
HAL Id: tel-04653074
https://theses.hal.science/tel-04653074v1

Submitted on 18 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Algorithmes basés sur les données pour le
comportement individuel et collectif des utilisateurs

Nassim Bouarour

To cite this version:
Nassim Bouarour. Algorithmes basés sur les données pour le comportement individuel et collectif
des utilisateurs. Apprentissage [cs.LG]. Université Grenoble Alpes [2020-..], 2023. Français. �NNT :
2023GRALM081�. �tel-04653074�

https://theses.hal.science/tel-04653074v1
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ GRENOBLE ALPES

École doctorale : MSTII - Mathématiques, Sciences et technologies de l'information, Informatique
Spécialité : Informatique
Unité de recherche : Laboratoire d'Informatique de Grenoble

Algorithmes basés sur les données pour le comportement individuel
et collectif des utilisateurs

data-driven algorithms for individual and collective user behavior

Présentée par :

Nassim BOUAROUR
Direction de thèse :

Sihem AMER-YAHIA
DIRECTRICE DE RECHERCHE, CNRS DELEGATION ALPES

Directrice de thèse

Idir BENOUARET
 FLORALIS

Co-encadrant de thèse

Paolo FRASCA
Chargé de Recherches, CNRS

Co-encadrant de thèse

Rapporteurs :
ALEXANDRE TERMIER
PROFESSEUR DES UNIVERSITES, UNIVERSITE DE RENNES
MELANIE HERSCHEL
PROFESSEURE, UNIVERSITÄT STUTTGART

Thèse soutenue publiquement le 13 décembre 2023, devant le jury composé de :
CLAUDIA RONCANCIO,
PROFESSEURE DES UNIVERSITES, GRENOBLE INP

Présidente

SIHEM AMER-YAHIA,
DIRECTRICE DE RECHERCHE, CNRS DELEGATION ALPES

Directrice de thèse

ALEXANDRE TERMIER,
PROFESSEUR DES UNIVERSITES, UNIVERSITE DE RENNES

Rapporteur

MELANIE HERSCHEL,
PROFESSEURE, UNIVERSITÄT STUTTGART

Rapporteure

AMEL BOUZEGHOUB,
PROFESSEURE DES UNIVERSITES, TELECOM SUDPARIS

Examinatrice

REYNOLD CK CHENG,
PROFESSEUR, THE UNIVERSITY OF HONG KONG

Examinateur

Invités :
PAOLO FRASCA
DIRECTEUR DE RECHERCHE, CNRS DELEGATION ALPES
IDIR BENOUARET
DOCTEUR EN SCIENCES,

Abstract

User data is becoming increasingly available in multiple domains ranging from e-commerce
platforms to social media networks. It includes demographics (e.g., age, gender, location,
etc.) and user activities (e.g., browsing habits, purchase history, rating records, etc.). The
analysis of this data is appealing as it helps companies to enhance their business, understand
users’ behavior, reduce their churn, and attract new customers. With the advancement of
technology, many data-driven and data-informed tools were developed to understand the
preferences of users and extract valuable insights from the collected data.

In this thesis, we propose to study distinctly both the individual and collective behavior of
users. We first aim to examine users individually as each one is unique, and their actions and
interactions may vary significantly from one to another. We leverage recommender systems
that analyze the behavior of users at a low level of granularity which allows for personalized
experiences that can better meet users’ expectations. More precisely, we leverage dynamic
recommenders to infer the states where the users might be and capture their constant evolution
over time. Following this, we first extend the standard recommenders by incorporating users’
states and profiles within a static environment based on a meta-learning methodology. Then,
we explore more realistic contexts where the environment is dynamic. We explore three
real-world applications: Educational test recommendation, SQL query recommendation, and
diverse session recommendation. Within each application, we define the behavior of users with
many dimensions to avoid overspecialization and filter-bubble and propose several solutions
based on Multi-armed bandits, and Reinforcement Learning.

In addition to their unique behavior, users with the same characteristics (e.g., demographics)
may exhibit the same global trends. Hence, we aim to extract these insights, seek to analyze
users’ collective behavior and discover the relationships between the different user groups
and the subset of items. For the purpose of reducing false discoveries, we rely on hypothesis
testing to produce significant and statistically sound insights. We also optimize for coverage
to explore all users’ groups and avoid analyzing a small subset of them. We design novel
solutions based on standard multiples hypothesis testing corrections as well as α-investing.

In this thesis, we evaluate our solutions using an extensive set of experiments both for quality
and performance. We also conduct a comparative analysis with existing approaches or state-
of-the-art approaches to demonstrate the effectiveness of our solutions.

Résumé

Les données des utilisateurs deviennent de plus en plus disponibles dans plusieurs domaines,
allant des plateformes de commerce électronique aux réseaux sociaux. Elles incluent des infor-
mations démographiques (par exemple, l’âge, le sexe, la localisation, etc.) et des activités des
utilisateurs (par exemple, les habitudes de navigation, l’historique des achats et des notations,
etc.). L’analyse de ces données est attrayante car elle aide les entreprises à améliorer leurs
activités, comprendre le comportement des utilisateurs, réduire le taux de désabonnement et
attirer de nouveaux clients. Avec l’avancement de la technologie, de nombreux outils axés sur
les données ont été développés pour comprendre les préférences des utilisateurs et extraire des
informations précieuses à partir des données collectées.

Dans cette thèse, nous proposons d’étudier distinctement le comportement individuel et col-
lectif des utilisateurs. Nous examinons d’abord individuellement les utilisateurs. La raison est
que chaque utilisateur est unique, et leurs actions et interactions peuvent varier considéra-
blement d’un individu à un autre. Nous nous appuyons sur des systèmes de recommandation
qui analysent le comportement des utilisateurs à un niveau de granularité fin. Ceci permet
des expériences personnalisées répondant au mieux aux attentes des utilisateurs. Plus préci-
sément, nous utilisons des systèmes de recommandation dynamiques pour induire les états
dans lesquels les utilisateurs pourraient se trouver et capturer leur évolution constante dans
le temps. Ainsi, nous étendons les systèmes de recommandation classiques en incorporant les
états et profils des utilisateurs dans un environnement statique basé sur une méthodologie de
méta-apprentissage. Ensuite, nous explorons des contextes plus réalistes où les environnements
sont dynamiquse. Nous explorons trois applications réelles et concrètes : la recommandation
de tests éducatifs, la recommandation de requêtes SQL et la recommandation de sessions
diversifiées. Pour chaque application, les utilisateurs sont définis selon plusieurs dimensions
afin d’éviter la spécialisation excessive et la formation de filtres de bulles. Nous proposons
plusieurs solutions basées sur les bandits manchots et l’apprentissage par renforcement.

En plus de leur comportement unique, les utilisateurs ayant des caractéristiques similaires
(par exemple, démographiques) peuvent avoir le même comportement global. Ainsi, notre
deuxième partie vise à analyser le comportement collectif des utilisateurs et à découvrir les
relations entre les différents groupes d’utilisateurs et les ensembles d’éléments (par exemple,
les produits). Dans le but de réduire les fausses découvertes, nous nous appuyons sur des tests
d’hypothèses pour produire des informations significatives et statistiquement fiables. Nous
optimisons également la couverture pour explorer tous les groupes d’utilisateurs et éviter
d’analyser qu’un petit sous-ensemble. Nous concevons des solutions novatrices basées sur des
méthodes classique de tests d’hypothèses multiples ainsi que sur le α-investing.

Dans cette thèse, nous évaluons nos solutions à l’aide d’un ensemble étendu d’expériences, tant
en termes de qualité que de performances. Nous effectuons également une analyse comparative
avec des approches existantes pour démontrer l’efficacité de nos solutions.

Contents

1 Introduction 1
1.1 Individual User Behavior . 2

1.1.1 Static Individual Behavior . 3
1.1.2 Dynamic Individual Behavior . 4

1.2 Collective User Behavior . 9
1.3 Thesis Organisation . 11

2 Related Work 13
2.1 Recommendation Systems . 13

2.1.1 Recommender Systems . 13
2.1.2 Recommendation Approaches . 15
2.1.3 Recommendation Evaluation . 23
2.1.4 Limitations . 26

2.2 Multiple Hypothesis Testing . 28
2.2.1 Hypothesis Testing . 28
2.2.2 Multiple Hypothesis Testing . 28

3 Individual User Behavior 33
3.1 Static Recommendations . 33

3.1.1 Motivation: Best Recommender Selection 33
3.1.2 Best Recommender Selection Challenges 34
3.1.3 Our Contributions . 35
3.1.4 Data Model . 35
3.1.5 Meta-learning Methodology . 36
3.1.6 Experiments . 39

3.2 Dynamic Recommendations Applications . 44
3.2.1 Application 1: Recommendation for Test Assignment 45
3.2.2 Application 2: Recommendation for SQL Groupby Queries 60
3.2.3 Application 3: Recommendation for Diverse Sessions 71

3.3 Conclusion . 82

4 Collective User Behavior 84
4.1 Motivation: Hypothesis Testing for User Groups 84
4.2 Multiple Hypothesis Testing Challenges . 85
4.3 Our Contributions . 85
4.4 Data Model . 86

CONTENTS

4.4.1 Groups . 87
4.4.2 Group Testing . 88

4.5 GroupTest Problems Formalization . 89
4.6 Our Proposed Solutions . 93

4.6.1 VAL_C Solution . 93
4.6.2 COVER_G Solution . 94
4.6.3 COVER_α Solution . 95

4.7 Experiments . 96
4.7.1 Addressing Information Needs . 97
4.7.2 Experimental Setup . 97
4.7.3 ValMin Results . 98
4.7.4 CovMax Results . 102

4.8 Conclusion . 107

5 Conclusion & Perspectives 108
5.1 Conclusion . 108
5.2 Perspectives . 109

5.2.1 Evaluation Perspectives . 109
5.2.2 Optimization Perspectives . 110
5.2.3 New Concepts Perspectives . 113
5.2.4 Visualization Tools Perspectives . 114

List of Figures

3.1 Our Meta-learner Architecture . 37
3.2 Top-10 results of our meta-learner against single recommendation algorithms

for Retail . 40
3.3 Top-10 results of our meta-learner against single recommendation algorithms

for Tafeng. 41
3.4 Top-10 results of our meta-learner against single recommendation algorithms

for Amazon_TV . 42
3.5 Top-10 results of our meta-learner against single recommendation algorithms

for Amazon_M . 42
3.6 Example of the process of learning mathematical functions. 45
3.7 Schematic illustration of Zone of Proximal Flow (ZPF) [25], which combines

the results of Zone of Proximal Development (ZPD) and Flow Theory. In [25],
it is shown that learners improve their skills by completing tests that are more
but not too challenging (dotted line). 46

3.8 Average skill gain for each variant with a fixed initial skill for learners. 53
3.9 Skill progression as a function of # iterations with a fixed initial skill for learners. 53
3.10 (a) Percentage of learners who attain mastery - (b) Average number of itera-

tions to attain mastery. 54
3.11 Average time for generating one batch. 54
3.12 Average skill gain with variable initial skills for learners. 54
3.13 Skill progression as a function of # iterations with variable initial skills for

learners. 54
3.14 (a) Percentage of learners who attain mastery - (b) Average number of itera-

tions to attain mastery using variable initial skills for learners. 55
3.15 Skill progression as a function of # iterations with N = 3. 55
3.16 Average skill gain using IRT. 56
3.17 Skill progression using IRT. 56
3.18 (a) Percentage of learners who attain mastery - (b) Average number of itera-

tions to attain mastery using IRT. 57
3.19 Average skill gain using MAB strategies. 58
3.20 Skill progression of learners using MAB strategies. 58
3.21 (a) Percentage of mastery attained - (b) Average number of iterations to attain

mastery using MAB strategies. 58
3.22 Example of the process of exploring panels. 60

LIST OF FIGURES

3.23 Architecture of DashBot. The input relation R (1) is preprocessed into an
enriched relation (2). Each edge (3) is a panel recommendation. If the user
gives the label Yes (4), the diamond allows the addition of the panel to the
dashboard and the verification of the halt condition. If it is false, go to New
Panel Generation. Alternatively (4’), the user gives a label No and an optional
reason. The last panel is then refined. 65

3.24 Dashboard consisting of a single panel “SELECT A, avg(B), count(*) FROM
R GROUP BY A”. 69

3.25 Dashboard consisting of two panels “SELECT A, avg(B), count(*) FROM R
GROUP BY A” and “SELECT C, sum(D) FROM R GROUP BY C” 69

3.26 F1-Score under a fixed budget of clicks. 70
3.27 Comparison of Semantic_1 and Semantic_2 for dashboard consisting of three

panels “SELECT A, min(B),max(B),avg(B),count(*) FROM R GROUP BY A”, “SELECT
A, min(C),max(C),avg(C),count(*) FROM R GROUP BY A”, and “SELECT A,
min(D),max(D),avg(D),count(*) FROM R GROUP BY A”. 71

3.28 Comparison of Semantic_1 and Semantic_2 for dashboard consisting of more
than three panels. The number of attributes is fixed to 8. 71

3.29 Example of diversity-based multi-session recommendation. 72
3.30 Overview of the architecture of the RL framework. (A) represents the summa-

rizing of a session into a latent space, (B) represents the SMORL model [233] to
choose the next session items, and (C) designates the model for choosing the
best attribute to optimize diversity. 77

3.31 Evolution of Diversity as a function of the number of attributes. 79
3.32 Evolution of Precision as a function of the number of attributes. 79
3.33 Evolution of αnDCG as a function of the number of attributes. 80
3.34 Evolution of response time as a function of the number of attributes. 80
3.35 Evolution of Diversity across sessions for #Attributes = 5. 80
3.36 Evolution of Precision across sessions for #Attributes = 5. 80
3.37 Evolution of F-Score across sessions for #Attributes = 5 81
3.38 Diversity of transfer learning for a single session. 81
3.39 F-Score of transfer learning for a single session. 81
3.40 Precision of transfer learning for a single session. 81

4.1 A multi-step group testing. 85
4.2 Summary of statistical tests considered in GroupTest. 89
4.3 Impact of coverage optimization on Power with covmin = 0.5 and number of

results n = 100 for different percentages of data samples. 99
4.4 Coverage as a function of the number of data samples with covmin = 0.5 and

the number of results n = 100. 99
4.5 Impact of coverage optimization on significance (Power) with covmin = 0.7,

number of results n = 20 (left) and n = 100 (right) for different percentages
of data samples. 100

4.6 Impact of coverage optimization on significance (FDR) with covmin = 0.7,
number of results n = 20 (left) and n = 100 (right) for different percentages
of data samples. 100

4.7 Coverage as a function of the number of data samples with covmin = 0.7,
number of results n = 20 (left) and n = 100 (right). 101

LIST OF FIGURES

4.8 Coverage and p-values as a function of the number of results n with covmin =
0.7, data samples = 100%. 101

4.9 Response time as a function of number of data samples (left) and number of
results n (right) with covmin = 0.7. 102

4.10 Impact of coverage optimization on significance (Power and FDR) with results
number n = 50 for different percentages of data samples. 103

4.11 Coverage and p-values as a function of the number of results n, data samples
= 100%, number of results n = 50. 104

4.12 Response time as a function of number of data samples (left) and number of
results n (right). 104

4.13 Impact of coverage optimization on significance (Power and FDR) with results
number n = 20 for different percentages of data samples. 105

4.14 Coverage and p-values as a function of the number of results n. 106
4.15 Response time as a function of the number of data samples. 106
4.16 Response time as a function of the number of results n. 106

List of Tables

2.1 Confusion Matrix . 25

3.1 Overview of selected recommendation approaches 36
3.2 Example of meta-training instances for implicit data. The recommender with

a predicted value 1 per instance is highlighted. 38
3.3 Example meta-training instances for explicit data. The recommender with the

lowest predicted rank error is highlighted. 38
3.4 An illustration of recommendations for implicit data. The recommender with

the best-predicted value 1 per instance is highlighted. 38
3.5 An illustration of recommendations for explicit data. The recommender with

the lowest predicted rank error per instance is highlighted. 39
3.6 Characteristics of the datasets . 39
3.7 Train and test times of all recommenders for Tafeng. 43
3.8 Test and test times of all recommenders for Amazon_M. 43
3.9 Discretization of the numerical attributes with k = 2. 62
3.10 A dashboard consisting of two panels. 62
3.11 Vector representation of the panel corresponding to the query SELECT B,min(C),max(C)

FROM R GROUP BY B. 63
3.12 Summary of MAB panel refinement strategies implemented in DashBot. . . . 68
3.13 Parameter tuning values . 78

4.1 Examples of group testing requests in GroupTest with “groups", aggregate,
dimension, and operator with the corresponding statistical test. 87

4.2 Summary of GroupTest problems. 90
4.3 Number and examples of groups per genre that satisfy the request “Groups

whose average rating for a movie genre changes monthly (in a 3-month period)". 97
4.4 Number and examples of pairs per age that satisfy the request “Group pairs

whose rating distribution for Drama movies differs in the same season (Summer)". 97
4.5 Parameters for α-investing policies. 98
4.6 Results of running all requests in Table 4.1 on MovieLens’1M (equal values are

shown only once in each cell) . 105

List of Algorithms

1 Heuristic MOO . 49
2 HCAE - Hill Climbing for Aptitude and Expected Performance 49
3 Interactive learning of groupby queries for dashboard generation 65
4 Multi-attribute MMR . 75
5 Multi-attribute SWAP . 76

6 Minimum coverage algorithm (VAL_C) – illustrated with the Benjamini-Yekutieli
correction . 93

7 Greedy coverage algorithm (COVER_G) – illustrated with the Benjamini-Yekutieli
correction . 95

8 α-investing coverage algorithm (COVER_α) . 96

LIST OF ALGORITHMS

Dedicated to

My dad who passed away at the beginning of my thesis

My mom and my sisters:

Sarra, Linda, Kahina

Roumaissa who was always there for me

A Special Thank to

My supervisors: Sihem and Idir

Mohamed, Salim, Vera, Abdeldjalil, Lisa, Rosa, Mehdi, Amine and Abdelmoumene.

Chapter 1

Introduction

The current economic landscape is characterized by intensified competition. In such a context,
companies are frequently faced with new challenges. This makes customer satisfaction a pri-
mary goal, while also seeking to attract new customers, reduce customer churn, and increase
sales. Companies are relying on user behavior analysis [92] to achieve their goals and enhance
their business value 1. Moreover, user analysis has been expanding for two major reasons.
First, the growth of digital technologies has made it easier to obtain users’ purchases, clicks,
or search histories. This large amount of data represents the essential starting point for inves-
tigating users’ behaviors. Second, the technological revolution has brought about considerable
changes in the daily behavior of users. In fact, with the expansion of e-commerce websites
and the emergence of entertainment and streaming platforms, the quantity of products and
services offered to users is massive and overwhelming. As a result, users find difficulties in an-
alyzing the different choices and choosing the appropriate products to purchase or the suitable
services to choose from.

Recommender systems are one of the tools used to model users’ interactions, analyze their
behaviors, and predict their future actions. Marketing studies [124] highlighted the business
benefit of providing recommendations to users. Netflix asserts that 75% of the stream time
registered in their platform is achieved by recommendations 2. They also report that their
system has helped to save more than 1B$ per year [100]. According to a McKinsey study 3,
35% of Amazon’s sales come from recommendations. YouTube also reports that 60% of the
clicks on their home screen are the direct results of their recommendations [72].

Recommendation systems find their roots in the mid-70s at Duke University [203]. The first
known system that is the closest to modern recommenders is the Grundy library-based sys-
tem [206]. The system was developed after interviewing users about their book preferences
to recommend books to users. Since then, and initially based on information retrieval [212],
various approaches were proposed. In 1992, the Tapestry system [99] was developed based
on collaborative filtering through human evaluation with the goal of controlling information
flows and filtering spam emails. In the following years, many thematic recommender systems
were proposed, e.g., GroupLens [203] for Usenet articles, Ringo [223] for music recommenda-

1https://sell.amazon.com/tools/amazon-brand-analytics
2https://netflixtechblog.com/netflix-recommendations-beyond-the-5-stars-part-1-55838468f429
3https://www.mckinsey.com/industries/retail/our-insights/how-retailers-can-keep-up-with-consumers

1

CHAPTER 1. INTRODUCTION 2

tion, and Net Perceptions [82] for offering the marketing recommender engine. The research
community developed and continues to develop approaches to improve the quality of rec-
ommendations based on works from distinct communities such as information retrieval [78],
machine learning [193], data mining [12], and deep learning [269].

Recommendation approaches aim to learn the relationships between users and the different
items (e.g., products, services) by analyzing their past interactions. The recommendations
are generated by building the users’ profiles and predicting the utility of all items. Usually,
these models assume that users follow similar past patterns in the future [165]. They then
consider that users’ interests and items’ utility are consistent over time. In other words, they
consider that all users’ interactions are equivalent over time e.g., an interaction that happened
two weeks ago is similar to the one that occurred two days ago. This conception is therefore
naive as it assumes a static environment for users. In real-world applications, users and items
do not remain constant but are continuously evolving over time [136]. Users may change
their interests while items may discarded from the catalog. For example, users may stop
consuming some products when starting a diet. On the other hand, certain products may be
stopped from being manufactured. Moreover, users’ behavior usually follows a sequence in
time where previous and next interactions are not independent. Therefore, there is a need to
capture these constant changes and encounter dynamic recommendation approaches to better
investigate users’ behaviors.

In addition to their dynamic attitude, users who share similar demographics may express the
same behavior towards one or a subset of items (e.g., Teenagers watch regularly romantic
movies) or experience the same behavioral shift over time (e.g., The French increase their
cinema attendance in the four weeks following the Cannes Festival). Hence there is a need
to investigate the user behavior at a higher level and discover the patterns that the different
user groups exhibit when interacting with the potentially recommended items.

In this introductory chapter, we first introduce in more detail the individual user behavior
along with its challenges in both static and dynamic environments in Section 1.1. We then
present the collective user behavior in Section 1.2. Finally, we present the organization of the
thesis and an overview of contributions in Section 1.3.

1.1 Individual User Behavior

From the recommender system perspective, user behavior can be static or dynamic. In the first
case, the assumption is that past and future users’ interactions are generated from the same
distribution. So, all historical interactions are equally considered and recommendations are
generated by assuming an unchanged environment. This case is also global and observable to
the use of all predictive models [165]. However, this assumption of a static environment does
not hold in real-world applications as users and their preferences are constantly evolving in
time. Hence a necessity of modelling individual user behavior within a dynamic environment.
In this thesis, we contributed to both static and dynamic settings of users’ individual behavior
by focusing more on the second one.

CHAPTER 1. INTRODUCTION 3

1.1.1 Static Individual Behavior

Recommender systems learn connections between users and items from their previously recorded
interactions. Several recommendation approaches have been proposed in the last decades [?].
Despite this proliferation, one important question is still wide open: Which is the best ap-
proach to choose to generate recommendations for a given user in a real-world system? The
standard procedure for choosing the best approach is to repeatedly try a pool of existing
approaches and choose the one yielding the best overall results according to some evaluation
measures. However, one may agree that this procedure is expensive in terms of time, hu-
man and hardware resources. Hence the necessity for a methodology that selects the best
recommendation approach.

Challenges. The main challenge is that the performance of recommendation approaches is
data-dependant. It is related to the characteristics of the data as well as the experimental
protocol. More precisely, depending on the available users’ and items’ features and the type
of their interactions (e.g., ratings, clicks), the best recommendation approach is different. For
example, the same user has different behaviors when she interacts with a music streaming
system or a retail e-commerce platform. Thus, considering users’ profiles and their features
as well as items’ characteristics is crucial when selecting the best recommender. In addition
to that, an approach that was established to be the best on a particular dataset does not
imply that it is the best for every user within it. In other words, the best recommender does
not exist. For example, in a previous collaboration with an industrial partner, Collaborative
Filtering Item-based was the best overall approach but an important subset of users had
Matrix Factorization as the best performer. Hence the necessity of best recommender selection
for individual user behavior.

Many solutions were proposed to connect the performances of different recommendation ap-
proaches. One of them relies on hybrid recommendation approaches and more specifically
ensemble-learning [227] to combine predictions of all single approaches to obtain a better one.
The main intuition is that errors made by every single approach are compensated by others
[211]. One may agree that these methods may improve the quality of recommendations but
they do not select the best recommendation approach.

A better solution, called meta-learning [67], has received attention in the recommendation
community over the past few years. Its goal is to leverage users and item features to learn
which recommendation approach is preferable. Meta-learners for algorithm selection can be
classified into 3 categories [61]: Global-level which selects the overall best approach for entire
datasets, e.g., [94] builds a meta-model using 30 datasets; Mid-level which selects the overall
best approach for subsets of data, e.g., [84] builds a meta-learner that chooses between User-
based and Item-based collaborative approaches for each user, Micro-level which selects the
best approach for each instance in the data [60, 16].

Contributions. We solve the best recommendation approach problem by exploring a meta-
solution that selects the best approach based on users’ demographics and items’ character-
istics. In our methodology, we assimilate the features as states that describe users’ profiles.
We then develop a micro-level meta-learning methodology that leverages in addition to the
demographics, statistical meta-features of items and users to select the best approach for
different types of (user, item) pairs. We show the effectiveness of the methodology against
single recommendation approaches and Ensemble Learning models. This work was published

CHAPTER 1. INTRODUCTION 4

in IEEE BigData 2021 [42].

1.1.2 Dynamic Individual Behavior

In real-world contexts, users may change their behavior for many reasons. For example,
the emergence of new items, the quality drop of the habitually purchased items, or simply
the influence of social and temporal factors. In addition, each user’s behavior can evolve
differently from the others. Thus, static recommendation approaches can not handle this
temporal dimension and cannot capture the behavioral shift of users.

Motivating Example. Consider Sammy, a cinema lover who has had a premium subscrip-
tion to a streaming platform for several years. Originally, a Western movie fan, Sammy gave
recently his premium account to his brother who loves Romance and Thriller movies. Imag-
ine now that the streaming platform has an integrated standard recommendation system.
Based on past behavior of Sammy, the system would still recommend continually Western
movies even after the change of type of movies recorded by the platform. It may also ignore
Thriller and Romance movies. On the contrary, a dynamic recommendation system would
have learned the change in Sammy’s account interactions and would have been able to com-
bine long-term preferences (Western) and short-term ones (Thriller and Romance) to perform
balanced recommendations.

Challenges. This example shows the importance of modeling temporal changes. The main
challenge is to know how to integrate time into the recommendation approaches and capture
the exact behavioral situations in which users might be. These situations capture both users’
long-term and short-term preferences. This is challenging as dependencies over the multiple
interactions become more complex and less evident especially when a user has a high number of
interactions [252]. It is also challenging because of the large space of situations that the system
should capture and cover. In addition to the combination of the different preferences, the
sequential behavior of users raises the problem of transiting between two different situations.
For example, in the first one, users may favor their short-term interactions but rely on the
long-term in the next one.

Moreover, recommender systems usually optimize a notion of relevance to capture the pref-
erences of users. Relying only on that dimension to generate recommendations may provoke
the phenomenon of filter bubbles [183, 170] where users are isolated from a majority of items
and narrowed into bubbles where the same items are always shown and recommended. This
may also cause a polarization phenomenon, echo chambers [96], and accentuate the long-tail
problem [264]. The long tail problem describes a situation where a small part of items gen-
erates a large part of the interactions. For example, in retail, a small proportion of products
generate a large proportion of sales.

In order to integrate time into recommendations, earlier works proposed solutions based on
a time-decay function [81]. Recent interactions are assigned higher weights than older ones.
This gives more importance to the recent feedback while the past ones are underestimated.
Based on our motivating example, this is not convenient as the user still wants a few Western
recommendations. A second limitation of this method is that it does not capture the seasonal
and cyclical characteristics of some items. Another method was proposed as a solution to these
drawbacks and is based on time-binning [136]. Users’ interactions are split into different time
bins where shorter bins represent the users’ short-term needs and interests and longer bins

CHAPTER 1. INTRODUCTION 5

characterize the long-term ones. One main limitation of these methods is that they consider
each bin isolated from the rest of users’ behavior as each bin is treated separately [198]. This
does not reflect the real environment of users. In fact, users generally interact with items
sequentially where previous interactions influence the next ones. For this reason and despite
the time incorporation in the system to leverage dynamic recommendations, these methods
still consider users’ interactions as static.

To reflect the real world and better model the sequential behavior of users, a new family of
recommender systems [251] was proposed. These approaches are usually based on Markov
methods [7]. These models learn the decision-making of users and their preferences changes
by modeling their interaction process into states. A state represents a specific situation
where a user might be at a given point in time. The goal of the models is to learn how
and when users transition between these states. One main challenge in using these models
is related to applications where the space of states is either large or continuous. The advent
of deep learning methods, and especially Recurrent Deep Learning Networks [251] alongside
the success of Reinforcement Learning [7] helped solve this limitation. In fact, Reinforcement
Learning is based on a Markov Decision Process. It learns a policy function that consists of
a mapping between users’ states and which mimics the performances of the recommendation
system when interacting with users over discrete time steps. One limitation of these models
is that they require more data for training. Moreover, they can also cost in terms of time and
hardware resources. Finally, they may rely on complex architectures which makes it hard to
explain their output.

Contributions. We study, in this thesis, realistic scenarios where user behavior is constantly
changing. We explore three interactive real-world applications where the environment is dy-
namic: Test recommendation in educational environments, Query recommendation for data
exploration, and Multi-sessions recommendation in a shopping environment for example. We
leverage in all applications, Markov models [7]: Multi-armed bandits in tests and query rec-
ommendation and Reinforcement Learning in the multi-session recommendation. One may
argue about the link between these models and contextual recommendation systems [5]. The
difference is that most context-aware recommendation approaches incorporate explicit con-
textual temporal information to define users’ situations. Moreover, several dimensions may
be used, e.g., user location, mood, social situation, or several temporal dimensions (Holidays,
weekends). On the other hand, sequential recommenders leverage temporal information but
do not explicitly observe it. As they study the sequence of interactions, temporal context is
implicitly considered by design. We then constitute a sub-case of context-aware recommen-
dation where context is dynamic and not observable [5].

In addition to that, within each application, we used different dimensions to describe users’
behaviors and their decision-making. In the test recommendation, we defined three dimen-
sions: Expected performance, aptitude, and gap. In the query recommendation, we rely on
entropy and variance in addition to a query distance function to cover and explore the whole
space of queries. Finally, in the multi-session recommendation, we combine relevance and
diversity to avoid overspecialization. We detail each application and its contribution in the
following:

1. Recommendation for Test Assignment. We study the problem of test assign-
ments and recommendations for students. With technological growth, new learning
systems [237, 133] and opportunities have emerged, e.g., tutorials, MOOCs [224]. They

CHAPTER 1. INTRODUCTION 6

aim to provide an efficient and personalized learning experience for students by cap-
turing their competencies and interactions with various learning activities and dynam-
ically adapting learning content to suit their abilities or preferences [243]. Many tools
were developed to either propose a whole adaptive system for skill improvement, e.g.,
Desire2Learn 4, RiPPLE [132], or to help teachers with assessment generation [127].
Another direction studies the detection of students’ mastery [188] and develops criteria
that determine whether a student mastered a skill or not. These are based either on
simple statistics, e.g., NCC (N Consecutive Correct) [131], Moving Average [190], or on
sophisticated techniques that model learners [207, 1], e.g., Bayesian Knowledge Tracing
(BKT) [64] and Latent Factor models [54, 184, 190].

In this first application, we propose an algorithmic work that focuses on crafting ded-
icated strategies that help students improve their skills. We assume that the state of
students is defined by their skill level as well as the difficulties of previous correct and
incorrect tests. Based on that, we formulate three dimensions that leverage the state
of students and capture their learning: expected performance, aptitude, and gap. Ex-
pected performance represents the likelihood that students answer correctly a test based
on previous successes, while aptitude characterizes the progression ability that the test
offers based on the knowledge level of students. Gap captures the learning disability of
students based on previous failures and pushes them to work on their weaknesses. We
frame the assumption that optimizing these three dimensions lead students to a better
learning experience and verify its veracity. Optimizing several dimensions also tends
to offer a more diverse set of items (tests) and avoid targeting students with the same
tests. We propose two solutions to recommend a batch of tests to students in an iter-
ative way with respect to the dimensions. The first solution combines all of them and
solves a multi-objective problem by finding the Pareto [24] candidates. It relies on the
assumption that optimizing all dimensions during the learning process yields the best
gain in knowledge. In contrast to this first proposition where the dimensions are fixed,
we assume that the needs of students are dynamically changing from one iteration to
the next. For example, at the beginning of the process, optimizing for gap is not neces-
sary. We hence propose a solution based on Multi-Armed Bandits [236]. Our solution
chooses, at each iteration of the process, the combination of dimensions to optimize.
We show the efficacy of these adaptive solutions in offering a better learning process
by comparing them against a state-of-the-art solution [158] that does not consider the
states of students and assigns tests in alternating difficulty levels, e.g., assigning easy
tests before medium tests and finally hard tests. Part of this work was published as a
Workshop paper in the 2nd International Workshop on Data Systems Education [46].
Its extension is under review.

2. Recommendation for SQL Groypby Queries. The emergence of new technologies
led to an increase in data generation and collection. To help users understand and ex-
plore this data, one may rely on different analytics, e.g., data summarization [265]. SQL
group-by queries represent a form of these analytics that offer interpretable summaries
of subsets of the data. Such queries provide the ability to group by some attributes
and aggregate by others. In order to convey the results, we propose to couple the
queries with visualization. Visualization is important as it offers an easy distribution of

4https://www.d2l.com/

CHAPTER 1. INTRODUCTION 7

information. This increases the possibility of better understanding the data. Through
visualizations, users may also interact with the results. In this application, we study the
recommendation of SQL group-by queries presented into visualizations called panels.

Many tools were proposed to explore these queries and offer users meaningful panels
that display analytic results, e.g., Qualtrics 5. The drawback of these tools is that
they assume high expertise of the user with a solid background on queries and prior
knowledge of the database. Other solutions were proposed to infer data queries and
recommend visualizations to users [66, 80, 106]. For example, SeeDB [246] relies on
a measure of interestingness to recommend panels. This function of utility favors the
panels that deviate from some references. Another solution, QAGView [256], assumes
a sorting of panels based on a predefined attribute. The drawback of these solutions is
that they assume predefined interesting queries or attributes.

The goal is to develop a solution that targets users with interesting panels by assuming
a low background knowledge about queries and data and also by minimizing their effort.
To the best of our knowledge, this work is the first that learns query recommendations
based on user feedback. In this application, we propose a solution that aims to recom-
mend the panel by leveraging the sequence of users’ interactions. This solution is also
using Multi-Armed Bandit models [236]. Our solution first generates the most effective
SQL query. The results of the query are converted into a visualization panel which is
recommended to the user. Our solution aims to recommend at each iteration a panel
that has never been seen before by the user. To illustrate the functioning of our solution,
we present the following example: Consider an analyst who interacts with our solution in
order to examine movie data. Our analyst is targeted first with a panel that displays the
results of “Select avg(rating), avg(interaction) from movies groupby gender". The ana-
lyst rejects this panel. She gives the following reason: “Bad group-by attribute". This
means that the panel shows analytics that are not relevant to her. In the second itera-
tion, she is targeted with a panel of this query “Select avg(rating), avg(interaction) from
movies groupby location". The analyst accepts this new panel. In the third iteration,
our solution recommends “Select max(episodes), min(episodes), count(seasons) from tv
groupby name". The analyst rejects this panel without mentioning any reason. Our
solution refines then this last panel and suggests “Select avg(episodes), count(seasons)
from tv groupby name" which was rejected again by the analyst. This procedure will
continue until the analyst stops it.

From this example, one may see that our solution generates panels sequentially. The
next recommendation relies on both the answer of the users and the previous panel.
If the user gives positive feedback (acceptance), the next panel is generated using new
attributes that are distinct from the ones previously accepted (Third iteration). This
aims to push the user to explore all the space of possible panels and avoid narrowing her
in a small data region. If the user rejects a panel, our model recommends a new panel
by refining the last one. Furthermore, when rejecting a panel, the user may provide a
reason why. If a rejection reason is given (First iteration), our method then modifies the
last proposed panel accordingly and recommends it (Second iteration). If a reason is not
given, our solution infers it following one of two distinct semantics. The first semantics
uses a distance function between panels. It recommends either a similar panel to the

5https://www.qualtrics.com/support/vocalize/widgets/creating-cx-dashboard-pages/

CHAPTER 1. INTRODUCTION 8

previous one by applying minor changes or a completely different panel by exploring the
space. The second semantic relies on the likelihood of application of each reason. In
this work, we show the importance of our model to reduce the effort of users in creating
dashboards. We also show the effectiveness of the second semantic compared to the first
one. This work was published as a demo paper in CIKM 2021 [69].

3. Recommendation for Diverse Sessions. We study the problem of diverse multiple-
session recommendations. It is known that recommendation approaches tend to rec-
ommend items that are too similar to the ones the users interacted with which may
provoke the phenomenon of filter bubble [183, 170] and overspecialization [204]. As
user’s interests may be complex, highly dynamic, and heterogeneous [53]. Relying only
on similarity and relevance may decrease the quality of recommendations as they do
not offer new content. To avoid this problem, the recommender system has to con-
sider other dimensions that characterize users’ preferences of users like diversity and
novelty [53]. Many solutions were proposed [140, 260, 53] to optimize the diversity in
recommendations. One type of diversity incorporation is re-ranking the original list
of recommendations [266, 52]. The re-raking procedure stops when the diversity of
the list reaches an upper bound. Another approach is Maximal Marginal Relevance
(MMR) [52, 90] selects items that maximize a linear combination of relevance and di-
versity. New methods based on deep learning and Reinforcement Learning were also
proposed [269, 200]. For example, Hansen et al. [110] proposed deep learning models
and a simple Reinforcement Learning ranker that samples items to produce a ranked list
of diverse items. Another diversity-promoting RL model, called SMORL, was developed
by [233] that extends the work of [262] optimizing, in addition to relevance, two more
objectives: diversity and novelty to produce recommendations. One drawback of these
solutions is that they optimize for diversity in a single session and do not capture its
evolution across time. The second limitation is that they assume a fixed and predefined
notion of diversity that does not allow the best item set that gives the highest diversity
score to be obtained.

In this application, our goal is to develop solutions that capture the variation of diversity
between different sessions. More precisely, we aim to select in each session the attribute
that yields the highest diversity. Based on this selected attribute, our solution generates
a list of recommended items. To illustrate that, we consider a user listening to music
through different playlists. Our solution first targets her with a playlist of Eric Clapton’s
songs from different eras (60’s, 70’s, etc) and different genres (Blues, Rock, etc). After
some time, she receives a less diversified playlist composed mainly of Rock music from
the 70s but interpreted by diverse artists. In the end, she listens to a playlist of Blues
songs from a variety of eras. One may observe that our solution selects at each time an
attribute that yields the highest diversity and which differs across sessions.

There exists one work that leverages multi-attribute recommendation diversity [76, 77]
but it is only applicable to a single session while our solution leverages multiple sessions.
By selecting a different attribute each time, we assume a dynamic notion of diversity
that is changing from one session to the next one which assures that diversity is always
maximized. To permit that, we propose two solutions. The first one is a generalization
of standard diversity-based recommender systems. In fact, we extend the MMR [52] and
the re-ranking [266] algorithms to the multi-session context. Our generalization consists

CHAPTER 1. INTRODUCTION 9

of these algorithms iterating over all attributes to find the one yielding the highest
diversity. One may agree that this solution becomes inefficient with a large number
of attributes. Our second solution overcomes this limit by leveraging Reinforcement
Learning. We adapted and extended the method provided by SMORL [233]. Our
solution generates, at each iteration, an (attribute, list of items) pair where the diversity
of the list is maximized by assuming the last session seen by the users as their state.
We show in our work that methods that assume a dynamic diversity are better than
the ones with a fixed one. We also show that the RL-based solution is better at finding
the best trade-off between diversity and relevance. This work was published in IEEE
BigData 2022 [43].

1.2 Collective User Behavior

In addition to their unique and individual behavior, users exhibit global trends when they
interact with the potentially recommended items. Examining these trends at an individual
level has one main limitation: Sparsity. In fact, individual data is generally sparse [6] and may
result in poor pattern discovery. The alternative is to leverage collective behaviors by grouping
users. In fact, grouping users allows sparsity reduction and analysis improvement [175]. One
solution would be to use Group-based recommendation systems [71] but it has one main
limitation: confidence of the results produced by the recommender system [104]. In fact,
predictive models may mislead the users as they can extract patterns that are considered
significant but are not in reality. As a consequence, without a significance test, the models
might extract false insights. Hence the great necessity of relying on user groups and leveraging
hypothesis testing to extract statistically sound patterns and offer significant insights and
discoveries about users’ collective behavior.

Motivating Example. Consider an expert who wants to know how different categories of
users interact with newly released products in an e-commerce platform. In the beginning, the
analyst wants to discover the age groups for which the number of clicks on these products
is greater than a threshold. After selecting the 5 most accurate groups, the analyst explores
the residence states of these groups based on the overall distribution of the ratings they gave
to the products. The analyst wants to select the geographic groups for which the ratings
are not uniform. After selecting the most diverse geographic groups, the analyst desires to
compare the average rating of product types two by two and select the ones that are extremely
dissimilar. At the end of the process, the analyst obtains pairs of new products that have a
minimal number of clicks and for which the rating distribution within each geographic group
is diverse.

Challenges. To realize this example, the system has to apply, at each step, the users’
demographic and product types filters, aggregate over the specified dimension (e.g., clicks,
ratings), and return the best geographic groups. The main challenge is the risk of misleading
the exploratory process. In fact, data groups, that are not significant, may seem interesting.
The system will then return insignificant and meaningless groups to the analyst. To avoid this
problem, we leverage hypothesis testing to verify the relevance of the information. Hypothesis
testing is one of the first statistical inference methods [86] and one of the most used [146].
Widely used in many scientific fields like biology [240], medicine [167], or psychology [218],
hypothesis testing allows us to make probabilistic statements and assure that the results are

CHAPTER 1. INTRODUCTION 10

meaningful with a certain probability of making a mistake (p-value). This p-value should
be smaller than a predefined and fixed value (α), which is usually set to 0.05, to assert the
significance.

Applying hypothesis testing in the motivating example means that many hypotheses are
tested separately as in each step, each hypothesis characterizes one user group. For example,
generating m groups is equivalent to testing m hypotheses. This is referred to as multiple
hypothesis testing [221]. Performing multiple hypotheses has one main challenge. When
multiple user groups are tested, the chance of observing a rare event increases, and hence,
the likelihood of incorrectly returning a significant result increases too. In other words, when
the number of hypotheses increases, the expectation of returning insignificant results also
increases.

The second challenge of realizing multiple testing is the risk of returning results that are not
representative of the input data. In our example, we may explore a small subset of the user
groups and ignore the remaining ones especially when the number of groups is too high. This
may narrow the scope of the returned results and lead the analyst to misleading conclusions.
For instance, in the second step of the previous example, the system may exclusively return
groups from the south of France and ignore the remaining regions.

We address the first challenge by verifying the confidence and significance of the information
returned by each resulting group. Many procedures were proposed to control the error of
returning insignificant hypotheses: Bonferroni correction [30] that controls the probability
of making a false discovery, Benjamini-Hochberg [33] that controls the False Discovery Rate
(FDR), and α-investing procedures [89] that computes the tests on the fly, each with a specific
level of α, by controlling the marginal FDR. We discuss these procedures in more detail in
Section 2.2.

Our work is also related to others that already used multiple hypothesis testing in machine
learning, data mining, data exploration, and visualization. Existing work on customer seg-
ment discovery [189, 107] combines the computational power of pattern mining with multiple
hypothesis testing to find genuine and meaningful patterns in the data. Another idea was
considered in [254] where the authors introduced Subfamily-wise Multiple Testing, a multi-
ple testing correction subjects to a risk budget. A similar idea is considered in the context
of interactive data exploration in [273] where different α-investing heuristics were used [89].
Existing work has also combined machine learning and statistical testing to verify associa-
tions in genome data (e.g. [162]), or compares the performances of different machine learning
classifiers using different datasets [74].

The second challenge is particularly important for large datasets where the number of groups
that pass the test increases. We address it by optimizing for coverage in addition to the
significance and revisiting the conditions under which a hypothesis is tested. By doing that,
we ensure that the returned groups are representative of the whole data. For example, by
maximizing coverage, in the second step of the previous motivating example, the system will
return user groups from all regions of France and does not focus only on a specific region.

Contributions. To the best of our knowledge, no prior work optimizes statistical significance
and coverage to find interesting patterns and insights in data. We formulate ValMin and
CovMax, two generic top-n problems that seek n significant user groups that are represen-
tative of the input data. ValMin optimizes significance while setting a constraint on data

CHAPTER 1. INTRODUCTION 11

coverage. We develop a greedy algorithm to solve the former problem based on Bonferroni [30]
and Benjamini-Yekutieli [34] corrections. We compare this greedy solution to another pro-
posed one that is based on the Subfamily-wise [254] solution. Solving this problem extends
the multiple hypothesis testing by enforcing data representativity but it does not assure the
maximization of coverage. We then optimize the second top-n problem CovMax that aims
to maximize data coverage while controlling significance. We propose two algorithms where
the first one is a greedy algorithm with a provable approximation guarantee which is also
based on Bonferroni [30] and Benjamini-Yekutieli [34]. The second solution is a heuristic-
based algorithm based on α-investing [89]. In these two problems, we encounter different
types of hypotheses as we handle One-sample, two-sample, and multiple-sample tests, and
different dimension aggregation functions (mean, variance, and distribution). Our experi-
ments demonstrate the necessity to optimize coverage for sound discoveries on large datasets,
and the efficiency of our algorithms. This work was originally published in WWW 2022 [45]
and extended to a journal paper published in the Transactions on Large-Scale Data- and
Knowledge-Centered Systems [44].

1.3 Thesis Organisation

This thesis is organized around three main domains of investigation that are demonstrated in
the framework. We pursue the following outline:

1. In Chapter 2, we introduce the concepts related to recommender systems. We cover all
recommendation approaches focusing more on the ones used in this thesis. We present
the different methodologies to quantify the quality of recommendations and the different
metrics used to evaluate them. Finally, we discuss the challenges and limitations and
how existing works propose to tackle and solve them.

2. In Chapter 3, we first investigate the best recommendation approach problem in a
static context. We rely on an existing methodology, meta-learning [67], and propose an
approach that chooses for every instance in the data, the most suitable recommendation
approach to consider based on user profiles. Our approach generalizes existing works to
return Top-N recommendations and leverages implicit and explicit data. We conducted
extensive experiments on four real-world data and compared our approach against single
recommendation approaches and hybrid ones. Our results show the need to leverage
the results of a variety of approaches as the meta-learning methodology provides more
accurate recommendations. This work was published in IEEE BigData 2021 [42].

In this same Chapter, we explore the different real-world applications of dynamic rec-
ommendations:

(a) We develop a greedy solution that solves a multi-objective problem for test assign-
ments in an educational context (Section 3.2.1). We propose a Pareto solution [24]
that relies on Hill Climbing [176] optimizing three dimensions related to the learn-
ing of students. We extend this solution using Multi-Armed Bandits [236]. This
second solution learns at each iteration the dimensions to optimize and generates
the batch of tests according to that. We conducted simulated experiments on
semi-synthetic data and showed that our first approach outperforms a state-of-the-
art solution, Alternate which recommends tests by alternating over the difficulty

CHAPTER 1. INTRODUCTION 12

levels [158]. We also showed that our dynamic extension outperforms the first
solution. This work was initially published as a Workshop paper in the 2nd Inter-
national Workshop on Data Systems Education [46]. Its extension is under review.

(b) We develop a solution based on Multi-Armed Bandits [236] for the query rec-
ommendation problem (Section 3.2.2). We developed a tool that guides users in
generating visualization panels based on groupby analytical queries with the ob-
jective of minimizing their effort and time. We conducted simulated experiments
using real-world data and showed the effectiveness of our solution. This work was
published as a demo paper in CIKM 2021 [69].

(c) We first proposed a generalization of existing diversity-based recommendation so-
lutions: re-ranking [266] and MMR [90] to solve the dynamic diversity problem in
session recommendation (Section 3.2.3). We then leveraged Reinforcement Learn-
ing [236] and extended an existing architecture, SMORL [233], to take into ac-
count multi-session diversity and compared it against standard diversity-based ap-
proaches that do not assume a dynamic notion of diversity. Our extensive experi-
ments on semi-synthetic data show that our solution offers recommendations that
have the best diversity and accuracy trade-off in a quicker time. This work was
published in IEEE BigData 2022 [43].

3. In Chapter 4, we explore hypothesis testing and coverage for discovering Collective Be-
havior. We propose a solution that supports a variety of statistical tests to verify users’
collective behavior. We formulate two generic problems for significant and covering dis-
coveries and propose one solution to solve the former and two to solve the latter. We
extend multiple hypothesis testing corrections to optimize and maximize coverage. Our
extensive experiments on real data show the effectiveness of our proposals in terms of
significance and data coverage. This work was originally published in WWW 2022 [45]
and extended to a journal paper published in the Transactions on Large-Scale Data-
and Knowledge-Centered Systems [44].

4. We conclude in Chapter 5 and propose future directions of this thesis.

Chapter 2

Related Work

2.1 Recommendation Systems

With the expansion of the web and the evolution of technology, the amount of used and
analyzed data has become very large. So much so that it has become difficult for users
to know which products or services to choose. For example, with the spread of streaming
platforms such as Netflix 1, users are asking themselves which movies or series they should
watch. With the emergence and expansion of e-commerce websites, such as Amazon 2, users
struggle to find the appropriate choices from the huge variety of products offered by these
websites. The variety of content and services available on the web and the introduction of
new ones have led to customers and users making poor decisions. The huge availability of
choice, contrary to what one might think, has the side effect of diminishing the well-being of
users [122]. For this main reason, recommender systems were proposed as a solution to solve
the problem of information overload.

Recommender systems have large real-world applicability. They are used to recommend music
on Spotify [2, 159], movies on Netflix [100], products on Amazon [229], friends and people
on Facebook [20], or Twitter [108], and other daily life fields like restaurants [18], points of
interest (POI) [248], or healthcare services [88]. Their popularity is explained by their use
for increasing user satisfaction [134] and user retention [17], and by user loyalty and overall
business revenue.

This section provides an overview of recommender systems, the different methodologies and
metrics that evaluate the quality of recommendations, and the most popular approaches
focusing on the ones that are relevant to this thesis. We raise and summarize the limitations
of standard recommender systems and discuss the ones that are related to this thesis.

2.1.1 Recommender Systems

Recommender systems gained a huge interest and arguably became popular in academia and
in industry after the Netflix Challenge [35] in 2006. The competition was destined for the

1https://www.netflix.com/
2https://www.amazon.com/

13

CHAPTER 2. RELATED WORK 14

community in order to develop systems to predict movie ratings. The objective was to beat
the accuracy of the Netflix model for a prize of 1 Million $.

Since then, many literature works tried to define recommender systems. The most general
one is that of [50]: Any system that produces individualized recommendations as output or has
the effect of guiding the user in a personalized way to interesting or useful objects in a large
space of possible options. Another definition is given by [204]: RS are software tools and
techniques that provide suggestions for items that are most likely of interest to a particular
user.

To predict interesting and personalized items, an RS relies on the interaction history of users
with these items from which their potential preferences are inferred. The inference depends
on the nature of interactions and the type of data the system is using. Indeed, users’ actions
may have two distinct forms: Explicit and implicit.

Data Types

During the Netflix competition, the company released a large movie dataset, a collection of 100
million ratings given by users to a set of movies. Thus, the interaction history of users was in
the form of records explicitly provided by them. These records represent their real preference
judgment of the different movies. This type of feedback is called explicit feedback.

Explicit Feedback. It often takes the form of numerical ratings provided by users to express
their explicit preferences for different items, e.g., a 5-star rating scale. Other forms of explicit
data may exist such as the binary scale [216] (Like, or dislike), or in the form of textual
comments and tags [149].

One main drawback of this type: it is not always available. Collecting this data requires users
to perform an action every time, which might be problematic given the huge digital volume
that users are interacting with on a daily basis. It would be difficult for users to provide each
item with a preference score. As a result, systems can rely on the second type of feedback:
implicit feedback.

Implicit Feedback [174]. It is collected without any intervention or additional actions of
users. Implicit feedback includes search and browsing history, as well as clicks, and purchase
history.

Comparing these two types, it is clear that implicit feedback is more used than explicit one
due to its ease of acquisition. However, it is less accurate as it can be biased and noisy. Also,
there is a trade-off between data quality and quantity. The former has, obviously, better
quality but lower quantity, while the latter has more data but lower quality. They are, in
effect, complementary.

Type of Recommendations

Recommender systems can have two different functions: predicting missing ratings, or recom-
mending a list of items [4].

Rating Prediction. During the Netflix Prize, the company formalized the problem as
"Rating Prediction". It consists of the prediction of the rating that a user might give to an
item, which they have not previously rated. It learns a user utility function by assuming

CHAPTER 2. RELATED WORK 15

that the suitability of an item for that user is related to the rating given by this latter. The
highest-rated items which maximize the utility can be recommended to the user. In other
words, it is the prediction of users’ potential favorite items.

Top-N Recommendation. In general, users are interested in the subsets of items that are
likely relevant to them. For this reason, the top-N recommendation has been developed. It
consists of the prediction of the usefulness of an item to a user, e.g., Will the user watch
that movie or not? It learns a user utility function by assuming the suitability of an item for
that user is related to the relevance of the former. The items that maximize relevance can be
recommended to the user.

2.1.2 Recommendation Approaches

In order to identify the list of items, which may be of interest to users, recommender systems
calculate a utility for each pair "user-item". Items with the highest utility are recommended to
the targeted user. Several algorithms have been proposed, using machine learning, statistics,
graph theory, and information extraction methods, to have a better recommendation quality.
Generally, recommendation approaches are classified according to the formalization and the
estimate of utility as well as the used type of data. This section discusses the most common
classifications in the literature [4]. The reader may also refer to other classifications that were
proposed [51, 205]. Recommendation approaches are classified into these categories:

• Content-Based Filtering: It is based on the user’s own history, user, and item features
to predict similar items to those they were previously interested in.

• Collaborative Filtering: It is based on the user’s interaction history and the interac-
tions of all similar users to predict items that may be relevant.

• Hybrid: It combines both previous approaches using the user’s history and item fea-
tures.

Without loss of generality, in this section, we focus mainly on collaborative filtering approaches
as these are the ones exploited in the thesis.

Content-Based Filtering Approaches

Content-based recommender approaches use content information as features, text about items,
and users to generate recommendations. In effect, these systems rely on the description of
items and the interaction history of users to create their profiles respectively. The idea behind
this approach is to recommend items that have similar profiles compared to the targeted user.
The goal is to users and items profiles. As a user profile is built based on its history, the
approach recommends items that are similar to the ones they previously interacted in.

The general architecture of the approach is presented in [156], and in which the recommen-
dation is based on three main axes:

• Content Analyzer: It is pre-processing of the description of items that can be un-
structured. It also represents the extraction of the relevant information on the items
and represents it in an appropriate format.

CHAPTER 2. RELATED WORK 16

• Profile Learner: It allows the computation of users’ profiles from their interaction
histories. Given the continuous nature of users’ activity and their potential change of
opinion, interactions are collected periodically. So, the profiles of users are updated with
the same frequency. The creation of these profiles is performed through machine learning
techniques, such as Bayes [220], neural networks [26], or decision trees [185]. However, a
huge number of works use the VSM (Vector Space Model) vector formalization and the
TF-IDF (Term Frequency - Inverse Document Frequency) measure [186]. The reader
may refer to [156] for further information about profile learning methods.

• Filtering Component: It selects items that are relevant to the user by matching the
profile of these latter to the ones of all potential items. The match is done using a
similarity function.

Content-based approaches have many benefits. They may offer explainable recommendations
as they can provide, at the same time, the set of relevant content information that led to
the choice of these recommended items. These approaches may be a solution to the Item
Cold-start problem. Newly added items in the system can be recommended without being
rated or purchased by any user. However, User Cold-start represents one of its drawbacks.
A newly added user has to interact with a number of items so that their profile is properly
learned. Another drawback is item content availability. Finally, content-based approaches
tend to offer overspecialized recommendations. Users are overly narrowed into a small set of
recommended items which results in the phenomenon of Filter bubble [183].

Collaborative Filtering Approaches

Collaborative recommender approaches recommend items to users based on their interactions
without taking into account exogenous information about these items or users. This term,
first used in the Tapesty document recommendation [99], means the collaboration between
similar users using their respective interactions to better recommend items. After the Netflix
Prize [35], many advances were made in the field of collaborative approaches [137].

The general idea lies in sharing experiences and opinions between different users. Indeed, these
approaches assume that relevant recommendations to an active user, which may contain items
that the latter has not interacted with, can be made based on the opinions and actions of a
group of similar users. Collaborative recommendations are, therefore, based on the interaction
history and behavior of similar users.

There are two main approaches to collaborative filtering: Neighbourhood-based methods, also
called Memory-based methods, or Heuristic-based methods, and Latent factor models, also
called Pattern-based methods [4]. In addition to the interaction history, neighborhood methods
generally focus on the relationship between items or alternatively between users while model-
based methods, such as matrix factorization, rely on transforming item and user information
into a single latent factor space. The latent space attempts to explain users’ interactions
based on factors automatically learned and inferred from their history. In this section, we are
going to discuss these two types of methods in more detail.

Neighborhood-based Approaches. The best-known and most common approaches to
collaborative filtering are based on the neighbors [173]. They are based on k nearest neighbors
- KNN. GroupLens system [203] is an example that applies the user-based version. This

CHAPTER 2. RELATED WORK 17

version assumes that similar users are interested in the same items. It predicts, for each user,
the items for which they didn’t interact and that are popular for similar users. An analogous
version, based on items and called item-based, was also developed a few years after the user-
based [214]. This one assumes that users are interested in similar items to the ones they
interacted with.

Neighborhood approaches are simple and can offer intuitively explainable recommendations
as they are based on a clear similarity function.

• Similarity Measure. The calculation of similarity has a considerable role in neighbor-
hood methods. These measures allow the selection of neighbors to be used in the prediction.
They are a very critical aspect as they have a significant impact on their quality performance.
There are several similarity measures, we discuss the most commonly used one, cosine simi-
larity.

Cosine Similarity: Given two objects, users or items, a and b, the cosine similarity between
these objects is represented by the cosine of the angle formed between their two vectors x⃗a,
x⃗b:

sim(a, b) = cos(x⃗a, x⃗b) =
x⃗a · x⃗b
||x⃗a||||x⃗b||

For example, in the case of user-based KNN, each individual u is represented by a vector x⃗u,
where xui = rui such that rui is the rating that user u gave to the item i. Therefore, the
similarity between two users u and v is given by :

sim(u, v) = cos(x⃗u, x⃗v) =

∑
i∈Iuv rui × rvi√∑

i∈Iuv r
2
ui

√∑
i∈Iuv r

2
vi

where Iuv is the set of items that both u and v interacted with. The maximum value of
similarity indicates that both users have identical preferences, and the minimum value indi-
cates that they have nothing in common. The reader can refer to [173] for other similarity
measures, e.g., Pearson correlation, Jaccard similarity.

• Neighborhood Selection. The number of neighbors that are selected also has a consid-
erable impact on the results and the performance of neighborhood-based approaches. Tech-
niques are applied to pre-filter the set of neighbors. We discuss some of them. The remaining
ones are mentioned in [173].

Top-N Filtering: The N best similar neighbors are only considered ones. The choice of N
must be very judicious to avoid a large memory consumption if N is large, or the Long
Tail problem if N is very small.

Threshold filtering: Neighbors with a similarity above a threshold Smin are considered.
Despite the challenge of determining the value of Smin, it is more global and flexible
than the previous method.

• User-Based and Item-Based Approaches.

User-Based: It represents the original version of neighbour-based filtering [99]. For each user
u, the inferred rating r̂ui of an item i is determined by the aggregation of all ratings

CHAPTER 2. RELATED WORK 18

given by the neighbors to that item:

r̂ui =

∑
v∈Vi(u)

rvi

|Vi(u)|

where Vi(u) is the set of neighbors of user u that rated the item. This aggregation is
simple but has many drawbacks, e.g., it considers that all neighbors are equal. For this
reason, it has many extended versions, e.g., Weighted aggregation by their similarity.
The reader may explore [173] for all other extensions.

Item-Based: Introduced by [214], this approach infers the rating r̂ui of a potentially recom-
mended item i by calculating the aggregation of ratings given by user u to the neighbors
of i. The neighbors are determined for a fixed user.

r̂ui =

∑
j∈Vu(i)

ruj

|Vu(i)|

where Vu(i) is the set of neighbors of item i that have been rated by u. This may be
extended to a weighted aggregation as explained in [173].

It has been shown that the Item-Based approach gives better recommendations [214] as the
similarity between items tends to be more stable than users’ similarity which might change
over time. Despite the simplicity and explainability of neighborhood-based recommenda-
tions, they have several limitations. In fact, these approaches are sensitive to the data that
are sparse. They also lack in covering the entire items in the dataset. Several approaches
have been proposed to overcome these problems, such as dimension reduction or graph-based
approaches [173]. However, despite these solutions, it has been shown that model-based
approaches handle much better data sparsity and provide more accurate recommendations.
Therefore, they are preferred in recommendation applications.

Model-based Approaches. The aim of these approaches [137] is to create intermediate
latent factors to explain users’ interactions. The principle is to train a model based on user
history and determine values of different parameters, which are used in the prediction of the
utility of each item. These methods tend to find more patterns in the data. Thus, they
provide better recommendations than neighborhood-based methods.

Several methods have been developed, such as neural networks [113, 150], Markov pro-
cess [197], random walks [148], or bandits [239]. The most used methods are matrix fac-
torization [143, 138]. The latter methods are more popular due to the accuracy of the recom-
mendation provided as well as their scalability. In this section, we discuss different methods
of matrix factorization, association rules, deep learning, and reinforcement learning recom-
mendation algorithms.

• Matrix Factorization. The principle of matrix factorization [138] is the representation
of users and items in a common latent space, of dimension d. If all interactions of users and
items are represented as a matrix, the product of the new factors of users and items results in
that matrix. These factors, learned from the data, are used to infer the utility score of each
item for each user.

Given an interaction matrix R, the main objective is to determine the latent vectors pu ∈ Rd,
qi ∈ Rd, which represent the information inferred from R that characterize the preferences

CHAPTER 2. RELATED WORK 19

of user u and the characteristics of item i respectively. The deduction of the utility score
r̂ui of item i with respect to user u is calculated as the inner product of their embedded
vectors:

r̂ui = puq
⊤
i

From this equation, the deduction of R is performed as follows:

R = PQ⊤

where P ∈ Rn×d and Q ∈ Rm×d, and n and m represent the number of users and items
respectively.

The learning goal is to determine the latent matrices P and Q from the interaction matrix R
which are used to reproduce that input matrix by predicting all its unobserved interactions.
Several methods were proposed. They differ in the way to learn the embedded matrices by
either minimizing a point-wise [137] or a pair-wise [202] objective function. We introduce the
ones that were leveraged in this thesis.

Singular Value Decomposition (SVD): SVD [65] is a technique from linear algebra,
initially used for dimensionality reduction. It decomposes the matrix R as follows:

R = PΣQ

where P ∈ Rn×d is the orthogonal left singular matrix. It represents the relationship between
users and learned factors. Q ∈ Rm×d is the orthogonal right singular matrix. It represents
the relationship between items and learned factors. Σ ∈ Rd×d is a diagonal matrix containing
the d singular values on its diagonal.

Using SVD for recommendations has one main drawback: it requires a full matrix to be
decomposed and is undefined in the presence of unknown values. This may be problematic
as interaction matrices are sparse and many user-item values are missing (The user did not
interact with that item). Several solutions were proposed to address this issue by either
replacing the missing values with zero [213] or with an aggregation per user or per item [141].
These solutions lead to a dense user interaction matrix which can become computationally
expensive. It may also lead to inaccurate solutions since filling the matrix might falsify the
represented concepts [11]. Another solution proposes [137] to learn the factors only on known
interaction through a point-wise objective function that minimizes prediction error. The
predicted rating r̂ui of a user u to an item i is set as:

r̂ui = µ+ bu + bi + puq
⊤
i

where bu, bi, and µ represent user bias, item bias, and overall bias respectively. If the user
u is unknown, the bias bu and the factors pu are assumed to be zero. The same applies to
item i with bi and qi. In order to learn the model parameters (bu, bi, pu and qi), the following
regularized squared error is minimized using stochastic gradient descent [41]:∑

(u,i)∈Rt

(rui − r̂ui) + λ(b2i + b2u + ||qi||2 + ||pu||2)

where Rt is the set of all known interactions and λ the regularization parameter.

CHAPTER 2. RELATED WORK 20

Another version of SVD was proposed in the literature: Non-Negative Matrix Factorization
(NMF) [268]. This approach is similar to the original SVD but it restricts the values of
user and item factors to only non-negative values. It has been shown that it gives good
performances [98].

Alternating Least Squares (ALS): It has been shown in some works that using only
observed interactions present in matrix R to factorize it leads to more efficient results [238].
This is done by minimizing a point-wise objective function which is the squared error of all
observed interactions: ∑

(u,i)∈Rt

(rui − puq⊤i)2 + λΩ(P) + λΩ(Q)

where Rt is the set of all known interactions, λ the parameter of regularization, Ω(P), and
Ω(Q) the regularization terms. Regularization is applied to avoid overfitting.

Minimizing this objective function can be done using stochastic gradient descent [41] or alter-
nating least squares [31]. We leverage the latter as it has been used in the past in the context
of implicit data [120].

The principle of ALS is to fix one of the two unknowns, pu or qi which makes the function
convex for the second one. The calculation is then done by alternating the choice of the
parameter to be fixed at each iteration. This method [31, 11] relies on the execution of the
following two steps, until convergence:

1. To optimize pu, the vectors of the matrix Q are fixed. The optimal value of P , obtained
after solving the least squares, is:

P = (QR⊤)(QQ⊤ + λI)−1

2. The same method is used to determine Q. The formula for calculating this matrix is:

Q = (PR)(PP⊤ + λI)−1

where I represents the identity matrix.

Bayesian Personalized Ranking (BPR): It is an optimization principle designed to deal
with implicit feedback [202]. BPR falls into the category of “learning-to-rank” algorithms as a
general framework for pairwise learning. Unlike other matrix factorization approaches, BPR
uses pairwise item preferences as training data and optimizes for correctly ranking item pairs
instead of estimating scores for single items.

This assumes that if a user u expressed an implicit preference, by interacting with an item
i, then u prefers i over all other items that they did not interact with. No preference can be
inferred for two items that the user interacted with or two items the user did not interact
with. Hence, a training instance is a triple (u, i, j) which reflects that customer u prefers item
i over item j, denoted i >u j.

The set of all inferred preferences DS , i.e., the training data used for optimization, is defined
as follows:

DS = {(u, i, j) | i ∈ Iu ∧ j ∈ I \ Iu}

CHAPTER 2. RELATED WORK 21

where Iu is the set of all items that the user interacted with while I is the set of all items.
The generic optimization criterion of BPR is given as:

OPT (DS) = argmaxΘ
∑

(u,i,j)∈DS

ln σ(x̂u,i,j)− λΘ||Θ||2

Where σ(x) = 1
1+e−x is the logistic sigmoid function, x̂u,i,j is the pairwise prediction for user

u and items i, j, Θ is a parameter vector of an arbitrary model and λΘ, is a model-specific
regularization parameter to prevent over-fitting.

x̂u,i,j is a real-valued function of Θ which captures the relationship between user u and items
i and j. The estimation of x̂u,i,j is performed through matrix factorization but since it can
only predict single scores, the estimator is decomposed into single prediction tasks: x̂u,i,j =
x̂u,i − x̂u,j . The optimization uses Stochastic Gradient Descent with a bootstrap sampling of
training triples with the following update rule [202] (α is the learning rate):

Θ← Θ+ α

(
e−x̂u,i,j

1 + e−x̂u,i,j
.
∂

∂Θ
x̂u,i,j + λΘ.Θ

)
(2.1)

• Association Rules. The association rule-based model [10] is a frequently used technique
to analyze the purchasing pattern of users. The goal is to find all items that are purchased
together in the same transactions. It then predicts the purchase of an item by a user based
on that co-occurrence relationship between all items.

The association rules take the following form: x =⇒ y which means that whenever users
purchase a set of items x, it is likely that they will also purchase the set y. Generally, the
main objective is to find all relevant association rules for a given user u. The most intuitive
approach is to identify all possible rules before filtering the ones that are irrelevant. Given
its considerable cost, several optimization techniques have been developed that help minimize
the number of rules to be created, e.g., Apriori method [114].

The bi-gram association rules are a simple example of this model. The rules are constructed
so that x and y contain only one item (i =⇒ j). This method builds an association matrix
A, from the interaction one R, where each entry ai,j corresponds to the confidence of the
association rule i⇒ j, estimated as follows:

conf (i⇒ j) =
RT

•iR•j
||R•i||1

, ||R•i||1 =
n∑

l=1

|Ri|

The confidence represents the frequency of occurrence of j in transactions where i appears.
To generate the recommendations for a user u, the bi-gram approach first identifies a set of
association rules of the form i⇒ j, where i ∈ Iu, the set of all items that the user interacted
with. It then recommends the items with the highest score values:

score(u, j) =
∑
i∈Iu

conf (i⇒ j)

CHAPTER 2. RELATED WORK 22

Despite the obvious connection between this method and the recommender systems, its use
remains limited [13]. However, few works used it for performing item recommendations, es-
pecially in e-commerce platforms [215]. Another work [194] conducted an experimental study
comparing the performance of various collaborative filtering approaches, including association
rules, on a purchase dataset coming from a French building supplies chain.

• Deep Learning Approaches. Deep learning has become the method of choice in several
domains [166, 163, 139, 247]. The field of recommender systems does not make an exception
as it is widely used in recent years [70]. Several works on algorithmic aspects of recommender
systems are based on leveraging Neural Networks as a core technique. A classification of these
approaches was proposed by [269] based on the different neural networks:

Multilayer Perceptron: These approaches extend existing recommender methods, e.g.,
Matrix Factorization by adding nonlinear transformation. Neural collaborative filtering
(NCF) [113], and Neural Network Matrix Factorization (NNMF) [83] generalize Matrix
Factorization by replacing the inner product with a neural architecture that can learn an
arbitrary function from the data. They assume as input the one-hot identifier of the users
and items and predict either the ratings, in the case of explicit data, or the relevance
in the case of implicit data. Other work extended pairwise ranking methods [231] and
factorization machines [105].

Autoencoder: It exists two ways to apply autoencoders to recommendations: learn lower-
dimensional latent vectors at the bottleneck layer [152] or fill missing values of the R
in the reconstruction layer [217]. Collaborative Variational Autoencoder (CVAE) [150]
considers both content and interaction information. It learns latent vectors from con-
tent data and relations between users and items from both content and interactions.
Variational Autoencoders for Collaborative Filtering (Mult-VAE) [152] is exclusively
designed for implicit data. It learns the latent space by approximating it with a proba-
bilistic distribution.

Convolutional Neural Networks: These models are either used to extract features, e.g.,
image sources [253], audio sources [242], or video sources [144]. CNNs were also used
to extend NCF [113] resulting in a new method called ConvNCF [112]. The CNN was
used to capture the correlation between the user and item embeddings.

Recurrent Neural Networks: They are suitable for session-based and sequential based
recommendations [251]. For example, GRU4Rec [115] is a session-based model that was
proposed to model the order and dependencies between items in each session and infer
the items that compose the next session. Recurrent Recommender Network (RRN) [259]
is a sequence-based method that uses LSTM to capture the seasonal evolution of items
and changes in user preferences over time.

The reader can refer to [269] for other deep learning recommendation approaches. These
methods offer many advantages as nonlinear transformations which makes them capable to
capture complex user-item interaction patterns. They also can provide a better learning
representation as they can consider, simultaneously, heterogeneous content information, e.g.,
images, and text. However, a recent piece of work at ACM RecSys’19 [70] performed an
experimental study and found that most deep learning approaches do not perform better than
”simpler” algorithms such as Item-Based collaborative filtering. They also lack interpretability
and explainability as they behave like black boxes.

CHAPTER 2. RELATED WORK 23

Collaborative filtering approaches have many benefits. Unlike content-based approaches, they
only need the interaction history of users and do not require additional content about users
and items. They can also recommend relevant items that the user would not have found on
their own which reduces the overspecialization of recommendations. However, item and user
cold-start represents one of its drawbacks. They also need a significant amount of data in
order to fully train the models.

Hybrid Approaches

Collaborative and content-based filtering approaches are complementary, each with its own
challenges. In order to avoid the disadvantages of both approaches and to take advantage
of their benefits, the hybridization of both techniques has become popular in the research
community of recommender systems [51]. Intuitively, an item is recommended to a user only
if its description is similar to the user’s profile and if the neighbors of the user interacted with it
(respectively, the user interacted with the neighbors of items). From the several classifications
of hybrid approaches that were proposed in the literature [50, 4], we leverage the one proposed
by [4]:

• Combining separate recommendations: The recommendations, made separately,
by the two types of approaches are combined either by using a linear function [58] or by
choosing in each case the best of the two approaches according to a predefined quality
metric [38].

• Adding content characteristics in collaborative approach: An intuitive method
is the incorporation of the user’s profile, inferred from the content-based approach, into
the designation of the neighborhood in the collaborative approach [22].

• Adding collaborative characteristics in the content-based approach: A method
is to apply collaborative filtering on a group of profiles inferred from the content ap-
proach [230].

• Unified recommendation approach: Several methods have been proposed as [192,
63].

Apart from this classification, there is another one in the literature such as [50] which assigns
seven different categories. In [161], it is shown that hybrid approaches offer more accurate
results than collaborative or content-based filtering.

2.1.3 Recommendation Evaluation

The main objective of the evaluation is to measure the ability of recommender systems to
achieve their objectives. For this, the choice of the appropriate methodology, criteria, and
metrics is crucial.

Methodology of Evaluation

It defines the evaluation protocol used to test the approaches. Three methodologies were
defined in [104]:

Offline Methodology. This method is the most popular and used one in the literature as
it allows for the comparison of several approaches at a low cost and without any interaction

CHAPTER 2. RELATED WORK 24

with real users. It exploits users’ interaction history to simulate their behaviors by assuming
that they remain the same from data collection to system deployment.

Generally, this methodology splits the data into three subsets: Training subset, mainly
used to reproduce the user’s behavior towards the items and train the recommender approach,
Validation subset, mainly used to fine-tune the parameters, and Test subset, with which
the approaches’ performance will be inferred. The choice of the split is crucial as it has a
considerable impact on the quality of recommendations. It has to be determined according
to the type of the problem and the data available from the several proposed procedures. We
report two of them. The reader can refer to [104] for more.

Random split: The data is randomly split, after shuffling, according to fixed percentages for
each subset. An interaction can only be found in one and only one subset.

K-fold cross-validation : This method is more sophisticated than the previous one. It consists
of separating the data into k subsets. A cross-validation is applied by choosing one of the
subsets as the test set and the union of the remaining ones as the training set. This operation
is repeated k times by changing the test set each time.

The main drawback of this methodology is that it does not capture the influence of the
recommender systems on users. In addition, it is only suitable for a limited number of metrics.
This is why it is not sufficient to determine the quality of an approach of recommendation.
Other methodologies that consider the real involvement of users during the test phase are
proposed.

User Study. In this methodology, the attitude of the users is recorded as they perform
controlled experimental tasks. Quantitative results, such as the accuracy of recommendations
and time reaction, can be deduced. The other advantage of this method is that it provides
answers to qualitative questions (Explicit feedback from users), which gives the possibility of
results interpretation.

Its main drawback is the bias of collected data as the subjects (users) know they are recorded.
Second, the number of users, participating in the study, should be small to avoid time-
consuming. In addition, the sample of users must be representative of the population targeted
by the system to allow for good generalization.

Online Methodology. This methodology provides the most concrete results, due to its use
by real users in a real environment. Therefore, it requires the deployment of all approaches.
In the online evaluation, the comparison is made with respect to the change in user behavior
when interacting with different approaches. For example, one approach outperforms another
if a user selects its recommendations more often than the other.

An example of this methodology is the A/B test. Having two approaches, usually the current
and new versions of the same system, user traffic is randomly distributed between them.
The choice to adopt the new approach is made after calculating and analyzing the recorded
metrics.

In some cases, these experiments may have a negative influence on the system if the recommen-
dations of the new approach are not relevant. To avoid this risk, it is best to conduct an online
evaluation after an offline one, to ensure an average quality of candidate approaches.

CHAPTER 2. RELATED WORK 25

Criteria of Evaluation

Given the development of recommender systems in different fields, their evaluation varies
according to the nature of the problem. The choice of criteria must be judicious, as each
criterion responds to a specific property. The overall performance of the approach is the
trade-off of the multiple criteria. We discuss in this section three criteria. The remaining ones
can be found in [104].

Accuracy. It is the most discussed criterion in the literature. It represents the utility of
an item for a user. Intuitively, the approach preferred by users is the one that has better
accuracy. Several metrics are used to calculate it and are divided into two classes:

Prediction accuracy metrics: These metrics measure rating prediction approaches. They
measure the error between the real and the predicted ratings [257]. It includes:

• Mean Absolute Error (MAE): measures the average absolute deviation of ratings’ errors
contained in the test set T :

MAE =
1

|T |
∑

(u,i)∈T

|rui − r̂ui|

where ru,i is the real rating given by user u to item i and r̂u,i is the predicted rating.

• Root Mean Squared Error (RMSE): it relies on the Mean Squared Error:

RMSE =

√√√√ 1

|T |
∑

(u,i)∈T

(rui − r̂ui)2

Extension of these metrics, e.g., Normalized MAE/RMSE, can be also used in specific situa-
tions.

Top-N metrics: Initially borrowed from information retrieval, these metrics measure the
quality of top-N recommendation lists. Precision and recall are the most used [65]. For a
recommended item, four outcomes, shown in the table 2.1, are possible.

Table 2.1: Confusion Matrix

Recommended Not Recommended
Relevant True Positive (TP) False Negative (FN)
Irrelevant False Positive (FP) True Negative (TN)

• Precision: it measures the proportion of recommended items that are relevant. Given a
user u and a list of N recommended items:

Precisionu@N =
TP

TP + FP

• Recall: it measures the proportion of relevant items that are recommended:

Recallu@N =
TP

TP + FN

CHAPTER 2. RELATED WORK 26

As N increases, recall increases as a larger recommended list can contain more relevant
items, but precision decreases. The F1 Score measures the balance between them:

F1u@N = 2× Precisionu@N ×Rappelu@N
Precisionu@N +Rappelu@N

Additional metrics can be used for ranked recommended lists. These metrics measure, in
addition to the relevance, the ranking quality of items. We report Discounted Cumulative
Gain and Mean Average Precision.

• Discounted Cumulative Gain (DCG) [125]: it considers that better-ranked items give better
satisfaction.

DCGu@N =
N∑
i=1

relui
log2(i+ 1)

where

Pertinenceui =

{
1, if item of rank i is relevant for u
0, otherwise

• Mean Average Precision (mAP) [263]: It measures the average of all precisions in the
positions where an item is relevant.

mAPu@N =
1

N

N∑
k=1

Precisionu@k × reluk

Other measures of accuracy like MRR, ROC curve, and hit rate can be used [104].

Diversity. It relates to the internal differences within the recommended list. If a list is
diverse, the items within it are different from each other. Several metrics are used to calculate
it [53, 140], and we report the most used one.

• Intra-list distance (ILD): It is defined as the average pairwise distance of the items in the
recommended list S.

ILD(S) =
∑

i∈S
∑

j∈S\{i} d(i, j)

|S|(|S| − 1)

where d is a distance function.

Novelty. It consists of the recommendation of items that the user is not aware of [135]. In
other words, the recommendation does not take into account items that the users interacted
with.

2.1.4 Limitations

Although research and development in the field of recommender systems has made consider-
able progress in terms of improving user satisfaction, due to the improved quality of recommen-
dations, it has also highlighted several limitations that need to be specifically addressed [204].
These limitations are apparent when recommender systems are actually deployed in real-world
and industrial applications. For example, the winner of the Netflix Prize [32] was never used

CHAPTER 2. RELATED WORK 27

in a real-world system as it was time and hardware expensive to deploy 3. We enumerate
briefly some classical limitation before discussing others in more detail. Data sparsity is
caused by the interaction of users with a small subset of items. Another limitation is cold
start. It is caused by the evolution of the system and the constant adding of new items and
the arrival of new users. Solutions were proposed to address it [93] but it is still a ubiquitous
problem. There are more limitations [204] like popularity, or privacy. We will focus on the
ones we tackle in this thesis.

• Best Recommender Selection: Of all open problems in recommender systems, the chal-
lenge of selecting the best recommender is the most important and less studied. Several
solutions were proposed to choose the best performer for either a dataset [94], a group
of users [84], or each instance of the data [16].

• Static Recommendations: User preferences are changing across time as new items emerge
and the temporal temporal dynamics of certain items, e.g., seasonal items. Standard
recommendation approaches tend to use all historical user-item interactions to learn
each user’s short and long-term preferences. This produces static recommendations
as it assumes that all users’ interactions are equally important which may not be the
case in real-world cases. Many solutions were proposed to either incorporate temporal
dynamics into standard recommenders [136], use sequence-based models [251], or rely
on Reinforcement Learning [272, 178, 271].

• Overspecialization: One of the effects of recommendations on users is to provoke the
phenomenon of filter bubble [183, 170] which may also cause a polarization phenomenon
called echo chambers [96]. In fact, recommendation approaches tend to recommend
items too similar to the ones the users interacted with. Relying on other optimiza-
tion objectives constitutes a solution to overspecialization, e.g., diversity [90, 233], nov-
elty [53].

• New recommendation tasks: As discussed in [204], recommender systems are mainly
focused on simple and inexpensive items recommendations such as music, movies, or
books, while other systems, e.g., educational systems and databses, with atypical items
are not studied enough. Designing recommendation approaches for these systems raises
different challenges like understanding the domain knowledge and the user decision-
making process. Addressing new types of recommendations in different domains may
be beneficial in opening many new and interesting research lines.

• Scalability: Many works studied the scalability of recommenders [228]. In fact, these
approaches should have the possibility to scale well with the increase in the number of
users and items. The second reason is that, when interacting with a real-world system,
users expect reactivity when receiving recommendations.

In this section, we proposed an overview of recommender systems, the different approaches,
and measures of evaluation. We also highlighted a few limitations and challenges that need
to be addressed. In the scope of this thesis, we propose solutions to overcome these limi-
tations. We first propose a meta-learning methodology [67] to solve the best recommender
selection problem. Then, to be consistent with real-world environments, we rely mostly on
dynamic recommenders. We designed new approaches for different recommendation tasks:

3https://netflixtechblog.com/netflix-recommendations-beyond-the-5-stars-part-1-55838468f429

CHAPTER 2. RELATED WORK 28

Test recommendations, SQL query recommendations, and session recommendations relying
on Multi-armed bandits, or Reinforcement Learning [236]. Within each task, we leveraged
different dimensions that characterize users’ behavior in order to avoid overspecialization and
filter bubble [183].

2.2 Multiple Hypothesis Testing

The rapid growth of collected data generates the need for advanced analysis methods to
extract different insights and patterns between users and the items. One of these methods
is Hypothesis testing. It is one of the first statistical inference methods [86] and one of the
most used [146]. In this thesis, we used hypothesis testing to verify the existence of patterns
of different users’ groups. We rely on multiple hypothesis testing as we encounter multiple
groups. In this section, we briefly introduce the concept of hypothesis testing. Then we
present the multiple hypothesis problem and the different solutions to solve it.

2.2.1 Hypothesis Testing

The main idea of hypothesis testing is to test whether a given data supports a certain quan-
titative statement, referred to as "hypothesis" [86]. This decision-making involves comparing
two different hypotheses: null hypothesis (H0) and alternative hypothesis (Ha). Both hy-
potheses frame distinct observations that are exclusive. For example, in one of the scenarios
we test in our work, the hypotheses are:

• H0: The average ratings of young male users for Hip-Hop music is equal to 3.5 on a
scale of 5.

• H0: The average ratings of young male users for Hip-Hop music is greater than 3.5

The goal of the test is to decide whether the null hypothesis is accepted or rejected. In the
case where it is rejected, the alternative hypothesis is accepted. To make that decision, a test
is applied on the null hypothesis H0 with always the assumption that it is true (accepted).
The test outputs a p-value that represents the probability of observing more extreme values
than the observed ones. It also represents the probability of rejecting a true null hypothesis.
The p-value is compared to a threshold value, α ∈ [0, 1], and the null hypothesis is rejected
if and only if p-value < α. The value of α is usually set to 0.05 or 0.1 [86]. In the previous
example, the p-value of the null hypothesis test is 5.2e−7 which means that the young male
users that are part of the data give an average rating higher than 3.5 for Hip-Hop songs
(Accepting the alternative hypothesis). This result represents the type of trends and patterns
our solutions presented in Chapter 4 extract from users’ groups.

2.2.2 Multiple Hypothesis Testing

In real-world applications, usually, more than one hypothesis is tested. In fact, in our applica-
tion, as multiple groups are encountered, and each group is linked to one hypothesis, multiple
hypotheses may be tested. This may raise the multiple hypothesis testing problem.

The multiple testing problem is an issue in statistical inference that arises when one assesses
the significance of multiple hypotheses simultaneously. This challenge is particularly relevant

CHAPTER 2. RELATED WORK 29

in scientific experiments [240], medical studies [167], and data-driven investigations [273]
where numerous hypotheses are tested concurrently.

The essence of the problem lies in the increased likelihood of obtaining false hypothesis re-
jections (or false positive errors) when multiple tests are conducted without appropriate ad-
justments. As the number of hypotheses tested rises, the probability of erroneously rejecting
at least one true null hypothesis also escalates, potentially leading to increased rates of false
discoveries. For example, in genomics testing [162], researchers may examine the expression
levels of thousands of genes simultaneously. Each gene represents a distinct hypothesis, and
testing them without appropriate corrections can lead to an increased likelihood of reporting
false positives.

The fundamental aim is to draw meaningful findings from data by evaluating whether observed
patterns are statistically significant. For example, we want to find all the groups that have
an overall rating higher than 4 for a given type of product. The pattern is related to the
average of ratings. As multiple groups are involved, we aim to select the real meaningful ones.
However, when these multiple comparisons are applied, the likelihood of returning at least
one group by chance alone becomes higher, necessitating more attention to the interpretation
of individual p-values.

Several methods have been proposed to address this problem, reflecting the importance of
mitigating the increased risk of false positives: Family-wise error rate [30], False discovery
rate [33], and α-investing [89] procedures.

Family-wise Error Rate Procedures

The Family-wise error rate (FWER) procedures are methods that control the probability
of making a false discovery (false positive) when testing multiple hypotheses. It consists in
adjusting the significance level α for each individual test. From the several solutions that
were proposed to control the FWER, we report the ones that are relevant to our work:

Bonferroni Correction [30]. This method adjusts the threshold α by dividing it over the
overall number of comparison tests. If we consider m the number of tested hypotheses, a null
hypothesis H0 is rejected if and only if the p-value of its test is lower than α

m . This method is
too conservative and potentially leads to an increased likelihood of the rate of false negatives
(The accepted hypotheses that are false).

Šidák Correction [225]. This method has the assumption that all the tested hypotheses
are independent. A null hypothesis H0 is rejected if the p-value of the test is lower than
1−(1−α)

1
m . This method is less conservative and stringent than Bonferroni but the difference

is slight. For example, by assuming an α = 0.05 and m = 10, Bonferroni-adjusted level is
0.005 and the Šidák-adjusted level is approximately 0.005116.

SubFamily Correction [254]. This method also controls the FWER where hypotheses are
organized into families. One null hypothesis H0 is to be rejected in each family. The procedure
has two steps:

• Step 1: finds r∗ as

r∗ = argmax
r

(
r∑

i=1

pmin
i · |Fi| ≤ α) (2.2)

CHAPTER 2. RELATED WORK 30

where r is the number of families, Fi is the ith family and pmin
i is the smallest p-value

in that family. r∗ is the perfect number of families.

• Step 2: Reject hmin
1 , ..., hmin

r∗ , where hmin
i is the rejected hypothesis of family Fi.

This method is less conservative than the previous ones but has many limitations. The main
one is that many significant hypotheses may be part of the same family while other families
may contain only insignificant ones.

Other FWER corrections were proposed in the literature like Tukey [241], Holm [117]. The
FWER procedure is not without its challenges. Critics argue that stringent control of the
family-wise error rate may lead to an increased likelihood of the rate of false negatives, where
true effects are missed due to overly conservative adjustments. Moreover, this procedure is
hardly related to the overall number of tests. One can not use it when computing an infinite
or previously unknown set of tests.

False Discovery Rate Procedures

In recent years, more sophisticated methods have been developed to address the limitations
of traditional FWER procedures. The concept of false discovery rate (FDR) has gained
prominence, offering an alternative perspective by controlling the expected proportion of false
positives among the declared significant results. More precisely, the FDR is the expected ratio
of the number of false positives to the total number of rejections of the null. Unlike FWER
procedures, FDR procedures allow for a more liberal approach which results in an increase of
the test power [221], at the cost of increased numbers of false positives.

Several solutions were proposed to control the FDR. In all of them, the hypotheses are listed
and ranked in the ascending order of their p-values. By assuming m hypotheses: H0, H1 ...
Hm, p0 ≤ p1 ≤ ... ≤ pm (pi if the p-value of the ith hypothesis). We report the most known
procedures:

Benajmini-Hochberg Correction [33]. This correction works in two steps:

• For a given significance level α, find the highest k such that: pk ≤ α. km
• Reject all the hypotheses that have a rank i ≤ k: H0, H1 ... Hk.

One needs to note that this procedure is valid if and only if all the m hypotheses are inde-
pendent. Because of this assumption, the following correction was proposed.

Benajmini-Yekutieli Correction [34]. This method is similar to the Benajmini-Hochberg
Correction except for the violation of the independence rule. It follows the same two steps

where in the first one, the highest k is chosen such that: pk ≤ α. k
m.c where c =

m∑
i=1

1
i

Other methods were proposed to control FDR like Storey-Tibshirani correction [234]. Despite
their advantages, FDR procedures are most effective in situations where the identification
of potential discoveries outweighs the risk of occasional errors [107]. In the cases, where
the control of false positive probabilities has to be more stringent, FWER procedures are
better. In addition, similarly to the previous procedure, FDR is hardly related to the overall
number of tests. One can not use it when computing an infinite or previously unknown set
of tests.

CHAPTER 2. RELATED WORK 31

α-investing Procedures

α-investing procedures represent an innovative approach to multiple testing that aims to
improve the power of hypothesis testing while controlling the overall error rate [89]. This
procedure builds upon the principles of the false discovery rate one and introduces dynamic
elements to it.

Instead of fixing a pre-determined level of significance, α-investing adapts the threshold dy-
namically during the whole testing process. The core idea is to invest statistical significance
in promising hypotheses. This adaptability distinguishes α-investing procedure from the con-
ventional approaches discussed before and allows it to capitalize on the variability inherent in
large-scale data exploration.

The procedure begins by assigning an initial budget α. As hypotheses are tested, the procedure
dynamically allocates parts of the budget to each test based on the evidence accumulated.
If the test fails to reject the current null hypothesis, the allocated budget to that test is
lost and the remaining unspent alpha is reallocated proportionally to all remaining tests.
On the other hand, if a test reaches statistical significance, the invested alpha is reclaimed
and can be reinvested in subsequent tests, ensuring continuous adaptability to the evolving
evidence.

One of the advantages of this procedure is its adaptability and its independence from a prefixed
number of tests. The procedure is well-suited for scenarios where the sizes and patterns are
not known in advance. Moreover, it has the potential for a better use of the significance
budget α as it prioritizes and invests more in hypotheses that show promise, adapting to the
data patterns as they emerge.

Many α-investing policies for investing the budget were proposed in the past [273]. We report
the ones that are relevant to our work:

• β-Farsighted: it ensures that at each step a fraction β of the available α-wealth is
preserved for future tests.

• γ-Fixed: it assigns a fixed budget defined as a function of γ for each performed test.

• δ-Hopeful: it assigns the whole current available α-wealth to each hypothesis with the
hope that at least one of the next δ null hypotheses is rejected.

• ϵ-Hybrid: it adjusts the budget assigned to the tests based on estimated data random-
ness and chooses between γ-Fixed and δ-Hopeful using a threshold ϵ.

• ψ-Support: it adjusts the budget of each hypothesis based on its support population,
i.e., the number of data points that are used to perform the test.

This methodology is particularly pertinent in the context of large-scale studies as it permits
testing hypotheses on the fly. However, this procedure has a few limitations. Its success
depends on the policy of budget allocation and the rate of reallocation. In addition to that,
some policies rely on different parameters. One should appropriately tune these parameters
to ensure a better reliability of the results. Mismanagement of these parameters can lead
to an increased risk of false discoveries or, conversely, an overly conservative approach that
sacrifices the power of the tests.

CHAPTER 2. RELATED WORK 32

In this section, we proposed an overview of the multiple hypothesis testing procedures that
adjust the significance level α to minimize the rate of false discoveries. We also highlighted a
few limitations and challenges of each procedure. In the scope of this thesis, we relied on these
procedures to study the collective behavior of users. We formulated two generic problems that
optimize for tests significance and the coverage of all users’ groups. We proposed two greedy
algorithms by extending FWER and FDR procedures and a heuristic solution by proposing
an α-investing policy that maximize coverage. This work was originally published in WWW
2022 [45] and extended to a journal paper published in the Transactions on Large-Scale Data-
and Knowledge-Centered Systems [44].

Chapter 3

Individual User Behavior

In this chapter, we explore the analysis of individual user behavior with recommenders. In
fact, recommendation systems have permeated our lives and are used by a variety of ap-
plications to serve the best content to users. In practice, recommendation systems should
capture the change in users’ preferences over time to generate relevant recommendations.
These systems need to correctly model the interactions of users in states in which they may
find themselves. In this chapter, we first investigate the use of users’ states to extend stan-
dard recommenders and propose a meta-learning solution to the best recommender selection
problem in Section 3.1. We then propose different solutions of recommendations in a dynamic
context. We explore several real-world applications: Test Recommendation (Section 3.2.1),
SQL Groupby Queries Recommendation (Section 3.2.2), and Diverse Session Recommenda-
tion (Section 3.2.3).

3.1 Static Recommendations

In this section, we investigate how leveraging users’ profiles and users’ behavioral states im-
pacts the output recommendations. To do so, we propose to study a less popular recom-
mendation problem: Best recommender selection. In fact, despite the proliferation of recom-
mendation approaches, the question of which recommender works best remains widely open.
We propose a methodology based on meta-learning [67] that leverages users’ profiles and
states and chooses among several recommendation approaches, which one is best suited for
predicting the preference of a user for an item. This work was published in IEEE BigData
2021 [42].

3.1.1 Motivation: Best Recommender Selection

Consider an industrial company that wants to integrate a recommender system into its web
application. The established approach to determine which recommender to implement to serve
users with relevant recommendations is to repeatedly try a pool of existing recommendation
approaches and to choose the one yielding the best results according to some predefined eval-
uation measures. This relies on comparing recommendation approaches by reporting their
average mean performance across all test users. One may agree that this brute-force solu-
tion is expensive in terms of time, hardware, and human resources. In addition, this only

33

CHAPTER 3. INDIVIDUAL USER BEHAVIOR 34

gives an aggregated measure of which recommendation approach performs best. It does not
consider the users and items individually. As an example, assume a pool of 3 recommen-
dation approaches: a deep learning approach Multi-VAE [152], Item-Based Collaborative
Filtering [214], and Content-Based Filtering [156]. The company aims to identify which
approach to deploy on their data. An empirical study was made and the engineers observed
that the Item-Based CF approach performs best overall. This study was done by averaging
the performances of all users on a chosen evaluation measure. However, the team in charge
observed that Content-Based Filtering is best for users who leave a lot of textual com-
ments. They also observed that Multi-VAE approach is best for users who generate many
interactions with items. They concluded that despite Item-Based CF being the best over-
all approach, there exist, users, for which Multi-VAE or Content-Based perform better. In
addition, they made the following observations: (1) recommendations to the same user may
differ between approaches; (2) recommendations by the same approach may differ between
two similar users; (3) recommendation performance of an approach, measured at the level of
all user-item instances, may differ between two comparable users or comparable items.

3.1.2 Best Recommender Selection Challenges

The performance of recommenders largely depends on the chosen experimental protocol, on
how data is split and how results are aggregated, and also on the evaluation metrics. It
also depends on data characteristics, and on whether user feedback is implicit or explicit.
A recent work took a deeper dive into the data and showed that recommendation accuracy
highly depends on user and item meta-features [36]. It may also depend on the density of
the user-item matrix [84], or the demographics of users [85]. Many years of empirical testing
taught us a few lessons. For instance, Item-Based Collaborative Filtering (IBCF) generally
performs better than User-Based CF when the number of users is much greater than the
number of items [214]. Matrix factorization approcaches (such as ALS for implicit data) have
shown better accuracy results than neighborhood-based models [137]. These intuitions are
hard to generalize, and practice has shown that no single approach is best in all scenarios.
This complex dependence on data characteristics [6], data splitting and result aggregation,
user activity, and item popularity, naturally calls for developing an approach that learns from
data to choose the right recommendation strategy for each user-item instance.

A recent research direction for the "algorithm selection problem" in recommendations is meta-
learning [28, 29, 67]. Meta-learning approaches seek to improve prediction through the use
of "side information", typically user and item meta-features. Such systems can be trained
and used at different levels. Collins et al. [61] identify three different levels: (1) Global-level
meta-learners use dataset characteristics to choose the best recommender for each dataset, (2)
Mid-level meta-learners select the best recommender for subsets of the data, (3) Micro-level
meta-learners select the best recommender for every user-item instance.

The micro-level methodology that was proposed by [61] builds a per-instance meta-learner that
predicts errors of each recommender and learns to choose the one that makes the lowest error.
However, it has the following limitations: (1) it was applied only to explicit feedback data.
For many retailers, rating data is not available and personalization relies on the customers’
purchase history or other type of implicit feedback [121]; (2) it was developed solely for
predicting ratings and is not suitable for top-N recommendations. This requires redesigning
meta-learning to perform the training on ranked lists and use appropriate ranking measures;

CHAPTER 3. INDIVIDUAL USER BEHAVIOR 35

(3) Meta-learning was tested only on the Movielens dataset. These observations lead us to
formulate three research questions.

• RQ1: How does meta-learning generalize to the top-N recommendation task? In prac-
tice, users are recommended more than one item at a time.

• RQ2: Can we adapt meta-learning to work with implicit feedback datasets and how
does it perform? Indeed, the performance of a meta-learner may depend on the type of
user feedback.

• RQ3: How does meta-learning perform on datasets other than Movielens? This will
address the question of whether the performance of a meta-learning approach depends
on the dataset.

3.1.3 Our Contributions

To address our questions, we develop a meta-learning approach that relies on training a binary
classification model in the case of implicit data and a regression model in the case of explicit
data. The application of a binary classification model predicts whether a given recommender
is "good" or not for the considered user-item instance. The intuition behind that is dictated
by the nature of implicit feedback datasets. When no explicit ratings are available, we handle
binary datasets, i.e., for a given user, an item is considered relevant or not. In the case
of explicit datasets, we use regression models to predict which recommendation approach
is best for each user-item instance. In that case, ratings are used to predict the ranking
error between true rankings and predicted rankings by each recommendation approach. The
regression models learn to choose the recommendation approach that has the lowest ranking
error for each user-item instance.

Our methodology relies on a 3-way data split: the training set is used to train single recom-
mendation approaches; the meta-training set is used to train meta-learners to predict the best
performer on each user-item instance; the test set is used to compare the performance of single
recommenders against the meta-learned model. For implicit feedback data, the meta-learner
is trained with four classification models where for each user-item pair, we label the data in
the meta-training set according to the ability of each recommender to predict that item in the
user’s top-N list. In the case of explicit data, the availability of ratings lets us consider the
ranking of items in the meta-training set. We implement four regression models that learn
which approach achieves the lowest rank error between the true rank of the item and the
predicted rank by each recommendation approach.

3.1.4 Data Model

Let U = {u1, u2, ..., um} be the set of users and I = {i1, i2, ..., in} the set of items. We note
R = |U| × |I|, the rating matrix where each element rui is the explicit rating which reflects
u’s preference for item i.

Most research exploits explicit feedback to perform item recommendations. However, explicit
ratings are not always available, in particular in retail and some online platforms where user
interactions with items are implicit, e.g., purchase, view, like, etc. In this case, the user-item
matrix becomes binary and is usually referred to as implicit feedback. We note P = |U|× |I|,
the implicit interaction matrix where each element pui is set to 1 if the user interacted with

CHAPTER 3. INDIVIDUAL USER BEHAVIOR 36

item i, and to 0 otherwise. In both cases, we note Iu the set of items for which user u
expressed positive feedback: a high rating value in the case of explicit feedback, or the event
of a purchase/view/click/etc by the user, in the case of implicit feedback.

3.1.5 Meta-learning Methodology

A number of recommendation approaches were proposed in the last years, with a strong focus
on Collaborative Filtering approaches, such as neighborhood models, matrix factorization,
association rules, and more recently, deep learning. In this section, we describe the pool of
used recommenders as well as the meta-learning methodology.

Selected Recommendation Approaches

In this section, we describe representative recommenders which are summarized in Table 3.1.
The reader is referred to Section 2.1.2 for more details.

Table 3.1: Overview of selected recommendation approaches

Category Recommenders Description and reference
Association rules ARM Recommends items using association rules [194]
Neighberhood-based IBCF Item-based k-nearest neighbors [214]

Matrix Factorization
PureSVD SDV-based matrix factorization [65]
NMF Non negative matrix factorization [268]
Implicit-ALS Matrix factorization for implicit feedback datasets[120]

Learning-to-rank
Matrix Factorization BPR learns a personalized ranking for every user [202]

Deep Learning Mult-VAE Variational autoencoders for collaborative filtering [152]
SpectralCF Spectral collaborative filtering [274]

Our Methodology

Figure 3.1 shows the main components of our meta-learning methodology. Following [61], we
split the data into three parts: a training set to train the pool of recommenders and tune
their parameters; a meta-training set to train the meta-learner to predict if an item of an
instance set is relevant or not; a test set to evaluate the meta-learner against recommenda-
tions produced by every single recommender. For implicit data, relevance is estimated as
binary values of appearance or not of each item of the meta-training set in the top-N list
of each recommender. For explicit data, relevance is estimated using the error rank between
the real rank of an item in the meta-training set and the ranking that each recommender
gives to that item. These predictions represent the performance feature of the approaches on
user-item instances and are used along with data meta-features, to train the meta-learner.
Meta-features used in the training and meta-training sets are users’ profiles which represent
their states. They describe the activity of users as well as their demographics (age, gender).
Meta-features also describe items by their popularity.

Meta-learning for Implicit Data: The pool of recommenders is trained with the training
set and tuned to find their optimal parameters. This results in one model for each recom-
mender. The model is used to produce a list of top-N recommendations. Each instance in

CHAPTER 3. INDIVIDUAL USER BEHAVIOR 37

Dataset

Training
Data

Meta
training

Data

Recommendation Algorithms

Best model
Selection

top-N
Recommendations

Performances of
algorithms

User / Item meta features

Demographic features

Implicit data

ARM
IBCF

Implicit_ALS
BPR

Mult-VAE
SpectralCF

Explicit data

ARM
IBCF

PureSVD
NMF

Mult-VAE
SpectralCF

Classification algorithms

Logistic Regression

Decision Trees
Classification

Stochastic Gradient
 Descent Classification

Gradient Boosting
Classification

Regression algorithms

Linear Regression

Decision Trees
Regression

Stochastic Gradient
 Descent Regression

Gradient Boosting
Regression

Figure 3.1: Our Meta-learner Architecture

the meta-training set represents a user u, item i, and a recommender, and is assigned 1 if
item i is predicted to be in the top-N generated for u by the recommender, 0 otherwise. This
data is used as input to a classifier that is trained on user-item instances augmented with
meta-features. The training targets are the Boolean values assigned to each user, item, and
recommender. We implemented four classifiers: logistic regression [267], decision trees [155],
stochastic gradient descent (SGD) [270], and gradient boosting [91]. Finally, using the test
set, for each instance we apply the trained classification models. The recommender related
to the classification model that classifies the instance as 1 is considered the best. If several
models do so, we choose one at random.

Meta-learning for Explicit Data: The methodology is similar for explicit data. We only
highlight the differences. Each instance in the meta-training set is assigned a ranking error
|ri − r̂i|, where ri is the real rank of item i in the meta-training set and r̂i is the rank which
is assigned to item i by the recommender. This data is used as input to regression to learn
to predict rank errors. We implemented four regression models and trained them on meta-
features. As a result, each meta-learner allows us to predict for each recommender its rank
error for a user-item instance. Finally, using the test set, for each instance, we apply the
trained regression models for each recommender. The recommender related to the regression
model that predicts the lowest rank error is considered the best for that instance. If several
regression models predict the same error we choose one at random.

Meta-learning Illustration: Table 3.2 and 3.3 show examples of best-performing recom-
menders for some instances. Each row represents an instance of the meta-training set char-
acterized by user and item features. These features define the profile (state) of the user. For
explicit data, Rating is the explicit rating given by the user to the item. Rank is the position
of the item in the meta-training set, i.e., for each user we estimate a ranking for items that are
in the meta-training set. Table 3.2 contains instances from the meta-training set of implicit
data. We can observe that popular items are more likely to be recommended by several rec-
ommenders. For instance item i8 with popularity 1666 is recommended by all recommenders
while i9 with popularity 28 is not recommended by any. Table 3.3 contains instances of the
training set for explicit data. Here again, we can see that some algorithms are able to predict
ranks that are close to the actual ranking of an item in the top-N of a user. For instance,
ARM is a perfect rank predictor for u3-i3 and for u4-i5 while PureSVD and NMF are the closest
rank predictors for u2-i2. Here again, multiple recommenders can be the best/closest rank
predictors for the same user-item instance.

Table 3.4 shows examples for which the classification meta-learner outputs the best recom-

CHAPTER 3. INDIVIDUAL USER BEHAVIOR 38

Table 3.2: Example of meta-training instances for implicit data. The recommender with a
predicted value 1 per instance is highlighted.

User meta-features Item meta-features Recommenders’ predictions

Row User Age Gender User
activity

Item
Id

Item
popularity ARM

IBCF-
50

Implicit-
ALS BPR

Mult-
VAE SpectralCF

0 u0 >65 M 646 i5 1863 1 0 0 1 1 1
1 u1 35-49 M 467 i6 307 0 1 1 0 0 0
2 u2 <35 M 74 i7 524 0 1 1 0 1 0
3 u3 35-49 M 225 i8 1666 1 1 1 1 1 1
4 u4 35-49 F 268 i9 28 0 0 0 0 0 0

Table 3.3: Example meta-training instances for explicit data. The recommender with the
lowest predicted rank error is highlighted.

User meta-features Item meta-features Recommenders’ rankings

Row User User
activity Item Item

popularity Rating Rank ARM PureSVD NMF IBCF Mult-VAE SpectralCF

0 u0 5 i0 3 3.0 3 3 1 3 3 3 451
1 u1 5 i1 11 1.0 4 4 2 1 7 4 93
2 u2 22 i2 2 4.0 20 11 19 19 10 33 198
3 u3 15 i3 3 4.0 14 14 8 4 11 9 67
4 u0 5 i4 3 5.0 0 13 13 2 11 3 44
5 u4 9 i5 9 5.0 0 0 1 5 4 2 39

mender per instance. The same user might receive recommendations from two different recom-
menders for two different items. One can see that for user u0, IBCF is best for recommending
item i0 and Implicit-ALS is best for i3. Moreover, the same item can be recommended to
different users by different recommenders. For example, Mult-VAE is best for u2-i0 while IBCF
is best for u0-i0. Table 3.5 shows examples for which the regression meta-learner learned
the best recommender per instance. One can see that the regression assigned to Mult-VAE
predicts the smallest error for the first row. No other regression model has a better prediction.
Mult-VAE is hence the best for the first instance (u0-i10).

For both implicit and explicit data, when no recommender predicts an item in the top-N
recommendations of a user (e.g., Row Id 3, instance u3-i3 in Table 3.4), the item is not
chosen for that user.

Table 3.4: An illustration of recommendations for implicit data. The recommender with the
best-predicted value 1 per instance is highlighted.

User meta-features Item meta-features Meta-learner predictions (classification)

Row Id User Id User
activity Item Item

popularity ARM IBCF Implicit-ALS BPR Mult-VAE SpectralCF

0 u0 646 i0 3445 0 1 0 0 0 0
1 u1 467 i1 4756 1 0 0 1 0 0
2 u2 74 i0 3445 0 0 0 0 1 0
3 u3 225 i3 4922 0 0 0 0 0 0
4 u4 268 i4 20 0 0 0 0 1 0
5 u0 646 i3 4922 0 0 1 0 0 0

CHAPTER 3. INDIVIDUAL USER BEHAVIOR 39

Table 3.5: An illustration of recommendations for explicit data. The recommender with the
lowest predicted rank error per instance is highlighted.

User features Item features Meta-learner predicted rankings
Row User Id Item Id ARM PureSVD NMF IBCF Mult-VAE SpectralCF
0 u0 i10 2059.9 2808.1 2044.8 3478.1 1324.1 4920
1 u1 i11 2975.5 2937.5 2126.3 3341.9 2459.2 4710.6
2 u2 i12 2212.6 3253.6 2746.1 3171.2 2453.9 4690.4
3 u5 i13 2776.9 2991.4 2392.5 3323.3 2019.9 4738.9

3.1.6 Experiments

Setup: We split data in a user-wise fashion, i.e., the split is done for every user, chronologi-
cally according to the provided timestamps so that 55% of the data constitutes the training
set, 30% the meta-training set and the remaining 15% is assigned to the test set. This choice
makes our experiments more realistic and also prevents data leakage [126]. We use the test set
to evaluate the meta-learned models against every single recommender. We also compare our
meta-models with an ensemble-learning model [227] as well as factorization machines [60]. We
note that for single recommenders we use the same proportion of the training set, and tune
their parameters using the meta-training set. This ensures that all single recommenders are
evaluated fairly against the meta-models with the same size for training and testing.

Data: We used four real-world datasets. Their main characteristics are summarized in Ta-
ble 3.6. Retail, is a proprietary implicit dataset provided by the Marketing department
of our industrial partner. The second implicit corpus is a Chinese store transactions data
(TA-FENG1). The two others are explicit data from Amazon2: Amazon_TV and Amazon_M for
two product categories Movies & TV and Digital Music, respectively.

Table 3.6: Characteristics of the datasets

Dataset Time Span Number
of users

Number
of items

Avg
#purchases
per user

Avg
frequency
per item

#Unique
records Sparsity

Retail Jan 2017–Dec 2019 11086 3576 234.52 727.04 889062 97.75
Tafeng Nov 2000–Feb 2001 2596 3567 83.02 60.47 175002 98.11
Amazon_M May 1996–Oct 2018 3480 10721 19.24 6.24 66977 99.82
Amazon_TV May 1996–Oct 2018 2257 27479 213.99 17.57 482787 99.22

Metrics: For each user u, we measure precision and recall. For implicit data, an item
is considered relevant to a user if that user purchased it in the test set. For explicit data,
relevance is determined by a rating value strictly greater than 3 on a scale of 1 to 5. We
also use ranking measures for evaluation: Discounted Cumulative Gain (DCG) and Mean
Average Precision (MAP). The reader may refer to Section 2.1.3 for more details about the
measures.

Variants: Each recommender requires to finely tune its parameters. Similarly to [70], we
1https://www.kaggle.com/chiranjivdas09/ta-feng-grocery-dataset
2https://nijianmo.github.io/amazon/index.html

CHAPTER 3. INDIVIDUAL USER BEHAVIOR 40

performed a grid search over a set of possible parameters. ARM: has no parameters to estimate.
For IBCF3, we vary the number of neighbors k in {10, 20, 50, 100}. For PureSVD 3, we set the
number of latent factors to 100. For NMF 3, we set the number of latent factors to 200 and the
number of iterations is set to 2000. The missing values of the user-item matrix are filled with
the rating average. For Implicit-ALS4, we set the number of latent factors to 40, the number
of iterations to 30, the regularization parameter λ to 0.001 and the confidence constant α
to 10. For BPR5: we set the number of latent factors to 20, the learning rate to 0.001, the
regularization parameter to 0.05. For Mult-VAE 3, we set the batch size to 500, the number
of epochs to 150, and the learning rate to 0.001. For SpectralCF 3, we set the batch size to
512, the number of epochs to 400, the embedding dimension to 128, the learning rate to 0.01
and the regularization parameter to 0.001.

We developed a basic stacking model which combines predictions from single recommenders
to generate a hybrid prediction. We set the number of estimators to 500, the learning rate to
0.01, the regularization rate to 0.005, and the maximum depth to 3 for the Gradient Boosting
Regressor. For the Gradient Boosting classification, the estimators are set to 1000, α to
0.001, regularization to 0.001, and depth to 5. For SGD, we use a l2 penalty. The number
of iterations and α are set to 1000, 0.003 for regression, and 100, 0.001 for classification,
respectively. Finally, Decision Trees models have the following parameters: a random splitter,
MSE criterion (Gini criterion for classification), and maximum depth set to 3 (10 for the
classification).

We only report results on top-10 recommendations. Similar results were obtained with other
values of the recommendation size N , which we also made available in our GitHub6 reposi-
tory.

Figure 3.2: Top-10 results of our meta-learner against single recommendation algorithms for
Retail

3https://github.com/MaurizioFD/RecSys2019_DeepLearning_Evaluation
4https://spark.apache.org/mllib/
5https://implicit.readthedocs.io/en/latest/
6https://github.com/meta-model/meta-learner

CHAPTER 3. INDIVIDUAL USER BEHAVIOR 41

Figure 3.3: Top-10 results of our meta-learner against single recommendation algorithms for
Tafeng.

Implicit Data

Figure 3.2 shows the results on Retail dataset. IBCF-50 appears to be the best recommender
for all metrics. Mult-VAE gives good results and performs better than recommenders tailored
for implicit data (Implicit_ALS and BPR). SpectralCF is the poorest performer. Similarly to
[70], we find that all deep learning methods are outperformed by IBCF when it is well-tuned.
We note that the ranking-based recommender BPR gives poor results compared to ARM and
the other collaborative filtering recommenders. This rather low performance is surprising,
especially since it is specifically designed for implicit feedback datasets. Some recent works
[147] and [179] improve over BPR to account for the integration of heterogeneous feedback such
as clicks and add-to-cart. However, in our dataset Retail, the only available feedback is user
purchases. One can see from the figure that the two best meta-models outperform the worst
baseline (SpectralCF). The best meta-model (based on Gradient Boosting Classification)
outperforms BPR and its performances are closely similar to those of ARM. We also see that
all meta-learners outperform the best stacking model (based on SGD Classification) which
produces similar results to a factorization machines algorithm.

From Figure 3.3, we see that Tafeng results are similar to Retail ones except that Mult-VAE
is outperformed by all "simple" recommenders. One can note that the two best meta-models
behave exactly the same. They outperform deep learning recommenders and are close to
matrix factorization ones. The best stacking model (based on Gradient Boosting) and the
factorization machines are still worse than all others (except SpectralCF).

The results suggest that for Retail and Tafeng, the current implementation of meta-learners
is unable to accurately classify recommenders according to their prediction power. Another
interpretation is that since classifiers are trained on user-item instances, performing top-N
recommendations per user is not trivial, and our intuition of ranking items according to the
number of recommenders that predict them does not work in practice. Since no explicit
ratings are available we cannot evaluate the meta-learning using instance-level evaluation
metrics such as root mean squared error (RMSE). We tested the approach using regression
models on implicit data to see if meta-models perform better than baselines. We generated
items’ ranks based on their purchase frequencies and consider these frequencies as factors of
preference. We trained the same implicit recommenders using the same evaluation protocol.

CHAPTER 3. INDIVIDUAL USER BEHAVIOR 42

Results were not as good as the ones reported in Figures 3.2 and 3.3.

Figure 3.4: Top-10 results of our meta-learner against single recommendation algorithms for
Amazon_TV

Figure 3.5: Top-10 results of our meta-learner against single recommendation algorithms for
Amazon_M

Explicit Data

Figure 3.4 shows top-10 performance results on Amazon_TV. We note that Mult-VAE and
matrix-factorization (PureSVD) are the best performers. The high performance of PureSVD is
likely due to the high density of the user-item matrix. The number of interactions per user
is 214 items on average. One can note that NMF and IBCF-100 are generally outperformed
by Mult-VAE. We can also note that ARM is more accurate than SpectralCF which is still
the worst baseline. We also notice that deep learning recommenders are outperformed by
"simpler" ones. From the same figure, we note that all meta-models outperform the best
baseline for all metrics. We see also that the best stacking model (Linear Regression) is
better than (Decision Tree) meta-model and all baselines. Factorization machines are not
as good as the stacking model but still outperform all the baselines.

Figure 3.5 shows top-10 performance results on Amazon_M. We note that Mult-VAE is the
best performer for all metrics, surprisingly followed by association rules (ARM). This latter is
better than matrix-factorization and neighborhood-based while it was the second worst for

CHAPTER 3. INDIVIDUAL USER BEHAVIOR 43

Amazon_TV (see Figure 3.4). This contrasts with the majority of results on explicit data where
memory-based and matrix-factorization algorithms are among the best performers [136].

Additionally, association rules are very rarely used in the literature in the context of rec-
ommendation systems, with the exception of some works [194] who found that association
rules perform better on the purchase data of a French store "La Boîte à Outils”. More re-
cently, [36] showed that ARM performs best on users with low activity. This is the case in
Amazon_M, where the average number of interactions per user is relatively low. One can note
that IBCF-100, PureSVD, and NMF have practically similar performances. SpectralCF is still
the poorest performer. Results performed by the best meta-models are better than single
recommenders. Results show that the best stacking model (Linear Regression) also outper-
forms the single recommenders. The stacking model gives performances similar to the best
meta-model (Linear Regression). Finally, all baselines, except SpectralCF, are better than
factorization machines.

Scalability

Tables 3.7 and 3.8 show training and recommendation times for Tafeng and Amazon_M datasets
respectively. Recommendation time is an average of 1080 and 2240 users for Tafeng and
Amazon_M respectively. In each case, we report the results of each recommender, the best-
performing meta-learner, and the stacking model. Obviously, we can see that training a
deep learning recommender is much more expensive than training a standard one. We note
that the training times of the stacking model and meta-models are similar and greater than
factorization machines. The reason is that both of them have a two-level training policy:
the first one consists of training single recommenders and the second one consists of training
regression/classification models based on single recommenders’ performances. While training
a meta-learner takes about the same time as the stacking model, the former is faster than the
latter at recommendation time.

Table 3.7: Train and test times of all recom-
menders for Tafeng.

Train time
(sec)

Test time
(10−2 sec)

ARM 0.12 0.317
IBCF-50 0.35 1.04

Implicit-ALS 22.8 1.65
BPR 1 2.22

SpectralCF 95 3.44
Mult-VAE 169.04 2.84

Logistic Reg
Meta-model 858.83 4.1

SGD
Stacking Model 751.75 47.2

Factorization
Machines 234.61 18.9

Table 3.8: Test and test times of all recom-
menders for Amazon_M.

Train time
(sec)

Reco time
(10−2 sec)

ARM 0.1 1.55
IBCF-100 0.48 5.58
PureSVD 0.82 3.19

NMF 1 4.42
SpectralCF 327.47 7.86
Mult-VAE 175.54 6.77

Linear Reg
Meta-model 1020.4 9.21

Linear Reg
Stacking Model 1020 27.54

Factorization
Machines 48.5 19.39

Summary. In this work, we tackled the question of the usefulness of meta-recommendation
by leveraging users’ activity statistics and demographics. We assumed that these represent the

CHAPTER 3. INDIVIDUAL USER BEHAVIOR 44

profile of users and the states where they might be. We designed a meta-learning strategy that
reasons over these profiles based on the most common recommenders. Our proposed strategy
based on a meta-learning strategy can be applied to both explicit and implicit data. Our
extensive experiments on four real-world datasets: Retail, Tafeng, Amazon_M, and Amazon_TV
show the high dependency of recommenders on the type of data. The results showed that
with explicit data, leveraging multiple recommenders provides more relevant recommendations
while the opposite happens with implicit data. This is due to the absence of a clear factor of
preferences when data is implicit. This also shows that our implicit meta-model needs further
exploration in the future.

3.2 Dynamic Recommendations Applications

After leveraging the meta-learning methodology to investigate the impact of using users’ and
items’ information on standard recommenders and show their importance, we study more
realistic problems where users’ preferences are dynamic and constantly changing over time. In
fact, as discussed in Section 3.2.3, dynamic recommenders capture the shift in users’ behavior
by modeling their actions into sequences where time is implicitly integrated. As previously
introduced, we explore three real-world applications where the environment is dynamic and
where the characteristics and dimensions that describe users evolve. In each application, we
define different dimensions that capture the attitudes and preferences of users. In this section,
and within each application, we explore and propose different dynamic solutions based on the
nature of the environment and compare them to ones that may ignore or capture a part of
the temporal change. The different applications are:

• Recommendations for Test Assignment: Test assignment and upskilling are fast-
growing segments of the education economy [180]. Yet, there is little algorithmic work
that focuses on crafting dedicated strategies to reach high skills. In this application,
we formulate three behavioral dimensions that capture the states of users (students or
learners) and their learning. These dimensions are changing based on the correctness of
the answers provided by learners. We propose two adaptive solutions that capture the
changing in users’ dimensions and tend to maximize the learning: the multi-objective
Pareto [24] solution and its extension based on Multi-armed bandits [236]. Parts of
this work related to the Pareto solution have been published in the 2nd International
Workshop on Data Systems Education [46]. The extension related to the Multi-armed
bandits solution was recently submitted and is under review.

• Recommendations for SQL Groupby Queries: Groupby queries have been the
method of choice for Exploratory Data Analysis (EDA) as they provide a birds-eye view
of data and return interpretable results. In this application, we propose a solution that
guides users in generating and selecting visual analytics based on these SQL queries. Our
goal is to encounter the sequence of users’ feedback (users’ states) as well as previously
shown analytics to recommend relevant ones and minimize users’ effort. Our solution
is based on Multi-armed bandits [236] to balance the exploitation of relevance and
exploration of different regions of the data to achieve coverage. A part of this work has
been published as a demo paper in CIKM 2021 [69].

• Recommendations for Diverse Sessions: Diversity in recommendation has been
studied extensively. It has been shown that maximizing diversity subject to constrained

CHAPTER 3. INDIVIDUAL USER BEHAVIOR 45

relevance yields high user engagement over time. In contrast to existing work which relies
on setting some attributes to define diversity, we propose two solutions that dynamically
learn diversity attributes in a multiple-sessions environment. One solution generalizes
standard diversity-based recommenders like MMR [90] while the second one extends on
a Reinforcement Learning architecture, SMORL [233]. This work was published in IEEE
BigData 2022 [43].

3.2.1 Application 1: Recommendation for Test Assignment

Today, learners engage in self-directed learning, managing many elements of their own study,
which, in turn, often requires working on various learning activities independently with less
direct guidance from teachers [95]. Consequently, providing guarantees on the quality of
learning outcomes is increasingly difficult in these new bite-sized learning structures as they
can lead to the so-called illusion of explanatory depth [209] where learners only acquire a
superficial understanding of a topic. Ideally, each learner should receive tests chosen in a such
way that the learner’s skill progresses. Yet, there is little algorithmic work that focuses on
crafting dedicated strategies to reach high skills. This should account for the learner’s ability
to resolve tests based on skill and past performance. That is the topic of mastery learning [188]
where the focus of instruction is the time required for different learners to acquire the same
competencies and achieve the same level of mastery. This is very much in contrast with classic
models of teaching where all learners are given approximately the same amount of time to
learn. We illustrate that with an example.

Motivation: Test Assignment

Consider a learner with very basic math knowledge who wants to learn mathematical func-
tions. Figure 3.6 illustrates an example of the learning process. In the beginning, the learner
receives tests with a moderate difficulty level of 0.3 for which she provides correct answers. As
a result, she incurs no skill gap, and her skill is estimated. This triggers a second step where
she is assigned more difficult tests (on limits of functions) for which she fails. In addition to
not increasing her skill, she incurs a skill gap. To fill that gap, she is given a second chance
with the same type of tests in which she succeeded. Her input is correct and her skill increases.
The same process is repeated, and the learner receives more difficult tests on derivatives of
functions and then on integrals. She provides correct results and her skill increases.

Figure 3.6: Example of the process of learning mathematical functions.

CHAPTER 3. INDIVIDUAL USER BEHAVIOR 46

Test Assignment Challenges

Our example identifies several challenges. First, we need to determine which k tests to assign
to a learner at each iteration. Existing work on recommending tests optimizes the learner’s
expected performance either by assuming tests with the same difficulty level [188] or by
pre-defining the composition of difficulties beforehand (e.g., by alternating test difficulty lev-
els [158]). Indeed, according to learning theories illustrated in Figure 3.7, simply relying on
the learner’s expected performance runs the risk of narrowing down the learner into a zone of
"boring" and under challenging tests that do not incur upskilling. To address that, we pro-
pose to also account for the learner’s aptitude, i.e., the difference between the learner’s skill
and the test difficulty level. This will encourage selecting tests that challenge the learner (the
learnable zone in Figure 3.7). Hence, we need to balance expected performance and aptitude.
Second, we need to account for the potential skill gap for determining the next k tests. To
the best of our knowledge, no existing work encounters all these dimensions. Third, we need
to simulate the learners’ performance and devise a skill update strategy after they complete
a batch of k tests. Based on these challenges, we formulate four research questions.

• RQ1: Is the combination of all dimensions well-adapted for attaining mastery and
improving skill gain?

• RQ2.a: Do different settings of the skill update strategy exhibit different results?

• RQ2.b: Does the choice of the learner simulation model impact the skill gain?

• RQ3.: Does an application of a meta-strategy that chooses to optimize a subset of
dimensions at each iteration, improve mastery achievement?

Figure 3.7: Schematic illustration of Zone of Proximal Flow (ZPF) [25], which combines the
results of Zone of Proximal Development (ZPD) and Flow Theory. In [25], it is shown that
learners improve their skills by completing tests that are more but not too challenging (dotted
line).

Our Contributions

We formalize the AdUp Problem, our Adaptive Upskilling Problem as an optimization prob-
lem where a learner receives k tests that maximize expected performance and aptitude, and

CHAPTER 3. INDIVIDUAL USER BEHAVIOR 47

minimize accumulated skill gap. The combination of these objectives constitutes the novelty
of our formalization.

The main challenge in solving AdUp, is its multi-objective nature. We propose to explore two
solutions: a Multi-Objective Optimization, referred to as MOO, and a Multi-Armed Bandits
solution, referred to as MAB. MOO is addressed by developing a Pareto solution that relies on
dominance between k test sets and a Hill Climbing [176] heuristic algorithm that finds a subset
of the non-dominated solutions [24]. Several variants can be drawn from MOO depending on
the different compositions between the objectives. A drawback of MOO is that all variants
optimize exactly the same dimensions over all the assigned batches of tests during the whole
learning process. However, it would be desirable to have an approach that learns to find the
dimensions to optimize at each iteration. For example, if the learner keeps providing wrong
answers to the same tests, favoring the optimization of gap could be more desirable as we need
to make sure that the learner successfully completes tests before providing more challenging
ones. Therefore, we propose MAB, a solution that chooses automatically which of the three
optimization dimensions to optimize at each iteration of k tests. We formalize this approach
as a multi-armed bandit (MAB) problem.

To simulate learners and predict their probability of providing correct answers, we leverage
two models for that: an extended version of Bayesian Knowledge Tracing (BKT) [64] that
leverages test difficulties [182] and Item Response Theory model (IRT) [201]. After each itera-
tion, the skill of a learner is updated following existing approaches that aggregate consecutive
correct answers [131].

Test Assignment Problem

We consider a learner l ∈ L who follows an iterative learning process for a given skill sk.
At each step, l completes a set of k tests with different difficulty levels for sk. Each test
t ∈ T has a skill difficulty dt that remains unchanged. We associate to each learner l a
skill value l.sk that either remains the same or increases as the learner successfully completes
tests. The initial value of l.sk can be computed from the information the learner fills in when
joining the system (e.g., by completing an initial set of tests or through a pre-assessment
questionnaire).

We aim to formalize a problem where at any given iteration, the learner receives a batch
of k tests whose difficulty level is greater than l.sk. To define our problem, we formalize
dimensions that characterize the learning process of a learner l for a skill sk.

Expected performance, aptitude, and gap:

Expected performance. It is the expected performance of learner l for a test t. It is based
on the similarity of t with successfully completed tests l.S ⊆ T by l and is formalized as
follows:

exPerf (l, t, sk) = sim(t, l.S, sk)

Aptitude. It quantifies the difference between a learner’s skill value (l.sk) and the difficulty
level of a test t (dt). It represents the learner’s progression ability for the skill when assigned
tests that are correctly completed. Aptitude is defined as follows:

apt(l, t, sk) = dt − l.sk

CHAPTER 3. INDIVIDUAL USER BEHAVIOR 48

Gap. It quantifies the distance between the past failed tests of learner l (set l.F ⊆ T) and
the test t wrt skill sk.

gap(l, t, sk) = dist(t, l.F , sk)

Similarity and distance between tests can be computed in several ways. In our implementation,
we use the Euclidean distance between the difficulty levels of tests.

The AdUp problem: To achieve skill mastery, we propose an iterative formulation that
solves the following problem:

Problem 1 (The AdUp Problem). Given a learner l, with a skill l.sk, find a batch B ⊆ T
of k tests to assign to learner l at iteration i s.t.:

maximize
∑
t∈B

exPerf (l, t, sk)

maximize
∑
t∈B

apt(l, t, l.sk)

minimize
∑
t∈B

gap(l, t, l.sk)

subject to |B| = k

(3.1)

Our Proposed Solutions

The main challenge in solving AdUp, is its multi-objective nature. Scalarization is a common
approach that transforms the problem into a single objective whereas optimization dimensions
are combined via a linear weighted sum. Another approach is the ϵ-Constraint method where a
single objective is optimized and the other objectives are constrained with user-specific values
[181]. These methods suffer from the need to fix weights or thresholds, leading to sub-optimal
solutions. Therefore, we propose to explore two solutions: a Multi-Objective Optimization,
referred to as MOO, and a Multi-Armed Bandits solution, referred to as MAB.

Multi-Objective Optimization (MOO): We propose an approach that finds the Pareto so-
lutions by addressing all objectives at once [24]. To do so, we define a dominance relation
between two sets of size k.

We represent the set of all test batches as Ck = {B|B ⊆ T , |B| = k}. We define batch
dominance B1 ≻ B2 between any two sets in Ck:

Batch dominance. We say that B1 dominates B2 (B1 ≻ B2) iff:

• B1 is no worse than B2 for all three objectives.

• B1 is strictly better than B2 for at least one objective.

We design a heuristic Algorithm 1 to avoid an exhaustive exploration of the whole search space.
It starts by performing times iterations where in each it finds an optimal batch of tests (Lines
3 to 7) to avoid local optimums. At each iteration, it first generates a random candidate.
Then it performs Hill Climbing to optimize both expected performance and aptitude using
Algorithm 2. The returned candidates are added to the set of results. From this set, only
non-dominated candidates are kept (Line 8). Finally, the candidate that yields the lowest skill
gap is chosen (Line 9) and assigned to the learner (Line 10). The learner’s skill is updated

CHAPTER 3. INDIVIDUAL USER BEHAVIOR 49

after the completion of the test batch (Line 11). This process is repeated until the learner l
achieves skill mastery.

Algorithm 1: Heuristic MOO
Input: learner l, set of tests T , size k, number of repetition times

1 while not mastery do
2 Results← ∅
3 for n in [1..times] do
4 C ← Random_candidate(k)
5 C∗ ← HCAE(C)
6 Results.Add(C∗)

7 end
8 Keep non-dominated candidates in Results
9 B ← The solution from Results with the lowest skill gap

10 l completes B
11 l.sk ← skill_update(l.sk,B)

12 end

Algorithm 2: HCAE - Hill Climbing for Aptitude and Expected Performance
Input: Batch of k tests B
Output: Optimized batch B∗

1 while True do
2 Candidates← ∅
3 for test ∈ B do
4 test_down← A test with the next lower difficulty
5 B_1← B − {test}+ {test_down}
6 test_up← A test with the next higher difficulty
7 B_2← B − {test}+ {test_up}
8 Candidates.add([B_1, apt(B_1), exPerf (B_1)])
9 Candidates.add([B_2, apt(B_2), exPerf (B_2)])

10 end
11 Keep non-dominated candidates in Candidates
12 if B dominates all candidates in Candidates then
13 B∗ ← B
14 return B∗

15 end
16 else
17 B ← A random candidate from the non-dominates ones in Candidates
18 end
19 end

Algorithm 2 searches over all the neighbors of the input batch and selects the one that improves
aptitude and expected performance. A neighbor of a batch is computed by replacing one and
only one test with another test that has either the next higher or next lower difficulty (Lines
3 to 10). If all neighbors are dominated by the current batch, this latter is chosen as the
optimized batch. Otherwise, the algorithm replaces the current batch by randomly selecting
one from the non-dominated neighbors.

MOO variants. There are multiple solution variants to AdUp: MOO as described above; MOEG,
MOAG, and MOAE optimize expected performance and gap, aptitude and gap, or aptitude and ex-

CHAPTER 3. INDIVIDUAL USER BEHAVIOR 50

pected performance respectively; MOG, MOE, and MOA optimize gap only, expected performance
only, or aptitude only respectively. Similarly to Algorithm 1, the bi-objective variants are also
based on Hill Climbing to explore the space of batches and find potential candidates. In the
case of MOAE and MOEG, the Hill Climbing optimizes expected performance. The condition in
Line 9 (Algorithm 1) relates to aptitude for MOAE and gap for MOEG. On the other hand, for
MOAG, the Hill Climbing optimizes aptitude, and Line 9 remains unchanged.

Multi-Armed Bandits Algorithm (MAB): A drawback of the previous solution is that
all the variants optimize exactly the same dimensions over all the assigned batches of tests
during the whole learning process. However, it would be desirable to have an approach that
can learn to find the dimensions to optimize at each iteration. For example, if the learner keeps
providing wrong answers to the same tests, optimizing gap solely could be more desirable as
we need to make sure that the learner successfully completes these tests before providing more
challenging ones. On the contrary, if the learner answers correctly in the last batches of tests,
it might be better to optimize aptitude so that the learner gets challenged with more difficult
tests as she has no gap in her learning process. Therefore, our goal is to design an approach
that chooses automatically which of the three dimensions will be optimized at each iteration
of k tests. We formalize this approach as a multi-armed bandit (MAB) problem.

The goal of MAB is to verify if a meta approach could be used to address the AdUp problem.
The meta approach chooses, at each iteration, an optimization variant of our problem, i.e.,
bi-objective, or multi-objective optimizations, to generate k tests. We formalize that as a
multi-armed bandit problem where each arm corresponds to an optimization variant and the
reward ri, at iteration i, for each variant v is defined as the speed of skill progression:

riv =

∑
∀iterations j,j<i skill gain offered by v at iteration j

#time the variant v was chosen

At each iteration, the progression speed of each arm is computed and the one with the highest
is selected. In the case where an arm has never been selected before, its speed is set to zero.
The batch of k tests is then generated based on the variant of the chosen arm.

MAB variants. We implemented different multi-armed bandit strategies [236]: ϵ-GREEDY that
chooses randomly a variant with an ϵ probability, THOMPSON Sampling which selects the arm
with probability equal to the probability of it being optimal, the upper confidence bound
(UCB) which combines the reward and an uncertainty measure with a confidence degree and
SOFTMAX which relies on Boltzmann distribution with temperature (τ).

Experiments

The goal of our experiments is to address the following research questions:

• RQ1: Is the combination of all optimization dimensions well-adapted for attaining
mastery and improving skill gain?

• RQ2.a: Do different settings of the skill update strategy exhibit different results?

• RQ2.b: Does the choice of the model of simulation impact mastery and skill gain?

CHAPTER 3. INDIVIDUAL USER BEHAVIOR 51

• RQ3: Does an application of a meta-strategy that chooses to optimize a subset of
dimensions at each iteration, improve mastery achievement?

Data: We use real data collected from a Czech educational system7. It is an adaptive practice
system for elementary arithmetic tests. The data contains more than 1800 tests from which
we infer 42 distinct difficulty levels ranging in]0, 1[. We assume this order of difficulty level:
“divisions” > “multiplications” > “subtractions” > “additions” > “numbers". We consider that
all tests for “numbers” have the lowest difficulty (0.13). The difficulty ranges of “additions”,
“subtractions”, “multiplications”, and “divisions” are [0.2, 0.4[, [0.4, 0.6[, [0.6, 0.8[, and [0.8,
1[respectively. Within each difficulty range, we assume that multi-digit operations are more
difficult than single-digit ones, and tests displayed with visual examples are simpler than
directly written tests.

Skill update and mastery achievement: At each iteration and after the completion of a
batch B of k tests, we update the skill of learner l as follows:

skill_update(l.sk,B) = maxsk∈D∪{l.sk}sk (3.2)

where D is the set of difficulty values of correctly completed tests for which all tests with
lower difficulties were correctly completed.

To show the intuition of this strategy, we consider a learner with l.sk = 0.3 at iteration i. At
the next iteration i + 1, the learner is targeted with k = 3 tests t4, t5, and t6 having 0.35,
0.4, and 0.45 as difficulty levels respectively. We consider that the learner correctly answered
t4 and t6 and failed t5. Using our strategy, the skill value l.sk is updated to 0.35 (difficulty
of t4). The correct completion of t6 is not considered as there exists one test (t5) with a
lower difficulty that was wrongly completed. To account for variability in learners’ answers,
we used the static mastery detection method NCC [131] that updates the skill if the number
of consecutive correct answers, for a given difficulty level is N . For mastery achievement, we
consider that learners attain mastery when their skill can not be further improved and equals
the highest difficulty level.

Learner simulation: There exist several models to simulate learners and predict the prob-
ability of correct completion. In this work, we use two of them.

The first model simulates learners using an extended version of BKT (KT-IDEM) that takes
into account the difficulty level of tests. BKT is a cognitively diagnostic form of assessment
that has been recognized as beneficial to learners and instructors [182]. It models the learning
process given the chronological sequence and correctness of tests. It infers the knowledge of
learners by predicting the probability of learning. In addition to this inferred probability,
two more probabilities are used to estimate the performance of the learner: Guess and Slip
probabilities. Guess is the probability of correctly answering a test when the learner does not
master the difficulty while Slip is the probability of incorrectly answering a test even if the
learner masters the difficulty. If the test is easy, the probability of Guess is high. If the test
is hard, the probability of Slip is high as the learners are likely to make mistakes [182]. We
used the implementation of [21] in our experiments.

The second model simulates learners based on latent factors [54]. The probabilities of the
next tests are calculated by applying a sigmoid function and learning a logistic regression.

7https://github.com/adaptive-learning/matmat-web/blob/master/data/data_description.md

CHAPTER 3. INDIVIDUAL USER BEHAVIOR 52

One method, AFM [54], infers the probability by characterizing the learner and the diffi-
culty of tests with two distinct parameters. Another method, PFM [184], extends AFM by
integrating the number of successes and failures as parameters in addition to previous ones.
Other latent models are based on Item Response Theory (IRT) [201], a traditional cognitive
diagnosis model [145]. The simplest version [201] predicts a probability of a binary answer
(correct/incorrect) by assuming a unique internal parameter for each learner. In addition,
it defines tests with one parameter (difficulty) [199], two parameters (the number of correct
answers and difficulty) [39], or three parameters (probability of correct answer) [157]. In our
experiments, we used this last method based on the implementation of [37]. The reason is
that compared to other latent models, it incorporates the probability of guessing in addition
to the difficulty and the number of correct answers.

BKT and IRT are structurally different as BKT captures the learning as a chronological pro-
cess while latent models do not capture the temporal dimensions. They are trained differently
as BKT uses Expectation Maximization (EM) algorithm [21] and IRT uses Adam [37]. De-
spite these differences, both BKT and latent models infer the probability of correct answers
and simulate the learning by capturing similar concepts: the difficulty of tests, the level of
learning, and the probability of guessing the correct answers.

Variants and Metrics: We compare MOO and its variants as well as MAB and its variants
described in Section 3.2.1. We also consider ALTERNATE, a state-of-the-art approach that
assigns a random set of k tests whose difficulty levels alternate in a round-robin fashion:
k easy then k medium then k hard tests [158]. We report (1) the average skill gain i.e.
the difference between the last and first skill values for all simulated learners, and (2) the
average skill progression i.e. the average skill evolution from iteration to iteration. To better
understand this first experiment, we examine (3) the percentage of learners who attained
mastery and (4) the average number of iterations required to attain mastery. Finally, we
compute (5) the average time to generate a batch of k tests.

We set the maximum number of iterations to attain mastery to 500. We vary the value of k
in {3, 5, 10, 15, 20} and the number of simulations, i.e., learners, in {50, 100}. Due to limited
space, we only report results of 100 simulations with k = 3. We refer the reader to our GitHub
repository8 for our complete results and code for reproducibility.

RQ1. Impact of optimizing all dimensions: To verify the impact of optimizing all
dimensions, we use BKT (KT-IDEM) [182] and assume N = 1 in the skill update strategy.
We consider two settings: fixed initial skill value and variable initial skill value.

Fixed initial skill value. We assume the same fixed initial skill value for all learners and
consider that learners attain mastery when their skill equals the highest difficulty level. We
set the initial value to the lowest difficulty level in our simulated data.

Skill gain and progression. Figure 3.8 reports the average skill gain. We observe that
MOO and MOAE produce the highest average skill gain. Surprisingly, ALTERNATE seems to also
produce a high skill gain. To elucidate that, we plot Figure 3.9 to examine the average
step-wise skill progression. Here again, we observe that MOO and MOAE results in the fastest
upskilling with a clear advantage for the former. MOAG is slower but still faster than MOEG. This
reinforces our initial assumption that optimizing for all three objectives at once yields the best

8https://github.com/AdaptiveUpskilling/AdUp.git

CHAPTER 3. INDIVIDUAL USER BEHAVIOR 53

Figure 3.8: Average skill gain for each variant
with a fixed initial skill for learners.

Figure 3.9: Skill progression as a function of #
iterations with a fixed initial skill for learners.

results. It also shows that alternating task difficulties yield good skill gain and progression.
Therefore, in the next experiment, we examine whether ALTERNATE compares favorably to MOO
and MOAE in terms of achieving skill mastery.

Mastery. Figure 3.10 (a) reports the number of times each variant attained mastery. One
can see that while ALTERNATE reaches a reasonable mastery level (≈ 59%), it is much lower
than MOO, MOAG and MOAE (≈ 90%). This clearly confirms that aptitude plays a central role
in attaining mastery. Hence, while alternating test difficulty levels in ALTERNATE does achieve
good skill gain and skill progression performances, it is capped in terms of mastery level since
it does not explicitly optimize aptitude. We can also observe that single-objective variants
rarely attain mastery. This experiment confirms our initial assumptions: MOE assigns tests
that are similar to the ones the learner completed correctly, thereby staying within the under-
challenging zone [249]. MOA assigns tests that are too difficult and that keep the learner in a
frustration zone [249].

Figure 3.10 (b) shows the average number of iterations to attain mastery for each variant.
One can observe that ALTERNATE attains mastery in a similar number of iterations as MOAG
but has a lower rate of mastery. Nevertheless, it is quicker than all single-objective variants.
As explained before, these variants narrow the learners into zones where their skill value does
not evolve while ALTERNATE offers more challenging batches which allow learners to attain
mastery more often. However, simulated learners under ALTERNATE are able to correctly
complete difficult tests but are unable to do so for the most difficult tests. While MOAE attains
a slightly higher mastery level than MOO, it is outperformed by MOO in terms of the number of
iterations needed to achieve mastery.

Response time. Time experiments have shown that single-objective variants are obviously
the fastest to generate a batch of k tests (Figure 3.11). MOO has the worst time average as it
has to optimize three objectives (≈10 seconds). MOAE would be a good candidate since it runs
faster than MOO. However, MOO does better than MOAE on skill progression and on the average
number of iterations needed to attain mastery. Therefore, we will need to focus on improving
response time for MOO in future work.

Variable initial skill value. We study the case where learners have different initial skill
values and consider that a skill is mastered when the skill gain attains a fixed value. We set

CHAPTER 3. INDIVIDUAL USER BEHAVIOR 54

Figure 3.10: (a) Percentage of learners who
attain mastery - (b) Average number of iter-
ations to attain mastery.

Figure 3.11: Average time for generating one
batch.

the value to 0.4. We report only bi-objective and MOO variants in addition to ALTERNATE as
we showed already that single-objective solutions are inefficient.

Figure 3.12: Average skill gain with variable
initial skills for learners.

Figure 3.13: Skill progression as a function
of # iterations with variable initial skills for
learners.

Skill gain and progression. From Figure 3.12, which reports the average skill gain for
all variants, we note that similarly to the case of a fixed initial skill value, MOO, MOAE, and
ALTERNATE offer the highest skill gain that is equal to the maximum value (0.4). Figure 3.13
also generalizes previous results by showing that MOO and ALTERNATE skill progressions are the
fastest followed by MOAE.

Mastery. Figure 3.14 shows the percentage of mastery attained by each variant as well as the
number of iterations needed to attain mastery. One can confirm that, despite a smaller gain
value to attain mastery, optimizing aptitude is still necessary as MOEG is the worst performer
for the number of iterations and the second worst for mastery. We also see that ALTERNATE
has comparable results to MOO and MOAE which confirm that it is capped in terms of mastery.

CHAPTER 3. INDIVIDUAL USER BEHAVIOR 55

Obviously, we can see that all variants attain mastery more often and in fewer iterations than
when initial skills are fixed. This is due to the fact that in the latter learners must achieve a
much higher skill gain to attain mastery.

Figure 3.14: (a) Percentage of learners who
attain mastery - (b) Average number of iter-
ations to attain mastery using variable initial
skills for learners.

Figure 3.15: Skill progression as a function of
iterations with N = 3.

Findings. This experiment shows that combining all objectives yields the highest skill gain
which permits a higher mastery in fewer iterations. It also shows challenging learners and opti-
mizing aptitude are beneficial to attain mastery. These results also confirm the ZPD and Flow
theories [25] and show the importance of leveraging aptitude and challenging learners.

RQ2.a. Impact of changing the settings of the skill update: We report skill and
mastery results by further challenging the learners during the skill update. We increase the
value of N , the number of consecutive correct answers, to N = 3. We report results in the
case where the initial skill is fixed.

Skill gain and progression. The average skill gain is similar to the one reported in Fig-
ure 3.8 where ALTERNATE is comparable to MOO and MOAE best and second best variants re-
spectively. Figure 3.15 shows the average progression of the skill. We see that the progression
is slower than the one presented in Figure 3.9. This is intuitive as learners have to answer
correctly three tests of the same difficulty level to see their skill updated while previously one
correct answer was enough. The second observation is that MOO is still the best variant with
a clear advantage compared to ALTERNATE and MOAE. This means that MOO is less affected by
the different values of N than other variants.

Mastery. The results show that more than 90% of learners attain mastery under MOO while
less than 70% achieve it under ALTERNATE and MOAE. We also see a small decrease in the
mastery rates of MOAG and MOEG. Results also show that MOO is the fastest as it offers learners
fewer iterations to reach the highest difficulty level. These results confirm that MOO is not

CHAPTER 3. INDIVIDUAL USER BEHAVIOR 56

affected by different settings of the skill update strategy.

Findings. This experiment finds that MOO is not sensitive to varying different settings of the
skill update strategy.

RQ2.b. Impact of changing the learner simulation model: We report the results of
the same metrics using a different learner simulation. We used item response theory (IRT)
as explained in the settings. We report results where the initial skill value is similar to all
learners. Similar results were observed when the initial value is different from one learner to
the other.

Skill gain and progression. Figure 3.16 reports the average skill gain for the variants that
performed well previously. We observe that MOO and MOAG along with ALTERNATE produce the
highest skill gain. One can also note that, similarly to the case of KT-IDEM, MOEG is the
worst bi-objective variant. The main reason is that the test batches of this variant do not
challenge the learners as it does not optimize for aptitude.

Figure 3.16: Average skill gain using IRT. Figure 3.17: Skill progression using IRT.

Figure 3.17 shows the step-wise skill progression. We observe that MOO and MOAG are the
fastest in terms of upskilling outperforming ALTERNATE which was equivalent to MOO under
BKT. One can also observe that MOEG is the slowest. Next, we compare these variants in
terms of mastery.

Mastery. Figure 3.18 shows the average rate of mastery achieved by each variant as well
as the average number of iterations to attain it. From figure (a), we observe that the state-
of-the-art alternating solution (ALTERNATE) achieves a high mastery level (≈80%) but it is
clearly outperformed by MOO and MOAG. This experiment confirms that aptitude is required to
attain a high rate of mastery as we see that MOEG is the worst variant (It attains mastery in
≈7% of time). From this figure, we can also observe that MOAE is outperformed by MOAG while
it was better under the BKT model. A hypothetical explanation is related to the internal
design of both methods. BKT formalizes the learning process as a hidden Markov model where
tests’ completion is viewed as a chronological sequence and where the different parameters are
learned using the correctness of tests. In this case and intuitively, recent learner performances
on recently assigned tests appear to be more influential than older tests while in the case of
IRT, and because of the absence of time dimension, all performances are equivalent having
the same weights. Usually, as the gap is related to earlier tests, IRT seems to give more

CHAPTER 3. INDIVIDUAL USER BEHAVIOR 57

attention to it than BKT. Another possible explanation is that BKT tends to overestimate
the importance of failure as reported in [184]. In that work, it was observed that BKT tends
to predict worse performance after an incorrect answer. One can then make a hypothesis that
BKT is negatively biased towards gap in contrast to latent factors models.

Results from Figure 3.18 (b) are inversely proportional to the ones depicted in Figure (a).
Variants with the highest mastery percentage are the quickest to attain it. Inversely, the
variants that attain a lower rate of mastery are the slowest.

Figure 3.18: (a) Percentage of learners who attain mastery - (b) Average number of iterations
to attain mastery using IRT.

Findings. This experiment finds that IRT generalizes the results of KT-IDEM. In this case,
we also observe that MOO offers the highest rate of mastery. Optimizing aptitude remains
essential as MOEG is the worst variant. Despite the differences between BKT and IRT, one
can explain their similar results with the fact that they both assume a guessing probability
of correct answers and characterize tests by their difficulties. They both infer the correctness
probability by approximating the knowledge of the learner based on previous correct answers.
In addition, prior work [101, 207] has shown that these models exhibit similar prediction
accuracy. However, from these results, we see that the main difference between the two
learner simulation models is that IRT tends to favor gap as MOAG is comparable to MOO while
BKT favors expected performance as MOAE was the second best. We believe that further
research needs to perform a more detailed comparison to understand why these two models
offer the same predictions.

RQ3. Impact of the meta-strategy: We seek to verify whether choosing automatically a
subset of learning dimensions to optimize at each iteration improves mastery and skill pro-
gression compared to optimizing fixed dimensions throughout the process. We implemented
the four MAB strategies described in Section 3.2.1 and tested them with a fixed initial skill
and N = 1.

Skill gain and progression. Figure 3.19 shows the skill gain offered by the different MAB
strategies. The blue and pink lines represent the skill gain attained by learners under MOO and
ALTERNATE respectively (As shown in Figure 3.8). One can see that UCB and THOMPSON, and

CHAPTER 3. INDIVIDUAL USER BEHAVIOR 58

Figure 3.19: Average skill gain using MAB
strategies.

Figure 3.20: Skill progression of learners using
MAB strategies.

ϵ-GREEDY strategies slightly improve skill gain compared to MOO and ALTERNATE. We also see
that SOFTMAX is the worst strategy showing that probability-based MAB is not adapted to this
context. Similar results can be observed in terms of skill progression in Figure 3.20. We can
see that UCB and THOMPSON are as faster as MOO while ϵ-GREEDY a slightly than MOAE in terms
of progression.

Figure 3.21: (a) Percentage of mastery attained - (b) Average number of iterations to attain
mastery using MAB strategies.

Mastery. Figure 3.21 shows the percentage of learners that attained mastery and the average
number of iterations to achieve that. The blue, cyan, and pink lines represent the results of
MOO, MOAE, and ALTERNATE respectively. One can see that MAB based on UCB is the best
performer and outperforms all other MAB strategies as well as previous variants for mastery. It
also achieves that in fewer iterations. We can also see that ϵ-GREEDY and THOMPSON attain more
mastery than ALTERNATE, MOO, and MOAE. In addition, they are also better than the baselines
in terms of iterations. This confirms our previous assumption that selecting the optimized
dimensions during the learning process is better than optimizing fixed dimensions.

Response time. Time experiments have shown that MAB strategies are faster than MOO to

CHAPTER 3. INDIVIDUAL USER BEHAVIOR 59

generate the batches but are slower than bi-objective variants. Intuitively, MAB is better than
MOO as it may leverage two objectives in a few iterations while MOO optimizes all three objectives
during the process.

Insighs on Combining Dimensions. One can see that bi-objective and multi-objective
variants are a special case of a MAB strategy where only one arm is available and chosen. Based
on that, one can ask the question of whether the outcomes policies of MAB are relying on only
one or two variants, for example, they leverage both best variants MOO and MOAE. To answer
that, we examine the policies output by MAB.

First, we examine the overall proportions of the selection of each variant in each strategy.
The results show that the best strategies (the ones exhibiting the highest mastery rates in
lower iterations) UCB and THOMPSON, exhibit a more uniform use of each variant. For example,
in UCB each multi-objective variant is selected ≈ 25% of the time. In contrast, we see that
SOFTMAX, the worst strategy, relies mainly on two variants, MOEG with ≈ 84% and MOAE with
≈ 13% of the time. This may be the reason for its underperformance. Another interesting
insight is that ϵ-GREEDY selects MOO just 9% of the time. This also explains why ϵ-GREEDY has
a higher number of iterations and a slightly slower skill progression.

Analyzing these proportions in more detail showed that UCB is more stable and less noisy in
selecting the different variants across all simulations. For example, by calculating the standard
deviation of MOO selection proportions we found that UCB has the lowest value (≈ 0.04) while
SOFTMAX has the highest one (≈ 0.4). This means that the choice of MOO in UCB is similar
from one simulation to another while for SOFTMAX this choice looks more random and more
noisy.

We now examine the veracity of the hypotheses we made in Section 3.2.1 when we introduced
the MAB solution. We assumed that after failing tests, it is more desirable to optimize gap.
We also assumed that after obtaining successful answers, aptitude is optimized. Our results
show that all strategies tend to leverage gap, in the next two iterations, after learners failed
to increase their skill value. For example, UCB and THOMPSON optimize gap 77% and 72% of
the time after wrong answers while SOFTMAX does the same 67% of the time. Similarly, our
simulations show that UCB, THOMPSON, and ϵ-GREEDY optimize aptitude after successful tests
more than 75% of the time, while it is no more than 58% for SOFTMAX. These results also
provide insights on why SOFTMAX under-performs compared to the other strategies.

Findings. This experiment finds that choosing automatically the dimensions to optimize at
each iteration improves the rate of mastery and the number of iterations needed to achieve
it. This justifies the use of a meta-strategy to learn the best combination of objectives to
optimize at each iteration.

Summary. In this application, we tackled the question of adaptive upskilling following a
mastery learning approach. The originality of our approach lies in adapting the difficulty
of tests to the learner’s predicted performance, aptitude, and skill gap. We assumed these
dimensions to characterize the learners and their behavioral evolution. Based on that, we
proposed two approaches: MOO that directly solves our problem and a MAB that chooses among
different optimization variants at each iteration. We tested the impact of optimizing these
dimensions on skill progression and mastery achievement using a simulated dataset based on

CHAPTER 3. INDIVIDUAL USER BEHAVIOR 60

a real one 9. We also tested the impact of different learner simulation models on mastery
achievement. Our experiments showed that MAB offers a higher mastery rate and a better
final skill gain than MOO. Parts of this work have been published in the 2nd International
Workshop on Data Systems Education [46]. Its extension was recently submitted and is
under review.

3.2.2 Application 2: Recommendation for SQL Groupby Queries

Data summarization provides a bird’s eye view of data and groupby queries have been the
method of choice for data summarization. Such queries are a useful way to provide declarative
and interpretable Exploratory Data Analysis (EDA). They provide the ability to group by
some attributes and aggregate by others, and their results can be coupled with visualization
to convey insights. As the number of possible groupby queries that can be computed over a
dataset is quite large, one naturally calls for developing approaches to aid users in choosing
which groupbys best summarize data. Notable behavior analytics systems based on queries
were previously proposed such as Qualtrics10, AIDE’s [79], and others [255, 245]. These
either require high data expertise, high user effort, and knowledge of the underlying data
distributions or predefine reference queries and attributes and rank them based on their
interestingness. We consider the setting where a non-expert user wants to explore a large
dataset by interactively generating analytics (panels) where each one maps the results of a
groupby query to visual elements. We illustrate that with an example.

Motivation: SQL Queries Recommendation

Figure 3.22: Example of the process of exploring panels.

Consider a user who wants to explore a medical dataset and is interacting with a system
that displays visual analytics. The user wants to have some knowledge about the effect
of smoking and overweight on health. Figure 3.22 illustrates an example of that process.
In the beginning, the system recommends a panel that shows the results of “SELECT BMI,
avg(PSG_AHI), count(PSG_AHI) FROM Medical GROUP BY BMI". This first panel shows the
average AHI index, which determines the severity of sleep apnea, based on the BMI categories.
The user rejected the panel. As she needed more details about the grouping, she also gave
a reason for this rejection: “Bad Groupby". Based on this feedback, the system refined the

9https://github.com/adaptive-learning/matmat-web/blob/master/data/data_description.md
10https://www.qualtrics.com/support/vocalize/widgets/creating-cx-dashboard-pages/

https://www.qualtrics.com/support/vocalize/widgets/creating-cx-dashboard-pages/

CHAPTER 3. INDIVIDUAL USER BEHAVIOR 61

previous panel and recommended a second one which displays the results of “SELECT BMI,
Age, avg(PSG_AHI), count(PSG_AHI) FROM Medical GROUP BY BMI, Age". The system
considered the rejection reason and added the attribute “Age" to the query. The user ac-
cepted that panel as a relevant one. In the next iteration, the system generates a panel using
new attributes that are distinct from the ones previously accepted. The panel that displays
the results of “SELECT Gender, avg(nycturie), FROM Medical GROUP BY Gender, psychologi-
cal_discomfort" was accepted. The iterative process continues until the user is satisfied or
until no more panels are available.

Queries Recommendation Challenges

The first challenge that our example identifies is related to the knowledge the users have about
the data. In fact, just like in EDA [23, 219, 14, 191], users are assumed to have only partial
knowledge of the underlying data. A simple solution that one can incorporate is to advocate
a stepwise approach where the best panel is recommended at each step and the user chooses
to keep it (positive label) or discard it (negative label). This seemingly simple setting raises
new challenges. Given a dataset, we must navigate in a combinatorial space of possible panels
that is exponential in the number of attributes of the input data. Therefore, it is necessary to
reduce user labeling effort and save time by suggesting to the user the best panel at each step.
Only unseen panels are candidates to be shown at each step. We hence propose to learn labels
of unseen queries. In fact, this is challenging as we must encapsulate multiple dimensions that
define these panels. First, each panel carries an inherent utility e.g., its groupby attribute has
high entropy. Second, a panel may be favored over another if it covers a higher number of
attributes of the input data that are not already kept. Third, the learning process must also
account for user feedback to refine its needs. Finally, one may avoid recommending disparate
consecutive panels in order to preserve the user’s stream-of-consciousness [222].

Our Contributions

To address the aforementioned challenges, we develop DashBot that guides users in gener-
ating dashboards and selects relevant panels by minimizing their time and effort by assuming
that users have no prior knowledge of the data. To the best of our knowledge, our work is the
first to address feedback-based EDA by learning groupby queries. To develop this solution,
we formalize two key problems: identifying an unseen panel that covers at least n attributes
(New Panel Generation Problem - NPGP), and accounting for user feedback in choosing the
next panel (Panel Refinement Problem - PRP).

During the exploration process, and at each step, a panel is recommended by solving one
of these two problems. We address NPGP in the beginning of the process or when a panel
is accepted (Yes feedback). To do so, we define several utility functions, coverage, entropy,
and variance, to describe the usefulness of the different attributes. These attributes are then
ranked to select the ones that build the next best query. On the other hand, we address
PRP when users reject panels (No feedback). In this case, we extend users’ responses by
predefining a set of optional reasons, the user might choose from, to justify the rejection. To
solve PRP and refine rejected panels, we leverage Multi-Armed Bandits (MAB) [235]. Each
arm represents a potential rejection reason. When a user rejects a panel, DashBot either
recommends panels similar to the previous one by exploiting the information obtained from
the already seen panels or explores the space and selects completely different and unfamiliar

CHAPTER 3. INDIVIDUAL USER BEHAVIOR 62

panels. To find a good trade-off between these two actions and target the user with the best
panel, we propose two semantics: Semantic_1 chooses the next panel based on a distance from
a previously rejected one, and Semantic_2 chooses the next panel based on the likelihood of
application of each reason. In addition to solving these two problems, we propose a query
inclusion rule to automatically label some unseen panels as negative. We do so to prune panels
and reduce the number of candidates in subsequent steps.

Finally, to evaluate our solution, we propose to quantify user effort as a function of the boolean
feedback and optional reasons provided by the user. We also measure effectiveness under a
limited budget of user effort. We perform an empirical evaluation to show the feasibility and
scalability of DashBot for different semantics.

Data Model

We are given a relation R that defines our dataset. R may be an existing relation or the result
of a join query. attr(R) represents the set of its attributes. While categorical attributes can
be directly used for groupby, numerical ones need to be preprocessed and discretized. To do
so, we rely on k-means clustering where each value x of the active domain of the discretized
attribute is represented by an interval [min, max] from the clustering. This preprocessing
returns an enriched relation of R that contains a discrete version of each numerical attribute.
Table 3.9 shows an example where the first four columns represent the original attributes.
Preprocessing with k = 2 adds two discretized attributes.

Table 3.9: Discretization of the numerical attributes
with k = 2.

Input Relation R Discretization
Name Age Gender BMI Age* BMI*
Alice 20 F 25.4 [10, 25] [18.3, 25.4]
Bob 25 M 31.8 [10, 25] [31.8, 31.8]

Charlie 50 M 18.3 [50, 63] [18.3, 25.4]
David 10 M 20 [10, 25] [18.3, 25.4]
Eve 63 F 21 [50, 63] [18.3, 25.4]

Table 3.10: A dashboard consist-
ing of two panels.

Gender avg(Age)
F 41.5
M 28.33

BMI* min(Age) max(Age)
[18.3, 25.4] 20 63
[18.3, 25.4] 10 50
[31.8, 31.8] 25 25

Panels and Dashboards: A panel is a groupby query of the form:

SELECT A′
1, . . . , A

′
y′ , f1(B1), . . . , fp(Bp) FROM R GROUP BY A1, . . . Ay

such that {A1, . . . Ay} ⊂ attr(R) (with y ≥ 1) are the groupby attributes. We use strict
inclusion because there should be at least one attribute of R that is not a groupby attribute,
to have meaningful aggregates. We refer to A′

1, . . . , A
′
y′ , f1(B1), . . . , fp(Bp) as the columns

of the panel. {A′
1, . . . Ay′} ⊆ {A1, . . . Ay} (with y′ ≥ 1) are the groupby attributes on which

query results are projected. We require to have at least an attribute that is part of both of the
groupby and then select such that the user can associate the aggregates with some information
on the group to which they correspond. Moreover, {B1, . . . , Bp} ⊆ attr(R) \ {A1, . . . , Ay} are
the aggregation attributes. The functions f1, . . . , fp are among the 5 standard SQL aggregate
functions (min, max, count, sum, avg). Categorical attributes are only aggregated on the
count function. Finally, a dashboard is a set of panels. Table 3.10 represent an example of a
dashboard of two panels.

CHAPTER 3. INDIVIDUAL USER BEHAVIOR 63

Panel Representation: We model each panel over R with a vector of length 6× |attr(R)|,
where for each attribute A we have 6 features (Groupby and the 5 aggregation functions).
Table 3.11 shows an example of a vector representation for a relation R with two attributes
B,C. The semantics of the vector features are:

• gbA = 0 if A is not part of the groupby; 1 if A is part of the groupby and not part of
the select; 2 otherwise. We stress that, regarding the notation gbA, if attribute A is
numerical, the groupby will be on its discretized version.

• For f ∈ {min, max, count, sum, avg}, fA = 1 if the panel contains the aggregate f on
attribute A; 0 otherwise.

Table 3.11: Vector representation of the panel corresponding to the query SELECT
B,min(C),max(C) FROM R GROUP BY B.

gbB minB maxB countB sumB avgB gbC minC maxC countC sumC avgC
2 0 0 0 0 0 0 1 1 0 0 0

Panel Coverage and Inclusion: During the recommendation process, we aim to avoid
narrowing users in restricted spaces where similar panels are displayed. To do so, we rely
on a notion of coverage. We define panel coverage with respect to the attr(R). In fact, a
panel Q covers n attributes of R if there are n attributes of R present in columns of Q, i.e.,
|{A′

1, . . . A
′
y′ , B1, . . . , Bp}| = n. The coverage of a dashboard is then defined as the union of

all attributes present in the columns of its panels. In addition to that, we define a distance
function between panels. We say that a panel Q′ is at distance n from a panel Q if Q′ can
be obtained by removing or adding n columns of Q. Hence, we say that two panels are close
if the distance between them is bounded by some number, reflecting that Q′ can be obtained
from Q with a small number of changes. We also define inclusion between panels. We say
that a panel Q′ includes a panel Q if Q′ contains all columns of Q and possibly others. We
also define a distance function between panels.

Labeled Panels: During the process of creating a dashboard, users label positively or neg-
atively the panels that are recommended to them. These are then used to generate the next
best-recommended panels. We define L, a set of labeled panels. Every element p ∈ L is a
triple < Q, r, e > where Q is a panel over R, r is a Boolean (Yes/No) feedback given by users,
and e an optional reason when Q is rejected. We assume a fixed number (seven) possible rea-
sons: Bad groupby attributes, bad aggregation attributes, change agg function min, change
agg function max, change agg function count, change agg function sum, change agg function
avg. This choice is easily adaptable to a smaller or a larger number of reasons.

As the number of groupby queries that can be specified over a relation R grows exponentially
with its number of attributes 11, it is not realistic to ask a user to label every panel. Hence a
need of inferring the negative labeling of some panels in order to prune them and reduce user
effort. In this case, we leverage the last recommended panel Qlast. If it is rejected without a
given reason, all panels that include Qlast are automatically labeled as rejected. Otherwise, if
a reason is given, all panels that satisfy that reason are also considered rejected.

Consequently, L contains panels that are either explicitly or implicitly labeled. We assume
11Let x = |attr(R)|. The number of distinct SQL groupby queries is∑x−1
y=1

((
x
y

)
×

(∑y
z=1

(
y
z

))
× (25×(x−y) − 1)

)

CHAPTER 3. INDIVIDUAL USER BEHAVIOR 64

that the set is always consistent, i.e., if the same panel is recommended several times, the
user gives each time the same label. Therefore, we ensure that in the next iteration of the
process, only unlabeled panels (not present in L) are recommended.

Groupby Queries Recommendation Problems

Ideally, L contains all panels the user wants to see on the dashboard and as few panels with
explicit No label as possible. So, our goal is to recommend panels that interest the most the
user. In order to infer this preference, we assume that the current state of the user is defined
by L. Based on the Boolean nature of the user’s feedback, we formalize two problems: New
Panel Generation Problem (NPGP) when the user accepts the last recommended panelQlast

(or when L is empty), and Panel Refinement Problem (PRP) when the user rejects it.

Problem 2 (The NPGP Problem). Given a user u, a relation R, a number n, the set of
labeled panels L among which Qlast received label Yes, find a panel Q ̸∈ L to recommend to
user u s.t.:

minimize |Qlast.columns ∩Q.columns|
subject to cov(Q,R) = n

(3.3)

where cov(Q,R) is the coverage of the panel Q with respect to the relation R. By solving this
problem, we find an unlabeled panel Q that covers at least n new attributes of R compared
to the last accepted panel Qlast. The main intuition is to help the user to discover new panels
over new data regions.

Problem 3 (The PRP Problem). Given a user u, a relation R, a number n, the set of labeled
panels L among which Qlast received label No, find a panel Q ̸∈ L to recommend to user u
s.t.:

minimize (dist(Q,Qlast, R)− n) (3.4)

Where dist(Q,Qlast, R) is the distance between Q and Qlast with respect to the relation R.
By solving this problem, we find an unlabeled panel Q that is the most similar to Qlast. We
also assure that the distance is smaller than n.

By solving NPGP and PRP, we address the problem of learning groupby queries for inter-
active dashboard generation.

Our Proposed Solution: DashBot

Algorithm 3 shows the pseudocode of our solution, DashBot, that learns groupby queries
for dashboard generation. The labeled data L is initially empty (Line 1) and is updated
throughout the interactions. At the beginning of the process or after accepting Qlast, NPGP
is solved. On the other hand, after every rejection, PRP is solved. In both cases, Qlast is
added to L (Line 4,7). The process until the halt condition is reached (Line 2). The user may
choose to predefine an optional dashboard size, i.e., the maximum number of accepted panels,
which represent the default halt condition. Alternatively, the user may stop the process when
she is satisfied with the current state of the dashboard. In addition, the process also stops
when there is no unlabeled panel to recommend. The overall architecture of DashBot is
presented in Figure 3.23. In the following, we present how to solve NPGP and PRP.

CHAPTER 3. INDIVIDUAL USER BEHAVIOR 65

Algorithm 3: Interactive learning of groupby queries for dashboard generation
Input: Relation R, user u, number n
Output: Set of panels that u labels Yes

1 L ← ∅ / Labeled panels, initially empty /
2 while halt condition is not satisfied do
3 Qlast ← GenerateNewPanel(R,L, n)
4 Ask user u label for Qlast and update L
5 while Qlast.r ̸= Yes do
6 Qlast ← RefinePanel(R,L, n)
7 Ask user u label for Qlast and update L
8 end
9 end

10 return {Q|Q ∈ L, Q.r = Yes} / Panels with label Yes /

Offline Process Online Process

Relation R

Data
Preprocessing

New Panel
Generation

Panel
Refinement

DashBot Interface

1
2

3
4

4’3

Figure 3.23: Architecture of DashBot. The input relation R (1) is preprocessed into an
enriched relation (2). Each edge (3) is a panel recommendation. If the user gives the label
Yes (4), the diamond allows the addition of the panel to the dashboard and the verification
of the halt condition. If it is false, go to New Panel Generation. Alternatively (4’), the user
gives a label No and an optional reason. The last panel is then refined.

New Panel Generation: To solve NPGP, we maintain two ranking lists for groupby and
aggregation attributes, respectively. We generate a panel candidate Q that groups by the
attributes at the top of the groupby ranking and aggregates on the attributes at the top of
the aggregation ranking using all aggregation functions if numeric attributes are selected, and
only count function if categorical ones are. In this solution, we also aim to cover at least n
attributes not already present on the dashboard. We set the value of n to 2 (One grouping
and one aggregating attribute). In the case where the user accepts a panel Q, the covered
attributes are moved to the end of the two ranking lists.

Although the initial ranking of lists can be randomly generated, we propose to rely on data-
driven utility functions. We use entropy and variance for groupby and aggregation respec-
tively. In order to rank groupby attributes we define the two following rules:

• Attributes with high entropy are favored. This is because they offer balanced groups
with approximatively similar sizes. In this way, the functions min/max/avg are less
likely to be redundant and more interesting. We calculate the entropy of an attribute
A as follows: H(A) = −

∑
x∈adom(A) P (x) log2 P (x). adom(A) represents all possible

values of attribute A and P (x) is the proportion of tuples, in R, that have the value x
for that attribute.

CHAPTER 3. INDIVIDUAL USER BEHAVIOR 66

• Attributes that were not preprocessed are favored. This is because discretization yields
information loss. Hence we rank first these attributes that have an adom() smaller than
k (k-means parameters). We then favor attributes discretized into k clusters. Finally,
attributes with adom() larger than k are ranked last.

In the case where two attributes that are not discretized have the same entropy value, the rank
is performed randomly. Moreover, if several attributes have an adom() larger than k, they are
ranked in increasing order of their adom() size. For example, based on Table 3.9, the groupby
attributes rank is Gender > Age∗ > BMI∗ > Name. The name is the last as adom(Name)
size is too large. BMI∗ has an entropy (0.72) smaller than Gender and Age∗ which are equal
(0.97). Gender is ranked first as it was not discretized compared to Age∗.

In order to rank aggregation attributes, we favor numeric attributes with high variance, for
which all aggregation functions might be interesting. We then consider numeric attributes
with low variance, for which min/max/avg might be redundant. Finally, categorical attributes
for which the count function is the only are ranked last. We compute variance of a numeric
attributeA as follows: V (A) = sumt∈R(t[A]−

∑
t∈R t[A]

|R|)2. t[A] represents the value of attribute
A of a tuple t ∈ R. In our example, the aggregation attributes rank is Age > BMI >
Gender = Name. Gender and Name are last as they are categorical. Age is ranked first as
V (Age) > V (BMI).

Based on these rankings, the first generated panel displays the results of “SELECT Gender,
min(Age), max(Age), count(Age), sum(Age), avg(Age) FROM R GROUP BY Gender".

Panel Refinement: We solve PRP after each label No from the user. Our goal is to
converge as quickly as possible to a panel that may interest the user. In the case where the
user provides one of the optional rejection reasons, DashBot modifies the last assigned panel
(Qlast) accordingly and recommends the new one. For example, if Qlast displays the results
of “SELECT Gender, min(Age), max(Age), sum(Age) FROM R GROUP BY Gender" and the user
rejects it with reason “Change aggregation function sum", then our solution recommends
the panel of “SELECT Gender, min(Age), max(Age) FROM R GROUP BY Gender" by dropping
the aggregation function sum. On the other hand, in the case where the user does not
provide any reason, we propose an approach based on multi-armed bandits (MAB) [235] in
order to infer that reason. MAB mimics the probable behavior of the user by balancing between
exploitation and exploration. During exploitation, MAB recommends a panel similar to Qlast

while during exploration, MAB selects a completely different and unfamiliar panel. We propose
two different MAB semantics that learns how to find the best trade-off between exploration and
exploitation:

Semantic_1 (ChooseDistance). This first semantic relies on the distance function between
panels to find the trade-off. When exploiting, Qlast is slightly modified. The intuition is that
this latter is not far from the interesting panel. To do so, we randomly choose n = 1 feature
from the representation of Qlast and invert its value. Therefore, with this minor change, the
distance between Qlast and the new panel is minimized (equal to n) and their similarity is
maximized. When exploring, we aim to investigate panels that are distinct from Qlast. To do
so, we also randomly choose n = |attr(R)|/2 features from the panel vector and invert them.
Therefore, the distance between the panels is maximized. In the case where the inversion
of features gives an invalid panel Q (Missing groupby or aggregation attributes), we correct
it.

CHAPTER 3. INDIVIDUAL USER BEHAVIOR 67

We leverage the ε-GREEDY strategy to implement this semantic. In this strategy, we assume
a fixed value of ε (0.1). We then exploit most of the time with a probability 1 − ε and
explore once in a while with a probability equal to ε. Choosing with a high probability
to show a panel close to Qlast helps preserve the stream-of-consciousness [222] of the user.
Furthermore, seeing multiple similar panels might help the user realize what is not desired,
and ideally, provide reasons when rejecting the panels. On the other hand, we explore the
space of possible candidates to avoid narrowing the user into a restrictive space and avoid
putting the system on the wrong path.

We propose different adaptations to this strategy (Table 3.12). Their names are prefixed
with ε-GREEDY-D (D for distance). They all share the same exploitation procedure but differ
during exploration. When exploiting, all of them select randomly some features in the vector
that represents Qlast to change them. When exploring, ε-GREEDY-D-FAR-PANEL changes a
large number of randomly-chosen features in the vector of Qlast. ε-GREEDY-D-NEW-PANEL
shows a completely new panel based on utility, using the new panel generation module.
ε-GREEDY-D-ALTERNATING alternates between the previous two strategies.

Semantic_2 (ChooseReason). This semantic offers a more sophisticated way of choosing
the features to be changed when generating a refined panel. It infers the likelihood of the
possible reason for obtaining the label No. These scores are inferred based on all previous
reasons given by the user using MAB strategies [19, 210, 235]. Each rejection reason is defined
by a bandit’s arm. By assuming a set {1, . . . , l} of possible reasons, the performance of each
i ∈ JlK to generate an accepted panel is computed as follows: µ̂i = si

ni
where si is the number

of times the reason (arm) i has been used in panel refinement such that the user gives a
positive label to the refined panel and ni is the number of times the arm i has been chosen.
At the beginning of the process, the MAB strategy [235] chooses each arm once to initialize si
and ni. After the initialization, it chooses the most appropriate arm based on the scores of
µ̂i. In the case of exploitation, the most likely arm is chosen to refine Qlast while, in the case
of exploration, the least likely arm is selected. In both cases, as for Semantic_1, we randomly
select n = 1 feature from Qlast vector according to the chosen arm, and invert it to refine the
panel.

We propose different MAB strategies (Table 3.12) that return arms according to a probability
matching (SOFTMAX) or an argmax (all the others). To avoid confusion with the ε-GREEDY from
Semantic_1, we denote the ε-GREEDY adaptation from Semantic_2 as ε-GREEDY-E. THOMPSON
Sampling selects the arm with probability equal to the probability of it being optimal, the up-
per confidence bound (UCB) which combines µ̂i and an uncertainty measure with a confidence
degree and SOFTMAX which relies on Boltzmann distribution with temperature (τ).

Experiments

We present an empirical evaluation to analyze the feasibility and scalability of DashBot, for
different types of user interactions (Boolean labels with or without given reasons) using the
MAB strategies of both presented semantics.

Data: We relied on the MovieLens [111] 100K12 dataset. We used a natural join of three
tables: ratings, users, and movies to form the relation R. This relation has 100k tuples and
29 attributes after removing primary and foreign keys. We also applied a preprocessing on

12https://grouplens.org/datasets/movielens/100k/

https://grouplens.org/datasets/movielens/100k/

CHAPTER 3. INDIVIDUAL USER BEHAVIOR 68

Table 3.12: Summary of MAB panel refinement strategies implemented in DashBot.

Semantic_1
ChooseDistance

Strategy Exploit Explore

ε-GREEDY-D-FAR-PANEL Change a small number of features
in the vector representation of Qlast

Change a large number of features
in the vector representation of Qlast

ε-GREEDY-D-NEW-PANEL
Show a completely new panel using
the New Panel Generation module

ε-GREEDY-D-ALTERNATING Alternate between the previous two

Semantic_2
ChooseReason

Strategy Reason chosen at the tth panel refinement

ε-GREEDY-E return

{
argmaxi∈JlK µ̂i , with probability 1− ε (exploit)
a random reason, with probability ε (explore)

UCB return argmaxi∈JlK

(
µ̂i +

√
2 ln(t)
ni

)

THOMPSON
for i ∈ JlK

sample θi ∼ Beta(si + 1, ni − si + 1)
return argmaxi∈JlK θi

SOFTMAX return arm i with probability eµ̂i/τ∑K
j=1 e

µ̂j/τ

numeric attributes using k-means with k = 7. We believe that a single dataset suffices to em-
pirically evaluate DashBot as the difficulty of solving NPGP and PRP comes from the size of
the schema, i.e., the number of attributes and is thus independent of the actual data. For the
purpose of simplicity, we present the attributes with standardized names (A,B,C, . . .).

Metrics and Variants: In our experiments, we simulate users and their interactions. We
define two experimental settings. In the first one only Boolean labels are allowed. The user
executes only one click when the panel is displayed. In the second setting, users are obliged
to select a reason when rejecting a panel. In this case, the effort of a user is defined by two
clicks. As we are simulating users, we also predefine target dashboards. We assume that these
dashboards contain all interesting panels for users. For the purpose of generality, we vary the
number of panels in each dashboard in [1, 2, 3, 6, 9, 12] and the number of considered attributes
in [4, 6, 8, 10, 12, 15, 20, 25, 29]. In each case, R is projected on a randomly chosen subset of
attributes from attr(R). We assume that a user gives Yes feedback to a recommended panel
Qlast if this latter is included in one of the panels present in the predefined dashboard.

To evaluate the different MAB strategies, we define three metrics: (1) the number of steps
(or clicks) to find all panels in the predefined dashboard (user effort), (2) the average clock
time from the beginning of the process until the last Yes label, (3) F1-Score which relies on
Precision and Recall (Section 2.1.3). These are computed based on the vector representation
of panels where relevant ones form the predefined dashboard.When simulating user feedback,
we assume no additional time for reading and understanding a suggested panel. In fact, only
the user’s wait time is recorded. Thus, the definition of user effort is partial.

We also encounter several variants. In addition to Semantic_1 and Semantic_2 strategies,
we consider RANDOM that chooses panels randomly. To compare the different settings of inter-
actions, we consider the variants REASON-x. These are extensions of ε-GREEDY-D-FAR-PANEL
where x% of No labels are accompanied by a rejection reason. We vary x ∈ {1, 2, 10, 100}.
For example, REASON-100 gives always a reason after a No label while REASON-2 does that
every 50 step. Reasons are chosen randomly from the set of possible reasons with respect
to the targeted panels in the dashboard. REASON-x based on ε-GREEDY-D-NEW-PANEL and
ε-GREEDY-D-ALTERNATING exhibit same results.

CHAPTER 3. INDIVIDUAL USER BEHAVIOR 69

Panels Implementation: In this section, we give more details about the implementation of
the panels. As we discussed in Section 3.2.2, each panel is represented with a vector. More
precisely, we assume that if an attribute appears in the groupby, then it should also appear
in the select. This results in binary vectors that allow us to slightly reduce the combinatorial
space without much expressiveness loss. In order to reduce the vectors’ length, we keep
only a single feature for the count function instead of |attr(R)| count features. This does not
yields expressiveness loss because, under standard SQL multiset semantics [226], count always
gives the same result, regardless of the attribute on which it is applied. In addition, for the
categorical attributes, we do not keep features for the aggregation functions.

4 6 8 10 12 15 20 25 29
attributes

1

100

10k

1M

st

ep
s

(l
o

g
sc

al
e)

4 6 8 10 12 15 20 25 29
attributes

10m

1

100

10k

1M

T
im

e
(s

ec
, l

o
g

sc
al

e)

Figure 3.24: Dashboard consisting of a single panel “SELECT A, avg(B), count(*) FROM R
GROUP BY A”.

4 6 8 10 12 15 20 25 29
attributes

1

100

10k

1M

st

ep
s

(l
o

g
sc

al
e)

4 6 8 10 12 15 20 25 29
attributes

10m

1

100

10k

1M

T
im

e
(s

ec
, l

o
g

sc
al

e)

Figure 3.25: Dashboard consisting of two panels “SELECT A, avg(B), count(*) FROM R
GROUP BY A” and “SELECT C, sum(D) FROM R GROUP BY C” .

Experimental Results: Our first experiment studies the scalability of Semantic_1, for
different types of interactions (Boolean labels with or without explanations). We vary the
number of attributes and report the number of steps and the average clock time for a target
dashboard containing either one or two panels. Our source code and results are available on
a GitHub repository 13.

Figure 3.24 reports the results in the first case. The dashboard contains one panel that dis-
plays the results of “SELECT A, avg(B), count(*) FROM R GROUP BY A”. We observe that a
purely RANDOM panel refinement strategy is the worst as clock time and the number of steps
increase exponentially. We also see that RANDOM is already impractical for 6 attributes. One

13https://github.com/MABDashbot/MAB_Dashbot

https://github.com/MABDashbot/MAB_Dashbot

CHAPTER 3. INDIVIDUAL USER BEHAVIOR 70

0 72 74 664
665
2000
2535
2590
4000
4349
4460
4696
4787
6000
8000
10000
12000
14000
16000
18000
20000
22000
24000
25871
26000
26443
28000
30000
32000
33516
34000
36000
38000
39130

clicks

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
1-

S
co

re

Figure 3.26: F1-Score under a fixed budget of clicks.

can also observe that our Semantic_1 strategies perform better with a slight advantage for
ϵ-GREEDY-D-NEW-PANEL. This shows the effectiveness of our data-driven utility functions (en-
tropy and variance) that are used during the exploration phase of ϵ-GREEDY-D-NEW-PANEL.
Another possible explanation is that, during exploration, ϵ-GREEDY-D-FAR-PANEL acts as a
random as it relies on a distance function where the n inverted features are randomly cho-
sen. However, one can see that our MAB strategies became impractical when the number of
attributes is greater than 8. From this figure, we also see the importance of the rejection
reason, especially when the number of attributes is too large. Indeed, one can see that the
variant REASON-100 is the best performer where its number of steps remains constant. Also,
the performance of REASON-x decreases when the frequency of chosen reasons is decreasing.
In terms of clock time, we can observe that all REASON-x variants spend the same time to
refine rejected panels when the number of attributes is high > 12. We can explain that by
the fact that many panels were implicitly labeled No with the inclusion rule. As rejection
reasons are selected randomly, it becomes hard to find unlabeled panels. The same results
can be observed when the dashboard has two panels (Figure 3.25).

In Figure 3.26, we analyze the F1-Score for the case of two panels over 8 attributes. We can
see that, as expected, the number of clicks needed to learn the target dashboard (i.e., F1-
Score= 1) increases when decreasing the number of allowed reasons from 100% to 1%. This
means that users that often choose to select a reason for rejections, increase their likelihood
of reaching the target dashboard. Interestingly, DashBot performs in settings where reasons
are quite rare (i.e., x ≤ 10% of REASON-x) almost as well as when explanations are given at
each user interaction. This suggests the usefulness of DashBot’s MAB strategies for panel
refinement in reducing user effort.

Our second experiment studies the utility of Semantic_2 and aims to verify the assumption
that it performs best when a rejection reason benefits multiple panels. We compare the four
strategies to REASON-10 from Semantic_1. We chose this latter as it offers the best trade-off
between the number of reasons given by the user and the ability to find the target dashboard.
In Figure 3.27, we consider dashboards consisting of many panels that are similar in the
sense that the same rejection reason is true for all of them (here, none of the panels shows
aggregation function sum). From this figure, we see that Semantic_2 strategies require fewer
steps than REASON-10. For THOMPSON, we stopped at 10 attributes because it requires more

CHAPTER 3. INDIVIDUAL USER BEHAVIOR 71

4 6 8 10 12 15 20 25 29
attributes

100

10k

st

ep
s

(l
o

g
sc

al
e)

4 6 8 10 12 15 20 25 29
attributes

100m

1

10

100

1k

10k

T
im

e
(s

ec
, l

o
g

sc
al

e)

Figure 3.27: Comparison of Semantic_1 and Semantic_2 for dashboard con-
sisting of three panels “SELECT A, min(B),max(B),avg(B),count(*) FROM R GROUP BY
A”, “SELECT A, min(C),max(C),avg(C),count(*) FROM R GROUP BY A”, and “SELECT A,
min(D),max(D),avg(D),count(*) FROM R GROUP BY A”.

3 6 9 12
panels in target

100

1k

10k

st

ep
s

(l
o

g
sc

al
e)

3 6 9 12
panels in target

1

10

100

1k

10k

T
im

e
(s

ec
, l

o
g

sc
al

e)

Figure 3.28: Comparison of Semantic_1 and Semantic_2 for dashboard consisting of more
than three panels. The number of attributes is fixed to 8.

computation time compared to the other strategies that have a smoother behavior. Although
all strategies except THOMPSON seem to take comparable clock times for a larger number of
attributes, the Semantic_2 strategies are preferred since they require less user effort. A similar
behavior is confirmed in Figure 3.28 when varying the number of panels.

Summary. In this application, we tackled the question of recommending visualization pan-
els based on SQL groupby queries to generate dashboards. We developed DashBot that
combines data-driven utilities, users’ exploration states (accepted and rejected panels), and
users-driven feedback to guide them in generating dashboards. Our solution aims to be generic
and relies on both MAB strategies of different semantics and label inference to reduce users’
effort for dashboard generation. It also relies on inferring labels of unseen panels to reduce
users’ effort. We provided empirical experiments to demonstrate the utility of MAB strategies
to incorporate user feedback. DashBot has also been demonstrated [68] 14. More details
about the interface and different demonstration scenarios are exposed.

3.2.3 Application 3: Recommendation for Diverse Sessions

Diversity in recommendation has been the topic of a multitude of research efforts [260, 275,
266, 244, 196, 195]. Recent works have shown that diversity improves user satisfaction both

14A video is availablehttps://www.dropbox.com/s/bvwjyqmcvvbiqr0/CIKM_video_srt.mp4?dl=0

https://www.dropbox.com/s/bvwjyqmcvvbiqr0/CIKM_video_srt.mp4?dl=0

CHAPTER 3. INDIVIDUAL USER BEHAVIOR 72

in single sessions and multiple sessions [87]. To enforce the diversity of a set of items, one
has to fix the set of attributes used to compute item similarity. This may not capture well
the diversity interest and its evolution across time as a single choice of attributes does not
fit all users and all sessions. Thus, it is more appropriate to learn diverse attributes in a
personalized fashion. The question of learning diversity has received limited attention with
only a focus on single sessions [154, 233]. We then consider a setting where the notion of
diversity is dynamic and is learned across sessions. We illustrate that with an example.

Motivation: Diverse Session Recommendation

Figure 3.29: Example of diversity-based multi-session recommendation.

Consider the case of Sydney, a user who listens to music during a trip. Figure 3.29 displays
the playlists she receives. Sydney starts with a playlist of Bob Dylan’s songs (1) from different
eras (60’s, 70’s, etc) and different genres (Folk, Rock, etc). After some time, she receives a
less diversified playlist composed mainly of Rock music from the 70’s interpreted by different
artists (2). In the end, Sydney listens to a playlist containing mostly Rock songs from a
variety of eras (3). The main observation is that attributes that yield the highest diversity
differ across sessions since they are data- and user-dependent. The second observation we can
make is that in the case where the diversity is defined by one fixed attribute (e.g., Era) across
all sessions, this does not always yield the highest diversity. Sydney would benefit from an
automated system that is able to capture the diversity of attributes across different sessions
and suggests to her a series of playlists that judiciously combines session diversities.

Our Contributions

Diversity in recommendation matters as it increases user retention and decreases churn [17],
but it can also evolve and vary. Traditional diversity approaches fail to capture this change
in diversity. For this reason, we propose to identify diversity attributes in each session.
Given a set of N items that are relevant to a user, our goal is to find the k best items, in
terms of relevance and diversity, to return in the first session followed by the k best for the
second session, etc. Identifying diversity attributes could be done in two ways: either by

CHAPTER 3. INDIVIDUAL USER BEHAVIOR 73

running a traditional diversity approach such as MMR (Maximal Marginal Relevance) [52, 90]
and SWAP [266], and finding the attributes that yield the best diversity in each session, or by
relying on machine learning techniques to identify those attributes.

The first contribution is to leverage MMR and SWAP to find the best diversity attribute in each
session. Our adaptation consists in iterating over all available attributes and items in a session
and returning the attributes that maximize the objective function of MMR or SWAP. The set
of available items in each session is formed by the items that have not been returned in the
previous sessions either because of their low relevance or because they did not contribute to
diversity. The approach goes on until the number of items N or the number of desired sessions
is completed. Our second contribution is to learn the attributes of diversity in each session.
Given the lack of logs, we propose to leverage Reinforcement Learning (RL) to train an agent
based on a reward that reflects the best diversity attained in each session. The output of
the training is a policy that generalizes single-session diversity and maximizes the underlying
objective function across multiple sessions.

In recent works, RL models showed promising results when applied to learning diversity
[110],[233]. The application of RL models allows the prediction of long-term goals that are
important in a multi-session recommendation problem. Our third contribution is to adapt
SMORL [233], a state-of-the-art RL solution for recommendation diversity, to take into account
multi-session diversity. The SMORL model is composed of two heads, the self-supervised
and RL regularizer. The former head is a fully connected layer that plays the role of a
traditional recommender. It ranks all items by predicting their relevance and is trained using
a cross-entropy loss. The latter is an RL head which modifies the initial ranking of items
as they are trained simultaneously. It learns the Q-function using the Scalarized Deep Q-
learning (SDQL) [168]. We extend this model with another fully connected layer that allows
us to identify the right attribute that maximizes diversity by learning the Q-function using
DQN [166].

Data Model

Let U denote the set of users and I the set of items that any user u ∈ U can choose from. An
item i ∈ I is represented with a vector of attributes < att1, att2, .., attp > drawn from a set of
attributes A. For instance, in the music domain, items can be represented as < artist, genre,
release date>, and a song may be represented as < Pink Floyd, Rock, 1979 >. We assume
that we are given a distance d : I × I ×A → R+ that reflects dissimilarity, i.e., the diversity
of two items in I with respect to an attribute att. We use datt(i, j) to reflect the diversity of
the two items i, j on attribute att.

Diverse Session Recommendation Problem

Lately, recommendation systems relied on embeddings to encode latent representations of
items [17, 110]. Once embeddings are computed, items that are strongly related to each other
will have close representations in the item embedding space. To produce such an embedding
space we follow a methodology that is used for Spotify [17]. It consists of training a Word2Vec
algorithm [163] on user-item interactions. Traditionally, Word2Vec is used in natural language
processing to embed words from a corpus of documents. In our case, we used it to produce
item embeddings for each attribute. To train the Word2Vec models, we map each item to a

CHAPTER 3. INDIVIDUAL USER BEHAVIOR 74

numerical index and use as context the items sharing similar attribute values. The vocabulary
size is represented by the number of items. For numerical attributes, we compute the similarity
between items using Cosine similarity. For categorical attributes, two items are similar if they
share the same value. In the case where the number of similar items exceeds the context size,
we choose items with similar attributes randomly.

To compute the diversity of a set of items in a given session S with respect to an attribute
att ∈ A, we leverage the widely used intra-list-distance measure [275] that computes the
diversity of items in a session as the average pairwise distance between items in the session.
More formally

divatt(S) =

∑
i∈S
∑

j∈S\{i} datt(i, j)

|S|(|S| − 1)
(3.5)

We can now state our goal: Given user u and a set of l sessions, recommend the k most diverse
unseen items in each session. We aim to maximize the diversity of each session by finding the
attribute that yields the highest diversity. More formally, in each session S, we look for an
attribute att, s.t.:

argmaxatt divatt(S), |S| = k

Our Proposed Solutions

To solve our problem, we devise two main approaches to look for the best diversity attribute
in each session: the first is a generalization of traditional diversity approaches and the second
is based on reinforcement learning to learn diversity attributes in several sessions.

A variety of diversity-based approaches have been developed for recommendation. In this
application, we leverage SWAP [266] and MMR [52], two common diversity approaches, to develop
our baselines. We adapt SMORL, a state-of-the-art RL architecture [233] for multi-attribute
recommendations.

MMR Adaptation. A widely used approach to combine relevance and diversity is the greedy
algorithm MMR [52, 90]. Given a set S of the k most relevant items to recommend to a user,
MMR selects at each step a new candidate item i∗ that maximizes a linear combination of its
relevance and the gain in diversity that is achieved according to already selected items. More
formally, it chooses i∗ s.t.

i∗ = argmax
i∈I

(
(1− α) · rel(i) + αmin

j∈S
d(i, j)

)

where α ∈ [0, 1] is a parameter that tunes the relative importance of each relevance and
diversity. Higher values of α mean more importance is put on diversifying the resulting
recommendation set.

Algorithm 4 illustrates our adaptation of MMR which consists in iterating over all attributes in
A to find the one yielding the highest diversity.

CHAPTER 3. INDIVIDUAL USER BEHAVIOR 75

Algorithm 4: Multi-attribute MMR
Input: user u, set of items I, set of attributes A, α, # recommendations k, # sessions l
Output: l-session recommendations

1 X ← ∅
2 for j ← 1 to l do
3 C ← [Items in relevance order to u]
4 divs_A← [] (To keep the result set of each attribute)
5 foreach att in A do
6 Sj ← C[0]
7 while |Sj | < k do
8 i∗ = argmaxi∈C\Sj

((1− α) · rel(i) + αminj∈S divatt(i, j))

9 Sj ← Sj ∪ {i∗}
10 divs_A.append(Sj)

11 S∗ ← Get the set with the highest diversity in divs_A
12 C ← C \ S∗

13 X .append(S∗)

14 return X

SWAP Adaptation. We propose algorithm 5 based on SWAP, a re-ranking approach that is
divided into two steps. First, a recommender is used to predict the relevance of unseen items
to a user u (Line 3). A top-k list of items S is selected (Line 4). Secondly, for each attribute
in A (Line 6), a recommended list (Satt) is computed by a standard SWAP approach using the
same initial S where items that contribute the least to diversity are replaced with ones that
maximize it (Lines 8-16). The list Satt with the highest diversity is selected as the session to
recommend (Line 19).

Learning Multi-Attribute Diversity. We formalize our problem as a Markov Decision
Process (MDP) in which the agent interacts with the environment represented by all users.
We define the key components of the MDP represented by the tuple (S, A, P, R, γ) as
follows:

• State Space (S): It describes the user state at time t. A state st is represented by an
embedding vector that summarizes the last session, defined by the last k items the user
interacted with. More formally, st = Femb(ct−1) where ct−1 is the (t−1)th session. Femb

should capture the connections between the different items within the session as well as
their order which makes it different from having as input the union of all items of the
session.

• Action Space (A): An action permits the transition between two consecutive states. In
this work, we consider two types of actions: Choosing the items that define the next
session recommended to the user and selecting the attribute for which the diversity of
the next session is maximized. More formally, at = (ct, attt) where ct is the tth session
and attt is the selected attribute.

• State transition probability (P): S × A × S 7→ R is the probability p(st+1|st, at) of
transition from st to st+1 when the agent selects the action at.

• Reward (R): S ×A 7→ R is the instant reward of taking an action at at state st. More
formally, r(st, at) = divattt(ct) where divattt is the intra-diversity of the selected session

CHAPTER 3. INDIVIDUAL USER BEHAVIOR 76

Algorithm 5: Multi-attribute SWAP
Input: a user u, a set of items I, a set of attributes A, # recommendations k, # sessions l
Output: l-session recommendation

1 X ← ∅
2 for j ← 1 to l do
3 C ← [Items in relevance order to u]
4 S ← Topk(C)
5 divs_A← [] (To keep the result set of each attribute)
6 foreach att in A do
7 Satt ← S; m = 1
8 while m < k do
9 pos = k +m; m = m+ 1

10 for i in Satt do
11 if divatt(Satt) < divatt((Satt − {i}) ∪ C[pos]) then
12 Satt.remove(i)
13 Satt.add(C[pos])

14 divs_A.append(Satt)

15 S∗ ← Get the set with the highest diversity in divs_A
16 C ← C \ S∗

17 X .append(S∗)

18 return X

ct using the selected attribute attt.

• γ ∈ [0, 1] which represents the discount factor for future rewards. If γ = 0 the agent
ignores all future rewards and considers only the immediate one. If γ = 1 the agent
ignores the immediate reward and considers all future ones. We set γ = 0.99.

The goal of this formalization is to train an agent that is able to find a policy π∗ that maximizes
the expected cumulative reward :

π∗ = argmaxπE[
|π|∑
t=0

γtr(st, at)] (3.6)

where |π| is the length of the policy which corresponds to the number of sessions for each
user.

To implement our MDP, we propose to adapt SMORL, a state-of-the-art architecture for rec-
ommendation diversity [233]. An overview of the framework is displayed in Figure 3.30. It is
split into three parts: (A) represents the summarising of the k previous items defining the
last session. We used the same architecture as in [110] by replacing the LSTMs with GRUs.
The session is embedded using this layer of GRUs followed by a layer of attention:

oi = GRU(itemi|oi−1), o′i = ReLU(W1oi + b1)

CHAPTER 3. INDIVIDUAL USER BEHAVIOR 77

S =
k∑

i=0

o′i
eW2o′i+b2∑k
j=0 e

W2o′j+b2

(B) represents the adaptation of SMORL model [233]. SMORL is composed of two heads, the
self-supervised and the RL regularizer. The former head is a fully connected layer that plays
the role of a traditional recommender. It ranks all items by predicting their utility and is
trained using a cross-entropy loss. The latter is an RL head which modifies the initial ranking
of items as they are trained simultaneously. It learns the Q-function using the Scalarized
Deep Q-learning (SDQL) [168] which is an extension of DQN [166]. The part (C) has the
goal of learning the right attribute that maximizes diversity. It learns the Q-function using
DQN.

(A)

(B)

(C)

Item 1

Item 2

Item k

...
...

Session L

Item 1

Item 2

Item k

...

Session 1

 ... At
te

nt
io

n

Se
ss

io
n

Em
be

dd
in

g

GRU 1

GRU 2

GRU k

Session
Presentation L

Session
Presentation 1

...

time

Set of Items (I) Utility
prediction

Self-supervised

Q values

Fully
Connected

RL Regularizer

Set of Attributes (A)

Attribute
probabilities

Fully
Connected

Session of
Top-k (S)

Attribute (att)

...

...

...
...

...

Figure 3.30: Overview of the architecture of the RL framework. (A) represents the summa-
rizing of a session into a latent space, (B) represents the SMORL model [233] to choose the
next session items, and (C) designates the model for choosing the best attribute to optimize
diversity.

Experiments

We run an extensive set of experiments to study the impact of our solutions on diversity as
well as relevance and response time. We first evaluate our solutions in a setting of a single
session recommendation. We then evaluate them in the context of multiple sessions. Our
code as well as our dataset are available on our GitHub repository15.

Setup: We split the data in a user-wise fashion, i.e., for every user, we chronologically build
sessions where each session contains k items. We use the l last sessions, of each user, as a test
set and the remaining ones as a training set.

Data: We use a real-world dataset, a merge between MovieLens 10M and IMDb datasets,
which contains 5 real attributes: Genre, Duration, Release Year, Rating, and Type of movie.
We generate a semi-synthetic dataset by augmenting the real-world one with {10, 20, 30, 95}
simulated attributes. The generation of these independent attributes is performed using
different distributions: Gaussian, Exponential, Gamma, Uniform, and Zipfian. The choice
of the distribution as well as its parameters, to generate a single attribute, is random. The

15https://github.com/SessionDiversity/Multi-session-Diversity-Attributes

CHAPTER 3. INDIVIDUAL USER BEHAVIOR 78

Table 3.13: Parameter tuning values

Methods Parameters Values

SMORL

Batch Size 256, 64
Session Size 100, 200, 500

Learning Rate 0.0001, 0.0003, 0.001, 0.003

MMR
Trade-off of relevance

and diversity (α) 0.3, 0.5, 0.6, 0.9

generation is performed once at the beginning of the process. This dataset is sparse as 98.5%
of data is missing.

Variants and Metrics: To compare our algorithms with ones that do not capture at-
tribute diversity, we implement MMR_G and SWAP_G that estimate the diversity in a global
fashion.

For each user, we measure precision and diversity. We consider that an item is relevant if
it appears in the sessions of the test set. For diversity, we rely on ILD measure [275]. The
reader may refer to Section 2.1.3 for details. We also use two different multi-aspect metrics
to measure the combination between accuracy and diversity. The first one is an adaptation
of the F1-Score:

FScoreu@k = 2.P recisionu@k.Diversityu
Precisionu@k+Diversityu

The second one is an adaptation of nDCG [57] called αnDCG. It has a tuning parameter
α ∈ [0, 1], which indicates the strength of penalization on the appearance of similar items in
the recommended session. In the case where α = 0, αnDCG is equivalent to nDCG. Given
the session Ru@k:

αnDCG =

∑
ng(r)/log(r + 1)∑
ng∗(r)/log(r + 1)

where ng(r) = Iu(r)(1− α)Cu(r−1) which represents the novelty-biased gain at rank r. Iu(r)
is the relevance of the item at the rank r and C(r) =

∑r
i=1 Iu(i).

Finally, we calculate for each user the response time needed to generate the recommended
sessions.

Default values and Parameter tuning. We report results in the case where session size
k = 5. They are aggregations of 3 runs over sets of sampled users. We performed a grid
search over a set of parameters to fine-tune MMR and RL methods and find those yielding the
best results. We provide details of all parameters in Table 3.13 and highlight the best ones.
The parameter “Session Size" represents the size of the session embedding.

Single Session Recommendation:

Diversity. Figure 3.31 reports the evolution of intra-diversity as a function of the number of
attributes. The first observation is that the diversities of the baselines are better than SMORL’s
with a clear overall advantage for MMR. One possible explanation of the performances of MMR
and SWAP is that they calculate the diversity for all attributes and choose always the best
one. SMORL on the other hand relies on predicting diversity attributes which makes it more
vulnerable and returns more false positives and that affects negatively its performance. For

CHAPTER 3. INDIVIDUAL USER BEHAVIOR 79

example, for #Attributes = 5, SMORL has a precision of 25% for choosing the best attributes
while SWAP and MMR have a precision of 100%.

The second observation is that the diversity of MMR_G and SWAP_G is smaller than others
regardless of the number of attributes. This is because the latter methods tend to select the
attributes that maximize diversity while no such optimization is performed for both MMR_G
and SWAP_G.

Figure 3.31: Evolution of Diversity as a func-
tion of the number of attributes.

Figure 3.32: Evolution of Precision as a func-
tion of the number of attributes.

Accuracy. Figure 3.32 represents the evolution of precision as a function of the number of
attributes. From the figure, we can see that, generally, the adaptation of SMORL is the best
and outperforms the baselines (MMR and SWAP). As explained in the original paper [233], SMORL
can identify users having diverse interests and recommend them suitable items. One possible
explanation is that SMORL incorporates a traditional recommender. Indeed, the self-supervised
head of SMORL plays that recommendation role and learns the most accurate next items to
recommend in a sequential way.

We notice that SWAP performs better than MMR. The reason is that SWAP chooses at each
step the best item to swap within the initial list of items while MMR chooses the next item
using a linear trade-off function between utility and diversity. We also notice that the two
variants of algorithms achieve a similar precision with an advantage of MMR over MMR_G and
SWAP_G over SWAP.

Accuracy-Diversity. Figure 3.33 shows the evolution of αnDCG as a function of the number
of attributes. The evolution of F-Score is similar to αnDCG, so we do not report it. One
can see that SMORL is the best performer compared to SWAP and MMR. We can explain that by
the fact that the RL head of SMORL is used to introduce more diverse items while the other
head provides more accurate ones. The combination between these heads and their mutual
learning permits the model to obtain a good balance between diversity and accuracy. Despite
MMR having a better and increasing diversity, it is outperformed by SWAP regardless of the
number of attributes. Indeed, the reason is, that this latter achieves a far better accuracy
which results in having a better balance.

Time. Figure 3.34 reports the evolution of response time as a function of the number of
attributes. We see that the baselines have the worst time performance independently of
the number of attributes, with better results for SWAP. Indeed, these methods iterate over
all attributes to choose the best one. This obviously makes the computation expensive and

CHAPTER 3. INDIVIDUAL USER BEHAVIOR 80

Figure 3.33: Evolution of αnDCG as a func-
tion of the number of attributes.

Figure 3.34: Evolution of response time as a
function of the number of attributes.

increases with the increase of the number of attributes and items. The second observation is
that the RL algorithm has a constant time evolution across the number of attributes. SWAP_G
is obviously the best performer as it does not iterate over attributes while MMR_G outperforms
SWAP for #Attributes = 100 and MMR.

Multiple Session Recommendation: In this section, we fix the number of sessions to
l = 3.

Diversity. Figure 3.35 shows the evolution of diversity across multiple sessions. We observe
that the diversities of all models are mainly constant regardless of the session. The models
are designed to optimize the diversity of a session and maintain its maximization for the next
ones.

Figure 3.35: Evolution of Diversity across ses-
sions for #Attributes = 5.

Figure 3.36: Evolution of Precision across ses-
sions for #Attributes = 5.

Accuracy Figure 3.36 shows the evolution of precision across multiple sessions. The main ob-
servation is that the precision of SMORL and SWAP are both increasing and then decreasing with
an advantage for SMORL while MMR precision is continuously decreasing. The other observation
is that MMR_G is the worst performer and SWAP_G is quickly decreasing and outperformed by
SMORL.

Accuracy-Diversity. Figure 3.37 shows the evolution of F-Score across multiple sessions.
We observe that despite the good results of MMR on diversity, the trade-off metric is quickly

CHAPTER 3. INDIVIDUAL USER BEHAVIOR 81

decreasing. SMORL and SWAP have the opposite behavior as they remain constant. We also
observe that methods with attribute selection outperform SWAP_G and MMR_G.

Figure 3.37: Evolution of F-Score across sessions for #Attributes = 5

Learning Transfer: Our last experiment is about policy transfer. We split the users into
three classes: users with high, medium, and low diversity using K-means [153]. The diversity
of each user is the average diversities of the last 5 sessions in the training set. We split,
user-wise, each class in a way that 75% of users, “known users", are used to train a model
while the remaining 25% “unknown" ones are used to test the transfer of the model. We train
for each class a SMORL model and test it on both types of users. The results are displayed in
Figures 3.38, 3.40, and 3.39.

Figure 3.38: Diversity of transfer learning for
a single session.

Figure 3.39: F-Score of transfer learning for
a single session.

Figure 3.40: Precision of transfer learning for
a single session.

CHAPTER 3. INDIVIDUAL USER BEHAVIOR 82

From the figures, one can see that, overall, we can transfer SMORL models to users that were
unknown to them. Indeed, in the “Low diversity" and “Medium diversity" cases, models do
not maintain the level of precision and F-Score but the observed decrease is slight compared
to “known" users. For example, we register a loss of 9% and 14% of precision for the “Low"
and “Medium diversity" models respectively. In the case of “High diversity", precision and
F-Score for “unknown" users are the same as for “known" ones. One can also observe that
the results of diversity are the same between the test sets regardless of the type of diversity
class.

Summary. In this application, we developed an approach for learning diversity attributes
in multi-session recommendations. Our aim is to learn which attribute optimizes the best
diversity of each session and target users with suitable diverse items. We also assumed that
previous sessions define the states of users. We implemented two different solutions: one
based on traditional diversity-based recommenders (MMR and SWAP) and the other based on
a state-of-the-art Reinforcement Learning architecture (SMORL). We conducted experiments
on semi-synthetic data based on MovieLens and IMDb and demonstrated that SMORL-based
approach scales very well and gives the best trade-off between diversity and accuracy. The
work in this application was published in IEEE BigData 2022 [43].

3.3 Conclusion

In this chapter, we introduced the notion of dynamic recommendations. We first explored
an extension of standard recommenders with users’ profiles and states to solve the "Best
Selection Problem" in Section 3.1. We proposed a meta-learning methodology that chooses
the best recommender for each pair user-item having as input users’ profiles (states) and item
features. We showed the importance of considering user states in a static environment.

After that, we examined three real-world applications of dynamic recommendations in Sec-
tion 3.2. These applications are related by the fact that they are interactive where users have
a constant change in their behavior. The second link is related to the type of used solutions.
In fact, we relied on the same family of algorithms: Markov models. Finally, in all the ap-
plications, we leverage multiple dimensions to capture users behaviors and characterize their
profiles.

We formalized the AdUp problem based on three learning dimensions to capture the behavior
of users to solve the upskilling problem and test recommendations in Section 3.2.1. We
proposed two solutions based on either Pareto [24] and multi-objectives (MOO) or Multi-armed
bandit [236] (MAB). Our experiments showed that the dynamic solution, MAB, outperforms MOO
as it offers more skill gain in fewer iterations.

We also formalized two generic problems: NPGP and PRP to define visualization-based
analytics recommendations in Section 3.2.2. We proposed a solution, DashBot based on
Multi-armed bandit [236], that targets users with visualization panels that display interesting
results of SQL groupby queries. Our solution encounters users’ feedback and relies on different
data-driven utility functions: Coverage, variance, and entropy. Our experiments show the
effectiveness of our solution to incorporate users’ feedback and recommended panels that
interest them.

Finally, we formalized an attribute-based problem to recommend diverse sessions in Sec-

CHAPTER 3. INDIVIDUAL USER BEHAVIOR 83

tion 3.2.3. We proposed two solutions to balance relevance and diversity in session rec-
ommendations. The first solution is a generalization of standard diversity-based recom-
menders algorithms, such as MMR [90] and SWAP[266] while the second solution extends a
known diversity-based Reinforcement Learning architecture, SMORL [233]. Our experiments
show that the RL solution scales well and offers a better trade-off between relevance and
diversity. They also show that our attribute-based solutions outperform standard diversity-
based recommenders.

Chapter 4

Collective User Behavior

In this chapter, we aim to extract user collective behavioral patterns based on multiple hy-
potheses testing. In fact, understanding people and their collective preferences in the Internet
of Behaviors 1 requires expressive and statistically-sound methods for data-driven discoveries.
A statistical hypothesis test compares two models (the null and the alternative hypotheses)
and deems the comparison statistically significant if, according to a significance threshold α,
the data is very unlikely to have occurred under the null hypothesis, i.e., the null hypothesis
is rejected, and the alternative hypothesis is satisfied. Making sound discoveries for multiple
users and in large datasets poses two challenges: the likelihood of accepting a hypothesis by
chance, i.e., returning false discoveries, and the pitfall of not being representative of the input,
i.e., data coverage.

In this chapter, we propose a solution, GroupTest, that analyzes the collective behavior
of users and extracts patterns combining multiple hypothesis testing and coverage. Relying
on multiple hypothesis testing minimizes the likelihood of returning false discoveries when
ensuring that the results are significant. Optimizing coverage allows us to explore the en-
tire data. Parts of this chapter were published in the WWW 2022 [45] conference. It was
also extended to a journal paper published in the Transactions on Large-Scale Data- and
Knowledge-Centered Systems [44].

4.1 Motivation: Hypothesis Testing for User Groups

Consider an analyst who seeks to examine movie ratings with the goal of forming an interna-
tional panel of diverse experts to judge Comedies. In this case, data samples refer to reviewer
groups. Figure 4.1 illustrates the example in 3 steps. Request 1 looks for reviewer groups
who provided diverse ratings for Comedies. A one-sample Kolmogorov-Smirnov test identifies
three groups that reject the null hypothesis “Rating distribution is unimodal" (and satisfy the
alternative hypothesis stated in the request). An additional constraint is needed to ensure
that returned groups are representative of the input, i.e. cover most reviewers of Comedies.
Request 2 further refines returned groups by exploring their age subgroups. It applies a
two-sample F-test that seeks to reject the null hypothesis “Age groups whose variance for

1https://www.gartner.com/smarterwithgartner/gartner-top-strategic-technology-trends-for-2021/

84

https://www.gartner.com/smarterwithgartner/gartner-top-strategic-technology-trends-for-2021/

CHAPTER 4. COLLECTIVE USER BEHAVIOR 85

Figure 4.1: A multi-step group testing.

Comedies is the same". Here again, traditional hypothesis testing will only check rating vari-
ances. An additional constraint is needed to ensure that the input age groups are covered by
the resulting groups. The output groups are fed to a two-sample Welsh test to compare their
average ratings in Request 3, and return those that significantly differ. Members of those
groups can be used by the analyst to form the desired panel.

4.2 Multiple Hypothesis Testing Challenges

Realizing our example requires addressing two challenges: (i) the likelihood of rejecting a null
hypothesis and returning groups by chance, when the number of groups grows, and (ii) the
pitfall of returning groups that are not representative of the input data of interest. Indeed,
when multiple data samples are tested against a hypothesis, the chance of observing a rare
event increases, and hence, the likelihood of incorrectly rejecting a null hypothesis (i.e., making
a Type I error [208]) increases. There are precise criteria for excluding or not a null hypothesis
at a certain significance level [123, 160]. Those criteria depend on the type of test (i.e., one-
sample, two-sample, multiple-sample), the aggregation function (e.g., mean, variance), the
sample sizes, whether the samples are paired (same subjects), and the comparison operators
(e.g., equal, greater). The second challenge is particularly important for large datasets where
the number of groups that pass the test increases and the choice of which ones to return
may affect how representative they are, i.e. how much they cover the input. This requires
revisiting the conditions under which a null hypothesis is rejected to additionally account for
data coverage when selecting groups to return.

4.3 Our Contributions

We develop GroupTest, a unified framework that supports a variety of statistical tests to
verify if user behavior supports the null or the alternative hypotheses and return qualifying
groups. We, first, formulate a generic problem ValMin as an extension of the traditional
multiple hypothesis testing problem. ValMin is a top-n problem that seeks n user groups
accommodating different hypothesis tests (one-sample, two-sample, or multiple-sample tests)

CHAPTER 4. COLLECTIVE USER BEHAVIOR 86

and additionally satisfying a constraint on data coverage. This problem enforces coverage but
does not maximize it. We hence propose to generalize it by formulating CovMax which is also
a generic top-n problem that maximizes data coverage while setting a constraint on hypoth-
esis significance. ValMin and CovMax leverage different hypothesis correction methods,
FWER [30] and FDR [34].

We show that both problems are NP-hard with a reduction to the Partial Weighted Set Cover
Problem and the Maximum Coverage Problem respectively. We develop VAL_C, a greedy
algorithm that solves ValMin, and COVER_G, a greedy algorithm that solves CovMax. To
address scalability, we also develop COVER_α, a more efficient heuristic algorithm to solve
CovMax.

VAL_C iterates over the set of all candidate groups and chooses the ones that maximize sig-
nificance (smallest p-values). Similarly to traditional procedures, VAL_C controls the multiple
testing error at a given significance level α (usually set to 0.05). COVER_G is a greedy algo-
rithm, with a provable approximation guarantee. As VAL_C, it iterates over the set of candidate
groups and instead of choosing the candidates that minimize significance, it chooses the next
candidate that maximizes coverage. It also controls significance by calculating and ranking the
p-values of all candidates. This hinders its scalability when the number of groups increases.
To address that, we propose COVER_α, a heuristic algorithm that builds on α-investing [89],
an adaptive sequential method that controls mFDR, the ratio of the expected number of false
rejections to the expected number of rejections. Different investing policies of the α-wealth
have been proposed previously albeit without considering data coverage [273]. The key idea of
COVER_α is to invest more significance, referred to as α-wealth, in candidates with the highest
coverage. This decision relies on tuning a hyperparameter λ whose value determines the speed
at which the α-wealth is consumed, and needs to be explored empirically.

4.4 Data Model

GroupTest is applicable to data modeled as a bipartite graph formed by users and items with
their respective attributes (See Section 4.4.1). This model is generic enough to capture many
datasets, especially the recommendation ones. We present some examples of the hypothesis
and requests GroupTest encounter.

Examples. Our purpose is to develop a powerful framework for group testing. A one-
sample, two-sample, or multiple-sample hypothesis is verified when groups identified by some
filters, have statistically similar, higher, lower aggregates with respect to some aggregate
(mean, variance, rating distribution on group members). This is referred to as the alternative
hypothesis that states the desired test and complements the null hypothesis. Therefore, the
null hypothesis is said to be rejected by desired groups.

Table 4.1 illustrates the variety of requests we handle in GroupTest with examples on movie
ratings along with the type of test that is relevant for each request (third column). The first
four types of requests use mean to aggregate group ratings and require different types of
tests. R1 shows the case of a one-sample t-test. Input data is all movie ratings by students.
Subgroups such as “Students in California" or “Young students" are generated and their
average rating is compared to a reference value (here, 3.5) with a one-sample test. Groups
that reject the null hypothesis “Students whose rating average is equal to 3.5" and satisfy the

CHAPTER 4. COLLECTIVE USER BEHAVIOR 87

Table 4.1: Examples of group testing requests in GroupTest with “groups", aggregate,
dimension, and operator with the corresponding statistical test.

R1 “Student groups" whose rating mean is greater than 3.5 One-sample t-test
R2 “Female groups" whose rating mean is lower than “Male

groups" within the same period
Two-sample Welch’s test

R3
“Male Groups" whose rating mean changes between 2 Sea-
sons

Two-sample paired t-test

R4 “Groups" whose rating mean for “80’s movies" differs in a
3-week period

Multiple mean F-test:
ANOVA

R5 “Groups" whose rating variance for “Comedy movies" is
greater than 1

One-sample variance Chi-
square test

R6 “Group pairs" whose rating variance for“70’s movies" dif-
fers in the Spring

Two-sample variance F-test

R7 “Groups" whose yearly rating distribution does not follow
a Gaussian distribution

One-sample Kolmogorov-
Smirnov test

R8 “Group pairs" whose rating distribution for“Drama
movies" differs in the same season

Two-sample Kolmogorov-
Smirnov test

alternative hypothesis “Students whose rating average is greater than 3.5" are returned. The
case of a two-sample test is shown in R2 and R3. In R4, we compare groups across 3 weeks
and return tuples of groups whose rating mean for 80’s movies differs. We use variance as an
aggregation in R6 and rely on a two-sample F-test. It starts with all rating records for movies
in the 70s and returns pairs of groups whose rating variance for those movies differs in the
Spring. The last two types, R7 and R8, compare rating distributions using one-sample and
two-sample Kolmogorov-Smirnov tests.

4.4.1 Groups

Given a set of users U and a set of items I, we define user data as a database D of tuples
⟨u, i, a⟩ where a ∈ R is a value induced by an action such as browsing, tagging, or rating,
of user u ∈ U , on item i ∈ I. Users have attributes drawn from a set AU and items have
attributes drawn from a set AI . For example, users can be represented with AU = ⟨ uid, age,
gender, occupation, location ⟩, a user instance may be ⟨ 568, 18-24, female, student, NY ⟩.
Similarly, items on Movielens can be represented with AI = ⟨ title, genre, year, run time ⟩
and the movie Titanic as ⟨ Titanic, Romance & Drama, 1997, 195 ⟩.

Definition 1 (Group). A group g is a set of records where users have at least one common
attribute value (e.g., same gender) and may have some common actions (e.g., rated the same
movies).

For instance, g = [⟨gender, female⟩, ⟨age, 25-34⟩, ⟨ item title, Titanic ⟩] contains 25-34 aged
females who rated the movie Titanic.

We use G to denote the set of all groups. Hence, |G| is the powerset of user and item attribute
values. For instance, with |AU | = 4 and 3 values per attribute, and |AI | = 3 with 5 values,
|G| = 2(4×3+3×5).

In the literature, groups have been referred to with different terms, such as communities [169],

CHAPTER 4. COLLECTIVE USER BEHAVIOR 88

tribes [103], cliques [47], cohorts [128], teams [171], segments [15], patterns [261, 40], cubes [129],
clusters [9, 232] and partitions [187]. Our model is designed to be agnostic about the approach
used to compute groups.

4.4.2 Group Testing

A hypothesis test considers two hypotheses that contain opposing viewpoints. The null hy-
pothesis H0 usually states that group aggregates are the same. The alternative hypothesis
Ha states a claim that contradicts H0 and corresponds to desired samples (in our case, user
groups). The decision can either be “reject H0" if the sample favors the alternative hypothesis
or “do not reject H0” if the sample is insufficient to reject that hypothesis.

The GroupTest framework is aimed to be generic and accommodates various types of tests.
Different statistical tests qualify depending on group size, group members (paired or un-
paired), and the aggregation function AGG. Figure 4.2 summarizes the aggregation functions
and statistical tests considered in our work. The last column refers to the requests shown in
Table 4.1.

Definition 2 (Group testing request). A group testing request R is a tuple ⟨H0, Ha, MSR, AGG, OP⟩
where H0 is a null hypothesis, Ha an alternative hypothesis, MSR is a user behavior dimen-
sion (e.g., rating, purchase), AGG is an aggregation function applied to a behavior dimension
(average, variance, distribution), and OP the operator used to compare aggregates (=, <>, >,
and <).

To simplify our notation, we omit the condition on user and item attributes in R and assume
that a request R is evaluated on D ⊆ D where those conditions are satisfied. The subset
D is used to create a set of groups G ⊆ G. To evaluate a request R, we compute a set
of allCandidates as follows: for one-sample tests, allCandidates = {⟨g⟩}; for two-sample
tests, allCandidates = {⟨g, g′⟩}; for multiple-sample tests allCandidates = {⟨g, g′, . . .⟩} where
g ∈ G, g′ ∈ G, g <> g′. We now describe how to compute the significance of each sample in
allCandidates before we formalize our top-n problems.

Computing P-values The common protocol to compute p-values of each sample in allCan-
didates must first verify the normality and independence of each sample [62]. Without loss
of generality, we describe that protocol for comparing two means with a two-sample t-test. A
value of 0.05 for α is commonly adopted and indicates a 5% risk of concluding that a difference
exists between the two means when there is no actual difference [75]:

P-value Computation Protocol:

Normality check: Given a candidate pair (g, g′) ∈ allCandidates, verify that the data distri-
bution of each group g and g′ is normal, normalize it otherwise;

Independence filtering: Verify that the distributions of g and g′ are independent using χ2

test; Keep independent pairs;

P-value computation: Compute the p-value pval of independent (g, g′) pairs wrt a request R.

CHAPTER 4. COLLECTIVE USER BEHAVIOR 89

Mean

R1

R2

R3

R4

AGGREGATE INFERENCE andTEST

Test about a mean: One-sample
t-test

Test to compare two means:
Two-sample Welch’s t-test

Test about a mean with paired data:
Paired difference t-test

Test to compare K multiple means:
F-test for one way ANOVA

F = MST
MSE with n=n1+⋯+nK and x̄=

∑ K
i=1xi
n

MST=
∑ K

i=1ni(x̄i−x̄)2

K−1
 , MSE =

∑ K
i=1(ni−1)s2

i

n−K

t=
d−d0

sd/ n

with d and sd the average and standard deviation

of the differences all pairs and the reference difference d0

t=
(x̄1−x̄2)

η

with x̄1−x̄2 the difference between 2 sample means,

η=
s 2/n, for n=n1 =n2

s 1/n1+1/n2, for n1≠n2 and s=s1 =s2
s1/n1+s2/n2, for n1≠n2 and s1≠s2

DEFINITIONandExample

 s the pooled standard deviation, and

t=
x̄−μ0

s/ n

with x̄ and s, the sample mean and standard deviation,
and μ0 the reference mean, and n the sample size

Mean

R1

R2

R3

R4

Test about a mean: One-sample t-
test

Test to compare two means:

Two-sample Welch’s t-test

Test about a mean with paired data:

Paired difference t-test

Test to compare K multiple means:

F-test for one way ANOVA

t =
x̄ − μ0

s/ n
with x̄ and s, the sample mean and standard deviation,
and μ0 the reference mean, and n the sample size

t =
(x̄1 − x̄2)

η
with x̄1 − x̄2 the difference between 2 sample means,
 s the pooled standard deviation, and

η =

s 2/n, for n = n1 = n2

s 1/n1 + 1/n2, for n1 ≠ n2 and s = s1 = s2

s1/n1 + s2/n2, for n1 ≠ n2 and s1 ≠ s2

t =
d̄ − d0

sd/ n

with d̄ and sd the average and standard deviation of the
differences all pairs and the reference difference d0

F =
MST
MSE

 with MST =
∑K

i=1 ni(x̄i − x̄)2

K − 1
 , MSE =

∑K
i=1 (ni − 1)s2

i

n − K
and n = n1 + ⋯ + nK, x̄ =

∑K
i=1 xi

n

Variance

R5

R6

Test about a population variance:

Chi-squared test

Test to compare two population

variances: F-test

T = (n − 1) s2/σ2
0

with s2 the sample variance, n the sample size
and σ2 the reference variance

F = s2
1 /s2

2 with s2
1 and s2

2 the sample variances of the 2 populations

Distribution

R7

R8

Test about a distribution:

One-sample Kolmogorov–Smirnov
test

Test to compare two distributions:

Two-sample Kolmogorov-Smirnov
test

Dn = supx |Fn(x) − F0(x) |

with Fn the empirical distribution function,
F the reference distribution and sup
 the supremum function

Dn,m = supx |F1,n(x) − F2,m(x) |
with F1,n, F2,m the empirical distribution

functions of the two samples and
sup is the supremum function

Figure 4.2: Summary of statistical tests considered in GroupTest.

4.5 GroupTest Problems Formalization

In the following problems, the set Candidates contains the tuples (g, g′, pval) in D that passed
p-value computation protocol wrt the hypothesis in R (pval ≤ α), c.groups denotes the
group g, the pair (g, g′) and the tuple (g, g′, ...) in c in the case of one-sample, two-sample
and multiple-sample tests respectively. cover(g,D) is defined as the intersection between
users in group g and all users in dataset D. Formally, for a given group g, cover(g,D) =
g.users ∩ D.users. Moreover, cover is defined in the same way for all statistical tests and
determined by the intersection between the union of all users in the groups c.groups and the
users in the dataset D. For example, coverage of a two-sample set of candidates C = {c1, c2}
is:

CHAPTER 4. COLLECTIVE USER BEHAVIOR 90

cover(
⋃

c.groups∈C

, D) = cover(c1 .groups ∪ c2 .groups, D)

= cover((g1 ∪ g′1) ∪ (g2 ∪ g′2), D)

= ((g1.users ∪ g′1.users) ∪ (g2.users ∪ g′2.users)) ∩D.users

(4.1)

The definition of Cover for a larger set of candidates is straightforward. We now formalize
our problems which are summarized in Table 4.2 with their solutions.

Table 4.2: Summary of GroupTest problems.

Problem Name Description Solutions

Problem 4: ValMin
It optimizes significance while

setting a constraint on data coverage VAL_C (Section 4.6.1)

Problem 5: CovMax
It aims to maximize data coverage

while controlling significance
COVER_G (Section 4.6.2)
COVER_α (Section 4.6.3)

Problem 4 (ValMin Problem). Given a request R, a dataset D ⊆ D that satisfies user and
item conditions, a significance threshold θ on p-values, a minimum coverage value covmin, a
maximum number of desired results n, find a set C s.t.

C = argmin
C⊆Candidates

∑
c∈C

c.pval

subject to
|C| ≤ n,
∀c ∈ C , c.pval ≤ θ,

|cover(
⋃

c.groups∈C

, D)| ≥ covmin

(4.2)

The ValMin Problem extends the multiple hypothesis testing by enforcing data represen-
tativity and having a constraint on coverage but it does not assure its maximization. We
propose the CovMax Problem to face this limitation and capture data coverage.

Problem 5 (CovMax Problem). Given a request R, a dataset D ⊆ D that satisfies user
and item conditions, a significance threshold θ on p-values, a maximum number of desired
results n, find a set C s.t.

C = argmax
C⊆Candidates

|cover(
⋃

c.groups∈C

, D)|

subject to
|C| ≤ n,
∀c ∈ C c.pval ≤ θ

(4.3)

As the number of candidates increases, the likelihood that spurious hypotheses pass the test
increases, causing Type I errors [208]. The significance level of p-values can be adjusted to
control the expected proportion of incorrectly rejected null hypotheses. The simplest way

CHAPTER 4. COLLECTIVE USER BEHAVIOR 91

to do so is to use the conservative Bonferroni correction [30], a Family-Wise Error Rate
(FWER) control method. Bonferroni is preferred when false discoveries are not acceptable
(in particular for critical decision-making, e.g., accepting a new medical treatment) or when
it is expected that most null hypotheses would be true. A more powerful adjustment method
is the Benjamini-Yekutieli False Discovery Rate (FDR) procedure [34] that allows to control
the expected proportion of incorrectly rejected null hypotheses. FDR control is preferred in
exploratory research, where the number of potential hypotheses is large and false discoveries
are not so critical [107].

Our problem formulation is generic and aims to accommodate existing significance adjustment
procedures by adapting the definition of the significance threshold θ as follows:

• For Bonferroni (BN): θ = α
m

• For Benjamini-Yekutieli (BY): θ = α×k
m

(
m∑
i=1

1/i

)−1

, where

k = max
{
i : pi ≤ α×i

m×
∑m

i=1 1/i

}
, pi the ith smallest p-value.

The value m is the number of groups in Candidates and α is the significance level usually set
to 0.05 [75].

The drawback of these traditional adjustment methods is that to control FDR (or FWER)
at a given level α, one has to previously calculate the p-values of all m candidates and then
rank them to determine the correct threshold θ for rejecting the null hypothesis. This has two
main limitations: (1) the calculation of p-values for all candidate groups is expensive and (2)
there could be settings where we do not have prior knowledge on the number of hypothesis
m. To overcome this, we leverage the marginal FDR (mFDR) that was defined by Foster and
Stine [89] that computes the ratio of the expected number of false rejections to the expected
number of rejections as follows:

mFDRη(j) =
E[V (j)])

E([R(j)]) + η
(4.4)

where V (j) designates the number of false discoveries (wrongly rejected null hypothesis) and
R(j) the total number of discoveries. The parameter η is used to weigh the impact of cases
for which the number of discoveries is small, and η is usually set to 1 or (1 − α) [273]. We
can now reformulate the CovMax problem as follows:

Problem 6 (CovMax Problem reformulation). Given a request R, a dataset D ⊆ D that
satisfies user and item conditions, a significance level α, a parameter η, a maximum number
of desired results n, find a set C s.t.

C = argmax
C⊆Candidates

|cover(
⋃

c.groups∈C

, D)|

subject to
|C| ≤ n,
mFDRη(j) ≤ α

(4.5)

CHAPTER 4. COLLECTIVE USER BEHAVIOR 92

where j denotes the total number of hypothesis tests that have been performed.

Theorem 1. ValMin is NP-hard.

Proof. Given S = {S1, S2, ..., Sm} a collection of m sets where each set Si is a subset of D
which represents the set of all data elements. We assign to each set Si a weight pi. We want
to identify the n sets that minimize the total weight and whose union covers a fraction β of D.
This is known as the Partial Weighted Set Cover Problem [55] and is formulated as follows:

C = argmin
i⊆{1,..,m}

∑
pi

subject to
|C| ≤ n,
|
⋃

i∈C Si|
|D|

≥ β

(4.6)

This problem is equivalent to the ValMin when we add the significance constraint and we
correspond each set Si to the coverage of a candidate ci from a set of m candidates, Si =
cover(∪ci .groups , D), each weight pi to the p-value of the test of the candidate ci, and the
fraction β to the minimum coverage value covmin.

The Partial Weighted Set Cover Problem represents a generalization of the Weighted Set
Cover Problem [55] which is proved to be NP-hard [130]. This is sufficient to prove that our
ValMin problem is NP-hard.

Theorem 2. CovMax is NP-hard.

Proof. Given S = {S1, S2, ..., Sm} a collection of m sets where each set Si is a subset of D
which represents the set of all data elements. We want to identify the n sets that maximize
the total coverage of D. This is known as the Maximum Coverage Problem and is formulated
as follows:

C = argmax
i⊆{1,..,m}

|
⋃
i∈C

Si|

subject to
|C| ≤ n,

(4.7)

This problem is equivalent to the CovMax when we add the significance constraint and
we correspond each set Si to the coverage of a candidate ci from a set of m candidates,
Si = cover(∪ci .groups , D).

The Maximum Coverage Problem is proved to be NP-hard [116] which makes it sufficient to
prove by reduction that our CovMax problem is NP-hard.

CHAPTER 4. COLLECTIVE USER BEHAVIOR 93

4.6 Our Proposed Solutions

Without loss of generality, we illustrate our algorithms in the case of a request that requires
two-sample tests. We first describe how the set of candidate groups Candidates is generated.
We define a sub-routine GenerateCandidates that takes a request R, a dataset D, and gen-
erates the set of all groups allCandidates. For example, for R2 in Table 4.1, it generates all
groups that share the attribute value female and all groups that share the attribute value
male and creates allCandidates that contains pairs of groups (g, g′) formed by a Cartesian
product between the two sets. After that, another sub-routine ComputePvalues computes the
p-value of each pair (g, g′) in allCandidates, discards all pairs that have a p-value above the
significance level α and outputs a set Candidates of pairs along with their p-values.

4.6.1 VAL_C Solution

Algorithm 6: Minimum coverage algorithm (VAL_C) – illustrated with the Benjamini-
Yekutieli correction
Input: a request R, a dataset D, a significance level α, a minimum coverage value covmin, a

number of results n
Output: C

1 allCandidates ← GenerateCandidates(R,D)
2 Candidates ← ComputePvalues(allCandidates, α)
3 C ← ∅
4 m← |Candidates|
5 L = Sortbypval (Candidates)

6 k = argmax0≤j≤m P [j] ≤ α×j
m

(
m∑
i=1

1/i

)−1

7 C ← Top-n(L)
8 covC ← |cover(C.groups,D)|
9 L← L \ C

10 i← n+ 1
11 while covC < covmin and i ≤ k do
12 c∗ ← L[i]
13 i← i+ 1; L← L \ {c∗}
14 Cfuture ← C
15 for each group ∈ C do
16 C∗ ← Swap(C, group, c∗)
17 if |cover(C∗.groups,D)| > covC then
18 covC ← |cover(C∗.groups,D)|
19 Cfuture ← C∗

20 C ← Cfuture

21 return C

To solve ValMin, we propose a greedy algorithm VAL_C (Algorithm 6). It first generates
allCandidates by calling the routine GenerateCandidates() (Line 1), computes their p-values
(Line 2), and keeps the ones having significant p-values (Candidates). Then, it sorts the
candidates by the increasing order of their p-values into a list L (Line 5), before applying
the significance adjustment procedure (Line 6). After that, it picks the set C of n candidates
that have the smallest p-values and that are below the significance threshold P [k] (Line 7),

CHAPTER 4. COLLECTIVE USER BEHAVIOR 94

calculates their coverage (Line 8), and removes them from the set of candidates L (Line 9). If
the selected groups C do not satisfy the minimum coverage constraint (covmin) (Line 11), the
algorithm will greedily scan the next candidates and at each step, it will swap the pre-selected
group in C that contributes the least to coverage with the considered candidate. Formally,
VAL_C iterates through the remaining candidates (Line 12-13). The next candidate c∗ is used
to maximize the coverage in an iterative way (Line 15) where at each iteration a single pre-
selected group from C is replaced by c∗ generating by that a new set of groups C∗ (Line 16).
If the new set brings more coverage (Line 17), the procedure takes it as a potential future set
of results (Line 19). The best set (the one that maximizes the most data coverage) is used
to replace C (Line 20), otherwise C remains unchanged. The procedure stops either if the
minimal coverage is reached or if all significant candidates were scanned.

The worst-case complexity of VAL_C is O(m · p+m · log m+ (k− n) · n). The first term m · p
represents the complexity of calculating the p-values of all m candidates by assuming that p
is the worst-case complexity for computing a single p-value. The term m · log m is for sorting
the candidates by their p-values and the term (k − n) · n is the complexity of scanning the
remaining candidates and optimizing coverage. k−n represents the number of the remaining
candidates (k being the highest number of hypotheses that satisfy the constraint of multiple
testing) and n represents the number of swaps performed for each candidate (Line 15-16 in
Algorithm 6). We note that the number of candidates m is equal to the power set of attributes
in the worst case.

4.6.2 COVER_G Solution

To solve CovMax, we propose COVER_G (Algorithm 7), a greedy algorithm. It first generates
allCandidates by calling GenerateCandidates() (Line 1), computes their p-values, and discards
the nonsignificant ones (Line 2), and then it sorts the candidates by increasing p-values into
a list L (Line 3). The next step (Line 6) applies the significance adjustment procedure.
We illustrate it here with Benjamini-Yekutieli. In this case, the algorithm calculates the

greatest number k for which L[j] ≤ α×j
m

(
m∑
i=1

1/i

)−1

is verified. After that, it greedily picks

the next candidate that maximizes data coverage (Line 8) and removes it from the set of
candidates (Line 9). It adds it to the final set of results if its p-value is smaller than the
significance threshold L[k] (Lines 10-11). This procedure is repeated until the size of the
results reaches n. Even, if it scans candidates in decreasing order of their coverage, COVER_G
controls the false discovery rate at level α by adjusting their p-values using the Benjamini-
Yekutieli procedure.

We highlight that COVER_G has a (1− 1/e) approximation guarantee [8] as our problem has a
one-to-one reduction to Maximum Coverage (proof sketch in Section 4.5).

The worst-case complexity of COVER_G is O(m · p + m · log m + m · n). The complexity of
calculating a single p-value depends on the type of test and the size of the compared groups.
Assuming the worst-case complexity for computing a single p-value is p, the term m·p denotes
the complexity of calculating the p-values of all m candidates. The term m·log m is for sorting
the candidates by their p-values and the term m · n is the complexity of the greedy scans to
select the next best candidate at each step.

CHAPTER 4. COLLECTIVE USER BEHAVIOR 95

Algorithm 7: Greedy coverage algorithm (COVER_G) – illustrated with the Benjamini-
Yekutieli correction
Input: a Request R, a dataset D, a significance level α, number of desired results n
Output: C

1 allCandidates ← GenerateCandidates(R,D)
2 Candidates ← ComputePvalues(allCandidates, α)
3 L = Sortbypval (Candidates)
4 C ← ∅
5 m← |Candidates|

6 k = argmax0≤j≤m L[j] ≤ α×j
m

(
m∑
i=1

1/i

)−1

7 while |C| ≤ n do
8 c∗ = argmaxc∈Candidates |cover(C.groups ∪ {c.groups}, D)|
9 Candidates ← Candidates \{c∗}

10 if c∗.pval ≤ L[k] then
11 C ← C ∪ {c∗}

12 return C

4.6.3 COVER_α Solution

To solve Problem 6, we revisit α-investing, a method for multiple hypothesis testing that
controls specifically mFDR. α-investing was originally introduced by Foster and Stine [89],
and generalized by Zhao et al. for data exploration [273]. Intuitively, α-investing works as
follows: it starts with an initial wealth, set to η.α, then at each step j a specific threshold
αj is defined, which is below the current available wealth. If the null hypothesis is accepted
(pj > αj) a fraction of the invested value is lost and is subtracted from the current available
wealth W (j). If the null hypothesis is rejected (pj ≤ αj), we obtain a “return” on investment
ω ≤ α. The testing procedure stops when the available α-wealth is totally consumed, i.e.,
reaches 0. We choose η = 1 and ω = α as it was shown in [89], any α-investing algorithm
controls mFRDη at level α for W (0) = η · α and ω = α for any η, α ∈ [0, 1].

The key idea of COVER_α is to re-adjust the quantities of the α-wealth that are invested
according to the coverage of each selected candidate. Different policies for investing the
wealth could be explored [273]. In our solution, we design COVER_α in such a way that it
invests more α-wealth on candidates that bring higher coverage of the input data D. In
Section 4.7, we also implement existing variants and compare them to COVER_α.

Algorithm 8 contains the pseudo-code of COVER_α. It starts with generating the set of can-
didates by calling the sub-routine GenerateCandidates() (Line 1). However, unlike COVER_G,
it does not compute p-values of all candidates as it relies on mFDR. It initializes α-wealth
(Line 2) with η set to 1. The adjustment value of the hypothesis testing is initialized with
a fixed parameter λ (Line 3) which controls how much of the available α-wealth is invested
during each step. In our experiments (Section 4.7.4), we vary the parameter λ and show that
higher values are preferred. The set of returned results is initialized with the empty set (Line
4). While the number of results added to the set is less than the number of desired results
and the value of α-wealth remains positive, the algorithm picks the next candidate that max-
imizes coverage (Line 7) and removes it from the set of candidates (Line 8). It then sets the
current αj value according to the coverage of the selected candidate (Line 9) and checks the

CHAPTER 4. COLLECTIVE USER BEHAVIOR 96

Algorithm 8: α-investing coverage algorithm (COVER_α)
Input: a request R, a dataset D, a significance level α, number of results n, parameters λ and η
Output: C

1 Candidates ← GenerateCandidates(R,D)
2 W (0)← η · α
3 α∗ = W (0)

λ+W (0)

4 C ← ∅
5 j ← 1
6 while W (j − 1) > 0 and |C| ≤ n do
7 c∗ = argmaxc∈Candidates |cover(C.groups ∪ {c.groups}, D)|
8 Candidates← Candidates \ {c∗}
9 αj = α∗(|cover(c

∗.groups,D)|
|D|)1/2

10 if W (j − 1)− αj

1−αj
≥ 0 then

11 if c∗.pval ≤ αj then
12 W (j)←W (j − 1) + α
13 C ← C ∪ {c∗}
14 else
15 W (j)←W (j − 1)− αj

1−αj

16 j ← j + 1

17 return C

availability of α-wealth (Line 10). Unlike COVER_G, the threshold for each hypothesis test is
not fixed but is dependent on how much coverage the candidate adds to the current solution.
COVER_α compares the p-value of the selected candidate c∗ with its threshold αj . If the null
hypothesis is rejected (Line 11), α is added to the current α-wealth (Line 12), and c∗ is added
to the set of results (Line 13). Otherwise, if the null hypothesis is accepted, the amount αj

1−αj

is lost and is subtracted from the α-wealth accordingly (Line 15).

COVER_α greedily scans n times the set of candidates of size m, retrieves at each step the best
candidate c∗ that has the maximum coverage, and computes its p-value with an O(p) worst-
case complexity. This gives us a O(m ·n ·p) worst-time complexity for COVER_α which is much
faster than COVER_G. It benefits from computing p-values on-the-fly and only for candidates
with the highest coverage at each iteration.

4.7 Experiments

Our experiments aim to: (1) demonstrate the expressivity of GroupTest on realistic sce-
narios (Section 4.7.1); (2) study the results of VAL_C in terms of coverage and scalability and
compare it to different baselines (Section 4.7.3); (3) study hypothesis significance and the
interplay between coverage and significance for CovMax algorithms (Section 4.7.4). Most of
our experiments use request R8 in Table 4.1 that returns the highest number of results. Our
code and complete results are available on our Github repository2.

2https://github.com/statistical-group-testing/statistically-soundgrouping

https://github.com/statistical-group-testing/statistically-soundgrouping

CHAPTER 4. COLLECTIVE USER BEHAVIOR 97

4.7.1 Addressing Information Needs

We describe two scenarios using a Traditional multiple hypothesis algorithm based on Benjamini-
Yekutieli (TRAD_BY) and COVER_G to illustrate the expressivity of GroupTest.

Group Evolution: We use TRAD_BY with a multiple mean F-test to verify the request “Groups
whose average rating for a movie genre changes monthly (in a 3-month period)" (akin to R4
in Table 4.1 with an unlimited n). Table 4.3 reports for each movie genre the number of
groups that exhibit the monthly change along with examples and the movie genres for which
that change is observed. For instance, the average rating of [35-44] aged females who rated
Comedies from the 60’s changes monthly.

Table 4.3: Number and examples of groups per genre that satisfy the request “Groups whose
average rating for a movie genre changes monthly (in a 3-month period)".

Genres #Groups Example groups
All 6 [18-24] aged females who rated 50’s movies

Drama 2 [35-44] aged females who rated 70’s movies
Horror 2 Males who rated 80’s movies
Action 2 Reviewers whose occupation is in customer-service

Science-Fiction 2 Male students under 18
Comedy 4 [35-44] aged females who rated 60’s movies

Group Comparison: We use COVER_G with a two-sample Kolmogorov-Smirnov test to com-
pare rating distributions of group pairs within the same age category (akin to R8 in Table 4.1
with n = 20). Table 4.4 reports for each age category, the number of returned pairs along
with examples. For instance, we find 14 pairs for age [25-34] among which the two groups
who rated War movies and 90’s Thrillers significantly differ in their rating distribution.

Table 4.4: Number and examples of pairs per age that satisfy the request “Group pairs whose
rating distribution for Drama movies differs in the same season (Summer)".

Age #Pairs Example pairs
<18 2 (Drama movies - Comedy movies)
18-24 7 (Male college student- Male users)
25-34 14 (War movies - 90’s Thriller movies)
35-44 10 (Males who rated 80’s movies - Male who rated 70’s movies)
45-49 5 (Males who rated 2000’s movies - Females who rated 90’s movies)
50-55 4 (Users who rated 90’s Thrillers - Users who rated 50’s movies)

4.7.2 Experimental Setup

Data: We report results on MovieLens 1M. Similar results were found on Yelp, Tafeng, and
BookCrossing datasets. Our complete results are available on our Github repository. The
MovieLens 1M dataset contains user-movie ratings collected from a movie recommendation
service. It contains around 1M ratings given by 6, 040 users to 3, 900 movies. The data also
contain user attributes: gender, age group, occupation, and location, as well as item attributes
that correspond to a set of genres.

Metrics: We examine for each request, the groups that are found in terms of (1) their
significance (min/max/sum p-values), (2) data coverage, (3) power (#true positives/#results

CHAPTER 4. COLLECTIVE USER BEHAVIOR 98

in ground truth) and FDR (#false positives/#results), (4) response time. All results are
averages of 10 runs.

ValMin Baselines and Variants: In section 4.7.3, we implement two variants of VAL_C,
one with Bonferroni noted VAL_C_BN and the other one with Benjamini-Yekutieli noted VAL_C_BY.
We compare the algorithm against an adaptation of the Subfamily wise Multiple Testing Pro-
cedure (SMT) [254] where we add a constraint on coverage covmin (called SMTcov). This method
controls the FWER in multiple testing where hypotheses are organized into families. The
reader is referred to Section 2.2 for more details.

In our adaptation, the families are generated randomly using one hyperparameter. It repre-
sents the number of hypotheses in each family. We compare different variants by varying the
hyperparameter in {10,50,100,500,1000,5000}. In the experiments, we compare VAL_C against
the traditional correction method, referred to as TRAD with Benjamini-Yekutieli (TRAD_BY),
the original SMT and its adaptation (SMTcov) varying covmin in {0.1, 0.3, 0.5, 0.7, 0.9}.

CovMax Baselines and Variants: In section 4.7.4, we compare variants of COVER_α by
varying the hyper parameter λ in {20, 50, 100, 200, 500}. We compare our algorithms, the
best COVER_α and the two variants of COVER_G, one with Bonferroni noted COVER_G_BN and
the other one with Benjamini-Yekutieli noted COVER_G_BY, against the traditional correction
method, referred to as TRAD. Similarly to COVER_G, we implemented two variants of TRAD,
one with Bonferroni correction that we note TRAD_BN and the other with Benjamini-Yekutieli
that we note TRAD_BY. We also implemented previously proposed α-investing policies [273]
as baselines for our comparisons. The reader may refer to Section 2.2 for details of these
policies.

Each α-investing policy was tested with different parameter values (in Table 4.5). We selected
the best value (last column in the table) based on power and FDR. For instance, for our
algorithm COVER_α, we observed that λ = 500 yields the best power and FDR since smaller
λ make COVER_α consume its α-wealth faster. α is set to 0.05.

Table 4.5: Parameters for α-investing policies.

Investigation policies Parameter Values Best Value
COVER_α λ 20, 50, 100, 200, 300, 500 500

β-Farsighted β 0.25, 0.5, 0.75, 0.9 0.9
γ-Fixed γ 20, 50, 100, 200, 300, 500 500
δ-Hopeful δ 20, 50, 100, 200, 300, 500 500
ϵ-Hybrid ϵ 0.25, 0.5, 0.75, 0.9 0.75
ψ-Support ψ 1/2, 1/3, 1/4, 1/5, 1/6 1/2

4.7.3 ValMin Results

Study of SMTcov Variants: In this section, we study the significance and coverage of the
different SMTcov variants by varying the value of the size of families (number of hypotheses
in each family). As in [273], we use TRAD with Bonferroni (TRAD_BN) as ground truth since it
is the most conservative correction and compare the results of SMTcov variants. We consider
data samples ranging from 10% to 100% of Candidates and report the results for R8.

Figure 4.3 reports power for n = 100 for R8. FDR average results are all the same and equal

CHAPTER 4. COLLECTIVE USER BEHAVIOR 99

Figure 4.3: Impact of coverage optimization
on Power with covmin = 0.5 and number of
results n = 100 for different percentages of
data samples.

Figure 4.4: Coverage as a function of the num-
ber of data samples with covmin = 0.5 and the
number of results n = 100.

to zero. The main observation is that SMTcov with a family size of 50 performs better than all
other variants. Significance power decreases as the value of family size increases. Large values
(500, 1000, 5000) make the families too massive with hypotheses. As SMTcov rejects one and
only one hypothesis in each family, many valid and potential true discoveries will be skipped.
This will result in a weak power score. A similar effect can be observed with small values of
size (10). The families will be, in this case, narrow but many true discoveries may be part of
the same family.

Figure 4.4 reports results of coverage as a function of the number of data samples with results
number n = 100 for R8. We note that the coverage is nearly constant as the number of samples
increases for all cases. One can observe that SMTcov variants with small family size achieve a
coverage greater, and in some cases slightly smaller, than covmin = 0.5 while variants with
large size don’t cover more than 35% of data.

VAL_C Hypothesis Significance: We study, in this part, the significance by comparing
VAL_C_BY, the best variant of SMT and SMTcov (with family size 50) and TRAD_BY for R8.

Figures 4.5, 4.6 report power and FDR for n = 20 (left) and n = 100 (right) with covmin =
0.7 respectively. We observe that, for a small number of results, SMT and its adaptation
SMTcov outperform VAL_C_BY in terms of power and FDR. One can also observe that SMT
behaves similarly to TRAD_BY in terms of power. On the other hand, for larger results values,
the performances of VAL_C_BY are better and are slightly outperformed by the baselines for
power but still much worse for FDR regardless of the sample size. One possible explanation
for this difference is the closeness between the ground truth and the results of the baseline
SMTcov. Indeed, as explained in Section 4.7.2 SMT procedure controls the Family-Wise Error
rate (FWER) as well as TRAD_BN that is used to generate the ground-truth. On the contrary,
VAL_C_BY controls FDR which makes it disadvantageous in terms of significance. For the
small number of results, SMTcov behaves approximately like TRAD_BN due to the similarity of
their policies while VAL_C_BY explores more the set of potential discoveries in order to satisfy
the coverage constraint making by that more false discoveries. As n increases, SMTcov explores

CHAPTER 4. COLLECTIVE USER BEHAVIOR 100

(a) Number of results (n) = 20 (b) Number of results (n) = 100

Figure 4.5: Impact of coverage optimization on significance (Power) with covmin = 0.7, num-
ber of results n = 20 (left) and n = 100 (right) for different percentages of data samples.

(a) Number of results (n) = 20 (b) Number of results (n) = 100

Figure 4.6: Impact of coverage optimization on significance (FDR) with covmin = 0.7, number
of results n = 20 (left) and n = 100 (right) for different percentages of data samples.

more the set of candidates resulting in a relative increase of its false discoveries causing by
that a more similar power rate compared to VAL_C_BY.

VAL_C Data Coverage: Figure 4.7 reports results of coverage as a function of the number
of data samples with results number n = 20 (left) and n = 100 (right) for R8. We observe
that for the small number of results, the coverage is nearly constant for SMTcov and increases
for VAL_C_BY as the number of samples increases. One can see that VAL_C_BY achieves a
coverage rate greater than the threshold covmin = 0.7 while the best SMTcov algorithm doesn’t
satisfy this constraint. Obviously, one can see that TRAD_BY and SMT are the worst in terms of
coverage as they are not developed to satisfy it. For a large number of results, VAL_C_BY still
outperforms the baseline and satisfies the coverage constraint for all data samples unlike SMTcov
which does not satisfy it for small and medium data samples (10%, 30%, 50%). One possible
explanation is that SMTcov returns more granular and by that more overlapping groups. Indeed,
significant groups with high coverage rates may be part of families where more significant
groups but less covered are also members. As the most significant group is chosen from each
family, the granular one is finally returned.

CHAPTER 4. COLLECTIVE USER BEHAVIOR 101

Figure 4.7: Coverage as a function of the number of data samples with covmin = 0.7, number
of results n = 20 (left) and n = 100 (right).

We now examine simultaneously the evolution of the cumulative coverage and p-values. Re-
sults are depicted in Figure 4.8 for n = 20. The graph clearly shows that, VAL_C_BY reaches
covmin by iteration 19 while SMTcov never does. One can also observe that after satisfying
the constraint, the cumulative p-value of VAL_C_BY increases immediately while the baselines
are still equal to zero. One possible reason for that is that larger groups may be less signif-
icant than smaller ones even if they control the multiple testing error. We performed other
experiments on greater values of n and we observed the same results for cumulative p-values.
We also observed that both SMTcov and VAL_C_BY reach the coverage threshold at the same
time.

Figure 4.8: Coverage and p-values as a function of the number of results n with covmin = 0.7,
data samples = 100%.

VAL_C Scalability: We finally study the evolution of response time as a function of the input
data sample (Figure 4.9 - left) and of the number of results n (Figure 4.9 - right). First,
it shows that response time increases with the increase of data sample but remains mostly
constant with the increase of n. It also shows that SMTcov outperforms VAL_C_BY in terms of
scalability regardless of the data sample or returned results. In these experiments, we only
report results with covmin = 0.7. We varied the value of covmin in {0.1, 0.3, 0.5, 0.9}. The
results are mostly similar to the reported ones. In summary, the use of VAL_C_BY to solve

CHAPTER 4. COLLECTIVE USER BEHAVIOR 102

ValMin is more appropriate than SMTcov. Indeed, even if it has a smaller power significance
for small values of n, it succeeds to achieve the coverage constraint while SMTcov fails.

Figure 4.9: Response time as a function of number of data samples (left) and number of
results n (right) with covmin = 0.7.

4.7.4 CovMax Results

Study of COVER_α Variants: In this section, we study the significance, coverage, and scal-
ability of the different COVER_α variants by varying the value of the hyperparameter λ. We
set TRAD with Bonferroni (TRAD_BN) as a ground truth, and compare the results of COVER_α
variants. We consider data samples ranging from 10% to 100% of Candidates and report the
results for R8.

Figure 4.10 reports power and average FDR. The main observation is that COVER_α500 per-
forms better than all other COVER_α variants with a different λ parameter on both average
FDR and power. Small values of λ make COVER_α consume its α-wealth quickly and thus
make its discovery power smaller and its average FDR more important.

We now examine simultaneously the evolution of the cumulative coverage and p-values. Re-
sults are depicted in Figure 4.11. The graph clearly shows that all COVER_α variants perform
similarly and reach full coverage by iteration 49. We also notice that the difference in cov-
erage between the variants is significant in the first iterations but it narrows to the point
of being negligible for high iterations. Indeed at the iteration 50, COVER_α_50 covers 99%
of data while COVER_α_500 covers 97%. One can also observe that in terms of the sum of
p-values, the difference between variants is more significant, and COVER_α_500 outperforms
all the other variants.

The last experiment studies the evolution of response time as a function of input data samples
(Figure 4.12 - left) and of the number of results n (Figure 4.12 - right). It shows that COVER_α20

is the worst performer as it consumes a large amount of its α-wealth in earlier iterations. It is
left with a very small wealth that requires many iterations to reach n results whose p-values
quality. The figure shows that the remaining COVER_α variants have practically the same
response time with a slight advantage for COVER_α50 and COVER_α100.

CHAPTER 4. COLLECTIVE USER BEHAVIOR 103

Figure 4.10: Impact of coverage optimization on significance (Power and FDR) with results
number n = 50 for different percentages of data samples.

This final result shows that an α-investing strategy with a high λ value can attain high
coverage while ensuring sound group testing in reasonable times.

COVER_α Hypothesis Significance: We study the impact of adjustment and coverage on
significance. We first study the impact of adjustment on significance using the traditional
corrections (TRAD and COVER_G). We ran all requests in Table 4.1. The complete results are
shown in Table 4.6.

The first observation is that in all two-sample tests, the p-value computation protocol (Sec-
tion 4.4.2) reduces the number of candidates by one order of magnitude. We also observed
that both TRAD variants return by far the highest number of results when n is unlimited
since they do not set a coverage constraint. Since TRAD_BY is less stringent, it consistently
yields more results than TRAD_BN. This is apparent in the sum of p-values that are significantly
higher for TRAD_BY. In some cases (R8), the smallest p-value returned by COVER_G is higher
than TRAD since it optimizes coverage and does not necessarily reach the lowest p-values. The
second observation is that when n is capped, COVER_G achieves higher coverage than both
TRAD variants (up to 5x), which leads us to conclude that combining coverage maximization
with significance adjustment is necessary for sound group testing.

We now examine how optimizing coverage affects significance. We compare the results of
COVER_α, COVER_G and α_investing policies. Figure 4.13 reports power and FDR for R8.
We observe that COVER_α performs better than all other α-investing variants on both power
and FDR. The second observation is that COVER_α outperforms COVER_G_BY regardless of the
sample size. Additionally, COVER_α attains similar power as COVER_G_BN, especially for smaller
sample sizes. To better understand the difference between groups returned by TRAD_BY,
COVER_G and COVER_α, we analyze the occurrence of attribute-value pairs appearing in the
results of R8. For instance, for n = 20, we find that TRAD_BY returns groups that cover a
total of 11 attribute-value pairs such as gender (male, female), occupation (doctor, scientist,
lawyer), age ([25-34], [45-49], [35-44]) and movies of 2 decades (90’s, 70’s). On the other
hand, COVER_G_BY and COVER_α return groups that cover 24 and 23 attribute-value pairs
respectively. Groups contain all gender and age values, more user occupation attributes (6

CHAPTER 4. COLLECTIVE USER BEHAVIOR 104

Figure 4.11: Coverage and p-values as a function of the number of results n, data samples =
100%, number of results n = 50.

Figure 4.12: Response time as a function of number of data samples (left) and number of
results n (right).

for COVER_G_BY and 5 for COVER_α), and all movies from the 50s to the 2000s.

COVER_α Data Coverage: We now seek to find if our formulation of CovMax hurts the sig-
nificance of retrieved groups. We compare the results of R8 using TRAD_BY, COVER_G, COVER_α
and all other α-investing policies. We examine simultaneously the evolution of the cumula-
tive coverage and p-values. Results are depicted in Figure 4.14. The graph clearly shows that
COVER_α performs closely to COVER_G_BN and reaches 79% coverage by iteration 20. We see
that COVER_G_BY is slightly better as it achieves 92% coverage. Additionally, one can observe
that TRAD_BY and all α-policies cover, at best, only 9% and 30% of the input data respectively.
We also notice that β-Farsighted invests most of the α-wealth in testing insignificant results
and that COVER_G_BY is the second worst.

COVER_α Scalability:

Our last experiment studies the evolution of response time as a function of the number of data

CHAPTER 4. COLLECTIVE USER BEHAVIOR 105

Table 4.6: Results of running all requests in Table 4.1 on MovieLens’1M (equal values are
shown only once in each cell)

Ri n Methods #allCandidates
#Candidates

Benjamini-Yekutieli (BY) / Bonferroni (BN)
#Results

no-adjustment/BY/BN
Min

p-value
Max

p-value
Sum

p-value
Total
Cov

R1

Unlimited TRAD
1663
1663

907 / 583 / 337 4.18 e-35 4.23 e-03/ 5.5 e-05 0.3 / 1.91 e-03 1
COVER_G 3 4.78 e-25 1.9 e-13 1.9 e-13 1

20 TRAD 20 4.18 e-35 4.43 e-22 6 e-22 0.98
COVER_G 3 4.78 e-25 1.9 e-13 1.9 e-13 1

R2

Unlimited TRAD
1 329 259
108 478

20 505 / 8208 / 1351 7.28 e-22 1.92 e-03 / 2 e-06 3.62 / 6.57 e-04 0.99 / 0.94
COVER_G 17 / 23 1.14 e-17 / 3.93 e-04 2 e-06 / 3.02 e-07 8.88 e-04 / 4 e-06 0.99 / 0.94

15 TRAD 15 7.28 e-22 4.08 e-17 1.34 e-16 0.22
COVER_G 15 1.14 e-17 3.93 e-04 / 2 e-06 8.88 e-04 / 4 e-06 0.99 / 0.92

R3 Unlimited TRAD 198
17

6 / 4 / 2 2 e-03 9.09 e-03 / 2 e-03 2.22 e-02 / 4.01 e-03 0.02
COVER_G 2 / 1 2 e-03 1.8 e-02 / 2 e-03 2 e-02 / 2 e-03 0.12 / 0.02

R4

Unlimited TRAD
749 749
44 368

19 472 / 5320 / 616 1.95 e-15 1.26 e-03 / 2.45 e-06 1.80 / 4.45 e-04 1 / 0.96
COVER_G 7 1.95 e-15 2.93 e-05 / 2.03 e-06 6.93 e-05 / 3.75 e-06 1 / 0.96

5 TRAD 5 1.95 e-15 1.95 e-15 9.77 e-15 0.17
COVER_G 5 1.95 e-15 3.93 e-05 / 2.02 e-06 4.78 e-05 / 2.66 e-06 0.97 / 0.92

R5

Unlimited TRAD
6 344
6 344

79 / 70 / 39 1.67 e-18 8.39 e-03 / 4.01 e-04 0.11 / 2.14 e-03 0.05 / 0.04
COVER_G 25 / 15 1.67 e-18 8.39 e-3 / 4.01 e-01 3.71 e-02 / 8.84 e-04 0.05 / 0.04

10 TRAD 10 1.67 e-18 1.58 e-11 5.14 e-11 0.01
COVER_G 10 5.3 e-16 / 1.67 e-18 3.54 e-03 / 1.27 e-04 5.16 e-03 / 1.76 e-04 0.04 / 0.03

R6

Unlimited TRAD
429 025
42 657

6 076 / 1412 / 1008 0 1.22 e-03 / 5 e-06 0.2 / 4.3 e-05 0.85 / 0.74
COVER_G 43 / 36 0 8.09 e-04 / 5 e-06 6.25 e-03 / 1.1 e-05 0.85 / 0.74

20 TRAD 20 0 0 0 0.33
COVER_G 20 0 8.09 e-04 / 5 e-06 2.85 e-03 / 5 e-06 0.76 / 0.66

R7 Unlimited TRAD 85 908
85 908

85 908 0 3.37 e-13 5.14 e-11 1
COVER_G 1 0 0 0 1

R8

Unlimited TRAD
695 772
49 260

26 772 / 16 397 / 4 790 0 2.83 e-03 / 1.86 -06 6.58 / 1.3 e-03 1 / 0.97
COVER_G 33 / 51 6.21 e-11 / 3.34 e-18 2.44 e-03 / 1.59 e-06 6.4 e-03 / 1.11 e-05 1 / 0.97

10 TRAD 10 0 2.02 e-22 5.8 e-22 0.21
COVER_G 10 6.21 e-11 / 6.83 e-14 2.44 e-03 / 1.59 e-06 2.79 e-03 / 3.19 e-06 0.87 / 0.72

Figure 4.13: Impact of coverage optimization on significance (Power and FDR) with results
number n = 20 for different percentages of data samples.

samples (Figure 4.15) and the number of results n (Figure 4.16) for R8. The first observation
is that the response time of COVER_α remains stable with the increase of both the sample size
and the number of results n. Indeed, COVER_α computes p-values only for candidates with the
highest coverage. Therefore, it clearly outperforms COVER_G_BN, COVER_G_BY and TRAD_BY.
However, COVER_α performs worse than the other α-investing algorithms, which is mainly due
to COVER_α performing at each step a scan over all the remaining candidates to select the one
with the highest coverage. But despite, being slightly slower, COVER_α performs marginally
better in terms of (1) coverage: reaches almost twice the coverage of the best performing
α-investing (2) FDR: makes up to 8 times less false discoveries than β-Farsighted and up

CHAPTER 4. COLLECTIVE USER BEHAVIOR 106

Figure 4.14: Coverage and p-values as a function of the number of results n.

10 30 50 70 90 100

Data Samples (%)

0.1

1

10

100

1,000

R
es

p
o

n
se

 T
im

e
(s

ec
, l

o
g

sc
al

e)

Number of results (n) = 100

5 10 15 20 50 100 500 Unlimited
Number of results (n)

0.01

0.1

1

10

100

1,000
R

es
p

o
n

se
 T

im
e

(s
ec

, l
o

g
sc

al
e)

Data Samples = 100%

10 30 50 70 90 100

Data Samples (%)

0.1

1

10

100

1,000

R
es

p
o

n
se

 T
im

e
(s

ec
, l

o
g

sc
al

e)

Number of results (n) = 100

5 10 15 20 50 100 500 Unlimited
Number of results (n)

0.01

0.1

1

10

100

1,000

R
es

p
o

n
se

 T
im

e
(s

ec
, l

o
g

sc
al

e)
Data Samples = 100%

Figure 4.15: Response time as a function of
the number of data samples.

Figure 4.16: Response time as a function of
the number of results n.

to 4 times less than ϵ-Hybrid for instance.

Summary on the Remaining Datasets: We summarize the results obtained on the other
datasets: Yelp, Tafeng, and BookCrossing.

• On significance: For one-sample tests, α_investing policies generally have more “power”
but also more “FDR” than our COVER_α. For two-sample tests, COVER_α is the best. Our
interpretation is that in one-sample tests the ratio of ground truth to the total number
of candidates is usually much higher than in other tests. As α_investing policies return
more results than COVER_α, they find more true positives.

• On coverage: Results are generally the same for all datasets wherein COVER_α outper-
forms all α-investing policies. This can be explained by the fact that COVER_α optimizes
coverage by design independently of the dataset and type of request.

• On scalability: COVER_α runs faster than COVER_G and slightly slower than α-investing

CHAPTER 4. COLLECTIVE USER BEHAVIOR 107

policies on all datasets and for all requests. It becomes clear that the bigger the input
dataset, the higher the difference between response times.

In summary, our results confirm that COVER_α is the method of choice to attain high coverage
of the dataset while ensuring sound group testing at reasonable times.

4.8 Conclusion

In this chapter, we developed GroupTest, a framework that enables data-driven discoveries
by combining statistical testing with optimizing data coverage. In that framework, we for-
malized two generic top-n problems: ValMin and CovMax. The first optimizes significance
while setting a constraint on data coverage while the second extends this first problem and
aims to maximize data coverage while controlling significance. We showed that these prob-
lems are Np-hard and proposed different solutions to solve them. We proposed one greedy
solution VAL_C to solve ValMin. This solution is based on traditional hypothesis corrections,
Bonferroni [30] and Benjamini-Yekutieli [34]. We also proposed two solutions to solve Cov-
Max: a greedy one COVER_G, and a heuristic COVER_α. While the first relies on traditional
corrections, the second leverages α-investing [89]. Our experiments demonstrate the efficiency
of these solutions and the necessity of optimizing coverage with significance.

We believe this work to be the first to propose a generic and principled framework for mul-
tiple hypothesis testing on large datasets. The framework helps to have general observations
about the collective behavior of users, extracting patterns, and understanding the difference
between the actions taken by these users. GroupTest also allowed us to verify how different
groups are related to subsets of items accommodating different types of tests and compar-
isons. We illustrated that with two scenarios in the experiments and showed the expressivity
of GroupTest.

Chapter 5

Conclusion & Perspectives

In this thesis, we studied individual and collective user behavior based on recommendations
and test hypotheses respectively. In this chapter, we conclude the thesis in Section 5.1 and
discuss some perspectives and future work in Section 5.2.

5.1 Conclusion

Chapter 2 provided an overview of recommender systems and the metrics that are used to
evaluate the quality of recommendations. We discussed the most popular approaches focusing
on the ones that were relevant to the work done in this thesis. We summarized the limitations
of standard recommenders. In this chapter, we also introduced the Multiple Hypothesis Test-
ing problem and the different procedures used to solve it. We discussed briefly the limitations
and challenges of each procedure.

In Chapter 3, we first extended static recommenders by incorporating users’ profiles to select
the best recommendation approach (Section 3.1). We proposed a meta-learning methodology
that considers users’ activity statistics and demographics as well as item features and chooses
the best recommender for each situation. We applied this methodology to both explicit and
implicit data. We demonstrated with our methodology the importance of considering users’
states, and their profiles to improve the quality and relevance of recommendations. We showed
that our methodology outperformed all standard recommenders. Then, we studied a more
realistic context where users’ behaviors are constantly changing (Section 3.2). We explored
three real-world applications where dynamic recommendations are important: Test recom-
mendations, SQL groupby query recommendations, and diverse sessions recommendations.
In Section 3.2.1, we tackled the question of test recommendations in educational systems. We
defined three dimensions (expected performance, aptitude, gap) that characterize the learning
of users and their evolution. We then defined the AdUp problem for upskilling. We proposed
two solutions: MOO that directly solves the problem and MAB that chooses the dimensions to
optimize before solving it. Our experiments showed that optimizing for all three proposed
users’ dimensions offers a higher upskilling in fewer iterations compared to a state-of-the-art
baseline. We also demonstrated that choosing the optimized dimensions dynamically improves
learning. In fact, our experiments showed the effectiveness of MAB in gaining more skills and
achieving mastery quickly. In Section 3.2.2, we tackled the question of recommending visual

108

CHAPTER 5. CONCLUSION & PERSPECTIVES 109

analytics based on SQL groupby queries. We defined two generic problems: NPGP and
PRP. We proposed DashBot that solves these two problems by incorporating users’ feed-
back. To solve NPGP, we defined three data-driven utility functions: Coverage, variance,
and entropy to select the best queries. On the other hand, to solve PRP, we defined two
semantics based on Multi-armed bandits. Our experiments showed that our developed tool
incorporated well users’ feedback while reducing their efforts. In fact, DashBot was able to
find all targeted dashboards (targeted panels) independently of their sizes and the number
of considered attributes. This shows that our MAB solutions offered interesting and relevant
analytics. In Section 3.2.3, we tackled the problem of recommending diverse sessions. We
defined the problem of selecting the most appropriate attribute that maximizes the diversity
of a session. We proposed two solutions: one that generalizes standard diversity-based recom-
menders and another one based on Reinforcement Learning. In our experiments, we showed
that considering a dynamic notion of diversity captures well its maximization than assuming
a fixed diversity. In fact, the solutions we proposed outperformed standard diversity-based
recommenders for all measures. In addition to that, we showed that using sequence-based
approaches (Reinforcement Learning) recommends the finest sessions as they exhibit the best
trade-off of relevance and diversity while being more efficient in terms of response time.

Finally, in Chapter 4, we developed GroupTest a solution that enables data-driven discover-
ies by combining statistical testing and data coverage. This solution allowed us to analyze the
collective behavior of users and extract their relations with the different characteristics of sets
of items. We formalized two generic top-n problems: ValMin and CovMax. We proposed
a greedy solution, VAL_C, based on standard multiple hypotheses testing procedures [30, 34]
to solve ValMin. To solve CovMax, we proposed two solutions: a greedy one COVER_G that
is also based on standard multiple hypotheses testing procedures, and a heuristic, COVER_α
that is based on α-investing [89]. In the experiments of this work, we showed that considering
coverage in addition to significance gives more interpretable results. Moreover, we showed
that the solutions we proposed are better than the baselines. Our solutions returned groups
with higher statistical significance and better representativity of data while making fewer
false discoveries. In addition to that, COVER_α ensured a finer discovery with better running
times.

5.2 Perspectives

In this section, we present future perspectives and potential improvements for this thesis. We
outline four different directions: evaluation, optimization, concepts, and visualization tools.
In the evaluation perspectives (Section 5.2.1), we discuss new evaluation protocols that are
missed in this thesis. After that, in optimization perspectives (Section 5.2.2), we discuss how
we directly improve the formalization of the problems we examined in this thesis and discuss
possible directions for their solutions. In concepts perspectives (Section 5.2.3), we discuss
some concepts that can be used to extend our work. Finally, in Section 5.2.4, we discuss new
directions in developing visualization tools that are directly related to this thesis.

5.2.1 Evaluation Perspectives

In all the works presented in this thesis, we performed extensive experiments using real-world
datasets. However, one limitation is that we relied on offline methodologies. For future work,

CHAPTER 5. CONCLUSION & PERSPECTIVES 110

our experiments can be improved by relying on online protocols. In the following, we present
two cases of our work to show how we may evaluate our solutions with real users.

In the test assignment application, we simulated users and their correct answers to evaluate
our solutions. In future work, we may deploy our solutions in real systems to test with real
learners. One possibility is to use crowdsourcing [118] which represents an established and
efficient way of recruiting subjects to complete tasks that are relatively easy for humans.
Many online platforms have been developed 1 to enable that. The users have to give their
level for the predefined skill before the beginning of the test process. They are then targeted
with tests chosen from the set of all tests using our methods for which they have a fixed
time to answer. However, relying on crowdsourcing to test with real users may generate new
challenges that we may have to address. For example, the main challenge is related to the final
financial reward to give to the attendees. In addition to crowdsourcing, we may also deploy
our solutions in educational environments at the University Grenoble Alpes like LabNbook 2

or TitrAB 3. The first one scaffolds students’ activity as they learn to write experimental
protocols while the second allows one to learn how to develop the protocol for acid-base
titrations through 16 tests with 4 difficulty levels. Experimenting with real learners will help
to verify the findings we exhibit, and test learners’ performances after attaining mastery. To
achieve that, a new measure, score [102], is leveraged which computes the precision of correct
answers after attaining mastery of each learner. This will extend our previous experiments
where we reported only pre-mastery results. Using this measure will allow one to study the
quality of post-mastery answers.

In the SQL groupby query recommendations, we already developed a system for dashboard
generation based on DashBot [69] that real users can interact with to search interesting
panels. One may rely on this visualization tool to conduct a user study. It consists of two
different parts. In the first part, users interact with DashBot using only one semantic
(See Section 3.2.2) and the system records their click efforts, wait time, and the number of
iterations to provide accepted panels. The users may also be asked about the quality of the
recommended panels. In the second part, we aim to compare all semantics presented in this
thesis. Users are targeted at each iteration with two different panels for which they are asked
to choose the best one. Users that are part of the study may also give feedback about their
experience when using the system. This study will help us better understand the strengths
and limitations of our proposed solution.

5.2.2 Optimization Perspectives

The second future direction is to improve the optimization of our problems by either incor-
porating new objectives or capturing additional data from users. In both cases, we discuss
potential solutions that incorporate these extensions.

Optimizing Additional Objectives. One way to improve our solutions is to enhance the
formalization of our problems. The test assignment problem can be extended to consider
multiple skills instead of one skill and leverage course materials in addition to the tests. The
challenge of considering multiple skills is understanding their dependencies and choosing the

1http://www.mturk.com, https://www.foulefactory.com, https://www.crowdflower.com
2https://labnbook.fr/en
3http://titrab.imag.fr/

CHAPTER 5. CONCLUSION & PERSPECTIVES 111

best one at each iteration that yields the highest overall learning gain. Different strategies to
choose that skill can be used. One would be alternating between the skills or choosing the one
for which the learner has the lowest level. Different skills can be also combined in one iteration.
For example, the work by [164] considers many learners’ skills. The authors propose to model
a user profile based on the expected performance of all skills. A k-means is then applied using
this profile to select the overall ability of learners and recommend tests. For course materials,
the work proposed by [27] aims to learn policies that model the relationships between course
activities, learner actions, and educational outcomes. They propose a solution that generates
a sequence of courses that aim to minimize the effort of teachers and maximize the learning
gain of students. However, they recommend only one test which denotes the end of the course
sequence. Another work [172] proposes to learn a reinforcement learning policy that generates
course planning for students by incorporating their requirements as constraints. They also
assume two types of courses: core and elective and define their dependencies. However, in
this work, tests are not considered. In future work, the problem formalization of AdUp can
be extended to integrate the recommendation of courses in addition to tests. By doing that,
some domain-related rules that define the complex relationship between these materials need
to be formalized. The developed solutions aim to produce the best heterogeneous sequences
by alternating courses and tests and maximize the skill gain of learners.

In the SQL query problem, we aim to minimize user effort to find interesting panels. We
formalized the effort as the number of iterations (or the number of clicks 4). However, our
definition of effort is partial. In fact, we ignore the time users spend thinking about the rec-
ommended panel. Intuitively, we can say that if a panel is highly relevant/irrelevant, the user
accepts/rejects it immediately. Otherwise, the slowness of the answer reflects the hesitation
of the user. Hence, users’ response time gives implicit feedback about the effectiveness of the
recommendation and their preferences. For this reason, we can extend the user effort formal-
ization to integrate response time. As our solution is based on Multi-armed bandits, the user
effort is captured by the reward (See Section 3.2.2). We then may also extend our reward
and integrate response time to represent the strength of the taken decision. One possible
solution is to add the response time as a weight to the actual reward. By doing that, the
arms that give interesting panels in terms of content and time will have high values of reward.
Otherwise, arms that give negative panels that were quickly rejected will have small values of
reward.

We can also improve the diverse sessions recommendations by incorporating different types of
diversity. In fact, as stated in [140], many diversity measures were proposed (e.g., Intra-list,
entropy, gini coefficient, etc.), and the need for a system that generalizes them is essential.
One of our future works is to offer a solution to that problem. We consider each diversity
measure as a different objective independent from the others and aim to maximize them.
The same idea of SMORL [233] can be used to integrate these objectives. For each diversity
objective, a Q-function is learned and combined them using a scalarization function (See
RL regularize is Section 3.2.3). Another possibility is to define a dominance relation between
candidate sessions based on the diversity measures and leverage a multi-objective optimization
of reward as proposed in [177]. Then, an agent is trained with this reward. It will learn how
to balance all these measures and recommends the session that offers the best trade-off.

4Users perform either one click or two clicks in each iteration. So the number of clicks is positively
correlated to the number of iterations. Optimizing for the first is equivalent to optimizing for the second.

CHAPTER 5. CONCLUSION & PERSPECTIVES 112

Another extension that would benefit this work is to optimize in addition to the intra-diversity
of sessions the inter-diversity between them. For example, the work proposed by [87] defines
four bi-objective optimization problems where intra/inter diversity may be either minimized
or maximized (max intra-max inter, max intra-min inter, min intra-max inter, min intra-
min inter) but their solutions are static as they assume that diversity attributes are given as
input. In future work, the integration of inter-diversity is done through our reinforcement
learning solution. This is challenging as a new intra-diversity measure has to be defined while
adapting the reward function of the agent. An intuitive solution is to train an RL agent to
make all these decisions and takes a tuple of actions: (intra-attribute, inter-attribute, set of
items) where intra-attributes and inter-attributes are both maximized attributes and the set
of items defines the recommended session. One may agree that this is still challenging as we
need to design a powerful reward that captures all these dimensions. An alternative solution
exists where the agent is trained to guide the recommendation. In fact, the agent decides for
both attributes, and the set of items is either generated by the static bi-objective solutions
proposed in [87] or by adapting the standard MMR approach [52].

Incorporating Additional User Data. Another way to improve our solutions is to incor-
porate additional data about users. This data may help to better capture the interests and
preferences of users as it improves the design of their profiles and states. In the meta-learning
methodology, we may extend our work to consider heterogeneous data, e.g., leveraging both
implicit and explicit data of the user. This question was previously studied in [147, 179]. For
example, the meta-learning methodology may use both ratings and clicks of the users when
they provide them. In addition, our methodology can be extended using multiple rating di-
mensions. For example, in restaurant recommendations, our methodology may leverage food,
atmosphere, service, and price ratings. We may use multi-criteria recommenders [3] to handle
this data which is an important concern in subjective databases [151]. Another solution is
to leverage textual reviews to either generate missing ratings or extend users’ profiles. With
the progress made these last years in natural language processing and the emergence of large
language models [48, 56], one may use them to generate users’ embeddings, infer their senti-
ments, or extract tags and important words from the reviews. These dimension extensions are
likely to help reduce data sparsity, enhance the users’ profiles and increase performance.

In the SQL query recommendation, one limitation of our solution is the restricted feedback the
users can make when targeted with a panel. In fact, we assume Boolean feedback (Yes/No)
with a predefined and optional set of reasons only available for the No feedback. This feedback
may be enriched by capturing users’ reasons for accepting a panel. This additional feedback
can help to gain insights about users’ preferences and make more informed recommendations.
Additionally, one might find these reasons too restrictive or generic. Hence, with the progress
made in the fields of natural language processing (NLP) [250], we may extend our system
by allowing users to express explicitly their reasons with their own words and use these
NLP techniques to interpret their intent and extract the exact reasons to refine the queries.
Another limitation is that the predefined reasons are all related to the groupby and aggregation
attributes in the query, whereas a rejection or an acceptance can be related to the type of
visualization. For example, in the case where the proposed analytic is displayed with a chart
bar but the user prefers it with a circular chart, our system changes the query instead of the
display. Hence, user feedback can be extended by capturing visualization-based reasons. An
approach that exploits this feedback to map the queries to the most appropriate visualization
panel can be used [119].

CHAPTER 5. CONCLUSION & PERSPECTIVES 113

In diverse sessions recommendations, we proposed a solution that captures only the best
attribute which yields the highest diversity within sessions. Relying on one attribute may
capture partially the diverse preferences of users. For example, in the context of music recom-
mendations, a user may aim to maximize the diversity of two attributes (e.g., both genre and
era in iteration 1 of the motivating example in Section 3.2.3. By selecting just one attribute
(e.g., genre), we may not maximize the diversity of the other one. Thus, the direct extension
of this work is to capture and combine multiple attributes within the same session. The main
challenge is related to the number of considered attributes. An intuitive solution is to choose
at each iteration the k best attributes that maximize diversity. Another possible solution is
to consider all attributes in each session and learn their weights for aggregation. A similar
but static solution was proposed in [77] where users are clustered into fixed classes for all
attributes. A user may belong to different classes for different attributes. Each class has a
fixed and predefined weight. The diversity is then the result of the weighted aggregation of
the diversities of attributes.

Finally, in all the applications, contextual factors [5] that affect the users may be integrated.
We may select geographic and temporal information as they are easy to collect compared
to other contextual factors such as mood and social [5]. Their integration in the users’ pro-
files [109] may enhance the performance of the solutions. In fact, relying on the geographical
contexts showed improvement in different recommendation fields [11]. On the other hand,
we can also extend our solutions by integrating explicitly temporal information in the states
using time-binning [136].

5.2.3 New Concepts Perspectives

Our third area of future work is related to incorporating new and wider concepts that would
require deeper investigation. This would enhance our solutions by capturing new theories and
exploring new research areas.

Supporting New Learning Theories. Our work about test assignment may benefit from
incorporating other learning theories in addition to mastery learning [188] and ZPD [249]. In
fact, there are many learning theories in the physical world, such as situated learning [142] and
collaborative learning [49]. Collaborative learning is effective in online learning environments
like MOOCs, and studies showed that rich interactions such as peer feedback and discussion
promote learning [73, 59, 258]. In this theory, groups of two or more learners work together to
solve problems and complete tasks. For example, one work [158] showed through crowdsourc-
ing that learners tend to have better learning when they are aware of the answers of other
learners. Situated learning, on the other hand, focuses on the relationship between learning
and the social situation in which it takes place. It can be represented as an apprenticeship
where knowledge is propagated from experts to novice learners based on the principle of Le-
gitimate Peripheral Participation [142]. If novice learners can directly observe the practices
of experts, they understand in which their own efforts fit.

Supporting New Queries. Our SQL recommendation solution, DashBot, may also benefit
from the extension of considered queries. We may do so by including the comparison predicate
WHERE to have a condition on considered rows and specify which ones to retrieve in the returned
results. To permit this, the panel representation as well as the inclusion and coverage concepts
presented in Section 3.2.2 have to be enriched. The solution for new panel generation has to

CHAPTER 5. CONCLUSION & PERSPECTIVES 114

be enhanced by defining utility functions to choose the attributes on which the condition is
going to be applied. The panel refinement procedures also need to be extended by integrating
new acceptance/rejection reasons for WHERE attributes and considering more arms in the MAB
strategies.

Supporting New Group Dimensions. In the collective behavior analysis, our work lever-
ages significance and coverage. It may benefit from different dimensions that define the quality
of the generated demographic groups. Exploring other dimensions is one of the future direc-
tions. For example, diversity can be used to return user groups that are different from each
other in order to provide complementary information. Diversity may be computed based
on the description of the demographic groups. Another dimension that can be enhanced is
novelty to return at each time, demographic groups that were not seen previously by the
user. Other dimensions are discussed in [97] like conciseness (concise demographic groups) or
peculiarity (distance-based demographic groups).

5.2.4 Visualization Tools Perspectives

Our last direction is related to developing new visualization tools. In collective user analysis,
our future work is to provide an interactive tool in which users can experiment with different
data using different requests and compare results in a sound manner. In this tool, users may
have the ability to navigate among many data regions to find interesting demographic groups.
In addition to that, the users may also have the possibility to choose the type of hypothesis
to explore (One-sample, Two-samples, Multiple-samples), the aggregation dimension that de-
fines the behavior of users (e.g., ratings, clicks), and the aggregation function (mean, variance,
distribution). This would require developing visual analytics and combining them with our
solutions. These visualizations may describe the input groups the user chose, all significant
subgroups with their coverage and statistical significance. One reason to use these visual-
izations is because they display hypothesis testing results in an interpretable fashion. When
using this tool, users may dive into different groups and verify some hypotheses or explore
other groups in different regions of data. By doing so, users create navigation pipelines of
demographic groups which this tool will store and display in a dynamic way.

As users generate navigation pipelines in an iterative fashion, we may also design a solution
that mimics their actions and generates automatically this pipeline. This solution may be
integrated into our visualization tool. As this problem is iterative, reinforcement learning
appears to be a genuine solution. The agent chooses at each iteration which input demographic
group to consider. It also chooses to whether exploit this group and dive into it to analyze
the behavior of its subgroups or to explore other regions of the data and jump to unrelated
demographic groups. The agent may rely on the multiple hypothesis testing solutions that we
proposed in this thesis to return the most significant and representative groups. The agent has
also to address the challenge of choosing between the different types of hypotheses, aggregation
dimensions, and functions. To develop this type of agent, a reward function that captures the
significance and coverage of the returned demographic groups has to be designed. The reward
should also capture the case where exploration is needed and the agent chose exploitation and
inversely. Since an agent is trained to generate that pipeline, the visualization tool offers two
navigation modes: manually as described before where users make their decisions to generate
the pipeline, fully automatic where the trained agent generates the pipeline entirely.

Bibliography

[1] Solmaz Abdi, Hassan Khosravi, Shazia Sadiq, and Ali Darvishi. Open learner models
for multi-activity educational systems. In Artificial Intelligence in Education: 22nd
International Conference, AIED 2021, Utrecht, The Netherlands, June 14–18, 2021,
Proceedings, Part II, pages 11–17. Springer, 2021.

[2] Himan Abdollahpouri, Zahra Nazari, Alex Gain, Clay Gibson, Maria Dimakopoulou,
Jesse Anderton, Benjamin Carterette, Mounia Lalmas, and Tony Jebara. Calibrated
recommendations as a minimum-cost flow problem. In Proceedings of the Sixteenth ACM
International Conference on Web Search and Data Mining, pages 571–579, 2023.

[3] Gediminas Adomavicius, Nikos Manouselis, and YoungOk Kwon. Multi-criteria recom-
mender systems. In Recommender systems handbook, pages 769–803. Springer, 2010.

[4] Gediminas Adomavicius and Alexander Tuzhilin. Toward the next generation of rec-
ommender systems: A survey of the state-of-the-art and possible extensions. IEEE
transactions on knowledge and data engineering, 17(6):734–749, 2005.

[5] Gediminas Adomavicius and Alexander Tuzhilin. Context-aware recommender systems.
In Recommender systems handbook, pages 217–253. Springer, 2010.

[6] Gediminas Adomavicius and Jingjing Zhang. Impact of data characteristics on recom-
mender systems performance. ACM Transactions on Management Information Systems
(TMIS), 3(1):1–17, 2012.

[7] M Mehdi Afsar, Trafford Crump, and Behrouz Far. Reinforcement learning based rec-
ommender systems: A survey. ACM Computing Surveys, 55(7):1–38, 2022.

[8] Alexander A Ageev and Maxim I Sviridenko. Approximation algorithms for maximum
coverage and max cut with given sizes of parts. In International Conference on Integer
Programming and Combinatorial Optimization, pages 17–30. Springer, 1999.

[9] Rakesh Agrawal, Johannes Gehrke, Dimitrios Gunopulos, and Prabhakar Raghavan.
Automatic subspace clustering of high dimensional data for data mining applications,
volume 27. ACM, 1998.

[10] Rakesh Agrawal, Ramakrishnan Srikant, et al. Fast algorithms for mining association
rules. In Proc. 20th int. conf. very large data bases, VLDB, volume 1215, pages 487–499,
1994.

[11] Marie Al-Ghossein. Context-aware recommender systems for real-world applications.
PhD thesis, Université Paris-Saclay (ComUE), 2019.

115

BIBLIOGRAPHY 116

[12] Xavier Amatriain, Alejandro Jaimes*, Nuria Oliver, and Josep M Pujol. Data mining
methods for recommender systems. In Recommender systems handbook, pages 39–71.
Springer, 2010.

[13] Xavier Amatriain, Alejandro Jaimes, Nuria Oliver, and Josep M Pujol. Data mining
methods for recommender systems. In Recommender systems handbook, pages 39–71.
Springer, 2011.

[14] S. Amer-Yahia, T. Milo, and B. Youngmann. Exploring Ratings in Subjective Databases.
In SIGMOD, pages 62–75, 2021.

[15] Sihem Amer-Yahia, Sofia Kleisarchaki, Naresh Kumar Kolloju, Laks VS Lakshmanan,
and Ruben H Zamar. Exploring rated datasets with rating maps. In Proceedings of
the 26th International Conference on World Wide Web, pages 1411–1419. International
World Wide Web Conferences Steering Committee, 2017.

[16] Rohan Anand and Joeran Beel. Auto-surprise: An automated recommender-system
(autorecsys) library with tree of parzens estimator (tpe) optimization. In Fourteenth
ACM Conference on Recommender Systems, pages 585–587, 2020.

[17] Ashton Anderson, Lucas Maystre, Ian Anderson, Rishabh Mehrotra, and Mounia Lal-
mas. Algorithmic effects on the diversity of consumption on spotify. In Proceedings of
The Web Conference 2020, pages 2155–2165, 2020.

[18] Elham Asani, Hamed Vahdat-Nejad, and Javad Sadri. Restaurant recommender system
based on sentiment analysis. Machine Learning with Applications, 6:100114, 2021.

[19] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time Analysis of the Multiarmed Bandit
Problem. Machine Learning, 47(2-3):235–256, 2002.

[20] Enkh-Amgalan Baatarjav, Santi Phithakkitnukoon, and Ram Dantu. Group recom-
mendation system for facebook. In On the Move to Meaningful Internet Systems:
OTM 2008 Workshops: OTM Confederated International Workshops and Posters, ADI,
AWeSoMe, COMBEK, EI2N, IWSSA, MONET, OnToContent+ QSI, ORM, PerSys,
RDDS, SEMELS, and SWWS 2008, Monterrey, Mexico, November 9-14, 2008. Pro-
ceedings, pages 211–219. Springer, 2008.

[21] Anirudhan Badrinath, Frederic Wang, and Zachary Pardos. pybkt: An accessible python
library of bayesian knowledge tracing models. In Proceedings of the 14th International
Conference on Educational Data Mining, pages 468–474, 2021.

[22] Marko Balabanović and Yoav Shoham. Fab: content-based, collaborative recommenda-
tion. Communications of the ACM, 40(3):66–72, 1997.

[23] O. Bar El, T. Milo, and A. Somech. Automatically Generating Data Exploration Ses-
sions Using Deep Reinforcement Learning. In SIGMOD, pages 1527–1537, 2020.

[24] Ilaria Bartolini, Paolo Ciaccia, and Marco Patella. Efficient sort-based skyline evalua-
tion. ACM Transactions on Database Systems (TODS), 33(4):1–49, 2008.

[25] Ashok R Basawapatna, Alexander Repenning, Kyu Han Koh, and Hilarie Nickerson.
The zones of proximal flow: guiding students through a space of computational thinking

BIBLIOGRAPHY 117

skills and challenges. In Proceedings of the ninth annual international ACM conference
on International computing education research, pages 67–74, 2013.

[26] Pierpaolo Basile, Marco De Gemmis, Anna Lisa Gentile, Leo Iaquinta, Pasquale Lops,
and Giovanni Semeraro. An electronic performance support system based on a hybrid
content-collaborative recommender system. Neural Network World, 17(6):529, 2007.

[27] Jonathan Bassen, Bharathan Balaji, Michael Schaarschmidt, Candace Thille, Jay
Painter, Dawn Zimmaro, Alex Games, Ethan Fast, and John C Mitchell. Reinforce-
ment learning for the adaptive scheduling of educational activities. In Proceedings of
the 2020 CHI Conference on Human Factors in Computing Systems, pages 1–12, 2020.

[28] Joeran Beel, Corinna Breitinger, Stefan Langer, Andreas Lommatzsch, and Bela Gipp.
Towards reproducibility in recommender-systems research. User modeling and user-
adapted interaction, 26(1):69–101, 2016.

[29] Joeran Beel, Alan Griffin, and Conor O’Shea. Darwin & goliath: a white-label
recommender-system as-a-service with automated algorithm-selection. In Proceedings
of the 13th ACM Conference on Recommender Systems, pages 534–535, 2019.

[30] Gleb Beliakov, Simon James, Juliana Mordelová, Tatiana Rückschlossová, and
Ronald R. Yager. Generalized bonferroni mean operators in multi-criteria aggregation.
Fuzzy Sets Syst., 161(17):2227–2242, 2010.

[31] Robert M Bell and Yehuda Koren. Scalable collaborative filtering with jointly derived
neighborhood interpolation weights. In icdm, volume 7, pages 43–52. Citeseer, 2007.

[32] Robert M Bell and Yehuda Koren. Lessons from the netflix prize challenge. KDD
Exploration, 2008.

[33] Yoav Benjamini and Yosef Hochberg. Controlling the false discovery rate: a practical
and powerful approach to multiple testing. Journal of the Royal statistical society: series
B (Methodological), 57(1):289–300, 1995.

[34] Yoav Benjamini and Daniel Yekutieli. The control of the false discovery rate in multiple
testing under dependency. Annals of Statistics, 29:1165–1188, 2001.

[35] James Bennett, Stan Lanning, et al. The netflix prize. In Proceedings of KDD cup and
workshop, volume 2007, page 35. New York, 2007.

[36] Idir Benouaret and Sihem Amer-Yahia. A comparative evaluation of top-n recommen-
dation algorithms: Case study with total customers. In Proceedings of the twenty-first
international conference on Big Data, 2020.

[37] bigdata ustc. Educdm. https://github.com/bigdata-ustc/EduCDM, 2021.

[38] Daniel Billsus and Michael J Pazzani. User modeling for adaptive news access. User
modeling and user-adapted interaction, 10:147–180, 2000.

[39] Allan Birnbaum. Some latent trait models and their use in inferring an examinee’s
ability. Statistical theories of mental test scores, 1968.

[40] Mario Boley, Michael Mampaey, Bo Kang, Pavel Tokmakov, and Stefan Wrobel. One
click mining: Interactive local pattern discovery through implicit preference and per-

https://github.com/bigdata-ustc/EduCDM

BIBLIOGRAPHY 118

formance learning. In Proceedings of the ACM SIGKDD Workshop on Interactive Data
Exploration and Analytics, pages 27–35. ACM, 2013.

[41] Léon Bottou and Olivier Bousquet. The tradeoffs of large scale learning. Advances in
neural information processing systems, 20, 2007.

[42] Nassim Bouarour, Idir Benouaret, and Sihem Amer-Yahia. How useful is meta-
recommendation? an empirical investigation. In 2021 IEEE International Conference
on Big Data (Big Data), pages 600–606. IEEE, 2021.

[43] Nassim Bouarour, Idir Benouaret, and Sihem Amer-Yahia. Learning diversity attributes
in multi-session recommendations. In 2022 IEEE International Conference on Big Data
(Big Data), pages 465–474. IEEE, 2022.

[44] Nassim Bouarour, Idir Benouaret, and Sihem Amer-Yahia. Optimizing data coverage
and significance in multiple hypothesis testing on user groups. In Transactions on Large-
Scale Data-and Knowledge-Centered Systems LI: Special Issue on Data Management-
Principles, Technologies and Applications, pages 64–96. Springer, 2022.

[45] Nassim Bouarour, Idir Benouaret, and Sihem Amer-Yahia. Significance and coverage
in group testing on the social web. In Proceedings of the ACM Web Conference 2022,
pages 3052–3060, 2022.

[46] Nassim Bouarour, Idir Benouaret, Cédric D’Ham, and Sihem Amer-Yahia. Adaptive test
recommendation for mastery learning. In Proceedings of the 2nd International Work-
shop on Data Systems Education: Bridging Education Practice with Education Research,
DataEd ’23, page 18–23, New York, NY, USA, 2023. Association for Computing Ma-
chinery.

[47] Coen Bron and Joep Kerbosch. Algorithm 457: finding all cliques of an undirected
graph. Communications of the ACM, 16(9):575–577, 1973.

[48] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al.
Language models are few-shot learners. Advances in neural information processing sys-
tems, 33:1877–1901, 2020.

[49] Kenneth A Bruffee. Collaborative learning: Higher education, interdependence, and the
authority of knowledge. ERIC, 1999.

[50] Robin Burke. Hybrid recommender systems: Survey and experiments. User modeling
and user-adapted interaction, 12(4):331–370, 2002.

[51] Robin Burke. Hybrid web recommender systems. In The adaptive web, pages 377–408.
Springer, 2007.

[52] Jaime Carbonell and Jade Goldstein. The use of mmr, diversity-based reranking for
reordering documents and producing summaries. In Proceedings of the 21st annual
international ACM SIGIR conference on Research and development in information re-
trieval, pages 335–336, 1998.

[53] Pablo Castells, Neil Hurley, and Saul Vargas. Novelty and diversity in recommender
systems. In Recommender systems handbook, pages 603–646. Springer, 2021.

BIBLIOGRAPHY 119

[54] Hao Cen, Kenneth Koedinger, and Brian Junker. Learning factors analysis–a general
method for cognitive model evaluation and improvement. In Intelligent Tutoring Sys-
tems: 8th International Conference, ITS 2006, Jhongli, Taiwan, June 26-30, 2006.
Proceedings 8, pages 164–175. Springer, 2006.

[55] Chandra Chekuri, Kent Quanrud, and Zhao Zhang. On approximating partial set cover
and generalizations. arXiv preprint arXiv:1907.04413, 2019.

[56] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav
Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian
Gehrmann, et al. Palm: Scaling language modeling with pathways. arXiv preprint
arXiv:2204.02311, 2022.

[57] Charles LA Clarke, Maheedhar Kolla, Gordon V Cormack, Olga Vechtomova, Azin
Ashkan, Stefan Büttcher, and Ian MacKinnon. Novelty and diversity in information
retrieval evaluation. In Proceedings of the 31st annual international ACM SIGIR con-
ference on Research and development in information retrieval, pages 659–666, 2008.

[58] Mark Claypool, Anuja Gokhale, Tim Miranda, Paul Murnikov, Dmitry Netes, and
Matthew Sartin. Combing content-based and collaborative filters in an online newspa-
per. In Proc. of Workshop on Recommender Systems-Implementation and Evaluation,
1999.

[59] Derrick Coetzee, Seongtaek Lim, Armando Fox, Bjorn Hartmann, and Marti A Hearst.
Structuring interactions for large-scale synchronous peer learning. In Proceedings of the
18th ACM Conference on Computer Supported Cooperative Work & Social Computing,
pages 1139–1152, 2015.

[60] Andrew Collins and Joeran Beel. A first analysis of meta-learned per-instance algo-
rithm selection in scholarly recommender systems. In Workshop on Recommendation in
Complex Scenarios, 13th ACM Conference on Recommender Systems (RecSys), 2019.

[61] Andrew Collins, Dominika Tkaczyk, and Joeran Beel. A novel approach to recommen-
dation algorithm selection using meta-learning. In AICS, pages 210–219, 2018.

[62] David Colquhoun. An investigation of the false discovery rate and the misinterpretation
of p-values. Royal Society Open Science, 1(3):140216, 2014.

[63] Michelle Keim Condliff, David D Lewis, David Madigan, and Christian Posse. Bayesian
mixed-effects models for recommender systems. In ACM SIGIR, volume 99, pages 23–30.
Citeseer, 1999.

[64] Albert T Corbett and John R Anderson. Knowledge tracing: Modeling the acquisition
of procedural knowledge. User modeling and user-adapted interaction, 4(4):253–278,
1994.

[65] Paolo Cremonesi, Yehuda Koren, and Roberto Turrin. Performance of recommender
algorithms on top-n recommendation tasks. In Proceedings of the fourth ACM conference
on Recommender systems, pages 39–46, 2010.

[66] Andrew Crotty, Alex Galakatos, Emanuel Zgraggen, Carsten Binnig, and Tim Kraska.
Vizdom: interactive analytics through pen and touch. Proceedings of the VLDB En-
dowment, 8(12):2024–2027, 2015.

BIBLIOGRAPHY 120

[67] Tiago Cunha, Carlos Soares, and André CPLF de Carvalho. Metalearning and recom-
mender systems: A literature review and empirical study on the algorithm selection
problem for collaborative filtering. Information Sciences, 423:128–144, 2018.

[68] S. Da Col, R. Ciucanu, M. Soare, N. Bouarour, and S. Amer-Yahia. DashBot: An
ML-Guided Dashboard Generation System. In CIKM, 2021. Accepted, to appear.

[69] Sandrine Da Col, Radu Ciucanu, Marta Soare, Nassim Bouarour, and Sihem Amer-
Yahia. Dashbot: An ml-guided dashboard generation system. In Proceedings of the
30th ACM International Conference on Information & Knowledge Management, pages
4696–4700, 2021.

[70] Maurizio Ferrari Dacrema, Paolo Cremonesi, and Dietmar Jannach. Are we really mak-
ing much progress? a worrying analysis of recent neural recommendation approaches.
In Proceedings of the 13th ACM Conference on Recommender Systems, pages 101–109,
2019.

[71] Sriharsha Dara, C Ravindranath Chowdary, and Chintoo Kumar. A survey on group
recommender systems. Journal of Intelligent Information Systems, 54(2):271–295, 2020.

[72] James Davidson, Benjamin Liebald, Junning Liu, Palash Nandy, Taylor Van Vleet, Ullas
Gargi, Sujoy Gupta, Yu He, Mike Lambert, Blake Livingston, et al. The youtube video
recommendation system. In Proceedings of the fourth ACM conference on Recommender
systems, pages 293–296, 2010.

[73] Dan Davis, Guanliang Chen, Claudia Hauff, and Geert-Jan Houben. Activating learning
at scale: A review of innovations in online learning strategies. Computers & Education,
125:327–344, 2018.

[74] Janez Demšar. Statistical comparisons of classifiers over multiple data sets. The Journal
of Machine learning research, 7:1–30, 2006.

[75] Giovanni Di Leo and Francesco Sardanelli. Statistical significance: p value, 0.05 thresh-
old, and applications to radiomics—reasons for a conservative approach. European
radiology experimental, 4(1):1–8, 2020.

[76] Tommaso Di Noia, Vito Claudio Ostuni, Jessica Rosati, Paolo Tomeo, and Eugenio
Di Sciascio. An analysis of users’ propensity toward diversity in recommendations. In
Proceedings of the 8th ACM Conference on Recommender Systems, pages 285–288, 2014.

[77] Tommaso Di Noia, Jessica Rosati, Paolo Tomeo, and Eugenio Di Sciascio. Adaptive
multi-attribute diversity for recommender systems. Information Sciences, 382:234–253,
2017.

[78] Jörg Diederich and Tereza Iofciu. Finding communities of practice from user profiles
based on folksonomies. In Innovative approaches for learning and knowledge sharing,
ec-tel workshop proc, pages 288–297. Citeseer, 2006.

[79] K. Dimitriadou, O. Papaemmanouil, and Y. Diao. AIDE: An Active Learning-Based
Approach for Interactive Data Exploration. TKDE, 28(11):2842–2856, 2016.

BIBLIOGRAPHY 121

[80] Kyriaki Dimitriadou, Olga Papaemmanouil, and Yanlei Diao. Aide: an active learning-
based approach for interactive data exploration. IEEE Transactions on Knowledge and
Data Engineering, 28(11):2842–2856, 2016.

[81] Yi Ding and Xue Li. Time weight collaborative filtering. In Proceedings of the 14th
ACM international conference on Information and knowledge management, pages 485–
492, 2005.

[82] Zhenhua Dong, Zhe Wang, Jun Xu, Ruiming Tang, and Jirong Wen. A brief history of
recommender systems. arXiv preprint arXiv:2209.01860, 2022.

[83] Gintare Karolina Dziugaite and Daniel M Roy. Neural network matrix factorization.
arXiv preprint arXiv:1511.06443, 2015.

[84] Michael Ekstrand and John Riedl. When recommenders fail: predicting recommender
failure for algorithm selection and combination. In Proceedings of the sixth ACM con-
ference on Recommender systems, pages 233–236, 2012.

[85] Michael D Ekstrand and Maria Soledad Pera. The demographics of cool. Poster Pro-
ceedings at ACM RecSys. ACM, Como, Italy, 2017.

[86] Frank Emmert-Streib and Matthias Dehmer. Understanding statistical hypothesis test-
ing: The logic of statistical inference. Machine Learning and Knowledge Extraction,
1(3):945–962, 2019.

[87] Mohammadreza Esfandiari, Ria Mae Borromeo, Sepideh Nikookar, Paras Sakharkar,
Sihem Amer-Yahia, and Senjuti Basu Roy. Multi-session diversity to improve user
satisfaction in web applications. In WWW ’21: The Web Conference 2021, Virtual
Event / Ljubljana, Slovenia, April 19-23, 2021, pages 1928–1936, 2021.

[88] Maryam Etemadi, Sepideh Bazzaz Abkenar, Ahmad Ahmadzadeh, Mostafa Haghi
Kashani, Parvaneh Asghari, Mohammad Akbari, and Ebrahim Mahdipour. A system-
atic review of healthcare recommender systems: Open issues, challenges, and techniques.
Expert Systems with Applications, page 118823, 2022.

[89] D. Foster and R. A. Stine. Alpha-investing: A procedure for sequential control of ex-
pected false discoveries. In Journal of the Royal Statistical Society: Series B: Statistical
Methodology, 2008.

[90] Piero Fraternali, Davide Martinenghi, and Marco Tagliasacchi. Top-k bounded di-
versification. In Proceedings of the 2012 ACM SIGMOD International Conference on
Management of Data, pages 421–432, 2012.

[91] Jerome H Friedman. Greedy function approximation: a gradient boosting machine.
Annals of statistics, pages 1189–1232, 2001.

[92] Alejandro G. Martín, Alberto Fernández-Isabel, Isaac Martín de Diego, and Marta
Beltrán. A survey for user behavior analysis based on machine learning techniques:
current models and applications. Applied Intelligence, 51(8):6029–6055, 2021.

[93] Zeno Gantner, Lucas Drumond, Christoph Freudenthaler, Steffen Rendle, and Lars
Schmidt-Thieme. Learning attribute-to-feature mappings for cold-start recommenda-

BIBLIOGRAPHY 122

tions. In 2010 IEEE International Conference on Data Mining, pages 176–185. IEEE,
2010.

[94] Diego Garcıa-Saiz and Marta Zorrilla. Metalearning-based recommenders: towards
automatic classification algorithm selection. In Conferencia de la Asociación Espanola
para la Inteligencia Artificial, pages 749–758, 2015.

[95] Dragan Gašević, Vitomir Kovanović, Srećko Joksimović, and George Siemens. Where
is research on massive open online courses headed? a data analysis of the mooc re-
search initiative. International Review of Research in Open and Distributed Learning,
15(5):134–176, 2014.

[96] Yingqiang Ge, Shuya Zhao, Honglu Zhou, Changhua Pei, Fei Sun, Wenwu Ou, and
Yongfeng Zhang. Understanding echo chambers in e-commerce recommender systems.
In Proceedings of the 43rd international ACM SIGIR conference on research and devel-
opment in information retrieval, pages 2261–2270, 2020.

[97] Liqiang Geng and Howard J Hamilton. Interestingness measures for data mining: A
survey. ACM Computing Surveys (CSUR), 38(3):9, 2006.

[98] Nicolas Gillis. The why and how of nonnegative matrix factorization. Regularization,
optimization, kernels, and support vector machines, 12(257):257–291, 2014.

[99] David Goldberg, David Nichols, Brian M Oki, and Douglas Terry. Using collaborative
filtering to weave an information tapestry. Communications of the ACM, 35(12):61–70,
1992.

[100] Carlos A Gomez-Uribe and Neil Hunt. The netflix recommender system: Algorithms,
business value, and innovation. ACM Transactions on Management Information Sys-
tems (TMIS), 6(4):1–19, 2015.

[101] Yue Gong, Joseph E Beck, and Neil T Heffernan. Comparing knowledge tracing and per-
formance factor analysis by using multiple model fitting. ITS2010 Intelligent Tutoring
Systems. LNCS, 6094:35–44, 2010.

[102] José P González-Brenes and Yun Huang. " your model is predictive–but is it use-
ful?" theoretical and empirical considerations of a new paradigm for adaptive tutoring
evaluation. International Educational Data Mining Society, 2015.

[103] Amit Goyal, Francesco Bonchi, and Laks VS Lakshmanan. Discovering leaders from
community actions. In Proceedings of the 17th ACM conference on Information and
knowledge management, pages 499–508. ACM, 2008.

[104] Asela Gunawardana and Guy Shani. Evaluating recommender systems. In Recommender
systems handbook, pages 265–308. Springer, 2015.

[105] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. Deepfm:
a factorization-machine based neural network for ctr prediction. arXiv preprint
arXiv:1703.04247, 2017.

[106] Yue Guo, Carsten Binnig, and Tim Kraska. What you see is not what you get! detecting
simpson’s paradoxes during data exploration. In Proceedings of the 2nd Workshop on
Human-In-the-Loop Data Analytics, pages 1–5, 2017.

BIBLIOGRAPHY 123

[107] Wilhelmiina Hämäläinen and Geoffrey I. Webb. A tutorial on statistically sound pattern
discovery. Data Min. Knowl. Discov., 33(2):325–377, 2019.

[108] John Hannon, Mike Bennett, and Barry Smyth. Recommending twitter users to follow
using content and collaborative filtering approaches. In Proceedings of the fourth ACM
conference on Recommender systems, pages 199–206, 2010.

[109] Casper Hansen, Christian Hansen, Lucas Maystre, Rishabh Mehrotra, Brian Brost,
Federico Tomasi, and Mounia Lalmas. Contextual and sequential user embeddings for
large-scale music recommendation. In Proceedings of the 14th ACM Conference on
Recommender Systems, pages 53–62, 2020.

[110] Christian Hansen, Rishabh Mehrotra, Casper Hansen, Brian Brost, Lucas Maystre,
and Mounia Lalmas. Shifting consumption towards diverse content on music streaming
platforms. In Proceedings of the 14th ACM international conference on web search and
data mining, pages 238–246, 2021.

[111] F. M. Harper and J. A. Konstan. The MovieLens Datasets: History and Context. ACM
TiiS, 5(4):19:1–19:19, 2016.

[112] Xiangnan He, Xiaoyu Du, Xiang Wang, Feng Tian, Jinhui Tang, and Tat-Seng Chua.
Outer product-based neural collaborative filtering. arXiv preprint arXiv:1808.03912,
2018.

[113] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua.
Neural collaborative filtering. In Proceedings of the 26th international conference on
world wide web, pages 173–182, 2017.

[114] Markus Hegland. The apriori algorithm–a tutorial. Mathematics and computation in
imaging science and information processing, pages 209–262, 2007.

[115] Balázs Hidasi and Alexandros Karatzoglou. Recurrent neural networks with top-k gains
for session-based recommendations. In Proceedings of the 27th ACM international con-
ference on information and knowledge management, pages 843–852, 2018.

[116] Dorit S Hochbaum and Anu Pathria. Analysis of the greedy approach in problems of
maximum k-coverage. Naval Research Logistics (NRL), 45(6):615–627, 1998.

[117] Sture Holm. A simple sequentially rejective multiple test procedure. Scandinavian
journal of statistics, pages 65–70, 1979.

[118] Jeff Howe et al. The rise of crowdsourcing. Wired magazine, 14(6):176–183, 2006.

[119] Kevin Hu, Michiel A Bakker, Stephen Li, Tim Kraska, and César Hidalgo. Vizml: A
machine learning approach to visualization recommendation. In Proceedings of the 2019
CHI Conference on Human Factors in Computing Systems, pages 1–12, 2019.

[120] Yifan Hu, Yehuda Koren, and Chris Volinsky. Collaborative filtering for implicit feed-
back datasets. In 2008 Eighth IEEE International Conference on Data Mining, pages
263–272. Ieee, 2008.

[121] Hyunwoo Hwangbo, Yang Sok Kim, and Kyung Jin Cha. Recommendation system
development for fashion retail e-commerce. Electronic Commerce Research and Appli-
cations, 28:94–101, 2018.

BIBLIOGRAPHY 124

[122] Sheena S Iyengar and Mark R Lepper. When choice is demotivating: Can one desire too
much of a good thing? Journal of personality and social psychology, 79(6):995, 2000.

[123] Mohieddin Jafari and Naser Ansari-Pour. Why, when and how to adjust your p values?
Cell Journal (Yakhteh), 20(4):604, 2019.

[124] Dietmar Jannach and Michael Jugovac. Measuring the business value of recommender
systems. ACM Transactions on Management Information Systems (TMIS), 10(4):1–23,
2019.

[125] Kalervo Järvelin and Jaana Kekäläinen. Cumulated gain-based evaluation of ir tech-
niques. ACM Transactions on Information Systems (TOIS), 20(4):422–446, 2002.

[126] Yitong Ji, Aixin Sun, Jie Zhang, and Chenliang Li. On offline evaluation of recommender
systems. arXiv preprint arXiv:2010.11060, 2020.

[127] Xin Jia, Wenjie Zhou, Xu Sun, and Yunfang Wu. Eqg-race: Examination-type question
generation. In Proceedings of the AAAI conference on artificial intelligence, volume 35,
pages 13143–13151, 2021.

[128] Dawei Jiang, Qingchao Cai, Gang Chen, HV Jagadish, Beng Chin Ooi, Kian-Lee Tan,
and Anthony KH Tung. Cohort query processing. Proceedings of the VLDB Endowment,
10(1):1–12, 2016.

[129] Niranjan Kamat, Prasanth Jayachandran, Karthik Tunga, and Arnab Nandi. Dis-
tributed and interactive cube exploration. In Data Engineering (ICDE), 2014 IEEE
30th International Conference on, pages 472–483. IEEE, 2014.

[130] Richard M Karp. Reducibility among combinatorial problems. In Complexity of com-
puter computations, pages 85–103. Springer, 1972.

[131] Kim Kelly, Yan Wang, Tamisha Thompson, and Neil Heffernan. Defining mastery:
Knowledge tracing versus n-consecutive correct responses. Student Modeling From Dif-
ferent Aspects, page 39, 2016.

[132] Hassan Khosravi, Kirsty Kitto, and Joseph Jay Williams. Ripple: A crowd-
sourced adaptive platform for recommendation of learning activities. arXiv preprint
arXiv:1910.05522, 2019.

[133] Hassan Khosravi, Shazia Sadiq, and Dragan Gasevic. Development and adoption of an
adaptive learning system: Reflections and lessons learned. In Proceedings of the 51st
ACM technical symposium on computer science education, pages 58–64, 2020.

[134] Hyeyoung Ko, Suyeon Lee, Yoonseo Park, and Anna Choi. A survey of recommenda-
tion systems: recommendation models, techniques, and application fields. Electronics,
11(1):141, 2022.

[135] Joseph A Konstan, Sean M McNee, Cai-Nicolas Ziegler, Roberto Torres, Nishikant
Kapoor, and John Riedl. Lessons on applying automated recommender systems to
information-seeking tasks. In AAAI, volume 6, pages 1630–1633, 2006.

[136] Yehuda Koren. Collaborative filtering with temporal dynamics. In Proceedings of the
15th ACM SIGKDD international conference on Knowledge discovery and data mining,
pages 447–456, 2009.

BIBLIOGRAPHY 125

[137] Yehuda Koren and Robert Bell. Advances in collaborative filtering. In Recommender
systems handbook, pages 77–118. Springer, 2015.

[138] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for
recommender systems. Computer, 42(8):30–37, 2009.

[139] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. Communications of the ACM, 60(6):84–90, 2017.

[140] Matevž Kunaver and Tomaž Požrl. Diversity in recommender systems–a survey.
Knowledge-based systems, 123:154–162, 2017.

[141] Miklós Kurucz, András A Benczúr, and Károly Csalogány. Methods for large scale svd
with missing values. In Proceedings of KDD cup and workshop, volume 12, pages 31–38.
Citeseer, 2007.

[142] Jean Lave and Etienne Wenger. Situated learning: Legitimate peripheral participation.
Cambridge university press, 1991.

[143] Daniel D Lee and H Sebastian Seung. Learning the parts of objects by non-negative
matrix factorization. Nature, 401(6755):788–791, 1999.

[144] Joonseok Lee, Sami Abu-El-Haija, Balakrishnan Varadarajan, and Apostol Natsev. Col-
laborative deep metric learning for video understanding. In Proceedings of the 24th ACM
SIGKDD International conference on knowledge discovery & data mining, pages 481–
490, 2018.

[145] Yong-Won Lee and Yasuyo Sawaki. Cognitive diagnosis approaches to language assess-
ment: An overview. Language Assessment Quarterly, 6(3):172–189, 2009.

[146] Erich Leo Lehmann, Joseph P Romano, and George Casella. Testing statistical hypothe-
ses, volume 3. Springer, 2005.

[147] Lukas Lerche and Dietmar Jannach. Using graded implicit feedback for bayesian per-
sonalized ranking. In Proceedings of the 8th ACM Conference on Recommender systems,
pages 353–356, 2014.

[148] Lei Li, Li Zheng, Fan Yang, and Tao Li. Modeling and broadening temporal user interest
in personalized news recommendation. Expert Systems with Applications, 41(7):3168–
3177, 2014.

[149] Qing Li, Jia Wang, Yuanzhu Peter Chen, and Zhangxi Lin. User comments for news
recommendation in forum-based social media. Information Sciences, 180(24):4929–4939,
2010.

[150] Xiaopeng Li and James She. Collaborative variational autoencoder for recommender
systems. In Proceedings of the 23rd ACM SIGKDD international conference on knowl-
edge discovery and data mining, pages 305–314, 2017.

[151] Yuliang Li, Aaron Feng, Jinfeng Li, Saran Mumick, Alon Y. Halevy, Vivian Li, and
Wang-Chiew Tan. Subjective databases. Proc. VLDB Endow., 12(11):1330–1343, 2019.

BIBLIOGRAPHY 126

[152] Dawen Liang, Rahul G Krishnan, Matthew D Hoffman, and Tony Jebara. Variational
autoencoders for collaborative filtering. In Proceedings of the 2018 World Wide Web
Conference, pages 689–698, 2018.

[153] Aristidis Likas, Nikos Vlassis, and Jakob J Verbeek. The global k-means clustering
algorithm. Pattern recognition, 36(2):451–461, 2003.

[154] Yong Liu, Yinan Zhang, Qiong Wu, Chunyan Miao, Lizhen Cui, Binqiang Zhao, Yin
Zhao, and Lu Guan. Diversity-promoting deep reinforcement learning for interactive
recommendation. arXiv preprint arXiv:1903.07826, 2019.

[155] Wei-Yin Loh. Classification and regression trees. Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery, 1(1):14–23, 2011.

[156] Pasquale Lops, Marco De Gemmis, and Giovanni Semeraro. Content-based recom-
mender systems: State of the art and trends. In Recommender systems handbook, pages
73–105. Springer, 2011.

[157] Frederic M Lord. Applications of item response theory to practical testing problems.
Routledge, 1980.

[158] Masaki Matsubara, Ria Mae Borromeo, Sihem Amer-Yahia, and Atsuyuki Morishima.
Task assignment strategies for crowd worker ability improvement. Proc. ACM Hum.
Comput. Interact., 5(CSCW2):1–20, 2021.

[159] Rishabh Mehrotra, Niannan Xue, and Mounia Lalmas. Bandit based optimization of
multiple objectives on a music streaming platform. In Proceedings of the 26th ACM
SIGKDD international conference on knowledge discovery & data mining, pages 3224–
3233, 2020.

[160] Rosa J. Meijer and Jelle J. Goeman. Multiple testing of gene sets from gene ontology:
Possibilities and pitfalls. Briefings Bioinform., 17(5):808–818, 2016.

[161] Prem Melville, Raymond J Mooney, and Ramadass Nagarajan. Content-boosted col-
laborative filtering for improved recommendations. Aaai/iaai, 23:187–192, 2002.

[162] Bettina Mieth, Marius Kloft, Juan Antonio Rodríguez, Sören Sonnenburg, Robin Vo-
bruba, Carlos Morcillo-Suárez, Xavier Farré, Urko M Marigorta, Ernst Fehr, Thorsten
Dickhaus, et al. Combining multiple hypothesis testing with machine learning increases
the statistical power of genome-wide association studies. Scientific reports, 6(1):1–14,
2016.

[163] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of
word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[164] Sein Minn. Bkt-lstm: Efficient student modeling for knowledge tracing and student
performance prediction. arXiv preprint arXiv:2012.12218, 2020.

[165] Tom Michael Mitchell et al. Machine learning, volume 1. McGraw-hill New York, 2007.

[166] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou,
Daan Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning.
arXiv preprint arXiv:1312.5602, 2013.

BIBLIOGRAPHY 127

[167] Israel Molina, Jordi Gómez i Prat, Fernando Salvador, Begoña Treviño, Elena Sulleiro,
Núria Serre, Diana Pou, Sílvia Roure, Juan Cabezos, Lluís Valerio, et al. Randomized
trial of posaconazole and benznidazole for chronic chagas’ disease. New England Journal
of Medicine, 370(20):1899–1908, 2014.

[168] Hossam Mossalam, Yannis M Assael, Diederik M Roijers, and Shimon Whiteson. Multi-
objective deep reinforcement learning. arXiv preprint arXiv:1610.02707, 2016.

[169] Mark EJ Newman. Detecting community structure in networks. The European Physical
Journal B-Condensed Matter and Complex Systems, 38(2):321–330, 2004.

[170] Tien T Nguyen, Pik-Mai Hui, F Maxwell Harper, Loren Terveen, and Joseph A Kon-
stan. Exploring the filter bubble: the effect of using recommender systems on content
diversity. In Proceedings of the 23rd international conference on World wide web, pages
677–686, 2014.

[171] Alexander G Nikolaev, Shounak Gore, and Venu Govindaraju. Engagement capacity
and engaging team formation for reach maximization of online social media platforms.
In KDD, pages 225–234, 2016.

[172] Sepideh Nikookar, Paras Sakharkar, Baljinder Smagh, Sihem Amer-Yahia, and Sen-
juti Basu Roy. Guided task planning under complex constraints. In 2022 IEEE 38th
International Conference on Data Engineering (ICDE), pages 833–845. IEEE, 2022.

[173] Xia Ning, Christian Desrosiers, and George Karypis. A comprehensive survey of
neighborhood-based recommendation methods. In Recommender systems handbook,
pages 37–76. Springer, 2015.

[174] Douglas W Oard, Jinmook Kim, et al. Implicit feedback for recommender systems. In
Proceedings of the AAAI workshop on recommender systems, volume 83. WoUongong,
1998.

[175] Behrooz Omidvar Tehrani. Optimization-based User Group Management: Discovery,
Analysis, Recommendation. PhD thesis, Université Grenoble Alpes (ComUE), 2015.

[176] Behrooz Omidvar-Tehrani, Sihem Amer-Yahia, Pierre-Francois Dutot, and Denis Trys-
tram. Multi-objective group discovery on the social web. In ECML/PKDD, pages
296–312. Springer, 2016.

[177] Behrooz Omidvar-Tehrani, Aurelien Personnaz, and Sihem Amer-Yahia. Guided text-
based item exploration. In Proceedings of the 31st ACM International Conference on
Information & Knowledge Management, pages 3410–3420, 2022.

[178] Feiyang Pan, Qingpeng Cai, Pingzhong Tang, Fuzhen Zhuang, and Qing He. Policy
gradients for contextual recommendations. In The World Wide Web Conference, pages
1421–1431, 2019.

[179] Weike Pan, Hao Zhong, Congfu Xu, and Zhong Ming. Adaptive bayesian personalized
ranking for heterogeneous implicit feedbacks. Knowledge-Based Systems, 73:173–180,
2015.

[180] Higher Education Standards Panel. Final report–improving retention, completion and
success in higher education, 2017.

BIBLIOGRAPHY 128

[181] Christos H Papadimitriou and Mihalis Yannakakis. On the approximability of trade-offs
and optimal access of web sources. In Proceedings 41st annual symposium on foundations
of computer science, pages 86–92. IEEE, 2000.

[182] Zachary A Pardos and Neil T Heffernan. Kt-idem: Introducing item difficulty to the
knowledge tracing model. In International conference on user modeling, adaptation,
and personalization, pages 243–254. Springer, 2011.

[183] Eli Pariser. The filter bubble: What the Internet is hiding from you. penguin UK, 2011.

[184] Philip I Pavlik Jr, Hao Cen, and Kenneth R Koedinger. Performance factors analysis–a
new alternative to knowledge tracing. Online Submission, 2009.

[185] Michael Pazzani and Daniel Billsus. Learning and revising user profiles: The identifica-
tion of interesting web sites. Machine learning, 27:313–331, 1997.

[186] Michael J Pazzani and Daniel Billsus. Content-based recommendation systems. In The
adaptive web, pages 325–341. Springer, 2007.

[187] Pedro Pedreira, Chris Croswhite, and Luis Bona. Cubrick: indexing millions of records
per second for interactive analytics. Proceedings of the VLDB Endowment, 9(13):1305–
1316, 2016.

[188] Radek Pelánek and Jiří Řihák. Experimental analysis of mastery learning criteria. In
Proceedings of the 25th Conference on User Modeling, Adaptation and Personalization,
pages 156–163, 2017.

[189] Leonardo Pellegrina, Matteo Riondato, and Fabio Vandin. Hypothesis testing and
statistically-sound pattern mining (tutorial). In Proc. of the 25th ACM SIGKDD Intl.
Conf. on Knowledge Discovery & Data Mining, KDD 2019, Anchorage, AK, USA, Au-
gust 4-8, 2019, pages 3215–3216, 2019.

[190] Radek Pelánek. Application of time decay functions and elo system in student modeling.
Proc. of Educational Data Mining, pages 21–27, 01 2014.

[191] A. Personnaz, S. Amer-Yahia, L. Berti-Équille, M. Fabricius, and S. Subramanian. Bal-
ancing Familiarity and Curiosity in Data Exploration with Deep Reinforcement Learn-
ing. In aiDM@SIGMOD, pages 16–23, 2021.

[192] Alexandrin Popescul, Lyle H Ungar, David M Pennock, and Steve Lawrence. Probabilis-
tic models for unified collaborative and content-based recommendation in sparse-data
environments. arXiv preprint arXiv:1301.2303, 2013.

[193] Ivens Portugal, Paulo Alencar, and Donald Cowan. The use of machine learning algo-
rithms in recommender systems: A systematic review. Expert Systems with Applications,
97:205–227, 2018.

[194] Bruno Pradel, Savaneary Sean, Julien Delporte, Sébastien Guérif, Céline Rouveirol,
Nicolas Usunier, Françoise Fogelman-Soulié, and Frédéric Dufau-Joel. A case study in a
recommender system based on purchase data. In Proceedings of the 17th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 377–385. ACM,
2011.

BIBLIOGRAPHY 129

[195] Shameem A Puthiya Parambath, Nicolas Usunier, and Yves Grandvalet. A coverage-
based approach to recommendation diversity on similarity graph. In Proceedings of the
10th ACM Conference on Recommender Systems, pages 15–22, 2016.

[196] Lijing Qin and Xiaoyan Zhu. Promoting diversity in recommendation by entropy regular-
izer. In Twenty-Third International Joint Conference on Artificial Intelligence. Citeseer,
2013.

[197] Massimo Quadrana, Paolo Cremonesi, and Dietmar Jannach. Sequence-aware recom-
mender systems. ACM Computing Surveys (CSUR), 51(4):1–36, 2018.

[198] Idris Rabiu, Naomie Salim, Aminu Da’u, and Akram Osman. Recommender system
based on temporal models: a systematic review. Applied Sciences, 10(7):2204, 2020.

[199] George Rasch. Probabilistic models for some intelligence and attainment tests. ERIC,
1993.

[200] Shaina Raza and Chen Ding. Deep dynamic neural network to trade-off between ac-
curacy and diversity in a news recommender system. arXiv preprint arXiv:2103.08458,
2021.

[201] Mark D Reckase and Mark D Reckase. Unidimensional item response theory models.
Multidimensional item response theory, pages 11–55, 2009.

[202] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. Bpr:
Bayesian personalized ranking from implicit feedback. In Proceedings of the twenty-fifth
conference on uncertainty in artificial intelligence, pages 452–461. AUAI Press, 2009.

[203] Paul Resnick, Neophytos Iacovou, Mitesh Suchak, Peter Bergstrom, and John Riedl.
Grouplens: an open architecture for collaborative filtering of netnews. In Proceedings
of the 1994 ACM conference on Computer supported cooperative work, pages 175–186,
1994.

[204] Francesco Ricci, Lior Rokach, and Bracha Shapira. Recommender systems: introduction
and challenges. Recommender systems handbook, pages 1–34, 2015.

[205] Francesco Ricci, Lior Rokach, Bracha Shapira, and Paul B Kantor. Recommender Sys-
tems Handbook. Springer, 2011.

[206] Elaine Rich. User modeling via stereotypes. Cognitive science, 3(4):329–354, 1979.

[207] Joseph Rollinson and Emma Brunskill. From predictive models to instructional policies.
International Educational Data Mining Society, 2015.

[208] Etienne Roquain. Type i error rate control for testing many hypotheses: a survey with
proofs. Journal de la Société Française de Statistique, 152(2):3–38, 2011.

[209] Leonid Rozenblit and Frank Keil. The misunderstood limits of folk science: An illusion
of explanatory depth. Cognitive science, 26(5):521–562, 2002.

[210] D. Russo, B. Van Roy, A. Kazerouni, I. Osband, and Z. Wen. A Tutorial on Thompson
Sampling. Foundations and Trends in Machine Learning, 11(1):1–96, 2018.

[211] Omer Sagi and Lior Rokach. Ensemble learning: A survey. Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery, 8(4):e1249, 2018.

BIBLIOGRAPHY 130

[212] Mark Sanderson and W Bruce Croft. The history of information retrieval research.
Proceedings of the IEEE, 100(Special Centennial Issue):1444–1451, 2012.

[213] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Application of dimen-
sionality reduction in recommender system-a case study. Technical report, Minnesota
Univ Minneapolis Dept of Computer Science, 2000.

[214] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Item-based collab-
orative filtering recommendation algorithms. In Proceedings of the 10th international
conference on World Wide Web, pages 285–295, 2001.

[215] Badrul Sarwar, George Karypis, Joseph Konstan, John Riedl, et al. Analysis of recom-
mendation algorithms for e-commerce. In EC, pages 158–167, 2000.

[216] J Ben Schafer, Dan Frankowski, Jon Herlocker, and Shilad Sen. Collaborative filtering
recommender systems. In The adaptive web, pages 291–324. Springer, 2007.

[217] Suvash Sedhain, Aditya Krishna Menon, Scott Sanner, and Lexing Xie. Autorec: Au-
toencoders meet collaborative filtering. In Proceedings of the 24th international confer-
ence on World Wide Web, pages 111–112, 2015.

[218] Peter Sedlmeier, Juliane Eberth, Marcus Schwarz, Doreen Zimmermann, Frederik
Haarig, Sonia Jaeger, and Sonja Kunze. The psychological effects of meditation: a
meta-analysis. Psychological bulletin, 138(6):1139, 2012.

[219] M. Seleznova, B. Omidvar-Tehrani, S. Amer-Yahia, and E. Simon. Guided Exploration
of User Groups. PVLDB, 13(9):1469–1482, 2020.

[220] Giovanni Semeraro, Pierpaolo Basile, Marco de Gemmis, and Pasquale Lops. User
profiles for personalizing digital libraries. In Handbook of Research on Digital Libraries:
Design, Development, and Impact, pages 149–158. IGI Global, 2009.

[221] Juliet Popper Shaffer. Multiple hypothesis testing. Annual review of psychology,
46(1):561–584, 1995.

[222] D. Shahaf and C. Guestrin. Connecting the Dots Between News Articles. In KDD,
pages 623–632, 2010.

[223] Upendra Shardanand and Pattie Maes. Social information filtering: algorithms for
automating “word of mouth”. In Proceedings of the SIGCHI conference on Human
factors in computing systems, pages 210–217, 1995.

[224] Victor Shnayder and David Parkes. Practical peer prediction for peer assessment. In
Proceedings of the AAAI Conference on Human Computation and Crowdsourcing, vol-
ume 4, pages 199–208, 2016.

[225] Zbyněk Šidák. Rectangular confidence regions for the means of multivariate normal
distributions. Journal of the American Statistical Association, 62(318):626–633, 1967.

[226] A. Silberschatz, H. F. Korth, and S. Sudarshan. Database System Concepts, Sixth
Edition. McGraw-Hill Book Company, 2011.

[227] Joseph Sill, Gábor Takács, Lester Mackey, and David Lin. Feature-weighted linear
stacking. arXiv preprint arXiv:0911.0460, 2009.

BIBLIOGRAPHY 131

[228] Monika Singh. Scalability and sparsity issues in recommender datasets: a survey. Knowl-
edge and Information Systems, 62:1–43, 2020.

[229] Brent Smith and Greg Linden. Two decades of recommender systems at amazon. com.
Ieee internet computing, 21(3):12–18, 2017.

[230] Ian Soboroff and Charles Nicholas. Combining content and collaboration in text filtering.
In Proceedings of the IJCAI, volume 99, pages 86–91. sn, 1999.

[231] Bo Song, Xin Yang, Yi Cao, and Congfu Xu. Neural collaborative ranking. In Proceed-
ings of the 27th ACM International Conference on Information and Knowledge Man-
agement, pages 1353–1362, 2018.

[232] Ramakrishnan Srikant and Rakesh Agrawal. Mining generalized association rules. Future
generation computer systems, 13(2-3):161–180, 1997.

[233] Dusan Stamenkovic, Alexandros Karatzoglou, Ioannis Arapakis, Xin Xin, and Kleome-
nis Katevas. Choosing the best of both worlds: Diverse and novel recommendations
through multi-objective reinforcement learning. In Proceedings of the Fifteenth ACM
International Conference on Web Search and Data Mining, pages 957–965, 2022.

[234] John D Storey and Robert Tibshirani. Statistical significance for genomewide studies.
Proceedings of the National Academy of Sciences, 100(16):9440–9445, 2003.

[235] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. The MIT
Press, second edition, 2018.

[236] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT
press, 2018.

[237] Zachari Swiecki, Hassan Khosravi, Guanliang Chen, Roberto Martinez-Maldonado, Ja-
son M Lodge, Sandra Milligan, Neil Selwyn, and Dragan Gašević. Assessment in the
age of artificial intelligence. Computers and Education: Artificial Intelligence, 3:100075,
2022.

[238] Gábor Takács, István Pilászy, Bottyán Németh, and Domonkos Tikk. Major com-
ponents of the gravity recommendation system. Acm Sigkdd Explorations Newsletter,
9(2):80–83, 2007.

[239] Liang Tang, Yexi Jiang, Lei Li, Chunqiu Zeng, and Tao Li. Personalized recommen-
dation via parameter-free contextual bandits. In Proceedings of the 38th international
ACM SIGIR conference on research and development in information retrieval, pages
323–332, 2015.

[240] Shailesh Tripathi, Galina V Glazko, and Frank Emmert-Streib. Ensuring the statistical
soundness of competitive gene set approaches: gene filtering and genome-scale coverage
are essential. Nucleic acids research, 41(7):e82–e82, 2013.

[241] John W Tukey. Comparing individual means in the analysis of variance. Biometrics,
pages 99–114, 1949.

[242] Aaron Van den Oord, Sander Dieleman, and Benjamin Schrauwen. Deep content-based
music recommendation. Advances in neural information processing systems, 26, 2013.

BIBLIOGRAPHY 132

[243] Kurt VanLehn. The relative effectiveness of human tutoring, intelligent tutoring sys-
tems, and other tutoring systems. Educational psychologist, 46(4):197–221, 2011.

[244] Saúl Vargas, Linas Baltrunas, Alexandros Karatzoglou, and Pablo Castells. Coverage,
redundancy and size-awareness in genre diversity for recommender systems. In Proceed-
ings of the 8th ACM Conference on Recommender systems, pages 209–216, 2014.

[245] M. Vartak, S. Rahman, S. Madden, A. G. Parameswaran, and N. Polyzotis. SEEDB:
Efficient Data-Driven Visualization Recommendations to Support Visual Analytics.
PVLDB, 8(13):2182–2193, 2015.

[246] Manasi Vartak, Sajjadur Rahman, Samuel Madden, Aditya Parameswaran, and Neoklis
Polyzotis. Seedb: Efficient data-driven visualization recommendations to support visual
analytics. In Proceedings of the VLDB Endowment International Conference on Very
Large Data Bases, volume 8, page 2182. NIH Public Access, 2015.

[247] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in
neural information processing systems, 30, 2017.

[248] V Vijayakumar, Subramaniyaswamy Vairavasundaram, R Logesh, and A Sivapathi.
Effective knowledge based recommender system for tailored multiple point of interest
recommendation. International Journal of Web Portals (IJWP), 11(1):1–18, 2019.

[249] Lev Vygotsky. Zone of proximal development. Mind in society: The development of
higher psychological processes, 5291:157, 1987.

[250] Jing Wang, Huan Deng, Bangtao Liu, Anbin Hu, Jun Liang, Lingye Fan, Xu Zheng,
Tong Wang, and Jianbo Lei. Systematic evaluation of research progress on natural
language processing in medicine over the past 20 years: bibliometric study on pubmed.
Journal of medical Internet research, 22(1):e16816, 2020.

[251] Shoujin Wang, Longbing Cao, Yan Wang, Quan Z. Sheng, Mehmet A. Orgun, and
Defu Lian. A survey on session-based recommender systems. ACM Comput. Surv.,
54(7):154:1–154:38, 2022.

[252] Shoujin Wang, Liang Hu, Yan Wang, Longbing Cao, Quan Z Sheng, and Mehmet
Orgun. Sequential recommender systems: challenges, progress and prospects. arXiv
preprint arXiv:2001.04830, 2019.

[253] Suhang Wang, Yilin Wang, Jiliang Tang, Kai Shu, Suhas Ranganath, and Huan Liu.
What your images reveal: Exploiting visual contents for point-of-interest recommen-
dation. In Proceedings of the 26th international conference on world wide web, pages
391–400, 2017.

[254] Geoffrey I. Webb and François Petitjean. A multiple test correction for streams and
cascades of statistical hypothesis tests. In Proc. of the 22nd ACM SIGKDD Conf. on
Knowledge Discovery and Data Mining, San Francisco, USA, Aug. 2016, pages 1255–
1264, 2016.

[255] Y. Wen, X. Zhu, S. Roy, and J. Yang. QAGView: Interactively Summarizing High-
Valued Aggregate Query Answers. In SIGMOD, pages 1709–1712, 2018.

BIBLIOGRAPHY 133

[256] Yuhao Wen, Xiaodan Zhu, Sudeepa Roy, and Jun Yang. Qagview: Interactively sum-
marizing high-valued aggregate query answers. In Proceedings of the 2018 International
Conference on Management of Data, pages 1709–1712, 2018.

[257] Cort J Willmott and Kenji Matsuura. Advantages of the mean absolute error (mae)
over the root mean square error (rmse) in assessing average model performance. Climate
research, 30(1):79–82, 2005.

[258] Amy S Wu, Rob Farrell, and Mark K Singley. Scaffolding group learning in a collab-
orative networked environment. International Society of the Learning Sciences (ISLS),
2002.

[259] Chao-Yuan Wu, Amr Ahmed, Alex Beutel, Alexander J Smola, and How Jing. Recurrent
recommender networks. In Proceedings of the tenth ACM international conference on
web search and data mining, pages 495–503, 2017.

[260] Qiong Wu, Yong Liu, Chunyan Miao, Yin Zhao, Lu Guan, and Haihong Tang. Recent
advances in diversified recommendation. arXiv preprint arXiv:1905.06589, 2019.

[261] Dong Xin, Xuehua Shen, Qiaozhu Mei, and Jiawei Han. Discovering interesting patterns
through user’s interactive feedback. In Proceedings of the 12th ACM SIGKDD inter-
national conference on Knowledge discovery and data mining, pages 773–778. ACM,
2006.

[262] Xin Xin, Alexandros Karatzoglou, Ioannis Arapakis, and Joemon M Jose. Self-
supervised reinforcement learning for recommender systems. In Proceedings of the 43rd
International ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 931–940, 2020.

[263] Emine Yilmaz, Javed A Aslam, and Stephen Robertson. A new rank correlation coef-
ficient for information retrieval. In Proceedings of the 31st annual international ACM
SIGIR conference on Research and development in information retrieval, pages 587–594,
2008.

[264] Hongzhi Yin, Bin Cui, Jing Li, Junjie Yao, and Chen Chen. Challenging the long tail
recommendation. arXiv preprint arXiv:1205.6700, 2012.

[265] Brit Youngmann, Sihem Amer-Yahia, and Aurelien Personnaz. Guided exploration of
data summaries. arXiv preprint arXiv:2205.13956, 2022.

[266] Cong Yu, Laks Lakshmanan, and Sihem Amer-Yahia. It takes variety to make a world:
diversification in recommender systems. In Proceedings of the 12th international confer-
ence on extending database technology: Advances in database technology, pages 368–378,
2009.

[267] Hsiang-Fu Yu, Fang-Lan Huang, and Chih-Jen Lin. Dual coordinate descent methods
for logistic regression and maximum entropy models. Machine Learning, 85(1-2):41–75,
2011.

[268] Sheng Zhang, Weihong Wang, James Ford, and Fillia Makedon. Learning from incom-
plete ratings using non-negative matrix factorization. In Proceedings of the 2006 SIAM
international conference on data mining, pages 549–553. SIAM, 2006.

BIBLIOGRAPHY 134

[269] Shuai Zhang, Lina Yao, Aixin Sun, and Yi Tay. Deep learning based recommender
system: A survey and new perspectives. ACM computing surveys (CSUR), 52(1):1–38,
2019.

[270] Tong Zhang. Solving large scale linear prediction problems using stochastic gradient de-
scent algorithms. In Proceedings of the twenty-first international conference on Machine
learning, page 116, 2004.

[271] Xiangyu Zhao, Long Xia, Liang Zhang, Zhuoye Ding, Dawei Yin, and Jiliang Tang.
Deep reinforcement learning for page-wise recommendations. In Proceedings of the 12th
ACM Conference on Recommender Systems, pages 95–103, 2018.

[272] Xiangyu Zhao, Liang Zhang, Zhuoye Ding, Long Xia, Jiliang Tang, and Dawei Yin.
Recommendations with negative feedback via pairwise deep reinforcement learning. In
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discov-
ery & Data Mining, pages 1040–1048, 2018.

[273] Zheguang Zhao, Lorenzo De Stefani, Emanuel Zgraggen, Carsten Binnig, Eli Upfal, and
Tim Kraska. Controlling false discoveries during interactive data exploration. In Pro-
ceedings of the 2017 ACM International Conference on Management of Data, SIGMOD
Conference 2017, Chicago, IL, USA, May 14-19, 2017, pages 527–540. ACM, 2017.

[274] Lei Zheng, Chun-Ta Lu, Fei Jiang, Jiawei Zhang, and Philip S Yu. Spectral collaborative
filtering. In Proceedings of the 12th ACM Conference on Recommender Systems, pages
311–319, 2018.

[275] Cai-Nicolas Ziegler, Sean M McNee, Joseph A Konstan, and Georg Lausen. Improving
recommendation lists through topic diversification. In Proceedings of the 14th interna-
tional conference on World Wide Web, pages 22–32. ACM, 2005.

	Introduction
	Individual User Behavior
	Static Individual Behavior
	Dynamic Individual Behavior

	Collective User Behavior
	Thesis Organisation

	Related Work
	Recommendation Systems
	Recommender Systems
	Recommendation Approaches
	Recommendation Evaluation
	Limitations

	Multiple Hypothesis Testing
	Hypothesis Testing
	Multiple Hypothesis Testing

	Individual User Behavior
	Static Recommendations
	Motivation: Best Recommender Selection
	Best Recommender Selection Challenges
	Our Contributions
	Data Model
	Meta-learning Methodology
	Experiments

	Dynamic Recommendations Applications
	Application 1: Recommendation for Test Assignment
	Application 2: Recommendation for SQL Groupby Queries
	Application 3: Recommendation for Diverse Sessions

	Conclusion

	Collective User Behavior
	Motivation: Hypothesis Testing for User Groups
	Multiple Hypothesis Testing Challenges
	Our Contributions
	Data Model
	Groups
	Group Testing

	GroupTest Problems Formalization
	Our Proposed Solutions
	VAL_C Solution
	COVER_G Solution
	COVER_ Solution

	Experiments
	Addressing Information Needs
	Experimental Setup
	ValMin Results
	 CovMax Results

	Conclusion

	Conclusion & Perspectives
	Conclusion
	Perspectives
	Evaluation Perspectives
	Optimization Perspectives
	New Concepts Perspectives
	Visualization Tools Perspectives

