
HAL Id: tel-04650035
https://theses.hal.science/tel-04650035v1

Submitted on 16 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

IT infrastructure modeling for risk identification and
prevention

Benjamin Somers

To cite this version:
Benjamin Somers. IT infrastructure modeling for risk identification and prevention. Computer Science
[cs]. Ecole nationale supérieure Mines-Télécom Atlantique, 2024. English. �NNT : 2024IMTA0401�.
�tel-04650035�

https://theses.hal.science/tel-04650035v1
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE

L’ÉCOLE NATIONALE SUPÉRIEURE
MINES-TÉLÉCOM ATLANTIQUE BRETAGNE
PAYS DE LA LOIRE – IMT ATLANTIQUE

ÉCOLE DOCTORALE NO 648
Sciences pour l’Ingénieur et le Numérique
Spécialité : Informatique

Par

Benjamin SOMERS
IT infrastructure modeling for risk identification and prevention

Thèse présentée et soutenue à IMT Atlantique, Brest, le 15 mai 2024
Unité de recherche : Lab-STICC
Thèse No : 2024IMTA0401

Rapporteurs avant soutenance :

Catherine DUBOIS Professeur des universités à l’ENSIIE
Régine LALEAU Professeur des universités à l’Université Paris-Est Créteil

Composition du Jury :

Présidente : Isabelle BORNE Professeur des universités à l’Université Bretagne Sud
Examinateurs : Catherine DUBOIS Professeur des universités à l’ENSIIE

Régine LALEAU Professeur des universités à l’Université Paris-Est Créteil
Thomas LEDOUX Professeur à IMT Atlantique

Dir. de thèse : Fabien DAGNAT Maître de conférences HDR à IMT Atlantique
Encadrant : Jean-Christophe BACH Maître de conférences à IMT Atlantique

Invités :

Philippe LE GOFF Responsable sécurité opérationnelle au Crédit Mutuel Arkéa
Yohan BELLEGUIC Architecte cloud au Crédit Mutuel Arkéa

Remerciements

Avant de présenter mes travaux, je tiens à débuter ce mémoire en remerciant celles et ceux qui m’ont

aidé à arriver là où je suis aujourd’hui, et qui ont fait de cette période de ma vie une expérience hors du

commun.

Je souhaite tout d’abord remercier très chaleureusement les personnes qui ont encadré ce projet :

Fabien Dagnat et Jean-Christophe Bach côté académique, et Philippe Le Goff, Nicolas Dupeux et Yohann

Belleguic côté entreprise. J’ai énormément appris à vos côtés, tant du point de vue technique que

scientifique ou humain. Je sais que je n’ai pas toujours été l’élément le plus simple à encadrer et que je

nous ai imposé des rythmes de travail pour le moins inconfortables ; vous voilà libérés ! Je tiens également

à remercier les membres de mon comité de suivi individuel, Alain Plantec et Stefano Zacchiroli, pour

leur bienveillance et leurs précieux conseils durant nos trois rencontres. Vos retours et votre regard

extérieur sur mes travaux m’ont permis de prendre le recul dont je manquais au début de ma thèse. Je

remercie mes rapporteurs, Catherine Dubois et Régine Laleau, dont les retours sur mon manuscrit ont

mis en lumière de nombreux axes d’amélioration que j’espère avoir su au mieux explorer. Je remercie

également les autres membres de mon jury, Isabelle Borne et Thomas Ledoux, pour leur intérêt dans

mes travaux et nos échanges lors de ma soutenance.

Je dois mon parcours en partie au hasard de quelques rencontres marquantes, aussi je tiens à saluer

deux personnes qui ne liront probablement jamais ces lignes, mais qui ont certainement influencé

celui-ci bien plus qu’ils ne pouvaient alors l’imaginer. À vous d’abord M. Bouhnif ; être votre élève fut

une expérience aussi passionnante qu’elle fut terrifiante, mais vous êtes la personne qui m’a le plus tôt

inspiré à faire des études supérieures longues. Vous m’aviez dit lorsque j’avais 13 ans que je deviendrais

chercheur ; je pense ne pas vous avoir fait mentir. Et à toi Clément ; tu m’as aidé à faire mes marques à

Pasquet, tu avais les mêmes intérêts bizarres que moi, et tu as su m’inspirer le sérieux dont je manquais

pour faire des études supérieures. Et surtout, c’est toi qui m’as fait découvrir les classes préparatoires en

général, et plus précisément le Lycée du Parc, où je t’ai suivi deux ans plus tard ; merci.

J’ai eu la chance, durant ces études supérieures, d’être accompagné par la Fondation Georges Besse,

sans le soutien de laquelle celles-ci auraient été autrement plus fastidieuses. Être Lauréat de la Fondation

m’a ouvert sur l’autre et donné un regard nouveau sur mon environnement. J’y ai découvert une grande

famille aux valeurs profondément humaines qui me portent aujourd’hui encore au quotidien. Je remercie

tout particulièrement Sylvie et Françoise qui m’ont aidé à me sentir à ma place à la Fondation. Merci

enfin à Gilbert, Madame Larras et Messieurs Elbrahimi, Bertello, Gonnord et Chapey pour votre soutien

dans ma candidature.

iii

REMERCIEMENTS

Mon arrivée à Télécom Bretagne m’a permis de découvrir des univers jusqu’alors inexplorés. J’ai

très rapidement pris mes marques au sein du Club Troll, qui a été d’une grande importance pour moi au

long de mon parcours étudiant. Ces soirées et nuits passées à jouer à Twilight Imperium, Ascension et

autres Donjons et Dragons m’ont permis de faire connaissance avec de nombreux amis, qui m’ont peu à

peu fait découvrir le monde de la recherche dès ma première année. Je leur en suis reconnaissant, en

particulier Nicolas, avec lequel j’ai eu de l’occasion de travailler durant mes études.

En parallèle, j’ai pu m’impliquer dans l’Association ResEl, à qui je dois la quasi-intégralité de

l’expertise technique que j’ai aujourd’hui. Le ResEl fut un terrain d’expérimentation unique, qui a

beaucoup inspiré de nombreux axes d’exploration de mes travaux de thèse.

Jeg ønsker å takke kameratene mine i Oslo for den hjertelige velkomsten. I Norge har jeg oppdaget en

annen måte å vurdere livet på, og jeg kunne også virkelig finne meg selv. Så vanskelig det var å komme

tilbake til Frankrike!

Enfin, j’ai dédié une grande partie de ma vie associative durant ma thèse à FedeRez, dont la gestion

au quotidien a été riche en enseignements. J’ai pu rencontrer des personnes formidables grâce à cette

association et ai plaisir d’avoir à ma manière contribué à ce qu’elle est devenue aujourd’hui.

Du fait du contexte sanitaire pour le moins délicat, le quotidien de ma thèse aurait été bien plus

compliqué sans mes colocataires du Pavillon. Je souhaite donc remercier Damien et Jonathan pour ces

dégustations de bières sans fin, ces barbecues du dimanche qui commençaient à 11 h et qui finissaient

à 22 h, ces expériences pyrotechniques et autres idées ridicules que nous avions trop souvent tendance à

pousser à l’extrême. Cette période à vos côtés était incroyable !

Ces derniers remerciements vont à ma famille, qui a toujours été là pour moi, qui m’a toujours encou-

ragé et m’a toujours poussé à donner le meilleur de moi-même. Je tiens à remercier tout particulièrement

ma mère, dont les efforts m’ont porté tout au long de mon parcours.

iv

Chapitre

Résumé en français

Table des matières

.1 Introduction . v

.2 Contributions . vi

.3 Gestion du risque IT . vii

.4 Vérification d’infrastructures . viii

.5 Déploiement et maintenance d’infrastructures . ix

.6 Intégration de nos travaux . ix

.7 Conclusion . x

IntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroduction.1 Introduction

Les infrastructures informatiques sont omniprésentes dans notre vie quotidienne. Véritables colonnes

vertébrales des systèmes modernes, elles assurent le bon fonctionnement de nos centrales électriques,

systèmes de transport, institutions bancaires et autres systèmes vitaux. Ces systèmes doivent inspirer

une certaine confiance, laquelle est renforcée par le respect d’un grand nombre d’exigences (techniques,

fonctionnelles, légales...).

Quand l’on parle d’infrastructure informatique, sont usuellement entendus les serveurs, l’équipement

réseau, les câbles ou encore les composants logiciels qu’une entreprise exploite. Mais il serait bien

maladroit de s’y limiter ; ces équipements ont besoin d’électricité et de refroidissement, les sociétés

délèguent un certain nombre de responsabilités à des sous-traitants, et les employés interagissent avec

tout cet environnement au quotidien. C’est de cet écosystème complexe que naît le risque, dont l’étude

et la gestion doivent alors couvrir un grand nombre d’aspects de l’entreprise.

Pour comprendre les interactions en jeu dans ces entreprises, une bonne connaissance de leurs

infrastructures est nécessaire. Si cette connaissance est facilement mobilisable dans une petite structure

avec peu de départements et d’employés, ce n’est pas le cas dans de grandes compagnies où chaque

domaine d’expertise ne représente qu’une petite fraction de l’infrastructure complète. Dans ce mémoire,

nous adoptons une approche dirigée par les modèles et nous prenons le parti de dire que tout peut

fondamentalement en constituer un. Ainsi, chaque artéfact de conception, chaque représentation mentale

que se fait un employé d’une entreprise, correcte ou incorrecte, constitue un modèle dont la fédération

avec d’autres modèles permet de tirer de nouvelles connaissances.

v

Contributions . RÉSUMÉ EN FRANÇAIS

Durant nos travaux, nous nous sommes posé des questions telles que « en quoi la mise à jour de tel

équipement réseau affecte-t-elle la sûreté et la sécurité de notre infrastructure? », « comment pouvons-

nous configurer cette application pour répondre à nos besoins métiers ? » ou encore « considérant les

objectifs de l’entreprise, est-il avisé de procéder à tel changement architectural ? ». Tout d’abord, nous

faisons un tour d’horizon du processus de gestion du risque pour les infrastructures informatiques en

section .3 (chapitre IV du mémoire). Dans un deuxième temps, nous abordons la modélisation et la

vérification formelle de modèles en section .4 (chapitre V du mémoire). Ensuite, nous présentons CL/I,

un langage de modélisation d’infrastructures au cœur de notre travail de thèse, en section .5 (chapitre VI

du mémoire). Nous terminons notre développement par une prise de recul sur l’intégration de nos

travaux dans un contexte industriel en section .6 (chapitre VII du mémoire). Enfin, nous concluons sur

les apports de nos travaux et leurs perspectives en section .7 (chapitre VIII du mémoire).

ContributionsContributionsContributionsContributionsContributionsContributionsContributionsContributionsContributionsContributionsContributionsContributions.2 Contributions

Nous avons apporté diverses contributions, tant scientifiques que techniques, tout au long de cette thèse.

Publications scientifiques

• Benjamin Somers, Fabien Dagnat, Jean-Christophe Bach. How IT Infrastructures Break: Better

Modeling for Better Risk Management. 17
th
International Conference on Risks and Security of

Internet and Systems (CRiSIS 2022), Décembre 2022, Sousse, Tunisie. pp. 169–184. ⟨hal-03801086⟩.
⟨10.1007/978-3-031-31108-6_13⟩.

• Benjamin Somers, Fabien Dagnat, Jean-Christophe Bach. Modeling heterogeneous IT infrastruc-

tures: a collaborative component-oriented approach. 28
th
International working conference on

Exploring Modeling Methods for Systems Analysis and Development (EMMSAD 2023), Juin 2023,

Saragosse, Espagne. pp. 227–242. ⟨hal-04083449⟩. ⟨10.1007/978-3-031-34241-7_16⟩.

Productions techniques

• Au chapitre IV,

– Une formalisation du processus de gestion du risque (section IV.1.1),

– La traduction des référentiels CAPEC, CVE et CWE du MITRE en ontologies, pour effectuer

des analyses sémantiques poussées du risque (section IV.2.3),

– Une rosace du risque, représentant la prévalence des familles de faiblesses dans les vulnéra-

bilités cyber identifiées à ce jour (figure IV.17),

– Diverses recommandations pour procéder à l’analyse des risques sur des infrastructures

informatiques modernes (section IV.4),

– Un framework pour partager les analyses de risque (section IV.5) ;

• Au chapitre V,

– Divers modèles formels et techniques pour une petite infrastructure informatique (sec-

tions V.2 et V.3),

– Des recommandations pour la modélisation d’infrastructures informatiques (sections V.3

et V.4) ;

vi

https://hal.science/hal-03801086
https://dx.doi.org/10.1007/978-3-031-31108-6_13
https://hal.science/hal-04083449
https://dx.doi.org/10.1007/978-3-031-34241-7_16

. RÉSUMÉ EN FRANÇAIS Gestion du risque IT

• Au chapitre VI,

– CL/I, un langage de description d’infrastructures (section VI.2),

– Un backend Z3 pour CL/I (section VI.3),

– Des études de cas couvrant divers domaines (section VI.4) ;

• Au chapitre VII,

– Un métamodèle orienté composants et responsabilités pour les infrastructures informatiques

(section VII.1),

– Des recommandations pour la modélisation collaborative d’infrastructures (sections VII.3

et VII.4).

Gestion du risque ITGestion du risque ITGestion du risque ITGestion du risque ITGestion du risque ITGestion du risque ITGestion du risque ITGestion du risque ITGestion du risque ITGestion du risque ITGestion du risque ITGestion du risque IT.3 Gestion du risque IT

Du fait de leur importance dans notre quotidien, les infrastructures informatiques sont sujettes à de

nombreuses normes et régulations provenant de diverses entités tout autour du globe. Bien que le risque

cyber (tel que les malwares, les attaques par déni de service, les fuites de données...) représente une

part importante du risque IT, il ne saurait s’y résumer. La typologie du risque est beaucoup plus large

et prend en compte les événements naturels, les pertes financières, la sûreté de fonctionnement des

infrastructures...

Nous développons dans le chapitre IV le processus de gestion du risque informatique au travers d’un

formalisme: le cycle du risque, que nous raffinons tout au long de ce mémoire. Ce cycle comporte cinq

grandes phases:

• L’évaluation des risques, consistant à identifier un ensemble de risques auxquels une infrastructure

est sujette ;

• Le filtrage, consistant à exclure le risque jugé acceptable ou pour lequel aucune remédiation n’est

envisageable ;

• L’établissement d’exigences de sûreté et de sécurité grâce notamment à des normes, réglementa-

tions, ou contrats ;

• La définition de contraintes sur les infrastructures pour appliquer les exigences ;

• La réification des infrastructures.

Afin d’évaluer le risque, nous étudions au chapitre IV différentes taxonomies du risque, et dévelop-

pons une ontologie à partir des référentiels du MITRE afin de systématiser notre étude. Nous proposons

au chapitre V de faire que cette évaluation découle d’un ensemble de propriétés formelles vérifiées à

partir de différents modèles d’infrastructure. Une première phase de modélisation permet alors d’associer

des portions d’infrastructure à des modèles formels et techniques et une seconde phase de vérification

permet de déduire, à partir de prouveurs formels, des propriétés. Nous présentons ce processus plus en

détail dans ce résumé en section .4.

Pour filtrer le risque acceptable, nous nous intéressons à différents frameworks d’analyse de risque et

étudions dans quelle mesure ceux-ci peuvent être adaptés aux infrastructures informatiques, et en particu-

lier aux infrastructures cloud modernes. Cette étude nous permet de déduire certaines recommandations

pour l’analyse de risque et de discuter des critères d’acceptabilité de ce risque.

vii

Vérification d’infrastructures . RÉSUMÉ EN FRANÇAIS

Les infrastructures présentant des risques de sûreté et de sécurité sont soumises à un certain nombre

d’exigences liées aux secteurs d’activité des entreprises. Ces exigences vont de la simple recommandation,

avec notamment le [GR-63-CORE] (donnant des consignes pour la protection physique des infrastructures

de télécommunications), à l’obligation à l’échelle supranationale, avec notamment le RGPD ([GDPR],

cadrant la collecte et l’utilisation des données personnelles), en passant par l’exigence sectorielle, avec

notamment [PCI DSS] (visant à réduire la fraude monétique).

Ces exigences sont ensuite traduites en un ensemble de contraintes sur l’infrastructure. Pour les

risques liés à la sécurité, ces contraintes visent à réduire la surface d’attaque, notamment en assurant un

bon cloisonnement des réseaux et en implémentant des contrôles d’accès. Pour les risques liés à la sûreté,

ces contraintes visent à fiabiliser l’infrastructure, notamment en garantissant une bonne réplication des

divers services et en mettant en place des mécanismes de surveillance de l’intégrité des composants.

Finalement, les infrastructures ainsi contraintes sont concrétisées, soit par la création d’une nouvelle

infrastructure, soit en procédant à la mise à niveau d’une infrastructure déjà existante. Les cinq étapes de

ce processus de gestion du risque sont manuelles, aussi nous nous attachons dans ce mémoire à fournir

diverses pistes d’amélioration pour son automatisation.

Vérification d’infrastructuresVérification d’infrastructuresVérification d’infrastructuresVérification d’infrastructuresVérification d’infrastructuresVérification d’infrastructuresVérification d’infrastructuresVérification d’infrastructuresVérification d’infrastructuresVérification d’infrastructuresVérification d’infrastructuresVérification d’infrastructures.4 Vérification d’infrastructures

Une fois notre cadre théorique posé, nous nous attachons dans le chapitre V à raffiner l’étape d’évaluation

des risques. Lorsque l’on cherche à étudier une infrastructure informatique complète, de nombreux

désalignements sémantiques apparaissent : l’infrastructure a très souvent des composantes techniques,

humaines ou encore organisationnelles, qui sont exprimées à des niveaux d’abstraction différents, avec

des vocabulaires différents. Ainsi, si l’on considère une infrastructure sous son aspect matériel, de très

bas niveau, beaucoup de concepts ne sont pas reflétés (comme les câbles ou l’électricité) dans une vue

fonctionnelle, de très haut niveau, de la même infrastructure.

Les connaissances des employés d’une entreprise étant limitées à leurs domaines d’expertise res-

pectifs, de nombreuses représentations mentales de son infrastructure peuvent coexister, à différents

niveaux d’abstraction. Dès lors, une vision globale ne peut être obtenue que par l’établissement d’un

modèle fédérant les représentations de chacun ; nous présentons cela plus en détail en section .6.

L’évaluation des risques est un processus principalement manuel, aussi celle-ci est directement

influencée par la manière dont les faits sont présentés aux auditeurs et par les aspects de l’infrastructure

qu’ils choisissent d’aborder. Pour bénéficier d’une étude des risques plus objective, nous cherchons donc

à réduire l’appréciation humaine en automatisant ce processus en trois étapes :

• Le développement de modèles d’infrastructure ;

• La vérification de propriétés sur ces modèles ;

• L’interprétation de ces propriétés dans une taxonomie du risque.

Nous construisons pas à pas dans ce chapitre une étude de cas représentant une infrastructure

technique simple, mobilisant des modèles sur plusieurs niveaux d’abstraction (architecture physique, to-

pologie réseau, comportement dynamique). Nous montrons comment composer des modèles techniques

avec des modèles plus formels, et procédons à la modélisation de propriétés en logique temporelle et

viii

. RÉSUMÉ EN FRANÇAIS Déploiement et maintenance d’infrastructures

à leur vérification à l’aide du logiciel UPPAAL. Tout au long de notre étude de cas, nous mettons en

évidence divers obstacles qui peuvent survenir dans le processus de modélisation et dans la composition

et la vérification consécutives des modèles produits.

Nous concluons ce chapitre en discutant des possibilités d’automatisation du processus et proposons

diverses pistes de développements futurs.

Déploiement et maintenance d’infrastructuresDéploiement et maintenance d’infrastructuresDéploiement et maintenance d’infrastructuresDéploiement et maintenance d’infrastructuresDéploiement et maintenance d’infrastructuresDéploiement et maintenance d’infrastructuresDéploiement et maintenance d’infrastructuresDéploiement et maintenance d’infrastructuresDéploiement et maintenance d’infrastructuresDéploiement et maintenance d’infrastructuresDéploiement et maintenance d’infrastructuresDéploiement et maintenance d’infrastructures.5 Déploiement et maintenance d’infrastructures

La complexité des infrastructures informatiques ne cesse de croître, et cette tendance s’est accélérée

depuis l’avènement des technologies du cloud. Cette complexité engendre des difficultés pour garantir

le bon fonctionnement des infrastructures et le respect des exigences spécifiées. Les facteurs pouvant

entraîner des non-conformités sont nombreux, et leur présence dans des infrastructures critiques peut

être catastrophique.

Dans le chapitre VI, nous nous concentrons sur la triade exigences–configuration–exécution et étu-

dions les non-conformités pouvant exister entre (et dans) chacun de ces trois domaines. Plus précisément,

nous nous intéressons à comment les exigences sont traduites dans des configurations d’infrastructure,

comment ces configurations se reflètent dans l’exécution de l’infrastructure, et comment cette exécution

respecte ou non les exigences initiales. Dans ce chapitre, nous entendons le terme « configuration » au

sens large, à savoir la configuration des logiciels, l’architecture des systèmes, et plus généralement tous

les éléments susceptibles de contrôler la structure ou le comportement des composants d’infrastructure.

Pour nous assister dans notre étude, nous avons développé un langage de description d’infrastruc-

tures, CL/I, permettant de modéliser structurellement les infrastructures, de représenter les exigences

sous forme de prédicats logiques, et d’instancier les modèles. Nous avons bâti autour de CL/I un éco-

système de compilation permettant de relier nos modèles d’infrastructures à divers model checkers et

moteurs d’exécution. Nous présentons dans ce mémoire le langage au travers d’exemples concrets et

formalisons sa compilation en commandes SMT-LIB pour Z3.

Enfin, nous décrivons deux études de cas ; l’une autour de l’hyperviseur [Proxmox VE], où nous

exhibons un exemple de désalignement entre exigences et contraintes et identifions la violation de

certaines propriétés à l’exécution ; l’autre où nous analysons les droits d’accès des employés d’une

entreprise en fonction de leurs compétences et responsabilités. Notre langage est en constante évolution

et certaines de ses constructions ne sont pas encore figées ; de plus, l’implémentation de notre compilateur

n’est pas complète vis-à-vis du langage. Malgré la nature de prototype du compilateur, les résultats que

nous avons obtenus sont prometteurs et nous envisageons de mener des études à plus grande échelle

pour le valider.

Intégration de nos travauxIntégration de nos travauxIntégration de nos travauxIntégration de nos travauxIntégration de nos travauxIntégration de nos travauxIntégration de nos travauxIntégration de nos travauxIntégration de nos travauxIntégration de nos travauxIntégration de nos travauxIntégration de nos travaux.6 Intégration de nos travaux

Le dernier chapitre du développement de notre mémoire se concentre sur l’intégration dans un contexte

industriel des travaux que nous avons présentés. Nous faisons une passerelle entre nos travaux et la

discipline de l’Enterprise Modeling pour étendre nos modèles d’infrastructures techniques à des modèles

plus génériques d’entreprises. Nous encourageons la collaboration dans le processus de modélisation

et proposons un métamodèle centré sur les composants et les responsabilités pour représenter les

infrastructures et leurs acteurs.

ix

Conclusion . RÉSUMÉ EN FRANÇAIS

Chaque employé ayant sa vision locale de l’entreprise, avec son jargon et ses abstractions, il est

crucial de fédérer le savoir pour construire une vision d’ensemble, une big picture de l’entreprise.

Mais il ne s’agirait pas de se contenter pour les parties prenantes de modéliser chacune de son côté

sa vue de l’infrastructure et d’espérer qu’une sorte d’algorithme d’agrégation crée cette big picture

automatiquement. Les modèles peuvent comporter des erreurs, des imprécisions ou des inconnues que

seule la confrontation des équipes peut permettre de lever. Nous proposons ainsi diverses pistes pour

guider la modélisation collaborative.

Notre approche ne cherche pas à remplacer des frameworks de modélisation bien établis au sein

des entreprises, mais bien de les rassembler, de les fédérer, afin de mener des analyses plus complexes,

couvrant différents modèles dans différents départements des entreprises. Au travers de la fédération

de modèles, nous pensons que la modélisation des entreprises peut rassembler de nombreuses parties

prenantes, tout en préservant les outils et modèles que celles-ci sont habituées à exploiter.

ConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusion.7 Conclusion

Nous avons durant cette thèse construit des liens entre trois communautés scientifiques : gestion des

risques, méthodes formelles et modélisation d’entreprise. Ces liens se sont organiquement développés à

mesure que nous avons suivi le cycle du risque, formalisé en section .3. Il ressort de ce tour d’horizon

du risque que la discipline demeure très manuelle, malgré un cadre technique où l’automatisation est

devenue la norme. De plus, les méthodes développées par les différentes communautés techniques et

scientifiques manquent d’interopérabilité, et rares sont les initiatives actuelles traitant du problème.

Nous voyons nos différents travaux autour du cycle du risque comme une contribution à un socle

commun réunissant les communautés que nous avons visées durant cette thèse. Nous présentons plus

en détail nos perspectives au chapitre VIII.

x

Table of Contents

Remerciements iii

Chapitre Résumé en français v

.1 Introduction . v

.2 Contributions . vi

.3 Gestion du risque IT . vii

.4 Vérification d’infrastructures . viii

.5 Déploiement et maintenance d’infrastructures . ix

.6 Intégration de nos travaux . ix

.7 Conclusion . x

Table of Contents xi

Chapter I Introduction 1

I.1 Context . 1

I.1.1 What exactly is an IT infrastructure? . 2

I.1.2 IT infrastructures then and now . 3

I.1.3 IT professions . 4

I.2 Problem statement . 6

I.3 Contributions and outline . 7

I.4 Funding . 7

Chapter II State of the Art 9

II.1 Managing risk in IT infrastructures . 9

II.1.1 Requirements . 11

II.1.2 Environment . 12

II.1.3 Approaches to risk . 13

II.1.4 Our position . 14

II.2 Modeling and checking infrastructures . 14

II.2.1 Infrastructure modeling . 16

II.2.2 Model checking . 16

II.2.3 Our position . 18

II.3 IT Infrastructures dynamics . 18

xi

TABLE OF CONTENTS

II.3.1 Infrastructure life cycle . 18

II.3.2 Deployment . 19

II.3.3 Monitoring . 20

II.3.4 Our position . 21

II.4 Conclusion . 21

Chapter III Reader’s Guide 23

III.1 Approach . 23

III.2 Progress . 24

III.3 Big picture . 24

Chapter IV Managing Risk in IT Infrastructures 25

IV.1 The risk cycle . 27

IV.1.1 Formalism . 27

IV.1.2 Properties . 29

IV.1.3 Iteration . 30

IV.1.4 Change . 31

IV.1.5 Approach . 33

IV.2 Risk classification . 33

IV.2.1 Taxonomy efforts . 33

IV.2.2 The case of MITRE . 37

IV.2.3 An ontology over MITRE . 38

IV.3 Risk analysis frameworks . 44

IV.3.1 Traditional frameworks . 44

IV.3.2 Modern initiatives and IT infrastructures . 46

IV.4 Risk assessment and tolerance criteria . 47

IV.4.1 Analyzing parts . 47

IV.4.2 Analyzing systems . 48

IV.4.3 Closing the loop . 49

IV.5 Sharing analyses . 51

IV.5.1 Building open analyses . 52

IV.5.2 Composing analyses . 52

IV.6 Conclusion . 52

Chapter V Checking IT Infrastructures 55

V.1 Rethinking risk assessment . 56

V.1.1 Formalism . 56

V.1.2 Risk and properties . 58

V.2 Modeling IT Infrastructures . 58

V.2.1 From the technical world... 60

V.2.2 ... to the formal one . 62

V.2.3 Case study . 64

V.3 Model checking . 69

xii

TABLE OF CONTENTS

V.3.1 Properties and checkers . 70

V.3.2 The need for proper abstractions . 72

V.3.3 Going back to our case study . 72

V.4 Automating risk assessment . 75

V.4.1 Expressing formal properties... 75

V.4.2 ... and combining models together . 76

V.5 Conclusion . 77

Chapter VI Deploying and Maintaining IT Infrastructures 79

VI.1 Requirements–configuration–execution triad . 80

VI.1.1 Inconsistencies . 81

VI.1.2 Change . 82

VI.1.3 Formalization . 83

VI.1.4 Approach . 84

VI.2 The CL/I language . 84

VI.2.1 Another language? . 84

VI.2.2 Modeling in CL/I . 85

VI.2.3 Syntactic processing . 86

VI.2.4 Semantic processing . 88

VI.2.5 Extensions . 90

VI.3 Mapping into Z3 . 91

VI.3.1 Translation rules . 92

VI.3.2 Conformance checking . 95

VI.4 Case studies . 95

VI.4.1 Virtual environment model . 95

VI.4.2 Proxmox VE configuration and execution . 97

VI.4.3 Model checking . 98

VI.4.4 Scaling . 99

VI.4.5 A more complete case study . 100

VI.5 Conclusion . 101

Chapter VII Integrating our Approach 103

VII.1 Theoretical framework . 104

VII.1.1 Actors and responsibilities . 104

VII.1.2 Components and instances . 106

VII.1.3 Metamodel links . 106

VII.2 Collaborative enterprise modeling . 106

VII.2.1 Enterprise modeling . 107

VII.2.2 Collaborative modeling . 108

VII.3 Federating models . 109

VII.3.1 Modeling guidelines . 110

VII.3.2 Scaling infrastructures . 112

VII.4 Integration guidelines . 113

xiii

TABLE OF CONTENTS

VII.4.1 Component catalogs . 113

VII.4.2 A posteriori modeling . 114

VII.4.3 A priori modeling . 116

VII.5 Case study . 116

VII.5.1 Heterogeneous models... 116

VII.5.2 ... linked together . 118

VII.5.3 Exploiting the model . 118

VII.6 Conclusion . 120

Chapter VIII Conclusion 121

VIII.1 Synthesis of contributions . 121

VIII.2 Limitations and perspectives . 123

VIII.2.1 Risk management . 123

VIII.2.2 Modeling . 124

VIII.2.3 CL/I . 124

VIII.2.4 Enterprise integration . 124

Bibliography 125

Appendix A mitre2owl Algorithm 143

A.1 Detail of the algorithm . 143

A.1.1 ParsersS . 143

A.1.2 ParsersD . 145

A.2 Semantic transformation . 147

Appendix B UPPAAL Model 149

B.1 Source code . 149

B.1.1 Common functions . 149

B.1.2 Corosync cluster . 149

B.1.3 Multi-quorum Corosync cluster . 150

B.1.4 Corosync node . 152

B.1.5 Network node above Corosync . 153

B.1.6 Declarations for Corosync . 153

B.2 Traces . 156

B.2.1 Scenario 1 . 156

B.2.2 Scenario 2 . 157

B.2.3 Scenario 3 . 158

Appendix C CL/I 159

C.1 Language grammar . 160

C.2 AST construction rules . 168

C.3 Transformation from CL/I’s AST to the CLIR . 170

C.3.1 AST . 170

C.3.2 Structure . 171

xiv

TABLE OF CONTENTS

C.3.3 Right values . 174

C.3.4 RTRDot . 175

C.3.5 RInit . 176

C.3.6 Right types . 177

xv

List of Figures and Tables

Figure I.1 Infrastructures and their environment . 2

Figure I.2 Traditional IT infrastructure . 3

Figure I.3 Modern cloud infrastructure . 4

Figure I.4 Comparison between on-site and XaaS strategies 5

Figure II.1 Different states for systems, according to IEC 60050-192 10

Figure II.2 UEML object projected as two models onto two operational languages 15

Figure II.3 The three dimensions of specification according to RM-ODP 15

Figure II.4 Model checking process, according to [Baier08] 17

Figure II.5 Development life cycle . 19

Figure III.1 Contributions of this dissertation to each scientific community 24

Figure IV.1 ISO 31000 iterative process . 26

Figure IV.2 The risk cycle . 27

Figure IV.3 Risk management process . 28

Figure IV.4 Graphical illustration of the reify function . 29

Figure IV.5 Risk management cycle . 32

Figure IV.6 Hierarchy of CWEs . 32

Figure IV.7 Excerpt from OWASP ASVS . 34

Figure IV.8 Excerpt from NIST SP 800-53 . 34

Figure IV.9 Excerpt from ENISA’s Threat Taxonomy . 35

Figure IV.10 Screenshot of SCAP Workbench . 36

Figure IV.11 Relationships between CAPEC-25, CVE-2009-1388 and CWE-833. 37

Figure IV.12 Structure of mitre2owl . 39

Figure IV.13 Algorithm for parsing MITRE XML schemas 40

Figure IV.14 Algorithms for parsing MITRE XML types and attributes 40

Figure IV.15 Integration of our ontologies in an industrial process 41

Figure IV.16 Exploration of the Deadlock CWE . 42

Figure IV.17 Vulnerability–Weakness rosette . 43

Table IV.1 Failure Mode and Effects Analysis of a server 45

Figure IV.18 Fault-Tree Analysis of a server not powering up 45

Figure IV.19 Feature matching when assembling components 49

xvii

https://capec.mitre.org/data/definitions/25.html
https://nvd.nist.gov/vuln/detail/CVE-2009-1388
https://cwe.mitre.org/data/definitions/833.html
https://cwe.mitre.org/data/definitions/833.html

LIST OF FIGURES AND TABLES

Figure IV.20 Typical server motherboard . 49

Figure IV.21 Excerpt from PCI DSS 4.0 . 50

Figure IV.22 Generic model for risk analysis . 51

Figure IV.23 Excerpt from a server manual . 53

Figure IV.24 Multi-level open risk analysis . 53

Figure V.1 Model of a model and its properties . 57

Figure V.2 Refinement of the assess function . 57

Figure V.3 Composition of models . 57

Figure V.4 A scribble, an automaton, a hardware inventory: three models 59

Figure V.5 NetBox model of a datacenter rack . 60

Figure V.6 Excerpt from an SNMP walk over a network switch 61

Figure V.7 Excerpt from the Win32_Process instances of a Windows 7 system 61

Figure V.8 UPPAAL model of a lock and processes able to acquire it 62

Figure V.9 Overview of a datacenter with three rooms . 63

Figure V.10 Physical infrastructure modeled with NetBox 63

Figure V.11 Network infrastructure extracted from NetBox 65

Figure V.12 Loss of a 5-node quorum with 3 votes . 66

Figure V.13 UPPAAL model of Corosync . 66

Figure V.14 Trace of the loss of a 5-node quorum with 3 votes 67

Figure V.15 Linking technical models to a formal model 68

Figure V.16 UPPAAL transitional models . 68

Figure V.17 Linking technical models to a formal model thanks to transitional models . . 68

Figure V.18 Execution of our lock model in the UPPAAL simulator 71

Figure V.19 Verification time as a function of model size 71

Figure V.20 State space exploration strategies . 71

Figure V.21 Composed model with its properties . 73

Figure V.22 Simplified UPPAAL model for our system . 74

Figure V.23 Parse tree for a textual property . 76

Figure VI.1 Requirements–configuration–execution triad: technical point of view 81

Figure VI.2 Deployment graphs . 83

Figure VI.3 Requirements–configuration–execution triad: mathematical point of view . . . 83

Figure VI.4 Requirements–configuration–execution triad: our approach 84

Figure VI.5 Our language as a pivot between formal and informal tools 85

Figure VI.6 CL/I components for a user, a permission triple and a file 86

Figure VI.7 CL/I instances of the components in figure VI.6 86

Figure VI.8 Syntactic transformation of the User component and the file_1 instance . . 87

Figure VI.9 Translation from CL/I to the CLIR . 89

Figure VI.10 Simplified semantic rules from CL/I to the CLIR 90

Figure VI.11 Two-stage processing of CL/I models . 90

Figure VI.12 Helper functions for our translation rules . 92

Figure VI.13 Translation rules . 93

xviii

LIST OF FIGURES AND TABLES

Figure VI.14 Translation from CL/I to the CLIR to Z3 . 94

Figure VI.15 Model for Node, Group and Cluster . 96

Figure VI.16 Model for Virt and affinity and antiaffinity rules 97

Figure VI.17 Proxmox VE configuration translation . 98

Table VI.1 Summary of relations . 98

Figure VI.18 Verification time (log scale) as a function of the number of Virts 99

Figure VI.19 Multi-domain model . 100

Figure VII.1 Component- and responsibility-oriented metamodel 105

Figure VII.2 Specialization of the metamodel for ReMoLa compatibility 105

Figure VII.3 Representation of the ISO 19439 standard . 108

Figure VII.4 Unification, composition, federation: three approaches to collaborative models 109

Figure VII.5 Inconsistencies by addition, approximation and mistake and their resolution . 109

Figure VII.6 Model for a generic service checker . 111

Figure VII.7 Model reconciliation with three points of view 112

Figure VII.8 An example of model reuse . 114

Figure VII.9 A posteriori modeling by federation . 115

Figure VII.10 A priori modeling . 115

Figure VII.11 eBank’s organizational structure . 117

Figure VII.12 BPMN diagram for purchasing new hardware 117

Figure VII.13 Task catalog . 117

Figure VII.14 ePay’s big picture . 119

Figure VII.15 Impact tree from application slowness to financial impact 119

Figure VIII.1 Refinement of the risk cycle throughout this dissertation 122

Figure B.1 Trace for the scenario 1 . 156

Figure B.2 Trace for the scenario 2 . 157

Figure B.3 Trace for the scenario 3 . 158

Table C.1 Presentation of CL/I’s AST, along with a few examples to build each node . . 168

xix

I
Chapter I

Introduction

Contents

I.1 Context . 1

I.1.1 What exactly is an IT infrastructure? . 2

I.1.2 IT infrastructures then and now . 3

I.1.3 IT professions . 4

I.2 Problem statement . 6

I.3 Contributions and outline . 7

I.4 Funding . 7

ContextContextContextContextContextContextContextContextContextContextContextContextI.1 Context

Computers are all around us. Over the years, IT infrastructures have become the backbone of businesses,

the heart of global communications, and a vital part of our day-to-day lives. They drive power plants,

transportation systems, banking institutions, life-critical systems..., all of which must inspire confidence

in their safety and security. But beyond inspiring trust, all of them must work in accordance with a set

of specifications.

Modern companies often rely on very diverse IT infrastructures to support their activities. As they

sell products and services to customers, businesses attach importance to maintaining a certain level of

quality and meeting contractual obligations. These requirements call for a set of safety and security

properties on the infrastructure to be met and preserved over time, which can require the allocation

of considerable resources (human, technical, organizational, etc.). To comply with legal and industrial

regulations related to such properties, companies resort to internal and external audits. The former

mobilize the company’s internal resources, but may lack detail or objectivity. The latter are carried out

by auditing firms leading to the issuance of certifications after a review process that is often very costly.

Whether audited or not, a good knowledge of the infrastructure is necessary to understand the

interactions at work and better assess the risks to which the company is exposed. While small businesses

with only a few departments may have employees with a good grasp of the big picture, this is hardly

the case in large companies, in which each employee focuses on their own area of expertise (often

a small part of the overall infrastructure). By interacting with these infrastructures on a daily basis,

through specialized tools and business knowledge, employees develop their own local perspective of

1

Context I. INTRODUCTION

the company, specific to their domain (with sometimes wrong assumptions on other domains). These

perspectives can be of a very high level, notably for decision-makers who need to have a clear vision of

the company as a whole, as they can be of a very low level, notably for technicians qualified in very

specific areas.

Because of the diversity of IT infrastructures, many abstractions are used to enable their standardiza-

tion and regulation. As a result, safety and security properties are often expressed using a generic, high

level terminology. Verifying that these properties are satisfied means identifying a number of (often

lower level) perimeters in which they apply, and defining evaluation criteria. Such perimeters may cover

several business domains and call on the knowledge of many different employees, requiring the use of a

common vocabulary to share information. In a way, assessing properties across an entire infrastructure

consists in federating heterogeneous knowledge into an ad hoc formalism bridging the gap between the

abstract and the concrete views.

I.1.1 What exactly is an IT infrastructure?

When we talk about IT infrastructures, we are considering a whole range of areas, both technical and

non-technical. To set the scene for this introduction, we can draw on the definition from the ITIL 4

Foundation [ITIL19]: an IT infrastructure is “[a]ll of the hardware, software, networks, and facilities that

are required to develop, test, deliver, monitor, manage, and support IT services.” What usually comes to

mind to illustrate this definition are servers and switches for the hardware side, operating systems and

specialized applications for the software side, and cables and fibers connected between devices for the

network side.

But we cannot reduce IT infrastructures to these elements. A server needs electricity and cooling to

operate and is typically placed in a rack. The choice of a particular operating system is the consequence of

a need and the cause of other subsequent choices. Network links, say between a company’s subsidiaries in

Paris and Los Angeles, pass through a set of exchange points outside the company’s control. Rather than

simply compiling an inventory of what the company owns or manages to characterize its infrastructure,

we need to look at the entire environment that enables these assets to operate. A view of an infrastructure

and its environment is given in figure I.1.

Cloud provider

Company

Network and data

Electricity

Power
company

Figure I.1: Infrastructures and their environment

2

I. INTRODUCTION Context

Server 4
Server 3
Server 2
Server 1
SwitchFunction 1

Function 2

Function 4

Function 3

Logical view Deployment/Physical view

Figure I.2: Traditional IT infrastructure, where the deployment view generally corresponds to the

physical view

Leaving aside any software aspect, most IT infrastructures are an assembly of numerous generic

components, which specialize according to their use. Where an aircraft, a car, or even a factory is made

up of hundreds and thousands of specialized components, the essence of hardware IT infrastructures

can be summed up as what can compute, what can store and what can carry information. At a lower

level also appears what can supply energy, what can regulate temperature and what can physically host

the hardware, as previously mentioned. What sets IT infrastructures apart from others is that most of

these components are freely interchangeable, thanks to the standardization of their interfaces over time.

And over time have these infrastructures undergone major paradigm shifts.

I.1.2 IT infrastructures then and now

IT infrastructures have experienced significant changes over the past few decades. During the early days

of business computing, mainframes were prevalent due to their large storage and processing capabilities.

Despite their advantages, these systems had a high cost, took up a substantial amount of physical space,

and provided limited interoperability between different hardware and software systems due to their

proprietary nature.

The introduction of personal computers and servers in the 1980s and 1990s made computational

resources more accessible to people. One critical aspect of this era was the introduction of standardized

component interfaces and normalized architectures. Standardization made it possible for hardware

components from different vendors to communicate with each other seamlessly and for software to

run on many types of hardware. This period marked a shift from the traditionally vertical approach to

infrastructures, with a few large machines having abundant resources, to a horizontal approach, with

many machines having fewer resources.

In traditional settings, properties such as location, quantity, allocated resources and network were

quite stable over time. Services did not “move” from one server room to another, scaling was not an

automated process, hardware for “always-on” services was not frequently replaced, and network topology

did not significantly change. To illustrate such a traditional infrastructure, a simplified deployment

where functional components are directly mapped to physical servers is shown on figure I.2.

In the early 21
st
century, the Internet gained in importance and demand for computing resources ex-

ploded, with datacenters housing several thousands of servers. The increasing load on infrastructures led

to a rethinking of their architecture, marking a transition from static to dynamic systems. These changes

3

Context I. INTRODUCTION

Server 4
Server 3
Server 2
Server 1
Switch 1

Server 8
Server 7
Server 6
Server 5
Switch 2

Function 1

Function 2

Function 4

Function 3

VM 1

VM 2 VM 3

VM group

VSwitch

Logical view Deployment view

Physical view

Figure I.3: Modern cloud infrastructure, where there is a clear separation between the virtual and the

physical infrastructures

were driven by the democratization of cloud computing paradigms, pushing towards the abstraction of

physical aspects to focus on the functional requirements. The introduction of these paradigms allowed

for on-demand provisioning and reconfiguration of resources, leading to unprecedented flexibility and

adaptability.

In contrast to traditional infrastructures, modern virtualized infrastructures can only guarantee

the stability factors we mentioned previously for so long, sometimes hours or even minutes. The tight

coupling between the logical and the physical layers does not exist anymore, as shown on figure I.3

with an added, virtual, “deployment layer”.

Pushed to the extreme, these abstractions have given rise to the concepts of Infrastructure as a

Service (IaaS), Platform as a Service (PaaS) and Software as a Service (SaaS), which we summarize as XaaS.

They correspond cumulatively to the abstraction of hardware, network, storage and virtualization (IaaS),

of basic software stacks (PaaS) and of complete applications (SaaS), as shown on figure I.4. These XaaS

solutions often entail relocating resources to so-called cloud providers, separating technical expertise

from business expertise and outsourcing the former to external companies.

I.1.3 IT professions

Much like we structure communication systems in layers from the lower, physical levels, to the higher,

functional levels (the famous OSI layers), people working with IT infrastructures have activities that

we can group in low- and high-level views. These professions deal with very different aspects of

4

I. INTRODUCTION Context

On-site IaaS PaaS SaaS

Applications & Data Applications & Data Applications & Data Applications & Data

OS & Runtime OS & Runtime OS & Runtime OS & Runtime

Virtualization Virtualization Virtualization Virtualization

Servers Servers Servers Servers

Network & Storage Network & Storage Network & Storage Network & Storage

Figure I.4: Comparison between on-site and XaaS strategies

Legend. Managed by the company, Managed by the service provider.

infrastructures, and therefore carry different responsibilities and require tools and representations

adapted to their specific view. It is important not to confuse layers and views at this point: while layers

can be seen as distinct strata, views can overlap. For example, a company’s financial department, while

featuring what qualifies to us as high-level professions, is involved in many other views, from low-level

hardware aspects (notably by planning equipment budgets), to high-level support functions (notably by

managing the company’s payroll).

Hardware

IT infrastructures are built on considerable physical foundations. At this level, datacenter employees have

a good (local) vision of the company’s physical infrastructure (servers, network equipment, cables...),

but do not necessarily have a good understanding of the higher-level infrastructures that depend on it.

Data center technicians are responsible for mounting equipment, replacing faulty parts, and managing

physical connections to the electrical and various logical networks.

At this level, we can also find non-IT professions in the HVAC (heating, ventilation, air conditioning)

and electrical sectors, both critical low-level elements of any datacenter.

Backbone

On top of these physical considerations lie the logical aspects of IT infrastructures. It would be impossible

to design a data center without good storage management, and even less so without solid network

foundations. This is where network and storage engineers come in. Network technicians are responsible

for the company’s network infrastructure. Storage technicians are responsible for commissioning

resilient, high-performance storage solutions, by carefully designing distributed disk clusters. They have

both a higher-level perspective, since they manage an infrastructure view dependent on the network, and

a lower-level view, since they are familiar with the physical characteristics of the storage infrastructure.

5

Problem statement I. INTRODUCTION

Logical foundations

Above storage and network lie what we call the logical foundations. In so-called “on-premises” infras-

tructures, systems technicians install and maintain operating systems and runtime environments. In

IaaS infrastructures, where all management of cloud foundations is delegated to an external party, their

task is to manage the various virtualized resources. At this level, the details of the lower views are

usually abstracted.

Finally, at the top of the chain are the employees who manage the applications installed on the

end systems, that are used within the company, or even sold to clients. All these professions provide a

multifaceted picture of IT infrastructures, which we want to exploit.

Problem statementProblem statementProblem statementProblem statementProblem statementProblem statementProblem statementProblem statementProblem statementProblem statementProblem statementProblem statementI.2 Problem statement

From this introduction emerges an important factor: the knowledge of infrastructures. From facts (“this

element works as such”) to beliefs (“this element seems to work as such”) to requirements (“this element

must work as such”), every stakeholder draws their own picture of the infrastructure. But this picture is at

best limited, at worst false: facts are not always tangible, beliefs are not always correct, and requirements

are not always met. In this dissertation, we defend the position that only through the federation of

knowledge we can derive meaning from each others’ views. We built upon this premise to explore the

three lines of research we present here.

“How does updating this network router affect our safety and security?” IT infrastructures

are not implemented without a goal in mind; they respond to requirements laid out in functional

specifications. In addition to these, external regulatory bodies impose their own requirements, such as

laws or standards, which usually limit flexibility and impose operating constraints on companies. Risk

assessment on such infrastructures is a difficult exercise, due to their sizes, their inherently dynamic

structure, and the semantic gap which can be considerable between the expression of requirements and

field reality. Part of our work focuses on how to simplify, systematize and automate risk analysis, to

increase confidence in infrastructures and reduce the cost of their audit and certification.

“How can we configure this application to fulfill our business needs?” Companies make

extensive use of commercially available off-the-shelf components in their IT infrastructures. To best

meet their needs, these components can offer configuration options that alter their default operation.

Correctly configuring such components can be a challenging task and can lead to unexpected behaviors.

When done wrong, i.e. in case of human configuration error, safety and security properties may no

longer hold and potentially impactful edge conditions can arise during their operation. To better predict

such behavior and help configure components more safely, we have explored verification of formal

properties on them.

“Given our objectives, is it wise to make this architectural change?” IT infrastructures span

across many business domains, from supporting corporate functions to customer services. A small

change in one area can have far-reaching consequences in others; evolving needs and resources call for

a good knowledge of the underlying infrastructure. This knowledge is disseminated throughout the

company, but the presence of large teams and numerous domains leads to its fragmentation. Ultimately,

6

I. INTRODUCTION Contributions and outline

this can result in a poor understanding of the close relationships between infrastructure components, and

require time-consuming meetings to align everyone’s views. We have focused on the industrialization

and scaling-up of our approach in highly heterogeneous domains to simplify cooperation through

infrastructure modeling guidelines.

Contributions and outlineContributions and outlineContributions and outlineContributions and outlineContributions and outlineContributions and outlineContributions and outlineContributions and outlineContributions and outlineContributions and outlineContributions and outlineContributions and outlineI.3 Contributions and outline

In this dissertation, we explore in breadth the topics related to risk management for IT infrastructures.

Along our journey through the risk management process, which we set out to formalize throughout

this dissertation, we attempt to connect various technical and scientific communities, leading to several

productions and publications.

In chapter II, we present the state of the art of the subjects we address in this dissertation, which is

further refined in each of the chapters developing our thesis. We provide a detailed reader’s guide in

chapter III, setting out the big picture of our work and presenting these developments.

Starting from an existing infrastructure, we explore different risk taxonomies in chapter IV and focus

on MITRE’s CAPEC, CVE and CWE projects, which we translate into ontologies in section IV.2.3. These

ontologies allow us to better classify risk when assessing concrete software infrastructures. To help with

the assessment phase, we provide guidelines for performing risk analyses on modern IT infrastructures

in section IV.4 and advocate more interoperable risk analyses in section IV.5 by proposing a composable

model for open analyses.

We propose to further refine the risk assessment step of the risk management process in chapter V,

by considering it through the prism of modeling and model checking. We describe in section V.2 through

a case study a number of technical and formal models, which we link in section V.3, where we use a

trial-and-error approach to highlight the difficulties that arise when verifying concrete infrastructures.

This study allows us to draw guidelines for IT infrastructure modeling and the automation of the whole

process, discussed in section V.4.

To support this automation, we introduce in chapter VI an infrastructure description langage, CL/I,

which represents the most important contribution of our work. CL/I acts as a pivot language, interacting

with a variety of data sources within a company, as well as with formal provers and verifiers, and aims to

systematize the use of formal methods. We present in section VI.3 the compilation of our language into

Z3 scripts, and give two case studies in section VI.4 showing the use of the language and its integration.

We discuss in chapter VII the implementation of our approach in an industrial context with numerous

stakeholders in a variety of roles and responsibilities. We introduce a component- and responsibility-

oriented metamodel for IT infrastructures in section VII.1 to serve as a framework for our study and

provide guidelines for collaborative enterprise modeling in sections VII.3 and VII.4. We illustrate this

approach with a case study in section VII.5.

Finally chapter VIII summarizes our work and concludes this dissertation.

FundingFundingFundingFundingFundingFundingFundingFundingFundingFundingFundingFundingI.4 Funding

This PhD was conducted under a French Cifre partnership between the Crédit Mutuel Arkéa, a French

bancassurance group, and IMT Atlantique, a leading French Grande École.

7

II
Chapter II

State of the Art

Contents

II.1 Managing risk in IT infrastructures . 9

II.1.1 Requirements . 11

II.1.2 Environment . 12

II.1.3 Approaches to risk . 13

II.1.4 Our position . 14

II.2 Modeling and checking infrastructures . 14

II.2.1 Infrastructure modeling . 16

II.2.2 Model checking . 16

II.2.3 Our position . 18

II.3 IT Infrastructures dynamics . 18

II.3.1 Infrastructure life cycle . 18

II.3.2 Deployment . 19

II.3.3 Monitoring . 20

II.3.4 Our position . 21

II.4 Conclusion . 21

In this dissertation, we cover a wide range of topics related to risk in IT infrastructures. Before

presenting our study, this chapter introduces the work that has shaped our areas of interest. First,

we give an overview of the literature on risk management. We then move on to modeling and model

checking and their practical application to IT infrastructure. We finally consider the dynamics of IT

infrastructures before concluding this chapter. This state of the art is further specialized and refined

throughout the chapters of this dissertation.

Managing risk in IT infrastructuresManaging risk in IT infrastructuresManaging risk in IT infrastructuresManaging risk in IT infrastructuresManaging risk in IT infrastructuresManaging risk in IT infrastructuresManaging risk in IT infrastructuresManaging risk in IT infrastructuresManaging risk in IT infrastructuresManaging risk in IT infrastructuresManaging risk in IT infrastructuresManaging risk in IT infrastructuresII.1 Managing risk in IT infrastructures

Despite all the abstractions from physical reality that we discussed in the introduction, IT infrastructures

remain subject to the constraints of the physical world. As a result, and because of the potentially high

value of the activities they support, these infrastructures are inherently subject to risk. Traditionally, we

distinguish between two main categories of risk [Burns92]: security risk, which covers acts of human

malice, and safety risk, which encompasses everything else (natural causes, accidents, etc.). While both

9

Managing risk in IT infrastructures II. STATE OF THE ART

Operating = Up ∧ Enabled
“Nominal or acceptable degraded operation”

Down ∧ Enabled
“Primary failure”

Down ∧ Disabled
“Total failure”

Up ∧ Disabled
“Secondary failure”

Figure II.1: Different states for systems, according to IEC 60050-192

Legend. Up, Down, Studied component, Dependency

categories of risk are often considered separately, the literature shows efforts to combine and study these

within a common framework [Amundrud17; Boustras20], albeit with little practical implementation. In

this dissertation, we take a generic view of risk, drawing lessons from this traditional separation.

When working in IT teams, it is not uncommon to consider questions such as “is the service up?”, but

the precise definition of a functioning service needs to be elaborated. According to the [IEC 60050]-192,

which presents a common terminology in the field of dependability, a system, say an online store, may

be in an operating or a non-operating state, depending on whether it is performing as required or not.

An individual component inside the system, say this online store’s web engine, may either be in an up

or down state, whether it is able, modulo external dependencies, say the store’s databases, to perform as

required or not. Independently of the up /down state, these external dependencies put the system in a

so-called enabled state if all of them are performing as required (if the databases are in an operating

state), and in a disabled state otherwise. Figure II.1 summarizes the various possible situations, with a

system (the online store in our example) made of a component (the web engine in our example) and five

dependencies (the databases in our example). The notion of a functioning or non-functioning service

thus hides a whole chain of dependencies likely to cause the service to become inoperative.

From these simple definitions come two important aspects of the study of infrastructures which we

discuss in this section:

• Systems are built according to a set of requirements, against which their proper operation is

measured;

• There is potentially a strong coupling between systems and their environment, as a malfunction

on an external dependencies can affect the operating state of the whole system.

The study of these aspects sheds light on the first issue of our problem statement, concerning the close

links between requirements and risks.

10

II. STATE OF THE ART Managing risk in IT infrastructures

II.1.1 Requirements

Ensuring the safety and security of complex IT infrastructures has gained significant traction in the

research community over the years [Uchenna17; Maniah22]. Such a complexity often calls for the use of

advanced techniques and tools to address deviations and ensure conformance to desired requirements
1
.

In [Somers23.1], we categorize these requirements as such:

• External requirements, i.e. requirements that are imposed by external bodies or by the companies

themselves when interfacing with the outside:

– Legal and regulatory, with notably the General Data Protection Regulation [GDPR], governing

the use and collection of personal information or the Payment Card Industry Data Security

Standard [PCI DSS], to reduce credit card fraud;

– Contractual, with notably payment processor requirements [Mastercard21; Visa22], apply-

ing financial penalties in case of non-compliance with quality standards, or service-level

agreements (SLAs) negociated by the company with its business clients [He18].

• Internal requirements, i.e. requirements that are self-imposed by the company:

– Technical, with notably architectural decisions;

– Functional, with notably performance criteria.

These requirements have a direct impact on the risk of infrastructures and the way they are designed,

which is one of the main focuses of this dissertation.

Requirements can be expressed in a number of ways, which we explore in more detail in section IV.2,

but we find them most often in technical specifications and legal notices, in a textual form. A broad

range of propositions to describe requirements in a more formal way are found in the literature with

notably ArchCNL and RQCODE.

ArchCNL [Schröder18] is a controlled natural language (CNL) for describing architectural rules and

checking source code conformance to such rules. Although the use of a CNL enables requirements to

be expressed in a language close to how they are usually expressed (and thus be “self-documenting”),

two obstacles stand out. First, some effort is required to translate existing requirements in a controlled

vocabulary, which may lack expressiveness. Second, such a high-level approach requires writing ad-hoc

mappings between the controlled vocabulary and the code.

Recent initiatives such as Requirements as Code (RQCODE) [Nigmatullin23], which are closer

to the developer, propose to support automated conformance checking by writing requirements in a

programmatic way. While such approaches involve a greater rewriting effort for requirements, they

can benefit from a more comprehensive tooling across various technical communities and thus greater

industrial acceptance.

To answer the industrial need around our work, we have chosen to stay in line with this desire to

automate infrastructure risk management through code in this dissertation.

1
The term “rule” is sometimes used in the literature.

11

Managing risk in IT infrastructures II. STATE OF THE ART

II.1.2 Environment

IT infrastructures do not exist independently of a context. For a hardware infrastructure, the context

corresponds for example to the electrical grids on which it depends and its geographical location. For

a software infrastructure, it corresponds for example to its execution environment and its software

dependencies.

Such a context creates strong interdependencies between infrastructures, that are represented in

the literature as multiplex networks [DeDomenico13] and interdependent graphs. For [Rinaldi01], the

interdependencies can be of four types:

• Informational, if there is a logical reliance on information transfer between infrastructures;

• Physical, if there is a physical reliance on material flow (electricity, water) from one infrastructure

to another;

• Geographical, if a local environmental event can affect components across several infrastructures

due to physical proximity;

• Procedural, for other kinds of interdependencies.

A complete risk analysis therefore requires an in-depth study of each of these interdependencies,

which we find is lacking in the literature, where these types of interdependencies are often considered

separately.

Informational

Software and its execution environment present strongly coupled risks. If a piece of software has

a security flaw, an attacker could modify its environment, which in turn could have an effect on

other systems. At the same time, software behavior can be indirectly modified by an attack on its

environment [Vaidya19]. As IT gets more and more ubiquitous, we observe a multiplication of entry

points, inducing a much larger attack surface [Hannousse21], which requires proper attention by

companies. Finally, the opening up of the software industry to open source collaboration has intensified

attacks on the supply chain, notably on package repositories [Ohm20]. Our work argues that a better

understanding of infrastructures and a greater involvement of all stakeholders in their mapping and

modeling enables to better apprehend these new attack vectors.

Physical

A failure at a critical point in an infrastructure, such as the electrical grid, can lead to a cascade of failures

in many other components [Buldyrev10], requiring proper monitoring and mitigation strategies [Ten10].

But physical interdependency involves more than electricity provision. Within an IT infrastructure,

material flows can be very diverse, from sourcing technical equipment [Voas21] to supplying fluids to

cooling systems.

Geographical

The geographical location of hardware and buildings has a major impact on infrastructures at every

scale. On an industrial site level, proximity to so-called Seveso establishments or the presence of a

seismic risk call for specific infrastructure design and management measures [Esen22]. On a smaller

12

II. STATE OF THE ART Managing risk in IT infrastructures

level, very localized events such as ambient vibrations can have serious consequences on storage perfor-

mance [Turner10]. Along with physical interdependencies, geographical interdependencies demonstrate

a strong coupling between events of a physical nature and measurable degradation at a logical level.

Procedural

Finally, a number of other factors can contribute to infrastructure interdependencies, including economic

considerations and executive decisions. From individual businesses to intergovernmental organizations,

many entities take part in the decisional and technical chains, as extensively presented by [Hasan15].

These stakeholders assume a wide range of responsibilities that are important to consider, which we

integrate into our approach in chapter VII.

II.1.3 Approaches to risk

Risk analysis is a discipline that developed extensively during the 20
th
century in the aerospace and

automotive industries. Whether in these fields or in critical infrastructures, failures can lead to fatali-

ties [Yates14]. Risk analysis is therefore a discipline that should not be taken lightly.

Generic methods such as FTA and FMEA [ARP4761], HAZOP [IEC 61882] or STPA [Leveson12] have

been devised to increase confidence in infrastructures and identify risk scenarios. These methods follow

rigorous, systematic processes, but are fairly low-level and hardware-oriented, due to their original

target fields. We discuss their applicability to IT infrastructures in section IV.3.

In parallel, various industries have been developing more specific safety and security regulations to

guide such risk analyses. In aerospace, [AS9100D] (Quality Management Systems – Requirements for

Aviation, Space, and Defense Organizations) describes quality standards to increase the safety of the

supply chain and final products. In the automotive industry, [ISO 26262] (Road vehicles – Functional

safety) defines so-called Automotive Safety Integrity Levels (ASIL) to classify risks and treat them with

different degrees of care according to their criticality for human life. Finally, to return to our main focus,

[ISO/IEC 27005] (Information security, cybersecurity and privacy protection — Guidance on managing

information security risks) provides guidance on how to assess and treat risk on information systems.

These various regulations, while not incompatible, have differences in nomenclature that limit their

interoperability. In our work, we have sought to explore methods from a variety of fields in order to

gain insight into their applicability to IT infrastructures.

For these infrastructures in particular, many integrated frameworks offer a structured way to analyze

and manage risks related to information security, some of them implementing ISO/IEC 27005, with

specific nuances and areas of focus. [Abbass15] gives a detailed comparison between [OCTAVE], [EBIOS-

RM] (on which we have chosen to focus in this dissertation), [MEHARI], [CRAMM] and [CORAS]

and discusses their advantages and drawbacks. The article presents four strategies to risk mitigation,

stressing the fact that eliminating the risk is not the only solution:

• Risk avoidance, where the source of the risk is eliminated;

• Risk limitation, where the exposure to the risk is reduced;

• Risk transfer, where the responsibility for the risk is delegated to an external party;

• Risk acceptance, where the risk is not dealt with any further.

We discuss the acceptability of such a residual risk (i.e. risk that is not eliminated) in section IV.4.3.

13

Modeling and checking infrastructures II. STATE OF THE ART

In a bid to integrate risk management seamlessly into development and operational processes, the

DevSecOps movement has gained attention in the scientific community [Myrbakken17]. It aims to embed

security practices within the DevOps methodology, ensuring that risk assessment isn’t an afterthought

but an integral part of the IT development life cycle. But this kind of modern approach is not enough to

guarantee system safety and security, and [Neumann19] notes in particular that:

• It is impossible to build trustworthy applications on flawed systems; even if the application is

designed to high standards, the risk analysis must not neglect the execution environment;

• Properties, sometimes adverse, appear when composing systems together; risk analysis must be

carried out not only on individual components, but also at their interface;

• Relocating an infrastructure on a public cloud does not magically make it more safe and secure;

we need to question our trust in third parties.

II.1.4 Our position

The state of the art in risk management is very extensive in the historical fields in which the discipline

has been developed. However, our experience of risk analysis on complex IT infrastructures has shown us

that most of these methods are not adapted to our area of study. First of all, it appears that the traditional,

textual and verbose format of risk reference frameworks runs counter to the modern automation

principles advocated by IT practitioners. This idea is accurately captured by Nancy Leveson, who claims

that “[h]uman error is a symptom of a system that needs to be redesigned” [Leveson19]. Secondly, the

multi-level nature of IT infrastructures requires very careful consideration of the risks associated with

interdependencies, which specialised frameworks are not designed to capture. In our work, we advocate

a more collaborative approach to risk management that takes account of the specific characteristics of

IT infrastructures. This collaboration involves a thorough modeling of infrastructures, which we discuss

next.

Modeling and checking infrastructuresModeling and checking infrastructuresModeling and checking infrastructuresModeling and checking infrastructuresModeling and checking infrastructuresModeling and checking infrastructuresModeling and checking infrastructuresModeling and checking infrastructuresModeling and checking infrastructuresModeling and checking infrastructuresModeling and checking infrastructuresModeling and checking infrastructuresII.2 Modeling and checking infrastructures

As we mentioned in the introduction of this dissertation, numerous professions are involved in IT

infrastructures, each with their own tools, languages and representations, from hardware to software,

including networks and processes. A datacenter can be described by rack diagrams, illustrating the

layout of servers and network components. A software can be represented using UML diagrams [UML],

to show its structure and the different interactions at work, or can be described by its code. A network

topology can be seen as mathematical objects [Park00], described by switch configurations, or as code

in Software-Defined Networking (SDN) [Masoudi16], using technical tools as well as formally defined

frameworks such as Netkat [Anderson14]. However, most of these tools are not designed to interact with

one another. Asking simple questions such as “what happens if I unplug this cable?” is often enough to

highlight this problem [Neville22]. In our work, we attempt to use the knowledge distributed throughout

these representations to derive new risk-related properties and help configure and maintain systems. In

addition to our first issue, modeling and model checking provide crucial insight on the second issue of

our problem statement, regarding the conformance of infrastructures to requirements.

14

II. STATE OF THE ART Modeling and checking infrastructures

UEML model

Opera
tional

langua
ge 1

O
pe

ra
tio

na
ll
an

gu
ag

e
2

Figure II.2: UEML object projected as two models onto two operational languages

Definitiveness

Fo
rm

al
is
m

Co
m
pl
et
en
es
s

Informal, incomplete,
descriptive specification

Formal, complete,
definitive specification

Figure II.3: The three dimensions of specification according to RM-ODP

15

Modeling and checking infrastructures II. STATE OF THE ART

II.2.1 Infrastructure modeling

All the infrastructure representations we have mentioned above can be considered as models [Sand-

kuhl18], that is, abstractions of systems for pragmatic use. In the domain of Enterprise Modeling [Ver-

nadat20], an approach to unify these models in a kind of modeling Esperanto [Vallespir18] has been

devised in order to alleviate the problem of interaction between models: UEMLs [Vernadat02] (for Unified

Enterprise Modelling Language). The idea was rather bold: a UEML model was a kind of “super-model”

that could be projected onto so-called operational languages (where processing would actually happen)

as models in these languages. We have represented the concept on figure II.2. However, due to a lack

of technical adoption, the framework has outlived its purpose. In this dissertation, we defend a “rival”

approach: model federation [Golra16], where rather than building operational models from a big holistic

model, we start with small operational models and build links between them to derive a bigger picture.

Other approaches in enterprise modeling such as [Archimate] and [TOGAF] focus more on the

processes around IT infrastructures and the people who work with them, to help with high-level decision

making. They offer a comprehensive approach for designing, planning, implementing, and governing

enterprise IT architecture, enhancing alignment with business goals, which we discuss in chapter VII.

Infrastructure models come in a wide variety of types. According to [RM-ODP], they
2
vary according

to three dimensions, represented on figure II.3:

• Formalism, whether the specification is supported by formal methods and mathematical founda-

tions or not,

• Completeness, whether the specification deals with whole systems or only parts,

• Definitiveness, whether the specification is descriptive, i.e. leaving room for interpretation, or

“definitive”.

In this dissertation, we seek to combine formal and informal models and we deduce that completeness

is not always desirable in chapter V, since excessive precision hinders formal analyses. Our practice

of IT infrastructure modeling leads us to argue that that we should not always establish definitive

models and rather leave room for the unknown, which we discuss in chapter VII. We further refine this

categorization of models in section V.2. As the formal dimension of models often makes it possible to

take advantage of verification tools [Vallespir18], this is what we explore in the rest of this section.

II.2.2 Model checking

Formal models can describe possible system behavior in an unambiguous, mathematical way. Model

checking [Clarke09; Agha18] formally guarantees that a specification (often expressed in temporal logic)

is actually satisfied by the designed system. The tool that performs model checking is called a model

checker. It examines (traditionally all) system states and checks whether or not they satisfy specified

properties. If a state violates a property, the model checker can provide a counter-example, i.e. a trace

from an initial state to the error state. Figure II.4 represents the process, as described by [Baier08].

Model checking is implemented in numerous tools, among which we can cite SPIN [Holzmann97],

OBP [Dhaussy12] and UPPAAL [Larsen97], the latter of which we use extensively in sections V.2 and V.3.

In our work, we have also been particularly interested in SMT solvers [Monniaux16], able to check

the satisfiability of first-order logic formulae, and have exploited Z3 [deMoura08] in section VI.3. Over

2
The standard talks about specifications, but the concepts can be extended to models.

16

II. STATE OF THE ART Modeling and checking infrastructures

requirements

Formalizing

property
specification

system

Modeling

system model

Model checking

satisfied violated +
counterexample Simulation location error

Figure II.4:Model checking process, according to [Baier08]

time, the tools have greatly improved, enabling them to be used on larger scales and even in corporate

contexts. For example, Amazon Web Services engineers have been defining formal specifications for

their complex mission-critical systems since 2011 [Newcombe14]. The adoption of formal methods in

business is nevertheless not the norm [Lecomte17], and we seek in this dissertation to open up avenues

for simplifying entry into the field. We also try to minimize the semantic gap between reality, formal

methods and formal properties to be checked, by discussing automation strategies for modeling and

expressing such properties in section V.4.

The world of verification is however not limited to formal models, with techniques such as property-

based testing [Hughes10] and even formal source code verification [Kirchner15; Leroy09]. Such tech-

niques, which can directly adapt to the workflows of practitioners, can provide the automation strategies

we want to advocate. [Caracciolo15] notes however that most stakeholders adopt non-automated

techniques or avoid testing completely, because of:

• Fragmented tool support: most tools are highly specialized and can only handle specific architec-

tural constraints;

• Tool incompatibility: tools operate according to their own technical and theoretical assumptions

and lack a common specification;

• Steep learning curve: many tools require a considerable amount of time to be properly used

Caracciolo proposes in this article to formally verify informal models with his rule specification language,

Dictō, but we have found the approach to be too low-level for most practitioners. The hindsight we

have now on UEML [Vernadat20] leads us to believe that a tool that seeks unification at all costs risks

meeting ultimately the same fate.

17

IT Infrastructures dynamics II. STATE OF THE ART

II.2.3 Our position

Within a company, every employee produces models, whether voluntarily or not, notably by representing

systems or using technical software. It seems unreasonable to reduce the modeling effort to a few

architects or modeling experts when the company’s fields of study are so diverse and numerous. We

argue that this diversity of models should be brought together to provide a more complete overall picture

of a company and its infrastructure, enabling more comprehensive studies to be carried out across

several business domains. Model verification remains a discipline that is quite closed to non-experts; we

think however that the richness of business models can benefit formal studies. In our work, we promote

a wider use of formal methods and model checking by facilitating their interoperability with technical

models. However, formal models are often static, checked once before a system is deployed on a concrete

infrastructure. In dynamic systems that require monitoring during their lifetime, this approach is not

always appropriate and this is the subject of the last section of this chapter.

IT Infrastructures dynamicsIT Infrastructures dynamicsIT Infrastructures dynamicsIT Infrastructures dynamicsIT Infrastructures dynamicsIT Infrastructures dynamicsIT Infrastructures dynamicsIT Infrastructures dynamicsIT Infrastructures dynamicsIT Infrastructures dynamicsIT Infrastructures dynamicsIT Infrastructures dynamicsII.3 IT Infrastructures dynamics

The presence of IT systems in critical infrastructure has grown steadily over the past few decades [Mer-

abti11]. This growth has led to unprecedented opportunities across numerous business sectors, but it

has also brought its own share of risks. Complex virtualized infrastructures are now commonplace, with

frequent topological changes making system interactions increasingly difficult to study [Neville22] and

risk assessment more challenging [Lv18]. In this section, we study the life cycle of such infrastructures,

then focus on their deployment, to finally study how they are monitored. This aspect of our state of the

art supports the third issue of our problem statement concerning the evolution of infrastructures.

II.3.1 Infrastructure life cycle

If we set aside the issues surrounding their decommissioning, IT infrastructures follow a continuous

cycle during their lifetime. The literature displays a number of so-called life cycles, some of which being

described in detail in [Ruparelia10], but their main steps remain essentially similar. For software infras-

tructures, we traditionally identify six stages of this life cycle, which we can extend to IT infrastructures

in general:

1. Requirements definition, to understand and document the needs and expectations of stakeholders

and define what the system shall do;

2. System design, where diagrams, design documents, data models, and interface prototypes are

produced;

3. Development, where the actual coding and implementation take place;

4. Testing, to check for correctness and validate the system;

5. Deployment, where the system is installed, configured and put into service;

6. Review and maintenance, to evaluate the system’s operation and performance and gather feedback.

These steps, also known as the development life cycle, are depicted in figure II.5. Section II.1 deals with

the requirements definition stage and section II.2 is focused on stages 2 to 4. In this section, we are

particularly interested in the last two stages, which are examined in detail in chapter VI. Along this

dissertation, we focus on each step of the process, in which we discuss the potential for risk analysis.

18

II. STATE OF THE ART IT Infrastructures dynamics

1
Requirements

2
Design

3
Development

4
Testing

5
Deployment

6
Review

Figure II.5: Development life cycle

II.3.2 Deployment

After testing infrastructures comes their deployment. This step involves installing and configuring

applications on systems that can host them. This process is time-consuming and error-prone, as it

sometimes involves the proper orchestration of dozens of components. [Xu15] identifies the following

issues with system configuration:

• Complexity: systems sometimes expose many configuration parameters, with non-trivial con-

straints and dependencies;

• Invisibility: without access to a system’s implementation, it is sometimes impossible to understand

the undocumented effects of configuration parameters;

• Dynamics: the configuration of systems may change over time (we explore this in more detail in

section II.3.3)

• Bad design and implementation: little guidance on making configuration decisions are given to

users and error messages can sometimes be unclear.

To automate the process, a number of tools and techniques are now available, from configuration

management to Infrastructure as Code (IaC) [Kumara21]. These approaches are however not exempt

from the issues mentioned above, and rather shift them from application configuration to infrastructure

configuration. In particular, IaC code smells have been explored in detail in the literature [Rahman21;

Schwarz18; Sharma16].

Configuration management systems (usually) adopt an imperative, step-by-step strategy to configure

systems. Tools such as Ansible [Hochstein17] and Chef [Pandya22] allow to specify sequences of

configuration steps to deploy and configure existing systems (mutable infrastructure). On the other

hand, IaC approaches tend to follow more descriptive models. In tools like Terraform [Brikman19] and

Pulumi [Campbell20], we describe the resources to be deployed and configured and a specialized agent

automates deployment and configuration of new systems (immutable infrastructure).

19

IT Infrastructures dynamics II. STATE OF THE ART

These methods enable:

• Infrastructure reproducibility [Vaillancourt20], guaranteeing the validity of initial conditions for

each deployment;

• Infrastructure versioning [Opdebeeck20], allowing better assignment of responsibilities and error

identification.

The formalization of infrastructures using these approaches enables the use of more advanced

verification tools than in traditional infrastructures. In the scientific community, these concepts have been

further explored and formal deployment models such as Aeolus [DiCosmo14] or Madeus [Chardet18]

have been developed to efficiently deploy software infrastructures and their dependencies. They are

relevant approaches towards the automation of large-scale infrastructure deployment.

II.3.3 Monitoring

Ensuring infrastructure properties at a specific moment increases confidence in systems, but the rapid

and frequent evolution of virtualized infrastructures raises questions about the long-term validity of

these properties. Indeed, in such infrastructures, components and their dependencies move from a

server to another and are frequently (and sometimes automatically) updated. Without going into the

well-known complexity of managing dependencies [Burns16], adverse effects such as software aging,

where safety invariants on memory are violated during the execution of a program over a long period

of time, are described in the literature [Li02; Grottke08; Pietrantuono20].

Complex infrastructures therefore require continuous system checks during their execution: moni-

toring. The traditional way to monitor infrastructures, which is still the most commonly used nowadays,

is for external observers to collect facts on these systems and compare them to predefined thresholds.

Monitoring solutions are very varied, and the comparative literature on the subject is extensive [Grati15;

daCunhaR16]. Approaches such as cloud orchestration or SDN enable automatic generation of checks

from infrastructure descriptions. In these fields, research in change management has explored methods

for analyzing security policy violations linked to configuration changes (called configuration drift). Sys-

tems like Weatherman [Bleikertz15] can monitor runtime changes in cloud infrastructures using graph

transformations and verify properties on infrastructures using graph matching. In the realm of SDN,

systems such as VeriFlow [Khurshid13] can check invariants on large-scale live network infrastructures.

Both systems suffer however from two main drawbacks which are common for real-time verification in

the literature:

• They require a common model on which checks are performed (graph structures, network data

plane internal representations);

• They require modifications to the runtime systems to capture events.

The approach we defend in chapter VI is quite different from these, since we use a pivot language in

which requirements, static models and dynamic observations of systems are represented, to delegate the

verification of properties to external solvers.

Finally, a more recent approach, chaos engineering [Netflix10], consists in injecting faults into

production systems and measuring their impact in real-life situations, which software testing does not

allow. In the case of Netflix, this is implemented as a controlled environment testing, where 50 % of

20

II. STATE OF THE ART Conclusion

clients go into an instrumented sane environment and the 50 % others go into an instrumented faulty

environment to measure deviations [Jones17]. This approach is what actually inspired this doctoral

project, but as do configurations in IT infrastructures, we can say that the idea drifted.

II.3.4 Our position

Formal verification of infrastructure properties is important to guarantee safety and security. However,

there can be significant differences between models and real infrastructures. These differences may arise

during the configuration and deployment of systems due to mismatches between the requirements and

their implementation; they may also appear as a result of a drift since their deployment. We advocate an

approach that moves away from the simple configuration-oriented description of systems, based on

a formal description of requirements and its translation into configuration. In particular, we consider

infrastructure monitoring as a special case of model checking and regard the generation of system

checks as an artifact of the compilation of IaC models.

ConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusionII.4 Conclusion

The state of the art that we have presented in this chapter, which we specialize throughout this disserta-

tion, enables us to position our work with regard to the problem statement set out in the introduction.

First, a good risk management of infrastructures is necessary to guarantee their proper operation and

compliance with requirements. The literature mainly describes manual risk management processes,

which are however not in phase with the automation principles of modern infrastructures. Then, risk

management requires a better understanding of infrastructures, which we think can only happen through

modeling and formal, automated verification of safety and security properties. However, the barrier

to entry for formal methods can be high in areas where technical models are the norm. Finally, infras-

tructures and the requirements imposed on them evolve, and safety and security properties need to be

maintained over time. However, there is no formalised approach combining requirements, configuration

and real-time verification for studying IT infrastructures in the broad sense.

21

III
Chapter III

Reader’s Guide

Contents

III.1 Approach . 23

III.2 Progress . 24

III.3 Big picture . 24

Our research is conducted in an industrial banking context. In this sector, institutions are subject

to a number of requirements, laid down by national, transgovernmental and sector-specific directives.

These environments are critical to our daily lives, hosting sensitive customer data, whose safety and

security must be ensured to preserve the integrity of the global system. In this context, our work focuses

on risk as a whole.

ApproachApproachApproachApproachApproachApproachApproachApproachApproachApproachApproachApproachIII.1 Approach

Risk is a subject of study that spans across several scientific communities, and that can be approached

in a multitude of ways. We can look at risk from the bottom up, studying technical infrastructures and

working our way up to a more global vision. We can also consider it as something very high-level,

organizational, which we decline downwards when we build infrastructures. It is under these different

visions that we approach this dissertation, whose ideas have developed organically by attempting to

link them around the concept of infrastructure modeling.

Our project aims to take a more proactive approach to incidentology, in order to better assess risk

and predict sensitive events. Through our exploration of risk, we have involved ourselves in three

scientific communities, in which our work contributes. These communities are:

C1. The risk management community, which focuses on the organizational and technical aspects of

risk analysis and remediation;

C2. The formal methods community, which opens the door to more mathematical and theoretical

tools for our approach to risk management and safety and security properties on infrastructures;

C3. The enterprise modeling community, which considers the enterprise as a whole, both in terms of

infrastructure and of its stakeholders and their responsibilities, without which it could not exist.

Our work aims to bring together and build bridges between these communities. This approach makes

sense in the context of our enterprise (C3), subject to numerous regulations (C1) and in which we are

determined to implement a rigorous approach (C2) to risk. To this end, we have placed ourselves along

the entire risk management process, exploring it broadly through the prism of the three communities.

23

Progress III. READER’S GUIDE

ProgressProgressProgressProgressProgressProgressProgressProgressProgressProgressProgressProgressIII.2 Progress

In chapter IV, we begin our exploration by focusing on the risk management community, which we

seek to bring to the frontier of formal methods. We first introduce the risk management process that we

follow throughout our dissertation, and set out to provide a more formal vision of it. We propose to

refine the first steps of this process, with the ultimate goal of this dissertation being its complete and

comprehensive exploration throughout the other chapters.

In chapter V, we continue to refine this process by bringing modeling and verification from the

formal methods world to risk management. We present a case study of a modest IT infrastructure

and integrate our formal elements, while demonstrating the limits of formal methods applied to IT

infrastructures.

Chapter VI seeks to strengthen the bridge between the first two communities we have built so far. It

focuses on the links between safety and security requirements, infrastructure configuration and deploy-

ment, and infrastructure execution, using formal methods. To this end, we present a modeling language,

CL/I, that connects infrastructure models and component configuration, while using verification tools

to determine conformance criteria for these requirements.

Finally, chapter VII focuses on the corporate aspects studied by the third scientific community,

detailing how the approach presented in our dissertation can be integrated into such a context. This

integration defends the federation of knowledge and models, valued by the formal community, while

taking a step back from the risk management process as a whole.

Big pictureBig pictureBig pictureBig pictureBig pictureBig pictureBig pictureBig pictureBig pictureBig pictureBig pictureBig pictureIII.3 Big picture

Figure III.1 illustrates the contributions of each chapter to the three communities. The curious reader

may wish to consult figure VIII.1 in the course of reading this dissertation, to better appreciate where

each chapter fits into the overall risk management process. We also recall our position in this big picture

through brief diagrams at the heading of each chapter developing our thesis.

Risk management Formal methods

Enterprise modeling

IV V

VI

VII

Figure III.1: Contributions of this dissertation to each scientific community

Legend. x Developed in chapter x, Bridge to, Bridge between

24

IV
Chapter IV

Managing Risk in IT Infrastructures

Risk management Formal methods

Enterprise modeling

You are here “
Laura Roslin — In this situation, you’re putting

your pilots at risk and you’re exposing the entire

fleet to possible attack every moment we stay here.

We’ve been at risk of an attack since day one. The

Cylons won’t be missing their patrol for at least

one more day. — William Adama

Laura Roslin — Colonel Tigh, how much aviation

fuel has been expended in this operation?

Forty-three percent of reserves. — Saul Tigh

Laura Roslin — Almost half. That’s unacceptable.

Battlestar Galactica – You Can’t Go Home Again”
Contents

IV.1 The risk cycle . 27

IV.1.1 Formalism . 27

IV.1.2 Properties . 29

IV.1.3 Iteration . 30

IV.1.4 Change . 31

IV.1.5 Approach . 33

IV.2 Risk classification . 33

IV.2.1 Taxonomy efforts . 33

IV.2.2 The case of MITRE . 37

IV.2.3 An ontology over MITRE . 38

IV.3 Risk analysis frameworks . 44

IV.3.1 Traditional frameworks . 44

IV.3.2 Modern initiatives and IT infrastructures . 46

IV.4 Risk assessment and tolerance criteria . 47

IV.4.1 Analyzing parts . 47

IV.4.2 Analyzing systems . 48

IV.4.3 Closing the loop . 49

IV.5 Sharing analyses . 51

IV.5.1 Building open analyses . 52

IV.5.2 Composing analyses . 52

IV.6 Conclusion . 52

25

IV. MANAGING RISK IN IT INFRASTRUCTURES

Risk assessment

Establishing the context

Risk identification

Risk analysis

Risk evaluation

Risk treatment

Review

Figure IV.1: ISO 31000 iterative process

IT infrastructures, due to their pervasive nature in today’s world, are subject to numerous regulatory

standards and guidelines emanating from various entities across the globe. These entities, ranging

from national agencies to international organizations and industry-specific bodies, define the areas of

acceptability for IT infrastructure operations, and thus shape the practice of risk analysis.

When thinking about risk in IT infrastructures, the first thing that often comes to mind is the cyber

threat, such as malware intrusions, distributed denial-of-service attacks or data breaches. However, the

typology of risk is much wider, taking into account, in addition to cyber threats, security in the broader

sense within datacenters (armed attacks, sabotage...), as well as functional safety of infrastructures

(resilience, availability...), financial or even environmental risks. The practice of risk assessment shows

that an in-depth analysis of infrastructures must carefully take account of this multidimensionality,

without overlooking their operating environment.

The [ISO 31000] (Risk management – Guidelines) standard defines the risk management discipline as

a five-step process:

1. Establishing the context

2. Risk identification

3. Risk analysis

4. Risk evaluation

5. Risk treatment

The first step defines the context of the study: what parts of the infrastructure are considered and

when, where the system is, who is involved, and why and how the study is being done. The next three

steps are called the “risk assessment” by the standard. The first one consists in identifying risks and their

causes and impacts. Then, a qualitative and quantitative risk analysis is carried out to assess likelihoods,

confidence levels and magnitude of consequences. The evaluation step compares the results and leads

to decisions on the infrastructure. Finally, the risk treatment phase addresses risks by modifying or

eliminating what led to it, attempting to reduce risk likelihoods and mitigating the consequences. The

whole process is iterative, as depicted in figure IV.1

26

IV. MANAGING RISK IN IT INFRASTRUCTURES The risk cycle

Risk Requirement

ConstraintInfrastructure

◁ should cover

leads to ▷

∗∗

△

translates intomeets △

∗
should follow ▷ ∗

is subject to △

∗

∗

◁ modifies

∗

Risk cycle

Figure IV.2: The risk cycle

In this chapter, we begin by introducing risk management in section IV.1 through a formalism that we

further develop over the course of this dissertation. We then outline different ways of classifying risk in

order to process it in a systematic way and propose an ontology adapted to our study in section IV.2. After

that, we look at how different risk analysis frameworks can be specifically adapted to IT infrastructures

and the challenges related to modern cloud infrastructures in section IV.3. We then provide guidelines

for risk analyses and discuss risk tolerance in section IV.4. Next, we consider the possibility of sharing

risk analyses using a common exchange format in section IV.5. Finally, we conclude this chapter in

section IV.6.

The risk cycleThe risk cycleThe risk cycleThe risk cycleThe risk cycleThe risk cycleThe risk cycleThe risk cycleThe risk cycleThe risk cycleThe risk cycleThe risk cycleIV.1 The risk cycle

Risk can manifest in many ways in IT infrastructures, whether in the technologies used, in the decision-

making processes or in the people who interact with them. To ensure proper risk coverage, regulators

and companies themselves impose a number of requirements that must be met. These requirements are

translated into infrastructure constraints which can have an impact, positive or negative, on the risk.

The risk remaining after an iteration of constraints, which frameworks such as [EBIOS-RM] call the

residual risk is then evaluated and gives rise to new requirements, depending on whether it is deemed

unacceptable. This is what we call the risk cycle (represented on figure IV.2).

This risk cycle is a central element of our work, that we further develop and refine throughout this

dissertation. To introduce the concepts we discuss here and in the following chapters, we propose first

to present our formalization of the process, and take the opportunity to prove a few of its properties.

IV.1.1 Formalism

Let I be the set of all infrastructures andR the set of risks. Risk assessment can be seen as a mapping

between an infrastructure and the various risks to which it is exposed. We represent it as a function

assess : I → P (R). For example, a datacenter built in a seismically active area is subject to seismic

risk, which can be broken down into a risk for the integrity of buildings or for the proper operation of

hardware components, among others.

27

The risk cycle IV. MANAGING RISK IN IT INFRASTRUCTURES

I

R (risks)

filter

R (requirements) C (constraints) I (infrastructures)

require constraint reifyassess

Initial
infrastructure

• Seismic risk
• Supply chain
disruption

• Eurocode 8
• GR-63-CORE

• Use dissipative
building structures

• Use seismic-certified
server rack cabinets

Constructible
infrastructures

Figure IV.3: Risk management process: assessing risk, filtering what is out of scope/below tolerance

criteria, translating risk into requirements, then constraints, and reifying the infrastructure.

Some of these risks may be deemed acceptable by a company, according to several criteria. We

represent this “filtering” of risk as a function filter : P (R)→ P (R) that takes a set of identified risks

and gives a subset of unacceptable risks. For example, if a company keeps a large stock of equipment or

has properly diversified its sources of supply, it can cope with the risks of supply chain disruption, and

thus exclude it from its analysis.

Let us define R the set of requirements that apply on infrastructures. Given an infrastructure i, a
number of requirements, both external and internal to a company, must be met. We can represent the

listing of such requirements as a function requirei : P (R)→ P (R) that maps a set of risks on i into a

set of requirements to implement for i. In our example of seismic risk, standards such as [Eurocode 8]

(Design of structures for earthquake resistance) provide a set of requirements for the construction of

seismically-rated buildings. Additionally, section 4.4 (Earthquake, Office Vibration, and Transportation

Vibration) of [GR-63-CORE] (NEBS Requirements: Physical Protection) gives generic requirements for

network equipment in seismic environments.

Once these requirements are identified, we need to implement them in our infrastructure. We

define C the set of so-called infrastructure constraints. Requirements are implemented as infrastructure

constraints through a function constrainti : P (R)→ P (C) that maps a set of requirements to a set of

possible constraints on i. For example, constraints associated to seismic requirements can range from

the choice of equipment to the way buildings are constructed to the layout of equipment in each room.

These constraints need to be reified into a concrete infrastructure. We define I ⊂ I ×P (C) the
set of infrastructures constructible under constraints. This definition considers that not all constrained

infrastructures are necessarily constructible, particularly in the case of a contradiction between two

constraints. Given C ⊂ C a set of prior constraints and C′ ⊂ C a set of additional constraints, we

define the function reifyC : P (C) → P (I) that maps a set of constraints into a set of constructible

infrastructures, such that reifyC (C′) = {(i, C′′) ∈ I | C′′ ⊃ C ∪ C′}. Intuitively, this function gives

the set of constructible infrastructures that respect at least both the prior constraints C and the new

constraints C′ we are seeking to implement.

We illustrate the process with our running example in figure IV.3.

28

IV. MANAGING RISK IN IT INFRASTRUCTURES The risk cycle

reify∅ (∅)
reify∅ (C)

reify∅ (C ∩ C′)
= reifyC (C′)
= reifyC′ (C)reify∅ (C′)

C

C′C ∩ C′C′

C

Figure IV.4: Graphical illustration of the reify function

IV.1.2 Properties

From the definition of the reify function, we can deduce a number of properties that illustrate the use of

our formalism. The first two lemmas, directly derived from the definition of reify, highlight the iterative

aspect of risk management. Figure IV.4 illustrates both lemmas. The last lemma is only used as a proof aid

for the next subsection. It proves the trivial intuition that looking for an infrastructure that implements

two sets of constraints is equivalent to looking among the infrastructures that implement the first set

for those that implement the second.

Lemma 1 (Initial freedom). reify∅ (∅) = I (reifying an unconstrained infrastructure can result in any

constructible infrastructure).

Lemma 2 (Connectivity). reifyC (C′) = reify∅ (C ∪ C′) (infrastructures can be constrained successively

or at once).

Lemma 3 (Separation). reifyC (C′) = reify∅ (C) ∩ reify∅ (C′) (this lemma is only used as a proof aid).

Proof.

reifyC
(
C′
)
=
{(

i, C′′
)
∈ I | C′′ ⊃ C ∪ C′

}
(definition)

=
{(

i, C′′
)
∈ I | C′′ ⊃ C ∧ C′′ ⊃ C′

}
=
{(

i, C′′
)
∈ I | C′′ ⊃ C

}
∩
{(

i, C′′
)
∈ I | C′′ ⊃ C′

}
= reify∅ (C) ∩ reify∅

(
C′
)

(definition)

The following proposition reflects the fact that adding constraints to an infrastructure reduces the

choices available for reifying it.

Proposition 4 (Antitony). C ⊃ C′ ⇒ reify∅ (C) ⊂ reify∅ (C′) (more constraints on an infrastructure

lead to fewer choices).

29

The risk cycle IV. MANAGING RISK IN IT INFRASTRUCTURES

Proof.

C ⊃ C′ ⇔ C = C′ ∪
(
C \ C′

)
⇔ reify∅ (C) = reify∅

(
C′ ∪

(
C \ C′

))
⇔ reify∅ (C) = reify∅

(
C′
)
∩ reify∅

(
C \ C′

)
(lemmas 2 and 3)

⇒ reify∅ (C) ⊂ reify∅
(
C′
)

IV.1.3 Iteration

Risk analysis is an iterative process that can require several refinement steps to reach the desired goals.

We have shown in figure IV.3 (page 28) a simple iteration of the process, from an initial infrastructure to

a set of final infrastructures. Adding constraints to an infrastructure may introduce additional risks,

requiring a new iteration of the process to remedy the situation. For example, if we consider a small

infrastructure for sending and receiving e-mails in a company, we can identify the risk for employees

to suffer from phishing attacks. One remediation solution may be to install filtering software on the

infrastructure. However, this introduces the risk of employees no longer receiving legitimate, business-

critical e-mail. A second iteration of the process becomes necessary to handle this new risk.

We assume here that the risk management process only adds risks, requirements and constraints at

each iteration, without any removal. Although this approximation may not hold over the lifetime of

major risk management projects, it remains true locally. We define the function iter to capture a single

step of this process as such:

iter : P (I)→ P (I)

S 7→
⋃

(i,C)∈S

reifyC ◦ constrainti ◦ requirei ◦ filter ◦ assess (i)

Although the risk management process is widely used in corporate environments, its recursive

nature leaves us no guarantee of termination. This is the purpose of this subsection. To our knowledge,

such a formalization aimed at proving the termination of the process is novel. First, we introduce a brief

linearity lemma derived from the definition of iter to help us with our final proof.

Lemma 5 (Linearity). iter (S ∪ S′) = iter (S) ∪ iter (S′)

Proposition 6 (Limit). iter∞
def
= limn→+∞ itern exists and is finite (the risk cycle eventually converges).

Proof. In this proof, variables in blue denote metavariables local to each term of unions. Before getting

to the heart of the proof, it is useful to prove the following goal. Intuitively, it means that a process

iteration in which no constraint is added does nothing.

iter (reify∅ (C)) =
⋃

(i,C′)∈reify∅(C)

reifyC′
(
C′′i
)

(C′′i not developed for clarity)

=
⋃

(i,C′)∈reify∅(C)

reify∅
(
C′
)
∩ reify∅

(
C′′i
)

(lemma 3)

30

IV. MANAGING RISK IN IT INFRASTRUCTURES The risk cycle

⊂
⋃

(·,C′)∈reify∅(C)

reify∅
(
C′
)

⊂
⋃

(·,C′)∈reify∅(C)

reify∅ (C) (definition, proposition 4)

⊂ reify∅ (C) 1

iter2 (S) = iter (iter (S))

= iter

 ⋃
(i,C)∈S

reifyC
(
C′i
) (C′i not developed for clarity)

=
⋃

(i,C)∈S

iter
(
reifyC

(
C′i
))

(lemma 5)

=
⋃

(i,C)∈S

iter
(
reify∅

(
C ∪ C′i

))
(lemma 2)

⊂
⋃

(i,C)∈S

reify∅
(
C ∪ C′i

)
(goal 1)

⊂
⋃

(i,C)∈S

reifyC
(
C′i
)

(lemma 2)

⊂ iter (S)

∀S ⊂ I , ∀n ≥ 1, itern+1 (S) = iter2 ◦ itern−1 (S)

⊂ iter ◦ itern−1 (S)

⊂ itern (S)

Thus, limn→+∞ itern exists and is finite.

The convergence of the process comes as good news, but we should not celebrate too quickly. We

do not want to find ourselves in a situation where the process converges on ∅, which would mean that

no infrastructure can be built. Care must then be taken when defining the functions applied at each

iteration, notably the filter function. If too many risks are filtered, more options become available for

building infrastructures, at the cost of increased sensitivity to risk. If, on the other hand, too many risks

are preserved, the chances of the infrastructure not being constructible (iter∞ (S) = ∅) increase. Our

work does not offer a solution to this dilemma, which we see as something only an expert analyst can

resolve.

IV.1.4 Change

Once the risk management process has given us a number of candidate infrastructures to implement,

we need to choose one. Our formalism does not propose a way of making this decision. This choice

is very often made by a strategy of cost minimization, defined by the company. These costs may be

financial (if we wish to reduce equipment purchases), temporal (if we wish to reduce the amount of

31

The risk cycle IV. MANAGING RISK IN IT INFRASTRUCTURES

R

filter
R

require

C

constraint

I

I

assess

reify

I′

I′′

δI (I′)

δI (I′′) iter

Figure IV.5: Risk management cycle

Missing Critical Step
in Authentication

Improper Following of
Specification by Caller

Improper Adherence
to Coding Standards

Incorrect Implementation
of Authentication Algorithm

Weak Authentication

Improper Authentication

Improper Access Control

Figure IV.6: Hierarchy of the “Missing Critical Step in Authentication” CWE weakness. The arrows

read as child of or is a (a Weak Authentication is an Improper Authentication).

32

https://cwe.mitre.org/data/definitions/304.html
https://cwe.mitre.org/data/definitions/304.html
https://cwe.mitre.org/data/definitions/573.html
https://cwe.mitre.org/data/definitions/573.html
https://cwe.mitre.org/data/definitions/710.html
https://cwe.mitre.org/data/definitions/710.html
https://cwe.mitre.org/data/definitions/303.html
https://cwe.mitre.org/data/definitions/303.html
https://cwe.mitre.org/data/definitions/1390.html
https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/284.html
https://cwe.mitre.org/data/definitions/304.html
https://cwe.mitre.org/data/definitions/1390.html
https://cwe.mitre.org/data/definitions/287.html

IV. MANAGING RISK IN IT INFRASTRUCTURES Risk classification

human time spent), or ecological (if we wish to minimize the carbon footprint of the change) for example.

For two constrained infrastructures I = (i, C) , I′ = (i′, C′) ∈ I , let us denote δI (I′) the changes
needed to move from I to I′. The cost of such change can be seen as a function cost. To complete our

formalism, we can consider that the optimal choice of infrastructure, given by the minimization of this

cost, is argminreifyC(C′)
(cost ◦ δI) (where argminS f = {x ∈ S | f (x) ≤ f (x′) ∀x′ ∈ S} is intuitively

the infrastructure for which the cost of change is minimal).

We explore the notion of change in further details in section VI.1.2.

IV.1.5 Approach

Figure IV.5 summarizes this formalization. In this chapter, we focus on the workflow related to the

functions assess, filter and require.

Risk classificationRisk classificationRisk classificationRisk classificationRisk classificationRisk classificationRisk classificationRisk classificationRisk classificationRisk classificationRisk classificationRisk classificationIV.2 Risk classification

IT risk is a very broad field, with a wide variety of causes, various types of consequences and many

possible courses of action. In this context, risk classification can play a multi-faceted role. First and

foremost, it aids in correctly communicating about issues: a proper classification can provide experts,

managers and clients with information that they can more easily interpret and process. By understanding

the nature and type of a risk, stakeholders can discern its potential impacts and the appropriate mitigation

strategies. Multi-level taxonomies can serve as a foundation for communication between employees

working in different domains, with different concepts and abstractions, within a company. Figure IV.6

gives an example of a hierarchical typology as seen in MITRE’s CWE.

This foundation can be leveraged to help assessing the risk, filtering the acceptable risk and giving

guidelines on safety and security requirements. For instance, if a tool is aware of a particular class of

application-layer vulnerabilities, it can be programmed to scan for patterns associated with that class,

thereby improving its effectiveness. If categories of risk are considered to have little impact by domain

experts, they can be ignored. Finally, a good risk classification can lead to the definition of quality

standards and best practices to be respected for addressing each risk.

IV.2.1 Taxonomy efforts

Several collective initiatives have emerged over time to classify risk. Here, we delve into four of them,

which are distinguished both by their nature and by the spectrum they cover.

TheOpenWeb Application Security Project (OWASP) is a global non-profit that works towards enhanc-

ing the security of software applications. The Application Security Verification Standard ([OWASP ASVS])

serves as a robust framework ensuring software applications are built with security embedded from

the foundation. Through a categorized set of implementation guidelines, it offers developers with a

solid baseline to create secure-by-design applications. Being a catalog of low-level guidelines, it is

inherently opinionated and may require adjustments. In figure IV.7, we show OWASP ASVS guidelines

for authentication systems.

The National Institute of Standards and Technology (NIST) is instrumental in setting standards in

various fields, including cybersecurity. Their Security and Privacy Controls for Federal Information Systems

and Organizations ([NIST SP 800-53]) is a notable framework that offers an organized collection of

33

Risk classification IV. MANAGING RISK IN IT INFRASTRUCTURES

V1.2 Authentication Architecture
When designing authentication, it doesn't matter if you have strong hardware enabled multi -factor
authentication if an attacker can reset an account by calling a call center and answering commonly known
questions. When proving identity, all authentication pathways must have the same strength.

Description L1 L2 L3 CWE

1.2.1 Verify the use of unique or special low-privilege operating system accounts for
all application components, services, and servers. (C3)

 ✓ ✓ 250

1.2.2 Verify that communications between application components, including APIs,
middleware and data layers, are authenticated. Components should have the
least necessary privileges needed. (C3)

 ✓ ✓ 306

1.2.3 Verify that the application uses a single vetted authentication mechanism that
is known to be secure, can be extended to include strong authentication, and
has sufficient logging and monitoring to detect account abuse or breaches.

 ✓ ✓ 306

1.2.4 Verify that all authentication pathways and identity management APIs
implement consistent authentication security control strength, such that
there are no weaker alternatives per the risk of the application.

 ✓ ✓ 306

Figure IV.7: “Authentication Architecture”, OWASP Application Security Verification Standard 4.0.3,

page 18, license CC-BY-SA 4.0

AC-11 DEVICE LOCK

Control:

a. Prevent further access to the system by [Selection (one or more): initiating a device lock after
[Assignment: organization-defined time period] of inactivity; requiring the user to initiate a
device lock before leaving the system unattended]; and

b. Retain the device lock until the user reestablishes access using established identification and
authentication procedures.

Discussion: Device locks are temporary actions taken to prevent logical access to organizational
systems when users stop work and move away from the immediate vicinity of those systems but
do not want to log out because of the temporary nature of their absences. Device locks can be
implemented at the operating system level or at the application level. A proximity lock may be
used to initiate the device lock (e.g., via a Bluetooth-enabled device or dongle). User-initiated
device locking is behavior or policy-based and, as such, requires users to take physical action to
initiate the device lock. Device locks are not an acceptable substitute for logging out of systems,
such as when organizations require users to log out at the end of workdays.

Related Controls: AC-2, AC-7, IA-11, PL-4.

Figure IV.8: “Device Lock”, NIST SP 800-53, Rev. 5, republished courtesy of the National Institute of

Standards and Technology

security and privacy controls, structured to address a large spectrum of cybersecurity requirements.

Both requirements and controls are supported by U.S. laws and directives, making the document a

reference for U.S. companies. Figure IV.8 shows the standard’s view on screen locking. While the ASVS

describes low-level concepts, the SP 800-53 is much more descriptive and open to interpretation.

The European Union Agency for Cybersecurity (ENISA) offers an established [Threat Taxonomy]
1
. It

gives a structured methodology to classify risks for IT systems, including safety risks (natural disasters,

data loss...) and physical considerations (hardwaremalfunction, outages...) in addition to software security

risks. Because it has not been updated since 2016, we think it may be unsuited for cybersecurity analyses,

as the domain evolves rapidly. However, the safety aspects, neglected in other generic frameworks are a

notable strength of the document. We have extracted some of the risks it identifies and show them in

figure IV.9.

1
There is a significant overlap between the notions of risks and threats and definitions may differ from one organization

to another. We consider ENISA’s threats as risks.

34

https://creativecommons.org/licenses/by-sa/4.0/

IV. MANAGING RISK IN IT INFRASTRUCTURES Risk classification

Figure IV.9: Excerpt from ENISA’s Threat Taxonomy, entries 44 to 61, republished courtesy of the

European Union Agency for Cybersecurity

35

Risk classification IV. MANAGING RISK IN IT INFRASTRUCTURES

Figure IV.10: SCAP Workbench performing checks recommended by [ANSSI DAT-NT-028] on a

Debian 10 system

Finally, a Security Technical Implementation Guide (STIG) is a set of configuration guidelines for

ensuring system security. Originally developed at the U.S. Defense Information Systems Agency, these

guidelines have also gradually been written by software publishers. The Security Content Automation

Protocol (SCAP), a method used to automate vulnerability management and policy compliance evaluation,

works hand in hand with STIGs. It facilitates the automated vulnerability checking, technical control

compliance activities, and security measurement, ensuring that the guidelines stipulated in STIGs are

adhered to. Tools such as SCAP Workbench, shown in figure IV.10 allow to perform analyses on servers.

This opening up to automation is a significant step forward, with large actors such as the US Department

of Defense or Red Hat sharing public compliance checklists
2
, and some security vendors integrating the

protocol into their proprietary solutions, such as [Tenable Nessus] and [Trellix ePO].

2
Available online (https://public.cyber.mil/stigs/)

36

https://public.cyber.mil/stigs/

IV. MANAGING RISK IN IT INFRASTRUCTURES Risk classification

The first three frameworks are text-based, backed by a number of external (and often also textual)

references. Their systematic use therefore requires human judgement to implement them in a given

infrastructure. For STIG and SCAP, the data can be used directly by a computer, but the field of action is

limited to system configuration.

IV.2.2 The case of MITRE

Given the limitations of the initiatives cited earlier, we have decided to focus on several projects

from the MITRE Corporation, namely [CAPEC], [CVE] and [CWE] as a base for our work. Thanks to

their maturity, popularity and structural properties, these projects provide a solid foundation for risk

classification, helping to assess and filter risk.

CAPEC (for Common Attack Pattern Enumeration and Classification) is a comprehensive dictionary

and classification taxonomy of known attacks that can be used to exploit applications. The main purpose

of CAPEC is to provide a standardized way of identifying, sharing, and documenting various attack

patterns that threat actors might use. By understanding the patterns and techniques used in different

attacks, developers, testers, and consumers can devise strategies to better protect their systems. For

example, CAPEC-25 (Forced Deadlock) describes an attack pattern in which an attacker manages to

cause a denial of service by exploiting a situation leading to a deadlock in a system.

CVE (for Common Vulnerabilities and Exposures) is a list of publicly known cybersecurity vulner-

abilities and exposures. Each entry in the CVE list contains an identification number, a description,

and at least one public reference. This system allows the security community to access and share data

about vulnerabilities effectively, facilitating better defense strategies and quicker responses to new

vulnerabilities. It is widely used by organizations to track and manage vulnerabilities in their systems.

For example, CVE-2009-1388 describes a vulnerability in the Linux kernel triggering a race condition,

eventually leading to a deadlock.

Finally, CWE (for Common Weakness Enumeration) is a community-driven list of common software

and hardware weakness types that have security ramifications. The main aim of CWE is to serve as a

common language for describing software security weaknesses, as a standard measurement for software

assurance tools and as a baseline for identification, mitigation, and prevention of weaknesses. For

example, CWE-833 (Deadlock) describes what a deadlock is and its relations to other weaknesses.

All three projects are tightly coupled: weaknesses in the CWE are the root causes for vulnerabilities

(in the CVE when known), exploitable by an attacker using CAPEC techniques. We illustrate the links

between our three previous examples in figure IV.11. In addition, they create a bridge to external

initiatives, by making numerous references to OWASP datasets and NIST publications for example.

Finally, many software applications use these projects, whose identifiers (CAPEC-XXX, CVE-XXX, CWE-XXX)

can then be used as a common vocabulary for thorough analyses.

CAPEC-25 CWE-833 CVE-2009-1388

has CWE ▷

◁ has CAPEC

has CVE ▷

◁ has CWE

Figure IV.11: Relationships between CAPEC-25, CVE-2009-1388 and CWE-833.

37

https://capec.mitre.org/data/definitions/25.html
https://nvd.nist.gov/vuln/detail/CVE-2009-1388
https://cwe.mitre.org/data/definitions/833.html
https://capec.mitre.org/data/definitions/25.html
https://cwe.mitre.org/data/definitions/833.html
https://nvd.nist.gov/vuln/detail/CVE-2009-1388
https://capec.mitre.org/data/definitions/25.html
https://nvd.nist.gov/vuln/detail/CVE-2009-1388
https://cwe.mitre.org/data/definitions/833.html

Risk classification IV. MANAGING RISK IN IT INFRASTRUCTURES

However, linking these three reference frameworks is a costly task. The contents from CAPEC and

CWE are formally specified using XML Schema Definitions, and the content from CVE is formally

specified using a JSON Schema
3
. Both formats allow for structured, expressive documents, while enabling

automated data processing. We claim, however, that the format used is not up to the high coupling of

the data and does not allow for complex reasoning. A question we might ask could be “what are the

vulnerabilities (before 2010) and attack patterns related to a deadlock, and what are the links between

these attack patterns and other weaknesses?”. This question cannot be answered easily using the original

XML/JSON representation and tools available, and the work we present in the following subsection

seeks to fill this gap.

IV.2.3 An ontology over MITRE

To reduce human intervention in the process of identifying risk in infrastructures, it is important to have

a solid basis of reasoning that facilitates its automation. To take advantage of the richness of the MITRE

projects and enable complex reasoning both between each project and between the tools exploiting

them, we have decided to develop an ontology based on the XML and JSON data available.

XML primer.

XML (eXtensible Markup Language) is a markup language for data representation. It comprises

elements with start and end tags, which can have nested elements and attributes. A 30-year-old John

Doe can be represented as such:

<person age="30">

<name>John Doe</name>

</person>

The structure of XML documents can be controlled by XML Schema Definitions (XSD). XSD

files, also written in XML, describe the structure of XML documents and allow for their validation,

ensuring their coherence. The following schema can fit our XML example:

<xs:element name="person">

<xs:complexType><!-- An element with tag ‘person‘ -->

<xs:element name="name" type="xs:string"/><!-- An element with tag ‘name‘ -->

<xs:attribute name="age" type="xs:integer"/><!-- An attribute with name ‘age‘ -->

</xs:complexType>

</xs:element>

The data tree of XML files can be explored with the XPath language. It provides a way to access

elements and attributes using so-called path expressions. For example, //person/name would

retrieve the name element John Doe and //person/@age would retrieve the age attribute 30 from

the previous document. The special path . designates the current node, and functions text() and

name() respectively get the current element’s textual representation and tag name.

3
An XML version of the CVE is also available, but we have found it to be lacking critical information. It is moreover

scheduled for deprecation in 2024.

38

IV. MANAGING RISK IN IT INFRASTRUCTURES Risk classification

Translator

Schema Parser

Data Ontology

Figure IV.12: Structure of mitre2owl. The schema is used by the translator to build a parser, which

can parse the data to build the ontology.

We have developped a tool, mitre2owl4, which translates CAPEC, CVE and CWE schemas and

data into ontologies. For each of these, the tool analyzes the schemas and creates specialized parsers to

translate the XML and JSON data into an OWL/XML ontology. The stucture of mitre2owl is shown on

figure IV.12.

Ontology primer.

An ontology is a formal representation of knowledge within a domain. It describes concepts, relation-

ships, and the rules that govern them, enabling the creation of a shared and common understanding

of a subject. OWL is W3C-endorsed standard for creating and defining ontologies of the form

<subject> <predicate> <object> , allowing for rich representation of knowledge using triples.

Turtle (for Terse RDF Triple Language) is one of the syntaxes to express an OWL ontology. In

Turtle, we could represent our 30-year-old John Doe as such (in the namespace ex representing our

example):

ex:John a ex:Person. # John is a person

ex:John ex:hasAge "30"^^xsd:integer. # John’s age is 30

ex:John ex:hasName "John Doe". # John’s name is John Doe

Ontologies can be queried using SPARQL (for SPARQL Protocol and RDF Query Language). To

fetch all the persons named John Doe, we would run:

select ?person where {

?person a ex:Person.

?person ex:hasName "John Doe".

}

The algorithm

Here we describe the main elements of the XML/XSD part of our algorithm (the JSON part is substan-

tially similar). The actual algorithm is more complex, as it handles data conversion, several semantic

adaptations to make the final structure better suited to an ontology, and adds reasoning rules. For

convenience, we suffix the words derived from “parse” with S and D to remove any ambiguity as to

whether we are parsing the schema (S) or the data (D).

4
Available publicly on Github (https://github.com/CAPRICA-Project/mitre2owl)

39

https://github.com/CAPRICA-Project/mitre2owl

Risk classification IV. MANAGING RISK IN IT INFRASTRUCTURES

Algorithm: Parser builder (Schema)

Data: xs:schema element

types← {};
elements← {};
foreach n ∈ /*/xs:complexType do

types[n]← ComplexType(n)
end

foreach n ∈ /*/xs:simpleType do

types[n]← SimpleType(n)
end

foreach /*/xs:element do

elements[@name]← Element(.)
end

Figure IV.13: xs:schema parserS. expression executes the XPath expression “expression” on the

XML node in scope. The default scope is the algorithm input, and if and foreach combinators locally

change the scope to the XML nodes matched by their respective XPath expressions.

Algorithm: Attribute.parse

Data: XML element

Result: <?> <has name() > types[type].parse(.) .

Algorithm: SimpleType.parse

Data: XML element

Result: < text() > a name() .

Figure IV.14: Algorithms for the attributes and simple types parsersD. The semantics for the

composition of results is presented in appendix A.2.

The first step of our algorithm is to load the XSD schema to parseS its contents. Schemas define

custom types and values that influence the way data is parsedD in XML files. These types are very varied,

notably describing the structure of a vulnerability or an attack, and the values can describe elements

such as an operating system or processor architecture. We first parseS types defined globally, so that

we know how to parseD our data when we encounter them. Then, we parseS the XSD’s elements to

learn the structure of the data. This is shown in figure IV.13. Appendix A.1.1 shows the other parsersS

that we use (to parse for example xs:complexTypes or xs:attributes). It is important to note that, to

simplify the implementation, our parsers are not complete with respect to XML schemas, but the subset

we are processing is complete with respect to the current MITRE datasets.

After this step, we have built several parsersD that we use to construct our ontology. When parsingD

elements from the XML data, we create so-called assertions of the following form (appendix A.1.2 shows

all the parsersD for the XML data):

• <subject> <has attribute name > < attribute value > for XML attributes (shown on figure IV.14

as Attribute.parse);

• <subject> a < type name > for typing XML elements (an example for xs:simpleTypes is

shown on figure IV.14 as SimpleType.parse);

• <subject> <has child name > < child identifier > for XML elements having children (same logic

as Attribute.parse).

40

IV. MANAGING RISK IN IT INFRASTRUCTURES Risk classification

CERT-FR

analyzes

CWE-xxx

CWE-xxx

CWE-xxx

CWE-xxx

CWE-xxx

sends
CVE-xxx

CVE-xxx

CVE-xxx

CVE-xxx

CVE-xxx

CVE-xxx

pushes

CVE CWE CAPEC

CVE-xxx

CVE-xxx

CVE-xxx

CVE-xxx

CVE-xxx

CWE-xxx

CWE-xxx

CWE-xxx

CAPEC-xxx

CAPEC-xxx

excludes

External tools Our ontologies Expert

Figure IV.15: Integration of our ontologies in an industrial process. SonarQube, GitLab and ANSSI

logos respectively © SonarSource SA, GitLab Inc. and Agence nationale de la sécurité des systèmes

d’information.

There have been a few attempts in the literature to formalize the MITRE datasets in the form of

an ontology. We can cite [Dimitrov23] in particular which describes an ontology for the CWE, but

these approaches are mainly ad hoc developments, and we have not found any set of interoperable

ontologies for the three MITRE datasets we are studying. In addition to filling a semantic gap, we

consider our approach to be more correct and complete, since we are building our ontologies directly

from the datasets, with limited ad hoc developments
5
. We have set up an automatic generation system

for mitre2owl ontologies based on Github actions; a daily update is publicly available on Github
6
.

Using the ontologies

We see our ontologies fitting into a more interactive and iterative risk assessment process. Naturally,

since the MITRE projects are mainly concerned with security issues, our ontologies are limited to these,

but we can imagine their extension to safety concerns. For future developments, we are considering

bringing together around our ontologies various software applications that rely on MITRE datasets,

such as the [SonarQube] and Astrée [Cousot05] code verifiers, to enable more advanced reasoning

between tools. We show in figure IV.15 an example of a workflow in which our ontologies can be used.

On the left-hand side of the figure, we represent external tools linked to MITRE identifiers that report

security alerts on a company’s systems. Our ontologies are placed in the middle of the figure, and an

operator can use an ontology exploration tool to unfold a risk assessment on infrastructures. Finally, on

the right-hand side is the verdict of acceptability for each risk, produced by a domain expert. When a

5
Ours are here mostly for cosmetic purposes and ease of use

6
Due to size limitations, the CVE ontology cannot be versioned on Github. The CAPEC ontology is available

on https://github.com/CAPRICA-Project/CAPEC.owx and the CWE ontology is available on https://github.com/
CAPRICA-Project/CWE.owx.

41

https://github.com/CAPRICA-Project/CAPEC.owx
https://github.com/CAPRICA-Project/CWE.owx
https://github.com/CAPRICA-Project/CWE.owx

Risk classification IV. MANAGING RISK IN IT INFRASTRUCTURES

CVE-2009-

1388

CVE-2006-

2374

CVE-2005-

3106

CVE-2006-

5158

CVE-2009-

2857

CVE-2006-

2275

CVE-2004-

0174

CVE-2002-

1850

CVE-2009-

2699

CVE-2005-

3847

CVE-1999-

1476

CVE-2005-

2456

CVE-2009-

4272

CVE-2006-

4342

CVE-2009-

1961

Deadlock

hasCWE
hasCVE

Forced
Deadlock

hasCAPEC

hasCWE

Improper
Synchro...

Improper
Locking

hasCWE

hasCAPEC

relatedTo

Use of
Blocking...

Unsyn-
chronize...

Unre-
stricted...

hasCWE
hasCAPEC

Figure IV.16: Exploration of Deadlock, obtained from the following SPARQL query:

construct where {
cwe:CWE-833 cwe:hasCAPEC ?capec;

cwe:hasCVE ?cve;
cwe:relatedTo ?cwe2.

?cve cve:hasName ?cve_name.
?capec capec:hasCWE ?cwe.
filter (?cve_name < "CVE-2010").

}

42

https://nvd.nist.gov/vuln/detail/CVE-2009-1388
https://nvd.nist.gov/vuln/detail/CVE-2009-1388
https://nvd.nist.gov/vuln/detail/CVE-2006-2374
https://nvd.nist.gov/vuln/detail/CVE-2006-2374
https://nvd.nist.gov/vuln/detail/CVE-2005-3106
https://nvd.nist.gov/vuln/detail/CVE-2005-3106
https://nvd.nist.gov/vuln/detail/CVE-2006-5158
https://nvd.nist.gov/vuln/detail/CVE-2006-5158
https://nvd.nist.gov/vuln/detail/CVE-2009-2857
https://nvd.nist.gov/vuln/detail/CVE-2009-2857
https://nvd.nist.gov/vuln/detail/CVE-2006-2275
https://nvd.nist.gov/vuln/detail/CVE-2006-2275
https://nvd.nist.gov/vuln/detail/CVE-2004-0174
https://nvd.nist.gov/vuln/detail/CVE-2004-0174
https://nvd.nist.gov/vuln/detail/CVE-2002-1850
https://nvd.nist.gov/vuln/detail/CVE-2002-1850
https://nvd.nist.gov/vuln/detail/CVE-2009-2699
https://nvd.nist.gov/vuln/detail/CVE-2009-2699
https://nvd.nist.gov/vuln/detail/CVE-2005-3847
https://nvd.nist.gov/vuln/detail/CVE-2005-3847
https://nvd.nist.gov/vuln/detail/CVE-1999-1476
https://nvd.nist.gov/vuln/detail/CVE-1999-1476
https://nvd.nist.gov/vuln/detail/CVE-2005-2456
https://nvd.nist.gov/vuln/detail/CVE-2005-2456
https://nvd.nist.gov/vuln/detail/CVE-2009-4272
https://nvd.nist.gov/vuln/detail/CVE-2009-4272
https://nvd.nist.gov/vuln/detail/CVE-2006-4342
https://nvd.nist.gov/vuln/detail/CVE-2006-4342
https://nvd.nist.gov/vuln/detail/CVE-2009-1961
https://nvd.nist.gov/vuln/detail/CVE-2009-1961
https://cwe.mitre.org/data/definitions/833.html
https://capec.mitre.org/data/definitions/25.html
https://capec.mitre.org/data/definitions/25.html
https://cwe.mitre.org/data/definitions/662.html
https://cwe.mitre.org/data/definitions/662.html
https://cwe.mitre.org/data/definitions/667.html
https://cwe.mitre.org/data/definitions/667.html
https://cwe.mitre.org/data/definitions/1322.html
https://cwe.mitre.org/data/definitions/1322.html
https://cwe.mitre.org/data/definitions/567.html
https://cwe.mitre.org/data/definitions/567.html
https://cwe.mitre.org/data/definitions/412.html
https://cwe.mitre.org/data/definitions/412.html
https://cwe.mitre.org/data/definitions/833.html

IV. MANAGING RISK IN IT INFRASTRUCTURES Risk classification

CWE-435

CWE-710

CW
E-693

CW
E-284

CWE-66
4

CW
E-
70

7
CW

E-
70
3

CW
E-
69
7

CW
E-6

91

CW
E-68

2
Other

Figure IV.17: Vulnerability–Weakness rosette. Visualization obtained with Gephi, using the Dual Circle

Layout, with custom coloring and categorization. Full version and dataset available on

https://github.com/CAPRICA-Project/CWE-Rosette.

43

https://github.com/CAPRICA-Project/CWE-Rosette

Risk analysis frameworks IV. MANAGING RISK IN IT INFRASTRUCTURES

security alert is received or a vulnerability is identified in the company’s systems, it is then possible to

use a semantic reasoner to identify families of attacks that could exploit these vulnerabilities, and thus

dynamically update the risk analysis of the overall infrastructure.

At the end of section IV.2.2, we asked the question “what are the vulnerabilities (before 2010) and

attack patterns related to a deadlock, and what are the links between these attack patterns and other

weaknesses?”. We give a visual answer to this question in figure IV.16, along with the SPARQL query

using our ontologies which generated the graph.

Finally, with the help of our ontologies, we were able to carry out a study of the most frequently

encountered weaknesses and represented the distribution of CWE classes in the form of a rosette, as

shown in figure IV.17. Each of the 64,000+ lines represents the association of a CVE (in the center, hidden

for cosmetic reasons) with a CWE class (on the outside). CWE classes are grouped into so-called pillars,

that represent main CWE categories. Looking at the various computer attacks carried out over the last

few years, it comes as no surprise that the most exploited pillars are CWE-707 (Improper Neutralization)

and CWE-664 (Improper Control of a Resource Through its Lifetime). Such representations of risk

can provide a high-level view of a company’s overall exposure for decision-makers, and help focus

remediation objectives within the company.

Risk analysis frameworksRisk analysis frameworksRisk analysis frameworksRisk analysis frameworksRisk analysis frameworksRisk analysis frameworksRisk analysis frameworksRisk analysis frameworksRisk analysis frameworksRisk analysis frameworksRisk analysis frameworksRisk analysis frameworksIV.3 Risk analysis frameworks

In a landscape of rapidly evolving technology, the critical role of robust IT infrastructures cannot be

understated; risk management is an important element in the life cycle of IT systems. A sound risk

taxonomy, whether derived from the MITRE in our case, or other reference frameworks, can help guide

risk analysis workshops into coherent, prioritizable topics. In this section, we look at several risk analysis

frameworks that we think are useful for studying IT infrastructures, and examine their relevance to

modern cloud infrastructures.

IV.3.1 Traditional frameworks

Many general-purpose implementations of risk management (ISO 31000) have been developed over the

years, the most notable for our work being Fault Tree Analysis (FTA), Failure Mode and Effects Analysis

(FMEA), Hazard and Operability study (HAZOP) and System-Theoretic Process Analysis (STPA).

FTA [ARP4761] is the leading top-down approach, developed at Bell Laboratories as an early effort

to incorporate systematic safety and reliability analysis in complex systems. In this method, main events

are first identified and their (advisably independent) causes are recursively analyzed and combined using

boolean logic gates. Individual causes leading to a particular event are put in or gates and collective

causes are put in and gates. It is a deductive approach carried out by repeatedly asking “how can this

event happen and what are its causes?”. Figure IV.18 gives an example of such an analysis on a physical

server.

In contrast, FMEA [ARP4761] focuses on single failures, whether they have a higher-level impact or

not. FMEA is a bottom-up, inductive method developed by the U.S. Military to classify failure modes

according to their impact on mission success and personnel safety. It is used to identify low-level failures

and study the effects on the higher levels. Table IV.1 gives an example of such an analysis on a physical

server.

44

https://cwe.mitre.org/data/definitions/707.html
https://cwe.mitre.org/data/definitions/664.html

IV. MANAGING RISK IN IT INFRASTRUCTURES Risk analysis frameworks

ID Component Failure mode Failure effect Cause

1 Power
subsystem

No power suply powers up The server does not power up PSU absent, dysfunctional or
not properly seated2 One power supply does not power up The orange indicator light flashes

3
CPU
controller

All CPU failed The server cannot boot
CPU absent, dysfunctional or
not properly seated4 One CPU failed

The CPU is not used and its RAM
is not recognised

5 Drive
controller

All drives failed Loss of data, OS cannot boot Drives dysfunctional or not
properly seated6 Some drives failed I/O operations slower than usual

7
RAM
controller

Some RAM sticks failed The server may not boot
RAM dysfunctional or not prop-
erly seated

8 Wrong RAM configuration Some RAM sticks are not used
RAM sticks seated at wrong po-
sitions

Table IV.1: Failure Mode and Effects Analysis of a server

FTA and FMEA are often used together thanks to their opposite views, but are very time-consuming

to apply thoroughly, therefore the analyses are often incomplete [Cristea17]. Due to the iterative nature

of their development, FTA and FMEA analyses can be easily composed and specialized.

HAZOP [IEC 61882], created by the Imperial Chemical Industries, works very differently from the

other two methods. It starts by defining system parameters (such as “electricity”, “heat”...) and using

standardized guidewords (“no”, “more”, “less”...) to study deviations in these parameters from a design

intent (“no electricity”, “more heat than expected”...). The technique is a qualitative way to assess complex

processes and focuses on structured discussions. In some cases, this format may however provide a false

sense of security by being too guided [Baybutt15].

In these frameworks, interactions between components are often not taken into account [Sulaman19].

FTA and HAZOP indeed analyze separately each part to provide a synthetic assessment for the system

using a divide-and-conquer approach.

Server not powering up

Power supply unit not
producing current

Power supply unit not
receiving input current

.

Faulty power supply

Faulty power
management

Critical
component failure

.

Figure IV.18: Fault-Tree Analysis of a server not powering up. Rectangles represent compound events,

ellipses represent basic events, and the gates between them are OR operators.

45

Risk analysis frameworks IV. MANAGING RISK IN IT INFRASTRUCTURES

IV.3.2 Modern initiatives and IT infrastructures

The majority of these frameworks have been developed over 40 years ago, and are not always well suited

for analyzing modern complex systems, be it IT infrastructures or systems including many control loops.

To overcome the limitation of the previously mentioned frameworks, the STPA [Leveson12] method,

created by MIT Professor Nancy Leveson, adopts an approach focused on unsafe interactions between

components. Instead of focusing on individual failures, it focuses on the control actions being the real

cause of accidents. It is a top-down method to study functional control instead of physical components.

Four main steps are identified:

1. Define the purpose of the analysis, what the analysis aims to prevent;

2. Model the control structure, show the relationships and interactions at play;

3. Identify unsafe control actions, how they can lead to losses defined in the first step, and create

functional requirements and constraints for the system;

4. Identify loss scenarios, understand why unsafe control occurs and which and why components

lead to a loss.

IT infrastructures also have their own analysis frameworks. EBIOS Risk Manager [EBIOS-RM] is a

method maintained by the French cyber agency ANSSI proposing a cyclic approach for risk manage-

ment. In addition to implementing ISO 31000, it also implements [ISO/IEC 27005] (Information security,

cybersecurity and privacy protection – Guidance on managing information security risks), dealing with

information security risk management. It consists of five workshops identifying high level, textual risk

scenarios and their resolutions with security measures:

1. Define the scope of the study and the security baseline;

2. Identify the origins of risk, who can adversely affect the system and why;

3. Get a good view of the infrastructure and devise strategic high-level attack scenarios;

4. Build low-level operational scenarios and identiy the critical supporting assets;

5. Summarize risk scenarios and define a risk treatment strategy.

If we set aside EBIOS-RM, the frameworks mentioned in this dissertation have proved effective

in industries like aerospace or automotive, but IT infrastructures present unique challenges that we

think call for several adaptations of the methods. Systems traditionally targeted by general-purpose risk

analysis frameworks tend to be made up of many distinct components, each with a specific function

and internal behavior. IT infrastructures are made of many commercially available off-the-shelf (COTS)

components with many common failure modes and effects. This specificity has a direct impact on risk

analyses insofar as, while there are many components to analyze in large infrastructures, many of

them are identical or perform equivalent functions. In the case of EBIOS-RM, its strong emphasis on

cybersecurity often overshadows another essential facet: safety. In data centers, for example, physical

safety from fires or electrical malfunctions is as crucial as cybersecurity.

Furthermore, these frameworks work well on environments that do not regularly evolve: risk analysis

is a costly process requiring large workshops involving numerous stakeholders, often performed once

and for all for a product. Cloud infrastructures on the other hand have an inherently dynamic nature,

allowing for automatic scaling, reconfiguration and deployment of resources. This leads to infrastructures

whose temporal stability is too short (minutes, hours) compared with the lifespan of conventional risk

analyses (months, years).

46

IV. MANAGING RISK IN IT INFRASTRUCTURES Risk assessment and tolerance criteria

All in all, some methods are better suited to specific domains, and we feel it is important to let the

different stakeholders in the IT infrastructure choose which ones they want to use. As pointed out

by [Alturkistani14], collaboration plays a vital role, and we reckon that federating these methods is

beneficial for the domain. We take a closer look at the concept in section VII.3.

Risk assessment and tolerance criteriaRisk assessment and tolerance criteriaRisk assessment and tolerance criteriaRisk assessment and tolerance criteriaRisk assessment and tolerance criteriaRisk assessment and tolerance criteriaRisk assessment and tolerance criteriaRisk assessment and tolerance criteriaRisk assessment and tolerance criteriaRisk assessment and tolerance criteriaRisk assessment and tolerance criteriaRisk assessment and tolerance criteriaIV.4 Risk assessment and tolerance criteria

As we have shown on figure IV.18 and table IV.1 (page 45), generic risk analysis frameworks can be used

on IT infrastructures, and their combination can be useful in identifying unexpected risk. But over the

years, IT infrastructures have transitioned from their traditional model. While so-called legacy systems

retain their importance in certain critical business operations (banking, healthcare...), the advent of

virtualization brings along a whole new paradigm. In modern infrastructures, we can identify three

layers with different stability profiles:

• The physical layer which is the most stable, where traditional analyses can still be performed (as

long as hardware is under control of the company);

• The logical layer, which is as stable as the evolution of the company’s projects;

• The deployment layer, which presents challenges for traditional approaches.

In this section, we present lessons learned from risk analysis of IT infrastructures through guidelines

and suggestions for future developments.

IV.4.1 Analyzing parts

While automotive and aeronautical systems are made up of thousands of specialized components, IT

infrastructures benefit from a standardization effort driven by the desire for component interoperability.

For physical systems, this translates into the use of COTS components [Rose03], such as processors for

computing power, RAM strips for fast volatile memory, or disks for permanent storage. For software

systems, this translates into the use of common APIs and exchange formats, open source libraries,

and well-established design patterns. Finally, for networked systems, this translates into the use of

standardized protocols and architectures.

A company-wide inventory of infrastructure assets can show thousands of different components

(hardware, software...), designed by hundreds of actors (companies, developer communities...). A thor-

ough analysis of all the components, while theoretically desirable, is not feasible within a reasonable

timeframe. When considering a system, it is crucial to choose the right level of abstraction, based on:

• The knowledge of the system;

• The ability to act upon the system;

• The resources (human, financial...) to act upon the system.

It seems unlikely to have absolute knowledge of an entire infrastructure. Some components can be

considered as black boxes, such as sensitive hardware components like Hardware Security Modules,

or proprietary firmware. The skills required to understand a component in depth may also be lacking

within the company. Such components should therefore not be decomposed any further during analysis,

and the study of their failure modes can be kept to a bare minimum.

47

Risk assessment and tolerance criteria IV. MANAGING RISK IN IT INFRASTRUCTURES

Packaged components that cannot be decomposed, such as soldered electronic components or

closed-source software, often cannot be corrected if one of their sub-components fails. For example, if a

DRAM chip malfunctions on a memory strip, or if there is a bug in a closed-source software function,

the component as a whole should be considered faulty. Therefore, it does not make much sense to study

them in depth.

Finally, if fixing a problem on a component is too complex, requires too much money, or even costs

more money than replacing the component itself, there is little point in decomposing it further. This may

be the case for systems that have reached the end of their life cycle, or whose manufacturer’s support

contract has expired.

For these reasons, we think that the average customers of software and hardware technologies

should not carry out their own analyses on the components they purchase, not to mention that n
customers would need to perform n analyses. Packaging components with their risk analyses ensures

that the expertise of each stakeholder is respected, as the ones designing systems are among those who

know them best. Furthermore, providing an update channel ensures that different customers are alerted

when problems are identified.

IV.4.2 Analyzing systems

The various parts of the infrastructure form systems, which in turn are further assembled into systems,

ultimately forming the infrastructure as a whole. Needless to say, an assembly of components can

exhibit behaviors that individual components do not; risk analysis is no exception to this rule. Even if

all components behave as specified, the assembly of two components may present incompatibilities. If

we think in terms of feature sets, components must provide enough features to components requiring

them. For software, this would correspond to modules implementing the interfaces required by other

modules. If we think in terms of standards, components must “fit” (physical standards) and use the

right protocols (communication standards). Figure IV.19 shows an overview of the five possible cases of

feature matchings, for each of which we give an example:

1 (=). All the required features are supplied; for example, a piece of software requires a specific version

of a library, which is provided;

2 (⊂). More features are supplied than what is required; for example, a client uses a subset of the

features offered by a remote server;

3 (⊃). Fewer features are supplied than what is required; for example, an algebra library requires

advanced CPU instructions that are not available;

4 (∩). Some of the required features are supplied, as well as other features; for example, two applications

talking different dialects of a protocol, say Active Directory and OpenLDAP;

5 (∅). Required features are not supplied; for example, a package not implementing any of the required

functionalities.

Requirements must be expressed correctly at the component interface. Abstracting them too much

may lead to cases 3 and 4. For example, if our application requires the specific “MariaDB Server 10.11.5”,

but we say we require any “SQL server”, critical features may be lacking. On the contrary, too much

48

IV. MANAGING RISK IN IT INFRASTRUCTURES Risk assessment and tolerance criteria

= ⊂ ⊃ ∩ ∅
1. 2. 3. 4. 5.

Features required

Features provided

Figure IV.19: Five types of feature matching when assembling components

Legend. Compatibility, Possible incompatibility, Incompatibility.

LGA 2011

LGA 2011

SAS

DDR4

PCIe 3.0 ×8
PCIe 3.0 ×16

Figure IV.20: Typical server motherboard, with memory (DDR4) and expansion card (PCIe 3.0) slots,

CPU sockets (LGA 2011) and drive trays (SAS)

specialization may make a system less configurable or make it dependent on unsafe components. For

example, if our application requires a specific version of an external module, and this external module is

later found to be critically vulnerable, our application can propagate the risk.

Without impacting nominal system operation, these cases can invalidate risk analyses, and in

the worst case hide unsafe scenarios. A pathological case appears in hardware components such as

motherboards (figure IV.20): the presence of standardized sockets creates a set of explicit compatibility

requirements (if a sub-component does not fit, it cannot be used). However, these necessary conditions

are often not sufficient, and manufacturers have to specify additional logical constraints in set-up guides.

For example, old PCI Express expansion cards may not function properly on modern hardware (and

vice versa), because of deprecation or a partial implementation of standards by the hardware controller.

Another example is the layout and characteristics of RAM modules, often constrained by motherboard

manufacturers and CPU vendors.

IV.4.3 Closing the loop

As we show in figure IV.2 (page 27), risk management is an iterative process: risks lead to requirements

that are translated into infrastructure constraints, which can have a direct impact on the initial risk. This

impact may either be positive (reducing the initial risk criticality), negative (introducing new risks), or

both. Let us take the requirements from the Payment Card Industry Data Security Standard (PCI DSS) 4.0

as an example. PCI DSS was created by the Payment Card Industry Security Standards Council as a

49

Risk assessment and tolerance criteria IV. MANAGING RISK IN IT INFRASTRUCTURES

Payment Card Industry Data Security Standard: Requirements and Testing Procedures, v4.0 March 2022
© 2006 - 2022 PCI Security Standards Council, LLC. All rights reserved. Page 200

Requirements and Testing Procedures Guidance

9.4 Media with cardholder data is securely stored, accessed, distributed, and destroyed.

Defined Approach Requirements Defined Approach Testing Procedures Purpose
Controls for physically securing media are
intended to prevent unauthorized persons from
gaining access to cardholder data on any media.
Cardholder data is susceptible to unauthorized
viewing, copying, or scanning if it is unprotected
while it is on removable or portable media, printed
out, or left on someone’s desk.

9.4.1 All media with cardholder data is physically
secured.

9.4.1. Examine documentation to verify that the
procedures defined for protecting cardholder data
include controls for physically securing all media.

Customized Approach Objective

Media with cardholder data cannot be accessed by
unauthorized personnel.

9.4.1.1 Offline media backups with cardholder data
are stored in a secure location.

9.4.1.1.a Examine documentation to verify that
procedures are defined for physically securing
offline media backups with cardholder data in a
secure location.

Purpose
If stored in a non-secured facility, backups
containing cardholder data may easily be lost,
stolen, or copied for malicious intent.
Good Practice
For secure storage of backup media, a good
practice is to store media in an off-site facility,
such as an alternate or backup site or commercial
storage facility.

9.4.1.1.b Examine logs or other documentation
and interview responsible personnel at the storage
location to verify that offline media backups are
stored in a secure location.

Customized Approach Objective

Offline backups cannot be accessed by
unauthorized personnel.

Defined Approach Requirements Defined Approach Testing Procedures Purpose
Conducting regular reviews of the storage facility
enables the organization to address identified
security issues promptly, minimizing the potential
risk. It is important for the entity to be aware of the
security of the area where media is being stored.

9.4.1.2 The security of the offline media backup
location(s) with cardholder data is reviewed at least
once every 12 months.

9.4.1.2.a Examine documentation to verify that
procedures are defined for reviewing the security
of the offline media backup location(s) with
cardholder data at least once every 12 months.

9.4.1.2.b Examine documented procedures, logs,
or other documentation, and interview responsible
personnel at the storage location(s) to verify that
the storage location’s security is reviewed at least
once every 12 months.

Customized Approach Objective

The security controls protecting offline backups are
verified periodically by inspection.

Figure IV.21: PCI DSS 4.0, page 200, describing sub-requirement 9.4

structured way to address the risk of credit card fraud. Figure IV.21 shows how the requirement 9

(Restrict Physical Access to Cardholder Data) is declined into a sub-requirement mentioning copying

cardholder data onto removable media. To prevent the situations described in the requirement’s guidance,

a company may decide to encrypt its staff’s hard drives and deploy a corporate policy prohibiting

removable media [Sharwood18]. While such an implementation of the requirement technically removes

the risks associated with removable media and data extraction from disks, this can hinder legitimate

activities such as sharing critical data to an authorized colleague. This in turn can lead to data being

shared on less secure media, such as public remote drives, or worse, to attempt to circumvent corporate

security policies [Blythe15], increasing the initial risk.

Care should thus be taken to properly analyze residual risks at each iteration of the risk cycle, and

determine whether they are acceptable according to tolerance criteria. We have identified four families

of acceptability criteria:

• Confidence:

– Invulnerability, if a risk cannot impact an infrastructure (for example, an unsafe function

that the infrastructure does not use in a library),

– Unlikelihood, if a risk is so improbable that it does not seem relevant to consider it (for

example, bit shifts due to cosmic rays on earth);

50

IV. MANAGING RISK IN IT INFRASTRUCTURES Sharing analyses

• Inability:

– Impossibility, if there is no way to fix a risk (for example, a Hardware Security Modules with

anti-tamper features disabling itself during an earthquake),

– Lack of means, if a company does not have the resources to mitigate a risk (for example, a

start-up company that cannot afford expensive security appliance),

– Illegality, if a company is not allowed to fix a risk (for example, many jurisdictions regulate

companies’ ability to monitor employee behavior, even if leaks are suspected);

• Cost-benefit, if the cost of implementing risk mitigations exceeds the potential benefit of the

protected asset (for example, if re-engineering an application to distribute its load is not justified

by the few downtimes it might suffer);

• Transfer, if a risk is transferred to a third party (for example, through insurance, contracts or

outsourcing).

Of course, insufficient knowledge or awareness can lead to overconfidence, inaccurate assement of

(in)abilities, miscalculations of costs and benefits, and inappropriate risk transfer. We have unfortunately

no compelling solution to cover this “meta-risk”. We should note that these acceptability criteria can

change over time; a company may decide, for example, that it is no longer acceptable to transfer its risk

to a third party.

Sharing analysesSharing analysesSharing analysesSharing analysesSharing analysesSharing analysesSharing analysesSharing analysesSharing analysesSharing analysesSharing analysesSharing analysesIV.5 Sharing analyses

Whereas the sharing of vulnerabilities (notably via CVE) and the means of analyzing their presence on

a system (via SCAP for example) is commonplace in IT communities, the same cannot be said of risk

analyses themselves. In the automotive industry, the recent [openXSAM] initiative (for open format for

eXchanging Security Analysis Models) is a valuable tool for sharing security data between teams or with

third-party suppliers. It can help to improve the efficiency and accuracy of security analyses, and make

it easier to comply with regulations and security standards, such as the new [ISO/SAE 21434] (Road

vehicles – Cybersecurity engineering). Because of its strong focus on cybersecurity in the automotive

industry, it seems difficult to build a direct bridge with our work. We think however that this approach

is crucial for IT infrastructures, which also involve hundreds of manufacturers in the development of

end systems.

Risk analysis

ComponentFailure

Generic failureCombination

And Or

Unsafe action

on ▷
∗

of ▷
∗

consequences

Figure IV.22: Generic model for risk analysis

51

Conclusion IV. MANAGING RISK IN IT INFRASTRUCTURES

We propose in figure IV.22 a generic model for risk analysis, which we claim captures the essential

elements of FTA, FMEA, HAZOP and STPA methods. Basically, a combination of failures on components

can have as consequences, potentially when triggering an unsafe action, other combinations of failures on

components. For example, a mechanical problem on a rack fan can, when the fan is turned on, vibrate

the entire rack and degrade mechanical disk performance. From our model, we can build a common

exchange format to share risk analyses between cooperating parties. Sharing analyses can help clients

to configure systems properly (assembling them in a way that avoids failures) and troubleshoot common

problems (identify causes of incidents).

IV.5.1 Building open analyses

There are things companies do not want to share with the entire world. From design secrets to the finer

details of how specific components work, a great deal of information is filtered out before a product

reaches the end customer. However, to reduce the burden on customer service and respect consumer

rights, many fragments of risk analysis are actually shared for small repairs and troubleshooting.

Figure IV.23 shows how manufacturers such as Dell share them in a textual, human-readable way. As

page 191 of the figure mentions, some repairs and troubleshooting “may only be done by a certified

service technician”, which has access to more detailed instructions, and thus a more thorough view of

the risk analysis.

It may therefore be advisable to add an access level mechanism to risk analyses, enabling only certain

information to be shared with customers, service technicians and internal teams for example. The fact

that the structure of risk analyses is closely linked to that of the components in a system makes it easy

to implement such a mechanism, as shown in figure IV.24. In this figure, we represent an assembly of

components along with a risk analysis built on three access levels. Components which can be diagnosed

by the end customer are in Access level 1, those reserved for certified technicians are in Access level 2,

and those reserved for the company’s internal teams are in Access level 3.

Once risk analyses and their respective permissions are properly encoded, companies can generate

troubleshooting guides semi-automatically by defining main troubleshooting categories and extracting

publicly-disclosable data in a systematic way.

IV.5.2 Composing analyses

In the same way that components can be assembled to form systems, their analyses can be combined to

study these systems. Combining the analyses is a three-stage process:

1. Gathering analyses of the different components of the system;

2. Producing an analysis of the assembled system;

3. Defining access levels for sharing the resulting analysis.

Because risk analysis is a constantly evolving discipline, we consider that the various shared analyses

should not remain static. By providing a dynamic catalog of components and their risk analyses,

companies can continuously update their knowledge bases, and the assemblies of these components can

benefit from these changes.

52

IV. MANAGING RISK IN IT INFRASTRUCTURES Conclusion

Next steps

If the problem persists, see the Getting help section.

Related references

Getting help on page 201
Using system diagnostics on page 180

Troubleshooting a wet system
Prerequisites

CAUTION: Many repairs may only be done by a certified service technician. You should only perform
troubleshooting and simple repairs as authorized in your product documentation, or as directed by the online or
telephone service and support team. Damage due to servicing that is not authorized by Dell is not covered by
your warranty. Read and follow the safety instructions that are shipped with your product.

Steps

1. Turn off the system and attached peripherals, and disconnect the system from the electrical outlet.

2. Remove the system cover.

3. Remove the following components (if installed) from the system:

Ɣ Power supply unit(s)
Ɣ Optical drive
Ɣ Hard drives
Ɣ Hard drive backplane
Ɣ USB memory key
Ɣ Hard drive tray
Ɣ Cooling shroud
Ɣ Expansion card risers (if installed)
Ɣ Expansion cards
Ɣ Cooling fan assembly (if installed)
Ɣ Cooling fan(s)
Ɣ Memory modules
Ɣ Processor(s) and heat sink(s)
Ɣ System board

4. Let the system dry thoroughly for at least 24 hours.

5. Reinstall the components you removed in step 3 except the expansion cards.

6. Install the system cover.

7. Turn on the system and attached peripherals.

If the problem persists, see the Getting help section.

8. If the system starts properly, turn off the system, and reinstall all the expansion cards that you removed.

9. Run the appropriate diagnostic test. For more information, see the Using system diagnostics section.

Next steps

If the tests fail, see the Getting help section.

Related references

Getting help on page 201
Using system diagnostics on page 180

190 Troubleshooting your system

Troubleshooting a damaged system
Prerequisites

CAUTION: Many repairs may only be done by a certified service technician. You should only perform
troubleshooting and simple repairs as authorized in your product documentation, or as directed by the online or
telephone service and support team. Damage due to servicing that is not authorized by Dell is not covered by
your warranty. Read and follow the safety instructions that are shipped with your product.

Steps

1. Turn off the system and attached peripherals, and disconnect the system from the electrical outlet.

2. Remove the system cover.

3. Ensure that the following components are properly installed:

Ɣ cooling shroud
Ɣ expansion card risers (if installed)
Ɣ expansion cards
Ɣ power supply unit(s)
Ɣ cooling fan assembly (if installed)
Ɣ cooling fan(s)
Ɣ processor(s) and heat sink(s)
Ɣ memory modules
Ɣ drive carriers or cage
Ɣ drive backplane

4. Ensure that all cables are properly connected.

5. Install the system cover.

6. Run the appropriate diagnostic test. For more information, see the Using system diagnostics section.

Next steps

If the problem persists, see the Getting help section.

Related references

Getting help on page 201
Using system diagnostics on page 180

Troubleshooting the system battery
Prerequisites

CAUTION: Many repairs may only be done by a certified service technician. You should only perform
troubleshooting and simple repairs as authorized in your product documentation, or as directed by the online or
telephone service and support team. Damage due to servicing that is not authorized by Dell is not covered by
your warranty. Read and follow the safety instructions that are shipped with your product.

NOTE: If the system is turned off for long periods of time (for weeks or months), the NVRAM may lose the system
configuration information. This situation is caused by a defective battery.

NOTE: Some software may cause the system time to speed up or slow down. If the system seems to operate normally
except for the time set in System Setup, the problem may be caused by a software, rather than by a defective battery.

Steps

1. Re-enter the time and date in System Setup.

2. Turn off the system, and disconnect it from the electrical outlet for at least an hour.

3. Reconnect the system to the electrical outlet, and turn on the system.

Troubleshooting your system 191

Figure IV.23: Excerpt from the “Troubleshooting your system” section of Dell PowerEdge R730

Owner’s Manual

1
2 3

4

5

6 7

ID Component Failure Action Consequence
a 1
b 1
c 1
d 2 b
e 3 a
f 3 b
g 3
h 4
i 4
j 5 e
k 6 c
l 6 f
m 7
n 7

Access level 1 Access level 2

Access level 3
Category 1

Category 2

Category 3
(Internal)

Category 4
(Certified tech.)

Figure IV.24:Multi-level open risk analysis

53

Conclusion IV. MANAGING RISK IN IT INFRASTRUCTURES

ConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusionIV.6 Conclusion

Risk management is a very diverse discipline, which has been the subject of a great number of contribu-

tions in the literature. In this chapter, we have outlined the entire process, giving various recommenda-

tions on how to perform analyses, as well as suggestions for future developments. This chapter shows

that the process is still very manual, and that it can be cumbersome to navigate between the various

sources of truth. When it comes to security, a topic covered extensively, it is a perpetual cat-and-mouse

game that can quickly become asymmetrical: companies react to the various CVEs, but it is impossible

to guard against everything (many attacks and software actually do not exist yet). When it comes to

safety, it is much easier to predict every eventuality, but remediation can be very costly when it comes

to the physical world; furthermore, the field is much less covered by generic IT frameworks, at the risk

of relegating it to second tier status.

But risk management does not stop with what we have presented in this chapter, and we can learn a

lot about the discipline from the perspective of other scientific communities. This is what we explore in

the rest of this dissertation.

54

V
Chapter V

Checking IT Infrastructures

Risk management Formal methods

Enterprise modeling

Risks

filter
Requirements

require

Constraints

constraint

Infrastructures

I

assess

reify

I′

I′′

δI (I′)

δI (I′′) iter

“
Galen Tyrol — Verify PC-2 pressure zero, throttles

closed, oxygen generator and master switches off.

Check. Shutdown complete. — Kara Thrace

Galen Tyrol — Nothing you could do, captain. Too

far away.

Battlestar Galactica – Scar ”

Contents

V.1 Rethinking risk assessment . 56

V.1.1 Formalism . 56

V.1.2 Risk and properties . 58

V.2 Modeling IT Infrastructures . 58

V.2.1 From the technical world... 60

V.2.2 ... to the formal one . 62

V.2.3 Case study . 64

V.3 Model checking . 69

V.3.1 Properties and checkers . 70

V.3.2 The need for proper abstractions . 72

V.3.3 Going back to our case study . 72

V.4 Automating risk assessment . 75

V.4.1 Expressing formal properties... 75

V.4.2 ... and combining models together . 76

V.5 Conclusion . 77

55

Rethinking risk assessment V. CHECKING IT INFRASTRUCTURES

Now that we have set out the theoretical framework for our study and introduced risk management

for IT infrastructures, we want to focus on the risk assessment phase, which we think has to face major

semantic misalignments. The infrastructure, whether technical, human or organizational, is assessed

according to criteria subject to auditors’ interpretation, using a common taxonomy. This assessment is

influenced by the way infrastructure facts are presented, and the subsequent mental representation of

these facts by auditors. We are trying to reduce this human evaluation in the assessment of safety and

security properties. Moreover, verifying such properties on large IT infrastructures can be a daunting

and costly task. To simplify the process and alleviate various concerns related to human judgement, we

consider automation as an advisable step forward in risk assessment, which involves three key steps:

1. The development of infrastructure models;

2. The verification of properties on these models;

3. The interpretation of these properties in the risk taxonomy.

In this chapter, we adopt a trial-and-error approach, with the help of a case study, to produce an

infrastructure’s risk assessment, drawing relevant conclusions along the way. As we are effectively

concerned with refining the assess function described in the previous chapter, we start this chapter by

adapting our formalism in section V.1. We then present different ways of modeling IT infrastructures

and introduce our case study in section V.2. Next, we show how to verify properties on models and

apply these methods to our case study in section V.3. We then show how we can add automation to the

process through formal interpretation of properties and model combination in section V.4. Finally, we

conclude this chapter in section V.5.

Rethinking risk assessmentRethinking risk assessmentRethinking risk assessmentRethinking risk assessmentRethinking risk assessmentRethinking risk assessmentRethinking risk assessmentRethinking risk assessmentRethinking risk assessmentRethinking risk assessmentRethinking risk assessmentRethinking risk assessmentV.1 Rethinking risk assessment

Regardless of the risk analysis framework adopted, the human factor plays an important role in the

process, from establishing the scope of the study to assessing the criticality of risks. The various parties

involved in the analysis represent the different areas of the company in which risk assessment is, at the

very least, desirable, and at the most, mandatory. With these different areas come different expertises,

different mental and technical models of what the infrastructure is and does, on which risk assessment is

based. Here, we formalize this notion of models and introduce the concept of model checkers, to verify

properties on these models.

V.1.1 Formalism

A model is a simplified representation of a component or system, created to analyze, understand, or

predict its behavior under various conditions. Here, we consider that models have inputs, which we

call parameters, and outputs, which can be results directly obtained from the model, or properties to be

checked. Parameters can be used to make models generic and instantiate them under different conditions

(for example, a model studying the safety of an n-element system, with n as a parameter). Results are

data produced by or extracted from a model (for example, an artifact produced by a neural network).

Finally, properties represent facts that can be verified by so-called model checkers. For example, if a real

function f : x 7→ 1− x2
models the behavior of a system, a model checker could verify the property

p : ∀x, f (x) < 2. This formalism is represented on figure V.1, which additionally shows that certain

model checkers can check certain kinds of properties (and not others).

56

V. CHECKING IT INFRASTRUCTURES Rethinking risk assessment

Model

Model type

Model checker Property kind

?
?

Parameters Results

Properties

can check ▷

▽ on instances of

Figure V.1:Model of a model and its properties

Legend. Relationship, Instantiation

R

I

I

check
check

check

model

model

model

Figure V.2: Refinement of the assess function shown on figure IV.5 (page 32) into sub-model and check
functions

Model 3

Model 2

Model 1

?
f1

f2

f3 ?

Figure V.3: Composition of models. f1, f2 and f3 transform outputs into suitable inputs for the next

model.

57

Modeling IT Infrastructures V. CHECKING IT INFRASTRUCTURES

In this chapter, we consider the assess function of the previous chapter to be the composition of

a model function, in which the systems under study are modeled, and a check function, in which the

models are verified. This decomposition is represented in figure V.2.

We define a model as a 4-tuple M = (I, m, P , R), where I is the set of input parameters, m is

the model definition (that we leave opaque in this formalization), P is a set of properties to prove,

and R is the set of results. A model checker C is an application that takes a model and its parameters

to produce a verdict on its properties. Formally, if (vi)i∈I is a family of input values indexed by I,
C : (I, m, P , R) , (vi)i∈I 7→ Π, where Π ∈ {⊤,⊥, ?}P is the set of verdicts of the form:

p 7→


⊤ if p is proved to be true by the model checker,

⊥ if p is proved to be false by the model checker,

? if no verdict can be reached for p by the model checker.

A “?” verdict for a property p may indicate that:

• p has a property kind that the model checker is unable to verify;

• Spatial or temporal limits have been exceeded, stopping the checking process;

• The property is undecidable.

To illustrate this definition, if we reuse the function f previously mentioned and consider a model

M = (∅, f , {pi : ∀x, f (x) < i | i ∈N} ,∅) and a checker C able to solve this mathematical problem,

we can get C (M,∅) = {pi 7→ [i > 1] | i ∈N}. The global verdict (Π in the definition) is important,

since it forms the basis on which we can draw conclusions about the safety and security of the system

under study, i.e. the actual risk assessment.

V.1.2 Risk and properties

As we discussed in section IV.5, component failure modes can be combined in fault trees for risk analyses.

Similarly, risks on portions of an infrastructure can be expressed as a logical combination of properties

verified on their models. For example, if we consider the risk r : “Unsafe overheating of equipment”, we

can break it down as r = ¬µ ∨ (¬φ ∧ ¬σ), where µ is “Correct measurement of the temperature T”,
φ is “Fans activate when T > T1” and σ is “Equipment shuts down when T > T2”. These properties can

be further broken down as logical combinations of sub-properties. Determining whether a system is

subject to a risk involves finding a verification path (i.e. a means of verifying inductively the properties)

in a ternary verdict tree (using the standard Kleene’s K3 three-valued logic — true, false, and unknown)

to show the presence or absence of the risk.

Breaking down the risk into verifiable sub-goals can be used to feed an interactive verification

assistant: if the valuation of a set of properties is required to establish a risk verdict, the assistant can

suggest a set of model checkers able to verify such properties along with types of models fulfilling the

need. To know which model checkers can verify them, properties must first be assigned property kinds;

we provide a classification of these in section V.3. In our example r, if µ and φ provably hold, we could

refine σ into lower-level properties that the verification assistant could link to suitable models checkers.

Finally, we can chain the models together to produce richer models, as shown on figure V.3, which

is what this chapter shows in order to build a complete infrastructure model.

58

V. CHECKING IT INFRASTRUCTURES Modeling IT Infrastructures

Figure V.4: A scribble, an automaton, a hardware inventory: three models

Modeling IT InfrastructuresModeling IT InfrastructuresModeling IT InfrastructuresModeling IT InfrastructuresModeling IT InfrastructuresModeling IT InfrastructuresModeling IT InfrastructuresModeling IT InfrastructuresModeling IT InfrastructuresModeling IT InfrastructuresModeling IT InfrastructuresModeling IT InfrastructuresV.2 Modeling IT Infrastructures

Modeling part of an infrastructure allows to extract, on a specific “view”, characteristic elements deemed

relevant to study or represent. In reality, everything can be seen as a model [Sandkuhl18], from a

scribble on a piece of paper describing an architectural idea, to an inventory of computers and their

interconnections, to formal automata capturing behavioral properties of a system (figure V.4).

We have identified a number of criteria on which models can vary:

• Nature, what the model is:

– descriptive, to represent what is,

– prescriptive, to represent what should be,

– predictive, to represent what could be;

• Purpose, why the model exists:

– informational, as a way to convey insights,

– functional, as a working tool,

– theoretical, as a basis for demonstration and reasoning;

• Type, how the model is presented:

– graphical, a visual representation of a system,

– mathematical, a formal representation,

– simulational, an executable model;

• Scope, what the model covers:

– behavioral, to study system dynamics,

– structural, to study system architecture,

– operational, to study organizations and processes.

59

Modeling IT Infrastructures V. CHECKING IT INFRASTRUCTURES

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

24-Port Patch Panel

EX4200-48T

PowerEdge R720xd

PowerEdge R720xd

PowerEdge R720xd

PowerEdge R720xd

PowerEdge R720xd

PowerEdge R720xd

PowerEdge R720xd

PowerEdge R720xd

PowerEdge R720xd

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

EX4200-48T

PowerEdge R720xd

PowerEdge R720xd

PowerEdge R720xd

PowerEdge R720xd

PowerEdge R720xd

PowerEdge R720xd

PowerEdge R720xd

PowerEdge R720xd

PowerEdge R720xd

Figure V.5: NetBox model of a 22 U datacenter rack (front and rear of the rack)

Models that do not cover the same criteria may represent different complementary aspects of the

infrastructure. For example, a descriptive, informational, graphical, structural model may be used to

train staff about a company’s IT architecture, while a predictive, theoretical, mathematical, behavioral

model may be used to estimate future network traffic. To carry out an in-depth risk analysis, it is

therefore important to carefully select models appropriate to the particular aspects being studied. In this

section, we give a brief overview of modeling, from the technical to the formal world, before presenting

our case study.

V.2.1 From the technical world...

In datacenters, the vast amount of components, both hardware and software, has led to the emergence of

specialized tools for projecting the infrastructure onto various “views” that can be exploited by different

business areas. This approach led to the creation of models, serving as aids for professionals to visualize

and grasp the intricacies of complex infrastructures. Data Center Infrastructure Management (DCIM)

software like [NetBox], which we use in our case study, are an example of such tools, providing visual

representations simplifying resource planning and management. A NetBox model of a datacenter rack

is given in figure V.5. We like to label such models as “incidental”, since they result from a business

process and not from a pure modeling endeavor.

To add structure to infrastructure models, initiatives such as the Simple Network Management Pro-

tocol ([SNMP], by the IETF) and the Common Information Model ([CIM], by the DMTF) were introduced

respectively in 1988 and around 1997. The former behaves as a tree-like datastore linking standard and

proprietary object identifiers (OID) to their values and is mainly used for network monitoring (and

to a lesser extent, system monitoring). An example of an “SNMP walk” on a network switch is given

in figure V.6. The latter, along with Web-Based Enterprise Management (WBEM), aim to provide a

60

V. CHECKING IT INFRASTRUCTURES Modeling IT Infrastructures

SNMPv2-MIB::sysDescr.0 = STRING: Juniper EX4600-40F-AFO

SNMPv2-MIB::sysObjectID.0 = OID: SNMPv2-SMI::enterprises.2636.1.1.1.2.109

DISMAN-EVENT-MIB::sysUpTimeInstance = Timeticks: (739441167) 85 days, 14:00:11.67

IF-MIB::ifNumber.0 = INTEGER: 852

IF-MIB::ifIndex.4 = INTEGER: 4

IF-MIB::ifIndex.5 = INTEGER: 5

IF-MIB::ifIndex.6 = INTEGER: 6

IF-MIB::ifIndex.7 = INTEGER: 7

IF-MIB::ifIndex.8 = INTEGER: 8

IF-MIB::ifIndex.9 = INTEGER: 9

Figure V.6: Excerpt from an SNMP walk over a live Juniper EX4600-40F-AFO switch

Figure V.7: Excerpt from a list of Win32_Process instances in the namespace root\CIMV2 for a

Windows 7 system

more expressive representation of IT systems and their relationships, and are mainly used by major

infrastructure players such as Microsoft, IBM and Oracle. An example of a process inventory on a

Windows server is given in figure V.7.

As datacenters transitioned from traditional to virtualized infrastructures, models have begun to

abstract the physical reality of infrastructures, so that the expression of needs becomes less dependent

on the underlying hardware. Among the trends that have emerged as a consequence of this shift, we can

mention Software-Defined Networking (SDN) [Masoudi16] and Infrastructure as Code (IaC) [Morris20].

Both approaches tend towards a modeling process, with various stakeholders describing infrastructure

elements in a prescriptive way. In the case of SDN, network operators model desired virtual network

topologies and behavior; in the case of IaC, IT architects describe how to provision IT resources to run

applications. With these, modeling takes a more “intentional” form, as the model drives the initiative.

Finally, more systematic and structured technical approaches exist, notably in the field of software

development, with frameworks relying on the Unified Modeling Language ([UML]). Rigorous use of

UML helps build rich infrastructure models that can be further enhanced by the use of formal methods,

which we present now.

61

Modeling IT Infrastructures V. CHECKING IT INFRASTRUCTURES

Lock

Process(1)

Process(3)Process(2)

Figure V.8: UPPAAL model of a lock and processes able to acquire it

V.2.2 ... to the formal one

While modeling can provide a clearer vision of infrastructures, the lack of mathematical rigor in most

tools and representations makes it difficult to use infrastructure models in a systematic way. Formal

methods provide a sound theoretical framework for the study of systems, and we present here some

of those which we consider of particular importance in our work. We are intentionally leaving aside

methods that are not related to modeling, such as code verification, mentioned in section IV.2.3, and

general-purpose solvers such as Z3, presented in section VI.3.

Building systems safe and secure by design is one of the use cases where formal methods excel,

and B method [Abrial96] is a prime example of this. B method guides the design of provably reliable

systems in a top-down fashion by leveraging logic and set theory for unambiguous specification of

properties and behaviors. It adds the concept of proof obligation to models, requiring mathematical

proof that each refinement of a model preserves the requirements of the previous modeling steps. Our

approach to risk analysis in this chapter is very close to that of B-method for system design. As another

formal specification language, we can also mention Alloy [Jackson11], which allows for the description

of complex system structures, behaviors, and invariants in a high-level, abstract manner.

Whether for descriptive or prescriptive modeling, automata are used to represent the possible

states of a system and transitions between them. These abstract representations make it possible to

rigorously explore and analyze all possible behaviors of the system. Tools such as UPPAAL, in which we

have modeled a lock system shown in figure V.8, allow to design and compose complex systems using

automata. It constitutes an important tool for our case study.

62

V. CHECKING IT INFRASTRUCTURES Modeling IT Infrastructures

PA1-R01

PA1-RS1

PA1

PA1-R02

Figure V.9: Overview of the PA1 datacenter, with the three rooms PA1-R01, PA1-R02 and PA1-RS1

42

41

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

PA1-RS1-01-RO1

PA1-RS1-01-RO2

PA1-RS1-01-SW1

PA1-RS1-01-SW2

PA1-RS1

42

41

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

PA1-R01-01-SW1

PA1-R01-01-SW2

PA1-R01-01-HV1

PA1-R01-01-HV2

PA1-R01

42

41

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

PA1-R02-01-SW1

PA1-R02-01-SW2

PA1-R02-01-HV1

PA1-R02-01-HV2

PA1-R02

PA1

42

41

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

PA2-RS1-01-RO1

PA2-RS1-01-RO2

PA2-RS1-01-SW1

PA2-RS1-01-SW2

PA2-RS1

42

41

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

PA2-R01-01-SW1

PA2-R01-01-SW2

PA2-R01-01-HV1

PA2-R01-01-HV2

PA2-R01

42

41

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

PA2-R02-01-SW1

PA2-R02-01-SW2

PA2-R02-01-HV1

PA2-R02-01-HV2

PA2-R02

PA2

Figure V.10: Physical infrastructure modeled with NetBox

63

Modeling IT Infrastructures V. CHECKING IT INFRASTRUCTURES

V.2.3 Case study

In this subsection, we propose a case study that serves as a common thread for this chapter. We consider

a small fictitious virtualization infrastructure composed of eight servers distributed over two datacenters.

All eight servers run the Proxmox Virtual Environment ([Proxmox VE]) hypervisor, hosting virtual

machines supporting critical business activities for a company. For this case study, we consider three

views of the infrastructure which we model with NetBox and UPPAAL: a physical view, a network view,

and a functional view.

Physical infrastructure

The infrastructure we study is made of two datacenters located in Paris, named PA1 and PA2. Figure V.9

gives an overview of PA1. We consider in each of these datacenters three rooms:

• PA12-R01 and PA12-R02, containing each two servers and two so-called Top-of-Rack (ToR) switches,

• PA12-RS1 containing so-called aggregation switches and routers to interconnect the datacenters.

The rooms of each datacenter have been described on NetBox by the company’s datacenter techni-

cians. We give in figure V.10 an excerpt from NetBox’ representation of the datacenter, highlighting the

elements considered in this case study. Each datacenter rack is represented by a rack diagram (which

is the de facto standard representation in the field), in which we have colored the routers purple, the

aggregation switches green, the ToR switches hatched pink and the servers gray.

For the purposes of this study, we consider each room electrically independent from one another,

although a general electrical incident on a whole datacenter can impact all its rooms.

Network infrastructure

These various pieces of equipment are linked together to form a network. Both datacenters can com-

municate with each other thanks to an L2 VPN
1
. Each server is redundantly connected to two stacked

ToR switches and share the same broadcast domains
2
. In our example, the PA1-R01-01-HV1 server

is linked to both the PA1-R01-01-SW1 and PA1-R01-01-SW2 switches. Each ToR switch is linked to

an aggregation switch (for example, PA1-R01-01-SW1 is linked to PA1-RS1-01-SW1), which in turn is

redundantly linked to two routers (for example, PA1-RS1-01-SW1 is linked to both PA1-RS1-01-RO1

and PA1-RS1-01-RO2). The network topology presented in figure V.11 is directly extracted from NetBox

(device names correspond to figure V.10).

Functional infrastructure

Proxmox Virtual Environment is a hypervisor, which is a platform enabling the creation of a virtualized

execution environment, notably capable of running so-called virtual machines. Many hypervision

solutions (such as Proxmox VE) enable servers (referred to as nodes) to be grouped together in so-called

clusters, making infrastructures more resilient. In particular, such clusters enable virtual machines to

1
A VPN at the layer 2 of the OSI model

2
They can “see” one another at the layer 2, thanks to the L2 VPN

64

V. CHECKING IT INFRASTRUCTURES Modeling IT Infrastructures

L2
VP

N
PA1-R01-01-SW1 PA1-R01-01-HV1

PA1-R01-01-SW2 PA1-R01-01-HV2

PA1-R02-01-SW1 PA1-R02-01-HV1

PA1-R02-01-SW2 PA1-R02-01-HV2

PA2-R01-01-SW1 PA2-R01-01-HV1

PA2-R01-01-SW2 PA2-R01-01-HV2

PA2-R02-01-SW1

PA2-R02-01-HV1PA2-R02-01-SW2

PA2-R02-01-HV2

PA1-RS1-01-SW1

PA1-RS1-01-SW2

PA2-RS1-01-SW1

PA2-RS1-01-SW2

PA1-RS1-01-RO1

PA1-RS1-01-RO2

PA2-RS1-01-RO1

PA2-RS1-01-RO2

Figure V.11: Network infrastructure extracted from NetBox

be restarted, in the event of a failure of some nodes, onto other nodes. To this end, Proxmox VE uses

[Corosync], an open-source cluster communication library, as its inter-node communication system,

whose operation can be summarized as follows.

At regular intervals, the nodes try to communicate with one another, and if the number of nodes

that “see” one another exceeds a certain score (called minimum votes), they form a so-called quorum and

heuristically elect amaster. As long as the quorum exists, the cluster can continue to operate. Figure V.12

shows an example of the loss of a quorum for a 5-node cluster with 3 required votes. Initially, all nodes

see one another, but following a succession of events (losses and recoveries of nodes), only two nodes

can communicate and the quorum is broken. In some cases, a cluster can have more than one quorum,

for example if we reduce the required votes to 2 and two pairs of servers that see each other are isolated.

This behavior is usually undesirable and called a “split-brain”.

We have implemented in UPPAAL several behavioral models for Corosync, one of which is shown

in figure V.13. The source files for the complete models are available on Github
3
. A cluster (figure V.13a)

is modeled as a system which can either be QUORATE or INQUORATE, depending on whether its members

(here, nodes) reach a quorum (quorums() > 0) or not (quorums() == 0). A simplified implementation,

limited to one quorum, is given in appendix B.1.2. To detect several quorums, we have adapted the

Tarjan’s strongly connected components algorithm
4
[Tarjan72] to UPPAAL, by reimplementing it in a

non-recursive way. The algorithm allows us to identify isolated groups of nodes that can communicate

with one another, thus able to form small quorums. Its implementation is given in appendix B.1.3.

3https://github.com/CAPRICA-Project/UPPAAL-models
4
Algorithm used for finding the strongly connected components of a directed graph in linear time. Strongly connected

components are subgraphs that are strongly connected, that is, where each vertex is reachable from the others.

65

https://github.com/CAPRICA-Project/UPPAAL-models
https://github.com/CAPRICA-Project/UPPAAL-models

Modeling IT Infrastructures V. CHECKING IT INFRASTRUCTURES

Q

1
2

3
4

5 Q

1
2

3
4

5 Q

1

3

2

4

5

Q

3

1
2

4

5Q

3

5

1
2

4

Q

3
4

5

1
2

Figure V.12: Loss of a 5-node quorum with 3 votes

Legend. Up, Down, Q Quorum

(a) Corosync cluster model

Cluster

(b) Corosync node model

Node(i)

Figure V.13: UPPAAL model of Corosync

66

V. CHECKING IT INFRASTRUCTURES Modeling IT Infrastructures

Q

1
2

3
4

5

Q

1
2

3
4

5

Q

1

3

2

4

5

Q

3

1
2

4

5

Q

3

5

1
2

4

Q

3
4

5

1
2

Figure V.14: Trace of the loss of a 5-node quorum with 3 votes

Nodes (figure V.13b) can advertise their presence (up[i]!5) to the others (up[j]?6), which may

or may not receive it (received! or not_received!). They can fail (fail[i]!), which is detected by

the other nodes (fail[j]?), and recover from a failure (recover[i]!). seems_up[i][j] represents

whether or not node i thinks node j is up. Finally, reset() is an internal function taking care of resetting

some variables when a node fails. The complete UPPAAL code is given in appendix B.1.4.

We show a UPPAAL simulation trace corresponding to the loss of quorum scenario shown in

figure V.12 in figure V.14.

Composition

We now have two technical models (the physical infrastructure and the network infrastructure) and a

formal model (the functional infrastructure). We want to get a complete view of the infrastructure from

these models. On the one hand, technical models are obtained from specialized tools used on a daily

basis within the company; it is important to avoid interfering with the employees’ habits by modifying

5
The exclamation mark means here “send a message to everyone”

6
The question mark means here “receive a message”

67

Modeling IT Infrastructures V. CHECKING IT INFRASTRUCTURES

Physical

42

41

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

PA1-R01-01-SW1

PA1-R01-01-SW2

PA1-R01-01-HV1

PA1-R01-01-HV2

42

41

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

PA1-R02-01-SW1

PA1-R02-01-SW2

PA1-R02-01-HV1

PA1-R02-01-HV2

42

41

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

PA1-RS1-01-RO1

PA1-RS1-01-RO2

PA1-RS1-01-SW1

PA1-RS1-01-SW2

42

41

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

PA2-R01-01-SW1

PA2-R01-01-SW2

PA2-R01-01-HV1

PA2-R01-01-HV2

42

41

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

PA2-R02-01-SW1

PA2-R02-01-SW2

PA2-R02-01-HV1

PA2-R02-01-HV2

42

41

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

PA2-RS1-01-RO1

PA2-RS1-01-RO2

PA2-RS1-01-SW1

PA2-RS1-01-SW2

Network

L2
VP

N

PA1-R01-01-SW1 PA1-R01-01-HV1

PA1-R01-01-SW2 PA1-R01-01-HV2

PA1-R02-01-SW1 PA1-R02-01-HV1

PA1-R02-01-SW2 PA1-R02-01-HV2

PA2-R01-01-SW1 PA2-R01-01-HV1

PA2-R01-01-SW2 PA2-R01-01-HV2

PA2-R02-01-SW1

PA2-R02-01-HV1PA2-R02-01-SW2

PA2-R02-01-HV2

PA1-RS1-01-SW1

PA1-RS1-01-SW2

PA2-RS1-01-SW1

PA2-RS1-01-SW2

PA1-RS1-01-RO1

PA1-RS1-01-RO2

PA2-RS1-01-RO1

PA2-RS1-01-RO2

Functional

f1

f2

Figure V.15: Linking technical models to a formal model

(a) Structural node model

Structural node(i)
(b) Network node model

Network node(i)

Figure V.16: UPPAAL transitional models

Physical

42

41

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

PA1-R01-01-SW1

PA1-R01-01-SW2

PA1-R01-01-HV1

PA1-R01-01-HV2

42

41

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

PA1-R02-01-SW1

PA1-R02-01-SW2

PA1-R02-01-HV1

PA1-R02-01-HV2

42

41

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

PA1-RS1-01-RO1

PA1-RS1-01-RO2

PA1-RS1-01-SW1

PA1-RS1-01-SW2

42

41

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

PA2-R01-01-SW1

PA2-R01-01-SW2

PA2-R01-01-HV1

PA2-R01-01-HV2

42

41

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

PA2-R02-01-SW1

PA2-R02-01-SW2

PA2-R02-01-HV1

PA2-R02-01-HV2

42

41

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

PA2-RS1-01-RO1

PA2-RS1-01-RO2

PA2-RS1-01-SW1

PA2-RS1-01-SW2

Network

L2
VP

N

PA1-R01-01-SW1 PA1-R01-01-HV1

PA1-R01-01-SW2 PA1-R01-01-HV2

PA1-R02-01-SW1 PA1-R02-01-HV1

PA1-R02-01-SW2 PA1-R02-01-HV2

PA2-R01-01-SW1 PA2-R01-01-HV1

PA2-R01-01-SW2 PA2-R01-01-HV2

PA2-R02-01-SW1

PA2-R02-01-HV1PA2-R02-01-SW2

PA2-R02-01-HV2

PA1-RS1-01-SW1

PA1-RS1-01-SW2

PA2-RS1-01-SW1

PA2-RS1-01-SW2

PA1-RS1-01-RO1

PA1-RS1-01-RO2

PA2-RS1-01-RO1

PA2-RS1-01-RO2

Transitional

Transitional

Functional

STRUCTURE

NETWORK

1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 1 1 0 0
0 1 1 0 0
0 1 1
0 1 1
0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 1
0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0

Figure V.17: Linking technical models to a formal model thanks to transitional models

68

V. CHECKING IT INFRASTRUCTURES Model checking

the tools or the models they produce. On the other hand, it is impossible to feed these models directly to

our formal model. We want to link the models as shown in figure V.15, and therefore need to transform

the technical ones by defining the f1 and f2 transformations.

First, we want to integrate the physical topology to take into account failures caused by external

events related to the physical location of nodes (power loss, earthquakes...). We model a physical room

or datacenter as a simple state machine that can either be WORKING or FAILED, and call it a “structural”

node. The model is shown on figure V.16a. Due to any reason, such nodes can fail (str_fail[i]!) and

work again (str_recover[i]!). We keep track of the failed structural nodes in the str_failed array.

These nodes can be contained by other nodes (for example, a room inside a datacenter), so we keep

track of these relationships in an adjacency matrix, STRUCTURE.

Then, we want to deal with the network aspects of the infrastructure. We model network devices as

so-called “network” nodes, shown on figure V.16b. These nodes can be UP or DOWN, and fail and recover

from a failure. We use the net channel to inform other nodes that the network state has changed. We

keep track of an adjacency matrix, can_communicate, which is updated each time a network node’s

state changes. To update this matrix, we run the Floyd–Warshall algorithm
7
[Floyd62] to identify which

nodes are able to communicate with which. The network topology is stored as a matrix NETWORK. The

code for the model is given in appendix B.1.5.

The final model assembly is shown on figure V.17, in which we have integrated the models shown

in figure V.16 (called “transitional” models). For the sake of clarity, we have skipped over a number of

details concerning the synchronization of str_fail, which the curious reader can find in the model’s

source code online. The code for the assembled model is given in appendix B.1.6.

Now that we have all the models that we need, it is time to take a look at the various verifications

we can perform on them.

Model checkingModel checkingModel checkingModel checkingModel checkingModel checkingModel checkingModel checkingModel checkingModel checkingModel checkingModel checkingV.3 Model checking

But first, a little context. From the technical to themore formal models presented in the previous section, it

is possible to drawmeaningful conclusions for risk analysis. Models built on robust semantic foundations

can offer analytical capabilities for verification (evaluating system compliance to requirements) and

validation (ensuring that the systemmeets initial needs). Checkingmodels with a verification tool consists

in establishing a verdict on the soundness of statements (properties) with respect to the verifier’s own

set of theories. We traditionally identify the following two families of properties:

• Safety properties, intuitively expressing that “bad things do not happen”, with

– invariants, expressing conditions that always hold true,

– deadlock freedom properties, ensuring that the system never enters a state where progress
8

is not possible,

– reachability properties, investigating whether it is possible to reach a particular state from

the initial state;

7
Algorithm used for finding shortest paths in a directed weighted graph in cubic time.

8
Moving from one state to another

69

Model checking V. CHECKING IT INFRASTRUCTURES

• Liveness properties, intuitively expressing that “good things happen”, with

– eventualities, referring to properties that eventually become true,

– fairness properties, ensuring that resources are fairly shared,

– termination properties, ensuring that a process eventually terminates.

As with the modeling criteria described in section V.2, model checkers are often able to check models

with a combination of these property kinds, with varying degrees of expressivity. In this section, we

first focus on properties and how to check them, then we discuss some of the limitations inherent to

model checking, before returning to our case study.

V.3.1 Properties and checkers

The use of formal methods allows precise verification of system properties and behavior. For instance,

formal methods can be used to verify the correctness of algorithms and assist in verifying safety and

security properties of critical components. The main idea is analogous to risk analysis: we prescribe

good things and proscribe bad things.

Unfortunately, technical methods do not offer the same range of verification as their formal counter-

parts [Qadir15]. Models can be studied, executed, verified, validated and, to a certain extent, proved (to

verify existentials and refute universals). However, proofs on technical models requiring the exploration

of a full state space are often doomed to failure, since the spaces in which these models live are often

not formalized.

In formal ecosystems such as Alloy, this state space is properly defined, and tools such as the Alloy

Analyzer allow to perform automated checks to verify that a model satisfies its specified constraints and

properties. The analyzer uses SAT solvers to explore the model’s state space exhaustively on a finite

number of objects (to ensure decidability). It makes it possible to find errors in specifications and to

generate instances that satisfy given conditions.

In the case of automata models (and more generally, state-transition models), it is possible to animate

them (execute them step-by-step); an execution of our lock example (figure V.8, on page 62) with the

UPPAAL simulator is shown on figure V.18. In this execution, we validate the intended behavior of our

lock, that is, two processes cannot perform actions in the critical section at the same time, although

the validation is performed on a small subset of the state space. To check properties exhaustively, the

UPPAAL verifier allows to express properties in Computation Tree Logic (CTL) and check safety criteria

(absence of deadlocks, progress, etc.). In our lock example, we can prove that only one process enters

the critical region with the property p : A[] critical ≤ 1 (in UPPAAL’s CTL flavor).

Expressing these properties is not always straightforward: the logical formulation of intuitive

concepts such as “S precedes P between Q and R” can be daunting to write. In regular CTL, it would be

AG(Q & !R -> A[(!P | AG(!R)) W (S | R)]) with W the “weak until”
9
operator. In UPPAAL, the

process is much more complex, as mentioned in section V.4.

In principle, this formal verification is very appealing, but as the systems studied grow, the size of

the state space explodes [Clarke12], possibly hindering verification within a reasonable timeframe.

9A W B means that A has to hold at least until B; if B never becomes true, A must remain true forever

70

V. CHECKING IT INFRASTRUCTURES Model checking

Figure V.18: Execution of our lock model in the UPPAAL simulator

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
10−3

10−2

10−1

100

101

n

Ti
m
e
(s
)

Figure V.19: Verification time for property p in our lock example as a function of the number n of

composed processes. The graph represents a single run of experiments, and therefore does not feature

error bars.

Pessimistic Optimistic Abstractionist

Figure V.20: State space exploration strategies

71

Model checking V. CHECKING IT INFRASTRUCTURES

V.3.2 The need for proper abstractions

Model checking calls for a keen focus on proper abstraction and granularity, asmentioned in section IV.4.1.

As models become more complex, their state spaces grow exponentially, and verification can lead to

combinatorial explosions. The verification of the property p on our lock model with n = 3 processes

takes at most a few milliseconds on a modern machine. However, increasing the number of processes

leads to an exponential increase of verification time, as depicted in figure V.19.

It is not uncommon for model checkers to fail because of spatial or temporal constraints [Metzler19].

That does not mean, however, that no conclusion can be drawn from a failed verification [Pavese16]:

the nature of the state space and the techniques used to explore it play an important role. From a

purely probabilistic point of view, the more undesirable states there are, the greater the chance of

encountering them; “the longer our checker takes to find errors, the greater the chance that there are

none”. The literature shows three responses to this, represented in figure V.20, which we provocatively

call “pessimistic”, “optimistic” and “abstractionist”:

• The pessimistic approach is to say “if we cannot reduce the state space, let us reduce the scope of

our analysis”. This is what is done in bounded model checking engines such as Alloy, and often

consists in adopting an iterative deepening depth-first search of state spaces;

• The optimistic approach is to say “if we cannot reduce the state space, let us hope to find a clever

exploration strategy”. This is what is done in modular and probabilistic model checkers such as

Storm, presented in [Dehnert17];

• The abstractionist approach is to say “if we cannot reduce the state space, let us simplify the

system and refine only the parts that do not satisfy our properties”. This is what is done in

counterexample-guided abstraction refinement [Clarke00].

Although these methods can help navigate state spaces, it is sometimes more pragmatic to opt for

multiple smaller models as opposed to a monolithic global model. First, the composition of models can

benefit from the advantages of several model checkers, potentially widening the range of property kinds

available. Second, checking small models reduces the overall number of states, making them easier to

check. This strategy necessitates however a careful consideration to ensure the holistic dynamics of

the system are not compromised, thus insisting on the semantics of system composition. Let us look at

those aspects in our case study.

V.3.3 Going back to our case study

To ensure the safety of our cluster, we want to prove the following properties:

P1: The cluster can be quorate and at any given time, there is at most one quorum, to avoid “split-brain”

conditions;

P2: There is no single point of failure in the infrastructure;

P3: (Ideally,) There is no dual point of failure in the infrastructure.

We revise our diagram from figure V.17 (page 68) in figure V.21 to add these properties. More generally,

we can ask ourselves the following question: “what is the smallest number of failures such that our

cluster fails?”.

72

V. CHECKING IT INFRASTRUCTURES Model checking

Physical

42

41

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

PA1-R01-01-SW1

PA1-R01-01-SW2

PA1-R01-01-HV1

PA1-R01-01-HV2

42

41

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

PA1-R02-01-SW1

PA1-R02-01-SW2

PA1-R02-01-HV1

PA1-R02-01-HV2

42

41

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

PA1-RS1-01-RO1

PA1-RS1-01-RO2

PA1-RS1-01-SW1

PA1-RS1-01-SW2

42

41

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

PA2-R01-01-SW1

PA2-R01-01-SW2

PA2-R01-01-HV1

PA2-R01-01-HV2

42

41

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

PA2-R02-01-SW1

PA2-R02-01-SW2

PA2-R02-01-HV1

PA2-R02-01-HV2

42

41

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

add device

PA2-RS1-01-RO1

PA2-RS1-01-RO2

PA2-RS1-01-SW1

PA2-RS1-01-SW2

Network

L2
VP

N

PA1-R01-01-SW1 PA1-R01-01-HV1

PA1-R01-01-SW2 PA1-R01-01-HV2

PA1-R02-01-SW1 PA1-R02-01-HV1

PA1-R02-01-SW2 PA1-R02-01-HV2

PA2-R01-01-SW1 PA2-R01-01-HV1

PA2-R01-01-SW2 PA2-R01-01-HV2

PA2-R02-01-SW1

PA2-R02-01-HV1PA2-R02-01-SW2

PA2-R02-01-HV2

PA1-RS1-01-SW1

PA1-RS1-01-SW2

PA2-RS1-01-SW1

PA2-RS1-01-SW2

PA1-RS1-01-RO1

PA1-RS1-01-RO2

PA2-RS1-01-RO1

PA2-RS1-01-RO2

Transitional

Transitional

Functional

? P1

? P2

? P3

STRUCTURE

NETWORK

1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 1 1 0 0
0 1 1 0 0
0 1 1
0 1 1
0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 1
0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0

Figure V.21: Composed model with its properties

First and foremost, we can navigate UPPAAL’s simulator to explore our system and devise verification

scenarios:

S1. Consider a 5-votes quorum, make every node communicate with one another, then cut the

electricity in PA1-RS1;

S2. Consider a 4-votes quorum
10
, make every node communicate with one another, then cut the

network links between PA1 and PA2;

S3. Consider a 5-votes quorum, make every node communicate with one another, then cut the

electricity in PA1-R01, then PA1-R02.

Upon execution, we get the traces shown in the appendices in figures B.1 to B.3 (pages 156 to 158). The

first scenario shows a violation of P2, the second one shows a violation of P1, and the third one shows a

violation of P3.

Formally speaking, we have proved by counterexample that the properties do not hold. However,

the process is lengthy and does not adapt to, say, a reconfiguration of the cluster. Reinterpreting P1

as a combination of CTL statements is rather easy with our model: P1 : (E<> Cluster.QUORATE) ∧
(A[] Cluster.quorums() ≤ 1). We have however no way to express P2 and P3; our model needs to

change. Additionally, the use of algorithms such as those of Tarjan or Floyd-Warshall both increase

the state space and slow down the computation of each state by UPPAAL’s solver (due to its Θ
(
n3)

complexity)
11
.

10
Tarjan-enabled version of the model only

11
Although even without both algorithms, P1 does not check within one hour on a high-end computer

73

Model checking V. CHECKING IT INFRASTRUCTURES

Simplified cluster
Simplified node(i)

Figure V.22: Simplified UPPAAL model for our system

Because our properties only deal with quorums and failures, modeling more behaviors only leads

to combinatorial explosion. More precisely, a large part of our state space is useless for proving our

properties:

• The fact that the different nodes can come back up has no influence on our properties and therefore

generate superfluous transitions and states;

• Obtaining a quorum requires at least v× n transitions from the initial state, and n2
transitions for

an optimal situation in which every node is seen by one another, where v is the required number

of votes and n the number of nodes. P2 and P3 only make sense when analyzing the loss of a

quorum, so it is safe to assume an optimal initial situation, simplifying the state exploration
12
;

• Because we assume an optimal initial state, P1 can be overapproximated with P′1 : v ≥
⌈ n

2

⌉
,

making the property trivially provable by an arithmetic checker.

We have therefore adopted a much simpler approach: a cluster is quorate by default, and becomes

inquorate as soon as the amount of votes from nodes is lower than v. Additionally, nodes (whether
regular, structural or network) have now a single action: become inoperative (kill(i)) if they are not

already down (!down[i]). Everytime a node becomes down, a counter, actions, is increased; when the

node is a regular node, an additional counter, node_actions, is increased. The new model is shown on

figure V.22. The code logic is similar to that described in the previous section. We have encoded two

families of properties in this model:

• p (j) : E<> actions ≤ j && Cluster.INQUORATE, helping us identify how many node failures

(actions) lead to a loss of quorum (Cluster.INQUORATE);

• q (j) : E<> actions ≤ j && actions == node_actions && Cluster.INQUORATE, given here

purely as an example, helping us identify howmany regular nodes have to go down (node_actions

to lose the quorum (Cluster.INQUORATE).

Also, P′1 is verified by design, P2 = p (1) and P3 = p (2). Checking the model with UPPAAL gives us:

p (j) 7→
{
⊤ if j ≥ 1

? otherwise

q (j) 7→
{
⊤ if j ≥ 4

? otherwise

This is enough to (dis)prove our properties, but exhaustive exploration fails once again. For this study,

the situation is not particularly important, as the “?” verdicts are beyond scope, but other properties

may require that we split the {Corosync+ structure+ network} model into {Corosync+ structure}
and {Corosync+ network} models.

12
In our example, this reduces the depth of state exploration by n2 = 64, which is considerable.

74

V. CHECKING IT INFRASTRUCTURES Automating risk assessment

We can draw three important conclusions from the practitioner’s point of view from this case study:

• If a mathematical projection is identified, technical models can easily be brought into the formal

world; luckily, many elements of IT infrastructures can be modeled as graphs, or equivalently as

matrices;

• Models and properties are tightly coupled: certain model design choices may make it impossible

to verify certain properties; both should be chosen at the same time;

• Holistic models are doomed to fail in automatic verification: they may be a great choice for manual

execution to check traces or demonstrate how a system works, but often generate too many states,

which can be very costly to reduce.

With that out of the way, we can now discuss the question of automating the process, and how to

avoid repeating the same mistakes.

Automating risk assessmentAutomating risk assessmentAutomating risk assessmentAutomating risk assessmentAutomating risk assessmentAutomating risk assessmentAutomating risk assessmentAutomating risk assessmentAutomating risk assessmentAutomating risk assessmentAutomating risk assessmentAutomating risk assessmentV.4 Automating risk assessment

First of all, fully automating IT infrastructure checking does not seem realistic. As we have seen

throughout this chapter, formal infrastructure models can be generated automatically from technical

models, but in the end, these truth sources are created and maintained by human beings. In addition,

formal models that are not produced from technical models are designed, optimized, and sometimes

abstracted and generalized by domain experts. In this section, we first look at how to define formal

properties and then discuss how an automated assistant can help with risk assessment.

V.4.1 Expressing formal properties...

The various risk taxonomies that we presented in section IV.2.1 offer a high-level textual representation

of what characterizes risk. They can break down risks into criteria that we can translate into formal

properties. This translation can be done manually or using natural language processing tools. Let us

consider for example the section AC-3 – Access Enforcement of NIST SP 800-53. Control enhancement 5

(Security-relevant information) reads “Prevent access to [Assignment: organization-defined security-

relevant information] except during secure, non-operable system states.”. The element between brackets

is defined as customizable by the standard; here we can consider it to mean “secure resources”.

We can transform this sentence into a parse tree, as shown on figure V.23, to help us formulate

a property. The words “during” and “states” suggest that we can use a temporal logic to express this

property. Noun phrases (NP) can be expressed as states; let us define S1:“access to critical resources”

and S2:“secure, non-operable system state”. Then, key words such as “prevent <X>” and “except during

<Y>” can respectively be transformed as ¬X and ∨Y, giving us the property p : ¬S1 ∨ S2, which we can

temporalize in LTL as p′ : □¬S1 ∨ S2 (where □ means “always”).

Sometimes, the keywords are not easy to express in, say, LTL or CTL. For example, formulae for

“before”, “after” and “until” are dependent on the context and can be complex to combine. To ease the

specification of such properties, specification patterns for qualitative [Dwyer99], real-time [Konrad05]

and probabilistic [Grunske08] properties have been proposed and eventually aligned [Autili15] in the

literature. These patterns can be used as a basis for expressing complex properties such a “if we push

the power button on a powered-off server and it does not power on, then the server malfunctions”.

75

Automating risk assessment V. CHECKING IT INFRASTRUCTURES

S

VP

Prevent NP

NP

access

PP

to NP

critical resources

PP

except PP

during NP

secure, non-operable system states

Figure V.23: Parse tree for “Prevent access to critical resources except during secure, non-operable

system states”

Tools such as UPPAAL, however, only support a reduced subset of CTL, and expressing such

properties requires making changes to the model, underlining once again this strong coupling between

models and their properties.

V.4.2 ... and combining models together

Once we have our formal models and have expressed the risk in formal properties, we need to verify

them. Risk relates to specific infrastructure subsystems: the seismic risk does not directly affect software

components, just as the risk of an attack on a database does not directly affect a physical rack in a

datacenter. We must therefore:

1. Identify the sections of the infrastructure concerned by the risk;

2. Identify a set of models for these portions of the infrastructure that can be used to prove or

disprove safety and security properties;

3. Prove the properties or return to the operator the properties and models that are missing to

establish a risk verdict.

The first step involves assigning a set of labels to each risk, in order to characterize it. These labels

may have a hierarchical structure, indicating, for example, that one risk applies to all database engines,

while another applies specifically to SQL engines. Unique identifiers such as those from the Common

Platform Enumeration ([CPE]) help identify specific software and hardware, but lack this hierarchy of

concepts. For example, Proxmox VE 6.3 is identified as cpe:/a:proxmox:virtual_environment:6.3,

but there is no way to refer to a generic hypervisor. These labels should then be assigned in the actual

infrastructure to help identify systems concerned by a given risk.

The second step suggests that companies maintain a repository of models, associated with the actual

components. As we have seen, a single complete model is not always a good idea, so these models should

be reasonably sized and easily composable. A verification assistant can then decompose the risk into its

sub-risks expressed as logical properties, and choose the appropriate models to verify them.

76

V. CHECKING IT INFRASTRUCTURES Conclusion

Finally, the various model checkers queried by the assistant lead to a verdict that proves or disproves

the properties. If a verdict of “?” is reached, the proof assistant should give the control back to the human

operator to give them pointers for further model development.

ConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusionV.5 Conclusion

Model checking helps to guarantee safety and security properties, increasing overall confidence in

systems and simplifying auditing procedures. We have built this chapter around a case study illustrating

various issues that can arise in the modeling process and in the subsequent composition and verification

of the models produced. We have proposed an approach to alleviate the problems associated with human

judgement in the overly-manual discipline that is risk analysis. Future work on the subject may involve

looking at the interactions between diverse model checkers and the composition of their verdicts. But

do not be decieved: we do not make the process magically automatic (we actually think that it is not

possible); reducing the subjectivity of the practice is however a step towards building infrastructures

that are more safe and secure.

Having explored the assess part of the risk cycle, there are still functions that we have not yet

concretized, and this is the aim of the next chapter.

77

VI
Chapter VI

Deploying and Maintaining IT Infrastructures
Risk management Formal methods

Enterprise modeling

Risks

filter
Requirements

require

Constraints

constraint

Infrastructures

I

assess

reify

I′

I′′

δI (I′)

δI (I′′) iter

“
Karl Agathon — Snowbirds, Galactica. Regroup into de-

ployment formation and proceed to position one.

Margaret Edmondson— Snowbird One to Snowbirds, drop

point in eight seconds.

Louanne Katraine — Okay, Snowbirds, let’s get this de-

ployment bang on.

Battlestar Galactica – Occupation”

Contents

VI.1 Requirements–configuration–execution triad . 80

VI.1.1 Inconsistencies . 81

VI.1.2 Change . 82

VI.1.3 Formalization . 83

VI.1.4 Approach . 84

VI.2 The CL/I language . 84

VI.2.1 Another language? . 84

VI.2.2 Modeling in CL/I . 85

VI.2.3 Syntactic processing . 86

VI.2.4 Semantic processing . 88

VI.2.5 Extensions . 90

VI.3 Mapping into Z3 . 91

VI.3.1 Translation rules . 92

VI.3.2 Conformance checking . 95

VI.4 Case studies . 95

VI.4.1 Virtual environment model . 95

VI.4.2 Proxmox VE configuration and execution . 97

VI.4.3 Model checking . 98

VI.4.4 Scaling . 99

VI.4.5 A more complete case study . 100

VI.5 Conclusion . 101

79

Requirements–configuration–execution triad VI. DEPLOYING AND MAINTAINING IT INFRASTRUCTURES

If we look back at the risk cycle we presented earlier, the risk assessment process allows to define a

set of requirements, which in turn lead to the creation of constraints, materializing into an infrastructure.

Let us take a step back: this process is not specific to risk management and can clearly be applied to the

design of infrastructures more generally. This is what we explore in this chapter.

IT infrastructures are inherently dynamic, constantly evolving to accomodate the changing needs

of modern businesses. As organizations strive to stay at the forefront, the complexity of these infras-

tructures grow [Wehling17], and the trend is further accelerated by the rise of cloud technologies. Such

a complexity introduces challenges in ensuring their proper functioning and adherence to specified

requirements [Ozkaya23]. From the initial definition of requirements to the configuration, deployment

and execution of applications, non-conformities can arise due to many factors and their presence in

critical infrastructures can be catastrophic [Graham19].

In addition to safety and security risks, these infrastructures are subject to regulations and must com-

ply with audits for companies to be allowed to continue their activities. For example, in Europe, banking

infrastructures must be compliant with the Revised Payment Services Directive ([PSD2]). Addressing

these problems while ensuring the desired safety and security properties on IT infrastructures requires

comprehensive modeling and verification techniques which can be costly to implement. In this chapter,

we choose to focus on the requirements–configuration–execution triad, by studying non-conformities

between, and within, each of these three aspects of the infrastructure lifecycle. More specifically, we

study how requirements are translated into infrastructure configuration, how this configuration is re-

flected in the execution of the infrastructure, and how this execution may or may not conform to the

initial requirements.

In line with infrastructure as code approaches [Hüttermann12; Artac17], we present in this chapter a

component-oriented infrastructure description language, CL/I, proposed to express these three aspects

in a common framework. First, we adapt our formalism in section VI.1 to address the infrastructure

design process that we cover in this chapter. Then, we introduce through examples in section VI.2 CL/I,

an infrastructure description language that we have developed in the course of our work. Next, we show

how to link our language to the Z3 theorem prover to perform model checking in section VI.3. We then

present two case studies validating our approach in section VI.4. Finally, we conclude this chapter in

section VI.5.

Requirements–configuration–execution triadRequirements–configuration–execution triadRequirements–configuration–execution triadRequirements–configuration–execution triadRequirements–configuration–execution triadRequirements–configuration–execution triadRequirements–configuration–execution triadRequirements–configuration–execution triadRequirements–configuration–execution triadRequirements–configuration–execution triadRequirements–configuration–execution triadRequirements–configuration–execution triadVI.1 Requirements–configuration–execution triad

To outline the integration of a project into an IT infrastructure, we can ask ourselves three questions:

1. What is wanted for our project?

2. What is asked to the infrastructure?

3. What is done by the infrastructure?

At the origin of a new project, a need is expressed and translated into requirements, what we actually

want. To fulfill this need, we ask infrastructures and their components to operate as required through a

special configuration
1
. Lastly, the infrastructure exhibits a particular behavior during its operation, the

work that the elements constituting it actually do.

1
We mean “configuration” in a broad sense: software configuration, systems architecture, and more generally anything

that controls structure and behavior.

80

VI. DEPLOYING AND MAINTAINING IT INFRASTRUCTURES Requirements–configuration–execution triad

Requirements
R

Configuration
C

Execution
E

Legend. Development cycle

Conformance to

Technological/organizational

separation

Continuous evolution

Figure VI.1: Requirements–configuration–execution triad: technical point of view

If we take the example of a banking application, it could correspond to the following:

1. We want a performant banking infrastructure, that i) is fully PCI DSS compliant and ii) respects

its service-level agreements (SLA) with its clients;

2. We ask for i) proper access rights to cardholder data, through a careful definition of roles; ii) proper

SLAs, by setting up redundancy and using efficient systems;

3. The infrastructure enables to do high performance electronic transactions and customer support.

In this section, we first have a look at the different inconsistencies that can arise between the

wanted, the asked and the done. Then, we provide further details on our notion of change, mentioned in

section IV.1.4. We finally formalize the scope of this chapter, before describing our approach.

VI.1.1 Inconsistencies

Sometimes in infrastructures, the asked does not match the wanted if the requirements are not (or no

longer) properly translated into an application’s configuration [Bleikertz15]. For example, if we define

access rights that do not match PCI DSS criteria or if such requirements evolve over time without being

updated in the configuration. Sometimes, the done does not (or no longer) correspond to the asked if

bugs arise or conflicting orders are given during runtime. For example, if memory leaks lead to unstable

behavior or if we push new configuration files that are not taken into account by the application. Finally,

the done sometimes does not (or no longer) answer the wanted if the application has to (temporarily)

break invariants to face exceptional situations. For example, if banking transactions are automatically

accepted in case of an outage, or if the service cannot cope with an excessive influx of requests (legitimate

or not). This requirements–configuration–execution triad is shown on figure VI.1, where we represent

each element as a continuously evolving process along the development cycle. We also show how the

conformance is evaluated: configuration shall conform to requirements, and execution shall in turn

conform to both. The boundaries between the asked, the wanted and the done make it difficult to ensure

consistency between the three, notably due to semantic gaps.

Although they are often causally linked (if an application is misconfigured, it probably does not work

the way we intend it to), the three classes of inconsistencies described previously may arise for different

reasons. For example, let us consider a virtualized infrastructure with k virtual machines (v1, ..., vk) and

l physical hosts (n1, ..., nl) with the safety requirement R: “v1 and v2 run together on the same physical

host”. The virtualization environment may be misconfigured if a human operator fails to implement the

81

Requirements–configuration–execution triad VI. DEPLOYING AND MAINTAINING IT INFRASTRUCTURES

safety requirement in the configuration language, but this does not necessarily lead to the requirement

being violated. Indeed, if v1 and v2 are run on the same host ni and are never relocated on other hosts,

the requirement holds. If a user forces one of the virtual machines to run on another host, the execution

would behave outside of the domain set by the configuration, breaking the requirement. Finally, if

there is a failure on ni, v1 may be moved onto another node and be running, while v2 has not yet been

relocated, also breaking the requirement. Further examples of properties on virtualized infrastructures

are given in section VI.4.

VI.1.2 Change

In addition to these considerations, infrastructures and needs evolve, to respond to urgent events (such

as emergency patches [Liu09]), when regulations change, or as companies and products mature (vertical

and horizontal scaling). This new dimension implies the need to maintain conformance over time,

leading to infrastructure and code erosion issues [deSilva12]. Such changes can occur frequently in

cloud infrastructures, making automation an interesting option [Weinreich14].

As we mentioned in section IV.1.4, these changes have a cost, which can vary from one company to

another. For example, we may want to minimise the financial impact of purchasing new hardware or

the time impact of configuring new applications. To help with change management, we can represent

the differences between two infrastructures (the δ in our formalism in chapter IV) as a directed graph of

changes, in which each edge represents a change with a measurable cost for the company, as shown

in figure VI.2. In this figure, we represent checkpoints (i1, i2, . . . , in+1), between which changes are

represented as colored edges. Each edge color represents a different “kind” of change (defined on the

left graph), to which we can assign weights to represent the priorities of a company (with regard to

finance, time, etc.).

For example, suppose that between checkpoints in−1 and in, we have developed two components of

an application and deployed them on an existing physical server (steps represented between the dashed

lines on the center and right graphs). We have measured for in that the application is slow at peak

times, so we need to update our infrastructure. in+1 (center graph) represents a horizontal scaling, that

is, we deploy part of the application on another physical server (in addition to the existing server) to

distribute the load. The cost of the change is the combined cost of purchasing a new server, setting it up

and deploying the application on it. Conversely, i′n+1 (right graph) represents a vertical scaling, that is,

we redeploy the whole application on a server with better resources (replacing the existing server). Here,

the cost is also the combined cost of purchasing a server, setting it up and deploying the application,

along with the cost of canceling the changes from in−1 to in. Depending on the importance of each of

these costs for the company, solution in+1 or i′n+1 may be adopted.

We argue that adopting a systematic method decomposing changes as small steps that we can

categorize can simplify the decision-making process, by allowing to estimate costs more precisely.

The cost of undoing changes should however not be underestimated: for example, decommissioning a

physical server involves a cost of storage or recycling, and even a cost of erasing or destroying disks for

sensitive activities.

82

VI. DEPLOYING AND MAINTAINING IT INFRASTRUCTURES Requirements–configuration–execution triad

i1

i2

in

develop
develop

combine

purchase

set up

deploy ▶ ▷ on

in−1

in

in+1

▶ ▶ ▷

▶ ▷

in−1

in

i′n+1

▶ ▶ ▷

▶ ▶ ▷

Figure VI.2: Deployment graphs

R C

E

configure

run
meet

Legend. Development cycle

Conformance to

Technological/organizational

separation

Figure VI.3: Requirements–configuration–execution triad: mathematical point of view

VI.1.3 Formalization

For the sake of completeness with respect to our formalism, we define, for a given application with a

given configuration language, R the set of all requirements, C the set of all possible configurations and

E the set of all possible executions. The possible implementations of a set of requirements r ∈ P(R)

is a function configure from P(R) to P(C) that translates r into a set of possible configurations.

The configuration of the application runtime is a function run from C to P(E) that maps a chosen

configuration (not necessarily meeting the requirements) into the possible executions that it leads to.

Finally, the satisfied requirements by a set of executions is a function meet from P(E) to P(R) that

“observes” a sample of the application executions and tells which requirements it satisfies (not necessarily

the initial ones)
2
. We can refine the triad of figure VI.1 as shown in figure VI.3, in which we represent

a cycle where observed executions of an application (run with a configuration translated from some

requirements) meet requirements that are not aligned to the initial ones.

2
Formal methods can be used to model executions and prove the conformance to requirements, but the actual execution

on physical components can exhibit behaviors outside the ideal domain of an execution model.

83

The CL/I language VI. DEPLOYING AND MAINTAINING IT INFRASTRUCTURES

R C

E

Legend. Development cycle

Conformance to

Our approach

Definition of our scope

Figure VI.4: Requirements–configuration–execution triad: our approach

VI.1.4 Approach

From a technical point of view, it is difficult to generate a set of valid configurations (evaluating the

function configure), to fully characterize the behavior of an application (evaluating the function run)

and to determine which requirements a set of executions meets (evaluating the function meet). Instead,

our approach attempts to verify that a configuration satisfies the requirements, that the execution of an

application falls within what is permitted by its configuration, and that this execution also conforms to

the requirements. It is also essential to check the coherence of requirements and configurations to ensure

that the system is correctly defined. This study scope is presented in figure VI.4, where the requirements,

configurations and executions we study define a framework in which we check for conformance.

The CL/I languageThe CL/I languageThe CL/I languageThe CL/I languageThe CL/I languageThe CL/I languageThe CL/I languageThe CL/I languageThe CL/I languageThe CL/I languageThe CL/I languageThe CL/I languageVI.2 The CL/I language

Complex technical infrastructures rely on thousands of components that interact with one another [Som-

merville12], each of them having their own requirements, configuration and execution. To carry out

our approach on those, we have developed a component-oriented infrastructure modeling language,

CL/I, as a bridge between infrastructure modeling and formal methods. Much like developers reusing a

catalog of existing libraries, the main idea behind CL/I is to enable infrastructure designers to instantiate

models designed by system designers, augmented by models designed by technical experts and people

from formal methods communities, through a pivot language.

In this section, we defend the need for a new language and present the use of CL/I by example,

then outline various semantic processing rules that take place when expressing configurations and

requirements. It should be noted that at the current state of the project, the observation of executions is

delegated to external tools.

VI.2.1 Another language?

We are conducting our research in a corporate context.Within our company, many of the employees work

in technical positions and have a certain IT culture. For developers in particular, the work environment

and standard workflows revolve around the collaborative and dynamic culture of code production.

Despite this strong background, many technical staff have no particular modeling skills. Yet these

employees are the ones we aim to integrate into the risk management process.

As a result, the use of modeling languages such as UML is not common practice. When we focus

on infrastructures, it can be interesting to study their evolution and the impact of certain changes

on risk. The software development community is well equipped for such objectives, and versioning

84

VI. DEPLOYING AND MAINTAINING IT INFRASTRUCTURES The CL/I language

CL/I

UPPAAL

UML+OCL

Alloy

Monitoring

UPPAAL Verifier

Z3

OBP23

Deployment

Figure VI.5: Our language as a pivot between formal and informal tools

tools such as Git exist for this purpose. These tools often include features enabling precise tracking

of who is responsible for which changes, thus providing a precise control over the responsibilities of

each stakeholder. We discuss this responsibility aspect in greater detail in chapter VII. Given the lack

of a versioning system for graphical models, we decided in this work to use code, closer to the actual

employee’s habits.

Our language is not intended to replace existing modeling and verification tools, but rather to

federate them. The motivation behind the creation of our language is, as presented in the previous

chapter, to be able to compose and verify systems made of other systems from various origins. We want

to handle cases with several input models, to check infrastructure states in real-time, to verify properties

on models with external provers, to deploy verified infrastructure components on runtime platforms...

Our language then acts as a pivot in this ecosystem, represented in figure VI.5.

Within the company, many different professions coexist, each with its own tools, skills and respon-

sibilities. A pivot language allows to focus on the interactions between the components rather than the

methods used to design and represent them, and allows employees to keep their existing habits and

tools. Our aim in developing CL/I is to be able to federate diverse and heterogeneous models and, in the

long term, to verify properties on formal models, integrate these properties with higher-level or less

formal models, and draw conclusions about the overall risk on infrastructures. For example, we can

imagine a verified B component that we instantiate in our language, integrated to other components

verified by other tools, then deployed on a concrete infrastructure following a study of the safety and

security of the assembled system.

VI.2.2 Modeling in CL/I

CL/I is a component-oriented, statically typed modeling language designed to have a syntax close to

common object-oriented programming languages such as Java. It is component-oriented, as every thing

worth of modeling is represented as a component in the same way as it would be represented as a class

3
OBP [Teodorov23] is a requirement verification environment developed in our research team

85

The CL/I language VI. DEPLOYING AND MAINTAINING IT INFRASTRUCTURES

component User {
let id : Integer;
let homedir : String;
let name : String;

}

component Permission {
let u : Integer;
let g : Integer;
let o : Integer;

}

component File {
let owner : User;
let path : String;
let perm : Permission;

}

Figure VI.6: CL/I components for a user, a permission triple and a file

let root = User { id 0; homedir "/root"; name "root"; };

let 600_p = Permission { u 6; g 0; o 0; };
let 644_p = Permission { u 6; g 4; o 4; };
let 700_p = Permission { u 7; g 0; o 0; };

let file_1 = File { owner root; };
let file_2 = File { path "/root/test"; perm 755_p; };
let file_3 = File { path "/root/.ssh/test"; perm 755_p; };

Figure VI.7: CL/I instances of the components in figure VI.6. Note that not all instance attributes need

to be defined.

in Java. Types and components start with an uppercase letter and values and instances start with a

lowercase letter or a digit. As an example, we model a file on a Linux system with a path, an owner and

a permission triple in figure VI.6. Here, three concepts are represented as components with attributes:

• A user, with a unique identifier, a name and a home directory;

• A permission triple, which stores the authorization for the owner of a file (u), the users in the

file’s group (g) and other users (o);

• A file, with an owner, a path and a permission triple.

In CL/I, components can be instantiated by calling them with parameters between parentheses (or a

single pair of parentheses if no parameters are required) and their attributes can be assigned between

curly braces:

let instance = Component(param_1,param_2);

let instance_2 = Component();

let instance_3 = instance { attr_1 val_1; attr_2 val_2; };

For convenience, Component{...}
def
= Component(){...}. CL/I is designed to support partial specifi-

cations; unlike with traditional languages, components can be instantiated with some values remaining

undefined. Figure VI.7 shows several incomplete instances of the components defined in figure VI.6. For

the curious reader, the complete grammar of CL/I is presented in appendix C.1.

VI.2.3 Syntactic processing

clc is the reference CL/I compiler, developed in OCaml. Together with lexing (with ocamllex) and

parsing (with Menhir), the first processing step is to transform CL/I source code into an Abstract Syntax

Tree (AST). We have designed our ASTs in such a way that a well-typed AST is a valid language construct,

thus simplifying and systematizing semantic processing, at the cost of a slightly more complex AST

structure. Appendix C.2 presents this structure exhaustively, along with examples of sentences in CL/I

86

VI. DEPLOYING AND MAINTAINING IT INFRASTRUCTURES The CL/I language

DefType
=

LType User ⟨ ⟩<:

Component
(){ }∧

Def
=

LCons :

LSym id

RType Integer ⟨ ⟩<:

Def
=

LCons :

LSym homedir

RType String ⟨ ⟩<:

Def
=

LCons :

LSym name

RType String ⟨ ⟩<:

Def
=

LSym file_1

RInit { }

RTCall ()

RType File ⟨ ⟩<:

Set

RSym owner

RSym root

component User {
let id : Integer;
let homedir : String;
let name : String;

}

let file_1 = File { owner root; };

Figure VI.8: Syntactic transformation of the User component and the file_1 instance

87

The CL/I language VI. DEPLOYING AND MAINTAINING IT INFRASTRUCTURES

building each AST node. For illustrative purposes, we give in figure VI.8 the ASTs we get for the User

component and the file_1 instance. The main point, as with many languages, is that we separate terms

between those that go before the equal sign (lhs, for left hand side
4
) and those that go after (rhs, for

right hand side
5
).

A model (or a file) in CL/I is a succession of value and type definitions (let x = y; for values

and type T = U; for types), value initializations (x y;)6, and expressions (print(x);). Finally,

component definitions (component C { ... }) are represented as type definitions in ASTs.

VI.2.4 Semantic processing

We have designed CL/I with the purpose of interacting with various model checkers, so we decided to

adopt an approach based on an intermediate representation, as an exchange format. This intermediate

representation, named CLIR, flattens our data structures into integer-indexed symbol tables, which

makes it easier to encode our structures into tools that do not support our naming conventions or nested

data structures.

The intermediate representation consists of two symbol tables: one for the types defined in our

models, and one for their values. In the rest of this chapter T#i (respectively #i) for some i ∈N refers

to the type symbol (respectively value symbol) numbered i. The set of type symbols is denoted #T , and

the set of value symbols, #V . Their union, the set of symbols, is denoted # (# def
= #V ∪ #T).

Both CL/I types and values can have attributes (that we can access with value.attribute and

Type.attribute). The value of each attribute is encoded as a value symbol, and the set of attributes for

a type or a value is encoded as a map from strings (the name of the attributes) to value symbols. The type

of attribute maps is S→ #V (where S is the type of strings). In our File example of figure VI.6 (page 86),

the attribute map could be
7 [“owner” 7→ #1, “path” 7→ #2, “perm” 7→ #3]. We present the encoding in

more detail later in this subsection, in figure VI.9.

The symbol table for types records both the type of the type symbol and its set of attributes. It has

the type #T → T × (S→ #V), with T defined by the following grammar, adapted from a subset of our

AST
8
(where i is an integer):

T ::= Abstract | Unit | Boolean | String | Integer | List ⟨T#i⟩

Abstract denotes abstract types, and is used to encode CL/I components. The next four elements describe

the primitive types (Unit is used for values that return nothing). The last element represents lists (of a

given type T#i).

The symbol table for values records, for each value symbol, its value, its attributes and its type symbol.

It has the type #V → V× (S→ #V)× #T with V defined by the following grammar (where s is a string,

i is an integer and vectors denote a possibly empty list).

V ::= ? | Instance | Boolean true | Boolean false | String “s” | Integer i | r | List r⃗ | App(f , V⃗)

r ::= Ref i

f ::= = | and |⇒| ! | has | Ext s | ...

4
What OCaml calls patterns (type pattern in OCaml’s AST)

5
What OCaml calls expressions (type expression in OCaml’s AST)

6
Note here that both x and y are rhses, as we are not defining a new value, but setting an existing one.

7
Modulo numbering

8
Function types have not been properly implemented at the time of writing. Additionally, tuples are erased in the CLIR.

88

VI. DEPLOYING AND MAINTAINING IT INFRASTRUCTURES The CL/I language

CL/I

component Permission {...}

component User {...}

component File {
let owner : User;
let path : String;
let perm : Permission;

}

let file = File {
path "/root/test";

};

CLIR

T#1 7→ (String,∅)

T#2 7→ (Abstract, [· · ·])
T#3 7→ (Abstract, [· · ·])
T#4 7→ (Abstract, [“owner” 7→ #1, “path” 7→ #2, “perm” 7→ #3])

#1 7→ (?,∅, T#3)
#2 7→ (?,∅, T#1)
#3 7→ (?,∅, T#2)
#4 7→ (Inst., [“owner” 7→ #1, “path” 7→ #5, “perm” 7→ #3] , T#4)
#5 7→ (String “/root/test”,∅, T#1)

Figure VI.9: Translation from CL/I to the CLIR

CL/I is a modeling language addressing both completely defined models and partial models where some

values may be unknown (denoted “?”). The values of component instances are also abstract and denoted

Instance. The next four elements describe primitive values. Lists are encoded as lists of value references

(in the symbol table), and function applications allow to call predefined functions on values. External

operators and functions not defined in the core language are denoted Ext s .

We define the following functions to fetch elements from both tables:

v : #V → V a : #→ (S→ #V) t : #V → #T τ : #T → T

We illustrate in figure VI.9 a possible translation from part of our examples of figures VI.6 and VI.7

(page 86) to their corresponding CLIR. We invite the curious reader to read the semantic rules for the

translation in appendix C.3. We give in figure VI.10 three simplified rules (Let, LetCmp and LetEq) to

help understand the example. We denote E the association of names to symbols, and S and the symbol

table for types and values. fresh T#i (respectively #i) means that T#i (respectively #i) is a new, globally

unique, type (respectively value) symbol. Each of these rules produces (⇒) a pair of new name–symbol

associations and the updated symbol table.

Let transforms a typed value declaration in CL/I (let x : Y;) into a new symbol #i in the CLIR

linked to an unknown value of the corresponding type (?,∅, T#j), along with an association between the
value name and #i. LetCmp transforms a component definition in CL/I (component Y {t1; . . . ; tn}) into

a new type symbol T#i in the CLIR linked to an abstract type and the component attributes (Abstract, E ′),
along with an association between the component name and T#i. Finally, LetEq transforms a component

initialization in CL/I (let x = Y { x1 v1; . . . ; xn vn };) into a new symbol #i in the CLIR linked to

the component attributes with the new associations xi vi taken into account, along with an association

between the value name and #i.

In our previous example, File is registered as a type symbol (T#4, rule LetCmp), with its attributes

owner, path and perm mapping to empty values #1, #2 and #3 (rule Let). file is an instance of File,

initializing its attribute path to a specific value, stored in #5. file itself is stored in #4, with the same

symbol table as File, except for path pointing to the new symbol #5 (rule LetEq).

89

The CL/I language VI. DEPLOYING AND MAINTAINING IT INFRASTRUCTURES

Let

fresh #i E (Y) = T#j

⊢ E ,S , let x : Y;⇒ {x 7→ #i} ,S ∪ {#i 7→ (?,∅, T#j)}

LetCmp

fresh T#i ⊢ E ,S , t1; . . . ; tn ⇒ E ′,S ′

⊢ E ,S , component Y { t1; . . . ; tn }⇒ {Y 7→ T#i} ,S ′ ∪
{
T#i 7→

(
Abstract, E ′

)}

LetEq

fresh #i E (Y) = T#j ⊢ vi ⇒ #ki

⊢ let x = Y { x1 v1; . . . ; xn vn };⇒

{x 7→ #i} ,S ∪
{
#i 7→

(
Instance,

⋃
i
{xi 7→ #ki} ∪ a (T#j), T#j

)}

Figure VI.10: Simplified semantic rules from CL/I to the CLIR

<>

CL/I clc

100
00010
00110
10111

CLIR

100
00010
00110
10111

CLIR Model checker 1

101
00010
10110
10101

CLIR′ Execution engine 1

101
01010
11010
10001

CLIR′′

Figure VI.11: Two-stage processing of CL/I models

VI.2.5 Extensions

The CL/I language is designed to be compiled in two stages. The first one produces the intermediate

representation we have shown. This intermediate representation enables tools in the second compilation

stage to process symbols independently of the initial naming and AST structure. The second stage

schedules processing passes on the symbol table. These passes can for example be execution engines, to

run models, or model checkers and theorem provers, to prove properties on them. The interactions are

shown on figure VI.11, where tools directly manipulate the CLIR and can modify its values. We have

developed a simple runtime engine for computing model values, but we leave it to the reader to explore

the compiler’s source code
9
for details (which we feel would make this dissertation unwieldy). In the

rest of this chapter, we focus on linking our language to Z3.

Before moving on to the next section, let us extend our type grammar to include binary relation

types, useful to express logical properties:

T += Rel⟨R⟩
R ::= Equivalence | Symmetric | Asymmetric | ...

Let us also extend our value grammar to add universals, existentials and assertions:

V += ForAll(⃗r, v⃗) | Exists(⃗r, v⃗) | Assert(v)
9
Available on Github (https://github.com/CAPRICA-Project/CL-I).

90

https://github.com/CAPRICA-Project/CL-I

VI. DEPLOYING AND MAINTAINING IT INFRASTRUCTURES Mapping into Z3

It goes without saying that new AST structures are also defined, but we do not present them here

for the sake of brevity. These new constructs can be used like so:

component C {

let <<contains>> : Z3.Relation.Asymmetric;

}

for all (c1 : C, c2 : C, c3 : C) {

(c1 <<contains>> c2 and c2 <<contains>> c3) c1 <<contains>> c3;

};

Mapping into Z3Mapping into Z3Mapping into Z3Mapping into Z3Mapping into Z3Mapping into Z3Mapping into Z3Mapping into Z3Mapping into Z3Mapping into Z3Mapping into Z3Mapping into Z3VI.3 Mapping into Z3

Now that we have extended our grammars, let us dive into the mapping of our language with Z3.

SMT-LIB primer.

SMT-LIB [Barrett17] is an initiative to ease the development of SMT-based systems by providing

established standards. Among the elements of SMT-LIB, we use in this chapter its so-called input

langage for SMT solvers (which is the input language of Z3). Before explaining the translation of our

modeling language into Z3, we need to describe the basic elements of SMT-LIB on which we rely.

First, the syntax of SMT-LIB uses the Lisp notion of S-expressions. They are either made of a

single token or a sequence of S-expressions surrounded by parentheses. The most important tokens

for us are numerals, strings, symbols and keywords. A symbol is either a sequence of “unquotted”

letters, digits and characters like = or >, or “quoted” strings (i.e. strings between vertical bars |) which

can contain spaces or special characters such as #.

Second, a SMT-LIB program is called a script. It is composed of a sequence of commands. The

complete language contains a large number of commands but our translation uses only four of

them: assert to add a new assertion, check-sat to check the satisfiability of the previously defined

assertions, declare-sort and declare-fun to respectively declare a new symbol for a sort and a

function.

Third, assertions are terms expressing formulae in a multi-sorted first-order logic where each term

is associated to a sort (its type) and the composition of terms must be well-sorted. The solver comes

with predefined sorts such as Bool, Int or String and the user may declare new ones. Function

symbols have a rank specifying the sorts of their inputs and results. We rely on the forall and

exists variable binders, which quantify over a set of variables, each from a specified sort. Terms are

built from binders, the standard logical connectives, and symbols either predefined or defined by the

user.

In the rest of this chapter, we denote ε the empty SMT-LIB script. Composing several scripts may be

denoted ⊓ or expressed by putting the scripts one below the other. We use conjunction ∧ and disjunction

∨ operators to compose terms to produce respectively (and term1 ... termn) and (or term1 ...

termn) in Z3. Finally, we denote · the concatenation operator. We write in blue the meta-variables and

in orange the meta-function applications that appear inside pairs of vertical bars, to distinguish them

91

Mapping into Z3 VI. DEPLOYING AND MAINTAINING IT INFRASTRUCTURES

S(T#i) = ∥Bool∥ if τ(T#i) = Boolean S(T#i) = ∥Int∥ if τ(T#i) = Integer
S(T#i) = ∥String∥ if τ(T#i) = String S(T#i) = ∥S(T#j)*∥ if τ(T#i) = List⟨T#j⟩
S(T#i) undefined if τ(T#i) ∈ {Unit,Rel ⟨·⟩} a S(T#i) = ∥|T#i|∥ otherwise

S(#i) = S(t(#i))

A(#i) = ∧
a 7→#j∈ a(#i)

∥∥(= (|attr!t(#i)!a| |#i|) |#j|)
∥∥

Q(#i) = ·
·7→#j∈a(#i)

∥(|#j| S(#j))∥

V(Boolean true) = ∥true∥ V(Boolean false) = ∥false∥
V(Integer i) = ∥i∥ V(String “s”) = ∥"s"∥
V(Ref i) = ∥|#i|∥ V(Assert(v)) = ∥V(v)∥

V(App(f , v⃗)) =
∥∥∥(Z3(f) · # „

V (v))
∥∥∥

V(ForAll (⃗r, v⃗)) =

∥∥∥∥∥∥∥
(forall (·

#i∈⃗r
(∥(|#i| S(#i))∥ ·Q(#i)))

(=>
∧

#i∈⃗r
A(#i) ∧

„

V (v)))

∥∥∥∥∥∥∥
V(Exists (⃗r, v⃗)) =

∥∥∥∥∥∥∥
(exists (·

#i∈⃗r
∥(|#i| S(#i))∥)

(forall (·
#i∈⃗r
Q(#i)) (=>

∧
#i∈⃗r
A(#i) ∧

„

V (v))))

∥∥∥∥∥∥∥
a
This case is unreachable.

Figure VI.12: Helper functions for our translation rules

from Z3 elements. We highlight in |gray| the various name manglings
10
we use in Z3. In this section,

we first present the translation rules between the CLIR and Z3, before discussing how to check models

using Z3.

VI.3.1 Translation rules

We present in figure VI.13 the translation rules that we use. These rules use helper functions defined

in figure VI.12. We have not detailed the Z3 function for brevity; its goal is to reinterpret CL/I built-in

functions (Integer comparisons, String operations...) into Z3 built-in functions.

The rest of this section explains how the translation rules work, and we invite the reader to go

back and forth between the explanations and the rules, using their numbers (in the leftmost column of

figure VI.13)
11
.

Our translation maps each CL/I type to a Z3 sort, either by declaring a new one in the case of

components (Abstract types) and lists (List⟨·⟩ types) [rule 1] or an existing one [rule 2]. CL/I values are

mapped to Z3 as nullary function symbols declared as returning the correct sort [rule 3]
12
. Components

10
The transformations from CLIR elements into valid Z3 names.

11
Rules and their explanations are clickable in the digital version of this document to simplify the navigation.

12
In Z3, constants are nullary functions. For example, an integer can be defined as a function from () to Int returning the

value of said integer.

92

VI. DEPLOYING AND MAINTAINING IT INFRASTRUCTURES Mapping into Z3

1 : JT#iKS = ∥(declare-sort S(T#i))∥ if τ(T#i) ∈ {Abstract, List⟨·⟩}
2 : JT#iKS = ε otherwise

3 : J#iKT = ∥(declare-fun |#i| () S(#i))∥

4 : JT#iKA =
d

a 7→#j∈ a(T#i)

∥∥∥∥∥∥∥∥
(declare-fun |attr!T#i!a| (|T#i|) S(#j))
(assert (forall ((c |T#i|))

(exists ((v S(#j)))
(= (|attr!T#i!a| c) v))))

∥∥∥∥∥∥∥∥ if τ(T#i) = Abstract

5 : JT#iKA = ε otherwise

6 : J#iKA = ∥(assert A(#i))∥ if τ(t(#i)) = Abstract
7 : J#iKA = ε otherwise

8 : JT#iKL =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥

(declare-fun |<has:S(List⟨T#j⟩),S(T#j)|
(S(List⟨T#j⟩) S(T#j)) Bool),

(declare-fun |<can have:S(List⟨T#j⟩),S(T#j)|
(S(List⟨T#j⟩) S(T#j)) Bool),

(assert (forall ((l S(List⟨T#j⟩)) (v S(T#j)))
(=> (|<has:S(List⟨T#j⟩),S(T#j)| l v)

(|<can have:S(List⟨T#j⟩),S(T#j)| l v))))

∥∥∥∥∥∥∥∥∥∥∥∥∥∥
if τ(T#i) = List⟨T#j⟩

9 : JT#iKL = ε otherwise

10 : J#iKL =

∥∥∥∥∥∥∥∥∥∥

d

#k∈ v⃗

∥∥∥∥(assert (|<has:S(List⟨T#j⟩),S(T#j)|
|#i| |#k|))

∥∥∥∥
(assert (forall ((v S(T#j)))

(=> (|<has:S(List⟨T#j⟩),S(T#j)| |#i| v)

(∨#k∈v⃗ ∥(= v |#k|)∥))))

∥∥∥∥∥∥∥∥∥∥
if v(#i) = List v⃗ and

τ(t(#i)) = List⟨T#j⟩

11 : J#iKL = ε otherwise

12 : J#iKV = ε if v(#i) ∈ {List ·, Instance}
13 : J#iKV = ∥(assert V (v(#i)))∥ if v(#i) ∈ {ForAll ·, Exists ·, Assert ·}
14 : J#iKV = ∥(assert (= |#i| V (v(#i))))∥ otherwise

Figure VI.13: Translation rules

may have attributes; being an attribute is expressed by a specific function symbol whose name mangles

the type identifier and the attribute’s name [rule 4]
13
. This function is defined to take the (component)

instance and return the value associated with the attribute. It also comes with an assertion that any

instance of this type has this attribute. In our implementation, attributes only make sense for compo-

nents [rule 5]. Furthermore, for each instance, an assertion ensures that the function symbol for each

of its attributes returns the corresponding value [rule 6]. Similarly, the behavior is only present for

component instances [rule 7]. In our encoding, list types require the definition of two membership

testing operators: one to test whether an element belongs to a list and one to test whether it is possible

that an element belongs to a list [rule 8]
14
. List processing only make sense when we have lists [rule 9].

13
For example, we encode the attribute a of the type symbol T#i as |attr!T#i!a|.

14
It allows us to write modal rules directly in our CL/I code.

93

Mapping into Z3 VI. DEPLOYING AND MAINTAINING IT INFRASTRUCTURES

The fact that a value is in a list makes use of membership operators; additionally, we add an assertion to

ensure that no other element can belong to the list [rule 10]
15
. Similarly, the behavior is only present

for lists [rule 11]. After this processing, lists do not need more consideration [rule 12]. Quantifiers and

assertions are directly translated into Z3 assertions [rule 13]. Finally, the fact that a symbol has a value is

expressed by an equality assertion [rule 14]. We show in figure VI.14 a concrete example of a translation

between our language, our intermediate language and Z3.

CL/I

component File {
let path: String;
let perm: Integer;

}

for all (file : File) {
String.ends_with(file.path, "/.ssh")

(file.perm = 700);
};

let file = File {
path "/root/.ssh";
perm 700;

}

Z3
(declare-sort |T#4|)
(declare-fun |attr!T#4!path| (|T#4|) String)
(declare-fun |attr!T#4!perm| (|T#4|) Int)
(assert (forall ((c |T#4|))
(exists ((v String))
(= (|attr!T#4!path| c) v))))

(assert (forall ((c |T#4|))
(exists ((v Int))
(= (|attr!T#4!perm| c) v))))

(declare-fun |#1| () String)
(declare-fun |#2| () Int)
(assert (forall ((|#4| |T#4|)

(|#5| String)
(|#6| Int))

(=> (and (= (|attr!T#4!path| |#4|) |#5|)
(= (|attr!T#4!perm| |#4|) |#6|))

(=> (str.suffixof "/.ssh" |#5|)
(= |#6| 700)))))

(declare-fun |#7| () |T#4|)
(declare-fun |#8| () String)
(declare-fun |#9| () Int)
(assert (= (|attr!T#4!path| |#7|) |#8|))
(assert (= (|attr!T#4!perm| |#7|) |#9|))
(assert (= |#8| "/root/.ssh"))
(assert (= |#9| 700))

CLIR

T#1 7→ (String,∅)

T#2 7→ (Integer,∅)

T#3 7→ (Unit,∅)

T#4 7→ (Abstract, [“path” 7→ #1, “perm” 7→ #2])

#1 7→ (?,∅, T#1)
#2 7→ (?,∅, T#2)
#3 7→ (ForAll (#4) (App(

Ext “Math\=>”, [
App(
Ext “String\starts_with”,
[Ref 5, String “/.ssh”]

), App(
Ext “Math\=”,
[Ref 6, Integer 700]

)
]

)),∅, T#3)
#4 7→ (Instance, [“path” 7→ #5, “perm” 7→ #6] , T#4)
#5 7→ (?,∅, T#1)
#6 7→ (?,∅, T#2)
#7 7→ (Instance, [“path” 7→ #8, “perm” 7→ #9] , T#4)
#8 7→ (String “/root/.ssh”,∅, T#1)
#9 7→ (Integer 700,∅, T#2)

Figure VI.14: Translation from CL/I to the CLIR to Z3

15
When we define a list [1;2;3], we tell Z3 that 1, 2 and 3 are in the list, and no other element (else, Z3 could consider

that other elements belong to the list).

94

VI. DEPLOYING AND MAINTAINING IT INFRASTRUCTURES Case studies

VI.3.2 Conformance checking

Model checking with Z3 can be leveraged in two development stages: during the design of systems,

to check the consistency and non-contradiction of requirements, and during the exploitation and

instantiation of such models, to check the conformance of the instances to the requirements. At the

design phase, Z3 can help identify problems in models, proving whether there can be instances of them

or not. For the instantiation of models, Z3 can identify violations of model properties by the instances.

We illustrate in figure VI.14 the translation from CL/I to the CLIR to Z3 of a simplified version of the

model in figure VI.6 (page 86) with an added Z3 assertion, where permissions are just Integers and file

owners are omitted for brevity.

If Z3 proves the set of formulae to be unsatisfiable, we could extract a subset of formulae (called an

unsat core) used to derive unsatisfiability and link them back to the symbols that led to them, then to

the model source code. If the set of formulae is proved to be satisfiable, we could extract an instance

(called a model in Z3) and express it into our language. Both features are not yet implemented.

Case studiesCase studiesCase studiesCase studiesCase studiesCase studiesCase studiesCase studiesCase studiesCase studiesCase studiesCase studiesVI.4 Case studies

Modern cloud-based infrastructures offer resilience and scalability capabilities that are attractive to

businesses. However, these qualities come at the cost of an abstraction that is not always fully understood,

and many layers of indirection. Resource virtualization doesn’t eliminate the need to correctly provision

infrastructures, and this abstraction can give rise to new problems, such as network and storage

contention [Kotsovinos10].

Some security and safety requirements may conflict with the abstraction principles offered by

virtualization. For example, in the case of security, these may include i) rules prohibiting two competing

customers’ virtual machines from running on the same physical hosts. In the case of safety, it could be

ensuring that ii) two virtual machines exchanging tens of gigabits of data per second always run on the

same physical node, to prevent network congestion. Such rules are called i) antiaffinity and ii) affinity

rules, but are not implemented by all virtualization solutions on the market, Proxmox VE being one of

those where the feature is lacking. We focus in this case study on ensuring that even though Proxmox

VE has no knowledge of affinity and antiaffinity, it can still be configured to enforce them.

VI.4.1 Virtual environment model

Typical virtualization environments have four core concepts: nodes (machines offering virtualization

capabilities), clusters (of such nodes), groups (of nodes within a cluster) and virtualized resources (which

we call virts, such as virtual machines and containers). Virts can be assigned to a specific group or run

freely on any node. From this simple model, we add two structural rules:

R1. If a virt is assigned to a group, it can be assigned to any node within this group;

R2. If a virt is assigned to a group within a cluster, it must be assigned to a node within this cluster.

Some hypervisors such as Proxmox VE have a concept of (non-)restricted groups:

R3. If a virt is assigned to a non-restricted group, it can run on a node outside the group (e.g. if they

are all offline);

R4. If a virt is assigned to a restricted group, it can never run on a node outside the group.

95

Case studies VI. DEPLOYING AND MAINTAINING IT INFRASTRUCTURES

component Node {
let virts : Virt*;

}

component Group {
let nodes : Node*;
let virts : Virt*;
let is_restricted : Boolean;

for all (node : Node, virt : Virt) {
(nodes <<has>> node and virts <<has>> virt)

(node.virts <<can have>> virt); ** (R1)

(nodes !<<has>> node and virts <<has>> virt and is_restricted)
(node.virts !<<can have>> virt); ** (R4)

};
}

component Cluster {
let nodes : Node*;
let groups : Group*;

for all (group : Group, virt : Virt) {
(groups <<has>> group and group.virts <<has>> virt)

exists (node : Node) {
nodes <<has>> node;
node.virts <<has>> virt;

}; ** (R2)

for all (node : Node) {
(groups <<has>> group and nodes <<has>> node and group.virts <<has>> virt
and !group.is_restricted) (node.virts <<can have>> virt);

}; ** (R3)
};

}

Figure VI.15:Model for Node, Group and Cluster. The definition of Virt is not shown.

This model is written in CL/I in figure VI.15. The rules R1 to R4 are translated to logical propositions as

follows:

R1. If a virt is assigned to a group (virts <<has>> virt), it can be assigned to any node (node.

virts <<can have>> virt) within this group (nodes <<has>> node);

R2. If a virt is assigned to a group (group.virts <<has>> virt) within a cluster (groups <<

has>> group), it must be assigned to a node (node.virts <<has>> virt) within this cluster

(nodes <<has>> node);

R3. If a virt is assigned to a non-restricted (!group.is_restricted) group (group.virts <<has

>> virt), it can run on a node (node.virts <<can have>> virt) outside the group (e.g. if

they are all offline);

R4. If a virt is assigned to a restricted (is_restricted) group (virts <<has>> virt), it can never

run (node.virts !<<can have>> virt) on a node outside the group nodes !<<has>> node.

96

VI. DEPLOYING AND MAINTAINING IT INFRASTRUCTURES Case studies

component Virt {
let <<has affinity with>> : Relation.Equivalence;
let <<has antiaffinity with>> : Relation.Symmetric;
let <<can have affinity with>> : Relation.Equivalence;
let <<can have antiaffinity with>> : Relation.Symmetric;

}

** Node affinity
for all (node_1 : Node, node_2 : Node, virt_1 : Virt, virt_2 : Virt) {
(virt_1 != virt_2 and node_1.virts <<can have>> virt_1
and node_2.virts <<can have>> virt_2 and virt_1 <<has affinity with>> virt_2)

(node_1 = node_2);

(node_1.virts <<has>> virt_1 and node_2.virts <<has>> virt_2
and virt_1 <<can have affinity with>> virt_2)

(node_1 = node_2);
};

** Node antiaffinity
for all (node_1 : Node, node_2 : Node, virt_1 : Virt, virt_2 : Virt) {
(node_1.virts <<can have>> virt_1 and node_2.virts <<can have>> virt_2
and virt_1 <<has antiaffinity with>> virt_2) (node_1 != node_2);

(node_1.virts <<has>> virt_1 and node_2.virts <<has>> virt_2
and virt_1 <<can have antiaffinity with>> virt_2) (node_1 != node_2);

};

Figure VI.16:Model for Virt and affinity and antiaffinity rules

Finally, the affinity relation is an equivalence (reflexive, symmetric and transitive) and the antiaffinity

relation is (at least) symmetric; we model them as such in figure VI.16, along with their logical properties

and modal counterparts.

VI.4.2 Proxmox VE configuration and execution

Configuring a Proxmox VE cluster can be done using a dedicated web interface, its web API or by

directly editing files in the /etc/pve directory of a physical node. We focus in our study on three files:

/etc/pve/corosync.conf, to configure the cluster and its nodes, /etc/pve/ha/groups.cfg, to con-

figure high-availability groups (groups resilient to the loss of nodes), and /etc/pve/ha/resources.cfg,

to configure virts. With a simple transformation script, we can convert such files into a set of CL/I

instances, as shown in figure VI.17
16
.

To check in real time the location of virts within a cluster and whether it invalidates the model,

we can interrogate the Proxmox VE API at regular intervals and inject membership assertions such as

node0.virts <<has>> vm100 into our model. To ensure the reproducibility of our experiments, we

decided to deploy our test cluster on Emulab [White02], a network testbed for distributed systems. To

this end, we have developed an Emulab deployment profile, publicly available on Github
17
.

16
We have added three assertions on nodes to ensure that Z3 knows they are distinct.

17https://github.com/CAPRICA-Project/emulab-proxmox

97

https://github.com/CAPRICA-Project/emulab-proxmox
https://github.com/CAPRICA-Project/emulab-proxmox

Case studies VI. DEPLOYING AND MAINTAINING IT INFRASTRUCTURES

[...]

nodelist {
node {
name: node0
nodeid: 1
quorum_votes: 1
ring0_addr: ...

}
node {
name: node1
nodeid: 2
quorum_votes: 1
ring0_addr: ...

}
node {
name: node2
nodeid: 3
quorum_votes: 1
ring0_addr: ...

}
}

[...]

/.../corosync.conf

group: group0
nodes node1,node0
restricted 1

group: group1
nodes node2,node1
restricted 1

group: group2
nodes node2
restricted 1

/.../ha/groups.cfg

vm: 100
group group0
state started

vm: 101
group group1
state started

vm: 102
group group2
state started

vm: 103
group group2
state started

/.../ha/resources.cfg

let node0 = Node();
let node1 = Node();
let node2 = Node();

assert (node0 != node1);
assert (node1 != node2);
assert (node0 != node2);

let vm100 = Virt(); let vm101 = Virt();
let vm102 = Virt(); let vm103 = Virt();

let group0 = Group { nodes [node0; node1];
virts [vm100];
is_restricted true; };

let group1 = Group { nodes [node1; node2];
virts [vm101];
is_restricted true; };

let group2 = Group { nodes [node2];
virts [vm102; vm103];
is_restricted true; };

let cluster = Cluster {
nodes [node0; node1; node2];
groups [group0; group1; group2];

};

Figure VI.17: Proxmox VE configuration translation (parts of the files not shown)

vm100 vm101 vm102 vm103

vm100 affinity
affinity?

antiaffinity?
antiaffinity antiaffinity

vm101
affinity?

antiaffinity?
affinity

affinity?
antiaffinity?

affinity?
antiaffinity?

vm102 antiaffinity
affinity?

antiaffinity?
affinity affinity

vm103 antiaffinity
affinity?

antiaffinity?
affinity affinity

Table VI.1: Summary of relations. affinity, affinity?, antiaffinity and antiaffinity? respectively denote that

<<has affinity with>>, <<can have affinity with>>, <<has antiaffinity with>> and

<<can have antiaffinity with>> (and only them) are satisfied.

VI.4.3 Model checking

From our model, we want to check whether affinity and antiaffinity rules can and do hold. For ex-

ample, asserting vm100 <<can have affinity with>> vm101 checks whether there are configura-

tions which do not violate an affinity between vm100 and vm101 in the model (there are, for example

when both vm100 and vm101 are on node1). Conversely, asserting vm100 <<has affinity with>>

vm101 checks whether our model entails the affinity (it does not). Table VI.1 summarizes all affinity

and antiaffinity rules that hold in the model, in a symmetric (because all our relations are) 4 × 4
matrix. For instance, vm100 <<can have affinity with>> vm101, because nothing forbids it, but

¬ (vm100 <<has affinity with>> vm101), because there are possible situations where it does not

hold. Similarly, vm102 <<has affinity with>> vm103, because they are both in the same group

(group2) and this group has a single node (node2).

98

VI. DEPLOYING AND MAINTAINING IT INFRASTRUCTURES Case studies

0 20 40 60 80

10 1

100

101

102

103

t (s)

Number of Virts

Figure VI.18: Verification time (log scale) as a function of the number of Virts

Legend. SAT, UNSAT

Although our analysis of the model allows us to formulate the requirement “vm102 and vm103 have

affinity”, real-time observation of the cluster enabled us to identify a violation of this requirement. When

an operator contradicts the cluster configuration and requests an illegal migration (e.g. moving vm102

to node0), the hypervisor performs the migration, starts the machine on the other node, then migrates

it back to node2 to resolve the inconsistency. During the re-migration, the requirement is not met.

VI.4.4 Scaling

To validate the robustness of our approach, we generated a set of 5000 infrastructure models
18

by

randomly varying the number of Nodes, Groups, Virts and affinity assertions, and by randomizing the

distribution of Nodes and Virts within Groups. It should be noted that this distribution is made in such

a way that we have a better chance of obtaining a satisfiable model (here, approximately 13 %) than

with a uniform distribution. We have measured our compiler’s execution times (almost exclusively Z3

verification times) for each of the models on a single core; we have not explored Z3’s parallelization

capabilities in our work. We plot on figure VI.18 the execution time for each model.

18
Available on Github (https://github.com/CAPRICA-Project/CL-I-Proxmox-case-study).

99

https://github.com/CAPRICA-Project/CL-I-Proxmox-case-study

Case studies VI. DEPLOYING AND MAINTAINING IT INFRASTRUCTURES

Several points emerge from this study:

• Infrastructures where constraints are satisfied are much slower (up to 3 orders of magnitude) to

verify than infrastructures where the verdict is UNSAT;

• The strongest (exponential) contributors to verification time seem to be the number of Nodes and

Virts, the other parameters do not seem to have any particular influence;

• The verification time seems reasonable to us for projects where affinity between virtual machines

is critical (all our examples were checked in less than an hour).

VI.4.5 A more complete case study

Now that we have validated our approach on a technical infrastructure (within a single business domain),

we validate it by using CL/I to verify models spanning across several domains within a company. We

use the UML diagram shown in figure VI.19 as the basis for our case study. First, employees have a set

of skills that increase through training. Rights can be given to employees to allow them to access an

application, provided they have a set of required skills. Applications are able to host other applications,

for example a VM hosting business software. Finally, structures with employees can be given access to

applications, for example, a SaaS solution (the application) sold to a corporate customer (the structure)

for its employees (which become users of the application).

All the elements of this model can be extracted from a variety of data sources. Skills and training can

be managed by a dedicated e-learning tool, employees can be managed in a human resources database,

rights can be extracted from an access right management solution, applications can be listed in an

inventory, and structures can be managed by a customer relationship management system. However,

these tools lack interoperability and verifying properties across multiple domains can be a daunting

task. Such properties could be:

• A user with access rights to an application must not have priviledged access rights to platforms

hosting it. For example, such a user could modify an application’s critical files on its VM to gain

priviledged rights, which would lead to security concerns;

• Rights can only be assigned to users with the appropriate skills;

• Employees who have completed training courses acquire the skills associated with them;

• Competing companies must use applications hosted on different platforms, as studied previously.

Right Application

Employee

Skill

Training Structure

application ▷

users

△

∗

◁ required skills∗

skills △

∗

◁ trainings∗

◁ skills

∗

◁ users

∗

△ applications

∗

◁ employees∗

hosted applications ▷
∗

Figure VI.19: Multi-domain model

100

VI. DEPLOYING AND MAINTAINING IT INFRASTRUCTURES Conclusion

We have conducted this study, whose CL/I code can be found on Github
19
, on a small fictitious

company. We have modeled an enterprise with several dozen users and client companies (some in

competition with others), as well as the applications they use. We have checked on this model the four

previous properties (whose encoding is not detailed here). It appears that the verdict of satisfiability is

slower than the unsatisfiability, again by a factor of 1000. However, we have been able to highlight, in

a few seconds, problems with right management that can be tedious to spot by human operators. For

example, we could identify a user who has attended courses that do not provide the required skills, or

another user who has access to both an application and to the hypervisor that hosts the VM that hosts

this application. The curious reader can consult the model online to appreciate the various properties

that can be verified on it.

ConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusionVI.5 Conclusion

The design of our language is evolving rapidly and its constructs are not completely fixed. Moreover,

our compiler is still a prototype in stabilization which needs further testing and some edge cases are not

yet implemented. However, current results seem promising and confirm our approach.

By using SMT solvers such as Z3 and allowing to write any number of nested quantifiers, we are

exposed to combinatorial explosions, particularly during Z3’s quantifier instantiation phase. Checking

large and complex models may not terminate in a reasonable time, but the issues we have faced in our

studies were either solved by modifying our semantic translations or by fine-tuning the Z3 engine. For

all purposes, we have found the following parameters suited to our studies:

(set-option :tactic.default_tactic smt)

(set-option :sat.core.minimize true)

(set-option :smt.mbqi.max_iterations 5000)

(set-option :smt.mbqi.max_cexs 6)

We currently rely on Z3’s sorting as our (very simple) typing engine and intend to develop one

supporting subtyping, subsorting being impossible in Z3. Subtyping will lead to sorting issues in Z3,

as functions and relations sorted for a type T must also be sorted for types T′ <: T. We are currently

working on a special encoding to solve this issue.

The problems identified by Z3 and the instances it is able to produce are currently returned to the

user in the SMT-LIB language, requiring the intervention of experts to debug models. We are working to

add tracing from our language to its intermediate representation to its Z3 translation, to better identify

which lines of code led to which errors. As shown in the previous chapter, models can be produced from

many tools, and a natural extension of our work is to express problems and instances into such tools.

19https://github.com/CAPRICA-Project/CL-I-multi-domain-case-study.git

101

https://github.com/CAPRICA-Project/CL-I-multi-domain-case-study.git
https://github.com/CAPRICA-Project/CL-I-multi-domain-case-study.git

VII
Chapter VII

Integrating our Approach
Risk management Formal methods

Enterprise modeling

Risks

filter
Requirements

require

Constraints

constraint

Infrastructures

I

assess

reify

I′

I′′

δI (I′)

δI (I′′) iter

“
Gaius Baltar—Who cares about this stupid planet

anyway? All this song and dance over nothing. Less

than 20% of that place actually supports human life,

so...

You’re not seeing the big picture. This is your new

home, the place where you will lead a new life.

— Number Six

Battlestar Galactica – Lay Down Your Burdens”

Contents

VII.1 Theoretical framework . 104

VII.1.1 Actors and responsibilities . 104

VII.1.2 Components and instances . 106

VII.1.3 Metamodel links . 106

VII.2 Collaborative enterprise modeling . 106

VII.2.1 Enterprise modeling . 107

VII.2.2 Collaborative modeling . 108

VII.3 Federating models . 109

VII.3.1 Modeling guidelines . 110

VII.3.2 Scaling infrastructures . 112

VII.4 Integration guidelines . 113

VII.4.1 Component catalogs . 113

VII.4.2 A posteriori modeling . 114

VII.4.3 A priori modeling . 116

VII.5 Case study . 116

VII.5.1 Heterogeneous models... 116

VII.5.2 ... linked together . 118

VII.5.3 Exploiting the model . 118

VII.6 Conclusion . 120

103

Theoretical framework VII. INTEGRATING OUR APPROACH

Now that we have explored the theoretical and technical aspects of our work, we propose to focus on

scaling the approach to large-scale enterprises. The framework of study we have set up allows to group

together several expert models, to formalize their interactions, and to establish a multi-criteria risk

analysis on various infrastructure elements. However, this approach assumes the absence of modeling

errors (for both systems and links between them) and overlooks the way in which teams cooperate.

As a matter of fact, the proper operation of an IT infrastructure depends on more than just its

hardware and software components. The human dimension and the performance of business processes

are also important factors when we consider infrastructures in their corporate context. A parallel

branch to our study, namely Enterprise modeling [Vernadat20], embraces such concepts, with two major

challenges.

First, while human organizations are typically divided into various business domains (finance,

support, cloud operations...), technical infrastructures tend to be structured in technical layers (hardware,

software, network...). This leads to a misalignment between IT and business models, since there is no one-

to-one mapping between these different views. Second, people who practice modeling (whether for IT or

business infrastructures), are often well informed about goodmodeling practices, which is not necessarily

the case for other employees. These employees, however, manipulate the infrastructure and have specific

visions and technical knowledge that can benefit risk analyses. They should then be included in the

modeling process [Voinov10], to properly capture the interactions within the infrastructure.

The importance of federating this knowledge is the focus of the final chapter of this dissertation.

We first present the theoretical framework of our approach in section VII.1 through a component- and

responsibility-oriented metamodel. Then, we discuss how to model enterprises in a collaborative way in

section VII.2. Next, we look at several criteria for properly federating enterprise models in section VII.3.

We then give guidelines on how to integrate our approach in a company in section VII.4. We propose a

case study illustrating our work in section VII.5. Finally, we conclude this chapter in section VII.6.

This chapter was partly published in [Somers23.2].

Theoretical frameworkTheoretical frameworkTheoretical frameworkTheoretical frameworkTheoretical frameworkTheoretical frameworkTheoretical frameworkTheoretical frameworkTheoretical frameworkTheoretical frameworkTheoretical frameworkTheoretical frameworkVII.1 Theoretical framework

As part of our study, we have focused on the various components within an infrastructure, the actors who

interact with them, and to a lesser extent their responsibilities, to draw a broad picture of the risk. We

propose here to bring these elements together in a common model, combining a responsibility-oriented

metamodel and a component-oriented metamodel. Our metamodel is divided in three parts: the actors

and their responsibilities (on figure VII.1a), the components and their instances (on figure VII.1c), and

the additional links in the metamodel (on figure VII.1b).

VII.1.1 Actors and responsibilities

We have decided to model responsibilities in our metamodel in a generic way. They can either be low-

level (“read/write access over ▷”, “install updates on ▷”...) or high-level (“audit server ▷”, “manage

project ▷”...). Responsible entities have responsibilities over entities and can assume roles. Roles represent

generic sets of responsibilities. They can be used to encode access rights on an information system or

positions in a company’s organizational chart for example. Actors represent the actual entities which

can assume roles and have responsibilities. They can be used for example to encode users, allowed to

104

VII. INTEGRATING OUR APPROACH Theoretical framework

(a) Actors and responsibilities

Responsible entity

Role Actor Relationship

Entity

Responsibility

responsible for ▷

∗

∗
∗

◁ child of∗

◁ assumes

∗

Legend. Base, Kind, Relationship,

Aggregation, Inheritance,

Association class.

(b) Metamodel links

Entity

∗

Component

Responsible entity

Legend. ∗ Every Kind, Type and Instance

(c) Components and instances

Effect

Event Resource

Component Service

Reaction Action

Protocol

:Component

::Component

configures ▷

∗

∗
concerns ▷

1..∗

contains ▷

∗

provides ▷

∗

◁ gets

1..∗

◁ outputs

∗

calls ▷

∗

◁ outputs1..∗

◁ gets∗

Legend. Type, Instance, Instantiation

Figure VII.1: Component- and responsibility-oriented metamodel

access specific servers because of their positions, or even a whole company, responsible for the proper

functioning of the products it sells. Finally, relationships represent all lines and arrows in models (and in

the metamodel itself).

We have chosen an approach simpler to what can be found in metamodels such as ReMoLa [Feltus11]

to keep our model generic, and because we did not need to elaborate much on the notion of responsi-

bility in our work. If further refinement is required in modeling a system, we recommend specifying

responsibilities as shown on figure VII.2 to benefit from ReMoLa’s expressiveness by adding the concepts

of Rights, Accountability and Obligations.

Responsibility

Accountability

Right

Obligation

∗
requires ▷

1..∗

concerns ▷

1..∗

1..∗

Figure VII.2: Specialization of the metamodel for ReMoLa compatibility

105

Collaborative enterprise modeling VII. INTEGRATING OUR APPROACH

VII.1.2 Components and instances

The main focus of our metamodel is components. Components are entities that provide services (which

we split between actions, and reactions to events). For example, a web service allowing employees to

change their corporate passwords can be modeled as a component providing a “Change password”

service. Services can in turn use other components’ actions through protocols. For example, our “Change

password” service can use a remote SQL database’s “UPDATE” action to update passwords (using for

example PostgreSQL’s protocol 3.0). Components can also contain resources, that may be entities providing

services (other components) or not (such as configuration files, web data...). Events are anything that

can happen to resources (creation, change, deletion...). Both resources and events can be the result of an

action, so we decided to unify them under the effect kind. Three layers appear in our metamodel:

• The Kind layer (), representing the core concepts of the metamodel;

• The Type layer (), representing “types of” these concepts. For example, “physical server” is a type

of component. To follow the UML notation, a component type is represented here as :Component.

• The Instance layer (), representing “instances of” these concepts and types. For example, a physi-

cal server is an instance of “physical server” and “check web page availability” is a service instance.

In our work, we have not encountered the need for service types. An instance of :Component is

represented here as ::Component.

VII.1.3 Metamodel links

For consistency, every Kind, Type and Instance of the metamodel is an instance of entity; it means that

responsible entities can have responsibilities over them. For example, an actor can be responsible for

the development of a software component (on the Type layer) and another can be responsible for its

configuration and deployment (on the Instance layer).

We have designed our metamodel to be reflexive, which allows responsible entities to be responsible

for responsibilities themselves. It makes sense in a context of access management where a person may be

responsible for the access rights given to another person. It also allows models to be seen themselves as

entities in the metamodel, which makes it easy to represent situations where an employee is responsible

for modeling a particular component. To the best of our knowledge, both characteristics are distinctive

features of our approach.

Finally, responsible entities are also components, and their behaviors can be encoded as services. For

example, a system operator updating a server can be represented as both an actor with roles inherited

from their job position (“IT employee”, “system administrator”...), and a component with services to

perform server maintenance.

Collaborative enterprise modelingCollaborative enterprise modelingCollaborative enterprise modelingCollaborative enterprise modelingCollaborative enterprise modelingCollaborative enterprise modelingCollaborative enterprise modelingCollaborative enterprise modelingCollaborative enterprise modelingCollaborative enterprise modelingCollaborative enterprise modelingCollaborative enterprise modelingVII.2 Collaborative enterprise modeling

Enterprisemodeling is instrumental in better understanding and designing organizations. Themetamodel

we have presented follows on from, but does not replace, a long tradition of modeling frameworks used

in companies throughout the world. And enterprise modeling is no easy task: even though small systems

can be designed and modeled by a few experts, creating a robust enterprise model is a collaborative

endeavor. It demands the collective expertise of many stakeholders across a range of departments and

domains, to produce a comprehensive overview of infrastructures.

106

VII. INTEGRATING OUR APPROACH Collaborative enterprise modeling

VII.2.1 Enterprise modeling

The field of enterprise modeling has evolved significantly since its inception [Vernadat20]. Incorpo-

rating formal methods, high-fidelity models can provide significant value to companies that adopt

them [Cohn04]. However, producing such models is complex due to the wide range of professions and

tools used within these companies, leading to discrepancies [vdAalst13]. As we described in section V.2,

we are potentially talking about dozens of different approaches and representations, from software

development to infrastructure design. To these approaches, we can also add everything that makes a

company tick, from project management to finance, to human relations.

Standards like [ISO 19439] (Enterprise integration — Framework for enterprise modelling) and its

precursors CIMOSA (Computer Integrated Manufacturing Open Systems Architecture) and GERAM

(Generalized Enterprise Reference Architecture and Methodology) recommend modeling enterprises in (at

least) four views:

• Function view, focusing on operations, processes and behaviors;

• Information view, dealing with data and information flows;

• Resource view, looking at human and technical resources;

• Organization view, addressing the organizational structure, roles and responsibilities within the

enterprise.

Since we have mentioned software development, we think it is worthwhile to underline an important

connection between ISO 19439 and [ISO/IEC/IEEE 15288] (Systems and software engineering — System

life cycle processes). ISO 19439 identifies several modeling phases that can be mapped to ISO/IEC 15288’s

lifecycle stages, stressing similarities between enterprise and software modeling:

ISO 19439 ISO/IEC 15288

Domain identification

Concept definition

Requirement definition

Design specification

Implementation description

Conception

Development

Production

Utilization

Support

Domain operation

RetirementDecommission definition

A representation of the standard is given in figure VII.3. Such a layered approach is found in many

modeling frameworks, among which we can mention [RM-ODP] and [Archimate]. These frameworks

provide a high-level way to model enterprises and allow to represent the infrastructures on which

businesses lie. However, the large amount of concepts and the lack of precise semantics regarding IT

infrastructures make the frameworks difficult to use in IT domains for people whose main job is not

enterprise modeling [Lantow14]. Moreover, the matricial aspects of their approaches and their division

into layers are not always suitable [Jørgensen09], as we very often need to cross boundaries.

One of the most important aspects of organizational and IT infrastructures we have captured in

chapter VI is dynamism: systems are frequently modified, and companies keep evolving. These changes

should therefore be reflected in enterprise models as well.

107

Collaborative enterprise modeling VII. INTEGRATING OUR APPROACH

Ge
ne
ric

lev
el

Pa
rti
al
lev
el

Pa
rti
cu
lar

lev
el

Domain identification

Concept definition

Requirements definition

Design specification

Implementation description

Domain operation

Decomission definition

O
rg
a
n
iz
a
ti
o
n
v
ie
w

R
e
s
o
u
rc
e
v
ie
w

In
fo
rm

a
ti
o
n
v
ie
w

Fu
n
c
ti
o
n
v
ie
w

Figure VII.3: Representation of the ISO 19439 standard

[Greenwood95] identifies three types of model dynamics:

• Passive models, which represent systems as they are perceived at some point in time, without any

change;

• Dynamic passive models, which represent dynamic systems without synchronization or links to

the real system;

• Active models, which maintain consistency between models and actual systems by reacting to

change.

The idea of active models, which dates back to the 90s, is a topic that drives the enterprise modeling

community and is in line with the efforts to maintain our infrastructure models valid over time.

VII.2.2 Collaborative modeling

In the connected and open world of 2024, it would seem absurd for most companies to embark on large

software development projects in small teams, with everything developed from the ground up. And

yet, this is what we often observe in enterprise modeling [vdLinden20]. In a corporate environment

covering several fields, we see many domain-specific languages that are adapted to their respective

domains [Deursen00] and can represent in detail things that holistic frameworks cannot. But these

languages are often not understandable by other parties. It leads to many metamodels [Kaczmarek15],

often sharing the same core concepts [Breton00], being used to model enterprises.

The modeling process must be driven by a need and be undertaken by including all the professional

disciplines concerned in a company. However, due to a lack of modeling skills, some stakeholders are

excluded from the process [Renger08]. Work in the model federation community [Golra16] (where

we maintain links between models expressed in different metamodels) is a step towards including the

expertise of such stakeholders. This is the approach we have sought to defend in this dissertation.

Other approaches, such as composition [Fleurey08] (where we build a common metamodel to align

models) and unification [Vernadat02] (where we build a single model) are described and discussed in

the literature [ISO 14258]. Figure VII.4 illustrates all three methods.

108

VII. INTEGRATING OUR APPROACH Federating models

Unification Composition Federation

Common
metamodel

Figure VII.4: Unification, composition, federation: three approaches to collaborative models

Addition

Approximation

Mistake

Figure VII.5: Inconsistencies by addition, approximation and mistake and their resolution

But if collaboration is unanimously supported, how it is implemented is a matter of debate. We

do not claim to have a definitive solution to the problem, and the absence of a generic solution is a

well-known fact in the Enterprise Modeling community. We would like to draw some thoughts from

our experience of IT infrastructures in this chapter.

Federating modelsFederating modelsFederating modelsFederating modelsFederating modelsFederating modelsFederating modelsFederating modelsFederating modelsFederating modelsFederating modelsFederating modelsVII.3 Federating models

When trying to bring together several infrastructure models, we usually come up against a major

obstacle: inconsistencies. We identify three categories of inconsistencies, represented on figure VII.5.

• Inconsistencies by addition, when several people talk about the same thing, but with different

aspects (for example, a piece of software where different functions are used and modeled by two

teams). Such inconsistencies are solved as a simple union of the aspects;

• Inconsistencies by approximation, when several people talk about the same thing, but with

different levels of abstraction (for example, a user modeling their operating system as a black

box able to execute applications and a systems engineer modeling it in greater detail). Such

inconsistencies are solved by only keeping the most suitable granularity;

• Inconsistencies by mistake, when people make errors in their models (for example, if a piece of

software is thought to perform an action that it does not). Such inconstistencies are solved by

removing the mistakes.

109

Federating models VII. INTEGRATING OUR APPROACH

Resolving these inconsistencies, through a process called model reconciliation, is an important

step when building bigger models from smaller ones. Although reconciling approximations is a simple

process, it can be difficult to tell the difference between complementary (which can be reconciled

additively) and contradictory (where reconciliation involves solving conflicts) models.

VII.3.1 Modeling guidelines

We argue that three main principles should be respected to enable the federation of infrastructure

models. We present them here, using examples expressed in our metamodel.

Non-intrusiveness (“start small, don’t bother the neighbor”).

The majority of IT domains use their own sets of tools and representations to communicate and to

model systems [Amaral10]. People within the same domain can understand each other thanks to this

shared jargon, but may find it difficult to communicate with experts in domains with which they are

unfamiliar. This semantic boundary initially provides a scope within which each team can develop its

own models. This is what [Sandkuhl18] calls “grass-roots modeling”.

Experts can collaborate effectively while retaining the integrity and coherence of each model by

working on clearly defined small models. Furthermore, they can use the most appropriate tools and

techniques for their particular domains. Our metamodel provides a framework adapted to linking these

tools together, rather than replacing them. “Locally-collaborative” work among employees mitigates the

concerns raised by [Renger08] about employee exclusion and model reconciliation in the first phases of

modeling.

When, and only when, the small local models are validated, it is advisable to begin modeling

workshops between the various teams.

Refinability (“model what’s necessary in your domain, elaborate later if needed”).

To accurately mirror the actual design process of its components, people involved in infrastructure

modeling should be able to incrementally refine their models when needed. As with risk analysis,

the process can be carried out either in a top-down (where one adds details) or bottom-up (where

one abstracts them) approach, or a combination of both, as shown in figure VII.6. In this example, a

top-down approach would describe what a “service checker” is, by dividing it into sub-components

(Service checker, made of Checker API and Logger) and then refining their services (check, history...).

A bottom-up approach would be to describe the services wanted for a “service checker” and combining

them into components and super-components providing them.

Iterative conception goes through a succession of incomplete models. When developing a new piece

of software, a commonly used approach is to have end-users describe their needs and iteratively produce

code that meets these needs [Ruparelia10]. Initial needs may be very imprecise and high-level and

refinement steps may be necessary throughout the project’s lifespan.

“Holes” in models can also arise when blackbox software (for example proprietary applications)

or hardware (for example Hardware Security Modules) are deployed in an infrastructure. It can also

happen with legacy components whose knowledge has been lost, for example due to employee turnover.

Even though the knowledge of an IT infrastructure is partial, properties can still be deduced from its

models. By allowing imprecision, we argue that the benefit is threefold:

110

VII. INTEGRATING OUR APPROACH Federating models

check

history

Checker API

Web server

Event

Remote service

read

rotate

Logger

Service checker

Event

Service

gets

△

Component

Bottom-up Top-down

Figure VII.6:Model for a generic service checker

Legend. Inheritance, Instantiation

• Coherence: instead of making wrong assumptions, modelers can express their lack of knowledge

using black boxes and unknowns, not adding new inconsistencies between models;

• Reconciliability: employees should not attempt to refine a component they are not responsible for,

simplifying the reconciliation phase and ensuring that responsibilities are respected. Only the

responsible actors participate and changes can then be properly tracked;

• “Fail-early”-ness: some safety and security issues can be identified early when modeling projects

iteratively; addressing them as soon as possible is critical to their success.

Correctness (“gather in small teams and align your models”).

To obtain a comprehensive understanding of an IT infrastructure, it is crucial to engage all of its

stakeholders in the modeling process. The sum of individual, local viewpoints is not enough to produce

an overall model. Model reconciliation establishes links between these viewpoints which can carry

additional semantics. As the literature shows [Nuseibeh03], model reconciliation is a complex task, this

is why we strongly advocate to start the collaborative modeling process as soon as possible in projects.

If the modeling adheres to these principles, model reconciliation becomes a matter of refining black

boxes in other models and linking them together, as illustrated in figure VII.7. Here, we depict three

points of view, from three different teams:

• On the left, the organizational structure of a human resources department is represented;

• In the middle, we have the design of a web application using a remote database (not modeled)

allowing some HR people (unknown at modeling time) to manage employees;

• On the right, there is a simple model of said database.

During the process of model reconciliation, teams align their vocabularies (Human resources

and HR), may specify black boxes (“?” becomes Personnel administration) and combine knowledge

(10.2.42.1:3306 refers to mysql-02-01). Although there is no universal method to solve modeling

conflicts, we think that modeling in incremental steps allows to solve them on smaller models. Rather

111

Federating models VII. INTEGRATING OUR APPROACH

HR portal

Employee
management

Web server

∗

10.2.42.1:3306

Database

Component

?

Read/Write

Responsibility

HR

Service

Responsible
entity

responsible for ▷

MySQL
database

mysql-02-01

Database

Human resources

Personnel
administration

Training Payroll

Organizational view Development view Database view

Figure VII.7:Model reconciliation with three points of view

Legend. Reconciliation, * Any service

than trying to fix the problem of reconciling models, we actually try to avoid it. The reconciliation

process itself may be modeled using our metamodel, by assigning responsibilities to the employees

performing the reconciliation. When a model is updated, it becomes easy to know who performed the

reconciliation and notify them to review whether the change invalidates their work or not. In the case

of a modeling process done with CL/I, a commit to a Git repository of a new version of a model could

automatically trigger a validation workflow, for example. This idea, which to our knowledge has not

been explored, simplifies keeping the overall model correct in the long term.

VII.3.2 Scaling infrastructures

Designing all infrastructure models by hand seems both unrealistic and counterproductive. Indeed,

performing a complete modeling of a fleet of several thousands of machines or a workforce of hundreds

of employees would take a considerable amount of time. As with risk analyses, models would also

present validity issues over time. There are two main axes of automation for scaling up infrastructure

models: automatic model construction and automatic model validation.

A number of inventory systems and Configuration Management DataBases (CMDB) exist, that

provide a global view of the hardware and logical assets of an IT infrastructure. These databases can be

leveraged to automatically perform a digital cartography of a company with minimal human intervention.

At the same time, the many software applications used by companies contain vast quantities of data that

can be extracted to gain valuable knowledge and produce rich models. However, the ability to extract

meaningful exploitable data relies on the implementation of formally-defined semantics, which is often

not the case in “grass-roots models”.

112

VII. INTEGRATING OUR APPROACH Integration guidelines

Finally, model validation heavily depends on these semantics. We think the complexity of the

examples we have presented in chapters V and VI clearly illustrates this difficulty. In practice, we have

identified two main obstacles to automatic validation of infrastructure models:

• The need for an oracle to differentiate, when combining two models representing a similar reality,

between inconsistencies by addition (where both models represent complementary aspects) and

inconsistencies by mistake (where some aspects are wrong);

• The need for an oracle to compare existing infrastructures with their models, to validate that the

aspects represented are consistent with the reality.

We have not identified any generic, automated oracle that meets the first criterion. For the second

one, the common infrastructure monitoring approaches used in the IT sector [Giamattei24] can meet

the need, but they are defined on an ad hoc basis and are not suited to non-technical systems. For these

however, the decentralisation of models we defend in the following section may open up new avenues.

Integration guidelinesIntegration guidelinesIntegration guidelinesIntegration guidelinesIntegration guidelinesIntegration guidelinesIntegration guidelinesIntegration guidelinesIntegration guidelinesIntegration guidelinesIntegration guidelinesIntegration guidelinesVII.4 Integration guidelines

Modern IT companies typically have a combination of business processes that are more administrative

in nature and very detailed technical workflows. It seems unrealistic to choose a holistic modeling

framework that can cover all these aspects in detail. Instead, a federated approach like [ISO 14258]

(Industrial automation systems—Concepts and rules for enterprise models) can leverage everyone’s skills

while achieving a more comprehensive modeling process. This approach preserves each stakeholder’s

metamodels and models, creating semantic connections between them. However, interdependencies and

inconsistencies between models can hinder collaboration, particularly when changes to one model affect

others. As noted in section VII.3.1, our framework enables identification and response to these changes.

In this section, we propose a methodological framework adaptable to concrete business processes, to

build thorough yet accurate models using our metamodel. First, we insist on the importance of sharing

models in so-called component catalogs. Then, we present two modeling scenarios: a posteriori modeling,

where we model existing infrastructures descriptively, and a priori modeling, where we model future

infrastructures prescriptively.

VII.4.1 Component catalogs

Companies typically design their systems by using external components. In the hardware world, systems

frequently contain COTS components sold by other companies. In the software domain, third-party

libraries and packages are essential components of modern systems.

This decentralized system design can apply to infrastructure modeling as well, by allowing manu-

facturers to produce their system models, which users can integrate into their infrastructure models.

Such models can be made available in catalogs available internally within companies and externally

to clients or for public use. There are two primary benefits to this approach. First, the responsibilities

and knowledge are better distributed as the models are produced by the system designers rather than

the users. Second, it speeds up the modeling process as model reuse, similar to code reuse in software

113

Integration guidelines VII. INTEGRATING OUR APPROACH

Company A
Servers

Line a
Product α

Product β

Line b
Line c

Network
Storage

Company B
Servers
Operating systems

OS 1
OS 2

Software
Current company

Servers
Physical

Server 1
Server 2
Server 3
Server 4

Virtual
Software

OS 2

Server 1Product α

Figure VII.8: An example of model reuse

development, enables designers to create composite systems more quickly. This approach goes hand

in hand with the idea of open risk analyses we have proposed in section IV.5, and shares many of its

aspects (making analyses/models public and decentralized, developing a common exchange format...).

Both modeling steps, design and use, are illustrated in figure VII.8, where a company’s Server 1

is built using other companies’ Product α and OS 2. An employee can then instantiate this Server 1

architecture in their models without redesigning it. By allowing to model infrastructure components,

our metamodel and CL/I can act as an exchange format for serializing models, which can then be reused

by other employees or third parties.

VII.4.2 A posteriori modeling

Understanding the orchestration of a company’s business processes can help optimize the existing and

build the new in a more controlled way. In the banking industry for example, the use of legacy systems

imposes technical choices that can only be made with a good knowledge of the existing architectures.

For example, the development of software tools interfacing with mainframes presents challenges specific

to the domain. Within the company’s departments, this knowledge exists in the form of diagrams, source

code, configuration files, etc., which must first be identified (step 1 of figure VII.9). This step may be

accompanied by hardware and software inventories if needed.

Next, the identified elements are mapped onto our metamodel. Care must be taken in the early

stages of modeling to assign responsibilities properly to the model entities (who owns which product,

who develops which service, who is responsible for modeling which component...). Step 2 of figure VII.9

illustrates this process.

In an iterative manner, business processes that interact with the modeled elements must be identified.

As this is a collaborative process, we can learn from approaches such as Agile methods and apply them to

the domain. Advocating for quick and iterative changes, we believe they are well-suited for our method;

despite this, we still lack the technical tools to achieve this goal, and we think that future developments

should focus on this. The interaction is shown in step 3 of figure VII.9. The resulting global model is

an important artifact for the company: it can be used, as mentioned in the previous chapters, to carry

out formal verifications, but also to train employees to better understand the company, to present the

infrastructure to auditors... Modeling is not just a stylistic exercise, it serves concrete purposes.

114

VII. INTEGRATING OUR APPROACH Integration guidelines

Department 1

Department 2

Department 3

1 1

1

2

2

2

3

Figure VII.9: A posteriori modeling by federation. Step 1 corresponds to the inventory, step 2 is the

modeling process and step 3 is the reconciliation.

Component

Authentication server

Login Register

VM

Authentication server SQL server

Login Register ∗calls ▷

calls ▷

VM

Authentication server

Login Register ∗

LDAP server

calls ▷

calls ▷

Figure VII.10: A priori modeling. Two instances of Authentication server are proposed to implement its

specification. Here, we simplify the services provided by SQL server and LDAP server with ∗. Note that
we are leaving the location of the LDAP server unspecified in this model.

115

Case study VII. INTEGRATING OUR APPROACH

VII.4.3 A priori modeling

Accurate and comprehensive models enable improved assessment of financial and technical costs of

projects, better dimensioning of infrastructures, and the creation of safe and secure by design systems.

Throughout a project’s life cycle, it is crucial to ensure that systems do not deviate from their specifica-

tions due to lack of communication, misunderstandings, or the urge to move too quickly. Verification

of expert-defined properties on these models, which we have discussed in section V.3, ensures system

conformity prior to implementation and can aid in selecting an optimal technical solution.

We can draw a link between infrastructure models and software development: specifications can

be seen as interfaces that the candidate models (classes) have to implement, extending the concepts

from Object-Oriented Programming to infrastructure modeling. The idea of model typing is explored

in [Steel07], and we have illustrated it with an example of two implementations of an authentication

server in figure VII.10. In this example, we describe on the left the desired structure for our application,

its structural specification, and on the right, instances of the specification model. These instances both

conform to the desired structure, with Login and Register services, but with different implementations. It

should be noted that while we can use our metamodel to ensure the syntactic conformance of models to

their specification (whether the structure of models correspond to that of the specification), the semantic

conformance (whether their behaviors are actually correct) must be verified by domain experts.

Case studyCase studyCase studyCase studyCase studyCase studyCase studyCase studyCase studyCase studyCase studyCase studyVII.5 Case study

To illustrate our approach, let us now consider a fictitious banking company, called eBank. eBank

provides banking and payment services to consumers and businesses. One of its flagship product, ePay,

acts as a payment processor for companies and as an instant payment and expense sharing tool for

consumers. The employees of the company want to have a better understanding of its overall processes

and decided to use our approach to this end. In this section, we first make an inventory of the company’s

models. Then, we link these models together into our metamodel. Finally, we use the resulting big

picture for a cross-model case study.

VII.5.1 Heterogeneous models...

The company decided to start its modeling by focusing on ePay’s environment, namely the company’s

organizational structure, the business processes around the product and the technical architecture. Each

department uses domain-specific modeling tools, leading to different views of the overall infrastructure.

Organizational structure.

eBank is structured in two directions: Technical and Administrative, each subdivided into structures,

divided themselves into departments. An organizational chart of the company is given in figure VII.11.

Business processes.

The company’s activities are guided by various business processes. For the sake of brevity, we consider

here only the equipment purchase process, represented in figure VII.12.

116

VII. INTEGRATING OUR APPROACH Case study

eBank

Technical direction

Datacenter

Hardware

Electricity & HVAC

Network

Cloud & Software

Virtualization

Applications

Security

Data

Storage

Analytics

Governance

Administrative direction

Human Resources

Payroll

Hiring

Development

Marketing & Sales

Sales

Communication

Service Desk

Finance

Planning

Purchasing

Capital

Figure VII.11: eBank’s organizational structure

eB
an

k
C
lo

ud
 &

 S
of

tw
ar

e

Need emerged

Write technical
specifications

Technical
specs sent

Write purchase
request

Purchase
request sent

Notification receivedBill of materials
received

Use hardware

D
at

ac
en

te
r

st
ru

ct
ur

e

Technical specs
received

Write bill of
material

Bill of
materials sent

Setup hardware

Hardware received Notification sent

P
ur

ch
as

in
g

de
pt

.

Purchase
request received

Review purchase
request

Make order

Order sent Invoice received

Se
lle

r

Figure VII.12: BPMN diagram for purchasing new hardware. For clarity, we do not show the exclusive

gateways and assume requests to be automatically accepted.

Commission a server
Check electrical reqs.
Elec/HVAC 1 15 min

Install hardware
Hardware 2 30 min

Prepare network
Network 1 15 min

Open a position
Check finance plan
Planning 1 45 min

Publish job offer
Hiring 1 30 min

Interview
Hiring ? ?

Figure VII.13: Task catalog

Legend.

a
b c d Sub-task (a: title, b: department, c: people, d: duration), End

117

Case study VII. INTEGRATING OUR APPROACH

eBank has been using a task management solution for many years to track how many person-

hours are needed for which projects. The solution is also used to know who is working on what at

a given time. By reusing this software’s database, employees created a catalog of common company

tasks to predict their durations and help project planning. This catalog ranges from technical tasks, for

example “commission a server”, to administrative ones, for example “open a position”. These two tasks

are represented in figure VII.13.

Lastly, all financial transactions are managed by the finance department.

Technical architecture.

eBank manages a datacenter hosting the hardware necessary for its activities. Some services are hosted

on dedicated machines and others are on an internal cloud infrastructure. Due to time constraints,

ePay has not been migrated to a modern cloud infrastructure yet. The service follows an active/passive

architecture, where only one node operates at a time.

To check the proper functioning of its services in real time, the company has a monitoring infras-

tructure that measures availability and several key performance indicators. For business clients, ePay

must process its requests within three seconds 99.9% of the time and must pay penalties in case of

non-compliance.

VII.5.2 ... linked together

After several rounds of modeling, eBank’s employees came up with the representation shown in

figure VII.14. First, the organizational structure (figure VII.11) is partially mapped to the eBank com-

ponent and its four sub-components representing structures and departments. The BPMN diagram

(figure VII.12) adds the Hardware component type, along with the Maintenance and Usage responsi-

bilities that the Cloud & Software structure and Hardware department have on this Hardware. The task

catalog (figure VII.13) adds knowledge about the Hiring department and its Hiring responsibility. The

task management solution (Task manager) keeps track of the time spent on the Usage and Maintenance

of the Hardware and on the Hiring process, highlighting the particular nature of responsibilities in our

metamodel. Finally, the Finance department is responsible for employees’ Wage payment, for the Invoice

payment of Hardware and the company’s Financial obligation regarding its Payment processing’s SLAs.

VII.5.3 Exploiting the model

The company’s real time monitoring has recently identified slowdowns in ePay on peak hours. Following

our model, we can see that there is a potential impact on the Finance department because of its Financial

obligations. Some employees have suggested scaling the infrastructure before such slowdowns violate

SLAs. One way to do so is to setup new Physical servers and change the overall architecture of the

services. This new architecture is expected to mobilize part of the Cloud & Software structure for several

months. The Human Resources structure proposes to either ignore the potential problem or to assign its

teams on the scaling project (by hiring new staff, outsourcing some of the work or reassigning staff

without additional hiring or outsourcing).

118

VII. INTEGRATING OUR APPROACH Case study

ePay

Payment processingLogs

ePay server

Service checker

Physical server

Hardware

Use service

Service

Hardware department

Cloud & Software structure

Hiring department

Usage

Maintenance

Task manager Finance department

Financial obligation

Accounting Wage payment

Invoice payment

eBank

Role

Client
◁ outputs

gets △

◁ calls

Hiring

Figure VII.14: ePay’s big picture. To help the reader, instantiations are blue () and responsibility

links and their association classes are red (and).

Payment processingSlowdown detected

ORImprove architecture Do nothing

ANDScale infrastructure Use microservices

ANDInvoice payment Maintenance Financial obligation

Accounting

OR

Hire

Wage payment

Outsource

?

Reassign

...

Finance department

Financial impact

Figure VII.15: Impact tree from application slowness to financial impact

Legend. Default branch, Employee suggestions, Model elements

119

Conclusion VII. INTEGRATING OUR APPROACH

In figure VII.15, we explore our model to trace the paths between the slowdown and the Finance

department, to identify potential financial impacts. To make its decision, the company has to compare

(a) the financial impact if nothing is done (resulting from the Financial obligation) to (b) the financial

impact of the improved architecture (resulting from Invoice payments and the personnel cost). The

company does not have an outsourcing process, so the analysis of the Outsource branch, represented

by “?” in the figure, cannot be performed. We have not detailed the Reassign branch for the sake of

simplicity; however, its analysis is valuable to the company since the reassignment of staff would change

the time allocated in the Task manager. This would consequently have indirect impacts on the Finance

department (for example, failure to deliver new features to clients due to a lack of time, leading to

increased customer churn).

By calculating the cost of each decision branch, as discussed in section VI.1.2, the company can

make a decision regarding this particular problem.

ConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusionVII.6 Conclusion

In this chapter, we have presented an approach to IT infrastructure modeling which capitalizes on

the lessons we have learned throughout our work. This approach consists of a generic metamodel

aimed at linking models together and better controlling the responsibilities of each stakeholder, through

principles inspired by software engineering to guide the modeling process. Our approach is not intended

to substitute established methods within organizations, but rather to enable complex analyses spanning

across multiple models. Through model federation, we think that business modeling can include more

stakeholders, while preserving the tools and models they are used to working with.

In the course of this thesis, we did not have the opportunity to validate our approach on a large

scale. Nevertheless, we hold the view that our method offers a well-organized framework for study,

and its systematic application to smaller infrastructures has enabled us to develop simple and accurate

cross-domain models. These models were however made by a single person, so future work needs to

focus on the collaboration between a variety of teams, which we did not have the opportunity to explore

further.

120

VIII
Chapter VIII

Conclusion

Contents

VIII.1 Synthesis of contributions . 121

VIII.2 Limitations and perspectives . 123

VIII.2.1 Risk management . 123

VIII.2.2 Modeling . 124

VIII.2.3 CL/I . 124

VIII.2.4 Enterprise integration . 124

IT infrastructures are subject to a wide range of safety and security risks. A number of methods

are available to help understand these risks and establish strategies to avoid them, or reduce their

effects. But these methods are still largely manual, and therefore subject to human error. This human

error is often caused by a lack of knowledge of infrastructures, or a misunderstanding of the links

between their many components. Infrastructure modeling helps people build a better understanding

and can, with the help of formal methods, be used to deduce safety and security properties that serve as

guidance for risk analysis. It seems to us however that the techniques developed by the scientific and

technical communities dealing with these subjects (risk analysis, formal methods, enterprise modeling)

lack interoperability, and that the links between these communities need to be strenghened.

Synthesis of contributionsSynthesis of contributionsSynthesis of contributionsSynthesis of contributionsSynthesis of contributionsSynthesis of contributionsSynthesis of contributionsSynthesis of contributionsSynthesis of contributionsSynthesis of contributionsSynthesis of contributionsSynthesis of contributionsVIII.1 Synthesis of contributions

The work presented in this dissertation revolves around the concept of “risk cycle”. We have opted for a

wide approach, in order to explore the various gaps in the literature throughout this process, which

is synthesized in figure VIII.1 where we show the contributions from each chapter to the cycle. The

figure reads as follows: infrastructures are modeled, and checking them gives insights about the risk.

The risk that is deemed acceptable is filtered, and the remaining risk leads to requirements for the

infrastructure. These requirements are implemented as constraints, some of which are defined through

the configuration of infrastructure components, which can lead to executions meeting the requirements

or not on the reified infrastructures. Then, the cycle can start again from these reified infrastructures.

In chapter IV, we have introduced our formalism around the risk cycle. We explored the risk

management field and focused on two main aspects: risk classification and risk analysis frameworks.

For risk classification, we have outlined a number of taxonomy initiatives, highlighting the poor

121

Synthesis of contributions VIII. CONCLUSION

R

R

C
C

constraint
configure

I

I

reify

I′

I′′

δI (I′)

δI (I′′) iter

filter

check
check

check

model

model

model

require

⇝

E

run

meet

IV

V

VI

VII

Figure VIII.1: Refinement of the risk cycle throughout this dissertation

Legend. x Presented in chapter x, ⇝ Execution of infrastructures.

representation of safety risk. After taking a particular interest in the MITRE reference datasets, we

developed a tool, mitre2owl, to translate the CAPEC, CVE and CWE projects into rich, interoperable

ontologies. We have shown how to exploit and combine our ontologies and produced a Vulnerability–

Weakness rosette to visually show the prevalence of CWEs in CVEs. For risk analysis frameworks, we

have drawn lessons from our experience of using traditional analysis methods on IT infrastructures

and compiled them on a set of guidelines on how to adapt existing methods to such infrastructures.

Since business activities based on IT infrastructures inherently present their own share of risk, we have

discussed criteria for risk acceptability. We closed the chapter with the hope that different manufacturers

and developers would eventually share their risk analyses, and provided a simple framework for

composing and serializing said analyses.

In chapter V, we have presented infrastructure modeling through technical tools and formal methods

and how to translate models from the technical to the formal one. We have produced concrete, realistic

models for a small IT infrastructure through physical, network, and behavioral aspects, and have

shown how to link them together. We have then proceeded with the verification of these models using

UPPAAL. Using a trial-and-error approach, we drew lessons on how to develop more complete, usable

and verifiable infrastructure models. We concluded the chapter by presenting some ideas for automating

the process, by translating high-level requirements into logical formulae and linking these formulae to

shared model catalogs.

In chapter VI, we have introduced what represents the largest part of our work: the CL/I modeling

language. The goal of CL/I is to provide a pivot language for IT infrastructure modeling, allowing

automatic verification and execution of models by various tools. We have introduced the grammar,

AST, and various semantic processing rules of CL/I alongside examples showing how our language

122

VIII. CONCLUSION Limitations and perspectives

works. We have then presented two case studies, the former exploring the structure and dynamics of

the Proxmox VE hypervisor and the latter building and verifying a model covering several business

domains. To this end, we introduced one of the language’s extensions enabling it to be linked to the

Z3 prover, and showed the presence of unsafe behavior in Proxmox VE. Through our first case study,

we also contributed to the Emulab community by developing a profile to deploy Proxmox clusters on

Emulab servers.

Finally, in chapter VII, we met with the Enterprise Modeling community to explore the integration

of our work in a corporate environment. We have first proposed a component- and responsibility-

oriented metamodel to link enterprise models together through a common framework. Its main focus

is the federation of the different viewpoints that coexist between stakeholders from various corporate

domains. We have then presented several guidelines for a more collaborative practice of infrastructure

modeling before discussing important points to consider when scaling up the approach, echoing the

ideas developed earlier in the dissertation.

The period during which we have developed our line of research has enabled us to contribute to

different fields with the contributions we have presented here. However, our project aims for the long

term.

Limitations and perspectivesLimitations and perspectivesLimitations and perspectivesLimitations and perspectivesLimitations and perspectivesLimitations and perspectivesLimitations and perspectivesLimitations and perspectivesLimitations and perspectivesLimitations and perspectivesLimitations and perspectivesLimitations and perspectivesVIII.2 Limitations and perspectives

The avenues for further improvement in our work are numerous, and over the course of our doctoral

program, we had to narrow the focus of our research. In this section, we present the limitations of our

work and some short-, intermediate- and long-term perspectives.

VIII.2.1 Risk management

We have presented a number of risk analysis frameworks in this dissertation, each of which can be used

to feed a risk taxonomy. However, we have focused on a single family of reference documents, those of

the MITRE, to develop our ontologies. This choice is mainly due to the technical limitations of other

standards, which are often presented in an unstructured (in the data processing sense) textual form. In

the short term, standards such as that of ENISA could be ported to ontologies, and we could develop

semantic rules to federate them. In the long term, purely textual standards could also be transformed

into ontologies, but this would be a task for scientific communities interested in topics such as Natural

Language Processing. Because frameworks often refer to one another (for example, many CWEs refer to

NIST and OWASP entries), such a federation has already been partly done, although informally.

When we discussed risk analysis frameworks, we put forward the idea of an exchange format for

IT infrastructure analyses. We carried out in our work a short analysis on physical servers, using the

FMEA, FTA and STPA frameworks, combining in situ testing and translations of manufacturers’ user

manuals, and have produced a unique representation of the risk on several Dell and HPE servers. We

plan to conduct in the short term further studies in this direction and publish our results to promote a

more open approach to the discipline.

123

Limitations and perspectives VIII. CONCLUSION

VIII.2.2 Modeling

We originally come from a software engineering community. One of the foundations of the field is what

we like to call the “lazy principle”:

1. Do not redo what already exists;

2. Do not overdo;

3. Do not overcomplicate.

We have suggested in this dissertation to apply these points to modeling, by 1) encouraging the

development of generic, reusable models, 2) modeling only the necessary structure and behavior, and

3) modeling it in a sufficiently abstract way. Actually, the last two points are more of a constraint of

model checking than a deliberate choice, so we think that our work would benefit most from more

development in the first point. As with risk analyses, we plan to work, in the intermediate term, on

producing a public catalog of instantiable models. Such models could be combined with our open risk

analyses to help automatic certification of infrastructures.

Models are made to represent aspects of concrete infrastructure elements, but they are too often

static, and for a good reason: updating models can sometimes be costly. An acceptable in-between is

the automatic generation of infrastructure tests from their models, to ensure that safety and security

invariants are not violated over time. In the intermediate term, we plan to develop and integrate in our

CL/I ecosystem backends for software such as Nagios or Ansible, enabling real-time verification and

automatic reconfiguration of systems.

VIII.2.3 CL/I

Our language and its infrastructure are still under development, and there are a number of issues that

need to be addressed. Firstly, although our language is typed, its type engine is still too primitive (no

unification, subtyping not supported by our Z3 extension). We consider it important to work on this

point to make the language more reliable.

Secondly, some of our AST constructs do not yet have a semantic rule so they can be transformed

into the language’s intermediate representation, CLIR. We need to work on completing our semantic

rules, and then ensure that the new CLIR constructs are properly translated into Z3.

Finally, Z3 is able to generate a set of complete models when a (possibly partial) model satisfies

properties, and counterexamples in the opposite case or if the model is not consistent. While we are able

to switch from CL/I to CLIR, and from the CLIR to Z3, inverse transformations are not implemented

yet, and informations such as the original source code locations are not currently recorded. This is an

important consideration for improving the explicability of Z3 diagnostics in our language.

VIII.2.4 Enterprise integration

Lastly, our approach lacks validation in an industrial context, and the various guidelines we have

proposed in this dissertation need to applied to various teams within a company. As with any large-scale

experiment, we do not expect this goal to be achieved in the short term. This approach goes hand in hand

with the other future developments we have proposed, as experimentation in a corporate environment

will put into practice the model sharing principles we have advocated. Finally, the systematic integration

of our approach into business processes needs to be explored, as an intermediate-term objective.

124

Bibliography

[Abbass15] Wissam Abbass, Amine Baina, and Mostafa Bellafkih. “Using EBIOS for risk

management in critical information infrastructure”. In: 5th World Congress on

Information and Communication Technologies. 2015, pp. 107–112. doi: 10.1109/

WICT.2015.7489654 (cit. on p. 13).

[Abrial96] Jean-RaymondAbrial. The B-book —Assigning Programs toMeanings. Cambridge

university press, 1996 (cit. on p. 62).

[Agha18] Gul Agha and Karl Palmskog. “A Survey of Statistical Model Checking”. In:

ACM Transactions on Modeling and Computer Simulation 28.1 (Jan. 2018). issn:

1049-3301. doi: 10.1145/3158668 (cit. on p. 16).

[Alturkistani14] Fatimah Alturkistani and Ahmed Emam. “A Review of Security Risk Assess-

ment Methods in Cloud Computing”. In: New Perspectives in Information Sys-

tems and Technologies. Vol. 1. Springer International Publishing, 2014. isbn:

9783319059518. doi: 10.1007/978-3-319-05951-8_42 (cit. on p. 47).

[Amaral10] Vasco Amaral, Cécile Hardebolle, Gabor Karsai, László Lengyel, and Tihamér

Levendovszky. “Recent Advances in Multi-paradigm Modeling”. In: Models in

Software Engineering. 2010, pp. 220–224. isbn: 978-3-642-12261-3 (cit. on p. 110).

[Amundrud17] Øystein Amundrud, Terje Aven, and Roger Flage. “How the definition of security

risk can be made compatible with safety definitions”. In: Proceedings of the

Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability 231.3

(2017), pp. 286–294. doi: 10.1177/1748006X17699145 (cit. on p. 10).

[Anderson14] Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jeannin, Dexter

Kozen, Cole Schlesinger, and David Walker. “NetKAT: Semantic Foundations

for Networks”. In: SIGPLAN Not. 49.1 (Jan. 2014), pp. 113–126. issn: 0362-1340.

doi: 10.1145/2578855.2535862 (cit. on p. 14).

[ANSSI DAT-NT-028] Agence Nationale de la Sécurité des Systèmes d’Information. Recommandations

de configuration d’un système GNU/Linux. 2022. url: https://www.ssi.gouv.

fr/reco-securite-systeme-linux (cit. on p. 36).

[Archimate] The Open Group. ArchiMate ® 3.1 Specification. url: https://publications.

opengroup.org/c197 (cit. on pp. 16, 107).

125

https://doi.org/10.1109/WICT.2015.7489654
https://doi.org/10.1109/WICT.2015.7489654
https://doi.org/10.1145/3158668
https://doi.org/10.1007/978-3-319-05951-8_42
https://doi.org/10.1177/1748006X17699145
https://doi.org/10.1145/2578855.2535862
https://www.ssi.gouv.fr/reco-securite-systeme-linux
https://www.ssi.gouv.fr/reco-securite-systeme-linux
https://publications.opengroup.org/c197
https://publications.opengroup.org/c197

BIBLIOGRAPHY

[ARP4761] SAE International. ARP4761 — Guidelines and Methods for Conducting the Safety

Assessment Process on Civil Airborne Systems and Equipment. SAE International,

1996. url: https://www.sae.org/standards/content/arp4761/ (cit. on

pp. 13, 44).

[Artac17] Matej Artac, Tadej Borovssak, Elisabetta Di Nitto, Michele Guerriero, and

Damian Andrew Tamburri. “DevOps: Introducing Infrastructure-as-Code”. In:

2017 IEEE/ACM 39th International Conference on Software Engineering Compan-

ion (ICSE-C). May 2017, pp. 497–498. doi: 10.1109/ICSE-C.2017.162 (cit. on

p. 80).

[AS9100D] SAE International. Quality Management Systems – Requirements for Aviation,

Space, and Defense Organizations. SAE International, 2016. url: https://www.

sae.org/standards/content/as9100d/ (cit. on p. 13).

[Autili15] Marco Autili, Lars Grunske, Markus Lumpe, Patrizio Pelliccione, and Antony

Tang. “Aligning Qualitative, Real-Time, and Probabilistic Property Specification

Patterns Using a Structured English Grammar”. In: IEEE Transactions on Software

Engineering 41.7 (2015), pp. 620–638. doi: 10.1109/TSE.2015.2398877 (cit. on

p. 75).

[Baier08] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. Apr. 2008.

isbn: 978-0-262-02649-9 (cit. on pp. 16, 17).

[Barrett17] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The SMT-LIB Standard: Version

2.6. Tech. rep. Available at www.SMT-LIB.org. Department of Computer Science,

The University of Iowa, 2017 (cit. on p. 91).

[Baybutt15] Paul Baybutt. “A critique of the Hazard and Operability (HAZOP) study”. In:

Journal of Loss Prevention in the Process Industries 33 (2015). issn: 0950-4230.

doi: 10.1016/j.jlp.2014.11.010 (cit. on p. 45).

[Bleikertz15] Sören Bleikertz, Carsten Vogel, Thomas Groß, and Sebastian Mödersheim.

“Proactive Security Analysis of Changes in Virtualized Infrastructures”. In: Pro-

ceedings of the 31st Annual Computer Security Applications Conference. ACSAC

’15. Association for ComputingMachinery, 2015, pp. 51–60. isbn: 9781450336826.

doi: 10.1145/2818000.2818034 (cit. on pp. 20, 81).

[Blythe15] John Matthew Blythe, Lynne Coventry, and Linda Little. “Unpacking security

policy compliance: The motivators and barriers of employees’ security behav-

iors”. In: Eleventh Symposium On Usable Privacy and Security (SOUPS 2015). 2015,

pp. 103–122 (cit. on p. 50).

[Boustras20] Georgios Boustras and Alan Waring. “Towards a reconceptualization of safety

and security, their interactions, and policy requirements in a 21
st
century con-

text”. In: Safety Science 132 (2020), p. 104942. issn: 0925-7535. doi: https:

//doi.org/10.1016/j.ssci.2020.104942 (cit. on p. 10).

126

https://www.sae.org/standards/content/arp4761/
https://doi.org/10.1109/ICSE-C.2017.162
https://www.sae.org/standards/content/as9100d/
https://www.sae.org/standards/content/as9100d/
https://doi.org/10.1109/TSE.2015.2398877
https://doi.org/10.1016/j.jlp.2014.11.010
https://doi.org/10.1145/2818000.2818034
https://doi.org/https://doi.org/10.1016/j.ssci.2020.104942
https://doi.org/https://doi.org/10.1016/j.ssci.2020.104942

BIBLIOGRAPHY

[Breton00] Erwan Breton and Jean Bézivin. “An Overview of Industrial Process Meta-

Models”. In: International Conference on Software & Systems Engineering and

their Applications. 2000 (cit. on p. 108).

[Brikman19] Yevgeniy Brikman. Terraform: Up & Running. 2nd. O’Reilly Media, Inc., 2019.

isbn: 9781492046905 (cit. on p. 19).

[Buldyrev10] Sergey Buldyrev, Roni Parshani, Gerald Paul, Harry Eugene Stanley, and Shlomo

Havlin. “Catastrophic cascade of failures in interdependent networks”. In: Na-

ture 464.7291 (Apr. 2010), pp. 1025–1028. issn: 1476-4687. doi: 10 . 1038 /

nature08932 (cit. on p. 12).

[Burns16] Brendan Burns, Brian Grant, David Oppenheimer, Eric Brewer, and JohnWilkes.

“Borg, Omega, and Kubernetes: Lessons learned from three container-manage-

ment systems over a decade”. In: Queue 14.1 (Jan. 2016), pp. 70–93. issn: 1542-

7730. doi: 10.1145/2898442.2898444 (cit. on p. 20).

[Burns92] Alan Burns, John McDermid, and John Dobson. “On the Meaning of Safety and

Security”. In: The Computer Journal 35.1 (Feb. 1992), pp. 3–15. issn: 0010-4620.

doi: 10.1093/comjnl/35.1.3 (cit. on p. 9).

[Campbell20] Bradley Campbell. “The AWS CDK and Pulumi”. In: The Definitive Guide to

AWS Infrastructure Automation : Craft Infrastructure-as-Code Solutions. Berkeley,

CA: Apress, 2020, pp. 237–272. isbn: 978-1-4842-5398-4. doi: 10.1007/978-1-

4842-5398-4_6 (cit. on p. 19).

[CAPEC] TheMITRE Corporation.Common Attack Pattern Enumeration and Classification.

url: https://capec.mitre.org (cit. on p. 37).

[Caracciolo15] Andrea Caracciolo. “A Unified Approach to Automatic Testing of Architectural

Constraints”. In: 2015 IEEE/ACM 37th IEEE International Conference on Software

Engineering. Vol. 2. 2015, pp. 871–874. doi: 10.1109/ICSE.2015.281 (cit. on

p. 17).

[Chardet18] Maverick Chardet, Helene Coullon, Dimitri Pertin, and Christian Perez. “Madeus:

A Formal Deployment Model”. In: 2018 International Conference on High Perfor-

mance Computing & Simulation (HPCS). 2018, pp. 724–731. doi: 10.1109/HPCS.

2018.00118 (cit. on p. 20).

[CIM] Distributed Management Task Force. Common Information Model. url: https:

//www.dmtf.org/standards/cim (cit. on p. 60).

[Clarke00] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.

“Counterexample-Guided Abstraction Refinement”. In: Computer Aided Verifi-

cation. Ed. by E. Allen Emerson and Aravinda Prasad Sistla. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2000, pp. 154–169. isbn: 978-3-540-45047-4. doi:

10.1007/10722167_15 (cit. on p. 72).

127

https://doi.org/10.1038/nature08932
https://doi.org/10.1038/nature08932
https://doi.org/10.1145/2898442.2898444
https://doi.org/10.1093/comjnl/35.1.3
https://doi.org/10.1007/978-1-4842-5398-4_6
https://doi.org/10.1007/978-1-4842-5398-4_6
https://capec.mitre.org
https://doi.org/10.1109/ICSE.2015.281
https://doi.org/10.1109/HPCS.2018.00118
https://doi.org/10.1109/HPCS.2018.00118
https://www.dmtf.org/standards/cim
https://www.dmtf.org/standards/cim
https://doi.org/10.1007/10722167_15

BIBLIOGRAPHY

[Clarke09] Edmund Clarke, Ernest Allen Emerson, and Joseph Sifakis. “Model Checking:

Algorithmic Verification and Debugging”. In: Communications of the ACM 52.11

(Nov. 2009), pp. 74–84. issn: 0001-0782. doi: 10.1145/1592761.1592781 (cit.

on p. 16).

[Clarke12] Edmund Clarke, William Klieber, Miloš Nováček, and Paolo Zuliani. “Model

Checking and the State Explosion Problem”. In: Tools for Practical Software

Verification: LASER, International Summer School 2011, Elba Island, Italy, Revised

Tutorial Lectures. Ed. by Bertrand Meyer and Martin Nordio. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2012, pp. 1–30. isbn: 978-3-642-35746-6. doi: 10.

1007/978-3-642-35746-6_1 (cit. on p. 70).

[Cohn04] David Cohn and Markus Stolze. “The rise of the model-driven enterprise”. In:

IEEE International Conference on E-Commerce Technology for Dynamic E-Business.

2004, pp. 324–327. doi: 10.1109/CEC-EAST.2004.65 (cit. on p. 107).

[CORAS] Mass Soldal Lund, Bjrnar Solhaug, and Ketil Stlen. Model-Driven Risk Analysis:

The CORAS Approach. 1st. Springer Publishing Company, Incorporated, 2010.

isbn: 3642123228 (cit. on p. 13).

[Corosync] Corosync developer community. The Corosync Cluster Engine. url: http://

corosync.github.io/corosync/ (cit. on p. 65).

[Cousot05] Patrick Cousot, Radhia Cousot, Jerôme Feret, LaurentMauborgne, AntoineMiné,

David Monniaux, and Xavier Rival. “The ASTREÉ Analyzer”. In: Programming

Languages and Systems. Ed. by Mooly Sagiv. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2005, pp. 21–30. isbn: 978-3-540-31987-0. doi: 10.1007/978-3-

540-31987-0_3 (cit. on p. 41).

[CPE] National Institute of Standards and Technology. Official Common Platform

Enumeration (CPE) Dictionary. url: https://nvd.nist.gov/products/cpe

(cit. on p. 76).

[CRAMM] Zeki Yazar. “A qualitative risk analysis and management tool – CRAMM”. In:

SANS InfoSec Reading Room White Paper 11.1 (2002), pp. 12–32 (cit. on p. 13).

[Cristea17] Gabriel Cristea and D. Constantinescu. “A comparative critical study between

FMEA and FTA risk analysis methods”. In: IOP Conference Series: Materials

Science and Engineering 252 (2017). doi: 10.1088/1757-899x/252/1/012046

(cit. on p. 45).

[CVE] The MITRE Corporation. Common Vulnerability Enumeration. url: https:

//cve.org (cit. on p. 37).

[CWE] The MITRE Corporation. Common Weakness Enumeration. url: https://cwe.

mitre.org (cit. on p. 37).

128

https://doi.org/10.1145/1592761.1592781
https://doi.org/10.1007/978-3-642-35746-6_1
https://doi.org/10.1007/978-3-642-35746-6_1
https://doi.org/10.1109/CEC-EAST.2004.65
http://corosync.github.io/corosync/
http://corosync.github.io/corosync/
https://doi.org/10.1007/978-3-540-31987-0_3
https://doi.org/10.1007/978-3-540-31987-0_3
https://nvd.nist.gov/products/cpe
https://doi.org/10.1088/1757-899x/252/1/012046
https://cve.org
https://cve.org
https://cwe.mitre.org
https://cwe.mitre.org

BIBLIOGRAPHY

[daCunhaR16] Guilherme da Cunha Rodrigues, Rodrigo Neves Calheiros, Vinicius Tavares

Guimaraes, Glederson Lessa dos Santos, Márcio Barbosa de Carvalho, Lisandro

Zambenedetti Granville, Liane Margarida Rockenbach Tarouco, and Rajkumar

Buyya. “Monitoring of Cloud Computing Environments: Concepts, Solutions,

Trends, and Future Directions”. In: Proceedings of the 31st Annual ACM Sympo-

sium on Applied Computing. SAC ’16. Pisa, Italy: Association for Computing

Machinery, 2016, pp. 378–383. isbn: 9781450337397. doi: 10.1145/2851613.

2851619 (cit. on p. 20).

[DeDomenico13] Manlio De Domenico, Albert Solé-Ribalta, Emanuele Cozzo, Mikko Kivelä,

Yamir Moreno, Mason A. Porter, Sergio Gómez, and Alex Arenas. “Mathematical

Formulation of Multilayer Networks”. In: Physical Review X 3 (4 Dec. 2013). doi:

10.1103/PhysRevX.3.041022 (cit. on p. 12).

[Dehnert17] Christian Dehnert, Sebastian Junges, Joost-Pieter Katoen, and Matthias Volk.

“A Storm is Coming: A Modern Probabilistic Model Checker”. In: Computer

Aided Verification. Ed. by Rupak Majumdar and Viktor Kunčak. Cham: Springer

International Publishing, 2017, pp. 592–600. isbn: 978-3-319-63390-9. doi: 10.

1007/978-3-319-63390-9_31 (cit. on p. 72).

[deMoura08] Leonardo de Moura and Nikolaj Bjørner. “Z3: An Efficient SMT Solver”. In: Tools

and Algorithms for the Construction and Analysis of Systems. 2008, pp. 337–340.

isbn: 978-3-540-78800-3 (cit. on p. 16).

[deSilva12] Lakshitha de Silva and Dharini Balasubramaniam. “Controlling software ar-

chitecture erosion: A survey”. In: Journal of Systems and Software 85.1 (2012).

Dynamic Analysis and Testing of Embedded Software, pp. 132–151. issn: 0164-

1212. doi: https://doi.org/10.1016/j.jss.2011.07.036 (cit. on p. 82).

[Deursen00] Arie van Deursen, Paul Klint, and Joost Visser. “Domain-Specific Languages:

An Annotated Bibliography”. In: SIGPLAN Notices (2000). issn: 0362-1340. doi:

10.1145/352029.352035 (cit. on p. 108).

[Dhaussy12] Philippe Dhaussy, Frédéric Boniol, Jean-Charles Roger, and Luka Leroux. “Im-

proving Model Checking with Context Modelling”. In: Advances in Software

Engineering 2012 (Jan. 2012). issn: 1687-8655. doi: 10.1155/2012/547157. url:

https://doi.org/10.1155/2012/547157 (cit. on p. 16).

[DiCosmo14] Roberto Di Cosmo, Jacopo Mauro, Stefano Zacchiroli, and Gianluigi Zavattaro.

“Aeolus: A component model for the cloud”. In: Information and Computation

239 (2014), pp. 100–121. issn: 0890-5401. doi: https://doi.org/10.1016/j.

ic.2014.11.002 (cit. on p. 20).

[Dimitrov23] Vladimir Dimitrov.CWEOntology. Feb. 2023. doi: 10.55630/sjc.2022.16.39-

56 (cit. on p. 41).

[Dwyer99] Matthew Dwyer, George Avrunin, and James Corbett. “Patterns in property

specifications for finite-state verification”. In: Proceedings of the 1999 Inter-

national Conference on Software Engineering (IEEE Cat. No.99CB37002). 1999,

pp. 411–420. doi: 10.1145/302405.302672 (cit. on p. 75).

129

https://doi.org/10.1145/2851613.2851619
https://doi.org/10.1145/2851613.2851619
https://doi.org/10.1103/PhysRevX.3.041022
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/https://doi.org/10.1016/j.jss.2011.07.036
https://doi.org/10.1145/352029.352035
https://doi.org/10.1155/2012/547157
https://doi.org/10.1155/2012/547157
https://doi.org/https://doi.org/10.1016/j.ic.2014.11.002
https://doi.org/https://doi.org/10.1016/j.ic.2014.11.002
https://doi.org/10.55630/sjc.2022.16.39-56
https://doi.org/10.55630/sjc.2022.16.39-56
https://doi.org/10.1145/302405.302672

BIBLIOGRAPHY

[EBIOS-RM] Agence Nationale de la Sécurité des Systèmes d’Information. EBIOS Risk Man-

ager. 2019. url: https://www.ssi.gouv.fr/uploads/2019/11/anssi-

guide-ebios_risk_manager-en-v1.0.pdf (cit. on pp. 13, 27, 46).

[Esen22] Muhammed Fevzi Esen. “Business Continuity in Data Centers and Seismic

Isolation Applications”. In: J. Inf. Technol. Res. 15 (2022), pp. 1–23. doi: 10.

4018/JITR.299928 (cit. on p. 12).

[Eurocode 8] European Commission. Eurocode 8: Design of structures for earthquake resistance.

1998. url: https://eurocodes.jrc.ec.europa.eu/EN- Eurocodes/

eurocode-8-design-structures-earthquake-resistance?id=138 (cit.

on p. 28).

[Feltus11] Christophe Feltus, Michaël Petit, and Eric Dubois. “ReMoLa: Responsibility

model language to align access rights with business process requirements”. In:

International Conference on Research Challenges in Information Science. 2011,

pp. 1–6. doi: 10.1109/RCIS.2011.6006828 (cit. on p. 105).

[Fleurey08] Franck Fleurey, Benoit Baudry, Robert France, and Sudipto Ghosh. “A Generic

Approach for AutomaticModel Composition”. In:Models in Software Engineering.

2008, pp. 7–15. isbn: 978-3-540-69073-3 (cit. on p. 108).

[Floyd62] Robert W Floyd. “Algorithm 97: Shortest path”. In: Commun. ACM 5.6 (June

1962), p. 345. issn: 0001-0782. doi: 10.1145/367766.368168 (cit. on p. 69).

[GDPR] European Parliament and Council of the European Union. General Data Protec-

tion Regulation. 2016. url: https://eur-lex.europa.eu/legal-content/

EN/TXT/PDF/?uri=CELEX:32016R0679 (cit. on pp. viii, 11).

[Giamattei24] Luca Giamattei, Antonio Guerriero, Roberto Pietrantuono, Stefano Russo, Ste-

fano Malavolta, Tanjina Islam, Madalina Dînga, Anne Koziolek, Snigdha Singh,

Martin Armbruster, José-María Gutierrez-Martinez, Sergio Caro-Alvaro, Daniel

Rodriguez, Sebastian Weber, Jörg Henss, Estrella Fernandez Vogelin, and Fer-

nando Simon Panojo. “Monitoring tools for DevOps and microservices: A sys-

tematic grey literature review”. In: Journal of Systems and Software 208 (2024).

issn: 0164-1212. doi: 10.1016/j.jss.2023.111906 (cit. on p. 113).

[Golra16] Fahad Rafique Golra, Antoine Beugnard, Fabien Dagnat, Sylvain Guérin, and

Christophe Guychard. “Addressing Modularity for Heterogeneous Multi-model

Systems using Model Federation”. In: Companion Proceedings of the International

Conference on Modularity (MoMo). ACM, 2016. isbn: 978-1-4503-4033-5. doi:

10.1145/2892664.2892701 (cit. on pp. 16, 108).

[GR-63-CORE] Ericsson. NEBS Requirements: Physical Protection. Ericsson, 2017. url: https:

//telecom-info.njdepot.ericsson.net/site-cgi/ido/docs.cgi?ID=

SEARCH&DOCUMENT=GR-63 (cit. on pp. viii, 28).

[Graham19] John Graham-Cumming. Details of the Cloudflare outage on July 2, 2019. 2019.

url: https://blog.cloudflare.com/details- of- the- cloudflare-

outage-on-july-2-2019/ (cit. on p. 80).

130

https://www.ssi.gouv.fr/uploads/2019/11/anssi-guide-ebios_risk_manager-en-v1.0.pdf
https://www.ssi.gouv.fr/uploads/2019/11/anssi-guide-ebios_risk_manager-en-v1.0.pdf
https://doi.org/10.4018/JITR.299928
https://doi.org/10.4018/JITR.299928
https://eurocodes.jrc.ec.europa.eu/EN-Eurocodes/eurocode-8-design-structures-earthquake-resistance?id=138
https://eurocodes.jrc.ec.europa.eu/EN-Eurocodes/eurocode-8-design-structures-earthquake-resistance?id=138
https://doi.org/10.1109/RCIS.2011.6006828
https://doi.org/10.1145/367766.368168
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679
https://doi.org/10.1016/j.jss.2023.111906
https://doi.org/10.1145/2892664.2892701
https://telecom-info.njdepot.ericsson.net/site-cgi/ido/docs.cgi?ID=SEARCH&DOCUMENT=GR-63
https://telecom-info.njdepot.ericsson.net/site-cgi/ido/docs.cgi?ID=SEARCH&DOCUMENT=GR-63
https://telecom-info.njdepot.ericsson.net/site-cgi/ido/docs.cgi?ID=SEARCH&DOCUMENT=GR-63
https://blog.cloudflare.com/details-of-the-cloudflare-outage-on-july-2-2019/
https://blog.cloudflare.com/details-of-the-cloudflare-outage-on-july-2-2019/

BIBLIOGRAPHY

[Grati15] Rima Grati, Khouloud Boukadi, and Hanêne Ben-Abdallah. “Overview of IaaS

monitoring tools”. In: 2015 IEEE/ACS 12th International Conference of Computer

Systems and Applications (AICCSA). 2015, pp. 1–7. doi: 10.1109/AICCSA.2015.

7507146 (cit. on p. 20).

[Greenwood95] R. Mark Greenwood, Ian Robertson, Robert Archer Snowdon, and Brian War-

boys. “Active Models in Business”. In:Annual Conference on Business Information

Technology (BIT). 1995 (cit. on p. 108).

[Grottke08] Michael Grottke, Rivalino Matias, and Kishor S. Trivedi. “The fundamentals of

software aging”. In: 2008 IEEE International Conference on Software Reliability

Engineering Workshops (ISSRE Workshop). 2008, pp. 1–6. doi: 10.1109/ISSREW.

2008.5355512 (cit. on p. 20).

[Grunske08] Lars Grunske. “Specification Patterns for Probabilistic Quality Properties”. In:

Proceedings of the 30th International Conference on Software Engineering. ICSE ’08.

Leipzig, Germany: Association for Computing Machinery, 2008, pp. 31–40. isbn:

9781605580791. doi: 10.1145/1368088.1368094. url: https://doi.org/

10.1145/1368088.1368094 (cit. on p. 75).

[Hannousse21] Abdelhakim Hannousse and Salima Yahiouche. “Securing microservices and

microservice architectures: A systematic mapping study”. In: Computer Science

Review 41 (2021), p. 100415. issn: 1574-0137. doi: 10.1016/j.cosrev.2021.

100415 (cit. on p. 12).

[Hasan15] Samiul Hasan and Greg Foliente. “Modeling infrastructure system interdepen-

dencies and socioeconomic impacts of failure in extreme events: emerging

R&D challenges”. In: Natural Hazards 78.3 (Sept. 2015), pp. 2143–2168. issn:

1573-0840. doi: 10.1007/s11069-015-1814-7 (cit. on p. 13).

[He18] Jinyuan He and Le Sun. “A Review on SLA-Related Applications in Cloud

Computing”. In: 2018 1st International Cognitive Cities Conference (IC3). 2018.

doi: 10.1109/IC3.2018.00027 (cit. on p. 11).

[Hochstein17] Lorin Hochstein and Rene Moser. Ansible: Up & Running. 2nd. O’Reilly Media,

Inc., 2017. isbn: 1491979801 (cit. on p. 19).

[Holzmann97] Gerard Holzmann. “The model checker SPIN”. In: IEEE Transactions on Software

Engineering 23.5 (1997), pp. 279–295. doi: 10.1109/32.588521 (cit. on p. 16).

[Hughes10] John Hughes. “Software Testing with QuickCheck”. In: Central European Func-

tional Programming School. Ed. by Zoltán Horváth, Rinus Plasmeijer, and Vik-

tória Zsók. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 183–223.

isbn: 978-3-642-17685-2. doi: 10.1007/978-3-642-17685-2_6 (cit. on p. 17).

[Hüttermann12] Michael Hüttermann. “Infrastructure as Code”. In: DevOps for Developers. Berke-

ley, CA: Apress, 2012, pp. 135–156. isbn: 978-1-4302-4570-4. doi: 10.1007/978-

1-4302-4570-4_9 (cit. on p. 80).

[IEC 60050] International Electrotechnical Commission. International Electrotechnical Vo-

cabulary. 2023. url: https://www.electropedia.org (cit. on p. 10).

131

https://doi.org/10.1109/AICCSA.2015.7507146
https://doi.org/10.1109/AICCSA.2015.7507146
https://doi.org/10.1109/ISSREW.2008.5355512
https://doi.org/10.1109/ISSREW.2008.5355512
https://doi.org/10.1145/1368088.1368094
https://doi.org/10.1145/1368088.1368094
https://doi.org/10.1145/1368088.1368094
https://doi.org/10.1016/j.cosrev.2021.100415
https://doi.org/10.1016/j.cosrev.2021.100415
https://doi.org/10.1007/s11069-015-1814-7
https://doi.org/10.1109/IC3.2018.00027
https://doi.org/10.1109/32.588521
https://doi.org/10.1007/978-3-642-17685-2_6
https://doi.org/10.1007/978-1-4302-4570-4_9
https://doi.org/10.1007/978-1-4302-4570-4_9
https://www.electropedia.org

BIBLIOGRAPHY

[IEC 61882] International Electrotechnical Commission. Hazard and operability studies (HA-

ZOP studies) — Application guide (cit. on pp. 13, 45).

[ISO/IEC/IEEE 15288] International Organization for Standardization, International Electrotechnical

Commission, Institute of Electrical and Electronics Engineers. Systems and

software engineering — System life cycle processes. 2023. doi: 10.1109/IEEESTD.

2023.10123367 (cit. on p. 107).

[ISO/IEC 27005] International Organization for Standardization. Information security, cybersecu-

rity and privacy protection — Guidance on managing information security risks.

2022. url: https://www.iso.org/standard/80585.html (cit. on pp. 13, 46).

[ISO/SAE 21434] International Organization for Standardization. Road vehicles — Cybersecurity

engineering. 2021. url: https://www.iso.org/standard/70918.html (cit.

on p. 51).

[ISO 14258] International Organization for Standardization. Industrial automation systems

and integration — Concepts and rules for enterprise models. 1998. url: https:

//www.iso.org/standard/24020.html (cit. on pp. 108, 113).

[ISO 19439] International Organization for Standardization. Enterprise integration — Frame-

work for enterprise modelling. 2006. url: https://www.iso.org/standard/

33833.html (cit. on p. 107).

[ISO 26262] International Organization for Standardization. Road vehicles – Functional safety.

2018. url: https://www.iso.org/standard/68383.html (cit. on p. 13).

[ISO 31000] International Organization for Standardization. Risk management — Guidelines.

2018. url: https://www.iso.org/standard/65694.html (cit. on p. 26).

[ITIL19] ITIL Foundation. Glossary terms and definitions. Jan. 2019 (cit. on p. 2).

[Jackson11] Daniel Jackson. Software Abstractions: Logic, Language, and Analysis. Second.

The MIT Press, 2011. isbn: 9780262300254 (cit. on p. 62).

[Jones17] Nora Jones. “Performing Chaos at Netflix Scale”. AWS re:Invent 2017. 2017. url:

https://www.youtube.com/watch?v=LaKGx0dAUlo (cit. on p. 21).

[Jørgensen09] Håvard D. Jørgensen. “Enterprise Modeling – What We Have Learned, and

What We Have Not”. In: The Practice of Enterprise Modeling. 2009, pp. 3–7. isbn:

978-3-642-05352-8 (cit. on p. 107).

[Kaczmarek15] Monika Kaczmarek. “Ontologies in the Realm of EnterpriseModeling – A Reality

Check”. In: Formal Ontologies Meet Industry. 2015, pp. 39–50 (cit. on p. 108).

[Khurshid13] Ahmed Khurshid, Xuan Zou, Wenxuan Zhou, Matthew Caesar, and P. Brighten

Godfrey. “VeriFlow: Verifying Network-Wide Invariants in Real Time”. In: 10th

USENIX Symposium on Networked Systems Design and Implementation (NSDI

13). Lombard, IL: USENIX Association, Apr. 2013, pp. 15–27. isbn: 978-1-931971-

00-3. url: https://www.usenix.org/conference/nsdi13/technical-

sessions/presentation/khurshid (cit. on p. 20).

132

https://doi.org/10.1109/IEEESTD.2023.10123367
https://doi.org/10.1109/IEEESTD.2023.10123367
https://www.iso.org/standard/80585.html
https://www.iso.org/standard/70918.html
https://www.iso.org/standard/24020.html
https://www.iso.org/standard/24020.html
https://www.iso.org/standard/33833.html
https://www.iso.org/standard/33833.html
https://www.iso.org/standard/68383.html
https://www.iso.org/standard/65694.html
https://www.youtube.com/watch?v=LaKGx0dAUlo
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/khurshid
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/khurshid

BIBLIOGRAPHY

[Kirchner15] Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles, and Boris

Yakobowski. “Frama-C: A software analysis perspective”. In: Formal Aspects

of Computing 27.3 (May 2015), pp. 573–609. issn: 0934-5043. doi: 10.1007/

s00165-014-0326-7 (cit. on p. 17).

[Konrad05] Sascha Konrad and Betty Cheng. “Real-time specification patterns”. In: Pro-

ceedings. 27th International Conference on Software Engineering, 2005. ICSE 2005.

2005, pp. 372–381. doi: 10.1109/ICSE.2005.1553580 (cit. on p. 75).

[Kotsovinos10] Evangelos Kotsovinos. “Virtualization: Blessing or Curse? Managing Virtualiza-

tion at a Large Scale is Fraught with Hidden Challenges.” In: Queue 8.11 (Nov.

2010), pp. 40–46. issn: 1542-7730. doi: 10.1145/1874534.1889916 (cit. on

p. 95).

[Kumara21] Indika Kumara, Martín Garriga, Angel Urbano Romeu, Dario Di Nucci, Fabio

Palomba, Damian Andrew Tamburri, and Willem-Jan van den Heuvel. “The

do’s and don’ts of infrastructure code: A systematic gray literature review”. In:

Information and Software Technology 137 (2021), p. 106593. issn: 0950-5849. doi:

j.infsof.2021.106593 (cit. on p. 19).

[Lantow14] Birger Lantow. “On the Heterogeneity of Enterprise Models: ArchiMate and

Troux Semantics”. In: IEEE International Enterprise Distributed Object Computing

Conference Workshops and Demonstrations. 2014, pp. 67–71. doi: 10.1109/

EDOCW.2014.18 (cit. on p. 107).

[Larsen97] Kim Guldstrand Larsen, Paul Pettersson, andWang Yi. “Uppaal in a nutshell”. In:

International Journal on Software Tools for Technology Transfer 1.1 (Dec. 1997),

pp. 134–152. issn: 1433-2779. doi: 10.1007/s100090050010 (cit. on p. 16).

[Lecomte17] Thierry Lecomte, David Deharbe, Etienne Prun, and Erwan Mottin. “Applying

a Formal Method in Industry: A 25-Year Trajectory”. In: Formal Methods: Foun-

dations and Applications. Ed. by Simone Cavalheiro and José Fiadeiro. Cham:

Springer International Publishing, 2017, pp. 70–87. isbn: 978-3-319-70848-5. doi:

10.1007/978-3-319-70848-5_6 (cit. on p. 17).

[Leroy09] Xavier Leroy. “Formal Verification of a Realistic Compiler”. In: Communications

of the ACM 52.7 (July 2009), pp. 107–115. issn: 0001-0782. doi: 10. 1145/

1538788.1538814 (cit. on p. 17).

[Leveson12] Nancy Leveson, Cody Harrison Fleming, Melissa Spencer, John Thomas, and

Chris Wilkinson. “Safety Assessment of Complex, Software-Intensive Systems”.

In: SAE International Journal of Aerospace 5.1 (2012). issn: 1946-3855. doi: 10.

4271/2012-01-2134 (cit. on pp. 13, 46).

[Leveson19] Nancy Leveson. “A Systems Approach to Safety and Cybersecurity”. In: Dublin:

USENIX Association, Oct. 2019 (cit. on p. 14).

133

https://doi.org/10.1007/s00165-014-0326-7
https://doi.org/10.1007/s00165-014-0326-7
https://doi.org/10.1109/ICSE.2005.1553580
https://doi.org/10.1145/1874534.1889916
https://doi.org/j.infsof.2021.106593
https://doi.org/10.1109/EDOCW.2014.18
https://doi.org/10.1109/EDOCW.2014.18
https://doi.org/10.1007/s100090050010
https://doi.org/10.1007/978-3-319-70848-5_6
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.4271/2012-01-2134
https://doi.org/10.4271/2012-01-2134

BIBLIOGRAPHY

[Li02] Lei Li, K. Vaidyanathan, and K.S. Trivedi. “An approach for estimation of soft-

ware aging in a Web server”. In: Proceedings International Symposium on Em-

pirical Software Engineering. 2002, pp. 91–100. doi: 10.1109/ISESE.2002.

1166929 (cit. on p. 20).

[Liu09] Simon Liu, Rick Kuhn, and Hart Rossman. “Surviving Insecure IT: Effective

Patch Management”. In: IT Professional 11.2 (2009), pp. 49–51. doi: 10.1109/

MITP.2009.38 (cit. on p. 82).

[Lv18] Junjie Lv and Juling Rong. “Virtualisation security risk assessment for enterprise

cloud services based on stochastic game nets model”. In: IET Information Security

12.1 (2018). doi: 10.1049/iet-ifs.2017.0038 (cit. on p. 18).

[Maniah22] Maniah, Benfano Soewito, Ford Lumban Gaol, and Edi Abdurachman. “A system-

atic literature Review: Risk analysis in cloud migration”. In: Journal of King Saud

University - Computer and Information Sciences 34.6, Part B (2022), pp. 3111–3120.

issn: 1319-1578. doi: https://doi.org/10.1016/j.jksuci.2021.01.008

(cit. on p. 11).

[Masoudi16] Rahim Masoudi and Ali Ghaffari. “Software defined networks: A survey”. In:

Journal of Network and Computer Applications (2016). issn: 1084-8045. doi:

10.1016/j.jnca.2016.03.016 (cit. on pp. 14, 61).

[Mastercard21] Mastercard. Transaction Processing Rules. 2021. url: https://mastercard.

us/content/dam/public/mastercardcom/na/global-site/documents/

transaction-processing-rules.pdf (cit. on p. 11).

[MEHARI] Club de la sécurité de l’information français. MEHARI 2010 — Risk analysis and

treatment Guide. 2019. url: https://clusif.fr/wp-content/uploads/

2015/10/mehari-2010-risk-analysis-and-treatment-guide.pdf (cit.

on p. 13).

[Merabti11] Madjid Merabti, Michael Kennedy, and William Hurst. “Critical infrastruc-

ture protection: A 21
st
century challenge”. In: 2011 International Conference

on Communications and Information Technology (ICCIT). 2011. doi: 10.1109/

ICCITECHNOL.2011.5762681 (cit. on p. 18).

[Metzler19] Patrick Metzler, Neeraj Suri, and Georg Weissenbacher. “Extracting Safe Thread

Schedules from Incomplete Model Checking Results”. In: Model Checking Soft-

ware. Ed. by Fabrizio Biondi, Thomas Given-Wilson, and Axel Legay. Cham:

Springer International Publishing, 2019, pp. 153–171. isbn: 978-3-030-30923-7.

doi: 10.1007/978-3-030-30923-7_9 (cit. on p. 72).

[Monniaux16] David Monniaux. “A Survey of Satisfiability Modulo Theory”. In: Computer

Algebra in Scientific Computing. Ed. by Vladimir P. Gerdt, Wolfram Koepf,

Werner M. Seiler, and Evgenii V. Vorozhtsov. Cham: Springer International

Publishing, 2016, pp. 401–425. isbn: 978-3-319-45641-6. doi: 10.1007/978-3-

319-45641-6_26 (cit. on p. 16).

[Morris20] Kief Morris. Infrastructure as code. O’Reilly Media, 2020 (cit. on p. 61).

134

https://doi.org/10.1109/ISESE.2002.1166929
https://doi.org/10.1109/ISESE.2002.1166929
https://doi.org/10.1109/MITP.2009.38
https://doi.org/10.1109/MITP.2009.38
https://doi.org/10.1049/iet-ifs.2017.0038
https://doi.org/https://doi.org/10.1016/j.jksuci.2021.01.008
https://doi.org/10.1016/j.jnca.2016.03.016
https://mastercard.us/content/dam/public/mastercardcom/na/global-site/documents/transaction-processing-rules.pdf
https://mastercard.us/content/dam/public/mastercardcom/na/global-site/documents/transaction-processing-rules.pdf
https://mastercard.us/content/dam/public/mastercardcom/na/global-site/documents/transaction-processing-rules.pdf
https://clusif.fr/wp-content/uploads/2015/10/mehari-2010-risk-analysis-and-treatment-guide.pdf
https://clusif.fr/wp-content/uploads/2015/10/mehari-2010-risk-analysis-and-treatment-guide.pdf
https://doi.org/10.1109/ICCITECHNOL.2011.5762681
https://doi.org/10.1109/ICCITECHNOL.2011.5762681
https://doi.org/10.1007/978-3-030-30923-7_9
https://doi.org/10.1007/978-3-319-45641-6_26
https://doi.org/10.1007/978-3-319-45641-6_26

BIBLIOGRAPHY

[Myrbakken17] Håvard Myrbakken and Ricardo Colomo-Palacios. “DevSecOps: A Multivocal

Literature Review”. In: Software Process Improvement and Capability Determina-

tion. Ed. by Antonia Mas, Antoni Mesquida, Rory V. O’Connor, Terry Rout, and

Alec Dorling. Cham: Springer International Publishing, 2017, pp. 17–29. isbn:

978-3-319-67383-7. doi: 10.1007/978-3-319-67383-7_2 (cit. on p. 14).

[NetBox] NetBox Labs. NetBox. url: https : / / github . com / netbox - community /

netbox (cit. on p. 60).

[Netflix10] Gregory Orzell and Yury Izrailevsky. “Validating the Resiliency of Networked

Applications”. US 2012/0072571 A1. 2010 (cit. on p. 20).

[Neumann19] Peter Gabriel Neumann. “How Might We Increase System Trustworthiness?”

In: Communications of the ACM 62.10 (Sept. 2019), pp. 23–25. issn: 0001-0782.

doi: 10.1145/3357225 (cit. on p. 14).

[Neville22] George Neville-Neil. “I Unplugged What?” In: Communications of the ACM 65.2

(2022). issn: 0001-0782. doi: 10.1145/3506579 (cit. on pp. 14, 18).

[Newcombe14] Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc Brooker,

and Michael Deardeuff. “Use of Formal Methods at Amazon Web Services”. In:

(Sept. 2014). url: https://research.microsoft.com/en-us/um/people/

lamport/tla/formal-methods-amazon.pdf (cit. on p. 17).

[Nigmatullin23] Ildar Nigmatullin, Andrey Sadovykh, Sophie Ebersold, Nan Messe. “RQCODE:

Security Requirements Formalization with Testing”. In: Testing Software and

Systems. Ed. by Silvia Bonfanti, Angelo Gargantini, and Paolo Salvaneschi.

Cham: Springer Nature Switzerland, 2023, pp. 126–142. isbn: 978-3-031-43240-8.

doi: 10.1007/978-3-031-43240-8_9 (cit. on p. 11).

[NIST SP 800-53] National Institute of Standards and Technology. Security and Privacy Controls

for Information Systems and Organizations. url: https://csrc.nist.gov/

pubs/sp/800/53/r5/upd1/final (cit. on p. 33).

[Nuseibeh03] Bashar Nuseibeh, Jeff Kramer, and Anthony Finkelstein. “ViewPoints: mean-

ingful relationships are difficult!” In: International Conference on Software En-

gineering. 2003, pp. 676–681. doi: 10.1109/ICSE.2003.1201254 (cit. on

p. 111).

[OCTAVE] Richard Caralli, James Stevens, Lisa Young, and William Wilson. Introducing

OCTAVE Allegro: Improving the Information Security Risk Assessment Process.

Tech. rep. CMU/SEI-2007-TR-012. May 2007. doi: 10.1184/R1/6574790.v1

(cit. on p. 13).

[Ohm20] Marc Ohm, Henrik Plate, Arnold Sykosch, and Michael Meier. “Backstabber’s

Knife Collection: A Review of Open Source Software Supply Chain Attacks”.

In: Detection of Intrusions and Malware, and Vulnerability Assessment. Ed. by

Clémentine Maurice, Leyla Bilge, Gianluca Stringhini, and Nuno Neves. Cham:

Springer International Publishing, 2020, pp. 23–43. isbn: 978-3-030-52683-2. doi:

10.1007/978-3-030-52683-2_2 (cit. on p. 12).

135

https://doi.org/10.1007/978-3-319-67383-7_2
https://github.com/netbox-community/netbox
https://github.com/netbox-community/netbox
https://doi.org/10.1145/3357225
https://doi.org/10.1145/3506579
https://research.microsoft.com/en-us/um/people/lamport/tla/formal-methods-amazon.pdf
https://research.microsoft.com/en-us/um/people/lamport/tla/formal-methods-amazon.pdf
https://doi.org/10.1007/978-3-031-43240-8_9
https://csrc.nist.gov/pubs/sp/800/53/r5/upd1/final
https://csrc.nist.gov/pubs/sp/800/53/r5/upd1/final
https://doi.org/10.1109/ICSE.2003.1201254
https://doi.org/10.1184/R1/6574790.v1
https://doi.org/10.1007/978-3-030-52683-2_2

BIBLIOGRAPHY

[Opdebeeck20] Ruben Opdebeeck, Ahmed Zerouali, Camilo Velázquez-Rodríguez, and Coen

De Roover. “Does Infrastructure as Code Adhere to Semantic Versioning? An

Analysis of Ansible Role Evolution”. In: 2020 IEEE 20th International Working

Conference on Source Code Analysis and Manipulation (SCAM). 2020, pp. 238–248.

doi: 10.1109/SCAM51674.2020.00032 (cit. on p. 20).

[openXSAM] openXSAM. Towards a common Security Analysis Exchange Format for ISO/SAE

21434 and UN Reg. 155. url: https://www.openxsam.io/wp- content/

uploads/2023/06/openXSAM-Towards-a-common-Security-Analysis-

Exchange-Format.pdf (cit. on p. 51).

[OWASP ASVS] The OWASP Foundation. OWASP Application Security Verification Standard.

2021. url: https://owasp.org/www-project-application-security-

verification-standard/ (cit. on p. 33).

[Ozkaya23] Ipek Ozkaya. “Infrastructure as Code and Software Architecture Conformance

Checking”. In: IEEE Software 40.1 (2023), pp. 4–8. doi: 10.1109/MS.2022.

3213880 (cit. on p. 80).

[Pandya22] Sneh Pandya and Riya Guha Thakurta. “Introduction to Infrastructure as Code

with Chef”. In: Introduction to Infrastructure as Code: A Brief Guide to the Future

of DevOps. Berkeley, CA: Apress, 2022, pp. 165–176. isbn: 978-1-4842-8689-0.

doi: 10.1007/978-1-4842-8689-0_8 (cit. on p. 19).

[Park00] Kihong Park and Walter Willinger. “Self-similar network traffic: An overview”.

In: Self-Similar Network Traffic and Performance Evaluation. John Wiley & Sons,

Ltd, 2000. Chap. 1, pp. 1–38. isbn: 9780471206446. doi: 10.1002/047120644X.

ch1 (cit. on p. 14).

[Pavese16] Esteban Pavese, Víctor Braberman, and Sebastian Uchitel. “Less is More: Es-

timating Probabilistic Rewards over Partial System Explorations”. In: ACM

Transactions on Software Engineering and Methodology 25.2 (Apr. 2016). issn:

1049-331X. doi: 10.1145/2890494 (cit. on p. 72).

[PCI DSS] Payment Card Industry Security Standards Council. Payment Card Industry

Data Security Standard. Payment Card Industry Security Standards Council,

2022. url: https://www.pcisecuritystandards.org/documents/PCI-

DSS-v4_0.pdf (cit. on pp. viii, 11).

[Pietrantuono20] Roberto Pietrantuono and Stefano Russo. “A survey on software aging and

rejuvenation in the cloud”. In: Software Quality Journal 28.1 (Mar. 2020), pp. 7–

38. issn: 1573-1367. doi: 10.1007/s11219-019-09448-3 (cit. on p. 20).

[Proxmox VE] Proxmox Server Solutions GmbH. Proxmox Virtual Environment. url: https:

//www.proxmox.com (cit. on pp. ix, 64).

[PSD2] European Commission. Revised Payment Services Directive (PSD2, Directive (EU)

2015/2366). 2015. url: https://eur-lex.europa.eu/legal-content/EN/

TXT/?uri=CELEX%3A02015L2366-20151223 (cit. on p. 80).

136

https://doi.org/10.1109/SCAM51674.2020.00032
https://www.openxsam.io/wp-content/uploads/2023/06/openXSAM-Towards-a-common-Security-Analysis-Exchange-Format.pdf
https://www.openxsam.io/wp-content/uploads/2023/06/openXSAM-Towards-a-common-Security-Analysis-Exchange-Format.pdf
https://www.openxsam.io/wp-content/uploads/2023/06/openXSAM-Towards-a-common-Security-Analysis-Exchange-Format.pdf
https://owasp.org/www-project-application-security-verification-standard/
https://owasp.org/www-project-application-security-verification-standard/
https://doi.org/10.1109/MS.2022.3213880
https://doi.org/10.1109/MS.2022.3213880
https://doi.org/10.1007/978-1-4842-8689-0_8
https://doi.org/10.1002/047120644X.ch1
https://doi.org/10.1002/047120644X.ch1
https://doi.org/10.1145/2890494
https://www.pcisecuritystandards.org/documents/PCI-DSS-v4_0.pdf
https://www.pcisecuritystandards.org/documents/PCI-DSS-v4_0.pdf
https://doi.org/10.1007/s11219-019-09448-3
https://www.proxmox.com
https://www.proxmox.com
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02015L2366-20151223
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02015L2366-20151223

BIBLIOGRAPHY

[Qadir15] Junaid Qadir and Osman Hasan. “Applying Formal Methods to Networking:

Theory, Techniques, and Applications”. In: IEEE Communications Surveys &

Tutorials 17.1 (2015), pp. 256–291. doi: 10.1109/COMST.2014.2345792 (cit. on

p. 70).

[Rahman21] Akond Rahman, Md Rayhanur Rahman, Chris Parnin, and Laurie Williams.

“Security Smells in Ansible and Chef Scripts: A Replication Study”. In: 30.1

(2021). issn: 1049-331X. doi: 10.1145/3408897. url: https://doi.org/10.

1145/3408897 (cit. on p. 19).

[Renger08] Michiel Renger, Gwendolyn L. Kolfschoten, and Gert-Jan de Vreede. “Challenges

in Collaborative Modeling: A Literature Review”. In: Advances in Enterprise

Engineering I. 2008, pp. 61–77. isbn: 978-3-540-68644-6 (cit. on pp. 108, 110).

[Rinaldi01] Steven Rinaldi, James Peerenboom, and Terrence Kelly. “Identifying, under-

standing, and analyzing critical infrastructure interdependencies”. In: IEEE

Control Systems Magazine 21.6 (2001), pp. 11–25. doi: 10.1109/37.969131

(cit. on p. 12).

[RM-ODP] Reference Model of Open Distributed Processing (RM-ODP). International Organi-

zation for Standardization, International Electrotechnical Commission, Interna-

tional Telecommunication Union Telecommunication Standardization Sector.

url: http://rm-odp.net/ (cit. on pp. 16, 107).

[Rose03] Louis Rose. “Risk Management of COTS Based Systems Development”. In:

Component-Based Software Quality: Methods and Techniques. Ed. by Alejandra

Cechich, Mario Piattini, and Antonio Vallecillo. Springer Berlin Heidelberg,

2003. isbn: 978-3-540-45064-1. doi: 10.1007/978-3-540-45064-1_16 (cit. on

p. 47).

[Ruparelia10] Nayan Ruparelia. “Software Development Lifecycle Models”. In: SIGSOFT Soft-

ware Engineering Notes 35.3 (2010), pp. 8–13. issn: 0163-5948. doi: 10.1145/

1764810.1764814 (cit. on pp. 18, 110).

[Sandkuhl18] Kurt Sandkuhl, Hans-Georg Fill, Stijn Hoppenbrouwers, John Krogstie, Florian

Matthes, Andreas Opdahl, Gerhard Schwabe, Ömer Uludag, and Robert Winter.

“From Expert Discipline to Common Practice: A Vision and Research Agenda for

Extending the Reach of Enterprise Modeling”. In: Business & Information Systems

Engineering 60.1 (Feb. 2018), pp. 69–80. issn: 1867-0202. doi: 10.1007/s12599-

017-0516-y (cit. on pp. 16, 59, 110).

[Schröder18] Sandra Schröder and Matthias Riebisch. “An Ontology-Based Approach for

Documenting and Validating Architecture Rules”. In: Proceedings of the 12th

European Conference on Software Architecture: Companion Proceedings. ECSA ’18.

New York, NY, USA: Association for Computing Machinery, 2018. doi: 10.

1145/3241403.3241457 (cit. on p. 11).

137

https://doi.org/10.1109/COMST.2014.2345792
https://doi.org/10.1145/3408897
https://doi.org/10.1145/3408897
https://doi.org/10.1145/3408897
https://doi.org/10.1109/37.969131
http://rm-odp.net/
https://doi.org/10.1007/978-3-540-45064-1_16
https://doi.org/10.1145/1764810.1764814
https://doi.org/10.1145/1764810.1764814
https://doi.org/10.1007/s12599-017-0516-y
https://doi.org/10.1007/s12599-017-0516-y
https://doi.org/10.1145/3241403.3241457
https://doi.org/10.1145/3241403.3241457

BIBLIOGRAPHY

[Schwarz18] Julian Schwarz, Andreas Steffens, and Horst Lichter. “Code Smells in Infras-

tructure as Code”. In: 2018 11th International Conference on the Quality of In-

formation and Communications Technology (QUATIC). 2018, pp. 220–228. doi:

10.1109/QUATIC.2018.00040 (cit. on p. 19).

[Sharma16] Tushar Sharma, Marios Fragkoulis, and Diomidis Spinellis. “Does Your Con-

figuration Code Smell?” In: Proceedings of the 13th International Conference on

Mining Software Repositories. MSR ’16. Austin, Texas: Association for Computing

Machinery, 2016, pp. 189–200. isbn: 9781450341868. doi: 10.1145/2901739.

2901761 (cit. on p. 19).

[Sharwood18] Simon Sharwood. “IBM bans all removable storage, for all staff, everywhere”.

In: The Register (May 10, 2018). url: https://www.theregister.com/2018/

05/10/ibm_bans_all_removable_storage_for_all_staff_everywhere/

(cit. on p. 50).

[SNMP] Jeffrey Case, Mark Fedor, Martin Schoffstall, and James Davin. Simple network

management protocol (SNMP). Tech. rep. 1989 (cit. on p. 60).

[Somers23.1] Benjamin Somers, Fabien Dagnat, and Jean-Christophe Bach. “How IT Infras-

tructures Break: Better Modeling for Better Risk Management”. In: Risks and

Security of Internet and Systems. Ed. by Slim Kallel, Mohamed Jmaiel, Moham-

mad Zulkernine, Ahmed Hadj Kacem, Frédéric Cuppens, and Nora Cuppens.

Cham: Springer Nature Switzerland, 2023, pp. 169–184. isbn: 978-3-031-31108-6.

doi: 10.1007/978-3-031-31108-6_13 (cit. on p. 11).

[Somers23.2] Benjamin Somers, Fabien Dagnat, and Jean-Christophe Bach. “Modeling Hetero-

geneous IT Infrastructures: A Collaborative Component-Oriented Approach”.

In: Enterprise, Business-Process and Information Systems Modeling. Ed. by Han

van der Aa, Dominik Bork, Henderik A. Proper, and Rainer Schmidt. Springer

Nature Switzerland, 2023, pp. 227–242. isbn: 978-3-031-34241-7 (cit. on p. 104).

[Sommerville12] Ian Sommerville, Dave Cliff, Radu Calinescu, Justin Keen, Tim Kelly, Marta

Kwiatkowska, John Mcdermid, and Richard Paige. “Large-Scale Complex IT

Systems”. In: Communications of the ACM 55.7 (July 2012), pp. 71–77. issn:

0001-0782. doi: 10.1145/2209249.2209268 (cit. on p. 84).

[SonarQube] SonarSource. SonarQube. url: https://www.sonarqube.org/ (cit. on p. 41).

[Steel07] Jim Steel and Jean-Marc Jézéquel. “On model typing”. In: Software & Systems

Modeling 6.4 (Dec. 2007), pp. 401–413. issn: 1619-1374. doi: 10.1007/s10270-

006-0036-6 (cit. on p. 116).

[Sulaman19] Sardar Muhammad Sulaman, Armin Beer, Michael Felderer, and Martin Höst.

“Comparison of the FMEA and STPA safety analysis methods–a case study”. In:

Software Quality Journal 27.1 (2019). issn: 1573-1367. doi: 10.1007/s11219-

017-9396-0 (cit. on p. 45).

138

https://doi.org/10.1109/QUATIC.2018.00040
https://doi.org/10.1145/2901739.2901761
https://doi.org/10.1145/2901739.2901761
https://www.theregister.com/2018/05/10/ibm_bans_all_removable_storage_for_all_staff_everywhere/
https://www.theregister.com/2018/05/10/ibm_bans_all_removable_storage_for_all_staff_everywhere/
https://doi.org/10.1007/978-3-031-31108-6_13
https://doi.org/10.1145/2209249.2209268
https://www.sonarqube.org/
https://doi.org/10.1007/s10270-006-0036-6
https://doi.org/10.1007/s10270-006-0036-6
https://doi.org/10.1007/s11219-017-9396-0
https://doi.org/10.1007/s11219-017-9396-0

BIBLIOGRAPHY

[Tarjan72] Robert Tarjan. “Depth-First Search and Linear Graph Algorithms”. In: SIAM

Journal on Computing 1.2 (1972), pp. 146–160. doi: 10.1137/0201010 (cit. on

p. 65).

[Ten10] Chee-Wooi Ten, Govindarasu Manimaran, and Chen-Ching Liu. “Cybersecurity

for Critical Infrastructures: Attack and Defense Modeling”. In: IEEE Transactions

on Systems, Man, and Cybernetics - Part A: Systems and Humans 40.4 (2010),

pp. 853–865. doi: 10.1109/TSMCA.2010.2048028 (cit. on p. 12).

[Tenable Nessus] Tenable. Tenable Nessus. url: https://www.tenable.com/products/nessus

(cit. on p. 36).

[Teodorov23] Ciprian Teodorov. “G∀min∃: Exploring the Boundary Between Executable

Specification Languages and Behavior Analysis Tools”. Habilitation à diriger

des recherches. Université de Bretagne Occidentale (UBO), Brest, Apr. 2023. url:

https://hal.science/tel-04066483 (cit. on p. 85).

[Threat Taxonomy] European Union Agency for Cybersecurity. Threat Taxonomy. url: https://

www.enisa.europa.eu/topics/cyber-threats/threats-and-trends/

enisa-threat-landscape/threat-taxonomy/view (cit. on p. 34).

[TOGAF] The Open Group. The TOGAF ® Standard. url: https : / / publications .

opengroup.org/c182 (cit. on p. 16).

[Trellix ePO] Trellix. Trellix ePolicy Orchestrator. url: https://trellix.com/products/

epo/ (cit. on p. 36).

[Turner10] Julian Turner. “Effects of Data Center Vibration on Compute System Per-

formance”. In: First USENIX Workshop on Sustainable Information Technology

(SustainIT 10). San Jose, CA: USENIX Association, Feb. 2010. url: https://

www.usenix.org/conference/sustainit-10/effects-data-center-

vibration-compute-system-performance (cit. on p. 13).

[Uchenna17] Uchenna Daniel Ani, Hongmei He, and Ashutosh Tiwari. “Review of cyberse-

curity issues in industrial critical infrastructure: manufacturing in perspective”.

In: Journal of Cyber Security Technology 1.1 (2017), pp. 32–74. doi: 10.1080/

23742917.2016.1252211 (cit. on p. 11).

[UML] Object Management Group. Unified Modeling Language (UML), Version 2.5.1.

Dec. 2017. url: https://www.omg.org/spec/UML/2.5.1 (cit. on pp. 14, 61).

[Vaidya19] Ruturaj Kiran Vaidya, Lorenzo De Carli, Drew Davidson, and Vaibhav Rastogi.

Security Issues in Language-based Software Ecosystems. 2019. url: https://

arxiv.org/abs/1903.02613 (cit. on p. 12).

[Vaillancourt20] Peter Vaillancourt, Bennett Wineholt, Brandon Barker, Plato Deliyannis, Jackie

Zheng, Akshay Suresh, Adam Brazier, Rich Knepper, and Rich Wolski. “Re-

producible and Portable Workflows for Scientific Computing and HPC in the

Cloud”. In: Practice and Experience in Advanced Research Computing. PEARC ’20.

Portland, OR, USA: Association for Computing Machinery, 2020, pp. 311–320.

isbn: 9781450366892. doi: 10.1145/3311790.3396659 (cit. on p. 20).

139

https://doi.org/10.1137/0201010
https://doi.org/10.1109/TSMCA.2010.2048028
https://www.tenable.com/products/nessus
https://hal.science/tel-04066483
https://www.enisa.europa.eu/topics/cyber-threats/threats-and-trends/enisa-threat-landscape/threat-taxonomy/view
https://www.enisa.europa.eu/topics/cyber-threats/threats-and-trends/enisa-threat-landscape/threat-taxonomy/view
https://www.enisa.europa.eu/topics/cyber-threats/threats-and-trends/enisa-threat-landscape/threat-taxonomy/view
https://publications.opengroup.org/c182
https://publications.opengroup.org/c182
https://trellix.com/products/epo/
https://trellix.com/products/epo/
https://www.usenix.org/conference/sustainit-10/effects-data-center-vibration-compute-system-performance
https://www.usenix.org/conference/sustainit-10/effects-data-center-vibration-compute-system-performance
https://www.usenix.org/conference/sustainit-10/effects-data-center-vibration-compute-system-performance
https://doi.org/10.1080/23742917.2016.1252211
https://doi.org/10.1080/23742917.2016.1252211
https://www.omg.org/spec/UML/2.5.1
https://arxiv.org/abs/1903.02613
https://arxiv.org/abs/1903.02613
https://doi.org/10.1145/3311790.3396659

BIBLIOGRAPHY

[Vallespir18] Bruno Vallespir and Yves Ducq. “Enterprise modelling: from early languages to

models transformation”. In: International Journal of Production Research 56.8

(2018), pp. 2878–2896. doi: 10.1080/00207543.2017.1418985 (cit. on p. 16).

[vdAalst13] Wil van der Aalst. “Business Process Management: A Comprehensive Survey”.

In: ISRN Software Engineering (2013). issn: 2356-7872. doi: 10.1155/2013/

507984 (cit. on p. 107).

[vdLinden20] Dirk van der Linden, Jolita Ralyté, Kurt Sandkuhl, and Jelena Zdravkovic. “Panel

Discussion: Enterprise Modeling in the Digital Age”. In: The Practice of Enter-

prise Modeling. 2020. url: https://api.semanticscholar.org/CorpusID:

231879000 (cit. on p. 108).

[Vernadat02] François Vernadat. “UEML: Towards a unified enterprise modelling language”.

In: International Journal of Production Research 40.17 (2002), pp. 4309–4321. doi:

10.1080/00207540210159626 (cit. on pp. 16, 108).

[Vernadat20] François Vernadat. “Enterprise modelling: Research review and outlook”. In:

Computers in Industry 122 (2020), p. 103265. issn: 0166-3615. doi: 10.1016/j.

compind.2020.103265 (cit. on pp. 16, 17, 104, 107).

[Visa22] Visa. Visa Core Rules and Visa Product and Service Rules. 2022. url: https:

//bb.visa.com/content/dam/VCOM/download/about-visa/visa-rules-

public.pdf (cit. on p. 11).

[Voas21] Jeffrey Voas, Nir Kshetri, and Joanna F. DeFranco. “Scarcity and Global Inse-

curity: The Semiconductor Shortage”. In: IT Professional 23.5 (2021), pp. 78–82.

doi: 10.1109/MITP.2021.3105248 (cit. on p. 12).

[Voinov10] Alexey Voinov and François Bousquet. “Modelling with stakeholders”. In: Envi-

ronmental Modelling & Software 25 (2010), pp. 1268–1281. issn: 1364-8152. doi:

10.1016/j.envsoft.2010.03.007 (cit. on p. 104).

[Wehling17] Kenny Wehling and Ina Schaefer. “Towards an Expert System for Identifying

and Reducing Unnecessary Complexity of IT Architectures”. In: INFORMATIK

2017 (2017). doi: 10.18420/in2017_152 (cit. on p. 80).

[Weinreich14] Rainer Weinreich and Georg Buchgeher. “Automatic Reference Architecture

Conformance Checking for SOA-Based Software Systems”. In: 2014 IEEE/IFIP

Conference on Software Architecture. 2014, pp. 95–104. doi: 10.1109/WICSA.

2014.22 (cit. on p. 82).

[White02] Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Guruprasad, Mac

Newbold, Mike Hibler, Chad Barb, and Abhijeet Joglekar. “An integrated ex-

perimental environment for distributed systems and networks”. In: SIGOPS

Operating Systems Review 36 (Dec. 2003), pp. 255–270. issn: 0163-5980. doi:

10.1145/844128.844152 (cit. on p. 97).

[Xu15] Tianyin Xu and Yuanyuan Zhou. “Systems Approaches to Tackling Configu-

ration Errors: A Survey”. In: ACM Computing Surveys 47.4 (July 2015). issn:

0360-0300. doi: 10.1145/2791577 (cit. on p. 19).

140

https://doi.org/10.1080/00207543.2017.1418985
https://doi.org/10.1155/2013/507984
https://doi.org/10.1155/2013/507984
https://api.semanticscholar.org/CorpusID:231879000
https://api.semanticscholar.org/CorpusID:231879000
https://doi.org/10.1080/00207540210159626
https://doi.org/10.1016/j.compind.2020.103265
https://doi.org/10.1016/j.compind.2020.103265
https://bb.visa.com/content/dam/VCOM/download/about-visa/visa-rules-public.pdf
https://bb.visa.com/content/dam/VCOM/download/about-visa/visa-rules-public.pdf
https://bb.visa.com/content/dam/VCOM/download/about-visa/visa-rules-public.pdf
https://doi.org/10.1109/MITP.2021.3105248
https://doi.org/10.1016/j.envsoft.2010.03.007
https://doi.org/10.18420/in2017_152
https://doi.org/10.1109/WICSA.2014.22
https://doi.org/10.1109/WICSA.2014.22
https://doi.org/10.1145/844128.844152
https://doi.org/10.1145/2791577

BIBLIOGRAPHY

[Yates14] Athol Yates. “A framework for studying mortality arising from critical infras-

tructure loss”. In: International Journal of Critical Infrastructure Protection 7.2

(2014). issn: 1874-5482. doi: 10.1016/j.ijcip.2014.04.002 (cit. on p. 13).

141

https://doi.org/10.1016/j.ijcip.2014.04.002

A
Appendix A

mitre2owl Algorithm

Contents

A.1 Detail of the algorithm . 143

A.1.1 ParsersS . 143

A.1.2 ParsersD . 145

A.2 Semantic transformation . 147

Detail of the algorithmDetail of the algorithmDetail of the algorithmDetail of the algorithmDetail of the algorithmDetail of the algorithmDetail of the algorithmDetail of the algorithmDetail of the algorithmDetail of the algorithmDetail of the algorithmDetail of the algorithmA.1 Detail of the algorithm

In this appendix, we present the algorithms behind mitre2owl along with the semantic transformation

rules from its output to a well-formed Turtle representation. The code for mitre2owl can be found on

Github (https://github.com/CAPRICA-Project/mitre2owl).

A.1.1 ParsersS

First of all, mitre2owl parses schemas to understand the structure of the data it needs to parse in a

second phase.

Algorithm: Parser builder (Schema)

Data: xs:schema element

types← {};
elements← {};
foreach n ∈ /*/xs:complexType do

types[n]← ComplexType(n)

end

foreach n ∈ /*/xs:simpleType do

types[n]← SimpleType(n)

end

foreach /*/xs:element do

elements[@name]← Element(.)

end

143

https://github.com/CAPRICA-Project/mitre2owl

Detail of the algorithm A. MITRE2OWL ALGORITHM

Algorithm: Element parser builder (Element)

Data: xs:element element

type← @type

Algorithm: Attribute parser builder (Attribute)

Data: xs:attribute element

type← @type

Algorithm: Any parser builder (Any)

Data: xs:any element

/* The algorithm does no processing */

Algorithm: SimpleType parser builder (SimpleType)

Data: xs:simpleType element

/* The algorithm does no processing */

Algorithm: ComplexType parser builder (ComplexType)

Data: xs:complexType element

attrs← {};
type← ?;
foreach xs:attribute do

attrs[@name] = Attribute(.)

end

if xs:sequence[1] then

type← Sequence(.)

else

if xs:extension[1] then

type← Extension(.)

else

type← Choice(xs:choice[1])

end

end

Algorithm: Sequence parser builder (Sequence)

Data: xs:sequence element

children← {};
any← xs:any[1] ;

foreach xs:element do

children[@name] += Element(.)

end

foreach xs:choice do

children += Choice(.).children
end

144

A. MITRE2OWL ALGORITHM Detail of the algorithm

Algorithm: Choice parser builder (Choice)

Data: xs:choice element

children← {};
foreach xs:element do

children = Element(.)

end

foreach xs:sequence do

children += Sequence(.).children
end

Algorithm: Extension parser builder (Extension)

Data: xs:extension element

base← @base ;

attrs← {};
foreach xs:attribute do

attrs[@name] = Attribute(.)

end

A.1.2 ParsersD

After the schemas are parsed, mitre2owl can parse the actual data.

Algorithm: XML parser (Schema.parse)

Data: XML data

elements[name()].parse(.)

Algorithm: Element parser (Element.parse)

Data: XML element

Result: <?> <has name() > < types[type].parse(.) >.

Algorithm: Attribute parser (Attribute.parse)

Data: XML element

Result: <?> <has name() > types[type].parse(.) .

Algorithm: Any parser (Any.parse)

Data: XML element

Result: type[name()].parse(.)

Algorithm: SimpleType parser (SimpleType.parse)

Data: XML element

Result: < text() > a name() .

145

Detail of the algorithm A. MITRE2OWL ALGORITHM

Algorithm: ComplexType parser (ComplexType.parse)

Data: XML element

assertions← [];

foreach @* do

assertions += attrs[name()].parse(.)
end

assertions += type.parse(.);
Result:

< makeName(.) > a < name() >; assertions .

makeName creates a unique name for the parsed element based on its attributes and its type. The

implementation is not given here.

Algorithm: Sequence parser (Sequence.parse)

Data: XML element

assertions← [];

if any then

assertions += any.parse(div(*))
else

foreach * do

assertions += children[name()].parse(.)
end

end

Result: assertions

Algorithm: Choice parser (Choice.parse)

Data: XML element

assertions← [];

foreach * do

assertions += children[name()].parse(.)
end

Result: assertions

Algorithm: Extension parser (Extension.parse)

Data: XML element

assertions = [];

foreach @* do

assertions += attrs[name()].parse(.)
end

assertions += types[base].parse(.);
Result: assertions

146

A. MITRE2OWL ALGORITHM Semantic transformation

Semantic transformationSemantic transformationSemantic transformationSemantic transformationSemantic transformationSemantic transformationSemantic transformationSemantic transformationSemantic transformationSemantic transformationSemantic transformationSemantic transformationA.2 Semantic transformation

The results of the algorithms are not exactly Turtle expressions, but rather a recursive flavor of Turtle

that needs postprocessing. Three rules have to be applied:

1. Recursive definitions must be flattened:

<subject> <predicate> < subject’ <...> <...>. > expressions are recursively expanded

to subject predicate subject’. subject’ <...> <...> ;

2. Wildcards are removed:

<subject> <predicate> <object>; <?> <predicate’> <object>. . expressions are ex-

panded to <subject> <predicate> <object>. <subject> <predicate’> <object’>. ;

3. Valid Turtle expressions are not transformed further:

<subject> <predicate> <object> expressions stay the same.

147

B
Appendix B

UPPAAL Model

Contents

B.1 Source code . 149

B.1.1 Common functions . 149

B.1.2 Corosync cluster . 149

B.1.3 Multi-quorum Corosync cluster . 150

B.1.4 Corosync node . 152

B.1.5 Network node above Corosync . 153

B.1.6 Declarations for Corosync . 153

B.2 Traces . 156

B.2.1 Scenario 1 . 156

B.2.2 Scenario 2 . 157

B.2.3 Scenario 3 . 158

In this appendix, we present the source code for our UPPAAL models, along with the traces of the

scenarios described in section V.3.3. This code can also be found on Github (https://github.com/

CAPRICA-Project/UPPAAL-models).

Source codeSource codeSource codeSource codeSource codeSource codeSource codeSource codeSource codeSource codeSource codeSource codeB.1 Source code

B.1.1 Common functions

int max(int i, int j)

{

return i > j ? i : j;

}

B.1.2 Corosync cluster

int quorums()

{

meta int votes = 0;

for (i : int[0, NODES-1])

149

https://github.com/CAPRICA-Project/UPPAAL-models
https://github.com/CAPRICA-Project/UPPAAL-models

Source code B. UPPAAL MODEL

{

meta int v = 0;

for (j : int[0, NODES-1])

if (seems_up[i][j])

v += VOTES[j];

votes = max(votes, v);

}

return votes >= expected_votes;

}

B.1.3 Multi-quorum Corosync cluster

int nth_adj(int v, int n)

{

meta int adj = -1, i = 0;

while (n-- >= 0 && i < NODES) // The model checker needs the second condition

{

while (!seems_up[v][i])

if (++i == NODES) // The model checker needs this test

return adj;

adj = i;

i++;

}

return adj;

}

int n_adj(int v)

{

meta int n = 0;

for (i : int[0, NODES-1])

if (seems_up[v][i])

n++;

return n;

}

int quorums()

{

meta int comp[NODES];

meta int low[NODES];

meta int idx[NODES];

meta bool in_stack[NODES];

meta int i = 0;

meta int stack[NODES];

150

B. UPPAAL MODEL Source code

meta int stack_i = 0;

meta int call_stack[NODES][2];

meta int call_stack_i = 0;

meta int comp_i = 0;

meta int vv, pi, n, w;

meta int votes[NODES];

meta int n_quorums = 0;

for (k : int[0, NODES-1])

{

comp[k] = 0;

low[k] = 0;

idx[k] = -1;

}

for (v : int[0, NODES-1])

{

if (idx[v] == -1)

{

call_stack[call_stack_i][0] = v;

call_stack[call_stack_i++][1] = 0;

while (call_stack_i)

{

call_stack_i--;

vv = call_stack[call_stack_i][0];

pi = call_stack[call_stack_i][1];

if (pi == 0)

{

idx[vv] = i;

low[vv] = i++;

stack[stack_i++] = vv;

in_stack[vv] = true;

}

else if (pi > 0)

{

low[vv] = min(low[vv], low[nth_adj(vv, pi-1)]);

}

n = n_adj(vv);

while (pi < n && idx[nth_adj(vv, pi)] != -1)

{

w = nth_adj(v, pi++);

if (in_stack[w])

151

Source code B. UPPAAL MODEL

low[vv] = min(low[vv], idx[w]);

}

if (pi < n)

{

w = nth_adj(vv, pi);

call_stack[call_stack_i][0] = vv;

call_stack[call_stack_i++][1] = pi+1;

call_stack[call_stack_i][0] = w;

call_stack[call_stack_i++][1] = 0;

}

else if (low[vv] == idx[vv])

{

w = -1;

do

{

w = stack[--stack_i];

in_stack[w] = false;

comp[w] = comp_i;

}

while (vv != w);

comp_i++;

}

}

}

}

for (k : int[0, NODES-1])

votes[comp[k]] += VOTES[k];

for (k : int[0, NODES-1])

if (votes[k] >= expected_votes)

n_quorums++;

return n_quorums;

}

B.1.4 Corosync node

broadcast chan received, not_received;

int current_node;

void reset()

{

for (j : int[0, NODES-1])

152

B. UPPAAL MODEL Source code

seems_up[i][j] = false;

}

void update_net()

{

for (j : int[0,NODES-1])

seems_up[i][j] = seems_up[i][j] && can_communicate[j][i];

}

B.1.5 Network node above Corosync

void update() {

meta int distances[NODES+NETWORK_NODES][NODES+NETWORK_NODES];

for (i : int[0,NODES+NETWORK_NODES-1])

{

meta bool link_i = i < NODES ? 1 : network_up[i-NODES];

for (j : int[0,NODES+NETWORK_NODES-1])

{

meta bool link_j = j < NODES ? 1 : network_up[j-NODES];

distances[i][j] = link_i && link_j ? i == j ? 0 : NETWORK[i][j] ? 1

: 1000 : 1000;

}

}

for (k : int[0,NODES+NETWORK_NODES-1])

for (i : int[0,NODES+NETWORK_NODES-1])

for (j : int[0,NODES+NETWORK_NODES-1])

if (distances[i][j] > distances[i][k] + distances[k][j])

distances[i][j] = distances[i][k] + distances[k][j];

for (i : int[0,NODES-1])

for (j : int[0,NODES-1])

can_communicate[i][j] = distances[i][j] < 1000;

}

void fail() {

network_up[i] = false;

update();

}

void recover() {

network_up[i] = true;

update();

}

B.1.6 Declarations for Corosync

153

Source code B. UPPAAL MODEL

const int NODES = 8;

const int NETWORK_NODES = 16;

const int expected_votes = 5;

const int VOTES[NODES] = {1,1,1,1,1,1,1,1};

const int STRUCTURAL = 8;

const bool STRUCTURE[NODES+NETWORK_NODES][STRUCTURAL] = {

/* ^ */ {1,0,1,0,0,0,0,0},

/* N */ {1,0,1,0,0,0,0,0},

/* O */ {1,0,0,1,0,0,0,0},

/* D */ {1,0,0,1,0,0,0,0},

/* E */ {0,0,0,0,1,0,1,0},

/* S */ {0,0,0,0,1,0,1,0},

/* */ {0,0,0,0,1,0,0,1},

/* v */ {0,0,0,0,1,0,0,1},

/* ^ */ {1,1,0,0,0,0,0,0},

/* N */ {1,1,0,0,0,0,0,0},

/* E */ {1,1,0,0,0,0,0,0},

/* T */ {1,1,0,0,0,0,0,0},

/* W */ {1,0,1,0,0,0,0,0},

/* O */ {1,0,1,0,0,0,0,0},

/* R */ {1,0,0,1,0,0,0,0},

/* K */ {1,0,0,1,0,0,0,0},

/* */ {0,0,0,0,1,1,0,0},

/* N */ {0,0,0,0,1,1,0,0},

/* O */ {0,0,0,0,1,1,0,0},

/* D */ {0,0,0,0,1,1,0,0},

/* E */ {0,0,0,0,1,0,1,0},

/* S */ {0,0,0,0,1,0,1,0},

/* */ {0,0,0,0,1,0,0,1},

/* v */ {0,0,0,0,1,0,0,1}

};

bool can_communicate[NODES][NODES] = {

{1,1,1,1,1,1,1,1},

{1,1,1,1,1,1,1,1},

{1,1,1,1,1,1,1,1},

{1,1,1,1,1,1,1,1},

{1,1,1,1,1,1,1,1},

{1,1,1,1,1,1,1,1},

{1,1,1,1,1,1,1,1},

154

B. UPPAAL MODEL Source code

{1,1,1,1,1,1,1,1}

};

const bool NETWORK[NODES+NETWORK_NODES][NODES+NETWORK_NODES] = {

// <----NODES----> <--------NETWORK NODES-------->

/* ^ */ {0,0,0,0,0,0,0,0, 0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0},

/* N */ {0,0,0,0,0,0,0,0, 0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0},

/* O */ {0,0,0,0,0,0,0,0, 0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0},

/* D */ {0,0,0,0,0,0,0,0, 0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0},

/* E */ {0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0},

/* S */ {0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0},

/* */ {0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1},

/* v */ {0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1},

/* ^ */ {0,0,0,0,0,0,0,0, 0,1,1,1,0,0,0,0,1,0,0,0,0,0,0,0},

/* N */ {0,0,0,0,0,0,0,0, 1,0,1,1,0,0,0,0,0,1,0,0,0,0,0,0},

/* E */ {0,0,0,0,0,0,0,0, 1,1,0,1,1,0,1,0,0,0,0,0,0,0,0,0},

/* T */ {0,0,0,0,0,0,0,0, 1,1,1,0,0,1,0,1,0,0,0,0,0,0,0,0},

/* W */ {1,1,0,0,0,0,0,0, 0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0},

/* O */ {1,1,0,0,0,0,0,0, 0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0},

/* R */ {0,0,1,1,0,0,0,0, 0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0},

/* K */ {0,0,1,1,0,0,0,0, 0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0},

/* */ {0,0,0,0,0,0,0,0, 1,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0},

/* N */ {0,0,0,0,0,0,0,0, 0,1,0,0,0,0,0,0,1,0,1,1,0,0,0,0},

/* O */ {0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,1,1,0,1,1,0,1,0},

/* D */ {0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,1,1,1,0,0,1,0,1},

/* E */ {0,0,0,0,1,1,0,0, 0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0},

/* S */ {0,0,0,0,1,1,0,0, 0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0},

/* */ {0,0,0,0,0,0,1,1, 0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1},

/* v */ {0,0,0,0,0,0,1,1, 0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0}

};

bool network_up[NETWORK_NODES] = {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1};

broadcast chan up[NODES];

bool seems_up[NODES][NODES];

broadcast chan fail[NODES];

broadcast chan recover[NODES];

broadcast chan str_fail[STRUCTURAL];

broadcast chan str_recover[STRUCTURAL];

bool str_failed[STRUCTURAL];

broadcast chan net;

155

Traces B. UPPAAL MODEL

TracesTracesTracesTracesTracesTracesTracesTracesTracesTracesTracesTracesB.2 Traces

B.2.1 Scenario 1

Figure B.1: Trace for the scenario 1

156

B. UPPAAL MODEL Traces

B.2.2 Scenario 2

Figure B.2: Trace for the scenario 2

157

Traces B. UPPAAL MODEL

B.2.3 Scenario 3

Figure B.3: Trace for the scenario 3

158

C
Appendix C

CL/I

Contents

C.1 Language grammar . 160

C.2 AST construction rules . 168

C.3 Transformation from CL/I’s AST to the CLIR . 170

C.3.1 AST . 170

C.3.2 Structure . 171

C.3.3 Right values . 174

C.3.4 RTRDot . 175

C.3.5 RInit . 176

C.3.6 Right types . 177

In this appendix, we present the grammar of CL/I (appendix C.1), how its AST is built (appendix C.2)

and how this AST is transformed into the CLIR intermediate representation (appendix C.3). The code

for CL/I is available on Github (https://github.com/CAPRICA-Project/CL-I).

159

https://github.com/CAPRICA-Project/CL-I

Language
gram

m
ar

C
.C

L/I

Language grammarLanguage grammarLanguage grammarLanguage grammarLanguage grammarLanguage grammarLanguage grammarLanguage grammarLanguage grammarLanguage grammarLanguage grammarLanguage grammarC.1 Language grammar

The grammar presented here follows a parameterized EBNF syntax: ⟨rule(arguments)⟩ ::= choice1 | choice2. Sequences of characters recognized as tokens by

CL/I’s lexer are written as such . Parameterized tokens and the “end of file” (EOF) token are written AS SUCH. We define conditional rules thanks to a special

encoding for booleans given by the ⊤ (true) and ⊥ (false) rules, and write booleans as such. Rule arguments that are themselves rules are written as such. X∗Y
(respectively X+

Y) denotes possibly empty (respectively non-empty) sequences of Xes each separated with Ys. Finally, ϵ denotes the empty token sequence.

⟨start⟩ ::= ⟨structures_or_defs⟩ EOF

⟨arg(X)⟩ ::= X

| ...

⟨lax(X)⟩ ::= X

| ?

⟨arg_list(X)⟩ ::=
[
... ,

]
X
[
, ⟨arg_list_continue(X)⟩

]
⟨arg_list_continue(X)⟩ ::= ...

[
, X

[
, ⟨arg_list_continue(X)⟩

]]
| X

[
, ⟨arg_list_continue(X)⟩

]
⟨parameter_list(X)⟩ ::= ()

| ⟨inpar(⟨arg_list(X)⟩)⟩

⟨⊤(X , ·)⟩ ::= X

⟨⊥(·,Y)⟩ ::= Y

⟨ifte(b,THEN ,ELSE)⟩ ::= b(THEN ,ELSE)

1
6
0

C
.C

L/I
Language

gram
m

ar

⟨ift(b,THEN)⟩ ::= b(THEN , ϵ)

⟨unless(b,THEN)⟩ ::= ⟨ifte(b, ϵ,THEN)⟩

⟨structure_or_def⟩ ::= ⟨structure⟩
| ⟨def⟩
| ⟨set⟩
| ⟨rhs(⊤)⟩

⟨structures_or_defs⟩ ::= ⟨structure_or_def⟩∗

⟨def⟩ ::= ⟨decl⟩
| ⟨assignment(⊥)⟩

⟨assignment(is_litt)⟩ ::= let [] ⟨tpar(⟨lhs_id⟩,⊤)⟩ = ⟨rhs(⊤)⟩
| let ⟨lhs⟩ = ⟨rhs(⊤)⟩
| type ⟨lhs_type⟩ = ⟨typespec⟩

〈
unless

(
is_litt, ;

)〉
⟨decl⟩ ::= let [] ⟨tpar(⟨lhs_id⟩,⊤)⟩ ;

| let ⟨lhs_sig⟩ ;
| let

〈
more_list

(
, , ⟨lhs_sig⟩

)〉
;

| type ⟨lhs_type⟩ ;
| type

〈
more_list

(
, , ⟨lhs_type⟩

)〉
;

⟨set⟩ ::= ⟨rhs_value⟩ <- ⟨rhs(⊤)⟩

⟨structure⟩ ::= ⟨component_structure⟩

1
6
1

Language
gram

m
ar

C
.C

L/I

| ⟨pragma⟩

⟨pragma⟩ ::= :: ⟨dot_rhs⟩ ;

⟨component_structure⟩ ::= ⟨annotation⟩∗ component
[
interface

] 〈
more_list

(
, , ⟨csig⟩

)〉
;

| ⟨annotation⟩∗ component
[
interface

]
⟨csig⟩ ⟨component_body⟩

⟨csig⟩ ::= UID [⟨lhs_type_params⟩] [⟨component_parameters⟩]
| (UID [⟨lhs_type_params⟩] <: ⟨dot_rhs_ty⟩+

,
) [⟨component_parameters⟩]

⟨component_parameters⟩ ::=

〈
inpar

(
⟨arg(⟨tpar(⟨lhs_id⟩,⊤)⟩)⟩∗

,

)〉
⟨annotation⟩ ::= @ ⟨rhs_type⟩

⟨hook⟩ ::= ˆ ⟨dot_rhs⟩

⟨component_body⟩ ::= ⟨hook⟩∗ ;

| = ⟨rhs(⊤)⟩
[
⟨hook⟩+ ;

]
| { ⟨structures_or_defs⟩ }

[
⟨hook⟩+ ;

]
⟨tpar(X , allow_paren)⟩ ::= ⟨fun_in_par(⟨t⟩,X , allow_paren)⟩

⟨t(X)⟩ ::= X [⟨of_type⟩]

⟨lhs_fun_sig⟩ ::= ⟨lhs_id⟩ ⟨parameter_list(⟨lax(⟨typespec⟩)⟩)⟩
[
-> ⟨lax(⟨typespec⟩)⟩

]
⟨lhs_sig⟩ ::= ⟨tpar(⟨simple_lhs⟩,⊤)⟩

1
6
2

C
.C

L/I
Language

gram
m

ar

⟨lhs_type_params⟩ ::= ⟨type_params(⟨uid_or_word⟩)⟩
| WORD

⟨uid_or_word⟩ ::= UID

| WORD

⟨lhs_type⟩ ::= UID [⟨lhs_type_params⟩]
| ⟨tuple(⟨arg(⟨lax(⟨lhs_type⟩)⟩)⟩)⟩

⟨type_params(X)⟩ ::= < ⟨arg(X)⟩∗
,

>

⟨tuple(X)⟩ ::=
〈
inpar

(〈
more_list

(
, ,X

)〉)〉
⟨fun_in_par(f,X , recurse)⟩ ::= ⟨ifte(recurse, ⟨_fun_in_par(f,X)⟩, f(X))⟩

⟨_fun_in_par(f,X)⟩ ::= f(X)
| f(⟨inpar(⟨_fun_in_par(f,X)⟩)⟩)

⟨ttpar(X , allow_paren)⟩ ::= ⟨fun_in_par(⟨tt⟩,X , allow_paren)⟩

⟨tt(X)⟩ ::= X [⟨of_type⟩]

⟨rhs_type⟩ ::= UID [⟨rhs_type_params⟩] ⟨cardinality⟩∗

⟨dot_rhs_ty⟩ ::= ⟨dot_rhs⟩ . ⟨rhs_type⟩
| ⟨dot_rhs_ty⟩ . ⟨rhs_type⟩
| ⟨rhs_type⟩

⟨cardinality⟩ ::= +

1
6
3

Language
gram

m
ar

C
.C

L/I

| *

| []

| [⟨rhs(⊥)⟩
[
... [⟨rhs(⊥)⟩]

]
]

| [... ⟨rhs(⊥)⟩]

⟨rhs_type_params⟩ ::= ⟨type_params(⟨lax(⟨typespec_or_word⟩)⟩)⟩
| WORD

⟨typespec_or_word⟩ ::= ⟨typespec⟩
| WORD

⟨of_type⟩ ::= : ⟨typespec⟩

⟨typespec⟩ ::= ⟨typename⟩
| ⟨arrow_list⟩

⟨typename⟩ ::= ⟨dot_rhs_ty⟩
| ⟨tuple(⟨typespec⟩)⟩
| ()

⟨arrow_list⟩ ::= ⟨arg(⟨lax(⟨typename⟩)⟩)⟩+
->

-> ⟨lax(⟨typename⟩)⟩

⟨more_list(SEP,X)⟩ ::= X SEP X+
SEP

⟨inpar(X)⟩ ::= (X)

⟨either(X ,Y)⟩ ::= X

| [X] Y

1
6
4

C
.C

L/I
Language

gram
m

ar

⟨simple_lhs⟩ ::= ⟨lhs_id⟩
| ⟨tuple(⟨lhs⟩)⟩
| LITEXP

⟨lhs_id⟩ ::= LID

⟨lhs_fun⟩ ::= ⟨lhs_id⟩ ⟨parameter_list(⟨tpar(⟨lhs_id⟩,⊤)⟩)⟩
[
-> ⟨lax(⟨typespec⟩)⟩

]
⟨lhs⟩ ::= ⟨tpar(⟨simple_lhs⟩,⊤)⟩

| ⟨tpar(⟨lhs_fun⟩,⊤)⟩
| [⟨rhs(⊥)⟩]
| [+]

| []

⟨rhs_value⟩ ::= ⟨tuple(⟨rhs(⊥)⟩)⟩
| ⟨dot_rhs⟩

⟨rhs_list⟩ ::=
[
⟨rhs(⊥)⟩

[
; ⟨rhs_list⟩

]]
⟨rhs_atom⟩ ::= LID

| ⟨str⟩
| []

⟨dot_rhs⟩ ::= ⟨dot_rhs⟩ . ⟨rhs_atom⟩
| ⟨dot_rhs_ty⟩ . ⟨rhs_atom⟩
| ⟨rhs_atom⟩
| [⟨rhs_list⟩]
| ⟨call(⟨dot_rhs⟩, ⟨rhs(⊥)⟩)⟩

1
6
5

Language
gram

m
ar

C
.C

L/I

| ⟨tcall(⟨dot_rhs_ty⟩, ⟨rhs(⊥)⟩)⟩
| ⟨dot_rhs⟩ { ⟨set⟩∗ }

| ⟨dot_rhs_ty⟩ { ⟨set⟩∗ }

⟨preop⟩ ::= PREOP

| !

| +

| -

⟨postop⟩ ::= POSTOP0

| POSTOP1

| POSTOP2

| =

| <

| >

| POSTOP3

| +

| -

| LITEXP

| POSTOP4

| *

⟨bang_postop⟩ ::= ! LITEXP

⟨rhs(has_colon)⟩ ::= ⟨rhs_value⟩
〈
ift
(
has_colon, ;

)〉
| ⟨preop⟩ ⟨rhs(has_colon)⟩
| ⟨rhs(⊥)⟩ ⟨postop⟩

〈
ift
(
has_colon, ;

)〉
| ⟨rhs(⊥)⟩ ⟨postop⟩ ⟨rhs(has_colon)⟩

1
6
6

C
.C

L/I
Language

gram
m

ar

| ⟨rhs(⊥)⟩ ⟨bang_postop⟩
〈
ift
(
has_colon, ;

)〉
| ⟨rhs(⊥)⟩ ⟨bang_postop⟩ ⟨rhs(has_colon)⟩
| (⟨rhs(⊥)⟩)

〈
ift
(
has_colon, ;

)〉
| ⟨z3_property⟩

〈
ift
(
has_colon, ;

)〉
| if ⟨rhs_value⟩ then ⟨rhs(has_colon)⟩
| if ⟨rhs_value⟩ then ⟨rhs(⊥)⟩ else ⟨rhs(has_colon)⟩

⟨str⟩ ::= BSTRING ⟨_str⟩ ESTRING

⟨_str⟩ ::= [STRING ⟨_str⟩]
| ⟨rhs(⊥)⟩ EEXPR ⟨_str⟩

⟨call(X ,Y)⟩ ::= X ⟨parameter_list(⟨lax(Y)⟩)⟩

⟨tcall(X ,Y)⟩ ::= X ⟨parameter_list(⟨lax(Y)⟩)⟩

⟨z3_parameters⟩ ::=

〈
inpar

(
⟨tpar(⟨lhs_id⟩,⊤)⟩+

,

)〉
⟨z3_property⟩ ::= for all ⟨z3_parameters⟩ { ⟨rhs(⊤)⟩∗ }

| exists ⟨z3_parameters⟩ { ⟨rhs(⊤)⟩∗ }

1
6
7

AST construction rules C. CL/I

AST construction rulesAST construction rulesAST construction rulesAST construction rulesAST construction rulesAST construction rulesAST construction rulesAST construction rulesAST construction rulesAST construction rulesAST construction rulesAST construction rulesC.2 AST construction rules

Here, we show the different elements constituting CL/I’s AST, along with examples to produce them in

CL/I. The entry point of the AST is ast.

ast ::= structure∗

structure ::=

Def
lhs = rhs let value_1 = value_2;

|

DefType
lhsType = rhsType

type Type_1 = Type_2; or
component C <: D {

let value;

}

|

SetExpr
set value_1 value_2;

|

Expr
rhs print(x);

set ::= Set rhs rhs value_1 value_2

rhsType ::= RType str. ⟨rhsT.,...⟩<: rhtT.,... Type<T,U,V>a

| RTTuple rhsType ,... (T,U,V)

| RTFun rhsType ... T U V

| RTList rhsType cardn. ... T [3] * [1...5]

| RTUnit ()

| RTBoolean Boolean

| RTString String

| RTInteger Integer

| RTExt string Equivalence

| RRTDot rhs . string value.Type

| RTRTDot rhsType . string Type_1.Type_2

|

Component
(lhs ,...){ struct. ...}∧ rhs ∧...

(arg_1,arg_2,arg_3) {

let value_1;

let value_2 = 0;

let value_3 = value_1;

} ^ hook_1 ^ hook_2 ^ hook_3;b

| TRef integer not constructible from the language

a
Templating is optional and the subtyping part is not constructible from the language

b
Arguments and hooks are optional

Table C.1: Presentation of CL/I’s AST, along with a few examples to build each node

168

C. CL/I AST construction rules

rhs ::= RSym string value

| RLitExpr string <<literal expression>>

| RTuple rhs ,... (t,u,p,l,e)

| RString string "string"

| RList rhs ,... [l;i;s;t]

| RRDot rhs . string value_1.value_2

| RTRDot rhsType . string Type.value

| RCall rhs (rhs ,...) value(x,y,z)

| RTCall rhsType (rhs ,...) Type(x,y,z)

| RInit rhs { set ...} value {x 0; y 1; z true;}

| Ref integer not constructible from the language

lhs ::= LSym string value

| LLitExpr string <<literal expression>>

| LTuple lhs ,... (t,u,p,l,e)

| LCons lhs : rhsType value : Type

lhsType ::= LType str. ⟨ str. ,...⟩<: rhsT.,... Type<T,U,V> <: P,Q,Ra

| LTTuple lhsType ,... (T,U,V)

cardinality ::= Cardinality[rhs ... rhs] [1...5] or +b

a
Templating and subtyping are optional

b
Transformed to Cardinality [RSym ("1") ... ∞]

Table C.1 (continued): Presentation of CL/I’s AST, along with a few examples to build each node

169

Transformation from CL/I’s AST to the CLIR C. CL/I

Transformation from CL/I’s AST to the CLIRTransformation from CL/I’s AST to the CLIRTransformation from CL/I’s AST to the CLIRTransformation from CL/I’s AST to the CLIRTransformation from CL/I’s AST to the CLIRTransformation from CL/I’s AST to the CLIRTransformation from CL/I’s AST to the CLIRTransformation from CL/I’s AST to the CLIRTransformation from CL/I’s AST to the CLIRTransformation from CL/I’s AST to the CLIRTransformation from CL/I’s AST to the CLIRTransformation from CL/I’s AST to the CLIRC.3 Transformation from CL/I’s AST to the CLIR

In this last section, we present the semantics of the transformation from the CL/I language to its

intermediate representation (CLIR), briefly presented with an example in section VI.2.4. First, we define

four environments:

• EV : S → #V , the value name environment, which maps the names of defined values to their

symbols in SV ;

• ET : S → #T , the type name environment, which maps the names of defined types to their

symbols in ST ;

• SV : #V → V × (S→ #V)× #T , the value symbol environment, which maps value symbols to

their value, attributes and type triples;

• ST : #T → T× (S→ #V), the type symbol environment, which maps type symbols to their type

and attributes pairs;

We define the operator◁ to merge two environments, keeping the values from the right operand if they

are defined in both environments:

X ◁ X ′ =
{

x 7→
[
X ′ (x) if x ∈ dom (X ′)
X (x) otherwise

∣∣∣∣∣ x ∈ dom (X) ∪ dom
(
X ′
)}

We define the following zero elements:

0v = (?,∅, ?)
0t = (?,∅)

We define the following reductions:

• ⇒a, the CLIR reduction, which reduces CL/I’s AST to the CLIR;

• ⇒s, the environment reduction, which encodes changes in the environments;

• ⇒e, the value reduction, which reduces CL/I’s expressions to CLIR symbols.

Finally, we define the function fresh, such that fresh (SV) (respectively fresh (ST)) gives a fresh value

(respectively type) symbol, that is, a new symbol not defined in SV (respectively ST).

C.3.1 AST

A CL/I model is either the empty model ε or a sequence of structures, for which environments are

successively passed from one to the next:

Empty

⊢ EV , ET ,SV ,ST , ε ⇒a SV ,ST

⇒s EV , ET ,SV ,ST

Seq

E0
V,T = EV,T S0

V,T = SV,T ⊢
i−1

◁
k=0
E k

V ,
i−1

◁
k=0
E k

T ,S i−1
V ,S i−1

T , ti ⇒s E i
V , E i

T ,S i
V ,S i

T

⊢ E0
V , E0

T ,S0
V ,S0

T , t1; ...; tn ⇒a Sn
V ,Sn

T

⇒s

n

◁
i=1
E i

V ,
n

◁
i=1
E i

T ,Sn
V ,Sn

T

170

C. CL/I Transformation from CL/I’s AST to the CLIR

It should be noted that name environments are synthetized, because of the local nature of names.

The following rules only produce name environments with new definitions and declarations. On the

other hand, symbol environments are both inherited and synthetized, because of the global nature

of symbols. The following rules produce full symbol environments (these environments are actually

mutable in our implementation).

C.3.2 Structure

Structures are the main element of CL/I models. They can be value definitions, type definitions, value

assignments and expressions.

Def

Lhs values can be declared without giving them an explicit value. A fresh value symbol is created:

Decl

s ̸∈ dom (EV) #i = fresh (SV)

⊢ EV , ET ,SV ,ST ,
Def

LSym s = ⇒s {s 7→ #i} ,∅,SV ◁ {#i 7→ 0v} , ST

Lhs values can be defined equal to rhs values. A fresh value symbol is created:

Def

s ̸∈ dom (EV) ⊢ EV , ET ,SV ,ST , ev ⇒e (v, a, t) #i = fresh (SV)

⊢ EV , ET ,SV ,ST ,
Def

LSym s = ev
⇒s {s 7→ #i} ,∅,SV ◁ {#i 7→ (v, a, t)} , ST

Tuples of lhs values can be defined equal to tuples of rhs values, provided their sizes match (note that

this rule is recursive):

Def(Tuple/Tuple)

N = J1, nK

⊢ EV , ET ,SV ,ST ,
Def

ev1 = e′v1

; . . . ;
Def

evn = e′vn
⇒s E ′V , E ′T ,S ′V ,S ′T

⊢ EV , ET ,SV ,ST ,
Def

LTuple(evi)i∈N = RTuple(e′vi
)i∈N

⇒s E ′V , E ′T ,S ′V ,S ′T

Def(Tuple/Tuple)Err

#N ̸= #N′

⊢ EV , ET ,SV ,ST ,
Def

LTuple(evi)i∈N = RTuple(e′vi
)i∈N′

⇒s SizeMismatch

Tuples of rhs values can only be assigned to tuples of lhs values:

Def(¬Tuple/Tuple)Err
ev ̸= LTuple ·

⊢ E0
V , E0

T ,S0
V ,S0

T ,
Def

ev = RTuple(evi)i∈N
⇒s UnassignableTuple

171

Transformation from CL/I’s AST to the CLIR C. CL/I

In parallel, tuples of lhs values can be defined equal to lists of rhs values, provided their sizes match

(this rule is also recursive):

Def(Tuple/List)

N = J1, nK

⊢ EV , ET ,SV ,ST ,
Def

ev1 = e′v1

; . . . ;
Def

evn = e′vn
⇒s E ′V , E ′T ,S ′V ,S ′T

⊢ EV , ET ,SV ,ST ,
Def

LTuple(evi)i∈N = RList(e′vi
)i∈N

⇒s E ′V , E ′T ,S ′V ,S ′T

Def(Tuple/List)Err

#N ̸= #N′

⊢ EV , ET ,SV ,ST ,
Def

LTuple(evi)i∈N = RList(e′vi
)i∈N′

⇒s SizeMismatch

Redefinitions are not allowed:

RedefErr

s ∈ dom (EV)

⊢ EV , ET ,SV ,ST ,
Def

LSym s = ev
⇒s Redefinition

DefType

Lhs types can be declared without giving them an explicit type. For each type template, a fresh empty

type symbol is created:

DeclType

s ̸∈ dom (ET)

T#i = fresh (ST) T#ki = fresh (ST) S ′T = ST ◁ {T#k1 7→ 0t, ..., T#kn 7→ 0t}

⊢ EV , ET ,SV ,ST ,
DefType

LType s ⟨s1, ..., sn⟩ =
⇒s ∅, {s 7→ T#i} ,SV ,S ′T ◁ {T#i 7→ 0t}

Lhs types can be defined equal to rhs types. Type templates declared in the lhs type can be used by the

rhs type:

DefType

T#i = fresh (ST) E ′T = {s1 7→ T#k1, ..., sn 7→ T#kn}
T#ki = fresh (ST) S ′T = ST ◁ {T#k1 7→ 0t, ..., T#kn 7→ 0t}

s ̸∈ dom (ET) ⊢ EV , ET ◁ E ′T ,SV ,S ′T , et ⇒e (τ, a)

⊢ EV , ET ,SV ,ST ,
DefType

LType s ⟨s1, ..., sn⟩ = et
⇒s ∅, {s 7→ T#i} ,SV ,S ′T ◁ {T#i 7→ (τ, a)}

172

C. CL/I Transformation from CL/I’s AST to the CLIR

As with values, tuples of lhs types can be defined equal to tuples of rhs types, provided their sizes match

(note that this rule is recursive):

DefType(Tuple/Tuple)

N = J1, nK

⊢ EV , ET ,SV ,ST ,
DefType

et1 = e′t1

; . . . ;
DefType

etn = e′tn
⇒s E ′V , E ′T ,S ′V ,S ′T

⊢ EV , ET ,SV ,ST ,
DefType

LTTuple(evi)i∈N = RTTuple(e′vi
)i∈N

⇒s E ′V , E ′T ,S ′V ,S ′T

DefType(Tuple/Tuple)Err

#N ̸= #N′

⊢ EV , ET ,SV ,ST ,
DefType

LTTuple(eti)i∈N = RTTuple(e′ti
)i∈N′

⇒s SizeMismatch

Tuples of rhs types can only be assigned to tuples of lhs types:

DefType(¬Tuple/Tuple)Err et ̸= LTTuple ·

⊢ E0
V , E0

T ,S0
V ,S0

T ,
DefType

et = RTTuple(eti)i∈N
⇒s UnassignableTypeTuple

Redefinitions are not allowed:

RedefTypeErr

s ∈ dom (ET)

⊢ EV , ET ,SV ,ST ,
DefType

LType s = et
⇒s Redefinition

SetExpr

Rhs values can be assigned to previously declared Rhs values:

SetExpr

⊢ EV , ET ,SV ,ST , ev ⇒e (Ref i, ·, ·) ⊢ EV , ET ,SV ,ST , e′v ⇒e (v, a, t)

⊢ EV , ET ,SV ,ST ,
SetExpr

ev e′v
⇒s ∅,∅,SV ◁ {#i 7→ (v, a, t)} ,ST

SetExprNonDeclErr

⊢ EV , ET ,SV ,ST , ev ⇒e (v, ·, ·) v ̸= Ref ·

⊢ EV , ET ,SV ,ST ,
SetExpr

ev e′v
⇒s NotPreviouslyDeclared

Expr

No semantic transformation happens for expressions at the top level.

173

Transformation from CL/I’s AST to the CLIR C. CL/I

C.3.3 Right values

We only support a subset of the language constructs for values in the following semantic rules.

RSym

Rhs values can be previously declared symbols (we consider integers and booleans to be predefined

built-in symbols in CL/I):

RSym

s ∈ dom (EV) EV (s) = #i

⊢ EV , ET ,SV ,ST , RSym s ⇒e (Ref i,∅, ?)

RBoolean

s represents a boolean b

⊢ EV , ET ,SV ,ST , RSym s ⇒e (Boolean b,∅, Boolean)

RInteger

s represents an integer i

⊢ EV , ET ,SV ,ST , RSym s ⇒e (Integer i,∅, Integer)

RSymErr

s ̸∈ dom (EV) s does not represent a boolean or an integer

⊢ EV , ET ,SV ,ST , RSym s ⇒e NotFound

RString

Rhs values can be strings:

RString

⊢ EV , ET ,SV ,ST , RString s ⇒e (String s,∅, String)

RList

Rhs values can be homogeneous lists of declared values:

RList

⊢ EV , ET ,SV ,ST , RSym s1 ⇒e (Ref i1, ·, ·)
.
.
.

⊢ EV , ET ,SV ,ST , RSym sn ⇒e (Ref in, ·, ·)
t (SV (i1)) = ... = t (SV (in)) = T#j

⊢ EV , ET ,SV ,ST , RList RSym s1, ...,RSym sn ⇒e (List (Ref i1, ...,Ref in),∅, List ⟨T#j⟩)

174

C. CL/I Transformation from CL/I’s AST to the CLIR

RListTypeErr

⊢ EV , ET ,SV ,ST , RSym s1 ⇒e (Ref i1, ·, ·)
.
.
.

⊢ EV , ET ,SV ,ST , RSym sn ⇒e (Ref in, ·, ·)
¬ (t (SV (i1)) = ... = t (SV (in)) = T#j)

⊢ EV , ET ,SV ,ST , RList RSym s1, ...,RSym sn ⇒e InhomogeneousList

RListNotDeclErr

⊢ EV , ET ,SV ,ST , RSym s1 ⇒e (v1, ·, ·)
.
.
.

⊢ EV , ET ,SV ,ST , RSym sn ⇒e (vn, ·, ·)
¬ (v1 = Ref · ∧...∧ vn = Ref ·)

⊢ EV , ET ,SV ,ST , RList RSym s1, ...,RSym sn ⇒e NotSupported

RRDot

Rhs values can be rhs values’ attributes. The value whose attribute is retrieved must be correctly defined

and have the corresponding attribute.

RRDot

⊢ EV , ET ,SV ,ST , ev ⇒e (Ref i, ·, ·) s ∈ dom (a (SV (i)))

⊢ EV , ET ,SV ,ST , RRDot ev . s ⇒e a (SV (i)) (s)

RRDotErr

⊢ EV , ET ,SV ,ST , ev ⇒e (Ref i, ·, ·) s ̸∈ dom (a (SV (i)))

⊢ EV , ET ,SV ,ST , RRDot ev . s ⇒e NotFound

RRDotNotDefErr

⊢ EV , ET ,SV ,ST , ev ⇒e (v, ·, ·) v ̸= Ref ·

⊢ EV , ET ,SV ,ST , RRDot ev . s ⇒e NotSupported

C.3.4 RTRDot

Rhs values can be rhs types’ attributes. The type whose attribute is retrieved must be correctly defined

and have the corresponding attribute.

RTRDot

⊢ EV , ET ,SV ,ST , et ⇒e (TRef i, ·) s ∈ dom (a (ST (i)))

⊢ EV , ET ,SV ,ST , RTRDot et . s ⇒e a (ST (i)) (s)

RTRDotErr

⊢ EV , ET ,SV ,ST , et ⇒e (TRef i, ·) s ̸∈ dom (a (ST (i)))

⊢ EV , ET ,SV ,ST , RTRDot et . s ⇒e NotFound

175

Transformation from CL/I’s AST to the CLIR C. CL/I

RTRDotNotDefErr

⊢ EV , ET ,SV ,ST , et ⇒e (t, ·) t ̸= TRef ·

⊢ EV , ET ,SV ,ST , RTRDot et . s ⇒e NotSupported

RCall

Rhs values can be calls to rhs values (we only support a few predefined operators):

RCall

s ∈ {=, and,⇒, !, has...} ⊢ EV , ET ,SV ,ST , evi ⇒e (vi, ·, ·)

⊢ EV , ET ,SV ,ST , RCall RSym s (ev1 , ..., evn) ⇒e (App (s, (v1, ..., vn)) ,∅, ?)

RCallErr

s ̸∈ {=, and,⇒, !, has...}

⊢ EV , ET ,SV ,ST , RCall RSym s (ev1 , ..., evn) ⇒e NotSupported

RCallNotCallableErr

ev ̸= RSym ·

⊢ EV , ET ,SV ,ST , RCall ev (ev1 , ..., evn) ⇒e NotCallable

RTCall

Rhs values can be calls to rhs types (we do not support call arguments yet):

RTCall

⊢ EV , ET ,SV ,ST , et ⇒e (TRef i, ·)

⊢ EV , ET ,SV ,ST , RTCall et (∅) ⇒e (Instance, a (T#i) , T#i)

RTCallErr

⊢ EV , ET ,SV ,ST , et ⇒e (t, ·) t ̸= TRef ·

⊢ EV , ET ,SV ,ST , RTCall et (∅) ⇒e NotSupported

C.3.5 RInit

Finally, rhs values can be component initializations. When initializing components, two reductions are

used, as new value symbols are defined for initialized attributes:

RInit

⊢ EV , ET ,SV ,ST , ev ⇒e (v, a, t) #ji = fresh (SV) ⊢ EV , ET ,SV ,ST , evi ⇒e (vi, ai, ti)

si ∈ dom (a) a′ = a ◁ {si 7→ #ji | i ∈ J1, nK} S ′V = SV ◁ {#ji 7→ (vi, ai, ti) | i ∈ J1, nK}

⊢ EV , ET ,SV ,ST , RInit ev { Rsym s1 ev1 , ...,Rsym sn evn } ⇒s ∅,∅,S ′V ,ST

⇒e
(
v, a′, t

)

RInitErr

⊢ EV , ET ,SV ,ST , ev ⇒e (v, a, t) ¬ (s1 ∈ dom (a) ∧ ...∧ sn ∈ dom (a))

⊢ EV , ET ,SV ,ST , RInit ev { Rsym s1 ev1 , ...,Rsym sn evn } ⇒e NotFound

176

C. CL/I Transformation from CL/I’s AST to the CLIR

RInitNotDefErr

¬
(

ev1 = RSym · ∧ ...∧ evn = RSym ·
)

⊢ EV , ET ,SV ,ST , RInit ev { ev1 , ..., evn } ⇒e NotSupported

C.3.6 Right types

RType

Rhs types can be previously defined type symbols (we do not support templating yet):

RType

s ∈ dom (ET) ET (s) = T#i

⊢ EV , ET ,SV ,ST , RType s ⇒e (TRef i,∅)

RTypeErr

s ̸∈ dom (ET)

⊢ EV , ET ,SV ,ST , RType s ⇒e NotFound

RTList

Rhs types can be list types of previously defined type symbols (we do not support cardinalities yet):

RTList

⊢ EV , ET ,SV ,ST , RType s ⇒e (TRef i, ·)

⊢ EV , ET ,SV ,ST , RTList RType s ⇒e (List ⟨T#i⟩,∅)

RTListErr

⊢ EV , ET ,SV ,ST , et ⇒e (τ, ·) τ ̸= TRef ·

⊢ EV , ET ,SV ,ST , RTList et ⇒e NotSupported

RTUnit

Rhs types can be the Unit type:

RTUnit

⊢ EV , ET ,SV ,ST , RTUnit ⇒e (Unit,∅)

RTBoolean

Rhs types can be the Boolean type:

RTBoolean

⊢ EV , ET ,SV ,ST , RTBoolean ⇒e (Boolean,∅)

RTString

Rhs types can be the String type:

RTString

⊢ EV , ET ,SV ,ST , RTString ⇒e (String,∅)

177

Transformation from CL/I’s AST to the CLIR C. CL/I

RTInteger

Rhs types can be the Integer type:

RTInteger

⊢ EV , ET ,SV ,ST , RTInteger ⇒e (Integer,∅)

Component

Components are made abstract (we do not support hooks yet):

Component

⊢ EV , ET ,SV ,ST ,
Def

ev1 = ; . . . ;
Def

evn = ⇒s E ′V , E ′T ,S ′V ,S ′T

⊢ E ′V + EV , ET ◁ E ′T ,S ′V ,S ′T , t1; ...; tn ⇒s E ′′V , E ′′T ,S ′′V ,S ′′T

⊢ EV , ET ,SV ,ST ,
Component

(ev1 , ..., evn){ t1; . . . ; tn } ⇒s ∅,∅,S ′′V ,S ′′T

⇒e
(
Abstract, E ′′V

)

178

Titre : Modélisation d’infrastructure informatique pour l’identification et la prévention des risques

Mot clés : Modélisation d’infrastructure, gestion des risques, fédération de modèles, vérifica-

tion formelle, sûreté et sécurité

Résumé : Les infrastructures informatiques
font partie de notre vie quotidienne et ont ga-
gné ces dernières décennies une importance
capitale. Au cœur de notre système bancaire,
de nos transports et de nos hôpitaux, leur om-
niprésence et les implications liées à leur dé-
faillance en font une cible privilégiée pour les
attaquants. Au-delà du risque de sécurité, ces
infrastructures sont soumises à un ensemble
de risques de sûreté, allant de l’aléa clima-
tique à l’incendie industriel, en passant par
la simple usure des composants mécaniques.
Ces risques, bien que prévisibles, ne sont pas
toujours pris en compte par les entreprises et
peuvent mener à des conséquences parfois
catastrophiques.

Nos travaux se positionnent tout au long du
processus de gestion des risques. Nous dé-
fendons la thèse qu’une modélisation cor-
recte et exhaustive des infrastructures infor-
matiques permet de déduire un ensemble de
propriétés de sûreté et de sécurité constituant
une analyse des risques satisfaisante du sys-
tème d’information étudié. Nous proposons
un ensemble de recommandations et de mé-
thodes pour procéder collaborativement à la
modélisation des infrastructures et à l’étude
du risque. Enfin, nous présentons un langage
de description d’infrastructures formellement
spécifié, CL/I, faisant le lien entre modèles
d’infrastructures, outils de vérification formelle
et supervision fonctionnelle.

Title: IT infrastructure modeling for risk identification and prevention

Keywords: Infrastructure Modeling, Risk Management, Model federation, Formal Verification,

Safety & Security

Abstract: IT infrastructures are part and par-
cel of our daily lives, and have become of vi-
tal importance over the last few decades. At
the heart of our banking system, transport fa-
cilities and hospitals, their omnipresence and
the implications of their failure make them a
prime target for attackers. Beyond the secu-
rity risk, these infrastructures are subject to
a whole range of safety risks, from climatic
events to industrial fires, to the sheer wear and
tear of mechanical components. These risks,
although foreseeable, are not always taken
into account by companies, and can lead to
potentially catastrophic consequences.

Our work encompasses the entire risk man-
agement process. We defend the thesis that
correct and exhaustive modeling of infrastruc-
tures allows the deduction of a set of safety
and security properties constituting a satisfy-
ing risk analysis of the information system un-
der study. We propose a set of recommen-
dations and methods to collaboratively con-
duct infrastructure modeling and risk analy-
sis. Finally, we present a formally specified in-
frastructure description language, CL/I, linking
infrastructure models, formal verification and
functional supervision.

	Remerciements
	Résumé en français
	Introduction
	Contributions
	Gestion du risque IT
	Vérification d’infrastructures
	Déploiement et maintenance d’infrastructures
	Intégration de nos travaux
	Conclusion

	Table of Contents
	Introduction
	Context
	What exactly is an IT infrastructure?
	IT infrastructures then and now
	IT professions

	Problem statement
	Contributions and outline
	Funding

	State of the Art
	Managing risk in IT infrastructures
	Requirements
	Environment
	Approaches to risk
	Our position

	Modeling and checking infrastructures
	Infrastructure modeling
	Model checking
	Our position

	IT Infrastructures dynamics
	Infrastructure life cycle
	Deployment
	Monitoring
	Our position

	Conclusion

	Reader’s Guide
	Approach
	Progress
	Big picture

	Managing Risk in IT Infrastructures
	The risk cycle
	Formalism
	Properties
	Iteration
	Change
	Approach

	Risk classification
	Taxonomy efforts
	The case of MITRE
	An ontology over MITRE

	Risk analysis frameworks
	Traditional frameworks
	Modern initiatives and IT infrastructures

	Risk assessment and tolerance criteria
	Analyzing parts
	Analyzing systems
	Closing the loop

	Sharing analyses
	Building open analyses
	Composing analyses

	Conclusion

	Checking IT Infrastructures
	Rethinking risk assessment
	Formalism
	Risk and properties

	Modeling IT Infrastructures
	From the technical world...
	... to the formal one
	Case study

	Model checking
	Properties and checkers
	The need for proper abstractions
	Going back to our case study

	Automating risk assessment
	Expressing formal properties...
	... and combining models together

	Conclusion

	Deploying and Maintaining IT Infrastructures
	Requirements–configuration–execution triad
	Inconsistencies
	Change
	Formalization
	Approach

	The CL/I language
	Another language?
	Modeling in CL/I
	Syntactic processing
	Semantic processing
	Extensions

	Mapping into Z3
	Translation rules
	Conformance checking

	Case studies
	Virtual environment model
	Proxmox VE configuration and execution
	Model checking
	Scaling
	A more complete case study

	Conclusion

	Integrating our Approach
	Theoretical framework
	Actors and responsibilities
	Components and instances
	Metamodel links

	Collaborative enterprise modeling
	Enterprise modeling
	Collaborative modeling

	Federating models
	Modeling guidelines
	Scaling infrastructures

	Integration guidelines
	Component catalogs
	A posteriori modeling
	A priori modeling

	Case study
	Heterogeneous models...
	... linked together
	Exploiting the model

	Conclusion

	Conclusion
	Synthesis of contributions
	Limitations and perspectives
	Risk management
	Modeling
	CL/I
	Enterprise integration

	Bibliography
	mitre2owl Algorithm
	Detail of the algorithm
	ParsersS
	ParsersD

	Semantic transformation

	UPPAAL Model
	Source code
	Common functions
	Corosync cluster
	Multi-quorum Corosync cluster
	Corosync node
	Network node above Corosync
	Declarations for Corosync

	Traces
	Scenario 1
	Scenario 2
	Scenario 3

	CL/I
	Language grammar
	AST construction rules
	Transformation from CL/I’s AST to the CLIR
	AST
	Structure
	Right values
	RTRDot
	RInit
	Right types

