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1.1 Context

Our current society is characterized by a strong dynamic of movement, whether as
an essential component of human health or within a multitude of sports disciplines
where each athlete aspires to excellence and performance. Movement is thus at the
core of numerous scientific studies.

The work presented in this manuscript was conducted within the EuroMov
Digital Health in Motion (EuroMov DHM) interdisciplinary research lab, whose
research orientations pertain to the study of human sensorimotor plasticity. The
lab comprises experts in movement sciences, physicians, and other healthcare pro-
fessionals, as well as experts in computer science and artificial intelligence. The
main objective of EuroMov DHM is to understand the sensorimotor signatures
of physical and mental health in humans through innovative computational ap-
proaches in order to enhance the quality of life, health and well-being, as well as to
help with the functional rehabilitation of patients after musculoskeletal disorders,
stroke or neurodegenerative illnesses.
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Motion-Language processing constitutes an emerging field within computer vi-
sion, with evident links to cognitive science, computational linguistics and knowl-
edge engineering, robotics, social computing. The current prism of study of the in-
terplay between motion and language is mainly focused on preliminary exploratory
investigations pertaining to the general association between close descriptions of
the movements and its parameters, mainly motion capture. The task of Motion to
Language mapping or translation consists of mapping sensor-motion parameters
(e.g., MoCap) to natural language descriptions. Currently, few datasets include
direct motion-to-description correspondences, enabling the use of supervised ma-
chine learning, mainly the KIT Motion-Language Dataset (KIT-ML) (Plappert et al.,
2016) and HumanML3D (Guo et al., 2022a).

The literature provides an extensive research focused on generating motion
from language, as detailed in the survey (Zhu et al., 2023b), but relatively few stud-
ies have been dedicated to the reverse direction: motion to language (Guo et al.,
2022b; Plappert et al., 2018). Moreover, these tasks have traditionally been ap-
proached as a global mapping between motion and an overall description. How-
ever, the semantic analysis of human motion calls for a more fine-grained mapping
that involves decomposing both motion and language. Solving this task enables
the aligned transcription of human motion, with diverse applications, particularly
in sign language research. Furthermore, the captioning of images or videos has in-
troduced interpretable designs, identifying zones that contribute most, especially
with the introduction of adaptive and guided attention approaches. However, in-
terpretability analysis remains unexplored in the context of motion-language map-
ping.

The thesis defended in this context primarily focuses on text genera-
tion through interpretable architectures for the analysis and semantic
segmentation of human motion and its applications. The goal is to
enable the unsupervised resolution of related tasks such as synchro-
nization between motion and text, spatio-temporal identification of
elements describing a primitive of human motion.

1.2 Human motion understanding

There are different ways to interpret human motion, but they differ in the level of
richness in information. In this context, the representation of movement can take
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various forms and involve numerous parameters, and many research questions
could be raised towards this goal of human movement understanding.

Why do we need to represent motion? Generally, the process of analyzing hu-
man motion involves a quantification step, which is strictly necessary for motion
analysis using machine learning methods. These methods are implemented in a
wide range of applications, such as detecting anomalies, monitoring the progress
of patients in physical rehabilitation, providing recommendations for sports per-
formance improvement, and ensuring athlete monitoring to prevent injuries (Song
et al., 2023). They are also employed in virtual reality and robotics contexts to de-
velop systems that mimic human movements. In this context, the use of machine
learning leveraging 2D and/or 3D joint coordinates has been widely adopted for
human motion analysis across various levels of granularity, ranging from simple
action recognition (Qin et al., 2022) to detailed motion description using natural
language (Plappert et al., 2018; Guo et al., 2022b).

What parameters allow the representation of movement? There are several
methods for representing movement. The first method involves using sensors
placed on the human body to collect kinematic data describing the movement.
More precise technique rely on the use of Motion Capture system to obtain the
global spatial position of human pose. However, motion capture systems are usu-
ally expensive and not practical in all scenarios. Less expensive methods relies
on using video data for estimating movement parameters, like 2D pose estimation
(Xu et al., 2022; Cao et al., 2019) and 3D pose estimation systems (Wang et al., 2021).
Other works propose utilizing the human pose data to learn more robust and deep
representations (Zhu et al., 2023a). Invariant measures, could also be used, either
computed manually (Takano and Lee, 2020) or learned, such as in (Yang et al.,
2022; Li et al., 2020, 2018). These motion representations, incorporating invariance
properties, are useful for reducing variability between movements representing
the same action, which can facilitate action recognition. Chapter 2 will present a
detailed review on techniques of human motion quantification through pose esti-
mation. Other representations are build on the top of estimated poses or Mocap
data. The human pose in motion is also a natural graph evolving in time. This in-
herent characteristic allows the use of spatio-temporal encoding (Salih et al., 2016;
Chi et al., 2022). In our context, some of these relevant representation will be dis-
cussed in detail with some applications in Chapter 3.

The semanticization of human motion is at the core of this thesis. The human
motion interpretation could take different forms. Focusing on motion to language
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mapping, we will first provide a brief analysis of the works done in this context
and highlight the limitations, some of which will be addressed in this manuscript.

Understanding human motion through motion-language mapping. For exam-
ple, motion generation could be conditioned on a sequence of continuous actions
(Lee et al., 2023) (Figure 1.1b), or conditioned on descriptive text of human action
and the studied scene (Wang et al., 2022) (Figure 1.1c). In this manuscript, we take
particular focus on the natural description of human motion, represented as a se-
quence of poses. From this perspective, the literature provides numerous works
that aim to create a mapping between motion and language. In this field, earlier
work was introduced by (Plappert et al., 2018), exploring the bidirectional genera-
tion of both motion and text (Figure 1.1a) based on bidirectional recurrent models.
More recently, both modes of generation have been addressed by (Toyoda et al.,
2022; Guo et al., 2022b). Focusing on motion generation, a variety of techniques
have been applied. (Ghosh et al., 2021) propose motion synthesis (text-driven
animation) using Gated Recurrent Units (GRUs). Advanced techniques leverage
transformers (Vaswani et al., 2017). For instance, (Petrovich et al., 2022) encode
motion and text through a transformer employing the learning concept of Varia-
tional AutoEncoder (VAE) (Kingma and Welling, 2022). The VAE was also used
in other works (Guo et al., 2022a). More recently, (Zhang et al., 2023) proposed an
architectural design incorporating a generative model based on VQ-VAE (Vector
Quantized-Variational Autoencoder) (van den Oord et al., 2017). (Chen et al., 2023)
uses the diffusion mechanism to generate motion conditioned on text or action.
Consequently, the motion generation from text has seen diverse contributions.

Limitations. However, in contrast to motion generation, very few investigations
delve into the inverse process: motion captioning. Among the approaches proposed
in the literature, a portion of the work by Takano stands out, employing methods
that mostly revolve around the Hidden Markov Model (HMM) applied to a spe-
cific databases (DB) of similar natures (Takano et al., 2016; Takano and Lee, 2020;
Takano et al., 2020).

Moreover, all prior works in the field of motion-language mapping approach
this task holistically and do not offer semantic analysis and segmentation of the
movement, nor discuss the interpretability and trustworthiness of model predic-
tions. In contrast to the existing narrow focus on motion captioning, our objective
is to generate a semantic segmentation and interpretable description of human motion. In
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pursuit of this challenging goal, the manuscript tackles text generation through in-
terpretable architectures, designed for the analysis and semantic segmentation of
human motion.

(a) Bidirectional motion-language mapping (Plappert et al., 2018).

(b) Description using successive action names
(Lee et al., 2023).

(c) Scene-dependent description (Wang et al.,
2022).

FIGURE 1.1: Three different forms of motion semanticization.

1.3 Goals

Human movement processing applications require specific tools and methodolo-
gies. This involves extracting movement data from video/images or utilizing mo-
tion capture, preprocessing the data into standardized formats, and learning rich
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movement representations. Before delving into our main contributions, it is essen-
tial to comprehensively cover these preliminary aspects and gain firsthand expe-
rience. Consequently, the manuscript is organized into two parts. The first one
surveys state-of-the-art pose estimation and representation approaches, showcas-
ing applications on real-world tasks. Resting on the rich literature laid out in part
I, the part II addresses our main research problem from various complementary
perspectives. More precisely:

Part I, reviews the parametric characterization of human motion through pose
estimation. Subsequently, it analyzes the performance differences between the es-
timated data and Motion Capture (MoCap). In this context, we use human pose
data for protective behavior detection (Olugbade et al., 2021) representing an applica-
tion in the medical domain, with particular emphasis on model interpretability.

Part II, mainly focuses on solving the task of motion captioning from different
perspectives. Starting with an incremental analysis leading to synchronized cap-
tioning, we then, propose unsupervised solutions for semantic motion segmenta-
tion with relevant metrics for quantitative evaluation. From a second perspective,
we focus more on the interpretability on both temporal and spatial levels. As re-
sults, we formulate general methodologies to design an interpretable architecture
for captioning. These proposed methodologies are demonstrated in the task of mo-
tion captioning through multiple specific experiments that aim to evaluate both the
quality of the generated text and the interpretability of the model.

1.4 Challenges

Addressing the task of motion captioning, with semantic segmentation and inter-
pretability goals, involves overcoming several challenges. From this perspective,
various research questions naturally arise:

How to interpret motion? Is it possible to explain motion automatically as a
human would?

Understanding and interpreting human motion pose significant challenges for
researchers. Existing methods for interpreting human motion are limited, as they
do not always allow for precise and comprehensive interpretation of motion. This
limitation may arise from the complexity of human motion and the difficulty in
translating the subjective experience of motion interpretation into an automated
process. This interpretation can be graded across various levels of granularity,
ranging from the overall description of the movement, such as action recognition
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(e.g., jumping, walking), to the detailed description of each component involved
in the movement: body parts engaged in the motion (e.g., arms, legs), nature of
the movement (e.g., bending, placing, lifting), and the manner of execution (e.g.,
speed). Figure 1.2 provides an example of graduated granularity definition across
three levels: 0) recognition of the overall motion; 1) detection of parts involved in
executing the motion; 2) identification of the relative movement of each part.

FIGURE 1.2: Example of motion level semanticization (Dreher et al.,
2017).

How to understand and decompose motion through its temporal and spatial
components ?

Understanding human motion requires an analysis in terms of its temporal and
spatial components. Human movements can be decomposed into different parts,
such as body segments, joints, linear or circular motions, etc. Temporal decom-
position can also include the duration of the movement, speed, acceleration, etc.
To understand and decompose human motion, it is necessary to first define what
constitutes a decomposition in relation to the semantic analysis of motion. Both
forms of decomposition can be defined in our context as follows:

Temporal Decomposition: Decomposition of motion along the temporal axis is
akin to a segmentation process where each temporal phase identifies a basic move-
ment (primitive). The set of primitives then composes the overall motion.

Spatial Decomposition: Concerning the spatial dimension, it involves identifying
the body parts involved in forming each basic movement and their position in
space.

What architecture is best suited to semanticize motion?
The definition of the architecture relies on the definition of motion semanticiza-

tion. In this manuscript, motion semanticization is defined as the result of associ-
ating temporal and spatial decompositions applied to human motion. Thus, the
objective of the architecture is to represent the different components of motion in
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a way that makes them interpretable. It must also associate these different compo-
nents with semantic concepts, such as actions and description in natural language.

1.5 Publications

In the following, we list all the research papers written during the thesis:

• Radouane, K., Tchechmedjiev, A., Xu, B., Harispe, S. Comparison of Deep
Learning Approaches for Protective Behaviour Detection Under Class Imbal-
ance from MoCap and EMG data. (Winner of AffectMove Challenge 2021).
In 9th International Conference on Affective Computing and Intelligent Inter-
action Workshops and Demos (ACIIW). (Radouane et al., 2021)

• Radouane, K., Tchechmedjiev, A., Lagarde, J., Ranwez, S. Motion2language,
unsupervised learning of synchronized semantic motion segmentation. In
Neural Computing and Applications, 2023. (Radouane et al., 2023a)

• Radouane, K., Lagarde, J.,Ranwez, S., Tchechmedjiev, A. Guided Attention
for Interpretable Motion Captioning. Under review, 2024. (Radouane et al.,
2023b)

This manuscript does not include material from our following paper:

• Radouane, K., Lagarde, J.,Ranwez, S., Tchechmedjiev, A. Transformer with
Controlled Attention for Synchronous Motion Captioning. Under review, 2024.

1.6 Outline

In the following, we provide details about the challenges that will be addressed in
each part and the corresponding chapters:

Part I: Human pose estimation and applications. This part include two chap-
ters:

Chapter 2, dedicated to pose estimation, details various techniques that can
be used to quantify and represent human movement. The goal is to determine
whether the estimated data can substitute for motion capture through the analysis
of 2D pose estimation systems and 3D reconstruction.



1.6. Outline 19

Chapter 3 discuss relevant methods for action recognition, with a first contri-
bution applying a deep learning architecture in the medical domain, specifically
for protective behavior detection.

Part II: Human motion captioning and segmentation. This part includes three
chapters:

Chapter 4 discusses the motion representation methods for motion-language
mapping. In this context, we introduce the second contribution of this thesis,
which aims to enable synchronized text generation with human action times. This
process involves temporal segmentation of movement using attention mechanisms.

Chapter 5 constitutes the third contribution, proposing the quantitative and
qualitative analysis of semantic segmentation of human movement inferred from
attention weights. To evaluate the performance of this segmentation, several met-
rics are proposed and compared, followed by the determination of relevant meth-
ods for visualizing the synchronization between movement and language. Next,
we describe our construction of the first part of the dataset called Euromov Motion
Language Dataset (EMLD) as a preliminary step towards supervised segmentation.

Chapter 6 details the fourth major contribution, where we propose an inter-
pretable architecture design for motion captioning based on guided spatio-temporal
attention mechanisms. Then, we provide tools for interpretability analysis on
quantitative and qualitative levels.

Conclusion and perspectives. Chapter 7 provides a final summary of the thesis
contributions, potential applications of the proposed methodologies, as well as
perspectives for improvement and impact analysis of the present work on other
related tasks and domains.
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2.1 Introduction

In the domain of computer vision and robotics, capturing and comprehending hu-
man motion is a fundamental challenge. A popular technique that has revolu-
tionized the field is human pose estimation, which involves determining the spa-
tial configuration of a person’s body from visual data. By accurately estimating
the positions of human articulations, or the positions and orientations of human
body parts, pose estimation enables a myriad of applications such as in health
care, anomaly detection (Markovitz et al., 2020), and sports analysis. For example,
it can be used to track and analyze the movements of athletes in sports training
or performance analysis (Badiola-Bengoa and Mendez-Zorrilla, 2021), or to enable
gesture-based interfaces in human-computer interaction (Gu et al., 2019), and for
human-robot interaction (Óscar G Hernández et al., 2021). Another interesting ap-
plication domain is the healthcare, as in the work (Lu et al., 2020) authors uses a
sequence of poses as input for a classification network to measure the severity of
Parkinson disease.

This chapter focuses on a comprehensive introduction to pose estimation, shed-
ding light on its significance, underlying methodologies, and the diverse domains
it permeates. Firstly, we present some examples of datasets used for learning
human pose estimation under the fundamental principles and challenges associ-
ated with pose estimation, including occlusion, varying viewpoints, and the com-
plexities of human body articulation (Section 2.2). Then we present the classi-
cal architectures in comparison with more recent advanced approaches, mostly
transformer-based (Section 2.3). Subsequently, we discuss the most widely used
metrics to assess the quality of pose estimation systems (Section 2.4). Next, we
compare the pose estimation performance of previous research (Section 2.5) and
discuss the limitations of these previous works in the context of real scenarios (Sec-
tion 2.6). Finally, we conducted experiments to measure the precision gap between
MoCap (Motion Capture) and estimated pose data. This involved running action
recognition tasks separately on both data sources and discussing the impact on
recognition performance (Section 2.7).

2.2 Example of datasets

There are several publicly available databases that can be used for human pose
estimation research and development. These databases contain annotated images
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and videos of human poses, which can be used to train and evaluate pose estima-
tion algorithms. Some of the most popular databases include:

COCO (Common Objects in Context) dataset (Lin et al., 2014): The COCO
dataset is one of the most widely used datasets for human pose estimation. It con-
tains over 200,000 images with more than 250,000 person instances annotated with
keypoints. The dataset covers a diverse range of activities, poses, and occlusions,
making it suitable for training robust pose estimation models. Figure 2.1 illustrates
the content of this dataset with some images.

MPII Human Pose dataset (Andriluka et al., 2014): The MPII Human Pose
dataset consists of around 25,000 images taken from YouTube videos. It provides
annotated keypoints for over 40,000 poses in challenging real-world scenarios. The
dataset includes a wide variety of activities and viewpoints, making it valuable for
evaluating pose estimation algorithms under realistic conditions. The poses are
annotated with 16 or 28 key points, depending on the version of the dataset.

Human3.6M Dataset (Ionescu et al., 2014a): The Human3.6M dataset is a large-
scale benchmark for 3D human pose estimation. It contains around 3.6 million
RGB images captured by several cameras, covering a range of indoor activities.
The dataset provides highly accurate 3D annotations for 17 body joints, making it
valuable for research on 3D pose estimation.

Leeds Sports Pose dataset (Johnson and Everingham, 2010): This dataset con-
tains over 1,000 images of athletes performing various sports activities (badminton,
baseball, gymnastics, parkour, soccer, tennis, and volleyball), with annotated 2D
joint positions.

PoseTrack Dataset (Andriluka et al., 2018): The PoseTrack dataset is specif-
ically designed for multi-person pose tracking, which involves estimating poses
over consecutive frames. It consists of challenging video sequences with many
people engaged in diverse activities. This dataset provides annotations for both
pose keypoints and instance-level tracking, enabling research in temporal pose es-
timation.

These datasets provide a rich resource for developing and evaluating human
pose estimation algorithms, and have contributed significantly to the recent progress
in this field.

There are different skeletal formats depending on the dataset being used, as
shown in Figure 2.2. The format differences make it difficult to transpose an ar-
chitecture from one dataset to another. Additionally, every dataset comes with dif-
ferent environment challenges and settings (occlusion, multi-person, multi-view).
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FIGURE 2.1: Example of COCO Keypoints (Lin et al., 2014).

The Human36M (Figure 2.2a) has been widely used for 3D pose estimation, where
the LSP (Figure 2.2b) and MPII (Figure 2.2c) are more specific to 2D keypoints de-
tection. The Posetrack (Figure 2.2) is a more challenging real-world dataset that
involves pose estimation and tracking of individuals in video scenes.

2.3 Pose estimation techniques

In this section, we will explore different combinations of systems employed for hu-
man pose estimation. The process of pose estimation involves addressing various
factors such as environmental constraints, intended applications, challenges posed
by the database, and the presence of occlusion phenomena. Similar to common
categorization practices, we can classify the approaches into two distinct types:

Top-down approach. First the image is divided into regions of interest (ROI)
corresponding to individual people, and then pose estimation is performed on
each of these regions separately. To extract these regions there are multiple possible
methods, one popular technique is to apply the object detection system to locate
people in the image with a bounding box. Then, the pose estimator detect the
keypoints corresponding to each person in the given region.

Bottom-up approach. Firstly, all the keypoints present in the input image
are detected. This is usually done using a convolutional neural network (CNN)
trained on a large dataset of annotated human images. Once the keypoints are de-
tected, they are grouped into individual poses based on their spatial relationships
(Geng et al., 2021).
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(a) Human3.6M format (Ionescu et al., 2014b). (b) LSP format (Johnson and Everingham,
2010).

(c) MPII format (Andriluka et al., 2014). (d) PoseTrack format (Andriluka et al., 2018).

FIGURE 2.2: Different pose estimation dataset formats.

Bottom-up vs Top-down. In Figure 2.3 we synthesize the two approaches pro-
cesses. In comparison, Bottom-up approaches have the advantage of being able to
handle complex scenes with multiple people and occlusions, as they do not require
prior knowledge about the number or location of people in the image. However,
they may be less accurate than top-down approaches on images with a few well-
defined individuals. Regarding the time of execution, it varies depending on the
specific method used. In general, when there are few people in the scene, top-
down approaches may be faster than bottom-up approaches, since they only need
to perform pose estimation on a few regions of interest. However, as the number
of people in the scene increases, the time required for top-down methods can grow
quickly, since the pose estimation should be performed on each region separately.
Bottom-up approach can be more efficient in this case for a larger number of indi-
viduals in the scene, as they do not rely on object detector, so the pose estimation
is done at once for all individuals.
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FIGURE 2.3: Overview: Top-down vs. bottom-up approach for HPE.

Single-person vs multi-person. In the context of human poses estimation,
there are two possible scenarios. The first one is Single Person pose estimation, which
represents the simplest case of dealing with the pose estimation problem where
only one person is present in the input image. The second is the Multi-Person pose
estimation where images contain several individuals, this is often the case in real-
world scenarios. In human pose estimation for multi-person images, we start to
differentiate between bottom-up and top-down approaches. With the top-down
approach, the system developed for single-person estimation can be applied to
each person present in the image, where the person is identified by the bound-
ing box provided by the chosen object detector. However, multi-person pose esti-
mation is a complex problem that presents challenges such as occlusions, varying
body shapes and sizes, and interactions between individuals. Therefore, it requires
careful consideration and advanced techniques to achieve accurate results.

In the following discussion, we will explore several architectures proposed for
each of the defined approaches, namely top-down and bottom-up, focusing on
both single-person and multi-person pose estimation scenarios.

2.3.1 2D Pose estimation

In the top-down approaches perspective, the architecture design relies on a combi-
nation of object detection and pose estimation components. The object detector is
responsible for identifying and localizing relevant objects in an image by produc-
ing bounding boxes. These bounding boxes serve as input to the pose estimator,
which then operates on each individual object to generate the corresponding key-
points. Regarding the performance influence of each system, a poor detection of
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the person can introduce errors in the localization and identification of body parts,
leading to inaccurate pose estimations. These errors can propagate throughout the
system and affect subsequent stages or downstream tasks that rely on the pose
information. To mitigate this, it is crucial to employ an object detector that can
effectively and accurately detect people in various environmental conditions and
poses. However, during training, the pose estimator can be implicitly trained to
handle minor errors produced by the object detector, such as incorrect or imprecise
bounding boxes. This is achieved through the use of training data that includes im-
ages with a range of different bounding boxes and other sources of variability. The
pose estimator is then trained to produce accurate pose estimations despite these
variations in the input data. A second solution is to simultaneously learn object
detection and pose estimation, as proposed by (He et al., 2017).

In the case of the Faster-RCNN model (Ren et al., 2015), the architecture has
two output branches, for each ROI (Region of Interest)1, the first one is dedicated
to class prediction, and the second is for bounding box offset estimation (Figure
2.4). The Mask-RCNN architecture represents the extension of the Faster-RCNN,
by adding a third branch (Figure 2.5) for the prediction of segmentation masks. In
the context of object segmentation, the mask defines the set of points that constitute
the object. As shown in Figure 2.5, the third branch contains 80 2 resolution masks
of 28× 28 size.

Drawing an analogy with the object segmentation task, the pose estimation
process involves predicting a set of K masks specifically for the person category,
where each mask corresponds to a specific keypoint. Notably, training a model
simultaneously on the object detection, segmentation, and pose estimation tasks
has demonstrated superior results (He et al., 2017), in terms of average precision
(AP). However, when the segmentation task is excluded from the training, the
performance tends to degrade. This observation leads to the conclusion that the
proposed learning strategy proves to be highly effective in this particular context.
Other methods rely on the prediction of heatmaps. In a study by (Chen et al., 2018),
the authors proposed a cascaded pyramid network (CPN) architecture, illustrated
in Figure 2.6a. This architecture employs two subnetworks: the first one, referred
to as GlobalNet, focuses on extracting features in the form of heatmaps (as shown
in Figure 2.6b). These heatmaps are then utilized for the detection of easily identi-
fiable keypoints using a convolutional filter of dimensions 3× 3. Subsequently, the

1Image texture based proposal of a rectangle that probably contains an object.
2Number of classes, one mask for each category.
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FIGURE 2.4: RPN Regional Proposal Network (RPN) (Ren et al.,
2015).

FIGURE 2.5: The head of the MASK-RCNN architecture (He et al.,
2017).

hierarchical features generated by GlobalNet are passed to the second subnetwork,
RefineNet, which aims to localize challenging keypoints that may be occluded or
difficult to detect. Notably, RefineNet is trained specifically on a subset of hard
keypoints, enabling to improve the accuracy of localization for these particular
keypoints.

Some pose estimation methods incorporate multi-stage architectures to pro-
gressively enhance the accuracy of keypoint localization. One such example is
illustrated in Figure 2.7. This architecture, convolutional pose machine (CPM)
consists of a cascaded design with T stages. At each stage, a series of convolu-
tional and pooling operations are applied to generate heatmaps that represent the
keypoints. Notably, the predictions in each stage build upon the outputs of the
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(a) Architecture of the CPN (Cascaded Pyramid Network).

(b) Green dots represent the keypoints and red dots are the associated estimations.

FIGURE 2.6: Multistage keypoints estimation.

previous stage, progressively refine the pose estimation results. This iterative re-
finement process enables the architecture to iteratively enhance the localization
and depiction of the keypoints, leading to improved overall performance in pose
estimation.

FIGURE 2.7: Convolutional pose Machines (Wei et al., 2016).

Since the introduction of the Transformer by (Vaswani et al., 2017), a wide range
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of recent advanced architectures have adopted the transformer framework. Sur-
prisingly, the integration of transformers has led to remarkable performance im-
provements in various tasks, including pose estimation. One notable example is
the Vision Transformer (ViT) architecture proposed by (Xu et al., 2022). While the
design of the encoder is not specific to any particular task, the authors present an
architecture that can be trained for different vision tasks by adapting only the de-
coder. As illustrated in Figure 2.8, first the region of interest (ROI) are segmented
into patches, each of which is then embedded in a new space along with posi-
tional encodings. The sequence of patch embeddings is then processed through a
series of L transformer blocks. These operations result in a sequence of relevant
encoded feature representations, which are subsequently utilized by the decoder
for the specific task at hand. Specifically, they demonstrate high performance on
HPE using the COCO dataset (Lin et al., 2014).

FIGURE 2.8: ViTPose framework, (a) decoder blocks, (b), (c) and (d)
are possible examples of decoder, while (e) is a custom decoder
task-based (Xu et al., 2022).

In the context of bottom-up approaches, among the various proposed tech-
niques, OpenPose, introduced by (Cao et al., 2019), has emerged as a highly influ-
ential and widely used framework. The OpenPose model (cf. Figure 2.9) follows a
two-step process for pose estimation. Initially, a neural network-based body part
detector is employed to classify each pixel as either an element of body part or
background. This step enables the identification of key body parts such as the
head, shoulders, elbows, wrists, hips, knees, and ankles. In the subsequent step,
a graph-based approach is utilized to group the detected body parts and establish
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connections between them. The graph representation consists of nodes represent-
ing body parts and edges representing the likelihood of connections. By leveraging
this graph structure, OpenPose determines the optimal set of connections, resulting
in the final pose estimation. Additionally, OpenPose incorporates a refinement net-
work that generates heatmaps indicating the likelihood of each pixel belonging to
a body part or limb. These heatmaps are used to update the initial pose estimation,
further enhancing the accuracy of the results.

FIGURE 2.9: Open pose CNN-based operations.

The authors (Geng et al., 2021) propose a disentangled keypoint regression that
involves learning representations for individual keypoints using adaptive convo-
lutions from partitioned feature maps. As depicted in Figure 2.10, each branch
focuses on one keypoint, receiving a specific partition of the feature maps and re-
gressing the 2D offset of that keypoint using a separate 1× 1 convolution. For the
COCO pose estimation experiments, the feature maps are divided into 17 parti-
tions, with 17 branches dedicated to regressing the 17 keypoints.

FIGURE 2.10: Disentangled keypoint regression (Geng et al., 2021).
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2.3.2 3D pose estimation

There are various methods used for 3D estimation that differ based on the type
of input data, pose representation, and the number of individuals present in the
image. In the field of 3D human pose estimation, there are several key approaches
and considerations. Monocular image-based methods utilize a single image to esti-
mate 3D pose, relying on prior knowledge of human anatomy and motion. Multi-
ple image-based methods leverage multiple images or video sequences to estimate 3D
pose (Pavllo et al., 2019), employing different algorithms for tracking and fusion
of information. Pose representation varies, with some methods using joint angles
or body part rotations, and others utilizing volumetric representations (Iskakov
et al., 2019). Methods can be designed for single-person or multi-person pose es-
timation. 3D HPE approaches can be also categorized as top-down or bottom-up,
based on whether they start with overall body pose estimation or individual key-
points identification. Another specific aspect in 3D HPE is the 2D-3D lifting, where
the architectures are only based on 2D predicted or ground truth keypoints to gen-
erate the 3D pose.

2.3.3 Estimation from monocular images

Monocular images are the most commonly acquired type of images in real-world
environments, especially outdoors, where there could be only one available view
of the scene. The design of 3D reconstruction architectures varies based on the
input features used, temporal information, and the nature of the data and con-
straints. Thus, we can distinguish between methods that rely on 2D keypoints
and those that use the input image directly. To estimate human pose from monoc-
ular images, deep learning architectures such as those proposed by (Chen et al.,
2018), (Newell et al., 2016), and (Tompson et al., 2014) are designed to receive
a single image as input at each time point to predict either two-dimensional or
three-dimensional coordinates.

As an example, in the paper by (Pavllo et al., 2019), as depicted in Figure 2.11,
the authors take advantage of dilated convolutions capability of modeling long-
short dependencies with efficient computation. The dilated convolutions are spe-
cially useful in the context of estimating the pose in video, which allow the use of
temporal information. In the proposed architecture (cf. Figure 2.11a), first the se-
ries of 2D keypoints are processed by dilated convolution (kernel size 3× 1, dilated
factor d = 1), followed by a series of operations (BatchNorm(1D)+Relu+Dropout(0.25)).
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The rest of architecture design is composed by four blocks, each block is com-
posed of two sub-blocks. The sub-blocks perform similar operations as the in-
put block, with different kernel size and dilation factor. The four blocks are con-
nected through block-outputs and sliced residual connections. Finally, the 4− th
block outputs are processed by a convolution layer, producing 3D joints learned
by regression (MSE loss). Note that each 3D joint (1,17× 3) uses 243 key-frames
(243,17× 2) for optimal performance. Consequently, a drawback of this approach
is that it is time-consuming and limited to a single person. If extended to multiple
individuals, it would require tracking 243 frames for high precision. As a result,
the execution time of each subtask accumulates, leading to a significant delay in
the system runtime. This approach is unsuitable for real-time applications, given
that non-causal convolutions rely on future and past pose information for 3D re-
construction, it further worsens this problem.

(a) Videopose3D architecture.

(b) Dilated convolutions for 2D-3D pose
regression.

FIGURE 2.11: VideoPose3D: architecture based on dilated
convolutions (Pavllo et al., 2019).

In contrast, alternative works such as the one proposed by (Cheng et al., 2020)
aim to address the issue of articulation point occlusion. This problem arises when
certain keypoints or body parts are not visible due to being obstructed by other
elements in the image.

The previous described methods rely on 2D generated keypoints. Another set
of methods exploits the image directly without an intermediate 2D system (Wang
et al., 2014).

For more accurate 3D HPE several methods consider multi-view 2D keypoints
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to efficiently construct the 3D pose. However, the multi-view information is typi-
cally not available in real-world scenes or can be expensive. Regarding this aspect,
(Sun et al., 2020) propose an artificial generation of multiple skeleton views from
a single view. The concept of this method is presented in Figure 2.12. Mainly, the
skeleton input is sent to a Multi-view Pose Generator trained to generate differ-
ent view-projections from the 3D rotated projection. Resulting 2D detections are
fed to GCNs, which perform a 2D to 3D regression.

FIGURE 2.12: Multi-view generation architecture (MvPG) and 3D
reconstruction (GCNs) (Sun et al., 2020).

Recent work has focused more on transformers, also in the context of 3D HPE.
Figure 2.13 depicts an illustrative example. This MixSTE model design was pro-
posed by the authors of (Zhang et al., 2022). This work is inspired by the popular
idea of performing successive spatial and temporal operations, widely adopted
previously with GCNs. In this context, the architecture blocks are aimed at inde-
pendent spatio-temporal modelling of joint-frame dependencies based on self-attention
mechanism (Vaswani et al., 2017). The HPE is considered as sequence to sequence
learning. First, the 2D keypoints are linearly embedded along with a position em-
bedding. Resulting outputs run in a loop of spatial and temporal transformer block
for dl times. Last output-loop is given to a regression head which finally regress
the 3D joint positions. The overall architecture is trained end-to-end with temporal
consistency-loss T-Loss (smooth poses), WMPJPE-loss, and MPJVE-loss.

In the work presented by (Shan et al., 2023), the authors draw inspiration from
the diffusion mechanism and propose an architecture for performing 3D human
pose estimation (HPE). The principle of training and inference is illustrated in Fig-
ure 2.14a. The proposed architecture aims to learn the reconstruction of 3D poses
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FIGURE 2.13: MixSTE architecture design (Zhang et al., 2022).

from contaminated 3D pose data, where the denoising process is guided by the
utilization of 2D keypoints. Formally, a time step t ∼ U (0, T) is uniformly sam-
pled, where T is the maximum number of time steps. Then, the ground truth 3D
pose y0 is diffused to the corrupted pose yt by adding t-step independent Gaus-
sian noise ε ∼ N (0, I). Subsequently, yt is sent to a denoiser D conditioned on 2D
keypoints x and timestep t to reconstruct the denoised 3D pose ỹ0 without noise:
ỹ0 = D(yt, x, t). The entire framework is supervised by a simple mean squared
error (MSE) loss: L = ||y0 − ỹ0||2. The denoiser D illustrated in Figure 2.14b is
based on the previous presented model MixSTE (Zhang et al., 2022).

For inference, since the degraded data approximates a Gaussian distribution
after the diffusion process, the same sampling is used to obtain an initial set of H
poses y0:H,T by sampling noise from a unit Gaussian. Feasible 3D pose hypotheses
ỹ0:H,0 are then predicted by passing y0:H,T through the denoiser D . Thereafter,
ỹ0:H,0 are used to generate the noisy 3D poses ỹ0:H,t′ as inputs to the denoiser for
the next timestep.

More recently, an advanced architecture has been proposed by (Zhu et al.,
2023a), that represents one of the state-of-the-art approaches in the field. Their
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(a) Overview of HPE based on diffusion process.

(b) Denoiser architecture where 20, 243, 17 are the number of
hypotheses H, frames N , and human joints J in each frame,
respectively.

FIGURE 2.14: Diffusion-Based 3D Pose Estimation (D3DP).

framework addresses the challenge of lifting 2D to 3D mapping through a two-
step process, illustrated in Figure 2.15a. Initially, the model undergoes a pretrain-
ing phase on corrupted data, followed by fine-tuning on original 2D keypoints. To
obtain uncorrupted 2D skeletons from the 3D pose, an orthographic projection is
applied. The 2D keypoints data is intentionally corrupted with masking and noise,
simulating real-world phenomena such as occlusions, detection failures, and errors
commonly encountered in practical data. The resulting corrupted data is then used
for pretraining the model, which is subsequently fine-tuned on three specific tasks:
i) 3D pose estimation, ii) action recognition, and iii) mesh recovery, leveraging the
uncorrupted 2D keypoints. The architecture, depicted in Figure 2.15b, is based on
a transformer design with spatio-temporal modeling capabilities. It demonstrates
good performance in various domains, including 3D pose estimation using the
Human3.6M dataset (Ionescu et al., 2014b), action recognition on the NTU dataset,
mesh recovery on Human3.6M and DPW.

2.3.4 Estimation from multiple views

A broad class of approaches for 3D reconstruction is based on multiple synchro-
nized views of the scene. This configuration provides more information-rich data
for a more robust and accurate prediction compared to the single view case. The
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(a) Framework overview as two processes.

(b) Transformer-based model architecture.

FIGURE 2.15: MotionBERT : Overview of the framework and
transformer-based model architecture (Zhu et al., 2023a).

developed architectures exploit simultaneously the images from the different cam-
eras observing the scene. The variations in design from one architecture to another
lie in the way the data is processed and the type of neural network employed. An
interesting idea based on triangulation was first explored by (Iskakov et al., 2019).
The authors proposed two novel solutions (cf. Figure 2.16) for 3D pose estima-
tion, respectively, based on algebraic and volumetric triangulation. Both methods
are based on a 2D backbone and can be categorized in the set of 2D to 3D lifting
approaches.

2D backbone is a CNN-based network that produces 2D joint heatmaps, this
block takes an image Ic from a camera c and predict an intermediate heatmaps Mc

of size (K, 96, 96). These heatmaps are used by another convolutional network that
produce joint-heatmaps Hc of size (J, 96, 96). The implementation of the backbone
is based on ResNet-152.

First approach presented in Figure 2.16a. The 2D backbone is trained to predict
the joint-heatmaps. Then, soft-argmax operation is applied to obtain the 2D posi-
tions. The 2D keypoints along with joint-confidence scores are used to solve an
over-determined system of linear equations. This algebraic triangulation process
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(a) Learnable algebraic triangulation.

(b) Learnable volumetric triangulation.

FIGURE 2.16: Two triangulation-based methods for 3D multi-view
pose estimation.

estimates the corresponding 3D coordinates of the keypoints, enabling the recon-
struction of the human pose in 3D space.

The second approach depicted by Figure 2.16b, also uses the same 2D backbone,
but in this case the intermediate heatmaps Mc are directly used. The 3D recon-
struction is based on volumetric triangulation. First, a L × L × L volume grid is
discretized by a volumetric cube Vcoords ∈ R64,64,64,3 filled with the 3D global coor-
dinates of the voxel centroid (note that L = 2.5m). Pc ∈ R2×4 denote the projection
parameters of camera c. The intermediate maps Mc of size (K, 96, 96) are unpro-
jected into 3D volumes of size (K, 64, 64, 64)(cf. Figure 2.16b). These volumes are
filled by projecting 2D features maps Mc along projection rays from each camera
view perspective. For aggregation of cameras projection, three methods are ex-
perimented : a simple i) raw summation, ii) normalized weighted sum where the
weight’s contribution dc of each camera are learned, and iii) relaxed version of
maximum. In this last solution, softmax is used to produce a distribution for each
individual voxel across all cameras. Then, resulting probability distributions per
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voxel are used as weights for camera-volumes aggregation. Resulting aggregated
volumetric maps are then fed as input to 3D-CNN based on the Voxel-to-Voxel

architecture (V2V (Moon et al., 2018)). The methods ii) and iii) give identical per-
formance on the average, the first method i) shows obviously less accuracy.

These triangulation methods with their learnable formulations were adapted
by (Chun et al., 2023), given the birth of an updated version presented as Learn-
able human Mesh Triangulation. The overall pipeline, which is very similar to the
previous detailed work, is illustrated by Figure 2.17. This new method slightly
ameliorates the performance of 3D reconstruction compared to the previous pose-
based triangulation (Iskakov et al., 2019).

FIGURE 2.17: Overview : human-mesh based learnable triangulation
(Chun et al., 2023).

Other sophisticated techniques explore the graph partitioning of skeleton. For
instance, in split-and-recombine approach, the network proposed by (Zeng et al.,
2020), splits the human posture to local groups of articulation points and recom-
bines them at the level of lower dimensions. This technique allows a better general-
ization to previously unseen images. Figure 2.18a illustrates the idea of processing
by local parts of the human body. These local parts can be found partially in the
form of a group of points (cf. Figure 2.18a (c)) distributed over several training im-
ages. The assembly of these parts allows having new forms of skeleton (cf. Figure
2.18a (b)). The different forms of construction are illustrated by Figure 2.18b. This
construction is based on the strength of geometric interdependence between the
joints.

In the context of multi-person pose estimation and tracking, this task was effi-
ciently tackled by (Reddy et al., 2021). This paper proposes to perform the 3D pose
estimation and person-tracking in a multitask learning fashion. The framework
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(a) Visualization of the partial groups of the pose (a) and (c). The assembly of these two
groups constitutes a pose similar to the skeletons of an unseen image (b).

(b) Division of the skeleton into a local group set.

FIGURE 2.18: Split design and resulting groups (Zeng et al., 2020).

involves the person detection, 3D joint heatmaps prediction, and person tracking
via 4D-CNN. The overall framework is illustrated in Figure 2.19.

In order to enable a comprehensive assessment of the quantitative performance
of both 2D and 3D human pose estimation (HPE) methods, we will introduce the
respective metrics for each case in the upcoming section.

2.4 Measures and performance analysis of HPE tech-

niques

As for any system, HPE has to be evaluated through the quality of its response
to the problem given and the processing time. The overall performance of a pose
estimation system depends on the performance of its components.

Several metrics have been proposed for the evaluation of the performance of
human posture estimation, we distinguish two cases: two-dimensional (2D) and
three-dimensional (3D) coordinates.
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FIGURE 2.19: TESSE-TRACK : Multitask learning for multi-person
pose estimation and tracking.

2.4.1 Metrics for 2D estimation

Average Precision & Recall. The evaluation of the detection of keypoints proposed
by COCO3 was inspired by the technique used in the case of object detection,
which is based on the calculation of the IoU (Intersection over Union). Similarly,
the average precision and recall (AP,AR) are computed based on the OKS (Object
Keypoints Similarity) :

OKS =
∑i exp( −d2

i
2s2k2

i
)δ(vi > 0)

∑i δ(vi > 0)
(2.1)

where di is the Euclidean distance between the target and the coordinate of
the predicted keypoint. The parameters s, vi represent respectively the scale of the
object and the visibility index (keypoint not labeled vi = 0, labeled and not visible
vi = 1, labeled and visible vi = 2). The function δ(.) returns 1 if the condition is
verified and 0 otherwise. Perfect predictions will have OKS = 1 and predictions
for which the distances di are large in front of the values s.ki will have an OKS ≃ 0.

Figure 2.20 illustrates the correspondence between the constant ki for each key-
point and the associated tolerance diameter (green disk) for each of these points.
The diameters are tight for low ki which means less error tolerance (e.g. eyes,
nose), on the contrary for other ki values the acceptable error margin is more im-
portant (hips, ankles).

Percentage of Detected Joints – PDJ. A joint is considered correctly detected
if the distance between this predicted point Ĵi and the target point Ji is less than

3https://cocodataset.org/#keypoints-eval

https://cocodataset.org/##keypoints-eval


44 Chapter 2. Human Pose Estimation

FIGURE 2.20: The ki constants calculated for the skeleton format of
the COCO dataset.

a fraction of the reference distance dr. The distance dr is the diameter of the torso,
but can also be considered as the length of the diagonal of the person’s bounding
box. The PDJ metric is computed using Equation 2.2, where Ns is the number of
keypoints.

PDJ =
1

Ns

i=Ns

∑
i=1

δ(∥Ji − Ĵi∥ ≤ αdr) (2.2)

2.4.2 Metrics for 3D estimation

Several metrics have been proposed in the literature to evaluate the quality of 3D
coordinate prediction. The metric often used in model comparison is MPJPE (Mean
Per Joint Position Error) using the same notation as (Ionescu et al., 2014b):

E( f , S) =
1

Ns

Ns

∑
i=1
∥m( f r)

f ,S (i)−m( f r)
gt,S (i)∥2

(2.3)

where m( f r)
f ,S (i) denotes the 3D coordinates of the ith join of the S skeleton pre-

dicted by the f detector on the frame f r and Ns is the number of joins. The global
error MPJPE represents the average of the E( f , S) over all images in the dataset.

The equation 2.3 for MPJPE measure can be rewritten in a more explicit way
for the set of images by:

MPJPE =
1
T

1
N

T

∑
t=1

N

∑
i=1
∥(Jt

i − Jt
root)− ( Ĵt

i − Ĵt
root)∥2 (2.4)

This equation 2.4 aims to measure the error in relative coordinates w.r.t the root
joint between the targets and associated predictions.
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PA-MPJPE. This metric computes the MPJPE after the alignment of the pre-
dicted skeleton with the target skeleton (ground thruth) using the Procrustes anal-
ysis (PA) method. This technique consists in applying a composition of transfor-
mations: translation, rotation and scaling to ensure the optimal correspondence be-
tween the predicted pose and the target pose.

Percentage of Correct Parts – PCP. This metric takes into account the length
scale of the human body parts:

∥sn − ŝn∥+ ∥en − ên∥
2

≤ α∥sn − en∥ (2.5)

sn and en define the points limiting the part n of the human skeleton, ŝn and ên

are respectively the predicted points associated to these two points. A part n is
considered correctly detected if it verifies the inequality 2.5 . Thus, the PCP is
computed by the following expression:

PCP =
Number of parts n correctly detected

Total number of parts n
(2.6)

Although it takes into account the scale aspect of the person, this error formulation
penalizes members of small lengths that are difficult to detect.

Percentage of Correct Key-points (3D-PCK). A point is considered correctly
detected if the Euclidean distance between the 3D predicted joint Ĵi and the target
joint Ji is lower than a threshold θ. The definition of this threshold varies from one
dataset to another. This metric is commonly employed to assess the accuracy of 3D
pose estimation in the absolute coordinate system.

3DPCK =
1
T

T

∑
t=1

1
N

N

∑
j=1

δ
(
∥Ĵt

i − Jt
i∥2 ≤ θ

)
(2.7)

2.5 Evaluation of performance in prior studies

After given details about recent techniques used for HPE in section 2.3 and defin-
ing metrics in section 2.4, we summarize the performances of previously presented
2D pose estimation systems in Table 2.1 and for 3D reconstruction in Table 2.2.

In the case of 2D estimation, we observe that ViTPose, which is transformer-
based, outperforms the other systems in terms of APkp and ARkp on the COCO
validation set.
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Model Approach AP ↑ AP5 AP75 APL APM AR

ViTPose (Xu et al., 2022) Top-Down 81.1 95.0 88.2 86.0 77.8 85.6
CPN (Chen et al., 2018) Top-Down 72.1 91.4 80.0 77.2 78.5 -
Mask-RCNN (He et al., 2017) Top-Down 63.1 87.3 68.7 71.4 - -
FasterR-CNN (Ren et al., 2015) Top-Down 64.4 85.7 70.7 69.8 61.8 -
OpenPose (Cao et al., 2019) Bottom-Up 64.2 86.2 70.1 68.8 61 -
Disentangled (Geng et al., 2021) Bottom-Up 72.3 88.3 78.6 68.6 78.6 -

TABLE 2.1: Comparison of performance metrics for different 2D HPE
methods.

When considering 3D reconstruction methods that rely on 2D ground truth,
multi-view approaches generally outperform others in terms of MPJPE minimiza-
tion. However, monocular-based approaches hold more practical appeal for real-
world applications. Surprisingly, in Table 2.2 highlights the exceptional perfor-
mance of MotionBERT, which achieves better results than other multi-view-based
approaches using only monocular view.

Model MPJPE (mm) ↓ Approach 2D Ground Truth
MotionBERT (Zhu et al., 2023a) 16.9 Monocular Yes
MixSTE (Zhang et al., 2022) 21.6 Monocular Yes
D3DP (Shan et al., 2023) 19.6 Monocular Yes
SR-Net (Zeng et al., 2020) 32 Monocular Yes
MvPG+GCNs (Sun et al., 2020) 35.8 Monocular Yes
VideoPose3D (Pavllo et al., 2019) 46.8 Monocular No
LT (Iskakov et al., 2019) 17.7 Multi-View -
TesseTrack (Reddy et al., 2021) 18.7 Multi-View No

TABLE 2.2: Performance of 3D Human Pose Estimation Models.

2.6 Addressing real-world challenges: usability of pose

estimation frameworks in complex scenes

Transfer to new data. The issue of scaling in estimated pose data, put a signifi-
cant challenge to the transferability of models. This challenge becomes particu-
larly prominent when applying a 3D pose estimation system to images outside
the dataset setting or in different environments, especially in cases of monocular
acquisition. Additionally, variations in skeleton format, including the number of
joints and spatial definitions, further hinder direct utilization of pre-existing mod-
els. For instance, when working with real-world tasks and motion capture data,
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the formats often differ, necessitating a complex intermediate step of converting
joint formats before effectively utilizing pretrained models for fine-tuning on lim-
ited data. One potential solution to address this issue partially is to employ the
Skinned Multi-person Linear Model (SMPL) (Loper et al., 2015), which maps to
a mesh and subsequently to a standardized joint representation. However, cur-
rently, this mapping is only defined for specific datasets, requiring custom map-
ping for other scenarios, which poses its own challenges. While this approach aids
in dataset unification, it does not provide a complete solution when the MoCap
joint set of real-world applications differs from the mapping established by SMPL.

Body length measurement. The model’s predicted lengths of human body parts
often differ from their actual measurements. While the model approximates the
skeletal shape based on the image representation of a person, it lacks precise in-
formation about the person’s real-world measurements beyond this representa-
tion. This discrepancy is particularly notable in monocular-based 3D reconstruc-
tion. Consequently, this obstacle in pose estimation systems poses a challenge to
their implementation in applications that rely on accurate scale information, such
as certain areas of robotics. Motion Capture data offer an advantage in address-
ing this issue, but they come with the drawbacks of being more expensive and
time-consuming in the acquisition process.

Relative coordinate system. Previous studies (Zhu et al., 2023a; Iskakov et al.,
2019; Zhu et al., 2023a), as detailed previously, have predominantly focused on
optimizing the MPJPE which asses the estimation quality of 3D root-relative key-
points. However, real-world applications like video surveillance, anomaly detec-
tion, and tracking require the accurate generation of a skeleton in world space.
In these applications, the absence of a global trajectory and the fixed center joint
(Pelvis) in the generated poses, led to usage limitation. This drawback undermines
the effectiveness of such approaches in real-world scenarios.

The gap between scientific literature and real-world requirement was highly
detailed by (Kaid et al., 2022). In this paper, the authors propose a solution, that
integrates top-down framework based on a modified GAST-Net (Liu et al., 2021)
and RootNet (Moon et al., 2017) networks for multi-person 3D pose estimation
from a monocular RGB video in a short execution time. This approach meets a
wide requirement by the real-world application Absolute position, real time, multi-
person, monocular view. The training and evaluation was done on the benchmark
MuPoTS-3D (Mehta et al., 2018). GAST-Net was used for 3D root-relative keypoints
estimation and RootNet for root trajectory estimation. The framework achieve
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FIGURE 2.21: Pelvis alignment vs. Procrustes analysis based
alignment Slide 9.

state-of-the-art result with 56.8 in terms of 3D-PCK.
Absolute coordinate system. Describe more the real-world and give more realistic

joint coordinates evolution, is still a very challenging problem for monocular based
approach. A single view image lacks of depth information and make the predic-
tion of precise global trajectory very difficult by nature. The benchmark dataset
MuPoTS-3D (Mehta et al., 2018) presents an opportunity to enhance models for
this challenging task as it closely resembles real-world scenarios.

Metrics evaluation limitation. The evaluation of 3D reconstructed poses is con-
ducted using usually two protocols: Protocol #1, which measures the Mean Per
Joint Position Error (MPJPE) relative to the pelvis joint, and Protocol #2, which
utilizes the PA-MPJPE metric to evaluate pose independently of global orienta-
tion and position. It’s important to note that both protocols do not operate in
the world absolute coordinate system. The primary motivation behind these pro-
tocols is to focus solely on achieving accurate pose shapes, without considering
global orientation and position. However, the validity of this criterion needs to
be re-evaluated, especially in light of real-world scenarios, as mentioned earlier.
Figure 2.21 showcases examples of pelvis alignment and Procrustes alignment,
which illustrate the poses used for comparison in the MPJPE evaluation and the
PA-MPJPE, respectively.

https://files.is.tue.mpg.de/black/talks/SMPL-made-simple-FAQs.pdf
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2.7 MoCap vs pose estimation

We conducted an experiment to compare motion-captured data and estimated key-
points. While motion capture data is known to be highly precise, we sought to de-
termine the added value and cost-effectiveness of using this technology in compar-
ison to estimated keypoints. Furthermore, we explored whether pose estimation
could serve as a potential replacement for motion capture in certain applications.
For this goal, we propose to evaluate the performance of each of the data using
skeleton-based action recognition task. For fairness, we trained both MoCap and
estimated data on the same custom model presented in Figure 2.24.

We used the labeled samples provided by (Ofli et al., 2013) in the berkeley Mul-
timodal Human Action Database (MHAD).

2.7.1 Multimodal Human Action Database (MHAD)

The multitude of raw data not being directly exploitable, a multimodal representa-
tion is associated to each of the modalities (ex: words –> embeddings, environment
–> video ). In complex tasks, the use of several modalities is necessary to reach sat-
isfactory performances. Figure 2.22 illustrates a typical example of multimodal
data acquisition tools, used in for the construction of the MHAD (Multimodal Hu-
man Action Database) dataset (Ofli et al., 2013).

Multimodal acquisition system. The two Kinect systems (Ki) are installed diag-
onally to allow the acquisition of the depth of all elements present in the scene
without interference. The acquisition of synchronized images is done through sev-
eral cameras (Ci) installed on the four angles of view giving a description of the
observed action equivalent to 360. The four microphones (Mi) allow the acquisi-
tion of the sound waves produced by the action of the person in movement. The
data informing on the dynamics of the movement are obtained via 6 accelerome-
ters positioned on the person. The eight optical motion capture systems Impulse
(in blue) allow the capture of the 3D positions of the markers (active LED) attached
to the person. Thus, the global system allows the acquisition of five modalities (3D
coordinates, image, acceleration, audio, depth) giving a multimodal description of
what is happening in the scene constituting a relevant and very rich representation
of information.
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FIGURE 2.22:
Multimodal
acquisition
system of the
MHAD. (Ofli
et al., 2013)

FIGURE 2.23: Action
classes statistics. (Ofli
et al., 2013)

2.7.2 Experiments

2D poses estimation. We applied the OpenPose model to the videos provided
by the MHAD dataset, resulting in estimated 2D keypoints for each image. Each
image contains 18 keypoints, along with corresponding confidence scores. The 2D
keypoints are estimated from each camera view Ci. In order to obtain the ground
truth 2D keypoints, we projected the 3D motion capture data onto the plane of
each of the 12 cameras (denoted as Ci). To ensure a fair comparison using the same
architecture, we reduced the number of 2D keypoints to 18 representative points.
This reduction in keypoints does not result in any loss of information and enables
us to have a fixed input size for further analysis and evaluation.

3D pose estimation. We use VideoPose (Pavllo et al., 2019) for 3D pose recon-
struction. This model is based on 2D to 3D lifting approach, which takes into
account a temporal receptive field of 243 frames. In this process, we use the previ-
ously estimated keypoints by OpenPose as input to generate the corresponding 3D
keypoints as illustrated by Figure 2.24.

Model. Our architecture is CNN-based, presented by Figure 2.24 is a simple de-
sign comprising three layers of 2D convolutions with different strides and two
linear layers. The outputs of the convolutional layers are concatenated and passed
to the first dense layer. A dropout layer with a rate of 0.25 is applied after the
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FIGURE 2.24: CNN-model for skeleton based action recognition on
MHAD. s and k refer respectively to the stride and kernel size.

first dense layer, and the final dense layer utilizes a softmax activation to gener-
ate the probability distribution across 11 action classes. The 2D pose-based model
use 2D joints (p = 2) and 3D pose-based model used 3D joints (p = 3). For the
rest of the architecture, it’s similar for both cases. The same architecture is used
to train on estimated and MoCap data. This choice enable a fair comparison of
based-performances.

Training settings. We use the same split recommended in (Ofli et al., 2013), first
7 subjects for training (S1-S7), validation and last 6 subjects for testing (S8-S12).
This result in a cross-subject setting which allow a good assessment of the ability
to generalize to a new subject. For training, video samples are splited into chunks
of L = 32 frames, each chunk is associated with the corresponding action label. In
inference the sliding window of length L is applied which allow a continuous action
recognition in real-time.

Results discussion. As reported in Table 2.3, we see comparable performance us-
ing MoCap and 2D pose estimated keypoints only by the use of an average model
for both 2D and 3D based on keypoints estimation and there 3D Reconstruction.
When analyzing the accuracy on test set, we have 78.46% versus 89.04% on 2D
projection of MoCap, and 89.04% versus 90.74% on 3D MoCap data. The model
is lightweight, allowing a realtime action recognition. This can be enhanced using
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well-designed architecture with spatial-temporal graph convolutions. However,
the goal of this study is mainly to evaluate the consequences of difference in qual-
ity of the data using same architecture. The pose estimation technique offers a
satisfactory approximation of performance compared to motion capture data, al-
beit with lower accuracy. However, this limitation can be addressed by utilizing a
more advanced and precise pose estimator. In summary, human pose estimation
serves as a valuable alternative when motion capture is impractical or constrained
by factors such as task specifications, environmental conditions, and cost limita-
tions.

# Model parameters Input data Subset Accuracy %

78 123 2D Keypoints (OpenPose)
Test 78.46

Validation 63.10
Train 97.13

78 123 2D Projection (MoCap)
Test 89.04

Validation 91.68
Train 97.68

89 135 3D MoCap
Test 90.74

Validation 84.90
Train 99.89

100 397 3D Reconstruction (VideoPose)
Test 87.93

Validation 85.78
Train 99.53

TABLE 2.3: Recognition rate results with different CNN models on
various inputs of MHAD.

2.8 Conclusion

In this chapter, we have reviewed classic and recent approaches of pose estima-
tion, laying the groundwork for further exploration, and understanding of human
motion quantification in upcoming chapters. In summary, significant progress has
been made in the field of human pose estimation, particularly in the areas of 2D
pose estimation and 3D root-relative pose estimation. However, challenges per-
sist when it comes to 3D pose estimation in real-world scenarios. Future research
should prioritize addressing these challenges, with a specific focus on settings
that closely resemble real-world environments, such as outdoor/indoor detection,
real-time estimation, absolute coordinate systems, and single-view scenarios. The
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evolving nature of the domain necessitates ongoing efforts to advance the state-
of-the-art in human pose estimation for practical applications. In the following
chapter, we will explore the methods for encoding human pose data to perform
analysis in the context of a real-world medical application.
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3.1 Introduction

This chapter starts with a brief definition of common features utilized in the encod-
ing of human motion (Section 3.2). Numerous architectures have been employed
to tackle the diverse array of tasks related to skeleton-based data. In our context,
we place particular emphasis on the utilization of spatio-temporal graph model-
ing for human pose sequences. We specifically review the utilization of graph
theory for human pose modeling (Yan et al., 2018). Next, in the second part, we
present our first contribution (Radouane et al., 2021), which consists on the appli-
cation of a graph convolutional network adapted from (Song et al., 2020) to the
protective behavior detection task (Section 3.3). We detail the adaptations made to
this architecture, that allows to effectively addressing the issue of class imbalance
(Section 3.4). Consequently, our model emerged as the winner of the AffectMove
2021 challenge (Olugbade et al., 2021). Moreover, we discuss the architecture in-
terpretability and visualize implicit and explicit learned attention for investigation of
model-decision understanding (Section 3.5). Using these visualizations, we inves-
tigate the explainability of model predictions.

3.2 Methods of pose encoding in action recognition

The relevance of the input data is one of the key elements for achieving good per-
formances, satisfactory enough to be applied to new situations brought by real
scenes. In the context of action recognition, the state-of-the-art methods to deal
with the action recognition task can be divided globally into two types of ap-
proaches. The first type is based on the natural exploitation of the sequence of
images from the video as input to the architecture. The second type is based on
using the predicted sequence of poses for a person tracked in the video.

CNN-based model. The convolutional architecture was mostly recognized as
one of the most adapted operation design for tasks based on images as input (e.g.,
image classification, video captioning...). However, a lot of attempts to use the con-
volution operations in other different tasks was studied in different field. Where
the pose can be modelled as an image, the use of CNN is to become possible based
on this new motion representation (Ali et al., 2023).
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Graph-based model. This example of designs are more involved for the GCN
motion representation, which open the road for a variety of methods to be applied,
starting with the well-known model ST-GCN (Yan et al., 2018).

Next, we will present relevant methods used in skeleton-based action recog-
nition in detail, starting with simple yet effective feature encoding (Section 3.2.1)
and features learned through graph modeling (Section 3.2.2). We will thus have
set the background knowledge to understanding the ResGCN architecture (Song
et al., 2020). We employ this architecture for protective behavior detection task
proposed in the AffectMove 2021 challenge (Olugbade et al., 2021) (Section 3.3).

3.2.1 Simple motion characteristics

Simple approaches are based on the direct utilization of raw pose data. In this
straightforward method, the joint coordinates are used to construct time series and
estimate the current action. However, this direct representation lacks discrimina-
tory information and fails to leverage the specific geometry of the skeleton. Alter-
natively, more commonly employed, and effective features are computed manu-
ally, incorporating measures of invariance. In the study presented by (Yang et al.,
2019), authors propose the utilization of JCD features (Joint Collection distances)
along with measurements. The JCD matrix represents the set of Euclidean dis-
tances between pairwise skeleton joint points.

JCD =



∥−→J1 J1∥
. . .

∥−→J2 J1∥
... . . .

∥−−→JN J1∥ . . . ∥−−−−→JN JN−1∥ ∥
−−→
JN JN∥


(3.1)

Where N is the number of joints specified by the skeleton format. Ji is the 2D or
3D coordinate of the joint point i. As JCD is a symmetric matrix, just the lower part
is used, without the diagonal since the distances Jii are zeros. This conserved quan-
tity, after flattening, provides a characteristic vector of size C2

N = N(N− 1)/2. The
Euclidean distance, being a metric independent of the coordinate system, provide
an invariant information w.r.t. the viewing angle of the scene. This invariant prop-
erty is very useful in many tasks. Particularly in the context of action recognition,
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this property allows less variance in the input, which ameliorates the generaliza-
tion across multiple data. On the other hand, the JCD does not contain informa-
tion about the trajectory and dynamic of motion, which is necessary for some types
of actions, that depend on the global motion. Thus, information-complementary
features are used, such as velocity features defined by the Equation (3.2). Where
Sk = {Jk

1 , Jk
2 , . . . , Jk

N} denotes the set of joint-coordinates of the frame k.

Mk
Slow = Sk+1 − Sk, k ∈ {1, 2, . . . , K− 1}

Mk
Fast = Sk+2 − Sk, k ∈ {1, 3, . . . , K− 2}

(3.2)

This second velocity feature is position-invariant information about the skele-
ton and implicitly encodes trajectory information. For example, the DDNet model
(Double-Features Double-Motion Network) developed by (Yang et al., 2019) uses as
input the features computed by the Equations (3.1) and (3.2) to recognize the asso-
ciated action. This type of features has also been used in other applications, such
as for the estimation of the severity of Parkinson’s disease, as illustrated by Fig-
ure 3.1. This architecture consists in tracking an object (patient) in the video, then
generating a 3D skeleton. On the basis of this skeleton, the previous described
characteristics JCD and Velocity features are computed.

FIGURE 3.1: Architecture OF-DDNET

Figure 3.2 shows the degree of severity of Parkinson’s disease and its corre-
spondence in terms of pose sequences. The set of gait skeletons have been reduced
to a central fixed point (root joint or hip center).

Additionally, Figure 3.3 describes additional features that are widely used, sim-
ple characteristics but very useful, such as bones length and joint angles.

A drawback of this kind of approaches is the need for pre-computation of fea-
tures from the skeleton data for each frame. This additional step can introduce a
considerable amount of computation time, particularly when utilizing features like
JCD. In contrast, the direct exploitation of the raw skeleton data is more efficient
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FIGURE 3.2: The four levels of severity of Parkinson’s disease
described by sequences of the skeleton (Lu et al., 2020).

FIGURE 3.3: The demonstration of input data: (a) is the relative
positions, (b) is the motion velocities, and (c) demonstrates the 3D
lengths and the 3D angles of a bone. (Song et al., 2020)

but may yield less discriminative information in terms of capturing the nuanced
parameters of the movement.

3.2.2 Graph modeling

The graph representation is another widely employed approach for modeling the
human skeleton. To begin with, we will explore fundamental concepts and formal
theories related to graphs. Next, we will explain how this theory can be applied to
learn the graph representation of a sequence of human poses. Afterward, we will
dive into the process of translating these theoretical concepts into practical imple-
mentation, enabling to effectively model the graph representation of the human
body’s poses over time.

Definition of a graph. A graph is given by a pair G = (V, E) where V = {vi/i ∈
{1, . . . , N}} is the set of nodes (or vertices) with N the number of nodes and E is a
set of paired vertices; E ⊆ V ×V. Figure 3.4 illustrates a simple directed graph.
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FIGURE 3.4: Example of a directed graph.

A graph can also be defined by a square matrix, named the adjacency matrix
A, in which the coefficients are defined by :

Ai,j =

1 if (vi, vj) ∈ E

0 otherwise
(3.3)

Using this notation, the graph of Figure 3.4 may be represented by:

A =


0 1 0 0 0
0 0 1 0 1
1 0 0 0 0
0 0 0 0 1
0 0 0 0 1


Another important concept that should be included for normalizing features

is the degree matrix D, which we will use subsequently. The definition of the
coefficients of this matrix is given by:

di,j =

deg(vi) if i = j

0 otherwise
(3.4)

Where deg(vi) is the number of edges connected to the nodes vi (the loop is
counted as a double value).

In order to extract relevant features while preserving the graph structure in-
formation, the convolution graph operation was introduced by (Kipf and Welling,
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2016) as an extension of convolutional neural networks (CNNs) which are primar-
ily designed for image data (cf. Figure 3.5). The Equation 3.5 gives the convo-
lutional operation on a graph given by the adjacent and degree matrix, denoted
respectively as A and D. This extension required redefining several key concepts
used in convolutional computations, primarily due to the inherent differences be-
tween the topology of a general graph and the pixel grid representation of an im-
age in 2D Euclidean space. This distinction is clearly illustrated in Figure 3.5.

H(l+1) = σ(D̂−
1
2 ÂD̂−

1
2 H(l)W(l)) (3.5)

FIGURE 3.5: Comparison of convolution on an image and
convolution on a graph (Wu et al., 2019).

Neighborhood node definition. In the case of images, the neighborhood Ni is
naturally defined as a rectangular grid centered on pixel i. The dimensions of this
grid are fixed and equal to the dimensions of the kernel w. However, in the context
of graphs, the nodes do not constitute a naturally ordered set like pixels. Therefore,
when applying convolution operations to graphs, it becomes necessary to redefine
the concept of a node’s neighborhood. The convolution operations applied in a
CNN network is done through the Equation 3.6 :

h(l+1)
i = ∑

j∈Ni

< wl
j, hl

j > (3.6)

Where i, j ∈ J1, nK2 and Ni is the set of points j that are in the neighborhood
of point i. We use the symbol l to denote the layer index in the CNN architecture.
For an image, h0

i represents the intensity values that define the color of a pixel at a
position i. In the case of RGB images, h0

i ∈ R3, and for grayscale images, h0
i ∈ R.

In the context of a graph, this representation will be replaced by a quantitative
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characterization of each node. Particularly, l = 0 refers to the input information
level. The other outputs at each layer are computed by the recursive formula 3.6.

Spatial-temporal graph. Previously, we defined the fundamental concepts of graph
representation without considering the temporal dimension, which is essential in
the task of action recognition. The human skeleton poses a natural graph repre-
sentation based on human joint articulation. Thus, when considering the temporal
evolution of actions, the sequence of human skeleton can be modeled as a tempo-
ral graph. The specific formulation of this modeling, applied to the skeleton, was
introduced by (Yan et al., 2018). Figure 3.6 illustrates the temporal graph opera-
tions.

FIGURE 3.6: ST-GCN (Yan et al., 2018)

This modeling is more suited to the nature of skeleton data, allowing for the
simultaneous exploitation of node information (e.g. keypoints) and natural skele-
ton structure. In addition to employing other techniques for grouping joints over
time to enrich the temporal information, this technique enables a more semantic
embedding of coordinate vectors, facilitating the recognition of actions.

Noting the importance of data modeling in the form of graphs, we propose to
detail the mathematical modeling associated with this domain.

Mathematical modeling. A more general formulation of the Equation 3.6 is given
by the following Equation:

fout(x) =
K

∑
h=1

K

∑
w=1

fin(p(x, h, w)) ·w(h, w) (3.7)

p : Z2 × Z2 → Z2 is the function that enumerates the neighborhoods of the point
x, while Z is chosen as an ordered set. In the simple case of an image 1, we have
the set {p(x, h, w)/(h, w) ∈ Z2} defined by a grid centered around the pixel x.
The function fin associates each node with its feature vector. The weight function

1The image represents a particular case of graph as defined by the natural positions of the pixels.
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w : Z2 → Rc is used, where c is the dimension of the vector characterizing a node
of the graph.

Weight function. The Kernel has a fixed shape and dimensions, and it is not di-
rectly applicable to a graph. A solution has been proposed to counter this problem
in (Niepert et al., 2016). It consists in defining a function l for labeling the graph,
lti : B(vti) → {0, . . . , K − 1}. The function l is used to partition the neighborhood
B(vti) of the node vti into K fixed subsets. In this context, B(vti) is defined as the set
of nodes vtj that satisfy the condition d(vtj , vti) ≤ D. Here, the distance measure
d(x, y) represents the number of minimal edges connecting nodes x and y on the
graph. The distance measure is calculated by finding the shortest path between
the two nodes. The graph is utilized to represent the relationship between the
nodes, and the constant value D serves as a threshold for the distance between the
nodes. The parameter D is chosen as D = 1 in (Yan et al., 2018), which means that
the neighborhood is formed by the nodes separated by at most one edge from the
central node.

w(vti , vtj) = w′(lti(vtj)) (3.8)

The Equation 3.8 defines the distribution of weights on the nodes. Nodes with
the same label have identical weights, and the kernel weights are shared over the
entire graph during the convolution operation.

Spatial Graph CNN. As demonstrated in (Yan et al., 2018), Equation 3.7 can be
reformulated as follows:

fout(vti) = ∑
vtj∈B(vti )

1
Zti(vtj)

fin(vtj) ·w(lti(vtj)) (3.9)

Spatio-Temporal Graph CNN. In this case, we take into account the temporal
dimension t, we extend the definition of the set B(vti) as follows:

B(vti) = {vqj /d(vtj , vti) ≤ K, |q− t| ≤ [Γ/2]} (3.10)

Where B(vti) represents the spatial and temporal neighborhood of the node vti

and the parameter Γ defines the temporal kernel size.



64 Chapter 3. Graph representation for human movement classification

FIGURE 3.7: Human skeleton partitioning configurations Yan et al.
(2018).

Partitioning strategies. In order to define the lti function of labeling, several
types of partitions have been proposed.

• Uni-labeling. The simplest strategy (cf. Figure 3.7 (b)) consists in assigning
the same label to all the nodes of the same neighborhood, formally K = 1 and
lti(vtj) = 0 ∀i, j ∈ J1, NK.

• Distance partitioning. Based on the selected distance threshold D. Figure
3.7 (c) provides an example for D = 1. In this case, the neighborhood of
each node vti is partitioned into two subsets: the singleton vti labeled 0, and
the subset B(vti)∖ vti of nodes labeled 1. This mapping is formalized by the
function lti as follows:

∀i, j ∈ J1, NK : lti(vtj) =

0 if j = i

1 otherwise

• Spatial configuration partitioning. In this case, the partitioning criterion is
based on the distance of the nodes from the center of gravity (black cross on
Figure 3.7 (d)), and each neighborhood is partitioned into three subsets with
the following labeling function, where ri is the average across the training set
of the distances from node vi to the center of gravity.

∀i, j ∈ J1, NK : lti(vtj) =


0 if rj = ri

1 if rj < ri

2 otherwise

(3.11)
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Implementation of the graph convolution operation. The implementation of
the concepts described above is done through equivalent matrix formulation. In
the single frame, ST-GCN is implemented using a similar formula to (Kipf and
Welling, 2016) that is valid for the Uni-labeling partitioning strategy:

fout = Λ
−1
2 (A + I)Λ

−1
2 finW (3.12)

The degree matrix Λ is used to normalize A. In the spatial-temporal case, firstly,
a 1× Γ convolution is performed on the input. The resulting output is then mul-
tiplied by the normalized adjacency matrix. In general, to take into account the
three strategies, the Equation 3.12 is rewritten as :

fout = ∑
j

Λ
−1
2

j AjΛ
−1
2

j finWj (3.13)

Where Aj represents the matrix of adjacent nodes labeled with index j. For
example, in the case of distance partitioning strategy A0 = I and A1 = 1.

3.3 Application in the AffectMove 2021 challenge

The 2021 AffectMove challenge (Olugbade et al., 2021), organized in the context of
the EnTimeMent H2020 project in the ACII 2021 conference, offered the opportu-
nity of participating in three challenging tasks, that involve the detection of charac-
teristics of human motion in multi-modal and uni-modal settings. We participated
in task 1, entitled Protective Behavior Detection based on Multi-modal Body Movement
Data.

Definition. A protective behavior is considered as the behavior resulting from a
reaction to pain that occurs during the execution of a particular motion.

This first task provided participants with motion capture (MoCap) + Electromyo-
graphy (EMG) data from the EMOPAIN dataset (Aung et al., 2016) for protec-
tive behavior detection across several subjects and tasks, with fixed three-second
recordings.

Motivation. Our participation in Task 1 focused on detecting protective behav-
ior in individuals with chronic musculoskeletal pain disorders. Evaluation and
treatment of such disorders lack objective criteria, particularly in assessing patient
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recovery and pain levels, which often have a significant psychosomatic compo-
nent. Protective behavior, which exacerbates non-use and serves as an objective
marker of pain levels, plays a crucial role in gauging the true extent of pain, be-
yond self-reported scales. Automatic detection of protective behavior from sensor
data has the potential to revolutionize clinical protocols for treating chronic mus-
culoskeletal disorders, offering a valuable tool for reforming current practices. We
believe that the development of technology capable of assessing and protecting
an individual’s behavior could greatly enhance the delivery of personalized ther-
apies.

3.3.1 Dataset description for task 1

• Input data. In the dataset of Task 1, each subject and experimental sequence
pair represented one record and was materialized as a single file. The MoCap
data was encoded in the first 51 columns of the data file, 3D spatial coordi-
nates of 17 joints (cf. Figure 3.8a) and the EMG data (cf. Figure 3.8b) were
encoded in the next 4 columns, followed by the action identifier. Each in-
stance was composed of 180 frames (60fps) and the EMG signal was prepro-
cessed (signal envelope), down-sampled and aligned with MoCap frames.
The dataset was divided into training, validation, and test sets, with sizes
of 5827, 1844, and 2744 samples, respectively. These samples were obtained
from individuals with chronic musculoskeletal pain. The split setting is cross-
subject, meaning that the subjects in the test set are different from those in the
training and validation sets. Table 3.1 present the distribution over classes.

Exercise Type Stand on one leg Sit still Reach forward Sit-to-stand Stand-to-sit Stand still Bend Walk

Action label 1 2 3 4 5 6 7 8

TABLE 3.1: Exercise Types and action labels.

• Labeling. The protective behavior label was assigned based on ratings from
four clinician raters, with a window being labeled as “present” (class 1) if
50% of the window showed at least one protective behavior according to two
or more raters. The normal case represents the class 0. The windows were
segmented based on continuous activity transitions, allowing for the inclu-
sion of multiple activity types within a single window. Frame-level activity
labels were provided for each window.
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Training set Validation set

Protective Count Percent Protective Count Percent
0 4522 77.60% 0 1580 85.68%
1 1305 22.40% 1 264 14.32%

TABLE 3.2: Characteristics and distribution of classes across the train
and validation sets.

(a) Skeleton Graph (17
joints).

(b) EMG electrodes positions
(1-4).

FIGURE 3.8: The multimodal data structure of the task 1
(MoCap+sEMG).

3.3.2 Architecture for protective behavior detection

In order to predict protective behavior, it is crucial to develop systems that can ef-
fectively leverage motion capture (MoCap) or multimodal approaches combining
MoCap and electromyography (EMG) data. In our research, we have focused on
utilizing deep learning techniques. Our team has introduced three distinct archi-
tectures: an LSTM-based model, a Transformer-based model, and a GCN-based model.
Notably, the graph convolution-based architecture, which represents my specific
contribution, has exhibited good performance on the test set and emerged as the
winning solution for Task 1 in the AffectMove challenge. In the following, we will
delve into the details of this graph convolution-based approach, training method
and discussing the results. In addition, we present a comprehensive visual inter-
pretation of the model’s decision-making process by employing both implicit and
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FIGURE 3.9: Part Attention Residual GCN architecture (Song et al.,
2020).

explicit attention visualizations. This approach allows for a deeper understand-
ing of how the model reaches its predictions, providing valuable insights into its
reasoning and decision-making capabilities.

GCN-based model. For the extraction of spatial-temporal features, our experi-
mentation focused on the use of ResGCN architecture (cf. Figure 3.9), as intro-
duced in the work (Song et al., 2020). This particular architecture was chosen for
its incorporation of part-wise attention, which can be advantageous for detecting
protective behavior. We specifically consider the fact that certain body parts, such
as the lower neck or lower back, are more prominently involved in exhibiting pro-
tective behavior, especially in response to pain or potential harm. The part-wise
attention can help effectively focuses on these specific body regions, allowing for a
more precise and targeted analysis of protective behavior patterns. Another aspect
is that attention-based architectures enable visual interpretation.

Multi-Input Branch (MIB). The input features of ResGCN based architecture are
derived from various aspects of joint movement. The motion is represented by
relative and global joint positions, fast and slow velocities, bone vectors, and joint
angles described before (Section 3.2.1). These features are concatenated together,
resulting in an input size of (6, 180, 17, 3). Each of the three branches processes one
type of features.
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ResGCN architecture. The model design is based on a series of spatial and tem-
poral graph operations that are implemented differently for the compounds com-
posing the architecture. Namely, the design construction is based on a Basic block,
Bottleneck block and Residual connections. Additionally, in the PA-ResGCN variant,
the model uses a PartAtt block incorporated in the main stream at each layer. We
will give further details about each compound. First, let’s define formally the spa-
tial and temporal graph convolutional operations used in this context:

Spatial Graph Convolutional. The spatial GCN operation for each frame t in a
skeleton sequence is formulated as:

fout =
D

∑
d=0

Wd fin

(
Λ−

1
2

d AdΛ−
1
2

d ⊗Md

)
(3.14)

In the given Equation, D represents a predefined maximum graph distance. In
our context D = 1. The characteristics fin and fout correspond to the input and
output feature maps, ⊗ denotes element-wise multiplication, Ad denotes the ad-
jacency matrix for pairs of joints with a graph distance of d, and Λd is used for
normalizing Ad. The learnable parameters are Wd and Md for convolution opera-
tion and to adjust the significance of each edge, respectively.

Temporal Graph Convolutional. For temporal feature extraction, a convolutional
layer with a size of L× 1 is employed to capture the contextual information present
in neighboring frames and nodes. The value of L is determined as a hyperparam-
eter, indicating the length of the temporal window. In our context L = 9. This
approach allows for the incorporation of both spatial and temporal aspects in the
feature extraction process.

Basic Block. Composed of spatial and temporal blocks, this block performs the
following operations:

xoutS = Relu(BN(SGCN(xin)) + xin) (3.15)

xoutT = Relu(BN(TGCN(xoutS)) + xoutS) (3.16)

Where BN stands for 2D Batch Normalization and SGCN, TGCN are respec-
tively the spatial and temporal graph convolution operations defined before in the
paragraph 3.2.2. This block is illustrated in Figure 3.9 by a blue rectangle, which
also indicates the input and output channel dimensions.
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Bottleneck Block. In order to reduce the model size and computational cost, a
bottleneck structure was incorporated in the GCN model by the authors of (Song
et al., 2020). This structure introduces a hyperparameter called the reduction rate
r, which determines the number of channels in the middle layers (C → C/r).

xout1 = Relu(BN(Conv2D(xin))) (3.17)

xout2 = Relu(BN(SGCN(xout1))) (3.18)

xout = Relu(BN(Conv2D(xout2)) + xin) (3.19)

Global average pooling 2D. The final convolution output (N, dout, C/r, V) is aver-
aged across the reduced channel with factor r and joint nodes V given an output
(N, dout), where N is the batch size and dout the dimension of learned features.

Classification layer. In our context of protective behavior detection (PBD), we
have one output followed by a sigmoid activation function instead of softmax. This
sigmoid function outputs the probability p of the presence of PB, where p ≥ 0.5
implies the positive class (class 1).

Part attention block. The computation of part-level attention, as depicted in Fig-
ure 3.10, follows a specific procedure. First, an average pooling operation is ap-
plied across all body parts, resulting in a set of pooled outputs. These outputs
are then concatenated together. Next, a fully connected layer projects this con-
catenated output, incorporating a channel reduction factor r to reduce computa-
tional costs and the number of architecture weights. Subsequently, the output is re-
projected by five layers, each dedicated to a specific skeleton part. This re-projected
output is then used to generate the part-level attention distribution through a soft-
max operation. This process enables the model to allocate attention to different
body parts and capture their respective contributions to the overall protective be-
havior assessment. The part-attention block is incorporated after each bottleneck
block, this enables leaning important joint features through several layers.

This attention mechanism has been implemented in (Song et al., 2020). A pre-
processing of the 3D MoCap data is performed by calculating the motion charac-
teristics (slow motion, fast motion), the calculation methods are similar to those
described previously in the subsection 3.2.1.

Figure 3.9 illustrates the PA-ResGCN architecture used. This architecture receives
as input the features: coordinates of the keypoints, skeleton, velocities, lengths,
and angles of the bones.
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FIGURE 3.10: Attention weights computation (Song et al., 2020).

In the context of the action recognition task, the authors propose different level
of attention weights computation, namely the channelAtt, FrameAtt, JointAtt and
PartAtt blocks. We will detail the last block which led to the best results in their
experiments on NTU dataset. As its name indicates, the block consists in applying
the attention on each of the five parts of the skeleton (cf. Figure 3.10). Formally,
the operation performed by PartAtt block is given by the Equation 3.20.

fp = fin(p)⊗ δ(θ(pool( fin)W)Wp) (3.20)

fout = Concat({ fp|p ∈ {1, ..., P})

where a weight matrix Wp is used for each part, p ∈ {1, . . . , P} with P is the
number of partitions associated to the skeleton (P = 5 in this context). W is a
shared learnable matrix by all skeleton-parts. fin ∈ RN×C×T×V is the feature input
map. pool(.) is the function that performs 2D adaptive average pooling, δ and θ are
part-level Softmax and ReLU activation functions. Finally, fout ∈ RN×C×T×V is the
output feature maps, which represent the concatenation of all attention enhanced
feature maps denoted by fp .

3.4 Experiments

This section provides implementation details (Section 3.4.1) and evaluation (Sec-
tion 3.4.2). Following that, we analyze and compare the performance of the mod-
els. Later on, we investigate the interpretability of model decisions (Section 3.5).
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3.4.1 Implementation and training

Our implementation. We started from ResGCN (Song et al., 2020), which en-
codes three main features extracted from skeleton poses: joints position (local and
global), velocities (fast and slow) and bones. We modified the official implemen-
tation of ResGCN by using another loss function to address the high imbalance
between positive and negative classes. We defined the new graph corresponding
to the skeleton format in AffectMove Task 1 (cf. Figure 3.8a), notably the formula-
tion of the graph for the GCN. The proposed weighted reformulation of the binary
cross-entropy loss accounts for the unbalancing issue and compensates the imbal-
ance during training.

Multimodal Fusion – EMG and MoCap. Additionally, we proposed a simple
multimodal extension that performs a late fusion between ResGCN(-N51) and a
convolutional neural network for EMG classification. For the latter, the signals are
first filtered with an exponential moving average (α = 0.2). The CNN architecture
consists of one layer normalization per batch to adjust scale of input EMG data
with learnable parameters, followed by one 2D convolutional layer, batch pooling
and two linear layers. PReLU activation is used after the convolutional layers and
Tanh in between the two linear layers. This architecture serves to extract 128 EMG
features, which are then concatenated to the 256 features extracted by ResGCN-
N51. Figure 3.11 illustrates the full multimodal architecture.

Fully ConnectedIn 384 Out 1 Sigmoid

MoCap EMG

BatchNorm2D In 4

PReLUBonesVelocitiesJoints

PReLU

MaxPool2D K 2,1

FC In 123 Out 512
Out 256

FC In 512 Out 128

Conv2D
ResGCN

Part-wise Attention

Exp. Moving Average
0.2

In 4,1 K 20,1 S2 P2

FIGURE 3.11: Architecture of the multimodal PA-ResGCN-N51 +
EMG CNN system (Radouane et al., 2021).

Loss reformulation. We use binary cross-entropy with logits along with an added
weighing scheme to penalize the majority class. The weights are computed per
batch like in (Cui et al., 2019), where we consider β → 1, so that following the
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paper’s notation, En = ns,k. The loss lk for the kth batch is defined as:

lk = ∑
(s,ys)∈Bk

ws[yslogσ(xs) + (1− ys) · log(1− σ(xs))] (3.21)

ws =
1

ns,k
ns,k =

n−,k + ϵ, if ys = 0

n+,k + ϵ, otherwise
(3.22)

where Bk is the set of training examples of the kth batch, ws is the weight per sam-
ple s where n(−,k) and n(+,k) are respectively the number of negative and positive
samples present in the kth batch, ϵ was set to 10−6 to avoid division by 0 errors.

Training and optimization schedule. First, we used only the 3D MoCap data to
train the PA-ResGCN, particularly the ResGCN with it’s variants (B19, N51, PA)
where N51 means there are 51 convolutional or FC layers within the model and
where PA stands for part Attention. We experimented with two types of optimiza-
tion approaches: (i) Optimizer based on stochastic gradient descent (SGD) with a
Nesterov momentum of 0.9, weight decay of 10−4 and with cosine scheduler using
warm restarts, similarly to (Song et al., 2020), (ii) an Adam optimizer with an ini-
tial learning rate of 10−3. The SGD optimizer with a cosine scheduler led to better
results in comparison with the Adam optimizer (albeit slightly slower). Secondly,
we jointly trained the CNN for EMG measures and ResGCN-N51 for 3D skeleton
data for training the architecture to include information from EMG.

3.4.2 Model selection and evaluation

The model selection results are presented in Table 3.3. We first evaluated the
ResGCN-N51 architecture at 0.77 million parameters in different Loss/optimizer
settings. We then evaluated the best performing combination with the PA-ResGCN-
B19 model with basic blocks (B19 stands for 19 basic blocks, 3.61 million parameters)
that achieved SOTA on NTU-60 and NTU-120. Finally, we evaluated the multi-
modal inclusion of EMG to ResGCN-N51 (best performing model). The ResGCN-
N51 model configuration with a weighted loss and SGD gave the best performance
with an F1 score of 0.64 in comparison with the same model with SGD and an un-
weighted loss (0.54 F1, +10%). This improvement demonstrates the benefits intro-
duced by the weighted loss. One can see that unweighted loss generally gives a
slightly better precision (compared to the PA-ResGCN-B19 model), with a recall
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Model Params. EMG Weighted. Loss Optimizer Class F1 P R Avg. F1 Weighted Avg. F1 MCC Acc. Balanced Acc.

N51 0.73m ✗ ✗ SGD 1 0.54 0.55 0.52 0.73 0.87 0.46 0.87 0.730 0.93 0.92 0.93

N51 0.73m ✗ ✓ SGD 1 0.64 0.56 0.74 0.78 0.89 0.58 0.88 0.820 0.93 0.95 0.90

N51 0.73m ✗ ✓ Adam 1 0.50 0.42 0.63 0.70 0.83 0.41 0.82 0.740 0.89 0.93 0.85

PA-N51 1.11m ✗ ✗ SGD 1 0.56 0.47 0.69 0.73 0.85 0.48 0.84 0.780 0.90 0.94 0.87

PA-N51 1.11m ✗ ✓ SGD 1 0.57 0.44 0.79 0.73 0.85 0.5 0.83 0.810 0.89 0.96 0.83

PA-B19 3.61m ✗ ✓ SGD 1 0.56 0.47 0.69 0.73 0.86 0.48 0.84 0.780 0.91 0.94 0.87

N51 + CNN 0.86m ✓ ✓ SGD 1 0.60 0.56 0.64 0.75 0.88 0.53 0.88 0.780 0.93 0.94 0.91

TABLE 3.3: Model selection results for ResGCN variants (Radouane
et al., 2021).

approximately similar to precision, while the weighted loss maximizes the recall
and F1 score. The Adam optimizer (on ResGCN-N51) shows less performance
compared to SGD with the cosine scheduler. With the PA-ResGCN-B19 model
for the best previous loss/optimizer combination, we observed lower overall per-
formance. Contrarily to NTU-60 or NTU-120, which are very large datasets, our
training data is comparatively smaller for Task 1, and we hypothesize that this
model needs much more data to achieve better performance. Likewise, the in-
troduction of the EMG signals to the ResGCN-N51 model degrades the results,
as performance drops by -6%. The reason for this decrease could be either a low
signal-to-noise ratio in the filtered EMG signal envelope, or the cause of an unsuit-
able fusion technique (single fully connected layer).

Result of submitted runs on the Test set. The Test results presented in Table
3.4 2 show the performance of the three submitted models. Among the partic-
ipating architectures, our model achieved the highest overall F1-score. Specifi-
cally, the utilization of weighted loss contributed to an improved F1-score, partic-
ularly for the minor class, yielding a value of 53.36. Additionally, our model based
on the ResGCN architecture achieved the highest F1-average score of 0.712. The
transformer-based architecture closely followed with an F1-score of 41.05 for the
minor class. Subsequently, we will assess the performance of the additional mod-
els implemented after the challenge and proceed with optimal threshold selection
analysis.

2Corrected model name from (Radouane et al., 2021).
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System F1 C0 F1 C1 MCC Acc.

1. LSTM Baseline 85.83 31.16 0.17628 76.49
2. Transformer Baseline 89.96 41.05 0.35234 82.84
3. ResGCN-N51 89.07 53.36 0.42471 82.28

TABLE 3.4: Official results on Task 1 test set for the three submitted
runs.

3.4.3 Performance analysis

It is usual to conduct performance analysis using ROC curves and precision/recall
curves, particularly in the context of binary classification on imbalanced datasets.
These analyses enable the evaluation of the overall model performance at various
threshold levels. Optimal threshold selection is crucial as it can greatly enhance the
classification results on different metrics, such as F1-score and balanced accuracy.
To begin with, Figure 3.12 shows the curves corresponding to all trained models
using MoCap modality. Notably, the model named ResGCN-N51-r4_wloss, which
was trained using weighted loss, demonstrated the highest area under the curve
(AUC) of 0.89 and an average precision (AP) of 0.57. These results highlight the
superior performance of the ResGCN-N51 model in comparison to the other models
analyzed, as reported in Table 3.3. In the following, we explore the potential for
improving these performance metrics through optimal threshold selection.

(a) ROC curves. (b) Precision vs Recall curves.

FIGURE 3.12: Performance curves on validation set for different
experimented models.
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Optimal threshold selection. We propose to perform a threshold tuning by max-
imizing the F1-score for minor class (Positive class). The F1-score is displayed as
a function of different thresholds on validation set. Then optimal threshold is de-
picted and used for test evaluation.

We see in Figure 3.13 that the optimal threshold is moving depending on the
model used and the configuration. The ResGCN-N51 with weighted loss perform
better across a wide range of thresholds, demonstrating its robustness to threshold
variation. This suggests that this model still has good generalization ability. We
will further investigate this hypothesis with optimal threshold selection based on
the validation set and evaluating on the test set.

(a) Validation set. (b) Test set.

FIGURE 3.13: F1 score as function of threshold. Optimal thresholds
are denoted as th in the legend.

Evaluation on test set with optimal threshold. In some cases, as reported in Ta-
ble 3.5, the optimal threshold allows a better F1 score on the validation set. How-
ever, this behavior depends on the model and data subset. The performance of this
method depends on the similarities between validation and test set, which may in-
troduce biases in model selection. We compute the optimal threshold using only
validation set and report the F1 score on the test set using the validation optimal
thresholds in Table 3.5.

Results discussion. As shown in Table 3.5, the optimal thresholds are not sig-
nificantly different from 0.5 when using weighted loss (∆ ≤ 0.1). Interestingly,
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Model F1@0.5 F1@Opt Value ∆ F1.Avg
Subset Val Test Val Test Test

Class (C) 1 0 1 0 1 0 1 0 Optth 0.5 Opt
N51 0.54 0.93 0.48 0.89 0.56 0.91 0.57 0.89 0.22 0.28 0.685 0.730

N51+W 0.64 0.93 0.53 0.89 0.65 0.93 0.51 0.89 0.60 0.10 0.710 0.700
PA-N51 0.56 0.90 0.50 0.88 0.58 0.92 0.49 0.88 0.61 0.11 0.690 0.685

PA-N51+W 0.57 0.89 0.56 0.89 0.57 0.90 0.55 0.89 0.53 0.03 0.725 0.720
PA-B19+W 0.56 0.91 0.53 0.9 0.56 0.91 0.53 0.90 0.50 0.00 0.715 0.715

TABLE 3.5: F1 results on test and validation subsets. The optimal
threshold value Optth is computed using only the validation set. Opt
indicates F1 scores using Optth and ∆ = |F1Opt − F10.5|.

even the last model, PA-B19+W, has the same optimal threshold 0.5 (∆ = 0). In con-
trast, for unweighted loss, the optimal thresholds are much lower (Optth ≤ 0.12,
cf. Figure 3.13b). This observation is clearly depicted in Figure 3.13a, where we
can see the distinct evolution of the F1 scores for different thresholds. The same
phenomenon is evident in Figure 3.13b, which assesses the generalization ability
of the models. Here, we observe that the optimal thresholds deviate significantly
from the standard value of 0.5 specially for model trained with unweighted loss
(See also ∆ values, Table 3.5). While some of these models, like ResGCN-N51 (un-
weighted), yield better F1 scores for very small thresholds. However, this selec-
tion is biased and can’t be taken in consideration, as the model selection should
not be impacted by the test set distribution during training and validation. This
demonstrates empirically that weighted BCE loss allow optimizing for balanced
threshold, making the real optimal values close to 0.5.

The F1 score on the test set is presented for various thresholds, serving only
as a comparison with the optimal threshold (Optth) obtained on the validation set.
An ideal model should maintain consistent and high F1 scores across different
thresholds (Lipton et al., 2014), which measure the robustness of the model. This
implies having a higher level of confidence in correctly predicting both negative
and positive samples. Among the models analyzed, the ResGCN-N51+wloss model
demonstrates the closest adherence to this condition. As depicted in Figure 3.13a,
it exhibits a more extended and elevated plateau compared to the other models.

Learned representations. We utilize t-SNE (t-Distributed Stochastic Neighbor
Embedding) to visualize the high-dimensional learned features in both 2D and 3D
spaces, considering various perplexity values. In Figure 3.14, we observe a notable
class imbalance between the positive class (represented by yellow points) and the



78 Chapter 3. Graph representation for human movement classification

negative class (represented by violet points). In this lower-dimensional represen-
tation, the data points are not distinctly separated. However, the accuracy of this
observation is related to t-SNE quality which depends on the extent to which the
structure of the data is preserved. The 3D space representation (Figure 3.14b) with
perplexity 50 could give a better visualization close to the real distribution and
structure of the original high-dimensional space.

(a) 2D tsne-visualization.

(b) 3D tsne-visualization.

FIGURE 3.14: T-SNE Visualization of learned features by
ResGCN-N51+W on the validation set.

3.5 Investigation of prediction explainability by im-

plicit and explicit attention visualization

Despite the prevalence of machine learning models, their inner workings often
remain opaque, seen as black boxes. However, comprehending the factors influ-
encing predictions is crucial for establishing trust (Ribeiro et al., 2016), especially
when decisions or actions are based on these predictions or when considering the
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deployment of a new model. This understanding not only enhances trustwor-
thiness but also offers valuable insights that can drive the transformation of an
unreliable model or prediction into a reliable one. Therefore, we delve into a thor-
ough examination of model interpretability, seeking to elucidate the underlying
factors driving predictions. Additionally, we explore the challenges posed by the
attention mechanism in achieving a comprehensive understanding of the model’s
decision-making process.

3.5.1 Explicit: Part level attention

The first method of visualization to try understanding model prediction is to visu-
alize the attention score values for each human skeleton part (cf. Figure 3.10). We
display attention map as Part-level attention per each layer for the sample Stand on
leg/Abnormal (class 1) from the validation set in Figure 3.16. The attention distribu-
tion seems not selective. The phenomena are observed across multiple samples. To
investigate this hypothesis, we draw the histogram of attention weights per each
part and per each layer in Figure 3.15. We observe that most of the distributions
have mean close to m = 0.2 and low standard deviation σ ∈ [0.020, 0.080]. The
value m = 0.2 means that somehow attention weights are close to a uniform dis-
tribution in average across the five body parts (5m = 1). Which also indicates that
the model pay equal attention on whole body parts. This observation could also
explain why the part attention was not very effective for this binary classification.
The model without part attention ResGCN has led to better results.

To provide an example, when examining the attention map for the stand-on-
one-leg action in the abnormal class (cf. Figure 3.16), it was expected that the leg
parts would receive higher attention. However, the attention was observed to be
uniformly distributed on average, indicating a lack of selectivity. Additionally,
some channels exhibited saturation, further complicating the interpretation of the
attention patterns. These observations highlight the need for further investigation
and improvement in the part-level attention mechanism for this particular dataset.

In general, attention mechanism may not be directly explainable as reported in
(Bai et al., 2021). It is important to consider the possibility that different attention
distributions can result in the same output. Which significantly increases the com-
plexity of interpretation process. Moreover, there may not be a unique solution
to the problem, but there could be one solution that aligns with our intuition.
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Indeed, the model does not guarantee to converge to this specific solution. Dur-
ing the optimization process, the architecture may find a shorter path that lacks
interpretability at the human level. Alternatively, if interpretability is a critical
constraint, one potential solution is to enforce interpretability by a form of guid-
ance incorporating supervised attention mechanism, which can provide insights
into the model’s decision-making process.

FIGURE 3.15: Attention distribution per part and layer across all
validation samples.
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(a) First 3 layers of Part attention with channel dimension of 128.

(b) Last 3 layers of Part attention with channel dimension of 256.

FIGURE 3.16: Part attention maps for the 6 six layers of
PA-ResGCN-N51, the indexes from 0 to 4 respectively refer to left
arm, right arm, left leg, right leg and torso. The right y-axis gives the
average part attention.
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3.5.2 Implicit: Class activation map

The Class Activation Map (CAM) method, proposed by (Zhou et al., 2016), intro-
duces an intuitive idea of visualizing the regions that contribute significantly to an
output through a weighted sum of feature maps. CAM provides a way to identify
the discriminative regions in an input that are important for predicting a specific
class. By computing the class activation maps, it becomes possible to visualize the
implicit attention given to different regions, helping to understand which parts of
the input contribute most to the model’s decision-making process. In our context,
the regions correspond to the nodes of the skeleton graph. We apply the CAM
method to visualize the most important joints that contribute to the classification
decision.

Formally, given the final convolutional feature maps F of size (H, W, C), where
H and W represent the height and width, and C denotes the number of channels,
the class activation map for a specific class c can be computed as follows:

Mc(x, y) =
C

∑
k=1

wc
kFk(x, y) (3.23)

where wc
k is the weight associated with the k− th channel feature map Fk given

a class c. In our specific case, given the topology of the architecture (cf. Figure 3.9)
the height H = T/r and width W = V and C is units number of the final fully
connected layer, numerically (H = 180

4 , W = 17, C = 256).
To obtain a heatmap visualization of the class activation map Mc, the ReLU

activation is applied to clip negative values, then followed by a normalization step.

Joint-level contribution. In the models proposed with no attention mechanism,
we don’t have explicit attention weights. However, we can still show implicit
learned attention using the Class Activation Map (Zhou et al., 2016) described
above. By generating the CAM for a specific class, we can identify the key joints
that are crucial for the model’s decision-making process in distinguishing that par-
ticular class. This visualization provides insights into the specific joints that are
implicitly attended to by the model, aiding in the understanding of the underlying
features driving the classification task. Furthermore, this information can inspire
architectural improvements and enhance the design of the model.

CAM method in the context of binary classification. Given that the output fea-
ture maps F have a size of (1, 45, 17, 1) and the input has a shape of (3, 180, 17, 1),
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we observe a reduction factor of r = 4 in the number of frames (45 = 180/4). In
order to visualize the heatmaps across the time dimension of the input, heatmaps
can simply be interpolated. This allows us to display the heatmaps with a resolu-
tion corresponding to the input size of T × V (i.e., 180 × 17). The interpolation
operation is given by the following Equation:

∆(t, j) =
Mc(t + 1, j)−Mc(t, j)

r− 1
∀t ∈ [0,

T
r
− 1]

Hc(t× r + i, j) = Mc(t, j) + ∆(t, j)× i ∀i ∈ [0, r− 1] (3.24)

Where r is the previous-defined reduction factor and Mc is the class activation
map for a class c. The value Mc(t, j) represents the importance of joint j at time t.
The heatmap of input resolution is denoted by Hc of shape (T, V).

In this context of protective behavior detection, we have a binary classification.
Accordingly, we configure the final linear layer to yield only one output, followed
by sigmoid activation function, which is then thresholded with a value of 0.5. In
this particular case, we consider the positive values in the feature map H+

c as cor-
responding to the class c = 1, and negative values H−c as corresponding to the
class c = 0. We decompose the resulting feature map Hc as :

Hc = H+
c + H−c

H+
c = Relu(Hc)

H−c = −Relu(−Hc)

By taking this aspect into account, we can utilize a single heatmap to visualize
both, the regions that contribute to class 0 (Normal) and those that contribute to
class 1 (Abnormal). This unified visualization provides a comprehensive view of
the distinctive parts associated with each class. The predicted class, determine
which of class contribution was higher.

Application using the ResGCN model. Initially, Table 3.6 provides a compre-
hensive mapping of joint indexes to their corresponding names. This mapping
serves to enhance the comprehensibility of subsequent analyses and establish a
direct correspondence with the original skeleton graph information input. Figure
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3.18, showcases of several samples illustrating various actions belonging to the
“Normal” (class 0) and “Abnormal” (class 1) categories.

Index 0 1 2 3 4 5
Joint Name Pelvis Spine Neck Thorax Head Left shoulder

Index 6 7 8 9 10 11
Joint Name Left elbow Left wrist Right shoulder Right elbow Right wrist Left hip

Index 12 13 14 15 16
Joint Name Left knee Left foot Right hip Right knee Right foot

TABLE 3.6: Mapping of indexes to their skeleton joint names.

Class contribution visualization. The heatmaps visualizations in Figures 3.17
and 3.18 uses a blue color scale to indicate the contribution towards the predic-
tion of the negative class (0), while the red color scale highlights the contribution
towards the prediction of the positive class (1). The predicted class corresponds
to the type of contribution with the highest value, where negative values indicate
class 0 and positive values indicate class 1. The yellow regions in the heatmap
indicate neutrality, suggesting that the information from those joints does not sig-
nificantly impact the prediction.

Interpretability analysis. Starting with the sample shown in Figure 3.18a, where
we observe that the higher contributing joints in the detection are 6 and 7, corre-
sponding to the left arm’s executing the action reach forward. Conversely, in Figure
3.18b, we display a case where the model incorrectly predicts the behavior, but
still use the same relevant joint for decision. Despite this intuitive high contribu-
tion, the model fails to accurately classify the patient’s behavior in this instance.
In the case of the Bend action, which involves the joints 0 to 10 (Joint set of the up-
per body), we would expect to see a higher level contribution of joints within this
range. As shown in Figure 3.18d, we observe significant contribution of joints 4,
5, and 9, which aligns with our expectations. However, in the sample depicted in
Figure 3.18c, the model primarily focuses solely on the joint of index 0, known as
the root joint.

In Figure 3.18e, we can observe the significant contribution of joints 6 and 7,
which correspond to the left arm, as well as joints 9 and 10, which correspond to
the right arm. These joints play a crucial role in the action of standing on one leg. The
model correctly identifies and focuses on these key joints, but still not sufficient for
human to make decision.
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In Figure 3.18f, we can observe that the important joints for the action stand-
to-sit are primarily joint 11 and joint 13, which correspond to the left leg. These
joints play a crucial role in the transition from standing to sitting. The model cor-
rectly identifies and focuses on these key joints, indicating its understanding of the
relevant body parts involved in the action.

Returning to the feature extraction process, it is important to note that the Spa-
tial Graph Convolutional Network (SGCN) operation incorporates information
from neighboring joints within a graph distance of 1. This results in each joint
containing not only its own information but also that of its adjacent joints. This
phenomenon may elucidate why the contribution of a single or a few joints can be
adequate for making the final decision. Hence, the significant contribution from an
individual joint j can be viewed as a collective contribution from its entire neigh-
boring set N (j).

(a) Stand-to-sit/ Pb class 0. (b) Stand-to-sit/ Pb class 0.

(c) Walk/ class 0. (d) Walk/ class 1.

FIGURE 3.17: Combined CAM for ResGCN-N51 (Part 1).
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(a) Reach forward/ Pb class 1. (b) Reach forward/ Pb class 0.

(c) Bend/ Pb class 0. (d) Bend/ Pb class 1.

(e) Stand on one leg/ Pb class 1. (f) Stand-to-sit / Pb class 0.

FIGURE 3.18: Combined CAM for ResGCN-N51 (Part 2).
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3.6 Conclusion

In conclusion, our study delved into the utilization of graph convolutional net-
works (GCNs) for analyzing and modelling pose sequence data. We specifically
applied GCN-based models in the AffectMove 2021 challenge (Olugbade et al.,
2021), which involved solving a real-world task. Through a comprehensive thresh-
old analysis, we assessed the influence of different thresholds on the F1 score and
model robustness. This analysis highlighted the importance of selecting appropri-
ate thresholds based on the chosen training methodology. We propose that opti-
mizing differentiable metrics, such as those presented in (B’en’edict et al., 2021),
could potentially improve the results. In the future, we can explore the incorpora-
tion of motion category information and leverage multitask learning with shared
weights, which has the potential to greatly enhance protective behavior detection.
Additionally, considering a more appropriate fusion of MoCap and EMG data,
given the inherent heterogeneity of these two modalities, could lead to further im-
prove the performance. The crucial concept of interpretability was discussed in
details in the last part. While machine learning models often function as black
boxes, understanding the reasoning behind their predictions is crucial for building
trust and making informed decisions based on those predictions. Our analysis and
exploration of the data have provided valuable insights into the performance of the
models and the interpretability of the results. We observed that despite incorpo-
rating explicit attention in the architecture, it doesn’t exhibit selectivity and can
lack intuitive interpretation. We have explored the limitations posed by attention
mechanisms, where models may find more efficient but less explainable paths.
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Part II

Human motion captioning and
segmentation
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4.1 Introduction

In machine learning, captioning is the process of generating textual descriptions
from a given input data, such as images or videos. The interest in captioning
tasks stems from the need for a more efficient and effective way to understand
and process visual data, such as images and videos, which are becoming increas-
ingly prevalent in today’s digital world. Current approaches, mainly focus on
often vision-based input, thus, typically relies on a combination of Convolutional
Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) or more re-
cently use the Transformer (Vaswani et al., 2017). The aim is to produce detailed
and human-like captions that can be used in several applications such as image
and video retrieval and understanding. While captioning tasks have primarily
focused on images and videos, limited research has explored motion captioning
or human skeleton-based captioning. This approach generates captions for hu-
man motion based on estimated or ground truth poses. The human skeleton offers
a concise and semantically rich representation of motion, enabling better under-
standing and description of human activities. The generated captions mainly fo-
cus on describing actions and poses, such as: "a person is running then stops" or "a
person is waving with his left hand".

In this chapter, we present available datasets and relevant techniques of mo-
tion representation. For motion/text representation and generation, we discuss in
detail two key designs: i) Vector Quantized Variational AutoEncoder (VQ-VAE)
(van den Oord et al., 2017), and ii) the Transformer architecture (Vaswani et al.,
2017). Connecting attention mechanisms introduced for machine translation to the
scope of our study as source of inspiration (Section 4.3). Then, we focus on pro-
posed methodologies (Section 4.4). Particularly, this chapter will focus on experi-
ments towards Synchronized Captioning (Section 4.5), involving qualitative analysis
of human segmentation. Then, this semantic segmentation will be formally de-
fined and quantitatively evaluated in the next Chapter 5. The following discussion
and analysis constitute our second contribution based on our paper (Radouane
et al., 2023a)1.

1Code: https://github.com/rd20karim/M2T-Segmentation

https://github.com/rd20karim/M2T-Segmentation
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4.2 Mapping between motion and language

In recent years, numerous motion encoders have been proposed to address the
challenges of motion and text generation. Excluding studies focusing on bidirec-
tional mapping (Plappert et al., 2018; Toyoda et al., 2022; Guo et al., 2022b), it is ev-
ident that the field of motion generation has witnessed significant advancements,
with extensive research efforts dedicated to this task (Guo et al., 2022a; Zhang et al.,
2023; Ghosh et al., 2021; Petrovich et al., 2022; Chen et al., 2023). In contrast, the
progress in motion to language generation has been comparatively less substantial
and advanced (Goutsu and Inamura, 2021; Takano and Lee, 2020).

This section presents techniques involved in motion and language mapping in
both directions. In this context, we highlight existing datasets and benchmarks that
make supervised learning possible (Section 4.2.1). Then, we categorize relevant
methods of motion representation (Section 4.2.2) and related architecture design.
Finally, we review existing methods for motion and language generation (Section
4.2.3).

4.2.1 Datasets

The study of complex human movements and actions often requires the use of
motion capture based datasets. One of the most widely used datasets is the KIT
Motion Language Dataset (KIT-ML) (Plappert et al., 2016). This dataset is created
by combining records from the CMU Motion Database and the KIT Whole-Body Hu-
man Motion Database, and allows users from around the world to contribute to
motion annotations using an online tool. The annotations describe the entirety of
each movement, even when it consists of multiple actions, often in the form of
single sentences or small paragraphs. Another dataset proposed by (Takano et al.,
2016, 2019) that describe complex actions and movements. It contains 467 motions
and 764 annotated segments, and was designed for human-robot interaction. The
annotations in this dataset are time-indexed and describe successive phases of the
movement as separate short sentences. In addition to these two datasets, there is
also the HumanML3D dataset (Guo et al., 2022a). This dataset includes record-
ings of various movements such as walking, running, jumping, and dancing. The
HumanML3D dataset can be used for tasks such as motion captioning, prediction,
action recognition, and human-robot interaction.

For our initial work on motion-language synchronization, we utilized the KIT-
ML dataset (Plappert et al., 2016). Later on, an updated version of the KIT-ML
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dataset, along with a larger dataset named HumanML3D, was introduced in a
recent paper by (Guo et al., 2022a). We present their statistics in Table 4.1. Conse-
quently, we extended our experiments to include these recently released datasets
in Section 4.5.6.

Subset Number Train Test Val.

KIT-ML motions 2375 291 262
samples 5071 612 568

KIT-ML-aug motions 4886 830 300
samples 10408 1660 636

HML3D-aug motions 22068 4160 1386
samples 66734 12558 4186

TABLE 4.1: Training splits and dataset statistics, for KIT-ML
(Plappert et al., 2016), Human ML3D and KIT-ML after
augmentation (Guo et al., 2022a).

4.2.2 Motion representation

In the previous Chapter 3, we explored the concept of graph modeling as an in-
tuitive approach for encoding motion data based on skeletons. In this part, our
focus shifts towards more specific methods for tasks involving language and mo-
tion generation. The success of an architecture heavily relies on its feature extrac-
tor, which plays a crucial role in capturing relevant information for a specific task.
Within this context, an important concept to consider is the effective representa-
tion of motion, especially in relation to language. Motion representation can take on
a continuous form, such as raw pose data that exhibits continuous variations in real
human motion over time. Alternatively, motion can be represented discretely as
tokens, which can be more suitable for utilization within sequential-to-sequential
(seq2seq) architectures like the Transformer model (Vaswani et al., 2017). Thus, the
methods of motion representation can be categorized into two types: continuous
and discrete representations.

Learning continuous representations. Significant research has been conducted
on the development of robust and denoised continuous representations in the field
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(Odena, 2016; Chen et al., 2016). In our specific context, motion is naturally ex-
pressed as a continuous sequence of pose vector, allowing for the capture of tem-
poral dynamics and subtle variations in joint positions. Raw pose data, which
consists of joint positions at different time steps, is a common form of continuous
representation. Other derived representations such as velocities and accelerations
can be included as continuous representations over time. These types of repre-
sentations offer a comprehensive description of motion patterns. Previous studies
have extensively employed continuous representation in the analysis of motion
based on skeletal data (Plappert et al., 2018; Takano et al., 2020; Takano and Lee,
2020). However, learning from continuous data presents several drawbacks that
need to be considered. Firstly, it introduces increased computational complexity.
Secondly, the sensitivity of continuous data to noise and measurement errors can
negatively affect the accuracy of learned models. Furthermore, complex models
trained on continuous data also face a higher risk of overfitting, as they may cap-
ture noise or irrelevant patterns.

Learning discrete representations. Several works have been proposed for learn-
ing of discrete representations (Jang et al., 2017; Hu et al., 2017). In this context,
our focus will be on one particular method that has gained prominence in various
generative tasks and is indispensable for comprehending the forthcoming meth-
ods that aim to learn motion tokens. Proposed by (van den Oord et al., 2017)
to effectively learn discrete representation, the Vector Quantized Variational Au-
toencoder (VQ-VAE) is a variant of the Variational AutoEncoder (VAE). This discrete
latent space is motivated by the prevalence of discrete entities in the real world,
such as words and phonemes, and enables the VQ-VAE to capture the global structure
of data while avoiding the modeling of noise and fine-grained details. By embedding
data into a discrete latent space, the VQ-VAE achieves data compression and learns
meaningful representations that encompass global information.

Additionally, the VQ-VAE is capable of modeling long-range sequences, oper-
ates in a fully unsupervised manner, mitigates the issue of posterior collapse and
effectively models features that span multiple dimensions in the data space. These
characteristics make the VQ-VAE a powerful design for learning informative repre-
sentations from complex data.

The architecture of VQ-VAE is presented in Figure 4.1. The model follows the
traditional Encoder-Decoder design, but introduces a quantization process between
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FIGURE 4.1: The VQ-VAE architecture (van den Oord et al., 2017).

the encoder and decoder. Formally, the encoder network models the posterior dis-
tribution q(z | x) of discrete latent variables z given an input x, a prior distribution
p(z), and the decoder network generates data x given latent variables z following
the distribution p(x | z).

In this framework, the posterior and prior distributions are categorical, and the
samples obtained from these distributions are used to index an embedding table
e = (e1, ..., eK) where K represents the size of the discrete latent space (cf. Figure
4.1). This latent embedding space e ∈ RK×D, and D is the dimension of each latent
embedding vector ei. The space consists of K embedding vectors ei ∈ RD, i ∈
{1, 2, . . . , K}. The discrete latent variables z are obtained through a nearest neighbor
lookup in the shared embedding space e.

The posterior categorical distribution q(z | x) probabilities are defined as one-
hot:

q(z = k | x) =

{
1 for k = argminj

∥∥ze(x)− ej
∥∥

2 ,

0 otherwise
, (4.1)

where ze(x) is the output of the encoder network. The equation 4.2 gives the
discrete representation of the input x.

zq(x) = ek, where k = argminj

∥∥ze(x)− ej
∥∥

2 (4.2)

The gradient for equation 4.2 is not explicitly defined, but it is approximated
using a technique similar to the straight-through estimator. In this approach, as
illustrated in Figure 4.1 the gradients from the decoder input zq(x) are directly
copied to the encoder output ze(x). This approximation allows for the propagation
of gradients through the quantization process, enabling the training of the model.
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Application in human motion tokenization. Drawing inspiration from the suc-
cessful implementation of discrete representations in various fields, such as im-
age (Razavi et al., 2019) and video generation (Yan et al., 2021), recent approaches
have embraced the concept of motion tokens. Specifically, these methods adopt the
foundational principles of the VQ-VAE architecture and adapt the encoder-decoder
framework to create motion tokens as intermediate representation.

In the following, we will explore the diverse techniques employed for motion
representation and tokenization in the context of motion and language generation.

• Codebooks. In order to tackle the issue of lifeless motion, a motion tokenization
approach is introduced by (Guo et al., 2022b). The authors propose to employ
deep vector quantization to learn 3D spatial-temporal codebooks. This enables
the transformation of 3D pose sequences into a sequence of tokens, referred to
as motion tokens. Learning these tokens involves the following operations:

Motion representation m: Given a pose sequence m ∈ RT×Dp , where T represents
motion duration and Dp is the dimension of pose representation.

Motion encoding E(.): The encoder apply 1D convolutions along the time dimen-
sion of sequence poses to obtain latent vectors b̂ ∈ Rt×d, with t < T representing
the number of convolution kernels. Formally, b̂ = E(m).

Motion quantization Q(.): The encoded motion b̂ is quantized into a collection
of codebook entries bq ∈ Rt×d using discrete quantization. The learnable code-
book B = {b}K

k=1 ⊂ Rd consists of K latent embedding vectors, each of dimen-
sion d. The quantization process Q(·) replaces each row vector b̂i ∈ Rd in b̂ with
its nearest codebook entry bk in B, defined as:

bq = Q(b̂) :=
(

argminbk∈B

∥∥∥b̂i − bk

∥∥∥) ∈ Rt×d (4.3)

Motion Reconstruction D(.) The de-convolutional decoder D projects bq back to
the 3D motion space, yielding a pose sequence denoted as m̂.

Finally, the entire process depicted in Figure 4.2 can be formulated as:

m̂ = D(bq) = D(Q(E(m))) (4.4)

The model is trained using a reconstruction loss combined with embedding
commitment loss terms that encourage latent alignment and stabilize the train-
ing process:
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FIGURE 4.2: Mapping of motion tokens to their sequence of poses.
We observe that each token represent a motion primitive. e.g., token
168→Wave with left hands, 446→ Bend (Guo et al., 2022b).

(a) Codebooks. (b) Encoder, Decoder design for the
VQ-VAE.

FIGURE 4.3: Codebooks learning details (Zhang et al., 2023).

Lvq = ∥m̂−m∥1 +
∥∥sg[E(m)]− bq

∥∥2
2 + β

∥∥E(m)− sg
[
bq

]∥∥2
2 (4.5)

Figure 4.2 showcases intriguing motion tokens, generated through the utiliza-
tion of learned tokens. Intuitively, these sub-movements can be perceived as
motion basis, encapsulating a range of primitive motions present in the dataset
distribution. By appropriately sequencing these tokens using the decoder D, it
becomes feasible to reconstruct the original motions. The incorporation of mo-
tion tokens greatly facilitates the generation of both words and motions. As the
words are inherently represented as tokens, the association between words and
tokenized motion versions is streamlined due to the inherent proximity intro-
duced by the quantization process.

The concept of codebooks was re-used by (Zhang et al., 2023). In their work,
the authors propose the learning of codebooks (cf. Figure 4.3a) inspired by the
VQ-VAE architecture, a custom design is proposed for encoding and decoding
motion (cf. Figure 4.3).

• Motion snippet code. This type of representation learning was proposed by
(Guo et al., 2022a), for the generation of natural and diverse 3D human motion
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conditioned on text input. They introduce motion snippet code as the internal
motion representation. The motion snippet is the intermediate-learned repre-
sentation between encoder and decoder (cf. Figure 4.4). Compared to individ-
ual poses, the snippet code effectively captures temporal semantic information
that is essential for generating coherent and realistic motion. The motion snippet
code has an 8-frame receptive field, corresponding to approximately 0.5 seconds
for a pose streaming rate of 20 frames per second (fps). This design also results
in a more condensed internal code sequence with a length of T = T′/4.

FIGURE 4.4: The auto-encoder architecture (E− D) comprises
two-layer convolutions with a filter size of 4 and a stride of 2 (Guo
et al., 2022a).

• Motion Codebook. Recently, in the context of multitask learning on a motion-
text dataset, (Jiang et al., 2024) proposed an architecture design similar to pre-
vious works for learning a discrete representation of motion, known as motion
tokens. The architecture is entirely based on the VQ-VAE framework. The Encoder
applies a series of 1D convolutions along the frame time to obtain a sequence of
latent representations, followed by a quantization process as described earlier.

4.2.3 Motion and language generation

The literature provides numerous examples of works aimed at generating mo-
tion from textual descriptions. Particularly, transformer operations (Vaswani et al.,
2017) are at the forefront of advanced architecture design, making them a crucial
tool for tackling a wide range of machine learning tasks. In this part, we will focus
on classic and most recent approach for motion and language generation. These
methods are respectively based on recurrent neural networks (RNNs) and Trans-
formers.
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RNN-based design. A first model addressing the two-direction generation tasks
was proposed by (Plappert et al., 2018), using the KIT-ML dataset. Their tech-
nique, depicted in Figure 4.5, proposes a similar architectural design for both mo-
tion and language generation. Specifically, in Figure 4.5.(a), the model learn the
mapping of motion sequences M = (m(1) . . . m(N)) to language. The motion se-
quences is initially encoded using a stack of bidirectional RNNs to obtain a context
vector c. This context vector is further decoded by another stack of unidirectional
RNNs, with the embedded word generated in the previous time step serving as
an additional input. The fully-connected layer (FC) produces the parameters ŷ(t)

representing the output probability distribution, from which a concrete word ŵ(t)

is sampled using the decoder. This process continues iteratively until the end-of-
sequence (EOS) token is emitted, resulting in the complete generated description
ŵ = (ŵ(1), ŵ(2), . . .). On the other hand, Figure 4.5.(b) illustrates the reverse direc-
tion, where a natural language description w is used to generate the corresponding
whole-body motion M̂. This process follows a similar approach, employing a stack
of RNNs to encode the description and generate the motion sequence. Importantly,
it should be noted that the models for both directions are trained separately and
do not share any weights.

FIGURE 4.5: The bidirectional mapping model proposed by
(Plappert et al., 2018).

More recent and advanced work proposed by (Guo et al., 2022a) focus only
on the motion generation. The architecture details presented in Figure 4.6. The
GRU variant of RNNs is the main compound. The VAE is composed of a prior and
posterior network, both are simply GRU-based. Two modules not displayed are
Text2length, which samples the motion length, and Text2Motion, an architecture
based on a temporal VAE used for motion generation. With these modules in place,
it becomes possible to generate natural and diverse motions.
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FIGURE 4.6: Motion generation based on GRU and motion snippet
code (Guo et al., 2022a).

Transformer-based design. More recently, both modes of generation have been
addressed by (Toyoda et al., 2022; Guo et al., 2022b). In the context of motion gen-
eration, a variety of techniques have been applied. (Ghosh et al., 2021) propose
motion synthesis (text-driven animation) using a model based on recurrent net-
works, specifically Gated Recurrent Units (GRU), with a hierarchical design that
encodes the upper and lower body parts of the human skeleton. Other more ad-
vanced techniques leverage the use of transformers. For example, (Petrovich et al.,
2022) propose TEMOS for the generation of the 3D human motion conditioned on
text input, through a motion encoder and text encoder. As depicted in Figure 4.7
the motion and text are encoded using the transformer-based Variational Autoen-
coder VAE introduced by (Kingma and Welling, 2022). In the inference phase, only
the text encoder is used for motion generation through a transformer-based de-
coder.

Other studies explore bidirectional mapping. The authors proposed a transformer-
based architecture (Guo et al., 2022b) (cf. Figure 4.9) to handle the generation of
both text and motion. This is achieved straightforwardly by representing motion
as token sequences using a codebook obtained through pretraining a VQ-VAE, as
discussed in the previous subsection.

More recently, (Zhang et al., 2023) introduced an architectural design (cf. Figure
4.9) that builds upon the ideas presented by (Guo et al., 2022b). In this approach,
motion is represented also as tokens, with an additional special token, namely End,
which indicates the end of motion generation. The generation process begins by
providing the start token, which are obtained by encoding the natural language
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FIGURE 4.7: Motion generation with Transformer-based VAE
(Petrovich et al., 2022).

FIGURE 4.8: Motion generation with motion tokens as an NMT task
(Guo et al., 2022a).

description using CLIP (Radford et al., 2021). Subsequently, a pretrained decoder
is utilized to generate the motion sequence from these tokens. This architecture led
to improve performance in motion generation on various metric levels compared
to the approach proposed by (Guo et al., 2022b).

FIGURE 4.9: T2M-GPT architecture for text-to-motion generation
(Zhang et al., 2023).

Another sophisticated technique was used by (Chen et al., 2023), which em-
ploys a diffusion mechanism to generate motion conditioned on text or action. In
these works, the researchers propose learning an internal representation of motion
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through the VAE model. More recently, (Jiang et al., 2024) introduced a novel as-
pect of multitask learning (cf. Figure 4.10) involving instruction tuning tasks. Their
framework simultaneously learns motion captioning, motion generation, motion pre-
diction, and “in-between” motion filling (connecting a given start and end motion).
The key concept enabling this multitask learning is the use of a mixed vocabulary
of motion and text tokens, treating motion as a foreign language. This approach is
illustrated in Figure 4.11.

FIGURE 4.10: MotionGPT: Example of tasks learned during
instruction tuning (Jiang et al., 2024)

FIGURE 4.11: MotionGPT: Overview of framework design for
multitask learning (Jiang et al., 2024).

4.2.4 Vanilla Transformer

In this section, we will specifically review important details about the Transformer
(Vaswani et al., 2017), which has been extensively employed across numerous
tasks, including motion, language encoding, and generation (Zhang et al., 2023;
Guo et al., 2022a,b). However, we demonstrate in Section 4.5.6 that despite being a
successful architecture, the Transformer-learned attentions are not directly useful
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for interpretation and motion-word alignment. The original Transformer design
was proposed for NMT tasks and consists in an Encoder-Decoder framework:

Transformer Encoder. First, the input sequence of T elements from a vocabulary
of size Vs are embedded using a matrix E ∈ RVs×d, resulting in a sequence of
vectors X ∈ RT×d. Since the Transformer does not utilize recurrent connections, a
fixed positional encoding PEpos,i is added to the embedded tokens to incorporate
positional information.

PE(pos,i) =

sin
(

pos/10000i/dmodel
)

if i is even

cos
(

pos/10000(i−1)/dmodel

)
if i is odd

(4.6)

Where PE(pos,i) represents the position encoding value at the vector dimension
i for position pos. The resulting sequence of vectors is transformed through a series
of N identical layers of Multi-Head Attention and Feed-Forward neural networks (cf.
Figure 4.12).

Single-Head Attention. Implemented as a scaled-dot product attention mech-
anism and enables the model to attend over the entire sequence:

Q = X.WQ K = X.WK V = X.WV (4.7)

Here, Q, K, and V are the Query, Key, and Value matrices computed through lin-
ear projection of the inputs embedding X. The dot product of Q and KT produces
a matrix of similarities between each query and key, which are scaled by

√
dk to

reduce the magnitude of dot-product. The Softmax function is then applied to ob-
tain a probability distribution over the keys for each query. Finally, the values
are weighted by these probabilities and summed to obtain the output of the self-
attention:

Attention(Q, K, V) = softmax
(

QKT
√

dk

)
V (4.8)

Multi-Head Attention. In many cases, a single weighted averaged representa-
tion is insufficient to capture different details about the input, as results, the atten-
tion mechanism is extended to multiple heads, allowing multiple query-key-value
triplets. Information from each head i are aggregated through linear projection Wo

as in Equation 4.9.
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FIGURE 4.12: Transformer model compounds (Vaswani et al., 2017).

MultiHead(Q, K, V) = Concat(head1, head2, . . . , headh)WO (4.9)

headi = Attention(Qi, Ki, Vi)

Feed-Forward network. The output of multi-head attention is transformed with
a two-layer neural network with ReLU activation as follows:

FFN(x) = max(0, xW1 + b1)W2 + b2

x = LayerNorm(x + FFN(x))

Transformer Decoder. Similarly, the output sequence Y is also embedded into a
sequence of vectors Y ∈ RTout×dout . These representations are transformed through
the self-attention mechanism (Equation 4.9), where the future predictions from
each time step t are masked in the matrices Q and K with −∞, so that each token
attends only to the previous tokens. Then, a cross-attention mechanism is applied,
followed by a feed-forward pass, representing a single decoder layer. This process
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is repeated N times. The final output representation is linearly projected and fol-
lowed by a softmax function, providing a probability estimation over the output
vocabulary at each time step t.

Cross-attention. This mechanism is applied using the multi-head attention
mechanism (Equation 4.9), where the head queries are derived from the decoder
self-attention output, while the values and keys are extracted from the final layer
representation provided by the Transformer Encoder.

4.3 Attention and language modeling

Machine translation, one of the most popular tasks, consists in converting sen-
tences from one language to another. A fairly old task, several approaches have
been used over the years.

• Rule-Based Machine Translation (RBMT): Is an approach that relies on the syn-
tactic structure of both source and target languages. It operates by replacing
words or phrases with their equivalent counterparts in a syntactically appro-
priate manner. This method follows predefined rules and patterns to ensure
grammatical correctness and maintain the intended meaning.

• Statistical Machine Translation (SMT): Involves segmenting the source sen-
tence into smaller units and generating the translation based on statistical
language models. These models utilize large amounts of bilingual training
data to estimate the probability of generating target language segments given
the source language segments. SMT has been widely used and has shown
success in various translation tasks.

• Neural Machine Translation (NMT): Is a more recent approach to machine trans-
lation that utilizes neural networks, specifically deep learning architectures,
to model the translation process. Initially, NMT faced performance limita-
tions due to computational constraints. However, advancements in archi-
tecture design and increased computational power have led to significant
improvements in translation quality. NMT models are capable of capturing
complex linguistic patterns and long-range dependencies, resulting in more
accurate and fluent translations.

In SMT approaches, a considerable number of linguistic models have been for-
mulated under the following Markov assumption:
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p(x1, · · · , xT) =
T

∏
t=1

p(xt|x1, · · · , xt−1) ≈
T

∏
t=1

p(xt|xt−n, · · · , xt−1) (4.10)

Where n representing the number of previous words used for probability com-
putation, this simplifies the computation. However, this configuration imposes
limitations on capturing long dependencies within the target sequence.

In contrast, NMT approaches use neural networks, particularly sequence-to-
sequence models, which do not explicitly rely on the Markov assumption. The
probabilistic view of NMT tasks involves generating a probability distribution
over the target vocabulary and then selecting the output that maximizes the indi-
vidual probabilities at each prediction step. In recent years, NMT approaches have
witnessed the introduction of attention mechanisms in various forms, significantly
enhancing the quality of generated text and offering a new perspective for inter-
pretability analysis through learned attention weights. The difference in attention
types stems from how the context vector is computed. Utilizing all encoder out-
puts corresponds to soft attention (Bahdanau et al., 2015), while employing only a
subset of the encoder outputs is referred to as local attention (Luong et al., 2015).

In the following, we provide a detailed definition of these two attention modes
after a brief review of the state of NMT without attention. Later on, we investigate
their respective strengths and weaknesses in motion captioning context (Section
4.4). Next, we formulate our proposition of local recurrent attention as an effective
solution for improving the quality of generated text (Section 4.4.3), particularly
enabling synchronized captioning (Section 4.5).

4.3.1 RNNs without attention

Focusing on the neural machine translation approach, before the incorporation of
attention mechanisms (Cho et al., 2014; Mikolov et al., 2010), RNNs networks (e.g.,
LSTM) were employed to read the sequence of input words and generate an out-
put vector of fixed size. This vector was then used by an RNN decoder to gener-
ate the output sentence in the target language’s vocabulary in an autoregressive
manner. However, this technique exhibited less stability in performance when the
source sentence exceeded an average length of 20–50 words. The phenomenon is
attributed to RNN-based architectures compressing extensive information into a
fixed-size vector, causing information loss in longer sentences. This problem was
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mitigated by (Sutskever et al., 2014) with a simple word order reversal technique,
the architecture encodes the source sequence reversing from an "ABC" sentence
and give instead "CBA" to the target sequence which improved the BLEU score
results from 25.9 to 30.6, especially on long sentences. This method exceeded the
performance derived from the attention mechanism in its form introduced by (Bah-
danau et al., 2015), nevertheless the architecture design does not allow an expla-
nation of the predictions. For the interpretability analysis, architectures based on
attention mechanisms may be more pertinent. In the following, we discuss differ-
ent attention mechanisms, starting with the first proposed attention mechanism in
machine translation known as soft attention, and then we discuss local attention.
Both will be experimented with in our motion captioning task.

4.3.2 First attention mechanism

In the paper (Bahdanau et al., 2015), the authors incorporated a novel technique
called the attention mechanism into the decoding process of an RNN. This tech-
nique enables the decoder to dynamically select relevant information from the in-
put sequence, leading to improved performance, robustness for long sequences, and in-
terpretable results. This attention mechanism has been formulated in various ways.
In this discussion, we will focus on the original formulation. Notably, this mech-
anism has since been widely applied in different tasks and further developed by
other researchers (Vaswani et al., 2017).

Formally, given an input sequence x = (x1, . . . , xTx), xi ∈ RKx and a target
sequence y = (y1, . . . , yTy), yi ∈ RKy , where Kx and Ky are the sizes of the vocab-
ularies of the source and target respectively. The notations Tx and Ty denote the
lengths of the source and target, respectively. The NMT task aims to map the input
x to the target y. In the RNN Encoder/Decoder based approach, the context vector
c and the hidden state ht ∈ Rn are generally expressed as follows:

ht = f (xt, ht−1) (4.11)

c = q ({h1, · · · , hTx})

Where f and q represent model functions. (Sutskever et al., 2014) modeled the
function f as an LSTM and q({h1, · · · , hT}) = hT. The decoder predicts the next
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word yt given the context described by the vector c and the vector representation
of all previous words {y1, · · · , yt−1}.

p(y) =
T

∏
t=1

p(yt | {y1, · · · , yt−1} , c) (4.12)

This probability function in Equation 6.1 is modeled by g representing the de-
coding function which uses an RNN followed by a fully connected layer. Formally,
we can write:

p(yt | {y1, · · · , yt−1} , c) = g(yt−1, st, c) (4.13)

Attention-based context vector ci. Computed using attention weights αij obtained
by a softmax operation on energy coefficients eij as follows:

eij = v⊤a tanh
(
Wahi−1 + Uasj

)
αij =

exp
(
eij
)

∑Tx
k=1 exp (eik)

ci =
Tx

∑
j=1

αijsj (4.14)

The alignment model is denoted as a(.), thus eij = a(hi−1, sj) , where sj is j-th
source hidden state. The parameters va ∈ Rn′×1, Wa ∈ Rn′×n and Ua ∈ Rn′×m are
learnable, with m = n for the GRU and m = 2n for the Bi-GRU. In the case of a
bidirectional GRU, the source hidden state sj is the concatenation of the jth forward
and backward encoder hidden states, such that for each encoding step j we have
sj = [−→sj ;←−sj ] which gives the sequence of encoder outputs (s0, s1, · · · , sTx−1).

4.3.3 Local attention

This type of attention consists of using a subset of source hidden states (cf. Figure
4.13). There are many methods to find the subset to select at each decoding time
step. In the work by (Luong et al., 2015), the authors propose a method based on
the calculation of an alignment position pt. To compute pt two techniques were
proposed: (i) Monotonic alignment which assumes a monotonic relation between
the source and target sequences so pt = t, and (ii) Predictive alignment, where the
position pt is learned by the model, the prediction is based on Equation 4.15.

pt = Tx.sigmoid(vT
p tanh(Wpht)) (4.15)
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FIGURE 4.13: Schematic description of the process of encoding and
decoding, which involve the computation of alignment position pt
(Luong et al., 2015).

Where Tx is the source length and pt ∈ [0, Tx]. The learnable parameters are
Wp and vp. Then, the context vector ct is calculated using the subset of tokens
inside the range [pt − D; pt + D], where 2D is the window length. Additionally,
the previous weights αij are multiplied by a Gaussian window centered on pt as
described in Equation 4.16 with σ = D/2.

α̂ij = αij. exp (− (i− pt)2

2σ2 ) (4.16)

Except for the calculation of αij the authors use the current hidden state ht dif-
ferently compared to the work (Bahdanau et al., 2015), where ht−1 was used. As a
result, an attentional hidden state h̃t is calculated after the context vector ct. Then,
h̃t is passed through a linear layer with parameters Wp (cf. Figure 4.13). Finally, a
so f tmax function is applied to produce a probability distribution over the vocabu-
lary size. These two operations are formally described by Equations 4.17.

h̃t = tanh(Wc[ct; ht]) p(yt|y<t, x) = softmax(Wsh̃t) (4.17)
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For the calculation of the coefficients eij, three formulations were tested by the
authors, defined as follows:

eij =


hT

i sj dot

hT
i Wasj general

vT
a tanh(hT

i Wasj) concat

The dot operation computes similarity without learnable weights. In contrast,
the general formulation includes a learnable matrix, which generalizes the dot for-
mulation. Lastly, the concat operation is equivalent to the attention model pro-
posed by (Bahdanau et al., 2015). These attention mechanisms comes with an
important possibility of interpretability. The explainability of predictions can be
investigated through the visualization of attention weight matrix. This matrix de-
scribes the alignment between the source and target sequence. As soon as the
idea of the attention mechanism emerged, other formulations and implementa-
tions of this mechanism have been developed, allowing significant improvements
in overall NMT performances reached until 2015. Especially with the introduc-
tion of the Transformer (Vaswani et al., 2017), given the powerful Multi-head self
attention mechanism incorporated in both encoder and decoder sides, as detailed
previously in the Transformer (Section 4.2.4).

4.4 Methods

In this part, we present the pre-processing used for the KIT-ML dataset and pro-
vide an overview of the proposed architecture design with formal definitions of
each attention block (Section 4.4.2). Then, we introduce the local recurrent atten-
tion mechanism (Section 4.4.3). Subsequently, we present the formulation of rele-
vant metrics for quantitative evaluation (Section 4.4.4).

4.4.1 Dataset pre-processing

The KIT-ML 2 dataset (2016 version for comparable results with related work) is
designed to map natural language descriptions to sequences of joint angles and
positions. However, as a crowdsourced dataset, it suffers from several issues that
make its use challenging. In particular, there are significant grammatical and

2https://motion-annotation.humanoids.kit.edu/dataset/

https://motion-annotation.humanoids.kit.edu/dataset/
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FIGURE 4.14: An example of walking motion with text references
from the KIT-ML (Plappert et al., 2016).

spelling errors in the annotated text, which can hinder reliable generation. To
address this, we apply automated spelling corrections to eliminate obvious and
recurring errors. Additionally, we manually examine the correctness of resulting
sentences. The KIT-ML dataset provides 44 joint angles for each motion frame,
which we convert into Cartesian space using the script provided in Language2Pose
(Ahuja and Morency, 2019). This conversion process allows us to represent the
joint angles as 21 joint Cartesian coordinates. We apply normalization across the
dataset and use the root coordinates of the first frame to shift each motion to the
origin of the Cartesian system reference. The KIT-ML dataset comprises 3911 mo-
tions with 6728 natural language descriptions. However, multiple motions do not
have any corresponding descriptions, this leads to a reduced number of motions,
as shown in Table 4.1. The motions are captured at a frequency of 100Hz, and we
down sample them by a factor of 10 starting from the 5-th frame. We also limit the
motions to those that are under 30 seconds, following the proposition of (Plappert
et al., 2018). We exclude a one sample with invalid reference.

4.4.2 Proposed architecture

This section give details about our architecture designed for unsupervised learning
of human motion semantic segmentation through the motion captioning task.

Global view. In this part we give an overview of the proposed architecture for
motion-to-language mapping, and segmentation process, achieved through the as-
sociation of intervals of frames to a set of words. The architecture operations are
detailed through two figures: Figure 4.15 illustrating the different steps involved
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in the synchronization between motion and language, and Figure 4.16 depicting
the flow of model operations. The attention block is illustrated for the case of the
proposed local recurrent attention, introduced in Section 4.4.3. A comparison with
other cases of soft attention and local non-recurrent attention (pt−1 = 0) is dis-
cussed with visual details in Section 4.5.

1. Encoder: We experiment an GRU and MLP based encoder, we further com-
pare these decoders and explain the limitation and advantages for motion
analysis.

2. Attention block: We adapt two attention mechanism, soft and local attention
to our task. Then discuss the limitations through attention map visualization.
Then we proposed an enhanced attention mechanism: Local recurrent atten-
tion

3. Alignment position: In all following analysis, the predicted position pt rep-
resents the most relevant frame corresponding to a given word at time step
t.

4. Context vector: Both information of attention weights are used to compute
the context vector. This dynamic vector represents the motion encoding rele-
vant for the prediction of the next word.

5. Decoder: The GRU-based decoder serves to predict the next word, condi-
tioned by the context vector and the previously generated words.
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FIGURE 4.15: The five steps illustrating the motion to language
generation (3D animation for synchronous generation of text with
motion can be found in the Code).

FIGURE 4.16: Experimented architectures, GRU, Bi-GRU and
MLP-GRU (The word embedding layer is not represented).

https://github.com/rd20karim/M2T-Segmentation
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Encoder. We have experimented three types of encoders: GRU, Bidirectional GRU
(Bi-GRU) and Multilayer perceptron (MLP). We will formalize the sequence to se-
quence learning in the context of motion-language mapping. Lets’s denote by x
the motion input, and by y the natural language description. Firstly, we recall the
main design architecture for this type of task. The typical diagram, in the case of
seq2seq, consists of an Encoder and Decoder network. The two blocks are con-
nected and trained to model the probability given in Equation 4.18.

p(y|x) =
|y|

∏
t=1

p(yt|y<t, x) (4.18)

Attention block. We present the formulation and results for each of the three
attention mechanism, and discuss their relevance for human motion analysis, spe-
cially for segmentation process.

Soft attention. In this context of soft attention, the alignment position pt is de-
fined by the following Equation:

pt = argmaxj<Tx
αtj (4.19)

We recall that Tx is the number of motion frames.

Context vector. Denoted as ct, represents the weighted sum of the encoder out-
puts sj and attention coefficients αtj, such that ct = ∑∑∑Tx

j=1 αtjsj. The decoder learns
to select important information by attributing higher weights αtj to the most rele-
vant encoder outputs sj. These weights are computed as discussed in Section 4.3.2.

Local attention. As mentioned before, soft attention uses all source outputs, which
results in a loss of the main source information that is relevant for the prediction of
a given motion word. We propose reducing the utilization of all source outputs by
attenuating and/or filtering the attention weights around the alignment position.
These techniques are implemented through a masking strategy. When the mask
is not enabled, the weights are simply multiplied by a Gaussian window centered
around the position pt, which attenuates attention weights assigned depending on
the corresponding frame. When the mask is enabled, the attention weights out of
the interval segment St, defined as Jpt − D, pt + DJ are discarded.
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Noting by sx(j) the source hidden state at time j ∈ J0, Tx− 1K for a given motion
x, the context vector is defined in the two cases through Equation 4.20. Where atj

are attention weights computed using Equation 4.22.

ct =

∑Tx−1
j=0 atjsx(j) Mask is False

∑j∈St atjsx(j) Mask is True
(4.20)

Alignment position prediction. The position pt is computed similarly to that of
(Luong et al., 2015), the minor difference is that we use the previous hidden state
ht−1 instead of the current hidden state ht. Maintaining the same design idea in the
work of (Bahdanau et al., 2015) for soft attention model. The Equation 4.21 gives
the model formulation used to predict the position pt, σ(.) denotes the sigmoid
function.

pt = Tx.σ(vp
T tanh(Wpht−1)) (4.21)

The trainable parameters consist of Wp ∈ Rn′×n′ and vp ∈ Rn′×1, where Tx

denotes the length of the motion sequence. A Gaussian distribution that centers
around pt is utilized to prioritize alignment points in proximity to frame index
pt. The attention weights are adjusted using Equation 4.22. The variable fac-
tor exp(−(j− pt)2/2r2) gives the amount of attenuation applied to the attention
weights computed using the soft attention. As result aij are the new attention
weights in the case of local attention.

aij = αij · exp
(
− (j− pt)2

2r2

)
where r =

D
2

(4.22)

The variable r denotes the standard deviation, which control the degree of at-
tenuation of frame attention weights around the frame of index pt. When r as-
sumes smaller values, only few frames around pt are employed to predict the next
word. On the other hand, as r increases, the local attention mechanism gradually
converges towards the soft attention mechanism. The parameter D represents the
radius of the motion segment.

4.4.3 Local recurrent attention with frame wise encoding

In local attention, the position pt depends only on the previous hidden state ht−1,
which is problematic in our case, we observe that the network simply learns to
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almost always compute pt at the start, middle, or at the end of the motion as will
be highlighted in the experiments phase (Section 4.5). Moreover, the disorder in the
alignment positions pt doesn’t allow synchronized generation of text with human
motion evolution. To address these two problems of attention inconsistency and
disorder, we propose the following two solutions:

1. Solving the incorrect ordering of pt positions: To achieve synchronous and
progressive generation solely using pt, we impose a constraint on this align-
ment position such that pt−1 ≤ pt for all time steps. While this constraint may
not be universally applicable at the word level due to language-dependent
variations, it holds true when considering phrases such as (“person walks”,
“then jumps”. . . ). For instance, certain words such as “the”, “a”, and “person”
may not be directly monotonically linked to frames. However, for action-
related words like “walk” or “jump”, there exists a temporal succession wherein
the actions are performed successively. Consequently, the words used to
describe these actions will also tend to appear successively in human de-
scriptions. We hypothesize that a description is produced step by step as the
motion is generated. The positions pt will be more relevant for words that
describe actions. The other intermediate positions, for language connection,
will serve as relative positions from which the next action is localized.

When we have simultaneity of two actions described respectively by words
wi and wj, ideally, the model will learn to predict approximately same posi-
tion alignment meaning that pi ≈ pj. This implies that the position pt will
remain approximately constant in the range Ji, jK. On the side of language
generation, the words connecting the two action words will be independent
of motion. The main goal is to associate every set of words in the sentence describing
one action to the relevant set of frames based on pt and attention weights.

Formal definition. To overcome this limitation, we aim for the model to as-
sociate a subset of successive frames to the most relevant word(s) to achieve
an exact alignment and synchronization of segments of human motion with
the generated text. To this end, we propose a new formulation to com-
pute the position pt in Equation 4.23, enforcing the important constraint that
pt−1 ≤ pt as explained in Paragraph 1.

pt = pt−1 + ϵ + (Tx − 1− pt−1 − ϵ).σ(vt
p ·Wpht−1) (4.23)
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Where "·” denotes the scalar product. The scaling factor (Tx − 1 − pt−1 −
ϵ) maintains the position pt within the range of the motion frames J0, Tx −
1K. The position pt indicates where to look in the source frames at a time
t. The shift position pt − pt−1 depends on the previous hidden state of the
decoder ht−1. For parameter D, we attempted to make it learnable through
various formulations, but the values ended up being too high to allow for a
correct segmentation in most cases, even when using a boundary function.
However, when selecting its value as a hyperparameter we found a constant
value for D leading to consistently better results.

2. Frame wise feature extractor: We opt to employ a motion encoder that com-
putes motion features independently for each frame. The input, which is
represented as a sequence of 3D human poses, can be encoded using various
sophisticated methods that rely on Spatial Graph Convolutional Networks,
as previously described in Chapter 3. However, due to the limited size of the
dataset, we utilize a simple Multilayer Perceptron (MLP) instead.

Given a motion x ∈ RTx×63, the MLP encodes the sequence motion on a
per-frame basis and produce the encoder outputs sx ∈ RTx×denc where denc is
the dimension of the encoded vector. Here, denc is the same as the decoder
hidden size (denc = n′).

The MLP network consists of k successive non-linear layers as defined by
equation 4.24, where fi(x(t)) = tanh(Wi.x(t) + bi). The learnable parameters
are Wi ∈ R63×di and bi ∈ Rdi , tanh is the hyperbolic tangent, and where L is
the number of layers.

sx(t) = ( f0 ◦ f1 ◦ · · · ◦ fL−1)(x(t)) ∀t ∈ J0, Tx − 1K (4.24)

4.4.4 Evaluation metrics

Bias in model evaluation using BLEU score. While BLEU is a standard met-
ric, it only captures surface correspondence between the references and generated
text. In the dataset, a sequence of motion is mapped to multiple references. If we
take the case of two samples which have the same sequence of motion approxi-
mately and different sets of references. Considering as example the prediction "a
person wipes a table.", and it references "a human wipes on a table.","a person stirs with
their left hand.". The prediction is counted correct only if the words are the same.
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A description with the same meaning and a different formulation will have low
BLEU, which doesn’t correlate with human judgment. Consequently, the BLEU
score doesn’t compare semantic correspondence, to overcome this limitation we
propose a semantic similarity metric, invariant under paraphrase, to evaluate the
semantic adequacy of generated text compared to references.

Sentence semantic similarity score. We can devise a simple transformer-based
metric, similar to a triplet-loss approach: by exploiting a sentence transformer
(Reimers and Gurevych, 2019) model trained for paraphrase detection using triplet
loss, we can compute a normalized cosine similarity score between each refer-
ence and the generated sentence. Since movement descriptions are composed of
very common general-domain vocabulary, a generalist sentence embedding model
trained to assign high scores to vector embeddings of paraphrased sentences, can
be expected to perform very well at evaluating the semantic equivalence of the
generated sentence with regard to the references.

score(RC, P) =
1
| RC | ∑

i∈|RC|
sim(RCi, Pi)

sim(RCi,Pi) =
1
| Pi | ∑

p∈Pi

max
r∈RCi

simcos(emb(p), emb(r))

Where RC represents the reference corpus, with each ri ∈ RC being a set con-
taining multiple references, and P is the predictions. pi ∈ P is a set containing one
or more predictions. The function emb denotes the sentence-embedding model,
which generates an embedding vector for a given sentence or phrase. The func-
tion simcos calculates the normalized scalar product between two vectors. Since
references can vary significantly from one another, even when both are correct, we
select the highest similarity score for a prediction compared to all corresponding
references. Here, the simcos is utilized because the sentence transformer paraphrase
model used in this context is trained using cosine similarity as a regression loss. It’s
worth noting that different sentence-transformer models may necessitate the use
of alternative similarity metrics.
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4.5 Experiments

Here we experiment our proposed methods in Section 4.4. First, we compare the
performance of motion captioning based on pose joint angles versus the 3D Carte-
sian coordinates (Section 4.5.1). We report quantitative results (Section 4.5.2), and
conduct a comparison with previous state-of-the-art methods (Section 4.5.3) on the
original KIT-ML dataset. Then, we analyze the limitation of soft and local atten-
tion mechanism in the context of synchronized captioning (Section 4.5.4). Next,
we experiment with the proposed local recurrent attention and frame-wise fea-
ture extraction (Section 4.5.5). Finally, we extend our evaluations to recent datasets
(Section 4.5.6).

4.5.1 Comparing input features and evaluation measures

This section discusses preliminary experiments on the choices of input motion rep-
resentation and evaluation metrics.

Cartesian coordinates vs Joint angles. We conducted an evaluation comparing
the angle-based text generation model with the bidirectional and unidirectional
Cartesian coordinate as inputs. The results for both input types are shown in Fig-
ure 4.17b. Using angle joints, we were able to achieve a BLEU score (4-gram) of
25.9%, whereas the use of Cartesian coordinates increased this performance to
30.1% on the test set. However, based on the semantic evaluation presented in
Table 4.2, the difference is not significant. We observed that in most cases, the pre-
dictions are semantically correct, even if the BLEU-4 score is below 32%, which
does not represent a fair and realistic evaluation of performance.

System Soft.att
Similarity BLEU score

GRU-Angles 79.50 28.5
BiGRU-Angles 78.90 26.3
GRU-Cartesian 79.56 31.8

BiGRU-Cartesian 78.84 28.6

TABLE 4.2: GRU-based system : Results of soft attention
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BLEU vs similarity score. We plot all scores distributions of BLEU and our se-
mantic similarity score obtained by the systems we evaluate in the following sec-
tions with optimal parameters in Figure 4.17a. The region of lower similarity and
higher BLEU is approximately empty for all systems. Contrary to the opposite re-
gion (low BLEU, high similarity) which contain a lot of examples. For the example
taken the system based on GRU, the region of lower BLEU < 0.1 and higher sim-
ilarity (≥ 0.7) contain around 38.8% to 43% of samples for the three models most
of them have approximately zero BLEU score which is far away from a realistic
evaluation.

(a) Similarity vs sentence level Bleu score
[Cartesian Local.rec.att Mask=True (D=5)].

(b) BiGRU+GRU: Joint angles vs Cartesian
coordinates.

FIGURE 4.17: Impact of input features and evaluations measures.

Based on the analysis results of these two preliminary experiments, we proceed
to present detailed experiments using the Cartesian representation and analyze the
performance in terms of both BLEU score and similarity scores.

4.5.2 Quantitative evaluation

Results of soft attention. The Cartesian representation demonstrates superior
performance across GRU and BiGRU systems, yielding higher similarity scores
(78.87%) and significant BLEU-4 scores (30.0% and 31.8%, respectively) compared
to the GRU-Angles system.

Results of local and recurrent attention. In Table 4.4, quantitative performance
of GRU-based systems is presented, comparing the impact of local attention (Loc.att)
and recurrent attention (Loc.rec.att) on similarity and BLEU scores. For GRU-
Cartesian systems, when the mask is set to True, Loc.rec.att achieves the highest
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System Similarity BLEU-4

GRU-Angles 79.40 25.9
GRU-Cartesian 78.87 30.0

BiGRU-Cartesian 78.87 31.8

TABLE 4.3: GRU/BiGRU results of BLEU scores (Radouane et al.,
2023a).

similarity (80.54%), while Loc.att slightly lags behind (78.84%). However, in BLEU
scores, Loc.att (30.0%) outperforms Loc.rec.att (29.7%). Without the mask (False),
Loc.att exhibits a higher similarity (80.54%) compared to Loc.rec.att (78.34%), while
Loc.rec.att yields a higher BLEU score (31.1% vs. 29.3%). Similar trends are ob-
served for BiGRU-Cartesian systems, emphasizing the impact of attention mecha-
nisms on system performance.

System Mask Similarity BLEU score
(D=5) Loc.rec.att Loc.att Loc.rec.att Loc.att

GRU-Cartesian True 78.84 78.44 30.2 30.0
GRU-Cartesian False 80.54 78.34 29.7 29.3

BiGRU-Cartesian True 78.64 79.53 31.1 29.3
BiGRU-Cartesian False 79.31 79.58 26.3 27.6

TABLE 4.4: GRU-based system: Results of local attention and local
recurrent attention (Radouane et al., 2023a).

Results of local recurrent attention with an MLP based encoder. Table 4.5 dis-
plays the performance of MLP-GRU with varying design parameters, including
the number of layers (L), the presence of a mask, and the window radius (D). No-
tably, the results indicate a positive influence of the mask on both BLEU and sim-
ilarity scores, while an increase in the radius generally corresponds to a decrease
in performance. The MLP-GRU configuration with 4 layers (L=4), with the mask
enabled, and D = 5 stands out as the most successful, achieving the highest BLEU
score of 32.1% and a similarity score of 78.29%.

Decoding strategies. In addition to attention type and architecture, the quality
of generated text is also impacted by the decoding approach and its corresponding
parameters. Therefore, we compare two different decoding approaches to further
investigate their impact.
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Design Mask D BLEU Similarity

MLP-GRU (L=4) True 5 32.1 78.29
MLP-GRU True 5 31.6 78.87
MLP-GRU False 5 28.8 78.29
MLP-GRU True 9 29.1 78.52
MLP-GRU False 9 28.4 76.38

TABLE 4.5: Results of MLP with 2 layers, except for the case (L = 4)
we use 4 layers.

Action References Predictions (beam size=3)
Kneeling Human ducks down and takes her hands over her head a person lies on all fours and stands up

a person lies on the ground and stands up
a person lies on the floor and stands up

Stomping Human is lifting his leg a person is stomping with the right foot
a person is stomping with the left foot
a person is stomping with his right foot

Squatting A person stretches their arms out and performs a single squat a person performs a squat
A person does some squad exercises a person performs a squat squat

a person performs a single squat
Walking Slow walking motion a person walks 4 steps forward

A person walks forward slowly a person walks slowly 4 steps forward
Human slowly goes forward a person walks forward

Waving A person raises his right arm in front of his face then starts waving a person waves with his left hand
Human performs a waving motion with right hand a person waves with his right hand
A person waves with its right hand a person waves with the left hand

TABLE 4.6: Predictions of model MLP-GRU (D=5) with a beam size
of 3.

Greedy search: consists in selecting the word from the vocabulary, maximizing
the probability at each step independently, rather than evaluating all combinations.

Beam-search: selects the best decoding by considering the first k maximum
probabilities at each prediction time (top-k), where k represents the beam width
Beam-width. This evaluation method allows selecting and classify the best k trans-
lations, but tends to favor the selection of short sentences. To address this issue,
the log-propabilities are normalized with sentence length. This decoding strategy
often improves performance but increases prediction computation time, which be-
comes particularly significant as the width k of the Beam increases.

Beam-search vs. Greedy search. In Table 4.6, we present a sample of predic-
tions for various actions. It is evident that the model has learned a coarse classifi-
cation of different meanings: (on all fours, on the ground, on the floor). For the Stomp-
ing and Waving actions, we observe that the first and second predictions focus on
which body part is executing the motion (left or right/leg or hand), but the first
prediction is correct. In the case of the walking action, we notice that information
about the speed of motion is only present in the second prediction.
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Model D [Mask] BLEU score (beam size)
1 2 3 4 6

MLP

5 [True] 31.6 30.6 30.5 30.7 30.6
5 [False] 28.8 29.7 30.7 30.4 30.7
9 [True] 29.1 30.4 30.4 30.1 30.1
9 [False] 28.4 29.2 28.8 28.9 28.6

Deep-MLP 5 [True] 32.1 29.4 29.1 29.1 29.8

TABLE 4.7: Impact of beam searching on MLP based models
(Radouane et al., 2023a).

We confirm that applying beam search with different beam sizes does not lead
to an improvement in the BLEU score for MLP-based models. Additional results
are provided in Table 4.7. The best BLEU score is already achieved without beam
sampling, indicating that there is no need to perform beam search in the prediction
process, which is computationally expensive.

4.5.3 Global comparison

Comparison with SOTA on KIT-ML (Plappert et al., 2016). After evaluating vari-
ous architectural variants within our study, we now proceed to compare our results
with systems described in the literature. However, conducting this comparison
posed challenges due to discrepancies in dataset splitting methods among differ-
ent authors. Although the proportions of the dataset are consistent, precise infor-
mation regarding the specific random seed used for splitting is often not reported.
To ensure a fair comparison, we not only report the performance of state-of-the-art
(SOTA) systems but also evaluate our models using three different random seeds.
This evaluation aims to verify that the performance variations caused by differ-
ent seeds are minimal, with differences of less than 0.01. This approach allows for
some level of comparability with the SOTA systems. The results are reported in Ta-
ble 4.8. Across all random splits, our BLEU score is higher than reported systems
by a margin significantly larger than seed-related variations.

Unknown token replacement. An additional parameter to consider is the in-
fluence of unknown tokens on the BLEU score. We restrict the vocabulary to words
with a minimum frequency of 3. This is particularly important for the KIT-ML
crowdsourced dataset, as it allows us to filter out noisy and incorrect contextual
words from the vocabulary. This leads to more stable training as rare words, which
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Random state Model BLEU score
1st 2nd 3rd Avg

0 MLP 0.286 0.272 0.267 0.275
DeepMLP 0.286 0.298 0.262 0.282

35 MLP 0.291 0.274 0.267 0.277
DeepMLP 0.297 0.268 0.270 0.278

42 MLP 0.304 0.286 0.265 0.285
DeepMLP 0.256 0.265 0.255 0.259

_ GASSL(LSTM) (Goutsu and Inamura, 2021) 0.288 0.263 0.257 0.269
_ GASSL(GRU)(Goutsu and Inamura, 2021) 0.262 0.243 0.231 0.245
_ BiLSTM (Plappert et al., 2018) 0.259 0.237 0.249 0.248

TABLE 4.8: Comparison with other models on different level of beam
searching (Radouane et al., 2023a).

Model Replace unk BLEU score (D [Mask])
5 [True] 5 [False] 9 [True] 9 [False]

MLP-GRU Before 31.6 28.8 29.1 28.4
MLP-GRU After 31.4 28.8 29.1 28.4

TABLE 4.9: Impact of using the unknown token on the evaluation.

may also be unreliable, are filtered. We perform evaluation after replacing the un-
known token by corresponding words, the performance of Deep-MLP remain un-
changed 32.1%. We confirm this stability on the other models as reported in Table
4.9. This process has no significant effect on the BLEU score in our case. Conse-
quently, it doesn’t impact the comparisons made before.

4.5.4 Qualitative analysis

This section discuss the drawbacks of previous attention mechanisms. We perform
a qualitative analysis of attention maps using Cartesian coordinates to illustrate
the limitations of both soft and local attention. This analysis motivated the intro-
duction of local recurrent attention and the use of frame-wise feature extractor,
as mentioned earlier (Section 4.4.3). In the following, the mask is assumed to be
enabled by default, unless explicitly stated otherwise.

Limitations of soft attention. The context vector in soft attention utilizes all source
outputs si, thereby enabling the decoder to access information about the past and
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future of the motion. This computation approach is inconvenient for precisely lo-
calizing the motion corresponding to a given set of words in the description. The
attention block has learned to utilize compressed information. In the case of a
GRU-based encoder, the maximum position of information used is mostly at the
very end of the motion. This behavior is demonstrated in Figure 4.18.

FIGURE 4.18: GRU-cartesian[Soft.att]: Pushing action in the range
J11, 20K.

For the Bi-GRU based encoder, the maximum attention is mostly towards the
middle of the motion. We observe this results in multiple figures (4.19,4.20). Specif-
ically, in Figure 4.19, the attention weights give only partial information about the
range of motion J27, 36K with imprecise timing for the start and end of each of
primitive motion (walk forward, turn, walk backward) composing the U-turn motion.

FIGURE 4.19: BiGRU-cartesian[Soft.att]: Walk forward in the range
J0, 28K, Turn around J29, 35K and Walk backward J36, 56K.

While in Figure 4.20, the distribution of attention weights gives correct infor-
mation on the range of the motion. This observation is common across different
samples with single actions.
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FIGURE 4.20: BiGRU-cartesian[Soft.att] : Kick in the range J20, 35K .

Local attention analysis. We empirically set the value of D to 5. Figures 4.21 and
4.22 represent the cases of atomic and compositional motion, respectively, when
the mask is not enabled. These distributions still only provide an approximation
of the range of motion execution. In the case of compositional motion as shown
in Figure 4.22, it demonstrates clearly a lack of information regarding the time
transition of atomic motions. This analysis is particularly focused on the attention
weights of words describing motion, such as "kick" and "forward”. These observa-
tions are similar for multiples samples.

FIGURE 4.21: BiGRU[Local.att Mask False]: Kick action in the range
J10, 28K

Figures 4.23 and 4.24 represent the cases of atomic and compositional motion,
respectively, when the mask is enabled. In both cases, the distribution of attention
weights is towards the end, similar to the case of soft attention (cf. Figure 4.18).
In this configuration, we lose all information about the motion’s time execution,
making it impossible to infer the correct end and start times.
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FIGURE 4.22: BiGRU[Local.att Mask False]: Walk forward J15, 38K,
Turn around J39, 48K and Walk backward J49, 53K

FIGURE 4.23: BiGRU[Local.att] kick action in the range J10, 28K

Soft vs local attention in synchronization. In the case of the BiGRU-Cartesian
model, the attention map depicted in Figure 4.19 exhibits a lack of consistency in
the position of the maximum attention, resulting in unsynchronized word genera-
tion. Conversely, the unidirectional GRU model displays a clear maximum atten-
tion peak (cf. Figure 4.18) at the end frames. This observation is consistent with
the attention maps of the test set, indicating that the highest attention distribution
is typically located at the frame marking the completion of the movement. This
again is far from the actual action time execution. When replacing soft attention
with local attention, the problem is still not solved regarding the human motion
segmentation. However, when it comes to the BLEU score, we note some differ-
ences in the performances of each model.

4.5.5 Local recurrent attention maps

Previously, the BiGRU is biased more towards the start and middle of the motion in
Figure 4.20 (human movement ends at the frame 27), while a unidirectional GRU
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FIGURE 4.24: BiGRU[Local.att]: Walk forward J15, 38K, Turn around
J39, 48K and Walk backward J49, 53K

favored the positions after the end of the human movement in Figure 4.18. Intu-
itively, the network relies on compressed information about the entire sequence
and outputs a prediction when the amount of information is maximal on average.
Consequently, resulting attention maps can’t provide relevant information to per-
form synchronous predictions. Indeed, the network chooses the path of least effort
without searching along the source length for finding the most relevant motion in-
terval to output for a given phrase.

Qualitative analysis using Bi-GRU/GRU based encoder. We present some at-
tention maps of representative cases in Figure 4.25. The recurrent attention mech-
anism performs an ordered attention, but a problem of late detection of the phases
of motion remains unsolved. The late detection is present in most of the test sam-
ples. When enabling the mask, the alignment position is always at the end of the
motion. The unidirectional GRU also suffers from the same issues as demonstrated
by Figure 4.26. In some rare cases, as shown by Figure 4.27, it seems to give a cor-
rect localization for the single action "Wiping".

Regarding Figures 4.25, 4.26, and 4.27, we conclude that introducing local recur-
rent attention constraints an ordered alignment position prediction but still does
not produce correct action localization through attention weights, except for very
few cases which do not include compositional motion. In the following, we build a
theoretical explanation of these phenomena that we apply further, and we demon-
strate their effectiveness subsequently.

Explaining the unsynchronized attention weights distribution. During quali-
tative examination, the observed alignments produced by different attention for-
mulations in the initial experiments using the GRU architecture show imperfect
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FIGURE 4.25: BiGRU[Loc.rec.att][Mask False]: Walk forward
J0, 21K;U-turn J22, 34K, Walk backward J35, 47K

FIGURE 4.26: GRU[Loc.rec.att]: Jump to the left J0, 31K,Jump to the
right J32, 54K

synchronization. Our hypothesis attributes this to the recurrence effect within
the GRU design, where the encoder’s hidden state st relies on all preceding states.
Formally, we can write st = φ(st−1, xt) = φ(· · · φ(s

t−
−→
k

, x
t−
−→
k
)). We note by φ

the classical GRU model equation and by
−→
k and

←−
k respectively the limit level of

compression without important information loss for the forward and backward
direction. Therefore, in the context of a unidirectional scenario, the hidden state
st already contains all the essential information regarding the

−→
k preceding steps

{s
t−
−→
k

, s
t−
−→
k +1

, · · · , st−1}. Assigning maximum attention to st is analogous to per-

ceiving the
−→
k preceding motion frames: an event occurring around frame time

t −
−→
k can possess significant consolidated global information that is relevant to

the frame t. The subsequent explanation provides a clear understanding of both
the misaligned position and the delayed detection of primitive motion, as was il-
lustrated by Figure 4.18.

For the Bi-GRU case, the analysis is similar, except that st now encodes all the
necessary information about the

−→
k previous steps and

←−
k next information, this

explains the localization of attention weight distribution towards the middle of
motion segments (cf. Figure 4.20).
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FIGURE 4.27: GRU[Loc.rec.att][Mask False]: wiping J25, 56K

Based on this reasoning, we have concluded that employing a frame-by-frame
feature extractor would effectively address the issue of delayed detection. Extract-
ing features on a per-frame basis encourages the network to utilize all individual
features of the source sequence.

The adoption of this type of feature extraction, matches similar choices in other
works pertaining to alignment tasks, such as sign language/movie subtitle tran-
scription (Bull et al., 2020, 2021). Although, quantitative evidence does not support
the choice. The main difference in our approach is that we do not have a super-
vised timing annotation of movement phases/primitives.

Hence, the main innovation in our work (cf. Equation 4.23) is the ability of inferring a
synchronous alignment only through attention weights using positions pt.

Qualitative analysis with MLP based encoder. After replacing the encoder with
an MLP of 2 layers, we start to observe separable distributions for each phase
of the motion, as depicted in Figure 4.28. However, using an MLP with 4 lay-
ers (DeepMLP), the model extracts stronger features, providing a better semantic
description, especially in the case of compositional actions as illustrated in Figures
4.29 and 4.30.

FIGURE 4.28: MLP[Local.rec.att]: Walk forward J0, 30K, Turns around
J31, 40K and Walk backward J41, 50K
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FIGURE 4.29: DeepMLP[Local.rec.att]: Walk forward J0, 37K, pushed
to the right J38, 50K

FIGURE 4.30: DeepMLP[Local.rec.att] D = 5: Move to the left in the
range J8, 23K, move to the right in the range J24, 35K

Effect of the Mask window. When the mask is enabled, a truncated Gaussian
window is applied in each decoding step t. When the mask is disabled, no trun-
cation is performed, and the alignment is bad in several experiments (see Section
5.5.2), along with a lower BLEU score (< 29%) as reported in Table 4.5. Align-
ment was not possible without applying the mask, which acts as regularizer during
training and reduces overfitting. The strict limitation of visible encoder outputs,
along with frame-level feature extraction, pushes the network to learn a precise
position solely through semantic motion segmentation based on the text. Another
important factor is the D value, for D = 9 applying the mask doesn’t affect the
alignment, and in general when D is high, masking has almost no effect.
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Summary. Our experiments demonstrate that models utilizing recurrent en-
coders rely more on global information as a simple way to make correct predic-
tions instead of learning motion segmentation, especially for short-time motion
samples. Training these architectures is easier and leads to faster convergence to-
wards higher BLEU scores. However, the distribution of attention weights along
the frames axis does not align with the intuitive semantic segmentation observed
through human analysis. Introducing recurrent local attention and using a sim-
ple MLP as an encoder encourages the network to improve the BLEU score only
by learning a correct synchronized semantic segmentation. The convergence for
such designs takes longer as the decoder is limited to the visible encoder outputs
(finding the correct position pt takes longer).

4.5.6 Evaluation of proposed architecture on recent datasets

To further investigate the generalization capability of our method, we compare it to
a Transformer baseline approach. We utilize the same split on which we conducted
all previous experiments. After our initial experiments, an augmented version of
the KIT-ML dataset was released by (Guo et al., 2022a). Therefore, we extend our
experiments to include this new version. Moreover, we adapt the proposed archi-
tecture to handle much larger datasets such as HumanML3D (Guo et al., 2022a).
Consequently, we retrained both our model and the best Transformer baseline and
compared them with the state-of-the-art model TM2T (Guo et al., 2022b).

Comparison with Transformer baseline. To investigate the efficiency and suffi-
ciency of our architecture design with local recurrent attention, compared to more
advanced architectures such as Transformer (Vaswani et al., 2017).

Training configurations: The original Transformer (Vaswani et al., 2017) uses L =

6 layers and H = 8 heads for both the decoder and encoder. However, in our
context, we have a small-sized dataset. Instead, we run two configurations: a
minimal one with (H = 1, L = 1) and another with (H = 4, L = 3). We use the
same split on which we conducted all previous alignment experiments.

Hyperparameters for KIT-ML-original (Plappert et al., 2018): Similar to the hidden
size of our MLP-GRU, we set dmodel = 64 for the query, key, and value projection
dimensions. The batch size was set to 128, and the motion samples were down-
sampled from 100Hz to 10Hz. The corresponding split was generated as described
before, with a Random Seed (RS=11). In the case of the Transformer model, for all
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splits and dataset versions, the maximum length is fixed to 500 for the positional-
wise feed-forward layer.

Hyperparameters for KIT-ML-augmented (Guo et al., 2022a): For KIT-ML, we set
dmodel = 128, the batch size to 256, and downsampled the motion from 20Hz to
10Hz. The other model hyperparameters remain the same for this augmented ver-
sion.

Hyperparameters for HumanML3D (Guo et al., 2022a): For this larger dataset, the
word embedding dimension is set to 128 and the hidden size to di = 256, while the
hidden dimension of the MLP with 2 layers have respectively an output dimensions
of 512 and 256 (represent denc) and D = 10.

Transformer cross-attention. One interesting aspect of the first experimented con-
figuration (H = 1, L = 1) is the possibility of easily visualizing the learned cross-
attention maps without the need for advanced aggregation methods per heads and
layers. Although this architecture gives a BLEU score of 32.2 versus 32.1 (cf. Table
4.10) using our DeepMLP, the attention weights do not permit semantic segmenta-
tion. For both single action (cf. Figure 4.31) and compositional motion (cf. Figure
4.32), the cross-attention does not exhibit segmentation and motion localization ca-
pability. This is likely due to the mixture of frame information introduced earlier
by the self-attention mechanism in the encoder.

FIGURE 4.31: Transformer [H1L1] cross attention visualization
(Wiping).

Quantitative comparison. In Table 4.10, we report BLEU scores for different splits
and dataset versions, comparing the Transformer and GRU-based generation. We
evaluate both the quality of text generation and the ability to perform implicit
motion segmentation. Despite the close BLEU score performance after tuning our
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FIGURE 4.32: Transformer [H1L1] cross-attention visualization
(U-turn).

BLEU@4 Semantic
Dataset Original Augmented Segmentation
Splits RS=11 Standard

T[H1,L1] 32.2 24.8 ✗

T[H4,L3] 30.8 22.1 ✗

Ours MLP+GRU 31.6 25.0 ✓

Ours DeepMLP+GRU 32.1 25.1 ✓

TABLE 4.10: Comparison with baselines on different splits. RS stand
for the random state value for the original KIT-ML.

transformer’s hyperparameters, the learnable attention weights by the transformer
are not useful for motion segmentation and are not very interpretable.

Comparison vs SOTA. In Table 4.11, we report BLEU scores for different splits
and dataset versions, comparing the Transformer and GRU-based generation. Our
model based on the proposed local recurrent attention achieve better performance
than the SOTA transformer based model TM2T (Guo et al., 2022b) and more impor-
tantly we preserve the semantic segmentation capability.

Dataset Model BLEU@1 BLEU@4 CIDEr ROUGE-L BERTScore Segmentation

KIT-ML TM2T (Guo et al., 2022b) 46.7 18.4 44.2 79.5 23.0 ✗

Ours MLP+GRU 56.8 25.4 125.7 58.8 42.1 ✓

HumanML3D TM2T (Guo et al., 2022b) 61.7 22.3 49.2 72.5 37.8 ✗

Ours MLP+GRU 67.0 23.4 53.7 53.8 37.2 ✓

TABLE 4.11: Comparison with SOTA results on the augmented
version of KIT-ML and HumanML3D (Radouane et al., 2023a).
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4.6 Application: Synchronized Captioning

As a direct application of the proposed local recurrent attention, the alignment po-
sitions can naturally be depicted as time for words generation. This enables a
synchronous generation of language alongside motion, referred to as synchronized
captioning. Recalling that: pt = pt−1 + (Tx − 1− pt−1).σ(vt

p ·Wpht−1)

In the following Figures, the visualizations are made using MLP-GRU with the
config Local.rec.att [Mask True D = 5]. A word wt can be generated at time frame
pt (cf. Figure 5.6). However, the importance of attention weights spans the range
[pt − D, pt + D]. Consequently, using pt could sometimes result in outputting a
word at the middle or end of the motion primitive, and using pt − D could lead
to generating the action word just before the start of the action. For instance, as
shown in Figure 4.34a, the words "takes a step to the left" are generated near the end
of the movement to the left, while the words "back to the right" are generated near
the end of the movement to the right. Similar behavior can be observed in other
compositional actions, as illustrated in Figure 4.34c.

FIGURE 4.33: walk forward: J15, 38K, turn at frame 40 , walk
backward: J42, 53K.

Although this behavior is still correct from a human analysis perspective, as
the understanding of motion is accomplished at its end, for visual convenience, we
could apply a static shifting of D/2 as a trade-off to achieve more visual synchro-
nization. However, the generation is still adequate at this stage. Figure 4.34 show
frozen frames. We note that each textual description displayed at a frame F de-
scribes the whole motion in the range J0, FK. These samples and others illustrating
synchronization between text and motion can be better visualized as animations
on the project page.

https://rd20karim.github.io/m2t-seg-web/
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(a) Step to the left: J15, 38K, step to the right: J42, 53K.

(b) Pick at 32 and go up at 40.

(c) Walk forward J13, 31K, bumps to the right: K32, 43K and recovers: J44, 60K.

(d) Walk forward: J15, 38K, turn at frame 40, walk backward: J42, 53K.

FIGURE 4.34: Static visualization of progressive word generation
along the motion.
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4.7 Conclusion

In the conclusion of this chapter, we provided a comprehensive analysis of re-
cent methods for motion encoding using discrete representations. We reviewed
relevant techniques including transformer and GRU-based architectures for gen-
erating both language and motion. Subsequently, we presented our experiments,
focusing on the mapping of motion to language, with the objective of achieving
unsupervised segmentation and improved text generation. Our findings revealed
qualitative limitations of recurrent neural network encoders and traditional atten-
tion mechanisms in terms of learning correct motion-language alignment. To over-
come these limitations, we proposed a novel attention mechanism: local recurrent
attention with frame-wise motion encoding that enables human motion segmenta-
tion, resulting in synchronized captioning as a byproduct. In the upcoming chap-
ter, we will conduct a quantitative evaluation to assess the quality of the obtained
segmentation and propose relevant metrics to analyze the attention visualization
discussed earlier.
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5.1 Introduction

This chapter firstly focuses on the semantic segmentation of human motion in
an unsupervised context and presents its theoretical formulation for quantitative
evaluation as a continuation of Chapter 4. Secondly, it addresses the construc-
tion of a new dataset for the supervised learning of this segmentation. In general,
semantic segmentation is a fundamental task in machine learning that involves di-
viding a given data into different parts or segments based on certain criteria. There
are various types of segmentation techniques used in machine learning, including
image segmentation, semantic segmentation, video segmentation or also sign segmenta-
tion. We are interested in human motion segmentation into atomic motions, and it’s
quantitative evaluation through language semantic segmentation. In this context, we
highlight the motivations for human motion segmentation along with its associ-
ated tasks and applications (Section 5.2). Next, we establish formal definitions
essential for the quantitative evaluation of segmentation and synchronization be-
tween motion and language (Section 5.3). Then, we detail our methods (Section
5.4) with relevant experiments (Section 5.5) and discuss the limitations of available
datasets (Section 5.6). These analyses are based on our paper (Radouane et al.,
2023a). Finally, since current available datasets do not enable supervised learning
for segmentation, we construct the initial version of the Euromov Motion Lan-
guage Dataset (EMLD), tailored for supervised motion-language alignment learn-
ing (Section 5.7).

5.2 Motivation via practical applications

In recent times, substantial advancements have been achieved in the domain of
sign language research, focusing on various specific objectives, including alignment
(Bull et al., 2021), temporal localization (Varol et al., 2021), and sign spotting (Momeni
et al., 2020). In line with these efforts, a related approach in this field, proposed by
(Varol et al., 2021), employs also attention scores to identify and segment signs in
continuous video, as illustrated in Figure 5.1.

We discovered interesting visualizations of motion primitive time segments
that emerged from another application aspect, namely text-to-motion retrieval (TMR).
The authors (Petrovich et al., 2023) propose an architecture that performs motion
retrieval based on natural language descriptions. For Moment retrieval, Figure 5.2
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FIGURE 5.1: Attention scores evolution in frame time (Varol et al.,
2021).

FIGURE 5.2: The ground-truth temporal span is denoted in green,
the maximum similarity is marked with a dashed red line (Petrovich
et al., 2023).

illustrates the similarity between temporally annotated BABEL text labels (Pun-
nakkal et al., 2021) and motions using a sliding window approach, resulting in a
1D signal over time (depicted in blue). Remarkably, despite not being specifically
trained for temporal localization, the TMR model demonstrates an inherent ability
to localize relevant motions. While this moment retrieval process still requires a
text language segment to be provided. In contrast to our synchronized caption-
ing approach, which involves the automatic generation of text synchronized with
the motion, enabling simultaneous language and motion segmentation that occur
automatically. These two processes will be thoroughly examined and subjected to
quantitative evaluation in the subsequent sections.

Sign language translation. The lack of communication between individuals with
hearing or speaking impairments and the rest of the world can be frustrating and
isolating for them. When spoken communication is impossible or undesirable,
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sign language becomes essential, using bodily movements, particularly those of
the hands and arms. Relying on manual sign language interpreters is not always
ideal and can often intrude on the subject’s right to privacy. To overcome these
challenges, building an automated sign language translator can play a pivotal
role. This process also involves the association between sign segment and their
language segment.

Temporal action localization. Another domain of application that involves iden-
tifying and localizing actions in a video sequence with respect to their temporal
boundaries. It is the process of detecting and localizing the start and end times of
actions in a video, where each action is associated with a corresponding class label.
The goal of temporal action localization is to accurately identify the time interval
during which a particular action occurs in a video sequence. This task is useful in
applications such as video surveillance, sports analysis, and human-computer in-
teraction, where it is necessary to identify and track specific actions or events over
time.

All these application areas could benefit from the use of the proposed local
recurrent attention mechanism along with motion and language segmentation by
making required adaptions.

5.3 Human motion semanticization

Definition. The human motion semanticization can be defined as the process of
assigning meaningful labels or annotations to human motions in a video sequence.
It involves analyzing the motion patterns of humans in the video and assigning se-
mantic labels to the different types of motion or activities being performed. The
goal of human motion semanticization is to identify and label human actions or
activities in a way that is meaningful and interpretable to humans, such as walk-
ing, running, jumping, sitting, or standing. However, this process can go beyond
simple action recognition. Indeed, the semanticization aims to provide a more
fine-grained description level of human motion (e.g., someone waving with right arm
in high speed).

Levels of semanticization. Fine-grained human motion segmentation involves
measuring and analyzing human motions at a very detailed level, such as identi-
fying the specific body parts or joints involved in each motion. Figure 5.3 provides
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a representation of the motion segmentation point hierarchy in an exemplary mo-
tion recording of a person jumping, followed by walking three steps (Dreher et al.,
2017). This level of segmentation provides a detailed understanding of human
motion patterns and can be used for tasks such as biomechanical analysis, sports
performance optimization/assessment and medical diagnosis. For example, fine-
grained segmentation and analysis of gait patterns can be used to detect and di-
agnose musculoskeletal disorders or neurological conditions that affect walking
patterns.

FIGURE 5.3: Motion segment with rough granularity (Red/top),
medium granularity (Orange/middle) and fine granularity for a
single step-segment (Dreher et al., 2017).

Human motion segmentation. The segmentation of motion was defined differ-
ently across authors, mainly using pose data, through the application of various
techniques. In the study by (Lin and Kulic, 2012), authors aim to identify and seg-
ment movement repetitions using velocity features and stochastic modeling to se-
lect motion segment candidates. Then, a hidden Markov model (HMMs) is applied
on these segment candidates to select the most relevant segment precisely. Similar
techniques were applied in (Lin and Kulic, 2014). Others in (Kulić et al., 2009) learn
to extract human motion primitives (Lower arm raise, Bow Up/Down,etc) based on
HMMs from continuous time-series data converted to joint angles. The segmen-
tation was treated differently in (Mei et al., 2021) as an unsupervised segmenta-
tion of human limb motion sequences, their proposed method used an autoregres-
sive moving-average model (ARMA) to fit each limb bone angle, then the segment
point is defined as the position where the current fitted ARMA models start to be
not more convenient to describe the subsequence. In the context of segmenting
motion into a sequence of actions, a technique based on the collaborative repre-
sentation of 3D skeleton was proposed by (Li et al., 2018), also using the classical
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Aligned Cluster Analysis (ACA) (Zhou et al., 2008) and Hierarchical one (HACA)
(Zhou et al., 2013) algorithms. More recent works on skeleton-based action seg-
mentation (Ma et al., 2021; Filtjens et al., 2022) relies on advanced techniques such
as spatial temporal graph convolution networks. But to our knowledge, no pre-
vious work has been done with the aim of performing motion segmentation by
synchronizing text generation to human skeleton motion, particularly using atten-
tion weights. In this work, we aim to infer this semantic segmentation of human
motion automatically, using only Mocap data.

5.4 Methods

In this part, we present definitions and mathematical formulations (Section 5.4.1)
for motion and language segmentation (Section 5.4.2). The methodology of the
segmentation process and relevant metrics for the quantitative evaluation of seg-
mentation performance are covered in Section 5.4.3.

5.4.1 Semantic motion segmentation

Before proceeding with the evaluation scores, it is essential to establish some key
definitions necessary for quantitative motion segmentation. These definitions will
serve as foundational concepts, providing a clear understanding of the subsequent
discussions and analyses related to motion segmentation.

Word motion segment. A motion segment corresponding to the motion phase
associated with a word wi from a generated description, formally denoted St.

Primitive motion. A basic motion characterized by a unique combination of
action, direction, and speed. A global change in the motion direction is considered
as a primitive transition motion.

Language segment. A linguistic description segment which is the phrase asso-
ciated with the word describing one specific action. As actions are almost always
described by verbs, the linguistic description segments associated are often verbal
phrases.

The word motion segment St is defined by masking the global sequence, as spec-
ified in Equation 5.1. Then, using the recurrence relation in Equation 4.23 and the
formulation of St in Equation 5.1, we can derive intersection segment boundaries
as concluded in Equation 5.2. The notation Ji, jJ refers to the set of integers between
i and j (i included, j excluded).
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St = Jpt − D, pt + DJ∩J0, TxJ= Jmax(0, pt − D), min(Tx, pt + D)J (5.1)

St ∩ St−1 = Jpt−1−D + ϵ + (Tx − 1− pt−1− ϵ).σ(vt
p ·Wpht−1), min(Tx, pt−1 + D)J

(5.2)
We define ϵ ∈ N as a parameter that can be used to force a minimum shifting

between two successive positions and also reduce overlapping between successive
local attention windows, by setting ϵ = (1 − α).2D, where α ∈ [0, 1] is an explicit
parameter to control overlapping proportion between successive motion segments
St ∩ St−1.

Using Equation 5.2 we have α = 0 ⇒ St ∩ St−1 = ∅. This can be convenient
to ensure proper word ordering and fast training in motions with clearly separate
motion segments. Of course, in more complex cases such as simultaneous events,
this mechanism is likely insufficient on its own. In addition, as a result of the
recurrence effect, pt is mechanically incremented at least by ϵ, meaning that pt ≥
ϵ × t. This can lead the network to miss critical time intervals and to quickly go
towards the final positions, particularly in very short and quick motions. To allow
generating words describing simultaneous actions at the same time, we set ϵ = 0.

Hypothesis. Also we note that Equation 4.23 implicitly assumes that the motion
and language description are monotonically related, meaning that the description
of successive phases of a movement, will be in chronological order of the perfor-
mance of the motion.

5.4.2 Motion and Language segmentation

For qualitative evaluation of primitive segmentation, we label some representative
samples in the dataset for every action (Kicking, Walking, Stomping,etc). For eval-
uation, we needed an adapted alignment score, this process required to introduce
precise definition of a motion segment. As detailed in (Lin et al., 2016), the def-
inition is specific to the task. In our work, we want to evaluate synchronization
between description words and motion primitives. To this end, we propose three
adapted method to calculate a segmentation scores: (i) Intersection over Union, (ii)
Intersection over Prediction and (iii) Alignment position.
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The primary objective of this study is to quantitatively verify the accuracy of
synchronization between correctly generated descriptions and motions. We ex-
clude motions with completely incorrect predicted descriptions, as evaluating syn-
chronicity for such cases would be meaningless. The assessment of synchronicity
occurs after ensuring correct semantic predictions. The two processes given the
motion segment and corresponding language segment will be referred respectively as
motion and language segmentation. The details of these segmentations is formu-
lated as follows:

•Language segmentation. To perform language segmentation, we first retrieve
the words corresponding to the actions from the annotations and calculate their
indexes km in the prediction. Let wm be the action word annotation of a motion
segment, we search for the index km of the word wm in the predicted words then
for the next word annotation wm+1 and so forth until the final primitive segment
is reached, we denote the index of the end token as ke. As result of this process,
formally, a language segment Lm is given by Lm = {wr, r ∈ Jkm, km+1 − 1K}.

•Motion segmentation. We define Pm as the segment of a primitive motion.
The calculation of Pm is given by the concatenation of words motion segments
according to index in the set Jkm, km+1 − 1K as given by the Equation 5.3. We recall
that the word motion segment St was defined in Equation 5.1.

Pm =
km+1−1⋃

i=km

Si (5.3)

5.4.3 Segmentation process

The two processes of language and motion segmentation are illustrated in Figure
5.4. Given a motion x and the predicted description yx as "a person walks forward
then turn around and walks backs <eos>". Let {Si, i ∈ J0, 10K} be the set of motion
segments associated to the eleven words forming the description yx. Using the
definitions above, we have three mappings :
P0 → Sk0 , ..., Sk0−1 → walks forward then ; P1 → turns around and ; P2 → walks back
<eos>.
The indices km are found by searching the ground truth word describing the ac-
tion in the predicted sentence, and then using the corresponding segments for the
group of words describing the motion primitive (cf. Figure 5.4). For this specific
example, (k0 = 2, k1 = 5, k2 = 8). Consequently, the motion sequence x is a se-
quential composition of three primitive motions P0, P1 and P2. Ideally Gi = Pi,
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but the subjectivity of human annotation introduces an inevitable variability in the
start/end timestamps. Note that we always include the end token <eos> in the fi-
nal language segment, because its motion segment is correlated to motion ending
time.

FIGURE 5.4: The language and segmentation process applied on an
example of predicted words wi with given action words and frame
annotations Gk. The inferred motion segment is Pk and the language
segment is Lk. The index ke always refers to the end token (Radouane
et al., 2023a).

In all following equations, we note Se
seg the segmentation score of a sample e,

and | E | the cardinality of the set E. We note by 1A the indicator function (1A = 1
if condition A is true and 0 otherwise).

For a qualitative evaluation of motion and language synchronization, we pro-
pose to calculate the segmentation score using three different methods:

i) Intersection over Union (IoU). Measure the proportion of intersection between
the primitive segment and a reference segment. Based on the IoU we calculate the
segmentation score through Equation 5.4.

Se
seg =

1
ns

ns−1

∑
m=0

1(IoUk≥θ), IoUk
m∈[0,ns[

=
| Pm

⋂
Gm |

| Pm
⋃

Gm |
(5.4)

We note by ns the number of motion segments, m ∈ J0, nsJ is the motion prim-
itive index, θ is the selected threshold. The reference motion segment for an action
word wk is the ground truth segment Gk, representing also the kth primitive for a
given motion sample. The measure IoU is sensitive to the absolute quality of the
ground truth, which isn’t always desirable due to annotation variability, which led
us to also propose the following measures:
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ii) Intersection over Prediction (IoP). We introduce the IoP as a measure for the
inclusion proportion of Pk in Gk, so that we have IoPk = 1 ⇔ Pk ⊂ Gk, meaning
that the segmentation is counted as completely correct when the prediction seg-
ment interval is in the range of the ground truth interval. This measure correlates
well with the perceived visual quality of transcription generation and reduce the
impact of annotation subjectivity (start/end primitive annotation uncertainty). In
this case, Se

seg is calculated as in equation (5.5).

Se
seg =

1
ns

ns−1

∑
k=0

1(IoPk≥θ), IoPk
k∈[0,ns[

=
| Pk

⋂
Gk |

| Pk |
(5.5)

iii) Element of. Evaluate if the alignment position pt is an element of the anno-
tated segment interval. The score Se

seg is directly defined by Equation 5.6. This is
the least strict method, counting any amount of overlap as full correspondence.

Se
seg =

1
ns

ns−1

∑
m=0

km+1−1

∑
i=km

1(pi∈Gi)
(5.6)

5.5 Experiments

This section presents and discusses results from quantitative evaluation and con-
textualises the results through qualitative visual analysis.

5.5.1 Quantitative evaluation

We have manually annotated 68 samples from KIT-MLD with motion segments and
their action words. For a compatible comparison between models, we select the
samples with a semantically correct prediction in common across the models. This
selection results in N = 35 common correct predicted representative samples for
the calculation of scores. Each score is the mean value calculated on all samples
1
N ∑∑∑N−1

e=0 Se
seg.

The segmentation scores as defined previously are computed with a threshold,
anything below is zero, anything above is one. We can also compute a continuous
variant, where we sum the actual scores without threshold: Se

seg = 1
ns

∑∑∑ns−1
k=0 mk.

Figure 5.5 illustrates the threshold (solid lines) score for thresholds from 0 to 1
as well as the continuous scores (dashed lines). Element of is not included as it
isn’t compatible with such a visualization. As expected, the IoU is too strict, and
the score is almost always zero even when the synchronization is perceived as
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correct through visual inspection. We conclude that this measure is not adequate to
give a fair assessment of how humans perceive synchronization. We also observe
that the continuous scores remove the parameter that is the threshold and give an
informative assessment of synchronization quality.

FIGURE 5.5: Comparison of IoP and IoU scoring methods. The
legend specifies the encoder types, and the dashed lines represent
the average segmentation scores (Radouane et al., 2023a).

In Table 5.1, we report all continuous scores, including Element of for a final
comparison. We see that the segmentation performance of the GRU was low in
comparison with the MLP encoder. The BiGRU has approximately the same per-
formance as GRU. The two have a problem of a late detection of motion. The
deeper MLP seems slightly better in segmentation than the shallow MLP regard-
ing the continuous values IoU and IoP. Which is confirmed by the respective
curves (cf. Figure 5.5). Noting also that the curves for GRU and BiGRU decrease
exponentially w.r.t the threshold, confirming the low ability of recurrent encoders
to perform semantic segmentation. Regarding the metric based on Element of, the
MLP encoder is slightly better than Deep-MLP. This means that the MLP encoder
localizes the main time when the action happens better, while Deep-MLP localizes
the start/end of the complete action better.

5.5.2 Word-motion attention based mapping

In this part, we will discuss the perceived synchronization of generated words with
motion through a qualitative error analysis. We illustrate this using the evolution
of human skeleton motion and attention maps. Figure 5.6 shows a correct seg-
mentation in the presence of multiple primitive motions (U-turn). This motion is
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System IoU IoP Element of

MLP-GRU 45.97 79.47 89.05
MLP-GRU (Deep) 55.92 82.06 88.09

GRU-GRU 5.01 21.90 6.67
BiGRU-GRU 5.01 21.90 6.67

TABLE 5.1: Continuous segmentation scores for four encoder type
[MLP, Deep-MLP, GRU, BiGRU]. All with Cartesian coordinates and
local recurrent attention [D=5,Mask=True] (Radouane et al., 2023a).

composed of three primitives "walks forward", "turns around" then "walks back",
the primitive "turns around" represents the transition action.

FIGURE 5.6: MLP-GRU [Local.rec.att Mask True D = 5]: walk
forward in the range J15, 38K, turn at frame 40 , walk backward in
J42, 53K

.

Figure 5.7 shows a stomping action, where the word “stomping” is associated to
the frame interval J22, 30K, which is the exact moment of execution of the stomping
action, followed by an accurate recognition of the body part executing the motion
“left foot”. Note that the reference and the generated descriptions convey the same
meaning but use different words. The BLEU score would be incorrectly low in
this case. Also note that the attention weight start to be higher when the human
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FIGURE 5.7: Truncated Gaussian MLP-GRU with D = 5, Stomping
action at J22, 30K.

FIGURE 5.8: Mask false MLP-GRU [Turn left].

skeleton starts moving around the frames in the range J13, 16K. Figure 5.8 gives
an example of late detection and of a fixed alignment position pt. The description
was generated all at once around frame 45, too late compared to when the action
is executed. Additionally, the words are not semantically coherent with successive
actions in the motion evolution, with this model the alignment information is lost
entirely.

5.5.3 Synchronization between motion and words

We propose a better visualization method for the synchronization by a parameter-
ized skeleton transparency using attention weights. A sequence of motion frame
j ∈ J0, Tx − 1K is generated with this transparency values for each predicted word
wi, where the transparency Vij for a frame j given a word wi is computed from the
attention weights using Equation 5.7. The motion sequence is visualized for action
words, as illustrated in Figure 5.9.

Vij =
1

maxj<Tx{Gij}
× Gij Gij =

exp (F× αij)

∑Tx−1
j=0 exp (F× αij)

(5.7)

The factor F is set to 100 for better visualization and controls the number of
frames present per image. Note that none of these operations change the position



152 Chapter 5. Human Motion Segmentation and Dataset

FIGURE 5.9: MLP-GRU [Local.rec.att Mask True D = 5]: action
words and their high attention motion frames. Given a word wi, the
transparency of each frame j is set to value Vij as described in
Equation 5.7 .

of alignment and maximum of attention, it only helps to have a better visualiza-
tion of synchronization as a frozen sequence inside the interval Jpt − D, pt + DJ
(mask=True). 3D animation can be found in this repository1 as a point of compar-
ison to see the relevance of these static visualizations.

The visualization of sequence skeleton may be only relevant for words directly
describing the motion. We have found that for the repeated words “a person” it is
usually aligned with the start of movement, providing an initial position to predict
the coming action, but are of no interest when visualizing the synchronization of
language and motion segments.

5.5.4 Mapping language segments to motion primitives

As discussed before, it is more pertinent to associate a set of frames not only with
a single action word but with the phrase describing the motion primitive with
higher granularity, which differs from mere action recognition. Figure 5.10 shows

1https://github.com/rd20karim/M2T-Segmentation

https://github.com/rd20karim/M2T-Segmentation
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(a) Single action. (b) Multiple actions.

FIGURE 5.10: Mapping Pm →Lm: multiple actions vs. single action.

the mapping of the human pose sequence for the frames in the set Pm described
by the language segment Lm. The transparency is calculated as before in Equation
5.7, but the coefficients αij are replaced by the coefficients γij defined in Equation
5.8, computed for each language segment Lm.

γkm j =
1

km+1 − km

km+1−1

∑
i=km

αij ∀m ∈ J0, ns − 1K (5.8)

Specially when m = ns− 1 we should have km+1− 1 = ke. As described before,
we always include the token <eos> in the final language segment, so by definition
kns = ke + 1.

5.6 Limitations of the recurrent attention and dataset

Counting motion. The KIT-ML dataset doesn’t contain sufficient examples with a
variable number of repetitions to learn the ability of counting repetitions (number
of steps, waving hands, etc). Indeed, in the majority of cases, it includes only a few
examples given fixed counts (walking 4 steps). Instead, the architecture needs to
see examples with a variable number of repetitions in the training data (e.g., walks
5,4,2 steps forward) to allow for a better generalization. However, this is not the
only requirement, a strict limitation of visibility of the input in the encoder will
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not allow the model to learn how to count repetitive motions, as a larger window
width would be required. A partial solution can be to apply multiple Gaussian
windows, as this could allow counting.

Dynamic motion measure. The information about the speed of the movements
was seldom present in the dataset and consequently, the models are rarely able to
generate descriptions regarding the speed of movements.

Body part identification. We have seen in some samples a wrong detection of the
body part executing the motion (e.g., left leg instead of right leg), which is the result
of i) few descriptions rich enough to make the distinction in dataset, ii) the limi-
tations of the extracted features that do not take skeleton geometry into account.
Applying architectures allowing spatial feature extraction can be more pertinent
to add this capability.

5.7 Building dataset for motion-language alignment

A system devised to learn associations between direct parameters and the descrip-
tion, is mainly able to capture perceptual or invariant properties of the physi-
cal movement, particularly the phases of the movement, its compositional struc-
ture (complex movements composed of motion primitives or invariant structures),
qualifiers that specify the modes of movements (e.g., walking, running), the man-
ner in which the movement is executed (e.g., quickly, stealthily, carefully), and the
identification of discrete actions. The next step in the development of motion lan-
guage applications involves adding more abstract layers of interpretation above
these low-level associations pertaining to higher-level goals, grounded in a more
profound understanding of the world and the surrounding context. In the follow-
ing, we present the road map toward a more accurate synchronous captioning.

5.7.1 Road to supervised semantic segmentation

So far, we have presented experiments towards unsupervised learning of semantic
motion segmentation. As results, we have designed a specific attention mecha-
nism: local recurrent attention to infer motion segmentation and providing a quan-
titative evaluation by labeling a subset of Test set. The need for unsupervised
learning stems from the lack of time annotation of atomic actions composing the
global motion and their partial descriptions in KIT-MLD (Plappert et al., 2016) and
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HumanML3D (Guo et al., 2022a). Furthermore, these datasets do not contain suf-
ficient compositional motion. Considering all these constraints, in addition to the
inherent limitations of unsupervised techniques, we have chosen to create a hu-
man motion language dataset with time annotations as a solution. In this section,
we describe the construction of the initial portion of this dataset, including tem-
poral and linguistic annotations for actions. Our dataset aims to open the path for
supervised learning of human-motion alignment in the context of skeleton-based
captioning.

Given the start and end time of each primitive motion and associated partial
description, the previous proposed local recurrent attention could be supervised
to be more accurate. Furthermore, we could advance the architecture design using
dataset with more compositional motion and their annotations.

5.7.2 Euromov Motion Language Dataset-EMLD

In this first phase of EMLD acquisition, we focused on capturing a wide range of
atomic and compositional actions. Each single motion action is annotated with
text given a fine-grained description such as: speed of action, body part involved,
trajectory and others.

Atomic motions. These primitive motions were recorded and annotated to pro-
vide a diverse and comprehensive dataset for our research. Table 5.2 illustrates the
selected actions in the first phase and the differentiation within each action by the
manner of execution, specificity and the subject instruction.

Compositional motions. Represented by two and three successive actions, sam-
pled from the list of atomic actions with different specifications, to cover a repre-
sentative set of possible combinations. Thus, our algorithm generate action follow-
ing the sampling rules:

Sampling rules. Taking on all possible two and three sequence of actions with
all specifications will result in a very important number of combinations. Conse-
quently, the sampling process is constructed by the following rules to have a rep-
resentative set among subject: i) The same action with different modifiers cannot
be part of the same combination, ii) Two different actions involving the same body
parts cannot be included in the same combination, iii) An atomic action can appear
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Atomic motion Specificity Instruction
Turn left|right A simple turn to the left or right.

Walk random Basic walking without additional
specifications.

Walk quickly|slowly|steps
Walking at varying speeds for a ran-
dom number of steps N ∼ U(2, 5),
uniformly sampled).

Kick right|left Executing a kick using the specified
leg.

Punch right|left Delivering a punch with the specified
arm.

Throw right|left Throwing an object using the speci-
fied hand.

Pickup right|left Bending down and picking up an ob-
ject with the specified hand.

Clap Performing a clapping motion.
Bend Bending the upper body forward.
Squat Executing a squatting motion.
Jump A basic jumping action.
Jog Performing a jogging motion.

U-turn A complete turn or rotation around.
Wave right|left|both Waving using the specified hand(s).

TABLE 5.2: Details about defined atomic motions.

a maximum of 4 times in the set of 2-action combinations and 5 times in the set of
3-action sequences. Each experimental session consists of a total of 100 sequences,
which include 22 atomic actions with modifier variations, 39 two-action sequences,
39 three-action sequences. Each configuration is deterministic and identified by a
unique number K.

In this first phase, 9 subjects participated in the acquisition. Each participant
performs 2 sessions of 100 sequences, with two unique configuration numbers as-
signed to each session. Therefore, no two participants perform identically the same
samples. All these parameters are defined in a configuration files.

Subject instructions. Participants are provided with clear instructions through
an automated program that outlines the sequence of actions they are required to
perform (audio voice). Following this, participants receive an order to begin the
execution at their convenience. Meanwhile, we record the transition times between
consecutive actions.
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5.8 Experimental setting and acquisition protocol

The acquisition has taken place in the AIHM motion capture experimental plat-
form at IMT Mines Alès which has a Qualisys MIQUS motion capture system with
13 cameras, placed around an 18 square meters open area (cf. Figure 5.11).

FIGURE 5.11: The Mocap acquisition area 6× 3.

Additional synchronous acquisition modalities can be added through the MIQUS
sync unit using TTL signals or through the QTM RT protocol. For EMLD, motion
is captured with a Qualisys System using a sports marker-set, featuring 43 markers
positioned as illustrated in Figure 5.13. The cameras are placed around a rectan-
gular area, to obtain an effective and accurate capture volume of 6m× 3m× 2m, as
illustrated by Figure 5.12.

5.8.1 GUI Dashboard

The acquisition is driven by a python program that generates the experimental
plan and executes it by giving synchronous instruction to subjects. An experimen-
tal dashboard is provided to experimenters. The program controls the Qualisys
Track Manager acquisition software through Version 2.3 of the Qualisys RT proto-
col to start/end/save recording, but also to send time-indexed events correspond-
ing to the successive phases of the experimental protocol in order to annotate said
acquisition. The program offers a simple graphical user interface (PyQT) in the
form of a dashboard that allows the experimenter to drive the acquisition. The
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FIGURE 5.12: The Mocap acquisition volume 6× 3× 2.

driver program is made openly available on GitHub 2 with detailed reproduction
instructions.

Generation Process. In the context of action description generation, we employ a
systematic approach. Each atomic action is associated with a linguistic description
template, featuring placeholders akin to Python format strings. For instance, a
template might be structured as "walk{mod} for {# steps} steps" or simply "right
kick."

Subsequently, we define modifiers that correspond to specific classes, allowing
us to add variations to the actions. For example, the instruction "Kick{mod} with the
{body_parts}" specifies that we are only interested in the {left_leg, right_leg} for this
action. Another example is the instruction: "Walk{mod} {steps} steps {speed}" with
available speed options of {quickly, slowly}.

During the generation process, we generate all modified variants by iterating
over the predefined set of values for these modifier classes, replacing the place-
holders with the corresponding modifier expressions using regular expressions.
For combination descriptions, we define a combination type and a specific pattern
with placeholders for the generated text related to the involved atomic actions.
For example, "First, {$A_1$}, then {$A_2$}, then {$A_3$}", where Aj stand
for a given Action j.

This enables us to generate descriptions for various action combinations, while
keeping in mind the potential for recursive generation up to an arbitrary depth,
although we primarily focus on simpler cases.

2https://github.com/EuromovDHM-SemTaxM/EMBLD-acquisition

https://github.com/EuromovDHM-SemTaxM/EMBLD-acquisition
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FIGURE 5.13: The sport Marker Set used in our setting.

5.8.2 Standard conversion: Keypoints and sub-captions

Sport marker-set to SMPL keypoints. As described earlier in Chapter 2, each
MoCap system has its own definition of marker set, including the number of joint
and location definition, making it challenging. Thus, a standardization step is re-
quired, which poses its own challenges. Up to now, few works have attempted to
address solving optical marker-Based MoCap automatically such as SOMA (Ghor-
bani and Black, 2021). Experimenting with this framework on real-data, we noticed
a limitation in SMPL mesh reconstruction, such as body deformation and unnatu-
ral human motions. This is likely due to the inevitable presence of occlusions and
missing markers on some frames or even ranges of frames. Amelioration could be
further performed by retraining this framework to handle these issues.

From sub-caption to full natural caption. This process consists in the conversion
of partial descriptions or sub-captions into full descriptive sentences. This conver-
sion could be performed using state-of-the-arts Large-Language-Models (LLMs),
or simply Generative Pretrained Transformers (GPT) (Brown et al., 2020) that are
readily available and widely used in various applications. For instance, the se-
quence of instructions: "walks slowly", "pick something with right hand", "throw an
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object", will be transformed into a coherent sentence (GPT output: "the person walks
slowly, picks something with their right hand, and then throws the object").

5.9 Conclusion

We have proposed a supervised motion-to-language translation system that incor-
porates unsupervised alignment techniques based on attention weights that allow
for synchronous text generation. Such a system, beyond the generation of mo-
tion descriptions in natural language, can be potentially adapted to other tasks
where synchronous generation is important: subtitles of movies, sign language
transcription, skeleton-based action segmentation, etc. For instance, for action seg-
mentation, the decoder will generate a sequence of action labels instead of words,
and the recurrent attention formulation will synchronize the action segments with
minor adaptations. Our method can also be an alternative to classical clustering
algorithms (Zhou et al., 2008, 2013). In general, there are multiple strategies that
can be employed to drive the adaptation to adjacent tasks: adjusting the value
of the D parameter, tuning ϵ to control the amount of overlap in the alignments.
Regarding the tasks of motion-to-language translation and alignment, there are
additional improvements that may be investigated to further improve alignment
performance. Notably, by the use of the proposed EMLD dataset for a supervised
approach towards better motion-language alignment.
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6.1 Introduction

In this chapter, we investigate an alternative approach to motion semanticization,
not solely relying on the temporal dimension as explored in the previous Chap-
ters 4 and 5, but also incorporating spatial information. Our primary objective
is to enhance the model interpretability and quality of textual descriptions of hu-
man motions. We aim to bridge the gap between attention mechanisms and mo-
tion captioning, leading to improved performance and a deeper understanding of
how pose-based motion information and language generation interact in motion
semantic analysis. First, we briefly review relevant captioning methods based on
images and videos (Section 6.2). Drawing inspiration from these vision-based cap-
tioning approaches, we develop our contributed formulations for spatio-temporal
and adaptive attention for motion captioning. Moreover, we introduce a novel su-
pervision strategy for both attention modes. Globally, our architecture includes
a part-based motion encoding, with attention guidance toward an interpretable
and more accurate caption generation (Section 6.3). In the experimental phase
(Section 6.4), we conduct a detailed analysis and ablation studies to validate the
effectiveness of our proposed architecture. Furthermore, our architecture is in-
terpretable by design, offering a model with a transparent reasoning process, in
contrast to previous black box architectures. Thus, we propose effective tools for
global evaluation of interpretability across the Test set as supported by qualitative
illustrations (Section 6.5) and the potential application of proposed methodologies
in other tasks (Section 6.6). We report state-of-the-art results on two challenging
benchmarks, Human-ML3D and KIT-MLD (augmented version). The chapter’s
results and analyses are based on our paper (Radouane et al., 2023b)1.

6.2 Vision-based captioning

Image and Video captioning has a wide range of applications, encompassing tasks
such as video retrieval (Wu et al., 2023), and providing assistance to visually im-
paired individuals (Tiwary and Mahapatra, 2023). The challenges associated with
this task are significant, as it requires the integration of visual and language com-
prehension to generate meaningful captions for images and videos. As a result,
it has attracted significant attention in the fields of computer vision and natural
language processing.

1Code: https://github.com/rd20karim/M2T-Interpretable

https://github.com/rd20karim/M2T-Interpretable
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In this part, we will delve into a thorough review of the most relevant research
that served as foundation and inspiration for our work. We aim to explore key
studies, methodologies, and findings from various domains that have contributed
to shaping our research objectives and approach for motion captioning.

6.2.1 Image captioning

In this context, the models are designed to learn the mapping from an input image
to a sequence of words that effectively describe its contents. The primary objec-
tive is to accurately represent the objects, scenes, actions, and relationships present
in the image. Typically, these architectures consist of two essential components:
the Encoder, responsible for transforming raw input data into meaningful and
informative representations, and the Decoder, responsible for generating textual
descriptions based on the encoded information.

Encoder. A Convolutional Neural Network (CNN) encoder is commonly utilized
for image encoding. The final nature of the encoded image depends on the method
used. Regarding a recent survey proposed by (Stefanini et al., 2023) on multiple
approaches, the distinction can be made based on the use or not of attention mech-
anisms. Figure 6.1 illustrates various methods for learning image representation.
Approaches with No attention (cf. Figure 6.1.(a)), use a global feature vector ex-
tracted using a CNN architecture. Others apply an Attention over grid, where the
features describing each region in the image are assigned different weights (cf. Fig-
ure 6.1.(b)). These features are usually obtained by the lower convolutional layer
of the chosen pre-trained CNN. In (Fu et al., 2017), the system aligns the process
of generating words with the visual perception experience by shifting attention
among different visual regions. Where some methods rely on attention over visual
regions, employing a decoder to extract relevant features for each image region.
The attention model then utilizes these feature regions to compute the final repre-
sentation, which the language model uses for generating a word at each time step
(cf. Figure 6.1.(c)).

Attention model. Diverse methods were utilized to compute attention scores.
Generally, the attention score is computed based on the similarity between the
hidden state at time i and a vector representing a location j in the image. This sim-
ilarity function can be a simple dot product with learnable weights, as suggested
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FIGURE 6.1: Different methods for image feature extraction
(Stefanini et al., 2023).

in (Luong et al., 2015). Alternatively, an additive formulation, as exemplified in
(Bahdanau et al., 2015), can be employed. More recent attention models are built
upon the scaled-dot product of learned queries and keys (Vaswani et al., 2017).

Decoder. Decoder architectures considered were often recurrent, such as the GRUs
or LSTMs. In the last years, Transformer (Vaswani et al., 2017) based decoders start
to be extensively used in captioning tasks.

FIGURE 6.2: LSTM-based decoder. (a) No attention, (b)-(c)-(d)
different methods for attention score computation (Stefanini et al.,
2023).

Attention model & Decoder interaction. The Decoder learns how to dynamically
attend to different parts of the image while generating the caption. The attention
mechanism guides the language model to focus on the most relevant parts of the
image while generating each word of the caption. The interaction between lan-
guage and encoded input information can take various structures, as depicted in
Figure 6.2 (b)-(c)-(d).

Non-adaptive attention. In a non-adaptive approach, the attention mechanism
is used to compute the context vector for each word generation, even non-visual
words that are not depending on the image such as language connection words.

Adaptive attention. Attending to images for generating non-visual words can be
misleading and degrade performance. This degradation could result from using
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visual information for non-visual words. To alleviate this problem, the authors (Lu
et al., 2017) propose a formulation for a learnable gate variable β. The variable β is
learned to choose either to rely on the image features or only on the context of lan-
guage generation through the visual sentinel vector. Then, this idea was expanded,
and learnable gate variables were extended over several branches of feature ex-
traction. For example, (Guo et al., 2019) incorporate a module using context-gated
attention, taking as input at each step the visual semantic unit embeddings, and
aligning words hierarchically. Their approach first identifies the type of visual
semantic unit related to the word (object, attribute, interaction) through the gate
variables, then finds the most correlated unit within that type.

Guided attention. External information such as object proposals or attention maps
are used to guide the focus of attention model. This allows the model to attend to
specific regions of an image that are relevant to the description, instead of relying
on a fixed or learned attention mechanism. The use of guided attention has been
shown to improve performance and accuracy of image captioning models, partic-
ularly in scenarios where attention mechanism is not able to effectively capture
the relevant image content on its own. In (Liu et al., 2017), the authors present a
supervised model for attention and alignment annotation. The model learns a gat-
ing variable to distinguish between visual and non-visual words, while attention
maps are supervised using bounding box associated with each target word in the
caption.

6.2.2 Video captioning

Unlike image captioning, which focuses on describing the static content of an im-
age, video captioning requires a more nuanced understanding of the underlying
motion and dynamics in the video. The temporal dimension is involved, and ar-
chitectures relies on spatio-temporal attention mechanisms. Different types of fea-
tures were used in the context of video captioning.

Motion features. Capture the dynamics of the objects and actions in the video,
such as their movement, velocity, and acceleration. These features can help the
captioning model to understand the interactions between objects and the overall
flow of the scene. Motion features are often extracted using optical flow, skeleton-
based representations, or using a 3D Convolutional neural network (C3D) (Song
et al., 2017).
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Appearance features. Capture the visual content of the video, such as object
categories, textures, and colors. These features help the captioning model under-
stand the objects present in the video. Often extracted using convolutional neural
networks (CNNs) pretrained on large image datasets.

Spatial attention. Focuses on the key objects or regions within a video frame.
The attention mechanisms are generally designed as standalone components within
the captioning model and can be trained to recognize the significance of various
frame regions in influencing the generation of specific words in the caption.

Temporal attention. Selects the most pertinent frames for the generation of a
specific word at a particular time step.

By combining both motion and appearance features, video captioning models
can gain a more complete understanding of the video. While spatial and tem-
poral attention allow the model to focus on the most relevant information in the
video and to generate more accurate and descriptive captions. For instance, au-
thors of (Song et al., 2017) propose a comparison of different feature extraction
methods: Motion/Appearance features and Spatial/Temporal attention. Their archi-
tecture achieves superior performance in video captioning by leveraging spatial
and temporal features, which are trained separately.

6.3 Methods

As discussed in the previous Chapters (4 and 5), motion captioning was tackled
with a few methods based on RNNs and Transformers. The previous works have
not considered the graph structure of the skeleton or focused on interpretability
and understanding of the model’s reasoning. To overcome these challenging limi-
tations, we propose various methodologies for designing an interpretable and ef-
ficient architecture.

6.3.1 Captioning with spatio-temporal information

We first present the general proposed architecture for our captioning approach,
giving a general overview, followed by a detailed presentation of the various com-
ponents and finally a presentation of our training protocol. Our model, summa-
rized in Figure 6.3, is composed of an encoder block, a spatio-temporal attention
block and a text generation/decoder block.
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FIGURE 6.3: Our architecture design with an MLP-based encoder,
and Two LSTM-based decoders (Radouane et al., 2023b).

Architecture Overview. Figure 6.3 fully illustrates our model design. The en-
coder branch encodes frame-wise part-based motion representations from joint
positions (Xik) and velocities (Vik), while the decoder branch takes as input both
the text sequence (previous tokens ˆyt−1, hidden state ht−1) and estimates the rel-
ative importance (β̂t gate) of motion information for word prediction ŷt. Spatial
( ˆαtik) and temporal attention Γtk are computed from encoded part embeddings of
the motion encoder and the current hidden state (ht) of the bottom LSTM. These
spatio-temporal weights are utilized to compute the context vector ct encoding
attention-weighted part representations. Both the context vector and the output of
the top LSTM pass through MLP layers with tanh activation, before being adap-
tively merged, yielding an adaptive context vector c̄t. This c̄t is concatenated with
the previously predicted tokens ˆyt−1 and ht to form the input to the final linear
layer of the decoder. The overall loss is a weighted sum of losses optimizing dif-
ferent parts of the architecture. Losslang, the cross entropy between predicted, and
target words is the main loss, to which we add a spatial loss, Lossspat, guiding
attention, as well as an adaptation loss, Lossadapt, for the supervision of the β̂t gate.

Formal notations. Let X ∈ RTx×J×D be the input sequence of motion features of
Tx time steps, where J is the number of joints in the skeleton and D is a number of
spatial dimensions. We note Xk the 3D joints positions and Vk their corresponding
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velocities at frame time k.

Xk = [xk,1, xk,2, · · · , xk,J ]

Vk = [xk+1,1 − xk,1, · · · , xk+1,J − xk,J ]

Body-part partitioning. We group the joints in 6 parts: Left Arm, Right Arm,
Torso, Left Leg, Right Leg, Root. We convert the global coordinates to root-relative
coordinates, except for the root itself, which describes the global trajectory of the
motion. Xik denotes the group of joints of part i for every frame k as described in
Figure 6.3.

Encoder. Each of the six body parts is embedded by an MLP of two layers with
tanh as activation function, as illustrated in Figure 6.3. The MLP encode positions
Xik and velocities Vik separately. The final embedding Pik for a given part i and
frame k is the concatenation of the position and velocity embeddings. We note by
P the frame-level motion features of all human body parts. P ∈ RTx×a×henc where
henc stands for the dimension of the final output encoder and a = 6 is the number
of body parts.

P = Enc(X)

Decoder. We adopt a two-LSTM decoder configuration, a Bottom LSTM for learn-
ing attention weights and language context, and a Top LSTM for final word genera-
tion based on the relevant information extracted from language and motion (Song
et al., 2017). We note by y = (y1, . . . , yTy), yi ∈ RKy the sequence of words describ-
ing the motion. Let ht ∈ Rhdec be the decoder hidden state of the bottom LSTM
for a word wt in the sequence and h̄t for the Top LSTM. We note by Ky the size
of the target vocabulary, and Tx and Ty are respectively the lengths of the motion
sequence and its description. The decoder Dec is used to predict the next word
yt given the adaptive context vector c̄t, the previous word yt−1, and the bottom
hidden state ht.

p(yt | {y1, · · · , yt−1} , c̄t) = Dec(yt−1, ht, c̄t) (6.1)

The context vector ct is computed by a spatio-temporal attention mechanism:
temporal attention determines when to focus attention, and spatial attention de-
termines where to focus in the part-based graph.
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FIGURE 6.4: Partitioning of KIT skeleton of 21 joints into 6 body
parts (22 joints for Human-ML3D) (Radouane et al., 2023b).

For both Top LSTM and Bottom LSTM we initialize the hidden and memory
states by zero vectors. This forces the network to focus and get information only
through the adaptive context vector, which is important for learning correct atten-
tion maps.

6.3.2 Proposition of attention mechanisms

In this part, we will provide detailed formal definitions we have proposed for each
attention-based operation, as depicted in Figure 6.3. Staring with the two blocks
Spatial attention and Temporal attention. Subsequently, we give details about formal
definitions of each vector involved in the process of decoding motion into text
description.

• Spatio-temporal attention. The spatial and temporal weights are computed
using the extracted motion features P and the bottom lstm hidden state ht. In the
following, we denote by P∗ ∈ Rhenc×a×Tx the permutation of P ∈ RTx×a×henc .

Temporal attention formulation. The temporal weights are computed from ex-
tracted motion features P∗ and the current decoder hidden state ht.

zt = wT
h tanh(WpP∗ + ep(Whht)) (6.2)

γt = softmax(zt) (6.3)

The notations Wp ∈ Rd×henc ,Wh ∈ Rd×hdec and wh ∈ Rd×1 refer to learnable
parameters, ep is an expansion operator mapping to d × a × Tx, where a is the
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number of body parts (a = 6). The vector of temporal attention weights, γt has the
explicit form γt = [γt,1, γt,2, · · · , γt,Tx ], with γt,k being the attention score for the
frame k for the word generated at time t.

Gaussian temporal attention. With the above formulation, we often encounter
discontinuities in attention maps. However, these discontinuities are undesired,
as the action occurs continuously within a given frame range. The distribution of
attention weights for a given motion word can be modelled as a Gaussian distri-
bution with a learnable mean and standard deviation. The mean mt and standard
deviation σt are computed from the previous temporal attention weights γtk, which
are replaced by Γtk during training in this case (cf. Figure 6.3). Intuitively, the mean
mt will approximately represent the center time of action duration described by a
motion word wt, and the spread of the distribution approximately corresponds to
the duration of the action.

Γtj = exp (− (j−mt)2

2σt2 ) (6.4)

Spatial attention formulation. Spatial attention was widely explored in skeleton-
based action recognition. Given our part-based design, attention weights are com-
puted per human skeleton body parts (e.g., Torso, left/right arm, left/right leg)

st = wT
s tanh

(
Wps P∗ + ep(Whs ht)

)
(6.5)

αt = softmax (st) (6.6)

Where st ∈ Ra. The learnable parameters are Wps ∈ Rd×henc ,Whs ∈ Rd×hdec

and ws ∈ Rd×1. We note by αt,m,k the spatial attention score for part m of the
skeleton graph at frame k for the word generated at time t. Thus, explicitly αt =

[αt,1,1, αt,1,2, · · · , αt,a,Tx ].
• Adaptive attention. As discussed before in the context of vision-based cap-

tioning, similarly attending to the inputs for all words is not necessary. Non-action
words, particularly grammatical words, do not carry any information about the
movement. Thus, we propose to learn a gating variable β̂t to decide the propor-
tion to which to use language context over motion features:

β̂t = sigmoid(Wh
b .ht + We.(Eyt−1)) (6.7)

Where Wh
b ∈ R1×hdec , We ∈ R1×demb are learnable matrices. E ∈ Rdemb×Ky refers
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to embedding matrix of target vocabulary. The gating variable depends on the hid-
den state, which encodes residual information about generated words up to time
step t, as well as on the embedding of the previous word, as detailed in Equation
6.7.

6.3.3 Language and motion encoding

As depicted in Figure 6.3, the final prediction relies on adaptive selection, where
the learnable gate determines the “amount” of motion information to utilize for
predicting a word at the current time step. Next, we formally define the context
vector encoding this motion information and the adaptive selection process:

Context vector ct. The context vector is derived by weighting the motion features
with spatial and temporal attention weights as follows:

ct =
Tx

∑
k=1

a

∑
i=1

ΓtkαtikPik (6.8)

The motion information ct and language information h̄t are embedded into the
same space through a linear layer with tanh activation (values in [-1,1]), giving et

and rt respectively.
Adaptive context vector c̄t. The adaptive context vector is given by Equation 6.9.

When β̂t = 1 the model uses full motion information and when β̂t is close to 0 the
model relies more on language structure.

c̄t = β̂t.et + (1− β̂t).rt (6.9)

Final layer W f . The probability outputs are computed using Equation 6.10,
which is similar to previous work in video captioning (Song et al., 2017). Except
that we include the bottom hidden state. This ensures that the language informa-
tion of previously generated words is always retained, which is useful for main-
taining correct syntax, even for motion-related words (e.g., run, running, etc).

p(yt | y1:t−1, ĉt) = so f tmax(tanh (W f .concat([c̄t; yt−1; ht]))) (6.10)

6.3.4 Spatial and adaptive attention supervision

Interpretability is one of the main focuses in our work. We propose guiding atten-
tion through the supervision of spatial weights and gate variables. This process
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Category Words Body part

Trajectory circle, circuit, clockwise, anticlockwise, forward, backward Root

Local motion

open, waves, wipe, throw, punch, pick, boxing, Arms
clean, swipe, catch, handstand, draw

kick, stomp, lift, kneel, squat, squad, stand, stumble, rotate Legs

bend, bow Torso

Connection words a,is, the, of, his, her, its, on, their -

Subject person, human, man -

TABLE 6.1: Predefined dictionary for both datasets.

is intended to produce attention patterns that match human-like scene perception
and analysis. However, the end goal remains to enhance the quality of text gen-
eration. Later, we investigate the effect of added interpretability on performance.
To our knowledge, the supervision of the attention mechanisms with an adaptive
gate and spatial attention have never been applied to captioning tasks, let alone
motion captioning. Consequently, we first introduce the detailed definitions of
our proposed methods for attention loss supervision and ground truth generation.

Ground truth generation for supervision. Both supervision methods are based
on a predefined dictionary. We manually define a dictionary based on representa-
tive words in the dataset describing different motion characteristics. Intentionally,
the dictionary doesn’t cover all dataset actions with their synonyms, we want the
model to be able to generalize to remaining unsupervised words for their spatial
and gate attention. We will see later that the model effectively converges for this
intended behavior. During training, the words in Table 6.1, and targets words, are
stemmed to find correspondence for spatial weight supervision.

• Spatial ground truth. The ground truth spatial attention weights αti are gen-
erated based on the predefined dictionary and it’s same for all frames (cf. Equation
6.11), the temporal attention performs temporal filtering.

∀k ∈ [0, Tx − 1] : αtik = αti (6.11)

• Gate ground truth. In order to build a ground truth for adaptive attention, we
define a mapping to distinguish motion words based on the Part Of Speech (POS)
tagging. Then, ground truth βt = 1 is assigned for categorized motion words and
0 for others.
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For the remaining uncategorized motion words, we do not supervise attention
scores, but let them be learned or inferred from supervised attention of synonym
words. By this mechanism, we push the network to determine the relevant word
to output based on the most attended body part and self generalize to the unsuper-
vised words. Since the exact time of the action is unknown, we keep the ground
truth weight αtik frame time-independent (cf. Equation 6.11). The temporal at-
tention block focuses on learning action time and performing temporal filtering of
spatial weights through element-wise multiplication (cf. Figure 6.3).

Global loss definition. To define the global loss, we add the loss terms for spa-
tial attention lossspat, adaptive attention gate lossadapt, respectively weighted by
λspat, λadapt, to control their contributions.

Loss = losslang + λspat.lossspat + λadapt.lossadapt (6.12)

In the following all losses are formulated sample-wise (sample x with source
length Tx), we omit batch averaging in the notations for the sake of brevity.

• Language loss. The standard loss for motion-to-text generation is losslang

defined as the cross entropy between the target and predicted words:

Losslang = −
Ty

∑
j=1

yj log(ŷj) (6.13)

• Adaptive loss. We assign βt = 1 for motion words and βt = 0 for non-motion
words, the loss is simply defined as:

Lossadapt = −∑
y

1
Ty

Ty−1

∑
t=0

βt log(β̂t) + (1− βt) log(1− β̂t) (6.14)

• Spatial loss. The predicted attention score is ˆαtik for a given word wt and
part i of the source motion at the frame k. The loss is formulated in Equation 6.15,
where Ny is a normalization factor that count the number of supervised words for
a given target description y.

Lossspat = −
1

Ny
∑
i,t,k

αti log(α̂ti) + (1− αtik) log(1− ˆαtik) (6.15)
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The spatial attention is guided by focusing attention on the human body parts
through the ground-truth scores αtik.

6.4 Experiments

This section presents the implementation details for interpretable motion caption-
ing (Section 6.4.1) and quantitative results (Section 6.4.2). Then, we investigate the
model interpretability (Section 6.5).

6.4.1 Training and hyperparameters

The architecture design is similar for both datasets, except for the input dimensions
and the hyperparameters, which are defined as follows:

For KIT-ML, the word embedding size is set to demb = 64, the decoder hidden
size to hdec = 128, the dimension of each output of MLPi for layer 1 is 128 and 64
for layer 2, for joint positions and for velocities. After concatenation, we obtain 128
joint-velocity features per frame.

For Human-ML3D, the word embedding size is set to demb = 128, the decoder
hidden size to hdec = 256, the dimension output of MLPi for layer 1 to 256 and
to 128 for layer 2, which is the final output dimension for joint positions and for
velocities. After concatenation, we obtain 256 joint-velocity features per frame.

We use the AdamW (Loshchilov and Hutter, 2017) optimizer with a weight
decay of 1e− 4 and 1e− 5 respectively for KIT-ML and Human-ML3D, both with
a teacher forcing strategy of ratio 0.5. For loss supervision, we configure a search
space for (λspat, λadapt) and run the search using WandB (Biewald, 2020).

6.4.2 Quantitative evaluation

In the following, all evaluations are conducted on the same dataset splits as other
state-of-the-art (SOTA) systems, employing standard text generation metrics widely
used for captioning tasks and motion-to-language models.

Loss weight ablations. We run experiments for different values of (λspat, λadapt).
The quantitative results are reported in Table 6.2.
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Dataset λspat λadapt BLEU@1 BLEU@4 CIDEr ROUGEL BERTScore ↑

KIT-ML

0 0 57.3 23.6 109.9 57.8 41.1
0 3 56.3 22.5 108.4 56.5 39.8
1 3 57.6 23.5 102.6 57.2 40.1
2 3 58.4 24.4 112.1 58.3 41.2
3 5 57.6 23.7 105.7 57.5 40.9
5 5 56.5 22.0 99.4 56.8 39.9

HML3D

0 0 69.3 24.0 58.8 54.8 38.7
0 3 69.9 25.0 61.6 55.3 40.3

0.1 3 69.5 23.8 58.7 55.0 38.9
0.25 3 68.7 23.8 59.7 54.7 39.3
0.5 3 68.8 23.8 60.0 55.0 38.6
1 3 68.7 23.7 58.2 54.6 39.0
2 3 69.2 24.4 61.7 55.0 40.3
3 3 68.3 23.2 56.5 54.5 37.1

TABLE 6.2: Spat+adapt supervision impact w.r.t each corresponding
weights.

Impact of adaptive and spatial supervision. We train the model for both datasets
with different combinations of (λspat and λadapt), where zero corresponds to the
case without any supervision. Table 6.2 presents the performance comparison of
our system for the considered combinations, using common text generation eval-
uation metrics. The gate (adapt) and spatial (spat) supervision perform well when
used together on KIT-ML (small). We achieve a BLEU@4 score of 24.4 (+0.8%)
compared to 23.6 obtained with no gate and attention guidance. For Human-
ML3D, adaptive attention consistently showed benefits, with a increase of 1% on
BLEU@4 and 0.5% on ROUGE scores. However, combining adaptive attention
with guided spatial attention resulted in a slight degradation of exact matching
scores (BLEU@4, ROUGE) compared to using adaptive attention alone. We can
hypothesize that guiding spatial attention effectively results in the generation of
semantically equivalent sentences with a slightly more diverse vocabulary. Conse-
quently, this could lead to a decrease in the exact n-gram matching metrics.

Evaluation against SOTA. Table 6.3 presents a comparison with state-of-the-art
(SOTA) systems for KIT-ML and Human-ML3D. Only (Guo et al., 2022b) utilize
the updated version of KIT-ML augmented by language and motion adaptations.
They replicate several SOTA architectures on the same split of the dataset, which
we also report. For Human-ML3D, we include systems released after the dataset,
as well as some of their older baselines replicated on Human-ML3D.
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Dataset Model BLEU@1 BLEU@4 ROUGEL CIDEr Bertscore

KIT-ML

RAEs (Yamada et al., 2018) 30.6 0.10 25.7 8.00 0.40
Seq2Seq(Att) 34.3 9.30 36.3 37.3 5.30

SeqGAN (Goutsu and Inamura, 2021) 3.12 5.20 32.4 29.5 2.20
TM2T w/o MT 42.8 14.7 39.9 60.1 18.9

TM2T (Guo et al., 2022b) 46.7 18.4 44.2 79.5 23.0
Ours-[Spat+adapt] (2,3) 58.4 24.4 58.3 112.1 41.2

HML3D

RAEs (Yamada et al., 2018) 33.3 10.2 37.5 22.1 10.7
Seq2Seq(Att) 51.8 17.9 46.4 58.4 29.1

SeqGAN (Goutsu and Inamura, 2021) 47.8 13.5 39.2 50.2 23.4
TM2T w/o MT 59.5 21.2 47.8 68.3 34.9

TM2T (Guo et al., 2022b) 61.7 22.3 49.2 72.5 37.8
Ours-[adapt] (0,3) 69.9 25.0 55.3 61.6 40.3

TABLE 6.3: Text generation performance compared with
state-of-the-art approaches and baselines (Radouane et al., 2023b).

Our approach significantly outperforms other state-of-the-art approaches across
all metrics on KIT-ML (with increases of +6% BLEU@4, +14.1% on ROUGE-L,
+32.6% CIDEr, and +18.20% Bertscore). Similarly, it performs significantly bet-
ter on Human-ML3D (with improvements of +2.7% BLEU@4, +6.1% ROUGE-L,
and +2.5% Bertscore), except for CIDEr where there is a -10.9% difference. This
includes comparison against the transformer-based TM2T. Moreover, our system
demonstrates more consistent performance across datasets, with an order of mag-
nitude fewer parameters, and yields interpretable outputs.

We hypothesize that considering the skeleton structure confers an advantage
to our approach. This notion has been supported by its effectiveness in enhanc-
ing motion encoders for action recognition architectures, and it translates well to
motion-to-language generation tasks. Additionally, our proposed method for at-
tention guidance has resulted in improved metric scores, while providing inter-
pretable outputs with greater transparency in the model’s reasoning process. The
qualitative and global analysis of interpretability will be further discussed in the
following section.

6.4.3 Interpretability analysis and evaluation

In this section, we propose to conduct several analyses regarding the interpretabil-
ity of the proposed architecture through a discussion on the effect of attention
guiding on both the KIT-ML and the HumanML3D datasets.
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FIGURE 6.5: β density distribution over test set for some non-motion
words (stemmed) on Human-ML3D.

Adaptive attention effect. When training a model without guiding spatial at-
tention, we observe that the β̂ gate frequently takes higher values for non-motion
words (a: 0.9, the: 0.8) as illustrated in Figure 6.5a. This behavior degrades perfor-
mance, as seen in Table 6.2 for Human-ML3D. We hypothesize that this leads the
weights of the spatio-temporal attention to receive more gradient updates for non-
motion words through c̄t, which can make picking-out the more important motion
words more challenging. However, when we introduce adaptive gate supervision
(cf. Figure 6.5b), the model more frequently assigns a less weight β̂ to non-motion
words and begins to learn how to make decisions automatically. This allows the
model to focus on using the context motion information only for motion words.
Additionally, β̂ values tend to be higher correctly for motion words describing:
trajectory, direction, action, body parts as illustrated in Figure 6.6a. The adaptive
attention supervision forces the model to prioritize the context vector for predict-
ing motion words over non-motion ones, while guided spatial attention improves
body part identification. We hypothesize that both types of supervision result in
learning attention maps that better align with human visual perception.

Spatio-temporal attention. The model’s spatial attention effectively focuses on
relevant parts for motion word prediction, as illustrated in Figure 6.7 for the mo-
tion words "kicks" and "waves". Additionally, the temporal attention provides rel-
evant information about actions. We will discuss these two aspects of body part
identification and action localization in the following.



178 Chapter 6. Interpretable Captioning With Guided Attention

0.0 0.2 0.4 0.6 0.8 1.0
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

De
ns

ity

run
pick
kick
turn
forward
danc
squat
wipe
punch
backward
jump

(a) With gate supervision, motion information
is correctly used frequently for motion-words
generation.

0.0 0.2 0.4 0.6 0.8 1.0
Maximum Attention Value

0

5

10

15

20

25

30

35

40

Co
un

t

Total # Words: 203 turns
Root
Torso
LeftArm
RightArm
LeftLeg
RightLeg

(b) Attention is frequently focused on relevant
parts: e.g. on Root (global trajectory) for word
"turns".

FIGURE 6.6: β test set density distribution for a few motion words
stems on Human-ML3D and the temporal maximum body-parts
attention histogram for word "turn".
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FIGURE 6.7: Spatial temporal attention map for different motion
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axis represents frames. The color scale represents the intensity of the
attention score for the given body part at each frame.
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• Body part identification. We can illustrate the effectiveness of our architec-
ture in learning a correct body part association through spatio-temporal attention,
by viewing the histogram for temporal maximum attention distribution for each
body part given some motion words.

For KIT-ML, Figure 6.8 illustrates the compared spatial attention part weights
with supervision (Figure 6.8b) versus without (Figure 6.8a) for the action kick. In
the former, attention is concentrated on the legs, while in the latter it focuses on
Root and Left Arm, which doesn’t match the action. Quantitatively, this leads to an
increase in performance, as previously seen (cf. Table 6.2).

For Human-ML3D, in Figure 6.9, the spatial attention correctly focuses on arms
for throw in both cases (w and w/o supervision). We believe that with more train-
ing data, which includes more diverse descriptions, body part encoding alone may
be sufficient to implicitly learn correct attention maps. However, for small-sized
datasets, as seen for KIT-ML, spatial guidance is still required (cf. Table 6.2).
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FIGURE 6.8: Effect of spatial supervision on KIT-ML.

• Action localization. Another aspect that emerges from temporal gaussian
attention weights is action localization. The architecture shows ability to identify
motion onset without temporal supervision. We can derive the action onset from
spatio-temporal attention maps as illustrated in Figure 6.10 where we also show
their actual onset time (identified manually through 3D pose animation).
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FIGURE 6.9: Effect of spatial supervision on Human-ML3D.

(a) Multi-action. (b) U-turn motion.

FIGURE 6.10: Temporal gaussian window displayed for different
motion words given a prediction on KIT-ML.

6.5 Effectiveness of architecture components

In the following visualizations and discussions, we aim to demonstrate the global
effectiveness of our architecture design for each component (cf. Figure 6.3) in-
volved in learning an interpretable mapping between human motion and lan-
guage:

• Functionality of gating mechanism.

• Attention mechanisms.

• Impact of Part based motion encoding with spatio-temporal attention blocks.
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FIGURE 6.11: Illustration of our gating mechanism during training.
The motion encoder is prevented from receiving important gradient
updates for non-motion words.

6.5.1 Gating mechanism

The gate variable β allows the model to decide whether to use or not the motion
information given by the word at the current time step. Figure 6.11 illustrates the
effect of gating mechanism supervision in the optimization process. This mecha-
nism prevents the decoder from attending to motion for non-motion word. Conse-
quently, the motion encoder is prevented from receiving important gradients up-
dates for non-motion words. To demonstrate the role of each of the context vectors
ct and LSTMs hidden states (h̄t, ht) and visualize concretely this internal process
of switching between motion and language during inference, we fix the β̂ value at
1 and display predictions for the best model on Human-ML3D in Table 6.4 and on
KIT-ML in Table 6.5, and show a representative examples compared to adaptive
gate. The context vector (β̂ = 1) is successfully used for all words describing the
motion characteristics: action, speed, body parts, trajectory, direction. While the hid-
den states provides the language structure and context. Particularly, we note that
the end token <eos> is also motion related, as outputting this word depends on the
end of the relevant human motion range. Interestingly synonym motion words are
grouped (e.g., boxing, punching). Our supervised gating mechanism succeeded in
separating motion-words from other words effectively enhancing the generated
text quality.
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β (gate) Prediction

1 kicking kicks with right leg <eos>
adaptive a person kicks with their right leg <eos>

1 jumping jacks and jumping jacks <eos>
adaptive a person does jumping jacks <eos>

1 walking forward in a diagonal line <eos>
adaptive a person walks forward in a straight line <eos>

1 punching boxing and moving hands around <eos>
adaptive a person is boxing with both hands <eos>

1 jogs in in place <eos>
adaptive the person is jogging in place <eos>

TABLE 6.4: Comparison of the predictions when setting β̂ = 1 and
adaptive on Human-ML3D (adapt (0, 3)).

β (gate) Prediction

1 waves waves waving with both hands <eos>

Adaptive the person is waving both hands <eos>

REF the person is waving both hands <eos>

1 walks walks slowly <eos>

Adaptive a person walks slowly <eos>

REF a person walks forwards quite slowly <eos>

1 kicking kicking kicking with left leg <eos>

Adaptive a person kicks something with its left foot <eos>

REF a human kicks something with his left foot <eos>

1 jumping jumps forward <eos>

Adaptive a person jumps with both legs <eos>

REF a person jumping 1 step <eos>

1 running running running <eos>

Adaptive a person runs <eos>

REF a person runs forward <eos>

TABLE 6.5: Comparison of the prediction when setting β̂ = 1 and
adaptive on KIT-ML (Spat+adapt (2, 3)).
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6.5.2 Attention supervision

Spatial and adaptive supervision. We show comparison of spatio-temporal at-
tention maps and text generated between the case with supervision and without
supervision in Figure 6.12.
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(a) With supervision KIT-(2,3) (action range [19,28]/right kick).
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(b) Without supervision KIT-(0,0) (action range [19,27]/right kick).

FIGURE 6.12: Comparison between the case of guided attention and
no supervision.

The case of supervision illustrated in Figure 6.12a shows that the relevant body
parts were correctly identified, and corresponding action is perfectly localized in
the range [20, 26], which is very close to the manually identified range [19, 28]. Low
predicted β values are associated with non-motion words. Without supervision (cf.
Figure 6.12b), the model focuses on irrelevant parts, and consequently, the range of
the action was not precisely localized. Additionally, the β values are unnecessarily
high for all kinds of words. We visualize more samples (cf. Figure 6.13) with spatial
and adaptive attention supervision. Temporal range is mentioned for comparison,
even if action localization wasn’t the main focus in the captioning task, the model
was able to implicitly learn a temporal location through the temporal gaussian
attention mechanism.
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FIGURE 6.13: Spatio-temporal attention for different motion words
on KIT-ML.

Trajectory and global motion. The attention was supervised only for words de-
scribing trajectory, but the model generalizes successfully to motion words that
highly depend on a global trajectory. This results in maximum attention distributed
toward the Root body part, as we see in Figure 6.14. For example, taking a non su-
pervised motion word such as walk the maximum attention is assigned to Root
body part, which effectively contains the global trajectory information.
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FIGURE 6.14: [KIT-(2,3)]: Body part distribution (spat+adapt).

6.5.3 Part based encoding & spatio-temporal attention

Our architecture design could be sufficient in learning correct spatial attention
maps using a larger dataset with rich semantic descriptions. For the purpose of
demonstration, we will use the model with no spatial supervision, to show that part-
based encoding and spatio-temporal attention can work solely and correctly to-
gether for focusing on relevant body parts in relation to the associated generated
motion words. To this purpose, we display the histogram distribution of tempo-
ral maximum attention weights for each body part over all the test set and given
different motion words. This allows for an effective global evaluation of inter-
pretability over the entire test set.

Histograms. In the following, we display the body parts histogram distribution
across the test set for different motion words to demonstrate the effectiveness of
part-based encoding along with spatio-temporal attention in finding relevant parts
to focus on using the model with no spatial supervision. This is only in the case
of the larger dataset Human-ML3D. The KIT-ML small dataset still requires spatial
supervision to help the architecture focus on relevant parts, as the vocabulary and
its size are limited. This effectiveness is demonstrated in all the following Figures,
depending on the motion word, arms-based/legs-based actions, and particularly
some motions with an emphasis on the torso body part.
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FIGURE 6.15: Histograms generated on the HML3D with the config
(0,3).
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FIGURE 6.16: Histograms generated on HML3D with the config (0,3).
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Spatio-temporal attention maps. In the case of the model without spatial super-
vision, we have found that the model performs a correct attention focusing. For
actions performed with both arms or legs, the model focuses on both parts (cf. Fig-
ure 6.17). When an action is performed using right leg/arm, the model focuses
correctly on the corresponding parts (cf. Figure 6.18). In all cases, body part words
(left/right/both) are always accurately identified into the generated text, as shown
by the prediction in Figure titles. These observations are common across different
representative samples (from various actions).
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FIGURE 6.17: Bi-part based human motion (short).
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FIGURE 6.18: Single part-based human motion.
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6.6 Transfer to adjacent tasks

Similar tasks such as action recognition and localization can benefit from the pro-
posed formulations. For instance, our motion encoder and skeleton partitioning
could be used for skeleton based action recognition, and the number of layers
could be adapted based on the dataset’s size and complexity.

For action localization in a continuous stream, this task could be approached
as sequence-to-sequence learning. In this context, attention weights could be used
to infer the start and end times of actions in an unsupervised manner without the
need for action time labels. If the time annotations are available, they can be used
to supervise the spread of temporal weights, further enhancing the accuracy of
action localization and spatio-temporal attention maps.

Moreover, our formulation of spatial weights supervision could leverage prior
knowledge about the body parts involved in a given action. In other scenarios,
such as vision-based captioning, our spatial supervision could be adapted to max-
imize attention weights on spatial regions corresponding to the object described
by each visual word in the caption. For image input, this spatial supervision
could be applied directly, while for video input, a temporal attention block could
be added. In both cases, the encoder could utilize a pretrained CNN network to
extract spatial grid image features analogous to skeleton body parts. By incor-
porating the spatio-temporal formulation along with the supervision of adaptive
learnable gates, emphasis can be placed on relevant visual words.

Finally, interpretability could be evaluated using the proposed density func-
tion for adaptive attention and histograms for attention distribution across spatial
locations in various captioning contexts.

6.7 Conclusion

We have introduced guided attention with adaptive gate for motion captioning.
After evaluating the influence of different weighting schemes for the main loss
terms, we found that our approach leads to interpretable captioning while improv-
ing performance over the state of the art. Interpretability is important to consider
when designing an architecture, as it provides insights into the model’s capability
to perform unbiased reasoning. This ensures the ability to generalize instead of
memorizing. Our proposed model addresses these challenges by producing inter-
pretable results with accurate semantic captions. Moreover, we have effectively
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evaluated the global interpretability through the proposed density and histogram
functions, which avoid sample-wise visualization, making it possible to see the
effects across all test set samples. For language labeling, we utilized a rule-based
language processing approach for word categorization. However, further perfor-
mance improvement is likely achievable by proposing a more sophisticated and
fine-grained semantic analysis of motion words in their context. The model and
proposed methodology can be applied to other captioning tasks, as well as other
contexts, such as supervising spatial attention weights in action recognition tasks.
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7.1 Summary of contributions

After the introduction, Chapters (2 and 3) focused on providing a recent literature
review of human pose estimation and addressing practical challenges related to
protective behavior based on human pose data (MoCap). In the rest, we addressed
the problem of human motion captioning from various perspectives and for differ-
ent objectives that went beyond merely generating text based on human motion.

• In Chapter 3, to address the challenge of detecting protective behaviors within
a highly imbalanced dataset, we devised a modified architecture that out-
performed the results achieved by other participants. Furthermore, we con-
ducted an investigation into the explainability of the attention mechanism
used in the binary classification process.

• In Chapter 4, our main concern has been on addressing motion captioning to-
ward the generation of text aligned with motion, namely synchronized cap-
tioning. Thus, we conducted specific experiments given an additional and
interesting challenge of motion and language alignment. The experiments
were initially done on the original KIT-ML dataset, then after the release of
an augmented version of KIT-ML and much larger dataset HumanML3D we
did report our results on this new benchmark, outperforming the state-of-
the-art approaches. Importantly, as a side product, we achieved semantic
motion segmentation.

• In Chapter 5, we provide a detailed exploration of human motion segmenta-
tion through attention. We performed visual and quantitative assessments to
evaluate the motion segmentation capabilities resulting from our proposed
model in Chapter 4. Consequently, we introduced metrics for evaluating
segmentation performance within the context of captioning, comparing per-
formance both at the word and phrase level using attention weights aggre-
gation.

• In Chapter 6, given the recent datasets, KIT-aug and HumanML3D, our pri-
mary objective was the development of a fully interpretable architectural de-
sign capable of performing spatial reasoning and temporal selection. Our de-
sign mirrors human-like analysis. To achieve this goal, we introduced a spe-
cialized formulation of spatial and temporal attention mechanisms. More-
over, we experimented with various attention guiding techniques aimed at
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enhancing performance by increasing the model’s interpretability. Further-
more, we provided tools to assess interpretability both qualitatively and quan-
titatively.

7.2 Perspectives

In this part, we discuss the potential use cases of the proposed methodologies and
their relevance to real-world applications, while also highlighting the need for fu-
ture research in the field.

7.2.1 Skeleton based action segmentation

Skeleton-based action segmentation employs both supervised and unsupervised
techniques. Supervised methods use labeled data to learn and predict action bound-
aries, achieving good precision but requiring extensive annotations. Unsupervised
approaches, on the other hand, rely on data clustering and temporal analysis, of-
fering autonomy but potentially sacrificing precision. We can investigate the use
of attention weights in both scenarios.

Supervised Segmentation. When the time annotation is available, it is possible
to supervise attention weights to be distributed along the executed action for each
action in the sequence. Furthermore, we could explore the recurrent aspect of our
attention formulation and the temporal action segmentation could be treated as
mapping a sequence of frames to a sequence of actions.

Unsupervised Segmentation. In this more challenging context, where there is no
sufficient annotation information, the attention weights could be used to infer the
action start and end. This may open a new path to novel approaches in the context
of action segmentation that could be more accurate, replacing older methods based
on clustering and other techniques.

7.2.2 Synthetic motion generation with controlled annotation

Our proposed approach enables unsupervised learning for human motion seg-
mentation. However, there is potential for the development of a more versatile
and accurate architecture capable of handling scenarios beyond the training data
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distribution. One promising avenue is to explore supervised learning for deter-
mining motion start and end times using automatically generated data. Several
studies in the literature could be investigated to control the timing of human mo-
tion. Beginning with simple models that generate action-conditioned motion, as
seen in (Guo et al., 2020). Drawing inspiration from Variational Autoencoders
(VAE), more diverse generation techniques have been proposed, such as (Petrovich
et al., 2021). Progressing further, models have been developed for more complex
and fine-grained motion generation, including text-conditioned motion generation
(Petrovich et al., 2022). Moreover, temporal action generation methods have been
introduced TEACH (Athanasiou et al., 2022) (cf. Figure 7.1b). The same authors
(Athanasiou et al., 2023) proposed another model SINC for spatial composition of
3D human motion (cf. Figure 7.1a). These recent advancements open the pos-
sibility of generating synthetic 3D human motion data with precise control over
timing, allowing for automatic fine-grained annotation of actions and their local-
ization. This, in turn, could facilitate pretraining models for motion segmentation
through supervised learning.

(a) Spatial action composition
(Athanasiou et al., 2023).

(b) Temporal action composition
(Athanasiou et al., 2022).

FIGURE 7.1: Spatial and temporal human motion composition.

7.2.3 Sign Language

The primary objective of this task is to overcome communication barriers between
hearing and Deaf individuals. Sign language research encompasses various inter-
mediate tasks, including sign language recognition, localization, and alignment.
Ultimately, the goal is to develop systems for Sign Language Production (SLP)
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(Rastgoo et al., 2021) or Sign Language Translation (SLT) (Liang et al., 2023). How-
ever, a significant challenge lies in the limited availability of annotated data for
building sign language translators with strong generalization capabilities. Conse-
quently, when alignment annotation are weak or absent, unsupervised techniques
become essential for learning sign and word alignment. In this perspective, one
approach in line with proposed experiments, we could investigate more the pos-
sibility of controlling attention distribution with the proposed recurrent aspect to
infer sign localization.

Real-time sign language description. Towards real time sign language descrip-
tion, a lot of research was conducted on a preliminary experiments such as Isolated
Sign Language Recognition (Laines et al., 2023), Alignment and Segmentation (Bull
et al., 2021; Varol et al., 2021), Transcription (Saunders et al., 2020; Camgoz et al.,
2020). These tasks work under a simplified hypothesis, which may not fully cor-
respond to the real scenario of continuous signing. However, it is still required as
initial steps toward the challenging of bidirectional mapping between sign and text
or voice. These preliminary experiments could form the basis for real time sign lan-
guage description, which represents a very challenging task driven by the computa-
tional efficiency required for real-time generation and furthermore the complexity
of architecture design that could progressively perform translation of continuous
signing to natural language.

In our context of using a 3D human dataset, we did achieve this progressive
aligned generation but under the assumption of a monotonic action order, which
may not fully hold for sign language order with respect to spoken language order.
This makes it more challenging to work with compared to the other considered
motion datasets.

Sign Language Production. This could be seen as the inverse task of sign lan-
guage translation, where it can take more inspiration from architectures developed
for motion generation conditioned on text or sequences of actions and could ben-
efit more from the approaches developed for motion generation conditioned on
language.
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7.3 Conclusion

We have presented work on motion captioning through various perspectives. We
considered this task as intermediate to solve other derived tasks: action localiza-
tion, alignment and identification of body parts involved in an action. In this
holistic approach, our experiments were centered on unsupervised learning of se-
mantic motion segmentation (Chapter 4). This process requires specific metrics
for evaluation, thus we proposed formulations to perform quantitative evaluation.
Furthermore, we initiated the construction of a motion-language dataset to open
the path for supervised learning of motion segmentation (Chapter 5). In contrast
to black box models, we designed an interpretable architecture through spatio-
temporal attention. The new model design ameliorates our previous results and
provides access to a solution for the derived tasks. According to each aspect, we
proposed effective tools for interpretability evaluation (Chapter 6). Later, we dis-
cussed transferability of our architecture components to adjacent tasks. Finally, we
conducted a deep analysis of potential applications: unsupervised action segmen-
tation and recognition, sign language translation and impact in other scenarios.
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Notre société actuelle est caractérisée par une forte dynamique de mouvement, que
ce soit en tant que composante essentielle de la santé humaine ou dans le cadre
d’une multitude de disciplines sportives où chaque athlète aspire à l’excellence
et à la performance. Le mouvement est ainsi au cœur de nombreuses études sci-
entifiques. Les travaux présentés dans ce manuscrit ont été menés au sein d’une
équipe de recherche nommée EuroMov Digital Health in Motion, qui s’est concen-
trée sur l’étude de la plasticité sensorimotrice humaine. Cette équipe est composée
d’experts en sciences du mouvement, de médecins et d’autres professionnels de la
santé, ainsi que d’experts en informatique et en intelligence artificielle. L’objectif
principal d’Euro-Mov DHM est de comprendre tous les aspects de la plasticité sen-
sorimotrice humaine pour améliorer la qualité de vie et la santé au fil du temps,
ainsi que pour récupérer des fonctionnalités physiques altérées par des maladies
ou des accidents de la vie. Cette recherche vise également à développer des inno-
vations et à valoriser les secteurs où les sciences du mouvement, de la santé et de
l’informatique se chevauchent, avec pour ambition finale de comprendre les em-
preintes sensorimotrices de la santé physique et mentale chez l’homme grâce à des
approches de calcul innovantes.

Dans ce contexte, la représentation du mouvement pourra revêtir différentes
formes et impliquer de nombreux paramètres.

Qu’est-ce qu’on entend par représentation du mouvement ?
La représentation du mouvement correspond à la traduction d’un mouvement

physique en une représentation graphique ou numérique qui permet de décrire
ses caractéristiques quantitatives et qualitatives. Cette représentation peut pren-
dre différentes formes, allant des dessins et des schémas sur papier aux modèles
3D animés sur ordinateur. Elle peut également utiliser différents types de cap-
teurs, tels que des capteurs de mouvement, des caméras ou des accéléromètres,
pour mesurer et enregistrer les mouvements. Cette représentation permet d’avoir
plusieurs objectifs, tels que l’analyse et la compréhension des mouvements hu-
mains pour les disciplines sportives, la rééducation physique, la prévention des
blessures et l’amélioration des performances sportives.
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Quels sont les paramètres qui permettent de représenter le mouvement ? Il
existe plusieurs méthodes pour représenter le mouvement. Une première méthode
consiste à utiliser des capteurs déposés sur l’humain pour collecter des données
cinématiques décrivant le mouvement, telles que la vitesse, l’accélération, l’angle.
Le complément de ces données se focalise sur la description de l’objet en mou-
vement à travers sa position globale et encore la forme donnée par le squelette
humain défini par le système Mocap. Les capteurs utilisés et ainsi les données
nécessaires à collecter peuvent varier en fonction du type de mouvement étudié et
du contexte d’utilisation.

Une deuxième méthode moins coûteuse repose sur l’utilisation de données
vidéo pour l’estimation des paramètres du mouvement comme dans le cas de
l’estimation de la pose 2D (Xu et al., 2022; Cao et al., 2019) et d’autres exemples
de système d’estimation de la pose 3D comme détaillés par (Wang et al., 2021).
Ces systèmes peuvent être mis en place pour la base de données étudiée et pour
l’application choisie. À partir de cette estimation de positions spatiales, il est pos-
sible de dériver d’autres informations comme la vitesse et l’accélération.

Les représentations du mouvement peuvent également prendre la forme d’inva-
riants calculés à partir des données de position des marqueurs. Les invariants sont
définis par rapport à une mesure de référence, telle que le repère d’observation, et
peuvent inclure des informations telles que les distances euclidiennes entre chaque
paire de marqueurs, les vitesses, les coordonnées relatives et les angles. Ces in-
variants peuvent être définis manuellement comme proposé par (Takano and Lee,
2020), où des vecteurs sont calculés entre chaque paire de points d’articulations
puis normalisés donnant ainsi des vecteurs unitaires invariants par rapport à la
forme du corps et sa position globale (cf. Figure 7.2a).

Une autre solution consiste à apprendre automatiquement ces mesures invari-
antes. Plusieurs travaux (Yang et al., 2022; Li et al., 2020, 2018) ont proposé dif-
férentes architectures pour apprendre à produire des représentations invariantes
par angle de vue. On note en particulier les travaux récents de (Yang et al., 2022),
où les auteurs exploitent une technique de reciblage de mouvement qui permet
de projeter les mouvements capturés sous différents angles de vue sur un plan
commun, de manière à ce que les mouvements puissent être comparés de façon
cohérente, quel que soit l’angle de vue. Ces représentations, incorporant des pro-
priétées d’invariance, sont utiles pour réduire la variabilité entre les mouvements,
par exemple représenter la même action, ce qui peut faciliter la reconnaissance
d’action.
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Cependant, ces représentations peuvent ne pas suffire dans certains cas tels
que la reconnaissance de gestes complexes ou la prédiction de mouvements fu-
turs. Ainsi des techniques avancées, comme proposé par (Bütepage et al., 2017;
Zhu et al., 2023a) peuvent être mises en place pour apprendre des représenta-
tions plus robustes à partir de ces représentations de premier niveau. Observant
la représentation squeletique de l’humain, son mouvement est perçu comme un
graphe évoluant dans le temps, ce qui permet également de proposer des représe-
tantions spatio-temporelles (Salih et al., 2016; Chi et al., 2022). Il est aussi possible
d’exploiter une autre perspective du graphe du squelette en utilisant une modéli-
sation par image en RGB (Pham et al., 2018), dont chaque pixel est défini par le
triplet des coordonnées 3D de chaque point d’articulation après normalisation. La
Figure 7.2 schématise des représentations simples (cf. Figure 7.2a) et avancées (cf.
Figure 7.2b et 7.2c ). Nous catégorisons sur la figure 7.3 les réprésentations les plus
utilisées dans l’état de l’art pour la quantification du mouvement humain.

(a) Calcul manuel
d’invariants.

(b) Apprentissage de
représentation (espace latent).

(c) Représentation
volumique en mesh.

FIGURE 7.2: Exemple de représentations du mouvement.

Pourquoi avons-nous besoin de représenter le mouvement ? La représenta-
tion du mouvement est essentielle pour de nombreuses applications, notamment la
rééducation, la prévention des blessures et l’optimisation des performances sporti-
ves. En général, le processus d’analyse du mouvement humain fait appel une
étape de quantification, strictement nécessaire pour l’analyse du mouvement par
des méthodes utilisant l’apprentissage automatique. Ces dernières sont mises en
oeuvre dans un grand nombre d’applications comme, par exemple, détecter des
anomalies, surveiller la progression des patients en rééducation physique, faire
de la recommandation pour l’amélioration de la performance sportifs et assurer le
suivi des sportifs pour prévenir les blessures. Elles sont aussi utilisées en contexte
de réalité virtuelle et en robotique pour développer des systèmes qui imitent les
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FIGURE 7.3: Taxonomie des représentations du mouvement.

mouvements humains. Dans ce contexte, l’utilisation de l’apprentissage automa-
tique exploitent les coordonnées 2D ou/et 3D des articulations a été largement
adoptée pour l’analyse du mouvement humain selon différents niveaux de gran-
ularité, allant de la reconnaissance simple d’action (Qin et al., 2022) jusqu’à la de-
scription détaillée du mouvement avec du langage naturel (Plappert et al., 2018).
D’autres travaux proposent d’utiliser ces données intiales pour apprendre d’autres
représentations plus robustes et profondes (Zhu et al., 2023a).

Où langage et mouvement se rencontrent La sémantisation du mouvement
humain est au coeur de cette thèse. La littérature propose de nombreux exem-
ples de travaux visant à générer du mouvement à partir de descriptions textuelles.
Un des premiers travaux dans ces champs disciplinaire a été proposé par (Plap-
pert et al., 2018) qui étudie les deux directions de génération de mouvement et
de texte (cf. Figure 7.4a) en se basant sur des modèles récurrents bidirection-
nels. Plus récemment, les deux modes de génération ont été traités par (Toyoda
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et al., 2022; Guo et al., 2022b). En se focalisant sur les travaux liés à la généra-
tion du mouvement, des techniques très diversiées ont été appliquées. (Ghosh
et al., 2021) proposent la synthèse du mouvement (animation du texte) à partir
d’un modèle basé sur des réseaux récurrents, spécifiquement des GRUs (gated re-
current units), avec un design hiéarchique qui encode les parties supérieures et
inférieures du squelette humain. D’autres techniques plus avancées se basent sur
l’utilisation de transformeurs (Vaswani et al., 2017). Par exemple, (Petrovich et al.,
2022) encode le mouvement et le texte à travers un transformeur qui exploite le
concept d’apprentissage du VAE (Variationel AutoEncoder) introduit par (Kingma
and Welling, 2022). Ensuite, dans la phase d’inférence uniquement, l’encodeur
du texte est utilisé pour la génération du mouvement par le biais d’un décodeur
basé, lui aussi, sur un transformeur. (Guo et al., 2022a) proposent une architecture
qui repose sur deux modules. Text2length permet d’échantillonner la longueur du
mouvement et Text2Motion, un module architecturé par un VAE temporel, est util-
isé pour la génération du mouvement. Pour l’encodage du mouvement ils intro-
duisent une nouvelle représentation du mouvement interne nommée motion snip-
pet code. Ainsi, tous ces modules mis en place, il est possible de générer des mou-
vements naturels et diverses. Plus récemment, (Zhang et al., 2023) ont proposé un
design d’architecture incorporant un modèle génératif accompagné d’un modèle
de type VQ-VAE (Vector Quantised-Variational Autoencoder) (van den Oord et al.,
2017). Une autre technique plus sophistiquée a été utilisée par (Chen et al., 2023)
qui se base sur un mécanisme de diffusion permettant de générer un mouvement
conditionné par le texte ou l’action. Dans ces travaux, les chercheurs proposent
d’apprendre une représentation interne du mouvement à travers le modèle VAE.
Une autre forme de génération de mouvement à partir de texte est la génération
conditionnée par une séquence d’actions continues (Lee et al., 2023) (cf. Figure
7.4b), ainsi que d’autres modes de génération du mouvement conditionnée par un
texte dépendant de la scène étudiée (Wang et al., 2022) – cf. Figure 7.4c.

Si de nombreux travaux, on l’a vu, s’intéressent à la génération de mouve-
ment à partir de texte, très peu de recherches s’intéressent à la génération inverse
: produire une interprétation et une description sémantique à partir de la cap-
ture du mouvement. Parmi les approches proposées dans la littérature, on note
une large part des travaux de Takano, employant des méthodes qui, pour la plu-
part, s’articulent sur le modèle de markov caché (HMM) appliqué à des bases de
données (BDD) de natures similaires (Takano et al., 2016; Takano and Lee, 2020;
Takano et al., 2020). D’autres travaux restreints à la traduction mouvement vers
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(a) Association mouvement-langage bidirectionnel (Plappert et al.,
2018).

(b) Description comme succession d’actions
(Lee et al., 2023).

(c) Description dépendant de la scène (Wang
et al., 2022).

FIGURE 7.4: Trois différents contextes d’association
langage-mouvement.

le texte ont été élaborés sur la base de données KIT-MLD, à la fois par les au-
teurs du jeu de données eux-mêmes (Plappert et al., 2018) et par d’autres équipes
de recherche. Parmi ces dernières, on peut citer (Plappert et al., 2018) qui ont
créé un système capable de générer des mouvements à partir d’une description
textuelle et de générer du texte décrivant un mouvement en utilisant une archi-
tecture d’encodeur-décodeur GRU bidirectionnelle. Les auteurs évaluent leur sys-
tème sur la génération de texte en utilisant la métrique BLEU-4 commune (Pap-
ineni et al., 2002), puis l’évaluent sur la génération de mouvement en faisant un
aller-retour avec le mouvement généré pour générer à nouveau du texte qui peut
alors être évalué par rapport à la description originale, en utilisant à nouveau la
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métrique BLEU-4. La totalité des travaux d’association mouvement-langage traite
cette tâche de manière globale et ne permet pas d’avoir une analyse sémantique
fine du mouvement. C’est cette problématique qui sera abordée dans la suite de ce
manuscrit: La génération du texte à travers des architectures interprétables en vue
de l’analyse et la segmentation sémantique du mouvement humain.

La thèse défendue dans ce contexte s’intéresse principalement à la
génération du texte à travers des architectures interprétables en vue
de l’analyse et la segmentation sémantique du mouvement humain.
Le but est de permettre la résolution sans supervision des taches con-
nexes: la synchronisation entre mouvement et texte, identification
spatio-temporelle des éléments décrivant une primitive du mouve-
ment humain et d’autres.

Pour répondre à cette problématique, plusieurs verrous doivent être surmon-
tés.

Comment interpréter le mouvement ? Est-il possible d’expliquer le mouve-
ment de façon automatisée comme le ferait un humain ?

La compréhension et l’interprétation du mouvement humain sont des défis im-
portants pour les chercheurs. Les méthodes existantes pour interpréter le mouve-
ment humain sont limitées, car elles ne permettent pas toujours une interprétation
précise et complète du mouvement. Cela peut être dû à la complexité du mouve-
ment humain et à la difficulté de traduire l’expérience subjective de l’interprétation
du mouvement en un processus automatisé. Cette interprétation peut être graduée
selon plusieurs niveaux de granularité, allant de la description globale du mouve-
ment comme la reconnaissance d’action (e.g., sauter, marcher), jusqu’à la description
précise de chaque composante impliquée dans le mouvement : parties du corps
humain impliquées dans le mouvement (e.g., pieds, jambe), nature du mouvement
(e.g., plier, poser, lever) ainsi que manière de l’exécuter (e.g., vitesse). La figure 7.5
donne un exemple de définition de granularité échelonnée sur trois niveaux : 0)
reconnaissance du mouvement global ; 1) détection des parties impliquées dans
l’exécution du mouvement ; 2) identification du mouvement relatif de chaque par-
tie.

Comment comprendre et décomposer le mouvement au travers de ses décom-
positions temporelles et spatiales ?



206 French synopsis

FIGURE 7.5: Exemple de niveaux de sémantisation d’un mouvement
(Dreher et al., 2017).

La compréhension du mouvement humain nécessite une analyse en termes de
ses composantes temporelles et spatiales. Les mouvements humains peuvent être
décomposés en différentes parties, comme des segments corporels, des articula-
tions, des mouvements linéaires ou circulaires, etc. La décomposition temporelle
peut également inclure la durée du mouvement, la vitesse, l’accélération, etc. Pour
comprendre et décomposer le mouvement humain, il est donc nécessaire d’abord
de définir ce que considère une décomposition en lien avec l’analyse sémantique
du mouvement. Les deux formes de décompositions peuvent être définies dans
notre contexte comme suit :

Décomposition temporelle : Cette décomposition du mouvement sur l’axe tem-
porel est assimilée à un processus de segmentation où chaque phase temporelle
identifie un mouvement de base (primitive). L’ensemble des primitives compose
alors le mouvement global.

Décompositon spatiale : Concernant la dimension spatiale elle consiste à identi-
fier les parties impliquées dans la formation de chacun des mouvements de base
et leur position dans l’espace.

Quelle architecture peut être proposée pour sémantiser le mouvement ?
La définition de l’architecture repose sur la définition de la sémantisation du

mouvement. Dans ce manuscrit, la sémantisation du mouvement est définie comme
le résultat de l’association des décompositions temporelle et spatiale appliquées au
mouvement humain. Ainsi, on déduit que l’objectif de l’architecture est de perme-
ttre la représentation des différentes composantes du mouvement de manière à
les rendre interprétables. Elle doit également permettre d’associer ces différentes
composantes à des concepts sémantiques, comme des actions, etc. Plusieurs archi-
tectures sont en développement pour répondre à cette problématique, notamment
des modèles basés sur l’apprentissage automatique et des approches inspirées du
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FIGURE 7.6: Taxonomie sur le processus d’analyse du mouvement
humain et exemples d’approches classiques.

traitement du langage naturel. Dans le champ de l’analyse du mouvement humain
(AMH), (Wang et al., 2003) proposent une revue approfondie de l’état de l’art qui
recense les progrés établis dans l’AMH. Leur article présente les approches util-
isées dans le processus de l’AMH qui implique la détection, puis le suivi et enfin
l’identification de la nature du mouvement de la personne. Dans son sens large,
l’AMH basée sur la vision adresse de la compréhension du comportement humain
à partir d’une séquence d’images. La revue se focalise sur les contributions ma-
jeures dans les trois disciplines permettant d’appliquer l’AMH, ainsi que les ap-
plications qui en découlent pour la surveillance visuelle, les interfaces homme-
machine et le diagnostic du mouvement. Dans la figure 7.6, on présente la tax-
onomie des méthodes d’AMH élaborée sur la base de cette revue.

D’autres revues plus récentes détaillent la progression dans l’AMH ainsi que la
modélisation basée sur les sytèmes Mocap et les applications potentielles (Wang,
2016; Lim et al., 2015). Examinant ces états de l’art, on perçoit un manque dans
les architectures permettant de répondre d’une manière efficace à la branche de
description sémantique (cf. Figure 7.6), particulièrement l’association des deux
décompositions temporelles et spatiales définies ci-dessus.

Pour répondre à ces différents enjeux, le manuscrit est organisé comme suit.
Après une présentation du contexte et des objectifs de la thèse, le chapitre 2, con-
sacré à l’estimation de pose, détaille les différentes techniques qui peuvent être
utilisées pour quantifier et représenter le mouvement humain. L’objectif étant de
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déterminer si les données estimées peuvent se substituer à la capture du mouve-
ment à travers l’analyse des systèmes d’estimation de pose 2D et de reconstruc-
tion 3D. Le chapitre 3 fait une mise au point sur l’encodage du mouvement et
les techniques de pointe qui peuvent être utilisées, avec une première contribution
comme application d’une architecture deep learning dans le contexte de l’analyse du
mouvement, spécifiquement pour la détection des comportements protectifs. Le
chapitre 4 présente la deuxième contribution de cette thèse, qui consiste en une seg-
mentation temporelle du mouvement, en utilisant des mécanismes d’attention. Le
chapitre 5 constitue la troisième contribution, qui propose l’analyse quantitative et
qualitative de la segmentation sémantique du mouvement humain inférée à partir
des poids d’attention. Pour l’évaluation de la performance de cette segmentation
on propose et on compare plusieurs métriques, puis, on détermine quelles sont les
méthodes pertinentes pour la visualisation de la synchronisation entre mouvement
et langage. Ensuite, on décrit notre construction de la première partie du jeu don-
née Euromov Motion Language Dataset (EMLD). Le chapitre 6 détaille la quatrième
contribution majeure, à savoir le développement d’une architecture interprétable
basée sur des mécanismes guidés d’attention spatio-temporelle (Radouane et al.,
2023b). Enfin, le chapitre 7 propose un résumé sur les contributions de la thèse, les
applications potentielles des méthodologies proposées, ainsi que les perspectives
d’amélioration et les retombées des travaux réalisés sur d’autres taches connexes.
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Abstract

Captioning tasks mainly focus on images or videos, and seldom on human poses. Yet, poses
concisely describe human activities. Beyond text generation quality, we consider the motion
caption task as an intermediate step to solve other derived tasks. In this holistic approach,
our experiments are centered on the unsupervised learning of semantic motion segmentation
and interpretability. We first conduct an extensive literature review of recent methods for
human pose estimation, as a central prerequisite for pose-based captioning. Then, we take
an interest in pose-representation learning, with an emphasis on the use of spatiotemporal
graph-based learning, which we apply and evaluate on a real-world application (protective
behavior detection). As a result, we win the AffectMove challenge. Next, we delve into the
core of our contributions in motion captioning, where: (i) We design local recurrent attention
for synchronous text generation with motion. Each motion and its caption are decomposed
into primitives and corresponding sub-captions. We also propose specific metrics to evaluate
the synchronous mapping between motion and language segments. (ii) We initiate the con-
struction of a motion-language dataset to enable supervised segmentation. (iii) We design an
interpretable architecture with a transparent reasoning process through spatiotemporal atten-
tion, showing state-of-the-art results on the two reference datasets, KIT-ML and HumanML3D.
Effective tools are proposed for interpretability evaluation and illustration. Finally, we con-
duct a thorough analysis of potential applications: unsupervised action segmentation, sign
language translation, and impact in other scenarios.

Résumé
Dans l’état de l’art, les tâches de sous-titrage se concentrent souvent sur les images et les
vidéos, mais rarement sur les poses humaines. Ces dernières offrent pourtant une représen-
tation concise des activités humaines et, au-delà de la qualité de la génération de texte, la
tâche de "légendage" de mouvement peut constituer un intermédiaire pour résoudre d’autres
tâches dérivées. Les travaux présentés dans ce manuscrit sont centrés sur l’apprentissage non
supervisé qui peut être utilisé pour la segmentation de mouvement et l’identification d’une
sémantique associée, ainsi que son interprétabilité. Après une revue de la littérature des méth-
odes récentes pour l’estimation de poses humaines, un prérequis central pour le légendage
basé sur la pose, nous nous intéressons à l’apprentissage de la représentation de pose, avec un
accent sur la modélisation basée sur des graphes spatio-temporels. Notre modèle est évalué
sur une application réelle de détection de comportement protecteur, pour laquelle nous avons
gagné le défi AffectMove. Les contributions majeures concernant le légendage du mouvement
sont ensuite détaillées en trois temps. (i) Un mécanisme d’attention récurrent local pour la
génération de texte synchronisé avec le mouvement est proposé, où chaque mouvement et sa
légende sont décomposés en primitives et sous-légendes correspondantes. Des métriques spé-
cifiques sont proposées pour évaluer la correspondance entre les segments de mouvement et
les segments de langage. (ii) Un jeu de données mouvement-langage est ensuite proposé pour
permettre une segmentation supervisée. (iii) Enfin, une architecture interprétable avec un pro-
cessus de raisonnement transparent à travers l’attention spatio-temporelle est proposée. Cette
architecture montre des "résultats état-de-l’art" sur les deux jeux de données de référence, KIT-
ML et HumanML3D. Des outils efficaces sont proposés pour l’évaluation et l’illustration de
l’interprétabilité. Ces contributions ouvrent de nombreuses perspectives de recherche et le
manuscrit se termine par une analyse approfondie des applications potentielles : la segmen-
tation d’actions non supervisée, la traduction automatique de la langue des signes ou encore
l’impact dans d’autres scénarios.
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