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Abstract

Majdi RICHA

Power Consumption Modeling in Embedded Systems Hardware

Power optimization has become a major concern for most digital hardware
designers, particularly in early design phases and especially in limited power
budget systems (battery-operated hand-held devices, electro-optical pluggable
modules, IoT and green energy systems, etc.). Subsequently, early power con-
sumption estimation at design time is crucial for power optimization. This re-
search covers multiple topics serving the digital circuits power optimization
notably FPGAs. Initially, a short overview on power consumption factors,
energy optimization techniques and low-level power estimation approaches
is briefly covered. An overview of High-Level power estimation techniques
currently available along with a comprehensive comparison between different
methodologies and their applications on estimated models is thoroughly pre-
sented. Then, we elaborate on the proposed learning-based power modeling
and estimation methodology of FPGA IPs targeting both offline and online do-
mains. This covers also the automated data generation and acquisition system
along with a detailed and automatic training data sets construction approach.
For the offline mode, we estimate the power consumption based on the state
machine control signals and the input activity of the data path. For the on-
line counterpart, we estimate in situ and in real-time the power consumption
based on its most significant modes of operation and its input activity. The
proposed application for the online alternative involves a fault detection algo-
rithm that relies on real-time power consumption monitoring and power pro-
filing. A moving fault score window is used to represent the possibility of fault
occurrences. Methodology validation and experimental results show an abso-
lute percentage error of < 0.5%, < 1% and < 2% for the data path, the state
machine and online power monitoring respectively.
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Résumé de la these

Résumé — L'optimisation de la puissance est devenue une préoccupa-
tion majeure pour la plupart des concepteurs de systemes numériques, en
particulier dans les premieres phases de conception et surtout dans les sys-
témes a énergie limitée (appareils portables fonctionnant sur batterie, modules
enfichables électro-optiques, systéemes IoT et énergies vertes, etc.). Par con-
séquent, l'estimation précoce de la consommation d’énergie au moment de
la conception est devenue cruciale pour 'optimisation de la puissance. Cette
recherche couvre plusieurs sujets liés a 1'optimisation de la puissance des
circuits numériques, notamment les circuits reconfigurables FPGA. Dans
un premier temps, un bref apercu des facteurs de consommation d’énergie,
des techniques d’optimisation énergétique et des approches d’estimation de
puissance de bas niveau est présenté. Une vue d’ensemble des techniques
d’estimation de puissance de haut niveau actuellement disponibles, ainsi
qu'une comparaison détaillée entre différentes méthodologies et leurs ap-
plications, sont ensuite présentées en détails. Ensuite, nous développons la
méthodologie proposée de modélisation et d’estimation de puissance basée
sur l'apprentissage des FPGA IP. Ces travaux ciblent a la fois les domaines
hors-ligne et en-ligne. Ces derniers incluent également le systeme automatisé
de génération et d’acquisition de données ainsi qu'une approche détaillée et
automatique de construction des ensembles de données d’entrainement. Pour
le mode hors-ligne, nous estimons la consommation d’énergie en fonction des
signaux de controle de la machine a états et de l'activité d’entrée du chemin de
données. Pour le mode en-ligne, nous estimons en temps réel la consommation
d’énergie en fonction de ses modes de fonctionnement les plus significatifs
et de son activité d’entrée. L'application proposée pour l'alternative en ligne
implique un algorithme de détection de panne qui repose sur la surveillance
en temps-réel de la consommation d’énergie et le profilage de la puissance.
Une fenétre de score est utilisée pour représenter la possibilité d’occurrence
de pannes. La validation de la méthodologie et les résultats expérimentaux
montrent une erreur absolue en pourcentage inférieure a 0,5%, 1% et 2% re-
spectivement pour le chemin de données, la machine a états et la surveillance
de puissance en ligne.
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I.1 Introduction

Les systemes embarqués sont de plus en plus présents dans une large gamme
d’applications, des produits électroniques grand public aux systemes de con-
trole industriel. A mesure que ces systémes deviennent plus complexes et
riches en fonctionnalités, leur consommation d’énergie devient une préoccu-
pation de plus en plus cruciale. Prédire et gérer avec précision la consomma-
tion d’énergie dans les systemes embarqués est essentiel pour garantir le bon
fonctionnement dans les limites de leur budget énergétique, ainsi que pour op-
timiser l'utilisation de 1’énergie.

Cette these explore le probleme de la modélisation de la consommation
d’énergie dans le matériel des systemes embarqués et les propriétés intel-
lectuelles FPGA (IP). L'objectif est de développer des méthodes précises et
efficaces pour prédire la consommation d’énergie et les appliquer a des sys-
témes réels. La recherche se concentre sur le niveau matériel, plus précisément
sur le domaine de haut niveau et la consommation d’énergie de différents
circuits FPGA.

L'originalité de cette recherche réside dans l'importance croissante de la
gestion de l'énergie dans les systemes embarqués. Les méthodes et tech-
niques développées dans cette these seront utiles aux concepteurs de systemes
numériques et aux développeurs de systémes embarqués, garantissant un
fonctionnement fiable et efficace.

La travail de these comprend un apercu des sources de consommation
d’énergie, des dépendances et des techniques d’optimisation. Un état de 'art
sur les techniques récentes de modélisation et d’estimation de la consomma-
tion d’énergie de haut niveau est mené afin de situer les travaux par rapport
aux études existantes. La nécessité d'une approche anticipée et fiable de la
modélisation de la consommation d’énergie est identifiée, ce qui conduit a la
proposition d'une plateforme de caractérisation pour collecter des données
réelles issues du matériel. Un systeme automatisé et centralisé de génération
et d’acquisition de données est développé pour caractériser les IPs FPGA et
collecter des données pour 'entrainement de 1’apprentissage automatique.

La these se concentre sur la modélisation et 1’estimation de la consommation
d’énergie dans les domaines hors-ligne et en-ligne. Dans le domaine hors-ligne,
la consommation d’énergie est estimée avec précision et rapidement pendant
la phase de conception d"une IP FPGA. Ce travail s’étend au domaine en-ligne,
ol les modeles de puissance générés sont mis en ceuvre a l'intérieur du FPGA
et la puissance IP simultanée est surveillée et rapportée a un systéme de gestion
de puissance avec une latence minimale.
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L'organisation de la thése est la suivante : Le chapitre 2 fournit des infor-
mations de base sur les sources de consommation d’énergie, les dépendances
et les techniques d’optimisation. Le chapitre 3 présente un apercu complet
des techniques de modélisation et d’estimation de la consommation d’énergie
de haut niveau. Le chapitre 4 développe la méthodologie de modélisation et
d’estimation de la consommation d’énergie de haut niveau pour les IPs FPGA
dans les applications hors-ligne et en-ligne. Le chapitre 5 traite de la plateforme
de caractérisation automatisée pour la génération et I’acquisition de données.
Le chapitre 6 aborde la génération de modéles de puissance et la construction
automatisée d'un jeu de données d’entrainement. Le chapitre 7 présente les
résultats expérimentaux pour les applications hors ligne et en ligne, avec une
extension a la détection de défauts IP basée sur 'estimation de puissance en
ligne et le profilage de puissance. Enfin, le chapitre 8 conclut la these.

L’annexe A répertorie les articles et revues publiés, tandis que 1’annexe B
inclut des photos du matériel réel, y compris la plateforme de caractérisation,
le dispositif FPGA testé (DUT) et le logiciel d’interface utilisateur.

I.2 Contexte

Les systémes embarqués sont des systemes informatiques spécialisés congus
pour des taches spécifiques au sein de systémes ou d’appareils plus vastes.
IIs sont composés de composants logiciels et matériels, la partie matérielle in-
cluant souvent une logique programmable telle que les circuits intégrés pro-
grammables (FPGA). Les FPGA sont des circuits intégrés qui peuvent étre pro-
grammés pour exécuter des fonctions logiques numériques spécifiques.

La modélisation de la consommation d’énergie des systémes embarqués
consiste a estimer la consommation d’énergie d"un systéme avant sa construc-
tion et son déploiement. Cette estimation permet de prédire la consomma-
tion d’énergie dans différents scénarios et d’identifier les problemes potentiels
liés a I’énergie. Les techniques de modélisation de la consommation d’énergie
comprennent la modélisation analytique, la simulation et la mesure. La mod-
élisation analytique utilise des équations mathématiques pour estimer la con-
sommation d’énergie en fonction de I’architecture du systeme et des caractéris-
tiques des composants. La simulation consiste a modéliser le comportement
du systéme et sa consommation d’énergie a l'aide d’outils logiciels. La mesure
implique de mesurer physiquement la consommation d’énergie du systéme.

La consommation d’énergie dans les circuits CMOS numériques a deux



XXViii

sources principales : l'énergie dynamique et 1’énergie statique. La con-
sommation d’énergie dynamique provient des transitions de signal et com-
prend la consommation d’énergie du circuit d’horloge, de la logique et de
I'interconnexion. La consommation d’énergie statique est due au courants de
tuite et est indépendante des calculs effectués.

La consommation d’énergie dans les systemes embarqués dépend de divers
facteurs tels que la partition logique, le routage, le placement et 1'utilisation
des ressources, la dissipation thermique, la technologie utilisée et les algo-
rithmes logiciels. Les techniques d’optimisation de la consommation d’énergie
visent a réduire la consommation d’énergie tout en maintenant ou en amélio-
rant la fonctionnalité et les performances. Ces techniques peuvent étre ap-
pliquées au niveau du systeme, du dispositif, du circuit et de ’architecture. Des
exemples de techniques d’optimisation de la consommation d’énergie com-
prennent 'utilisation de blocs intégrés a granularité grossiére, le pipelining,
I'optimisation de la longueur de mot, le clock-gating, 1'utilisation de marges
thermiques et la variation dynamique de la tension.

Les techniques d’estimation et de modélisation de la consommation
d’énergie aident a prédire la consommation d’énergie dans les systemes
embarqués. Les techniques de bas niveau prennent en compte les détails
d’implémentation et de circuit. Des exemples de techniques d’estimation de
puissance de bas niveau comprennent les méthodes probabilistes, basées sur
la simulation et statistiques. Les méthodes probabilistes utilisent les carac-
téristiques des données, tandis que les méthodes basées sur la simulation
impliquent I’application de signaux de stimuli et la réalisation de simulations.
Les méthodes statistiques utilisent des séquences de bits aléatoires et des
simulations avec des estimateurs de puissance.

En résumé, la modélisation et I'estimation de la consommation d’énergie
sont importantes pour optimiser la consommation d’énergie des systemes em-
barqués et identifier les problemes potentiels liés a 1’énergie. Diverses tech-
niques sont utilisées pour estimer et modéliser la consommation d’énergie,
et 'optimisation de la consommation d’énergie peut étre réalisée grace a dif-
térentes techniques de conception au niveau du systeme, du dispositif, du cir-
cuit et de I’architecture.
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I.3 Techniques d’estimation de haut niveau dans le

matériel des systemes embarqués - Etat de I’art

Dans cette section, nous introduisons le sujet des techniques d’estimation et de
modélisation de la consommation d’énergie de haut niveau pour les concep-
tions FPGA et ASIC. A mesure que la complexité de la conception augmente
et que les outils de conception de haut niveau deviennent plus répandus, il y a
un intérét croissant a adopter des méthodologies de conception de haut niveau
sur le marché des FPGA. De méme, les ASIC jouent un rodle crucial dans les
systemes embarqués, en particulier ceux dotés de processeurs intégrés et de
logique interne étroitement couplée.

Traditionnellement, les langages de description matérielle (HDL) ont été
utilisés pour les conceptions FPGA /ASIC, mais ils sont souvent insuffisants
lorsqu’il s’agit de traiter la complexité des systémes matériels numériques
avancés. Pour remédier a cela, des outils commerciaux de synthese de haut
niveau (HLS) sont apparus, permettant aux concepteurs de mettre en ceuvre
des conceptions FPGA /ASIC, ou des parties de celles-ci, a ’aide de langages
de haut niveau. Cependant, ces avancées ont apporté de nouveaux défis, en
particulier dans le domaine de 'estimation de la consommation d’énergie.

La modélisation précise de la consommation d’énergie est essentielle dans
deux scénarios. Tout d’abord, elle est nécessaire pendant la phase de concep-
tion pour l'exploration de 'espace de conception axée sur la consommation
d’énergie. Les concepteurs doivent itérer entre 1’estimation de la consomma-
tion d’énergie et les étapes de raffinement de la conception pour parvenir a
des conceptions économes en énergie. Disposer de modéles de consommation
d’énergie précis et efficaces peut accélérer I'exploration de la conception et fa-
ciliter les simulations de haut niveau. Deuxiémement, la modélisation de la
consommation d’énergie est également pertinente en temps d’exécution pour
la surveillance et la gestion de 1’alimentation. Des techniques efficaces de ges-
tion de 'alimentation, telles que I’adaptation dynamique de la tension et de la
fréquence (DVES) et la planification des taches dans les systemes CPU-FPGA,
reposent sur des modeles de consommation d’énergie mis en ceuvre dans les
dispositifs eux-mémes.

Les concepteurs de systémes embarqués qui considerent des méthodologies
de conception de haut niveau bénéficient de niveaux d’abstraction plus élevés,
de cycles de conception plus courts et de la vérification anticpée de la fonc-
tionnalité. Les méthodologies d’estimation et de modélisation de la consom-
mation d’énergie de haut niveau se sont étendues au-dela des FPGA et ASIC,
englobant les systemes a base de microcontrdleurs et de microprocesseurs avec
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des architectures diverses (par exemple, les coeurs logiciels, les coeurs matériels,
les jeux d’instructions personnalisés, les systemes sur une seule puce).

Nous fournissons un apercu complet des techniques de modélisation et
d’estimation de la consommation d’énergie de haut niveau. Nous présentons
une classification et une comparaison completes des différentes méthodologies
en fonction de leurs modeles cibles. Les sections suivantes approfondissent les
techniques spécifiques, la classification et les discussions, suivies d"une conclu-
sion.

De plus, nous présentons un apercu des différentes techniques d’estimation
de la consommation d’énergie et de leurs modeles estimés correspondants. Les
quatre principales techniques d’estimation identifiées sont les méthodes basées
sur la simulation, les approches basées sur I’apprentissage, les méthodes basées
sur les statistiques et les alternatives basées sur les mesures. Les modeéles cibles
pour l'estimation de la consommation d’énergie peuvent étre catégorisés en
trois groupes : les composants/circuits, les IP en boite blanche /boite noire et
les microprocesseurs/CISA /(MP)SoC.

* Les méthodes basées sur la simulation consistent a simuler le systéme
avec différentes entrées et a capturer les sorties souhaitées pour estimer
la consommation d’énergie. Elles nécessitent des informations telles
que les valeurs de courant et de tension, la capacité, la fréquence de
fonctionnement et l'activité de commutation. Les exemples de mod-
eles cibles pour les méthodes basées sur la simulation comprennent les
composants/circuits, les IP en boite blanche /boite noire et les micropro-
cesseurs/CISA /(MP)SoC.

* Les approches basées sur l'apprentissage utilisent des algorithmes
d’apprentissage automatique pour prédire la consommation d’énergie
en se basant sur des données d’entrainement. Elles apprennent les mo-
tifs et les corrélations entre les parametres d’entrée et la consommation

d’énergie pour effectuer des estimations précises.

* Les méthodes basées sur les statistiques utilisent des modeles statistiques
pour estimer la consommation d’énergie. Elles analysent le comporte-
ment du systeme et formulent des hypotheses basées sur des distribu-
tions statistiques et des probabilités.

¢ Les alternatives basées sur les mesures consistent a mesurer directement
la consommation d’énergie du systeme a 1'aide de matériels ou d’outils
spécialisés. Elles fournissent des données précises et en temps réel sur la
consommation d’énergie, mais peuvent nécessiter des ressources supplé-

mentaires.
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FIGURE 1: Techniques d’estimation et modeles cibles

Les modeles cibles pour 'estimation de la consommation d’énergie peuvent
étre catégorisés en trois groupes :

e Composants/Circuits : Cette catégorie comprend des composants indi-
viduels tels que des opérateurs et des éléments logiques de base. Elle en-
globe également la modélisation de la capacité et des fils d'interconnexion
dans les circuits.

¢ IP en boite blanche/boite noire : Il s’agit d"unités de cellules logiques
réutilisables qui peuvent faire partie a la fois des FPGA et des ASIC. Les
IP en boite blanche ont des entrées et des sorties prédéfinies, tandis que
les IP en boite noire ont des entrées et des sorties inconnues.

* Microprocesseurs/CISA /(MP)SoC : Cette catégorie comprend les micro-
processeurs, les architectures de jeu d’instructions personnalisées (CISA)
et les systémes multiprocesseurs sur puce (MPSoC). L'estimation de la
consommation d’énergie pour ces cibles complexes dépend de leur archi-
tecture et du logiciel d’application.

La Figure 1 donne un apercu des techniques d’estimation de la consomma-
tion d’énergie et de leurs modeles cibles correspondants. Nous discutons de la
classification des techniques d’estimation de la consommation d’énergie et des
modeles cibles en fonction de diverses mesures. Les mesures incluent la dépen-
dance, la caractérisation, 1’effort d’estimation, I’erreur d’estimation, l’effort de
modélisation et le niveau de modélisation. Les techniques et les modeles sont
classés et triés en fonction du nombre d’occurrences dans la littérature.

Les discussions fournissent une comparaison complete des différentes tech-
niques d’estimation appliquées a des modeles cibles courants. On observe
que les méthodes basées sur la simulation nécessitent généralement un effort



XXX1i

e+
5
=
Wl ++
c
o
=}
@©
el +
et
(7
w
0% 5% 10% 15% 20% 25% 30% e 130%
Average % Error
@ simulation: IP @ Simulation: Component @ simulation: pP/CISA/(MP)SoC
@ Learning: IP @ Learning: Component/Circuit Learning: WP/CISA/(MP)SoC
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modéré a considérable, mais peuvent fournir des résultats d’estimation sat-
isfaisants, notamment pour les applications logicielles ciblant les micropro-
cesseurs. Les méthodes basées sur I’apprentissage montrent de meilleures per-
formances en termes d’estimation de la consommation d’énergie avec un ef-
fort modéré. Pour les modeéles cibles de composants/circuits, les méthodes
basées sur l'apprentissage présentent des erreurs d’estimation plus petites et
plus étroites par rapport aux méthodes basées sur la simulation.

Une représentation basée sur des clusters, comme illustré dans la Figure 2,
met en évidence l'efficacité des différentes techniques d’estimation appliquées
a différents modeles cibles. Les techniques basées sur la simulation convien-
nent aux modeles cibles de microprocesseurs et de systémes sur puce, tan-
dis que les techniques basées sur l'apprentissage offrent une plus grande ef-
ticacité pour les modeles d'IP en boite blanche/boite noire et de micropro-
cesseur/systeme sur puce. Les techniques basées sur les statistiques et les tech-
niques basées sur les mesures sont également discutées, mettant en évidence
leurs avantages et leurs inconvénients.

En conclusion, nous avons étudié une enquéte sur les techniques d’estimation
de la consommation d’énergie et les modeéles cibles. Cela souligne I'importance
de choisir des techniques d’estimation appropriées en fonction des perfor-
mances, de la complexité de la conception et des modeles cibles. La sélection
d’une technique d’estimation appropriée peut accélérer le processus de con-
ception, améliorer la précision de la modélisation et permettre une exploration
plus efficace de 1’'espace de conception axée sur la consommation d’énergie.
La recherche future dans ce domaine peut se concentrer sur 'amélioration des
techniques d’estimation existantes, 1’exploration de nouvelles approches et la
prise en compte de la variabilité et de la sensibilité des résultats d’estimation.
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I.4 Modélisation et méthodologie d’estimation de la

consommation d’énergie des FPGA

Dans cette section, nous abordons la modélisation et la méthodologie d’estimation
de la consommation d’énergie des FPGA. La modélisation et 'estimation de
la consommation d’énergie des FPGA consistent a prédire la consommation
d’énergie d'une conception FPGA avant sa mise en ceuvre matérielle. Ce
processus aide a optimiser la conception afin de minimiser la consommation
d’énergie. Nous explorons des approches d’estimation de puissance a la fois
hors ligne et en ligne.

Dans le domaine hors ligne, 1’estimation de puissance est réalisée pendant
la phase de conception. Nous proposons une méthodologie d’estimation de
puissance basée sur ’apprentissage automatique et la mesure. Le circuit FPGA
IP (propriété intellectuelle) est décomposé en une machine a états finis (FSM)
et un chemin de données (DP). Les signaux de controle et 'activité des entrées
sont extraits d'un banc d’essai lors de la simulation. Ces valeurs sont utilisées
pour entrainer un modéle d’apprentissage automatique qui prédit la consom-
mation d’énergie du circuit IP. Le modele est stocké dans une base de données
et peut étre utilisé pour l'estimation de puissance de nouveaux scénarios.

Dans le domaine en ligne, 1'estimation de puissance est réalisée en temps
réel pendant le fonctionnement du FPGA. Nous proposons une méthodologie
de surveillance de puissance en ligne basée sur 'apprentissage automatique
et les réseaux de neurones artificiels supervisés (ANN). La consommation
d’énergie du FPGA IP est estimée in situ et en temps réel. Cette estimation
est utilisée pour des techniques d’optimisation de puissance en temps réel
telles que 1’échelonnage dynamique de la tension et de la fréquence (DVFS).
En surveillant la consommation d’énergie, des points de fonctionnement
optimaux en termes de consommation d’énergie peuvent étre déterminés
dynamiquement. La Figure 3 présente le flux global de modélisation et
d’estimation de puissance pour les domaines hors ligne et en ligne.

Pour générer des données d’entrainement pour les modeles d’apprentissage
automatique, des signaux de stimulation sont générés a 'aide d’algorithmes
dédiés. Ces signaux de stimulation, ainsi que les sighaux de contrdle ou
les modes de fonctionnement, sont appliqués au FPGA IP. La consomma-
tion d’énergie est mesurée a 1'aide d'un systeme d’acquisition de données
matérielles. Les données collectées sont utilisées pour construire des ensembles
de données d’entrainement pour les modeles d’apprentissage automatique.

Dans I’ensemble, notre approche vise a fournir une estimation précise et ef-
ticace de la puissance pour les FPGA IP. Nous nous appuyons sur des données
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FIGURE 3: Flux global de modélisation et d’estimation de puis-
sance couvrant les domaines hors ligne et en ligne

réelles obtenues a partir de mesures matérielles et d’algorithmes logiciels pour
construire des ensembles de données d’entrainement pour I’apprentissage au-
tomatique. Cela conduit & des modeles de puissance plus réalistes et donc a
une estimation de puissance plus précise. L'estimation de puissance peut étre
utilisée a la fois dans I’exploration de 1’espace de conception hors ligne et dans
la surveillance et la gestion de la puissance en ligne.

I.5 Caractérisation d’IP FPGA

Le processus de caractérisation d'IP FPGA consiste a mesurer et analyser les
caractéristiques de performance d’un bloc IP destiné a étre implémenté dans
un FPGA spécifique. La consommation d’énergie de I'IP, en particulier pen-
dant des modes de fonctionnement spécifiques, est influencée par l'activité
de commutation des entrées, telle que le taux de commutation (SR) et le
pourcentage du temps a 1’état haut (PLH) des signaux d’entrée. Le processus
de caractérisation nécessite une plateforme de mesure fiable, et un systeme
d’acquisition et de génération de données automatisé et centralisé basé sur un
FPGA (ACDGAS) est proposé a cette fin.

L’ACDGAS combine les fonctionnalités d"un oscilloscope d’échantillonnage
avec des entrées analogiques, d'un analyseur logique et d"un générateur de mo-
tifs binaires. Il offre un mécanisme de génération et d’acquisition de données
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synchronisé et aligné, ce qui est essentiel pour des mesures précises de con-
sommation d’énergie. Le systéme est composé d'une plateforme matérielle a
carte unique interfacée a un ordinateur externe via USB ou Fast Ethernet. Le
matériel comprend un FPGA, un microprocesseur, des E/S numériques haute
vitesse et un convertisseur analogique-numérique (CAN) différentiel paralléle
haute vitesse pour les mesures de consommation d’énergie.

L’architecture logicielle du systeme offre un processus entiérement automa-
tisé pour la caractérisation d’IP. Elle comprend des modules pour une inter-
face utilisateur graphique, la construction de stimuli, le couplage des signaux
de controle et des modes de fonctionnement, la génération de séquences bi-
naires, l'interface avec la plateforme de mesure, la construction de données
d’entrainement, la modélisation de la puissance et 1’évaluation. Le logiciel fa-
cilite I'interaction entre ces modules et assure une synchronisation et un aligne-
ment précis des données générées et acquises.

Le systeme ACDGAS (Figure 4) surmonte les limitations des alternatives
disponibles en fournissant une plateforme hybride et synchrone de génération
et d’acquisition de données de maniere compacte et rentable. Il élimine le be-
soin de plusieurs instruments et logiciels, simplifie l'intégration d"un logiciel de
controle centralisé et garantit une collecte de données précise et synchronisée.

Le matériel du systéme est composé de composants a la fois numériques et
analogiques. La partie numérique comprend le FPGA, I'organisation de la mé-
moire et le mécanisme de controle et d’état. Le FPGA synchronise la généra-
tion de sorties numériques haute vitesse (HSDO) avec l'acquisition d’entrées
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numériques haute vitesse (HSDI) et d’entrées analogiques. Le microprocesseur
externe sert de passerelle entre le FPGA et I'ordinateur hote, permettant I’acces
aux registres du systéeme pour la configuration et les informations d’état.

La partie analogique du matériel comprend deux canaux analogiques
indépendants pour l'acquisition de données. Ces canaux sont équipés de
convertisseurs analogique-numérique (CAN) a large bande passante pour
échantillonner précisément les signaux d’entrée analogiques. Les CAN ont
une fréquence d’échantillonnage de 20MSa/s et offrent d’excellentes perfor-
mances dynamiques.

Le logiciel comprend le micrologiciel fonctionnant sur le matériel et le logi-
ciel d’interface PC pour le controle et le traitement des données. Le micrologi-
ciel peut étre implémenté a 1’aide du microprocesseur externe ou du processeur
intégré du FPGA, en fonction de la configuration du systéeme. Le logiciel PC of-
fre une interface utilisateur graphique pour un controle facile de l'instrument
et prend en charge le mode batch pour les procédures automatisées.

La méthodologie de génération et d’acquisition se concentre sur 1’alignement
des signaux numériques sortants (HSDO) avec les signaux numériques en-
trants (HSDI) et les signaux analogiques entrants. Un alighement précis est
obtenu en assurant un échantillonnage synchronisé de tous les signaux. Le
logiciel contrdle la génération des signaux HSDO et capture simultanément
les échantillons HSDI et analogiques. Les données alignées sont ensuite
disponibles pour une analyse ultérieure et une modélisation de la consomma-
tion d’énergie.

Le systeme ACDGAS offre une solution polyvalente et efficace pour la car-
actérisation d'IP FPGA. Il fournit une plateforme de génération et d’acquisition
de données entierement automatisée et synchronisée, permettant des mesures
précises de consommation d’énergie et une analyse approfondie. Les com-
posants matériels et logiciels du systéme fonctionnent ensemble pour garantir
une collecte de données précise et alignée, en en faisant un outil précieux pour
la caractérisation d'IP et la modélisation de la puissance.

I.6 Génération de modele de consommation d’énergie

Dans la section suivante, nous nous concentrons sur la génération de modeles
de consommation d’énergie pour les circuits numériques a 1’aide de techniques
d’apprentissage automatique. Le processus comprend plusieurs étapes, no-
tamment la mesure de puissance, 'estimation des parametres du modele et la
validation du modele. Une mesure précise de la puissance est cruciale pour la
construction de modeéles de puissance fiables.
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Le modele proposé d’estimation de la consommation d’énergie dans ce tra-
vail est basé sur des réseaux neuronaux supervisés. L'apprentissage automa-
tique et l'intelligence artificielle jouent un role clé dans la formation des mod-
eles a I’aide d’algorithmes et de données appropriées. La construction des en-
sembles de données d’entrainement est essentielle pour la précision du mod-
ele dérivé. Dans ce chapitre, une méthodologie automatisée de construction
d’ensembles de données d’entrainement est présentée, ot1 les données sont col-
lectées a partir de sources matérielles et logicielles. La conception et le flux de
données, y compris l'interaction entre le logiciel et le matériel, sont décrits.

La construction automatisée d’ensembles de données d’entrainement im-
plique la création d’ensembles de données de haute qualité a 'aide d’outils
logiciels et d’algorithmes. Cela garantit que les données utilisées pour former
les modéles d’apprentissage automatique sont précises et pertinentes, ce qui
permet d’améliorer la précision et l'efficacité. L'évolutivité du processus de
construction automatisée est également mise en évidence.

Comme le montre la Figure 5, les ensembles de données d’entrainement
de ce travail sont construits a partir d’algorithmes de génération de stimuli et
d’un systéme d’acquisition de données matériel. Les algorithmes de généra-
tion de stimuli produisent des paires de valeurs PLH (pourcentage de "1") et
SR (pourcentage de transitions), couplées a des signaux de contréle ou des
modes de fonctionnement (CM). Ces combinaisons de stimuli sont utilisées
pour générer des matrices de signaux de stimuli. Le systeme d’acquisition de
données matérielles collecte les valeurs de consommation d’énergie correspon-
dant aux signaux de stimuli appliqués a une IP donnée. Les données collectées
sont ensuite utilisées pour construire les ensembles de données d’entrainement

pour le modele de puissance.
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FIGURE 6: Architecture du réseau neuronal montrant les don-
nées d’entrainement, les couches, les neurones et la fonction
d’activation (SeLU)

Le modéle de puissance proposé (Figure 6) est basé sur une architecture
de réseau neuronal implémentée a l'aide de la bibliotheque Python Tensor-
Flow /Keras. L'architecture comprend une couche d’entrée, une couche cachée
et une couche de sortie. Le nombre de neurones cachés est optimisé pour
trouver un équilibre entre la vitesse de prédiction et la précision. Le réseau
est entrainé a 'aide des ensembles de données d’entrainement, une partie
des données étant réservée a la validation et a 1’évaluation. La métrique de
perte d’entrainement est I'erreur quadratique moyenne (MSE), et les métriques
d’évaluation sont I’erreur absolue moyenne (MAE) et I’erreur absolue moyenne
en pourcentage (MAPE).

Le flux de travail automatisé complet est illustré, y compris les étapes de
génération de stimuli, d’exécution du systeme d’acquisition, de collecte de don-
nées, de normalisation des données, d’entrainement du réseau neuronal et de
construction du modeéle de puissance. Un outil logiciel est développé pour or-
chestrer ces étapes et fournir une interface entre le systeme de mesure et le
processus de génération du modele de puissance.

L'implémentation matérielle du modele de puissance est également dis-
cutée, mettant en évidence l'importance de cette implémentation dans un
FPGA pour la gestion en temps réel de la puissance. Les FPGA permettent un
traitement et une prise de décision en temps réel, ce qui les rend adaptés aux
applications nécessitant une gestion de puissance en direct.

Nous concluons en présentant 1’architecture logicielle en couches proposée.
L’architecture comprend des modules pour l'interface graphique, la construc-
tion de stimuli, le couplage des signaux de contrdle, la génération de séquences
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de bits, 'interface de la plate-forme de mesure, la construction des données
d’entrainement, la modélisation de puissance et 1’évaluation.

1.7 Validation, Résultats et Applications

Dans cette section, nous présentons le processus de validation et les résultats
obtenus a partir du projet de recherche. Elle est divisée en deux sections prin-
cipales : les résultats expérimentaux et 1’évaluation du modele.

Dans la section des résultats expérimentaux, nous abordons les cas de
tests hors-ligne et en-ligne. Les cas de tests hors ligne se concentrent sur
'estimation de puissance des IPs FPGA avant leur implémentation physique.
Le scénario de chemin de données uniquement est considéré, ou différents
composants d'IP FPGA tels que des multiplieurs, des unités de multiplication
et d’accumulation (MAC) et des aligneurs de données d’unité de transport
optique (OTU-DA) sont sélectionnés comme cas d’études. La consommation
d’énergie de ces IPs est mesurée a 1'aide d'un FPGA Xilinx Artix-7 disponible
dans le commerce, et les résultats sont collectés pour I’analyse.

Dans les cas de tests en ligne, I’estimation de puissance en temps réel d"une
IP FPGA boite noire est effectuée. L'IP boite noire est un circuit numérique
dont les détails internes sont masqués, et I'estimation de puissance est basée
sur 'activité de commutation des entrées du chemin de données de I'IP. Deux
modeles d’estimation de puissance sont générés a 1’aide de réseaux neuronaux
avec un nombre différent de neurones cachés, et leurs performances sont éval-
uées. En tant qu’extension de la surveillance de puissance en ligne, un algo-
rithme de détection de défaut est présenté, basé sur 1'estimation de puissance
en temps réel et le profilage de puissance.

Dans la section d’évaluation du modele, les résultats de la modélisation
de puissance sont évalués. Des courbes d’apprentissage sont présentées pour
montrer la relation entre les performances du modéle et la quantité de don-
nées d’entrainement. Les courbes démontrent la diminution de la perte de
prédiction et de l'erreur moyenne absolue en pourcentage a mesure que le
nombre d’époques d’entrainement augmente, ce qui indique l'efficacité de
l’architecture proposée.

Les ressources et les résultats de performance sont également analysés,
notamment 1'utilisation des ressources de I'IP FPGA (LUT, FF, DSP), la con-
sommation de puissance (statique, dynamique, puissance totale maximale),
le nombre de neurones cachés dans le modéle de puissance, et les métriques
d’évaluation telles que l'erreur absolue moyenne (MAE) et l'erreur absolue
moyenne en pourcentage (MAPE). Les résultats montrent les caractéristiques
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de consommation d’énergie des différents composants de I'IP et I'exactitude
du modele d’estimation de puissance.

Dans I'ensemble, ce chapitre fournit un apercu complet du processus de
validation et des résultats obtenus a partir du projet de recherche, démontrant
l'efficacité et la fiabilité de la méthodologie d’estimation de puissance proposée
et de ses applications.

1.8 Conclusion

Ce travail présente une approche novatrice pour estimer la consommation
d’énergie dans les blocs de propriété intellectuelle (IP) a base de matrices
programmables sur site (FPGA) en utilisant des techniques d’apprentissage
automatique. Un modeéle basé sur les réseaux neuronaux est développé, ce qui
permet de prédire avec précision la consommation d’énergie. La méthodolo-
gie proposée est appliquée a des composants IP spécifiques, et les résultats
expérimentaux démontrent une grande précision avec une erreur absolue en
pourcentage inférieure a 0,5%, 1%, et 2% respectivement pour le chemin de
données, la machine a états et la surveillance en ligne de la consommation
d’énergie. Cette recherche améliore significativement I'efficacité et l'efficacité
de la gestion de l"énergie dans les IP FPGA. De plus, une méthodologie de
détection de défauts est présentée, basée sur 1'extension de l’estimation en
ligne de la consommation d’énergie en utilisant la technique de profilage de
puissance.

Sur la base du travail présenté, il existe plusieurs pistes potentielles pour
des travaux futurs et une expansion :

¢ Application a des conceptions complexes au niveau du systeme : Les
recherches actuelles se concentrent sur l’estimation de la consomma-
tion d’énergie au niveau de I'IP. Les travaux futurs peuvent explorer
I'extension de la méthodologie a des conceptions complexes au niveau
du systéme incorporant plusieurs IP et interconnexions. Cela nécessit-
erait le développement de techniques pour modéliser la consommation
d’énergie au niveau du systeme et tenir compte des interactions entre
différents composants afin d’obtenir des estimations de puissance plus
précises.

* Exploration des modeéles et objectifs alternatifs de consommation d’énergie:
La recherche actuelle porte sur la modélisation et 1’estimation de la con-
sommation d’énergie des IP FPGA, cependant, une bonne alternative
(ou expansion) serait les ASICs. Les circuits intégrés spécifiques sont
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largement utilisés et consomment généralement moins d’énergie que les

circuits logiques basés sur la reconfiguration.

* Exploration de techniques alternatives d’apprentissage automatique :
Alors que les recherches actuelles utilisent des réseaux neuronaux pour
l'estimation de la consommation d’énergie, les travaux futurs peuvent
explorer d’autres techniques d’apprentissage automatique telles que
I'apprentissage profond ou les méthodes d’ensemble. Des études com-
paratives peuvent étre menées pour évaluer l'efficacité et la pertinence
de ces approches alternatives dans le contexte de l’estimation de la
consommation d’énergie pour les IP FPGA.

* Extension de l'algorithme de détection de défauts : Les travaux actuels
abordent la possibilité de détecter des défauts généraux dans les IP FPGA
causés par plusieurs facteurs. Cependant, se concentrer sur 'aspect de
la sécurité, considéré comme un sujet d’actualité récemment, serait d'un

grand intérét.

En conclusion, cette recherche fournit une base solide pour de futurs pro-
gres dans l'estimation et la gestion de la consommation d’énergie dans les
IP FPGA. A T'aide de ce travail, les chercheurs peuvent affiner et étendre la
méthodologie, ce qui conduit a des conceptions plus efficaces et optimisées des
systemes numériques.






Chapter 1

Introduction

Embedded systems are becoming increasingly prevalent in a wide range of ap-
plications, from consumer electronics to industrial control systems. As these
systems become more complex and feature-rich, their power consumption be-
comes an increasingly critical concern. Accurately predicting and managing
power consumption in embedded systems is essential for ensuring that the sys-
tems will operate reliably within the constraints of their power budgets, and for
optimizing the use of energy.

This thesis investigates the problem of power consumption modeling in em-
bedded systems hardware and notably FPGA Intellectual Properties (FPGA
IPs). The main objective of this research is to develop accurate and efficient
methods for predicting power consumption in embedded systems, and to ap-
ply these methods to real-world systems. The research focuses on the hardware
level, specifically on the high level domain and subsequently on the power con-
sumption of different FPGA IP circuits.

The significance of this research lies in the increasing importance of power
management in embedded systems, and the need for accurate and efficient
methods for predicting and managing power consumption. The methods and
techniques developed in this thesis will be useful for digital hardware design-
ers and developers of embedded systems, and will help to ensure that these
systems are able to operate reliably and efficiently.

1.1 Thesis Scope

In this research, we first of all, conduct an overview covering the power con-
sumption sources, dependencies and main optimization techniques; followed
by a survey on the recent high-level power modeling and estimation of embed-
ded systems hardware. The main purpose was to highlight the state of the art
and to position the scope of our work versus the related work. Subsequently,
we discovered the need of a reliable approach to model and estimate power
consumption as early as possible during design time. The methodology that
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we propose, in comparison to most related work, relies on real data derived
from hardware via a measurement system that we denote as the characteriza-
tion platform. Here also, we discovered the need of such a platform capable of
generating stimuli signals, and, simultaneously, collecting aligned digital and
analog samples in a synchronous manner. Consequently, we propose an auto-
mated and centralized data generation and acquisition system that will be used
to characterize FPGA IPs and to collect data to be used for machine learning
training purposes later on. In this thesis, we focus on the power consumption
modeling and estimation for both offline and online domains. Initially, for the
offline field, we estimate, accurately and fast, the power consumption of an
FPGA 1IP in parallel with its simulation procedure during design time. This
work expands to cover the online field as well. For that purpose we apply and
implement generated power models inside the FPGA; the power of the concur-
rent IP is monitored and reported to a power manager system with minimum
to no latency compared to recent related work. As a direct extension to online
power estimation, we propose a fault detection algorithm capable of detecting
anomalies in specific FPGA IP inputs. This is done by providing a moving fault
score window.

As a quick summary, the contributions of the presented work can be briefed
in chronological order as follows:

1. An overview, classification and comparison between various high-level
power consumption modeling and estimation techniques and their target
applications.

2. The conception, design and implementation of a hardware characteriza-
tion platform for FPGA IPs, capable of synchronously generating stimuli
signals and acquiring aligned digital and analog data.

3. An offline methodology for high-level power estimation of FPGA IP
based on supervised machine learning relying on state machine control
signals and data path input activity characteristics.

4. An automatic and efficient training data construction process based on
measurements for high-level learning-based FPGA IP power modeling.

5. A high-level online and in-situ power monitoring for FPGA IP based on
machine learning by providing most significant operating modes and in-
put activity specifications.

6. A learning-based extension of the online power monitoring capable of
detecting faults in FPGA IPs via power profiling technique.
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1.2 Thesis Organization

This work is organized as follows: in chapter 2, as a background, we present
an overview of power consumption sources and dependencies, we also list the
main optimization techniques. Next, we briefly define the power consump-
tion modeling and estimation methods at both low- and high-level. Chapter
3 provides an extensive overview on high-level power estimation and model-
ing techniques, being our main focus. Embedded systems including FPGAs,
System On-a-Chip (SoC), Multi-Processor System On-a-Chip (MP-S0C), Ap-
plication Specific Integrated Circuit (ASIC) and microprocessors architectures
are investigated as various power consumption estimation and modeling plat-
forms. We classify the estimation techniques according to the adopted method-
ology such as simulation-, learning-, measurement- and statistical-based. We
also show the target models in each category. We then provide a quantitative
and a qualitative analysis based on a number of metrics including dependency,
estimation effort, estimation error, modeling level, etc. In chapter 4 we elabo-
rate on the high-level power modeling and estimation methodology of FPGA
IPs for both the offline and online applications. The learning-based method-
ology is thoroughly described. In chapter 5 we present the automated and
centralized data generation and acquisition system considered as the character-
ization platform and serving our methodology. We also present experimental
results proving the efficiency and fidelity of the system when targeting FPGA
measurements. Chapter 6 details the power model generation along with the
automated training data sets construction for the learning-based estimation.
This chapter also briefly covers the power estimator hardware implementation
for online applications. In chapter 7 we present the experimental results cover-
ing test cases for both offline and online applications including fault detection
application. We also assess the models by providing learning curves, estima-
tion and performance results following specific metrics. Finally we conclude in
chapter 8.

In appendix A we list all of the papers and journals that have been pub-
lished or currently under review. In appendix B, we show circuit schematics
and photos of the real hardware covering the characterization platform, the
FPGA Device Under Test (DUT), and also the user interface software.






Chapter 2

Background

2.1 Introduction

Embedded systems are specialized computer systems designed to perform spe-
cific tasks within larger systems or devices. It typically consists of interacting
software and hardware sections. The software part includes a microcontroller
or a microprocessor, memory, and various input and output peripherals. The
hardware section often includes digital circuits and programmable logic. Usu-
ally both software and hardware are integrated in a single chip. In this work,
we focus on the hardware part of the embedded systems, mainly the Filed Pro-
grammable Gate Array (FPGA). An FPGA is a type of integrated circuit that
can be programmed to perform specific digital logic functions. It consists of
an array of configurable logic blocks, interconnected by programmable inter-
connects as shown in Figure 2.1. These logic blocks can be configured to im-
plement any digital logic function, including arithmetic operations, memory
storage, and complex control logic.

Power consumption modeling for embedded systems refers to the process
of estimating the power consumption of an embedded system, which is a com-
puter system with a dedicated function within a larger electrical system, before
it is built and deployed. The goal of power consumption modeling is to predict
how much power the system will consume under different scenarios, such as
different workloads or operating conditions, and to identify potential power
issues that may arise. This information can be used to optimize the system’s
power consumption, either by reducing its overall power consumption or by
making sure that the system can operate within a specific power budget.

Power consumption modeling can be performed using a variety of tech-
niques, such as analytical modeling, simulation, or measurement [69]. Ana-
lytical modeling involves using mathematical equations to estimate the power
consumption of the system based on its architecture and the characteristics of
its components. Simulation involves using software tools to model the system’s
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FIGURE 2.1: FPGA internal blocks and interconnects.

behavior and power consumption under different test cases. Measurement in-
volves physically measuring the power consumption of the system using test
equipment.

Power consumption modeling is important for embedded systems since it
can help to ensure the system’s reliable operation within the constraints of its
power budget, and to identify potential power issues early in the design pro-
cess. It also helps to optimize the power consumption and prolong the power
source’s life of the embedded systems, thus saving energy and cost.

This chapter is organized as follows: Section 2.2 is a context study covering
a brief overview of power consumption sources and dependencies. It also sum-
marizes multiple power optimization techniques. Section 2.3 defines power es-
timation and modeling techniques at both low- and high-levels with a short
focus on low-level alternative. Section 2.4 is a wrap up for the background
presentation.

2.2 Context study

In order to explore power consumption modeling and estimation world, it is in-
evitable to investigate power sources and their dependencies. Also, the power
optimization techniques with various aspects (system-, device-, circuit- and
architecture-level) have to be examined. Power optimization in digital circuits
is the process of reducing the power consumption of a circuit while maintaining
or improving its functionality and performance. This is a critical design goal
in many digital systems, as reducing power consumption can lead to longer
battery life, lower operating costs, and reduced heat dissipation.
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As mentioned earlier, our main focus is directed towards embedded sys-
tems and FPGAs in particular. However, the following subsections provide a
broader coverage in order to accumulate a better understanding of the subject

in context.

2.2.1 Overview of Power Consumption Sources

Power consumption of digital Complementary Metal Oxide Semiconductor
(CMOS) circuits is dependent on two main sources. The first source is the dy-
namic power, which arises when signals transition their values, and the second
source is static power, which causes circuits to dissipate power even when no
switching activity is happening [64].

Dynamic Power

The dynamic power, Figure 2.2 a), is divided into three components: 1) power
of clock circuitry (with dedicated routing resources), 2) logic power consumed
in the functional units and memories and 3) power of interconnects between
units (where the load capacitance depends on wires types and lengths) [28].
The dynamic power can be obtained by the following formula (in Watt):

P=a.C.Vi.f (2.1)

where « (referred to as switching activity) is the average number of 0 — 1 or
1 — 0 transitions in one clock cycle, C; is the load capacitance, Vj; is the power
supply voltage and f is the clock frequency.

Static Power

The static power, Figure 2.2 b), is derived from leakage current. For a given
hardware component, it depends on the state of the power supply (on or off,
and voltage) while being independent of the computation being performed.
The leakage current tends to increase when the size of transistors is reduced.
Since heating silicon increases its conductivity, the static power also increases
with temperature [54]. Static power can be obtained using the following for-
mula (in Watt):

Pstatic = Viad-Tieakage (2.2)

where Vy, is the power supply voltage and Ijegx,g, is the leakage current.
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Power Consumption Dependencies

The power consumption of any digital system heavily depends on the follow-

ing major factors [37]:

Logic partition: this can be done by 1) functionality and block size, 2)
clock domain and timing criticality and 3) registers (inputs and outputs).

Route and placement, done using tools provided by the FPGA vendor or
another software manufacturer.

Mapping and resource utilization: block RAM (BRAM), flip-flops (FF),
digital signal processing (DSP) and their percentage utilization and map-

ping.
Thermal dissipation [33]; temperature leads to increased leakage current
[25].

Technology used, frequency of operation and transmitted power [22].

Software algorithms and implementation techniques, heavily affecting
microprocessors (both soft and hard cores) performance and thus power
consumption [7].

2.2.2 Overview of Power Optimization Techniques

Power optimization in embedded systems and power consumption model-

ing and estimation are two interrelated concepts that are crucial for designing

power-efficient embedded systems. The relationship between power optimiza-

tion

and power consumption modeling is that power consumption modeling
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is a critical tool for identifying areas where power optimization can be applied.
By understanding the power consumption behavior of the system, designers
can make informed decisions about the most effective power optimization tech-
niques to implement. In turn, power optimization can inform the power con-
sumption modeling process, by providing new insights into the power con-
sumption behavior of the system after optimization has been applied.

Power consumption optimization in digital circuits involves a variety of
techniques to reduce the power consumption of a digital circuit while main-
taining or improving its performance. As mentioned earlier, power consump-
tion represents a major concern for most digital hardware designers; therefore
the need for power optimization and related techniques is a must.

A brief description of low-power techniques as listed in [36] and [14] will
be presented in this section. In particular, we will cover both system-level and
device-level design techniques.

System-level design techniques

Here we list and describe various low-power design techniques that have been
applied to current FPGA and ASIC technologies:

* Coarse-grained embedded blocks are usually preferable over fine-grained
since they are more power-efficient. FPGAs contain a large number of
Programmable Logic Blocks (PLBs) that can be interconnected to form
complex digital circuits. They can be divided into two main categories:
coarse-grained and fine-grained. The difference between these two cat-
egories lies in their logic capacity and the complexity of the circuits that
they can implement. Coarse-grained PLBs are suitable for large and com-
plex circuits, while fine-grained PLBs are suitable for small and simple
circuits.

* Pipelining, a simple and effective way of reducing glitches and hence
minimizing power consumption.

* Word-length optimization, mainly applied to obtain the best trade-off in
speed, area, power consumption, flexibility and accuracy.

* Clock-gating, usually used to reduce dynamic power consumption by
disabling the clock for the inactive regions in order to prevent logic tran-
sitions [66].

¢ Leveraging of thermal margin [30], tightly coupled with:
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¢ Dynamic voltage scaling, used to adapt supply voltage to the target
(FPGA) as the temperature changes [38].

Device-Level design techniques

Many of the latest FPGA devices incorporate various low-power device-level
technologies. This also applies to processors. We list some:

* Triple gate oxide technology, providing a choice of three different gate
thicknesses and subsequently providing a trade-off between performance
and static power.

¢ Increase in LUT sizes within the logic block.

¢ Incorporation of low power techniques in FPGA CAD tools aiming at
early power prediction.

¢ Utilization of power-managed modes (RUN, IDLE, SLEEP, etc...) and
clock frequency switching (fast — slow and vice versa) specially in mi-
croprocessors/microcontrollers targets.

Circuit- and architecture-level design techniques

The architecture- and the circuit-level implementations of the FPGA are key
in reducing power, since they directly affect the efficiency of mapping appli-
cations to FPGA resources, and the amount of circuitry to implement these
resources. Here we list some:

¢ Energy-efficient routing and low-swing signaling.

* Power-gating, applied to the switches in the routing resources to reduce
static power.

* Optimizing number of interconnects.

¢ Delay insertion for glitch elimination by adding configurable delay ele-
ments to the input of each logic block.

Significant improvements have been made to enhance power and energy
efficiency of FPGAs, ASIC and processors. At the system level, power reduc-
tion can be obtained by optimizing management and scheduling of system re-

sources.
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2.3 Power Estimation and Modeling Techniques

Power consumption modeling and subsequent estimation for embedded sys-
tems refers to the process of creating power models and then estimating the
power consumption of a digital circuit usually before being deployed or even
built. Many existing commercial tools tackle this issue with different ap-
proaches and alternatives on different design levels. Subsequently, two subsets
of modeling and estimation techniques have been widely investigated and
applied on low- and high-level design alternatives.

2.3.1 Low-Level Techniques

Low-level power estimation techniques refer to methods used to predict the
power consumption of an embedded system by considering the detailed imple-
mentation of the system, such as the specific components and their properties,
and the circuit-level details.

In order to acquire a better understanding of High-Level power estima-
tion methodologies, going through the low-level techniques is a must. There-
fore, we briefly list and discuss low-level estimation and modeling techniques
paving the way for the High-Level version. For this purpose we only focus on
hardware.

FPGAs are being used in various applications due to their reconfigurability
(a major advantage over ASIC) and scalability. In this section, we tackle the
issues related to power modeling and estimation of both FPGAs and ASIC. The
main focus will be on CMOS and SRAM technologies, both under the low-level
power estimation and modeling domains.

Power Estimation Techniques

Power estimation techniques are considered to be very efficient alternatives
to traditional power measurements given that the characterization phase is
not required. Three methods are briefly described: 1) probabilistic-based, 2)
simulation-based and 3) statistical-based methods [56].

The probabilistic power estimation methods use data characteristics rather
than real data. They are generally derived from the static probability and the
transition probability of a given signal.

The simulation-based power estimation, widely used in CAD tools, is
achieved by applying stimuli signals at the input of a specific logic design and
initiating a simulation in order to capture the outputs. Current and voltage
values, capacitance, operating frequency and switching activity are the main
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required set of information in order to obtain power consumption estimation.
The abstraction level has a direct effect on the previously listed type of infor-
mation. Precision and genericity are considered to be the main advantages,
while heavy memory usage and execution time remain a major disadvan-
tage especially when speed (rapid prototyping) and resource optimization are
required.

The statistical power estimation methods have common features with the
previously described simulation-based techniques. A random bit sequence
(stimuli) is applied to the primary inputs of a specific logic circuit and sub-
sequent simulation is performed using an off-the-shelf power estimator until a
satisfactory precision is hit.

As a quick comparison, the simulation-based techniques provide two main
advantages: 1) high accuracy and 2) generality. As for the disadvantages, long
simulation time and significant memory resources remain a major limitation.
The probabilistic-based methods deliver faster estimation since they do not re-
quire waveforms generation (usually time-consuming), but they provide rela-
tively low-accuracy results due to the use of simple delay models for compo-
nents and average signal probabilities. The statistical-based power estimation
approaches can be classified somewhere in between since they are considered
as a trade-off between the accuracy of the simulation-based and the estimation
speed of the probabilistic-based techniques.

Power Modeling Techniques

In the following section we present the power modeling methodologies di-
vided into four categories: 1) analytic, 2) table-based, 3) polynomial and 4)
Neural Networks (learning) [56]. As for the comparison metrics, four criteria
have been defined: modeling level (circuit or component), modeling effort (low,
moderate and high), modeling granularity (fine or coarse) and characterization
techniques.

Relating power consumption to the switching activity and the capacitance
of a specific design is commonly known as the analytic modeling technique.
In other words, these kind of techniques are based on the theoretical equation
of the dynamic power dissipation of a CMOS transistor. In complexity-based
techniques, the capacitance value is roughly estimated from the design archi-
tecture. In activity-based models, the power modeling issue is addressed based
on the entropy concept. It is used to evaluate the average activity of a circuit. A
relatively good accuracy is achieved using the analytical-based modeling when
applied to simple components, however the effect of glitches is not taken into
consideration.



2.3. Power Estimation and Modeling Techniques 13

The tabulation process of power values is considered to be a table-based
modeling technique following a characterization phase. Look-up tables do not
require mathematical models in comparison to the previously described ana-
lytical approach. While feasibility and moderate modeling efforts being the
main advantages of such techniques, considerable computational efforts (with
growing tables) and heavy storage memory usage represent the limitations.

While long simulations and extended list of parameters usually limit the
Design Space Exploration (DSE), polynomial (regression-based) power mod-
eling may be a suitable choice for power prediction. Polynomial models can
be used to assess the linearity between power values and one or more inde-
pendent design parameter(s). The majority of these regression-based methods
propose models for hardware-specific components such as operators and in-
terconnect elements, however complex logic circuits are not considered; not
forgetting the limitation in the number of input variables during modeling.

As a definition, the Artificial Neural Networks (ANNSs) are information pro-
cessing structures providing the (often unknown) connection between the in-
puts and the outputs [23]. They are based on connected neurons that prop-
agate specific information among them. Compared to the previously men-
tioned polynomial-based methodologies, neural networks can perform both
linear and non-linear regressions while providing higher efficiency. Multi-
Layer Perceptron (MLP) is a type of feedforward artificial neural network that
consists of multiple layers of interconnected perceptron units, also known as
nodes or neurons. MLP networks are widely used due to their high perfor-
mance and high accuracy (<3% error), however Convolutional Neural Net-
works (CNNs) seem to offer more promising results.

As a quick comparison, analytic models deliver reasonable fitting accuracy
with relatively low computational and modeling efforts since no power charac-
terization is performed; however, generalizing an analytical model to a global
system remains a challenge. Neural networks method generally outperforms
other modeling techniques as far as accuracy, scalability /expandability and
memory usage are concerned; however, modeling efforts are considerable in
this case. Finally, the polynomial-based techniques provide a good trade-off
where accuracy, modeling efforts and memory resources are balanced; thus
they are considered as a good alternative.

2.3.2 High-Level Techniques

High-level power estimation techniques refer to methods used to predict the
power consumption of an embedded system without requiring detailed infor-
mation about the implementation of the system. These techniques typically use
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models or abstractions of the system to estimate power consumption. Some ex-
amples of high-level power estimation techniques include:

e Statistical modeling: This method uses statistical techniques to estimate
power consumption based on measurements or simulations of the sys-
tem.

* Machine learning-based techniques: These methods use machine learn-
ing algorithms to learn the relationship between system inputs and power
consumption. By definition, machine learning techniques are a set of al-
gorithms and statistical models that allow computer systems to automat-
ically learn patterns and insights from data, without being explicitly pro-
grammed for each individual task. These techniques enable computers to
improve their performance on a task by learning from experience or data,
rather than relying solely on rules programmed by humans.

¢ Hardware-in-the-loop simulation: This method uses hardware-in-the-
loop simulation to estimate the power consumption of the system by

simulating the system’s behavior and interactions with its environment.

¢ Power-aware simulation: This method uses simulation tools that include
power models of the system’s components to estimate the power con-
sumption of the system.

These techniques can be used alone or in combination in order to provide
accurate and efficient power consumption estimates, which can be used for
power management, optimization, and design of embedded systems. This spe-
cific topic will be thoroughly detailed in Chapter 3.

2.4 Conclusion

In summary, power consumption optimization is an essential aspect of digital
circuit design, particularly in embedded systems, for which power budgets are
often limited. To achieve efficient power consumption, various techniques can
be employed, such as voltage scaling, clock gating, and power gating. Power
consumption dependencies, including hardware components, software algo-
rithms, and user behavior, must be taken into account during power optimiza-
tion in embedded systems. Understanding the dependencies is critical in de-
veloping power-efficient embedded systems that meet the power budget re-

quirements.



2.4. Conclusion 15

Furthermore, power optimization and power modeling and estimation are
two interrelated concepts that are essential for designing power-efficient em-
bedded systems. Power consumption modeling is a critical tool for identifying
areas for power optimization, while power optimization techniques can inform
the power consumption modeling process and validate its effectiveness.

In this background chapter we have presented a context study covering an
overview of power consumption sources and optimization techniques. Power
estimation and modeling methodologies have been briefly described covering
both low- and high-level domains. Techniques for the low-level alternative
have been summarily listed. The high-level alternatives, considered as a hot
topic today and subsequently being our main concern, will be thoroughly de-
tailed in chapter 3.
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Chapter 3

High-Level Estimation Techniques
in Embedded Systems Hardware -
SOTA

3.1 Introduction

With design complexity on the rise and High-Level design tools becoming
more widely available, the Field Programmable Gate Array (FPGA) market
is poised for large-scale adoption of High-Level design methodologies. In
fact, most analysts and industry leaders agree that a considerable number
of FPGA designers will eventually switch to High-Level design techniques
[13]. This also applies to Application Specific Integrated Circuit (ASIC) [35][3],
considered as an important part of embedded systems especially with inte-
grated hard-core processors, tightly coupled with internal logic [8]. As the
FPGA /ASIC capabilities have grown, so have the designs, current tools and
languages (mainly HDL) do not match the complexity required for advanced
digital hardware systems. In the recent years several commercial High-Level
Synthesis (HLS) tools have reached maturity, providing a new method to im-
plement FPGA /ASIC designs, or at least some parts of it but at the same time
creating challenges in power consumption estimation [52].

Today, modeling FPGA power consumption is a necessity in two scenarios.
First, it is required to perform power-oriented design space exploration at de-
sign time. The elaboration of power-efficient designs usually requires multiple
iterations of power estimation and design refinement steps, which leads to a
long design time and low productivity. In this scenario, having accurate and
efficient power models can help to rapidly explore design choices and perform
high-level simulations. Second, power modeling may also be used at run-time.
In most systems today, it is required to have efficient power monitoring and
management. This can be highly useful in taking decisions regarding Dynamic
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Voltage and Frequency Scaling (DVES) or tasks’ scheduling in CPU-FPGAs sys-
tems. In such cases, a power model has to be implemented in the device itself
and run either under software control on a processor or in a dedicated hard-
ware component. The main requirement is to have a “simple” yet efficient
model that is capable of extracting basic features of input signals to obtain an
accurate value of the circuit consumed power while taking into consideration
both speed and accuracy.

Embedded systems designers making the switch to High-Level design
methodologies, enjoy some obvious advantages, mainly the easy-handling
of increased complexity at a higher level of abstraction, shortening design
cycles and improving quality by early functionality verification. Widen-
ing the scope, High-Level power estimation and modeling methodolo-
gies crossed beyond FPGA and ASIC limits, opening new horizons for
microcontrollers/microprocessors-based systems with different but various
techniques and architectures (soft-cores, hard-cores, customized instruction
set, systems on a single chip, etc.). That said, power estimation and modeling
at high level became a necessity. This chapter provides an extensive overview
on high-level power estimation and modeling techniques. It also presents a
comprehensive classification and comparison between different methodologies
when applied to designated target models.

This chapter is organized as follows: in section 3.2 we list and define various
power estimation techniques. In section 3.3 we sort and classify estimation
techniques and their respective target models. The classification discussion is
presented in section 3.4. Finally we conclude in section 3.5.

3.2 Estimation Techniques

In this section we list and define various power consumption estimation tech-
niques and their corresponding target estimated models. Based on the cov-
ered literature, four major power consumption estimation techniques were ex-
tracted: 1) the simulation-based methods, 2) the learning-based approaches, 3)
the statistical-based methods and 4) the measurement-based alternatives. As
for the target models, for each of the previously mentioned estimation tech-
niques, three categories of modeling targets were detected and defined as fol-
lows:

1. Components/Circuits: components cover both, operators (arithmetic and
logical) and basic logic elements (multiplexers, shift registers, etc.). Cir-
cuits modeling is mainly related to capacitance and interconnect wires.
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2. White/Black-box IPs: commonly known as reusable units of logic cells.
IPs, considered as part of the High-Level design, are valid for both FPGAs
and ASIC. A white-box IP is a well known entity where its inputs and
outputs are pre-defined. A black-box IP represents an often unknown
entity where its inputs can be randomly driven and its outputs are likely
to be ignored.

3. Microprocessors/CISA /(MP)SoC: microprocessors (uPs) are complex
modeling targets, their power consumption heavily relies on their ar-
chitecture and application software. The Customized Instruction Set
Architecture (CISA) is a highly optimized approach for simplifying
digital hardware and thus reducing power consumption. The Multi-
Processor (MP)SoC is mainly an array of processors in a single System on

Chip (SoC).

Figure 3.1 shows an overview of the power estimation techniques and their
respective estimated models.

[ Power Consumption Estimation Techniques ]

Component/Circuit Component Component Component/Circuit

B/W-box IP B/W-box IP B/W-box IP B/W-box IP

CISA/SoC/MPSoC CISA/SoC/MPSoC MP (SBC) CISA/SoC/MPSoC

Target Models

FIGURE 3.1: Estimation techniques and target models.

3.2.1 Functional simulation-based methods

The simulation-based power consumption estimation techniques are com-
monly used in Computer-Aided Design (CAD) tools. This is mainly done
by applying various sets of inputs for a given system to be simulated and
subsequently collecting and capturing sets of desired outputs leading to power
consumption values. Current and voltage values, capacitance, operating fre-
quency and switching activity are the main required set of information in order
to obtain power consumption estimation. The accuracy of such techniques is
proportional to both processing time and computer memory resources’ usage
[56]. Here we list some of this technique’s target models based on related work:
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Components/Circuits

The simulation-based modeling technique described in [65] is initiated by an
iterative optimization step during model generation phase. This approach con-
sists in defining modeling variables that are suitable for High-Level Power Es-
timation (HLPE). Five variables are mainly defined: 1) FPGA device, 2) ba-
sic component (generated using Coregen), 3) Hamming distance, 4) signal dis-
tance and 5) signal bitwidth. The power characterization is done using XPower
while static energy is being deducted from the total power consumption and
pads power is being estimated using the ORINOCO pad estimator tool (mainly
used for pad capacitance extraction). The main advantage of such a technique
is that every component has to be characterized only once. As for the disad-
vantages, this method does not include neither registers nor memory power
estimation and it is not fully automated. The RMS error varies between 6.68%
and 12.61%.

TLM POWER3, a methodology described in [24], consists in creating an
add-on SystemC library that accumulates dynamic energy. It is based on the
extended generic payload where new physical units for voltage, distance and
area have been added. Output reports are generated at the end of this process
listing: 1) power consumption, utilization and physical layout and 2) automatic
add-up of power and energy used globally. This approach is described to be an
easy-to-use power estimation add-on to SystemC TLM.

A pre-silicon power estimation methodology using circuit-level simulation
for coarse-grained FPGA architecture has been proposed in [16]. Resource
characterization has been used in order to find the effective capacitance. This
is done by global wire modeling taking into account the longest interconnect
wires. The efficiency in this case is dependent on a number of known simpli-
fications of the FPGA architecture. The power estimation is therefore achieved
by finding the utilization of each resources’ switching activity. This includes
extraction of resource usage (LUT, FF, Carry, etc...) and subsequently averag-
ing the switching activity of each resource. As a result, an average estimation
error of 18% has been recorded while the maximum went up to 27%. This pro-
posed method was found to be efficient and accurate, based on clock power,
switching activity and dominant interconnect capacitance power. However,
being specific to Spartan-3 family, presents a major disadvantage in addition to
RAM and shift registers being excluded from estimation.

The hierarchical library-based power estimation concept presented in [44]
applies to novel circuit of components, emerging memory devices, architec-
ture of time-multiplexing technique and many others at different levels. It
supports coarse-grain or fine-grain estimation defined by users for achieving
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complexity-accuracy trade-off. The power estimation procedure is a top-down
approach; FPGA power is divided into logic, routing and clock power. After
extracting power estimation parameters, the calculation of the corresponding
power is done while ignoring the detailed implementation of the component.
The power estimation of a single component (when reaching the user-defined
granularity) is achieved by extracting static power consumption from library
while the dynamic power is extracted from the switching activity and the oper-
ating frequency. As results, the accuracy of this power estimation methodology
depends on the power information given by the hierarchical power library. The
information in context includes: static power, dynamic power, ReRAM power
estimation and power gating.

In [43], fpgaEVA-LP2 is a mixed-level power model associated with cluster-
based logic blocks and island style routing structures. This methodology takes
into consideration 3 power sources: 1) switching power, 2) short-circuit power
and 3) static power. Two types of signal transitions are covered: the functional
transition (used to perform the required logic) and the spurious transition also
known as glitches. The dynamic power model consists of a switch-level model
for interconnects and a macromodel for LUTs. This particular paper focuses
on transaction density and glitch analysis. While assuming a signal probabil-
ity of 0.5 and a transaction probability of 0.85, a large number of input vectors
is generated. The total power consumption can be broken down into static
power and dynamic power (switching and short-circuit). The dynamic power
model includes a switch-level model for interconnects and a macromodel for
LUTs. The static power, also known as leakage power includes: reverse-bias,
sub-threshold, gate tunneling, gate induced drain, etc. This power analysis
framework can be used to investigate the impact of circuits, architectures and
CAD algorithms upon FPGA power dissipation. As a result, the absolute aver-
age error is about 8%.

In [6], Modeling and Analysis of Real-time and Embedded systems
(MARTE), a standard Unified Modeling Language (UML) profile promoted
by the Object Management Group, is used to create an extension for mod-
eling dynamic power management. For this purpose, a subset of MARTE
has been selected, mainly the Hardware Resource modeling (HRM). The Dy-
namic Power Management (DPM) profile has been developed taking into
consideration the requirements of modeling the DPM schemes of modern
embedded systems with complex strategies over multiple hardware compo-
nents. The DPM profile provides model reuse by separating component-level
aspects from platform-level aspects on one side and platform-level aspects
from application-level on another side.
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White/Black-box IPs

The proposed simulation-based Transpilation method in [31], translates the
gate-level component from Verilog to C, trains an energy model while provid-
ing an executable script to run system simulation and subsequently calculates
energy consumption. This method is fast compared to co-simulation and
test-benches approaches but it is partially valid since it does not take into
consideration glitches effects and static energy. The resulting estimation error
is relatively high (between 55.2% and 152.8% at 10000 samples).

The power consumption estimation of an IP in [11] at Transaction-Level
modeling (TLM) is done by capitalization of its existing transaction level
model. For this proposed method, switching activity and cells extractions are
used. Switching information is extracted using test cases after generation of
Value Change Dump (VCD) files. Cells are extracted after converting TLM into
a synthesizable format by design compiler. The total power consumption is
then calculated as the summation of leakage power and dynamic power. These
simulation-based TLM results reveal a total power estimation error of 12.03%
and a speed-up of 20x compared to RTL's.

A simulation-based High-Level IP characterization methodology presented
in [70] is based on separating the activity of the IP from its implementation.
The aim was to create a power model that can be used at different frequencies,
layouts and implementation technologies. Therefore, the goal was to abstract
the power consumption model of an IP with relatively simple equations. Two
IPs were analyzed: 1) a microblaze processor and 2) BRAM memory. While
being precise and simple, the average percentage error of the created models
was found to be under 15%.

The methodology described in [29] aims at providing power estimates of
communication systems ahead of implementation. The proposed approach is
solely related to hardware with no software considerations assuming that the
wireless communication system is entirely constructed using interconnected
hardware IP cores set. This process can be done in two phases: 1) IP character-
ization using Xilinx Power Analyzer (XPA) and modeling using SystemC and
2) building the system by IP interconnections (previously developed in phase
one). The aforementioned technique has been applied to an Orthogonal Fre-
quency Division Multiple Access (OFDMA) IP part of the Long-Term Evolu-
tion (LTE), the 4t generation of radio technology for mobile communications.
As for the results, the maximal absolute error was found to be less than 4%
compared to estimated values by XPA.

In comparision with [11], [54] took one step forward and included thermal
analysis. Several tools were presented and compared in order to simulate the
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power and thermal behavior of a chip along with its functionality. The aim
was to augment a functional SystemC/TLM model with non-functional infor-
mation and subsequently perform power and thermal analysis. The focus was
on co-simulating an existing thermal model with a functional SystemC/TLM
simulation. Experiments were conducted on both a soft-core processor (Mi-
croBlaze) and an IP (VGA controller); no fundamental issues were detected
with the co-simulation techniques on both the SystemC/TLM simulation and
the external power/thermal solvers.

The methodology described in [60] is used to estimate energy dissipation in
hardware at any level of abstraction in SystemC with Powersim. This technique
is based on a Measure space that consists of the definition of the universe set
formed by an elementary event and its duration (as a pair). As for the applica-
tion of the model described at system-level and composed of different modules,
the total energy dissipation can be found by summing the energy dissipated by
each module. The energy models can be divided into three sets: 1) logic oper-
ators (and, or, xor, not, etc.), 2) arithmetic operators (add, subtract, etc.) and 3)
the computational cost. Two test applications were analyzed: a JPEG encoder
implemented in hardware and FIR filter implemented in a microcontroller. As
for the results, the mean relative error in estimation was about 15.8%.

Microprocessors/CISA/(MP)SoC

The HLS-designed, Customized Instruction Set Architecture (CISA) proposed
in [5] can be categorized as a simulation-based approach. A well defined se-
lected number of MIPS instructions is being used. For synthesis, power estima-
tion and area analysis, Vivado HLS has been adopted. The estimation is based
on the number of consumed cycles by CISA. This technique has been tested
on a Dot Product (DP) model and a 128-bit Advanced Encryption Standard
(AES-128). The main advantages of such a methodology can be highlighted as
follows: a) the power consumption is only 50% to 70% of the total power, b) the
dynamic power is 20% to 60% of the fully implemented soft core, c) the smaller
the number of instructions, the less resources used and the smaller the occu-
pied area, and d) the pipelining ability. One major disadvantage to mention is
that CISA is slower in execution than a full featured ISA.

The technique described in [63] is based on abstraction execution profiles
called event signatures. The system-level power modeling framework is based
on the Sesame MPSoC simulation tool. This signature-based power estimation
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provides an abstraction of processor activity and communication in compari-
son to traditional power models. It includes computational and communica-
tion event signatures as well as signature-based system-level power estima-
tion. This simulation-based methodology was validated by Daedalous tool with
an M-JPEG encoder application. The results were compared to measurements
done using a PMBus (based on I2C) current sensor. The estimation error was
about 7% with a standard deviation of 5%. One major disadvantage of this
technique is that it relies heavily on many existing tools which prevents full
integration and automation.

However, in [73] a top-down power and performance estimation method-
ology for heterogeneous multiprocessor SoC is proposed and applied at the
Electronic System Level (ESL). This is achieved by combining model-based de-
sign and spreadsheet power models. The benetfits of such a technique is that 1)
the estimations can be done early in the design, 2) different design options can
be assessed with minimal efforts, 3) dynamic power management is taken into
consideration and 4) the possibility of a fast power and performance analysis.
For the modeling process, two steps are followed: 1) the characterization of
the MPSoC platform and 2) the application modeling. As a use case, an actor-
oriented model of an MP3 decoder has been adopted. The estimation perfor-
mance accuracy was not expected to be high since this approach is intended to
provide relative figures for different design options comparison.

The simulation-based methodology presented in [74] is mainly applied for
extending system performance modeling frameworks. An XScale-based case
study is used for verification and a number of components is characterized
such as: processors, caches, buses, SRAM, DRAM, peripherals, etc. This tech-
nique provides a realistic validation of a system-level execution-driven power
modeling (with a fair level of power details for various models). It is consid-
ered to be scalable, efficient and validated for incorporating fast and accurate
power modeling capabilities into SystemC. The worst case percentage error be-
tween measured and estimated values was below 10% with an average error of
5%.

In [75] the High-Level power estimation model for SoC is based on extended
and optimized event signatures. The aforementioned estimation model has
three primary parts: 1) the summation of every section’s power consumption
of the SoC design, 2) power consumption produced by event signatures con-
sisting of bus, memory and communication power sub-models and 3) power
consumption disparity due to the subtrahend of the number of LUTs of the
complete design and subsequent summation of each part. This proposed model
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takes into consideration the effect of experiential power estimation data, perfor-
mance events in addition to the LUT changes. The validation results revealed
an error rate of 1.185%.

The multi-core processor (dynamic) power consumption estimation tool
presented in [27] extracts information at the instruction level as well as at the
architectural level. The MIPS32-based processor has been created using Open
Virtual Platform (OVP) and virtual machine interface libraries of Imperas’
Instruction Set Simulator (ISS). Two, four and eight processor cores were sim-
ulated using ISS where different benchmarks were used as application. As
a result, it was noted that the energy consumption is inverse-proportional to
the number of cores used on the platform. The reason behind is that the same
application takes more time on a platform having less processor cores.

On another hand, a formal description of a power consumption estimation
approach of embedded systems is presented in [72]. An embedded system
consisting of a hardware and a software is denoted as a System Model (SM).
The hardware part of the system is reflected in the Operational Model (OM)
while the software part is described in the Application Model (AM); UML ex-
tended with MARTE profile elements, was used for this purpose. To analyze
the power consumption of the system, SM, both OM and AM were combined
and converted into a stochastic Petri net. As an example and direct applica-
tion to the proposed method, an industrial control system was used and its
average power consumption was estimated without being compared to other

references.

3.2.2 Learning-based methods

By definition, learning-based techniques are subsets of Artificial Intelligence
(AI) methods, providing automatic power consumption estimation, acquired
and improved from experience without being explicitly stored or programmed.
Usually, in such techniques, data sets, commonly known as training sets, cor-
relating inputs to outputs have to be collected and applied prior to initiating
learning methods. Based on the covered literature, tree-based algorithms and
Artificial Neural Networks (ANNSs), both under the supervised learning meth-
ods, are being widely adopted. A supervised learning method uses special
patterns to identify specific characteristics. A pattern is always consistent and
recurrent [23]. Here we list some of this technique’s target models based on
related work:
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Components/Circuits

In [57] a power model based on neural networks was presented in order to pre-
dict the power consumption of digital operators in FPGAs. Any digital hard-
ware system can be represented by a set of components, each with a specific
function and selected during the High-Level design process. The suggested
method represents each operator (component) by two sub-models denoted by
M1 and M2. M1 predicts the power consumption for given Signal Rates (SR)
and Percentage Logic High (PLH), while M2 estimates the signal activity of
the outputs in addition to the PLH according to the inputs. A characterization
phase is required by applying a set of stimuli to a given operator and collecting
power information using XPA tool. Both M1 and M2 are implemented using
Multi-Layer Perceptrons (MLP) feed forward neural networks. As for the re-
sults, various operators were chosen (adders, multipliers, etc...); the percentage
error was about 0.01% at the component level and less than 8% at the system
level (mainly composed of cascaded components).

NeuPow, a complement of the methodology described in [57] and [59], is
an Artificial Neural Network (ANN) for power and behavioral modeling of
arithmetic components in 45 nm ASIC described in [58]. The proposed method
is achieved by propagating predictors between the connected neural models
in order to estimate dynamic power consumption of individual components.
Two different ANN models are used for each arithmetic component: 1) for es-
timating power 2) for determining the activity propagation. Initially, data set
vectors are generated and fed into the inputs of both ANNs. Dynamic power
and output data depend only on the input data for a fixed technology and fre-
quency. Bit width, packet length and number of packets represent the stimuli
parameters. This technique is divided into two sections: power and behav-
ioral characterization, and, power and behavioral modeling. The final step is
to construct the library based on the two previously mentioned ANNs: ANNP
to predict power consumption and ANNB to predict the output feature vector.
This learning-based estimation methodology applies for both component and
system level. As for the results, an RMSE of +/- 1.5% was recorded for the
component level and 8.5% for the system level with an estimation speed up of
about 2490x compared to traditional tools.

White/Black-box IPs

The HL-Pow, a learning-based methodology described in [46], is a power mod-
eling framework based on machine learning. It describes an automated feature
construction flow to efficiently identify and extract features that exert a major
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influence on power consumption. The HL-Pow design flow has two phases:
1) power model training with a collection of applications and 2) power infer-
ence for new applications. In the training phase, a number of representative
applications described in C or C++ are used to generate training samples for
power modeling. Two main types of features are taken into consideration: ar-
chitecture and activity. For the power model generation, HL-Pow constructs a
total number of 256 features consisting of 11 architecture features and 245 ac-
tivity features. The regression models were built using many supervised learn-
ing methods, such models are: 1) linear regression, 2) Support Vector Machine
(SVM) and 3) tree-based model. As for the results, the power modeling error
was 4.67% away from measured power.

The decision tree-based learning method described in [41] relies on extract-
ing data-dependent invocation-by-invocation power model from gate-level
cycle-by-cycle power traces. The process starts by applying input vectors
simulation to black box IP and its TLM model. Based on output traces,
invocation-by-invocation power model with fine-grain data-dependent is used
while internal signal activity is indirectly observed from switching activity
of I/0O signals. SciKit-learn machine learning library was used for model
selection and training. The trained cycle-level models are combined to predict
invocation-level execution power of the IP. As a result, the method provides a
9x faster prediction than cycle-level with less than 2% average error.

However and opposed to [41], the learning-based power modeling ap-
proach described in [39] is based on annotating functional hardware descrip-
tions and capabilities allowing the capture of data-dependent resources, block
or I/O activity without significant loss in simulation speed. Activity models
are first generated then machine learning techniques are leveraged in order to
synthesize power models at different granularities. Compared to commercial
gate-level or RTL estimation tools, this approach achieved an estimation accu-
racy of 10%, 9% and 3% for cycles-, block- and invocation-level respectively .
This technique is fully automated by integrating with commercial HLS tools.

Microprocessors/CISA/(MP)SoC

Existing CPU power models rely on either generic analytical power models
or simple regression-based techniques that suffer from large inaccuracies. To-
day, machine learning techniques are proposed to build accurate power mod-
els. Authors in [32] present a hierarchical power modeling approach that deals
with power models for CPUs at micro-architecture level. A decision tree is
build for a RISC-V core that can predict cycle by cycle power with less than
2.2% error.
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More recently, a micro-architecture power modeling framework has been
proposed in [79]. It provides a power modeling flow and methodology and
trains ML calibration models using given configurations of the core and pro-
vide power estimates for other configurations. Compared with state-of-the-art
power models, this approach can reduce the mean absolute percentage error
(MAPE) under different cross-validation strategies by 3% to 6%.

3.2.3 Statistical-based methods

The statistical power estimation methods have common features with the pre-
viously described simulation-based techniques. A random bit sequence (stim-
uli) is applied to the primary inputs of a specific logic circuit and subsequent
simulation is performed using an off-the-shelf power estimator until a satisfac-
tory precision is hit. Here we list some of this technique’s target models based
on related work:

Components/Circuits

For the statistical-based methods applied to component/circuits, it is very rare
to find on-going works on the topic. A previous work, [47] deals with power
consumption estimation by analyzing statistical properties of interface signals.
It is mainly based on the evaluation of the transition activity which is 40%
smaller than the real values, which leads to an accurate power consumption
estimation. More recently, authors in [62] presented an evaluation of power es-
timation flows used in standard cells ASIC for video applications. The results
show that flows based on statistical approaches can present a relative error
about 40% for evaluated designs.

White/Black-box IPs

Again, due to lack of recent work, the amount of references is found to be at
minimum. In [19], the authors propose a High-Level power estimation model
based on input signals statistics defined as: the input signal probability, the
average input signal density and the spatial correlation. In their experiments,
authors indicate an average error of 29.63% regarding power estimation. More
recently, in [10], the methodology has been applied on a SDRAM IP core and
the maximum estimation error was found to be 12.5%.
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Microprocessors/CISA/(MP)SoC

In contrast with [27], [61] is a power estimation prediction technique based on a
statistical model. Its portability is analyzed on new generations of Raspberry Pi
Single Board Computer (SBC). In such systems, the power consumption does
not depend on the hardware only but also on the use of the software and its in-
ternal characteristics. Two different benchmarking tools have been used having
different computational behaviors, parallel applications source code compila-
tions, collection of performance counters, linear regression model training and
model validation. The final statistical model is based on linear regression and
subsequent generation of 8 power coefficients leading to one unified model for-
mula. As for the results, the maximum prediction error was about 18.46%, an
error dispersion of 4.14% and an average error of 4.76%

3.2.4 Measurement-based methods

A natural approach for evaluating power consumption consists in conducting
real measurements on hardware after design implementation. This is usually
done either a) via built-in current sensors (on-board or on-chip), or b) via a well
defined external instrumentation setup [67].

Built-in measurements: This kind of measurements is portable and may be
achieved using 1) on-board current sensors and voltage regulators (mostly
monitored over the standard Power Management (PM) Bus or using on-board
Analog-to-Digital Converters - ADCs) or 2) on-chip current sensors (mainly
implemented in ASIC). These techniques’ integrity is however dependent on
the fidelity of the sensors in context and is highly affected by both the electrical
noise and interference.

External measurements: Another alternative would be to use external instru-
ments to measure power consumption. This is mainly achieved by connecting
analog acquisition instruments (basically built using high accuracy ADCs) to
the Device Under Test (DUT). This is only possible when the DUT permits such
a procedure by exposing 1) the core supply load (via a Shunt power resistor)
and/or 2) a set of test points representing the analog power consumption on
specific sub-circuits. These acquisition systems are usually hooked to PC soft-
ware for storage and analysis.
Here we list some of this technique’s target models based on related work:
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Components/Circuits

The power characterization methodology described in [20] relies upon a set
of measurements where both static and dynamic power are extracted. The
proposed method is based on downloading different hardware designs with a
variable number of resources (connections, CLBs, LUTs, registers, IOBs, etc.) on
FPGAs. The total power consumption is determined based on power consump-
tion subsets related to each component. The variation of static and dynamic
power consumption with respect to multiple FPGA targets is monitored by
implementing a unified design on many identical FPGA boards. This method-
ology is mainly used to determine the unit power consumption of the direct
horizontal and vertical lines in addition to LUTs.

White/Black-box IPs

A cycle-accurate energy measurement and High-Level characterization method-
ology based on the switched capacitor technique was adopted in [42]. For the
measurement, a pipelined Analog to Digital Converter (ADC), a vector gen-
erator and an Ethernet-based system management CPU has been utilized.
The energy, for both low- and High-Level approaches, has been character-
ized. Since our main focus is on High-Level techniques, we only present the
HL part of the energy characterization. For this purpose, a state-machine-
based technique has been selected while separating static and dynamic power
consumption. This method applies to SRAM-based FPGAs. Two IPs were ana-
lyzed, LCD and SDRAM controllers, however no comparison with alternative
methods has been explicitly revealed, thus no % error has been published.

Microprocessors/CISA/(MP)SoC

The method of power consumption estimation proposed in [2] is based on an
experimental bench developed for Virtex-6 FPGA. This method consists of du-
plicated Processing Units (PUs) mainly MicroBlaze softcore processors (1, 2, 4,
8 and 16 cores) where three different C programs were executed for each of the
five designs. Two versions vl and v2 of the five implemented designs were
used to evaluate the proposed method. Results of measured values were com-
pared to XPA simulated values and it was noticed that the 16 cores system has
higher estimation accuracy (% error less that 4) than the 1 core system (% error
higher than 30).
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3.3 Approaches classification

Various power consumption estimation techniques and methodologies were
investigated along with associated target models. In order to sort and classify
the aforementioned techniques and models, a set of metrics had to be defined.
Given the variety and extensiveness of the covered literature, and due to the
lack of common ground, the metrics had to be divided into quantitative and
qualitative sets. We list and define the extracted metrics as follows:

* Dependency: a given estimation technique may or may not be dependent
on specific hardware, software, tools and/or technologies.

* Characterization: a given estimation technique may or may not require
a characterization phase ahead of estimation and modeling. The charac-
terization reveals the distinctive nature of a given target model and high-
lights its special features/characteristics such as capacitance, switching
activity, resources, etc.

» Estimation effort: a qualitative metric represented by either little effort
(+), moderate effort (++) and considerable effort (+++).

* Estimation error: this quantitative metric is not always explicit yet it
could be totally absent. The % error could be either minimum (min),
maximum (max) or average (mean/avg).

* Modeling effort: similarly to the estimation effort, this qualitative metric
is also represented by either (+), (++) or (+++).

* Modeling level: this metric reveals the level at which the model was cre-
ated. Possible options are: RTL, system, TLM, component, HLS, IP or a
combination of any two (ex: Comp/Sys, IP/Sys, etc.).

Table 3.1 encapsulates and classifies both the power consumption estima-
tion techniques and their investigated target models based on the previously
described set of metrics. References were selected based on their exposed data
and on the extracted information following the diagram in Figure 3.1. The ta-
ble’s entries were sorted based on the number of occurrences in the literature
for both the estimation techniques and their respective target models in de-
scending order.

3.4 Discussions

Based on the covered literature, the following is a comprehensive comparison
between various estimation techniques applied to common target models:
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[31] n/a No + mean 100%, max 150% n/a System
11 n/a No ++ mean 12%. max 20% n/a TLM
P 70 n/a Yes ++ mean 15%, max 50% n/a TLM
29 n/a Yes ++ max 4% ++ System
54 LIBTLMPWT No +++ n/a + TLM
[60] Powersim No ++ mean 15.8% + 1P /Sys
5] Vivado DS No ++ n/a n/a HLS
[63] n/a No ++ avg 7% ++ System
[74] XScale P Yes ++ mean 5%, max 10% +++ TLM
Simulation | pP/CISA/(MP)SoC 75 n/a No +++ 1.185% + System
27 Virtual platforms No ++ n/a n/a Instruction
72 MARTE No ++ max 2% ++ Comp/Sys
73 ESL Yes ++ n/a ++ System
65 User Intervention Yes ++ min 6.68%, max12.61% ++ Component
24 TLM Power3 No +++ n/a n/a TLM
L 16 Spartan-III Yes + mean 18%, max 27% n/a Comp/Sys
Component/Circuit [44] i n/a No ++ min 24% n/a Comg / S}yis
[43] n/a Yes ++ avg 8% ++ Component
[6] MARTE No ++ n/a ++ Comp/Sys
46 n/a Yes ++ 4.67 % ++ HLS
1P 41 Virtual platforms No ++ mean 3%, max 15% ++ TLM
39 n/a Yes ++ avg 7.33% ++ System
Learnin, 32 RISC-V Yes ++ max 2.2% ++ Gate
s HP/CISA/(MP)SoC 79 RISC-V Yes ++ max 3% ++ System
Component 58 n/a Yes +++ mean 1.5%, avg 8.5% +++ Comp/Sys
57 XPA Yes ++ min 8%, max 17% ++ Comp/Sys
P 19 n/a Yes + avg 29.63% + System
10 DataFit tool Yes ++ max 12.5% ++ System
Statistical P (SBC) 61 RPISBC No ++ avg 4.76% + System
Component 47 REPLICA Yes ++ n/a ++ System
[62] RC/iRun/Cadence No + 40% n/a RTL
P [42] SRAM FPGA Yes + n/a + System
Measurement | pP/CISA /(MP)SoC 2] n/a No ++ min 4%, max 30% n/a System
Component [20] n/a Yes + n/a n/a Component

¢ For the white/black-box IPs target models, the estimation error was

found to be almost inverse-proportional to the estimation effort targeting
the simulation-based methods; the error range was higher and wider
than the learning-based counterparts. Considerable estimation efforts
in simulation-based methods definitely lead to satisfactory estimation
% error, highly comparable to the learning-based alternatives, yet pro-
viding better results in some specific cases. As a global comparison,
the learning-based techniques provide better performance in estimating
power consumption at moderate efforts.

¢ For the component/circuit target models, a smaller and narrower range

of estimation error was clearly detected with the learning-based methods.
These latter, achieved with considerable efforts, provide higher efficiency
compared to the simulation-based alternatives where little to moderate
efforts were applied.

e uP/CISA/(MP)SoC target models, estimated using the simulation-based

methods, showed a % error >30%. Learning-based alternatives presented
better results with error around 3%. However, good estimation results
can be obtained by just applying moderate efforts.
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FIGURE 3.2: Estimation Effort v/s Average % Error - Clusters
Chart.

Figure 3.2, a cluster-based representation, combines a number of power con-
sumption estimation techniques applied to various target models. The purpose
of having such a global chart is to get a wider understanding of [estimation
technique, target model] pairs’ efficiency and subsequent selection. The verti-
cal axis represents the estimation effort while the horizontal one represents the
average estimation % error. The chart shows only simulation- and learning-
based methods as the first method is widely used and the second method is the
most recent.

This graphical representation reveals the distribution of the cluster-based
power estimation methodologies applied to specific target models v/s their
respective estimation efforts. The following analysis was noted:

Simulation-based techniques: The simulation-based power consumption
estimation techniques are best suitable for pP/CISA /(MP)SoC target models
with estimation error <5% in specific cases, especially when software appli-
cations targeting (soft- and hard-core) nPs are involved. This is usually done
with moderate efforts. The component/circuit target models come next in the
classification under the same estimation methods with also moderate efforts,
leaving behind the white/black-box IP models, unless considerable efforts
were exerted. The major advantages of such a technique are: a) its generic
nature and b) its relatively high precision. High memory requirements and
slow execution time remain major drawbacks especially when fast prototyping
is required and when resources are limited.

Learning-based techniques: Also known as pattern recognition, Machine
Learning-based power consumption estimation techniques, when applied to
white /black-box IP and pP/CISA/(MP)SoC models even with moderate ef-
forts, provide higher efficiency to when applied to component/circuit models.
However, considerable estimation efforts, definitely push the efficiency higher
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when dealing with component/circuit target models especially when artifi-
cial neural networks are adopted. The major advantages of such techniques
can be summarized as follows: 1) easy identification of trends and patterns,
2) no human intervention is needed, 3) ability to handle multi-dimensional
and multi-variety data, and most importantly 4) continuous improvements
coupled with wider range of target models. Time/resources requirements,
errors susceptibility and the need of prior data acquisition/collection can be
considered as main hurdles.

Statistical-based techniques: even though these methods have not been used
in recent work, they made it to the classification. Little to moderate estimation
efforts lead to estimation errors around 3.5% for the processor-based targets
and 12.5% for IP targets. These techniques are usually simple to apply and
easy to interpret their outputs. However, the estimation ability may decrease
drastically due to data sparsity and modeling overfitting.

Measurement-based techniques: Even though tightly coupled with instru-
ments’ fidelity, probing level and sensing accuracy, the measurement-based
methods are considered as reliable alternatives in estimating power consump-
tion. Due to lack in estimation accuracy results exposure, these techniques did
not make it to the global clusters chart. As for the estimation efforts, little to
moderate levels were applied. It’s important to mention that measurement
results are often used in characterization for later data processing and sub-
sequent power estimation using various methodologies but mainly machine
learning techniques. Measurement-based techniques are non-invasive and rel-
atively easy to handle but the dependency on the instrumentation (that can be
sometimes bulky) and its accuracy might affect the fidelity of the results and
thus the estimation % error. Moreover, these techniques often target a particu-
lar IP or circuit and lacks of genericity.

3.5 Conclusion

In this overview chapter many power consumption estimation-related topics
were covered. High-Level power estimation techniques and target models
were presented as the main concern and purpose of this chapter. The covered
literature was extensive with a considerable variety of evaluation methods and
contribution levels applied to many sets of target models.
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Knowing that, the papers’ classification had to be done in a tabular format
(Table 3.1) where some of the metrics were quantitative and some others qual-
itative. A global cluster-based chart (Figure 3.2) representing the power esti-
mation techniques and their respective target models v /s the estimation efforts
has been generated. The purpose of that representation was to have a general
and wide understanding of which estimation technique applied to which target
model results in a better estimation accuracy while keeping an eye on required
estimation efforts. The ultimate purpose of this work was to provide guidance
for designers (dealing with power estimation and modeling methods) in terms
of assessment, comparison and selection of the appropriate power estimation
techniques applied to target models based on performance, accuracy and ef-
forts.

As a future sight and given the extensiveness of current applications
and continuous enhancements coupled with hardware-backed computational
power, machine learning techniques might be nominated and foreseen as the
most effective and global approaches for power consumption modeling and
subsequent power estimation. That being said, in this work we tackle the
FPGA power consumption modeling and estimation based on supervised
machine learning. In chapter 4, we present a high-level learning based FPGA
IP power consumption modeling and estimation methodology for both the
offline and the online domains.
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Chapter 4

FPGA Power Modeling and
Estimation Methodology

41 Introduction

FPGA power modeling and estimation refer to the process of predicting the
power consumption of an FPGA design before it is implemented in hardware.
In modern systems, power estimation can also be implemented in real-time.
FPGA power estimation is an essential aspect of the FPGA design process, as
it helps to optimize the design to minimize power consumption. FPGA power
modeling involves creating a mathematical model of the power consumption
of an FPGA design based on the design’s circuit topology, input data patterns,
and other parameters. The model can be derived using various techniques,
including analytical methods, simulation, and measurement.

Today, modeling FPGA power consumption may be used in two scenarios.
First, it is useful to perform power-oriented design space exploration at de-
sign time. The elaboration of power-efficient designs usually requires multiple
iterations of power estimation and design refinement steps, which leads to a
long design time and low productivity. In this scenario, having accurate and
efficient power models can help to rapidly explore design choices and perform
high-level simulations. Second, power modeling may also be used at run-time.
In most systems today, it is required to have efficient power monitoring and
management. This can be highly useful in taking decisions regarding DVFS or
tasks’ scheduling in CPU-FPGAs systems. In such cases, a power model has to
be implemented in the device itself and run either under software control on a
processor or in a dedicated hardware component. Our main target is to have a
“simple” yet efficient model that is capable of extracting basic features of input
signals to obtain an accurate value of the circuit consumed power while taking
into consideration both speed and accuracy.

This chapter is organized as follows: in section 4.2 we present our proposed
power consumption modeling and estimation of FPGA IPs. We elaborate on
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IP decomposition and on the methodology of estimating power in both offline
and online domains. Section 4.3 reveals the global methodology flow where we
detail various options and possible paths. Finally we conclude in section 4.4.

4.2 Power Estimation of FPGA IPs

After investigating recent related works, concerning power modeling, we
found that in [55] or [15] the approach consists in monitoring influential sig-
nals within specific modules. Power consumption is then measured and a
linear power model is built and updated online. The main drawbacks of these
previous works are the lack of accuracy of the proposed models which rely
on simple linear mathematical models. To counteract this issue, authors in
[81] propose to collect a pertinent set of signal activities through simulation
and construct machine-learning models based on decision trees, ensemble
models, and neural networks. This makes it possible to take into consideration
the non-linearity of the power behavior. Nevertheless, this work only targets
ASICs models at this point and cannot be used for FPGA devices.

Authors in [40] extract activity features during C-level program execution,
and propose machine learning models to learn power characteristics of an
FPGA implementation. The power model directly makes use of transaction-
level I/0O activity and control information for fast estimation. Although very
accurate for a high-level approach, power data used for training only derive
from gate-level simulations, which is far from a real scenario of execution.

Authors in [59], proposed NeuPow, a power estimation methodology based
on neural networks that model the power and behavior of arithmetic compo-
nents in both ASIC and FPGA circuits. The proposed method is achieved by
propagating predictors between the connected neural models in order to esti-
mate dynamic power consumption of individual components. Although the
approach seems very promising, neural networks have only been trained on
data coming from low-level simulations, which lacks of accuracy and generic-
ity.

In this work, in comparison to most approaches, we rely on real data ob-
tained from hardware measurements and software algorithms in order to effi-
ciently build training sets for machine learning. We estimate power consump-
tion of FPGA IP circuits based on the coupling between the control signals (of-
fline), or operation modes (online), and the data path activity. Having the most
realistic data leads to a more realistic power model and subsequently to a more
accurate power estimation. That been said, as a first step, we investigate FPGA
IPs as targets for the power modeling and subsequent estimation.
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FIGURE 4.1: FPGA IP decomposition (FSM and DP) (a) and its
input signals (b).

4.2.1 IP decomposition

IP blocks are pre-designed and pre-verified digital circuit designs that can be
integrated into larger designs to save time and effort. FPGA IP characterization
involves assessing the electrical behavior of the IP block when implemented on
an FPGA, such as its power consumption, timing characteristics, and other key
metrics. This process helps ensuring that the IP block operates correctly and
meets its performance specifications in the target FPGA technology.

Any given FPGA IP circuit, as shown in Figure 4.1 (a), can be represented
as a Finite State Machine (FSM) and a Data Path (DP). The combination of the
Control Signals (CS) and the data path input activity results in multiple func-
tional and power states. In this model, the control signals are directly connected
to the FSM and the input signals (stimuli), feeding the DP, are characterized by
their activity parameters i.e Switching Rate (SR) and Percentage Level High
(PLH). The SR represents the ratio of transitions in a given fixed-size bit se-
quence whereas PLH is the percentage of logic 1 bits in the same sequence. In
this work, we present an IP power consumption estimation model based on
machine learning in which training data sets are automatically collected from
real measurements. Figure 4.1 (b) reveals the inputs of any given IP. At high-
level, we characterize specific IPs, record the power consumption estimation
absolute percentage error and compare measured v/s estimated power con-

sumption.

4.2.2 Methodology

The proposed approach consists in estimating the power consumption of a
given FPGA IP after being decomposed into an FSM and a DP. For the offline
domain, we estimate per-state power consumption of IP circuits based on the
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FIGURE 4.2: Stimuli generation matrices along with the actual
FPGA input bits.

coupling between the state machine control signals and the data path activ-
ity. Both the control signals and the input activity are extracted from a test-
bench during the simulation phase, and subsequently applied to a previously
stored power model. For the online domain, we estimate power consumption
of IP’s modes of operation, in realtime, based on the coupling between the most
power-influential modes and the data path activity. Operating modes are spe-
cific functional behaviors of a given IP (for ex: idle mode, half-duplex mode,
full-duplex mode, loopback mode, burst mode, etc.), out of which we select
the most power-hungry subset. In this case the generated power estimator is
implemented inside the same FPGA.
In summary, the proposed methodology consists of four sequential steps:

1. Stimuli signals generation using dedicated, in-house implemented algo-
rithms.

2. IP characterization using a well-defined high fidelity platform fed by the
previously generated stimuli.

3. Build of the training data sets using the collected power information and
subsequently build of the power model.

4. Storage of the compiled neural network in a database for the offline do-
main, or, implementation of the neural network inside the same FPGA
target for the online domain.

Stimuli generation

Regarding the parametric stimuli generation as shown in Figure 4.2, two sets
of PLH and SR of H and S values are respectively used to generate M = H x S
distinct combinations of [PLH, SR] pairs. The aforementioned combinations
are coupled with N encoding bits representing either Control Signals (CS) for



4.2. Power Estimation of FPGA IPs 41

offline domain or Operating Modes (OM) for the online alternative. These
CS/OM bits, denoted as CM, lead to 2V power consumption scenarios. Each
permutation of the CM bits is appended to I pairs of [PLH, SR], subsequently
generating one stimuli matrix. Each pair of [PLH, SR] generates 1 fixed-length
sequence of bits that will be eventually feeding a given IP’s data path input.
The bit sequence generator in context ensures the [PLH, SR] pairs’ compatibil-
ity and fulfills the stimuli signal’s requirements while achieving a high degree
of entropy in the generated bits (adequate SR distribution and minimal bit-
clustering). The detailed stimuli and bit sequence generation is presented in
chapter 6.

IP characterization

FPGA IP characterization reveals the distinctive nature of a designated digi-
tal circuit, specifically, its power consumption information. For that purpose,
we have proposed an, in-house, FPGA-based Automated and Centralized Data
Generation and hybrid Acquisition System (ACDGAS) combining the features
of three instruments: a sampling oscilloscope with analog inputs, a logic ana-
lyzer and a bit-pattern generator [67].

The platform’s main role is to apply stimuli signals at the IP inputs and syn-
chronously collect aligned power consumption samples under software con-
trol. The proposed layered software architecture delivers a fully automated
process for IP characterization. It provides a solid and synchronized interac-
tion between the various system modules such as: graphical user interface,
stimuli construction, CS/OM (CM) coupling, bit sequence generation, mea-
surement platform interface, training data construction, power modeling and
evaluation.

High Speed Digital 1/Os feed the DUT-FPGA (configured for 1 IP only) as
stimuli input signals and the power consumption measurement is sampled via
a high speed parallel differential Analog to Digital Converter (ADC) through a
precision shunt resistor Rg on the FPGA core voltage. The FPGA IP’s charac-
terization is thoroughly detailed in chapter 5.

Training data sets generation

For many machine learning techniques, especially the ones related to super-
vised methods, the construction of the training data highly affects the quality
and accuracy of the derived model [48]. In this work, the collected data sets
are derived from two different sources: the stimuli generation algorithms and
a hardware data acquisition system providing real power consumption values
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collected after applying the generated stimuli on a given FPGA IP circuit. The
power model generation including the training data sets generation will be
thoroughly detailed in chapter 6.

4.2.3 Power Estimation Applications

In general, power estimation is obtained by evaluating the signals” activity of a
given circuit in a scenario of execution that runs within a certain time frame. In
this work we investigate power consumption modeling and estimation in both
offline and online domains.

Offline Estimation

Offline FPGA IP’s power consumption estimation using machine learning and
measurement refers to the process of predicting the power consumption of an
FPGA based on both machine learning algorithms and measured data from the
FPGA itself. In this process, machine learning models are trained using data
from previously measured power consumption values for the FPGA loaded
with specific IPs. These models then use the trained algorithms to predict the
power consumption of the FPGA for new scenarios including states and input
activity that have not been previously measured. This process is called "offline"
because it does not involve the actual operation of the FPGA. Instead, it uses
models and generated testbench data in order to estimate the power consump-
tion of the FPGA IP based on its design and the task it will be performing.

The proposed machine learning-based power model aims at estimating the
power consumption Pr of an FPGA IP based on the control signals and on the
features of its inputs i.e their PLH and SR at early design stages. Figure 4.3
illustrates the usage of the power model at design time. Test-bench (TB) data,
initially generated for the functional simulation, are also used to extract CS,
SR and PLH of all inputs. The next step is to apply the extracted values to a
power model built using the proposed work and retrieved from a previously
constructed database (DB). This latter contains a collection of power models
each for a previously characterized IP.

Online Estimation

Online power monitoring of a digital circuit is the process of periodically col-
lecting its energy usage for subsequent optimization using well-known mech-
anisms such as DVFS. The proposed online power monitoring methodology
aims at estimating a given FPGA IP power consumption in-situ and in real-
time. It is based on machine learning and precisely on supervised Artificial
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FIGURE 4.3: Early power estimation flow (at design time).

Neural Networks (ANN) [23]. Online power monitoring is becoming indis-
pensable for controlling the power consumption of large digital circuit systems
at runtime [68].

Runtime adaptive systems determine dynamically and autonomously
the optimal operating points for power consumption. Such systems take
application-specific requirements into account and specifically adapt the work-
load. Traditionally, current sensors (either built-in or external) have been
used to periodically, under software control, collect power information to be
transferred to variable voltage regulators and/or configurable Phase-Locked
Loops (PLLs) or simply Voltage-Controlled Oscillators (VCOs). These latter,
under the DVFS mechanism, regularly tune the core supply voltage and /or the
input clock frequency of the device under optimization. Appropriate design
of DVFS-based applications can result in up to 65% improvement in energy
consumption [4]. The main issue to tackle remains in the communication over-
head that can have undesirable effects on a running application on FPGAs;
notably the latency between the sensors and the DVFS, and also between the
DVES from one side and the variable voltage regulators and/or the tunable
frequency devices from the other.

Some works aim at supporting emerging power management techniques,
for example fine grained DVFS. In [45], a dedicated hardware circuit is pro-
posed to obtain internal signal activities during runtime while predicting
power consumption on-the-fly. The authors claim that dynamic power may be
estimated within an error margin of 1.90% compared with commercial gate-
level power estimation tool. The major limitation though is that the model is
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trained on simulated data from the Vivado power analyzer, which does not
take into consideration the real conditions of execution.

At RTL, most recent works that study high-level power modeling of FP-
GAs usually rely on linear regression methods. For example, in [55] or [15]
the approach consists in monitoring influential signals within specific mod-
ules. Power consumption is then measured and a linear power model is built
and updated online. The main drawbacks of these previous works is the lack
of accuracy of the proposed models which rely on simple linear mathematical
models.

In this work, compared to most related methods and in order to build ro-
bust training data sets for the learning-based estimation, we rely on real power
values obtained from a physical acquisition system, under software control.
Subsequently, we estimate, in real-time, FPGA IP power consumption, based
on the coupling of the IP’s Most Significant Modes (MSM) of operation and the
activity of its data path inputs.

Figure 4.4 provides a high-level overview of the proposed power monitor-
ing and management mechanism. The power monitor in context, considered
as our main concern, is divided into two blocks. The first block extracts: 1)
the input activity of the IP’s data path in terms of the switching rate and the
percentage of logic "1" occurrences and 2) the most energy-significant modes of
operation (MSM) that can be derived from the control signals of the IP’s state
machine or even, in some cases, can be explicitly accessible. The second block is
the power estimator itself having the extracted input activity parameters along
with the most significant modes of operation as inputs. This latter consists of
the implementation of an artificial neural network inside the FPGA. Both the
implementation details and the neural network architecture are discussed in
later sections in chapter 6.

Figure 4.4 also reveals the existing latencies at various locations of the pro-
posed model. The latency between the power estimator and the DVFS mech-
anism depends on the number of cycles of the power estimator itself from the
moment it captures the inputs until it generates an output. This work aims at
keeping this specific latency at the very minimum. The latency between the
DVFS and the tunable devices (voltage and/or frequency) is highly dependent
on the Management Interface (MIF). Standard communication latency is ob-
served when dealing with PMBus/1?C protocols, and minimal latency is pro-
duced when dealing with fast Digital to Analog Converters (DACs), as data are
directly driven from discrete fast outputs. Note that this specific type of latency
is out of the scope of this work. As for the DVFS system itself, it may be de-
composed into a set of comparators acting on pre-defined power consumption
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FIGURE 4.4: Power monitoring and management mechanism
along with latency options.

threshold values and dynamically tuning the corresponding parameters within
pre-defined operating limits. That said, the DVFS’ operation does not add sig-
nificant latencies to the power monitoring and management loop (power esti-
mator — DVFS — tunable devices and again.. <=). The proposed methodology
consists of three sequential steps:

1. IP characterization using a well-defined high fidelity platform.

2. Build of the training data sets using the collected power information and
subsequently build of the power model.

3. Implementation of the neural network inside the same FPGA target.

4.3 Methodology flow

Ultimately, combining both power estimation domains could create a more
comprehensive approach in order to present the proposed methodology. Figure
4.5 reveals the global power modeling and estimation flow for both offline and
online domains. For both alternatives, some of the procedures are common and
others differ; however, the aim is to always get the estimated power Pr. From a
user perspective, a typical design flow starts by the Hardware Descriptive Lan-
guage (HDL) entry, testbench generation mainly for the functional simulation
followed by the synthesis, place and route, and bitstream generation for subse-
quent FPGA image loading. The proposed methodology is initiated (as early as
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FIGURE 4.5: Global power modeling and estimation flow cover-
ing both offline and online domains.

possible) at the testbench creation step. At this level, the IP’s data path inputs’
activity is extracted (PLH and SR pairs), and the FSM control signals (offline) or
the most significant operation modes (online) are enumerated. At this points,
two options are possible: is the IP in context has been previously characterized
and its power model generated? If the answer is yes then the power model is
retrieved from a previously compiled database, the neural network inputs are
applied and subsequently the power estimation is delivered.

Otherwise, the power model generation procedure is initiated starting by
the stimuli generation based on the input activity coupled with either the FSM
control signals or the most significant modes of operation. The IP characteriza-
tion is then triggered leading to the generation of the training data sets for the
supervised machine learning procedure. Both the learning and the validation
processes result in the compilation of the Power Model (PM). At this point, two
options are available: 1) for the offline domain, the generated power model is
stored in a database to be later on retrieved when estimating the power con-
sumption of that specific IP (under the same characterization conditions) early
at design time. 2) for the online domain, the generated power model is im-
plemented inside the same FPGA for subsequent in-situ and realtime power
reporting.

In summary, whether offline or online, the power model generation proce-
dure remains the same, leading to the power consumption estimation for either
storage or deployment.
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4.4 Conclusion

FPGA power modeling and estimation are crucial for optimizing the power
consumption of an FPGA design. By predicting the power consumption of the
circuit early in the design process, designers can, offline, identify and elim-
inate power-hungry components or circuits, optimize the design’s clock fre-
quency, and minimize power consumption by selecting appropriate input data
patterns. This optimization can lead to significant power savings and improved
performance for FPGA-based systems. On another hand, online power moni-
toring and subsequent management is becoming a hot topic since it provides
on-the-fly energy optimization by adjusting the IP’s voltage and/or frequency.

In this chapter we have presented an FPGA IP power consumption estima-
tion methodology covering both offline and online domains. For the offline
option, we estimate power by just providing the control signals of the IP’s FSM
and the activity characteristics of the data path inputs. The subsequently gen-
erated power models are store in databases. For the online counterpart, power
estimation is done in real-time by providing the IP’s operation modes and its
inputs characteristics. The power estimator and the target IP coexist in the same
FPGA. Finally we have combined both offline and online in a single method-
ology flow diagram. In the following chapter we detail the FPGA IP charac-
terization procedure, revealing the proposed measurement platform and the
corresponding results.
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Chapter 5

FPGA IP Characterization

5.1 Introduction

FPGA Intellectual Property (IP) characterization refers to the process of mea-
suring and analyzing the performance characteristics of an IP block that is in-
tended to be implemented on a specific FPGA. FPGA IP characterization re-
veals the distinctive nature of a given target digital circuit and highlights its
special features such as resources and most importantly its power consump-
tion information (a special interest in our study). Here we should point out
that, as shown in Figure 5.1 (right-hand side), we decompose an FPGA IP into
a Finite State Machine (FSM) fed by a certain number of Control Signals (CS),
and a Data Path (DP) fed by the actual inputs toggling at specific rates.

The IP’s power consumption, during well-defined states or operating
modes, is highly affected by its input switching activity mainly the Switching
Rate (SR) and the Percentage Level High (PLH). The SR represents the ratio
of transitions in a given bit sequence, whereas the PLH is the percentage of
logic "1" bits in the same sequence. Operating modes are specific functional be-
haviors of a given IP (for ex: idle mode, half-duplex mode, full-duplex mode,
loopback mode, burst mode, etc.), out of which we select the most power-
hungry subset denoted as Most Significant Modes (MSM). These operating
modes are in a close correlation with the control signals feeding the IP’s FSM,
or in some other cases, they are explicitly exposed. In Figure 5.1 (right-hand
side) the relationship between the control signals and the operation modes is
represented by a decoder (X/Y). In order to collect precise power information,
a reliable measurement platform is required. For that purpose, we propose
an FPGA-based Automated and Centralized Data Generation and hybrid Ac-
quisition System (ACDGAS) combining the features of three instruments: a
sampling oscilloscope with analog inputs, a logic analyzer and a bit-pattern
generator [67].

The question that may arise at this point is "why designing and implement-
ing an in-house instrument rather than getting an off-the-shelf alternative?" The
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FIGURE 5.1: Measurement and characterization system hardware
setup along with the IP under test.

answer is simple "such an instrument is not readily available in the market
given its customizable features and behavior". The FPGA IP characterization
system that meets our needs has to include a bit pattern generator and a hy-
brid data acquisition mechanism to collect both digital and analog samples.
Most importantly, both the generated and acquired data have to be synchro-
nized, and most critically they need to be aligned. Having multiple instruments
hooked together in order to satisfy our needs is, first of all, cumbersome and
expensive. Moreover and above all, assuring synchronization and alignment
is not guaranteed, and also, the integration of a centralized control software is
almost impossible.

This chapter focuses on the design, the methodology of generation and ac-
quisition, the hardware/software interface, the end-usage and the possible ap-
plications of the device. The platform’s main role is to apply stimuli signals at
the IP inputs and synchronously collect aligned power consumption samples
under software control. The proposed layered software architecture delivers
a fully automated process for IP characterization. It provides a solid and syn-
chronized interaction between the various system modules such as: graphical
user interface, stimuli construction, CS/MSM coupling, bit sequence genera-
tion, measurement platform interface, training data construction, power mod-
eling and evaluation.

This chapter is organized as follows: in section 5.2 we present the auto-
mated and centralized data generation and acquisition platform including both
hardware and software aspects. The hardware sections encapsulate the digital
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and the analog parts. The generation and acquisition methodology is detailed
along with experimental results and comparison with recent related work. In
section 5.3 we demonstrate the application of the aforementioned platform on
series of FPGA measurements. Finally we conclude in section 5.4.

5.2 Automated Data Generation and Acquisition
System

Automated data generation and acquisition refer to the process of using com-
bined software and hardware tools to automatically collect, create, and process
data without human intervention. This process involves using various tech-
niques to gather, analyze, and generate data that can be used for different pur-
poses, such as research, analysis, and decision-making.

Data Generation and Acquisition (DGA) has become a major requirement
for data processing and subsequent information analysis, especially in data
science, big data, and pattern recognition (which is a cornerstone of machine
learning techniques). A synchronized hybrid data generation and acquisition
system has major advantages over traditional counterparts given the mixed-
mode nature of its input signals (digital and analog) being aligned with its
output signals. The proposed DGA system, in addition to being hybrid and
synchronous, is a single-board programmable, compact and fully automated
open-source hardware/software instrumentation device. As shown in Figure
5.1, High Speed Digital I/Os (HSDIO) are feeding the DUT-FPGA (configured
for 1 IP only) as N-bit input signals and the power consumption measurement
is sampled via a high speed parallel differential Analog to Digital Converter
(ADC) through a precision shunt resistor Rg on the FPGA core voltage (1V).

Here we list few recent related work with a brief description revealing fea-
tures and limitations. In [34], a low-cost USB data acquisition hardware is de-
scribed based on the ATmega32 microcontroller. The system acquires heater
temperature from a 1-wire sensor and various voltage variations through rel-
atively low-speed ADC channels. The system in [21] was developed for the
purpose of evaluating DACs and ADCs. An automated system has been devel-
oped for multi-frequency dynamic tests. Multiple instruments and tools were
used for that purpose (NI-PXI, Tektronix, LabVIEW). A smart recording power
analyzer prototype using LabVIEW and a low-cost DAQ are presented in [12].
The system is capable of simultaneously monitoring and recording numerical
data and low frequency waveforms in both normal and faulty conditions. It
proposes the usage of a low-cost DAQ device and the commercial LabVIEW
for a smart renewable monitoring system. In [18], a virtual instrumentation
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software has been applied to integrated circuit testing procedure based on Lab-
VIEW. The system provides the possibility of software-controlled automated
test system development for IC parameters. Most of the related work relies on
multiple instruments and software tools that may imply complexity, bulkiness
and unwanted additional cost. An application of high accuracy DAQ in power
plants is presented in [77]. The system is based on an 8051 microcontroller con-
nected to an external ADC via Serial Peripheral Interface (SPI). The PC interface
is implemented over RS232, a relatively low speed connection.

The core of the DGA system we are presenting is based on an FPGA (Intel
Cyclone V) interfaced to the outside world via either full speed USB through
an on-board microprocessor and/or via Fast Ethernet (FE). The interconnection
between the FPGA and the microprocessor is done using an in-house designed
high speed parallel Microprocessor Interface (MPIF) described throughout the
chapter. The choice of an FPGA at the heart of the system was made given its
high speed, its parallel processing nature and most importantly its reconfigura-
bility. The proposed system is a 20 MSpS synchronous hybrid DGA capable of
simultaneously generating and sampling High Speed Digital Inputs and Out-
puts (HSDIO) accurately aligned with analog input samples.

5.2.1 System Description

In this section various system modules is detailed covering the single board
hardware, firmware and software. In hardware subsection, both the digital
and the analog parts is described. The digital part covers the FPGA high level
design, the memory organization and the control and status mechanism. The
analog part covers the dual sampling ports” hardware. In the Software subsec-
tion, we briefly describe the firmware implementation along with PC interfac-
ing. Access to the project’s repository is granted through a copyleft CC-BY-SA
4.0 license following an email request.

Hardware

The high-level hardware block diagram is shown in Figure 5.2. The single
board instrument interfaces to an external computer via two options: USB and
Fast Ethernet (FE). In the following subsections, we describe both the digital
and the analog parts of the hardware.



5.2. Automated Data Generation and Acquisition System 53

UsB DO (8/16-bit @ 20Mb/s)

120MHz uP ¢ FPGA DI (8/16-bit @ 20Mb/s)

uss MPIF .
dsPIC/24EP

7'y [y Intel
Cyclone V A \é
RAM > _
5CEFA2F23 | .
C <
J Ml

@ @ " 20MS/s

b
v

3

O

A
A

Analog Inputs

D 1/Os (8/16-bit)
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Digital: The main role of the FPGA is to synchronize the generation of the
High-Speed Digital Outputs (HSDO) with the acquisition of both the High-
Speed Digital Inputs (HSDI) and the analog inputs at a (programmable) max-
imum sampling rate of 20 MSpS. The outcome is a precisely aligned hybrid
data. The FPGA'’s system clock is set to 120 MHz. The external processor is
a Microchip dsPIC/24EP 120 MHz controller acting as a gateway between the
FPGA and the host PC. Whether with a softcore or an external processor, the
HSDIO control mechanism remains the same, i.e., via a well-defined set of reg-
isters shown as a logic block in figure 5.3 (Regs). The access to these registers
can be done either via MPIF (in case of an external processor) or via Avalon
interface (in case of a softcore processor).

Figure 5.3 shows the internal FPGA logic. Two options are valid: adding
a System-on-a-Programmable-Chip (SoPC) or enabling the external on-board
processor. In both cases the HSDIO control mechanism is driven through the
same register map. Two options are also available for the memory manage-
ment and segmentation, internal and external RAM. Three FIFOs (caches) are
allocated: one “write” buffer and two “read” buffers for the HSDO and the
HSDI samples concatenated with the analog samples respectively. The HS-
DIO/Sampling controller is the main IP responsible for: 1) reading and trans-
mitting the previously downloaded HSDO samples, and simultaneously 2)
capturing both the HSDI samples along with the analog samples.
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The interface to the outside world can be fulfilled in two different (but co-
existent) paths: either via full speed (12 MbpS) USB in the case where the exter-
nal processor is used or via fast Ethernet through the on-chip MAC IP, driven
by the embedded processor in the case of an SoC.

The interconnection between the FPGA and the external processor is im-
plemented via a dedicated 16-bit parallel interface. The MPIF allows device
configuration (including samples download /upload) and status information
collection through a set of registers. Two main operations “Read” and “Write”
are used to access the previously mentioned registers.

Two options are available for RAM selection: internal and external. For sim-
plicity FPGA internal RAM has been used given its parallel access nature and
that the available memory size is enough (following our requirements) in order
to perform the required samples “write” and “read” operations. All available
RAM is equally divided (by three) between one output FIFO and two input FI-
FOs. The output buffer entries consist of the 16-bit HSDO samples and the two
identical input buffers entries consist of the HSDI (four bits) concatenated with
the ADC sample (10 bits). The available RAM is divided into two sections: a)
section to store output samples of size X (X follows the memory type and con-
tains N blocks of samples) and b) section to store input samples of size 2X (2
analog channels, containing 2N blocks of samples). All sections have the same
number of memory blocks N and the block size is dependent on the memory
type (internal or external). Output and input samples are precisely aligned over
time. Writing samples to RAM is done in equally-sized blocks (N), each block is
equal to the cache memory size. Reading samples is also done in equally-sized
blocks (N).
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Analog: The system is equipped with two independent 730 MHz band-
width, 20 MSpS analog channels. The first channel (ADC[0]) is a differential
100 mV peak-to-peak input dedicated for current sensing. The second channel
(ADCJ1]) is a general purpose 3.3V peak-to-peak input. The internal ADC
input range is between 1.5V and 3.5V (2V peak-to-peak). Therefore, input
signals conditioning is required.

Two identical parallel analog-to-digital converters were used, ADC10321 by
Texas Instruments for the analog acquisition. The ADC10321 is a low-power,
low-cost, high performance CMOS pipelined analog-to-digital converter that
digitizes signals to 10 bits resolution at sampling rates up to 25 MSpS (abso-
lute maximum) while consuming a typical 98 mW from a single 5V supply.
The ADC10321 maintains excellent dynamic performance for input signals up
to half the clock frequency. The use of an internal sample-and-hold amplifier
enables sustained dynamic performance for signals of input frequency beyond
the clock rate, lowers the converter’s input capacitance and reduces the num-
ber of external components.

Software

The system’s software is broken down into two layers: the firmware that runs
in the hardware itself and the PC graphical user interface software that orches-
trates all the system’s functionalities.

Firmware: Two options are available for the firmware implementation: a) us-
ing the external processor via the MPIF from one side and USB from the other
or 2) using the FPGA embedded processor via Ethernet interface. In both cases,
the configuration and control of the presented system is done through the reg-
ister map.

PC software: The software interfaces to the presented instrument via either
USB or FE, thus, two flavors are possible. The 1% flavor has been adopted
initially for its simplicity and its fast implementation. This option uses the
on-board processor for the FS USB interface. The Application Programming
Interface (API), written in VS.NET, provides portability and code integration.
A Graphical User Interface (GUI) has been built based on the provided instru-
ment’s API. The PC software also supports batch mode in order to automate
lengthy procedures.
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5.2.2 Generation and Acquisition Methodology

Aligning the digital outgoing signals (HSDO) with the digital incoming signals
(HSDI) and the analog incoming signals is the most important feature of the
presented system. Figure 5.4 illustrates both data synchronization and align-
ment. After downloading samples into hardware, the process is initiated by
setting GO/DONER bit (in a specific register) to 1. The HSDO bits are sampled
out at the rising edge of the programmable synchronization clock CLK_DIV.
The HSDI bits are sampled in at the falling edge of the same clock to ensure
data setup time and thus input data validity. The ADC clock ADCx_CLK is the
complement of CLK_DIV since the analog signal is sampled in at the falling
edge and stored in RAM at the rising edge of the same clock to ensure analog
input data validity. When all bits are sampled out and in, the GO/DONEn
bit is automatically cleared declaring the end of the burst cycle. The sampling
clock is derived from the 120 MHz system clock and configured through a pre-
scalar register. For the ADC timing, data for any given sample is available by
the ADC’s pipeline delay right after that sample is taken. New data is available
at every clock cycle, but the data lags the conversion by the the same pipeline
delay. Data adjustment is done automatically by API.

The above mechanism is orchestrated by the FPGA including clocking, syn-
chronization, alignment and status reporting; all under API control via a spe-
cific set of (control/status) registers.
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5.2.3 Experimental Results and comparison

For the experimental results, a test scenario has been implemented in order to,
at the same time, inspect and validate the synchronization, the data alignment
and the accuracy of the proposed system. For that purpose and as shown in fig-
ure 5.5, two HSDO outputs (O[0] and O[1]) were connected together via 2200 (2
resistors R and the summation output was fed into the 274 analog (AN) input
ADCJ1]. Additional two HSDO outputs, O[2] and O[3], were looped-back to
two HSDI inputs, I[0] and I[1] respectively. For the analog input voltage, it is
calculated using the following voltage divider formula:

R Vo + Vo
Vapcep = (Vojo + VO[l])(R+R) = 0 > 1 (5.1)

Given that Vg and Vyy; are both digital outputs thus their possible val-
ues are either low (L = Vgg = 0V) or high (H = Vpp = 3.3V), the resulting
Vapcpi] voltage cannot be but one of the following values: Vss, Vpp/2 or
Vpp taking into consideration all possible combinations in equation 5.1. For
the digital HSDI inputs, I[0] and I[1] were shorted to O[2] and O[3] respec-
tively and thus two identical pairs are expected to be captured. Figure 5.6
represents a selected window of HSDO (O[3:0] blue traces), HSDI (I[1:0] red
traces) and analog (ADC[1] yellow trace) samples generated and captured at
20 MSpS. The HSDO is a pseudo-random bit sequence generated in software
and downloaded into the instrument’s hardware over USB. The uploaded data
has been exported via API to a comma-separated-values file. The total number
of the generated and acquired samples is 73728 (72K) samples per burst. Four
HSDO outputs, two HSDI inputs and one analog input are shown. ADCJ[1]
is the analog summation result of O[0] and O[1]; I[0] and I[1] are identical
to O[2] and O[3] respectively. All traces have been ported to rail-to-rail scale
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(Vss to Vpp). The presented results show output and input data synchroniza-
tion, alighment and cycle-accurate analog measurement and thus the proposed
system’s requirements and specifications (data synchronization, alignment and
cycle-accurate analog measurement at maximum rate) have been met.

In addition to being compact, centralized, automated, programmable
and portable, the presented system combines features of three different instru-
ments: 1) sampling oscilloscope functionalities (analog input), 2) logic analyzer
capabilities (HSDI) and 3) pattern generator abilities (HSDO) as illustrated in
Figure 5.7 (a). If the synchronization of three different instruments can be
somehow possible, the automatic data alignment is definitely a hassle; the
proposed system provides seamless data synchronization and alignment at a
fraction of the instrumentation cost integrating three different instruments into
a single one as shown in Figure 5.7 (b).

Moreover, in Table 5.1, we present a comparative study covering most of
the recent related work. Many criteria have been selected of that purpose, for
instance: PC interface, instrumentation functionalities including Pattern Gener-
ator (PG), Logic Analyzer (LA) and Sampling Oscilloscope (SO), dependency,
portability, reconfigurability, cost, etc. This comparison has highlighted the
main similarities and differences, and showed the presented system’s efficiency
and points of strength.



5.3. FPGA measurements 59

E Sampling Analog
E Scope
= IE
<
. Logic HSDI Analog & (a)
.r% Analyzer digital DUT
L |2
s
£ Pattern HSDO
E Generator \ )}
2 V/S
Analog / \
Analog &
digital puT |
HSDI
HSDO
J

FIGURE 5.7: Three different instruments solution (a) v/s a single
board 3-in-1 solution: PG, LA and SO (b).

TABLE 5.1: Comparison

| [34] [21] [12] [18] [77]  This work

PC Interface USB PXI USB PCI RS232  USB/FE

PG | no yes no yes no yes
Instrumentation | LA | no no no no no yes

SO | yes yes yes yes yes yes
Dependency none LabVIEW LabVIEW LabVIEW none none
Portable/Compact yes no no no yes yes
Single-board no no no no no yes
General purpose no no no no no yes
Reconfigurable yes no no yes no yes
Open source no no no no no yes
Cost low moderate high moderate  low low

5.3 FPGA measurements

The accuracy and fidelity of the acquisition platform in context refer to how
well it measures the power consumption of the IP core and how closely the
measured values match the actual power consumption. In order to validate the
accuracy and fidelity of the power IP characterization system, the measurement
platform applies a series of test patterns or stimuli to a variety of IP cores and
measures their power consumption. For that purpose we conduct a series of
power consumption acquisitions, we plot the resulting power curves and we
discuss the findings.

Here we describe the measurement setup. High Speed Digital 1/Os (HS-
DIO) are feeding the FPGA as 16-bit input signals and the power consumption



60 Chapter 5. FPGA IP Characterization

measurement is sampled via a high speed differential Analog to Digital Con-
verter (ADC) through a precision shunt resistor Rg. The measured core power
is calculated using equation 5.2 given that the core current is provided by the
instrument’s input signal conditioner using equation 5.3.

Pmeas = VDD-Icore - RS-Iczore (W)/ [VDD - 1V] (5-2)
%(VRQ‘—&- - VRef—)

Leore = 10Rs (A), [Rs = 0.5Q)] (5.3)

ADC is the 10-bit converted value, and Vg.¢, and Vg, are the positive and

negative references respectively. Figure 5.8 reveals the capabilities of the instru-
mentation system where 9 sets of components are measured. Each set consists
of U parallel 8 x 8 multipliers (U ranging from 25 to 400). The 16-bit stimuli is
driving the inputs of the multipliers. The graph reveals four phases of power
levels for each set. Phase 1 only shows static power, where the clock is disabled
and the stimuli signals are at logic 0. In this case, power consumption is min-
imal. Phase 2 exhibits both static and clock power, when the clock is enabled
and stimuli signals remain at logic 0. In this phase, a slight increase in power
consumption is detected. Phase 3 shows both static and dynamic power, when
the clock is enabled and the stimuli signals toggle to logic 1, thus leading to a
single transition. A single power peak is recorded upon the stimuli transition
from logic 0 to logic 1. Finally, phase 4 shows static and dynamic power, when
the clock is enable and stimuli signals are toggling at a maximum switching
rate. The power consumption is at a maximum level for all 9 configurations.

Note that the 9 power traces are identical in shape with different power level
offsets. The tested FPGA has a Vpp core voltage of 1V and a shunt (current
sense) resistor Rg of 0.5Q). The same circuit will be used throughout this work.
It’s also worth noting that the slow slope edges especially in phase 4 are strictly
due to power supply filtering (capacitors) at the DUT FPGA core voltage.

The measurement process is automatically performed under a centralized
software control. To ensure data integrity, both the output stimuli and input
analog samples are synchronously generated, captured and aligned at the in-
strument level by hardware (FPGA). To ensure temperature stabilization, a fan
is placed in close proximity of the FPGA. This hardware setup will be also
used to characterize various IP components and subsequently evaluate our
proposed work (chapters 6 and 7 respectively).
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FIGURE 5.8: Power traces of 9 sets of parallel multipliers during 4
different stimuli phases.

5.4 Conclusion

In this chapter we have presented an automated and centralized data genera-
tion and hybrid acquisition system. First of all, we have described its various
modules: high-level hardware covering the internal FPGA logic (including in-
terfacing options) and the digital and analog parts; and the software aspect cov-
ering both the firmware alternatives and the PC interfacing options. The gener-
ation and acquisition methodology has been detailed revealing data flow pro-
cedures and relevant information extraction. Experimental results have been
exposed using a special hardware setup and a specific testing scenario. The
collected data showed equally important data synchronization, data alignment
and cycle-accurate analog measurements using pseudo-random bit sequences
at the HSDO. Also, we have compiled a comparative table showing main dif-
ferences between the presented system and related work. A series of FPGA
measurements have been also conducted proving the capabilities of the pre-
sented generation and acquisition system.

The presented characterization platform is used throughout this work for
collecting power measurements from FPGA-based target IPs. The power infor-
mation will be subsequently used for later data processing and training data
sets creation for machine learning techniques. The main purpose is the ability
to estimate power consumption in early design phases or at runtime, and to
subsequently create power consumption models. Chapter 6 elaborates more
on that subject.
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Chapter 6

Power Model Generation

6.1 Introduction

Power or energy system modeling is the process of building abstract models
to perform analysis and subsequently estimate power consumption of digital
circuits according to specific criteria. The power model generation process typ-
ically involves several steps, including power measurement, model parameter
estimation, and model validation. Accurately measuring the power consump-
tion of an FPGA design is essential for generating reliable power models.

In this work, the proposed power consumption estimation model is based
on machine learning and specifically on supervised neural networks [23]. As
defined earlier, Machine Learning (ML) is the process of developing Artificial
Intelligence (AI) in computers, where the generated models are trained using
appropriate learning algorithms and training data. For many machine learn-
ing techniques, especially the ones related to supervised methods, the con-
struction of the training data highly affects the quality and accuracy of the
derived model. In this chapter we present an automated training set construc-
tion methodology where data is synchronously collected from both hardware
and software. The complete design and data flow including the interaction
between software and hardware, are thoroughly described. As a direct ap-
plication, this work targets the construction of an FPGA-based circuit power
modeling for subsequent early power estimation, or, online power monitor-
ing. The constructed artificial neural network model is an MLP trained using
real measurement data sets extracted using a dedicated in-house designed and
implemented generation and acquisition platform. The designated application
falls under the power optimization area, becoming nowadays a major concern
for most digital hardware designers, particularly in early design phases and
especially in limited power budget systems. The power optimization approach
in context is also extended in order to support online power management.

This chapter is organized as follows: in section 6.2 we present the auto-
mated training data sets construction that includes a brief description of the
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measurement system and an elaboration on the training sets. We also describe
the stimuli generation algorithms. Section 6.3 reveals the proposed learning-
based power model including the automated work flow, and the software ar-
chitecture and interface. In section 6.4, as a proof of concept, we implement
the power estimator’s neural network in FPGA and we discuss the hardware
usage and the realtime performance. Finally we conclude in section 6.5.

6.2 Automated Training Data Sets Construction

Automated training data set construction is a crucial aspect of machine learn-
ing and artificial intelligence. It involves creating high-quality training data
sets that can be used to train and improve machine learning models. Auto-
mated training data set construction involves using software tools and algo-
rithms to extract relevant information from various sources and compile it into
a single data set. These tools can also be used to clean and pre-process the data,
ensuring that it is of the highest quality.

For the work related to training data construction and generated models, in
[49], authors describe a method to quantify the effect of the training data on
the derived machine learning model. Their work includes the quantification
of the variation exhibited by several algorithms using permutations of a given
training data set. As a result, they demonstrate that this kind of variation can
be significant and that training data ordering is an important consideration.
However, in [53], authors analyze how the accuracy of prediction will vary with
the different combinations of training and test data. The mean absolute error
is calculated by comparing the actual values from testing data and predicted
values from the model.

There are several benefits of using automated training data set construction,
including:

¢ Improved accuracy: Automated training data set construction ensures
that the data used to train machine learning models is accurate and rel-
evant, which can result in better performance and more accurate predic-

tions.

¢ Increased efficiency: By automating the data set construction process, or-
ganizations can significantly reduce the time and cost involved in creating
high-quality training data sets.

* Scalability: Automated training data set construction can be easily scaled
to handle large amounts of data, which is particularly important when
dealing with big data applications.
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For the presented work and in order to build an efficient machine-learning-
based prediction system, training sets have to be carefully constructed. In our
case, the collected data is derived from two different sources: the stimuli gener-
ation algorithms and a hardware data acquisition system providing the power
consumption values collected after applying the generated stimuli on a given
IP.

6.2.1 Data acquisition system

As described in chapter 5 and in order to collect precise power information,
a reliable measurement platform is required. For that purpose, we have pro-
posed in a previous work an FPGA-based Automated and Centralized Data
Generation and hybrid Acquisition System (ACDGAS) [67].

6.2.2 Elaboration of the training sets

Training data sets are essentially the foundation upon which machine learning
algorithms are built. These data sets are used to teach machine learning mod-
els to recognize patterns, make predictions, and perform various other tasks.
Therefore, the quality of the training data sets is directly proportional to the
performance of the machine learning model.

In order to build an efficient machine-learning-based prediction system,
training sets have to be carefully constructed. In our case, the collected data
is derived from two different sources: the stimuli generation algorithms and a
previously presented hardware data acquisition system providing the power
consumption values collected after applying the generated stimuli on a given
IP.

Regarding the stimuli generation shown in Figure 6.1 a), two sets of PLH
and SR of H and S values are respectively used to generate M (= H x S) dis-
tinct combinations of [PLH, SR] pairs. The aforementioned combinations are
coupled with N control signals or operating modes (denoted as CS/OM or
simply CM) thus leading to 2N states or modes. Each permutation of the CM
signals is appended to I pairs of [PLH, SR], subsequently generating one stim-
uli matrix as shown in Figure 6.2. The corresponding training data size D is
equal to M + I. All generated sets belong to specific ranges and are randomly
shuffled. Each pair will eventually generate a bit sequence using a well-defined
stimuli generation algorithm as shown in Figure 6.2, where the inputs are PLH,
SR and the bit width is L. The generated pairs of [PLH, SR] will be sequentially
applied to I-bit dash-marked inputs (-.—.—) (Figure 6.1 a) feeding the FPGA and
resulting in D matrices of stimuli signals. For the hardware-based section, D
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FIGURE 6.1: a) Generation and pairing of PLH, SR and stimuli
coupled with CM - b) Training data format.

power consumption measurement sets corresponding to the aforementioned
stimuli signals are collected and appended to the initial software-based, [CM,
PLH, SR] combinations and subsequently forming the complete sorted train-
ing data for the power model. Figure 6.1 b) reveals the structure of the D-entry
training data set with dash-marked inputs ( ) and dot-marked outputs (...).

Stimuli bits generation

Stimuli generation refers to the process of creating binary codes or digital sig-
nals that can be used to stimulate or trigger a response in a specific target de-
vice. The subsequently generated bit sequence can be deterministic or random.
In deterministic bit sequence generation, the sequence is generated according
to a specific rule or algorithm, which produces the same output each time the
process is run. In contrast, random bit sequence generation produces a se-
quence of bits that appear to be randomly generated and do not follow a spe-
cific rule or algorithm. Here, the bit sequence construction process used for
the stimuli matrix generation, where both PLH (percentage of 1s) and SR (per-
centage of transitions) are compatible and relative to the bit width L, may be
implemented using different alternatives. In this work we propose a two-layer
deterministic bits generation mechanism where the sequence is generated ac-
cording to a specific rule or algorithm, and produces the same output each time
the process is initiated with the same parameters. The bottom layer, denoted as
Iterative Bit Sequence Generation (IBSG), is a two-step procedure:

1. It generates a sequence of alternating bits that fulfill the total number of

required transitions minus one, and
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FIGURE 6.2: Parametric bit sequence generation using RS-
BSG/IBSG algorithm.

2. It pads the generated bits with two contiguous sequences of (the remain-
ing) zeros and ones, thus adding one final transition and fulfilling the

sequence’s requirements.

The upper layer, denoted as Recursively Segmented Bit Sequence Generation
(RSBSG), leverages the aforementioned iterative linear algorithm by employ-
ing it as the core bit generator in a recursive segmentation approach. Instead
of generating one single sequence with the required parameters, it recursively
generates and concatenates multiple bit-segments by evenly distributing
the PLH ratios to each segment while keeping the segments” SR parameter
constant. Special consideration had to be applied to the bits” values of two
neighboring segments when being attached together, as to avoid the undesir-
able side-effect of added transitions at the segment boundaries. In summary;,
the proposed algorithm ensures the [PLH, SR] pairs” compatibility and fulfills
the stimuli signal’s requirements while achieving a high degree of entropy
in the generated bits (adequate SR distribution and minimal bit-clustering).
Figure 6.2 reveals the RSBSG/IBSG algorithm with a sample sequence derived
from specific parameters.

6.3 Proposed model

As mentioned earlier, the proposed data set consists of thousands of patterns
of I pairs (I x 2) inputs representing matches of (SR, PLH) coupled with N
CM signals (g, b, etc.), in addition to the output average power. The proposed
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FIGURE 6.3: Neural network architecture showing training data,
layers, neurons and activation function (SeLU).

neural network architecture is compiled under the TensorFlow /Keras Python
library. As shown in Figure 6.3 (right-hand side), it consists of the input layer
fed by N binary CM inputs and I pairs of SR and PLH, one hidden layer and
one output layer representing the estimated (average) output power. The num-
ber of hidden neurons has been optimized following each test case providing
a trade off between prediction speed and accuracy. The Scaled Exponential
Linear Unit (SeL.U) is chosen as the activation function due to its self normal-
izing nature and its high learning robustness [50]. The training set size repre-
sents 80% of the total data resulting in thousands of entries, out of which 80%
are used for training and 20% for validation. The remaining samples are re-
served for evaluating the proposed neural network model, and represent 20%
of all available patterns. The network optimizer is selected to be Adam that is
a replacement optimization algorithm for stochastic gradient descent for train-
ing deep learning models [80]. The adopted training loss metric is the Mean
Squared Error (MSE) while the evaluation metrics are the Mean Absolute Er-
ror (MAE) and the Mean Absolute Percentage Error (MAPE). The number of
training epochs is optimized to be 25 rounds of 1 batch per iteration. An epoch
refers to a complete pass through the entire training data set during the learn-
ing process.

The complete automated work and data flow is illustrated in Figure 6.4. For
that purpose, a specially developed software tool interfaced to both the mea-
surement system’s Application Programming Interface (API) and to Python in-
terpreter, is orchestrating the stimuli generation, the acquisition system and the
power model generation (Figure 6.5). This proposed process encapsulates the
following sequential steps:
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FIGURE 6.4: Automated work and data flow showing data gener-
ation and acquisition on the left-hand side and ANN training and
power modeling on the right-hand side.

1. Generation of CM (CS/OM), [PLH, SR] tables and combinations, and re-
sulting stimuli matrices.

2. Generation of stimuli files, creation of subsequent ACDGAS batch-job

and execution.

3. Collection of power consumption samples (in hardware) and construc-
tion of training data sets.

4. Data normalization, neural network compilation, training and evalua-

tion.

The proposed layered software architecture shown in Figure 6.5 delivers a
fully automated process for IP characterization. It provides a solid and syn-
chronized interaction between the various system modules such as: graphi-
cal user interface, stimuli construction, control signals coupling, bit sequence
generation, measurement platform interface, training data construction, power

modeling and evaluation.
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FIGURE 6.5: Software layers going from graphical user interface
to the hardware interface.

6.4 Hardware implementation

As discussed in chapter 4 the proposed power consumption modeling and esti-
mation covers both offline and online domains. For the online power manage-
ment solution, implementing an artificial neural network (the power model) in
FPGA is becoming increasingly important especially if the IP circuit is resid-
ing inside of the same FPGA. Moreover, FPGAs can be used to perform real-
time processing, making them suitable for applications requiring rapid and live
decision-making.

Traditionally, power consumption monitors (also known as current sen-
sors), whether built-in or external, measure the total consumed energy of the
FPGA'’s core and cannot differentiate between various co-existing IPs” con-
sumption. In general, these sensors operate over the Power Management Bus
(PMBus). The PMBus is a variant of the System Management Bus (SMBus)
which is targeted at digital management of power supplies. It is a relatively
low speed, two-wire serial communication protocol, based on Inter-Integrated
Circuit (I>C) [76]. This also applies to the voltage/frequency controllers (vari-
able/configurable regulators/PLLs/VCOs), also operating over the same
PMBus. That said, and as an undesirable effect, this scenario injects delays in
the power monitoring and subsequent management system’s response. For
instance, a PMBus clocked at 400 KHz (fast mode) produces, at best, a latency
of 300us per one iteration, assuming no (embedded) software overhead is
present [26].

Implementing an artificial neural network (ANN) inside the FPGA can be
done either by software via an embedded processor or by hardware using a



6.5. Conclusion 71

TABLE 6.1: ANN hardware implementation: usage and latency.

Bits per iteration | Hidden neurons Initial interval (cy) Latency (cy) DSP FF  LUT
4 512 926 12 6,104 11,936
512 8 512 978 12 6,389 11918
16* 850% 1,362 12 6,396 11,926
4 1,024 1,438 12 6,105 11,938
1024 8 1,024 1,559 12 6,218 11,891
16 1,024 2,023 12 6,226 11,899

dedicated digital circuit implementation [78]. In order to accelerate the pro-
posed ANN and subsequently eliminate its prediction latency effect, the hard-
ware implementation is a must. This latter can be pipelined while processing in
parallel and in real-time. However, a trade off between FPGA logic usage and
prediction accuracy/speed is inevitable. Table 6.1 shows the neural network
usage and latency (in cycles) when implemented using 4, 8 and 16 hidden neu-
rons respectively. To provide additional implementation flexibility, at the input
layer, data are scanned in batches of either 512 or 1024 bits per iteration in
order to extract PLH and SR and subsequently estimate power consumption.
Processing at 100 MHz, the recorded latencies show that the neural network
is performing in real-time except for the 16 (*) hidden neurons version when
operating in 512 bits per iteration. In this case the initial interval cycles sur-
pass the number of bits per iteration. The recorded power estimator latencies
(< 10us for 512 bits and < 20us for 1024 bits), compared to most standard
communication-based overhead, showed an improvement of above 90%. The
target FPGA used is the AMD/Xilinx Artix-7 (xc7a35tftg256-2) under the High-
Level Synthesis (HLS) tool provided by Vitis HLS 2022.2 using an off-the-shelf
neural network IP.

6.5 Conclusion

Machine learning-based power consumption estimation is a hot topic for digi-
tal hardware designers. For instance, it can be used to explore various design
choices very rapidly in the design process. It can also be used in a given circuit
to efficiently predict and then accurately manage power at run-time. Therefore,
online power monitoring and subsequent management is becoming a hot topic
since it provides on-the-fly energy optimization.

In this chapter, we leverage the machine learning techniques to establish
a novel neural-network-based power consumption model and estimation ap-
proach for IPs in FPGAs. The proposed model is capable of providing fast
and accurate average power estimation by just specifying the control signals
and the inputs characteristics (PLH and SR) of a given IP when dealing with
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the offline domain. For the online management, we estimate the power con-
sumption in-situ and in real-time by just providing the most energy-significant
modes of operation coupled with the input activity of individual FPGA IPs.
The complete work flow is presented, covering the automated software control,
the measurement system and the description of the machine learning training
sets. We also proposed an efficient neural network model to be evaluated in the
upcoming chapter.

Overall, power model generation for FPGA IPs is a critical aspect of FPGA
design that enables the development of energy-efficient systems. By accurately
estimating the power consumption of FPGA designs, power models help de-
signers optimize power consumption and improve the performance of FPGA-
based systems. In the following chapter, we demonstrate that the resulting
power estimation shows highly accurate results with a minimized prediction
mean absolute percentage error.
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Chapter 7

Validation, Results and

Applications

7.1 Introduction

The ultimate goal of any research framework is to produce valid and reliable
results that can be used to advance knowledge and inform decision-making.
This chapter is a critical component of any research project, as it focuses on
the process of validating the research findings and presenting the results in a
clear and concise manner. In this chapter, we provide a detailed description
of the methods used to validate the data, as well as an in-depth analysis of
the obtained results. The validation process ensures that the data collected
is accurate, reliable, and consistent. The results presented in this chapter are
essential for ensuring that this research work meets the highest standards of
quality and rigor, and for demonstrating its value and impact to the broader
scientific community.

This chapter is organized as follows: in section 7.2 we present the experi-
mental results covering both the offline and online areas of power estimation.
For the offline domain, the results include FPGA IPs representing data path
only, and FPGA IPs representing finite state machines in addition to the data
path. For the online alternative, the results cover the realtime power estima-
tion of FPGA IPs characterized during the most significant (and power influen-
tial) modes of operation. Furthermore, we investigate fault detection methods
based on the online power estimation using profiling. In section 7.3, we assess
the generated power models by first presenting the machine learning curves in-
cluding training and validation results, and by revealing the IPs resources and
power estimation performance in addition to fault detection proof of concept.
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7.2 Experimental results

In order to evaluate the proposed power consumption estimation model, it is
essential to conduct experimental tests. We have applied our methodology on
several FPGA circuits and collected power information in order to build the
power model and record the obtained results. An off-the-shelf Xilinx Artix-7
(xc7a35tftg256-2) FPGA running at 100 MHz was used in this context. Here we
should mention that, in the following test cases, the dynamic power is domi-
nant. The presented results cover both offline and online power consumption
scenarios. This latter was also extended to cover fault detection technique.

7.2.1 Offline test cases

Offline power estimation of FPGA IP refers to the process of predicting its
power consumption before it is physically implemented on the device. The
purpose of offline power estimation is to optimize the power efficiency of the
FPGA design by identifying potential power-hungry areas and adjusting the
design accordingly. This can help to reduce the power consumption of the
FPGA design and improve its overall performance and reliability. The offline
power estimation covers the following targets: 1) data path only and 2) state
machine and data path.

Data path only

In order to demonstrate the feasibility of the approach, we selected different
FPGA IP components as case studies. First, basic multipliers, then Multiply
and ACcumulate (MAC) units and finally Optical Transport Unit Data Align-
ers (OTU-DA) have been proposed since they feature different characteristics
in terms of logical resources and internal connections. Each IP has a distinct
number of resources, therefore it has different power levels. A variable num-
ber of identical IPs” instances has been grouped together in an attempt to place
the consumed power of various IP groups in the same range. This had to be
done to adapt to the instrument’s current limit setup and calibration.

The output wires of each component were not routed to FPGA pins and
thus ignored. All IPs were tested under the same neural network architecture
excluding the number of hidden neurons. Each component has been charac-
terized by generating its input signals according to three stimuli criteria (PLH,
SR and L = 4Kbits). Then, the average output power per stimuli matrix has
been collected. Note that 10,000 matrices of 16-bit stimuli have been consid-
ered in total, where each matrix encapsulates 4K stimuli. Figure 7.1 represents
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FIGURE 7.1: Generic FPGA design and corresponding intercon-
nects and I/0Os.

a generic group of IPs in which the inputs are connected to stimuli and the

outputs are ignored.

Multipliers example: 75 instances of 8-bit multipliers (f(A[7 : 0], B[7 : 0]) =
A x B) were instantiated with all having the same inputs. Note that the size of
inputs is limited due to the number of I/O pins that are accessible on the mea-
surement platform. In this first example, DSP blocks that are available in the
FPGA have not been used. The stimuli generated by the proposed methodol-
ogy are fed in parallel into the multipliers inputs. The acquired analog samples
represent the IPs consumed power while their digital inputs were toggling.

MACs example: 50 instances of 8-bit MAC units (f(A[7 : 0],B[7 : 0]) =
f(A,B) + (A x B)) were instantiated with all having the same inputs. Two
MAC flavors were tested: one without DSP blocks and one with DSP.
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FIGURE 7.2: FPGA IP circuit with 4 control signals and 2 DPs.

OTU data aligners example: By definition, an OTU-DA compares incoming
data from a deserializer unit to a specific Frame Alignment Signal (FAS) and
synchronizes it accordingly. When the FAS is detected, the OTU-DA signals
a lock detection [1]. This specific target, in addition to being an off-the-shelf
available IP, has been selected as it provides a real use case with a combina-
tion of various logic components such as accumulators, shifters, comparators,
registers, etc. with the exception of multipliers. In this example, 100 instances
of 16-bit (D[15 : 0]) OTU-DA units were instantiated with all having the same
inputs.

State machine and data path

Figure 7.2 represents a generic FPGA IP circuit with 4 control signals (leading
to 2* = 16 states) and 12 data path inputs. In order to obtain diversified com-
binations subsequently leading to additional states, the data path is divided
into two sections DP1 and DP2. Each section is defined by a specific function,
fi(a,b) and f>(a, b) for DP1 and DP2 respectively. Each function includes arith-
metic and/or logical operations. The control signals are adequately chosen as
follows: reset (RST), clock enable for DP1 and DP2 (CLK_EN1 and CLK_EN?2
respectively) and frequency selection between CLK and CLK/2 (F_SEL). Fig-
ure 7.3 represents another FPGA IP circuit with 4 control signals (leading to
2N = 16 states) and 12 data path inputs. Two IP circuits are considered as test
cases: IP1 with fi(a,b) and f(a,b), and IP2 with f{(a,b) and f}(a,b) for DP1
and DP2 respectively. The aforementioned functions are detailed in Table 7.2
and Table 7.3.
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FIGURE 7.3: Generic FPGA design and corresponding intercon-
nects and I/Os.

7.2.2 Online test cases and application

Online, or real-time, power estimation of FPGA IP refers to the process of con-
tinuously monitoring its power consumption during its operation. The pur-
pose of online power estimation is to provide designers with real-time feed-
back on the power usage of the FPGA design, allowing them to optimize the
power efficiency of the IP block while it is in operation. This can help to ensure
that the design stays within its power budget and remains reliable, while also
enabling designers to make adjustments and optimize the design further based
on real-world operating conditions. As a test case, we hereby present:

1. A black-box IP online power monitoring and estimation, and

2. A realtime FPGA IP input fault detection application using online power

monitoring extension coupled with power profiling.
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Black-box IP

Since the proposed methodology is not aware of the FPGA IP under monitor-
ing (functionality, components, interconnections, etc.) and in order to gener-
alize our real-time power estimator, we have selected a black-box FPGA IP to
put under test. A black-box IP is a digital circuit whose functionality and inter-
nal connections are masked. As stated earlier, the online power estimator relies
only on the extracted switching activity of the IP’s data path inputs while being
coupled with a certain number of operation modes. These latter can be either
extracted from the control signals of the same IP’s state machine or simply pro-
vided by the designer. The black-box IP in context has 12 inputs and 16 modes
of operation encoded over 4 bits. It has been tested under two different power
estimation models, each generated using a specific neural network implemen-
tation: one with 4 hidden neurons and one with 8. The 16-neuron alternative
(and above) has been discarded due its relatively high latency and complexity.

Fault detection methodology

Realtime fault detection in digital circuits using power estimation involves
monitoring and analyzing the power consumption of a circuit to identify po-
tential faults or anomalies. By continuously monitoring the power consumed
by different components of a digital circuit, it is possible to detect abnormal
power patterns that may indicate the presence of faults, or in some cases, in-
tentional meddling. One of the main mechanisms closely related to realtime
power-based fault detection is the power profiling.

To begin with, we list and investigate some of the recent related work. In
[71], authors use FPGA internal sensors to detect high voltage drop events at
the core supply, and subsequently to monitor dynamic voltage changes. These
events indicate fault/attack possibility. The main drawback resides in the ac-
curacy of such internally-implemented sensors. Authors in [9] investigate the
possibility of FPGA designs power profiling using direct board-level measure-
ments via built-in current sensors. Multiple design parameters were selected
and varied in order to detect their influence on power consumption. How-
ever, the relationship between those various parameters and their combined
effect on power remains unidentified. In [51], authors perform both hardware
and software power profiling of FPGA systems. An incremental profiling ap-
proach is used starting by simple components and up to multi-core architec-
tures. The main limitation remains in the relatively low measurement sam-
pling rate (10Hz) that could result in power information loss. Authors in [17]
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propose a monitor for detecting timing violation-based fault attacks. The mon-
itor in context, detects frequency or voltage manipulations using internal ring
oscillators. The main drawback is the oscillation frequency: high-speed pro-
vides better resolution but consumes more power while low-speed requires
less power but may not be able to detect faults properly and thus leading to
false alarms.

In the proposed fault detection methodology, shown in Figure 7.4, we rely
on both the (previously described) real-time power consumption estimation
and a power profiling structure. This latter is derived from both input ac-
tivity limits and power thresholds. We detect abnormal power consumption
scenarios with the ability to individually pin-point the defective (or meddled)
DP input using fault scores. The input fault scores in context, represented in
a moving window, serve as an indication of possible fault inference. In this
case, the previously described power monitor, in addition to relaying power
information to tuning/control mechanisms such as DVFS, is now extended to
accommodate a power profile. This extension allows the detection of abnormal
input activities closely related to out-of-range power consumption patterns.

FPGA
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FIGURE 7.4: Fault detection mechanism of FPGA IP using online
power monitoring and power profiling.

Power profile: In an online power consumption monitoring application, a
power profile refers to a detailed representation of the power consumption be-
havior of a digital circuit (FPGA IP) over time. By analyzing the power profile,
it is possible to identify abnormal patterns or corruption that could indicate the
presence of a circuit fault or an attachment, such as a malicious hardware com-
ponent or an attack. The proposed power profile, shown in Figure 7.5, where
M(x) is a given operating mode x and # a given data path input, consists of the
following elements:

e Switching rate limits matrix, denoted as SR(x) (7)1 and SR(x) (1) pmin
and shown in Figure 7.5 (a).
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FIGURE 7.5: FPGA IP M(x) power profile content: (a) SR limit (b)
PLH limit and (c) Power matrices.

e Percentage of level high limits matrix, denoted as PLH(x)(#)pax and
PLH(x)(n)min and shown in Figure 7.5 (b).

* Average power and threshold matrix, respectively denoted as P(x)ayg
and P(x)ry, and shown in Figure 7.5 (c).

e P(x)ry is a threshold to compare the power difference against and is
shown in Figure 7.5 equation (d).

In matrices (a) and (b), n goes from 0 to N — 1 (N being the total number of
inputs). Here we should note that all the values representing the power pro-
tile are extracted and/or calculated from the characterization phase (involving
high accuracy measurements) and the training data sets previously described
throughout this work.

Detection algorithm The proposed detection mechanism, shown in Algo-
rithm 1 simultaneously scans the activity of all data path inputs in a desig-
nated operation mode M(x) after detecting an abnormal power behavior. The
process starts by acquiring the average estimated power P(x)g and comparing
it against an expected power value P(x) 4o, retrieved from the power profile.
This comparison has a tolerance threshold of P(x)y, also retrieved from the
same power profile. If discrepancies are detected between the estimated and
stored power consumption values, the algorithm, simultaneously checks the
activity of all data path inputs to make sure they all fall within the character-
ized limits. If any of the inputs activity is off limits, its corresponding fault
score is incremented or otherwise decremented. This creates a, per-input, mov-

ing fault score window over time as shown in Figure 7.6. F(f)g(n) denotes a
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snapshot of the fault score of input n at time ¢. It’s also possible to accumulate
the inputs fault score at a given moment m in time, thus providing an assess-
ment for a given operation mode M(x) at that time.

Algorithm 1: High-level, per-mode fault detection scanner.

Data: x is a designated OM, n is a selected input (out of N inputs), Pr is
the estimated power.
Result: Scan all inputs of mode x and update corresponding fault
scores F(ty)s(n)
Pp < GetEstimated Power(x); > Read estimated power
if (Absolute(Pg — P(x) pvg) > P(x)7y) then

for(n< 0toN—1)do
if (SR(x) is within (SRpgiy, , SRp1ax) limits) and
(PLH(x) is within (PLHpy, , PLHpay ) limits) then
| Decrement(F(tyx)s(n)); > Decrement fault score
else
| Increment(F(ty)s(n)); > Increment fault score
end
end
else
for (n < 0toN—1) do
| Decrement(F(ty)s(n)); > Decrement fault score
end
end

7.3 Model assessment

Power modeling is an essential aspect of Electronic Design Automation (EDA).
However, accurately assessing the results of power modeling is equally im-
portant to ensure that the predictions are reliable and can be used for design
optimization. This is where power modeling results assessment comes in.
It involves comparing the predicted power consumption values with the ac-
tual power consumption values of the circuit or system once it is physically
implemented, and analyzing the differences between them. Additionally,
power modeling results assessment can provide valuable insights into the
performance and efficiency of the design, helping designers to optimize the
power consumption and ensure the reliability of the final product. The fol-
lowing assessment involves both machine learning curves, and, resources and
performance analysis.
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FIGURE 7.6: Per-input, fault score moving window and corre-
sponding accumulation.

7.3.1 Learning Curves

In machine learning, learning curves are graphical representations of the rela-
tionship between a model’s performance and the amount of data used to train
it. Typically, the X-axis represents the amount of training data, while the Y-axis
represents the performance metric, such as accuracy or loss. Learning curves
can be used to evaluate the performance of a model and to help diagnose and
address potential problems. Learning curves can be used to make decisions
about model training, such as whether more data are necessary or if the model
is suffering from overfitting or underfitting. Additionally, learning curves can
be used to compare the performance of different models or to evaluate the ef-
fectiveness of different feature sets.

Data path only

Figures 7.7 (a), (b), (c) and (d) represent the training loss and the MAPE of
both data training and model validation for the different IPs (multiplier, MAC,
MAC DSP and OTU-DA) respectively. The loss metric is selected to be the
MSE and the MAPE represents the power consumption prediction/estimation
percentage error.

State machine and data path

Figure 7.8 represents the training loss and the MAPE of both data training and
model validation for the IP in context. The loss metric is selected to be the MSE
whereas the MAPE represents the power consumption prediction/estimation
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FIGURE 7.7: Learning curves for each component showing train-
ing loss and MAPE v /s number of epochs.

percentage error. Both the loss and MAPE are displayed on the vertical axis of
each graph. The number of training iterations denoted as Epochs is represented
on the horizontal axis. As the number of epochs increases, both the prediction
loss and the MAPE decrease drastically, proving the efficiency of the proposed
architecture. Beyond 25 epochs, the numbers hit a steady state.
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Online estimation

Figure 7.9 represents the training loss and the MAPE of both data training and
model validation for the different power estimators. The 4 hidden neurons ver-
sion is shown in (a) whereas the 8 hidden neurons model is shown in (b). Both
the MSE and MAPE are displayed on the vertical axis of each graph pair re-
spectively. The number of training iterations denoted as Epochs is represented
on the horizontal axis. As the number of epochs increases, both the predic-
tion loss and the mean absolute percentage error decrease drastically, proving
the efficiency of the proposed architecture. Beyond 25 epochs, the training loss
(MSE) and the validation (MAPE) values hit a steady state.

7.3.2 Resources and performance results
Data path only

Table 7.1 combines the IP resources utilization (LUTs, FFs and DSPs), the con-
sumed power (static, dynamic range and maximum total power in mW), the
number of hidden neurons and the power model evaluation metrics (MAE and
MAPE). The power values shown in the table correspond to a single IP. They
are obtained by dividing the power of multiple instances of the same IP by

the number of its corresponding instances. The minimum dynamic power is
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FIGURE 7.9: Black-box IP learning curves, showing training loss
and MAPE v/s number of epochs.

recorded when the combination of [PLH, SR] results in low stimuli activity.
The maximum dynamic power is detected when high stimuli activity occurs.
The MAE values designate the absolute error in raw power levels ranging be-
tween 1 and 3, out of 1024 total levels (10-bit resolution ADC), while the MAPE
is the estimation absolute percentage error ranging between 0.25% and 0.50%.
Both MAE and MAPE metrics evaluate the average power consumption of a
complete group, encapsulating multiple instances of the same IP.

As an observation, the proposed power modeling methodology is equally
efficient on LUT- and DSP-based IP. The experimental results show fast and
very accurate estimation values when applied to a variety of target IP compo-
nents. This proves the robustness as well as the coherence of the presented neu-
ral network’s architecture, and subsequently, the high adaptivity of the power
consumption estimation model.

State machine and data path

Table 7.2 combines the data path functions, the IP resources utilization (LUTs,
FFs and DSPs), the estimated average power consumption range and the power
model evaluation metrics (MAE and MAPE). The MAE values designate the
absolute error in raw power levels ranging between 0.85 and 1.55, out of 1024
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TABLE 7.1: Performance results and power information.

Multiplier MAC MAC (DSP) OTU-DA

LUT 69 87 6 18

IP Utilization FF 16 32 16 36
DSP n/a n/a 1 n/a
Avg. static (mW) 0.37 0.5 0.26 0.25
Min. dynamic (mW) 0.40 0.69 0.25 0.06
Max. dynamic (mW) 0.64 0.96 0.34 0.09
Max. total (mW) 1.01 1.46 0.60 0.34

Hidden neurons 8 16 8 16
Prediction MAE 2.76 3.01 1.57 1.17

Prediction MAPE 0.45% 0.47% 0.40% 0.25%

total levels (10-bits resolution), whereas the MAPE is the estimation absolute
percentage error being under 1%. Figure 7.10 shows multiple random states for
IP1 along with their respective measured and estimated power consumption
levels in mW. Each permutation of the control signals, coupled with the input
activity of the data path, yields to a functional state with a specific power level.
For a given state, the power may vary following the data path input activity.
For instance, a specific value of the control signals leads to a functional state
with variable power levels depending on the data path input activity (PLH
and SR). Subsequently, we may notice different average power values for the
same functional state. The estimated power is represented by the maximum
and minimum average levels following the £ percentage error.

TABLE 7.2: Resources and performance results.

IP1 IP2
, a® + b? 2[a:b] x (2[a:b] —1))/2
Data path 1: fi, fy (Pythagorean formula) (H(eiagor]ml r(lu[rnbels for)rznula)
| (@) @ (a® - 1P a:bl([a:b]>+1))/2
Data path 2: f5, f; ((Rando)m f(()rmula)) (g\EIagic] <s[quar]e forn?l)ula)
LUT 1361 128
Resources FF 25 25
DSP n/a 30
Min. avg. power 14 mW 14.13 mW
Max. avg. power 27.8 mW 29.65 mW
MAE 0.85 1.53
MAPE 0.50% 0.84%

Online estimation

Table 7.4 combines the IP usage (LUTs, FFs and DSPs), the estimated average
power consumption range (minimum and maximum) and the power model
evaluation metrics (MAE and MAPE) for 4 and 8 hidden neurons respectively.
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FIGURE 7.10: IP1 per-state measured v/s estimated power con-
sumption.

The MAE values designate the absolute error in raw power levels ranging be-
tween 6 and 6.67, out of 1024 total levels (10-bit resolution). The MAPE is the
estimation absolute percentage error being less than 1.5% for both cases. With
the 8 hidden neurons model an estimation improvement of 16% is recorder
over the 4-neuron alternative model. As an observation, the proposed power
estimation methodology is highly efficient on LUT- and DSP-based IP circuits.
The experimental results show fast and very accurate estimation values when
applied to black-box IPs. This proves the robustness as well as the coherence of
the presented neural network’s architecture, and subsequently, the high adap-
tivity of the presented online power monitoring technique.

Figure 7.11 shows multiple unsorted operation modes for the black-box IP
along with their respective measured and estimated power consumption levels
in mW. Each permutation of the OM bits, coupled with the input activity of
the data path, yields to a functioning mode with a specific power level. For in-
stance, a specific value of the OM bits leads to an operation mode (spread over
128 samples) with variable power levels depending on the data path input ac-
tivity (PLH and SR). Subsequently, we may notice different average power val-
ues for the same operation mode. The estimated power is represented by the
maximum and minimum average levels following the & prediction percentage

error. In Figure 7.11 (a), two neighboring operating modes are detected with
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TABLE 7.3: Resources and performance results.

IP1 P2
Data path 1: fi, f] w . (axb+a®) @ (axb—b)
(Central polygonal series) (Random)
3[a:b]>—[a:b] [a:b]7—[a:b]
Data path 2: f,, f} Tz R
(Pentagonal series) (Triangular series)
LUT 132 909
Resources FF 25 25
DSpP 30 10
Min. avg. power 13.6 mW 14.5 mW
Max. avg. power 27.34 mW 32 mW
MAE 1.23 1
MAPE 0.76% 0.58%

TABLE 7.4: Resources and performance results for black-box IP.

Black-box IP
LUT 14296
IP utilization | FF 3761
DSP 50

Min. avg. power (mW) | 25.00
Max. avg. power (mW) | 94.50

) ) 4 neurons 6.67
Estimation MAE 8 IOUTONS .00
Estimation MAPE 4 neurons 1.55%

8 neurons 1.30%

very close power levels, yet the estimator was able to differentiate and to prop-
erly estimate the corresponding power consumption.

Fault detection: proof of concept

In order to evaluate the proposed fault detection methodology, it is essential
to conduct experimental tests. Figure 7.12 (a) represents a black-box IP with
input fault injection option through a meddler circuit. This latter is shown in
Figure 7.12 (b) where a Free Running Counter (FRC) is optionally XORed with
a number of inputs. Fault injection refers to a deliberate and controlled test-
ing technique that can be used to evaluate fault detection methodologies. It
involves intentionally introducing various types of faults, errors, or anomalies
into a system’s inputs. The random meddling of inputs in the context of fault
injection, typically involves introducing unexpected or erroneous bits into a
system without following a specific pattern. This randomness helps simulate
real-world scenarios where inputs might deviate from expected norms due to
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FIGURE 7.11: Black-box IP, per-mode measured v/s estimated
power consumption.

various reasons, such as data corruption, communication errors, hardware mal-
functions, etc. When enabled, the resulting output is a random sequence of
bits. This randomness has a direct effect on the number of bit transitions and
on the percentage of logic "1 bits in the affected fixed-length inputs; thus yield-
ing to a totally different switching activity. The fault detection scanner senses
variations in the switching activity characteristics (SR and PLH) as soon as the
estimated power consumption falls outside of the characterized range enclosed
within the power profile. This fault injection mechanism was selected due to its
simplistic implementation yet its efficient and precise outcome on designated
IP inputs.

Figure 7.13 reveals a normal IP behavior where all estimated power values
fall within the expected thresholds extracted from the associated power pro-
file. This is reflected on the inputs moving fault scores that are aligned with
the graph underneath. For that purpose we have selected inputs 0, 2, 4 and
6. As an observation, all fault scores are almost zeros except upon operation
mode change. In that case, a slight and negligible increase is detected during
transition phases; the corresponding fault scores are represented in bold.

However, in Figure 7.14, intentional meddling is exercised on inputs 2 and 4
during operation mode M(x). In this case the estimated power consumption is
completely off the threshold limits triggering the detection algorithm that scans
the inputs activity. Since inputs 2 and 4 were intentionally meddled, their ac-
tivity is now outside the characterization limits and thus implying a noticeable
increase in their respective fault score. As an observation, the saturation of the
scores, denoted in bold, at inputs 2 and 4 indicate a totally faulty operation
mode M(x). Upon the switching to mode M(y), the meddling at the inputs
is disabled thus leading to a normal switching activity. A noticeable transition
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phase is detected in the fault score values until a normal operation is restored
again. This also demonstrates the system’s ability to recover and resume or-
derly execution.
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FIGURE 7.12: Fault injection mechanism into FPGA IP (a), using
a meddler circuit (b).
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FIGURE 7.13: Normal moving window fault score.

To wrap up, the presented results outline a comprehensive experimental
setup to evaluate a fault detection methodology. The use of a meddler circuit,
controlled fault injection, power profiles and fault scores collectively contribute
to understanding the methodology’s effectiveness in detecting abnormal be-
havior induced by faults. The proposed methodology is tailored for detecting
deviations in power consumption as well as input activities, which are indica-
tive of faults. It is tuned through threshold settings, enclosed within the power
profile, to achieve a desired balance between sensitivity and false positives.
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7.4 Conclusion

This chapter offers a thorough examination of the validation process and the
outcomes achieved throughout this research, effectively showcasing the effi-
ciency and adaptivity of the proposed power estimation methodology. The
experimental results, along with the assessment of the power modeling, affirm
the accuracy and reliability of the estimated power consumption for various
FPGA IP configurations, both in offline and online scenarios. The learning
curves presented demonstrate the significant improvement in model perfor-
mance as the training epochs increase, validating the effectiveness of the em-
ployed neural network architecture.

Furthermore, the analysis of resources and performance provides valuable
insights into the utilization of FPGA IP resources, power consumption charac-
teristics, and evaluation metrics. This detailed information enables digital cir-
cuit designers to make informed decisions and optimize energy consumption
in their designs.

In summary, the proposed power estimation methodology based on ma-
chine learning and neural networks proves to be an efficient and reliable ap-
proach for estimating FPGA IP power consumption. The obtained results vali-
date the effectiveness of this approach and pave the way for practical applica-
tions in the design and management of energy consumption in digital circuits.
The aforementioned results show an absolute percentage error of < 0.5%, < 1%
and < 2% for the data path, the state machine and online power monitoring
respectively. Moreover a fault detection methodology is presented based on
the extension of the online power estimation alternative using power profiling

technique. As a proof of concept, a controlled meddler circuit was introduced
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in order to inject faulty bits in FPGA IP inputs thus leading to a change in its
inputs activities. Subsequently, these latter, become out of the power profile
characterized limits, triggering an increase in their corresponding fault scores.
The proposed fault detection methodology can be investigated and developed
as a possible hardware security reinforcement.
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Conclusion

The estimation of power consumption is a highly relevant and widely dis-
cussed subject among digital hardware designers. It plays a crucial role in
rapidly exploring different design options during the conception process. Fur-
thermore, it enables efficient prediction and precise management of power in
real-time for a specific circuit. In our research, we capitalized on machine
learning techniques to develop an innovative approach for estimating power
consumption in Field-Programmable Gate Array (FPGA) Intellectual Proper-
ties (IPs). Our approach involves the creation of a novel neural network-based
model that accurately predicts power consumption. By leveraging this method,
we aim to enhance the efficiency and effectiveness of power management in
FPGA IPs. We have presented the proposed power consumption model by first
describing the measurement system used to collect power information from
specific FPGA-based targets. Next, we have described the proposed power
modeling methodology including the neural network model and data training.
Finally we applied the proposed methodology on specific IP components and
evaluated the experimental results for both offline and online domains. As a
suggested application for the online alternative, we have proposed a fault de-
tection algorithm based on the realtime power consumption monitoring and
power profiling. The fault occurrence possibility was represented by a moving
fault score window. Methodology validation and experimental results show
an absolute percentage error of < 0.5%, < 1% and < 2% for the data path, the
state machine and online power monitoring respectively.

The presented work makes several contributions to the scientific commu-
nity. Firstly, it provides an overview, classification, and comparison of vari-
ous high-level techniques for modeling and estimating power consumption,
including their specific applications. Secondly, a hardware characterization
platform is developed for FPGA IPs, allowing for synchronized generation of
stimuli signals and collection of aligned digital and analog data. Thirdly, an
offline methodology is introduced, utilizing supervised machine learning to
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estimate power consumption at a high level, with inputs limited to state ma-
chine control signals and data path input activity characteristics. Additionally,
an automatic and efficient approach is devised to construct training data for
high-level FPGA power modeling using measurements. Furthermore, a high-
level online and in-situ power monitoring technique is presented, based on ma-
chine learning, which leverages significant operating modes and input activity
specifications. Lastly, the online power monitoring approach is extended with
a learning-based technique capable of detecting faults in FPGA IPs through
power profiling.

8.1 Potential Future Work

Based on the presented work, there are several potential avenues for future
work and expansion:

* Application to complex system-level designs: The current research fo-
cuses on IP-level power consumption estimation. Future work can ex-
plore extending the methodology to complex system-level designs incor-
porating multiple IPs and interconnects. This would involve developing
techniques to model power consumption at the system level and consid-
ering interactions between different components to achieve more accurate

power estimations.

* Exploration of alternative power modeling and estimation targets: The
current research investigates power consumption modeling and estima-
tion of FPGA IPs, however, a good alternative (or expansion) would be
ASICs. Application-specific integrated circuits are widely used and usu-
ally consume less power than reconfigurable-based logic circuits.

* Exploration of alternative machine learning techniques: While the current
research utilizes neural networks for power consumption estimation, fu-
ture work can explore other machine learning techniques such as deep
learning or ensemble methods. Comparative studies can be conducted to
evaluate the effectiveness and suitability of these alternative approaches
in the context of power consumption estimation for FPGA IPs.

* Extension of the fault detection algorithm: The current work tackles the
possibility of detecting general FPGA IP faults caused by several factors.
However the focus on the hardware security aspect, considered lately as
a hot topic, would be of a great interest.
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Overall, the proposed research provides a strong foundation for future ad-
vancements in power consumption estimation and management in FPGA IPs.
By addressing these potential areas of expansion, researchers can further refine
and extend the methodology, ultimately leading to more coverage and broader
space exploration.
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Appendix B. Hardware Schematics and Photos

FIGURE B.6: ACDGAS schematics page 6: HSDIO interface.
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FIGURE B.7: Characterization platform (ACDGAS) 2D 4-layer
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FIGURE B.9: Measurement platform (left) and FPGA DUT (right).
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Résumé : L'optimisation de la puissance est de-
venue une préoccupation majeure pour la plupart
des concepteurs de systemes numériques, en par-
ticulier dans les premieres phases de conception et
surtout dans les systémes a énergie limitée (appa-
reils portables fonctionnant sur batterie, modules
enfichables électro-optiques, systéemes IoT et éner-
gies vertes, etc.). Par conséquent, |'estimation pré-
coce de la consommation d'énergie au moment de
la conception est devenue cruciale pour l'optimisa-
tion de la puissance. Cette recherche couvre plu-
sieurs sujets liés a l'optimisation de la puissance
des circuits numériques, notamment les circuits re-
configurables FPGA. Dans un premier temps, un
bref apercu des facteurs de consommation d'éner-
gie, des techniques d'optimisation énergétique et
des approches d'estimation de puissance de bas ni-
veau est présenté. Une vue d'ensemble des tech-
niques d'estimation de puissance de haut niveau
actuellement disponibles, ainsi qu'une comparaison
détaillée entre différentes méthodologies et leurs
applications, sont ensuite présentées en détails. En-
suite, nous développons la méthodologie proposée
de modélisation et d'estimation de puissance basée

sur l'apprentissage des FPGA IP. Ces travaux ci-
blent a la fois les domaines hors-ligne et en-ligne.
Ces derniers incluent également le systeme auto-
matisé de génération et d'acquisition de données
ainsi qu'une approche détaillée et automatique de
construction des ensembles de données d'entrai-
nement. Pour le mode hors-ligne, nous estimons la
consommation d'énergie en fonction des signaux
de contrdle de la machine a états et de l'activité
d'entrée du chemin de données. Pour le mode en-
ligne, nous estimons en temps réel la consomma-
tion d'énergie en fonction de ses modes de fonc-
tionnement les plus significatifs et de son activité
d'entrée. L'application proposée pour l'alternative
en ligne implique un algorithme de détection de
panne qui repose sur la surveillance en temps-réel
de la consommation d'énergie et le profilage de la
puissance. Une fenétre de score est utilisée pour
représenter la possibilité d'occurrence de pannes.
La validation de la méthodologie et les résultats ex-
périmentaux montrent une erreur absolue en pour-
centage inférieure a 0,5%, 1% et 2%
respectivement pour le chemin de données, la ma-
chine a états et la surveillance de puissance en
ligne.

Title: Power Consumption Modeling in Embedded Systems Hardware

Keywords: Power modeling and estimation, machine learning, artificial neural network, FPGA IP

Abstract: Power optimization has become a ma-
jor concern for most digital hardware designers, par-
ticularly in early design phases and especially in
limited power budget systems (battery-operated
hand-held devices, electro-optical pluggable mod-
ules, loT and green energy systems, etc.). Subse-
quently, early power consumption estimation at
design time is crucial for power optimization. This
research covers multiple topics serving the digital
circuits power optimization notably FPGAs. Initially,
a short overview on power consumption factors, en-
ergy optimization techniques and low-level power
estimation approaches is briefly covered. An over-
view of High-Level power estimation techniques cur-
rently available along with a comprehensive
comparison between different methodologies and
their applications on estimated models is thoroughly
presented. Then, we elaborate on the proposed
learning-based power modeling and estimation
methodology of FPGA IPs targeting both offline and

online domains. This covers also the automated
data generation and acquisition system along with
a detailed and automatic training data sets con-
struction approach. For the offline mode, we esti-
mate the power consumption based on the state
machine control signals and the input activity of the
data path. For the online counterpart, we estimate
in situ and in real-time the power consumption
based on its most significant modes of operation
and its input activity. The proposed application for
the online alternative involves a fault detection al-
gorithm that relies on real-time power consumption
monitoring and power profiling. A moving fault
score window is used to represent the possibility of
fault occurrences. Methodology validation and ex-
perimental results show an absolute percentage
error of <0.5%, <1% and <2% for the data path, the
state machine and online power monitoring re-
spectively.
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