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Abstract

Abstract: Bioluminescence imaging (BLI) is an optical imaging technology in which a living
organism or cell emits light through a biological substrate/enzyme reaction without any light
excitation. This technology, used in preclinical oncology in order to quantify the tumor status
in a non-invasive way, is still quite recent and for now biologists lack automated processing
tools to improve the quantification of images. In addition, some experimental protocols require
to extract the photon flux of multiple tumors on the same side of the animal. This can be
difficult and can introduce errors and biases as BLI suffers from a lack of robustness because
of a variability in vascularization, or hypoxic and necrotic zones within the tumors. In this
work, we propose the use of Non-Negative Matrix Factorization to separate the photon flux of
different tumors within the same bioluminescence image by leveraging the different pixel-wise
temporal patterns. Such spatio-temporal unmixing yields several important challenges that we
have tackled. In a first contribution, we use prior knowledge on the appearance of the tumors
and show the importance of penalizing the norm of the wavelet coefficients corresponding to
the sources estimated during the optimization process to obtain a high spatial consistency of
unmixed tumors. In a second contribution we deal with strong heterogeneities within tumors
corrupting the separation by presenting a dedicated pipeline for pre-aligning the photon flux of
the different pixels. We show that the resulting method is capable of accurately extracting the
photon flux of different tumors present within a single bioluminescence image. These algorithms
were tested and validated on two real BLI datasets and on one synthetic dataset generated with a
bioluminescence image simulator we designed and developed. In a third contribution, we propose
a pharmacokinetics model to calibrate the tumor photon flux based on the bioluminescence
signal emitted by a muscle. This allows us to extract meaningful physiological parameters from
the image like substrate exchange rates. We show that these parameters represent significant
features of the tumor state and can be used to improve the quantification of bioluminescence
images.

Keywords: Bioluminescence imaging, blind source separation, non-negative matrix fac-
torization, variability, preclinical oncology, quantification, pharmacokinetics model, reference
region.
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Résumé: L’imagerie par bioluminescence (BLI) est une technologie d’imagerie optique dans
laquelle un organisme ou cellule vivant émet de la lumière à travers une réaction biologique
substrat/enzyme sans aucune excitation lumineuse. Cette technologie, utilisée en oncologie pré-
clinique afin de quantifier l’état des tumeurs de manière non invasive, est encore assez récente
et, pour l’instant, les biologistes manquent d’outils de traitement automatisé pour améliorer la
quantification des images. De plus, certains protocoles expérimentaux nécessitent l’extraction
du flux de photons de plusieurs tumeurs situées sur le côté de l’animal. Cela peut être diffi-
cile et peut introduire des erreurs et des biais car la BLI souffre d’un manque de robustesse
en raison d’une variabilité dans la vascularisation, ou des zones hypoxiques et nécrotiques au
sein des tumeurs. Dans ce travail, nous proposons l’utilisation de la factorisation en matrices
non négatives pour séparer le flux de photons de différentes tumeurs au sein de la même im-
age de bioluminescence en tirant parti des différents patterns temporels pixel par pixel. Un tel
démélange spatio-temporel présente plusieurs importants défis que nous avons relevés. Dans une
première contribution, nous utilisons des connaissances préalables sur l’apparence des tumeurs
et montrons l’importance de pénaliser la norme des coefficients d’ondelettes correspondant aux
sources estimées pendant le processus d’optimisation afin d’obtenir une forte cohérence spatiale
des tumeurs démêlées. Dans une deuxième contribution, nous traitons les fortes hétérogénéités
au sein des tumeurs corrompant la séparation en présentant une chaîne de traitement dédiée
pour pré-aligner le flux de photons des différents pixels. Nous montrons que la méthode résul-
tante est capable d’extraire avec précision le flux de photons de différentes tumeurs présentes
dans une seule image de bioluminescence. Ces algorithmes ont été testés et validés sur deux
ensembles de données réelles de BLI et sur un ensemble de données synthétiques généré avec un
simulateur d’image de bioluminescence que nous avons conçu et développé. Dans une troisième
contribution, nous proposons un modèle de pharmacocinétique pour calibrer le flux de photons
de la tumeur en fonction du signal de bioluminescence émis par un muscle. Cela nous permet
d’extraire des paramètres physiologiques significatifs de l’image comme les taux d’échange de
substrat. Nous montrons que ces paramètres représentent des caractéristiques significatives
de l’état de la tumeur et peuvent être utilisés pour améliorer la quantification des images de
bioluminescence.

Mots-clés: Imagerie par bioluminescence, séparation aveugle de sources, factorisation en
matrice non négative, variabilité, oncologie préclinique, quantification, modèle pharmacociné-
tique, région de référence.
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Chapter I

Introduction

I.1 Funding and Collaborative context

This PhD Project started in February 2021. It was funded by a grant from the PRPhD program
of the Ile-de-France Region (PI: Jean-Christophe Olivo Marin and Lise Laumonier) and by the
company Biospace Lab. It was carried out in collaboration with Biospace Lab (with Anikitos
Garofalakis and Lise Laumonier as correspondants) and Nathalie Mignet and Johanne Seguin
from the UTCBS laboratory (Université Paris-Cité, CNRS and Inserm), Faculty of Pharma-
ceutical and Biological Sciences at Université Paris-Cité. The biologists provided us with the
datasets used in this thesis, acquired with a device developed by Biospace Lab.

I.2 Preclinical Imaging on small animals for oncology research

I.2.1 Introduction on preclinical imaging for oncology research

Cancer recorded more than 19 millions cases, and killed about 10 millons of people, according
to the International Agency for Research on Cancer (IARC), around the world in 2020. Before
a treatment is tested on humans, it is tested on animal subjects, especially mice or rats [1]. The
transfer of knowledge and experiments from animals to human is called preclinical research.
In this field of research, numerous technologies can help to visualize and quantify the impact of
treatments on tumors, and one of them is imaging, therefore known as preclinical imaging [1].

There are 3 kinds of preclinical imaging : anatomical imaging, functional imaging and
molecular imaging. Anatomical imaging targets specific anatomical structures with a contrast
agent whereas functional imaging studies a physiological or chemical process that can happen
anywhere in the organism. In functional imaging, contrast agents often target molecules, and
we can talk in this context about molecular imaging [2, 3].

Preclinical can be divided in ex vivo and in vivo. First of all, ex vivo imaging is the analysis of
tissues taken from a living subject. It can be applied on cells, tissues or histological sections [2].
Histology is the study of sections, between 5 and 200µm of thickness, of an organism with
a microscope where objects of interest can be highlighted with a constrast agent to study
physiological phenomena [4] (Figure I.1). Ex vivo imaging took great advantage from the
breakthrough of microscopy, with confocal miscroscopy (that enables to study thick objects by
isolating plans from the sample [5]) or FRET, Fluorescence Resonance Energy Transfer, which
has a sensitivity up to a single molecule [3, 6].

Ex vivo imaging is widely developed, used, mastered and accurate [8]. However, it is invasive

1
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Figure I.1: Whole Slide Histopathology Image. Taken from the Camelyon17 dataset [7].
Delineated metastasis at increasing zoom levels from left to right.

and therefore the conditions of acquisition are completely different from the natural conditions
of the studied subject and long-term longitudinal studies are proscribed [2]. Therefore, in vivo
imaging, which refers to the study of a functioning living organism, is developed, to perform
acquisitions in the most natural physiological conditions and long-term longitudinal studies.
Some of the in vivo imaging modalities still suffers from a lack of knowledge of accuracy [9–11].
Longitudinal experiments is the approach used in the context of this thesis, requiring then in
vivo imaging.

I.2.2 In vivo preclinical imaging

The use of many technologies can be designed for in vivo small animal imaging or derived from
clinical imaging [2, 3] with several adaptation challenges in terms of resolution and accuracy
related to the size difference between humans and small animals. There are several types of
technologies used from localized to whole body imaging [12].

I.2.2.1 Localised imaging

An important part of localised preclinical imaging methods, with an axial resolution in the
micrometre range [2], are adapted technologies from microscopy, like intravital microscopy [13].
However, they are limited to tissues of submillimetric thickness [13] and therefore are mainly
used in dermatology [14] or ophtalmology [15]. Though, multiphotonic microscopy can be
applied to neurology [16].

Ultrasound (US) imaging is considered between localised imaging and whole body imaging.
Indeed, the acquired field of view is big enough to get images of a mouse foetus [2]. This
modality is based on the measure of US waves propagated through the body [3], and their
measure provides informations about the acoustics properties of the tissues/organs [17] as shown
in Figure I.2. Moreover, Doppler Effect enables to image moving objects in the subject such
as red blood cells, which provides informations on blood flow [17]. These constrast agents can
also be modified to provide molecular information [18]. US imaging yields images with a rapid
frame rate, with high spatial and temporal resolution, involves no radiation, while being low
cost but is limited by its reproducibility and noise [3].

I.2.2.2 Whole body small animal imaging

Whole body images have a lower spatial resolution than localised images but they can yield
macroscopic informations for small animals [2]. They enable for instance pharmacokinetics and
biodistribution studies [19]. They can also be used to study live moving animals, which can
be interesting to limit the impact of anesthesia both on the organism and the behavior of the
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Figure I.2: US imaging from [2]. Visualization of tumoral vascularization in a mouse at 3
steps of treatment evolution.

Modality X-Ray Imaging MRI Radio-isotopic Imaging Optical Imaging
Type of images Anatomical/Functional Anatomical/Functional Functional Anatomical/Functional

Electromagnetic spectra 40− 100 keV 200− 400 MHz 70− 300 keV in SPECT
511 keV in PET 1.5− 3 eV (400− 800 nm)

Contrast enhancement Variation of tissues
absorption coefficient

Density and
environment of protons

Concentration
of injected radiotracer

Activity of a
luminescent protein
or fluorophore excitation

Spatial and
Depth resolutions

(10µm)3 to
0.5× 0.5× 1 mm3,
whole body

50µm to 1 mm,
whole body

1− 2 mm,
whole body

1− 5 mm,
< 5 cm

Temporal resolution A minute Few tenths of seconds
to several minutes

Few seconds
to a minute (in SPECT) 10 ms to a few seconds

Sensitivity 1− 5 mmol/kg 0.01− 1 mmol/L 0.1− 10 pmol/L 10−10 to 10−8 µmol/kg

Contrast Agent Iodine
or barium sulfate

Gadolinium
or iron oxide
superparamagnetic

γ (SPECT)
or positron (PET) emitters

Fluorophores
or luminescent proteins

Cost $$− $$$ $$$ $$$ $− $$

Table I.1: Recap table of the different whole body imaging modalities used in in vivo imaging,
adapted from [2].

animal during the acquisition [20]. There are several imaging modalities that can be used in
this context [21], which are presented next (Figure I.3). The characteristics of these different
modalities are summarized in Table I.1.

a) X-Ray radiography and tomography

X-Rays modalities are based on the interaction of X-Rays with tissues in the organism. Each
tissue has a specific absorption coefficient depending on its density and of the energy of the ray
[3]. X-rays are used for 2D imaging (radiography) and 3D imaging (computerized tomography,
CT) by rotating the scanner around the studied subject and reconstructing the tomographic
image with the Radon transform [22]. Its preclinical equivalent is called microCT [2]. They differ
in a few technical aspect such as the energy of X-Rays used (higher for preclinical imaging, 40
to 100eV ) to increase spatial resolution [23]. Both CT and microCT may need constrast agent
like iodinated water-soluble compounds to increase contrast in some tissues [24]. This modality
provides images with high resolution but the level of radiations involved is a limitation that
should be taken into account. The safety precautions for the operator and the lack of molecular
information are other limitating factors [3, 25]
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Figure I.3: Illustration of different whole body mouse imaging modalities (adapted from
[2,21]).

Figure I.4: Illustration of X-Ray imaging, taken from [2]. A: acquisition of multiple projections
in microCT imaging and 3D reconstruction. B, from top to bottom: sagittal, axial and coronal
slices of a rat.

b) Magnetic Resonance Imaging (MRI)

Magnetic Resonance Imaging (MRI) is an imaging modality based on the Nuclear Magnetic
Resonance (NMR) property of certain chemicals elements. It generates 2D or 3D images with
better contrast in soft tissues than X-Rays based methods [2].

c) Radio-isotopic Imaging

Radio-isotopic Imaging, like Positon Emission Tomography (PET scan) or single Photon Emis-
sion Computerized Tomography (SPECT) is based on the emission of γ rays (with an energy
greater than 100keV ) emitted by a radioactive radiotracer injected in the body [12]. For in-
stance, 18F − FDG (fluorine-18-labeled fluorodeoxyglucose) is a radioactive isotope of fluorine



I.2. PRECLINICAL IMAGING ON SMALL ANIMALS FOR ONCOLOGY RESEARCH 5

Figure I.5: Illustration of MRI preclinical small animal imaging. A: imaging device. B: MRI
image of activity maps in coronal slice after visual stimulation. Taken from [2].

Figure I.6: Illustration of PET small animal imaging. Left: imaging device. Right: Combi-
nation of PET and CT images (adapted from [28]) projected in 2D.

(18F ) [26] coupled with glucose [2], which is consumed abnormally by cancer cells (Figure I.6).
PET employs a 360◦ detection gantry to detect the opposite rays emitted by the positron-
electron annihilation process, providing a 3D image after reconstruction algorithms [27] whereas
SPECT does not necessarily contain depth information [12] but it is possible with specific de-
vices.

d) Optical Imaging

Optical imaging is based on light emission captured by a camera [29]. In molecular imaging,
it has applications from in vitro microscopy imaging [30] to in vivo whole body small animal
imaging [31].

Light photons interact with surrounding tissues, by being absorbed or scattered [32]. Only a
small amout of photons, called ballistic, are directly captured by the imaging device. In optical
imaging, we capture all photons arriving on the imaging device, whether they are ballistic of
diffused [2]. In order to monitor tissues molecular activity, it is then common to use specific
probes that have an affinity for a molecular target like a receptor or a protein. These probes
are tagged with a luminescent probe that emits photons [3]. Molecular chemistry allowed the
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Figure I.7: Illustration of small animal optical preclinical imaging. Left: imaging device
(PhotonImager OPTIMA, BiospaceLab, Nesles la Vallée, France). Right: superposition of
bioluminescence image and natural image of animal.

labeling of specific molecules, leading to the development of molecular probes. It can for instance
be a gene, coding for a luminescent protein, expressed by specific cells or tissues. In this case,
light detection would provide information on this gene expression [12].

Due to the absorption and scattering of photons involved in optical imaging, accurate and
efficient cameras are developed to capture low-intensity light [3]. We are going to briefly review
these device later in the manuscript.

Optical imaging is a non-ionizing imaging method, on the contrary of PET scan, that there-
fore does not need any radiation protection and is not expensive. It is also non-invasive. Thus,
there are cases where it is the most adapted method in the context of preclinical imaging [2], and
is the one used in the context of this work. An example of optical image is shown in Figure I.7.

I.2.3 Light Emission Mechanisms

I.2.3.1 Energy Exchanges

Luminescence is the spontaneous emission of photons by an excited molecule, liberated when it
returns to their stable state [12]. In optical imaging, these species are molecules [33].

There are different types of luminescences, depending on the origin of the excitation. For a
light excitation, we talk about fluorescence (when the photon is emitted instantly, resulting in a
fast emission of approximately 10−11s) [34] or phosphorescence (when the molecule transits by
an intermediate state before emitting the photon, resulting in a slow emission during between
a few microseconds to a few seconds) [2]. This energy transfers are illustrated in Figure I.8. In
any case, the energy loss between excitation and emission causes the wavelength of the emitted
photon to be higher than of the exciting photon, phenomenon known as Stokes shift [12]. For
example when the excitation is due to an enzymatic reaction, the photon emission is called
bioluminescence [34].
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Figure I.8: Energy transfers, between a stable state S0, an excited state S1 and a transition
state T1, involved in luminescence.

I.2.3.2 Probes used in optical imaging

Different kind of probes are used in optical imaging. As in nuclear imaging, we can inject a
luminescent probe that targets a specific phenomenon, these are called exogenes probes. But it
is also possible to modify genetically the organisms to make them emit light in order to capture
information, these are called endogenes.

a) Exogenous probes

There are different kinds of exogenous probes. The most well-known are organic fluorophores
(such as boron-dipyrromethene bodipy [2]), which are organic molecules that can emit wave-
lengths in the whole visible spectrum [2]. They can also be easily modified to target tissues or
physiological phenomena [35]. Their main drawbacks are a limited time stability, making it hard
to do any long-exposures microscopic acquisitions [2]; and a limited Stokes Shift, challenging
the filtering between exciting light and emitted light [36]. Some fluorophores, the cyanines, can
emit in the red or near infrared, which are the preferred wavelength for optical in-vivo acqui-
sitions because light can pass through efficiently [37] and has the lowest autofluorescence [12],
but they are the ones having the most limited optical properties (low quantum efficiency : 5%
to 40% in organic solvents) [2].

It is not the case of the quantum-dots, which are inorganic cristals having tremendous optical
properties. Their time stability is better than fluorophores and their emission time is longer [2],
and they can emit also in the infrared [38]. At high concentration, they can be toxic but it has
been shown that it is possible to use them in healthy concentrations for oncology [39]. They
are however too big (often bigger than 10nm) to be used for molecular imaging, because they
perturb tissue properties or the associated measures [2].

Persistent luminescence nanoparticles have a very long emission time (a few hours [2]) and
a high signal to noise ratio because they don’t need a constant light excitation which makes the
background of the image clear, so they could be interesting probes for optical imaging because
they can emit in the red of near infrared [2]. The current challenges are mostly their sizes (they
are also too big : 50−100nm [40]), and their complex functionalization, which are current fields
of research [40].

b) Endogenous probes

It is also possible to directly modify the DNA of targeted cells by adding some part coding
for a luminescent protein. In this set-up, we have a dual expression of the gene of interest
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Figure I.9: Illustration of endogenous probes, adapted from [2]. Left: fluorescence probe,
the gene of interest is linked to a reporter gene that codes for a fluorescent protein. Right:
bioluminescence probe, the gene of interest is linked to a reporter gene that codes for a protein
that produces light when excited with a substrate (luciferin).

and a reporter gene (coding for the light emission). The intensity of the signal provides some
quantitative information on cellular phenomena [3]. In in-vivo experiments, both fluorescences
and bioluminescence can be used as shown in [12]. In fluorescence, the most used protein is the
Green Fluorescent Protein (GFP) [21], which generates a green signal when excited with a UV or
blue light [12]. It has several applications in in-vivo experiments from tumors quantification [41]
to cells dynamics [42].

On the other hand, bioluminescent proteins don’t need any light excitation since the energy
comes from an enzymatic reaction, where the associated enzyme is usually called luciferase [43].
In an environment that emits relatively little light it can be a useful tool to mark a specific
area [44]. Mammalian tissues having little natural luminescence, Bioluminescence Imaging (BLI)
appears to be a preferred imaging method for studying in-vivo phenomena [44]. It has therefore
has applications in many fields of biomedical research [45] such as neuroscience [46] or oncology
[47]. It also has many applications such as molecular evolutions and tumor quantification, which
is the use case of the biologists involved in this thesis. Indeed, one of its main advantage is a
very low background signal from surrounding tissue because there is no exciting light [11] .

I.2.3.3 Bioluminescence

So-called bioluminescence is the emission of photons by a living organism without the need of
light excitation [48]. It is for instance the ability that enables fireflies [49] or glow-worm to
produce light [50]. The usual mechanism involved is the creation of a high-energy molecule
that produces a photon by returning to a stable state [33]. Most of bioluminescence phenomena
are explained by a luciferin-luciferase reaction, and it had been a common assumption that it
was the only explanation. Luciferin is the generic term that stands for an organic coumpound
that provides the organism the energy necessary for photon emission by being oxidized [43],
in presence of a specific enzyme called luciferase that catalyses the reaction, sometimes in the
presence of others factors (Adenosine triphosphate, Magnesium ..) [33]. However, later studies
stated that some proteins, like Aequorin, emit light without the presence of oxygen but with
only other factors (calcium), thanks to an intramolecular reaction. This kind of protein cannot
be fully described by the terms luciferin or luciferase, it has then be called in the litterature
photoprotein [48].

Luciferin-luciferases reactions, summarized in Figure I.10, emit light in proportion of the
amount of formed oxyluciferin [33], and so of the amout of luciferin [48]. On the other hand,
reactions involving photoproteins emit light in proportion of the amount of so-called photopro-
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Figure I.10: Reaction of bioluminescence, adapted from [52].

teins [33], which are then mainly used to report the concentrations of C2+
a ,M2+

g ... [51].

Bioluminescence Imaging is then a non-invasive technique that allows the monitoring of
biological phenomena under the condition of producing the bioluminescence reaction. Even
though both luciferin-luciferase [53] and photoproteins [54] based reactions have been used
in BLI, in this work we will focus from now on luciferin-luciferase systems because it is the
privileged set-up of the biologists we work with in this thesis. These systems can also emit in
the near-infrared [55], which is the more suited window for in vivo imaging [56].

In this context, tumor cells are genetically modified to express luciferase. After an injection
intravenous (IV) or intraperitoneal (IP) [57] of the luciferin, the emitted light intensity quantifies
the tumor status and can be used to study longitudinally the evolution of a tumor in the context
of experiments to asses the efficiency of cancer treatments [47].

I.2.4 Light detection

I.2.4.1 Possible Imaging Devices

Sensors involved in optical imaging, and especially in bioluminescence imaging, must respect
some criteria [58]. First of all, in order to detected external light, they must be highly sensitive.
Indeed, luminescent signals emitted by a bioluminescence reaction have intensities between
103 and 106ph/s/cm2/sr. For fluorescence, it can be 2 to 3 orders of magnitude higher [2].
The maximum sensitivity of the human eye is at 555 nm, with a threhsold at about 1.4 ×
108ph/s/cm2/sr [59], which can be close to the the order of magnitude of fluorescence imaging.

However, in vivo experiments involve usually light in the red or near infrared, where the
sensitivity of the human eye can drop by a factor 1000 [12]. In addition, we need to take into
account diffused photons as explained in Figure I.2.2.2. Imaging device for optical imaging,
and especially for bioluminescence imaging, must then contain a highly sensitive camera [12].
In optical imaging, we need also to have a high range of detection to be able to detect both
very intense tumors and very low ones. This range is defined by the ratio between the lowest
detectable signal (usually noise level) and the saturation threshold of the sensor. A high range
of detection can be especially useful in the case of metastases, way less intense than the primary
tumor [60].

In optical imaging, the most used types of sensors are the CMOS (Complementary Metal
Oxyde Semi-conductor) technology bases sensors and the CCD (Charge Coupled Device) sensors
[61]. Yet, the ratio signal to noise in the CMOS sensors is low, so is their sensitivity compared
to CCDs [62,63], which are therefore better suited for bioluminescence imaging [64,65].
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Figure I.11: How different kinds of CCDs work, taken from [2] from images of Hamamatsu.
A: iCCD. B: EB-CCD. C:EM-CCD.

CCD sensors convert incident photons into electron-hole pairs to generate an image [33].
There are 2 kinds of CCD used in optical imaging :

• There are cooled CCD where the exposure time is increased (integrated) to improve the
sensitivity of the sensor. Since the exposure time is linked to the spontaneous generated
electrons in the device, cooling is applied on the sensor, sometimes at −100◦C to reduce
that noise [66].

• Then, signal amplification CCD amplify the signal before it reaches the sensor [66]. Exam-
ples of signal amplification CCD include : Electron-Multiplication CCD (EM-CCD) [67] ,
EB-CCD (Electron Bombarded CCD) [68] and intensified CCD (iCCD) [69] (Figure I.11).
EB-CCDs use a photocathode to fasten the electrons by applying a high voltage between
the photocathode and the sensor, which results a good sensitivity and fast response time
but is an expensive technology [68]. EM-CCDs use a gain register after the shift register
and before the output. These sensors have the same sensitivity as cooled CCD and a
better quantum efficiency but need a highly accurate cooling, at temperatures similar to
cooled CCD, to avoid gain variations [67]. Finally, in iCCDs a photocathode converts pho-
tons to electrons, that are multiplied by a microchannel-plate (MCP), are converted back
to electrons with a phosphor screen coupled to the CCD by a lens [70]. These cameras
don’t need a long exposure time. To increase sensitivity, they have a high signal to noise
ratio for short acquisition times so they are adapted to photon counting, and don’t need
the same control as EM-CCDs even though the MCP needs to be cooled down at about
−30◦C [20]. These last ones are thus preferred sensors for real time molecular imaging [2]
and are the ones used in this thesis.

I.2.4.2 Planar Imaging Setups

There are 2 main set-ups used in optical imaging for in vivo experiments : 2D imaging and
3D tomographic methods [2]. Planar (2D) imaging methods are the most well-known ones
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Figure I.12: Different types of planar devices for FLI, adapted from [2]. A: epi-illumination
device. B: transillumination device.

because they are easy to set but cannot yield accurate quantification or deep location, that can
be provided by tomography [71]. Planar imaging can be used for both bioluminescence and
fluorescence [72,73] but tomography is still a more challenging problem in bioluminescence than
fluorescence because of the absence of reference due to the absence of exciting light compare [74].
Bioluminesce Tomography therefore often needs prior informations from other modalities like
CT or MRI [75].

The set-up of planar imaging is really simple, explaining its frequent use in optical imaging.
It consists of a a light-tight enclosure where is placed the sensor having to acquire the lumi-
nescence emitted by the studied source. Fluorescence Imaging devices contain also the exciting
light system. In this case, the light exciting system can be on the same side as the sensor with
respect to the animal (epi-illumination) or on the other side (transillumination) [2], as shown
in Figure I.12.

The orientation of the emitting subject can really impact the luminescent signal, therefore
tomographic methods has been developed to improve quantification of deep tissues emitted
light [76]. In fluorescence it is possible to do so thanks to the exciting light that acts as reference,
by applying mathematical algorithms that describe photons propagation. Pulsed lasers can for
instance enable to separate ballistic photons from others [2]. In bioluminescence, similarly to
CT, it is possible to acquire 2D views from several sides of the animal, with for instance a
mirror-based set-up [77] (Figure I.13) or a rotating device [78], to reconstruct the 3D image.

In this work, we used bioluminescence imaging with planar imaging for the sake of simplicity
of set-up. The device used be described in the next subsection

I.2.4.3 Device used in this work: PhotonImager OPTIMA

This device has been developed by the company BiospaceLab (Nesles-la-Vallée, France), which
we are working with in the context of this thesis. Its main competitive aspect comes from the
real time imaging developed in this company. Even if we did not use it in this work because
we focused on BLI, the PhotonImager OPTIMA has also a FLI mode. It is composed of an
excitation light system and filters before the sensor [12].

The system uses an iCCD sensor and 2 objectives. One has a focal length of 50mm, with
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Figure I.13: Multiview set-up for bioluminescence tomography taken from [77, 78]. Top:
schematic of the mirror-based set-up. Bottom: examples of image acquired by the CCD camera
with this set-up.

an aperture between 1.2 and 15.6, the other has a focal length of 35mm and an aperture
between 1.4 and 16.2. The sensor can acquire images at a frame rate of 11Hz and the gain of
the microchannel-plate (MCP) is between 104 and 106 depending if recording fluorescence of
bioluminescence images. The MCP is cooled at −30◦C to decrease thermal noise. The resolution
of the iCCD is 1832 × 1377. This camera takes a picture of the animal before the acqusition
as a preview to superpose the BLI on. The field of view is of 25cm × 18cm and the distance
between objective and object of 450mm. Biologists can image up to 10 mice simultaneously.

Information of photons detected by the sensor is stored in a file with the time of arrival
and the position [12]. In our experiments, we used this noisy raw data to be sure to control
everything.

I.2.5 Typical Experiment

A typical BLI experiment ran by our collaborating biologists operates as follow : they inject
luciferin into anesthetized mice, then place them in the imaging device [33]. The substrate is
injected intraperitoneally as it is easier and faster than intravenous injections [79]. The sensor
captures the signal emitted by the mice. This whole pipeline is illustrated in Figure I.14.
After acquisition, biologists usually hand-draw a region of interest (ROI) around the studied
tumor [80] in the Software associated with the imaging device (M3Vision from BiospaceLab
for the PhotonImager OPTIMA system Figure I.15) which displays mainly the accumulation
image (the integral of luminescent signal on all frames for all pixels) but also the signal frame
by frame. The captured signal should contain quantitative information about the tumor, which
we are going to study later.

In the following, since BLI of tumors is a major field of research for new cancer treatments
[33], we are going to focus on bioluminescence imaging for tumor-bearing mice. Developments



I.3. BIOLUMINESCENCE IMAGING 13

Figure I.14: A typical bioluminescence imaging acquisition for related experiment taken from
[33].

Figure I.15: An example of view for BLI on M3Vision.

in this field can include research on substrates [81], enzyme [82], or image analysis [83]. We will
explain in next sections how and if image analysis tools can improve accuracy of BLI.

I.3 Bioluminescence Imaging
In the following, for the sake of display, sometimes we will show a 2D BLI. It represents the
integral of photon counting on all frames, as in shown in Figure I.15.
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I.3.1 Quantification of tumor state

In preclinical oncology research, it is common to use tumor volume to evaluate the tumor growth
and estimate the treatment efficacy [53, 84, 85]. BLI is particularly useful for orthotopic tumor
models, when measuring the tumor with a caliper is impossible due to its depth in the tissue [86]
or for nonpalpable tumors [87]. The basic assumption is that the photon flux is correlated with
the number of cancer cells [85, 88] and thus to the volume of the tumor [89]. It allows then to
quantify the tumor burden of the animals without the need to euthanize them, even in deep
tissues, and therefore to monitor the response of a subject to a cancer treatment [53, 88, 90] in
the context of preclinical research. The bioluminescent signal can be quantified in several ways
that we will explain in the following.

In that part, we will note Y ∈ RM×N×T the BLI acquired by the device described earlier in
a hand-drawn ROI around a specific tumor, where Y (x, y, t) is the number of photons acquired
by the pixel (x, y) at the frame t. The kinetics displayed from now on, as in Figure I.17, follow
these rules: unless otherwise indicated, the time interval ranges from 0 to about 30 minutes
after luciferin injection; and when a scale is specified, unless otherwise indicated, the unit is
8.9 seconds. In addition, unless otherwise indicated, the kinetics are presented after the pre-
processing explained in Chapter II.

I.3.1.1 Average Photon Flux

It is quite common to use the average of photon flux over the acquisition period to quantify the
Bioluminescent Signal (BLS) [53,91–94] Equation I.1.

Average Photon Flux =

∑
x≤M,y≤N,t≤T

Y (x, y, t)

T
(I.1)

In general, scientists using the luciferin/luciferase system to assess tumor growth inject the
substrate and start imaging when the enzymatic reaction reaches the pre-determined plateau
(about 10 minutes) [47,53,88,89,92,93,95] with acquisition times varying between a few seconds
[88] and 10 minutes [47, 95]. This is motivated by the fact that the bioluminescence signal
usually increases for about 10 or 15 minutes, then stagnates on a peak for 20 or 30 minutes
before decreasing [72]. This procedure is summarized in Figure I.16.

However, using a fixed time window after substrate injection may be poor practice as it does
not take into account the variability of BLS between tumors. Indeed, according to other many
published works [57,96–98], the temporal activity of the bioluminescence signal after substrate
injection varies according to the tumor and the day as shown in Figure I.17, and therefore
acquiring at a fixed time after injection, called a static acquisition, is not optimal for tumor
quantification. Studying the entire time window may provide more accurate indicators of tumor
state. Thus, some works use the average photon count on the whole bioluminescent kinetics
[91, 99]. Nevertheless, according to [99], the optimal time point to begin the acquisition for a
study using the average photon count over a static window is at 20 minutes after an IP injection
because it is the moment where they found the correlation with the average photon count over
the whole kinetics is the highest. However, this quantification method cannot differentiate
between totally different kinetics with the same integral. A deeper analysis of the whole signal
can provide more information.
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Figure I.16: Illustration of classical bioluminescent data (adapted from [72]). Left: Regu-
lar bioluminescent kinetics. Right: Accumulation image (integration on all frames of photon
counting) from the usual acquisition time.

Figure I.17: Possible phase shift between kinetics. Left : BL Images. Right: Associated
kinetics and their respective peak values.

I.3.1.2 Maximal Photon Emission

In [57], they estimate the maximum photon emission PEmax (see Figure I.17) of the tumor by
calculating the 95th percentile on 5s time intervals over the 40 min acquisition, similarly to
what is done in [94]. They also compute the average of photon counting during 1 minute at
the average time-to-peak between the different BLIs, which should be even more accurate than
the 20 minutes found earlier in [99]. This static measure is apparently less precise than PEmax,
especially for IP injections.

PEmax = F−1
I (0.95), (I.2)

where FI is the cumulative distribution function of I. However, this method is only a
truncation and more information can be extracted when the entire acquisition is available.

I.3.1.3 Kinetic Modeling

Sim [100] and Dai’s [84] work focuses on modelling the bioluminescence reaction in the context
of an IP injection of luciferin. They use a multi-compartment pharmacokinetic model in which
they study the uptake of luciferin before it reaches the luciferase-expressing area (the tumour
tissue). They both made the assumptions that the rate of photon emitted from the tumor
is proportional to the amount of substrate in the tumor area and that the reaction follows a
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Figure I.18: Quantification of BLI with PK parameters, adapted from [100]. Left : Biolumi-
nescent kinetic. Right : Logarithmic correlation between PK parameters and tumor volume.

Michaelis-Menten kinetics. [84] uses a 3 compartments model but [100] argues that the results
are nearly identical with a 2 compartments model. This model allows them to obtain a temporal
expression of the BLS in function of the pharmacokinetics parameters (PK parameters) that
can be estimated from a real BLS by fitting the signal. They use one of these parameter, noted
K, to quantity the tumor by using its logarithm, that is supposed to be proportional to the
tumor volume (Figure I.18).

PK quantification = log(K) (I.3)

I.3.1.4 Other quantifications

In order to obtain an automatic unsupervised BLI analysis tool, [83] have built a 2-step al-
gorithm. First, they use a K-Means algorithm to segment the image into 3 clusters: noise,
background and signal (algorithm validated on synthetic data from Poisson distributions with
different parameters). Then, they use the normalized BLI defined by the equation I.4 to quan-
tify the signal in the same way as a standard bioluminescence image as displayed in Figure I.19.
This normalization process allows them to account for auto luminescence and compare biolu-
minescence images from different devices.

NBLI = 1
T

∑
x,y,t

Y (x, y, t)− µ(Background)
σ(Noise) (I.4)

Moreover, in order to improve tumor volume monitoring and to standardize the quantifi-
cation process of biolumienscence images, [47] proposes to use the luminoscore, defined as the
sum of the photon fluxes acquired by the front and back views. This index thus requires though
2 times more acquisitions than the classical photon flux (Figure I.20).

Luminoscore = 1
T

∑
x,y,t

Yfront(x, y, t) + Yback(x, y, t) (I.5)

[101] proposes to calculate an estimate of the surface of the tumor, evaluated by counting
the numbers of pixels belonging to the tumor after a segmentation computed with an Active
Countour algorithm [102] on the accumulation image, defined by the integral of photon counting
on all the frames. Before the segmantation, a pre-processing algorithm composed of a denoising
and a deconvolution is applied to better segment the tumor.
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Figure I.19: Normalized BLI quantification method, adapted from [83]. Left: Different clusters
in the accumulation image. Right : Associated NBLI.

Figure I.20: Front and back view of a mouse bearing 2 tumors used to compute the lu-
minoscore, taken from [47].

Surface = |Î|0, (I.6)

Where I(x, y) =
∑

t Y (x, y, t) is the accumulation image andˆ is the preprocessing.

I.3.1.5 Limitating factors and validity of quantification

To validate this process, biologists have used other modalities like caliper [85] or MRI [103]
to measure the tumor volume. It showed that these quantification methods are not entirely
reliable to determine accurately tumor volume, even if it can achieve satisfying results for big
healthy tumors [94].

Indeed, Bioluminescence imaging suffers from factors that complicate signal quantification.
First, the reaction requires the presence of molecules such as O2 or ATP [72]. If one of these
molecules is missing, the intensity of the emitted photon flux is not representative of the number
of tumor cells [104]. This is particularly troublesome in hypoxic or necrotic zones appearing
when tumors become too large [93]. Numerous works [57, 105–108] show the influence of these
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Figure I.21: Decrease of correlation between tumor volume and photon counting, adapted
from [57, 106]. Top : comparison between evolution of tumor volume measured with a caliper
and evolution of photon counting [106]. Bottom : Peak value of photon counting after IV
administration in function of the histological cell count [57].

zones in the quantification of the bioluminescence signal. The correlation between biolumines-
cence signal and tumor volume, which grows almost exponentially as modeled in [109], drops as
the tumor health status deteriorates and necrosis appears [47] (Figure I.21). This implies that
bioluminescence imaging is no longer sufficient and that another modality (such as MRI) seems
necessary to determine the volume of such a tumor. It appears necessary to develop methods to
take these areas into account when quantifying the bioluminescence signal. The study brought
by [110], extends a pre-existing model of photon flux from a tissue [111] by taking into account
the oxygen dependence of the reaction between luciferin and luciferase. This study is a possible
avenue to improve tumor quantification when the entire kinetics are available.

Moreover, the interactions between the emitted photons and the crossed tissues modify
the intensity of the detected signal. The interactions between photons and their environment is
defined by 2 phenomena : absorption and scattering, characterized by their respective associated
coefficients µa and µs which depend on the wavelength of the photons. They are also both in
homogeneous but it is possible to define an average µa from the tissues constitution. However,
the scattering coefficient is also anisotropic, with an anisotropy factor noted g which defines the
reduced scattering coefficient :

µ′
s = (1− g)µs (I.7)

A tumor closer to the surface of the skin then appears brighter than a tumor located at
depth. In addition, the scattering of photons in the tissue can cause tumors to appear larger
than they really are as is shown in Figure I.22 that shows how 2 different sources can emit the
same signal. Indeed, according to [98], both the position of the animal during bioluminescence
acquisition and the anesthetic used can be responsible for large variations in the resulting signal.
However, [100] did not observe significant variance in their results by tilting the animals in the
device, both in the signal and the resulting pharmacokinetic parameters.
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Figure I.22: Impact of tissue on photon emission, adapted from [12]. Top : explanation of
scattering. Bottom : illustration of 2 very different sources that emit the same signal due to
their position in the tissues and the associated scattering and absorption.

It is also important to note that, according to [72], the bioluminescence signal is often un-
derestimated in larger tumors due to the increased optical density that reduces the amount
of substrate available in the tumor core. However, BLI is often used in the context of lon-
gitudinal studies and not to determine the tumor burden of an isolated tumor. Normalizing
the bioluminescence signal to the signal at the beginning of the treatment reduces inter-animal
variation.

Another limitating factor of BLI is the variability in time-to-peak between different mice and
tumors [57, 96–98]. [57] shows that there is less variance in the time-to-peak when proceeding
with IV injections than with IP injections since there is no loss in the peritoneum, which could
result in a better repeatability in the experiments and reducing the anesthesia of the animals.
However, they are more difficult to perform and show the same gap of correlation between in
vivo tumor volume and photon emission [57] (Figure I.21 bottom).

Therefore, there is a need to improve the way BLI is quantified to determine tumors status,
both in terms of robustness and accuracy. Moreover, in order to quantify BLI, biologists have
to manually draw a Region of Interest (ROI) around each tumor [80], which can be troublesome
in some cases that we will discuss now.

I.3.2 Impact of number of tumors

First, it seems natural to ask whether the size of this ROI has an influence on the measured
signal. According to [112] and [47], the BLI does not need excitation light therefore once
the entire tumor is encompassed in the region, increasing the size of the ROI has no impact
in terms of pure photon counting. It is an imaging technique more suitable for whole body
imaging than fluorescence [47] and therefore taking a ROI that covers the entire animal, which
can be easily done by a computer, should achieve accurate enough quantification. However in
some experimental protocols the mice are bearing several tumors, by purpose or by metastases.
In these cases, taking a ROI that covers the whole animal as proposed in [47] then mixes the



20 CHAPTER I. INTRODUCTION

Figure I.23: BL Images where it’s difficult to hand-draw ROI around the each tumor. Left:
example with 2 very close tumors. Right: example with 2 tumors and one is in 2 parts, probably
due to hypoxia or necrosis, making it difficult to attribute the white circle area to the right or
left tumor.
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Figure I.24: Example of a BLI recording with 2 tumors that needs to be automated. Left:
Superposition of BLI and mouse body. Middle: BLI photon count with expert hand-drawn
ROIs (Green circled area: left tumor. Red circled area: right tumor. White circled area: zone
difficult to attribute, belongs to the left tumor after close examination). Right: Average BLI
photon accumulation time-series for each tumor.

signals from the different tumors and it then appears necessary to draw ROI around each tumor.
It can get tricky, challenging, time-consuming and can introduce errors and biases in some cases
like the ones presented in Figure I.23. In the first image, the tumors are too close and the
border between them is unclear, so we can easily encompass pixels belonging to the wrong
tumor when hand-drawing a ROI. In the second image, we have 3 luminous spots but we know
from biologists who have the longitudinal information that there is only 2 tumors. It is then
difficult to tell from this image whether the white circled area belonged to the right or left
tumor. A close examination of the signal by biologists allowed us to determine that it belongs
to the left tumor.

For now, there exists no dedicated pipeline that determine automatically the kinetics of each
tumor located in a single Bioluminescence Image as illustrated in Figure III.12, which is then
an interesting field of study.

I.3.3 Towards a more quantitative BLI by studying spatio-temporal
patterns

In this work, we thus worked on 2 aspects :

• Separating the photon flux coming from each tumor automatically when the animal has
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Figure I.25: Illustration of kinetic similarities between pixels of the same tumor. Left: BLI
accumulation image. Right: pixel kinetics (after normalization).

several tumors

• Improving the quantification of the Bioluminescent Signal for preclinical imaging.

I.3.3.1 Blind source separation

To obtain the kinetics of the different tumors from a single BLI, we propose in this work to
leverage the discrepancies between photon emission kinetics of different tumors [100]. More
precisely, we made the assumption in our model that the different pixels belonging to only
one tumor have almost the same temporal pattern (kinetics) as displayed in Figure I.25 that
shows the normalized kinetics of 3 pixels in the image, unlike the pixels belonging to different
tumors. Indeed, Figure I.25 shows that the kinetics of the 2 intense zones on the left are similar
with a progressive increase, on the contrary of the pixel belonging to the intense zone on the
right. Pixel-level kinetics seem therefore to be a relevant information to get the different tumor
kinetics from a BLI.

To tackle such problem, many models can be adapted to these data. The most well-known
is the spatial segmentation framework which classifies each pixel as belonging to a single tumor.
However, when the tumors are very close, or superimposed if the point of view is not adapted,
it may be difficult to attribute a pixel to a single tumor as the ones at the border between the 2
tumors of the first image of Figure I.23. The Blind Source Separation Framework (BSS) seems
therefore to be adapted to that task, and is the one we are going to use in this work.

I.3.3.2 Quantitative analysis with reference region

The main limitations in bioluminescence imaging are the lack of repeatability of the experiments,
the loss of signal due to necrosis and hypoxia and the interactions between photons and tissues,
which are all valid perspectives to pursue. Before trying to model the impact of tissues on the
kinetics, we first made experiments to quantify the possible variations occurring in the kinetics
due to a slight tilt of the animal. We gathered acquisitions of some animals 3 times a day, during
40 minutes and compared the resulting kinetics for each tumor. In the same day, the tumor has
not changed or grown and we imaged the animals in almost the same position so the influence
of tissues should not be significant. The resulting difference between the associated kinetics was
in fact very high and we could not find a particular pattern between the differences (that could
have been due for instance to the hour of the experiments) as is shown in Figure I.26.

Hence, the quantification of tumor kinetics seemed to be a real bottleneck and it is the topic
we focused on in terms of quantitative analysis of BLI. We tried to derive pharmacokinetics
methods of quantification from other modalities such as PET [113] or DCE-MRI [114] based on
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Figure I.26: Difference between kinetics of the same tumors at different times of the day. For
each tumor, Left: BLI for each time stamp; Right: Associated kinetics.

the pharmacokinetics model of [100]. In particular, we focused on methods using signal coming
from a Reference Region, such as usually the muscle, to better quantify the kinetics [115].

It should be noted that in this context the animals are supposed to be anesthetized thus
motionless. However it is well known that physiological movement, such as the respiration, can
complicate the analysis of such spatio-temporal data [116, 117]. In the scope of this thesis, we
do not take this kind of movement into account but it represents a valid perspective for our
work.

I.4 Manuscript outline, Collaborative Context and
Publications

This thesis is a joint work between the Biological Analysis Unit of the Institut Pasteur and
the IMAGES team of Télécom Paris, in collaboration with the company Biospace Lab and the
UTCBS laboratory from the Université Paris-Cité, CNRS and Inserm.

The manuscript is structured as follows. We began with Chapter I - Introduction, where
we provided general background information on pre-clinical imaging on small animals and the
bioluminescence imaging technique.

We introduce in Chapter II - Bioluminescence Imaging Data the datasets we used in this
thesis to design, test and validate our algorithms. We also present a synthetic tumor BLI
generation framework that we designed. This simulator is the first to our knowledge able to
generate spatio-temporal BLIs of tumors and will be a part of an article in preparation :

• Dereure, E., Kervazo, C., Seguin, J., Garofalakis, A., Mignet, N., Angelini, E., & Olivo-
Marin, J.-C. . Wavelet transform based non-negative matrix factorization for biolumines-
cence imaging with warping variability.

In Chapter III - Blind Source Separation on Bioluminescence Imaging, we dive into the
algorithms we developed to separate the different tumors located within a single BLI. In par-
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ticular, we adapted Blind Source Separation methods to our data, by adding prior information
on tumor shape and heterogeneity. The associated publications are :

• Dereure, E., Angelini, E., Garofalakis, A., Seguin, J., Mignet, N., & Olivo-Marin, J. C.
(2022). Factorisation Non-Négative de Matrice pour séparation de sources en Imagerie
par Bioluminescence préclinique. In GRETSI’22: XXVIIIème Colloque Francophone de
Traitement du Signal et des Images.

• Dereure, E., Kervazo, C., Seguin, J., Garofalakis, A., Mignet, N., Angelini, E., & Olivo-
Marin, J. C. (2024). Sparse Non-Negative Matrix Factorization for Preclinical Biolumi-
nescent Imaging. In 2023 IEEE 20th International Symposium on Biomedical Imaging
(ISBI).
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Some results will also be a part of an article in preparation:

• Dereure, E., Kervazo, C., Seguin, J., Garofalakis, A., Mignet, N., Angelini, E., & Olivo-
Marin, J.-C. . Wavelet transform based non-negative matrix factorization for biolumines-
cence imaging with warping variability.

Then, in Chapter IV - Quantitative analysis of BLI with pharmacokinetics model, we focus
on improving the quantification of BLI by enhancing the calibration of an existing pharmacoki-
netics model.

This work is fully summarized in Chapter V - Conclusion and Perspectives, where we discuss
our results and highlight interesting perspectives for future research directions.



Chapter II

Bioluminescence Imaging Data

II.1 Real BLI Datasets

In order to quantitatively analyze bioluminescent images, we worked alongside biologists, from
the Université Paris Cité in the teams Plateformes mutualisées de l’institut du médicament
(LIOPA) and UTCBS. These teams provided us with the datasets used in dedicated experiments
for different problems tackled in this thesis.

All BL Images cohorts were acquired with an iCCD camera (PhotonImager OPTIMA,
BiospaceLab, Nesles la Vallée, France). Luciferin potassium salt diluted in 10mM phosphate
buffer was injected intraperitoneally (IP) at a rate of 2 mg per anesthetized mouse, which is
in great excess compared to the amount of luciferase. Acquisitions were made 3 times a week
from tumor implantation until the mice were sacrificed. Indeed, each mouse was sacrificed when
the tumor volume, measured with a caliper, became too large (more than 1000mm3) or when
the BLI signal became too strong (more than 5 × 105ph/s/cm2/sr). The frame rate of each
acquisition is 89ms per frame and the pixel size is 0.12 × 0.12mm2. In each frame, the pixel
value represents the number of photons captured in that pixel.

II.1.1 Multiple-tumors bearing mice datasets

For these datasets, each BLI acquisition consists of a time series of 2D signals acquired over a
fixed field of view containing several mice each bearing 2 tumors. We hand-drew ROIs around
the 2 tumors of each mice as shown in Figure II.1. Each BLI consists then of a 2D+T series
of about 500× 500×NT pixels where NT it the total number of frames, containing the signals
of 2 tumors of each mouse. We evaluated our blind source separation algorithms, introduced in
Chapter I and described in Chapter III on these datasets.

II.1.1.1 Short kinetics dataset

One dataset contains images coming from 6 different balb/cJRJ mice injected subcutaneously
with a suspension of CT26-Luc cells (2.5 × 105/50µL culture medium). BLI acquisitions were
initiated 8 min after substrate injection for a duration of about 7 min. A typical acquisition
contains about NT ≈ 4650 time frames.

We considered only images where the 2 tumors emit signal and selected only data from
acquisitions where the tumoral volume is of the same order of magnitude for the 2 tumors and
where it is greater than 10mm3 to have enough signal. This selection of data places us in an
ideal framework in the context of a preliminary analysis. These criteria led us to exclude 20

24
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Figure II.1: Regions of Interest (ROIs) manually drawn around each tumor in a BLI.

Figure II.2: Example of BLIs of mice bearing 2 tumors each. Left and Middle: BLI retained
in our dataset; Right: BLI excluded from our dataset (the left tumor is approximately as
voluminous as the right one according to the caliper measurement but does not emit signal,
possibly due to an injection failure). Acquisitions of about 7 minutes (NT ≈ 4650 time frames).
In this figure we illustrate the temporal aspect of BLI but the for the sake of visibility the frame
displayed is the cumulative count of photon counting.

BLI. In total, with 6 mice we retained 15 BLI images and thus 30 tumors. Figure II.2 displays
examples of such images, with an example of an excluded BLI (one of the tumors does not emit
signal possibly due to an injection failure while being almost as voluminous as the other one
according to the caliper measurement). In this type of figure we illustrate the temporal aspect
of BLI but the for the sake of visibility the frame displayed is the cumulative photon counting.

II.1.1.2 Long kinetics dataset

A second dataset contains also images coming from 6 different balb/cJRJ mice injected subcu-
taneously with a suspension of CT26-Luc cells (4 with 10×104/50µL cells, 1 with 8×104/50µL
cells and 1 with 5×104/50µL cells). BLI acquisitions were initiated immediately after substrate
injection for a duration of about 30 min (to capture the whole kinetic). A typical acquisition
contains about NT ≈ 20000 time frames.

For this dataset, we considered only images where the 2 tumors emit signal and excluded 13
BLI. In total, with 6 mice we retained 18 BLI images and thus 36 tumors. Figure II.3 displays
examples of such images, with an example of an excluded BLI (one of the tumors does not emit
signal possibly due to an injection failure).
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Figure II.3: Example of BLIs of mice bearing 2 tumors each. Left and Middle: BLI retained
in our dataset; Right: BLI excluded from our dataset (the tumor on the right does not emit
signal, possibly due to an injection failure). Acquisitions of about 30 minutes (NT ≈ 20000 time
frames).

II.1.2 Tumor and muscle signal-emitting mice dataset

This BLI dataset is composed of images coming from 15 different BALB/c female mice (Janvier,
St Genest de Lisle, France) aged of 6 weeks that were split into 3 groups of 5 mice (5× 3 = 15
mice). 2 groups were treated with different of Etoposide formulations, Etoposide Nanocrystals
(noted ETO in the following), Etoposide/Prednisolone Nanocrystals (noted ETO/PRD in the
following) and one group was used as control (noted CTR in the following). The first 2 groups
received 6 injections of ETO formulations at 10 mg/kg. The untreated control group was used as
comparison for tumor volume. Schedule: Murine carcinoma tumors CT26 were subcutaneous
were implanted subcutaneously on day −3 using a 12-gauge trocar (38 mm) into the mouse
flank previously disinfected with alcohol. Most of the mice bear 2 tumors but some bear only
1 because the other tumor has not grown.

In order to obtain a signal from a reference muscle during a BLI acquisition, which would
yield a calibration of the arrival of the substrate, an internal control was used. It consists of an
injection of 3µg of recombinant luciferase in 30µL of PBS into the right cranial tibial muscle
of each mouse. This is supposed calibrate the signal coming from the tumor in the goal of
improving its quantification [115] as we will explain more deeply in Chapter IV.

BLI acquisitions were initiated immediately after substrate injection for a duration of about
30 min (to capture the whole kinetic). A typical acquisition contains about NT ≈ 20000 time
frames. For each acquisition, tumor volume was measured with a caliper by using the ellipsoid
approximation of tumors shape [85].

We excluded 4 BLI for which we did not have correct annotations. In total, we have 77 BL
images. For each BLI, ROIs were drawn around each tumor and reference muscle, leading up
to a total of 147 tumors and their associated 77 muscles. 52 tumors belong to the group CTR,
44 to the group ETO and 51 to the group ETO/PRD.

We evaluated our tumor quantification algorithms, introduced in Chapter I described in
Chapter IV on this dataset.

II.2 Modeling and Preprocessing of BLI

According to [101], only a small number of photons emitted by the source will reach the camera.
It is possible to model, following their work, the image acquired by the iCCD camera Y as a
mixed Poisson-Gaussian noise model described as:
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Figure II.4: Example of 2 BLIs of mice bearing 2 tumors each, with some signal emitted in
the muscle thanks to a local luciferase injection. Acquisitions of about 30 minutes (NT ≈ 20000
time frames).

Figure II.5: Impact of additive noise on BLI. Left: BLI total cumulative count, Right: Patch
in the Background (Top : visualization in 2D, Bottom: visualization in 3D).

Y (x, y, t) = P (O(x, y, t) ∗ h(x, y, t)) + σ(x, y, t), (II.1)

where O(x, y, t) is the original image, P is a Poisson process, h(x, y, t) is the Point Spread
Function (PSF) that depends on the imaging device and σ(x, y, t) is an additive noise component
composed of a stationary white Gaussian noise due to camera read-out, quantization and dark
current and an impulse noise due to cosmic radiation [83, 101, 118]. This last component is
responsible for possible saturated pixels [47]. In the context of pixel-wise kinetic analysis, the
raw data is too noisy and needs to be pre-processed to limit the risk of noisy detections as
displayed in Figure II.5.

The signal is sampled with a sampling period noted Te = 8.9s (100 time points) in order to



28 CHAPTER II. BIOLUMINESCENCE IMAGING DATA

Figure II.6: Different pre-processing steps applied on raw BLI. Left: BLI, Right: Impact of
the pre-processing on a pixel kinetic curve.

reduce the computation time, by averaging temporally, then smoothed spatio-temporally with a
median filter of size 9×9 to follow the idea of [119]. Indeed, this filtering should smooth the image
spatially and remove impulse noise. However, we can still observe non-relevant oscillations, that
are cut thanks to a low-pass Butterworth filter of degree 10 and of cutoff frequency fc = 1

150Hz
for the short kinetics dataset and fc = 1

280Hz for the long kinetics thers. These parameters
have been set empirically and the difference between the cutoff frequency can be explained by
the fact that in the case of short kinetics, if we smooth too much the signals, with a cutoff
frequency too low, it becomes harder to distinguish between 2 tumors within the same image.
For longer kinetics, relevant oscillations can be found at very low-frequency analysis therefore
we can use a stricter low-pass filter. Figure II.6 illustrates the different pre-processing steps
applied to BLI and their impact.

We then applied our algorithms to these pre-processed BLIs and evaluated them with ap-
proximated ground-truth as explained later in Chapter III. In order to to validate them with
complete ground-truth, we then defined a synthetic BLI generation framework.

II.3 Proposed synthetic tumor BLI generation

We developed our own synthetic tumor BLI simulator to calibrate our various algorithms. One
assumption made is that all pixels of a single tumors share a similar kinetic pattern as can be seen
in Figure I.25 but with different orders of magnitude between pixels. In order to generate a BLI
corresponding to a specific tumor, we first synthetize its Parametric Map (the intensity of each
pixel), see subsubsection II.3.1.1 and its associated kinetic pattern, see subsubsection II.3.1.2.
We then apply dedicated pixel-level degradations to mimick the different sources of noise and
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Figure II.7: Steps of generation of the parametric map of a generic tumor. For the sake of
visualization, both masks are displayed after scaling the radius values by SB. To generate this
image we used R0

B = 5, σRB
= 2.5, σf = 5, LT = 7 and SB = 50.

heterogeneity, see subsection II.3.2. We finally explain how to simulate images with multiple
tumors to generate a multiple-tumors synthetic BLI dataset in subsection II.3.3 by generating
a Parametric Map and Kinetics for each tumor. This process allows us to handle the numbers
of tumors in each image, and for each tumor its size, intensity, shape, position, kinetics and the
associated perturbations.

II.3.1 Ideal tumor Bioluminescent Image generation

II.3.1.1 Parametric Maps generation

As seen in Figure II.2, Figure II.3 and Figure II.4, a tumor shape can be approximated by an
almost circular form called in the following blob. All parameters are provided here for BLI of
size 256× 256 pixels.

Formally, a blob is therefore modeled as a disk whose radius RB follows a normal distribution
RB ∼ N (R0

B, σ
2
RB

) and whose center is randomly placed on the image. We sample NRB
values

that are smoothed by a Gaussian filter of variance σ2
f .

To obtain blobs of potentially very different sizes, these values are then multiplied by a
scaling coefficient SB

DB
where SB is randomly chosen as we will detail later, forced to be greater

than 10 to matter, and DB is the maximum of the horizontal and vertical diameters of the
current blob.

In order to get the Parametric Map of the tumor, a normalized distance map is then com-
puted on the blob, multiplied by a random intensity value LB ∼ N (L0

B, σ
2
LB

) so that tumors
have different intensities. A complete display of this process is shown in Figure II.7.

As we can see in Figure II.8, because of necrosis and hypoxia blocking the generation of
photons, tumors can be composed of NB blobs. Multiple blobs can be used to model a disjoint
tumor, meaning in this work a tumor having hypoxic or necrotic areas, as the left one in
Figure I.25. We used NB ∈ {1, 2, 3} to be exhaustive and representative of strongly degenerated
tumors. NB is a random variable that follows the distribution {0.6, 0.3, 0.1} to mimick real data
where severe deterioration is uncommon so tumors are very likely to be composed of a single
blob, and very unlikely to be composed of 3 blobs. We limit the sizes (SB) so that the more
blobs a tumor contains, the smaller the blobs are in order to keep total tumor sizes of the same
order of magnitude.

More precisely, the blob size SB is in fact a random variable SB ∼ 10 +U(0, RT√
NB

) that uses
RT ∼ U(30,min(70, Rsup

T )) where Rsup
T = D− 10 with D the distance between the center of the

tumor, randomly chosen, and the closest border of the image.
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Figure II.8: Example of BLI with a disjoint tumor because of hypoxia or necrosis (the tumor
on the left). Regions of Interest (ROIs) manually drawn around each tumor.

Figure II.9: 2 examples of Parametric Map generation for tumors composed of several blobs.
The red hatched part corresponds to the superposition of the masks of different blobs. We used
R0

B = 5, σRB
= 2.5, NRB

= 100, σf = 5, L0
B = 5, σLB

= 1.3, RD = 50, L0
T = 5 and σLT

= 1.3.

We also constrain the blobs of the same tumor to be near each other by keeping their centers
in a disk with a random center and a radius RD, while also avoiding the borders of the image.
With these parameters different blobs may touch but not be completely superimposed, see
Figure II.9 (Bottom).

The Parametric Map at this step is noted I, and the final Parametric Map I(∗) is then
computed as I(∗) = LT

I
max(I) where LT ∼ N (L0

T , σLT
) to be more realistic with tumors having

possibly really different peak intensities.

Final examples of synthetic parametric maps I(∗) are illustrated in Figure II.9. We used
R0

B = 5, σRB
= 2.5, NRB

= 100, σf = 5, L0
B = 5, σLB

= 1.3, RD = 50, L0
T = 5 and σLT

= 1.3
in Figure II.9 and in all the following simulations.
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Figure II.10: BLI Pharmacokinetics model described in [100] that explains the emission of
photons by the tumor from the interactions luciferin-luciferase.

II.3.1.2 Kinetics generation

In order to generate kinetics, we used the pharmacokinetic model from [100] that uses 4 pa-
rameters to describe the BL kinetics of a tumor as shown in Figure IV.1. We set the photon
conversion factor and the initial concentration of luciferin injected to 1 to simplify equations.
Moreover, in this work we consider this model valid even with necrotic or hypoxic tumors.
Equations describing the model are the following:

dCip

dt
= −kaCip

dCb

dt
= −(Ktrans + kel)Cb + kepCT + kaCip

dCT

dt
= KtransCb − kepCT ,

(II.2)

Where Cip,Cb and CT are the luciferin concentration respectively in peritoneum, blood and
tumor. ka is the rate constant describing the absorption of luciferin from the peritoneum into
the blood and kel is the elimination rate constant from the blood. Ktrans and kel are the rate
constant describing respectively the transfer of luciferin from the blood to the tumor and from
the tumor to the blood.

Since the concentration of substrate is negligible compared to the Michaelis constant of
this enzymatic reaction, the photon flux dPT

dt emitted by the tumor is proportional to the
concentration of luciferin in it [100]:

dPT

dt
≈ λT CT , (II.3)

where λT is a constant. The explanation of this approximation is more elaborated in Chap-
ter IV. For the simulations, for the sake of simplicity we used λT = 1.

Since most tumors are poorly vascularized we have kel >> kep,Ktrans [100], and approximate
dCb
dt ≈ −kelCb + kaCip. Thus:

Cb(t) ≈ ka

∫ t

0
Cip(x)e−kel(t−x)dx (II.4)
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Table II.1: Parameters used to generate synthetic kinetics with model from [100]. ve = Ktrans
ke

Used values
ka (in min−1) 0.01 0.1 0.5
kel (in min−1) 1 10 50
Ktrans (in min−1) 0.01 0.1 0.35
ve 0.01 0.1 0.5

Figure II.11: Example of tumoral kinetics synthetically generated. In c) and d), colors
correspond to different simulation parameters.

and
CT (t) = Ktrans

∫ t

0
Cb(x)e−kep(t−x)dx (II.5)

We use Cip(0) = 1, we then have Cip(t) = e−kat, and therefore:

Cb(t) ≈
ka

kel − ka
(e−kat − e−kelt) (II.6)

We use this approximation to simulate the input functions (concentration of luciferin in
blood) with (II.6) and then tumor kinetics with (II.5). We used 3 values for each pharmacoki-
netic parameter, to cover a wide distribution range, derived from [100] for input function and
tumor kinetics, but also from [120] for tumor kinetics (to make the distribution even wider).

More precisely, the parameters used are described in Table II.1.

This leads to a total of 81 possible combinations, with examples in Figure II.11(c).

We focused on long kinetics BLI and generated synthetic kinetics with a temporal dimension
of size T = 200 with values spaced of 100×0.089

60 to be consistent with our real data (subsampled
by a factor 100 from about NT = 20000 time frames). However, Figure II.11(a-b) shows that
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Figure II.12: Illustration of pixel-level kinetics variability for 3 random pixels within 1 tumor.
Local maxima intensity ratio (∆S1 ̸= ∆S2) and times of appearance (∆T1 ̸= ∆T2) differ in scale
and time.

Figure II.13: Illustration of the variability of pixel-level kinetics for a homogeneous light
source. Left: BlI, Right: kinetics of 3 pixels located randomly in the light source.

the real "mean" kinetics of tumors exhibit more oscillations than our initial synthetic curves. We
therefore added a sinusoidal perturbation by multiplying the kinetics with 1+ 1

15cos(2
π

Tpert
t+ψ)

where Tpert is a random variable uniformly sampled in the range [
⌊

T
5

⌋
, . . . ,

⌊
T
3

⌋
] with ⌊·⌋ the

floor operator and ψ is a random offset chosen uniformly in [0, . . . , 100]. We also set these
parameters empirically. This generated the kinetics illustrated in Figure II.11(d).

Each kinetic is normalized according to the ℓ2 norm to fully control tumoral intensity with
the Parametric Map.

Usually, in BSS we take into account variations with respect to the linear model. We
will then describe next how we deteriorated the generetic synthetic BLI model with pixel-level
variability to make our framework more realistic.

II.3.2 Pixel-level perturbations

Figure II.12 shows the kinetics of pixels belonging to a single tumor, on a random set of 3
pixels. We can see in that figure that pixels located within the same tumor have the same
general kinetics shape but the ratio between local maxima vary over time and the times of
appearance of local maxima differ in a more complex fashion than can be explained by a simple
time shift [121].

The origin of this variability is supposedly the imaging device, since we observed the same
kind of variability for a homogeneous light source as displays Figure II.13.
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Figure II.14: Application of piece-wise affine variability on kinetics. One piece-wise affine
function is generated for each kinetic.

II.3.2.1 Piece-Wise Affine Linear variability

To simulate the ratio variability between kinetic intensities, we used perturbations similar to
[122] modeled as multiplicative piece-wise linear gain functions ϵi ∈ RT for each pixel i within
the tumor, defined with 4 parameters: ξi, i ∈ {1, 2, 3} and Tbreak:

ξi ∼ U(1− cvar

2 , 1 + cvar

2 ), i ∈ {1, 2, 3}, (II.7)

Tbreak =
⌊
T

2 +
⌊
T × U

10

⌋⌋
, U ∼ N (0, 1), (II.8)

where T is the temporal dimension of the kinetics, cvar > 0 is a parameter set by the user that
controls the amplitude of the perturbation. In our experiments, we used cvar = 0.8 because it
empirically perturbed our kinetics enough to replicate real data variability. An example of such
random piece-wise linear gain function ϵi is displayed in Figure II.14, and we generated one per
pixel-level kinetic. The perturbated kinetics ŷi of each pixel are then the multiplication of the
original kinetics and its associated gain function ŷi = yiϵi.

II.3.2.2 Time Warping variability

To simulate the variability in local maxima times of appearance, we desynchronized the syn-
thetic kinetics with random elastic time warping functions generated with the python-fdasrsf
package. These functions γ−1

i are diffeomorphic deformations of the domain [0, T ]. More pre-
cisely, we generated a random warping functions γ−1

i for each pixel i within the tumor.

The procedure to generate a warping function is the following:

• draw αi ∼ N (0, σ2
γ).

• compute vi(t) = αi(1 +
√

2(sin(2πt) + cos(2πt)).

• compute ψi(t) = cos(||vi||2
√

∆t) + sin(||vi||2)vi

||vi||2 where ∆t is the the time step.

• Finally, with γ0
i (t) =

∫ t
0 ψi(t)2dt. The final warping function is given by :

γ−1
i (t) = γ0

i (t)−mint(γ0
i )

maxt(γ0
i )−mint(γ0

i )
(II.9)
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Figure II.15: Application of warping variability on kinetics.

Figure II.16: Synthetic realistic BLI generation framework. Left: Real Data, Right: Synthetic
Data generated by the framework supposed to be similar to the Real Data. For each image
from left to right : BLIs, Parametric Maps, Tumor Kinetics and a the kinetics of a few pixels
located randomly in the image.

We used a standard deviation of σγ = 0.3. Examples of such random warping functions γ−1
i

are displayed in Figure II.15, and we generated one per pixel. The perturbated kinetics ŷi of
each pixel are then the composition of the original kinetics and its associated warping function
ŷi(t) = yi(γ−1

i (t)).

This complete framework is able to generate realistic BLI of tumors, as illustrated in Fig-
ure II.16.

We here made the choice to generate pre-processed BLI and it could be a possible improve-
ment to our method to generate raw BLI by leveraging (II.1).

II.3.3 Generated multiple-tumors synthetic BLI dataset

We generated images containing several tumors to have synthetic data similar to subsection II.1.1.
To generate a BLI of J tumors, the process is the following:

• Generate J parametric maps, noted A(∗) after vectorization and concatenation. It should
be noted that in order to be realistic with what is observed (Figure I.23) we constrained
parametric maps of different tumors not to overlap completely as shown in Figure II.17.

• Select randomly J combinations of kinetic parameters that should belong to a single
animal (so with constant ka and kel). Each kinetic is then normalized according to the ℓ2
norm to be consistent. After concatenation, we note S(∗) the retained kinetics.

We then obtained the final image Y by applying the perturbations defined in subsection II.3.2
to the product A(∗)S(∗). Examples of such synthetic BLI of several tumors, with the parametric
map of each tumor, are displayed in Figure II.18.
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Figure II.17: Example of synthetic parametric maps for images with 2 tumors. Top: Case
with touching tumors. Bottom: Case where one tumor has 2 overlapping blobs.

This framework allowed us to generate a synthetic BLI dataset of 24 BLI. We in fact have
4 datasets of 24 images corresponding to the 4 types of perturbation : None, time warping
(subsubsection II.3.2.2), piece-wise linear gain (subsubsection II.3.2.1), time warping + piece-
wise linear gain. In this dataset, there are 8 BLI with 2 tumors, 7 BLI with 3 tumors and 9
BLI with 4 tumors. These datasets have been used to accurately evaluate our BSS algorithms
described in Chapter III.

Further more, the 81 synthetic kinetics generated (subsubsection II.3.1.2) helped us to validate
our BLI quantification method as will be explained in Chapter IV.

This BLI generation framework will be part of an article in preparation:

Dereure, E., Kervazo, C., Seguin, J., Garofalakis, A., Mignet, N., Angelini, E., & Olivo-
Marin, J.-C. . Wavelet transform based non-negative matrix factorization for bioluminescence
imaging with warping variability.

It should be noted that the preprocessing process and associated hyperparameters described
in section II.2 were chosen because they seemed to provide empirically satisfactory results
and had not been studied in depth. Improving them and analyzing their influence on the
perturbations described in subsection II.3.2 represents an interesting perspective for our work,
for example by optimizing a spatio-temporal SVD filtering [123].
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Figure II.18: Examples of 3 generated BLIs. Top: BLI with 3 tumors where one is composed
of several blobs. Middle: BLI with 2 tumors with one blob per tumor. Bottom: BLI with 3
tumors with one blob per tumor. For each example, Left: Parametric Maps; Middle: Kinetics
and Right: Final BLI.



Chapter III

Blind Source Separation on
Bioluminescence Imaging

III.1 State of the art on Blind Source Separation

III.1.1 Introduction and formalism

Blind source separation methods are algorithms designed to separate mixed signals. Theys
are widely used in the remote sensing community, such as in Hyperspectral Imaging [122, 124]
or Astronomy [125], but also in medical imaging with PET applications [126, 127] or DCE-
MRI [128]. Typically, data are described using a linear mixture model (LLM), which is solved
using various optimization methods [129,130].

III.1.1.1 Examples of Blind Source separation problems

a) Audio: cocktail party problem

The most well known BSS problem is the cocktail party problem. During a party, everyone is
speaking at the same time. If there are m microphones, the goal of Blind Source Separations
is to recover the sounds S1, . . . ,Sn of the n speakers present in the room from the recordings
Y1, . . . ,Ym of the microphones. Each sound Yi is a mixing of the different sounds Sj , weighted
by different physic properties such their respective distance to the microphone.

b) Biomedical Imaging: PET Images

Dynamic Positron Emission Tomography (PET) is a functional imaging technique that quanti-
fies biological processes thanks to a radioactive tracer injected intravenously. This tracer, after
fixation on tissues, emits a positron that produces gamma photons that are recorded by the
imaging device [131]. The time-activity curves (TACs) of each tissue represent the concentra-
tion of the tracer in that tissue [132]. The TACs of each voxel represent a mixture of the TACs
of each tissue present in that voxel, and it can then be useful to unmix these TACs thanks to
a Blind Source Separation method [127, 133]. An illustration of this kind of signal is provided
in Figure III.1, where the signal evolution of each voxel is shown schematically.

c) Astronomical data

Astronomical data, such as the Chandra 1 dataset, is composed of pictures of the sky taken at

1http://chandra .harvard .edu/

38
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Figure III.1: Illustration of Dynamic PET unmixing (adapted from [131]). All images are 2D
slices for the sake of simplicity and visualization but they represent 3D images. Left: PET scan
acquisitions (with L = 20 acquisitions), each image corresponds to the observation at a given
time spot. Middle: Tissues weights maps, Right: Tissues TACs (with L = 20 time points). The
TAC of a pixel corresponds to a linear mixture of the TACs of the different tissues, weighted
by the values of the weight maps at this pixel.

different wavelengths. More precisely, as can be seen on Figure III.2, the signal at each pixel
does not result from the physical emission of a single object, but from a mixture of elementary
emissions (the different sources) as can be seen in Figure III.2. BSS methods can help to
unmix these signals in order to study the physical properties of each source in these supernovae
remnants [125].

d) Earth monitoring through hyperspectral imaging

Such as for astronomical data, Hyperspectral Imaging is composed of pictures acquired at differ-
ent wavelength. It is often used for Earth monitoring [122]. Examples of such datasets are the
AVIRIS datasets2 or more recently the EnMAP dataset3. The unmixing provides information
about the different materials involved in the images generation, that can be identified by com-
parison with visual results [135]. The outputs of the unmixing are the endmembers, the spectral
signature of each material, and the abundances, the spatial distribution of each material in the
image as illustrated in Figure III.3.

III.1.1.2 Instantaneous Linear Model

In blind source separation, the data is usually described with a Linear Mixing Model (LMM)
[134]. It means that the P observation y1, . . . ,yP is a linear combination of the J sources
s1, . . . , sJ :

yi =
J∑

j=1
ai

jsj , (III.1)

where the coefficients ai
j are the mixing weight coefficients. In matrix form, it yields:

2The Moffett and Cuprite images are available at http://www.ehu.es/ccwintco/ and http://aviris.jpl.
nasa.gov/

3The EnMAP Data Access Portal is available at https://www.enmap.org/data_access/

http://www.ehu.es/ccwintco/
http://aviris.jpl.nasa.gov/
http://aviris.jpl.nasa.gov/
https://www.enmap.org/data_access/


40 CHAPTER III. BLIND SOURCE SEPARATION ON BIOLUMINESCENCE IMAGING

Figure III.2: Illustration of Chandra dataset unmixing, adapted from [134]. Top: Example
of images taken at 4 different wavelengths, Middle: spatial emission sources of each physical
object, Bottom: emission spectra of each elementary emission. At a given wavelength, the
acquired image is a linear mixture of the different objects, whose weights correspond to the
emission spectrum of the various objects at this wavelength .

Y = AS + N, (III.2)

where the observations yi ∈ RT are grouped in a matrix Y ∈ RP ×T , A ∈ RP ×J and
S ∈ RJ×T . The N ∈ RP ×T matrix accounts for the additive noise and model discrepancies. In
this work, for any matrix M we will note mj its column j and mj its line j. In the following,
we will assume A and S to be full rank matrices.

III.1.1.3 Classical approaches

In BSS, the problem of finding the number of sources J might be very hard, especially when
the level of noise is unknown. In the scope of this work, we suppose its value known. However,
it can be an interesting topic to pursue [137], for instance with criteria such as the Akaike
information criterion (AIC) and the Bayesian information criterion (BIC) [138].

The first idea is to use a Singular Value Decomposition (SVD) [139] which decomposes the
matrix Y into a product UDVT where U and V are unitary matrices and D is a pseudo-
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Figure III.3: Illustration of Hyperspectral Unmixing, taken from [136]. The elementary
emission (endmember) of each material is given on the right. We can visualize in each pixel the
abundances, meaning the weight of each material in it .

diagonal matrix containing the singular values of Y in descending order. According to the
Eckart-Young theorem, the best approximation possible of Y of rank J is given by the matrix
Equation III.3 :

U:,1:JD1:J,1:JVT
:,1:J , (III.3)

.

where X1:J is the subset of the first J elements of any vector X. The matrices A = U:,1:J
and S = D1:J,1:JVT

:,1:J provide therefore a factorization of the matrix Y.

SVD can also lead to a fast implementation of Principal Component Analysis (PCA) [140], by
computing the SVD after standardization and centering of the data, and retrieving the principal
components in the same way as Equation III.3, and then provide the requested decomposition
of Y after adding of the mean and multiplication by the former standard deviations. Our data
is not orthogonal, therefore SVD and PCA are not the most suited possible methods.

Factor Analysis of Dynamic Structures (FADS), introduced by [141] and later improved
by [142], is a BSS method to analyse Dynamic Structures in nuclear medecine. The idea of the
method is to compute an oblique analysis on the first principal components found after a PCA,
that produces physiologically meaningful components, under positivity constraint [143]. The
solution yielded is however not unique [144], so the output may be somehow different from the
ground-truth.

Independent Component Analysis (ICA) is a statistical method used for BSS that assumes
that at least one of the sources is non Gaussian, as is explained in the extensive review on
the subject [145]. The goal is to make the estimated sources independent. A practical way
is to maximize the non-Gaussiannity of the sources. The philosophy behind this strategy is
the central limit theorem, which states that a sum of independent random variables tends to
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a Gaussian distribution. After centering and standardization of the data, ICA unmixes the
signal Y into a product AS through the minimization of a cost function usually based on a
non-Gaussianity measure [146,147].

ICA is vastly used in BSS but it suffers from the presence of noise [148] and mutual inde-
pendence of the sources may be an invalid hypothesis in our case, as with Planck Data [149] or
Hyperspectral data with the sum-to-one constraint on abundance maps [150]. Indeed, since in
our case the data is bioluminescent signals coming from tumors within the same animal, they
can be correlated with spatial support not necessarily disjoint.

Finally, Non-Negative Matrix Factorization (NMF) is a BSS method, wildly used in Hy-
perspectral [151] but also in medical imaging [127, 133], usually solved using optimization al-
gorithms, that enforces all coefficients involved to be non-negative [129]. These optimization
processes will be more detailed in the following.

III.1.1.4 Deep Learning approaches

Such unmixing can also be computed with Deep Learning approaches. Some of them are black-
box methods, for instance based on autoencoders [152]. Others are based on optimization
principles, by using unrolling that writes the optimization problem as a neural network [153] or
Deep Image Prior that substitutes the regularizer of an optimization problem (described later
in subsubsection III.1.3.2) by a neural network [154].

There is no previous work on Biolominescent Imaging unmixing and we showed in Chapter II
a huge variability in bioluminescence kinetics, making it possibly hard to extract a pattern.
Therefore, we used in this work more classical approaches than Deep Learning. This makes the
associated challenges more explainable as a first work on the subject. Since our data is composed
only of positive signals (photon counting) and not exactly independant (several tumors of the
same animal), we decided to use NMF.

III.1.2 Non-Negative Matrix Factorization

III.1.2.1 Formulation

In general, trying to find the matrices A and S from the sole knowledge of Y admits an infinite
number of solutions. It is then mandatory to add prior information in this kind of unmixing
problem. NMF imposes then a non-negativity constraint on A and S:

argmin
A∈RP ×J ,S∈RJ×T

D(Y,AS) + i≥0(A) + i≥0(S) (III.4)

where iC(.) is the indicator function of a set C defined in (III.5) and D is a distance metric
between data Y and the approximation AS.

iC(x) =
{

0 if x ∈ C
∞ else (III.5)

The choice of this distance is very important because it can be adapted to the problem being
addressed. Its choice is based on the model suited for the studied data. The used divergences
are separable, meaning that ∀X,Y, D(X,Y) =

∑
i,j d(Xi,j ,Yi,j). The main divergence metrics

used in the literature are the following:
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• The Euclidian distance: d(x, y) = (y − x)2

This distance has been introduced for NMF since the beginning [130,155]. It can be seen
as the maximum likelihood when the sources are corrupted with a Gaussian noise. This,
and the simplicity of the associated optimization algorithms, makes it the one most often
chosen metric in NMF algorithms [156,157].

• The Kullback-Leibler divergence : d(x, y) = x log(x
y )− x+ y

This divergence, used to quantity the difference between 2 probability distributions, has
been introduced in NMF in order to construct a probabilistic model of image generation
[158]. It can also be seen as a maximum likelihood when the sources are corrupted with
a Poisson noise [159].

• The Itakura-Saito divergence : d(x, y) = x
y − log(x

y )− 1
This divergence, used to quantify the difference between 2 spectra, has been introduced
in NMF for the decomposition of audio data [160]. It can indeed be seen as a maximum
likelihood when the sources are corrupted with a Gamma noise [160].

In our case, according to [118], the bioluminescent images are corrupted with a Poisson and
a Gaussian noise. However, the pre-processing used really smoothes the images so the sources
are corrupted with a noise having a small energy, which can be approximated as Gaussian. We
therefore decided to use the Euclidian distance because of its easiness to set up (quadratic,
regular and its Lipschitzian gradient simplifies the task of solving optimization problems).

The NMF formulation used in this work is then:

argmin
A∈RP ×J ,S∈RJ×T

1
2 ||Y−AS||2F + i≥0(A) + i≥0(S) (III.6)

The multiplication by 1
2 used to simplify the equations of the optimization algorithms de-

scribed later.

III.1.2.2 Basic NMF algorithms

Now that the problem has been correctly formulated, we need to choose between the differ-
ent minimization algorithms for this type of multi-convex optimization problem. Indeed, the
product AS makes it non-convex. Altough, the sub-problem on A

argmin
A∈RP ×J

1
2 ||Y−AS||2F + i≥0(A) (III.7)

and the sub-problem on S

argmin
S∈RJ×T

1
2 ||Y−AS||2F + i≥0(S) (III.8)

are both convex which makes them easier to solve. This is why many algorithms alternate
between a minimization on A with a fixed S, and a minimization on S with a fixed A. In an
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algorithm, one can choose to either solve these sub-problems completely or just to decrease the
cost function a little bit. Moreover, we can choose to either minimize these cost functions by
taking into account the non-negativity constraint or to apply the constraint afterwards with a
projection on the positive space.

a) Global minimization without constraint

In this algorithm, each sub-problem is solved without taking the non-negativity constraint
into account, and then the result is projected on the non-negative space with the operator
[.]+ = max(., 0) [155]. The minimization is done with a least-squares algorithm. This algorithm
is called projected Alternating Least Squares (pALS), and is fully described in Algorithm 1

Algorithm 1 pALS algorithm
Require: Y ≥ 0, J > 0, Niter > 0

A← A(0)

S← S(0)

for k ≤ Niter do
A(k+1) ← [Y S(k)T (S(k)S(k)T )−1]+
S(k+1) ← [(A(k+1)T A(k+1))−1A(k+1)T Y]+

end for
Return A,S

b) Partial minimization without constraint

This time, each sub-problem is not fully solved at each iteration, but the cost function is
decreased with a gradient descent with a well defined Lipschitz parameter [161]. With the
projection on the non-negative space, we then have a projected gradient step at each iteration
for each sub-problem. The full algorithm is described in Algorithm 2.

Algorithm 2 Projected Gradient Algorithm
Require: Y ≥ 0, J > 0, Niter > 0, γA, γS

A← A(0)

S← S(0)

for k ≤ Niter do
A(k+1) ← [A(k) − γ(k)

A (Y−A(k)S(k))S(k)T ]+
S(k+1) ← [S(k) − γ(k)

S A(k)T (Y−A(k)S(k))]+
end for
Return A,S

c) Partial minimization with constraint

This method decreases the cost functions by taking into account the non-negativity constraint,
thanks to a carefully set term-by-term matrix multiplication. This algorithm, described in
Algorithm 3, is called multiplicative update [130].
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Algorithm 3 Multiplicative Update Algorithm
Require: Y ≥ 0, J > 0, Niter > 0

A← A(0)

S← S(0)

for k ≤ Niter do
A(k+1) ← A(k) ⊙ YS(k)T

A(k)S(k)S(k)T

S(k+1) ← S(k) ⊙ A(k+1)T Y
A(k+1)T A(+1)S(k)

end for
Return A,S

Where .
. and ⊙ are term-by-term operations.

d) Global minimization with constraint

Finally, it is also possible to solve exactly each sub-problem at each iteration by taking into
account the non-negativity constraint. As described in Algorithm 4, each sub-problem is solved
by using the forward-backward splitting algorithm [162] described later. In practice, each sub-
problem is in fact solved by repeating the projected gradient steps described in Algorithm 2
.

Algorithm 4 Global minimization with constraint algorithm
Require: Y ≥ 0, J > 0, Niter > 0

A← A(0)

S← S(0)

for k ≤ Niter do
A(k+1) ← argminA∈RP ×J

1
2 ||Y−AS(k)||2F + i≥0(A)

S(k+1) ← argminS∈RJ×T
1
2 ||Y−A(k)S||2F + i≥0(S)

end for
Return A,S

e) Hierarchical ALS (HALS)

It is also possible to optimize the ALS algorithm by avoiding to compute such big matrix
multiplications. Indeed, Cichocki et al. [163] proposes to minimize the sub-problems source-by-
source. Meaning that we are now going to alternate between the sub-problem in A and S inside
each source. More precisely, we define Y(j) = Y−

∑
i ̸=j ajsj

We have:

||Y−AS||2F = ||Y(j) − ajsj ||2F and that ∀j

The goal of the algorithm HALS is then to minimize alternatively the set of cost functions
Dj

A(aj) and Dj
S(sj) for every j, because each row of A only affects the corresponding row of

the product AS [129]:

Dj
A(aj) = 1

2 ||Y
(j) − ajsj ||2F for a fixed sj to update aj

Dj
S(sj) = 1

2 ||Y
(j) − ajsj ||2F for a fixed aj to update sj

To do that, they are using the ALS algorithm [155] to get the update rules for aj and sj by
equating the gradient to zero and enforcing non-negativity:



46 CHAPTER III. BLIND SOURCE SEPARATION ON BIOLUMINESCENCE IMAGING

sj ← 1
aT

j aj
[aT

j Y(j)aj ]+ = 1
aT

j aj
[Y(j)T aj ]T+ and aj ← 1

sjsjT [Y(j)sjT ]+ where [.]+ refers to
taking only the positive coefficients.

However, we can rewrite these update rules. Let’s take aj for instance

Y(j)sj = (Y−AS + ajsj)sjT = YsjT −ASsjT + ajsjsjT = [YST ]j − [ASST ]j + ajsjsjT

So 1
sjsjT [Y(j)sjT ]+ = [aj − 1

sjsjT ([ASST ]j)− [YST ]j)]+ is the new update rule for aj .

Symmetrically, by doing relevant transpositions :

sj ← [sjT − 1
aT

j aj
([ST AT A]j − [YT A]j)]T+ is the new update rule for sj .

Finally, the updates rules for aj and sj are the following :

aj ←−
[
aj −

1
sssjT

(
A[SST ]j − [YST ]j

)]
+
, (III.9)

sj ←−
[
sjT − 1

aT
j aj

(
ST [AT A]j − [YT A]j

)]T

+
, (III.10)

These update rules are of the same form as projected gradient Algorithm 2 with a Lipschitz
constant equal to the hessian of the cost function.

The Fast-HALS algorithm is then described in Algorithm 5.

Algorithm 5 Fast HALS algorithm
Require: Y ≥ 0, J > 0, Niter > 0

A← A(0)

S← S(0)

for k ≤ Niter do
for j ≤ J do

Update aj with Equation III.9
Update sj with Equation III.10

end for
end for
Return A,S

III.1.2.3 Application on Bioluminescent Imaging

a) Linear Mixing Model for BLI

For BLI, we denote as yi ∈ RT the kinetics observed in the i-th pixel with i ∈ {1, . . . , P} with
P the number of pixels. The goal of the method is to find the kinetics of each tumor and
their associated spatial distribution. Depending on the distance between tumors, these spatial
distributions may not be completely disjoint. We then assume that the kinetics observed in
a pixel yi is a linear combination of individual tumor kinetics. Mathematically, written in a
matrix form, it yields the mixing model:

Y = AS + N, (III.11)
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where each line of S ∈ RJ×T corresponds to the kinetics of a single tumor (with J the number
of tumors), A ∈ RP ×J are the linear mixing weights (the parametric maps of the tumors) and
Y ∈ RP ×T is the observed signal. The ai

j coefficient of A corresponds to the loading of the
j-th tumor in the i-th pixel. The N ∈ RP ×T matrix accounts for the additive noise and model
discrepancies.

The Fast-HALS algorithm Algorithm 5 has been tested on the 2 datasets of BLI described
in Chapter II containing multiple-tumors bearing mice (one with short kinetics and one with
long kinetics). We chose this algorithm as a first step because it seemed a good trade off
between performance and ease of use [125, 164]. All the following BSS algorithms have been
also evaluated on these 2 datasets.

It should be noted that the algorithms described in subsubsection III.1.2.2 do not ensure
the unicity of the solution because for any λ > 0, AS = ( 1

λA)(λS) = (λA)( 1
λS). To enforce it,

we therefore constrained the lines of S to be in the ℓ2 ball.

In these datasets, the tumors consist globally of pure-pixels (meaning pixels belonging to
only one source). For each tumor j, we hand-drew a small bounding box around tumor it, as
displayed in Figure III.12 , noted Ωj , and we thus defined a ground truth for A and for S on
real images:

• For each source j and for each time frame t we use as ground truth sj(∗)(t) =
meani∈Ωj

yi(t)
||meani∈Ωj

yi||2

• For each source j and for each pixel i ∈ Ωj , ai(∗)
j = median

t
( yi(t)

sj(∗)(t))

It should be noted that this definition of ground-truth is not perfect because it supposes that
all the pixels only belong to one tumor, which is wrong in practice because there are pixels at
the intersection (see Chapter I). However, we did not find any better way to define ground-truth
for real data for the evaluation of our unmixing algorithms.

b) Metrics used

We denote the observed ground truth photon cumulated total count in a tumor as H(∗) ∈ RJ,T .
With these notations, H(∗)(j, t) =

∑
i∈Ωj

Y (i, t) and H(∗)(j, t) is the total BL signal emitted by
the tumor j at the frame t.

NMF separation yields A = [a1, . . . ,aJ ] and S = [s1, . . . , sJ ]T . For each source j we recon-
structed the whole kinetic defined by aj and sj : Hj = (

∑
i≤P ai

j)sj ∈ RT .

We have several metrics to compare H(∗) and H to evaluate reconstruction quality on
kinetics:

• Pearson correlation coefficient (noted corr) that returns a number between −1 and 1

• The Normalized Mean Squared Error (NMSE), defined in Equation III.12

NMSE(H,H(∗)) = ||H−H(∗)||2F
||H(∗)||2F

(III.12)
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Figure III.4: Example of a BLI poorly unmixed but with a good NMSE.

However, this metric does not evaluate how well spatially separated are the tumors. Indeed,
this error can be really low if the tumors kinetics are very similar and the algorithm does not
manage to separate them (see Figure III.4).

Using the ROI-based ground-truths for A and for S, noted A(∗) and S(∗), we defined the
following metrics to better assess the tumor separation quality:

NMSEA = ||A −A(∗)||2F
||A(∗)||2F

(III.13)

NMSES = ||S − S(∗)||2F
||S(∗)||2F

(III.14)

And a global metric to take into account both A and S

NMSEtot = NMSEA +NMSES

2 (III.15)

It is important to note that all these metrics are computed for each tumor j in each image.
The final metric is then obtained by taking the average over all tumors.

We initialized A(0) and S(0) with NNDSVD [165] and set the maximum number of iterations
to 1000. Preliminary tests with NMF using the Fast-HALS algorithm led to the quantitative re-
sults reported on Figure III.5 and Table III.1. These results were communicated in 2 conference
articles [166,167].

We note that, if we look only the correlation metric for the global signals, this algorithm
suggests a pretty good fit with the NMF decomposition. However, the more precise NMSEA

and NMSES metrics show that there is room for a lot of improvement.
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Figure III.5: Visual results (Parametric Maps and Kinetics) of the Fast-HALS algorithm on
3 real BLI with long kinetics.

NMSEA NMSES NMSEtot NMSE corr

Short kinetics 0.59± 0.93 0.17± 0.16 0.38± 0.63 0.57± 1.3 0.65± 0.42
Long kinetics 0.45± 0.39 0.16± 0.20 0.31± 0.35 0.30± 0.45 0.76± 0.33

Table III.1: Quantitative Results of Fast-HALS Algorithm on 2 real BLI datasets.

As the visual results Figure III.5 show spatial mixtures of sources, the non-negativity con-
straint is thus not sufficient to obtain a satisfying unmixing of BLI. We proposed next to force
the parametric maps A to be more sparse. In the following part, we detail the concept of
sparsity and how it can be applied to our problem.

III.1.3 Sparsity and Sparse BSS

Sparsity is a concept that has been vastly used over the last few decades in inverse problems
[168, 169] such as image denoising [170], sparse coding [171], tomographic reconstruction [172]
and in Blind Source Separation (BSS) [173]. Constraining the desired solution to be sparse helps
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Figure III.6: Illustration of notions of signal sparsity.

to better-pose initially ill-conditionned inverse problems, possibly corrupted with observation
noise [174]. In BSS, it is used to promote small weight components or low-energy sources to
become exactly zero. We now briefly present the concept of sparsity and how it can be applied
in the context of blind source separation, especially for Non-Negative Matrix Factorization.

III.1.3.1 Sparsity

a) Definition

A signal is said to be "sparse" when it has only very few non-zeros coefficients. Formally, we
write ||.||0, the ℓ0 pseudo-norm, which is the number of non-zeros coefficients of a signal s ∈ RS .
The signal s is sparse if ||s||0 = k with k << S (left part of Figure III.6).

In practice, it is not straightforward to use the ℓ0 norm as a real indicator of sparsity in
optimization problems because the ℓ0 norm is non-convex. The ℓ1 norm ||s||1 =

∑
i |si|,∀s ∈ RS

is the convex norm closest to ℓ0. It has also been proven that solutions sparse for a problem
with ℓ1 can be solutions of that problem with ℓ0 when they are very sparse [175]. The ℓ1 is
therefore used in practice when looking for sparse solutions. This metric also allows us to define
the notion of approximately sparse signals, meaning signals having just a few coefficients having
a high amplitude, as is illustrated in the right part of Figure III.6.

b) Sparsity in a transformed domain

The data itself (ie in the direct domain) is often not sparse but it can be represented by only
a few large coefficients after a transformation ΦT in an appropriate domain. The transformed
signal is then noted ΦT s ∈ Rt. This is the case for instance of sinusoidal signals that are
obviously not sparse in space/time but are sparse in the Fourier domain [176]. Wavelet basis
functions are able to sparsify polynomial by parts signals, which are a good approximation of
most natural signals [177]. We briefly introduce the wavelet theory. Interested readers can refer
to the book of Mallat [177].

A wavelet basis is a set of functions ΦT
1 , . . . ,ΦT

n , which each are dilated and shifted version of
a basic function. More precisely, a function ΦT represents a pair of analysis function respectively
responsible of encoding the approximation and the details of the signal s at a given location and
scale (dilation). Changing the location (i.e. shifting the function) allows to get informations
at different places of the signal and the scale is responsible for the size of the signal support
studied. In fact, we restrict ourselves to a finite subset of all the possible shifts and scales (also
called levels of analysis). Several wavelet basis functions exist, for different kind of geometric or
morphological features of the data, like the Haar wavelet [178], the Daubechies wavelets [179]
or the startlet [180]. Figure III.7 illustrates the output of a wavelet tranform.
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Figure III.7: Illustration of wavelet transform ΦT . Left: original signal. Right: approximation
and details coefficient at a given scale. The wavelet used here is a Daubechies-3 [181].

Wavelet basis functions can be orthogonal, where an orthogonal transform ΦT is designed
such as ΦT Φ = ΦΦT = Id. The orthogonality is a convenient property when enforcing sparsity
in an optimization problem. Usually, Wavelet Transforms are decimated, meaning that the
signal is downsampled at each level of decomposition. It is however possible to maintain the
original signal length during the analysis, thanks to undecimated (or stationary, redundant)
Wavelet Transforms.

Figure III.8 displays the histogram of the coefficients of a natural image (taken from [182]),
before and after a Daubechies-3 Wavelet Transform [181]. We can see that the histogram of
the transformed image has a larger proportion of very low coefficients, which means that it is
sparser in the wavelet domain than in the direct domain.

In the following, we will see how we can enforce the solution of an inverse problem such as
BSS to be sparse, in the direct or a transformed domain.

III.1.3.2 General Problem (Regularization)

Let’s consider an inverse problem, defined by the minimization of the following cost function:

argmin
x∈Rs

d(Y,x) + J (x), (III.16)

where d(., .) is the data fidelity term that links the data to the approximation model we are
trying to infer and such that d is differentiable with respect to x. It is also supposed to have
Lipschitz gradients and to be convex.

J is called a regularization term, that enforces the solution x to have some desired properties.
For instance, for NMF, we have J(x) = i≥0 to force solutions to be non-negative. We can also
force the solution x to be sparse in some domain characterized by a transform ΦT by using
J(x) = ||Λ ⊙ ΦT x||1 where Λ ∈ Rt (the same shape as ΦT x) is the coefficient-wise weight
matrix associated to the regularization and ⊙ is the Hadamard product. The higher and less
sparse the Λ, the more sparse the solution. Regularization is a concept that can be extended
to many applications. For instance in image denoising, we can use the Total-Variation (TV)
regularization, TV (x) = ||∇x||1, to force the solution to conserve image edges while enforcing
piece-wise smooth values in x [183].
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Figure III.8: Illustration of sparsity in a transformed domain. Top left : original image in
the spatial domain taken from [182]. Top right : representation of the detail coefficients in the
wavelet (Daubechies-3 [181]) domain at scales 1, 2 and approximation and details coefficients
at scale 3. Bottom left: histogram of signal in the spatial domain. Bottom right: histogram
of the wavelet coefficients : there are more 0 or very low coefficients, meaning the data can be
considered as approximately sparse in the wavelet domain.

III.1.3.3 Sparsity prior for blind source separation

For BSS, we are using in this work the Euclidian distance for d. The appropriate inverse problem
we solve, if we consider classical BSS (ie without the non-negativity constraint), with sparsity
constraints on the weights A is the following:

argmin
A∈RP ×J ,S∈RJ×T

1
2 ||Y−AS||2F + ||Λ⊙ΦT A||1 + i{∀j≤J,||sj ||22≤1}(S) (III.17)

To prevent degenerated solutions where ||A|| → 0 and ||S|| → ∞, the columns of S are
constrained to be in the ℓ2 ball, with the appropriate regularization function i{∀j≤J,||sj ||22≤1}(S).

In the following section, we explain how we solved such inverse non-convex problem for our
use-case on BLI data.

III.2 Optimization frameworks for Blind Source Separation
In general terms, in order to perform BSS we minimize the following cost function:

argmin
A∈RP ×J ,S∈RJ×T

d(Y,AS) + J (A) + G(S), (III.18)
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where d is a metric supposed to be differentiable with a Lipschitz gradient (such as the
Euclidian distance) and J ,G are the regularization functions respectively on A and S.

Such a minimization can be difficult to perform for several reasons:

• d is supposed to be differentiable but it is not the case of J and G (for example we can
consider a sparsity prior with the ℓ1 norm or the non-negativity). It is then necessary to
use dedicated tools, such as proximal algorithms that we will explain next, for this kind
of non-smooth optimization problems.

• The problem is non-convex in A and S but it becomes convex when one of the variables
is fixed. It is thus multi-convex [184], requiring then the use of specific algorithms to find
optimal solutions.

III.2.1 Proximal operators and proximal algorithms

Proximal algorithms enable to minimize convex non-smooth optimization problems, when they
respect few regularity properties, by using what is called a proximal operator. First, we are going
to present proximal operators and then how it can be applied to solve optimization problems.

III.2.1.1 Proximal operators

a) Definition

A function g : Rt → R ∪±∞ is said to be proximable when it is a proper lower semicontinuous
convex function. The proximal operator of g is defined by:

proxg(x) = argmin
y∈Rt

g(y) + 1
2 ||x− y||22 (III.19)

This function is strongly convex and not infinite everywhere, it then has a unique minimizer.
To better grasp the concept of proximal operators, we can provide some possible interpretations:

• It can first be seen as a local minimizer of the function g. Indeed, we aim at minimizing the
sum of the function g and the Euclidian distance that penalizes the high distances between
the current point x and y. More precisely, if xm is a minimum of g, then proxg(xm) = xm.
This is called the fixed-point property, which is the base of the proximal optimization
algorithms explained later.

• Then, let’s suppose that g is differentiable. Differential calculus yields:

proxg(x) = x−∇g(proxg(x)) (III.20)

We can see that the proximal operator on x looks like a gradient descent step, except
that the gradient is computed on proxg(x). Nevertheless, a gradient step is also a way
to minimize a function therefore Equation III.20 provides a natural interpretation on the
process of proximal algorithms.

• Finally, let’s consider g being the indicator function of a convex set C, noted iC (see
(III.5)):
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Then the proximal operator of g is the Euclidian projection on the set C:

proxg(x) = ΠC(x) = argmin
y∈C

1
2 ||x− y||22 (III.21)

This interpretation enable us to see the proximal operator as a generalization of the
projection.

This last property is very useful in optimization problems, since minimizing the following
problem:

argmin
y∈C

f(y) (III.22)

is equivalent to minimizing the regularized following problem :

argmin
y

f(y) + iC(y) (III.23)

It can however seem costly to compute the proximal operator with a minimization scheme.
In fact, lots of useful functions in optimization problems have an explicit proximal operator,
which helps to use them in practical algorithms. We will see next some classical proximal
operators used in this work. A more complete list can be found in [185].

b) Proximal operators used in this work

We will focus here on the constraint J and G used in this work.

• Constraints J on the parametric maps A:

– Sparsity in a transformed domain: This constraint can be expressed as (subsubsec-
tion III.1.3.2):

J (A) = ||Λ⊙ΦTA||1, (III.24)

where ΦT is a transform, supposed to be orthogonal in the following, into a domain
in which A can be sparsely represented. Λ are the coefficient-wise weights associated
to the constraint. The proximal operator of J has an explicit form:

proxJ (A) = ΦSoftΛ
(
ΦT A

)
, (III.25)

where

SoftΛ(X) = sign(X) [|X| −Λ]+ , (III.26)

is the soft-thresholding operator applied element-wise and [·]+ is the projector on the
non-negative orthant:

[x]+ =
{

0 if x ≤ 0
x else (III.27)
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Equation III.28 explains that we first transform the data, then use the soft-thresholding
to sparsify it, and then retransform the data in the original domain.
In particular, if Φ = Id, meaning that the sparsity is applied in the direct domain,
we have :

proxJ (A) = SoftΛ (A) (III.28)

– Non-Negativity in the direct domain: all the coefficients in A must be non-negative.
That can be expressed as a constraint to be in the non-negative orthant {A ∈
RP,J ;∀i ≤ P ; ∀j ≤ J ; Ai

j ≥ 0}:

J (A) = i≥0(A) (III.29)

Since the non-negative orthant is a convex set, the proximal operator of J is the
projection on it, noted [·]+. It means identity for non-negative coefficients and 0 for
the negative ones.

proxG(A) = [A]+ (III.30)

• Constraints G on the kinetics S:

– Constraint to lie on the ℓ2 hypersphere: In order to avoid degenerated solutions
where A → ∞ and S → 0, we constrain the columns of S to be in the ℓ2 ball
O = {∀j ≤ J, ||sj ||22 ≤ 1} (subsubsection III.1.3.3).
The appropriate regularization function is then the indicator function of this convex
set O :

G(S) = iO(S), (III.31)

and its proximal operator is the projection on C:

proxG(S) = ΠO(S), (III.32)

where ΠO is the projection on the ℓ2 unitary ball Π||.||2≤1 of every column sj of S:

Π||.||2≤1(sj) =
{

sj/||sj ||2 if ||sj ||2 ≥ 1
sj else (III.33)

– Non-Negativity in the direct domain: Same as for A

G(S) = i≥0(S), (III.34)

proxG(S) = [S]+ (III.35)

III.2.1.2 Proximal algorithms

Now that all these proximal operators are defined, we are going to explain how to use them
in the context of minimization of a convex non-smooth cost function. We will therefore now
present different proximal algorithms.
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a) Proximal Point Algorithm

Let f : Rt → R be a proximable function. The problem is to find an optimum of:

argmin
y

f(y) (III.36)

The most simple algorithm to perform this task is the proximal point algorithm (Algo-
rithm 6).

Algorithm 6 Proximal Point Algorithm
Require: Niter > 0, λ > 0

x← x(0)

for k ≤ Niter do
x(k+1) = proxλf (x(k))

end for
Return x

If f has a minimum, the algorithm converges to it. However, this algorithm is only useful
in the context of functions f difficult to minimize but where f plus a quadratic term is easy
to minimize. To perform optimization on more advanced problems, other algorithms have been
designed.

b) Forward Backward Splitting Algorithm

Now let’s consider the problem

argmin
y

f(y) + J (y), (III.37)

where f : Rt → R is strictly convex, differentiable with a Lipschitz gradient and J : Rt →
R ∪ ±∞ convex and proximable.

The Forward-Backward Splitting Algorithm (FBS [162]) uses the differentiability of f to
split the problem in 2 terms, as explained in Algorithm 7. It indeed alternates between a
forward gradient step and a backward proximal step.

Algorithm 7 Forward-Backward Splitting Algorithm
Require: Niter > 0, ν > 0

x← x(0)

for k ≤ Niter do
x(k+1) = proxνJ (x(k))− ν∇f(x(k))))

end for
Return x

In this algorithm, ν is a step size. If ∇f is L-Lipschitzian, this algorithm converges to a
global minimum of f+J provided that ν ∈

[
0, 2

L

]
. This algorithm can also be accelerated using

a linear combination of previous estimates in a variant known as the FISTA algorithm [169].

In a practical setting, the problem (III.17) at a fixed S is an instance of this kind of min-
imization problem where we can use the FBS algorithm. Indeed, in the problem expressed in
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(III.38), 1
2 ||Y−AS||2F is differentiable and ||Λ⊙ΦT A||1 is proximable with the proximal given

in (III.28).

argmin
A∈RP ×J

1
2 ||Y−AS||2F + ||Λ⊙ΦT A||1 (III.38)

This algorithm is very efficient in optimization problems having an explicit proximal operator
for J . When this is not the case but J is the sum of operators having an explicit proximal, then
it is common to use the Generalized Forward Backward Splitting Algorithm explained next.

c) Generalized Forward Backward Splitting Algorithm

If the optimization problem we want to solve is:

argmin
y

f(y) +
n∑
i

Ji(y), (III.39)

where f : Rt → R is strictly convex, differentiable with a Lipschitz gradient and ∀1 ≤ i ≤
n,J : Rt → R∪±∞ is convex and proximable. If

∑n
i Ji(y) does not have an explicit proximable

but each of the J has one, we can use the Generalized Forward Backward Splitting Algorithm
(GFBS [186]) detailed in Algorithm 8.

Algorithm 8 Generalized Forward-Backward Splitting Algorithm
Require: Niter > 0, µ > 0, γ > 0, ωi such as

∑n
i ωi = 1

x← x(0)

for k ≤ Niter do
for i ≤ n do

z(k+1,i) = z(k,i) + µprox γ
ωi

Ji
(2x(k) − z(k,i) − γ∇f(x(k)))− µx(k)

end for
x(k+1) =

∑n
i ωiz(k+1,i)

end for
Return x

In this algorithm, the ωi are the weights of each constraint Ji in the optimization and γ is
a step size. If ∇f is L-Lipschitzian, this algorithm converges to a global minimum of f +

∑n
i J

provided that γ ∈
[
0, 2

L

]
and ν ∈

]
0,min

(
3
2 ,

1+ 2
Lγ

2

)[
.

For instance, the following problem:

argmin
A∈RP ×J

1
2 ||Y−AS||2F + ||Λ⊙ ΦA||1 + i≥ 0(A), (III.40)

with a fixed S is an instance of this kind of minimization problem where we can use the GFBS
algorithm. Indeed, 1

2 ||Y−AS||2F is differentiable and J1(A) = ||Λ⊙ΦA||1 and J2(A) = i≥0(A)
are both proximable with explicit proximal operators but we don’t know any explicit proximal
of the sum J1 + J2.
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For optimization problems where we don’t have any explicit proximal of the constraints
J or when f is not differentiable anymore, others well-known algorithms exist such as the
Chambolle-Pock algorithm [187] or the Douglas-Rachford algorithm [188]. We can also use a
subrouting to compute the proximal, but it is poorly efficient.

Now that we detailed the proximal algorithms that can help us to solve non-smooth opti-
mization problem, we will now explain how we can tackle multi-convex problems.

III.2.2 Multi-Convex Optimization for BSS

III.2.2.1 Problem overview

In this part, we aim at minimizing a cost function like the following:

argmin
U1∈RP1×J1 ,...,Un∈RPn×Jn

f(U1, . . . ,Un) +
n∑
i

Ji(Ui), (III.41)

where:

• the function f is supposed to be block multi-convex. It means that, for all 1 ≤ i ≤ n, f is a
convex function of Ui if all the others blocks are fixed. We will note in the following fi the
corresponding convex function fi(U) = f(U1, . . . ,U, . . . ,Un) for any U ∈ RPi,Ti and for
any arbitrary U1 ∈ RP1×J1 , . . . ,Ui−1 ∈ RPi−1×Ji−1 ,Ui+1 ∈ RPi+1×Ji+1 , . . . ,Un ∈ RPn×Jn .
In the following, we will suppose the fi to be differentiable with a Lipschitzian gradient
(of Lipschitian coefficient Li).

• for all 1 ≤ i ≤ n, the constraint functions Ji : RPi,Ti → R are supposed to be proximable.

It appears that the BSS problem is a specific case of such a multi-convex problem with
n = 2,U1 = A and U2 = S.

All the usual algorithms for multi-convex optimization, such as the Block-Coordinate De-
scent (BCD) [189] or the Proximal Block Coordinate (PBC) [190] are part of the Gauss-Seidel
iteration scheme. It means that they perform a alternated minimization over each block
U1, . . . ,Un. These algorithms rely on a strong mathematical background and the framework
under which we work on respects the convergence conditions of the different algorithms. Since
it’s not the core of our work, we admit that property in this document. As in [125], in this
work we used the Proximal Alternating Linearized Minimization (PALM) algorithm that is a
computationally cheap algorithm with a convergence assurance if some conditions are respected.

III.2.2.2 Proximal Alternating Linearized Minimization

The Proximal Alternating Linearized Minimization (PALM) Algorithm has been introduced
in [191] and has a lot of applications in matrix factorization and BSS [192–194]. In order to
solve the optimization problem efficiently, it minimizes a relaxed version of the problem where
f is linearized close to the previous estimate:

argmin
Ui∈RPi×Ji

f
(k)
i (U(k)

i ) + ⟨∇f (k)
i (U(k)

i )|Ui −U(k)
i ⟩+ Ji(Ui) + Li

2 ||Ui −U(k)
i ||

2, (III.42)
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where Li is a constant, which we will take equal as the Lipschitzian constant of ∇f (k)
i in the

following. Now, the optimization on Ui does not depend on f
(k)
i anymore, which makes it less

constrained.

Moreover, we can note that, since some terms do not depend on Ui:

argmin
Ui∈RPi×Ji

f
(k)
i (U(k)

i ) + ⟨∇f (k)
i (U(k)

i )|Ui −U(k)
i ⟩+ Ji(Ui) + Li

2 ||Ui −U(k)
i ||

2

= argmin
Ui∈RPi×Ji

⟨∇f (k)
i (U(k)

i )|Ui −U(k)
i ⟩+ Ji(Ui) + Li

2 ||Ui −U(k)
i ||

2

= argmin
Ui∈RPi×Ji

⟨ 1
Li
∇f (k)

i (U(k)
i )|Ui −U(k)

i ⟩+ 1
Li
Ji(Ui) + 1

2 ||Ui −U(k)
i ||

2

= argmin
Ui∈RPi×Ji

1
Li
Ji(Ui) + 1

2 ||Ui −U(k)
i + 1

Li
∇f (k)

i (U(k)
i )||2 − || 1

Li
∇f (k)

i (U(k)
i )||2

= argmin
Ui∈RPi×Ji

1
Li
Ji(Ui) + 1

2 ||Ui − (U(k)
i −

1
Li
∇f (k)

i (U(k)
i ))||2

(III.43)

Therefore, by definition of the proximal operator, this update can be rewritten using the
proximal of Ji:

prox Ji
Li

(U(k)
i −

1
Li
∇f (k)

i (U(k)
i )) (III.44)

Therefore, each update is in fact one gradient step on the smooth part followed by proximal
step on the non-smooth part, exactly like a step of the FBS algorithm. Then, if the proximal
operators of the Ji are explicit the PALM algorithm, fully described in Algorithm 9, is very
efficient.

Algorithm 9 Proximal Alternating Linearized Minimization Algorithm
Require: Niter > 0

Ui ← U(0)
i for all 1 ≤ i ≤ n

for k ≤ Niter do
for i ≤ n do

U(k+1)
i = prox Ji

Li

(U(k)
i − 1

Li
∇f (k)

i (U(k)
i ))

end for
end for
Return U1, . . . ,Un

The projected gradient described in Algorithm 2 is in fact a specific case of the PALM
algorithm with the constraints Ji being the non-negativity constraints i≥0

There are some possible extensions to the PALM algorithm [195,196] that we will not study
in the scope of this work but that can represent interesting perspectives by accelerating the
algorithm.

In the following, we will explain how we used the PALM algorithm in the context of BSS
for BLI.
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Figure III.9: Illustration of NMF on BLI and its current issues. Left: superposition of BLI
and mouse body. Middle: BLI photon count. Right: Results of NMF (parametric maps and
kinetics). The parametric maps are corrupted by each other.

III.3 Proposed approach : Sparsity in direct domain

Trying to find A and S from the sole knowledge of Y using (III.11) admits unfortunately an
infinity of spurious solutions which calls for additional prior assumptions. We saw in subsub-
section III.1.2.3 that classical NMF algorithms, like HALS, mixes spatially the sources as is
illustrated in Figure III.9 where the Parametric Maps of the 2 tumors are corrupted by each
other. Forcing the Parametric Maps to be more sparse can therefore remove a lot of non-zeros
coefficients and result in a better spatial separation of the tumors. To do that, we added a
ℓ1 sparsity constraint on A to separate the tumors. To prevent degenerated solutions where
||A|| → 0 and ||S|| → ∞ due to the sparsity, the columns of S are constrained to be in the ℓ2
ball. We aimed then at minimizing:

argmin
A∈RP ×J ,S∈RJ×T

1
2 ||Y−AS||2F + ||Λ⊙A||1 + i≥0(A) + i≥0(S) + i{∀j≤J,||sj ||22≤1}(S), (III.45)

where Λ ∈ RP ×K are sparsity weights applied coefficients by coefficients.

Optimization of (III.45) is a non-smooth non-convex problem, calling for the dedicated
optimization tools, presented before. In addition, it is highly sensitive to hyperparameters,
discussed in section subsection III.3.2.

III.3.1 Efficient iterative algorithm under sparsity constraint

First, and similarly to the Fast-HALS [163] algorithm, in this work the update is done component-
by-component in order to be more computationally efficient. By reusing the notations of sub-
subsection III.1.2.3 Y(j) = Y−

∑
i ̸=j ajsj , we have:

For all 1 ≤ j ≤ J , ||Y−AS||2F = ||Y(j) − ajsj ||2F .

The cost function of (III.45) can be expressed, for all j, by:

1
2 ||Y

(j) − ajsj ||2F +
∑

j

||Λj ⊙ aj ||1 +
∑

j

i≥0(sj) +
∑

j

i≥0(aj) + i{∀j≤J,||sj ||22≤1}(S) (III.46)
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We therefore minimized alternatively the set of cost functions Dj
A(aj) and Dj

S(sj) for every
j [129]:

Dj
A(aj) = 1

2 ||Y
(j) − ajsj ||2F + ||Λj ⊙ aj ||1 + i≥0(aj) (III.47)

and

Dj
S(sj) = 1

2 ||Y
(j) − ajsj ||2F + i{||·||22≤1}(sj) + i≥0(sj) (III.48)

These cost functions are not differentiable but the regularizations are proximable with an
explicit proximal operator.

Indeed, if we write Jj(aj) = ||Λj ⊙ aj ||1 + i≥0(aj) then

proxJj
(aj) = [SoftΛ(aj)]+ (III.49)

Similarly, with Gj(sj) = i{||.||22≤1}(sj) + i≥0(sj)

proxGj
(sj) = [Π||.||2(sj)]+ (III.50)

In order to minimize these blocks at each iteration, we then used the Proximal Alternating
Linearized Minimization (PALM) algorithm described earlier.

In the following, we will note fj(aj , sj) = 1
2 ||Y

(j) − ajsj ||2F

For the update of aj , we have:

∇fj
(aj) =

(
ajsj −Y(j)

)
sjT (III.51)

∇fj
is L-Lipschitzian with L = sjsjT .

Therefore, one PALM step for aj is:

V aj =
[
Soft Λj

sj sjT

(
aj −

1
sjsjT

((
ajsj −Y(j)

)
sjT
))]

+

=
[
aj −

1
sjsjT

((
ajsj −Y(j)

)
sjT + Λj

)]
+
,

(III.52)

thanks to an proof by exhaustion. Indeed, let’s suppose x ∈ R and λ > 0:

• if x ≤ 0 : [Softλ(x)]+ =
[
sign(x) [|x| − λ]+

]
+

= 0 since x ≤ 0 and [x− λ]+ = 0

• if x ≥ λ : [Softλ(x)]+ =
[
sign(x) [|x| − λ]+

]
+

=
[
[x− λ]+

]
+

= [x− λ]+
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• if 0 ≤ x ≤ λ : [Softλ(x)]+ =
[
sign(x) [|x| − λ]+

]
+

= [sign(x)× 0]+ = 0 and [x− λ]+ = 0

Moreover, since (ajsj −Y(j))sjT = (AS−Y)sjT = ASsjT −YsjT = A[SST ]j − [YST ]j we
can rewrite the update rule (Equation III.52) as:

aj =
[
aj −

1
sjsjT

(
A[SST ]j − [YST ]j + Λj

)]
+

(III.53)

Symmetrically, for sj :

∇fj
(sj) = aT

j

(
ajsj −Y(j)

)
(III.54)

∇fj
is L-Lipschitzian with L = aT

j aj .

Therefore, one PALM step for sj is:

sj =
[
Π||.||2≤1

(
sjT − 1

aT
j aj

(
ST [AT A]j − [YT A]j

))]T

+
, (III.55)

These updates rules lead to the following PALM algorithm:

Algorithm 10 PALM(Y,A(0),S(0))
While the stopping criterion ∆k has not reached the threshold τ , iterate over (k):
1− Update each column j of A:

a(k+1)
j =

[
a(k)

j −
1

sj(k)sjT (k)

(
A[SST ]j − [YST ]j + Λj

)]
+

(III.56)

2− Update each line j of S:

sj(k+1) =

Π||.||2≤1

sjT (k) − 1
aT (k)

j a(k)
j

(
ST [AT A]j − [YT A]j

)T

+

, (III.57)

Return A,S

In Algorithm 10 we defined a stopping criterion ∆k defined at each iteration (k) that stops
the algorithm if it exceeds a threshold τ . Now, we need to compute the sparsity threshold Λ.

III.3.2 Adaptive sparsity threshold management

Sparsity hyperparameters Λ in (III.45) used to control the Soft-Thresholding in (III.53) are
critical to obtain satisfying separations [125]. We therefore set the threshold Λ automatically.
Here, we choose to set the sparsity parameters as:

Λ = WA

λ1
. . .

λJ

 , (III.58)
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where λj is the parameter associated with the j-th source and WA is a P × J matrix used
for ℓ1 reweighting, discussed next.

The first step is to determine the λj values. In this part, we assume there is no reweighting
involved, meaning that Λj is equal to λj . Inspired by both [197] and [164], we set λj to large
values over the first iterations to focus the initial separation on the most important features. We
then used a lower λj on subsequent iterations so that features associated with smaller details
are incorporated. More precisely, with p a gain factor, we set:

• For the first iteration: λj = p× ||(AS−Y)ST ||∞ for all j ∈ {1, . . . , J} sources;

• Over the following iterations (k), for all 1 ≤ j ≤ J we assume that after many iterations,
the algorithm has converged to a(∞)

j and sj(∞) close to the true values a(∗)
j and sj(∗).

If we assume that there is no non-negativity constraint for the sake of simplicity, then
by considering a fixed point argument (by developing and considering a(∞)

j ≈ a(∗)
j and

sj(∞) ≈ sj(∗) ):

a(∞)
j = Soft λj

sj(∞)sjT (∞)

(
a(k)

j −
1

sj(∞)sjT (∞)

(
a(∞)

j sj(∞) −Y(j)
)

sjT (∞)
)

= Soft λj

sj(∞)sjT (∞)

( 1
sj(∞)sjT (∞) Y(j)sjT (∞)

)
= Soft λj

sj(∞)sjT (∞)

( 1
sj(∞)sjT (∞)

(
a(∗)

j sj(∗) + N
)

sjT (∞)
)

≈ Soft λj

sj(∞)sjT (∞)

(
a(∗)

j + NsjT (∞)

sj(∞)sjT (∞)

)
,

(III.59)

where NsjT (∞) is a correlated Gaussian noise (since we assumed that N was Gaussian).
Then, the sources before thresholding are equal to the true ones a(∗)

j up to an additive
Gaussian noise. In order to retrieve the real values of such denoising problems, the usual
method is to set a threshold at pσj where σj is the standard deviation of the implicated
noise and p ∈ R+. Indeed, if p = 3, the probability that a coefficient of a(∗)

j greater than
3σj is noise is about 0.4%. In practice, we do not know σj but it can fortunately be
approximated using a Median Absolute Deviation (MAD), defined as :

∀u ∈ RT MAD(u) = mediant≤T |ut −mediani≤T (ui)| (III.60)

We have that σ(k)
j ≈ 1.48×MAD(a(k)

j ) is the approximation of the standard deviation of
the Gaussian noise at iteration (k). Indeed, the MAD is robust to a sparse contamination
since it would only change a few values, the median would then not be much affected [125]
meaning that MAD

(
a(∗)

j + NsjT (∞)

sj(∞)sjT (∞)

)
≈ MAD

(
NsjT (∞)

sj(∞)sjT (∞)

)
since a(∗)

j is supposed to
be sparse.

If the sources were well separated, setting p = 3 to remove 99% of the noise. However, we ini-
tialize the algorithm with NNDSVD [165], which yields a first imperfect separation. Due to this
imperfect separation, each source is initially partially contaminated by the other sources. Be-
cause of the possible intensity imbalance between the sources, the less intense sources are likely



64 CHAPTER III. BLIND SOURCE SEPARATION ON BIOLUMINESCENCE IMAGING

to be more strongly contaminated by the most intense ones at initialization. To counterbalance
this initialization, we wanted to more strongly regularize the less intense sources.

Specifically, we used a gain factor pj for each source that depends on the MAD of the
estimated source in the initialization pj = 3× maxtMAD(a(0)

t )
MAD(a(0)

j )
. Thus, if the MAD are comparable

in the case of balanced sources, we obtain pj ≈ 3 which is consistent with a Gaussian noise. In
the following, we will call such source dependent pj an adaptive gain factor, in contrast to a
fixed gain factor (pj = 3).

According to [125], this strategy of threshold tuning alone does not work well for PALM
because using a ℓ1-norm in Eq. (III.45) instead of the ℓ0 pseudo-norm to enforce sparsity
introduces a bias in the estimates. Since we are doing just 1 proximal gradient step, the
parameters are computed from sources with high interferences and noise. To limit such bias, a
ℓ1 reweighting scheme [198] is used here, through the introduction of the WA matrix. The idea
is then to adjust the matrix WA to threshold more low intensity pixels, which are more likely
to correspond to interferences, with the following formula:

Wi
Aj

= ϵ

ϵ+ |ai
j |

||aj ||∞

(III.61)

Where ϵ is a small constant and Wi
Aj

is the coefficient of the i-th line and j-th column of WA
at iteration (k).

III.3.3 Experiments

We tested the PALM algorithm with the different setups (with or without reweighting and
with or without an adaptive gain factor) on the real dataset with long kinetics presented in
Chapter II. As in subsubsection III.1.2.3, A(0) and S(0) are initialized with NNDSVD [165] and
the maximum number of iterations is set to 1000. ∆k is the stability measure defined as the
minimum cosine distance in the evolution of each sj or aj , τ = 1 − 4 × 10−11 and ϵ = 10−3

(from [125]).

∆k = min( min
j≤J
⟨

a(k)
j

||a(k)
j ||F

,
a(k−1)

j

||a(k−1)
j ||F

⟩,

min
j≤J
⟨ sj(k)

||sj(k)||F
,

sj(k−1)

||sj(k−1)||F
⟩)

(III.62)

We set J = 2 since there are 2 tumors by image. We reported in Table III.2 metrics for
the different algorithmic refinements and a comparison with popular blind-source separation
methods: PCA and FastICA [199].

We illustrate on Figure III.10 the impact of the sparsity options on the separation of 2 BLI
cases with different kinetics as illustrated on few frames. The top BLI case corresponds to the
case presented in Figure III.12 for which separating the tumors based on total photon count
alone is challenging. The bottom BLI case has one tumor much larger and more intense than
the other one.

In addition to these results, we also evaluated this obtained PALM algorithm (with Adaptive
Gain Factor and Reweighting) with all the metrics defined previously on the 2 real BLI datasets



III.3. PROPOSED APPROACH : SPARSITY IN DIRECT DOMAIN 65

time

B
io

lu
m

in
es

ce
nt

 I
m

ag
e 

1

NMSE average

No Sparsity 
(HALS)

Fixed Gain Factor
No Reweighting

Fixed Gain Factor
Reweighting

Adaptive Gain Factor
No Reweighting

Adaptive Gain Factor
Reweighting

so
ur

ce
 1

so
ur

ce
 2

0.190.310.22 0.55 0.14

time

B
io

lu
m

in
es

ce
nt

 I
m

ag
e 

2

so
ur

ce
 1

so
ur

ce
 2

NMSE average 0.990.180.55 0.35 0.03

No Sparsity 
(HALS)

Fixed Gain Factor
No Reweighting

Fixed Gain Factor
Reweighting

Adaptive Gain Factor
No Reweighting

Adaptive Gain Factor
Reweighting

Figure III.10: Impact of Sparsity Parameters on 2 BLI Images. For both BLI : Top Left:
global visualization of the data with the accumulation image (integral on all frames); Top Right:
: selection of some frames; Bottom: Parametric maps a1 and a2 for 5 setups of PALM.
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Table III.2: Ablation study on the proposed PALM algorithm with adaptive sparsity con-
straints. Average NMSE values and standard deviation are reported over the whole dataset (18
BLI).

Fixed Gain Factor Adaptive Gain Factor
PCA FastICA No Sparsity (HALS) No Reweighting Reweighting No Reweighting Reweighting

NMSE 4.9± 11 4.9± 11 0.34± 0.65 0.57± 0.35 0.38± 1.52 0.69± 1.06 0.08± 0.12

NMSEA NMSES NMSEtot NMSE corr

HALS 0.59± 0.83 0.17± 0.16 0.38± 0.63 0.57± 1.3 0.65± 0.42
PALM 0.58 ± 0.82 0.06 ± 0.15 0.32 ± 0.65 0.32 ± 0.65 0.84 ± 0.29

Table III.3: Quantitative Results of Fast-HALS Algorithm and the proposed PALM algorithm
on the real BLI dataset with short kinetics.

NMSEA NMSES NMSEtot NMSE corr

HALS 0.45± 0.39 0.16± 0.20 0.31± 0.35 0.30± 0.45 0.76± 0.33
PALM 0.44 ± 0.59 0.01 ± 0.05 0.23 ± 0.47 0.08 ± 0.12 0.96 ± 0.14

Table III.4: Quantitative Results of Fast-HALS Algorithm and the proposed PALM algorithm
on the real BLI dataset with long kinetics.

(short and long kinetics), and on the synthetic datasets described in Chapter II (with the
different kinds of variability). The results are presented in Table III.3, Table III.4, Table III.5
and Table III.6. Visual results on 2 synthetic BLI taken from the synthetic dataset without
variability are shown in Figure III.11.

III.3.4 Discussion

According to Table III.2 we can see that it is the combination of adaptive gain factor and
sparsity reweighting that allows to completely outperform the basic algorithms HALS, PCA
and FastICA in terms of average values and standard deviation NMSE. We can also see that
PCA and FastICA do not seem suited for this task.

In Figure III.10, we can visualize the impacts of the different parts of the algorithm on
the separations. On those examples, biologists confirmed that the 2 left spots on the top
BLI case correspond to the same tumor and that the right spot is a second tumor. Without
the reweighting scheme on this image, the parametric maps become too sparse and we miss
information. Adding the reweighting scheme allows to focus on most important pixels and
combining it with the adaptive gain factor allows here only a marginal improvement. However,
the bottom case shows a much better separation with our proposed setup with 2 tumors differing
in both size and intensity. In particular, with reweighting but without the adaptive gain factor,
the second source still mixes the 2 tumors.

In this work, we focused on the iterative part for the optimization of (III.45) with the
setting of sparsity hyperparameters. However, this problem can be sensitive to initialization,
we therefore also tried to refine S(0) by using physiological knowledge based on the work of

Table III.5: Quantitative Results of Fast-HALS Algorithm and the proposed PALM algorithm
on synthetic data without time warping perturbations.

Variability : None Variability : Piece-wise Affine
Algorithm NMSEA NMSES NMSEtot NMSE corr NMSEA NMSES NMSEtot NMSE corr

HALS 0.49± 0.40 0.20± 0.25 0.35± 0.36 0.48± 0.68 0.66± 0.45 0.58 ± 0.46 0.30± 0.38 0.44± 0.45 0.76± 1.7 0.59± 0.49
PALM 0.30 ± 0.33 0.03 ± 0.08 0.17 ± 0.28 0.22 ± 0.26 0.89 ± 0.27 0.58± 0.49 0.04 ± 0.09 0.31 ± 0.45 0.30 ± 0.33 0.83 ± 0.31
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Table III.6: Quantitative Results of Fast-HALS Algorithm and the proposed PALM algorithm
on synthetic data with time warping perturbations.

Variability : Warping Variability : Warping + Piece-wise Affine
Algorithm NMSEA NMSES NMSEtot NMSE corr NMSEA NMSES NMSEtot NMSE corr

HALS 1.19± 1.1 0.43± 0.39 0.81± 0.93 2.4± 6.1 0.47± 0.46 1.26± 1.2 0.45± 0.38 0.86± 99 2.6± 6.8 0.44± 0.49
PALM 1.03 ± 0.76 0.29 ± 0.42 0.66 ± 0.72 0.68 ± 1.1 0.54 ± 0.49 1.05 ± 0.77 0.32 ± 0.45 0.69 ± 0.72 0.66 ± 0.92 0.49 ± 0.51

Figure III.11: Visual results of NMF on 2 synthetic BLI for each algorithm (PALM and
HALS). The results are taken from the dataset without variability.

Sim et al. but the improvement was not significant. These results were communicated in one
conference article [167].

Table III.3, Table III.4, Table III.5 and Table III.6 show that for almost all datasets and all
metrics, the PALM algorithm with a sparsity constraint is more able to separate tumors than
HALS, as illustrated in Figure III.11. However, it appears in these tables that there seems to be
a lot of possible improvement in the context of separating real BLIs. One possible improvement
is that for now, we did not put any spatial constraint on the Parametric Maps, which can often
lead to isolated artifact pixels as in the case of the bottom image in Figure III.10. As was
explained in subsubsection III.1.3.1, the Parametric Maps are maybe more sparse in another
domain. In the next section, we will see how enforcing them to be sparse in an adapted domain
can lead to a better spatial consistency.
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Figure III.12: Illustration of NMF with sparsity constraint on BLI and its current issues.
Left: superposition of BLI and mouse body. Middle: BLI photon count. Right: Results of
NMF (parametric maps and kinetics). The parametric maps are corrupted by isolated artifact
pixels.

III.4 Proposed approach : Sparsity in transformed domain

III.4.1 Adaptation of the algorithm for sparsity in the wavelet domain

Enforcing the sparsity in the direct domain can generate isolated artifact pixels in the parametric
maps as is illustrated in Figure III.12.

In this part, we propose to reduce these artifacts by using a spatial regularization via ℓ1
sparsity constraint in a transform domain. This can also be done by adding a regularization on
the gradient of the parametric maps. For instance, it is possible to minimize the ℓ1 norm of the
gradient (TV) [200] or the ℓ2 norm [122].

The constraint in [167] does not take into account the spatial coherence of the signals which
deteriorates the separation results. We then adapted the work of [167] to a sparsity constraint in
the wavelet domain, which can leverage that prior knowledge of spatial coherence. Sparsity has
been shown to improve source separation by providing more contrast between them [164, 167].
However, in the previous work, the sparsity is enforced only on the direct domain while the
source can be even sparser in a transformed domain. For instance, a sinusoidal function is not
sparse in the direct domain but is very sparse in the Fourier domain. In the context of images,
complex geometrical structures can be sparse in transformed domains thanks to a multi-scale
signal analysis. According to [177], the wavelet transform makes sparse piece-wise polynomial
signals, which are a good approximation of most of natural signals. For this reason, constraining
sparsity in the wavelet domain is widely used in blind source separation [125, 197, 201] and we
will work with this transform in this work. The optimization problem is then:

argmin
A∈RP ×J ,S∈RJ×T

1
2 ||Y−AS||2F + ||Λ⊙ΦT A||1 + i≥0(A) + i≥0(S) + i{∀j≤J,||sj ||22≤1}(S), (III.63)

where ΦT is the wavelet transform, chosen to be undecimated and orthogonal in the following
and iC(.) is the indicator function of a set C. 1

2 ||Y−AS||2F is the data fidelity term, ||Λ⊙ΦT A||1
corresponds to the sparsity in the wavelet domain, i{∀j≤J,||sj ||22≤1}(S) is the constraining of the
lines of S in the ℓ2 unitary ball to avoid degenerated solutions where ||A|| → 0 and ||S|| → ∞,
and the i≥0(·) are the non-negativity terms.

For computational reasons, we decided then to formulate the problem in synthesis, and not
in analysis as in (III.63), because sparsity and data fidelity terms can then be expressed in
the same domain, facilitating the implementation as it would enable us to use the same code
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Figure III.13: Illustration of wavelet coefficients of a BLI. Left : Accumulation image of a
Bioluminescent Image (integral of photon counting). Right : associated Haar Wavelet [177]
coefficients, each (details for 3 scales and approximation of last scale). Each map of coefficients
is normalized between −1 and 1 for clarity of display.

foundations as in [167]. Indeed, since ΦT is assumed to be an orthogonal transform, minimizing
||Y −AS|| is equivalent to minimizing ||ΦT Y −ΦT (AS)|| = ||ΦT Y − (ΦT A)S|| according to
the Parseval theorem. Let’s note XΦT = ΦT X in the following for any signal X. Figure III.13
displays a visual illustration of these wavelet coefficients for a given BLI. With this formulation,
(III.63) becomes:

argmin
AΦT ∈RPΦT ×J

,S∈RJ×T

1
2 ||YΦT−AΦTS||2F +||Λ⊙AΦT ||1+i≥0(ΦAΦT )+i≥0(S)+i{∀j≤J,||sj ||22≤1}(S),

(III.64)

where PΦT = P × K × 4, with K the number of scales. A big optimization difficulty is
that the sparsity and non-negativity terms are not expressed in the same domain. In order
to solve this optimization problem, one can use the Generalized Forward-Backward Splitting
Algorithm [186] that treats the proximals one by one or the Chambolle and Pock algorithm [187]
that uses the dual problem, as specified in [201]. As an alternative, we can approximate the
global proximal by composing the proximal operators of both constraints [202]. The resulting
algorithm, although being an approximation, is computationally cheaper and does not introduce
further hyperparameters to tune. The proximal of G(AΦT ) = ||Λ ⊙AΦT ||1 + i≥0(ΦAΦT ) can
then be approximated by :

proxG(·)(AΦT ) = SoftΛ
(
ΦT [ΦAΦT ]+

)
, (III.65)

Since our signals are in fact stacks of vectorized 2D images, after logical successive reshapes to
apply the wavelet transform on the 2D images and rasterize the output, for a signal X ∈ RP ×T ,
the corresponding XΦT in the wavelet domain is of size (M ×N ×K × 4)× T where K is the
numbers of scales used (1 dimension for the approximation coefficients and 3 for the details
coefficients).
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Similarly to [167], the cost function can then be optimized using the PALM algorithm. It is very
important to handle the non-negativity before the soft-thresholding as the other way around
can generate features that would have been softened by the sparsity. The PALM algorithm
alternates between a proximal step on AΦT and a proximal step on S. In this part, similarly to
the sparsity in the direct domain, the update is done component-by-component: we alternate
between the update of the columns aΦT

j
of AΦT and the lines sj of S. Based on this modeling,

we propose the following Algorithm 12 to retrieve the matrices A(∗) and S(∗) from Y. We can
reasonably expect the proposed algorithm to converge to a critical point of (III.63) but we have
no proof of convergence here since we have used an approximated proximal in (III.65) [191]. It
is an iterative algorithm with a stopping criterion ∆k defined at each iteration (k) that stops
the algorithm if it exceeds a threshold τ .

These proximal steps yield the following update rules:

aΦT
j

= Soft Λ
sj sjT

(
ΦT

[
Φ
(

aΦT
j
− 1

sjsjT

(
∇aΦT

j

))]
+

)
, (III.66)

where ∇aΦT
j

= AΦT [SST ]j − [YST ]j

And:

sj =

Π||.||2≤1

sjT − 1
aT

ΦT
j

aΦT
j

(∇sj )

T

+

, (III.67)

where ∇sj = ST [AT
ΦT AΦT ]j − [YT AΦT ]j

Algorithm 11 PALM(Y,A(0),S(0))

A(0)
ΦT = ΦT A(0) ∈ R(M×N×K×4)×T with K number of scales, M and N spatial dimensions.

While the stopping criterion ∆k has not reached the threshold τ , iterate over (k):
1− Update each column j of AΦT :

a(k+1)
ΦT

j

= Soft Λj

sj(k)sjT (k)

(
ΦT

[
Φ
(

a(k)
ΦT

j

− 1
sj(k)sjT (k)

(
AΦT [SST ]j − [YST ]j

))]
+

)
(III.68)

2− Update each line j of S:

sj(k+1) =

Π||.||2≤1

sjT (k) − 1
aT (k)

ΦT
j

a(k)
ΦT

j

(
ST [AT

ΦT AΦT ]j − [YT AΦT ]j
)


T

+

, (III.69)

A = ΦAΦT .
Return A,S

To set the parameters Λ, we used the same strategy as in [167] based on a fixed-point
argument, with an adaptive gain factor and a reweighting on the Median Absolute Deviation
esstimator (MAD) on the non-zero values of a(k)

ΦT j
that remove the noise contaminating the

parametric maps. This provides a spatial regularization that does not need any hyperparameter
tuning. To do that, we need the noise in each scale to be comparable with each other. Indeed,
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Sparsity Domain NMSEA NMSES NMSEtot NMSE corr

Direct [167] 0.58± 0.82 0.06 ± 0.15 0.32± 0.65 0.32 ± 0.65 0.84 ± 0.29
Wavelet 0.48 ± 0.70 0.10± 0.19 0.29 ± 0.55 0.33± 0.57 0.78± 0.37

Table III.7: Quantitative Results of the proposed PALM algorithms with sparsity constraints
applied on direct and wavelet domains on the real BLI dataset with short kinetics.

Sparsity Domain NMSEA NMSES NMSEtot NMSE corr

Direct [167] 0.44± 0.59 0.01 ± 0.05 0.23± 0.47 0.08 ± 0.12 0.96 ± 0.14
Wavelet 0.31 ± 0.37 0.05± 0.12 0.18 ± 0.31 0.14± 0.18 0.91± 0.22

Table III.8: Quantitative Results of the proposed PALM algorithms with sparsity constraints
applied on direct and wavelet domains on the real BLI dataset with long kinetics.

Table III.9: Quantitative Results of the proposed PALM algorithms with sparsity constraints
applied on direct and wavelet domains on synthetic data without time warping perturbations.

Variability : None Variability : Piece-wise Affine
Sparsity Domain NMSEA NMSES NMSEtot NMSE corr NMSEA NMSES NMSEtot NMSE corr

Direct 0.30 ± 0.33 0.03 ± 0.08 0.17 ± 0.28 0.22 ± 0.26 0.89 ± 0.27 0.58± 0.49 0.04 ± 0.09 0.31 ± 0.45 0.30 ± 0.33 0.83 ± 0.31
Wavelet 0.39± 0.35 0.10± 0.21 0.25± 0.33 0.37± 0.41 0.78± 0.40 0.48 ± 0.34 0.17± 0.34 0.32± 0.37 0.37± 0.33 0.70± 0.45

the MAD operator is computed over all the scales and all the types of coefficients in the same
time. This was done by computing the standard deviation of a Gaussian white noise of variance
1 over all the scales and all the types of coefficients. When performing a wavelet transform,
we then divided the results of each map of coefficients in each scale by the associated standard
deviation value. A Gaussian white noise of variance 1 is then preserved over all the scales and
all the types of coefficients, as illustrated in Figure III.14. The noise levels are then comparable
between all scales and types of coefficients.

III.4.2 Experiments

We chose the Haar Wavelet transform [177,203] which is orthogonal and generalizes to different
scales the smoothness constraint defined in [122] that enforces neighborings pixels to have the
same value. As in section III.3, matrices A(0) and S(0) are initialized with NNDSVD [165].
The maximum number of iterations is set to 1000, ∆k is the stability measure defined as the
minimum cosine distance in the evolution of each sj or aj and τ = 1− 4× 10−11. We reported
the results of the algorithm on real data with short kinetics in Table III.7, on real data with long
kinetics in Table III.8 and visual examples on 2 real BLIs in Figure III.15 illustrating typical
behavior of the algorithm. This algorithm has also be tested on the synthetic datasets described
in Chapter II (with the different kinds of variability). The associated results are presented in
Table III.9 and Table III.10. Visual results on 3 synthetic BLI taken from the synthetic dataset
are displayed in Figure III.11.

III.4.3 Discussion

Table III.7 and Table III.8 show that source sparsity in the wavelet domain performs better
in terms of spatial separation of parametric maps, measured by NMSEA, which is the desired

Table III.10: Quantitative Results of the proposed PALM algorithms with sparsity constraints
applied on direct and wavelet domains on synthetic data with time warping perturbations.

Variability : Warping Variability : Warping + Piece-wise Affine
Sparsity Domain NMSEA NMSES NMSEtot NMSE corr NMSEA NMSES NMSEtot NMSE corr

Direct 1.03± 0.76 0.29± 0.42 0.66± 0.72 0.68± 1.1 0.54± 0.49 1.05± 0.77 0.32 ± 0.45 0.69± 0.72 0.66± 0.92 0.49 ± 0.51
Wavelet 0.77 ± 0.67 0.29 ± 0.38 0.53 ± 0.59 0.66 ± 0.99 0.52 ± 0.53 0.77 ± 0.65 0.34± 0.44 0.56 ± 0.59 0.65 ± 0.88 0.49± 0.53
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Figure III.14: Normalization process to keep the noise values comparable between scales for
a Haar Wavelet Transform. The input image is a Gaussian white noise of standard deviation
σ = 1.
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Figure III.15: Visual results for each NMF algorithm on 2 real BLIs. For each BLI, Left :
accumulation image (integral on all frames of photon counting); Right : parametric maps.

behavior. Indeed, the top image in Figure III.15 illustrates that it can remove isolated artifact
pixels.

It is also interesting to note that the new algorithm seems to downgrade a little bit the
kinetics separation performances, measured by NMSES , which can be explained because it
focuses more on the spatial separation (with the spatial constraint) in the optimization problem
at the expense of a slightly less accurate temporal estimate. This would be an intriguing problem
to pursue. NMSEtot shows however that here the improvement of the spatial separation is
enough to compensate for this deterioration.

Finally, enforcing the sources to be sparse in the transformed domain may also decrease the
initial imperfect NMSE and corr metrics, but that is explained by tumors previously badly
separated but so similar both in terms of kinetics shape and intensity that it misled the metrics
as illustrated in Figure III.4. As such, the degradation of these metrics should not be taken
into account.

Table III.9 and Table III.10 show that source sparsity in the wavelet domain performs
better in terms of spatial separation of parametric maps, evaluated by NMSEA, when there is
perturbation involved. This is illustrated in Figure III.16 where we can see that the algorithm
smoothes the isolated pixels in the parametric maps generated by the previous algorithm, that
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Figure III.16: Visual results for each NMF algorithm on 2 real BLIs. For each BLI, Left :
accumulation image (integral on all frames of photon counting); Right : parametric maps.



III.5. PIXEL-LEVEL KINETICS VARIABILITY 75

constrained the parametric maps to be sparse in the direct domain and thus did not force
any spatial consistency in the parametric maps. We can also see in this figure that enforcing
the parametric maps to be sparse in the wavelet domain downgrades the performance of the
algorithm if there is no perturbation, a phenomenon confirmed by Table III.9. These results
will be communicated in one accepted conference article:

Dereure, E., Kervazo, C., Seguin, J., Garofalakis, A., Mignet, N., Angelini, E., & Olivo-
Marin, J. C. (2024). Wavelet-based sparse non-negative matrix factorization for bioluminescent
imaging unmixing. In 2024 IEEE 21st International Symposium on Biomedical Imaging (ISBI).

However, in some cases like the BLI in the bottom of Figure III.15 and the ones with
variability in Figure III.16 (middle and bottom), the optimization algorithm with this spatial
constraint seems to sometimes create halos around isolated pixels. It may be caused by the
choice of regularization parameters and the spatial variability of the kinetics inside a tumor due
to its heterogeneity [204]. In the next part, we will see how it is possible to take these variability
into account in order to improve the separation.

III.5 Pixel-level kinetics variability

III.5.1 Introduction on variability

In section III.4 and section III.4, we made the assumption that a linear mixing model was
sufficient to describe the data we were handling. However, similarly to what is called spectral
variability in Hyperspectral Imaging [122], physiological and technical constraints can introduce
non-linearities in the kinetics observed in pixels from the same source (tumor). This phenomena
can be observed in Figure III.17 where are displayed the spatial average and standard deviation
curves from two tumors in one BLI. We can see that the kinetics of the pixels belonging to a
single tumor can vary locally. Such variability can be explained by small local heterogeneities
in the tumors, spatially-variable tissue attenuation phenomenons, and slight synchronization
issues in the imaging device. According to Chapter II, this is mostly due in our case to the
imaging device. In order to improve the separation, it is then possible to into account this
variability in the unmixing process.

Pixel-level variability can be modeled by introducing a source-modulating function fi in the
mixing model for each pixel i:

yi =
J∑

j=1
ai

jfi(sj) + ni (III.70)

In [205], the authors assume in their work that the variability is only resulting from scal-
ing factors. They used pixel-level linear scaling factor functions fi(sj) = λi

jsj to handle this
spectral variability while keeping the usual sum-to-one inherent to hyperspectral data. The
corresponding optimization problem can be expressed by:

argmin
A∈RP ×J ,Λ∈RP ×J ,S∈RJ×T

1
2 ||Y− (Λ⊙A)S||2F + J (A) + G(S) +H(Λ), (III.71)

where Λ is the matrix representing the scaling factors, computed with an optimization
algorithm, and H is an appropriated regularization applied to this matrix. The assumption of
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Figure III.17: Example of spatial average and standard deviation in kinetics of 2 tumors
within on BLI. The kinetics of a given tumor may vary locally.

a variability caused only by scaling factors is too restrictive for most problems though.

To capture the variability in a more agnostic way, [122] introduced an additive perturbation
in the modulating function fi(sj) = sj + δi

j inspired by the Taylor expression. The resulting
model, that does not require explicit prior knowledge of the variability, can be written as:

Y = AS +
[
(a1δ(1))T | . . . |(aPδ(P ))T

]T
+ N

= AS + ∆ + N,
(III.72)

where for each pixel i, δ(i) ∈ RJ×T is the matrix containing the perturbations associated
this pixel and ∆ =

[
(a1δ(1))T | . . . |(aPδ(P ))T

]T
.

The optimization problem to solve is then:

argmin
A∈RP ×J ,∆∈RP ×J×T ,S∈RJ×T

1
2 ||Y−AS−∆||2F + J (A) + G(S) +H(∆), (III.73)
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where H is an appropriate regularization applied to the perturbation matrix. For instance,
in [122] and [127] they penalized the total energy of the matrix H = ||.||2F .

This method is data-agnostic, meaning that it can be applied to any kind of data. However,
if we understand the variability involved in our data, we can integrate that prior knowledge in
the model in a more appropriate way to improve the unmixing.

Figure II.12 displays a random selection of kinetics belonging to a single tumor. We can
observe that the kinetics differ in both peaks heights and locations in a more complex fashion,
which can be explained by a time shift [121], as was presented in Chapter II. We will next see
how we dealt with that particular variability in our data.

III.5.2 Proposed approach : Pre-alignment of kinetics

In this part, based on the observed variability in our data Figure II.12, we proposed to model
the variability fi as pixel-level elastic time warping functions γ−1

i . These functions γ−1
i are

diffeomorphic deformations of the domain [0, T ]. In order to improve our unmixing, we then
have to find the optimal γ−1

i for each pixel i.

Handling that in the optimization problem would require to find an analytical formulation
of the projection into the space Γ of diffeomophisms of [0, T ]. We therefore instead decided to
use an alignment algorithm to register the pure pixels (i.e. pixels belonging to only one tumor)
to the kinetics of the tumor they belong before the unmixing algorithm as a pre-processing step.

A first step is then to find pure pixels. The data we observe consists essentially in tumors
located next to each other. Some pixels at the borders of the tumor can belong to several
tumors but the others can reasonably be assumed to be pure pixels.

We thus propose to make groups of pure-pixels on the accumulation image with an unsu-
pervised algorithm. Indeed, if we keep only the groups composed of more than 30 pixels (the
cardinality threshold commonly used to consider a relevant distribution in statistics), the av-
erage kinetics of each group would be close to the kinetic of the associated tumor since there
would only be pure-pixels in these groups. The algorithm can then register the kinetics of each
pixel in each group to the average kinetics of the group. Formally, we have to find an algorithm
that extracts Ω1,Ω2, . . . ,ΩG from the BLI image I. Ωg is the mask corresponding to the group
g of pure-pixels. These groups will be called superpixels in the following.

Once we have those superpixels (Ωg)g≥G, for all g, for all i in Ωg, we aim at finding γi as
the solution of the alignment algorithm (described below) between yi and µg where µg is the
average kinetics of the group g.

The framework we propose tackles 2 issues : finding the pure pixels, and then the kinetics
registration algorithm.

III.5.2.1 Pure Pixels Extraction

There are several superpixels algorithms wildly used in the litterature (SLIC [206] or Felzen-
szwalb’s method [207]) but they only use the intensity as information and result in whether
too precise or too rough segmentations. Indeed, it can be tricky to get superpixels composed
of only pure-pixels belonging to the same tumor as can be seen in Figure III.18, where the
segmentations of the accumulation image end up with superpixels composed of pixels belonging
to both tumors.
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Figure III.18: Superpixels segmentation with SLIC and Felzenszwalb’s method on a BLI.
Some superpixels contain pixels belonging to the 2 tumors.

Figure III.19: Representation of a BLI by a juxtaposition of basins, which justifies the use of
the watershed algorithm.

However, it can be noted that our images look like a juxtaposition of "mountains", where the
pixels belonging to a specific mountain belong to the same tumor. What’s interesting is that,
as illustrated in Figure III.21, a single tumor can be represented by several mountains (not just
one) as detailed in Chapter II. If we take the opposite of our images, these mountains become
basins (Figure III.19) and it becomes logical to use the watershed algorithm [208] to delineate
these basins.

The first step of this algorithm, illustrated in Figure III.20 is to find the bottom of the
basins, hence the peaks of the image. To do that, we compare the original image with its
convolution with a Maximum Filter of size Nm, as illustrated in Figure III.21. We then assign
a different label to each peak, located where the maximum image is equal to the original image.
We then consider the opposite of the accumulation image and initialize a heap of pixels with
all the found bottoms, with their corresponding values. Then, the algorithm is the following :

While the heap is not empty:

• Select the lowest item i in the heap

• For all its neighbors n:

– if n is already labeled, continue

– else, label it with the same label as i and add it to the heap
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Figure III.20: Illustration of the watershed algorithm. It groups together points belonging to
the same basins.

After taking only the most intense pixels in each superpixel, in order to be sure that only
pure pixels remain, this algorithm outputs the G masks Ω1,Ω2, . . . ,ΩG described above with G
the number of peaks found. In practice, for each Ωg, we kept only the pixels whose intensity
were bigger than 10% of the maximum value

In fact, this watershed algorithm is applied to the whole image I restricted to pixels whose
intensity were greater than a threshold set at MAD(I) to keep only relevant pixels that make a
difference in the algorithm.

III.5.2.2 Alignment algorithm

To register the kinetics, we used the algorithm of [209]. In this section we will then explain
its principle and assets. To align the geometric features of f1 and f2, where f1 and f2 are 2
continuous functions of [0, T ], the algorithm seeks a diffeomorphism noted γ which acts as a
time warping. Let’s note Γ the space of orientation-preserving diffeomorphisms of [0, T ] to itself.
The problem is the to find a good metric d to find argminγ∈Γ d(f1, f2(γ)). In the following, we
will call that the alignment of f2 to f1. It is then necessary to use a good metric d. This metric
has to be:

• Invariant to a composition by a warping function γ: d(f1, f2) = d(f1 ◦ γ, f2 ◦ γ)

• Symmetric: d(f1, f2) = d(f2, f1)

• Respectful of the Triangle inequality: d(f1, f3) ≤ d(f1, f2) + d(f2, f3) for any f3

The invariance property assure that it is not possible to increase the similarity between f1
and f2 by warping them simultaneously to by the same warping function γ [210]. Finally, the
Symmetry property and Triangle inequality are necessary to define a proper distance.

Moreover, the symmetry property makes sure that the alignment of f1 to f2 is the same as
the alignment of f2 to f1 [210]:

infγ∈Γd(f1, f2 ◦ γ) = infγ∈Γd(f1 ◦ γ, f2) (III.74)

Many warping algorithms use the regular ℓ2-distance, but it does not satisfy important
properties for functions registration [209]. A metric that satisfy all these properties is the Fisher-



80 CHAPTER III. BLIND SOURCE SEPARATION ON BIOLUMINESCENCE IMAGING

Maximum filter 

Comparison

Group 3

Group 1

Group 2

Label 3

Label 1

Label 2

Watershed algorithm

Figure III.21: Watershed Algorithm used to create the superpixels used for the alignment
procedure

Rao Riemannian metric dF R [211]. This metric is difficult to use in practice, but according
to [209], under the Square Root Velocity Framework (SRVF) transform q of f:

q(t) = f′(t)√
|f′(t)|

, (III.75)

where f′ is the derivative of f, it is equivalent to the ℓ2 norm:

dF R(f1, f2) = ||q1 − q2||2 (III.76)
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The optimization problem to align f2 to f1 is then reformulated as:

argmin
γ∈Γ

dF R(f1, f2 ◦ γ) = argmin
γ∈Γ

||q1 − (q2 ◦ γ)
√
γ ′||2 (III.77)

The minimization of such an optimization problem is not straightforward without the explicit
proximal operator of iΓ. In [209] they then used a Dynamic Programming Algorithm to find an
optimal solution.

In our context, we align all n pixels in Ωg regions individually with the following iterative
procedure:

• initialize the mean µ as the average of the kinetics {qi}i∈Ωg where qi is the SRVF transform
of yi

• align each qi to µ by solving argminγi∈Γ ||µ − (qi ◦ γi)
√
γ ′

i||2 and set q̃i = qi ◦ γi. This
minimization is solved using a Dynamic Programming Algorithm.

• Set ỹi = yi ◦ γi

Figure III.22 illustrates the effect of the alignment on kinetics from on BLI region with
their corresponding time warping transforms γi. This alignment pipeline, summarized in Fig-
ure III.23, outputs the matrix Ỹ where the kinetics of all the pixels within each group Ωg are
aligned. The Linear Model defined in (III.11) becomes

Ỹ = AS + N, (III.78)

That BSS problem is then solved on Ỹ using the PALM algorithm section III.4. The
complete pipeline is summarized in Algorithm 12.

Algorithm 12 Pseudo-code for automated BLI tumor separation with constrained NMF on
aligned kinetics
Require: Y ≥ 0, J > 0, Niter > 0, τ > 0

if Alignment then
Ω1, . . . ,ΩG ← Watershed Algorithm (Y)
for g ≤ G do

for i ∈ Ωg do
argminγi∈Γ||µ− (qi ◦ γi)

√
γ ′

i||2
ỹi = yi ◦ γi

end for
end for

end if
Initialize A(0) and S(0) from Ỹ
A,S = PALM(Ỹ,A(0),S(0)) Algorithm 11
Return A,S
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Figure III.22: Temporal alignment of kinetics. Inputs are original kinetics within a homoge-
neous region and outputs include the warping functions and the aligned kinetics.

Group 3

Group 1

Group 2

Figure III.23: Alignment procedure pipeline as a pre-processing for BLI unmixing. First step:
make groups of pure-pixels. Second step: align kinetics inside each one of these groups.

III.5.3 Experiments & Results

We used the same hyperparameters as in section III.3 and section III.4, meaning an initialization
of the matrices A(0) and S(0) with NNDSVD [165]. The maximum number of iterations is set
to 1000, ∆k is the stability measure defined as the minimum cosine distance in the evolution
of each sj or aj and τ = 1 − 4 × 10−11 and we used the Haar Wavelet Transform. To be fair,
we also tested the alignment pre-processing with the direct domain sparsity PALM algorithm
Algorithm 10.

We reported the results of the algorithm on real data with short kinetics in Table III.11, on
real data with long kinetics in Table III.12 and visual examples on 2 real BLIs in Figure III.24
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Figure III.24: Results of the different PALM algorithms illustrating their behavior on 2
examples of real BLI with and without the alignement pre-processing.

Table III.11: Quantitative Results of the proposed PALM algorithms with sparsity constraints
applied on direct and wavelet domains, with and without the alignment pre-processing, on the
real BLI dataset with short kinetics.
Sparsity Domain Alignment NMSEA NMSES NMSEtot NMSE corr

Direct No 0.58± 0.82 0.06± 0.15 0.32± 0.65 0.32± 0.65 0.84± 0.29
Direct Yes 0.47± 0.59 0.04 ± 0.11 0.26± 0.47 0.24 ± 0.42 0.92 ± 0.12
Wavelet No 0.48± 0.70 0.10± 0.19 0.29± 0.55 0.33± 0.57 0.78± 0.37
Wavelet Yes 0.39 ± 0.45 0.09± 0.19 0.24 ± 0.38 0.26± 0.35 0.82± 0.38

Table III.12: Quantitative Results of the proposed PALM algorithms with sparsity constraints
applied on direct and wavelet domains, with and without the alignment pre-processing, on the
real BLI dataset with long kinetics.
Sparsity Domain Alignment NMSEA NMSES NMSEtot NMSE corr

Direct No 0.44± 0.59 0.01 ± 0.05 0.23± 0.47 0.08 ± 0.12 0.96 ± 0.14
Direct Yes 0.38± 0.57 0.02± 0.09 0.20± 0.45 0.12± 0.18 0.96± 0.15
Wavelet No 0.31± 0.37 0.05± 0.12 0.18± 0.31 0.14± 0.18 0.91± 0.22
Wavelet Yes 0.24 ± 0.35 0.06± 0.20 0.15 ± 0.30 0.18± 0.25 0.91± 0.26

displaying typical behavior of the algorithm. This algorithm has also be tested on the synthetic
datasets described in Chapter II (with the different kinds of variability). The associated results
are presented in Table III.13 and Table III.14. Visual results on 3 synthetic BLI taken from the
synthetic dataset are shown in Figure III.25.
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Table III.13: Quantitative Results of the proposed PALM algorithms with sparsity constraints
applied on direct and wavelet domains, with and without the alignment pre-processing, on
synthetic data without time warping perturbations.

Variability : None Variability : Piece-wise Affine
Sparsity Domain Alignment NMSEA NMSES NMSEtot NMSE corr NMSEA NMSES NMSEtot NMSE corr

Direct No 0.30 ± 0.33 0.03 ± 0.08 0.17 ± 0.28 0.22 ± 0.26 0.89 ± 0.27 0.58± 0.49 0.04 ± 0.09 0.31 ± 0.45 0.30 ± 0.33 0.83 ± 0.31
Direct Yes 0.39± 0.43 0.15± 0.16 0.22± 0.37 0.27± 0.32 0.85± 0.34 0.61± 0.56 0.05± 0.11 0.33± 0.50 0.35± 0.41 0.82± 0.36
Wavelet No 0.39± 0.35 0.10± 0.21 0.25± 0.33 0.37± 0.41 0.78± 0.40 0.48 ± 0.34 0.17± 0.34 0.32± 0.37 0.37± 0.33 0.70± 0.45
Wavelet Yes 0.45± 0.39 0.12± 0.23 0.29± 0.36 0.42± 0.43 0.75± 0.43 0.51± 0.38 0.15± 0.27 0.33± 0.37 0.40± 0.38 0.70± 0.44

Table III.14: Quantitative Results of the proposed PALM algorithms with sparsity constraints
applied on direct and wavelet domains, with and without the alignment pre-processing, on
synthetic data with time warping perturbations.

Variability : Time Warping Variability : Time warping + Piece-wise Affine
Sparsity Domain Alignment NMSEA NMSES NMSEtot NMSE corr NMSEA NMSES NMSEtot NMSE corr

Direct No 1.03± 0.76 0.29± 0.42 0.66± 0.72 0.68± 1.1 0.54± 0.49 1.05± 0.77 0.32± 0.45 0.69± 0.72 0.66± 0.92 0.49± 0.51
Direct Yes 0.53± 0.44 0.14 ± 0.23 0.33 ± 0.40 0.38 ± 0.35 0.83 ± 0.23 0.70± 0.52 0.17 ± 0.27 0.43± 0.50 0.41 ± 0.39 0.72 ± 0.36
Wavelet No 0.77± 0.67 0.29± 0.38 0.53± 0.59 0.66± 0.99 0.52± 0.53 0.77± 0.65 0.34± 0.44 0.56± 0.59 0.65± 0.88 0.49± 0.53
Wavelet Yes 0.51 ± 0.37 0.18± 0.24 0.35± 0.35 0.46± 0.42 0.70± 0.37 0.57 ± 0.42 0.19± 0.24 0.38 ± 0.39 0.42± 0.34 0.67± 0.41

III.5.4 Discussion

Quantitative results on synthetic data (Table III.13 and Table III.14) lead to the following
observations:

• Adding perturbations to the kinetics downgrades the performances of every algorithm.
This phenomenon seems natural as the linear model becomes less relevant with such data.
Our baseline algorithm [167] is the least robust to degraded kinetics.

• Adding the alignment process (subsubsection III.5.2.1 and subsubsection III.5.2.2) has no
positive influence on source separation (and can even be detrimental and downgrade a
little bit both the spatial and kinetics separation performances) when there is no time
warping perturbations involved (Figure III.25 a-c) but leads to better separations with
time warping perturbations (Figure III.25 b-d).

• Source sparsity in the wavelet domain performs always better than sparsity in the direct
domain in terms of spatial separation of sources when there is any kind of piece-wise affine
perturbation involved (Figure III.25 b-c-d).

Finally, since the synthetic data that should better model the real data are the ones degraded
with both time warping and piece-wise affine gain, enforcing the sparsity in the transformed
domain and adding the alignment pre-processing should better separate tumors in real BLI.

Results on real data (Table III.11 and Table III.12) confirm that hypothesis. We illustrate
those results visually in Figure III.24 on several examples. Indeed, without alignment, tumors
are sometimes not well separated and the spatial constraint induced by the sparsity in the
wavelet domain is not able to compensate. With temporal alignment, only isolated erroneous
pixels remain that can be corrected by the sparsity in wavelet domain. The separation is
however not perfect, probably due to the hyperparameters and to other variability than the
time-warping one involved. [122] and [127] uses the PLMM to take into account the piece-wise
affine variability in the algorithm, which could be an interesting problem to pursue. It may also
be due to the fact that we just use a pre-processing to deal with kinetics variability. Handling
them directly in the optimization process could provide more precise separations.
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Table III.15: Quantitative Results of the proposed PALM algorithms with sparsity constraints
applied on direct and wavelet domains, with and without the alignment pre-processing, on
synthetic data containing 2 sources without time warping perturbations.

Variability : None Variability : Piece-wise Affine
Sparsity Domain Alignment NMSEA NMSES NMSEtot NMSE corr NMSEA NMSES NMSEtot NMSE corr

Direct No 0.12 ± 0.27 0.02± 0.08 0.07 ± 0.21 0.07 ± 0.16 0.90± 0.32 0.30± 0.39 0.01 ± 0.06 0.15± 0.31 0.10 ± 0.20 0.85 ± 0.39
Direct Yes 0.18± 0.44 0.02± 0.10 0.1± 0.33 0.11± 0.39 0.89± 0.33 0.38± 0.62 0.03± 0.11 0.21± 0.48 0.16± 0.42 0.82± 0.41
Wavelet No 0.15± 0.27 0.01 ± 0.05 0.08± 0.21 0.11± 0.19 0.90 ± 0.31 0.23 ± 0.33 0.04± 0.1 0.14 ± 0.26 0.13± 0.2 0.78± 0.47
Wavelet Yes 0.21± 0.40 0.02± 0.09 0.11± 0.30 0.15± 0.36 0.89± 0.33 0.34± 0.5 0.05± 0.09 0.19± 0.39 0.22± 0.39 0.76± 0.47

Table III.16: Quantitative Results of the proposed PALM algorithms with sparsity constraints
applied on direct and wavelet domains, with and without the alignment pre-processing, on
synthetic data containing 2 sources with time warping perturbations.

Variability : Time Warping Variability : Time warping + Piece-wise Affine
Sparsity Domain Alignment NMSEA NMSES NMSEtot NMSE corr NMSEA NMSES NMSEtot NMSE corr

Direct No 0.85± 1.47 0.19± 0.38 0.52± 1.12 0.57± 1.58 0.73± 0.39 1.01± 1.52 0.18± 0.38 0.6± 1.18 0.53± 1.53 0.65± 0.46
Direct Yes 0.70± 1.45 0.18± 0.38 0.44± 1.09 0.99± 3.15 0.71± 0.40 0.53± 0.63 0.10 ± 0.15 0.32± 0.51 0.29 ± 0.44 0.75 ± 0.38
Wavelet No 0.33± 0.49 0.09± 0.14 0.21± 0.38 0.22 ± 0.30 0.83± 0.28 0.80± 1.48 0.22± 0.39 0.51± 1.12 0.99± 3.05 0.57± 0.52
Wavelet Yes 0.30 ± 0.50 0.08 ± 0.10 0.19 ± 0.38 0.40± 0.99 0.84 ± 0.28 0.42 ± 0.59 0.11± 0.13 0.27 ± 0.46 0.44± 1.01 0.72± 0.45

In addition, it appears that the separation performance is lower with synthetic data than
with real BLI images. To explain that, we should first note that having more sources degrade the
separation performance. Indeed, we generated a synthetic dataset by enforcing J = 2 sources
in each images and tested our algorithms on it. The results are presented in Table III.15 and
Table III.16. Except for a few cases, we can observe the separation metrics are better than with
a random number of sources greater than 2. They are however still not as good as the ones
from the real dataset. It can have several causes :

• The variability can be stronger in synthetic data.

• The kinetics synthetically generated are maybe too close to each other, resulting to a
stronger correlation between the synthetic kinetics than between the real ones and thus
to more difficult cases for separation.

Morover, as usual, the metrics NMSE and corr are less precise to assess of the quality of
the separation and so their respective potential decrease should not be taken into account. We
can finally note that the final algorithm seems to downgrade a little bit the kinetics separation
performances. It can be explained because with the proposed framework we only align the
kinetics of the pixels we know for sure to be pure. As is illustrated in Figure III.21, the kinetics
of a lot of pixels are not aligned (the ones on the borders of the superpixels) which corrupts the
obtained source kinetics. This would be an intriguing issue to tacke in future works. A possible
idea in that perspective would be to integrate the alignment in the optimization pipeline to
cover all pixels.

Overall, this alignment pre-processing step resulted in enhanced separations of tumors but
could probably be improved by being a part of the optimization process. To overcome the
limitation of not knowing the proximal operator of the indicator function of the space of diffeo-
morphisms, we could restrict ourselves to a small family of diffeomorphisms such as polynoms
with strictly positive coefficients. Another interesting idea would be to use the Wasserstein
barycenter instead of the usual average µ to calibrate the alignment.
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These results will be part of an article in preparation:

Dereure, E., Kervazo, C., Seguin, J., Garofalakis, A., Mignet, N., Angelini, E., & Olivo-
Marin, J.-C. . Wavelet transform based non-negative matrix factorization for bioluminescence
imaging with warping variability.

Further validation of these results represents a valuable perspective of our work, for exam-
ple by testing the robustness of our model to the magnitude of the perturbations involved in
synthetic data generation (see Chapter II) or by comparing its performance with some of the
methods used in Hyperspectral Imaging Unmixing [154]. It could also be interesting to precisely
model the kinetics S in the optimization procedure with the pharmacokinetics model described
in Chapter II.

The performances of our source separation algorithms could benefit from a deeper under-
standing of kinetics variability, by studying the influence of physiological constraints such as
respiratory movements [116] or tumor vascularization, and technical constraints such as the
impact of pre-processing or the response of the imaging device.

In this chapter, we detailed the use of NMF to separate the photon flux coming from the
different tumors within the same BLI. These kinetics have to be quantified to monitor tumor
status during in vivo experiments (see Chapter I). In the next chapter, we will then describe
how we used a pharmacokinetics model to improve the quantification of BLI.
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Figure III.25: Results of the different PALM algorithms, with and without the alignment pre-
processing, illustrating their behavior for the different scenarios of synthetic data in terms of vari-
ability: None, time warping (subsubsection II.3.2.2), piece-wise affine (subsubsection II.3.2.1)
and time warping + piece-wise affine.



Chapter IV

Quantitative analysis of BLI with
pharmacokinetics model

IV.1 Challenges in Bioluminescence Imaging quantification

IV.1.1 Introduction on quantification challenges

Quantifying the state of the tumor using BLI remains an active field of research [57,72]. Indeed,
the current quantification methods do not take into account hypoxia, necrosis or photon scat-
tering through tissues when estimating the tumor volume. This results in a poor correlation
between the quantification of the BL signal and the real volume measured with other modal-
ities [106], especially in the last few days of experiments before the sacrifice of the animals as
illustrated in Figure I.21.

On top of that, we also showed a lack of repeatability in the BLI experiments, causing a
loss of confidence in the interpretation of the current methods of BLI quantification. This is
especially the case for the methods using the Average Photon Flux, as illustrated in Figure I.26
where we can see a strong variability in the BL signals at different time stamps of the same day
for 2 tumors. The work of [100] seemed promising to quantify the kinetics in a more precise
way and could help to better understand the kinetics of the different tumors. They used a
multi-compartment pharmacokinetic model in which they studied the flow of luciferin in the
tissues and quantified the tumor with exchange rates of luciferin between the tumor and the
blood. This work focused on modelling the bioluminescence reaction in the context of an IP
injection of luciferin by making the assumptions that the rate of photon emitted from the tumor
is proportional to the amount of substrate in the tumor area and that the reaction follows a
Michaelis-Menten kinetics. Their work has been deeper studied by Dai et al. in [212] and [84].
In [84] the authors used a 3 compartments model to take into account the metabolism of the
luciferin but [100] argued that the results are nearly identical with a 2 compartments model.
The work in [100] seems to be a good trade-off complexity-wise, it is therefore the model we
considered in this work. We describe this model and the associated challenges in the following
part, in particular how we propose to enhance the relevance of the estimated exchange rates.

IV.1.2 Presentation of pharmacokinetics model and associated challenges

Sim et al. [100] described the bioluminescent reaction in the context of an IP administration of
luciferin in a mouse by the model illustrated in Figure IV.1.

The equations describing the balance of luciferin between the different compartments are

88
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Figure IV.1: BLI Pharmacokinetics model described in [100] that models the emission of
photons by the tumor from the interactions luciferin-luciferase.

the following:

dCip

dt
= −kaCip

dCb

dt
= −(Ktrans + kel)Cb + kepCT + kaCip

dCT

dt
= KtransCb − kepCT ,

(IV.1)

where Cip,Cb and CT are the luciferin concentration respectively in peritoneum, blood and
tumor. ka is the rate constant describing the absorption of luciferin from the peritoneum into
the blood and kel is the elimination rate constant from the blood. Ktrans and kep are the rate
constant describing respectively the transfer of luciferin from the blood to the tumor and from
the tumor to the blood.

For the sake of simplicity, in that part, we note Y ∈ RM×N×T the BLI acquired by the
device described earlier in a hand-drawn ROI around a specific isolated tumor, where Y(x, y, t)
is the number of photons acquired by the pixel (x, y) at the frame t. Let’s note YT (t) the total
photon flux of the tumor, then:

YT (t) =
∑
x,y

Y(x, y, t) (IV.2)

If we are in the context of a mouse bearing several tumors, YT (t) can be obtained thanks
to a BSS algorithm.

This model makes the assumption that, as each cell expresses luciferase, the concentration
of luciferase in a tumor remains constant over the experiment. It also assumes that the level
of other reagents, such as oxygen or ATP, is sufficient to enable the enzymatic reaction of
luciferase with luciferin in the tumor which should, according to [100], follow the Michaelis-
Menten kinetics. The authors of [100] state that since they are in regime where the substrate
concentration is much less than the Michaelis constant Km (which depends on the reaction)
then:
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νYt(t) = dP
dt

= µCt, (IV.3)

where µ is the conversion factor that relates the emitted photon flux P to the concentration
of luciferin and ν is the parameter encoding the signal loss through tissues due to photon
scattering and absorption, described more precisely in Chapter I, under a linear hypothesis.

We first determined in what extent we can apply this model to our data. Even though it
is a strong assumption, we also assumed that all the reagents of the reaction but the luciferin
are present. We know this may not always be true since we have sometimes necrotic or hypoxic
tumors but we did not fine-tune the model to take into account the level of others reagents.

First, since in our case the enzyme concentration in the tumor is much less than the con-
centration of substrate, we have [213]:

dP
dt

= VmaxCt

Km + Ct
= kcatCe(0)Ct

Km + Ct
, (IV.4)

where Vmax is the limiting rate of the enzymatic reaction, meaning the rate approached by
the system at saturating substrate concentration for a given enzyme concentration, Ce(0) is
the initial concentration of enzyme and kcat is called the catalytic rate constant which is the
rate responsible of the formation of the product and the enzyme from the complex enzyme-
substrate [214].

Then, according to [215, 216], we have Km ≈ 1mmol/L. Since the molecular weight of
luciferin is 280mg/mmol [217], we have Km ≈ 0.28mg/mL.

In the experiments of the present thesis the amount of injected luciferin was 2 mg per
mouse via intraperitoneal injection. After injection, the mass of luciferin in blood is about 5%
of the injected mass per mL [218], so about 0.1mg/mL. Since the tumors are usually badly
vascularized tissues according to the estimations of [100], Ct << Cb and therefore Ct << Km,
meaning that the substrate concentration in tumors is much less than the Michaelis constant.

We thus have the following:

dP
dt
≈ kcatCe(0)Ct

Km
, (IV.5)

which justifies the linear model (IV.3).

The work of [100] only relies on the BL signal of the tumors to fit the parameters ka, kel,
Ktrans and kep. They use Ktrans and kep afterwards to quantify the volume of the tumor thanks
to a loglinear regression that yields promising results. However, it is a widely known issue
in others modalities described by PK models that it is necessary to have the concentration of
agent in the blood, usually called Arterial Input Function, to quantify accurately the parameters
Ktrans and kep [115]. This issue is not tackled by [84] either, making the estimation of Ktrans

and kep not robust. Therefore, in this work, we aim at improving the estimation of these PK
parameters.

In the literature, there exists different methods to estimate the AIF in other imaging modal-
ities such as DCE-MRI or PET scan. A first approach consist in sampling blood directly from
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Figure IV.2: Pharmacokinetics model illustrating the exchange of a tracer between the blood
and a Tissue of Interest (TOI) and the blood and a Reference Region (RR).

the subject during the imaging process for later analysis [132, 219–221]. This approach is not
possible for us because the imaging device is a closed box isolated from the exterior environ-
ment. A second type of approaches consists in considering the AIF similar for all subjects, up
to a scaling factor [222–225]. Typically, the AIF is measured as a first step via blood samples
in a small cohort of subject and the resulting average [226] is used as a template AIF in the
estimation of pK parameters [113]. The study of averaging the kinetics of luciferin in blood has
also been made in [218] but it is very limited because it does not take into account the possible
huge variability between the shape of the AIF of different subjects [222]. A third type of ap-
proaches estimates the AIF directly from the imaging data if the blood emits a signal [227,228].
The blood signal can be extracted from the image manually by hand drawing a ROI around
an artery [229] or with automatic methods such as artery segmentation [230] or BSS [231]. In
the context of BLI, this is not possible since the blood does not contain luciferase therefore it
cannot emit any signal. A last type of method frees itself from knowing the AIF by taking
the signal coming from another region in the body, called Reference Region and estimates PK
parameters relative to that Reference Region tissues [115]. In this work, we tried to apply this
method to BLI. Hence, in the following part we present how this approach could be adapted to
the BLI context, how it works and what information can be learned from it.

IV.2 Proposed approach : Quantification with a Reference
Region

IV.2.1 General theory of the model

The Reference Region (RR) model calibrates the signal from the tissue of interest to the signal
coming from another region of the subject body, usually a muscle [115, 232]. This method has
been vastly used in DCE-MRI [233,234], PET scan [235,236] or Dynamic Constrast-Enhanced
Ultrasound (DCE-US) [237].

Let’s then consider this compartmental model illustrated in Figure IV.2, where we can have
access to both the information of CT OI , the concentration of the associated tracer in the Tissue
of Interest (TOI) and CRR the concentration of tracer in the Reference Region.

According to [115], we have:
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dCT OI

dt
= KtransCb − kepCT OI

dCRR

dt
= Ktrans,RRCb − kep,RRCRR

(IV.6)

The objective is to write CT OI as a function of CRR. Then, we first combine these equations
to remove Cb [115]:

dCT OI

dt
+ kepCT OI(t) = Ktrans

Ktrans,RR

dCRR

dt
+ Ktranskep,RR

Ktrans,RR
CRR(t) (IV.7)

Now, let’s consider I = ekept as in [115].

We have:

d(CT OII)
dt

= dCT OI

dt
I + kepV CT OI(t)I = I

(
dCT OI

dt
+ kepCT OI(t)

)
, (IV.8)

which is equal to I multiplied by the left member of (IV.7) [115]. So,

d(CT OII)
dt

= I
(

Ktrans

Ktrans,RR

dCRR

dt
+ Ktranskep,RR

Ktrans,RR
CRR(t)

)
(IV.9)

By integrating I Ktrans
Ktrans,RR

dCRR
dt by parts with CRR(0) = 0, since we are supposed to inject

the tracer at t = 0, we obtain [115]:

CT OII(t) = Ktrans

Ktrans,RR

(
I(t)CRR(t)− kep

∫ t

0
(I(τ))CRR(τ)dτ + kep,RR

∫ t

0
(I(τ))CRR(τ)dτ

)
(IV.10)

By dividing by I(t) = ekept, we end up with the Nonlinear Reference Region Model (NRRM)
[115,120]:

CT OI(t) = Ktrans

Ktrans,RR

(
CRR(t) + (kep,RR − kep)

∫ t

0
CRR(τ)e−kep(t−τ)dτ

)
(IV.11)

Alternatively, we can also integrate (IV.7), and then obtain the Linear Reference Region
Model (LRRM) [120]:

CT OI(t) = Ktrans

Ktrans,RR

(
CRR(t) + kep,RR

∫ t

0
CRR(τ)dτ

)
− kep

∫ t

0
CT OI(τ)dτ (IV.12)

With both models, we can fit the relative parameters Rtrans = Ktrans
Ktrans,RR

and kep to the
available data. The difference between them is that the NRRM uses nonlinear least squares to
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Figure IV.3: Pharmacokinetics model illustrating the exchange of luciferin between the blood
and a tumor and the blood and a Reference Region (RR) in the presence of luciferase and the
associated emissions of photons.

obtain the parameters while we can use a regular linear least squares with the LRRM [120].
According to [238], the parameters estimated with the LRRM contain more valuable quantitative
information than the ones from the NRRM. In the following, we will see how we applied the
LRRM to BLI data.

IV.2.2 Application to BLI

Contrary to subsection IV.2.1, in BLI we don’t exactly have access to the concentration of
luciferin but to the emitted photon flux.

In order to obtain a signal from a reference muscle during a BLI acquisition, an internal
control was used. It consists of an injection of 3µg of recombinant luciferase in 30µL of PBS
into the right cranial tibial muscle of each mouse. For each acquisition, tumor volume was
measured with a caliper by using the ellipsoid approximation of tumors shape [85]. Mice were
either treated with different of Etoposide formulations, Etoposide Nanocrystals (noted ETO in
the following) or with Etoposide/Prednisolone Nanocrystals (noted ETO/PRD in the following)
and one group was not treated and used as control (noted CTR in the following). We explained
more deeply this protocol to obtain mice emitting signal from tumors and muscles in Chapter II.
In total, we have 77 BL images. For each BLI, ROIs were drawn around each tumor and reference
muscle. leading up to a total of 147 tumors and their associated 77 muscles. 52 tumors belong
to the group CTR, 44 to the group ETO and 51 to the group ETO/PRD.

Since the muscle in a limb of a mouse is about 200mg [239], and the density of the muscle is
about 1, it means that the concentration of luciferase in the muscle is about 0.015mg/mL. In
that context, the kinetics are described by the Pharmacokinetics Model illustrated Figure IV.3.
In that model, as in subsection IV.1.2 and in subsection IV.2.1, CT and CRR are the concentra-
tions of luciferin respectively in the tumor and in the Reference Region. The equations (IV.6)
are still describing the exchange in this model by considering CT = CT OI .

According to [218], there is almost constantly about 2% of the injected luciferin per gram
of muscle after an IP injection. Since the density of the muscle is about 1, there is about
0.04mg/mL of luciferin in the muscle. The luciferin is thus in exces compared to the enzyme
and we also have CRR << Km therefore, as explained in subsection IV.1.2, we can assume that
the photon flux in the muscle dPRR

dt is also proportional to the concentration of luciferin in it
CRR:
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dPRR

dt
≈ λRRCRR, (IV.13)

with λRR being a constant that depends on Km, the initial concentration of enzyme in the
muscle and kcat.

By noting dPT
dt ≈ λT CT the photon flux emitted by the tumor, we can then express (IV.12)

as:

PT (t)
λT

= Ktrans

Ktrans,RR

(PRR(t)
λRR

+ kep,RR

∫ t

0

PRR(τ)
λRR

dτ

)
− kep

∫ t

0

PT (τ)
λT

dτ (IV.14)

By noting Rtrans = KtransλT
Ktrans,RRλRR

, we then have:

PT (t) = RtransPRR(t) + KtransλTkep,RR

Ktrans,RRλRR

∫ t

0
PRR(τ)dτ − kep

∫ t

0
PT (τ)dτ (IV.15)

As in [120], we can rewrite (IV.15) as A = Bx by noting A = [PT (t0), . . . ,PT (tf )],

B =


PRR(t0)

∫ t0
0 PRR(τ)dτ −

∫ t0
0 PRR(τ)dτ

PRR(t1)
∫ t1

0 PRR(τ)dτ −
∫ t1

0 PRR(τ)dτ
...

...
...

PRR(tf )
∫ tf

0 PRR(τ)dτ −
∫ tf

0 PRR(τ)dτ

 , (IV.16)

and

x =

 Rtrans
KtransλT kep,RR

Ktrans,RRλRR

kep,

 (IV.17)

and we have to find x. To do that, [120] used the following formula:

x = B†A, (IV.18)

where B† is the pseudo-inverse of B. However, in some hard cases it can output negative
parameters, which is a problem given that all these constants are linked to exchange rates and
so are positive. Therefore, when the result of (IV.18) yields negative coefficients we in fact use a
non-negative linear least-squares (NLLS) algorithm, which is however more costly to compute.

The problem to solve is:

argmin
x

1
2 ||A−Bx||2F + i≥ϵ(x), (IV.19)
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where ϵ is a constant that can be set to 0 or a value strictly greater than 0, depending on
the use case. Here, we want the parameters to be exchange rates, therefore to be non-null, so
we set ϵ > 0.

The proximal of i≥ϵ(.) is :

proxi≥ϵ(.)(x) = [x]ϵ , (IV.20)

where [x]ϵ = max(x, ϵ).

By noting f(x = 1
2 ||A−Bx||2F ), we have ∇f (x) = BT (Bx−A), where ∇f is Lipschitz with

a coefficient of Lipschitz L = ||BT B||s,2 and || · ||s,2 is the largest singular value.

We can now solve (IV.19) with the following Forward-Backward Splitting algorithm [162]:

Algorithm 13 NLLS(A,B,x(0))
Require: Niter > 0, ϵ > 0

for k ≤ Niter do
x(k+1) =

[
x(k) − 1

||BT B||s,2
(BT (Bx−A))

]
ϵ

end for
Return x

Estimations of Rtrans and kep for each tumor can be computed with these methods. [238]
used these relative parameters as features of a classifier to analyze their DCE-MRI images
according to the response of tumors to therapy. In our case, we tested their ability to solve 3
tasks that can be relevant for biologists:

• Classify the tumors according to the group of treatment they belong to based on Rtrans

and kep

• Estimate the tumoral volume based on Rtrans and kep

• Estimate the evolution of tumoral volume, meaning the tumoral volume at the next imag-
ing day based on Rtrans, kep and the tumoral volume at the imaging day.

To follow the work of [238], for the first task we used Gaussian SVM [240]. For the other
2, we used SVR (Gaussian and Linear), as well as basic linear and loglinear regressions. In the
next part, we will test our algorithms.

IV.3 Experiments and Discussion
There are 2 parts in our work : the estimation of relative Pharmacokinetics Parameters and the
quantification of tumors thanks to these parameters.

IV.3.1 Experiments with synthetic data to test the fitting algorithms

In a first step, we evaluated how well the parameters are estimated. To do that, we used the
81 kinetics generated in Chapter II, with the kinetic parameters summarized in Table II.1 and
with the sinusoidal perturbations, illustrated in Figure II.11(d). For the reference region, we
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Rtrans kep

NMSE 0.17± 0.30 0.39± 0.40
Table IV.1: Results of the estimation of the kinetics parameters

Figure IV.4: Extraction of Pharmacokinetics parameters from a BLI image using a Reference
Region. The estimated PK coefficients are used as features for classifiers.

used Ktrans,RR = 0.1 and kep,RR = 1 as in [120]. We also used λRR = λT = 1. For the
NLLS algorithm, we used Niter = 10000 and ϵ = 10−10. The initialization of the parameters is
x(0) = [10, 10, 10].

The metric we used is the NMSE between the estimated parameters and the real ones. We
get the results reported in Table IV.1.

These results show that the algorithm is able to estimate with accuracy the relative kinetic
parameters, especially Rtrans. The estimation of kep is not as good, making a point of possible
improvement. In addition, we did not consider multiple possible values for Ktrans,RR and kep,RR,
and set arbitrarily λT = λRR = 1. Estimating the robustness of the algorithm with respect to
these parameters represents an promising perspective.

In this work, we considered those estimated parameters and we now will see how we can use
them to quantify tumors in BLI.

IV.3.2 Experiments with real data : quantification of tumors

In this part we tested the ability of the estimated relative PK parameters to represent rele-
vant features to quantify tumors as illustrated Figure IV.4. Here, we used empircally x(0) =
[10, 10, 10] to take into account the possible higher variability inter-tumors than in our syn-
thetic dataset. To compare them with the more classical methods of quantifying BLI described
in Chapter I, we tested several other features for our predictors : the average photon flux over
the whole experiment (noted AUC), the average photon flux for 10 minutes, 8 minutes after
the beginning of the experiment (noted AUC10) and the Maximal Photon Emission (noted
PEmax). We did not use the Luminoscore because we don’t have access to the BLI from the
back of the animal and we argued that our pre-processing makes the NBLI irrelevant because
the background noise is null.
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To be fair, we also wanted to find a way to test the PK parameters Ktrans and kep to be
consistant with the work of [100]. As we explained in subsection IV.1.2, it is not possible to
estimate these parameters without the AIF, which we can not get during a BLI experiment.
However, we also mentioned that some works in DCE-MRI or PET measured the AIF in a cohort
of subjects and used the average as an approximation of the AIF to estimate PK parameters.
The work of [218] provides the average on 8 mice of the evolution of luciferin in the blood after
an IP injection. We then also used that theoretical average AIF to estimate Ktrans and kep.
Nevertheless, we are aware that there can be a huge variability in the AIF of the different subjects
which would lead to biased parameters. This represents an interesting point of discussion and
perspectives.

In order to estimate them, the procedure is quite the same as for the Reference Region
parameters. Indeed, if we integrate the first equation of (IV.6), we have the following Linear
Model:

CT (t) = Ktrans

∫ t

0
Cb(τ)dτ − kep

∫ t

0
CT (τ)dτ (IV.21)

Therefore, since the link between the emitted photon flux and the concentration of luciferin
in the tumor is linear, we derive:

PT (t) = KtransλT

∫ t

0
Cb(τ)dτ − kep

∫ t

0
PT (τ)dτ (IV.22)

Hence, by noting A = [PT (t0), . . . ,PT (tf )],

B =


∫ t0

0 Cb(τ)dτ −
∫ t0

0 PRR(τ)dτ∫ t1
0 Cb(τ)dτ −

∫ t1
0 PRR(τ)dτ

...
...∫ tf

0 Cb(τ)dτ −
∫ tf

0 PRR(τ)dτ

 , (IV.23)

and

x =
[
RAIF

trans

kep

]
, (IV.24)

where RAIF
trans = KtransλT we have A = Bx. We can then use the same algorithm as described

in subsection IV.2.2 to estimate x. The only difference is that we used empirically x(0) = [106, 10]
to simplify the NLLS algorithm because the linear factor λT is extremely high [100]. In the
following, we will note kAIF

ep the exchange rate from the tumor to the blood estimated with this
method to avoid confusion with the one estimated from the Reference Region.

Based on the work of [218] in which they measured the concentration of luciferin in the
blood after an IP injection on a cohort a mice and averaged it, the theoretical AIF we used is
the one illustrated in Figure IV.5.
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Figure IV.5: Extraction of Pharmacokinetics parameters from a BLI image using a theoretical
AIF. The estimated PK coefficients are used as features for classifiers.

Predictor Balanced Accuracy Cohen’s Kappa
Rtrans 0.39± 0.08 0.08± 0.11
kep 0.41 ± 0.05 0.12± 0.08
AUC 0.30± 0.08 −0.05± 0.12
AUC10 0.28± 0.07 −0.08± 0.10
PEmax 0.31± 0.05 −0.03± 0.08
Rtrans + kep 0.41 ± 0.05 0.12 ± 0.07
RAIF

trans 0.29± 0.03 −0.06± 0.05
kAIF

ep 0.32± 0.02 −0.01± 0.03
RAIF

trans + kAIF
ep 0.30± 0.03 −0.05± 0.05

Table IV.2: Performance metrics for the predictive models generated with the PK parameters
and the classical features extracted from BLI.

IV.3.2.1 Classification of tumors

First, we checked if the estimated relative pharmacokinetics parameters can be relevant features
to classify tumors according to their treatment. This could be useful for biologists, as it would
mean that we can extract physiological information from the tumor, which is different from
the usual tumor volume, directly from the BLI. This information takes into account tumor
hemodynamics and the specific exchanges between the tumor and its environment.

We used Gaussian SVMs, as in [238], with an empirical kernel coefficient γ = 100 and a one-
vs-rest decision function, with a 5-fold cross validation scheme. As metrics, we used as in [238]
the Balanced Accuracy and the Cohen’s Kappa metric (that quantifies the level of agreement
during the cross validation). We reported the results on the dataset presented in Chapter II in
Table IV.2.

These results show that these estimated relative parameters are more relevant features for
classification of tumors according to their associated treatment than the other features usu-
ally derived from BLI. Indeed, all the other predictors have a balanced accuracy of about 1

3 ,
which would be the score of a random classifier and the Cohen’s Kappa metric show that their
associated cross validated classifiers strongly disagree. In particular, we note that the PK pa-
rameters estimated with the theorical AIF did not perform better than the other predictors.
The variability inter-subjects of the AIF can explain why the algorithm did not always output
the same estimation for kep with the Reference Region and with the theoretical AIF as illus-
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Kernel Predictor NMSE R2

Gaussian

Rtrans 2.4± 0.58 −0.11± 0.15
kep 2.9± 0.78 −0.14± 0.14
AUC 2.2± 0.77 −0.09± 0.15
AUC10 2.1± 0.73 −0.09± 0.16
PEmax 2.2± 0.77 −0.10± 0.15
Rtrans + kep 2.6± 0.65 −0.12± 0.15
RAIF

trans 2.8± 0.71 −0.17± 0.14
kAIF

ep 2.0± 0.62 −0.07± 0.17
RAIF

trans + kAIF
ep 2.5± 0.72 −0.13± 0.16

Linear

Rtrans 2.4± 0.59 −0.12± 0.13
kep 3.4± 1.2 −0.12± 0.24
AUC 2.4± 0.67 0.09± 0.16
AUC10 2.4± 0.62 0.10 ± 0.15
PEmax 2.4± 0.69 0.05± 0.15
Rtrans + kep 2.8± 0.92 −0.10± 0.13
RAIF

trans 2.5± 0.66 −0.16± 0.15
kAIF

ep 1.5± 0.48 0.03± 0.18
RAIF

trans + kAIF
ep 1.3 ± 0.35 0.06± 0.19

Table IV.3: Performance metrics for the regression models generated with the PK parameters
and the classical features extracted from BLI.

trated in Figure IV.7, even though they should be the same. The predictor using Rtrans and
kep performs the best, which means that physiological information about the tumor exchange
rates with the blood seems to be obtainable with the BLI using a Reference Region and that it
is in a way representative of the treatment used on the tumor. This is illustrated in Figure IV.6
that displays the evolution of the average relative parameters for each group. In that figure,
we can see that the Rtrans in the group treated with ETO seems to have a distinct strong
growth whereas the kep of the control group looks higher for the treated groups. This would
mean that the tumors treated with ETO take more luciferin from the blood day after day and
that the control tumors return more luciferin to the blood than treated tumors. Overall, there
seems to be distinct patterns in the evolution of these relative PK parameters, even if this has
to be further tested and validated with other experiment. However, the metrics are far from
perfect, meaning that there is still a lot of improvement possible in quantifying physiological
information of the tumors with BLI to classify them according to their treatment.

IV.3.2.2 Estimation of tumoral volume

a) Estimation of the tumoral volume based only on the PK parameters

We tested if we would be able to evaluate the tumoral volume thanks to the PK parameters we
estimated, since it is the quantitative information usually estimated with BLI.

To do that, we used Gaussian SVRs with a kernel coefficient γ = 100 with a 5-fold cross
validation scheme to be consistent with the classification task. However, since the relationship
is supposed to be linear between the photon flux and the tumoral volume, we also tested Linear
SVR with the same hyperparameters. As metrics, we used the NMSE and the coefficient of
determination R2. We also tested and evaluated the Pearson correlation coefficient between the
estimated parameters and the tumoral volume (noted pearson), and between the logarithm of
the parameters and the logarithm of the volume to be consistant with [100] (noted pearsonlog).
We reported the results on our dataset in Table IV.3 and Table IV.4.

Table IV.3 shows that it is difficult to estimate precisely the tumor volume with the features
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Figure IV.6: Evolution of relative parameters per group of treatment. For each time day are
displayed the average relative parameters for each group and its standard deviation.

extracted by BLI. More precisely, the relative parameters Rtrans and kep do not perform better as
predictors for this task than any of the previous way of quantifying BLI. It is however interesting
to note that the Linear Predictor using both RAIF

trans and kAIF
ep is the one that performs better.

An interpretation of why it works better than the relative parameters despite the inter subjects
variability is that kAIF

ep may encode different information than kep, which can be explained by
the simplicity of our model that uses only 2 compartments for describing the interaction of
luciferin and luciferase in the tissues and that can induce biases. Table IV.4 shows that kAIF

ep

seems to indeed encode a feature negatively correlated with the tumoral volume, which could
explain why the Linear SVR using it performs somehow better than the others. Table IV.4
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Figure IV.7: Estimation of Pharmacokinetics parameters with the Reference Region and with
the Theoretical AIF yields different results for kep.

Predictor pearson(pvalue) pearsonlog(pvalue)
Rtrans 0.35(1× 10−4) 0.20(0.03)
kep −0.15(0.11) −0.22(0.02)
AUC 0.56(3× 10−10) 0.52(6× 10−9)
AUC10 0.54(1× 10−9) 0.54(1× 10−9)
PEmax 0.50(2× 10−8) 0.49(3× 108)
RAIF

trans 0.13(0.16) 0.14(0.14)
kAIF

ep −0.46(3× 10−7) −0.34(3× 104)

Table IV.4: Performance metrics for the predictive models generated with the PK parameters
and the classical features extracted from BLI.

also shows that even the standard quantification methods only have moderate correlation with
the tumoral volume although the highest one is obtained with AUC, which seems natural.
This reflects the widely discussed BLI quantification issues [57, 72, 96, 98, 105–108]. Table IV.4
however does not on show any particular polynomial relationship between kAIF

ep , RAIF
trans or kep

and the tumoral volume as was suggested in [100].

b) Estimation of the evolution of the tumoral volume based on the PK parameters
and the current volume

We finally tested if the PK parameters we estimated and the measured tumoral volume at a
day D were able to predict the tumoral volume at day D + 2 (next imaging day). We then
removed from the dataset presented in Chapter II the images of the last day of experiments, and
were left with 111 tumors. We used Gaussian and Linear SVRs with the same hyperparameters
as previously (kernel coefficient γ = 100 with a 5-fold cross validation scheme) and the same
metrics NMSE and R2. We reported the results in Table IV.5.
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Kernel Predictor NMSE R2

Gaussian

Rtrans 1.3± 0.49 −0.12± 0.14
kep 1.4± 0.52 −0.14± 0.14
AUC 1.3± 0.47 −0.13± 0.14
AUC10 1.3± 0.51 −0.13± 0.14
PEmax 1.3± 0.48 −0.14± 0.14
Rtrans + kep 1.4± 0.51 −0.14± 0.14
RAIF

trans 1.4± 0.53 −0.15± 0.14
kAIF

ep 1.3± 0.46 −0.12± 0.14
RAIF

trans + kAIF
ep 1.4± 0.53 −0.15± 0.13

Linear

Rtrans 0.83± 0.31 −0.12± 0.11
kep 0.95± 0.28 −0.11± 0.13
AUC 0.75± 0.27 0.10 ± 0.09
AUC10 0.76± 0.25 0.09± 0.07
PEmax 0.61± 0.14 0.07± 0.11
Rtrans + kep 0.89± 0.29 −0.08± 0.13
RAIF

trans 0.70± 0.28 −0.12± 0.16
kAIF

ep 0.55± 0.13 0.03± 0.13
RAIF

trans + kAIF
ep 0.47 ± 0.10 0.09± 0.15

Table IV.5: Performance metrics for the regression models generated with the PK parameters
and the classical features extracted from BLI to estimate the tumoral volume at the next imaging
day.

Table IV.5 shows that is seems easier to estimate the evolution of tumor volume than the
current volume, knowing the current pharmacokinetics parameters. As before, the model that
performs the best is the one using both parameters RAIF

trans and kAIF
ep . The interpretation here too

is that maybe the simplicity of the model induces biases that make the parameters extracted
with the reference region and the theoretical AIF encoding different informations. Overall,
these results seem to show that it should be possible to estimate the tumoral volume at the
next imaging day with the current volume and the PK parameters estimated from a theoretical
AIF. It would be useful for biologists to better anticipate the growth of the animal’s tumors and
thus the times of sacrifice since the animals are sacrificed when the tumors become too large,
which was not possible with the previous ways of quantifying BLI.

To conclude, this method provided encouraging results showing that the pharmacokinetics
model could improve the quantification of BLI. The relative parameters extracted from the
Reference Region seem to be representative of the tumor treatment and the parameters extracted
from a theoretical AIF seem to be linked to the evolution of the tumoral volume. Although
we tried to explain it by some biases induced by the simplicity of our model, it is not yet
clear why the parameters generated with the reference region are not always similar to those
generated with the theoretical AIF. More experiments have to be conducted to better validate
these results and make them more robust. New experiments could include a comparison of
reconstruction performances between the Reference Region based approach and the theoretical
AIF based approach, as well as an exhaustive display of the evolution of the different parameters
involved as in Figure IV.6.

Better modeling the relationship between photon flux and luciferin concentration could also
help to enhance the model. Some prospects to achieve that are: adding compartements or
taking into account others reagents necessary to the reaction (such as oxygen) with for instance
dedicaded probes, accurately estimating the parameters related to the Michaelis-Menten kinet-
ics (see (IV.13)), modeling the interactions between the photons and their environment [100],
and differentiating quantity and concentration of substrate. This study has to be done jointly
with a deeper analysis of the kinetics and their variability, since their oscillating pattern, pos-
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sibly induced by physiological (such as respiratory movements [116]) or technical constraints
(such as the pre-processing, see Chapter II), is a key factor that complicates the quantification
process. One interesting observation is that, as displayed in Figure IV.4 and Figure IV.6, the
Reference Regions kinetics seems less oscillating than the tumors kinetics. The robustness of
the quantification with regard to the choice of Reference Region has also to be measured.

In the objective of a robust quantification of the tumor state, we could introduce another
physiological indicator with the notion of distribution volume [132].

From a more methodological point of view, the fitting algorithm can be improved by inte-
grating prior knowledge or adapted constraints. Finally, this quantification process could be
applied on the results of the Blind Source Separation algorithms described in Chapter III to
have a complete pipeline of automatic tumor state quantification for BLI.



Chapter V

Conclusion and Perspectives

V.1 Thesis summary

Bioluminescence Imaging is an imaging modality based on the emission of photons by a living
tissue during a biological reaction called bioluminescence, that does not require any exciting
light. This reaction is usually induced by the presence in a tissue of an enzyme, the luciferase,
that oxidizes a substrate, called luciferin, in the presence of other reagents like ATP, oxygen or
magnesium, resulting in the emission of photons from within the tissue. It has many applications
in biomedical resarch, like in preclinical oncology where it is used to estimate non-invasively
tumoral volumes.

In this work, we provided valuable insights for improving the robustness of analysis of BLI
in this context. We indeed showed that BLI has many biases, starting with the input of the user
who has to manually draw a Region of Interest around each tumor, which can be troublesome
and lead to tumors not being correctly quantified. We then proposed a model to automatically
separate the photon flux emitted by different tumors present within the same BLI thanks to
Blind Source Separation algorithms. To our knowledge, this is the first work that applies Blind
Source Separation methods to BLI. We first described the data as a Linear Mixing Model
and applied non-negativity constraint to be consistent with photon counting, formulating a
Non-Negative Matrix Factorization (NMF). The first results we obtained showed strong spatial
mixtures of the tumors. Therefore, we added in our model several prior informations to better
separate the tumors. In a first contribution, we showed that adding a sparsity constraint on
the sources was able to improve the spatial separation by enforcing as many pixels as possible
to be null. This constraint was weighted by hyperparameters set automatically with a fixed
point argument. This sparsity constraint led the cost function to optimize to be non-smooth
and non-convex, and required to use dedicated optimization algorithms.

In a second contribution, we showed that our sources are in fact not really sparse in the direct
domain leading to some artifact pixels in the outputs of the source separation algorithms. We
therefore adapted our previous algorithm to enforce them to be sparse in the wavelet domain.
This improved the spatial consistence of the sources estimated with the algorithm because it
encouraged the neighboring pixels to share the same value, at different scales.

We next tackled the fact that this algorithm sometimes create halos around isolated pixels,
because of intra-tumoral pixel kinetics variability. A last contribution to our model is thus
to take that variability into account. We have shown that pixels belonging to the same tu-
mor essentially share the same general temporal patterns up to a temporal warping defined as
a diffeomorphism. In our model, as a preprocessing step before our NMF algorithms, pixels
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belonging to a single tumor are thus grouped together using a watershed algorithm, then syn-
chronized with an algorithm for aligning their kinetics. These algorithms have been tested and
validated on two real BLI datasets and on one synthetic dataset generated with our proposed
framework. To simulate BLIs, we generated parametric maps and kinetics using a pharmacoki-
netics model, which were degraded by adding variability to make the resulting images more
realistic. To our knowledge, this is the first BLI simulator able to generate spatio-temporal
images of tumors. Another limitating factor of BLI is its lack of reproductibility and robustness
in the quantification of tumor state, which is the last challenge we tackled in this work.

In preclinical BLI, the tumoral state is usually quantified with the average photon flux
emitted by the tumor, which is supposed to be correlated to the tumoral volume. Poor repro-
ductibility results in a lack of confidence in the experiments involving tumoral quantification
with BLI. In a last contribution, we showed how a pharmacokinetics model can help to improve
the quantification of BLI. The biologists we are working with injected luciferase, the enzyme
responsible for the bioluminescence reaction, in a muscle that helped to calibrate the signal com-
ing from the tumor. We then proposed a linear reference region model of BLI and extracted
relative pharmacokinetics parameters from the bioluminescent signals. We tested the ability of
these parameters to quantify tumor state and compared them with other more usual ways of
BLI quantification. These experiments provided interesting results showing that these relative
parameters, and thus the exchange rates of luciferin between the tumor and the blood, seemed
to represent significant features of the treatments received by the mice. However, the pharma-
cokinetics parameters obtained with a theoretical knowledge of the concentration of luciferin
in the blood (AIF) yielded better results for the estimation of the tumoral volume. Overall,
the results obtained by our pharmacokinetic model have shown encouraging results that could
improve the quantification of BLI.

V.2 Perpectives

Although they give promising results as shown, our blind sources separation algorithms still
present several limitations. They are iterative optimization algorithms and, as such, they do not
need any training and are unsupervised. However, the computing time necessary for processing
a new BLI is quite high compared to newer algorithms using Deep Learning, which after training
have a low inference time and can in addition extract more complex features from the images
to separate the photon flux. It would be possible to formulate our iterative algorithm as an
unrolling problem [153] or to use a neural network that would provide an optimized constraint
[154]. Also, the ℓ2 loss is not robust enough to intensity imbalance, causing the algorithm to
yield poor results in the case of strongly imbalanced tumors within the same BLI. We can use a
normalization, such as a log transform, to compensate for this imbalance but this could lead to
pixels with very low SNR to have an excessive importance in the optimization scheme, leading
to badly estimated source kinetics. Hence, in this setting, it would then be of a great importance
to take into account the remaining variability in our model, for instance by using a perturbated
linear mixing model [122]. In any case, the robustness of our algorithm to the magnitude of the
variability should be challenged, thanks to our data simulator.

In addition, kinetics estimation has been somewhat impaired, probably because not all ki-
netics were pre-aligned during the pre-processing step, even though the strong improvement in
spatial separation compensates for this loss overall. Computing it directly in the optimization
pipeline could lead to better results as it would also be applied to the pixels belonging to several
tumors, which is not possible currently. The principal limitation to integrate it in the optimiza-
tion pipeline is that it is not straightforward to obtain an explicit proximal of the indicator
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function of the space of diffeomorphisms. To overcome that hurdle, we propose for future work
to restrict the optimized time-warping functions to a specific family of diffeomorphisms defined
by a few coefficients, as the polynomial functions with strictly positive coefficients. This family
seems generalizable enough to cover the space of diffeomorphisms we need and we can optimize
the warping functions with only a few coefficients by enforcing a non-negativity constraint on
them, which would limit the complexity of the algorithm.

In this work we also chose to work with the ℓ2 distance in the data fidelity terms for our
optimization settings, which can be applied to our data only after having pre-processed them
to remove the Poisson noise and most of the additive noise. Another perspective for our work
would be to use a loss adapted to our raw data, such as the Kullback-Leibler divergence that
acts as a maximum likelihood when the sources are corrupted with a Poisson noise [159]. A
problem would be to tackle the non-differentiability of the Kullback-Leibler divergence at 0.

A possible enhancement to our work would be to automatically determine the number of
sources in the image. This is a vast issue in most of blind sources separation algorithms and we
could use criteria such as the Akaike information criterion (AIC) and the Bayesian information
criterion (BIC) [138]. It could also maybe enable us to identify heterogeneous areas in the
tumors.

An interesting applicative perspective of this work on blind source separation would be to
apply our algorithms on FLI data to monitor longitudinally the activity on tumors during several
days. This could be useful, as the excitation light in the FLI causes a strong superposition of
signals, thus making the quantification more difficult. This idea can lead to several interesting
challenges, such as image registration issues to compensate the evolution of position due to the
longitudinal nature of the data.

The pharmacokinetics model we propose showed promising results but it needs to be further
validated with other experiments, that must also test the quality of the reconstruction, the
evolution of all the parameters involved and the robustness of the quantification with respect
to the choice of Reference Region. New data could confirm the significance of the extracted
features. They would potentially help to explain the differences seen between the parameters
calibrated with a reference region and the ones calibrated with the theoretical AIF. This could
be carried out in conjunction with an enhancement of the model used to more precisely explain
the interaction with luciferin and the other reagents necessary to the bioluminesence reaction.
Oxygen is for instance a crucial part of the reaction since the necrotic or hypoxic parts of
the tumors do not emit any light [57, 72]. We can maybe use specific probes to quantify
the concentration of oxygen and extend the model to take it into account, for instance by
leveraging the work of [110] that models its influence on bioluminescence. We could also follow
the idea of [84] and add a compartment to simulate the metabolism of the luciferin. This new
compartement is supposed to model the potential loss of luciferin in the tumor due possibly to
high extracellular pressure and degenerated vascularity in tumors. All these ideas, as well as
an accurate estimation of the parameters related to the Michaelis-Menten kinetics and of the
interactions between the photons and their environment [100], would improve our model of the
relationship between the photon flux and luciferin quantity, which in future works will have to
be differentiated from the concentration currently considered. In the scope of enhancing the
quantification of tumor state, another relevant perspective is the introduction of the notion of
distribution volume [132].

This pharmacokinetics model could also be used directly in the optimization process to have
a joint estimation of both the source separation and the kinetics parameters. However, a more
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direct way to have a complete automatic tumor state quantification pipeline for BLI would be
to apply our quantification method to the blind source separation results.

A general perspective among of our work, shared by the different projects, is that our analysis
would benefit from a deeper understanding of the kinetics and their variability: it could lead
to better source separation and more robust tumor quantification, and it would enable us to
improve the synthetic BLI generation framework we proposed to simulate more realistic images.
We identified physiological constraints, such as tumor vascularization, and technical constraints,
such as the applied pre-processing, that should be studied in that goal.

We could also extract more precise PK parameters by improving the non-negative least
squares algorithm. Adding new information to this model can help to achieve this objective,
since it removes degrees of freedom. The fitting algorithm could also benefit from the knowledge
of the physiological amplitudes of the exchange rates to constrain them in a specific range as
done in [120].

Finally, it would be desirable for biologists if the tools we have developed could be integrated
into a GUI. The most direct way seems to be to wrap the python code we developed and
its associated dependencies into a module. This would enable to manually or automatically
draw ROIs around mice (for the blind source separation algorithms) or around tumors (for the
quantification algorithms) and launch the processes. This could be integrated in frameworks
able to read BLI as M3Vision (the one of BiospaceLab, our industrial collaborator in this work)
or Icy [241].
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