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Résumé

Les données personnelles sont de plus en plus diffusées sur le web par l’intermédiaire

d’appareils mobiles et d’environnements intelligents, et sont exploitées pour dévelo-

pper des services et des applications de plus en plus sophistiqués. Toutes ces

avancées s’accompagnent de risques sérieux d’atteintes à la vie privée qui peuvent

révéler des informations privées que les producteurs de données souhaitaient ne

pas divulguer. Il est donc de la plus haute importance d’aider les producteurs de

données à identifier les risques d’atteinte à la vie privée soulevés par les demandes

des fournisseurs de services à des fins utilitaires.

Dans cette thèse, nous abordons le problème de la préservation de la vie privée en

fonction de l’utilité dans le cadre d’applications où les fournisseurs de services de-

mandent la collecte de données auprès des producteurs de données afin d’effectuer

des analyses de données agrégées à des fins d’optimisation ou de recommandation.

Tout d’abord, nous traitons l’aspect temporel dans la définition de la vie privée et

de l’utilité en exprimant les requêtes de vie privée et d’utilité sous forme de requêtes

conjonctives agrégées temporelles. La prise en compte de l’aspect temporel pour

la protection de la vie privée est très importante car de nombreuses applications

traitent des données dynamiques (par exemple, la consommation d’électricité, les

séries chronologiques, les données de mobilité) pour lesquelles les données tem-

porelles sont considérées comme sensibles et les agrégats temporels sont importants

pour l’analyse des données. Ensuite, nous formalisons les risques d’atteinte à la

vie privée par des demandes exprimées (et gardées secrètes) par chaque produc-

teur de données pour spécifier les données qu’il ne souhaite pas divulguer et nous

développons un cadre formel pour détecter les risques d’atteinte à la vie privée.

Dans notre cadre formel, nous fournissons la caractérisation des risques pour la vie

privée uniquement sur la base des expressions de requête et donc indépendamment

des données.
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Nous étendons le cadre formel en prenant en compte les connaissances ontologiques,

qui aident les producteurs de données à comprendre les risques détectés pour la vie

privée grâce aux explications élaborées pour chaque risque détecté. En outre, notre

cadre fournit également plusieurs options pour modifier les requêtes d’utilité afin

d’éliminer les risques de confidentialité détectés et ces requêtes d’utilité modifiées

peuvent être envoyées aux fournisseurs de services comme base de négociation.

Dans cette thèse, nous développons également une interface interactive conviviale

au-dessus de la mise en œuvre du cadre formel indépendant des données.Elle aide

les producteurs de données à gérer la tension entre les risques pour la vie privée

et l’utilité des données qu’ils acceptent de publier.Il fournit un environnement

convivial pour détecter et comprendre les risques pour la vie privée et facilite la

modification des requêtes d’utilité pour éliminer les risques détectés pour la vie

privée. Pour évaluer la facilité d’utilisation pratique et l’efficacité de l’interface,

une étude utilisateur est menée sur un scénario de compteur intelligent inspiré

d’un cas d’utilisation réel.



Abstract

Personal data are increasingly disseminated over the Web through mobile devices

and smart environments, and are exploited for developing more and more sophis-

ticated services and applications. All these advances come with serious risks for

privacy breaches that may reveal private information wanted to remain undisclosed

by data producers. It is therefore of utmost importance to help the data producers

in identifying privacy risks raised by the requests of service providers for utility

purposes.

In this thesis, we approach the problem of utility-aware privacy preservation in

the setting of applications where service providers request collecting data from

data producers in order to perform aggregate data analytics for optimization or

recommendation purposes. First, we handle the temporal aspect in the defini-

tion of privacy and utility by expressing privacy and utility queries as temporal

aggregated conjunctive queries. Taking into account the temporal aspect for pri-

vacy protection is very important since many applications handle dynamic data

(e.g., electrical consumption, time series, mobility data) for which temporal data

are considered sensitive and aggregates on time are important for data analytics.

Then we, formalize privacy risks by privacy queries expressed (and kept secret) by

each data producer to specify the data they do not want to disclose and develop a

formal framework for detecting privacy risks. In our formal framework, we provide

the characterization of privacy risks solely based on the query expressions and thus

independent of the data.

We extend the formal framework by taking into account ontological knowledge,

which helps the data producers in understanding the detected privacy risks through

the explanations constructed for each detected privacy risk. Moreover, our frame-

work also provides several options for modifying the utility queries in order to

remove the detected privacy risks and these modified utility queries can be sent to

v
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the service providers as a basis for negotiation.

In this thesis, we also develop an interactive user-friendly interface on top of the

implementation of the formal data-independent framework. It helps the data pro-

ducers in managing the tension between the privacy risks and the utility of the

data they accept to publish. It provides a user-friendly environment for detecting

and understanding the privacy risks and facilitates in modifying the utility queries

to remove the detected privacy risks. To evaluate the practical usability and effec-

tiveness of the interface, a user study is conducted that focuses on a smart meter

scenario inspired by a real-world use case.
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Chapter 1

Introduction

After proving the efficacy of Semantic Web Technologies in various domains such

as finance [CLS09], business [TPC03; Hep08], medicine [Pis04], and e-learning

[IMa13] it is now being considered as the future of Internet of Things (IoT). Cur-

rent research efforts aim to incorporate Semantic Web capabilities into the Web

of Things (WoT), resulting in the development of the Semantic Web of Things

(SWoT), an enhancement of the WoT that utilizes Semantic Web technologies

and principles to improve the IoT [GPa17]. Several authors have contributed to

this area, addressing issues such as data integration, data storage, interoperabil-

ity, data access, scalability, semantic reasoning and interpretation [BWa12; SS15;

TSH09; SW16]. In addition, some authors [GP17; CGa10] have also presented the

IoT-related issues that can be resolved with the evolution of SWoT.

The Internet of Things (IoT) has brought forth an unprecedented level of techno-

logical, medical, and social advancement to our daily lives. IoT applications range

from smart objects interacting through embedded sensors in homes (such as smart

thermostats, smart locks, and smart televisions), cities (such as smart buildings,

smart grids, and smart traffic systems) and wearables (such as smart watches,

smart rings and smart glasses). However, as we move towards a smarter world

through IoT, we are simultaneously entering an era of immense data collection

related to our interactions with sensory devices in our daily lives [BRa17]. One

of the major challenges that arises is the integration and interoperability of the

data collected from various IoT devices, which can be addressed using Semantic

Web technologies such as ontologies, semantic annotation, Linked Open Data and

1



2 CHAPTER 1. INTRODUCTION

Semantic Web services. Ontologies provide a shared understanding of a domain of

knowledge, enabling humans and machines to communicate [Qas+23]. Currently,

over 550 ontology-based projects for IoT have been developed and are available

in the Linked Open Vocabularies for the Internet of Things (LOV4IoT) ontology

catalogue1.

The use of Semantic Web technologies in the context of the IoT presents numer-

ous research challenges and while attaining all the challenges, it is imperative to

consider the privacy of the data being utilized. Personal data are increasingly

disseminated over the internet through mobile devices and smart environments,

and are exploited for developing more and more sophisticated services and appli-

cations. All these advances come with serious risks for privacy breaches that may

reveal private information wanted by users to remain undisclosed. It is therefore

of utmost importance to help data producers to keep the control on their data for

their privacy protection while preserving the utility of disclosed data for service

providers.

The goal of this thesis is to provide a utility-aware privacy preserving framework for

detecting privacy risks and to help data producers in understanding and removing

privacy risks when exchanging data in the Semantic Web of Things.

In this thesis, to attain the above mentioned goal, we consider the setting of

applications where service providers (data consumers) perform data analytics on

data concerning their customers for optimization or recommendation purposes. In

such settings, data from sensors are gathered, abstracted and transferred through

internet protocols from data producers environment (e.g., smart home, smart per-

sonal devices) to a centralized data consumer in charge of aggregating data for

conducting varied analytic tasks.

Sensitive data leakage can occur at different stages and places due to security

vulnerabilities of (i) the network, (ii) the centralized server used by the data

consumer for collecting data outsourced by the different data producers, and (iii)

the local servers of each data producer.

Following the vision of [All+10], we propose, first, to rely on data encryption to

secure data exchange through the network and, second, to avoid the privacy risks of

data centralization by keeping the data produced by each data owner decentralized

in secure personal data servers.

1https://lov4iot.appspot.com/?p=ontologies/

https://lov4iot.appspot.com/?p=ontologies/
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The setting that we propose is illustrated in Figure 1.1 and can be summarized as

follows:

- The data producers keep the control on their data and have the choice to transmit

their data to data consumer according to their own privacy policy (a set of privacy

queries). The privacy policies are specific to each data producer that specifies the

local data they do not want to disclose.

- The data consumer express the data needs by his/her utility policy (a set of

utility queries) and explain for which task or service s/he requests data from data

producers.

- Privacy risks are detected by evaluating the query expressions of privacy and

utility queries on the data producer’s side. Detected privacy risks come with

explanations to help data producers understand the privacy risks associated with

their data. Based on the explanations of detected privacy risks, the data producer

is provided with several options to remove the detected privacy risks and is guided

to propose new utility queries that can be sent to the data consumer as a basis for

negotiation.

Figure 1.1: General setting

This chapter is structured as follows. Section 1.1 presents the contributions of this

thesis. Section 1.2 presents the organization of this thesis manuscript.
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1.1 Thesis contributions

The main contributions of this thesis can be summarized as follows:

• For detecting privacy risks raised by the utility policy, our contribution is

threefold. First, by extending the framework proposed in [DBa18], we formal-

ize privacy and utility policies as temporal aggregated conjunctive queries.

Second, we formally define and characterize privacy risks based on the query

expressions of privacy and utility queries and thus independently of the data.

Third, considering the characterization of each privacy risk and its proof, we

design and implement algorithms for detecting privacy risks. The results of

this part of the thesis have been published in the proceedings of the 37th

Conference on Data Management- Principles Technologies and Applications

(BDA 2021) [ABR21] and in the proceedings of the 23rd International Con-

ference on Web Information Systems Engineering (WISE 2022) [ABR22].

• To help data producers in understanding the privacy risks, factual expla-

nation for each privacy risk is constructed along with several options for

negotiating the utility queries in order to remove the privacy risks associated

to their data. We also developed PrivEx, an interactive user-friendly inter-

face on top of the implementation of the formal results presented in [ABR22].

PrivEx provides several types of support to data producers in managing the

tension between the privacy risks and the utility of the data they accept to

publish. First, it presents in an interpretable form the requests of a service

provider for utility purpose. Second, it provides a form-based interface for

guiding data producers in construction of privacy queries. Third, it detects

the privacy risks and explains each privacy risk through example. Last, it

provides several options for negotiating the utility queries to remove the de-

tected privacy risks. The results of this part of the thesis have been published

in the demo proceedings of the ESWC 2023 conference [ABR23].

1.2 Thesis organization

This thesis is organized into the following chapters. Chapter 2 presents the existing

literature, research, and advancements relevant to the scope of this thesis. Chap-

ter 3 presents the main definitions and standards on which this thesis is based.

Chapter 4 presents the characterization and detection of privacy risks by evaluat-

ing privacy and utility policies. Chapter 5 presents our approach for helping data
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producers in understanding and removing the detected privacy risks. Chapter 6

concludes the results of our thesis and presents future research directions.





Chapter 2

State of the art

Over the past few decades, there has been a notable increase in privacy attacks tar-

geting the extraction of sensitive information from protected data, as documented

in a comprehensive survey [Dwo+17]. These privacy attacks present substantial

risks to disclosing sensitive information about an individual, even when the data is

anonymized or protected. Considering these evolving threats, it becomes evident

that there is a need for new data privacy preserving approaches to safeguard indi-

viduals’ information. In this chapter, we will address certain limitations of existing

data privacy preserving approaches to emphasis the importance of our proposed

approach.

In this thesis, we introduce a privacy preserving approach that is designed for use

in the context of SWoT and is appropriate for the protection of temporal RDF

data. First, in Section 2.1, we will focus on notable privacy preserving methods

intended to protect personal data within the context of RDF and Linked Data.

In Section 2.2, we will focus on notable privacy preserving methods intended to

protect personal data within the context of IoT or connected environments such

as smart grids, homes and cities. In Section 2.3, we will present the connection

between our proposed framework and existing methods. It would be exhaustive to

provide a review of all existing data privacy-preserving approaches in the aforemen-

tioned context. Therefore, we will primarily focus on discussing some prominent

existing methods.

7



8 CHAPTER 2. STATE OF THE ART

2.1 Privacy preserving methods for RDF and

Linked Data

In Section 2.1.1, we will provide an overview of anonymization methods for RDF

and Linked Data. In Section 2.1.2, we will focus on access control methods, which

play an important role in ensuring data privacy in the context of RDF and Linked

Data. In Section 2.1.3, we will present encryption methods for the protection of

RDF and Linked Data.

2.1.1 Anonymization methods

To the best of our knowledge, existing methods in the context of RDF data

anonymization are limited. In [RGP15], researchers mainly applied generalization

and suppression operations. Furhermore, in works such as [HHD17], specific areas

or neighborhoods are defined where anonymization properties like k-anonymity are

satisfied. In these papers the researchers simplify and anonymize RDF structures

by reducing them to micro-data, thereby handling a vast amount of information

encompassing heterogeneous nodes and relations. However, when dealing with

RDF datasets containing thousands of diverse resources, the current solutions

prove inadequate due to the use of greedy algorithms to generate all possible so-

lutions (anonymous RDF) and subsequently evaluate and select the most suitable

one. Given that RDF data can sometimes be transformed into structured data re-

sembling databases, database anonymization techniques could also be considered.

While these methods can manage smaller RDF datasets effectively, they may re-

sult in significant semantic information loss (properties), particularly in the case

of big RDF datasets, when simplifying their complexity into structured models.

In [Aro13] and [SLa17], the authors proposed differential privacy based solutions

for the preservation of Linked Data. Differential privacy does not align perfectly

with Linked Data, as it places a stronger emphasis on preserving statistical in-

tegrity rather than ensuring accurate and qualitative query results. The primary

utility of Linked Data typically revolves around qualitative query results, espe-

cially when accessed through SPARQL endpoints. While differential privacy serves

a valuable purpose in scenarios where aggregated data analysis results, such as

statistics regarding groups of individuals, can be safely disclosed, its application

falls short in Privacy-Preserving Data Publishing (PPDP) contexts. In PPDP, the

paramount goal is to safeguard individuals’ privacy while still making the published
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data practically usable. While the foundational principles of PPDP, particularly

anonymization, have been extensively studied for relational data (as exemplified

in [FWa10] with a comprehensive survey), the theoretical groundwork for PPDP

within the Linked Data context has only been laid out in [GK16] and [GK19].

These works primarily focus on the examination of computational complexity in

the context of PPDP for Linked Data.

In [DBa18], a query-based approach for preserving the privacy of RDF data pub-

lishing has been presented. The primary focus of this approach is to check the

compatibility between a privacy policy and a utility policy, both of which are spec-

ified as queries. Additionally, the aim is to create anonymizations that preserve

the answers to a set of utility queries (when compatibility is satisfied). However,

this approach has a vulnerability when it comes to safeguarding against privacy

breaches resulting from linking external datasets, which is a common occurrence in

the Linked Open Data (LOD) environment. They developed safe anonymizations

of an RDF graph to ensure that linking the anonymized graph with any exter-

nal RDF graph would not result in privacy breaches. By taking a set of privacy

queries as input, they provided a data-independent safety solution along with the

necessary sequence of anonymization operations to enforce it. Nevertheless, it’s

worth noting that this approach has limitations. It cannot support automatic syn-

chronization, which means performing consistent replacements of a data item or

an IRI not only in the sensitive triple but also throughout the entire graph. These

essential features cannot be achieved using any of the existing SPARQL operations

or query forms, such as CONSTRUCT or UPDATE.

Considering the aforementioned limitations of the SPARQL query/update lan-

guage, the authors presented a language for sanitizing RDF graphs in [RKa14]. It

consists of a collection of sanitization operations that modify a graph by hiding

sensitive data. These operations are integrated into a novel SPARQL query form

known as SANITIZE. They have introduced three sanitization operations SNode,

SEdge and SPath to anonymize the nodes, edges and paths present in RDF graphs.

In addition to this, they also provided synchronization operation to perform au-

tomatic synchronization in the complete RDF graph. This approach is adequate

for providing privacy to RDF dataset but the authors did not provide sufficient

insight on preserving utility with privacy.

In [DC19], authors introduced the RiAiR framework. Its primary objective is to

simplify the RDF structure to streamline the process of expert users classifying
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RDF data into categories like identifiers, quasi-identifiers, and more. An inter-

section process has been proposed to identify the sensitive data that needs to

be anonymized whereas basic generalization and suppression mechanism has been

used for data anonymization. Unlike other privacy preservation methods this ap-

proach mainly focused on what to anonymize rather than on how to anonymize

and they provided a mechanism for identifying the information that needs to be

anonymized.

2.1.2 Access control methods

An alternative approach for protecting against privacy breaches consists in apply-

ing access control methods to RDF data [KMD17]. In case there is a possibility to

infer sensitive data from the answers to a query disclosed to a user then in the lit-

erature of access control, this problem is known as inference problem [FJ02]. This

survey is aimed to be concise and focused to provide a summary of the common

access control approaches that either consider inference rules (specified by W3C

in [Rec04a]) or not in order to enforce authorizations.

Several access control models have been proposed in relation to RDF data (with-

out inference rules) [Abe+07; Flo+10]. In [Abe+07], authors introduced a query

rewriting mechanism that aims to enforce authorizations. The formal semantics

of the authorization language are not presented by the authors, and their conflict

resolution strategies are implemented in a hard-coded manner. In [Flo+10], au-

thors proposed access control language that utilizes annotations. This language

is designed to enable fine-grained authorizations on RDF data. The authors also

provide a formal semantics for this language. The definition of authorizations

in this paper is evidently influenced by the work of [Flo+10]. The approach

employed involved utilizing a predetermined set of conflict resolution strategies,

namely deny/permit takes precedence and deny/permit by default. However, the

specific details regarding precedence are not provided.

Alternative methodologies that take into account inference rules and employ propa-

gation techniques to compute authorizations that can be applied to inferred triples

[RFJ05; Lop+12; Pap+12]. An access control language that takes update oper-

ations into account for RDF stores is proposed by authors in [RFJ05]. They do

not offer formal semantics for their language; instead, they define default policies

and conflict resolution strategies using meta-rules. In [Lop+12], authors have pre-

sented a similar method that is based on provenance and involves labelling each
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triple and propagating the labels using an inference procedure and a fixed conflict

resolution strategy. A versatile model that defines a triple’s access label as an

algebraic expression is put forth by the authors in [Pap+12]. The authors limited

their analysis to a specific set of RDFS rules, excluding any user-defined rules. In

conclusion, label-based strategies in the field of authorization may employ more

sophisticated authorization languages or incorporate update mechanisms. How-

ever, it is important to note that these techniques rely on underlying base graphs

and do not take into account the potential risk of information leakage.

In [JF06; Say+15], the authors focused on addressing the inference problem. In

[JF06], authors introduced a label-based propagation technique designed specif-

ically for RDF data. The authors presented an algorithm designed to identify

unauthorized inferences, specifically those instances where lower security triples

can be used to deduce higher security triples. However, the detection of violations

requires the use of a graph, and the strategies for resolving conflicts, as well as

the default strategy, are implemented as hard-coded components. On the other

hand, in [Say+15], authors proposed a static analysis algorithm for writing the

authorization policy that does not rely on graph knowledge, hence enabling the

implementation of more adaptable conflict resolution strategies.

2.1.3 Encryption methods

When it comes to the privacy of Linked data, studies have either proposed mech-

anisms for accessing encrypted RDF data [KS13] or partial encryption of RDF

graphs [Ger08; Gie05; Gie] by utilizing eXtensible Markup Language (XML) en-

cryption methods. In [Gie05; Gie], authors illustrate the application of XML-based

encryption methods for the purpose of encrypting sensitive data within an RDF-

graph, while keeping all non-sensitive data in its original plaintext form. In [Ger08],

authors extended their previous research by ananlyzing the utilization of encryp-

tion methods for encrypting RDF subgraphs and RDF elements, with an objective

to reduce the overhead associated with the encryption approach. In [KS13], au-

thors proposed a method for running user-defined SPARQL queries on encrypted

graph data. Access to the graph data is restricted to users who are authorized to

run queries. The approach relied on eight distinct query types that correspond to

the various binding options within a single SPARQL triple pattern. The owner

of the data graph may further limit the allowed queries by pre-defining a certain

predicate or object. However, the scalability of this proposal is compromised due

to the encryption of each triple multiple times, depending on the level of access
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restriction for the subject, predicate, and/or object.

In [Fer+17], authors employed the predicate-based encryption [KSW08] to facili-

tate controlled access to encrypted RDF data. This approach allows data providers

to generate query keys based on specific patterns, such as triple-patterns. Conse-

quently, a single decryption key can be used to decrypt all triples that correspond

to its associated triple pattern. The aforementioned research do not examine com-

pression and encryption together, which can be useful for efficient storage and

exchange of sensitive data. In [Ver+20], authors proposed a framework that com-

bines the notion of compression and encryption of RDF data. It uses HDT (a

compression technique for reducing the RDF data storage space) along with en-

cryption in which different users have different access rights and can only access

particular subgraphs of RDF dataset.

2.2 Data privacy preserving methods for

connected environments

In Section 2.2.1, we will present privacy preserving models for data anonymiza-

tion and differential privacy techniques that have been widely adopted. In Section

2.2.2, we will provide an overview of homomorphic encryption schemes and their

various categories. In Section 2.2.3, we will discuss Secure Multi-Party Computa-

tions (SMPC) and highlight its relevance in Privacy-Preserving Data-Aggregation

(PPDA) compared to resource-intensive homomorphic encryption schemes.

2.2.1 Anonymization methods

Anonymization involves the process of anonymizing the microdata. Microdata

refers to unprocessed data that includes user information, consisting of various

attributes or columns [Sam01]. To identify a user, there are three different types

of identifiers that classify the attributes within microdata. The first type is explicit

identifiers, that are referred to as unique identifiers such as a passport number. The

second type is quasi-identifiers, which can identify a user when combined together.

Examples of quasi-identifier include age and gender. The third type is sensitive

attributes, which are attributes that require protection such as salary. The initial

stage of the anonymization process involves eliminating the explicit identifier.

K-anonymity [Swe02] is one of the oldest approaches introduced for the data pri-
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vacy preservation. It involves the anonymization of a dataset in a manner that en-

sures each record (or row) cannot be distinguished from at least k-1 other records,

specifically in relation to the quasi-identifier properties. Anonymization is ac-

complished by the utilization of generalization and suppression techniques. The

primary objective of k-anonymity is to mitigate the risk of linking attacks, wherein

an adversary is unable to uniquely identify an individual by associating their quasi-

identifier attributes (such as birth date, zip code, and gender) with other datasets.

The use of k-anonymity is appropriate for non-interactive data publishing in cases

where either there is absence of sensitive attribute or when the distribution of the

sensitive attribute is sparse.

K-anonymity provides protection against linking attacks, which aim to identify

individual records and compromise privacy. However, it is important to note that

k-anonymity is vulnerable to two other types of attacks: homogeneity attacks and

background knowledge attacks. In a homogeneity attack, an adversary can identify

the value of a sensitive attribute if all the sensitive attributes in a group of k records

are the same. In the context of a background attack, an adversary leverages their

existing knowledge to discern the identities of specific individuals. In order to

overcome the limitation of k-anonymity, an extension called l-diversity [Mac+06]

was introduced. This approach mandates that each record within a group must

possess a minimum of diverse values for the sensitive attribute. L-diversity is a

viable option for non-interactive data publishing scenarios where the data publisher

intends to release an anonymized dataset without the need to respond to individual

queries. In contrast to k-anonymity, l-diversity is employed when the anonymized

dataset necessitates each record within a group to possess a minimum of l diverse

values for the sensitive attribute. In [LLV07], authors presented that l-diversity

does not provide complete protection against the homogeneity attack. Two types of

attacks, namely skewness attack and similarity attack, were employed to illustrate

the constraints of the l-diversity approach. The skewness attack occurs when the

anonymized dataset exhibits a skewed distribution of the sensitive attribute within

equivalence groups. In this scenario, the l-diversity mechanism proves ineffective in

preventing the attack due to the disparity between the distribution of the sensitive

attribute and the dataset. In a similarity attack, the anonymized dataset contains

distinct values of a sensitive attribute that are organized into equivalence groups,

but these values are semantically similar. The failure of l-diversity in preventing

the attack can be attributed to the adversary’s ability to estimate the value of a

sensitive attribute by linking it to another sensitive attribute.
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The next development following the l-diversity is t-closeness [LLV07], which places

emphasis to ensure that even after values have been removed or generalized, the

resulting distribution of values for a specific attribute remains similar (within the

threshold t) to the original distribution. This is important because attackers may

be able to deduce sensitive values if they possess prior knowledge about their distri-

bution and if the anonymization process is excessively deterministic. This trade-off

results in a reduction in utility, while enhancing privacy protection, especially in

specific attack scenarios.

The term differential privacy was initially introduced by Dwork [Dwo06]. It is de-

fined as a property of a mechanism where the output remains relatively unaffected

by the inclusion or exclusion of a single record from the dataset. The privacy

of users can be safeguarded when sharing the dataset with an untrusted entity

through the application of data perturbation techniques. This solution addresses

the limitations of anonymization techniques, particularly tackling the challenges

posed by high dimensionality [Sal19].

2.2.2 Homomorphic encryption

Homomorphic encryption is a cryptographic methodology that enables the execu-

tion of computations directly on encrypted data. This feature enables the preser-

vation of data confidentiality by allowing sensitive data to remain encrypted during

processing. The initial introduction of the concept of homomorphic encryption was

proposed by authors in [RAD78b], who referred to it as Privacy Homomorphisms

[RAD78b]. Homomorphic encryption schemes can be classified into three distinct

categories:

- Partially homomorphic encryption schemes exclusively facilitate a singular oper-

ation, such as multiplication or addition, on ciphertexts. The RSA cryptosystem,

as described in [RAD78a], exhibits partial homomorphism with respect to multi-

plication.

- Somewhat homomorphic encryption schemes offers the capability to perform

both addition and multiplication operations on ciphertexts, but with a restricted

number of iterations. For example, some encryption schemes support unlimited

additions and a single multiplication operation.

- Fully homomorphic encryption schemes [Dij+10] allow for an unrestricted num-

ber of operations involving both addition and multiplication.

Unfortunately, the operational constraints of partially and somewhat homomorphic
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encryption schemes make them unsuitable for generic computations. In the con-

text of fully homomorphic encryption schemes, the primary focus revolves around

optimizing performance and ensuring scalability. Despite significant efforts to re-

duce the impact, the fully homomorphic encryption schemes have limitations that

hinder their practicality in real environments [Mar+22].

2.2.3 Secure multi-party computation

Secure Multi-Party Computations (SMPC) [Yao82] are algorithmic processes in

which multiple parties (or individuals), each possessing different fragments of sen-

sitive information perform a joint computation on their data to compute a specific

result by utilizing the algorithms. By collectively leveraging their respective inputs,

these entities can unveil hidden information, authenticate a message, or authorize

a transaction. It is noteworthy to mention that SMPC accomplishes this objective

while maintaining the confidentiality of the information possessed by each user,

without disclosing any specific specifics.

In recent years along with Privacy-Preserving Data Publication(PPDP), Privacy-

Preserving Data-Aggregation (PPDA) has also gained attention from researchers

[DA21; YKD21]. Most of the current PPDA approaches depend on homomorphic

encryption, which requires a lot of computing power and do not work well with real

systems that are limited in resources. SMPC-based strategies, on the other hand,

try to find a collaborative answer for PPDA by relying less on computation but

heavily on communication and data sharing between the entities. Consequently,

various researchers like in [GS22] are making efforts to explore and enhance SMPC-

based approaches.

2.3 Position of this thesis

A query-based logical framework for RDF data has been introduced in [GK16;

GK19], where sensitive information is expressed as a privacy policy in the form of

SPARQL query whose results must not disclose sensitive information of individ-

ual. It has been extended to handling utility queries in [DBa18], they proposed

theoretical criteria for finding the compatibility between utility policy and privacy

policy, where both policies are specified as conjunctive queries. When a privacy

query turns out to be incompatible with utility queries, they have used anonymiza-

tion as a safeguard measure (see Section 2.1.1). The both approaches however are
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restricted to simple conjunctive queries. They do not consider aggregated queries

and they cannot be applied to temporal RDF data. We have extended their ap-

proach by formalizing the utility and privacy policies in the form of temporal

aggregated conjunctive queries. We proposed a (data-independent) query-based

framework that is suitable for protecting temporal RDF data and it comes with

explanations of privacy risks and builds several options for negotiating the util-

ity queries for removing the privacy risks. In our negotiation process, one of the

options for removing privacy risks is the generalization of some properties in the

ontology, for which rules of generalization have been user-defined, to ensure that

data to be kept secret by the data producer is not disclosed.

In contrast to all approaches that are based on changing the exposed data either

by adding noise to the data or by applying generalization operations to sensitive

data, our data-independent approach is complementary and should be used be-

forehand for detecting privacy risks. We also discussed an alternative approach for

protecting against privacy risks by applying access control methods to RDF data.

However, these approaches do not handle utility policy.



Chapter 3

Preliminaries

In this chapter, we introduce the main definitions and standards on which this

thesis is based. In Sections 3.1 and 3.2, we summarize the RDF and RDFS stan-

dards for describing data and ontologies on the Semantic Web and we present

the extension that we consider to capture temporal data and dynamic proper-

ties. In Section 3.3, we define temporal aggregated conjunctive queries used in

our approach and we provide their semantics when evaluated over temporal RDF

graphs. We illustrate the different notions through examples that are built using

the ISSDA dataset, a real world power grid dataset provided by the Irish Social

Science Data Archive (ISSDA) Commission for Energy Regulation (CER)1.

3.1 Temporal RDF graphs

Temporal RDF graphs are an extension of the graph data model standardized for

the Semantic Web by the Resource Description Framework (RDF) [Rec14a]. In

RDF, web resources are described by statements, where each RDF statement is a

triple consisting of a subject, a property and an object. A subject can only be an

Internationalized Resource Identifier (IRI) or a blank node. A property can only

be an IRI. An object can be a IRI, a blank node or a literal. Literals and IRIs are

called constants.

For example, “The occupier has a yearly income whose value is 75000” can be rep-

resented as the RDF statement: ( :o1031 :yearlyIncome “75000”), where :o1031 is

1https://www.ucd.ie/issda/data/commissionforenergyregulationcer/
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the subject (an occupier is represented by a blank node), :yearlyIncome represents

the property and “75000” is a literal corresponding to the value.

Definition 1 (RDF statement). Let I, L, and B be countably infinite pairwise

disjoint sets representing respectively IRIs, literals and blank nodes. An RDF state-

ment is a triple (s p o), where (s p o) ∈ (I ∪B)× I × (I ∪ L ∪B).

Definition 2 (RDF graph). An RDF graph is a finite set of RDF statements.

In our approach, we consider temporal RDF graphs in which all statements are

associated with timestamps. Each temporal statement will be represented by a

pair where the first element in a pair correspond to an RDF statement and the

second element is its timestamp taken in the subset TS in the set of L of literals.

Definition 3 (RDF temporal statement). An RDF temporal statement is a pair

(s p o, t) where (s p o) ∈ (I ∪B)× I × (I ∪ L ∪B) and t ∈ TS.

Definition 4 (RDF temporal graphs). An RDF temporal graph is a set of RDF

temporal statements.

By convention and for homogeneity purpose we use any as a special timestamp

when the corresponding statements holds at any time. We call static the prop-

erties having any as timestamps. We call dynamic the properties having actual

timestamps.

Example 1 illustrates a temporal RDF graph that we have built from the real-world

ISSDA dataset. The original data is tabular, and includes both personal data and

temporal smart meter data related to different house owners. This example shows

some data of a given house owner described using properties :associatedOccupier,

:yearlyIncome, :numberOfPersons (that are static) and :consumption (that is

dynamic).

Example 1. The associated occupier, yearly income and number of persons are

expressed as temporal statements with special timestamp any whereas energy con-

sumption statements are timestamped.

Temporal RDF graph of house owner sm1031

(: sm1031 : associatedOccupier : o1031, “any”)

( : o1031 : yearlyIncome “75000”, “any”)

( : o1031 : numberOfPersons “6”, “any”)

( : o1031 : familySize “Large”, “any”)

(: sm1031 : consumption “78”, “2009-07-14T00:00:00”)

(: sm1031 : consumption “60”, “2009-07-14T00:30:00”)
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(: sm1031 : consumption “143”, “2009-07-14T01:00:00”)

(: sm1031 : consumption “34”, “2009-07-14T01:30:00”)

3.2 RDFS ontologies extended with rules

An ontology is a formal representation of a shared vocabulary of a domain enabling

humans and machines to communicate and reason about the domain. In particular,

an ontology can serve as a schema constraining the description of data in that

domain.

Ontologies play a critical role in the SWoT in facilitating interoperability between

different IoT devices and personalizing IoT applications and services [Qas+23].

Ontologies can be represented in various forms, including Web Ontology Language

(OWL) and RDF Schema (RDFS).

In our approach, we consider that data producers and data consumers understand

each other through a common ontology that is designed using RDFS in which we

enable the declaration of dynamic properties, as explained in Section 3.2.1. We

also extended RDFS with property generalization rules, as explained in Section

3.2.2.

3.2.1 RDFS

RDF Schema (RDFS) [Rec14c] is part of the RDF 1.1 specification [Rec14a]. It

provides two namespaces rdf: and rdfs: with predefined properties to state re-

lationships between instances, classes and properties:

• rdfs:Class is a meta-class for grouping all the classes in RDFS.

• rdf:type is used to express that a resource identified by an IRI is an instance

of a class (also identified by an IRI).

• rdf:Property is the class, the instances of which are properties (rdf:Property

is an instance of rdfs:Class).

• rdf:Statement is the class, the instances of which are RDF statements

(rdf:Statement is an instance of rdfs:Class).

• rdf:subject is an instance of rdf:Property used to relate a statement to its

subject.
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• rdf:predicate is an instance of rdf:Property used to relate a statement to

its property.

• rdf:object is an instance of rdf:Property used to relate a statement to its

object.

• rdfs:subClassOf is used to specify subsumption relationships between classes,

i.e., that a class is a subclass of another.

• rdfs:subPropertyOf is used to denote that a property is a subproperty

(specialization) of another.

• rdfs:domain relates a property to a class to express that the subjects of the

property are instances of the class.

• rdfs:range relates a property to a class to express that the objects of the

property are instances of the class.

• rdfs:label associates a human-readable name to an IRI identifying an RDF

resource.

• rdfs:comment associates a human-readable description to an IRI identifying

an RDF resource.

Statements in which the property is an RDFS property rdfs:subClassOf, rdfs:

subPropertyOf, rdfs:domain or rdfs:range are called schema statements (also

called RDFS statement), as they express semantic constraints on the classes and

properties used to describe RDF data of a given domain.

Within an RDF graph, we will distinguish schema statements from data state-

ments. Though they are all denoted as RDF statements, the former ones convey

a rule-based semantics provided by 13 RDFS entailment rules [Rec04b].

Table 3.1 and Table 3.2 provide subsets of these rules respectively called RDFS

assertion and constraint rules in [Bur20].

RDFS rule body ⇒ head
rdfs2 p rdfs:domain c , s p o ⇒ s rdf:type c
rdfs3 p rdfs:range c , s p o ⇒ o rdf:type c
rdfs7 p rdfs:subPropertyOf q , s p o ⇒ s q o
rdfs9 c rdfs:subClassOf d , s rdf:type c ⇒ s rdf:type d

Table 3.1: RDFS assertion rules
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RDFS rule body ⇒ head
rdfs5 p1 rdfs:subPropertyOf p2 , p2 rdfs:subPropertyOf p3

⇒ p1 rdfs:subPropertyOf p3
rdfs11 c1 rdfs:subClassOf c2 , c2 rdfs:subClassOf c3 ⇒ c1 rdfs:subClassOf

c3
ext1 p rdfs:domain c1 , c1 rdfs:subClassOf c2 ⇒ p rdfs:domain c2
ext2 p rdfs:range c1 , c1 rdfs:subClassOf c2 ⇒ p rdfs:range c2
ext3 p rdfs:subPropertyOf p1 , p1 rdfs:domain c ⇒ p rdfs:domain c
ext4 p rdfs:subPropertyOf p1 , p1 rdfs:range c ⇒ p rdfs:rangec

Table 3.2: RDFS constraint rules

For example, if :electricOfficeEquipment is a subproperty of :electricEquipment,

:pb1 is an instance of the class :ProfessionalBuilding and we have the RDF state-

ment: (:pb1 :electricOfficeEquipment “true”), then the RDFS assertion rule (rdfs7)

allow us to infer that the statement (:pb1 :electricEquipment“true”) is also true.

In Section 3.2.1.1, we present the generic classes and generic properties introduced

for the declaration of dynamic properties and explained them using an ontology.

In Section 3.2.1.2, we present the ways for the implementation of temporal state-

ments.

3.2.1.1 Temporal extension of RDFS

We have introduced generic classes named as :DynamicProperty and :Temporal-

Statement and generic properties named as :onPredicate and :timestamp for the

modeling of dynamic properties. Below, we specify the generic classes, generic

properties, and their relationships using RDFS vocabulary.

Specification of generic classes and generic properties using RDFS vocabulary

:DynamicProperty rdfs:subClassOf rdf:Property

:TemporalStatement rdfs:subClassOf rdf:Statement

:onPredicate rdfs:subPropertyOf rdf:predicate

:onPredicate rdfs:domain :TemporalStatement

:onPredicate rdfs:range :DynamicProperty

:timestamp rdf:type rdf:Property

:timestamp rdfs:domain :TemporalStatement

:timestamp rdfs:range xsd:dateTime
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A domain ontology involving dynamic properties can be declared by relating do-

main specific classes and properties in addition to the RDFS classes and properties.

Figure 3.1 shows an extract of the RDFS ontology2 that we have built to model

the ISSDA dataset. The aforementioned generic classes and generic properties

introduced for modeling of dynamic properties are highlighted in red. The dynamic

properties are defined as instances of :DynamicProperty.

The :yearlyIncome, :numberOfPersons, :associatedOccupier, :owns and :surface

are static properties. They are modeled in the conventional way as instances of

the meta-class rdf:Property . The only dynamic property is :consumption, it is

declared as an instance of :DynamicProperty.

Figure 3.1: Extract of the RDFS ontology modeling ISSDA dataset

3.2.1.2 Implementation of temporal statements

Temporal statements can be implemented in RDF by using RDF reification [Rec14b].

RDF reification allows the creation of new RDF resources that represent state-

ments, which enables the use of other properties to describe statements.

In Example 2, we show how the RDF reification method can be used to ex-

press “The smart meter number ‘sm1031’ had a consumption of 34 on 2009-07-

14T01:30:00”: first, we create a new resource :statement1 that represents the

statement: (:sm1031 :consumption “34”) that is created as an instance of the

property :TemporalStatement. Then we assert the subject, property and object

for the resource. Finally, we assert the property :timestamp for the resource.

2Available at https://raw.githubusercontent.com/repository-code/PrivEx/main/

issda_schema.ttl

https://raw.githubusercontent.com/repository-code/PrivEx/main/issda_schema.ttl
https://raw.githubusercontent.com/repository-code/PrivEx/main/issda_schema.ttl
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Example 2. This example illustrates the RDF reification of a statement (:sm1031

:consumption “34”) and adds another property :timestamp to a resource of the

statement.

Adding the property :timestamp to a resource using RDF reification

:statement1 rdf:type :TemporalStatement

:statement1 rdf:subject :sm1031

:statement1 :onPredicate :consumption

:statement1 rdf:object "34"

:statement1 :timestamp "2009 -07 -14 T01 :30:00"

The temporal statements can also be implemented using RDF-star [Arn+22] exten-

sion of RDF, which allows statements to be used as the subject or object of other

statements, enabling more complex and expressive representation of knowledge

graphs and other data. In Example 3, we present the same temporal statement as

in Example 2 implemented using RDF-star.

Example 3. For implementing the temporal statement, a statement with the dy-

namic property i.e.; (:sm1031 :consumption “34”) is used as a subject, :timestamp

as a property and timestamp value as an object.

Temporal statement representation in RDF-star

(: sm1031 : consumption “34” {|: timestamp "2009−07−14T01:30:00"|}

3.2.2 Property generalization rules

We have introduced schema statements of the form p :isGeneralizedBy q to

declare that a property p is generalized by another property q.

In contrast to the generic rule rdfs7, the way the values of the property p are

abstracted into qualitative values of q is specified by user-defined rules.

For the ISSDA dataset, we have declared three such generalization statements 3.

Table 3.3 presents the generalization rules relating the property :numberOfPersons

to its generalization :familySize.

3Available at https://cloud.univ-grenoble-alpes.fr/s/omsaDAQHkMtJWi9

https://cloud.univ-grenoble-alpes.fr/s/omsaDAQHkMtJWi9
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Rule number Generalization rules for :numberOfPersons into :familySize
r1 s :numberOfPersons o, o<3 ⇒ s :familySize “Small”
r2 s :numberOfPersons o, 3≤o≤6⇒ s :familySize “Medium”
r3 s :numberOfPersons o, o>6 ⇒ s :familySize “Large”

Table 3.3: Generalization rules defining :numberOfPersons :isGeneralizedBy
:familySize

3.3 Temporal aggregated conjunctive queries

Data analytics on temporal data requires the computation of aggregates on time

intervals, also called time windows. Therefore, the queries that we consider in this

thesis must enable to compute aggregate functions such as the sum, maximum or

average of groups of selected values in the temporal data.

In Section 3.3.1, we define temporal aggregate conjunctive queries (TACQ) with

a SPARQL-like syntax extended with time windows for capturing aggregates on

time. In Section 3.3.2, we provide their semantics that defines the answers set

of TACQS when evaluated over temporal graph patterns . In Section 3.3.3, we

introduce useful notions for comparing TACQs. In Section 3.3.4, we present ways

to implement TACQs as iterations on time intervals of the evaluation of SPARQL

or SPARQL-star queries.

3.3.1 SPARQL-like syntax for TACQs

The SPARQL Protocol and RDF Query Language (SPARQL) [Rec13] is a stan-

dard query language for retrieving and manipulating data stored in RDF format

but it cannot query or manipulate temporal data. Temporal Aggregated Conjunc-

tive Queries (TACQs) extend the SPARQL syntax and semantics for capturing

aggregate on time.

First, we will define temporal graph pattern that is a core part of TACQ. Temporal

graph pattern are extensions of standard graph patterns in SPARQL in which we

allow to associate timestamp variables to patterns involving dynamic properties.

Definition 5 (Temporal graph pattern). Let V ar be a set of variables in which

each variable starts with a special character ?. A temporal graph pattern is a finite

set of temporal patterns, where a temporal pattern is a pair (s p o, ?ts) such that
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(s p o) ∈ (I ∪B ∪ V ar)× (I ∪ V ar)× (I ∪ L ∪B ∪ V ar), and ?ts ∈ V ar.

Aggregated conjunctive queries allow the grouping of data and compute values

over the groups. Common aggregate functions [Rec09] supported in SPARQL are

as follows:

• COUNT: counts the number of times a given variable or an expression has

a value within the group.

• SUM: computes the sum of numeric values for a variable or an expression

over a group.

• AVG: computes the average of numeric values for a variable or an expression

over a group.

• MIN: returns the minimum value for a variable or an expression from a group.

• MAX: returns the maximum value for a variable or an expression from a

group.

We will only consider aggregate queries with a single aggregate term as in most

cases, queries with several aggregate terms are equivalent to the unions of queries

with same body and a single aggregate [Coh05]. In particular, AV G can be com-

puted by the union of two queries, one for computing SUM and the other one for

computing COUNT .

Defining a time window allows the evaluation of a TACQ over a sequence of time

windows (of a given size) shifted by a certain time duration (known as step).

Definition 6 (Temporal aggregated conjunctive query). A TACQ is defined as:

SELECT x̄, agg(y)

WHERE {TGP . FILTER}
GROUP BY x̄

TIMEWINDOW (Size, Step)

where:

- TGP is a temporal graph pattern;

- FILTER is a (possibly empty) conjunction of atomic comparisons of the form t

θ t′ where t and t′ are variables of GP or literals (numbers, strings or dates) and

θ ∈ {<>,<,<=,=, >=, >};
- x̄ is a tuple of variables called the output (or grouping) variables;

- when the aggregate term agg(y) is present, y (called the aggregate variable) is not
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in x̄ and agg is an aggregate function that produces a single value when applied to

a set of values assigned to y;

- Size and Step are time durations (i.e. differences between timestamps). A size

expresses the duration of each time window, and a step expresses the time duration

separating consecutive time windows.

- TIMEWINDOW(∞, 0) is a notation for the single time window covering all the

timestamps in the data set.

The general syntax can be simplified as follows for capturing particular cases:

• When either x̄ is empty or there is no aggregate term, we can omit the

GROUP BY clause.

• When the query contains only static properties, we can omit the TIMEWIN-

DOW clause.

• When the query contains the notation TIMEWINDOW(∞, 0), we can omit

the TIMEWINDOW clause.

• The FILTER clause can be omitted when the corresponding boolean expres-

sion is empty (called empty FILTER). Note however, that when TIMEWIN-

DOW is specified, FILTER always implicitly contains the following con-

straints for each timestamp variable ?ts:

?ts > ?timeWindowsEnd− Size ∧ ?ts ≤ ?timeWindowEnd

where ?timeWindowEnd is a specific timestamp variable that will be mapped

successively to the upper bound of each time window computed from the

timestamp at which the query is executed.

• For static properties, the timestamp variables can be omitted from temporal

graph pattern and the corresponding temporal patterns can be simplified

into standard patterns.

In our approach, apart from a TACQ in its general form, we will consider TACQs

that are without aggregate terms named as conjunctive queries and without time

window definition named as aggregated conjunctive queries. They are defined in

Definitions 7 and 8.

Definition 7 (Conjunctive query). A conjunctive query is a query without an

aggregate term and can have an empty FILTER. It is defined as:

SELECT x̄

WHERE {TGP . FILTER}
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Definition 8 (Aggregated conjunctive query). An aggregated conjunctive query is

a query without a time window and can have an empty FILTER. It is defined as:

SELECT x̄ , agg(y)

WHERE {TGP . FILTER}
GROUP BY x̄

In Example 4, we illustrate several cases of TACQ by examples, beginning with

the simplest case of a TACQ to the most general case of a TACQ. The examples

are built on the same RDF schema used for describing the data in Example 1.

Example 4.

TACQ1 is an example of a conjunctive query that presents the simplest case of

a TACQ. It asks for the smart meter’s number and the yearly income of each

occupier.

TACQ1: a conjunctive query (without FILTER expression)

SELECT ?sm ?y

WHERE {?sm :associatedOccupier ?o . ?o :yearlyIncome ?y}

TACQ2 is an example of conjunctive query, the results are returned only if the

given FILTER expression is satisfied. It asks for the smart meter’s number and

the yearly income of each occupier only if it is more than 50000.

TACQ2: a conjunctive query

SELECT ?sm ?y

WHERE {?sm :associatedOccupier ?o . ?o :yearlyIncome ?y .

FILTER (?y > 50000)}

TACQ3 is an example of an aggregated conjunctive query. It asks for the maximum

number of persons per home with smart meters installed, grouped by yearly income.

TACQ3: an aggregated conjunctive query

SELECT ?y MAX(?n)

WHERE {?sm :associatedOccupier ?o . ?o :numberOfPersons ?n .

?o :yearlyIncome ?y}

GROUP BY ?y

TACQ4 presents a case of a sliding time window of 6 hours. It asks for the sum of

of energy consumption, computed every hour over the measurements of the previous

6 hours and grouped by smart meter’s number, and the time window end.
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TACQ4: a simple TACQ with sliding time window

SELECT ?sm ?timeWindowEnd SUM(? consumption)

WHERE {(?sm :consumption ?consumption , ?ts)}

GROUP BY ?sm ?timeWindowEnd

TIMEWINDOW (6h, 1h)

TACQ5 presents a case of a tumbling time window of 1 hour. It asks for the

maximum energy consumption, computed over intervals of every hour and grouped

by smart meter’s number, yearly income and the time window end.

TACQ5: a general TACQ with tumbling time window

SELECT ?sm ?y ?timeWindowEnd MAX(? consumption)

WHERE {?sm :associatedOccupier ?o . ?o :yearlyIncome ?y .

(?sm :consumption ?consumption , ?ts)}

GROUP BY ?sm ?y ?timeWindowEnd

TIMEWINDOW (1h, 1h)

In our approach, we will often extract parts from a TACQ and evaluate them inde-

pendently to capture evaluation at different levels and to show their contribution

to the evaluation of the query being considered. They are named as conjunctive

part and aggregated conjunctive part and are defined as:

Definition 9 (Conjunctive part and aggregated conjunctive part). Let Q be a

TACQ of the form:

Q: SELECT x̄ agg(y)

WHERE {TGP . FILTER}
GROUP BY x̄

TIMEWINDOW (Size, Step)

The conjunctive part of Q, noted Conj(Q), is defined as:

Conj(Q) : SELECT x̄ y

WHERE {TGP . FILTER}
The aggregated conjunctive part Q, noted AConj(Q), is an aggregated conjunctive

query:

AConj(Q): SELECT x̄ agg(y)

WHERE {TGP . FILTER}
GROUP BY x̄
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3.3.2 Semantics of TACQs

The evaluation of a TACQ over a temporal RDF graph TG is defined in terms of

homomorphisms (Definition 10) and filtered homomorphisms (Definition 11).

The answers to a general TACQ are obtained by iteratively evaluating the aggre-

gated conjunctive part of the query over each time interval, which is computed

from the values of Size and Step specified in the time window definition.

Definition 10 (Graph homomorphisms). Let H and H ′ be temporal RDF graphs

or temporal graph patterns. An homomorphism from H ′ to H is an application

h : (I ∪ L ∪ B ∪ V ar) → (I ∪ L ∪ B ∪ V ar) such that h(c) = c for c ∈ L ∪ I and

h(H ′) ⊆ H where:

h((s p o, t)) = (h(s)h(p)h(o), h(t))

Notation:

For a tuple of variables x̄, µ(x̄) is the tuple obtained by replacing each variable x

by its value µ(x).

For a FILTER, µ(FILTER) is obtained by replacing each variable x appearing

in FILTER by its value µ(x). For example, if FILTER = (x > 2) and µ(x) = 3,

then µ(FILTER) = (3 > 2), which is evaluated to True.

Definition 11 (Filtered homomorphisms). Let TGP and FILTER be respectively

a temporal graph pattern and a FILTER expression, and let TG a temporal graph.

The set of filtered homomorphisms is the subset of homomorphisms µ from TGP

to TG such that µ(FILTER) = True.

Remark 1. When FILTER is empty, µ(FILTER) = True for each homomor-

phism and the set of filtered homomorphisms is thus equal to the full set of homo-

morphisms from TGP to any temporal graph TG.

An answer to a conjunctive query against a data set is a tuple of values obtained

by projecting the output variables of the query to values in the data for each

(filtered) homomorphism mapping the temporal graph pattern in the query body

to a subgraph in the data. We formalize this in Definition 12.

Definition 12 (Answers and support for a conjunctive query). Let CQ a con-

junctive query: SELECT x̄ WHERE {TGP . FILTER}.
The answer set of CQ over a temporal graph TG, denoted Ans(CQ, TG), is de-

fined as:
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Ans(CQ, TG) = {µ(x̄) | µ is a (filtered) homomorphism from TGP to TG}
Let ā an answer in Ans(CQ, TG). Its (filtered) homomorphism support, denoted

Hsupport(ā), is defined as:

Hsupport(ā) = {µ | µ is a (filtered) homomorphism from TGP to TG such that

µ(x̄) = ā}

For aggregated conjunctive queries, the computation of aggregate over the groups

plays a vital role in obtaining an answer set. In the case of aggregated conjunctive

queries, an answer set is obtained by using the complete set of (filtered) homo-

morphisms from temporal graph pattern to temporal RDF graph which is then

partitioned into subgroups that correspond to the same assignment of the group-

ing variables and then in each subgroup, the aggregate function is applied to the set

of data values corresponding to the aggregate variable. As formalized in Definition

13, for each group, an answer to an aggregated conjunctive query, is a concatenation

of an answer obtained from its conjunctive part and a result obtained by applying

an aggregated function to the data values in a group.

Definition 13 (Answers and support for an aggregated conjunctive query). Let

ACQ an aggregated conjunctive query: SELECT x̄ agg(y) WHERE {TGP. FIL-

TER} GROUP BY x̄.

Let Conj(ACQ) be the conjunctive part of ACQ. For each answer ā of Conj(ACQ)

over a temporal graph TG, Group(ā) is defined as:

Group(ā) = {µ(y) | µ is a (filtered) homomorphism from TGP to TG, µ(x̄) = ā}
The answer set of ACQ over a temporal graph TG, denoted Ans(ACQ, TG), is

defined as:

Ans(ACQ, TG) = {(ā, agg(Group(ā)) | ā ∈ Ans(Conj(ACQ))}
Let (ā, r) an answer in Ans(ACQ, TG). Its (filtered) homomorphism support, de-

noted Hsupport (ā, r), is defined as:

Hsupport(ā) = {µ | µ is a (filtered) homomorphism from TGP to TG such that

µ(x̄) = ā}

The computation of the answer set of a TACQ over a dataset TG requires the

iteration of the evaluation of aggregated conjunctive part of TACQ over as many

time intervals of the form: ]now − k × Step− Size, now − k × Step], covering all

the timestamps in the data set, where now denotes the timestamp when query is

evaluated, and k denotes successive integers ranging from 0 to Kmax, which is the

minimal value of an integer k such that now− k×Step−Size is smaller than the

smallest timestamp Tmin in the dataset, i.e.: Kmax =
⌈
now−Tmin−Size

Step

⌉
.
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In other words, the answer set of a TACQ is the union of the answer sets of the

aggregated conjunctive part of TACQ evaluated over each time interval of the form:

]now− k × Step− Size, now − k × Step]. Therefore, there are as many groups as

(filtered) homomorphisms allowing to match the tuple of output variables of the

query with tuple of values in the data multiplied by the number of time intervals.

We formalize this in Definition 14.

Definition 14 (Answers and support for a temporal aggregated conjunctive query).

Let TACQ a temporal aggregated conjunctive query: SELECT x̄ agg(y) WHERE

{TGP. FILTER} GROUP BY x̄ TIMEWINDOW (Size, Step).

Let TG be a temporal graph and Tmin the smallest timestamp in it. Let now be the

timestamp at which the query is evaluated over TG and let Kmax =
⌈
now−Tmin−Size

Step

⌉
.

For each answer ā of the conjunctive part Conj(TACQ) of TACQ over TG, for

each integer k in [0, Kmax], Groupk(ā) is defined as:

Groupk(ā) = {µ(y) | µ is a (filtered) homomorphism from TGP to TG, µ(x̄) = ā,

and for each timestamp variable µ(?ts) ∈ ]now− k×Step−Size, now− k×Step]

and µ(?timeWindowEnd) = now − k × Step}
The answer set of TACQ over TG, denoted Ans(TACQ, TG), is defined as:

Ans(TACQ, TG) = {(ā, agg(Groupk(ā)) | ā ∈ Ans(Conj(TACQ))}
Let (ā, r) an answer in Ans(TACQ, TG). Its (filtered) homomorphism support,

denoted Hsupport (ā, r), is defined as:

Hsupport(ā, r) = {µ | µ is a (filtered) homomorphism from TGP to TG such that

µ(x̄) = ā}

Example 5 shows the answers sets of TACQ1 and TACQ5 of Example 4 over the

temporal RDF graph TG of Example 1.

Example 5.

The answer set of TACQ1 is:

Answer set of TACQ1 over TG

Ans(TACQ1, TG) = {(: sm1031, 75000)}

In case of TACQ1 the homomorphism support of its single answer is restricted to

the single homomorphism as shown below.

Homomorphism support of an answer of TACQ1 over TG

Hsupport(:sm1031 , 75000) = {?sm/ : sm1031, ?o/ : o1031, ?y/75000}
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TACQ5 is evaluated at 2009− 07− 14T01 : 40 : 00 over temporal RDF graph TG

of Example 1, its answer set is:

Answer set of TACQ5 over TG

Ans(TACQ5, TG) = {(: sm1031, 75000, 2009−07−14T01:40:00, 143)

(: sm1031, 75000, 2009−07−14T00:40:00, 78)}

The homomorphism support of the answer (: sm1031, 75000, 2009− 07− 14T01 :

40 : 00, 143) is made of two homomorphisms which differ in the result computed

for the variable ?consumption over time interval of 1 hour.

Homomorphism support of an answer of TACQ5 over TG

Hsupport(:sm1031 , 75000, 2009-07-14T01:40:00, 143)=

{?sm/: sm1031, ?o/_:o1031 , ?y/75000 ,

?timeWindowEnd /2009−07−14T01:40:00, ?consumption /34,

?ts/2009−07−14T01:30:00},

{?sm/: sm1031, ?o/_:o1031 , ?y/75000 ,

?timeWindowEnd /2009−07−14T01:40:00, ?consumption /143,

?ts/2009−07−14T01:00:00}

3.3.3 Comparison between temporal graph patterns

Definitions 16, 17 and 18 are introduced for comparing temporal graph patterns

that will be used in theorems and proofs presented in Section 4.3. First, we will

define unifiable temporal graph patterns that serve as a basis for Definitions 16 and

17.

Definition 15 (Unifiable temporal graph patterns). Let TGP1 and TGP2 two

temporal graph patterns. TGP1 and TGP2 are unifiable if there exists a function

s replacing variables from TGP1 and TGP2 by constants or by variables of TGP1,

such that s(TGP1) = s(TGP2).

Definition 16 (Overlapping temporal graph patterns). Let TGP1 and TGP2 two

temporal graph patterns. TGP1 and TGP2 are overlapping if they contain subgraphs

that are unifiable.

Example 6. The following two listings show two overlapping temporal graph pat-

terns, where the unifiable subgraphs are indicated in bold.

Temporal graph pattern TGP1

?sm : associatedOccupier ?o . ?o : yearlyIncome y . ?o : numberOfPersons ?n
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Temporal graph pattern TGP2

(?sm1 :consumption ?c1 , ?ts1) . ?sm1 : associatedOccupier ?o1 .

?o1 : yearlyIncome ?y1 . ?o1 : numberOfPersons ?n1 . ?o1 :owns ?s1

Definition 17 (Disjoint temporal graph patterns). Let TGP1 and TGP2 two tem-

poral graph patterns. TGP1 and TGP2 are disjoint if they are not overlapping.

Example 7. The following two listings show two disjoint temporal graph patterns.

Temporal graph pattern TGP1

?sm :associatedOccupier ?o . ?o :yearlyIncome ?y .

?o :numberOfPersons ?n

Temporal graph pattern TGP2

(?sm1 :consumption ?c1 , ?ts1) . ?o1 :owns ?s1

Definition 18 (Isomorphic temporal graph patterns). Let TGP1 and TGP2 two

temporal graph patterns. TGP1 and TGP2 are isomorphic if there is a homomor-

phism h from TGP1 to TGP2 that is bijective.

Example 8. The following two listings show two isomorphic temporal graph pat-

terns.

Temporal graph pattern TGP1

(?sm :consumption ?c, ?ts) . ?sm :associatedBuilding ?b

Temporal graph pattern TGP2

(?sm1 :consumption ?c1 , ?ts1) . ?sm1 :associatedBuilding ?b1

3.3.4 Implementation of TACQs

The specificity of TACQs is that their answer sets depend on the time at which

they are evaluated, which defines the time intervals on which the temporal data

should be grouped based on the Size and Step specified in the time window defi-

nition (as formalized in Definition 14).

For example, for TACQ5, evaluated over the temporal RDF graph TG of Example

1 at the timestamp 2009-07-14T01:40:00, given the value of Size = 1h and Step =

1h, there will be two time intervals (2009-07-14T00:39:00 to 2009-07-14T01:40:00
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and 2009-07-13T23:39:00 to 2009-07-14T00:40:00), on which its aggregated con-

junctive part AConj(TACQ5) (presented in following Example 9) will be evalu-

ated.

Example 9. This example presents the aggregated conjunctive part of TACQ5 of

Example 4.

AConj(TACQ5): the aggregated conjunctive part of TACQ5

SELECT ?sm ?y MAX(? consumption)

WHERE {?sm :associatedOccupier ?o . ?o :yearlyIncome ?y .

(?sm :consumption ?consumption , ?ts)}

GROUP BY ?sm ?y

The evaluation over each time interval of the aggregated conjunctive part of TACQ

can be implemented in SPARQL over reified data or by SPARQL-star [Arn+22]

over RDF-star data, by mimicking each time interval with corresponding FILTER

expressions. In Examples 10 and 11, the AConj(TACQ5) is extended with FIL-

TER expressions in SPARQL and SPARQL-star, to capture the evaluation over

same time intervals when TACQ5 is evaluated at timestamp 2009− 07− 14T01 :

40 : 00 over temporal RDF graph TG of Example 1.

Example 10. The answer sets are obtained by evaluating each SPARQL query

over temporal RDF graph TG of Example 1.

AConj(TACQ5) extended with FILTER expressions in SPARQL

SPARQL query for covering first time interval:

SELECT ?sm ?y (2009 -07 -14 T01 :40:00 AS ?timeWindowEnd)

(MAX(? consumption) AS ?c)

WHERE { ?sm :associatedOccupier ?o .

o :yearlyIncome ?y .

?r1 rdf:type :TemporalStatement;

rdf:subject ?sm ;

:onPredicate :consumption ;

rdf:object ?consumption ;

:timestamp ?ts .

FILTER (?ts > "2009 -07 -14 T00 :39:00" &&

?ts <= "2009 -07 -14 T01 :40:00")}

GROUP BY ?sm ?y ?imeWindowEnd

Evaluating the query for first time interval , we get:

{:sm1031 , 75000, 2009 -07 -14 T01 :40:00 , 143}
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SPARQL query for covering second time interval:

SELECT ?sm ?y (2009 -07 -14 T01 :40:00 AS ?timeWindowEnd)

(MAX(? consumption) AS ?c)

WHERE { ?sm :associatedOccupier ?o .

o :yearlyIncome ?y .

?r1 rdf:type :TemporalStatement;

rdf:subject ?sm ;

:onPredicate :consumption ;

rdf:object ?consumption ;

:timestamp ?ts .

FILTER (?ts > "2009 -07 -13 T23 :39:00" &&

?ts <= "2009 -07 -14 T00 :40:00") }

GROUP BY ?sm ?y ?imeWindowEnd

Evaluating the query for second time interval , we get:

{:sm1031 , 75000, 2009 -07 -14 T00 :40:00 , 78}

Example 11. The answer sets are obtained by evaluating each SPARQL-star

query over temporal RDF graph TG of Example 1.

AConj(TACQ5) extended with FILTER expressions in SPARQL-star

SPARQL -star query for covering first time interval:

SELECT ?sm ?y (2009 -07 -14 T01 :40:00 AS ?timeWindowEnd)

(MAX(? consumption) AS ?c)

WHERE { ?sm :associatedOcuppier ?o;

:associatedOcuppier /: yearlyIncome ?y;

:consumption ?consumption {| :timestamp ?ts |}

FILTER (?ts > "2009 -07 -14 T00 :39:00" &&

?ts <= "2009 -07 -14 T01 :40:00") }

GROUP BY ?sm ?y

Evaluating the query for first time interval , we get:

{:sm1031 , 75000, 2009 -07 -14 T01 :40:00 , 143}

SPARQL -star query for covering second time interval:

SELECT ?sm ?y (2009 -07 -14 T00 :40:00 AS ?timeWindowEnd)

(MAX(? consumption) AS ?c)

WHERE { ?sm :associatedOcuppier ?o;

:associatedOcuppier /: yearlyIncome ?y ;

:consumption ?consumption {| :timestamp ?ts |}

FILTER (?ts > "2009 -07 -13 T23 :39:00" &&

?ts <= "2009 -07 -14 T00 :40:00") }
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GROUP BY ?sm ?y

Evaluating the query for second time interval , we get:

{:sm1031 , 75000, 2009 -07 -14 T00 :40:00 , 78}



Chapter 4

Formal specification and

verification of privacy risks

In the context of the Semantic Web of Things, the data of data producers trans-

mitted to service providers in exchange for some services may reveal private infor-

mation wanted by data producers to remain undisclosed. It is therefore of utmost

importance to help data producers to keep the control on their data for their pri-

vacy protection while preserving the utility of disclosed data for service providers.

We approach the problem of utility-aware privacy preservation in the setting of

applications where service providers (data consumers) request collecting data from

data producers in order to perform aggregate data analytics for optimization or

recommendation purposes.

The approach that we promote to face the privacy versus utility dilemma in this

setting is summarized as follows:

• Data producers keep the control on the data they accept to transmit to

the data consumer according to their own privacy policy (a set of privacy

queries).

• The data consumer makes explicit her/his utility policy (a set of utility

queries) and explain for which task or service s/he requests data from data

producers.

• On the side of the data producer, we evaluate the privacy and utility policies

37
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to detect privacy risks. If privacy policy is violated by utility policy, then

the data producer gets an explanation that can be exploited later by data

producer to find an acceptable privacy-utility trade-off.

In this chapter, we focus on the characterization and detection of privacy risks

by evaluating privacy and utility policies. The chapter is organized as follows.

In Section 4.1, we provide an illustrative scenario of our approach. In section

4.2, we provide query-based specification of privacy and utility policies and formal

definition of privacy risk. In Section 4.3, we present the formal characterization of

privacy risks. In Section 4.4, we present the algorithms designed and implemented

to detect the privacy risks.

4.1 Illustrative scenario

We consider a use-case related to smart power grids, in which the data producers

are customers with smart meters in their home. A service provider has a catalog

of energy efficiency products (including energy efficient insulation, windows, appli-

ances) and requests collecting data from all the customers to adapt the proposed

services to the profile of each of them based on some personal data.

We assume that the service provider and the customers understand each other

through a common vocabulary using the same ontology presented in Section 3.2.1.1.

This shared vocabulary allows service providers to specify their data needs in a

precise way through a set of utility queries, that can then be compared to a set

of privacy queries that are defined and kept secret by each data producer to state

the data that they do not want to disclose directly or indirectly.

Let us suppose that the service provider has the following data needs:

(1) for each identifier of customers, their smart meter number and number of per-

sons at home;

(2) for each identifier of customers that are owners of their home, their yearly

income if it is more than 75000;

(3) for each smart meter number, the sum of consumptions computed every hour

over the meter readings of the previous 3 hours.

These needs can be translated into the utility queries shown below by using

SPARQL-like query language.



39

The utility queries into SPARQL-like query language

UQ1: SELECT ?sm ?o ?n

WHERE { ?sm :associatedOccupier ?o . ?o :numberOfPersons ?n }

UQ2: SELECT ?o ?y

WHERE { ?o :yearlyIncome ?y . ?o issda:owns ?s.

FILTER (?y > 75000) }

UQ3: SELECT ?sm ?timeWindowEnd SUM(?c)

WHERE { (?sm :consumption ?c, ?ts) }

GROUP BY ?sm ?timeWindowEnd

TIMEWINDOW (3h, 1h)

Now, suppose that a given customer, possibly with the help of privacy officer or

tool, states that, among the data they accept to transmit, they want to prevent:

(1) the association between their smart meter number and their yearly income;

(2) the disclosure of their energy consumption measurements aggregated over in-

tervals of 6 hours.

This can be translated into the following privacy queries for which no answer

should be transmitted or inferred by any external data consumer.

The privacy queries of a given customer

PQ1: SELECT ?sm ?y

WHERE { ?sm :associatedOccupier ?o . ?o :yearlyIncome ?y }

PQ2: SELECT ?timeWindowEnd SUM(?c)

WHERE { (?sm :consumption ?c , ?ts) }

GROUP BY ?timeWindowEnd

TIMEWINDOW (6h, 6h)

With our approach, as it will be explained in Sections 4.3 and 4.4, we can detect

privacy risks raised by the above utility queries, and provide the following privacy

diagnosis:

(1) the first privacy risk is due to the possible violation of the privacy query PQ1

by the combination of answers to the utility queries UQ1 and UQ2.

(2) the second privacy risk is due to the possible violation of the privacy query

PQ2 by answers to the utility query UQ3 because:

(a) PQ2 and UQ3 compute the same aggregate under the same conditions;

(b) groups of UQ3 are partitions of groups of PQ2;

(c) and finally, all time windows of PQ2 can be obtained by disjoint union of some

time windows of UQ3.

On the basis of above reasoning, the data producer can try to negotiate with the
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service provider by:

(1) refusing to provide an answer for the required customer’s identifier in one of

the utility queries UQ1 or UQ2;

(2) accepting to answer UQ3 if the time window is modified, for example by chang-

ing the step between each consumption computation from 1 hour to 2 hours.

4.2 Query-based specification of utility and

privacy

The utility and privacy policies are defined as TACQs expressed in a common

vocabulary or ontology, but their fulfillment has different semantics made explicit

in the following definitions.

Definition 19 (Utility policy). A utility policy is a set of TACQ queries, called

utility queries. A utility policy, issued by a data consumer, is satisfied by a data

producer if s/he accepts to answer all of the utility queries on any of her/his local

data set.

Definition 20 (Privacy policy). A privacy policy is a set of TACQ queries, called

privacy queries. A privacy policy, specific to each data producer, is satisfied if there

is no risk that any answer of any privacy query over any local data set is disclosed

through query answering.

Forbidding answering privacy queries is not enough to guarantee that a privacy

policy is satisfied because answers to a privacy query can be inferred from answers

to other queries (such as utility queries). We focus on detecting such privacy

risks that are formally defined in Definition 23 as the possibility of inferring an

answer of a privacy query from answers to some utility queries, based on the query

expressions only.

The inference problem of an answer (to a query Q) from a set of answers (to other

queries) can be formalized as a logical inference problem based on the notion of

logical signature of an answer that is defined as the logical formula characterizing

all the (unknown) temporal data graphs leading to an answer for Q by interpreting

temporal graph pattern as the logical conjunction of atomic formulas. For defining

the logical signature of an answer of Q, we consider a partial instantiation of

variables appearing in the logical formula, focusing solely on assigning the output

variables of Q to the corresponding constants in the given answer within the logical
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formula. In Definitions 21 and 22, we define the logical signatures of an answer

of a query when it is a conjunctive query or a (temporal) aggregated conjunctive

query.

Definition 21 (Logical signature of an answer of a conjunctive query). Let CQ

be a conjunctive query: SELECT x̄ WHERE {TGP . FILTER}.
For an answer ā to a query CQ, let ϕā be the partial instantiation that assigns

each output variable x in x̄ to the corresponding constant a in ā.

The logical signature of an answer of CQ, denoted σ(ā, CQ), is the formula:

(∃z̄ ϕā(TGP ) ∧ ϕā(FILTER))

where z̄ is the (possibly empty) subset of variables in TGP not including the output

variables x̄.

Definition 22 (Logical signature of an answer of a (temporal) aggregated con-

junctive query). Let Q be a (temporal) aggregated conjunctive query: SELECT x̄

agg(y) WHERE {TGP . FILTER} GROUP BY x̄ TIMEWINDOW(Size, Step).

For an answer (ā, r) to a query Q, let ϕā be the partial instantiation that assigns

each output variable x in x̄ to the corresponding constant a in ā.

The logical signature of an answer of Q, denoted σ((ā, r), Q), is the formula:

(∃y∃z̄ ϕā(TGP ) ∧ ϕā(FILTER)) ∧ agg({y|∃z̄, ϕā(TGP ) ∧ ϕā(FILTER)}) = r

where z̄ is the (possibly empty) subset of variables in TGP not including the out-

put variables x̄ and aggregate variable y.

Definition 23 formalizes privacy risk as the possibility of inferring answers of a

privacy query from the answers of utility queries on the same data graph without

knowing it.

Definition 23 (Privacy risk). A utility policy raises a privacy risk for a privacy

policy if the logical signature of an answer to a privacy query is entailed by the

conjunction of logical signatures of answers of utility queries.

The logical signatures of the respective answers (:sm1031, 75000) and (:sm1031,

75000, 2009-07-14T01:40:00, 143) to the TACQ1 and the TACQ5 of Example

4 are given below. The logical signature of the answer of TACQ5 logically entails

the logical signature of the answer of TACQ1 and this entailment is highlighted

in bold.

Logical signature of the answer (:sm1031, 75000) of TACQ1

σ((:sm1031 , 75000) , TACQ1):

∃ ?o : sm1031 : associatedOccupier ?o ∧ ?o : yearlyIncome 75000
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Logical signature of the answer (: sm1031, 75000, 2009-07-14T01:40:00, 143) of

TACQ5

σ((:sm1031 , 75000 , 2009 -07 -14 T01 :40:00 , 143), TACQ5):

∃ ?consumption ∃ ?ts ∃ ?o : sm1031 : associtaedOccupier ?o

∧ ?o : yearlyIncome 75000 ∧ (: sm1031 :consumption ?consumption, ?ts)

∧ ?ts ≤ 2009 -07 -14 T01 :40:00 ∧ ?ts > 2009 -07 -14 T00 :40:00

∧ MAX {?consumption | ∃ ?ts ∃ ?o, :sm1031 :associatedOccupier ?o

∧ ?o :yearlyIncome 75000 ∧ (: sm1031 :consumption ?consumption, ?ts)

∧ ?ts ≤ 2009 -07 -14 T01 :40:00 ∧ ?ts > 2009 -07 -14 T00 :40:00} = 143

4.3 Formal characterization of privacy risks

We characterize privacy risks by independently evaluating each privacy query of

a given privacy policy against the given set of utility queries (defining the utility

policy). In our approach, privacy risks are characterized by distinguishing the cases

when a privacy query is a conjunctive query or an aggregated conjunctive query

or a temporal aggregated conjunctive query. The characterization of privacy risks

in all cases is illustrated with the help of examples and in each example privacy

and utility queries are built using the same ontology presented in Section 3.2.1.1.

This section is structured as follows. In section 4.3.1, we provide the character-

ization of privacy risk when a privacy query is a conjunctive query. In section

4.3.2, we provide the characterization of privacy risk when a privacy query is an

aggregated conjunctive query. In Section 4.3.3, we provide the characterization of

privacy risk when a privacy query is a temporal aggregated conjunctive privacy

query.

4.3.1 Characterizing privacy risk for a conjunctive

privacy query

In this section, we provide the full characterization of privacy risk when a privacy

query Qp is a conjunctive query. In this case, we characterize privacy risk for Qp

by evaluating it against the given set of utility queries.

Without loss of generality, by renaming variables within each query, we consider

that queries have no variable in common. We will use the following notations for

a conjunctive privacy query:
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Qp: SELECT x̄p

WHERE {TGPp . FILTERp}

We will use the following notations for the utility queries:

Qui
: SELECT x̄ui

aggui
(yui

)

WHERE {TGPui
. FILTERui

}
GROUP BY x̄ui

TIMEWINDOW (Sizeui
, Stepui

)

Theorem 4.3.1 relies on evaluating the conjunctive privacy query Qp on all the

(small) temporal data graphs that are representative of the different ways of joining

answers of utility queries. Each of these data graph is obtained by freezing

(Definition 24) the variables in the union of temporal graph patterns in the utility

queries, in a way that allows to replace distinct output variables of utility queries

with a same constant (in order to mimic possible joins between output variables

coming from different utility queries).

Definition 24 (Freezing of graph patterns). Let TGP a temporal graph pattern. A

freezing of variables in TGP , denoted freeze(TGP ), is a temporal graph obtained

from TGP by replacing each variable by a constant, such that every variable that

is not an output variable is replaced by a distinct constant.

Theorem 4.3.1 also verifies the entailment of the FILTER conditions of Qp (if

FILTER is not empty) by the FILTER conditions of utility queries. When con-

junction of FILTER conditions of the privacy queries and utility queries is just

satisfiable (Definition 25), we obtain a characterization of weak privacy risk (Def-

inition 27). The weak privacy risk prevents the possibility to get an answer to a

privacy query among the answers inferred by variants of utility queries. A vari-

ant of a query (Definition 26) differs from the original query only by the FILTER

condition, while preserving compatibility with a new FILTER variant.

Definition 25 (Satisfiable Boolean expression). A Boolean expression Exp is sat-

isfiable if there exists at least an assignment of variables in Exp that makes it TRUE.

Definition 26 (Variant of a query). Let Q be a (temporal aggregated) conjunc-

tive query: SELECT x̄ agg(y) WHERE {TGP . FILTER} GROUP BY x̄

TIMEWINDOW (Size, Step).

A query Q′ is a variant of Q if the two queries differ only on their FILTER part

and FILTERQ ∧ FILTERQ′ is satisfiable.
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Definition 27 (Weak privacy risk). A utility policy raises weak privacy risk for a

privacy policy if a privacy risk is raised by replacing some utility queries with one

of their variants.

Theorem 4.3.1 (Characterizing privacy risk for a conjunctive privacy query raised

by utility queries). A set of utility queries Qu1, ..., Qun can raise (1) a privacy risk

or (2) a weak privacy risk for a conjunctive privacy query Qp if and only if there

exists a freezing of the variables in
⋃

i∈[1..n] TGPui
, and an answer c̄ = h(x̄p) of

Qp over freeze(
⋃

i∈[1..n] TGPui
) and if Qp has a FILTER condition:

1) freeze(
∧

i∈[1..n] FILTERui
) |= h(FILTERp)

or

2) freeze(
∧

i∈[1..n] FILTERui
) ∧ h(FILTERp) is satisfiable.

Proof. We first prove the case (1) of the theorem (privacy risk):

If utility queries raise a privacy risk for Qp, it means by Definition 21 that there

exists tuples of constants ā, ā1, ..., ān and partial instantiations ϕā, ϕā1 ,...,ϕān that

assigns each output variable in x̄p, x̄u1 ,...,x̄un to the corresponding constant in ā,

ā1, ..., ān such that ∃z̄1 ...∃z̄n ϕā1(TGPu1) ∧ ϕā1(FILTERu1) ∧ ...∧ ϕān(TGPun) ∧
ϕān(FILTERun) |= ∃z̄p ϕā(TGPp) ∧ ϕā(FILTERp).

Since the sets of variables in each query are pairwise disjoint, the entailment

is only possible if there exists a filtered homomorphism h from the variables in

z̄p to the variables or constants in the left hand side so that all the atoms in

h(ϕā(TGPp)) appear in the union of the atoms in ϕā1(TGPu1)∧ ...∧ ϕān(TGPun),

and h(ϕā(FILTERp)) is entailed by ϕā1(FILTERu1) ∧... ∧ ϕān(FILTERun).

Let Frozen be the result on
⋃

i∈[1..n] TGPui
of the freezing that replaces each out-

put variable xui
by ϕāi(xui

). The filtered homomorphism h∪ϕā from the temporal

graph pattern TGPp to Frozen allows to show that ā is an answer of Qp when

evaluated over Frozen, and: freeze(
∧

i∈[1..n] FILTERui
) |= h ∪ ϕā(FILTERp).

For the converse way of the proof, let us consider Frozen the result on
⋃

i∈[1..n] TGPui

of a freezing freeze of the output variables such that there exists an answer c̄ for

Qp when evaluated over Frozen with a filtered homomorphism support h such

that h(x̄p) = c̄ and freeze(
∧

i∈[1..n] FILTERui
) |= h(FILTERp).

The filtered homomorphism h allows to show the entailment between the formulas

δ1: ∃z̄u Frozen∧freeze(
∧

i∈[1..n] FILTERui
) and δ2: ∃z̄p hc̄(TGPp)∧hc̄(FILTERp)

where TGPp and Frozen are interpreted as the conjunction of their respective tem-

poral patterns seen as logical atoms, and hc̄ is the restriction of h to the output

variables of Qp.

In fact, δ1 and δ2 are respectively the conjunction of logical signatures of the an-
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swers freeze(x̄ui
) of each Qui

, and the logical signature of the answer c̄ of Qp.

Therefore, the utility queries raise privacy risk for privacy query Qp.

We now prove the case (2) of the theorem (weak privacy risk):

If the set of utility queries raise a weak privacy risk for Qp, a set of variants Q′
ui

of the utility queries Qui
raise privacy risk for Qp. By applying the case (1) of the

theorem, there exists a freezing freeze of the output variables in
⋃

i∈[1..n] TGP ′
ui
,

and an answer c̄ of Qp over Frozen = freeze(
⋃

i∈[1..n] TGP ′
ui
) with a filtered

homomorphism support h such that:

freeze(
∧

i∈[1..n] FILTER′
ui
) |= h(FILTERp)

This means that every variable assignment satisfying freeze(
∧

i∈[1..n] FILTER′
ui
)

satisfies h(FILTERp) too.

By definition of the variants (Definition 26), there exists a variable assignment

satisfying both freeze(
∧

i∈[1..n] FILTER′
ui
) and freeze(

∧
i∈[1..n] FILTERui

).

This assignment satisfies h(FILTERp) too. Thus freeze(
∧

i∈[1..n] FILTERui
) ∧

h(FILTERp) is satisfiable.

For the converse way, let us suppose that there exists a freezing freeze of the

output variables in
⋃

i∈[1..n] TGPui
, and an answer c̄ of Qp over Frozen = freeze

(
⋃

i∈[1..n] TGPui
) with a filtered homomorphism support h such that:

freeze(
∧

i∈[1..n] FILTERui
) ∧ h(FILTERp) is satisfiable.

The goal is to build variants Q′
ui

of utility queries by adding to the FILTER

constraints FILTERui
some constraints making h(FILTERp) true.

For doing so, first we remark that each freezing satisfying the conditions of the

theorem can be constrained by equating freezing constants for getting a connected

freezing satisfying also the conditions of the theorem. A freezing is connected if

each single TGPui
has a fresh constant in common with the freezing of at least

another TGPuj
. Then:

- for each atomic comparison t comp t′ in h(FILTERp) such that t and t′ are

either numbers or terms in the freezing of a single TGPui
, we add to FILTERui

the atomic constraint obtained by defreezing the constants possibly involved in t

comp t′.

- for each atomic comparison t comp t′ in h(FILTERp) such that t and t′ are

not in the freezing of single TGPui
, we can build a chain of comparisons t0 comp

t1, ...,tk−1 comp tk where t0 = t and tk = t′ where each pair tj, tj+1 are terms

appearing in the freezing of single TGPuj
. We just have to add to each FILTERuj

the atomic constraint obtained by defreezing the constants possibly involved in tj
comp tj+1.
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Example 12. Let us consider the following privacy and utility queries PQ1, UQ1

and UQ2, corresponding to the first privacy query and the first two utility queries

(up to variable renaming) of the scenario illustrated in Section 4.1:

PQ1: SELECT ?sm ?y

WHERE { ?sm :associatedOccupier ?o . ?o :yearlyIncome ?y }
UQ1: SELECT ?x1 ?y1 ?n

WHERE { ?x1 :associatedOccupier ?y1 . ?y1 :numberOfPersons ?n }
UQ2: SELECT ?x2 ?y2

WHERE { ?x2 :yearlyIncome ?y2 .

x2 :owns ?z1 . FILTER (?y2 > 75000) }
The following Frozen and Frozen′ are different freezing of the variables in the

union of the temporal graph patterns of utility queries, where the constants corre-

sponding to the freezing of output variables are denoted by constants oci:

Frozen = {oc1 :associatedOccupier oc2 . oc2 :numberOfPersons oc3 .

oc4 :yearlyIncome oc5 . oc4 :owns c6}
obtained by the freezing: { ?x1/oc1, ?y1/oc2, ?n/oc3, ?x2/oc4, ?y2/oc5, ?z1/c6 }
Frozen′ = {oc1 :associatedOccupier oc2 . oc2 :numberOfPersons oc3 .

oc2 :yearlyIncome oc4 . oc2 :owns c5}
obtained by a freezing: { ?x1/oc1, ?y1/oc2, ?n/oc3, ?x2/oc2, ?y2/oc4, ?z1/c5 } in

which ?y1 and ?x2 that are output variables in each of the utility queries are frozen

to the same constant oc2.

Ans(PQ1, F rozen) is empty but Ans(PQ1, F rozen′) = {(oc1, oc4)}.
The conditions for case 1 of the Theorem 4.3.1 are satisfied. Thus, the privacy

risk for PQ1 is raised by the two utility queries UQ1 and UQ2.

It is important to note that when each of the utility query is considered in isolation

with PQ1 then no privacy risk is raised.

Example 13. Let us consider the same queries PQ1, UQ1 and UQ2 of previous

example 12 by adding a FILTER condition to the PQ1 as follows:

PQ1′: SELECT ?sm ?y

WHERE { ?sm :associatedOccupier ?o . ?o :yearlyIncome ?y .

FILTER (?y > 80000)}
As Ans(PQ1′, F rozen′) = {(oc1, oc4)}. Now we also need to check FILTER con-

ditions. The output variable ?y2 of UQ2 is frozen to oc4. So we get:

freeze(?y2 > 75000) = (oc4 > 75000)

The homomorphism support h of the answer of PQ1′ over Frozen′ we get:
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h(?y > 80000)= (oc4 > 80000)

Checking (oc4 > 80000) is entailed by (oc4 > 75000) is enough to prove that a

privacy risk is raised for PQ1′ by the two utility queries UQ1 and UQ2 and the

conditions for case 1 of the Theorem 4.3.1 are satisfied.

Now let us modify the FILTER condition of the utility query UQ2 with (?y2 <

85000).

Checking (oc4 > 80000) is satisfiable with (oc4 < 85000) is enough to prove that

a weak privacy risk for PQ1′ is raised by the two utility queries UQ1 and variant

of UQ2 and the conditions for case 2 of the Theorem 4.3.1 are satisfied.

Now let us consider PQ1, UQ2 and the following UQ1′ as privacy and utility

queries. UQ1′ is obtained by reducing one of the output variable ?y1 in UQ1.

UQ1′: SELECT ?x1 ?n

WHERE { ?x1 :associatedOccupier ?y1 . ?y1 :numberOfPersons ?n }
In this case no freezing of the output variables ?x1 and ?n of UQ1′ combined with

a freezing of the output variables of UQ2 can lead to an answer of PQ1 evaluated

over the resulting temporal graph which is of the form:

{oc1 :associatedOccupier c2. c2 :numberOfPersons oc3 . oc4 :yearlyIncome oc5 .

oc4 :owns c6}
Therefore no privacy risk for PQ1 is raised by the two utility queries UQ1′ and

UQ2.

Worst-case complexity: In the worst case, detecting a privacy risk using Theo-

rem 4.3.1 requires to evaluate a conjunctive privacy query (without FILTER) Qp

over the temporal graph Frozen resulting from all the possible freezing of the

output variables of the utility queries. The evaluation of Qp over Frozen is poly-

nomial in the size of the utility queries but the number of possible freezing is 2OVu

where OVu is the number of output variables of the utility queries.

In practice: In fact, each freezing can be obtained from the initial most general

freezing, which assigns each output variable to a distinct fresh constant and by

equating subsets of these constants. The choice of constants to equate is con-

strained by the join variables within the conjunctive privacy query (without FIL-

TER) to obtain an answer.
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4.3.2 Characterizing privacy risk for an aggregated

conjunctive privacy query

In this section, we provide the characterization of a (weak) privacy risk when a

privacy query Qp is an aggregated conjunctive query. In this case, we separately

consider the utility queries without time window definitions from the utility queries

with time window definitions and characterize a (weak) privacy risk for Qp by

evaluating it against a set of utility queries without time window definitions. For

the general case of TACQs addressed in Section 4.3.3, the following Theorem

4.3.2 is applied only to evaluate the aggregated conjunctive part of a temporal

aggregated conjunctive privacy query against the set of aggregated conjunctive

parts of all utility queries for characterizing a (weak) privacy risk .

Without loss of generality, by renaming variables within each query, we consider

that queries have no variable in common. We will use the following notations for

an aggregated conjunctive privacy query:

Qp: SELECT x̄p aggp(yp)

WHERE {TGPp . FILTERp}
GROUP BY x̄p

We will use the following notations for the utility queries:

Qui
: SELECT x̄ui

aggui
(yui

)

WHERE {TGPui
. FILTERui

}
GROUP BY x̄ui

In the case of conjunctive queries, an answer can be inferred if there exists a

(filtered) homormorphism assigning variables in the temporal graph pattern to

values in the temporal data graph whereas in the case of aggregated conjunctive

queries, the computation of an answer necessitates the construction of the complete

set of (filtered) homomorphisms from the temporal graph pattern to values in the

temporal data graph which is then partitioned into subgroups that correspond to

the same assignment of the grouping variables. Finally, within each subgroup,

the aggregate function is applied to the set of data values corresponding to the

aggregate variable. Therefore, to infer an answer of an aggregated query Qp from

the answers of utility queries, it is necessary that a subset S of the utility queries

computes a equivalent set of (filtered) homomorphisms than Qp for this answer.

According to [Coh05], it is necessary that the existence of an isomorphism can

be enforced between the temporal graph pattern of the privacy query and the
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union of the temporal graph patterns from S. This is the core of the privacy risk

characterization stated in Theorem 4.3.2.

Theorem 4.3.2 (Characterizing privacy risk for an aggregated conjunctive pri-

vacy query). Let Qp be an aggregated conjunctive privacy query. There exists a

(weak) privacy risk for Qp if and only if there exists a subset S of utility queries

such that:

1) the set of conjunctive parts of all utility queries in S raises a (weak) privacy

risk for the conjunctive part of Qp,

and

2) the union of the temporal graph patterns of the utility queries in S is isomor-

phic to TGPp (through an isomorphism I), or can be made isomorphic to TGPp

(through an isomorphism I) by replacing some output variables by constants and/or

by equating some output variables of some utility queries in S,

and either

3.1) I(x̄p ∪ {yp}) ⊆
⋃

Qui∈S
x̄ui

,

or

3.2) the subset S contains at least one aggregated conjunctive query Qui
where

I(x̄p) ⊆ x̄ui
and aggp = aggui

and I(yp) = yui
.

Proof. Knowing the way aggregates are computed, S raises a (weak) privacy risk

for Qp if it first computes the same set of filtered homomorphisms as Qp. This

means that the set of conjunctive parts of queries in S raises a (weak) privacy risk

for the conjunctive part of Qp, thus satisfying the condition 1 of the theorem.

In this case, there exists at least one way to join the temporal graph patterns

of the utility queries in S using only their output variables such as there exists

an homomorphism between this joining graph J and the temporal graph pattern

TGPp of Qp.

Moreover, [Coh05] has showed that utility queries in S joined according to J can

produce the same set of filtered homomorphisms if and only if J and TGPp are

isomorphic or can be made isomorphic by replacing some of the output variables

in J by constants, thus satisfying condition 2 of the theorem.

There are only two ways to build an aggregate over a group ofQp from results of the

utility queries in S: either they produce directly the set of (non aggregated) needed

values as results to compute the aggregate, or they produce partial aggregated

values corresponding to the aggregate computation of Qp but over subgroups of

Qp.

In the first case, I(x̄p ∪ {yp}) ⊆
⋃

Qui∈S
x̄ui

(condition 3.1 of the theorem).



50 CHAPTER 4. SPECIFICATION AND VERIFICATION OF PRIVACY RISKS

In the second case, there exist at least one aggregated conjunctive utility query Qui

in S computing the same aggregate (aggp = aggui
) over the variable corresponding

to yp (I(yp) = yui
) over subgroups defined by at least one supplementary output

variable from x̄p (I(x̄p) ⊆ x̄ui
), thus satisfying condition 3.2 of the theorem.

Example 14. Let us consider the following privacy query Qp and utility queries

Qu1 and Qu2.

Qp: SELECT ?y MAX(?n)

WHERE { ?sm :associatedBuilding ?b . ?b rdf:type :Apartment .

?sm :associatedOccupier ?o . ?o :yearlyIncome ?y .

?o :numberOfpersons ?n }
GROUP BY ?y

Qu1: SELECT ?sm1 ?o1 ?y1 ?a1

WHERE { ?sm1 :associatedBuilding ?b1 . ?b1 rdf:type ?a1 .

?sm1 :associatedOccupier ?o1 . ?o1 :yearlyIncome ?y1 }
Qu2: SELECT ?o2 ?n1

WHERE { ?o2 :numberOfPersons ?n1 }
According to Theorem 4.3.1, the conjunctive parts of Qu1 and Qu2 raise privacy

risk for the conjunctive part of Qp, thus condition 1 of Theorem 4.3.2 is satisfied.

By replacing the output variable ?a1 with the constant :Apartment and by equat-

ing the output variables ?o1 and ?o2, we enforce the isomorphism I between the

temporal graph pattern of Qp and the union of temporal graph patterns of Qu1 and

Qu2, we get:

Join(Qu1 , Qu2): { ?sm1 :associatedBuilding ?b1 .

?b1 rdf:type :Apartment . ?sm1 :associatedOccupier ?o1

. ?o1 :yearlyIncome ?y1 . ?o1 :numberOfPersons ?n1 }
The condition 2 of the Theorem 4.3.2 is also satisfied.⋃

Qui
x̄ui

= ?sm1 ?o1 ?y1 ?a1 ?n1

I(x̄p ∪ {yp})= ?y1 ?n1

I(x̄p ∪ {yp}) ⊂
⋃

Qui
x̄ui

, thus condition 3.1 of the Theorem 4.3.2 is also satisfied.

Therefore, the privacy risk for Qp is raised by the two utility queries Qu1 and Qu2.

Now let us consider Qu2 and the following privacy query Q′
p and conjunctive utility

query Q′
u1
.

Q′
p: SELECT ?y MAX(?n)

WHERE { ?sm :associatedBuilding ?b . ?b rdf:type :Apartment .

?sm :associatedOccupier ?o . ?o :yearlyIncome ?y .

?o :numberOfpersons ?n . FILTER (?y > 60000)
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GROUP BY ?y

Q′
u1
: SELECT ?sm1 ?o1 ?y1 ?a1

WHERE { ?sm1 :associatedBuilding ?b1 . ?b1 rdf:type ?a1 .

?sm1 :associatedOccupier ?o1 . ?o1 :yearlyIncome ?y1 .

FILTER(?y1 < 80000) }
Q′

p and Q′
u1

only differ from Qp and Qu1 by the FILTER conditions.

By considering the same join as in the previous case and by replacing the FILTER

condition of Q′
u1

by the FILTER condition of Q′
p, we enforce the conditions of the

Theorem 4.3.2. Condition 1 is satisfied and ensures that the replacement of the

FILTER condition in Q′
u1

leads to a (compatible) variant of Q′
u1
.

This proves that a weak privacy risk for Qp is raised by the two utility queries Q′
u1

and Qu2.

Example 15. Let us consider the same Qp of the previous Example 14 and the

following aggregated conjunctive utility query Qu3.

Qu3: SELECT ?o1 ?y1 ?a1 MAX(?n1)

WHERE { ?sm1 :associatedBuilding ?b1 . ?b1 rdf:type ?a1 .

?sm1 :associatedOccupier ?o1 . ?o1 :yearlyIncome ?y1 .

?o1 :numberOfpersons ?n1 }
GROUP BY ?o1 ?y1 ?a1

According to Theorem 4.3.1, the conjunctive part of Qu3 raises privacy risk for the

conjunctive part of Qp, thus condition 1 of Theorem 4.3.2 is satisfied.

By replacing the output variable ?a1 in TGPu3 with the constant :Apartment, we

enforce an isomorphism (I) between the temporal graph pattern of Qu3 and the

temporal graph pattern of Qp. Condition 2 of the Theorem 4.3.2 is satisfied.

Both queries Qp and Qu3 compute the same aggregate MAX.

Through an isomorphism I, we get:

I(yp)=?n1 and I(x̄p)= ?y1.

As yu3 = ?n1 and x̄u3= ?o1 ?y1 ?a1, so I(yp) = yu3 and I(x̄p) ⊆ x̄u3, thus condition

3.2 of the Theorem 4.3.2 is also satisfied.

Therefore, the privacy risk for Qp is raised by the utility query Qu3.

Now let us consider Qp and the following aggregated conjunctive utility query Qu4:

Qu4: SELECT ?o1 ?n1 MAX(?y1)

WHERE { ?sm1 :associatedBuilding ?b1 . ?b1 rdf:type :Apartment .

?sm1 :associatedOccupier ?o1 . ?o1 :yearlyIncome ?y1 .

?o1 :numberOfpersons ?n1 }
GROUP BY ?o1 ?n1
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In this case, conditions 1 and 2 of the theorem are satisfied. Both queries Qp and

Qu4 compute the same aggregate MAX.

Through isomorphism I, we get:

I(yp)=?n1 and I(x̄p)= ?y1.

As yu3 = ?y1 and x̄u3= ?o1 ?n1 ?a1, so I(yp) ̸= yu3 and I(x̄p) ⊈ x̄u3. Thus,

condition 3.2 of the Theorem 4.3.2 is not satisfied.

Therefore, no privacy risk for Qp is raised by the utility query Qu4.

4.3.3 Characterizing privacy risk for a temporal

aggregated conjunctive privacy query

In this section, we provide the characterization of a privacy risk when a privacy

query Qp is a temporal aggregated conjunctive query (TACQ).

Without loss of generality, by renaming variables within each query, we will con-

sider that queries have no variable in common. We will use the following notations

for a temporal aggregated conjunctive privacy query:

Qp: SELECT x̄p aggp(yp)

WHERE {TGPp . FILTERp}
GROUP BY x̄p

TIMEWINDOW (Sizep, Stepp)

We will use the following notations for the utility queries:

Qui
: SELECT x̄ui

aggui
(yui

)

WHERE {TGPui
. FILTERui

}
GROUP BY x̄ui

TIMEWINDOW (Sizeui
, Stepui

)

The answers to the temporal aggregated conjunctive query TACQ are obtained

by iteratively evaluating the aggregated conjunctive part of the TACQ over each

time interval, which is computed from the values of Size and Step specified in the

time window definition. Therefore, characterization of a privacy risk for Qp is only

possible if there exists a (weak) privacy risk for the aggregated conjunctive part of

Qp when evaluated against the set of aggregated conjunctive parts of utility queries

and there is a possibility to build at least one time window of Qp over which an

aggregated result of Qp can be computed from the answers of one or more utility

queries.
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In this section, we will focus on the cases where a (weak) privacy risk is charac-

terized by finding a possibility to build at least one time window of Qp from the

answers of utility queries in subset S. In the first case, we evaluate if the answers

to utility queries contain all the values required to build at least one time window

of Qp and compute an aggregate result over it. For this it is necessary that the

timestamp values for all the dynamic properties in the temporal graph patterns

of utility queries in S are included in the answers of the utility queries in S. In

the second case, we evaluate if the answers of one or two different utility queries

contain all the partial aggregate results computed over different time windows of

one or two different utility queries that can be combined to obtain at least one

aggregate result of Qp computed over a single time window.

In the following sections, we will characterize a (weak) privacy risk for Qp by con-

sidering the cases mentioned above. In Section 4.3.3.1, we will present the first

case. In Sections 4.3.3.2 and 4.3.3.3, we will present the second case. The gener-

alization of the case presented in Section 4.3.3.3, which involves the consideration

of several temporal aggregated conjunctive utility queries is left for future work.

4.3.3.1 Privacy risk raised by a subset of utility queries

Theorem 4.3.3 characterizes a (weak) privacy risk for Qp by extending the Theorem

4.3.2 and finds the possibility to compute at least one time window of Qp from the

answers of utility queries in a subset S by evaluating if the timestamp variables of

all dynamic properties in the temporal graph patterns of utility queries in S are

included in the output variables of the utility queries in S.

Theorem 4.3.3. Let Qp be a temporal aggregated conjunctive privacy query. There

exists a (weak) privacy risk for Qp if and only if there exists a subset S of utility

queries such that:

1) the set of aggregated conjunctive parts of all utility queries in S raises a (weak)

privacy risk for the aggregated conjunctive part of Qp,

2) the timestamp variables of all dynamic properties in the temporal graph patterns

of utility queries in S are included in
⋃

Qui∈S
x̄ui

.

Proof. To compute an aggregate result over a single time window of Qp is possible

by combining the answers of utility queries in S, which contain:

- the set of non aggregated values needed to compute the aggregate of Qp by ap-

plying aggp,

- the timestamp values for all the dynamic properties are included in the temporal
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graph patterns of utility queries in S in such a way that these timestamp values

cover exactly the time window size of Qp over which an aggregated result of Qp is

being computed.

These values can only be obtained from the set of answers to utility queries in S

if :

1) according to Theorem 4.3.2, the set of conjunctive parts of utility queries in S

raises a (weak) privacy risk for the aggregated conjunctive part of Qp,

2) the timestamp variables of all dynamic properties in the temporal graph pat-

terns of utility queries in S are included in
⋃

Qui∈S
x̄ui

.

Example 16. Let us consider the following privacy query Qp and utility queries

Qu1 and Qu2.

Qp: SELECT ?sm ?timeWindowEnd MAX(?c)

WHERE { ?sm :associatedBuilding ?b . ?b rdf:type :Apartment .

(?sm :consumption ?c, ?ts) }
GROUP BY ?sm ?timeWindowEnd

TIMEWINDOW (6h, 6h)

Qu1: SELECT ?sm1 ?b1

WHERE { ?sm1 :associatedBuilding ?b1 . ?b1 rdf:type :Apartment }
Qu2: SELECT ?sm2 ?c1 ?ts1

WHERE { (?sm2 :consumption ?c1, ?ts1) }
According to Theorem 4.3.2, the aggregated conjunctive parts of Qu1 and Qu2 raise

privacy risk for the aggregated conjunctive part of Qp, thus condition 1 of the

Theorem 4.3.3 is satisfied.

A timestamp variable ?ts1 of Qu2 is an output variable. This satisfies condition 2

of the Theorem 4.3.3.

Therefore, the privacy risk for Qp is raised by the two utility queries Qu1 and

Qu2. Now let us modify Qu2 by removing the timestamp variable from its output

variables. Q′
u2
: SELECT ?sm2 ?c1

WHERE { (?sm2 :consumption ?c1, ?ts1) }
In this case, the second condition of the Theorem 4.3.3 is not satisfied, so no

privacy risk for Qp is raised by the two utility queries Qu1 and Q′
u2
.

4.3.3.2 Privacy risk raised by a subset containing only one TACQ

Now we will focus on the cases where a (weak) privacy risk is characterized by

finding a possibility to build at least one time window of Qp from the union of
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some time windows of a single temporal aggregated conjunctive utility query Qui

of subset S that cover exactly one time window of Qp. First, we will consider a

case when Qp and Qui
have same time window definitions (i.e; Sizep = Sizeui

and Stepp = Stepui
) and then we will consider a case when both Qp and Qui

have

different time window definitions.

In the first case, when the aggregated conjunctive part ofQui
raises a (weak) privacy

risk for the aggregated conjunctive part of Qp and both Qp and Qui
have same time

window definitions, the answer sets of Qp and Qui
are computed by iterating over

the same time intervals so all the time windows ofQp can be obtained from the time

windows of Qui
. Therefore, Theorem 4.3.2 is sufficient to characterize a privacy

risk for Qp.

Now we will consider the second case, when the aggregated conjunctive part of Qui

raises a (weak) privacy risk for the aggregated conjunctive part of Qp and both

Qp and Qui
have different time window definitions. In this case, a (weak) privacy

risk for Qp is raised only if it is possible to build at least one time window Ip
of Qp from the union of some time windows Iux of Qui

as shown in Figure 4.1.

Figure 4.1 illustrates that the aggregates SUM and COUNT necessitate to build

a time window of Qp from the disjoint union of time windows Iu1 and Iu4 of Qui
to

avoid double counting of an overlap whereas for the aggregates MAX and MIN

a time window of Qp can be built either from the disjoint union of time windows

Iu1 and Iu4 of Qui
, or from the overlapping union of time windows Iu1 , Iu2 , Iu3 ,

and Iu4 of Qui
.

Iu4

Iu3

Iu2

Iu1

Sizeui
Stepui

Ip

Sizep

Figure 4.1: Union of time windows of a single utility query

Theorem 4.3.4 characterizes a (weak) privacy risk for Qp by evaluating the values

of Sizep, Stepp, Sizeui
and Stepui

specified in the time window definitions of Qp
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and Qui
and finds the possibility to build at least one time window of Qp from the

union of some time windows of Qui
that cover exactly one time window of Qp.

Theorem 4.3.4 (Characterizing privacy risk for a temporal aggregated conjunc-

tive privacy query raised by a subset containing only one TACQ that computes the

same aggregate as the temporal aggregated conjunctive privacy query). Let Qp be

a temporal aggregated conjunctive privacy query. A subset S containing only one

temporal aggregated conjunctive utility query Qui
raises a (weak) privacy risk for

Qp if and only if:

1) the aggregated conjunctive part of Qui
raises a (weak) privacy risk for the ag-

gregated conjunctive part of Qp,

and

2.1) if aggp is SUM or COUNT , ∃m ∈ N and ∃n, α ∈ N+ such that Sizep =

Sizeui
+m× Stepui

, Sizeui
= n× Stepui

and m = α× n− n,

or

2.2) if aggp is MIN or MAX, ∃m ∈ N such that Sizep = Sizeui
+ m × Stepui

and Sizep − (m+ 1)× Stepui
≥ 0.

Proof. An answer of Qp can be obtained from answers to a subset S containing

only one temporal aggregated conjunctive utility query Qui
:

1) if according to Theorem 4.3.2, the aggregated conjunctive part of Qui
raises a

(weak) privacy risk for the aggregated conjunctive part of Qp,

2) if at least one time window of Qp can be built from the union of some time

windows of Qui
, that is only possible if the following conditions are satisfied:

(1) the union of m time windows of Qui
have the same size than a single time

window of Qp;

(2) a time window of Qui
and a time window of Qp starts at the same time;

(3) the union must be disjoint for aggregates SUM and COUNT (e.g. union of

Iu1 and Iu4 in grey in Figure 4.1);

(4) the union can be overlapping (e.g. union of Iu1 , Iu2 , Iu3 and Iu4 in Figure

4.1) or disjoint (e.g. union of Iu1 and Iu4 in Figure 4.1) for aggregates MAX and

MIN .

The given conditions are captured by the following equations:
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Sizep = Sizeui
+m× Stepui

(1)

kp × Stepp = ku × Stepui
(2)

Sizeui
= n× Stepui

for SUM and COUNT (3.1)

Sizep = α× Sizeui
for SUM and COUNT (3.2)

Sizeui
≥ Stepui

for MAX and MIN (4)

where kp, ku and m are unknown integers, n and α are strictly positive unknown

integers and Sizep, Stepp, Sizeui
and Stepui

are constant integers.

Equation (2) clearly always has solutions (e.g. kp = ku = 0) and can be discarded.

By combining equations (1) and (3.2) and equations (1) and (4), we obtain the

following equations:
Sizep = Sizeui

+m× Stepui
(1)

Sizeui
= n× Stepui

for SUM and COUNT (3.1)

(α− 1)× Sizeui
= m× Stepui

for SUM and COUNT (3.2)

Sizep −m× Stepui
≥ Stepui

for MAX and MIN (4)

By combining equations (3.1) and (3.2) and subtracting Stepui
from both sides of

equation (4), we obtain the following equations:


Sizep = Sizeui

+m× Stepui
(1)

Sizeui
= n× Stepui

for SUM and COUNT (3.1)

m = α× n− n for SUM and COUNT (3.2)

Sizep − (m+ 1)× Stepui
≥ 0 for MAX and MIN (4)

From the above equations, we get the conditions 2.1 and 2.2 of theorem that raise

a (weak) privacy risk for Qp:

2.1) ∃m ∈ N and ∃n, α ∈ N+ such that Sizep = Sizeui
+ m × Stepui

, Sizeui
=

n× Stepui
and m = α× n− n for aggregates SUM and COUNT.

2.2) ∃m ∈ N such that Sizep = Sizeui
+m×Stepui

and Sizep−(m+1)×Stepui
≥ 0

for aggregates MAX and MIN.

Example 17. Let us consider the following privacy query PQ2 and the utility

query UQ3 (up to variable renaming) of the scenario presented in Section 4.1.

PQ2: SELECT ?timeWindowEnd SUM(?c)

WHERE (?sm :consumption ?c, ?ts)

GROUP BY ?timeWindowEnd
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TIMEWINDOW (6h, 6h)

UQ3: SELECT ?sm1 ?timeWindowEnd SUM(?c1)

WHERE {(?sm1 :consumption ?c1, ?ts1)}
GROUP BY ?sm1 ?timeWindowEnd

TIMEWINDOW (3h, 1h)

In this case, the temporal graph patterns of PQ2 and UQ3 are isomorphic and

UQ3 and PQ2 compute the same aggregate SUM , so condition 1 of the theorem is

satisfied. Let us check the remaining conditions of Theorem 4.3.4 for the aggregate

SUM .

Now we check if ∃m ∈ N such that Sizep = Sizeui
+m× Stepui

As Sizep = 6, Sizeui
= 3 and Stepui

= 1, we get:

6 = 3 +m× 1

m = 3

Now we check if ∃n ∈ N+ such that Sizeui
= n× Stepui

:

3 = n× 1

n = 3

Now we check if ∃α ∈ N+ such that m = α× n− n:

3 + 3 = α× 3

α = 2

The remaining conditions specified for the aggregate SUM in the theorem are also

satisfied.

Thus, the privacy risk for PQ2 is raised by a single utility query UQ3.

This also implies that all the time windows of PQ2 can be computed from the

disjoint union of two non successive time windows of UQ3. Thus, the aggregate

SUM of Qp for all the time windows can be computed by taking sum of aggregates

obtained from the non successive disjoint time windows of UQ3.

Now let us replace the value of step in the time window definition of UQ3 by 2h.

In this case, m /∈ N, so no privacy risk is raised for PQ2 and it is also not possible

to build any of the time windows of PQ2 from the disjoint union of time windows

of a modified utility query.

4.3.3.3 Privacy risk raised by two subsets that contain only one

TACQ

Theorem 4.3.5 characterizes a (weak) privacy risk by evaluating a privacy query

Qp with two TACQs Qu1 and Qu2 that come from two different subsets S and S ′

such that each subset contains only one TACQ and it finds the possibility to build
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at least one time window of Qp from the union of some time windows coming from

Qu1 and Qu2 that compute the same aggregate on different time windows. For

example, Figure 4.2 illustrates the possibility to build a time window of Qp from

the union of two time windows coming from two different utility queries Qu1 and

Qu2 . The aggregates SUM and COUNT require two time windows Iu1 of Qu1

and Iu2 of Qu2 to be disjoint (as illustrated in Figure 4.2(a)) in order to prevent

the double counting caused by overlapping, whereas for the aggregates MIN and

MAX, a time window of Qp can be built from a disjoint union of two time windows

Iu1 of Qu1 and Iu2 of Qu2 (as illustrated in Figure 4.2(a)) or from an overlapping

union of two time windows Iu1 of Qu1 and Iu2 of Qu2 (as illustrated in Figure

4.2(b)).

Iu1

Iu2

Sizeu1 Sizeu2

Ip

Sizep

(a) For SUM or COUNT or MAX or MIN

Iu1

Iu2

Sizeu1

Sizeu2

Ip

Sizep

(b) For MAX or MIN

Figure 4.2: Union of time windows from two utility queries

Theorem 4.3.5 (Characterizing privacy risk for a temporal aggregated conjunc-

tive privacy query raised by the two subsets that contain only one TACQ comput-

ing the same aggregate as the temporal aggregated conjunctive privacy query). Let

Qp be a temporal aggregated conjunctive privacy query. A subset S containing only

one temporal aggregated conjunctive utility query Qu1 and a subset S ′ containing

only one temporal aggregated conjunctive utility query Qu2 raise a (weak) privacy

risk for Qp if and only if:

1) the aggregated conjunctive parts of Qu1 from S and Qu2 from S ′ raise a (weak)

privacy risk for the aggregated conjunctive part of Qp,

2.1) aggp is SUM or COUNT, Sizep = Sizeu1 + Sizeu2 and Sizep − Sizeu1 is a

multiple of gcd(Stepu1 , σp × Stepu2) where σp =
Stepp

gcd(Stepp,Stepu2 )
,

or

2.2) aggp is MAX or MIN, Sizep ≤ Sizeu1+Sizeu2 and Sizep−Sizeu1 is a multiple

of gcd(Stepu1 , σp × Stepu2) where σp =
Stepp

gcd(Stepp,Stepu2 )
.
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Proof. An answer of Qp can be obtained from answers to subsets S and S ′ that

contain only one temporal aggregated conjunctive utility query:

1) if according to Theorem 4.3.2, the aggregated conjunctive parts of Qu1 from S

and Qu2 from S ′ raise a (weak) privacy risk for the aggregated conjunctive part of

Qp,

2) if at least one time window Ip of Qp can be built from the union of a time

window Iu1 of Qu1 and a time window Iu2 of Qu2 as shown in Figure 4.2, that is

only possible if the following conditions are satisfied (Qu1 and Qu2 can be inverted):

(1) the union of a time window of Qu1 and a time window of Qu2 have the same

size as a single time window of Qp;

(2) a time window of Qu1 ends when a time window of Qp ends;

(3) a time window of Qu2 starts when the same time window of Qp starts.

The given conditions are captured by the following equations:


Sizep = Sizeu1 + Sizeu2 (a) or Sizep ≤ Sizeu1 + Sizeu2 (b) (1)

k1 × Stepu1 + Sizeu1 = kp × Stepp + Sizep (2)

kp × Stepp = k2 × Stepu2 (3)

where k1, k2 and kp are unknown integers and Stepp, Sizep, Stepu1 , Sizeu1 , Stepu2

and Sizeu2 are constant integers.

The positive integer solutions of equation (3) are of the form:

{
kp = κ× σu2 (3.1)

k2 = κ× σp (3.2)
with κ ∈ N

where σp =
Stepp

gcd(Stepp,Stepu2 )
and σu2 =

Stepu2
gcd(Stepp,Stepu2 )

.

Injecting solutions of equation (3.2) into equation (2), we obtain:


Sizep = Sizeu1 + Sizeu2 (a) or Sizep ≤ Sizeu1 + Sizeu2 (b) (1)

k1 × Stepu1 − κ× σp × Stepu2 = Sizep − Sizeu1 (2)

kp = κ× σu2 (3.1)

k2 = κ× σp (3.2)

Equations (3.1) and (3.2) are always satisfied and can be discarded. According to

Bachet-Bézout theorem, the Diophantine equation (2) has a solution if and only

if Sizep − Sizeu1 is a multiple of gcd(Stepu1 , σp × Stepu2).



61

Remark 2. If Qu1 and Qu2 raise a (weak) privacy risk for Qp, the first occurrence

of a time window of Qp that can be built from the union of time windows of Qu1

and Qu2 is obtained from the smallest integer value of κ solution of Diophantine

equation (2), noted κ0, using equation (3.1): kpmin
= κ0 ×

Stepu2
gcd(Stepp,Stepu2 )

.

Example 18. Let us consider the privacy query PQ2 of the scenario in Section

4.1 and the following utility queries:

PQ2: SELECT ?timeWindowEnd SUM(?c)

WHERE (?sm :consumption ?c, ?ts)

GROUP BY ?timeWindowEnd

TIMEWINDOW (6h, 6h)

Qu1: SELECT ?timeWindowEnd SUM(?c1)

WHERE {(?sm1 :consumption ?c1, ?ts1)}
GROUP BY ?timeWindowEnd

TIMEWINDOW (4h, 2h)

Qu2: SELECT ?timeWindowEnd SUM(?c2)

WHERE {(?sm2 :consumption ?c2, ?ts2)}
GROUP BY ?timeWindowEnd

TIMEWINDOW (2h, 1h)

In this case, the temporal graph patterns of PQ2 and Qu1 as well as of PQ2 and

Qu2 are isomorphic. PQ2, Qu1 and Qu2 compute the same aggregate SUM , so

condition 1 of the theorem is satisfied. Let us check the remaining conditions of

Theorem 4.3.5 for the aggregate SUM .

As Sizep = 6 and Sizeu1 + Sizeu2 = 6.

Now we check if Sizep − Sizeu1 is a multiple of gcd(Stepu1 , σp × Stepu2).

As Stepp = 6, Stepu1 = 2 and Stepu2 = 1, we get:

σp = 6, gcd(Stepu1 , σp × Stepu2) = 2, and Sizep − Sizeu1 = 2.

The remaining conditions specified for the aggregate SUM in the theorem are also

satisfied.

Thus, the privacy risk for PQ2 is raised by Qu1 and Qu2.

The first occurrence of a time window of PQ2 that can be built from the union

of time windows of Qu1 and Qu2 can be obtained from the smallest κ solution of

Diophantine equation (2). From Diophantine equation (2), we get the smallest

integer solution for the pair (k1 = 1, κ = 0). Substituting the value for κ in

equation (3.1), we get kpmin
= 0. This implies the first time window of PQ2 can

be built from the disjoint union of time windows of Qu1 and Qu2.

Now let us replace the size of time window of Qu1 by 3h.
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In this case, the Sizep ̸= Sizeu1 +Sizeu2, so no privacy risk is raised for PQ2 and

it is also not possible to build any of the time windows of PQ2 from the disjoint

union of time windows of modified utility query Qu1 and the utility query Qu2.

4.4 Algorithms for detecting privacy risks

To make our approach effective, we have designed and implemented1 several algo-

rithms based on the theorems presented in Section 4.3. In Section 4.3, we presented

the theorems to characterize a privacy risk by distinguishing the cases when a pri-

vacy query is a conjunctive query or an aggregated conjunctive query or a temporal

aggregated conjunctive query. In order to provide a comprehensive assessment of

privacy risk for any type of privacy query, we have designed and implemented a

general Algorithm 1 that integrates three sub-algorithms, each corresponding to

theorem(s) formalized within each case of a privacy query.

Each query provided as input to the algorithms consists of the following parts,

with pre-defined default values:

• {x̄} is a tuple of variables (output or grouping variables) and is empty if not

specified in the query;

• agg is an aggregate function and is null if not specified in the query;

• y is an aggregate variable and is null if agg is not specified in the query;

• {(?s p ?o, ?ts)} is a finite set of temporal patterns and must be specified in

the query. If ?ts is not specified in the query then its default value is null;

• FILTER is a boolean expression and is true if not specified in the query;

• (Size, Step) represents two time durations, where Size is the time duration

of each time window and Step is the time duration separating consecutive

time windows. If Size and Step are not specified in the query then their

default values are (∞, 0).

Following the terminologies used in Section 4.3, the algorithms return any one

of the three possible outcomes: privacy risk denoted as Prisk, weak privacy risk

denoted as W Prisk, or no privacy risk denoted as N Prisk.

1We used the python 3.9.6: https://www.python.org/downloads/release/python-396/

and our code is available at the GitHub repository: https://github.com/fr-anonymous/puck

https://www.python.org/downloads/release/python-396/
https://github.com/fr-anonymous/puck
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In our approach, we consider that queries have no variable names in common, so

at the start of Algorithm 1, we replace each distinct variable name with a new

one in each privacy query and utility query. The naming convention employed for

renaming the variables in each query consists of three parts, which are denoted as

?Q T I, where:

• Q represents the query name;

• T represents the variable type. If the variable name corresponds to an output

variable then it will be o, if the variable name corresponds to an aggregate

variable then it will be a, if the variable name corresponds to a timestamp

variable then it will be t, otherwise it will be v;

• I represents an incrementing integer that increases by 1 each time a distinct

variable name appears in the query.

In the algorithms, we will denote the variable name ?Q T I as V ar and each of

its parts will be denoted as Var.QueryName, Var.Type and Var.Int.

Example 19 illustrates how the algorithm employs the naming convention to gen-

erate an equivalent query with new variable names.

Example 19. Let us consider the following privacy query PQ1 of Example 12:

PQ1: SELECT ?sm ?y

WHERE { ?sm :associatedOccupier ?o . ?o :yearlyIncome ?y .

FILTER(?y > 80000) }
After applying the naming convention to PQ1, we get:

PQ1: SELECT ?PQ1 o 1 ?PQ1 o 2

WHERE { ?PQ1 o 1 :associatedOccupier ?PQ1 v 3 .

?PQ1 v 3 :yearlyIncome ?PQ1 o 2 . FILTER(?PQ1 o 2 > 80000) }

Once the variable names in all privacy and utility queries are replaced with new

ones, the Algorithm 1 proceeds to execute steps that involve evaluating different

parts of a privacy query expression with the corresponding parts of the utility

query expressions in a cascading manner, aiming to detect a (weak) privacy risk.

The details of these steps are presented in Algorithms 2, 3 and 4 in the following

sections.

Section 4.4.1 presents the algorithm that is designed and implemented to detect

a (weak) privacy risk by evaluating the conjunctive part of a privacy query with

the set of utility queries. Section 4.4.2 details the algorithm that is designed and
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Algorithm 1: Detecting privacy risks
Input: a set P of m privacy queries, PQi= ({x̄pi

}, aggpi
, ypi

, {(s p o, ?ts)}pi
, FILTERpi

,
Sizepi

, Steppi
)

a set U of n utility queries, UQi= ({x̄ui}, aggui , yui , {(s p o, ?ts)}ui ,
FILTERui , Sizeui , Stepui)

Output: returns privacy risk (Prisk) or weak privacy risk (W Prisk) or no privacy risk
(N Prisk)

1 Risks main(P, U)
2 forall PQi ∈ P do
3 rename variables(PQi) // renaming variables in privacy query

4 forall UQi ∈ U do
5 rename variables(UQi) // renaming variables in utility query

6 Risks:={ } // sets that are utilized by subsequent functions

7 forall PQi ∈ P do
8 Step 1 := test conjunctive part(PQi,U)
9 if Step 1 ̸= N Prisk and aggpi ̸= ∅ then

10 Step 2 := test aggregtaed conjunctive part(PQi,U , Step 1)

11 if Step 2 ̸= N Prisk and Sizepi ̸= ∞ then
12 Step 3 := test time window definitions(PQi,U , Step 2)
13 return Step 3

14 else
15 return Step 2

16 else
17 return Step 1

implemented to detect a (weak) privacy risk by evaluating aggregated conjunctive

part of a privacy query with the subset of utility queries. Section 4 details the

algorithm that is designed and implemented to detect a (weak) privacy risk by

evaluating the time window definitions of privacy and utility queries.

4.4.1 Testing conjunctive part

Algorithm 2 detects a (weak) privacy risk for a conjunctive part of a privacy query

(or conjunctive privacy query) by evaluating it against a set of utility queries.

According to the Theorem 4.3.1, there is a (weak) privacy risk if and only if:

1) a conjunctive privacy query returns an answer when evaluated over the freezing

of the variables in the union of temporal graph patterns of the utility queries,

2) the conjunction of the FILTER conditions of privacy and utility queries is

satisfiable.

To test the first condition of the theorem, at the start of Algorithm 2, we obtain
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the general freezing of the variables in the union of temporal graph patterns of

all utility queries (lines 7 to 9) over which the conjunctive privacy query can be

evaluated. The freezing of the variables in the temporal graph pattern of each

utility query is computed by generating constants for all the distinct variable

names in the utility query. The constant is named in a manner that reflects the

variable name and consists of three parts, which are denoted as Q C I, where:

• Q represents the query name;

• T represents the constant type. If it represents an output constant then it

will be o, if it is an aggregate constant then it will be a, if it is a timestamp

constant then it will be t, otherwise it will be v;

• I represents an incrementing integer that increases by 1 each time a constant

is generated for a distinct variable in the query.

In the algorithms, we will denote the constant Q T I as Con and each of its parts

will be denoted as Con.QueryName, Con.Type and Con.Int.

Example 20 illustrates how the algorithm computes the temporal graph U TG by

replacing the variables with constants in the union of temporal graph patterns in

a set of utility queries.

Example 20. Let us consider the utility queries UQ1, UQ2 and UQ3 correspond-

ing to the utility queries (up to variable renaming) of the scenario illustrated in

Section 4.1 and following utility query UQ4:

UQ1: SELECT ?UQ1 o 1 ?UQ1 o 2 ?UQ1 o 3

WHERE { ?UQ1 o 1 :associatedOccupier ?UQ1 o 2

. ?UQ1 o 2 :numberOfPersons ?UQ1 o 3 }
UQ2: SELECT ?UQ2 o 1 ?UQ2 o 2

WHERE { ?UQ2 o 1 :yearlyIncome ?UQ2 o 2 . ?UQ2 o 1 :owns ?UQ2 v 3

. FILTER (?UQ2 o 2 > 75000) }
UQ3: SELECT ?UQ3 o 1 ?UQ3 o 2 SUM(?UQ3 a 3)

WHERE {(?UQ3 o 1 :consumption ?UQ3 a 3, ?UQ3 t 4)}
GROUP BY ?UQ3 o 1 ?UQ3 o 2

TIMEWINDOW (3h, 1h)

UQ4: SELECT ?UQ4 o 1 ?UQ4 o 2 ?UQ4 o 3 MAX(?UQ4 a 4)

WHERE { ?UQ4 o 1 :associatedBuilding ?UQ4 o 2 .

?UQ4 o 2 rdf:type ?UQ4 o 3 .

(?UQ4 o 1 :consumption ?UQ4 a 4, ?UQ4 t 5) .
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FILTER (?UQ4 t 5 > 2023− 04− 01T00 : 00 : 00) }
GROUP BY ?UQ4 o 1 ?UQ4 o 2 ?UQ4 o 3

The general freezing of variables with the constants in the temporal graph patterns

of the utility queries is as follows:

freeze({(?s p .o, ?ts)}u1)= UQ1 o 1 :associatedOccupier UQ1 o 2 . UQ1 o 2 :num-

berOfPersons UQ1 o 3

freeze({(?s p ?o, ?ts)}u2)= UQ2 o 1 :yearlyIncome UQ2 o 2 . UQ2 o 1 :owns

UQ2 v 3

freeze({(?s p ?o, ?ts)}u3)= (UQ3 o 1 :consumption UQ3 a 3, UQ3 t 4)

freeze({(?s p ?o, ?ts)}u4): UQ4 o 1 :associatedBuilding UQ4 o 2. UQ4 o 2 rdf:type

UQ4 o 3 . (UQ4 o 1 :consumption UQ4 a 4, UQ4 t 5)

The union of the temporal graph U TG obtained by freezing variables with con-

stants is as follows:

UQ1 o 1 :associatedOccupier UQ1 o 2 . UQ1 o 2 :numberOfPersons

UQ1 o 3 . UQ2 o 1 :yearlyIncome UQ2 o 2 . UQ2 o 1 :owns UQ2 v 3 . (UQ3 o 1

:consumption UQ3 a 3, UQ3 t 4) . UQ4 v 1 :associatedBuilding UQ4 v 2. UQ4 v 2

rdf:type UQ4 o 3 . (UQ4 v 1 :consumption UQ4 a 4, UQ4 t 5)

Obtaining answers for the conjunctive privacy query when evaluated over U TG

is only possible if:

1) the output variables of conjunctive privacy query correspond to output con-

stants in U TG,

2) the join conditions in the temporal graph pattern TGPp of a privacy query are

satisfied, which means the join variables involved in join conditions correspond to

output constants in U TG,

3) the conjunction of the FILTER conditions of privacy and utility queries is sat-

isfiable.

First, the conjunctive part of the given privacy query is obtained (line 6). To

obtain the join conditions, TGPp is evaluated and the join conditions in TGPp

are extracted and stored in the form of ordered pairs, denoted as (V1, V2), where

V1 represents the first occurrence of a join variable in TGPp and V2 represents

the recurrence of a variable in the temporal graph pattern. A new variable name

denoted as N V2 is generated for each variable name V2. A new variable name

is also generated using the same naming convention already presented in Section

4.4. In this case, while generating a new variable name, the first integer value

for I is computed by incrementing the last integer value assigned to a variable

while renaming it. A new temporal graph pattern TGP ′ is computed by replacing
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each recurring join variable V2 with N V2. Example 21 and lines 13 to 21 in the

algorithm illustrate the complete process of obtaining join conditions and TGP ′.

Example 21. Temporal graph pattern of PQ1 of Example 19:

{ ?PQ1 o 1 :associatedOccupier ?PQ1 v 3 . ?PQ1 v 3 :yearlyIncome PQ1 o 2 }
Join conditions in temporal graph pattern of PQ1:

Joins=(?PQ1 v 3 , ?PQ1 v 3)

New variable name generated for ?PQ1 v 3 is ?PQ1 v 4.

Replacing the recurring ?v PQ1 3 in temporal graph pattern of PQ1:

TGP ′ = { ?PQ1 o 1 :associatedOccupier ?PQ1 v 3 . ?PQ1 v 4 :yearlyIncome

PQ1 o 2 }
A pair of join conditions after replacing recurring ?PQ1 v 3 with ?PQ1 v 4:

N Joins=(?PQ1 v 3, ?PQ1 v 4)

To obtain the mapping for all the output, aggregate and join variables of a privacy

query, a modified version of a privacy query PQ′ (without the FILTER condition)

is computed such that it contains all the variables in TGP ′ as output variables.

Example 22 and lines 22 to 24 in the algorithm illustrate these steps.

Example 22. PQ′ obtained for PQ1 of Example 19 by considering all variables

included in the temporal graph pattern of PQ1 as output variables:

PQ′: SELECT ?PQ1 o 1 ?PQ1 v 3 ?PQ1 v 4 ?PQ1 o 2

WHERE { ?PQ1 o 1 :associatedOccupier ?PQ1 v 3 .

?PQ1 v 4 :yearlyIncome ?PQ1 o 2 }

Then PQ′ is evaluated over U TG using SPARQL engine2 (line 25). The results

of the evaluation are obtained in tabular form, with each line (or row) in the table

containing the mappings of constants obtained for all variables of PQ′. Each line

L of the result is evaluated one after the other. First, it evaluates if all the output

variables and/or aggregate variable in PQ′ correspond to the output constants in

L (lines 29 to 32) and then the algorithm tests the join conditions by evaluating if

all the join variables also correspond to output constants in L (lines 33 to 35). If

any of the join variables in a pair does not correspond to the output constant, then

there is no privacy risk, but if both the join variables in each pair correspond to the

output constants, then this means that by freezing each pair of join variables with

the same constant in U TG will return an answer to the privacy query. However,

this is only possible if the conjunction of the FILTER conditions of the privacy and

utility queries is satisfiable. If FILTERp is true and the conjunction of FILTER

2We used the python RDFLib library: https://pypi.org/project/rdflib/

https://pypi.org/project/rdflib/
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conditions of utility queries is satisfiable then a privacy risk is raised for the privacy

query. If the FILTER condition in privacy query is specified, then the conjunction

of the FILTER conditions of privacy and utility queries is computed to test the

condition 2 of the Theorem 4.3.1. For each line of the result, the FILTER condition

is computed by replacing the variables corresponding to the privacy query with

the variables of the utility queries by using the same constant assigned to the

variables in result and U TG. The satisfiability between the conjunction of the

FILTER conditions of the queries is evaluated using the Constraint Satisfaction

Problem (CSP) Solver 3. If the conjunction of the FILTER conditions of privacy

and utility queries is satisfiable then the line involved in a privacy risk is stored to

test the conditions of other theorems and a weak privacy risk is detected by the

algorithm. These steps are illustrated in lines 37 to 44 of the algorithm and in

Example 23.

Example 23. The result of evaluating PQ′ of previous Example 22 over U TG:

Line # ?PQ1 o 1 ?PQ1 v 3 ?PQ1 v 4 ?PQ1 o 2

1 UQ1 o 1 UQ1 o 2 UQ2 o 1 UQ2 o 2

Output variables ?PQ1 o 1 and ?PQ1 o 2 correspond to the output constants UQ1 o 2

and UQ2 o 2 in the first line of the result.

The pair of join variables (?PQ1 v 3, ?PQ1 v 4) when equated with the constants

obtained from the first line of the result, we get: UQ1 o 2 = UQ2 o 1. As both

constants correspond to output constants, it implies that it is possible to obtain an

answer to privacy query PQ1 of Example 12 by freezing the UQ1 o 2 and UQ2 o 1

with the same constant only if the conjunction of the FILTER conditions of privacy

and utility queries is satisfiable.

Conjunction of the FILTER conditions of PQ1 and UQ2:

?PQ1 o 4 > 80000 && ?UQ2 o 2 > 75000

Conjunction of the FILTER conditions obtained by replacing the variable of PQ1

with the corresponding variable of UQ2:

?UQ2 o 2 > 80000 && ?UQ2 o 2 > 75000

The conjunction of the FILTER conditions of PQ1 and UQ2 is satisfiable so the

algorithm returns a weak privacy risk.

3We used the python CSP library: https://pypi.org/project/CSP-Solver/

https://pypi.org/project/CSP-Solver/
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Algorithm 2: Testing conjunctive part
Input: a privacy query with renamed variables, PQ= ({x̄p}, aggp, yp, {(?s p ?o, ?ts)}p,

FILTERp, Sizep, Stepp)
a set U of n utility queries with renamed variables, UQi= ({x̄ui

}, aggui
, yui

,
{(?s p ?o, ?ts)}ui

, FILTERui
, Sizeui

, Stepui
)

Output: returns privacy risk (Prisk) or weak privacy risk (W Prisk) or no privacy risk

(N Prisk)
1 test conjunctive part((PQ,U)
2 TGP ′:= { } // a set of modified {(?s p ?o, ?ts)}p with replaced join conditions

3 N Joins:= { } // a set of joining tuples

4 U TG:= { } // a set of union of temporal graphs of all UQi

5 C Filter:=true // a set of conjunction of all FILTERui

6 Vp:= { } // a tuple of variables in TGP’

7 foreach UQi ∈ U do
8 freeze({(?s p ?o, ?ts)}ui

) // replace variables with generated constants

9 U TG:= U TG ∪ freeze({(?s p ?o, ?ts)}ui
)

10 C Filter:=C Filter ∧ FILTERui

11 Conj(PQ):=({x̄p} ∪ {yp}, {(?s p ?o, ?ts)}p, FILTERp) // conjunctive part of PQ

12 Joins:= extract join conditions({(?s p ?o, ?ts)}p)
13 foreach (V1, V2) ∈ Joins do
14 generate N V2 for V2 // N V2 is a new variable name

15 foreach (?s p ?o, ?ts) in Conj(PQ) do
16 if s = V2 or o = V2 then
17 replace V2 with N V2 to compute (?s p ?o, ?ts)′

18 TGP ′:= TGP ′ ∪ (?s p ?o, ?ts)′

19 N Joins:= N Joins ∪(V1, N V2)
20 else
21 TGP ′ := TGP ′ ∪ (?s p ?o, ?ts)

22 foreach V ar ∈ TGP ′ do
23 Vp= Vp ∪ TGP ′

24 PQ′:= “SELECT Vp WHERE TGP ′”
25 Result:=evaluate(PQ′, U TG)
26 Risks:=Risks ∪ U TG ∪ Vp

27 PQ risk:=N Prisk

28 Risks lines:=Prisk

29 foreach line in Result do
30 foreach Var ∈ Vp do
31 foreach Con in line do
32 if V ar.Type = o or V ar.Type = a does not correspond to Con.Type = o or

Con.Type = a then Risks lines:=N Prisk;

33 if Risks lines=Prisk and N Joins ̸= ∅ then
34 foreach (V1, N V2) ∈ N Joins do
35 if V1 or N V2 does not correspond to Con.Type = o in line then

Risks lines:=N Prisk;

36 if Risks lines=Prisk then
37 Fil Conj:=FILTERp ∧ C Filter
38 Fil Expression:=rewrite(Fil Conj) // replace Var of FILTERp with Var of C Filter

39 Conjunction FILTER:=evaluate(Fil Expression)
40 if Conjunction FILTER is satisfiable then
41 if Filterp=true then PQ risk:=Prisk;

42 if PQ risk ̸= Prisk then PQ risk:=W Prisk;

43 if Risks lines=Prisk then Risks:=Risks∪line;
44 return PQ risk
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4.4.2 Testing aggregated conjunctive part

Algorithm 3 is based on Theorem 4.3.2 and only focuses on evaluating the con-

ditions 2 and 3 of Theorem 4.3.2, as the first condition is evaluated by applying

Algorithm 2. According to the Theorem 4.3.2, there exists a (weak) privacy risk

for Qp if and only if there exists a subset S of utility queries such that:

1) the set of conjunctive parts of all utility queries in S raises a (weak) privacy

risk for the conjunctive part of Qp,

and

2) the union of the temporal graph patterns of the utility queries in S is iso-

morphic to TGPp (through an isomorphism I), or can be made isomorphic to

TGPp (through an isomorphism I) by replacing some output variables by con-

stants and/or by equating some output variables of some utility queries in S,

and either

3.1) I(x̄p ∪ {yp}) ⊆
⋃

Qui∈S
x̄ui

,

or

3.2) the subset S contains at least one aggregated conjunctive query Qui
where

I(x̄p) ⊆ x̄ui
and aggp = aggui

and I(yp) = yui
.

To test the isomorphism (condition 2 of the Theorem 4.3.2) between the union

of the temporal graph patterns of the utility queries in S and TGPp, first the

algorithm computes the subset S by evaluating each line L of the result that

raised a (weak) privacy risk for the conjunctive part of a privacy query. Each

line L contains the constants, where the first part of constant refers to the utility

query name involved in raising privacy risk for the conjunctive part of a privacy

query. The first part from each constant in L is extracted to obtain the subset

S as illustrated in lines 7 to 14 of the algorithm. After obtaining the utility

query names, the algorithm computes a set TGc by extracting all the constants

starting with the same query names from U TG (lines 15 to 18). The isomorphism

between the union of temporal patterns of utility queries in S and TGPp is tested

by evaluating all the constants in L and TGc. If all of the constants in TGc

correspond to the constants in L then this implies that all the temporal patterns

in TGPp correspond to the union of temporal patterns of the utility queries in S,

thus TGPp is isomorphic to the union of temporal patterns of the utility queries

in S (lines 19 to 22).

To test condition 3.1 of the Theorem 4.3.2, it is evaluated if the output and ag-

gregate variables of a privacy query PQ′ correspond to the output constant in L
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and if this condition is satisfied then, it returns a (weak) privacy risk for a privacy

query as illustrated in lines 24 to 31 in the algorithm otherwise, it tests condition

3.2 of the Theorem 4.3.2. To test condition 3.2 of the Theorem 4.3.2, the algorithm

evaluates if any of the utility queries in S has the same aggregate function as the

privacy query. If this condition is satisfied, then it tests if the aggregate variable

of the privacy query PQ′ correspond to the aggregate constant starting with the

same utility query name in L. If this condition is satisfied then the algorithm

checks if all the output variables of privacy query PQ′ in L corresponds to the

output constants of output variables of UQi that are obtained from U TG and if

this condition is also satisfied, then the algorithm returns a (weak) privacy risk for

privacy query. These steps are covered in the algorithm from lines 32 to 38.

Example 24 illustrates the steps of Algorithm 2 by detecting a weak privacy risk

for an aggregated conjunctive privacy query.

Example 24. Let us consider the following privacy query PQ1 and the same set

of utility queries UQ1, UQ2, UQ3 and UQ4 of Example 20.

PQ1: SELECT ?PQ1 o 3 MAX(?PQ1 a 4)

WHERE { ?PQ1 v 1 :associatedBuilding ?PQ1 v 2 .

?PQ1 v 2 rdf:type ?PQ1 o 3 .

(?PQ1 v 1 :consumption ?PQ1 a 4, ?PQ1 t 5) .

FILTER (?PQ1 t 5 > 2023− 03− 01T00 : 00 : 00) }
GROUP BY ?PQ1 o 3

Rewritten PQ1 with all the variables as output variables:

PQ′: SELECT ?PQ1 v 1 ?PQ1 v 2 ?PQ1 v 6 ?PQ1 o 3 ?PQ1 v 7 ?PQ1 a 4 ?PQ1 t 5

WHERE { ?PQ1 v 1 :associatedBuilding ?PQ1 v 2 .

?PQ1 v 6 rdf:type ?PQ1 o 3 .

(?PQ1 v 7 :consumption ?PQ1 a 4, ?PQ1 t 5) }
The result of evaluating PQ′ over U TG which was obtained in Example 20:

Line # ?PQ1 v 1 ?PQ1 v 2 ?PQ1 v 6 ?PQ1 o 3 ?PQ1 v 7 ?PQ1 a 4 ?PQ1 t 5

1 UQ4 o 1 UQ4 o 2 UQ4 o 2 UQ4 o 3 UQ4 o 1 UQ4 a 4 UQ4 t 5

By applying the Algorithm 2, it returns a weak privacy risk for the conjunctive part

of a privacy query.

Extracting the query names from the first line of the result, we get the subset that

only consists of one utility query UQ4.

Extracting constants that start with the utility query name UQ4 from U TG, we
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Algorithm 3: Testing aggregated conjunctive part
Input: a privacy query with renamed variables, PQ= ({x̄p}, aggp, yp, {(s p o, ?ts)}p,

FILTERp, Sizep, Stepp)
a set U of n utility queries with renamed variables, UQi= ({x̄ui

, aggui
, yui

,
{(s p o, ?ts)}ui

, FILTERui
, Sizeui

, Stepui
)

Step 1
Output: returns privacy risk (Prisk) or weak privacy risk (W Prisk) or no privacy risk

(N Prisk)
1 test aggregated conjunctive part((PQ,U ,Step 1)
2 UQ names:={ } // a set of extracted query names from constants

3 S:={ } // a subset of U raising privacy risk for conjunctive part of PQ

4 TGc:={ } // a set of constants extracted from union of frozen (s p o, ?ts)}ui

5 S line:={ } // lines raising privacy risk for aggregated conjunctive part of PQ

6 if PQ risk̸= N Prisk and aggp ̸= ∅ then
7 foreach line in Risks do
8 foreach Con in line do
9 if Con.QueryName ̸∈ UQ names then

10 UQ names:=UQ names ∪ Con.QueryName

11 foreach UQi ∈ U do
12 foreach Con.QueryName ∈ UQ names do
13 if UQi=Con.QueryName then
14 S:= S ∪ UQi // computing a subset S of utility queries

15 foreach UQi ∈ S do
16 foreach Con in U TG do
17 if Con.QueryName = UQi then
18 TGc=TGc ∪ Con

19 foreach Con ∈ TGc do
20 foreach Con in line do

// Checking isomorphism

21 if Con not in line then
22 PQ risk:=N Prisk

23 if PQ risk ̸= N Prisk then
24 foreach Var ∈ Vp do
25 foreach Con in line do
26 if Var.Type=a does not correspond to Con.Type=o
27 or
28 Var.Type=o does not correspond to Con.Type=o then
29 PQ risk:=N Prisk

30 else
31 PQ risk ̸= N Prisk, S line:=S line ∪ line, Risks:= Risks ∪ S line

32 if PQ risk:=N Prisk then
33 foreach UQi ∈ S do
34 if aggp = aggui then
35 if Var.Type=a does not correspond to

Con.QueryName=UQi and Con.Type=a
36 or
37 Var.Type=o does not correspond to Con.QueryName=UQi

and Con.Type=o then
38 PQ risk:=N Prisk

39 if PQ risk ̸= N Prisk then Risks:= Risks ∪S;

40 return PQ risk
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get:

TGc: {UQ4 o 1, UQ4 o 2, UQ4 o 2, UQ4 o 3, UQ4 o 1, UQ4 a 4, UQ4 t 5}
Comparing the constants in TGc with the constants in the first line of the result

shows that the temporal graph patterns of PQ1 and UQ4 are isomorphic.

The aggregate function MAX is the same in both PQ1 and UQ4, the aggregate

variables ?PQ1 a 4 of PQ1 and ?UQ4 a 4 of UQ4 correspond to the aggregate

constant UQ4 a 4. The output variable ?PQ1 o 3 of PQ1 and the output variable

?UQ4 o 3 of UQ4 correspond to the output constant UQ4 o 3. It is possible to

compute an aggregate result of PQ2 from the answers of UQ4, thus the Algorithm

3 will return a weak privacy risk for PQ1.

4.4.3 Testing time window definitions

Algorithm 4 outlines the conditions of three Theorems 4.3.3, 4.3.4 and 4.3.5 that

characterize a (weak) privacy risk for a temporal aggregated conjunctive privacy

query by evaluating it against one (or two) subset(s) of utility queries. The fol-

lowing condition 1 provided in all the theorems is tested by applying Algorithm 2:

1) if the aggregated conjunctive parts of utility queries in one subset (in Theorems

4.3.3 and 4.3.4) or two subsets (in Theorem 4.3.5) raise a (weak) privacy risk for

the aggregated conjunctive part of a privacy query.

Algorithm 4 detects a privacy risk by evaluating if there is a possibility to build at

least one time window of a privacy query from the answers of utility queries in a

subset S or from the disjoint union (when aggregate function is SUM or COUNT)

or from the union (when aggregate function is MAX or MIN) of time windows of

one or two utility queries coming from one or two different subsets.

In the start of Algorithm 4, it evaluates the case when the subset S does not

contain any of the utility queries that compute the same aggregate as the privacy

query, it tests if the timestamp variables of all dynamic properties in the temporal

graph patterns of utility queries in S are included in the union of the output

variables of utility queries in S. To test this condition, it evaluates the line of the

result involved in a privacy risk in Algorithm 3. If all the timestamp variables

(ie.; Var.Type=t) of privacy query PQ′ correspond to the output constant (i.e.;

Con.Type=o) in line (lines 5 to 9) then this implies it is possible to build at least

one time window of a privacy query from the answers of utility queries in subset

S, thus the algorithm returns a (weak) privacy risk.
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If the privacy query and a utility query compute the same aggregate as the privacy

query but on different time window definitions, then the Algorithm 4 determines

the subsequent steps on the basis of the aggregate of the privacy and utility queries

and tests the possibility of building at least one time window of the privacy query

from the union of some time windows of a single utility query by evaluating the

following conditions 2.1 and 2.2 of the Theorem 4.3.4 by substituting the values

of Sizep, Sizeui
and Stepui

in the equations specified below:

2.1) if aggp is SUM or COUNT , ∃m /∈ N, ∃n, α ∈ N+ such that Sizep =

Sizeui
+m× Stepui

, Sizeui
= n× Stepui

and m = α× n− n,

or

2.2) if aggp is MAX or MIN , ∃m ∈ N such that Sizep = Sizeui
+ m × Stepui

and Sizep − (m+ 1)× Stepui
≥ 0.

Lines 16 to 19 in the algorithm test condition 2.1 of the Theorem 4.3.4 and if m,

n and α have integer solutions that satisfy the given condition, then this implies

it is possible to build at least one time window of the privacy query from the dis-

joint union of some time windows of a single utility query. Lines 20 to 23 in the

algorithm test condition 2.2 of the Theorem 4.3.4 and if m have integer solutions

that satisfy the given condition, then this implies it is possible to build at least

one time window of a privacy query from the disjoint or overlapping union of some

time windows of a single utility query. If the both conditions 2.1 or 2.2 are not

satisfied then the utility query is stored and evaluated in a pair with another utility

query to test the following conditions 2.1 and 2.2 of the Theorem 4.3.5:

2.1) aggp is SUM or COUNT, Sizep = Sizeu1 + Sizeu2 and Sizep − Sizeu1 is a

multiple of gcd(Stepu1 , σp × Stepu2) where σp =
Stepp

gcd(Stepp,Stepu2 )
,

or

2.2) aggp is MAX or MIN, Sizep ≤ Sizeu1+Sizeu2 and Sizep−Sizeu1 is a multiple

of gcd(Stepu1 , σp × Stepu2) where σp =
Stepp

gcd(Stepp,Stepu2 )
.

Lines 28 to 30 in the algorithm test condition 2.1 of Theorem 4.3.5 and if the

condition is satisfied then, this implies it is possible to build at least one time

window of the privacy query from the disjoint union of two time windows of two

different utility queries coming from different subsets. Lines 31 to 33 test condition

2.2 of the Theorem 4.3.5 and if the condition is satisfied, then this implies it is

possible to build at least one time window of the privacy query from the disjoint or

overlapping union of some time windows of two different utility queries coming from
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different subsets. If any of the given conditions are satisfied, then the algorithm

returns a (weak) privacy risk for a privacy query.

If the privacy and utility queries compute the same aggregate as the privacy query

but on the same time window definitions, then evaluating condition 1 of the The-

orem 4.3.4 is sufficient to prove that there exists a privacy risk and the algorithm

returns a (weak) privacy risk (lines 13 to 14).

Example 24 illustrates the steps of Algorithm 3 by detecting a weak privacy risk

for a temporal aggregated conjunctive privacy query.

Example 25. Let us consider the privacy query PQ2 of the scenario illustrated

in Section 4.1 and the same set of utility queries UQ1, UQ2, UQ3 and UQ4 of

Example 23.

PQ2: SELECT ?PQ2 o 1 SUM(?PQ2 a 3)

WHERE { (?PQ2 v 2 :consumption ?PQ2 a 3, ?PQ2 t 4) }
GROUP BY ?PQ2 o 1

TIMEWINDOW (6h, 6h)

Rewritten PQ2 with all the variables as output variables:

PQ′: SELECT ?PQ2 v 2 ?PQ2 a 3 ?PQ2 t 4

WHERE { (?PQ2 v 2 :consumption ?PQ2 a 3, ?PQ2 t 4) }
The result of evaluating PQ′ over U TG which was obtained in Example 23:

Line # ?PQ2 v 2 ?PQ2 a 3 ?PQ2 t 4

1 UQ3 o 1 UQ3 a 3 UQ3 t 4

By applying the Algorithm 3, it returns a privacy risk for the aggregated conjunctive

part of a privacy query. PQ2 and UQ3 compute the same aggregate SUM on

different time window definitions. The algorithm tests the conditions of Theorem

4.3.4 and computes the values for m, n and α by substituting the values of Sizep,

Sizeui
and Stepui

as follows:

m = ((6− 3)/1), m= 3;

n = (3/1), n= 3;

α = ((3 + 3)/3), α=2.

As m, n and α have integer solutions, this implies it is possible to build a time

window of PQ2 from the disjoint union of some time windows of UQ3, so the

algorithm will return a privacy risk for PQ2.
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Algorithm 4: Testing time window definitions
Input: a privacy query with renamed variables, PQ= ({x̄p}, aggp, yp, {(?s p ?o, ?ts)}p,

FILTERp, Sizep, Stepp)
a set U of n utility queries with renamed variables, UQi= ({x̄ui

}, aggui
, yui

,
{(s p o, ?ts)}ui

, FILTERui
, Sizeui

, Stepui
)

Step 2
Output: returns privacy risk (Prisk) or weak privacy risk (W Prisk) or no privacy risk

(N Prisk)
1 test time window definitions((PQ,U ,Step 2)
2 Subsets={ } // subsets that does not raise a privacy risk when checked in isolation

3 Agg PQ risk:= PQ risk // output of Algorithm 3

4 if PQ risk̸= N Prisk and Sizep ̸= ∞ then
5 foreach S line ∈ Risks do
6 foreach Var ∈ Vp do
7 foreach Con in S line do
8 if Var.Type =t does not correspond to Con.Type=o then
9 PQ risk:= N Prisk

10 foreach S ∈ Risks do
11 foreach UQi ∈ S do
12 if Sizeui

̸= ∞ then
13 if Sizep = Sizeui

and Stepp = Stepui
then

14 PQ risk:=Agg PQ risk

15 if Sizep ̸= Sizeui or Stepp ̸= Stepui then
16 if (aggp = SUM) or (aggp = COUNT ) then
17 find m = ((Sizep − Sizeui

)/Stepui
) and n = (Sizeui

/Stepui
) and

α = ((m+ n)/n)
18 if m /∈ N or n, α /∈ N+ then
19 PQ risk:= N Prisk, Subsets:=Subsets ∪UQi

20 if (aggp = MAX) or (aggp = MIN) then
21 find m = ((Sizep − Sizeui

)/Stepui
)

22 if m /∈ N or (Sizep − (m+ 1)× Stepui ≱ 0) then
23 PQ risk:= N Prisk, Subsets:=Subsets ∪UQi

24 σp = (Stepp)/(Stepp, Stepu2)
25 sgcd = gcd(Stepu1

, σp × Stepu2
)

26 if Subsets ̸= ∅ then
27 foreach pair of UQi ∈ Subsets do
28 if (aggp = SUM) or (aggp = COUNT ) then
29 if Sizep ̸= Sizeu1

+Sizeu2
or Sizep−Sizeu1

is not a multiple of sgcd then
30 PQ risk:= N Prisk

31 if (aggp = MAX) or (aggp = MIN) then
32 if Sizep ≰ Sizeu1

+Sizeu2
or Sizep−Sizeu1

is not a multiple of sgcd then
33 PQ risk:= N Prisk

34 return PQ risk



Chapter 5

Explanation and negotiation of

privacy risks

For data producers who lack familiarity with formal query language syntax, com-

prehending the results of formal framework presented in Section 4.4 can be quite

daunting. To help data producers in understanding the privacy risks raised by util-

ity queries from service providers, an explanation for each detected privacy risk is

constructed based on examples that are built to make explicit how some (specific)

answers to utility queries can induce an answer to a privacy query. Then, as the

basis of a negotiation mechanism, some options for modifying utility queries are

proposed to the data producer to remove the detected privacy risks.

In this chapter, we present our approach to help data producers in understanding

and removing privacy risks. This chapter is organized as follows. In Section 5.1,

we present the approach used for constructing the explanation of privacy risks.

In Section 5.2, we present the approach used for constructing the negotiation

options to remove privacy risks. In Section 5.3, we present the components and

functionalities of the user-friendly interface that we have built for helping data

producers to understand and negotiate the privacy risks. In Section 5.4, we present

the methodology used for the evaluation of user interface along with its results.

5.1 Construction of explanation

In all the cases of privacy queries presented in Sections 4.3 and 4.4, a privacy risk

is raised by a subset S of utility queries if there exists a freezing of the variables

77
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in the union of the temporal graph patterns of the utility queries on which the

evaluation of the conjunctive part of a privacy query at least provides an answer.

Such a freezing is a synthetic dataset instantiating the body of a combination of

utility queries in S, that is built by the algorithm of risk detection to enforce

the existence of an answer to the privacy query. A freezing can be turned into

an example explaining the risk by replacing the synthetic constants used in the

freezing by plausible constants for the domain. Considering the aforementioned

fact, we provide two levels of explanations for a privacy risk associated to a privacy

query. The first level only points out the queries involved in a privacy risk by

indicating the utility queries in a subset S identified by the algorithm as leading to

a risk (i.e., inferring an answer to the privacy query from answers to a combination

of utility queries in S). The second level exploits the synthetic dataset built from

the freezing to show an example where some answers to the utility queries in S

can reveal the presence of data from which an answer to the privacy query can be

obtained.

To obtain a synthetic dataset, the synthetic constants are replaced with plausi-

ble constants by exploiting the ranges and domains of the involved properties as

follows:

• For synthetic constants subject of a property, they are renamed using the

name of the class declared as domain of the property appended with an

integer serving as index in case of several synthetic constants of the same

class having to be renamed. The same process is applied to rename the

synthetic constants in the position of object for an object property.

• For synthetic constants in the position of value for a datatype property,

since the corresponding ranges (integer, string or date) are in general too

broad to determine the actual possible ranges of plausible values for each

datatype property, we extend the ontology in order to make more precise the

actual ranges of each datatype property of the domain by providing typical

values (or ranges for integers and dates) within a comment associated to the

property (using the rdfs property rdfs:comment). If a FILTER condition is

applied to (a) synthetic constant(s), they are replaced by plausible values

satisfying the corresponding constraint.

In our approach the examples for explaining the privacy risks are constructed

by distinguishing the cases when a privacy query involved in a privacy risk is a

conjunctive query or an aggregated conjunctive query or a temporal aggregated
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conjunctive query.

The example explaining a privacy risk for a conjunctive privacy query illustrates:

• the synthetic answers corresponding to the output variables of utility queries;

• a synthetic dataset from which the synthetic answers of utility queries can

be inferred;

• an answer to a privacy query that can be deduced from the synthetic answers

of utility queries.

Example 26. Let us consider the following privacy query PQ1 and the utility

queries UQ1 and UQ2 of the scenario illustrated in Section 4.1:

PQ1: SELECT ?sm ?y

WHERE { ?sm :associatedOccupier ?o . ?o :yearlyIncome ?y }
UQ1: SELECT ?sm ?o ?n

WHERE { ?sm :associatedOccupier ?o . ?o :numberOfPersons ?n }
UQ2: SELECT ?o ?y

WHERE { ?o :yearlyIncome ?y . o :owns ?s .

FILTER (?y > 75000) }
The example constructed for explaining a privacy risk raised for the privacy query

PQ1 by the utility queries UQ1 and UQ2 is as follows:

Answering utility queries may provide the following answers:

(MeterId1, Occupier1, 1) for UQ1

(Occupier1, 75001) for UQ2

Thus revealing the presence of the following facts in the data:

{ MeterId1 :associatedOccupier Occupier1 . Occupier1 :numberOfPersons 1 .

Occupier1 :yearlyIncome 75001 . Occupier1 :owns owns1 }
From which an answer of PQ1 can be deduced, namely: (MeterId1, 75001)

The example explaining a privacy risk for an aggregated conjunctive privacy query

illustrates:

• the synthetic answers corresponding to the output and/or aggregate variables

of utility queries;

• a synthetic dataset exhibiting a replication of a property (with different

constant assigned to aggregate variable) over which an aggregate is computed

and from which the synthetic answers of utility queries can be inferred;
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• an answer to a privacy query that can be deduced from the answers of utility

queries.

Example 27. Let us consider the following privacy query Qp and the utility query

Qu3 of Example 15.

Qp: SELECT ?y MAX(?n)

WHERE { ?sm :associatedBuilding ?b . ?b rdf:type :Apartment .

?sm :associatedOccupier ?o . ?o :yearlyIncome ?y .

?o :numberOfpersons ?n }
GROUP BY ?y

Qu3: SELECT ?o1 ?y1 ?a1 MAX(?n1)

WHERE { ?sm1 :associatedBuilding ?b1 . ?b1 rdf:type ?a1 .

?sm1 :associatedOccupier ?o1 . ?o1 :yearlyIncome ?y1 .

?o1 :numberOfpersons ?n1 }
GROUP BY ?o1 ?y1 ?a1

The example constructed for explaining a privacy risk raised for the privacy query

Qp by the utility query Qu3 is as follows:

Answering Qu3 may provide the following answer:

(Occupier1, 75000, :Apartment, 2)

Thus revealing the presence of the following facts in the data:

{ MeterId1 :associatedBuilding Building1 . Building1 rdf:type :Apartment .

MeterId1 :associatedOccupier Occupier1 . Occupier1 :yearlyIncome 75000 .

Occupier1 :numberOfPersons 1 . Occupier1 :numberOfPersons 2 }
As Qu3 and Qp compute the same aggregate, so the following answer of Qp can be

deduced: (75000, 2)

The example explaining a privacy risk for a temporal aggregated conjunctive pri-

vacy query illustrates:

• the synthetic answers corresponding to the output, aggregate and timestamp

variables of utility queries;

– multiple synthetic answers are constructed corresponding to different

time windows of one or more utility queries that cover exactly a time

window of a privacy query, thus allowing the computation of an answer

to a privacy query.

• an answer to a privacy query that can be computed from the answers of

utility queries;
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• a figure demonstrating the building of a time window of a privacy query from

the union of time windows of one or more utility queries.

Example 28. Let us consider the following privacy query PQ2 and the utility

queries Qu1 and Qu2 of Example 18:

PQ2: SELECT ?timeWindowEnd SUM(?c)

WHERE (?sm :consumption ?c, ?ts)

GROUP BY ?timeWindowEnd

TIMEWINDOW (6h, 6h)

Qu1: SELECT ?timeWindowEnd SUM(?c1)

WHERE {(?sm1 :consumption ?c1, ?ts1)}
GROUP BY ?timeWindowEnd

TIMEWINDOW (4h, 2h)

Qu2: SELECT ?timeWindowEnd SUM(?c2)

WHERE {(?sm2 :consumption ?c2, ?ts2)}
GROUP BY ?timeWindowEnd

TIMEWINDOW (2h, 1h)

The example constructed for explaining a privacy risk raised for the privacy query

PQ2 by the utility queries Qu1 and Qu2 is as follows:

Answering utility queries over two contiguous time windows that cover exactly a

time window of PQ2, may provide the following answers:

(07-08-2023 12:22:33, 6) for Qu1

(07-08-2023 08:22:33, 4) for Qu2

As utility queries and PQ2 compute the same aggregate, these two answers to

utility queries can be combined to compute the following answer of PQ2:

(07-08-2023 12:22:33, 10)

5.2 Construction of negotiation options

The explanation provided in the previous section points out the queries involved in

a privacy risk and the results based on the formal framework presented in Section

4.4 help in building a synthetic dataset revealing the privacy risk. Several options

are constructed for removing the privacy risks by negotiating the utility queries

involved in privacy risks. The negotiated utility queries are supposed to serve as
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the basis for finding an acceptable trade-off in terms of utility while guaranteeing

data privacy for each data producer, so these options are constructed with an

objective of minimal utility loss.

Given a privacy query, several options are proposed to negotiate each utility query

involved in the corresponding privacy risk. In cases where multiple utility queries

are involved in a privacy risk, modifying a single utility query using one of the

provided options is sufficient to remove the associated privacy risk.

In our approach, the negotiation options are constructed by distinguishing the

cases when a privacy query involved in a privacy risk is a conjunctive query or an

aggregated conjunctive query or a temporal aggregated conjunctive query. The

options constructed for negotiating each utility query contributing to a privacy

risk raised for a conjunctive privacy query are:

• refusing to answer a utility query;

• removing the output variables from a utility query that either correspond to

the output variables or to the join variables of a privacy query;

• generalizing some properties, for which rules of generalization have been

user-defined (see Section 3.2.2).

Example 29. Let us consider the following privacy and utility queries PQ1, UQ1

and UQ2 of the scenario illustrated in Section 4.1:

PQ1: SELECT ?sm ?y

WHERE { ?sm :associatedOccupier ?o . ?o :yearlyIncome ?y }
UQ1: SELECT ?sm ?y ?n

WHERE { ?sm :associatedOccupier ?y . ?y :numberOfPersons ?n }
UQ2: SELECT ?o ?y

WHERE { ?o :yearlyIncome ?y .

o :owns ?s . FILTER (?y > 75000) }
The following options will be constructed to negotiate the utility queries UQ1 and

UQ2 in order to remove a privacy risk raised for the privacy query PQ1 of the

Example 26.

Options for negotiating the utility query UQ1:

- Refuse to answer this query (privacy risk for PQ1).

- Remove ?sm from the output (privacy risk for PQ1).

- Remove ?o from the output(privacy risk for PQ1).

Options for negotiating the utility query UQ2:
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- Refuse to answer this query (privacy risk for PQ1).

- Remove ?y from the output (privacy risk for PQ1).

- Remove ?o from the output (privacy risk for PQ1).

- Generalize the property :yearlyIncome with the property :yearlyIncomeRange (pri-

vacy risk for PQ1).

In addition to the options listed in the first case, the options provided for nego-

tiating each utility query contributing to a privacy risk raised for an aggregated

conjunctive privacy query are:

• removing the output variable from a utility query corresponding to the aggre-

gate variable of a privacy query (in cases where the subset of utility queries

involved in a privacy risk consists of only conjunctive queries);

• modification of the aggregate function corresponding to the same aggregate

function of a privacy query (in cases where the subset of utility queries in-

volved in a privacy risk consists of an aggregated conjunctive query).

Example 30. Let us consider the following privacy query Qp and utility query

Qu3 of Example 27:

Qp: SELECT ?y MAX(?n)

WHERE { ?sm :associatedBuilding ?b . ?b rdf:type :Apartment .

?sm :associatedOccupier ?o . ?o :yearlyIncome ?y .

?o :numberOfpersons ?n }
GROUP BY ?y

Qu3: SELECT ?o1 ?y1 ?a1 MAX(?n1)

WHERE { ?sm1 :associatedBuilding ?b1 . ?b1 rdf:type ?a1 .

?sm1 :associatedOccupier ?o1 . ?o1 :yearlyIncome ?y1 .

?o1 :numberOfpersons ?n1 }
GROUP BY ?o1 ?y1 ?a1

The following options will be constructed to negotiate the utility query Qu3 in order

to remove a privacy risk raised for the privacy query Qp.

Options for negotiating the utility query Qu3:

- Refuse to answer this query (privacy risk for Qp).

- Remove ?y1 from the output (privacy risk for Qp).

- Generalize the property :yearlyIncome with the property :yearlyIncomeRange (pri-

vacy risk for Qp).

- Generalize the property :numberOfPersons with the property :familySize (privacy

risk for Qp).
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- Replace the aggregate MAX with the aggregate SUM or MIN (privacy risk for

Qp).

In addition to the options mentioned above for both cases, an additional option

provided for negotiating each utility query contributing to a privacy risk raised

for a temporal aggregated conjunctive privacy query is the modification of the size

or step specified in the time window of a temporal aggregated conjunctive utility

query.

Example 31. Let us consider the following privacy query PQ2 and the utility

queries Qu1 and Qu2 of Example 28:

PQ2: SELECT ?timeWindowEnd SUM(?c)

WHERE (?sm :consumption ?c , ?ts)

GROUP BY ?timeWindowEnd

TIMEWINDOW (6h, 6h)

Qu1: SELECT ?timeWindowEnd SUM(?c1)

WHERE {(?sm1 :consumption ?c1, ?ts1)}
GROUP BY ?timeWindowEnd

TIMEWINDOW (4h, 2h)

Qu2: SELECT ?timeWindowEnd SUM(?c2)

WHERE {(?sm2 :consumption ?c2, ?ts2)}
GROUP BY ?timeWindowEnd

TIMEWINDOW (2h, 1h)

The following options will be constructed to negotiate the utility query Qu1 and Qu2

in order to remove a privacy risk raised for the privacy query PQ2.

Options for negotiating the utility query Qu1:

- Refuse to answer this query (privacy risk for PQ2).

- Replace the aggregate SUM with the aggregate MAX or MIN (privacy risk for

PQ2).

- Modify the size or the step defined in the time window (privacy risk for PQ2).

Options for negotiating the utility query Qu2:

- Refuse to answer this query (privacy risk for PQ2).

- Replace the aggregate SUM with the aggregate MAX or MIN (privacy risk for

PQ2).

- Modify the size or the step defined in the time window (privacy risk for PQ2).
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5.3 Interactive user interface

PrivEx is an interactive user-friendly interface, built1 on top of the implementa-

tion of formal framework presented in Section 4.4. PrivEx is run locally by each

data producer and it offers the following functionalities to a data producer:

• it provides a form-based interface for constructing the privacy queries;

• it detects the privacy risks and explains each detected privacy risk by pro-

viding an example;

• it provides a negotiation interface that provides several options for modifying

the utility queries to remove the privacy risks.

Widgets are key elements of user interface design, serving as a direct means of

user interaction. Figure 5.1 presents the several widgets used to design the com-

ponents of PrivEx interface, enabling data producers to interact and access its

functionalities.

Figure 5.1: PrivEx interface design

The purpose of each component of the PrivEx interface design is described below.

Privacy queries: displays the textual form and SPARQL-like syntax of each

privacy query that is constructed using the form-based interface.

1We used the python tkinter library: https://docs.python.org/3/library/tkinter.html
and our code is available at GitHub repository: https://github.com/repository-code/

PrivEx

https://docs.python.org/3/library/tkinter.html
https://github.com/repository-code/PrivEx
https://github.com/repository-code/PrivEx
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Utility queries: facilitates the interpretation of each utility query provided by

the service provider in a textual form, accompanied by its SPARQL-like syntax.

Add privacy query: provides access to the form-based interface that enables

the construction of privacy queries.

Analyze: analyzes the given set of privacy queries with a given set of utility

queries to detect privacy risks.

Privacy risks analysis: displays the detected privacy risks and their explanations

using two different levels.

Clear: clear the displayed results of the privacy risks analysis.

Negotiate the utility queries to remove the privacy risks: provides access

to the negotiation interface that lists several options for modifying the utility

queries to remove the privacy risks.

In this section, we will illustrate the functionalities of PrivEx through the queries

of the smart meter scenario presented in Section 4.1. This section is structured

as follows. In section 5.3.1, we present the form-based interface that guides data

producers in construction of privacy queries. In Section, 5.3.2, we present the

interface specifically designed for detecting and explaining privacy risks to data

producers. In Section 5.3.3, we present the negotiation interface, which enables

data producers to remove privacy risks by negotiating the utility queries.

5.3.1 Construction of privacy queries

The form-based interface is designed to facilitate data producers in the step by

step construction of privacy queries through continuous guidance from ontology.

The form-based interface is structured with several components filled with widgets

as presented in the Figure 5.2. The user interaction is done by several types of

widgets, such as text box, label, button, drop-down list and checkbox. Widgets

are linked with the underlying ontology and the user input provided at each step.

The purpose of each component of the form-based interface is described below.

Select schema: allows to choose the ontology to be guided by in the process of

query construction while displaying the properties extracted from it.

Privacy query in words: allows to enter the textual description of a query to

be constructed.

Properties: allows to choose the interesting properties to be included in the tem-

poral graph pattern of a query to be constructed. Choosing properties allows the

automatic construction of a temporal graph pattern of a query in a formal query
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Figure 5.2: Form-based interface design

language syntax. The construction of each temporal pattern is guided by the on-

tology and specific rules defined for each property type, namely object, datatype

and dynamic. All properties are linked to its type, domain and range specified

in the underlying ontology. The temporal pattern for each selected property is

constructed by examining its property type and exploiting its domain and range.

The approach followed for constructing a temporal pattern for each property type

is as follows:

- object property: the subject is a mirror of the property’s domain, constructed

as a variable. The property is a mirror of the chosen property, constructed as a

URI. The object is a mirror of the property’s range, constructed as a variable.

- datatype property: the subject is a mirror of the property’s domain, constructed

as a variable. The property is a mirror of the chosen property, constructed as a

URI. The object is a mirror of the chosen property, constructed as a variable.

- dynamic property: the subject is a mirror of the property’s domain, constructed

as a variable. The property is a mirror of the chosen property, constructed as a

URI. The object is a mirror of the chosen property, constructed as a variable. Other

than subject, property and object, the timestamp variable is also constructed and

included in a temporal pattern.
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Constraints: allows to add constraints (if any) either by constructing a FILTER

expression for filtering specific data values or by constructing temporal patterns

for filtering the resources of specific type. Constraints are applied one at a time

to the generated variables. Upon selection of the variable, the data producer is

guided to enter choices for filtering depending on the property type it is associated

to.

Output: allows to choose the output variables, specify the aggregate term and

the time window definition and include them in the query being constructed. If

the aggregate is being computed on a dynamic property then the interface guides

the data producer to define the time window definition by specifying the Size and

Step to obtain the time intervals over which aggregation must be computed.

Privacy query building in query language: demonstrates the automatic con-

struction of the query in formal query language syntax through guidance from

ontology and the user input provided at each step.

Reset: resets the form-based interface to construct a new query.

Save query: displays the constructed query in the list of privacy queries.

The Figure 5.3 presents the steps followed for the construction of the privacy query

PQ2 of the scenario illustrated in Section 4.1.

Figure 5.3: Steps followed for the construction of privacy query PQ2
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5.3.2 Detection and explanation of privacy risks

The PrivEx interface design illustrated in Figure 5.1 presents the components

specifically designed for detecting and explaining privacy risks. The data producer

can perform the privacy risks analysis by clicking the Analyze button. In case if

privacy risks are detected then each privacy risk is explained using two different

levels. The first level points out the privacy query violated by one or more utility

queries. The second level explains which answers of privacy query can be inferred

from the utility queries involved in a privacy risk and this is explained by providing

an example built from the synthetic data graph and the queries involved in a

privacy risk as already detailed in the Section 5.1. For example, the Figure 5.4

explains the privacy risk at two different levels for the following privacy query PQ2

that is constructed using form-based interface in the last section and the utility

query UQ3 of the scenario presented in Section 4.1.

PQ2 and UQ3 of the scenario presented in Section 4.1

PQ2: SELECT ?timeWindowEnd SUM(? consumption)

WHERE { (? MeterId :consumption ?consumption , ?timestamp) }

GROUP BY ?timeWindowEnd

TIMEWINDOW (6h, 6h)

UQ3: SELECT ?sm ?timeWindowEnd SUM(?c)

WHERE { (?sm :consumption ?c, ?ts) }

GROUP BY ?sm ?timeWindowEnd

TIMEWINDOW (3h, 1h)

Figure 5.4: Explanation of detected privacy risk for privacy query PQ2 at two
different levels
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5.3.3 Negotiation for removing privacy risks

The negotiation interface helps to remove privacy risks by providing several options

for negotiating the utility queries involved in privacy risks. The construction of

the options for negotiating the utility queries involved in privacy risks is already

explained in the Section 5.2. The interface also demonstrates the impact of options

being selected by constructing and displaying the modified versions of the utility

queries that can be sent to the data consumer as a basis for negotiation. The

main components of the interface are presented in Figure 5.5. For simplicity, in

Figure 5.5, we depict only the components for negotiating a single utility query.

However, in reality, the user interface displays as many components as there are

utility queries involved in privacy risks.

Figure 5.5: User interface design for negotiating utility queries

The purpose of each component of the interface design is described below.

Utility query: interprets each utility query involved in a privacy risk in textual

form, along with its corresponding SPARQL-like syntax.

Options for negotiation: provides several options for negotiating a utility query

involved in a privacy risk, either by refusing to answer it, or by modifying its output

variables or by generalizing its properties, or by changing the aggregate function,

or by changing the time window size or step. For each chosen option it displays

the new modified version of a utility query in SPARQL-like syntax on interface.

Modify text: allows the modification of the textual description of the utility

query being negotiated.

Privacy queries involved in privacy risks: interprets each privacy query in-

volved in a privacy risk in textual form, along with its corresponding SPARQL-like

syntax.

Apply: applies the modifications to the utility query displayed in the list of utility
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queries.

The Figure 5.6 presents the options provided for negotiating the utility query UQ3

to mitigate the privacy risk for the privacy query PQ2 (presented in last section)

and it also presents the modified version of utility query UQ3 which is constructed

by changing the step between each consumption computation from 1 hour to 2

hours.

Figure 5.6: Negotiating the utility query UQ3

5.4 User study evaluation

To evaluate the practical usability and effectiveness of the PrivEx interface, we

conducted a user study with the following three objectives:

1. Evaluate its usefulness in interpreting privacy and utility policies;

2. Evaluate its effectiveness in explaining detected privacy risks;

3. Evaluate its utility in building and testing privacy queries.

This section is organized as follows. In Section 5.4.1, we present the methodology

that we employed to assess the effectiveness of our framework via a user study. In

Section 5.4.2, we present the results of conducted user study.

5.4.1 Evaluation methodology

For our user study, we created2 an online questionnaire with 5 consecutive sections

to be filled by participants. The first section consisted of demographic questions.

2We used Google Forms: https://www.google.com/forms/about/

https://www.google.com/forms/about/
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The next three sections were mandatory and focused on answering the question-

naire based on the same scenario presented in Section 4.1. The fifth section, added

at the end of questionnaire was non-mandatory and required downloading and ex-

ecuting our interface to answer the remaining questions related to building and

testing of privacy queries. The full questionnaire is presented in Appendix A.

For evaluating the first objective of the user study, participants were introduced

to a scenario to gauge its relevance to their daily lives. The scenario was explained

with the help of privacy and utility policies. The participants were asked to answer

the following three questions divided into two sections:

Question 1: How realistic do you find this scenario?

Question 2: To what degree do you understand these utility queries?

Question 3: To what degree do you understand these privacy queries?

For evaluating the second objective of the user study, participants were presented

with the explanation of privacy risks detected for the privacy queries PQ1 and

PQ2. The participants were asked to answer the following two questions:

Question 4: How do you find the explanation of this privacy risk raised by the

privacy query PQ1?

Question 5: How do you find the explanation of this privacy risk raised by the

privacy query PQ2?

For evaluating the third objective of the user study, participants were provided

with a short tutorial guiding them through the main steps of building and testing

privacy queries using the PrivEx interface. First, participants were instructed

to build two privacy queries using the form-based interface, where the one query

PQ3 was a conjunctive query and the other PQ4 was a temporal aggregated

conjunctive query. Afterward, participants were prompted to analyze the privacy

risks associated to privacy queries they had built. Finally, participants were asked

to answer the following questions:

Question 6: Provide the query syntax for privacy queries they had built.

Question 7: How difficult did you find to build these two privacy queries?

Question 8: What is the result of privacy risks analysis for the privacy queries

PQ3 and PQ4?

Our user study was primarily aimed at assessing the effectiveness of the PrivEx

interface among participants, with or without prior knowledge of Semantic Web

languages such as SPARQL or RDF. In conducting this evaluation, we required

to achieve a distribution that ensures that the evaluation of the PrivEx interface
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is unbiased, capturing insights from both groups of participants. Additionally, to

enrich the comprehensiveness of our insights, we further categorized these partici-

pant groups based on their age and gender. We looked for volunteer participants

by disseminating the purpose of user study along with a hyperlink to an online

questionnaire via email. The email was sent to various recipients including re-

search groups, Masters students, and non-IT professionals to ensure a wide range

of participants. The demographic summary of the respondents who participated in

both the mandatory and non-mandatory parts of the online questionnaire, along

with the groups derived from the data, are presented in the Table 5.1.

Table 5.1: Summary of Demographics

Groups Mandatory part Non-mandatory part
Total participants 57 22

Age:

20-29 years 28.0% 36.4%
30-39 years 43.0% 36.4%
40-49 years 19.0% 27.2%
>= 50 years 10.0% 0.0%

Gender:
Male 47.4% 40.9%
Female 52.6% 59.1%

Knowledge of Semantic Web languages:
Yes 36.8% 36.4%
No 68.2% 63.6%

5.4.2 Evaluation results

We now present the results of our user study, which consisted of 8 questions as

discussed in the previous section. Sections 5.4.2.1 and 5.4.2.2 present the results

for mandatory part of user study, which is comprised of 5 questions divided into

three sections. Section 5.4.2.3 presents the results for non-mandatory part, which

is comprised of 3 questions.

5.4.2.1 Results of evaluating usefulness in policies interpretation

The responses to “Question 1” were collected using a Likert scale ranging from 1

to 5, where the option “1” represents “Completely realistic”, and the option “5”

represents “Completely unrealistic”. Figure 5.7 shows the results. We observe

that, on average, the majority of participants chose either “completely realistic

or “somewhat realistic”, i.e., options 1 and 2 in the Likert scale. Furthermore, it

turns out that a significant majority of participants, regardless of their age, gender

or familiarity with Semantic Web languages chose options 1 and 2 on the Likert
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scale. The results clearly show that the majority of participants agreed that the

scenario was realistic, emphasising its applicability.
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Figure 5.7: Results for Question 1

To assess the interpretability of utility queries among participants, the responses

to “Question 2” were collected in the form of five-option scale, where first option

represents “I completely understand these utility queries” and last option repre-

sents “I do not understand any of these utility queries”. Figure 5.8 shows the

results. Notably, 50.9% of the participants chose the first option while no partici-

pant chose the last option, indicating that the majority of them either completely

or partially understood the queries. Furthermore, majority of the participants in

the age group between 20 to 29 years chose the first option, whereas understanding

the queries appeared to be more challenging for those aged 40 and above. Addi-

tionally,the results show insignificant variance based on gender. Moreover, the

results shows that 66.7% of participants familiar with Semantic Web languages
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opted for the first option, in contrast to 41.7% of the participants unfamiliar with

Semantic Web languages who made the same choice.
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Figure 5.8: Results for Question 2

To evaluate the interpretability of privacy queries among participants, the re-

sponses to “Question 3” were collected in the form of five-option scale, where first

option represents “I completely understand both privacy queries” and last option

represents “I do not understand any of these privacy queries”. Figure 5.9 shows

the results. We observed that 61.4% of the participants chose the first option

while no participant chose the last option, indicating that the majority of them

either completely or partially understood the queries. Furthermore, majority of

the participants in the age groups between 20 to 39 years chose the first option,

whereas understanding the queries seemed to be more challenging for those aged

40 and above. Additionally, the results show insignificant variance based on gen-

der. Moreover, the results shows that 66.7% of participants who are familiar with
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Semantic Web languages opted for the first option, in contrast to 57.1% of the

participants unfamiliar with Semantic Web languages who made the same choice.
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Figure 5.9: Results for Question 3

5.4.2.2 Results of evaluating effectiveness in explaining privacy risks

To assess the understanding of the explanation provided for privacy risk for pri-

vacy query PQ1, responses to “Question 4” were collected using a Likert scale that

ranged from 1 to 5, where the option “1” represents “Completely helpful”, and

the option “5” represents “Not at all helpful”. Figure 5.10 shows the results. The

majority of participants, specifically 40.4% indicated the explanation was “Very

helpful” and 28.1% of participants found it “Somewhat helpful”, i.e., options 2

and 3 in the Likert scale, whereas 21.1% of participants chose option 1. Fur-

thermore, we observed a consistent trend across the age and gender groups, with

minor variance in results, as majority of participants from each group also chose
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option 2 and 3. Moreover, the results indicate that participants familiar with Se-

mantic Web languages chose option 1, whereas majority of those unfamiliar with

Semantic Web languages chose option 2. Overall, both groups exhibited a nearly

identical percentage, as the majority of participants in each group indicated that

the explanation was helpful in understanding a privacy risk.
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Figure 5.10: Results for Question 4

To assess the understanding of the explanation provided for privacy risk for pri-

vacy query PQ2, responses to “Question 5” were collected using a Likert scale that

ranged from 1 to 5, where the option “1” represents “Completely helpful”, and

the option “5” represents “Not at all helpful”. Figure 5.11 shows the results. The

majority of participants, specifically 36.8% indicated the explanation was “Very

helpful” and 29.4% of participants found it “Somewhat helpful”, i.e., options 2 and

3 in the Likert scale, whereas 17.5% of participants chose option 1. In contrast

to the results of Question 4, it appeared to be more challenging to understand a
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privacy risk associated to the temporal aggregated conjunctive query PQ2. Fur-

thermore, we observed a consistent trend across the age groups between 20 to 39

years, as most of them chose option 3. However, among those aged 40 and above,

found the explanation to be “Little helpful”, i.e., option 4. Moreover, none of

the female participants chose option 1 and a few of them also opted for option

5, which contrasts with the choices made by male participants. Participants who

were familiar with Semantic Web languages found the explanation to be more

helpful compared to the those who were unfamiliar with Semantic Web languages,

although the results showed only slight variation between the two groups.
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Figure 5.11: Results for Question 5

5.4.2.3 Results of evaluating utility in query building and testing

A total 22 participants responded to non-mandatory questions designed to mea-

sure the usefulness of PrivEx interface in building and testing privacy queries.
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To assess the utility of the form-based interface in building privacy queries, we

evaluated the number of participants who successfully built correct queries.

The outcomes of the responses to “Question 6” are presented using a Likert scale

with two options “correct” and “incorrect” i.e., options 1 and 2. Figure 5.12 shows

the results. Overall 81.8% of the participants built the correct conjunctive query

PQ3, whereas 86.3% of the participants built the correct temporal aggregated

conjunctive query PQ4. Furthermore, we observed a consistent trend across the

age groups between 20 to 39 years, as 75% of the participants built both the queries

correct. However, among those aged 40 and 49 years, 50% built PQ3 correctly

and 66.6% built PQ4 correctly. We also observed that all female participants

built PQ4 correctly, while a higher percentage of male participants correctly built

PQ3. Moreover, all participants who were familiar with Semantic Web languages

correctly built PQ4. In comparison, a higher percentage (i.e., 84.6%) of those

unfamiliar with Semantic Web languages correctly built PQ3.

The responses to “Question 7” were collected in the form of five-option scale,

where first option represents “I found it easy” and last option represents “I did

not manage to build any of these two queries”. Figure 5.13 shows the results.

We observed that 63.6% of the participants chose the first option while 9.1% of

the participant chose the last option, indicating that they found the form-based

interface helpful in building privacy queries. An equal percentage of participants

specifically 13.6%, opted for both option 3, “Difficult to build PQ4” and option 4

“Difficult to build both PQ3 and PQ4”. Furthermore, none of the participants in

the both age groups between 20 to 29 years and 40 to 49 years chose the last option.

Additionally, a higher percentage (i.e., 66.7%) of male participants chose option 1

and none of them opted for last option, in contrast to the female participants. We

also observed that participants who were not familiar with Semantic Web languages

also found the form-based interface easy to use. Specifically, 69.9% of them chose

the first option, which is relatively close in percentage to the participants familiar

with Semantic Web languages, where the percentage was 75%.

Question 8 was designed to evaluate whether participants could successfully detect

the privacy risks for the newly built privacy queries, PQ3 and PQ4, using the

PrivEx interface. The responses to “Question 8” were collected in the form of

five-option scale. If a participant managed to build accurate queries, then the

correct option representing the analysis results of privacy risks for both PQ3 and

PQ4 was the first option, which is “PQ3 raises privacy risk”. We observed that
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Figure 5.12: Results for Question 6

81.8% of the participants chose the first option, while the remaining participants

opted for the last option: “I cannot answer as I did not manage to add PQ3

and PQ4.” Figure 5.14 shows the results. In summary, the analysis of responses to

Question 8 provides insights that majority of participants were able to successfully

use the PrivEx interface to identify privacy risks.
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Figure 5.13: Results for Question 7
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Figure 5.14: Results for Question 8



Chapter 6

Conclusion and perspectives

This chapter is organized as follows. In Section 6.1, we conclude our thesis. In

Section 6.2, we discuss some possible research perspectives.

6.1 Conclusion

As the number of different service providers that can access and process the per-

sonal data stored on data servers increases, the risk of leakage of individual’s

personal data also increases. To protect the privacy of individual’s personal data,

we have proposed a data-independent approach that addresses the privacy versus

utility dilemma. This approach allows data producers to keep control over the

protection of their data in several real-world situations where personal data are

collected by mobile devices or smart environments.

In Chapter 1, we provided an overview of the context in which our approach can

be applied. We proposed a setting where the data producers keep their data on

decentralized personal data servers and only disclose data to data consumers over

secure communication links according to their privacy policies (a set of privacy

queries). Data consumers specify the data needs in the form of utility policies (a set

of utility queries) and explain for which task or service they are requesting the data

from data producers. In our approach, we have considered that data producers

and data consumers understand each other through a common vocabulary using

the same ontology.

In Chapter 2, we summarized the existing privacy preserving methods for RDF

103
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and Linked Data as well as within the context of IoT. We outlined the limitations

of existing methods and discussed how our approach is different from existing

methods. We have concluded that, unlike existing methods that alter personal

data through generalization or noise addition, our data-independent framework

serves as a proactive measure against potential privacy breaches. Furthermore, in

contrast to existing query-based logical frameworks for RDF data, our framework

handles complex queries with aggregates and is suitable for the privacy of temporal

RDF data.

In Chapter 3, we introduced the main definitions and standards on which our thesis

is based. We summarized the RDF and RDFS standards for describing data and

ontologies on the Semantic Web and introduced the temporal extension of RDF

and RDFS to capture temporal data and dynamic properties. We formally de-

fined temporal aggregated conjunctive query (TACQ) with a SPARQL-like syntax

extended with a time window definition for capturing aggregate on time and in-

troduced the semantics for the evaluation of a TACQ over temporal RDF graphs.

Apart from TACQ in its general form, we also considered simpler forms of TACQs

in our approach that are without aggregate terms named as conjunctive queries and

without time window definitions named as aggregated conjunctive queries. Addi-

tionally, we demonstrated the use of existing technologies such as RDF, RDF-star,

SPARQL and SPARQL-star for the implementation of temporal RDF graphs and

temporal aggregated conjunctive queries.

In Chapter 4, we provided a query-based specification of privacy and utility poli-

cies and a formal definition of privacy risk. We provided the characterization of

privacy risks by distinguishing the cases when a privacy query is a conjunctive

query or an aggregated conjunctive query or a temporal aggregated conjunctive

query. In our data-independent framework, the characterization of privacy risks

is done by evaluating the query expressions only. We illustrated the character-

ization of privacy risks with the help of examples by considering a smart meter

scenario inspired by a real-world use-case and built all the queries using the same

ontology that we designed from the dataset provided by the Irish Social Science

Data Archive (ISSDA) Commission for Energy Regulation (CER) 1. This dataset

includes time series of electrical consumptions of different house owners. In addi-

tion, pseudonymized metadata are available on house owners’ demographics, home

sizes and equipment associated to the electric consumption time series. Moreover,

based on the theorems and their proofs, we designed and implemented several

1https://www.ucd.ie/issda/data/commissionforenergyregulationcer/

https://www.ucd.ie/issda/data/commissionforenergyregulationcer/
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algorithms for the detection of privacy risks raised by the utility queries of data

consumers.

In Chapter 5, we extended our data-independent framework to provide explana-

tions of detected privacy risks and some options for modifying utility queries to

remove the detected privacy risks. Each privacy risk is explained using two differ-

ent levels. The first level simply points out the privacy queries that are violated

by some utility queries and the second level exhibits the corresponding privacy

risk by providing an example in the form of synthetic data built from the ontology

and the utility and privacy queries involved in privacy risk. We also developed an

interactive user-friendly interface that helps data producers in understanding and

removing the privacy risks raised by utility queries. The interactive interface also

provides a form-based interface that facilitates the data producers in the construc-

tion of privacy queries by taking guidance from the ontology. We also discussed

the methodology and results of a user study that was conducted to evaluate the

practical usability and effectiveness of the user interface, in which the participants

were exposed to a smart meter scenario inspired by a real-world use case. The

results of the user study showed that participants found it easier to construct pri-

vacy queries using the form-based interface and they also found the explanation

helpful in understanding the detected privacy risks.

6.2 Perspectives

There are several directions in which our research can be extended, including the

following:

Generalizing the case for characterizing the privacy risk for a tempo-

ral aggregated conjunctive privacy query: In Section 4.3.3, we presented

different cases for characterizing the privacy risk for a temporal aggregated con-

junctive privacy query Qp and in Section 4.3.3.3, we provided the characterization

of the privacy risk for Qp by evaluating it against two sets, where each set con-

tains only one temporal aggregated conjunctive utility query that computes the

same aggregate as Qp but on different time window definitions. Examining the

characterization of the privacy risk for Qp when there are more than two sets is

one possible direction for future work. The objective is to formalize a generalized

theorem capable of characterizing the privacy risk for Qp by evaluating it against

several sets, where each set contains only one temporal aggregated conjunctive util-

ity query that computes the same aggregate as Qp but on different time window
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definitions.

Optimizing scalability and efficiency of data-independent framework:

In this thesis, for characterizing the privacy risk, each privacy query is evalu-

ated against a set of limited utility queries (maximum 10 utility queries) and we

only considered a small ontology extracted from the ISSDA data set. Our data-

independent framework could be optimized for scalability and efficiency in future

work, particularly for handling a large number of utility queries and large ontolo-

gies (derived from big datasets).

Integrating with language processing method: In our approach, all privacy

and utility queries are expressed in the form of query language syntax and it

can be daunting for a user to interpret and understand them who is not familiar

with query language syntax. As a future direction, integrating language processing

method for automatically generating queries in a query language syntax when they

are expressed in natural language can be explored. This extension will enhance

the practicality and usability of our framework.

Measuring the probability of privacy risks detected by the complex com-

bination of several utility queries: In our approach, all the privacy breaches

are detected in a systematic way but without distinguishing the risk of their oc-

currence. For instance, a privacy breach caused by the complex combination of

several utility queries corresponds to an attack that is less probable to occur than

an attack based on a single utility query. A research direction could be to measure

the probability of the privacy risks that are detected.



Appendix A

Online Questionnaire

This appendix presents the online questionnaire that was created for the user study

evaluating the PrivEx interface. Other details and results of this questionnaire

are presented in Section 5.4.
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