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RÉSUMÉ

L’intelligence humaine est caractérisée par la flexibilité et la généralisation. La
perception de nouveaux concepts par les humains et leur exécution de nouvelles
tâches nécessitent souvent peu d’effort s’ils reconnaissent déjà des concepts et
des tâches similaires. La compositionnalité a longtemps été considérée comme
une caractéristique fondamentale de l’intelligence humaine sous-tendant ces ca-
pacités.

Contrairement aux humains, les modèles d’apprentissage profond qui atteignent
des performances surhumaines dans de nombreuses tâches manquent de générali-
sation et s’adaptent mal aux changements de tâches. De plus, les modèles présen-
tant des capacités de généralisation modestes nécessitent de grandes quantités
d’expérience d’apprentissage. Ces mêmes modèles n’exploitent pas la compo-
sitionnalité dans l’apprentissage ou l’inférence. Cette thèse discute d’abord des
caractéristiques générales de l’intelligence humaine, puis se plonge dans la lit-
térature sur la compositionnalité en IA. Le résumé de ces résultats met en lu-
mière des lacunes dans ces domaines ; un aspect peu exploré de la composition-
nalité dans l’apprentissage automatique, à savoir le rôle de la compositionnalité
dans l’apprentissage, pourrait être crucial pour la généralisation dans les modèles
d’apprentissage profond.

L’importance de la compositionnalité dans l’apprentissage a motivé l’investigation
de la capacité des modèles de réseaux neuronaux à décomposer les tâches en
leurs composants élémentaires et à composer les compétences acquises pour ré-
soudre de nouvelles tâches. En utilisant le raisonnement visuel comme une tâche
de base, j’ai développé un test de raisonnement visuel qui évalue l’efficacité
de l’échantillonnage et de l’apprentissage compositionnel des modèles de vision
standard. Les expériences démontrent que même les modèles pré-entraînés né-
cessitent plus d’échantillons pour atteindre les performances humaines. De plus,
même si les modèles sont capables de réutiliser les compétences apprises à par-
tir de tâches élémentaires pour résoudre efficacement leurs compositions, ils ne
décomposent pas les tâches apprises en leurs composants élémentaires lors de
l’apprentissage.

Ces idées et ces résultats soulignent l’importance des stratégies d’apprentissage
et de l’expérience dans la formation des systèmes d’apprentissage et leur impact
sur l’intelligence. En conséquence, le dernier chapitre s’inspire de la fonction
du cerveau et dérive des principes clés de conception de réseaux neuronaux pour
faire avancer le domaine vers l’intelligence humaine. J’utilise ces principes pour
proposer des méthodes de conception et d’entraînement de réseaux neuronaux
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basées sur la modularité, l’agence, le contrôle du temps et des ressources de calcul
et l’apprentissage programmé. De plus, je propose un prototype démontrant ces
méthodes ; une architecture modulaire polyvalente avec un contrôle sur ses calculs
internes nommée AbstractNet. Les expériences et l’analyse d’AbstractNet mon-
trent sa capacité à effectuer et à apprendre des tâches hétérogènes et homogènes,
à adapter le nombre de calculs aux exigences de la tâche et à utiliser des stratégies
de routage diverses pour résoudre différentes tâches. En tant que preuve de con-
cept, AbstractNet n’incorpore pas tous les principes de conception proposés. Il
pourrait être enrichi de ces principes de conception pour acquérir des capacités de
haut niveau telles qu’apprendre à apprendre et à concevoir et simuler un modèle
de son environnement.

Dans le chapitre de conclusion, j’analyse les implications plus larges de cette
recherche dans le contexte du débat en cours sur les principes computationnels
essentiels à l’intelligence, tout en identifiant également des pistes potentielles pour
des explorations futures.
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ABSTRACT

Human intelligence is known for its flexibility and generalization. Humans can
easily understand new concepts and perform new tasks if they have prior experi-
ence with similar concepts and tasks. Compositionality is considered to be a key
feature of human intelligence that supports these capacities.

On the other hand, deep-learning models that perform better than humans in
many tasks lack generalization and often fail to adapt to changes in tasks. Al-
though some models show modest generalization capabilities, they require a large
amount of learning experience. These models also do not take advantage of com-
positionality in learning or inference.

This dissertation discusses the general characteristics of human intelligence
and explores the literature on compositionality in AI. The research identifies gaps
in these fields, particularly in the role of compositionality in learning, which could
be crucial for generalization in deep learning models.

The study investigates the capacity of neural network models to decompose
tasks into their elementary components and use the learned skills to solve new
tasks, using visual reasoning as a test case. The research develops a visual rea-
soning benchmark that evaluates the sample efficiency and compositional learning
standards for vision models. The experiments demonstrate that even pre-trained
models require significantly more samples to reach human performance. Addi-
tionally, the baseline models can reuse learned skills from elementary tasks to
solve their compositions efficiently, but they do not decompose the learned tasks
into their elementary components during learning.

These findings highlight the importance of learning strategies and experience
in shaping learning systems and their impact on intelligence. The final chapter
proposes a framework for neural network design and training based on modularity,
agency, control over computational time and resources, and curriculum learning.
The chapter also presents a proof of concept for the framework, a general-purpose
modular architecture named AbstractNet. The experiments and analysis of Ab-
stractNet show its capacity for multi-tasking several heterogeneous and homo-
geneous tasks, adapting the number of computations to task demands, and using
various routing strategies for solving different tasks. The study identifies potential
avenues for future exploration in the broader context of the ongoing discourse on
the computational principles essential for intelligence.
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INTRODUCTION

The key to human intelligence is
the ability to “make infinite use of
finite means”

– Wilhelm von Humboldt

The ultimate goal of the AI field is to build machines that reach or surpass hu-
man intelligence. This goal dates back to the inception of the computer, where
Alan Turing stated, "What we want is a machine that can learn from experi-
ence" in a lecture in 1947. Such a grand challenge has proven difficult, given
the endless possibilities and the broadness of the goal. Indeed, the field has expe-
rienced decades of countless attempts and cycles of changing interest in research
directions. Researchers resorted to chipping away at the problem by placing the
goalpost on achievable objectives, such as recognizing digits to solve captchas or
playing chess. The trend of simplification resulted in the field subdividing into
several sub-fields and the development of highly specialized systems. Although
this trend has resulted in a bias within the field to build specialized systems, this
was an unavoidable step toward achieving the broader goal of human intelligence.
Accordingly, during recent decades, the field of artificial intelligence has made
significant strides in several tasks, and the highly specialized systems of the past
have been replaced by gradually more general systems. Large Language Mod-
els [OpenAI, 2023], for example, have made substantial progress in Natural Lan-
guage Processing as they can solve a variety of tasks with high accuracy. Such
large-scale models [Bubeck et al., 2023, Ramesh et al., 2022] show great promise
for reaching human-level intelligence.

Even though deep neural networks (DNNs) have made many developments in
human intelligence, they still lag behind the brain in flexibility and efficiency. The
brain learns numerous skills, giving humans the capacity to understand tasks from
descriptions, use knowledge acquired by solving prior tasks, learn from scarce
examples, and reflect on their behavior. On the other hand, deep learning models
require large amounts of data to learn a task and generalize poorly to novel tasks
or changes in input statistics without additional training. These shortcomings of
DNNs show that they lack crucial components for reaching the level of human
intelligence.

Naturally, several researchers have used the brain as inspiration for developing
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INTRODUCTION

more intelligent systems at many levels of granularity, from the spiking of neu-
rons to the mechanisms of memory and attention to cognitive functions such as
control and simulation. While the brain’s true workings remain enigmatic, this
approach relies on theories that attempt to explain its function. Nonetheless, it is
a rational and compelling strategy since it has witnessed wide popularity in recent
decades with varying degrees of success and failure. Furthermore, modern AI
systems only surpass humans in accuracy and fail in terms of robustness, learning
efficiency, and generalization. A promising path towards improving AI models in
these aspects is to take inspiration from a system that excels at them.

Given the brain’s overwhelming complexity and our limited understanding of
its function, it is important to first identify the principles that characterize its in-
telligence, relate them to the mechanisms of its function, and then translate them
into DNN design principles that guide their implementation. In this dissertation, I
focus on compositionality as a key aspect of human intelligence. The principle of
compositionality has been used for characterizing language and thought [Frege,
1980, Fodor, 1975] stating that the meaning of the whole is a function of its com-
ponents and their structure. This principle appears in many disciplines of science,
including deep learning, where it is used for designing neural architectures, eval-
uating models, and creating tasks. However, its application has not successfully
closed the gap between brains and machines.

The general aim of this dissertation is to promote a direction of research that
focuses on all aspects of human intelligence, with a special focus on composi-
tionality, by proposing a framework for developing and training brain-inspired
architectures. The first chapter positions my work within the broader field by ex-
ploring characterizations of human intelligence and then discussing the definition
and manifestation of compositionality in the brain and deep learning models.

1.1 Characterizing Human Intelligence

Among the issues in the AI field is the lack of consensus on a definition of gen-
eral intelligence. This results in disparities in tasks and evaluation methods for
AI models. Although the field advances at a rapid pace, it lacks direction. A
much-needed definition of intelligence should outline characterizations of intelli-
gent systems. Given the clear characteristics of intelligence, model design could
be guided towards clear goals and driven by comprehensive evaluation methods.
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Several descriptions and measures have been proposed in recent times [Lake et al.,
2016, Chollet, 2019] and focus on the capacity for skill acquisition and general-
ization rather than the capacity to learn individual tasks. Although these works
have moderately influenced the AI field, performance remains the main driver of
model design and metrics in AI benchmarks.

Interest in intelligence has emerged early in philosophical discussions on the
nature of the mind. Our understanding of the concept has evolved throughout the
decades, shaped by theories and developments in intelligence tests and psychome-
tric studies. From Charles Spearman’s G factor and Raymond Cattel’s fluid and
crystallized intelligence to ideas contributed to cognitive science and AI research,
the definitions of intelligence have progressively become more general. Views
on intelligence generally and human intelligence specifically have changed, es-
pecially since the start of AI research. The goal of many pioneers in the field
of AI was to develop machines that emulate human intelligence, for example, by
playing board games or conversing with humans without being detected as robots.
The prime source of inspiration for these researchers is human information pro-
cessing and behavior. Earlier AI systems were rule-based; their decisions were
predetermined and designed by the programmer based on inputs. For instance, a
rule-based system for medical diagnoses might use a set of rules to match symp-
toms with specific diseases. Nevertheless, as AI research progressed, it became
evident that rule-based systems proved inadequate for capturing the complexity
and adaptability of human intelligence. Consequently, researchers embarked on
exploring novel AI approaches, such as neural networks and deep learning, to
tackle these challenges. The change in AI research directions shows a continuous
change in our general understanding of intelligence.

Before characterizing artificial and human intelligence, it is important to first
review their definitions.

1.1.1 Definitions of Intelligence

Today, the subject of intelligence is still in debate. Legg and Hutter [2007a] parsed
the literature for several definitions of intelligence. Several of these definitions,
especially those given by AI researchers, describe intelligence as a property of an
agent performing tasks within an environment. The consensus among these def-
initions is that capacity is the capacity to perform tasks or achieve goals within
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an environment. Some definitions involve learning efficiency and skill acquisition
as criteria, while others involve adaptation to changes. Certain human cognitive
abilities, such as understanding, reasoning, memorization, and imagination, were
mentioned as factors of intelligence. Interestingly, abstract thinking is also in-
cluded among these cognitive abilities.

Legg and Hutter [2007b] also proposes a definition and a formalization of ma-
chine intelligence: "Intelligence measures an agent’s ability to achieve goals in a
wide range of environments." An important aspect of this definition is the vari-
ety of goals and environments, which stresses the agent’s robustness and capacity
to transfer knowledge across environments. A more recent definition by Chollet
[2019] describes intelligence as "a measure of its skill-acquisition efficiency over
a scope of tasks, with respect to priors, experience, and generalization difficulty."
This latter definition extends the former with efficiency over skill acquisition and
contextualizes the frame of reference with priors on the agent and the environ-
ment.

While many definitions of intelligence can be valid, they are useful insofar as
they are actionable and essentially descriptive of the skills and evaluation methods
associated with intelligence. A definition that focuses on the capacity of a system
to perform tasks is not incorrect, but it does not differentiate systems based on
their efficiency at solving tasks. On these accounts, Chollet [2019] complements
the definition with a formal framework for evaluating systems and a scope of refer-
ence for human intelligence with descriptions of human priors. Intelligence is not
limited to learning skills; learning and inference efficiency are crucial aspects of
intelligence. In the context of human intelligence, efficiency over computational
resources, time, and energy distinguishes two individuals with similar capacities
for learning skills. Furthermore, the difficulty of learning and performing a task
depends on the system’s priors, past curriculum, and the task’s generalization dif-
ficulty. A fair evaluation of different systems should account for these factors.

While most definitions provide a correct depiction of intelligence, they de-
scribe intelligence by its consequence; the definition is based on what an intelli-
gent system is capable of doing and not on the process that produces the result.
Taking the latter into account as a basis brings a different perspective on intelli-
gence. A general conclusion from most definitions is that intelligence character-
izes the mental processes behind actions, performing tasks, and acquiring skills,
not merely their execution. The mental processes can be considered information
processing operations. From this point of view, intelligence can be characterized
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by "the efficient and productive organization and manipulation of information".

This new definition implies that the system’s intelligence is only tied to its ca-
pacity to produce accurate, efficient, and creative solutions to the proposed tasks.
The view of intelligence as efficient information manipulation can be reached un-
der assumptions of the system’s constraints within its environment, the system’s
priors, such as its computational resources, interactions within the environment,
and the environment’s structure.

As a system interacts with its environment, it receives information in forms
that it is predisposed to process, following its priors, and selects actions. De-
pending on the environment’s structure, the system’s intelligence can be measured
by its success at performing tasks since its inception and throughout its lifetime
within the environment. A perfect system solves all tasks throughout its exis-
tence within the environment and does not need learning. In a practical scenario,
a system cannot solve tasks at initialization. Its capacity to solve tasks hinges on
understanding tasks and acquiring skills from experience, which highly depend
on its information processing proficiency. Given the system’s limited computa-
tional resources, the system’s efficiency at manipulating information determines
its level of intelligence. Following this definition, learning can be considered a
form of efficiency as it reduces the time and resources used for solving a task.
Creativity, which amounts to the meaningful combination of prior knowledge for
generating information, is also an important aspect of intelligence as it can be a
tool for finding efficient solutions to novel problems. Abstraction can be consid-
ered an example of the system’s creativity for generalization. The system creates
novel concept representations to generalize other related concepts. Overall, the
intelligence of a system is not measured by its final performance on a task alone;
it also depends on:

• Learning efficiency: the amount of experience needed by the system to
reach its maximum performance on a task.

• Time efficiency: the average time spent solving a task instance.

• Resource efficiency: the computational resources used for solving the task.

• Energy efficiency: the amount of energy consumed while solving the task.

By analyzing these aspects in the context of a given environment and system, we
can deduce the characteristics of intelligent behavior.
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1.1.2 Characteristics of Human and Machine Intelligence

Many aspects of our environment determine features of intelligent behavior. Hu-
mans live in a highly complex and dynamic, open-ended environment with only
partial access to information. Importantly, a general characteristic of our envi-
ronment is its compositional nature. Elements of the environment, i.e., objects
with which we interact, are built hierarchically as compositions of their compo-
nents. Within this environment, humans also have limits and constraints in terms
of energy, time, and computational resources.

Human intelligence in this context depends on physical predispositions for
parsing information, senses, and priors built into the structure of the brain through-
out evolution, and the capacity to learn from experience. Faced with highly com-
plex, low-level information, The first characteristic of human intelligence is ab-
straction: the ability to organize information by filtering task-irrelevant variables
and recognizing patterns extracted from experience. The partial access to infor-
mation forces the emergence of many strategies for inferring task-relevant infor-
mation: probing the environment, using more learning experience, or inferring
unknowns based on available information and past experiences. These strategies
are traded off to improve overall efficiency. Importantly, humans infer unknown
information by building a task-specific model of the environment. This is an im-
portant characteristic of human intelligence since model building is used for many
purposes, including planning actions, using simulation to build hypotheses, and
generating experience for learning. Given the high complexity of the environ-
ment, inferences over certain tasks can strain the limited resources of the system.
Humans trade off accuracy on these tasks with efficiency over the use of their com-
putational resources by developing approximate solutions to inference problems.
Fast approximate inference is also an important characteristic of intelligence in a
system with limited resources.

These characteristics of intelligence are demonstrated in various phenomena
of human behavior, such as multi-modal reasoning, causal inference, meta-learning
(learning an efficient method for learning new tasks), learning by imitation, zero-
shot inference, selective exploration, and trading off on exploration and exploita-
tion. Similar ideas on human intelligence are also shared by prior work [Lake
et al., 2016], which focuses on priors, world model building, and fast inference.
Griffiths [2020] discusses these ideas from a different angle; he characterizes hu-
man intelligence by its limitations. These limitations in time and computation
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promote the development of efficient learning and inference mechanisms. An-
other important aspect of intelligence that we have not discussed thus far is com-
munication. Griffiths [2020] considers communication a limitation since humans
are limited in their capacity to transfer information to others, which promotes the
development of mechanisms that support cumulative cultural evolution.

An important factor that influences human proficiency in these general skills,
and consequently intelligence, is the learning curriculum. Humans can improve
their performance on a task with more training, but a training curriculum with
increasing difficulty and complexity over trials improves learning speed. Humans
can also learn a task without instructions through trial and error. However, being
skilled at certain tasks makes completing a task that composes them easier. The
diversity of tasks in a curriculum also influences learning speed; a task-diverse
curriculum improves generalization and learning efficiency on future tasks. For
example, humans are capable of solving certain tasks given only instructions on
how to solve them because they have learned how to compose skills for solving
new tasks. Many studies support these ideas; they show that formal education,
which is a form of curriculum, improves human learning and their generalization
of logical reasoning [Attridge et al., 2016, Inglis and Simpson, 2004, Cresswell
and Speelman, 2020, Nam and McClelland, 2023].

Many of these concepts have influenced sub-fields of AI research. The sub-
fields of meta-learning, multi-task learning, transfer learning, and few-shot learn-
ing explore the model capacities for learning many tasks through a sample effi-
cient general learning procedure and by transferring skills across tasks. In con-
tinual learning, models are evaluated for their capacity to learn tasks sequentially
without catastrophic forgetting. In deep learning, models are compared primar-
ily based on their performance. Some studies in these fields compare the models
based on 1) the computational resources measured by model size, 2) the com-
putation time measured by inference time, and 3) energy consumption measured
by FLOPs. However, they are mostly secondary factors of comparison. Other
sub-fields focus on the optimization of these aspects in neural networks, such as
the architecture search, pruning, and quantization literature that explore energy
and computation-efficient models. Various techniques for improving or facilitat-
ing learning in neural networks have spawned other sub-fields to explore, such as
imitation learning, world models, and curriculum learning.

Despite the tremendous progress in these various sub-fields, neural networks
remain limited; they are regarded as good models for the fast inference capacities
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of humans at best. For example, deep convolutional architectures [Krizhevsky
et al., 2017, He et al., 2015] model the object recognition of the ventral visual
stream in the brain. This process is hypothesized to involve primarily feedforward
propagation of visual information to extract object categories [Eberhardt et al.,
2016, Yamins et al., 2014, Rajalingham et al., 2015]. Neural networks suffer
from slow and data-inefficient training, a lack of robustness to out-of-distribution
settings [Geirhos et al., 2020a], biases towards statistical trends in the data, catas-
trophic forgetting, and a lack of compositional generalization. These limitations
could be caused by many factors, including the lack of flexibility in ANN com-
putations and the disparity in learning strategies and experiences between brains
and ANNs. Foundation models such as large language models (LLMs) [Brown
et al., 2020, Touvron et al., 2023a,b] and large multi-modal architectures [Ope-
nAI, 2023, Driess et al., 2023] address many of these problems through scale at
exorbitant computation and energy costs. However, their capacities remain lim-
ited compared to humans [Kaddour et al., 2023] since they display sub-human
performance on many logical reasoning tasks and have unreliable outputs since
they vary highly depending on their inputs.

A popular hypothesis in the field attributes the lack of reliability, generaliza-
tion, and flexibility to their failure to implement compositional computation. Due
to the compositional nature of our environment, humans are believed to leverage
compositionality as a basis for representation and computation. These ideas are
shared by Lake et al. [2016] which lists compositionality as an important feature
of human intelligence. Smolensky et al. [2022] attributes human intelligence to
continuity and compositionality in neural computing, while the absence of conti-
nuity explains the failure of earlier symbolic AI systems, the absence or lack of
compositionality explains the failure of modern neural network-based systems.

This PhD dissertation explores compositionality as a central aspect of human
intelligence. In the following, I delve into its definition and its hypothetical role
in supporting other aspects of intelligence. Later, I review works that investigate
compositionality in ANNs and integrate them into neural computation. The ulti-
mate goal of this research is to propose a novel neural architecture that follows the
principles of human intelligence, exploring how to build and train such a model
to leverage the power of compositionality and potentially enhance the capabilities
of AI systems to perform complex tasks with greater efficiency and adaptability.
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1.2 Compositionality

Abstraction and compositionality are foundational concepts in linguistics and cog-
nitive science that play vital roles in understanding how humans generate and in-
terpret complex linguistic expressions and organize their knowledge. These con-
cepts have evolved, acquiring nuanced definitions and formalizations that have
led to rich interdisciplinary discussions and their integration with other key con-
cepts in the cognitive science literature. Compositionality emerged as a crucial
concept in formal semantics and the philosophy of language. The principle of
compositionality states that the meaning of a complex expression is a function
of the meaning of its parts and how they are combined [Frege, 1980]. Here, it is
viewed as a property of language and meaning, and it entails that any expression in
a compositional language can be understood only using the meanings of its parts
and their syntactic structure. Since its introduction, it has been the basis for a large
body of work and a topic of contention in linguistics and cognitive science. Vari-
ous definitions were attributed to compositionality to either broaden its scope with
respect to language and meaning or to account for specific cases that the classi-
cal definition of compositionality fails to explain. While Partee [1984] provides a
global definition of compositionality that does not put constraints on the meanings
of parts, the structure and function that combines them, in local compositionality,
the meaning of the expression depends only on the largest parts [Szabó, 2012].
Szabó [2022] reviews several definitions with their formalizations and discusses
arguments for and against compositionality.

Proponents of this theory motivate it with the notions of productivity, the ca-
pacity to produce and understand new expressions in a language given the mean-
ings of the parts of new sentences and the syntax of the language, and systematic-
ity, the ability to generalize syntax across expressions, for example, "the cup is on
the table" and "the pillow is on the bed." Productivity and systematicity are strong
arguments, but compositionality still fails to explain other phenomena in natural
language, such as context-dependence; an expression’s meaning might depend on
earlier expressions, the overall topic, the priors, and the intentions of the writer
and the reader. Idioms are another example of a notion that compositionality does
not explain; for example, the meaning of the expression "break a leg" can have dif-
ferent meanings based on context, and its meaning as "good luck" is not inferred
from the meanings of its parts.

Beyond debates on compositionality as a property of natural language, it has
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also been regarded as a property of human language competence [Pinker, 1984,
Fodor and Pylyshyn, 1988, Baroni, 2019, Marcus, 2003]. These views focus on
the mind’s capacity to process nested structures as the basis for the rich expressive-
ness and open-ended nature of language [Chomsky, 1957, Dehaene et al., 2015,
Hauser et al., 2002].

In this line of work, the "language of thought" theory [Fodor, 1975] claims that
thoughts are expressions of a mental language. Several proponents of this theory
stipulate that LOT is compositional. The reasoning concludes that the composi-
tionality of LOT is derived from the compositionality of natural language. The
same arguments about systematicity and productivity of thought are used to sup-
port this theory. The difference between the two, however, is the vagueness of
constituent parts in a mental expression. Rescorla [2019] reviews formalizations
of expressions in this language. Although theorists present compelling evidence,
demonstrations of such ideas in biological systems remain a significant challenge,
especially given that LOT modeled mental activity as rule-governed symbol ma-
nipulation, which is difficult to translate into biological hardware. In the context of
the LOT hypothesis, Frankland and Greene [2020] investigates the neuroscience
literature for mechanisms of compositional computation in the brain; however,
no clear commitment to a formal framework of compositionality was specified in
the paper. Similarly, in an attempt to bridge the gap between psycholinguistic and
cognitive science perspectives on compositionality, Baggio [2021] proposes an ar-
chitecture of the language processing system based on studies from neuroscience.
In this context, the principle of compositionality is reframed as a constraint on the
architecture and a description of the system’s semantic competence.

In the early decades of AI research, compositionality was an explicit feature
of AI models since it was the basis for symbolic architecture. Today, more lib-
eral uses of the term can be found in the field. Compositionality can be a fea-
ture of the data and representations, a property of the model [Chang et al., 2019,
Ringstrom, 2022] or a nature of computation [Kurth-Nelson et al., 2023, Lake
et al., 2015, Ellis et al., 2020]. Even though these notions eventually refer to
the same idea of global compositionality, their applications remain more general.
For example, the representations concern inputs of various types, including im-
ages, 3D shapes, tasks, and programs, among others. Among studies that address
compositionality as a function or a nature of computation [Schwartenbeck et al.,
2021, Kurth-Nelson et al., 2023, McNamee et al., 2022] explain brain function us-
ing computational models of the brain function. Other studies on language mod-
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els [Chaabouni et al., 2020, Kharitonov and Baroni, 2020] use other operational
definitions of compositionality to study language emergence. Caucheteux et al.
[2021], Caucheteux and King [2022] follow a different definition of composition-
ality as a property of the representation that allows for comparing humans and
machines in language tasks.

Given this multidisciplinary interest in compositionality, it is natural that defi-
nitions would vary depending on the application. A single definition is unlikely to
be suitable for all contexts. Nevertheless, being an intrinsic property of the world,
compositionality is a general concept that could describe any physical or abstract
entity, and its definition should be generalizable. For a biological system to inter-
act with the world, it needs to reason over the compositional nature of the world
and learn from experience within its environment. We believe that for the purpose
of understanding a highly complex and stochastic biological system such as the
brain and its interaction with the world, the theoretical framework of study should
be general and constrain the system only with respect to its capacity. Thus, in the
following, I will give a high-level definition of abstraction and compositionality.

In general, abstraction can be understood as the capacity to conceptualize ex-
perience in a mental representation. The brain can build many representations of
the number one: a visual representation of “1”, different language representations
in many languages, a representation of its vocal pronunciation, a representation of
the motor sequences that allow for writing the number, and other representations
for its use in numerosity and mathematics. This representation allows the brain to
identify new instances of the same concept. Importantly, the brain also links these
representations with an abstract representation that is dissociated from the con-
cept’s multi-modal features. The brain’s capacity to create and manipulate these
abstract and feature-relevant representations is important for their generalization
to new contexts of their use. This capacity is also the basis for compositionality.

Compositionality can be regarded as a method for representing and manip-
ulating concepts within a structure that describes relationships between them. It
complements abstraction by generalizing relationships between concepts. The
structure is defined in this context as a set of roles and relations between them that
can be used for inferences over many concepts. For example, the abstract repre-
sentation of number one and its multi-model representations are contents placed
within the links that constitute a structure. This structure can be used for repre-
senting other numbers, such as two and three. The structure-content formulation
can be used in the classical meaning of compositionality to represent the com-
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Figure 1.1: Structure-content separation: compositional computation consists
of a separation between the representation of an abstract concept from its multi-
modal representations and a separation of these representations from the relation-
ships between them.

position of a concept as a combination of its elementary components within a
structure. For example, the motor sequence for writing 1 can be decomposed into
the elements that generate strokes in a structure that specifies their sequence and
spatial locations.

This formulation of compositionality can be generalized to arbitrary concepts
and structures. A system that uses compositional computation can extract abstrac-
tions over its internal states, which allows for creating abstractions over struc-
tures and structure-content associations. Grounding highly abstract concepts in
concrete, low-level concepts facilitates instantiating complex and highly abstract
concepts for the system. For example, the set of natural numbers is an abstract
concept built on top of numbers such as 1 and the addition operation; grounding
its representation in the symbol N allows for its efficient instantiation.
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1.2.1 The Role of Compositionality in Intelligent Systems

To explain the importance given to this notion in various disciplines, we discuss
the advantages of using compositionality in a computational system to model the
brain. Any system needs to understand the structure of its environment to reach
its goals. Given the inherent compositionality of the world, it would be useful
as a principle for organizing information; this includes perceptual inputs, actions,
tasks, and even internal states of the system. Decomposing information gives one
the capacity to analyze components and gain an understanding of the individual
factors of variation that underlie them. Taking vision as an example, an interpre-
tation of visual input must take into account the factors of variation that underlie
it. This task would be difficult without decomposing a scene into individual com-
ponents, including objects and sources of light, while considering the perspective
of the viewer and inferring the factors of variation of each component, such as po-
sitions, colors, and textures. Lee and Mumford [2003], Yuille and Kersten [2006],
Parr et al. [2021] support this view and propose a model of visual perception in the
brain based on probabilistic graphical models. This understanding of perception
can be extended to other modalities, even to action and planning.

Among the arguments supporting the compositionality of natural language is
productivity. Productivity describes the capacity to generate an infinite number
of concepts from a finite set of atomic units. In LOT theory, this translates to the
infinite thoughts a human brain can generate while being limited in the number
of neurons used to generate them. This is a significant advantage of composi-
tionality because it underlies creativity and expressive power without sacrificing
efficiency. In our framework, expressivity is driven by the process of creating
abstractions over structures and generalizations through inference over existing
structures. A second advantage of compositional computation is the summarized
and interpretable organization of information. It facilitates the usage and storage
of information for the system and aids in the development of artificial systems by
giving users an understanding of the inner processes of the system. Most impor-
tantly, systems that leverage compositionality are more efficient in various ways.
1. Learning efficiency: by decomposing tasks into simple sub-tasks, the system
can learn and update its knowledge incrementally and reuse the knowledge for
future tasks. Furthermore, decomposing a task allows the system to identify er-
rors more easily during execution and channel the rectification or learning signal
correctly. 2. Efficiency in learning experience: generalization and flexibility can
also be considered as efficiency in the amount of experience needed for learning.
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If a system generalizes a function across contexts, it does not need to relearn the
function for each context. In the case of compositional generalization, the system
can even infer the structure of a novel task and solve it without experience. 3. Ef-
ficiency in computational resources through modularity: systems that modularize
functions during learning and compose them during inference do not waste com-
putational resources in learning complex functions separately when they share
computations.

These theoretical views find applications in several behaviorally relevant func-
tions. Building world models To understand its environment, the system could
build a model of its components and their interactions. This view of the mind
dates back to 1948 [Tolman, 1948], where Tolman theorized that humans and an-
imals form an approximate ‘cognitive map’ of their environment. This idea is
still popular today [Friston et al., 2021] and has applications in neuroscience and
machine learning, for example in physical scene understanding [Battaglia et al.,
2013] and model-based RL [Ha and Schmidhuber, 2018]. Creating a model of
the environment allows the system to simulate actions and outcomes, form plans
at various timescales and levels of abstraction, and then select the plans with the
highest likelihood of success in the task. Compositionality would not be useful
only as a basis for representing a model of the environment but also the states
in different simulations, the goals, the predicted rewards, and the plan of action.
Furthermore, it would be useful for correcting the model using experience since
the model is built on structured representations that can be manipulated by the
system.

Reasoning and handling uncertainty When the system has limited access to
information within the environment, its available information can be insufficient
to solve the task. Compositional representations of the environment in the world
model allow the system to know which variables are unknown. Within the world
model, it can reason over unknowns with evidence accumulated from the envi-
ronment and judge its confidence in hypotheses that it has inferred. The level of
confidence in the hypotheses can influence the system’s decision-making.

Robustness Compositional representations and abstraction can improve the
robustness of a system. Here, we consider robustness to be the capacity of the
system to maintain performance on a task in uncommon contexts or under varia-
tions of the input that do not impact the task structure. If we take visual perception
as an example, a system that leverages compositionality could decompose visual
scenes based on the structure described above. The compositional representa-
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tion and abstraction allow the system to separate factors of variation in individual
components of visual input. This concept is known in machine learning as dis-
entanglement [Bengio et al., 2014]. When the system encounters an uncommon
situation (such as novel illumination colors or backgrounds), the interpretation of
the scene in a compositional representation allows the system to recognize the
novelty and perform tasks correctly if they are irrelevant to the novelty (recogniz-
ing an object placed in an uncommon background). In machine learning, this is
known as out-of-distribution generalization [Shen et al., 2021]. Even when the
system makes errors due to incorrect task structure inference, for example, the
compositional representation allows for reflecting on the execution, identifying
the error, and correcting it in a sample-efficient manner.

Creativity Compositionality provides mechanisms for creating new concepts
by combining other known concepts in a structured representation. The benefits of
these mechanisms can be observed in problem-solving, for example. Random ex-
ploration of strategies for solving a problem is inefficient, but guiding the random
exploration into structured representations with priors results in a more efficient
search.

Efficient learning and generalization Building world models is important
not only for inference but also for learning. Learning new tasks from trial and error
or examples could require large amounts of trials, depending on task complexity.
The system’s proficiency to meta-learn can significantly reduce the amount of ex-
perience required for learning new tasks. This consists of inferring task structure,
decomposing the task into sub-tasks using prior knowledge, and testing hypothe-
ses. A compositional representation of the task and the functions used for solving
it allows the system to identify components that require adjustment. By saving
successful plans and procedures, the system can adjust the components that it has
identified for learning. If employed in this manner, compositionality could be the
key to solving the catastrophic forgetting problem encountered in continual learn-
ing and the problem of credit assignment connectionist systems. We believe that
meta-learning on a system that uses compositional computation can significantly
improve the learning efficiency Lake et al. [2016].

In this section, I did not make assumptions about the computational tools used
by the system to implement notions such as meta-learning, probabilistic inference,
or compositional representations. I also believe that a system does not need to rely
on compositionality solely as a computational principle.
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1.2.2 Compositionality in AI

Compositionality has been a central concept in AI research for decades. In the
debates on connectionism and symbolic structure of cognitive architecture, neu-
ral networks, as connectionist systems, were criticized for lacking compositional
symbol manipulation [Fodor and Pylyshyn, 1988, Lake et al., 2016, Lake and
Baroni, 2018, Marcus, 2018]. Many have tested the ability of neural networks
to solve tasks requiring compositional generalization, with mixed results [Chris-
tiansen and Chater, 1994, Marcus, 1998, Botvinick and Plaut, 2006, Bowers et al.,
2009, Botvinick and Plaut, 2009, Frank et al., 2009, Bowman et al., 2015, Frank,
2014]. There were also attempts at developing a schema for representing compo-
sitional structures using vectors [Smolensky, 1990]. Ideas about compositionality
were adopted to explain modalities beyond language and thought. For example,
Hoffman and Richards [1984], Biederman [1985] theorized that the visual sys-
tem decomposes objects into their parts. In recent years, the field has largely ex-
panded in many directions, developing formalizations and benchmarks for evalu-
ating compositionality in ANNs, probing models for compositional structure, and
improving compositional generalization with novel architectures or special train-
ing schemes.

The first idea to disambiguate in this research question is the nature of compo-
sitionality in ANNs. Early research on visual tasks, namely visual classification,
has brought convolutional deep architectures to the forefront. CNNs have since
become the standard vision models, and their success has been attributed in part
to their capacity to extract hierarchical features from images. This hierarchy of
features has been deemed a feature of compositionality [Zeiler and Fergus, 2013].
Although CNNs have a structure that represents features at different levels of ab-
straction, this structure remains restricted to the representation of image features.
For example, standard CNNs cannot decompose a scene into objects and their
components. Thus, even if a CNN’s structure is considered compositional, its
representations are restricted in their usefulness in tasks that involve composition-
ality. The compositional structure can also be built into the data and the process,
as in recursive neural networks [Socher et al., 2013]. These examples highlight
important questions: what does compositionality characterize in neural networks,
the representations, or the structure of the model? Is it implicit or explicit? And
to what extent is it generalizable?

Given the difficulty of organizing diverse data into a compositional format, the
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field has focused on investigating the implicit compositionality in the representa-
tions and weights of neural architectures and building compositionality into the
internal structure of the model. Compositional generalization has been investi-
gated in various contexts: zero-shot learning in vision [Yang et al., 2020, Mancini
et al., 2021, Misra et al., 2017, Naeem et al., 2021, Purushwalkam et al., 2019,
Atzmon et al., 2020, Wang et al., 2020], 3D representations [Tulsiani et al., 2018],
visual reasoning [Johnson et al., 2017a], reinforcement learning [Gur et al., 2022],
language [Lake and Baroni, 2018, Keysers et al., 2020] and abstract tasks such as
math [Saxton et al., 2019]. In most settings, models are evaluated based on sys-
tematicity, whereby novel combinations of features are introduced during testing.
Results in these studies vary, with a trend towards the failure of standard models
at compositional generalization.

We take the SCAN dataset as an example. SCAN tasks involve translating
commands from a simplified natural language to a sequence of actions. Re-
sults show that standard recurrent models do not learn these tasks composition-
ally [Loula et al., 2018, Lake and Baroni, 2018]. Although pre-training masked
language models have better performance [Furrer et al., 2021], they still do not
learn compositionally. However, Lake and Piantadosi [2019] shows that augment-
ing a seq2seq architecture with memory allows it to solve many SCAN tests.

Given that most compositional generalization tests are limited to one aspect
of compositionality, which is systematicity, Hupkes et al. [2020] proposes PCFG
SET, a suite of tests for five aspects of compositionality: systematicity, productiv-
ity, locality vs. globality, substitutivity, and overgeneralization. Their analysis of
standard architectures shows that they fail at most tests.

Improvements to the compositionality of neural network models vary between
training schemes and the use of different inductive biases. Baan et al. [2019], Hup-
kes et al. [2019] show that training models with attentive guidance biases them to
implement more compositional solutions and improve compositional generaliza-
tion. Attentive guidance is implemented as an additional supervision signal that
expresses how the input should be segmented and in which order it should be
processed. In a reinforcement learning task, Hill et al. [2020] shows that increas-
ing the perceptual variety and realism of the environment improves compositional
language generalization. These examples show that training experience influences
compositional behavior in neural networks and can even bias models to implement
compositional computations.
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Modular architectures have been used to implement explicitly compositional
computation in many scenarios [Andreas et al., 2016a, Hu et al., 2017]. Some ap-
proaches use program induction with program primitives [Johnson et al., 2017a].
These approaches require the implementation of a diverse set of program primi-
tives and are limited in their capacity to learn new programs. Inspirations from
brain function were used for implementing other approaches [Russin et al., 2019],
but they have limited improvements over standard architectures.

Modern large-scale deep learning architectures, such as generative models [Ramesh
et al., 2022, Rombach et al., 2022] Large language models [Brown et al., 2020,
Touvron et al., 2023a,b] and multi-modal foundation models [OpenAI, 2023, Driess
et al., 2023, Yu et al., 2022], show impressive capacities in various tasks in zero-
shot settings. They seemingly present scale as the correct solution for general-
ization. However, beyond exorbitant training and inference costs, their failures
demonstrate brittleness and sub-human performance on many reasoning tasks.
Their limitations on compositionality have been demonstrated in various scenar-
ios [Dziri et al., 2023].

This brief overview of research on compositionality highlights that, to date,
there are no deep learning models that perform well reliably in compositional gen-
eralization tests. Current architectures rely on unique inductive biases that limit
their expressivity and their ability to represent diverse compositional structures.
Furthermore, compositionality benchmarks explore predominantly tests of com-
positionality during inference. To our knowledge, models have not been evaluated
for their capacity to decompose tasks during learning.

1.3 Original Contributions

The goal of this dissertation is to promote a direction of research that focuses on
all aspects of human intelligence, especially compositionality. My work attempts
to address the shortcomings of deep learning models: their reliance on large data,
their lack of generalization, and their robustness. In the first chapter, I attribute
these shortcomings to the lack of focus on factors of human intelligence in the
evaluation of deep learning models: efficiency in time, computational resources,
energy, and learning experience. Investigating factors of intelligence, I focus on
compositionality and specifically compositional learning—the system’s capacity
to decompose tasks into their elementary components during training and compos-
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ing learned skills to learn new tasks efficiently. Compositionality in deep learning
is often regarded as a mechanism that models leverage during inference and not
during learning. These ideas motivate developing a benchmark for evaluating
compositional learning and sample efficiency.

Chapter 2 details the development of CVR, the “compositional visual rea-
soning” benchmark, which includes 103 tasks built as compositions of nine ele-
mentary visual relations. To build this benchmark, I propose a novel method for
creating visual reasoning problems with a compositional prior.

Chapter 3 focuses on the evaluation of several baseline models for sample effi-
ciency, compositional learning, and out-of-distribution generalization. The results
demonstrate a gap between humans and models in terms of sample efficiency, the
failure of models to generalize to out-of-distribution settings, and their failure to
decompose tasks into their elementary components during training.

This dissertation recognizes the generality of compositionality as a computa-
tional paradigm, its multipurpose use by the brain in a variety of functions, and
its nature as an emergent property of brain function. Given these observations,
I reason that compositionality could emerge in a neural architecture that takes
inspiration from brain functions. Furthermore, an architecture that captures the
flexibility of brain functions could benefit from the use of compositionality in
inference and learning for representing abstract concepts and factorizing compu-
tation, thus stepping closer to human intelligence.

In Chapter 4, I propose a framework for developing and training neural ar-
chitecture based on principles taken from the brain’s biological priors and emer-
gent properties. These principles include modularity, agency, control over inter-
nal computations, learning rules, credit assignment, curricular organization, and
diversity of tasks in the learning experience. Using some of these principles, I
propose AbstractNet, a modular architecture with control over internal compu-
tations, information routing, module activations, and adaptive computation time.
Initial experiments show that AbstractNet can learn how to use diverse module ar-
chitectures to solve a variety of homogeneous and heterogeneous tasks and adapt
its internal computations based on task demands. The implementation ideas pro-
posed in the framework could potentially further improve this architecture and
expand its capabilities.

Overall, this dissertation shows that compositionality is a missing component
in deep learning models for reaching human-level intelligence and proposes a
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framework for incorporating brain-inspired design principles in neural architec-
tures.

The work presented in Chapter 2 and Chapter 3 is adapted and expanded from
the following publication:

• Aimen Zerroug, Mohit Vaishnav, Julien Colin, Sebastian Musslick, and
Thomas Serre. "A benchmark for compositional visual reasoning." Ad-
vances in Neural Information Processing Systems 35 2022 29776-29788.
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2.1 Introduction

Visual reasoning is a complex ability requiring a high level of abstraction over
high-dimensional sensory input. It highlights humans’ capacity to manipulate
concepts and relations as symbols extracted from visual input. The efficiency with
which humans learn new visual concepts and relations, as exemplified by fluid
intelligence and non-verbal reasoning tests, is equally fascinating. In the pursuit
of human-level artificial intelligence, a growing body of research is attempting to
emulate this skill in machines, and deep neural networks are at the forefront of the
field.

Deep learning approaches are prime candidates as models of human intelli-
gence due to their success at learning from data while relying on simple design
principles. However, these architectures are imperfect models of human intel-
ligence, as shown by their lack of sample efficiency, inability to generalize to
unfamiliar situations [Geirhos et al., 2020b], and lack of robustness [Goodfellow
et al., 2014]. Their ability to perform well in large-data regimes has skewed re-
searchers to scale up datasets and architectures with little consideration for the
sample efficiency of these systems.

Only a few benchmarks address these aspects of human intelligence. One
such benchmark, ARC [Chollet, 2019], provides diverse visual reasoning prob-
lems. However, the extreme scarcity of training samples—only 3 samples per
task—makes the benchmark difficult for all methods, especially neural networks.
Other benchmarks have led to the development of new neural network-based mod-
els that address particular gaps between human and machine intelligence [Barrett
et al., 2018, Zhang et al., 2019, Fleuret et al., 2011]. Some focus on evaluating
the task’s perceptual requirements [Fleuret et al., 2011], which include detecting
features, recognizing objects, perceptual grouping, and spatial reasoning. Others
evaluate logical reasoning requirements [Barrett et al., 2018, Zhang et al., 2019],
such as symbolic reasoning, making analogies, and causal reasoning. However,
they lack either the variety of abstract relations present in the scene or the se-
mantic and structural variety of scenes over which they instantiate these abstract
relations.

Creating novel visual reasoning tasks can be challenging. In this benchmark,
we standardize a process for creating tasks compositionally based on an elemen-
tary set of relations and abstractions. This process allows us to exploit a wide
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Figure 2.1: Visual reasoning benchmarks: State-of-the-art models achieve
super-human accuracy [Wu et al., 2020, Vaishnav et al., 2022] on several visual-
reasoning benchmarks such as RAVEN [Zhang et al., 2019], PGM [Barrett et al.,
2018], and SVRT [Fleuret et al., 2011]. However, some benchmarks continue to
pose a challenge for current models, such as ARC [Chollet, 2019]. The funda-
mental difference between these different benchmarks is the number of unique
task rules they composed out of their priors and the number of samples available
for training architectures on individual rules. This difference sheds light on two
poorly researched aspects of human intelligence: learning in low-sample regimes
and harnessing compositionality. The proposed CVR challenge aims to fill the
gap between current benchmarks to encourage the development of more sample-
efficient and more versatile neural architectures for visual reasoning.

range of visual relations as well as abstract rules, thus making it possible to eval-
uate both the perceptual and logical requirements of visual reasoning. The com-
positional nature of the tasks provides an opportunity to investigate the learning
strategies wielded by existing methods.

Contributions Our contributions can be summarized as follows:

• A novel visual reasoning benchmark called Compositional Visual Rela-
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Figure 2.2: Scene Generation: A scene in our image dataset is composed of
objects. (a) An object is a closed contour with several attributes. (b) A relation is
a constraint for the generation process over scene attributes. (c) The elementary
relations control unique scene attributes. They are used for building task rules in
a compositional manner. Each task uses a reference rule and an odd-one-Out rule
to generate images. (d) Odd-one-out problems are randomly generated using a
program. Three images are generated following the Reference rule, and a fourth
image (highlighted in red) is generated following the Odd-One-Out rule.

tions (CVR) with 103 unique tasks over distinct scene structures.

• A novel method for generating visual reasoning problems with a composi-
tionality prior.

2.2 Visual Reasoning Tasks

CVR is a synthetic visual reasoning dataset that builds on prior AI benchmarks [Fleuret
et al., 2011, Chollet, 2019] and is inspired by cognitive science literature [Ullman,
1987] on visual reasoning. In the following, we will describe the generation pro-
cess of the dataset.
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2.2.1 Odd-One-Out

The odd one-out task has been employed in prior work to test visual reason-
ing [Mańdziuk and Żychowski, 2019]. A sample problem consists of four images
generated such that one of them is an outlier according to a rule. The goal of the
task is to select the outlier. The learner is expected to test several hypotheses in
order to detect the outlier. This process requires them to infer the hidden scene
structure and relationships between the objects.

2.2.2 Visual Relations

Each image contains one scene composed of multiple objects as shown in Fig-
ure 2.2. An object is defined as a closed contour with a set of object attributes:
shape, position, size, color, rotation, and flip. Other attributes describe the scene
or low-level relations between objects. Count corresponds to the number of ob-
jects, groups of objects, or relations. Insideness indicates that an object contains
another object within its contour. Contact indicates that two object contours are
touching. These nine attributes are the basis for the nine elementary relations.
For example, a "size" relation is a constraint on the sizes of certain objects in the
scene. Relations are expressed with natural language or logical, relational, and
arithmetic operators over scene attributes. Relations and objects are represented
as nodes in the scene graph. Relations define groups of objects and can have
attributes of their own. Thus, it is possible to create abstract relations over these
relations’ attributes. A scene can be generated from a template that we call a
structure. The concepts of structure, scene graph, and relations are used to for-
malize the process behind designing a task. In practice, the generation process is
a program implemented by the task designer to generate problem samples for one
task randomly. The pseudocode for an example program is detailed in Alg. 1.

2.2.3 Rules and Problem Creation

The generation process described above can be used to instantiate different tasks:
binary classification, few-shot binary classification, or Raven’s progressive ma-
trix. In this paper, we choose to apply this process to create odd-one-out problems.
First, the task designer selects target relations and incorporates them into a new
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Figure 2.3: Dataset rules: Each square represents the number of tasks in CVR
that are a composition of one or two elementary relations. Tasks on the diagonal
involve complex reasoning over a single elementary relation. The bar plot shows
the number of rules that involve each elementary relation.

scene structure. In Figure 2.2, the target relations are size and shape similarity;
they are added to a scene with 4 objects. Then, a reference rule and an odd rule are
chosen such that they combine target relations in different ways. The reference
and odd rules in the example vary only in the size or shape attributes. A valid odd-
one-out rule contradicts the reference rule, such that any strategy used to solve the
task must involve exclusively reasoning over the target relations. Given a scene
structure, a reference, and an odd-one-out rule, the generation process has a set
of free parameters that control the generation process for new samples. The prob-
lem’s difficulty level can be varied by randomizing or fixing these parameters. In
the shape-size task, the range of color values and the variation of objects across
the 4 images are examples of free parameters. More random parameters result in
a higher difficulty. We create generalization test sets by changing the sets of fixed
or random parameters. For more details on the generalization test sets, we refer
the reader to the annex.
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Figure 2.4: Examples of task rules that are composed of a pair of relations.
More examples of tasks and algorithms are provided in the SI.

2.3 Dataset Details

CVR incorporates 103 unique reference rules, including nine rules instantiating
the nine elementary visual relations and 94 additional rules built as compositions.
These compositions span all pairs of elementary rules and include up to four re-
lations. While some rules are composed of the same elementary relations, they
remain unique in their scene structure or associations with other relations. 20 are
compositions of single elementary relations, 65 are compositions of a pair of re-
lations, and 9 are compositions of more than two elementary relations. Figure 2.3
details the number of unique rules for each pair of elementary relations. The
procedural generation of problem samples helps us create an arbitrary number of
samples. We create 10,000 training problem samples, 500 validation samples, and
1,000 test samples for each task. We also create a generalization test set of 1000
samples.

We define compositionality prior to the task’s design constraint, which en-
sures that solving the task requires reasoning over its elementary components. In
the size-shape task, shown in figure 2.2, the outlier can be differentiated from the
other images by reasoning purely on size and shape. In the context of CVR, com-
positionality is not exemplified by combinations of object attributes only, such as
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novel color and shape combinations in an object; it is also exemplified by com-
binations of variables at higher levels of abstraction, such as groups of objects
and scene configurations. For example, the position-rotation composition rule in
Fig. 2.4 requires reasoning over the rotation properties of two sets of objects in
each scene and the position properties of objects within each set.

CVR constitutes a significant extension to the Synthetic Visual Reasoning Test
(SVRT) [Fleuret et al., 2011] in that it provides a systematic reorganization based
on an explicit compositionality prior. Among the 23 SVRT tasks, many share re-
lations, such as tasks #1 and #21, which both involve shape similarity judgments.
Most of these tasks can still be found among CVR’s rules. At the same time,
CVR is more general because it substitutes binary classification tasks with odd-
one-out tasks, which allows for exploring more general versions of these tasks
with a broader set of task parameters. For example, in SVRT’s task #7, images of
3 groups of 2 same shapes are discriminated from images of 2 groups of 3 same
shapes. This task is a special case in CVR of a more general shape-count rule
with n groups of m objects where the values are randomly sampled across prob-
lem samples. Unlike procedurally generated Raven’s Progressive Matrice (RPM)
benchmarks [Barrett et al., 2018, Zhang et al., 2019], CVR does not rely on a small
set of fixed templates for the creation of task rules. The shapes are randomly cre-
ated, and positions are not fixed on a grid (for most rules), which renders the visual
tasks difficult for models that rely on rote memorization [Kim et al., 2018]. Other
attributes are sampled uniformly over a continuous interval.

2.3.1 Priors on Scene Generation

• Objects are defined as closed contours sampled randomly with two param-
eters: the radius of the largest circle that can fit inside the object and the
distance between two consecutive points in the closed contour.

• The size of the object scales the width and height of the object linearly.

• The background color is always white, and object colors are sampled in the
HSV color space with saturations and values that maintain contour visibility
on a white background.

• The center of an object is defined as the midpoint between its horizontal
and vertical extents. It is used for placing the object based on its position.
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Rotation
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Counting
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Figure 2.5: Elementary Tasks Problem instances from the tasks built based on
elementary relations.

By default, objects are not in contact and do not overlap unless they have
an insideness or a contact relationship. To ensure this, their positions are
sampled with rejection sampling.

All parameter values are sampled from a fixed range for each task. Within the
specified ranges, value combinations might violate priors. Rejection sampling is
employed to avoid choosing such value combinations. For example, the object
size is sampled such that all objects can fit inside the image based on the number
of objects in the scene. The range of sizes decreases with the number of objects
in the scene. Functions that sample positions within the scene, positions inside
an object, positions of objects in contact, and colors are shared among all 103
programs. Position sampling rejects samples where at least one pair of object-
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bounding boxes intersects. To sample contact between two objects, a direction
(2D vector) is sampled or specified, then the maximum distance between two
intersecting objects is computed, and relative positions with respect to their center
of mass are assigned to the objects. While sampling a position inside an object,
samples are rejected if the position is outside the object or if contours intersect.
When objects contain other objects, their shapes are sampled with a large inner
radius. Objects are flipped either horizontally or vertically.

Algorithm 1: Shape-Size
Problem Generation:
Pseudo-code of the program
that generates the shape-size
task in Figure 2.2

n← 4 // Number of

objects

for i← 1 to 4 do
s← sample_size()
s′ ← s× rand([2/3, 1/4])
if i = 4 then

// Odd-One-Out

[si]1−n ← [s, s′, s, s′]
else

[si]1−n ← [s, s, s′, s′]
end
[o, o′]←
sample_shapes(n = 2)

[oi]1−n ← [o, o, o′, o′]
[pi]1−n ←
sample_position([si]1−n)

[ci]1−n ←
sample_color(n = 1)

end
[scene]1−4 = [[o, p, s, c]1−n]1−4
[image]1−4 =
[render(scene)]1−4

Algorithm 2: Size-Color
Problem Generation:
Pseudo-code of the program
that generates the size-color
task in Figure 2.4.

c0 = sample_color(n = 1)
for i← 1 to 4 do

ca
i ←
sample_color(reject =
c0)

cb
i ← c0
sa

i = sample_size()
sb

i = sa
i × rand([1/4, 1/2])

[pa
i , pb

i ]←
sample_position([sa

i , sb
i ])

[oa
i , ob

i ] =
sample_shapes(n = 2)

if i = 4 then
// Odd-One-Out

[ca
i , cb

i ]← [cb
i , ca

i ]
end

end
[scene]1−4 = [[o, p, s, c]a−b]1−4
[image]1−4 =
[render(scene)]1−4
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2.3.2 Generalization Test Set

Among the limitations of our dataset is that certain tasks could be solved by ex-
ploiting shortcuts. Shortcuts are biases in the tasks that neural networks exploit
to solve them. An explanatory example is the counting task. If objects have the
same size, the neural network can easily solve the task by summing the pixels of
the image without analyzing the scene. If a model exploits this shortcut, it does
not need to learn the concept of an object or counting. To account for this limita-
tion and evaluate out-of-distribution generalization, we develop a generalization
test set that differs from the in-distribution test set in several ways.

• Parameter value ranges: the ranges used for sampling parameters, espe-
cially target-relation parameters, are changed. For example, the range of
object numbers for counting related tasks is expanded.

• Object contour specification: the distance between dots in contours is ran-
domized locally, resulting in fuzzier contours as shown in Figure 2.6.

• Sets of random and fixed parameters: generation parameters that are task
irrelevant are generally fixed across the four choice images. In the general-
ization test set, the sets of random and fixed parameters are changed without
affecting the rules. For example, in the shape-size task of Figure 2.2, the
color parameter, which is irrelevant, is fixed in the training set and the test
set; however, it is randomly sampled in the OOD generalization test set.

Figure 2.6: Shapes in the generalization test set.
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2.4 Related Work

2.4.1 Visual reasoning benchmarks

Visual reasoning has been a subject of AI research for decades, and several bench-
marks address many relevant tasks. This includes language-guided reasoning
benchmarks such as CLEVR [Johnson et al., 2017b], which has been extended
in its visual composition by recent work [Li and Søgaard, 2022], physics-based
reasoning, and reasoning over time dynamics [Yi et al., 2019, Bakhtin et al., 2019].
Abstract visual reasoning benchmarks are more relevant to our work. Raven’s Pro-
gressive Matrices (RPMs), which were introduced in 1938 [Burke, 1985], are one
example used to test human fluid intelligence. RPMs generally consist of three
sequences of three images that describe a logical relationship through specific fea-
tures such as size, shape, color, and numbers. In the test, the user is prompted to
choose the third image of the third sequence among a set of false options. Proce-
dural generation techniques for RPMs [Wang and Su, 2015] enabled the creation
of the PGM dataset and RAVEN [Barrett et al., 2018, Zhang et al., 2019]. They
also inspired Bongard-Logo [Nie et al., 2020], a concept learning and reasoning
benchmark based on Bongard’s 100 visual reasoning problems [Bongard, 1968].
Another reasoning dataset, SVRT [Fleuret et al., 2011], focuses on evaluating
similarity-based judgment and spatial reasoning. Besides these synthetic datasets,
real-world datasets were developed with similar task structures to Bongard-Logo
and RPM [Teney et al., 2020, Jiang et al., 2022]. In this work, we take inspiration
from SVRT and develop a more extensive set of rules with careful considerations
for the choice of rules and using a novel rule generation method. Finally, Abstract
Reasoning Corpus [Chollet, 2019] is a general intelligence test introduced with a
new methodology for evaluating intelligence and generalization. The numerous
problems presented in this benchmark are constructed with a variety of human
priors. The unique nature of the task, requiring solvers to generate the answer,
and the limited amount of training data render the benchmark difficult for neural
network-based methods. We follow a similar approach in our dataset by creating
several unique problem templates. However, we restrict the number of samples to
a reasonable range to evaluate the sample efficiency of candidate models.
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2.4.2 Compositionality

Compositionality is a highly studied topic in AI research. Although there is agree-
ment over the high-level definition of compositionality—the ability to represent
new abstractions based on their constituents and their contexts—there is little con-
sensus on methods for characterizing compositional generalization in neural net-
works. Several tests for compositionality have been proposed in language [Linzen
et al., 2016], mathematics [Saxton et al., 2019], logical reasoning and naviga-
tion [Bowman et al., 2015, Lake and Baroni, 2018, Ruis et al., 2020, Wu et al.,
2021] and visual reasoning Johnson et al. [2017b], Thrush et al. [2022], Agrawal
et al. [2017]. Recent work [Hupkes et al., 2020] attempts to identify components
of compositionality and proposes a test suit that unifies them. These tests evalu-
ate the model’s capacity to manipulate concepts during inference. Systematicity
tests the novel combination of features, akin to CLEVR’s CoGenT [Johnson et al.,
2017b] and C-VQA [Agrawal et al., 2017], where novel combinations of shapes
and colors are introduced in the test set, and localism tests the model’s ability to
account for context similarly to samples from Winoground [Thrush et al., 2022].

2.4.3 Neuroscience and Psychology

Several theories attempt to propose an understanding of the mechanisms behind
visual reasoning. Gestalt psychology provides principles hypothesized to be used
by the visual system as an initial set of abstractions. Another theory describes
visual reasoning as a sequence of elemental operations called visual routines [Ull-
man, 1987] orchestrated by higher-level cognitive processes. These elemental op-
erations are hypothesized to form the basis for spatial reasoning, same-different
judgment, perceptual grouping, contour tracing, and many other visual skills [Ca-
vanagh, 2011]. Evaluating these skills in standard vision models is a recurring
subject in machine learning and neuroscience research [Kim et al., 2019, Linsley
et al., 2020, Puebla and Bowers, 2021]. To provide a comprehensive evaluation
of visual reasoning, it is important to include task sets that require various visual
skills within humans’ capabilities.
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2.5 Discussion and Future Work

In this work, we have proposed a novel benchmark that focuses on two important
aspects of human intelligence: compositionality and sample efficiency. Inspired
by visual cognition theories [Ullman, 1987], the proposed challenge addresses the
limitations of existing benchmarks in the following ways: (1) It extends previous
benchmarks by providing a variety of visual reasoning tasks that vary in relations
and scene structures; (2) all tasks in the benchmark were designed with compo-
sitionality prior, which allows for an in-depth analysis of each model’s strengths
and weaknesses; and (3) it provides a quantitative measure of sample efficiency.

While CVR is quite extensive in terms of the visual relations it contains, it
can always be further improved in its use of elementary visual relations. For ex-
ample, the shapes could be parametrically generated based on specific geometric
features. Hopefully, CVR can be expanded in future work to test more routines
by including additional relations borrowed from other, more narrow challenges,
including occlusion [Kim et al., 2019], line tracing [Linsley et al., 2018], and
physics-based relations. The rules in the current benchmark are limited to 2 or 3
levels of abstraction to evaluate relations systematically. We hope that the release
of our benchmark will encourage researchers in the field to test their own model’s
sample efficiency and compositionality.
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3.1 Introduction

In this chapter, I focus on the evaluation of deep learning models on the CVR
benchmark. This evaluation focuses on state-of-the-art abstract visual reasoning
models and standard vision models. These models have been shown to reach high
performance on several visual reasoning tasks in previous works [Wu et al., 2020,
Vaishnav et al., 2022], but they always require large amounts of data. This paper’s
subject of interest is quantifying these models’ sample efficiency and composi-
tional learning.

This work includes large-scale experiments that capture a multitude of se-
tups, including multi-task and individual task training, pre-training with self-
supervision on dataset images to contrast learning of visual representations vs. ab-
stract visual reasoning rules, training over a range of data regimes, testing transfer
learning between dataset tasks, and evaluating out-of-distribution generalization.
We present an in-depth analysis of task difficulty, which provides insights into
the strengths and weaknesses of current models. Overall, we find that the best
baselines trained in high-data regimes fall short of human sample efficiency for
learning CVR tasks. While models appear to be capable of transferring knowl-
edge across tasks, the results show that they do not leverage compositionality to
decompose tasks into their components. We hope to inspire research on more ef-
ficient visual reasoning models by releasing our dataset. The code for generating
the full dataset and training models is available here.

Contributions Our contributions can be summarized as follows:

• A systematic analysis of the sample efficiency of baseline visual reasoning
architectures.

• An empirical study of models’ capacity to use compositionality to solve
complex problems.

• An evaluation of the out-of-distribution generalization capabilities of base-
lines.
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3.2 Experimental setting

3.2.1 Baseline models

In our experiments, we selected two vision models commonly used in computer
vision. We evaluate ResNet [He et al., 2015], a convolutional architecture used as
a baseline in several benchmarks [Barrett et al., 2018, Zhang et al., 2019, Vaishnav
et al., 2022] and also used as a backbone in standard VQA models. We also eval-
uate ViT, a transformer-based architecture [Dosovitskiy et al., 2020]. ViT is used
for various vision tasks, such as image classification, object recognition, caption-
ing, and recently in visual reasoning on SVRT [Messina et al., 2021]. To compare
the architectures fairly, we choose ResNet-50 and ViT-small, which have an equal
number of parameters. Additionally, we evaluate two baseline visual reasoning
models designed for solving RPMs: SCL [Wu et al., 2020], which boasts state-of-
the-art accuracy on RAVEN and PGM, and WReN [Barrett et al., 2018], which is
based on a relational reasoning model [Santoro et al., 2017]. Finally, we present
SCL-ResNet-18, which consists of an SCL with ResNet as a visual backbone, thus
combining ResNet’s perception skills with SCL’s reasoning skills.

3.2.2 Joint vs. individual rule learning

Models are either trained in a single-task (individual) or multi-task (joint) setting.
In the context of the multi-task training on CVR, one image is considered an odd
one-out with respect to a reference rule. However, because of the randomness
of scene generation, a different image might be considered an odd one-out with
respect to a different, irrelevant rule. To illustrate this problem, let’s take the el-
ementary size rule as an example. In this rule, each image contains one object.
Due to the random sampling of object attributes, it is possible for one image to
be considered an outlier with respect to the color rule (the attributes in the 4 im-
ages are i-small/green, ii-large/green, iii-small/green, and iv-small/blue). Without
specifying that the task to solve involves a size relation, the model could incor-
rectly choose the fourth image because it is an outlier with respect to the color
rule. Thus, models trained on several tasks could easily confound rules. To avoid
this problem, models are provided with a rule embedding vector. Given the rule
token, models can learn several strategies and use the correct one for each problem
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sample. We also compare the multi-task and single-task settings, as they allow for
testing the model’s capacity and efficiency in learning several strategies and rou-
tines to solve different rules. All hyperparameter choices and training details are
provided in the Annex.

3.2.3 Self-Supervised pre-training

Unlike humans, who spend a lifetime analyzing visual information, randomly ini-
tialized neural networks have no visual experience. To provide a more fair com-
parison between humans and neural networks, we pre-train baseline models on a
subset of the training data. Self-supervised learning (SSL) has seen a rise in pop-
ularity due to its usefulness in pre-training models on unlabeled data. By using
SSL, we aim to dissociate feature learning from abstract visual reasoning in stan-
dard vision models. We pre-trained ViT-small and ResNet-50 on 1 million images
from the dataset following MoCo-v3 [Chen et al., 2021a]. In addition to SSL
pre-trained models, we also fine-tune models pre-trained on object recognition
and image annotation. Since image annotation requires visual reasoning capabil-
ities, these pre-trained models provide a more fair comparison with humans, who
regularly perform the task. We select ResNet-50 and ViT-small pre-trained on
ImageNet [Deng et al., 2009]. We also pick CLIP [Radford et al., 2021] visual en-
coders ResNet-50 and ViT-Base, which are trained jointly with a language model
on image annotation.

3.2.4 Learning to spot the Odd-One-Out

The training setup for standard vision models is straightforward; models are trained
to represent the odd-one-out differently from the three other images. The four im-
ages of the problem are fed separately to the model. Their representations are
transformed into a low-dimensional space where the distances between the four
representations are computed. The cosine similarity of the odd-one-out to the
group is minimized with a cross-entropy-based loss. Given the 4 image represen-
tations xi, the logits yi used for computing the softmax cross-entropy loss are the
negative sum of the similarity scores.

yi = −
∑
j ̸=i

xi · xj

||xi||2 · ||xj||2
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Although we follow a specific training setting for the baseline architectures, we
do not impose this methodology on future work as more sophisticated methods
for comparing the four images of a problem can be designed.

3.2.5 Human Baseline

As found in Fleuret et al. [2011], having 21 participants solve the 9 tasks based
on elementary relations and 36 randomly sampled complex tasks is sufficient to
yield a reliable human baseline. We used 20 problem samples for each rule, which
corresponds to the lowest number of samples used for training baseline models.
We recruited 21 participants from Prolific: 13 females and 8 males aged between
19 and 49 years. All participants signed a consent form before participation and
received $10.50 US per hour for participation. The study was approved by the
Institutional Review Board of Brown University. 40 individuals were initially
enrolled to participate, but 19 were disqualified based on technical malfunctions,
misunderstandings of instructions, or failures in attention checks. Participants
were instructed to identify the odd stimulus that violated the rule they had to
infer over a series of trials. Prior to the practice phase, they were quizzed on their
understanding of the task. Participants practiced the task on a separate set of visual
stimuli different from the benchmark. During the experiment, participants were
informed about the start of each block as well as the concomitant rule switch. For
each trial, they were presented with four choices on the screen and instructed to
choose the image that seemed to be different according to the rule that they had to
learn. They rated their confidence in their choice and received feedback after each
trial. In addition, they were asked to describe the rule at the end of each block.

3.3 Results

3.3.1 Sample Efficiency

Baseline models are trained in six data regimes ranging from 20 to 1000 training
samples. All sample efficiency results are summarized in Table 3.1. Randomly
guessing yields 25% accuracy. We observe that most randomly initialized mod-
els are slightly above chance accuracy after training in low data regimes. They
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N train samples 20 50 100 200 500 1000

ra
nd

-i
ni

t
in

d

ResNet-50 28.0 1 31.1 1 32.5 3 34.0 6 38.7 12 44.8 24
ViT-small 28.6 1 30.1 4 30.9 4 31.9 4 33.8 4 35.1 7
SCL 26.9 0 30.0 1 30.3 2 30.0 2 31.4 2 33.4 5
WReN 30.0 0 32.0 2 32.9 2 34.1 3 36.3 6 39.0 15
SCL-ResNet 18 31.4 1 37.3 9 37.8 9 39.6 15 42.7 21 48.3 26

jo
in

t

ResNet-50 27.5 0 28.2 0 29.9 2 33.9 6 52.1 29 59.2 34
ViT-small 27.3 1 27.8 2 28.0 1 28.1 1 29.9 2 31.4 3
SCL 25.8 0 25.8 0 28.3 1 34.1 3 43.2 22 46.2 27
WReN 26.8 0 27.6 0 28.5 0 30.1 0 36.4 9 42.3 20
SCL-ResNet 18 26.4 0 28.4 0 31.6 4 40.7 13 51.4 32 64.0 42

SS
L in

d ResNet-50 40.5 13 47.3 18 52.9 29 56.8 34 61.9 42 67.7 50
ViT-small 46.7 16 51.6 24 54.8 29 57.5 38 62.0 44 65.5 46

jo
in

t ResNet-50 44.3 16 50.3 24 55.3 30 59.5 42 68.9 49 79.2 59
ViT-small 39.3 15 39.5 13 40.8 14 44.1 16 53.3 30 60.7 41

IN jo
in

t ResNet-50 32.0 2 35.1 5 39.0 9 43.8 13 57.7 48 69.5 48
ViT-small 27.9 2 28.2 1 28.6 2 30.0 2 35.6 5 47.2 24

C
L

IP
jo

in
t ResNet-50 28.7 0 32.0 2 40.8 11 46.9 18 59.7 40 74.4 53

ViT-base 31.1 1 37.4 7 43.9 14 56.0 30 68.9 48 78.8 62

Table 3.1: Performance comparison: For each model, we report the accuracy
and number of tasks with accuracy above 80%. ind: single-task training, joint:
multi-task training, SSL: initialized with self-supervised pretraining on CVR im-
ages; IN: pretraining on ImageNet datasets; CLIP: using CLIP’s pre-trained vision
model.
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achieve an increase in performance only when provided with more than 500 train-
ing samples. SCL-ResNet-18 performs the best in high data regimes, followed by
ResNet-50. SCL and ViT have the lowest performance in high data regimes. This
result is unsurprising since transformer architectures generally learn better in high
data regimes (millions of data points). This is consistent with prior work [Vaish-
nav et al., 2022] which finds that ViTs do not learn several SVRT tasks even when
trained on 100k samples. Although SCL’s performance is near chance, it achieves
the best performance when it is augmented with a ResNet-18, which is a strong
vision backbone. This jump in performance is indicative of the two architec-
tures’ complementary roles in visual reasoning. Results in Table 3.1 and Fig. 3.2
show a clear positive effect of pretraining on all models. SSL pre-trained models
achieve the highest performance compared to object recognition and image anno-
tation pretrained models. We observe that ViT benefits from a larger architecture
coupled with pre-training on a large image annotation dataset. This highlights
transformers’ reliance on large model sizes and datasets.

To quantify sample efficiency systematically for all models, we compute the
area under the curve (AUC), which corresponds to the unweighted average perfor-
mance across data regimes. We also introduce the Sample Efficiency Score (SES)
as an empirical evaluation metric for our experimental setting. It consists of a
weighted average of accuracy, where the weights are reversely proportional to the
number of samples:

SES =
∑

n anwn∑
n wn

where wn = 1
1+log(n) , n is the number of samples, and an is the accuracy at n

training samples. This score favors models that learn with the fewest samples
while considering consistency in their overall performance. We observe that SCL-
ResNet-18 scores the highest in the individual and joint training settings. In the
SSL finetuning condition, ViT and ResNet-50 have a similar SES when trained
on individual tasks, but ResNet-50 performs better in the joint training setting.
These results hint at the efficiency of convolutional architectures in visual rea-
soning tasks. Collapsing across all data regimes and training paradigms, the best
performance on CVR is given by ResNet-50 in the joint training setting with 10k
data points per rule. It achieves 93.7% accuracy. This high performance in the
10,000 data regime demonstrates the models’ capacity to learn the majority of
rules in the dataset and suggests that failure in lower data regimes is explained by
their sample inefficiency.
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N train samples SES AUC
ra

nd
-i

ni
t

in
d

ResNet-50 33.7 34.9
ViT-small 31.3 31.7
SCL 29.9 30.3
WReN 33.4 34.1
SCL-ResNet 18 38.4 39.5

jo
in

t

ResNet-50 36.0 38.4
ViT-small 28.4 28.7
SCL 32.2 33.9
WReN 30.9 32.0
SCL-ResNet 18 37.6 40.4

SS
L in

d ResNet-50 52.4 54.5
ViT-small 54.9 56.4

jo
in

t ResNet-50 57.0 59.6
ViT-small 44.7 46.3

IN jo
in

t ResNet-50 43.4 46.2
ViT-small 31.7 32.9

C
L

IP

jo
in

t ResNet-50 43.7 47.1
ViT-base 48.9 52.7

Table 3.2: SES results: SES is the Sample Efficiency Score; it favors models with
high performance in low data regimes and consistent accuracy across regimes.
SES and AUC are computed over the 20–1000 data regimes. The OOD general-
ization results are provided in the Annex.
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(b) Reverse Curriculum

Figure 3.1: Compositionality: We evaluate models’ capacity to reuse knowl-
edge. (a) Models trained with a curriculum are compared to models trained from
scratch. Models trained with a curriculum are overall more sample-efficient. (b)
Models trained on compositions are evaluated zero-shot on the respective ele-
mentary rules. Models fail overall to generalize from compositions to elementary
rules.

Finally, we compare model performance to the human baseline. We observe
in Table 3.4 that humans far exceed the accuracy of all models with only 20 sam-
ples. This result aligns with previous work on the SVRT dataset [Fleuret et al.,
2011] where participants solved similar tasks with less than 20 samples. These
results highlight the gap between humans and machines in sample efficiency and
emphasize the need to develop more sample-efficient architectures.

3.3.2 Compositionality

Transferring knowledge and skills across tasks is a crucial feature of intelligent
systems. With our experimental setup, this can be characterized in several ways. A
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N train samples 10000

ra
nd

-i
ni

t

ResNet-50 93.7 93
ViT-small 58.7 37
SCL 56.9 34
WReN 64.5 43
SCL-ResNet 18 78.9 73

SS
L ResNet-50 93.1 97

ViT-small 81.6 67

Table 3.3: Performance in a high data regime: We report the accuracy and
number of tasks with accuracy above 80%. Models are trained in the multi-task
setting.

N training samples 20 1000

ResNet-50 28.0 0 57.9 14
ViT-small 29.3 1 32.7 3
SCL 26.4 0 44.9 11
WReN 27.5 0 42.4 10
SCL-ResNet 18 26.8 0 64.1 18

ResNet-50 SSL 45.7 7 78.3 25
ViT-small SSL 38.7 6 60.3 17

Humans 78.7 26 - -

Table 3.4: Human Baseline: The performance of models on joint training ex-
periments is compared to the human baseline. The analysis is restricted to the
45 tasks used for evaluating humans. ResNet 50 approaches human-level per-
formance only after SSL pre-training and fine-tuning on all task rules with 1000
samples per rule. Which is 50 times higher than the number of samples needed by
humans.
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Figure 3.2: Sample efficiency: The percentage of tasks for which performance
is above 80% plotted against the number of training samples per task rule, with
random initialization (left) and SSL pre-training (right).

compositional model should reuse acquired skills to learn efficiently. Thus, when
it learns all rules jointly, it could be more sample-efficient because tasks in the
dataset share components. In Table3.1 and Figure3.2, we observe that ResNet-50
achieves higher performance on joint training compared to individual rule train-
ing, while ViT has the opposite effect. The trend is consistent across data regimes
and other settings. These results highlight convolutional architectures’ learning
efficiency compared to transformer architectures.

We investigate compositionality further by asking whether learning elemen-
tary rules provides a good initialization for learning their compositions. For ex-
ample, a model that can judge object positions and sizes should not require many
training samples to associate sizes with positions. We pick a set of complex rules
with at least two different elementary relations, train models to reach the max-
imum accuracy possible on component relations, and then fine-tune the models
on the compositions. We call this experimental condition the curriculum condi-
tion since the condition is akin to incrementally teaching routines to a model. We
compare model performance in the curriculum condition to performance when
training from scratch. The results highlighted in Figure 3.1a show positive effects
for most models but more significantly for convolution-based architectures. These
results indicate that the baselines use skills acquired during pre-training to learn
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the composition rules, and that this pre-training helps to varying degrees. We refer
readers to the annex for additional analyses and quantitative results.

Finally, we evaluate the transfer-learning from composition rules to elemen-
tary rules. We name this condition the reverse curriculum condition. The work-
ing hypothesis is that models that rely on compositionality will be able to solve
elementary relations without fine-tuning if they learn the composition. We com-
pare performance on a composition rule to zero-shot accuracy on the respective
elementary rules in Figure 3.1b. We observe that all models perform worse on el-
ementary relations. These results might indicate that although the baselines could
transfer skills from elementary rules to their compositions, they do not necessarily
use an efficient strategy that decomposes tasks into their elementary components.
Additional analyses are presented in the Annex.

3.3.3 Task difficulty

We analyze the performance of all models in the standard setting: joint training on
all rules from random initialization. Figure 3.3 shows the average performance of
each model on each elementary rule and composition rule. Since the dataset con-
tains several compositions of each pair of elementary rules, the accuracy shown
in each square is averaged over composition rules that share the same pair of ele-
mentary rules. Certain rules are solvable by all models, such as the position, size,
color, and count elementary rules. Additionally, other rules pose a challenge for
all models; these rules are compositions of count, flip, rotation, or shape. Mod-
els that rely on a convolutional backbone were able to solve most spatial rules:
position, size, inside, and contact. However, they fail on rules that incorporate
shapes and their transformations: shape, rotation, flip. Composition rules built
with the Count relation proved to be a challenge for most models. We believe that
models are capable of solving several tasks, such as the counting elementary rule,
by relying on shortcuts; this could be a summation of all pixels in the image, for
example. These shortcuts prevent models from learning abstract rules and hinder
generalization. In line with the previous results, SCL-ResNet-18 seems to solve
more elementary rules and compositions than the other three models.
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(b) Multi-task training
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Figure 3.3: Task analysis: The performance at 1000 samples is shown for each
model. Performance on elementary rules is shown on the top row of each matrix.
The elementary relations of each composition are indicated by the annotations.
Performance is averaged over different compositions of the same pair. We observe
that most models fail on “color”-based tasks.

3.3.4 Out-Of-Distribution Generalization

All baselines are evaluated on the generalization test set of the benchmark. The
aim is to determine whether baselines have learned the abstract rules of the tasks
and are robust to many variations in the statistics of the input. The generaliza-
tion testset is created such that it maintains the abstract rules of the task while
changing task-irrelevant parameters in the generation process. For example, the
shapes have fuzzy contours, unlike the clear lines in the training set. The results
in Tables 3.5, 3.6 and Figure 3.4 show that the performance of all models is sig-
nificantly lower in the generalization test set. For example, the best-performing
model, SSL-pretrained ResNet-50, with a SES score of 57% drops to 39%; it
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solves 20 tasks instead of 59, with above 80% accuracy in the 1000 data regime.
These results are not surprising since deep learning models are known to general-
ize poorly outside their training distribution. OOD generalization is an important
challenge for deep learning models to overcome to reach human intelligence.

N train samples 20 50 100 200 500 1000

ra
nd

-i
ni

t in
d ResNet-50 26.3 0 28.1 0 29.1 1 30.3 2 31.5 3 34.3 6

ViT-small 26.9 0 28.1 0 28.8 1 29.4 2 30.2 3 31.6 2
SCL 26.0 0 27.8 0 28.0 0 27.9 0 28.5 1 29.7 2
WReN 27.2 0 28.8 1 29.4 1 30.1 2 31.4 3 32.3 5
SCL-ResNet-18 28.8 1 31.1 1 31.7 3 32.4 4 34.4 6 38.4 11

jo
in

t

ResNet-50 26.0 0 26.6 0 27.8 1 30.0 1 37.3 7 41.3 15
ViT-small 26.2 0 26.4 0 26.6 1 26.9 1 27.4 1 26.9 1
SCL 25.4 0 25.6 0 27.5 0 30.3 0 33.6 5 35.6 8
WReN 26.1 0 25.9 0 26.8 0 27.8 0 31.9 4 34.1 6
SCL-ResNet-18 26.0 0 27.0 0 29.9 3 32.1 4 34.7 6 37.9 6

SS
L in

d ResNet-50 32.0 5 37.0 6 38.8 10 40.9 10 42.4 12 44.4 17
ViT-small 36.2 5 39.7 7 40.6 7 41.7 7 43.2 9 45.3 14

jo
in

t ResNet-50 34.0 4 34.3 4 37.9 8 38.4 6 46.4 15 51.0 20
ViT-small 34.1 6 33.0 5 32.5 4 33.2 6 33.4 6 35.9 11

Table 3.5: OOD Generalization Results: Models perform significantly worse on
the generalization test set.

3.4 Discussion and Future Work

In this work, we have focused on two important aspects of human intelligence—compositionality
and sample efficiency—that are scarcely addressed in the evaluation of deep learn-
ing models. Using the CVR benchmark, we performed an analysis of the sample
efficiency of existing machine learning models and their ability to harness compo-
sitionality. Our results suggest that even the best pre-trained neural architectures
require orders of magnitude more training samples than humans to reach the same
level of accuracy, which is consistent with prior work on sample efficiency [Lake
et al., 2015]. Our evaluation further revealed that current neural architectures fail
to learn several tasks even when provided with an abundance of samples and ex-
tensive prior visual experience. These results highlight the importance of devel-
oping more data-efficient and vision-oriented neural architectures for achieving
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N train samples SES AUC

ra
nd

-i
ni

t in
d ResNet-50 29.4 29.9

ViT-small 28.8 29.2
SCL 27.7 28.0
WReN 29.5 29.9
SCL-ResNet-18 32.2 32.8

jo
in

t

ResNet-50 30.3 31.5
ViT-small 26.6 26.7
SCL 28.8 29.6
WReN 28.1 28.8
SCL-ResNet-18 30.3 31.3

SS
L in

d ResNet-50 38.3 39.2
ViT-small 40.5 41.1

jo
in

t ResNet-50 39.0 40.3
ViT-small 33.6 33.7

Table 3.6: Out-Of-Distribution Generalization SES Results.

human-level artificial intelligence. In addition, we evaluated models’ generaliza-
tion ability across rules, from elementary rules to compositions and vice versa.
We find that convolutional architectures benefit from learning all visual reasoning
tasks jointly and transferring skills learned during training on elementary rules.
However, they also failed to generalize systematically from compositions to their
individual rules. These results indicate that convolutional architectures are capa-
ble of transferring skills across tasks but do not learn by decomposing a visual task
into its elementary components. The poor sample efficiency and generalization of
neural networks compared to humans could be due to their non-compositional
learning strategy and lack of curricula in their training. This idea is supported by
behavioral and computational evidence [Dekker et al., 2022] where humans are
shown to generalize compositionally beyond the capacities of neural networks.
Furthermore, they benefit from curricular training, which highlights the impor-
tance of introducing curricula to the training tasks.

While our work addresses important questions on sample efficiency and com-
positionality, our evaluation methods could be further improved and adapted to
different settings. For example, the sample efficiency score is an empirical metric
used only for evaluating our benchmark. It requires training all models on all data
regimes for the score to be consistent. Although our work is not unique in ad-
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dressing sample efficiency, it aims to promote more sample-efficient and general
models.

3.4.1 Model Design For Sample Efficiency And Composition-
ality

In the visual reasoning literature, general-purpose models such as ViTs and CNNs
are provided as baselines, with more complex approaches relying on additional in-
ductive biases for reasoning such as RNNs, GNNs, and Relation Networks [John-
son et al., 2017a, Santoro et al., 2017, Chen et al., 2021b]. These architec-
tures achieve decent performance but have poor generalization and sample effi-
ciency. More promising solutions for visual reasoning leverage modularity [An-
dreas et al., 2016b, Chen et al., 2021c, Hudson and Manning, 2018, 2019, Mittal
et al., 2021, Rahaman et al., 2021, Goyal et al., 2019]. Modular neural networks
are composed of a set of modules that perform different operations. These models
are generally orchestrated by a controller module that executes language-based in-
structions. We believe that modularity is a promising inductive bias for developing
models that implement compositionality. When equipped with a proper controller
module and information routing mechanisms, a modular network could flexibly
manipulate novel concepts and build contextual representations. Although these
models have the advantages of interpretability and better OOD generalization,
they are notoriously difficult to train. Other methods focus on scene understand-
ing [Burgess et al., 2019, Engelcke et al., 2019, Li et al., 2020]; these models rely
on attention and object-centered representations as inductive biases for building
scene representations, which are useful for visual reasoning [Ding et al., 2021]. In
another vein, certain approaches scale up simple architectures based on transform-
ers and convolutions and rely on self-supervised pretraining to achieve impressive
performance on several multi-modal computer vision tasks [Ramesh et al., 2022,
Yu et al., 2022]. However, the capacity of these models to leverage composi-
tionality is limited by their architectural components: transformers and ResNets.
We believe that modularity, attention, and objectness are essential inductive bi-
ases to achieve sample efficiency and compositionality in CVR. Attention is used
for extracting the scene graph from the image, while the modules implement var-
ious strategies to solve different visual reasoning tasks. We believe that future
models of visual reasoning should implement these inductive biases while taking
inspiration from human cognition in orchestrating visual reasoning as program
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execution.
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Figure 3.4: Performance across settings. The accuracy is aggregated over all
tasks. Random choice accuracy is 0.25.
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INTELLIGENCE

4.1 Introduction

The preceding chapters have centered primarily on characterizing different facets
of intelligence, highlighting the significance of compositionality as a computa-
tional paradigm for efficient learning and generalization, and investigating the
disparities between machine and human intelligence in visual reasoning. To nar-
row the gap between humans and machines in terms of intelligence, a promising
approach is to take inspiration from the brain for building AI systems. In line with
this view, the objective of this chapter is to introduce principles for architectural
design and training strategies that draw inspiration from brain function.

While taking inspiration from the brain is valuable, it is essential to strike a
balance between replicating brain functions and recognizing the inherent differ-
ences between biological and artificial systems. I believe that replicating every
intricate detail of the brain, from the dynamics of neural firing to the anatomical
structure, in neural network models might not be necessary for achieving intel-
ligence. Attempting to create an accurate model of the brain can often lead to
unnecessary complexity and computational inefficiencies. Instead, my focus lies
on understanding the fundamental principles and mechanisms that contribute to
intelligence. By distilling these principles in AI systems, even if they do not ex-
actly mimic brain function, they may exhibit intelligent behavior without being
burdened by the complexities of brain function. Identifying the crucial factors for
intelligence is a non-trivial task. For instance, the question of whether neurons and
their dynamics must be implemented accurately or if different computational units
can capture their expressivity remains open. Additionally, discerning which prop-
erties emerge from the system and which are innate presents further challenges.
For example, in the first chapter, compositionality is hypothesized to be an emer-
gent property of the brain. As such, I believe that for a neural network-based
system to effectively implement and leverage compositionality, akin to humans,
it cannot rely on a single inductive bias. Instead, the system should learn to use
compositionality as a computational paradigm through experience.

Given the priors and emergent properties of human intelligence, I propose a
framework that regroups design principles and training schemes for brain-inspired
neural network architectures. While this work involves several ideas from cogni-
tive science and compiles them into a set of design principles, it is important to
acknowledge that they may not be exhaustive given our limited understanding of
brain function. Moreover, the implementation proposed for these principles may
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pose significant technical challenges. As an initial version, this framework can be
improved as research on cognitive and neuroscience progresses.

To provide proof of concept, I developed a neural network model following
this framework: AbstractNet, a modular architecture that can control and adapt
computations to task demands. Preliminary experiments AbstractNet shows its
capacity to solve many tasks involving various skills by learning to manipulate
many modules in an end-to-end fashion. To conclude, I will discuss potential
avenues for improving this framework.

4.2 Taking inspiration from brain function

The first chapter characterizes the intelligence of a system by its performance and
efficiency in using its capacities to interact with its environment and solve tasks.
Assuming the system’s adequate understanding of the task, its intelligence can be
evaluated by four factors:

• Performance: Its success at solving the task or providing a detailed and
accurate procedure for solving the task.

• Time efficiency: The average computation and execution time required by
the system for solving an instance of the task.

• Energy efficiency: The number of computations required by the system
for solving an instance of the task, assuming an equal energetic cost of a
computation unit.

• Data efficiency: The number of distinct problem instances required for a
system to reach its maximum performance level.

The brain excels at these factors due to several innate and emergent properties.
The innate properties include 1) biological priors; the architectural organization
of brain areas that is optimized for processing specific signals; 2) learning; the
ability to partially change its structure and connections between neurons to store
information and adapt behavior; and 3) agency; the capacity to interact with the
environment and control parts of it to perform complex tasks. Biological priors
honed throughout evolution provide the system with an initialization that can be
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adapted through experience for optimal behavior through learning. Agency al-
lows the system to interact with the environment to acquire experience, which is
used for learning. Focusing on biological priors, modularity can be observed as
a salient feature of the brain. The brain is comprised of many parts with distinct
functional roles. Within the neocortex, a critical brain region for learning, cor-
tical areas can be partially distinguished based on their cytoarchitecture, i.e., the
types of neurons and their local patterns of connectivity. Their functions depend
on the signals that they process, which can be inferred from the neighboring areas,
regions, and organs that they are connected to. For example, the occipital lobe pro-
cesses mainly visual information since it receives input from the retina. It follows
that cortical areas can be repurposed for different functions if they are not recruited
for their biological function. For example, the visual cortex of people who have
lost their vision is active during tasks such as braille reading, auditory processing
of words, or sensory discrimination of tactile stimuli [Burton, 2003]. While the
brain undergoes such structural changes over long periods, it still demonstrates
its flexibility and adaptability. Many neuroscientific studies investigate networks
within the brain. For example, among many prominent cognitive science theo-
ries about consciousness and brain function, the global workspace theory [Baars,
1988] stipulates that the various modules of the brain interact partly through the
coordination of a global workspace. This theory has inspired interesting ideas for
building cognitive architectures that we will discuss later [VanRullen and Kanai,
2021, Goyal et al., 2022].

Another biological prior is the capacity of neurons and neural populations
to perform many powerful computations, such as storing patterns of activation
over long periods (memory), processing and filtering information based on its
source and content (attention), and parameterizing computation based on context
(recurrence and dynamic parametrization). The formation of memories and the
learning of new computations in neural populations are mediated through various
forms of neuroplasticity. Lasting changes in neuronal activity result from various
learning rules, including reward-driven learning, error-based learning, and learn-
ing based on self-organization. Different brain regions rely on different learning
rules; for example, while the hippocampus is associated with a pattern comple-
tion learning rule, the basal ganglia relies primarily on reward-driven learning,
which has been modeled in reinforcement learning, and the cerebellum is asso-
ciated with error-based learning. Interestingly, neurons of the neocortex rely to
varying degrees on these three learning rules. The rich variety of connectivity
patterns and learning dynamics in the brain is important for supporting various
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cognitive functions [Atallah et al., 2004]. Among the theories that attempt to ex-
plain the complicated learning rules in the brain, the Complementary Learning
Systems theory [McClelland et al., 1995, Kumaran et al., 2016] propose that phe-
nomena of short-term and long-term memory are supported by fast and short-term
learning in hippocampal neurons cortical that aids slow and long-term learning in
cortical neurons. In this theory, these complementary systems allow the brain to
flexibly learn new concepts while maintaining a stable structure in the neocortex.
Although the field of AI favors applying unique inductive biases on a broad scale
in modern systems for greater performance, the low efficiency of these models
may be due to the limited inductive biases that they employ. This theory gives
ideas on how involving different types of learning rules and architectures could
potentially solve the rigidity and poor generalization issues of AI systems.

There’s an important role for experience in shaping this blank slate into a
highly intelligent system. The brain learns from interactions with its environ-
ments which provide unlimited continuous, sequential, and multi-modal inputs.
Within this environment, the brain is confronted with a variety of tasks that vary
in relevance to itself. Another important characteristic of experience is its inherent
compositionality and redundancy.

From the interactions between the brain and its environment emerge complex
architectural, computational, and functional phenomena that contribute to and
characterize intelligence. Among the emerging architectural phenomena is the
hierarchical organization of cortical areas according to function and the abstrac-
tion of information. Due to this hierarchy, computations are arranged as pathways
composed of cortical areas, an example of which is the ventral visual pathway that
processes visual information to extract information about scene components such
as object categories and features. At the apex of this hierarchy, a cognitive control
system emerged to coordinate computations in several brain areas. This cognitive
control system uses bidirectional connections with several cortical areas to receive
multi-modal information and exert top-down control to route information through
relevant pathways based on task demands. Furthermore, this cognitive control
system plays an important role in learning complex behaviors. Due to pressure
for efficiency and optimal behavior, the cognitive control system implements ab-
straction and compositionality as general computational paradigms. Botvinick
and Cohen [2014] discuss these ideas, offer a perspective on the cognitive control
system, its function, and its emergence, and highlight its importance in cognitive
architecture.
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The classical example that behaviorally demonstrates cognitive control is the
Stroop task [Stroop, 1935]; when presented with the word "red" written with a
green color, reading the word is faster than naming the color in which it is dis-
played and naming the color is faster when the two colors are the same. This is
because humans are biased to unconsciously read words more than to name the
colors of the words. To name the color, cognitive control intervenes by inhibit-
ing the semantic information of the word and facilitating the color information
routed to the verbal production process. This type of control was modeled as the
parametrization of task-relevant neural circuits [Cohen et al., 1990, Cooper and
Shallice, 2000, Dayan, 2007, Dehaene and Changeux, 1997, Shenhav et al., 2013]
using a gating mechanism that modulates neural activity based on task represen-
tations. Dynamic gating of neural activity in general can be implemented as a
parametrized multiplicative or additive effect on activity but its function is not
limited to filtering and routing information, it could potentially be used for briefly
instantiating new computations in neural circuits and instantiate structure in other
cortical areas. PFC, as an area that is heavily involved in executive functions, has
been shown to implement these control mechanisms by maintaining and manipu-
lating information in working memory and exerting top-down attentional control
over other brain regions. The regulation of control pertains to the allocation of
control based on the goals and resources of the brain. Humans are capable of co-
ordinating a few tasks simultaneously, however, they can be cognitively engaged
in only one task at a time. For example, it is possible to wash the dishes while
talking to someone but only one of these tasks will be cognitively engaging. This
explains why humans cannot perform two tasks simultaneously if they require
the same resources. For example, it is not possible to read an article while talk-
ing to someone and simultaneously understand both. Furthermore, a task where
one lacks proficiency will require more cognitive engagement than other tasks.
Thus, the brain leverages complex mechanisms to allocate control appropriately
and switch between tasks. Several models have been proposed to explain cognitive
control allocation and they involve several factors; decisions about engagement in
a task could depend on the potential benefits, the risks of failure, and the costs of
the control including its intensity [Shenhav et al., 2013], and while performing the
task errors or uncertainties encountered can be triggers for the engagement of con-
trol. The limits of cognitive control are intuitively explained by the availability of
representations in the neural circuits in the examples that we presented. However,
it is a phenomenon with many intricacies, a recent review of this literature [Mus-
slick, 2021] proposes an explanation for the limits in capacity in cognitive control
in the context of learning and inference.
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A full understanding of cognitive control and brain function, in general, cannot
be reached without an understanding of how the skills of allocating and applying
control are themselves learned by the brain. Thus far, we have seen that these
processes involve several inferences over the benefits and costs of performing the
task, task representations, and parametrizations of other neural circuits based on
these representations. Learning such complex interactions is a tremendous chal-
lenge that every developed human brain has surmounted. Botvinick and Cohen
[2014] propose that, similarly to how the visual cortex is shaped by the statis-
tics of the visual experience, the brain’s cognitive control system is shaped by the
statistics of the space of tasks that it encounters. While the visual cortex learns to
represent visual information for behaviorally relevant tasks, the cognitive control
system learns how to coordinate cortical areas for optimal behavior by flexibly
and efficiently representing and performing a wide range of tasks. Interestingly,
control was found to implicate factorization [Rougier et al., 2005] and structure
inference [Collins and Frank, 2013] of task rules and features in biologically plau-
sible models. In Collins and Frank [2013], participants spontaneously inferred a
task structure without being instructed. This suggests structural decomposition of
information is a bias that experience is embedded in cognitive control systems.

While the precise mechanisms and neural circuits involved are still a topic of
ongoing research, several key brain regions are known to play important roles in
implementing cognitive control processes. These regions include the PFC, ante-
rior cingulate cortex (ACC), parietal cortex, basal ganglia [O’Reilly and Frank,
2006a], and brainstem [Aston-Jones and Cohen, 2005, Braver and Cohen, 2000].
PFC regions, particularly the dorsolateral prefrontal cortex (dlPFC) [Miller and
Cohen, 2001a], and in part medial frontal and superior parietal cortex [Duncan,
2010, Duncan and Owen, 2000], are crucial for exerting cognitive control. Various
models try to explain mechanisms of cognitive control [Cohen et al., 1990, Miller
and Cohen, 2001b, Anderson et al., 2004, O’Reilly and Frank, 2006a, Koechlin
and Summerfield, 2007], and these models might not paint the full picture of the
neural basis of cognitive control as other studies propose the existence of two dis-
tinct networks specialized in cognitive control [Dosenbach et al., 2008] and pro-
pose a role for the insula in control and attention [Menon and Uddin, 2010], but
there is an overall agreement on the role of PFC in exerting and allocating control
on several cortical areas through top-down connections, the hierarchical organiza-
tion of control in the PFC, the role of ACC in modulatory feedback mechanisms
and regulation of PFC-mediated control, the role of basal ganglia in the dynamic
gating of information in the PFC and learning. PFC’s role in cognitive control ex-
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plains its involvement in functions that we discussed above; learning, abstraction,
structured representations, and building world models.

Zeithamova et al. [2019] review studies on the mechanisms of concept learn-
ing. These studies highlight the involvement of the hippocampus (HPC), ventro-
medial PFC (vmPFC), rostolateral PFC (rlPFC), and lateral PFC (lPFC) in concept
learning and generalization. The findings point to the cooperation of vmPFC and
HPC during early learning where HPC maintains and updates specific and gener-
alized memories of concepts and vmPFC leverages attention to focus on relevant
features and ignore irrelevant ones [Mack et al., 2016, Constantinescu et al., 2016,
Mack et al., 2020].

Other studies show the involvement of PFC in reasoning and inference. Rosto-
lateral PFC (also known as anterior PFC and frontopolar PFC) supports relational
reasoning [Christoff and Gabrieli, 2000, Christoff et al., 2009], abstraction [Bunge
et al., 2003, Christoff et al., 2001], prospective memory [Gilbert, 2011, Momen-
nejad and Haynes, 2012, 2013] and other processes such as analogy and problem
solving [Christoff et al., 2001, Kroger et al., 2002, Bunge et al., 2003, 2005, Green
et al., 2006, Hampshire et al., 2011, Watson and Chatterjee, 2012]. Interestingly,
complex problems such as Raven’s Progressive Matrices (RPM) activate several
PFC regions especially when multiple relations must be combined before find-
ing an answer in contrast to problems with a single underlying relation [Christoff
et al., 2001, Kroger et al., 2002]. However, other cortical areas are involved in
reasoning in specific contexts such as physical simulation [Ahuja et al., 2021] and
conceptual combination in language [Frankland and Greene, 2020].

Structured representations of information in the brain exist in various cortical
regions but prefrontal medial temporal lobe areas are of particular interest since
they are hypothesized to be involved in the structured representation of abstract
concepts [Behrens et al., 2018]. Manns and Eichenbaum [2006] hypothesize that
HPC models a conjunctive representation between sensory representations trans-
mitted by the lateral entorhinal cortex LEC and the structure embedded in the
medial entorhinal cortex MEC. This model was further elaborated [Whittington
et al., 2020] and used for explaining the discovery of grid cells in MEC and place
cells in HPC among a variety of other cell types. Other studies that build on
these ideas and suggest that mPFC and HPC play complementary roles in gen-
eralization [Samborska et al., 2022]; while mPFC maintains task structure across
problem instances, HPC remaps the sensory information of each problem within
the same structure. Theves et al. [2021] study the interactions between these ar-
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eas while learning the structure of problems and propose that mPFC and HPC
integrate evidence accumulated from sensory experience to update hierarchical
concept representations in rlPFC.

The brain’s capacity to build models of its environment and simulate scenarios
within it is hypothesized to involve modality-specific cortical areas. For example,
certain motor areas are thought to be involved in simulations over spatial and
temporal predictions [Schubotz, 2007], as in mental rotation [Zacks, 2008] and
physical simulation [Fischer et al., 2016, Battaglia et al., 2013]. The theory about
brains leveraging models of the environment to plan action sequences to reach
future goals has been supported by many theoretical and behavioral studies [Daw
et al., 2005, Dickinson and Balleine, 2002, Dolan and Dayan, 2013, Schoenbaum
et al., 2009, Tolman, 1948]. Importantly, these models can have transition struc-
tures at different levels of abstraction and timescales. For example, "traveling
from New York to Paris" can be hierarchically decomposed into a sequence of
actions from "going to the airport", "going to your car" and "standing up from
your desk". The brain can reason at any level of granularity and simulate state
transitions at various timescales. Several studies explain these concepts in the
context of hierarchical reinforcement learning [Botvinick and Plaut, 2009, Badre
et al., 2010, Badre and Frank, 2012, Gershman et al., 2015, Balaguer et al., 2016]
and propose a role for PFC and basal ganglia in planning and executing behavior
hierarchically.

In light of this large body of work, the brain can be viewed as a modular system
where activity is coordinated by a central module considered a controller. By
activating specific modules and routing information between them, the system can
form pathways to implement the complex high-level functions that we discussed
earlier. These ideas are the basis of the framework that we propose and inspire the
architecture developed in later sections.

The benefits of abstraction and compositionality have been discussed in Chap-
ter 1. They support several complex functions as efficient solutions for learning
compositional tasks and performing fast inference while minimizing errors. These
functions include meta-learning, building world models and simulating interac-
tions within them, planning, balancing exploration and exploitation in new envi-
ronments, and many other strategies. Meta-learning, as the name implies, is a skill
by which the system becomes more efficient at learning new tasks through trans-
fer from prior tasks and by learning to select task-relevant information to build
a model of the task. Planning and world model simulation support learning and
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play an important role in efficient inference and generalization.

Although we classify several high-level functions as emergent, the choice of
architecture remains paramount since these functions could not emerge if the ar-
chitecture and the learning process did not promote their emergence. Simulation,
for example, relies on the brain’s capacity to learn transition structures in the envi-
ronment, which is facilitated by the predictive learning rule. The predictive learn-
ing hypothesis claims that the brain is constantly predicting future outcomes at
various timescales and learns by contrasting predictions with outcomes. Learning
through future prediction allows the brain to model the environment and generate
outcomes based on imagined scenarios. Another example is the visual cortex and
its main pathways; the connectivity of their neural circuits facilitates performing
a wide variety of visual tasks such as object recognition, search, and physical
reasoning. Other pathways might exist for model building and other high-level
functions that are important for intelligence. Nevertheless, if such pathways do
not exist, the brain has the adaptive capacity to develop them.

Overall, isolating the characteristics of brain function that contribute to its in-
telligence remains a challenge. However, we can identify key principles of its
construction that contribute to important high-level functions: distinction of pro-
cessing components, variety of architecture and specialization in each component,
coordination of function by an executive system within and across components,
adaptability and control over learning, agency, and a structured and varied learn-
ing experience.

4.3 Adapting principles to machines

The computational frameworks that have been used for simulating brains range
in the level of detail that they model, from models of neural dynamics that sim-
ulate the physical equations of neural spiking to statistical models that simulate
the behavior of cortical areas at a high level in specific tasks. Beyond matters
of technical feasibility, practicality, and fidelity of modeling brain function, it is
important to ponder the level of detail necessary or sufficient for achieving human-
level intelligence on a machine. Spiking neurons might contribute to the system’s
efficiency, but they might not be crucial for achieving intelligence if their trans-
mission of information and plasticity can be performed by an equivalent system
on machines. Artificial neurons, which are simplified models of their biologi-
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cal counterparts, are the computational units that we use for implementing these
principles. They present the best trade-off between fidelity and technical feasibil-
ity, as shown by the exponential progress in AI research during the last decade.
Since their success, there have been many attempts to develop more biologically
plausible neural networks, and the principles that we describe above have been
addressed in several studies. We aim to offer a different perspective on their appli-
cation in artificial neurons that delves into the technical difficulties and advantages
of combining these principles.

To account for the separation of processing components and their variety, the
neural architecture can include several modules with varying inductive biases.
While certain modules are specialized for sensory inputs and action outputs, other
modules have the role of abstract computations that can be leveraged by the sys-
tem for learning general skills. One particular module, which accounts for exec-
utive function, determines which modules to use and the routing of information
within the architecture. It also determines the dynamic parameterizations of other
modules, which can implement attention, among other mechanisms. The neural
architecture is recurrent; it runs several steps, at each step selecting modules to
run, the flow of information between the modules, inputs to process, and actions
to output. These aspects of architecture partially account for its agency since it
does not control only the actions it performs but also its internal computations. To
be fully autonomous, the system must be capable of computing rewards and er-
ror signals, then attributing learning signals to the relevant modules and updating
them. The learning experience is difficult to account for due to its high complex-
ity, uniqueness to individuals, and open-mindedness. However, certain aspects
can be accounted for: the variety of tasks, the multi-modality of inputs, the inher-
ent compositionality of tasks and inputs, the gradual increase in complexity, and
a training setup that relaxes computation time constraints on the system.

In sum, the principles of architecture design and training consist of:

• Modularity, recurrence, and variety of inductive biases across modules.

• Control over internal computations, module activation, and interactions be-
tween modules.

• Control interactions with tasks and unconstrained use of time.

• Partial control over learning rules and credit assignment.
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• Diverse tasks, curriculum organization, and compositionality in the learning
experience.

4.4 Implementing design principles

Several implementation choices for the design principles can be adopted in the
architecture. In this section, we review a few implementation ideas and discuss
their advantages and drawbacks.

4.4.1 Innate properties

Modularity Modularity was an early topic in research on neural networks [Auda
and Kamel, 1999] and has seen significant advances following progress in deep
learning [Andreas et al., 2016b, Kirsch et al., 2018, Rosenbaum et al., 2017, 2019,
Chen et al., 2020]. While a standard neural architecture consists of a fixed se-
quence of parametrized functions, layers of neural networks, and activation func-
tions, modular architectures consist of a set of modules mi for i ∈ {1, ..., N}, each
module having a different set of parameters. In modular architectures, information
goes through a set of successive processing steps; during each step, information
is routed to modules based on the design of the architecture. Several aspects of
the architecture can be taken into account: the variety of module architectures, the
activation of modules at each processing step, connectivity between modules, and
the modules’ interface with task inputs and outputs.

Inductive biases Considering architectural variety, while some works [Rosen-
baum et al., 2017, 2019, Kirsch et al., 2018, Goyal et al., 2019] experiment with
sets of simple homogeneous modules that are adapted for the task (convolutions,
linear transformations, or recurrent units including activation functions), others
experiment with heterogeneous modules [Andreas et al., 2016b, Chen et al., 2020]
especially in visual reasoning tasks. In the context of multi-task learning, mod-
ules that have similar inductive biases are in general suitable for homogeneous
tasks—exclusively visual tasks, for example—but could be inefficient when solv-
ing heterogeneous tasks. For example, visual question answering is a complex
task that requires visual processing, language understanding, abstract reasoning,
attention, and memory. To support many complex functions efficiently, the ar-
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Figure 4.1: Modularity and Routing. a) In fixed connectivity, connections be-
tween modules are built into the architecture. b) In dynamic routing, information
is routed to other modules based on the specification of the controller; the input
to each input gate is an aggregate sum of outputs from other modules. c) In the
shared workspace routing, information from different modules is integrated into
a large embedding vector. The same vector is used for creating inputs for other
modules. Shared workspace routing is less constrained than dynamic routing.

chitecture could require a variety of specialized modules. A visual module can
be based on convolutional or attention-based architectures, and a memory mod-
ule can include a memory control architecture or Hebbian learning-based attractor
networks. Other architectures can be based on task-general inductive biases such
as recurrence (RNNs), gating (LSTM and GRU), attention (transformers), and
dynamic parametrization (hypernetworks).

Top-down modulation Another interesting design choice for the modular ar-
chitecture is top-down control. It allows the system to adapt the module’s com-
putation for the task. For example, top-down control in a visual module can be
used for deploying spatial or feature-based attention. It can also be considered
a more special case of dynamic parametrization, similar to gating mechanisms.
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Implementing useful top-down control mechanisms depends on the module’s ar-
chitecture; it can involve a parallel architecture with outputs at several steps of
processing in the module. Various forms of control are explained in Figure 4.2
and Algorithm 3.

Module activation The activation of modules at processing steps can be fixed
based on the model’s architecture or determined during inference. For example,
the standard choice is to activate all modules at each processing step or to assign
sets of modules for specific processing stages, akin to a multi-layer architecture.
Alternatively, the model could rely on a learning process for selecting modules to
activate in one or multiple steps. For example, a special module, named the con-
troller [Kirsch et al., 2018] or the router [Rosenbaum et al., 2017], trained with
reinforcement learning would select one or many modules to activate at each pro-
cessing step. Module activation can also be determined through bottom-up com-
petition between modules [Goyal et al., 2022]. When considering heterogeneous
modules and the potential implementation of top-down control in each module, it’s
possible for one module to afford many computations ami

j for j ∈ {1, ..., Ami
}.

For example, a memory module can read from memory or write to memory, and a
visual module can process information in a bottom-up fashion to extract features
or use top-down signals to attend to specific information in the input. From this
perspective, it could be useful for the control scheme to activate computations
rather than modules.

Routing Information routing in a modular architecture can be implemented in
several ways. Considering that a set of modules is assigned for processing task
inputs and providing outputs while other modules process information coming
from other modules, we can refer to module input or output gates gmi

j for j ∈
{1, ..., Gmi

} as internal if they interface with other modules and external if they
interface with task variables. Since the connections of external gates with task
variables are fixed, we are interested in the connectivity between internal input and
output gates. This connectivity can also be fixed, rendering the architecture fixed
as in a standard neural network, or it can be specified based on a routing scheme.
An input gate can receive one output vector as in Rosenbaum et al. [2017] or a
combination of many output vectors from different modules as in Kirsch et al.
[2018]. In the second case, the combination of output vectors depends on the
routing scheme. Simple solutions include a summation [Kirsch et al., 2018] or a
weighted average of input vectors using softmax normalized weights predicted by
a routing function (the controller, for example). In this design, the dimensionality
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Figure 4.2: Control Architectures. a) A standard neural network processes in-
formation in a feedforward manner; it has no form of control. b) Top-down mod-
ulation of activity can be achieved through multiplication or addition of the inter-
mediate based on top-down activations. c) In dynamic parametrization, a module
generates the weights that are used for processing inputs. d) Predictive learning
model: a parallel module predicts the inputs, contrasts them, and sends error sig-
nals to the main module or other modules.

of internal gates is fixed across modules, and the modules share an input and
output representation space. The latter constraint might limit the function of the
information content expressed by different modules. To avoid this constraint, it’s
possible to add an intermediate transformation of the module output vectors based
on embeddings of the source and target modules. This process can be considered
a translation between module representational spaces. Another advantage of this
approach is that it supplies information about the source of the input vector and
adapts the distribution of the output to the distribution of gate inputs. An example
of a more sophisticated non-linear combination of vectors is the shared workspace
representation [Goyal et al., 2022]. In this routing scheme, information is written
into a shared representation at one step of processing, which is transmitted to all
active modules at the next step. Similar to module or action activation, routing
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can be determined by a controller, possibly the same that activates modules, by
specifying a routing matrix at each processing step or specifying write and read
vectors from the shared workspace for each module. Alternatively, the modules
can route information through bottom-up attention mechanisms such as query-
key-value (transformer-based) attention, as in RIMs [Goyal et al., 2019, 2022].
Different routing methods are explained in Figure 4.1.

Controller design In this paper, we will focus on controller-based module ac-
tivation and information routing. The controller is an inspiration from the cogni-
tive control system in the brain, which is responsible for coordinating computation
in cortical areas through top-down control. Early recurrent architectures that in-
corporate gating, such as LSTM [Hochreiter and Schmidhuber, 1997], have been
used as models of the prefrontal cortex and its role in cognitive control, among
other complex cognitive functions [Wang et al., 2018, O’Reilly and Frank, 2006b].
Gated RNNs have also been used for controlling memory access and manipula-
tion in several models [Graves et al., 2014, 2016, Wayne et al., 2018]. Recurrence
and gating are mechanisms that allow for the flexible manipulation of informa-
tion and maintenance of working memory over long timespans. This has been
demonstrated in a variety of tasks. A relevant example is the capacity of LSTMs
to implement a learning algorithm in their dynamics, allowing them to perform
meta-reinforcement learning [Duan et al., 2016]. Gated RNNs seem suitable for
the control of internal computations in a modular architecture. The specification
of the input to the controller is also an important design choice. The controller
should have access to the embedding of task inputs. Furthermore, having access
to intermediate module outputs allows the controller to monitor execution. In a
multi-task setting, the model can learn task embeddings or have access to task
embeddings provided with the curriculum. Other useful information for the con-
troller is the internal state of the model, previously active modules, and routing
decisions. The output of the controller can be used for direct top-down control
over specific modules. In this implementation, the controller can be considered
a special module that is active in all processing steps and has the added role of
deciding module activations and routing.

Adaptive computation time Another important aspect of the architecture is
the management of its interactions with task instances. The architectures that we
have reviewed thus far either fixes several computation steps akin to layers of pro-
cessing in a deep network or adapt them to the input size when the data is sequen-
tial, as in Routing RNNs [Cases et al., 2019]. An alternative approach is to allow
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the model to allocate its computation time by deciding when to read inputs and
emit outputs. Prior work [Graves et al., 2016, Banino et al., 2021] implements
adaptive computation time with scalar halting probability at each computation
step. A similar approach can be implemented by including task interactions such
as reading inputs and task termination as actions decided by the controller similar
to the activations of modules. The halting probability is replaced by actions in task
interactions. The controller can be fed additional task information about the task
state, such as a pending input or an expected output, to guide its decisions. Learn-
ing to allocate computation time has the potential benefit of allowing the model to
adapt inferences to task requirements. For example, it can learn efficient programs
for simple tasks and generalize them to more complex tasks by allocating more
computation time.

Predictor modules Beyond modular architecture, predictive learning is an-
other biologically inspired design principle that has gained popularity in AI re-
search, especially in applications such as self-supervised or unsupervised learning.
The general idea is to learn to predict unknowns based on the available informa-
tion. This approach has been used for pretraining vision and language models on
large, unlabeled datasets. It’s also the basis of predictive coding architectures [Rao
and Ballard, 1999]. Forming predictions about future states supports high-level
functions such as world model simulations since it allows the model to learn the
transition structure in external environments. Within a modular architecture, pre-
dictive learning can be implemented for each module as a parallel generative mod-
ule that predicts future inputs based on past states and updates the module’s acti-
vation based on the prediction. During inference, prediction errors are minimized
by running an optimization scheme on the inputs of the predictor module. Pre-
dictor modules inform the model of surprise and uncertainty through prediction
error signals. In addition to their use as a learning signal for the predictor module,
they assist the model in coordinating learning and credit assignment within the ar-
chitecture. Examples of these predictor modules are sensory modules that predict
incoming inputs and action modules that predict action outcomes. Other mod-
ules predict future rewards following actions and future states of the environment
and the model. Predictor modules can be used during simulation conditioned on
a world model structure. Visual predictor modules provide visual simulations of
future states given action sequences. Prediction is not performed exclusively at
short timescales; simulations of world models can progress at several levels of
abstraction and at long timescales. Modules that are responsible for hierarchical
planning can use their predictor counterparts to predict outcomes at their level of
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abstraction and timescale.

4.4.2 Emergence of high-level functions

We believe that the modular architecture described in this section can perform a
variety of high-level functions and computations, including meta-learning, com-
positionality, building world models, and hierarchical control.

Meta-learning Taking meta-learning as an example, it can be performed by
a system that has access to information about task states, past rewards, and ac-
tions throughout many episodes of learning, as well as the capacity to manipulate
its weights to find action policies that maximize rewards. The capacity of gated
RNNs for meta-learning has been demonstrated in several studies [Duan et al.,
2016, Kirsch and Schmidhuber, 2022, Hochreiter et al., 2001, Wang et al., 2017],
and their weight manipulation is implemented with gating. The modular archi-
tecture described above could equate and potentially surpass gated-RNNs’ meta-
learning capacities since it implements various forms of gating, including top-
down control, dynamic parametrization in certain modules, and routing, which
can be assimilated to gating in implementations such as shared workspace [Goyal
et al., 2022].

Building world models World model simulation requires representations of
the model’s variables and modules that learn the transition structure of the environ-
ment from experience. The representation of model variables can be distributed
across relevant modules, and predictive modules learn the transition structure
through the objective of predicting future states. The role of predictive modules in
this case is to provide inputs for regular (i.e., bottom-up) modules when the model
is in simulation mode. During inference, they are used to assert the correctness
of the world model with respect to experience. The error signals they produce are
used both for inference to signal unexpected outcomes and for learning to correct
the world model. Taking maze navigation as an example, the model’s controller
can instantiate different algorithms for simulation and inference. Both algorithms
involve model initialization with information such as the map structure, starting
position, and goal position from sensory inputs to be maintained in short-term
memory. Decision modules are used for selecting actions based on the current
state, and prediction modules predict the future state and reward given the se-
lected action. In the inference mode, the model receives the next state information
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from sensory input, and prediction errors are saved for training. Whereas, in the
simulation mode, the prediction itself is used as the next state representation and
is used for selecting future actions.

Compositionality and structured representations Modular architectures are
inherently compositional since they factorize computations and compose them
according to task requirements. However, this architecture could additionally
learn compositional representations using the inductive biases described above
if trained under appropriate supervision. This entails the separation of concept
representations from their multi-modal representations and their relations with
other concepts. The associations of abstract representations to their multi-modal
counterparts can be stored in model weights, such as the functions that translate
representations between modules, or in memory modules. Inference over sep-
arate structure and content representations can be operated similarly to the TEM
model [Whittington et al., 2020], where associations of representations of abstract
roles within a structure and representations of sensory input are stored in memory
online. Transitions within the structure, which are considered relational reason-
ing steps, can be performed by abstract modules dedicated to this function or
predictive modules that learn to simulate these transitions from experience. The
structures learned by the system can be generalized and flexibly modified using
abstract representations that parameterize their instantiations in the relevant mod-
ules.

Hierarchical control To decompose tasks into their elementary components
and build plans and atomic action policies, the representation of many levels of
abstraction could be necessary. Task representations at higher levels of the hier-
archy are maintained while the model executes lower-level task representations
that compose them. The model could maintain hierarchical representations and
representations of action sequences in memory modules or the hidden state of
other recurrent modules. From the interactions of these modules with the main
controller, a hierarchical control scheme could emerge whereby specific modules
feed control policies to the main controller. Similar interactions could emerge for
encoding many levels of abstraction in the representation of a structure.

These claims about the model’s capacity to implement these complex func-
tions lie on the assumption that it can learn them. Although I show examples of
how these functions might be implemented, I believe that the model might not
learn these functions even if it is provided with a carefully crafted curriculum
and training scheme. These functions involve sophisticated algorithms that run
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over several computation steps; they require proper execution with minimal er-
ror. In addition to the curriculum, which we describe in the following section,
the model potentially requires additional inductive biases to promote the emer-
gence of these functions. For example, the mechanisms of hierarchical control
that could be useful for representing many levels of abstraction and executing hi-
erarchical plans could be facilitated by a multi-layer gated RNN controller. To
implement meta-learning, the model needs to maintain memory across training
samples. This design principle could allow the model to leverage memories from
past training samples to solve new ones.

4.5 Training and Curricula

The training process and experience are as important as architectural details for
building an intelligent system. The complex architecture that we described re-
quires several considerations for achieving successful training. Here, we will
discuss the technical details required for training the controller-based modular
architecture and the design of learning curricula.

Loss functions When considering inference in a modular architecture, we can
observe that the learning problem involves two challenges: training the controller
to select routing and module activation policies, and training the selected mod-
ules to process the routed information to solve the task. In an ideal situation, both
learning problems could be trained with one objective, which consists of minimiz-
ing the loss function of the task. However, this is not possible when the task loss
cannot be backpropagated through controller decisions. While routing decisions
can be differentiable, hard routing schemes such as sampling from the Gumbel
Softmax distribution [Maddison et al., 2017, Jang et al., 2017], known as repa-
rameterization approaches, soft routing schemes using softmax or gating-based
approaches such as the shared workspace, module activation, and environment
interaction decisions are not differentiable. To train the controller on these deci-
sions, prior work [Rosenbaum et al., 2017, Kirsch et al., 2018] used reinforcement
learning with rewards designed based on task performance. The standard reward
choice is the negative loss function. Following this objective, the controller is
rewarded based on how low the loss function is driven by its decisions. Alterna-
tively, an accuracy measure can be chosen as a reward function. In addition to the
rewards obtained from the task, other rewards can be designed to guide controller
decisions by penalizing actions that the module should not perform at specific
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steps and rewarding actions that need to be performed. For example, the action
of providing an output when no output is required from the task or reading in-
puts when none are available can be penalized, and reading inputs as soon as they
are available can be rewarded. Other sophisticated examples include discouraging
the model from activating modules without using their outputs. Furthermore, the
number of computation steps can be constrained during early epochs using nega-
tive rewards to promote efficiency in the model. If the architecture is augmented
with predictive modules, prediction errors can be aggregated to compute the loss
used for training them. If the architecture is augmented with predictive modules,
prediction errors can be aggregated to compute the loss used for training them.
In total, the model learns using three signals: the task loss that trains modules to
solve the task, the control loss that trains the controller and other modules involved
in the control process, and the prediction loss that trains predictive modules.

L = Ltask + αLactions + βLprediction + γR

These losses are weighted with other module-specific regularizations. In a multi-
task setting, losses from different tasks are modulated based on hyperparameters
specified in the curriculum before they are used for the computation of the control
losses Lactions of individual instances and added to the total loss.

Difficulties of training a modular architecture The subtleties of training
modular architectures have been discussed in the literature. Rosenbaum et al.
[2019] explains several factors of difficulty and failure cases often encountered
when training modular architectures. Andreas et al. [2016a], Chen et al. [2020],
Hudson and Manning [2019] also discuss the difficulty of learning visual reason-
ing programs in modular architectures, which can involve multiple training stages
and sophisticated methods such as using a symbolic teacher [Chen et al., 2020].
The main source of these issues is the problem of learning meaningful activation
and routing policies and functions executed by the modules simultaneously. The
controller cannot learn how to use modules when they are randomly initialized,
and the modules cannot learn if they receive inconsistent learning signals because
of the random controller policies. This problem is a significant cause of training
instability in early epochs. This problem is currently countered by using different
learning rates for the controller and other modules or by using curriculum learn-
ing. Module collapse is another problem characterized by the controller policy
converging to using a fixed routing path and training a specific set of modules.
On the other hand, modular architectures can learn highly flexible policies that
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overfit specific task instances and prevent generalization. These issues highlight
the importance of balancing the flexibility of the controller policies. An addi-
tional problem that arises from the use of heterogeneous modules is an imbalance
in their learning dynamics, which might result in the controller converging on
suboptimal policies. For example, while one module learns fast, it could achieve
lower performance than another module that requires training steps to reach its
maximum accuracy. The controller policy could converge on using the first mod-
ule without exploring the second module. Similarly, the lack of exploration can
cause the controller to converge on suboptimal policies that involve many mod-
ules while discovering more efficient solutions. These issues are the reason for
the difficulty of training stable modular architectures that generalize. They can
exacerbate the difficulty of scaling modular architectures. The increased number
of modules gives the controller a harder learning problem with a higher poten-
tial for overfitting simple tasks. Beyond the regularization techniques and various
training schemes, the learning curriculum design can significantly mitigate these
problems.

Curriculum learning Since the model learns action policies and computa-
tions from experience, its design and content are detrimental to the model’s ca-
pacity for learning and generalization. For the model to learn diverse and flexible
control sequences, it should be exposed to a variety of tasks during training. Addi-
tionally, for the model to implement a learning algorithm within its dynamics, the
experience should challenge its capacity to learn novel rules from trial and error
over several trials within one episode. Learning concepts from various modalities
improves the model’s abstraction. Furthermore, the model learns compositionality
only if task performance or concept understanding requires the use of composi-
tional representations. These are examples that motivate training the model in a
multi-task setting that involves meta-learning tasks, tasks with multi-modal in-
puts, and compositionality as an inductive bias in the data. Compositionality can
be introduced in the learning regime in several ways: tasks that require separate
representations of structure and content, tasks that require hierarchical planning
and inference, tasks that include atomic tasks, and compositional tasks presented
in the learning experience in order from atomic to compositional. This idea is
a special case of curriculum learning [Bengio et al., 2009] where experience is
presented to the model in a gradual order of complexity. Curriculum learning has
been shown to improve learning speed and generalization in ANNs. Although
human experience is not based purely on a curriculum, the educational system
organizes knowledge in a way that facilitates the learning of highly complex and
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varied topics. Curricula can be beneficial for learning, but they are often difficult
or impossible to create, especially for natural data, which is arguably the most im-
portant domain for training AI systems. Fortunately, the AI field is witnessing the
emergence of many tasks that can be generated based on programs—procedurally
generated environments, for example. Furthermore, there are methods for estimat-
ing the difficulty of task instances based on the performance of previously trained
models. Although biased by the reference model’s architecture, these difficulty
estimates can be used to create an artificial curriculum for the task. Nevertheless,
while the learning system might greatly benefit from curricula during initial train-
ing, once it acquires the skill of decomposing tasks into their atomic components,
it could generalize this capacity to tasks that are not organized as curricula.

Curriculum design The first point to consider when designing a curriculum is
the skills that we want the model to learn. The tasks that compose the curriculum
are chosen so that they involve the use of targeted skills. For the model to learn
how to control spatial or feature-based attention, it must learn a task that requires
the use of attention mechanisms. Thus, a task such as object recognition from
images with centered and fixed-scale objects would not be suitable for learning
this skill. An important point to consider is that the design of the task should en-
sure that models cannot exploit shortcuts to solve the task without employing the
target skill [Geirhos et al., 2020a]. Given a set of skills and a set of tasks, the cur-
riculum can be created by decomposing each task into its elementary components
and then parsing factors of variation in each task that control the task’s difficulty
and complexity. These steps are manageable in a synthetic dataset, such as toy
tasks (repeat copy [Graves et al., 2014], maze navigation, among others), cogni-
tive tasks [Yang et al., 2019], abstract reasoning tasks (CVR, Raven [Zhang et al.,
2019], among others), mathematics (arithmetics and general math tasks [Hosseini
et al., 2014, Mishra et al., 2023], among others), simulated RL environments and
games (avalon [Albrecht et al., 2022], among others). The task parameters could
control different dimensions of difficulty for different skills. Given assumptions
over the complexity of these skills, the parameters can be used to constrain the
number of inner processing steps according to the complexity of the skill. If we
take the repeat copy task [Graves et al., 2014] as an example, it is a task that
requires memory manipulation skills primarily; it also requires the controller to
learn how to run nested loops over lists, which involves counting and producing
input patterns from activations (auto-encoding). The main parameters of this task
are the length of the input list and the number of repeats. Other parameters in-
clude the distribution of input vectors; these parameters can be used to test the
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out-of-distribution generalization capacities of the model. The parameters of this
task decompose into two component tasks: the copy task when the repeat param-
eter is 1, and the repeat task when the list length is 1. The latter requires mainly
looping skills, while the former requires both memory and looping skills. While
it is possible to decompose a synthetic task and control its parameters, this is not
the case for tasks based on recorded data, such as natural image datasets. This
is among the reasons that restrict the adoption of curriculum learning techniques
in AI research. Although it is not possible to create a rigorous curriculum over a
wide range of tasks and benchmarks, several techniques can be used for approx-
imating the difficulty of individual task instances, allowing for the creation of a
curriculum. Among these techniques are heuristics on the data, such as text length
and the number of uncommon words in NLP tasks, and the accuracy and predic-
tion confidence of previously trained models in specific instances. Alternatively,
difficulty can be introduced into the data using additional transformations; image
augmentations such as cropping and distortion are examples.

Scheduling tasks and difficulty The curriculum is defined by the tasks, their
scheduling, and the scheduling of their parameters. The standard scheduling
choice is to progress training from simple to complex tasks and from low to high
difficulty in each task. Tasks are preceded by tasks that compose them in the cur-
riculum; the repeat copy task would be preceded by the repeat task and copy task.
An important choice in the curriculum design is progress triggers. Progress in the
curriculum can be fixed based on the number of training steps. A more intuitive
method is progressing in difficulty based on model accuracy, as in automatic cur-
riculum learning [Portelas et al., 2020]. For example, difficulty can be increased
when the model reaches a pre-specified level of training validation accuracy and
decreased when the model performance degrades. To avoid catastrophic forget-
ting, easier levels of difficulty can be randomly sampled throughout training.

Evaluation Following training, the model can be evaluated with respect to the
intelligence factors discussed above. As in the standard evaluation process in ma-
chine learning, performance can be measured by the model’s accuracy on held-out
in-distribution and generalization test sets. Energy and time efficiency can be mea-
sured with the training speed (the number of training steps required by the model
to learn a task) and the computational efficiency (the number of inner recurrent
steps required by the model to reach a solution and the total number of module
activations). Data efficiency can be measured by the number of unique task in-
stances required by the model to learn a task. It can be measured over many train-
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ing runs with different numbers of training samples. These factors are measured
mainly with respect to performance; it is necessary for the model to be capable of
solving the task for measures other than performance to be taken into considera-
tion. If the model were trained in a standard setting without a curriculum, these
measures would characterize only the model. However, in a curriculum setup, the
evaluations also reflect the quality of the curriculum. More specific generalization
capabilities, such as compositional generalization and compositional learning, can
be evaluated using curriculum and reverse curriculum settings similar to the ones
developed in the CVR benchmark.

Adapting tasks to the framework The multi-task setting with heterogeneous
tasks requires technical considerations regarding the model and task components.
Heterogeneous tasks involve the processing of various types of data as single in-
stances, sequences, and lists following a specific temporal organization. For ex-
ample, a visual reasoning task such as Raven or CVR provides a list of images as
inputs and expects a categorical decision as a symbolic output; a VQA task such
as CLEVR provides one image and a list of text tokens as inputs and expects one
text token as an output. The repeat copy task gives a sequence of n-dimensional
vectors as inputs and expects a sequence of similar vectors as outputs, but the se-
quence of outputs is expected only after the model has read the sequence of inputs.
For one model to be trained on these tasks simultaneously, it must be equipped
with input and output modules for processing the tasks’ inputs and outputs. Sim-
ilarly, the task instances must be defined such that their inputs and outputs are
mapped consistently to specific modules. To organize this process, the data is cat-
egorized into types: symbolic, image, and text, and streams are categorized into
single, list, and sequence. This task-specific information is used for selecting the
model’s input-output modules and mapping task inputs and outputs to model ex-
ternal gates. When a task sample is generated, each input and output is associated
with a timestamp that specifies when they can be read or expected from the model.
The timestamp is defined as several steps. As the model’s controller makes deci-
sions about task interactions, the task sample provides inputs and outputs based
on its step counter. Taking the repeat copy task as an example, the inputs are a
sequence of vectors and the number of repeats; the data type is symbolic for both;
the stream type is sequential for the vectors and single for the number. The task
requires one output, which is a sequence of vectors, which are symbolic data, and
a sequential stream.
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4.6 The abstraction network

To provide a proof of concept for the framework described in previous sections,
we developed AbstractNet, a neural network that incorporates modularity with
diverse modules, routing, and adaptive computation time. Given the capacity
to control its internal computations and interactions with tasks, AbstractNet can
leverage the expressivity of its modules and routing schemes to implement diverse
algorithms and solve many tasks. The model’s architecture is composed of several
modules, including the controller module. Each module is defined by its archi-
tecture, the actions that it can perform, and the gates through which it receives
and sends information. AbstractNet interacts with the tasks using two additional
actions: "read input" which reads input from the task, and "update output", which
provides output to the task. Actions of one module can use different gates; for
example, a memory module has a read and write action and gates for querying
memory "query", adding information "value", and memory output "output". The
read action uses gates "query" and "output" while the write action uses "value".
Gates are differentiated based on their use in the model: external gates interact
with task variables by processing inputs or providing outputs; internal gates trans-
fer information between modules; and gates that receive and send information
to only one module process recurrent states of the module. The architecture is
explained in Figure 4.3.

The main modules that compose AbstractNet are the controller and the input
and output modules chosen based on task specifications. Other modules include
memory modules and general computation modules that have exclusively inter-
nal gates. The controller is a special module because its outputs determine action
decisions and the routing of information between modules. The controller archi-
tecture is a gated-rnn GRU [Cho et al., 2014] supplemented with MLPs for en-
coding the internal state of the system (routing matrix, action decisions, and task
state), value prediction, actions, routing decisions, and inputs from other modules
through an internal gate. Input and output module architectures depend on the
task. We use a CNN for visual inputs and MLPs for standard N-dimensional vec-
tor inputs and outputs. These modules are used for single-unit and sequential data.
List inputs are processed using list modules, which include a positional embed-
ding and select input elements based on queries using softmax-attention. Among
a variety of memory modules, we experiment with the memory system used in
DNC [Graves et al., 2016]. Additional module architectures include MLPs, gated
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RNNs, and hypernetworks with varying numbers of input and output gates and
layers. These modules are additional computational resources selectively used by
the model for learning computations that are generalized across tasks and task
samples.

The model routes information between modules using translator modules that
transform representations given vector embeddings of the source and the target
modules. The routing matrix predicted by the controller is used for aggregating
translator outputs. We also experiment with simpler routing schemes that do not
use a translator, although this forces modules to share the same representational
space, which could limit the architecture.

During inference, the model maintains many representations of its recurrent
state, including the recurrent states and outputs of all modules. These representa-
tions are initialized according to the specifications of each module, used as inputs,
and updated throughout inference iterations. At each iteration, the controller out-
puts one probability value for each action, which is used for sampling a decision
from the Bernoulli distribution. It also outputs a routing matrix, which has in-
ternal input gates as rows and internal output gates as columns. Each line of the
matrix is normalized with Softmax and used as weights for aggregating translator
outputs. The model stops inference iterations when the task state signals the end
of execution. The model can perform several iterations without interacting with
task variables. The number of these iterations is limited to ensure that the model
finishes solving task samples. The inference process is displayed in Figure 4.3
and Algorithm 3.

AbstractNet is trained end-to-end with task-specific objectives. The weights
of modules and networks used for routing are optimized using task-specific losses,
while networks used for deciding module activation and task interactions are
trained in a reinforcement learning setting. We use advantage actor-critic (A2C)
with generalized advantage estimation (GAE).

L = Ltask + αLactions

where α is a hyperparameter that weighs the two losses. The reward is chosen
as the negative loss computed for the task sample r = −Ltask. Models with an
ablation of the adaptive computation time do not include module activation and
task interaction decisions; they are trained with the task-specific loss only.
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Algorithm 3: Inference process
Data: Task sample d
Initializations:
mstate ← 0 // model state
h← 0 // model output representations
cin ← 0 // controller input
oext ← [] // output buffer
while dstate ̸= DONE do

M, ap, lp, cout ← controller(cin, mstate, dstate)
a← sample_actions(ap)
xin ← setup_inputs(h, M)
h′ ← run_actions(a, h, xin)
o← update_output_buffer(o, h′, lp, ap, a)
h← update_state(h, h′, cout, M, a)

end

4.7 Experiments

In this section, we present initial experiments and preliminary results on the Ab-
stractNet architecture. These experiments aim to evaluate the model’s capacity
for learning and composing routing schemes for various tasks and adapting com-
putation time based on task requirements. With this goal, the model is trained on
many tasks with a variety of computational requirements in single- and multi-task
settings. The experimental setting in this study is restricted to simple tasks and
a version of AbstractNet that incorporates modularity, soft routing, and adaptive
computation. This framework allows for validating and analyzing the function of
the architecture on a small scale before tackling the challenges of training a larger
version of the model on more complex tasks.

4.7.1 Tasks

We first examine the model’s capacity for learning various tasks in an end-to-
end fashion. The model is trained on several tasks with various computational
requirements.
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Figure 4.3: AbstractNet Architecture a) In model inference, the controller se-
lects actions and routing matrices at each processing step. Decisions to read in-
puts and update outputs are independent of module activity. The model remains
in the inner computation loop until it updates the output. The outer steps follow
the task’s progress. b) The list of modules represented in the inference process.
c) The controller determines routing matrices, action decisions, and task interac-
tions. c) The difference between external and internal input and output gates.

Visual categorization Small image datasets MNIST [Deng, 2012] and Ci-
far10 [Krizhevsky et al., 2014] are used for evaluating the model’s capacity to
learn simple routing schemes. In this task, the model is equipped with a vision
module that is used for processing images from both datasets and two classifica-
tion modules, one for classifying MNIST images and the other for Cifar10 images.
The loss computed in this task is a cross-entropy loss over the logits provided by
the classification modules. The model can solve this task by routing the output of
the vision module to the correct classification module.

Selection task A synthetic list manipulation task in which the model selects
an element from a list based on its index. The model is fed a list of 16-dimensional
vectors that range in length from 2 to 20 elements and the index of the element to

82



PRINCIPLES OF NEURAL ARCHITECTURE DESIGN FOR ACHIEVING HUMAN

INTELLIGENCE

retrieve as a scalar. The model is equipped with a list manipulation module that
uses a differentiable attention mechanism to read and encode elements from the
list. The list manipulation module selects elements by processing the query vector,
performing a dot product with positional embeddings of the elements, and then
weighting the element vectors by a softmax transformation of the dot product. The
output of this task is a 16-dimensional vector, which is passed through a sigmoid
activation function and used for computing the L2 loss. This task involves two
input streams and can be solved in a two-step fashion: reading the index and using
it to select the element from the list. The difficulties of this task lie in learning the
correct mapping from index to positional embedding and simultaneously learning
to encode and decode the element vectors correctly.

Cognitive tasks The model is trained on a set of cognitive tasks that were de-
veloped by Yang et al. [2019]. These tasks are used for investigating the cognitive
capacities of humans and animals, such as attention and working memory, and
the learning of abstract rules. The general task design consists of a sequence of
N-dimensional vector inputs that represent the display of a fixation and dots on a
screen. Each bit of the vector corresponds to either the fixation or one of the dots
that form one of two rings representing two modalities. The model outputs a vec-
tor at each timestep that represents its choice and is used to compute the L2 loss
with the target vector. The model is trained to choose specific stimuli based on the
task design. The tasks can be grouped into different families as described in Yang
et al. [2019]; the Go tasks, in which the response is expected in the direction of
the stimulus, Anti-tasks, where the response should be opposite to the stimulus,
DM tasks where two stimuli are presented and the response is associated with the
stronger stimulus, Dly DM tasks, which are similar to DM tasks with a temporal
separation between stimuli, and matching tasks, where two stimuli are presented
and the response depends on whether they match, The tasks of each family differ
in details that pertain to fixation, order, time, and modalities but follow the same
logic. For example, in the fdgo task of the Go family, the model is trained to
choose the direction of the fixation mark until it disappears, after which it chooses
the direction of the stimuli. Samples in these tasks are generated randomly by
varying the modality of the stimuli, their direction, and the time delays between
phases of the task. These tasks are interesting since they evaluate the model’s ca-
pacity for learning abstract rules and flexibly changing routing schemes based on
task demands.

Copy task The copy and the repeat-copy tasks evaluate the use of memory.
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They were used for testing NTM [Graves et al., 2014] and DNC [Graves et al.,
2016]. The model is fed a sequence of N-dimensional random vectors as inputs.
After reading all elements of the sequence, the model outputs a sequence of simi-
lar length. The model is trained to output the same sequence of input vectors. The
L2 loss between the output and target sequence is used for training the model. The
length of the sequences ranges from 2 to 20 elements. In the repeat copy task, the
model is trained to repeat the same sequence over many iterations. The number
of iterations is input as a scalar. These sequential tasks involve memory manip-
ulation and changes in routing schemes for different phases of the tasks: reading
inputs and storing them in memory or reading memory and outputting vectors.
The model is equipped with a differentiable memory module, as in DNC [Graves
et al., 2016], to solve this task.

bAbi task The bAbi question answering dataset [Weston et al., 2015] eval-
uates language understanding through reasoning over linguistic facts presented
in a story. It consists of 20 synthetic tasks that test different types of reasoning
over language, including inference, counting, time reasoning, positional and size
reasoning, and path-finding. Each sample consists of a story composed of many
sentences and a question that is answered with a single expression. The model
uses story elements as supporting facts for answering the question. Sentences are
embedded by applying a positional encoding to each word and summing all em-
beddings; we chose this encoding following Henaff et al. [2017], Dehghani et al.
[2019]. Sentence embeddings are fed sequentially to the model, with the question
as the last input. Models can be trained on 1000 samples or 10,000 following the
benchmark. The experiments in this chapter focus on the 1000 and 2000 sample
data regimes.

Each task was prepared for training by specifying the inputs, outputs, and
timestamps, as well as the minimum and maximum numbers of internal compu-
tation steps allowed for the model within each task step. The model architecture
is built based on each task’s input and output gates. Model and task specifications
include the mapping between task variables and module gates. For example, the
model built for image classification, as in Figure 4.6, includes a vision module
and two classification modules for the two image datasets (MNIST and Cifar10),
while the model built for the selection task uses a list manipulation module to read
and query the list, another input module to read the index, and an output module.
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4.7.2 Baselines

In single-task training, AbstractNet is compared to task-specific architectures. A
CNN with a classification head is trained on image classification since CNNs are
the standard models for image processing; a GRU is trained on cognitive tasks
similarly to the models presented in Yang et al. [2019]; and a list attention-based
model is trained on the selection task. In the list attention-based model, the in-
dex is embedded and fed as a query to the list attention module, and the output is
decoded and used for computing the loss. Finally, a memory control model, Dif-
ferentiable Neural Computer (DNC) [Graves et al., 2016], is trained on the copy
task.

In the multi-task setting, transformer models that use the self-attention mech-
anism [Vaswani et al., 2017] are interesting as a baseline since they demonstrate
impressive multi-tasking capacities at large scales. The simple transformer en-
coder is a monolithic architecture composed of layers of MLP transformations
and multi-head self-attention with skip connections. Taking several tokens as in-
put, these operations can be thought of as refinements of input representations
based on other tokens. The self-attention mechanism can be thought of as a con-
strained form of information routing between token representations. I selected
Universal Transformer [Dehghani et al., 2019] as a baseline since it is compara-
ble to AbstractNet in terms of adaptive computation time. The implementation
of Universal Transformer (UT) is adapted to our framework for a fair comparison
with AbstractNet. My implementation of UT is based on a pytorch implementa-
tion, which is an adaptation of the original architecture implemented in this repos-
itory. UT is augmented with the same external input and output modules that are
provided to AbstractNet for different tasks. In contrast to recurrent architectures,
transformers process sequential inputs in parallel as a list of embeddings masked
with a positional embedding to mark their position within the sequence. To differ-
entiate inputs from their sources, we use a similar masking technique where each
input is masked by its gate embedding. Additionally, UT is probed for outputs
by providing an additional input token that corresponds to the output gate embed-
ding. The model refines the representation of these embeddings using information
from other tokens through self-attention to build the corresponding output vector
representation. In sequential tasks, such as cognitive tasks, UT is provided a his-
tory of input embeddings up to an input size limit, considered a history of inputs,
since it does not have access to memory modules and does not have a recurrent
state like RNNs.
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Input embeddings are masked with input gate embeddings for each module.
The required outputs at each processing step are specified, with output gate em-
beddings as additional inputs. Since transformer-based models do not have mem-
ory, in sequential tasks, the model is provided inputs of previous and recurrent
states as history.

In the basic version of the model, all modules are active if they have avail-
able inputs, and decisions about task interactions (reading inputs and providing
outputs) are fixed based on the minimum and maximum number of internal steps
specified by the task. When the model is trained with adaptive computation, it
can select actions based on task interactions, which allows it to adapt the number
of computation steps to the task demands. Available actions are sampled from a
Bernoulli distribution using model outputs as probabilities. The model is encour-
aged to find efficient solutions using rewards for task interactions that decrease
linearly with the number of internal computation steps.

All models are trained using a fixed set of hyperparameters for all tasks. For
AbstractNet, the Adam optimizer is used for updating model weights with a learn-
ing rate of 0.0002, no weight decay, and a batch size of 30. The dimension of the
input and output vectors of abstract modules is 128. The routing process does not
involve a translation module. The controller is a GRU with a hidden vector of size
512.

Single task training results In the first experiment, we train the model on
each task individually. Results in Table 4.1 show that the model can learn to per-
form several tasks without requiring many training samples. These tasks include
ones that require simple input-output mapping schemes, such as the selection task
and visual tasks, and others that are sequential and require adaptive behavior, such
as cognitive tasks and the sequence copy task. These results highlight the model’s
capacity for learning routing schemes, allocating computation time, and solving
tasks using modules using one optimization method over all model weights, in
contrast to other methods that separate controller training from module training.
Interestingly, the model is capable of manipulating modules that incorporate a
variety of inductive biases, including MLPs, a CNN, a memory module, and an
attention-based module. The limited performance of the model on visual tasks
can be explained by the shared visual module for classifying MNIST digits and
Cifar10 objects and by the limited number of training samples. Accordingly, in-
creasing the number of training samples from 2000 to 60000 improves the perfor-
mance on these tasks, as shown in Table 4.1.
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Task Model N samples N steps Accuracy

Visual

AbstractNet AC 2000 6.15 64.79%
AbstractNet 2000 8.00 65.95%
Universal-T ACT 2000 - 66.17%
Universal-T 2000 - 66.51%
CNN 2000 - 66.67%
AbstractNet AC 60000 5.47 71.28%
AbstractNet 60000 8.00 78.65%
CNN 60000 - 79.40%

Selection

AbstractNet AC 2000 6.74 87.62%
AbstractNet 2000 8.00 85.68%
Universal-T ACT 2000 - 49.99%
Universal-T 2000 - 50.00%
List-Attention 2000 - 70.74%

Cognitive

AbstractNet AC 2000 3.08 92.26%
AbstractNet 2000 4.79 95.99%
Transformer-T ACT 2000 - 97.91%
Transformer-T 2000 - 97.98%
GRU 2000 - 97.27%

Copy

AbstractNet AC 2000 2.16 90.35%
AbstractNet 2000 4.00 99.99%
Transformer-T ACT 2000 - 80.61%
Transformer-T 2000 - 99.99%
DNC 2000 - 99.99%

Babi

AbstractNet AC 1000 1.62 70.79%
AbstractNet 1000 3.55 75.05%
Universal-T ACT 1000 - 60.68%
Universal-T 1000 - 60.99%
Universal-T ACT - paper 1000 - 95.45%
Universal-T - paper 1000 - 94.69%

Table 4.1: Performance on individual tasks: The performance of AbstractNet
and UT often approaches that of task-specific models. AbstractNet AC, which is
trained with adaptive computation (AC), uses systematically fewer computation
steps compared to AbstractNet, which uses the maximum number of computation
steps specified by the task. The AC-trained models find efficient solutions to all
tasks.
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As shown in Table 4.1, AbstractNet AC (adaptive computation) reaches a sim-
ilar performance to AbstractNet on most tasks, which shows that training with
adaptive computation does not significantly deteriorate performance. Further-
more, models with adaptive computation use fewer internal computations during
inference. For example, the model reduces the number of internal computations
from 8 to an average of 5.47 in visual tasks and from 4 steps to an average of 2.16
in the copy task. The numbers of internal steps are determined by stochastic action
decisions; they are averaged over outer steps for each sample and test set samples
of each task. Considering the image classification task, if the model’s strategy re-
lies only on the visual and decision modules, the most efficient solution would be
routing the visual module output to the decision module input. The resulting num-
ber of computation steps would be 4, which corresponds to: 1) receiving visual
inputs from the task; 2) encoding the input using the vision module; 3) processing
the visual embedding with the decision module; and 4) routing the output to the
task. When analyzing inference episodes, we observe that the model follows this
strategy with many task samples, as in Figure 4.6, where visual embeddings are
routed to model decision modules and other abstract modules are mostly unused.
Figure 4.4 shows the progress of the number of internal computations over train-
ing. The model initially increases the number of inner computation steps to the
maximum specified by the task. The number of computation steps decreases only
after accuracy reaches its peak. This progress can be sensitive to the magnitude
of the reward used to encourage the model to decrease the number of computation
steps. These results are indicative of the model’s capacity to adapt the number of
internal computation steps and find efficient computation sequences while solving
tasks.

Results in Table 4.1 also show that AbstractNet is competitive with the pro-
posed baselines in this restricted setting and single-task training as it’s capable of
performing on par with task-specific baselines and UT. While AbstractNet sur-
passes the performance of UT on the selection and copy tasks, it does not perform
better in other tasks. The differences between the accuracy of UT on bAbi and
the accuracy reported in Dehghani et al. [2019] is due to the fixed training settings
and hyperparameters for the two models. These results are achieved without hy-
perparameter tuning for all models, including UT. This explains the difference in
performance of UT on the bAbi tasks between the results reported in Dehghani
et al. [2019] and the experiments of this study.

Curriculum learning Among the main challenges of training AbstractNet are
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Figure 4.4: Adaptive computation time: training accuracy and the average num-
ber of internal computation steps are shown across training steps on image classi-
fication. The number of internal computations increases to a maximum of 8 steps
early during training and decreases after accuracy increases. The model finds
more efficient solutions after learning the task.

the joint training of individual modules, routing in a modular architecture, and task
interaction decisions. The random initialization of routing schemes and module
weights causes unstable learning in early epochs, resulting in suboptimal perfor-
mance or divergence. These issues are more prominent when learning complex
tasks. A solution to this issue is the use of curriculum learning. The synthetic
tasks can be organized in a curriculum where the levels of difficulty are specified
by the length of the input sequence. In a second experiment, we train AbstractNet
on the copy task following a curriculum that increases difficulty after the model
has surpassed a preset threshold of validation accuracy. Figure 4.5 shows the dif-
ference in training progress between a model trained following a curriculum and
another model trained using randomly sampled task instances. The curriculum-
trained model reaches maximum accuracy on the hardest difficulty level before
the standard model converges. This result hints that curriculum learning improves
the learning dynamics of our modular architecture.

Multi-task training results To evaluate the model for multi-task learning, we
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Figure 4.5: Curriculum learning: training progress of two models trained on the
copy task. The model trained using a curriculum reaches maximum performance
in fewer training steps than a model trained on randomly sampled task instances.

devised two experimental settings comprised of homogeneous tasks and hetero-
geneous tasks. Homogeneous tasks share modules and routing strategies; they
test the model’s capacity to reuse modules in various contexts and learn versa-
tile routing strategies for different tasks. Heterogeneous tasks, on the other hand,
require the use of different modules to test the model’s capacity for manipulat-
ing many modules and learning many independent routing strategies. In these
settings, batches are uniformly sampled from all tasks, and losses are aggregated
from different task instances without using weights. Tables 4.3 and 4.2 summarize
the results of these experiments. The tasks chosen for the homogeneous task set-
ting are the cognitive tasks and the bAbi dataset since they are all sequential tasks
with similar inputs and outputs. AbstractNet successfully learns cognitive tasks
both with and without adaptive computation and reaches a decent performance on
bAbi tasks. Although it does not surpass the accuracy of UT in most settings, it
remains on par with its performance. In the heterogeneous task setting, the model
is trained on "fdgo," one of the cognitive tasks, the first bAbi task that involves
inference from one supporting fact, and other tasks that the model solved in the
single task setting. AbstractNet is competitive with UT when trained on all five
tasks. Furthermore, when it is trained on four tasks, excluding the bAbi tasks, it is
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Model Cognitive bAbi
AbstractNet AC 93.07% 70.99%
AbstractNet 92.56% 76.65%
Universal-T ACT 95.11% 62.47%
Universal-T 95.81% 80.30%
Universal-T ACT - paper - 92.22%
Universal-T - paper - 91.50%

Table 4.2: Multi-task performance on homogeneous tasks: The cognitive task
set and bAbi dataset contain both 20 homogeneous tasks. 2000 training samples
are used for each task. AbstractNet reaches a higher accuracy on cognitive tasks
compared to the single task setting and a similar accuracy on bAbi tasks.

capable of solving most of them. Although the model learns to solve these tasks,
it has lower performance compared to the single task setting, especially on the
copy task when trained with AC. These results demonstrate the model’s capacity
to multi-task various types of tasks and its flexibility.

Model analysis To understand how AbstractNet solves tasks, we visualize
the routing matrices during inference in Figures 4.6 and 4.7. Figure 4.6 shows
inference on image classification and selection tasks; the models are trained on
these tasks individually with adaptive computation. In the image classification
task, the controller routes the visual input to all modules, including the output
decision module. It decides to read task inputs in the first step and emits the output
to the task as soon as the decision module receives the visual representation. In the
selection task, after reading inputs from the task, the model first encodes the index
and routes it to the list module as a query. The output of the list module is routed to
the decoder module, and then the output is emitted. In both tasks, the model learns
the minimum number of steps necessary for solving the task. Furthermore, it only
uses one routing scheme across all task samples because these tasks require only
simple interactions between modules that can be performed without interference
using one routing scheme.

Analysis of sequential tasks such as fdgo reveals interesting inference dynam-
ics. In the fdgo task, the model is presented with input that contains a fixation
mark and stimuli at specific locations. The task is to output the location of the fix-
ation mark until it disappears, and then to output the location of the stimulus. Each
task sample consists of three distinct phases: the presentation of the fixation mark,
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Model fdgo Visual Selection Copy bAbi 1
AbstractNet AC 98.30% 66.69% 76.94% 68.33% 99.60%
AbstractNet 97.79% 65.56% 77.16% 56.47% 99.30%
Universal-T ACT 98.77% 65.34% 64.74% 82.38% 67.70%
Universal-T 94.52% 64.81% 49.99% 60.52% 99.80%
AbstractNet AC 98.36% 67.14% 96.17% 75.62% -
AbstractNet 97.85% 65.70% 94.64% 95.73% -

Table 4.3: Multi-task performance on heterogeneous tasks: The heterogeneous
task set contains one cognitive task ("fdgo"), question-answering tasks (questions
that require one supporting fact), and other tasks the model can solve in the single
task setting. Models in the third row were trained on all tasks except the bAbi
task. These results show that AbstractNet is capable of reaching single-task per-
formance on most tasks while learning them in a multi-task fashion.

the introduction of stimuli, and the disappearance of the fixation. We observe
that the controller routing matrices change across these phases, as shown in Fig-
ure 4.7(b). Visualizations of the routing matrices at these three phases show that
there are many similarities: the controller receives signals predominantly from
the input encoder, which allows it to adapt the routing scheme based on changes;
the output module receives input predominantly from the abstract module 5; and
several abstract modules process the task embedding. The changes between the
three phases are mostly changes in routing between abstract modules. An impor-
tant change is the input to the abstract module 5, which mostly decides the output.
Consistently with the task demands, the module’s inputs do not change as long as
the model must focus on the fixation; they only change in the third phase, where
it receives inputs from abstract module 2 and the task embedding. The changes in
inference dynamics can be observed in other sequential tasks, including the copy
task.

4.8 Discussion

In this chapter, we have presented a model and a general framework for design-
ing neural networks inspired by aspects of brain function. Our work relies on
biological priors from the brain and learning experience to build this framework.
The biological priors of the brain, such as memory, attention, control, and pre-
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Figure 4.6: Routing matrices: Visualization of inference on the image classifica-
tion and selection tasks. Inactive modules are represented as gray circles, and task
inputs and outputs are represented as green lines. AbstractNet finds the minimum
number of computation steps to solve these tasks and uses an overall one-routing
scheme over all computation steps.

dictive learning, have provided AI researchers with many inspirations for general
and specialized neural network architectures. These biological prerequisites alone
are not sufficient for building an intelligent system; the learning experience plays
an important role in shaping the system. The structure of the human experience
is characterized by compositionality and its curricular nature. This framework
unites modularity, adaptive computation, recurrence, a variety of inductive biases,
and curriculum learning to build a neural network architecture and its learning
experience. To provide an example and a proof of concept of these ideas, we
propose AbstractNet, a modular neural network architecture, and through initial
experiments, we show the model’s capacity to learn routing schemes, internal
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computation decisions, and distinct module functions in an end-to-end fashion.
The model can multi-task homogeneous and heterogeneous tasks, adapt its com-
putation time, and flexibly manipulate modules to perform various functions.

Although our presented experiments encompass various aspects of the model,
they only provide a partial exploration of the overarching framework. The em-
ployed version of AbstractNet in these experiments focuses solely on modularity,
module routing, and task interaction decisions, lacking module activation deci-
sions, top-down modulation, predictive modules, and control over the learning
signals. Moreover, the diversity of modules remains limited, as we omit the inves-
tigation of hypernets, RNNs, and attention-based abstract modules. Curriculum
learning experiments are preliminary since they show only that AbstractNet ben-
efits from curriculum training. AbstractNet is not the only network that benefits
from curriculum training since its benefits have been demonstrated in a host of
models and on a variety of tasks (read Soviany et al. [2022] for a survey). More
interesting investigations on the impact of curriculum learning can compare the
learning speed and generalization of different models trained with similar curric-
ula.

Furthermore, our experimental evaluation neglects crucial aspects such as meta-
learning, compositionality, and out-of-distribution generalization. Additionally,
the experiments are constrained to toy tasks, restricting the investigation to small-
scale scenarios. Notably, we observe that the current model faces challenges in
solving more intricate tasks, including meta-reinforcement learning (meta-RL)
tasks, due to training instability and limited exploration post-convergence. We
believe that these learning issues could be alleviated through the use of tailored
curricula and regularization techniques, and we defer these concepts for future
advancements.

Our framework introduces fundamental principles for designing, implement-
ing, and training models. A central assumption is that a single model, equipped
with diverse inductive biases, has the potential to embody an efficient system.
While our model demonstrates promise for addressing compositionality and meta-
learning, it may not excel in terms of inference efficiency. Inference involving
controller intervention at each processing step can lead to slower execution. In
contrast, the brain adopts a strategy of fast learning and slow inference, yet it
could potentially leverage a strategy of slow learning for rapid inference, resem-
bling cortical learning in the CLS framework. AbstractNet currently possesses
the capability to simulate such a learning strategy within the weights of individual
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modules. However, due to its limited ability to add connections between mod-
ules beyond routing, it cannot efficiently perform controller-free operations for
complex tasks involving more than one module.

The framework assumes the feasibility of constructing curricula for any given
task. However, this assumption hinges on the ability to decompose each task into
its constituent subtasks, which may not hold universally. Even in cases where de-
composition is possible, it necessitates substantial manual effort for design. More-
over, manually designed curricula incorporate the researcher’s priors, potentially
introducing biases to the model’s learning process and restricting its capacity to
explore alternative task decompositions. Additionally, the issue of benchmarking
models trained on intricate curricula remains challenging and has not been ad-
equately addressed within the framework. Benchmarking in this context should
consider both the model’s progress within the curriculum and the amount of ex-
perience employed.

This work primarily serves as a conceptual exploration, aiming to inspire a
fresh methodology in the development of brain-inspired neural network models
towards achieving human-level intelligence. The presented experiments serve as
a prototype for the proposed model, providing a proof of concept regarding its
underlying mechanisms. Our ongoing research delves into various avenues of
further development within this framework, to stimulate and motivating fellow
researchers to expand upon these ideas.
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Figure 4.7: Routing analysis: AbstractNet adapts the routing scheme based on
task demands. a) The fdgo task consists of three phases: a fixation phase, a fix-
ation+stimulus phase where the model must return the fixation location and a
stimulus-only phase where the model must return the stimulus location. b) The
heatmap represents the L1 distance between the routing matrices of two successive
sets of six computation steps. The three phases of the task can be distinguished
by periods of similar routing matrices: 0-6, 6-33, and 33-40. c) Inference vi-
sualizations from the three phases show overall similarities in the routing of the
embedded input to the controller and output from abstract module 5. The differ-
ence is significant in the routing between abstract modules.
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CHAPTER 5

DISCUSSION AND FUTURE WORK

Within the large field of AI, this dissertation addresses an important characteristic
of cognitive function that deep learning models fail to incorporate to the extent
reached by human brains: the principle of compositionality. Compositionality is
hypothesized as a tool for organizing thought, which is demonstrated in several
facets of cognitive function, such as representing knowledge and learning tasks.
Several studies probe compositionality in deep learning models and attempt to
incorporate compositional computation into them. Nevertheless, certain aspects
of compositionality, such as skill composition and decomposition during learning,
are yet to be explored in deep learning. I focus on these aspects of learning and
relate them to sample efficiency—the amount of experience needed for learning
a novel task. I developed a benchmark for compositional visual reasoning (CVR)
that evaluates compositional learning and sample efficiency in humans and neural
networks. The experiments have demonstrated a large gap between the sample
efficiency of humans and deep learning models that are pre-trained on a variety of
visual tasks. Furthermore, while neural network models are capable of composing
skills for solving new tasks, they fail to decompose a task into elementary skills
that they use for solving new tasks.

The problem of integrating compositional computation is fundamental, it is
not limited to task decomposition but it extends to learning generalized repre-
sentations of concepts and organizing skills following a compositional structure.
By analyzing aspects of human intelligence, compositionality can be regarded as
a computational paradigm that emerges from the brain’s structure and learning
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experience. Following a research direction that focuses on incorporating vari-
ous aspects of high-level brain function to reach human intelligence, I propose a
framework for building brain-inspired neural networks. This framework describes
principles of neural network architecture design and training. I use this framework
to develop AbstractNet, a recurrent modular architecture with a controller that co-
ordinates routing, module activation, and task progress. Preliminary experiments
on this model show its capacity for multi-tasking, adapting computation time and
routing strategies to task requirements. This work shows promising results for
the development of deep learning models that emulate human intelligence. In
this chapter, I will discuss these contributions and the general implications of this
research for cognitive science and artificial intelligence.

5.1 Contributions

Compositionality has been a central concept in neuroscience and artificial intel-
ligence research for decades. In the early decades of AI research, composition-
ality was an explicit feature of many systems since it was the basis for symbolic
architecture. Today, more liberal uses of the term can be found in the field. Com-
positionality can be a feature of the data and representations, a property of the
model [Chang et al., 2019, Ringstrom, 2022], or a nature of computation [Kurth-
Nelson et al., 2023, Lake et al., 2015, Ellis et al., 2020]. Even though these notions
eventually refer to the same idea of global compositionality, their applications re-
main more general. For example, the representations concern inputs of various
types, such as images, 3D shapes, tasks, and programs, among others. My re-
search is built on the hypothesis that frames compositionality as a computational
basis for efficient learning and generalization. The contributions in this disser-
tation support these hypotheses by studying compositional learning and sample
efficiency in deep learning models and humans. Furthermore, this dissertation
proposes a general framework for developing brain-inspired architectures based
on aspects of human intelligence.

To study compositional learning and sample efficiency, I took visual reasoning
as a test bed, given the explicit compositional nature of this task. Taking inspi-
ration from visual cognition theories [Ullman, 1987], I built a novel benchmark,
named CVR, which addresses many limitations in existing challenges; it incor-
porates a variety of synthetic visual reasoning tasks that vary in the relationship
between objects and the scene structures instantiated in each problem; the tasks
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built in the benchmarks are built as compositions of other tasks, thus allowing for
an evaluation and differentiation of model strengths at tasks and its capacity at
composing skills; and it incorporates the sample efficiency as a measure of model
performance.

Following extensive experiments, including single-task and multi-task train-
ing, curriculum, and reverse curriculum settings, on a host of baselines, includ-
ing standard vision models and visual reasoning models, the analysis confirmed
many hypotheses on compositional learning and sample efficiency. The findings
revealed that even the most advanced pre-trained neural architectures necessitate
significantly more training samples than humans to achieve comparable accuracy,
aligning with prior research on sample efficiency [Lake et al., 2015]. Interestingly,
our evaluation indicated that current neural architectures struggle to learn certain
tasks, even with abundant samples and extensive prior visual experience. These
results underscore the critical need for the development of more data-efficient and
vision-oriented neural architectures to attain human-level artificial intelligence.
Additionally, we investigated the models’ generalization abilities across various
rules, ranging from elementary rules to compositions and vice versa. Convolu-
tional architectures displayed advantages in learning all visual reasoning tasks
jointly and transferring acquired skills during training on elementary rules. How-
ever, they faced challenges in systematically generalizing from compositions to
individual rules, suggesting that these architectures cannot decompose visual tasks
into their fundamental components.

Incorporating aspects of human intelligence into neural networks has been
a significant challenge in AI research. Examining the case of compositionality,
there have been many attempts to implement compositional neural networks ex-
plicitly and implicitly, using special architectures, such as recursive computation
or modularity, and training schemes. However, these attempts provide solutions
to specific instantiations of compositionality that do not necessarily generalize to
other instantiations. For example, a model can be specialized in learning the com-
positional structure of visual scenes and does not generalize to language phrases.
Building a general model that leverages compositional computation is non-trivial.
In this dissertation, I propose a research framework for pursuing this objective
by taking inspiration from brain function. This framework defines human intelli-
gence as the capacity to understand and perform tasks accurately and efficiently in
terms of time, energy, computation, and experience. These factors of intelligence
are attributed to innate capabilities such as the brain’s structure and agency (the
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ability to interact and control the environment) and emergent capabilities such as
compositionality, environment simulation, and meta-learning. Compositionality
emerges as a result of learning from interactions with the environment, which
provides continuous, sequential, and multi-modal inputs with inherent composi-
tionality and redundancy. Guided by this framework, the design of the neural
architecture draws upon the brain’s structural priors and its learning experience.
The biological priors, including memory, attention, control, and predictive learn-
ing, have inspired AI researchers to develop general and specialized neural net-
work architectures. However, relying solely on biological priors is insufficient for
building an intelligent system; the learning experience plays a pivotal role in shap-
ing the system’s intelligence. Human experience exhibits compositionality and a
curricular nature, which are taken into account in this framework. Uniting modu-
larity, adaptive computation, recurrence, a variety of inductive biases, and curricu-
lum learning, the proposed neural network architecture, AbstractNet, serves as an
example and proof of concept for these ideas. Initial experiments demonstrate the
model’s proficiency in learning routing schemes, internal computation decisions,
and distinct module functions in an end-to-end fashion. The model exhibits the
ability to multitask in both homogeneous and heterogeneous tasks, adapt its com-
putation time, and flexibly manipulate modules to perform various functions. Ab-
stractNet is competitive with task-specific baselines and Universal Transformer,
a self-attention-based monolithic architecture, in a restricted experimental setup.
These results showcase the potential of the framework for constructing intelligent
neural architectures capable of emulating aspects of human intelligence.

5.2 Limitations

While my work explores general aspects of compositionality and design principles
for building brain-inspired models that emulate human intelligence, many ques-
tions remain unanswered about compositional learning in deep learning models.
Furthermore, the model that I have proposed remains proof of the concept of the
framework’s usefulness and the feasibility of the approach. The model does not
incorporate all aspects of the framework and has not been tested on compositional
learning and generalization. In this section, I discuss a few limitations of the
present investigation and ideas for future work.

Although CVR already contains a substantial array of visual relations, there
is room for further improvement, particularly in the utilization of elementary vi-
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sual relations. For instance, enhancing the generation of shapes parametrically
based on specific geometric features could enhance the benchmark’s effective-
ness. Future work could expand CVR by incorporating additional relations bor-
rowed from more specialized challenges, such as occlusion [Kim et al., 2019], line
tracing [Linsley et al., 2018], and physics-based relations. Currently, the bench-
mark’s rules are confined to 2 or 3 levels of abstraction, providing a systematic
evaluation of the nine relations. Future work could explore hierarchical composi-
tions of complex tasks to extend the benchmark. Although several vision models
are included in the baseline, this work does not evaluate models that are built with
a compositional inductive bias due to the necessity of adapting the benchmark’s
task framework, which could hinder the fairness of the evaluation. Another lim-
itation of our work is the lack of a human baseline for compositional learning.
However, recent behavioral work provides results that support our hypothesis on
compositional learning in humans following the curriculum learning experimental
protocol [Dekker et al., 2022]. To enhance the evaluation process, our methods
for sample efficiency and compositionality could be refined and adapted to dif-
ferent scenarios. The sample efficiency score, for instance, is an empirical metric
solely used for evaluating our benchmark, necessitating training all models on all
data regimes for consistent scoring. While our work aligns with others in address-
ing sample efficiency, our primary objective is to encourage the development of
more sample-efficient and general models in the field.

The proposed framework aims to construct brain-inspired models based on
a single model, enriched with diverse inductive biases, to efficiently represent a
comprehensive system. While our model shows promise in addressing compo-
sitionality and meta-learning, its inference efficiency may not be optimal. The
current inference strategy involves controller intervention at each step, leading to
slower execution—a departure from the brain’s strategy of fast learning and slow
inference, reminiscent of cortical learning in the CLS framework. Although Ab-
stractNet can simulate such a learning strategy within individual module weights,
its limited capacity to add connections between modules beyond routing poses
challenges for efficient controller-free operations in complex tasks involving mul-
tiple modules.

While the framework assumes the feasibility of constructing curricula for tasks,
this assumption may not hold for all tasks that the model is trained on, especially
natural tasks. Decomposing tasks into constituent sub-tasks demands significant
manual effort, leading to potential biases and limiting the exploration of alter-
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native task decompositions. Benchmarking models trained on intricate curricula
present challenges that have not been sufficiently addressed within the framework.
This calls for careful consideration of both progress within the curriculum and the
experience employed in the evaluation process.

The experiments presented provide a partial exploration of AbstractNet, fo-
cusing on modularity, module routing, and task interaction decisions, omitting
module activation decisions, top-down modulation, and predictive modules. The
diversity of modules remains limited, as we did not investigate hypernets, RNNs,
or attention-based abstract modules. Additionally, crucial aspects such as meta-
learning, compositionality, and out-of-distribution generalization were not included
in the experimental evaluation. Furthermore, the experiments were confined to toy
tasks and small-scale scenarios, revealing challenges in more intricate tasks like
meta-reinforcement learning due to training instability and limited post-convergence
exploration. We believe tailored curricula and regularization techniques could ad-
dress these learning issues with future advancements. While AbstractNet displays
a modest performance in this study’s experimental setup, it does not outperform
other baselines. Further investigations of its learning schemes and augmentations
with design principles could potentially improve its performance, efficiency, and
generalization.

This work serves as a pioneering conceptual exploration intended to ignite a
new methodology in the development of brain-inspired neural network models
with the ultimate goal of achieving human-level intelligence. The experiments
offer a prototype and tangible proof of concept for the proposed model. Further-
more, our ongoing research delves into diverse avenues for further development
within this framework, with the hope of inspiring fellow researchers to build upon
and extend these innovative ideas.

5.3 Future Outlook

The AI field has tremendously evolved in the past few years, with a strong fo-
cus on larger scales and fine-tuning pre-trained models as keys to building more
general models. The trends that we have witnessed thus far indicate that despite
the impressive capabilities of these large models, they still lack the flexibility of
compositional generalization of human intelligence. Given the fast development
in the fields, we can only speculate on what will drive their development in the
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future.

From the perspective of artificial intelligence, the architectural and training
innovations proposed in this study may offer valuable insights even if other ar-
chitectures demonstrate more flexible behavior in richer training regimes. These
innovations have the potential to foster flexibility at more feasible data scales, al-
though the data requirements for achieving human-like flexibility through brute
force remain unclear and may be challenging to attain.

In conclusion, this work presents a computational perspective on how artificial
intelligence could converge towards human-level intelligence. The future holds
promise for unveiling new perspectives, and I am enthusiastic about the potential
inspiration my research may provide for these upcoming endeavors.

103



CHAPTER 6

SUMMARY IN FRENCH

L’objectif ultime du domaine de l’IA est de construire des machines pouvant at-
teindre ou dépasser l’intelligence humaine. Cet objectif remonte à l’invention de
l’ordinateur, où Alan Turing a déclaré, "Ce que nous voulons, c’est une machine
capable d’apprendre par expérience" lors d’une conférence en 1947. Ce défi s’est
avéré difficile étant donné l’infinité des possibilités et l’ampleur de l’objectif. En
effet, le domaine a connu des décennies de tentatives innombrables et de cycles
de changement d’intérêt pour les orientations de la recherche. Les chercheurs en
sont venus à résoudre le problème en fixant des objectifs atteignables, tels que
la reconnaissance de chiffres pour résoudre des "captchas" ou jouer aux échecs.
La tendance à la simplification a entraîné la subdivision du domaine en plusieurs
sous-domaines et le développement de systèmes spécialisés. Bien que cette ten-
dance ait abouti à un biais au sein du domaine en faveur de la construction de
systèmes spécialisés, elle constituait une étape inévitable vers la réalisation de
l’objectif plus large de l’intelligence humaine. En conséquence, au cours des
dernières décennies, le domaine de l’intelligence artificielle a fait d’énormes pro-
grès sur plusieurs tâches, et les systèmes hautement spécialisés du passé sont pro-
gressivement remplacés par des systèmes de plus en plus généraux. Les grands
modèles de langage [OpenAI, 2023], par exemple, ont réalisé des progrès sub-
stantiels dans le traitement du langage naturel, pouvant résoudre une variété de
tâches avec une grande précision. De tels modèles à grande échelle [Bubeck
et al., 2023, Ramesh et al., 2022] présentent un important potentiel pour attein-
dre le niveau d’intelligence humaine.
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Bien que les réseaux neuronaux profonds (DNN) aient réalisé de nombreux
développements vers l’intelligence humaine, ils restent moins flexibles et efficaces
comparés au cerveau. La flexibilité et l’efficacité du cerveau se démontrent dans
l’apprentissage de nombreuses compétences, comme la capacité de comprendre
des tâches à partir de leurs descriptions, d’utiliser les connaissances acquises pour
résoudre de nouvelles tâches, d’apprendre à partir de peu d’exemples et d’analyser
son propre comportement. En revanche, les modèles d’apprentissage profond né-
cessitent de grandes quantités de données pour apprendre une tâche et généralisent
mal aux nouvelles tâches ou aux changements de statistiques des données. Ces la-
cunes des DNN montrent qu’ils manquent de composants cruciaux pour atteindre
le niveau d’intelligence humaine.

Naturellement, plusieurs chercheurs ont utilisé le cerveau comme source d’inspiration
pour développer des systèmes plus intelligents à de nombreux niveaux de granu-
larité, du niveau neuronal aux mécanismes de mémoire et d’attention, en passant
par les fonctions cognitives telles que le contrôle et la simulation. Bien que le
fonctionnement réel du cerveau reste énigmatique, cette approche repose sur des
théories qui tentent d’expliquer sa fonction. Néanmoins, c’est une stratégie conva-
incante et sensée étant donné qu’elle a connu une grande popularité au cours des
dernières décennies avec des degrés variables de succès et d’échec. De plus, les
systèmes d’IA modernes dépassent les humains en terme de performance, mais
échouent en termes de robustesse, d’efficacité d’apprentissage et de généralisa-
tion. Le chemin le plus prometteur pour améliorer les modèles d’IA sur ces as-
pects consiste à s’inspirer d’un système qui excelle en eux.

Étant donné la complexité du cerveau et notre compréhension limitée de sa
fonction, il est important d’identifier d’abord les principes qui caractérisent son
intelligence, de les relier aux mécanismes de sa fonction, puis de les traduire en
principes de conception de DNN qui guident leur mise en œuvre. Dans cette thèse,
je me concentre sur la compositionnalité, que je caractérise comme un aspect clé
de l’intelligence humaine. Le principe de la compositionnalité a été utilisé pour
caractériser le langage et la pensée [Frege, 1980, Fodor, 1975] en affirmant que le
sens de l’ensemble est fonction de ses composants et de leur structure. Ce principe
apparaît dans de nombreuses disciplines scientifiques, y compris l’apprentissage
profond, où il est utilisé pour concevoir des architectures neuronales, évaluer des
modèles et créer des tâches. Cependant, son application n’a pas réussi à combler
avec succès l’écart entre les cerveaux et les machines.

Le premier chapitre situe mon travail au sein du domaine général en explorant
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les caractéristiques de l’intelligence humaine, puis en discutant de la définition
et de la manifestation de la compositionnalité dans la fonction du cerveau et les
modèles d’apprentissage profond.

Legg and Hutter [2007b] propose une définition et une formalisation de l’intelligence
artificielle : « L’intelligence mesure la capacité d’un agent à atteindre des objectifs
dans de nombreux environnements. » Un aspect important de cette définition est
la variété d’objectifs et d’environnements, ce qui souligne la robustesse de l’agent
et sa capacité à transférer des connaissances entre les environnements. La défi-
nition plus récente de Chollet [2019] décrit l’intelligence comme « une mesure
de l’efficacité de l’acquisition de compétences sur une gamme de tâches, par rap-
port aux connaissances antérieures, à l’expérience et à la difficulté de généralisa-
tion ». Cette dernière définition étend la précédente en y ajoutant l’efficacité de
l’acquisition de compétences et contextualise sa mesure avec des connaissances
antérieures sur l’agent et l’environnement.

Bien que la plupart des définitions offrent une représentation correcte de l’intelligence,
elles décrivent l’intelligence par ses conséquences ; la définition est basée sur ce
qu’un système intelligent est capable de faire, et non sur le processus qui pro-
duit le résultat. Prendre en compte ce dernier aspect comme base apporte une
perspective différente de l’intelligence. Une conclusion générale de la plupart
des définitions est que l’intelligence caractérise les processus mentaux derrière
les actions, l’exécution de tâches et l’acquisition de compétences, pas seulement
leur exécution. Les processus mentaux peuvent être considérés comme des opéra-
tions de traitement de l’information. De ce point de vue, l’intelligence peut être
caractérisée par « l’organisation et la manipulation efficaces et productives de
l’information ».

Lorsqu’un système interagit avec son environnement, il reçoit des informa-
tions sous des formes qu’il est prédisposé à traiter en suivant ses connaissances an-
térieures, et il choisit des actions. Selon la structure de l’environnement, l’intelligence
du système peut être mesurée par son succès à accomplir des tâches depuis sa créa-
tion et tout au long de sa durée de vie au sein de l’environnement. Un système
parfait résout toutes les tâches tout au long de son existence dans l’environnement
et n’a pas besoin d’apprentissage. Dans un scénario pratique, un système ne peut
pas résoudre les tâches dès son initialisation. Sa capacité à résoudre les tâches
dépend de sa compréhension des tâches et de l’acquisition de compétences à par-
tir de l’expérience, ce qui dépend fortement de sa compétence en traitement de
l’information. Étant donné les ressources de calcul limitées du système, son effi-
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cacité à manipuler l’information détermine son niveau d’intelligence. Selon cette
définition, l’apprentissage peut être considéré comme une forme d’efficacité, car
il réduit le temps et les ressources utilisés pour résoudre une tâche. La créativ-
ité, qui consiste en la combinaison significative de connaissances antérieures pour
générer de l’information, est également un aspect important de l’intelligence, car
elle peut être un outil pour trouver des solutions efficaces à des problèmes nou-
veaux. L’abstraction peut être considérée comme un exemple de la créativité du
système pour la généralisation. Dans l’ensemble, l’intelligence d’un système n’est
pas mesurée uniquement par sa performance finale sur une tâche, elle dépend
également de :

• L’efficacité d’apprentissage : la quantité d’expérience nécessaire au système
pour atteindre sa performance maximale sur une tâche.

• L’efficacité temporelle : le temps moyen passé à résoudre une instance de
tâche.

• L’efficacité des ressources : les ressources de calcul utilisées pour résoudre
la tâche.

• L’efficacité énergétique : la quantité d’énergie consommée lors de la réso-
lution de la tâche.

En analysant ces aspects dans le contexte d’un environnement et d’un système
donnés, on peut déduire les caractéristiques d’un comportement intelligent.

De nombreux aspects de notre environnement déterminent les caractéristiques
de l’intelligence. Les humains vivent dans un environnement hautement com-
plexe, dynamique et ouvert, avec un accès partiel à ses informations. Un aspect
important de notre environnement est sa nature compositionnelle. Les éléments
de l’environnement, c’est-à-dire les objets avec lesquels nous interagissons, sont
construits de manière hiérarchique en tant que compositions de leurs composants.
Dans cet environnement, les humains ont également des limites et des contraintes
en termes d’énergie, de temps et de ressources de calcul.

L’intelligence humaine dans ce contexte dépend des prédispositions physiques
pour l’analyse des informations ; les sens et les connaissances antérieures in-
tégrées à la structure du cerveau au cours de l’évolution, ainsi que la capacité
à apprendre de l’expérience. Confrontée à des informations de bas niveau très
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complexes avec des tâches définies à des niveaux élevés d’abstraction, la pre-
mière caractéristique de l’intelligence humaine est l’abstraction : la capacité à
organiser l’information en filtrant les variables non pertinentes pour la tâche et
en reconnaissant les schémas extraits des expériences passées. L’accès partiel
aux informations force l’émergence de nombreuses stratégies pour déduire des
informations pertinentes pour la tâche; explorer l’environnement, utiliser davan-
tage d’expérience pour l’apprentissage ou déduire des inconnues en fonction des
informations disponibles et des expériences passées. Ces stratégies sont sélec-
tionnées selon leur efficacité. Les humains déduisent les informations inconnues
en construisant un modèle spécifique à la tâche de l’environnement. C’est une
caractéristique importante de l’intelligence humaine, car la construction de mod-
èles est utilisée à de nombreuses fins ; planification des actions, utilisation de
la simulation pour construire des hypothèses et génération d’expériences pour
l’apprentissage. Compte tenu de la grande complexité de l’environnement, l’inférence
sur certaines tâches peut solliciter les ressources limitées du système. Les humains
compensent la précision sur ces tâches par l’efficacité dans l’utilisation de leurs
ressources de calcul en développant des solutions approximatives aux problèmes
d’inférence. L’inférence approximative rapide est également une caractéristique
importante de l’intelligence dans un système aux ressources limitées.

Malgré les progrès considérables dans ces divers sous-domaines, les réseaux
neuronaux restent limités. Ils sont considérés au mieux comme de bons mod-
èles pour les capacités d’inférence rapide chez les humains. Par exemple, les
architectures de convolutives [Krizhevsky et al., 2017, He et al., 2015] mod-
élisent la reconnaissance des objets dans le cortex visuel, un processus qui est
supposé impliquer principalement la propagation des informations visuelles pour
extraire les catégories d’objets [Eberhardt et al., 2016, Yamins et al., 2014, Ra-
jalingham et al., 2015]. Les réseaux neuronaux souffrent d’un entraînement lent
et inefficace en termes de données, d’un manque de robustesse dans des con-
textes hors distribution [Geirhos et al., 2020a], de biais envers les tendances
statistiques dans les données, d’oubli catastrophique et de manque de générali-
sation compositionnelle. Ces limitations pourraient être causées par de nombreux
facteurs ; le manque de flexibilité dans les calculs des réseaux neuronaux, la dis-
parité dans les stratégies d’apprentissage et l’expérience entre les cerveaux et les
réseaux neuronaux. Les modèles a grande échelle tels que les grands modèles
de langage (LLM) [Brown et al., 2020, Touvron et al., 2023a,b] et les grandes
architectures multimodales [OpenAI, 2023, Driess et al., 2023] abordent un bon
nombre de ces problèmes grâce aux grandes quantités de paramètres et de données
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d’apprentissage, mais à des coûts de calcul et d’énergie exorbitants. Cependant,
leurs capacités restent limitées par rapport aux humains [Kaddour et al., 2023] car
ils montrent des performances inférieures à celles des humains sur de nombreuses
tâches de raisonnement logique et produisent des résultats peu fiables, car leurs
résultats varient fortement en fonction de leurs entrées.

Une hypothèse populaire dans le domaine attribue le manque de fiabilité, de
généralisation et de flexibilité à leur incapacité à implémenter le calcul composi-
tionnel. En raison de la nature compositionnelle de notre environnement, on pense
que les humains utilisent la compositionnalité comme base pour la représenta-
tion et le calcul. Ces idées sont partagées par d’autres travaux (tels que Lake
et al. [2016]) qui notent la compositionnalité comme une caractéristique impor-
tante de l’intelligence humaine. Smolensky et al. [2022] attribue l’intelligence hu-
maine à la continuité et à la compositionnalité dans le calcul neuronal, tandis que
l’absence de continuité explique l’échec des premiers systèmes d’IA symbolique,
et l’absence ou le manque de compositionnalité explique l’échec des systèmes
modernes basés sur les réseaux neuronaux.

La compositionnalité a été un concept central dans la recherche en IA depuis
des décennies. Dans les débats sur le connexionnisme et la structure symbolique
de l’architecture cognitive, les réseaux neuronaux, en tant que systèmes connex-
ionnistes, ont été critiqués pour leur absence de manipulation symbolique compo-
sitionnelle [Fodor and Pylyshyn, 1988, Lake et al., 2016, Lake and Baroni, 2018,
Marcus, 2018]. De nombreuses études ont testé la capacité des réseaux neuronaux
à résoudre des tâches nécessitant une généralisation compositionnelle, avec des
résultats mitigés [Christiansen and Chater, 1994, Marcus, 1998, Botvinick and
Plaut, 2006, Bowers et al., 2009, Botvinick and Plaut, 2009, Frank et al., 2009,
Bowman et al., 2015, Frank, 2014]. Des tentatives ont également été faites pour
développer un schéma de représentation des structures compositionnelles à l’aide
de vecteurs [Smolensky, 1990]. Les idées sur la compositionnalité ont été adop-
tées pour expliquer des modalités au-delà du langage et de la pensée. Par ex-
emple, Hoffman and Richards [1984], Biederman [1985] ont théorisé que le sys-
tème visuel décompose les objets en leurs parties. Ces dernières années, le do-
maine s’est largement développé dans de nombreuses directions en explorant ;
le développement de formalisations pour évaluer la compositionnalité dans les
réseaux neuronaux, l’analyse des modèles pour leur structure compositionnelle et
l’amélioration de la généralisation compositionnelle grâce à de nouvelles archi-
tectures ou à des schémas d’entraînement spéciaux.
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La première idée à clarifier dans cette question de recherche est la nature de
la compositionnalité dans les réseaux neuronaux. Les premières recherches sur
les tâches visuelles, notamment la classification visuelle, ont mis en avant les
réseaux convolutifs profonds (CNN). Les CNN sont depuis devenus les modèles
standard en vision et leur succès a été en partie attribué à leur capacité à extraire
des motifs hiérarchiquement à partir d’images. Cette hiérarchie de motifs a été
considérée comme une caractéristique de la compositionnalité [Zeiler and Fergus,
2013]. Bien que les CNN aient une structure qui représente des concepts à dif-
férents niveaux d’abstraction, cette structure reste limitée à la représentation des
motifs de l’image. Par exemple, les CNN standard ne peuvent pas décomposer
une scène en objets et en composants. Ainsi, les CNN peuvent être considérés
comme possédant une structure compositionnelle, mais une structure restreinte
dans sa capacité de représentation et d’utilité pour d’autres tâches. Une struc-
ture compositionnelle peut également être intégrée aux données et au processus,
comme dans les réseaux neuronaux récursifs [Socher et al., 2013]. Ces exemples
soulèvent une question importante : qu’est-ce que la compositionnalité caractérise
dans les réseaux neuronaux, les représentations ou la structure du modèle ? Est-ce
implicite ou explicite ? Et dans quelle mesure est-elle généralisable ?

Étant donné la difficulté d’organiser des données diverses dans un format com-
positionnel, le domaine s’est concentré sur l’étude de la compositionnalité im-
plicite dans les représentations et les paramètres des architectures neuronales, et
sur l’intégration de la compositionnalité dans la structure interne du modèle. La
généralisation compositionnelle a été étudiée dans divers contextes : l’apprentissage
sans données (zero-shot leanring) dans la vision [Yang et al., 2020, Mancini et al.,
2021, Misra et al., 2017, Naeem et al., 2021, Purushwalkam et al., 2019, Atz-
mon et al., 2020, Wang et al., 2020], les représentations 3-dimensionnelles [Tul-
siani et al., 2018], le raisonnement visuel [Johnson et al., 2017a], l’apprentissage
par renforcement [Gur et al., 2022], le langage [Lake and Baroni, 2018, Key-
sers et al., 2020] et des tâches abstraites telles que les mathématiques [Saxton
et al., 2019]. Dans la plupart des contextes, les modèles sont évalués en termes de
systématité, où de nouvelles combinaisons des concepts déjà rencontrés pendant
l’entraînement sont introduites lors des tests. Les résultats de ces études varient,
avec une tendance à l’échec des modèles standard en termes de généralisation
compositionnelle.

Prenons l’exemple de la navigation basée sur le langage ; les résultats mon-
trent que les modèles récurrents standards n’apprennent pas de manière compo-
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sitionnelle [Loula et al., 2018, Lake and Baroni, 2018] et bien que les modèles
de langage pré-entraînés masqués aient de meilleures performances [Furrer et al.,
2021], ils n’apprennent toujours pas de manière compositionnelle. Cependant,
Lake and Piantadosi [2019] montre que l’ajout d’une mémoire à une architecture
seq2seq lui permet de résoudre de nombreux tests SCAN.

Étant donné que la plupart des tests de généralisation compositionnelle se lim-
itent à un aspect de la compositionnalité, qui est la systématicité, Hupkes et al.
[2020] propose PCFG SET, un ensemble de tests pour 5 aspects de la compo-
sitionnalité : systématicité, productivité, localité vs globalité, substitutivité et
surgénéralisation. Leur analyse sur les architectures standard montre qu’elles
échouent à la plupart des tests.

Les améliorations de la compositionnalité des modèles de réseaux neuronaux
varient en fonction des méthodes d’entraînement et de l’utilisation de différents bi-
ais inductifs. Baan et al. [2019], Hupkes et al. [2019] montrent que l’entraînement
de modèles avec des biais basés sur l’attention pousse les modèles à mettre en
œuvre des solutions plus compositionnelles et améliore la généralisation compo-
sitionnelle. Dans une tâche d’apprentissage par renforcement, Hill et al. [2020]
montrent qu’augmenter la variété perceptive et le réalisme de l’environnement
améliore la généralisation compositionnelle dans le langage. Ces exemples mon-
trent que l’expérience d’entraînement influence le comportement compositionnel
des réseaux neuronaux et peut même orienter les modèles vers l’apprentissage de
stratégies de calcul compositionnel.

Les architectures modulaires ont été utilisées pour implémenter explicitement
des calculs compositionnels dans de nombreux scénarios [Andreas et al., 2016a,
Hu et al., 2017]. Certaines approches utilisent l’induction de programmes avec
des primitives de programme [Johnson et al., 2017a]. Ces approches nécessitent
la mise en œuvre d’un ensemble diversifié de primitives de programme et sont lim-
itées dans leur capacité à apprendre de nouveaux programmes. Des inspirations
tirées du fonctionnement du cerveau ont été utilisées pour implémenter d’autres
approches [Russin et al., 2019], mais elles présentent des améliorations limitées
par rapport aux architectures standard.

Les architectures modernes d’apprentissage en profondeur à grande échelle,
telles que les modèles génératifs [Ramesh et al., 2022, Rombach et al., 2022], les
grands modèles de langage [Brown et al., 2020, Touvron et al., 2023a,b] et les
modèles de fondation multimodaux [OpenAI, 2023, Driess et al., 2023, Yu et al.,
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2022], présentent des capacités impressionnantes dans diverses tâches en con-
texte de zéro-shot. Ils semblent présenter l’échelle comme une solution appropriée
pour la généralisation. Cependant, au-delà des coûts exorbitants d’entraînement et
d’inférence, leurs échecs démontrent la fragilité et les performances sous-humaines
sur de nombreuses tâches de raisonnement. Leurs limitations en matière de com-
positionnalité ont été démontrées dans divers scénarios [Dziri et al., 2023].

Cet aperçu succinct de la recherche sur la compositionnalité met en évidence
qu’à ce jour, il n’existe pas de modèles d’apprentissage en profondeur qui se com-
portent de manière fiable dans les tests de généralisation compositionnelle. Les
architectures actuelles reposent sur des biais inductifs uniques qui limitent leur ex-
pressivité et leur capacité à représenter des structures compositionnelles diverses.
De plus, les tests de compositionnalité évaluent principalement la composition-
nalité du système à l’inférence. À notre connaissance, les modèles n’ont pas été
évalués en termes de leur capacité à décomposer les tâches lors de l’apprentissage.
L’un des objectifs de cette thèse est d’étudier cet aspect de l’apprentissage dans
les réseaux neuronaux. Le chapitre 2 détaille le développement de CVR, un test
de raisonnement visuel compositionnel, qui comprend 103 tâches construites en
composant de 9 relations visuelles élémentaires. Ce test est développé pour éval-
uer l’apprentissage compositionnel dans les réseaux neuronaux. Pour le constru-
ire, je propose une nouvelle méthode pour créer des problèmes de raisonnement
visuel en mettant en avant la compositionnalité.

Le raisonnement visuel est une capacité complexe nécessitant un haut niveau
d’abstraction sur une entrée sensorielle de haute dimension. Il met en évidence la
capacité des humains à manipuler des concepts et des relations en tant que sym-
boles extraits de l’entrée visuelle. L’efficacité avec laquelle les humains appren-
nent de nouveaux concepts et relations visuelles, comme l’illustrent l’intelligence
fluide et les tests de raisonnement non verbal, est tout aussi fascinante. Pour ces
raisons, j’ai choisi le raisonnement visuel comme un test pour évaluer l’apprentissage
compositionnel et l’efficacité en terme de données d’apprentissage.

Seuls quelques référentiels abordent ces aspects de l’intelligence humaine
dans le raisonnement visuel. L’un de ces référentiels, ARC [Chollet, 2019], pro-
pose des problèmes variés de raisonnement visuel. Cependant, le peu d’exemples
d’entraînement, seulement 3 par tâche, rend le test difficile pour toutes les méth-
odes, en particulier les réseaux neuronaux. D’autres référentiels ont conduit au
développement de nouveaux modèles basés sur des réseaux neuronaux qui comblent
des lacunes spécifiques entre l’intelligence humaine et artificielle [Barrett et al.,
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2018, Zhang et al., 2019, Fleuret et al., 2011]. Certains se concentrent sur l’évaluation
des exigences perceptuelles de la tâche [Fleuret et al., 2011], qui incluent la
détection de caractéristiques, la reconnaissance d’objets, le regroupement per-
ceptuel et le raisonnement spatial. D’autres évaluent les exigences de raison-
nement logique [Barrett et al., 2018, Zhang et al., 2019], telles que le raisonnement
symbolique, les analogies et le raisonnement causal. Cependant, ils manquent de
la variété des relations abstraites présentes dans la scène, ou de la variété séman-
tique et structurelle des scènes sur lesquelles ils instancient ces relations abstraites.

Créer de nouvelles tâches de raisonnement visuel peut être difficile. Dans
ce référentiel, nous standardisons un processus de création de tâches de manière
compositionnelle basé sur un ensemble élémentaire de relations et d’abstractions.
Ce processus nous permet d’exploiter un large ensemble de relations visuelles
ainsi que de règles abstraites, rendant ainsi possible l’évaluation à la fois des ex-
igences perceptuelles et logiques du raisonnement visuel. La nature composi-
tionnelle des tâches offre une opportunité d’étudier les stratégies d’apprentissage
utilisées par les méthodes existantes. CVR s’appuie sur des référentiels d’IA an-
térieurs [Fleuret et al., 2011, Chollet, 2019] et s’inspire d’une littérature en sci-
ences cognitives [Ullman, 1987] sur le raisonnement visuel. Dans la suite, nous
décrirons le processus de génération des exemples du test.

Chaque exemple de test est constitué de quatre images, dont une est l’intrus.
L’intrus est choisi selon une règle spécifique. Chaque image contient une scène
composée de plusieurs objets. Un objet est défini comme un contour fermé avec
un ensemble d’attributs : la forme, la position, la taille, la couleur, la rotation et
la direction. D’autres attributs décrivent la scène ou les relations de bas niveau
entre les objets. Le dénombrement correspond au nombre d’objets, de groupes
d’objets ou de relations. L’intériorité indique qu’un objet contient un autre objet
à l’intérieur de son contour. Le contact indique que deux contours d’objet se
touchent. Ces 9 attributs constituent la base des neuf relations élémentaires.

CVR intègre 103 règles de référence uniques, comprenant 9 règles instanciant
les neuf relations visuelles élémentaires et 94 règles supplémentaires construites
sur des compositions des relations. Ces compositions couvrent toutes les paires
de règles élémentaires et incluent jusqu’à 4 relations. Bien que certaines règles
soient composées des mêmes relations élémentaires, elles restent uniques dans
leur structure de scène ou leurs associations avec d’autres relations. 20 relations
sont des compositions de relations élémentaires uniques, 65 sont des composi-
tions d’une paire de relations et 9 sont des compositions de plus de 2 relations
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élémentaires. La génération procédurale d’échantillons de problèmes nous per-
met de créer un nombre arbitraire d’échantillons. Ce jeu de données comprend 10
000 échantillons de problèmes d’entraînement, 500 échantillons de validation et 1
000 échantillons de test pour chaque tâche. De plus, un ensemble de tests de 1000
échantillons est fourni pour évaluer la généralisation hors distribution.

Le chapitre 3 se concentre sur l’évaluation des modèles d’apprentissage en
profondeur sur le dataset de CVR. Cette évaluation se concentre sur les modèles de
raisonnement visuel abstrait de pointe et sur les modèles de vision standard. Ces
modèles ont atteint des performances élevées sur plusieurs tâches de raisonnement
visuel dans des travaux précédents [Wu et al., 2020, Vaishnav et al., 2022], mais
ils nécessitent toujours de grandes quantités de données.

L’évaluation comprend des expériences à grande échelle qui couvrent une
multitude de configurations, notamment l’entraînement multitâche et individuel,
le pré-entraînement avec auto-supervision sur des images du jeu de données pour
contraster l’apprentissage des représentations visuelles par rapport aux règles de
raisonnement visuel abstrait, l’entraînement sur plusieurs quantités différentes de
données, les tests de transfert d’apprentissage entre les tâches du jeu de données,
et l’évaluation de la généralisation hors distribution. Je présente une analyse de
la difficulté des tâches, qui fournit des informations sur les forces et les faiblesses
des modèles actuels.

Nos résultats suggèrent que même les meilleures architectures neuronales pré-
entraînées nécessitent plus d’échantillons d’entraînement que les humains pour
atteindre le même niveau de performance, ce qui est cohérent avec des travaux
antérieurs sur l’efficacité des échantillons [Lake et al., 2015]. Notre évaluation
a également révélé que les architectures neuronales actuelles n’apprennent pas
plusieurs tâches, même lorsqu’elles disposent d’une abondance d’échantillons et
d’une vaste expérience visuelle antérieure. Ces résultats soulignent l’importance
de développer des architectures neuronales plus efficaces en termes de données
et orientées vers la vision. De plus, la capacité de généralisation des modèles
est évaluée sur différentes règles, des règles élémentaires aux compositions et
vice versa. Les résultats montrent que les architectures de convolution bénéfi-
cient de l’apprentissage conjoint de toutes les tâches de raisonnement visuel et
du transfert des compétences acquises lors de l’entraînement sur les règles élé-
mentaires. Cependant, elles ont également échoué à généraliser de manière sys-
tématique des compositions à leurs règles individuelles. Ces résultats indiquent
que les architectures de convolution sont capables de transférer des compétences
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entre les tâches, mais n’apprennent pas en décomposant une tâche visuelle en
ses composants élémentaires. Les fortes demandes en quantités de données et la
faible généralisation des réseaux neuronaux par rapport aux humains pourraient
être dues à leur stratégie d’apprentissage non compositionnelle et au manque de
curriculum dans leur entraînement. Cette idée est étayée par des preuves com-
portementales et computationnelles [Dekker et al., 2022] où il est démontré que
les humains généralisent de manière compositionnelle au-delà des capacités des
réseaux neuronaux. De plus, l’entraînement curriculaire améliore la généralisa-
tion, ce qui souligne l’importance d’introduire une organisation dans la difficulté
des tâches d’entraînement.

Bien que notre travail aborde des questions importantes sur l’efficacité et la
compositionnalité, nos méthodes d’évaluation pourraient être encore améliorées et
adaptées à différentes configurations. Par exemple, le score qui quantifie l’efficacité
en quantité de données est une mesure empirique utilisée uniquement pour éval-
uer notre test. Il faut entraîner tous les modèles sur tous les régimes de données
pour que le score soit cohérent. Bien que notre travail ne soit pas unique en abor-
dant l’efficacité des échantillons, son objectif est de promouvoir des modèles plus
efficaces en termes d’échantillons et plus généraux.

Dans la littérature sur le raisonnement visuel, les modèles polyvalents tels que
les ViTs et les CNN sont fournis en tant que références, avec des approches plus
complexes reposant sur des biais inductifs supplémentaires pour le raisonnement
tels que les RNN, les GNN et les « relation networks » [Johnson et al., 2017a,
Santoro et al., 2017, Chen et al., 2021b]. Ces architectures atteignent des per-
formances décentes, mais ont une mauvaise généralisation et une faible efficacité
en quantité de données d’entraînement. Les solutions plus prometteuses pour le
raisonnement visuel utilisent l’idée de modularité [Andreas et al., 2016b, Chen
et al., 2021c, Hudson and Manning, 2018, 2019, Mittal et al., 2021, Rahaman
et al., 2021, Goyal et al., 2019]. Les réseaux neuronaux modulaires sont composés
d’un ensemble de modules qui effectuent différentes opérations. Ces modèles sont
généralement orchestrés par un module de contrôleur qui exécute des instructions
basées sur le langage. Je suppose que la modularité pourrait être un biais inductif
fondamental pour la compositionnalité. Équipé d’un module de contrôleur appro-
prié et de mécanismes de routage de l’information, un réseau modulaire pourrait
manipuler de manière flexible de nouveaux concepts et construire des représenta-
tions contextuelles. Bien que ces modèles offrent l’avantage de l’interprétabilité
et d’une meilleure généralisation OOD, ils sont notoirement difficiles à entraîner.
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D’autres méthodes se concentrent sur la décomposition de scènes [Burgess et al.,
2019, Engelcke et al., 2019, Li et al., 2020], ces modèles reposent sur l’attention et
des représentations centrées sur les objets en tant que biais inductifs pour constru-
ire des représentations de scènes utiles pour le raisonnement visuel [Ding et al.,
2021]. Dans une autre approche, certaines solutions font évoluer des architectures
simples, basées sur des transformateurs et des convolutions, et s’appuient sur le
pré-entraînement auto-supervisé pour obtenir des performances impressionnantes
sur plusieurs tâches de vision par ordinateur multimodales [Ramesh et al., 2022,
Yu et al., 2022]. Cependant, la capacité de ces modèles à exploiter la composi-
tionnalité est limitée par leurs composants architecturaux ; les transformateurs et
les ResNets. Je pense que la modularité, l’attention et la factorisation en objets
sont des biais inductifs essentiels pour atteindre l’efficacité en quantité de don-
nées et la compositionnalité dans CVR. L’attention est utilisée pour extraire le
graphe de scène de l’image, tandis que les modules mettent en œuvre différentes
stratégies pour résoudre différentes tâches de raisonnement visuel. Je crois que les
modèles futurs de raisonnement visuel devraient implémenter ces biais inductifs
tout en s’inspirant de la cognition humaine pour orchestrer le raisonnement visuel
comme une exécution de programme.

Les trois premiers chapitres se sont principalement concentrés sur la caractéri-
sation de différentes facettes de l’intelligence, mettant en évidence l’importance
de la compositionnalité en tant que paradigme computationnel pour l’apprentissage
et la généralisation efficaces, et enquêtant sur les disparités entre l’intelligence des
machines et celle des humains dans le raisonnement visuel. Pour réduire l’écart
entre les humains et les machines en termes d’intelligence, une approche promet-
teuse consiste à s’inspirer du cerveau pour construire des systèmes d’IA. Confor-
mément à cette vision, l’objectif de ce chapitre est d’introduire des principes de
conception architecturale et des stratégies de formation qui s’inspirent du fonc-
tionnement du cerveau.

Bien qu’il soit important de s’inspirer du cerveau, il est essentiel de trouver un
équilibre entre la reproduction du cerveau et la simple mise en œuvre de ses fonc-
tions de haut niveau. Je crois que reproduire chaque détail complexe du cerveau,
de la dynamique des décharges neuronales à la structure anatomique, dans des
modèles de réseaux neuronaux ne sera potentiellement pas nécessaire pour at-
teindre l’intelligence humaine. En réalité, essayer de créer un modèle précis du
cerveau peut souvent conduire à une complexité inutile et à des inefficacités com-
putationnelles. Mon objectif est plutôt de comprendre les principes et les mécan-
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ismes fondamentaux qui contribuent à l’intelligence. En distillant ces principes
dans les systèmes d’IA, même s’ils ne reflètent pas exactement la fonction du
cerveau, ils pourraient afficher un comportement intelligent sans être alourdis par
les complexités biologiques. Identifier les facteurs cruciaux de l’intelligence est
une tâche complexe. Par exemple, la question de savoir si les neurones et leur dy-
namique doivent être implémentés avec précision ou si différentes unités de calcul
peuvent capturer leur expressivité reste ouverte. De plus, discerner les propriétés
qui émergent du système de celles qui sont innées présente d’autres défis. Par
exemple, dans le premier chapitre, la compositionnalité est supposée être une pro-
priété émergente du cerveau. Ainsi, je crois que pour qu’un système basé sur un
réseau neuronal puisse efficacement implémenter et exploiter la compositionnal-
ité, à l’instar des humains, il ne peut pas se reposer sur un seul biais inductif. Au
lieu de cela, le système devrait apprendre à utiliser la compositionnalité comme
un paradigme computationnel à travers l’expérience et l’apprentissage.

Isoler les caractéristiques de la fonction du cerveau qui contribuent à son intel-
ligence reste un défi important. Cependant, nous pouvons identifier des principes
clés de sa construction qui contribuent à des fonctions de haut niveau impor-
tantes ; la distinction des composants de traitement d’information, la variété de
l’architecture et la spécialisation de chaque composant, la coordination des fonc-
tions par un système exécutif au sein et entre les composants, l’adaptabilité et le
contrôle de l’apprentissage, l’agence et l’expérience d’apprentissage structurée et
variée. En utilisant ces principes avec les propriétés émergentes de l’intelligence
humaine, je propose un ensemble de méthodes pour la conception et l’entraînement
d’architectures de réseaux neuronaux.

Pour fournir une preuve de concept, je développe un modèle de réseau neu-
ronal suivant ces méthodes ; AbstractNet, un réseau neuronal modulaire capable
de contrôler ses calculs et de les adapter aux exigences des tâches. Les expériences
préliminaires avec AbstractNet montrent sa capacité à résoudre de nombreuses
tâches impliquant diverses compétences en apprenant à manipuler de nombreux
modules de manière intégrée. Bien qu’AbstractNet montre des résultats promet-
teurs, il pourrait être encore amélioré en suivant davantage de principes de con-
ception, tels que le contrôle à travers des connexions modulatrices, les modules
prédictifs et le contrôle des signaux d’apprentissage.

Au sein du vaste domaine de l’IA, cette thèse aborde une caractéristique im-
portante de la fonction cognitive que les modèles d’apprentissage profond ont du
mal à incorporer dans la mesure atteinte par les cerveaux humains : le principe
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de la compositionnalité. Plusieurs hypothèses postulent que la compositionnal-
ité est un outil pour organiser la pensée, ce qui est démontré dans plusieurs as-
pects de la fonction cognitive tels que la représentation des connaissances et
l’apprentissage des tâches. Plusieurs études examinent la compositionnalité dans
les modèles d’apprentissage profond et tentent d’incorporer le calcul composi-
tionnel en eux. Néanmoins, certains aspects de la compositionnalité, tels que la
composition et la décomposition des compétences lors de l’apprentissage, doivent
encore être explorés dans l’apprentissage profond. Je me concentre sur ces aspects
de l’apprentissage et les relie à l’efficacité en quantité de données d’entraînement.
J’ai développé un référentiel pour le raisonnement visuel compositionnel (CVR)
qui évalue l’apprentissage compositionnel et l’efficacité de l’échantillonnage chez
les humains et les réseaux neuronaux. Les expériences ont montré un écart im-
portant entre l’efficacité des humains et des modèles d’apprentissage profond pré-
entraînés sur une variété de tâches visuelles. De plus, tandis que les modèles de
réseaux neuronaux étaient capables de composer des compétences pour résoudre
de nouvelles tâches, ils échouaient à décomposer une tâche en compétences élé-
mentaires qu’ils utilisent pour résoudre de nouvelles tâches.

Le problème d’intégration du calcul compositionnel est fondamental, il ne
se limite pas à la décomposition des tâches, mais s’étend à l’apprentissage de
représentations généralisées de concepts et à l’organisation de compétences selon
une structure compositionnelle. En analysant les aspects de l’intelligence hu-
maine, la compositionnalité peut être considérée comme un paradigme compu-
tationnel émergent de la structure du cerveau et de l’expérience d’apprentissage.
Suivant une orientation de recherche qui vise à incorporer divers aspects de la
fonction du cerveau pour atteindre l’intelligence humaine, je propose un cadre
pour construire des réseaux neuronaux inspirés du cerveau. Ce cadre décrit les
principes de conception et de formation de l’architecture des réseaux neuronaux.
J’utilise ce cadre pour développer AbstractNet, une architecture modulaire récur-
rente avec un contrôleur qui coordonne le routage, l’activation des modules et la
progression des tâches. Les expériences préliminaires sur ce modèle montrent sa
capacité à effectuer plusieurs tâches, à adapter le temps de calcul et les stratégies
de routage aux exigences de la tâche. Ce travail présente des résultats promet-
teurs pour le développement de modèles d’apprentissage profond qui émulent
l’intelligence humaine et j’espère qu’il inspirera d’autres recherches sur les ar-
chitectures inspirées du cerveau.

Dans l’ensemble, le domaine de l’IA a grandement évolué au cours des dernières
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années, en mettant un accent fort sur la mise à grande échelle des architectures
simples et l’adaptation des modèles pré-entraînés comme clés pour la construc-
tion de modèles plus généraux. Les tendances que nous avons observées jusqu’à
présent indiquent que malgré les capacités impressionnantes de ces grands mod-
èles, ils manquent encore de la flexibilité de la généralisation compositionnelle de
l’intelligence humaine. Étant donné le développement rapide dans les domaines,
nous ne pouvons que spéculer sur ce qui stimulera son développement à l’avenir.
Du point de vue de l’intelligence artificielle, les innovations architecturales et
d’entraînement proposées dans cette étude peuvent offrir des aperçus précieux,
même si d’autres architectures montrent un comportement plus flexible dans des
régimes d’entraînement plus riches. Ces innovations ont le potentiel de favoriser
la flexibilité à des échelles de données plus réalisables, bien que les exigences en
matière de données pour atteindre une flexibilité semblable à celle de l’humain
par la force brute restent floues et puissent être difficiles à atteindre.

En conclusion, ce travail présente une perspective computationnelle sur la
façon dont l’intelligence naturelle et artificielle pourrait converger vers une intelli-
gence de niveau humain. L’avenir promet de dévoiler de nouvelles perspectives, et
je suis enthousiaste à l’idée de l’inspiration potentielle que mes recherches pour-
raient fournir pour ces entreprises à venir.

119



Appendix

120



CHAPTER 7

VISUAL REASONING EXPERIMENTS

A1 Experiment Details

RPM Baselines In order to provide a fair comparison for models designed for
solving RPMs, we adapt the odd-one-out task to the matrix and choice selection
task setup. In the RPM setting, models are fed the nine panels with tags that
indicate the position on the matrix. Each of the eight choice panels is concatenated
individually with the eight context panels. The model outputs a logit for each of
the eight matrices used to compute the cross-entropy loss. The training process is
explained in detail here Barrett et al. [2018]. We discard the position tags in our
setting since the four images have no sense of progression. We replace context
panels with the four problem images and use the same four images as choice
panels, with the correct choice being the outlier.

Self-Supevised Pretraining The SSL pretraining objective function maximizes
the similarity between transformations of the same image. When SSL is per-
formed on datasets such as ImageNet Deng et al. [2009], where the downstream
task is classification, the images are transformed in ways that maintain the class
information. These transformations are augmentations, including spatial transfor-
mations such as random cropping and flipping, noise (e.g., additive Gaussian noise
or blurring), and color transformations such as grayscale and color jittering. In our
setup, we use the following augmentations: random resize, random Gaussian blur-
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ring, random horizontal flips, and random rotations in multiples of 90 degrees. To
ensure the variety of images covers all structures used in the dataset, we select
one image from each problem in the dataset, for a total of 1 million images. This
number of images is equivalent to the number of images in the ImageNet dataset,
which is customarily used in SSL pretraining.

Color-Size
The larger object always has 

the same color

Model Scores

Context Choice

Softmax

Answer: 3

Context Choice

Model

Scores

Softmax

Answer: 2

(a) (b)

(d)(c)

Figure A1: RPM training setup: (a) A sample RPM problem adapted from
Zhang et al. [2019], the matrix contains context panels, and a choice is taken
from the answer set. (b) Inference in RPM models: the model takes all context
panels with one of the choices and outputs a score. These scores from 8 choices
are used for computing the cross-entropy loss. (c) An odd-one-out problem based
on size and color. (d) The problem is adapted to RPM by placing all images in
context and choice. The odd-one-out has the highest score among the choices.
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A2 Architectures and Hyperparameters

We adapt model architectures from reference implementations: ResNet-501, ViT [Chen
et al., 2021a]2, SCL 3 and WReN 4. We also endow SCL with ResNet18, a strong
vision backbone. We name this architecture SCL-ResNet-18. All model archi-
tectures All models are trained using images with a size of 128 × 128 pixels.
Figure A2 illustrates the architectures of all the baselines.

In preliminary experiments, we hand-tuned the learning rate and weight decay
for all models and selected the hyperparameters that achieved the highest perfor-
mance in the joint training setting for each model. We also analyzed the random
seed effect and observed that training results are robust with respect to the seed.

We equip standard vision models, ViT-small and Resnet 50, with an MLP
that extracts task-specific information. It takes as input image features and the
task embedding and outputs a lower-dimensional vector used for computing the
pairwise distances and the loss. The MLP contains 2 layers; the hidden layer’s size
is 2048, and the output size is 128. The task embedding space has 64 dimensions.
All models were trained using Adam optimizer [Kingma and Ba, 2014] for 100
epochs, with early stopping after 30 epochs. The mini-batch size used for training
all models is 64, except when the training set is smaller. The learning rates are
scaled linearly with the batch size. The learning rate and weight decay values are
provided in 7.1. All experiments were conducted on an internal cluster. We used
1500 GPU hours on NVIDIA V100, TitanRTX, and QuadroRTX.

Backbone Params Total Params learning rate weight decay

ResNet 50 23.5 M 28.1 M 0.0001 0.0001
ViT-small 21.6 M 21.8 M 0.00001 0.0001
SCL 176 k 176 k 0.001 0.0001
WReN 1.5 M 1.5 M 0.0001 0
SCL-ResNet 18 11.2 M 11.6 M 0.0005 0.0001

Table 7.1: Model sizes and training hyperparameters.

1https://pytorch.org/vision/stable/models.html
2https://github.com/facebookresearch/moco-v3
3https://github.com/dhh1995/SCL
4https://github.com/Fen9/WReN

123

https://pytorch.org/vision/stable/models.html
https://github.com/facebookresearch/moco-v3
https://github.com/dhh1995/SCL
https://github.com/Fen9/WReN
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Model Score

ResNet 50 12.1
ViT small 2.62
SCL 12.6
WReN 6.76
SCL-ResNet 18 23.1

Table 7.2: Compositionality: Models are quantitatively evaluated in the curricu-
lum condition. The score is the maximum gain in accuracy across data regimes
computed for each task, then averaged across tasks. We observe that the qualita-
tive advantage for SCL-ResNet-18 is consistent with the quantitative evaluation.

A3 Additional Results

We provide more results on compositionality evaluation in Figure A3, Figure A4,
Table 7.3, and Table 7.2. The results in the joint training setting are consistent
with the individual training setting results. Task difficulty is expanded with more
analysis in Figure A5 and Figure A6.

A4 Comparison to SVRT

Synthetic Visual Reasoning Test [Fleuret et al., 2011] (SVRT) is a suite of 23 tasks
developed for comparing machines to humans on the semantic description of vi-
sual scenes. Each test is a binary classification task based on the rules involved in
generating those images. Each image contains randomly generated close contour
objects based on a rule such as similarity judgment, spatial reasoning, or numeros-
ity. SVRT tasks were designed such that binary classes cannot be separated based
on the appearance of objects, spatial positioning, or any geometric or topological
properties of scene components. Figure A8 shows some SVRT examples. CVR
takes inspiration from SVRT’s scene design—object contours on a white back-
ground—and the rules for generating scenes. However, with a set of elementary
relations and a method for combining them with a compositionality prior, the 103
tasks proposed in CVR are more diverse than SVRT tasks. CVR also uses the
Odd-One-Out task setting, which enables a more general instantiation of rules.
For example, task #7 in SVRT requires dissociating images of 3 groups of 2 sim-
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ilar shapes from images of 2 groups of 3 similar shapes, as shown in Figure A8.
This task is generalized in CVR to a shape-count rule where images of n groups
of m objects are to be discriminated from images with different counts. In this
regard, the odd-one-out task can be considered a 4-shot learning setting for SVRT
tasks. Furthermore, CVR is a systematic reorganization of SVRT based on com-
positionality. It can be used for evaluating generalization, transfer learning, and
compositionality, unlike what is attainable with the SVRT.
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Figure A2: Model Architectures: (a) ResNet [He et al., 2015] stages consist of
several residual blocks. (b) The patch embedding in transformers splits the image
into patches and transforms them into embeddings. Each ViT [Dosovitskiy et al.,
2020] block consists of self-attention blocks and MLP transformations; ViT-small
uses 12 blocks. (c) WReN [Barrett et al., 2018] is trained in the RPM setting; each
image is processed by a CNN, and then all image embeddings are processed by a
Relation Network. (d) Similarly to WReN, SCL [Wu et al., 2020] is also trained in
the RPM setting. Each image is processed by a CNN and a scattering transforma-
tion. All image embeddings are processed by a second scattering transformation.
In SCL-ResNet-18, the CNN encoder is substituted with ResNet-18. Details of
model architectures can be found in their respective references.
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Figure A3: Compositionality: We evaluate models’ capacity to reuse previous
knowledge. Curriculum: Models trained with a curriculum are compared to
models trained from scratch. The distribution of differences in accuracy across
tasks is plotted for each model. Reverse Curriculum: In the 1000-sample data
regime, we pick rules for which models achieved higher than 80% accuracy, and
we evaluate them on the respective elementary rules.
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Figure A4: Compositionality: Models trained on elementary tasks are zero-shot
evaluated on their compositions. Models fail at all compositions without finetun-
ing.
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N train samples 20 50 100 200 500 1000
in

di
vi

du
al

ResNet-50
rand init 25.9 27.7 28.5 29.4 32.6 39.0
transfer 30.0 30.7 34.2 36.9 42.3 45.0
difference 4.10 3.06 5.73 7.47 11.5 5.75

ViT-Small
rand init 25.9 27.0 27.5 28.6 30.4 31.2
transfer 28.3 27.9 30.0 30.7 31.9 32.9
difference 2.41 0.89 2.51 2.11 1.44 1.21

SCL
rand init 26.2 29.3 29.6 29.4 30.6 32.0
transfer 30.3 32.7 34.9 37.4 40.1 43.0
difference 4.11 3.43 5.27 7.93 9.49 11.0

WReN
rand init 28.8 30.5 30.9 31.4 32.4 34.6
transfer 29.8 32.5 34.0 35.2 37.7 40.4
difference 1.04 2.03 3.08 3.78 5.28 5.79

SCL-ResNet-18
rand init 28.7 33.3 32.9 35.5 37.6 41.3
transfer 36.3 39.1 45.6 49.1 55.1 61.2
difference 7.60 5.80 12.7 13.6 17.5 20.0

jo
in

t

ResNet-50
rand init 25.5 26.2 26.6 29.2 48.6 55.7
transfer 29.8 30.5 33.8 40.0 49.4 62.9
difference 4.31 4.30 7.19 10.8 0.86 7.13

ViT-Small
rand init 25.6 26.0 26.3 26.5 27.0 28.1
transfer 27.6 27.9 27.9 28.5 31.2 34.9
difference 2.00 1.97 1.56 1.95 4.14 6.84

SCL
rand init 25.3 26.2 26.9 27.2 41.8 45.1
transfer 27.2 28.0 29.0 30.1 37.6 44.0
difference 1.87 1.90 2.11 2.90 -4.22 -1.07

WReN
rand init 27.0 26.9 27.7 29.1 33.8 39.1
transfer 28.0 29.5 31.5 34.2 40.0 44.4
difference 1.06 2.56 3.86 5.04 6.20 5.21

SCL-ResNet-18
rand init 26.2 27.5 27.6 30.1 25.8 26.1
transfer 32.5 34.3 36.9 40.0 48.6 55.5
difference 6.33 6.76 9.34 9.91 22.7 29.4

Table 7.3: Curriculum Condition: Models are pretrained on the elementary tasks
before finetuning on the complex tasks (transfer). They are compared to models
trained from a random initialization (rand init).

129



VISUAL REASONING EXPERIMENTS

(a) Individual - Rand-Init - 1000 samples
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(b) Joint - Rand-Init - 1000 samples
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(c) Individual - SSL - 1000 samples
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(d) Joint - SSL - 1000 samples
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Figure A5: Task difficulty: Average accuracy on the elementary rules and their
pair-wise compositions. Individual vs. Joint: Models are trained on each rule
separately or trained jointly on all rules. Rand-Init vs. SSL: models are randomly
initialized or pretrained with self-supervision.
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(a) Joint vs. Individual rule learning
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(b) Initializations - ResNet50
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Figure A6: Task Difficulty Analysis: The difference in SES per task is computed
in various configurations. Joint vs. individual rule learning Results vary over
spatial tasks; while some models benefit from joint learning in these tasks (SCL
and ResNet50), others have the opposite effects (ViT-small and SCL-ResNet18).
Initializations: Initializations benefit downstream CVR performance differently.
We observe that pretraining improves performance over elementary tasks over-
all for ResNet50. Models: The performance in the joint rule learning setting is
compared across models. The comparison shows variations in performance over
elementary tasks and spatial tasks.
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Figure A7: Behavioral experiment instructions.

Task #1
Each image contains two 
similar shapes.

Task #7
Each image contains 3 
groups of 2 similar shapes.

Task #21
Each image contains two 
similar shapes up to size 
and rotation. 

Task #23
The 2 small shapes are 
either both inside or 
outside the bigger object.

Figure A8: SVRT task examples: positive examples are highlighted by a green
border and negative examples are highlighted by a red border.
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A5 Rule Examples

(a) The hue of the
object is constant

(b) Two objects are
in contact

(c) The number of
objects is constant

(d) Flips of the
same object

(e) An object con-
tains another object

(f) The object is al-
ways in the same
position

(g) Rotations of the
same object

(h) The shape is
constant

(i) The size of the
object is constant

Figure A9: Elementary rules
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(a) position-count (b) position-inside (c) position-position (d) position-count

(e) position-shape (f) position-size (g) position-flip (h) position-rot

(i) position-col (j) size-shape (k) size-rot (l) size-inside

(m) size-contact (n) size-count (o) size-color (p) size-size

Figure A10: Composition rules 1
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(a) size-flip (b) shape-shape (c) shape-contact (d) shape-color

(e) shape-inside (f) shape-count (g) shape-rot (h) shape-flip

(i) rot-rot (j) rot-color (k) rot-inside (l) rot-count

(m) rot-contact (n) size-count (o) rot-flip (p) flip-flip

Figure A11: Composition rules 2
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(a) flip-count (b) flip-inside (c) flip-color (d) flip-contact

(e) color-color (f) color-inside (g) color-contact (h) color-count

(i) inside-count (j) inside-inside (k) inside-contact (l) contact-contact

(m) contact-count (n) count-count (o) position-size-flip (p) position-size-
color-flip

(q) shape-contact (r) position-inside

Figure A12: Composition rules 3
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CHAPTER 8

EXPERIMENTS ON COGNITIVE ARCHI-
TECTURES

B1 AbstractNet architecture

The architecture of AbstractNet consists of a set of modules mi for i ∈ {1, ..., N}.
Each module has input g and output h gates that can be external gE (resp. hE),
internal gI (resp. hI), or recurrent activity gr (resp. hr). Each module is a neural
network whose weights are used for processing inputs. given that a module can
process inputs in many ways, each module has a set of functions

fm
i ({gE

j }, {gI
k}, {gR

l }) = {hE
m}, {hI

n}, {hR
o }

Where are {gE
j }, {gI

k}), {gR
l }, {hE

m}, {hI
n}, {hR

o } are subsets of the module’s gates.
The controller c module selects which functions fm

i to use in each module m by
sampling from an output vector of action probabilities at

f at each time-step t. It
also routes information from internal output gates to internal input gates using a
routing matrix Rt

i,j .

gI,t+1
i =

∑
j

R̂t
jT (hI,t

j , egI
i
, ehI

j
)
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where R̂t = softmax(Rt
i), T is a translation function, and egI

i
, ehI

j
are embed-

dings for the internal input gate and (resp.) internal output gate. The translation
function transforms inputs based on their source (output gate) and target (input
gate), it is incorporated to adapt the representational space of the output gate to
that of the input gate. It avoids constraining all modules to use the same represen-
tational space.

The controller also decides interactions with task instances by sampling its
output action probabilities at

I which determines if the model reads new task inputs
and at

O which determines if the model posts outputs to the task instance.

The controller receives as an additional input an embedding that represents de-
cisions and routing from the previous time-step, information about which external
input gates received new inputs and which external output gates were used at the
previous time-step.

Given one instance of a batch of task instances from various tasks, the model
first initializes all vectors and tensors as placeholders for input data, task embed-
ding, routing matrix, action decisions, recurrent states, internal input gates, and
external input gates. These tensors constitute the internal state of the model which
is updated at each time-step. At each time-step, the controller first decides which
functions to use and the routing of latent state contents to the modules specified
by the action decisions. After preparing the inputs and executing the functions,
the latent state is updated.

Model decisions and task outputs are used for computing the loss at the end
of each task instance. AbstractNet is trained end-to-end with task-specific objec-
tives. The weights of modules and networks used for routing are optimized using
task-specific losses, while networks used for deciding module activation and task
interactions are trained in a reinforcement learning setting. We use advantage
actor-critic (A2C) with generalized advantage estimation (GAE).

L = Ltask + αLactions

where α is a hyperparameter that weighs the two losses. The reward is chosen
as the negative loss computed for the task sample r = −Ltask. Models with an
ablation of the adaptive computation time do not include module activation and
task interaction decisions; they are trained with the task-specific loss only.

Additional techniques were used to facilitate and improve the model’s train-
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ing. Early in training, model decisions on reading external inputs and writing
external outputs are overridden. For example, in single output tasks such as image
classification, the model is biased to read inputs in the first time-step and give out-
puts at the last step which corresponds to the maximum number of steps allowed
for the model. After a few training steps the constraint is alleviated and the model
discovers that it can perform the task in fewer steps. The model penalized for
using many internal times steps for processing inputs by introducing a negative
reward as a function of the number of steps internal steps.

We attempted other techniques including regularization of softmax temper-
ature used when processing the routing matrix to encourage exploration when
learning routing schemes. Similarly, random action selection was introduced for
exploration. However, these techniques did not enhance model performance.

The choice of module architectures largely depends on the task. In this work,
we used modules of various architectures:

• Gated recurrent unit (GRU) [Cho et al., 2014] as the main architecture for
the controller.

• fully internal modules as MLPs and memory modules such as the differen-
tiable neural computer (DNC).

• A 4-layered CNN with ReLU activations and average pooling at the final
layer for a vision module.

• A symbol processing module for various types of vector and sequential in-
puts.

• Embedding modules for embedding text tokens.

• List processing modules that select inputs from a list based on a query.

All models are trained using a fixed set of hyperparameters for all tasks. For
AbstractNet, the Adam optimizer is used for updating model weights with a learn-
ing rate of 0.0002, no weight decay, and a batch size of 30. The dimension of the
input and output vectors of abstract modules is 128.
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B2 Task design

Each task has a set of inputs and outputs with their corresponding timestamps (the
time-steps at which they are involved in the task), as well as the minimum and
maximum numbers of internal computation steps allowed for the model within
each task step. The model’s architecture is equipped with a controller and a num-
ber of MLP internal modules by default. Each task included in the curriculum is
accounted for in the architecture with its corresponding external input and output
processing modules.

The visual categorization small image datasets MNIST [Deng, 2012] and Ci-
far10 [Krizhevsky et al., 2014] have one image as an input and a 10-dimensional
classification vector as the output. It involves a vision module two classification
modules one for each dataset. The loss computed in this task is a cross-entropy
loss over the logits provided by the classification modules. The selection task
has a list of 16-dimentional vectors as input and a single 16-dimensional vector
as the output. It involves a list processing module as the input and an MLP as
the output. The cognitive tasks developed by Yang et al. [2019] have a sequence
of 32-dimensional vectors as inputs and a sequence of 10-dimensional vectors as
the output with their respective timestamps. The model is equipped with an in-
put MLP and an output MLP for processing these task variables. The copy task
is similar in inputs and outputs to the cognitive tasks, except the vectors are 16-
dimensional. It involves a DNC memory module in addition to the internal MLP
modules. The bAbI tasks have a sequence of tokens as input and one token as
the output. It involves an embedding module for encoding tokens and decoding
embeddings. The task design allows the model to process heterogeneous tasks in
the same batch.
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Tasks AbstractNet AbstractNet AC UT UT ACT
1 - Single Supporting Fact 99.9 98.8 99.0 97.3 58.6 99.6 47.8 63.6
2 - Two Supporting Facts 35.8 43.7 30.7 38.1 31.1 71.4 30.3 31.0
3 - Three Supporting Facts 24.2 33.1 22.9 31.3 23.9 43.3 29.2 23.9
4 - Two Arg. Relations 92.8 86.3 91.1 96.9 84.4 94.8 85.0 73.1
5 - Three Arg. Relations 80.0 80.6 79.4 78.7 80.7 81.4 81.3 77.3
6 - Yes/No Questions 63.2 89.3 72.2 69.7 52.9 97.8 66.2 70.2
7 - Counting 79.0 77.4 79.1 76.3 76.0 84.3 72.0 72.8
8 - Lists/Sets 86.6 86.2 88.8 85.6 73.5 89.7 71.2 67.0
9 - Simple Negation 70.3 91.4 92.9 70.4 62.3 99.5 60.4 74.9
10 - Indefinite Knowledge 68.1 83.0 86.4 58.5 47.2 96.2 53.9 59.1
11 - Basic Coreference 77.9 99.0 89.5 93.3 70.8 100 67.6 77.3
12 - Conjunction 99.7 99.6 99.8 98.9 79.4 100 69.0 80.6
13 - Compound Coref. 91.7 99.0 94.4 96.3 91.2 99.9 92.5 89.9
14 - Time Reasoning 77.9 77.4 77.3 78.3 37.4 78.6 33.1 36.4
15 - Basic Deduction 68.3 70.2 96.4 51.1 52.3 61.5 51.8 52.8
16 - Basic Induction 45.2 42.9 44.9 43.4 42.5 43.0 44.3 43.5
17 - Positional Reasoning 53.3 55.9 56.1 57.3 57.2 55.1 58.9 57.3
18 - Size Reasoning 92.0 89.6 91.3 91.2 91.9 90.9 92.0 91.5
19 - Path Finding 10.1 09.1 08.8 09.5 08.7 08.0 09.1 09.0
20 - Agent’s Motivations 99.8 99.7 100 97.7 97.8 99.4 97.9 98.1
Mean Performance 75.1 76.6 70.8 71.0 60.9 80.3 60.7 62.5

Table 8.1: Detailed results on bAbi tasks Single / multi-task performance.
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Tasks AbstractNet AbstractNet AC UT UT ACT
fdgo 98.57 96.43 98.34 96.72 99.19 97.00 99.44 97.48
reactgo 97.85 95.49 98.05 95.87 98.79 96.66 98.90 96.89
delaygo 97.85 94.64 97.71 96.83 98.61 96.41 98.53 96.85
fdanti 98.72 95.31 98.20 96.42 99.21 97.12 99.08 97.60
reactanti 98.09 95.53 98.33 96.12 99.01 96.66 98.46 97.12
delayanti 97.50 94.30 96.33 96.58 99.12 96.75 98.96 97.11
dm1 89.42 85.78 75.78 85.21 94.80 89.91 93.49 88.86
dm2 90.10 85.05 74.50 84.26 95.09 88.92 94.05 89.02
contextdm1 88.25 82.86 82.58 81.88 94.70 87.67 94.41 86.45
contextdm2 88.53 83.80 76.97 81.36 94.78 88.10 93.85 87.96
multidm 87.21 86.18 87.01 84.49 96.19 89.60 95.66 90.63
delaydm1 98.51 95.91 96.64 96.04 99.01 97.10 99.17 97.24
delaydm2 98.50 96.13 91.65 96.88 98.93 97.22 99.15 97.29
contextdelaydm1 97.97 92.34 95.87 91.70 99.10 97.46 99.25 97.50
contextdelaydm2 97.40 91.67 98.11 92.62 99.07 97.22 99.10 97.24
multidelaydm 97.59 96.04 92.26 96.34 98.93 97.24 99.13 97.11
dmsgo 99.12 97.67 97.59 97.61 99.18 98.00 99.22 98.47
dmsnogo 98.66 95.73 98.31 96.48 95.99 97.12 98.33 97.43
dmcgo 100 98.62 91.10 98.89 100 98.91 100 97.75
dmcnogo 100 99.28 100 99.12 100 99.29 100 98.10
Mean Performance 95.99 92.56 92.26 93.07 97.98 95.81 97.91 95.11

Table 8.2: Detailed results on cognitive tasks Single / multi-task performance.
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(a) Correlation heatmap
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Figure B1: Routing analysis in the copy task: a) The heatmap represents the L1
distance between the routing matrices of two successive sets of six computation
steps. The two main phases of reading and writing can be distinguished by periods
of similar routing matrices: 2–12 and 12–24. b) While certain aspects of routing
remain constant, such as routing memory output to the output module, routing
between abstract modules highly varies from the reading to the writing phase.
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(a) Routing Matrix Analysis.
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(d) Task 4
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Figure B2: Routing matrix differences in bAbi tasks: The routing matrices of
the last 7 computation steps are taken from 300 samples of each task; the routing
matrices of each sample are compared to others from all tasks, and the differ-
ences are averaged within each group. a) Differences are generally small between
samples of the same task and vary across tasks. The model uses similar routing
strategies for preparing outputs in tasks (3,4,5,14,18) and (1,11,12,13). b) Exam-
ples of these routing strategies in tasks 1, 2, and 4, chosen based on accuracy,
show the differences in routing information to the output text module; in task 1,
the input to the text module is from the memory module, and in task 2, the input is
routed from the controller, while in task 4, the input is a combination of controller
and memory output.
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Figure B3: Adapting Universal Transformer: The Universal Transforer (UT)
consists of a single block of multihead self-attention followed by an MLP that re-
currently processes input embeddings. To compare AbstractNet and UT at a sim-
ilar level, the architecture of UT is augmented with the input and output modules
used by AbstractNet. Inner computations are UT-recurrent steps. At each outer
step, the model is fed task inputs, a recurrent state embedding, query embeddings
used for providing outputs to the task, and a history of input embeddings from
previous outer steps. At each outer step, the task inputs are concatenated with the
history.
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