement may be achieved (from 30% when µf = 2 to 55% when
µf = 16). To achieve this improvement, we should decrease the probability of selecting fast
clients to p = 7.3 · 10−3. The conclusion (that will be justified theoretically in the next section) is
that fast agents should be selected less frequently than slow agents. Even though this result may
appear to be counter intuitive, it is justified by the fact that by selecting slow customers more
frequently, processing times are reduced. Our simulations shows the average delay is divided by
10 and 2, for fast and slow nodes respectively. More details are given in Appendix D.5.
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Figure 7.2: Optimal sampling probability p as a function of the speed for different concurrency
levels. The number of nodes is fixed to n = 100 nodes.
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Figure 7.3: Relative improvements of the upper bounds as a function of the speed for different
concurrency levels. The number of nodes is fixed to n = 100 nodes.

Finally, these experiments also show that the distribution of the working time required for
gradient evaluation does not have a significant impact: results are very similar whether the
working time is deterministic or distributed according to an exponential (and therefore random)
distribution (provided that the mean are preserved).

Comparison with FedBuff and AsyncSGD We emphasize that previous analyses of both FedBuf

and AsyncSGD are based on strong assumptions: the queuing process is not considered in their
analysis. In practice, slow clients with delayed information contribute. J. Nguyen et al. 2022;
Koloskova, Sebastian U Stich, and Jaggi 2022 propose to bound this delay uniformly by a
quantity τmax. We retain this notation while reporting complexity bounds in Table 7.1, but argue
that nothing guarantees that τmax is properly defined. In Figure 7.4 we compared the relative
improvements of the upper bounds obtained with Generalized AsyncSGD, w.r.t. FedBuff and
AsyncSGD for the scenario described in the previous paragraph. The plot illustrates the massive
improvement achieved by Generalized AsyncSGD when optimal selection probabilities are used.
It also illustrates that the bounds previously reported in the literature do not capture the essence
of the problem. In particular, this comparison holds under the condition that the work time
for gradient evaluation is deterministic, such that τmax equals C times the work time of a slow
client. When the working time is exponential, the maximum delay as defined in the analyses
of FedBuff and AsyncSGD is infinite, and the bounds in J. Nguyen et al. 2022 and Koloskova,
Sebastian U Stich, and Jaggi 2022 are then empty.
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Table 7.1: Asynchronous bounds (up to numerical constants) under non-convex assumption
for T server steps. C is the number of initial tasks. A = E[f (µ0)− f∗], and B = 2G2 + σ2. τmax is
defined in Toghani and Uribe 2022 as the maximum delay. τc, τ isum are defined in Koloskova,
Sebastian U Stich, and Jaggi 2022 as the average number of active nodes, and the sum of delays
of node i, respectively.

Method Bounds η

FedBuff
A

η(T+1) + ηLB+ η2τ2
maxL

2Bn ≤ 1
L
√
τ3

max

AsyncSGD
A

η(T+1) + ηLB+ η2τcL
2B

∑n
i=1

τ isum
T+1 ≤ 1

L
√
τcτmax

Generalized

AsyncSGD

A
η(T+1) + ηLB

∑n
i=1

1
n2pi

+ η2 CL2B
∑n
i=1

∑T
k=0 mT

i,k

n2p2
i (T+1)

≤ 1

L
√

Cmaxk≤T mT
k
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Figure 7.4: Relative improvement of Generalized AsyncSGD over FedBuff and AsyncSGD as a
function of speed. The number of nodes is fixed to n = 100 nodes.
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Physical time w.r.t. CS number of epochs The complexity bounds of Generalized AsyncSGD

are based on the number of communication rounds. The conclusions would, of course, be
different if we took physical time as the criterion. Indeed, when we determine complexity in
terms of number of communications, we do not take into account the time intervals between
two successive arrivals at the central server (whose law depends on the relative speeds of the
agents and the weights p). We discuss bounds for Generalized AsyncSGD w.r.t. physical time in
Appendix D.4.2 and assess them.

7.5 Closed network

The aim of this section is to obtain theoretical guarantees using precise results on closed Jackson
networks (R. Jackson 1954; J. R. Jackson 1957). We assume in this section that task duration
follows an exponential distribution, with each user having its own mean. While it is feasible to
extend these findings to deterministic durations and even almost arbitrary duration distributions,
this complicates the theory. This approach not only captures the different speeds of the clients,
but also allows for a precise assessment of the system dynamics. Consequently, we can accurately
determine the critical values mT

i,k in a steady state. Detailed proofs are postponed to the
Appendix D.3.

7.5.1 Stationary distribution and key performance indicators

Let us denote by (Di(t))i=1,...,n the number of task departures from node i at time t, with the
convention that Di(0) = 0. (Ti,l)l∈N are the jump times associated with the counting process Di .
We further denote by N (t) the number of tasks arriving at the CS, given by

N (t) =
∑n
i=1Di(t) ,

while (Tl)l∈N are the jump times associated with N . Observe that the indices k used in the
previous Section correspond to those jump times. Finally we define the sequences of times
(τi,l)l∈N as the arrival times to node i after time 0.

In what follows, we assume that the task duration is i.i.d. and exponentially distributed at
rate µi , and that the routing decisions are also i.i.d. (and independent of everything else). As in
the previous section, we denote by pi the probability that the dispatcher sends a task to node i.

We denote by X(t) = (X1(t), . . . ,Xn(t)) the continuous-time stochastic process describing the
number of tasks in each node. The unit vectors in Nn are denoted by (ei)i=1...,n. We have the
following results for X.

Proposition 15. Under the above assumptions, the dynamics of (X(t), t ≥ 0) is that of a closed Jackson
network on the complete graph with n nodes and C tasks. The generator of the corresponding jump
Markov process is given for all x ∈ Nn, i ∈ N, j ∈ N by

q(x,x+ ei − ej ) = piµj1(xj > 0) .

Furthermore, defining θi = pi
µi

, the stationary distribution of X may be expressed as:

πC(x1, . . . ,xn) =H−1
C

∏n
i=1θ

xi
i , (7.9)

with HC =
∑
x:
∑
i xi=C

∏n
i=1θ

xi
i .
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Building on the understanding gained in Section 7.4, our goal is to quantify the number
of server steps that are executed when a new task arrives at a given node (say node i) and
subsequently returns to the dispatcher.

For simplicity, the analysis is performed in the stationary regime. In particular, this means
that at time 0 the distribution of the number of tasks in each node follows the product measure
defined in Proposition 15. We denote by EC the stationary average of the closed Jackson network
when the total number of tasks is equal to C.

We can now state the main result of this section:

Proposition 16. Given the model assumptions and assuming stationarity, for all k ∈ N,

limT→∞mT
i,k = EC−1

[∫ Si
0

∑n
j=1µj1(Xj (s) > 0)ds

]
. (7.10)

From now on, we use the notation mi =limT→∞mT
i,k . This quantity is in general difficult to

simplify further. We consider in the sequel a specific regime in which we can obtain tractable
expressions as the Jackson network gets close to saturation. We now describe how the queue
length Xi , and mi depend on the agents speed and selection probability p, under this saturated
stationary regime similar to the Halfin-Whitt regime in queuing theory (Halfin and Whitt 1981).

7.5.2 Scaling regime

We rely on scaling bounds to provide rules of thumb when certain traffic conditions are satisfied.
We follow the derivation of Van Kreveld, Dorsman, and Mandjes 2021, which considers closed
Jackson networks under a particular load regime. We assume without loss of generality that
θn = maxi∈[1,n](θi); where θi = pi /µi (see Proposition 15). Due to the closed nature of the network,
rescaling all parameters through division by the maximum traffic load leads to a different
normalization constant H̃C , but otherwise has no effect on the stationary joint distribution:

π(x1, . . . ,xn−1) = H̃−1
C

∏n−1
i=1 γi

−xi , (7.11)

where for all i ∈ [1,n], γi = θn/θi . We consider a scaling regime where all nodes are saturated,
but at different rates. In Appendix D.6 we also define a more complicated scenario where some
queue lengths may degenerate to 0.

2 clusters under saturation We consider two clusters of nodes of size nf and n−nf , respectively.
Nodes i ∈ [1,nf ] are fast, the rest are slow. We assume that nodes from the same cluster have the
same speed µf ,µs, for fast and slow nodes, respectively (θf < θs). This gives the scaled intensity

of the slow nodes γs(ι) = 1, and the fast nodes γf (ι) := θs
θf

, where ι is the scaling parameter and

the scaling regime corresponds to choosing those values as γf (ι) = 1 + cf ια−1; with cf > 0 a fixed
positive constant, and α ≤ 1, while the total number of tasks also scales as follows:

βι1−α = C+1 .

Choosing α ≤ 1 as in Van Kreveld, Dorsman, and Mandjes 2021 ensures that node loads
approach 1 as ι→∞, enabling the application of Corollary 2 from Van Kreveld, Dorsman, and
Mandjes 2021. This yields precise results on saturated node queue lengths at high traffic loads,
while queue lengths for the remaining nodes are determined by population size constraints. In
this context, define Xιi as the stationary queue length for a scaling parameter ι and mi(ι) the
corresponding value of mi .
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Proposition 17 (Corollary.2 in Van Kreveld, Dorsman, and Mandjes 2021). In stationary regime,
as the scaling parameter ι→∞,

cf ι
α−1Xιi →d. χi , (7.12)

where χi = E
[
Ei |

∑nf
j=1Ej /cf ≤ β

]
, i ∈ [1,nf ], and the (Ej )j≤n are independent unit mean exponential

distributions.

As a consequence, using uniform integrability, we can estimate the following expected value
(expected stationary queue lengths of fast, and slow nodes respectively) as follows:ι

α−1E[Xιi ]→
Γ (cf β)
cf

, ∀i ∈ [1,nf ],

ια−1E[Xιi ]→
1

n−nf

(
β −nf 1

cf
Γ (cf β)

)
,∀i ∈ [nf + 1,n] .

(7.13)

Denoting by P (k,x) = 1−
∑k−1
i=0 e

−x xi
i! , we have:

Γ (c) =
P(

∑nf +2
j=1 Ej ≤ c)

P(
∑nf +1
j=1 Ej ≤ c)

=
P (nf + 2, c)

P (nf + 1, c)
.

We now turn to bound the key quantity mi(ι) for large ι.

Proposition 18. Using the same assumptions as those of Proposition 17 we get that :limsupι→∞ ι
α−1µf mi(ι) ≤ λ

Γ (cf β)
cf

, ∀i ∈ [1,nf ] ,

limsupι→∞ ι
α−1µsmi(ι) ≤ λβ−nf Γ (cf β)/cf

n−nf ,otherwise,
(7.14)

where λ =
∑n
i=1µi .

We expect these bounds to be sharp for large ι.

Numerical example Under the previous assumptions, we have λ = nf µf + (n−nf )µs. We will
further assume nf = n

2 , and pi = 1
n . Under these conditions, we have that Γ (cf β) is close to 1. We

can give a closed form approximations of the bounds of the expected delays:mi(ι) ≤
n(µf +µs)

2µf (µf /µs−1) , ∀i ∈ [1,nf ] ,

mi(ι) ≤
(

2C
n −

1
µf /µs−1

)n(µf +µs)
2µs

, ∀i ∈ [nf + 1,n].
(7.15)

All delays bounds estimations have a closed form in the 2-cluster saturated regime: they only
depend on the number of tasks in the network C, on the number of nodes n, and on the intensity
of nodes µf ,µs. More details on the derivations, and on the following experiment are available
in Appendix D.5. We consider a numerical simulation with n = 10 clients, split in two clusters
of same size: fast nodes with rate µf = 1.2, and slow nodes with rates µs = 1. We saturate
the network with C = 1000 tasks, and we simulate up to T = 106 server steps, and plot the
distribution of the delays (in number of server steps). Our numerical experiment in Figure 7.5
gives average delays (50 and 1950 for fast and slow nodes, respectively) and queue lengths that
correspond to the theoretical expected values. It is also important to point out that the average
delays are way smaller than the maximum delay experienced in the T = 106 steps. This further
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Figure 7.5: Histogram of fast and slow delays (in number of server steps) for a uniform sampling
scheme.

highlights the necessity to switch from analysis that depend on the τmax quantity, to our analysis
that only depends on the expected delays.

7.6 Deep learning experiments

We evaluate FL algos performance on a classic image classification task: CIFAR-10 (Krizhevsky,
G. Hinton, et al. 2009). We consider a non-i.i.d. split of the dataset: each client takes seven
classes (out of the ten possible) without replacement. This process introduces heterogeneity
among the clients.

We compare different asynchronous methods in terms of CS steps. In all experiments, we
track the performance of each algorithm by evaluating the server model against an unseen
validation dataset.

We decide to focus on nodes with different exponential service rates as in J. Nguyen et al.
2022. We build AsyncSGD and Generalized AsyncSGD codes from scratch. After simulating
n clients, we randomly group them into fast or slow nodes. We assume that the clients have
different computational speeds, and refer the readers to Appendix D.7.1 for further details. We
have assumed that half of the clients are slow. We compare the classic asynchronous methods
FedBuff (J. Nguyen et al. 2022), and AsyncSGD (Koloskova, Sebastian U Stich, and Jaggi 2022).
Details about concurrent works implementation can be found in Appendix D.7.2.

We use the standard data augmentations and normalizations for all methods. All methods
are implemented in Pytorch, and experiments are performed on an NVIDIA Tesla-P100 GPU.
Standard multiclass cross entropy loss is used for all experiments. All models are fine-tuned with
n = 100 clients, and a batch of size 128. We have finetuned the learning rate for each method.
For FedBuff we tried several values for the buffer size, but finally found that the default one
Z = 10 gives the best performances.

In Figure 7.6, we compare the performance of a Resnet20 (He et al. 2016) with the CIFAR-10
dataset, which consists of 50000 training images and 10000 test images (in 10 classes). The
total number of CS steps is set to 200. Despite the heterogeneity between client datasets,
we can achieve good performance on image classification. FedBuff has to fill up its buffer
before performing an update, slowing down the training process. AsyncSGD provides acceptable
performance, but we can go further by sampling fast nodes slightly less than the uniform (as
suggested in Section 7.4), and this leads to much better accuracy.

We have additionally tested Generalized AsyncSGD on the TinyImageNet classification task
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Figure 7.6: Accuracy on validation dataset on central server, for CIFAR-10 classification task.
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Figure 7.7: Test accuracy on TinyImageNet dataset with n = 100 total nodes.

(Y. Le and X. Yang 2015), with a ResNet18. We compare Generalized AsyncSGD with the classic
synchronous approach FedAvg (B. McMahan et al. 2017) and two newer asynchronous methods
FedBuff (J. Nguyen et al. 2022) and FAVANO (Leconte, V. M. Nguyen, and Moulines 2023). FAVANO
(and the NN quantized QuAFL (Zakerinia et al. 2022)) follows a completely different method
than we do. There are no queues: Clients are triggered at the CS and either withhold their
results or are interrupted by the CS before the work is completed. In FAVANO, the clients can
have a high latency. The update rate of the CS is limited by (slow) clients: The minimum time
between two CS updates should be at least as long as the minimum time needed to process a
gradient update. TinyImageNet has 200 classes and each class has 500 (RGB) training images,
50 validation images and 50 test images. To train ResNet18, we follow the usual practices for
training NNs: we resize the input images to 64× 64 and then randomly flip them horizontally
during training. During testing, we center-crop them to the appropriate size. The learning rate
is set to 0.001 and the total simulated time is set to 1000. Figure 7.7 illustrates the performance
of Generalized AsyncSGD in this experimental setup. While the partitioning of the training
dataset follows an IID strategy, TinyImageNet provides enough diversity to challenge federated
learning algorithms. FedBuff is efficient when the number of stragglers is small. However,
FedBuff is sensitive to the fraction of slow clients and may get stuck if the majority of clients
in the buffer are more frequently the fast clients: this introduces a bias and few information
from slow clients will be taken into account at the CS. FAVANO works better than FedBuff, but
the CS updates should not be too small in order to allow slow clients to compute at least one
local gradient step. However with AsyncSGD, no constraints are set on the time between two
consecutive CS steps: it evolves freely based on the queuing processes. Generalized AsyncSGD
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presents the same advantage, and in addition, samples clients with an optimal scheme. This
leads to better performance, even on the challenging TinyImageNet benchmark.

7.7 Conclusion

In this chapter, we analyze the convergence of an Asynchronous Federated Learning mechanism
in a heterogeneous environment. Through a detailed queuing dynamics analysis, we demonstrate
significantly improved convergence rates for our algorithm Generalized AsyncSGD, eliminat-
ing dependence on the maximum delay τmax seen in previous works. Our algorithm enables
non-uniform node sampling, enhancing flexibility. Empirical evaluations reveal Generalized
AsyncSGD superior efficiency over both synchronous and asynchronous state-of-the-art methods
in standard CNN training benchmarks for image classification tasks.
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Chapter8
Conclusion

The previous chapters cover the work produced during the past 3 years on a broad topic:
efficiency for deep learning in a connected world. The very first research direction of this
thesis was dedicated to Boolean/binary neural networks. Having a step back, we discovered
that (i) the literature was large and diverse, and (ii) “efficiency” poses several problems and
opens many research directions. In particular an important number of paper cover the topic
of quantized neural network, but the “efficiency”, when available, is only discussed in terms of
FLOPS/BOPS (floating/binary operations). Very few articles propose a fair energy analysis or
sound mathematical guarantees. In addition, all works assume that a single worker is amenable
to manage and handle a learning process based on gradient descent. Taking into account the
privacy and computational power limitations of (edge) devices yields the need of a Federated
framework.

In this thesis, we investigated several aspects of stochastic optimization with the objective of
reducing energy costs for possibly very heterogeneous devices.

In the opening pages of this thesis, we have provided a detailed overview of the contributions
of this work. We will give a short summary of it in the following lines. Then, in Chapter 1,
we propose a basic, yet essential introductory discussion about statistical learning, machine
learning, deep learning, quantization, and federated learning.

In our first contribution, we present AskewSGD a novel framework for quantized neural
network (QNN) training based on an annealed sequence of interval-constrained non-convex
optimization problems solved by an algorithm inspired by Muehlebach and Jordan 2021. For each
of the sub-problems, we give theoretical guarantees. We want to underline that the annealing
strategy is elegant but not straightforward. We initially studied an Augmented Lagrangian
optimization procedure (Zichong Li et al. 2021). The idea was to tackle the QNN training
by a non-convex optimization with additional quantization constraints. Unfortunately, it was
not possible to achieve decent performances on standard image classification tasks. We then
moved on to AskewSGD. Even considering convex and non-convex classification tasks, AskewSGD
outperforms or is on par with other QNN training methods on all considered tasks. All details
are provided in Chapter 2.

In Chapter 3, we moved the focus toward a novel heuristic for training deep neural networks,
that is provably efficient for resource-constrained environments. In particular, we have developed
a method to estimate the energy consumption of NN training and apply it to our Boolean
architectures. Our results suggest that full-precision performance can be totally recovered by
enlarged Boolean models while gaining multi-fold complexity reduction. One can fine-tune
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these energy-efficient models on edge devices for specific tasks. Our experiments highlight
that Boolean models can handle finer tasks, contrary to the misbelief that binary models only
work for image classification. We did not present it in this document, but we also studied the
convergence properties of Boolean training under non-convex assumptions. The full proof is
publicly available in Leconte 2024. We are able to prove that a BNN that follows the Boolean
strategy (V. M. Nguyen 2023) will converge to a first-order stationary point, up to an irreducible
“error floor”. Previous work with quantized models also include error bounds (H. Li et al. 2017;
Zheng Li and Sa 2019). As a negative result, we also have tried to formulate the training of a
binary neural network (BNN) as a variational inference Bayesian problem. We can see a BNN as
a realisation/sample of a Bayesian neural network. Hence, one needs to optimize the underlying
distribution. Following the work of Meng, Bachmann, and Khan 2020 based on Gumbel softmax
strategy, we have implemented a naive Reinforce strategy (Andriy Mnih and Gregor 2014). We
have obtained promising results on small non-convex tasks, but our strategy was suffering from
a high variance for larger problems.

In our third contribution, we have extended the Boolean training idea to the distributed
case. In Chapter 4, we have provided two centralized Federated Learning methods which
incorporate Boolean neural networks. Empirical evaluation shows that FedBool and MajBool

are more efficient than synchronous state-of-the-art mechanisms on several image classification
tasks. Following these first steps in the Federated world, we propose in Chapter 5 an unbiased
compression technique, relying on unitarily invariant random codebooks. We demonstrate
the performance of this compression technique, focusing on a simple but reliable metric, the
distortion on the compressed vectors, that we carefully analyze and evaluate experimentally on
various sources of vectors. We also describe how Stovoq can be integrated within (any) Federated
Learning algorithm and demonstrate that we can leverage many of the convergence guarantees
provided in the literature.

Our last contributions consider the asynchronous FL setting: we do not assume that nodes
contribute to the central server (CS) at the same pace. In particular, nodes can have very different
computational speeds and/or a very different access to the bandwidth. This creates a serious
bottleneck: in practical scenari, one does not want to wait for the slowest node at every CS update.
In Chapter 6, we have presented FAVANO the first (centralised) Federated Learning method of
federated averaging that accounts for asynchrony in resource-constrained environments. We
established complexity bounds under verifiable assumptions with explicit dependence on all
relevant constants. Empirical evaluation shows that FAVANO is more efficient than synchronous
and asynchronous state-of-the-art mechanisms in standard CNN training benchmarks for image
classification. In Chapter 7, we analyze the convergence of an Asynchronous Federated Learning
mechanism in a heterogeneous environment. Through a detailed queuing dynamics analy-
sis, we demonstrate significantly improved convergence rates for our algorithm Generalized

AsyncSGD, eliminating dependence on the maximum delay τmax seen in previous works. Our
algorithm enables non-uniform node sampling, enhancing flexibility. Empirical evaluations
reveal Generalized AsyncSGD superior efficiency over both synchronous and asynchronous
state-of-the-art methods in standard CNN training benchmarks for image classification tasks.

In summary, this thesis presents novel contributions to the field of quantized neural networks
and Federated Learning, addressing critical challenges and offering innovative solutions for
efficient and sustainable learning in a distributed and heterogeneous environment. This work
is in line with a global initiative to make large-scale Machine Learning more environmentally
friendly by minimizing its environmental impact. While the potential benefits are promising,
particularly in terms of energy savings, it is crucial to exercise caution, as a rebound effect
could occur: the use of faster and more energy-efficient algorithms may lead to an increase in
their applications, potentially offsetting or even reversing the gains made through their design.
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This negative impact is already evident in our daily interactions with technology (ads, video
recommendations, music streaming services, etc.).
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Chapter9
Perspectives

We expose in this chapter perspectives for future work based on the contributions presented in
the previous chapters, and inspired by the unsuccessful research directions that we mentioned
in the previous Chapter 8.

First, several interesting research directions can be drawn from our initial contributions.
As an example, all convergence guarantees were developed under the non-convex regime.
Extending to convex assumptions can further provide insights on the rate and the scaling of
the step sizes. Many algorithms can also be combined. For instance AskewSGD can be integrated
into any FL framework such as FAVANO or Generalized AsyncSGD. Additionally, on top of
that, the bandwidth consumption can be relieved through the use of Dostovoq. Moreover, our
contributions in the asynchronous federated learning (FL) field open directions for further
analysis and new algorithm. In particular, in lines with the literature, the complexity bounds
we obtained in Chapters 6 and 7 present a dissimilarity terms “G2” that plays a similar role as
the noise from the stochastic gradient σ2. Some works (Koloskova, Sebastian U Stich, and Jaggi
2022; Islamov, Safaryan, and Alistarh 2023) decouple these two terms (as factor of second order
of the step size) by adding an additional assumption on the step size. But this is not satisfactory,
the same assumption can be used to also eliminate G2 for second order step size terms. Maybe
a true decoupling can be obtained by refining the assumption on gradient dissimilarity. Last,
but not least, a huge step forward will be done in the field of asynchronous FL if the data
heterogeneity influence can be discarded in a manner reminiscent to the control variate strategy
of Karimireddy, Kale, et al. 2020. To the best of our knowledge, control variate are not successful
for asynchronous updates. While following the prove from Karimireddy, Kale, et al. 2020, we
were not able to prove that the “control variate drift” term is contractive in the asynchronous
regime.

Second, investing into a new technology is always a trade-off in between the new benefits
we can gain from it, and its negative societal impact. Large language models (LLMs) are a good
example of such. Notwithstanding its popularity and the practical time savings it offers to
companies, the training but also the mere inference of a LLM consume hundreds of tons of CO2e
(Touvron et al. 2023). But on the other side, I believe LLM could benefit the most. In particular,
for educational purposes, one could imagine that a pretrained LLM could be fine-tuned on an
intermediary level courses dataset. With proper engineered limits, the resulting chatbot would
perfectly fit as a personal teaching assistant. Underprivileged children will have a free help for
their homework/questions: it would be a very useful tool to circumvent any biased educational
system. However, to make this idea free and sustainable, one needs to reduce the environmental
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cost of LLMs. To do so, the approach LQ-LORA (H. Guo et al. 2023) propose to decompose a fixed
(full precision) pre-trained matrix W into the sum of a low-rank and quantized components.
Based on this idea, we are currently studying an approach that goes further by implementing a
vector quantization of the LLM matrices.
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AppendixA
Supplementary material of Chapter 2

A.1 Proofs of Section 2.3

A.1.1 Preliminaries

Absolutely continuous curves. We say that a curve y : R+→ Rd is absolutely continuous (a.c.)
if there is a curve z : R+→ Rd , locally Lebesgue integrable, such that for every t ≥ 0,

y(t)− y(0) =
∫ t

0
z(u)du . (A.1)

In this case, it holds that for almost every t ≥ 0, y is differentiable and ẏ(t) = z(t).

Tangent and normal cones. Let C ⊂ Rd be a closed set. For w ∈ C, the tangent cone of C to w,
denoted by TC(w), is the set of vectors v ∈ Rd for which there exist tk ↓ 0 and wk → w, wk ∈ C,
such that (wk −w)/tk → v. The normal cone of C at w, denoted NC(w), is the set of vectors u ∈ Rd
such that for any v ∈ TC(w), u⊤v ≤ 0. If w < C, then by convention TC(w),NC(w) = ∅.

The Mangasarian-Fromovitz constraint qualification (MFCQ) condition. Consider the case
where C = {w ∈ Rd : h(w) ≥ 0}, for a smooth function h : Rd → Rnh . Denote I(w) = {i ∈
{1, . . . ,nh},hi(w) ≤ 0} as the set of active constraints. We say that the MFCQ condition holds
at w ∈ Rd if there exists v ∈ Rd such that ∇hi(w)⊤v ≥ 0 for all i ∈ I(w). If the MFCQ condition
holds at w ∈ C, then we can write down TC(w) = {v ∈ Rd ,∇hi(w)⊤v ≥ 0, for all i ∈ I(w)} and
NC(w) = {−

∑ng
i=1λi∇hi(w),λi ∈ R+ and λi = 0 if i < I(w)} (see, e.g., Borwein and Lewis 2006, Sec-

tion 7.2). We might notice here, that in the context of Theorem 5 the MFCQ condition holds at
every w ∈ Cϵ.

Differential inclusion. Consider a closed set C ⊂ Rd and f : Rd → R a smooth function. An
essential ingredient of our proof will be the following differential inclusion (DI):

ẏ(t) ∈ −∇f (y(t))−NC(y(t)) . (A.2)
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We say that an a.c. curve y : R+→ C is a solution to this DI if the inclusion holds for almost every
t ≥ 0. We say that f is a Lyapunov function for the set Z := {w ∈ Rd : 0 ∈ −∇f (w)−NC(w)} if for
any such curve:

for all t > 0 , f (y(t)) ≤ f (y(0)) , (A.3)

with strict inequality as soon as y(0) < Z. We have the following lemma.

Lemma 19. Assume that MFCQ holds at every w ∈ C. Then f is a Lyapunov function for the DI (A.2)
and the set Z.

Proof. The assumption that MFCQ holds at every w ∈ C implies that C is Clarke regular (i.e.
if (wk ,uk)→ (w,u) ∈ C ×Rd with (wk ,uk) ∈ C ×NC(wk), then u ∈ NC(w)). As shown in (Sections
5 and 6 of Davis et al. 2020), this implies that for almost every t ≥ 0 and every v ∈ NC(y(t)),
ẏ(t)⊤v = 0. Therefore, for almost every t ≥ 0,

d
dt
f (y(t)) = ∇f (y(t))⊤ẏ(t) (A.4)

∈ −∥ẏ(t)∥2 − ẏ(t)⊤v(t) = −∥ẏ(t)∥2 , (A.5)

where v(t) = ∇f (y(t))− ẏ(t) ∈ −NC(y(t)). This shows that y(t)− y(0) = −
∫ t

0 ∥ẏ(u)∥2 du, which, by
closedness of Z, implies our statement.

In Section 2.3 the set of interest will be Cϵ. It can be easily seen that under the assumptions
of Theorem 5 the MFCQ condition is satisfied at every w ∈ Cϵ. Thus, Lemma 19 implies that, in
this context, f is a Lyapunov function for the DI: ẏ(t) ∈ −f (y(t))−NCϵ (y(t)).

Discrete approximations of differential inclusions. The idea of our proof is to apply the
results of Davis et al. 2020 on the stochastic approximation of differential inclusions to our
setting. To this end, we consider an Rd-valued sequence (yk) constructed as follows:

yk+1 = yk − ηk∇f (yk) + ηkρk+1 − ηkuk , (A.6)

where (ηk) is a sequence of positive step-sizes and (ρk), (uk) are some Rd-valued sequences.
Here, uk represent some approximation of an element of NC(yk), and ρk+1 some (stochastic or
deterministic) perturbation. In this chapter we adopt the suscript notation “k” instead of “t”,
not to confuse the discrete dynamics with the continuous of the DI. Therefore, (yk) might be
seen as an Euler-like discretization of the DI (A.2).

The following proposition follows from a general result of Davis et al. 2020, Theorem 3.2.
We state it, applied to our particular case.

Theorem 20. Assume that:
1. The sequence (ηk) satisfies

∑+∞
k=0ηk = +∞ and

∑+∞
k=0η

2
k < +∞.

2. The sequence
(∑k

j=0ηjρj+1

)
converges.

3. The sequence (yk ,uk) is bounded.
4. If ykj is a subsequence such that ykj → y∞, then y∞ ∈ C and the distance between −NC(y∞)−
∇f (y∞) and −1/n

∑n
j=1{∇f (ykj ) +ukj } goes to zero.

5. f is a Lyapunov function for the DI (A.2).
6. The set f (Z) is of empty interior.

Then, f (yk) converges and limsupk→+∞ d(yk ,Z) = 0.

Proof. Apply Davis et al. 2020, Theorem 3.2, with G = −∇f −NC and φ = f .
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Lemma 21. We can replace the 4-th assumption in Theorem 20 by the following assumption: if
(y∞,u∞) is a cluster point of (yk ,uk), then u∞ ∈NC(y∞).

Proof. If (ykj ) is a subsequence such that ykj → y∞, then 1/n
∑n
j=1−∇f (ykj ) →n→∞ −∇f (y∞).

Furthermore, for any m ≥ 0, we can write:

1
n

n∑
j=1

ukj =
1
n

m∑
j=1

ukj +
n−m
n

 1
n−m

n∑
j=m+1

ukj

 . (A.7)

By the Caratheodory theorem, we can write 1/(n−m)
∑n
j=mukj =

∑d+1
i=1 λm,n,ium,n,i , where λm,n,i ≥ 0,∑d+1

i=1 λm,n,i = 1 and um,n,i ∈ {ukm+1
, . . . ,ukn }. Denote C ⊂ NC(y∞) the set of cluster points of the

sequence ukj . Since the sequence (uk) is bounded, for each i ∈ {1, . . . ,d + 1}, we can extract
a convergent sequence from (λm,n,i ,um,n,i) that converges to (λm(i),um(i)), with um(i) ∈ C ∪⋃+∞
j=m+1{ukj }. Thus, 1/n

∑n
j=1ukj →

∑d+1
i=1 λm(i)um(i). As a consequence, we can write:

lim
n→+∞

1/n
n∑
j=1

ukj = lim
m→∞

d+1∑
i=1

λm(i)um(i) . (A.8)

For each i ∈ {1, . . . ,d + 1}, the sequences (λm(i))m≥0, (um(i))m≥0 are bounded. Therefore, up to
an extraction of a subsequence, we can assume that they converge to some λ(i),u(i). Notice
that u(i) ∈ C ⊂NC(y∞). Therefore, 1/n

∑n
j=1ukj converges to a convex combination of elements

of NC(y∞). By convexity of NC(y∞) this implies that 1/n
∑n
j=1ukj converges to an element of

NC(y∞).

The following lemma provides a condition under which f (Z) has an empty interior.

Lemma 22. Assume that f : Rd → R is d-times continuously differentiable and that C = [a1,b1]×· · ·×
[ad ,bd], where for 1 ≤ i ≤ d, ai ,bi are some real numbers. Consider Z = {y ∈ Rd : 0 ∈ −∇f (y)−NC(y)}.
It holds that f (Z) is of empty interior.

Proof. Denote C̊ as the interior of C. The fact that f (Z∩C̊) has an empty interior is a consequence
of Sard’s theorem and the fact that f is d-times differentiable (see Sard 1942). We now show
that the image of f of any m-dimensional boundary of C intersected by Z also has an empty
interior. Consider m > 0, and fix m − d coordinates of C as cm+1, . . . , cd , where ci is equal to ai
or bi , and denote Cm = (a1,b1)× (a2,b2) · · · × (am,bm)× {cm+1} × · · · × {cd}. Note that if y ∈ Z ∩Cm,
then the m first coordinates of ∇f (y) are zero. Thus, if we call fm the restriction of f to Cm, then
fm : Cm→ R is d times differentiable and Z∩Cm is included in its set of critical points. Applying
Sard’s theorem to fm, we obtain that f (Z ∩Cm) has an empty interior. Since C can be written as
a union of these Cm, this completes the proof.

A.1.2 A proof of Theorem 5

First we need to prove that the cluster point of the iterates w∞ belongs to the constraints set Cϵ.

Lemma 23. Under assumptions of Theorem 5 it holds that limsupk→∞d(wk ,Cϵ) = 0 almost surely.
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Sketch of proof. The detailed proof is given in the following section Appendix A.1.3. The main
idea is that for any i ∈ {1, . . . ,d}, if ψiϵ(w

i
k) < 0 (i.e. wik is outside of the constraints), then wik is

constantly pushed to the closest interval. Thus, the non-convergence might happen if and only
if wik visits one of the interval infinitely often. However, due to the fact, that ηk decreases to zero
and that ∇fj is bounded, this implies, for k large enough, that wik will never leave the “region
of attraction” of this interval (it will be kept at a distance of order ηk to this interval) and thus
converge to it.

Proof of Theorem 5. Our goal is to apply Theorem 20 and, hence, verify its assumptions. By a
standard Martingale argument it holds that the sequence

∑k
j=0ηjρj+1, almost surely, converges

to a finite random variable (a short proof of this result is given in Appendix A.1.3). Consider a
realization for which

∑∞
j=0ηjρj+1 <∞. Let (w∞,u∞) be a cluster point of the sequence (wk ,uk)

and let (kj )j≥0 be a subsequence such that limj→+∞(wkj ,ukj ) = (w∞,u∞). Lemma 23 shows that

w∞ ∈ Cϵ. Since supk≥k0,ϵ
|λik | < +∞, we can extract a subsequence from kj , and assume that

λkj → λ. Thus, ui∞ = −λiψ′ϵ(wi∞). Since all of the λikj are positive, it holds that λi ≥ 0. Moreover,

notice that if ψϵ(wi∞) > 0, then, for j large enough, ψϵ(wikj ) > 0 and, therefore, λikj = 0. Hence, for

i < I(w∞), λi = 0. This shows u∞ ∈NCϵ (w∞). As shown in Lemma 19, f is a Lyapunov function
for the DI: ẏ(t) ∈ −∇f (y(t)) −NCϵ (y(t)). In Lemma 22 we show that f (Z) is of empty interior.
Thus, with the help of Lemmas 23 and 24, the assumptions of Theorem 20 are satisfied, which
concludes the proof.

A.1.3 A martingale result and proof of Lemma 23

We first establish a result on the convergence of the weighted sequence of perturbations.

Lemma 24. Assume A5-A6. Then, almost surely,
∑k
j=0ηjρj+1 converges.

Proof. Denote by Fk the filtration generated by {w1, . . . ,wk}. It holds that E[∇̃f (wk)|Fk] = ∇f (wk).
Furthermore, almost surely, E[∥ρk+1∥2|Fk] ≤ 2E[∥∇̃f (wk)∥2|Fk] + 2∥∇f (wk)∥2 < 4Lf , where Lf =
sup1≤j≤|D|Lfj . Thus, for i ∈ {1, . . . ,d},

∑k
j=0ηjρ

i
j+1 is a martingale with an almost surely bounded

square variation (since
∑+∞
j=0η

2
j < +∞). The proof is concluded by applying Klenke 2013, Theorem

11.14.

In all the sequel, it is implicitly assumed that ϵ was chosen small enough to satisfy the
assumption of Theorem 5. Denote by k0,ϵ the smallest integer after which we do not perform the
clipping step in Algorithm 2.

k0,ϵ := inf{k ≥ 0 : for m ≥ k ,scϵ,α(∇̃f (wm),wm) = sϵ,α(∇̃f (wm),wm)} . (A.9)

Since limsupd(wk ,Cϵ) = 0, it holds that liminfψϵ(w
i
k) ≥ 0 and, therefore, k0,ϵ is almost surely

finite. Thus, for k ≥ k0,ϵ, vik = [sϵ,α(∇̃f (wk),wk)]i , which implies:

vik = −∇̃if (wk) +λikψ
′
ϵ(wik) , (A.10)

with λik = 0 if ψϵ(w
i
k) > 0 and λik = (vik + ∇̃if (wk))/ψ′ϵ(w

i
k) otherwise. Notice that since the

sequences (vk), (wk) are almost surely bounded, supk≥k0,ϵ
|λik | is almost surely finite.

Lemma 25. Assume A5-A6. For i ∈ {1, . . . ,d}, and for k ≥ k0,ϵ, λik ≥ 0.
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Proof. First, notice that if ψϵ(wik) > 0, then λik = 0 by construction.
Consider now the case where ψϵ(wik) ≤ 0. If −∇̃if (wk)ψ′ϵ(wik) ≥ −αψϵ(wik), then vik = −∇̃if (wk)

and, since for k ≥ k0,ϵ, ψ′ϵ(w
i
k) , 0, this implies λik = 0. Otherwise, vik = −αψϵ(wik)/ψ

′
ϵ(w

i
k)

and 0 < −αψϵ(wik) + ∇̃if (wk)ψ′(w
i
k). Dividing the last inequality by {ψ′ϵ(wik)}

2, we obtain 0 <
(−αψϵ(wik) + ∇̃if (wk)ψ′ϵ(wik))/{ψ

′
ϵ(wik)}

2 = (vik + ∇̃if (wk))/ψ′ϵ(wik) = λik .

The rest of this section is devoted to the proof of Lemma 23.
Denote V = max(Vϵ,c,sup1≤j≤|D|Lfj ) and notice that for any k ≥ 0 and i ∈ {1, . . . ,d}, ∥∇̃f (wk)∥ ≤

V and |vik | ≤ V . Therefore, |wik+1 −w
i
k | ≤ ηkV . The lemma will be proved by the following claims.

Claim 1. For i ∈ {1, . . . ,d}, and for 2 ≤ j ≤Mi − 1 if the set [(cij + cij−1)/2, (cij + cij+1)/2) is visited

by wik infinitely often, then there is k0 such that for all k > k0, wik ∈ [(cij + cij−1)/2, (cij + cij+1)/2).

Indeed, fix such a j and denote [c−, c+] the set Ciϵ ∩ [(cij + cij−1)/2, (cij + cij+1)/2), where Ciϵ is the

projection of Cϵ onto the i-th coordinate. Define k0 = sup{k : ηkV ≥max(c− − (cij + cij−1)/2, (cij +

cij+1)/2−c+)}. Consider k ≥ k0, if (cij+c
i
j−1)/2 ≤ wik ≤ c− (we are on the left side of the interval), then

the iterate is pushed to the right and wik ≤ w
i
k+1. Furthermore, by definition of k0, it holds that

wik+1 ≤ c−+ηkV ≤ (cij+c
i
j+1)/2. This implies, that in this casewik+1 stays in [(cij+c

i
j−1)/2, (cij+c

i
j+1)/2).

Otherwise, if c+ ≤ wik < (cij + cij+1)/2 (we are on the right side of the interval), then, we are pushed

to the left, and, by a similar reasoning, wik+1 ∈ [(cij + cij−1)/2, (cij + cij+1)/2). Finally, if wik ∈ [c−, c+],

then by the way k0 was defined we obtain that wik+1 ∈ [(cij + cij−1)/2, (cij + cij+1)/2). Thus, we have

shown that for k ≥ k0, if wik is in [(cij + cij−1)/2, (cij + cij+1)/2), then for all k′ ≥ k, the same will be

true for wik′ , which completes the proof of the claim.
The proof of the following two claims is similar to the one of Claim 1.
Claim 2. For i ∈ {1, . . . ,d}, if the set (−∞, (ci1 +ci2)/2) is visited by wik infinitely often, then there

is k0 such that for all k > k0, wik ∈ (−∞, (ci1 + ci2)/2).
Claim 3. For i ∈ {1, . . . ,d}, if the set [(ciMi−1 + ciMi

)/2,+∞) is visited infinitely often, then there

is k0 such that for all k > k0, wki ∈ [(ciMi−1 + ciMi
)/2,+∞).

In the following, without loss of generality, we will assume that we are in the context of the
first claim and that there is k0, such that for all k ≥ k0, wik ∈ [(cij + cij−1)/2, (cij + cij+1)/2) (the two
other cases can be treated in the exact same manner).

Denote, as previously, [c−, c+] the set Ciϵ∩ [(cij +cij−1)/2, (cij +cij+1)/2), where Ciϵ is the projection
of Cϵ onto the i-th coordinate.

Claim 4. There is k0, such that if there are two index m+ ≥m− > k0 such that wm− < c− < c+ <
wm+

, then there is m, satisfying m− ≤m ≤m+, such that wim ∈ [c−, c+].
Indeed, define k0 = sup{k : ηkV ≥ c+ − c−}. Let m−,m+ be as in the claim and consider

m = inf{k ≥m− : wik ≥ c−}. It holds that wim−1 < c− ≤ wim ≤ w
i
m−1 + ηkV . Since m ≥ k0, this implies

that wim ≤ c− + ηkV ≤ c+, which proves the claim.
Claim 5. There is k0, such that if there are two index m− ≥m+ > k0, such that wm− < c− < c+ <

wm+
, then there is m, satisfying m+ ≤m ≤m−, such that wim ∈ [c−, c+]. The proof is the identical

to the one of the previous claim.
From the fourth and fifth claims, there are only three possible behaviors of wik . Either, wik

visits [c−, c+] infinitely often (this will be treated by the sixth claim), or for k large enough, wik
stays at the left of [c−, c+] (this will be treated by the seventh claim), or it stays at the right of
[c−, c+] (this will be treated by the eights claim).

Claim 6. If wik visits [c−, c+] infinitely often, then limsupwik ≤ c+ and liminfwik ≥ c−.
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Notice that if wik > c+, then wik+1 ≤ w
i
k , and if wik ≤ c+ and wik+1 ≤ c+ + ηkV . Thus, if k is such

that wik ∈ [c−, c+], then supk1≥kw
i
k1
≤ c+ + ηkV . Letting k tend to infinity, proves first part of the

claim. Similarly, if k is such that wik ∈ [c−, c+], then infk1≥kw
i
k1
≥ c− − ηkV . Letting k tend to

infinity proves the second part of the claim.
Claim 7. If for all k large enough, wik > c+, then wik → c+.
Indeed, in this case, for k large enough, the sequence wik is decreasing and thus has a

limit. Denote this limit w+ and assume that w+ , c+, then for k large enough, it holds that
wik+1 = wik+ηkv

i
k ≤ w

i
k−ηkV+, where V+ = inf{min(Vϵ,c,α|ψϵ(w)|/ |ψ′ϵ(w)|) : w ∈ [w+, (cj+cj+1)/2)} > 0.

Thus, for any m, it holds that wik+m+1 ≤ w
i
k −V+

∑m
i=0ηk+i . Since

∑+∞
j=0ηj = +∞, this shows that

this case is impossible. Hence, wik → c+.
Claim 8. If for all k large enough, wik < c−, then wik → c−.
Similarly, to the previous claim, for k large enough the sequence wik is increasing and thus has

a limit. If w− , c−, then for k large enough and m ≥ 0, it holds that wik+m+1 ≥ w
i
k +V−

∑m
i=0ηk+i ,

where V− = inf{min(Vϵ,c,α|ψϵ(w)|/ |ψ′ϵ(w)|) : w ∈ ((cj−1 + cj )/2,w−]} > 0. Since
∑+∞
j=0ηj = +∞, this

implies that w− , c− is impossible. Hence, wik → c−.
These claims show that for every i ∈ {1, . . . ,d}, liminfψϵ(wik) ≥ 0. Therefore, limsupd(wk ,Cϵ) =

0.

A.2 Numerical results

In this section, we give more details about our experiments, and present results on new tasks.

A.2.1 Toy convex example

We give more results about the toy example detailed in Section 2.4. We only compare AskewSGD

and BinaryConnect Courbariaux, Bengio, and David 2015 in a logistic regression problem, but
we test several settings to highlight the strengths of AskewSGD : all methods are trained for a
longer time (50 epochs) using the SGD optimizer, the learning rate is set to 1, and gradients are
calculated on random batches of 100 or 1000 samples. Note the rest of the experimental setting is
identical: we generate n = 6000 feature vectors {xk}nk=1 in dimension d = 10 drawn independently
from the uniform distribution in [−1,1]. We randomly choose an optimal vector w∗ on the
vertices of the hypercube and generate the labels as follows: yk ∼ Bernoulli({1 + e−x

⊤
k w∗ }−1). For

completeness, we study how a full precision SGD converges to the optimal point w∗ of this
convex problem. The same conclusions can be drawn: AskewSGD is very close to the full precision
method while STE method suffers from oscillations. Note however that decreasing the batch size
seems to have a beneficial effect for STE, the larger variance helps to reduce the gap between
STE and the other methods (see down panel in Figure A.1).

A.2.2 “2 moons” example

We consider the binary classification problem “2 moons dataset” presented in Section 2.4 and
inspired by Meng, Bachmann, and Khan 2020. The training dataset consists of n = 2000 samples
and 200 test samples and is displayed in Figure A.2a. A BNN with 9 weights is trained with
one-hot coding and logistic loss. This BNN uses ReLu activations and its architecture is shown
in Figure A.2b. Four gradient-based approaches - a full precision NN, BinaryConnect, AdaSTE,
and AskewSGD - are compared to exhaustive search. In the latter, all 29 binary configurations on
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Figure A.1: Training losses for the logistic regression problem with batches of size 1000 (up
panel) and 100 (down panel). BinaryConnect - green - AskewSGD - blue - full Precision methods -
red -. The x-axis represents the iteration index.

the training and test sets are compared. Figure A.3 shows that different configurations lead to
near-optimal performance. It is worth noting that permutation invariance implies that many
solutions are equivalent in this simple example.
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(b) Basic BNN structure in dimension d = 9

Figure A.2: 2D Dataset and the associated BNN.
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Figure A.3: Histogram of test accuracies for the exhaustive search in dimension d = 512
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Table A.1: Logistic Loss on test samples (average over 50 random experiments) for the binary
classification problem in dimension d = 512 after 100 steps.

Method Loss (×10−3)

Full-precision NN [W32/A32] 2.045± 0.005

BinaryConnect [W1/A32] 2.32± 0.11
AdaSTE [W1/A32] 2.24± 0.10

AskewSGD [W1/A32] 2.11 ±0.01
Exhaustive search [W1/A32] 2.1

A.2.3 Deep learning experiments

The performances reported in Section 2.4 were obtained with the best combination of hyperpa-
rameters that we tested. Other combinations are listed in Table A.2 for the CIFAR-10 dataset.
The performances reported in Table A.2 are still dependent on hyperparameter grid search and

Table A.2: Best Test accuracy after 100 training epochs on CIFAR-10.

α / lr 0.5/0.06 0.2/0.01 0.2/0.03 0.2/0.05 0.4/0.01

AskewSGD 88.51 85.60 88.42 88.32 84.50

could be further improved if more resources are available.

A.2.4 ImageNet with binary weights

In this section, we compare the performance of AskewSGD [W1/A32] on a large dataset and
compare it to BinaryConnect Courbariaux, Bengio, and David 2015; Hubara et al. 2016, Mirror
Descent Ajanthan, K. Gupta, et al. 2021, AdaSTE H. Le et al. 2021, a standard full-precision
NN, and a hypersphere-projected full-precision NN. To ensure a fair comparison, we compare
the different methods using the same NN architecture. Moreover, we do not add bias in any
layer, but introduce batch normalisation (without learning parameters) after each layer. The last
connected layer is kept in full precision - a standard practice in BNN -. Contrary to (Z. Liu, Shen,
et al. 2020; Chmiel et al. 2021), we have kept the first convolutional layer binary. We do not use
layerwise scalar contrary to Rastegari et al. 2016.

We use a training setting similar to Section 2.4. We have adapted the code of Ajanthan, K.
Gupta, et al. 2021; H. Le et al. 2021 to Resnet-18 for ImageNet. The hyperparameters for AdaSTE
and MD are those prescribed for TinyImageNet. We use the same default data normalizations
as the methods we compare to: we resize the input images to 256 × 256 and then randomly
crop them to 224× 224 while centering them to the appropriate sizes during training. Standard
multiclass cross entropy loss is used. All models are fine-tuned for 100 epochs using the Adam
(Kingma and J. Ba 2014) optimizer with dynamics of 0.9 and 0.999 and a batch of size 512. The
full precision NN is trained with an initial learning rate of 0.08. The projected full precision
NN uses a projected gradient algorithm. The same hyperparameters are used as in the "simple"
algorithm, except that a deterministic projection onto the hypersphere is performed at each
iteration. The AskewSGD method is described in Algorithm 2, and we have set α to 0.5. The
precision threshold ϵ is decreased from epoch to epoch: it is set to 1 at the beginning and then
exponentially annealed to .88t in the last 50 epochs, where t is the epoch.
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Just as with Section 2.4, we apply the function sign(·) to our NN before evaluating it on
the test set. Each method was randomly initialized and independently executed once (due to
ImageNet’s longer training time). The learning rate at epochs [20,40] is divided by 2 for all
methods. This task is more difficult than TinyImageNet’s, but we get the same result: AskewSGD

Table A.3: Best Test accuracy after 100 training epochs.

Method ImageNet (ResNet-18)
Top-1 Top-5

Full-precision 66.39 95.32
BinaryConnect 45.85 71.05

MD 46.38 71.18
AdaSTE 35.37 62.22

Projected gradient 2.58 7.93
AskewSGD 46.95 72.11

outperforms all current baselines. Moreover, AskewSGD yields good results even when trained
from scratch, compared to methods Bai, Y.-X. Wang, and Liberty 2018; Z. Liu, Shen, et al. 2020
that require fine-tuning using a pre-trained network.

A.2.5 BNN with binary activations

BNN with binary weights and binary activations offer significant time savings in inference.
We applied our training procedure AskewSGD [W1/A1] to a VGG-small with sign(·) activations
instead of ReLu activations to enable inference with only XNOR and bit-counting operations.
The quantization of activations is here too extreme to apply the same procedure as in Section 2.4.
The biased quantizer SAWB from Choi et al. 2018 does not work anymore (empirically). We
assume the loss of neural gradient information is too important when activations are quantized
on 2 levels.

During the training phase, a batch normalisation layer is inserted before each sign activation
to scale the variance. In the backward pass, the derivative of sign(·) is approximated by the
derivative of the function tanh(·). During inference, we can get rid of the batch normalization
(only the empirical mean is conserved and added to the bias term) and compute only binary
operations.

We compare test accuracy with the CIFAR-10 dataset, which consists of 50000 training images
and 10000 test images (in 10 classes). BNNs are fine-tuned for 100 epochs using the Adam
optimizer with a dynamic range of 0.9 and 0.999 and a batch size of 100 with a learning rate of
0.03. The best test classification accuracies of binary networks obtained with AskewSGD are listed
in Table A.4 for different values of α ∈ [0.2,0.5,0.7]. The preliminary results reported in Table A.4

Table A.4: Best Test accuracy after 100 training epochs.

α 0.2 0.5 0.7

AskewSGD [W1/A1] 81.12 84.34 82.92

show that AskewSGD is state-of-the art for training BNNs with binary weights and activations.
Activation with the function sign(·) leads to a loss in expressive power and consequently a loss
in performance. Several works introduce additional tricks such as real scaling factors Rastegari
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et al. 2016 to bridge the gap between binary signals and their real counterparts. These tricks can
be easily implemented in our approach AskewSGD.



AppendixB
Supplementary material of Chapter 5

B.1 Complementary comments

B.1.1 On the Importance of unbiasedness in Dostovoq

Randomizing codebooks is a crucial aspect of our method. While the independence of the
different compression is not always highlighted in the papers, it is often crucial for the proofs:

• If the same codebooks were used by several users at the same iteration, the mutual inde-
pendence of the compressions would be lost. Typically, the consequence would be to lose
the good dependency on the number of users, which is one of our key focus;

• if a codebook used in the past by one user was used again at any further iteration, then the
gradient would not be unbiased conditionally to the past.

The way we handle seeds in DoStoVoQ ensures that each codebook is generated in a completely
independent way. Note that, in practice, this does not impair the speed of the algorithm, as
sampling new codewords is extremely fast.

B.1.2 Complementary experiments results and discussions

Other experimental settings.

In this Subsection, we provide several complementary convergence results on end-to-end training
on CIFAR10:

1. Under statistical heterogeneity of the workers

2. Adding Error-Feedback (EF)

3. Comparing to more compression schemes

4. Comparing on more Neural Network architectures.

These experiments corroborate the versatility of our method. However, we underline that an
important message of our work is that our thorough comparison on a simpler metric (distortion)

125
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Table B.1: Test accuracy on “heterogeneous" CIFAR10 after 100 epochs.

CIFAR, VGG16 Compression Accuracy
Dostovoq-DIANA, D = 8,M = 212 20x 90.75%
SGD (baseline) no compression 90.73%

Table B.2: Test accuracy on CIFAR10 after 100 epochs, with Error Feedback.

CIFAR, VGG16 Compression Accuracy
Dostovoq-SGD-EF, D = 8,M = 212 20x 92.7%
Dostovoq-SGD, D = 8,M = 212 20x 92.1%

brings better insights than “aggregated” metrics (performance of an advanced algorithm, com-
bining memory and EF, after 100 epochs on a large dataset, with a specific batch size, learning
rate decay, momentum parameter, etc.), that may not reflect the actual quality of the compression
technique, or highly depend on the computational power used for tuning.

Performance under heterogeneity. Our algorithm naturally extends to the statistical het-
erogeneous setting, in which the data hold by each worker i ∈ [n] follows a different distribu-
tion Pi . However, compressed stochastic gradient algorithms (e.g., QSQD) strongly suffer from
heterogeneity (independently of which compressor is used). To limit this impact we use Dos-

tovoq-DIANA (which code is given in Algorithm 12). The crucial idea is to rely on the DIANA

algorithm (Mishchenko, Gorbunov, et al. 2019), that introduces a memory, and recovers (nearly)
the same convergence in the heterogeneous setting as the one in the homogeneous setting.

We run Dostovoq-DIANA on CIFAR-10. To obtain heterogeneity, for each worker (n = 8),
50% of the data was selected from a unique class (different for each worker), and 50% uni-
formly among all classes. Results in Table B.1 highlight the robustness of our approach under
heterogeneity.

Compatibility with EF. Adding EF to our pipeline is straightforward (that is, the modification is
independent of the compression technique). We chose not to add this mechanism to preserve our
focus on the compression technique itself, and because the importance of EF is mostly supported
on biased contractive operators (Karimireddy, Rebjock, et al. 2019; Gorbunov, Kovalev, et al.
2020). In practice, EF is known to often improve convergence. We performed a supplementary
experiment on CIFAR10, with the same tuning, which allowed to improve the performance by
0.6% to 92.7% (see Table B.2).

End to end empirical comparison with (biased) compression methods (Top-k, Cross-Polytope)
We compared to Top-k in Tables 5.1, 5.3 and B.9 to B.11 in terms of distortion. Keeping the same
setting as throughout the Section 5.5 (i.e., no tuning of parameters, we use the best parameters
of SGD, no Error Feedback), we performed an experiment on Top-k (k chosen to achieve 8×
compression), achieving 91.2% of accuracy, below our 92.1% for Dostovoq (see Table B.3). We
also report the result of Cross-Polytope method from Gandikota et al. 2021, to which we had
also compared distortion in Tables 5.1, 5.3 and B.9 to B.11.

Different architecture. We ran the code with a different architecture (ResNet18) on CIFAR-10
(with a single user simulated) instead of the VGG16 model, and present the results in Table B.4.
SGD method reaches 94.5% while Dostovoq method reaches 94.4% with a ×20 compression.
Note that the open-source code available as Supplementary material allows to replicate or extend
these results to other architectures, without additional coding.
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Table B.3: Test accuracy on CIFAR10 after 100 epochs

CIFAR10, VGG16 test accuracy compression factor
No compression 91.9% 1x
Top-k 91.2% 8x
Cross-Polytope 90.9% 16x
Dostovoq

(
M = 212, d = 8

)
92.1% 20x

Table B.4: Test accuracy with a Resnet18 on CIFAR10 after 100 epochs

CIFAR-10, Resnet 18 Compression Accuracy
[Reported in Atomo, Fig 3a] Atomo, 6× 80%
DoStoVoQ-SGD, D = 8,M = 212 20× 94.35%

Compartison to Atomo Atomo (Hongyi Wang, Sievert, et al. 2018) is mostly related to some of
the methods in Gandikota et al. 2021, where the goal is to compute an unbiased decomposition
of a vector on a set of points. As underlined in Chapter 5, this corresponds to a Delaunay
decomposition. This requires to solve a meta-optimization problem at each step, which can result
in substantial computational overhead. Finally, the best performance reported on CIFAR-10 and
a ResNet-18 is 80% on test accuracy Hongyi Wang, Sievert, et al. 2018, Fig. 3a. Comparison is
summarized in Tables B.4 and B.5.

Note that the compression factor is not directly reported in Hongyi Wang, Sievert, et al. 2018.
To the best of our understanding, optimal results were obtained with an SVD with s = 3, that
would correspond to a compression factor of ∼ 6.

Computational complexity.

Empirical estimation of Memory and computational cost. The primary goal of compression is
to reduce the volume of the exchanged messages. Indeed, limiting the number of bits exchanged
is beneficial for the bandwidth usage, energy consumption, etc. This aspect is described as
(one of) the main motivation of compression in (Kairouz, H. B. McMahan, et al. 2021, e.g. at
pages 13, 32). This can result in an acceleration of the overall training process (Alistarh et al.
2017). However, as our experiments are performed in a simulated environment, we do not
actually benefit from the acceleration resulting from the compression. Yet, in order to ensure
that the computation of the compression does not result in an important overhead (as mentioned
in H. Xu et al. 2020; S. Agarwal et al. 2021, this can sometimes make a compression scheme
impracticable), we have compared the end to end wall clock time in Tables B.6 and B.7, showing
that our method is on par with QSGD in terms of computational overhead.

Discussion on the memory and time complexity.

• Memory: The only extra-memory requirement is the storage of the Codebook, of sizeM×D,

Table B.5: Test accuracy with VGG-like networks on CIFAR10 after 100 epochs

CIFAR-10 Compression Accuracy
[Reported in Atomo, Fig 3c] Atomo, VGG11 6× 78%
Dostovoq-SGD, D = 8,M = 212, VGG16 20× 92.1%
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Table B.6: End-to-end time complexity for a VGG16 on CIFAR10

CIFAR10, VGG16 Time per epoch Compression factor
No compression 30 s 1x
QSGD 51 s 8x
DoStoVoQ

(
M = 210,D = 8

)
52 s 25x

Table B.7: End-to-end time complexity for a Resnet18 on Imagenet

ImageNet, ResNet18 Time per epoch Compression factor
No compression 1925 s 1x
QSGD 2702 s 8x
DoStoVoQ

(
M = 210,D = 8

)
2523 s 25x

with (typically) D = 16 and M = 4096. This is often marginal w.r.t. the size of the model of
size d.

• Time-Complexity: At each step, on each node, the algorithm has to perform the following
two steps:(i) Loading a batch of data, computing backpropagation on this batch at the
current model, (ii) Performing compression.

The balance between both obviously strongly depend on the time-complexity for backpropa-
gation, that is highly dependent on the network architecture. For compression, their are two
main steps:

• Sampling the codebook. Experimentally, this is very fast.
• Finding the nearest neighbors in the codebook for each bucket.

Remark that this last step is extremely and easily parallelizable (it can be solved by performing
a tensor product of two matrices).

Regarding decompression, the central server has to generate the codebook and access its
relevant elements. Both these steps are very fast.

Compatibility with all-reduce. Our method is not directly compatible with all-reduce, as it is
the case for QSGD, SignSGD, Atomo, Top-K (S. Agarwal et al. 2021).

Choice of hyperparameters L,M,P

There is a trade-off in between performances and compression. Hence, there is no “optimal set
of parameters”. But in practice, a simple choice is D = 8, M ∈ {1024,4096}, and P = 3.

For example, for D ∈ {2,8,16}, we have reported the accuracies on CIFAR10 (we increased
the number of points until we consistently achieved more than 92%) in Table B.8.

Note on model compression

Another line of work focuses on model compression, with e.g., Pufferfish (Hongyi Wang, S. Agar-
wal, and Papailiopoulos 2021), or Caldas et al. 2018. Here, our focus is on gradient compression.
Compressing the model typically results in more randomness, and would not necessarily be very
suitable with high compression factors.
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Table B.8: Comparison of Test accuracy performances for several values of D,M.

CIFAR-10, VGG16 D = 2 D = 8 D = 16
M = 32 92.2% 91.7% 90.9%
M = 128 92.4% 91.8% 91.8%
M = 256 − 91.8% 91.9%
M = 1024 − 92.1% 91.9%
M = 4096 − 92.1% 92.4%
M = 8192 − − 92.0%

B.2 Proofs

B.2.1 Classical compressors mentioned in the main text

For completeness, we here recall the formal definitions of the scalar compression operators
mentioned in the main text. For i ∈ [d], denote by ei the i-th canonical vector. Let H ∈ [d].

Definition 26 (Sign (Bernstein et al. 2018)). For any x ∈ Rd , Sign(x) :=
∑
i∈[d] sign(xi)ei .

Definition 27 (Top-H). For any x ∈ Rd , Top-H(x) :=
∑
i∈TH xiei , where TH is the set composed of the

indices of the H largest (in absolute value) coordinates of x.

Definition 28 (Rand-H). For any x ∈ Rd , Rand-H(x) := d
H

∑
i∈RH xiei , where RH is the set composed

of H random indices picket uniformly without replacement.

Definition 29 (s-quantization operator). Let s ≥ 1 and p ≥ 1. Given x ∈ Rd , the s-quantization
operator Cs is defined by:

Cs(x) := ∥x∥p ×
d∑
i=1

sign(xi)
{
s−1⌊s|xj |/∥x∥p⌋+1{Ui≤s|xj |/∥x∥p−⌊s|xj |/∥x∥p⌋}

}
ei . (B.1)

where {Ui}di=1 are d-independent uniform random variables on [0,1].

The s-quantization scheme verifies A7 with ωs = min(d/s2,
√
D/s). Proof can be found in

Alistarh et al. 2017, see Appendix A.1.

B.2.2 Notations

For u,v ∈ Rd , ⟨u,v⟩ = u⊤v denotes the standard scalar product. For p ≥ 1 and x ∈ Rd , ∥x∥p ={∑d
i=1 |xi |p

}1/p
. When p = 2, we sometimes drop the subscript, i.e. we write ∥x∥ as a shorthand

notation of ∥x∥2.
A function ϕ : Rd → R is said to be a radial function if and only if ϕ is invariant under unitary

transforms, i.e. for all x ∈ RD and U ∈U(D), ϕ(Ux) = ϕ(x).
We denote for t > 0 by Γ (t) =

∫ +∞
0 ut−1e−udu the Gamma function. Lebd the Lebesgue

measure on Rd . B(x;r) is the (Euclidean) ball centered at x ∈ Rd with radius r > 0. We denote by
SD−1 = {x ∈ RD ,∥x∥ = 1} the unit-sphere and σD−1 the uniform distribution on SD−1.
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B.2.3 Proof of Lemma 6

Note that, for any U ∈U(d) and x ∈ Rd ,

VQ(Ux,CM ) = argmin
c∈CM

∥Ux − c∥ = argmin
c∈CM

∥x −U⊤c∥ =U VQ(x,U⊤CM ) , (B.2)

where U⊤CM = {U⊤C1, . . . ,U
⊤Cn}. Using (B.2) and A9, we get

ECM∼p[g(VQ(Ux,CM ))] = ECM∼p[g(U VQ(x,U⊤CM ))] = ECM∼p[g(U VQ(x,CM ))] . (B.3)

B.2.4 Proof of Theorem 7

We preface the proof of the Theorem by stating and proving two elementary lemmas.

Lemma 30. Let f : Rd → Rd be a function such that f (Ux) =Uf (x) for any x ∈ Sd−1 and U ∈U(d).
Then, there exists r ∈ R such that f (x) = rx for all x ∈ Rd .

Proof. For all x ∈ Sd−1, define g(x) = f (x) − ⟨f (x),x⟩x . It is easily checked that for all x ∈ Rd
and U ∈U(d), g(Ux) =Ug(x). Let Ux be the reflection symmetry with axis Rx: Uxx = x and for
any vector y ∈ Rd orthogonal to x, Uxy = −y. Since g(x) = g(Uxx) = Uxg(x) = −g(x), we get that
g(x) = 0 for all x ∈ Sd−1. Finally, denote by Ux→e1 (where e1 is the first canonical vector) any
unitary transform satisfying Ux→e1x = e1. We get

⟨f (x),x⟩ = ⟨U⊤x→e1f (Ux→e1x),x⟩ = ⟨f (Ux→e1x),Ux→e1x⟩ = ⟨f (e1), e1⟩ = r ,

which concludes the proof.

Lemma 31. Let f : Rd → Rd be a function such that f (Ux) = Uf (x) for any x ∈ Rd and U ∈ U(d).
Then, there exists a function r : R→ R such that f (x) = r(∥x∥)x. Moreover, r(x) = ∥f (∥x∥e1)∥/∥x∥.

Proof. Let λ > 0, and define for x ∈ Sd−1, fλ(x) = f (λx). Lemma 30 shows that there exists ρ(λ) ∈ R
such that, for all x ∈ Sd−1, fλ(x) = f (λx) = ρ(λ)x. Hence for x ∈ Rd , f (x) = f∥x∥(x/∥x∥) = ρ(∥x∥)x/∥x∥.
Hence |ρ(∥x∥)| = ∥f (x)∥ = ∥f (∥x∥Ux/∥x∥→e1x/∥x∥)∥ = ∥f (∥x∥e1)∥. The proof follows.

Proof of Theorem 7. The existence of rpM(x) follows from Lemmas 6 and 31. It remains to prove
that rpM (x) ≥ 0. Let CM = {Y1, . . . ,YM } where Y1, . . . ,YM are i.i.d. random vectors with distribution
p. One has

⟨x,VQ(x,CM )⟩ = ⟨ProjCM (x),x⟩ =
M∑
ℓ=1

⟨Yℓ1{∥Yℓ−x∥2<mink,ℓ ∥Yk−x∥2},x⟩ a.s.

=
M∑
ℓ=1

⟨Yℓ ,x⟩1{∥Yℓ−x∥2<mink,ℓ ∥Yk−x∥2} a.s.

Then, as the Yℓ are exchangeable since i.i.d.,

ECM∼p⟨x,VQ(x,CM )⟩ =ME
[
⟨Y1,x⟩1{∥Y1−x∥2<mink=2:M ∥Yk−x∥2}

]
=ME

[
⟨Y1,x⟩ 1{∥Y1−∥x∥e1∥2<mink=2:M ∥Yk−∥x∥e1∥2}

]
where we used in the second line that the Yℓ are (i.i.d. and) invariant under the action of U (d).
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Now, setting Y1 = (Y 1:d
1 ) we study for a fixed λ = ∥x∥ ≥ 0 the quantity

(∗) = E
[
Y 1

1 1{(Y 1
1 −λ)2+

∑d
j=2(Y j1 )2<mink=2:M ∥Yk−λe1∥2}

]
First we analyze the quadratic inequality in Y 1

1

(Y 1
1 )2 − 2λY 1

1 +λ2 + ∥Y 2:d
1 ∥

2 − min
k=2:M

∥Yk −λe1∥2 < 0.

Its (random) reduced discriminant reads ∆′ = mink=2:M ∥Yk −λe1∥2 − ∥Y 2:d
1 ∥2. Hence

(∗) = EY 1
1 1{Y 1

1 ∈[1−
√
∆′ ,1+

√
∆′]&∆′>0}.

▷ Gaussian case. As ∆′ and Y 1
1 are independent and

∫ x
−∞ ξe

− ξ
2

2 dξ√
2π

= − e
− x

2
2√

2π
, we derive

(∗) = E
[e− (1−

√
∆′ )2

2 − e−
(1+
√
∆′ )2

2
√

2π
1{∆′>0}

]
= E

[ 1
√

2πe
1{∆′>0}e

−∆′
2
(
e
√
∆′ − e−

√
∆′
)]
≥ 0

▷ General case. The marginal Y 1
1 has an absolutely continuous distribution with a density p1

which can be taken even since Y is itself symmetric with density p so that
∫ +b
−b y

1p1(dy1) = 0. In

view of the form of (∗), it suffices to show that
∫ a+b
a−b y

1p1(dy1) ≥ 0 for every fixed a,b > 0. In fact,

y1 7→ y1p1(y1) is an odd function so that
∫ 0
a−b y

1p1(dy1) = −
∫ b−a

0 y1p1(dy1) which in turn implies∫ a+b

a−b
y1p1(dy1) =

∫ a+b

b−a
y1p1(dy1) ≥ 0.

Finally, this proves that ECM∼p⟨x,VQ(x,CM )⟩ ≥ 0 (and clearly > 0 if x , 0) which completes
the proof.

B.3 Scalar and vector Quantization

B.3.1 Unbiased random scalar quantization

A random scalar quantizer is a random map from the real line to a (scalar) codebook OQ =
{o1, . . . , oQ} ⊂ R where Q ≥ 2. It is assumed that −∞ < o1 < · · · < oQ < ∞. The resolution (or
code rate) is P = log2(Q) is the number of bits needed to uniquely specify a codeword. A scalar
quantizer is said to be uniform if for all i ∈ [Q − 1], oi+1 − oi = δ, for some δ > 0. Note that in such
case δ = {oQ − o1}/(Q − 1).

For x ∈ R and u ∈ [0,1], consider a function SQ(x,OQ,u) ∈ OQ. If U ∼ Unif([0,1]), then
SQ(x,OQ,U ) is a random scalar quantizer. A random scalar quantizer is said to be unbiased if for
all x ∈ [o1, . . . , oQ], EU∼Unif([0,1])[SQ(x,OQ,U )] = x.

A simple way to construct an unbiased scalar quantizer goes a follows. We first compute the
index j(x) ∈ [Q] such that x ∈

[
oj(x), oj(x)+1

)
. Note that x = λ∗j(x)(x)oj(x) + (1−λ∗j(x)(x))oj(x)+1 where

λ∗j(x)(x) = (x − oj(x))/(oj(x)+1 − oj(x)) ∈ (0,1] .
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For u ∈ (0,1], we set

SQ(x,OQ,u) = 1{u≤λ∗j(x)(x)}oj(x) +1{u>λ∗j(x)(x)}oj(x)+1 .

Since EU∼Unif([0,1])(U ≤ λj(x)∗(x)) = λ∗j(x) the unbiasedness follows. It is easily seen that the
distortion of a scalar quantizer is directly related to the diameter of the quantizer.

Proposition 32. For all x ∈
[
o1, oQ

]
, it holds that

EU∼Unif([0,1])[{SQ(x,OQ,U )− x}2] ≤ (1/4) sup
i∈[Q−1]

{oi+1 − oi}2 .

If the scalar quantizer is uniform,

EU∼Unif([0,1])[{SQ(x,OQ,U )− x}2] ≤ (1/4)(Q − 1)−2{oQ − o1}2 .

Proof. For all x ∈
[
o1, oQ

]
, we get

|SQ(x,OQ,U )− x| ≤ (1/2){oj(x)+1 − oj(x)}

The proof follows.

Unbiased random scalar quantization is a special case of dual vector quantization, introduced
in the next section.

B.3.2 Dual Vector Quantization

We introduce a new notion of vector quantization, called dual quantization (or Delaunay quanti-
zation). The principle of dual quantization is to map an Rd-valued vector x onto a codebook CM
using a random splitting operator Dual-VQ(x,CM ,U ) such that, for all x ∈ ConvHull(CM ),

EU∼Unif([0,1])[Dual-VQ(x,CM ,U )] = x . (B.4)

We stress that in this case the unbiasedness is not due to the use of a random codebook but
makes use of an external randomization. In practice, a dual quantizer procedure amounts to
define a probability distribution of CM , with weights (λ∗1(x), . . . ,λ∗M (x)), λ∗i (x) ≥ 0,

∑M
j=1λ

∗
j (x) = 1.

Set Λ∗0(x) = 0 and for i ∈ [M], Λ∗i (x) =
∑i
j=1λ

∗
j(x). Note that Λ∗M(x) = 1. If u ∈

(
Λ∗j−1(x),Λ∗j (x)

]
,

j ∈ [M], we set Dual-VQ(x,CM ,u) = cj . In such that, for all x ∈ ConvHull(CM ), we get

EU∼Unif([0,1])[Dual-VQ(x,CM ,U )] =
M∑
i=1

λ∗i (x)ci = x .

The distortion of a dual quantizer is therefore given, for x ∈ RD , by

EU∼Unif([0,1])[∥Dual-VQ(x,CM ,U )− x∥2] =
M∑
i=1

λ∗i (x)∥x − ci∥2 . (B.5)



B.3. Scalar and vector Quantization 133

2 1 0
1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

(a) x ∼N (0, I2) and M = 10.
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Figure B.1: Delaunay quantization for a vector x (or-
ange diamond), for a given set of codewords (green +),and
corresponding weights (area of the blue spheres). Remark
that all but three points have a 0 probability of being
picked, making the quadratic error much smaller than for
HSQ-span.
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Figure B.2: Cross-Polytope

(Gandikota et al. 2021) is a particu-
lar case of Delaunay quantization.
The codewords are the vertices
of B1(0;

√
d). A vector x (orange

diamond) lying on the unit Ball
B2(0;1) (red circle) is decomposed
with weights (area of the blue
spheres) of codewords on the Ball of
radius

√
d (green).

For x ∈ ConvHull(CM ), the probability distribution (λ∗1(x), . . . ,λ∗M (x)) is obtained by solving the
following convex optimization program:

(λ∗1(x), . . . ,λ∗M (x)) = argmin
(λ1,...,λM )∈S(x,CM )

M∑
i=1

λi∥x − ci∥2 , (B.6)

where

S(x,CM ) =

(λ1, . . . ,λM ) ∈ RM+ ,
M∑
i=1

λi = 1,
M∑
i=1

λici = x

 . (B.7)

The support of (λ∗1(x), . . . ,λ∗M (x)) is M + 1 at most. For a distribution q on RD , we define

Dual-Dist(q,CM ) =
∫
q(x)

 M∑
i=1

λ∗i (x)∥x − ci∥2
dx . (B.8)

For a given input distribution q, an optimal codebookC ∗M of cardinalityM satisfies Dual-Dist(q,C ∗M ) ≤
Dual-Dist(q,CM ) for all CM satisfying |CM | =M.

Theorem 33 (Rates, see Pagès and Wilbertz 2018). Asymptoptic rate. Assume that the pdf q is
compactly supported on Rd-valued.

lim
M→∞

M
2
d inf
|CM |=M

Dual-Dist(q,CM ) =:QD2 (q) =QD2 (Unif([0,1])d)
∥∥∥q∥∥∥ D

D+2
. (B.9)
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Figure B.3: HSQ-Span: Distortion as a function of M (log-scale): n = 1 (blue) n = 8 (orange).

B.3.3 HSQ methods - see Dai et al. 2019

In this Section, we provide a detailed review of the two methods proposed by Dai et al. 2019. In
Appendix B.3.3, we first discuss HSQ-Span and explain why it cannot compete with approaches
based on Voronoi quantization. In Appendix B.3.3, we discuss HSQ-greed.

HSQ-Span

The first method, HSQ-Span, is unbiased but suffers form a large variance. Indeed, it relies on
decomposing the vector x ∈ Rd as a linear combination of the codewords in CM , assuming
that Span{ci , i ∈ [M]} = Rd (a codebook satisfying this property is said to be full-rank). Because
typically M ≫ D, there are infinitely many solutions to the linear problem

∑M
i=1αici = x, i.e.

A(x,CM ) = {(α1, . . . ,αM ) ∈ RM ,
∑M
i=1αici = x} is infinite. Note that contrary to the Dual quanti-

zation approach, we do not assume that αi ≥ 0 for i ∈ [M] or
∑
i∈[M]αi = 1. However, for any

i ∈ [M], we pick the codeword ci with probability |αi |/∥α∥1, and encode x as sign(αi)∥α∥1ci . In
HSQ-Span, the minimal norm solution in A(x,CM ) is chosen, i.e. solve

α∗(x) := (α∗1(x), . . . ,α∗M (x)) = argmin
(α1,...,αM )∈A(x,CM )

M∑
i=1

α2
i , (B.10)

The main advantage are that:

1. Fast computation. First, as α∗(x) = C†x, where C† is the Moore-Penrose inverse of the
codewords matrix C = [c1, . . . , cM ], provided a fixed codebook CM , it is possible to compute
only once C† and to then obtain α∗(x) for any x by a simple matrix-vector product.

2. Unbiased. Second, this approach is unbiased. Its quadratic error thus linearly decays with
the number of workers.

However (1) its variance is high and (2) does not decrease with M. Indeed, the minimal norm
solution α∗(x) tends to put weight on all codewords. For example, we represent in Figure B.4
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(a) x1 = (1,1),
CM = [(2,0); (0,2); (1,1)].
α∗(x1) ≃ (33%,33%,33%).

(b) x2 = (0.1,0.1),
CM = [(4,0); (0,4); (1/4,1/4)]
α∗(x2) ≃ (47%,47%,6%).

(c) x ∼N (0, I2) and M = 1000. (d) x ∼ N (0, I2) and M = 100, p =
U (S1(R2)).

Figure B.4: HSQ-Span: weights (size of the blue point) on each of the codewords of CM when
decomposing x (orange diamond) .

the weights on each vector for 3 situations in dimension D = 2. Intuitively, the probability of
selecting ci is not a decreasing function ∥x − ci∥2 (see e.g., Figure B.4b), which results in the large
variance; even if there exists i such that ci = x, there is a non vanishing probability of selecting
cj , ci s (Figure B.4a). We illustrate the second point in Figure B.3 which gives the evolution of
the distortion for D = 16 w.r.t. M for n ∈ {1,8} workers. The error does not decrease.

HSQ-greed

HSQ-greed is closed to Dostovoq: Dai et al. 2019 still consider a full-rank codebook CM , and
simply encode x by VQ(x,CM ). We list here the main differences to our approach:

1. the same codebook is used during all iterations and on all workers. This makes it impossible
or cumbersome to apply the convergence result developed in the federated learning
literature, which require that the compression on each workers are independent (at least
between iterations).

2. No assumption is made on the codebook distribution (apart from the fact that it is full-
rank). The importance of unitary invariance is not mentioned. In practice, authors use an
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codebook generated by applying a k-means algorithm on a larger set of scaled Gaussian
isotropic vectors. This pre-processing slightly improves the distribution of the codewords
but is in practice of limited impact (see paragraph (e) in Section 5.2.2 in the main text.).

3. Codewords are chosen of norm 1. This means we also need to encode ∥x∥ together
with VQ(x,CM ), which is typically done on using 6 bits per bucket.

4. The method is biased, so does not benefit from a large number of workers. No analysis of
the quadratic error is provided.

Theoretical results. Dai et al. 2019 present a convergence result for HSQ-greed, namely
in Lemma 3 and the subsequent Theorem 3. Note however that the proof of this result is not
provided in the paper1. Second, the guarantee provided is almost vacuous. Indeed, authors rely
on an alternative assumption2 on the alignment of the compressed value VQ(x,CM ) with x:

Definition 34 (Compression with preserved alignement). There exists α > 0 such that for all
x ∈ Rd , we have ⟨Comp(x),x⟩2 ≥ (1−α)∥x∥2.

This assumption becomes stronger as 1 − α increases. However, Lemma 3 indicates that
1 − α ≥ σmin(C)/M, with σmin the minimal eigenvalue of the codebook matrix C. The bound
guarantee thus worsens with M. A similar multiplicative factor 1/(1−α) ∝M appears in their
convergence rate Theorem 3. We note that without any assumption on the codebook distribution,
it seems difficult to obtain any result, as the worst case codebook that satisfies the full-rank
assumption could be arbitrarily bad (typically a unique codeword perturbed by a tiny amount of
noise CM = [c1 + ηϵi]i∈[M], with η very small).

B.4 Algorithmic extensions

B.4.1 Spherical codebooks

In this section, we describe a spherical version of Stovoq and Dostovoq. Beyond the obvious
change from the codeword distribution from Gaussian to uniform on the sphere, a key modifica-
tion stems form the fact that each quantized vector has norm 1: the debiasing function does not
depend on ∥x∥, but only on the number of codewords M. Consequently, the bias correction does
not need to be transmitted and can be directly performed on the central server.

On the other hand, the norm of each bucket has to be transmitted: the vector quantization is
applied to the shape, i.e. the unitary vector x/∥x∥. We use a scalar quantizer for the norm, typically
over 4-6 bits. For completeness, the codes of those two algorithms are given in Algorithms 10
and 11.

Algorithme 10 : Spherical-Stovoq

Input :x ∈ RD , D, M, P , seed s
Output : Codeword index ic, value ir

1 Sample CM ∼ σD−1 with seed s ; /* sample codebook with uniform

distribution σD−1 on the sphere */

2 cl = VQ(x/∥x∥,CM ); /* quantize (select a codeword in spherical codebook

CM) */

3 icl ← index of cl ; /* get index of codeword */

4 ir = SQ(∥x∥) ; /* quantize r on P bits */

1The appendices of the paper were not available, neither on https://arxiv.org/pdf/1911.04655.pdf, nor on
https://paperswithcode.com/paper/hyper-sphere-quantization-communication, on the date of the writing.

2See the work of Beznosikov, Horváth, et al. 2020 for a discussion between the possible assumptions.

https://arxiv.org/pdf/1911.04655.pdf
https://paperswithcode.com/paper/hyper-sphere-quantization-communication
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Algorithme 11 : Spherical-Dostovoq over T iterations

Input :T nb of steps, (ηt)t≥0 LR, w0, D, M, P ;
Output : (wt)t≥0

1 for t = 1, . . . ,T do
2 w0 sends wt−1 and different seeds sk,t to each wk ;
3 for i = 1, . . . ,n do
4 Compute local gradient gi,t at wt−1;
5 Split gi,t on [b1

i,t , . . . , b
L
i,t] ;

6 for ℓ = 1, . . . ,L (in parallel) do
7 (it,i,ℓc , it,i,ℓr ) = Spherical− Stovoq(bℓi,t ,p,M,P , si,t)
8 end
9 Send (it,i,ℓc , it,i,ℓr )ℓ∈[L] to w0 ;

10 end
11 Reconstruct (ĝi,t)i∈n ;
12 Update: wt = wtt − 1− ηt 1

n

∑n
i=1 ĝi,t ;

13 end

B.4.2 Extension to Dostovoq-DIANA and Dostovoq-VR-DIANA

In this subsection, we provide the adaptations of the Dostovoq algorithm to algorithms designed
to handle heterogeneous workers, and for which the best complexities are achieved, namely
DIANA Mishchenko, Gorbunov, et al. 2019 and VR-DIANA Horváth, Kovalev, et al. 2019. Those
algorithms are based on the fundamental idea: relying on control variates (hi,t)i∈[n],t≥0, updated
at each iteration, that converge (in the convex case), for each worker i, to ∇fi(w∗). Instead of
compressing gi,t , the algorithm compresses the difference between the actual gradient and the
control variate gi,t − hi,t . The impact of those control variates (often referred to as memory) is to
mitigate the discrepancy between workers’ gradients that stems from the heterogeneity of the
data-distribution between different workers. As explained in Appendix B.5 it is particularly
relevant to reduce this discrepancy to maximize the impact of the multiple workers. The same
idea can be incorporated within a variance reduced algorithm, we here focus on SVRG (R.
Johnson and T. Zhang 2013) (extension to SAGA (Defazio, F. R. Bach, and Lacoste-Julien 2014) or
other variants is straightforward). To incorporate variance reduction to the algorithm, we further
assume that each fi is a finite sum 1

S

∑
s∈[S] fi,s. Algorithms Dostovoq-DIANA and Dostovoq-

DIANA-SVRG are provided in respectively Algorithms 12 and 13.
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Algorithme 12 : Dostovoq-DIANA over T iterations . Lines specific to the Diana

approach are highlighted in blue

Input :T nb of steps, (ηt)t≥0 LR, w0, p, M, P , l.r. α ;
Output : (wt)t≥0

1 Set hi,0 = 0 for all i ∈ [n] (or alternatively h0,i = ∇fi(w0));
2 for t = 1, . . . ,T do
3 worker0 sends wt−1 and different seeds si,t to each wi ;
4 for i = 1, . . . ,n do
5 Compute local gradient gi,t at wt−1;
6 Set ∆i,t = gi,t − hi,t ;
7 Split ∆i,t ×

√
d/∥∆i,t∥ on [δ1

i,t , . . . ,δ
L
i,t] ;

8 for ℓ = 1, . . . ,L (in parallel) do
9 (it,i,ℓc , it,i,ℓr ) = Stovoq(δℓi,t ,p,M,P , si,t)

10 end
11 Reconstruct (∆̂i,t)i∈n ;
12 Update memory: hi,t+1 = hi,t +α∆̂i,t ;

13 Send (∥∆i,t∥, (i
t,i,ℓ
c , it,i,ℓr )ℓ∈[L]) to w0 ;

14 end
15 On the central node;
16 Reconstruct (∆̂i,t)i∈n ;
17 Update: wt = wt−1 − ηt(h̄t + 1

n

∑n
i=1 ∆̂i,t) ;

18 Update averaged memory : h̄t+1

(
:= 1

n

∑
i∈[n] hi,t

)
= h̄t + α

n

∑
i∈[n] ∆̂i,t ;

19 end
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Algorithme 13 : Dostovoq-DIANA-SVRG over T iterations . Lines specific to the
variance reduction approach are highlighted in green

Input :T nb of steps, (ηt)t≥0 LR, w0, p, M, P , l.r. α ;
Output : (wt)t≥0

1 Set hi,0 = 0 for all i ∈ [n] (or alternatively h0,i = ∇fi (w0));
2 for t = 1, . . . ,T do
3 Sample ut ∼ B(S−1) ;
4 worker0 sends wt−1,ut and different seeds si,t to each wi ;
5 for i = 1, . . . ,n do
6 if ut = 1 then
7 Set ρi,s,t = wt for all s ∈ [S];
8 Sample si,t ∼Unif[S] ;
9 Set µt,i = S−1 ∑

s∈S ∇fi,s(ρi,s,t);
10 Set gi,t = ∇fi,si,t (wt−1)−∇fi,si,t (ρi,si,t ,t) +µi,t ;
11 Set ∆i,t = gi,t − hi,t ;
12 Split ∆i,t ×

√
d/∥∆i,t∥ on [δ1

i,t , . . . ,δ
L
i,t] ;

13 for ℓ = 1, . . . ,L (in parallel) do
14 (it,i,ℓc , it,i,ℓr ) = Stovoq(δℓi,t ,p,M,P , si,t)

15 end
16 Reconstruct (∆̂i,t)i∈n ;
17 Update memory: hi,t+1 = hi,t +α∆̂i,t ;

18 Send (∥∆i,t∥, (i
t,i,ℓ
c , it,i,ℓr )ℓ∈[L]) to CS ;

19 end
20 On the central node (CS);
21 Reconstruct (∆̂i,t)i∈n ;
22 Update: wt = wt−1 − ηt(h̄t + 1

n
∑K
i=1 ∆̂i,t) ;

23 Update averaged memory : h̄t+1
(
:= 1

n
∑
i∈[n] hi,t

)
= h̄t + α

n
∑
i∈[n] ∆̂i,t ;

24 end

B.4.3 Extension to Dostovoq-FedAvg

Following the implementation of B. McMahan et al. 2017, we propose the natural extension to
Dostovoq, namely the Dostovoq-FedAvg in Algorithm 14.
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Algorithme 14 : Dostovoq-FedAvg over T iterations . Lines specific to the FedAvg

approach are highlighted in purple
Input :T nb of steps, (ηt)t≥0 LR, w0, p, M, P , client fraction C, E is the number of

local epochs ;
Output : (wt)t≥0

1 for t = 1, . . . ,T do
2 m = max(C ×n,1);
3 [nt] = (random set of m clients);
4 uk = number of samples available in k;
5 u = total number of samples;
6 worker0 sends wt−1 and different seeds si,t to each wi ;
7 for i ∈ [nt] do
8 for each local epoch j in E do
9 Compute local gradient gji,t at wt−1;

10 end

11 Average the gradients: gi,t = 1
E

∑
j g
j
i,t ;

12 Split gi,t ×
√
d/∥gi,t∥ on [δ1

i,t , . . . ,δ
L
i,t] ;

13 for ℓ = 1, . . . ,L (in parallel) do
14 (it,i,ℓc , it,i,ℓr ) = Stovoq(δℓi,t ,p,M,P , si,t)
15 end
16 Reconstruct (ĝi,t)i∈n ;

17 Send (∥gi,t∥, (i
t,i,ℓ
c , it,i,ℓr )ℓ∈[L]) to CS ;

18 end
19 On the central node;
20 Reconstruct (ĝi,t)i∈n ;
21 Update: wt = wt−1 − ηt(

uk
u

∑n
i=1 ĝi,t) ;

22 end

B.5 Additional experiments

In this Section, we compare by Monte Carlo the distortions achieved by different compression
schemes for 3 types of input x. For a given (random) compressor generically denoted Q(·) and
x ∈ Rd , we decompose Q(x) =Q∥(x) +Q⊥(x), where Q∥(x) = ∥x∥−2xx⊤Q(x). With these notations,
Q∥(x) and Q⊥(x) are the components of the quantization error which are colinear and orthogonal
to x, respectively. By construction, ∥x −Q(x)∥2 = ∥x −Q∥(x)∥2 + ∥Q⊥(x)∥2. The distortion is
computed for n = 1 and n ∈ {8,20} workers (depending on the experiments). We compare 10
compression schemes, corresponding to 7 algorithms (some with several variants): the signed
algorithm (Sign) (see Definition 26), Top-H with H = 2 (see Definition 27), Rand-H with H = 2
(see Definition 28), HSQ-Span (see Appendix B.3.3) with M = 210 and a 6 bits scalar quantizer
for the norm, HSQ-greed (see Appendix B.3.3) with M = 210 and a 6 bits scalar quantizer for
the norm, Polytope (see Appendix B.3.2) with and without quantization of the norm, three
variants of Stovoq with a Gaussian random codebook with M = 213 and p =N (0, (1 + 2/D) ID ):
GRVQ which is Stovoq without the radial debiasing step, Stovoq without quantization of rpM ,
and Stovoq with an unbiased scalar quantization of (rpM )−1 over P = 3 bits (strictly speaking,
only this last column corresponds to the algorithm Stovoq, the two previous versions have been
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added to assess the influence of the debiasing by {rpM }
−1 and the quantization of {rpM }

−1).
We compare those algorithms over three tasks:

1. Task 1: Compression of a random vector from a standard Gaussian input distribution in
dimension D = 16. We compare n = 1 to n = 20. Results are given in Appendix B.5.1.

2. Task 2: Compression of “real” gradients, extracted from a training performed with a
VGG16 on CIFAR10 with SGD, extracted at epoch 10, on which a pre-processing similar to
Dostovoq is applied. The minibatch gradients on a given layer are divided into buckets of
dimension D = 16. A normalisation is applied to sets of L = 32 buckets (the normalisation
for the blocks of D ×L = 512 coefficients are scalar quantized with a high-resolution scalar
quantizer and sent to the parameter server). Results are given in Appendix B.5.2. We
compare the performance with 1 and 8 workers, when all workers compress the same gradient.
The goal of this task is to assess the impact of the actual distribution of the normalised
minibatch gradients values w.r.t. a Gaussian distribution.

3. Task 3: Compression of “real” gradients, with multiple workers, each worker compresses
a different minibatch stochastic gradient, computed at the same parameter (as described
in Section 5.5): this is the most practical setting, and we explain the resulting trade-offs,
especially in terms of the distribution of stochastic gradient noise (see Panigrahi et al. 2019)
and the inhomogeneity between workers. We perform this task on (i) the same setting as
for task 2, and (ii) the gradients from the LS experiment introduced in Section 5.5. Results
are given in Appendix B.5.2.

4. Task 4: Compression of “real” gradients, with multiple workers, each worker compresses a
different minibatch stochastic gradient, similarly to Task 3. But here the normalization
is considered with respect to the best estimatation of the gradient. Results are given in
Appendix B.5.2.

B.5.1 Distortion for Gaussian input

Setup: We here compare all methods on a Gaussian input x ∼N (0, ID ) for D = 16. Monte Carlo
is performed over 104 repetitions. Standard deviation is negligible.

Observations. Results are provided in Table B.9. We make the following observations:

1. We first observe that in the single worker case, Sign, Top-2, HSQ-greed and Stovoq-GRVQ
achieve a global error or respectively 6.4, 8.7, 9.1 and 6.8. (These errors are obtained by
summing the radial and orthogonal numbers). Stovoq achieves an error of 11 which is
slightly higher, Rand-2, Polytope, HSQ-span suffer a much higher errors of 110, 121, 147.
This confirms the theoretical predictions.

2. We observe in practice here the fundamental differences between biased / unbiased com-
pression methods and also methods that ensure the independence of the compression on
each individual worker: while all biased methods do not benefit from the multiplicity of
workers, for unbiased and independent compression, the distortion for n = 1 is divided
by n. Here, the quadratic errors, both radial and orthogonal, are reduced by a factor
20. Overall, over 20 workers, the error obtained by Stovoq, with debiasing and scalar
quantization is 0.5. This is by far the best method in terms of global distortion for 20
workers.

3. Stovoq-GRVQ vs Stovoq-Unbiased. For Stovoq, the application of debiasing increases the
non-radial quantization distortion, by a factor of nearly 2 (from 5 to 10), while simul-
taneously reducing the radial distortion, form 2 to 0.5. This increase is unavoidable to
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Table B.9: Task 1: Distortion for Gaussian inputs

Method Sign Top-2 Rand-2 Polytope

Variant norm-quant.

n = 1 1.0 ∥ 5.4 4.8 ∥ 3.9 12 ∥ 98 5.8 ∥ 115 5.8 ∥ 115
n = 20 1.0 ∥ 5.4 4.7 ∥ 3.8 0.6 ∥ 4.8 0.3 ∥ 5.6 0.3 ∥ 5.6

Method HSQ-span HSQ-greed Stovoq

Variant norm-quant. norm-quant. GRVQ Unbiased Unbiased+quant.

n = 1 3.8 ∥ 143 1.3 ∥ 7.8 1.8 ∥ 5.0 0.5 ∥ 10.5 0.5 ∥ 10.5
n = 20 0.2 ∥ 7.0 1.3 ∥ 7.5 1.7 ∥ 0.25 0.03 ∥ 0.5 0.03 ∥ 0.5

obtain the unbiased character, that is necessary to reduce the error beyond 1. Indeed, it is
important to remark the radial bias for Stovoq-GVRQ and HSQ is not negligible (1.3 and 1.8
respectively): in fact , this radial distortion is also of order M−2/d thus using an even larger
codebook would not reduce it significantly.

4. Stovoq-Unbiased vs Stovoq-Unbiased+Scalar-Quantization. We observe that the impact
of the scalar quantization is negligible here, which indicates that the impact of the scalar
quantization of the norm is limited.

5. HSQ vs Stovoq-GRVQ: These two methods are somehow similar for a single worker: HSQ
relies on a gain-shape decomposition with the a scalar quantization of the norm and a
vector quantization of the normalized vector using spherical codebooks whereas GRVQ uses
random Gaussian codebooks with a variance matched to the input variance. We observe
that overall Stovoq-GRVQ slightly outperforms HSQ for n = 1. This is in favor of using
Gaussian codebooks.

B.5.2 Distortion for neural networks gradients

Task 2: Impact of the distribution Setup: We compare the distortion for n = 1 and 8, on
stochastic gradients sampled from the training of a VGG16, with SGD, at epoch 10. The gradients
are partitioned into blocks of size 29; then each block is scaled and split into buckets of dimension
D = 16. Those buckets are then compressed using each of the possible methods in dimension 16.
The results presented are obtained using 1000 stochastic gradient .

The main objective is to compare the impact of the distribution of the gradients on the
distortion of the different compressors. For example, if the stochastic gradient noise is heavy
tailed (leading equivalently to sparse gradients), methods relying on sparsification, e.g., Top-2, is
expected to perform significantly better than Gaussian random codebook.

For n = 8, we assume that each workers compresses the same gradient : we compute the error
of n−1 ∑

i∈[n] ĝt,i − gt , where ĝt,i stands for the output of the i-th compressor on gt .
In Figure B.5, we represent simultaneously the histogram of the bucket norms, and the

histogram of the norms of the Gaussian vectors used in Task 1. This suggests a departure from
the Gaussian distribution for the stochastic gradient noise.

Observations Results are provided in Table B.10. We highlight the following points.

1. Again, the unbiased version of Stovoq achieves the best distortion.
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Figure B.5: Histograms of the VGG16 gradient buckets (blue), of Gaussian vectors (orange), and
the radial bias for the associated dimension D = 16 (green).

2. Even though the distribution of the norms is very different from the norm of the Gaussian
vectors (as illustrated in Figure B.5), the distortion of Stovoq is not severely impaired.
Especially, the error for Stovoq for a single worker is 0.4 vs 0.7 for Top-2, while for
Gaussian inputs it was 11 vs 8.7 for Top-2.

Task 3: Signal-Noise ratio on the various gradients Setup: We now consider that each worker
computes and compresses a different stochastic gradient. More precisely, we collect samples of
the stochastic gradients during an epoch: [g⊤t,1, . . . , g

⊤
t,n], where gt,i is computed by the worker i on

distinct minibatch of size b (all the gradients are {gt,i}ni=1 are evaluated for the same value of the
parameters). The compressed version is denoted {ĝt,i}ni=1.

Table B.10: Task 2: empirical distortion from a sample of gradients sampled from a VGG-16 at
epoch 10, (same gradients on each worker).

Method Sign Top-2 Rand-2 Polytope

Variant norm-quant.

n = 1 0.46∥0.35 0.35∥0.16 0.86∥4.8 0.50∥7.0 0.50∥7.1
n = 8 0.46∥0.35 0.35∥0.16 0.15∥0.61 0.07∥0.9 0.07∥0.9

Method HSQ-span HSQ-greed Stovoq

Variant norm-quant. norm-quant. GRVQ Unbiased Unbiased+quant.

n = 1 0.24 ∥ 7.5 0.09 ∥ 0.5 0.05 ∥ 0.2 0.02 ∥ 0.36 0.02 ∥ 0.4
n = 8 0.07 ∥ 0.9 0.09 ∥ 0.4 0.04 ∥ 0.03 0.002 ∥ 0.05 0.003 ∥ 0.05
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In the homogeneous setting, for all i ∈ [n], gt,i(θt) = ∇F(wt) + ϵt,i , with (ϵt,i)t,i is the stochastic
gradient noise E

[
ϵt,i

∣∣∣Ft−1

]
= 0, where Ft−1 collects the past observations.

The central node averages the quantized stochastic gradient sent by the workers: g̃t :=
n−1 ∑n

i=1 ĝt,i . We report in Tables 5.3 and B.12 the normalized averaged error defined as

T −1
∑
t∈[T ]

∥ 1
n

∑n
i=1 ĝt,i − gt,i∥2

∥ 1
n

∑n
i=1 gt,i∥2

. (B.11)

We here discuss in which settings we expect the multiple workers to improve w.r.t. a single
worker. More precisely, we show that the impact of enforcing unbiased independent compression
for the different workers increases with the "dependence" of stochastic gradients. Consider the
following two cases. Example 1: (large noise, low correlation between stochastic gradients)
each worker computes a stochastic gradient that is nearly independent of the other workers.
The error made is not reduced by the multiplicity of workers. Example 2: (low or no noise,
strong consensus between stochastic gradients) if each worker computes the same gradient,
we recover task 2. The variance reduction obtained by using multiple workers and independent
compressors is proportional to the number of workers. More generally, this is true when the
noise is small w.r.t. the gradient of the function.

This signal/noise ratio fundamentally impacts the performance of algorithms using compres-
sions operators: in example 2, it is crucial to use unbiased and independent workers, while in
example 1, it is more important to reduce the distortion for a single worker.

Many factors impact this “consensus” between workers: first of all the mini-batch size. The
noise variance is inversely proportional to b: as b increases, each stochastic gradient becomes
closer to ∇F(w). More generally, all variance reduction techniques tend to increase the “con-
sensus”. On the other hand, heterogeneity between workers increases the discrepancy between
gradients (but memory techniques as in Dostovoq-DIANA mitigate this discrepancy). Finally,
performing several steps (Sebastian U. Stich 2019), as in Local-SGD also has a similar impact of
averaging the noise over several iterations, and thus increases the consensus.

We thus evaluate all algorithms on two tasks:

1. First, on gradients extracted from the LSR task: in this task, data is distributed on all
workers, that compute a batch gradient. The gradients obviously depend on the workers
(each worker has access to a different subset of the data), but because the workers are
homogeneous, these gradients have a strong consensus. We give the results in Table B.12.
We observe that the reduction by a factor 8 is preserved when using n = 8. This explains
why our method outperforms HSQ in Figure 5.2.

2. Second, on gradients from the VGG16 trained with SGD on CIFAR. On this task, the
noise level is much higher and the consensus much weaker. This is expected in very high
dimensional models and non convex objective (roughly speaking, the gradients on different
workers nearly point in random descent directions). We thus do not see any strong effect
of the number of workers on the distortion for b ≤ 512. Increasing further the batch size,
to b = 4096, we recover the gain of multiple workers. Results are given in Table B.11. The
distortion is twice smaller with Stovoq-unbiased than with any other method. While a
batch of 4096 is very high, very large batch were used in a successful training of CIFAR and
ImageNet. More generally, when communication cost is a major concern, increasing the
batch size and the number of local iterations is natural, to increase the quality of updates
transmitted.
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Table B.11: Task 3: normalized distortion for a mini-batch of size 4096 of a VGG-16 at epoch 10.

Method Sign Top-2 Rand-2 Polytope

Variant norm-quant.

n = 1 0.3∥0.2 0.5∥0.2 0.5∥6.2 0.2∥7.3 0.2∥7.3
n = 8 0.3∥0.1 0.5∥0.1 0.09∥1.8 0.06∥2.0 0.06∥2.0

Method HSQ-span HSQ-greed Stovoq

Variant norm-quant. norm-quant. GRVQ Unbiased Unbiased+quant.

n = 1 0.2 ∥ 8.5 0.09 ∥ 0.5 0.06 ∥ 0.2 0.02 ∥ 0.4 0.02 ∥ 0.4

n = 8 0.09 ∥ 2.3 0.09 ∥ 0.4 0.1 ∥ 0.07 0.01 ∥ 0.1 0.01 ∥ 0.1

Table B.12: Task 3: normalized distortion for LSR (see Section 5.5).

Method Sign Top-2 Rand-2 Polytope

Variant norm-quant.

K = 1 0.05∥0.3 0.4∥0.2 0.6∥6.3 0.3∥7.3 0.3∥7.3
K = 8 0.04∥0.09 0.4∥0.08 0.1∥1.3 0.07∥1.4 0.07∥1.4

Method HSQ-span HSQ-greed Stovoq

Variant norm-quant. norm-quant. GRVQ Unbiased Unbiased+quant.

K = 1 0.3 ∥ 9.4 0.09 ∥ 0.5 0.1 ∥ 0.3 0.03 ∥ 0.6 0.03 ∥ 0.6
K = 8 0.08 ∥ 1.9 0.09 ∥ 0.1 0.1 ∥ 0.06 0.008 ∥ 0.1 0.008 ∥ 0.1

Task 4: “fair” Signal-Noise ratio on the various gradients

Setup: In this last setup, we still focus on the setting in which each worker computes and
compresses a different stochastic gradient. More precisely, we collect samples of the stochastic
gradients [g⊤t,1, . . . , g

⊤
t,n], where gt,i is computed by the worker i on distinct minibatch of size b

(all the gradients are {gt,i}ni=1 are evaluated for the same value of the parameters, chosen at an
iteration t). The corresponding compressed gradients are denoted {ĝt,i}ni=1.

In the homogeneous setting, for all i ∈ [n], gt,i(θt) = ∇F(θt) + ϵt,i , with (ϵt,i)t,i is the stochastic
gradient noise E

[
ϵt,i

∣∣∣Ft−1

]
= 0, where Ft−1 collects the past observations.

The central node averages the quantized stochastic gradient sent by the workers: g̃t :=
n−1 ∑n

i=1 ĝt,i . We report in Table B.13 the “fair” normalized averaged error defined as

T −1
∑
t∈[T ]

∥ 1
n

∑n
i=1 ĝt,i − gt,i∥2

∥∇F(wt)∥2
. (B.12)

W.r.t. Task 3, only the denominator changes. For both n = 1 and n = 64, we use 1
64

∑64
i=1 gt,i as a

surrogate of the gradient ∇F(wt) (each gt,k being obtained with batch size of 256 samples, this
corresponds to a mini-batch of size 16384).
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Table B.13: Task 4: “fair” normalized distortion for a mini-batch of size 256 (for each worker) of
a VGG16 at epoch 10.

Method Sign Top-2 Rand-2 Polytope

Variant norm-quant.

n = 1 6.8∥3.3 11.3∥3.8 6.1∥133.9 3.8∥157.3 3.8∥157.3

n = 64 0.38∥0.26 0.46∥0.19 0.37∥6.2 0.30∥7.0 0.30∥7.0

Method HSQ-span HSQ-greed Stovoq

Variant norm-quant. norm-quant. GRVQ Unbiased Unbiased+quant.

n = 1 4.7∥174.5 1.8∥10.3 1.1∥3.3 0.35∥6.7 0.37∥6.9
n = 64 0.35 ∥ 7.5 0.17 ∥ 2.9 0.24 ∥ 0.27 0.07 ∥ 0.59 0.07 ∥ 0.59
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C.1 Proofs

The complete analysis of Theorem 10 is fully provided in the following pages, and is heavily
inspired by Zakerinia et al. 2022’s analysis. We ask the reader to refer to Section 6.4.1 for a
detailed definition of the random variables used in the analysis.

C.1.1 Preliminaries

Let (Ω,F ,P) be a probability space. We assume that all the random variables defined in this
proof are defined on this space. Consider I = N∗ ×N, together with the lexicographical ordering
in I . We recall that (a,b) ≤ (c,d) in lexicographical ordering if and only if a < c or a = c and b ≤ d.
We define two families of σ -algebras

(
F(t,q)

)
(t,q)∈I

and (Ft)t∈N. These are defined by the relations

F0 = {∅,Ω} and, for t ≥ 1 and q ≥ 0,

F(t,q) = σ
(
Ft−1 ∪ σ

(̃
hit,q′ : q′ ≤ q, i ∈ [1,n]

))
(C.1)

Ft = σ

σ (
St ,Eit : i ∈ [1,n]

)
∪

⋃
q≥0

F(t,q)

 . (C.2)

Therefore, Ft contains all information up to the end of time step t. Additionally, F(t,q) contains
all information up to the local step q of time step t. Notice that at this point we do not have
information about St and Eit . We define Et to be the conditional expectation with respect to Ft .

For all time steps t, local steps q, and client i, we define:

hit,q = ∇fi

wit − η
q−1∑
s=1

h̃it,s

 = E
[̃
hit,q |F(t,q−1)

]
(C.3)

where h̃it,s is defined in (6.2).
Contrary to Zakerinia et al. 2022, we do not assume that all clients have computed the same

number of epochs upon being contacted by the server.
We start by establishing a basic, yet useful, algebraic equality in the following Lemma.

147
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Lemma 35. Let s ∈ N∗, ai ,b ∈ Rd for i ∈ [|1, s|] be vectors. It holds that:∥∥∥∥∥∥
∑s
i=1 ai + b
s+ 1

∥∥∥∥∥∥2

− 1
s+ 1

s∑
i=1

∥ai∥2 −
1

s+ 1
∥b∥2 =

−1
(s+ 1)2

s∑
i=1

∥ai − b∥2 −
1

(s+ 1)2

s∑
i,j=1

∥ai − aj∥2 (C.4)

Proof.

I =

∥∥∥∥∥∥
∑s
i=1 ai + b
s+ 1

∥∥∥∥∥∥2

− 1
s+ 1

s∑
i=1

∥ai∥2 −
1

s+ 1
∥b∥2 (C.5)

= (s+ 1)−2

〈 s∑
i=1

ai + b,
s∑
i=1

ai + b
〉
− (s+ 1)

s∑
i=1

∥ai∥2 − (s+ 1)∥b∥2
 . (C.6)

We expand the inner product to obtain:

I = (s+ 1)−2

−s ∥b∥2 + 2
s∑
i=1

⟨ai ,b⟩+
s∑

i,j=1

⟨ai , aj⟩ − (s+ 1)
s∑
i=1

∥ai∥2
 (C.7)

=
−1

(s+ 1)2


 s∑
i=1

∥ai∥2 + s ∥b∥2 − 2
s∑
i=1

⟨ai ,b⟩

+

s s∑
i=1

∥ai∥2 −
s∑

i,j=1

⟨ai , aj⟩


 (C.8)

=
−1

(s+ 1)2


 s∑
i=1

∥ai − b∥2
+

 s∑
i,j=1

∥ai − aj∥2

 . (C.9)

Lemma 36. Let n,d be positive integers, a1, a2, ..., an,b ∈ Rd be vectors, and g = a1+...+an
n be the center

of mass of a1, ..., an. Then the following identity holds:

n∑
i=1

∥b − ai∥2 = n∥b − g∥2 +
n∑
i=1

∥g − ai∥2. (C.10)

Proof. We may compute:

n∑
i=1

∥b − ai∥2 =
n∑
i=1

∥b − g + g − ai∥2 =
n∑
i=1

(
∥b − g∥2 + ∥g − ai∥2 + 2

〈
b − g,g − ai

〉)
(C.11)

We can easily see that
∑n
i=1

〈
b − g,g − ai

〉
= 0. The identity then follows.

Lemma 37. Let X1, . . . ,Xn be random variables. Moreover, let S be a subset of {1,2, ...,n} containing s
elements chosen uniformly at random. Assume that S is independent from Xi for i = 1, ...,n. Then, we
have:

E
[∑

i∈S
Xi

]
=

n∑
i=1

s
n
E[Xi]. (C.12)
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Proof. We introduce indicator functions in the sum above and apply linearity of expectation:

E
[∑

i∈S
Xi

]
= E

[∑n

i=1
Xi1S (i)

]
=

n∑
i=1

E[Xi1S (i)]. (C.13)

Using that S is independent of each Xi we get:

E
[∑

i∈S
Xi

]
=

n∑
i=1

E[Xi]E[1S (i)] =
n∑
i=1

s
n
E[Xi]. (C.14)

The following preliminary lemmas allow one to recover unbiased gradient estimates in
FAVANO, and bound their variance.

Lemma 38. Let {Y q}q>0 a collection of independent random variables such that E[Yq] = µ. Let S be a
positive random variable independent from the collection {Y q}q>0, and with expected value E[S] =m.

Consider M1 = E[ 1[S>0]
SP(S>0)

∑S
q=1Y

q], and M2 = E[1[S>0]
E[S]

∑S
q=1Y

q]. M1,M2 are unbiased estimate of µ,
i.e. M = µ.

Proof. M1 : One can note this setting corresponds to αi = P(Eit > 0)(Eit ∧K). We have

M1 =
1

P(S > 0)
E[E[

1[S > 0]
S

S∑
q=1

Y q |S]] (C.15)

=
1

P(S > 0)
E[S

1[S > 0]
S

µ] (C.16)

=
1

P(S > 0)
E[1[S > 0]µ] (C.17)

=µ. (C.18)

Thus when reweighting with the (random) number of additions, one need to also take into
account the P(s > 0) term to obtain an unbiased estimate.

M2 : This setting corresponds to αi = E[Eit ∧K]. We have

M2 =E[E[
1[S > 0]
E[S]

S∑
q=1

Y q |S]] (C.19)

=E[S
1[S > 0]
E[S]

µ] (C.20)

=
E[S1[S > 0]]

E[S]
µ (C.21)

=µ. (C.22)

Thus reweighting the sum with E[s] allows us to obtain an unbiased estimate M2 = µ.

Lemma 39. Let {Y q}q>0 a collection of independent random variables such that E[Yq] = µ, Var(Y q) =
Var(Y ) <∞. Let S be a positive random variable independent from the collection {Y q}q>0, and with
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expected value E[S] = m. Consider M1 = E[ 1[S>0]
SP(S>0)

∑S
q=1Y

q], and M2 = E[1[S>0]
E[S]

∑S
q=1Y

q]. We
compute the variance :Var(M1) = 1

P(s>0)2 (µ2P(S > 0)(1−P(S > 0)) + Var(Y )E[1[S>0]
S ])

Var(M2) = µ2 Var(S)
E[S]2 + Var(Y )

E[S] .
(C.23)

Proof. M2: This setting corresponds to αi = E[Eit ∧K]. We have

Var(M2) =
1

E[S]2E[(
S∑
q=1

Y q −µm)2] (C.24)

=
1

E[S]2E[(
S∑
q=1

(Y q −µ) +µ(S −m))2] (C.25)

The cross products reduce to 0 in expectation, hence

Var(M2) =
1

E[S]2E[E[(S(Y q −µ)|S] +µ2(S −m)2] (C.26)

=
1

E[S]2 (E[S]V ar(Y ) +µ2 Var(S)) (C.27)

M1: This setting corresponds to αi = P(Eit > 0)(Eit ∧K) or QuAFL (Zakerinia et al. 2022)
when the same number of local epochs is done by clients. First note that E[M1|S] = µ1(S>0)

P(S>0) . We
have

Var(M1) = E[E[(M1 −E[M1|S])2|S]] +E[(E[M1|s]−E[M1])2] (C.28)

=
1

P(S > 0)2E[(
1
S

S∑
q

(Y q −µ)1[S > 0])2] +E[(µ1(S > 0)−µP(S > 0))2] (C.29)

=
1

P(S > 0)2E[
1
S2 (SVar(Y )1[S > 0])2] +

1
P(S > 0)2µ

2E[(1(S > 0)−P(S > 0))2] (C.30)

=
1

P(S > 0)2 Var(Y )E[
1[S > 0]

S
] +

1
P(S > 0)2µ

2E[(1(S > 0)−P(S > 0))2] (C.31)

=
1

P(S > 0)2 Var(Y )E[
1[S > 0]

S
] +

1
P(S > 0)2µ

2P(S > 0)(1−P(S > 0)). (C.32)

Last, but not least, we will make use of a result from Koloskova, Sebastian U Stich, and Jaggi
2022 to optimize learning rates and obtain sharp complexity bounds:

Lemma 40. Assume A10 to A13 and consider problem (6.1). If the output of an optimization
algorithm with step size η has an expected error upper bounded by r0

η(T+1) + bη + eη2, and if η

satisfies the constraints η ≤min(( r0
b(T+1) )

1
2 , ( r0

e(T+1) )
1
3 , 1
d ) for some non-negative values r0,b,d,e, then
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the number of communication rounds required to reach ϵ accuracy is lower bounded by

36br0
ϵ2 +

15r0
√
e

ϵ
3
2

+
3dr0
ϵ

. (C.33)

Proof. Consider ψT a positive variable such that

ψT ≤
r0

η(T + 1)
+ bη + eη2 (C.34)

for any positive step size verifying η ≤min(( r0
b(T+1) )

1
2 , ( r0

e(T+1) )
1
3 , 1
d ). Then Koloskova, Sebastian U

Stich, and Jaggi 2022 shows the following inequality:

ψT ≤ 2(
br0
T + 1

)
1
2 + e

1
3 (

r0
T + 1

)
2
3 +

dr0
T + 1

. (C.35)

In order to reach an ϵ precision, we bound each term by ϵ
3 , and deduce the following lower

bound

T ≥ 36br0
ϵ2 +

15r0
√
e

ϵ
3
2

+
3dr0
ϵ

. (C.36)

C.1.2 Useful Lemmas

A key result of our analysis is the upper bound on the change (in expected value) of the potential
function Φt . Recall that Φt is defined by equation:

Φt = ∥wt −µt∥2 +
n∑
i=1

∥wit −µt∥2. (C.37)

In the next lemma, we show that Φt exhibits a contractive property, which allows us to bound its
value through the execution of the optimization algorithm.

Proof of Lemma 9

Proof. Consider the following quantities:

µt =

wt +
n∑
i=1

wit

 /(n+ 1) (C.38)

Gt+1 = − 1
n+ 1

η
∑
i∈St+1

ȟit+1 (C.39)

where ȟit+1 = 1
P(Eit+1>0)(Eit+1∧K)

h̃it+1 or ȟit+1 = 1
E[Eit+1∧K]

h̃it+1. And recall the updates rules:


wt+1 = 1

s+1

(
wt +

∑
i∈St+1

wit
)

+ n+1
s+1Gt+1,

wit = wt ; for i ∈ St
wit = wit−1; for i < St .

(C.40)
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With these definitions, we get

µt+1 =
s+ 1
n+ 1

wt+1 +
1

n+ 1

∑
i<St+1

wit = µt +Gt+1 . (C.41)

We can now compute the difference of potential:

Φt+1 −Φt =
∑
i∈St+1

(∥∥∥wt+1 −µt+1

∥∥∥2 −
∥∥∥wit −µt∥∥∥2

)
+
∥∥∥wt+1 −µt+1

∥∥∥2 −
∥∥∥wt −µt∥∥∥2

(C.42)

+
∑
i<St+1

(∥∥∥wit −µt+1

∥∥∥2 −
∥∥∥wit −µt∥∥∥2

)
. (C.43)

We can rewrite this equation into a more convenient form:

Φt+1−Φt = (s+1)
∥∥∥wt+1 −µt+1

∥∥∥2−
∑
i∈St+1

∥wit−µt∥
2−∥wt−µt∥2+

∑
i<St+1

(∥∥∥∥wit −µt −Gt+1

∥∥∥∥2
−
∥∥∥∥wit −µt∥∥∥∥2)

. (C.44)

Step 1. First, notice that:∑
i<St+1

(∥∥∥wit −µt −Gt+1

∥∥∥2 −
∥∥∥wit −µt∥∥∥2

)
=

∑
i<St+1

(
∥Gt+1∥2 − 2⟨wit −µt ,Gt+1⟩

)
= (n− s)∥Gt+1∥2 − 2⟨

∑
i<St+1

(wit −µt),Gt+1⟩. (C.45)

Step 2. Next, we compute the first term of Equation (C.44):

(s+ 1)
∥∥∥wt+1 −µt+1

∥∥∥2
= (s+ 1)

∥∥∥∥∥∥∥ (wt −µt) +
∑
i∈St+1

(wit −µt)
s+ 1

+
n+ 1
s+ 1

Gt+1 −Gt+1

∥∥∥∥∥∥∥
2

(C.46)

=(s+ 1)

∥∥∥∥∥∥∥ (wt −µt) +
∑
i∈St+1

(wit −µt)
s+ 1

∥∥∥∥∥∥∥
2

+ 2
〈
(wt −µt) +

∑
i∈St+1

(wit −µt),
n+ 1
s+ 1

Gt+1 −Gt+1

〉
(C.47)

+
(n− s)2

s+ 1
∥Gt+1∥2. (C.48)

We apply Young’s inequality (⟨x,y⟩ ≤ β∥x∥2 + 1/(4β)∥y∥2) and Jensen inequality to get:〈
(wt −µt) +

∑
i∈St+1

(wit −µt),
n+ 1
s+ 1

Gt+1

〉
≤ α(n+ 1)

s+ 1
∥wt −µt∥2 +

α(n+ 1)
s+ 1

∑
i∈St+1

∥wit −µt∥2 +
n+ 1
4α
∥Gt+1∥2. (C.49)
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Applying Lemma 35, we get:

(s+ 1)

∥∥∥∥∥∥∥ (wt −µt) +
∑
i∈St+1

(wit −µt)
s+ 1

∥∥∥∥∥∥∥
2

=

 ∑
i∈St+1

∥wit −µt∥2
+ ∥wt −µt∥2 −

1
s+ 1

∑
i∈St+1

∥wit −wt∥2 −
1

s+ 1

∑
i,j∈St+1

∥wit −w
j
t∥2 (C.50)

Combining the results above, we get:

(s+ 1)
∥∥∥wt+1 −µt+1

∥∥∥2 ≤
∥∥∥wt −µt∥∥∥2

+
∑
i∈St+1

∥∥∥wit −µt∥∥∥2 − 1
s+ 1

∑
i∈St+1

∥wit −wt∥2 (C.51)

+
2α(n+ 1)
s+ 1

∥wt −µt∥2 +
2α(n+ 1)
s+ 1

∑
i∈St+1

∥wit −µt∥2 +
(

(n− s)2

s+ 1
+
n+ 1
2α

)
∥Gt+1∥2 (C.52)

− 2⟨(wt −µt) +
∑
i∈St+1

(wit −µt),Gt+1⟩. (C.53)

Using simple algebra, this relation can be rewritten as :

(s+ 1)
∥∥∥wt+1 −µt+1

∥∥∥2 ≤
(
1 +

2α(n+ 1)
s+ 1

)∥∥∥wt −µt∥∥∥2
(C.54)

+
(
1 +

2α(n+ 1)
s+ 1

) ∑
i∈St+1

∥wit −µt∥2 +
(
n+ 1
2α

+
(n− s)2

s+ 1

)
∥Gt+1∥2 (C.55)

− 2
〈
(wt −µt) +

∑
i∈St+1

(wit −µt),Gt+1

〉
− 1
s+ 1

∑
i∈St+1

∥wit −wt∥2. (C.56)

Step 3. We combine the results above to get bound Φt+1 −Φt . Plugging (C.45) into (C.44), (C.56),
and using (see (6.5))

(wt −µt) +
∑
i∈St+1

(wit −µt) +
∑
i<St+1

(wit −µt) = 0,

we get that

Φt+1 −Φt ≤
2α(n+ 1)
s+ 1

∥∥∥wt −µt∥∥∥2
+

2α(n+ 1)
s+ 1

∑
i∈St+1

∥wit −µt∥2 +
(
(n− s) +

n+ 1
2α

+
(n− s)2

s+ 1

)
∥Gt+1∥2

(C.57)

− 1
s+ 1

∑
i∈St+1

∥wit −wt∥2. (C.58)

Step 4. We now apply Lemma 37 to take expectations in the inequality above. We have:

E
[∑

i∈St+1
∥wit −µt∥2

]
=

n∑
i=1

s
n
E[∥wit −µt∥2]. (C.59)
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Moreover, we have:

∥Gt+1∥2 ≤
s

(n+ 1)2 η
2

∑
i∈St+1

∥∥∥ȟit+1

∥∥∥2
. (C.60)

Therefore, also by Lemma 37, we have:

E[∥Gt+1∥2] ≤ s2

n(n+ 1)2 η
2

n∑
i=1

E[
∥∥∥ȟit+1

∥∥∥2
]. (C.61)

Step 5. Now we derive the final inequality. We have:

E[Φt+1]−E[Φt] ≤
2α(n+ 1)
s+ 1

E
∥∥∥wt −µt∥∥∥2

+
2α(n+ 1)s

(s+ 1)n

n∑
i=1

E∥wit −µt∥2+ (C.62)

+
(
(n− s) +

n+ 1
2α

+
(n− s)2

s+ 1

)
s2

n(n+ 1)2 η
2

n∑
i=1

E[∥ȟit+1∥
2] (C.63)

− s
n(s+ 1)

n∑
i=1

E∥wit −wt∥2. (C.64)

We can apply Lemma 36 to the above inequality’s last line with ai = wit for i = 1, ...,n, and
an+1 = wt , and b = wt :

n∑
i=1

E∥wit −wt∥2 = (n+ 2)E∥wt −µt∥2 +
n∑
i=1

E∥wit −µt∥2. (C.65)

This allows us to simplify:

E[Φt+1]−E[Φt] ≤
(

2α(n+ 1)
s+ 1

− s(n+ 2)
n(s+ 1)

)
E
∥∥∥wt −µt∥∥∥2

(C.66)

+
(

2α(n+ 1)s
(s+ 1)n

− s
n(s+ 1)

) n∑
i=1

E∥wit −µt∥2 (C.67)

+
(
(n− s) +

n+ 1
2α

+
(n− s)2

s+ 1

)
s2

n(n+ 1)2 η
2

n∑
i=1

E[∥ȟit+1∥
2]. (C.68)

We let α = 1
4(n+1) and define κ = 1

n

(
s(n−s)

2(n+1)(s+1)

)
to simply as following:

E[Φt+1]−E[Φt] ≤−κE
∥∥∥wt −µt∥∥∥2 −κ

n∑
i=1

E∥wit −µt∥2 (C.69)

+
(
(n− s) + 2(n+ 1)2 +

(n− s)2

s+ 1

)
s2

n(n+ 1)2 η
2

n∑
i=1

E[∥ȟit+1∥
2]. (C.70)
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We now introduce Φt on the right-hand side of the inequality above:

E[Φt+1]−E[Φt] ≤−κE[Φt] +
(
(n− s) + 2(n+ 1)2 +

(n− s)2

s+ 1

)
s2

n(n+ 1)2 η
2

n∑
i=1

E[∥ȟit+1∥
2]. (C.71)

We reorganize the terms to make the final statement:

E [Φt+1] ≤ (1−κ)E [Φt] + 3
s2

n
η2

n∑
i=1

E[∥ȟit+1∥
2]. (C.72)

Bound expected local gradient Variance

In the next lemma we show that an analogous version of A12 holds in expectation.

Lemma 41. Assume A12. Let t ≥ 1 be a time step, q a local step, and i a client. We have:

E[∥̃hit,q∥2] ≤ E[∥hit,q∥2] + σ2. (C.73)

Proof. We refer the reader to the filtrations
(
F(t,q)

)
(t,q)∈I

defined in (C.1). By the tower property

of conditional expectation, we have:

E[∥̃hit,q∥2] = E
[
E
[
∥̃hit,q∥2

∣∣∣F(t,q−1)

]]
. (C.74)

We denote by hit,q the gradient of fi at wit−1 −
∑q−1
s=1 ηh̃

i
t,s. By construction, E

[
h̃it,q

∣∣∣F(t,q−1)

]
= hit,q.

By A12, we conclude that:

E
[
E
[
∥̃hit,q∥2

∣∣∣F(t,q−1)

]]
≤ E[σ2 + ∥hit,q∥2] = E[∥hit,q∥2] + σ2. (C.75)

In the following we define wit,q = wit−1 −
∑q
s=1ηh̃

i
t,s. This is the model of client i, at time step t

and at local step q. Therefore, h̃it,q is a stochastic gradient of fi computed at the point wit,q−1. The
next lemma sets an upper bound on the gradients of quantized weights for each client. We show
that such quantities can be upper bounded by an expression containing the true gradient at the
“average model” µt . For any agent i, and time step t ≥ 0, define the quantity:

Bit =
σ2

K2 + 16L2E
∥∥∥wit −µt∥∥∥2

+ 8E
∥∥∥∇fi (µt)∥∥∥2

. (C.76)

Lemma 42. Assume A12, and that the learning rate η satisfies η < 1
4LK2 . Under the assumptions of

Lemma 41, then, for any agent i, time step t ≥ 0 and local step q, the following inequality holds:

E[∥hit+1,q∥
2] ≤ Bit . (C.77)

Proof. We will prove the result by induction on q. Initially, we show inequalities that are
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necessary for both the base case q = 1 and for the general case.

E[∥hit+1,q∥
2] = E

∥∥∥∥∇fi (wit+1,q−1

)∥∥∥∥2
(C.78)

We introduce the gradient on the virtual point µt :

E
∥∥∥∇fi(wit+1,q−1)

∥∥∥2 ≤ E

∥∥∥∥∥∥∥
∇fi

wit −
q−1∑
s=1

ηh̃it+1,s

−∇fi (µt)
+∇fi (µt)

∥∥∥∥∥∥∥
2

(C.79)

≤ 2E

∥∥∥∥∥∥∥∇fi
wit −

q−1∑
s=1

ηh̃it+1,s

−∇fi (µt)
∥∥∥∥∥∥∥

2

+ 2E
∥∥∥∇fi (µt)∥∥∥2

(C.80)

≤ 2L2E

∥∥∥∥∥∥∥wit −
q−1∑
s=1

ηh̃it+1,s −µt

∥∥∥∥∥∥∥
2

+ 2E
∥∥∥∇fi (µt)∥∥∥2

(C.81)

≤ 4L2E
∥∥∥wit −µt∥∥∥2

+ 4η2L2(q − 1)
q−1∑
s=1

E
∥∥∥̃hit+1,s

∥∥∥2
+ 2E

∥∥∥∇fi (µt)∥∥∥2
. (C.82)

Applying this result with q = 1 shows that (C.77) holds. For q ≥ 1, we proceed by induction.
First, we apply Lemma 41:

E
∥∥∥∇fi(wit+1,q−1)

∥∥∥2 ≤ 4L2E
∥∥∥wit −µt∥∥∥2

+ 4η2L2(q − 1)
q−1∑
s=1

(
E
∥∥∥hit+1,s

∥∥∥2
+ σ2

)
+ 2E

∥∥∥∇fi (µt)∥∥∥2
. (C.83)

Using the induction hypothesis, we have:

E
∥∥∥∇fi(wit+1,q−1)

∥∥∥2 ≤ 4L2E
∥∥∥wit −µt∥∥∥2

+ 4η2L2(q − 1)2
(
Bit + σ2

)
+ 2E

∥∥∥∇fi (µt)∥∥∥2
. (C.84)

Now we use that η < 1
4LK2 and q ≤ K .

E
∥∥∥∇fi(wit+1,q−1)

∥∥∥2 ≤ 4L2E
∥∥∥wit −µt∥∥∥2

+
4

16K2

(
Bit + σ2

)
+ 2E

∥∥∥∇fi (µt)∥∥∥2
(C.85)

≤ 4L2E
∥∥∥wit −µt∥∥∥2

+
σ2

4K2 + 2E
∥∥∥∇fi (µt)∥∥∥2

+
Bit
4

(C.86)

Finally, we get:

E
∥∥∥hit+1,q

∥∥∥2 ≤ 8L2E
∥∥∥wit −µt∥∥∥2

+
σ2

2K2 + 4E
∥∥∥∇fi (µt)∥∥∥2

+
Bit
2

(C.87)

It then suffices to see that the last term above is upper bounded by Bit .

In Lemma 42 we have found a way to bound hit+1,q. The goal of the next lemma is to use this

result to find an upper bound for the stochastic gradients h̃it+1,q.

Corollary 43. Under the assumptions of Lemma 42, for any local step q, agent i, and step t ≥ 0, the
following holds:

E∥̃hit+1,q∥
2 ≤

(
σ2 +Bit

)
. (C.88)
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The next lemma gives an upper bound on the difference of the gradient at the average model
µt and the expected value of the updates computed by the clients. In particular, the next lemma
shows how well the hit+1,q approximate the true gradients ∇fi (µt). For any i ∈ {1, . . . ,n} and t ≥ 0,
define

Cit = 4L2η2K2σ2 + 20L2E
∥∥∥wit −µt∥∥∥2

+ 16L2η2K2E
∥∥∥∇fi (µt)∥∥∥2

. (C.89)

Lemma 44. Assume the learning rate η satisfies η < 1
2LK . Under the assumptions of Corollary 43, for

any i ∈ {1, . . . ,n}, t ≥ 0 and q ∈ {1, . . . ,K}, it holds that :

E
∥∥∥∇fi (µt)− hit+1,q

∥∥∥2 ≤ Cit . (C.90)

Proof.

E
∥∥∥∇fi (µt)− hit+1,q

∥∥∥2
= E

∥∥∥∥∇fi (µt)−∇fi (wit+1,q−1

)∥∥∥∥2
(C.91)

≤ L2E
∥∥∥µt −wit+1,q−1

∥∥∥2
. (C.92)

We can now decompose the client drift as:

E∥µt −wit+1,q−1∥
2 = E

∥∥∥∥∥∥∥µt −wit +
q∑
s=1

ηh̃it+1,s

∥∥∥∥∥∥∥
2

(C.93)

≤ 2E
∥∥∥wit −µt∥∥∥2

+ 2η2E

∥∥∥∥∥∥∥
q∑
s=1

h̃it+1,s

∥∥∥∥∥∥∥
2

(C.94)

≤ 2E
∥∥∥wit −µt∥∥∥2

+ 2η2q

q∑
s=1

E
∥∥∥̃hit+1,s

∥∥∥2
. (C.95)

By using Corollary 43, we get

E∥µt −wit+1,q−1∥
2 ≤ 2E

∥∥∥wit −µt∥∥∥2
+ 2η2K2(σ2 +Bit), (C.96)

where Bit is defined in (C.76). Combining the two bounds, we get:

E
∥∥∥∇fi (µt)− hit+1,q

∥∥∥2 ≤ 2L2E
∥∥∥wit −µt∥∥∥2

+ 2L2η2K2(σ2 +Bit). (C.97)

Expanding the above inequality:

E
∥∥∥∇fi (µt)− hit+1,q

∥∥∥2 ≤ 2L2E
∥∥∥wit −µt∥∥∥2

(C.98)

+ 2L2η2K2(σ2 +
σ2

K2 + 16L2E
∥∥∥wit −µt∥∥∥2

+ 8E
∥∥∥∇fi (µt)∥∥∥2

) (C.99)

≤ 4L2η2K2σ2 + 20L2E
∥∥∥wit −µt∥∥∥2

+ 16L2η2K2E
∥∥∥∇fi (µt)∥∥∥2

. (C.100)

As claimed.
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Lemma 45. Under assumptions of Lemma 44, we have

E
〈
∇f (µt) ,−hit+1,q

〉
≤

E[∥∇f (µt)∥2]
4

+Cit −E[⟨∇f (µt),∇fi(µt)⟩]. (C.101)

Proof. We may manipulate the equation above to get:

E
〈
∇f (µt) ,−hit+1

〉
=E

〈
∇f (µt) ,∇fi (µt)− hit+1,q

〉
−E

〈
∇f (µt) ,∇fi (µt)

〉
. (C.102)

Using Young’s inequality together with Lemma 44 we can upper bound E
〈
∇f (µt) ,∇fi (µt)− hit+1,q

〉
by

E
∥∥∥∇f (µt)

∥∥∥2

4
+E

∥∥∥∇fi (µt)− hit+1,q

∥∥∥2 ≤
E
∥∥∥∇f (µt)

∥∥∥2

4
+Cit . (C.103)

This concludes the proof.

The next lemma incorporates the idea behind gradient descent. We find an upper bound
for the expected value of the inner product between the true gradients ∇f (µt) and the client
updates −h̃it+1. In particular, we seek to show that, in expectation −h̃it+1 is a descent direction for
the function f . In other words, that the updates proposed by the clients contribute to getting µt
closer to a local minimum.

Lemma 46. Assume A13. We denote by Eit+1 the effective number of locals steps done by a client
i while being called by the central server. We clip to K and consider the random variable Eit+1 ∧K .
Under assumptions of Lemma 44, and for any time step t > 0, we have:

n∑
i=1

E⟨∇f (µt) ,−
1
αi
h̃it+1⟩ ≤ 20L2E [Φt] + 4nL2η2K2(σ2 + 4G2) +n

(
16L2η2K2B2 − 3

4

)
E
∥∥∥∇f (µt)

∥∥∥2
.

(C.104)

for

αi =

P(Eit+1 > 0)Eit+1 ∧K
E[Eit+1 ∧K].

(C.105)

Proof. Initially, we introduce indicator random variables in order to work with the Eit+1 terms.
We also introduce Z i the following random variable as :

Z i =


0 if Eit+1 < 1

⟨∇f (µt),− 1
αi

∑Eit+1
q h̃t+1,q⟩ if 1 ≤ Eit+1 ≤ K

⟨∇f (µt),− 1
αi

∑K
q h̃t+1,q if Eit+1 > K.

(C.106)

We first claim that E⟨∇f (µt) , h̃
i
t+1,q⟩ = E⟨∇f (µt) ,h

i
t+1,q⟩. This result follows from the following

algebraic manipulations. First, notice that:

E⟨∇f (µt) , h̃
i
t+1,q⟩ = E⟨∇f (µt) , h̃

i
t+1,q − h

i
t+1,q⟩+E⟨∇f (µt) ,h

i
t+1,q⟩. (C.107)
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Now, we recall that E[⟨∇f (µt) , h̃
i
t+1,q − h

i
t+1,q⟩|F(t+1,q−1)] = 0. Therefore:

E⟨∇f (µt) , h̃
i
t+1,q − h

i
t+1,q⟩ = E[E[⟨∇f (µt) , h̃

i
t+1,q − h

i
t+1,q⟩|F(t+1,q−1)]] = 0. (C.108)

Now notice that Eit+1 is independent of the random variables ∇f (µt) and h̃it+1,q. Therefore:

n∑
i=1

E
〈
∇f (µt) ,−

1
αi
h̃it+1

〉
=

n∑
i

E[Z i] (C.109)

=
n∑
i=1

E[1[Eit+1 > K]⟨∇f (µt),−
1
αi

K∑
q

h̃it+1,q⟩ (C.110)

+1[1 ≤ Eit+1 ≤ K]⟨∇f (µt),−
1
αi

K∑
q

1[q ≤ Eit+1 ]̃hit+1,q] (C.111)

=
n∑
i

K∑
q

E[
1[Eit+1 ≥ 1]1[q ≤ (Eit+1 ∧K)]

αi
⟨∇f (µt),−h̃it+1,q⟩] (C.112)

=
n∑
i

E[
1[Eit+1 ≥ 1]

αi

Eit+1∧K∑
q

⟨∇f (µt),−h̃it+1,q⟩]. (C.113)

We now apply Lemma 45 to obtain the following:

E
〈
∇f (µt) ,−

1
αi
h̃it+1

〉
≤E[

1[Eit+1 ≥ 1]

αi

Eit+1∧K∑
q

E[⟨∇f (µt),−h̃it+1,q⟩|E
i
t+1]] (C.114)

≤E[
1[Eit+1 ≥ 1]

αi

Eit+1∧K∑
q

(
E[∥∇f (µt)∥2]

4
+Cit −E[⟨∇f (µt),∇fi(µt)⟩])] (C.115)

(C.116)

We can make use of Lemma 38 with αi = P(Eit+1 > 0)Eit+1∧K or αi = E[Eit+1∧K], and S = Eit+1∧K ,
Yq = E[⟨∇f (µt),−h̃it+1,q⟩|E

i
t+1] to achieve the following:

n∑
i=1

E
〈
∇f (µt) ,−

1
αi
h̃it+1

〉
≤

n∑
i=1

E[∥∇f (µt)∥2]
4

+Cit −E[⟨∇f (µt),∇fi(µt)⟩]. (C.117)

Now we use that
∑n
i=1

fi (w)
n = f (w), for any vector w ∈ Rd .

n∑
i=1

E
〈
∇f (µt) ,−

1
αi
h̃it+1

〉
≤
nE

∥∥∥∇f (µt)
∥∥∥2

4
−nE

∥∥∥∇f (µt)
∥∥∥2

+
n∑
i=1

Cit . (C.118)
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Finally, we compute:

n∑
i=1

Cit =
n∑
i=1

(
4L2η2K2σ2 + 20L2E

∥∥∥wit −µt∥∥∥2
+ 16L2η2K2E

∥∥∥∇fi (µt)∥∥∥2
)

(C.119)

= 4nL2η2K2σ2 + 20L2
n∑
i=1

E
∥∥∥wit −µt∥∥∥2

+ 16L2η2K2
n∑
i=1

E
∥∥∥∇fi (µt)∥∥∥2

. (C.120)

We can then use assumption A13:

n∑
i=1

Cit ≤ 4nL2η2K2σ2 + 20L2E [Φt] + 16nL2η2K2
(
G2 +B2E

∥∥∥∇f (µt)
∥∥∥2

)
. (C.121)

In conclusion, we get the following upper bound for
∑n
i=1E

〈
∇f (µt) ,− 1

αi
h̃it+1

〉
:

20L2E [Φt] + 4nL2η2K2(σ2 + 4G2) +n
(
16L2η2K2B2 − 3

4

)
E
∥∥∥∇f (µt)

∥∥∥2
. (C.122)

C.1.3 Bound Sum of expected local gradient variance

The next lemma gives a bound on the expected update computed by clients at time step t. The
result is useful, for example, in setting an upper bound on how much the average model µt
changes between time steps. The proof follows a similar reasoning as the proof of the previous
lemma.

Lemma 47. Assume A12 and A13. Under assumptions of Lemma 42, and for any step t, we have that:

n∑
i

E
∥ 1

P(Eit+1 > 0)Eit+1 ∧K
h̃it+1∥

2
 ≤ σ2

n∑
i

(
1

K2P(Eit+1 > 0)
+

1

P(Eit+1 > 0)2
E[
1(Eit+1 > 0)

Eit+1 ∧K
]) + 16L2E[Φt]max

i
(

1

P(Eit+1 > 0)
)

(C.123)

+ 8nmax
i

(
1

P(Eit+1 > 0)
)B2E[∥∇f (µt)∥2] + 8nmax

i
(

1

P(Eit+1 > 0)
)G2 (C.124)

n∑
i

E
∥ 1

E[Eit+1 ∧K]
h̃it+1∥

2
 ≤ σ2

n∑
i

(
1

E[Eit+1 ∧K]
+

E[(Ei+1 ∧K)2]

K2E[Eit+1 ∧K]
) + 16L2E[Φt]max

i
(
E[(Eit+1 ∧K)2]

E[Eit+1 ∧K]
)

(C.125)

+ 8nmax
i

(
E[(Eit+1 ∧K)2]

E[Eit+1 ∧K]
)B2E[∥∇f (µt)∥2] + 8nmax

i
(
E[(Eit+1 ∧K)2]

E[Eit+1 ∧K]
)G2.

(C.126)

Proof. For αi = P(Eit+1 > 0)Eit+1 ∧K or αi = E[Eit+1 ∧K], we have:

n∑
i=1

E[
∥∥∥∥∥ 1
αi
h̃it+1

∥∥∥∥∥2
] =

n∑
i=1

Var(
1
αi

Eit+1∧K∑
q=1

h̃it+1,q) +
n∑
i

∥E[ȟit+1]∥2. (C.127)
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Recall that for any q ∈ {1, ...,K}, the random variables Eit+1 and h̃it+1,q are independent. For clarity

we reuse the notation where ȟit+1 = 1
P(Eit+1>0)(Eit+1∧K)

h̃it+1 or ȟit+1 = 1
E[Eit+1∧K]

h̃it+1. Therefore we can

apply Lemma 39 with S = Eit+1 ∧K and Yq = h̃it+1,q:


E[∥ 1

P(Eit+1>0)Eit+1∧K
h̃it+1∥

2] ≤ ∥E[ȟit+1]∥2 +
∥E[ȟit+1]∥2

P(Eit+1>0)2 (P(Eit+1 > 0)(1−P(Eit+1 > 0))) +
Var(̃hit+1,q)

P(Eit+1>0)2 E[
1(Eit+1>0)
Eit+1∧K

]

E[
∥∥∥∥∥ 1
E[Eit+1∧K]

h̃it+1

∥∥∥∥∥2
] ≤ ∥E[ȟit+1]∥2 +

Var(̃hit+1,q)

E[Eit+1∧K]
+
∥E[̃hit+1,q]∥2 Var(Eit+1∧K)

E[Eit+1∧K]2 .

(C.128)

We now use Corollary 43 to get:
E
[
∥ 1

P(Eit+1>0)Eit+1∧K
h̃it+1∥2

]
≤ ∥E[ȟit+1]∥2 1

P(Eit+1>0)
+
σ2+Bit−∥E[̃hit+1,q]∥2

P(Eit+1>0)2 E
[
1[Eit+1>0]

Eit+1∧K

]
E
[
∥ 1
E[Eit+1∧K]

h̃it+1∥2
]
≤ ∥E[ȟit+1]∥2(1 + Var(Eit+1∧K)

E[Eit+1∧K]2 ) +
σ2+Bit−∥E[̃hit+1,q]∥2

E[Eit+1∧K]
.

(C.129)

Hence we can use Lemma 38 with S = Eit+1 ∧K and Yq = h̃it+1,q to simplify as following:
E
[
∥ 1

P(Eit+1>0)Eit+1∧K
h̃it+1∥2

]
≤ ∥E[̃hit+1,q]∥2

1
P(Eit+1>0)

+
σ2+Bit−∥E[̃hit+1,q]∥2

P(Eit+1>0)2 E
[
1[Eit+1>0]

Eit+1∧K

]
E
[
∥ 1
E[Eit+1∧K]

h̃it+1∥2
]
≤ ∥E[̃hit+1,q]∥2(1 + Var(Eit+1∧K)

E[Eit+1∧K]2 ) +
σ2+Bit−∥E[̃hit+1,q]∥2

E[Eit+1∧K]
.

(C.130)

We refer the reader to the filtrations
(
F(t,q)

)
(t,q)∈I

defined in (C.1). Now we can express the

expected value of h̃it+1,q (as µ following the notations from Lemma 39), and upper bound its
square norm by Lemma 42 :

∥µ∥2 = ∥E[E
[
h̃it+1,q

∣∣∣F(t,q−1)

]
]∥2 (C.131)

≤ E[∥E
[
h̃it+1,q

∣∣∣F(t,q−1)

]
∥2] (C.132)

≤ E[∥hit+1,q∥
2] (C.133)

≤ Bit (C.134)

We can insert this bound in the above inequations:
E
[
∥ 1

P(Eit+1>0)Eit+1∧K
h̃it+1∥2

]
≤ Bit

P(Eit+1>0)−E
[
1[Eit+1>0]

Eit+1∧K

]
P(Eit+1>0)2 + σ2+Bit

P(Eit+1>0)2 E
[
1[Eit+1>0]

Eit+1∧K

]
E
[
∥ 1
E[Eit+1∧K]

h̃it+1∥2
]
≤ Bit

E[(Eit+1∧K)2]−E[Eit+1∧K]

E[Eit+1∧K]2 + σ2+Bit
E[Eit+1∧K]

.

(C.135)

This simplifies as:
E
[
∥ 1

P(Eit+1>0)Eit+1∧K
h̃it+1∥2

]
≤ Bit

P(Eit+1>0)
+ σ2

P(Eit+1>0)2 E
[
1[Eit+1>0]

Eit+1∧K

]
E
[
∥ 1
E[Eit+1∧K]

h̃it+1∥2
]
≤ Bit

E[(Eit+1∧K)2]

E[Eit+1∧K]2 + σ2

E[Eit+1∧K]
.

(C.136)
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Expanding Bit and summing from i to n, we get:

n∑
i

E
∥ 1

P(Eit+1 > 0)Eit+1 ∧K
h̃it+1∥

2
 ≤ σ2

n∑
i

(
1

K2P(Eit+1 > 0)
+

1

P(Eit+1 > 0)2
E[
1(Eit+1 > 0)

Eit+1 ∧K
]) + 16L2E[Φt]max

i
(

1

P(Eit+1 > 0)
)

(C.137)

+ 8
n∑
i

max
j

(
1

P(E
j
t+1 > 0)

)E[∥∇fi (µt)∥2] (C.138)

n∑
i

E
∥ 1

E[Eit+1 ∧K]
h̃it+1∥

2
 ≤ σ2

n∑
i

(
1

E[Eit+1 ∧K]
+

E[(Ei+1 ∧K)2]

K2E[Eit+1 ∧K]
) + 16L2E[Φt]max

i
(
E[(Eit+1 ∧K)2]

E[Eit+1 ∧K]
)

(C.139)

+ 8
n∑
i

max
j

(
E[(E

j
t+1 ∧K)2]

E[E
j
t+1 ∧K]

)E[∥∇f (µt)∥2]. (C.140)

Remark 48. Here we loose a lot: we have upper bounded the term
∑n
i

1
P(Eit+1>0)

∥wit−µt∥2 ≤
∑n
i maxi(

1
P(Eit+1>0)

)∥wit−

µt∥2. But still, our bounds stay better than Zakerinia et al. 2022’s ones.

In order to complete the proof, we combine assumption A13 together with the above inequalities

n∑
i

E
∥ 1

P(Eit+1 > 0)Eit+1 ∧K
h̃it+1∥

2
 ≤ σ2

n∑
i

(
1

K2P(Eit+1 > 0)
+

1

P(Eit+1 > 0)2
E[
1(Eit+1 > 0)

Eit+1 ∧K
]) + 16L2E[Φt]max

i
(

1

P(Eit+1 > 0)
)

(C.141)

+ max
i

(
1

P(Eit+1 > 0)
)
(
8nB2E[∥∇f (µt)∥2] + 8nG2

)
(C.142)

n∑
i

E
∥ 1

E[Eit+1 ∧K]
h̃it+1∥

2
 ≤ σ2

n∑
i

(
1

E[Eit+1 ∧K]
+

E[(Ei+1 ∧K)2]

K2E[Eit+1 ∧K]
) + 16L2E[Φt]max

i
(
E[(Eit+1 ∧K)2]

E[Eit+1 ∧K]
)

(C.143)

+ 8nmax
i

(
E[(Eit+1 ∧K)2]

E[Eit+1 ∧K]
)B2E[∥∇f (µt)∥2] + 8nmax

i
(
E[(Eit+1 ∧K)2]

E[Eit+1 ∧K]
)B2.

(C.144)
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C.1.4 Bound the sum (over time) of expected potential

Lemma 49. Assume that η ≤ 1
20sLmaxi (

1
P(Eit+1>0)

)
, 1

20sLmaxi (
E[(Eit+1∧K)2]

E[Eit+1∧K]
)
. Under the assumptions of Lem-

mas 9 and 47, and for any time step t we have:

E [Φt+1] ≤
(
1− 1

5n

)
E [Φt] + 3s2η2

1
n

n∑
i

(
1

K2P(Eit+1 > 0)
+

1

P(Eit+1 > 0)2
E[
1(Eit+1 > 0)

Eit+1 ∧K
]) + 8max

i
(

1

P(Eit+1 > 0)
)G2


(C.145)

+ 24B2s2η2 max
i

(
1

P(Eit+1 > 0)
)E

∥∥∥∇f (µt)
∥∥∥2

(C.146)

(C.147)

E [Φt+1] ≤
(
1− 1

5n

)
E [Φt] + 3s2η2

1
n

n∑
i

(
1

E[Eit+1 ∧K]
+

E[(Ei+1 ∧K)2]

K2E[Eit+1 ∧K]
) + 8max

i
(
E[(Eit+1 ∧K)2]

E[Eit+1 ∧K]
)G2


(C.148)

+ 24B2s2η2 max
i

(
E[(Eit+1 ∧K)2]

E[Eit+1 ∧K]
)E

∥∥∥∇f (µt)
∥∥∥2

(C.149)

(C.150)

Proof. We first use Lemma 9:

E [Φt+1] ≤ (1−κ)E [Φt] + 3
s2

n
η2

n∑
i=1

E[
1

αi2

∥∥∥̃hit+1

∥∥∥2
]. (C.151)

, with αi = P(Eit+1 > 0)(Eit+1 ∧K) or αi = E[Eit+1 ∧K]. Now we expand the quantity above using
the inequality in Lemma 47:

E [Φt+1] ≤ (1−κ)E [Φt] + 3
s2

n
η2

σ2
n∑
i

ai + b(16L2E[Φt] + 8nB2E[∥∇f (µt)∥2]) + 8nG2

 (C.152)

≤
(
1− 1

n

(
s(n− s)

2(n+ 1)(s+ 1)

)
+ 48

s2

n
L2bη2

)
E [Φt] + 3

s2

n
(σ2

n∑
i

ai + 8nbG2)η2 + 24B2s2bη2E
∥∥∥∇f (µt)

∥∥∥2
.

(C.153)

With 
ai ,b = 1

K2P(Eit+1>0)
+ 1

P(Eit+1>0)2 E[1(Eit+1>0)

Eit+1∧K
],maxi(

1
P(Eit+1>0)

)

ai ,b = 1
E[Eit+1∧K]

+ E[(Ei+1∧K)2]

K2E[Eit+1∧K]
,maxi(

E[(Eit+1∧K)2]

E[Eit+1∧K]
).

(C.154)

To complete, we use η ≤ 1
20sLb :

E [Φt+1] ≤
(
1− 1

5n

)
E [Φt] + 3s2η2

σ2 1
n

n∑
i

ai + 8bG2

+ 24B2s2η2bE
∥∥∥∇f (µt)

∥∥∥2
. (C.155)
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In the next lemma, we bound the cumulative sum of potential functions.

Lemma 50. Let T be a positive integer. Under the assumptions of Lemma 49, the following inequality
holds:

T∑
t=0

E [Φt] ≤ 120nB2s2 max
i

(
1

P(Eit+1 > 0)
)η2

T−1∑
t=0

E
∥∥∥∇f (µt)

∥∥∥2
(C.156)

+ 15T s2η2

σ2
n∑
i

(
1

K2P(Eit+1 > 0)
+

1

P(Eit+1 > 0)2
E[
1(Eit+1 > 0)

Eit+1 ∧K
]) + 8nmax

i
(

1

P(Eit+1 > 0)
)G2

 .
(C.157)

T∑
t=0

E [Φt] ≤ 120nB2s2 max
i

(
E[(Eit+1 ∧K)2]

E[Eit+1 ∧K]
)η2

T−1∑
t=0

E
∥∥∥∇f (µt)

∥∥∥2
(C.158)

+ 15T s2η2

σ2
n∑
i

(
1

E[Eit+1 ∧K]
+

E[(Ei+1 ∧K)2]

K2E[Eit+1 ∧K]
) + 8nmax

i
(
E[(Eit+1 ∧K)2]

E[Eit+1 ∧K]
)G2

 .
(C.159)

Proof. From Lemma 49, we get that there exist α,β not depending on t such that:

E [Φt+1] ≤
(
1− 1

5n

)
E [Φt] +αE

∥∥∥∇f (µt)
∥∥∥2

+ β. (C.160)

Therefore:

T−1∑
t=0

E [Φt+1] ≤
T−1∑
t=0

((
1− 1

5n

)
E [Φt] +αE

∥∥∥∇f (µt)
∥∥∥2

+ β
)

(C.161)

≤
(
1− 1

5n

)T−1∑
t=0

E [Φt] + T β +α
T−1∑
t=0

E
∥∥∥∇f (µt)

∥∥∥2
. (C.162)

Rearranging the terms in the sum we obtain the following:

(
1− 1

5n

)
E [Φ0] +

1
5n

T−1∑
t=1

E [Φt] +E [ΦT ] ≤ T β +α
T−1∑
t=0

E
∥∥∥∇f (µt)

∥∥∥2
. (C.163)

From this inequality, we get:

T∑
t=0

E [Φt] ≤5n

T β +α
T−1∑
t=0

E
∥∥∥∇f (µt)

∥∥∥2
 . (C.164)

Expanding on the values of α,β obtained by Lemma 49, we get the desired result:

T∑
t=0

E [Φt] ≤ 5nT
3s2

n
η2

σ2
n∑
i

ai + 8nbG2

+ 120nB2s2bη2
T−1∑
t=0

E
∥∥∥∇f (µt)

∥∥∥2
. (C.165)
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C.1.5 Bound the change in the average model

The next lemma upper bounds the expected change in the average model µt .

Lemma 51. For any time step t ≥ 0,

E
∥∥∥µt+1 −µt

∥∥∥2 ≤
s2η2

n(n+ 1)2

n∑
i=1

E
∥∥∥ȟit+1

∥∥∥2
. (C.166)

Proof. Recall that

µt+1 −µt = −
η

n+ 1

∑
i∈St+1

ȟit+1. (C.167)

Therefore we may compute an upper bound:

∥µt+1 −µt∥2 =
η2

(n+ 1)2

∥∥∥∥∥∥∥∥
∑
i∈St+1

ȟit+1

∥∥∥∥∥∥∥∥
2

(C.168)

≤
sη2

(n+ 1)2

∑
i∈St+1

∥∥∥ȟit+1

∥∥∥2
(C.169)

We may then apply Lemma 37 to get the desired result:

E
∥∥∥µt+1 −µt

∥∥∥2 ≤
s2η2

n(n+ 1)2

n∑
i=1

E
∥∥∥ȟit+1

∥∥∥2
. (C.170)

We now give another upper bound on how the average model µt changes at time step t.

Lemma 52. Under the assumptions of Lemmas 47 and 51, and for any step t:

E∥µt+1 −µt∥2 ≤
s2η2σ2

n(n+ 1)2

n∑
i

(
1

K2P(Eit+1 > 0)
+

1

P(Eit+1 > 0)2
E[
1(Eit+1 > 0)

Eit+1 ∧K
]) +

16L2s2η2

n(n+ 1)2
E[Φt]max

i
(

1

P(Eit+1 > 0)
)

(C.171)

+
8s2B2η2

(n+ 1)2
max
i

(
1

P(Eit+1 > 0)
)E[∥∇f (µt)∥2] +

8s2G2η2

(n+ 1)2
max
i

(
1

P(Eit+1 > 0)
) (C.172)

E∥µt+1 −µt∥2 ≤
s2η2σ2

n(n+ 1)2

n∑
i

(
1

E[Eit+1 ∧K]
+

E[(Ei+1 ∧K)2]

K2E[Eit+1 ∧K]
) +

16L2s2η2

n(n+ 1)2
E[Φt]max

i
(
E[(Eit+1 ∧K)2]

E[Eit+1 ∧K]
) (C.173)

+
8s2B2η2

(n+ 1)2
max
i

(
E[(Eit+1 ∧K)2]

E[Eit+1 ∧K]
)E[∥∇f (µt)∥2] +

8s2G2η2

(n+ 1)2
max
i

(
E[(Eit+1 ∧K)2]

E[Eit+1 ∧K]
). (C.174)

Proof. For this proof, we will combine the inequality obtained from Lemma 51 to the one from
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Lemma 47. This will be enough to obtain the desired result.

E∥µt+1 −µt∥2 ≤
n∑
i=1

s2η2

n(n+ 1)2E∥ȟ
i
t+1∥

2. (C.175)

Simplifying the above quantity, we get the desired inequality:

E∥µt+1 −µt∥2 ≤
s2η2σ2

n(n+ 1)2

n∑
i

(
1

K2P(Eit+1 > 0)
+

1

P(Eit+1 > 0)2
E[
1(Eit+1 > 0)

Eit+1 ∧K
]) +

16L2s2η2

n(n+ 1)2
E[Φt]max

i
(

1

P(Eit+1 > 0)
)

(C.176)

+
8s2B2η2

(n+ 1)2
max
i

(
1

P(Eit+1 > 0)
)E[∥∇f (µt)∥2] +

8s2G2η2

(n+ 1)2
max
i

(
1

P(Eit+1 > 0)
)G2 (C.177)

E∥µt+1 −µt∥2 ≤
s2η2σ2

n(n+ 1)2

n∑
i

(
1

E[Eit+1 ∧K]
+

E[(Ei+1 ∧K)2]

K2E[Eit+1 ∧K]
) +

16L2s2η2

n(n+ 1)2
E[Φt]max

i
(
E[(Eit+1 ∧K)2]

E[Eit+1 ∧K]
) (C.178)

+
8s2B2η2

(n+ 1)2
max
i

(
E[(Eit+1 ∧K)2]

E[Eit+1 ∧K]
)E[∥∇f (µt)∥2] +

8s2G2η2

(n+ 1)2
max
i

(
E[(Eit+1 ∧K)2]

E[Eit+1 ∧K]
)G2. (C.179)

C.1.6 Convergence result

In this section, we use the lemmas proved so far to demonstrate Theorem 10. Following the
proof, we establish the learning rate η that results in the best overall rate of convergence.

Proof. Using L-smoothness, we have:

f (µt+1) ≤ f (µt) +
〈
∇f (µt) ,µt+1 −µt

〉
+
L
2

∥∥∥µt+1 −µt
∥∥∥2
. (C.180)

First we look at the term
〈
∇f (µt) ,µt+1 −µt

〉
. Recall that:

µt+1 −µt = −
η

n+ 1

∑
i∈St+1

ȟit+1 (C.181)

by Lemma 37, we have:

Et[µt+1 −µt] = −
sη

n(n+ 1)

n∑
i=1

ȟit+1 (C.182)

and subsequently

Et
〈
∇f (µt) ,µt+1 −µt

〉
=

n∑
i=1

sη

n(n+ 1)
Et

〈
∇f (µt) ,−ȟit+1

〉
.
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Hence, we can rewrite (C.180) as:

Et [f (µt+1)] ≤ f (µt) +
n∑
i=1

sη

n(n+ 1)
Et

〈
∇f (µt) ,−ȟit+1

〉
+
L
2
Et

∥∥∥µt+1 −µt
∥∥∥2
. (C.183)

Next, we remove the conditioning with the tower law of expectation:

E [f (µt+1)] ≤ E [f (µt)] +
n∑
i=1

sη

n(n+ 1)
E
〈
∇f (µt) ,−ȟit+1

〉
+
L
2
E
∥∥∥µt+1 −µt

∥∥∥2
. (C.184)

We now define some notation to simplify the computations. By Lemma 46, there exist a1, a2, a3
not depending on t such that

n∑
i=1

E
〈
∇f (µt) ,−ȟit+1

〉
≤ a1E [Φt] + a2E

∥∥∥∇f (µt)
∥∥∥2

+ a3. (C.185)

Similarly, by Lemma 52, there exist b1,b2,b3 not depending on t such that:

E
∥∥∥µt+1 −µt

∥∥∥2 ≤ b1E [Φt] + b2E
∥∥∥∇f (µt)

∥∥∥2
+ b3. (C.186)

Defining ci = ai
sη

n(n+1) + bi
L
2 , we have

E [f (µt+1)]−E [f (µt)] ≤c1E [Φt] + c2E
∥∥∥∇f (µt)

∥∥∥2
+ c3. (C.187)

Summing the above inequality for t = 0,1, . . . ,T − 1 we get that:

E [f (µT )]− f (µ0) ≤ c1

T−1∑
t=0

E [Φt] + c2

T−1∑
t=0

E
∥∥∥∇f (µt)

∥∥∥2
+ c3T . (C.188)

By Lemma 50 there exist d1,d2 independent of T such that:

T∑
t=0

E [Φt] ≤ d1

T−1∑
t=0

E
∥∥∥∇f (µt)

∥∥∥2
+ T d2. (C.189)

We then get:

E [f (µT )]− f (µ0) ≤ (c1d1 + c2)
T−1∑
t=0

E
∥∥∥∇f (µt)

∥∥∥2
+ T (c1d2 + c3). (C.190)

We now assume that c1d1 + c2 < 0. Later in the proof, we will show that this is true for small
enough η. Using the fact that f (µT ) ≥ f∗ and rearranging the terms, we get:

1
T

T−1∑
t=0

E
∥∥∥∇f (µt)

∥∥∥2 ≤
f (µ0)− f∗

T (−c1d1 − c2)
+
c1d2 + c3

−c1d1 − c2
. (C.191)

Of course, now we expand each of these terms. Refer to Lemma 46, Lemma 52, and Lemma 50
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for the specific values of the defined quantities ai , bi , and di . We have:

c1 =
sη

n(n+ 1)
a1 +

L
2
b1 (C.192)

= 20L2 sη

n(n+ 1)
+

16s2η2L2b

n(n+ 1)2
L
2

(C.193)

=
4L2sη

n(n+ 1)2 (5(n+ 1) + 2sηLb) . (C.194)

We recall here the definition from Lemma 49
ai ,b = 1

K2P(Eit+1>0)
+ 1

P(Eit+1>0)2 E[1(Eit+1>0)

Eit+1∧K
],maxi(

1
P(Eit+1>0)

)

ai ,b = 1
E[Eit+1∧K]

+ E[(Ei+1∧K)2]

K2E[Eit+1∧K]
,maxi(

E[(Eit+1∧K)2]

E[Eit+1∧K]
).

(C.195)

By using η ≤ n+1
2sLb we get:

c1 ≤
24L2sη

n(n+ 1)
. (C.196)

Therefore:

c1d1 ≤
24L2sη

n(n+ 1)
120nB2s2bη2 (C.197)

≤
2880L2s3η3B2b

n+ 1
. (C.198)

Moreover:

c2 =
sη

n(n+ 1)
a2 +

L
2
b2 (C.199)

=
sη

n(n+ 1)

(
n
(
16L2η2K2B2 − 3

4

))
+
L
2

(
8s2η2bB2

(n+ 1)2

)
(C.200)

=
sη

(n+ 1)

(
16L2η2K2B2 − 3

4

)
+

4Ls2η2bB2

(n+ 1)2 . (C.201)

By using η ≤ 1
20B2bKLs

we get:

c1d1 ≤
2880

8000(n+ 1)LB4K3b2 (C.202)

c2 ≤
sη

n+ 1

( 16
400s2b2B2 −

3
4

)
+

4
400(n+ 1)2LbB2K2 (C.203)

≤
−sη

2(n+ 1)
− c1d1. (C.204)
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Therefore we conclude that −c2 − c1d1 ≥
sη

2(n+1) , which is greater than 0. Now we compute:

c1d2 ≤
24L2sη

n(n+ 1)

15s2η2

σ2
n∑
i

ai + 8nbG2


 (C.205)

≤
360L2s3η3

(n+ 1)

σ2 1
n

n∑
i

ai + 8bG2

 . (C.206)

And additionally:

c3 =
sη

n(n+ 1)
a3 +

L
2
b3 (C.207)

=
sη

n(n+ 1)

(
4nL2η2K2(σ2 + 4G2)

)
+
L
2

 s2η2σ2

n(n+ 1)2

n∑
i

ai +
8s2G2η2

(n+ 1)2 b

 . (C.208)

Thus

c3 + c1d2 ≤

4L2η2K2sη

(n+ 1)
+

Ls2η2

2n(n+ 1)2

n∑
i

ai +
360L2s3η3

n(n+ 1)

n∑
i

ai
σ2 (C.209)

+
(

16L2η2K2sη

(n+ 1)
+

4Ls2η2

(n+ 1)2 b+
2880bL2s3η3

(n+ 1)

)
G2. (C.210)

And therefore:

c3 + c1d2

−c1d1 − c2
≤

8L2η2K2 +
Lsη

n(n+ 1)

n∑
i

ai +
720L2s2η2

n

n∑
i

ai
σ2 (C.211)

+
(
32L2η2K2 +

8Lsη
(n+ 1)

b+ 5600bL2s2η2
)
G2. (C.212)

Finally:

1
T

T−1∑
t=0

E
∥∥∥∇f (µt)

∥∥∥2 ≤2(n+ 1)
f (µ0)− f∗
T sη

(C.213)

+

8L2η2K2 +
Lsη

n(n+ 1)

n∑
i

ai +
720L2s2η2

n

n∑
i

ai
σ2 (C.214)

+
(
32L2η2K2 +

8Lsη
(n+ 1)

b+ 5600bL2s2η2
)
G2. (C.215)

In particular for stochastic reweighting:
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1
T

T−1∑
t=0

E
∥∥∥∇f (µt)

∥∥∥2 ≤ 2(n+ 1)
f (µ0)− f∗
T sη

(C.216)

+

8L2η2K2 +
Lsη

n(n+ 1)

n∑
i

(
1

K2P(Eit+1 > 0)
+

1

P(Eit+1 > 0)2
E[
1(Eit+1 > 0)

Eit+1 ∧K
])

σ2 (C.217)

+

720L2s2η2

n

n∑
i

(
1

K2P(Eit+1 > 0)
+

1

P(Eit+1 > 0)2
E[
1(Eit+1 > 0)

Eit+1 ∧K
])

σ2 (C.218)

+

32L2η2K2 +
8Lsη

(n+ 1)
max
i

(
1

P(Eit+1 > 0)
) + 5600L2s2η2 max

i
(

1

P(Eit+1 > 0)
)

G2. (C.219)

And particular for expectation reweighting:

1
T

T−1∑
t=0

E
∥∥∥∇f (µt)

∥∥∥2 ≤ 2(n+ 1)
f (µ0)− f∗
T sη

(C.220)

+

8L2η2K2 +
Lsη

n(n+ 1)

n∑
i

(
1

E[Eit+1 ∧K]
+

E[(Ei+1 ∧K)2]

K2E[Eit+1 ∧K]
) +

720L2s2η2

n

n∑
i

(
1

E[Eit+1 ∧K]
+

E[(Ei+1 ∧K)2]

K2E[Eit+1 ∧K]
)

σ2

(C.221)

+

32L2η2K2 +
8Lsη

(n+ 1)
max
i

(
E[(Eit+1 ∧K)2]

E[Eit+1 ∧K]
) + 5600L2s2η2 max

i
(
E[(Eit+1 ∧K)2]

E[Eit+1 ∧K]
)

G2. (C.222)

C.2 Detailed simulation environment

From Algorithm 8, one must note that local weights are reset with the central model only when
being contacted by the central server. Hence initially we have wi0 = w0, but at time t we may
have wit , wt , see Figure C.1.

t = 1 t = 2

wt
w1
t

w2
t

w3
t

Figure C.1: Example of asynchronous updates with n = 3 nodes and selection size s = 2. At
t = 0, all clients are initialized withe the same value. At time t = 1, clients {1,3} are selected, and
at time t = 2, clients {2,3}. At time t = 2, client 2 is reporting updates computed on outdated
parameter.

C.2.1 Implementation of concurrent works

In Section 6.5 we have simulated experiments and run the code for the concurrent approaches
FedAvg, QuAFL, and FedBuff. FedAvg is a standard synchronous method. At the beginning of
each round, the central node s selects clients uniformly at random and broadcast its current
model. Each of these clients take the central server value and then performs exactly K local
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steps, and then sends the resulting model progress back to the server. The server then computes
the average of the s received models and updates its model. In this synchronous structure,
the server must wait in each round for the slowest client to complete its update. QuAFL is an
asynchronous method that randomly selects s clients at each server invocation. The server then
replaces its model with a convex combination of the received models and its current model.
Also, the s receiving clients replace their local model with a convex combination between their
current model and the model of the receiving server. In FedBuff, clients compute local training
asynchronously as well, with the help of a buffer. Once the buffer is filled with Z different client
updates, the server averages the buffer updates and performs a gradient step on the computed
average. Then the buffer is reset to zero and the available clients get the server model as a new
starting point.

C.2.2 Discussion on simulated runtime

We based our simulations mainly on the code developed by J. Nguyen et al. 2022: we assume
a server and n clients, each of which initially has a model copy. We assume that, at each time
step t (for the central server), a batch of s clients are sampled at random without replacement.
For the client i, the inter-arrival time of two successive requests are therefore independent and
distributed according to a geometric distributions of parameter s/n. The time elapsed from the
last renewal is distributed according to the stationary distribution of the age process (assuming
that the renewal is stationary), which is also distributed according to a geometric random variable
with the same parameter s/n. We assume that the clients have different computational speeds.
For this purpose Eit is distributed according to a geometrical distribution of parameter λi : Eit ∼
Geom(λi). The parameter λi is 1/2 for fast clients and 1/16 for slow clients; the expected running
time E[Eit ] is 2 and 16, respectively. The training dataset is distributed among the clients so that
each of them has access to an equal portion of the training data (whether it is IID or non-IIID).
We track the performance of each algorithm by evaluating the server’s model against an unseen
validation dataset. We measure the loss and accuracy of the model in terms of simulation time,
server steps, and total local steps taken by clients.

To adequately capture the time spent on the server side for computations and orchestration
of centralized learning, two quantities are implemented: the server waiting time (the time
the server waits between two consecutive calls ) and the server interaction time (the time the
server takes to send and receive the required data). In all experiments, they are set to 4 and 3,
respectively.

For each global step, the FedAvg runtime is the sum of the server interaction time (see above)
and the local step runtime of the slowest selected client times the number of maximum epochs
K (we wait until all clients have computed all their local epochs in this synchronous setting). For
QuAFL and FAVANO, the duration of a global step is simply the sum of the server interaction time
and the server waiting time. For FedBuff, the runtime is the sum of the server interaction time
and the time spent feeding the buffer of size Z. The waiting time for feeding the buffer depends
on the respective local runtimes of the slow and fast clients, as well as on the ratio between slow
and fast clients: in the code, we reset a counter at the beginning of each global step and read the
runtime when the Zth local update arrives.

C.2.3 Detailed results

Below we provide further insight into the experiments described in Section 6.5. We present
figures for loss, variance (

∑n
i=1 ∥w

i
t −wt∥2), but also for accuracy (evaluated on the held-out test

set on the server side) in terms of time, but also in terms of total local steps and total server
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steps.

We find that FAVANO and other asynchronous methods, when time rather than the number
of server steps FAVANO - and more generally asynchronous methods - can achieve significant
speedups on these metrics compared to FedAvg. This is due to asynchronous communication
allowing rounds to complete faster without always having to wait for slower nodes to complete
their local computations. Although this behaviour is simulated, we believe it reflects the practical
potential of FAVANO.
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Figure C.2: Validation loss/accuracy and variance on the MNIST dataset with a non-iid split in
between n = 100 total nodes. In this particular experiment, one ninth of the clients are defined
as fast.
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Figure C.3: Validation loss/accuracy and variance on the CIFAR-10 dataset with a non-iid split
in between n = 100 total nodes.

We refer to FAVANO[QNN] when training a neural network with low bit precision arithmetic.
We ran the code 1 from LUQ (Chmiel et al. 2021) and adapted it to our datasets and the FL
framework. During FAVANO[QNN] training, 3-bits quantization for weights and activation are
used, 4 bits quantization for neural gradients is used.

1https://openreview.net/forum?id=clwYez4n8e8
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Figure C.4: Validation accuracy on the CIFAR-10 dataset with a non-iid split in between n = 100
total nodes. The amount s of selected clients at each round is varied. FAVANO[QNN] is the
quantized version of FAVANO[32bits].

In Figure C.4 we analyse the effects of quantization and the influence of the number of
randomly selected clients s on the convergence behaviour. As expected, we find that higher s
improve the performance of FAVANO. Quantizing the neural network degrades the convergence
behaviour of the algorithm, but, even if the weights and activation functions are highly quantized
- as in the scenario we are considering-, the results are close to their full-precision counterpart.
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D.1 Notations and definitions

In the proof section below we will refer on the following notations. For 0 ≤ k ≤ T consider the
filtration Fk defined as Fk = σ ({wℓ , ℓ ≤ k,Km,m < k}). We define the virtual iterates µk as follows:

µ0 = w0,

µ1 = µ0 − η
∑
i∈S0

1
npi
g̃i(w0),

µk+1 = µk −
η

npKk
g̃Kk (wk) , k ≥ 1 .

(D.1)

D.2 Proofs of Section 7.4

We split the proof of Theorem 14 into several steps. First we bound the quantity of interest∑T
k=0E[∥∇f (wk)∥2] in terms of norms of difference between exact and virtual iterations

∥∥∥µk −wk∥∥∥2

defined in (D.1). More precisely, the following statement holds:

Lemma 53. Assume A14 to A17 and let the learning rate η satisfy η ≤ n2

8L
∑n
i=1

1
pi

. Then for the iterates

(wk)k≥0 of Generalized AsyncSGD it holds that

η

4(T + 1)

∑T

k=0
E[∥∇f (wk)∥2] ≤

f (µ0)−E[f (µT+1)]
T + 1

+
ηL2

2
1

T + 1

∑T

k=0
E[∥µk −wk∥2]+η2L

∑n

i=1

2G2 + σ2

n2pi
.

(D.2)

Proof. Using the smoothness assumption A15 and the definition of µk+1 from (D.1), we obtain
the following descent inequality:

E
[
f (µk+1)

∣∣∣Fk]− f (µk) ≤ −ηE
[
⟨∇f (µk),

1
npKk

g̃Kk (wk)⟩
∣∣∣∣∣∣Fk

]
+
η2L

2
E
[
∥ 1
npKk

g̃Kk (wk)∥
2

∣∣∣∣∣∣Fk
]
. (D.3)
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With the unbiasedness property of stochastic gradients and A16, we get

E
[
f (µk+1)

∣∣∣Fk]− f (µk) ≤ −ηE
[
⟨∇f (µk),

1
npKk

∇fKk (wk)⟩
∣∣∣∣∣∣Fk

]
+ η2LE

[
∥ 1
npKk

∇fKk (wk)∥2
∣∣∣∣∣∣Fk

]
+ η2Lσ2

∑n

i=1

1
n2pi

(D.4)

= −η⟨∇f (µk),∇f (wk)⟩+ η2LE
[
∥ 1
npKk

∇fKk (wk)∥2
∣∣∣∣∣∣Fk

]
+ η2Lσ2

∑n

i=1

1
n2pi

. (D.5)

In the last equality we used that E
[
⟨∇f (µk),

1
npKk
∇fKk (wk)⟩

∣∣∣∣Fk] = ⟨∇f (µk),∇f (wk)⟩. Now we

introduce a notation
∆k = E

[
f (µk+1)

∣∣∣Fk]− f (µk) .

Since ⟨a,b⟩ = 1/2(∥a∥2 + ∥b∥2 − ∥a− b∥2) for any a,b ∈ Rd , we get that

∆k ≤ −
η

2
(∥∇f (µk)∥2 + ∥∇f (wk)∥2 − ∥∇f (wk)−∇f (µk)∥2) + η2LE

[
∥ 1
npKk

∇fKk (wk)∥2
∣∣∣∣∣∣Fk

]
+ η2Lσ2

∑n

i=1

1
n2pi

(D.6)

≤ −
η

2
∥∇f (wk)∥2 +

η

2
L2∥µk −wk∥2 + η2LE

[
∥ 1
npKk

(∇fKk (wk)−∇f (wk) +∇f (wk))∥2
∣∣∣∣∣∣Fk

]
+ η2Lσ2

∑n

i=1

1
n2pi

(D.7)

≤ −
η

2
∥∇f (wk)∥2 +

η

2
L2∥µk −wk∥2 + 2η2L(E

[
∥ 1
npKk

(∇fKk (wk)−∇f (wk))∥2
∣∣∣∣∣∣Fk

]
+ ∥∇f (wk)∥2

∑n

i=1

1
n2pi

)

(D.8)

+ η2Lσ2
∑n

i=1

1
n2pi

. (D.9)

Applying the bounded gradient dissimilarity assumption A17, we get

∆k ≤ −
η

2
∥∇f (wk)∥2 +

η

2
L2∥µk −wk∥2 + 2η2L(

∑n

i=1

G2

n2pi
+ ∥∇f (wk)∥2

∑n

i=1

1
n2pi

) + η2Lσ2
∑n

i=1

1
n2pi
(D.10)

≤ (−
η

2
+ 2η2L

∑n

i=1

1
n2pi

)∥∇f (wk)∥2 +
η

2
L2∥µk −wk∥2 + 2η2L

∑n

i=1

G2

n2pi
+ η2Lσ2

∑n

i=1

1
n2pi

.

(D.11)

As a consequence by taking η ≤ n2

8L
∑n
i=1

1
pi

and substituting for ∆k , we get

η

4
∥∇f (wk)∥2 ≤ f (µk)−E

[
f (µk+1)

∣∣∣Fk]+
ηL2

2
∥µk −wk∥2 + 2η2L

∑n

i=1

G2

n2pi
+ η2Lσ2

∑n

i=1

1
n2pi

.

(D.12)

Now taking sum for k ∈ {0, . . . ,T }, we get

η

4(T + 1)

∑T

k=0
E[∥∇f (wk)∥2] ≤

f (µ0)−E[f (µK+1)]
T + 1

+
ηL2

2
1

T + 1

∑T

k=0
E[∥µk −wk∥2] (D.13)

+ η2L
∑n

i=1

2G2 + σ2

n2pi
. (D.14)
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In order to apply the result of Lemma 53, one needs to provide an upper bound on the

correction term E[
∥∥∥µk −wk∥∥∥2

]. As explained in Section 7.4, the virtual iterates deviation from the
true {wk}k>0 is made of all the gradients computed (on potentially outdated w’s) and not applied
yet. We can introduce the sets {Ik}k>0, as the sets of time and client indexes whose gradients are
still on fly at time k. With S0 being the set of initial active workers from Generalized AsyncSGD,
there are defined by the recursion:

I1 = {(i,0)|i ∈ S0, i , J0} (D.15)

Ik+1 =

Ik if Ik = k,
Ik \ (Jk , Ik)∪ (Kk , k) otherwise.

(D.16)

As
∥∥∥µk −wk∥∥∥ represents the norm of gradients, it is easier to introduce the sets {Gk}k>0, as the

set of gradients scaled with their respective weight −1
npi

for each client i, that correspond to the
indexes in {Ik}k>0:

Gk = {− 1
npi

g̃i(wj )|(i, j) ∈ Ik}. (D.17)

In the following lines, we will show that the sets {Gk}k>0 (and as a consequence the sets {Ik}k>0)
have a constant cardinal: the number of running tasks in Generalized AsyncSGD is fixed during
the whole optimization process, and only depends on the initialization.

Remark 54. The number of running tasks is constant, but the number of active nodes is not! If there
is a very slow client i, the number of active clients can be reduced to 1: all tasks are currently processed
in the queue of client i.

Lemma 55. For the sequence (wk)k≥0 of updates produced by Generalized AsyncSGD and for the
sequence of virtual updates (µk)k≥0 defined in (D.1), it holds that

µ1 −w1 = −η
∑

i∈S0
1 {i , J0}

1
npi

g̃i(w0) , (D.18)

µk+1 −wk+1 = −η
∑

i∈S0
1 {i , J0}

1
npi

g̃i(w0) + η
∑k

r=1
(

1
npJr

g̃Jr (wIr )−
1

npKr
g̃Kr (wr )) , k ≥ 1 .

(D.19)

Proof. The proof follows from the definition of recurrence (D.1). Indeed, first we can note that

µ1 −w1 = (w0 − η
∑

i∈S0

1
npi

g̃i(w0))− (w0 − η
1
npJ0

g̃J0(wI0 )) (D.20)

= (w0 − η
∑

i∈S0

1
npi

g̃i(w0))− (w0 − η
1
npJ0

g̃J0(w0)) (D.21)

= −η
∑

i∈S0
1 {i , J0}

1
npi

g̃i(w0). (D.22)
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Now for a general iteration number k we have:

µk+1 −wk+1 = (µk − η
1

npKk
g̃Kk (wk))− (wk − η

1
npJk

g̃Jk (wIk )) (D.23)

= (µk −wk) + η(
1
npJk

g̃Jk (wIk )−
1

npKk
g̃Kk (wk)) (D.24)

= (µ1 −w1) +
∑k

r=1
η(

1
npJr

g̃Jr (wIr )−
1

npKr
g̃Kr (wr )) (D.25)

= −η
∑

i∈S0
1 {i , J0}

1
npi

g̃i(w0) + η
∑k

r=1
(

1
npJr

g̃Jr (wIr )−
1

npKr
g̃Kr (wr )). (D.26)

Lemma 56. The sets {Gk}k≥0 have constant cardinal and compile all the gradients in computation at
step k > 0: (i) |Gk | = |G1| = |S0| − 1,

(ii) µk −wk = η
∑
g∈Gk g.

(D.27)

Proof. Step (i): We are going to proof the result by induction. Assume |Gk | = |S0|−1 for some k. If
Ik = k we can immediately conclude that |Gk+1| = |Gk |. Otherwise, Ik < k, hence there exists some
i ∈ [n] such that − 1

npi
g̃i(wIk ) ∈ Gk . In particular, client Jk is the client that finishes computation at

step k, thus − 1
npJk

g̃Jk (wIk ) ∈ Gk . As a consequence, |Gk \ {− 1
npJk

g̃Jk (wIk )}| = |S0| − 2. Furthermore, by

definition, all gradients in Gk are taken on models older than k. And by taking Ik < k, we obtain
− 1
npKk

g̃Kk (wk) < Sk \ {−
1

npJk
g̃Jk (wIk )}. It concludes |Gk+1| = |Gk |.

Step (ii): We also prove it by induction. It is valid for k = 1. Now assume µk −wk =
∑
g∈Gk g,

for some k > 1.

µk+1 −wk+1 = (µk −wk) +
1
npJk

g̃Jk (wIk )−
1

npKk
g̃Kk (wk) (D.28)

= (µk −wk) + (1{0}(Ik)
1
npJk

g̃Jk (w0) + · · ·+1{k}(Ik)
1
npJk

g̃Jk (wk))−
1

npKk
g̃Kk (wk) (D.29)

= (µk −wk) +1{0}(Ik)
1
npJk

g̃Jk (w0) + · · ·+1{k−1}(Ik)
1
npJk

g̃Jk (wk−1) (D.30)

+ (1{k}(Ik)
1
npJk

g̃Jk (wk)−
1

npKk
g̃Kk (wk)). (D.31)

By induction, we have:

µk+1 −wk+1 =
∑

g∈Gk
g +1{0}(Ik)

1
npJk

g̃Jk (w0) + · · ·+1{k−1}(Ik)
1
npJk

g̃Jk (wk−1) (D.32)

+ (1{k}(Ik)
1
npJk

g̃Jk (wk)−
1

npKk
g̃Kk (wk)). (D.33)
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If Ik = k we have Jk = Kk : some client contributes instantaneously. This results in:

µk+1 −wk+1 =
∑

g∈Gk
g +1{0}(Ik)

1
npJk

g̃Jk (w0) + · · ·+1{k−1}(Ik)
1
npJk

g̃Jk (wk−1)︸                                                           ︷︷                                                           ︸
=0

(D.34)

+ (1{k}(Ik)g̃Jk (wk)−
1

npKk
g̃Kk (wk))︸                                  ︷︷                                  ︸

=0

(D.35)

=
∑

g∈Gk+1
g. (D.36)

Same idea as in Step (i) allows us to conclude µk+1 −wk+1 =
∑
g∈Gk+1

g when Ik < k.

Lemma 57. For the sequence (wk)k≥0 of updates produced by Generalized AsyncSGD and for the
sequence of virtual updates (µk)k≥0 defined in (D.1), it holds that

1
T + 1

∑T

k=0
E[∥µk −wk∥2] ≤ 2η2 C

∑n

i=1

mT
i,0

(n2p2
i )(T + 1)

(2G2 + σ2) (D.37)

+ 4η2 C
E[∥∇f (w0)∥2]mT

0

(n2p2
i )(T + 1)

(D.38)

+ 4η2 C
∑T

k=1

mT
k

(n2p2
i )(T + 1)

E[∥∇f (wk)∥2] (D.39)

+ 2η2 C
∑n

i=1

∑K
k=1 mT

i,k

(n2p2
i )(T + 1)

(2G2 + σ2). (D.40)

Proof. Using the statement of Lemma 56, we bound the expected value of the correction term as
follows:

E[∥µk −wk∥2] = η2E[∥
∑

g∈Gk
g∥2] ≤ η2E[|Gk |

∑
g∈Gk
∥g∥2] ≤ η2E[C

∑
g∈Gk
∥g∥2]. (D.41)

As the cardinal of sets |Gk | := C is constant among iterations, and in particular it is independent
from g’s, we can simplify the form above.

We also introduce the set Uk :

Uk = {i ∈ {1, . . . ,n}|Xi,k > 0}. (D.42)

Hence, from (D.41) and A16, we get

E[∥µk −wk∥2] ≤ η2 CE[
∑

(i,j)∈Ik∪{Uk×{0}}
1

n2p2
i

2∥∇fi(wj )∥2 + 2σ2] (D.43)

≤ η2 CE[
∑n

i=1

1

n2p2
i

1Uk∩S0
(i)(4G2 + 4∥∇f (w0)∥2 + 2σ2)︸                                        ︷︷                                        ︸
gradients on initial model

(D.44)

+
∑k

j=1
1Ik

(
(i, j)

)
(4G2 + 4∥∇f (wj )∥2 + 2σ2)] (D.45)
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Now we average over T iterations:

1
T + 1

∑T

k=0
E[∥µk −wk∥2] ≤ 2η2 C

∑n

i=1
(
∑T

k=0

P(i ∈Uk ∩S0)
T + 1

)(
2G2 + σ2

n2p2
i

) (D.46)

+ 4η2 CE[∥∇f (w0)∥2]
∑n

i=1

1

n2p2
i

(
∑T

k=0

P(i ∈Uk ∩S0)
T + 1

) (D.47)

+
4

T + 1
η2 C

∑n

i=1
E[

∑T

k=1

1

n2p2
i

k∑
j=1

(1Ik
(
(i, j)

)
∥∇f (wj )∥2)] (D.48)

+
4G2 + 2σ2

T + 1
η2 C

∑n

i=1
E[

∑T

k=1

1

n2p2
i

∑k

j=1
1Ik ((i, j))]. (D.49)

We rearrange the last 2 terms:

1
T + 1

∑T

k=0
E[∥µk −wk∥2] ≤ 2η2 C

∑n

i=1

∑T
k=1P(i ∈Uk ∩S0)

T + 1
(
2G2 + σ2

n2p2
i

) (D.50)

+ 4η2 CE[∥∇f (w0)∥2]
∑n

i=1

1

n2p2
i

∑T
k=1P(i ∈ uk ∩S0)

T + 1
(D.51)

+ 4η2 C
∑T

k=1
E[

∑n
i=1

1
n2p2

i

∑T
r=k 1Ir ((i,k))

T + 1
∥∇f (wk)∥2] (D.52)

+ 2η2 C
∑T

k=1
E[

∑n
i=1

1
n2p2

i

∑T
r=k 1Ir ((i,k))

T + 1
(2G2 + σ2)]. (D.53)

We can simplify the bounds with the following identity:∑T

r=k
1Ir ((i,k)) = 1{i}(Kk+1)

∑T

r=k
1(

∑r
l=k 1Jl=i

)<Xi,k
= MT

i,k , for k > 0. (D.54)

And with a slight abuse of notation, we take: MT
i,0 =

∑T
k=11Uk∩S0

(i).

Combining the above bounds, we obtain

1
T + 1

∑T

k=0
E[∥µk −wk∥2] ≤ 2η2 C

∑n

i=1

E[MT
i,0]

T + 1
(
2G2 + σ2

n2p2
i

) (D.55)

+ 4η2 CE[∥∇f (w0)∥2]
∑n

i=1

1

n2p2
i

E[MT
i,0]

T + 1
(D.56)

+ 4η2 C
∑T

k=1

∑n
i=1

1
n2p2

i
E[MT

i,k]

T + 1
E[∥∇f (wk)∥2] (D.57)

+ 2η2 C
∑n

i=1

∑T
k=1E[MT

i,k]

T + 1
(
2G2 + σ2

n2p2
i

) , (D.58)

and the statement follows using the definition mT
k .
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D.2.1 Proof of Theorem 14

We apply the bound Lemma 53 and use Lemma 57 to control the correction term 1
T+1

∑T
k=0E[∥µk−

wk∥2]. Hence, we get

1
4(T + 1)

∑T

k=0
E[∥∇f (wk)∥2] ≤

E[f (µ0)− f (µT+1)]
η(T + 1)

+
L2

2(T + 1)

∑T

k=0
E[∥µk −wk∥2] + ηL

∑n

i

2G2 + σ2

n2pi
(D.59)

≤
E[f (µ0)− f (µT+1)]

η(T + 1)
+ ηL

∑n

i

2G2 + σ2

n2pi
(D.60)

+L2η2 C

∑n

i=1

∑T
k=0 mT

i,k

n2p2
i (T + 1)

(2G2 + σ2) +
2E[∥∇f (w0)∥2]mT

0
T + 1

 (D.61)

+
L2η2 C
T + 1

∑T

k=1
2mT

k E[∥∇f (wk)∥2] . (D.62)

Hence we have:

1
T + 1

∑T

k=0
(1/4− 2mT

k L
2η2 C)E[∥∇f (wk)∥2] ≤

E[f (µ0)− f (µT+1)]
η(T + 1)

+ ηL
∑n

i

2G2 + σ2

n2pi
(D.63)

+L2η2 C
∑n

i=1

∑T
k=0 mT

i,k

n2p2
i (T + 1)

(2G2 + σ2) . (D.64)

Now we impose the step size condition

η ≤

√
1

16L2 Cmaxk∈{1,...,T }m
T
k

, (D.65)

which enable us to conclude that

1
8(T + 1)

∑T

k=0
E[∥∇f (wk)∥2] ≤

E[f (µ0)− f (µT+1)]
η(T + 1)

+ ηL
∑n

i

2G2 + σ2

n2pi
(D.66)

+L2η2 C
∑n

i=1

∑T
k=0 mT

i,k

n2p2
i (T + 1)

(2G2 + σ2) , (D.67)

and the statement follows.

D.2.2 Influence of the strong growth condition

The assumption A16 can be generalized to the strong growth condition (S. Vaswani, F. Bach, and
Schmidt 2019):

E[∥g̃i(x)−∇fi(x)∥2] ≤ σ2 + ρ2 ∥∇fi(x)∥2 .
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All previous derivations are impacted by a factor ρ2. But the proofs remain the same. In
particular, the quantity ∆k from Lemma 53 can be bounded as:

∆k ≤ (−
η

2
+ 2η2L

∑n

i=1

1 + ρ2

n2pi
)∥∇f (wk)∥2 +

η

2
L2∥µk −wk∥2 + 2η2L

∑n

i=1

(1 + ρ2)G2

n2pi
(D.68)

+ η2Lσ2
∑n

i=1

1
n2pi

. (D.69)

This slightly change the condition on the step size: η ≤ n2

8L
∑n
i=1

1+ρ2
pi

. The rest of the proof is

similarly impacted. We now impose the additional step size condition:

η ≤

√
1

(1 + ρ2)16L2 Cmaxk∈{1,...,T }m
T
k

, (D.70)

which enable us to conclude that

1
8(T + 1)

∑T

k=0
E[∥∇f (wk)∥2] ≤

E[f (µ0)− f (µT+1)]
η(T + 1)

+ ηL
∑n

i

2(1 + ρ2)G2 + σ2

n2pi
(D.71)

+L2η2 C
∑n

i=1

∑T
k=0 mT

i,k

n2p2
i (T + 1)

(2(1 + ρ2)G2 + σ2) . (D.72)

D.3 Proofs of Section 7.5

D.3.1 Proof of Proposition 15

Given the assumptions, it is straightforward to check that the dynamics are those of the Markov
process with the given generator.

Then the result follows from classical results in queuing theory: the Markov process corre-
sponds to a Jackson quasi-reversible network with an explicit stationary distribution, see for
instance Theorem 1.12 in Serfozo 1999.

Before continuing, we need a fundamental property of closed Jackson network which is the
arrival Theorem also called MUSTA in the literature:

Theorem 58 (Arrival Theorem, Prop 4.35 in Serfozo 1999). Suppose the system is stationary. Upon
arrival to a given node (i.e., just before waiting or being served in the queue), a task sees the network
according to the distribution πC−1, i.e.,

P(Xτi,1− = x) = πC−1(x).

For the link with Palm probabilities, we also refer to Example 3.3.4. in Baccelli and Bremaud
2002.

Now, define Si the first sojourn time on node i, i.e.,

Si = inf{t ≥ τi,1|Di(t) = Xi(τi,1
−) + 1} (D.73)

Recall that, EC corresponds to the stationary average for a system with C tasks (in particular
the process Xt follows πC for all times t ≥ 0). We denote in turn by EC−1 the Palm probability
associated to the event of an arrival at a given node (say i) and corresponding informally
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to conditioning to τi,1 = 0. Using the Arrival Theorem, the distribution at time 0 at node i
corresponds in this case to πC−1, the dynamics under the Palm probabilities being unchanged
(seeBaccelli and Bremaud 2002).

D.3.2 Proof of Proposition 16

Assuming the system is stationary and using the definition of mT
i,k we have that for any k,

mT
i,k = mT

i = EC
[(∑

n
1(τi,1 ≤ Tn ≤ Si)

)
∧ T

]
. (D.74)

Using the monotone convergence Theorem,

lim
T→∞

mT
i,k =mi = EC

[∑
n
1(τi,1 ≤ Tn ≤ Si)

]
. (D.75)

We then use the arrival Theorem (58) for closed Jackson network and using the Palm probability,
we can write that

EC[
∑

n
1(τi,1 ≤ Tn ≤ Si)] = EC−1[

∑
n
1(0 ≤ Tn ≤ Si)].

Then by using the stochastic intensity formula (see Definition 1.8.10 and Example 1.8.3. in
Baccelli and Bremaud 2002):

EC−1[
∑

n
1(0 ≤ Tn ≤ Si)] = EC−1

[∫ Si

0

∑n

j=1
µj1(Xj (s) > 0)ds

]
. (D.76)

D.3.3 Computation of the constant Γ

Γ (c) =
E[X1X+Y≤c]

E[1X+Y≤c]
, (D.77)
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with X an Exp(1) and Y an Erlang(F,1) independent from each other. By integrating by parts:

Γ =

∫∞
0

∫ c−y
0 xe−xdx1(y ≤ c)dPY (y)

P(X +Y ≤ c)
, (D.78)

=

∫∞
0 (−(c − y)e−c+y +

∫
x

1x≤c−y1(y ≤ c)dPX(x)dPY (y)

P(X +Y ≤ c)
, (D.79)

=

∫∞
0 −(c − y)e−c+y1(y ≤ c) yF−1

(F−1)!e
−ydy

P(X +Y ≤ c)
+ 1, (D.80)

=
e−c(−cF+1/F! +FcF+1/(F + 1)!)

P(X +Y ≤ c)
+ 1, (D.81)

=
−e−ccF+1/(F + 1)! + 1−

∑F
k=1 e

−cck/(k)!

1−
∑F
k=1 e

−cck/(k)!
, (D.82)

=
P(

∑F+2
i=1 Ei ≤ c)

P(
∑F+1
i=1 Ei ≤ c)

, (D.83)

(D.84)

D.3.4 Proof of Proposition 18

First note that:

mi(ι) = EC−1
[∫ Si

0

∑n

j=1
µj1(Xιj (s) > 0)ds

]
≤ λEC−1[Si].

Then it follows from the FIFO representation that

EC−1(Si) =
1
µi

(EC−1[Xιi ]) + 1)

which implies the claim.

D.4 Upper bounds simulations

D.4.1 Illustration of G(p,η) before optimization

We decide to simulate n = 100 nodes with C = 10 initial tasks. Nodes can only be fast (sampled
with pi = p) or slow (sampled with pi = 2

n − p), and are evenly distributed. We estimate the
values of mT

i,k through Monte-Carlo and compute the upper bounds given in Theorem 14. All
others constants are kept unitary to ease the computation. In Figure D.1, we plot the value of
the previously mentioned upper-bound with respect to the step size η, for several sampling
probabilities of fast node p. When the step size considered is small, all sampling strategies are
equivalent. Whereas for large value of η, sampling around the uniform one is a good strategy.
Large value of p, close to the limit 2

n , hinders the bound because it increases the delays for slow
nodes by sampling fast nodes quite often. In Figure 7.2 and Figure 7.3, we define grids of 50
values of p around the uniform one, and for each p we compute the exact optimal step size by
solving the cube roots. The optimal values of the sampling p on the grid, and of the optimal step
size are further used to compute the optimal bound and compare it against the one obtained
with uniform sampling.
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Figure D.1: Variation of the non-convex upper-bound with respect to the step size η, for K = 104

server steps and different values of sampling p. The maximum step size value is different for
each case and equal to

√
1

8L2 CmaxmT
k

.

D.4.2 Bounds w.r.t physical time

We want here to focus on the relative improvements of the upper bounds when time rather than
CS steps is considered as fixed. Indeed, when we determine complexity in terms of number of
communications, we don’t take into account the time intervals between two successive arrivals at
the central server. In particular, the results from Section 7.4 propose to sample more frequently
slow nodes. But this results into an increased waiting time between two consecutive server steps.
As a consequence, in this section, we choose a fixed unit of time U = 1000 and optimize the
bounds for T = λ(p) ·U server steps, where λ(p) is the average network speed.

We choose the sampling probabilities p and the step size η by solving the constrained
optimization problem minp,ηG(p,η) as a function of η ≤ ηmax(p), where

G(p,η) =
A

η(λ(p)U + 1)
+
ηLB

n

∑n

i=1

1
npi

+
η2L2BC

n

∑n

i=1

∑λ(p)U
k=0 mT

i,k

np2
i (λ(p)U + 1)

, (D.85)

and where A = E[f (µ0)−f (µT+1)]. In Figure D.2 we run the same simulation as in Section 7.4, for
a fixed amount of time U . Taking into account a fixed amount of time U instead of CS epochs T
also favours our approach. The experimental results suggest to sample less fast nodes. It reduces
delays (in number of steps), but increases the average time spent between two consecutive server
steps. This trade-off is key for optimizing the bounds. When the concurrency is small (w.r.t.
n), uniform sampling appears as the best strategy. However, by taking p = 8.5 · 10−3, for full
concurrency (C = n), the bound can be reduced by 40%.

D.5 2 clusters under saturation

D.5.1 Example with 2 saturated clusters

In Section 7.5, we propose a study of the delays and queue lengths when the number of task goes
to infinity with a rate controlled by some ι > 0. In particular, we introduce the scaled intensities
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Figure D.2: Relative improvements of the upper bounds as a function of the speed for different
concurrency levels.

for slow and fast nodes as:
γs(ι) =

maxi∈[1,n](θi )
θs

= θs
θs

= 1

γf (ι) =
maxi∈[1,n](θi )

θf
= θs
θf

= 1 + cf · ια−1︸  ︷︷  ︸
deviation from slow speed

(D.86)

Note cf > 0 and α ≤ 1 are parameters we are free to choose to match the number of tasks in the
network. In particular, the total number of tasks also scales as follows: βl1−α = C+1. Thanks
to Proposition 18, we can bound the number of server steps when a task arrive and quits some
node i as:

lim
ι→∞

ια−1 mi(ι) ≤ lim
ι→∞

λ
µi

(ια−1E[Xιi ] + 1), (D.87)

where λ = nf µs + (n−nf )µs. Hence,

lim
ι→∞

ια−1 mi(ι) ≤
nf µs + (n−nf )µs

µi
(

1
cf

Γ (cf β) + 1) (D.88)

We will further assume nf = n
2 , and pi = 1

n . Under this setting, we have Γ (cFβ) ≃ 1 and

ι1−α

cf
Γ (cf β) =

1
γf (ι)− 1

(D.89)

=
1

θs
θf
− 1

(D.90)

=
1

µf ps
µspf
− 1

(D.91)

=
1

µf
µs
− 1

. (D.92)
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For fast nodes, the delay can be simplified as:

lim
ι→∞

mi(ι) ≤
n
2

µs +µf
µf

1
µf
µs
− 1

. (D.93)

For slow nodes, this simplifies as:

lim
ι→∞

mi(ι) ≤
n
2

µs +µf
µs

(
2
n

C− 1
µf
µs
− 1

). (D.94)

In the following we consider n = 10 clients, split in two clusters of same size: fast nodes with rate
µf = 1.2, and slow nodes with rates µs = 1. We simulate up to T = 106 server steps, and plot the
distribution of the delays (in number of server steps). We saturate the network with C = 1000
tasks. Hence we can estimate the following:

limι→∞mi(ι) ≤ n
µf
µs
−1
≃ 5n, ∀i ∈ [1,nf ],

limι→∞mi(ι) ≤ ( 2C
n −

1
µf
µs
−1

)n ≃ 195n, ∀i ∈ [nf + 1,n].
(D.95)

All delays bounds estimations have a closed form in the 2-cluster saturated regime: they only
depend on the number of tasks in the network C, on the number of nodes n, and on the intensity
of nodes µf ,µs.

Figure D.3: Histogram of fast and slow delays (in number of server steps) for a uniform sampling
scheme.

Our numerical experiment in Figure 7.5 gives an average delay of 59 ∼ 5n for fast nodes.
The average delay for slow nodes reaches the value 1938 ≃ 195n. And the queue lengths also
correspond to the expected values. It is also important to point out that the average delays are
way smaller than the maximum delay experienced in the K = 106 steps. This further highlights
the necessity to switch from analysis that depend on the τmax quantity, to our analysis that only
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depends on the expected delays.

D.5.2 Optimal sampling strategy under saturation

In the previous paragraph we kept the sampling probability pi uniform. The previous computa-
tion gives

l1−α

cf
Γ (cf β) =

1

γ lf − 1
(D.96)

=
1

θs
θf
− 1

(D.97)

=
1

µf ps
µspf
− 1

. (D.98)

Sticking to the previous assumptions, we want to minimize the quantity

G(p,η) =
A

η(T + 1)
+
ηLB

n
(
∑nf

i=1

1
np

+
∑n

i=nf +1

1

n( 1
n−nf
− p nf

n−nf )−1
) +

η2L2BC
n

(
∑nf

i=1

mf
np2

+
∑n

i=nf +1

ms

n( 1
n−nf
− p nf

n−nf )−2
) , (D.99)

This is equivalent to minimizing:

G(p,η) =
A

η(T + 1)
+
ηLB

n
(
∑nf

i=1

1
np

+
∑n

i=nf +1

1

n( 1
n−nf

− p nf
n−nf )−1

)

+
η2L2BC

n
(
∑nf

i=1

nf µs+(n−nf )µs
µf

1
µf ps
µspf
−1

np2 +
∑n

i=nf +1

nf µs+(n−nf )µs
µs

( C
n−nf −

nf
n−nf

1
µf ps
µspf
−1

)

n( 1
n−nf − p

nf
n−nf )−2

) , (D.100)

Hence we want to find (p,η) that minimize the following:

G(p,η) =
A

η(T + 1)
+
ηLB

n
(
∑nf

i=1

1
np

+
∑n

i=nf +1

1

n( 1
n−nf
− p nf
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+
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µs

( 1
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n−nf

)−1

np2

+
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nf µs+(n−nf )µs
µs

( C
n−nf −

nf
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1
µf
µs

( 1
p(n−nf )−

nf
n−nf

)−1
)

n( 1
n−nf − p

nf
n−nf )−2

) , (D.101)

The uniform sampling strategy (p = 1
n = 0.1) and higher probability values, give larger

average delays.But very small sampling probabilities lead to a sharp increase in the delays. It
is not easy to find a closed form formula of the optimal probability value p. Our simulations
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suggest an optimal value of p = 7.5 · 10−3.
In Figure D.4, we have run the same simulations as in Figure 7.5, except that we do not sample

nodes uniformly at random. Instead, we sample fast nodes with a probability p = 7.5 · 10−3, and
slow nodes with a probability 2

n − p. Our simulations shows the average delay is divided by 10
and 2, for fast and slow nodes respectively.

Figure D.4: Histogram of fast and slow delays (in number of server steps) for an optimal sampling
strategy.

D.6 3 clusters scaling regime under saturation

We consider three clusters of nodes of size nf , nm − 1− nf , and n− 1− nm, respectively. Nodes
∀i ≤ nf are considered as fast, whereas nodes ∀i > nm are considered as slow (and will likely get
more saturated).

The medium nodes (∀i ∈ [nf + 1,nm]) have an intermediate computational speed. We assume
nodes from the same cluster have the same intensity µf ,µm,µs, for fast, medium, and slow nodes
respectively. For practical reason we assume now that nodes ∀i > nm are the slowest ones, and
has an intensity θs > θj ,∀j < n. This assumption is not restrictive due to the close nature of the
network, and allows us to simplify the problem by splitting nodes into clusters.

This results in the scaled intensities γf (ι),γm(ι),γs(ι), where γs(ι) = 1, γm(ι) = 1 + cmια−1, and
γf (ι) = 1 + cf ιδ−1; with α ≤ 1 and δ > 1. The constant task constraint translates into the existence
of β such that βι1−α = C+1. The particular choice of α ≤ 1 in Van Kreveld, Dorsman, and
Mandjes 2021 allows us to obtain traffic loads of nodes that tend to 1 as ι→∞, and we could
directly apply Corollary 2 from Van Kreveld, Dorsman, and Mandjes 2021. But this setting is
inconsistent with the practical Federated Learning framework we consider in this section: in
practice most of fast clients have an empty queue. Hence, we stick to δ > 1, and we can apply
the results of Corollary.3, Van Kreveld, Dorsman, and Mandjes 2021. This work gives a precise
results on the queue length of saturated nodes, in the limit of high traffic loads. The queue
length of the remaining queue are defined by the population size constraint. Note because the
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unnormalized queue length of fast nodes converges to a finite-mean random variable, there is no
need to scale it.

Proposition 59 (Corollary.3 in Van Kreveld, Dorsman, and Mandjes 2021). In stationary regime,
as ι→∞, Xιi ,∀i ∈ [1,nf ] become degenerate with value 0, and

cmι
α−1Xιi →d. E

[
Ei |

∑nm

j=nf +1

Ej
cm
≤ β

]
,∀i ∈ [nf + 1,nm], (D.102)

with Ei unit mean exponential distributions.

As a consequence, using as before dominated convergence we can estimate the following
expected value (expected stationary queue lengths of fast, medium, and slow nodes respectively):

limι→∞E[Xιi ] = 0, ∀i ∈ [1,nf ],
limι→∞ ι

α−1E[Xιi ] = 1
cm
Γ (cmβ), ∀i ∈ [nf + 1,nm],

limι→∞ ι
α−1E[Xιi ] = 1

n−nm

(
β − (nm −nf ) 1

cm
Γ (cmβ)

)
, ∀i ∈ [nm + 1,n].

(D.103)

Hence, we can estimate the number of server steps when a task arrive and quits some node i as :

lim
ι→∞

ια−1 mi(ι) ≤ lim
ι→∞

λ
µi

(ια−1E[Xιi ] + 1), (D.104)

where λ = nf P(Xf > 0)µf + (nm −nf )µm + (n−nm)µs (because fast nodes have almost empty queue
Xf in the considered stationary setting).

We will further assume nf = n
3 , nm = 2n

3 , and p = 1
n . Under these conditions, we have

Γ (cmβ) = Γ (C(µmµs − 1)) ≃ 1. For fast nodes, the delay can be simplified as:

lim
ι→∞

mi(ι) ≤
λ
µf
. (D.105)

For medium nodes, the delay can be simplified as:

lim
ι→∞

mi(ι) ≤
λ
µm

1
µm
µs
− 1

. (D.106)

For slow nodes, this simplifies as:

lim
ι→∞

mi(ι) ≤
λ
µs

(
3
n

C− 1
µm
µs
− 1

). (D.107)

In the following we consider n = 9 clients, split in three clusters of same size: fast nodes with
rate µf = 10, medium nodes with rate µm = 1.2, and slow nodes with rate µs = 1. We simulate
up to T = 106 server steps, and plot the distribution of the delays (in number of server steps).
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Method FedBuff AsyncSGD Generalized AsyncSGD

Accuracy on the CS test set 49.89± 0.77 59.09± 1.97 66.61± 3.26

Table D.1: Performance average (mean ± std) over 10 random seeds for the CIFAR-10 task.

Under this setting, we have ι1−α
cm

Γ (cmβ) = 1
µm
µs
−1

= 5. Hence we can estimate the following:


limι→∞mi(ι) ≤

nf P(Xf >0)µf +(nm−nf )µm+(n−nm)µs
µf

≃ 3P(Xf > 0), ∀i ∈ [1,nf ],

limι→∞mi(ι) ≤
nf P(Xf >0)µf +(nm−nf )µm+(n−nm)µs

µm
1

µm
µs
−1
, ∀i ∈ [nf + 1,nm],

limι→∞mi(ι) ≤
nf P(Xf >0)µf +(nm−nf )µm+(n−nm)µs

µs
( 3C
n −

1
µm
µs
−1

), ∀i ∈ [nm + 1,n].

(D.108)

The simulation gives λ ≃ 9, and we recover the theoretical delays: the average delay for fast

Figure D.5: We assign C = 1000 tasks to a network of n = 9 nodes split in 3 clusters.

nodes is close to 1, the average delay for medium node is 55 ≃ 5 λ
µm

, and the average delay for

slow nodes is about 2935 ≃ 325 λ
µs

.

D.7 Deep learning experiments details

D.7.1 Simulation

We based our simulations mainly on the code developed by J. Nguyen et al. 2022: we assume
a server and n clients, each of which initially has a unique split of the training dataset. To
adequately capture the time spent on the server side for computations and orchestration of
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centralized learning, two quantities are implemented: the server waiting time (the time the server
waits between two consecutive calls ) and the server interaction time (the time the server takes
to send and receive the required data). In all experiments, they are set to 4 and 3, respectively.
When a client i receives a new task, we take a new sample from an exponential distribution
(with mean 1

µi
, where µi is the rate of node i), and stack the gradient computation on top of the

client queue.

D.7.2 Implementation

In Section 7.6 we have simulated experiments and run the code for the concurrent approaches
AsyncSGD and FedBuff. We also propose an implementation of FedAvg and FAVANO (see Chap-
ter 6). FedAvg is a standard synchronous method. At the beginning of each round, the central
node s selects clients uniformly at random and broadcast its current model. Each of these
clients take the central server value and then performs exactly K local steps, and then sends
the resulting model progress back to the server. The server then computes the average of the s
received models and updates its model. In this synchronous structure, the server must wait in
each round for the slowest client to complete its update.

AsyncSGD is an asynchronous method that initially randomly selects C clients. Then, a server
step is done when a new task is completed and sent back to the server. The server uniformly
selects a new client and send a new task. While AsyncSGD was tested on a simple task in
Koloskova, Sebastian U Stich, and Jaggi 2022, we have developed a deep learning version of the
algorithm (see supplemental material) based on a list of dictionaries (to simulate a network of
waiting queues).

For each global step, in FedBuff, the runtime is the sum of the server interaction time and
the time spent feeding the buffer of size Z. The waiting time for feeding the buffer depends on
the respective local runtimes of the slow and fast clients, as well as on the ratio between slow
and fast clients: in the code, we reset a counter at the beginning of each global step and read
the runtime when the Zth local update arrives. In AsyncSGD and Generalized AsyncSGD, the
runtime is defined by the closed Jackson network properties.





Compression and Federated Learning: an approach to frugal machine learning

Abstract

“Intelligent” devices and tools are gradually becoming the standard, as the implementation of algorithms
based on artificial neural networks is experiencing widespread development. Neural networks consist of
non-linear machine learning models that manipulate high-dimensional objects and obtain state-of-the-art
performances in various areas, such as image recognition, speech recognition, natural language processing,
and recommendation systems.
However, training a neural network on a device with lower computing capacity can be challenging, as it can
imply cutting back on memory, computing time or power. A natural approach to simplify this training is to
use quantized neural networks, whose parameters and operations use efficient low-bit primitives. However,
optimizing a function over a discrete set in high dimension is complex, and can still be prohibitively
expensive in terms of computational power. For this reason, many modern applications use a network
of devices to store individual data and share the computational load. A new approach, federated learning,
considers a distributed environment: Data is stored on devices and a centralized server orchestrates the
training process across multiple devices.
In this thesis, we investigate different aspects of (stochastic) optimization with the goal of reducing energy
costs for potentially very heterogeneous devices. The first two contributions of this work are dedicated to
the case of quantized neural networks. Our first idea is based on an annealing strategy: we formulate the
discrete optimization problem as a constrained optimization problem (where the size of the constraint is
reduced over iterations). We then focus on a heuristic for training binary deep neural networks. In this
particular framework, the parameters of the neural networks can only have two values. The rest of the
thesis is about efficient federated learning. Following our contributions developed for training quantized
neural network, we integrate them into a federated environment. Then, we propose a novel unbiased
compression technique that can be used in any gradient based distributed optimization framework. Our
final contributions address the particular case of asynchronous federated learning, where devices have
different computational speeds and/or access to bandwidth. We first propose a contribution that reweights
the contributions of distributed devices. Then, in our final work, through a detailed queuing dynamics
analysis, we propose a significant improvement to the complexity bounds provided in the literature on
asynchronous federated learning.
In summary, this thesis presents novel contributions to the field of quantized neural networks and federated
learning by addressing critical challenges and providing innovative solutions for efficient and sustainable
learning in a distributed and heterogeneous environment. Although the potential benefits are promising,
especially in terms of energy savings, caution is needed as a rebound effect could occur.

Keywords: federated learning, quantized neural networks
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Compression et apprentissage Fédéré : une approche pour l’apprentissage machine frugal

Résumé

Les appareils et outils “intelligents” deviennent progressivement la norme, la mise en œuvre d’algorithmes
basés sur des réseaux neuronaux artificiels se développant largement. Les réseaux neuronaux sont des
modèles non linéaires d’apprentissage automatique avec de nombreux paramètres qui manipulent des
objets de haute dimension et obtiennent des performances de pointe dans divers domaines, tels que la
reconnaissance d’images, la reconnaissance vocale, le traitement du langage naturel et les systèmes de
recommandation.
Toutefois, l’entraînement d’un réseau neuronal sur un appareil à faible capacité de calcul est difficile en
raison de problèmes de mémoire, de temps de calcul ou d’alimentation. Une approche naturelle pour
simplifier cet entraînement consiste à utiliser des réseaux neuronaux quantifiés, dont les paramètres et
les opérations utilisent des primitives efficaces à faible bit. Cependant, l’optimisation d’une fonction sur
un ensemble discret en haute dimension est complexe et peut encore s’avérer prohibitive en termes de
puissance de calcul. C’est pourquoi de nombreuses applications modernes utilisent un réseau d’appareils
pour stocker des données individuelles et partager la charge de calcul. Une nouvelle approche a été
proposée, l’apprentissage fédéré, qui prend en compte un environnement distribué : les données sont
stockées sur des appareils différents et un serveur central orchestre le processus d’apprentissage sur les
divers appareils.
Dans cette thèse, nous étudions différents aspects de l’optimisation (stochastique) dans le but de réduire les
coûts énergétiques pour des appareils potentiellement très hétérogènes. Les deux premières contributions
de ce travail sont consacrées au cas des réseaux neuronaux quantifiés. Notre première idée est basée
sur une stratégie de recuit : nous formulons le problème d’optimisation discret comme un problème
d’optimisation sous contraintes (où la taille de la contrainte est réduite au fil des itérations). Nous nous
sommes ensuite concentrés sur une heuristique pour la formation de réseaux neuronaux profonds binaires.
Dans ce cadre particulier, les paramètres des réseaux neuronaux ne peuvent avoir que deux valeurs. Le
reste de la thèse s’est concentré sur l’apprentissage fédéré efficace. Suite à nos contributions développées
pour l’apprentissage de réseaux neuronaux quantifiés, nous les avons intégrées dans un environnement
fédéré. Ensuite, nous avons proposé une nouvelle technique de compression sans biais qui peut être utilisée
dans n’importe quel cadre d’optimisation distribuée basé sur le gradient. Nos dernières contributions
abordent le cas particulier de l’apprentissage fédéré asynchrone, où les appareils ont des vitesses de calcul
et/ou un accès à la bande passante différents. Nous avons d’abord proposé une contribution qui repondère
les contributions des dispositifs distribués. Dans notre travail final, à travers une analyse détaillée de la
dynamique des files d’attente, nous proposons une amélioration significative des bornes de complexité
fournies dans la littérature sur l’apprentissage fédéré asynchrone.
En résumé, cette thèse présente de nouvelles contributions au domaine des réseaux neuronaux quantifiés et
de l’apprentissage fédéré en abordant des défis critiques et en fournissant des solutions innovantes pour un
apprentissage efficace et durable dans un environnement distribué et hétérogène. Bien que les avantages
potentiels soient prometteurs, notamment en termes d’économies d’énergie, il convient d’être prudent car
un effet rebond pourrait se produire.

Mots clés : apprentissage fédéré, réseaux de neurones quantifiés
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