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Résumé: Cette thèse est décomposée entrois parties disjointes. Les deux premièresparties se concentrent sur des modèles degraphes aléatoires croissants de manière dy-namique. Dans la première partie, nousinférons des informations sur le passé d’ungraphe à partir d’une unique observation du-dit graphe. Nous commençons par le problèmede la recherche de racine, où l’objectif estde trouver un ensemble de confiance pour laracine. Nous proposons une méthode pourles ℓ-dags uniformes et analysons ses perfor-mances. À notre connaissance, il s’agit de lapremière méthode réalisant une archéologiedu graphe dans des graphes généraux. Nousétendons ensuite naturellement la question dela recherche de racine à celle de la sériation.Étant donné un instantané d’un graphe, est-il possible de récupérer son ordre complet? Nous présentons une méthode et unegarantie statistique sur sa qualité dans le casdes arbres récursifs uniformes et des arbresd’attachement préférentiel linéaire. Pour con-clure la section sur l’archéologie de graphe,nous étudions un problème de broadcasting,où l’on ne tente pas de retrouver la racine dugraphe mais son état. Dans de tels problèmes,

la racine se voit attribuer un bit, qui est en-suite propagé de manière bruité lors de lacroissance du réseau. Dans les ℓ-dags, nousétudions un vote par majorité pour estimerle bit de la racine et identifions trois régimes,dépendants du niveau de bruit. Dans ladeuxième partie, nous étudions l’arbre d’amitiéaléatoire, qui est un modèle d’arbre récursifaléatoire avec redirection complète. Dansce modèle apparâıt un phénomène de rich-get-richer, mais à la différence du modèled’attachement préférentiel celui ci découled’un processus d’attachement local. Nousprouvons des conjectures sur la distributiondes degrés, le diamètre et la structure lo-cale. Enfin, nous plongeons dans le mondede l’apprentissage automatique théorique etde l’analyse de données. Nous étudions uneapproximation aléatoire de la profondeur deTukey. La profondeur de Tukey est un outilpuissant pour la visualisation des données etpeut être considérée comme une extensiondes quantiles en dimension plus élevée (ilscöıncident en dimension 1). Son calcul exact estNP-difficile, et nous étudions les performancesd’une approximation aléatoire dans le cas dedonnées échantillonnées à partir d’une distri-bution log-concave.



Title: Inference of the past of random structures and other random problems
Keywords: combinatorial statistics, random graphs, network archaeology, data analysis, Tukey depth,high dimensional statistics.

Abstract: This thesis is decomposed in threedisjoint parts. The first two parts delve into dy-namically growing networks. In the first part,we infer information about the past from asnapshot of the graph. We start by the prob-lem of root finding, where the goal is to findconfidence set for the root. We propose amethod for uniform ℓ-dags and analyse its per-formance. It is, to the best of our knowledge,the first method achieving network archaeol-ogy in general graphs. Then, we naturally ex-tend the question of root finding to the oneof seriation. Given a snapshot of a graph, isit possible to retrieve its whole ordering? Wepresent a method and statistical guarantee ofits quality in the case of uniform random recur-sive trees and linear preferential attachmenttree. To conclude the network archaeology sec-tion, we study the root bit finding problem,where one does not try to infer the positionof the root but its state. In such problems,the root is assigned a bit and is then propa-

gated through a noisy channel during networkgrowth. In the ℓ-dag, we study majority votingto infer the bit of the root and we identify threedifferent regimes depending on the noise level.In the second part of this thesis, we study the socalled friendship tree, which is a random recur-sive tree model with complete redirection. Thismodel display emerging properties, but unlikein the preferential attachment model they stemfrom a local attachment rule. We prove conjec-tures about degree distribution, diameter andlocal structure. Finally, we delve into the worldof theoretical machine learning and data anal-ysis. We study a random approximation of theTukey depth. The Tukey depth is a powerfultool for data visualization and can be thoughtof as an extension of quantiles in higher dimen-sion (they coincide in dimension 1). Its exactcomputation is NP-hard, and we study the per-formances of a classical random approxima-tion in the case of data sets sampled from log-concave distribution.
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0.2 Thesis outline

Chapter I and II: Introduction

In the first chapter I introduce the problems studied in this PhD. I first introduce models of
growing random graphs and their links to real life attachment and propagation phenom-
ena. I start by presenting the general problem of inferring the past of growing random
graphs and pinpoint what network archaeology problems we study in this PhD. Then, I
present another growing random graph model, namely the friendship tree, that was intro-
duced by physicists and that have the benefit of displaying a rich-get-richer phenomenon
while having a local attachment rule. Finally, I delve into a theoretical machine learning
problem and outline a few challenges faced by practitioners to visualize datasets in high
dimension. Finally, I present a popular notion of depth used to order a high dimensional
dataset, the Tukey depth. Unfortunately, this depth is hard to compute, which leads me
to the introduction of a random approximation algorithm.

Chapter III to V: A contribution to network archaeology

Growing random networks are present in all aspects of our lives and deducing information
about the history of the network from a snapshot of its current state is of great interest.
It is useful to answer questions such as, which proteins interacted in long extinct species?
Who was the first member of an online community? Where did a rumor originated online?
Who was Covid’s original patient? Until now, the problem that received the most attention
is of root finding in trees, which consists in retrieving the first few vertices of a randomly
growing tree (Brandenberger, Devroye, and Goh [21], Haigh [74]). In Chapter 3 and 4 we
propose two extensions of the network archaeology toolbox. First, we extend results of
root finding to more general graph models. Then we also present a method to not only
infer the first vertex but the whole ordering of a randomly growing tree.

In fact, before this work, root finding for graphs was only explored in one very re-
cent paper (Crane and Xu [43]). Extending network archaeology methods to graphs is of
great interest. Indeed, most real life problems are best described by graphs, and even
if the theoretical model is a tree, the final observation might have some errors resulting
in the disappearance of the tree structure. We study the ℓ-dag model, a growing graph
model that is an extension of the uniform random recursive tree (URRT). dag stands for di-
rected acyclic graph, which can be confusing because in this thesis we will always observe
the undirected version of the graphs. However, the term ℓ-dag was previously used for
this model, so we decided to use it again even though we do not observe the directions of
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the edges. In this model, at each step, the new vertex connects to ℓ ancestors chosen uni-
formly at random. We introduce a simple algorithm, running in cubic time, that retrieves
a confidence set of size K(ϵ) that contains the oldest vertex with probability at least 1− ϵ,
where

K(ϵ) ≤ c0
ϵ
log

(1
ϵ

) c1
ℓ log 1

ϵ

,

for c0 and c1 two positive numerical constants.
In Chapter 4, we study the problem of ordering all vertices in a randomly grow-

ing tree, both in the URRT and the linear preferential attachment model (PA tree). Such
problems of estimating latent variables (here, the arrival time of a node) are common
in statistics. One particular instance of this problem in a setting close to ours is in seri-
ation (Giraud, Issartel, and Verzelen [72]). Unlike our study, previous seriation works study
graphs with no time structure (for example in random geometric graphs, one can infer the
geometric position of vertices from an observation of the graph). They have applications
as broad as phase synchronization or archaeology. Nonetheless, the addition of a time
dependency, and thus of a model where vertices do not all have the same properties, calls
for novel methods. This problem has been studied by Crane and Xu [42] for URRT, where
they propose a method to infer an ordering but give no theoretical guarantees about its
quality. First, we propose an error measure that takes into account the time dependency
of the problem, assigning larger weights to the errors in older vertices. For an ordering
procedure σ̂ on the tree T = (E,V ), we define, for α ∈ [1,2), the error

Rα(σ̂ ) =
∑
v∈V

|σ̂ (v)− σ (v)|
σ (v)α

,

where σ (v) is the true arrival time of vertex v. We prove a lower bound for this error, that
is, for any ordering procedure σ̂ it stands that Rα(σ̂ ) ≥ cα |V |2−α . Then, we analyse the
performances of ordering vertices by their Jordan centrality. In particular, for α ∈ [1,2) for
the URRT model and α ∈ [1,5/4) in the PA tree model, we prove that

Rα(σ̂J ) ≤ Cα |V |2−α ,

meaning that this method is optimal up to a constant factor. Then, we provide numerical
illustrations of our results and numerical comparisons to other ordering methods, sug-
gesting that the Jordan ordering is the best of the tested methods.

To conclude this work on inferring the past of growing network, in Chapter 5 we
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study a problem where the goal is to infer the state of early vertices of a growing graph.
The broadcasting problem consists in propagating information from a source vertex along
edges of the graph, and at each propagation step there is a positive chance of altering the
information. In the root bit finding problem, the information borne by a vertex takes val-
ues in {0,1} and we want to infer the original state by observing the information received
by (part of) the vertices of the graph. Like for root finding, this problem has been studied
extensively for trees (Addario-Berry, Devroye, Lugosi, and Velona [2]), and is of great in-
terest to extend to graphs. We study the root bit finding for the ℓ-dag model. We prove
thresholds on the mutation’s probability, corresponding to three distinct regimes of the
information transmission in the ℓ-dag.

Chapter VI: The friendship tree

Chapter 6 focuses on discovering general properties of a novel model of growing random
trees. Such properties are, for example, the depth, the degree sequence or the maxi-
mum degree. Those are well known for the most generic models, but to better capture
the behaviour of real-world networks, theoreticians and practitioners alike introduce new
models. Here, we study a twist of the URRT, that exhibits drastically different behaviours.

Random graphs with redirection are part of a family of growing networks where
new vertices do not attach to a random ancestor but to someone “close” to a random an-
cestor. An example is the model in which new vertices connect to a random descendent
of a random vertex. We study a model with complete redirection introduced by physicists
(Saramäki and Kaski [125]). Here, the new vertex selects a random vertex and then con-
nects to a random neighbour (or friend) of this vertex; because of this attachment rule we
refer to it as the random friend tree (RFT). An intriguing feature of this model is that it has
a very simple local attachment rule, yet it leads to interesting emergent properties such
as a highly skewed degree sequence. This makes it an interesting toy model for grow-
ing real-life networks, since these also grow using only local information, while exhibiting
striking global behaviour. We have done the first extensive rigorous study of the random
friend tree and we prove conjectures formulated by Krapivsky and Redner [93]. We prove
that, even though this model is a simple twist from the URRT, it has drastically different
behaviour. For example, even if its diameter is of logarithmic order (like in a URRT), a van-
ishing fractions of vertices have degree at least two, when this fraction tends to 1/2 in a
URRT. Like in PA trees, a rich-get-richer phenomenon is at play, leading to the emergence
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Figure 1: A random friendship tree realization with 1000 vertices.
of macro structures, such as linear degree vertices scattered everywhere in the graph.

Chapter VII: On the quality of randomized approximations of
Tukey’s depth

Finally, Chapter 7 delves into a theoretical machine learning problem. For some applica-
tions, it is important to order data by their centrality in the dataset. For example to visualize
data, to detect outliers, or to train conformal predictors. In one dimension, a natural way
to order data points is by their empirical quantiles. Of course, practitioners deal with data
points of higher dimension, and the Tukey depth is a generalization of quantiles in higher
dimension. Like quantiles in one dimension, it has nice properties of convergence, invari-
ance under translation and linear rescaling. However, it is known that the Tukey depth is
hard to compute (Bremner, Chen, Iacono, Langerman, and Morin [24], Chan [37]), and in
particular has a complexity growing exponentially with the dimension. This is why a ran-
dom approximation has been introduced. This approximation algorithm has a parameter
k, that tunes the quality of the approximation and the time complexity. We study the qual-
ity of this approximation in the high dimensional regime, for points sampled from a log
concave distribution. We prove that there exists three distinct behaviours for this random
Tukey depth approximation. For points of low depth, that is, most of them in high dimen-
sion, k can be chosen independently from the dimension. For the most central points, k
only has to grow polynomially with the dimension for the approximation to be accurate.
But for all points lying in between, k has to be at least exponential in the dimension to
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produce an accurate approximation. This is a problem for practitioners, especially since
the most interesting depths to compute are the intermediate ones, to estimate the level
sets of the Tukey depth.
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Chapter 1

Introduction
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1.1 Introduction to network archaeology

Numerous phenomena can be described by attachment or propagation processes. To
name just a few, think of the spread of a disease, a computer virus or fake news, or the
evolution of a social network. Graphs can be used to describe these phenomena, or more
precisely, a sequence of graphs explaining the evolution of the said phenomenon. For
example, at a given moment, a social network can be described by a graph, in which each
individual corresponds to a vertex, and each friendship link corresponds to an edge. As
this graph evolves, we can consider the sequence of graphs that describes the evolution
of the social network. Induced by this sequence, a notion of history appears. Indeed, one
vertex was added first and another one-thousand-two-hundred-and-forty-third. In this
part of my thesis, we try to recover information about this history in the case where we
are only observing the graph at a given moment (and not the sequence). To formulate this
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problem mathematically, we need to define some random graph models. These models
serve as toy models in which to develop techniques and algorithms in perfectly defined
environments. Let us start with some commonly studied graph models, but with a fixed
size.

Erdős–Rényi model
In this model, a parameter n (the size of the graph) is fixed. An Erdős-Rényi graph

can refer to two similar models. The G(n,M) model, in which a graph is chosen uniformly
at random from all graphs with n vertices and M edges, and the G(n,p) model, which is
constructed by randomly connecting the n vertices. Each edge is included in the graph
with probability p, independently of all other edges.

Random geometric graph
In this model, a metric space X with a measure is fixed. A parameter n (the size

of the graph), a parameter ρ of connectivity and a distribution µ are also fixed. n points
are randomly and independently drawn according to the distribution µ. Each of these
points corresponds to a vertex of the graph, and each pair of vertices is connected if the
corresponding points are less than ρ apart.

Stochastic block model (SBM)
In the simplest version of this model, vertices are split in two communities. The

model is then similar to G(n,p), with the difference that the probability of an edge being
added to the graph depends on the communities of the vertices. For a pair of vertices in
the same community, the corresponding edge is added with probability p, and for a pair
of vertices in different communities, the corresponding edge is added with probability q .

In this work, we study models that grow by recursively adding vertices and edges.
Here are a few examples.

The uniform random recursive tree
Probably the simplest model for describing an attachment process. The first graph

of the sequence consists of an isolated vertex. This graph is grown recursively by adding a
new vertex, which connects to a vertex already present in the graph, chosen uniformly at
random. It is easy to check that this process produces a tree, as no cycle is ever created.
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Figure 1.1: Illustration of the attachment process for a URRT. In red, the vertexchosen uniformly at random, where the new vertex attaches to.
The linear preferential attachment tree (PA tree)
This model, made famous by Barabási and Albert [14], is the simplest case of the

broader class of preferential attachment. In the case studied in this thesis, the first graph
of the sequence is an isolated vertex and the graph grows recursively by adding a new
vertex, which connects to an already present vertex chosen at random with a probability
proportional to its degree.

The ℓ-dag
Some of the real world objects mentioned above cannot be described by trees

alone. This is why we introduce a recursive random graph model, based on the URRT. In
this model, each new vertex connects not to a vertex chosen uniformly at random, but to
ℓ vertices chosen uniformly at random (chosen with replacement).

Each of these models describes an attachment phenomenon. However, to describe
propagation processes, it may be necessary to add a layer of complexity to these models.
For example, to take into account the fact that as a social network grows, political ideas can
propagate amongst its user. Broadcasting models do just that. Here, each new vertex not
only connects to the past, but inherits a 0 or 1 bit (think voting Republican or Democrat).
Here we present two broadcasting models.

Broadcasting in the URRT
Here, a bit is arbitrarily assigned to the first vertex. Each new vertex is then con-

nected using the same process as in the URRT, but it inherits the bit of its ancestor with
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Figure 1.2: Illustration of the broadcasting process in an ℓ-dag.

probability 1− p, and the opposite bit with probability p.
Broadcasting in an ℓ-dag
Here, the first graph in the sequence is a collection of ℓ isolated vertices, each ar-

bitrarily assigned a bit. The connection process is the same as in the ℓ-dag. To assign
the bit of the new vertex, a vector of ℓ bits is created with the bits of ℓ ancestors (some
of which may be drawn several times and therefore appear several times in this vector).
Then, each bit of this vector is independently flipped with probability p, called the mutation
probability. Finally, a majority vote is taken to assign the bit of the new vertex.

These random graph models have been studied in numerous scientific work. Some
of these can be grouped in the world of combinatorial statistics. It’s impossible to give an
exact definition of combinatorial statistics, but they encompass statistical problems where
enumeration and combinatorial tools are used. Among these numerous problems, we can
cite a few, taken in part from the notes of a course given at Saint-Flour, Lugosi [102].

The hidden clique
DefineG(n,1/2, k) as an Erdős-Rényi model of parameter 1/2where the presence of

a clique of size k is imposed. A natural question is to look for a statistical test to determine
whether a graph has the law G(n,1/2) or G(n,1/2, k); or else to find the hidden clique (see
for example the work of Alon, Krivelevich, and Sudakov [4]).

Dimension estimation in a random geometric graph
Given a geometric graph obtained with vertices uniformly distributed on the unit

sphere of dimension d, and connecting points at distance less than √2. Is it possible to
estimate the dimension d from observation of the graph alone (see, for example, the work
of Atamanchuk, Devroye, and Lugosi [9])? Is it possible to create a test to differentiate this
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graph from a G(n,1/2)?
Clustering
Given an SBM, for what values of p and q is it possible to retrieve (exactly or approx-

imately) the two communities (see Lee and Wilkinson [97] for a review of the many results
on this subject)? It’s worth noting that the question of clustering can also apply to other
types of data. For example, for points derived from a mixture of Gaussians (Even, Giraud,
and Verzelen [68]). This remark allows us to bridge to the last chapter of this thesis, where
questions close to those addressed in Chapters 3 and 4 are addressed, but when the data
comes not from a graph but from the realization of a distribution on Rd .

In the first three chapters following the introduction we study combinatorial statis-
tics problems in recursive graphs. In particular, we ask how to infer information about the
past of a random recursive graph.

1.1.1 Network archaeology in recursive random graphs

In recursive graphs, certain questions arise quite naturally, particularly concerning the in-
ference of information about the process’s past. For example, is it possible to find the first
vertex of the graph? To estimate the order of arrival of all the vertices? To find out which
bit had the first vertex in the broadcasting model? Let us start with the first question,
that of root finding. Here, the aim is very simple: to find the first vertex. Several articles
studying this problem have been published, with different formalizations of what finding
the first vertex means. For example, Shah and Zaman [130] study a method that returns
a single vertex, and prove that, in certain regimes, this vertex is indeed the vertex 1 with
positive probability. Others have studied algorithms that only access a local observation
of the graph to detect vertices of interest, for example Brautbar and Kearns [22]. Here, we
formalize the root-finding task differently. We’re looking for an algorithm which, given the
graph G = (V ,E), returns a confidence set S(ϵ) ⊂ E, containing vertex 1 with probability
at least 1 − ϵ. This problem has been studied by Bubeck, Devroye, and Lugosi [33] in the
case of URRTs and PA trees, Khim and Loh [86] have studied the case where the tree is
obtained by diffusion on an infinite regular tree and Brandenberger et al. [21] the case of a
size-conditioned Galton-Watson tree. A measure of the quality of these algorithms is the
size of the confidence set, K(ϵ) = |S(ϵ)|. Note that here, we write K(ϵ) and not K(|V |,ϵ).
This is because we want to find a confidence set whose size depends only on ϵ and not on
the size of the graph. Looking at Figure 1.3, we realize that, in a URRT, identifying the first
vertex is not straightforward. In fact, in what appears to be the ”centre” of the graph, there
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Figure 1.3: Realisation of a URRT of size 1000.

are both high-degree vertices and leaves. High-degree vertices are also found at periph-
eral positions in the graph. Thus, Bubeck et al. [33, Theorem 4] prove that the first vertex
cannot be found exactly, and that, in a URRT, no matter which method is used,

K(ϵ) ≥ exp

√ 1
30

log
( 1
2ϵ

) ,
whether in a PA tree, one can not do better than

K(ϵ) ≥ c
ϵ
,

for a positive constant c.
Recently, Contat, Curien, Lacroix, Lasalle, and Rivoirard [40] suggested an algo-

rithm analyzing the degrees of pairs of vertices in the PA tree to locate vertex 1 in a confi-
dence set of size ϵ−1+o(1), which corresponds to the best possible performance. In the case
of the URRT, there is still a gap between the lower bound and the performance of the best
algorithm. To the best of our knowledge, the best algorithm is given by Bubeck et al. [33]
and uses rumor centrality. It was later proved by Crane and Xu [42] that rumor central-
ity corresponds to ordering vertices by their likelihood of being vertex 1. This algorithm
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locates vertex 1 in a confidence set of sub-polynomial size, of the order of exp(
a log1/ϵlog1/ϵ

).
In Chapter 3, we develop a method for root-finding in graph models, as it is im-

portant to look at models that are more general than trees. Indeed, many problems are
better described by graphs than by trees. For example, online communities or the world
wide web are obviously not trees. Moreover, even if the theoretical model is a tree, in prac-
tice, during data acquisition, errors might be present and the tree structure destroyed. In
the case of the URRT model, this is a real problem, as the methods analyzed so far de-
pend entirely on the tree structure. In response to this problem, Crane and Xu [43] have
studied the problem of root finding when noise is added to the tree. More precisely, they
study the case where, in addition to the URRT or the PA tree, edges are added at random
independently with the same probability for each pair of vertices (i.e. the edges of a graph
G(n,p) are added to the edges of the tree). They introduce a Bayesian method and prove
that it is possible to estimate the position of the root if the number of added edges is not
too large. Here, we study two graph models and introduce a different method, based on
the appearance of certain sub-graphs.

The two models we study are the ℓ-dag and a special case of the Cooper-Frieze
model. The ℓ-dag model consists of a variant of the URRT model where, at each step, a new
vertex connects not to a randomly chosen ancestor but to ℓ, chosen uniformly at random
with replacement (multiple edges are then condensed into a single one). This model has
been studied, for example, by D́ıaz Cort, Serna Iglesias, Spirakis, Torán Romero, and Tsukiji
[54], Tsukiji and Mahmoud [135], Tsukiji and Xhafa [136] or Devroye and Janson [51]. This
model is equivalent to considering the union of the edges of ℓ independent URRTs. Figure
1.4 illustrates this point of view for a 2-dag. The second model is a special case of the
Cooper-frieze model, introduced by Cooper and Frieze [41]. Here, a parameter α ∈ (0,1)
is fixed and the graph is grown from an isolated vertex. At each step, a Bernoulli random
variable with parameter α is drawn, independently of past events. If the result is 0, a new
vertex is added, which connects to an existing vertex chosen at random. Otherwise, a pair
of vertices is drawn uniformly at random and an edge is added. If multiple edges appear,
they are condensed into a single edge.

To select a confidence set S(ϵ), it is common practice to choose the most “central”
vertices. Several notions of centrality exist. For example, Bubeck et al. [33] and Banerjee
and Bhamidi [11] analyze Jordan centrality in URRTs. We can also think of rumor centrality,
introduced by Shah and Zaman [130] and giving the best known algorithm for root find-
ing in a URRT. It is also possible to use the likelihood of a vertex being vertex 1, as done
by Crane and Xu [42] (as stated above, this turns out to coincide with rumor centrality).
Our approach does not use these methods. Indeed, Jordan centrality, rumor centrality,
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Figure 1.4: Illustration of a 2-dag.
or other popular notions of centrality, are only defined on trees. To analyze likelihood,
Bubeck et al. [33] had already noticed that its analysis in the case of the URRT was too
complex. They then proposed using a relaxed expression of the likelihood (correspond-
ing to the rumor centrality), before Crane and Xu [42] realized that this relaxation did not
change the order in which the vertices were ordered. This led to the study of the root find-
ing algorithm, which involves selecting the vertices most likely to be vertex 1. In our case,
likelihood has an even more complicated expression, and we were unable to simplify it, let
alone show that its simplification orders the vertices in any meaningful way. Therefore, we
decided to analyze another notion of centrality. We study the appearance of sub-graphs,
and more precisely of double cycles. For the sake of clarity, the definition is deferred to
Section 3.2. The confidence set is therefore the set of vertices present in small double cy-
cles. We prove that this method locates vertex 1 in a set whose size does not depend on
the size of the graph for the two models studied, and more precisely, Theorem 3.4 for the
ℓ-dag model ensures that

K(ϵ) ≤ c0
ϵ
log

(1
ϵ

) c1
ℓ log 1

ϵ

,

with probability at least 1− ϵ. Theorem 3.5 ensures that, in the Cooper-frieze model,

K(ϵ) ≤ c0 log
(1
ϵ

)c1 log 1
ϵ

,
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with probability at least 1 − ϵ. In contrast to the URRT model and the PA tree, we have
not been able to find any lower bounds on the size of the confidence set. Let’s take the
case of the ℓ-dag model for example. Is it possible to do better than in the URRT model
because the ℓ-dag is the superposition of ℓ independent URRTs? Or does destroying the
tree structure make the problem strictly more difficult than in a URRT? These questions
remain open today.

1.1.2 Arrival time estimation in random recursive trees

To extend our knowledge of network archaeology, we can think of two research directions.
Choose a specific problem (e.g. root finding) and solve it in increasingly complex models or
more efficiently. Among other things, this brings us closer to applications, for example by
looking for robust algorithms, that can be applied to empirical data. Another possibility is
to study more complex questions. The price to pay is to start working with simple models
again, in the hope that, later on, some will be able to solve the same problem in more
complex models. This is what we do in Chapter 4. A second problem of interest in the
world of network archaeology is estimating the order of arrival of all vertices. Indeed,
finding the first vertex provides only limited information on the history of the graph. But,
retrieving the whole ordering of the graph can be very interesting, for example to track
the history of the spread of fake news or rumors online. In this case, the problem is to
estimate a latent random variable associated with each of the vertices: their arrival time.
We study this problem in the case of the URRT and the PA tree. This type of problem has
been widely studied, particularly in the field of seriation. In seriation problems, the aim is
to estimate the order or relative positions of points by observing the affinity between them.
This affinity is assumed to decrease with the distance between vertices in the latent space.
This type of question appears in archaeology (Robinson [123]), bioinformatics (Recanati,
Brüls, and d’Aspremont [121]) or matchmaking problems (Bradley and Terry [20]). A good
example of data where affinities between pairs of vertices appear is the case of graphs,
which are nothing other than the restriction to binary affinities (an edge is either present
or not). In our case, we observe an adjacency matrix and try to estimate the position of
vertices in the latent space of natural numbers. Gilbert [71], Giraud et al. [72], Janssen
and Smith [82] have studied this problem in the case of random graphs. In particular,
the example of the random geometric graph is emblematic of the seriation problem. The
simplest example has as its latent space the unit circle in the plane. Figure 1.5 illustrates a
realization of a random geometric graph.

Among seriation problems, Recanati et al. [121] study a problem close to ours, that
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Figure 1.5: Illustration of a random geometric graph on the circle, taken from [7].
is, the observed data are perturbed Robinson matrices. A matrix is said to be Robinson
when its entries are decreasing on the rows and columns away from the diagonal. In the
case of a URRT or a PA tree, the expectation of the adjacency matrix is a Robinson matrix.
Nevertheless, the results of Recanati et al. [121] do not apply and we show empirically in
Section 4.4 that the method they propose performs poorly in our problem. To the best of
our knowledge, the only theoretical result concerning the estimation of the order of arrival
of vertices in a random graph comes from Crane and Xu [42]. In their paper, they present
a general method for performing network archaeology tasks that can be applied to the
case of arrival time estimation. This method consists in generating a tree ordering, with
the same distribution as the true ordering of the model studied conditioned on the tree
shape. Therefore, this method generates an order that has the same distribution as the
true order, but they give no measure of the accuracy of this order. It was not obvious to
us how to study its properties.

One of the reasons why the theoretical results of seriation do not apply to our
problem, and why these same methods perform poorly empirically, is the temporal struc-
ture in our setting. In all the seriation problems we know, all the vertices have the same
properties. For example, in the random geometric graph on the circle, the properties of all
vertices are identical in law. This does not hold in our case, think for example of the degree
of vertex 1 in the URRT, of the order of log(n) almost surely, whereas vertex n has a degree
of 1 (where n is the size of the tree). This inhomogeneity has several consequences. First,
the seriation methods introduced so far do not apply. Second, we need to define a new
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way of measuring the quality of an estimator. Indeed, if we consider a uniform risk (e.g.
the maximum distance between latent position and estimated position), then this error
will be carried entirely by the leaves arriving at the end of the tree’s growth. This is why
we introduce a parametric family of risks as follows

Rα(σ̂ )
def= E

∑
v∈V

|σ̂ (v)− σ (v)|
σ (v)α

 ,
for α > 0. Here, σ (v) denotes the arrival time of vertex v and σ̂ a method for estimating
arrival times. This risk measure takes into account the inhomogeneity of the problem by
putting more weight on vertices that arrive early in the graph. Indeed, we can verify that
in a tree of size n, estimating the arrival time of a leaf makes an error of at least the order
of n, whereas we can estimate the arrival time of older vertices much more precisely.

We study this risk in three stages, first by showing a lower bound on the best achiev-
able performance, then by analyzing the performance of a vertex ordering procedure and
finally by backing up our arguments with simulations. Our first results concern the best
performance achievable by an ordering procedure. To do this, we need to limit ourselves
to a restricted class of estimators. A common assumption, that makes practical sense, is
that the ordering procedure is label invariant. In a few words, this means that the order
returned depends only on the shape of the tree and not on the labels assigned to the
vertices. An exact definition is given in Section 4.1. Under this assumption, it is possible
to identify pairs of vertices in the URRT or PA tree that can not be ordered better than at
random. Using these exchangeable pairs, we prove in Theorems 4.1 and 4.7 that the risk
of a label ordering procedure is at least of the order of n2−α ∨ 1/2, where n denotes the
size of the tree. Quick calculations show that the maximum risk (obtained by ordering the
vertices in the reverse order of the true order) results in an error of the order of n2−α for
α ∈ [0,1), of the order of n log(n) for α = 1 and of the order of n for α > 1. Thus, for α
smaller than 1, the best and worst vertex orderings result in a risk of the same order of
magnitude, suggesting that the renormalization induced in our risk is not interesting in
the α ∈ [0,1) regime. Therefore, we only analyze the risk in the α ≥ 1 case.

Inspired by previous work on network archaeology in the URRT, we decided to an-
alyze the method of ordering vertices by their Jordan centrality. To define it, we introduce,
for a tree T and two disjoint vertices u and v, the subtree (T ,u)v . It corresponds to all ver-
tices w for which v lies on the path between w and u on the tree T . The Jordan centrality
of a vertex u is defined as

ψ(u,T ) = max
v∈V (T ), v∼u

|(T ,u)v | ,
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Figure 1.6: Illustration of the Jordan centrality. Here, vertex u has 4 neighbours,
v1, v2, v3 and v4. Highlighted in red the subtree (T ,u)v1 , in blue the subtree
(T ,u)v2 , in purple the subtree (T ,u)v3 and in green the subtree (T ,u)v4 . Here,

ψ(u,T ) = 7.

where v ∼ u indicates that vertices v and u are neighbors. See Figure 1.6 for an illustration
of (T ,u)v and the Jordan centrality. In particular, this ordering procedure is label invariant.
It has the advantage of having been widely studied in the network archaeology problem,
both in the URRT and PA tree models (Bubeck et al. [33], Moon [109], Wagner and Durant
[139]). We use these results on the localization of vertex 1 as a first step to extend the
analysis of the Jordan centrality to the ordering of all vertices. We prove bounds on the
risk and in particular show in Theorems 4.4 and 4.8 that in the URRT model, for α ∈ [1,2)
and in the PA tree, forα ∈ [1,5/4), the risk of this ordering procedure is of the order of n2−α ,
that is, of the order of the optimal risk. For larger α, we explain why this method cannot
be optimal. In the URRT model, we propose a method using rumor centrality (Shah and
Zaman [130]) and conjecture that its risk is optimal, up to constant factor, for all α ≥ 1.

Finally, we complete our discussion with simulations, to verify our results empiri-
cally, but more importantly to compare the performance of different ordering procedures.
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In particular, we compare the performance of our estimator with a spectral method, stud-
ied by Recanati, Kerdreux, and d’Aspremont [122] for seriation problems where the affini-
ties are Robinsonnian matrices (i.e. a framework close to ours). In the case of the PA
tree, we also compare the performance of a pruning method, introduced by Navlakha
and Kingsford [116]. It appears that Jordan centrality ordering is the only method we have
tested whose risk grows at the optimal rate.

1.1.3 Broadcasting in random recursive trees

We can extend the horizon of problems in recursive graphs by introducing states on ver-
tices. For example, we can define Covid-infected vertices and healthy vertices. Democrat-
voting vertices and Republican-voting vertices. The list is infinite, and we formalize it math-
ematically in the simplest case of two states by assigning bits, 0 or 1, to each vertex. To
describe practical problems, these states (or bits) are not assigned independently of the
rest of the graph. In particular, in the broadcasting model, the implicit idea is that a vertex
is more likely to inherit the state (bit) of its parents. This corresponds to different depen-
dencies from the SBM case. In the SBM, the community is fixed a priori, and this has an
impact on the attachment process. There, the bit has an impact on the structure of the
graph. Indeed, new vertices are attached to the graph with a bit-dependent law. In the
broadcasting models introduced earlier, the bit is assigned after the attachment process.
Meaning that the way in which a vertex is attached is decided in a bit-independent way, and
only then the vertex is assigned a bit. Note, therefore, that the heuristics differs between
these two model classes. In the case of SBM, we are describing a process where similar
vertices are more likely to connect (think social networks, for example). In broadcasting
models, the idea is that connections take place independently of the state of the vertex,
but that a vertex is more likely to inherit the state of the vertices to which it connects (think
of Covid contamination or the inheritance of political convictions in a family, for example).

This new dimension in models opens the way to many new questions, in particular
whether information is propagated throughout the entire graph. As the name suggests,
this type of problem was motivated by the apparition of radio and television. Initially,
deterministic graphs were studied, for example by Harutyunyan and Li [75] or Bhabak,
Harutyunyan, and Tanna [17]. Like network archaeology problems, broadcasting problems
are numerous. In the same way that the root finding problem appears naturally, its rootbit
finding counterpart seems interesting. In this problem, an originator vertex (or vertices) is
assigned a bit (or bits), which is (or are) then propagated from one vertex to the next in
the graph. In the case of a tree, the problem is simplified because there is only one path
between the originator vertex and any other vertex. This question was first formulated in
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the case of general trees by Evans, Kenyon, Peres, and Schulman [67]. More recently, the
case of random trees has been studied (Addario-Berry et al. [2], Desmarais, Holmgren, and
Wagner [48]). Since then, a large number of variations of this problem have been studied,
see Mossel [112] for a review of reconstruction problems on trees. In a spirit similar to that
of the first project presented in this thesis, we have decided to study this problem in the
case where bits propagate not on a tree but on a graph. We refer the reader to Section
1.1.1 for the motivations behind this generalisation to general graphs. In a similar problem,
Antunovíc, Mossel, and Rácz [8] study the case of preferential attachment, where initial
vertices are assigned a state and each new vertex has a colour assigned according to that
of its neighbours. More recently, Makur, Mossel, and Polyanskiy [107] have studied another
similar problem in a dag model different from the ℓ-dag, whose main parameters are the
incoming degrees of the vertices and the number of vertices at distance k from vertex 1.
It is also assumed that the position of vertex 1 is known. Two propagation processes are
studied, a noisy majority voting process and a NAND-based decision process. They show
that, if the number of vertices at depth k is of the order of Ω(log(k)), there is a threshold
on the mutation probability below which it is possible to estimate the bit of the 1 vertex.

Here, we look at the broadcasting model on ℓ-dags, and in particular at the propor-
tion of each bit. This is why we are making the link with Pólya urns. Indeed, if we are only
interested in the number of vertices of a given bit, the broadcasting process on a ℓ-dag is
such that the graph structure is no longer important. The model can thus be described as
follows. An urn is filled with ℓ balls, blue (bit 0) or red (bit 1). When a new ball is added, its
colour is decided by drawing ℓ balls successively with replacement. Their colours are ob-
served, but with probability p a blue ball is observed as red (and vice versa). Finally, of the ℓ
colours observed, the majority is passed on to the new ball. This connection to Pólya urns
had already been made in the case of broadcasting in a URRT by Addario-Berry et al. [2].
In this case, the proportion of zero bits follows a Pólya urn with random replacement (the
colour added is not a function of the colour of the ball drawn). These processes are called
reinforcement processes, and we use results compiled by Pemantle [118] as well as non-
convergence results studied by Pemantle [117]. We use as much as possible the description
of the problem as a Pólya urn, partly because these properties have been widely studied
in the literature (Janson [77], Knape and Neininger [91], Wei [140]). Many variations of this
model have been studied, for example by increasing the number of colours (Bertoin [16]),
by choosing several balls for each draw (Kuba and Mahmoud [94]), by making the choice
of added colours non-deterministic (conditional on the draw) (Janson [80], Zhang [141]).
The closest variation to our model that we are aware of comes from Crimaldi, Louis, and
Minelli [44], with a multiple-draw model and linear random replacement. Our model also
has a multiple draw but a non-linear random replacement law.
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In the case where ℓ = 1, the model is greatly simplified by the disappearance of
majority voting and the fact that broadcasting then takes place in a tree. In this case,
Addario-Berry et al. [2] propose two methods for rootbit finding. The first method con-
sists of estimating the position of vertex 1, then using its state as an estimate of the state
of vertex 1. This method therefore uses results from network archaeology and, in part,
results based on the location of the vertex 1. In the case of ℓ-dags, these results are still
unknown. We know of no natural method for defining a graph centre, let alone controlling
the distance between this centre and vertex 1. We can estimate a confidence set for ver-
tex 1, but we do not know how to control the typical distance of these vertices to vertex
1. However, since the size of this set is independent of the size of the graph, we can find
exactly vertex 1 with positive probability (by choosing a vertex at random from this set).
This is not the approach we have decided to follow, but we discuss it briefly. The second
method proposed by Addario-Berry et al. [2] consists of estimating the bit of vertex 1 by
the majority bit in the tree. This method has the advantage of being easily applicable to our
model. It is also known that, in the case ℓ = 1, this method is optimal for small probabilities
of mutation (see Addario-Berry et al. [2]).

We define the majority bit at time n by bmajn , which is decided at random if both
bits are present in equal numbers. We seek to determine for which regimes of (ℓ,p) this
method makes it possible to find which bit was present in majority at the initialisation
of the graph, that is, we seek for which values of the couple (ℓ,p) the probability of error
Rmaj(n,p) = P

{
b
maj
ℓ , b

maj
n

}
< 1/2. Note that this quantity depends on the initial conditions,

but for the sake of clarity we do not take this into account in the notations. In the case ℓ = 1,
Addario-Berry et al. [2] prove that

(i) There exists a constant c > 0 such that
limsup
n→∞

Rmaj(n,p) ≤ cp .

(ii) Denoting Rn the proportion of bits 0 at time n,
lim
n→∞

Rn =
1
2

almost surely .
(iii) For p ∈ [0,1/4)

limsup
n→∞

Rmaj(n,p) <
1
2
.

(iv) For p ∈ [1/4,1/2]
limsup
n→∞

Rmaj(n,p) =
1
2
.
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Our work extends these results. We introduce for ℓ ≥ 1 odd

αℓ =
1

2ℓ−2

ℓ∑
i>ℓ/2

(
ℓ
i

)
(i − ℓ/2) .

Thus, α1 = 1, α3 = 3/2 and for ℓ going to infinity

αℓ ∼
√

2ℓ
π
.

We prove in Theorem 5.1 that
(i) If p < 1

2 −
1

2αℓ
, then there exists β ∈ (0,1/2) (of which the value only depends on ℓ and

not on the initial conditions) such that
P {Rn→ β}+P {Rn→ 1− β} = 1 and P {Rn→ β} < P {Rn→ 1− β} .

In particular, independently of Rℓ ,
limsup
n→∞

Rmaj(n,p) <
1
2
.

(ii) If 1
2 −

1
2αℓ
≤ p < 1

2 −
1

4αℓ
, then Rn→ 1/2 almost surely and

limsup
n→∞

Rmaj(n,p) <
1
2
.

(iii) If 1
2 −

1
4αℓ
≤ p ≤ 1

2 , then Rn→ 1/2 almost surely and
lim
n→∞

Rmaj(n,p) =
1
2
.

Note that, for ℓ = 1, the low mutation probability regime does not exist, which is in agree-
ment with the results of Addario-Berry et al. [2]. For ℓ ≥ 3, three regimes exist. For small
mutation probabilities the proportion converges to a value other than 1/2. On the other
hand, in the intermediate and high mutation probability regimes, the proportion tends
towards 1/2. However, as long as p does not get too close to 1/2, even if the proportion of
bits tends towards 1/2, the majority bit is positively correlated with the majority bit when
the graph is created. Note also that, as in the case of the preferential attachment studied
by Antunovíc et al. [8], in all regimes no bit disappears (i.e. their proportion does not tend
towards 0).
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1.2 Introduction to the random friendship tree

The rest of this thesis deals with topics other than network archaeology. Initially, we re-
main in the world of random graphs and combinatorial statistics. All previously introduced
models have been studied in detail. When a new model is introduced, for example to ac-
count for a different attachment process, it is interesting to study its most basic properties
(diameter, maximum degrees, number of leaves, etc). This gives us a better understanding
of the process and opens its comparison to reference models. Is this model simply a vari-
ant of the URRT or does it have completely different dynamics? Is there a rich-gets-richer
phenomenon as in a PA tree, or is its attachment fairer? All these questions have been
studied at length for more classical models such as the URRT, the ℓ-dag, the PA tree, the
Erdős-Rényi, etc. In order to better describe certain phenomena, new models are regularly
introduced. We produce the first rigorous analysis of one of these models, the random
friendship tree (see Krapivsky and Redner [93]).

One characteristic that appears in many models is the presence of a ’rich gets
richer’ phenomenon. In other words, a vertex that is highly connected tends to reinforce
its dominance over time. This behaviour is present in preferential attachment models and
therefore in the PA tree. In the simplest definition of this model, the attachment rule is
not local. In other words, in order to grow the tree according to the law of preferential
attachment, we need access to the degrees of each vertex, or to all the edges present in
the graph. Since it can be assumed that in practice attachment processes are local (for
example in physical phenomena), many local attachment models exhibiting a rich-gets-
richer phenomenon have been introduced. For example, Engländer, Iacobelli, Pete, and
Ribeiro [64] have very recently introduced a random walk model constructing a tree. In
their model, a tree is recursively built by a “walker” who moves randomly along the tree.
At step n, with probability n−γ , a new vertex is connected to the vertex where the walker
is located. They show that this model corresponds to the PA tree, therefore proving that
this model can be generated from a local attachment procedure (at each step the walker
only needs to know its neighbourhood in order to progress).

Another way of creating a local attachment model where a rich-gets-richer phe-
nomenon is at work is to introduce a redirection phenomenon. In other words, a model
where a new vertex does not necessarily connect to a randomly chosen vertex but possibly
to a neighbour (or close neighbour) of a randomly chosen vertex. Introduced by Kleinberg,
Kumar, Raghavan, Rajagopalan, and Tomkins [90] in directed trees, the initial model con-
sists of connecting each new vertex to a vertex chosen at random with probability 1 − p
or to its ancestor with probability p. This model gives rise to a preferential attachment
process where each new vertex connects to a vertex chosen with probability proportional
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Figure 1.7: Illustration of the attachment process in a random friendship tree. Inblue, vertex Vn, which is chosen uniformly at random among all vertices. Inyellow, vertex Wn, which is chosen uniformly at random among all neighbours of
Vn. Vertex n+1 attaches to Wn.

to d−2+1/p (for d the degree of the vertex). Later, Saramäki and Kaski [125] introduced an
undirected version of the model, later studied by Evans and Saramäki [66]. In their work
and that of Evans and Saramäki [66] they claimed that this corresponds to a preferential
attachment model, which was noted to be incorrect by Cannings and Jordan [35].

In the case of redirection in undirected trees, a tree is grown recursively by choos-
ing a vertex uniformly at random, then starting at this vertex a random walk with k steps
and finally attaching a new vertex to the last vertex reached by this random walk. Unlike
the work of Engländer et al. [64], a new random walk is created at each step. In the case of
k = 1, we call this model the random friendship tree (RFT) because we can think of each new
vertex becoming “friend” with a “friend” of a randomly chosen vertex. This family of pro-
cesses, ranging from k = 0 to k =∞, has the property of containing the URRT model and
the PA tree. Indeed, if k = 0, then each new vertex connects to a vertex chosen uniformly
at random and the model is therefore a URRT. If k→∞, then the resulting model is a PA
tree. This is because a finite tree has a finite mixing time and the stationary distribution
of a random walk on a tree is proportional to the degrees. Here, we will study the special
case k = 1, that is, each new vertex is attached as follows: at time n + 1, a vertex is cho-
sen uniformly at random, it is called Vn. Among the neighbours of Vn a vertex is chosen
uniformly at random, it is called Wn. Vertex n+1 connects to Wn. Figure 1.7 illustrates this
process.
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Although the random friendship tree is part of a family of models containing the
URRT and the PA tree, some of their properties are drastically different. Among these prop-
erties, the sequence of degrees or the modularity have been conjectured in an empirical
work by Krapivsky and Redner [93]. The only theoretical result concerning this model of
which I am aware concerns the number of leaves. Cannings and Jordan [35] proved that,
almost surely, n − o(n) vertices were leaves. We are extending the theoretical knowledge
of RFT. Concerning small degree vertices, we show that at least n−n0.9 vertices are leaves,
whereas in the URRT or the PA tree only a fraction of the vertices are leaves. While for a
fixed k there are on the order of n/2k−1 vertices of degree at least k in the URRT (Janson
[78]), this number is between n0.1 and n0.9 in the case of the RFT (see Theorem 6.11). More-
over, we show in Proposition 6.13 that most leaves will remain leaves forever, whereas in
the URRT or PA tree the degree of each vertex tends towards infinity almost surely. Con-
cerning high-degree vertices, we show in Theorem 6.2 that linear degree hubs appear.
These hubs are clearly visible in Figure 1.8. In contrast, the maximum degree in a URRT is
logarithmic (Devroye and Lu [52]) and in a PA tree of the order of√n (Van Der Hofstad [138,
Theorem 1.17]). We even show a stronger result: for each edge, at least one of its vertices
will almost surely become a linear degree hub. This phenomenon is unprecedented and
present in no other model of which we are aware. However, not everything is different
from the URRT or PA models. In Theorem 6.6 we show that the diameter is logarithmic
almost surely, as in a URRT (Addario-Berry and Ford [1, Corollary 1.3]), whereas it is at most
logarithmic in a PA tree (Dommers, van der Hofstad, and Hooghiemstra [55]). Moreover,
as we show in Theorems 6.7 and 6.8, in both a RFT and a URRT the farthest vertex from a
leaf is at distance Θ(log(n)/ loglog(n)) from it.
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Figure 1.8: Illustration of a RFT of size 1000.

1.3 Introduction to the random Tukey depth

As was quickly mentioned when citing the clustering problem, it is possible to study similar
questions in very different settings. In the last part of this thesis we study the problem of
ordering high-dimensional data. The problem is therefore similar to the one studied in
Chapter 4, and here we are also interested in a notion of centrality for ordering points in
Rd . However, the fact that the data being studied (a graph or a collection of points in high
dimension) are completely different means that we have to use different statistical tools.
Here, we enter deeper into the world of data analysis and machine learning. Because of
their countless industrial applications, these are fields where research is fast and exten-
sive. One of the major challenges facing practitioners today is the increasing size of the
objects being studied. Many applications rely on high-dimensional data, and the growth of
databases is only intensifying this problem. The fast progress of tools based on artificial
intelligence and their media coverage are also a factor that pushes every statistician to
confront himself to problems linked to high dimensionality. The problem in question here
consists of ordering the points of a dataset by their centrality. It can be useful to define a
partial order, to be able to visualise the data, from the most central to the extreme values.
More than a visualisation tool, a centrality order is needed to train a conformal predictor
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(in other words, a predictor that returns not a single point but a confidence interval). In
dimension 1, an obvious way of ordering points in a set is by their empirical quantiles.
Unfortunately, from dimension 2 onwards, the notion of quantile (and even median) is no
longer so easily defined. Tukey [137] introduced a notion of depth, called the Tukey depth
(or half-space depth), which is a popular tool for visualising the centrality of a point in a
dataset. Many other depth measures have been introduced, such as simplex depth (Liu
[99, 100]), projection depth (Liu [101], Zuo and Serfling [143]), zonoid depth (Koshevoy and
Mosler [92, 92]) or a notion of outliers, (Donoho [56], Stahel [134]). Each of these notions
has different properties of stability, invariance or computability, making them suitable for
different applications. Tukey depth is defined as follows. Given a point x in Rd , for a direc-
tion u ∈ Sd−1 (where Sd−1 is the Euclidean sphere of Rd ) we define the closed half-space

H(x,u) = {y ∈ Rd : ⟨y,u⟩ ≤ ⟨x,u⟩} .

Then, for a set of points {x1, · · · ,xn}, we define the depth in direction u by

rn(x,u) =
1
n

n∑
i=1

1xi∈H(x,u) ,

which corresponds to the empirical quantile of ⟨x,u⟩ in the dataset projected on the direc-
tion u. We can then define the Tukey depth of x in the set {x1, · · · ,xn} by

dn(x) = inf
u∈Sd−1

rn(x,u) .

Note that the principle is similar to that of Jordan centrality. We define a score, here the
Tukey depth, and use this score to order points inRd . The Tukey depth has the expected at-
tributes of a depth measure: it is invariant by affine transformation, tends to 0 as ∥x∥ →∞
and decreases on radii starting from the deepest point. Moreover, it is robust under con-
ditions of symmetries (Donoho and Gasko [57]), and when data are drawn independently
from the same distribution its contour lines converge rapidly (Brunel [31]). Nevertheless,
one of the problems encountered with this depth measure is the difficulty of calculating it.
This problem is highlighted by the need to process data of increasingly large dimensions.
Thus, calculating even an approximate value is a NP hard problem, as shown by Amaldi and
Kann [6], Bremner et al. [24], Johnson and Preparata [85]. Moreover, the calculation of the
maximum depth is done in time O (

nd−1
) (Chan [37]). Despite these difficulties, Tukey’s

depth has not been discarded by practitioners because other depth measures face the
same challenges. This is why work is being done to develop and analyse approximation
algorithms. Their importance is underlined by Nagy, Dyckerhoff, and Mozharovskyi [115].
Among the solutions proposed, Shao, Zuo, and Luo [131] study an algorithm based on
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mcmc methods to calculate the projection depth in high dimension. For the Tukey depth,
Zuo [142] proposed a new approach for calculating an approximation, but without giving
any guarantees on its accuracy. Finally, Chen, Morin, and Wagner [38] studied the quality
of various approximations to the Tukey depth.

Cuesta-Albertos and Nieto-Reyes [45] introduced a natural approximation algo-
rithm, which does not take the minimum over all possible directions in Rd but limits it-
self to k directions chosen at random. Thus, for U1, · · · ,Uk independent uniform random
variables on Sd−1, we can define the random Tukey depth of the point x within the set
{x1, · · · ,xn} by

Dn,k(x) = min
i=1,··· ,k

rn(x,Ui) .

It is easy to see that for each x, when k tends to infinity, the random Tukey depth
converges with probability 1 to the Tukey depth. However, we need to know more to be
able to use this approximation in practice. In particular, we need to know what size k must
be for Dn,k(x) to be a good approximation of dn(x). More precisely, for ϵ ∈ (0,1/2), δ > 0,
how large must k be to ensure that |Dn,k − dn(x)| ≤ ϵ with probability at least 1 − δ? To
investigate this question we need to restrict our study to ”reasonable” datasets. Indeed,
already in dimension 2, it is possible to construct an example of a dataset where k must
be arbitrarily large to achieve a given precision. For example, for n even, let’s define the
points xi = (

i/n,a(i/n)2
) where a > 0 is a parameter. Since it lies on the boundary of the

convex envelope of {x1, · · · ,xn}, the depth of the point xn/2 is 0. However, to ”see” this depth
we need to evaluate the depth in a direction u such that

⟨xn/2−1,u⟩ > ⟨xn/2,u⟩ ,

and
⟨xn/2+1,u⟩ > ⟨xn/2,u⟩ .

An illustration, presented in Figure 1.9, shows that by choosing a arbitrarily small, the area
where u must be to detect the depth of xn/2 becomes arbitrarily small, and consequently
k must be chosen arbitrarily large to hope to estimate the Tukey depth.

This is why we have to assume a certain regularity in the dataset. We also assume
that the points are independent and identically distributed, a natural assumption in ma-
chine learning. More precisely, we assume that the points {x1, · · · ,xn} are independent
realisations of an isotropic log-concave distribution. Note that the isotropic assumption
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Figure 1.9: Illustration of the dataset xi = (
i/6,0.8(i/62

) for i ∈ [6]. In green, the
lines in between vector u must be to detect that the depth of x3 is 0.
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is not necessary, as it is possible to estimate precisely the covariance of a non-isotropic
distribution, and therefore it is possible to put a dataset sampled from a log-concave dis-
tribution into a (quasi) isotropic position. For data sampled from a random variable, it is
possible to introduce a version of Tukey’s depth based solely on the distribution. Rather
than counting the number of points in a half-space, we can simply measure this half-space
for the distribution in question. We thus define a new version of dn and Dn,k , respectively
d and Dk . A precise definition is given in Section 7.1.

We are not the first to be interested in the quality of this approximation algorithm.
For example, Cuesta-Albertos and Nieto-Reyes [45] have produced experimental results
suggesting that Dk is a good approximation of d. From a theoretical point of view, Nagy
et al. [115] have studied under what conditions supx∈Rd |Dk(x)−d(x)| → 0when k→∞. They
also gave bounds on the speed of convergence. In contrast to this uniform approach, we
study the quality of the approximation of d(x) by Dk(x) for a fixed point x. In particular,
we show that the quality of this approximation depends strongly on the depth of x. Our
results are presented in three parts. First, most of the points in the dataset have a shallow
depth, which is easy to estimate. Second, estimating the Tukey depth of intermediate
depth points is hard, as it requires k to grow exponentially with the dimension. Finally,
if there is a point of depth 1/2, it is easy to locate. More precisely, if the measure µ is
log-concave isotropic on Rd , we show in Corollary 7.2 that there exist universal constants
c,κ,C > 0 such that for ϵ,δ,γ > 0, if

k =
⌈
max

(
C,

4
ϵ
log

3
γ
,
2
c
log

4
δ

)⌉
,

and if the dimension d is greater than

d ≥max

(3(k +1)
γ

)1/κ
,
64log(1/ϵ)k

π
log

3k
γ
,

(
1
c
log

6k
δ

)2
,
(2
ϵ

)κ ,
then, with probability at least 1− δ,

µ
({
x ∈ Rd :Dk(x) > ϵ

})
< γ .

Since Dk(x) ≥ d(x), this corollary implies that, in the sense of the µ measure, most
points have a small depth and that this is easily estimated. It is easy to understand why, in
large dimensions, most points have a small depth. An isotropic log-concave distribution on
Rd ”looks like” the uniform distribution on the sphere of radius√d in Rd . We say that most
of these points’ depths are easy to estimate because, for a given precision, the parameter k
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does not depend on the dimension. Although this Corollary proves that most points have a
small depth, and that this depth is easy to estimate, it does not prove that for all points with
a small depth the depth is easy to estimate. For example, consider the uniform distribution
on [−(3/2)1/3, (3/2)1/3]d , which is log-concave isotropic. The point x = ((3/2)1/3,0, · · · ,0) has
depth 0, and yet we can show thatDk(x) ≥ 1/4 with high probability if k is not exponentially
large in d.

We then show in Corollary 7.3 that intermediate depths are hard to estimate. Again,
for µ log-concave isotropic on Rd , we show that for δ ∈ (0,1), γ ∈ (0,1/2), there exists
a positive constant c = c(γ) such that if x ∈ Rd is such that d(x) = γ , then for ϵ < c, if
k ≤ δedϵ2 log

2(1/ϵ)/c, then with probability at least 1− δ
|Dk(x)− d(x)| ≥ ϵ .

Finally, we show that the point of depth 1/2, if it exists, is easy to locate. Note that there
is no guarantee that such a point exists. The deepest point can have a depth smaller
than 1/2, but not arbitrarily small. Nagy, Schuett, and Werner [114, Theorem 3] show that
1/e ≤ supx∈Rd d(x) ≤ 1/2. In the case where supx∈Rd d(x) = 1/2, the distribution is said to be
half-space symmetric (Nagy et al. [114], Zuo and Serfling [144]). It is easy to see that, in this
case, there is a single point of depth 1/2, which is called the Tukey median. A symmetric
distribution is half-space symmetric, but the converse is false. However, in the case of a
uniform distribution on a convex K , then the distribution is half-space symmetric if and
only if K is symmetric (Funk [70], Schneider [128]). Corollary 7.4 proves that, if µ is log-
concave, isotropic and half-space symmetric, then if a point is such that Dk(x) ≈ 1/2 then
x is close to the Tukey median. More precisely, consider X1, · · · ,Xn independent random
variables distributed according to µ, m the Tukey median and mn,k the empirical Tukey
median (i.e. Dn,k(mn,k) = maxx∈Rd Dn,k(x)). Then there exist positive universal constants c
and C such that for δ ∈ (0,1), γ ∈ (0, c), if n ≥ Cd/γ2 and

k ≥ c(d log(d) + log(1/δ)) ,

then
∥∥∥mn,k −m∥∥∥ ≤ Cγ√d ,

with probability at least 1−δ. This means that by fixing γ of the order of 1/√d we can locate
the Tukey median at constant distance with only k ≈ d log(d). Note that since in high di-
mensions the mass of an isotropic log-concave distribution is concentrated on the sphere
of diameter √d, locating the Tukey median at constant distance is not a trivial estimate.
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Chapter 2

Introduction en Français

Contents
2.1 Introduction à l’archéologie dans les graphes . . . . . . . . . . 26

2.1.1 Retrouver la racine dans un graphe récursif aléatoire . . . 30

2.1.2 Estimer l’ordre d’arrivée dans un arbre récursif aléatoire . 34

2.1.3 Broadcasting dans un graphe récursif aléatoire . . . . . . 39

2.2 Introduction à l’arbre d’amitié aléatoire . . . . . . . . . . . . . . 43

2.3 Introduction à la profondeur de Tukey aléatoire . . . . . . . . . 46

2.1 Introduction à l’archéologie dans les graphes

Autour de nous beaucoup de phénomènes peuvent être décrits par des processus d’attachement
ou de propagation. Pour en citer quelques uns, pensez à la propagation d’une maladie,
d’une fake news ou d’un virus informatique, ou à l’évolution d’un réseau social. Pour
décrire ces phénomènes, il est possible d’utiliser des graphes, et plus précisément une
séquence de graphes rendant compte du processus d’évolution de l’objet étudié. Par ex-
emple, à un instant donné, un réseau social peut être décrit par un graphe où chaque
individu correspond à un sommet et chaque lien d’amitié correspond à une arrête. Du fait
que ce graphe évolue, on peut considérer la séquence de graphes qui décrit l’évolution du
réseau social. Induite par cette séquence, une notion d’histoire apparâıt. En effet, un som-
met a été ajouté en premier et un autre mille-deux-cent-quarante-troisième. Dans cette
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partie de ma Thèse, nous allons essayer de retrouver de l’information sur cette histoire
dans le cas où nous n’observons le graphe qu’à un instant donné (et pas la séquence).
Pour formuler ce problème mathématiquement, nous devons définir quelques modèles
de graphes aléatoires. Ces modèles servent de bac à sable où développer des techniques
et algorithmes dans des environnements parfaitement définis. Commençons par des
modèles de graphe très couramment étudiés, mais dont la taille est fixée.

Modèle d’Erdős–Rényi
Dans ce modèle, un paramètre n (la taille du graphe est fixé). Lorsque l’on parle de

graphe d’Erdős–Rényi on peut se référer à deux modèles similaires. Le modèle G(n,M), qui
consiste à choisir uniformément au hasard un graphe parmi tous les graphes à n sommets
et M arrêtes, et le modèle G(n,p), qui est construit en connectant aléatoirement les n
sommets. Chaque arrête est incluse dans le graphe avec probabilité p, indépendamment
de toutes les autres arrêtes.

Les graphes géométriques aléatoires
Dans ce modèle, un espace métriqueX munie d’une mesure est fixé. Un paramètre

n (la taille du graphe), un paramètre ρ de connectivité ainsi qu’un distribution µ sont aussi
fixés. n points sont tirés au hasard de manière indépendantes selon la loi µ. Chacun de
ses points correspond à un sommet du graphe, et chaque paire de sommets est connecté
si les points correspondants sont à une distance inférieure à ρ.

Modèles à blocs stochastiques (SBM)
Dans la version la plus simple de ce modèle deux communautés sont créés. Le

modèle est ensuite similaire au G(n,p), à la différence prêt que la probabilité qu’une arrête
soit ajoutée au graphe dépend des communautés de ses extrémités. Si ces extrémités sont
dans la même communauté, elle est ajoutée avec probabilité p, sinon avec probabilité q.

Dans ce travail nous étudierons des modèles récursifs, c’est à dire qui grandissent
en ajoutant récursivement des sommets et des arrêtes. En voici quelques exemples.

L’arbre d’attachement uniforme (URRT)
Sans doute le modèle le plus simple pour décrire un processus d’attachement.

Le premier graphe de la séquence consiste en un sommet isolé. Ce graphe est agrandi
récursivement en ajoutant un nouveau sommet, connecté à un sommet déjà présent dans
le graphe choisi uniformément au hasard. Il est facile de vérifier que ce processus produit

27



Figure 2.1: Illustration du processus d’attachement pour un URRT. En rouge lesommet choisi uniformément au hasard, où le nouveau sommet est connecté.

un arbre, car aucun cycle n’est jamais créé.
L’arbre d’attachement préférentiel linéaire (PA tree)
Ce modèle, rendu célèbre par Barabási and Albert [14], est le cas le plus simple de

la classe plus large de l’attachement préférentiel. Dans le cas étudié dans cette thèse, le
premier graphe de la séquence est un sommet isolé et le graphe grandit récursivement en
ajoutant un nouveau sommet, qui se connecte à un sommet déjà présent choisi au hasard
avec une probabilité proportionnel à son degré.

Le ℓ-dag
Certains des processus réels cités plus hauts ne peuvent pas être décrits seule-

ment par des arbres. C’est pourquoi nous introduisons un modèle de graphe aléatoire
récursif, sur le modèle de l’URRT. Cette fois, chaque nouveau sommet ne se connecte pas
à un sommet choisi uniformément au hasard mais à ℓ sommets choisis uniformément au
hasard (choisis avec remise).

Chacun de ces modèles décrivent un phénomène d’attachement. Cependant, pour
décrire des processus de propagation il peut être nécessaire d’ajouter une couche de com-
plexité à ces modèles. Par exemple, pour prendre en compte que lorsqu’un réseau social
grandit, des idées politiques peuvent se propager au sein du graphe. Avec les modèles
de broadcasting c’est chose faite. Ici, chaque nouveau sommet, non seulement se con-
necte au passé, mais hérite d’un bit 0 ou 1 (penser par exemple à voter Républicain ou
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Figure 2.2: Illustration du processus de broadcasting dans un ℓ-dag.

Démocrate). Nous présentons ici deux modèles de broadcasting.
Broadcasting dans un URRT
Ici le premier sommet se voit arbitrairement attribué un bit. Chaque nouveau som-

met est ensuite connecté selon le même processus que dans l’URRT mais il hérite du bit
de sont ancêtre avec probabilité 1− p, et du bit opposé avec probabilité p.

Broadcasting dans un ℓ-dag
Ici, le premier graphe de la séquence est une collection de ℓ sommets isolés qui

se voient chacun arbitrairement attribués un bit. Le processus de connexion est le même
que dans le ℓ-dag. Pour attribuer le bit du nouveau sommet, un vecteur de ℓ bits est
créé avec les bits de ℓ ancêtres (certains peuvent être tiré plusieurs fois et apparaissent
donc plusieurs fois dans ce vecteur). Puis, chaque bit de ce vecteur est indépendamment
changé avec probabilité p, appelée probabilité de mutation. Enfin, un vote par majorité a
lieu pour attribuer le bit du nouveau sommet.

Ces modèles de graphes aléatoires ont engendrés un grand nombre de travaux sci-
entifiques. Une partie de ceux ci peuvent être regroupés dans le monde des statistiques
combinatoires. Il est impossible de donner une définition exacte des statistiques combina-
toires mais elles regroupent des problèmes statistiques où des outils de dénombrement
sont utilisés. Parmi ces innombrables problèmes, nous pouvons en citer quelques uns,
tirés en partie des notes d’un cours donné à Saint-Flour, Lugosi [102].

La clique cachée
Définissons G(n,1/2, k) comme un modèle d’Erdős–Rényi de paramètre 1/2 où la

présence d’une clique de taille k est imposée. Une question naturelle est de chercher un
test statistique pour déterminer si un graphe a la loi G(n,1/2) ou G(n,1/2, k); ou alors de
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retrouver la clique cachée (voir par exemple le travail de Alon et al. [4]).
Estimation de dimension dans un graphe géométrique aléatoire
Étant donné un graphe géométrique obtenu avec des sommets uniformément dis-

tribués sur la sphère unité de dimension d, pour la distance euclidienne et en connectant
les points à distance inférieurs à √2. À partir de la seule observation du graphe, est il pos-
sible d’estimer la dimension d (voir par exemple le travail de Atamanchuk et al. [9])? Est il
possible de créer un test pour différencier ce graphe d’un G(n,1/2)?

Clustering
Étant donné un SBM, pour quelles valeurs de p et q est il possible de retrouver

(exactement ou de manière approchée) les deux communautés (voir Lee and Wilkinson
[97] pour une review des nombreux résultats à ce sujet)? Remarquons que la question du
clustering peut se poser sur d’autres types de données. Par exemple, pour des points issus
d’un mélange de gaussiennes (Even et al. [68]). Cette remarque nous permet de faire un
pont vers le dernier chapitre de cette thèse, où des questions proches de celles abordées
aux Chapitres 3 et 4 sont traitées, mais lorsque les données ne viennent pas d’un graphe
mais de la réalisation d’une distribution sur Rd .

Dans les trois premiers chapitres suivant l’introduction nous étudions des problèmes
de statistiques combinatoires dans des graphes récursifs. En particulier, nous nous de-
mandons comment inférer de l’information sur le passé d’un graphe récursif aléatoire.

2.1.1 Retrouver la racine dans un graphe récursif aléatoire

Dans les graphes récursifs, certaines questions apparaissent très naturellement, en par-
ticulier concernant l’inférence d’information sur le passé du processus. Par exemple, est
il possible de retrouver le premier sommet du graphe? D’estimer l’ordre d’arrivée de tous
les sommets? De retrouver quel bit avait le premier sommet dans le modèle de broad-
casting? Commençons par la première question, celle du root finding. Ici, le but est très
simple, retrouver le premier sommet. Plusieurs articles étudiants ce problème ont été
publiés, avec des formalisations différentes de ce que veut dire retrouver le premier som-
met. Par exemple, Shah and Zaman [130] étudient une méthode qui renvoie un seul som-
met, et prouvent que, dans certains régimes, ce sommet est bien le sommet 1 avec une
probabilité positive. D’autres ont étudié des algorithmes n’ayant accès qu’à une obser-
vation locale du graphe pour détecter des sommets d’intérêt, par exemple Brautbar and
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Kearns [22]. Ici, nous formalisons la tâche de root-finding différemment. Nous cherchons
un algorithme qui, avec en entrée le grapheG = (V ,E), renvoie un ensemble de confiance,
S(ϵ) ⊂ E contenant le sommet 1 avec probabilité au moins 1−ϵ. Cette question a été étudié
par Bubeck et al. [33] dans le cas des URRT et d’arbres PA, Khim and Loh [86] ont étudié le
cas où l’arbre est obtenu par diffusion sur un arbre régulier infini et Brandenberger et al.
[21] le cas d’un arbre de Galton-Watson conditionné en taille. Une mesure de la qualité de
ces algorithmes est la taille de l’ensemble de confiance, K(ϵ) := |S(ϵ)|. Remarquez qu’ici
on écrit K(ϵ) et non pas K(|V |,ϵ). En effet, on souhaite trouver un ensemble de confiance
dont la taille ne dépend que de ϵ et pas de |V |. En observant la Figure 2.3 on se rend
compte que, dans un URRT, identifier le premier sommet n’est pas évident. En effet, dans
ce qui apparâıt comme “le centre” du graphe, on retrouve aussi bien des sommets de haut
degrés que des feuilles. On retrouve aussi des sommets de haut degrés à des positions
périphériques dans le graphe. Ainsi, Bubeck et al. [33, Theorem 4] prouvent que l’on ne
peut pas retrouver exactement le premier sommet et que, dans un URRT, peu importe la
méthode employée,

K(ϵ) ≥ exp

√ 1
30

log
( 1
2ϵ

) ,
alors que dans un arbre PA on ne peut pas faire mieux que

K(ϵ) ≥ c
ϵ
,

pour une constante positive c.
Récemment Contat et al. [40] ont suggéré un algorithme analysant les degrés de

paires de sommets dans l’arbre PA pour localiser le sommet 1 dans un ensemble de con-
fiance de taille ϵ−1+o(1), ce qui correspond à la meilleure performance possible. Dans le
cas de L’URRT, il existe encore un gap entre la borne inf et les performances du meilleur
algorithme. À ma connaissance, le meilleur algorithme est donné par Bubeck et al. [33]
et utilise la centralité de rumeur. Il a été prouvé plus tard par Crane and Xu [42] que la
centralité de rumeur correspond à ordonner les sommets par leur vraisemblance d’être
le sommet 1. Cet algorithme permet de localiser le sommet 1 dans un ensemble de con-
fiance de taille sous polynomial, de l’ordre de exp

(
a log1/ϵ
loglog1/ϵ

).
Dans le Chapitre 3 nous développons une méthode pour le root-finding dans des

modèles de graphe car il est important de s’intéresser à des modèles plus généraux que
les arbres. En effet, beaucoup de problèmes sont mieux décrits par des graphes que
par des arbres. Ainsi, les liens dans des communautés en ligne ou le world wide web
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Figure 2.3: Réalisation d’un URRT de taille 1000.
ne sont évidemment pas des arbres. De plus, quand bien même le modèle théorique
est un arbre, lors de l’acquisition de données, en pratique, des erreurs seront présentes
et la structure d’arbre détruite. Dans le cas de l’URRT ceci est un réel problème car les
méthodes analysés jusqu’alors dépendent entièrement de la structure d’arbre. En réponse
à ce problème, Crane and Xu [43] ont étudié le problème du root finding lorsque du bruit
est ajouté sur l’arbre. Plus précisément, ils étudient le cas où en sus de l’URRT ou de l’arbre
PA des arrêtes sont ajoutés au hasard indépendamment avec la même probabilité pour
chaque paire de sommets (c’est à dire que les arrêtes d’un graphe G(n,p) sont ajoutés aux
arrêtes de l’arbre). Ils introduisent une méthode Bayésienne et prouvent qu’il est possi-
ble d’estimer la position de la racine si le nombre d’arêtes ajoutées n’est pas trop grand.
Ici, nous étudions deux modèles de graphes et introduisons une méthode différente, re-
posant sur l’apparition de certains sous-graphes.

Les deux modèles que nous étudions sont le ℓ-dag et un cas particulier du modèle
de Cooper-Frieze. Le modèle du ℓ-dag consiste en une variante de l’URRT où, à chaque
étape, un nouveau sommet se connecte non pas à un ancêtre choisi au hasard mais à
ℓ, choisis uniformément avec replacement (les arrêtes multiples sont alors condensés en
une seule). Ce modèle a été étudié par exemple par D́ıaz Cort et al. [54], Tsukiji and Mah-
moud [135], Tsukiji and Xhafa [136] ou Devroye and Janson [51]. Ce modèle est équivalent
à considérer l’union des arrêtes de ℓ URRT indépendants. La Figure 2.4 illustre ce point de
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Figure 2.4: Illustration d’un 2-dag.

vue pour un 2-dag. Le second modèle est un cas particulier du modèle de Cooper-frieze,
introduit par Cooper and Frieze [41]. Ici, un paramètre α ∈ (0,1) est fixé est le graphe est
grandi à partir d’un sommet isolé. À chaque étape, une variable aléatoire de Bernoulli de
paramètreα est réalisée, indépendamment des événements passés. Si le résultat est 0, un
nouveau sommet est ajouté, qui se connecte à un sommet déjà présent choisi au hasard.
Sinon, une paire de sommet est tirée uniformément au hasard et une arrête est ajoutée.
Si des arrêtes multiples apparaissent elles sont condensées en une seule.

Pour choisir un ensemble de confiance S(ϵ), il est courant de choisir les sommets
les plus “centraux”. Plusieurs notions de centralité existent. Par exemple, Bubeck et al.
[33] et Banerjee and Bhamidi [11] analysent la centralité de Jordan dans les URRT. On
peut aussi penser à la centralité de rumeur, introduite par Shah and Zaman [130] et don-
nant le meilleur algorithme connu pour le root finding dans un URRT. Il est aussi possible
d’utiliser la vraisemblance qu’un sommet soit le sommet 1, comme l’ont fait Crane and
Xu [42] (comme dit plus haut, il s’avère que cela cöıncide avec la centralité de rumeur).
Notre approche n’utilise pas ces méthodes. En effet la centralité de Jordan, de rumeur, ou
d’autres notions populaires de centralité, ne sont définies que sur des arbres. Pour anal-
yser la vraisemblance, Bubeck et al. [33] avaient déjà remarqué que son analyse dans le
cas de l’URRT était trop complexe. Ils ont alors proposé d’utiliser une expression relaxée
de la vraisemblance (la centralité de rumeur), avant que Crane and Xu [42] ne réalisent que
cette relaxation ne changeait pas l’ordre dans lequel les sommets étaient ordonnés. C’est
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ainsi qu’a pu être étudié l’algorithme de root finding correspondant à choisir les sommets
les plus probables d’être le sommet 1. Dans notre cas, la vraisemblance a une expression
encore plus compliquée et nous n’avons pas été capables de la simplifier, encore moins
de montrer que sa simplification ordonne les sommets de manière significative. Nous
avons donc décidé d’analyser une autre notion de centralité. Nous étudions l’apparition
de sous graphes, et plus précisément de double cycles. Par souci de clarté, la définition
est reportée à la Section 3.2. L’ensemble de confiance est donc l’ensemble des sommets
présents dans des doubles cycles de petite taille. Nous parvenons à prouver que cette
méthode permet de localiser le sommet 1 dans un ensemble dont la ne dépend pas de la
taille du graphe pour les deux modèles étudiés, et plus précisément, Théorème 3.4 pour
le ℓ-dag assure que

K(ϵ) ≤ c0
ϵ
log

(1
ϵ

) c1
ℓ log 1

ϵ

,

avec probabilité au moins 1− ϵ. Le Théorème 3.5 assure que, pour le modèle de Cooper-
Frieze,

K(ϵ) ≤ c0 log
(1
ϵ

)c1 log 1
ϵ

,

avec probabilité au moins 1 − ϵ. À contrario du modèle de l’URRT et de l’arbre PA, nous
n’avons pas été capables de trouver des bornes infs sur la taille de l’ensemble de confiance.
Prenons le cas du ℓ-dag par exemple. Est-il possible de faire mieux que dans le modèle
de l’URRT car le ℓ-dag est la superposition de ℓ URRT indépendants? Ou bien le fait de
détruire la structure d’arbre rend le problème strictement plus difficile que dans un URRT?
Ces questions restent aujourd’hui ouvertes.

2.1.2 Estimer l’ordre d’arrivée dans un arbre récursif aléatoire

Pour étendre les connaissances sur l’archéologie des graphes, on peut penser à deux
directions de recherche. Choisir un problème précis (par exemple le root finding) et le
résoudre dans des modèles de plus en plus complexes ou de plus en plus efficacement.
Ceci permet entre autre de nous rapprocher d’applications, par exemple en cherchant des
algorithmes robustes, et donc applicables à des données empiriques. Une autre possibilité
est d’étudier des questions plus complexes. Le prix à payer est alors de recommencer à
travailler avec des modèles simples, en espérant que, plus tard, certains soient capables
de résoudre ce même problème dans des modèles plus complexes. C’est ce que nous
faisons dans le Chapitre 4. Une seconde question d’intérêt dans le monde de l’archéologie
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Figure 2.5: Illustration d’un graphe géométrique aléatoire sur le cercle, tiré de [7].

des graphes est d’estimer l’ordre d’arrivée de tous les sommets. En effet, retrouver le pre-
mier sommet n’apporte qu’une information limitée sur l’histoire du graphe. Mais il peut
par exemple être très intéressant de retracer l’histoire de la propagation d’une fake news
ou d’une rumeur en ligne. Dans ce cas, le problème n’est autre que d’estimer une variable
aléatoire latente associée à chacun des sommets: leur temps d’arrivée. Nous étudions ce
problème dans le cas de l’URRT et de l’arbre PA. Ce type de problème a été très largement
étudié, en particulier dans le domaine de la sériation. Dans les problèmes de sériation, le
but est d’estimer l’ordre ou les positions relatives de points grâce à l’observation d’affinité
entre ces points. Cette similarité est supposée décrôıtre avec la distance entre les som-
mets dans l’espace latent. Ce type de questions apparâıt en archéologie (Robinson [123]),
en bio-informatique (Recanati et al. [121]) ou encore dans des problèmes de matchmak-
ing (Bradley and Terry [20]). Un bon exemple de données où des affinités entre paires
de sommets apparâıt est le cas des graphes, qui ne sont rien d’autres que la restriction
a des affinités binaires (une arrête est présente ou non). Dans notre cas, nous obser-
vons une matrices d’adjacence et nous essayons d’estimer la position des sommets dans
l’espace latent des entiers naturels. Gilbert [71], Giraud et al. [72], Janssen and Smith [82]
ont étudié ce problème dans le cas de graphes aléatoires. En particulier, l’exemple du
graphe géométrique aléatoire est emblématique du problème de sériation. L’exemple les
plus simple a pour espace latent le cercle unité dans le plan muni de la distance Euclidi-
enne. La Figure 2.5 illustre une réalisation d’un graphe géométrique aléatoire.
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Parmi les problèmes de sériation, Recanati et al. [121] étudient un problème proche
du nôtre, en ce sens que les données observées sont des matrices Robinsonniennes per-
turbées. Une matrice est dite de Robinson lorsque ses entrées sont décroissantes sur
les lignes et colonnes s’éloignant de la diagonale. Dans le cas d’un URRT ou d’un arbre
de PA, l’espérance de la matrice d’adjacence est une matrice de Robinson. Néanmoins, les
résultats de Recanati et al. [121] ne s’appliquent pas et nous montrons empiriquement dans
la Section 4.4 que la méthode qu’ils proposent a de mauvaises performances dans notre
problème. À notre connaissance, le seul résultat théorique concernant l’estimation de
l’ordre d’arrivée des sommets dans un graphe aléatoire vient de Crane and Xu [42]. Dans
cet article, ils présentent une méthode générale pour réaliser des tâches d’archéologie des
graphes qui peut être appliqué au cas de l’estimation des temps d’arrivée. Cette méthode
consiste à générer un ordre de l’arbre avec la distribution attendue du modèle étudié con-
ditionné sur la forme de l’arbre. Cette méthode permet donc de générer un ordre qui a
la même loi que le vrai ordre, mais ils ne donnent aucune mesure de la qualité de cette
méthode. Il ne nous ait pas apparu de manière évidente d’étudier sa qualité.

Une des raisons qui expliquent à la fois que les résultats théoriques de la sériation
ne s’appliquent pas à notre problème et que ces mêmes méthodes ne sont pas bonnes em-
piriquement vient de la structure temporelle de notre problème. Dans tous les problèmes
de sériation que nous connaissons, les sommets ont tous les même propriétés. Par ex-
emple dans le graphe géométrique aléatoire sur le cercle, les propriétés de tous les som-
mets sont identiques en loi. C’est totalement faux dans notre cas, pensez par exemple
au degrés du sommet 1 dans l’URRT, de l’ordre de log(n) presque sûrement, alors que
le sommet n a un degrés de 1 (où n désigne la taille de l’arbre observé). Cette inho-
mogénéité a plusieurs conséquences. Premièrement, les méthodes de sériations intro-
duites jusqu’à présent ne s’appliquent pas. Deuxièmement, il faut définir une nouvelle
manière de mesurer la qualité d’un estimateur. En effet, si l’on considère un risque uni-
forme (par exemple la distance maximale entre position latente et position estimée), alors
cette erreur sera intégralement porté par les feuilles arrivés à la fin de la croissance de
l’arbre. C’est pourquoi nous introduisons une famille paramétrique de risques comme
suit

Rα(σ̂ )
def= E

∑
v∈V

|σ̂ (v)− σ (v)|
σ (v)α

 ,
pourα > 0. Ici, σ (v)désigne le temps d’arrivée du sommet v et σ̂ une méthode d’estimation
des temps d’arrivées. Cette mesure d’erreur prend en compte l’inhomogénéité du problème
en mettant plus de poids sur les sommets arrivés tôt dans le graphe. En effet, on peut
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vérifier que dans un arbre de taille n, l’estimation du temps d’arrivée d’une feuille fait une
erreur d’au moins l’ordre de n, alors que l’on peut estimer bien plus précisément le temps
d’arrivée de sommets anciens.

Nous étudions ce risque en trois étapes, tout d’abord en montrant une borne
inf sur la meilleure performance atteignable, puis en analysant les performances d’une
méthode de classement des sommets et enfin en étayant nos propos par des simulations.
Nos premiers résultats concernent la meilleure performance atteignable par une méthode
de classement. Pour ce faire il faut se limiter à une classe restreinte d’estimateurs. Une
hypothèse courante et faisant sens sur un plan pratique est de supposer que la méthode
de classement est invariante par changement de labels. En quelques mots, cela signifie
que l’ordre renvoyé ne dépend que de la forme de l’arbre et pas des labels assignés aux
sommets. Une définition exacte est donnée dans la Section 4.1. Une fois cette hypothèse
faite, il est possible d’identifier des paires de sommets de l’URRT ou de l’arbre PA qui ne
peuvent pas être ordonnées mieux qu’au hasard. En utilisant ces paires échangeables,
nous prouvons dans les Théorèmes 4.1 et 4.7 que le risque d’une méthode de classement
invariante par changement de labels est au moins de l’ordre de n2−α , où n désigne la taille
de l’arbre étudié. De rapides calculs permettent de vérifier que le risque maximal (obtenu
en ordonnant les sommets dans l’ordre inverse du vraie ordre) résulte en une erreur de
l’ordre de n2−α pourα ∈ [0,1), de l’ordre de n log(n) pourα = 1 et de l’ordre de n pourα > 1.
Ainsi, pour α plus petit que 1 le meilleur et le pire classement des sommets résultent en un
risque du même ordre de grandeur, ce qui suggère que la renormalisation induite dans
notre risque n’est pas intéressante dans le régime α ∈ [0,1). C’est pourquoi nous nous
limitons ensuite à l’analyse du risque dans le cas α ≥ 1.

Inspirés par les travaux sur l’archéologie des graphes dans l’URRT nous avons décidé
d’analyser la méthode consistant à ordonner les sommets par leur centralité de Jordan.
Pour la définir, introduisons pour un arbre T et deux sommets disjoints u et v le sous ar-
bre (T ,u)v , correspondant à tous les sommets w pour lesquels v se trouve sur le chemin
entre w et u sur l’arbre T . La centralité de Jordan d’un sommet u est définie comme

ψ(u,T ) = max
v∈V (T ), v∼u

|(T ,u)v | ,

où v ∼ u indique que les sommets v et u sont voisins. Voir Figure 2.6 pour une illustration
des sous arbres (T ,u)v et de la centralité de Jordan. Cette méthode de classement est en
particulier invariante par changement de labels. Elle a pour avantage d’avoir été largement
étudié dans le problème de l’archéologie des graphes, aussi bien dans le modèle de l’URRT
que de l’arbre PA (Bubeck et al. [33], Moon [109], Wagner and Durant [139]). Nous utilisons
ces résultats de localisation du sommet 1 comme première étape pour étendre l’analyse

37



Figure 2.6: Illustration de la centralité de Jordan. Ici le sommet u a 4 voisins,
v1, v2, v3 et v4. Surligné en rouge le sous arbre (T ,u)v1 , en bleu le sous arbre
(T ,u)v2 , en violet le sous arbre (T ,u)v3 et en vert le sous arbre (T ,u)v4 . Ici,

ψ(u,T ) = 7.

de la centralité de Jordan au classement de tous les sommets. Nous prouvons des bornes
sur le risque et en particulier nous montrons dans les Théorèmes 4.4 et 4.8 que dans le
modèle de l’URRT, pour α ∈ [1,2) et dans le modèle de l’arbre PA, pour α ∈ [1,5/4), le
risque de cette méthode de classement et de l’ordre de n2−α , c’est à dire de l’ordre du
risque optimal. Pour α plus grand, nous expliquons pourquoi cette méthode ne peut pas
être optimale. Dans le modèle URRT nous proposons une méthode utilisant la centralité
de rumeur (Shah and Zaman [130]) et nous conjecturons que son risque est optimal à un
facteur multiplicatif prêt, pour tout α ≥ 1.

Enfin, nous complétons notre discussion par des simulations, tout d’abord pour
vérifier empiriquement nos résultats mais surtout pour comparer les performances de
différentes méthodes de classement. En particulier, nous comparons les performances
de notre estimateur à une méthode spectrale, étudiée par Recanati et al. [122] pour des
problèmes de sériation où les affinités sont des matrices Robinsonniennes (i.e. un cadre
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proche du notre). Dans le cas de l’arbre PA, nous comparons aussi les performances d’une
méthode de pruning, introduite par Navlakha and Kingsford [116]. Il apparâıt que le classe-
ment par la centralité de Jordan est la seule méthode que nous ayons testé dont le risque
grandit au rythme optimal.

2.1.3 Broadcasting dans un graphe récursif aléatoire

Nous pouvons étendre l’horizon des problèmes dans les graphes récursifs en introduisant
des états sur les sommets. Par exemple, il est possible de définir des sommets infectés par
le Covid et des sommets sains. Des sommets votant Démocrate et des sommets votant
Républicain. La liste est infinie, et nous la formalisons mathématiquement dans le cas le
plus simple de deux états en assignant des bits, 0 ou 1, à chaque sommet. Pour décrire
des problèmes pratiques, ces états (ou bits) ne sont pas attribués indépendamment du
reste du graphe. En particulier, dans le modèle de broadcasting, l’idée implicite est qu’un
sommet a plus de chance d’hériter de l’état (du bit) de ses parents. Cela correspond à des
dépendances différentes du cas du SBM. Dans le SBM, la communauté est fixée à priori et
celle ci impacte le processus d’attachement. Dans les modèles de broadcasting introduits
précédemment, le bit est attribué après le processus d’attachement. La manière dont un
sommet est attaché est décidé de manière indépendante des bits. Une fois connecté, le
sommet se voit attribué un bit. On notera donc que l’heuristique diffère entre ces deux
classes de modèle. Dans le cas du SBM, on décrit un processus ou des sommets similaires
ont plus de chance de se connecter (penser par exemple aux réseaux sociaux). Dans les
modèles de broadcasting, le parti pris est que les connections ont lieu indépendamment
de l’état du sommet mais qu’un sommet a plus de chance d’hériter de l’état des sommets
à qui il se connecte (penser par exemple aux contaminations par le Covid ou l’héritage de
convictions politiques dans une famille).

Cette nouvelle dimension dans les modèles ouvrent la voie à de nombreuses nou-
velles questions, en particulier de savoir si de l’information est propagée dans l’intégralité
du graphe. Comme son nom l’indique, ce type de problèmes a été motivé par l’apparition
de la radio et de la télévision. Dans un premier temps, des graphes déterministes ont été
étudiés, par exemple par Harutyunyan and Li [75] ou Bhabak et al. [17]. Tout comme les
problèmes d’archéologie des graphes, les problèmes de broadcasting sont multiples. De
la même manière que le problème du root finding apparâıt naturellement, son homologue
du rootbit finding nous semble important à étudier. Dans ce problème, un (ou des) som-
met d’origine se voit assigner un bit, qui se propage ensuite de proche en proche dans le
graphe. Dans le cas d’un arbre le problème est simplifié car il existe un seul chemin en-
tre le vertex d’origine et un sommet. Cette question a d’abord était formulée dans le cas
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d’arbre généraux par Evans et al. [67]. Plus récemment, le cas d’arbre aléatoire a été étudié
(Addario-Berry et al. [2], Desmarais et al. [48]). Depuis, un grand nombre de variations de
ce problème ont été étudiées, se référer à Mossel [112] pour une review de problèmes de
reconstruction sur des arbres. Dans un esprit similaire à celui du premier projet présenté
dans cette thèse, nous avons décidé d’étudier ce problème dans le cas ou les bits ne se
propagent pas sur un arbre mais sur un graphe. Nous référons le lecteur à la Section 2.1.1
pour les motivations de cette généralisation à des graphes généraux. Dans un problème
similaire, Antunovíc et al. [8] étudient le cas de l’attachement préférentiel, où les sommets
initiaux se voient attribués un état et chaque nouveau sommet a une couleur assignée en
fonction de celle de ses voisins. Plus récemment, Makur et al. [107] ont étudié un autre
problème similaire dans un modèle de dag différent du ℓ-dag, dont les paramètres prin-
cipaux sont le degrés entrant des sommets et le nombre de sommets à distance k du
sommet 1. Ils supposent aussi connâıtre la position du sommet 1. Deux processus de
propagation sont étudiés, un processus de vote par majorité bruité et un processus de
décision basé sur le NAND. Ils montrent que, si le nombre de sommets à profondeur k est
de l’ordre de Ω(log(k)), il existe un seuil sur la probabilité de mutation en dessous duquel
il est possible d’estimer le bit du sommet 1.

Ici, nous allons nous intéresser au le modèle de broadcasting sur les ℓ-dags, et en
particulier à la proportion de chaque bits. C’est pourquoi nous faisons le lien avec les urnes
de Pólya. En effet, si nous nous intéressons seulement au nombre de sommets d’un bit
donné, le processus de broadcasting sur un ℓ-dag est tel que la structure de graphe n’a
plus d’importance. Le modèle peut ainsi être décrit comme suit. Une urne est remplie de ℓ
balles, bleues (bit 0) ou rouges (bit 1). Lorsqu’une nouvelle balle est ajoutée sa couleur est
décidée en piochant ℓ balles successivement avec remise. Leurs couleurs sont observées,
mais avec probabilité p une balle bleue est observée comme rouge (et vice versa). Enfin,
parmi ces ℓ couleurs observées celle en majorité est transmise à la nouvelle balle. Ce
lien avait déjà été fait dans le cas du broadcasting dans un URRT par Addario-Berry et al.
[2]. Dans ce cas, la proportion des bits zéro suit une urne de Pólya avec replacement
aléatoire (la couleur ajoutée n’est pas une fonction de la couleur de la balle tirée). Ces
processus sont dits à renforcement, et nous utilisons des résultats compilés par Pemantle
[118] ainsi que des résultats de non convergence étudiés par Pemantle [117]. Nous utilisons
autant que possibles la description du problème comme une urne de Pólya, en partie
car ces propriétés ont été très largement étudiés dans la littérature (Janson [77], Knape
and Neininger [91], Wei [140]). De multiples variations de ce modèle ont été étudiés, par
exemple en augmentant le nombre de couleurs (Bertoin [16]), en choisissant plusieurs
balles à chaque tirage (Kuba and Mahmoud [94]), en rendant le choix des couleurs ajoutées
non déterministes (conditionné sur le tirage) (Janson [80], Zhang [141]). La variation la plus
proche de notre modèle dont nous ayons connaissance vient de Crimaldi et al. [44], avec
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un modèle à tirage multiple et replacement aléatoire linéaire. Notre modèle a lui aussi un
tirage multiple mais une loi de replacement aléatoire non linéaire.

Dans le cas où ℓ = 1, le modèle est grandement simplifié par la disparition du vote
par majorité et le fait que le broadcasting a alors lieu dans un arbre. Dans ce cas, Addario-
Berry et al. [2] proposent deux méthodes pour le rootbit finding. Une première méthode
consiste à estimer la position du sommet 1, puis à utiliser son état comme estimation de
l’état du sommet 1. Cette méthode utilise donc des résultats d’archéologie des graphes,
et en partie des résultats tenant de la localisation du sommet 1. Dans le cas du ℓ-dag
ces résultats nous sont encore inconnus. Nous ne connaissons pas de méthode naturelle
pour définir un centre du graphe, encore moins contrôler la distance entre ce centre et le
sommet 1. Nous pouvons estimer un ensemble de confiance pour le sommet 1 mais nous
ne savons pas contrôler la distance typique de ces sommets au sommet 1. Néanmoins, du
fait que la taille de cet ensemble soit indépendante de la taille du graphe, nous pouvons
retrouver exactement le sommet 1 avec probabilité positive (en choisissant un sommet au
hasard dans cet ensemble). Ce n’est pas l’approche que nous avons décidé de suivre mais
nous la discutons brièvement. La seconde méthode proposée par Addario-Berry et al. [2]
consiste à estimer le bit du sommet 1 par le bit en majorité dans l’arbre. Cette méthode a
l’avantage d’être facilement applicable dans notre modèle. Il est aussi connu que, dans le
cas ℓ = 1, cette méthode est optimale pour de petites probabilité de mutation(voir Addario-
Berry et al. [2]).

Nous définissons le bit en majorité au temps n par bmajn , qui est décidé au hasard
si les deux bits sont présents en nombre égaux. Nous cherchons à déterminer pour quels
régimes de (ℓ,p) cette méthode permet de retrouver quel bit était présent en majorité à
l’initialisation du graphe, c’est à dire, nous cherchons pour quelles valeurs du couple (ℓ,p)

la probabilité d’erreur Rmaj(n,p) = P
{
b
maj
ℓ , b

maj
n

}
< 1/2. Remarquons que cette grandeur

dépend des conditions initiales, mais par souci de clarté nous ne le prenons pas en compte
dans les notations. Dans le cas ℓ = 1, Addario-Berry et al. [2] prouvent que

(i) Il existe une constant c > 0 telle que
limsup
n→∞

Rmaj(n,p) ≤ cp .

(ii) En notant Rn la proportion de bits 0 au temps n,
lim
n→∞

Rn =
1
2

presque sûrement .
(iii) Pour p ∈ [0,1/4)

limsup
n→∞

Rmaj(n,p) <
1
2
.
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(iv) Pour p ∈ [1/4,1/2]
limsup
n→∞

Rmaj(n,p) =
1
2
.

Notre travail étend ces résultats. Nous introduisons pour ℓ ≥ 1 impair

αℓ =
1

2ℓ−2

ℓ∑
i>ℓ/2

(
ℓ
i

)
(i − ℓ/2) .

Ainsi α1 = 1, α3 = 3/2 et pour ℓ tendant vers l’infini

αℓ ∼
√

2ℓ
π
.

Nous prouvons dans le Théorème 5.1 que
(i) Si p < 1

2 −
1

2αℓ
, alors il existe β ∈ (0,1/2) (dont la valeur ne dépend que de ℓ et pas des

conditions initiales) telle que
P {Rn→ β}+P {Rn→ 1− β} = 1 et P {Rn→ β} < P {Rn→ 1− β} .

En particulier, indépendamment de Rℓ ,
limsup
n→∞

Rmaj(n,p) <
1
2
.

(ii) Si 1
2 −

1
2αℓ
≤ p < 1

2 −
1

4αℓ
, alors Rn→ 1/2 presque sûrement et

limsup
n→∞

Rmaj(n,p) <
1
2
.

(iii) Si 1
2 −

1
4αℓ
≤ p ≤ 1

2 , alors Rn→ 1/2 presque sûrement et
lim
n→∞

Rmaj(n,p) =
1
2
.

Remarquons que pour ℓ = 1 le régime de faible probabilité de mutation n’existe pas, ce
qui est en accord avec les résultats de Addario-Berry et al. [2]. Pour ℓ ≥ 3 trois régimes
existent. Pour de petites probabilités de mutation la proportion converge vers une valeur
différente de 1/2. Par contre, dans les régimes de probabilité de mutation intermédiaire
et élevé la proportion tend vers 1/2. Cependant, tant que p ne s’approche pas trop de 1/2,
même si la proportion de bits tend vers 1/2, le bit en majorité est positivement corrélé
avec le bit en majorité à la création du graphe. Remarquons aussi que, comme dans le
cas de l’attachement préférentiel étudié par Antunovíc et al. [8], il existe des régimes dans
lesquels aucun bit ne disparâıt (i.e. leur proportion ne tend pas vers 0).
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2.2 Introduction à l’arbre d’amitié aléatoire

La suite de cette thèse s’intéresse à d’autres thèmes que l’archéologie des graphes. Dans
un premier temps nous restons dans le monde des graphes aléatoires et de la statis-
tique combinatoire. Tous les modèles introduits précédemment ont été étudiés en détail.
Lorsqu’un nouveau modèle est introduit, par exemple pour rendre compte d’un proces-
sus d’attachement différent, il est intéressant d’en étudier les propriétés les plus basiques
(diamètre, degrés maximal, nombre de feuilles, etc). Cela permet de mieux comprendre
ce processus et de le comparer à des modèles de référence. Ce modèle est il une sim-
ple variante de l’URRT ou a-t-il une dynamique complètement différente? Observe-t-on
un phénomène de rich-gets-richer comme dans un arbre PA ou l’attachement est plus
équitable? Toutes ces questions ont été longuement étudiées pour des modèles plus clas-
siques tels que l’URRT, le ℓ-dag, l’arbre PA, l’Erdős–Rényi, etc. Dans le but de mieux décrire
certains phénomènes, de nouveaux modèles sont régulièrement introduits. Nous pro-
duisons la première analyse rigoureuse de l’un de ces modèle, l’arbre d’amitié aléatoire
(voir Krapivsky and Redner [93]).

Une caractéristique qui apparâıt dans de nombreux modèles est la présence d’un
phénomène de “rich gets richer”. Autrement dit, un sommet qui est beaucoup connecté
à tendance à renforcer cette dominance avec le temps. Ce comportement est présent
dans les modèles d’attachement préférentiel et donc dans l’arbre PA. Dans la définition
la plus simple de ce modèle, la loi d’attachement n’est pas locale. C’est à dire que, pour
faire grandir l’arbre selon la loi de l’attachement préférentiel, il faut avoir accès aux degrés
de chaque sommet, ou à toutes les arrêtes présentes dans le graphe. Comme on peut
supposer qu’en pratique les processus d’attachement sont locaux (par exemple dans des
phénomènes physiques), de nombreux modèles d’attachement locaux exhibant un phénomène
de rich-gets-richer ont été introduits. Par exemple, Engländer et al. [64] ont très récemment
introduit un modèle de marche aléatoire construisant un arbre. Dans leur modèle un ar-
bre est agrandi récursivement par un “marcheur” qui se déplace au hasard sur l’arbre. À
l’étape n, avec probabilité n−γ , un voisin est ajouté au sommet où se trouve le marcheur. Ils
montrent que ce modèle correspond à l’arbre PA et constitue donc un processus d’attachement
local (à chaque étape le marcheur n’a besoin que de connâıtre son voisinage pour pro-
gresser) exhibant un phénomène de rich-gets-richer.

Une autre manière de créer un modèle d’attachement local où un phénomène de
rich-gets-richer est à l’œuvre est d’introduire un phénomène de redirection. C’est à dire,
un modèle où un nouveau sommet ne se connecte pas forcément à un sommet choisi au
hasard mais possiblement à un voisin (ou sommet proche) d’un sommet choisi au hasard.
Introduits par Kleinberg et al. [90] dans des arbres dirigés, le modèle initial consistait à
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connecter chaque nouveau sommet à un sommet choisi au hasard avec probabilité 1− p
ou à son ancêtre avec probabilité p. Ce modèle donne lieu à un processus d’attachement
préférentiel où chaque nouveau sommet se connecte à un sommet choisi avec probabilité
proportionnelle à d − 2 + 1/p (pour d le degrés dudit sommet). Plus tard, Saramäki and
Kaski [125] introduirent une version non dirigée du modèle, plus tard étudiée par Evans
and Saramäki [66].

Dans le cas de la redirection dans l’arbre non dirigé, l’arbre est grandi de manière
récursive en choisissant un sommet uniformément au hasard, puis en y démarrant une
marche aléatoire avec k pas et enfin en attachant un nouveau sommet au dernier sommet
atteint par cette marche aléatoire. Contrairement aux travaux de Engländer et al. [64], une
nouvelle marche aléatoire est créé à chaque étape. Dans le cas k = 1, nous appelons ce
modèle l’arbre d’amitié aléatoire (RFT) car nous pouvons penser à chaque nouveau sommet
devenant “ami” avec un “ami” d’un sommet choisi au hasard. Cette famille de processus,
allant de k = 0 à k =∞ a la propriété particulière de contenir l’URRT et l’arbre PA. En effet,
si k = 0, alors chaque nouveau sommet se connecte à un sommet choisi uniformément au
hasard et le modèle est donc un URRT. Si k→∞ alors on observe un arbre PA. En effet, un
arbre fini a un temps de mélange fini et la distribution stationnaire d’une marche aléatoire
sur un arbre est proportionnel aux degrés. Ici, nous étudierons le cas particulier k = 1, c’est
à dire que chaque nouveau sommet est attaché comme suit: au temps n+1, un sommet
est choisi uniformément au hasard, il est appelé Vn. Parmi les voisins de Vn un sommet
est choisi uniformément au hasard, il est appelé Wn. Le sommet n+ 1 se connecte à Wn.
La Figure 2.7 illustre ce processus.

Bien que l’arbre d’amitié aléatoire fasse parti d’une famille de modèles contenant
l’URRT et l’arbre PA, certaines de leurs propriétés sont drastiquement différentes. Parmi
ces propriétés, la séquence des degrés ou la modularité ont été conjecturés dans un tra-
vail empirique par Krapivsky and Redner [93]. Le seul résultat théorique concernant ce
modèle dont j’ai connaissance concerne le nombre de feuilles. Cannings and Jordan [35]
ont prouvé que n− o(n) sommets étaient des feuilles presque sûrement. Nous étendons
grandement la connaissance théorique du RFT. Concernant les sommets de petit degrés,
nous montrons qu’au moins n− n0.9 sommets sont des feuilles, alors que dans l’URRT ou
l’arbre PA il y a seulement une fraction des sommets qui sont des feuilles. Alors que pour
un k fixé il y a dans l’URRT de l’ordre de n/2k−1 sommets de degrés au moins k (Janson
[78]), ce nombre se situe entre n0.1 et 0.9 dans le cas du RFT (voir Théorème 6.11). De plus,
nous montrons dans la Proposition 6.13 que la plupart des feuilles resteront des feuilles
pour toujours, alors que dans l’URRT ou l’arbre PA le degrés de chaque sommet tend vers
l’infini presque sûrement. Concernant les sommets de haut degrés, nous montrons dans
le Théorème 6.2 que des “hubs” de degrés linéaires apparaissent. Ces hubs sont bien vis-
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Figure 2.7: Illustration du processus d’attachement dans un arbre d’amitiéaléatoire. En bleu le sommet Vn, choisi uniformément au hasard parmi tous lessommets. En jaune, le sommet Wn choisi uniformément au hasard parmi lesvoisins de Vn. Le sommet n+1 se connect au sommet Wn.
ibles dans la Figure 2.8. À contrario, le degrés maximal dans un URRT est logarithmique
(Devroye and Lu [52]) et dans un arbre PA de l’ordre de √n (Van Der Hofstad [138, The-
orem 1.17]). Nous montrons même un résultat plus fort, pour chaque arrête, au moins
un des sommets la constituant deviendra un hub de degrés linéaire presque sûrement.
Ce phénomène est inédit et présent dans aucun autre modèle dont nous ayons connais-
sance. Cependant, tout n’est pas différent de l’URRT ou du PA. Dans le Théorème 6.6 nous
montrons que le diamètre est logarithmique presque sûrement, comme dans un URRT
(Addario-Berry and Ford [1, Corollary 1.3]), alors qu’il est au plus logarithmique dans un
arbre PA (Dommers et al. [55]). De plus, comme nous le montrons dans les Théorèmes
6.7 et 6.8, à la fois dans un RFT et dans un URRT le sommet le plus éloigné d’une feuille est
à distance Θ(log(n)/ loglog(n)) de celle ci.
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Figure 2.8: Illustration d’un RFT de taille 1000.

2.3 Introduction à la profondeur de Tukey aléatoire

Comme cela a été rapidement mentionné en citant le problème de clustering, il est pos-
sible d’étudier des questions similaires dans des settings très différents. Dans la dernière
partie de cette thèse nous étudions le problème d’ordonner des données en grande di-
mension. La problème est donc similaire à celui étudié au Chapitre 4, et nous nous intéressons
ici aussi à une notion de centralité pour ordonner des points dans Rd . Cependant, le fait
que les données étudiées (un graphe ou un nuage de points en grande dimension) soient
complètement différentes nous fait découvrir des outils statistiques différents. Ici, nous
entrons plus avant dans le monde de l’analyse de données et du machine learning. De
par leurs innombrables applications industrielles ce sont des domaines où la recherche
est rapide et fournie. Un des défis majeurs rencontré par les praticiens aujourd’hui vient
de la dimension croissante des objets étudiés. Beaucoup d’applications reposent sur des
données en grande dimension et la croissance des bases de donnée ne fait qu’intensifier
cette problématique. Les progrès fulgurants des outils basés sur l’intelligence artificielle
et leur médiatisation sont aussi un facteur qui pousse chaque statisticien à se confronter
à des problèmes liés à la grande dimension. Le problème dont il est ici question consiste
à ordonner les points d’un jeu de donnée par leur centralité. Il peut être utile de définir
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un ordre partiel pour pouvoir visualiser les données, des plus centrales jusqu’aux valeurs
extrêmes. Plus qu’un outil de visualisation, un ordre de centralité est nécessaire pour en-
trâıner un prédicteur conforme (autrement dit, un prédicteur qui renvoie non pas un point
unique mais un intervalle de confiance). En dimension 1, une manière évidente d’ordonner
des points dans un ensemble est par leurs quantiles empiriques. Malheureusement, dès
la dimension 2 la notion de quantile (et même de médiane) n’est plus définie aussi facile-
ment. Tukey [137] introduit une notion de profondeur, appelée profondeur de Tukey (ou
de demi espace), qui est un outil populaire pour visualiser la centralité d’un point dans
un jeu de données. Bien d’autres mesures de profondeur ont été introduites, comme la
profondeur de simplex (Liu [99, 100]), le profondeur de projection (Liu [101], Zuo and Ser-
fling [143]), la profondeur de zonöıde (Koshevoy and Mosler [92, 92]) ou bien une notion
de données aberrantes, (Donoho [56], Stahel [134]). Chacune de ses notions a des pro-
priétés différentes de stabilité, d’invariance ou de computabilité les rendant adaptées à
différentes applications. La profondeur de Tukey est définie comme suit. Étant donné un
point x dans Rd , on définit pour une direction u ∈ Sd−1 (où Sd−1 est la sphère Euclidienne
de Rd ) le demi espace fermé

H(x,u) = {y ∈ Rd : ⟨y,u⟩ ≤ ⟨x,u⟩} .

Ensuite, pour un ensemble de points {x1, · · · ,xn} nous pouvons définir la profondeur dans
la direction u par

rn(x,u) =
1
n

n∑
i=1

1xi∈H(x,u) ,

ce qui correspond au quantile empirique de ⟨x,u⟩ dans le jeu de donnée projeté sur la
direction u. On peut ensuite définir la profondeur de Tukey de x dans le jeu de données
{x1, · · · ,xn} par

dn(x) = inf
u∈Sd−1

rn(x,u) .

Remarquons que le principe est similaire à celui de la centralité de Jordan. Nous définissons
un score, ici la profondeur de Tukey, et utilisons ce score pour ordonner des points dans
Rd . La profondeur de Tukey a les attributs attendus d’une mesure de profondeur: elle
est invariante par transformation affine, elle tend vers 0 à l’infini et décrôıt sur des rayons
partant du point le plus profond. De plus, elle est robuste sous conditions de symétries
(Donoho and Gasko [57]), et lorsque les données sont tirées indépendamment de la même
distribution ses courbes de niveau convergent rapidement (Brunel [31]). Néanmoins, un
des problèmes rencontrés avec cette mesure de profondeur est la difficulté à la calculer.
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Ce problème est mis en exergue par la nécessité de traiter des données de dimension
de plus en plus grandes. Ainsi, calculer même une valeur approchée est un problème NP
hard, comme le montrent Amaldi and Kann [6], Bremner et al. [24], Johnson and Preparata
[85]. De plus, le calcul de la profondeur maximale se fait en temps O (

nd−1
) (Chan [37]).

Malgré ces difficultés, la profondeur de Tukey n’a pas été écarté par les praticiens car les
autres mesures de profondeur font face aux mêmes défis. C’est pourquoi un travail im-
portant est effectué pour développer et analyser des algorithmes d’approximation. Leur
importance est soulignée par Nagy et al. [115]. Parmi les solutions proposées, Shao et al.
[131] étudient un algorithme basé sur des mcmc pour calculer la profondeur de projec-
tion en grande dimension. Pour la profondeur de Tukey, Zuo [142] a proposé une nou-
velle approche pour en calculer une approximation, mais sans donner de garanties sur
sa précision. Enfin, Chen et al. [38] ont étudié la qualité de diverses approximations de la
profondeur de Tukey.

Cuesta-Albertos and Nieto-Reyes [45] ont introduit un algorithme d’approximation
naturel, qui consiste à ne pas prendre le minimum sur l’ensemble des directions possibles
dans Rd mais de se limiter à k directions choisies au hasard. Ainsi, pourU1, · · · ,Uk des vari-
ables aléatoires indépendantes uniformes sur Sd−1, nous pouvons définir la profondeur
de Tukey aléatoire du point x au sein du jeu de données {x1, · · · ,xn} par

Dn,k(x) = min
i=1,··· ,k

rn(x,Ui) .

Il est facile de voir que pour chaque x, lorsque k tend vers l’infini, la profondeur de Tukey
aléatoire converge avec probabilité 1 vers la profondeur de Tukey. Il faut toutefois en
savoir plus pour pouvoir utiliser cette approximation dans la pratique. En particulier, on
peut se demander quelle taille doit avoir k pour queDn,k(x) soit une bonne approximation
de dn(x). Plus précisément, pour ϵ ∈ (0,1/2), δ > 0, à quel point k doit être grand pour
assurer que |Dn,k − dn(x)| ≤ ϵ avec probabilité au moins 1− δ? Pour étudier cette question
nous devons limiter notre étude à des jeux de données “raisonnables”. En effet, déjà en
dimension 2, il est possible de construire un exemple de jeu de données ou k doit être
arbitrairement grand pour atteindre un précision donnée. Ainsi, pour n paire, définissons
les points xi = (

i/n,a(i/n)2
) où a > 0 est un paramètre. Comme il est situé à la frontière de

l’enveloppe convexe de {x1, · · · ,xn}, le point xn/2 a comme profondeur 0. Cependant, pour
“voir” cette profondeur de 0 il faut évaluer la profondeur dans une direction u telle que

⟨xn/2−1,u⟩ > ⟨xn/2,u⟩ ,

et
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Figure 2.9: Illustration du jeu de données xi = (
i/6,0.8(i/62

) pour i ∈ [6]. En vert
les droites entre lesquels le vecteur u doit se trouver pour détecter la profondeurde 0 du point x3.

⟨xn/2+1,u⟩ > ⟨xn/2,u⟩ .

Une illustration, présentée dans la Figure 2.9 montre qu’en choisissant a arbitrairement pe-
tit, la zone où u doit se trouver pour détecter la profondeur de xn/2 devient arbitrairement
petite, et par conséquent k doit être choisi arbitrairement grand pour espérer estimer la
profondeur de Tukey.

C’est pourquoi nous devons supposer une certaine régularité dans le jeu de données.
Nous supposons aussi que les points sont indépendants et identiquement distribués, une
hypothèse naturelle en machine learning. Plus précisément, nous supposons que les
points {x1, · · · ,xn} sont des réalisations indépendantes d’une loi log-concave isotrope. Re-
marquons que l’hypothèse isotrope n’est pas nécessaire, car il est possible d’estimer précisément
la covariance d’une distribution isotrope et donc de ramener un jeu de données issu d’une
loi log-concave en position (quasi) isotrope. Pour des données issues d’une variable aléatoire,
il est possible d’introduire une version de la profondeur de Tukey ne reposant que sur la
distribution. En effet, plutôt que de compter le nombre de points dans un demi espace,
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on peut simplement mesurer ce demi espace pour la distribution en question. On définit
ainsi une nouvelle version de dn et Dn,k , respectivement d et Dk . Une définition précise
est donnée dans le Section 7.1.

Nous ne sommes pas les premiers à nous intéresser à la qualité de cet algorithme
d’approximation. Ainsi, Cuesta-Albertos and Nieto-Reyes [45] ont produits des résultats
expérimentaux suggérant que Dk est une bonne approximation de d. D’un point de vue
théorique, Nagy et al. [115] ont étudié dans quelles conditions supx∈Rd |Dk(x) − d(x)| → 0
lorsque k→∞. Ils ont aussi donné des bornes sur la vitesse de convergence. À l’opposé
de cette approche uniforme, nous étudions la qualité de l’approximation de d(x) parDk(x)pour un point x fixé. Nous montrons en particulier que la qualité de cette approximation
dépend fortement de la profondeur de x. Nos résultats sont ainsi présentés en trois par-
ties. Premièrement, la plupart des points du jeu de données ont une faible profondeur et
celle ci est facile à estimer. Deuxièmement, estimer la profondeur de Tukey de points de
profondeur intermédiaire est dur, cela nécessite que k grandisse exponentiellement avec
la dimension. Enfin, si il existe un point de profondeur 1/2, celui ci est facile à localiser.
Plus précisément, si la mesure µ est log-concave isotrope sur Rd , nous montrons dans le
Corollaire 7.2 qu’il existe des constantes universelles c,κ,C > 0 telles que pour ϵ,δ,γ > 0,
si

k =
⌈
max

(
C,

4
ϵ
log

3
γ
,
2
c
log

4
δ

)⌉
,

et si la dimension d est plus grande que

d ≥max

(3(k +1)
γ

)1/κ
,
64log(1/ϵ)k

π
log

3k
γ
,

(
1
c
log

6k
δ

)2
,
(2
ϵ

)κ ,
alors, avec probabilité au moins 1− δ,

µ
({
x ∈ Rd :Dk(x) > ϵ

})
< γ .

Comme Dk(x) ≥ d(x), ce corollaire implique, qu’au sens de la mesure µ, la plupart des
points ont une faible profondeur et que celle ci est facilement estimée. On comprend intu-
itivement pourquoi, en grande dimension, la plupart des points ont une faible profondeur.
En effet, une distribution isotrope log-concave sur Rd “ressemble” à la distribution uni-
forme sur la sphère de rayon √d dans Rd . On dit que la plupart de ces points sont faciles
à estimer car, pour une précision donnée, le paramètre k ne dépend pas de la dimen-
sion! Même si ce Corollaire prouve que la plupart des points ont une faible profondeur,
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et que celle ci est facile à estimer, il ne prouve pas que pour tous les points de faible pro-
fondeur la profondeur est facile à estimer. Ainsi, considérons la distribution uniforme sur
[−(3/2)1/3, (3/2)1/3]d , qui est log-concave isotrope. Le point x = (((3/2)1/3,0, · · · ,0) a pour
profondeur 0, et pourtant on peut montrer que Dk(x) ≥ 1/4 avec grande probabilité si k
n’est pas exponentiellement grand en d.

Nous montrons ensuite dans le Corollaire 7.3 que les profondeurs intermédiaires
sont dures à estimer. Encore une fois, pour µ log-concave isotrope sur Rd , nous montrons
que pour δ ∈ (0,1), γ ∈ (0,1/2), il existe une constante positive c = c(γ) telle que si x ∈ Rd
est tel que d(x) = γ , alors pour ϵ < c, si k ≤ δedϵ2 log2(1/ϵ)/c, alors avec probabilité au moins
1− δ

|Dk(x)− d(x)| ≥ ϵ .

Enfin, nous montrons que le point de profondeur 1/2, si il existe, est facile à localiser. No-
tons qu’il n’est pas garanti qu’un tel point existe. Le point le plus profond peut avoir une
profondeur plus petite que 1/2, mais pas arbitrairement petite. Nagy et al. [114, Theorem
3] montrent que 1/e ≤ supx∈Rd d(x) ≤ 1/2. Dans le cas où supx∈Rd d(x) = 1/2, la distribu-
tion est dite demi espace symétrique (Nagy et al. [114], Zuo and Serfling [144]). Il est facile
de voir que dans ce cas il existe un seul point de profondeur 1/2, il est appelé médiane
de Tukey. Une distribution symétrique est demi espace symétrique mais la contraposée
est fausse. Cependant, dans le cas d’une distribution uniforme sur un convexe, alors un
espace est demi espace symétrique si et seulement si il est symétrique (Funk [70], Schnei-
der [128]). Le Corollaire 7.4 prouve que si µ est log-concave, isotrope et demi espace
symétrique, alors si un point est tel que Dk(x) ≈ 1/2 alors x est proche de la médiane de
Tukey. Plus précisément, considérons X1, · · · ,Xn des variables aléatoires indépendantes
distribués selon µ, m la médiane de Tukey et mn,k la médiane de Tukey empirique (i.e.
Dn,k(mn,k) = maxx∈Rd Dn,k(x)). Alors, il existe des constantes universelles positives c et C
tels que pour δ ∈ (0,1), γ ∈ (0, c), si n ≥ Cd/γ2 et

k ≥ c(d log(d) + log(1/δ)) ,

alors
∥∥∥mn,k −m∥∥∥ ≤ Cγ√d ,

avec probabilité au moins 1 − δ. Cela signifie qu’en fixant γ de l’ordre de 1/
√
d on peut

localiser la médiane de Tukey à distance constante avec seulement k ≈ d log(d). Remar-
quons que du fait qu’en grande dimension la masse d’une distribution log-concave isotrope
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se concentre sur la sphère de diamètre √d, localiser la médiane de Tukey à distance con-
stante n’est pas une estimation triviale.
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Archaeology of random recursive
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Abstract

We study the problem of finding the root vertex in large growing networks. We prove that
it is possible to construct confidence sets of size independent of the number of vertices in
the network that contain the root vertex with high probability in various models of random
networks. The models include uniform random recursive dags and uniform Cooper-Frieze
random graphs.



This Chapter is based on a joint work with Francisco Calvillo and Gábor Lugosi, pub-
lished in Combinatorics, Probability and Computing (Briend, Calvillo, and Lugosi [26]).

3.1 Introduction

In order to develop a sound statistical theory for network archaeology, one usually models
the growing network by simple stochastic growth dynamics. Perhaps the most promi-
nent such growth model is the preferential attachment model, advocated by Albert and
Barabási [3]. In these models, vertices of the network arrive one by one and a new vertex
attaches to one or more existing vertices by an edge according to some simple probabilis-
tic rule.

Arguably the simplest problem of network archaeology is that of root finding, when
one aims at estimating the first vertex of a random network, based on observing the (un-
labeled) network at a much later point of time.

The existing literature on the theory of network archaeology mostly focuses on
the simplest possible kind of networks, namely trees, see Haigh [74], Shah and Zaman
[129, 130], Bubeck, Mossel, and Rácz [32], Curien, Duquesne, Kortchemski, and Manolescu
[47], Khim and Loh [86], Jog and Loh [83, 84], Bubeck, Eldan, Mossel, and Rácz [34], Bubeck,
Devroye, and Lugosi [33], Lugosi and Pereira [103], Devroye and Reddad [53], Banerjee and
Bhamidi [11], Crane and Xu [42], Addario-Berry, Devroye, Lugosi, and Velona [2], Branden-
berger, Devroye, and Goh [21].

In various models of growing random trees, it is quite well understood up to what
extent one may identify the origin of the tree (i.e., the root) by observing a large unlabeled
tree. These models include uniform and linear preferential attachment trees and diffusion
over regular trees. Remarkably, in all these models, the size of the tree does not play a role.
In other words, there exist root-finding algorithms that are able to select a small number
of nodes – independently of the size of the tree – such that the root vertex is among them
with high probability.

Here we address the more difficult – and more realistic – problem of finding the
origin of growing networks when the network is not necessarily a tree. The added diffi-
culty stems from the fact that the centrality measures that proved to be successful in root
estimation in trees crucially rely on properties of trees.

A notable exception in the literature is the recent paper of Crane and Xu [43] in
which the authors allow for a “noisy” observation of the tree. In their model, the union of
the tree of interest and an (homogeneous) Erdős-Rényi random graph is observed, and
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the goal is to estimate the root of the tree.
In this chapter we study root estimation in two more complex network models.

Both of these models may be viewed as natural extensions of the random recursive trees
that were in the focus of most of the previous study of network archaeology. Recall that a
uniform random recursive tree on the vertex set [n] is defined recursively, such that each
vertex i ∈ {2,3, . . . ,n} is attached by an edge to a vertex chosen uniformly at random among
the vertices {1, . . . , i − 1}, see, e.g., Drmota [58].

In particular, we study the problem of root finding in (1) uniform random recursive
dags; and (2) uniform Cooper-Frieze random graphs.

Uniform random recursive dags

For a positive integer ℓ, a uniform random ℓ-dag is simply the union of ℓ independent uni-
form random recursive trees on the same vertex set [n]. Equivalently, a uniform random
ℓ-dag may be generated recursively; each vertex i ∈ {2,3, . . . ,n} is attached by an edge to
ℓ vertices chosen uniformly at random (with replacement) among the vertices {1, . . . , i −1}.
Multiple edges are collapsed so that the resulting graph is simple. Random recursive
dags have been studied by Broutin and Fawzi [30], Devroye and Janson [51], D́ıaz Cort,
Serna Iglesias, Spirakis, Torán Romero, and Tsukiji [54], Mahmoud [106], Tsukiji and Mah-
moud [135], Tsukiji and Xhafa [136], among others.
Definition 3.1. Let n,ℓ ∈ N. For i ∈ [ℓ], let Gi ∈ (V ,Ei) be independent uniform random
recursive trees on the vertex set V = [n]. A uniform random recursive ℓ-dag on n vertices is
G = (V ,E1 ∪ · · · ∪Eℓ).

Uniform Cooper-Frieze random graphs

The other network model studied here was introduced by Cooper and Frieze [41] in an
attempt to mathematically describe large web graphs, see also Frieze and Karoński [69].
In the Cooper-Frieze network model both vertices and edges are added sequentially to
the network based on uniform or preferential attachment mechanisms. The model is quite
general but here we focus on the simplest version when both vertices and edges are added
by uniform attachment.

More precisely, the uniform Cooper-Frieze growth model is defined as follows. The
procedure has a parameter α ∈ (0,1). The process is initialized by a graph containing a
single vertex and no edges. At each time instance t = 1,2, . . ., an independent Bernoulli(α)
random variable Zt is drawn. If Zt = 0, a new vertex is added to the vertex set along
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with an edge that connects this vertex to one of the existing vertices, chosen uniformly at
random. If Zt = 1, then a new edge is added by choosing two existing vertices uniformly
at random and connecting them. Note that the resulting graph may have multiple edges.
In such cases, we may convert the graph into a simple graph by keeping only one of each
multiplied edge.

If one runs the process for T steps for a large value of T , the graph has n ∼ 1 +
Binomial(T − 1,1 − α) ≈ (1 − α)T vertices and T ≈ n/(1 − α) edges. If one removes the
edges added at the times when Zt = 1, the remaining graph is a tree, distributed as a
uniform random recursive tree on n vertices. The remaining T − n − 1 edges are present
approximately independently of each other and there is an edge between vertices i and j
(where 1 ≤ i < j ≤ n) if

T∑
t=1

n∑
ℓ=j

1t∈{tℓ+1,tℓ+1−1}1the pair (i, j) is selected at time t ≥ 1 ,

where 1 = t1 < t2 < · · · < tn ≤ T are the times when new vertices are added, that is, when
Zt = 1. Since the probability that edge (i, j) is selected at time t ∈ {tℓ + 1, tℓ+1 − 1} is 1/

(ℓ
2
),

for large values of T , the probability that edge (i, j) is present in the graph after T steps is
concentrated around

cα
max(i, j)− 1

where cα
def=

2
1−α

,

whenever max(i, j)− 1 ≥ cα . Hence, the uniform Cooper-Frieze model is essentially equiv-
alent to the following random graph model. In order to avoid some tedious and uninter-
esting technicalities, we work with this modified model instead of the original recursive
definition.
Definition 3.2. Let n ∈ N and let c be a positive constant. Let G1 = (V ,E1) be a uniform
random recursive tree on the vertex set V = [n]. Let G2 = (V ,E2) be a random graph on the
same vertex set, independent of G1, such that edges of G2 are present independently of each
other, such that for all i , j ,

P{(i, j) ∈ E2} =min
(

c
max(i, j)− 1

,1
)
.

Finally, the uniform Cooper-Frieze random graph with parameters c and n isG = (V ,E1∪E2).

Root estimation

The main result of this chapter is that finding the root is possible both in uniform random
recursive dags and in uniform Cooper-Frieze random graphs. More precisely, one may find
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confidence sets for the root vertex whose size does not depend on the number of vertices
in the graph. To make such statements rigorous, consider the following definition.
Definition 3.3. Let {G(n)} be a sequence of random graphs such thatG(n) has vertex set [n]. We
say that root estimation is possible if the following holds. For every ϵ > 0, there exists a positive
integer K(ϵ) such that, for every n ∈ N, upon observing the graphG(n) without the vertex labels,
one may find a set S ⊂ [n] of vertices of size |S | = K(ϵ) such that

P{1 ∈ S} ≥ 1− ϵ .

The set S in the above definiton is often called a confidence set for the root vertex.
As mentioned above, root estimation has mostly been studied for random recur-

sive trees. Bubeck, Devroye, and Lugosi [33] show that root estimation is possible in the
uniform random recursive tree and linear preferential attachment trees. They show that in
the case of the uniform random recursive tree, one may takeK(ϵ) ≤ exp(c log(1/ϵ)/ loglog(1/ϵ))
for some constant c. For linear preferential attachment trees one may takeK(ϵ) = cϵ−2−o(1),
as shown by Banerjee and Bhamidi [11] who also show that root estimation is possible for
a wide class of preferential attachment trees. Building on the papers of Shah and Zaman
[129, 130], Khim and Loh [86] show that root estimation is possible in random trees ob-
tained by diffusion on an infinite regular tree, and that one my takeK(ϵ) = exp(O (log(1/ϵ)/ loglog(1/ϵ))).
Brandenberger, Devroye, and Goh [21] study root estimation in size-conditioned Galton–Watson
trees.

The sets S of constant size that establish the possibility of root estimation for var-
ious trees usually contain the set of most “central” vertices according to some notion of
centrality such as Jordan centrality (as in [33], [11]) or rumor centrality introduced in [129, 130],
see also [33], [86]. However, these notions are suited for trees only and when the ob-
served network is more complex, new ideas need to be introduced. Crane and Xu [43]
study a model in which the observed network consists of either a uniform attachment
tree (i.e., uniform random recursive tree) or a preferential attachment tree, with random
edges added (independently over all possible vertex pairs, with the same probability). They
introduce a Bayesian method and prove that it is able to estimate the root as long as there
are not too many edges, where the threshold value depends on the particular model. It
is unclear if the method of [43] may be generalized to the random graph models studied
here. Instead, we introduce an alternative root estimation method that is based on the
appearance of certain subgraphs.

The main results of this chapter are summarized in the following two theorems.
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Theorem 3.4. Fix ℓ > 1 and letG = G(n) be a uniform random ℓ-dag on n vertices. Root
estimation is possible in G. In particular, there exist numerical constants c0, c1, c2 > 0
such that, whenever ϵ ≤ e−c2ℓ , one may take

K(ϵ) ≤ c0
ϵ
log(1/ϵ)

c1
ℓ log(1/ϵ) .

Explicit values of the constants c0, c1, c2 are given in the proof below. In the uniform
Cooper-Frieze model we have a similar bound:

Theorem 3.5. Let G = G(n) be a uniform Cooper-Frieze random graph on n vertices,
with parameter c. Root estimation is possible in G. In particular, one may take

K(ϵ) ≤ c0 log(1/ϵ)c1 log(1/ϵ)

for some constants c0, c1 > 0 depending only on c.

The main results establish that, upon observing the graph after removing its vertex
labels, one may find a set S of vertices of size independent of n such that S contains the
root vertex (i.e., vertex 1) with probability at least 1− ϵ. The size of the set is bounded by
a function of ϵ only.

Observe that if ℓ is of the order of log(1/ϵ), then the bound for K(ϵ) is 1/ϵ times
a poly-logarithmic term in 1/ϵ. On the other hand, when ℓ is a fixed constant, as ϵ → 0,
the obtained bounds are super-polynomial in 1/ϵ, significantly larger than the analogous
bounds obtained for uniform and preferential attachment trees. In all ranges of ℓ, these
bounds are inferior to the best upper bounds available for the case ℓ = 1 (i.e., uniform
random recursive trees). We do not claim optimality of this bound. It is an interesting open
question whether much smaller vertex sets may be found with the required guarantees.
We conjecture that for any ℓ > 1, root finding is easier in a uniform random ℓ-dag than in
a uniform random recursive tree. If that is the case, one should be able to take K(ϵ) as
exp(O (log(1/ϵ)/ loglog(1/ϵ))). Similar remarks hold for the bound of Theorem 3.5.

In order to prove Theorems 3.4 and 3.5, we propose a root estimation procedure
and prove that the same procedure works in both models. The procedure looks for certain
carefully selected subgraphs that we call double cycles. The set S of candidate vertices are
certain special vertices of such double cycles.

The rest of the chapter is organized as follows. In Section 3.2 we introduce the
proposed root estimation procedure. The proof of Theorem 3.4 is given in Section 3.3
while Theorem 3.5 is proved in Section 3.4.
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3.2 Double cycles

In this section we define the root estimation method that we use to prove the main results.
In order to determine the set S of vertices that are candidates for being the root vertex,
we define “double cycles”.

Let s, t be positive integers. We say that a vertex v ∈ [n] is an anchor of a double cycle
of size (s, t) if there exists an integer 0 < p ≤min(s, t)/2 and s + t − 1− p different vertexes
i1, i2, . . . is+t−2−p ∈ [n], such that
• vertices v, i1, . . . , is−1 form a cycle of length s in G (in this order);
• vertices v, is+1−p, . . . , is+t−1−p form a cycle of length t in G (in this order).

Note that the two cycles are disjoint, except for the common path v ∼ · · · ∼ ip−1 (so
p is the number of common vertices in both cycles). Also note that ip−1 is another anchor
of the same double cycle. If p = 1, we declare i0 = v. In that case the two cycles intersect
in the single vertex v and the double cycle has a unique anchor v, see Figure 3.1.

In other words, if two vertices v,u ∈ [n] are connected by three disjoint paths such
that the sum of the lengths of the first and second paths is s and the sum of the lengths of
the second and third paths is t, then v and u are anchors of a double cycle of size s and t.
Also, v is the anchor of a double cycle of size (s, t) if vertex v is the unique common vertex
of two cycles of lengths s and t.

Figure 3.1: Examples of double cycles
For a positive integerm, let Sm ⊂ [n] be the set of vertices i such that i is an anchor

of a double cycle of size (s, t) for some s ≤m and t ≤m.
In order to prove Theorem 3.4, it suffices to show that for any given ϵ ∈ (0,1/100),
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one may take m =mϵ =
⌈
30
ℓ log(1/ϵ)

⌉ such that
P
{
1 ∈ Sm and |Sm| ≤ 4

ϵ
ℓ2m(2m)!

}
≥ 1− ϵ .

This follows if we prove that we have both
P {1 ∈ Sm} ≥ 1− ϵ

2
(3.2.1)

and
P
{
|Sm| ≤

4
ϵ
ℓ2m(2m)!

}
≥ 1− ϵ

2
. (3.2.2)

We prove (3.2.1) in Section 3.3.1 and (3.2.2) in Section 3.3.2.
Remark. The reader may wonder why the proposed method looks for double cycles as
opposed to simpler small subgraphs such as triangles or a clique of size 4 with an edge
removed, etc. The reason is that such simpler subgraphs are either too abundant in the
sense that vertices with high index may be contained in (many of) them or the root vertex
is not contained in any of them with some probability that is bounded away from zero. This
may happen in spite of the fact that the expected number of such small subgraphs con-
taining the root vertex goes to infinity as n→∞. Double cycles guarantee the appropriate
concentration expressed in (3.2.1).

3.3 Proof of Theorem 3.4

As it is explained in the previous section, in order to prove Theorem 3.4, it is enough to
prove the inequalities (3.2.1) and (3.2.2), where Sm is the set of those vertices that are an-
chors of a double cycle of size (s, t) for some s, t ≤m.

3.3.1 The root vertex is the anchor of a small double cycle

First we consider the case when ℓ = 2. Then the observed graph G is the union of two
independent random recursive trees T1 and T2. To prove (3.2.1) we need to ensure that
vertex 1 is the anchor of a double cycle of small size, with probability at least 1 − ϵ/2. To
do so, it suffices to show that there are two edges (1, i) and (1, j) that are present in T2 but
not in T1 where i and j are “small”– whose meaning is specified below. Indeed, in this case
there are two cycles containing vertex 1 formed as follows:
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• the unique path from vertex 1 to i in T1 loops back to 1 thanks to edge (1, i), present
in T2;

• the unique path from vertex 1 to j in T1 loops back to 1 thanks to edge (1, j), present
in T2.

The only intersection of those two cycles is the intersection of the paths in T1 from vertex 1
to i and from vertex 1 to j. In a tree, the intersection of two paths is either empty or a path
itself. Here the intersection is not empty since both paths contain vertex 1. Thus, vertex
1 is in two cycles which only intersect in a path having vertex 1 as an extremity, meaning
that vertex 1 is the anchor of a double cycle. Next we show that two such edges indeed
exist, with high probability.

For a vertex i ∈ [2,n], the probability that the edge (1, i) is present in T2 is 1/(i −1).
The probability that it is absent in T1 is 1 − 1/(i − 1). By independence of T1 and T2, the
probability that the edge (1, i) is present in T2 and absent in T1 is (1− 1/(i − 1)) /(i − 1). Let
Xk denote the number of edges of form (1, i) for some i ∈ [k], that are not edges in T1.
Then Xk may be written as a sum of independent random variables,

Xk =
k∑
i=2

Bi

where Bi is a Bernoulli random variable with parameter 1
i−1

(
1− 1

i−1

).
If Xk ≥ 2, there exist two edges of form (1, i) with i ≤ k that are present in T2 but

not in T1. By a standard bound for the lower tail for for sums of nonnegative independent
random variables, see [19, Exercise 2.9], we have

P {Xk ≥ 2} ≥ 1− exp
(
−
(E[Xk]− 1)2

2E[Xk]

)
.

Since E[Xk] is easily seen to fall between log(k)− 2 and log(k)− 1, we have

P {Xk ≥ 2} ≥ 1− exp
(
−1
2
log(k) +

5
2
− 1
log(k)− 1

)
.

Hence, for kϵ = ⌈
16e5/ϵ2

⌉, we have P{Xkϵ ≥ 2} ≥ 1− ϵ/4. This implies that, with probability
at least 1−ϵ/4, vertex 1 is the anchor of a double cycle such that all vertices in the double
cycle are in [kϵ]. To conclude the proof of (3.2.1) we need to check that indeed the size of
the double cycle containing vertex 1 is at mostm. Such double cycles are formed by a path
in T1, closed by an additional edge coming from T2. Therefore, both cycles contained in

61



the double cycle of interest have a size bounded by the height of the subtree of T1 induced
by the vertex set [kϵ], plus 1. By well-known bounds for the height of a uniform random
recursive tree (see, e.g., Drmota [58], Devroye [49], Pittel [119]) we have that the depth
of a uniform random recursive tree on k vertices is bounded by e log(k) + e log(4e/ϵ) with
probability at least 1− ϵ/4, see Drmota [58, p. 284].

Plugging in the value of kϵ, we get that for any ϵ ≤ 10−2, the diameter of a uniform
recursive random tree of size kϵ is at most 15log(1/ϵ), with probability at least 1− ϵ/4.

Putting these bounds together, we have that, in the case ℓ = 2, with probability
at least 1 − ϵ/2, vertex 1 is an anchor of a double cycle of size (s, t) with s, t ≤ 15log(1/ϵ),
implying (3.2.1) for ℓ = 2.

It remains to extend the above to the general case of ℓ ≥ 2. Since G is the union
of ℓ independent uniform random recursive trees, it contains the union of ⌊ℓ/2⌋ indepen-
dent, identically distributed random uniform 2-dags. Using the result proved for random
uniform 2-dags above, the probability than in G, vertex 1 is not the anchor of a double
cycle of size at most 15log(ϵ2/(ℓ−1)) is at most ϵ. This concludes the proof of (3.2.1) in the
general case.

3.3.2 High-index vertices are not anchors of double cycles

In order to prove (3.2.2) we need to show that no vertex with high index is the anchor of
a double cycle of size smaller than m. We bound the probability that there exists v > K
such that v ∈ Sm, where recall that K = K(ϵ). To this end, we count Cs,t(v), the number of
double cycles of size (s, t) having vertex v as an anchor. Then, by the union bound,

P {∃v > K : v ∈ Sm} ≤
∑
v≥K

∑
s,t≤mϵ

P{Cs,t(v) ≥ 1} ≤
∑
v≥K

∑
s,t≤mϵ

ECs,t(v) . (3.3.1)
In order to bound ECs,t(v), we may assume, without loss of generality, that s ≤ t.

For a permutation σ ∈Πs+t−2−p the set of permutation of [s + t − 2− p], we denote
by C(s, t,p,v,σ , i1, . . . , is+t−p−2) the following event:

• if p = 1,
C(s, t,1,v,σ , i1, . . . , is+t−2)

=
{
v ∼ iσ (1) ∼ · · · ∼ iσ (s−1) ∼ v ∼ iσ (s) ∼ · · · ∼ iσ (s+t−2) ∼ v

}
,

• and if p > 1

C(s, t,p,v,σ , i1, . . . , is+t−p−2)
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=
{
v ∼ iσ (1) ∼ · · · ∼ iσ (s−1) ∼ v ∼ iσ (s) ∼ · · · ∼ iσ (s+t−2−p) ∼ iσ (s−p)

}
.

where i ∼ j denotes that vertices i and j are joined by an edge. Thus,C(s, t,p,v,σ , i1, . . . , is+t−p−2)is the event that the double cycle of size s, t (s ≤ t) having p vertices in the intersection, with
v as an anchor and on the set of vertices {i1, . . . , is+t−p−2} ordered by σ as illustrated in Fig-
ure 3.2 is present.

Figure 3.2: Index ordering in a double cycle
With this notation, we may write Cs,t(v) as follows:

Cs,t(v) =
⌊s/2⌋∑
p=1

∑
i1<···<is+t−2−p

∑
σ∈Πs+t−2−p

1C(s,t,p,v,σ ,i1,...,is+t−p−2) , (3.3.2)
in order to bound the expected number ECs,t(v) of double cycles of size (s, t) anchored at
v, we need to estimate P

{
C(s, t,p,v,σ , i1, . . . , is+t−p−2)

}.
This exact probability is difficult to compute. Instead, we make use of the following

proposition that establishes that a uniform random ℓ-dag is dominated by an appropri-
ately defined inhomogeneous Erdős-Rényi random graph. This random graph is defined
as a graph on the vertex set [n] such that each edge is present independently of the others
and the probability that vertex i and vertex j are connected by an edge equals

π(i, j) def= min
(
1,

ℓ
max(i, j)− 1

)
.

The next proposition shows that every fixed subgraph is at most as likely to appear in a
uniform random ℓ-dag as in the inhomogeneous Erdős-Rényi random graph.
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Proposition 3.6. Let G = (V ,E) be a uniform random ℓ-dag on the vertex set V = [n]. For
some k ≤

(n
2
)
, let (a1,b1), . . . , (ak ,bk) be distinct pairs of vertices such that ai , bi for all i ≤ k.

Then

P {(a1,b1), . . . , (ak ,bk) ∈ E} ≤
k∏
i=1

π(ai ,bi) .

Proof. Recall that the edge set ofGmay be written as E = ∪ℓj=1Ej , where (V ,E1), . . . , (V ,Eℓ)are independent uniform random recursive trees. We may assume, without loss of gen-
erality, that bi > ai for all i ∈ [k].

We prove the proposition by induction on k. For k = 1, the inequality follows from
the union bound:

P {(a1,b1) ∈ E} ≤
ℓ∑
j=1

P
{
(a1,b1) ∈ Ej

}
=

ℓ
max(a1,b1)− 1

. (3.3.3)

For the induction step, suppose the claim of the proposition holds for up to k edges and
consider k +1 distinct pairs (a1,b1), . . . , (ak+1,bk+1). Then, by the induction hypothesis,

P {(a1,b1), . . . , (ak+1,bk+1) ∈ E}
= P {(a1,b1), . . . , (ak ,bk) ∈ E} P {(ak+1,bk+1) ∈ E | (a1,b1), . . . , (ak ,bk) ∈ E}

≤ P {(ak+1,bk+1) ∈ E | (a1,b1), . . . , (ak ,bk) ∈ E}
k∏
i=1

π(ai ,bi) .

Thus, it suffices to show that for all distinct pairs (a1,b1), . . . , (ak+1,bk+1),
P {(ak+1,bk+1) ∈ E | (a1,b1), . . . , (ak ,bk) ∈ E} ≤ π(ak+1,bk+1) .

First, consider the simpler case when for all i ∈ [k], bi , bk+1. Then, for every fixed j ∈ [ℓ],
the events {(a1,b1) ∈ Ej , . . . , (ak ,bk) ∈ Ej} and {(ak+1,bk+1) ∈ Ej} are independent. More-
over since the ℓ uniform random recursive trees are independent, the events {(a1,b1) ∈
E, . . . , (ak ,bk) ∈ E} and {(ak+1,bk+1)} ∈ E are also independent, and therefore

P {(ak+1,bk+1) ∈ E | (a1,b1), . . . , (ak ,bk) ∈ E} = P {(ak+1,bk+1) ∈ E} ≤ π(ak+1,bk+1) ,

by (3.3.3).
Now, suppose that there exist some i ∈ [k] such that bi = bk+1. We may assume that

there exists aw ∈ [k] such that b1, . . . , bw = bk+1 and for all i ∈ [w+1, k], bi , bk+1. Since each
(V ,Ej ) is a recursive tree, for i ∈ [w], (ai ,bk+1) ∈ Ej and (ak+1,bk+1) ∈ Ej cannot happen at
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the same time. Thus, edge (ak+1,bk+1) can only be present in the sets Ej that do not contain
any of the edges (ai ,bk+1). Hence, introducingA = #

{
j ∈ [ℓ] : Ej ∩ {(a1,bk+1), . . . , (aw,bk+1)} , ∅

},
we have, for all a ∈ [ℓ],

P {(ak+1,bk+1) ∈ E | (a1,b1), . . . , (ak ,bk) ∈ E and A = a} = P
{
(ak+1,bk+1) ∈ ∪ℓ−aj=1Ej

}
.

Using the union bound again,
P
{
(ak+1,bk+1) ∈ ∪ℓ−aj=1Ej

}
≤ ℓ − a
bk+1 − 1

≤ ℓ
bk+1 − 1

.

Since this holds for all a, we have
P {(ak+1,bk+1) ∈ E | (a1,b1), . . . , (ak ,bk) ∈ E} ≤

ℓ
bk+1 − 1

,

as desired.

To count Cs,t(v) we split the sum in (3.3.2) by adding a parameter r in order to
separate the vertices i1, . . . , is+t−2−p according to whether they are smaller or larger than v,
obtaining

Cs,t(v) =
⌊s/2⌋∑
p=1

s+t−p−2∑
r=0

∑
σ∈Πs+t−2−p

∑
i1<···<ir<v

∑
v<ir+1<···<is+t−2−p

1C(s,t,p,v,σ ,i1,...,is+t−p−2) .

From Proposition 3.6 we know that the probability of each given double cycle is upper
bounded by the product of π(i, j) = ℓ/(max(i, j)−1). Thus we introduce Eσ (j) ∈ {0,1,2,3,4}counting the number of vertices neighboring vertex ij in the double cycle, that have indices
smaller than ij . By convention we writeEσ (0) for the analogous quantity for vertex v. Doing
so, we may write

ECs,t(v) ≤
⌊s/2⌋∑
p=1

ℓs+t−p
s+t−p−2∑
r=0

∑
σ∈Πs+t−2−p

(v − 1)−Eσ (0)

×

 ∑
i1<···<ir<v

r∏
j=1

(ij − 1)−Eσ (j)
×

 ∑
v<ir+1<···<is+t−2−p

s+t−2−p∏
j=r+1

(ij − 1)−Eσ (j)
 .

(3.3.4)

This allows us to decompose the sum in two parts; the sum involving the r vertices with
index smaller than v and the s+ t −2−p− r vertices with index larger than v. If we fix p, m
and σ , we need to upper bound both

A(σ,p, r) := A =
∑

i1<···ir<v

r∏
j=1

(ij − 1)−Eσ (j)
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and
B(σ,p, r) := B =

∑
v<ir+1<···<is+t−2−p

s+t−2−p∏
j=r+1

(ij − 1)−Eσ (j) .

This may be done with the help of the next two lemmas.
Lemma 3.7. Fix a vertex v, vertices i1 < · · · < ir < v < ir+1 < · · · < is+t−p−2 and an ordering σ of
a double cycle on this set of vertices with v as an anchor. Then, for every k ∈ [r] we have

k − 1 ≥
k∑
i=1

Eσ (i) .

Proof. For k ∈ [r], we define G(k) as the subgraph of the double cycle in which we only
keep the k vertices of smallest index, so that ∑k

i=1Eσ (i) is the number of edges in G(k).
Since G(k) does not contain v, there are no cycles in G(k), and therefore it is a

forest. Since |G(k)| = k, it follows that G(k) has at most k − 1 edges.
Lemma 3.8. Fix a vertex v, vertices i1 < · · · < ir < v < ir+1 < · · · < is+t−p−2 and an ordering σ of
a double cycle on this set of vertices with v as an anchor. Then, ∀k ∈ [s+ t − 2− p − r] we have

k +1 ≤
k∑
i=1

Eσ (s+ t − 1− p − i) .

Proof. For k ∈ [s+t−2−p−r], we defineG′(k) as the subgraph of the double cycle in which
we only keep the k vertices of largest index. Vertex is+t−2−p−k has at least two neighbors in
the double cycle. From the definition of Eσ (s + t − p − 1 − k), Eσ (s + t − p − 1 − k) is then at
least 2 minus the number of neighbors of is+t−2−p−k in the double cycle with larger index.
The number of such neighbors of is+t−2−p−k is exactly the number of edges in G′(k) minus
the number of edges in G′(k − 1). Denoting G′(k) = (V ′(k),E′(k)), it leads to

Eσ (s+ t − p − 1− k) ≥ 2− (#E′(k)−#E′(k − 1)) ,

implying
k∑
i=1

Eσ (s+ t − 1− p − i) ≥ 2k −#E′(k) .

Since G′(k) does not contain v, it is a forest. Moreover |G′(k)| = k so G′(k) has at most k−1
edges, which concludes the proof.
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We may decompose A as follows:
A =

∑
ir : ir<v

(ir − 1)−Eσ (r) · · ·
∑

i1: i1<i2

(i1 − 1)−Eσ (1) .

From Lemma 3.7 with k +1, we know that −Eσ (1) ≥ 0, leading to∑
i1: i1<i2

(i1 − 1)−Eσ (1) ≤ (i2 − 1)1−Eσ (1) ,

which in turn leads to
A ≤

∑
ir : ir<v

(ir − 1)−Eσ (r) · · ·
∑

i2: i2<i3

(i2 − 1)1−Eσ (1)−Eσ (2) .

Once again, by Lemma 3.7 with k = 2, we have 1−Eσ (1)−Eσ (2) ≥ 0, leading to
∑

i2: i2<i3

(i2 − 1)1−Eσ (1)−Eσ (2) ≤ (i3 − 1)2−Eσ (1)−Eσ (2) .

Iterating this scheme r times, using Lemma 3.7 at each step leads to
A ≤ (v − 1)r−

∑r
i=1Eσ (i) . (3.3.5)

Similarly, we decompose B as
B =

∑
ir+1: ir+1>v

(ir+1 − 1)−Eσ (r+1) · · ·
∑

is+t−p−2: is+t−p−2>is+t−p−3

(is+t−p−2 − 1)−Eσ (s+t−p−2) .

It follows from Lemma 3.8 that Eσ (s+ t − p − 2) ≥ 2, and therefore∑
is+t−p−2: is+t−p−2>is+t−p−3

(is+t−p−2 − 1)−Eσ (s+t−p−2) ≤ (is+t−p−3 − 1)1−Eσ (s+t−p−2) .

Following an analogous reasoning to the upper bound of A, iterating this scheme s + t −
2− p − r times, using Lemma 3.8 at each step leads to

B ≤ (v − 1)s+t−2−p−r−
∑s+t−2−p
j=r+1 Eσ (j) . (3.3.6)

Substituting (3.3.5) and (3.3.6) into (3.3.4), we obtain

EXPCs,t(v) ≤
⌊s/2⌋∑
p=1

s+t−p−2∑
r=0

∑
σ∈Πs+t−2−p

ℓs+t−p(v−1)−Eσ (0)×(v−1)s+t−2−p−r−
∑s+t−2−p
j=r+1 Eσ (j)×(v−1)r−

∑r
i=1Eσ (i) .
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Since
s+t−2−p∑
j=0

Eσ (j) = s+ t − p ,

we have
EXPCs,t(v) ≤

1
(v − 1)2

⌊s/2⌋∑
p=1

s+t−p−2∑
r=0

∑
σ∈Πs+t−2−p

ℓs+t−p ,

leading to

E
[
Cs,t(v)

]
≤
⌊s/2⌋∑
p=1

ℓs+t−p(s+ t − p − 2)!(s+ t − p − 2) 1
(v − 1)2

≤ 2ℓs+t
(s+ t)!
(v − 1)2

.

Finally, we plug this bound in (3.3.1):
P (∃v ≥ K : v ∈ Sm) ≤

∑
v≥K

∑
s,t≤mϵ

2ℓs+t
(s+ t)!
(v − 1)2

(3.3.7)
≤ 4ℓ2mϵ (2mϵ)!

1
K
. (3.3.8)

Choosing K = 81
ϵ ℓ

2mϵ (2mϵ)! concludes the proof of (3.2.2) and therefore Theorem 3.4 fol-
lows.

3.4 Proof of Theorem 3.5

The proof of Theorem 3.5 is analogous to that of Theorem 3.4. In order to avoid repeating
essentially the same argument, we only highlight the differences in the proofs.

It is enough to prove that, choosing m = mϵ =
⌈
(9 + 12/c) log(1/ϵ)

⌉ one has
P
{
1 ∈ Sm and |Sm| ≤ 4

ϵ
(c+1)2m (2m)!

}
≥ 1− ϵ .

This follows if we prove that
P {1 ∈ Sm} ≥ 1− ϵ

2
(3.4.1)
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and
P
{
|Sm| ≤

4
ϵ
(c+1)2m (2m)!

}
≥ 1− ϵ

2
(3.4.2)

both hold.
Recall that the uniform Cooper-Frieze model is the union of a uniform random re-

cursive tree G1 and an inhomogeneous Erdős-Rényi random graph G2 (with edges proba-
bilities min(c/max(i, j)− 1,1)).

Proving (3.4.1) and (3.2.1) shares the same basic argument. In order to show that the
root vertex is an anchor of a double cycle of size (s, t) for some s, t ≤m, one may show that,
with the desired probability, there exist at least two vertices i, j with sufficiently small index
such that the edges (1, i) and (1, j) are not present in the uniform random recursive tree
but they are present in the inhomogeneous Erdős-Rényi random graph G2. This follows
by similar concentration arguments (for sums of independent Bernoulli random variables
and for the height of a uniform random recursive tree) as in the proof of Theorem 3.4.

The proof of (3.4.2) is once again analogous to the proof of (3.2.2). We remind the
reader than the main step of the proof of Theorem 3.4 relies on the fact that a uniform
random ℓ-dag is dominated by an inhomogeneous Erdős–Rényi random graph with of
edges probabilities ℓ/(max(i, j) − 1), as shown in Proposition 3.6. Using a similar reason-
ing as in Proposition 3.6, one may prove that a uniform Cooper-Frieze random graph is
dominated by an an inhomogeneous Erdős–Rényi random graph with edge probabilities
(c + 1)/(max(i, j)− 1). The remainder of the proof is exactly the same as that of the proof
of (3.2.2) and concludes the proof of Theorem 3.5.

3.5 Concluding remarks

In this chapter we addressed the problem of finding the first vertex in dynamically grow-
ing networks, based on observing a present-day snapshot of the unlabeled network. This
problem has mainly been studied for trees and the main purpose of the chapter is to
study root finding in more complex networks. The main results show that in certain natu-
ral models it is possible to construct confidence sets for the root vertex whose size does
not depend on the observed network. These confidence sets contain the root vertex with
high probability, and their size only depends on the required probability of error. We prove
this property in two models of random networks, namely uniform ℓ-dags and a simplified
model inspired by a general random network model of Cooper and Frieze. In both mod-
els, the constructed confidence set contains all vertices that are anchors of certain small
subgraphs that we call “double cycles.”
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We leave a number of questions open. We conjecture that the upper bounds ob-
tained for the size of the confidence set are suboptimal (as a function of the probability
of error ϵ). To substantially improve on these bounds one may need to consider “global”
measures, reminiscent to the centrality measures employed in the case of root finding in
recursive trees, as opposed to the “local” method proposed here. However, their use and
analysis appears substantially more challenging.

Deriving lower bounds for the size of the confidence set is another interesting open
question.

Another path for further research is to extend the network models beyond the
uniform ones considered here. The most natural extensions are preferential attachment
versions of the models. Such a graph is grown recursively by connecting each new vertex
to ℓ vertices chosen with probability being a function of their degree. In those models, the
graph is not the union of independent trees. Proofs presented in this chapter are not yet
adapted to deal with those dependencies. However, in preferential attachment graphs,
degree centrality is known to achieve graph archaeology, see Banerjee and Huang [12].

We end by noting that the methodology based on double cycles also works in a
variant of the uniform Cooper-Frieze model in which the uniform random recursive tree
is removed. More precisely, one may consider an inhomogeneous Erdős-Rényi random
graph on the vertex set [n] with edge probabilities min(c/(max(i, j)− 1),1), where c > 1 is
a constant. In this case one may prove the following.

Theorem 3.9. Let c > 1 and let G = G(n) be an inhomogeneous Erdős-Rényi random
graph on n vertices, with edge probabilities pi,j =min(c/(max(i, j)− 1),1). Root estima-
tion is possible in G. In particular, there exist constants c0, c1 > 0, depending on c only,
such that one may take

K(ϵ) ≤
( c0
ϵc1

) c0
ϵc1

.

The outline of the proof is similar to that of Theorems 3.4 and 3.5. The only differ-
ence is in the proof that the root vertex is an anchor of a sufficiently small double cycle.
To prove this, we may write G as the union of two independent inhomogeneous Erdős-
Rényi random graphs as follows. Let k be a sufficiently large integer (only depending on
ϵ). Then we may define G1 = ([n],E1) and G2 = (n, [E2]) as independent inhomogeneous
Erdős-Rényi random graphs such that for all 1 ≤ i < j ≤ n,

P {(i, j) ∈ E1} =
{

c
k if j ≤ k
0 otherwise
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and
P {(i, j) ∈ E2} =

 pi,j− ck
1− ck

if j ≤ k
pi,j otherwise

Clearly,G = ([n],E1∪E2). The subgraph ofG1 induced by the vertex set [k] is a supercritical
Erdős-Rényi random graph and therefore, with high probability, it has a connected “giant”
component of size that is linear in k. Then one may easily show that, with high probability,
there are three edges inG2 of the form (1, i), where i belongs to the giant component. This
is enough for vertex 1 to be an anchor of a double cycle.

The rest of the proof is identical to that of Theorem 3.4.
Finally, the double cycle method can be implemented in polynomial time. Indeed,

checking if the pair of vertices u,v are the anchors of a double cycle of size at mostm can be
achieved by finding the three shortest disjoint path between them. This can be achieved
in O(n) time by running three times a modified Dijkstra algorithm, see Bhandari [18]. To
find all double cycle anchor, a naive method is just to run this on every possible pair of
vertices. Thus, it is possible to compute the confidence set of the double cycle method in
O(n3) time.
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Abstract

This chapter studies the problem of estimating the order of arrival of the vertices in a
random recursive tree. Specifically, we study two fundamental models: the uniform at-
tachment model and the linear preferential attachment model. We propose an order es-
timator based on the Jordan centrality measure and define a family of risk measures to
quantify the quality of the ordering procedure. Moreover, we establish a minimax lower
bound for this problem, and prove that the proposed estimator is nearly optimal. Finally,
we numerically demonstrate that the proposed estimator outperforms degree-based and
spectral ordering procedures.



This Chapter is based on a joint work with Christophe Giraud, Gábor Lugosi and Déborah
Sulem (Briend, Giraud, Lugosi, and Sulem [29]).

4.1 Introduction

In this chapter, we consider the problem of estimating the entire history of the network,
that is, the arrival times of all the vertices in a random recursive tree. One may consider
this as a question of latent variable estimation. A related statistical problem is the so-called
seriation. Seriation is the problem of inferring an ordering of points, based on pairwise
similarity or on the adjacency information between two points. This similarity measure
is assumed to statistically decrease with the distance in a latent space and informs on
the latent global order of the points. The seriation problem has been studied in various
fields, such as in archaeology (Robinson [123]), bioinformatics (Recanati et al. [121]), and
matchmaking (Bradley and Terry [20]). It has been theoretically analyzed in random graph
models such as geometric graphs and graphons (Giraud et al. [72], Janssen and Smith [82]).
In recursive trees, the pairwise affinity between nodes is encoded in the adjacency matrix,
and the latent space and latent positions are respectively the temporal line and the arrival
times of the vertices. Estimating the temporal order of the vertices in a recursive tree can
therefore be interpreted as an instance of the seriation problem.

To estimate the vertices’ order, we propose a procedure based on a centrality mea-
sure, specifically on the Jordan centrality. We prove that this procedure is nearly optimal in
two random recursive tree models, namely, the uniform random recursive tree (urrt) and
the preferential attachment (pa) model. In these models, a tree of n ≥ 1 vertices is grown
by adding and connecting one vertex at each time step. To describe the growing process,
we assume that the vertices have intrinsic labels from 1 to n. At each step t = 1, . . . ,n of the
growth, a new vertex, say of label jt , is picked arbitrarily among the set of nodes not yet
in the tree, and added to the tree with the rank t. At t = 1, the first sampled vertex is the
root of the tree. We denote by σ : {1, . . . ,n} → {1, . . . ,n} the ordering (or, ranking) map of
vertices such that σ (jt) = t. In other words, σ is a permutation.

The urrt and pa models differ by the attachment rule used to connect a new vertex
at each step t = 2, . . . ,n of the growth process. In the urrt model, the vertex jt is connected
by an undirected edge to a vertex sampled uniformly among the vertices of the current
tree. In the pa model, the vertex of the tree is sampled with a probability proportional
to its degree. We denote by T = Tn the obtained tree structure, that is, the set of nodes
with labels in {1, . . . ,n} and the undirected edges between them. In the statistical problem
considered in this chapter, after the tree is grown, the rank or arrival time σ (i) of each node
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i is not observed on T . The random growing process defines a probability distribution on
trees. We denote by P the corresponding probability distribution and E the associated
expectation.

We note that in these random models, the sampling process is independent of
the labels chosen to identify the vertices, here {1, . . . ,n}. Therefore, any coherent ordering
procedure should be label invariant, that is, independent of these labels. Saying that σ̂ is
label invariant means that for any fixed T and ranking σ ,

σ̂ (T ,σ ) L= σ̂ (T σ
′
,σ ◦ σ ′) , (4.1.1)

for a permutation σ ′ , where T σ ′ denotes the tree with label i replaced by σ ′(i). Note that
the equality in distribution is a simple equality if the ordering procedure σ̂ is deterministic.
Let us also remark that an easy way to transform any ordering procedure into a label
invariant ordering procedure is by applying a random permutation to the labels of the
tree before feeding it to the ordering procedure.

In order to measure the quality of an estimator of the history, we introduce a family
of risk measures that takes into account the error in the estimated arrival time of each
vertex, weighted by a function of the arrival time. We define the following family of risk
measures

Rα(σ̂ )
def= E

 n∑
i=1

|σ̂ (i)− σ (i)|
σ (i)α

 , (4.1.2)
where α > 0. The parameter α tunes the importance given to vertices with small true rank
σ (i): the higher α, the more weight is given to vertices with low rank. Perhaps the most
natural choice is α = 1. In that case the risk corresponds to normalizing the error on the
estimation of the arrival time of a vertex by its true arrival time. We note that it is often
the early stages of a propagation phenomenon that are more relevant, for example, for
designing prevention strategies. Additionally, in random growing trees, it is harder to ac-
curately order the high-rank vertices, due to the inherent model symmetries (Sreedharan,
Magner, Grama, and Szpankowski [133]).

One way to construct an estimator σ̂ of the ranking map is to choose a score func-
tion on the set of vertices, and order vertices by increasing (or decreasing) values. Such a
score function could be based on the likelihood under the tree model. However, the lat-
ter is generally difficult to compute, see Bubeck et al. [33]. Instead, score functions based
on the degree (Navlakha and Kingsford [116]) or the so-called rumor centrality (Cantwell,
St-Onge, and Young [36]) can be computed in polynomial time.

Another approach are iterative algorithms that recursively infer previous states of
the tree such as the history sampling algorithms (Cantwell et al. [36], Crane and Xu [42])
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and the Peeling procedure (Sreedharan et al. [133]), which is related to the depth central-
ity score. These methods are guaranteed to recover a recursive ordering of the vertices.
Moreover, Crane and Xu [42] show that the history sampling algorithm outputs confidence
sets for the arrival time of a single vertex with valid frequentist coverage. Besides, Sreed-
haran et al. [133] demonstrate that the partial ordering retrieved by the Peeling procedure
has good properties in settings where the root of the tree can be unambiguously identified.
Nonetheless, there are not yet guarantees on the quality of the global ordering provided
by these methods.

The ordering procedure we propose is based on the Jordan centrality, defined, for
a vertex u ∈ T belonging to a tree T , as

ψT (u) = max
v∈V (T ), v∼u

|(T ,u)v | . (4.1.3)
where (T ,u) denotes the tree T rooted at u, where u ∼ v means that u and v are neigh-
bors in T , and where (T ,u)v denotes the subtree of T containing all vertices w such that
v lies on the path connecting w to u (see Figure 4.1). Somewhat informally, we call (T ,u)vthe subtree hanging from v in the rooted tree (T ,u). The maximum in (4.1.3) is taken over
vertices v of the tree that are connected to vertex u by an edge. Intuitively, if a vertex is
central, then none of the subtrees hanging from it can be too large. Therefore, the lower
ψT (i), the more central is vertex i. It is straightforward to see that (ψT (u))u∈T only de-
pends on the structure of the tree and not on the labels of its vertices. We then define
σ̂J : {1, . . . ,n} → {1, . . . ,n} the ordering obtained by ranking the vertices by increasing value
of Jordan centrality–breaking ties at random. This estimator is label invariant. An equiv-
alent formulation of this algorithm is to estimate the position of vertex 1 by the Jordan
centroid, rooting the tree at this vertex and then ordering vertices by the size of their
hanging subtree in the rooted tree. Thus, if the exact position of vertex 1 was known, we
would be ordering vertices by the number of their descendants.
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Figure 4.1: An illustration of the subtree (T ,u)v , corresponding to nodeshighlighted in red.

While the risk defined in (4.1.2) can be computed for any value α > 0, we restrict α
to a range of values which are relevant for our ordering problem. Specifically, we only con-
sider α ≥ 1, since for α < 1 the problem becomes trivial, since even a random permutation
has a risk which is minimax optimal up to constant factor (see Appendix 4.5.1). In Theorems
4.1 and 4.7, we provide minimax lower bounds for the risk Rα(σ̂ ) in the urrt and pa model,
for any label-invariant estimator σ̂ . Then, in Theorems 4.4 and 4.8 upper bounds for the
risk of the Jordan ordering are obtained. Finally, in Corollaries 4.5 and 4.9 we prove that
our proposed estimator is minimax optimal up to constant factors, in a non-trivial range
of parameters α. In the following table, we summarise our findings. For α ≥ 1, we denote
by R∗α the optimal risk, and Rα(σ̂J ) the risk of the Jordan ordering.

urrt pa
R∗α ≥ n2−α/65∨ 1/2 ≥ n2−α/70∨ 1/2

Rα(σ̂J ) = O
(
n2−α + log4(n)

)
= O

(
n2−α +n3/4

)
We also compare numerically the performance of the Jordan estimator with other

ordering procedures in a simulation study.
In the rest of this section, we review previous works and introduce some notation.

Then, in Section 4.2, we analyze the Jordan ordering in the urrt model. Next, we consider
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the pa model and prove analogous results in Section 4.3. Finally, in Section 4.4, we re-
port the results of our simulation study and compare the empirical performance of the
Jordan estimator to alternative methods based on the degree centrality, a peeling method
(Navlakha and Kingsford [116, Section 2.3]) and a spectral method commonly used in seri-
ation problems (Recanati et al. [122]).

4.1.1 Related work

Most methods for ranking the vertices of a random recursive tree have been introduced
for the root-finding problem, that is, recovering a vertex (or a set of vertices) that is (con-
tains) the root. For this problem, maximum likelihood estimators (Brandenberger et al.
[21], Bubeck et al. [33], Haigh [74]) and estimators based on rumor centrality (Shah and
Zaman [129, 130]) have been proposed and analyzed. Jordan centrality is another mea-
sure of centrality used by Bubeck et al. [33, 34] to construct confidence sets. Banerjee
and Bhamidi [11], Jog and Loh [83, 84] study the persistence of the most central nodes in
random recursive trees. Furthermore, while the vertex with maximum degree is generally
not a good estimator of the root in the urrt model, in the pa model pairs degree central-
ity is useful for retrieving the first vertex (Banerjee and Bhamidi [10], Contat et al. [40]).
Some recent work studies root-finding in Galton-Walton trees (Brandenberger et al. [21])
and more general graphs (Briend et al. [26], Crane and Xu [43]).

Crane and Xu [42] propose a general history-sampling procedure for network ar-
chaeology, which can be applied to the problem of estimating arrival times. The history
sampling algorithm outputs a confidence set of rankings that contains the true one with
high probability. However, there is no known bound of the size nor the average global
error of an ordering in this confidence set.

The vertex arrival-time estimation problem bears some similarity to the seriation
problem, though in the former, the dependence is intrinsically related to the tree struc-
ture. For example, in a random geometric graph (Gilbert [71]), the seriation problem is to
estimate the position of the random points. Since there is no time structure in seriation,
different metrics for the error are used, such as the maximum distance between the true
and estimated latent position. Examples of methods are provided by Giraud et al. [72].
Another widely studied seriation method consists in ordering latent points by a spectral
method on the graph Laplacian (see Section 4.4 and Recanati et al. [122] for details). They
give guarantees for the quality of their method when the observed adjacency matrix is a
perturbed Robinson matrix. The expected adjacency matrices of both urrt and pa trees
are Robinson, and therefore the models studied here can be viewed as perturbed Robin-
son matrices. Nonetheless, none of the above-mentioned papers gives any insight about
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seriation in urrt and pa trees.

4.1.2 Notation

Let πn be the set of permutations of [n] := {1,2, . . . ,n}, and let Tn be the set of un-labelled
trees of size n. We denote by urrt(n) the distribution of a tree Tn of size n ≥ 1, generated
from the uniform attachment model. Similarly, we denote by pa(n) the distribution of a
tree sampled from the preferential attachment model. Moreover, we decompose the tree
as Tn = (Tn,σn), where Tn is the shape of the tree and σn is the recursive ordering of the
vertices in Tn. For simplicity, we drop the subscript n when the size of the tree is fixed and
clear from the context. We denote by P the probability distribution under the tree growing
process and E the corresponding expectation.

Recall that for a tree T and a vertex u ∈ T , we denote by (T ,u) the tree rooted at
u. For a rooted tree (T ,u) and a vertex v we denote by (T ,u)v the subtree of T consisting
of all vertices w such that v lies on the path connecting w to u (see Figure 4.1). For two
vertices u,v ∈ T , u ∼ v means that u is a neighbor of v in T (and reciprocally). In a rooted
tree (T ,u), we say that w is a child of v ifw is in (T ,u)v . We denote by den(u) = |(Tn,1)u | the
number of descendants of u in Tn. For simplicity, we drop the subscript n and use de(u)
when the size of the tree is fixed and clear from the context.

Recall the definition of the Jordan centrality; for a tree T and vertex u ∈ T ,
ψT (u) = max

v∈T ,v∼u
|(T ,u)v | . (4.1.4)

We denote by c a centroid of T , defined as c = argminu∈T ψT (u). It is well-known that any
tree has at least one and at most two centroids. Moreover, for a vertex u ∈ T that is not a
centroid, the subtree (T ,u)v , v ∼ u with maximum size, contains all centroids.

The Jordan ordering procedure consists in ordering points by increasing values of
ψ (ties being broken randomly). Equivalently, it consists in rooting the tree at c and order
vertices by |(T ,c)|u . We use σ̂J to refer to the Jordan ordering of Tn. As noted in the in-
troduction, the Jordan centrality does not depend on the labelling of the tree (only on its
shape), and so is a label invariant ordering.

4.2 The uniform attachment model

In this section, we focus on the uniform attachment model as the random growing pro-
cess of the tree. We first present a lower bound for the risk Rα(σ̂ ) of any label-invariant
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estimator σ̂ of the vertices order.

4.2.1 A lower bound

In the next proposition, we provide a lower bound for the risk Rα(σ̂ ) for any label-invariant
estimator of the recursive ordering in the urrt model. Define, for any n ≥ 1, the optimal
risk by

R∗α := min
σ̂∈Πn

Rα(σ̂ ) ,

where Πn is the set of label-invariant recursive orderings.
Theorem 4.1. In the urrt model, we have, for all α > 0 and n ≥ 200,

R∗α ≥
n2−α

65
.

Proof. For a tree T and an ordering of its vertices σ , let τ = σ−1 (i.e, τ(i) is the label of the
vertex that arrives at time i). We start by recalling that

Rα(σ̂ ) = E

 n∑
j=1

|σ̂ (j)− σ (j)|
σ (j)α

 = E

 n∑
j=1

|σ̂ ◦ τ(j)− j)|
jα

 ,
which is lower bounded as follows

Rα(σ̂ ) ≥
⌊3n/4⌋∑

j=⌊n/2⌋+1

|σ̂ ◦ τ(j)− j)|
jα

+
n∑

j=⌊3n/4⌋+1

|σ̂ ◦ τ(j)− j)|
jα

(4.2.1)

≥ 1
nα

⌊3n/4⌋∑
j=⌊n/2⌋+1

E
[∣∣∣σ̂ ◦ τ(j)− j)∣∣∣+ ∣∣∣∣∣σ̂ ◦ τ (⌊n4⌋

+ j
)
−

⌊n
4

⌋
− j

∣∣∣∣∣] . (4.2.2)
We associate summands of the risk by pairs to later use the fact that some pairs of vertices
are indistinguishable. It is convenient to create pairs of nodes as above to exploit the way
we will identify indistinguishable pairs of vertices. The problem is reduced to a control of
each term of the summand. For a labelled tree T and a permutation γ , we denote by T γ
the tree with γ applied to its labels. For j ≥ ⌈n/2⌉, fix γ = (τ(j), τ(⌊n/4⌋+ j)), that is, the
permutation sending j to ⌊n/4⌋+ j and vice versa, while keeping all other elements of [n]
in place. Introduce the event

Ωj := {τ(j) and τ(⌊n/4⌋+ j) are leaves, connected to vertices of rank ≤ n/2} .
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First, we check that Ωj is an event whose probability is bounded away from 0. We note
that for Ωj to occur, it suffices that

• vertex j connects to a vertex of rank at most n/2. This happens with probability
⌊n/2⌋ /(j − 1).

• For times ranging from j+1 to ⌊n/4⌋+ j−1 new vertices connect to vertices different
from j. This happens with probability

⌊n/4⌋+j−1∏
k=j+1

k − 2
k − 1

.

• Vertex ⌊n/4⌋+ j connects to a vertex of rank at most n/2. This happens with proba-
bility ⌊n/2⌋ /(⌊n/4⌋+ j − 1).

• For times ranging from ⌊n/4⌋ + j + 1 to n new vertices connect to vertices different
from j and ⌊n/4⌋+ j. This happens with probability

n∏
k=⌊n/4⌋+j+1

k − 3
k − 1

.

Finally, note that from the definition of the urrt model, the four events corresponding to
the four items above are independent. Thus

P
{
Ωj

}
=
⌊n/2⌋
j − 1

·
⌊n/2⌋
⌊n/4⌋+ j

·
⌊n/4⌋+j−1∏
k=j+1

k − 2
k − 1

·
n∏

k=⌊n/4⌋+j+1

k − 3
k − 1

=
⌊n/2⌋
j − 1

·
⌊n/2⌋
⌊n/4⌋+ j

·
j − 2

⌊n/4⌋+ j − 2
·
(⌊n/4⌋+ j − 2)(⌊n/4⌋+ j − 1)

(n− 1)n
,

which simplifies to
P
{
Ωj

}
≥ 1

4

(
1− 1

n− 2

)3
. (4.2.3)

The first step is to use (4.2.3) to control one of the summands in (4.2.1) by conditioning on
Ωj .

E [|σ̂ ◦ τ(j)− j |+ |σ̂ ◦ τ (⌊n/4⌋+ j)− (⌊n/4⌋+ j) |]

≥ 1
4

(
1− 1

n− 2

)3
E
[ ∣∣∣σ̂ ◦ τ(j)− j∣∣∣+ ∣∣∣∣∣σ̂ ◦ τ (⌊n4⌋

+ j
)
−
(⌊n
4

⌋
+ j

) ∣∣∣∣∣ ∣∣∣∣∣ Ωj

]
.
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We then decompose on each possible realization of a recursive tree
E
[ ∣∣∣σ̂ ◦ τ(j)− j∣∣∣+ ∣∣∣∣∣σ̂ ◦ τ (⌊n4⌋

+ j
)
−
(⌊n
4

⌋
+ j

) ∣∣∣∣∣ ∣∣∣∣∣ Ωj

]
=

∑
t∈T

P
{
T = t |Ωj

}
E
[
|σ̂ ◦ τ(j)− j | | Ωj , T = t

]
+
∑
t∈T

P
{
T = tγ |Ωj

}
E
[ ∣∣∣∣∣σ̂ ◦ τ (⌊n4⌋

+ j
)
−
(⌊n
4

⌋
+ j

) ∣∣∣∣∣ ∣∣∣∣∣ Ωj , T = tγ
]
,

which is a valid decomposition since t 7→ tγ is a bijection from T to itself. Theorem 4 of
Crane and Xu [42] states that, in the urrt model, two trees having the same shape but
different recursive orders have the same probability. Since on the event Ωj , t is recursive
if and only if tγ is recursive, then

P
{
T = t |Ωj

}
= P

{
T = tγ |Ωj

}
.

As a consequence, the above expression factorizes to
E
[
|σ̂ ◦ τ(j)− j |+

∣∣∣∣∣σ̂ ◦ τ (⌊n4⌋
+ j

)
−
⌊n
4

⌋
− j

∣∣∣∣∣ ∣∣∣∣∣ Ωj

]
=

∑
t∈T

P
{
T = t |Ωj

}
×(

E
[
|σ̂ ◦ τ(j)− j | | Ωj , T = t

]
+E

[ ∣∣∣∣∣σ̂ ◦ τ (⌊n4⌋
+ j

)
−
(⌊n
4

⌋
+ j

)∣∣∣∣∣ ∣∣∣∣∣ Ωj , T = tγ
])
. (4.2.4)

The label invariant condition implies that
σ̂ [T γ ] ◦γ L= σ̂ [T ] ,

and in particular, (
σ̂ (j) |Ωj ,T = t

) L= (
σ̂ (⌊n/4⌋+ j) |Ωj ,T = tγ

)
,

which directly implies that
E
[
|σ̂ ◦ τ(j)− j | | Ωj , T = t

]
+ E

[ ∣∣∣∣∣σ̂ ◦ τ (⌊n4⌋
+ j

)
−
⌊n
4

⌋
− j

∣∣∣∣∣ ∣∣∣∣∣ Ωj , T = tγ
]
≥ n

4
.

By plugging the above inequality in (4.2.4)
E
[
|σ̂ ◦ τ(j)− j |+

∣∣∣∣∣σ̂ ◦ τ (⌊n4⌋
+ j

)
−
⌊n
4

⌋
− j

∣∣∣∣∣] ≥ n
16

(
1− 1

n− 2

)3
.

Now, plugging the above inequality in (4.2.1) yields
Rα(σ̂ ) ≥

n2−α

65
,

for all n ≥ 200.
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Remark. In the urrt, vertices 1 and 2 are indistinguishable. Indeed, when the tree has
size 2, vertices 1 and 2 have exactly the same properties. Thus, no label invariant ordering
procedure can assign order 1 to vertex 1 with probability higher than 1/2. As a result, we
obtain, for any α, the trivial lower bound

R∗α ≥
1
2
,

which improves the bound of Theorem 4.1 for α ≥ 2, and therefore Theorem 4.1 is non-
trivial when α < 2.

4.2.2 An auxiliary “descendant-ordering” procedure

In the sequel, we estabish upper bounds for the risk of Jordan ordering. Since this is a label-
invariant procedure, we may assume, without loss of generality, that σ = Id is the identity
permutation. In other words, the arrival time of a vertex and its label are the same. When
the context is clear, vertex labels and arrival times are used interchangeably.

In order to analyze the Jordan ordering, we introduce an auxiliary centrality mea-
sure and the corresponding estimator of vertex arrival times. As observed in the introduc-
tion, the Jordan ordering procedure consists in estimating the position of vertex 1 by the
Jordan centroid c and ordering vertices according to the values of |(T ,c)u |. If cwas replaced
by vertex 1, this measure would correspond to the number of descendants of u. Thus, a
natural ordering is to order vertices by the number of their descendants, that is, the or-
dering according to the values of |(T ,1)u |. We call this descendant ordering, noting that, as
before, ties are broken at random. Note that descendant ordering is not a valid proce-
dure, since the location of the root vertex is not known. On the other hand, the number
of descendants is easily analyzed by Pólya urns, and our approach is based on comparing
Jordan ordering to this auxiliary procedure. In this section we prove an upper bound for
difference of the risk of both procedures. For a tree T and for each u ∈ T , we define the
descendant centrality

ψ′T (u) = n−de(u) ,

where de(u) = |(T ,1)u | is the number of descendants of u, as defined in Section 4.1.2. We
denote by σ̂ ′ the ordering of the vertices induced by sorting the values of ψ′T in increasing
order.

In the following lemma, we first prove that for the urrt model, the Jordan centrality
ψT , defined in (4.1.3), and the descendant centrality ψ′T coincide for most vertices. Fur-
thermore, we prove bounds on both the number of nodes for which ψT may differ from
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ψ′T and the estimated rank of vertex 1. We recall that 1 and c denote respectively the root
and the rank of a centroid of the tree.
Lemma 4.2. Let T ∼ urrt, let c ∈ [n] be a centroid of T and let {1→ c} be the set of vertices on
the path connecting 1 to c in T . Then

• for any v ∈ [n]\{1→ c}, we have

ψT (v) = ψ
′
T (v) ;

• there exists a universal constant K such that c is stochastically dominated by an expo-
nential random variable with mean K ;

• for ϵ ≤ 0.2, with probability at least 1− 5ϵ

σ̂J (1) ≤ 2.5
log(1/ϵ)

ϵ
.

Proof. Let T ∼ urrt. First, we decompose the vertices of T in four sets as shown in
Figure 4.2: case 1 corresponds to the set {1 → c} of nodes connecting the root to the
centroid, case 2 to the vertices of (T ,1)c \{c}, case 3 to the vertices of (T ,c)1 \{1} and finally
case 4 to the vertices of (T ,1)i \ {i} for i ∈ {1 → c} \ {1, c}. As we mentioned before, it is
well known that for a non-centroid vertex u, its neighbor maximizing |(T ,u)v | is such that
|(T ,u)v | contains any centroid. Note that for each vertex u in cases 2, 3 and 4, for v ∼ u
such that the subtree (T ,u)v contains c, (T ,u)v also contains vertex 1. As a consequence,
ψT (u) = |(T ,u)pa(u)|, where pa(u) is the “parent” of u. But by definition, |(T ,u)pa(u)| = n −
de(u) = ψ′T (u), concluding the proof of the first part of the lemma.

Moon [109] showed that the rank of the centroid c is dominated by an exponential
random variable of mean K , for a universal constant. The third statement follows from
Theorem 3 of Bubeck et al. [33].
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Figure 4.2: Sketch of a tree and its centroid. Circled in red are the vertices of thepath {1→ c} (case 1). Blue vertices correspond to case 2, green to case 3 andpurple vertices to case 4.

In the following lemma, we bound the risk of σ̂J by that of the descendant ordering
σ̂ ′.
Lemma 4.3. Let T ∼ urrt. For α > 0

Rα(σ̂J ) ≤ Rα(σ̂ ′) +K
n∑
i=1

1
iα

+C log4(n) ,

where C > 0 is a constant (not depending on α).

Proof. Recall that σ = Id, that is, we use the same integer to denote the label of a vertex
and its arrival time. We first decompose the global risk Rα(σ̂J ) into

Rα(σ̂J ) = E

 ∑
i∈{1→c}

∣∣∣σ̂J (i)− i∣∣∣
iα

+E

 ∑
i<{1→c}

∣∣∣σ̂J (i)− i∣∣∣
iα

 .
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Since by Lemma 4.2 vertices outside of the path {1→ c} are put in the same order by the
Jordan ordering and the descendant ordering, for i < {1→ c}, |σ̂J (i)− σ̂ (i)| ≤D+1, whereD
is the distance between 1 and c. Thus, we can control the second term of the right-hand
side as follows:

E

 ∑
i<{1→c}

∣∣∣σ̂J (i)− i∣∣∣
iα

 = E

 ∑
i<{1→c}

∣∣∣σ̂ ′(i)− i + σ̂J (i)− σ̂ ′(i)∣∣∣
iα


≤ E [D]

n∑
i=1

1
iα

+E

 ∑
i<{1→c}

|σ̂ ′(i)− i|
iα

 .
SinceD is at most the arrival time of the centroid, Lemma 4.2 implies that E[D] ≤ E[c] ≤ K .
On the other hand,

E

 ∑
i∈{1→c}

∣∣∣σ̂J (i)− i∣∣∣
iα

 ≤ E

 ∑
i∈{1→c}

i

+E

 ∑
i∈{1→c}

σ̂J (i)

 .
Clearly,

E

 ∑
i∈{1→c}

i

 ≤ E[cD] .

Since D ≤ c and since c is dominated by an exponential random variable of mean K , by
Lemma 4.2,

E [cD] ≤ E
[
c2

]
≤ 2K2 .

In addition, since on the path {1→ c}, σ̂J is decreasing, we have
E

 ∑
i∈{1→c}

σ̂J (i)

 ≤ E
[
Dσ̂J (1)

]
.

Since D and σ̂J (1) are bounded by n, they have finite moments. Using Hölder’s inequality,
for any γ > 0,

E
[
Dσ̂J (1)

]
≤

(
E
[
D

1+γ
γ

]) γ
1+γ (

E
[
σ̂J (1)

1+γ
]) 1

1+γ . (4.2.5)
Since D ≤ c which is dominated by an exponential random variable,(

E
[
D

1+γ
γ

]) γ
1+γ
≤ C

1+γ
γ

, (4.2.6)
for some positive constant C. Next, using Lemma 4.2,

P
{
σ̂J (1) ≥ f (ϵ)

}
≤ 5ϵ ,
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where f (ϵ) = 2.5 log(1/ϵ)
ϵ . f is a non-increasing function and therefore f (

5log2(k)/k
)
≤ k for

all k ≥ 1. Therefore,

P
{
σ̂J (1) ≥ k

}
≤ 25

log2(k)
k

, for all k ≥ 1,

so for any γ > 0,

P
{
σ̂J (1)

1+γ ≥ k
}
= P

{
σ̂J (1) ≥ k

1
1+γ

}
≤ 25

1
(1+γ)2 log

2(k)

k
1

1+γ

.

It follows that
E
[
σ̂J (1)

1+γ
]
= 1+

∫ n1+γ

k=1
P
{
σ̂J (1)

1+γ ≥ k
}
dk ≤ 1+

∫ n1+γ

k=1

25
(1+γ)2 log

2(k)

k
1

1+γ

dk

≤ 1+
25

(1+γ)2
(1 +γ)2 log2(n)

γ +1
γ

(
n1+γ

) γ
1+γ

= 1+25
(1+γ) log2(n)

γ
nγ .

Plugging the obtained inequality in (4.2.5) and recalling (4.2.6), we obtain
E
[
Dσ̂J (1)

]
≤ C

1+γ
γ

(
1+25

1+γ
γ

log2(n)nγ
)
.

Choosing γ = 1/ log(n) we get
E
[
Dσ̂J (1)

]
≤ C′ log4(n) .

This concludes the proof of the lemma.

4.2.3 Performance of Jordan ordering in the URRT model

In this section, we prove upper bounds for the risk Rα(σ̂J ). In particular, we prove that for
α ∈ [1,2), the riskRα(σ̂J ) has the same order as the optimal riskR∗α , defined in Section 4.2.1.
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Theorem 4.4. Let T ∼ urrt. Then there exist positive constants C, K such that for 1 ≤
α < 2

Rα(σ̂J ) ≤ K(α)n2−α +K
n∑
i=1

1
iα

+C log4(n) ,

where K(α) =
(

2
2−α + 2e2

(2−α)2 +
2

(2−α)3
)
. Moreover, for α ≥ 2

Rα(σ̂J ) ≤ C log4(n) .

Before proving Theorem 4.4, we state a corollary that is a direct consequence of
Theorems 4.1 and 4.4. This corollary notably implies that the Jordan ordering has a risk
of optimal order for α ∈ [1,2). Note that one cannot hope to match the established lower
bounds for the optimal risk in a broader range of α for this method. Indeed, in a uniform
random recursive tree of size n, the probability that vertex 1 is a leaf is 1/n. Since leaves are
ordered last by σ̂J , and that there are roughly n/2 leaves, P {

σ̂J (1) ≥ n/2
}
≈ 1/n. This implies

that E[σ̂J (1)] ≳ log(n)/2, so σ̂J has a risk of order at least log(n), while the lower bound is
of constant order for α ≥ 2. We discuss in Appendix 4.5.2 the possibility of estimating the
position of vertex 1better, namely using the rumor centroid. We conjecture this alternative
method has a risk of optimal order for any α ≥ 1.

Corollary 4.5. Let T ∼ urrt. For α = 1

Rα(σ̂J ) ≤ (1 + o(1))1170R∗1

and for α ∈ (1,2),

Rα(σ̂J ) ≤ (1 + o(1))
(

1
2−α

+
3

(2−α)2
+

1
(2−α)3

)
65R∗α .

Proof of Theorem 4.4. By the triangle inequality,
Rα(σ̂

′) ≤
n∑
i=1

E
[
σ̂ ′(i)
iα

]
+

n∑
i=1

i
iα
,

Let i ∈ [n] be a vertex of T . We first note that

E
[
σ̂ ′(i)

]
≤ E

∑
j: j,i

1de(j)≥de(i)

 . (4.2.7)
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Moreover, for any τi,j ∈ R,
P {de(j) ≥ de(i)} ≤ P

{
de(j)
n
≥ τi,j

}
+P

{
de(i)
n
≤ τi,j

}
.

Therefore, we may upper bound (4.2.7) by
E
[
σ̂ ′(i)

]
≤ i +1+

∑
j>i+1

P
{
de(j)
n
≥ τi,j

}
+P

{
de(i)
n
≤ τi,j

}
. (4.2.8)

Let j > i +1 be a vertex of T . Note that the distributions of de(i) and de(j) in a urrt model
follow a Pólya urn model. In particular, for any vertex k ∈ [n],

P {k ∈ (T ,1)v} =
dek−1(j) + 1

k − 1
,

and each connection of a new vertex to a descendant of j is independent of the previous
ones, conditionally on de(j). Let Nn := n− j and let W̃N = de(j) be the number of descen-
dants of j at time n. We thus have that W̃N = de(j) follows a Pólya urn distribution, where
the Pólya urn process has balls of two colours, it is started when j is added to T , and it is
run for a maximum number of steps Nn. From Mahmoud [105, Section 3.2], we have that

E [de(j) + 1] =
n
j
,

and also that
P {de(j) = k} =

k!(j − 1)(j) · · · (n− k − 2)
j(j +1) · · · (n− 1)

(
n− j
k

)
. (4.2.9)

In Appendix 4.5.4, we derive from these formulas the following upper-bounds.
Lemma 4.6. i ≥ 2 and j > i +1, by choosing τi,j = 1

j log
j
i ,

P
{
de(j)
n
≥ τi,j

}
+P

{
de(i)
n
≤ τi,j

}
≤ 2e2e− log

j
i +

i
j
log

j

i
≤ i
j

(
2e2 + log

j

i

)
,

and that for i = 1, j > i +1, choosing τ1,j = 1
j log(j),

P
{
de(j)
n
≥ τ1,j

}
+P

{
de(1)
n
≤ τ1,j

}
≤ 1
j

(
2e2 + log(j)

)
+

1
n− 1

.
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Once plugged into the expression of Rα , for n ≥ 60, this leads to (details in Ap-
pendix 4.5.4)

n∑
i=1

E
[
|σ̂ ′(i)− i|

i

]
≤ 18n .

For 1 < α < 2, a similar computation yields (details in Appendix 4.5.4)
n∑
i=1

E
[
|σ̂ ′(i)− i|

iα

]
≤

(
2

2−α
+

2e2

(2−α)2
+

2
(2−α)3

)
n2−α .

Lemma 4.3 concludes the proof.

4.3 Preferential attachment tree

In this section, we consider the preferential attachment model and investigate the perfor-
mance of the Jordan ordering procedure. Since the arguments have a similar structure
to the urrt model analyzed in Section 4.2, we omit some details of the proofs and report
them to the Appendices. Similarly to the previous section, we first prove a minimax lower
bound for the risk of any label-invariant estimator.

4.3.1 A lower bound

Theorem 4.7. In the pa model, we have, for α = 1 and n ≥ 300

R∗α ≥
n2−α

70
.

The proof is deferred to Appendix 4.5.5.
Remark. In the same way as in the case of the urrt model, we have

R∗α ≥
1
2
,

which is better than the result of Theorem 4.7 for α > 2.
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4.3.2 Performance of the Jordan ordering in the PA model

Similarly to Section 4.2.3, we establish upper bounds for Rα(σ̂J ). In a subsequent corollary,
we bound the risk Rα(σ̂J ) in terms of the optimal risk R∗α .

Theorem 4.8. Let T ∼ PA. Then, there exist positive constants C, K , such that for
α ∈ [1,5/4)

Rα(σ̂J ) ≤
(

2
2−α

+
1

(α − 5/4)(α − 2)

)
n2−α +K

n∑
i=1

1
iα

+C log2(n)
√
n .

For α ≥ 5/4,
Rα(σ̂J ) ≤

2
2−α

n2−α +
32
3
ζ
(
α − 1

4

)
n3/4 ,

where ζ denotes the Riemann zeta function.

Corollary 4.9 is a direct consequence of Theorems 4.7 and 4.8. It states that the
Jordan ordering has a risk of optimal order for α ∈ [1,5/4). Let us remark that, here, the
boundary value 5/4 does not appear for the same reason as in the urrt case. In the urrt,
the optimality result is limited toα < 2 because of the error originating from the estimation
of vertex 1. Here, the limitation to α < 5/4 has a different origin than in the URRT model.
Indeed, our analysis of the descendant ordering only proves that the risk is optimal up
to canstant factor for α < 5/4. It means that even if the position of vertex 1 was known,
ordering vertices by the number of their descendants would not result in a risk bound that
matches the lower bound for α ≥ 5/4.

Corollary 4.9. Let T ∼ PA. For α ∈ [1,5/4)

Rα(σ̂J ) ≤ (1 + o(1))70
(

2
2−α

+
1

(α − 5/4)(α − 2)

)
R∗α .

The proof of Theorem 4.8 is reported to Appendix 4.5.7.

4.4 Simulations

In this section, we first report a numerical illustration of our theoretical results on trees
generated from the urrt and pa models. Then, we compare the performance of the Jordan
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ordering to other ordering procedures. For computational reasons, we display results for
the descendant ordering procedure. The descendant ordering can be computed in time
O(n log(n)). Also, one can find the Jordan centroid in linear time.

Note that the bounds of Lemmas 4.3 and 4.11 show that the risk of the descendant
ordering is a good approximation of the risk of Jordan ordering.

In the first experiment, we compute the risk Rα(σ̂ ′) (see (4.1.2)) of the descendant
ordering and display the theoretical upper bound and minimax lower bound from Theo-
rems 4.1 and 4.4 (Theorems 4.7 and 4.8 in the pa model).

Figure 4.3: Risk Rα of the descendant ordering versus the tree size n inlogarithmic scales, for α = 1 (left panel) and for α = 1.5 (right panel), and for treessimulated from the urrt model. Here, we sample 10 trees for each size, andreport a boxplot with the median, first, and last quartiles, for each tree size.
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Figure 4.4: Risk Rα of the descendant ordering versus the tree size n inlogarithmic scales, for α = 1 (left panel) and for α = 1.2 (right panel), and for treessimulated from the pa model. Here, we sample 10 trees for each size, and reporta boxplot with the median, first, and last quartiles, for each tree size.

In the second experiment, we perform an empirical comparison of Jordan ordering
with the three following ordering methods:

• Degree ordering, which orders the vertices by decreasing degree. Again, we break
ties at random. Degree ordering is justified by the fact that the lower the rank of a
vertex, the higher its expected degree is. Note, however, that ordering vertices by
degree does not necessarily produce a recursive ordering.

• Spectral method by Recanati et al. [122]. This method is widely used in seriation
problems and consists of finding the eigenvector associated to the second smallest
eigenvalue of the Laplacian of the graph. Then, considering the entries of this eigen-
vector as a score function, the estimated ordering is derived by sorting these entries
by increasing values.

• Reverse DMC algorithm, proposed by Navlakha and Kingsford [116]. This algorithm
is analogous to a pruning method, which consists of ordering the vertices by se-
quentially removing all leaves from the tree and ordering the leaves removed at
each step. In Reverse DMC, a score is computed for each leaf and the algorithm se-
quentially removes the leaf with the highest score. This score function corresponds
to the likelihood of the leaf being the last vertex in the current tree, therefore, at
each step, the leaf which is the most likely to be the last vertex arrived in the tree is
removed.
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Remark. We note that the spectral method is a reasonable method to compare with in
our setting of recursive trees since (i) spectral methods recovers the order of a Robinson
matrix Recanati et al. [122], and (ii) in the urrt and pa models, the expected value of the
adjacency matrix is a Robinson matrix.

Similarly to the previous experiment, we compute the riskRα for the four methods,
on trees simulated from the urrt or pa models, in multiple settings. From Figures 4.5 and
4.6 we see that the Jordan estimator has the lowest risk, for all values of the trees sizes,
and that the degree method is the second best one. In fact, it is not surprising that the
degree method performs well for pa trees, since, in this model, the degree has a power
law distribution and the order by degree correlates well with the arrival times of the ver-
tices. However, this result is more surprising for the urrt model, where degree-centrality
is known to be sub-optimal in the root-finding problem, see Bubeck et al. [33]. This is
discussed further in Appendix 4.5.3. Moreover, the spectral method has the poorest per-
formance in both models. A possible explanation for this is that the random fluctuations of
the adjacency matrix in the considered recursive tree models are large, leading to a large
difference between the expected and empirical adjacency matrices in spectral norm. This
absence of concentration, which is generally required in spectral ordering methods, could
explain why this method poorly performs in our setting. Finally, the Reverse DMC algo-
rithm performs similarly poorly as the spectral method in the pa model.
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Figure 4.5: Risk Rα versus the tree size n in logarithmic scales, for α = 1.5, and fortrees simulated from the urrt model. Here, we sample 10 trees for each size. Wecompare the risk of descendant (blue), degree (orange), and spectral methods(green), and report a boxplot with the median, first, and last quartiles, for eachtree size. In all settings, the descendant ordering largely outperforms the othermethods.

97



Figure 4.6: Risk Rα versus the tree size n in logarithmic scales, for α = 1.2, and fortrees simulated from the pa model. Here, we sample 10 trees for each size, onlyconsidering small trees for the reverse DMC method due to its highcomputational cost. We compare the risk of descendant (blue), degree (orange),spectral (green), and reverse DMC (red) methods, and report a boxplot with themedian, first, and last quartiles, for each tree size. Just like in the urrt model, thedescendant ordering outperforms the other methods.
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4.5 Appendix

In this appendix we discuss some issues concerning the choice of the parameter α in the
definition of the risk and ordering according to degrees. Some elements of the proofs for
the urrt model are also reported here. The final sections contain the proofs of all results
in the pa model.

4.5.1 A remark on the choice selection of α

The risk Rα defined in (4.1.2) leads to a meaningful performance measure in the urrt and
pa models only for some values of α. In particular, for α < 1, it is easy to see that the risk
of a random permutation is of the same order as the established lower bound, both in the
urrt and pa models. More precisely, let Σ be a permutation chosen uniformly at random.
Simple computation for α < 1 leads to

Rα(Σ) ≤ cαn2−α ,

for some positive constant cα . On the other hand, Theorems 4.1 and 4.7 imply that for
α < 1, R∗α ≥ c′αn2−α . Therefore, with α < 1, the a random ordering has a risk of the same
order as that of the optimal one. This is why we restrict our analysis of the risk to α ≥ 1.
Our analysis of the Jordan ordering proves that this method has a risk of optimal order for
α ∈ [1,2) in the urrt case and α ∈ [1,5/4) in the pa tree.

4.5.2 A remark on rumor centrality

We conjecture that in the urrt model, there exists an ordering procedure whose risk is of
the order of n2−α for any α ≥ 1, matching that of the minimax lower bound. Indeed, in
our analysis, the risk is decomposed in two parts. First, a part coming from the difference
between the Jordan and the descendant ordering (i.e, the error made by estimating the
position of vertex 1 by the Jordan centre), second the risk of the descendant ordering. A
possible way to improve our bound on the risk is to estimate the position of vertex 1 more
precisely. To do so, using the rumor centrality appears to be a promising option. Indeed,
due to recent results from Crane and Xu [42], in the urrt model, the rumor centrality orders
vertices by their likelihood of being vertex 1. In particular, using the rumor centrality is
optimal for minimizing the size of a conficence set containing the root, outperforming
Jordan centrality (Bubeck et al. [33]). However, one step in the analysis is missing. Copying
the proof of Lemma 4.3, with the rumor center instead of the Jordan center, one needs to
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bound the moment of order 1+γ of the arrival time of the rumor centre. Bounding it by a
constant (for any value of γ) would be sufficient to prove that this new ordering procedure
has a risk of optimal order for any α ≥ 1.

4.5.3 A remark on ordering by degree

As discussed in Section 4.4, a simple ordering procedure is by the degrees. Simulations
suggest that it does not perform as well as Jordan ordering, and it may produces non-
recursive ordering. Nonetheless, it is a simple procedure worth mentioning. Since in a pa
tree the degree of a given node follows a Pólya urn distribution, analysing the performance
of the degree ordering is similar to the analysis carried out for Jordan centrality. However,
the simulations results displayed in Figure 4.7 suggest that for any α ∈ [1,5/4) the risk of
the degree ordering grows at a faster rate than n2−α . Both in the URRT and PA model, for
sizes of trees {1000,2000,4000,8000}, we sample 10 trees at each size and compute the
risk of the descendant and degree ordering for different values of α. Then, for each value
of α, we perform a linear regression on the log-plot of the risk, to estimate the exponent
of the polynomial.

Figure 4.7: An estimation of the rate at which the risk increases with the size ofthe tree for different values of α in the pa tree. Here, we compare the case of thedescendant and degree ordering. Proposition 4.7 shows that the optimal riskgrows as n2−α , and that the the risk of descendant ordering grows at the samerate (see Proposition 4.8). This experiment confirms these results. For the degreeordering, this plot suggests that the risk grows faster than n2−α.
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On the other hand, ordering vertices by their degree in the urrt is known to be sub-
optimal for finding the root, as there are many vertices with much higher degree (Eslava
[65]). Simulation results displayed in Figure 4.8 suggest that, for most values of α, the risk
of ordering by degree in the urrt model grows at a faster rate than n2−α for any α ∈ (1,2).
On the other hand, observing Figure 4.8, it seems like, for α = 1, the degree ordering may
have a risk growing at the optimal rate of n.

Figure 4.8: Estimation of the rate at which the risk increases with the size of thetree for different values of α in the urrt. Here we compare the case of descendantand degree ordering. Proposition 4.1 shows that the optimal risk grows as n2−α ,and that the Jordan and descendant ordering’s risks grow at the same rate (seeProposition 4.4). This experiment is in accordance with these results. For thedegree ordering, this plot suggests that the risk grows at a rate faster than n2−α.

In Section 4.4, where the empirical performance of different ordering procedures
are compared, the degree ordering is the method with second best performance. The
above simulations suggest that all the other tested methods have risks growing at a faster
rate than n2−α .

4.5.4 Proof of Theorem 4.4

Here, we present the arguments to complete the proof of Theorem 4.4. We recall that we
need to upper bound ∑n

i=1E
[ |σ̂ ′(i)−i|

iα

], and that we reduced in (4.2.8) the problem to upper
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bounding P
{de(j)

n ≥ τi,j
}
+P

{de(i)
n ≤ τi,j

}, which is done in Lemma 4.6.
Proof. [Proof of Lemma 4.6] From (4.2.9), we have

P {de(j) = k} =
k!(j − 1)(j) · · · (n− k − 2)

j(j +1) · · · (n− 1)

(
n− j
k

)
.

Re-arranging the factors,
P {de(j) = k} = k!

(n− k − 2)!
(j − 2)!

(j − 1)!
(n− 1)!

(n− j)!
k!(n− j − k)!

= (j − 1)(n− k − 2)!
(n− j − k)!

(n− j)!
(n− 1)!

Since j ≥ 3,
P {de(j) = k} = (j − 1)

(n− j − k +1) · · · (n− k − 2)
(n− j +1) · · · (n− 1)

=
j − 1
n− 1

n− j − k +1
n− j +1

· · · n− k − 2
n− 2

≤
j − 1
n− 1

(
1− k

n− 2

)j−2
.

Therefore, for n,j ≥ 3, we can upper bound the second term of (4.2.8) by
P
{
de(j)
n
≥ τi,j

}
≤

∑
(τi,jn)≤k≤n

j − 1
n− 1

(
1− k

n

)j−2

≤
(j − 1)n
n− 1

∫ 1

τ− 1
n

(1− t)j−2dt = n
n− 1

(
1− τi,j +

1
n

)j−1
≤ 2e2e−jτi,j ,

using log(1 + x) ≤ x. Moreover, for i ≥ 2, we bound the third term of (4.2.8) by
P
{
de(i)
n
≤ τi,j

}
≤

∑
k∈[1,τi,jn]

i − 1
n− 1

(
1− k

n− 2

)i−2

≤ τi,j i
(
1− 1

n− 2

)i−2
≤ τi,j i .

Since for i = 1, P {de(1) = k} = 1/(n− 1),
P
{
de(1)
n
≤ τi,j

}
≤

∑
k∈[1,τi,jn]

1
n− 1

≤ τi,j +
1

n− 1
.
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Therefore, for i ≥ 2 and j > i +1, by choosing τi,j = 1
j log

j
i , we obtain that

P
{
de(j)
n
≥ τi,j

}
+P

{
de(i)
n
≤ τi,j

}
≤ 2e2e− log

j
i +

i
j
log

j

i
≤ i
j

(
2e2 + log

j

i

)
,

and for i = 1, j > i +1, choosing τ1,j = 1
j log(j) we obtain that

P
{
de(j)
n
≥ τ1,j

}
+P

{
de(1)
n
≤ τ1,j

}
≤ 1
j

(
2e2 + log(j)

)
+

1
n− 1

.

Plugging the upper-bounds of Lemma 4.6 in (4.2.8), for α = 1, we get
n∑
i=1

E
[
|σ̂ ′(i)− i|

i

]
≤ n+

n∑
i=1

E
[
σ̂ ′(i)
i

]

≤ n+
n∑
i=2

1
i

i +1+
n∑

j=i+2

i
j

(
2e2 + log

j

i

)+2+
n∑
j=3

(
1
j

(
2e2 + log(j)

)
+

1
n− 1

)

≤ 2n+3+ log(n) +
n∑
j=3

1
j

j−2∑
i=1

(
2e2 + log

j

i

)
. (4.5.1)

Since
j−2∑
i=1

log
j

i
≤ log

(
jj

j!

)
,

and that the Stirling formula implies that j! ≥ (j/3)j ,
j−2∑
i=1

log
j

i
≤ j log(3) .

Plugging this in (4.5.1) yields
n∑
i=1

E
[
|σ̂ ′(i)− i|

i

]
≤ 3+ log(n) + (2 + 2e2 + log3)n ,

which in turn proves that for n ≥ 60,
n∑
i=1

E
[
|σ̂ ′(i)− i|

i

]
≤ 18n .

103



For 1 < α < 2, a similar calculation yields
n∑
i=1

E
[
|σ̂ ′(i)− i|

iα

]
≤ 1

2−α
n2−α +

n∑
i=1

E
[
σ̂ ′(i)
iα

]

≤ 1
2−α

n2−α +1+
n∑
i=1

1
iα

i +1
n∑

j=i+2

i
j

(
2e2 + log

j

i

)
≤ 2

2−α
n2−α +1+ ζ(α) +

n∑
j=3

1
j

j−2∑
i=1

2e2

iα−1
+

1
iα−1

log
j

i

≤ 2
2−α

n2−α +1+ ζ(α) +
2e2

(2−α)2
n2−α +

n∑
j=3

1
j

j−2∑
i=1

1
iα−1

log
j

i
.

Recall that ζ denotes the Riemann zeta function. We may upper bound
j−2∑
i=1

1
iα−1

log
j

i
≤ 2

∫ j

1

1
tα−1

log
( j
t

)
,

which in turn can be evaluated by integration by parts, leading to
j−2∑
i=1

1
iα−1

log
j

i
≤ 2

(2−α)2
j2−α .

Finally
n∑
i=1

E
[
|σ̂ ′(i)− i|

iα

]
≤

(
2

2−α
+

2e2

(2−α)2
+

2
(2−α)3

)
n2−α .

For α ≥ 2, we similarly get
n∑
i=1

E
[
|σ̂ ′(i)− i|

iα

]
≤ C ,

for some positive constant C.

4.5.5 Proof of the minimax lower bound in the PA model

Here we prove Theorem 4.7
Proof. The proof follows the same argument as that of Theorem 4.1. It suffices to check
that the event

Ωj := {τ(j) and τ(⌊n/4⌋+ j) are leaves, connected to vertices of rank in [n/2]}
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has a probability bounded away from 0. Proceeding as in the proof of Theorem 4.1, we get
P
{
Ωj

}
=
2(⌊n/2⌋ − 1)
2(j − 2)

⌊n/4⌋+j−1∏
k=j+1

2k − 3
2(k − 1)

2(⌊n/2⌋ − 1)
2(⌊n/4⌋+ j − 2)

n∏
k=⌊n/4⌋+j+1

2k − 4
2(k − 1)

=
(⌊n/2⌋ − 1)
(j − 2)

2j − 1
2(⌊n/4⌋+ j − 2)

(⌊n/2⌋ − 1)
(⌊n/4⌋+ j − 2)

(⌊n/4⌋+ j − 1)(⌊n/4⌋+ j)
(n− 1)(n− 2)

=
(⌊n/2⌋ − 1)2

(n− 1)(n− 2)
2j − 1
2j − 4

(⌊n/4⌋+ j − 1)(⌊n/4⌋+ j)
(⌊n/4⌋+ j − 2)2

≥1
4

(
1− 5

n

)5
.

4.5.6 Descendant ordering in the PA model

Here, we analyze the descendant ordering in the pa model. Recall the notation introduced
in Section 4.2.2: the centrality measure ψ′(u) = n−de(u), and the corresponding ordering
σ̂ ′. In the next lemma we prove that ψ′ and ψ coincide for most vertices and provide a
control both on the number of vertices for which they differ and the estimated arrival
time of vertex 1.
Lemma 4.10. Let c be the rank of a Jordan’s centroid, and let {1→ c} be the set of vertices on
the path from the root to the centroid. Then

1. ∀v ∈ [n]\{1→ c}, ψT (v) = ψ′T (v) ;

2. there exists an universal constant K such that c is stochastically dominated by an expo-
nential random variable with parameter K ;

3. for any ϵ > 0, with probability at least 1− ϵ

σ̂J (1) ≤
C

ϵ2
exp

√C log
(1
ϵ

) .
Proof. The first part of the proof is identical to the proof of Lemma 4.2. First, we use The-
orem 6 of Wagner and Durant [139], which extend the result of Moon [109] from uniform
random recursive trees to preferential attachment trees. Using their result, we obtain that

P {c ≥ k} ≤
∞∑
j=k

(− log(2)/2)j

j!
,
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so there exists an exponential random variable of parameter K such that c ≤ E(K). Using
Corollary 3.3.b of Banerjee and Bhamidi [11], we have that the event

σ̂J (1) ≤
C

ϵ2
exp

√C log
(1
ϵ

) ,
holds with probability at least 1− ϵ. This concludes the proof of the lemma.

The next lemma allows us to compare the risk of Jordan and descendant ordering.
Lemma 4.11. Let T ∼ PA. Then, there exist positive constants C, K , such that, for α > 0

Rα(σ̂J ) ≤ Rα(σ̂ ′) +K
n∑
i=1

1
iα

+C log2(n)
√
n .

Proof. The proof is similar to the one of Lemma 4.3. Recalling that D is the distance
between vertices 1 and c, we have

E

 ∑
i∈{1→c}

∣∣∣σ̂J (i)− i∣∣∣
iα

 ≤ E

 ∑
i∈{1→c}

i

+E

 ∑
i∈{1→c}

σ̂J (i)


≤ 1

2
E
[
D2

]
+E

[
Dσ̂J (1)

]
.

As in Lemma 4.3, we use the fact that D ≤ c and the domination of c by an exponential
random variable (see Lemma 4.10) to get that

1
2
E
[
D2

]
≤ K2 .

Then, it follows from Hölder’s inequality that
E
[
Dσ̂J (1)

]
≤

(
E
[
D

1+γ
γ

]) γ
1+γ (

E
[
σ̂J (1)

1+γ
]) 1

1+γ . (4.5.2)
Using once again the domination of D by an exponential random variable,(

E
[
D

1+γ
γ

]) γ
1+γ
≤ C 1

1+γ
γ ,

for some positive constant C. Next, using Lemma 4.10,
P
{
σ̂J (1) ≥ f (ϵ)

}
≤ ϵ ,
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where f (ϵ) = C
ϵ2 exp

(√
C log

(
1
ϵ

)). The function f is a non-increasing, therefore f (
C√
k
exp

(√
C log(k)

))
≤

k. So
P
{
σ̂J (1) ≥ k

}
≤ C
√
k
exp

(√
C log(k)

)
.

Following the same steps as in Lemma 4.3, and choosing γ = 1/ log(n), yields
E
[
Dσ̂J (1)

]
≤ C log2(n)

√
n ,

which concludes the proof of the lemma.

4.5.7 Performance of Jordan ordering in the PA model

In this section we prove Theorem 4.8.
Proof. Similarly to the urrt case, in the pa model, the number of descendants of a vertex
is distributed as a Pólya urn. This well-know fact is easily seen since in the pa model,
sampling a vertex with a probability proportional to its degree is the same as sampling an
edge uniformly at random and picking one of its endpoints at random. In turn, it is the
same as picking a half edge uniformly at random. Therefore, the resulting Pólya urn has
slightly different initial conditions than in the urrt. Such Pólya urns are well understood.
In particular, by Mahmoud [105, Section 3.2], for a vertex i ∈ [n], the distribution of de(i) is
given by

P {de(i) = k} =
(13 · · · (2k − 1)) ((2i − 3)(2i − 1) · · · (2n− 2k − 5))

(2i − 2)2i · · · (2n− 4)

(
n− i
k

)
.

Re-arranging the terms in the above expression,
P {de(i) = k} =

1 · 3 · · · (2k − 1)
k!︸            ︷︷            ︸
def=A

· (2i − 3)(2i − 1) · · · (2n− 5)
(2i − 2)2i · · · (2n− 4)︸                           ︷︷                           ︸

def= B

· (n− i)!/(n− i − k)!
(2n− 2k − 3)(2n− 2k − 1) · · · (2n− 5)︸                                         ︷︷                                         ︸

def=C

. (4.5.3)

We bound each term on the right-hand side of (4.5.3). First, for k ≥ 1,
A =

1
k

k−1∏
j=1

2j +1
j

=
2k−1

k

k−1∏
j=1

(
1+

1
2j

)
.
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Since
k−1∏
j=1

(
1+

1
2j

)
= exp

k−1∑
j=1

log
(
1+

1
2j

) ≤ exp

k−1∑
j=1

1
2j

 ≤ √k ,
then,

A ≤ 2k−1
√
k
.

Second, we have
B =

n−1∏
j=i

2j − 3
2j − 2

=
n−1∏
j=i

(
1− 1

2j − 2

)

= exp

n−1∑
j=i

log
(
1− 1

2j − 2

) ≤ exp

− n−1∑
j=i

1
2j − 2

 ≤ 2

√
i
n

Finally, we have that
C =

n−3∏
j=n−k−2

j − i − 3
2j +1

=
1

2k−1

n−3∏
j=n−k−2

(
1− i +2.5

j +0.5

)
≤ 1

2k−2

(
1− k

n

)i
.

Plugging these bounds into (4.5.3), we get
P {de(i) = k} ≤ 4

√
i
kn

(
1− k

n

)i
.

Thus, for any τ > 0,
P
{
de(i)
n
≤ τ

}
≤

nτ∑
k=1

4

√
i
kn
≤ 4
√
iτ . (4.5.4)

Now, for j ∈ [n], we have
P
{
de(j)
n
≥ τ

}
≤

n∑
k=nτ

4

√
j

kn

(
1− k

n

)j
≤ 4

√
j

τ

n∑
k=nτ

1
n

(
1− k

n

)j
≤ 4√

jτ
. (4.5.5)

Combining (4.5.4) and (4.5.5) with τ = 1/
√
ij ,

P {de(i) ≤ de(j)} ≤ 8
(
i
j

)1/4
.
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Following similar calculations as in Section 4.2.3,
n∑
i=1

E
[
|σ̂ ′(i)− i|

iα

]
≤ 1

2−α
n2−α

n∑
i=1

1
iα

i + n∑
j=i+1

8
(
i
j

)1/4
≤ 2

2−α
n2−α +8

n∑
j=1

 1
j1/4

j−1∑
i=1

1
iα−1/4

 .
For α ∈ [1,5/4) we obtain

n∑
i=1

E
[
|σ̂ ′(i)− i|

iα

]
≤ 2

2−α
n2−α +

8
α − 5/4

n∑
j=1

1
jα−1

≤
(

2
2−α

+
1

(α − 5/4)(α − 2)

)
n2−α ,

while for α ≥ 5/4

n∑
i=1

E
[
|σ̂ ′(i)− i|

iα

]
≤ 2

2−α
n2−α +8 ζ

(
α − 1

4

) n∑
j=1

1
j1/4

≤ 2
2−α

n2−α +
32
3
ζ
(
α − 1

4

)
n3/4 .

which concludes the proof of Theorem 4.8.
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Abstract

A uniform ℓ-dag generalizes the uniform random recursive tree by picking ℓ parents
uniformly at random from the existing nodes. IN tihs version of the model, it starts with ℓ
”roots”. Each of the ℓ roots is assigned a bit. These bits are propagated by a noisy channel.
The parents’ bits are flipped with probability p, and a majority vote is taken. When all
nodes have received their bits, the ℓ-dag is shown without identifying the roots. The goal
is to estimate the majority bit among the roots. We identify the threshold for p as a function
of ℓ below which the majority rule among all nodes yields an error c + o(1) with c < 1/2.
Above the threshold the majority rule errs with probability 1/2+ o(1).



This Chapter is based on a joint work with Luc Devroye and Gábor Lugosi (Briend, De-
vroye, and Lugosi [27]).

5.1 Introduction

The problem we study in this chapter is the one of broadcasting on random graphs. We
study the setting where a bit propagates with noise and we want to infer the value of the
original bit. The question is not if and how the information propagates, but if there is a
signal propagating on the graph, or only noise. Variations of this binary classification prob-
lem have been studied. For example, in the root-bit estimation problem, the root of a tree
has a bit 0 or 1. The value of this bit propagates from the root to the leafs, and at each
propagation from a vertex to the next it mutates (flips the bit) with probability p. One can
try to infer the root’s bit value from observing all the bits of the graph or only the leaf bits.
This question was first formulated in Evans et al. [67] on general trees, where it was shown
that root bit reconstruction is possible depending upon a condition on the branching num-
ber. More recently, the case of random recursive trees (Addario-Berry et al. [2], Desmarais
et al. [48]) has been studied. Other variations of these problems on trees include look-
ing at asymmetric flip probabilities (Sly [132]), non-binary vertex values (Mossel [112]) and
robustness to perturbation (Janson and Mossel [81]). We refer the reader to Mossel [113]
for a survey of reconstruction problems on trees. Many problems are described by more
general graphs rather than trees. The original broadcasting question has been studied on
deterministic graphs (Harutyunyan and Li [75]) and Harary graphs (Bhabak et al. [17], for
example). We are interested in the problem of noisy propagation in the spirit of the root-
bit reconstruction (Evans et al. [67]), but on a class of random graphs that we call ℓ-dag
(for directed acyclic graph). A similar problem – for a different class of random dags – has
been studied in Makur et al. [107]. In a related probelm, Antunovíc et al. [8] studied the
case of the preferential attachment model, where initial nodes have a color and the color
of the new nodes is a function of the colors of their neighbors.

Since we track the proportion of zero bits in our graph, we cast the process as an
urn model. A similar reformulation was already done in Addario-Berry et al. [2] to study
majority voting properties of broadcasting on random recursive trees. The proportion of
zero bits and the bit assignment procedure can be viewed as random processes with re-
inforcement. A review of results can be found in Pemantle [118] and is extensively used,
alongside results of non-convergence found in Pemantle [117]. As in Addario-Berry et al.
[2], we make ample use of the properties of Pólya urns (Janson [77], Knape and Neininger
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[91], Wei [140]). Variations of the Pólya urn model that are useful for our analysis include
an increase of the number of colors over time (Bertoin [16]), the selection of multiple balls
in each draw (Kuba and Mahmoud [94]), and randomization in the color of the new ball
(Janson [80], Zhang [141]). We note, in particular, the multi-ball draw with a linear random-
ized replacement rule of Crimaldi et al. [44]. In the present chapter, we consider multi-ball
draws, but with non-linear randomized replacement.

The chapter is organized as follows. After introducing the mathematical model
in Section 5.1.1, in Section 5.1.2 we present the main result of the chapter (Theorem 5.1)
that shows that there are three different regimes of the value of the mutation probability
that characterize the asymptotic behavior of the majority rule. In Section 5.2 we discuss
the three regimes of p. In Section 5.3 we establish convergence properties of the global
proportion of both bit values assigned to vertices and in Section 5.4 we finish the proof of
Theorem 5.1 by studying the probability of error in all three regimes. Finally, in Section 5.5
we establish a lower bound for the probability of error that holds uniformly for all mutation
probabilities. We conclude the chapter by discussing avenues for further research.

5.1.1 The model

We start by describing the evolution of the uniform random recursive ℓ-dag and the as-
signed bit values that we represent by two colors; red and blue (let us remark that the
model is slightly different than the one defined in Chapter 3).

Let us fix an odd integer ℓ > 0. The growth process is initiated at time ℓ. At time ℓ,
the graph consists of ℓ isolated vertices. A fraction Rℓ are red and a fraction Bℓ = 1−Rℓ are
blue. We set R1 = · · · = Rℓ and B1 = · · · = Bℓ. The network is grown recursively by adding
a new colored vertex and at most ℓ edges at each time step. At time n, a new vertex n
connects to a sample of ℓ vertices chosen uniformly at random with replacement among
the n − 1 previous vertices. (Possible multiple edges are collapsed into one so that the
graph remains simple.) The color of vertex n is determined by the following randomized
rule:

• the colors of the ℓ selected parents are observed;
• each of these is independently flipped with probability p (if a parent is selected more

than once, its color is flipped independently for each selection);
• the color of vertex n is chosen according to the majority vote of the flipped parent

colors.
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Figure 5.1: A realisation of the process up to time 6, for ℓ = 3, starting with
R3 = 1/3.

If one is only interested in the evolution of the proportion of red and blue vertices
(but not the structure of the graph), one may equivalently describe it by an urn model
with multiple draws and random (nonlinear) replacement. The urn process is defined as
follows. The urn is initialized with an odd number of ℓ balls, a fraction Rℓ being red and
Bℓ = 1−Rℓ blue.

• ℓ balls are drawn from the urn, uniformly at random with replacement, and returned
to the urn;

• the color of each drawn ball is flipped with probability p (i.e., a drawn ball that is red
is observed as blue with probability p);

• a new ball is added to the urn, whose color is chosen as the majority of the ℓ ob-
served colors.

In the root-bit estimation problem considered here, the statistician has access to
an unlabelled and undirected version of the graph at time n, along with the vertex colors.
The goal of the statistician is to estimate the colors assigned to the ℓ roots. More precisely,
based on the observed graph, one would like to guess the majority color at time ℓ.

This problem has been studied in depth by [2] in the case when ℓ = 1, that is, when
the produced graph is a uniform random recursive tree. Two types of methods for root-bit
estimation were studied in [2]. One is based on first trying to localize the root of the tree–
disregarding the vertex colors. If one finds a vertex that is close to the root, one may use
the color of that vertex as a guess for the root color. Such a vertex is the centroid of the
tree. Indeed, it is shown in [2] that the color of the centroid is a nearly optimal estimate of
the root color. In the same paper, the majority rule is also studied. This method disregards
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the structure of the tree and guesses the root color by taking a majority vote among all
vertices. It is shown that for small mutation probabilities the majority rule is also nearly
optimal.

In the more general problem considered in this chapter, one may also try to esti-
mate the colors of the ℓ roots by finding nearby vertices. However, this problem becomes
significantly more challenging as the ℓ-dag does not have a natural centroid. The interested
reader is referred to Chapter 3 on root finding in random ℓ-dags. Instead of pursuing this
direction, we focus on the majority vote. More precisely, we are interested in characteriz-
ing the values of the mutation probability p such that the asymptotic probability of error
is strictly better than random guessing.

At time n, the majority vote, denoted by bmajn , is defined as follows:

b
maj
n =



“R” (red) if Rn > 1/2

“B”(blue) if Rn < 1/2

Ber(1/2) if Rn = 1/2 (a random coin flip) .
We define the probability of error by

Rmaj(n,p) = P
{
b
maj
n , b

maj
ℓ

}
.

Note that bmajℓ depends on the initial vertex colors that are assumed to be chosen arbitrar-
ily. Hence, Rmaj(n,p) is a function of the initial proportion Rℓ but to avoid heavy notation,
we supress this dependence.

5.1.2 Related results and our contribution

Our broadcasting model is an extension of the broadcasting on uniform random recursive
trees that was extensively studied in Addario-Berry et al. [2]. In this problem, ℓ = 1 and the
only parameter is p, the mutation probability. For the majority voting rule, they prove the
following:

(i) There exists a constant c > 0 such that
limsup
n→∞

Rmaj(n,p) ≤ cp .

115



(ii) For all p ∈ (0,1/2],
lim
n→∞

Rn =
1
2

with probability one .
(iii) For p ∈ [0,1/4)

limsup
n→∞

Rmaj(n,p) <
1
2
.

(iv) For p ∈ [1/4,1/2]
limsup
n→∞

Rmaj(n,p) =
1
2
.

In other words, even though the proportion of vertices that have the same color
as the root converges to 1/2, for mutation probabilities smaller than 1/4, sufficient infor-
mation is preserved about the root color for the majority vote to work with a nontrivial
probability.

We generalize these results to ℓ-dags and characterize the values of p for which
majority voting outperforms random guessing. In order to state the main result of the
chapter, we introduce some notation.

For any odd positive integer ℓ, let

αℓ :=
1

2ℓ−2

ℓ∑
i>ℓ/2

(
ℓ
i

)
(i − ℓ/2) = 4E

[(
Bin(ℓ,1/2)− ℓ

2

)
+

]
. (5.1.1)

For example, α1 = 1, α3 = 3/2, and by a simple application of the central limit theorem, for
large ℓ,

αℓ ∼
√

2ℓ
π
. (5.1.2)

In the statement of our main theorem, we assume, without loss of generality, that
initially red vertices are in majority, that is, Rℓ > 1/2.
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Theorem 5.1. Let ℓ be an odd positive integer and consider the broadcasting process
on a random ℓ-dag described above. Assume that initially Rℓ > 1/2.

(i) If p < 1
2 −

1
2αℓ

, then there exist β1 ∈ (0,1/2) and β2 = 1 − β1 (whose value only
depends on ℓ but not on the initial color configuration) such that

P {Rn→ β1}+P {Rn→ β2} = 1 and P {Rn→ β1} < P {Rn→ β2} .

In particular, regardless of the initial value of Rℓ ,

limsup
n→∞

Rmaj(n,p) <
1
2
.

(ii) If 1
2 −

1
2αℓ
≤ p < 1

2 −
1

4αℓ
, then Rn→ 1/2 a.s. and

limsup
n→∞

Rmaj(n,p) <
1
2
.

(iii) If 1
2 −

1
4αℓ
≤ p ≤ 1

2 then Rn→ 1/2 a.s. and

lim
n→∞

Rmaj(n,p) =
1
2
.

Theorem 5.1 shows that for all ℓ ≥ 3, there are three regimes of the value of the mu-
tation probability. In the low-rate-of-mutation regime the proportion of red balls almost
surely converges to one of two numbers, both different from 1/2. Moreover, the limiting
proportion is positively correlated with the initial value. In the intermediate phase, the ver-
tex colors are asymptotically balanced, but there is enough signal for the majority vote to
perform strictly better than random guessing. Finally, in the high-rate-of-mutation regime,
the majority vote is equivalent to a coin toss, at least asymptotically.

Note that for ℓ = 1, α1 = 1, so 1/2 − 1/(2α1) = 0, and therefore the low-rate-of-
mutation regime does not exist. Of course, this is in accordance with the results of [2]
cited above.

On the other hand, for ℓ = 3 the two thresholds are 1/2 − 1/(2α3) = 1/6 and 1/2 −
1/(4α1) = 1/3, meaning that from ℓ = 3 onward the three different regimes can be ob-
served. For large ℓ, both threshold values are of the order 1/2−Θ(1/

√
ℓ).

A closely related model has been studied by Makur et al. [107]. They study different
random dags, where important parameters are the number of vertices at distance ℓ from
the root and the indegree of vertices. They also suppose that the position of the root vertex
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is known. Two rules of root bit estimation are studied: a noisy majority rule and the NAND
rule. Makur et al. [107] show that if the number of vertices of depth k is Ω (log(k)) then
there is a threshold on the mutation probability for which root bit estimation is possible.

As a first step, we study the convergence of the proportion of red balls. To this
end, it suffices to study the generalized urn process defined above. We mention here that
Crimaldi et al. [44] study a somewhat related urn process, though with linear replacement
rules.

5.2 Different regimes

We start by studying the evolution of Rn. Let us denote by cn the color of the n-th vertex
appearing in the graph. After possible mutation, each edge connecting vertex n+ 1 to an
older vertex carries a signal. This signal is red with probability

f (Rn) := (1− p)Rn + p(1−Rn) = (1− 2p)Rn + p .

Because the ℓ parents are chosen independently and that the color is chosen by the ma-
jority,

P {cn+1 = R} = P {Bin (ℓ, f (Rn)) ≥ ℓ/2} , (5.2.1)
where, conditionally on Rn, Bin (ℓ, f (Rn)) is a binomial random variable. Moreover, we
know that the number of red vertices evolves as (n+ 1)Rn+1 = nRn +1(cn+1 = R), where 1
is the indicator function. We rewrite this as

Rn+1 = Rn +
1(cn+1 = R)−Rn

n+1
. (5.2.2)

A key to understandingRn is then to study the random variable 1(cn+1 = R)−Rn. We define,
for t ∈ [0,1],

g(t) := E [1(cn+1 = R)−Rn|Rn = t] = P {Bin(ℓ, f (t)) > ℓ/2} − t . (5.2.3)
The evolution of Rn is entirely determined by the function g. Observe first that for any
t ∈ [0,1], f (1− t) = 1− f (t). Also, since ℓ is odd,

P {Bin(ℓ,1− f (t)) > ℓ/2} = 1−P {Bin(ℓ, f (t)) > ℓ/2} ,
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which implies that
g(1− t) = −g(t) .

The extremal values of g are
g(0) = P {Bin(ℓ,p) > ℓ/2} > 0 ,

and
g(1) = P {Bin(ℓ,1− p) > ℓ/2} − 1 < 0 .

Since g is continuous, the polynomial g has at least one root. From the symmetry property
we have g(1/2) = −g(1− 1/2) = −g(1/2), so g(1/2) = 0. Moreover we obtain

g ′(1/2) =
1− 2p
2ℓ−2

ℓ∑
i>ℓ/2

(
ℓ
i

)
(i − ℓ/2)− 1 .

Recalling the definition of αℓ from (5.1.1), we have g ′(1/2) = (1−2p)αℓ −1. Since αℓ ≥ 1, we
conclude:

g ′
(1
2

) 
< 0 if p > 1

2 −
1

2αℓ
,

> 0 if p < 1
2 −

1
2αℓ

.

To understand the other potential zeros of g , let us study its convexity.
Lemma 5.2. The function g is strictly convex on (0,1/2) and strictly concave on (1/2,1).

Proof. We may use the elementary identities

P
{

Bin(ℓ,x) ≥ ℓ +1
2

}
= P

{
Beta

(
ℓ +1
2

,
ℓ +1
2

)
< x

}
, (5.2.4)

where Beta(a,b) is a beta(a,b) random variable. Hence,

g(t) =
∫ f (t)

0
(x(1− x))

ℓ−1
2

Γ (ℓ +1)

Γ 2
(
ℓ+1
2

)dx − t ,
and therefore

g ′(t) = (1− 2p) (f (t)(1− f (t)))
ℓ−1
2

Γ (ℓ +1)

Γ 2
(
ℓ+1
2

) − 1 . (5.2.5)
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Since f (t)(1− f (t)) = −(1− 2p)t(t − 1) + p(1− p) is increasing for t ∈ (0,1/2) and decreasing
for t ∈ (1/2,1), g is strictly convex on (0,1/2) and strictly concave on (1/2,1).

In summary, if p > 1
2 −

1
2αℓ

, then g ′(1/2) < 0, and thus g is monotonically decreasing
on [0,1] and has only one zero in [0,1]. If g ′(1/2) = 0, then there is only one zero (at 1/2)
and g exhibits an inflection point at 1/2. If p < 1

2 −
1

2αℓ
, then g ′(1/2) > 0 and thus g has

exactly one zero in (0,1/2) and by symmetry, it also has one zero on (1/2,1). We denote
these zeros by β1 and β2, respectively.

Figure 5.2 shows two examples of the graph of the function g.

Figure 5.2: g as a function of t ∈ [0,1], for ℓ = 3, with the choices p = 0.18 > 1/6and p = 0.12 < 1/6.
It is also interesting to know the position of β1 (recall that β2 = 1 − β1). First, we

note that for fixed ℓ, if p tends to the threshold 1 − 1/(2αℓ), then β1 tends to 1/2. In the
following lemma we study the case when p is far enough from the threshold, that is, when
p ≤ 1

2 −
C
2αℓ

, for a sufficiently large constant C.
Lemma 5.3. Let p ≤ 1

2 −
C
2αℓ

for C ≥
√

8log(2)
π . Then

β1 ≤ exp
(
−
ℓ(1− 2p)2

8

)
.
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Proof. β1 is the smallest root of g(t) and since g(0) > 0, its smallest root is smaller than
the smallest root of any upper bound of g. On the other hand,
g(t) = P

{
Bin(ℓ, f (t)) ≥ ℓ

2

}
− t ≤ exp

(
−2ℓ

(1
2
− f (t)

)2)
= exp

(
−2ℓ(1− 2p)2

(1
2
− t

)2)
− t .

Thus, β1 is at most the first zero of b(t) := exp
(
c1

(
1
2 − t

)2)
− t, for c1 = 2ℓ(1 − 2p)2. Since

b(0) > 0, if for some t∗, b(t∗) ≤ 0 then the first zero of b and therefore β1 is at most t∗. Taking
t∗ = e−c1/16, we have

b(t∗) ≤ 0 ⇐⇒
(1
2
− e−c1/16

)2
≥ 1/16 ⇐⇒ c1 ≥ 32log(2) .

From (5.1.2) and the expression of c1, we have that by taking C ≥
√

8log(2)
π ,

2ℓ(1− 2p)2 ≥ 32log(2) .

This shows that for p ≤ 1
2 −

C
2αℓ

, we have
β1 ≤ exp

(
−
ℓ(1− 2p)2

8

)
.

5.3 Convergence of the proportion of red balls

In order to analyze the probability of error of the majority vote, first we establish conver-
gence properties of Rn. The two possible regimes of g suggest that there are two distinct
regimes of the evolution of Rn. From (5.2.2) we note that Rn has a positive drift if g(Rn)is positive, and a negative drift otherwise. This suggests that in the high-rate-of-mutation
regime, Rn converges to 1/2 and in the low-rate-of-mutation regime it converges to either
β1 or β2. The following section investigates this intuition, using Lemma 2.6 and Corollary
2.7 from Pemantle [118] about the convergence of reinforced random processes. We state
them here.
Lemma 5.4 (Pemantle [118]). Let {Xn; n ≥ 0} be a stochastic process in R adapted to a filtra-
tion {Fn}. Suppose that Xn satisfies

Xn+1 −Xn =
1
n
(F(Xn) + ξn+1 +En) ,
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where F is a function on R, E [ξn+1 | Fn] = 0 and the remainder term En goes to 0 and satisfies∑∞
n=1n

−1|En| <∞ almost surely. Suppose that F is bounded and that E
[
ξ2n+1 | Fn

]
< K for some

finite constant ℓ. If for a0 < x < b0, F(x) ≥ δ for some δ > 0, then for any [a,b] ⊂ (a0,b0) the
process {Xn} visits [a,b] finitely many times almost surely. The same result holds if F(x) ≤ −δ.

Corollary 5.5 (Pemantle [118]). If F is continuous on R, then Xn converges almost surely to
the zero set of F.

5.3.1 The high-rate-of-mutation regime
(
1
2 −

1
2αℓ
≤ p ≤ 1

2

)
Rewrite (5.2.2) as

Rn+1 −Rn =
1

n+1

(
P
{

Bin(ℓ, f (Rn)) ≥ ℓ2
}
−Rn

)
+

1
n+1

(
1(cn+1 = R)−P

{
Bin(ℓ, f (Rn)) ≥ ℓ2

})
.

Since g(Rn) = P {Bin(ℓ, f (Rn)) ≥ ℓ/2} −Rn, we see that

Rn+1 −Rn =
g(Rn) + ξn+1

n+1
, (5.3.1)

where ξn+1 = 1(cn+1 = R)−P {Bin(ℓ, f (Rn)) ≥ ℓ/2}. Because g is continuous andE [ξn+1|Rn] =
0, our process satisfies all the requirements for Corollary 5.5. It states that Rn converges
almost surely to the set of zeros of g. In this regime, this implies that Rn converges to 1/2
almost surely.

5.3.2 The low-rate-of-mutation regime
(
0 < p < 1

2 −
1

2αℓ

)
In this regime, the requirements of Corollary 5.5 are still met. So Rn converges almost
surely to the set of zeros of g , which is {β1,1/2,β2}. We first show thatRn does not converge
to 1/2: 1/2 seems to be an unstable equilibrium point, since the drift in the process has a
tendency to pull Rn away from 1/2. We state Theorem 2.9 from Pemantle [118] here:
Theorem 5.6 (Pemantle [118]). Suppose {Xn} satisfies the conditions of Lemma 5.4 and that for
somew ∈ (0,1) and ϵ > 0, signF(x) = sign(x−w) for all x ∈ (w−ϵ,w+ϵ). For ξ+n+1 =max(ξn+1,0)
and ξ−n+1 =max(−ξn+1,0), suppose that E[ξ+n+1 | Fn] and E[ξ−n+1 | Fn] are bounded above and
below by positive numbers when Xn ∈ (w − ϵ,w+ ϵ). Then P{Xn→ w} = 0.
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Corollary 5.7. In the low-rate-of-mutation regime, almost surely the process Rn does not con-
verge to 1

2 .

Proof. Since the conditional distribution of ξn+1, given Rn = 1/2 does not depend on n, it
is immediate that

c < E[ξ+n+1|Rn = 1/2] < 1 ,

and
c < E[ξ−n+1|Rn = 1/2] < 1 ,

for some c > 0 that does not depend on n. Since t 7→ E[ξ±n+1|Rn = t] is continuous and does
not depend on n, there exists ϵ > 0 such that for all t ∈ (1/2− ϵ,1/2+ ϵ),

c
2
< E[ξ±n+1|Rn = t] < 2 .

Moreover, g is negative on (1/2− ϵ,1/2) and positive on (1/2,1/2+ ϵ). So, by Theorem 5.6,
P
{
Rn 7→

1
2

}
= 0 .

Corollary 5.8. In the low-rate-of-mutation regime, the process Rn converges almost surely,
either to β1 or to β2, that is,

P {Rn→ β1}+P {Rn→ β2} = 1 .

Proof. It suffices to check that Rn converges to β1 or β2 and does not oscillate between
them. Between 1/2 and β2 the function g is positive, so there exists 1/2 < a0 < a1 < β2 and
δ > 0 such that for all t ∈ (a0, a1), g(t) > δ .

Lemma 5.4 shows that Rn visits any set [a,b] ⊂ (a0, a1) finitely often almost surely.
Because the step sizes ofRn are of order 1/n, ifRn visits [a,b] finitely many times, it crosses
it finitely many times. Indeed, for n large enough it cannot cross [a,b] without visiting [a,b].
Since Rn converges almost surely to the set {β1,β2}, but Rn crosses the set (a0, a1) finitely
many times, we see that Rn converges almost surely either to β1 or β2, as claimed.

5.4 Is majority voting better than random guessing?

As a first step of understanding if majority voting is better than random guessing, we prove
the following lemma. It gives an equivalent condition to the success of majority voting in
terms of the first time the majority flips.
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Lemma 5.9. Let T denote the random time at which the majority flips for the first time, that
is,

T =min
{
n ∈ N : bmajn , B

maj
ℓ

}
.

Then limsupn→∞R
maj(n,p) < 1/2 if and only if P {T = +∞} > 0 .

Lemma 5.9 states that, once the proportion of red balls reaches 1/2, since the
broadcasting process is symmetric, inference of the original configuration is impossible
if one only counts vertices.
Proof. From the definition of Rmaj(n,p),

limsup
n→∞

Rmaj(n,p) = 1− liminf
n→∞

P
{
b
maj
n = Bmajℓ

}
.

Fix a positive ϵ. Since the sequence of events {∀i ∈ [n] : bmaji = Bmajℓ } is decreasing, and
{T = +∞} = {∀i > ℓ; bmaji = Bmajℓ }, by the monotonicity of measure we can choose n such
that

P
{
∀i ∈ [n] : bmaji = Bmajℓ

}
≤ P {T = +∞}+ ϵ .

For N ≥ n+1, we have
P
{
b
maj
N = Bmajℓ

}
=P

{
b
maj
N = Bmajℓ and ∀i ∈ [n] : bmaji = Bmajℓ

}
+P

{
b
maj
N = Bmajℓ and ∃i ∈ [n] : bmaji , B

maj
ℓ

}
.

(5.4.1)

The second term on the right-hand side decomposes as
P
{
b
maj
N = Bmajℓ and ∃i ∈ [n] : bmaji , B

maj
ℓ

}
=

(
1−P

{
∀i ∈ [n] : bmaji = Bmajℓ

})
P
{
b
maj
N = Bmajℓ

∣∣∣∣ ∃i ∈ [n] : bmaji , B
maj
ℓ

}
.

From the definition of our process, if Ri = 1/2, then, conditionally on this event, the distri-
bution of RN for N > i is symmetric. Therefore

P
{
b
maj
N = Bmajℓ

∣∣∣∣ ∃i ∈ [n] : bmaji , B
maj
ℓ

}
=
1
2
. (5.4.2)

Plugging this into (5.4.1) yields
P
{
b
maj
N = Bmajℓ

}
=P

{
b
maj
N = Bmajℓ ∩ ∀i ∈ [n] : bmaji = Bmajℓ

}
+
1
2

(
1−P

{
∀i ∈ [n] : bmaji = Bmajℓ

})
,

(5.4.3)
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The first term of the right-hand side is bounded from below by P {T = +∞}, which trans-
forms (5.4.3) into

P
{
b
maj
N = Bmajℓ

}
≥ 1

2
+P {T = +∞}−

1
2
P
{
∀i ∈ [n] : bmaji = Bmajℓ

}
.

Taking the limit on N and recalling the choice of n gives
liminf
N→∞

P
{
RN >

1
2

}
≥ 1

2
+
1
2
P {T = +∞}−

ϵ
2
.

Since the above holds for any ϵ, if P {T = +∞} > 0 then liminfN→∞P
{
b
maj
N = Bmajℓ

}
> 1/2.

This proves the “if” direction of the statement.
On the other hand, from (5.4.3),

P
{
b
maj
N = Bmajℓ

}
≤ P

{
∀i ∈ [n] : bmaji = Bmajℓ

}
+
1
2

(
1−P

{
∀i ∈ [n] : bmaji = Bmajℓ

})
.

Taking the limit on N and recalling the choice of n yields
liminf
N→∞

P
{
b
maj
N = Bmajℓ

}
≤ 1

2
+
1
2
P
{
∀i ∈ [n] : bmaji = Bmajℓ

}
≤ 1

2
+
1
2
P {T = +∞}+

ϵ
2
.

As this holds for any positive ϵ, if liminfN→∞P
{
b
maj
N = Bmajℓ

}
> 1/2, then P {T = +∞} > 0.

This concludes the proof.
Lemma 5.10. If

limsup
n→∞

Rmaj(n,p) ≥ 1
2
,

then
lim
n→∞

Rmaj(n,p) =
1
2
.

Proof. If limsupn→∞R
maj(n,p) ≥ 1

2 then Lemma 5.9 shows that T is almost surely finite.
But since

P
{
b
maj
n , B

maj
ℓ | T ≤ n

}
=
1
2
,

this implies
P
{
b
maj
n , B

maj
ℓ , T ≤ n

}
=
1
2
P {T ≤ n} .

Moreover, since T is finite almost surely, limn→∞P {T ≤ n} = 1 and by the monotonicity of
measure,

lim
n

P
{
b
maj
n , B

maj
ℓ , T ≤ n

}
= P

{
b
maj
n , B

maj
ℓ

}
.

This concludes the proof of the the lemma.
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5.4.1 The low-rate-of-mutation regime
(
0 < p < 1

2 −
1

2αℓ

)
As explained in Section 5.3.2, if p < 1

2 −
1

2αℓ
, then Rn converges to either β1 or β2. Next we

show that if R1 > 1/2, then Rn is more likely to converge to β2 than to β1. To do so, recall
(5.2.2) and write it as

Rn+1 =
n

n+1
Rn +

1
n+1

Bn(g(Rn) +Rn) ,

where the Bn are independent Bernoulli random variables. We fix τ ∈ (1/2,β2). From the
analysis of g we know that g(τ) > 0. Since g(t)+ t = P {Bin(ℓ, f (t)) ≥ ℓ/2} and f is increasing,
for all t ≥ τ ,

g(t) + t ≥ g(τ) + τ .

Fix a positive integer N and introduce the mapping

t 7→ h(t) :


h(t) = 1/2 if t < τ
h(t) = g(τ) + τ otherwise .

Then define Dℓ = 1. For n ≥ ℓ, let
Dn+1 =

n
n+1

Dn +
1

n+1
B′n (h(Dn)) ,

where B′n are independent Bernoulli random variables. From the definition of the process
(Dn), on the event {Dn ≥ τ, ∀n ≥ 1}

nDn ≥Dℓ +Bin(n− ℓ,g(τ) + τ) .
Hence, by the union bound and Hoeffding’s inequality,
P {∃i ≥N : Di ≤ τ | ∀n ∈ [ℓ,N ] : Dn ≥ τ} ≤

∑
i≥N

P {Bin(i − ℓ,g(τ) + τ) ≤ iτ} ≤ 2e−(N−ℓ)g(τ)
2

1− e−2g(τ)2
.

Choosing N such that the last term above is less than one yields
P {∀i ≥N : Di ≥ τ | ∀n ∈ [ℓ,N ] : Dn ≥ τ} > 0 .

Since
P {∀i ≥ ℓ : Di ≥ τ} = P {∀i ∈ [ℓ,N ] : Di ≥ τ} ×P {∀i ≥N : Di ≥ τ | ∀n ∈ [ℓ,N ]; Dn ≥ τ} ,
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we just proved that
P {∀i ≥ ℓ : Di ≥ τ} > 0 . (5.4.4)

Define the stopping time T ′ = min {n ≥ ℓ; Dn ≤ τ}. Since for all t ≥ τ , g(t) + t ≥ g(τ) + τ , on
the event {Rℓ ≥Dℓ ≥ τ}, there exists a coupling of the Bernoulli random variables B and B′
such that

∀n ∈ [ℓ,T ′] : Bn ≥ B′n ,

and thus a coupling of the random variables Rn and Dn such that
∀n ∈ [ℓ,T ′] : Rn ≥Dn .

From this coupling and (5.4.4) we have
P
{
∀n ≥ ℓ : Rn >

1
2

}
> 0 ,

which, thanks to Lemma 5.9, proves that in the regime p < 1/2− 1/(2αℓ),
limsup
n→∞

Rmaj(n,p) <
1
2
,

proving the first statement of Theorem 5.1.

5.4.2 The high-rate-of-mutation regime
(
1
2 −

1
2αℓ
≤ p ≤ 1

2

)
In the range p > 1/2−1/(2αℓ) the proportion of red balls converges to 1/2. It does not mean
that majority voting can not be better than random guessing. Indeed, the proportion can
converge to 1/2 from above. This is this possibility that will now be investigated.

Extreme rate

First, we examine the “extreme” case when the rate of mutation is near 1/2, more precisely
when p > 1/2− 1/(4αℓ). Define the linear function h by h(t) := g ′(1/2)(t − 1/2). Then

g(t)

 ≥ h(t), if t ∈ [0,1/2],
≤ h(t), if t ∈ [1/2,1] .

In Figure 5.3 we plot h and g.
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Figure 5.3: A linear lower bound for |g |, ℓ = 3 and p = 0.18.
Let us define an auxiliary process R∗n by the stochastic recursion R∗ℓ = 1 and for n ≥ ℓ

R∗n+1 = R
∗
n +

Bn (h(R∗n) +R
∗
n)−R∗n

n+1
,

where Bn (h(R∗n) +R∗n) is a Bernoulli random variable with parameter h(R∗n)+R∗n, condition-
ally independent of R∗n. In particular,

E [Bn (h(R
∗
n) +R

∗
n)−R∗n|R∗n = t] = h(t) .

Since the value of g (for (Rn)) and h (for (R∗n)) represents a drift in the processes Rn and
R∗n we expect that the process (R∗n) is further away from 1/2. Indeed, we may introduce a
coupling as follows. Define the stopping time T ∗ as the first time R∗ reaches 1/2:

T ∗ := min
{
n ≥ ℓ : R∗n ≤

1
2

}
.

Since for the times n ∈ [ℓ,T ∗], h(R∗n) ≥ g(Rn), we may use a similar coupling argument as in
Section 5.4.1. Thus, there is a coupling of R∗ and R such that

∀n ∈ [ℓ,T ∗]; Rn ≤ R∗n .

From this coupling, for T defined in Lemma 5.9 we have
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P {T = +∞} ≤ P {T ∗ = +∞} . (5.4.5)
Observe that in the case of ℓ = 1, g is linear and the two processes Rn and R∗n coincide.
The linear case was analyzed in Addario-Berry et al. [2] and we may use their results to
understand the behavior of R∗n. Indeed, the process defined in Addario-Berry et al. [2] is
the same as R∗ if one sets the flip probability of Addario-Berry et al. [2] equal to −g ′(1/2)/2
and starts at time ℓ. They prove that if p ≥ 1/4, then, for the process starting at time 1,
majority voting has an error probability of 1/2+o(1/2). Lemma 5.9 implies that this process
reaches 1/2 in finite time almost surely. So even conditioned on its value being 1 at time
ℓ it will reach 1/2 in finite time almost surely. This proves that even for R∗n starting at time
ℓ its error probability is 1/2+ o(1). According to Lemma 5.9 this implies that for this range
of p, P {T ∗ = +∞} = 0. Hence, using Lemma 5.9 and (5.4.5), shows that if g ′(1/2) ≤ −12 , then

limsup
n→∞

Rmaj(n,p) =
1
2
.

Lemma 5.10 shows that limn→∞R
maj(n,p) = 1/2. Because g ′(1/2) = (1− 2p)αℓ − 1, we just

proved that if p ≥ 1/2− 1/4αℓ , then

lim
n→∞

Rmaj(n,p) =
1
2
,

completing the proof of the third statement of Theorem 5.1.

Intermediate rate

It remains to study the “intermediate” case p ∈ [1/2−1/(2αℓ),1/2−1/(4αℓ)). To this end, we
may couple Rn to a process for which majority voting outperforms random guessing. Let
us fix p ∈ [1/2 − 1/(2αℓ),1/2 − 1/(4αℓ)), which implies that g ′(1/2)/2 > −1/4. Then choose
q = −g ′(1/2)/2 + ϵ with ϵ > 0 small enough so that q < 1/4 and g(0) > h(0). We define the
linear function h(t) := −2q(t − 1/2), and as illustrated in Figure 5.4, we denote by a and
b the intersection points between h and g (apart from 1/2). More precisely a and b are
defined as the the roots of g −h distinct from 0. Since g −h is strictly convex on (0,1/2) and
(g − h)(0) > 0, (g − h)′(1/2) < 0, a and b are well defined and sit respectively in (0,1/2) and
(1/2,1).
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Figure 5.4: Comparison of h and g , for ℓ = 3 and p = 0.34 (rescaled for clarity).
We define R∗n similarly as in the previous section but now with h(t) = −2q(t − 1/2), that is
R∗ℓ = 1 and

R∗n+1 = R
∗
n +

Bn (h(R∗n) +R
∗
n)−R∗n

n+1
,

where the Bn are conditionally independent Bernoulli random variables. In particular,

E [Bn (h(R
∗
n) +R

∗
n)−R∗n|R∗n = t] = −2q

(
t − 1

2

)
.

Just as in the previous section, we may use the analysis of Addario-Berry et al. [2] for the
case ℓ = 1 with mutation probability of q. Addario-Berry et al. [2] state that for the process
starting at time 1 and for q < 1/4 majority voting is better than random guessing. A simple
coupling from the process starting at time 1 and R∗n proves that this statement holds for
R∗n. Thus, from Lemma 5.9 it follows that

P
{
∀n ≥ ℓ : R∗n >

1
2

}
> 0 .

Now, from Lemma 5.4 we deduce that both processes Rn and R∗n converge almost surely
to 1/2 and exceed b only finitely many times. Thus, there exists an almost surely finite ran-
dom time T ′ such that and ∀n ≥ T ′; Rn ≤ b and R∗n ≤ b. We use similar coupling arguments
as in Section 5.4.1. So, on the event that R∗ does not reach 1/2 we can couple Rn and R∗nfrom T ′ onwards such that Rn ≥ R∗n. This proves that
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P
{
∀n ≥ T ′ : Rn >

1
2
| T ′

}
> 0 .

Using that T ′ is finite almost surely and Lemma 5.9 we conclude that majority voting is
better than random guessing in this regime. More precisely, if 1/2−1/2αℓ ≤ p < 1/2−1/4αℓ ,then

limsup
n→∞

Rmaj(n,p) <
1
2
.

This completes the proof of Theorem 5.1.

5.5 A general lower bound

In this final section we derive a lower bound for the probability of error that holds for all
mutation probabilities. In particular we show the following.
Proposition 5.11. Let m be a positive odd integer and let ℓ/2 < m < ℓ. Assume that initially
there are m red vertices, that is Rℓ =m/ℓ. Letting

hℓ := P
{

Beta
(
ℓ +1
2

,
ℓ +1
2

)
≥ 1− 1

ℓ

}
,

the probability of error of the majority rule satisfies

inf
0≤p≤1
n≥2ℓ

P
{
b
maj
n , B

maj
ℓ

}
≥ 1

2
h2m−ℓℓ .

Proof. The proposition follows by simply considering the event that the first 2m− ℓ new
vertices are all blue. In that case, at time 2m the number of red and blue vertices are equal.
We may write, for any n ≥ 2m,

P
{
b
maj
n , B

maj
ℓ

}
≥ P

{
b
maj
n , B

maj
ℓ | cℓ+1 = · · · = c2m = B

}
×P {cℓ+1 = · · · = c2m = B} .

From the symmetry of our model, P{
b
maj
n , B

maj
ℓ | cℓ+1 = · · · = c2m = B

}
= 1/2. Thus

P
{
b
maj
n , B

maj
ℓ

}
≥ P {cℓ+1 = · · ·c2m = B}

2
.
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To estimate the probability on the right-hand side, we use (5.2.4), which implies
P {ci = B} =

∫ 1

f (Ri )
(x(1− x))

ℓ−1
2

Γ (ℓ +1)

Γ 2
(
ℓ+1
2

)dx .
If Rm =m/ℓ and cℓ+1 = · · · = ci−1 = B, where ℓ < i ≤ 2ℓ, then Ri−1 =m/i. Since 0 ≤ p ≤ 1/2,

f (Ri−1) = (1− 2p)m
i
+ p ≤max

(1
2
,
m
i

)
≤ ℓ − 1

ℓ
= 1− 1

ℓ
.

Therefore,
min
ℓ<i≤2ℓ

P {ci = B | cℓ+1 = · · · = ci−1 = B} ≥ hℓ ,

as claimed.

5.6 Concluding remarks

In this chapter we study the majority rule for guessing the initial bit values at the roots of
a random recursive ℓ-dag in a broadcasting model. The main result of the chapter charac-
terizes the values of the mutation probability for which the majority rule performs strictly
better than random guessing. Even in this exact model, many interesting questions re-
main open. For example, we do not have sharp bounds for the probability of error. It
would also be interesting to study other, more sophisticated, classification rules that take
the structure of the observed ℓ-dag into account. In particular, the optimal probability of
error (as a function of ℓ and the mutation probability p) is far from being well understood.
For an initial study of localizing the root vertices, we refer the interested reader to Chapter
3.
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Chapter 6

The random friendship tree
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Abstract

We study a random recursive tree model featuring complete redirection called the random
friend tree and introduced by Saramäki and Kaski [125]. Vertices are attached in a sequen-
tial manner one by one by selecting an existing target vertex and connecting to one of its
neighbours (or friends), chosen uniformly at random. This model has interesting emer-
gent properties, such as a highly skewed degree sequence. In contrast to the preferential
attachment model, these emergent phenomena stem from a local rather than a global
attachment mechanism. The structure of the resulting tree is also strikingly different from
both the preferential attachment tree and the uniform random recursive tree: every edge
is incident to a macro-hub of asymptotically linear degree, and with high probability all
but at most n9/10 vertices in a tree of size n are leaves. We prove various results on the
neighbourhood of fixed vertices and edges, and we study macroscopic properties such as
the diameter and the degree distribution, providing insights into the overall structure of
the tree. We also present a number of open questions on this model and related models.



This Chapter is based on a joint work with Louigi Addario-Berry, Luc Devroye, Serte
Donderwinkel, Céline Kerriou and Gábor Lugosi (Berry, Briend, Devroye, Donderwinkel, Kerriou,
and Lugosi [15]).

6.1 Introduction

Growing networks. Various real-life phenomena, including contagion, social networks,
rumour spreading, and the internet, have been described by models of growing networks
(see e.g. Kumar, Bhat, and Panda [95]). Among these models, preferential attachment,
introduced by Barabási and Albert [14] is arguably the most well-studied. In this model,
vertices arrive one by one, and at each time a new vertex connects to one or more existing
vertices with probability proportional to their degree. The degree sequence of this model
satisfies the so-called scale-free property, which is often also observed in real-world mod-
els. In contrast to models such as the configuration model or the inhomogeneous random
graph model, this property of the degree sequence is an intrinsic result of the dynamics
rather than a pre-imposed characteristic. This makes the preferential attachment and its
related models popular tools for understanding why real-world models may develop in
this way. These models however require the knowledge of the full degree sequence in
order to attach a new vertex. This requirement is unnatural for real-world networks and
impractical in implementation.

The model. The friend tree is a randomly growing network of which the dynamic
also autonomously produces highly skewed degree sequences, but whose attachment rule
is based on redirection and requires only local information. Models involving redirection
were introduced by Kleinberg et al. [90] in directed, rooted graphs. In these models, a new
vertex connects to a uniformly random vertex, or, with probability p, it connects to the
ancestor of a randomly selected vertex. This mechanism, called directed redirection, yields
a shifted linear preferential attachment rule, where the new vertex connects to a vertex
with degree d with probability proportional to d−2+1/p. A variant was studied by Banerjee,
Bhamidi, and Huang [13], where a new vertex attaches to the graph by randomly sampling
a vertex and attaching to the endpoint of a path of random length directed towards the
root. The undirected version of the model that we study was introduced by Saramäki and
Kaski [125] and yields strikingly different graphs. In the works of Saramäki and Kaski [125]
and Evans and Saramäki [66], the authors make the claim that the tree has the same law as
a preferential attachment tree. This turns out to be inaccurate, as was noted by Cannings
and Jordan [35]. In the undirected version, newly added vertices connect to a neighbour
of a randomly selected vertex. More precisely, the starting tree T2 consists of a single
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edge joining vertices labelled 1 and 2. Inductively, for n ≥ 2, let Vn ∈ {1, . . . ,n} be chosen
uniformly at random and let Wn be a uniformly random neighbour of Vn in Tn. Then build
Tn+1 from Tn by attaching a new vertex labelled n+1 to the vertexWn, see Figure 6.1. Note
that, for all n ≥ 2, the vertex set of Tn is {1, . . . ,n}. Moreover, setting W1 = 1, then the edge
set of Tn is {{m + 1,Wm},1 ≤ m ≤ n − 1}. We call Tn the 1-step friend tree, inspired by the
following picture. In a 1-step friend tree a person selects a random stranger and befriends
a uniformly random friend of theirs. A 2-step friend tree would correspond to, instead,
befriending a uniformly random friend of the stranger’s random friend. In most of this
work, we refer to the 1-step friend tree simply as the random friend tree (RFT).

Figure 6.1: A realisation up to n = 9, with Vn in blue and Wn in yellow.
Motivation and challenges. This model gives rise to numerous interesting emer-

gent phenomena that make it worth studying. A first feature of the model is a rich-get-
richer mechanism. In the preferential attachment model, it is embedded into the dynam-
ics that vertices with many neighbours accumulate more neighbours. In the friend tree,
vertices that have many neighbours with low degree accumulate more neighbours. It turns
out that, the highest degree vertices mostly have leaves as neighbours, so the growth of
high-degree vertices is mostly determined by their degree. In fact, the reinforcement is
strengthened by a second effect: the larger the degree of a vertex, the less likely it is for
its neighbours to increase their degree, so the more likely it is for the high degree vertex
itself to increase its degree. Unlike in the preferential attachment model, this is a result of
the dynamics rather than a built-in feature.

Furthermore, the model is part of a whole family of models that in some sense
interpolate between the uniform random recursive tree (URRT) and the linear preferential
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attachment tree (PA tree). Indeed, in the k-step friend tree, new vertices attach to the
endpoint of a random walk of length k that starts at a random vertex. If k = 0, the resulting
model is the URRT. If k was chosen so large that the random walk is perfectly mixed, the
resulting model would be a PA tree. In other words, for k large, the starting point of the
random walk has a negligible effect and the end point is distributed proportionally to the
degree of each vertex. Our work demonstrates several features of the 1-step friend tree
which are remarkably different from both the URRT and the PA tree. It is therefore worth
investigating what range of behaviour can be observed in the entire family. In a related
model, Engländer et al. [64] study a “random walk tree builder” where a tree is grown by a
random walk. More precisely, a walker is moving at random on the tree and at each time
step n, with probability n−γ , a neighbour is added to the vertex where the walker is. They
prove that this model is actually a PA tree for an appropriate choice of γ . Unlike the friend
tree model, where a new random walk is started at every time step, a single random walk
is able to produce a tree displaying a rich gets richer phenomenon. This further motivates
the study of the friend tree model in its whole range, and suggests the investigation of its
possible links to the “random walk tree builder” model.

The challenges of studying 1-step friend trees are numerous. For example, even
if the process grows locally (one needs to know the neighbours of the randomly picked
vertex to understand the connection probabilities), tracking only local information does
not suffice to study how degrees evolve over time. Indeed, to understand how the ver-
tex degrees change within two time steps, one must keep track of the degrees of second
neighbours, and in general, for t time steps one must track the t’th neighbourhood of every
vertex. Note that this challenge does not arise in either directed redirection or the prefer-
ential attachment model; in those models the growth of a vertex degree only depends on
the vertex degree itself, so degrees can be tracked on their own without considering the
global structure of the tree. For k-step friend trees, the dependencies grow stronger as k
increases, bringing in new challenges that we do not attempt to tackle in the current work.

Results and comparison. Some of the structural properties of random friend
trees are comparable to those of the URRT. In Theorem 6.6, we show that the diameter is
of logarithmic order almost surely (like for the URRT and the PA tree ([? ])). Moreover, as
we show in Theorems 6.7 and 6.8 respectively, both in the random friend tree and in the
URRT, the largest distance to the nearest leaf in the n-vertex tree is Θ(log(n)/ loglog(n)) in
probability.

However, the interaction between neighbouring vertices in the attachment proce-
dure yields significant structural differences between the random friend tree and both the
URRT and the PA tree. The degree sequence might be the most illustrative of this differ-
ence. Regarding the high-degree vertices, we prove in Theorem 6.2 that “hubs” of linear
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degree appear almost surely, whereas in a URRT the maximum degree is logarithmic (De-
vroye and Lu [52]) and in linear preferential attachment tree the largest degree is of order√
n (Van Der Hofstad [138, Theorem 1.17]). In fact, the dynamics of low-degree vertices

‘feeding their neighbours’ implies that for every edge, at least one of the endpoints has
asymptotically linear degree almost surely, so that a highly modular network emerges.
This phenomenon has not been observed in any other random tree model, as far as the
authors of this chapter are aware. The existence of linear degree hubs also implies that
two uniformly random vertices in Tn are at distance two from each other with probability
bounded away from zero, while in both the URRT and the PA tree typical distances grow
logarithmically [50],[? , Theorem 8.1]. As for low-degree vertices, both in PA trees and
URRT an asymptotically positive fraction of vertices have degree at least two, but we shall
show that a random friend tree of size n has n− o(n0.9) leaves. While a URRT of size n has
on average n/2k−1 vertices of degree at least k for fixed k (Janson [78]), for friend trees,
asymptotically, this number sits between n0.1 and n0.9 (see Theorem 6.11). The prolifera-
tion of hubs and the interaction between neighbours block most leaves from ever growing
their degree. Proposition 6.13 shows that most leaves remain leaves forever1, whereas for
URRT and PA trees, the degree of every vertex is a.s. unbounded.

Earlier work. The only previous rigorous result on random friend trees the au-
thors are aware of was obtained by Cannings and Jordan [35], who show that in the 1-step
friend tree, n − o(n) of the vertices are leaves almost surely. Random friend trees were
also studied in the physics literature by Krapivsky and Redner [93]. In that work, the au-
thors use simulations and non-rigorous arguments to study the distribution of size of the
largest degrees and the order of growth of the number of non-leaves, and estimate the
degree distribution restricted to the bounded-degree vertices. They conjecture that, for
any fixed k, the number of degree k vertices is of the order of nµ for µ ≈ 0.566. Moreover,
they conjecture that among the non-leaf vertices, the proportion of degree k vertices is of
the order of k−(1+µ). We discuss their estimates in Section 6.7.

Outline. First, in Section 6.2 we introduce notation that we use throughout the
chapter. We then present our main results for friend trees. Our findings can naturally be
divided into local and global properties, which we present in Section 6.3 and 6.4 respec-
tively. In Sections 6.5 and 6.6 we prove our main results. Finally, Section 6.7 contains some
open questions about random friend trees.

1So one might argue that ‘random loneliness tree’ is in fact a more appropriate name for ourmodel.
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Figure 6.2: A realisation of Tn with n = 1000.
6.2 Notation

For a graph G and a vertex v of G, write N (v;G) for the neighbourhood of v in G and
L(v;G) for the set of leaf neighbours of v in G (i.e. vertices of degree one in N (v;G)). In
the rest of the chapter, Tn denotes a tree of size n obtained from the random friend tree
model. The set of vertices of Tn is [n] := {1, . . . ,n}, where the label of the vertex is its time of
arrival in the tree. Since every integer k ∈ N is a vertex of Tn for all n ≥ k, we take the liberty
of referring to integers of N as vertices. For v ∈ Tn, let Dn(v) = |N (v;Tn)| be the degree
and let Ln(v) = |L(v;Tn)| be the number of leaf neighbours of v in Tn. Define the random
variable

Zv := liminf
n→∞

Dn(v)
n

.

A vertex v ∈ N is called a hub if Zv > 0, that is, if the degree of v is of linear order asymp-
totically. A vertex w is said to be a child of vertex v in Tn if w ∈ N (v;Tn) and v < w. If w is
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a child of v, then v is the parent of w. For i, j ∈ [n], denote by dn(i, j) the graph distance
between vertices i and j in Tn. We also introduce Diamn := maxi,j∈[n]dn(i, j), the diameter
of Tn, and let Mn := maxi≤nmin{ℓ: Dn(ℓ)=1}dn(i, ℓ) be the maximal distance of any vertex of
Tn to its nearest leaf. For integers n,k ≥ 1 we let Xkn = {v ∈ [n] : Dn(v) = k} be the number
of vertices of degree k in Tn, and let X≥kn =

∑
j≥kX

j
n.

For any sequence (xn)n≥1, we define, for all n ≥ 1, ∆xn := xn+1−xn. For non-negative
(xn)n≥1 and positive (yn)n≥1 we write xn = O(yn) and yn = Ω(xn) if limsupn→∞

xn
yn
<∞ and

we write xn = o(yn) and yn = ω(xn) if limn→∞
xn
yn

= 0. We say that xn = Θ(yn) if xn = O(yn)and xn = Ω(yn) both hold. We also use this notation with a p subscript meaning that the
property holds in probability. So, for sequences (Xn) and (Yn) of non-negative random
variables, we write Xn = Op(Yn) and Yn = Ωp(Xn) if for all ε > 0, there exist M > 0 and
K > 0 such that for all n ≥ M , P {Xn > KYn} < ε. We write Xn = op(Yn) and Yn = ωp(Xn) if
for all ε > 0, δ > 0, there exists M > 0 such that for all n ≥ M , P {Xn > δYn} < ε. We write
Xn =Θp(Yn) if both Xn =Op(Yn) and Xn =Ωp(Yn).

6.3 Local results

In this section we state our results regarding the properties of individual vertices and their
close neighbourhoods. First, we state a convergence result for the normalised degree.

Theorem 6.1 (Convergence of normalised degree). For vertex u ∈ N, the random
variables Dn(u), Ln(u) and Zu , defined in Section 6.2, are such that

Dn(u)
n
→ Zu and

Ln(u)
n
→ Zu

almost surely as n→∞.

We observe that ∑
i≥1Zi ≤ 1 almost surely. Indeed, on the event that this sum

exceeds 1, then there must be k ∈ N and δ > 0 such that Z1+ · · ·+Zk = 1+δ. But this would
imply that there is a finite n such that the number of leaves neighbouring vertices 1, . . . , k
in Tn satisfies Ln(1)+ · · ·+Ln(k) ≥ (1+δ/2)n. However, the number of leaves in Tn is at most
n− 1 deterministically, so this gives a contradiction.

We conjecture that ∑i≥1Z1 = 1 almost surely, implying that, asymptotically, all but
a negligible proportion of the vertices are a leaf next to a hub. We discuss this and other
open questions on the law of (Zi)i≥1 in Section 6.7.

140



A striking property of the friend tree concerns the degree of an edge.
Theorem 6.2 (Abundance of hubs). The degree of every edge is almost surely asymp-
totically linear. That is, for any m ≥ 1, if Wm is the parent of m+1, then Zm+1 +ZWm

> 0
almost surely.

We also study the limit of the proportion of vertices that are adjacent to Wn. This
theorem shows that the mean of the empirical law ofDn(Wn)/n given Tn converges almost
surely, implying that this global property of Tn “stabilizes” as n grows large. We conjecture
that, in fact, the empirical law itself converges almost surely to ∑

i≥0ZiδZi with respect to
the Prokhorov topology. This is in fact equivalent to the conjecture that ∑i≥1Zi = 1 almost
surely.

Theorem 6.3 (Expected degree of Wn). As n→∞, 1
nE [Dn(Wn)|Tn] has a positive al-

most sure limit. Moreover, 1
nE [Dn(Wn)] converges to some positive number as n→∞.

Another notable property of random friend trees concerns the probability of a ver-
tex having bounded degree.

Theorem 6.4 (Bounded degree). Let k be a positive integer. Fix v ∈ N. Then, for all
n ≥ v,

P
{
Dn+j(v) = k ∀j ≥ 0 | Tn

}
> ckIDn(v) = k,

where the constant ck > 0 only depends on k.

In particular, Theorem 6.4 implies that it is impossible to ‘diagnose’ which vertices are the
hubs, even at a very large time. Indeed, every vertex, no matter how large its degree is,
has probability bounded away from zero to never acquire any new neighbours. We prove
Theorems 6.1 and 6.2 in Section 6.5.1, the proof of Theorem 6.3 can be found in Section 6.5.2
and Theorem 6.4 is proven in Section 6.5.3.

6.4 Global results

We now present our results on the global properties of random friend trees.
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Theorem 6.5 (Typical distances). For Un and Vn two uniformly random vertices in Tn,
it holds that the distance betweenUn andVn is equal to 2with probability bounded away
from zero. Moreover, the distance between vertex 1 andUn is at most 2 with probability
bounded away from 0.

The previous result sets the random friend tree apart from the “universality class”
of logarithmic trees (and in particular from the uniform random recursive tree and pref-
erential attachment trees), in which typical distances are logarithmic.

The next result shows that, while distances between typical vertices can be very
small, the diameter of random friend trees is indeed logarithmic.

Theorem 6.6 (Diameter of random friend trees). Almost surely

1 ≤ liminf
n

Diamn

log(n)
≤ limsup

n

Diamn

log(n)
≤ 4e .

In particular, this means that, asymptotically, a path of arbitrary length is present
in the tree. Since for every edge at least one of its endpoints is a hub, this implies that an
asymptotically unbounded number of hubs are present. We strengthen this statement in
Theorem 6.9, where we prove an almost sure polynomial lower bound for the number of
hubs in Tn.

We also study the leaf-depth in Tn. The next result implies that, although each
vertex is at distance at most 1 from a hub, and will therefore eventually be at distance at
most two from the nearest leaf, at fixed times there are still exceptional locations in the
graph where the nearest leaf is much further away.

Theorem 6.7 (Leaf depth). LetMn be the maximal distance of any vertex to its nearest
leaf in Tn. Then

Mn =Θ

(
log(n)

loglog(n)

)
in probability.

An input to the proof of Theorem 6.7 is the corresponding result for the URRT,
which we state as a separate theorem.
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Theorem 6.8 (Leaf depth in URRT). Let M ′n be the maximal distance of any vertex to
its nearest leaf in a URRT. Then,

M ′n =Θ

(
log(n)

loglog(n)

)
in probability.

We prove Theorem 6.7 using Theorem 6.8 and a coupling between URRTs and ran-
dom friend trees under which distances are at most a factor of two larger in the URRT than
in the random friend tree to which it is coupled. This coupling is presented in Lemma 6.17,
below.

Another global property of interest is the degree distribution of the tree. We study
degree statistics at both ends of the spectrum, for both sub-linear-degree vertices and
bounded-degree vertices. We get the following lower bound on the number of hubs in Tn.

Theorem 6.9 (Number of hubs). There exists a constant δ > 0.1 such that

#{u ∈ [n] : Zu > 0}
nδ

→∞ a.s.

The following theorem concerns the number of high degree vertices.
Theorem 6.10 (Abundance of high degree vertices). For any sequence (mn)n≥1, sat-
isfying mn = o(n), almost surely

lim
n→∞

X≥mn
n =∞.

The next theorem gives polynomial upper and lower bounds for the number of
bounded degree vertices.

Theorem 6.11 (Polynomial bounds on low-degree vertices). There exist constants
0.1 < δ ≤ λ < 0.9 such that, for any k ≥ 2, almost surely

lim
n→∞

X≥kn
nδ

=∞ ,

lim
n→∞

X≥kn
nλ

= 0 .

It has been conjectured by Krapivsky and Redner [93] that a stronger statement is
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true for the RFT. They conjecture that there exists a constantµ ≈ 0.566 such that, n−µX≥kn →
Xk , whereXk is a non-degenerate random variable. Moreover, they conjecture thatXkn/X≥2nhas an almost sure limit which is Θ(k−(1+µ)).

Finally, we show that X≥kn =Θ(X≥2n ) almost surely, for any fixed k.
Theorem 6.12 (Comparing low-degree vertices). There exists a sequence (ck)k≥2 of
positive real numbers, such that for any k ≥ 2,

ck < liminf
n≥∞

X≥k+1n

X≥kn
≤ 1

almost surely.

We prove Theorem 6.5 in Section 6.6.1 and we prove Theorem 6.6 in Section 6.6.2.
The proofs of Theorems 6.7 and 6.8 are in Section 6.6.3. Finally, Theorems 6.9 and 6.10 are
proven in Section 6.6.4 and Theorems 6.11 and 6.12 are proven in Section 6.6.5. Although
Theorem 6.11 is invoked in the proofs of several of the earlier results, we postpone its proof
to later in the chapter, as it is quite technical.

6.5 Proofs of local properties

6.5.1 Hubs

[Proof of Theorems 6.1 and 6.2] We prove Theorem 6.1 with a submartingale argument,
deferring a crucial step of the proof to Section 6.6.
Proof. [Proof of Theorem 6.1] Fix v ∈ Tn. Note that Ln+1(v) = Ln(v)+1 ifWn = v. For Vn = ua neighbour of v, P {Wn = v|Vn = u} = 1/Dn(u). Since Vn is a uniform sample from [n], it
follows that

P {Ln+1(n) = Ln(v) + 1 | Tn} =
∑

u∈N (v;Tn)

1
n

1
Dn(u)

.

Next, Ln+1(v) = Ln(v)− 1 if Vn = v and Wn ∈ L(v;Tn). Thus,

E {Ln+1(v) | Tn} = Ln(v)−
1
n

Ln(v)
Dn(v)

+
∑

u∈N (v;Tn)

1
n

1
Dn(u)

.

Using that Ln(v) ≤ Dn(v) and, for a leaf v, Dn(v) = 1, we can lower bound the above by
Ln(v)− 1

n +
Ln(v)
n . By rearrangement it follows that
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E
{
Ln+1(v)− 1
n+1

∣∣∣∣∣ Tn} ≥ Ln(v)− 1n
.

Thus, for any m ∈ N, the process ((Ln(v) − 1)/n,n ≥ m − 1) is a submartingale relative to
the filtration generated by the random friend tree process. It is bounded, so it converges
almost surely. Furthermore, by the trivial inequalities

Ln(u)
n
≤ Dn(u)

n
≤ Ln(u) +X

≥2
n

n
,

the joint convergence follows from Theorem 6.11 below, stating that n−1X≥2n → 0 almost
surely.

Recall that a vertex u is a hub if Zu > 0. Theorem 6.2 implies that each edge has at
least one endpoint that is a hub, which, in particular, shows that hubs exist.
Proof. [Proof of Theorem 6.2] Fix m ∈ N. For n ≥m+1, write Dn :=Dn(m+1)+Dn(Wm) for
the total number of neighbours of vertexm+1 and vertexWm at time n. Write Ln := Ln(m+
1) + Ln(Wm) for the number of those neighbours that are leaves. We have Lm+1 ≥ 1 and
Dm+1 ≥ 3. Note that Dn is non-decreasing and that if Dn+1 =Dn+1 then also Ln+1 = Ln+1,
so ∆(Ln,Dn) ∈ {(1,1), (0,0), (−1,0)}.

Moreover,
P {∆(Ln,Dn) = (1,1) | (Li ,Di),m+1 ≤ i ≤ n } ≥

1
n

(
Ln +

1
Dn

)
, (6.5.1)

since, to have ∆(Ln,Dn) = (1,1), it suffices that either Vn ∈ L(m+ 1;Tn)∪L(Wm;Tn) or else
that {Vn,Wn} = {m+1,Wm}. We also have

P {∆(Ln,Dn) = (−1,0) | (Li ,Di),m+1 ≤ i ≤ n } ≤
min(2,Ln)

n
, (6.5.2)

since if ∆(Ln,Dn) = (−1,0), then Vn ∈ {m,Wm} and Wn ∈ L(m;Tn)∪L(Wm;Tn).
We claim that Dn → ∞ almost surely. We fix k ∈ N and show that the stopping

time τk = min{n ≥ m + 1 : Dn ≥ k} is finite almost surely. On the event that τk < n, (6.5.1)
implies that ∆Dn | Tn stochastically dominates a Bernoulli( 1

nk ) random variable. If Bi are
independent Bernoulli( 1ik ) random variables, ∑n

i=m+1Bi → ∞ almost surely, so τk < ∞almost surely. It then follows that #{n : Ln > 0} =∞ almost surely. Indeed, Dn→∞ implies
that ∆(Dn,Ln) = (1,1) infinitely many times, so if Ln ever hits zero it almost surely becomes
positive again.
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Let (Jk , k ≥ 0) be the sequence of jump times of the process (∆(Ln,Dn))n, that is
J0 =m+1 and Jk =min{ℓ > Jk−1 : ∆(Lℓ−1,Dℓ−1) , (0,0)} for k ≥ 1. This sequence has infinite
length because Dn→∞ almost surely.

Our goal is to show that Ln grows linearly. To do so, we couple Ln to an urn process.
Inequalities (6.5.1) and (6.5.2) suggest that the growth of Ln is similar to the growth of the
number of black balls in a standard Pólya urn with black and white balls. One difference
being that, at time n, with probability at most 2/n, a black ball is replaced by a white ball.
Nonetheless, we exhibit a coupling between Ln and the number of black balls in a standard
Pólya urn of black and white balls of size n. More precisely, a coupling where Ln is greater
than the number of black balls in the Pólya urn of size n. This coupling can fail, meaning
that it is valid until a random time S that is finite with positive probability. We say that the
coupling succeeds if S =∞. We show that this coupling succeeds with probability greater
than 0, and that, if it fails, we may try again by starting a new coupling at a subsequent
time. This guarantees that one of the coupling attempts is successful, proving that Lngrows linearly, because the number of black balls in a standard Pólya urn grows linearly
almost surely.

The coupling is started at a time where Ln is at least 10. The bounds (6.5.1) and
(6.5.2) on the transition probabilities show that the process (LJk , k ≥ 0) stochastically domi-
nates a simple symmetric random walk reflected at 0. This, in particular, implies that there
are infinitely many n such that Ln ≥ 10, because Jk→∞ almost surely.

Let ρ1 be the first time for which Lρ1 ≥ 10 (and so Lρ1 = 10). A first coupling is
started from time ρ1. For any k, if the kth coupling fails, let ρk+1 be the first time after the
failure at which Lρk+1 ≥ 10 and start the (k + 1)st coupling from that time. We show that
there is a c > 0 so that for each k, given that couplings 1, . . . , k−1 all failed, the kth coupling
succeeds with probability at least c. This implies that there is an almost surely finite M so
that the Mth coupling succeeds.

So let us fix some N > 0 and condition on ρk = N . Now define Bn the number of
black balls in a Pólya urn starting at time N with 5 black balls and N − 5 white balls (with
the standard replacement rule that a drawn ball is replaced along with one extra ball of
the same colour). Note that LN = Lρk ≥ 10 so LN − BN ≥ 5. We couple Ln and Bn from
timeN onwards and we say the coupling fails at time S if S is the first time S > N at which
LS −BS ≤ 4. If the coupling never fails we set S =∞. Then, for n ∈ [N,S], we can couple Lnand Bn such that if Bn+1 = Bn +1 then Ln+1 = Ln +1. From this coupling, for n ≥N ,

P {∆(Ln −Bn) = 1 | S > n} ≥
Ln −Bn
n

P {∆(Ln −Bn) = −1 | S > n} ≤
2
n
.
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This means that until the coupling fails, Ln − Bn can be coupled to a symmetric random
walk for which an increment with value 1 is twice as likely as an increment with value −1.
We introduce Rk , a random walk with R0 = 5 and

Rk+1 −Rk =

+1 with probability 2
3 ,

−1 with probability 1
3 .

Set I0 = N and let Ik+1 = min{j ≥ Ik : ∆(Ln −Bn) , 0} be the kth jump time of Ln −Bn. Then
(Rk , k ≥ 0) and (Ln −Bn,n ≥N ) can be coupled such that if Ik ≤ S

LIk −BIk ≥ Rk .

With positive probability Rk > 4 for all k, so with positive probability, not depending on N ,
S = ∞. This shows that, almost surely, one of the coupling attempt succeeds. Suppose
that the kth coupling succeeds and that ρk = N . Then, for Bn as above, Ln ≥ Bn for n ≥ N ,
so since

lim
n→∞

Bn
n
> 0 almost surely,

by a standard result on Pólya urns (see Mahmoud [105, Section 3.2]), we also get that
liminf
n→∞

Ln
n
> 0 almost surely,

which implies the statement.

6.5.2 Expected degree of Wn

[Proof of Theorem 6.3]
We show the statement using the almost sure martingale convergence theorem by

identifying a supermartingale. Set Yn := E [Dn(Wn)|Tn] so that Yn is adapted to σ (Tn) and
note that

Yn =
1
n

∑
i∈[n]

E {Dn(Wn) | Tn,Vn = i} =
1
n

∑
i∈[n]

 1
Dn(i)

∑
j∼Tn i

Dn(j)

 .
To identify the supermartingale, we study

E { (n+1)Yn+1 | Tn} = E


∑

i∈[n+1]

∑
j∼Tn+1 i

Dn+1(j)
Dn+1(i)

∣∣∣∣∣∣∣∣ Tn
 .
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Observe that the only randomness in Yn+1, conditional on Tn, comes from the choice of
Wn. It holds that Dn+1(Wn) = Dn(Wn) + 1, and the new neighbour of Wn (vertex n+ 1) has
degree 1. Moreover,Dn+1(n+1) = 1, because every vertex starts as a leaf, and its neighbour
is Wn. Finally, Dn+1(i) = Dn(i) for all other i. Therefore, we get the following equalities for
the different terms in ∑

i∈[n+1]
∑
j∼Tn+1 i

Dn+1(j)
Dn+1(i)

:

∑
j∼Tn+1 i

Dn+1(j)
Dn+1(i)

=


1

Dn(Wn)+1
+
∑
j∼TnWn

Dn(j)
Dn(Wn)+1

for i =Wn

Dn(Wn) + 1 for i = n+1
Ii∼TnWn

Dn(i)
+
∑
j∼Tn i

Dn(j)
Dn(i)

otherwise.
Combining these cases, we see that

E { (n+1)Yn+1 | Tn}

=
∑
i∈[n]

∑
j∼Tn i

Dn(j)
Dn(i)

+E

 1
Dn(Wn) + 1

−
(

1
Dn(Wn)

− 1
Dn(Wn) + 1

) ∑
j∼TnWn

Dn(j)

∣∣∣∣∣∣∣∣ Tn


+E

Dn(Wn) + 1+
∑

j∼TnWn

1
Dn(j)

∣∣∣∣∣∣∣∣ Tn
 .

Then, using thatDn(j) ≥ 1 for all j ∼Tn i we get that the second term on the right hand side
is positive. To get an upper bound for the third term, we again use that Dn(j) ≥ 1 to get
that

E { (n+1)Yn+1 | Tn} ≤
∑
i∈[n]

∑
j∼Tn i

Dn(j)
Dn(i)

+E {2Dn(Wn) + 1 | Tn} ≤ (n+2)Yn +1,

so that E {Yn+1/(n+2) | Yn} ≤ Yn/(n+1)+1/(n+1)2, and therefore Yn/(n+1)−
∑n
i=11/i

2 is a
supermartingale in the filtration generated by Tn, and therefore has an almost sure limit.
Since 1/i2 is summable, it follows that 1

nE {Dn(Wn) | Tn} has an almost sure limit.
To see that the limit is positive, note that Theorem 6.2 implies that for any ε > 0,

there is a δ > 0 so that P {Z1 +Z2 > δ} > 1− ε.
Then, observe that

E
{
1
nDn(Wn)

∣∣∣ Tn} > 1
nDn(1)P {Wn = 1 | Tn}+ 1

nDn(2)P {Wn = 2 | Tn}
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≥ Ln(1)
2 +Ln(2)2

n2
,

sinceDn(i) ≥ Ln(i) and P {Wn = i | Tn} ≥ Ln(i)/n for i = 1,2. Then, note that, if Ln(1)+Ln(2) >
δn/2 then

Ln(1)2 +Ln(2)2

n2
≥ (max{Ln(1)/n,Ln(2)/n})2 ≥ (δ/4)2,

so
P
{
1
nE {Dn(Wn) | Tn} > δ2/16

}
≥ P {Ln(1) +Ln(2) > δn/2} .

But, 1
n (Ln(1) +Ln(2))→ Z1 +Z2 almost surely, so

liminf
n→∞

P {Ln(1) +Ln(2) > δn/2} > 1− ε

so also
liminf
n→∞

P
{
1
nE {Dn(Wn) | Tn} > δ2/16

}
> 1− ε,

which implies the statement.
The convergence in expectation follows from the bounded convergence theorem,

since 1
nDn(Wn) ≤ 1 deterministically.

6.5.3 Eternal leaves and eternal degree k vertices

[Proof of Theorem 6.4] Note that, for any integer i, Dn(i) is increasing in n and therefore
it has an almost sure limit (that might be infinite). For a vertex ℓ that is a leaf at time m,
we say it is temporary if limn→∞Dn(ℓ) > Dm(ℓ) = 1. Otherwise we call it eternal. Similarly,
we call a vertex v that has degree k at time m temporary if limn→∞Dn(v) > Dm(v) = k and
otherwise we call it eternal. Informally, our next proposition says that, only a bounded
number of leaves next to a given hub ever stop being a leaf.
Proposition 6.13. For n ≥ v, let Sn(v) be the number of temporary leaves attached to v at time
n. If P {Zv > 0} > 0, then conditional on Zv > 0, Sn(v) is tight, that is, for all ε > 0 there exists a
constant M > 0 such that P {Sn(v) >M | Zv > 0} < ε for all n ≥ v.

Proof.

Fix ε > 0. Suppose v is a hub, that isZv = limn→∞
Dn(v)
n > 0. This implies that there is

a δ and aN > v such that P {∀n ≥N Ln(v) > δn | Zv > 0} > 1−ε/2. We show that there exists
a constantK such that E [Sk(v)I∀n ≥N Ln(v) > δn] < K for all k ≥N . We first show that this
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implies the statement. Write P {Zv > 0} = ρ, so that E [Sk(v)I∀n ≥N Ln(v) > δn | Zv > 0] <
K/ρ. Observe that Ln(v) > δn ∀n ≥N implies Zv > 0. Then, we see that for k ≥N and ε > 0,

P
{
Sk(v) >

2K
ρε | Zv > 0

}
≤ P {∃n ≥N : Ln(v) ≤ δn | Zv > 0}+P

{
Sk(v) >

2K
ρε ,∀n ≥N Ln(v) > δn | Zv > 0

}
≤ ε/2+P

{
Sk(v) >

2K
ρε | ∀n ≥N Ln(v) > δn

}
P {Ln(v) > δn ∀n ≥N | Zv > 0}

≤ ε/2+ ερ
2KE {Sk(v) | ∀n ≥N Ln(v) > δn}P {Ln(v) > δn ∀n ≥N | Zv > 0}

= ε/2+ ερ
2KE {Sk(v)I∀n ≥N Ln(v) > δn | Zv > 0} < ε,

where we use Markov’s inequality in the penultimate line.
We now show that there exists a constantK such that E [Sk(v)I∀n ≥N Ln(v) > δn] <

K for all k ≥ N . Note that, at any time M ≥ k, if w is a leaf neighbouring v, then w stops
being a leaf if VM = v and WM = w. Conditionally on TM , this occurs with probability
1/(MDM(v)), so the probability that this happens for some vertex in L(v;Tk) is at most
k/(MDM(v)), because |L(v;Tk)| < k. Therefore, the probability that the number of leaves
in L(v;Tk) that are no longer leaves increases at time M ≥ k satisfies

P {∆|L(v;Tk)∩L(v;TM )c| = 1,Ln(v) > δn ∀n ≥N }

≤ P {∆|L(v;Tk)∩L(v;TM )c| = 1,LM(v) > δM} ≤
k

δM2 .

Therefore
E [Sk(v)ILn(v) > δn ∀n ≥N ] ≤

∑
M≥k

k

δM2 ≤ K

for some constant K not depending on k, which proves the claim.
The next corollary, stating that the number of eternal leaves attached to any edge

grows linearly with high probability, is a consequence of the proposition above and Theo-
rem 6.2. Indeed, since every edge has linear degree almost surely, given the presence of
edge (u,v), either u or v has probability at least 1/2 of being a hub.
Corollary 6.14. Fix an edge (u,v) and for n ≥ max(u,v) define En(u,v) := |{w ∈ N (u;Tn)∪
N (v;Tn) : w is an eternal leaf}|. Then, En(u,v) grows linearly with high probability, that is, there
exists δ > 0 such that for every ε > 0 there is a N =N (u,v) such that

P {∃n > N : En(u,v) < δn} < ε .
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We now prove Theorem 6.4.
Proof. [Proof of Theorem 6.4] Fix v ∈ N. We first prove the statement for k = 1, and then
discuss how to adapt the proof to general k. If Dn(v) = 1 then let w denote the unique
neighbour of v in Tn. We show that v is an eternal leaf with positive probability by showing
that, with positive probability, the vertex w acquires a large number of leaf neighbours,
ensuring that both the degree of w grows and that, when a new vertex is attached to a
uniform neighbour of w, it is unlikely that v is chosen. Fix N and let

τ =min {t ∈ N : #{n < i ≤ t : Vi ∈ {v,w}} =N }

be the random time at which a new vertex is attached to a random neighbour of either v or
w exactly N times since time n. Define AN as the event {#{n < i ≤ τ : Vi = v} =N }. Since Viis chosen uniformly at random, with probability 2−N , Vi = v exactlyN times between times
n and τ . So, P {AN } = 2−N . Recall that Dn(v) = 1, so conditionally on AN , Dτ (v) = 1 because
for all i ∈ [n,τ], Vi , u, and thusWi , v. Moreover, Lτ (w) ≥N , because, conditioned onAN ,
when Vi = v, Wi = w, so that a new leaf is attached to w. Since for all i ∈ [n,τ] Vi , u, these
leaves stay leaves until time τ . We show that, on the event AN , v is an eternal leaf with
positive probability, because it is likely that w continues to acquire many leaf neighbours
beyond time τ , making it unlikely for the degree of v to grow.

For j ≥ 0, set aj = τ · 2j and ℓj = N (5/4)j so that aj+1 − aj = aj and ℓj+1 − ℓj = ℓj /4.
Define the following events for j ≥ 0:

Ej := {Daj+1(v) > 1},

Fj := {#{i ∈ (aj , aj+1] : Vi = w} > m(j +1)},
Gj := {Laj+1(w) < ℓj+1},

Bj := Ej ∪Fj ∪Gj ,

where m > 0 is such that m < N/20. In words, Ej is the event that vertex v is not a leaf
in Taj+1 . The event Fj corresponds to the event that between steps (aj , aj+1], new vertices
attach to a random neighbour of w more than m(j + 1) times and Gj corresponds to the
event that w has less than ℓj+1 leaf neighbours in Taj+1 . It suffices to prove that

P


⋃
j≥0

Bj | AN

 < 3/4 . (6.5.3)

Indeed,
P {v is an eternal leaf} = P

{
∩j≥0Ecj

}
≥ P

{
∩j≥0Bcj

}
,
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since Bcj ⊂ Ecj . By (6.5.3),
P
{
∩j≥0Bcj

}
≥ P

{
∩j≥0Bcj , AN

}
= P {AN }P

{
∩j≥0Bcj | AN

}
≥ 1

4
2−N .

This implies
P {v is an eternal leaf} ≥ 2−(N+2) ,

proving Theorem 6.4 for k = 1. To show (6.5.3) we begin by noting that

P
{
Ej

∣∣∣ ∩j−1i=0 B
c
i ,AN

}
≤ E

E

aj+1∑
i=aj

1
iℓj

∣∣∣∣∣∣∣∣ τ

 ≤ 1

ℓj
(1 + log(2)) ,

where the first inequality holds since the conditioning implies that vertex w has degree at
least ℓj from time aj onwards. Next, since the probability of Vi = w equals to 1/i ≤ 1/aj for
all i ≥ aj , we deduce that, for j ≥ 1,

P
{
Fj

∣∣∣ ∩j−1i=0 B
c
i ,AN

}
≤ P

{Bin(aj+1 − aj ,1/aj ) > m(j +1)
}
≤ e−m(j+1)/3 ,

by a Chernoff bound ([76, Theorem 2.1.]). Lastly, under the previous conditioning and given
Fcj , the probability ofGj is less than the probability of creating fewer than ℓj+1+m(j+1)−ℓjnew leaf neighbours for w between steps (aj , aj+1]. Conditionally on Fcj , the probability of
attaching vertex i +1 to w at time i ∈ (aj , aj+1] is at least (ℓj −m(j +1))/aj+1. Thus

P
{
Gj

∣∣∣ ∩j−1i=0 B
c
i ,F

c
j ,AN

}
≤ P

{
Bin

(
aj+1 − aj ,

ℓj −m(j +1)

aj+1

)
≤ ℓj+1 +m(j +1)− ℓj

}
≤ e−ℓj /90,

where we use thatm < N/20, so thatm(j+1) ≤ 1
10ℓj and ℓj−m(j+1) > 0 for all j ≥ 0, and the

bound then follows from the Chernoff bound. Putting everything together gives us that,
P
{
Bj

∣∣∣ ∩j−1i=0 B
c
i ,AN

}
≤ ℓ−1j (1 + log(2)) + e−m(j+1)/3 + e−ℓj /90,

and
P


⋃
j≥0

Bj

∣∣∣∣∣∣∣∣ AN
 ≤

∑
j≥0

P
{
Bj

∣∣∣ ∩j−1i=0 B
c
i ,AN

}
≤ 1
N

∑
j≥0

(4/5)j(1 + log(2)) +
∑
j≥1

e−m(j+1)/3 +
∑
j≥0

e−N (5/4)j /90.
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Now, choose m sufficiently large so that the second sum is smaller than 1/4, then choose
N large enough so that m < N/20 and the first and the third sum are both smaller than
1/4; this proves the statement for k = 1. Next, we adapt the statement for general k.
Conditionally on Tn, ifDn(v) = k then we define τ as the random time at which a new vertex
has been attached to a random friend of vertex v or one of its k neighbours exactly kN
times. That is, τ = min{t : #{n < i ≤ t : Vi ∈ {v} ∪N (v;Tn)} = kN }. Then, with probability at
least (k+1)−kN exactlyN of these kN new leaves are attached to each of the k neighbours
of v. We call this event AN = {∀w ∈ N (v;Tn) : #{n < i ≤ τ : Vi = w} = N }. Conditionally
on AN , we show that v is an eternal degree k vertex with positive probability, because it
is likely that all of the neighbours of v continue to acquire many leaf neighbours beyond
time τ , making it unlikely for the degree of v to grow.

Let w1, . . . ,wk denote the neighbours of v in Tn. Define the events
Ekj := {Daj+1(v) > k},

Fkj :=
k⋃
l=1

{#{i ∈ (aj , aj+1] : Vi = wl} > m(j +1)},

Gkj :=
k⋃
l=1

{Laj+1(wl) < ℓj+1},

Bkj := Ej ∪Fj ∪Gj .

Following the same arguments used in the case of k = 1, it follows that, choosingm andN
sufficiently large, we have

P


⋃
j≥0

Bkj | AN

 < 3/4,

which implies the statement for general k.
Note that it follows from Theorem 6.4 that, for Ekn the number of eternal degree k

vertices in Tn,
E
[
Ekn

]
> ck E

[
Xkn

]
. (6.5.4)

6.6 Proofs of global properties

6.6.1 Typical distances

[Proof of Theorem 6.5]
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Theorem 6.5 is a consequence of Theorem 6.2. Indeed, almost surely, one of ver-
tices 1 and 2 is a hub, so a positive proportion of vertices is a neighbour of vertex 1 or
of vertex 2. This implies that with probability bounded away from zero, both Un and Vnare a neighbour of either vertex 1 or 2, so that the distance between them is two and the
distance from Un to 1 is at most two. More formally, by Theorem 6.2 there is an i ∈ {1,2}
and an ϵ > 0 so that P {Zi > ϵ} > ϵ. Then, for n large enough, P {Dn(i) > ϵn/2} > ϵ/2. For
such n,

P {dn(Un,1) ≤ 2} ≥ P {Dn(i) > ϵn/2,dn(i,Un) = 1} ≥ ϵ2/4

and
P {dn(Un,Vn) = 2} ≥ P {Dn(i) > ϵn/2,dn(i,Un) = 1,dn(i,Vn) = 1} ≥ ϵ3/8,

which proves the statement.

6.6.2 Diameter

[Proof of Theorem 6.6] We show that Diamn grows logarithmically almost surely, with ex-
plicit asymptotic lower and upper bounds. We start by proving a lower bound.
Lemma 6.15. Almost surely

liminf
n

Diamn

log(n)
≥ 1 .

Proof. Among all the paths of length Diamn present at time n, let us choose one. Denote
it by (i0 → i1 → ·· · → iDiamn

). Let us remark that for n ≥ 3, Diamn is always at least 2.
Vertices i1 and iDiamn−1 are such that at most one of their neighbours is not a leaf (other-
wise there would be a path of length Diamn +1). This implies that, at time n, conditioned
on Vn = i1, with probability at least 1/2 we have that Wn ∈ L(i1;Tn) (the same holds for
iDiamn−1). But, if Wn ∈ L(i1;Tn)∪L(iDiamn−1;Tn) then the diameter increases by 1. Because
P
{
Vn ∈ {i1, iDiamn−1}

∣∣∣ Diamn ≥ 3
}
= 2/n and P

{
Vn ∈ {i1, iDiamn−1}

∣∣∣ Diamn = 2
}
= 1/n (note

that if Diamn = 2, then i1 = iDiamn−1), then
E {∆Diamn | Tn} ≥

1
n
IDiamn ≥ 3+

1
2n

IDiamn = 2 . (6.6.1)
To prove the lemma, we first need to show that, almost surely, Diamn reaches 3 in finite
time. Using (6.6.1), there exists a coupling between Diamn and

Sn := 2+
n∑
i=4

Zi ,
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where Zi are independent Bernoulli random variables with parameter 1/(2i), such that
Diamn ≥ Sn for n ≥ 3. Let M be the first time when Diamn = 3 and M ′ the first time when
Sn = 3. By our coupling of Diamn and Sn, M ≤M ′. A direct application of [? , Exercise 2.9]
shows that liminfSn =∞ almost surely and thereforeM ′ (and in turnM) are finite almost
surely. We can now introduce a coupling of Diamn from timeM onward. Conditionally on
M =m, (6.6.1) implies that Diamn can be coupled from m onward to

H
(m)
n := 3+

n∑
i=m

Xi ,

where Xi are independent Bernoulli random variables with parameters 1/i, such that
Diamn ≥H

(m)
n . Another direct application of [? , Exercise 2.9] implies that, for fixed m,

liminf
n

H
(m)
n

log(n)
≥ 1 a.s.

By our coupling, if M = m, liminf Diamn
log(n) ≥ 1 almost surely. Using that M is finite almost

surely concludes the proof.

  

Figure 6.3: Illustration of a RFT of size 25 and diameter 6, with vertices of one ofthe paths of length 6 highlighted.
Next, we prove an upper bound for the diameter.
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Lemma 6.16. Almost surely
limsup

n

Diamn

log(n)
≤ 4e .

To prove this lemma we couple the random friend tree with the URRT process. This
coupling is the subject of the following lemma.
Lemma 6.17. The random friend tree (Tn,n ≥ 2) and the uniform random recursive tree
(T ′n,n ≥ 2) can be coupled in such a way that for any i, j ∈ [n],

dn(i, j) ≤ 2d′n(i, j) ,

where dn(i, j) is the graph distance between vertex i and j in Tn, and d′n(i, j) is the graph distance
between vertex i and j in T ′n.

Proof. Note that T2 = T ′2 so the statement holds for n = 2. Fix m ≥ 2 and suppose that
we coupled (T2, . . . ,Tm) and (T ′2, . . . ,T

′
m) such that for all i, j ∈ [m], dm(i, j) ≤ 2d′m(i, j). Now,

sample uniformly at random Vm ∈ [m] and letWm be a uniform neighbour of Vm in Tm. Let
Tm+1 be the tree obtained by including vertexm+1 and edge {Wm,m+1} in Tm and let T ′m+1be the tree obtained by including vertex m + 1 and edge {Vm,m + 1} in T ′m. Observe that,
for i, j ∈ [m], dm+1(i, j) = dm(i, j) and d′m+1(i, j) = d

′
m(i, j). Now, let i ∈ [m] and compute

dm+1(i,m+1) ≤ dm+1(i,Vm) + dm+1(Vm,m+1) = dm(i,Vm) + 2

≤ 2d′m(i,Vm) + 2 ≤ 2d′m(i,m),

where we use the triangle inequality, the induction hypothesis and the fact that for all
i ∈ [m], d′m(i,m) ≤ 1+ d′m(i,Vm).
Proof. [Proof of Lemma 6.16] Couple (Tn,n ≥ 1) to the uniform random recursive tree
(T ′n,n ≥ 1) as in Lemma 6.17 and observe that

Diamn =max
i,j≤n

dn(i, j) ≤ 2max
i,j≤n

d′n(i, j) ≤ 4max
i≤n

d′n(1, i).

Moreover, by Corollary 1.3 of Addario-Berry and Ford [1],
maxi≤nd′n(1, i)

logn
→ e almost surely,

which concludes the proof of the lemma.
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6.6.3 Leaf-depth

[Proof of Theorems 6.7 and 6.8] Theorem 6.2 implies that, asymptotically, almost surely
each vertex is at distance at most 1 from a hub. By Theorem 6.1, each hub has mostly
leaf neighbours. This suggests that at large times, most vertices that are not leaves are
close to a leaf (distance 1 or 2). In this section, we show that at large times, there are
exceptional vertices that are much further away from the nearest leaf, namely at distance
Θ(logn/ loglogn). We recall that

Mn =max
i≤n

min
ℓ:Dn(ℓ)=1

dn(i, ℓ)

is the maximal distance of any vertex to the closest leaf at time n, which we refer to as the
leaf-depth at time n. To prove Theorem 6.7, we first need the following lemma to transfer
upper bounds on the leaf-depth in the uniform random recursive trees to upper bounds
on the leaf-depth in random friend trees.
Lemma 6.18. The coupling defined in Lemma 6.17 between the random friend tree (Tn,n ≥ 1)
and the uniform random recursive tree (T ′n,n ≥ 1) also satisfies that for any leaf ℓ′ in T ′n, in Tn,
the vertex ℓ′ is at distance at most 1 from a leaf.

Proof. The statement clearly holds forn ≤ 2. Next, suppose that for somem the statement
is satisfied in Tm−1 and T ′m−1. Fix an ℓ′ ≤ m so that ℓ′ is a leaf in T ′m. We claim that ℓ′ is at
distance at most 1 from a leaf in Tm. First, if ℓ′ = m, then ℓ′ is also a leaf in Tm and the
claim follows. If ℓ′ ≤ m − 1, then ℓ′ is also a leaf in T ′m−1, so by the induction hypothesis,
ℓ′ is at distance at most 1 from a leaf ℓ in Tm−1. If ℓ is also a leaf in Tm, the claim follows.
Otherwise, for ℓ to be a leaf in Tm−1, but not Tm it is necessary that Wm = ℓ. If Wm = ℓ and
dm−1(ℓ,ℓ′) = 1, then ℓ′ is the unique neighbour of ℓ in Tm−1 (because ℓ is a leaf in Tm−1), so
Vm = ℓ′ , contradicting that ℓ′ is a leaf in T ′m. Thus, if Wm = ℓ, then dm−1(ℓ,ℓ′) = 0, meaning
that ℓ = ℓ′. Therefore, in Tm, vertex m is a leaf that is at distance 1 from ℓ′.

The next lemma gives an upper bound on the leaf-depth in the uniform random
recursive tree. Together with Lemma 6.18 we deduce an upper bound for the leaf-depth
in random friend trees, given in Proposition 6.20.
Lemma 6.19. Let M ′n be the leaf-depth in the uniform random recursive tree at time n. Then,
for any ε > 0,

P
{
M ′n ≥ (1 + ε)

logn
loglogn

}
= o(1).
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Proof. Let T ′n be the uniform random recursive tree at time n. For any vertex v ∈ T ′n, we
define a canonical path Pn(v) in T ′n that ends in a leaf. If v is a leaf in T ′n, set Pn(v) = v.
Otherwise, let w = wn(v) be the neighbour of v in T ′n with the largest label and let Pn(v)be v concatenated with Pn(w). So, to obtain the path Pn(v), start from v and sequentially
move to the largest labelled neighbour until reaching a leaf. Define T ′n(v), as the connected
component of v in T ′n if the edge between v and its parent was removed (or, equivalently,
T ′n(v) is the subtree of T ′n that consists of all vertices that are connected to v by a path on
which v is the lowest labelled vertex). Let |Pn(v)| be the number of edges on the path. To
prove the lemma, it is sufficient to show that maxv∈[n] |Pn(v)| ≤ (1 + ϵ) logn/ loglogn.
First, we check that, for any ℓ ≥ 1,

P
{
|T ′n(wn(v))| ≥ ℓ

∣∣∣ |T ′n(v)| =m}
=

1
ℓ if ℓ < m
0 otherwise, (6.6.2)

wherem ≤ n. Observe that, conditionally on |T ′n(v)| =m, if the vertices in T ′n(v) are assigned
labels in [m] that respect the order of the original labels, the resulting tree has the same
law as T ′m. Therefore, (6.6.2) follows if, for any m, we have that for all ℓ ≥ 1,

P
{
|T ′m(wm(1))| ≥ ℓ

}
=

1
ℓ if ℓ ≤m
0 otherwise,

where we recall that T ′m(wm(1)) is the subtree rooted at the youngest child of 1.
The proof is by induction on m. The statement clearly holds for m = 1. Now, sup-

pose the statement holds for m = k − 1. For m = k, the statement is obvious for ℓ = 1
and ℓ > k since 1 ≤ |T ′k (wk(1))| ≤ k. Observe that, if Vk = 1 (i.e, if vertex k connects to
vertex 1), then T ′k (wk(1)) consists only of the vertex k in which case |T ′k (wk(1))| = 1. If
Vk ∈ T ′k−1(wk−1(1)), then T ′k (wk(1)) is composed of the vertices of T ′k−1(wk−1(1)) and vertex k,
so |T ′k (wk(1))| = |T ′k−1(wk−1(1))|+1. If Vk < {1}∪T ′k−1(wk−1(1)) then T ′k (wk(1)) = T ′k−1(wk−1(1)),giving |T ′k (wk(1))| = |T ′k−1(wk−1(1))|. Therefore, for 1 < ℓ ≤ k,{

|T ′k (wk(1))| ≥ ℓ
}
=
{{
|T ′k−1(wk−1(1))| ≥ ℓ

}
∩ {Vk , 1}

}
∪

{{
|T ′k−1(wk−1(1))| = ℓ − 1

}
∩

{
Vk ∈ T ′k−1(wk−1(1))

}}
.

By the induction hypothesis, for ℓ < k,
P
{
|T ′k (wk(1))| ≥ ℓ

}
=
1
ℓ
k − 1
k

+
1

ℓ(ℓ − 1)
ℓ − 1
k

=
1
ℓ
,

and for ℓ = k,
P
{
|T ′k (wk(1))| ≥ k

}
= 0+

1
k − 1

k − 1
k

=
1
k
.
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The equality (6.6.2) follows for allm. Now, definew(1) = wn(v) the vertex at distance 1 from
v on Pn(v) and w(ℓ) = wn(w(ℓ−1)) the vertex at distance ℓ from v on Pn(v). Then,

{|Pn(v)| ≥ k} = {|T ′n(w(1))| ≥ k} ∩ {|T ′n(w(2))| ≥ k − 1} ∩ · · · ∩ {|T ′n(w(k))| ≥ 1}.

Together with (6.6.2), this implies that
P {|Pn(v)| ≥ k} ≤

1
k!
≤ e

k

kk
.

Then, fix ε > 0 and subsitute (1 + ε) logn
loglogn to k. The above equation directly implies that

P
{
|Pn(v)| ≥ (1 + ε)

logn
loglogn

}
= o(n−1).

Finally, a union bound implies Lemma 6.19.
From Lemmas 6.18and 6.19 we obtain an upper bound on the leaf depth in random

friend trees.
Proposition 6.20. For any ε > 0

P
{
Mn ≥ (2 + ε)

logn
loglogn

}
= o(1).

Proof. Couple the random friend tree (Tn,n ≥ 1) and the uniform random recursive tree
(T ′n,n ≥ 1) as in Lemma 6.18. Then, fix i ≤ n such that forN ′n(i), the degree of vertex i in T ′n,
we see that

min
ℓ:Dn(ℓ)=1

dn(i, ℓ)≤ min
ℓ:Dn(ℓ)=1

min
ℓ′ :N ′n(ℓ′)=1

(dn(i, ℓ
′) + dn(ℓ

′ , ℓ))

≤ min
ℓ′ :N ′n(ℓ′)=1

dn(i, ℓ
′) + 1

≤ min
ℓ′ :N ′n(ℓ′)=1

2d′n(i, ℓ
′) + 1,

where the last two inequalities follow from the properties of the coupling. By taking the
maximum over i ∈ [n], we have Mn ≤ 2M ′n +1 and so Lemma 6.19 implies the proposition.

To conclude the proof of Theorem 6.7 it remains to prove an asymptotic lower
bound forMn. In order to show that the leaf depth is at least of order logn/ loglognwe first
present a proof of the corresponding result for the URRT. To the best of our knowledge,
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this result does not appear elsewhere. Moreover, the proof is less technical but has the
same structure as its counterpart for random friend trees, so it is a good way to introduce
the ideas needed for our main proof. In doing so, we hope that the technicalities in the
proof of Lemma 6.22 are easier to understand.
Proposition 6.21. Let M ′n be the leaf-depth in the uniform random recursive tree at time n.
Then, M ′n =Ωp(logn/ loglogn).

Proof. Let T ′n be the uniform random recursive tree at time n. In a uniform random recur-
sive tree, the number of vertices with degree at least 3 goes to infinity almost surely (see
Janson [78]). We call such a vertex a branch point. Therefore, we can choose n sufficiently
large such that there is at least one branch point. Let P ′n be the maximal distance of any
leaf in T ′n to the nearest branch point, that is,

P ′n = max
ℓ:N ′n(ℓ)=1

min
j:N ′n(j)≥3

d′n(ℓ, j).

We remark that M ′n ≥ P ′n/2 because a midpoint of a longest leaf-to-branchpoint path is
at distance at least P ′n/2 from the nearest leaf. It is well known (see Janson [78]) that the
proportion of leaves in an URRT tends to 1/2, consequently X ′≥2m /m→ 1/2 almost surely.
Thus, for ε > 0 and n sufficiently large,

P

1− X ′≥2k

k
≤ 1

3
; ∀k ≥ n

 > 1− ε.

Now, condition on the number of leaves at time n/2 being at least n/6, that is X ′1n/2 ≥
n/6, and let {v1, · · · ,vP } be an arbitrary set of P = n/6 leaves of T ′n/2. We study the sub-
trees rooted at vi and will show that at time n, with high probability, for at least one
i ∈ [P ] the subtree of vi contains a path from vi ending in a leaf and solely consisting
of Ω(logn/ loglogn) vertices of degree two. To this end, we say that a path consisting of
degree two vertices that ends in a leaf grows at time m if vertex m+ 1 attaches to the leaf
at the end of the path. This increases the length of the path by 1. We say that a path con-
sisting of degree two vertices that ends in a leaf dies at timem if vertexm+1 connects to a
degree-two vertex on the path that is at distance at most K from the leaf. That is, we only
keep track of paths up to distance K from the leaf. Note that at each time step only one
path can grow or die. We will only track paths until their first death. Note that, at time m,
for i ∈ [P ], conditionally on the path rooted at vi has not died yet, the probability of the
path growing is 1/m and the probability of the path dying is at most K/m. Observe that
P ′n stochastically dominates the minimum of K and the length of the longest path at time
n rooted at some vi for i ∈ [P ] that has not died. We can then couple these path growth
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processes to a balls-in-bins model as follows. Let P be the number of bins. The process is
started at time n/2 with P empty bins. For each time m ∈ [n/2,n], with probability P ·K/m
add a black ball to a uniform random bin, or with probability P /m add a white ball to a
uniform random bin. By doing so, a black ball is added to a given bin with probability
K/m and a white ball is added to a given bin with probability 1/m. We further see that P ′nstochastically dominates the smallest number between K and the maximum number of
white balls at time n in a bin with zero black balls. It therefore suffices to show that for
some c > 0 and K := c logn/ loglogn, for n large enough, with high probability, one of the
P bins contains at least K white balls and no black balls. Observe that, for n sufficiently
large, between times n/2 and n, with probability at least 1−ϵ, at most B = 2P K black balls
and at leastW = P /8 white balls are added. Conditioned on this event, the probability that
a specific bin contains at least K white balls is at least(

W
K

)
P −K (1− P −1)W−K > e−1

( W
PK

)K
= e−1

( 1
8K

)K
,

for large n, where we bound (1− P −1)W−K ≥ (1− P −1)W = ((1− 6/n)n/6)1/8 > e−1. Therefore
the expected number of bins containing at least K white balls can be bounded from below
by

P · e−1(8K)−K = e−1
n
6

(
loglogn
8c logn

)c logn/ loglogn
> n1−c

for large n.
Then, if c < 1/2, since the numbers of white balls in two distinct bins have negative

covariance, Chebyshev’s inequality bounds the probability that the number of paths with
at least K growth events is less than n1−2c tends to 0, so in particular is smaller than ϵ for n
sufficiently large. Any of these has 0 black balls with probability at least (1−P −1)B ≥ e−3K =
ω(n1−2c), so another straightforward application of the second moment method implies
that for n large enough, for any c < 1/2, with probability at least 1 − 3ϵ at time n, there is
a bin containing c log(n)/ loglog(n) white balls and no black balls. Recalling the stochastic
dominance, that is valid on an event of probability at least 1 − ϵ, with probability at least
1− 4ϵ there is a leaf at distance at least c logn/ loglogn from the nearest branch point.

Using a similar proof, we can prove an asymptotic lower bound for the leaf-depth
in random friend trees.
Proposition 6.22. Let Mn be the leaf-depth in the random friend tree at time n. Then, Mn =
Ω(logn/ loglogn) in probability.

Proof.
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By Theorem 6.11, X≥3n →∞ almost surely, so we may pick n large enough such that
X≥3n ≥ 1. Then, define

Pn = max
ℓ:Dn(ℓ)=1

min
j:Dn(j)≥3

dn(ℓ, j)

to be the largest distance from a leaf to the nearest branch point in Tn. We see that Mn ≥
Pn/2 because the midpoint of the longest leaf-to-branchpoint path is at distance at least
Pn/2 from the nearest leaf. Therefore, it suffices to show that Pn = Ω(logn/ loglogn) in
probability.

As in Proposition 6.21 the proof is divided into two steps. We first show that, for
n large enough, with high probability at time n/2 there are at least nδ/2 leaves attached
to a degree two vertex. Remark that this step requires slightly more work than the URRT
case. For the URRT, one only needs to ensure the presence of many leaves at time n/2 to
guarantee that that a long path of subsequent degree-two vertex will emerge from one
of these leaves. For the random friend tree, one needs to ensure that, at time n/2, there
exists many leaves attached to a degree two vertex, to guarantee that new vertices attach
to these leaves with some sufficient probability. This difference is due to the attachment
rule in random friend trees. Denote by Ln the set of leaves attached to a vertex of degree
two at time n and let Hn = |Ln| be the number of leaves attached to a degree two vertex
in Tn. In the second part of the proof, we show that it is likely that at time n, a path of
subsequent degree two vertices longer than c logn/ loglogn grows from at least one of
the leaves of Ln/2, that is,

max
ℓ∈Ln

min
j:Dn(j)≥3

dn(ℓ, j) > c
logn

loglogn
,

with high probability. Lemma 6.29 states that
E
{
∆X≥2n

∣∣∣ Tn} ≥ 1
3n
X≥3n ,

and by Theorem 6.11, n−δX≥3n → ∞ almost surely, for 0.1 < δ < 0.9. Therefore, for fixed
ε > 0 and sufficiently large n,

P
{ 1
3m

X≥3m > m−(1−δ) ∀m ≥ n/4
}
≥ 1− ϵ .

It follows that, for all n/4 ≤m ≤ n/2,
P
{
∆X≥2m = 1

∣∣∣ 1
3m

X≥3m > m−(1−δ)
}
≥ n−(1−δ)

because m−(1−δ) ≥ n−(1−δ) if m ≤ n/2.
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We will show that Hn grows polynomially in probability. Note that for every vertex
v ∈ Lm, P {Wm = v} = 1/(2m) and ∆Hn = 1 if and only if Wm is a leaf in Tm that is not in Lm.
Further, ∆X≥2m = 1 if and only if Wm is a leaf in Tm. By summing over all possible values of
Wm we therefore get the lower bound

P
{
∆Hm = 1 | Hm = k,

1
3m

X≥3m > mδ−1
}

≥ P
{
∆X≥2m = 1

∣∣∣ 1
3m

X≥3m > m−(1−δ)
}
− k
2m
≥ nδ−1 − 2k

n
,

forn/4 ≤m ≤ n/2. Therefore, eitherHm ≥ nδ/16or P
{
∆Hm = 1 | 1

3mX
≥3
m > m−(1−δ)

}
≥ 7

8n
−(1−δ)

for n/4 ≤m ≤ n/2.
Finally, ∆Hm = −1 if Wm is a degree two vertex attached to a leaf, and there are

exactly Hm such vertices in Tm. For v a given vertex of degree two attached to a leaf,
P {Wm = v} ≤ 2/m ≤ 8/n for n/4 ≤m ≤ n/2. By a union bound, for n/4 ≤m ≤ n/2,

P {∆Hm = −1 | Hm = k} ≤ 8k/n .

By the two arguments above, for n/4 ≤m ≤ n/2,
P
{
∆Hm = −1 |Hm ≤

1
16
nδ

}
≤ 1

2
n−(1−δ) ,

and
P
{
∆Hm = 1 |Hm ≤

1
16
nδ,

1
3m

X≥3m > mδ−1
}
≥ 7

8
n−(1−δ) ,

Then, it follows that, on the event {∀m ∈ [n/4,n/2], 1
3mX

≥3
m > mδ−1

}, with probability at least
1−ε, for n sufficiently large, Hm grows to at least 1

17n
δ between times n/4 and n/2. Finally,

for n large enough, nδ/17 > nδ/2, so
P
{
Hn/2 ≥ nδ/2

}
≥ 1− 2ϵ ,

which concludes the first part of the proof.
We now condition on the event {Hn/2 ≥ nδ/2}. We show that, on this event, it is likely

that at time n at least one of the leaves of Ln/2 is at distance at least logn/ loglogn from
the nearest branch point. The second part of the proof is identical from the URRT proof,
but we present it again for clarity.

Let {v1, . . . , vP } be an arbitrary set of P = nδ/2 leaves in Ln/2. We study the subtrees
rooted at vi and will show that at time n, with high probability, for at least one i ∈ [P ] the
subtree of vi contains a path ending in a leaf and solely consisting of Ω(logn/ loglogn)
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vertices of degree two. To this end, we say that a path consisting of degree two vertices
that ends in a leaf grows at time m if vertex m + 1 attaches to the leaf at the end of the
path. This increases the length of the path by 1. We say that a path consisting of degree
two vertices that ends in a leaf dies at time m if vertex m + 1 connects to a degree two
vertex on the path that is at distance at most K from the leaf. That is, we only keep track
of paths of length at most K . Note that, at each time step, only one path can grow or
die. We will only track paths until their first death. Also note that, at time m ∈ [n/2,n],
for i ∈ [P ], conditionally on the path rooted at vi has not died yet, the probability of the
path growing is 1/(2m) and the probability of the path dying is at most K/m. Observe that
Pn stochastically dominates the minimum of K and the longest path at time n rooted at
some vi for i ∈ [P ] that has not died. We can then couple these path growth processes to a
balls-in-bins model. Let P be the number of bins and start the process with P empty bins.
For each time m ∈ [n/2,n], with probability P ·K/m add a black ball to a uniform random
bin, or with probability P /(2m) add a white ball to a uniform random bin. By doing so, a
black ball is added to a given bin with probability K/m and a white ball is added to a given
bin with probability 1/(2m). We further see that Pn stochastically dominates the smallest
number between K and the maximum number of white balls at time n in a bin with zero
black balls. It therefore suffices to show that, for some c > 0 and K := c logn/ loglogn, with
high probability at least one of the P bins contains at leastK white balls and no black balls.
Observe that, for n sufficiently large, between time n/2 and n, with probability at least 1−ϵ,
at most B = 2P K black balls and at least W = P /8 white balls are added. Conditioned on
this event, the probability that a specific bin has at least K white balls is at least

(
W
K

)
P −K (1− P −1)W−K > e−1

( W
PK

)K
= e−1

( 1
8K

)K
,

for large n, where we bound (1 − P −1)W−K ≥ (1 − P −1)W = ((1 − n−δ/2)n−δ/2)1/8 > e−1. The
expected number of bins containing at least K white balls is bounded from below by

P · e−1(8K)−K = e−1nδ/2
(
loglogn
c logn

)c logn/ loglogn
> nδ/2−c ,

for large n.
Then, if c < δ/8, since the numbers of white balls in two distinct bins have negative

covariance, Chebyshev’s associaton inequality gives that the probability that the number
of paths with at least K growth events is less than nδ/2−2c tends to 0, so in particular, is
smaller than ϵ for n sufficiently large. Any of these contains no black balls with probability
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at least (1 − P −1)B ≥ e−3K = ω(nδ/2−2c), so another straightforward application of the sec-
ond moment method implies that for n large enough, for any c < δ/8, with probability at
least 1 − 3ϵ there is a bin with c log(n)/ loglog(n) white balls and no black balls at time n.
Recalling the statistical dominance, that is valid on an event of probability at least 1 − 2ϵ,
with probability at least 1− 5ϵ, there is a leaf at distance at least c logn/ loglogn from the
nearest branch point.

6.6.4 High-degree vertices

[Proof of Theorems 6.9 and 6.10]
Recall that Zv = liminfn→∞

Dn(v)
n , and that by Theorem 6.1, in fact

Zv = lim
n→∞

Dn(v)
n

almost surely.
The following lemma, combined with Theorem 6.11, gives a lower bound on the

number of hubs and proves Theorem 6.9.
Lemma 6.23. Almost surely,

#{v ∈ [n] : Zv > 0} > 1
2X
≥2
n .

We prove this lemma using Lemma 6.24, below, but we need some additional def-
initions for its statement. For a graph G = (V ,E), we say V ′ ⊂ V is an edge cover of G if
for each e ∈ E, there is a v ∈ V ′ such that v ∈ e. Define the minimal edge cover number of a
graph G = (V ,E), denoted by EC(G), as follows

EC(G) := min{|V ′ | : V ′ is an edge cover of G}. (6.6.3)
Lemma 6.23 is a direct consequence of Theorem 6.2, which states that each edge contains
a hub, and the following lemma.
Lemma 6.24. For any tree t, we have that

|EC(t)| ≥ 1
2X
≥2(t),

where X≥2(t) denotes the number of non-leaves in the tree t.

Proof. We can assume that t is a rooted tree by declaring an arbitrary vertex in t the
root. Decompose the tree t into the following vertex-disjoint paths. Let ℓ1, ..., ℓX1(t) be
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the leaves of t. For a leaf ℓ of t, let P (ℓ) be the path from ℓ to the root of t. For each
i ∈ [X1(t)], let P ′(ℓi) = P (ℓi) \

⋃i−1
j=0 P

′(ℓj ), that is, P ′(ℓi) is the path P (ℓi) stripped of the
vertices in ⋃i−1

j=0 P
′(ℓj ). This decomposition gives us X1(t) disjoint paths P ′ℓ1 , . . . , P ′ℓX1(t) . Note

that if V ′ ⊂ V is an edge cover of t it must also be an edge cover of P ′(ℓ1)∪ . . .∪ P ′(ℓX1(t))(indeed, while removing edges, the requirement for a collection of edges to be an edge
cover is weakened). An edge cover of a disconnected graph is a disjoint union of edge
covers of the components, and an edge cover of a path of m vertices contains at least
⌊m/2⌋ vertices, so

|EC(t)| ≥
X1(t)∑
i=1

⌊
|P ′i |
2

⌋
≥
X1(t)∑
i=1

(
|P ′i | − 1

2

)
=
|V (t)| −X1(t)

2
=
X≥2(t)

2
.

We now prove Theorem 6.10, which in particular implies that for any k, the number
of vertices with degree at least k goes to infinity almost surely.
Proof. [Proof of Theorem 6.10] Fix a constant M ∈ N and let (mn,n ≥ 1) be a sequence
satisfying mn = o(n). We will prove that liminfn→∞X

≥mn
n ≥ M almost surely. By Lemma

6.15, there exists an almost surely finite time τ such that the diameter of the tree at time
τ exceeds 2M. Fix an arbitrary path of 2M +1 vertices in Tτ and, for n ≥ τ , let N (1)

n ≥ · · · ≥
N

(2M+1)
n be the degrees of the vertices on this path in decreasing order. Then, by Theorem

6.2, almost surely, at least M vertices on this path are hubs, so
liminf
n→∞

N
(M)
n

n
> 0

and in particular, there is a finite time τ ′ such that N (M)
n > mn for all n ≥ τ ′. This implies

that from time τ ′ onwards, there are at least M vertices with degree at least mn, so
P
{
liminf
n→∞

X≥mn
n ≥M

}
= 1.

6.6.5 Low-degree vertices

[Proof of Theorems 6.11 and 6.12] In this subsection we prove polynomial upper and lower
bounds of X≥kn , for k bounded and show that X≥kn = Θ(X≥2n ) almost surely. We begin by
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stating a general result on adapted processes, which will be of use in the proof of The-
orem 6.11. Its proof can be found in the appendix. For each k ∈ N, recall that Xkn is the
number of vertices of degree k in Tn and X≥kn is the number of vertices of degree at least
k in Tn.
Proposition 6.25. Let (Xk)k≥0 and (Yk)k≥0 be integer-valued non-decreasing processes adapted
to some filtration (Fk)k≥0 such that 0 ≤ ∆Xk+∆Yk ≤ 1 for all k. Suppose there exists α > 0 such
that E {∆Xk | Fk} ≥ αE {∆Yk | Fk} on the event {Xk < αYk}, except at finitely many times almost
surely. Then for any β ∈ (0,α) there exists C > 0 such that

P {Xn < βYn −C logn infinitely often} = 0 ,

and for all n, E [Xn] ≥ βE [Yn]−C logn.

Lemma 6.26. For n ≥ 4,

E
{
∆X≥2n

∣∣∣ Tn} ≤ 1
2n
X≥2n +

1
2n
X≥3n , (6.6.4)

and for n ≥ 5,

E
{
∆X≥3n

∣∣∣ Tn} ≤ 4
3n
X2
n . (6.6.5)

Proof. To prove (6.6.4), note that ∆X≥2n > 0 precisely if Wn is a leaf of Tn, so
E
{
∆X≥2n

∣∣∣ Tn} = 1
n

∑
v∈Tn

Ln(v)
Dn(v)

.

When n ≥ 3, leaves do not have leaves as neighbours, and when n ≥ 4, any vertex v of
degree two in Tn has at most one leaf neighbour, thus if v has degree two, Ln(v)/Dn(v) =
Ln(v)/2 ≤ 1/2. Together with the previous equality, this implies that

E
{
∆X≥2n

∣∣∣ Tn} ≤ 1
n

 ∑
{v:Dn(v)=2}

1
2
+

∑
{v:Dn(v)≥3}

Ln(v)
Dn(v)

 ≤ X2
n

2n
+
X≥3n
n

.

Since X2
n = X

≥2
n −X≥3n , this implies (6.6.4).

To prove (6.6.5), for 1 ≤ i ≤ j let
Sij = {v ∈ Tn :Dn(v) = 2, the neighbours of v in Tn have degrees i and j} .
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Then X2
n =

∑
1≤i≤j |Si,j | and

E
{
∆X≥3n

∣∣∣ Tn} = ∑
1≤i≤j

P
{
Wn ∈ Sij

∣∣∣ Tn} = 1
n

∑
1≤i≤j

|Sij |
(
1
i
+
1
j

)
.

We bound this sum by splitting it into three sums. First, for terms with i = 1 and j ≥ 3 we
have 1/i + 1/j ≤ 4/3. For v ∈ ⋃

2≤i≤j Sij we have 1/i + 1/j ≤ 1, while for v ∈ S12 we have
1/i + 1/j = 3/2. We claim that at most half of the vertices in S12 ∪⋃

2≤i≤j Sij can be in S12.
Indeed, provided that n ≥ 5, if v ∈ S12 then for u its unique neighbour with degree 2 it
holds that u ∈⋃

2≤i≤j Sij . Moreover, n ≥ 5 implies that u has at most one neighbour in S12.
Therefore, |S12| ≤ |⋃2≤i≤j Sij |. This implies that

∑
1≤i≤j

|Sij |
(
1
i
+
1
j

)
≤ 4

3

∑
j≥3
|S1j |+

1
2

(
1+

3
2

)|S12|+ ∑
2≤i≤j

|Sij |

 ≤ 4
3
X2
n ,

therefore E
{
∆X≥3n

∣∣∣ Tn} ≤ 4
3nX

2
n as claimed.

Before stating the next lemma we introduce the notation Xk,≤kn , the number of
vertices of degree k having at most one neighbour of degree at least k + 1, and Xk,>kn , the
number of vertices of degree k with at least two neighbours of degree at least k +1.
Lemma 6.27. For any positive integer k, n ≥ 3,

Xkn = X
k,>k
n +Xk,≤kn , (6.6.6)

X≥k+1n ≥ Xk,>kn , (6.6.7)
E
{
∆X≥k+1n

∣∣∣ Tn} ≥ k − 1kn
Xk,≤kn . (6.6.8)

Proof. The equality (6.6.6) follows directly from the definition of Xk,>kn and Xk,≤kn . To
prove the second statement, remark that any vertex v contributing to Xk,>kn has at least
two neighbours of degree at least k +1, and at least one is a child of v. Since every vertex
is the child of at most 1 vertex, (6.6.7) follows.

Finally, to prove (6.6.8), one must understand how vertices of degree k +1 are cre-
ated. In order to have ∆X≥k+1n = 1, it is sufficient (but not necessary) that vertex n + 1
attaches to a vertex counted by Xk,≤kn , or in other words, that Wn = w for some vertex w
with degree k which has at least k−1 neighbours of degree at most k. For each such vertex
w, this happens with probability at least k−1kn . This proves (6.6.7).
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Lemma 6.28. For any integer k, whenever n ≥ k +2.

E
{
∆X≥k+1n

∣∣∣ Tn} ≤ k − 1/2n
Xkn . (6.6.9)

Proof. A vertex of degree k +1 is created at time n if Wn has degree k in Tn. For a vertex
w ∈ Tn of degree k, the probability of Wn = w is maximized if the neighbours of w have
lowest possible degree; that is, if w has k−1 leaf neighbours and one neighbour of degree
two. In this case, the probability that Wn = w equals k−1/2

n ; the lemma follows.
We use the following two lemmas to show that the number of non-leaves grows at

least polynomially.
Lemma 6.29. For n ≥ 3,

E
{
∆X≥2n

∣∣∣ Tn} ≥ 1
3n
X≥3n .

Proof. Note that ∆X≥2n = 1 if and only if Wn is a leaf. Therefore, as observed before, if
n ≥ 3 then

E
{
∆X≥2n

∣∣∣ Tn} = 1
n

∑
{v:Dn(v)≥2}

Ln(v)
Dn(v)

. (6.6.10)
Let T ′n be equal to Tn with all of its leaves removed. We consider different sets of vertices
in T ′n and we study their contribution to the sum above.

Let V1 be the set of vertices of Tn that are leaves in T ′n and that were vertices of
degree 2 in Tn, so that for each v ∈ V1, Ln(v)Dn(v)

= 1
2 . Let V2 be the vertices of Tn that are leaves

in T ′n that were vertices of degree at least 3 in Tn so that for each v ∈ V2, Ln(v)Dn(v)
= Dn(v)−1

Dn(v)
≥ 2

3 .
Let V3 be the vertices that have degree 2 in T ′n and had degree at least 3 in Tn, so that for
each v ∈ V3, Ln(v)Dn(v)

= Dn(v)−2
Dn(v)

≥ 1
3 . Finally, let V4 be the vertices that have degree at least 3 in

T ′n. Therefore,
∑

{v:Dn(v)≥2}

Ln(v)
Dn(v)

≥ 1
2
|V1|+

2
3
|V2|+

1
3
|V3| . (6.6.11)

To lower bound this sum note that |V1| + |V2| is the number of leaves in T ′n. Since T ′n is a
tree, the number of leaves in T ′n is given by

∑
{v:|N (v,T ′n)|≥3}

(|N (v,T ′n)| − 2) + 2
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and so
|V1|+ |V2| =

∑
v∈V4

(|N (v,T ′n)| − 2) + 2 .

Finally, since ∑
v∈V4

(|N (v,T ′n)| − 2) + 2 ≥ |V4| we obtain that
|V1|+ |V2| ≥ |V4| ,

hence
1
2
|V1|+

2
3
|V2| ≥

1
3
|V2|+

1
3
|V4| .

It also holds that X≥3n = |V2|+ |V3|+ |V4|, so we conclude that
1
2
|V1|+

2
3
|V2|+

1
3
|V3| ≥

1
3
X≥3n .

Combined with (6.6.10) and (6.6.11), this completes the proof.
Lemma 6.30. Let α = (

√
13− 3)/2 ≈ 0.303 be the unique positive solution of x = 1−2x

1+x . Then,
for any β ∈ (0,α) there exists c > 0 such that

P
{
X≥3n < βX≥2n − c logn infinitely often

}
= 0,

and for all n, E
[
X≥3n

]
≥ βE

[
X≥2n

]
− c logn.

Proof. The statements follow directly by applying Proposition 6.25, once we show that for
α as in the Lemma statement, forn ≥ 4, eitherX≥3n ≥ αX≥2n orE {

∆X≥3n
∣∣∣ Tn} ≥ αE {

∆X≥2n
∣∣∣ Tn} .Suppose that X≥3n < αX≥2n . Then, by (6.6.4),

E
{
∆X≥2n

∣∣∣ Tn} ≤ 1
2n
X≥2n +

1
2n
X≥3n ≤

1+α
2n

X≥2n . (6.6.12)
Moreover, observe that the case k = 2 of Lemma 6.27 gives that

X2
n = X

2,>2
n +X2,≤2

n , (6.6.13)
X≥3n ≥ X2,>2

n , and (6.6.14)
E
{
∆X≥3n

∣∣∣ Tn} ≥ 1
2n
X2,≤2
n . (6.6.15)
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Since X≥3n < αX≥2n , (6.6.14) implies that X2,>2
n < αX≥2n . Note that X≥2n = X2,>2

n +X2,≤2
n +X≥3n ,

so the bounds X2,>2
n < αX≥2n and X≥3n < αX≥2n together imply that X2,≤2

n > (1 − 2α)X≥2n .
Combining this bound with (6.6.15) and (6.6.12), we conclude that

E
{
∆X≥3n

∣∣∣ Tn} ≥ 1− 2α
2n

X≥2n ≥
1− 2α
1+α

E
{
∆X≥2n

∣∣∣ Tn} = αE {
∆X≥2n

∣∣∣ Tn} ,
as required.

Lemma 6.31. As n→∞, X≥3n →∞ almost surely.

Proof. By Theorem 6.6, the diameter of Tn is Θ(logn) almost surely. Thus,
X≥2n →∞ almost surely. (6.6.16)

Suppose for a contradiction that X≥3n does not go to infinity almost surely. That is, there
exists a positive constant c such that

P
{
∀n ∈ N, X≥3n <∞

}
= c > 0.

By continuity of probability, this implies that there exists some constant K such that
P
{
∀n ∈ N, X≥3n ≤ K

}
≥ c

2
> 0. (6.6.17)

Using the fact that X≥2n goes to infinity almost surely and X2
n = X

≥2
n −X≥3n for all n, we have

P
{
X2
n →∞

∣∣∣ ∀n ∈ N, X≥3n ≤ K}
= 1. (6.6.18)

Define τ to be the smallest time after which, for all n ≥ τ , Tn always contains at least two
neighbouring vertices each of degree two,

τ := inf{m : ∀n ≥m,∃u,v ∈ Tn, u ∼ v, dn(u) = dn(v) = 2}.

It follows from (6.6.18) that P
{
τ <∞ | ∀n ∈ N, X≥3n ≤ K

}
= 1. Note that ∆X≥3n = 1 if and only

if vertex n+1 attaches to a vertex of degree two. At time n ≥ τ this occurs with probability
at least 1/n. Thus, except for finitely many n,

E
{
∆X≥3n

∣∣∣ Tn, X≥3n ≤ K}
≥ 1
n
;

this implies that P
{
limnX

≥3
n > K

}
= 1, which contradicts our hypothesis.
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Lemma 6.32. As n→∞, X≥2n / logn→∞ almost surely.

Proof. Fix C > 0. We will show that
liminf
n→∞

X≥2n
logn

≥ C almost surely,
which implies the statement. Conditionally on Tn, ∆X≥2n is a Bernoulli random variable
with parameter E {

∆X≥2n
∣∣∣ Tn}. We prove that E {

∆X≥2n
∣∣∣ Tn} < C/n only finitely many times,

in order to couple (∆X≥2n )n≥1 to a sequence of independent Bernoulli random variables
with parameter C/n.
Let (Ui , i ≥ 1) be independent uniform random variables on [0,1]. Conditionally on Tn,
construct Tn+1 from Tn by setting ∆X≥2n = 1 if and only if Un < E

{
∆X≥2n

∣∣∣ Tn}, and then
sampling the additional randomness required to construct Tn+1 conditionally on Tn and
on the value of ∆X≥2n . Define a coupling between (∆X≥2n )n≥1 and (Bn)n≥1, a sequence of
independent Bernoulli random variables with parameterC/n, by setting Bn = 1 ifUn < C/nand Bn = 0 otherwise. It is immediate that ∆X≥2n ≥ Bn whenever E {

∆X≥2n
∣∣∣ Tn} ≥ C/n.

Lemma 6.29 states that E
{
∆X≥2n

∣∣∣ Tn} ≥ 1
3nX

≥3
n , and by Lemma 6.31, X≥3n → ∞ almost

surely, thus
E
{
∆X≥2n

∣∣∣ Tn} =ω (1/n) (6.6.19)
almost surely. Therefore, almost surely, E {

∆X≥2n
∣∣∣ Tn} < C/n only finitely many times, and

also ∆X≥2n < Bn only finitely many times. In particular
liminf
n→∞

X≥2n
logn

≥ liminf
n→∞

∑n
i=1Bi
logn

almost surely. We claim that ∑n
i=1Bi
logn

→ C almost surely. (6.6.20)
Indeed, let (Yj )j≥1 be a sequence of independent random variables satisfying Yj =∑⌊ej⌋

i=⌊ej−1⌋+1Bi . Then limj→∞E[Yj ] = C and E
[
Y 2
j

]
≤ 10C2. By Kolmogorov’s strong law of

large numbers [59, Theorem 3.2.],∑n
j=1Yj

n
→ C almost surely.

This implies the convergence of (6.6.20) along the subsequence (⌊ej⌋)j≥1, and, by
monotonicity, (6.6.20) follows.
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Corollary 6.33. For α = (
√
13−3)/2 the unique positive solution of x = 1−2x

1+x , for any β ∈ (0,α)
and for all n sufficiently large, E

[
X≥3n

]
≥ βE

[
X≥2n

]
.

By Lemma 6.30 we have EX≥3n ≥ βEX≥2n −c log(n), and by Lemma 6.32X≥2n =ω(logn)
almost surely; Corollary 6.33 follows.
Proposition 6.34. For α = (

√
13 − 3)/2 the unique positive solution of x = 1−2x

1+x , for any 0 <
δ < α/3 ≈ 0.101 we have n−δX≥2n →∞ almost surely.

Proof. By Lemmas 6.29 and 6.30, for all β ∈ (0,α) there exists a c > 0 such that

P
{
E
{
∆X≥2n

∣∣∣ Tn} < β

3n
(X≥2n − c logn) infinitely often} = 0 . (6.6.21)

Fix δ such that 0 < δ < β/3 and fix γ rational such that δ < γ < β/3. Lemma 6.32 states that
X≥2n = ω(logn) almost surely, therefore, almost surely there are only finitely many n such
that

β

3
(X≥2n − c logn) < γX≥2n ,

Define the time τ as
τ = 3∨ sup

{
n ≥ 1 : E

{
∆X≥2n

∣∣∣ Tn} < γnX≥2n }
.

As a consequence of (6.6.21), τ < ∞ almost surely. For n > τ , by the definition of τ , the
probability that X≥2n increases at time n is bounded from below by γX≥2n /n. It is therefore
natural to compare X≥2n to a generalised Pólya urn. We first introduce an urn process,
containing Bn black balls, and show that n−δBn→∞ almost surely. Conditionally on τ = t,
we then couple the sequences (X≥2n )n≥t and (Bn)n≥t and conclude the proof of Proposi-
tion 6.34.

To introduce the urn process, let M > 0 be an integer such that γ−1M is a positive
integer, and let t > 0 be another integer. Consider the urn process started at time t with
M black balls and tγ−1M −M white balls. At every time step, draw a ball from the urn
uniformly at random and return it to the urn together with γ−1M additional balls. If the
drawn ball is white, all of the additional balls are white. If the drawn ball is black, M of
the additional balls are black and the other (γ−1 − 1)M balls are white. Denote by Bn the
number of black balls in the urn at time n. Then at time n, the number of black balls Bnincreases byM with probabilityBn/(nγ−1M). The described urn is triangular since if a white
ball is drawn only white balls are added to the urn. The asymptotic behaviour of triangular
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urn processes has been studied by Janson [79]. Theorem 1.3.(v) in [79] implies that n−γBnconverges almost surely to some random variable Z , and Theorem 8.7. in [79] shows that
Z puts no mass on 0, so n−δBn→∞ almost surely as δ < γ .

We now introduce a coupling satisfying that (X≥2n )n≥t grows at least as fast as (Bn)n≥t ,on the event τ < t. To formalise this coupling, note that conditionally on τ = t, if n ≥ t, then
E
{
∆X≥2n

∣∣∣ Tn} ≥ γ
nX
≥2
n . Since ∆X≥2n ∈ {0,1},

P
{
∆(MX≥2n ) =M

∣∣∣ Tn} ≥ MX≥2n
nγ−1M

.

Remark that MX≥2t is at least M. Let (Un)n≥1 be a sequence of independent uniform ran-
dom variables on [0,1]. Conditionally on Tn, construct Tn+1 from Tn by setting ∆X≥2n = 1 if
and only ifUn ≤ E

{
∆X≥2n

∣∣∣ Tn} and sampling the remaining randomness in Tn+1 conditional
on Tn and the value of ∆X≥2n . Let Bt = 0 and for n ≥ t let ∆Bn =M if Bn/(nγ−1M) ≤Un and
∆Bn = 0 otherwise. Then (Bn)n≥t is distributed as the number of black balls in the Pólya urn
described above. We already noted that n−δBn → ∞ almost surely, and by our coupling
we have that on the event τ < t, MX≥2n ≥ Bn for all n ≥ t. Thus, for ε > 0

P
{
n−δX≥2n →∞

}
> P {τ < t} ≥ 1− ε .

Since τ is almost surely finite, ε can be chosen arbitrarily small, by taking t large, which
concludes the proof.

Lemma 6.35. Let γ = 3 − 2
√
2 ≈ 0.172 be the unique positive solution to x = 1−5x

1−x . Then for
any β ∈ (1−γ,1) there exists C > 0 such that

P
{
X≥3n > βX≥2n +C logn infinitely often

}
= 0

and for all n, E
[
X≥3n

]
≤ βE

[
X≥2n

]
+C logn.

Proof. We apply Proposition 6.25 to the sequences Xk = X≥2n and Yk = X≥3n . Note that
∆X≥2n +∆X≥3n ∈ {0,1}. It remains to show that there exists γ > 0 such that for all n, either

X≥2n ≥
1

1−γ
X≥3n or

E
{
∆X≥2n

∣∣∣ Tn} ≥ 1
1−γ

E
{
∆X≥3n

∣∣∣ Tn} .
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Lemma 6.35 follows then directly by applying Proposition 6.25. Suppose thatX≥2n < 1
1−γX

≥3
n .

Since X2
n = X

≥2
n −X≥3n , (6.6.5) gives that

E
{
∆X≥3n

∣∣∣ Tn} ≤ 4
3n

(X≥2n −X≥3n ) <
4γ
3n
X≥2n .

From Lemma 6.29 we see that
E
{
∆X≥2n

∣∣∣ Tn} ≥ 1
3nX

≥3
n > 1−γ

3n X
≥2
n .

Therefore,
E
{
∆X≥2n

∣∣∣ Tn} > 1−γ
4γ

E
{
∆X≥3n

∣∣∣ Tn} .
The statement follows from the choice of γ .
Proposition 6.36. Let δ = 1−γ/2, where γ = 3− 2

√
2. Then, for any δ < λ < 1,

n−λX≥2n → 0,

almost surely.

Proof. By (6.6.4), E {
∆X≥2n

∣∣∣ Tn} ≤ 1
2nX

≥2
n + 1

2nX
≥3
n . Combining this with Lemma 6.35 gives

that for any β ∈ (1−γ,1), there exists a C > 0 such that
P
{
E
{
∆X≥2n

∣∣∣ Tn} > 1+ β
2n

X≥2n +C logn infinitely often} = 0.

By mimicking the proof of Proposition 6.34, we can compare X≥2n to a generalised Pólya
urn and obtain an upper bound on∆X≥2n . Omitting the details of the coupling, we conclude
that for λ ∈ (1+β2 ,1) it holds that P

{
n−λX≥2n → 0

}
= 1.

Proof. [Proof of Theorem 6.11 and 6.12] The second part of Theorem 6.11 follows from
Proposition 6.36, by noting that X≥kn ≤ X≥2n and therefore, for any k ≥ 2,

n−λX≥kn → 0 a.s.
The upper bound in Theorem 6.12 follows directly since X≥k+1n ≤ X≥kn for all k.

By Proposition 6.34, limnn
−δX≥2n =∞ almost surely. We prove the remaining cases

in the first part of Theorem 6.11 and the lower bound of Theorem 6.12, by using induction
to prove that, almost surely, for all k ≥ 2,

(i) there exists a positive constant ck such that liminfnX≥k+1n /X≥kn > ck , and
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(ii) limnn
−δX≥k+1n =∞.

The fact that limnn
−δX≥2n =∞ almost surely and Lemma 6.30 imply that (i) holds for k = 2

for any 0 < c2 < α. This then also implies (ii) for k = 2.
Now, fix k ≥ 3 and suppose that the induction hypothesis holds for all 2 ≤ ℓ ≤ k−1.

Let bk ∈ (0,1) be the solution to
bk

1− 2bk
=
ck−1(k − 1)
k(k − 3/2)

,

and fix 0 < ck < bk . We claim that for all n, either

X≥k+1n ≥ bkX≥kn or
E
{
∆X≥k+1n

∣∣∣ Tn} ≥ bkE {
∆X≥kn

∣∣∣ Tn}
almost surely, except at finitely many times. If this holds, then applying Proposition 6.25
gives us that there exists C > 0 such that

P
{
X≥k+1n < ckX

≥k
n −C logn infinitely often} = 0.

By the induction hypothesis, n−δX≥kn →∞ and so
P
{
X≥k+1n /X≥kn < ck infinitely often} = 0 .

This implies that (i) holds at step k, which in turn implies part (ii).
It remains to prove the claim. Suppose that

X≥k+1n < bkX
≥k
n .

From (6.6.7), bkX≥kn > Xk,>kn , which combined with (6.6.6) implies that
Xkn < bkX

≥k
n +Xk,≤kn .

Now, using (6.6.8) gives
E
{
∆X≥k+1n

∣∣∣ Tn} > k − 1kn

(
Xkn − bkX≥kn

)
=
k − 1
kn

(
(1− bk)X≥kn −X≥k+1

)
,

where the equality holds since Xkn = X≥kn − X≥k+1n . Our assumption X≥k+1n < bkX
≥k
n then

gives
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E
{
∆X≥k+1n

∣∣∣ Tn} ≥ k − 1kn
(1− 2bk)X≥kn .

The induction hypothesis for k − 1 implies that almost surely X≥kn > ck−1X
≥k−1
n ≥

ck−1X
k−1
n , except at finitely many times. Therefore,

E
{
∆X≥k+1n

∣∣∣ Tn} ≥ ck−1(k − 1)kn
(1− 2bk)Xk−1n

except at finitely many times. But (6.6.9) implies that for all n sufficiently large we have
that Xk−1n ≥ k−3/2

n E
{
∆X≥kn

∣∣∣ Tn}, so we conclude that, except at finitely many times

E
{
∆X≥k+1n

∣∣∣ Tn} ≥ ck−1(k − 1)k(k − 3/2)
(1− 2bk)E

{
∆X≥kn

∣∣∣ Tn} .
This proves the claim by our choice of bk , which concludes the proof.

6.7 Open questions and future directions

We conclude with some open questions about the random friend tree.
1. In Theorem 6.11 we prove that, for some 0.1 < δ < λ < 0.9, almost surely nδ≪ X≥2n ≪
nλ. A question of interest would be whether the gap between the upper and lower
bound can be closed and whether, for some µ > 0 and some random variable X
with non-trivial support, n−µX≥2n → X almost surely. Simulations by Krapivsky and
Redner [93] suggest that X≥2n grows as nµ, with µ ≈ 0.566.

2. We prove that, for fixed k, the number of vertices with degree at least k +1 is of the
same order as the number of vertices with degree at least k, see Theorem 6.12. Can
we prove, for fixed k, that the number of degree-k nodes is of the same order as
the the number of degree-(k +1) nodes? Does it hold that limsupn→∞

X≥kn
X≥2n

goes to 0
as k goes to infinity? Or, informally, are most of the non-leaves vertices of bounded
degree? Krapivsky and Redner [93] conjecture that for each k, Xkn

X≥2n
has an almost

sure limit that is Θ(k−(1+µ)).
3. Is P {Zu > 0} decreasing in u? More generally, does Zu stochastically dominate Zv for
u < v?

4. Does it hold that ∑i≥1Zi = 1 almost surely?
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5. We know that every edge contains a vertex of linear degree, but the diameter of the
tree grows logarithmically, so there must be connected subtrees consisting of low-
degree vertices whose linear growth has not kicked in yet. This is illustrated by the
proof of Proposition 6.22, which shows that there are paths of lengthΘ(log(n)/ loglog(n))
that consist of just degree 2 vertices. It would be interesting to get a better under-
standing of the law of these exceptional substructures that contain most of the low-
degree vertices. What does the forest induced by the vertices of degree at most N ,
for large N , look like? Do these subtrees look like ‘young’ friend trees?

6. A natural extension of the model is to attach the new vertex to multiple, say m, ver-
tices. There are two variants: either Vn is a uniformly random vertex and the new
vertex n+1 attaches to m independently sampled random neighbours of Vn, or we
let V (1)

n , . . . ,V
(m)
n to be independent random vertices and we let n + 1 connect to a

uniform neighbour of each of the V (i)
n .

7. A second variation is to choose 0 < p < 1 and connect to Vn with probability p and
to Wn with probability 1− p. This modification makes it much easier for neighbours
of high-degree vertices to grow their degree, and in particular, the degree of every
vertex goes to infinity almost surely as the tree grows. It would be interesting to see
how much of the structure of the random friend tree remains after this modification.

8. Another final modification of the model, as described in the introduction, is to let
Wn be the endpoint of a random walk with k steps rather than 1 step from Vn. In the
case of k = 0, we obtain an URRT and if k is sufficiently large such that the random
walk is perfectly mixed, we get a PA tree. One could study how properties such as
the size of the largest degree depend on k.

6.8 Appendix

We prove Proposition 6.25. We start by stating and proving a technical lemma that is
needed for its proof.

We make use of the following straightforward fact. Fix a,b > 0 and let (Yk)k≥0 be a
random walk with steps in {−a,b} such that E [∆Yk] = c > 0. Then, P {∆Yk = b} = (a+c)/(a+b)
and by writing τ = inf{k ≥ 0 : Yk < 0}, we have P {τ =∞} > 0.
Lemma 6.37. Let B = (Bk)k≥0 be a random process adapted to a filtration (Fk)k≥0. Suppose
that there exist a,b > 0 such that, almost surely for each k, ∆Bk ∈ {−a,0,b}. Suppose further
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that there exists a constant c > 0 such that

E [∆Bk | Fk ,Bk < 0,∆Bk , 0] ≥ c .

Then, there exists a constant C = C(a,b,c) such that

P {Bn < −C logn infinitely often} = 0,

and E [Bn] ≥ −C logn.

Proof. We bound B from below by another, simpler process S = (Sn)n≥0. The conditions
of the lemma imply that we may couple Bwith a sequence (Yk)k≥0 of independent, random
variables taking values in {−a,b} with

P {Yk = b} =
a+ c
a+ b

= 1−P {Yk = −a} ,

such that for all k ≥ 0, on the event that Bk < 0 and ∆Bk , 0 we have ∆Bk ≥ Yk . We define
S via the following coupling with B:

1. if Bn ≥ 0, then Sn+1 = −a,
2. if Bn < 0 and ∆Bn = 0 then ∆Sn = 0,
3. if Bn < 0 and ∆Bn , 0 then ∆Sn = Yn.

An illustration of the coupling can be found in Figure 6.4. SinceBn ≥ 0 impliesBn+1 ≥ −a, it is
immediate that Sn ≤ Bn for all n ≥ 0. The process S is a sequence of independent negative
(incomplete) excursions of a random process that, restricted to the non-constant steps,
has independent increments with positive mean except for finitely many times almost
surely. There are at most n/2 such excursions by time n, and if we collapse the constant
steps, they are independent realisations of a random walk with step size in {−a,b} and drift
c, started at −a and ended before (or when) reaching 0. To understand their minimum, let
us denote by R = (Rn)n≥0 a random walk starting at 0, with steps in {−a,b} and strictly
positive drift c. We define

τ1 = inf {k : Rk < 0} ,

and
τℓ = inf

{
k > τℓ−1 : Rk < Rτℓ−1

}
.

With positive probability, R stays positive forever, and in particular, using the fact stated
just before Lemma 6.37, there exists 0 < p < 1 such that

0 < 1− p = P {τℓ =∞|τℓ−1 <∞} .
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Figure 6.4: Illustration of a coupling between B (in blue) and S (in red).

Since the increments are bounded from below by −a, we know that Rτℓ −Rτ(ℓ−1) ≥ −a, which
together with the previous identity implies that

min
k≥1
{Rk}⪰st − a ·Geom(1− p) .

From the definition of the coupling, we know that Bn ≥ Sn and that Sn + a stochastically
dominates the minimum of n realisations of (Rk)k≥0. Let (An)n≥1 be independent Geom(1−
p) random variables. Then

P {Sn ≤ −a(k +1)} ≤ P
{
max
i∈[n]

Ai ≥ k
}
≤ npk .

The upper bound is at most n−2 if k ≥ −3logn/ logp and the first assertion follows from
the Borel–Cantelli lemma. Taking k = −3logn/ logp + ℓ, the above bound likewise implies
that

P
{
−Sn
a

+3logn/ logp ≥ ℓ +1
}
≤ np−3logn/ logppℓ,

and summing over ℓ ≥ 0 gives the bound
E
[
−Sn
a

+3logn/ logp
]
≤ np−3logn/ logp 1

1− p
,

which establishes the second assertion of the lemma.
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We are now ready to prove the proposition. Proof. [Proof of Proposition 6.25] We
start by proving Proposition 6.25 in the case where the hypothesis holds for all n (and not
all but finitely many n). Let β ∈ (0,α). We prove the proposition by applying Lemma 6.37
to the process B = (Bk)k≥0 with Bk := Xk −βYk . Note that B has increments in {−β,0,1}. We
need to show that there exists a constant c such that for all k,

E {∆Bk | Fk ,Bk < 0,∆Bk , 0} ≥ c . (6.8.1)
Define

p+k = P {∆Xk = 1 | Fk , (∆Xk ,∆Yk) , (0,0)} = P {∆Bk = 1 | Fk ,∆Bk , 0}

and so
1− p+k = P {∆Yk = 1 | Fk , (∆Xk ,∆Yk) , (0,0)} = P

{
∆Bk = −β

∣∣∣ Fk ,∆Bk , 0} .
Note that, if {Bk < 0}, then {Xk < βYk}, and so E {∆Xk | Fk} ≥ αE {∆Yk | Fk}, which implies
that p+k ≥ α(1−p+k ). We split the event {Bk < 0} into two cases and show thatE {∆Bk | Fk ,∆Bk , 0}
is bounded below by some positive constant in both cases. If Bk < 0 and p+k ≤ 1/2+β

1+β , then
E {∆Bk | Fk ,∆Bk , 0} = p+k − β(1− p

+
k ) ≥ (α − β)(1− p+k ) ≥

(α − β)
2 + 2β

.

On the other hand, if Bk < 0 and p+k > 1/2+β
1+β , then

E {∆Bk | Fk ,∆Bk , 0} = p+k (1 + β)− β ≥ 1/2.

Therefore, (6.8.1) holds, with a lower bound of min
{ (α−β)
2+2β ,1/2

} for c, and the claim then
directly follows from Lemma 6.37.

Finally, we prove that the first statement in the proposition still holds when the
assumptions fail at a finite number of times.

We call a time k bad when E [∆Xk | Fk] < αE [∆Yk | Fk] and {Xk < αYk}; otherwise we
call it good. We couple (X,Y ) to a slightly modified process (X ′ ,Y ′) that has the same in-
crements as (X,Y ) except at bad times, and that satisfies the assumptions at all times.
Observe that for each k, given Fk , we know whether k is bad or not. If k is bad, set
(∆X ′k ,∆Y

′
k) = (1,0). If k is good, set (∆X ′k ,∆Y ′k) = (∆Xk ,∆Yk). We claim that (X ′ ,Y ′) satis-

fies the assumptions at all times. The requirement 0 ≤ ∆X ′k +∆Y ′k ≤ 1 for all k is obviously
satisfied. Moreover, for bad k, E

[
∆X ′k | Fk

]
= 1 and E

[
∆Y ′k | Fk

]
= 0, so at bad times the

second requirement is also satisfied. Finally, by construction, X ′k ≥ Xk and Y ′k ≤ Yk for all
k, so if k is good and {X ′k < αY ′k}, then also {Xk < αYk}, and therefore

E
[
∆X ′k | Fk

]
= E [∆Xk | Fk] ≥ αE [∆Yk | Fk] = αE

[
∆Y ′k | Fk

]
.
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Then, the first part of the proof implies that for any β ∈ (0,α) there exists C > 0 such that
P {X ′n < βY ′n −C logn i.o.} = 0. Finally, for B the total number of bad times, for each k it
holds that X ′k ≤ Xk +B and Y ′k ≥ Yk −B. This implies that if Xk < βYk − 2C logk then either
X ′k < βY

′
k −C logn or 2B > C logk. Therefore,

P {Xn < βYn − 2C logn i.o.} ≤ P
{
X ′n < βY

′
n −C logn i.o.}+P {B =∞} = 0.
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Chapter 7

On the quality of randomized
approximations of Tukey’s depth
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Abstract

Tukey’s depth (or halfspace depth) is a widely used measure of centrality for multivariate
data. However, exact computation of Tukey’s depth is known to be a hard problem in
high dimensions. As a remedy, randomized approximations of Tukey’s depth have been
proposed. In this chapter we explore when such randomized algorithms return a good
approximation of Tukey’s depth. We study the case when the data are sampled from a
log-concave isotropic distribution. We prove that, if one requires that the algorithm runs
in polynomial time in the dimension, the randomized algorithm correctly approximates
the maximal depth 1/2 and depths close to zero. On the other hand, for any point of
intermediate depth, any good approximation requires exponential complexity.



This Chapter is based on a joint work with Gábor Lugosi and Roberto Imbuzeiro Oliveira
(Briend, Lugosi, and Oliveira [28]).

7.1 Introduction

Ever since Tukey introduced a notion of data depth [137], it has been an important tool of
data analysts to measure centrality of data points in multivariate data. Apart from Tukey’s
depth (also called halfspace depth), many other depth measures have been developed,
such as simplical depth (Liu [99, 100]), projection depth (Liu [101], Zuo and Serfling [143]),
a notion of “outlyingness” (Stahel [134], Donoho [56]), and the zonoid depth (Dyckerhoff,
Mosler, and Koshevoy [61], Koshevoy and Mosler [92]). Each of these notions offer distinct
stability and computability properties that make them suitable for different applications
(Mosler and Mozharovskyi [111]). For surveys of depth measures and their applications we
refer the reader to Mosler [110], Aloupis [5], Dyckerhoff and Mozharovskyi [60], and Nagy
et al. [114].

Tukey’s depth is defined as follows: for x ∈ Rd and unit vector u ∈ Sd−1 (where Sd−1
is the unit sphere of Rd under the euclidean norm), introduce the closed half space

H(x,u) =
{
y ∈ Rd : ⟨y,u⟩ ≤ ⟨x,u⟩

}
,

where ⟨·, ·⟩ is the usual scalar product on Rd . Given a set of n data points {x1, . . . ,xn} in Rd ,
for each x ∈ Rd , define the directional depth

rn(x,u) =
1
n

n∑
i=1

1xi∈H(x,u) .

The depth of x in the point set {x1, . . . ,xn} is defined as
dn(x) = inf

u∈Sd−1
rn(x,u) .

Note that, due to the normalization in our definition, dn(x) ∈ [0,1/2] for all x ∈ Rd . Tukey’s
depth possesses properties expected of a depth measure. It is affine invariant, it vanishes
at infinity, and it is monotone decreasing on rays emanating from the deepest point. It is
also robust under a symmetry assumption (Donoho and Gasko [57]).

A well-known disadvantage of Tukey’s depth is that even its approximate computa-
tion is known to be a np-hard problem (Amaldi and Kann [6], Bremner et al. [24], Johnson
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and Preparata [85]), presenting challenges for applications (as it is conjectured no polyno-
mial time algorithms exist to solve np-hard problems). While fast algorithms exist for com-
puting the depth of the deepest point in two dimensions (Chan [37]), the computational
complexity grows exponentially with the dimension. Chan [37] gives a maximum-depth
computation algorithm of complexity O(nd−1).

The curse of dimensionality affects several other depth measures, posing signifi-
cant challenges in multivariate analysis. To address these challenges, focus has been put
on developing approximation algorithms. Dyckerhoff, Mozharovskyi, and Nagy [62] em-
phasize the importance of finding such algorithms and Shao et al. [131] propose mcmc
methods for approximating the projection depth. Zuo [142] suggests an approximate ver-
sion of Tukey’s depth and provides an algorithm with linear time complexity in the dimen-
sion, though the proposed version may be a poor approximation of Tukey’s depth.

A natural way of approximating Tukey’s depth, proposed by Cuesta-Albertos and
Nieto-Reyes [45], is a randomized version in which the infimum over all possible directions
u ∈ Sd−1 in the definition of dn(x) is replaced by the minimum over a number of randomly
chosen directions. More precisely, let U1, . . . ,Uk be independent identically distributed
vectors sampled uniformly on the unit sphere Sd−1, and define the random Tukey depth
(with respect to the point set {x1, . . . ,xn}) as

Dn,k(x) = min
i=1,...,k

rn(x,Ui) .

It is easy to see that for every x ∈ Rd , limk→∞Dn,k(x) = dn(x) with probability 1. However,
this randomized approach is only useful if the number of random directions k is reasonably
small so that computation is feasible. The purpose of this chapter is to explore the tradeoff
between computational complexity and accuracy. In particular, we may ask how large
k has to be in order to guarantee that, for given accuracy and confidence parameters
ϵ ∈ (0,1/2) and δ ∈ (0,1), |Dn,k(x)− dn(x)| ≤ ϵ with probability at least 1− δ.

It is easy to see that the value of k required to satisfy the property above may
be arbitrarily large. To see this, consider the two-dimensional example in which, for i =
1, . . . ,n, the points xi = (xi,1,xi,2) are defined by

xi,1 =
i
n
, xi,2 = a

( i
n

)2
where a > 0 is a parameter. For any k, as a→ 0, the random depth fails to approximate
dn(xn/2) = 1/n (see the Introduction for more details about this example).

In order to exclude the anomalous behaviour of the example above, we assume
that the points xi are drawn randomly from an isotropic log-concave distribution µ. Re-
call that a distribution µ is log-concave if it is absolutely continuous with respect to the
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Lebesgue measure, with density f of the form f (x) = e−g(x) where g : Rd → R is a convex
function. µ is isotropic if for a random vector X distributed by µ, the covariance matrix
E(X −EX)(X −EX)T is the identity matrix. Examples of log-concave distributions include
Gaussian distributions and the uniform distribution on a convex body in Rd .

For random data, one may introduce the “population” counterpart of rn defined by
r(x,u) = µ(H(x,u)) .

Similarly, the population versions of the Tukey depth and randomized Tukey depth are
defined by

d(x) = inf
u∈Sd−1

r(x,u) and Dk(x) = min
i=1,...,k

r(x,Ui) .

As it was observed by Cuesta-Albertos and Nieto-Reyes [45] and Chen, Gao, and Ren [39],
as long as n≫ d, the population versions of the Tukey depth d(x) and randomized Tukey
depth Dk(x) are good approximations of dn(x) and Dn,k(x), respectively. This follows from
standard uniform convergence results of empirical process theory based on the vc dimen-
sion. The next lemma quantifies this closeness. For completeness we include its proof in
the Appendix.
Lemma 7.1. Let δ > 0. If X1, . . . ,Xn are independent, identically distributed random vectors in
Rd , then

P

supx∈Rd
|d(x)− dn(x)| ≥ c

√
d
n
+

√
log(1/δ)

2n

 ≤ δ
where c is a universal constant. Also, given any fixed values of U1, . . . ,Uk ,

P

 sup
x∈Rd
|Dk(x)−Dn,k(x)| ≥ c

√
min(d, log(k))

n
+

√
log(1/δ)

2n

∣∣∣∣∣∣∣U1, . . . ,Uk

 ≤ δ
Thanks to Lemma 7.1, in the rest of the chapter we restrict our attention to the

population quantities d(x) and Dk(x) and we may forget the data points X1, . . . ,Xn. In par-
ticular, we are interested in finding out for what points x ∈ Rd and k ≥ 0 the random Tukey
depth Dk(x) is a good approximation of d(x). To this end, we fix an accuracy ϵ > 0 and a
confidence level δ > 0 and ask that

Dk(x)− d(x) ≤ ϵ holds with probability at least 1− δ. (7.1.1)
(Note that, by definition, Dk(x) ≥ d(x) for all x and k.) The main results of the chapter
show an interesting trichotomy: for most “shallow” points (i.e., those with d(x) ≤ ϵ), we
have Dk(x) ≤ ϵ with probability at least 1− δ even for k of constant order, depending only
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on ϵ and δ. When x has near maximal depth in the sense that d(x) ≈ 1/2 (note that such
points may not exist unless the density of µ is symmetric), then for values of k that are
slightly larger than a linear function of d, (7.1.1) holds. However, in sharp contrast with
this, for points x of intermediate depth, k needs to be exponentially large in d in order to
guarantee (7.1.1). Hence, roughly speaking, the depth of very shallow and very deep points
can be efficiently approximated by the random Tukey depth but for all other points, any
reasonable approximation by the random Tukey depth requires exponential complexity.

7.1.1 Related literature

Cuesta-Albertos and Nieto-Reyes [45] explore various properties of the random Tukey
depth and report good experimental behavior. The maximum discrepancy between dnand its randomized approximation has also been studied by Nagy et al. [115]. They estab-
lish conditions under which supx∈Rd

(
Dk(x)− d(x)

)
→ 0 as k→∞ and provide bounds for

the rate of convergence. As opposed to the global view of [115], our aim is to identify the
points x for which the random Tukey depth approximates well d(x) for values of k that are
polynomial in the dimension.

Brazitikos, Giannopoulos, and Pafis [23] show that the average depth ∫
d(x)dµ(x)

is exponentially small in the dimension when µ is log-concave.
Brunel [31] studies convergence of the empirical level sets when the data points

are drawn independently from the same distribution.
Chen et al. [38] study the quality of other randomized approximations of the Tukey

depth for point sets in general position.

7.1.2 Contributions and outline

As mentioned above, the main results of this chapter show that, for isotropic log-concave
distributions, the quality of approximation of the random Tukey depth varies dramatically,
depending on the depth of the point x.

Most points have a small random Tukey depth

In Section 7.2 we establish results related to shallow points. It follows from results of
Brazitikos et al. [23] and Markov’s inequality that all but an exponentially small (in the
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dimension) fraction of points are shallow in the sense that, for all ϵ > 0,
µ
({
x ∈ Rd : d(x) > ϵ

})
≤ e
−cd

ϵ
,

where c > 0 is a universal constant. The main result of Section 7.2 is that, in high dimen-
sions, not only most points are shallow but most points even have a small random Tukey
depth for k of constant order, only depending on the desired accuracy. In particular, The-
orem 7.5 implies the following.

Corollary 7.2. Assume that µ is an isotropic log-concave measure on Rd . There exist
universal constants c,κ,C > 0 such that for any ϵ,δ,γ > 0, if

k =
⌈
max

(
C,

4
ϵ
log

3
γ
,
2
c
log

4
δ

)⌉
,

and the dimension d is so large that

d ≥max

(3(k +1)
γ

)1/κ
,
64log(1/ϵ)k

π
log

3k
γ
,

(
1
c
log

6k
δ

)2
,
(2
ϵ

)κ ,
then, with probability at least 1− δ,

µ
({
x ∈ Rd :Dk(x) > ϵ

})
< γ .

Of course, Dk(x) ≤ ϵ implies that d(x) ≤ ϵ and, in particular, that Dk(x) − d(x) ≤ ϵ.
Thus, Corollary 7.2 implies that the random Tukey depth of most points (in terms of the
measureµ) is a good approximation of the Tukey depth after taking just a constant number
of random directions. All of these points are shallow in the sense that d(x) ≤ ϵ.

It is natural to ask whether the Tukey depth of every shallow point is well approxi-
mated by its random version. However, this is false as the following example shows.
Example. Let µ be the uniform distribution on [−(3/2)1/3, (3/2)1/3]d so that µ is isotropic
and log-concave on Rd . If x = ((3/2)1/3,0, . . . ,0), then d(x) = 0, but it is a simple exercise to
show that Dk ≥ 1/4 with high probability, unless k is exponentially large in d.

Intermediate depth is hard to approximate

Arguably the most interesting points are those whose depth is in the intermediate range,
bounded away from 0 and 1/2. Unfortunately, for all such points, the random Tukey depth
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is an inefficient approximation of the Tukey depth. In Section 7.3 we show that for all points
in this range, the random Tukey depth Dk(x) is close to 1/2, with high probability, unless k
is exponentially large in the dimension. Hence, in high dimensions,Dk(x) fails to efficiently
approximate the true depth d(x). In particular, Theorem 7.8 implies the following.

Corollary 7.3. Assume that µ is an isotropic log-concave measure on Rd and let δ ∈
(0,1). For any γ ∈ (0,1/2), there exists a positive constant c = c(γ) such that if x ∈ Rd

is such that d(x) = γ , then for every ϵ < c, if k ≤ δedϵ2 log
2(1/ϵ)/c, then, with probability at

least 1− δ,
Dk(x)− d(x) ≥ ϵ .

Points of maximum depth are easy to localize

As mentioned above, the Tukey depth d(x) of any x ∈ Rd is at most 1/2. If d(x) = 1/2, then
for every u ∈ Sd−1, the median of the projection ⟨X,u⟩ equals ⟨x,u⟩ (where the random
vector X is distributed as µ). Such points are quite special and may not exist at all. If there
exists an x ∈ Rd with d(x) = 1/2, then the measure µ is called halfspace symmetric (see Nagy
et al. [114], Zuo and Serfling [144]). It is easy to see that if µ is halfspace symmetric, there is a
uniquem ∈ Rd with d(m) = 1/2. We callm the Tukey median of µ. Centrally symmetric mea-
sures are halfspace symmetric though the converse does not hold in general. Remarkably,
if µ is the uniform distribution over a convex body and it is halfspace symmetric, then it is
also centrally symmetric, see Funk [70], Schneider [128].

We note that for any log-concave measure, 1/e ≤ supx∈Rd d(x) ≤ 1/2, see Nagy et al.
[114, Theorem 3].

Ifm ∈ Rd is such that d(m) = 1/2, then clearlyDk(m) = 1/2 for all k ≥ 1. In Section 7.4
we show that, for values of k that are only polynomial in d, points with Dk(x) ≈ 1/2 must
be close to x. Hence, the random Tukey depth efficiently estimates the Tukey median
for halfspace symmetric isotropic log-concave distributions. More precisely, Theorem 7.9,
combined with Lemma 7.1 implies the following.
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Corollary 7.4. Assume that µ is an isotropic log-concave, halfspace symmetric mea-
sure on Rd . Let X1, . . . ,Xn be independent random vectors distributed as µ. Let
mn,k ∈ Rd be an empirical random Tukey median, that is, mn,k is such that Dn,k(mn,k) =
maxx∈Rd Dn,k(x). There exist universal constants c,C > 0 such that for any δ ∈ (0,1) and
γ ∈ (0, c), if n ≥ Cd/γ2 and

k ≥ c (d logd + log(1/δ)) ,

then ∥mn,k −m∥ ≤ Cγ
√
d with probability at least 1− δ.

By taking γ of the order of 1/√d, the corollary above shows that, as long as n≫ d2,
it suffices to takeO(d logd) random directions so that the empirical random Tukey median
is within distance of constant order of the Tukey median. Note that, due to the “thin-shell”
property of log-concave measures (see, e.g., [63]), the measure µ is concentrated around
a sphere of radius √d centered at the Tukey median m and hence localizing m to within a
constant distance is a nontrivial estimate.

One may even take γ to be smaller order than 1/
√
d and get a better precision with

the same value of k. However, for better precision, one requires the sample size n to be
larger.

7.2 Random Tukey depth of typical points

In this section we show that for isotropic log-concave distributions, in high dimensions, a
constant number k of random directions suffice to make the random Tukey depthDk small
for most points. In other words, the curse of dimensionality is avoided in a strong sense. In
particular, we prove the following theorem that implies Corollary 7.2 in a straightforward
manner.
Theorem 7.5. Assume that µ is an isotropic log-concave measure on Rd . There exist universal
constants c,κ > 0 such that the following holds. Let ϵ > 0 and suppose that d is so large that
d−κ ≤ ϵ/2. Then for every k ≤ cdκ,

µ
(
{x ∈ Rd :Dk(x) > ϵ}

)
≤ (1− ϵ/4)k + (k +1)d−κ + ke

−dπ
64log(1/ϵ)k

with probability at least 1− ke−ck − 3ke−c
√
d over the choice of directions U1, . . . ,Uk .

Our main tool is the following extension of Klartag’s celebrated central limit theo-
rem for convex bodies (Klartag [87]). LetGd,k denote the grassmannian of all k-dimensional
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subspaces of Rd and let σd,k be the unique rotationally invariant probability measure on
Gd,k .
Proposition 7.6. (Klartag [88].) Let the random vector X take values in Rd and assume that
X has an isotropic log-concave distribution. Let Sk be a random k-dimensional subspace of Rd
drawn from the distribution σd,k . There exist universal constants c,κ > 0 such that the following
holds: if k ≤ cdκ, then with probability at least 1− e−c

√
d , for every measurable set A ⊂ Sk ,

|P{πk(X) ∈ A} −P{N ∈ A}| ≤ d−κ

whereN is a k-dimensional normal vector in Sk with zero mean and identity covariance matrix,
and πk is the orthogonal projection on Sk .

Proof of Theorem 7.5: First note that the random subspace of Rd spanned by the inde-
pendent uniform vectorsU1, . . . ,Uk has a rotation-invariant distribution and therefore it is
distributed by σd,k over the grassmannian Gd,k .

For any u ∈ Sd−1, define q(ϵ,u) as the ϵ-quantile of the distribution of ⟨X,u⟩, that
is,

µ({x : ⟨x,u⟩ ≤ q(ϵ,u)}) = ϵ .

Observe that, by Proposition 7.6 (applied with k = 1) and the union bound, with probability
at least 1− ke−c√d ,

for all i = 1, . . . , k, q(ϵ,Ui) ≥ Φ−1(ϵ/2)

whenever d is so large that d−κ ≥ ϵ/2 where Φ(z) =
∫ z
−∞(2π)

−1/2e−x
2/2dx denotes the stan-

dard Gaussian cumulative distribution function.
Then, with probability at least 1− ke−c√d ,

µ
({
x :Dk(x) > ϵ

})
= µ

({
x : min

i=1,...,k
µ(H(x,Ui)) > ϵ

})
= µ ({x : ⟨x,Ui⟩ > q(ϵ,Ui) for all i = 1, . . . , k})
≤ µ

({
x : ⟨x,Ui⟩ > Φ−1(ϵ/2) for all i = 1, . . . , k

})
If the Ui were orthogonal, we could now use Proposition 7.6. This is not the case

but almost. In order to handle this issue, we perform Gram-Schmidt orthogonalization
defined, recursively, by V1 =U1 and, for i = 2, . . . , k,

Ri =
i−1∑
j=1

⟨Ui ,Vj⟩Vj and Vi =
Ui −Ri
∥Ui −Ri∥

.
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Then V1, . . . ,Vk are orthonormal vectors, spanning the same subspace as U1, . . . ,Uk .
Now, we may write

µ
({
x :Dk(x) > ϵ

})
≤ µ

({
x : ⟨x,Ui⟩ > Φ−1(ϵ/2) for all i = 1, . . . , k

})
≤ µ

({
x : ⟨x,Vi⟩ > Φ−1(ϵ/4) for all i = 1, . . . , k

})
+µ

({
x : ⟨x,Ui −Vi⟩ > Φ−1(ϵ/2)−Φ−1(ϵ/4) for some i = 1, . . . , k

})
≤ µ

({
x : ⟨x,Vi⟩ > Φ−1(ϵ/4) for all i = 1, . . . , k

})
+

k∑
i=1

µ

({
x : ⟨x,Ui −Vi⟩ >

√
2π

4log(1/ϵ)

})
, (7.2.1)

where the last inequality follows from the union bound and the inequality
Φ−1(ϵ/2)−Φ−1(ϵ/4) ≥

√
2π

4log(1/ϵ)
. (7.2.2)

Indeed, since Φ−1 is concave on [0,1/2], we have
Φ−1(ϵ/2)−Φ−1(ϵ/4)

ϵ/4
≥ (Φ−1)′(ϵ/2) .

Using the fact that (Φ−1)′ = 1/(Φ ′Φ−1) and Φ ′(t) = 1√
2π
e−t

2/2,
Φ−1(ϵ/2)−Φ−1(ϵ/4) ≥ ϵ

4

√
2πeΦ

−1(ϵ/2)2/2 . (7.2.3)
By Gordon’s inequality for the Mills’ ratio (Gordon [73]), for t ≤ 0,

Φ(t) ≥ − 1
√
2π

t

t2 +1
e−t

2/2 ,

and therefore
t ≥ Φ−1

(
− 1
√
2π

t

t2 +1
e−t

2/2
)
,

leading, for t < −1, to
t ≥ Φ−1

−e−t2/210t

 . (7.2.4)
Choosing tϵ = −√2log(1/ϵ)

√
1− loglog(1/ϵ)

log(1/ϵ) for ϵ < e−2 and noting that
−e
−t2ϵ /2

10tϵ
≥ ϵ/2,
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(7.2.4) implies that
−
√
2log(1/ϵ)

√
1−

loglog(1/ϵ)
log(1/ϵ)

≥ Φ−1(ϵ/2) .

Plugging this inequality into (7.2.3)
Φ−1(ϵ/2)−Φ−1(ϵ/4) ≥

√
2π

4log(1/ϵ)
,

proving (7.2.2).
As ⟨x,V1⟩, . . . ,⟨x,Vk⟩ are coordinates of the orthogonal projection of x on the ran-

dom subspace spanned by U1, . . . ,Uk , we may use Proposition 7.6 to bound the first term
on the right-hand side of (7.2.1). Let N1, . . . ,Nk be independent standard normal random
variables. Then by Proposition 7.6, with probability at least 1− e−c√d ,

µ
({
x : ⟨x,Vi⟩ > Φ−1(ϵ/4) for all i = 1, . . . , k

})
≤ P{Ni > Φ−1(ϵ/4) for all i = 1, . . . , k}+ d−κ

= P{N1 > Φ−1(ϵ/4)}k + d−κ

= (1− ϵ/4)k + d−κ

It remains to bound the second term on the right-hand side of (7.2.1). Once again, we use
Proposition 7.6. By rotational invariance, the distribution ofUi −Vi/∥Ui −Vi∥ is uniform on
Sd−1 and therefore the distribution of µ({x : ⟨x,Ui −Vi⟩ > √

2π
4log(1/ϵ)

}) is the same as that of

µ

({
x : ⟨x,W ⟩ >

√
2π

4log(1/ϵ)∥Ui −Vi∥

})
(if ϵ ≤ 1/2) whereW is uniformly distributed on Sd−1, independent ofU1, . . . ,Un. .By Lemma
7.7 below, with probability at least 1− ke−ck ,

maxi=1,...,k ∥Ui −Vi∥ ≤
√
4k/d.

Combining this with Proposition 7.6, we have that, with probability at least 1−ke−ck−
ke−c

√
d ,

k∑
i=1

µ

({
x : ⟨x,Ui −Vi⟩ >

√
2π

4log(1/ϵ)

})
≤ kd−κ + kP

N >

√
2π

4log(1/ϵ)

√
d
4k


≤ kd−κ + ke

−dπ
64log(1/ϵ)k .
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In order to complete the proof of Theorem 7.5, it remains to prove the following
simple inequality.
Lemma 7.7. For every i = 1, . . . , k, with probability at least 1− e−ck ,

∥Ui −Vi∥ ≤
√

4k
d

where c is a universal constant.

Proof. Note that, since ∥Ri∥2 = ⟨Ui ,Ri⟩,
⟨Ui ,Vi⟩ =

1− ⟨Ui ,Ri⟩
∥Ui −Ri∥

=
√
1− ∥Ri∥2 ≤ 1− ∥Ri∥2

and therefore
∥Ui −Vi∥2 = 2(1− ⟨Ui ,Vi⟩) ≤ 2∥Ri∥2 = 2

i−1∑
j=1

⟨Ui ,Vj⟩2 .

We may writeUi = Zi/∥Zi∥whereZi is a Gaussian vector in Rd with zero mean and identity
covariance matrix. Since Zi is independent of V1, . . . ,Vi−1 and the Vj are orthonormal,∑i−1
j=1⟨Zi ,Vj⟩2 is a χ2 random variable with i −1 degrees of freedom. Thus, ∥Ui −Vi∥2 is the

ratio of a χ2(i −1) and a χ2(d) random variable (which are not independent). By standard
tail bounds of the χ2 distribution (see, e.g., [19]), with probability at least 1− e−ck ,

∥Ui −Vi∥2 ≤
4k
d
.

7.3 Estimating intermediate depth is costly

In this section we prove that, even though the random Tukey depth is small for most points
x ∈ Rd (according to the measure µ), whenever the depth d(x) of a point is not small, its
random Tukey depthDk(x) is close to 1/2, unless k is exponentially large in d. This implies
that for points whose depth is bounded away from 1/2, the random Tukey depth is a poor
approximation of d(x).

The main result of the section is the following theorem that immediately implies
Corollary 7.3 stated in Section 6.1.
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Theorem 7.8. Assume that µ is an isotropic log-concave measure on Rd and let 0 < γ < 1/2.
Let x ∈ Rd be such that d(x) = γ and let ϵ > 0. Then

P

Dk(x) ≤
1
2
−Cγ

ϵ

log
(
1
ϵ

) ≤ 2ke−(d−1)ϵ
2/2 ,

where Cγ > 0 is a constant depending only on γ .

Proof. Without loss of generality, we may assume that the origin has maximal depth, that
is, d(0) = supx∈Rd d(x). Fix x ∈ Rd with d(x) = γ , and note that d(0) ≥ γ .

The main tool of this proof is Lévy’s isoperimetric inequality (Schmidt [127], Lévy
[98], see also Ledoux [96]). It states that if the random vector U is uniformly distributed
on the sphere Sd−1 and A a is Borel-measurable set such that P{U ∈ A} ≥ 1/2, then for any
ϵ > 0,

P
{
inf
v∈A
∥U − v∥ ≥ ϵ

}
≤ 2e−(d−1)ϵ

2/2 . (7.3.1)
Lévy’s inequality may be used to prove concentration inequalities for smooth functions of
the random vector U . Our goal is to prove that the measure µ(H(x,U )) of the random
halfspace H(x,U ) is concentrated around its median 1/2.

In order to prove smoothness of the function µ(H(x,u)) (as a function of u ∈ Sd−1),
fix u,v ∈ Sd−1, u , v. Consider the 2-dimensional cone spanned by the segments (x,u) and
(x,v) defined by

C(x,u,v) =
{
x+ au + bv : a,b ∈ R+} .

Denote byH the only two-dimensional affine space containing x, x+u, x+ v.
We also define PH as the orthogonal projection ontoH. Denoting by µ̃ = PH#µ and

H̃(x,u) = PH (H(x,u)), we have
µ(H(x,u)) = µ̃

(
H̃(x,u)

)
.

Thus, after projecting on the planeH, it suffices to control
|µ(H(x,u))−µ(H(x,v))| =

∣∣∣∣µ̃(H̃(x,u)
)
− µ̃

(
H̃(x,v)

)∣∣∣∣
=

∣∣∣∣µ̃(C(x,u⊥,v⊥))− µ̃(C(x,−u⊥,−v⊥))∣∣∣∣
≤ µ̃

(
C(x,u⊥,v⊥)

)
+ µ̃

(
C(x,−u⊥,−v⊥)

)
, (7.3.2)

that is, the measure of two cones in a 2 dimensional affine space. Here, given an arbitrary
orientation to the plane H, u⊥ and v⊥ are the only unit vectors orthogonal to u and v,
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Figure 7.1: Illustration of the cones C(x,u⊥,v⊥) and C(x,−u⊥,−v⊥).
respectively, in H such that u⊥ and v⊥ are rotated 90 degrees counter-clockwise from u
and v, see Figure 7.1.

Since the measure µ̃ is itself an isotropic log-concave measure (see Saumard and
Wellner [126, Section 3], Prékopa [120]), the problem becomes two dimensional. Next, we
show that neither ∥x∥ nor |mv | are too large, wheremv denotes the median of the random
variable ⟨X,v⟩. (Note that mv is uniquely defined since ⟨X,v⟩ is log-concave and therefore
has a unimodal density.)

In the Appendix we gather some useful facts on log-concave densities. In particular,
Lemma 7.13 shows that any one dimensional log-concave density with unit variance is
upper bounded by an exponential function centered at the median of the log-concave
density. Since d(0) ≤ r(0,v) for all v ∈ Sd−1, Lemma 7.13 implies that there exist universal
constants c1, c2 > 0 such that

d(0) ≤ c1e−c2|mv | .

Since d(0) ≥ γ , we have
c2|mv | ≤ log(c1/γ) . (7.3.3)

Moreover, since d(x) ≥ γ , the same argument leads to
γ ≤ c1e−c2|⟨x,v⟩−mv | .

Using the above with v = x/ ∥x∥ and the inequality |a− b| ≥ |a| − |b| yields
c2∥x∥ ≤ log(c1/γ) + c2|mx/∥x∥| ,

which, put together with (7.3.3), implies
∥x∥ ≤ c log(c1/γ) , (7.3.4)

for a positive constant c. In particular, ∥PH(x)∥ ≤ c log(c1/γ). We use this inequality to
control the measure of half spaces around x. Using Lemma 7.13 we can uniformly upper
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bound the measure of every half space around the median by
µ̃
(
H̃(mvv + tv,v)

)
≤ c1e−c2|t| ,

where c1 and c2 are as in Lemma 7.13. Now using (7.3.3) and (7.3.4), we may uniformly
bound the measure of half spaces around x. In particular, there exist constants cγ , c′γ > 0
such that for all t ∈ R and u ∈ S1,

µ̃
(
H̃ (x+ tu,u)

)
≤ cγe−c

′
γ |t| . (7.3.5)

Next we use the fact that the density of an isotropic log-concave density in R2 is upper
bounded by a universal constant. Obtaining upper bounds for log-concave densities is
an important problem in high-dimensional geometry. In particular, the so-called isotropic
constant of a log-concave density f defined by

Lf :=

√
supf∫
f

4
√det (Cov(f )) .

has a deep connection to Bourgain’s “slicing problem” and the Kannan-Lovász-Simonovits
conjecture, see, e.g., Klartag and Lehec [89], Lutwak [104]. Here we only need the simple
fact that in a fixed dimension (d = 2 in our case) one has supf Lf ≤ K for a constant K . For
an isotropic log-concave density, Lf =√

supf , so indeed there exists an universal constant
K which upper bounds any log-concave isotropic density in dimension 2.

Now we are ready to derive upper bounds for the right-hand side of (7.3.2). To this
end, we decompose the cone C(x,u⊥,v⊥) into two parts. For any t > 0 we may write

µ̃
(
C(x,u⊥,v⊥)

)
≤ µ̃

(
C(x,u⊥,v⊥)∩B(x, t)

)
+ µ̃

(
C(x,u⊥,v⊥)∩ H̃(x+ tu,u)

)
,

where B(x, t) denotes the closed ball of radius t centered at x. Thus, from (7.3.5) and the
upper bound on the density, we obtain

µ̃
(
C(x,u⊥,v⊥)

)
π ≤ Kt2θ + cγe

−c′γ t ,

where θ ∈ [0,π] denotes the angle formed by vectors u and v. Choosing t = log(1/θ)/c′γ ,
(7.3.2) implies

|µ(H(x,u))−µ(H(x,v))| ≤ C′γ
θ

log2
(
1
θ

)
for a constant C′γ depending only on γ . Since θ ≤ π

2 ∥u − v∥, we conclude that there exists
a positive constant Cγ such that

|µ(H(x,u))−µ(H(x,v))| ≤ Cγ
∥u − v∥

log2
(

1
∥u−v∥

) . (7.3.6)
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Now we are prepared to use Lévy’s isoperimetric inequality. ChoosingA =
{
v ∈ Sd−1 : µ(H(x,v)) ≥ 1/2

},
we clearly have P{A} = 1/2 and therefore by (7.3.1)

P
{
inf
v∈A
∥U − v∥ ≥ ϵ

}
≤ 2e−(d−1)ϵ

2/2 .

But for any u ∈ Sd−1 such that infv∈A ∥u − v∥ ≥ ϵ, (7.3.6) implies that
µ(H(x,u)) ≥ 1

2
−Cγ

ϵ

log2
(
1
ϵ

) ,
so

P

µ(H(x,U )) ≤ 1
2
−Cγ

ϵ

log2
(
1
ϵ

) ≤ 2e−(d−1)ϵ
2/2 .

Since Dk(x) = mini=1...k µ(H(x,Ui)) for U1, . . . ,Uk independently sampled uniformly
on Sd−1, the union bound yields

P

Dk(x) ≤
1
2
−Cγ

ϵ

log2
(
1
ϵ

) ≤ 2ke−(d−1)ϵ
2/2 ,

concluding the proof.

7.4 Detection and localization of Tukey’s median

As explained in the introduction, a measure µ is called halfspace symmetric if there exists
a point m ∈ Rd with d(m) = 1/2. Such a point is necessarily unique and we call it the
Tukey median. Clearly, for all k ≥ 1, the random Tukey depth of the Tukey median equals
Dk(m) = 1/2 and therefore, it is trivially an exact estimate of the Tukey depth ofm. Here we
show that, for any positive γ bounded by some constant, already for values of k that are of
the order of d logd, all points that are at least a distance of order γ√d away from m have
a random Tukey depth less than 1/2−γ , with high probability. This result implies that the
Tukey median of isotropic log-concave, halfspace symmetric distributions are efficiently
estimated by the random Tukey median, as stated in Corollary 7.4.
Theorem 7.9. Assume that µ is an isotropic log-concave, halfspace symmetric measure on Rd .
Let δ > 0 and let γ,r > 0 be such that r ≥ 32e4γ and r ≤min

(
e−4/6,8e4γ

√
d/2

)
. There exists a

universal constant C > 0 such that, if

k ≥ C
(
d log

r
γ
+ log(1/δ)

)
γ
√
d

r
eCγ

2d/r2 ,
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then

P

 sup
x∈Rd :∥x∥≥r

Dk(x) ≥
1
2
−γ

 ≤ δ .

In particular, by taking r = 8e4γ
√
d/2, there exist universal constants c,C > 0 such that for all

γ ≤ c, if
k ≥ C (d logd + log(1/δ)) ,

then

P

 sup
x∈Rd :∥x∥≥Cγ

√
d

Dk(x) ≥
1
2
−γ

 ≤ δ .

Proof. Without loss of generality, we may assume that m = 0, that is, d(0) = 1/2.
The outline of the proof is as follows. First, we show that for a fixed x ∈ Rd of norm

r , we have Dk(x) ≤ 1
2 − 2γ with high probability.

Then we use an ϵ-net argument to extend the control to the sphere r · Sd−1. To
this end, we need to establish certain regularity of the function x 7→ Dk(x). We then use a
monotonicity argument to extend the control to all points outside of the ball of radius r.

Recall that f denotes the density of the measure µ and the random vector X has
distribution µ. For any direction u ∈ Sd−1, we denote byΦu(t) = P{⟨X,u⟩ ≤ t} the cumulative
distribution function of the projection of X in direction u.

Fix x ∈ r · Sd−1. Since Dk(x) = mini=1...kΦUi (⟨x,Ui⟩) ,
P
{
Dk(x) ≥

1
2
− 2γ

}
= P

{
ΦU (⟨x,U⟩) ≥

1
2
− 2γ

}k
. (7.4.1)

Next we bound the probability on the right-hand side. Since d(0) = 1/2, for all u ∈ Sd−1,
Φu(0) = 1/2. Clearly, the function t 7→ Φu(t) is non-decreasing, as it is a cumulative distribu-
tion function. Since projections of an isotropic log-concave measure are also log-concave
and isotropic (see Saumard and Wellner [126, Section 3] and Prékopa [120]). Lemma 7.11 in
the Appendix implies that for all t ∈ [−e−4/6, e−4/6],

Φ ′u(t) ≥ e−4/4 ,

and therefore, for all such t, we have∣∣∣∣∣Φu(t)− 1
2

∣∣∣∣∣ ≥ e−4

4
t .
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Since ∥x∥ = r ≤ e−4/6, we have |⟨x,Ui⟩| ≤ e−4/6 and hence
P
{
ΦU (⟨x,U⟩ ≥

1
2
− 2γ

}
≤ P

{ 1
4e4
⟨x,U⟩ ≥ −2γ

}
= 1−P

{
⟨1
r
x,U⟩ ≥

8e4γ
r

}
.

Since ∥1r x∥ = 1, the probability on the right-hand side corresponds to the (normalized)
measure of a spherical cap of height h = 8e4γ/r. Thus, we may further bound the ex-
pression on the right-hand side by applying a lower bound for the measure of a spherical
cap. Brieden, Gritzmann, Kannan, Klee, Lovász, and Simonovits [25] provide such a lower
bound for √2/d ≤ h ≤ 1 which is guaranteed by our condition on r. We obtain

P
{
ΦU (⟨x,U⟩ ≥

1
2
− 2γ

}
≤ 1− 1

6h
√
d
(1− h2)

d−1
2 .

Hence, by (7.4.1) we have that for any x with ∥x∥ = r ∈ [32e4γ,e−4/6],
P
{
Dk(x) ≥

1
2
− 2γ

}
≤

(
1− 1

6h
√
d
(1− h2)

d−1
2

)k
≤

(
1− 1

6h
√
d
e−h

2(d−1)/4
)k (since 1− x ≥ e−x/2 for x ∈ (0,1/2))

≤ exp
(
− k

6h
√
d
e−h

2(d−1)/4
)

(since 1− x ≤ e−x for x ≥ 0). (7.4.2)
It remains to extend this inequality for a fixed x to a uniform control over all ∥x∥ ≥ r. To
this end, we need to establish regularity of the function x 7→Dk(x).

Since ∥u∥ = 1, the mapping x 7→ ⟨x,u⟩ is 1-Lipschitz. Φu is the cumulative distri-
bution function of an isotropic, one-dimensional, log-concave measure, and therefore its
derivative is a log-concave density with variance 1. As stipulated in Lemma 7.12 in the Ap-
pendix, such a density is upper bounded by e4. Hence, for any u ∈ Sd−1, x 7→ Φu(⟨x,u⟩) is
e4-Lipschitz. Furthermore, since the minimum of Lipschitz functions is Lipschitz, x 7→Dk(x)is also e4-Lipschitz.

For ϵ > 0, an ϵ-net of the sphere r ·Sd−1 is a subsetN of r ·Sd−1 of minimal size such
that for all x ∈ r · Sd−1 there exists y ∈ N with ∥x − y∥ ≤ ϵ. It is well known (see, e.g., [108])
that for all ϵ > 0, r ·Sd−1 has an ϵ-net Nϵ of size at most |Nϵ| ≤ (

2r
ϵ +1

)d . Using the fact that
Dk(x) is e4-Lipschitz, by taking ϵ = e−4γ , using (7.4.2) and the union bound, we have

P

 sup
x∈Rd :∥x∥=r

Dk(x) ≥
1
2
−γ

 ≤ (
2re4
√
d +1

)d
exp

(
− k

6h
√
d
e−h

2(d−1)/4
)
. (7.4.3)
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It remains to extend the inequality to include all points outside r · Sd−1. To this end, it
suffices to show that for any a ≥ 1,

Dk(ax) ≤Dk(x) .

To see this, note that the deepest point 0 has depth 1/2, so every closed half-space
with 0 on its boundary has measure 1/2. Hence, µ(H(x,u)) < 1/2 if and only if 0 < H(x,u),
which is equivalent to ⟨x,u⟩ < 0. On the event {

supx∈Rd :∥x∥=r Dk(x) <
1
2 −γ

}, for every x ∈
r · Sd−1 there exists an i ∈ [k] such that µ(H(x,Ui)) < 1/2. This implies that for such an i,
⟨x,Ui⟩ < 0, so for any a ≥ 1 ⟨ax,Ui⟩ ≤ ⟨x,Ui⟩. Since µ(H(x,Ui)) = ΦUi (⟨x,Ui⟩) and that ΦUiis non decreasing, we have

µ(H(ax,Ui)) ≤ µ(H(x,Ui)) ,

leading to Dk(ax) ≤Dk(x) as desired. This extends (7.4.3) to the inequality
P

 sup
x∈Rd :∥x∥≥r

Dk(x) ≥
1
2
−γ

 ≤ (
2re4
√
d +1

)d
exp

(
− k

6h
√
d
e−h

2(d−1)/4
)
.

Recalling that h = 8e4γ/r and that r is bounded, this implies the announced statement.
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7.5 Appendix

In this section, we compile several properties of one-dimensional, isotropic, log-concave
densities. For a survey on log-concave densities, see Samworth [124].
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7.5.1 Lower bounds for log-concave densities

Lemma 7.10. Let f (t) = e−g(t) be a log-concave probability density on R having variance 1 and
let m denote its (unique) median. Then

e−g(m) ≥ e
−4

2
.

Proof. Without loss of generality, we may assume thatm = 0 and g takes its minimum on
R−.

Since a convex function on an open interval is continuous, the only discontinuous
log-concave density is the uniform density over an interval of length 2

√
3 for which the

statement holds, and therefore we may assume that f is continuous. If g(0) ≤ 0 the result
is obvious, so suppose g(0) > 0. Since g is convex, by taking its minimum on R− it is non
decreasing on R+. By continuity, there exists L > 0 such that g(L) = 2g(0).

From the convexity of g we have that g ′(L) ≥ g(0)
L , and therefore for all t ≥ L,

g(t) ≥ g(L) +
g(0)
L

(t −L) ≥
g(0)
L
t . (7.5.1)

Since ∫
f (x)dx = 1 and 0 is the median,

1
2
=

∫ L

0
e−g(t)dt +

∫ ∞
L
e−g(t)dt .

Using (7.5.1), ∫ ∞
L
e−g(t)dt ≤

∫ ∞
L
e−g(0)t/Ldt =

L
g(0)

e−g(0) .

Moreover, since g is convex and reaches its minimum on R− it is non-decreasing on R+, so∫ L

0
e−g(t)dt ≤ e−g(0)L ,

leading to
1
2
≤ L
g(0)

e−g(0) + e−g(0)L = e−g(0)L
(
1+

1
g(0)

)
. (7.5.2)

Now we use the fact that the variance equals 1, that is,
1 =

∫ +∞

−∞
t2e−g(t)dt −

(∫ ∞
−∞
te−g(t)dt

)2
.
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Since the difference between the expectation and the median of any distribution is at most
the standard deviation, we have |∫∞−∞ te−g(t)dt| ≤ 1. Moreover, since g is increasing on R+,
for all t ∈ [0,L] we have g(t) ≤ 2g(0), and therefore 1 ≥

∫∞
0 t2e−g(t)dt − 1 implies

2 ≥
∫ L

0
t2e−2g(0)dt =

L3

3
e−2g(0) . (7.5.3)

From (7.5.2) we have
e−2g(0)L3e−g(0)

(
1+

1
g(0)

)3
≥ 1

8
.

Hence, by plugging the inequality into (7.5.3), we get
e−g(0)

(
1+

1
g(0)

)3
≥ 1

48
. (7.5.4)

Note that the function h : t 7→ e−t
(
1+ 1

t

)3 is non increasing on R+. To conclude, observe
that

• if g(0) ≤ 4.5, then e−g(0) ≥ e−4
2 .

• if g(0) > 4.5, then
h(g(0)) <

1
48
,

contradicting (7.5.4).

The next result shows that an isotropic log-concave density is in fact bounded from
below by a universal constant on an interval around the median.
Lemma 7.11. Let f (t) = e−g(t) be a log-concave probability density on R having variance 1 and
median m = 0. Then for all t ∈

[
− 1
6e4 ,

1
6e4

]
,

f (t) ≥ 1
4e4

.

Proof. Denote α = 1/(6e4) and suppose that there exists t ∈ [−α,α] such that f (t) <
1/(4e4). Since log-concave densities are unimodal, on [−α,α] the density f reaches its
minimum on an endpoint of the interval. Without any loss of generality, assume that

e−g(α) <
1
4e4

,
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that is,
g(α) > 4+ log(4) .

By the convexity of g , for all t ≥ α,
g(t) ≥

g(α)− g(0)
α

(t −α) + g(α) .

Since by Lemma 7.10, g(0) ≤ 4+ log(2), we get that for all t ≥ α
g(t) ≥

log(2)
α

(t −α) + log(4e4) .

It follows that ∫ ∞
α
e−g(t)dt ≤ 1

4e4
· α
log(2)

.

We also prove in Lemma 7.12 below that supt∈R e−g(t) ≤ e4, so∫ α

0
e−g(t)dt ≤ αe4 .

Using the fact that 0 is the median, we get
1 =

1
2
+
∫
R+
e−g(t)dt ≤ 1

2
+α

(
e4 +

1
4e4

1
log(2)

)
.

But
α

(
e4 +

1
4e4

1
log(2)

)
<
1
2
,

which is a contradiction. This concludes the proof.

7.5.2 Upper bounds for log-concave densities

Lemma 7.12. Let f (t) = e−g(t) be a log-concave probability density on R having variance 1.
Then

sup
t∈R

e−g(t) ≤ e4.

Proof. Without loss of generality, we may assume that g(0) = inft∈R g(t) and ∫∞
0 t2e−g(t)dt ≥

1/2. We may also assume that g is continuous. (Otherwise f is the uniform density over
an interval of length 2

√
3 for which the statement holds.)
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First note that if g(0) ≥ 0, then there’s nothing to prove, so suppose that g(0) < 0.
By the intermediate value theorem there exists L > 0 such that g(L/2) = g(0)/2. Since g is
convex and ∫

exp(−g(t))dt = 1, we have
Le−g(0)/2 ≤ 1 . (7.5.5)

Since g has a non-decreasing derivative, for all t ≥ L/2,
g ′(t) ≥ −

g(0)
2
· 2
L
= −

g(0)
L

.

Then for all t ≥ L/2, g(t) ≥ g(0)− g(0)L (t −L), which implies∫ ∞
L/2
t2e−g(t)dt ≤ e−2g(0)

∫ ∞
L/2
t2e

g(0)
L tdt .

Since for c > 0 ∫ ∞
L/2
t2e−ctdt =

(
L2

4c
+
L

c2
+

2
c3

)
e−cL/2,

Taking c = −g(0)/L, which is positive,∫ ∞
L/2
t2e−g(t)dt ≤

(
−L3

4g(0)
+

L3

g(0)2
− 2L3

g(0)3

)
e−3g(0)/2 . (7.5.6)

Next we establish a lower bound for ∫∞
L/2 t

2e−g(t)dt. The fact that the second moment on
R+ is greater than 1/2 implies∫ ∞

L/2
t2e−g(t)dt ≥ 1

2
−
∫ L/2

0
t2e−g(t)dt .

It is immediate from the fact that g reaches its minimum in 0 that∫ L/2

0
t2e−g(t)dt ≤ L

3

4
e−g(0) ,

leading to ∫ ∞
L/2
t2e−g(t)dt ≥ 1

2
− L

3

4
e−g(0) . (7.5.7)

Comparing (7.5.6) and (7.5.7), we obtain
1
2
− L

3

4
e−g(0) ≤ L3

(
−1

4g(0)
+

1
g(0)2

− 2
g(0)3

)
e−3g(0)/2 ,

206



leading to
1
2
≤ L3

(
eg(0)/2

4
− 1
4g(0)

+
1

g(0)2
− 2
g(0)3

)
e−3g(0)/2 . (7.5.8)

From (7.5.5) we have L3e−3g(0)/2 ≤ 1, which, plugged into (7.5.8) yields
1 ≤ 2

(
eg(0)/2

4
− 1
4g(0)

+
1

g(0)2
− 2
g(0)3

)
.

Since g(0) ≤ 0,
1 ≤ 1

2
− 1
2g(0)

+
2

g(0)2
− 4
g(0)3

. (7.5.9)
The function h : t 7→ 1

2 −
1
2t +

2
t2 −

4
t3 is non-decreasing on R−. To conclude the proof, note

that if g(0) ≥ −4, then e−g(0) ≤ e4. Otherwise, if g(0) < −4, then, since h is non-decreasing,
h(g(0)) ≤ h(−4) = 13

16
< 1 ,

which contradicts (7.5.9).
It is known (see, e.g., Cule and Samworth [46]) that for any log-concave density f

on Rd , there exist positive constants α,β such that f (x) ≤ e−α∥x∥+β for all x ∈ Rd . The next
lemma shows that for isotropic log-concave densities on R with median at 0, one may
choose α and β independently of f .
Lemma 7.13. Let f (x) = e−g(t) be a log-concave probability density on R having variance 1 and
median m = 0. Then there exist universal constants α,β > 0 such that for all t ∈ R,

f (t) ≤ αe−β|t| .

Proof. By Lemma 7.10 we have e−g(0) ≥ e−4/2. The log-concavity of the density implies
that on any given interval, the minimum is reached at one of the endpoints of the interval.
Thus, ∫ 2e4

0
e−g(t)dt ≥ 2e4min

(
e−g(2e

4), e−4/2
)
.

Since 0 is the median of f , 2e4min(e−g(2e
4), e−4/2) ≤ 1/2. Thus,

e−g(2e
4) ≤ e

−4

4
. (7.5.10)

A mirror argument proves that e−g(−2e4) ≤ e−4
4 . By Lemma 7.10, g(0) ≤ log(2)+4 and (7.5.10)

implies g(2e4) ≥ log(4) + 4. Using the convexity of g yields that for all t ≥ 2e4,
g(t) ≥ 4+ log(4) + (t − 2e4)

log(2)
2e4

,
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so, using Lemma 7.12 which states that g(0) ≥ 4, for all t ∈ R+,
g(t) ≥ log(4) + (t − 2e4)

log(2)
2e4

.

A identical argument on R− concludes the proof of the Lemma.

7.5.3 Proof of Lemma 7.1

Proof. To prove the first inequality, observe that
sup
x∈Rd
|d(x)− dn(x)| = sup

x∈Rd

∣∣∣∣∣∣∣ inf
u∈Sd−1

µ(H(x,u))− inf
u∈Sd−1

1
n

n∑
i=1

1Xi∈H(x,u)

∣∣∣∣∣∣∣
≤ sup

x∈Rd
sup
u∈Sd−1

∣∣∣∣∣∣∣µ(H(x,u))− 1
n

n∑
i=1

1Xi∈H(x,u)

∣∣∣∣∣∣∣ .
The first inequality of the Lemma follows from the Vapnik-Chervonenkis inequality and the
fact that the vc dimension of the class of all half spaces H(x,u) equals d +1.
The second inequality is proved similarly, combining it with a simple union bound that
gives a better bound when log(k)≪ d.
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