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Abstract: Accurately estimating the seismic re-
sponse following an earthquake can save lives.
However, limited computational resources and
poorly characterized and unknown variability in ge-
ology and seismotectonic context pose significant
challenges for simulations at the scale of a city or
region. This thesis proposes a new approach com-
bining adversarial learning methods and physics-
based simulations to overcome these limitations,
based on the SeismoALICE framework ( F. GATTI
and D. CLOUTEAU: "Towards blending Physics-
Based numerical simulations and seismic databases
using Generative Adversarial Network," CMAME
2020). Because of the random fluctuations in the
mechanical properties of the geological medium,
numerical simulations can only give results for low
frequencies (LF) down to 5 or even 10 Hz. The de-
sign frequency for civil engineering structures and
equipment, on the other hand, reaches 40 Hz.
This thesis aims to simulate seismic signals with
a higher frequency range [0 - 30 Hz] using knowl-
edge of low-frequency signals and a database of
recorded signals. To this end, we are developing
an encoder and decoder adapted to seismic signals
using a Conformer variant of attention techniques
to capture the long-duration correlations present in
accelerograms. The discriminator, which ensures
that simulated signals resemble recorded signals,
has been the subject of extensive development, en-
abling the encoder and decoder to be optimized us-
ing a min-max technique at the heart of adversarial

machine learning methods. To force signal recon-
struction, we adapt Focal Frequency Loss (FFL)
and Hyper-Spherical Loss (HSL), which are more
efficient for this data type, to time series. We
then complement the LF signals up to 30 Hz by ex-
ploring different generation cases, one-to-one map-
ping, and one-to-many mapping to assess the plau-
sibility of the reconstructions in the database. Five
methods were developed: Signal-to-Signal Trans-
lation, SeismoALICE with shared latent space,
SeismoALICE with factorized latent space, Bicy-
cleGAN for time series, and Multi-Modal Signal
Translation. Their performance was evaluated us-
ing Kristeková’s Goodness-of-Fit. By manipulating
the hidden variables, we proved that it is possible
to divide the information into two groups of vari-
ables with Gaussian distributions, one for low fre-
quencies and the other for high frequencies. This
interpretability made it possible to manipulate the
latent space and control the one-to-many map-
ping. The models, trained on 128,000 seismic
signals from the Stanford Earthquake Database
(STEAD), demonstrated their performance, with
prediction qualities ranging from good to excellent.
Finally, their effectiveness was demonstrated by ap-
plication to the 2019 Le Teil earthquake (in the
Ardèche region of Auvergne-Rhone-Alpes, France).
This work paves the way for more accurate and ef-
ficient prediction of seismic signals by seamlessly
integrating physics-based knowledge and machine
learning.



Titre: Génération hybride de réponses sismiques par simulation et apprentissage machine
Mots clés: Apprentissage automatique, translation de signal à signal, tremblement de terre, onde
sismique, sismogramme.

Résumé: L’estimation précise de la réponse sis-
mique suite à un tremblement de terre permet
de sauver des vies. Toutefois, la limitation des
ressources informatiques et la variabilité mécon-
nue et mal caractérisée de la géologie et du con-
texte sismotectonique posent des défis significat-
ifs pour les simulations à l’échelle d’une ville ou
d’une région. Cette thèse propose une nouvelle
approche combinant les méthodes d’apprentissage
adverse (adversarial) et les simulations basées sur
la physique pour surmonter ces limitations, en
s’appuyant sur le cadre SeismoALICE, ( F. GATTI
et D. CLOUTEAU: "Towards blending Physics-
Based numerical simulations and seismic databases
using Generative Adversarial Network", CMAME
2020). En raison des fluctuations aléatoires des
propriétés mécaniques du milieu géologiqu, les sim-
ulations numériques ne peuvent donner des résul-
tats que pour les basses fréquences (BF) jusqu’à 5
voire 10 Hz. La fréquence de conception des struc-
tures et des équipements en génie civil atteint en
revanche 40 Hz. Cette thèse vise à simuler des
signaux sismiques plus riches en fréquences [0 –
30 Hz] à partir de la connaissance des signaux à
basses fréquences et d’une base de données de sig-
naux enregistrés. Dans ce but, nous développons
un encodeur et un décodeur adaptés aux signaux
sismiques utilisant une variante des techniques
d’attention, nommée Conformer, pour capturer les
corrélations de longue durée présentes dans les ac-
célérogrammes. Le discriminateur, assurant que
les signaux simulés ressemblent à des signaux en-
registrés, a fait l’objet d’un développement poussé,
permettant d’optimiser l’encodeur et le décodeur

par le biais d’une technique de min-max au cœur
des méthodes adverses d’apprentissage machine.
Pour forcer a reconstruction des signaux, nous
adaptons aux séries temporelles la Focal Frequency
Loss (FFL) et la Hyper-Spherical Loss (HSL), qui
sont plus performantes pour ce type de données.
Ensuite, nous complétons les signaux BF jusqu’à
30 Hz en explorant différents cas de génération :
mapping one-to-one et mapping one-to-many pour
évaluer la plausibilité des reconstructions de la base
de données. Cinq méthodes ont été élaborées
: Signal-to-Signal Translation, SeismoALICE with
shared latent space, SeismoALICE with factorized
latent space, BicycleGAN for time series et Multi-
Modal Signal Translation. Leur performance a
été évaluée avec le Goodness-of-Fit de Kristeková.
Nous avons prouvé en manipulant les variables
cachées qu’il est possible de diviser l’information en
deux groupes de variables de distributions Gaussi-
ennes, l’un pour les basses fréquences et l’autre
pour les hautes fréquences. Cette interprétabilité
a permis de manipuler l’espace latent et de con-
trôler le mapping one-to-many. Les modèles, en-
traînés sur 128 000 signaux sismiques de la base
de données des séismes de Stanford (STEAD), dé-
montrent leur performance avec des qualités de
prédiction allant de bonnes à excellentes. Finale-
ment, leur efficacité a été démontrée par une appli-
cation au séisme du Teil de 2019 (en Ardèche dans
la région Auvergne-Rhone-Alpes, France). Ce tra-
vail ouvre la voie à une prédiction plus précise et
plus efficace des signaux sismiques en intégrant de
manière transparente les connaissances basées sur
la physique et l’apprentissage machine.
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Nomenclature

• µ, mean

• σ, standard-variation

• N (0, I), gaussian distribution of mean 0 and standard deviation of 1

• x, Physic Based Simulation acceleration

• x̂, reconstruction of Physic Based acceleration

• x̃, hyrbrid generation of Physic Based acceleration

• y, Ground motion or Broadband acceleration

• ŷ, reconstrcution of Broadband acceleration

• ỹ, hybrid generation of Broadband acceleration

• Fx, Encoder dedicated to Physic Based Simulation Acceleration

• Gx, Decoder that outputs Physic Based Simulation acceleration

• Fy, Encoder dedicated to Broadband Acceleration

• Gy, Decoder that outputs Broadband Acceleration

• Fxy, Encoder with two branch

• zx, Latent value of Physic Based Simulation Acceleration

• zy, Latent value of Broadband acceleration

• zxx, Latent value from restriction to specific part of Physic-Based simulation

• zyy, Latent value from restriction to specific part of Broadband

• zxy, Latent values from common part, with PBS as input

• zyx, Latent values from common part, with Ground motion as input

• cx, content part coming from PBS as input

• cy, content part coming from Ground motion

• sx, style coming from PBS

• sy, style coming from Ground motion
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Chapter 1

Introduction

"Train yourself, arm yourself with
science to the teeth[..]."

— Cheikh Anta Diop, Conférence
of Niamey (Niger), 1984

1.1 General Context
Historically attributed to divinity across various civilizations, Earthquakes underwent a trans-
formative shift in the scientific domain around 1800. Probably after the Lisbon disaster, sci-
entific interest in seismic phenomena emerged with the advent of experimental seismology,
pioneered by the Irish engineer Robert Mallet between 1830 and 1850. Mallet’s work used
the earthquake intensity to produce the first seismicity map for Mediterranean regions in 1857,
which remains a fundamental reference in contemporary seismological studies (see Figure 1.1a).

At the beginning of the 20th century, in-depth research into earthquakes reached a turning

(a) World map of the major earthquakes, ren-
dered by Mallet in 1858. This map shows
earthquake intensity measures used to deter-
mine magnitude.[1, 2, 3]

(b) An example of modern world earth-
quake map. Source: ©Britannica
(https://www.britannica.com/science/
earthquake-geology)

point. An increasingly scientific one replaced a qualitative approach to the phenomenon. Alexis
Perrey and Fernand de Montessus de Ballor were the first to participate in the systematic record-
ing of seismic activity worldwide. A significant step forward was subsequently made in the study

11
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of seismic waves. Richard Dixon Oldham helped to advance the field by distinguishing between
different types of seismic waves. Richard Dixon’s work marked the transition from descriptive
seismology to an in-depth study of these geological phenomena using empirical methods.
The Earth’s crust’s mechanical properties can be thought of as random processes varying across
different scales, from millimeters to continental scales, to be precise. This aspect implies that
the inverse problem of identifying these properties based on the available measurements is nat-
urally ill-posed, and it suffers from an intrinsic curse of dimensionality [4, 5]: the finer the
geological model, the more significant the amount of data required to calibrate it, in order to
obtain accurate and reliable numerical predictions. Therefore, a methodical approach based
on sophisticated mathematical models and advanced numerical simulations is essential to ef-
fectively understand and reproduce the earthquake phenomenon and reach scientifically robust
conclusions. The quantity of interest encompasses the acceleration time histories at the surface
or other derived intensity measures (peak ground motion values, earthquake duration, among
others). The attention is devoted to identifying the earthquake focal mechanism and the com-
plex interactions of the propagation wave field with the geological structure.
A three-dimensional (3-D) wave equation in highly heterogeneous non-linear geomaterials can
generically model the earthquake phenomenon. With that respect, in recent years, the credi-
bility of numerical simulation has significantly improved [6]. These scientific achievements now
make it possible to explain more convincingly an observed earthquake’s strong ground motion
and the corresponding recordings at the surface, both in urban areas and close to critical in-
frastructures. Numerical simulations, based on a solid theoretical foundation and fed with an
increasing amount of seismological data, provide more accurate and realistic results, which is of
vital importance for assessing the seismic risk and for planning measures to mitigate potential
damage in densely populated urban areas, to help to strengthen the resilience in the face of
natural disasters of seismic origin.
Moreover, earthquake-prone areas are progressively being characterized worldwide due to the
critical implication of having densely populated areas exposed to this natural threat and to
human and economic losses that follow. One base Modern seismic risk management on iden-
tifying and analyzing areas where high tectonic activity is detected [7, 8]. As output, the
so-called shake maps provide a preliminary assessment of the regions likely to be affected by
seismic events, which is essential for planning risk mitigation measures and for implementing
emergency plans in the event of an earthquake [9], [10].
In fact, among various natural disasters, earthquakes are one of the most consequential and
lethal catastrophes. Despite the achievements in scientific understanding and technological ad-
vancement, recent earthquakes resulted in enormous economic and human losses. In terms of
damage to noteworthy lifelines and infrastructure, the 2011 Tōhoku earthquake and tsunami [11]
caused an overall loss of $360 billion in property damage. The 2008 Sichuan earthquake [12]
caused $150 billion loss, whereas the Turkey-Syria earthquakes of in 2023 [13] reached a loss of
$109 billion in damage. However, the real impact of earthquakes becomes most apparent when
we consider the human cost, which goes beyond just economic loss (see Figure 1.2). In 2004,
the Sumatra earthquake caused a tsunami that killed 227,898 people and displaced 1,126,900
individuals across 14 countries in South Asia and East Africa [14]. Similarly, the 2010 Haïti
earthquake has killed between 100,000 and 316,000 lives [15], a poignant reminder of the irre-
placeable cost of seismic disasters. In light of these devastating events, it becomes clear that
earthquakes pose a unique and unparalleled threat, requiring ongoing efforts to mitigate their
impact and protect vulnerable communities.
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Figure 1.2: Summary of the deadliest earthquake in the world of the 21st century. Source: ge-
ographical.co.uk

1.2 Main challenges in engineering seismology

The study of complex earthquake phenomena requires the ability to predict with a high degree
of reliability the behavior of active faults and the impact of the generated seismic wave on
the infrastructure over time. To achieve this, it is essential to consider the natural variability
inherent to the poor knowledge of the underlying geological structures. However, dealing with
this variability is often a major challenge, as it is the result of multiple interdependent factors
at different scales, dealing with the stress state accumulated on the fault discontinuity due
to tectonic motion, with the frictional properties of the fault’s asperities, with the complex
geological interfaces that scatter the wave field generated once the fault slips, the non-linear
behavior of shallow soil layers, the interaction with the structures at the foundation level, as
schematically shown Figure 1.3.
As part of a risk analysis, it is crucial to characterize each factor individually, which requires

considerable effort to understand their complex interactions. Natural variability in geophysi-
cal phenomena arises from various sources, such as geomechanical soil properties, geochemical
processes, tectonic stresses, and hydrological conditions. One can categorize such phenomena
into two distinct groups: deterministic and non-deterministic.
Deterministic phenomena refer to events or occurrences that exhibit predictable and repro-
ducible behavior. Well-established physical laws form the basis of such behavior. Appropriate
mathematical models and numerical simulations can confidently predict the evolution of a
system. On the other hand, non-deterministic phenomena are intrinsically unpredictable, sub-

https://geographical.co.uk/science-environment/biggest-earthquake-the-10-largest-recorded
https://geographical.co.uk/science-environment/biggest-earthquake-the-10-largest-recorded
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Figure 1.3: Schematic description of the multi-tool platform developed within the SINAPS@
project to reproduce realistic source-to-structure seismic scenarios. Source: Gatti et al.,
2018 [16]

ject to random influences or complex mechanisms that are difficult to model accurately. Their
behavior is often subject to stochastic variations, making their prediction more uncertain. Mod-
eling this variability is essential to properly understanding the risks associated with potential
failures and assessing the vulnerability of exposed infrastructures and populations.
To this end, engineering seismology is increasingly making use of digital twins of regions of the
Earth, i.e., numerical models that are sufficiently reliable to accurately predict the response of
complex natural systems and sufficiently flexible to be continuously updated and re-calibrated
according to the evolving amount of recorded measurements (for instance from geological stud-
ies, recorded seismograms, satellite images, etc.). The availability of increasingly advanced com-
putational methods and resources enables scientists to make accurate physics-based earthquake
predictions, advancing digital twin technology. (for instance, the finite element, finite different,
and spectral element methods). High-performance computing on large parallel supercomputers
and cloud computing allows processing massive quantities of geological and geophysical data
and solving large systems of partial differential equations under various parameters’ combina-
tions in a Monte Carlo framework. Digital twins, as virtual replicas of real systems, offer the
ability to simulate and analyze realistic scenarios in real-time, providing crucial information for
informed decision-making.
However, due to the significant epistemic and random uncertainty associated with modeling
natural phenomena, conceiving and operating a seismic digital twin is arduous. It is crucial to
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Figure 1.4: The histograms present the interest in machine learning in the seismic fields during
the last decade: in the x-axis are the years, in ordinate the number of publication papers. One
presents four categories of fields of investigation here. That we can see also in pie chart [18]

consider various factors of uncertainty while conducting geological risk analysis. This practice
enables us to evaluate the possible outcomes of strong ground motion events accurately. As a
result, we can make informed decisions regarding infrastructure development, natural resource
management, and safeguarding the population in the affected areas. The use of advanced
probabilistic modelling [17] and numerical simulation techniques are promising ways of assess-
ing uncertainties and improving the accuracy of predictions in geological risk analysis, but it
can be cumbersome. The geological properties of the subsoil can vary significantly, and the
prospecting methods available, although expensive, often do not allow accurate extrapolation
over large scales. In a nutshell, the complexity of earthquake characterization highlights the
importance of developing advanced analysis methods, mainly using probabilistic approaches,
to assess and model the uncertainties associated with geological and seismic parameters. Ad-
vances in numerical modeling, stochastic simulations, and geophysical data integration will help
improve our understanding of complex geological phenomena and better assess seismic risks in
various geological contexts.
In this framework, data-driven enrichment of seismic models is a fast-growing area of re-
search [18].

1.3 Deep learning techniques applied to engineering seis-
mology

Recent technological advances have seen the emergence of artificial intelligence (AI), a complex
concept whose usefulness far exceeds the capabilities of traditional algorithms in specific tasks
(see Figure 1.4).

This discipline has made its mark in various scientific fields, opening up new possibilities
in areas where traditional research has reached its limits. Artificial intelligence demonstrates
its strength from its ability to generalize from the data and research guidelines provided. Ar-
tificial intelligence can tackle intricate and complex problems, particularly those involving a
large amount of data and high variability of distributions, for which it becomes complicated
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Figure 1.5: Main research activities in earthquake engineering involving machine learning tech-
niques. Source [19]

to manipulate only a few variables to reproduce the phenomena. Such technology is suitable
for dealing with complexity and improving many fields, such as medicine, finance, materials
science, and geology. Thanks to those capacities, neural networks can often be employed to
identify patterns that are not apparent to humans, perform tasks autonomously with great
accuracy, and outperform handcrafted and assessed methods. For example, one can train a
neural network model to recognize images, predict trends, perform research parameters, cre-
ate predictive models, and make complex decisions in dynamic environments, particularly for
earthquake warnings.

Figure 1.5 shows the statistics of the recent use of machine learning in earthquake science.
Deep learning is particularly relevant as numerical simulation models struggle to provide

satisfactory accuracy in accurately predicting the seismic response at the Earth’s surface as
a function of data from a given accelerogram. Models of seismic wave propagation from the
fault plane to the Earth’s surface are limited to a frequency of 5 Hz, which hinders the field
of study and potential applications in civil engineering despite advances in High-Performance
Computing (HPC)., See Figure 1.6.

The potential of IA is promising in overcoming limitations and enriching numerical ap-
proaches for seismic modeling. By exploiting the considerable database of historical seismic
and the associated metadata, such algorithms provide a novel way to identify the relationship
between earthquake characteristics and their resulting impact on the surface area. In this sense,
the prediction of such phenomena might be significantly improved by the Machine Learning
approaches. The wave propagation mechanism would be better understood by countering un-
certainty quantification relying on the variability of this natural phenomenon. In addition to
that, IA integration in seismic modeling offers some advantages in the civil engineering field.
This latter field could be more accurate in characterizing the seismic load on infrastructures
and buildings. Then, by combining diverse information from historical seism and geotechnical
information, IA could enhance models to mitigate earthquake impact and reinforce the design
of civil engineering constructions.Figure 1.7.
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Figure 1.6: Construction frequency domain. Source Davidovici et al., 2016 [20]

Figure 1.7: Digital twins, source Institut de recherche pour le développement (www.humanite.
fr/sciences/tsunamis/)

https://www.humanite.fr/sciences/tsunamis/une-intelligence-artificielle-pour-parer-aux-tsunamis-751601
www.humanite.fr/sciences/tsunamis/
https://www.humanite.fr/sciences/tsunamis/une-intelligence-artificielle-pour-parer-aux-tsunamis-751601
www.humanite.fr/sciences/tsunamis/
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1.4 Thesis Objective

It is legitimate to question the possibility of improving the results of numerical simulations by
solving the so-called "super-resolution" problem. In other words, enriching the less accurate
low-frequency results of numerical simulations by incorporating high-frequency information is
very interesting. This will make the resulting hybrid signals closer to the recorded accelero-
grams. This approach, therefore, aims to fill in the gaps and inaccuracies in the numerical
simulation models. (see Figure 1.8).

PBS

Figure 1.8: Hybrid broad-band earthquake ground motion generator. Courtesy of Gatti et al.,
2020 [21]

The numerical simulation is conditioned by the same low-frequency band ([0 - 1Hz]) or
recorded seismogram ([0 -40Hz]). This task is crucial: Multi-modal super-resolution leverages
physics-based numerical simulations independently of the maximum frequency they resolve,
adding realistic high-frequency content and different broad-band realizations that can nourish
structural dynamics models and vulnerability studies. This achievement would represent a
paradigm shift since scientists can realize numerical simulations valid in a low-frequency band
of significant confidence in input data (geology, active faults, site effects). This numerical
simulation would be easier to validate against the poor amount of historical recordings in a low-
frequency band. Finally, the intrinsic undisclosed mapping from low to high-frequency content,
learned via AI from the real data, would generate several broad-band hybrid synthetics within
a seismic hazard probabilistic framework. Therefore, a potentially infinite number of synthetic
signals can be generated without having to repeat the simulation calculations (for example, 20
or 30 Hz, to be consistent with the frequency band of the natural dynamic response of civil
infrastructures). This multimodal approach makes it possible to take account of the uncertainty
inherent in numerical simulations, which varies according to the inputs to the problem. By
generating a set of probable accelerations rather than a single value, we can better represent
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the variability of expected seismic results and provide complete information for decision-making
in engineering, urban planning, and risk management.

1.5 How to read this document
Suppose you are an expert in Machine Learning and computer vision. In that case, you can
skip most of Chapter 2, which essentially summarizes the historical evolution of machine learn-
ing techniques in seismology and Earth science (Section 2.1) and describes machine learning
techniques for dimensionality reduction (Section 2.2), sample reconstruction and generation
(Section 2.3) the neural network architectures suited for time histories (CNN, attention mecha-
nisms, transformer, conformer, etc., see Section 2.4) and largely used in this work, the adopted
metrics, inspired by seismology (Section 2.6) and the database of recorded earthquake time-
histories employed in this thesis to train neural network metamodels (see Section 2.7). It is
worth noting that subsection 2.1.7 highlights one major challenge tackled by the present thesis:
the generation of synthetic earthquake seismograms with machine learning. This subsection
contextualizes the whole manuscript, along with subsection 2.3.4, which introduces adversarial
learning inference (ALI), adopted as a generative framework in this thesis. In this context,
subsection 2.5 presents a wide range of loss functions, adopted alongside ALI, to improve the
generation task. Basic machine learning concepts presented in Chapter 2 might be helpful
for readers with no prior deep knowledge of modern deep learning architectures and training
schemes. However, basic concepts such as back-propagation and optimizing algorithms are not
reported. For further insights on such basic machine learning topics, the inexpert reader can
refer to the book by Murphy, 2022 [22].
Chapter 3 outlines the preliminary results obtained to render realistic earthquake seismo-
grams based on numerical simulations based on a widespread neural network architecture called
Pix2Pix. The latter has been developed for signal-to-signal translation problems and trained in
a supervised way on data pairs to generate high-quality super-resolution time series from low-
resolution ones. This chapter is technical for non-expert readers in machine learning applied
to time series.
In Chapter 5, we examine semi-supervised learning and its use in multi-model translation
problems, utilizing BicycleGAN technology. This approach generates possible outcomes while
accounting for the inherent uncertainties in the data and models. As a result, we can more
fully and realistically represent diverse plausible realizations of the translation problem. This
chapter, once again, is rather intricate for non-expert readers because several technical imple-
mentation details are explained to explain the advantages and disadvantages of such a strategy.
In Chapter 4, we employ unsupervised learning using ALICE and a novel version of the semi-
nal work by Gatti and Clouteau, 2020 [21], called SeismoALICE, which originated the present
research work exposed in this thesis. This innovative approach uses an unsupervised AI sys-
tem to enhance the accuracy of the super-resolution task tackled by SeismoALICE. With its
ability to extract complex seismic features and patterns from non-annotated data, SeismoAL-
ICE provides a practical solution to generate multiple realistic ground motion realizations in a
0-30 Hz frequency band based on the same low-frequency (0-1 Hz) physics-based simulations,
embodying the minimum knowledge about the physics of the earthquake, amid considerable
uncertainty on the geological and seismological features (3D underground topography, charac-
teristics of the active faults). This chapter widens the horizons of earthquake hazard assessment
in a broad-band frequency range, compatible with the modal characteristics of above-ground
structures and infrastructures. It, therefore, provides multiple realistic and physically informed
input seismic signals to conceive earthquake-resistant structures.
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Finally, Chapter 6 is devoted to the case-study application of such machine learning techniques
to assess its limits in earthquake hazard assessment. The techniques described in the previous
chapters are applied to simulated time histories for the MW4.9 Le Teil earthquake that struck
southeastern France in late 2019. The realism of each proposed solution is tested, adopt-
ing seismology-informed metrics and with the perspective of rendering multiple broad-band
earthquake response realizations, thanks to a pre-trained neural network metamodel capable of
mapping low-frequency portions of the ground motion spectra into its high-frequency counter-
parts.
Conclusions and future perspectives are reported in Chapter 7.



Chapter 2

State of the Art

"Workers are lazy people who don’t
know it"

— Jacques Roumain, Les
Fantoches, 1937

2.1 On the Use of ML in Engineering Seismology

Over the last decade, several seismology and earthquake engineering branches have widely
adopted machine learning, AI techniques, and algorithms. In the following, a non-exhaustive
excursus of the mean findings is summarized and categorized per specific task accomplished.

2.1.1 Seismic event discrimination

Since then, numerous studies have been carried out in seismology for the discrimination of
events [23, 24] to discover the exact nature of seismic occurrences. Researchers examined the
seismograms recorded by a large number of stations. The recorded histories are observed in
detail to extract meaningful information about the source itself (earthquake, induced seismic-
ity, explosions, chemical explosions) and their focused mechanisms. This involves three basic
principles: distinguishing between earthquake shock waves and explosions, differentiating one
category of volcanic earthquakes from another, and assessing mining-related earthquakes. This
latter is based on traditional methods and time-consuming [25]. However, the integration of
machine learning tools has dramatically improved this task, as can be seen below [18] :

(i) Explosions and earthquakes discrimination: The interest in distinguishing earthquakes
from chemical or quarry explosions started during The Cold War. This research field
skyrocketed after the implementation of neural network detection in explosions. Notably,
Convolution Neural Networks (CNN) and Recurrent Neural Networks (RNN) make a
breakthrough with the classical approach based on fully connected layers [26], the latter
being too heavy to be trained and prone to over-fitting. Convolutional layers, mainly,
have been developed for classification because of their equivariant nature (translation
insensitive). They represent the natural choice to classify different seismic events based
on recorded seismograms [27, 28]. CNN outperforms standard event discrimination algo-
rithms and helps correct human error even for low signal-to-noise ratio (SNR) data (see
Figure 2.1) [18].

21
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Figure 2.1: Map of events (circles) and source-receiver paths (lines) from University of Utah
Seismograph Stations for quarry blasts (red) and local earthquakes (blue). Receivers (white
circles) are labeled by station name. Courtesy of [27].



2.1. ON THE USE OF ML IN ENGINEERING SEISMOLOGY 23

Figure 2.2: Diagram of the proposed hybrid architecture to perform seismic event detection
(A) and continuous sequence classification (B) of seismo-volcanic events [30]

(ii) Volcano-seismic events: Volcanic eruptions can cause ground motion. In volcanology,
the main problem with event detection is distinguishing magmatic events as long-period
events from volcano-tectonic earthquakes, volcano tremors, and explosive earthquakes [29].
We used a neural network to differentiate different types of volcanic earthquakes, including
volcano-tectonic earthquakes, long-period events, volcano-tremors, and explosive earth-
quakes. [30]. Despite the lack of enough labeled data for machine learning in this area [31],
the latter still makes remarkable progress. Using a two-dimensional representation of
time-frequency domain spectrograms has advanced image classification significantly, as
shown in Figure 2.2. The introduction of a modern approach such as Wavelet Scattering
Transform, depicted by features such as representation invariance, significant information
content, and robust stability, has convincingly demonstrated the ongoing improvement
in the accuracy of classification of Volcano Events; this improvement is demonstrated
by how it was performed on Llaima volcano events in Chile where they achieved 99%
accuracy score on supervised way.

(iii) Other seismic events: Transformers have improved seismic event classification in com-
puter vision and language modeling. Transfer learning and data augmentation techniques
have made the model’s fine-tuning easier and improved result accuracy. This approach
also enabled Mousavi et al., 2020 [32] to come up with an unsupervised deep learning
framework for feature learning and dimensionality reduction that distinguishes between
local seismicity from tele seismicity waveform. Furthermore, it demonstrates a perfor-
mance akin to the supervised models built on large labeled datasets, opening up possi-
bilities for much more complicated classification tasks, such as identifying underground
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mining microearthquake records. Besides, Peng et al., 2020 [33] described a methodol-
ogy that could differentiate blast events from background noise as well as ore extraction
signals, mechanical distortions, and electromagnetic interference, indicating how versatile
these advanced techniques can be used in event identification tasks [34].

Machine Learning unequivocally demonstrated its effectiveness, surpassing all prior handcrafted
techniques and traditional formulations.

2.1.2 Earthquake Signal Detection

Modern seismometers can detect weak ground movements, often associated with low amplitude
ground motion recorded at the free surface. Approximately 90% of the time, the recorded
data corresponds to ambient noise or other non-seismic phenomena. The effort to discern the
distinctive seismic signature within this diverse data set is referred to as earthquake signal de-
tection. Setting aside missing events and misidentifying noise as an earthquake is challenging.
Traditionally, there are two main categories of conventional methods. One category design
is the characteristic functions method: the Short-term average over the long-term average
(STA/LTA), which is the most popular. The other category represents the similarity search
(Fingerprint and Similarity thresholding, template matching, etc...). This task is enhanced by
machine learning by performing binary classification of each sample point as noise or signal ei-
ther along the long duration or a large number of stations. The STA/LTA times ratio method
was one of the first initial approaches adapted to seismic event detection in the literature.
Remarkably, this method exhibited a large robustness, leading it to major success. Employ-
ing machine learning-based detectors has since emerged as a superior alternative, surpassing
conventional STA/LTA techniques, as shown in [33], adopting a moving window spectrogram
as input. Over the past decades, various machine-learning detectors have been explored and
incorporated. For this purpose, we could enumerate : support vector machine [35] (SVM), hid-
den Markov model (HMM) [36], CNN and RNN Detection (CRED) [37], multi-features fusion
networks [38], capsule neural networks (CapsPhase) [39] and attentive models [40]. An example
of automated event detection if provided by Lara et al., 2021 [41], as shown in Figure 2.3. The
use of this automated technique is very essential in detecting micro-earthquakes. An active
volcano will produce many micro-earthquakes, thus making it a suitable example to explain
the need for quick understanding and avoidance of these eruptions. These authors and their
associates can gain valuable insights into upcoming eruptions using this method, including clus-
tering and periodicity. This points out an increase in the number of events as self-important
markers. The trained system consumes between 0.65s and 0.75s for detection and classification
of 0.9s and 1s, respectively, emphasizing its use in real-time surveillance systems. In this regard,
this methodology promises to provide helpful information for prompt decision-making based on
micro-seismic monitoring.

Now, earthquake detection through ML techniques is not only limited to conventional seis-
mic data/events but can also be done directly using scanned images (Wang et al., 2019) [42],
Distributed Acoustic Sensing (DAS) (Hernandez et al., 2022) [43]. Low-frequency earthquake
data (Thomas et al., 2021) [44] and tremor (Hulbert et al., 2020) [45]. Machine-learning
earthquake detectors have come a long way, demonstrating that ML earthquake detectors can
generate fewer false positives than STA/LTA and are more robust for low SNR signals. Nev-
ertheless, computational demands have gone up, although it is now possible to do efficient
real-time processing across different environmental variables.

In conclusion, the STA/LTA method is widely used to detect seismic waves, but ML success-
fully automated this task. Moreover, mixing data from different sources could help accomplish
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Figure 2.3: Seismic Signal Detection for a continuous time-history with six earthquake events.
Source: Lara et al., 2021 [41]

the event detection. Significant scientific endeavors in computer vision, notably the so-called
attention mechanism and other recursive methods, outperformed traditional tools for seismic
signal detection [46].

2.1.3 Phase picking

After detecting seismic events, the subsequent tasks involve determining, measuring, and iden-
tifying P-Wave and S-Wave arrival times. This task has been traditionally performed manually
by expert seismologists:
It is a time-consuming task that requires an experienced analyst, and the amount of work can
be overwhelming during swarms and aftershocks sequences when in formations flux is high.,
Mousavi et al.,2023 [18]
Temporal resolution is essential to perform an accurate phase picking. Historically, other than
manual picking, classical approaches have relied on statistical and wavelet-based techniques.
However, these methods are susceptible to noise and biases, and they encounter difficulties
when identifying emerging S-Wave arrivals, as shown in Figure 2.4.

The introduction of AI to this field started in 2012 when Hammer et al., 2012 [48] employed
the HMM network architecture. This approach is suggested by Lara et al., 2021 [41] for detect-
ing seismic activity before a volcanic eruption. Instead, they used a few reference waveforms
that are archived and learned from while recording such events just after an interesting event
has been detected to create a classifier upon which a minimum number of them were based.
Thus, one waveform can act as the key event classifier. Finally, this system and superficial
neural network have also served as phase-picking tools.
Afterward, AI models have increased in complexity to improve accuracy with time. Differ-
ent methods have been employed since then, including multi-station models made by Yand
et al., 2020 [49] and single-station models (Ross et al., 2018), each with its own advantages
and disadvantages. Mousavi et al., 2023 [18] presented results that align with this observation.
Notwithstanding, the generalizability of this model is uncertain, although it may help to reduce
false favorable rates for a given symptom. Single-station models have benefited from extensive
training data, leading to robust generalization. However, they are also vulnerable regarding
hyperparameter tuning and the training process.
Nevertheless, an important thing about these methods is that due to their massive data
set training, they can act as pre-trained models for seismic tasks without retraining or fine-
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Figure 2.4: Arrival of P-Wave and S-Wave after an earthquake around the earth [47]

tuning [50]. Lapins et al., 2021 [50] proposed techniques such as Transfer Learning and feature
extraction methods that effectively utilized these machines optimally for phase-picking end
goals (Woollam, 2022). Lastly, the Seisbench of Woollam et al.,2022 [51] was another milestone
because it provided a toolbox containing several machine learning algorithms for phase picking
(see Figure 2.5).

In 2023, Li Wei and colleagues [52] proposed Python’s SAIPy packages. This is a solution
for handling seismological data. Earthquake detection, magnitude estimation, seismic phase
picking, and polarity identification are some tasks it covers. An essential part of SAIPy is the
inclusion of a pre-trained neural network referred to as CREIME_RT, which is an upgraded
version of CREIME. When given a 3-channel accelerogram as input, CREIME_RT has achieved
successful accuracy above 99.8% in earthquake identification. It is an improvement that shows
how this package can contribute to making seismic analysis capable of real-time seismic testing.

Hence, enhancing the accuracy of the detection and phase-picking stages within earthquake
monitoring pipelines generates a more intricate and comprehensive earthquake catalog.

2.1.4 Polarity Determination

Polarity determination is used to study the focal mechanism and determine the location of
seismic events. This can be done with diffraction stacking. The type of faulting during an
earthquake is revealed by focal mechanism analysis. Travel time curves are used for Kirchhoff
migration to pick the source location. This process allows researchers to compare this position
with the one they get from the diffraction stack. It was a manual and laborious process,
but it’s now been automated thanks to machine learning. A variety of methods have been
developed to apply machine learning to polarity determination. Rosse et al. ’s supervised
method (2018a) [53] and Hara et al. ’s (2019) [54] both make use of convolutional layers that
detect polarities that humans already identified in past researches. However, these two methods
were overshadowed by Mousavi et al. ’s unsupervised clustering approach (2019b) [55]. They
demonstrated that models can classify polarities better without taking damage in quality and
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Figure 2.5: Illustration of detection of P-Wave and S-Wave using a neural network architecture,
EQ-Transformer, [46]
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achieve more accurate focal mechanisms, Uchide et al., 2020 [56] (See Figure 2.6).

Figure 2.6: Focal mechanisms, (b) P-axes and (c) T-axes in the Kansai area. In (b) and (c), the
axes with plunges less than 30° and the focal mechanism solutions ranked A–C were plotted.
The ellipses indicate areas with distinct focal mechanisms. Source: Uchide et al., 2020 [56]

Uchide’s previous work was only done in the context of Japanese seismicity. Now, using
SAIPy [52], which was trained on the widened STEAD dataset, it has been possible to expand
to more exhaustive and standardized events around the world. Including this new framework
marks significant progress in generalization (see Figure 2.7). The 64 samples around P-wave
arrival swift prepossessed were picked from CREIME_RT and used to predict polarity. This
value then evaluated the uncertainty of the prediction. Therefore, the investigation made in
Polarity determination underscores the efficacy of integrating machine learning. Even better,
showing that incorporating this technology not only speeds up the process but also increases
accuracy. This transition has proven how this handcrafted strategy could be done faster and
more precisely using machine learning methodologies.

2.1.5 Phase Association

Phase association is a method used to link the seismic signal detected at different monitoring
stations within a seismic network. This tool helps to detect the occurrence of an earthquake by
identifying seismic phases at various locations and tracking their arrival times. In seismology,
Phase Association is one of the crucial and challenging tasks, and the endeavors need more
precision. Machine Learning approaches find a way of application. Time-based methods use
the measurement of travel time for phase association. Two primary strategies are employed:
pattern detection metrics and search-based associations. PhaseLink [57], which utilizes pattern
detection metrics, has demonstrated the potential of employing a Recurrent Neural Network
for phase association. This method simultaneously addresses source and phase association.
In a similar vein, Zhu et al. (2022) [58] combined research on a grid and neural network
techniques for phase association. The authors treated phase association as a probabilistic
clustering problem within a framework where each earthquake corresponds to a cluster of P
or S phases. These phases exhibit hyperbolic arrival time move-out and amplitude decay with
distance, as shown in Figure 2.8.

Waveform-based methods explore waveform similarity from nearby earthquake sources within
a low-dimensional feature space. For instance, Convolutional Neural Networks (CNNs) can be
trained on pairs of earthquake waveforms recorded at two stations, specifically across ma-
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Figure 2.7: SAIPy model designed to extract different features from wave form data. Source:
View [52]
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Figure 2.8: Synthetic example of phase association (courtesy of [58]): (a) association using only
arrival times; (b) association using both time and amplitude. The left panels plot the P- and
S-phase picks
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jor phase arrival times, to predict whether they originate from a common seismic source. This
research was conducted by McBreaty et al. [59]. Travel-time-based methods have been demon-
strated to perform better phase association, but they are less generalizable, contrary to wave
form-based methods [59].

2.1.6 Earthquake Source Parameters

The scientific community has labored to measure the parameters of earthquakes as they hap-
pen accurately. This is a huge problem when it comes to earthquake detection or prediction.
Conventional methods are too slow and not accurate enough, so researchers turned to Machine
Learning for help. More specifically, a method called PreSEIS (Pre-SEISmic [60], Bose et al.,
2008 [60]) was pioneered that could rapidly estimate seismic parameters shortly after an earth-
quake begins and before its end. It uses data from multiple sensors at different places to estimate
where the earthquake’s center is located, how big it is, and how wide the rupture will be. The
method consists of two layers of feed-forward neural networks, which are much faster than tra-
ditional methods based on single stations. The work of Bose collaborators used PreSEIS on the
Istanbul Earthquake Rapid Response and Early Warning System (IERREWS). Compared with
other methods, there was no dispute, and PreSEIS outperformed them in terms of speed and
calculation time [18]. Machines have been used in this area before, though with limited impact.
Kaüf et al., 2016 [61], have extended this work. They applied a nonlinear Bayesian method
that relies on pattern recognition and synthetic 3-D Green’s functions to quickly deduce point
source parameters from strong-motion data [61]. By representing probabilistic inverse mapping
using a deep neural network, they could provide probability distributions for source parameters,
allowing scenarios to be efficiently mapped with minimal CPU and memory resource demands.
More recent approaches are described in the following paragraphs.

(i) Single-station methods : The real-time seismogram analysis has traditionally relied on
well-established, rule-based seismological procedures to elucidate the characteristics of
seismic events, including earthquakes and tsunamis. However, early characterization of
such events is often not directly possible, and the performance of machine learning has
been used to overcome that situation. For the feasibility of that technology, Lomax et al.,
2019 [62] have focused their attention on identifying seismic parameters from data pro-
vided by a short-station waveform. Their study demonstrates that convolutional neural
networks (CNNs) can directly detect information with minimal pre-processing, eliminat-
ing the need for extensive feature extraction. The continuity of this work can be found
in the publication of Mousavi et Beroza., 2020a [63]. They used a multi-task temporal-
convolutional neural network to learn epicentral distance and P travel time from 1-minute
seismograms. The network provided estimates for epicentral distance and P travel time
with errors of 0.23 km and 0.03 s, along with information about their uncertainties. The
previous development paved the way for further exploration. Ristea et al., 2021 [64] im-
proved the work of Mousavi in the case of single-station-based estimation of epicentral
distance, depth, and magnitudes by using a time-frequency representation of 3-channel
waveform as input and utilizing CNN (see Figure 2.9).

(ii) Multi-station methods: The approach takes data from numerous stations in a seismic
network and extracts patterns in how seismic energy propagates across it. Plenty of re-
searchers have already delved into this method, known as a multi-station method. Most
recently, Licciardi et al., 2022, for EEW (Earthquake Early Warning), created a deep
neural network that analyzed prompt elasto-gravity signals (PEGS) to predict both an
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Figure 2.9: This is the complete architecture of a CNN model. The input data are a 3-channel
tensor of three concatenated STFTs (one transform on each direction EW, NS, and UD). The
input is processed through a series of Convolutional layers. At the end of the process, the
distance, depth, and magnitude of the signals are extracted. Source: Ristea et al., 2021 [64]

earthquake’s location and its magnitude ([65]). The team trained their model on synthetic
data, and using only PEGS recorded during the 2011 Tōhoku earthquake, it showed that
such networks could estimate the magnitude with a final Mw of 9± 0.05, using only 315
s of data. "After around 55 s, PEGSNet is always closer to the ‘true’ STF than the other
algorithms",[65]. As a result, PEGS has surpassed the speed of the current state-of-art
EEW system.
Kriegerowski et al., 2018 [66] introduced a novel method for earthquake location deter-
mination, called multistation regression. Traditionally, neural networks have been trained
on single-station records, showing some limits. To overcome these limitations, the present
approach used 3-component waveforms from multiple stations to avoid losing information
during the pre-processing. Collected data was adopted with no preliminary prepara-
tion besides record alignment based on the P-wave arrival time at the reference station.
Therefore, Kriegerowski and collaborators were able to train their deep neural network
and extract the pattern that determine the earthquake hypocenter locations.
On the other hand, Zhang et al., 2020 [67] considered earthquake detection by framing
this latter as an image classification problem. They recognized that convolutional neural
networks, widely used in image processing tasks, can effectively address this challenge.
Therefore, they trained a CNN model jointly using records of multiple stations. Their
team introduced a similar multi-station approach but with a twist. They formulated it
within a classification framework, where they represented a 3D grid covering a specific
region of interest using 3D kernels at the output layer of a CNN. The nearest grid point
to the earthquake hypocenter was labeled in this setup using a 3D Gaussian function.
Lin et al. (2021) [68] used this approach to solve the problems posed by EEW systems;
due to both the rarity the complexity of significant earthquake events, it becomes chal-
lenging to characterize the magnitude, depth and different parameter of a seismic event.
The developed model, denoted as M-LARGE (shown in Figure 2.10), is specifically de-
signed to address this problem. More than that, in the classical systems, determining
the magnitude of significant earthquakes was underestimated. In their study, the pro-
posed M-LARGE examines and determines the relevant patterns of crustal deformation
in real-time, enhancing EEW. Trained over 6 million different simulated rupture scenarios
recorded on the Chilean GNSS network, this method attains a rate of accuracy of 99%.
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Figure 2.10: M-LARGE model architecture, showing the input as the time-dependent PGD
(Peak Ground Displacement) values from GNSS stations. Courtesy of Li et al., 2021 [68]

“Furthermore, the model successfully predicts the magnitude of five real Chilean earth-
quakes in the last 11 years” [68]. To conclude, the described research has proved that the
multi-station method is a promising method for seismology in the future. Nevertheless,
in multi-station-based methods, large input and output dimensions increase the network
architecture’s complexity and nonlinearity, leading to a difficult and onerous training
process with a limited number of multi-labeled stations. This limitation is treated by
dynamic multi-station methods.

(iii) Dynamic multi-station methods: To tackle the limitation of the previous studies, the
works of Van Den Ende and Ampuero et al., 2020 [69] proposed a multi-station approach
based on edge-less graph neural network. This graph neural network (GNN) approach
explicitly incorporates spatial information. The location, underestimated mainly in the
previous machine learning, is used by Van Den Ende et al. to improve the performance
of their machine learning model. The GNN is designed for seismic source characteriza-
tion (specifically, location and magnitude estimation) based on multi-station waveform
recordings. The results showed that the proposed approach achieves superior model pre-
diction accuracy compared to other location-agnostic methods. It has been proven to
be highly adaptable to varying numbers and arrangements of seismic stations, offering
new possibilities for automation in seismological tasks and improving earthquake early
warning systems.

Münchmeyer et al., 2021a [70] introduced an innovative model for real-time earthquake
detection and location estimation. They employed a specialized neural network architec-
ture called the Transformer (more detail in Section§ 2.4.5). This model effectively incor-
porates waveform data from a dynamically changing array of stations. Their empirical
investigation conclusively demonstrated that this novel approach surpasses conventional
methods in parameter estimation.

Chin et al., 2021 [71] proposes an approach which, instead of using raw waveforms, relies
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on phase sampling times and triggered station positions as input data. They use an
attention-based hypocentre estimation model known as AHE. The attention mechanisms
have the ability of long-range correlations in the input sequences.
These studies conclusively demonstrated that classical CNN-based neural networks should
be better suited to this task due to the need to consider long-range dependencies in wave
propagation. We also raised the sequential nature of seismic waves. These data need
to be considered in terms of time and space. This has been advantageously taken into
account by transformer-based networks.

(iv) Physic-informed methods In 2022, Smith et al. [72] obtained interesting results in seis-
mology by adopting a different approach that represents a breakthrough in the field.
Instead of using deep neural networks (DNNs) for feature extraction or employing atten-
tion techniques to capture long-range dependencies, they proposed using a distinct type
of neural network known as a Physics-Informed Neural Network (PINN). PINN, devel-
oped by Maziar Raissi [73] and his collaborators, first proposed a way to incorporate the
laws of physics into the traditional neural network framework. Thanks to PINNs, neural
networks were first employed to solve partial differential equations (PDE). The core idea
behind it is to minimize the Mean Square Error (MSE) of discretized PDE with classical
discretization (based on Taylor’s limited expansion):
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The prediction will be more robust if the physics law is followed.
For example, if we train a PINN for a harmonic oscillator whose EDP has the expression:
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PINN succeeded in several fluid and solid mechanics applications to solve partial derivative
equations without numerical simulations. In Seismology, [74] proposed an architecture –
denoted HypoSVI – that employs PINN framework to solve the travel-time Eikonal equa-
tion that allows finding the real source position x, realizing the maximum log-likelihood
function of the source location, namely, ln p(x), as shown in panel 1 in Figure 2.11. A set
of particle locations xi (black dots in Figure 2.11) is drawn at training epoch 1 and up-
dated at each epoch by minimizing kernelized Stein discrepancy between the parametrized
likelihood and the observed source position distribution. Once the initial particle loca-
tions are supplied, the predicted travel times are determined from the distance between
all particle locations to all observation points (red triangles in Figure 2.11). Using the
solutions of these differential equations, they deduced the hypocentres from the observed
arrival times. This innovative strategy demonstrated robustness in handling the common
occurrence of high multi-modal posterior distributions in hypo-central inverse problems.
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Figure 2.11: Panel 1: HypoSVI training scheme. Panel 2: example of progressive Stein vari-
ational gradient descent. Black dots: particle positions. Red triangles: observation points.
Contours represent the particle kernel density, whereas the white star represents the median
location of the particles, representing the optimal hypocentral location. Source: Smith et al.,
2022 [72]

(v) Earthquake source mechanism Another crucial task in seismology is to quickly provide
an automated report on the mechanism at the source focus after a seismic event, partic-
ularly a destructive one. As a practical matter, this should enable rapid characterization
of fault geometry, assessment of stress perturbations, and underlying aftershock patterns.
To this end, Kuang et al., 2021 [75] proposed Focal Mechanism Network (FMNet), a new
model to attempt to solve this problem. This method quickly evaluates and estimates
focal mechanisms based on multi-station dynamics. Trained with 787320 synthetic sam-
ples, FMNet estimated the focal mechanisms of four Ridgecrest earthquakes in 2019 of
magnitude greater than MW 5.4.

Steinberge et al., 2021 [76] use a Bayesian Neural Networks (BNN) to ”rapidly estimate full
moment tensors of earthquakes and their parameter uncertainties“. This is a probabilistic
approach to detect focal mechanisms. This approach trains individual Bayesian neural
networks for each grid point in a 3D regional mesh using synthetic seismic waveforms
and moment tensor parameters. They successfully applied the BNN as a proof of concept
on seismic waveform recordings of aftershocks of the Ridgecrest 2019 earthquake with
moment magnitudes ranging from MW 2.7 to MW5.5.

Zhang et al. 2021 [77] introduced an innovative physics-guided neural network tailored
for estimating shear-tensile focal mechanisms. This technology was designed explicitly
for micro-earthquakes, utilizing displacement amplitudes of direct P waves recorded on
shallow-borehole arrays.
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Figure 2.12: PINN model proposed by Song et al., 2020 [79]. (a) The geological velocity model;
(b) three corresponding slices of the modified overthrust model obtained by PINN.

2.1.7 Synthetic Seismogram Simulation

Several methods, such as FEM and SEM, have been used for some time to simulate wave propa-
gation. FEM and SEM have proven effective for simulation wave propagation in heterogeneous
media. Such techniques provide an accurate approximation of the differential equation of the
problem. However, despite their mathematical rigor, they face some limitations. The multi-
scale nature of certain problems poses a numerical challenge. For large-scale model simulations,
difficulties quickly arise as computational costs increase steadily. In therm of wave propagation,
frequencies above 5 Hz seem unreachable. This is where machine learning comes in. There are
two main approaches: one based on Physical Information Neural Network and the other on
Generative Adversarial Network (GAN).

PINN was designed to solve the partial differential equation by minimizing the residual
between the ground truth at the monitor point and the inferred solution (via neural network)
at the exact location. Space and time derivatives are easily computed, adopting the automatic
differentiation libraries developed for stochastic gradient descent in machine learning. In this
context, Mosely et al., 2020 [78], successfully introduced PINN as a strategy to learn the solution
of the wave equation and introducing the boundary conditions as a penalty in the loss function
on the residual between synthetic and observations. Testing 2D acoustic wave equations with
varied velocity models, from simple to realistic, demonstrates the network’s accuracy. The
physics constraint in the loss function enables the network to solve the wave equation accurately
close to the boundaries. Song et al., 2020 [79] proposed a similar strategy in the frequency
domain. As shown in Figure 2.12 the authors utilized a modified wave equation for transversely
isotropic media with vertical symmetry as the loss function to train the PINN. They focused
on solving for the scattered pressure wave field instead of the overall wave field. Applying this
model, they derived frequency-domain acoustic solutions in 2D and 3D scenarios, considering
irregular topography and maintaining a fixed source location. The numerical experiments
proved that PINNs are relatively efficient and accurate, drastically reducing the computational
time needed to obtain the solution with numerical methods.

Generative Adversarial Network (GAN), GoodFellow et al., 2014 [80], is designed to pro-
duce indefinitely fake samples that closely resemble the original ones. This task leverages the
approximation power of neural networks to learn the probability distribution of attributes in
the trained data by optimizing a generator through a discriminator. Further exploration of this
concept is available in Section 2.3.3. GAN has proven its utility in various applications, such as
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Nomenclature Description Unit Formulation

PGA Peack Ground Acceleration g PGA = maxt |üg(t)|
PGV Peak Ground Velocity cm/s PGV = maxt |u̇g(t)|
Sa Spectral acceleration g Sa(Ti) = ω2

i Sd(Ti)

IA Aria Intensity cm/s IA = π
2g

∫ Td

0 [üg(t)]
2 dt

IV Velocity Intensity cm IV = 1
PGV

∫ Td

0 [u̇g(t)]
2 dt

CAV Cumulative absolute velocity cm/s CAV =
∫ Td

0 |üg(t)|dt
CAD Cumulative absolute displacement cm CAV =

∫ Td

0 |u̇g(t)|dt
ASI Acceleration spectrum intensity cm/s ASI =

∫ Td

Ti
SA(T, ξ)dT

Table 2.1: Intensity definition. g = 9.8m/s2 represent the gravity acceleration

seismograms data augmentation, see Wang et al., 2020 [81], Wu et al., 2021 [82]. It can generate
broadband seismic signals by combining the low-frequency results from physics-based numerical
simulations with sparsely sampled broadband observations (Gatti et al., 2020 [21]). Addition-
ally, GANs can generate three-components strong motion time-series for different magnitudes,
distances, and VS,30 values (Florez et al., 2022 [83]). They are also used to refine computer
simulations of Distributed Acoustic Sensing (DAS) data for ground motion noise, Hermandez
et al., 2022 [43]. In a nutshell, GANs offer an efficient framework for generating large-scale
synthetic training data, enhancing the performance of deep-learning classifiers, see Li et al.,
2020 [84].

In this sense, ANN2BB, developed by Paolucci and his collaborators, 2018 [85] has proven
the possibility of finding a strong “correlation between short and long period spectral ordinates
trained on strong motion record”, going beyond the limits of the classical deterministic numer-
ical simulation. ANN2BB allows the enhance the outcome of synthetic numerical simulations
(valid for periods above 0.75 s) to generate hybrid broad-band synthetic (valid for periods above
0.05 Hz) by inferring the short-period pseudo-spectral acceleration (PSA) ordinates (0.05- 0.75
s) from the long-period part (T >0.75 s) numerically simulated. Hybrid PSA spectra (numeri-
cal simulations for the long-period part, ANN for the short-period part) are adopted as targets
to iteratively scale the numerically-simulated long-period time histories adding random-phase
Fourier amplitudes following the Sabetta and Pugliese method [86]. ANN2BB was successfully
adopted by Gatti et al. [16] to render hybrid strong ground motion scenarios of the MW6.7 2007
Niigata-Chuetsu-Oki earthquake in Japan. The free-field hybrid ground motion generated by
ANN2BB was based on numerical simulations of the Niigata earthquake on a 50 km × 68 km
vast region, including the nuclear site of Kashiwazaki-Kariwa. The latter was chosen as a case
study for an international benchmark. Gatti et al. [16] employed the free-field hybrid ground
motion to perform a subsequent Soil-Structure Interaction study, approximating the structural
response of one reactor building during one major aftershock following the Niigata 2007 main
shock.

2.1.8 Ground Motion Characterization

Ground motion is usually characterized by its Intensity Measures (IM), such as Peak Ground Ac-
celeration (PGA), Peak Ground Velocity (PGV), Cumulative absolute velocity (CAV), pseudo-
spectral acceleration (PSA), and Arias Intensity. These parameters can be determined us-
ing ML. For instance, Machine Learning demonstrated its effectiveness in constructing non-
parametric Ground Motion Models (GMM), mainly through (deep) neural networks. In this
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context, the neural network represents the model coefficient, and a fixed set of similar input
parameters is utilized, see Table 2.1.

In the work of Derras et al., 2014 [87], a neural network was used to develop a ground
motion prediction equation (GMPE) for Europe in a model with only five inputs-magnitude,
Joyner-Boore distance, focal mechanism1, hypocentral depth and VS,30

2 and outputs of PGA,
PGV, and 5% damping at period from 0.01 to 4 s.

Hu et al. (2022) [89] adopted Support Vector Regression (SVR), focusing on minimizing the
generalized error bound for enhanced robustness, to formulate Ground Motion Models (GMMs)
for Arias intensity, CAV, and significant duration. Their primary objective was to perform a
regional seismic hazard analysis for the earthquake-prone Kanto region in Japan. To evaluate
the rationality and effectiveness of the SVR GMMs, Hu and collaborators have analyzed per-
formance indices such as correlation coefficients, slope coefficients, and residuals. Remarkably,
the residuals of the SVR GMMs displayed no significant deviation concerning magnitude, rup-
ture distance, or shear-wave velocity. Moreover, the standard deviations of model residuals,
calculated from the regional ground motion database, were observed to be lower than those
derived from previous models based on either Japanese or global databases. The study addi-
tionally compared the SVR GMMs with observed data and previous GMMs. The data-driven
SVR method is commended for its capacity to develop GMMs without constraints from specific
mathematical forms, addressing concerns about the potential impact of the structure of previ-
ous models on prediction performance. This approach effectively captures regional attenuation
characteristics in seismic activity within the Kanto region.

Withers et al. (2020) [90] conceived a model to build GMPE from a database of ground
motion simulations. Their findings indicate that the neural network–based GMPE provides bias
and variability similar to empirical GMPEs for the Ridgecrest event. This suggests that machine
learning-based GMPEs have the potential to emerge as potent tools in the next generation of
seismic hazard models.

Other authors have approached this task using more modern architectures. Hsu & Huang,
2021 [91] employed Convolutional Neural Networks (CNN) to predict peak ground motion at
a station, relying on the first 3 seconds of waveform data observed at the station. Their work
extends beyond mere prediction, demonstrating the capability to forecast PGA for short and
straightforward earthquakes.

Münchmeyer et al., 2021b [70] developed an end-to-end approach for estimating PGA (Peak
Ground Acceleration) probability densities at specific locations. This estimation relies on ob-
served waveforms from a designated set of seismic stations. Their methodology showcases flexi-
bility, allowing for an arbitrary number of stations at any location by implementing station-level
feature extraction and PGA prediction.

1Seismologists define the focal mechanism of an earthquake as the direction of slip on the associated fault.
They use symbols such as the “beach balls” on maps, representing the orientation of the stress field at the
moment of rupture. The calculated focal mechanisms show the stress and pressure axes without the use of
shading (https://web.archive.org/web/20190601164109/https://earthquake.usgs.gov/learn/topics/
beachball.php).

2Defined as the harmonic mean wave velocity average over the 30 m directly below the ground [88]

https://web.archive.org/web/20190601164109/https://earthquake.usgs.gov/learn/topics/beachball.php
https://web.archive.org/web/20190601164109/https://earthquake.usgs.gov/learn/topics/beachball.php
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Figure 2.13: Summary of various approaches using machine learning for the different tasks and
modeling in seismology. Source [18]

The introduction of machine learning in seismology this past decade has changed how
seismologists and earthquake engineers perceive these fields. The availability of large
databases and the power of the machine learning model to absorb data and find rela-
tionships inherent to this have played a pivotal role. Subsequently, significant advance-
ment has emerged and coincided with breakthrough technologies, such as Convolu-
tional layers, Transformers networks, and improved graphic cards of higher speed and
capacities.
Also, the information retrieved and collected from sensors and the ingeniously designed
models have contributed to earthquake detection and early earthquake warning (EEW)
systems. Phase picking, polarity determination, and source parametrization have ben-
efited mainly from those approaches, and as a byproduct, synthetic databases have
enriched and completed the recorded databases. Furthermore, standard numerical
methods such as Finite Element Method (FEM) and Spectral Element Method (SEM)
found their equivalence in machine learning through the Physics Informed Neural Net-
works (PINN) designed to solve wave equation and Eikonal equations. Finally, the
recent application of Generative Adversarial Networks addresses the challenge of poor-
quality signal reconstruction by enhanced physics-based simulation (PBS). All those
contributions have then proved how artificial intelligence is significant for the future of
seismology. Figure 2.13 summarizes the main machine-learning-related scientific activi-
ties in seismology and earthquake engineering.

Partial conclusions on ML in seismology
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2.2 Dimensionality reduction for multivariate data
When a dataset exhibits numerous features, many variables, and many realizations, interpreting
which components are relevant for analysis can become challenging. Dimensionality reduction,
therefore, emerges as reducing the number of dimensions or features while preserving essential
information. This approach is helpful in statistic, particularly in machine learning, for several
reasons:

1. The dimensionality reduction accelerates algorithm development and improving grouping
and clustering [92];

2. These methods enhance classification accuracy [93];

3. Also, these methods enable effective visualization [94];

4. And these methods preserve regression information [95]

2.2.1 Principal Component Analysis

The foundation framework of Principal Component Analysis (PCA) traces its origins back to
the seminal work put forth by Karl Pearson in 1901, as documented in his publication [96].
This method was initially applied to physical, statistical, and biological research. It is perti-
nent to note that a contemporaneous development, namely Exploratory Factor Analysis (EFA),
was conceived by Charles Spearman in 1904, specifically to address psychometric assessments.
During its early stage, the terms PCA and EFA were employed interchangeably within the do-
main of measurement theory. However, in subsequent years, the PCA methodology underwent
a process of distinctive popularization, emerging as an elegant, straightforward technique to
encapsulate and succinctly delineate complex data sets.

Principal Component Analysis (PCA) is employed on complex, multi-component data sets
that inherently elude direct observation in low-dimensional spaces such as 2D or 3D. PCA
outlines both auto- and cross-correlations within the data set. This procedure facilitates the
representation of each entity within the sample space as discrete points within either a 2D
or 3D geometric framework [97, 98]. All these points coexist within a unit-radius sphere.
Consequently, this technique empowers identifying and isolating potential outliers, which may
stem from sampling aberrations. As a result, it becomes feasible to discern clusters of samples
corresponding to distinct classes when projected onto the principal component planes, as shown
in Figure 2.14.

Principal Component Analysis (PCA) serves as a mechanism for dimensionality reduction,
enabled by aggregating contributions from the primary dimensions. This methodology permits
prioritizing dimensions that encapsulate 95% of the data set information. However, in the
context of this thesis, PCA was not directly applied to seismic signals but rather to their
encoded representations, i.e., the latent space. This choice is motivated by PCA’s significant
computational demands, increasing with the dimension of the data. In the case of this thesis,
owing to the utilization of approximately 30 7200 time-series, each comprising 4096 discrete
time steps, the use of PCA was prohibitive. However, PCA will be preemptively leveraged
to ascertain the optimal dimensions for the latent space. This strategic approach provides a
precise gauge for the judicious selection of latent space vector dimensions. Moreover, PCA has
been harnessed to evaluate the extent of potential intermingling among sub-classes, thereby
affording the means to govern signal transformations. Further elaboration on this matter will
be provided in the ensuing chapter.
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Figure 2.14: Unglert et al., 2016 [99] in their study use PCA for pattern recognition in volcano
seismic spectra.”PCA results for noise level 1.5. (a) Percentage of variance explained by each
mode. (b) Projection of the observations in space spanned by principal components 1 and 2. (c)
Evaluation measure for different cluster configurations, with the peak at k = 3 indicating the
best cluster number. (d)–(f)”

2.2.2 t-SNE and UMAP

Despite the undeniable advantages of PCA, it is imperative to recognize its inherent limita-
tions when disentangling latent structures in high-dimensional data spaces. Depending on the
sampling density, some data points or subgroups may have reduced ’observability,’ leading to
higher principal components associated with high uncertainty. In response to this challenge,
techniques such as t-distributed Stochastic Neighbor Embedding (t-SNE) and Uniform Mani-
fold Approximation and Projection (UMAP) have been introduced [100]. These methods were
designed to circumvent the aforementioned limitation associated with PCA by capitalizing on
manifold learning principles.

On the one hand, the t-SNE was introduced by Geoffrey Hinton and Laurens van der Maaten
in 2008 [101]. ”The technique is a variation of Stochastic Neighbor Embedding [. . .] that is much
easier to optimize and produces better visualizations by reducing the tendency to crowd points
together in the center of the map“. This tailored algorithm is designed to more effectively
separate points that a straight line cannot separate. The formulation to evaluate the distance
between two distributions pij, qij. Each distribution evaluates the distances with two points.
In this theory, the distribution is assumed to be Gaussian with a standard deviation of σi. The
high dimensional data set X = {x1, x2, ..., xn}, in the targeted two or three dimension data
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Y = {y1, y2, ..., yn} that can be display with scatter plot.

pij =
exp (−∥xi − xj∥2/2σ2

i )∑
k ̸=l exp (−∥xk − xl∥2/2σ2

i )

qij =
(1 + ∥yi − yj∥2)−1∑
k ̸=l (1 + ∥yk − yl∥2)−1

(2.4)

To optimize t-SNE, use Kullback-Leibler divergence

C = DKL(P∥Q) =
∑
x∈X

P (x) log

(
P (x)

Q(x)

)
(2.5)

is derivative is computed according to the following expression:

∂C

∂yi
= 4

∑
j

(pij − qij)(yi − yj)(1 + ∥yi − yj∥2)−1 (2.6)

as shown in the Algorithm 1. On the other hand, UMAP was introduced by Leland McInnes

Algorithm 1 t-SNE algorithm. Source [101]
Data : data set X = {x1, x2, ..., xn}
cost function parameters: perplexity Perp
optimization parameters: number of interations, T , learning rate, η, momentum, α(t)
Result: low-dimensional data representation Y(T ) = {y1, y2, ..., yn}
Compute pair wise affinities pj|i with perplexity : Perp(Pi) = 2H(Pi), with H(Pi) =
−∑j pj|i log2 pj|i

Set pij =
pj|i+pi|j

2n

sample intial solution Y(T ) = {y1, y2, ..., yn} from N (0, 10−4I)
for t = 1 to T do

compute low-dimensional affinities qij
compute gradient ∂C

∂Y
set Y(t) = Y(t−1) + η ∂C

∂Y + α(t)(Y(t−1) − Y(t−2))
end for

and John Healy in 2018 [102] to circumvent the lack of precision. As shown in Figure 2.15,
UMAP and t-SNE are comparable for visualization quality. However, UMAP better preserves
the global data structure and has a cheaper computational cost than t-SNE. Furthermore,
UMAP has no computational restrictions on the embedding dimension, making it viable as a
general-purpose dimension reduction technique for machine learning, as shown in the example
Figure 2.16. The formulation of the UMAP cost function :

CUMAP =
∑
i ̸=j

vij log

(
vij
wij

)
+ (1− vij) log

(
1− vij
1− wij

)
(2.7)

In this formula the term vij = (vj|i + vi|j) − vj|ivi|j. The term vij is the local fuzzy simplicial
set membership, based on the smooth nearest neighbors distances:

vj|i = exp [(−d(xi, xj)− ρi)/σi] (2.8)
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Figure 2.15: This figure illustrates the difference of performance between t-SNE and UMAP.
Source: ©[103]

We call the low dimensional similarities :

wij =
(
1 + a∥yi − yj∥2b2

)−1 (2.9)

The overall understanding of the latent space representation is useful for synthesizing the
interpretation of complex data structures. For our study, we observe PCA, t-SNE, and a
UMAP as visualization techniques. We explore values in two-dimensional and three-dimensional
graphs.

2.2.3 Singular Spectrum Analysis (SSA)

The Singular Spectrum Analysis was developed at the beginning of the geophysical task by
Varadi et al., 1999 [107] to detect oscillations in short and noisy time series. In this work, the
authors offer a generalization of the process. This technique has been extended to different
fields, multivariate data analysis, signal processing, and approximate projectors for time-series
forecasting, Moskvina et al., 2003 [108]. ”Singular spectrum analysis is a method of time-
series analysis based on the singular value decomposition of an associated Hankel matrix.” [108].
Undoubtedly, the application of these techniques holds promise within the domain of time-series
analysis, particularly in the identification and accentuation of recurrent patterns. According
to Zhu et al., 2022 [109], the SSA encompasses 4 steps: embedding, decomposition, grouping,
and reconstructions. (View an example of signal reconstruction in Figure 2.17.)
The vector, x = {xn, n = 1, ..., N} into r components, x =

∑r
k=1 y

(k), information is rearranged,
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Figure 2.16: This t-SNE has been used here to analyze the architecture performance com-
pared to others. In this paper, the author highlights that data generation performed through
TimeVAE [104] is more realistic compared to generated data from other methods. t-SNE plots
for the TimeGAN model proposed by ©[105] (top left), TimeVAE (top right), RCGAN [106]
(bottom left), and T-Forcing (bottom right) models for the 4 data sets under various training
size percentages (p). Red is the original data, and synthetic data is in blue. An empty t-SNE
chart appears when insufficient training data are considered for the model to generate synthetic
data.
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such a way, we have the Hankel structure.

XL×K =


x1 x2 · · · xK

x2 x3 · · · xK+1
... ... ... ...
xL xL+1 · · · xN

 ≜ H[x] (1)

A Singular Value Decomposition is operated :

U = [u1, . . . , uR] ,Σ = diag (σ1, . . . , σR) , V = [v1, . . . , vR] (2)

. The energy distribution σ2
i∑R

j=1 σ
2
j

of the i-th characteristic triple (σi,ui,vi) is called specturm
of x. In third place, we perform an Anti-diagonal Averaging

x(k)
n =

∑
|i+j|=n+1 X

(i)
ij

#{(i, j)||i+ j |= n+ 1} (3)

. And Grouping :

x =
r∑

k=1

y(k), where y(k) =
∑
i∈Ik

x(i) (4)

View the Algorithm 2.

Algorithm 2 SSA algorithm. Source [109]
Input: observed signals x, embed dimension L
UΣV ⊤ ← H(x)
xi ← H−1(σi,uiv

⊤
i )

Ik ← HCA(xu)
xk ←

∑
i∈Ik xi

However, seismic signals have long time intervals. Using SSA necessarily implies a high
computational load. The methodology becomes impractical. The main reason for this is the
prohibitive computational demand.

2.3 Reconstruction and Generation
Most ML approaches in earthquake engineering treated seismic data using their 2D spec-
trograms, straightforwardly applying computer vision algorithms conceived for images. The
database in seismology comprises time-series data in the form of a 3-channel component. Using
2D spectrograms introduces an additional pre-processing step, which can be streamlined by
employing time-series data. However, more progress is needed for auto-regressive models in
1D time-series data. Furthermore, limited progress has been made in generative models, as
evidenced by the sparse presentation of relevant papers in the work of Mousavi et al., 2023 [18].
Therefore, a significant portion of our research focuses on addressing the challenges of recon-
struction and the generation of time series. The reconstruction task is notoriously complex
because of blur that affects the quality of the reconstructed samples (Bredell et al., 2023 [110]).
This aspect is presented in the section dedicated to auto-regressive encoder; see Section § 2.3.1.
The approach pursued hereafter in this thesis involves a systematic exploration of the design
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Figure 2.17: sin(0.1t) + et, et ∼ N (0, 16) and its reconstruction. Source:©Moskvina et al.,
2003 [108]

of neural network architecture adapted for this task. Subsequently, we learned how to design
the neural network-adapted encoder and decoder architectures.

Additionally, we explored how latent representations (produced by the encoder) could im-
pact the reconstruction, aiming simultaneously to identify the more convenient representation
to generate new samples. The final purpose of the thesis is to provide a neural network archi-
tecture that enables multi-modal one-to-many generation of plausible broad-band time series
conditioned by the same low-frequency input time series corresponding to different plausible
”reconstructions“. We propose a strategy to project data onto a Gaussian manifold (the latent
representation). This aspect is explored in the chapter dedicated to translation, Chapter 4 and
Chapter 5.

Consequently, we thoroughly examine all the models designed for the time-series data. The
field of investigation spans simple autoencoders to more complex generative models. We treat
the solution of Variational Auto Encoder (VAE, An et al., 2015 [111]), Generative adversarial
Network (GAN, Goodfellow et al., 2014 [80]), Bi-directional GAN (BiGAN, Donahue et al.,
2017 [112]) and Contrastive Learning (CL, Chen et al., 2020 [113]).

In the following sections, we present the advantage and the case of studies of this method
in the field of seismology, as briefly depicted in Figure 2.18.

2.3.1 Auto-Encoder

An auto-encoder (AE) is a learnable mapping trained to match the identity. It reconstructs
an input through an intermediate latent encoded representation and subsequently decodes
it to reconstruct the input. Neural network architectures are often used as auto-encoders:
the internal representation is derived by passing the inputted data through different layers,
each down-sampling the original data while increasing the number of hidden features. The
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Figure 2.18: Unsupervised learning techniques for time-series. ©Illustration from Qianwen
Meng et al., 2023 [114]

latest layer that processes the down-sampled multiple features is often called the ”bottleneck“.
Subsequently, another segment of the neural network processes these latent values through
different layers, starting from abstract representation and passing it through different layers
that up-sample it, with a final layer that should output the reconstructed data. In other words,
to capture an abstract representation of data, we must encode the information in a space where
we apprehend the relevant features. This latter will be used in a decoder to try to rebuild the
same information. If we define F : X → Z the encoder, G : Z → X the decoder, and x the
data we target to reconstruct, We could define the operation is as follows:

F : x 7→ z̃ = F (x) G : z 7→ x̃ = G(z) (2.10)

Z represents a latent manifold with a reduced dimension than the data space X . To enforce the
quality of reconstruction, different types of losses could be used, defined as a distance metric d
between two samples:

Lp(x, G(F (x)) = d(x, G(F (x)) (2.11)

Section 2.5 presents an in-depth discussion about loss minimization. In our project, we observed
that integrating an auto-encoder represents a pertinent step in adversarial learning because it
makes the network learn identity mapping in addition to the generation task.

Algorithm 3 AutoEncoder algorithm
Intialization of network paramters θg
for e in number of epochs do

Sample minibatch of m examples {x(1), . . . ,x(m)} from data pdata(x)
Update the generator by ascending its stochastic gradient:
ηg ← ∇θg

1
m

∑m
i=1 ∥x(i) −G(F (x(i)))∥

θg ← θg − ηg
end for
The Adam algorithm is commonly used for that task
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Application of Auto-Encoder

In the literature, the auto-encoder architecture is commonly used for :

(i) Dimensionality reduction : It has been observed that the auto-encoder has significant
differences in dimension reduction when compared to commonly used methods such as
PCA (Section § 2.2.1) and SSA (Section § 2.2.3). These differences demonstrate the
limitations, which will be presented in the following paragraph.

PCA is based on a linear transformation to identify the principal components. Its appli-
cation requires preliminary work before it can be applied to time series data. In addition,
PCA operates in a space with an orthogonal direction that considers the most significant
variances. In contrast, SSA, designed for time series, decomposes the data into additive
components to identify the underlying patterns. AEs have demonstrated superior perfor-
mance by outperforming conventional PCA and SSA (Helal et al., 2017 [115], Casella
et al., 2011 [116], Roche et al., 2018 [117]). Autoencoders capture complex non-linear
relationships within data because their architecture uses non-linear activation. Such an
architecture could better observe the non-linearity in the data. Autoencoders are more
flexible. They can be used for various tasks like anomaly detection, image compression,
and feature engineering. In contrast, PCA is a more specialized tool better suited to data
visualization and feature selection tasks. As a result, AE offers greater analytical power
and better representation of data structures than the linear transformations of PCA and
the additive decomposition of SSA.

(ii) Feature extraction: “Features extraction is the process of transforming data into fea-
tures in a way that is more tailored for analysis or modeling.”. Feature extraction has
a widespread application, particularly in classification or regression. One of the many
proposed applications is anomaly detection, Nazare et al., 2018 [118]. The advantage of
AE is the ability to extract relevant abstract information from data. Thus, AE highlights
its inherent regularity properties. Section § 2.5 details feature extraction applications. In
short, this capability improves the efficiency of feature extraction from data.

(iii) Denoising: This task, generally carried out by hand, is commonly called the "source
separation problem". It involves isolating and attenuating instrument noise or background
noise. In signal processing, the aim is to transform the signal in such a way as to preserve
its quality and the intelligible information it contains effectively.

A time series is generally modeled as follows :

y(t) = x(t) ∗ h(t) + n(t)

The formula where y(t) is the distorted signal, x(t) is the clean signal, n(t) is the back-
ground noise, ∗ is a convolution operation, and h(t) is a linear filter. Denoising can be
seen as a source separation problem. The aim is to remove n(t) and predict the desired
speech, x̂(t) (Abdulatif et al., 2022 [119]). In seismology, we are interested in acceleration
data obtained from seismic waves. These data have the particularity of having a back-
ground noise. There are distinct phases that express the arrival of the P wave and then
the arrival of the S wave. This reading enables the signal to be identified and denoised
more effectively. It is, therefore, an effective way of reducing noise, Zhao et al., 2023 [120].
This idea is also supported by Gulati et al., 2020 [121].
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Auto-encoders in engineering seismology

The first use of AE on seismic traces is from Valentin et al., 2012 [122]. The authors have
demonstrated how AE can be used to map from data to encoding space and its inverse. An
illustration of this is shown in Figure 2.20. Seismic history matching is addressed by Mingliang
Lu et al., 2018 [123] with a Deep Convolutional Auto Encoder to sparsely represent the seismic
data using latent features and then perform data assimilation. This research has been success-
fully used to transform multi-modal data into low-dimension space.
Loïc Viens et al., 2019 [124] have proposed a convolutional autoencoder to de-noise ambient
seismic field correlation functions. This method, noted ConvDeNoise, is designed to be applied
to traditional two-station and single-station correlation functions to monitor the temporal evo-
lution of the Earth’s physical properties.

The ConvDeNoise shows that relative velocity computed on single station correlation de-
noise is better than classical correlations.
Autoencoder is used for Seismic facies recognition. Seismic facies classification is an important
tool in sedimentary geology. It makes it possible to reconstruct the geological history of a
region by identifying the different types of sediment present and the context in which they
were deposited. The “Prestack seismic data contains useful information that can help us find
more complex atypical reservoirs.”. Unfortunately, this information has many redundancies
that could block the use of classical mode. This issue is addressed by Qian et al., 2021 [125]
for seismic facies recognition. A convolution auto encoder’s effectiveness is in detecting and
removing redundancy that information as input could have. See Figure 2.19. As we can see, the

Figure 2.19: In this we present the Facies maps of LZB region. In (a) the result of using
Convolutional AutoEncoder. In (b) the result using prestack data, in (c) the results using PCA
based on prestack data. Source:©Qian et al., 2021 [125]

different cases of using machine learning to manipulate autoencoders have interesting results for
seismic. The effective field was for de-noising, feature extractors, and dimensionality reductions.

Limitations of the Auto-Encoder

(i) Generalisation issues: The architectural design of the AE heavily relies on the charac-
teristics and intricacies of the data set. Consequently, it lacks a generalized approach.
Such an approach cannot be universally applied across diverse data sets. This can hinder
AE’s ability to achieve robust and scalable solutions across different data sets. This is a
generalization issue.

(ii) Efficient separation of latent space: The challenge inherent in AE lies in accurately
disentangling the latent space. It is commonly observed that the latent representation
may not effectively separate the underlying factors of variation in the data, Leeb et al.,
2021 [126]. This leads to no clear decantation of labeled data, for instance. In this sense,
the regularization technique is further used to enhance the disentanglement capability
expression, Cha et al., 2022 [127].
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(a) Architecture of an auto-encoder neural network, propose by Valenti et al., 2012 [122]. Successive
layers of neurons detect patterns in input data and use them to generate an encoded representation.

(b) Wave forms corresponding to unit encoding. Thirty-two wave forms obtained by decoding the unit
vectors x(L/2) = (1, 0, . . . , 0), x(L/2) = (0, 1, . . . , 0), etc. We observe that each encoding element
affects the entire length of the time-histories. Source [122]

Figure 2.20: Case of Auto-Encoder application to earthquake time-histories.
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(iii) Interpretability of the latent values: Another notable limitation remains the inter-
pretability of the representations learned by the AE, [126]. The latent space lacks clear
and intuitive interpretations. Without interpretable results, it is difficult for human ana-
lysts to obtain meaningful information about the inner workings of the data projections.

In conclusion, while the Auto-Encoder method has demonstrated considerable utility in various
domains, it is essential to acknowledge and address these limitations to leverage its full potential
effectively.

An Auto-Encoder is composed of two parts. One is the encoder, F , and the other is
the decoder, G. It could be unified or used in separate parts. In general the optimiza-
tion functions is the ℓ1 or ℓ2 loss :

∥x−G(F (x))∥ (2.12)

This architecture is commonly used for dimensionality reduction, Feature extractions,
and de-noising. However, this experience has some issues, especially with generaliza-
tion, expressivity, and interpretability.

Summary

2.3.2 Variational Auto-Encoder

The variational autoencoder (VAE) could be seen as an additional step to the AE. VAE pro-
vides a better understanding of the latent representation of data. This representation is math-
ematically comprehensible. Often, the latent values of a sample are assumed to be a normal
distribution with a mean of zero and a standard deviation of one unit.

Kingma and Welling [128] was the most ancient paper with Variational Auto Encoder, de-
veloped in 2014. The AE is a good platform for learning in directed probabilistic models. These
models rely on latent variables, which are often hard to learn because of the difficulty of their
posterior distributions. To overcome this challenge, variational autoencoders approximate the
posterior distribution using neural networks, thus leading to efficient optimization and training
of these models.
One key benefit of variational encoders is that they can handle continuous latent variables.
MCMC sampling is among other inference methods that are not ideal for high-dimensional
continuous latent variables since VAEs do not care about the dimensionality of the latent vari-
ables while approximating the posterior distribution using a neural network. This makes them
especially useful when working on tasks involving heterogeneous data with high-dimensional
hidden representations.

Let us define some data set X = {x(i)}Ni=1, N represent the number of the samples. In
VAE, the data are generated from some random processes, represented by z(i); this latter is
a supposed probability distribution, generated by some prior pθ(z). Each sample is generated
from some conditional distribution pθ(x|z). Let design the model approaching the solution by
qϕ(z).

The term p(z) will be replaced by a model, q(z) trained to parameterize a mathematical
distribution, often chosen as Gaussian, Seeger et al., 2011 [129]. The Gaussian Process is versa-
tile and powerful, offering a natural generalization of multivariate random variables to infinite.
It can capture complex data patterns and provide flexibility thanks to its non-parametric na-
ture (Sfier et al., 2022 [130]) simplicity and interpretability, smoothness and regularization,
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Bayesian learning and uncertainty quantification, adaptability and optimization, interpolation
and Extrapolation of data, Rudolph et al., 2023 [131].

p(x) =

∫
p(x|z; θ)pθ(z)dz (2.13)

The term ϵ ∼ N(0, I) the term z = µ(X) + Σ1/2(X) · ϵ. an ELBO (Evidence Lower Bound) is
the solution to satisfy:

log pθ(x)−DKL(qϕ(z|x)∥pθ(z|x)) = Ez∼qϕ [log pθ(x|z)]−DKL(qϕ(z|x)∥pθ(z)) (2.14)

The term DKL(·) introduced here is the Kullback Leibler distance. The complete function
to minimize combines the auto-encoder loss and the Kullback Leibler loss. In the VAE, it is
assumed that the distribution of the latent space we want to map is a Gaussian distribution of
mean 0 and standard deviation 1; See Figure 2.21. The latter leads to the following equations:

DKL[N (µ(x(i)),Σ(x(i)))∥N (0, I)] =
1

2
(tr(Σ(x(i))) + (µ(x(i)))⊤(µ(x(i)))

− k − log det(Σ(x(i))))
(2.15)

Then the cost functions to minimize is :

L
(
θ,ϕ;x(i)

)
= −DKL

(
qϕ
(
z | x(i)

)
∥pθ(z)

)
+ Eqϕ(z|x(i))

[
log pθ

(
x(i) | z

)]
(2.16)

In general, we approach the solution using neural network architecture. Let us define G as the
decoder and F as the encoder. The weak formulation of the previous Equation 2.16 is then :

L(G,F ;x(i)) = Lp(x(i), G(F (x(i))) +DKL[N (µ(F (x(i)),Σ(F (x(i)))∥N (0, I)] (2.17)

Algorithm 4 Variational AutoEncoder algorithm
Intialization of network paramters θg
for e in number of epochs do

Sample minibatch of m examples {x(1), . . . ,x(m)} from data pdata(x)
Calculating µ(X) and σ(X):
µ(x(i)), σ(x(i))← F (x(i))
Sample ϵ ∼ N (0, I)
z(i) = µ(x(i)) + σ(x(i))⊙ ϵ
Update the generator by ascending its stochastic gradient:
ηg ← ∇θg

1
m

∑m
i=1 ∥x(i) −G(F (x(i)))∥+D(µ(x(i)), σ(x(i)), 0, 1)

θg ← θg − ηg
end for
The Adam algorithm is commonly used for that task

VAE in time-series Seismology

(i) Mingliang Liu et al., in their work published in 2022 [132], proposed the use of a Varia-
tional Autoencoder (VAE) to quantify stochastic inverse problems. Their study focuses
on estimating rock and fluid properties in the subsurface from geophysical measurements,
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Figure 2.21: Illustration of Variational Auto Encoder to reconstruct data. Source: lilianweng

a computationally and memory-intensive process. In scenarios where dimensionality re-
duction is preferred as a strategy due to the high computational demands, they highlight
that reduction based on deep generative models may lead to information losses, affecting
the quality of reconstructed data.
To address this issue, the authors introduce a workflow that compares Markov Chain
Monte Carlo (MCMC) results with latent values generated by the VAE. This framework
is specifically applied to geophysical inverse problems. The findings of their study indi-
cate that employing dimensionality reduction, in this case using VAE, can lead to more
efficient solutions for inverse stochastic problems.

(ii) Ning et al., 2024 [133] use Convolutional VAE to enhance Ground motion analysis and
achieve reliable GM classification, selection, and generation of simulated motions. See
Figure 2.22.

(iii) Haowei Hua proposes GMVAE to address the problem of seismic facies deep cluster-
ing, Hua et al., 2O23 [134]. The problem of Seismic Facies Analysis (SFA) could be
a crucial step in interpreting subsurface structures. The fact that the problem remains
intractable by the classical algorithm has led Hua et al. to develop a novel framework,
an unsupervised end-to-end-based SFA method, LMVAE (lognormal mixture-based vari-
ational autoencoder) and enhance the existing GMVAE (Gaussian mixture variational
autoencoder-based) framework. See Figure 2.23.

(iv) TimeVAE [104] The Time Variational Autoencoder (Time VAE) is trained using the
Kullback-Leibler loss and follows the Evidence Lower Bound loss (ELBO) principle. Time
VAE employs a dedicated decoder in this framework that incorporates assumed target
distributions, often Gaussian distributions. This approach provides a versatile method
for data generation. Importantly, TimeVAE introduces temporal structure into the data
generation process within the decoder, enhancing our ability to interpret and understand
how the data is generated.

https://lilianweng.github.io/posts/2018-08-12-vae/vae-gaussian.png
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Figure 2.22: ”Proposed short-time Fourier transform (STFT) and convolutional neural net-
work–variational autoencoder (CNN-VAE) end-to-end framework for ground motion (GM) clas-
sification and generation.”, Source ©Ning et al., 2024 [133]

Figure 2.23: ”SFA results of Zhongjiang field data. (a) RMS amplitude attribute of field data.
(b) Gabor+SOM. (c) DCAE+SOM. (d) GMVAE. (e) LMVAE.”. Source: Hua et al., 2023 [134].
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Application of Variational AutoEncoder

The VAE is used for different tasks.

(i) Latent space regularization Observation of the latent values of the Encoder could be done
through t-SNE. We observe that adjacent data points within the same latent space are
observed to correlate with analogous data samples in the original data set. Consequently,
the integration of algebraic operations within these latent spaces becomes conceivable,
facilitating the interpolation between points. This interpolation process is orchestrated
to encapsulate sought-after or similar outcomes. Notably, the attributes extracted from
this latent space process have significance and explicable characteristics. This produced
research enables the trajectory particles to align with the predefined data sample.

(ii) Continuous Latent Space. Unlike a configuration of distinct points, this type of latent
space is continuous. This means that similar data have latent representations close to
each other. Hence, the generation smoothly changes. Data representation is compact
(See the illustration in Figure 2.24). The interpolation is possible.

z = µ(x) + σ(x)⊙ ϵ (2.18)

Figure 2.24: Compact representation of Latent space. ©[135]

(iii) Variational Inference VAE is close to Generative Adversarial Network (GAN, view Sec-
tion § 2.3.3). Through Gaussian, it could produce meaningful outputs. Further investi-
gation has proved that generation respects the data distribution.

VAE represents a paradigm change compared to previous architecture. In addition to pro-
viding reconstruction and meaningful representation, it is a regularizer for latent space. This
framework allows a smooth transition for these latent values. Finally, it could be played for
Variational Inference.

Limitations of the Variational Encoder

The efficacy of the Variational Auto Encoder, while exhibiting advancements beyond the con-
ventional Auto Encoder technique, is accompanied by inherent limitations within its scope of
application.

It is well known that the Variational Auto Encoder (VAE) needs to give accurate recon-
struction. The expected reconstructed signals appear to be either noisy or typically a noise.
The nature of the loss used is the main reason for that issue.



56 CHAPTER 2. STATE OF THE ART

Moreover, mode collapse is one of the common issues of this strategy, and we need many
robust solutions for that issue. The model could not capture diversity through its distribution.
Only a few samples are reproduced in that case. Furthermore, the VAE struggles with large-
scale data sets.

Variational AutoEncoder (VAE) introduces controlled representation for data. Unlike
a conventional autoencoder, the VAE provides better interpretability of latent space
data. The equation to minimize is :

L(G,F ;x(i)) = Lp(x(i), G(F (x(i))) +DKL[N (µ(F (x(i)),Σ(F (x(i)))∥N (0, I)]

VAE is used in seismology to estimate rock and fluid properties in the subsurface from
geophysical measurements, improve ground motion analysis, group seismic facies at
depth, and generate synthetic seismic data. It is also applied to time series data. De-
spite the various advantages offered by this framework, VAE needs help with a severe
problem: either the reconstruction quality is noisy, or the model fails to reproduce the
diversity of the database. For these reasons, new approaches are preferred.

Summary

2.3.3 Generative Adversarial Network

Goodfellow and his collaborator proposed the concept of a Generative Adversarial Network for
the first time in 2014 [80]. GAN outperforms VAE in generating new samples because the latter
needs better reconstruction and blurry generation, and it is hard to upscale to a vast database.
GAN is trained according to the adversarial learning framework, a relevant case study of the
Nash Equilibrium of a min-max game. This framework introduces two agents: a Generator, G,
and a Discriminator, D (represented by two neural networks). The equilibrium is satisfied when
the discriminator cannot distinguish what is the difference between the real and the generated
values. To steer D and G towards the equilibrium, the parametric distribution associated with
the data generated by G is tuned to approach the original data distribution, minimizing the
Jensen-Shannon distance between the two (or, in a variant, the Earth’s mover distance). G
transforms a noise sampled from a prior arbitrary probability distribution, Gaussian or Uniform,
into a generated data sample. The mini-max game can be formulated according to the following
expression:

min
G

max
D

V (D,G) = Ex∼q(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))]

=

∫
q(x) log(D(x))dx+

∫
p(z) log(1−D(G(z)))dz

(2.19)

The training of G is generally performed by minimizing log(D(G(z))) instead of the second
term in Equation 2.19 (see the proof in [136]). However, when the discriminator improves
its capability of discerning real data from the generated one, the generator’s gradient should
vanish. Under these assumptions :

(i) the optimal values ∥D −D∗∥ < ϵ

(ii) the gradient of the discriminator goes to zeros : ∥∇D∗(G(z))∥ = 0

(iii) The Jacobian of the generator is bounded : Jθ(G(z)) ≤M2
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it holds that the gradient of second term the in Equation 2.19 is bounded as follows:

∥∥∇θEz∼p(z) [log (1−D (G(z)))]
∥∥
2
≤ Ez∼p(z)

[
ϵ2 ∥JθG(z)∥22

(1− ϵ)2

]
= M

ϵ

1− ϵ

So
lim

∥D−D∗∥→0
∇θEz∼p(z) [log (1−D (G(z)))] = 0

"The fact that this happens is terrible since whether the generator’s cost function is close
to the Jensen-Shannon divergence depends on the quality of this approximation. This brings us
to a fundamental point: either our discriminator updates will be inaccurate or disappear. It is,
therefore, difficult to train using this cost function or leave it to the user to decide the precise
amount of training devoted to the discriminator, making G.A.N. training extremely difficult.",
According to Martin Arjovsky, et al., 2017 [136].

This is the reason it is recommended to change the gradient of the Generator to :

∇θEz∼p [− log (D (G(z)))] = ∆θ

So the optimal values for D∗ = Pr

pG+Pr
should be :

Ez∼p(z)

[
− ∇θ logD

∗ (G(z))|θ=θ0

]
= ∇θ [DKL (PG∥Pr)− 2DJS (PG∥Pr)]|θ=θ0

The global minimum for the learning C(G) is achieved if and only if pG = pdata, So C(G) =
− log 4.

Algorithm 5 The Generative Adversarial Network algorithm
Intializatio of network paramters θd, θg
for e in number of epochs do

for k in number of discriminator training step do
Sample minibatch of m noise samples {z(1), . . . ,z(m)} from prior pg(z)
Sample minibatch of m examples {x(1), . . . ,x(m)} from data pdata(x)
Update the discriminator by ascending its stochastic gradient:
ηd ← ∇θd

1
m

∑m
i=1

[
logD(x(i)) + log(1−D(G(z(i))))

]
θd ← θd − ηd

end for
Sample minibatch of m noise samples {z(1), . . . ,z(m)} from prior pg(z)
Update the generator by ascending its stochastic gradient:
ηg ← ∇θg

1
m

∑m
i=1 logD(G(z(i)))

θg ← θg − ηg
end for
The Adam algorithm is commonly used for that task

GAN for time-series

(i) MAD-GAN [137] (Multivariate et al. for Time Series Data with Generative Adversarial
Networks) is one of the earliest standard GAN models for anomaly detection in multi-
variate time series. Both generator and discriminators are deep neural networks based
on LSTM and RNN blocks (Long et al. cells and Recurrent Neural Networks, see Fig-
ure 2.25).
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Figure 2.25: MAD-GAN: Unsupervised GAN-based anomaly detection. On the left is a GAN
framework in which the generator and discriminator are obtained with iterative adversarial
training. On the right is the anomaly detection process, where a trained discriminator and
generator are employed to compute a combined anomaly score based on discrimination and
reconstruction. Source : ©Li et al., 2019 [137]

First, while the training set is used to train the Generator GRNN and the Discriminator
DRNN in a classical GAN fashion, the test data set is used for anomaly detection only.
In this sense, the Adversarial Loss satisfied is :

min
GRNN

max
DRNN

V (DRNN , GRNN) = Ex∼q(x)[logDRNN(x)]

+ Ez∼pz(z)[log(1−DRNN(GRNN(z)))]
(2.20)

Secondly, The authors use the trained GRNN and DRNN to detect anomalies in the test set,
X test. Instead of projecting the data into a latent space, MAD-GAN adopts an anomaly
score for discrimination and reconstruction (performed with standard autoencoder loss).
Since fake samples are generated based on random latent noise, the test data, {xi}test
is searched through a random generation of Gaussian variables zk. This closest sampled
Gaussian noise is less dissimilar to the test sample. At the moment the similarity is proven
by the loss, this noise above,zk, is selected as the one in correspondence with the xtest

i ,
in the test set. The procedure is how the authors explicitly map data and its Gaussian
projection, with the error function Er(·) defined as :

z̃(k) = min
z(i)∼N (0,I)

Er

(
x(i),test, GRNN(z

(k))
)

= min
z(i)∼N (0,I)

(
1− sim(x(i),test, GRNN(z

(i))
) (2.21)

Formula in which, sim(u,v) = u⊤v/(∥u∥ · ∥v∥) performs as a cosine. Finally, zk is
considered as corresponding mapping to the xtest. In this sense, the authors have built
the corresponding couple (xtest,i, Z̃k), where k is the component of the sample z, closest to
xi,test of the test set. Moreover, the authors introduce another formulation for identifying
anomalies in data. This quantity is called the residual, calculated at the time step t as:

Res(xtest
t ) =

n∑
i=1

∥xtest,i
t −GRNN(z̃

k,i
t )∥ (2.22)
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An anomaly loss is therefore created based on the combination of the probability of
Discriminators and the Residual values.

Ltest
t = λRes(xtest

t ) + (1− λ)DRNN(x
test
t ) (2.23)

The Discrimination and Reconstruction Anomaly Score, known as the DRS score, maps
the anomaly detection loss of sub-sequences against the original time series.

DRSt =

∑
j,s∈{j+s=t} Li,s

lct
lct = count(j, s ∈ {j + s = t})

(2.24)

The value s ∈ {1, 2, · · · , sw}. Where sw is the window size. The Maximum Mean Dis-
crepancy MMD is also used to evaluate whether the GAN model has learned the training
data distributions.

MMD2(X, Y ) =
1

m(m− 1)

∑
i

∑
j ̸=i

k(xi,xj)

− 2
1

m.m

∑
i

∑
j

k(xi,yj) +
1

m(m− 1)

∑
i

∑
j ̸=i

k(yi,yj)
(2.25)

Where :

k(xi,xj) = exp

(−∥xi − xj∥2
2σ2

)
= exp

(−1
σ2

[xi
⊺xi − 2x⊺

ixj + x⊺
jxj]

)
Finally, different time series data sets have been used to prove the effectiveness of the
MAD-GAN. To sum up, this process recursively involves :

(a) The training and the update of GRNN and DRNN weights, through back-propagation
of the adversarial loss. Equation 2.20.

(b) Proceed to the mapping testing data back to latent space: Use trained GRNN with
random noise to make a collection mapping with the test set, (xtest

i , GRNN(zk)),
where GRNN(zk) ≈ xtest

i .
(c) Calculate the residual loss and update
(d) Calculate the discrimination results, DRNN(x

test)

(e) obtain, finally, the anomaly score with DRSt

(ii) TSGAN, Smith et al., 2020 [138], i.e., time-series GAN, surpasses another method for the
generation of realistic time-series sequences as output, particularly where data acquisition
is limited. The authors employ two types of GAN, one unconditionally trained and
the second conditionally trained. See Figure 2.26. The unconditionally-trained GAN
generates synthetic time series, which are then improved by the conditionally-trained one.
The first GAN is used to generate a 2D spectrogram from random noise. The synthetic
data generated, with the generator G, by the first GAN are considered as essentially
synthetic power spectral densities of the time series data. The loss satisfied here is:

L1 = Ex∼Pr [Dx(x)]− Ez∼N (0,I)[D(G(z))] + λEx̂∼Px̂
[(∥∇x̂D(x̂))∥2 − 1)2] (2.26)
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Subsequently, the second GAN, with the generator F , uses the 2D spectrogram coming
from G(z) as an entry and outputs a time-series data F (G(z)). Such a process satisfies
the loss below :

L2 = Ey∼Pr [Dy(y)]− Ez∼N (0,I)[D(F (G(z)))] + λEŷ∼Pŷ
[(∥∇ŷD(ŷ))∥2 − 1)2] (2.27)

Figure 2.26: TSGAN framework from [138], ©Smith et al., 2020

(iii) RGAN, also named Recurrent GAN and Recurrent Conditional GAN (RCGAN) devel-
oped by Esteban et al., 2017 [139] are developed to output Real-valued multi-dimensional
time series. The Generator and the discriminator are formed with a Recurrent neural
network. The standard GAN loss is used for that task. The authors employed the max-
imum mean discrepancy (MMD) to evaluate whether the generator captured the data
distribution.

GAN in Seismology

In seismology, GAN was applied around 2020. Florez et al., 2022, [88]. they have proved that
the technique could generate ground motion conditioned on continuous physical variables (mag-
nitude, epicentral distance, VS,30). The GAN is trained over 260,764 earthquake time series,
recorded at the free surface, mainly in Japan (K-NET and KiK-Net). The case study includes
earthquakes with magnitudes from 4.0 to 7.5 and stations at an epicentral distance between 0
and 280 km. The 100 Hz earthquake is downsampled to 20 Hz; a 20-second window is selected



2.3. RECONSTRUCTION AND GENERATION 61

afterward. Values of the signal are normalized and encompassed between [-1, 1]. The maximum
Peak Ground Acceleration in their data set is 1.2g. The GAN generates realistic earthquake
time histories with meaningful conditioning where no earthquake has been recorded. Neverthe-
less, this does not represent a one-to-many mapping; only visual considerations can be made.
Nothing even guarantees that the quality of the generation is relevant. See Figure 2.27. Al-
though similar to our research, the study by Florez et al. 2022 is based on relative acceleration
data collected from earthquakes in Japan. In this thesis, we will focus on data available in the
STEAD database, a collection of seismic recording data distributed over the entire surface of
the globe. Moreover, the generation process in the work of Florez et al, incorporates Gaussian
noise and metadata. Our research will focus on generating synthetic earthquake signals. This
time, we will use low-frequency signal encoding to constrain the output. A Gaussian distribu-
tion is also used in our model. More than guarantee a one-to-one mapping, our study pushes
the step further until we obtain a one-to-many mapping. Results are physically constrained to
respect the arrival time of the P- and S-waves and the frequency coherence with the targeted
seismic signal. Yuanming Li et al., 2020 [140] proposed a GAN featuring a Gated convolutional

Figure 2.27: Model developed by ©Florez et al., 2022 collaborators [88]. In (A), it is the
Conditional Generation Model, and in (B), the conditional Discriminator is used.

neural network playing the role of the Generator to capture better the relevant structure of
the time series of a ground-motion signal. This is made to improve earthquake detection and
classification. The training data set is provided by KMA (Korea Meteorological Administra-
tion), covering the period from January 2016 to July 2018 with a magnitude range above 3.0,
recorded at 256 locations minimum. Each sample is a 3-component time-history, sampled at
100 Hz. Despite the interest of such a Gated CNN, generated data were quite similar to each
other, making the generation ability less relevant.

Furthermore, we do not find any benchmarks or comparisons for different types of architec-
ture. Particularly in evaluating the improvement of the gated convolution compared to classical
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Subject References Model Applications

Earthquake
Engineering

Li et al. (2018) [141] GAN+Ref CNN Feature extractor and Random Forest classifier for
EEW system on P-waves

EEW Kim and Torbo
(2019) [142]

WGAN-GP Synthetic seismic data generation for EEW system

Meier et al.
(2019) [143]

GAN+ RF Five DL models comparison for EEW

Wu et al. (2021) [82] EQGAN Seismic data augmentation for EEW for low-cost
MEMS sensors

Liu et al. (2022a,
2022b) [144], [145]

GAN Seismic data discrimination between earthquakes and
microtremors

Li et al. (2021a) [146] GAN-LSTM Discrimination and recognition of seismic array noise
and signal

Augmentation Wang et al. (2019a,
2021) [147], [148] , Li et
al. (2020a) [149]

cGAN Generate synthetic seismic waveforms for data aug-
mentation

Li et al. (2020b) [84] GAN Seismic time series signals synthesis with gated CNN
Gatti and Clouteau
(2020) [21]

WGAN Physics-based simulation and seismic databases for
earthquake generation

Ding et al. (2020) [150] cGAN Intensity measures simulation of aftershock seismic
events

Ding et al. (2021) [151] cGAN Prediction of spectral accelerations of aftershock seis-
mic events

Matinfar et al.
(2022) [152]

DCGAN Generation of spectrum-compatible earthquake ac-
celerograms

Grijalva et al.
(2021) [153]

ESeismic-GAN Generate synthetic magnitude responses of volcano
origin event signals

Florez et al.
(2022) [154]

WGAN Data-driven synthesis of broadband earthquake
ground motions

Esfahani et al.
(2022) [155]

TF-cGAN Nonstationary ground-motion simulation in the time-
frequency domain

Applications Fan et al. (2021) [156] SegGAN Data-driven structural dynamic response reconstruc-
tion under seismic load

Yamada et al.
(2021) [157]

GAN Automatic seismic damage investigation for timber
houses

Liao et al. (2021) [158],
Lu et al. (2022) [159]

pix2pix GAN Automated structural design of shear wall in high rise
residential buildings

Kuurková et al.
(2018) [160], Ueda et
al. (2018) [161]

WGAN-GP + VAE Data correction and seismic structural design of frame
building

Tilon et al.
(2020) [162]

ADGAN Anomaly detection GAN for buildings post-disaster
analysis

Zhang et al.
(2022a) [163]

GAN Image generation for post-disaster victim detection

Table 2.2: Applications of GANs to seismic-related studies. Source [19]

1D or 2D convolution. This latter technique is discussed in section 2.4. A non-exhaustive list
of generative architectures can be found in Table 2.2, reported from [19].

Advantages of generative adversarial learning

GAN offers noteworthy advancements compared to previous methods, such as Variational Au-
toencoders. The subsequent paragraphs will outline several of these improvements.

(i) High-Quality Data Generation. By capturing the features of each sample more accu-
rately, GANs have helped to tackle the blurriness problem found in VAEs. This is due
to the discriminator’s function, which prioritizes telling apart authentic samples from
synthetic ones. Furthermore, only through the discriminator’s evaluations does the gen-
erator update itself. This forces it to get better at making counterfeit data instances. Im-
portantly, this iterative process hasn’t significantly reduced reconstruction quality while
generating.
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(ii) Capturing Complex Data Distributions. The generator is updated via the discriminator.
Since the discriminator’s task is to look for details that differentiate the synthetic data
from those in the given database, the discriminator forces the generator to apprehend
more complexity. This type of adversarial training has the particularity of forcing the
generator to produce a parametric distribution close to the real distribution of the data.

(iii) Transfer Learning and Domain Adaptation. Extending the learning from a previous
sub-domain of data readily applies to generative adversarial learning. Transfer learning
from a pre-trained discriminator/generator pair can expedite the acquisition of knowledge
for a sub-data set. Due to the method’s capability to learn complex patterns that can
be parametrized, the potential of generalization can be harnessed across different fields
without being confined to a single mode. Instead of training the entire network’s weights,
attention is directed solely toward high-level features, while lower-level features remain
frozen during forward computation (see the example of SeismoGen [81]). It has been
showcased that:

• The transfer learning strategy can effectively improve the performance of models
trained on synthetic and real samples.

• It is worth mentioning that transfer learning may be most effective when some
relations (low-level features, weights, etc.) exist between source and target domains.

Finally, because a lower amount of weight is used for the transfer, such an approach can
reduce computational costs.

(iv) Data Augmentation and Synthesis. Pre-trained GAN can also be used to augment a
database. This technique consists of adding the generator outputs from a random distri-
bution to an existing database on which the generator has been trained beforehand. This
technique helps with classification when data is either missing or too expensive to collect.
GAN can, therefore, be used to improve the accuracy of supervised training.

Limitation of Generative Adversarial Networks

Although GANs showed generation and latent structuring capabilities, they are not without
limitations. This section will delve into these constraints.

(i) Training Instability
One of the greatest limitations of GAN is its instability during training. Nash equilibrium
can be difficult to achieve because when the discriminator or generator capacities are too
different, this equilibrium becomes difficult to guarantee (see Section 2.3.3). In these
conditions, the loss opponent moves away from the optimal value. The fact of having
optimal values for the loss does not justify that the network has reached the optimal
values. In addition, the gradient may be unstable, making it impossible to stay at the
local minimum despite optimization techniques. In this case, the gradient may be too large
or too small (vanishing gradient). Overfitting and underfitting are not inevitable, either.
What can be observed is a wide disparity between the quality of the input generation and
the test generation. Finally, analyzing a GAN requires experience in observing all the
intermediate values for rectification, which can become time-consuming. These difficulties
highlight the fact that adversarial training is difficult to balance. Research offers various
recipes for limiting the network’s capabilities, but this remains an open area of research,
as mentioned by Roth et al., 2017 [164], Lee et al. [165] or Rangwani et al., 2022 [166].
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(ii) Mode collapse. As a Variational Auto Encoder (VAE), mode collapse is produced when
the generator reproduces the same synthetic data independently from the random noise
passed through. This problem arises when the generator discovers and perpetuates an
example capable of fooling the discriminator, which shows the limits of the latter’s ability
to evaluate the multitude of data generated effectively. In this case, the discriminator
network only focuses on one region of the data. [167]. To overcome this issue, we need
to either adapt the data set or introduce noise at the input of the discriminators. The
solution involves either reformulating the architecture of the generator and discriminator
or adding other normalization and regularisation techniques to overcome the limits.

(iii) Hyper-parameter sensitivity. An appropriate hyperparameter tuning has the potential
to expedite the training procedure and yield favorable outcomes. However, striking the
balanced choice between the Discriminator and the Generator represents a complex un-
dertaking. The GAN is notably responsive to adjustments in multiple hyperparameters,
including the learning rate, the scheduler (Linear, cosine, cycling, etc.), the optimization
method (Adam [168], Rmsprop [169], Adagrad [170], etc.), the ratio of training between
Discriminator and Generator (1:1, 5:1 or 3:1) as well as the batch size. Each hyperpa-
rameter wields substantial influence over the training’s quality or dynamic, Heusel et al.,
2018 [171]. Initiating GAN training anew on a distinct data set, even with a model opti-
mized for a particular task, introduces the necessity of adapting these hyperparameters.
Failing to tailor these parameters to the novel context can obstruct the attainment of the
Nash equilibrium, a state of balance central to GAN performance. Unexpected model
behaviors, divergence, and vanishing or exploding gradient predicaments can ensue if the
hyperparameters are not calibrated beforehand. Without relevant expertise, attempting
to rectify each of these aberrations in isolation is decidedly ill-advised.

Generative Adversarial Network (GAN). The generative adversarial learning encom-
passes two different models: a Generator, G, and a Discriminator, D. These agents
play on the min-max game. This is the core of the GAN training. Those two models
compete simultaneously: while the Discriminator makes a binary classification between
real and fake samples, the Generator tries to mimic the fake samples as closely as pos-
sible to the data distribution. A loss function, hence, is used as follows:

min
D

V (D,G) = Ex∼q(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))]

min
G

V (D,G) = Ex∼q(x)[logD(x)] + Ez∼pz(z)[log(D(G(z)))]

This research has pushed the boundaries of classification tasks for general seismic
data and time series. Though powerful, the process could be more manageable as its
min-max equilibrium is difficult to ensure. As a result, it can lead to various training
problems like mode collapse or dropping and imbalance training. Additionally, hyper-
parameters must be tuned carefully, or we risk losing all progress.

Summary

2.3.4 Adversarial Learning Inference

Adversarial Learning inference (ALI) is considered a bi-directional GAN and represents a sig-
nificant breakthrough within generative models. The proposed methodology diverges markedly
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Figure 2.28: Diagram that summarizes existing methods that exist in machine learning for un-
supervised tasks applied to time-series, according to Qianwen Meng et al., 2023 [114]. This tax-
onomy includes deep Clustering Methods, Reconstruction-based Methods, and Self-supervised
Learning Methods. Self-supervised learning methods can be further divided into adversarial,
predictive, and contrastive methods, depending on the type of pretext tasks employed for ac-
quiring self-supervised signals.

from established techniques such as VAEs, GANs, and AE. ALI introduces an innovative
method that intricately incorporates the joint distribution of data and latent space into an
analytical framework (see Equation 2.28). Specifically, for the encoder, the formulation takes
on the following structure: q(x, z) = q(x)q(z | x). Analogously, for the decoder, the expression
assumes the form: p(x, z) = p(z)p(x | z). This fusion is meticulously orchestrated through
a discriminator, which conducts expert assessment to converge toward the overarching goal of
harmonizing distributions. At the core of this approach lies the establishment of an appro-
priate linkage between observed data and latent space, seamlessly realized through a coherent
ensemble of encoders and decoders [172, 112, 173]. Different variants of the same method exist,
notably ALICE, Bi-GAN, and Big-BiGAN. Each theme gives some improvements and disad-
vantages but is not necessarily a different method. In detail, the goal of ALI is to match the
joint distribution according to the following mini-max problem:

min
G

max
D

V (D,G) = Eq(x) [log (D (x, Gz(x)))] + Ep(z) [log (1−D (Gx(z), z))]

=

∫∫
q(x)q(z | x) log(D(x, z))dxdz

+

∫∫
p(z)p(x | z) log(1−D(x, z))dxdz

(2.28)

The objective is to match joint probability distributions in a manner that p(x, z) and q(x, z).
Like GAN, When the Generator (encoder or decoder) is too powerful for the Discriminator and
vice versa, it becomes difficult to project data in the latent space. Consequently, the generated
samples will not follow the joint distributions. This issue is explained by Mao et al., 2017 [174].

The ALI method also verifies the criterion of the optimal discriminator, according to the
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following expression:

D∗(x, z) =
q(x, z)

q(x, z) + p(x, z)
(2.29)

Under an optimal discriminator, the generator minimizes the Jensen-Shannon divergence be-
tween the two joint distributions. The generator reaches its minimum when p(x, z) = q(x, z).
If the encoder Gx and the decoder Gz are deterministic then Gx = G−1

z and then vice versa. If
we could match the joint distribution together, nothing ensure that this strategy is bijective,
or in other words, whether cycling is seriously guaranteed.

x −→
Gz

z −→
Gx

x̂ (2.30)

Chunyuan Li et al. in their 2017 work “ALICE: Towards Principled Methods for Training
Generative Adversarial Networks” [175] proposed a technique that aids the network training
through the utilization of cross-entropy (CE) loss. This form of loss can be either explicit
or implicit. An Euclidean loss is regarded as explicit; when the distribution alignment is
enforced through a discriminator, it becomes implicit. In the research paper titled “Large
Scale Adversarial Representation Learning,” authored by Donahue et al. (2019)[112], a similar
approach is pursued. The primary distinction lies in the fact that the Discriminator shares the
weight of its various components, and a hinge loss is employed instead of cross-entropy or Earth
motion loss. Nonetheless, the ultimate objective remains compatible. View Figure 2.29.

Figure 2.29: Scheme of adversarial learning strategy for joint distributions over. Source Gatti
et Clouteau, 2020 [21]
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Algorithm 6 The Adversarial Learning Inference algorithm
Initialization of network parameters θd, θg
for e in number of epochs do

for k in number of discriminator training step do
Sample mini-batch of m noise samples {z(1), . . . ,z(m)} from prior pg(z)
Sample mini-batch of m examples {x(1), . . . ,x(m)} from data pdata(x)
Update the discriminator by ascending its stochastic gradient:
ηd ← ∇θd

1
m

∑m
i=1

[
log
(
D
(
x(i), Gz(x

(i))
))

+ log
(
1−D

(
Gx(z

(i)), z(i)
))]

θd ← θd − ηd
end for
Sample mini-batch of m noise samples {z(1), . . . ,z(m)} from prior pg(z)
Update the generator by ascending its stochastic gradient:
ηg ← ∇θg

1
m

∑m
i=1

[
log
(
D
(
Gx(z

(i)), z(i))
))

+ log
(
1−D

(
x(i), Gz(x

(i)
))]

ηg ← ηg +∇θg
1
m

∑m
i=1 ∥x(i) −Gx(Fx(x

(i)))∥
θg ← θg − ηg

end for
The Adam algorithm is commonly used for that task

Application of Adversarial Learning Inference and variants

(i) Joint Learning and Generation. The Adversarially Learning Inference (ALI) maps a
pair of distributions using the joint distribution. The pair to match are (x, Gz(x)) and
(Gx(z), z). The ALI strategy aims to understand how to project the original data x
into the latent space domain, represented by Gz(x). Furthermore, reversely, it becomes
possible to map random noise z to a sample in the data set using Gx(z). The utilization
of a joint distribution allows the model to learn complex data distributions. Diverse
datasets that might inherently share similarities, such as common features like edges or
shoes, could be connected. This method could find a path to domain translation. Further
discussion on domain translation will be presented in Chapter 5.

(ii) Representation Learning Feature learning or Representation learning is a class of learn-
ing techniques that automatically discover hidden patterns in raw data, replacing manual
feature extraction. In other words, representation learning aims to discover such hidden
features (regularity, trends, correlations, etc.) by passing through abstract representations
of such data, often encoded into a lower dimensional space, without crafting specific algo-
rithms. It can be performed in unsupervised, semi-supervised, and supervised way [114].
Supervised learning has succeeded in directly learning semantic information from many
labeled samples in recent years. However, this requires a vast amount of annotated train-
ing data and is often tailored to specific tasks, making the trained model less transferable.
Self-supervised approaches leverage the pretext tasks to autonomously generate labels by
utilizing intrinsic information derived from the unlabeled data. Self-supervised learning
has made significant leaps fueled by advancements in contrastive learning.
In a nutshell, without a handcrafted representation of data, we let the models learn how
different data are linked. Such feature learning is an abstraction process that captures
and gathers similarities in data and isolated groups of data that are not an outlier or
not representative of the data set. A versatile process could be used as a cross-domain
adaptation and for contrastive learning.

(iii) Enhanced Control over Generation
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Recent investigations in the latent space have shown how controlling generation is im-
portant. By appropriately manipulating the latent space, we can perform Fine-Grained
Manipulation [176, 177], Customization, Personalization, Data Augmentation [178], Cre-
ative Expression, Semantic Control, and achieve Interpretable Outputs. A considerable
amount of literature has been published on observing the algebraic aspects that can be
employed in the latent space to control the generation aspect of trained generators with
an adversarial strategy. The ability to manipulate the latent space has been seriously
studied. In “Alan Shoshan’s GAN Control” [179, 180], these methods are categorized
into two groups.
The first type of method permits relative control. The main idea is to exploit the inherent
disentanglement of the latent space. The common and intuitive approach uses Principal
Component Analysis (PCA) directions corresponding to the data attributes. Another way
to explore the latent space is through off-the-shelf classifiers to extract and predict dif-
ferent attributes (classes and labels for each sample) according to Fard et al., 2023 [181].
If we define the Ψ the off-the-self-classifiers, and S the sought attribute we could define
Ψ(z, S)→ zfbi , zidi . The zibi is the attribute editing part, and the zfbi is the agnostic part,
on which we do not try to provide a sense as latent values. The manipulated latent space
will control the output of the Generator G, based on a class S. This method is designed
to scrutinize and to observe decision boundaries in the latent space, where each side of the
boundary corresponds to an opposite semantic attribute. Additionally, we can traverse
the latent space and observe the effect of vectors closer and farther from a boundary to
increase or decrease the intensity of attributes.
The second type of method provides explicit control over the generation task. The first
one is the conditioned version of the GAN, where, through discrete variables, one can
enforce control over generation but may not simultaneously assist in controlling multi-
ple attributes. Techniques like StyleRig [182], DiscoFaceGAN [183] for continuous vari-
ables offer solutions for translating controls of 3D face rendering models into the GAN-
generation process. Other authors propose training GAN [80] with explicit properties
and adding various upper parameters during training to create an interpretable explicit
control sub-space.
Researchers are developing novel GAN architectures that are more stable, produce diverse
samples, and allow for better control. StyleGAN2 [184], BigGAN [185] have demonstrated
significant improvements.

(iv) Latent Space Interpolation The Gaussian nature of the latent space gives it an essential
mathematical stability, distinguishing it from autoencoders (AE) and variational autoen-
coders (VAE). This stability is further enhanced in unidirectional generative adversarial
networks (GANs) and reaches its peak in bidirectional GANs (BiGANs). In BiGANs, we
capitalize on the Gaussian distribution of the latent vector, where addition or multipli-
cation by a scalar preserves this Gaussian property. As a result, the latent space has the
characteristics of a vector space, which guarantees that all values can be interpreted. This
Gaussian adherence allows transparent interpolations of the latent space, ensuring that
algebraic transformations produce meaningful and consistent results closely aligned with
the training data set. This structural approach has significantly contributed to advancing
our understanding of the field.

(v) Cross-Modal Generation and Translation In machine learning, adversarial learning in-
ference transfers knowledge from one dataset type to another. The Networks learn the
features of the data. This learning process involves learning connections between differ-
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ent distributions. This ability is known as cross-modal generation. This strategy is used
for text-to-image, for instance. On the strength of matching different distributions, that
method is also employed for multi-modal domain translation. This method was first seen
in CycleGAN and then in BiCycleGAN to enable one-to-many mapping [186].

ALICE in Seismology

Gatti et al., 2020, [21] introduce the concept of Adversarial Learning Inference with Cross-
Entropy in the seismic research field through the network SeismoALICE. The authors wanted
to improve physic-based earthquake numerical simulations from the source to the site (re-
ferred as to x) to reproduce historical seismic events and predict future ones. Despite the use
of high-fidelity numerical software, namely SEM3D (https://github.com/sem3d/sem), such
simulations are generally accurate in a 0-5 Hz frequency band because of the lack of data re-
lated to the underground geological features and on the seismic context of the region at stake
(namely, the characteristics of active faults).
The sensitivity of high-fidelity physics-based earthquake simulation engines, such as SEM3D,
to geological and seismological characteristics is extremely high. A large uncertainty on such
elements can negatively impact the reliability of the predicted ground motion at the surface.
Moreover, even if the latter uncertainty on the underground features of the Earth’s crust could
be reduced by conductive extensive and expensive seismic tomography and inversion studies
in the region of interest, the computational burden of achieving accurate solutions in a larger
frequency band, e.g., 0-30 Hz, the cost of such accurate SEM3D simulations would require
extremely large computational burden, of the order of more than 100000 CPU hours.
However, the need for 0-30 Hz-accurate earthquake synthetic ground motion is essential to
adopt them as input ground motion for conceiving critical infrastructures, such as nuclear
power plants. As of now, recorded earthquakes are adopted instead (referred as to y by Gatti
et al., 2020, [21]). However, some regions worldwide, such as metropolitan France, do not have
large earthquake catalogs and associated seismograms over extended regions and have sufficient
resolution (i.e., a recording station every 100 m). Therefore, Gatti et al., 2020, [21]) attempted
to transform simulations 0-5 Hz x into realistic 0-30 Hz, thanks to ALICE. They split the
problem into three parts: Px, to learn the latent features zx of x and Py, to learn the latent
features zy of y and Pz, to bridge physic-based simulations x and the recorded data y, through
their latent representations zx and zy. The latter is associated with x and y through ALICE.
ALICE is also employed to infer zy from zx, rendering hybrid time-histories. However, this
approach is undeniably intricate, demanding a multitude of Discriminators and Generators
to execute a singular task: transforming physics-based data into ground-motion data. Addi-
tionally, the neural network architecture cannot facilitate data projection into Gaussian space
and subsequent retrieval. Consequently, achieving a one-to-many mapping is unfeasible. We
develop this in another section 4.1.

Limitation of Adversarially Learning Inference and variants

Limitations. The main limitation of GAN is presented in [187]. Mode collapse presents. Non-
convergence. Defining the appropriate Agent (Generator and Discriminator) to achieve the
Nash equilibrium is hard.

Application to time-series

Different strategies are proposed for the task:

https://github.com/sem3d/sem
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(i) TimeGAN[188] is primarily applied within the domain of time-series data. As outlined in
[114], [188] amalgamates the advantages of auto-regressive models and the GAN frame-
work. This combination is achieved by creating an embedded space that is jointly op-
timized using supervised and adversarial objectives. Subsequently, the model becomes
adept at capturing and replicating the temporal dynamics inherent in the training data
during sampling. Notably, [188] assumes an essential role in establishing the mapping
between the input features and the corresponding latent representations, facilitating the
generation of meaningful time-series data.

(ii) MAD-GAN[137] The Multivariate Anomaly Detection for time-series Data with Genera-
tive Adversarial Networks (MAD-GAN) identifies intricate multivariate correlation in the
time-series dataset for anomaly detection.

(iii) DIVERSIFY [189] This method employs an adversarial learning strategy to optimize two
critical objectives concurrently: firstly, to maximize the worst-case distribution scenario,
and secondly, to minimize distribution divergence. This entails segmenting time-series
data into discrete latent sub-domains, with the specific intention of amplifying the dis-
tribution gap at the segment level, thereby preserving the richness of diversity. Simul-
taneously, DIVERSIFY [189] undertakes the task of diminishing distribution divergence
across these discerned latent domains, ultimately yielding domain-invariant representa-
tions. This methodology capitalizes on the inherent diversity ingrained within latent
distributions inherent to time-series data, which often encompass distinct and nuanced
activity patterns exhibited by multiple individuals.

The Adversarial Learning Inference combines the power of an Auto-encoder and the
power of the Generative adversarial Network. Using the uncertainty quantification
technique has led to manipulating joint distribution. The solution of joint distribution
allows the generation problem to be solved. Also, the bijectivity is conserved through
the cross entropy, i.e., one maintains a clear reconstruction consistency. This tech-
nique’s advantages have showcased a novel way to control many aspects of our dataset.
The Loss function used is :

min
G

max
D

V (D,G) = Eq(x) [log (D (x, Gz(x)))] + Ep(z) [log (1−D (Gx(z), z))]

Adversarial Learning Inference offers joint learning and generation, a better represen-
tation of latent value, and a clear understanding of generations; this technique is also
applied to domain translation. Such techniques find a way of utilization in Seismology
through the SeismoALICE, and more widely in time series problems. However, this
technique suffers from Mode collapse and convergence issues as with other frameworks.
Moreover, the Nash equilibrium technique could take several iterations to be achieved.

Summary

2.3.5 Contrastive Learning

Contrastive Learning (CL) can generate augmented views of raw data through diverse transfor-
mations and learn representations by contrasting positive samples against negative samples. CL
is a powerful deep learning technique that has demonstrated effectiveness in learning shared and
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meaningful representations from unlabeled, similar data through optimizing self-discrimination
tasks: similar data is brought together while dissimilar ones are pushed apart. Figure 2.30
illustrates Contrastive Learning. In unsupervised scenarios, contrastive Learning helps to dis-

Figure 2.30: Example of representation of contrastive learning from, HaoChen et al., [190]

cern the similarity between data points, enabling the Learning of high-level features about the
data even before engaging in specific tasks like classification or segmentation without the need
for explicit labels. Contrastive Learning removes the need to reconstruct the entire input.

Different losses exist to maximize agreement between pairs, and each has proven how to
maximize the pair of plausible values. For instance, in Chen et al., 2020 [113], the contrastive
loss in batch of N values is provided by the following expression:

li,j = − log

(
exp(sim(zi, zj)/τ))∑2N

k=1 1[k ̸=i] exp(sim(zi, zj)/τ)

)
(2.31)

The sign minus expresses the fact that the loss should be maximized, whereas the function sim
corresponds to the cosine of the angle between two vectors in a Hilbert space, according to the
following expression (issued from the scalar product):

sim(u,v) =
u⊤v

∥u∥∥v∥
The term τ in Equation 2.31 is generically referred to as to temperature. This loss is called NT-
Xent, but others exist, such as NT-Logistic, Margin Triplet, and CLIP (Contrastive Language-
Image Pre-training, Ford et al., 2021 [?]). Algorithm 7 illustrates the contrastive learning
training scheme proposed by Chen et al., 2020 [113].

Three distinct caterogories of CL exist: the instance-level, prototype-level and temporal
levels representations.

(i) Instance-level CL models To aggregate similar information, data augmentation is adopted
to transform original data into a new embedding space. Within this embedding space, the
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Algorithm 7 Contrastive Learning algorithm by Chen et al., 2020 [113]
input:batch size N , constant, τ , structure of F,G, T
for sampled mini-batch, {xk

N
k=1 do

for k ∈ {1, · · · , N} do draw two augmentation functions t ∼ T , t′ ∼ T x̃2k−1 = t(xk)
h2k−1 = F (x̃2k−1) z2k−1 = H(h2k−1)

x̃2k = t′(xk) h2k = F (x̃2k) z2k = H(h2k)
end for
for i ∈ {1, · · · , 2N} and j ∈ {1, · · · , 2N} do si,j = z⊤i zj/(∥zi∥∥zi∥)
end fordefine l(i, j) as :

li,j = − log

(
exp(sim(zi, zj)/τ)∑2N

k=1 1[k ̸=i] exp(sim(zi, zj)/τ)

)

L =
1

2N
∼N

k=1 [l(2k − 1, 2k) + l(2k, 2k − 1)]

Update the Networks F and G to minimize L.
end for
Return F ()̇ and discard G()̇
The Adam algorithm is commonly used for that task

augmentation derived from the same sample is treated as a positive pair, while those from
different samples are regarded as negative pairs. In training, the models are optimized by
maximizing the similarity between the representations of positive pairs while minimizing
the similarity between the representations of negative pairs. In this category, one can
cite TimeCLR [191], MoCo [192], SimCLR [113], BYOL [193], CPC [194], SimSiam [195],
MCL [196], see Table 2.3

Nevertheless, these methods are rather memory-intensive implementations, and maintain-
ing the consistency of their representations becomes difficult when randomly extracting
negative samples from an additional storage space.

(ii) Prototype-level CL models

The traditional Contrastive Learning algorithm (presented at the beginning of Section
§ 2.3.5) actively approaches pairs of similar distributions without needing semantic an-
notations. The technique mentioned above is focused on transforming the samples and
evaluating the abstract representation of data using contrastive loss. However, such a
strategy faces limitations in gathering two pairs of semantically identical distributions: a
trained model could be considered different through contrastive evaluation.
To overcome a common issue in instance-level contrastive learning, i.e., when similar sam-
ples are mistakenly treated as negatives (if a point is used as an anchor, a point similar to
it is called positive, and a point dissimilar to it is called negative.), the Prototype Constra-
tive Learning is introduced. In addition to the sample instance, the related annotation is
passed through contrastive learning. Therefore, the “prototypical contrastive learning is
referred to as a representative embedding of a group semantically similar instance” [197].
One of the algorithms utilized in this process is named ProtoNCE, which describes better
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Models Main Contributions Backbones Datasets Evaluations

SimCLR SimCLR advocates for a learnable nonlin-
ear transformation bridging the represen-
tation and the contrastive loss to enhance
the quality of learned representations, and
highlights the significance of larger batch
sizes, more training steps, and the compo-
sition of data augmentations

ResNet ImageNet, CIFAR-
10

Classification,
Transferability

TimeCLR TimeCLR extends SimCLR to the time se-
ries domain, amalgamating the benefits of
dynamic time warping data augmentation
tailored for univariate time series, and the
potent feature extraction capability of In-
ceptionTime, thus facilitating the acquisi-
tion of representations.

InceptionTime Hand Atlas Classification

MoCo MoCo maintains a dynamic queue to en-
rich the set of negative samples, and pro-
poses a slowly progressing key encoder, im-
plemented as a momentum-based moving
average of the query encoder, to preserve
the consistency of key representations.

ResNet ImageNet, CIFAR-
10

Classification,
Transferability

BYOL BYOL removes the need for using negative
samples and employs a predictor on top of
the online network to learn the mapping
from the online encoder to the target en-
coder, which helps prevent mode collapse.

ResNet ImageNet, CIFAR,
SUN397, VOC07,
DTD

Classification,
Transferability

CPC CPC extracts compact latent representa-
tions to encode predictions over future
observations by combining autoregressive
modeling and noise-contrastive estimation
with intuitions from predictive coding.

ResNet, GRU LibriSpeech,
ImageNet, Book-
Corpus

Classification

SimSiam SimSiam learns representations by us-
ing Siamese architectures without nega-
tive sample pairs, large batches, and mo-
mentum encoders. SimSiam tackles the
mode collapse problem by using the stop-
gradient mechanism.

ResNet ImageNet, VOC07,
COCO

Classification,
Transferability

MCL MCL learns representations through the
injection of noise. Inspired by label
smoothing, MCL adopts mixup that cre-
ates new samples by convex combina-
tions of training examples and predicts the
strength of the mixing component based on
2 data points and the augmented sample.

FCN UCR Datasets,
UEA Dataset

Classification,
Transferability

Table 2.3: Summary of instance-level contrastive methods for time series representation learn-
ing. Source [114]
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the data distribution. The adopted loss reads:

LInfoNCE =
n∑

i=1

− log
exp(vi · v′j/τ)∑r
i=0 exp(v

i · v′j/τ)
(2.32)

Formula in with vi is the positive sample of instance i, v′j is a sample containing one
positive embedding, and the r negative sample for other instance i. τ is a tempera-
ture hyper-parameter. Those sample coming from feeding xi to a momentum encoder:
F (xi) = vi. Protype-level contrastive learning models aim to disrupt the independence
between samples by bringing contrastive learning and clustering to capture the hierarchi-
cal semantic structure of the dataset, implicitly shared by samples. Within this category
those methods can be included : SwaV [198], PCL [197], CCL [199], SCCL [200], CC [201],
SLIC [202], MHCCL [203]. View Table 2.4
Unfortunately, the traditional approaches have a drawback in requiring previous knowl-
edge to identify the number of clusters in advance. When dealing with unlabeled time-
series data, this task becomes non-trivial. Moreover, their flat clustering algorithms are
limited to capturing a single semantic structure. This restriction is troublesome since it
makes it impossible to depict the intricacies of the data distributions, Zhixiong. et al.,
2022 [204].

(iii) Temporal-level CL models This strategy sprouted from the limitations of contrastive
learning for time series, compared to its accuracy in computer vision tasks. The appli-
cation of contrastive learning models often ignored the intricate characteristics of such
data. While instance-level contrastive learning models can only capture general repre-
sentations of the entire time series, in temporal-level contrastive learning, these models
focus on capturing scale-invariant representations at each time sequence. The research
found that mixing both Instance-level and temporal-level representation enhances the ca-
pability of contrastive learning methods in capturing complexities inherent in time-series
data. In this category, the following works can be included : TS2Vec [205], TS-TCC [206],
TNC [207], TCL[208], T-Loss [209], BTSF [210], CoST [211].

Table 2.5 shows a non-exhaustive list of all CL models for time-series analysis.

Model learning, by contrast, will have a discriminative representation of raw data.
Such a technique eliminates the need to reconstruct the entire input to capture sim-
ilarities inherent in the data. A trained contrast model can help structure unlabeled
data and learn complex representations. It can be trained alone for clustering purposes
or along generative tasks. This strategy creates clusters for similar data and adopts a
loss function that compares pairs of values to maximize their similarity. Among the
various existing losses, we can mention NT-Xent, for example, that for two pairs xi,xj

reads:

li,j = − log

(
exp(sim(zi, zj)/τ)∑2N

k=1 1[k ̸=i] exp(sim(zi, zj)/τ)

)
Constrative Learning encompasses the instance level, the Prototype Level, and the
temporal-level representation for times series. Finally, such a technique is used to ag-
gregate samples, improve classification segmentation, and guide the encoder in extract-
ing relevant features common to the same cluster.

Summary of Contrastive Learning
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Models Main Contributions Backbones Datasets Evaluations

SwAV SwAV optimizes the learned representa-
tions by developing a swapped predic-
tion mechanism to simultaneously perform
scalable online clustering while enforcing
the consistency between cluster assign-
ments produced for different augmented
views of the same sample.

ResNet ImageNet, VOC07,
COCO

Classification,
Transferability

PCL PCL formulates prototypical contrastive
learning as an Expectation-Maximization
algorithm to perform clustering and repre-
sentation learning iteratively. The E-step
aims to find the distribution of prototypes
via clustering and the Mstep aims to opti-
mize the network via contrastive learning.

ResNet ImageNet, VOC07,
Places205, COCO

Classification,
Clustering, Object
Detection

CCL CCL refines the learned representations ac-
quired through deep convolutional neural
networks by discovering dataset clusters
with high purity and typically few samples
per cluster, and leverage these cluster as-
signments as the potentially noisy supervi-
sion.

CNN BBT-0101,
BF0502, ACCIO

Classification,
Clustering

SCCL SCCL leverages contrastive learning for
short text clustering to promote better sep-
arated and less dispersed clusters. It ef-
fectively combines the top-down cluster-
ing with the bottom-up instance-wise con-
trastive learning to achieve better inter-
cluster distance and intra-cluster distance.

DistilBERT AgNews, Tweet,
SearchSnippets,
StackOverflow,
Biomedical,
Googlenews

Clustering

CC CC seamlessly integrates deep clustering
and representation learning by revealing
that the row and column of the feature ma-
trix intrinsically correspond to the instance
and cluster representation when project-
ing instances into a subspace whose dimen-
sionality is equal to the cluster number.

ResNet CIFAR-10,
CIFAR-100, STL-
10, ImageNet-10

Classification,
Clustering

SLIC SLIC combines iterative clustering with
multi-view encoding and temporal discrim-
ination to learn view-invariant video rep-
resentations and fine-grained motion fea-
tures. The clustering assignments are used
to guide the sampling of positive and neg-
ative pairs for updating representations.

CNN UCF101,
HMDB51, Ki-
netics400

Classification,
Video Retrieval

MHCCL MHCCL incorporates the implicit seman-
tic information obtained from hierarchical
clustering to guide the construction of con-
trastive pairs. MHCCL exploits downward
masking to filter out fake negatives and
supplement positives, while also employing
upward masking to refine prototypes.

ResNet HAR, WISDM,
SHAR, Epilepsy,
UEA Datasets

Classification

Table 2.4: Summary of prototype-level constrative methods for time series representation.
Source [114]
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Models Main Contributions Backbones Datasets Evaluations

TS2Vec TS2Vec utilizes multi-scale contextual in-
formation at both timestamp-level and
instance-level to distinguish positive and
negative samples, thereby improving the
generalization capability of the represen-
tation model and effectively handling time
series data with missing values.

Dilated CNN UEA Datasets,
ETT Datasets,
Electricity

Classification,
Forecasting

TS-TCC TS-TCC constructs simple yet efficient
time-series-specific augmented views to
perform temporal and contextual contrast-
ing, and designs a tough cross-view predic-
tion task to learn the robust and discrimi-
native representations.

CNN, Trans-
former

HAR, Sleep-EDF,
Epilepsy, FD

Classification,
Transferability

TNC TNC learns the underlying dynamics of
non-stationary signals and models the pro-
gression over time by defining a tempo-
ral neighborhood. It incorporates con-
cepts from Positive-Unlabeled learning to
account for potential bias introduced in
sampling negative examples for contrastive
loss.

Bidirectional
RNN

Simulation, ECG
Waveform, HAR

Classification,
Clustering

TCL TCL learns representations for time series
that allow optimal discrimination of differ-
ent time segments based on the temporal
non-stationary structure captured by non-
linear independent component analysis

Nonlinear
ICA

MEG Classification

T-Loss T-Loss learns scalable representations by
taking highly variable lengths and sparse
labeling properties of time series data into
account. It employs an efficient triplet loss
with time-based negative sampling to dif-
ferentiate anchors from negatives, and as-
similate anchors with positives.

Causal CNN UEA Datasets,
UCI Datasets,
UCR Datasets

Classification,
Transferability

BTSF BTSF applies dropout to generate diverse
views for representation learning, and de-
vises iterative bilinear temporalspectral fu-
sion to explicitly model pairwise cross-
domain dependencies for discriminating
and enriching representations in a fusion-
and-squeeze manner.

Causal CNN HAR, Sleep-EDF,
ECG Waveform,
ETT Datasets,
Weather, SAaT,
WADI, SMD,
SMAP, MSL

Classification,
Forecasting,
Anomaly De-
tection

CoST CoST simulates interventions on the er-
ror variable via data augmentation and ex-
ploits prior knowledge to learn time series
representations. It leverages inductive bi-
ases in the model architecture to learn dis-
entangled seasonal and trend representa-
tions via contrastive learning.

Causal CNN ETT Datasets,
Electricity,
Weather

Forecasting

Table 2.5: Summary of temporal-level contrastive methods. Source [114]
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2.4 Neural network architectures for time-series
A neural network architecture is a nonlinear computational method inspired by brain cells that
includes activation functions, weights, and connection to the author neuron. This architecture
does not capture relevant features using a handcrafted technique or code. Unlike conventional
algorithms, such an infrastructure could be seen as many computing units that tune themselves
based on the response of the outsides; the collection of neurons learns through examples and
is corrected by the research of satisfying a loss function. The update is made using the back
propagation technique, which distributes the correction values through an operation graph.
A trained architecture could be employed for new data that has not been seen before. Of
course, if the sample test does not represent the trained dataset distribution, this latter fails
to succeed. A neuron is connected to the stack of previous neurons, according to the following
expression [212]:

xl
k = bl

k +

Nl−1∑
i=1

wl−1
ik yl−1

i (2.33)

Formula in which :

• yl−1
i = f(xl−1

i ), f is an activation functions (ReLU, LeakyReLU, Tanh, etc ...)

• the subscript k here represent the kth neuron

• the superscript l refers to the lth layer

• xl
k is defined as the input

• wl−1
ik is the kernel from the ith neuron at layer l − 1 to the kth neuron at layer l

We will first introduce and explain the Convolutions Neural Network before tackling the Self-
Attention technique, which is based on a more robust architecture for analyzing vast and com-
plex data types. In our case, it is the temporal earthquake data. Classical architecture using
1D CNN struggles in capturing long-range dependencies despite trying to increase the length
of the kernel, use dilation, and zero padding [213]. This is the reason behind the research of
proper architecture to fill the gap. The first to achieve an attractive result was the Transforme.
However, this lather was designed for word translation by exploring cross-correlation and em-
bedding positions to reach out more appropriate information from text sequences. Even though
the different application cases have been demonstrated, this architecture could be adapted for
images. We will have to wait for the Conformer, tailored for time series, to outperform the
previous above.
The Conformer surpasses by 15% the Transformer, [121] in different state-of-art architecture in
Denoising, Dereverberation, and Super-Resolutions. On the strength of these advantages, we
will use the conformer component in our encoder and decoder architecture to achieve, first, a
better quality of reconstruction for waveform and, second time, to improve the quality of the
generation, as CMGAN in Abdulatif et al., 2022 [119], and to get rid of mode collapse and
mode dropping issues. The complexity of such architecture helps surpass all the different issues
that we have faced before.
The appropriate architecture is a must, but with the appropriate cost function to train our ar-
chitecture, this improvement will be useful. Time series signals need to be explored in the time
domain, and further exploration should be done in the frequency domain. More explanation is
provided in the subsection 2.5. The main architectures adopted in this work are described in
the following sections.
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2.4.1 Convolution Neural Network

There is a historical reason behind the utilization of the 1D convolution layer. The first time
convolution layers were utilized was for images and videos and were dedicated to classification
tasks. In this sense, the operation was performed by manipulating 2D and 3D data. 1D
Convolutional layers, instead, were a recent invention to deal with 1D signals. The main reason
behind that task is the computational task. To proceed with N × N images, we will need to
use K × K kernel, which has O(N2K2) complexity compared to the 1D signal, which has a
complexity of O(NK), Kiranyaz et al., 2015 [214]. The computational cost is lower. Rather
than utilizing a 2D Convolutional method with a spectrogram generated from the 1D signal,
we can straightforwardly opt for a 1D Convolutional Neural Network approach to efficiently
capture the pattern structure of seismic time series directly from the waveform data. The
1D CNN excels in feature extraction and pattern recognition, time series data, and also for
natural languages. The convolution operation employs a discrete learnable kernel that can be
stridden and dilated. The kernel is the learnable weight matrix that discretizes the convolutional
operator (discrete kernel). After each convolution, the stride is the lap or the number of steps
to move the kernel. The dilation corresponds to the space between elements within the kernel,
affecting the receptive field without changing the number of parameters. As default, dilation
equals one, and a dilation of 2 or more skips one or more consecutive pixels (or time-steps) to
be multiplied by the kernel weights. Several convolution layers are usually stacked upon each
other. In the case of 1D time series, the formulation of the discrete convolution reads:

xl
k = bl

k +

Nl−1∑
i=1

conv1D(wl−1
ik , sl−1

i ) (2.34)

The convolution is performed by conv1D(wl−1
ik , sl−1

i ) = wl−1
ik ⋆ sl−1

i . The ⋆ symbol indicates the
cross-correlation operation3, usually, this operation is followed by normalization and, finally,
an activation function h(.) (Tanh, ReLU, LeakyReLU, for example).

• the subscript k here represent the kth neuron

• the superscript l refers to the lth layer

• xl
k is defined as the input

• sl−1
i is the output of the ith neuron at layer l − 1

• wl−1
ik is the kernel from the ith neuron at layer l − 1 to the kth neuron at layer l

See the Forward CNN in the Figure 2.31. However, this type of architecture quickly showed
limitations in capturing the long-term dependencies inherent in acceleration data. As a result,
several variants of this architecture have been proposed to address this challenge. Gated convo-
lution or Gated CNN is introduced in seismology by [140]. The Gate represents a mask applied
in the first layers of the decoder after the reshaping of the linear projection of the values from
the latent space. This is developed to better capture the sequential and hierarchical structure.
It is composed of CNN block and GLU. As we will see after, the Gated CNN could be seen as the

3The cross correlation between both function f and g is defined as :

f ⋆ g)(τ) ≜
∫ ∞

−∞
f(t)g(t+ τ) dt

τ is the stride also called the lag
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Figure 2.31: CNN connection layer, in Forward process. ©Kiranyaz et al., 2015 [214]

precursor of the Attention technique (see §2.4.3). In the process, The trained neural network
should identify patterns and pay different attention through the mask. The mask is represented
by applying a sigmoid and a product in the sense that Hadamard (i.e., element-wise product)
forces the network to view long-range dependencies because, in time series data, the correla-
tion is seldom local. Pixelshuffle is used for upsampling and effectively solves “checkerboard
artifacts”. Super-resolved images first revealed such checkerboard patterns. This phenomenon,
according to Kinoshita et al., 2020 [215], introduces a distortion in the output images, and it is
essentially caused by using upsampling blocks in linear multi-rate systems. The checkerboard
is caused by forward-propagation in the upsampler when using a transposed Convolution layer,
for example, and by backward-propagation with a stridden convolutional layer. The PixelShuf-
fle rearranges the elements in a tensor according to an upscaling factor. A signal of resolution
H×W ×C is transformed rH×rW ×C, r is the factor of upscaling, according to the following
expression :

f 1(xLR;W1, b1) = ϕ(W1 ∗ xLR + b1)

f l(xLR;W1:l, b1:l) = ϕ(W1 ∗ f l−1(xLR) + bl)
(2.35)

where l ∈ (1, L − 1) represent the layer index and Wl, bl are learnable weights and biases
respectively. Wl represents the nl × kl “convolution tensor”, including nl features of layer l.
n0 = C is the number of channels. The value kl represents the size of the discrete filter at the
layer l. bl represents the bias at the same layer. ϕ is the non-linear activation function. The
last layer fL converts the input features xLR into a super resolution output, xSR [216]. This
strategy was proposed to generate data to improve classification, generation, and reconstruction
tasks.
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Figure 2.32: Gated Convolutional Neural Network. Courtesy of [140]

2.4.2 Linear Layer

Linear or fully-connected or dense layers connect every input neuron to every output neuron
and are commonly used in neural networks. The input X and the output H are considered as
vectors of respectively dimension N and n, and the weight W is a n×N 2D vector. A linear
layer is designed as follows:

xl = xl−1W
⊤ + bl−1 (2.36)

Formula in which we are the neurons W ∈ RdN×dn , the input xl−1 ∈ Rdn , the output xl ∈ RdN

and the bias bl−1 ∈ RdN

2.4.3 Scaled Dot-Product and Self-Attention Mechanism

When dealing with audio-type data (i.e., time series such as seismic accelerations), capturing
long dependencies is a difficult task due to the limitations of the convolutional kernel used
in many models [217], [218]. This fixed kernel length implies a restricted local receptive field,
meaning it can only capture information from a small input neighborhood at a time. As a result,
as the time series passes through multiple convolutional layers, the importance given to long-
range dependencies diminishes. This becomes problematic, especially for smaller models, as
they may not have enough capacity to capture the complex relationships in the data. Contrary
to what one might think, increasing the kernel size does not help capture these dependencies,
but it increases the computational burden and reduces the network efficiency [213].

The optimization algorithm that trains the model struggles to effectively coordinate mul-
tiple layers to capture and represent these long dependencies. For this reason, Self-Attention
mechanisms (or Intra-Attention) are widely adopted in computer vision to better capture de-
pendencies within the data at different distant positions. This challenge has been acknowledged
and explained by Vaswani et al.[219] in their seminal paper on Transformer architecture, which
proposes an alternative approach to addressing long-range dependencies in models, called Scaled
Dot-Product Attention. The Scaled Dot-Product Attention proposed by Vaswani et al.[219] ren-
ders an attention map that highlights hidden intra-sample correlations and dependencies, among
different parts of it (such as the correlation between different time steps within a time-series
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or between different words in a phrase). Self-Attention has been developed in the framework
of language models, where data is generically represented by a sequence of words, represented
by (xn)1≤n≤Nl

⊂ RdX . Alternatively, the input can be interpreted as a collection of Nl feature
maps, x ⊂ RNlRdX , as proposed in their work on Self-Attention GAN (SAGAN) by Zhang et
al., 2019 [220], who applied similar attention mechanism as the one proposed by Vaswani et al.,
2017 [219] (and described below) to convolutional maps in deep CNN, so to capture relevant
information in convolution feature maps.
In their seminal work on Transformers, Vaswani et al., 2017 [219] adopted the language model
framework, where each word of a sentence (xn)1≤n≤Nl

or Nl feature maps x can be embed-
ded into learnable keys-values pairs, referred as to (K,V), with K : x ∈ RNl × RdX 7→
WK .x = K ∈ RdK × RdX and V : x ∈ RNl × RdX 7→ WV .x = V ∈ RdV × RdX , with
WK ∈ MdK ,Nl

(R), WV ∈ MdV ,Nl
(R). The Scaled Dot-Product Attention proposed by

Vaswani et al., 2017 [219] draws (self-)attention maps by firstly evaluating the “projection”
Cij = QiKT

j ∈ MdQ,dK (R) of the data key K(xj) onto the list of dQ queries obtained by linear
embedding Qi = WQ.xi = Q(xi) ∈ RdQ and WQ ∈ MdQ,dNl

(R). The output of the projection
expresses some sort of “template match” between them. As shown in Figure 2.33, an attention
map is obtained by capturing relevant features, obtained by: (i) a scaling of Cij by a factor 1√

dK

and (ii) an optional learnable mask M, multiplied element-wise by C̃ij =
1√
dK
·Cij, so to obtain

Sij =
1√
dK

M ⊙ Cij (adopting the Hadamard product, indicated by ⊙). Once Sij assembled, a
column-wise softmax is applied to each lth column s

(l)
ij = [Sij]·l, acting as a normalization, so to

obtain βij, whose entries read:

[
βij

]
kl
=

exp([Sij]kl)∑N
m=1 exp([Sij]ml)

, β
(l)
ij = softmax

(
s
(l)
ij

)
(2.37)

As shown in Figure 2.33, the attention map βij is then adopted to weight the embedded value
Vi = V(xi), so to consider its correlation with input xj, i.e.:

Attention(Qj,Kj,Vi) = HijVi (2.38)

Where Hij = H(βij) is an optional linear layer, defined as:

H : β ∈ RdQ × RdK 7→WH .β = H ∈ RdH

Where the WH ∈ RdH×RdQ . In practice, dK = dQ = dH = dV . The idea behind the Scaled-Dot-
Product Attention proposed by Vaswani et al., 2017 [219] (see Equation 2.38) was retrieved and
slightly modified by Zhang et al., 2019 [220], so be adapted to convolutional maps in the so-called
self-attention GAN. In their work, Zhang et al., 2019 [220] referred (xn)1≤n≤Nt

as a sequence
of convolutional maps outputted by a hidden layer of a CNN (see CNN description in Section
2.4.1). The key-value-query embedding is performed through an element-wise convolution (i.e.,
a convolution with kernel of size 1) and a subsequent MaxPooling. Zhang et al., 2019 [220]
neither mention the learnable mask M nor apply the scaling factor 1√

dK
, so that Cij = Sij.

Moreover, Zhang et al., 2019 [220] recombined the attention output sequence o ⊂ RNlRdX ,
whose ith occurrence reads:

oi =

dX∑
h=1

βhi.Vh (2.39)

with a residual connection to xi, according to the expression (see Figure 2.34):

yi = γoi + xi (2.40)
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Figure 2.33: Attention Architecture

where γ is a learnable scalar parameter that initialized as 0 [220]. The sequence of outputs yi

has the same dimension as the input and H = γId. To summarize, from now on, let us define
the Self-Attention according to the following expression:

yi = Attention(WQ,WK ,WH ,WV ,xi,xj) (2.41)

2.4.4 Multi-Head Attention

Multi-Head Self-Attention (MHSA), proposed initially by Vaswani et al. [219], was introduced
for language models but found relevant utility in different application cases, such in seismol-
ogy [46]. MHSA outperforms Self-Attention because rather than performing a single attention
operation as in Equation 2.41, it extracts many queries, keys, and values from the same input.

Figure 2.34: Self-Attention Module for designed for SAGAN in [220]
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In doing so, MHSA introduces an intermediate linear embedding defined as:

HQ : Q 7→WH
QQ = HQ

HK : K 7→WH
KK = HK

HV : V 7→WH
V V = HV

(2.42)

with WH
Q ∈ Rdmodel×dk , WH

K ∈ Rdmodel×dk , WH
V ∈ Rdmodel×dv . Usually dv = dk = dmodel/h.

MHSA forces the model to focus on different representation subspaces of the data at different
positions [219]. In doing so, the intermediate embeddings in Equation 2.42 is passed to multiple
parallel Attention layers (expressed by Equation 2.41) according to the expression:

headj = Attention(WH
Q ,W

H
K ,W

H
V ,Hi) (2.43)

The Multi-Head attention adopts h parallel heads, as expressed in Equation 2.43, and the
overall output can be schematically expressed as:

MultiHead(Q,K,V) = Concat(head1, . . . ,headh)W
O (2.44)

Multi-head attention is the crucial mechanism for transformer-based architectures, presented
in the following subsections and adopted in this thesis.

2.4.5 Transformer Architecture

The Transformer architecture is more complex, using Multi-Head Attention layers. In addition
to that, this technique encompasses the Point-wise Feed-Forward Network (FFN), the positional
encoding, embedding, encoder, and decoder modules (See the detail of the architecture in
Figure 2.35). Transformers perform better for the following reasons :

• Multi-Head Attention is more complexes

In Transformer architecture, attention heads are concatenated and passed through FFN, which
consists of two linear layers with a ReLU activation in between:

FFN(x) = max(0, xW1 + b1)W2 + b2 (2.45)

FFN is position-wise because using a feed-forward network modifies the representation at every
position in the sequence.
The Positional Embedding essentially consists of sine and cosine functions. Calling pos the
time step position and i the total dimension, the positional encoding reads:

PosEnc(pos, 2i) = sin

(
pos

10000
2i

dmodel

)
PosEnc(pos, 2i+ 1) = cos

(
pos

10000
2i

dmodel

) (2.46)

The encoding wavelength follows a geometric progression from 2π to 1000 · 2π. Because the
transformer includes MHSA, which analyses different portions of the sentences simultaneously,
it becomes essential to identify which part of the sentence the attention is coming from so
that a part analyzed should not overlap anotdher part. Also, that may allow the model to
extrapolate the longer sequences for which the model has not been trained before during the
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Figure 2.35: Transformer Architectures, courtesy of Vaswani et al., [219]

training. Ideally, this concept can be adapted for earthquake signals, too. Another component
often used with positional encoding is positional embedding. This latter injects context into
the analysis of information sequences: each subsequence receives additional embedding based
on its positional sequence. The type of embedding commonly used is called “vector embed-
ding”, which treats each subsequence as a vector of dimension dmodel. According to Vaswani
et al., [219], positional embedding and positional encoding can be used in the same model
without performance degradation. A transformer, more complex than an MHSA, preserves the
causality of the input sequence thanks to position encoded [121]. This is even more effective
for Conformers, as described in Section 2.4.6.

2.4.6 Conformer Architecture

The Conformer is a neural network developed in the context of audio speech recognition and
separation that combines the advantages of transformers, § 2.4.5, such as the Attention Mech-
anism, § 2.4.4 above mentioned, with classical convolution layers [119]. This architecture rep-
resents an enhancement over previous models and has been proposed as a replacement for the
Transformer by Gulati et al. [121]. According to the same authors, Conformer architecture is
particularly effective in improving reconstruction and compared to Transformers:
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• Transformers are less efficient at capturing minute and detailed features in a localized
context.

• Transformers cannot capture and exploit local information and local connectivity.

• Conformers outperforms Transformers for audio tasks, Gulati et al., 2020[121].

• Conformers combine the effectiveness of Transform to global view and the power of Con-
volutional neural network to local connectivity

A Conformer consists of four modules that are stacked upon each other. These modules include:

(i) First Feed-Forward Module, FFN: Unlike the previous definition in Section §2.4.5 above,
the FFN module is a residual block comprising layer normalization, linear layers, Swish
activation, and Dropout. Pre-norm residual units, at the opposite of post-norm, apply
layer normalization immediately before the sublayer, [221]. For more details, refer to
Figure 2.36c.

(ii) Multi-Head Self-Attention Modules, MHSA: This architecture, presented in subsection 2.4.4
(see more details in Figure 2.33b), has been introduced in Transformers-XL, Dai et al.,
2019 [222] and, as explained, is designed to capture long-range dependencies and ensures
that the network remains robust to variations of the length of input values [121].

(iii) Convolution Modules, Conv: Unlike traditional convolutions used in image processing,
Conformer employs a different convolution type. The structure respects the sandwich
structure, inspired by Macaron-Net, [223]; it stacks LayerNorm, PointWise convolu-
tion, GLU activation, and Depth-wise Convolution and Swish activation functions. The
LayerNorm is a type of normalization to the output of CNN or a Linear layer. The
normalization has proceeded along the length of the signal. The point-wise convolution
has a 1x1 kernel size, and then when the kernel spans, the signal length of each point is
convoluted. It is used to view every signal time step of a signal.
The GLU or gated linear unit, developed in the framework of language modeling [224],
is an activation function for an input x, split into two halves part a, b depending on the
dimension required we observe:

GLU(a,b) = a⊙ σ(b) (2.47)

where x and y are two inputs, ⊙ an element-wise product between matrices.
The Swish activation function is also an activation function that is adopted because it is
cheap to compute. According to Gulati et al., 2020 [121], Swish activations lead to faster
convergence in the Conformer models. The Swish activation reads:

Swish(x) = x⊙ σ(x) (2.48)

the symbol σ(·) is a sigmoid functions.

(iv) Second Feed-Forward Module: this module follows a similar structure to the first feed-
forward module, providing additional processing and feature extraction. See more details
about this architecture in Figure 2.36(c)
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Figure 2.36: Conformer Architecture and different submodules adopted. Source Gulati et al.,
2020 [121]

A Conformer can be summarized according to the following sequence of operations:

x̃i = xi +
1
2
FFN(xi)

x′
i = x̃i +MHSA(x̃i)

x′′
i = x′

i + Conv(x′
i)

yi = LayerNorm(x′′
i +

1
2
FFN(x′′

i ))

(2.49)

By combining these four modules, the Conformer architecture enables effective audio super-
resolution and can adapt to different acceleration scenarios. However, it is crucial to consider
the increased computational demands associated with this approach.

2.5 Distance minimization
In adversarial learning, the need to render reconstructed data from an embedding space or an
auto-regressive encoder has prompted a focused exploration of “distance” minimization tech-
niques between real and generated time histories. Nevertheless, how do we define a statistical
“distance” between natural and synthetic AI-generated samples? This investigation within the
domain of time series can be bifurcated into distinct categories. One aims to achieve optimal
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reconstruction in the time domain, while the other targets reconstruction within the frequency
domain. Distance minimization is a crucial aspect of the machine learning tasks we have dis-
cussed, and we have explored various types of distance metrics applicable to 1D data. Defining
the best model for a specific dataset involves defining the Empirical Risk Minimization (ERM).
The ERM is an average of the loss values on the model. Perlaza et al., 2022 [225], have inves-
tigated the ERM. From model set M, a pattern set X and a label set Y We could extract a
triplet (θ∗, X, Y ) ∈ M× X × Y , which could define the optimal in relationship by a function
f :

Y = f(θ∗, X, Y )

The pattern is usually audio, images, time series, and videos. A label is often a number or set
of numbers. The allusion here is made for classification, but as we will see in the line below,
this could be referred to as an optimization problem.
The θ∗ represent the optimal models. In we deal with estimated values. The goal is to minimize
the distance between the optimal and approximate solutions. (θ̂, u) ∈M×X such a way that
f(θ̂, u) is close to f(θ̂, u). Therefore the empirical risk induced by a model θ with respect to a
data set:

z = ((x1, y1), (x2, y2), · · · , (xn, yn)) ∈ (X × Y)n

is determine by the functions Lz :M→ [0,+∞), which satisfies :

Lz(θ)) =
1

n

n∑
i=1

ℓ(f(θ, xi), yi) (2.50)

Formula in which the risk function is difined by ℓ, where ℓ : Y × Y → [0,+), as is it, the risk
induced by the model θ is ℓ(f(θ, x), y) with respect to labelled pattern (x, y) ∈ X × Y , for the
optimal model θ∗ ℓ will be zero.
This, given z, the θ will be considered better than a model µ ∈ M if this inégality is satisfied
: Lz < Lz. The ERM problem, therefore, is an optimization problem with the following
formulation:

min
theta∈M

Lz(θ), (2.51)

The solution si identified as :
T (z) ≜ arg min

theta∈M
Lz(θ) (2.52)

The ground truth model θ∗ ∈ T (z) and Lz(θ) = 0. In practice, for time series applications,
liner combinations of losses computed in time and frequency domains are often adopted, with
different weights, for balanced training. On the one hand, combining a loss in the frequency
domain with one in the time domain can benefit the reconstruction and generation of new
time series without applying standard algorithms for images applied to spectrograms but using
1D neural architectures. However, experience shows that applying two loss functions that are
too similar in the time domain, for example, may degrade the reconstruction or generation
quality- this observation is true for the frequency domain, too. Furthermore, the effectiveness
of these losses can be enhanced by incorporating feature matching and feature extractors into
the training process. These principles, derived from practical experience, guide the thoughtful
design and application of loss functions in machine learning tasks for 1D data. In the following,
some common time- and frequency-based losses are described. Some of them will be adopted in
this work. The following section will succinctly present and discuss these categories, shedding
light on their objectives, assumptions, and ultimate conclusions in machine learning.
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2.5.1 Temporal minimization distance

(i) Euclidean distances: Euclidean distances are defined by the norm distance between a
designated input and its corresponding output generated by a neural network. The Eu-
clidean distance is used as a loss. Commonly employed metrics include MAE (Mean
Absolute Error) and MSE (Mean Square Error). If we define hθ as a neural network, xi

the input sample and yi the targeted sample, one can define the Equation to be satisfied
by:

L(hθ(x),y) =
1

N

N∑
i=0

∥yi − hθ(xi)∥p (2.53)

Formula in which the term yi is the target signal. The term p represents the order of the
ℓ-norm, ℓ1 for MAE or ℓ2 for MSE.

(ii) Mean Squared Logarithmic Error: When the time-series data have long-range data, the
Mean Squared Logarithm Error (MSLE) could be used to address the reconstruction
challenge. The MSLE computes the logarithm of the difference between the real and the
predicted data according to the following expression:

LMSLE(y, ŷ) =
1

N

N∑
i=0

(log(yi + 1)− log(ŷi + 1))2 (2.54)

(iii) Hyper-Spherical Loss : The Hyper-Spherical Loss aims to minimize the angle between
predicted and original time-series data, and it reads:

LHSL =
N∑
i=1

(1− cos(θyi,ŷi
))2 =

N∑
i=1

(
1− ∥yi · ŷi∥
∥yi∥ · ∥ŷi∥

)2

(2.55)

Hyper-Spherical Prototype loss (HSL) can enhance the stability of the minimization al-
gorithm when combined with another temporal loss. Remarkably, the Hyper-Spherical
Loss pairs effectively with the Focal Frequency loss, a topic we will delve into later in
Section 2.5.2.

2.5.2 Time-series distance minimization in frequency domain

When dealing with time-series data, mere distance reduction may not suffice for optimal re-
construction. Authors like Jian et al., 2021 and Abdlatif et al., 2020 [226],[119] advocated
that a better reconstruction quality is obtained by not only minimizing the euclidean distance
in the time domain, but also in the frequency domain, considering both phase and amplitude
information. This multifaceted evaluation provides a more comprehensive understanding of
the effectiveness of the reconstruction process in the context of time-series analysis. The fol-
lowing presents some widely adopted loss functions to minimize the dissimilarity between two
time-histories in the frequency domain.

(i) Focal Frequency Loss: Focal frequency drop (FFD), first designed to enhance the quality
of pictures, has demonstrated its capability to perform good signal reconstruction. This
cost function is computed in the Fourier domain, as explained by Jiang and his collab-
orators [226]. The main idea behind the loss is to weight the L1-norm of the deviation
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between two signals, evaluated in the Fourier domain. In this sense, error reconstruction
for frequency that is easier to match will have a lower weight. The generic FFL reads:

LFFL =
1

MN

M−1∑
u=0

N−1∑
v=0

w(u, v) |Fr(u, v)− Ff (u, v)|2 (2.56)

F (u, v) =
N−1∑
x=0

N−1∑
y=0

f(x, y)ei2π(ux
M

+ vy
N ) (2.57)

In this formula,

• f(x, y) is the pixel located at (x, y) coordinates of the image, of dimension M ×N .
• u and v represent the spatial coordinate of a frequency in the spectrum frequency

spectrum.
• w(u, v) represents the weight matrix, where w(u, v) = |Fr(u, v) − Ff (u, v)|α. The

weight matrix undergoes normalization to ensure its values fall within the range[0, 1].
In this normalization, a value of 1 corresponds to the frequency with the highest
current and most lost frequency, emphasizing its significance, while the weights for
easier frequencies are reduced.

• α is the tunable scaling factor to provide more or less flexibility to the training
process (α = 1 in our experiments).

• F (u, v) is the complexe frequency value.
• Fr(u, v) is the spatial frequency value of the real sample with the spectrum coordinate
(u, v) with the expression Fr(u, v) = ar + br i and the spatial frequency of the fake
sample is designed as, Ff (u, v) = af + bf i.

• a and b are, respectively, the real and the imaginary parts.

The equivalent of FFL for a 1D signal would be is :

FFL =
1

N

N∑
u=0

w(u) |Fr(u)− Ff (u)| (2.58)

expression in which :

• t is the instant in the time signal.
• u is the value from the spectrum
• x(t) is the value of the signal at time t.

• F (u) =
∑N−1

i=1 x(t)ei2π(
u·t
N )

• w(u) = |Fr(u)− Ff (u)|α

• Fr(u) = ar + bri

• Ff (u) = af + bf i

Implementing the FFL for time series was used in our network architecture to improve
signal reconstruction quality. See the illustration of the FFL loss in Figure 2.37.
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Figure 2.37: Focal frequency Loss from the Complexe domain. Source: [226].

(ii) MelSpectrogram: MelSpectrogram is a distance function based on the signals’ spectro-
grams, which “is defined as the magnitude component of the short-time Fourier transform
(STFT) of an input waveform. The MelSpectrogram uses the Mel Scale factor, a percep-
tual scale of pitches judged by human listeners to be equal in distance from one another.
The Mel Scale adopts as a reference point a perceptual pitch of 1000 mels to a 1000
Hz tone, 40 dB above the listener’s threshold. Above about 500 Hz, increasingly large
intervals are judged by listeners to produce equal pitch increments. In particular, this
scale value is :

M = 2595 log10

(
1 +

f

700

)
(2.59)

A loss function for the MelSpectrogram can be defined. The MelSpectrogram projects
information from time-series data into a latent space, enabling the manipulation of in-
formation present in both the time and frequency domains. The process involves several
steps. First, the time series is pre-processed, i.e., divided into short overlapping frames.
In the subsequent step, each frame is multiplied by a window to reduce spectral leakage,
known as windowing. Following this, a Fast Fourier Transform (FFT) is applied to each
windowed frame, providing its representation in the Fourier space. In the penultimate
step, the logarithm of the filter bank energies is taken to compress the dynamic range.
Finally, a cosine filter is applied to decorrelate the filter bank further and extract salient
features, as shown in Equation 2.60:

LS(y, ŷ) =
∑

s∈26,...211

∑
t

∥Ss
t (y))− Ss

t (ŷ))∥1 + αs

∑
t

∥ logSs
t (y))− logSs

t (ŷ))∥2 (2.60)

Expression in which the term Ss
t (·) represents the Mel-Spectrogram, while t-th fram of

64-bin s represents the length of the windows. We have αs =
√

s/2.
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The loss LS(y, ŷ) in Equation 2.60 has been widely adopted to capture long-range de-
pendencies and achieve the high-fidelity reconstruction of data (see Zeghidour et al.,
2021 [227] for SoundSteam [227]).

(iii) Short-Time Fourier Transform Short-Time Fourier Transform (STFT) is largely adopted
to train advanced neural architecture for speech recognition, i.e., to predict raw, contin-
uous speech waveform samples because loss functions can be reformulated through this
STFT operator. The proposed loss is computed by considering both amplitude and
phase information, thereby incorporating essential elements for accurately enhancing the
model’s ability to capture and reproduce the intricacies of speech waveforms. For in-
stance, a variant of Equation 2.60 has been proposed Kreuk et al., 2023 [228], for training
the model MusicGen:

LS(y, ŷ) =
1

|α| · |s|
∑
αi∈α

∑
i∈e

∥Si(y)− Si(ŷ)∥1 + αi ∥Si(y)− Si(ŷ)∥2 (2.61)

In this formula, Si is a 64-bin mel-spectrogram using a normalized STFT with window
size of 2i and hop length of 2i/4, e = 5, . . . , 11 is the set of scales. The term α represents
the scalar coefficients balancing the L1 and L2 terms; the αi equals 1. If we design a
STFT complex spectral sequence Y =

[
Y⊤

1 , . . . ,Y
⊤
T

]
⊤ is represented by using a matrix

W as follow:
Y = Wy (2.62)

Where t represents the frame index, W represents a matrix which performs STFT op-
eration. the term n represents the bin at frame t. According to Shinji Takaki et al.,
2018 [229], the formulation for amplitude :

Yt,n = W t,ny,

At,n = |Yt,n|
=
(
y⊤WH

t,nW t,ny
) 1

2

(2.63)

In addition to the formulation for the amplitude, an equivalence could be found for the
phase; the corresponding expression is the following equation :

exp (iθt,n) = exp (i∠Yt,n)

=
Yt,n

At,n

=
W t,ny(

y⊤WH
t,nW t,ny

) 1
2

(2.64)

Also, the equation for the amplitude loss evaluates the difference between the square
values of the amplitude values provided by the STFT and the predicted output values:

E
(amp)
t,n =

1

2

(
Ât,n − At,n

)2
=

1

2

(
Ât,n −

(
y⊤WH

t,nW t,ny
) 1

2

)2 (2.65)

The phase spectrum is a periodic variable with a period of 2π. To account for this periodic
property, a loss function for the phase spectrum at frequency bin n and frame t is defined
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as follows:

E
(ph)
t,n =

1

2

∣∣∣1− exp
(
i(θ̂t,n − θt,n)

)∣∣∣2
= 1− 1

2

 Ŷt,n

Ât,n

(
y⊤WH

t,nW t,ny
) 1

2

W t,ny
+

Ŷ t,n

Ât,n

(
y⊤WH

t,nW t,ny
) 1

2

W t,ny

 (2.66)

And the complete loss to optimize is :

E(sp) =
∑
t,n

(
E

(amp)
t,n + αt,nE

(ph)
t,n

)
(2.67)

(iv) Wavelet Transform: Employing wavelet transform to enhance the quality of generation
or reconstruction is not novel. Various studies have demonstrated that this decomposition
method can effectively tackle the challenge of high-frequency generation, as indicated by
Lukas Prantl et al., 2022. Numerous variants of this loss exist, ranging from distance
matching to adversarial computation. Despite the diversity in implementation, the fun-
damental idea remains consistent in decomposing information at different levels to extract
relevant features.

Figure 2.38: The process of wavelet decomposition of a data, according to Qiuyu Zhu et al.,
2021 [insert citation]

According to the Qiuyu Zhu et al., 2021 [230], in the initial stage of wavelet transfor-
mation, information is partitioned into LL1, LH1, HL1, and HH1. The low frequency,
denoted as LL1, can be perceived as the envelope for time series or corresponds to the
contour and shape of images. LH1, HL1, and HH1 represent high-frequency components.
Subsequently, at the second level, the transformation is applied to the low-frequency
part, LL1, resulting in LL2, LH2, HL2, and HH2, view Figure 2.38. This process reveals
a pyramid-like structure in the wavelet representation. The LL component of the last
level concentrates the primary energy in the audio signal. Researchers have noted that
the wavelet loss function emphasizes discerning differences between frequencies. After
performing a multi-level wavelet transform, various frequency characteristics at different
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spatial positions can be obtained. To produce precise data, it is essential to constrain
both high and low-frequency components. However, restricting only the high-frequency
components may result in insufficient details, leading to noisy output data. To address
this, researchers propose constraining the modulus of high-frequency information. Thus,
the equations that need to be satisfied are:

L1 = λ11

n∑
i=1

(m−m∗) + λ12

n∑
i=1

|h1 − h∗
1|

L2 =
n∑

i=1

|h2 − h∗
2|

L3 =
n∑

i=1

|h3 − h∗
3|

L4 =
n∑

i=1

(l2 − l∗2)

(2.68)

In those formulations, the terms are :

• l1 and hi refer to the low-frequency component (LL) and the high-frequency compo-
nents (LH, HL, HH) after the i-th wavelet-transform.

• m represents the element-by-element modulus of the high-frequency components.
• n is the number of samples
• the λj are the trade-off parameters.

Then the total loss to be satisfied is:

Lwav =
4∑

j=1

λjLj (2.69)

2.5.3 Feature Matching

Feature matching involves extracting features from input data using a discriminator neural
network. This approach is commonly employed in generative models, where the generation
quality is improved through discriminator training (see Section 2.3.3). Various features are
extracted at different levels of the discriminator’s architecture for both the samples in the
data set and the generated samples to align their distributions closely. The distances between
these features are minimized using an ℓ1 loss. Intuitively, this process can be interpreted as
a learned similarity metric, where the discriminator learns a feature space that discriminates
between “fake” and “real” data. It is essential to notice that there is no use of any loss in
the raw audio space, distinguishing it from other conditional GANs where L1 loss is applied to
match conditionally generated images with their corresponding ground truths, enforcing global
coherence (Kundan Kumar et al., 2019[231]). An example of feature extraction of time series,
for instance, is provided by the following expression:

LFM (G,D) = Ey,s∼pdata

[
T∑
i=1

1

Ni

∥∥D(i)(y)−D(i)(G(s))
∥∥
1

]
(2.70)

In this formula, the term D(i) represents the output of the i-th layer of the discriminator.
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Name Df (P ∥ Q) Generator f(u) T ∗(x)

Kullback-
Leibler

∫
p(x) log p(x)

q(x)dx u log u 1 + log p(x)
q(x)

Reverse KL
∫
q(x) log q(x)

p(x)dx − log u − q(x)
p(x)

Pearson X 2
∫ (q(x)−p(x))2

p(x) dx (u− 1)2 2
(
p(x)
q(x) − 1

)
Squared
Hellinger

∫ (√
p(x)−

√
q(x)

)2
dx (

√
u− 1)2

(√
p(x)
q(x) − 1

)√
q(x)
p(x)

Jensen-
Shannon

1
2

∫
p(x)(log 2p(x)

p(x)+q(x) +

q(x) log 2q(x)
p(x)+q(x)dx)

−(u+1) log 1+u
2 +

u log u
log 2p(x)

p(x)+q(x)

GAN 1
2

∫
p(x) log 2p(x)

p(x)+q(x) +

q(x) log 2q(x)
p(x)+q(x)dx−log(4)

u log u − (u +
1) log(u+ 1)

log p(x)
p(x)+q(x)

Table 2.6: This is the list of f -divergence Df (P ∥ Q) used in adversarial learning [232]

2.5.4 Feature Extractors

Feature extractors are pre-trained network architectures specifically designed to extract relevant
features. They are not limited to generative tasks and can also be applied to auto-regressive
models. The weights of feature extractor models, often frozen at training time, are typically
derived from a network trained for classification tasks. In such cases, having a benchmark data
set is essential. In seismology, overcoming this challenge is addressed by utilizing phase picking.
The phase-picking process helps detect the general patterns of a seismogram, including factors
such as consistent arrival times of signals and phase attenuation. Notably, EQTransformers by
Mousavi have been found to perform effectively in this context, as detailed in Section 2.1.3.

2.5.5 f-divergence distances

f -divergence is the class of statistical divergence and a generalization of the well-known Kullback-
Leibler divergence [232, 164]. Given two distribution P and Q that posses, respectively, an
absolutely continuous density function p and q with respect to a base Lebesgue measures dx
defined on the domain X , their f -divergence reads:

Df (P∥Q) =

∫
X
q(x)f

(
p(x)

q(x)

)
(2.71)

where the generator function f : R+ → R is a convex, lower-semi-continuous function stratifying
f(1) = 0. Different choices of f are possible, as shown in Table ??.

The variational estimations of those functions are given by :

Df (P∥Q) = sup
T∈T

(Ex∼P [T (x)]− Ex∼Q[f
∗(T (x))]) (2.72)

formula in which T is an arbitrary class of T : X → R. The function T is defined in such a
way that :

T ∗(x) = f ′
(
p(x)

q(x)

)
(2.73)

f ′ denotes the first-order derivative of f . This condition can serve as a guiding principle for
the choice of f . To estimate a generative model Q given a true distribution, P , we could
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Name Output activation gf domf∗ Conjugate f∗(t) f ′(1)

Kullback-Leibler (KL) v R exp(t− 1) 1
Reverse KL − exp(−v) R− −1− log(−t) -1
Pearson X 2 v R 1

4
t2 + t 0

Squared Hellinger 1− exp(−v) t < 1 t
1−t

0
Jensen-Shannon log(2)− log(1 + exp(−v)) t < log(2) − log(2− exp(t)) 0
GAN − log(1 + exp(−v)) R− − log(1− exp(t)) − log(2)

Table 2.7: This table summarizes the recommended final layer activation functions and critical
variational function levels defined by f ′(1). The value f ′(1) can be interpreted as a classification
threshold applied to T (x) to distinguish between true and generated samples [232].

parameterize Q through a set of weights θ, i.e., through Qθ. We use T as a variational function,
parameterized by a vector ω and written, Tω.

F (θ, ω) = Ex∼P [Tω(x)] + Ex∼Qθ
[−f ∗(Tω(x))] (2.74)

A connection could be made with f -divergences, according to Nowozin et al. [232], if the domain
dom∗

f of the conjugate functions f ∗x is respected. If we replace Tω = gf (Vω(x)) and rewrite the
saddle objective we obtain :

The general expression becomes:

F (θ, ω) = Ex∼P [gf (Vω(x))] + Ex∼Qθ
[−f ∗(gf (Vω(x)))] (2.75)

where Vω : X → R and gf : R → domf∗ is an output activation function specific to the
f-divergence used.

As an example, in the case of f -GAN, we have:

F (θ, ω) = Ex∼P [log(Dω(x))] + Ex∼Qθ
[log(1−Dω(x))] (2.76)

2.6 Reconstruction metrics based on time-frequency misfit
The Kristeková Goodness-of-Fit Criteria
In signal processing, particularly in assessing signal reconstruction quality, the imperative arises
to establish a methodology for analyzing disparities between signals, specifically in the context
of three-component seismic signals. While a cursory visual examination may afford a prelim-
inary assessment of reconstruction quality, the exigency for quantification mandates using a
judicious mathematical framework to address the misfit dilemma systematically.
A straightforward approach involves a natural observation of the disparity between the signal
s(t) and the reference signal sr(t), expressed as D(t) = s(t)−sr(t). Regardless, while providing
an estimate of signal dissimilarity, this expression is inherently insufficient in characterizing
the nature or origin of the observed distinctions. Notably, this simplistic representation can-
not discern frequency, amplitude, or phase variations across temporal and spectral domains.
Recognizing the distinctiveness of observations in the time and frequency domains, exploring
differences in the time-frequency domain has become customary. The most pertinent technique
for such analysis is the Time-Frequency misfit criteria, which concurrently scrutinizes discrep-
ancies at each (t, f) point.
Consequently, Kristeková et al. (2006) [233] refined the development of time-frequency enve-
lope and phase misfit criteria, demonstrating their efficacy in quantifying and characterizing
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comprehensive differences between signals. Two main assumptions are behind the choice of
this metric: one of the two signals can be viewed as some modification of the other sigma, and
the most complete and informative characterization of a signal can be obtained by its time-
frequency representation, rendered through continuous wavelet transform. In the formulation
of a continuous wavelet transform of a signal s(t) is defined by the following expression:

CWT(a,b){s(t)} =
1√
|a|

∫ ∞

−∞
s(t)ϕ∗

(
t− b

a

)
dt (2.77)

with t being time, a(f) a frequency-dependent scale parameter, proportional to the frequency
f ; b is the translation parameter, and ϕ : R→ R a Morlet wavelet expressed as follows:

ϕ : t 7→ π1/4 exp(iω0t) exp(−t2/2) (2.78)

with ω0 = 6 being the proper choice for a wide variety of seismic signals [234]. Finally, the The
form of the equation that is used is the

W (t, f) = CWT(f,t){s(t)} =
√

2π|f |
ω0

∫ ∞

−∞
s(τ)ϕ∗

(
2πf

τ − t

ω0

)
(2.79)

The W 2(t, f) represents the energy distribution of the signal in the Time-Frequency plan.
The envelope is noted : A(t, f) and the phase is noticed ϕ(t, f), such a way that :

A(t, f) = |W (t, f)| , ϕ(t, f) = Arg[W (t, f)] (2.80)

Consider a signal s(t) and a reference signal sr(t); the envelope of the reconstruction is given
by

∆A(t, f) = A(t, f)− Ar(t, f) = |W (t, f)| − |Wr(t, f)| (2.81)

The Equation 2.6 is the difference at each (t, f) point. Similarly, for the phase-in range [−π, π]
:

∆ϕ(t) = Arg
[
W (t, f)

W (t, f)

]
(2.82)

However, for time-local comparison between two signals, the difference between amplitudes is
normalized by the amplitude of the reference signal. The phase values are instead normalized
by ϕ.

TFEMLOC(t, f) =
∆A(t, f)

Ar(t, f)
(2.83)

TFPMLOC(t, f) =
∆ϕ(t, f)

π
(2.84)

The TFEMLOC define the locally normalized TF envelope misfit criteria, and the TFPMLOC(t, f)
define the locally normalized phase criteria. For the global misfit classification, Kristeková et
al. proposed to use the following formulations :

TFEMGLOB(t, f) =
Ar(t, f)

maxt,f{Ar(t, f)}
TFEMLOC(t, f)

=
∆A(t, f)

maxt,f{Ar(t, f)}
,

TFPMGLOB(t, f) =
Ar(t, f)

maxt,f{Ar(t, f)}
TFPMLOC(t, f)

=
Ar(t, f)

maxt,f{Ar(t, f)}
∆ϕ(t, f)

π
.

(2.85)
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Coodness-of-Fit

Verbal Value Numerical Value
Excellent 8-10

Good 6-8
Fair 4-6
Poor 0-4

Table 2.8: Verbal representation of the discrete G.O.F score

It is often very useful to have a single-values envelope and phase misfits, EMGLOB and
PMGLOB.

EM(t, f) =

√√√√∑f

∑
t |Wri|2|TFEMLOC,i(t, f)|

maxi

(∑
f

∑
t |Wri|2

)
PM(t, f) =

√√√√∑f

∑
t |Wri|2|TFPMLOC,i(t, f)|

maxi

(∑
f

∑
t |Wri|2

) (2.86)

According to Kristekova, globally normalized misfit criteria are extremely useful in earthquake
ground motion analysis and earthquake engineering, where there is a poor interest in relatively
“small” magnitudes. This is why this metric has been chosen for this work. The TF envelope
goodness-of-fit criteria can be introduced based on the TF envelope misfits :

TFEG(t, f) = A exp{−
∣∣TFEM(t, f)k

∣∣}
EG(t, f) = A exp{−

∣∣EM(f)k
∣∣}

A > 0, k > 0

(2.87)

We could define the goodness-of-fit criteria as the goodness-of-fit equivalents to the TF phase
misfit criteria :

TFPG(t, f) = A
(
1− |TFPM(t, f)|k

)
PG = A

(
1− |PM |k

)
.

(2.88)

Generally, A = 10 and k = 1. From a seismological standpoint, if the score is between 9 and
10, the reconstruction quality is considered “excellent”, whereas score values between 7 and 8
are considered a “good” fit. Other score values range from fair (4-6) to poor (<4), as listed
in Table 2.8. See Figure 2.39. In summary, the misfit criteria utilizing wavelet transform
enables the quantification of differences between distinct signals or three-component signals.
Specifically tailored to time histories, this criterion is adopted to capture nuanced variations.
Our analysis will consistently monitor the Goodness-of-Fit coefficient, EG, and PG components
to assess the machine learning model’s performance.

2.7 Database of Seismology
Recent developments in Machine Learning applied in seismology have shown the need for rel-
evant and accurate data to process the task. It has been demonstrated that for a model or
algorithm to be robust, the availability of a large amount of seismic data and computer re-
sources must be promoted. This accessibility will enable the model to perform better when
processing and analyzing seismic data. Even though labeled data exists in Seismology, the
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Figure 2.39: Different values of GOF for the signals. Source: Gatti et al., 2020 [21]

reliability of these labels is highly variable or somehow is not present in the database. A lack
of high-quality labeled data sets could be a challenge to serve as ground, and the lack of stan-
dard benchmarks presents an obstacle to more rapid progress. Also, an enormous amount of
seismic data is captured daily, and much of that ground motions is due to sources other than
earthquakes and human activities, which are referred to as non-earthquake signals. In addition
to the difficulty of getting access to seismic data, we should consider that a large and high-
quality-label benchmark data set for seismic data does not exist. “In the absence of a standard
benchmark, authors set their own criteria for evaluating performance. This inhibits progress
because it makes it difficult to determine the relative performance, as well as the advantages
and weaknesses, of each method.” [235]. Therefore, constructing a large-scale database with de-
cent labels is challenging to address. The solutions start with The STanford EArthquake Data

Figure 2.40: Localisation, size and depth distribution of recorded earthquakes. Source [235]

set (STEAD). This represents the foremost high-quality, large-scale global data set encompass-
ing earthquake and non-earthquake signals recorded by seismic instruments. Two categories
of data are present: the local earthquake waveforms (recorded at “local” distances within 350
km of earthquakes) and the seismic noise waveform that is free of the earthquakes. These
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Figure 2.41: Benchmark data sets of seismic data. Illustration from [51]

data comprise ∼1.2 million time-series or more than 19,000 hours of seismic signal recordings
between January 1984 and August 2018.
According to Mousavi et al., 2020 [235], the structure of the STEAD can accelerate the progress
in applying machine learning to problems in seismology. This should facilitate training, val-
idation, and performance comparison. The database is available on https://github.com/
smousavi05/STEAD. In the STEAD, earthquakes are typically captured using three-component
instruments (seismographs) equipped with one vertical and two orthogonal horizontal sensors
to characterize the vector components of ground motion. The sensors have accelerograms that
detect horizontal motions in the direction North-East, East-West, and vertical motion Up-
Down. “[. . .]The earthquake class contains only one category of local earthquakes with about
1050000 three-component time-histories (each 1 minute long) associated with ∼450000 earth-
quakes between January 1984 and August 2018. The earthquakes in the data set were recorded
by 2613 receivers (seismometers) worldwide located at local distances (within 350 km of the
earthquakes).”, see Figure 2.40.
Inclusive of waveforms, the data set encompasses essential metadata. This metadata comprises
parameters such as magnitude, depth, recording stations, recorded earthquakes, and manually
selected details such as the arrival times of P and S waves at each station. The data acquisi-
tion is sourced from entities such as the International Seismological Center and the National
Earthquake Information Center, as reported by Mousavi et al. (2019) [235]. Ultimately, this
compilation involves extracting and reorganizing metadata associated with local waveforms,
amounting to 120 million data entries from these diverse resources. In conclusion, the fusion
of Machine Learning and seismology necessitates reliable data, and STEAD stands out as the
inaugural database to effectively address this challenge. Designed as a benchmark for machine
learning tasks, STEAD provides a global, high-quality data set with over 1.2 million seismic
recordings. Its impact is evident in inspiring the creation of other databases like ETHZ, GE-
OFON, INSTANCE, LenBD, and SCEDC [51]. View Figure 2.41. In our thesis, we leverage
the comprehensive STEAD database due to its breadth, aligning perfectly with the machine
learning tasks.

https://github.com/smousavi05/STEAD
https://github.com/smousavi05/STEAD
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2.8 Partial conclusions and proposals of the thesis

In this chapter, we have reviewed the machine learning tasks in the realm of seismology before
we tackle the problem of enhancing the result of physic-based numerical earthquake simulation
in the pursuit of the original seminal work of Paolucci et al. [85] and Gatti and Clouteau,
2020 [21].
Machine learning in seismology was first introduced for earthquake discrimination. The ac-
complishment and progress have permitted other researchers to pay attention to artificial in-
telligence. Typical use cases go from simple classification tasks to Early Earthquake Warning
(EEW). Subsequently, the most handcrafted task that no longer resists classical simulation
is surpassed by the power of artificial intelligence, which deals well with discovering relations
inherent in earthquake waveform data sets. In this sense, AI provides robust tools to detect
P-waves and S-waves nowadays. By exploiting single and multi-station methods, fast and accu-
rate characterization of earthquakes could be quickly performed after strong ground motion hits
by only analyzing recorded data and detecting patterns of seismic energy propagation across
the seismic networks, which offer valuable insights for earthquake characterization and classifi-
cation. The application of ML goes beyond traditional statistical analysis, with applications to
solve the Eikonal equation through physic-informed neural networks (PINN). PINN was also
proven to be rather proficient in capturing the hypocenter of an earthquake with the initial
condition and imposed constraint of traditional continuum mechanics problem. This overview
has enabled us to circumscribe our field of investigation during that thesis.
Starting from this, we explore more technical aspects of time-series data. Different machine
learning methods can efficiently tackle the problem of reconstruction and generation and have
proved to be excellent tools for investigating seismic waveform data sets. To enhance physics-
based simulations with ground motion data, it has become essential to find a way to design
an adapted neural network to reconstruct, generate, and manipulate reduced-order latent rep-
resentations of the data. We, therefore, explore all the unsupervised representations adapted
for time series. The auto-encoder, the variations auto-encoder, the adversarial learning, and
the contrastive learning appear to be the step-by-step path to achieve and understand the
needs of signal translation to improve the passage from physic-based acceleration time histo-
ries, yielded by high-fidelity numerical simulations to hybrid earthquake ground motion data,
realistic enough on a larger frequency band. In addition to that, we have explored the main
and more recent architecture adapted for time series. We have shown that the classical con-
volution neural network might be ill-conditioned to capture long-range dependencies inherent
to seismic waveforms. We surpass this difficulty by employing transformers, conformers, and
variants. Afterward, it becomes evident that our problem is an optimization problem, which
must be properly defined by seeking empirical loss functions. Because time-series are essen-
tially different from images, and spatial correlation is different from time-causality, traditional
loss functions applied to the spectrograms of time-series data may fail since no translation
equivariance has been proven in the time-frequency domain for seismic data, to our knowledge.
We investigate the use of appropriate empirical loss function for the time domain, tailored to
consider the signal’s amplitude and phase. Our investigation does not stop at that since we
explore other techniques to improve the reconstruction quality (features extractor and features
matching) and the generation with the family of f -divergences distances. Moreover, we adopt
seismology-inspired misfit criteria (Goodness of Fit criteria by Kristeková et al. (2006) [233])as
a metric for the quality of the reconstruction. This metric is based on continuous wavelet
transformation and criticizes the reconstruction quality at the end of the process. A score
between 0 and 10 is given for the phase envelope, and the same process is done for the ampli-
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tude. Finally, we introduce the last component before addressing the core issue: choosing an
adapted benchmark data set tailored to our study. We provide an overview of various data sets
designed for seismologists. Following a thorough investigation, we leverage the comprehensive
data set encompassing over 19,000 hours of stored seismic data from 1989 to 2018. Among the
options, namely, GEOFUN, LenBD, and STEAD, we opt for STEAD, identified as the most
comprehensive data set.





Chapter 3

Signal Translation with Pix2Pix

"So how could one live in a world
where intelligence and the
perception of facts meant nothing,
and where authority and tradition
were everything?"

— Richard Wright, Black Boy,
1945

3.1 General Idea

3.1.1 Motivation

In the last two decades, increasingly available parallel computing architectures enabled seismol-
ogists and earthquake engineers to perform impressive numerical simulations both at regional
and global scales see, for instance, [236],[237], [238], [239]. The following table provides a
non-exhaustive list of regional studies 3.1.

Table 3.1: Summary of major time-domain, large-scale simulations of seismic waves in the
last ten years (table after [240], [241]). FDM: Finite Different Method, FEM: Finite Element
Method, SEM: Spectral Element Method, DG: Discontinuous Galerkin. "-" indicates that the
desired data is unavailable in the reference. This table is not exhaustive.

Grid Size Size f max

Ref. Method Resources DOFs (m) (km×km×km) (Hz) Topography
Chaljub et al., 2010 [242] FDM 6 cores - 25/125 - 2.5 no

SEM 32 cores 66187872 150 - 2.0 yes
SEM 63 cores 39902676 20-900 - 3.0 yes
DG 510 cores - 200-5000 - 3.0 yes

Bielak et al., 2010 [243] FEM - 251457147 var 600×300×80 0.5 no
FDM - 2.355 billions 200 500×250×50 0.5 no
FDM - 5.419 billions 100 600×300×80 0.5 no

Komatitsch et al., 2010[236] SEM 192 GPU 131000256 - chunk of earth 0.7 no
Cui et al., 2010 [244] FDM 1308 billions 40 810×405×85 2.0 no

Rietmann et al., 2012[245] SEM 896 GPU 22 billions 24000 Western Europe× 200 0.125 yes
Taborda et al., 2013[246] FEM 24000 cores 15.9 billions 5.5 88 180×135×32 4.0 no
Heinecke et al., 2014[247] DG 1400832 cores 96 billions - - 10 yes
Ichimura et al., 2014[248] FEM 294912 cores 10.7 billions 0.66 2 × 2 × 0.1 - yes

Fu et al., 2017[249] FDM 1014000 cores 23.4 trillions 8 320×312×40 18 yes
Ichumra et al., 2017[237] FEM 1179648 cores 324 billions 0.125/64 256 × 205 × 100 - yes
Touhami et al., 2022 [241] SEM 4000 cores 13.5 billions 35 130 44 × 44 × 63 10 no
Fujita et al., 2022 [250] FEM 294912 cores 1279 billions 125 2496 × 2496 × 1100 ? yes

More recently, to achieve accurate earthquake predictions in the 0-10 Hz frequency band and
beyond, scientists have developed several end-to-end computational platforms, such as the EU
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Figure 3.1: order of magnitude of natural period values (natural frequencies). ©Source Davi-
dovici et al., 2016 [20]

Center of Excellence for Exascale in Solid Earth (ChEESE) [251], EQSIM [238],[239], Cyber-
shake [252], Cybershake-NZ [253] among many others. However, the more accurate the model
is (in terms of spatio-temporal resolution of the wave propagation phenomenon reproduced nu-
merically), the higher the associated computational cost is. In addition, even if we had infinite
computing resources to reproduce an earthquake ground motion scenario in a larger frequency
band, the inherent uncertainty and randomness of the natural phenomenon would remain chal-
lenging to reduce. One would need a large set of measurements characterizing the epistemic
uncertainty of geological interfaces and active faults contributing to the overall seismic hazard
estimation [254]. Therefore, scientific workflows and Monte Carlo simulations must be adopted
see, for instance,[255],[256], to span the large dimensionality of the space of results X ⊂ Rd,
consisting in all the snapshots u(x; t) of any possible earthquake scenario for the region at
stake. As listed in 3.1, the average largest frequency reached by regional earthquake engines
ranges within the 5-10 Hz frequency band [257], [258],[259].

However, to fully characterize the dynamic transient and modal of structures and infrastruc-
tures, synthetic seismograms should be representative of the earthquake hazard level up until
20 Hz for residential buildings and up until 30-40 Hz for critical structures (For instance, see
Figure 3.1), whenever adopted as free-field input ground motion for Soil-Structure Interaction
studies [260],[257]. Such a brute-force deterministic approach’s inherent computational burden
and experimental cost are prohibitive. We can pursue a strategy with two parts : (1) reduced or-
der and surrogate modeling of cumbersome earthquake simulations, with probabilistic modeling
of the geological and seismological parameters at stake see, for instance,[261],[262],[263],[264];
(2) hybrid modeling employing numerical simulations at low frequency and empirical Green’s
functions [265], stochastic simulations [262], [266], or data-driven approaches (feed-forward
neural networks [85], Generative adversarial Neural Networks [21, GAN],[154]) at high fre-
quency. In particular, this work focuses on the last data-driven approach. The idea behind
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this hybrid broadband ground motion generation strategy is to exploit the generative power of
GAN in order to decode realistic broadband seismograms from the Gaussian latent manifold.
In particular, the pioneering work made by [21] first attempted to encode the physics-based
low-frequency synthetic ground motion data x (represented by three-component acceleration
traces) into a Gaussian latent space zx = Fx(zx), which was next mapped into another Gaussian
manifold zy = Fy(zx) (via a deep generative auto-encoder) and then decoded back to the space
of broadband acceleration traces y = G(Fz(zx)) that represents a hybrid surrogate of recorded
signals. Hereafter, we compare this strategy with two others issued from the well-known image
super-resolution task.
The latter framework is applied to physics-based numerical simulations (analogous to low-
resolution images) to generate realistic yet synthetic hybrid seismograms (the super-resolution
counterpart of low-resolution images). The latter results from mapping a low-frequency signal
- issued from physics-based simulation and accurate within a 0-1 Hz frequency band - into a
broadband realistic signal in the 0-30 Hz frequency range. The deep learning training task is
constrained by the inductive bias of the earthquake physics, integrated into the low-frequency
input issued from deterministic numerical simulations. The deep learning mapping learns to
render hybrid signals that preserve such an a priori knowledge of the earthquake scenario. The
field mentioned above of research can be rephrased as a signal-to-signal translation problem.
Signal-to-signal translation refers to the machine learning challenge of acquiring the relationship
between an input signal and its corresponding output signal, which is another type of data. In
machine learning, this task is achieved by training the statistical model on a data set containing
either paired or unpaired signal instances. Initially used for solving pixel problems in computer
vision and graphics, this task was later developed into image-to-image translation. In this chap-
ter, we present the methodology employed to tackle the intricacies of signal-to-signal translation
for the sake of enhancing the realism of physics-based earthquake simulations to “translate”
them into broad-band time histories that can be considered as recorded seismographs of real
seismic events.

3.1.2 Background on Signal-to-Signal Translation

Introducing signal-to-signal translation requires a better understanding of what has been estab-
lished for image-to-image translation and audio-to-audio in machine learning before we can look
into Seismology. The investigation in images is often adapted to time series and vice versa. Nu-
merous existing studies have used Generative Adversarial Networks (GAN) for image-to-image
translation, where the generation is conditioned by input data, 2018 [267]. However, these
implementations often employ GAN, which unconditionally incorporates additional terms in
the objective functions to constrain the output and ensure conditioning on the input. Even
though this approach underscores the flexibility of GAN by allowing diverse frameworks for
image translation tasks, they suffer from consistency in generations. They are not adapted for
style transfer; refer to Section § 2.3.3.

In 2016, WaveNet appeared as the contribution of Aäron van den Oord et al.. WaveNet
combines auto-regressive models and generative aspects. WaveNet was trained on more than
10000 raw audio samples to synthesize speech audio based on text. This achievement has
demonstrated that text-to-audio translation and, more in general, audio-to-audio translation
tasks are plausible. WaveNet key to success was Oord’s Dilated Causal Convolution layers,
equivalent to masked convolution for images (see van den Oord et al., 2016). This dilated
causal convolution can be implemented by constructing a mask tensor multiplied element-wise
by the dilated convolution kernel. We did not find any contribution of WaveNet in the realm
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of seismology. Regardless, this work was the base of the audio-to-audio applications conceived
by Morise et al., 2016 [268], Lee et al., 2019 [269] with Zhan et al., 2019[270].

The pivotal contribution of Zhu in 2017, extended in 2020, presented Unpaired Image-
to-Image Translation using Cycle-Consistent Adversarial Networks, or CycleGAN [271]. This
adversarial approach learns to translate an image from source domain X to another desired
domain, Y , without needing a paired source example. The goal of CycleGAN is to learn a map-
ping between these domains such that the distribution of G : x 7→ G(x) ∈ Y is indistinguishable
from the distribution of the targeted domain Y .

This approach has been employed in seismology by Kaur et al., 2019 [272], for a seismic
survey of the deep-water Gulf of Mexico. The illustration of the application of CycleGAN for
interpolating seismic data is presented in Figure 3.2. Similarly, we should mention CycleGAN-

Figure 3.2: Workflow of the CycleGAN for seismic data interpolation made on 2D shot gathers
data set presenting random sparsity. Source: Kaur et al., 2019 [272]

VC, Which proceeds to a voice-to-voice translation, see [273]. Cai et al., 2020 [274], used
CycleGAN for seismic impedance inversion with semi-supervised Learning. Cia et al., 2022 [275]
used a variant of CycleGAN with Wasserstein distance to address surface wave tomography for
the shear wave velocity inversion. Kim Dowan et al., 2020 [276], used CycleGAN to overcome
the imbalance problem in petrophysical facies classification. Zhon et al., 2020 [277] introduced
CycleGAN for time-lapse seismic reservoir monitoring data inversion. Li et al., 2021 [278]
also uses CycleGAN for seismic data denoising. Isola et al. [267], designed an Image-to-Image
Translation framework with Conditional Adversarial Networks et al. 2018 [267] so to perform
image translation. The Key part of this architecture is the use of a UNet architecture. Picetti
et al., 2018 [279] has proposed a generative model for seismic imaging applications based on
the Pix2Pix workflow, especially for image supersampling and reflectivity deconvolution. The
model has been tested on a large variability of data. Pan et al., 2021 [280] used Pix2Pix as
a workflow to generate 2D fluvial reservoir models that account for available field data and
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geometries of different facies. The idea of Isola et al., was adapted by Sig2Sig is a transparent
Signal Translation Network, by Kim et al., 2021 [281], once again using UNet. Figure 3.3
shows a schematic view of Sig2Sig workflow, showcasing realistic and accurate translations. The
Sig2Sig diverts from the work of Isola and his collaborator by the fact that UNet architecture
is tweaked: a “squeeze and excitation” layers were added, along with multi-channel attention
selection. The “squeeze and excitation” fosters better compression. In contrast, multi-channel
attention selection consists of different self-attention mechanisms for generating sophisticated
images and obtaining uncertainty maps for calculating loss with high weights at important
pixels and low weights at noise pixels. The noisy background is, therefore, reduced by adopting
the attention-selection mechanism.

Figure 3.3: Sig2Sig framework illustrated by the work of Kim et al., 2021 [281]

The Speech Enhancement Generative Adversarial Network named SEGAN [282] resembles
Pix2Pix, with a UNet architecture dedicated to speech generation. Other techniques have
been previously adopted in the literature for the translation task but have yet to employ
in Seismology, such as DualGAN by Yi et al., 2018 [283], DiscoGAN by Taeksoo Kim et
al., 2017 [284], StyleGAN, by Karras et al., 2020 [285], AttnGAN, by Xu et al., 2017 [286],
DeepSpeech2 Amodei et al., 2015 [287], StyleCLIP [288].

In our data set, the term x represents the physic-based data in the term y is related to wave-
forms. Our strategies propose a different type of application based on the GAN workflow with
Pix2Pix architecture. After observing the feasibility of the method described in the paragraph
above, we intend to find a case of application to enhance the physics-based simulations without
labeling and class control. Therefore, we aim to transform the simulation into recorded data
from the same station. The natural uncertainty of the recorded data makes it impossible to
find a unique solution for this ill-posed problem. The mapping between low and high-frequency
parts of the Fourier’s spectrum has never been extensively studied in seismology. Only some
empirical correlations exist between the two portions of the spectrum, but to our knowledge,
there is no convincing physical explanation. Therefore, Pix2Pix signal translation represents
our first naive approach to solving this super-resolution problem by training a neural network
to mimic this mapping based on the available training dataset.

3.1.3 Overview of Pix2Pix and its applicability

Transferring physics-based simulation to recorded ground motion data implies capturing the
arrival times, the phase, and the envelope of the seismic wave. To effectively translate languages,
creating a method involving paired data sets is meaningful. Therefore, inspired by language
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translation, the Pix2Pix architecture design can be exploited for times series. The translation
aspect is treated in the subsections.

3.2 Methodology

3.2.1 Objective functions

The general idea of using Pix2Pix is to make the distribution of generated data y ∼ Q match the
unknown data prior distribution, namely x ∼ P, by minimizing the distance between these two
probability distributions. The work of Goodfellow et al., 2014 [80] proposes a way to achieve this
goal through GAN. More details can be found in Section 2.3.3. Nowozin et al. [232] proposed
different metrics to be used, gathered in two families: Integral Probability Metric (IPM) family
function, as Wasserstein distance [289], [290], and f -divergence function as, Pearson X 2 and
reverse DKL, see further details in Section 2.5.5. Because of his stability, the Jensen-Shannon
distance has proved his ability to match distributions. This general expression is :

V (D,G) := Ex∼q(x)[logD(x)] + Ex∼q(x)[log(1−D(x))]︸ ︷︷ ︸
Ez∼p(z)[log(1−D(G(z)))]

(3.1)

We define by x the physic-based data, by y the recorded data, and by z a Gaussian noise of 0-
mean and standard deviation of 1. The functions D and G, respectively, are Discriminator and
Generator. Previous work argued on the appropriate way to define D and G; see Radford et al.,
[291]. We build a neural network with multiple bricks of a succession of Convolution, normaliza-
tion output (Batch-Normalization, Instance-Normalization), activation function (LeakyReLU,
ReLU), and Dropout. We will discuss the architecture later (see Section 3.2.3). Our strategy is
based on the previous work of the paper of Isola et al., 2018 [267], developed for image-to-image
Translation, a variant of the CycleGAN [292] and conditional GAN [293]. Pair of distribution of
physics-based, seismic data, and physics-based data and generated seismic data. The objective
function to be satisfied is the same adopted in the original work on Pix2Pix [267], namely:

LcGAN(G,D) = Ex,y[logD(x,y)] + Ex,z[log(1−D(x, G(x))] (3.2)

To ensure the consistency of the reconstruction term or to force the generated signal to be
“close” to the original one, we adopted a Hyper-Spherical Prototype Loss(HSL) and a Focal
Frequency Loss (see subsection 2.37) penalty, namely:

LFFL(G) = FFL(y, G(x)) (3.3)

LHSL(G) = HSL(y, G(x)) (3.4)

Finally, the loss to be minimized reads:

V (D,G) = argmin
G

max
D
LcGAN(G,D) + λ(LFFL(G) + LHSL) (3.5)

In the following, the training algorithm is presented.

3.2.2 Application in case of signal translation

Pix2Pix was not designed for signal translation but for images, tested extensively on edge-
to-shoes, edges-to-handbag, and day-to-night datasets (an illustration of the type of data is
presented in the Figure 3.4). However, in earthquake engineering, this strategy can be used for
data augmentation, as explained in the paper of Li et al., 2020 [294].
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Algorithm 8 The Signal-to-Signal Translation algorithm, called Pix2Pix
Intializatio of network paramters θd, θg
for e in number of epochs do

for k in number of discriminator training step do
Sample minibatch of m raw samples {y(1), . . . ,y(m)} from prior pdata(y)
Sample minibatch of m PBS data {x(1), . . . ,x(m)} from data pdata(x)
Update the discriminator by ascending its stochastic gradient:
ηd ← ∇θd

1
m

∑m
i=1

[
log
(
D
(
x(i),y(i)

))
+ log

(
1−D

(
xi, G(x(i))

))]
θd ← θd − ηd

end for
Sample minibatch of m raw samples {y(1), . . . ,y(m)} from prior pdata(y)
Sample minibatch of m raw samples {x(1), . . . ,x(m)} from prior pdata(x)
Update the generator by ascending its stochastic gradient:
ηg ← ∇θg

1
m

∑m
i=1

[
log
(
D
(
x(i), G(y(i)))

))]
ηg ← ηg +∇θg

1
m

∑m
i=1 FFL(y

(i), G(x(i)))
θg ← θg − ηg

end for
The Adam algorithm is commonly used for that task

Figure 3.4: ©[267]. Isola and collaborators have developed an algorithm to leverage the process
of translating image information by training models in pairs of information.

3.2.3 Pix2Pix architecture

Using an L2 loss, ℓ2, it is possible to map physics-based simulation to raw seismic data. However,
this approach does not guarantee that the Generator will adequately learn the distribution; see
Section § 2.3.3. This potential limit could be circumvented by including another agent in the
training, a Discriminator. Therefore, Pix2Pix architecture will involve a Generator composed
of an Encoder, Decoder, and discriminator.

Generator

The chosen architecture of the Generator is a U-Net architecture. Like the Auto-Encoder,
this network comprises down-sampling and up-sampling layers. A succession of convolution
and convolution-transposed constitute the building blocks of such neural network (see Fig-
ure 3.7). Since Radford et al., 2016 provided several principles for designing Convolutional
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Figure 3.5: Pix2Pix model for signal translation transforms physic-based data into broadband
samples. ŷ = G(x).

neural networks, we have created two blocks inspired by these authors: Convolution-Blocks
and Convolution-Transposed-Blocks. A convolution block is in this other Convolution Layer,
followed by Batch normalization and Activation function, which is LeakyReLu activation. Sim-
ilarly, we use the Convolution-Transpose block with the Convolution-Transpose neuron, Batch-
Norm, and activation function, ReLU. We call the downsampling part the encoder, formed with
convolution blocks, compressing the data into a reduced-order manifold.
In contrast, we name the upsampling part the decoder, formed of Convolution-Transposed-
Blocks, generating new data samples from latent features. In addition to that, the UNet
has the particularity to introduce skip-connection. The skip connection combines the corre-
sponding level of the encoding part with the corresponding level of the decoding part. This
aspect consists of concatenating the output of the Convolution block, with the upcoming out-
put of Convolution-Transpose directly behind the inferior level of the Convolution Transpose
block. Even if, in theory, we could have split the Generator architecture into two independent
branches, encoder and decoder, without skip-connection joining the two, we prefer to inject the
encoded features into the upsampling block through the skip-connections to condition better
the generated samples translated from the original input.

We start by converting the data of shape 3×4096 to 64 ×2048, and we stop when the
last convolution layers out a feature representation of 512×16; we upsample while we inject the
features of the corresponding encoding level. The last value should correspond to the broadband
signal of shape 3× 4096. See Table 3.2 for more details about the downsampling operation,
and in Table 3.3, more details about the upsampling one. A Dropout freezes 35% of the values
of the weights during the training. During the training, to avoid the model memorizing the
dataset, a percentage of the weights is randomly selected so that it is not updated at every
training epoch. This is a standard way to regularize neural network training since it promotes
sparsity and prevents the network from learning unnecessary dependencies and over-fitting the
data. In other words, dropout helps the model to generalize better. When performing the test,
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Layer Operation Input Size Fonction
acitavation Stride Output Nom

Intial Layer Downsampling [6, 4096] LeakyReLU 2 [64, 2048] D1
ConvBlock I Downsampling [64, 2048] LeakyReLU 2 [128, 1024] D2
ConvBlock II Downsampling [128, 1024] LeakyReLU 2 [256,512] D3
ConvBlock III Downsampling [256, 512] LeakyReLU 2 [512, 256] D4
ConvBlock VI Downsampling [512, 256] LeakyReLU 2 [512, 128] D5
ConvBlock V Downsampling [512,128] LeakyReLU 2 [512, 64] D6
ConvBlock VI Downsampling [512, 64] LeakyReLU 2 [512,32] D7
Bottleneck Downsampling [512,32] LeakyReLU 2 [512,16] B

Table 3.2: We present here the downsampling part for the UNet architecture. We have chosen
to show the channel C and length L of the signal input and output size [C,L]. The Initial Layer
is formed of the convolution layer and activation function. the Convolution Block definiton
could be found in §3.2.3. A stride of 2 reduces the L dimension; we also choose to augment the
number of channels; meanwhile, we divide the length of the signal by two, until a certain depth
for computational cost and efficiency.

Layer connect.
with Operation Input Activation Stride Output Name

Trans.Block ’– Upsampling B ReLU 2 [512,32] UP1
Trans.Block I D7 Upsampling UP1 ReLU 2 [512, 64] UP2
Trans.Block II D6 Upsampling UP2 ReLU 2 [512, 128] UP3
Trans.Block III D5 Upsampling UP3 ReLU 2 [512, 256] UP4
Trans.Block IV D4 Upsampling UP4 ReLU 2 [256, 512] UP5
Trans.Block V D3 Upsampling UP5 ReLU 2 [128, 1024] UP6
Trans.Block VI D2 Upsampling UP6 ReLU 2 [64, 2048] UP7
Final D1 Upsampling UP7 Tanh 2 [3, 4096] Y

Table 3.3: We present here the Upsampling part for the UNet architecture the Trans-Block
performs the convolution transpose, with the bottleneck value, B, to output UP1, but does
not have skip-connection. In the other step, the UP1, with the penultimate value of the
Downsampling part D7 produces UP2. In the same vein, we combine UP2 with D6 to output
UP2. We repeat the process until UP7. The final activation function is Tanh because database
values are in [-1, +1].
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the Dropout is deactivated (see Hinton et al., 2012 [295]). Activation functions for compression
are a LeakyReLU with a negative slope of 0.2, and we conversely use ReLU for the decoding
branch. The choice of such activation functions prevents the vanishing gradient. The outputs
of each Convolution and Convolution-Transposed layer are normalized over the instance with a
standard Instance Norm. The Instance Normalization was defined for Style Transfer, according
to Ulyanov et al., 2017 [296]. However, this layer has gained a particular interest in machine
learning for its performance compared to normalization per batch (BatchNorm) [296]. The
definition of Instance Norm reads:

ytij =
xtij − µti√

σ2
ti + ϵ

formula in which the µti is the mean, σti the standard deviation of the signal.

µti =
1

L

L∑
l=1

xtil

σ2
ti =

1

L

L∑
l=1

(xtil − µti)
2

A comparison of different type of normalization techniques is presented in [297], as shown in
Figure 3.6.

Figure 3.6: Different types of Normalization techniques present in Machine Learning. ©[297]

The reader can refer to Figure 3.7 for a visual representation of the U-Net architecture of
the Generator.

Discriminator

In our design choice, we adhere to the conceptual framework of PatchGAN, according to Chang
et al., 2019 [298]. It is a discriminator architecture commonly employed in generative adversarial
networks (GANs) for image-related tasks. Unlike traditional discriminators that produce a
single output for the entire input, a PatchGAN classifies the input in a patch-wise way. See
Figure 3.8 for the architecture of the Discriminator. Table 3.4 presents more details of the
shape. The network then extracts relevant features. The last layer will not be a value for
each sample but a 3D output feature map, to which we apply an element-wise sigmoid. Each
pixel on the output map corresponds to a region of the input image to the discriminator. This
means it evaluates and classifies small, overlapping patches of the input image separately. This
localized assessment allows the PatchGAN to provide fine-grained feedback on the realism of
different regions within the image. Designing a discriminator for images is comparatively more
straightforward than for signals. In the case of audio, discerning a fake signal from an original
signal poses additional complexity, as mentioned by Oord et al., 2006.[213]. Signal artifacts
appear in the frequency domain. However, this latter could hardly be seen in the time domain
because it is blurred by noise.
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Figure 3.7: Representation of the architecture of the U-Net adopted as Generator.

Layer Opeation Input Size Fonction
Activation Stride Output

Initial Downsampling [9, 4096] LeakyReLU 2 [16, 2048]
PatchBlock I Downsampling [16, 2048] LeakyReLU 2 [32, 1024]
PatchBlock II Downsampling [32, 1024] LeakyReLU 1 [64, 1023]
Final Downsampling [64, 1024] LeakyReLU 1 [1, 1022]

Table 3.4: PatchCNN for the Discriminator
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Figure 3.8: Architecture of the Discriminator adopted in the PatchGAN framework and featured
by CNN layers.

3.2.4 Training Data and Dataset Description

We train our architectures by using the open source STanford Earthquake Dataset (STEAD) [235]
(More details are in Section §2.7). The STEAD is a vast database that contains recorded data
and metadata around the Earth. Each seismic datum is a 3-channel recorded signal in three
directions. For computational power, the time history is cropped to 4096 values of the time
step of 10 ms. This latter is de-trended, low-pass filtered at 30 Hz, and divided by its PGA as
normalization. We perform this kind of normalization since the network could have convergence
issues, and also, in a confirmed case of test, we should get access to the PGA of the signal. In
machine learning, the scientist often needs thousands of data to validate a model, which are
hard to obtain from high-fidelity numerical modeling because of the associated computational
cost.
Moreover, given the significant uncertainty of the input parameters, it is intricate to produce an
earthquake simulation that perfectly matches a seismic record. Therefore, to train our neural
networks, we assumed that the recorded signals belonging to the STEAD database and band-
pass filtered in a frequency range from [0-1] Hz could generate the labeled dataset required for
the supervised scheme we adopted: each and any band-pass filtered signal has its target counter-
part, consisting in the original broad-band STEAD record. We use 128000 3-component signals
for 384000 time-histories of 4096 time-steps each. Our training set constitutes 80% of the total.
We spared 10 % for validating the hyper-parameters adopted (learning rates and schedulers,
penalty coefficients, etc.). The remaining 10% is used for testing the network against possible
overfitting.
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3.3 Experimental setup

3.3.1 Description of Evaluation Metrics

The Goodness of fit is presented in the section 2.6. The wavelet transform of a signal is used
for the comparisons, in which the phase and amplitude envelopes are evaluated to determine
the quality of the prediction. The generated value is G(x) = ŷ; this latter is compared to the
original value y.

3.3.2 Implementation Details

Before completing the training, we do a unitary test on parts of our architecture. On the one
hand, we tested the U-Net architecture with a ℓ1- and ℓ2-norm for reconstruction and Focal
Frequency Loss. Indeed, this simple loss evaluation could not be robust enough to capture
high-frequency information from our data set. However, this lets us conclude whether our
architecture has sufficiently generalized to map two data sets. It helps us understand that
adding noise to the Generator does not help improve the model. The network will learn to
ignore this latter, as proven [267]. On the other hand, the evaluation of discriminators is made
separately. We randomly generate Gaussian noise for this part, concatenated with the original
signal and uniform distribution from 0 to 1, taken as artificial data. We start with the Gaussian
noise with a standard deviation 1.0 and progressively decrease the standard deviation until 0.10.
Finally, the same original data replaces this artificial data with noise. We use the binary cross
entropy loss for this task. After calibration and separately validating unitary tests, we bind
the blocks and train the model. This strategy saves time finding which part of our architecture
must be fixed. Adding noise to this strategy is relevant to convergence. Noise addition makes
generalization possible and avoids some artifacts in the generation’s output.

We trained Pix2Pix with the distributed data-parallel scheme on 4 NVIDIA P100
GPUs and 4 NVIDIA A100 GPUs at the Mesocentre Moulon supercomputer facility
at Université Paris Saclay. The previous work of Gatti et al., 2020[21] made in the
Python version of PyTorch (v1.8, CUDA 10.2), has served as the base of the experi-
ment. This version has been optimized to version 2.0 of Python and CUDA 11.7.

Technical detail
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One notable challenge in machine learning, particularly in GAN and its variants, is
their high sensitivity to hyper-parameters, Dumont et al., 2022 [299]. Minor varia-
tions in architecture, optimization techniques (Adam, RMSprop, SGD, etc.), learning
rates, or use of inappropriate schedulers can profoundly impact prediction or gener-
ation quality. Further details on specific challenges are deferred to the experimental
section below. All the state-of-the-art GANs and associated regularization methods
that serve as guidelines in our studies can be found in Table 5 of Lee et al., 2020 [165].
The choice of the Adam optimizer was based on its stability, ensuring uninterrupted
training even as gradients approach zero (β1 = 0.5 and β2 = 0.999). Addressing
the challenge of selecting appropriate learning rates for the Generator and discrimi-
nator involved employing the Two Time Update Rule (TTUR) [300]. Specifically, a
learning rate of 0.0004 was applied to the Generator and 0.00001 to the discriminator,
with the latter being 10 times smaller than the former. A MultiplicativeLR, Dong et
al., 2022 [301] scheduler was adopted, which reduces the learning rate values slightly
during the training. This technique helps stabilize the training and avoid the loss of
jumps up and down. More than that, we apply a weight decay of 0.0001 to the dis-
criminator; by adjusting the weight decay coefficient, we can control the balance be-
tween fitting the training data and preventing overfitting.

Parameter Tuning and Optimization

Following an exhaustive search and tuning process, optimal hyper-parameters were deter-
mined. A U-Net architecture was adopted since it shows compelling convergence throughout
the training process, effectively minimizing prediction errors.

3.4 Results and Discussion
After completing the training phase, we applied our U-Net architecture to the STEAD dataset.
Our findings demonstrate that the physics-based data x transforms ŷ when compared to the
paired data. Figure 3.9 illustrates the network’s capability to reproduce seismographs in the
3-directions (North-South, East-West, Up-Down). The Goodness of Fit provides us a metric re-
flecting the quality of Translation, as shown in Figure 3.10 and Figure 3.11, for the test dataset.

As a reminder, as described in subsection 2.6), the score proposed by Kristeková et al.,
2009 [234], is given for both the phase and amplitude on a 0-10 scale. A score of 10
expresses a perfect reconstruction quality.

Reminder

In earthquake engineering, notable approaches for hybrid generation include the prior works
of Paolucci et al., 2018 [302], and Gatti et al., 2020 [21].
Paolucci et al., 2018 addressed broadband ground motion generation utilizing their architecture
named ANN2BB, which is based on standard multi-layer perceptron to predict Pseudo-Spectral
Acceleration (PSA, damped at 5%) at short periods, specifically targeting response spectrum
values for natural periods lower than 0.75 s, see Figure 3.12

These short-period values are crucial for engineering design purposes but are often chal-
lenging to obtain by physics-based numerical simulations. Those short-period PSA ordinates
can be reliably computed if the numerical simulation that renders synthetic ground motion
time-histories is sufficiently accurate at high-frequency, i.e., in a 0-30 Hz frequency range.
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(a) North-South (b) East-West (c) Up-Down

Figure 3.9: Earthquake signal translation with Pix2Pix. The signal in blue, y is the target
signal. It is a broadband signal with frequency values between 0 and 30 Hz. The signal in
black, x, mimics the numerical simulation (in fact, it is a filtered version of the broadband
signal for frequencies around 0 and 1 Hz.). The U-Net architecture, trained in Pix2Pix fashion,
can provide a good reconstruction in red that is close to the broadband signal.

(a) North-South (b) East-West (c) Up-Down

Figure 3.10: We present the G.O.F, which evaluates the signal in amplitude and phases. A
score of 0 is the worst, and 10 is the best reconstruction. As we can see, by training pix2pix
using the U-Net strategy, we can have an accurate reconstruction of y from x

ANN2BB renders realistic PSA values below T =0.75 s, based on the longer-period ones
(T >0.75 s), assumed to be accurately evaluated by simply adopting the physics-based simu-
lation x, valid in a 0-1.5 Hz frequency band. The predicted PSA, as shown in Figure 3.12, is
adopted as a target to iterative scaling the Fourier spectral amplitudes |F(x)(ω)| (with ω being
the natural pulsation and F (·) the Fourier transform operator) of the original physics-based
signal x until its PSA values Sa(T ) aligns with the target ANN2BB target one. An illustration
summarizing the methodology can be found in Figure 3.12.

Paolucci’s ANN2BB method involves several steps before obtaining the desired generation
results. Additionally, the chosen architecture of the Artificial Neural Network (ANN) may
struggle to capture long-range dependencies. Furthermore, it is noted that the procedure is
not yet suitable for obtaining sets of waveforms with realistic spatial coherency features at high
frequency. Addressing these limitations, Gatti and Clouteau [21] proposed an alternative ap-
proach. Rather than focusing on response spectral ordinates, they advocate working with the
entire time series to generate hybrid signals. However, this approach has its own set of limita-
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Figure 3.11: Goodness of Fit (GoF) metrics values are obtained for Pix2Pix to evaluate the
quality of hybrid signal generation from physics-based data. The generated signals should
closely match the targeted ground motion data.

tions, which will be discussed in the following chapter. One noteworthy limitation is achieving
high-quality reconstruction of hybrid generation in terms of fidelity to the targeted values. It
appears clear that traditional methods, as exemplified by Paolucci et al., 2018, and Gatti and
Clouteau, 2020, involve multi-step processes and architectural considerations that might need
help capturing long-range dependencies in the data. These dependencies are crucial in seismic
signals because they contain information distributed over a wide range of time series. Pix2Pix,
on the other hand, simplifies the process. We do this by minimizing the joint distribution. In
addition, we examine and integrate features associated with long-range dependencies using the
U-net architecture. Our methodology aims to capture complex correlations in seismic data in
a single step. This makes it possible to generate more efficient and accurate hybrid signals.
Finally, our strategy is designed to enhance the process’s computational efficiency and improve
the overall fidelity of the generated hybrid signals by directly addressing the complexities as-
sociated with long-range dependencies in seismic data. The output of our time-domain results
is illustrated in Figure 3.9 for a seismograph, showcasing outputs in three directions to demon-
strate both time and frequency domain reconstructions. In the time domain, the generated
acceleration exhibits the characteristic appearance of a seismic signal. The signal’s amplitude
initiates from zero, exponentially increasing and subsequently decreasing, ensuring the gener-
ated signals’ plausibility. The potency of matching joint distributions, specifically (x,y) and
(x, G(x)), is evident in achieving this realistic seismic signal generation.
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Figure 3.12: Flowchart of the ANN2BB approach revised after Paolucci et al. (2018) for the
massive processing of physics-based numerical simulations (PBS) for broadband computation.
Source [303]

PSA values, namely the application T ∈ R+ 7→ Sa(T ) ∈ R+ corresponds to the
maximum absolute value of the oscillator response (t, T ) 7→ yT (t), with natural period
T , to the earthquake acceleration t ∈ [0,∆] ⊂ R+ 7→ ẍg(t), solution of the following
ordinary differential equation:

ÿT (t) +
4πζ

T
ẏT (t) +

4π2

T 2
yT (t) = −ẍg(t)

with ζ the critical damping, ∆ > 0 the earthquake duration and the Pseudo-Spectral
Acceleration computed as:

Sa(T ) = max
t∈[0,∆]

|yT (t)|

In earthquake engineering, the PSA is widely adopted to assess the approximate seis-
mic response of buildings underground shaking, considering such structures as single-
degree-of-freedom oscillators, whose natural oscillation period approximately corre-
sponds to T ≈ Ct · hx

n, with hn being the structural height, and Ct, x some coefficients
depending on the type of building (reinforced concrete, steel frames, masonry, etc., ac-
cording to the ASCE code 7-16 Section 12.8.2.1 Approximate Fundamental Period).

Reminder
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It is noteworthy that Pix2Pix learns to translate signal-to-signal in the time domain. Con-
sequently, examining the frequency domain is just for the sake of clarity, independently of how
the generators synthesize the data. In the Fourier domain, the ordinate values satisfactorily
approximate the targeted values. Notably, generating values becomes challenging for frequen-
cies between 0-1 Hz when they are lower than 10−3. The Goodness-of-Fit evaluation for each
direction is depicted in Figure 3.10. This analysis provides insights into the alignment between
the generated signals and the target values, further assessing the performance of our approach.
The Pix2Pix strategy demonstrates a comparable level of prediction quality as SeismoALICE,
developed by Gatti and Clouteau [21]; refer to Figure 3.13. Figure 3.11 shows the Goodness-of-

Figure 3.13: We can see the best values of hybrid generation from SeismoALICE, developed by
Gatti and Clouteau [21], Gy(G(Fx(x))) that should target the corresponding raw data, y

Fit (GOF) scores for the entire tested dataset of STEAD. The test dataset encompasses 12800
3D signals, totaling 38400 individual signals. The mean score for the envelope is around 8;
similarly, the mean score for the phase is eight. In their seminal work, Gatti and Clouteau [21]
only used 100 3-component time series for training. While most signals exhibit a high level
of translation fidelity, some signals pose challenges due to their sparse ordinate values, result-
ing in an enhancement that deviates significantly from the targeted signals. This observation
underscores the nuanced nature of signal translation, mainly when dealing with signals that
inherently lack sufficient information. The evolution of the adversarial loss across the whole
training epochs is shown in Figure 3.14.



3.4. RESULTS AND DISCUSSION 121

(a) Adversarial Losses LcGAN (G,D).

(b) Focal Frequency Loss FFL(y, G(x)).

Figure 3.14: Evolution of Pix2Pix training and testing losses, for signal-to-signal translation,
in Equation 3.5.
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3.5 Challenges and Considerations

3.5.1 Limitation of Pix2Pix in Signal-to-Signal Translation

The Pix2Pix framework exhibits notable limitations in signal-to-signal Translation that must
be addressed. The Pix2Pix is primarily restricted to paired data, limiting its functionality to
a type of data set exclusively: this architecture could only be trained in a supervised man-
ner, but this condition is hard to achieve in practice because that would require a high-fidelity
cumbersome numerical simulation for each earthquake and each station. This is impossible
because of the large lack of information on the nature of the underground medium and active
fault characteristics, which prevents the possibility of fully constraining the numerical models
designed for a specific earthquake scenario. Moreover, empirical investigation of this framework
has highlighted its sensitivity to noise. In the signal context, this could completely change the
signal from the targeted ground motion data.
Additionally, the interoperability of the output poses a challenge; Pix2Pix prediction could
be hard to understand and explain. In the case of time histories, if the inputted signal does
not follow the same distribution, the output could not be expected to be realistic according
to standard seismological criteria (wave arrival times, peaks, exponential envelope decay after
the strong S-wave arrival). Instances of misalignment of the S-Wave and the P-Wave indicate
potential discrepancies, comprising the model’s fidelity to signal characteristics. Furthermore,
Pix2Pix is limited to one-to-one mapping, constraining its applicability in earthquake engi-
neering and probabilistic seismic hazard assessment, necessitating many plausible broadband
realizations of the same earthquake. Therefore, the model may fail to capture the entirety of
signal variation. Moreover, Pix2Pix shows its limitations in signal generation; this architecture
could not be used for data augmentation, imposing constraints on its utility.

3.5.2 Overcoming challenges and Futures Directions

The nature of our dataset, which consists of paired data, ensures the alignment of phases, and we
intend to maintain this approach for future architectures, presented in the following chapters.
Adversarial training methods use Gaussian distributions to capture high-level features. To
control the quality of the generation, it is helpful to use an encoder to project the data into
Gaussian space. We will cover these details in the next chapter. The mapping onto multiple
domains will involve the utilization of both PBS and Gaussian noise. The exploration of
an adapted strategy should focus exclusively on this combination. We will employ a joint
distribution to assess the hybrid pairs of x and y to mitigate the noise impact. Introducing a
discriminator will play a crucial role in stabilizing the training process.

3.6 Conclusion
In summary, the Pix2Pix framework has demonstrated its ability to translate PBS signals into
broadband data. The training was performed on the STEAD dataset, revealing the strategy’s
feasibility. Compared with these strategies, ANN2BB and Seismo-ALICE, Pix2Pix gives a U-
Net architecture the ability to produce plausible results. However, empirical observations have
revealed limitations in its ability to generate diverse hybrid signals from the same data type.
In response to these challenges, we plan to address and rectify these limitations in the next
chapter, which will be devoted to further methodological advances.



Chapter 4

SeismoALICE

"Nervous people are amazing!
Whether they’re estimable or not,
nothing they do is banal;
extravagant perhaps, astonishing,
admirable, crazy, pyramidal or
simply mind-boggling, that’s for
sure!"

— Jacques Stephen Alexis,
L’Espace d’un cillement,1959

4.1 General Idea
As introduced in subsection 2.3.4, Li et al., 2017 [175] proposed an Adversarial Learning In-
ference strategy with Cross Entropy, namely ALICE. The latter framework is based on the
previous work of Dumoulin et al., [304] 2017, called Adversarial Learning Inference (ALI). ALI
and ALICE were developed to train a GAN efficiently—a schematic view of how ALI and AL-
ICE work is presented in Figure 4.1. The original GAN strategy proposed by Goodfellow et al.,
2014 [80] infers data samples G(z) from a Gaussian manifold Z via a neural network named
Generator G : Z → X . ALI tries to complete the task by forcing the Generator to learn the
inverse mapping X → Z, called “inference”, from the data space to the Gaussian manifold. In
this case, a new network architecture, the encoder Gx, is introduced, and the GAN adversarial
loss is reformulated so that the joint probability distribution of data and latent space variables
is considered. In other words, as in the previous classic GAN, an objective cost function should
satisfy the Nash equilibrium by solving the following min-max problem:

LALI = min
Gx,Fx

max
Dxz

V (Dxz, Gx, Fx) = Eq(x) [log (Dxz (x, Fx(x)))]

+ Ep(z) [log (1−Dxz (Gx(z), z))]

=

∫∫
q(x)q(z | x) log(D(x, z))dxdz

+

∫∫
p(z)p(x | z) log(1−D(x, z))dxdz

(4.1)

where two Generators Gx and Fx and a Discriminator Dxz are adopted, so that the probability
distributions q(X, Gx(X)) and p(Fx(Z),Z) converge towards the equilibrium distribution of the

123
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SeismoALICE/ALI +CE

Loss = ALI + Cycle consistency

Real = 1

Fake = 0

Figure 4.1: ALICE representation of the technique

mixture q(X,Gx(X))+p(Fx(Z),Z)
2

, reaching the Nash equilibrium, i.e. the minimum of V (Dxz, Gx, Fx)
in Equation 4.1. As mentioned by Goodfellow et al., 2014 [80], when the Discriminator takes
advantage of the two Generators and gets close to 1, the two generators hardly find a way to
minimize the loss functions, unless their gradient becomes increasingly large (gradient explo-
sion). The balance between Discriminator and Generators is achieved when the Discriminator
cannot distinguish samples (x, Gx(x)) from samples (Fx(z), z), since the Jensen-Shannon di-
vergence between q(X, Gx(X)) and p(Fx(Z),Z) goes to 0. In the case of ALI, even if a couple
of networks (encoder Gx, Decoder Fx) adequately describe the relationship between data and
latent space representation, nothing guarantees this mapping is bijective. To fix this incon-
sistency, the author introduces the Cross-Entropy (CE) penalty and the original ALI loss in
Equation 4.1.
However, as explained by Radford et al., 2016 [167] “[...]the objective functions do not constraint
the relationship between the latent variables and the observations, which results in unsatisfied
reconstruction performance. ALICE resolves this non-identifiability issue by optimizing the
conditional entropy [175]. Cross-entropy is achieved by a couple of discriminators, who must
distinguish between the original information and its perfect reconstructions. The Cycle consis-
tency loss enforces the match of the marginal probability, i.e.:

LCycle = min
Gx,Gz

max
Dxx

V (Dxx, Fx, Gx) =

Eq(x) [log (Dxx (x,x))] + Ep(z) [log (1−Dxx (x, Gx ◦ Fx(x)))]
(4.2)

For example, a signal and its reconstruction encoded and then decoded should not change. In
addition, we enforce the mapping by an MSE loss or ℓ1 loss multiplied by arbitrary values to
harmonize the total objective function to be satisfied, see Figure 4.1

LALICE = LALI + LCycle (4.3)
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4.1.1 Architecture of SeismoALICE

To apply ALICE to the super-resolution problem in earthquake engineering, Gatti and Clouteau,
2020 [21] subdivided the learning problem into three sub-problems. Two hidden variables (z
and z′) is introduced, for which the distribution is a mathematically well-known Gaussian or
uniform. To transform the seismic signal to a physic-based simulation and vice versa, Gatti
and Clouteau, 2020 [21] had to find a reduced abstract representation of each data and define
a bridge between them, as shown in Figure 4.2.

  

Strategy hybridation
PBS Latent Space

Raw data Latent Space

0-30 Hz
0-1 Hz
Hybrid mapping

Figure 4.2: Resume of the SeismoALICE framework to passe from Physic-Based signal to
ground motion.

The first problem, referred as to Px, consists of finding a couple of Decoder Gx : Rr −→ Rd

and encoder Fx : Rd −→ Rr for physics-based numerical time-histories, such a way that the
couple (z, Gx(z)) and (Fx(x),x) be identically distributed. As in the ALICE framework, two
discriminators are adopted to drive this learning task. The second problem, Py, consists into
finding a couple of Decoder Gy : Rr −→ Rd and encoder Fy : Rr −→ Rd to match the
distribution of (z′, Gy(z

′)) and (Fy(y),y), corresponding to recorded seismograms. Finally,
Gatti and Clouteau, 2020 [21] introduced the problem Pz, in which we have to find Gz : Rr −→
RR and Fz : RR −→ Rr to map the latent variable corresponding to x into y: (x, Gy◦Gz◦Fx(x))
and (Gx ◦ Fz ◦ Fy(y),y). So the composed encoder and Decoder read F = Gx ◦ Fz ◦ Fx and
G = Gy ◦ Gz ◦ Fx respectively. All Gi and Fi mentioned above were modeled through deep
CNN, as detailed in the original publication [21].
In Px, the cycle consistency and ℓ1 loss were adopted so that our network could provide accurate
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reconstruction. The overall loss function reads:

lx(z,x, C, Fx, Gx) = lDxz(z,x, C) + lDx(z,x, C) + lDz(z,x, C) + λxlR2(x) + λzlR2(z)

lDxz(x, Fx(x), C) = logDxz(x, Fx(x))1c=”dx” + log(1−Dxz(Gx(z), z))1C=”gz”

lDx = logDx(x) + log (1−Dx ◦Gx(z))

lDz = logDz(z) + log (1−Dz ◦ Fx(x))

lR2(x) = ∥x−Gx ◦ Fx(x)∥21
lR2(z) = ∥z− Fx ◦Gx(z)∥21

(4.4)

As far as Py goes, the same considerations apply, and the loss function reads:

lh (z, z′,x,y) = lhy (x,y) + lhx(x,y) + lhz′ (x, z
′) + lhz (z,y)+

λlR1 (y, Gy ◦Gz ◦ Fz ◦ Fy(y)) + lR1 (x, Gx ◦ Fz ◦ Fy(x))
(4.5)

Pz aims at finding a couple of neural networks to map a latent space into another. Doing
this can transform any physics-based simulation into our database’s more realistic earthquake
time history. The loss function reads:

lh (z, z′,x,y) = lhy (x,y) + lhx(x,y) + lhz′ (x, z
′) + lhz (z,y)+

λlR1 (y, Gy ◦Gz ◦ Fz ◦ Fy(y)) + lR1 (x, Gx ◦ Fz ◦ Fy(x))
(4.6)

Expression in which the different terms can be further unraveled as:

lhy (x,y) = Dh
y (y)1C=”d” −Dh

y (Gy ◦Gz ◦ Fx(x))1C=”dx”

lhx(x,y) = Dh
x(x)1C=”dx”−Dh

x (Gx ◦ Fz ◦ Fy(y))1C=”d”

lhz′ (x, z
′) = Dh

z′ (z
′)1C=”gz′

−Dh
z′ (Gz ◦ Fx(x))1C=”dx

lhz (z,y) = Dh
z (z)1C=”gz”−Dh

z (Fz ◦ Fy(y))1C=”d′′

(4.7)

Equation 4.7 expresses Wasserstein Earth Mover (EM) Loss, as described in Sections 2.5, 2.5.5
and Table 2.6. Here, with lhy we force hybrid synthetic data x, i.e, Gy ◦Gz ◦ Fx(x) to resemble
to y, forcing the encoders, and decoder to mimic a simple close to the p(y) distribution. In the
same way, we are forcing, Gx, Fz and Fz to learn the mapping between x and Gx ◦ Fz ◦ Fy(y).
z′ is the latent space adapted that should capture the relevant features of x And so do z for y,
as illustrated in Figure 4.2.

4.1.2 Limitation of this strategy

(i) Sequential training
The SeismoALICE method, applied in a tripartite manner, faces limitations due to its
sequential nature. Training the broadband generators and filtered data networks must
precede the training of the hybrid encoder and decoder, introducing a time delay.

(ii) Duplicate resources
Furthermore, the approach duplicates resources, leading to an augmented number of
discriminators (Dx and Dh

x, Dy and Dh
x, Dz and Dh

z ). Calibration of these discriminators
for generators is time-consuming and requires rather intricate training hacks, as discussed
by Lee et al. [165]. The interplay between physics-based and seismic data introduces
unnecessary parameters, thereby complicating the pursuit of optimal solution searches.
Attaining a Nash equilibrium between generators and discriminators proves challenging,
amplifying the complexity of parameter optimization.
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(iii) Interpretability of the latent spaces
A critical drawback is found in the final layer of Generators when CNN is adopted as
a neural network (see Gatti and Clouteau, 2020 [21]). This layer struggles to capture
broad contextual information, diminishing overall model performance. The network’s
limited ability to project data into a Gaussian distribution preserves data correlations,
necessitating exploring alternative layer structures to overcome these constraints. In the
encoders, Fx or Fy, CNN extracts hidden features; even for the higher level, we will need
a transformation to shift to the targeted latent space distribution (Uniform or factorized
Gaussian). Such a thing is possible through the transition matrices of the Linear Layer or
with the regularization technique provided by V.A.E, see Section § 2.3.2. In the case of the
application of a Linear Layer on top of CNN, the last output of the CNN is flattened, and
the projection proceeds, aggregating and encoding into a more compact representation,
as demonstrated by Aggarwal et al., 2018 [135]. It is noteworthy to talk about the
advancement made in BigBigGAN about the difficulty of projecting data into a latent
distribution p(z); the work of Donahue et al., 2019 [173] proposes to reuse a classifier
as encoder to target a distribution N (µ, σ). To do this, they have forced through the
last layer to output the mean, µ and an estimation of the standard deviation and σ̂, A
last non-negative activation softplus is applied, namely softplus = log(1 + exp(σ̂) and z
sampled as z = µ + ϵσ, where ϵ ∼ N (0, I). Donahue has also compared it with other
projection techniques to highlight issues.

(iv) Contradictory loss
There are two ways to preserve cycle consistency: implicitly, with an adversarial loss,
or explicitly with a ℓ2 loss. Theoretically, according to Li et al., 2017 [175], implicit
consistency is equivalent to explicit consistency. However, cycle consistency loss can lead
to contradictory situations and does not always preserve consistency in the context of
ALICE. One might think that the auto-encoder architecture is extremely efficient. This
is easy to see if the separately trained auto-encoder provides satisfactory reconstruction
quality. In this case, the expected behavior when training with implicit cycling will
be a deterioration of the reconstruction during training; on the other hand, it will be
observed that generation under Gaussian noise is widely general. This implies that the
Nash equilibrium can easily be broken if the capacities of the discriminator providing the
cycling property are not sufficiently restricted. This complexity disappears with explicit
cycling through standard ℓ2 loss. Also, This strategy is more sensitive to the nature of
the dataset. The tuning or arrangement of discriminators is a potential bottleneck in the
process. Belghazi et al., 2021 [305] in their work highlights the challenges of computing
mutual information, particularly in the case of the Information Bottleneck (IB). The IB is
a method that quantifies the mutual information between two variables X, Y through the
mapping X → Z → Y for the triplet (X, Y, Z) ∈ (X ,Y ,Z). “An optimal representation
of X should capture the relevant factors and compress X by reducing the irrelevant parts
that do not contribute to the prediction of Y ”, [305]. This is done by minimizing the
Lagrangian :

L[q(z|x)] = H(y|y) + βI(x, z) (4.8)

Formula in which, q(z|x) is the encoder outputting z, H(y|z) is the conditional entropy,
defined as :

H(y|z) = −
∫∫

y×z

p(y, z) log
p(y, z)

p(z)
dp(y; z) (4.9)

I(x, z) is the mutual information between x and z, whose definition reads (Tishby et al.,
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2015 [306]):

I(x, z) =

∫∫
x×z

log
p(x, z)

p(x)p(z)
dp(x, z) (4.10)

Where p(x, z) is the joint probability distribution, p(x) and p(z) are the marginal distribu-
tion, the definition of mutual information corresponds to the Kullback-Leibler divergence,
DKL. This expression is a priori intractable. A parametrized neural network could be
used to estimate this expression, F = {Tθ}θ∈Θ:

ˆI(x, z) = sup
θ∈Θ

Ep(x,z)[Tθ]− logEp(x)q(z)[e
Tθ ] (4.11)

The IB corresponds when we search for the balance between two conflicting objectives
in machine learning. Thereby, the complexity becomes problematic. The use of ℓ2 can
at least ensure reconstruction. A more efficient architecture for the generators could be
envisaged to improve this quality, as shown in the next sections.

One primary objective of this thesis is to solve the problem Py to attain high-fidelity reconstruc-
tion of broadband signals and generate the whole database from Gaussian noise, zy ∼ N (0, I),
considering the 0-30 Hz frequency interval. Each 3-component broadband signal exhibits a dis-
tinct physical behavior governed by a coherent and sequential progression, commencing with the
P-wave, succeeded by the S-wave. Consequently, the signal displays long-range dependencies,
rendering it a complex challenge to analyze. This distinct seismic signal pattern consistently
manifests within our dataset (STEAD). Therefore, the foremost step in our research involves
identifying the most suitable architecture to handle this task effectively. To initiate our ap-
proach, we conduct a meticulous investigation to determine the optimal encoder and decoder,
ensuring the highest precision in data reconstruction.
Subsequently, we introduce an adversarial loss to augment the quality of the reconstruction.
By employing adversarial training techniques, a discriminator is incorporated to enhance the
fidelity of the generated data. Our overarching objective involves projecting the physics-based
data into a Gaussian distribution and retrieving the corresponding encoded signal. Conse-
quently, the trained Generator can generate the complete database from randomly generated
noise, leveraging the encoded representation as a guiding blueprint. Through these meticulous
steps, we endeavor to achieve superlative reconstruction results and establish a more authentic
representation of the original broadband signals.
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SeismoALICE is a deep-CNN-based GAN to render synthetic broad-band ground mo-
tion time-histories (0-30 Hz) from low-frequency simulated accelerograms (0-1 Hz).
The task is achieved by encoding/decoding both numerical simulations x (frequency
band: 0-1 Hz) and corresponding recorded seismograms y (frequency band: 0-30 Hz)
into Gaussian latent space z and z′ respectively. The goal is achieved by adopting the
Adversarial Learning Inference with Cross-Entropy (ALICE), proposed by Dumoulin
et al., [304] 2017. The goal of this chapter is to improve the original version of Seis-
moALICE to achieve the following milestones:

(i) Training sets of encoder/Decoder with a good reconstruction quality for both x
(low-frequency input) and y

(ii) The encoder can project any 3-component seismogram data in 1-dimensional
Gaussian vectors

(iii) Generate 3-component seismograms from the 1D Gaussian vector

SeismoALICE recap

4.2 Improving SeismoALICE

Generators

(i) auto-encoder structure (AE)
We directly start by seeking to optimize the reconstruction quality through an AE ar-
chitecture. The task we want to perform in times series needs an architecture capable
of capturing long-range dependencies. The original SeismoALICE adopted encoders and
decoders, conceived as stacks of 1D convolutional layers. In the previously presented ar-
chitecture, the flow of the information passes through a stacked convolution block without
researching a way to prevent the model from forgetting relevant information. To circum-
vent this problem, a residual block, with skip-connection, is adopted in the architecture
ConvResBlock and ConvBlockTranspose. See the Figure 4.4 for reference.
The ConvResBlock comprises two branch orders: one for normal features extraction and
the other for skip-connection. Instance Norm, ReLU, Dropout, Convolution with stride
2, and Convolution element-wise are used.
For the ConvBlockTranspose, instead of using convolutions transposed, which could have
a chessboard effect, we use the convolution element-wise, but the upscaling is the Interpo-
lation with factor 2. This architecture is inspired by SAGAN (Self-Attention Generative
Adversarial Networks), Zhang et al., 2019 [220]. Moreover, we employ an attention mech-
anism. Our investigation has led us to Conformers (view § 2.4.6), which we use in the
encoder and decoder architecture. Due to the computational cost, this employment is lim-
ited to two for the encoder and two for the decoder. We normalized the layers’ weights by
using spectral normalization, Miyato et al., 2018 [307], as a regularization technique at
all levels of the architecture, which improves Generator stability and reinforces the Lips-
chitz continuity for the training for the Discriminators (more exploration is the sections
bellow), according to Brock et al., 2019 [185]. Zhang et al., 2019 [220] advocate further
that, “Spectral normalization in the generator can prevent the escalation of parameter
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magnitudes and avoid unusual gradients.”. The formulation of the Special Normalization
according to Miyato et al., 2018 has for expression for a matrix A with ℓ2 norm on A:

σ(A) := max
h:h ̸=0

∥Ah∥2
∥h∥2

= max
∥h∥2≤1

∥Ah∥2 (4.12)

A spectral normalization of the weight matrix W as therefore per expression :

WSN(W) :=
W

W
(4.13)

In addition, to normalize the layers, we perform the normalization of the output, which
is replaced by the Instance Norm, for the advantages detailed in Section § 3.2.3.

(ii) Choice of bottleneck layer
The specific aspect of the AE is the bottleneck; the latent values should condense all
the relevant features, but at the same time, they should be large enough to provide good
reconstruction for the times series. We have tested different 1D-vector sizes of 64, 128, and
256 values. The encoder’s final layer, called “bottleneck”, is crucial because it will project
the feature maps into a 1D flat vector of Gaussian variables. In the original SeismoALICE
formulation, the bottleneck is a 1D CNN layer, which outputs a sequence of feature maps
consisting of multi-variate time histories instead of outputting a 1D flat vector of Gaussian
variables. This preserves the initial signals’ temporal causality but does not represent the
best compression solution. To further reduce the order of the latent manifold, several
other options were tested, including Fourier Neural Operator (FNO)[308, 309, 264] and
dense feed-forward architectures, which represent the standard solution for images. The
FNO was proposed to replace the kernel operation of convolution to operate in Fourier
space [308, 309]. If F is the Fourier transform of a function f : D → Rdv and F−1 it
inverse, then :

(Ff)j(k) =
∫
D

fj(x)e
−2iπ⟨x,k⟩dx, (F−1f)j(x) =

∫
D

fje
2iπ⟨x,k⟩dk (4.14)

for j = 1, · · · , dv, i =
√
−1, the imaginary unit. A kernel is defined by:

(K(a;ϕ)vt) (x) :=
∫
D

κ(x, y, a, a(x), a(y);ϕ)vt(y)dy, ∀x ∈ D (4.15)

The term κϕ is a neural network parameterized by ϕ, κϕ : R2(d+a)→Rdv×dv , ϕ ∈ ΘK. It has
been demonstrated that,

κ(x, y, a, a(x), a(y);ϕ) = κ(x− y;ϕ) (4.16)

The final expression of the Fourier integral operator K has for expression:

(K(ϕ)vt)(x) = F−1(F(κϕ) · F(κϕ))(x) ∀x ∈ D (4.17)

a is function coming from the Banach space of dimension Rda . Our investigation as
leverage that the FNO applying at the last layer of the encoder could help project to a
desired latent distribution space, p(z), illustration of FNO could be found in Figure 4.3.
However. this strategy introduces a trace of correlation and could not provide a compact
representation, and then z ∼ p(z) could not target back the data distribution space,
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Figure 4.3: ©[308], the full architecture of Fourier Neural Operator. "(a) The full architecture
of neural operator: start from input a. 1. Lift to a higher dimension channel space by a neural
network P . 2. Apply four layers of integral operators and activation functions. 3. Project back
to the target dimension by a neural network Q. Output u. (b) Fourier layers: Start from input
v. On top: apply the Fourier transform F ; a linear transform R on the lower Fourier modes
and filters out the higher modes; then apply the inverse Fourier transform F−1. On the bottom:
apply a local linear transform W ."

pdata(x). Therefore, dense layers are used at the end of the encoder and the decoder’s
beginning. More explanation about that choice is criticized in Section 4.1.2. The dense
feed-forward architecture is the most suitable for encoding original time-series data into a
Gaussian vector. This choice was also driven by its efficacy in preserving essential features
during the projection process.

(iii) Architecture variant proposed
After many tests, we found that architecture with Attention Technique, especially Trans-
former or Conformer, is the most appropriate to capture long-range dependency for the
times series, particularly for the broadband signals. A mix of Conformer + UNet does
not significantly improve the quality of the reconstruction, which already has a "good"
quality according to the G.O.F. listed in Table 2.8. The architecture of the generators
with Conformers is presented in Figure 4.4. We use an encoder and a decoder that in-
corporate in this architecture Conformer; the choice of bottleneck layer is the Linear
Layer, among other type of architecture we have experienced (encoder with convolution
bottleneck layer, with FNO bottleneck layer). This makes a deeper analysis of the data
and extracts appropriate features from deeper layers (see Figure 4.4). The Conformer is
efficient in the penultimate layer. Other placements have shown some weird behavior and
the representation of the signal. See in the Table 4.1 and Table 4.2 a description about
the architecture.

(iv) Comparison with previous architecture
Compared to Gatti et al.,2020 [21], our architecture reduces the number of hidden vari-
ables to translate from broadband to physic-based and vice versa. Then, a better un-
derstanding of the interpretability of the latent values is provided. Our architecture can
perform generation through the adequate choice of projection technique to latent space.
The introduction of diverse regularization techniques drastically reduces the number of
loss functions to guarantee the previous assumption while preserving stability and the
Lipschitz continuity. In the previous technique, the Lipschitz was forced through weigh
clipping, which penalized the efficiency of the workflow.
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Layer Opeation Input Size Fonction
Activation Stride Output

ConvBlock I Downsampling [3, 4096] LeakyReLU 2 [16, 2048]
ConvBlock II Downsampling [16, 2048] LeakyReLU 2 [32, 1024]
ConvBlock III Downsampling [32, 1024] LeakyReLU 2 [64, 512]
ConvBlock IV Downsampling [64, 512] LeakyReLU 2 [128,256]
Conformer Attention [128,256] ’– ’– [128,256]
ConvBlock V Downsampling [128,256] LeakyReLU 2 [256,128]
ConvBlock VI Downsampling [256,128] LeakyReLU 2 [512,64]
Conformer Attention [512,64] ’– ’– [512,64]
Reshape ’– [512,64] ’– ’– [32768]
Linear Layer Projection [32768] ’– ’– [256]

Table 4.1: Architecture of the Encoder

Layer Opeation Input Size Fonction
Activation Stride Output

Linear Projection [256] ’– ’– [32768]
Reshape ’– [32768] ’– ’– [512,64]
ConvTransBlock I Upsampling [512,64] LeakyReLU 2 [256, 128]
ConvTransBlock II Upsampling [128, 128] LeakyReLU 2 [64, 256]
Conformer Attention [64,256] LeakyReLU 2 [64, 256]
ConvTransBlock III Downsampling [64, 256] LeakyReLU 2 [32, 1024]
ConvTransBlock IV Attention [32, 1024] ’– ’– [16, 2048]
ConvTransBlock V Downsampling [16, 2048] LeakyReLU 2 [16, 2048]
Conformer Attention [16,2048] LeakyReLU 2 [16,2048]
ConvTransBlock VI Downsampling [16,2048] Tanh ’– [3,4096]

Table 4.2: Architecture of the Decoder for SeismoALICE
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Figure 4.4: Generators with conformer architectures. The ConvResblock is composed of a
residual Block. The ConvTransposeBlock does not use ConvTranspose1d, but the upsampling is
done using interpolate with factor 2. A description of ConvResBlock and ConvTransposeBlock
architecture can be found in section §4.2.
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Discriminators

The formulation of Discriminator posed another significant challenge, particularly due to its
pivotal role in the comprehensive training process. In the complete training, the generators
(encoder and decoder) undergo updates based on the evaluation provided by the discriminator.
So the design of the discriminator should be coherent and efficient, capturing and not destroying
the information, even though the main task in the complete training is to fool the discrimina-
tor [80, 290, 231]. To this end, the original SeismoALICE discriminators were condensed into a
unified architecture with three branches. This occurred for both joint discriminators, for (x, z)
and (y, z′). For the sake of clarity, we described the three branches only for the pair (y, z′), but
the same architecture was adopted for (x, z). The first one, named Dsy, has the task to extract
the relevant signature of the signal y or Gy(zy). We adopted the same architecture of the
encoder to design Dsy. This proposed design was advised by Brock et al., 2019 [185], “As far
as the network configuration is concerned, the discriminator is an exact reflection of the gener-
ator.”. The second branch, Dszb has the task to discriminate between zy and Fy(zy). Dsy and
Dszb can be considered as logits values or intermediate feature maps that are concatenated and
fed into the discriminating branch Dyz(Dsy(y), Dszb(zy)). Dyz is naturally featured by a final
sigmoid activation function, σ(•), that should output a value between 0 and 1 (a probability of
the sample to be true or false). By experience, the BCEWithlogit1(Binary Cross Entropy With
Logits) is numerically more stable than the classic BCE2(Binary Cross Entropy). This same
output is suitable for Hinge Loss, proposed in GAN by [185], which is treated in Section 4.3,
this is our choice. Figure 4.5 depicts the scheme of the unified discriminator architecture.
Therefore, the retained ALI loss has pour expression for the broadband by example:

LALI = Ey∼p(y) [log(σ(Dyz(y, Fy(y)))] + Ez′∼p(z′) [log(1− σ(Dyz(Gy(z
′), z′)))] (4.18)

Additional Information of the architecture can be seen in Table 4.3 and Table 4.4. The archi-
tecture of Dsy because is the same as Encoder Fy (explained above). In addition, to fool the
discriminator easily and foster generator training, we carefully calibrated the noise. Aggarwal
et al.,2018 [135] has demonstrated that “The addition of noise to the input has connections
with penalty-based regularization”. Clamping a white noise n to y, i.e., ŷ = y + n, with values
in the range -0.5 and 0.5. It is noteworthy, to be precise, that y is normalized by default within
-1 and +1. The choice of the value of the clamp is a trade-off, and it might change depending
on the dataset. The clamp reduces the amplitude of the white noise, polluting the original
data y, particularly for the high frequencies. A quick overview of the frequency domain of
synthetic data will showcase that high-frequency data is different from broad-band data. This
pathology was already present in Gatti et al., 2020 [21]. Therefore, we must make it difficult
for the discriminator to penalize high frequency regarding numerical limitations. Therefore,
the introduction of that noise stabilizes the training. Moreover, after a thorough investiga-
tion, the most appropriate discriminator should incorporate the residual block of the neural
network and spectral normalization technique (see Figure 4.5) for better stabilization. Stable
training, defined as opposed to the pathology that GAN may present, corresponds to the fact

1The mathematical expression of cross entropy between two variable x and y is defined by: ℓ(x,y) =
L = {l1, . . . , lN}⊤, ln = −wn [yn · log σ(xn) + (1− yn) · log(1− σ(xn))]. In this formulation we have x =
x1, x2, · · · , xn is the set and y = y1, y2, · · · , yn are the labels, usually y = 1 or 0. σ correspond to the sigmoid.
In the case of machine learning, this corresponds to the fact that this activation is not present in the last
discriminator layer. The numerical stability of this expression has been advocated. The wn is the weight of
importance of the loss

2The expression of BCE is defined by:
ℓ(x, y) = L = {l1, . . . , lN}⊤, ln = −wn [yn · log xn + (1− yn) · log(1− xn)]
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Layer Opeation Input Size Fonction
Activation Stride Output

ResBlockDense I Downsampling [512] LeakyReLU 2 [512]
ResBlockDense II Downsampling [512] LeakyReLU 2 [512]
ResBlockDense III Downsampling [512] LeakyReLU 2 [512]
Linear Layer Projection [512] ’– ’– [1]

Table 4.3: Architecture of the Discriminator Dsyz

Layer Opeation Input Size Fonction
Activation Stride Output

ResBlockDense I Downsampling [256] LeakyReLU 2 [256]
ResBlockDense II Downsampling [256] LeakyReLU 2 [256]
ResBlockDense III Downsampling [256] LeakyReLU 2 [256]
Linear Layer Projection [256] ’– ’– [256]

Table 4.4: Architecture of the Discriminator Dszy

that training over time moves towards Nash equilibrium without deviating significantly from
its objective and without producing undesirable outcomes, Becker et al., 2022 [310]. GAN
issues are detailed in section Section 2.3.3. This is applied to the convolutions and for fully-
connected layers. The last layer converts the features into a scalar, scoring, not probability.
The BCEWithlogit is used for numerical stability instead of classical BCE.

Optimization and Regularization

(i) Optimization loss
The optimization is done through the loss of Focal Frequency and the hyper-spherical
loss. After many tests, we kept the Conformer architecture with a bottleneck dimension
256. The result is not significantly different from the dimension 128, but the size 256 is
tailored for the hybrid mapping, which we will train later. View Figure 4.6. For the sake
of performance, we have trained our loss function with different adversarial objectives,
with HingeLoss (View Equation 4.19) or Least Square Mean Loss (View Equation 4.20)
or Earth Motion Loss (Wasserstein). We found that the result is not significantly different
between BCEWithlogit. The variant of adversarial loss with HingeLoss has an equation:

LD = Ey∼Pdata
[max(0, 1−Dyz(y, Fy(y)))] + Ez∼Pz [max(0, 1 +Dyz(Gy(z)), zy)]

LG = Ey∼Pdata
[Dyz(y, Fy(y))] + Ez∼Pz [−Dyz(Gy(z), zy)]

(4.19)

For Least Square Mean Loss :

LD = Ey∼Pdata

[
(Dyz(y, Fy(y))− 1)2

]
+ Ezy∼Pzy

[(Dyz(Gy(zy), zy))]

LG = Ey∼Pdata

[
(Dyz(y, Fy(y))− 1)2

]
+ Ezy∼Pzy

[
(Dyz(Gy(zy), zy)− 1)2

] (4.20)

The Earth Motion (EM) Loss seems not properly adapted (WGAN and WGAN-GP) for
our case.
The cycle consistency is made explicitly with FFL and HSL :

LCycle(Fy, Gy,y) = FFL(x, Gy(Fy(y))) + HSL(x, Gy(Fy(y))) (4.21)



136 CHAPTER 4. SEISMOALICE
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Figure 4.5: Architecture of the joint discriminator of Dyz. The Design includes a Residual
Block. C = 64, N represent the number of Channels, s represent the strides. The number
of parameters of the discriminator is 10 million parameters. This architecture comprises two
branches, Dsx and Dszy .

(ii) Regularization technique
We tested different weight regularization techniques designed to stabilize the training
(Spectral Norm[307], Weight Orthogonality [311], Weight Norm [312]). “The weight nor-
malization methods have been employed for satisfying Lipschitz continuity while the weight
penalty methods have been introduced for orthogonality of weight matrices or general sta-
bility of the GAN training. All the weight normalization methods have been reported that
they commonly enhance sample generation performance of GANs” [165]. The Spectral
normalization is formulated in Equation 4.13.
Brock formulates the Orthogonal regularization as:

Rβ(W) := β∥W⊤W − I∥2F (4.22)

Formula in which ∥ · ∥F is the Forbinius norm, I the identity matrix. β is a hyper
parameter, commonly choose with 10−4.
The Weight Norm technique is a reparametrization method that decouples the magnitude
of the weight from its directions. Assuming a neural network operation is expressed by :

y = ϕ(w · x+ b)
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(a) FFL for the unitary test of broadband with
different encoder/decoder architectures.

(b) HSL values range between 1.0 and 0. A
lower HSL indicates better reconstruction.

Figure 4.6: General investigation of architectures adapted for time series in Broadband signals.
The comparison of different losses highlights the advantage of using the Conformer architecture
for adversarial training. The HSL can be considered as a metric.

Model Architecture # of param.(M) EG PG
Mutli Head Self Attention 32 2.34± 1.33 6.94± 0.55
Conformer 114 7.06± 0.60 8.60± 0.35
Conformer+Unet 118 6.98± 0.77 8.72± 0.35

Table 4.5: Table of Architecture of Generators for the research of the best adatped model for
reconstruction of data. The Data set contains 128,000 3D signal. 10% is used as the validation
and 10% serves as test.

ϕ is an activation functions , w is the k-dimensional matrix, x a k-dimensional vector of
input. The weight regularization consists of the research of a parameter vector v and a
scalar g, such a way that:

w =
g

∥v∥v (4.23)

The norm of w is independent of v and equals g. Other techniques were listed by Lee
et al.,[165]. As highlighted by Kumar et al., 2019 [231], even though the normalization
technique should improve the training, some weight normalization may work better de-
pending on the data set. In our case, the solution that works is the normalization of the
weight of the layers with Spectral Normalization.

(iii) Mode collapse and Mode Dropping solutions
We train either Early Stopping or CyclicLR to avoid mode collapse. Another common
form of regularisation is early stopping, which stops the gradient descent after a few
iterations when the error on a retained test set increases. Early stopping is a regularizer
because it effectively restricts the parameter space [135]. The CycleLR (cyclical learning
rate), Smith et al., 2017 [313], is a learning scheduler that makes the learning rate
oscillate between two values. This strategy was used for fast convergence and increased
performance as a scheduler over the optimization parameters of the discriminator.

(iv) Training dynamics
The ALICE training is performed using TTUR (Two Time-Scale Update Rule), proposed
by Heusel et al., 2018 [171]. The optimization is done using Adam optimizer. The learning
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rate of the encoder/decoder is both 4 · 10−4, and the learning rate of the discriminators
is 10−4. The data set contains 128,000 3D signals. Finally, the G.O.F serves as a metric.

The training has been made on 4 GPUs A100 with CUDA 11.7.

4.3 Results and discussion
(i) Goodness of Fit

After training on our improved SeismoALICE model, we evaluate the quality of the
reconstruction through GOF metrics (see Section § 2.6), depicted in Figure 4.7, in terms
of envelope score (EG) and phase score (PG). Figure 4.12 presents the solution for the
training of broadband data set using the auto-encoder (Fy, Gy) with the architecture
implementing the Conformer (See Figure 4.4(a)). As shown in Table 4.5, we have proof
that architecture is adapted for cycle consistency. The means of values for EG is 7.06
and PG 8.60. In this light, given that our architecture could support the bottleneck,
we superpose the Adversarial Learning Inference loss to manage the latent distribution.
The GOF is also preserved in Figure 4.4(b). Therefore, the Goodness of Fit is a crucial
criterion for evaluating the performance of a model.

(ii) Cycling with adversarial loss
It is common, in the training of ALICE, to add an adversarial loss on z′ and z to force
the marginal distribution of Gy(y) and Gx(x) to follow Gaussian distribution. This
adversarial loss reads (for y):

lDzz = Ez∼p(z) [lnDzz(zy, zy)] + Ez∼p(z) [ln(1−Dzz(zy, Fy(Gy(zy)))] (4.24)

Our experiment of using the contradictory loss on the marginal distribution failed because
this additional loss does not contribute to the overall convergence to the Nash equilib-
rium. On the contrary, the latter loss can often cause a problem. From experience, the
network learns to cycle over the zy without forcing the zy mapper to look like an element
in the database. We have, therefore, removed it. The contradictory loss on the joint
distribution is sufficient. In addition, cross-entropy with contradictory loss on y may not
work correctly depending on the dataset, as shown in Figure 4.8.

(iii) Unconditional generation from Gaussian noise
The FFL and Hyper Spherical Loss guarantee the reconstruction. This is evident in
Figure 4.9. We can render various realistic seismograms from Gaussian noise, comparable
with the training database, STEAD. The architecture captures the right casual order
between P-Wave and S-Wave arrival times and the overall envelope with exponential
decay toward the “coda” of the signal.

(iv) Comparative Analysis with Existing Methods In light of Figure 4.7, the training loss
curve for ALICE using the BCEWithLogit decreases consistently within the first 1200
training epochs, thanks to the improved generator architectures. The TTUR dynamics
make the training curve smooth. The theoretical optimal solution of the loss of the
discriminator is LD = 2 log(1

2
) ≈ 1.386 and this theoretical value is achieved using the

adversarial loss of the generator, LG.
Additionally, we have tested the training with HingeLoss; see the definition of this loss for
GAN in Equation 4.19. As an adversarial loss, the performance that we achieve is similar.
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(a) G.O.F for AE. In the case of this training,
we only use the encoder, Fy, and the decoder,
Gy. We have used FFL and HSL to force re-
construction, which corresponds to Cycle con-
sistency loss. The optimisation is done accord-
ing to Equation 4.21.

(b) G.O.F for ALICE. The loss includes
the adversarial loss of ALI, LALI (Equa-
tion 4.18) and the explicit cycle consistency,
Lcycle (Equation 4.21).

(c) (d) (e)

Figure 4.7: We present the broadband reconstruction, Gy(Fy(y)) for AE in (a) and (b), and
for ALICE in (c), (d), (e), representing different examples of reconstruction from adversar-
ial training. LALI = Ey∼p(y) [log(σ(Dyz(y, Fy(y)))] + Ez′∼p(z′) [log(1− σ(Dyz(Gy(z

′), z′)))] and
LCycle = FFL(y, Gy(Fy(y))) + HSL(y, Gy(Fy(y))). In the frequency domain, we observe low-
frequency values that are not exactly close to the original values. Additionally, for low frequen-
cies, we do not observe the exponential decrease for the high-frequency values greater than 20
Hz. This is a problematic observation for synthetic data that still needs to be resolved.
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Mutual Information Neural Estimation

(a) ALI (b) ALICE (l2) (c) ALICE (A) (d) ALI+MINE Figure 6. Reconstructions and model sam-
ples from adversarially learned inference
(ALI) and variations intended to increase
improve reconstructions. Shown left to
right are the baseline (ALI), ALICE with
the l2 loss to minimize the reconstruction
error, ALICE with an adversarial loss, and
ALI+MINE. Top to bottom are the recon-
structions and samples from the priors. AL-
ICE with the adversarial loss has the best
reconstruction, though at the expense of
poor sample quality, where as ALI+MINE
captures all the modes of the data in sample
space.

can be understood as cyclical coordinate ascent in function
spaces. While IB is successful and popular in a discrete
setting, its application to the continuous setting was stifled
by the intractability of the continuous mutual information.
Nonetheless, IB was applied in the case of jointly Gaussian
random variables in (Chechik et al., 2005).

In order to overcome the intractability of I(X; Z) in
the continuous setting, Alemi et al. (2016); Kolchinsky
et al. (2017); Chalk et al. (2016) exploit the variational
bound of Barber & Agakov (2003) to approximate the
conditional entropy in I(X; Z). These approaches differ
only on their treatment of the marginal distribution of
the bottleneck variable: Alemi et al. (2016) assumes a
standard multivariate normal marginal distribution, Chalk
et al. (2016) uses a Student-t distribution, and Kolchinsky
et al. (2017) uses non-parametric estimators. Due to their
reliance on a variational approximation, these methods
require a tractable density for the approximate posterior,
while MINE does not.
Experiment: Permutation-invariant MNIST classifica-
tion Here, we demonstrate an implementation of the IB
objective on permutation invariant MNIST using MINE. We
compare to the Deep Variational Bottleneck (DVB, Alemi
et al., 2016) and use the same empirical setup. As the DVB
relies on a variational bound on the conditional entropy, it
therefore requires a tractable density. Alemi et al. (2016)
opts for a conditional Gaussian encoder z = µ(x) + σ � �,
where � ∼ N (0, I). As MINE does not require a tractable
density, we consider three type of encoders: (i) a Gaussian
encoder as in Alemi et al. (2016); (ii) an additive noise
encoder, z = enc(x + σ� �); and (iii) a propagated noise
encoder, z = enc([x, �]). Our results can be seen in Tbl. 3,
and this shows MINE as being superior in these settings.

6. Conclusion
We proposed a mutual information estimator, which we
called the mutual information neural estimator (MINE), that
is scalable in dimension and sample-size. We demonstrated

Model Misclass. rate(%)

Baseline 1.38%
Dropout 1.34%

Confidence penalty 1.36%
Label Smoothing 1.40%

DVB 1.13%
DVB + Additive noise 1.06%

MINE(Gaussian) (ours) 1.11%
MINE(Propagated) (ours) 1.10%

MINE(Additive) (ours) 1.01%

Table 3. Permutation Invariant MNIST misclassification rate using
Alemi et al. (2016) experimental setup for regularization by con-
fidence penalty (Pereyra et al., 2017), label smoothing (Pereyra
et al., 2017), Deep Variational Bottleneck(DVB) (Alemi et al.,
2016) and MINE. The misclassification rate is averaged over ten
runs. In order to control for the regularizing impact of the additive
Gaussian noise in the additive conditional, we also report the re-
sults for DVB with additional additive Gaussian noise at the input.
All non-MINE results are taken from Alemi et al. (2016).

the efficiency of this estimator by applying it in a num-
ber of settings. First, a term of mutual information can
be introduced alleviate mode-dropping issue in generative
adversarial networks (GANs, Goodfellow et al., 2014). Mu-
tual information can also be used to improve inference and
reconstructions in adversarially-learned inference (ALI, Du-
moulin et al., 2016). Finally, we showed that our estimator
allows for tractable application of Information bottleneck
methods (Tishby et al., 2000) in a continuous setting.
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Figure 4.8: Limitation of ALICE with adversarial loss. The results show that the adversarial
loss could not perform well with two different data sets, depending on the data set. The
Adversarial Loss for cycle consistency could diverge the reconstruction of the signal. The ℓ2

loss performs well for reconstruction and mapping. Source [305]

The theoretical solution for the loss of the discriminator is LD ≈ 2 and the adversarial
loss for the generator is LG ≈ 0. See Figure A.1 in Annexes for more detail.

(v) Bottleneck
The capability of the broadband architecture lies in its proficiency to generate a broadband
signal Gy(Fy(x)) derived from the encoding of a filtered signal x. This quality is improved
by introducing the Attention Technique described in subsection 2.4.3 [119]. However, it
should be noted that this does not assert that the network can precisely reconstruct the
original broadband signal from which the filtered signal originates. However, according
to Belghazi et al., 2021 [305], the reconstruction error R is bounded according to the
following expression: If q(x) denotes the marginal data distribution, the reconstruction
error is formulated by :

R = Ex∼q(x)Ez∼q(z|x) [− log(p(x|z)] (4.25)

The demonstration proposed in [305] has given as results :

R ≤ DKL(q(y, z)∥p(y, z))− Iq(y, z) +Hq(z) (4.26)

In the Equation 4.26, the terms DKL is the Kullback-Leibler divergence, Iq is the mutual
information, Hq is the Shannon’s differential entropy. The minimization of the divergence
DKL through the adversarial loss is possible by trying to reduce the distances between
pairs (y, ẑ) and (ŷ, z). Mutual information, Iq, quantifies the amount of information
shared between variables (dependence between the two variables y and z), and entropy,
Hq, characterizes the uncertainty in a random variable distributed according to probability
density q. Despite being computationally intractable, the entropy is an unknown constant
value.
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(a) (b) (c)

(d) (e) (f)

Figure 4.9: We present the unconditional generation of broadband data from zy ∼ N (0, I) :
Gy(z). The purpose of presenting different values is to visually represent the range of signals
generated by our model. This exploration contributes to a comprehensive understanding of the
model’s performance and capacity to capture variability in broadband signal generation.
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(a) Adversarial solution for ALI (b) Hyper Spherical Loss (HSL)

(c) Focal Frequency Loss (FFL) (d) Kolmogorov-Smirnov Test

Figure 4.10: Adversarial Solution Training. In (a) the Adversarial loss, ALI is represented,
converging towards the optimal solution is − log(4) ≈ 1.386 the loss remains close to the
solution due to TTUR dynamic training. In (b), we present the HSL of reconstruction quality;
the optimal solution is getting close to 0, which is the expected theoretical result. In (c), the
FFL loss is shown. We found a small overfitting of the loss; the theoretical optimal solution
is 0. In (d), We present the Kolmogorov-Smirnov test to evaluate the quality of the targeted
distribution, Fy(y) that should be Gaussian. The ordinate value is the probability of the
distribution being a Gaussian distribution.
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(vi) Robustness
Finally, the architecture under development demonstrates an ability to identify patterns
necessary to render broadband data (refer to Figure 4.11). The nuanced distinctions in
the tweaked signal representation showcase the network’s capacity to capture essential
features required for broadband signal generation.

(a) (b) (c)

Figure 4.11: Generation of broadband signal, Gy(Fy(x)), in red from filtered signal in blue, y.

4.4 Super-resolved physics-based simulations

A physics-based numerical simulation renders low-frequency signals with neither explicit nor
unique broad-band counterpart: the super-resolution problem is ill-posed by definition. How-
ever, in the framework of seismic risk assessment, a probabilistic approach is adopted, for
which plausible realizations of seismic scenarios are taken into account to consider the median
prediction and some uncertainty margins drawn around it. This is the standard way modern
earthquake engineering deals with epistemic and aleatory uncertainties, naturally present in
recorded seismograms. However, few empirical observations are available for each earthquake
occurrence and at each site: earthquake catalogs have been consistently recorded since the sev-
enties when analogical and digital seismographs started to be massively deployed worldwide.
Therefore, statistical estimators drawn from recorded data encompass too high uncertainty.
This is the case of Ground Motion Prediction Equations (GMPEs), i.e., analytical ground mo-
tion models under equations predicting an earthquake intensity measure based on coefficients
identified through non-linear regression on proxies and earthquake characteristics.
On the other hand, physics-based numerical simulations are deterministic realizations of site-
specific seismological and geological conditions. Any physics-based simulation is associated
with considerable computational burden, posing challenges in constructing statistically consis-
tent estimators, such as routinely done with empirical observations. Therefore, the strategy
presented hereafter aims to enhance the physics-based deterministic realizations with the nat-
ural broad-band uncertainty of natural records.
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4.4.1 Model Architecture

The auto-encoder architecture for physics-based simulations is virtually identical to broadband
signals. The only difference is the size of the latent space, which is reduced from 256 to 128.
The physics-based signals are less complex than broadband signals, so we estimated that half
of the parameters should suffice. We call Fx and Gx the physics-based simulations encoder and
decoder, respectively. In addition, the encoder architecture mirrors the decoder architecture
and closely resembles that of the broadband solution, see Figure 4.4, where we have examined
different parts of it. We conserve the Conformer, the residual block, and how we pass from
the data distribution space to the latent distributions. Concerning the discriminator, the only
change is adapting the architecture for the latent space. Our style includes two branches as
illustrated in Figure 4.5, let us called those branches Dsx and Dszx . Dsx extracts relevant
features of x, and the other one, Dszx , extracts information from the latent space, zx. After the
two outputs are concatenated for a final extraction, the last value provides values that will be
fed to the BCEWithLogit loss. Figure 4.5 illustrates the design of the architectures. We call the
discriminator Dxz, the pair of joint distribution analyzed are : (x, Fxx) and (Gx(zx), zx). This
configuration enables the discriminator to effectively assess the relationship between the input
x and its corresponding latent space representation zx in the context of our joint optimization
objective.

4.4.2 Experimental Design

The signals in the database are normalized by the broadband signal’s corresponding peak
ground acceleration (PGA). They are then subjected to a 1 Hz filtering process. However,
there is a significant problem with this technique. The amplitude of the physics-based signal
is reduced to values below 0.01. These low amplitudes could hinder the convergence of the
training process.
We implement a re-scaling strategy on the physics-based data to surmount this challenge before
commencing the training phase. By performing data re-scaling, we harmonize the amplitudes
to a more suitable range, thus facilitating improved convergence during training. Once trained
with re-scaled physics-based data, a subsequent training phase follows, where we undertake
further training using the non-scaled signals, culminating in finalizing the entire process. In
our experimentation, we evaluate the performance of our architecture using both scaled and un-
scaled physics-based data during the neural network training process. Specifically, we conduct
testing before applying our auto-encoder and subsequently after by incorporating an adversarial
loss. Before applying the auto-encoder, we assess the neural network’s ability to process scaled
and unscaled physics-based data during the testing phase. This step allows us to gauge the
network’s initial performance and ascertain differences in response to the two data types.

4.4.3 Results

(i) Comparison with the previous strategy
Compared to Gatti et al., 2020 [21], who solely focused on the reconstruction of the
broad-band signal based on the physics-based enhancement through SeismoALICE, we
also focused hereafter on the unconditional generation of realistic broadband signals,
using only the decoder, fed with Gaussian noise and precisely tailored to match the
characteristic of the physics-based simulations data set.

(ii) Data augmentation
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Moreover, we improve the training process by augmenting the size of the dataset and by
incorporating an adversarial loss. By leveraging the adversarial loss, we guide the Gener-
ators toward generating output that exhibits increased robustness and closer adherence to
the underlying data distribution. This process helps to improve the overall generalization
and robustness of the model.

(iii) Performance comparison with G.O.F
The performance of the model is evaluated through the G.O.F. produced. These are
shown in Figure 4.12. Figure 4.13 illustrates the quality of the reconstruction. Different
accelerograms represent how the network could compress the information on a vector of
128 components. In the frequency domain, we note that the neural network can introduce
artificial noise for frequencies above 10 Hz, which we should not observe. This anomaly
persists despite the various advances and architectural tests carried out to date.

(a) List of Goodness of fit for the Autoencoder
of the filtered signal for the scaled physic-
based signal.

(b) Goodness of fit for the signal reconstructed
after being trained with adversarial loss.

Figure 4.12: Goodness of Fit for the filtered signal. The subset of data comprehends 30000
signals. We could see how the adversarial loss significantly improves signal reconstruction
quality.

(iv) Generation from Gaussian and Latent space Analysis
Figure 4.13 presents examples of different outputs from Gaussian noise, zx. The outputs
produced serve as representative samples of the database. To better understand the
arrangement of the data, we group the Fx(x) values obtained from the test set and use
PCA, t-SNE and uMap in 2D and 3D for a better observation of the main directions. No
clustering was observed. See Figure 4.15. Each point represents a signal. The fact that
using different methods leads to the same aspect of the data’s reduced dimension clearly
expresses the representation’s compacity. In addition to that the Normal distribution
also highlights the independence of each drawing. These aspects will be strongly used in
Section §4.6.1 to transfer a data type to another.
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(a) (b) (c)

Figure 4.13: We present the result for reconstructing some filtered signal.

4.5 Possible solution: shared latent space

4.5.1 Motivation

There is an interdependence between physics-based simulation signals and broadband signals.
We want to exchange information between them through latent space. We propose that the two
data types share the same latent space to achieve this. We assume there will be two distinct
representations: one for low-frequency components, i.e., signals whose frequency content does
not exceed 1Hz, and another space for signals with a higher frequency content, as observed in
the frequency domain.

4.5.2 Methodology

This study builds on the shared latent space and contributes to viewing how the encoder could
interpret the data coming from different sources in the same latent space. Much of the recent

(a) (b) (c)

Figure 4.14: We present the result for the generation from the Gaussian distributions. Gx(x)
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(a) 2D PCA (b) 2D t-SNE (c) 2D uMAP

(d) 3D PCA (e) 3D t-SNE (f) 3D uMap

Figure 4.15: We present the PCA, the t-SNE and the uMAP for the the Gaussian distributions
of the broadband signal. Fy(x)
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literature has overlooked this for time-histories. We encode the physics-based data and use the
decoder to see if this could reproduce the corresponding broadband and vice-versa, according
to the following scheme:

x −−→
Fxy

zx −→
Gy

ŷ (4.27)

y −−→
Fxy

zy −→
Gx

x̂ (4.28)

The hybrid approach is summarized in Figure 4.16. We introduce a new discriminator, Dxy,
to force the hybrid generation to match the wanted values. This latter will have the task to
distinguish between the pair of (x, ŷ) and (x̂,y). So the cost function reads:

Lxy
Hybrid = E[logDxy(x, ŷ)] + E[log(1−Dxy(x̂,y))] (4.29)

Ly
ALI = E[logDyz(y, Fxy(y)] + E[log(1−Dxz(Gy(zy), zy)]

Lx
ALI = E[logDxz(x, Fxy(x)] + E[log(1−Dxz(Gx(zx), zx)]

L = Lx
ALI + Ly

ALI + Lxy
Hybrid + Lx

rec + Ly
rec + Lx

rechyb + Ly
rechyb

(4.30)

In the previous expression, the different loss functions can be further unravelled as follows:
Lx

rechyb = FFL(x, Gx(Fxy(y)) + HSL(x, Gx(Fxy(y))

Ly
rechyb = FFL(y, Gy(Fxy(x)) + HSL(y,Gy(Fxy(x))

(4.31)

The development roadmap followed several subsequent steps:
(I) Reconstruction of recorded ground motion y as Gy(Fxy(y)) (Figure 4.20)

(II) Reconstruction of physics-based simulation x as Gx(Fxy(x) (Figure 4.20)

(III) Hybrid transformation from physics-based simulation to recorded ground motion via ŷ =
Gy(Fxy(x)) (Figure 4.23)

(IV) Hybrid transformation form recorded ground motion to physics-based simulation via x̂ =
Gx(Fxy(y)) (Figure 4.24)

(V) Unconditional generation of recorded ground motion Gy(zy) (Figure 4.25)

(VI) Unconditional generation of physics-based simulation Gx(zx)(Figure 4.26)

4.5.3 Phase Alignment

In Figure 4.18, we notice that the previous technique alters the natural alignment of S-wave and
P-wave in the hybrid data. We use a neural network designed for phase picking to force this
aspect into the generative process. This latter serves as further constraint, added as ℓ2 penalty
loss. The pre-trained EQTransformer conceived by Mousavi et al., 2020 [46] was adopted to
this end. The architecture is designed for the signal length of 6000 time steps. Since signals of
4096 time-steps feature our dataset, the latter were zero-padded. The extra penalty loss reads:

LEQT = ∥P − EQP (ŷ)∥2 + ∥S − EQS(ŷ)∥2 (4.32)

where P and S are the real P- and S-wave arrival times of the real signal, y, whereas EQP

and EQS are the corresponding predictions obtained with EQTransformer. A penalty factor
λEQ is adopted. Adding this penalty loss corrects the misalignment of P and S-waves of hybrid
generated data from physics-based inputs x. The loss of the phase alignment could be observed
in Figure 4.21.
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Figure 4.16: Sum up of the architecture of the shared latent space. The hybrid representation
is obtained as Gy(Fxy(x)).Even though we have duplicated the encoder on the diagram, it is
the same encoder.
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Transformers

Convolution 
Down-Sampling

Convolution 
Down-Sampling

Convolution 
Down-Sampling

Down-sampling

Figure 4.17: EQTransformer architecture by Mousavi was conceived to detect Noise, P-wave,
and S-wave arrival. Its output (Noise, P position, and S position) is used to help the output
stay close to the targeted ground motion reconstructions of the data. Source [51]

Figure 4.18: Illustration of non-alignment of phase for a seismogram. We solve this issue with
a loss performed through the EQTransformers (Equation 4.32).

4.5.4 Total training Loss

The holistic training process integrates three key components: the adversarial loss, the recon-
struction loss, and the EQTransformer loss, serving as features extractor. Each component
contributes to the overall training loss; specific weighting parameters regulate their revealed
importance. In our case we use as parameters λadv = 1, λrec = 10 and λEQ = 0.1. These values
are a trade-off that stabilizes the influence of the different parts of the whole training process.
The evolution of the losses and metrics can be seen in Figure 4.21. We comprehensively under-
stand how each component contributes by visualizing the entire spectrum of losses and metrics.
Because all the elements have been separately studied before being combined, we can assess
that each could not be removed without endangering the stability of the training process.

L = λadv(Lx
ALI + Ly

Hybrid + Lxy
ALI)

+ λrec(Lx
rec + Ly

rec + Lx
rechyb + Ly

rechyb)

+ λEQLEQ

(4.33)



4.5. POSSIBLE SOLUTION: SHARED LATENT SPACE 151

4.5.5 Unique encoder and new joint discriminators design

A unified solution has limits, even when adding the EQTransformer to condition the arrival
times better. To further improve the super-resolution mapping, the encoders Fy, Fx were
merged into a unique encoder with two branches Fxy, whereas the two decoders (Gy, Gx) were
kept apart. This merger enables the encoder to map both x and y into a Gaussian manifold of
two separate supplementary ones.
We conserve the architecture discriminators Dxz, Dyz, and we introduce a new discriminator
Dxy. The particularity of Dxy is now the fact that it shares weights with Dyz and Dxz dis-
criminator. The illustration of the Incorporated part of the discriminator of Dxz and Dyz is
presented in Figure 4.19. The Equation modeling is presented below:

Dxy(x,y) = Dxy(Dsx(x), Dsy(x)) (4.34)

We do not recreate those discriminator branches from scratch, but we reuse them to complete
the discriminator Dxy. In this sense, all the discriminators are aware of the improvement in
communicating with the encoder and the generators by introducing complexity. Also, reusing
the same part to form Dxy stabilizes the training of the generators and reduces the memory
placed in the GPU, allowing faster training. To focus on discriminating hybrid mappings in
the unified domain, we use Equation 4.29.

ConvBlock(N=C, s=(1,2))

ConvBlock(N=2C, s=
(1,2))

ConvBlock(N=4C, s=
(1,2))

Conformer(N=4C)

ConvBlock(N=4C, s=
(1,2))

ConvBlock(N=8C, s=
(1,2))

ConvBlock(N=16C, s=
(1,2))

Conformer(N=16C)

Reshape(-1,16CxC)

Linear

ConvBlock(N=C, s=(1,2))

ConvBlock(N=2C, s=
(1,2))

ConvBlock(N=4C, s=
(1,2))

Conformer(N=4C)

ConvBlock(N=4C, s=
(1,2))

ConvBlock(N=8C, s=
(1,2))

ConvBlock(N=16C, s=
(1,2))

Conformer(N=16C)

Reshape(-1,16CxC)

Linear

Linear

ResBlockDense(N=Z)

ResBlockDense(N=Z)

Concatenation

Figure 4.19: We present the architecture of the joint discriminator over the pair (x, ŷ) and
(x̂,y). We do not recreate, Dsy and Dsx respectively incorporated on the design architecture
of Dyz and Dxz. These weights are directly used in the Dxy architecture. In this sense, the
diverse architecture also gives a view of the hybrid signal and the original one.
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4.5.6 Experiments

(i) Case Application for Phase Alignment
The training of the Model without the EQTransformers is illustrated in Figure 4.18. Then,
we used the abilities of the EQTransformers. Initially, the training of EQTransformer
model was done under Cross Entropy loss, but for our ALICE training, this was not
efficient. Subsequently, a switch to ℓ2 loss was made, offering a more tailored solution for
our intended phase picking alignment. The coefficient chosen also plays a crucial role in
stabilizing the training. Following experimentation, we established that among 10, 1, 0.5,
and 0.1, 0.1 strikes a balance hybrid generation acceptable.

(ii) Hyper Parameter Tuning
Finally, as a hyperparameter, we conserve a learning rate of 4 × 10−4 for the generators
(encoder and decoder) and a learning rate of 1 × 10−4 for the discriminators. As an
optimizer, we use Adam.

4.5.7 Results

(i) Performance evaluation with G.O.F
Our preliminary investigation was conducted to ascertain the fulfillment of our objectives
outlined in the methodology (Section 4.5.2). Network performance can be evaluated us-
ing GOFs. Figure 4.20, gather all the results for EG and PG to assess the quality of
the reconstruction of the physics-based simulations signals, Gx(Fxy(x)), the broadband
signals, Gy(Fxy(y)), and the hybrid broadband signals which come from the seismic sig-
nals, Gy(Fxy(x)). Here, Objectives I, II, and III are satisfied. Compared to Pix2Pix,

Figure 4.20: List of G.O.F for ALICE with shared latent space.
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Figure 4.20 shows a lower reconstruction metric due to the lack of skip connections. Nev-
ertheless, Pix2Pix is highly sensitive to noise and provides no robustness when we change
the data type, drastically reducing its performance. In a sense, pix2pix learns to memorize
the filter. However, the choice to ease unconditional generation from the latent space has
some advantages. Those results highlight the feasibility of diverse cycling. We successful
encode and decode both physics-based simulations (x Fxy→ zx

Gx→ x̃) and recorded data
(y Fxy→ zy

Gy→ ỹ). The unconditional generation process is also addressed, allowing us to
generate broadband and filtered data from multivariate normal variables z.

(ii) Unconditional Generation
Figure 4.25 and Figure 4.26 is the proof that the objectives V and VI of Section § 4.5.2
are satisfied. These figures showcase the quality of the generated data from the Gaussian
noise, proving that our strategy has effectively mitigated the mode collapse. The diversity
and realism of these generated samples demonstrate the model’s ability to learn and
represent the diverse patterns and characteristics of the original data distributions by the
absence of repeated patterns.

(iii) Latent Space Interpretability
An interesting aspect resides in how the encoded data are structured. t-SNE and uMap
plots in Figure 4.22 clearly shows two clusters, i.e. two distinct representations for x and
y respectively.

(iv) Conditional Reconstruction
Particular attention was devoted to conditional generation, where we observed the syn-
thesis of synthetic data closely resembling the targeted broadband signal y, based on
the encoding of the filtered version x ( Figure 4.23) and also for the reverse path (Fig-
ure 4.24). This multifaceted analysis provides a robust understanding of the capabilities
and performance of our proposed methodology in the context of data representation and
synthesis. The Objectives III and IV of Section § 4.5.2 are satisfied.

4.5.8 Limitations

(i) Assessing Degradation Despite Advances in Broadband and Filtered Solutions
Despite the advancements made by various iterations, in our approach, we observed a
degradation in the quality of reconstruction when compared to the solution presented
in Sections § 4.2 and § 4.4. We have experienced robust architecture, but even after
parameter regularization, the decline in the reconstruction quality persists.

(ii) Artifact aspect
Furthermore, we noticed spurious artifacts in the generated samples. A detailed obser-
vation has revealed that the training of ALICE introduces higher frequency irrelevant
amplitude, deviating from the intended values. This limitation is not problematic for our
exploration task but proves that the generated signals are synthetic. A highly efficient dis-
criminator by exploration could easily interpret and distinguish real from fake. Without
regularization parameters, accomplishing the training would be practically impossible.

(iii) Comparison with Pix2Pix
Like Pix2Pix, our shared latent space enables broadband signal generation from the fil-
tered data. Although the translation is feasible and provides an improved understanding
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(a) Adversarial loss for the training of ALI. We present both the discriminator loss and the generator
loss.

(b) Loss for reconstruction. We present the FFL and HSL for the reconstruction of x, y, and x −→ y.

(c) Presentation of the Kolmogorov Test and for the phase picking with EQTransformer. The training
takes 24h on 4 GPU A100, CUDA 11.7

Figure 4.21: Different losses for training ALICE unified strategy and shared latent space values.
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(a) (b)

Figure 4.22: We present the result for the encoded representation of broadband and filtered
signal t-SNE and uMap. Fxy(x) (in green) and Fyx(y) (in yellow). This is the proof of our
previous assumption in Section § 4.5.2.

(a) (b) (c)

(d) (e) (f)

Figure 4.23: We present the result for the Hybrid generation broadband signal from the filtered
signals: Gy(Fxy(x)). This sis the proof of the objective III of Section § 4.5.2

of the representation of latent information, and even though the translation is possible
on both sides, one-to-many mapping is not possible. This limitation is acknowledged,
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(a) (b) (c)

(d) (e) (f)

Figure 4.24: We present the result for the Hybrid generation broadband signal from the filtered
signals: Gx(Fxy(y)). This is the proof of the objective IV of the Section § 4.5.2.

(a) (b) (c)

Figure 4.25: We present the result for Gy(zy). This is the proof of the objective V in the Section
§ 4.5.2

and the forthcoming Section 4.6 will address this challenge by introducing the factorized
latent space, thus overcoming the current bottleneck and offering improved flexibility in
handling complex civil engineering scenarios.
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(a) (b) (c)

Figure 4.26: We present the result for Gx(zx). This is the proof of the objective VI in the
Section § 4.5.2.

4.6 Latent Space factorization
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Figure 4.27: Inference for factorized latent space values. Hybrid generation with one-to-many
mapping.

In our effort to refine the latent space representation, we acknowledge that the informa-
tion presented in the Physics-Based data (or filtered data) is also inherently embedded in the
recorded data. Our goal is to develop the representation of the latent that facilitates effective
partitioning of the information. In light of what has been presented in the previous section,
our methodology provides an explainable clustering of the latent representation. Based on this
aspect, we intend to go beyond these limitations and condition the generation to perform a
one-to-many mapping: one x and multiple y share the same portion of the spectrum corre-
sponding to x.
Rather than force one latent space per type of data (x or y), we introduce two key components:
a common latent space and a specific latent space operator. The common latent space, denoted
as zxy or zyx, whether it is coming from the input type x or the input of y, is designed to
encode the [0-1] Hz portion of the signal Fourier spectrum. In contrast, the specific latent part
denoted zxx or zyy respectively, is tailored to capture the portion of the spectrum that is not



158 CHAPTER 4. SEISMOALICE

shared by x and y. This strategic partitioning is intended to ensure that the encoding of the
physics-based signal zxx becomes useless for hybrid generation. The zyy component, on the
contrary, specializes in the encoding of the peculiar features of y, not shared with x. Simulta-
neously, the recorded and physics-based signals share the same common features (the 0-1 Hz
band) encoded into zxy = zyx (see Figure 4.27).

4.6.1 Methodology

Our approach’s motivation is to enhance the versatility of our latent space representation.
Therefore, we have introduced this factorization of the latent space, allowing for a more nuanced
and expanded one-to-many mapping. In the Equation 4.36 and Equation 4.35, we expose how
we intend to achieve our goal. View in Figure 4.28 how we proceed to reconstruct Broadband
and Physics-Based Simulation while considering the latent representations of each part of the
data.

x −−→
Fxy

zx = (Fxy(x)
xy, Fxy(x)

xx) −−−→
trunc

ẑxy −→
Gx

x̃ (4.35)

y −−→
Fxy

zy = (Fxy(y)
xy, Fxy(y)

yy) −→
cat

ẑy −→
Gy

ỹ (4.36)

In this Equation, the symbol cat is for the concatenation of the two components of the latent
space. The symbol trunc refers to extracting the standard part we extract for the complete
latent space. This refers to a sub-vector. At the end of the training, the generators should
consider the value of the latent space from x and the Gaussian noise and then transform it
into a signal from the same database. Suppose the training is relevant by only replacing the
common part with Gaussian noise and replacing the specific part with. In that case, the decoder
should understand this is a simulated signal whose frequency is between [0 -1 Hz]. The specific
part should give complementary information, such as a signal for which the frequency field is
between [1 - 30] Hz.

Fxy(x) = (zxy, zxx)
Fxy(y) = (zyx, zyy)

(4.37)

As shown in Equation 4.35, we have to pay attention to zxy to train the adversarial discriminator
for physics-based simulations. The following equation is the expression of the loss :

Lx
ALI = E[logDxz(x, Fxy(x)

xy] + E[log(1−Dxz(Gx(zx), zx)] (4.38)

For the broadband signal, We consider the complete latent space with the following loss:
Ly

ALI = E[logDyz(y, cat(Fxy(x)
xx, Fxy(y)

yy)] + E[log(1−Dxz(Gy(zd), zd)] (4.39)

For the hybrid discrimination, we choose using a loss that observes the pair of (x, ŷ) and the
pair (x̂,y) as we have done in the previous strategy. The expression of x̂ and ŷ is express as
bellow :

x −−→
Fxy

cat(zxx,N (0, I)) −→
Gy

ŷ (4.40)

y −−→
Fxy

zd −−−−→
troncat

zxx −→
Gx

x̂ (4.41)

Then, the hybrid adversarial loss is presented before :
Lxy

Hybrid = E[logDxy(x, ŷ)] + E[log(1−Dxy(x̂,y))] (4.42)

Therefore, we want to satisfied :
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Figure 4.28: Inference of Broadband and Physic-Based Simulation. We illustrated how the
latent part is split into two parts. The zxx is not used for the reconstruction of physics-based
simulations, while the whole latent values are used for Broadband Signal (zyx and zyy). The
whole part of the latent follows a distribution N (0, I).
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(I) Reconstruction of ground motion, Gy(F
yx
xy (y), F

yy
xy (y));

(II) Reconstruction of physic based simulation, Gx(F
xy
xy (x));

(III) Force the coherence of common part, F xy
xy (x) = zxy ∼ F xy

xy (y) = zyx;

(IV) Force each part to follow Gaussian Distributions

(V) Generation of Gy(zy);

(VI) Generation of Gx(zx);

(VII) Generation of many hybrid output Gy(x,N (0, I))

(VIII) Force the phase alignments for generation one to many

4.6.2 Total loss

By superposition of those losses, we finally obtained :

L = λadv

(
Lx

ALI + Ly
ALI + Lxy

Hybrid

)
+ λc(Lx

rec + Ly
rec + Lx

rechyb) + λEQLEQT

(4.43)

In all our experiments we set λadv = 1, λc = 10 and λEQ = 0.2

4.6.3 Experiments

(i) Splitting the latent space
We have observed different effects of the latent space. One of the significant issues when
concatenating the two different vectors of latent space is that the neural network only uses
one latent space and focuses on the interpretability of only one vector. We have observed
that this is the natural behavior of the neural network. The reason behind this behavior
is that the same encoder does not constraint the zxx, while for the ground motion pass
through zyy is essential for its reconstruction and variability. In previous investigations,
we have try reduce to zero the specific part of the physics-based simulations :

∥F xx
xy (x)∥22 = ∥zxx∥22 (4.44)

The nullification of the specific part, zxx, also affects the behavior of the specific part
of the broadband, zyy. Then, a drastic diminishing of the latent dimension to force the
rearrangement of the latent space was not efficient either.

(ii) Injection of the specific latent distribution
The AdaIN equation, initially conceived for style transfer, has proven practical for ac-
commodating one-to-many output scenarios. This strategic integration “aligns the mean
and variance of the content features with those of the style features.". Particularly, the
specific component of the latent space, intended for capturing high-frequency informa-
tion, is propagated throughout all subsequent layers during the up-sampling process via
Adaptive Instance Normalization (AdaIN).

AdaIN(c, s) = σ(s)

(
c− µ(c)

σ(c)

)
+ µ(s) (4.45)
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The formula in which c is the content, s the style input σ(s) and µ(s) are respectively
its standard deviation and mean. We have tried to inject zyy as a style when keeping
zxy and zyx as common part. However, if this strategy is plausible for managing one-to-
many mapping, this performance significantly affects the reconstructions. This tentative
approach has not been adapted to our objectives.

(iii) Variability of the representations
To improve reconstruction quality and output variability, we investigated decoder config-
urations. We tested the classic Conformer decoder and variants with AdaIN and U-Net
(Conformer+AdaIN, Conformer+AdaIN+UNet). These variations aimed to observe how
specific aspects are passed to the generator (Gy) and interpreted.

(iv) Ablation We have removed the explicit cycle in the hybrid loss (View Equation 4.46).

Lyx
hybrid = FFL(y, Gy(F

xx
xy (x), F

yy
xy (y))) + HSL(y, Gy(F

xx
xy (x), F

yy
xy (y))) (4.46)

This ablation aims to test the validity of this loss for training. However, our tests reveal
that the performance of the hybrid mapping is not affected, expressing the robustness of
our architecture.

4.6.4 Results

(i) Comparison with Previous method
This novel architecture surpasses this limitation of the previous strategy constraint in
the one-to-one mapping. Such architecture could map one-to-many, as illustrated in Fig-
ure 4.29.

Moreover, its architecture validates our objectives’ specific criteria (reconstructions, Gaus-
sian Generations, in the Section § 4.6.1). Objectives I, II, IV, V, VI, and VII are considered
satisfied, as the previous solution. The reader will accept that these results are verified
because this novel architecture is built on top of the strategy presented in Section § 4.5.2.
The comprehensive assessment of the goodness-of-fit (G.O.F) for diverse solutions is pre-
sented in Figure 4.31, providing a detailed overview of the model’s performance. In the
figure, we have made a histogram to view which architecture is more adapted for hybrid
mapping. The comparison is between Gy(Fxy(x), Fxy(y)) and the targeted broadband y.
All of the architecture we have experienced performs well for the phase reconstructions.
Based on our experiment, the more adapted architecture is the Generator that includes
Conformer, which is more adapted for the hybrid reconstruction task.
Contrary to what one might think, the architecture,Conformer + AdaIN and Conformer
+ AdaIN + UNet, does not offer significant performance. Our investigation is that the
AdaIN could change how we pass specific components and introduce more artifacts in
this interpretation UNet could introduce more bias in the reconstruction. Even though
we have trained separately the UNet and the Conformer + AdaIN Generator, with two
different losses, this introduces artifact and lowers the signal’s amplitude. In case of
interest, view Figure 4.30.
This breakthrough in mapping flexibility and validation of crucial criteria signifies an
improvement of our architecture, showcasing its effectiveness in handling complex data
representations and generations. View the performance of each architecture in the Ta-
ble 4.6.
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(a) Variant 1 (b) Variant 2 (c) Variant 3

(d) Variant 4 (e) Variant 5 (f) Variant 6

(g) Frequency representation for many variants generated from the same x. Architecture : Conformer

Figure 4.29: Here is an illustration of the multi-modal generation for the seismic data. The
input x, the high-frequency encoding aspect is replaced by a Gaussian distribution, N (0, I).
The generated output should produce an infinity value likelihood to the targeted broadband
data. Gy(cat(Fxy(x),N (0, I)) ∼ {y0,y1, ...,y∞}.
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(a) Quality reconstruction of a
signal with the Conformer archi-
tecture

(b) Quality reconstruction of a
signal with Conformer+Unet

(c) Quality reconstruc-
tion of a signal with Con-
former+AdaIN+UNet

Figure 4.30: Variant issues in the reconstruction depending on the model. The architecture
added fail to reconstructs, Gy(Fxy(y).

(ii) Comparison of diverse generator architectures tested
Exploration has been made in the research of the best-adapted neural network. To eval-
uate the performance of each architecture on physics-based simulations and Broadband
subsets to observe which one has a better performance. In the Figure 4.32, we show
which architecture performs well. As we can see, even the architecture that includes
Conformer+AdaIN+Unet does not perform well enough for hybrid generation; otherwise,
the quality is significantly better for the Reconstruction of physics-based simulations and
Broadband signal.

(iii) Interpretability of the latent space
In the preceding sections, the assumption that the low-frequency information encapsulated
in the common latent space should remain consistent, irrespective of whether it originates
from physics-based simulations or ground motion data, has been thoroughly validated.
This validation stems from an exploration conducted using PCA and t-SNE with three
principal components, revealing a unified clustering pattern. This clustering pattern
differs from our previous architecture with a shared latent space. Figure 4.33 presents
the results of this analysis using dimensionality reduction methods.

Additionally, the visual representation in Figure 4.33 demonstrates a single clustering
structure. We observe that the projection of any point of two data types is nearby.
The points are from F xy

xy (x) (physics-based simulations) and from ground motion data
(F xy

xy (y)). Consequently, our initial assumption is unequivocally satisfied: our architecture
is adept at maximizing dependencies between zxy and zyx.

In the previous observation, some information was not used when we concatenated the
data from the two latent spaces. This difficulty no longer exists. The network learns to
use both parts of the space, which makes all the information produced by the network
interpretable by the generator. We have, therefore, solved this problem. Overall, the
new strategy employed improves the interpretability and functionality of the model and
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Figure 4.31: List of G.O.F for different models trained for ALICE splited latent space

Architecture #Param.
(M) Broad. PBS Hybrid

EG PG EG PG EG PG
Conformer 219,44 5.70 ± 1.07 8.21 ± 0.46 6.20 ± 1.35 9.13 ± 0.23 5.80 ± 1.07 8.32 ± 0.46
Conformer+AdaIN 217,40 6.41± 0.94 8.47 ± 0.43 5.52 ± 1.37 9.22 ± 0.23 5.12 ± 1.34 7.36 ± 0.87
Conformer+AdaIN+Unet 231,00 6.62 ± 0.80 8.72 ± 0.40 6.11 ± 1.39 9.21± 0.19 5.69 ± 0.97 7.87 ± 0.75

Table 4.6: Table of Architecture of Generators for strategy Unified training ALICE with splited
latent space

proves its robustness in hybrid reconstruction. We consider objective VII from Section
§4.6.1 to be satisfied.

4.7 Conclusion and Perspective

In conclusion, our investigation into data representation and generation methodology has been
conducted with several noteworthy advanced techniques to understand and circumvent differ-
ent bottlenecks and limitations. Initially, the SeismoALICE was designed to map any physic
based on broadband data and reversely any recorded acceleration to simulation outputted ac-
celeration. Face the limitations of this previous strategy, notably the duplicate resources and
the contradictory loss, we have investigated and built a novel and more suitable architecture
for times series, capable of viewing long-range-dependencies to address the challenge of recon-
struction and generation of ground motion acceleration and also for physically based data. A
better understanding of each part of the problem enables and provides the keys to addressing
the hybrid mapping so that each abstract representation caught in this latent value is mathe-
matically interpretable, particularly in achieving a one-to-many mapping for plausible outputs,
crucial for civil engineering applications.

Our first investigation to overcome previous limitations was centered on developing a sur-
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(a) List of G.O.F for the architecture Con-
former

(b) List of G.O.F for With the architecture
Conformer+AdaIN+UNet

Figure 4.32: Comparison between different architectures to evaluate the performance of the
neural network to predict the output values

(a) PCA results (b) t_SNE results

Figure 4.33: We present PCA and t-SNE for the common part, that verify that zxy = F xy
xy (x)

(in green) is indifferentiable from zyx = F xy
xy (y) (in yellow)

rogate strategy around a shared latent space, providing valuable insight into the performances.
Based on the advancement made for our architecture design of the two groups of subsets, we
have designed a unified strategy. We can satisfy the limit above mentioned, except for the
one-to-many mapping.
To achieve the latter objective, we reinterpret the input data and investigate a factorized latent
space to address this limitation. A common part has the task of encoding the information in
the low-frequency portion of the ground motion (0-1 Hz), while the other part encodes the
remaining frequency portion (1-30 Hz). Factorization of common and specific components en-
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hances the model’s interpretability and adaptability, contributing to improved performance. In
addition, removing hybrid loss in the learning process has streamlined the approach, focusing
on the most important components and eliminating contradictory or redundant corrections.
Meanwhile, introducing the Gaussian-specific part has added variability to the results while
maintaining consistency, thus enriching the generative capabilities of the model. Despite the
challenges encountered in the one-to-many mapping and some performance issues, the iterative
development and adjustments have led to a more sophisticated architecture better aligned with
the requirements of earthquake engineering tasks and probabilistic seismic hazard assessment.



Chapter 5

Multi-Modal Signal Translation

"Take the first step in faith. You
don’t have to see the whole
staircase. Just take the first step."

— William Fletcher Durant, The
Prayer Power of Positive

Thinking, 1959

5.1 General idea of BiCycleGAN

Let us start this chapter by recalling the major disadvantages of the generative strategies
presented in Chapters 3, 4. Although the first attempted signal translation technique, namely
Pix2Pix, has proved its feasibility, it proved itself not to be robust enough. Pix2Pix is sensitive
to noise, and offers no understanding of the information encoded in the bottleneck. In addition,
no conditional generation is possible, and this lack of richness in the data representation gives
us a clear idea of its limitations.

ALICE’s learning architecture has proved effective in generating hybrid signals conditioned
by the filtered version of the original recordings and in an unconditional approach. However,
to achieve our goals, we had to conduct complex studies, introduce regularisation parameters,
and add many extra features, such as phase control, space control, and advanced information
arrangement, to meet our objectives. The task of training with ALICE is, therefore, complex.
For those reasons, we intend to test an architecture inspired by BiCycleGAN, according to
Zhu et al., 2018 [314]. This solution deserves a chapter because of the significant difference
with precedently exposed methods. Compared to other GAN approaches, the most important
enhancement made in BicycleGAN is introducing the bi-cycling consistency loss. This loss con-
strains the generator’s output. With improved realism, the translation from a domain x to a
domain y is possible. BicycleGAN reinforces the connection between the two domains by using
the ability of the VAE to project data into a latent and disentangled Gaussian manifold. The
BiCycleGAN can handle multi-modal mapping meanings and generate diverse output. This is
useful in scenarios without one-to-one correspondence between the input and output domains.
More than that, we could learn a shared latent space between two domains. Figure 5.1 shows
the BiCycleGAN framework. BiCycleGAN is the result of a merger between two different archi-
tectures, namely VAE-GAN (Variational Autoregressive-Encoder and Generative Adversarial
Network) and cLR-GAN (Conditional Latent Regressor) [315, 112, 314]. In the following, the
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Figure 5.1: Sketch of BiCycleGAN architecture.
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different aspects of BycicleGAN are described.

5.1.1 Variational AutoregressiveEncoder and Generative Adversarial
Network

The VAE-GAN, also known as the Variational Autoencoder-Generative Adversarial Network, is
a powerful combination of two deep learning models: Variational Autoencoder (VAE) and Gen-
erative Adversarial Network (GAN). The VAE will be used to encode information in a Gaussian
space and reconstruct it later, in our case the target data is y, which has high-frequency part.
On the other hand, the GAN component simplifies the assessment of distribution pairs. It is
through this data respect that multi-modal generation can happen. This intricate but critical
evaluation process allows us to capture correspondences between data and generate synthetic
signals that make sense, as highlighted in section 2.3.3. The VAE-GAN is trained according to
the following loss function:

L1 = LGAN
V AE (Fy, Gy, Dxy) + LKL(Fy) + LV AE

1 (Gy, Fy) (5.1)

The VAE/GAN training process depends on the importance of the following term LGAN
V AE (Dxy, Gy, Fy),

where Fy is the encoder, Gy is the decoder, and Dxy is the joint discriminator. A VAE is here
trained as a GAN, according to the following loss function:

LGAN
V AE = Ex,y∼p(x,y) [log(Dxy(x,y))] +

Ex,y∼p(x,y),z∼Fy(y) [log(1−Dxy(x, Gy(x, Fy(y))))]
(5.2)

where Gy is represented by an U-Net. In order to minimize the distance between the encoded
distribution F (y) ∼ q(z|x) and a Gaussian one z ∼ N (0, I), we minimize the Kullback-Leibler,
DKL, divergence between q(z|x) and p, that reads (We can find the definition in Equation 2.15)):

LKL(Fy) = Ey∼p(y) [DKL(Fy(y)||N (0, I)))] (5.3)

For our task, we prefer to manipulate an explicit loss and use the Focal Frequency Loss,
suitable for audio and for any time series; see Equation 2.56.

LV AE
1 (Gy, Fy) = FFL(y, Gy(x, Fy(y))) + HSL(y, Gy(x, Fy(y))) (5.4)

5.1.2 Conditional Latent Regressor

In addition to the physic-based latent variables, the sample generation implies making the
latent variable meaningful. It is then useful to constrain the generation. Instead of evaluating
all potential output solutions individually, we use a Discriminator, Dy. The loss is defined as
below by:

LGAN(Gy, Dy) := Ey∼p(y)[logDy(y)] + Ez∼q(z)[log(1−Dy(ŷ))]︸ ︷︷ ︸
Ez∼pZ

[log(1−Dy(Gy((z))]

(5.5)

In this equation :

• LGAN(Gy, Dy) is the (GAN) objective function.

• Gy is the generator to produce the broadband signals.

• Dy is the discriminator that evaluates the marginal distributions.
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• ŷ = Gy(x, z)

The loss evaluate the distance between the distribution of y ∼ p(y) and the distribution of
ŷ ∼ q(y|z). ŷ is generated by Gy(x, z). x is sampled from pG and z is sampled from pZ . In
the original paper of BicycleGAN [314], the cycling is forced through ℓ1 loss, as expressed in
Equation 5.6. This loss appears unimportant in our experiment enough to constrain the model
and produce realistic output.

LLatent = ∥z− Fy(Gy(x, z))∥1 (5.6)

5.1.3 Loss function

The objective function adopted to train BicycleGAN for signal-to-signal translation can be
dissected into two main components, each playing a significant role in our target multi-modal
generation task. This combination includes aspects from VAE-GAN and cLR-GAN frameworks.
The expression of the loss function reads:

V (D∗
xy, G

∗
y, F

∗
y ) = arg min

Gy ,Fy

max
Dxy

LVAE
GAN(Gy, Dxy, Fy)

+ λLVAE
1 (Gy, Fy)

+ argmin
Gy

max
Dy

LGAN(Gy, Dy) + λKLLKL(Fy)

(5.7)

LVAE
GAN is an adversarial GAN-style loss over the joint distribution, LVAE

1 (Gy, Fy) is the recon-
struction loss for hybrid signals and LGAN the loss on the marginal distribution. Llatent

1 stands
for the reconstruction of the latent space, and LKL is the Kullback-Leibler Divergence that
enforces the latent space to match a standard normal distribution.

5.1.4 Architectures of BicycleGAN

Encoder

The encoder, Fy is composed of 1D-convolutional layer inspired from VGG (Very Deep Convo-
lutional Networks) [316, 317]. We employ the same skeleton designed for recognition, Residual
Network. The residual Block stabilizes the training. The data passed through several convolu-
tional layers, multiplying the number of channels by two and dividing the number of the times
step by 2. Ultimately, we make a flattened and linear layer projecting the output features to
128 hot-encoded values. View in Figure 5.2. View more details about the output in Table 5.1.

Layer Opeation Input Size Fonction
Activation Stride Output

ConvBlock I Downsampling [3, 4096] LeakyReLU 2 [16, 2048]
ConvBlock II Downsampling [16, 2048] LeakyReLU 2 [32, 1024]
ConvBlock III Downsampling [32, 1024] LeakyReLU 2 [64, 512]
ConvBlock IV Downsampling [64, 512] LeakyReLU 2 [128,256]
ConvBlock V Downsampling [128,256] LeakyReLU 2 [256,128]
ConvBlock VI Downsampling [256,128] LeakyReLU 2 [512,64]
Reshape ’– [512,64] ’– ’– [32768]
Linear Layer for mean Projection [32768] ’– ’– [128]
Linear Layer for logvar Porjection [32768] ’– ’– [128]

Table 5.1: Architecture of the Encoder of BicycleGAN
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Figure 5.2: Design architecture of the Encoder, Fy

Generator

In contrast, Gy uses a U-net architecture with latent variables and physics-based simulations as
inputs. However, experiments have shown that simple concatenation of the dimensions of latent
variables and physics-based simulation leads to some peculiarities in the generator’s behavior.
To overcome this problem, another method was used: direct injection of values into the latent
space.

Latent space injection should be handled with utmost care due to various considerations.
Up until now, two types of injections have been tried.

In the first type, known as a single injection, the latent space variable z, a fully connected
layer projects onto a 4096-dimensional space. The resulting vector is then added as an additional
channel to the input signal. This injection occurs before subsampling by the convolutional layers
and continues until subsampling for output prediction y. In Figure 5.3 (a), the latent space
is projected from a vector 1-dimension 128 to another dimension space the same as the length
of the physic-based. This latter is after concatenated. Furthermore, the UNet architecture is
used.
In the second type of injection, information from the latent space is projected and then re-
injected into the various layers of the UNet Generator architecture. This approach involves using
a technique already mentioned in the previous chapter, injecting latent space values using AdaIN
(Adaptive Instance Normalisation). As we will see later, this technique is more efficient and
has proved its worth. In Figure 5.3 (b), we use residual Dense Block to extract relevant feature
information from the latent space. After, the corresponding output passes through a linear
layer to expand the dimension of the vector. A Parameter assignment task operates different
linear operations to have the mean, µ(·), and standard variation, σ(·) (see Equation 4.45) the
same shape as the Adaptative Instance Norm. Another difference between the once-injection
and full-injection methods is the output’s normalization. This latter Normalization remains the
parameter that has the task of affecting the output. We have injections at all different levels
of the architecture (either the downsampling part or the upsampling part).

Discriminator

We use a discriminator to evaluate the quality of the reconstruction of the signal. We use a
PatchGAN-based Discriminator [298] for VAE. In the input, the two different types of data are
passed. Different features are extracted, but the final values are not a score for each pair of
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(a) Once injection of the latent variable, z

(b) Full Injections of the latent variable, z

Figure 5.3: Different type of Injection for the Generator, Gy

samples, which was done in previous architecture, but a grid of values. The BCEWithlogit will
be used to distinguish which pair should be considered true and which is false.
For cLR, we use a classic discriminator based on DCGAN [318], which receives the architecture
of the input. The information is passed through different CNN layers, reshaped, and a Linear
layer that gives a score. The BCEWithLogit is used also.
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5.1.5 Experiments and Results

As explained in the last section, the selected architectural framework must accomplish two
key objectives. First, it must be able to reconstruct raw data expertly. Second, one-to-many
mapping needs to be possible. The figure below shows how well each method accomplishes that
second task. (see Figure 3) We found that full-injection was better for one-to-many mapping and
did a great job of respecting the phases naturally. However, BicycleGAN has some downsides.
Unfortunately, it carries some artifacts and introduces output values that don’t match up with
seismic signals, Figure5.5. Find a list of G.O.F for BiCycleGAN 5.6.

Architecture #Param.
(M)

Hybrid

EG PG

Once injection 15,00 4.67 ± 1.05 6.11 ± 1.25
Full injection 16,07 6.87 ± 1.28 8.08 ± 1.11

Table 5.2: Architecture performance of BicycleGAN

5.2 Multimodal Unsupervised Signal Translation

5.2.1 Limitation of BiCycleGAN and SeismoALICE factorized latent
space

(i) Limitation of BicycleGAN
Although BiGycleGAN has demonstrated its effectiveness in facilitating multi-modal
translation and generation tasks while maintaining a good score for hybrid reconstruc-
tion, it is imperative to recognize certain limitations inherent in its design. Notably,
the BiCycleGAN is only possible in one direction because it performs well the mapping
one-to-many (from x). However, it cannot do the reverse mapping, i.e. retrieves the
corresponding PBS from the y.
Moreover, this architecture introduces the artifact in the outputs, which could not be
plausible in analyzing hybrid generations. See Figure 5.5 in BiCycleGAN. The model
could suffer from handling significant variations. Handling complex large domains with
this architecture could cause the model to vary only in one aspect and add noise to the
other part that it does not understand.

(ii) Limitation of Signal-to-Signal translation with ALICE

(1) Latent space design
The architecture of SeismoALICE, designed to perform the mapping one to many,
adopts a split representation of the latent space. In this design, low frequency is
assumed to be passed through the common part (zxy or zyx), and for any greater
information, while the specific part is used for handling higher-frequency details.
Various methods, such as VQGAN, VQ-VAE [231] and approaches such as codec [319]
or residual vector quantizers (RVQ) [227], have explored discreet latent values, to
circumvent the restriction of continuous Latent values to gain a better performance.
In contrast, our ALICE formulation opts for continuous latent values and rearranges
abstract information extracted from features. This task is carried out in a way that
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(a) Variant 1, Gy(x, z), with
z ∼ N (0, I)

(b) Variant 2, Gy(x, z), with
z ∼ N (0, I)

(c) Variant 1, Gy(x, z), with
z ∼ N (0, I)

(d) Variant 1, Gxy(x, z), with
z ∼ N (0, I)

(e) Variant 1, Gy(x, z), with
z ∼ N (0, I)

(f) Variant 6, Gy(x, z), with
z ∼ N (0, I)

(g) View of the generated signal compared (in grays) to the targeted ground motion signal in black

Figure 5.4: Mapping one to many using BicycleGAN using full_injection technique
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(a) Normal generated output
(b) Case of anomaly generated
output

(c) Another case of anomaly
detected in the generated out-
put.

Figure 5.5: Case of Anomaly generated output from the BiCycleGAN strategy, illustration with
once injection

Figure 5.6: List of G.O.F for the BiCycleGAN. The test have been made on 12,800 signals 3D
signals
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corresponds to the specific objectives of the application. However, it is recognized
that the exact nature of this rearrangement may differ from the assumptions.

(2) Interpretability
We have put much effort into making the latent space easier to interpret, but it is
still a big black box. Moreover, we have yet to learn what the encoder is doing.
We have proven in the previous section that the encoder is important for its ability
to map x and y from different subsets onto the same common part zxy and zyx
respectively. However, because the, zxx = F xx

xy (x) is not constraint, we need more
interpretation.
The ambiguity could arise in several possible ways: the encoder simply rearranges
information to make it clearer by moving relevant features or patterns closer together
or separating them. This interpretation does not exactly fit with our intuition about
“clarity,” but it does seem like an improvement over noise.
Another possibility is that zxx contains many redundant or duplicated versions of
some interventions/infractions, which are not necessary for a generation but are
hard to eliminate without giving up on transfer learning entirely (and just training
separate models for each intervention).
Alternatively, there may be no useful information in zxx! In this case, adding more
capacity to Fxy will allow us to improve performance when other parts of Fxy are
under-trained. However, once those other parts get enough capacity, there will be
no benefit from pushing more information into zxx.

5.2.2 Methodology

These constraints forced us to explore alternative models. The Multimodal Unsupervised Sig-
nal Translation (MUST) model can create a one-to-many mapping and produce outputs with
higher fidelity to the underlying content. See Figure 4 for an overview of the MUST Encoder-
Decoder architecture.
One key aspect of the MUST model is that it carefully decouples style and content-encoding
at the input and output. The style is Gaussian by default, while the content should be low-
frequency [0-1Hz]. We do not determine this distribution in this architecture but let the neural
network learn it internally. We add a loss term minimizing the distance between content ex-
tracted from PBS and Ground Motion as in [320]. This approach can be seen as an extension of
Multimodal Unsupervised Image-to-Image Translation (MUNIT). Implicit Auto Encoder [321]
technique (where information is decomposed into compressible and incompressible features and
adversarial loss is used to respect the same formulation as Implicit Auto Encoder), where style
represents compressible features while content represents information we do not compress.
Furthermore, instead of using BicycleGAN as in previous work on MUNIT, we add low-
frequency representation losses across datasets, which is a critical assumption for our later
analysis. The assumption here is that broadband data contains all physical phenomena infor-
mation encoded in it, so each dataset’s content component contains information extracted from
the physical domain even though they are different measurements physically. This assumption
will be integrated into our objective functions further rigorously. For the task, one encoder, Fxy,
and two decoders, Gx and Gy, are used. To evaluate the distributions, we use three different
discriminators. Dxy, Dx and A series of objective functions is minimized or maximized. The
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equation 5.8 give :

min
Fxy ,Gx,Gy

max
Dxy ,Dxz ,Dyz

V = λadv(LALI
xy + LALI

x + LALI
y )

+ λrec(Lx
1 + Ly

1)

+ λcLc
1 + λhyb(Lhyb.x

1 + Lhyb.y
1 )

(5.8)

In this formula, the terms represent:

• LALI
xy , LALI

x , LALI
y are respectively the adversarial loss that evaluates the pair of distribution

of for hybrid data, physic-based generation and, broadband generation

• Lx
1, Ly

1 are respectively the explicit cycle consistency for the physic-based data and ground-
motion data.

• Lc
1 is the loss that explicitly forces the content loss to be the same for the broadband and

the filtered.

• Lhyb.x
1 and Lhyb.y

1 are, respectively, the hybrid loss to evaluate the quality of the recon-
struction data.

The parameters λadv, λrec, λc and λhyb are the trade-off coefficients, which we have determined
by experiments for best performance of the training.

5.2.3 Adversarial Loss

The adversarial loss evaluates the pair of distributions for the generated data. Rather than
optimize the marginal distributions, this loss helps discriminate a pair of distributions. Mean-
while, the Encoder and the decoder are trained to produce realistic data from the input. This
ability is an extension of the ALI loss introduced. Our training is particular because we do
not search for the content’s distribution; the Encoder will learn it by himself. The attention
mechanism is only applied to the style loss, for which we assume the distribution should be
classed as a Gaussian distribution. As example sx ∼ p(z). For the sack of clarity, the Encoder,
Fxy, is split into two parts. The content part is F c

xy, and the style part is F s
xy. But the reader

shall remember that, by definition Fxy(x) = (F c
xy(x), F

s
xy(x)).

The adversarial losses trained on the ground motion data help the generator Gy with the
content Fxy(y) and a random style sy ∼ N (0, I), to output realistic ground motion distributions.
So the path to retrieve the same data is as follows:

y −−→
Fxy

ĉy, ŝy −→
Gy

ỹ (5.9)

The term, ĉy is an estimation of the content loss. Moreover, ŝ estimates the style loss output
by the style encoder part. The target distribution is designed by sy. This latter is chosen
randomly among the Gaussian space, which lies in a 128-dimensional space.
The loss is the flowing equation sanctions joint evaluation of the likelihood of the sample we
manipulate:

LALI
y = − (Ey∼pdata [logD(y, Fxy(y))]

+Ey∼pdata,sy∼pz

[
log(1−D((Gy(F

c
xy(y), sy), (F

c
xy(y), sy)))

]) (5.10)
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Same as the raw data, the same type of adversarial loss to discriminators is for the filtered
data. ĉx refers to the content loss. The estimation ŝx is used to design the outputted values
from the style content. The term sx is for known distribution.

x −−→
Fxy

ĉx, ŝx −→
Gx

x̃ (5.11)

Therefore,

LALI
x = − (Ex∼pdata [log σ(Dxz(x, Fxy(x)))]

+ Ex∼pdata,sx∼pz

[
log(1− σ(Dxz((Gx(F

c
xy(x), sx), (F

c
xy(x), sx))))

]
)

(5.12)

Before getting closer to the mathematical distribution we want, each value of x is presumptively
related to a distinct y. These hybrid values produced should have identical distributions. We
also assume that y and x target the same content loss; this has been covered in the previous
sections. So the targeted values are then :

LALI
xy = −

(
E(x,y)∼pdata,sy∼pz

[
log σ(Dxy(x, Gy(F

c
xy(y)), sy))

]
+E(x,y)∼pdata,sx∼pz

[
log(1− σ(Dxy(Gx(F

c
xy(x), sx),y)))

]) (5.13)

5.2.4 Content Loss

For the content loss, we use the Focal Frequency Loss, on the content loss. The content informa-
tion is a 3D tensor with batch, channel, and length. The content Encoder does downsampling,
which is improved by using the conformer for the tasks.

Lc = FFL(F c
xy(x), F

c
xy(y)) + HSL(F c

xy(x), F
c
xy(y)) (5.14)

5.2.5 Explicit cycle consistency

We perform explicit cycling for PBS

Lx
1 = FFL(x, Gx(Fxy(x))) + HSL(x, Gx(Fxy(x))) (5.15)

We perform explicit cycling for the raw data

Ly
1 = FFL(y, Gy(Fxy(y))) + HSL(y, Gy(Fxy(y))) (5.16)

We perform explicit cycling for hybrid

Lhyb.x = FFL(Gx(F
c
xy(y), F

s
xy(x)))

+ HSL(Gx(F
c
xy(y), F

s
xy(x)))

(5.17)

the broadband hybrid

Lhyb.y = FFL(Gy(F
c
xy(Gx(Fxy(x))), F

s
xy(y)),y)

+ HSL(Gy(F
c
xy(Gx(Fxy(x))), F

s
xy(y)),y)

(5.18)
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5.2.6 Architecture

Generators

(i) Encoder Architecture
The Encoder Architecture in our model features different levels of Residual Blocks to
facilitate the down-sampling. It resembles the Encoder of SeismoALICE, except for a
critical distinction: it incorporates two separate branches. One of these branches is
designated as the Style Encoder, while The other is called Content Encoder. Importantly,
these branches are not connected; the input goes in the two pipelines simultaneously (view
Figure 5.7). In the Content part, only Conformer blocks are included, emphasizing a

Input 
signal

output
Signal

Down
sampling

Down
sampling

Conformer

FC

C
on

te
nt

Style

Content Encoder

Style Encoder

Residual
Block

FC

AdaIN
Parameters

Up
sampling

Decoder

Encoder

Figure 5.7: We present the models for the multi-modal unsupervised signal translation. We
show that the encoder decomposed the information into two parts: the content and the style.

specific type of architecture for this portion of the encoding process. The aforementioned
Conformer signifies a deliberate choice to capture and process content-related information.
This dual-branch design allows the model to simultaneously extract and encode both
style and content information independently, avoiding affecting each weight’s part or
introducing irrelevant processes in the architecture; such behavior is not easy to detect
and often leads to ill-designed architecture. Also, the separation can give the model a
more nuanced understanding of the input data, enhancing its capacity to disentangle and
manipulate different aspects during the training process.
Therefore, the choice of this architecture reflects a careful consideration of how style and
content information ( respectively partly compressed and partly uncompressed) contribute
to the overall representation of the input data and how processing them separately can
limit the model’s ability to learn effectively.

(ii) Decoders Architectures
The Decoder Architecture receives both style and content. On the one hand, the content
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is directly passed through the convolution layer, which performs the up-sampling process.
On the other hand, the style in counterpart is not directly passed; instead, it is conveyed
through a series of Residual Dense blocks to extend its dimension before the application
Adaptive Instance Norm (AdaIN). See the Equation 4.45, in Chapter 4.
This technique is borrowed from StyleGAN [285],[182] [184]. The utilization of AdaIN
allows style information to be injected into the content, enriching the expressiveness
and diversity of the output generated. By manipulating style at a higher level in the
decoder, the model provides greater control over the appearance and characteristics of
the generated signals, reducing the need for more regularisation tools. The decoder is
inherently designed to significantly improve the variability of our hybrid generation while
preserving the quality of our reconstructions.

Discriminators

The implemented design architecture comprises three discriminators, denoted as Dxy, Dxz, and
Dyz. This architectural framework leverages the advantageous strategy previously employed
in our SeismoALICE architecture, which features a shared and factorized latent space. This
strategy ensures the fulfillment of the Nash Equilibrium, with shared weights among the dis-
criminators. In the case of MUST’s implementation, slight different.

1. joint discriminator for PBS
In the Figure 5.8, the Discriminator, Dxz as three inputs : the physic-based x, the content
cx and the style sx. To extract information, we have exploited the same architecture as
ALICE. The Discriminator will include two branches : Dsx and Dszx . The first branch
extracts features from x and will have the same architecture as the content part of the
encoder Fxy. The second branch, Dszx should take account of the pair (cx, sx): cx is
flattened before transformed to a 1-dimensional vector and the output is concatenated
with sx, then the result passes through a residual linear block. Finally those different
values (from Dsx and Dcx) will be concatenated. Then, we proceed to a final Residual
Linear block. The output of a discriminator is the score, which will serve as the entry of
the BCEWithLogit loss. Here the Equation 5.12.

Dxz(x, cx, sx) = Dxz(Dsx(x), Dszx (cx, sx)) (5.19)

2. Joint discriminator for Broadband
The Discriminator Dyz respect the same architecture. We use Dsy to manage the broad-
band. To extract the features of the content cy and the style sy, we use the Discriminator,
Dszx . Therefore, we have:

Dyz(y, cy, sy) = Dyz(Dsy(x), Dszy (cy, sy)) (5.20)

3. Joint discriminator for Hybrid
Finally, for the Discriminator dedicated to hybrid, Dxy, we reuse the ensemble of weights
employed to extract features from the PBS and the features designed to extract features
from broadband data (Dsy and Dsx). The results are concatenated before passing to a last
residual linear block Dsxy , scoring the quality of the learned distribution by the Encoder
Fxy and the Decoder Gy and Gx. Figure 4.19 illustrates the same structure Chapter 4.
The equation expressing this is formulated by:

Dxy(x,y) = Dsxy(Dsy(x), Dsy(y)) (5.21)
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ConvBlock(N=C, s=(1,2))

ConvBlock(N=2C, s=
(1,2))

ConvBlock(N=4C, s=
(1,2))

Conformer(N=4C)

ConvBlock(N=4C, s=
(1,2))

ConvBlock(N=8C, s=
(1,2))

ConvBlock(N=16C, s=
(1,2))

Conformer(N=16C)

Reshape(-1,16CxC)

Linear

Linear

ResBlockDense(N=Z)

ResBlockDense(N=Z)

Concatenation

Reshape

Linear

Concatenation

ResBlockDense(N=Z)

ResBlockDense(N=Z)

ResBlockDense(N=Z)

Figure 5.8: In this case, the architecture of a joint discriminator is the zx. The special feature
of this architecture is that it considers the content, which is a three-dimensional tensor. The
latter is reshaped and then concatenated with the style before moving on to the succession of
residual linear blocks. The detailed architecture is similar to the one presented in chapter 4

Spectral normalization is used in all the layers of the discriminators. The optimization is
proceeded via a BCEWithLogit Loss, more stable numerically than BCE.

5.2.7 Trial details

1. Test with Constraint on style
Adding an adversarial loss to force the style to follow a Gaussian distribution is a logical
technique for achieving the desired disentangled representation. However, our experiments
found that this explicit constraint could affect the quality of the hybrid signal. We observe
a degradation of the hybrid generation when we constrain the style with explicit cycling
or a cross-entropy loss.

2. Ablation of Phase picking
In contrast to the previous technique, SeismoALICE, the need for a phase loss is no longer
necessary to guarantee the plausibility of the reconstruction. The various variants of the
target signal maintain the alignment in the timing of P-Wave and S-Wave. This observa-
tion suggests the model can inherently capture and preserve the temporal relationships
without the explicit need for phase loss. Interestingly, when a loss on phase is introduced,
it does not yield significant results in hybrid generation. This showcases the robustness
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Figure 5.9: List of G.O.F for the training of MUST

of the model in the pipeline training, allowing this latter to produce complex temporal
patterns inherently.

5.2.8 Results

1. Comparison with previous techniques
This section showcases the output values from the signal-to-signal translation for this
technique. The multi modal generation is made through the Encoder, Fxy, and the
decoder, Gy : Gy(F

c
xy(x),N (0, I)). This technique helps generate infinite output ŷ closer

to tarted signal y in the data sets. View results in the Figure 5.10.
This technique performs significantly in reconstructing broadband, filtered, and hybrid
signals. This architecture, as illustrated in Figure 5.9, achieved scores that surpass the
SeismoALICE while ensuring the mapping one to many and maintaining a plausible
variability.

2. Interpretability of the latent space
To make the common part reflect information content in the range [0-1]Hz, we thus
made the information content equal in both ground motion and physic-based data. It is
visually shown in Figure 5.11a and Figure 5.11b that these figures intentionally restricted
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(a) Variant 1 of
Gy(F

c
xy(x),N (0, I)), the

targeted signal is y.

(b) Variant 2 of
Gy(F

c
xy(x),N (0, I)), the

targeted signal is y.

(c) Variant 3 of
Gy(F

c
xy(x),N (0, I)), the

targeted signal is y.

(d) Variant 4 of
Gy(F

c
xy(x),N (0, I)), the

targeted signal is y.

(e) Variant 5 of
Gy(F

c
xy(x),N (0, I)), the

targeted signal is y.

(f) Variant 6 of
Gy(F

c
xy(x),N (0, I)), the

targeted signal is y.

(g) Observation of the quality of the generation in the frequency field

Figure 5.10: Example of result for the Multi-modal Signal Translation
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(a) Focal Frequency Loss of the content (b) Hyper Spherical Loss for content

Figure 5.11: Here is the observation of the convergence of the content part. The Focal Frequency
(FFL) and the Hyper Spherical Loss (HSL) force the content part to be the same. The optimal
values are close to zeros.

(a) Adversarial Loss on Recon-
struction of Hybrid

(b) Adversarial Loss on Recon-
struction of PBS

(c) Adversarial Loss on the Re-
construction of Broadband

Figure 5.12: Adversarial Loss for the Whole training of MUST technique

SeismoALICE’s alignment of its content part to make sure consistency is maintained
across both parts of the data. Therefore, this slight difference in the content loss helps
push learning towards uniformity, guiding the model over shared info from 0 to 1 Hz. The
corresponding modules are also time-synchronized within SeismoALICE.

3. Balanced Training
Therefore, adversarial reconstruction loss plays a role in properly updating the network
during the training process. We use the same optimization technique Adam as the pre-
vious framework. The entire training follows TTUR ’s dynamic with a learning rate of
1e − 4 for the Generators and a learning rate of 1e − 5 for the discriminator. Both gen-
erators and discriminators used spectral normalization.
In figure 5.12, we have investigated and presented the results for adversarial loss in dis-
criminators and generators. The training was stopped when the gradient norms of dis-
criminators and generators converged to zero. This training is performed on 4 GPU A100s
over 20h period.

5.3 Conclusion
Through the Multimodal generation of hybrid generation quality of the UNet and SeismoAL-
ICE’s variational generation, we came up with this variant inspired by BiCycleGAN.
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This architecture fuses the strength of VAE-GANand cLR-GAN. The former ensures that
the hybrid generation’s quality is upheld and that the variational aspect of the hybrid generation
comes into play, whereas the latter measures this conditioned generation.

Nevertheless, further investigations and various experiments have shown that in some cases
BiCycleGAN introduces irrelevant artifacts or noise as solutions. Consequently, improvements
in reconstruction quality required by BicycleGAN are made at the cost of sacrificing the inter-
pretability that SeismoALICE has over it.

In comparison, latent space design for ALICE has been found to degrade relevant informa-
tion; therefore, it needs to be more comprehensible to human beings even though we improved
on its interpretability. As such, our whole architecture design seems to lend itself poorly to
joint information sharing.

These problems are addressed using new approaches, such as exploring a MUNIT-based
framework, MUST, for better one-to-many mapping. The compressed information and un-
compressed information should be simultaneously adjusted. Good results were obtained when
utilizing adversarial loss alongside our custom minimization approach explicitly customized for
time series data. Consequently, versatile and resistant representations that encompass content
(uncompressed information) and style (compressed information) have been introduced into his
representations. In other words, such architecture can better capture low-frequency components
while preserving a strong representation of hybrid data.

Thus far, our exploration across different architectures has helped us accept both the poten-
tialities offered by BicycleGAN and its constraints, especially concerning SeismoALICE. Our
inquiries direct us toward the MUST framework; potential solutions are available through their
investigation. This can only be done by continuous research work being tested out in practical
terms.





Chapter 6

Case Study in Earthquake Engineering

"One path to human-level AI uses
mathematical logic to formalize
common-sense knowledge in such a
way that common-sense problems
can be solved by logical reasoning."

John McCarthy, Artificial
Intelligence, Logic and

Formalization common sens, 1990

6.1 Teil

The year 2022 has seen the publication of a paper on Physics-Based Simulations (PBS) for
seismic activity in the Le Teil region by Lehmann et al. [322]. The earthquake consideration is
moderate, with moment magnitude Mw = 4.9. It took place at a shallow depth of about one
kilometer in an area with few geophysical measurements. The simulations were implemented
using a high-fidelity wave propagation code that allows for numerical simulations of the Le
Teil earthquake within the high uncertainty framework. In this investigation, various seismic
sources and geological setups are considered to gain insights into seismicity in the region.
Profile of velocity and 3D model is presented in Figure 6.2. The Le Teil earthquake was
recorded across 22 stations (Figure 6.1) within a 70 km radius from the fault. This study focuses
explicitly on stations outside the sedimentary basin, such as OGDF, OGCB, and CRU1, as the
absence of these stations from our models could potentially impact synthetic ground motions
within the basin. Numerical simulations were conducted using SEM3D, a High-Performance
Computing wave propagation code based on the Spectral Element Method. SEM3D exhibits
weak scalability properties, particularly between 0 and 10,000 MPI processes. It has been
widely utilized for simulating past earthquakes and evaluating the seismic response of nuclear
sites and urban areas. The computational domain covered 80 km × 92 km × 79 km and was
discretized on a hexahedral mesh with 18.3 million elements. With a minimum S-wave velocity
of 2180 m/s and 5 Gauss-Lobatto-Legendre (GLL) points per element, this mesh enabled wave
propagation up to 5 Hz. Simulations were executed on 2048 cores of AMD Milan @2.45 GHz
(AVX2), hosted by the Très Grand Centre de Calcul (TGCC, France). The computational
power available facilitated simulations that spanned 61,440 CPU hours for simulating a 60-
second signal. Our objective is to assess the performance of our trained model (Pix2Pix,

187
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SeismoALICE(I and II), BiCycleGAN, and MUST). We will use recorded seismograms and
synthetic signals generated for the Le Teil. This evaluation judges how well our various models
generalize to unseen data and validate our assumptions. It is noteworthy to tell the reader that
we did not fine-tune our model to the Teil data set. Many captors were used, but according to
Lehmann, only three were satisfying (OCGB, OGCD, and CRU1). The following sections will
present the results for one seismogram, CRU1, but the reader can consult the Annexe for the
other captors.

Figure 6.1: Source [322]. "Map of the region affected by the 2019 Le Teil earthquake, in South-
Eastern France. The computational domain considered in this paper is indicated with the dotted
box. Velocimeters and accelerometers are shown with black triangles".

6.1.1 Pix2Pix

We employed our UNet architecture, pre-trained on the STEAD dataset to test this effectiveness
in a different dataset to predict the ground motions—the result of the physics-based simulation
of Teil. Figure 6.3 depicted the outcomes of these applications, especially for the results of
captor CRU1 in the three directions: North-South (NS), East-West (EW), and Up-Down (UD)
(View in Annex the results for captor OGDF Figure A.6 and captor OGCD Figure A.5).
In our methodology, the PBS serves as input to the neural network, which generates a syn-
thetic signal. The resulting synthetic signal is then visually plotted for comparison, showcasing
the frequency information predictions. This comprehensive analysis provides insights into the
accuracy and characteristics of the predicted ground motions.
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(a)
(b)

Figure 6.2: We present the geology and the profile Geology of the study area. In (a) "VP (black)
and VS (grey) velocity profiles for the 1D geological model (continuous line), 3D geological
model in station VIVF (dashed line), and station SAUF (dotted line).". In (b) "3D geological
model for S-wave, original model". Source [322].

It is noteworthy that the synthetic signal exhibits a slightly higher amplitude than the original
signal if we compare the signal in the time domain. Despite this difference, the quality of the
predictions remains within the bounds of plausibility. Crucially, the model successfully cap-
tures the fundamental characteristics of seismic events, allowing for reliable representations of
earthquake-related features in the predictions.

(a) NS (b) EW (c) UD

Figure 6.3: Result for for the seismogram CRU1 for the simulation of Teil

6.1.2 SeismoALICE with Shared Latent Space

To test the pre-trained encoder and decoder (Fxy and Gy) on our STEAD dataset, we focused
specifically on results from captor CRU1. Figure 6.4 shows the outcomes for the shared latent
space for seismogram CRU1.
Our approach is first to encode physics-based data into 256 values using a pre-trained encoder
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(Fxy), then use a broadband decoder to generate synthetic data: Gy(Fxy(x)). But it’s clear
that Pix2Pix performs better than our shared-space model regarding time-domain accuracy.
The frequency domain also shows this same pattern. The precision that Pix2Pix offers seems
too good for our shared-space model to match.

(a) NS (b) EW (c) UD

Figure 6.4: We present the hybrid generation for ALICE Shared latent space for the seismogram
CRU11

6.1.3 SeismoALICE with Factorized Latent Space

We conducted a thorough investigation into the efficacy of both one-to-one mappings and
one-to-many mappings by applying them to the seismogram CRU1 (results for captor OGCB
in Figure A.3 and captor OGDF in Figure A.4). The one-to-many mapping is illustrated in
Figure 6.5. We observe a comprehensive representation of the targeted signal. We observe the
number of variants of the same signal in the frequency fields. Notice that the phase alignment
is respected.

6.1.4 BiCycleGAN

Figure 6.7 and Figure 6.6 show the result of one-to-many mapping for BiCycleGAN. The
decoder, Gy, takes two inputs. The signal from the PBS sensor x, and what can be considered
to be the encoding of the broadband signal or its equivalent, a Gaussian distribution, of the
same type. The previous BiCycleGAN study revealed that full latent space injection works
best for one-to-one and multimodal mapping. In fact, under real conditions, the corresponding
y values will not be known, but for model performance research, we have taken the liberty of
outputting Gy(x, Fxy(y)) (See Figure 6.6). We have also provided in Figure 5.4, the answer for
Gy(x,N(0, I)). Gy(x,N(0, I)), which means we can see how well the reconstructions are done
in this architecture. Also, observations for the one-to-one mapping show how difficult it is to
estimate the low frequencies [0,1] in the frequency domain. This issue is a numerical limitation
of our architecture at the moment. On the other hand, we can see that the amplitudes are very
close for higher frequencies. On the other hand, the one-to-many mapping produces plausible
and consistent results with the seismic record from the CRU1 sensor.
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(a) Variant 1 of
Gy(F

xy
xy (x),N (0, I))

(b) Variant 2 of
Gy(F

xy
xy (x),N (0, I))

(c) Variant 3 of
Gy(F

xy
xy (x),N (0, I))

(d) Variant 4 of
Gy(F

xy
xy (x),N (0, I))

(e) Variant 5 of
Gy(F

xy
xy (x),N (0, I))

(f) Variant 6 of
Gy(F

xy
xy (x),N (0, I))

(g) Frequency Filed of the different variants from Splitted latent space of ALICE

Figure 6.5: SeismoALICE with splitted latent space. Seismogram CRU1 is used. We have
presented the multiple variant for direction UD, as example



192 CHAPTER 6. CASE STUDY IN EARTHQUAKE ENGINEERING

(a) (b) (c)

Figure 6.6: We present the result for the BiCycleGAN. Mapping one to one

6.1.5 MUST

The prediction with MUST-ALICE involves calculating the content of the PBS signal. The
style part is replaced with a Gaussian noise, N (0, I). Therefore the targeted version is,
GyF

c
xy(x,N (0, I))). In the time domain, the network fails to reproduce the appropriate ampli-

tude. However, the synthetic signal remains close to the targeted acceleration in the frequency
field. View Figure 6.8.

6.2 Comparison Between Different Models
The results of the Teil dataset, especially when CRU1 captor is used, validate the efficacy of
our diverse architectures. The aim was to improve physics-based simulations with machine
learning. In this instance, the input was an acceleration signal ranging from 0 to 1 Hertz.
However, the synthetic output signal reaches over 30 Hz and thus captures a wide range of
comprehensive data that is impossible using traditional methods.

1. Frequency accuracy. When assessing frequency accuracy, it is noteworthy that none of
the models precisely replicate amplitudes within the 0 to 1 Hz range. However, among
the models considered, MUST-ALICE demonstrates the lowest deviation from the original
signal.

2. Amplitude Fidelity. Analysis of amplitude fidelity reveals that both variants of ALICE
(shared and factorized latent space) better adhere to the amplitude values of the sig-
nals. This suggests that ALICE architectures are more effective in preserving amplitude
characteristics.

3. Temporal precision. Across different architectures, there is generally good adherence to
arrival times. However, ALICE with factorized latent space introduces more noise, and
MUST-ALICE exhibits a slight delay. Enveloping the amplitude differences mitigates the
significance of these variations.

4. One-to-one vs one-to-many mapping One-to-one mapping produces plausible signals,
while one-to-many mapping offers multiple valid solutions for the same input. Frequency
domain analysis helps understand how variants stay close to the original signals.
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(a) Variant 1 of Gy(x,N (0, I)) (b) Variant 2 of Gy(x,N (0, I)) (c) Variant 3 of Gy(x,N (0, I))

(d) Variant 4 of Gy(x,N (0, I)) (e) Variant 5 of Gy(x,N (0, I)) (f) Variant 6 of Gy(x,N (0, I))

(g) Frequency Filed of the different variants from splited latent space of BiCylceGAN

Figure 6.7: BiCycleGAN with split latent space. Seismogram CRU1 is used. We have presented
the multiple variants for direction UD as an example.
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(a) Variant 1 of
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(b) Variant 2 of
Gy(F
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xy(x),N (0, I))

(c) Variant 3 of
Gy(F
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xy(x),N (0, I))

(d) Variant 4 of
Gy(F

c
xy(x),N (0, I))

(e) Variant 5 of
Gy(F

c
xy(x),N (0, I))

(f) Variant 6 of
Gy(F

c
xy(x),N (0, I))

(g) Frequency Filed of the different variants from MUST

Figure 6.8: MUST with splitted latent space. Seismogram CRU1 is used. We have presented
the multiple variants for direction UD, as an example
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5. Computation Efficiency. In terms of computational efficiency, MUST-ALICE, ALICE,
and their variants are computationally intensive, requiring approximately ten times the
number of parameters compared to BicycleGAN and Pix2Pix. Training complexity and
model weight contribute to the resource-intensive nature of MUST-ALICE and ALICE.

6. Plausibility and Realism The overall method yields plausible outputs, with styles provid-
ing closer outputs, except for Pix2Pix. Pix2Pix is sensitive to the input form, introducing
unrealistic information into the signal.

6.3 Technical Improvement

6.3.1 Difficulty of Extraction of Data

In the STEAD database, all the signals are in the form of .h5py files. These files contain 3D
signals with a total of 6000 time steps. However, extracting and processing this data on a
single CPU is slow. We need more data to improve our models, but only a limited amount of
sequential extraction can be applied to this problem before it becomes too slow. So we need
to find a better way of solving this problem. A more efficient approach was needed, so we
developed an algorithm to process the extraction in parallel.

6.3.2 Parallel Extraction of Data

Our solution leverages the organizational structure of the STEAD database, which utilizes
pandas data frames. This unique organization facilitates the parallel extraction of the entire
dataset. Specifically, our goal is to extract 128,000 3D signals. Through the application of our
algorithm, a task that would originally demand over 20 days for completion can now be accom-
plished in just 20 minutes, utilizing the processing power of 80 CPU cores(View Figure 6.10).
The fundamental code implementing this process can be found in the Appendices, specifically
in Section A.3.1 and Section A.3.2. Figure 6.9 illustrates the algorithm’s performance to extract
data.

Figure 6.9: Computational time to extract 128,000 3D signal per number of CPUs. This
estimation times. Clearly explain the performance of our algorithm.
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Figure 6.10: Explanation of parallel processing of STEAD signal. We divide the dataset into
different chunks. Each chunk contains is allocated to a CPU. An amount of 3D accelerogram.
And is processed and output broadband, PBS, and the metadata

6.4 Conclusion

In the previous chapters, we have tested 5 different architectures. These architectures have
been tested on the subset of the Teil. The encoders and decoders have not trained another
time on the sub-set of the Teil. Among the various signals, we choose to present the result for
the captor on the nuclear powerplant. As input, we use the result simulation of Lehmann et al.,
2022 [322]. The different trained models on the STEAD database have proven that it is possible
to transform physic-based signal (PBS) to ground motion data. We transform acceleration
where the values in the frequency domain do not exceed 1Hz to output a synthetic signal rich
in frequency up to 30 Hz. The performance of the different models could be summarized as
follows:

• Signal-to-signal Translation has the advantage of producing realistic output consistent
with seismic recording but is highly sensitive to noise.

• SeismoALICE with shared latent space achieves better ground motion predictions than
Signal-to-Signal Translation. However, it is constrained to one-to-one mappings.



6.4. CONCLUSION 197

• SeismoALICE with split latent space could produce plausible one-to-many mappings but
introduce noise in this prediction.

• MUST-ALICE, also produce realistic one-to-many mapping, clearly predict the ground
motion. However, this latter reduces the noise in his prediction.

Our extensive testing on the Teil simulations highlights the effectiveness of these predictive
models for future earthquake engineering tasks.

One of the limitations of training complex models is ensuring they are fed with sufficient
data, particularly for intricate tasks. To address this challenge, we have investigated different
proper training methods with a reasonable amount of data. Given the task’s difficulty, we
found that more than 100,000 3D signals were essential for robust model performance. Our
investigation has proven that classic extraction cannot train 128,000 3D signals. We have,
therefore, solved the technical limitation by developing a parallel extraction algorithm. The
classical time to proceed with one CPU would take 480 hours (20 days); this time is reduced
with 80 CPUs parallel to 0.33h (20 minutes). This massive point of solution has helped us solve
overfitting issues and improve generalization and other difficulties in adversarial training.

Finally, Our findings have demonstrated the remarkable potential of our method to trans-
form low-frequency PBS into high-fidelity ground motion data, opening up new avenues for
seismic modeling and analysis. The development of our parallel extraction algorithm has fur-
ther enhanced the practicality and efficiency of our approach, paving the way for its broader
application in earthquake engineering.





Chapter 7

Conclusions and Perspectives

"We are on the threshold of an era
that will be strongly influenced,
and quite possibly dominated, by
intelligent problem-solving
machines."

— Marvin Minsky, 1961

7.1 Mapping physics-based into broadband signals

Faced with the limits of physics-based simulation to predict the output simulations with high
fidelity, we have explored in this manuscript how machine learning could help fill the gap left
by this strategy at high frequency. An adversarial generative framework was chosen to tackle
the problem and to improve the numerical simulations, assumed accurate enough in the 0-1 Hz
frequency range, to render realistic broadband (0-30 Hz frequency band) earthquake ground
motion synthetics while preserving the physics simulated at low frequency. Major challenges
related to time series super-resolutions have been thoroughly investigated. We have tested
the most suitable neural architectures and adapted the loss functions, explicitly tailored for
time series, to address various limitations arising from the original development of such image
techniques. These advancements have resulted in a more robust and comprehensive exploration
of signal-to-signal translation, allowing us to render multiple alternative realizations of realistic
broadband earthquake accelerograms. One key finding of this work is the effectiveness of a
discriminator structure incorporating a residual neural network, closely mimicking the encoder
structure. This architecture resulted in stability against adversarial training, contributing to
the overall success of our approach to signal-to-signal super-resolution translation. In this
sense, combining Focal Frequency Loss (FFL) and Hyper Spherical Loss (HSL), outperforms
traditional L1-norm or L2-norm for time series data. This combination improves scoring and
demonstrates that HSL can serve a dual role as both a loss function and a metric. These
findings highlight the importance of tailored architectures and cost functions in overcoming the
unique challenges of time series data manipulation. Also, to achieve the signal-to-signal super-
resolved translation, we tested five methods, namely Pix2Pix, SeismoALICE with shared latent
space, SeismoALICE with factorized latent space, BiCyleGAN, MUST, each characterized by
different advantages and limitations, that were thoroughly investigated.

With Pix2Pix, we have shown the feasibility of the direct one-to-one mapping x −−→
Gxy

y.

199
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This mapping was achieved by training a UNet architecture, capable of transforming the PBS
into a broadband realistic signal.

The novel approach introduced in SeismoALICE with shared latent space involves a single
encoder, denoted as Fxy, which compels latent values to be interpretable, so that two different
decoders, namely Gy and Gx can effectively generated both PBS and broadband record-like
time series. This innovative architecture imposes specific criteria on the entire neural network,
namely:

(i) broadband ground motion reconstruction Gy(Fxy(y));

(ii) physics-based simulation reconstruction Gx(Fxy(x);

(iii) hybrid mapping from physics-based simulation to ground-motion-like recordings
Gy(Fxy(x));

(iv) Hybrid mapping from ground-motion-like recordings to physics-based simulations Gx(Fxy(y));

(v) Unconditional generation of broadband realistic ground motion time histories Gy(zy);

(vi) Unconditional generation of physics-based numerical simulations Gx(zx)

In the SeismoALICE with factorized latent space, we enhance the architecture in order to
perform a one-to-many mapping, i.e. from one PBS x we could output an infinite number of
different hybrid acceleration time histories, that resembles the targeted broadband signal but
that preserve the low-frequency part of the spectrum learnt from the physics-based simulation.
The whole criteria to satisfy are :

(i) broadband ground motion reconstruction, Gy(F
yx
xy (y), F

yy
xy (y));

(ii) physics-based simulation reconstruction
Gx(F

xy
xy (x));

(iii) enforcing the consistency of the common features extracted from physics-based and broad-
band recorded signals
F xy
xy (x) = zxy ∼ F xy

xy (y) = zyx;

(iv) enforcing each distinct encoding to match normal distribution

(v) unconditional generation of broadband realistic ground motion time histories Gy(zy);

(vi) unconditional generation of physics-based numerical simulations Gx(zx);

(vii) conditional generation of many hybrid ground motion time series conditioned by low-
frequency physics-based simulations
Gy(x,N (0, I))

(viii) Enforcing phase alignment for one-to-many generation.

In the case of the BicycleGAN approach, tailored for signal-to-signal super-resolution trans-
lation, in addition to the UNet architecture that targets the broadband data, we introduce a
feature extractor, whose output is injected into the UNet layers. Such manipulation introduces
output variability and allows the network to achieve one-to-many mapping.

With MUST, we have pushed a step further the one-to-many mapping framework, towards
a more intuitive interpretation of the latent variables while satisfying the following criteria:
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Method Variational
Aspect

PBS and
Broadband

reconstructions

Complexity
of
the

training

Mapping
one-to-
many

Best
Hybrid

Reconstruct.
Sorce EG

Best
Hybrid

Reconstruct.
Score PG

Pix2Pix No No Low No 7.45± 0.79 8.63± 0.67
SeismoALICE
with
shared latent space

Yes Yes High No 5.95±0.78 7.73± 0.43

SeismoALICE
with
splitted latent space

Yes Yes High Yes 5.80 ± 1.07 8.32 ± 0.46

BicycleGAN No No Medium Yes 6.87 ± 1.28 8.08 ± 1.11
MUST No Yes High Yes 6.28± 0.6 8.24± 0.53

Table 7.1: Table of review of the different architectures developed to perform signal translation.

(i) broadband ground motion reconstruction, Gy(F
s
xy(y, F

c
xy(y));

(ii) physics-based simulation reconstruction, Gx(F
s
xy(x, F

c
xy(x));

(iii) conditional generation of many hybrid ground motion time series conditioned by low-
frequency physics-based simulations Gy(F

s
xy(y), F

c
xy(x);

(iv) enforcing consistency of each specific encoding branch through the pairs
x and y, F c

xy(y) ∼ F c
xy(x);

(v) unconditional generation of broadband realistic ground motion time histories Gy(F
c
xy(y),N (0, I))

7.2 Comparisons of Different methods
In Table 7.1, we have provided an overview of the various methods explored. The chosen criteria
encompass the variational aspect, i.e., assessing whether or not the method could target signals
in the database from a normal distribution. The "PBS and Broadband reconstructions" criterion
assesses whether the method achieved cycle consistency. The "Complexity of the training"
criterion is introduced to check if the training process included adversarial loss, reconstruction
loss, and regularization techniques. The "Mapping one-to-many" criterion is assessed based
on the method’s capability of hybrid generation, determining if the method can generate an
infinite number of signals resembling the targeted broadband signal from PBS at low frequency.
The final criterion is targeted as "Hybrid reconstruction", i.e. the envelope and phase GoF (EG
and PG respectively).

The analysis of the various signal-to-signal super-resolved translation frameworks highlights
the intricate nature of the task. The UNet architecture, while effective in targeting ground
motion data, is highly sensitive to noise, making it challenging to obtain accurate output when
imposing satisfactory variability. The BicycleGAN architecture can bypass this aspect, but
could also introduce irrelevant artifacts and thus struggles in handling large signal variations.
SeismoALICE with shared latent space introduces latent space interpretability but only ensures
one-to-one mapping; on the contrary, SeismoALICE with factorized latent space provides a
deeper insight of how the underlying probability distribution associated to earthquake time
histories can be transformed into a factorized normal one. MUST allows to perform a one-to-
many mapping and to capture common information present in both x and y. The variability
is introduced via the style branch, introducing better interpretability while preserving the
quality of the reconstruction for both broadband and PBS signals. Despite that enhancement,
this framework suffers from reconstruction error, because the mutual information −I(x; z) is
seemingly intractable. The results of our study suggest that it is feasible to fill the information
gap between 0-1 Hz and 1-30 Hz for earthquake time series, with plausible hybrid outputs.
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The employed architectures facilitated this transformation, showcasing their effectiveness in
handling the complexities inherent in the data and achieving the desired outcomes.

7.3 Perspectives
In future research endeavors, It could prove beneficial to investigate strategies aimed at max-
imizing the dependencies within data in its latent representation. The development of our ar-
chitecture uses advanced design for time series. Even though the quality of the reconstruction
has GOF from Good to Excellent, It could be valuable to improve Performance with advanced
Transformers techniques such as Cross-Attention, Chen et al., 2021[323]. Nowadays, diffusion
models are popular in literature as generative models for performing one-to-many mapping.
Future tests on the same dataset might be envisioned. Enhance physics-based constraints in
the training scheme is paved by our research with MUST-ALICE. Another constraint, as CLIP,
Patashnik et al., 2021[288], could be crucial in finding more similarity within the low-frequency
signal. Introducing metadata to condition the generation (Vs30, Mw, distance from the epi-
center, hypo center depth) would have better control on the generation of the data. It might
help interpolate in the regions where stored data is not present. This work might be seen
as a continuity of the work of Florez and collaborators [88]. Testing the results in a smaller
geographical area could give researchers and engineers the information they need for future
site-specific and structural analyses. One improvement of this thesis is the exploitation of HSL
to avoid data normalization. If, as an assumption, we normalize the broadband data, which
makes the PGA. The issues when manipulating non-normalized data might be avoided with
this loss. Our results on the earthquake of the Teil could serve for future tasks. Fine-tuning
the model with site-specific datasets will significantly improve the predictions and the GOF.



Appendix A

Experiments

A.1 Experiments ALICE

A.1.1 Simple Strategy Broadband

In this section we present the resul of the training of broadband signal using Hinge loss as
adversarial loss. Figure A.1.

A.1.2 Unified Strategy

We present results for the architecture Conformer+AdaIN+UNet. See Figure A.2.

A.2 Experiments Pix2Pix

A.2.1 Test on Captor of Teils

The test about Teils in the Figure A.5 and Figure A.6

A.3 Database Files
The code for the parallelization the extraction of the STEAD database

A.3.1 STEAD Extractions

1 import os
2 import h5py
3 from tqdm import tqdm , trange
4 import torch
5 import pandas as pd
6 import numpy as np
7 import multiprocessing
8 import concurrent.futures
9 from configuration import app

10 import scipy.signal as signal
11 from tools.generate_noise import lowpass_biquad
12 from scipy.signal import detrend , windows
13

14 class STEADExtractorDataset ():

203
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(a) Adversarial solution for ALICE (b) Hyper Spherical Loss (HPS)

(c) Focal Frequency Loss (FFL) (d) Kolmogorov-Smirnov Test

(e) Presenting the score for real and for fake probability distribution captured during the training.

Figure A.1: Adversarial Solution Training. In (a) represent the Adversarial loss, the optimal
solution is 2 the loss remain close to the optimal solution due to TTUR dynamic training. In
(b) we present the HSL of quality of reconstruction, the optimal solution is getting close to 0,
which is the norma behavior. In (c) We give the FFL loss. We found a small overfitting of the
loss, the theorical optimal solutions is 0. In (d) We present the Kolmogorov-Smirnov Test to
evaluate the quality of the targeted distribution, Fy(y) that should be Gaussian. The ordinate
value is the probability of the distribution being a Gaussian distribution.

15 def __init__(self , opt):
16 super(STEADExtractorDataset , self).__init__ ()
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(a) Variant 1 (b) Variant 2 (c) Variant 3

(d) Variant 4 (e) Variant 5 (f) Variant 6

(g) Frequency representation for 32 variants generated from the same x. Architecture : Conformer

Figure A.2: Multi-modal generation for the seismic data. The input x, the high-frequency
encoding aspect is replaced by a Gaussian distribution, N (0, I). The generated output should
produce an infinity values likelihood to the targeted broadband data. Gy(cat(Fxy(x),N (0, I)) ∼
{y0,y1, ...,y∞}.

17 self.opt = opt
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18 self.src = opt.dataroot
19 self.features = self.get_features ()
20 self.meta_data_magnitude= None
21 self.meta_data_depth = None
22 self.meta_data_pga = None
23 self.broadband_dataset = None
24 self.lowpass_dataset = None
25 self.highpass_dataset = None
26 self.filter_coef = None
27 self.workers = int (0.9* multiprocessing.cpu_count () -1)
28 app.logger.info(f"number of workers :{self.workers +1}")
29 app.logger.info(f"number of 3D-signals :{self.opt.nsy}")
30

31 def replace_file_extension(self):
32 *directories , last = self.src.split(’/’)
33 last = last.replace(’waveforms ’, ’metadata ’).replace(’hdf5’, ’csv’)
34 new_path = ’/’.join(directories + [last])
35 return new_path
36

37 def parse_h5py_files(self):
38 new_path = self.replace_file_extension ()
39 eqm = pd.read_csv(new_path)
40 eqm = eqm.loc[eqm[’trace_category ’] == ’earthquake_local ’]
41 eqm = eqm.loc[eqm[’source_magnitude ’] >= 3.5]
42 eqm = eqm.sample(frac=self.opt.nsy/len(eqm)).reset_index(drop=True)
43 w = windows.tukey(self.features[’ntm’] ,5/100)
44

45 return eqm , w
46

47 def get_dataframe_from_stead(self , eqm):
48 # Open the H5 file containing the waveform data
49 with h5py.File(self.src , ’r’) as f:
50 # Create an empty DataFrame to store the waveform data
51 dfs = []
52

53 # Iterate through the rows of the eqm DataFrame
54 for i, row in eqm.iterrows ():
55 # Get the trace name and p_arrival_sample value for this row
56 tn = row[’trace_name ’]
57 bi = int(row[’p_arrival_sample ’])
58

59 # Extract the waveform data for this trace name from the eqd
H5 file

60 waveform = f[’earthquake ’][’local’][tn][:]
61

62 # Create a new DataFrame with the waveform data and the
p_arrival_sample value

63 df_row = pd.DataFrame(waveform , columns =[’{}_{}’.format(tn ,
j) for j in range(waveform.shape [1])])

64 df_row[’trace_name ’] = tn
65 df_row[’p_arrival_sample ’] = bi
66

67 # Append the new DataFrame row to the main DataFrame
68 dfs.append(df_row)
69 df = pd.concat(dfs , ignore_index=True)
70 return df
71

72
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73 def get_features(self):
74 md = {’dtm’:0.01,’cutoff ’:self.opt.cutoff ,’ntm’:self.opt.imageSize}
75 md[’vTn’] = np.arange (0.0 ,3.05 ,0.05 , dtype=np.float64)
76 md[’nTn’] = md[’vTn’].size
77 return md
78

79 def process_broadband_data(self , args):
80 start_idx , end_idx , src , opt , eqm , w = args
81 with h5py.File(src , "r") as eqd:
82 results = []
83 _eqd = eqd[’earthquake ’][’local’]
84

85 for i in tqdm(range(start_idx , end_idx), desc="sub processing
datum", position=1, leave=False):

86 tn = eqm.loc[i,’trace_name ’]
87 magnitude = eqm.loc[i,’source_magnitude ’]
88 depth = eqm.loc[i,’source_depth_km ’]
89 bi = int(_eqd[tn].attrs[’p_arrival_sample ’])
90 dataset = np.zeros((3,opt.imageSize))
91 lowpass_dataset = np.zeros((3,opt.imageSize))
92 pgat_set = np.zeros ((3))
93 for j in range (3):
94 data = detrend(_eqd[tn][bi:bi+opt.imageSize , j]) * w
95 pgat = np.abs(data).max()
96 dataset_view = dataset[j, :]. view()
97 lowpass_dataset_view = lowpass_dataset[j, :]. view()
98 dataset_view [:] = data / pgat
99 lowpass_dataset_view [:] = self.filter_data(dataset_view

[:], type=’low’)
100 pgat_set[j] = pgat
101 results.append ((dataset , lowpass_dataset , pgat_set ,

magnitude , depth))
102 return results
103

104 def process_extractions(self , eqm , w):
105 with concurrent.futures.ProcessPoolExecutor(max_workers=self.workers

) as executor:
106 futures = []
107 chunk_size = len(eqm.index) // self.workers
108 chunks = [(i*chunk_size , (i+1)*chunk_size , self.src , self.opt ,

eqm , w) for i in range(self.workers -1)]
109 chunks.append ((( self.workers -1)*chunk_size , len(eqm.index), self

.src , self.opt , eqm , w))
110 for chunk in tqdm(chunks , total=len(chunks), desc="processing

broadband", position =0):
111 futures.append(executor.submit(self.process_broadband_data ,

chunk))
112

113 results = []
114 completed = set()
115 remaining = set(futures)
116 pbar = tqdm(total=len(futures), desc=’collecting broadband ’)
117 while remaining:
118 done , remaining = concurrent.futures.wait(remaining ,\
119 return_when=concurrent.futures.FIRST_COMPLETED)
120 completed.update(done)
121 for future in done:
122 content = future.result ()
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123 results.append(content)
124 pbar.update (1)
125 pbar.close ()
126 data_list , pgat_list = [], []
127 lowpass_list = []
128 magnitude_list , depth_list = [], []
129

130 for i, content in enumerate(results):
131 for data , low , pgat , magnitude , depth in content:
132 data_list.append(data)
133 lowpass_list.append(low)
134 pgat_list.append(pgat)
135 magnitude_list.append(magnitude)
136 depth_list.append(float(depth))
137

138 dataset = torch.stack([torch.from_numpy(data) for data in
data_list ])

139 pgat_set= torch.stack ([torch.from_numpy(pgat) for pgat in
pgat_list ])

140 lowpass_set = torch.stack([ torch.from_numpy(low) for low in
lowpass_list ])

141

142 magnitude_set = torch.tensor(magnitude_list)
143 depth_set = torch.tensor(depth_list)
144 executor.shutdown ()
145 self.broadband_dataset = dataset
146 self.meta_data_pga = pgat_set
147 self.meta_data_depth = depth_set
148 self.meta_data_magnitude = magnitude_set
149 self.lowpass_dataset = lowpass_set
150

151 def filter_data(self , data , type=’low’):
152 # Apply lowpass filter to each channel of data using pre -built

filter coe fficients
153 # If filter coefficients have not been initialized , initialize

them
154 nyquist_freq = 0.5 / self.features[’dtm’]
155 cutoff_freq = self.features[’cutoff ’] / nyquist_freq
156 filter_coef = signal.butter(4, cutoff_freq , btype=type , output=’sos’

)
157

158 filtered_data= signal.sosfilt(filter_coef , data)
159

160 # Additional processing steps here ...
161 return filtered_data
162

163 def low_pass_filter_biquad(self , data):
164 return lowpass_biquad(data ,1./ self.features[’dtm’],self.features[’

cutoff ’])
165

166 def process_filtered_data(self , data_chunk):
167 return (self.filter_data(data_chunk ,type=’low’), self.filter_data(

data_chunk , type=’high’))
168

169 def save_broadband_dataset(self):
170 if not os.path.exists(self.opt.outf+"temporary"):
171 os.makedirs(self.opt.outf+"temporary/")
172 app.logger.info("Saving the broadband temporary file ...")
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173 torch.save(self.broadband_dataset , self.opt.outf+"temporary/
broadband.pt")

174

175

176 def save_filtered_dataset(self):
177 if not os.path.exists(self.opt.outf+"temporary"):
178 os.makedirs(self.opt.outf+"temporary/")
179 app.logger.info("Saving the filtered temporary file ...")
180 torch.save(self.lowpass_dataset , self.opt.outf+"temporary/lowpass.pt

")
181 torch.save(self.highpass_dataset , self.opt.outf+"temporary/highpass.

pt")
182

183

184 def save_meta_data(self):
185 if not os.path.exists(self.opt.outf+"temporary"):
186 os.makedirs(self.opt.outf+"temporary/")
187 app.logger.info("Saving the eqm file ...")
188 torch.save(self.meta_data_magnitude , self.opt.outf+"temporary/

meta_data_magnitude.pt")
189 torch.save(self.meta_data_depth , self.opt.outf+"temporary/

meta_data_depth.pt")
190 torch.save(self.meta_data_pga , self.opt.outf+"temporary/

pga_broadband.pt")
191

192

193 def extract(self):
194 eqm , w = self.parse_h5py_files ()
195 self.process_extractions(eqm , w)
196 self.save_broadband_dataset ()
197 self.save_meta_data ()
198 self.save_filtered_dataset ()

Listing A.1: Python code for the extraction of the STEAD database

A.3.2 STEAD Loader

1 import torch
2

3 class STEADSetterDatateset(torch.utils.data.Dataset):
4 def __init__(self , opt):
5 super(STEADSetterDatateset , self).__init__ ()
6 torch.manual_seed (100)
7 self.opt = opt
8 self.broadband_dataset = torch.load(self.opt.dataroot+"

temporary/broadband.pt")
9 self.lowpass_filter_dataset = torch.load(self.opt.dataroot+"

temporary/lowpass.pt")
10 self.meta_data_depth = torch.load(self.opt.dataroot+"

temporary/meta_data_depth.pt")
11 self.meta_data_magnitude = torch.load(self.opt.dataroot+"

temporary/meta_data_magnitude.pt")
12 self.pga_broadband = torch.load(self.opt.dataroot+"

temporary/pga_broadband.pt")
13

14 def __len__(self):
15 return len(self.broadband_dataset)
16

17 def __getitem__(self ,index):
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18 broadband = self.broadband_dataset[index ,:,:]. float ()
19 lowpass = self.lowpass_filter_dataset[index ,:,:]. float ()
20 depth = self.meta_data_depth[index ].float ()
21 magnitude = self.meta_data_magnitude[index]. float ()
22 pga = self.pga_broadband[index ,:]. float()
23

24 return broadband , lowpass , pga , depth , magnitude
25

26

27 def get_dataset(opt , dataset=STEADSetterDatateset , batch_size =1, rank = 0,
world_size = 1):

28 _dataset = dataset(opt)
29

30 train_part , vld_part = int (0.80* len(_dataset)), int (0.10* len(_dataset))
31 tst_part = len(_dataset) - train_part - vld_part
32

33 train_set , vld_set , tst_set = torch.utils.data.random_split(_dataset ,
[train_part ,vld_part ,tst_part ])

34

35 # define DataLoader
36 batch_size = opt.batchSize # adjust batch size according to

GPU type (16GB or 32GB in memory)
37 drop_last = True # set to False if it represents

important information loss
38 num_workers = opt.workers # adjust number of CPU workers

per process
39 persistent_workers = True # set to False if CPU RAM must be

released
40 pin_memory = True # optimize CPU to GPU transfers
41 prefetch_factor = 2 # adjust number of batches to

preload
42 shuffle = True # set to True to have the data

reshuffled at every epoch
43

44 trn_loader = torch.utils.data.DataLoader(dataset=train_set ,
45 batch_size=batch_size ,
46 drop_last=drop_last ,
47 num_workers=num_workers ,
48 persistent_workers=persistent_workers ,
49 pin_memory=pin_memory ,
50 prefetch_factor=prefetch_factor ,
51 shuffle=shuffle ,
52 )
53

54 vld_loader = torch.utils.data.DataLoader(dataset=vld_set ,
55 batch_size=batch_size ,
56 drop_last=drop_last ,
57 num_workers=num_workers ,
58 persistent_workers=persistent_workers ,
59 pin_memory=pin_memory ,
60 prefetch_factor=prefetch_factor ,
61 shuffle=shuffle ,
62 )
63

64 tst_loader = torch.utils.data.DataLoader(dataset=tst_set ,
65 batch_size=batch_size ,
66 drop_last=drop_last ,
67 num_workers=num_workers ,
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68 persistent_workers=persistent_workers ,
69 pin_memory=pin_memory ,
70 prefetch_factor=prefetch_factor ,
71 shuffle=shuffle ,
72 )
73

74 return trn_loader , vld_loader , tst_loader

Listing A.2: Python code to load the STEAD database
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Figure A.3: SeismoALICE with splitted latent space. Seismogram OGCB is used. We have
presented the multiple variant for direction UD, as example
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Figure A.4: SeismoALICE with splitted latent space. Seismogram OGDF is used. We have
presented the multiple variant for direction UD, as example
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(a) NS (b) EW (c) UD

Figure A.5: Result for for the seismogram OCB for the simulation of Teil

(a) NS (b) EW (c) UD

Figure A.6: Results for for the seismogram OGDF for the simulation of Teil. The generation
is poor because there is a factor of 10 difference between the PBS amplitude and that of the
broadband signal.
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